
Large-Scale Sequential Imperfect-Information
Game Solving: Theoretical Foundations and

Practical Algorithms with Guarantees
Christian Kroer

CMU-CS-18-118
September 17, 2018

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Tuomas Sandholm, Chair

Geoffrey J. Gordon
Fatma Kılınç-Karzan

Vince Conitzer, Duke University
Yurii Nesterov, Université catholique de Louvain

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Christian Kroer

This research was sponsored by a Facebook Fellowship, Microsoft, the U.S. Army under grant numbers W911NF1610061
and W911NF1710082, and the National Science Foundation under grant numbers CCF-1101668, IIS-1320620, IIS-
1546752, and IIS-1717590. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the
U.S. government or any other entity.

Keywords: equilibrium finding, extensive-form games, sequential games, imperfect-information
games, Nash equilibrium, abstraction, convex optimization, first-order methods, limited looka-
head

To Janine, Niels, my parents, and my dog.

iv

Abstract
Game-theoretic solution concepts provide a sound notion of rational behavior in

multiagent settings. To operationalize them, they have to be accompanied by tech-
niques to compute equilibria. We study the computation of equilibria for extensive-
form games, a broad game class that can model sequential interaction, imperfect in-
formation, and outcome uncertainty. Equilibrium computation in large-scale extensive-
form games typically relies on two complementary methods: abstraction and itera-
tive equilibrium-finding algorithms. We present new algorithmic and structural re-
sults for both methods.

For abstraction, we develop new theoretical guarantees on the solution quality
of equilibria computed in abstractions. We establish new results for several types of
games and abstractions: discrete and continuous extensive-form games, and perfect
and imperfect-recall abstractions. For all settings, our results are the first algorithm-
agnostic solution-quality guarantees. Additionally, even in the case of algorithm-
specific guarantees, our approach leads to exponentially stronger bounds than prior
results, and extend to more general games and abstractions.

For equilibrium computation, we focus on two-player zero-sum Nash equilib-
rium computation via convex optimization. We consider a smoothing method based
on a dilated entropy function. We prove bounds on the strong convexity and polytope
diameter associated with this function that are significantly stronger, and more gen-
eral, than bounds for prior smoothing methods. This leads to the state-of-the-art in
convergence rate for iterative methods for computing a Nash equilibrium. In particu-
lar, we obtain the first convergence rate that generalizes the well-known logarithmic
dependence on dimension in the matrix-game setting. In GPU-based experiments on
large-scale real-world games we show that our methods lead to a convergence rate
that beats all but the fastest practical method. We extend our smoothing approach to
the computation of approximate Nash equilibrium refinements as well.

Finally, we investigate a number of new extensive-form game models. We de-
velop new solution concepts and associated algorithmic results for games where
opponents have limited lookahead. We then initiate the study of robust Stackelberg
extensive-form games. We develop algorithms for computing solutions and classify
the computational complexity of the problem.

vi

Acknowledgments
First of all thanks to my advisor Tuomas Sandholm. Tuomas introduced me to

the world of extensive-form games and shaped many of the types of questions that
I am now fond of. At the same time he also gave me the freedom to pursue new
research topics as my interests developed and matured over time. His marathon
paper-writing sessions taught me most of what I know on how to write research
papers. Tuomas has also been invaluable in helping me build my network and meet
people in the field.

I am greatly indebted to Fatma Kılınç-Karzan, who had an enormous impact on
both my thesis as well as my general research interests. Fatma spurred my interest
in first-order methods, and taught me many of the things I know about mathematical
optimization in general. Fatma is also an incredibly conscientious coauthor. Vince
Conitzer has been incredibly helpful and friendly throughout my entire degree, as a
source of advice, inspiration, and deep research discussions. Geoff Gordon has been
helpful as one of the rare experts in both first-order methods and extensive-form
games; I also enjoyed my occasional attendance at his research meetings. Finally,
I would like to thank Yurii Nesterov not only for serving on my committee, but for
inventing many of the foundations that my thesis rests on.

Beyond my work at CMU, I am fortunate to have spent excellent summers in-
terning at industry research groups. Thanks to Sébastien Lahaie, Miro Dudı́k, and
Dave Pennock for a great summer spent at MSR NYC. Thanks to Nico Stier and
Eric Sodomka for a great internship at Facebook Core Data Science, but also for
continued collaborations and support.

My interest in research, and algorithms, AI, and optimization more generally,
was sparked by a number of excellent teachers, collaborators, and advisors during
my years at the IT University of Copenhagen. Rune M. Jensen was instrumental both
in me entering research, as well as my search for a doctoral program in the US. Thore
Husfeldt sparked my love for algorithms and hardness proofs. Joe Kiniry gave me
invaluable advice and help on getting into PhD programs. Kevin Tierney and Yuri
Malitsky gave me guidance during my first forays into research. Finally Adam Britt,
Niv Dayan, and Martin K. Svendsen deserve thanks for starting research projects
with me during those early years.

Thanks to my collaborators during the Ph.D., without whom this whole doc-
torate journey would have been much less fun to to take on: Noam Brown, Vince
Conitzer, Anupam Datta, Bruce DeBruhl, Miroslav Dudı́k, Nicola Gatti, Nam Ho-
Nguyen, Fatma Kılınç-Karzan, Sébastien Lahaie, George Lu, Alberto Marchesi Tuo-
mas Sandholm, Eric Sodomka, Nico Stier, Patrick Tague, and Kevin Waugh.

Beyond my collaborators and committee, David Parkes, Ariel Procaccia, and
Michael Wellman have been great sources of support, advice, and discussion.

I thank my group members for all the shared paper-writing nights over the group-
special pizza and research discussions. Noam Brown deserves huge thanks for re-
peatedly answering my questions about poker bots, and helping nurture my gambling
habit; John Dickerson for countless research advice, “travel funding” and a contin-

ued commitment to discussing the possibility of collaborating someday; Gabriele
Farina for great collaboration, helping me appreciate not working in coordinates,
and sharing my unhealthy addiction to math-book purchases; Sam Ganzfried for
poker discussions and recommending Hello Bistro, the best salad in the world.

Outside my group I would like to thank: Brandon Amos for deep-learning-as-a-
service; Nika Haghtalab for Canadian Thanksgiving and sharing job-market anxiety
with me; Sid Jain for not burning down our house when we lived together; David
Kurokawa for the pool sessions; Jay-Yoon for good times in the office, even though
you abandoned us; Jamie Morgenstern for holding down the 9221 fort and for the
gainz; Kevin Waugh for great collaborations and discussions on convex optimiza-
tion; Anders Øland for all the rugbrød.

I would like to thank the excellent administrative staff at CMU: Charlotte Yano
for years of great help, advice, and great discussions with little-to-no snark, Jessica
Packer for always being super helpful and attentive, and making sure that my rec-
ommendation letters actually arrived, and Deb Cavlovich for somehow managing
to keep me from being dropped from the Ph.D. program every time I forgot to reg-
ister for things, and more importantly helping me navigate the maze that is Ph.D.
requirements.

The most important thanks goes to my family: My wonderful wife Janine for
forcing me to go to on adventures and seeing the real world, and for attempting to
make me a more well-rounded person; my parents for their constant support and
kindness toward Janine and me while we are an ocean apart, and for being the best
parents one could ask for; my brother for reminiscing with me about the old times in
Aalborg and watching me play Final Fantasy on the couch, ork satme!

viii

Contents

1 Introduction 1
1.1 Algorithms for computing zero-sum Nash equilibria (Chapter 3) 2
1.2 Abstraction for large general-sum games (Chapter 4) 4
1.3 Equilibrium refinement (Chapter 5) . 6
1.4 Limited lookahead (Chapter 6) . 7
1.5 Robust Stackelberg equilibria (Chapter 7) . 7

2 Notation 9
2.1 Extensive-form games . 9
2.2 Equilibrium concepts . 10

3 Algorithms for computing zero-sum Nash equilibria 13
3.1 Related literature . 15
3.2 Problem setup . 16

3.2.1 Basic notation . 16
3.2.2 Sequence form . 17

3.3 Optimization setup . 17
3.3.1 General framework for FOMs . 18

3.4 Treeplexes . 20
3.5 Dilated entropy functions with bounded strong convexity 22

3.5.1 Preliminary results for the proofs of our main results 24
3.5.2 Proofs of our main theorems . 25
3.5.3 Treeplex width . 28

3.6 EGT for extensive-form game solving . 29
3.6.1 Improvements in extensive-form game convergence rate 30

3.7 Smoothed best responses . 32
3.8 Small and medium-scale numerical experiments 33
3.9 Large-scale numerical GPU experiments . 37
3.10 Sampling . 41
3.11 Conclusions and future work . 43

4 Abstraction for large general-sum games 45
4.1 Introduction . 46
4.2 Game abstractions . 47

ix

4.3 Measuring differences between the original game and the abstract game 51
4.4 An exact decomposition of abstraction error . 54
4.5 Perfect-recall abstraction . 57

4.5.1 Removing probability-error dependence on strategies 57
4.5.2 Level-by-level abstraction . 61
4.5.3 Level-by-level impossibility . 67
4.5.4 Generating abstractions by considering all levels at once 68

4.6 Imperfect-recall abstraction . 69
4.6.1 Imperfect-recall abstraction without probability-error dependence on strate-

gies . 70
4.6.2 Chance-relaxed skew-well-formed (CRSWF) games 71
4.6.3 Complexity and algorithms . 73
4.6.4 Experimental performance of CRSWF abstractions 76

4.7 Neccessity of distributional similarity of reach probabilities 79
4.8 Conclusions and future work . 80
4.9 Discretizing continuous action spaces . 81

4.9.1 Continuous action spaces . 81
4.9.2 Discretization model . 83
4.9.3 Overview of our approach . 85
4.9.4 Discretization quality bounds . 86
4.9.5 Discretization algorithms . 87
4.9.6 Applications . 91
4.9.7 Differences to abstraction practice in poker 92
4.9.8 Conclusions and future work . 93

5 Equilibrium refinement 95
5.1 Preliminaries . 96

5.1.1 Perturbations and Extensive-Form Perfection 97
5.2 Distance-generating functions for the ξ-perturbed game 97
5.3 Experiments . 100
5.4 Conclusions and future research . 101

6 Limited lookahead in sequential games 103
6.1 Model of limited lookahead . 104
6.2 Complexity . 104

6.2.1 Nash equilibrium . 105
6.2.2 Commitment strategies . 105

6.3 Algorithms . 108
6.4 Experiments . 112
6.5 Conclusions and future research . 115

x

7 Robust Stackelberg equilibria 119
7.1 Stackelberg setting . 121
7.2 Limited-lookahead model . 121
7.3 Best responses and how to compute them . 122
7.4 Extension to uncertainty about the opponent . 123
7.5 MIP for full-certainty setting . 124
7.6 MIP with uncertainty about follower payoff . 125

7.6.1 MIP for Limited-Lookahead Interval Uncertainty 127
7.7 Experiments . 128
7.8 Conclusions and future research . 131

8 Concluding remarks and further thoughts 135

Bibliography 139

Appendix 153

xi

xii

List of Figures

1.1 An overview of the general abstraction approach. 2

3.1 An example treeplex constructed from 9 simplexes. Cartesian product operation
is denoted by ×. 21

3.2 A search game between a defender and an attacker. 34
3.3 Solution accuracy as a function of the number of iterations for EGT with our

weighting scheme (New weights) and with the weighting scheme from Kroer
et al. [101] (Old weights). Both axes are on a log scale. The top row shows
the effect of our weighting scheme when using EGT instantiated according to
the original theory. The bottom row shows the effect when using our aggressive
EGT variant. 35

3.4 Solution accuracy as a function of the number of tree traversals in three different
variants of Leduc hold’em and the Search game. Results are shown for CFR
with regret mathing, CFR with regret mathing+, CFR+, and our aggressive EGT
algorithm. Both axes are shown on a log scale. 36

3.5 Solution quality as a function of the number of iterations for all algorithms on
two river subgames. The solution quality is given as the sum of regrets for the
players in milli-big-blinds. 39

3.6 Solution quality as a function of the number of gradient computations for all
algorithms on two river subgames. The solution quality is given as the sum of
regrets for the players in milli-big-blinds. 40

4.1 Abstraction example. Left: Original EFG. Right: Abstraction (which has perfect
recall in this case). Dotted red arrows denote the mapping of information sets in
the original game onto information set partitions in the abstract game. The dotted
red line in the abstract game denotes an information set coarsening relative to P ′. 49

4.2 Example of how the abstraction in Figure 4.1 could be constructed. First the
rightmost red branch is removed (which we would model as mapping it onto the
middle blue branch). Second the information sets for Player 2 are coarsened as
shown by the red dotted line. 49

4.3 Two topologically isomorphic extensive-form games. 63
4.4 On the left is an extensive form game. On the right is the resulting graph after

turning the information set in to a clique, and converting utilities at leaf nodes to
regular leaf nodes. 64

xiii

4.5 On the left is a leaf node with payoffs [2, 2, 3] for players 1, 2, 3 respectively. On
the right is the subgraph that replaces the lead node in the reduction. 65

4.6 A signal tree for a simple poker game. Nodes labeled P1 or P2 denote the card
being dealt privately to player 1 or 2, respectively. Nodes labeled A denote a
public card. A leaf node labeled 1 indicates Player 1 winning. 67

4.7 Left: Number of nodes in the signal tree (left y-axis) and in the game tree (right y-
axis) as a function of the allowed loss in the IP model when minimizing tree size.
Right: Exploitability as a function of the allowed signal tree size. Exploitability
for both players is shown, along with our theoretical bound. 69

4.8 Two subtrees of a game tree. Information sets are denoted by dotted lines. A
CRSWF abstraction is shown, with merged information sets and their node map-
ping denoted by dotted lines with arrowheads. All actions are mapped to their
corresponding upper/lower-case actions in the merged information sets. 73

4.9 Regret bounds for varying single-level abstraction problem sizes in DRP. The
x-axis shows the number of information sets in the abstraction, and the y-axis
shows the theoretical bound on solution quality. The total number of information
sets in the original game is 36 . 77

4.10 Log-log plots of the sum of the two players’ regrets as a function of CFR it-
erations on the bound-minimizing abstraction of CDRP. The legends give the
amount of correlation in the die rolls of the different CDRP games on which we
ran experiments. The horizontal lines show the respective ex-ante regret bound of
Corollary 3 for each of the CDRP games. (In the first game on the left where the
correlation is zero, the abstraction is lossless, so the horizontal line (not shown)
would be at zero.) . 78

4.11 Left: General-sum EFG with abstraction. Right: zero-sum EFG with abstraction
where Player 1 wants to minimize. Orange dashed lines denote information sets
joined in the abstraction. Bold edges denote actions taken with probability 1 in
the abstracted equilibrium. 79

4.12 An example of a game tree with the triangle representing a subtree with a con-
tinuous action space at the node. 82

4.13 An overview of our discretization approach. 85

5.1 General-sum (left) and zero-sum (right) games where Nash equilibrium pre-
scribes irrational play. Numbers in parentheses denote the payoffs to Players
1 and 2. 96

5.2 Regret as a function of the number of iterations for EGT with various ε perturba-
tions (denoted in parentheses) and CFR+. Both axes are on a log scale. 101

5.3 Maximum regret at any individual information set, as a function of the number
of iterations. 102

6.1 The game tree in our proof of Theorem 19. Dashed lines denote information sets. 106
6.2 The clause modification in our proof of Theorem 20. 107
6.3 The game tree for our proof of Theorem 21. 108

xiv

6.4 Winnings in Kuhn poker and KJ for the rational player as Player 1 and 2, respec-
tively, for varying per-node independent evaluation function noise. Error bars
show standard deviation. 114

6.5 A subtree that exhibits lookahead pathology. 115
6.6 Winnings in Kuhn poker and KJ for the rational player as Player 1 and 2, re-

spectively, for varying cumulative evaluation function noise. Error bars show
standard deviation. 116

6.7 Our complexity results. {PPAD,NP}-hard indicates that finding a Nash equi-
librium (optimal strategy to commit to) is PPAD-hard (NP-hard). P indicates
polytime. 117

7.1 A set of action value-uncertainty intervals. 126
7.2 The graph on which the search game is played. 130

xv

xvi

List of Tables

7.1 Runtime experiments for the MIP by Bošanskỳ and Čermák [18] (B& C) and our
robust Stackelberg MIP for increasing uniform uncertainty intervals (R-c where
c is the interval radius). All runtimes are in seconds. 130

7.2 Leader utility when maximizing utility against an incorrect utility function. Each
row corresponds to a different size of uncertainty interval used for computing the
leader strategy (interval size is given in the leftmost column). The columns are
ordered in increasing amounts of incorrectness allowed in the follower utility
function. 131

7.3 Limited-lookahead with depth 1 and 2 in 2-card. 132
7.4 Limited-lookahead with depth 1 and 2 in Kuhn. 132

xvii

xviii

Chapter 1

Introduction

Game-theoretic solution concepts provide a sound notion of rational behavior in multiagent set-
tings. To operationalize equilibria, they have to be accompanied by computational techniques for
identifying them. Thus, equilibrium computation has emerged as a central topic in economics
and computation [42, 48, 49, 54, 68, 81, 93, 112, 114, 165, 179]. In this thesis we focus mainly on
extensive-form games. Extensive-form games are a broad class of games that can model sequen-
tial and simultaneous moves, outcome uncertainty, and imperfect information. This includes
real-world settings such as negotiation, sequential auctions, security games [113, 125], cyber-
security games [43, 51], recreational games such as poker [148] and billiards [2], and certain
medical treatment settings [41]

The primary benchmark for large-scale equilibrium-finding is the annual computer poker
competition (ACPC). Each year, research labs and individual hobbyists submit poker bots which
are faced off in competition. For many years, all of the most successful bots have been based on
equilibrium-finding techniques [1, 28, 148]. More specifically, these bots employ the following
technique: First, the game is abstracted to generate a smaller game. Then the abstract game is
solved for (near-)equilibrium. Then, the strategy from the abstract game is mapped back to the
original game. This process is shown pictorally in Figure 1.1. The figure suggests that an ε′-Nash
equilibrium is obtained in the full game when using an ε-Nash equilibrium from the abstraction.
Previous methods have no such guarantee on the quality of the equilibrium in the full game.
Furthermore, practical abstractions are so large that exact Nash equilibria cannot be computed,
even in the abstraction. Instead, fast iterative methods are applied, which converge to a Nash
equilibrium in the limit, while avoiding having to write down a model linear in the size of the
game tree.

This thesis explores and develops theoretical foundations for all steps of the solution process
described above. Chapter 3 develops state-of-the-art convergence rate bounds for fast iterative
solvers. Chapter 4 ameliorates the lack of guarantees on abstraction solution quality by develop-
ing some of the first, and by far the strongest, bounds on solution quality.

In some contexts Nash equilibrium may not be a satisfactory solution concept, for example
it may not be sequentially rational, and thus fail to capitalize when opponents make mistakes.
This can be partially ameliorated by using Nash equilibrium refinements: refinements retain
the guarantees of a Nash equilibrium while giving additional rationality properties in subtrees
that are not reached in equilibrium. Chapters 5 develops scalable algorithms for computing

1

Figure 1.1: An overview of the general abstraction approach.

approximate variants of a particular type of Nash equilibrium refinement. Another context where
Nash equilibrium is not ideal is when a rational player faces a myopic opponent, in which case
Nash equilibrium is too pessimistic. Chapter 6 introduces the study of myopic opponents in
EFGs and studies the problem of computing optimal strategies in such settings. Stackelberg
equilibria are popular in settings where one player may credibly commit to a strategy, and let
the opponent best respond to the strategy committed to. In such settings it is important the
committing player optimizes against an accurate opponent model so that they do not overfit
to an incorrect model. Chapter 7 initiates the study of robust opponent models in Stackelberg
EFGs, and shows that robust solutions can be computed at no additional asymptotic cost. All
alternative solution concepts are supported by experimental evidence investigating scalability
and the performance of the solution concepts.

The next five sections will give a brief overview of the results obtained in each of the thesis
chapters.

1.1 Algorithms for computing zero-sum Nash equilibria (Chap-
ter 3)

This chapter focuses on developing iterative methods for large-scale equilibrium computation
that have state-of-the-art theoretical convergence rate while being competitive with the best prac-
tical methods. These are methods that write down strategies for the players, while requiring only
oracle access to the much larger game tree, usually for gradient computation. In particular, we
investigate the application of first-order methods (FOMs) to the computation of equilibria in
two-player zero-sum games. The application of FOMs relies on three core ingredients: (1) the
sequence-form transformation [165] for obtaining a bilinear saddle-point formulation, (2) convex
minimization algorithms such as the excessive gap technique (EGT) [132] or mirror prox [130],
and (3) smoothing techniques for the strategy spaces of the two players. The third part is cur-

2

rently not well understood.
A smoothing method in the context of an EFG can be thought of as a way to smoothly

penalize moving away from some center strategy (usually the uniform strategy, but any other
fully-mixed strategy can be used). Given a smoothing method, the idea is to define a smoothed
best-response function (SBRF) where the opponent best responds to a given strategy, except
that they optimize the sum of the expected payoff value plus a weighted penalty term. The
SBRF smooths out the nonsmooth kinks associated with changes to the best response of the
opponent. The general approach of smoothing out a bilinear saddle-point problem function was
proposed by Nesterov [132, 133] and was since extended to other nonsmooth functions [8].
What we call a smoothing method can also be viewed as a distance-generating function (DGF);
a distance measure between points can be obtained by taking the Bregman divergence between
two points x1, x2: the error in the first-order approximation to the DGF at x1 when taking the
approximation at x2. The DGF view was used by a number of later algorithms for solving
BSPPs [39, 40, 44, 130, 134].

Hoda et al. [79] introduced a class of smoothing techniques that can be applied to EFGs.
However, the convergence rate bounds obtained from the results of Hoda et al. [79] have a sig-
nificantly worse dependence on the EFG size than counterfactual regret minimization (CFR). We
show that a much better dependence on game parameters can be achieved by focusing on the
entropy function as a smoothing technique for each information set. This is done by carefully
choosing information-set weights such that a desirable smoothing function for the game tree is
obtained by summing over the weighted entropy functions for each information set. Our result
leads to the strongest known convergence rate for iterative methods, achieving a dependence on
game constants that is much stronger than that of Hoda et al. [79], while maintaining a 1/T
convergence rate. The result can be informally stated as
Informal Theorem 1. The dilated entropy function with simplex-weights chosen according a
particular recurrence leads to a measure of distance for sequential action spaces whose strong-
convexity parameter under the l1 norm has no dependence on the branching factor of each deci-
sion point. This extends the suitability of the negative entropy function as a distance measure for
simplexes to sequential action spaces.

As a corollary of this theorem combined with, e.g., the EGT algorithm we get the state-of-
the-art convergence rate for iterative methods on zero-sum perfect-recall EFGs.

While the chapter is on solving zero-sum EFGs the main theorem is more general than that:
it can be used to smooth sequential decision spaces in a variety of settings, including games with
more than two players or sequential decision making problems.

Furthermore, we introduce a new class of gradient estimators that allow instantiation of
stochastic FOMs such as stochastic mirror prox [87]. Finally, we show experimentally that EGT
instantiated with our smoothing technique leads to better practical convergence rates than CFR
for medium-to-high accuracy solutions on medium-sized games. It is furthermore faster than
CFR with every practical speedup modification, although CFR+ is still faster. CFR+ is a variant
of the CFR algorithm where the regret matching+ regret minimizer is used, a more aggressive
stepsize scheme is invoked, and an alternation heuristic is used. The first two variations are
guaranteed to preserve the 1/

√
T convergence rate of CFR [161], whereas the third variation

may not be theoretically sound [59]. We introduce a new aggressive variant of EGT, and in-

3

vestigate the performance of EGT and our aggressive variant on large real-time subgames faced
by a champion poker AI. These latter experiments represent the first comparison of FOMs and
CFR methods on real large-scale problems. We find that for this setting EGT again outperforms
all variants of CFR except CFR+. Thus it outperforms all algorithms known to be theoretically
sound, since we showed in Farina et al. [59] that CFR+ is not proven to be theoretically sound
due to its alternation heuristic.

The results on strong convexity and sampling were published as Kroer, Waugh, Kılınç-Karzan,
and Sandholm [101], “Faster First-Order Methods for Extensive-Form Game Solving,” at EC-
2015, and Kroer, Waugh, Kılınç-Karzan, and Sandholm [103], “Theoretical and Practical Ad-
vances on Smoothing for Extensive-Form Games,” at EC-2017. A journal version of these re-
sults is currently under submission. The aggressive EGT variant and GPU experiments will be
published as Kroer, Farina, and Sandholm [105], “Solving Large Sequential Games with the
Excessive Gap Technique” at NIPS-2018.

1.2 Abstraction for large general-sum games (Chapter 4)
As mentioned previously, practical equilibrium computation usually relies on dimensionality
reduction through creating an abstracted game first. This chapter focuses on abstraction methods
for reducing the dimensionality of extremely large games while retaining theoretical guarantees.
Practical abstraction algorithms for EFGs have all been without any solution quality bounds [64,
66, 67, 69, 70]. This chapter ameliorates this fact by developing some of the first theoretical
results on the quality of equilibria computed in abstractions of EFGs.

The central contribution of this chapter is a framework for measuring differences between a
given abstraction and the original game. Based on this framework we prove two central theorems.
The first relates ε-Nash equilibria in the abstraction to ε-Nash equilibria in the full game, and can
be informally stated as:
Informal Theorem 2. Given a perfect-recall EFG and a (potentially imperfect-recall) abstrac-
tion thereof, any ε-Nash equilibrium computed in the abstraction can be mapped to an ε′-Nash
equilibrium in the original game. The equilibrium-approximation quality ε′ can be decomposed
into three terms: ε, a measure of how leaf-node payoffs differ, and a measure of how distributions
over nodes differ.

This theorem is the first of its kind in several ways. Most importantly, it is the first to estab-
lish an exact decomposition of abstraction error. Furthermore, for the first time in the literature,
it gives abstraction-quality results for approximate Nash equilibria computed in lossy EFG ab-
stractions.

Our second central theorem of the chapter gives a decomposition of the error associated with
implementing a strategy profile computed in an abstraction of the full game, when that strategy
profile has bounded counterfactual regret in the abstraction.
Informal Theorem 3. Given a perfect-recall EFG and a (potentially imperfect-recall) abstrac-
tion thereof, any strategy profile with bounded counterfactual regret computed in the abstraction
can be mapped to an ε′-Nash equilibrium in the original game. The equilibrium-approximation
quality ε′ can be decomposed into three terms: The counterfactual regrets in the abstraction, a

4

measure of how leaf-node payoffs differ, and a measure of how distributions over nodes differ.
The only prior result that is somewhat comparable to our main theorems was for strategies

with bounded counterfactual regret, as developed by Lanctot et al. [109]. That prior result does
not give a decomposition, but rather a loose upper bound on the solution quality. In particular,
we show that our decomposition results can be used to derive solution-quality bounds in the
style of Lanctot et al. [109], but with a much stronger dependence on game constants. Their
solution-quality bound has a linear dependence on the number of information sets in the game.
Our result, depending on abstraction type, has either a logarithmic dependence on this quantity
(more specifically a linear dependence on game height, which is logarithmic in the number of
information sets), or no dependence at all. Our results are also very broad, while the prior result
covers only a specific narrow class of abstractions.

Our decomposition result necessarily has a dependence on the specific strategy profile played
in the abstraction as well as best responses in the full game. However, we show that for several
specific game classes our decomposition yields bounds that are better-suited for ex-ante analysis.

This work will be published as Kroer and Sandholm [100], “A Unified Framework for
Extensive-Form Game Abstraction with Bounds.” at NIPS-2018.

We now describe our ex-ante oriented results for specific abstraction classes.
Perfect-recall abstraction. We develop the first algorithm-agnostic bounds on solution quality

for equilibria computed in perfect-recall abstractions. The ex-ante bound that we derive has
no dependence on game size when measuring payoff error, whereas the bound in Lanctot
et al. [109] had a linear dependence on the number of information sets. Using this frame-
work, we develop the first general lossy extensive-form game abstraction method with
bounds. Experiments show that it finds a lossless abstraction when one is available and
lossy abstractions when smaller abstractions are desired.
We also develop the first complexity results on computing good abstractions of EFGs.
Prior abstraction algorithms typically operate level by level in the game tree. We introduce
the extensive-form game tree isomorphism and action subset selection problems, both im-
portant subproblems for computing abstractions on a level-by-level basis. We show that
the former is graph isomorphism complete, and the latter NP-complete. This suggests that
level-by-level abstraction is, in general, a computationally difficult problem. We also prove
that level-by-level abstraction can be too myopic and thus fail to find even obvious lossless
abstractions.
The first version of this result was published as Kroer and Sandholm [95], “Extensive-
form Game Abstraction with Bounds,” at EC-2014; the version presented in this thesis is
derived from our new decomposition result.

Imperfect-recall abstraction. Imperfect-recall abstraction has emerged as the leading paradigm
for practical large-scale equilibrium computation in imperfect-information games. How-
ever, imperfect-recall abstractions are poorly understood, and only weak algorithm-specific
guarantees on solution quality are known. We develop the first general, algorithm-agnostic,
solution quality guarantees for solutions computed in imperfect-recall abstractions, when
implemented in the original (perfect-recall) game. Our ex-ante results are for a class of
games that generalizes that of Lanctot et al. [109]. Further, our analysis is tighter in two
ways, each of which can lead to an exponential reduction in the solution quality error

5

bound. The payoff error part of our ex ante bound for imperfect recall has a linear de-
pendence on the depth of the game, whereas our ex ante bound for perfect recall had no
such dependence. Thus imperfect-recall abstractions may have asymptotically worse error
in the worst case, although it remains unclear whether this would occur in the types of
abstractions computed in practice. Furthermore this part of our results may not be tight.
Finally, we provide computational experiments to evaluate the practical usefulness of the
abstraction techniques. They show that running counterfactual regret minimization on such
abstractions leads to good strategies in the original games. We also find that our bounds
(when only performing single-level abstraction) are only about an order of magnitude off
from the actual error when running CFR.
The first version of this result was published as Kroer and Sandholm [98], “Imperfect-
Recall Abstractions with Bounds in Games,” at EC-2016; the version presented in this
thesis is derived from our new decomposition result.

Discretization of continuous games. While EFGs are a very general class of games, most so-
lution algorithms require discrete, finite games. In contrast, many real-world domains
require modeling with continuous action spaces. This is usually handled by heuristically
discretizing the continuous action space without solution quality bounds. Leveraging our
results on abstraction solution quality, we develop the first framework for providing bounds
on solution quality for discretization of continuous action spaces in extensive-form games.
For games where the error is Lipschitz-continuous in the distance of any point in the con-
tinuous to its nearest point in the discretization, we show that a uniform discretization of
the space is optimal. When the error is monotonically increasing in distance to nearest
discrete point, we develop an integer program for finding the optimal discretization when
the error is described by piecewise linear functions. This result can further be used to
approximate optimal solutions to general monotonic error functions.
This work was published at AAMAS-2015 as Kroer and Sandholm [96], “Discretization of
Continuous Action Spaces in Extensive-Form Games.”

1.3 Equilibrium refinement (Chapter 5)

In this chapter, we extend our smoothing method to computing Nash-equilibrium refinements in
zero-sum EFGs. Polynomial-time algorithms are known for refinements such as normal-form
proper and quasi-perfect equilibria [120, 121]. However, these algorithms rely on solving one or
more linear programs, usually relying on modifications to the sequence-form LP of von Stengel
[165]. As with Nash equilibria, such LP formulations are unlikely to be practical for large-
scale games. Instead, we leverage a perturbed sequence-form polytope in the standard bilinear
saddle-point formulation, and then focus on solving this saddle-point problem directly. To do
this, we set up a perturbed variant of the dilated entropy distance function and show that our
strong convexity results from Chapter 3 extend to perturbed sequence-form polytopes. For small-
enough perturbations, this leads to an approximate Nash equilibrium refinement.

This work was published at IJCAI-2017 as Kroer, Farina, and Sandholm [102], “Smoothing
Method for Approximate Extensive-Form Perfect Equilibrium.” With the same authors I pub-

6

lished a related work on extending the CFR algorithm to a similar setting [58]; that work is not
part of this thesis.

1.4 Limited lookahead (Chapter 6)
In some application domains the assumption of perfect rationality might not be practical, or even
useful, as opponents might display exploitable behavior that the perfect rationality assumption
does not allow exploitation of. In order to model such settings, we initiate the game-theoretic
study of limited lookahead in imperfect-information games.

This model has applications such as biological games, where the goal is to steer an evolution-
ary or adaptation process (which typically acts myopically with lookahead 1) [150], and security
games where opponents are often assumed to be myopic (as makes sense when the stakes are low
such as in fare evasion [176]). Furthermore, investigating how well a rational player can exploit
a limited-lookahead player lends insight into the limitations and risks of using limited-lookahead
algorithms in multiagent decision making.

We generalize limited-lookahead research to imperfect-information games and a game-theoretic
approach. We study the question of how one should act when facing an opponent whose looka-
head is limited along multiple axes: lookahead depth, whether the opponent(s), too, have im-
perfect information, and how they break ties. We characterize the hardness of finding a Nash
equilibrium or an optimal commitment strategy for either player, showing that in some of these
variations the problem can be solved in polynomial time while in others it is PPAD-hard or NP-
hard. We proceed to design algorithms for computing optimal commitment strategies for when
the opponent breaks ties 1) favorably, 2) according to a fixed rule, or 3) adversarially. The impact
of limited lookahead is then investigated experimentally. The limited-lookahead player often ob-
tains the value of the game if she knows the expected values of nodes in the game tree for some
equilibrium, but we prove this is not sufficient in general. Finally, we study the impact of noise
in those estimates and different lookahead depths. This uncovers a lookahead pathology.

This work was published at IJCAI-2015 as Kroer and Sandholm [97], “Limited Lookahead
in Imperfect-Information Games.”

1.5 Robust Stackelberg equilibria (Chapter 7)
Chapter 7 initiates the study of robust models in the context of Stackelberg EFGs. Stackelberg
equilibria have gained importance as a solution concept in computational game theory, largely
inspired by practical problems such as security settings (e.g. airport security or wildlife protec-
tion), where the leader is a defender who picks a mixed (i.e., potentially randomized) strategy
first, and then the attacker, who is the follower, decides where to attack, if at all. Stackelberg
games have been widely studied in single-shot settings, where uncertainty is considered an im-
portant problem [91, 136, 138, 160]. We extend the question of how to address uncertainty to the
EFG setting and show that for the specific case of interval uncertainty around follower payoffs
the problem of computing an optimal strategy for the leader can be solved with a MIP that is
comparable in size to the MIPs used to compute leader strategies in the setting without follower

7

uncertainty. We show that this also holds experimentally: for several game classes we find that
the runtime cost of taking uncertainty into account is only around one order of magnitude. We
extend our result to the limited-lookahead setting as well, where we find that the addition of
uncertainty limits the possibility for the leader to exploit a myopic adversary, although small
amounts of uncertainty can still allow exploitation.

This work was published at AAAI-2018 as Kroer, Farina, and Sandholm [104], “Robust
Stackelberg Equilibria in Extensive-Form Games and Extension to Limited Lookahead.”

8

Chapter 2

Notation

This section introduces some general notation for EFGs that we will use throughout most of this
proposal. Chapters 3 and 5 are largely independent of this notation, and so can safely be read
in isolation. Chapters 4, 6, and 7 rely more heavily on the notation described here for formally
describing the obtained results.

2.1 Extensive-form games
An extensive-form game (EFG) is a game tree, where each node in the tree corresponds to some
history of actions taken by the players. Each node belongs to some player, and the actions
available to the player at a given node are represented by the branches. Uncertainty is modeled by
having a special player, Chance, that moves with some predefined fixed probability distribution
over actions. EFGs model imperfect information by having groups of nodes in information sets,
where an information set is a group of nodes all belonging to the same player such that the
player cannot distinguish among them. In the original game that we are trying to solve, we
assume perfect recall, which requires that no player forgets information they knew earlier in the
game. This is a natural condition since you generally cannot force players to forget information,
and it would not be in their interest to do so. Formally, an extensive-form game Γ is a tuple
(H,Z,A, P, π0, {Ii}, {ui}).
• H is the set of nodes in the game tree, corresponding to sequences (or histories) of actions.
Hi is the subset of histories belonging to Player i.

• Z ⊆ H is the set of terminal histories, or leaves.
• A is the set of actions in the game. AI denotes the set of actions available at nodes in

information set I .
• P , the player function, maps each non-terminal history h ∈ H \ Z to {0, . . . , n}, repre-

senting the player whose turn it is to move after history h. If P (h) = 0, the player is
Chance.

• π0 is a function that assigns to each h ∈ H0 the probability of reaching h due to Chance
(i.e., assuming that both players play to reach h). For any individual action a ∈ Ah we
let σ0(h, a) be the probability of Chance choosing this action (π0(h) is then the product of

9

action probabilities for Chance on the path to h).
• An information set Ii, for i ∈ {1, . . . , n}, is a partition of {h ∈ H : P (h) = i}.
• The utility function ui maps z ∈ Z to the utility obtained by player i when the terminal

history is reached.
A behavioral strategy σi for a player i is a probability distribution over actions at each infor-

mation set in Ii. A strategy profile σ is a behavioral strategy for each player. The probability that
σ puts on a ∈ AI is denoted σ(I, a). We let πσ(z) and πσ(I) denote the probability of reaching z
and I respectively, if players choose actions according to σ. We likewise let πσ(z|I) and πσ(Î|I)
denote the reach probabilities conditioned on being at information set I . For a given strategy
profile σ we let σI→a denote the same strategy except that σI→a(I, a) = 1.

We will often quantify statements over the set of leaves or information sets that are reachable
from some given information set I belonging to Player i, sometimes conditioned on taking a
specific action a ∈ AI . We let ZI ,DI ⊂ Ii be the set of leaves and information sets reachable
conditioned on being at information set I . We let ZI and CI ⊂ Ii be the set of leaves and
information sets that are reachable without Player i taking any further actions before reaching
them. We let ZaI ,DaI , Za

I and CaI be defined analogously but conditioned on taking action a ∈ AI .
For an information set I on the path to a leaf node z, z[I] denotes the predecessor s ∈ I of z.
Perfect recall means that no player forgets anything that the player observed in the past. For-

mally, for every Player i ∈ N , information set I ∈ Ii, and nodes h1, h2 ∈ I if we let hi1, h
i
2

denote the subset of the sequences of action that were taken by i then hi1 = hi2. If perfect recall is
not satisfied we say that the game has imperfect recall. The most important consequence of im-
perfect recall is that a player can affect the distribution over nodes in their own information sets,
as nodes in an information set may originate from different past information sets of the player.
This leads to a host of computational problems, as evidenced by many problems such as best-
response computation being significantly harder from a computational-complexity complexity
perspective [92]. Most results in this thesis rely on the perfect-recall assumption (and indeed
most natural game models would satisfy this). We will consider imperfect-recall abstractions of
games in Section 4.6. Such abstraction can be advantageous for compactness of representation.

As is usual we use the subscript−i to denote exclusion of Player i, for example, σ−i is the set
of behavioral strategies in σ except for the strategy of Player i, and πσ−i(z) is the probability of
reaching leaf node z disregarding actions taken by Player i, that is, assuming that Player i plays
to reach z.

2.2 Equilibrium concepts
In this section we define two equilibrium concepts that we will use throughout the thesis. A few
other solution concepts will be introduced when they are pertinent to a specific chapter. We start
with the classic Nash equilibrium [127].
Definition 1 (Nash equilibrium). A Nash equilibrium in a game Γ with root node r is a strategy
profile σ such that for each agent i, given σ−i, σi is a utility maximizing strategy for i. In other
words, for all i, σ̄i: V σ

i (r) ≥ V
σ−i,σ̄i
i (r).

Intuitively, in a Nash equilibrium any individual player cannot gain any utility by unilaterally

10

deviating to a new strategy σ̄i, given the strategy of all the other players.
Sometimes Nash equilibria are too restrictive as a definition. This is particularly often true

for algorithmic reasons, as the best practical algorithms only converge to a Nash equilibrium in
the limit. Instead we need the following notion of an approximate Nash equilibrium:
Definition 2 (ε-Nash equilibrium). An ε-Nash equilibrium is a strategy profile σ such that for all
i, σ̄i: V σ

i (r) + ε ≥ V
σ−i,σ̄i
i (r). A

In an ε-Nash equilibrium we have exactly the same property as in Nash equilibrium: if a
player unilaterally deviates to another strategy then they can gain at most ε additional utility.

11

12

Chapter 3

Algorithms for computing zero-sum Nash
equilibria

Practical EFG solving typically applies abstraction methods in order to get a smaller more man-
ageable abstraction. Nonetheless, the resulting game is typically so large that exact approaches
are impractical. This is because a larger (and thus more precise) abstraction coupled with an
approximate solution typically performs better than a smaller (and thus less precise) abstraction
with an exact solution. This holds even for two-player zero-sum games, despite the fact that
exact equilibria can be computed with a linear program (LP) that has size linear in the size of the
game tree [165]. This has led to extensive research into sparse iterative methods that converge
to a Nash equilibrium in the limit, but have relatively cheap iterations and low memory require-
ments [23, 24, 65, 79, 83, 108, 179]. Recently, a sparse iterative solver, CFR+ [161], was used
to practically solve limit texas holdem [21], a poker variant with fixed betsizes. Notably, this
game was unabstracted, and high accuracy was desired, and yet a sparse iterative method was
employed, rather than the LP approach.

Sparse iterative methods can be coarsely categorized into first-order methods (FOMs) and
counterfactual regret minimization (CFR) variants [179].1 CFR variants have dominated the
ACPC in recent years, and as mentioned a CFR variant was used to (almost) solve limit texas
holdem. CFR variants all have a convergence rate on the order of 1/

√
T , where T is the number

of iterations [83, 108, 161, 179]. In contrast to this, FOMs such as the excessive gap technique
(EGT) [132] and mirror prox [130] achieve a convergence rate of 1/T , with a cost per iteration
that is only 2-3 times that of CFR, when instantiated with an appropriate smoothing technique for
EFGs [79]. Given this seeming disparity in convergence rate, it is surprising that CFR variants are
preferred in practice. This chapter will largely focus on the practical and theoretical acceleration
of FOMs with a 1/T convergence rate.

Nash equilibrium computation of a two-player zero-sum EFG with perfect recall admits a Bi-
linear Saddle Point Problem (BSPP) formulation where the domains are given by the polytopes
that encode strategy spaces of the players. There are a number of efficient and well-known FOMs
designed to solve BSPPs. The classical FOMs to solve BSPPs such as mirror prox (MP) [130] or

1Waugh and Bagnell [169] showed how CFR can be interpreted as a FOM. Nonetheless, the distinction between
FOMs and CFR variants will be useful and sufficient for our purposes.

13

the excessive gap technique (EGT) [132] utilize distance-generating functions (DGFs) to mea-
sure appropriate notions of distances over the domains. Consequently, the convergence rate of
these FOMs relies on the DGFs and their relation to the domains in three critical ways: Through
the strong convexity parameters of the DGFs, the norm associated with the strong convexity
parameter, and the set widths of the domains as measured by the DGFs.

Hoda et al. [79] introduced a general framework for constructing DGFs for treeplexes—a
class of convex polytopes that generalize the domains associated with the strategy spaces of
an EFG. While they also established lower bounds on the strong convexity parameter for their
DGFs in some special cases, these lead to very weak bounds and result in slow convergence
rates. In a work that is preliminary to the form presented here [101] we developed explicit strong
convexity-parameter bounds for entropy-based DGFs (a particular subclass of DGFs) for general
EFGs, and improved the bounds for the special cases considered by Hoda et al. [79]. Prior to this
thesis there were no completely-developed bounds for the iteration complexity of FOMs using
DGFs based on dilating simplex distance functions for general EFGs.

In this chapter we construct a new weighting scheme for such entropy-based DGFs. This
weighting scheme leads to new and improved bounds on the strong convexity parameter associ-
ated with general treeplex domains. These bounds are simultaneously the first general bounds,
and stronger than the only prior bounds which were for a narrower class of EFGs that have a par-
ticular uniform structure. Our new bounds are first-of-their kind as they have only a logarithmic
dependence on the branching operation of the treeplex. In terms of their logarithmic dependence
on the branching factor, our bounds parallel the simplex case for matrix games where the entropy
function achieves a logarithmic dependence on the dimension of the simplex domain.

Finally, we complement our theoretical results with numerical experiments to investigate the
speed up of FOMs with convergence rateO(1

ε
) and compare the performance of these algorithms

with the premier regret-based methods CFR and CFR+ [161], which have a theoretical conver-
gence rate of O(1

ε2
). CFR+ is the fastest prior algorithm for computing Nash equilibria in EFGs

when the entire tree can be traversed (rather than sampled). Bowling et al. [21] used it to es-
sentially solve the game limit Texas hold’em. CFR+ is also the algorithm used to accurately
solve endgames in the Libratus agent, which showed superhuman performance against a team
of top Heads-Up No-Limit Texas hold’em poker specialist professional players in the Brains vs
AI event2. A slight variation3 of CFR+ was used in the DeepStack agent Moravčı́k et al. [124],
which beat a group of professional players.

We perform numerical experiments on scaled-up variants of Leduc hold’em [157], a poker
game that has become a standard benchmark in the EFG-solving community, a security-inspired
attacker/defender game played on a graph, and large-scale subgames encountered by the Libratus
agent [27]. The performance we get from our FOM-based approach with EGT relative to CFR
and CFR+ is in contrast to the previous conventional practical wisdom in the field. Previously
it was thought that FOM-based methods converged faster than CFR ultimately, but that CFR
had a faster initial convergence and the cross-over point occurred later as games got larger, as
we also found in our initial experiments on this topic [101]. Our experiments show that FOMs

2Confirmed through author communication
3This variation uses the current iterate rather than the average iterate due to decreased memory usage. It has

inferior practical iteration complexity.

14

are substantially faster than CFR algorithms when using a practically-tuned variant of our DGF,
even as the game-size is scaled up and when CFR is using the RM+ regret minimizer. We find
that CFR+ is still faster in practice, but only due to its aggressive stepsize policy. This suggests
that future work on FOMs could be coupled with our DGF to create state-of-the-art algorithms
in practice. We also test the impact of stronger bounds on the strong convexity parameter: we
instantiate EGT with the parameters developed in this chapter, and compare the performance to
weaker parameters developed in a preliminary conference version of this work Kroer et al. [101].
These experiments illustrate that the tighter parameters developed here lead to better practical
convergence rate.

The rest of the chapter is organized as follows. Section 3.1 discusses related literature. We
present the general class of problems that we address—bilinear saddle-point problems—and de-
scribe how they relate to EFGs in Section 3.2. Then Section 3.3 describes our optimization
framework. Section 3.4 introduces treeplexes, the class of convex polytopes that define our do-
mains of the optimization problems. Our focus is on dilated entropy-based DGFs; we introduce
these in Section 3.5 and present our main results—bounds on the associated strong convexity
parameter and treeplex diameter. In Section 3.6 we demonstrate the use of our results on instan-
tiating EGT. We compare our approach with the current state-of-art in EFG solving and discuss
the extent of theoretical improvements achievable via our approach in Section 3.6.1. Section 3.7
describes a closed-form solution for computing the smoothed-best response associated with our
smoothing function. Sections 3.8 and 3.9 present numerical experiments testing the effect of
various parameters on the performance of our approach as well as comparing the performance
of our approach to CFR and CFR+ on medium-sized and large-scale games respectively. Sec-
tion 3.10 describes a sampling approach for using stochastic FOMs. We close with a summary
of our results and a few compelling further research directions in Section 3.11.

3.1 Related literature
Nash equilibrium computation has received extensive attention in the literature [48, 49, 68, 81,
95, 112, 114, 179]. The equilibrium-finding problems vary quite a bit based on their characteris-
tics; here we restrict our attention to two-player zero-sum sequential games.

Koller et al. [93] present an LP which has size linear in the size of the game tree. This ap-
proach, coupled with lossless abstraction techniques, was used to solve Rhode-Island hold’em [68,
155], a game with 3.1 billion nodes (roughly size 5 · 107 after lossless abstraction). However, for
very large games, the resulting LPs tend to not fit in the computer memory, and iterations of the
simplex algorithm or interior-point methods tend to be too slow. Bošanskỳ et al. [17] extend the
LP approach by considering a form of column-and-row-generation. This algorithm scales only
for games where it can identify an equilibrium of small support, and thus suffers from the same
performance issues as the general LP approach. The scalability issues of LP-based approaches
thus require approximate solution techniques. These techniques fall into two categories: iterative
ε-Nash equilibrium-finding algorithms and game abstraction techniques [148].

The most popular iterative Nash equilibrium algorithms are variants of the counterfactual-
regret-minimization framework [108, 161, 179]. All these algorithms operate by defining a no-
tion of regret local to each information set, called counterfactual regret. A simplex-based regret-

15

minimizing algorithm is then instantiated independently at each information set and given the
counterfactual regrets for minimizing. It is shown that the per-information-set regret bounds ob-
tained by the simplex-based regret minimizers lead to an overall bound on the convergence rate.
Initially, the most practically popular variants were instantiated with regret matching (CFR) [179],
and sometimes used Monte-Carlo methods for estimating regrets [108]. Recently a new regret-
minimization technique called regret matching plus (RM+) was shown to be practically superior
when coupled with a more aggressive stepsizing strategy [21, 161]. The algorithm combining
RM+ and aggressive stepsizing is referred to as CFR+. Despite their slow convergence rate
of O(1

ε2
), these regret-based algorithms perform very well in practice, especially CFR+. Re-

cently, Waugh and Bagnell [169] showed, with some caveats, an interpretation of CFR as a FOM
with O(1

ε2
) rate. In particular, they show that CFR is equivalent to dual averaging [134] (when

using a particular set of distance functions that fall in the general class of dilated distance func-
tions [79]) on the simplex (and thereby also on information sets with no child information sets),
whereas on internal information sets these algorithms differ in how they aggregate utilities from
child information sets. It is still unknown whether CFR is fully equivalent to a first-order method.
Despite these similarities, in this chapter we make a distinction between regret-based methods
and O(1

ε
) FOMs for ease of exposition when comparing algorithmic methodologies.

Hoda et al. [79] introduce DGFs for EFGs leading to O(1
ε
) convergence rate when used

with EGT. In preliminary work, we improved the parameters associated with the dilated entropy
function based DGFs [101]. While Gilpin et al. [72] give an algorithm with convergence rate
O(ln(1

ε
)), their bound has a dependence on a certain condition number of the payoff matrix,

which is difficult to estimate, and their bound independent of the condition number has a O(1
ε
)

convergence rate. We compare all three algorithms discussed here in detail in Section 3.6.1.
Based on these results, the next chapter shows how to extend FOMs and our DGF to the compu-
tation of approximate Nash-equilibrium refinements.

In a work that is not part of this thesis, coauthors and I show experimentally that certain
parts of the game tree can be pruned when computing gradients for EGT with our DGF [29].
In particular, when computing the gradient via tree traversal, we simply skip branches that have
probability less than O(1/

√
t) where t is the current iteration. This lead to a speedup factor of

about 2.

3.2 Problem setup

3.2.1 Basic notation

We let 〈x, y〉 denote the standard inner product of vectors x, y. Given a vector x ∈ Rn, we
let ‖x‖p denote its `p norm given by ‖x‖p := (

∑n
i=1 |xi|p)

1/p for p ∈ [1,∞) and ‖x‖∞ :=
maxi∈[n] |xi| for p = ∞. Throughout this chapter, we use Matlab notation to denote vector and
matrices, i.e., [x; y] denotes the concatenation of two column vectors x, y. Given n ∈ N, we
denote the simplex ∆n := {x ∈ Rn

+ :
∑n

i=1 xi = 1}. For a given set Q, we let ri (Q) denote its
relative interior.

16

3.2.2 Sequence form

Computing a Nash equilibrium in a two-player zero-sum EFG with perfect recall can be formu-
lated as a Bilinear Saddle Point Problem (BSPP):

min
x∈X

max
y∈Y
〈x,Ay〉 = max

y∈Y
min
x∈X
〈x,Ay〉. (3.1)

This is known as the sequence-form formulation [93, 146, 165] in the EFG literature. In this
formulation, x and y correspond to the nonnegative strategy vectors for players 1 and 2 and the
sets X ,Y are convex polyhedral reformulations of the sequential strategy space of these players.
Here X ,Y are defined by the constraints Ex = e, Fy = f , where each row of E,F encodes
part of the sequential nature of the strategy vectors, the right hand-side vectors e, f are |I1| , |I2|-
dimensional vectors, and Ii is the information sets for player i. The matrix A encodes the reward
structure associated with the game. For a complete treatment of this formulation, see von Stengel
[165].

Our theoretical developments mainly exploit the treeplex domain structure and are indepen-
dent of other structural assumptions resulting from EFGs. Therefore, we describe our results for
general BSPPs. We follow the presentation and notation of Juditsky and Nemirovski [85, 86] for
BSPPs.

3.3 Optimization setup
In its most general form a BSPP is defined as

Opt := max
y∈Y

min
x∈X

φ(x, y), (S)

where X ,Y are nonempty convex compact sets in Euclidean spaces Ex,Ey and φ(x, y) = υ +
〈a1, x〉 + 〈a2, y〉 + 〈y, Ax〉. We let Z := X × Y; so φ(x, y) : Z → R. In the context of EFG
solving, φ(x, y) is simply the inner product given in (3.1).

The BSPP (S) gives rise to two convex optimization problems that are dual to each other:

Opt(P) = minx∈X [φ(x) := maxy∈Y φ(x, y)] (P),
Opt(D) = maxy∈Y [φ(y) := minx∈X φ(x, y)] (D),

with Opt(P) = Opt(D) = Opt. It is well known that the solutions to (S) — the saddle points of
φ on X × Y — are exactly the pairs z = [x; y] comprised of optimal solutions to the problems
(P) and (D). We quantify the accuracy of a candidate solution z = [x; y] with the saddle point
residual

εsad(z) := φ(x)− φ(y) =
[
φ(x)− Opt(P)

]︸ ︷︷ ︸
≥0

+
[
Opt(D)− φ(y)

]︸ ︷︷ ︸
≥0

.

In the context of EFG, εsad(z) measures the proximity to being an ε-Nash equilibrium.

17

3.3.1 General framework for FOMs

Most FOMs capable of solving BSPP (S) are quite flexible in terms of adjusting to the geometry
of the problem characterized by the domains X ,Y of the BSPP (S). The following components
are standard in forming the setup for such FOMs (we present components for X , analogous
components are used for Y):
• Vector norm: ‖ · ‖X on the Euclidean space Ex where the domain X of (S) lives, along

with its dual norm ‖ζ‖∗X = max
‖x‖X≤1

〈ζ, x〉.

• Matrix norm: ‖A‖ = maxy {‖Ay‖∗X : ‖y‖Y = 1} based on the vector norms ‖ · ‖X and
‖ · ‖Y .

• Distance-Generating Function (DGF): A function ωX (x) : X → R, which is convex
and continuous on X , and admits a continuous selection of subgradients ω′X (x) on the set
X ◦ := {x ∈ X : ∂ωX (x) 6= ∅} (here ∂ωX (x) is a subdifferential of ωX taken at x), and is
strongly convex with modulus ϕX w.r.t. the norm ‖ · ‖X :

∀x′, x′′ ∈ X ◦ : 〈ω′X (x′)− ω′X (x′′), x′ − x′′〉 ≥ ϕX‖x′ − x′′‖2
X . (3.2)

• Bregman distance: V (u‖x) := ωX (u) − ωX (x) − 〈ω′X (x), u − x〉 for all x ∈ X ◦ and
u ∈ X . The Bregman distance (or divergence) is how we construct a distance function
from a DGF. Given two points in the polytope, one called the center, here x, we measure
distance by taking the difference between two function values at u, the DGF value and the
value of the linear approximation centered at x.

• Prox-mapping: Given a prox center x ∈ X ◦,

Proxx(ξ) := argmin
u∈X

{〈ξ, u〉+ V (u‖x)} : E→ X ◦.

For properly chosen stepsizes, the prox-mapping becomes a contraction. This is critical in
the convergence analysis of FOMs. Furthermore, when the DGF is taken as the squared `2

norm, the prox mapping becomes the usual projection operation of the vector x − ξ onto
X .

• ω-center: xω := argmin
x∈X

ωX (x) ∈ X ◦ of X .

• Set width: Ωx := max
x∈X

V (x‖xω) ≤ max
x∈X

ωX (x)−min
x∈X

ωX (x).

In this chapter, for ease of exposition, we will introduce and work with the Excessive Gap
Technique (EGT) of Nesterov [132] as the FOM. Next we introduce the related terminology and
formally state the algorithm and the results from [132].

Nesterov [133] introduced smoothed approximations to the functions φ and φ via the distance-
generating functions ωX , ωY as follows:

φµ2(x) = max
y∈Y
{φ(x, y)− µ2ωY(y)} , (3.3)

φ
µ1

(y) = min
x∈X
{φ(x, y) + µ1ωX (x)} , (3.4)

18

where µ1, µ2 > 0 are smoothness parameters denoting the amount of smoothing applied. Let
yµ2(x) and xµ1(y) be the y and x solutions attaining the optima in (3.3) and (3.4). These can
be thought of as smoothed best responses. Nesterov [133] also established that the gradients of
the functions φµ2(x) and φ

µ1
(y) exist and are Lipschitz continuous. The gradient operators and

Lipschitz constants are given as follows

∇φµ2(x) = a1 + Ayµ2(x) and ∇φ
µ1

(y) = a2 + A>xµ1(y),

L1

(
φµ2
)

=
‖A‖2

ϕYµ2

and L2

(
φ
µ1

)
=
‖A‖2

ϕXµ1

.

Based on this setup, we formally state the EGT of [132] in Algorithm 1.
ALGORITHM 1: EGT

input : ω-centers xω, yω, smoothness weights µ1, µ2, and desired accuracy ε
output: zt = [xt, yt]
t = 0, µt1 = µ1, µ

t
2 = µ2;

xt = Proxxω
(
µ−1

1 ∇φµ2(xω)
)
;

yt = yµ2(xω);
while εsad(z

t) > ε do
τt = 2

t+3
;

if t is even then
(µt+1

1 , xt+1, yt+1) = Step(µt1, µ
t
2, x

t, yt, τt)
else

(µt+1
2 , yt+1, xt+1) = Step(µt2, µ

t
1, y

t, xt, τt)
end
t = t+ 1;

end

ALGORITHM 2: Step
input : µ1, µ2, x, y, τ
output: µ+

1 , x+, y+

x̂ = (1− τ)x+ τxµ1(y);
y+ = (1− τ) y + τyµ2(x̂);

x̃ = Proxxµ1 (y)

(
τ

(1−τ)µ1
∇φµ2(x̂)

)
;

x+ = (1− τ)x+ τ x̃;
µ+

1 = (1− τ)µ1;

The EGT algorithm alternates between taking steps focused on X and Y . Algorithm 2 shows
a single step focused on X . Steps focused on y are completely analogous. Algorithm 1 shows
how initial points are selected and the alternating steps and stepsizes are computed. Nesterov
[132] proves that the EGT algorithm converges in O(1

ε
) steps to an ε approximate saddle point

of the BSPP (S). More precisely, Nesterov [132, Theorem 6.3] states the following:
Theorem 1. Suppose the input values µ1, µ2 in the EGT algorithm satisfy

µ1 =
ϕX

L1(φµ2)
=
ϕXϕY
‖A‖2

µ2.

19

Then, at every iteration t ≥ 1 of the EGT algorithm, the corresponding solution zt = [xt; yt]
satisfies xt ∈ X , yt ∈ Y , and

φ(xt)− φ(yt) = εsad(z
t) ≤ 4‖A‖

t+ 1

√
ΩXΩY
ϕXϕY

.

3.4 Treeplexes
Hoda et al. [79] introduce the treeplex, a class of convex polytopes that encompass the sequence-
form description of strategy spaces in perfect-recall EFGs. Understanding the treeplex structure
is crucial because the proofs of our main results rely on induction over these structures.

In the context of EFGs a treeplex is used to model the strategy space of a single player
in sequence form. A treeplex can be thought of as a tree of simplexes, where each simplex
represents a decision point for the player. The simplexes in the tree are scaled by the parent
variable leading to them, such that each simplex sums to the value of the parent variable. Thus
the value in of a particular variable represents the probability of the player taking all actions on
the path through the treeplex leading to that variable.
Definition 3. Treeplexes are defined recursively as follows:

1. Basic sets: The standard simplex ∆m is a treeplex.
2. Cartesian product: If Q1, . . . , Qk are treeplexes, then Q1 × · · · ×Qk is a treeplex.
3. Branching: Given a treeplex P ⊆ [0, 1]p, a collection of treeplexes Q = {Q1, . . . , Qk}

where Qj ⊆ [0, 1]nj , and l = {l1, . . . , lk} ⊆ {1, . . . , p}, the set defined by

P l Q :=
{

(u, q1, . . . , qk) ∈ Rp+
∑
j nj : u ∈ P, q1 ∈ ul1 ·Q1, . . . , qk ∈ ulk ·Qk

}
is a treeplex. We say ulj is the branching variable for the treeplex Qj .

A treeplex is a tree of simplexes where children are connected to their parents through the
branching operation. In the branching operation, the child simplex domain is scaled by the value
of the parent branching variable. For EFGs, the simplexes correspond to the information sets
of a single player and the whole treeplex represents that player’s strategy space. The branching
operation has a sequential interpretation: The vector u represents the decision variables at certain
stages, while the vectors qj represent the decision variables at the k potential following stages,
depending on external outcomes. Here k ≤ p since some variables in u may not have subsequent
decisions. For treeplexes, von Stengel [165] has suggested a polyhedral representation of the
form Eu = e where the matrix E has its entries from {−1, 0, 1} and the vector e has its entries
in {0, 1}.

For a treeplex Q, we denote by SQ the index set of the set of simplexes contained in Q (in
an EFG SQ is the set of information sets belonging to the player). For each j ∈ SQ, the treeplex
rooted at the j-th simplex ∆j is referred to as Qj . Given vector q ∈ Q and simplex ∆j , we let
Ij denote the set of indices of q that correspond to the variables in ∆j and define qj to be the sub
vector of q corresponding to the variables in Ij . For each simplex ∆j and branch i ∈ Ij , the set
Dij represents the set of indices of simplexes reached immediately after ∆j by taking branch i
(in an EFG Dij is the set of potential next-step information sets for the player). Given a vector

20

q ∈ Q, simplex ∆j , and index i ∈ Ij , each child simplex ∆k for every k ∈ Dij is scaled by
qi. Conversely, for a given simplex ∆j , we let pj denote the index in q of the parent branching
variable qpj that ∆j is scaled by. We use the convention that qpj = 1 ifQ is such that no branching
operation precedes ∆j . For each j ∈ SQ, dj is the depth of the treeplex rooted at ∆j , that is,
the maximum number of edges between ∆j and any simplex beneath ∆j plus one (that is, a lone
simplex has depth 1, not 0). In an EFG the depth is the length of the longest sequence of actions
starting at ∆j . Then dQ gives the depth of Q. We use bjQ to identify the number of branching
operations preceding the j-th simplex in Q. We will say that a simplex j such that bjQ = 0 is a
root simplex.

Figure 3.1 illustrates an example treeplex Q. This treeplex Q is constructed from nine two-
to-three-dimensional simplexes ∆1, . . . ,∆9. At level 1, we have two root simplexes, ∆1,∆2,
obtained by a Cartesian product operation (denoted by ×). We have maximum depths d1 = 2,
d2 = 1 beneath them. Since there are no preceding branching operations, the parent variables for
these simplexes ∆1 and ∆2 are qp1 = qp2 = 1. For ∆1, the corresponding set of indices in the
vector q is I1 = {1, 2}, while for ∆2 we have I2 = {3, 4, 5}. At level 2, we have the simplexes
∆3, . . . ,∆7. The parent variable of ∆3 is qp3 = q1; therefore, ∆3 is scaled by the parent variable
qp3 . Similarly, each of the simplexes ∆3, . . . ,∆7 is scaled by their parent variables qpj that
the branching operation was performed on. So on for ∆8 and ∆9 as well. The number of
branching operations required to reach simplexes ∆1,∆3 and ∆8 is b1

Q = 0, b3
Q = 1 and b8

Q = 2,
respectively.

∆1

q2 ·∆4

q8 q9

q1 ·∆3

q7 ·∆9

q19 q20

q7 ·∆8

q16
q17

q18

q6 q7

q1 q2
∆2

q5 ·∆7

q14 q15

q4 ·∆6

q12 q13

q3 ·∆5

q10 q11

q3
q4

q5

×

×

Figure 3.1: An example treeplex constructed from 9 simplexes. Cartesian product operation is
denoted by ×.

The original formulation of Hoda et al. [79] allowed only two-way branches (although they
also consider a uniform treeplex where all Cartesian products are k-way); we allow arbitrary
branching, not necessarily two-way, and not necessarily uniform. As discussed in Hoda et al.
[79], it is possible to model sequence-form games by treeplexes that use only two-way branches.
Yet, this can cause a large increase in the depth of the treeplex, thus leading to significant degra-
dation in the associated strong convexity parameter. Because we handle multi-way branches
directly in our framework, our approach is more effective in taking into account the structure of
the sequence-form game and thereby resulting in better bounds on the associated strong convex-
ity parameters and thus overall convergence rates.

Our analysis requires a measure of the size of a treeplex Q. For this purpose, we define
MQ := maxq∈Q ‖q‖1.

21

In the context of EFGs, suppose Q encodes player 1’s strategy space; then MQ is the maxi-
mum number of information sets with nonzero probability of being reached when player 1 has
to follow a pure strategy while the other player may follow a mixed strategy. We also let

MQ,r := max
q∈Q

∑
j∈SQ:bjQ≤r

‖qj‖1. (3.5)

Intuitively, MQ,r gives the maximum value of the `1 norm of any vector q ∈ Q after removing
the variables corresponding to simplexes that are not within r branching operations of the root of
Q.

The quantities MQ and |SQ| play an important role in the comparison of our bounds. We
discuss them on an example next.
Example 1. In order to illustrate MQ and compare it to the size of |SQ|, let us now consider an
example of an EFG and its corresponding treeplexes. Consider a game where two players take
turns choosing among k actions, and each player chooses actions d times before leaf nodes are
reached. In the treeplex Q of Player 1, each time Player 1 chooses among k actions constitutes a
size k branching operation, and every time Player 2 chooses among k actions constitutes a size
k Cartesian product operation. The total dimensionality of the treeplex, |SQ|, is k2d, while the
value of MQ is kd (since only Cartesian products blow up). Thus, MQ is square root of the size
of |SQ|.

3.5 Dilated entropy functions with bounded strong convexity

In this section we introduce DGFs for domains with treeplex structures and establish their strong
convexity parameters with respect to a given norm (see (3.2)).

The basic building block in our construction is the entropy DGF given by ωe(z) =
∑n

i=1 zi log(zi),
for the simplex ∆n. It is well-known that ωe(·) is strongly convex with modulus 1 with respect to
the `1 norm on ∆n (see Juditsky and Nemirovski [85]). We will show that a suitable modification
of this function achieves a desirable strong convexity parameter for the treeplex domain.

The treeplex structure is naturally related to the dilation operation [78] defined as follows:
Given a compact set K ⊆ Rd and a function f : K → R, we first define

K̄ :=
{

(t, z) ∈ Rd+1 : t ∈ [0, 1] , z ∈ t ·K
}
.

Definition 4. Given a function f(z), the dilation operation is defined as the function f̄ : K̄ → R
given by

f̄(z, t) =

{
t · f(z/t) if t > 0

0 if t = 0
.

The dilation operation preserves convexity, and thus the following function defined based on
dilating the entropy function over the simplexes of a treeplex is convex:

22

Definition 5. Given a treeplex Q and weights βj > 0 for each j ∈ SQ, we define the dilated
entropy function as

ω(q) =
∑
j∈SQ

βj
∑
i∈Ij

qi log
qi
qpj

for any q ∈ Q,

where we follow the treeplex notation and pj is the index of the branching variable preceding
∆j , with the convention that qpj = 1 if ∆j has no branching operation preceding it.
Remark 1. The dilated entropy function ω(·) defined above is twice differentiable in the relative
interior of treeplex Q and admits a continuous gradient selection. Moreover, for weights βj
that scale appropriately with depth dj , we will demonstrate that it is strongly convex w.r.t. the
`1 norm. Thus, the dilated entropy function is compatible with the `1 norm, as required by the
BSPP setup.

We would also like the prox-mapping associated with our DGF to be efficiently computable.
Hoda et al. [79] show that for any dilated function, its prox operator on a treeplex can be eas-
ily computed through a recursive bottom-up traversal involving the prox mappings associated
with the function being dilated on individual simplexes. Since the entropy prox function can be
computed in closed form on a simplex, the dilated entropy function can be computed by a single
treeplex traversal involving closed-form expressions on each simplex.

Definition 5 above leads to a subset of the DGFs considered by Hoda et al. [79]. Hoda et al.
[79] introduce the general class of treeplex DGFs obtained by dilating any simplex DGF, and
show that any such DGF is guaranteed to have some lower bound on the strong-convexity pa-
rameter. They show explicit bounds for a special class of treeplexes called uniform treeplexes.
Our main theoretical result shows that by selecting the weights βj according to a particular re-
currence, we can significantly improve the strong convexity bounds associated with the dilated
entropy function, and we show that our analysis is tight.

We will consider weights that satisfy the following recurrence:

αj = 1 + max
i∈Ij

∑
k∈Dij

αkβk
βk − αk

, ∀j ∈ SQ,

βj > αj, ∀i ∈ Ij and ∀j ∈ SQ s.t. bjQ > 0,

βj = αj, ∀i ∈ Ij and ∀j ∈ SQ s.t. bjQ = 0.

(3.6)

Intuitively, αj represents the negative terms that the weight βj has to cancel out: the constant 1
represents the negative term resulting from the squared norm in the strong convexity requirement;
the summation term represents the amount of negative terms accumulated from the induction on
simplexes descending from simplex j. The qualifications on βj ensure that βj is set such that it
at least cancels out the negative terms; the difference βj − αj controls the amount of negative
value the parent simplex has to make up. When bjQ = 0 there is no parent simplex, and so we set
βj = αj . The reason for our requirement of a strict inequality βj > αj for non-root simplexes
becomes evident in the proof of Lemma 2.

Based on recurrence (3.6), our main results establish strong convexity of our dilated entropy
DGF w.r.t. the `2 and `1 norms:

23

Theorem 2. For a treeplex Q, the dilated entropy function with weights satisfying recurrence
(3.6) is strongly convex with modulus 1 with respect to the `2 norm.
Theorem 3. For a treeplex Q, the dilated entropy function with weights satisfying recurrence
(3.6) is strongly convex with modulus 1

MQ
with respect to the `1 norm.

We give the proofs of Theorems 2 and 3 in Section 3.5.2. Based on Theorem 3, we get the
following corollary:
Corollary 1. For a treeplexQ, the dilated entropy function with weights βj = 2+

∑dj
r=1 2r(MQj ,r−

1) for all j ∈ SQ is strongly convex with modulus 1
MQ

w.r.t. the `1 norm.
Corollary 1 follows easily from Theorem 3 and a recursive interpretation of the weights,

which is presented as Fact 2 in the next section. In particular, a specific choice of weights in
Fact 2 immediately satisfies the recurrence (3.6) and leads to Corollary 1.

This result is the first to show an explicit strong-convexity bound for general treeplexes.
Even for the special case of uniform treeplexes considered by Hoda et al. [79], our bound is
much stronger, and is the first to show no dependence on the branching operations in the treeplex
construction, thus generalizing the similar property enjoyed by the entropy DGF for simplexes.

In Theorem 4 we use our strong convexity result to establish a polytope diameter that has
only a logarithmic dependence on the branching factor. As a consequence, the associated dilated
entropy DGF when used in FOMs such as MP and EGT for solving EFGs leads to the same
improvement in their convergence rate.

3.5.1 Preliminary results for the proofs of our main results
We start with some simple facts and a few technical lemmas that are used in our proofs.
Fact 1. Given a treeplexQ, we have, respectively, for all i ∈ Ij, j ∈ SQ and all d = 1, . . . , dQ, q ∈
Q:

(a) MQj ≥ 1 +
∑
l∈Dij

MQl , (b) MQ ≥
∑

j∈SQ:dj=d

qpjMQj .

Proof. The inequality follows from the definition of MQ, that ∆j is a simplex, and the fact that
the maximum entry (as would be taken in the `1 norm) bounds the value of any individual entry i.
The second follows by using MQ =

∑
j qi for some q, and inductively replacing terms belonging

to simplexes j at the bottom with MQj . The result follows because branching operations cancel
out by summing to 1.

Our next observation follows from Fact 1(a) and is advantageous in suggesting a practically
useful choice of the weights βj that can be used for Theorem 3 to arrive at Corollary 1.
Fact 2. Let Q be a treeplex and βj = 2 +

∑dj
r=1 2r(MQj ,r − 1) for all j ∈ SQ as in Corollary 1.

Then Fact 1(a) implies βj ≥ 2 +
∑

k∈Dij
2βk, ∀i ∈ Ij and ∀j ∈ SQ.

Consequently, by selecting βj = 2αj, and αj = 1 +
∑dj

r=1 2r−1(MQj ,r − 1) for all i ∈ Ij and
for all j ∈ SQ such that bjQ > 0, we immediately satisfy the conditions of the recurrence in (3.6).

Given a twice differentiable function f , we let∇2f(z) denote its Hessian at z. Our analysis is
based on the following sufficient condition for strong convexity of a twice differentiable function:

24

Fact 3. A twice-differentiable function f is strongly convex with modulus ϕ with respect to a
norm ‖ · ‖ on nonempty convex set C ⊂ Rn if h>∇2f(z)h ≥ ϕ‖h‖2, ∀h ∈ Rn, z ∈ C◦.

For simplexes ∆j at depth 1, there is no preceding branching operation; so the variables
hpj , qpj do not exist. We circumvent this with the convention hpj = 0, qpj = 1 for such j ∈ SQ.

In our proofs we will use the expression derived in Lemma 1 for h>∇2ω(q)h.
Lemma 1. Given a treeplex Q and a dilated entropy function ω(·) with weights βj > 0, we have

h>∇2ω(q)h =
∑
j∈SQ

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

 ∀q ∈ ri (Q) and ∀h ∈ Rn. (3.7)

Proof. Consider q ∈ ri (Q) and any h ∈ Rn. For each j ∈ SQ and i ∈ Ij , the second-order
partial derivates of ω(·) w.r.t. qi are:

∇2
q2i
ω(q) =

βj
qi

+
∑
k∈Dij

∑
l∈Ik

βkql
q2
i

=
βj
qi

+
∑
k∈Dij

βk
qi
, (3.8)

where the last equality holds because k ∈ Dij and thus
∑

l∈Ik ql = ‖qk‖1 = qpk = qi. Also, for
each j ∈ SQ, i ∈ Ij, k ∈ Dij , and l ∈ Ik, the second-order partial derivates w.r.t. qi, ql are given
by:

∇2
qi,ql

ω(q) = ∇2
ql,qi

ω(q) = −βk
qi
. (3.9)

Then equations (3.8) and (3.9) together imply

h>∇2ω(q)h =
∑
j∈SQ

∑
i∈Ij

h2
i

βj
qi

+
∑
k∈Dij

βk
qi

−∑
k∈Dij

∑
l∈Ik

hihl
2βk
qi

 . (3.10)

Given j ∈ SQ and i ∈ Ij , we have pk = i for each k ∈ Dij and for any k ∈ Dij , there exists
some other j′ ∈ SQ corresponding to k in the outermost summation. Then we can rearrange the
following terms:∑

j∈SQ

∑
i∈Ij

h2
i

∑
k∈Dij

βk
qi

=
∑
j∈SQ

βj
h2
pj

qpj
and

∑
j∈SQ

∑
i∈Ij

∑
k∈Dij

∑
l∈Ik

hihl
2βk
qi

=
∑
j∈SQ

∑
i∈Ij

βj
2hihpj
qpj

.

Using these two equalities in the relation (3.10) leads to (3.7) and proves the lemma.

3.5.2 Proofs of our main theorems
The majority of the work for our strong-convexity results is performed by the following lemma,
from which our strong convexity results follow easily.
Lemma 2. For any treeplex Q, the dilated entropy function with weights satisfying recurrence
(3.6) satisfies the following inequality:

h>∇2ω(q)h ≥
∑
j∈SQ

∑
i∈Ij

h2
i

qi
∀q ∈ ri (Q) and ∀h ∈ Rn. (3.11)

25

Proof. We will prove this by induction. First we will prove an inductive hypothesis over the set
of non-root simplexes ŜQ =

{
j ∈ SQ

∣∣ bjQ > 0
}

. In order to state our inductive hypothesis we
will need a notion of the set of simplexes currently at the “top” of the recursion: for a given depth
d, we let the set of simplexes at the top be ŜdQ =

{
k ∈ ŜQ

∣∣∣ dk ≤ d,∃j, i s.t. k ∈ Dij, dj > d
}

.
This is simply the set of simplexes such that their depth is less than d and the depth of their parent
simplex is strictly greater than d. The reader may wonder why we do not perform the induction
over simplices such that dj = d. This is in order to avoid some technicalities relating to cases
where two child simplexes from the same parent have different depths. By using ŜdQ, we ensure
that the right-hand side of the inductive hypothesis always consists of the simplexes that are at
the top of the treeplex given the current induction depth. We now show the following inductive
hypothesis for any depth d ≥ 1:

∑
j∈ŜQ:dj≤d

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

− ∑
j∈ŜQ:dj≤d

∑
i∈Ij

h2
i

qi
≥ −

∑
j∈ŜdQ

βjαj
βj − αj

h2
pj

qpj
.

We first show the inductive step, as the base case will follow from the same logic. Consider
a treeplex Q of depth d > 1. By applying the inductive hypothesis we have

∑
j∈ŜQ:dj≤d

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

− ∑
j∈ŜQ:dj≤d

∑
i∈Ij

h2
i

qi

≥
∑

j∈ŜQ:dj=d

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

− ∑
j∈ŜQ:dj=d

∑
i∈Ij

h2
i

qi
−
∑

j∈Ŝd−1
Q

βjαj
βj − αj

h2
pj

qpj
. (3.12)

Now we can rearrange terms: First we split Ŝd−1
Q into two sets Ŝd−1

Q ∩ ŜdQ and Ŝd−1
Q \ ŜdQ. The

sum over j ∈ Ŝd−1
Q \ ŜdQ is equivalent to a sum over the immediate descendant information sets

k ∈ Dij inside the square brackets since for each such k ∈ Ŝd−1
Q \ ŜdQ there exists some j ∈ ŜdQ

such that dj = d (otherwise k would be in ŜdQ). Ignoring Ŝd−1
Q ∩ ŜdQ in (3.12) for now, we can

write

∑
j∈ŜQ:dj=d

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

− ∑
j∈ŜQ:dj=d

∑
i∈Ij

h2
i

qi
−

∑
j∈Ŝd−1

Q \ŜdQ

βjαj
βj − αj

h2
pj

qpj
.

(3.13)

=
∑

j∈ŜQ:dj=d

βj

∑
i∈Ij

h2
i

qi
− 2hihpj

qpj
−
∑
k∈Dij

αj
βj − αj

h2
pj

qpj

+
h2
pj

qpj

− ∑
j∈ŜQ:dj=d

∑
i∈Ij

h2
i

qi
.

Now we split the term
h2pj
qpj

into separate terms multiplied by qi
qpj

and move it inside the parentheses

26

by using the fact that
∑

i∈Ij
qi
qpj

= 1, this gives

=
∑

j∈ŜQ:dj=d

βj

∑
i∈Ij

h2
i

qi
− 2hihpj

qpj
−
∑
k∈Dij

αj
βj − αj

h2
pj

qpj
+
qih

2
pj

q2
pj

− ∑
j∈ŜQ:dj=d

∑
i∈Ij

h2
i

qi
.

Now we can move the sum over i ∈ Ij outside the square brackets and consolidate the
summation terms to get

=
∑

j∈ŜQ:dj=d

∑
i∈Ij

βj − 1−
∑
k∈Dij

βkαk
βk − αk

 h2
i

qi
−
(

2βjhihpj
qpj

)
+
qiβjh

2
pj

q2
pj

≥

∑
j∈ŜQ:dj=d

∑
i∈Ij

[
(βj − αj)

h2
i

qi
−
(

2βjhihpj
qpj

)
+
qiβjh

2
pj

q2
pj

]
, (3.14)

where the last inequality follows from the definition of αj .
For indices j ∈ SQ such that bjQ > 0 and i ∈ Ij , the relations in (3.6) imply βj > αj , and so

the expression inside the square brackets in (3.14) is a convex function of hi. Taking its derivative
w.r.t. hi and setting it to zero gives hi =

βj
βj−αj

qi
qpj
hpj . Thus, we arrive at

(3.14) ≥
∑

j∈ŜQ:dj=d

∑
i∈Ij

[
β2
j

βj − αj
qih

2
pj

q2
pj

− β2
j

βj − αj
2qih

2
pj

q2
pj

+
qiβjh

2
pj

q2
pj

]

=
∑

j∈ŜQ:dj=d

h2
pj

qpj

[(−β2
j

βj − αj
+ βj

)∑i∈Ij qi

qpj

]
= −

∑
j∈ŜQ:dj=d

βjαj
βj − αj

h2
pj

qpj
. (3.15)

Now we take our lower bound (3.15) on (3.13) and apply it to (3.12). Noting that ŜdQ ={
ŜQ : dj = d

}
∪
{
Ŝd−1
Q ∩ ŜdQ

}
we get

(3.12) ≥ −
∑

j∈ŜQ:dj=d

βjαj
βj − αj

h2
pj

qpj
−

∑
j∈Ŝd−1

Q ∩ŜdQ

βjαj
βj − αj

h2
pj

qpj
= −

∑
j∈ŜdQ

βjαj
βj − αj

h2
pj

qpj
(3.16)

Hence, the induction step is complete. For the base case d = 0 we do not need the inductive
assumption: Because Dij = ∅, αj = 1, and we get (3.14) by definition; we can then apply the
same convexity argument. This proves our inductive hypothesis.

Then using Lemma 1, we now have

h>∇2ω(q)h−
∑
j∈SQ

∑
i∈Ij

h2
i

qi
=
∑
j∈SQ

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

−∑
j∈SQ

∑
i∈Ij

h2
i

qi

≥
∑

j∈SQ:bjQ=0

∑
i∈Ij

βj
h2
i

qi
−
∑
k∈Dij

βkαk
βk − αk

h2
i

qi
− h2

i

qi

 ≥ 0.

27

The first inequality follows from the fact that hpj = 0 for all j ∈ SQ such that bjQ = 0, and for
all j ∈ SQ such that bjQ > 0, we used our induction. The last inequality follows from (3.6) and
qi, h

2
i ≥ 0. This then proves (3.11).

We are now ready to prove our two main theorems, which we restate before proving them.
Theorem 2. For a treeplex Q, the dilated entropy function with weights satisfying recurrence
(3.6) is strongly convex with modulus 1 with respect to the `2 norm.

Proof. Since qi ≤ 1, Lemma 2 implies h>∇2ω(q)h ≥∑j∈SQ

∑
i∈Ij h

2
i = ‖h‖2

2 for all q ∈ ri (Q)

and for all h ∈ Rn. Because the dilated entropy function ω(q) is twice differentiable on ri (Q),
from Fact 3, we conclude that ω(·) is strongly convex w.r.t. the `2 norm on Q with modulus
1.

Remark 2. The analysis in the proof of Theorem 2 is tight. By choosing a vector q ∈ {0, 1}|Q|
such that ‖q‖1 = MQ, and setting hi =

βj
βj−αj

qi
qpj
hpj for all indices i such that qi = 1 and hi = 0

otherwise, every inequality in the proof of Lemma 2 becomes an equality.

Theorem 3. For a treeplex Q, the dilated entropy function with weights satisfying recurrence
(3.6) is strongly convex with modulus 1

MQ
with respect to the `1 norm.

Proof. To show strong convexity with modulus 1 w.r.t. the `1 norm, we lower bound the right-
hand side of (3.11) in Lemma 2:

∑
j∈SQ

∑
i∈Ij

h2
i

qi
≥ 1

MQ

(∑
j∈SQ

∑
i∈Ij

qi

)∑
j∈SQ

∑
i∈Ij

h2
i

qi
≥ 1

MQ

(∑
j∈SQ

∑
i∈Ij

|hi|√
qi

√
qi

)2

=
1

MQ

‖h‖2
1,

where the first inequality follows from the fact thatMQ is an upper bound on ‖q‖1 for any q ∈ Q,
and the second inequality follows from the Cauchy-Schwarz inequality.

Hence, we deduce h>∇2ω(q)h ≥ 1
MQ
‖h‖2

1 holds for all q ∈ ri (Q) and for all h ∈ Rn.
Because the dilated entropy function ω(q) is twice differentiable on ri (Q), from Fact 3, we
conclude that ω(·) is strongly convex w.r.t. the `1 norm on Q with modulus ϕ = 1

MQ
.

3.5.3 Treeplex width
The convergence rates of FOMs such as MP and EGT algorithms depend on the diameter-to-
strong convexity parameter ratio Ω

ϕ
, as described in Section 3.3.1. In order to establish full results

on the convergence rates of these FOMs, we now bound this ratio using Corollary 1 scaled by
MQ.
Theorem 4. For a treeplex Q, the dilated entropy function with simplex weights βj = MQ(2 +∑dj

r=1 2r(MQj ,r − 1)) for each j ∈ SQ results in Ω
ϕ
≤M2

Q2dQ+2 logm where m is the dimension
of the largest simplex ∆j for j ∈ SQ in the treeplex structure.

Proof. For our choice of scaled weights βj , Corollary 1 implies that the resulting dilated entropy
function is strongly convex with modulus ϕ = 1. Hence, we only need to bound Ω.

28

Any q ∈ Q satisfying qi ∈ {0, 1} for all i maximizes ω(q) and results in maxq∈Q ω(q) = 0.
For the minimum value, consider any q ∈ ri (Q). Applying the well-known lower bound of
− logm for the negative entropy function on an m-dimensional simplex gives

ω(q) =
∑
j∈SQ

βjqpj
∑
i∈Ij

qi
qpj

log
qi
qpj
≥ −

∑
j∈SQ

βjqpj logm = −
dQ∑
d=0

∑
j∈SQ:dj=d

βjqpj logm

= −
dQ∑
d=1

∑
j∈SQ:dj=d

βjqpj logm−
∑

j∈SQ:dj=0

βjqpj logm

= −MQ logm

dQ∑
d=1

∑
j∈SQ:dj=d

qpj

(
2 +

d∑
r=1

2r(MQj ,r − 1)

)
−MQ

∑
j∈SQ:dj=0

2qpj logm

≥ −MQ logm

dQ∑
d=1

∑
j∈SQ:dj=d

qpjMQj

d∑
r=1

2r − 2MQ logm
∑

j∈SQ:dj=0

qpj , (3.17)

where the last inequality follows because for each j ∈ SQ with dj = 0, the definition of MQ im-
plies

∑
j∈SQ:dj=0 qpj ≤MQ, and for each j ∈ SQ with dj = d ≥ 1, we have 2+

∑d
r=1 2r(MQj ,r−

1) ≤ ∑d
r=1 2rMQj ,r ≤

∑d
r=1 2rMQj since MQj,r ≤ MQj . Also, from Fact 1(b), we have∑

j∈SQ:dj=d
qpjMQj ≤MQ. Then we arrive at

(3.17) ≥ −M2
Q logm

(
2 +

dQ∑
d=1

d∑
r=1

2r
)

= −M2
Q logm

(
2 +

dQ∑
d=1

(2d+1 − 2)

)

= −M2
Q logm

(
2 +

dQ∑
d=1

2d+1 − 2dQ

)
≥ −M2

Q(logm)2dQ+2,

where the last inequality follows because for dQ = 0 we have 2dQ+2 = 4 > 2 and for dQ ≥ 1 we
have 2dQ ≥ 2.

This lower bound on the minimum value, i.e., minq∈Q ω(q) ≥ −M2
Q(logm)2dQ+2, coupled

with maxq∈Q ω(q) ≤ 0, establishes the theorem.

3.6 EGT for extensive-form game solving
We now describe how to instantiate EGT for solving two-player zero-sum EFGs of the form (3.1)
with treeplex domains. Below we state the customization of all the definitions from Section 3.3
for our problem.

Let m be the size of the largest simplex in either of the treeplexes X ,Y . Because X and
Y are treeplexes, they are closed, convex, and bounded. We use the `1 norm on both of the
embedding spaces Ex,Ey. As our DGFs for X ,Y compatible with the `1 norm, we use the
dilated entropy DGF scaled with weights given in Theorem 4. Then Theorem 4 gives our bound
on ΩX

ϕX
and ΩY

ϕY
. Because the dual norm of the `1 norm is the `∞ norm, the matrix norm is given

by ‖A‖ = maxy∈Y {‖Ay‖∗1 : ‖y‖1 = 1} = maxi,j |Ai,j|.

29

Remark 3. The matrix norm ‖A‖ is not at the scale of the maximum payoff difference in the
original game. The values in A are scaled by the probability of the observed nature outcomes
on the path of each sequence. Thus, ‖A‖ is exponentially smaller (in the number of observed
nature steps on the path to the maximizing sequence) than the maximum payoff difference in the
original EFG.

Theorem 4 immediately leads to the following convergence rate result for FOMs equipped
with dilated entropy DGFs to solve EFGs (and more generally BSPPs over treeplex domains).
Theorem 5. Consider a BSPP over treeplex domains X ,Y . Then EGT algorithm equipped
with the dilated entropy DGF with weights βj = 2 +

∑dj
r=1 2r(MXj ,r − 1) for all j ∈ SX and the

corresponding setup for Y will return an ε-accurate solution to the BSPP in at most the following
number of iterations:

maxi,j |Ai,j|
√
M2
X2dX+2M2

Y2dY+2 logm

ε
.

This rate in Theorem 5, to our knowledge, establishes the state-of-the-art for FOMs with
O(1

ε
) convergence rate for EFGs.

3.6.1 Improvements in extensive-form game convergence rate
The ratio Ω

ϕ
of set diameter over the strong convexity parameter is important for FOMs that

rely on a prox function, such as EGT and MP. Compared to the rate obtained by [101], we get
the following improvement: for simplicity, assume that the number of actions available at each
information set is on average a, then our bound improves the convergence rate of [101] by a
factor of Ω(dX · adX + dY · adY).

As mentioned previously, Hoda et al. [79] proved only explicit bounds for the special case
of uniform treeplexes that are constructed as follows: 1) A base treeplex Qb along with a subset
of b indices from it for branching operations is chosen. 2) At each depth d, a Cartesian product
operation of size k is applied. 3) Each element in a Cartesian product is an instance of the base
treeplex with a size b branching operation leading to depth d− 1 uniform treeplexes constructed
in the same way. Given bounds Ωb, ϕb for the base treeplex, the bound of Hoda et al. [79] for
a uniform treeplex with d uniform treeplex levels (the total depth of the constructed treeplex is
d · dQb , where dQb is the depth of the base treeplex Qb) is

Ω

ϕ
≤ O

(
b2d−2k2d+2d2M2

Qb

Ωb

ϕb

)
.

Then when the base treeplex is a simplex of dimension m, their bound for the dilated entropy on
a uniform treeplex Q becomes

Ω

ϕ
≤ O

(
|SQ|2 d2

Q logm
)
.

Even for the special case of a uniform treeplex with a base simplex, comparing Theorem 4 to
their bound, we see that our general bound improves the associated constants by exchanging
O(|SQ|2 d2

Q) with O(M2
Q2dQ). Since MQ does not depend on the branching operation in the

30

treeplex, whereas |SQ| does, our bounds are also the first bounds to remove an exponential de-
pendence on the branching operation (we have only a logarithmic dependence). In Example 1
we showed that there exist games where MQ =

√
|SQ|, and in general MQ is much smaller than

|SQ|. Consequently, our results establish the best known convergence results for all FOMs based
on dilated entropy DGF such as EGT, MP, and stochastic variants of FOMs for BSPPs.

Gilpin et al. [72] give an equilibrium-finding algorithm presented as O(ln(1
ε
)); but this form

of their bound has a dependence on a certain condition number of theAmatrix. Specifically, their
iteration bound for sequential games isO(‖A‖2,2·ln(‖A‖2,2/ε)·

√
D

δ(A)
), where δ(A) is the condition num-

ber ofA, ‖A‖2,2 = supx 6=0
‖Ax‖2
‖x‖2 is the Euclidean matrix norm, andD = maxx,x̄∈X ,y,ȳ∈Y ‖[x; y]−

[x̄; ȳ]‖2
2. Unfortunately, the condition number δ(A) is only shown to be finite for these games.

Without any such unknown quantities based on condition numbers, Gilpin et al. [72] establish
a convergence rate of O(‖A‖2,2·D

ε
). This algorithm, despite having the same dependence on ε as

ours in its convergence rate, i.e., O(1
ε
), suffers from worse constants. In particular, there exist

matrices such that ‖A‖2,2 =
√
‖A‖1,∞‖A‖∞,1, where ‖A‖1,∞ and ‖A‖∞,1 correspond to the

maximum absolute column and row sums, respectively. Then together with the value of D, this
leads to a cubic dependence on the dimension of Q. For games where the players have roughly
equal-size strategy spaces, this is equivalent to a constant of O(M4

Q) as opposed to our constant
of O(M2

Q). In addition, as compared with previous work, the authors also only show experi-
ments with their algorithm on instances with 9 · 106 leaf nodes [72], whereas the previous EGT
algorithm showed experiments on instances with up to 4 · 1012 leaf nodes.

CFR, CFR+, and EGT all need to keep track of a constant number of current and/or average it-
erates, so the memory usage of all three algorithms is of the same order. When gradients are com-
puted using tree traversal as opposed to storing the matrix A (or some decomposition thereof),
each of these algorithms require a constant times the number of sequences in the sequence-form
representation; in particular, each algorithm needs to keep track of some current x ∈ X and
y ∈ Y iterate, as well as a small number of gradients and intermediate solutions. Therefore,
we compare mainly the number of iterations required by each algorithm. Since the theoretical
properties of CFR and CFR+ are comparable, we compare to CFR, with all statements being
valid for CFR+ as well.

CFR has a O(1
ε2

) convergence rate; but its dependence on the number of information sets is
only linear (and sometimes sublinear [108]). Since our results utilizing EGT have a quadratic
dependence on M2

Q, CFR sometimes has a better dependence on game constants and can be
more attractive for obtaining low-quality solutions quickly for games with many information
sets. However, our theoretical results could be coupled with a O(1

ε2
) convergence rate FOM

such as mirror descent in order to achieve a similar dependence on game constants. In practice,
a sampling-based variant of CFR called Monte-Carlo CFR (MCCFR) is preferred for certain
applications [108]. MCCFR and CFR have a similar convergence rate, though MCCFR has
cheaper iterations. Using a gradient-sampling method that we will describe in Section 3.10,
our theoretical results can be utilized with the stochastic mirror prox algorithm [87] in order to
achieve the same cost per iteration and convergence rate as MCCFR.

31

3.7 Smoothed best responses
We now show how to solve (3.3) and (3.4) for our DGF. While it is known that the more general
class of dilated entropy DGFs has a closed-form solution, this is the first time the approach has
been formally given. Furthermore, we believe that our particular solution is novel, and leads to
better control over numerical issues. The problem we wish to solve is the following.

argmin
∑
j∈SQ

〈qj, gj〉+ βjqpjdj(q
j/qpj) = argmin

∑
j∈SQ

qpj(〈q̄j, gj〉+ βjdj(q̄
j)) (3.18)

where the equality follows by the fact that qi = qpj q̄i. For a leaf simplex j, its corresponding
term in the summation has no dependence on any other part of the game tree except for the
multiplication by xpj (because none of its variables are parent to any other simplex). Because of
this lack of dependence, the expression

〈q̄j/qpj , gj〉+ βjdj(q
j/qpj)

can be minimized independently as if it were an optimization problem over a simplex with vari-
ables q̄j = xj/qpj (this was also pointed out in Proposition 3.4 in Hoda et al. [79]). We show how
to solve the optimization problem at a leaf: minq̄j∈∆j

〈q̄j, gj〉+βjdj(q̄
j). Writing the Lagrangian

with respect to the simplex constraint and taking the derivative wrt. q̄i gives

min
q̄j
〈q̄j, gj〉+ βjdj(q̄

j) + λ(1−
∑
i∈Ij

q̄i)⇒ gi + βj(1 + log q̄i) = λ⇒ q̄i ∝ e−gi/βj

This shows how to solve the smoothed-best-response problem at a leaf. For an internal simplex
j, Proposition 3.4 of Hoda et al. [79] says that we can simply compute the value at all simplexes
below j, and propagate the value up into gj (this is easily seen from (3.18); each qi acts as a scalar
on the value of all simplexes after i). Letting |Ij| = n, we now simplify the objective function:

〈q̄j, gj〉+ βj(
∑
i∈Ij

(q̄i log q̄i) + log n) =
∑
i

(q̄i(gi + βj log q̄i)) + βj log n

=
∑
i

(q̄i(λ− βj)) + βj log n = λ− βj + βj log n,

where the last two equalities follow first by applying our derivation for λ and then the fact that
q̄j sums to one. This shows that we can choose an arbitrary index i ∈ Ij and propagate the value
gi + βj log q̄i + βj log n. In particular, for numerical reasons we choose the one that maximizes
q̄i.

In addition to smoothed best responses, fast FOMs usually also require computation of
proximal mappings, which are solutions to argminq∈Q 〈q, g〉 + D(q‖q′), where D(q‖q′) =
d(q) − d(q′) − 〈∇d(q′), q − q′〉 is the Bregman divergence associated with the chosen DGF
d. Unlike the smoothed best response, we are usually only interested in the minimizing solution
and not the associated value. Therefore we can drop terms that do not depend on q and the prob-
lem reduces to argminq∈Q 〈q, g〉 + d(q) − 〈∇d(q′), q〉, which can be solved with our smoothed

32

best response approach by using the shifted gradient g̃ = g −∇d(q′). This has one potential nu-
merical pitfall: the DGF-gradient ∇d(q′) may be unstable near the boundary of Q, for example
because the entropy DGF-gradient requires taking logarithms. It is possible to derive a separate
expression for the proximal mapping that is similar to what we did for the smoothed best re-
sponse; this expression can help avoid this issue. However, because we only care about getting
the optimal solution, not the value associated with it, this is not necessary. The large gradients
near the boundary only affect the solution by setting bad actions too close to zero, which does
not seem to affect performance.

3.8 Small and medium-scale numerical experiments
We carried out numerical experiments to investigate the practical performance of EGT on EFGs
when instantiated with our DGF. We start out by comparing our DGF (henceforth referred to
as new DGF) with that of Kroer et al. [101] (a preliminary version of the work presented here,
henceforth referred to as old DGF) when used in the EGT algorithm, and then we compare EGT
equipped with our DGF to CFR and CFR+, the practical state-of-the-art EFG-solving algorithms.

We consider two variants of EGT: the original algorithm of Nesterov [132] as is, and a new
variant where we incorporate several heuristics for speeding up practical convergence by avoid-
ing overly pessimistic parameters. We demonstrate and discuss the practical convergence issues
in comparison experiments later. First we describe our practical variant.

Our preliminary experiments for EGT demonstrated that the initial values for the smooth-
ing parameters µ1, µ2 are much too conservative in practice. Instead, in our aggressive EGT
we follow an automated tuning procedure. The goal of this procedure is to find a pair of initial
smoothing parameters µ1, µ2 that fit the problem instance at hand. At the beginning of the algo-
rithm we perform a binary search over 16 logarithmically-spaced numbers between 0.001

Ωx
and 1.0

for µ1. For each number, we binary search 3 multiples of µ1 in order to choose µ2: 0.75, 1, and
1.25. We choose the smallest pair of parameters that give an excessive gap greater than 0.001
after computing x0, y0 in Algorithm 1.

Because we are choosing the smoothing parameters this way, we are no longer guaranteed
convergence according to the EGT theory; however we can fix this problem by numerically
checking the excessive gap condition at every iteration. We perform this check as a part of the
following more aggressive step-sizing policy: instead of setting τ = 2

t+3
at every iteration t, we

use the aggressive µ reduction heuristic of Hoda et al. [79], where a constant stepsize is used,
and then whenever the post-step check of the excessive gap condition fails the step is retraced
and τ is halved. We start τ at 1

2
. In addition to only decreasing τ when the excessive gap check

fails, we also increase it by a factor of 1.11 whenever a step was successful. We also introduce
a new heuristic for checking whether a step was successful: we check whether the saddle-point
residual εsad(z) deteriorated by a factor of more than 1.1 after each step. If it did, we retrace and
halve τ . This heuristic can be computed essentially for free (in particular using the gradients
from the excessive gap check) and thus only requires two treeplex traversals.

We test the algorithms on two games. The first game is a scaled up variant of the poker
game Leduc holdem [157], a benchmark problem in the imperfect-information game-solving
community. In our version, the deck consists of k pairs of cards 1 . . . k, for a total deck size of

33

2k. Each player initially pays one chip to the pot, and is dealt a single private card. After a round
of betting, a community card is dealt face up. After a subsequent round of betting, if neither
player has folded, both players reveal their private cards. If either player pairs their card with
the community card they win the pot. Otherwise, the player with the highest private card wins.
In the event both players have the same private card, they draw and split the pot. We consider
decks with 6, 30, and 70 cards. The smallest game has about 2000 nodes in the game tree, and
the largest has about 3.2 million nodes in the game tree.

The second game is a zero-sum variant of a search-game played on the graph shown in
Figure 3.2, we will refer to it as Search. Search is a simultaneous-move game (which can be
modeled as a turn-taking EFG with appropriately chosen information sets). A defender controls
two patrols that can each move within their respective shaded areas (labeled P1 and P2), and at
each time step the controller chooses a move for both patrols. An attacker tries to move from
the S node to one of the three payoff nodes. The attacker can move freely to any adjacent node
(except at patrolled nodes, the attacker cannot move from a patrolled node to another patrolled
node). The attacker can also choose to wait in place for a time step in order to clean up their
traces. If a patrol visits a node that was previously visited by the attacker, and the attacker did not
wait to clean up their traces, they can see that the attacker was there. If the attacker reaches any
of the rightmost nodes they received the respective payoff at the node (5, 10, or 3, respectively)
and the defender loses that amount. If the attacker and any patrol are on the same node at any
time step, the attacker is captured, which leads to payoffs of 1 and −1 for the defender and
attacker respectively. Finally, the game times out after 5 simultaneous moves, in which case both
players receive a payoff 0. Search has 87,927 nodes and 11,830 and 69 defender and attacker
sequences. General-sum variants of this game were studied by Bošanskỳ et al. [17], Bošanskỳ
and Čermák [18]. One particularly noteworthy feature of this game is that the strategy spaces are
extremely imbalanced: it is huge for one player and tiny for the other. This is in stark contrast
with Leduc (and other poker games) where the strategy spaces are almost the same. In addition
to our general results that we are about to present, we believe that our results are the first of their
kind in demonstrating strong FOM performance on such imbalanced EFGs.

P1 P2

S

5

10

3

Figure 3.2: A search game between a defender and an attacker.

In our comparisons, we use loglog plots that show the results for a particular game. In each
plot, we show the performance of the algorithms, with the x-axis showing the number of tree
traversals, and the y-axis showing the solution accuracy, i.e. the saddle-point residual. Tree-
traversals are a good proxy for overall computational effort because the majority of the time in
the algorithms EGT and CFR algorithms for EFG solving is spent on gradient computations,
which in our case directly translates into tree-traversals. All EGT experiments include the tree

34

traversals needed for automated parameter tuning described in the previous paragraph as part of
the number of tree traversals performed by the algorithm.

First, we investigate the impact of applying the weights used in recurrence (3.6), as compared
to our preliminary scheme introduced in Kroer et al. [101]. To instantiate recurrence (3.6) we
have to choose a way to set βj relative to αj . We use the scheme of Corollary 1. This scheme will
henceforth be referred to as new weights. We compare these new weights to the weights used in
Kroer et al. [101] (henceforth referred to as old weights). Figure 3.3 shows the result of running
EGT with the old and the new weights for Leduc with a 6-card (on the left) deck and Search
(on the right). The top row shows results when instantiating EGT with the parameters dictated
by the theory, whereas the bottom row shows EGT using all our heuristics. When instantiating
parameters according to theory the most important observation is that the parameters are way
too pessimistic, out of thousands of gradient computations, the majority are spent decreasing
the smoothing parameters until they are small enough that the algorithms start to make progress.
That said, this happens significantly faster for the new parameters than the old ones; for the search
game 20, 000 gradient computations is not enough to start progressing with the old parameters.
For our aggressive EGT variant we find that both DGFs perform much better, though our new
weights still perform better on both games, significantly so for Search.

1

100 10000

tree traversals

so
lu

tio
n

ac
cu

ra
cy

Algorithm

New weights

Old weights

EGT variant from theory on Leduc

0.1

1.0

100 10000

tree traversals

so
lu

tio
n

ac
cu

ra
cy

Algorithm

New weights

Old weights

EGT variant from theory on Search

0.01

0.10

1.00

100 1000

tree traversals

so
lu

tio
n

ac
cu

ra
cy

Algorithm

New weights

Old weights

Aggressive EGT variant on Leduc

0.01

0.10

1.00

100 1000

tree traversals

so
lu

tio
n

ac
cu

ra
cy

Algorithm

New weights

Old weights

Aggressive EGT variant on Search

Figure 3.3: Solution accuracy as a function of the number of iterations for EGT with our weight-
ing scheme (New weights) and with the weighting scheme from Kroer et al. [101] (Old weights).
Both axes are on a log scale. The top row shows the effect of our weighting scheme when using
EGT instantiated according to the original theory. The bottom row shows the effect when using
our aggressive EGT variant.

We next compare the performance of EGT with our new weights to that of the CFR and CFR+

35

algorithms on three Leduc variants (6, 30, and 70-card decks) and Search. For CFR we use two
variants: the vanilla CFR algorithm with RM as the regret minimizer, and CFR with the RM+

regret minimizer and alternating minimization. Finally we have CFR+ which adds linear step-
sizing on top of RM+ and alternating minimization. The results are shown in Figure 3.4. We find
that EGT instantiated with our DGF outperforms CFR with both RM and RM+ and alternating
minimization, whereas CFR+ is slightly faster still. EGT maintains a stronger convergence rate
across all iterations. It starts out slightly worse because its first iterate is shifted outward on the
x-axis due to paying the upfront cost of our automated tuning based initialization. However, its
convergence rate is immediately superior to CFR, and almost immediately overtakes both CFR
algorithms.

●

●
●

● ● ●
●

● ● ●
●

●
●

●
● ●

●
●

● ●

0.01

1.00

10 100 1000

tree traversals

so
lu

tio
n

ac
cu

ra
cy

Algorithm
● CFR(RegretMatching)

CFR(RegretMatching+)

CFR+

ExcessiveGapTechnique

6−card Leduc
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

0.01

1.00

10 100 1000

tree traversals

so
lu

tio
n

ac
cu

ra
cy

Algorithm
● CFR(RegretMatching)

CFR(RegretMatching+)

CFR+

ExcessiveGapTechnique

30−card Leduc

●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
●

●

0.01

1.00

10 100 1000

tree traversals

so
lu

tio
n

ac
cu

ra
cy

Algorithm
● CFR(RegretMatching)

CFR(RegretMatching+)

CFR+

ExcessiveGapTechnique

70−card Leduc
●

● ●

● ● ● ●
●

● ●
●

●
● ●

● ●
●

0.01

1.00

10 100 1000

tree traversals

so
lu

tio
n

ac
cu

ra
cy

Algorithm
● CFR(RegretMatching)

CFR(RegretMatching+)

CFR+

ExcessiveGapTechnique

Search

Figure 3.4: Solution accuracy as a function of the number of tree traversals in three different
variants of Leduc hold’em and the Search game. Results are shown for CFR with regret mathing,
CFR with regret mathing+, CFR+, and our aggressive EGT algorithm. Both axes are shown on
a log scale.

The performance we get from EGT (with aggressive stepsizing) relative to CFR is in sharp
contrast to the previous conventional practical wisdom in the field. In our preliminary conference
paper [101] it was found that, while EGT has better asymptotic convergence rate, CFR had better
initial convergence rate, and it was only after a certain number of iterations that EGT took over.
Furthermore, the switching point where EGT is preferable was found to shift outward on the
x-axis as the Leduc game size was increased. This sentiment has been mirrored by Brown and
Sandholm [25]. In contrast to this, we find that our DGF along with proper initialization leads to
EGT having a better convergence rate than not only CFR, but also CFR with RM+. Furthermore,
scaling up the game size does not seem to adversely affect this relationship.

36

The numerical results in Figure 3.4 suggest that our DGF may be useful in practice for solving
large-scale zero-sum EFGs. Moreover, these results are with a particular FOM, EGT, and there
is a myriad of possible ways that our DGF could be combined with other FOMs.

3.9 Large-scale numerical GPU experiments

We now present experimental results on running all the previously described algorithms on a
GPU. All experiments were run on a Google Cloud instance with an NVIDIA Tesla K80 GPU
with 12GB available. All code was implemented in C++ using CUDA for GPU operations,
and cuSPARSE for the sparse payoff matrix. We compare against several CFR variants.4 We
run CFR with RM (CFR(RM)), RM+ (CFR(RM+)), and CFR+ which is CFR with RM+ and a
linear averaging scheme. Detailed descriptions can also be found in Zinkevich et al. [179] and
Tammelin et al. [161].

As in the previous section we use a practical EGT variant combining practical techniques
from the previous section. The pseudocode is shown in Algorithm 1. As before we use a
practically-tuned initial choice for the initial smoothing parameters µ. Furthermore, rather than
alternating the steps on players 1 and 2, we always call STEP on the player with a higher µ value
(this choice is somewhat reminiscent of the µ-balancing heuristic employed by Hoda et al. [79]
although our approach avoids an additional fitting step). The EGT algorithm with a practically-
tuned µ and this µ balancing heuristic will be denoted EGT in our experiments. In addition, we
use an EGT variant that employs the aggressive µ reduction technique introduced by Hoda et al.
[79]. Aggressive µ reduction uses the observation that the original EGT stepsize choices, which
are τ = 2

3+t
, are chosen to guarantee the excessive gap condition, but may be overly conservative.

Instead, aggressive µ reduction simply maintains some current τ , initially set to 0.5, and tries to
apply the same stepsize τ repeatedly. After every step, we check that the excessive gap condition
still holds; if it does not hold then we backtrack, τ is decreased, and we repeat the process. A
τ that maintains the condition is always guaranteed to exist by Theorem 2 of Nesterov [132].
The pseudocode for this is given in Algorithm 2. EGT with aggressive µ reduction, a practically
tuned initial µ, and µ balancing, will be denoted EGT/AS in our experiments.

4All variants use the alternating updates scheme.

37

Algorithm 1 EGT/AS(DGF-center xω, DGF weights µx, µy, and ε > 0)

1: x0 = ∇d∗X
(
µ−1
x ∇fµy(xω)

)
2: y0 = yµy(xω)
3: t = 0
4: τ = 1

2

5: while εsad(x
t, yt) > ε do

6: if µx > µy then
7: (µt+1

x , xt+1, yt+1, τ) = DECR(µtx, µ
t
y, x

t, yt, τ)
8: else
9: (µt+1

y , yt+1, xt+1, τ) = DECR(µty, µ
t
x, y

t, xt, τ)
10: t = t+ 1
11: return xt, yt

Algorithm 2 DECR(µx, µy, x, y, τ)

1: (µ+
x , x

+, y+) = STEP(µx, µy, x, y, τ)
2: while EGV(x, y) < 0 do
3: τ = 1

2
τ

4: (µ+
x , x

+, y+) = STEP(µx, µy, x, y, τ)
5: return µ+

x x
t, yt, τ

To compute smoothed best responses, we use a parallelization scheme. We parallelize across
the initial Cartesian product of treeplexes at the root. As long as this Cartesian product is wide
enough, the smoothed best response computation will take full advantage of parallelization. This
is a common structure in real-world problems, for example representing the starting hand in
poker, or some stochastic private state of each player in other applications. This parallelization
scheme also works for gradient computation based on tree traversal. However, in these experi-
ments we do gradient computation by writing down a sparse payoff matrix using CUDA’s sparse
library and let CUDA parallelize the gradient computation.

For poker-specific applications (and certain other games where utilities decompose nicely
based on private information) it is possible to speed up the gradient computation substantially by
employing the accelerated tree traversal of Johanson et al. [82]. We did not use this technique.
In our experiments, the majority of time is spent in gradient computation, so this acceleration
is likely to affect all the tested algorithms equally. Furthermore, since the technique is specific
to games with certain structures, our experiments give a better estimate of general EFG-solving
performance.

Our experiments are conducted on real large-scale “river” endgames faced by the Libratus
AI [27]. Libratus was created for the game of heads-up no-limit Texas hold’em. Libratus was
constructed by first computing a “blueprint” strategy for the whole game (based on abstrac-
tion and Monte-Carlo CFR [108]). Then, during play, Libratus would solve endgames that are
reached using a significantly finer-grained abstraction. In particular, those endgames have no
card abstraction, and they have a fine-grained betting abstraction. For the beginning of the sub-
game, the blueprint strategy gives a conditional distribution over hands for each player. The

38

subgame is constructed by having a Chance node deal out hands according to this conditional
distribution.5

A subgame is structured and parameterized as follows. The game is parameterized by the
conditional distribution over hands for each player, current pot size, board state (5 cards dealt to
the board), and a betting abstraction. First, Chance deals out hands to the two players according
to the conditional hand distribution. Then, Libratus has the choice of folding, checking, or betting
by a number of multipliers of the pot size: 0.25x, 0.5x, 1x, 2x, 4x, 8x, and all-in. If Libratus
checks and the other player bets then Libratus has the choice of folding, calling (i.e. matching
the bet and ending the betting), or raising by pot multipliers 0.4x, 0.7x, 1.1x, 2x, and all-in. If
Libratus bets and the other player raises Libratus can fold, call, or raise by 0.4x, 0.7x, 2x, and
all-in. Finally when facing subsequent raises Libratus can fold, call, or raise by 0.7x and all-in.
When faced with an initial check, the opponent can fold, check, or raise by 0.5x, 0.75x, 1x, and
all-in. When faced with an initial bet the opponent can fold, call, or raise by 0.7x, 1.1x, and
all-in. When faced with subsequent raises the opponent can fold, call, or raise by 0.7x and all-in.
The game ends whenever a player folds (the other player wins all money in the pot), calls (a
showdown occurs), or both players check as their first action of the game (a showdown occurs).
In a showdown the player with the better hands wins the pot. The pot is split in case of a tie. (For
our experiments we used endgames where it is Libratus’s turn to move first.)

We conducted experiments on two river endgames extracted from Libratus play: Endgame 2
and Endgame 7. Endgame 2 has a pot of size 2100 at the beginning of the river endgame. It has
140k and 144k sequences for Libratus and the opponent, respectively, and 176M leaves in the
games tree. Endgame 7 has a pot of size $3750 at the beginning of the river subgame. It has 43k
and 86k sequences for the players, and 54M leaves.

100 101 102 103 104

10−3

10−2

10−1

100

101

102

103

Iteration

ε
(r

eg
re

ts
um

)[
m

bb
]

Endgame 2

CFR+

EGT
EGT/AS

CFR(RM)
CFR(RM+)

100 101 102 103 104
10−3

10−2

10−1

100

101

102

103

Iteration

ε
(r

eg
re

ts
um

)[
m

bb
]

Endgame 7

CFR+

EGT
EGT/AS

CFR(RM)
CFR(RM+)

Figure 3.5: Solution quality as a function of the number of iterations for all algorithms on two
river subgames. The solution quality is given as the sum of regrets for the players in milli-big-
blinds.

In the first set of experiments we look at the per-iteration performance of each algorithm. The
results are shown in Figure 3.5. The y-axis shows the sum of the regrets for each player, that is,

5Libratus used two different subgame-solving techniques, one “unsafe” and one “safe” [26]. The computa-
tional problem in the two is essentially identical. We experiment with the “unsafe” version, which uses the prior
distributions described here.

39

how much utility they can gain by playing a best response rather than their current strategy. The
unit is milli-big-blinds (mbb); at the beginning of the original poker game, Libratus, as the “big
blind”, put in $100 and the opponent put in $50, in order to induce betting. Mbb is a thousandth
of the big blind value, that is, 10 cents. This is a standard unit used in research that uses poker
games for evaluation. One mbb is often considered the convergence goal. CFR+ and EGT/AS

perform the best; both reach the goal of 1mbb after about 400 iterations in both Endgame 2 and 7.
EGT, CFR(RM), and CFR(RM+) all take about 3000 iterations to reach 1mbb in Endgame 7. In
Endgame 2, EGT is slowest, although the slope is steeper than for CFR(RM) and CFR(RM+).
We suspect that better initialization of EGT could lead to it beating both algorithms. Note also
that EGT was shown better than CFR(RM) and CFR(RM+) by Kroer et al. [103] in the smaller
game of Leduc hold’em with an automated µ-tuning approach. Their results further suggest that
better initialization may help enhance converge speed significantly.

One issue with per-iteration convergence rates is that the algorithms do not perform the same
amount of work per iteration. All CFR variants in our experiments compute 2 gradients per iter-
ation, whereas EGT computes 3, and EGT/AS computes 4 (the additional gradient computation
is needed in order to evaluate the excessive gap). Furthermore, EGT/AS may use additional gra-
dient computations if the excessive gap check fails and a smaller τ is tried (in our experiments
about 15 adjustments were needed). In our second set of plots, we show the convergence rate
as a function of the total number of gradient computations performed by the algorithm. This
is shown in Figure 3.6. By this measure, EGT/AS and EGT perform slightly worse relative to
their performance as measured by iteration count. In particular, CFR+ takes about 800 gradient
computations in order to reach 1mbb in either game, whereas EGT/AS takes about 1800.

101 102 103 104 105

10−3

10−2

10−1

100

101

102

103

Gradient computations

ε
(r

eg
re

ts
um

)[
m

bb
]

Endgame 2

CFR+

EGT
EGT/AS

CFR(RM)
CFR(RM+)

101 102 103 104 105
10−3

10−2

10−1

100

101

102

103

Gradient computations

ε
(r

eg
re

ts
um

)[
m

bb
]

Endgame 7

CFR+

EGT
EGT/AS

CFR(RM)
CFR(RM+)

Figure 3.6: Solution quality as a function of the number of gradient computations for all algo-
rithms on two river subgames. The solution quality is given as the sum of regrets for the players
in milli-big-blinds.

In our experiments CFR+ vastly outperforms its theoretical convergence rate (in fact, every
CFR variant does significantly better than the theory predicts, but CFR+ especially so). However,
CFR+ is known to eventually reach a point where it slows down and performs worse than 1

T
. In

our experiments we start to see CFR+ slowing down towards the end of Endgame 7. EGT, in
contrast, is guaranteed to maintain a rate of 1

T
, and so may be preferable if a guarantee against

slowdown is desired or high precision is needed.
In addition to the results presented here, we tried several variants of our weighting scheme,

40

using more or less aggressive weight increases as we move up the treeplex. Here we present only
the results for the best variant. In future work it would be interesting to more thoroughly explore
the space of possible instantiations of recurrence 3.6.

3.10 Sampling
In some practical settings each iteration of a FOM might be prohibitively expensive, usually
because the gradient is expensive to compute. Instead it may be preferable to use a gradient es-
timator. For example, in the Libratus agent [27] a gradient estimator was used for constructing a
precomputed base strategy (which was also computed in an abstraction), while full tree traversals
were used when solving subgames in real time.

In order to facilitate gradient estimation we can use stochastic FOMs that work with unbiased
estimates of the gradient. Juditsky et al. [87] discuss a stochastic variant of mirror prox for
BSSP, namely Stochastic mirror prox (SMP). SMP does not use exact gradients when computing
strategy updates, but rather unbiased estimators thereof. Specifically, for every x ∈ X , we
assume access to a probability distribution Πx such that Eη∼Πx [η] = x. Similarly, we assume
access to Py for y ∈ Y such that Eξ∼Py [ξ] = y. We define variance as follows:

σ2
x = sup

x∈X
E
{
‖A> [ηx − x] ‖2

y,∗
}
, σ2

y = sup
y∈Y

E
{
‖A [ξy − y] ‖2

x,∗
}

Juditsky et al. [87] prove that after T iterations of SMP with stepsizes

γt = min

[
1√
3L

,

√
4Ω

7Tϕ(σ2
x + σ2

y)

]
,

the solution satisfies:

E
[
εsad(z

T)
]
≤ max

7ΩL
2Tϕ

, 7

√
2Ω(σ2

x + σ2
y)

3Tϕ

 . (3.19)

We now introduce a broad class of unbiased gradient estimators for EFGs. We describe how
to generate a gradient estimate η of x>A given x ∈ X , that is, the gradient for player 2. Given
y ∈ Y , the estimate ξTA of A>y is generated analogously. This class explicitly uses the tree
structure representation of EFGs, so we introduce some notation for it. We define H to be the
set of nodes (or equivalently, histories) in the game tree. For any node h, we define A(h) to be
the set of actions available at h. The node reached by taking action a ∈ A(h) at h is denoted by
h[a]. We let ph,x be the probability distribution over actions A(h) given by the current iterate x.
If h is a chance node, x has no effect on the distribution. We let u2(h) be the utility of player 2
for reaching a terminal node h, and ηh be the index in η corresponding to a given terminal node
h.

An EFG gradient estimator is defined by a sampling-description function C : H → N∪{all},
where C(h) gives the number of samples drawn at the node h ∈ H . The estimate η of x>A is

41

then generated using the following recursive sampling scheme:

Sample(h, τ) :

if h is a terminal node : ηh = τ · u2(h)

else if h belongs to player 2: ∀a ∈ A(h) : Sample(h[a], τ)

else if C(h) = all: ∀a ∈ A(h) : Sample(h[a], ph,x(a) · τ)

else:

{
Draw

{
a1, . . . , aC(h)

}
∼ ph,x,

∀j = 1, . . . , C(h) : Sample(h[aj], τ · 1
C(h)

)

.

Sampling is initiated with h = r, τ = 1, where r is the root node of the game tree. From
the definition of this sampling scheme, it is clear that the expected value of any EFG estimator is
exactly x>A as desired. It is possible to generalize this class to sampleA(h) at nodes h belonging
to player 2 as well.

Lanctot et al. [108] introduced several unbiased sampling schemes for EFGs. These corre-
spond to certain specializations of our general sampling scheme. Chance sampling, Cc(h), is
where a single sample is drawn if the node is a nature node, and otherwise all actions are chosen.
This corresponds to the following EFG estimator:

Cc(h) =

{
1 if h is a chance node
all else

.

In external sampling, Ce(h), a single sample is drawn for the nodes that do not belong to the
current player. Hence, when we estimate x>A, we get Ce(h) = 1.

In our experiments, for a given positive integer k, we focus on the following estimator

Cc,k(h) =

{
k if h is a chance node
all else

. (3.20)

We now provide a simple upper bound for the variance of this class of gradient estimators.
We will need the maximum payoff difference for Player 2 in the EFG, which we denote by
Γ2 = maxh,h′ u2(h)− u2(h′). An analogous theorem holds for σ2

y .
Theorem 6. Any gradient estimator C : H → N ∪ {all}, has variance at most σ2

x ≤ Γ2
2.

Proof. We will show this for σ2
x; the proof is analogous for σ2

x. Our estimator can be thought of
as η = A>ξx, where ξx is the vector that would be obtained by only writing down the probability
at terminal nodes in the definition of Sample(h, τ). Then using the definition of the conjugate
norm, we have

σ2
x = sup

x∈X
E
{
‖A> [ξx − x] ‖2

y,∗
}
≤ sup

x∈X
E
{

max
‖s‖y≤1

〈A> [ξx − x] , s〉2
}
. (3.21)

Now we use the fact that Sample(h, τ) never sets any entry in η to be greater than the largest
payoff in the game, and likewise never lower than the smallest payoff in the game (we can assume
without loss of generality that 0 is a payoff in the game): Because of perfect recall, the only way
to reach the same index in η more than once is through one of the two bottom else statements

42

in the definition of Sample(h, τ), but both cases decrease τ such that the values sum to one.
Likewise, A>x is never component-wise larger or smaller than the maximum and minimum
payoff in the game. Thus, we get that A> [ξx − x] is component wise less than Γ2. Letting 1
denote that all-ones vector of appropriate dimension, we get

(3.21) ≤ sup
x∈X

E
{

max
‖s‖y≤1

〈Γ2 · 1, s〉2
}

= Γ2
2. (3.22)

This result immediately leads to the following first-of-its-kind bound on the convergence rate
of a stochastic FOM for EFG solving:
Theorem 7. Consider a BSPP over a treeplex domain Z . Suppose SMP equipped with the
dilated entropy DGF with weights βj = 2 +

∑dj
r=1 2r(MZj ,r−1) for all j ∈ SZ and any gradient

estimator C is used to solve the BSPP. Using stepsizes γt = min

[
1√
3L ,
√

4M2
Z2dZ+2 logm

7T (Γ2
1+Γ2

2)

]
, the

expected convergence rate of this algorithm is

E
[
εsad(z

T)
]
≤ max

[
7LM2

Z2dZ+2 logm

2T
, 7

√
2M2

Z2dZ+2 logm(Γ2
1 + Γ2

2)

3T

]
. (3.23)

This is the strongest known bound on algorithms for computing Nash equilibria in two-player
zero-sum EFGs via stochastic methods. Unfortunately preliminary practical experiments found
that SMP performed significantly worse than MCCFR in practice, and so more practical engi-
neering work needs to be done to find a strong practical candidate for stochastic EFG solving via
FOMs.

Unfortunately preliminary experiments found that the stochastic mirror prox method is not
competitive with the MCCFR algorithm in spite of its superior theoretical properties. Thus more
practical engineering work is needed in order to make stochastic FOMs useful. In future work it
would be interesting to investigate whether other stochastic FOMs can be leveraged to get better
practical performance [107, 131, 175].

3.11 Conclusions and future work
We have investigated FOMs for computing Nash equilibria in two-player zero-sum perfect-
recall EFGs. On the theoretical side, we analyzed the strong convexity properties of the di-
lated entropy DGF over treeplexes. By introducing specific weights that are tied to the structure
of the treeplex, we improved prior results on treeplex diameter from O(|SQ|MQd2d logm) to
O(M2

Q2dQ+2 logm), thereby removing all but a logarithmic dependence on branching associated
with the branching operator in the treeplex definition. These results lead to significant improve-
ments in the theoretical convergence rates of FOMs that can be equipped with dilated entropy
DGFs and used for EFG solving including, but not limited to, EGT, MP, and Stochastic MP.

We numerically investigated the performance of EGT and compared it to the practical state-
of-the-art algorithms CFR and CFR+. Our experiments showed that EGT equipped with the

43

dilated entropy DGF, when tuned with a proper scaling, has better practical, as well as theoreti-
cal, convergence rate than CFR even with RM+, as opposed to the cross-over point phenomena
based on the size of the games. While CFR+ is still faster, our results are for a specific FOM
instantiated with our DGF; it seems likely that future experimental work could lead to even faster
algorithms based on our DGF, for example by incorporating randomization to reduce the cost of
gradient computation, or other FOMs such as mirror prox [130] or the primal-dual algorithm by
Chambolle and Pock [39].

Theorems 2 and 3 establish bounds for a general class of weights βj satisfying the recur-
rence (3.6). Then in Corollary 1, we have selected a particular weighting scheme for βj satisfying
(3.6) and performed our numerical tests. There may be other interesting choices of βj satisfying
the recurrence (3.6). Thus, finding a way to optimally choose among the set of weights satisfying
(3.6) to minimize the polytope diameter for specific games is appealing.

On a separate note, in practice CFR is often paired with an abstraction technique [148]. This
is sometimes despite the lack of any theoretical justification. Effective ways to pair FOMs such
as MP and EGT with practical abstraction techniques [28] or abstraction techniques that achieve
solution-quality guarantees, such as those discussed in the abstraction section of this thesis, are
also worth further consideration.

von Stengel and Forges [166] introduce an extension of the sequence-form LP to the compu-
tation of extensive-form correlated equilibria. The dilated entropy approach could potentially be
extended to this setting, leading to a smoothing method for the correlated strategy space. In that
case it would be interesting to find a formulation of the extensive-form correlated equilibrium
problem that is amenable to FOMs.

The smoothing method presented in this chapter has no inherent dependence on being for
two-player-zero-sum games; such games are simply the best current application of the smoothing
method. For example, recent work has investigated the formulation of reinforcement learning as
a first-order optimization problem amenable to methods such as mirror prox and other proximal
algorithms [13, 115, 116, 118].

44

Chapter 4

Abstraction for large general-sum games

Initially, game abstractions were created by hand, using domain dependent knowledge [15, 155].
More recently, automated abstraction has taken over [66, 68, 179]. This has typically been used
for information abstraction, whereas action abstraction is still largely done by hand [71, 153].
Recently, automated action abstraction approaches have also started to emerge [23, 24, 75, 76,
152].

Ideally, abstraction would be performed in a lossless way, such that implementing an equi-
librium from the abstract game results in an equilibrium in the full game. Abstraction techniques
for this were introduced by Gilpin and Sandholm [68] for a subclass of games called game of
ordered signals. Unfortunately, lossless abstraction often leads to games that are still too large
to solve. Thus, we must turn to lossy abstraction. However, significant abstraction pathologies
(nonmonotonicities) have been shown in games that cannot exist in single-agent settings: if an
abstraction is refined, the equilibrium strategy from that new abstraction can actually be worse in
the original game than the equilibrium strategy from a coarser abstraction [168]! Until recently,
all lossy abstraction techniques for general games of imperfect information were without any
solution quality bounds. Basilico and Gatti [6] give bounds for the special game class Patrolling
Security Games. Johanson et al. [84] provide computational methods for evaluating the quality
of a given abstraction via computing a best response in the full game after the fact. Lanctot et al.
[109] present regret bounds for strategies with low immediate regret computed in imperfect recall
abstractions, with their result also extending to perfect-recall abstractions. Their result depends
on the counterfactual regret minimization (CFR) algorithm being used for equilibrium compu-
tation in the abstraction, and focuses on abstraction via information coarsening, thus allowing
neither action abstraction nor reduction of the size of the game tree in terms of nodes. Waugh
et al. [171] and Brown and Sandholm [24] develop iterative abstraction-refinement schemes that
converge to a Nash equilibrium in the limit, but do not give bounds when an abstraction of the
game is solved. Sandholm and Singh [152] provide lossy abstraction algorithms with bounds
for stochastic games. They leave as an open problem whether similar bounds can be achieved
for extensive-form games. A key complication keeping the analysis in their paper from directly
extending to extensive-form games is information sets. In stochastic games, once the opponent
strategies are fixed, the best response analysis can be approached on a node-by-node basis. With
information sets this becomes much more complex, as strategies have to be evaluated not only
according to how they perform at a given node, but also how they perform according to the

45

distribution of nodes in the information set.
This chapter develops the first algorithm-agnostic theoretical bounds on solution quality for

(possibly approximate) Nash equilibria computed in abstractions of EFGs rather than the full
game. In addition, the bounds we develop (both for perfect and imperfect-recall abstractions) are
exponentially stronger than the only prior (algorithm specific) bounds for EFGs [109].

4.1 Introduction
Game-theoretic equilibria have played a key role in several recent advances in the ability to
construct AIs with superhuman performance in games with imperfect information [21, 27, 124].
In particular these results rely on computing an approximate Nash equilibrium [126] for the
game at hand. In typical real-world situations these games are so large that even approximate
equilibria are intractable. Instead, the dominant paradigm has been to first construct some smaller
abstraction of the game, apply an iterative algorithm for computing a Nash equilibrium in the
abstraction, and map the resulting strategy back to the full game. This approach was used in the
recent Libratus agent, which beat four top poker pros in the game of heads-ups no-limit Texas
hold’em [27] (in addition to abstraction and equilibrium approximation the agent also utilized
real-time subgame solving [26] and action abstraction refinement). Abstraction has also been
used in trading-agent competitions [173] and security games [4, 5, 6].

In practice, abstractions are generated heuristically with no theoretical guarantees on solu-
tion quality [15, 28, 64, 66, 67, 69, 70, 71, 75, 76, 84, 149, 155]. Ideally, abstraction would be
lossless, such that implementing an equilibrium from the abstract game results in an equilibrium
in the full game. Gilpin and Sandholm [68] study lossless abstraction techniques for a structured
class of games. Unfortunately, lossless abstraction often leads to games that are still too large
to solve. Thus, one must turn to lossy abstraction. However, significant abstraction pathologies
(nonmonotonicities) have been shown in games which cannot exist in single-agent settings: if
an abstraction is refined, the equilibrium strategy from that new abstraction can be worse in the
original game than the equilibrium strategy from a coarser abstraction [168]! Lossy abstraction
remains poorly understood from a theoretical perspective. Results have been obtained only for
various restricted models of abstraction. Basilico and Gatti [6] give bounds for the special game
class called patrolling security game. Sandholm and Singh [152] provide lossy abstraction algo-
rithms with bounds for stochastic games. Brown and Sandholm [23], Waugh et al. [171], Brown
and Sandholm [24], and Čermák et al. [35, 37] develop iterative abstraction-refinement schemes
that have various forms of converge guarantees but they do not give solution-quality guarantees
for the original game for strategies computed in limited-size abstractions. Lanctot et al. [109]
show that the counterfactual regret minimization algorithm (CFR) converges to an approximate
NE when run on an imperfect-recall abstraction that is a skew well-formed game (SWF) with
respect to the original game, where the error in the NE has a linear dependence on the number of
information sets.

The work by Lanctot et al. [109] is most related to our work, as they also focus on abstraction
of EFGs. However, their results are only for the narrow class of SWF games, and only for
applying the CFR algorithm to the resulting abstraction. They assume that information sets
(i.e., decision points) are aggregated into larger information sets. All pairs of information sets

46

that are aggregated together are compared by defining a mapping between subtrees under the
information sets. This mapping then requires that the payoffs are similar, the distribution over
chance outcomes is similar, and for pairs of leaves mapped to each other, the leaves have the
same sequence of information-set-action pairs leading to them in the abstraction. Payoff and
chance-outcome similarity is similar to what good practical abstraction algorithms seek to obtain.
However, the requirement that information-set-action pairs are the same for leaf nodes mapped to
each other is not satisfied by the best heuristic abstraction algorithms used in practice [28, 64, 84].
In this chapter we develop an exact decomposition of the solution-quality error that does not
require any such assumption. This is the first decomposition of solution-quality error resulting
from abstraction. This decomposition depends on several quantities that prior results did not
(owing to its more general and exact nature). We then show that by making a weaker variant of
previous assumptions, our decomposition can recover all previous solution-quality bounds. We
show via counterexample that there exist games where the assumption on information-set-action
pairs is, in a sense, necessary in order to avoid large abstraction error that is not measurable by
the type of technique presented here and in prior work. We go on to define a generalization of
SWF games called chance-relaxed skew well-formed games (CRSWF games) which, unlike SWF
games, allows error in chance outcomes. We similarly define a class of perfect-recall abstractions
that allow ex-post bounds on solution quality via our decomposition. For all our settings we
prove bounds for exact Nash equilibria and strategies with bounded counterfactual regret. We
also prove the first bounds for how ε-Nash equilibria computed in abstractions perform in the
original game. This is important because often one cannot afford to compute an exact Nash
equilibrium in the abstraction. All our results apply to general-sum n-player games. Finally
we investigate the performance of our abstraction classes experimentally by computing bound-
minimizing abstractions and their practical approximation to Nash equilibrium.

The rest of the chapter is structured as follows. Section 4.2 describes our overall model of
abstraction, and the assumptions we make on how the abstraction and the original game are
related. Section 4.3 describes how we measure differences between the original game and the
abstraction. Section 4.4 gives our main result: an exact decomposition of the abstraction error
based on our measures of difference. Section 4.5 specializes this decomposition result to the
setting of perfect-recall abstraction and shows that under more stringent assumptions on the ab-
straction structure we can get ex-ante solution quality bounds. Section 4.6 similarly specializes
to imperfect-recall abstraction. Finally Section 4.9 presents a model of EFGs with continuous
action spaces and shows how our results on abstraction theory can be used to reason about dis-
cretization of continuous action spaces.

4.2 Game abstractions
We start by giving an intuitive description of how we model abstraction. We are given some
perfect-recall EFG Γ for which we would like to compute a (possibly approximate) Nash equi-
librium. Instead of solving Γ directly, we assume that we are given some abstraction of Γ called
Γ′. Throughout we will assume that Γ′ is itself an EFG, though it is allowed to be imperfect
recall, unlike the original game. The high-level idea is to compute some approximate solution to
Γ′, and then use that approximate solution to construct a strategy for Γ. The type of approximate

47

solution computed for Γ′ may vary. For example, computing an exact Nash equilibrium in Γ′

may be overkill, since what we ultimately care about is how strong of a strategy profile we get in
the original game. This is especially true when the abstraction has imperfect recall, in which case
a Nash equilibrium is NP-hard to find, and it suffices to find a strategy with low counterfactual
regret at every information set. We consider several notions of solution to the abstract game.

Once we have an abstraction and a solution thereof, the primary question that we ask in this
chapter is whether we can construct a solution to the original game that is provably near-optimal.
To answer this question we need a way to reason about the differences between the original game
and the abstract game. We do this by setting up a mapping between the real game and the abstract
game: every information set in the real game is assumed to map onto a specific abstract informa-
tion set. The strategy that we construct for the real game is such that the distribution over actions
at a given information set is constructed from the distribution over actions at the abstract infor-
mation set that it maps onto. In order to analyze the quality of the obtained strategy we propose
a two-step process for measuring differences between the real and abstract game: In the first step
we think of the original game mapping onto an information refinement of the abstraction, where
the refinement is the abstract game but with some abstract information sets refined into two or
more new information sets. The information refinement has to be at least fine-grained enough to
entail perfect recall, although it may be useful in practice to consider refinement even of perfect
recall information sets. We set up measures of how different payoffs and probability distribu-
tions are in the original game versus in the refinement, where these measurements are based on
how information sets and actions from the real game are mapped onto the refinement of the ab-
straction. In the second step, we measure the difference between the refinement and the abstract
game. This is again done by measuring differences in payoffs and probability distributions, this
time between each information set in the refinement and the larger abstract information set that
it was refined from in the abstraction. This process is illustrated in Figure 4.1.

The step where the original game is mapped onto a refinement would typically be used to
model action removal: say we have three actions a1, a2, a3 available at an information set, in the
abstraction we may want to have only a1, a2 and consider a3 as mapped onto a2. The refinement
step can only model information coarsening, but is very powerful for modeling certain practical
types of abstraction. As an example, in poker research cards have typically been abstracted via
information coarsening, say treating a pair of aces and a pair of kings as the same hand in the
abstraction. We can model this in the refinement step, where aces and kings would be refined
into two separate information sets.

We now give a formal description of our framework. As noted above, we consider abstrac-
tions that are themselves EFGs, but we do not require abstractions to have perfect recall (the
leading practical abstractions are of imperfect recall [28, 64, 84]). We will use the original
game to refer to some perfect-recall game Γ = (H,Z,A, P, π0, {Ii}, {ui}) that we would like
to compute a Nash equilibrium for. We use the abstract game to refer to some other game
Γ′ = (H ′, Z ′, A′, P ′, π′0, {I ′i}, {u′i}) that is an abstraction of Γ. The goal is to compute a (pos-
sibly approximate) equilibrium in the abstraction, and map the resulting strategy profile to the
full game. An example is shown in Figure 4.1. Figure 4.2 shows an example of going from the
original game in Figure 4.1 to the abstraction.

We model abstraction as a two-stage process. First, the full game is mapped onto the abstract
game, with every original information set I ∈ Ii mapping onto some information-set partition I ′I

48

1

2

0
`

1
h

`

2

0
`
−2
h

h

1
3

1

2

0
`

3
h

`

2

0
`

1
h

h

1
3

1

2

0
`

3 + ε
h

`

2

0
`

1 + ε
h

h

1
3

1

2

0
`

1
h

`

2

0
`
−2
h

h

1
3

1

2

0
`

3
h

`

2

0
`

1
h

h

2
3

Figure 4.1: Abstraction example. Left: Original EFG. Right: Abstraction (which has perfect
recall in this case). Dotted red arrows denote the mapping of information sets in the original
game onto information set partitions in the abstract game. The dotted red line in the abstract
game denotes an information set coarsening relative to P ′.

Original game

1

2

0
`

1
h

`

2

0
`
−2
h

h

1
3

1

2

0
`

3
h

`

2

0
`

1
h

h

1
3

1

2

0
`

3 + ε
h

`

2

0
`

1 + ε
h

h

1
3

Perfect-recall refinement

Abstract right branch
onto middle branch

1

2

0
`

1
h

`

2

0
`
−2
h

h

1
3

1

2

0
`

3
h

`

2

0
`

1
h

h

2
3

Abstraction

Coarsen Player 2
information sets

1

2

0
`

1
h

`

2

0
`
−2
h

h

1
3

1

2

0
`

3
h

`

2

0
`

1
h

h

2
3

Figure 4.2: Example of how the abstraction in Figure 4.1 could be constructed. First the right-
most red branch is removed (which we would model as mapping it onto the middle blue branch).
Second the information sets for Player 2 are coarsened as shown by the red dotted line.

in the abstraction via a function f : I → P ′ that maps I surjectively onto P ′. P ′ is assumed to
be a partitioning of H ′ \Z ′ that refines I ′. Thus the information-set structure specified by P ′ can
be thought of as specifying an intermediate game with (weakly) more information than Γ′; P ′ is
assumed to induce a perfect-recall game1. In Figure 4.1, each of the three original information
sets belonging to Player 2 map onto the same abstract information set, but the leftmost original
information set maps onto the left partition, whereas the center and right information sets map
onto the right partition. In the abstract game in Figure 4.1, Player 2 has two subsets in P ′: the
left and right sides of their single information set. Actions are similarly mapped with an action
mapping g : A→ A′ that maps each AI surjectively onto Af(I). It is assumed that f respects the
information-set tree structure by mapping CaI surjectively onto Cg(a)

I′I
. The final part of the first step

is a way to map leaf nodes under original information sets to leaf nodes under the corresponding
abstract information set. For each information set I and action a ∈ AI , we require a surjective
leaf-node mapping φI from the set of leaf nodes reached below I, a before player i acts again,
Za
I , onto Za′

I′I
.

The second step in our abstraction model captures the differences between the abstract game
Γ′ and the game induced by using the partitioning P ′ instead. This is done by comparing the
distribution over leaf nodes conditioned on being at a given I ′I ∈ P ′ versus the distribution
conditioned on being at the corresponding abstract information set I ′. In Figure 4.1 this would

1Lanctot et al. [109] use the notion of a perfect-recall refinement, which is a partitioning of each imperfect-recall
information set into several perfect-recall information sets. Our definition of P ′ can be thought of as specifying a
perfect-recall refinement of the abstraction.

49

correspond to comparing the leaf nodes under e.g. the right pair of nodes in Player 2’s informa-
tion set in the abstraction to the leaf nodes in the overall information set for Player 2. For each
partition I ′I this is done with a set-valued map φI′I that maps the set of leaf nodes Za′I′I onto Za′I′
for each a′ in a way such that {φI′I (z′) : z′ ∈ Za′I′I} specifies a partitioning of Za′I′ . For a given
partition I ′I , we let DI′I and CI′I be the set of descendant and child partitions, respectively, that
can be reached from I ′I .

For a strategy profile σ′ computed in Γ′ we need a way to interpret it as strategy profiles in
Γ. We present the natural extension of a lifted strategy, originally developed by Sandholm and
Singh [152] for stochastic games, to EFGs. Intuitively, a lifted strategy σ↑σ′ is a strategy where
for any abstract action a′, the sum of probabilities in σ↑σ′ assigned to actions that map to a′ is
equal to the probability placed on a′ in σ′.

Definition 6 (Strategy lifting). Given an abstract strategy profile σ′, a lifted strategy profile is
any strategy profile σ↑σ

′
such that for all I , all a′ ∈ Af(I):

∑
a∈g−1(a′) σ

↑σ′(I, a) = σ′(f(I), a′).

We use the definition of counterfactual value of an information set, introduced by Zinkevich
et al. [179], to reason about the value of an information set under a given strategy profile. The
counterfactual value of an information set I is the expected utility of the information set, assum-
ing that all players follow strategy profile σ, except that Player i plays to reach I . It is defined as
V σ
i (I) =

∑
z∈ZI

πσ(z|I)ui(z) when πσ−i(I) > 0; otherwise it is 0. Analogously, W σ′
i : I ′i → R

is the corresponding function for the abstract game. For the information set Ir that contains just
the root node r, we have V σ

i (Ir) = V σ
i (r), which is the value of playing the game with strategy

profile σ. We assume that at the root node it is not Chance’s turn to move. This is without loss
of generality since we can insert dummy player nodes above a root node belonging to Chance.

We show that for an information set I , V σ
i (I) can be written as a sum over descendant infor-

mation sets. The proof is straightforward.

Lemma 3. For any strategy profile σ or abstract strategy profile σ′, the counterfactual value of
an information set I , or abstract information-set partition I ′I , can respectively be written as

V σ
i (I) =

∑
a∈AI

σ(I, a)

[∑
Î∈CaI

πσ−i(Î|I)V σ
i (Î) +

∑
z∈ZaI

πσ−i(z|I)ui(z)

]
,

W σ′
i (I ′I) =

∑
a′∈AI′

σ′(I ′, a′)

[∑
Î′
Î
∈Ca′

I′
I

πσ
′
−i(Î

′
Î
|I ′I)W σ′

i (Î ′Î) +
∑
z′∈Za′

I′
I

πσ
′
−i(z

′|I ′I)ui(z′)
]
.

(4.1)

Proof. We show the statement for V σ
i (I), the result for W σ′

i (I ′I) follows by viewing the parti-
tioning as a perfect-recall game. We have

V σ
i (I) =

∑
z∈ZI

πσ(z|I)ui(z) =
∑
Î∈CI

∑
z∈Z

Î

πσ(z|I)ui(z) +
∑
z∈ZI

πσ(z|I)ui(z) (4.2)

50

Now for any Î ∈ CI we have∑
z∈Z

Î

πσ(z|I)ui(z) =
∑
h∈Î

πσ(h|I)
∑
z∈Z

Î

πσ(z|h)ui(z) = πσ(Î|I)
∑
h∈Î

πσ(h|Î)
∑
z∈Z

Î

πσ(z|h)ui(z)

=πσ(Î|I)
∑
z∈Z

Î

πσ(z|Î)ui(z) = πσ(Î|I)V σ
i (̂i),

where the second equality follows from πσ(h|I) = πσ(h|Î)πσ(Î|I) and the third equality follows
from πσ(z|Î) = πσ(h|Î)πσ(z|h). Plugging this into (4.2) gives the result.

We will show results for three different solution concepts that come up in practice. An ε-
Nash equilibrium is a strategy profile σ such that V σ

i (r) ≥ V σ′
i (r) − ε for all players i and

σ′ = (σ−i, σ
′
i). In other words, each player can gain at most ε by deviating to any other strategy

σ′i. This is what is computed by approaches based on first-order methods [79, 101, 103]. A Nash
equilibrium is an ε-Nash equilibrium where ε = 0. Finally, a strategy profile σ has bounded
counterfactual regret if for all i, I ∈ I, and a ∈ AI , V σI→a

i (I) ≤ V σ
i (I) + r(I). Strategy profiles

with bounded counterfactual regret are important because regret minimization algorithms for
EFGs converge by producing strategies with low r(I) [27, 31, 58, 108, 179].

4.3 Measuring differences between the original game and the
abstract game

Our goal is to show a decomposition of the utility difference, or abstraction error, between the
original game and the abstract game when using a lifted strategy. This will consist of showing
that the ε in an ε-Nash equilibrium for the original game constructed from an ε′-Nash equilibrium
in the abstraction can be decomposed into three types of error: ε′, a measure of how payoffs
differ between the games, and a measure of how node probabilities differ. In order to do this, we
now define measures of differences between the original and abstract game. We measure payoff
differences between real and abstract nodes z, z′ as

∆R
i (z, z′) = ui(z)− ui(z′).

We measure leaf-node reach-probability differences conditioned on reaching a given infor-
mation set I versus its corresponding abstract information set-partition I ′I as follows

∆P
−i(z

′|I, a, σ, σ′) =
∑

z∈φ−1
I (z′):z∈ZaI

πσ−i(z|I)− πσ′−i(z′|I ′I), for z′ ∈ Za′
I′ .

We will also need to measure the difference in probability of reaching information set par-
titions, conditioned on being at the preceding information set partition belonging to the same
player,

∆P
−i(Î

′
Î
|I, a, σ, σ′) =

∑
Ĩ∈f−1(Î′

Î
)

πσ−i(Ĩ|I, a)− πσ′−i(Î ′Î |I
′
I).

51

While the set f−1(Î ′
Î
) can include information sets Ĩ that do not come after I, a, such information

sets are irrelevant since πσ−i(Ĩ|I, a) = 0.
Proposition 1. For any player i, abstract strategy σ′, real strategy σ, information sets I and
I ′ = f(I), and actions a and a′ = g(a)∑
z∈ZaI

πσ−i(z|I)ui(z)−
∑
z′∈Za′

I′
I

πσ
′
−i(z

′|I ′I)ui(z′) =
∑
z∈ZaI

πσ−i(z|I)∆R(z, φI(z)) +
∑
z′∈Za′

I′
I

∆P
−i(z

′|I, a, σ, σ′)ui(z′)

Proof. We have∑
z∈ZaI

πσ−i(z|I)ui(z) =
∑
z′∈Za′

I′
I

∑
z∈φ−1

I (z′):z∈ZaI

πσ−i(z|I)ui(z)

=
∑
z′∈Za′

I′
I

∑
z∈φ−1

I (z′):z∈ZaI

πσ−i(z|I)(ui(z
′) + ∆R(z, φI(z)))

=
∑
z′∈Za′

I′
I

[
πσ
′
−i(z

′|I ′I) + ∆P
−i(z

′|I, a, σ, σ′)
]
ui(z

′) +
∑
z∈ZaI

πσ−i(z|I)∆R(z, φI(z))

=
∑
z′∈Za′

I′
I

πσ
′
−i(z

′|I ′I)ui(z′) +
∑
z∈ZaI

πσ−i(z|I)∆R(z, φI(z)) +
∑
z′∈Za′

I′
I

∆P
−i(z

′|I, a, σ, σ′)ui(z′).

The first equality follows from the fact that every leaf node in Za
I maps onto some leaf node

in Za′
I′ , the second from the definition of ∆R, the third by rearranging terms and the definition of

∆P , and the fourth by rearranging terms.

We now prove a technical lemma that will be used as the primary tool for inductively proving
that strategies from abstractions have bounded regret.
Lemma 4. For any information set I, I ′ = f(I) and pair of strategy profiles σ, σ′, assume there
is a bound ∆(Î , f(Î)) such that V σ

i (Î) −W σ′
i (Î ′

Î
) ≤ ∆(Î , f(Î)) for all Î ∈ CaI , a ∈ AI , and

σ′(I ′, a′) =
∑

a∈g−1(a′) σ(I, a). Then

V σ
i (I)−W σ′

i (I ′I) ≤
∑
a∈AI

σ(I, a)

[∑
z∈ZaI

πσ−i(z|I)∆R
i (z, φI(z))

+
∑

z′∈Zg(a)
I′
I

∆P
−i(z

′|I, a, σ, σ′)ui(z′) +
∑
Î∈CaI

πσ−i(Î|I)∆(Î , f(Î)) +
∑

Î′
Î
∈Cg(a)

I′
I

∆P
−i(Î

′
Î
|I, a, σ, σ′)W σ′

i (Î ′
Î
)

]

The above holds with equality if V σ
i (Î)−W σ′

i (Î ′
Î
) = ∆(Î , f(Î ′)) for all Î ∈ CaI and a ∈ AI .

Proof. By Lemma 4.1 we have

V σ
i (I) =

∑
a∈AI

σ(I, a)

∑
Î∈CaI

πσ−i(Î|I)V σ
i (Î) +

∑
z∈ZaI

πσ−i(z|I)ui(z)

52

We show the result by separately rewriting the two summation terms. For the summation over
information sets we have∑

Î∈CaI

πσ−i(Î|I)V σ
i (Î) ≤

∑
Î∈CaI

πσ−i(Î|I)
[
W σ′
i (Î ′

Î
) + ∆(Î , f(Î))

]
=
∑
Î′∈Ca′

I′

[
πσ
′
−i(Î

′
I |I ′, a′) + ∆P

−i(Î
′
I |I, a, σ, σ′)

]
W σ′
i (Î ′

Î
) +

∑
Î∈CaI

πσ−i(Î|I)∆(Î , f(Î))

Where the last step follows by the definition of ∆P
−i(Î

′
I |I, a, σ, σ′). For the summation over∑

z∈ZaI
we can apply Proposition 1. Adding up terms and using the condition σ′(I ′, a′) =∑

a∈g−1(a′) σ(I, a) then gives the result.
The inequality holds with equality when the bounds on child information sets are equalities,

because the only inequality introduced in the proof comes from applying the bound on the child
information sets.

We now introduce a shorthand for denoting the utility difference attributable to differences
between a given information set I and its abstract counterpart f(I). This is the utility difference
that would arise from recursively applying Lemma 4 to information sets.

Mdiff(I, σ, σ′−i)
def
=
∑
a∈AI

σ(I, a)

[∑
z∈ZaI

πσ−i(z|I)∆R
i (z, φI(z)) +

∑
z′∈Zg(a)

I′
I

∆P
−i(z

′|I, a, σ, σ′)ui(z′)

+
∑
Î∈CaI

πσ−i(Î|I) Mdiff(Î , σ, σ′−i) +
∑

Î′
Î
∈Cg(a)

I′
I

∆P
−i(Î

′
Î
|I, a, σ, σ′)W σ′

i (Î ′
Î
)

]

It follows from Lemma 4 that the players’ values in any lifted strategy profile in the original
game are close to the players’ values of the corresponding abstract strategy profile:
Lemma 5. Given any abstract strategy profile σ′, any lifted strategy profile σ↑σ

′
achieves utility

W σ′
i (r′) = V σ↑σ

′

i (r)−Mdiff(r, σ↑σ
′
, σ′−i)

Next we derive an expression for the difference between an abstract information set and any
subset in its partitioning. We will need a way to measure the difference between an information
set I ′ and any partition I ′I . For reach probability, we let

∆P (z′|I ′I , σ′) = πσ
′
(z′|I ′I)−

∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′) (4.3)

be the difference between the probability of arriving at z′ conditioned on a strategy σ′ and being
in partition I ′I of I ′ and the probability of arriving at any leaf node z′ ∈ φ−1

I′I
(z′) conditioned on

the same strategy σ′ and being in I ′. For reward differences we let the utility difference between
a leaf node ẑ′ ∈ ZI′ and its corresponding leaf node z′ = φ−1

I′I
(z′) in ZI′I be

∆R
i (ẑ′|I ′I) = ui(z

′)− δI′Iui(ẑ
′) (4.4)

These terms allow us to measure the difference between the value W σ′
i (I ′) and W σ′

i (I ′I) for
any information set I ′ and any I ′I in its partition. We let Pdiff(I ′I , σ

′) denote this difference.

53

Lemma 6. For any player i, abstract strategy profile σ′, information set I ′ and any I ′I in its
partition,

W σ′
i (I ′I)− δI′IW

σ′
i (I ′) =

∑
ẑ′∈Z

I′

πσ
′
(ẑ′|I ′)∆R

i (ẑ′|I ′I) +
∑
z′∈Z

I′
I

∆P (z′|I ′I , σ′)ui(z′)
def
= Pdiff(I ′I , σ

′)

Proof. Using the definition of the value of a partition and applying (4.3), rearranging, applying
(4.4), rearranging again and using the definition of W σ′

i (I ′) gives

W σ′
i (I ′I) =

∑
z′∈Z

I′
I

πσ
′
(z′|I ′I)ui(z′) =

∑
z′∈Z

I′
I

[∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′) + ∆P (z′|I ′I , σ′)

]
ui(z

′)

=
∑
z′∈Z

I′
I

∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′)ui(z′) +

∑
z′∈Z

I′
I

∆P (z′|I ′I , σ′)ui(z′))

=
∑
z′∈Z

I′
I

∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′)

[
δI′Iui(ẑ

′) + ∆R(ẑ′|I ′I)
]

+
∑
z′∈Z

I′
I

∆P (z′|I ′I , σ′)ui(z′))

=δI′IW
σ′
i (I ′) +

∑
ẑ′∈Z

I′

πσ
′
(ẑ′|I ′)∆R(ẑ′|I ′I) +

∑
z′∈Z

I′
I

∆P (z′|I ′I , σ′)ui(z′))

where the last step follows because φI′I (·) specifies a partitioning of the leaves under I ′.

4.4 An exact decomposition of abstraction error
Our first theorem shows that an ε-Nash equilibrium in the abstract game maps to an ε′-Nash equi-
librium in the original game, where ε′ depends on the difference terms introduced in the previous
section. We say that the abstract game has a cycle if there exists a sequence of information sets
I ′1, . . . , I

′
k such that for all j 6= k there exist nodes h′j ∈ I ′j, h′j+1 ∈ I ′j+1 such that h′j is an ances-

tor of h′j+1, and I ′1 is equal to I ′k. The next theorem assumes the abstract game is acyclic. This
enables induction over information sets.
Theorem 8. Given an ε-Nash equilibrium σ′ for an acyclic abstract game, any lifted strategy
profile σ↑σ

′
is an ε′-Nash equilibrium in the original game where ε′ = maxi∈N εi and

ε′i = ε+ Mdiff(r, σ∗, σ′−i)−Mdiff(r, σ↑σ
′
, σ′−i) +

∑
I∈Ii

πσ
∗
(I) [Pdiff(I ′I , σ

∗′
I′→I)− Pdiff(I ′I , σ

∗′)]

here σ∗ = (σ∗i , σ
↑σ′
−i) is σ↑σ

′
except Player i plays any best response strategy for the original

game, σ∗′ = (σ∗′i , σ
′
−i) is such that σ∗′(I ′, a′) =

∑
g−1(a′) σ

∗(I, a) where I ∈ f−1(I ′) is chosen
for each I ′ in order to maximize W σ∗′

i (r), and σ∗′I′→I is σ∗′ except that at I ′ we set the strategy
according to I , i.e. σ∗′(I ′, a′) =

∑
g−1(a′) σ

∗(I, a).

Proof. The proof consists of showing that V σ∗
i (r) can be bounded by W σ∗′

i (r′) and some differ-
ence terms, where σ∗′ is a (intuitively speaking) reversely lifted strategy from σ∗. We can then

54

use the fact that σ′ is an ε-Nash equilibrium to bound W σ∗′
i (r′) in terms of W σ′

i (r′) and finally
show that W σ′

i (r′) is close to V σ↑σ
′

i (r).
To rewrite V σ∗

i (r) in terms of W σ∗′
i (r′) we first prove the following inductive statement for

I ∈ Ii, I ′ = f(I) and letting Î ′ = f(Î) for each Î:

V σ∗
i (I) ≤ W σ∗′

i (I ′I) + Mdiff(I, σ∗, σ′−i) +
∑

Î∈DI∪{I}

πσ
∗
(Î|I)

[
Pdiff(Î ′

Î
, σ∗′

Î′→Î)− Pdiff(Î ′
Î
, σ∗′)

]
We will start by showing the inductive step, as the base case is the special case of information

sets that only have leaves beneath them (i.e. information sets I such that for all a, CaI = ∅).
Let I, I ′ = f(I) be such that the inductive statement holds for all a ∈ AI and Î ∈ CaI . The

inductive assumption then gives a bound for each Î ∈ DI as required by Lemma 4. We have

V σ∗
i (I) ≤W σ∗′

I′→I
i (I ′I) + Mdiff(I, σ∗, σ′−i) +

∑
Î∈DI

πσ
∗
(Î|I)

[
Pdiff(Î ′

Î
, σ∗′

Î′→Î)− Pdiff(Î ′
Î
, σ∗′)

]
,

(4.5)

where the result follows by collecting terms that arise from Lemma 4 into the three separate
terms above.

Now we can bound W
σ∗′
I′→I

i (I ′I)

W
σ∗′
I′→I

i (I ′I) =δI′IW
σ∗′
I′→I

i (I ′) + Pdiff(I ′I , σ
∗′
I′→I); by Lemma 6

≤δI′IW
σ∗′
i (I ′) + Pdiff(I ′I , σ

∗′
I′→I); because σ∗′ maximizes W σ∗′

i (r)

=W σ∗′
i (I ′I) + Pdiff(I ′I , σ

∗′
I′→I)− Pdiff(I ′I , σ

∗′); by Lemma 6. (4.6)

Putting (4.5) and (4.6) together gives the inductive statement.
For the base case, it follows from the exact same logic but where there are no descendant

information sets. Applying the induction to the whole game we get

V σ∗
i (r) ≤ W σ∗′

i (r′) + Mdiff(r, σ∗, σ′−i) +
∑
I∈Ii

πσ
∗
(I) [Pdiff(I ′I , σ

∗′
I′→I)− Pdiff(I ′I , σ

∗′)] (4.7)

Now we can bound W σ∗′
i (r′) by using the fact that σ′ is an ε-Nash equilibrium in the abstract

game:

(4.7) ≤W σ′
i (I ′) + ε+ Mdiff(r, σ∗, σ′−i) +

∑
I∈Ii

πσ
∗
(I) [Pdiff(I ′I , σ

∗′
I′→I)− Pdiff(I ′I , σ

∗′)] (4.8)

Finally we can apply Lemma 5 to get the theorem statement.

This theorem is the first to show results for mapping an ε′-Nash equilibrium in the abstract
game to an ε-Nash equilibrium in the original game. Prior results have been for abstract strategies
that are either exact Nash equilibria [95] or with bounded counterfactual regret [98, 109]. That
is because all prior proofs were based on applying a worst-case counterfactual regret bound as
part of the inductive step (which works for exact Nash equilibrium or strategies with bounded

55

counterfactual regret but not ε-Nash equilibrium); our proof instead constructs an expression for
W σ∗′
i (r′) (i.e., for the value of the whole abstract game) before using the fact that σ′ is an ε-Nash

equilibrium. We next show that our framework can also measure differences for strategies with
bounded counterfactual regret.
Theorem 9. For an abstract strategy profile σ′ with bounded counterfactual regret r(I ′) at every
information set I ′ ∈ I ′, any lifted strategy profile σ↑σ

′
is an ε-Nash equilibrium where

ε = max
i∈N

εi, εi ≤
∑
I∈Ii

πσ
∗
(I)
[
δf(I)Ir(f(I)) + Pdiff(I ′I , σ

′
I→σ∗′)− Pdiff(I ′I , σ

′)
]

+ Mdiff(r, σ∗, σ′−i)−Mdiff(r, σ↑σ
′
, σ′−i)

where σ∗ = (σ∗i , σ
↑σ′
−i) is σ↑σ

′
except for Player i best responding, and each σ′I→σ∗ is equal to

σ′ except that σ′I→σ∗(f(I), a′) =
∑

a∈g−1(a′) σ
∗(I, a) for all a′ ∈ Af(I).

Proof. Consider some best-response profile σ∗ = (σ∗i , σ
↑σ′
−i). We will show that it satisfies this

bound. First we show that the following holds by induction for every I, I ′ = f(I):

V σ∗
i (I)−W σ′

i (I ′I) ≤
∑

Î∈DI∪{I}

πσ
∗
(Î|I)

[
δÎ′
Î

r(f(Î)) + Pdiff(Î ′
Î
, σ′I→σ∗)− Pdiff(Î ′

Î
, σ′)

]
+ Mdiff(I, σ∗, σ′−i)

We start by proving the inductive case. The base case follows by being a special case with
no descendant information sets.

We will use the inductive assumption to apply Lemma 4 to the strategy pair σ∗, σ′I→σ∗ , which
satisfies the condition in the Lemma since σ′I→σ∗ plays according to σ∗ at I ′. Lemma 4 requires
a bound for each Î ∈ CaI : we let ∆(Î , f(Î)) be equal to the right-hand side terms in the inductive
assumption. Lemma 4 then gives

V σ∗
i (I) ≤W σ′

I→σ∗
i (I ′I) +

∑
a∈AI

σ∗(I, a)

∑
z∈ZaI

πσ
↑σ′

−i (z|I)∆R(z, φI(z)) (4.9)

+
∑
z′∈Za′

I′
I

∆P
−i(z

′|I, a, σ↑σ′ , σ′)ui(z′)

+
∑
Î∈CaI

πσ
↑σ′

−i (Î|I)∆(Î , f(Î)) +
∑
Î′
Î
∈Ca′

I′
I

∆P
−i(Î

′
Î
|I, a, σ↑σ′ , σ′)W σ′

i (Î ′
Î
)

 (4.10)

For some quantities that do not depend on player i, we have substituted σ↑σ′ for σ∗, which is
valid because σ↑σ′−i = σ∗−i. The same applies to σ′ and σ′I→σ∗ for quantities that do not depend

on I ′. We now show how to convertW
σ′
I→σ∗

i (I ′I) intoW σ′
i (I ′I). First we apply Lemma 6 followed

by the bound on immediate regret to get

W
σ′
I→σ∗

i (I ′I) = δI′IW
σ′
I→σ∗

i (I ′) + Pdiff(I ′I , σ
′
I→σ∗) ≤ δI′I

[
W σ′
i (I ′) + r(I ′)

]
+ Pdiff(I ′I , σ

′
I→σ∗)

(4.11)

56

Now we can apply Lemma 6 again to get

(4.11) = W σ′
i (I ′I) + δI′Ir(I

′) + Pdiff(I ′I , σ
′
I→σ∗)− Pdiff(I ′I , σ

′)

This proves the inductive step: expanding the ∆(Îf(Î)) and ∆(Îf(Î)) terms in (4.10), using the
above equality, and collecting terms gives the inductive assumption.

Applying the inductive statement to the whole game almost gives the theorem statement, we
only need to convert W σ′

i (r) into V σ↑σ
′

i (r) and acquire a negative term Mdiff(r, σ↑σ
′
, σ′−i). This

is exactly what we get if we apply Lemma 5 to W σ′
i (r), and so the proof is done.

We will show in the next sections that our two main theorems generalize prior results. In
addition, our theorems are the first to give an exact expression for the abstraction error; the
inequalities arise only from inexactly solving the abstract game.

4.5 Perfect-recall abstraction
In this section we investigate how our decomposition results can be used to reason about perfect-
recall abstractions. Perfect-recall abstraction was the dominant paradigm for a long time [66,
69, 70]. Perfect recall is attractive from an algorithmic perspective because a Nash equilibrium
can be computed in the resulting abstraction in polynomial time in the two-player zero-sum
case via linear programming [165], and there are highly successful fast iterative algorithms [79,
101, 103, 108, 179]. This is in contrast to imperfect-recall abstractions, which are known to be
algorithmically intractable. We explore imperfect recall in Section 4.6.

4.5.1 Removing probability-error dependence on strategies
We now show that if the reach of leaf nodes and child information sets in the original and ab-
stract game are the same (without considering Chance moves), the exact results from the previ-
ous section can be used to obtain solution-quality bounds where the probability error depends
only on the probability difference between chance outcomes. These results generalize the pre-
vious solution-quality results of Sandholm and Singh [152], which were specific to finite-depth
stochastic games.

For the following theorem we define measures of how well Chance outcomes are approxi-
mated in the abstraction:

∆0(h, a′) =
∑

a∈g−1(a′)

σ0(h, a)− σ0(h′, a′), ∆0(h) =
∑
a′∈Ah

∆0(h, a′)

Similarly for nodes in infosets belonging to Player i we have the following error

∆0(h′|I) =
∑
h∈Ih′

π0(h|I)− π0(h′|I ′I)

where Ih′ is the set of nodes in h that precede leaf nodes mapping to z′.
First we prove that our condition gives a outcome-probability difference that is a probability

distribution over differences in actions taken by Chance.

57

Lemma 7. Let σ↑σ
′

be strategy profile such that π−i,−0(z|h) = π−i,−0(z′|h′) for all I ∈ Ii, z ∈
ZI with h and h′ being the nodes preceding z and z′ = φI(z) in I and f(I), and let Ih be the set
of node h ∈ I such that πσ

↑σ′

−i (h|I) > 0. We then have:

∆P
−i(z

′|I ′I ,~a, σ↑σ
′
, σ′) = ∆0(z′[I ′I]|I)πσ

′
−i(z

′|z′[I ′I]) +
∑

h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′).

Proof. In this proof, for readability we always let h and h′ be corresponding real and abstract
nodes. In particular, for a given h ∈ I , h′ will be the node in I ′I that leads to φI(z) . First we
show the following inductive statement for any node ĥ ∈ Hh in the subtree at h where h ∈ I ,
where the induction is on the length of path from the history to the leaf:∑

z∈φ−1
I (z′):ĥvz

πσ
↑σ′

−i (z|ĥ) = πσ
′
−i(z

′|ĥ′) +
∑

h0∈H0:ĥvh0

πσ
↑σ′

−i (h0|ĥ)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′) (4.12)

The base case is trivial since a leaf node z and z′ each have probability 1 of being reached given
that you start out at that given node. Assume the induction holds for paths of length l and that
the path length from h′ to z′ is l + 1. We then have:∑
z∈φ−1

I (z′):ĥvz

πσ
↑σ′

−i (z|ĥ) =
∑
a∈Aĥ

σ↑σ
′
(ĥ, a)

∑
z∈φ−1

I (z′):ĥvz

πσ
↑σ′

−i (z|tĥa)

=
∑
a∈Aĥ

σ↑σ
′
(ĥ, a)

∑
z∈φ−1

I (z′):ĥvz

πσ′−i(z′|tĥ′a) +
∑

h0∈H0:tĥavh0

πσ
↑σ′

−i (h0|tĥa)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′)

 .
(4.13)

If ĥ is a non-Chance node then we can use the definition of a lifted strategy to get

(4.13) = πσ
′
−i(z

′|ĥ′) +
∑

h0∈H0:ĥvh0

πσ
↑σ′

−i (h0|ĥ)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′).

If ĥ is a Chance node then we can apply the definition of ∆A
0 (ĥ) to get

(4.13) =
∑
a′∈AI′

(
σ0(ĥ′, a′) + ∆A

0 (ĥ, a′)
)
πσ
′
−i(z

′|tĥ′a′) +
∑

h0∈H0:tĥavh0

πσ
↑σ′

−i (h0|ĥ)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′)

= πσ
′
−i(z

′|ĥ′) +
∑

h0∈H0:ĥvh0

πσ
↑σ′

−i (h0|ĥ)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′).

This proves the inductive statement.

58

By our definitions and (4.12) we have:

∑
z∈φ−1

I (z′):z∈Z~aI

πσ
↑σ′

−i (z|I)

=
∑
h∈Ih′

πσ
↑σ′

−i (h|I)
∑

z∈Z~aI :hvz

πσ
↑σ′

−i (z|h)

=
∑
h∈Ih′

πσ
↑σ′

−i (h|I)

(
πσ
′
−i(z

′|h′) +
∑

h0∈H0:hvh0

πσ
↑σ′

−i (h0|h)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′)

)
=
(
πσ
′
−i(h

′|I ′I) + ∆0(h′|I)
)
πσ
′
−i(z

′|h′) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′)

=πσ
′
−i(z

′|I ′I) + ∆0(h′|I)πσ
′
−i(z

′|h′) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′).

Where the third equality follows from

∑
h∈Ih′

πσ
↑σ′

−i (h|I) =
∑
h∈Ih′

πσ
↑σ′

−i,−0(h|I)π0(h|I) =
∑
h∈Ih′

πσ
↑σ′

−i,−0(h′|I ′I)π0(h|I) = πσ
′
−i(h

′|I ′I) + ∆0(h′|I)

This proves the lemma.

By exactly the same proof, but where we treat nodes in Î ′
Î

the way we treated leaf nodes
above, we get

Lemma 8.

∆P
−i(Î

′
Î
|I,~a, σ↑σ′ , σ′) =

∑
ĥ′∈Î′

Î

∆0(h′|I)πσ
′
−i(ĥ

′|h′) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(ĥ

′|th
′
0

a′)

 .

In order to state our result, we let χi be the set of pure strategies belonging to Player i. We
will often use ~a as an index where a single action awould go according to our definitions; in such
cases ~a should be interpreted as the specific action in ~a that pertains to the definition, usually the
action at a given information set I prescribed by ~a. In a slight abuse of notation, we let g(~a)
denote the pure strategy in the abstract game corresponding to ~a when applying g.

Proposition 2. If an abstract strategy profile σ′ and a lifted strategy profile σ↑σ
′

are such that
for all i, I ∈ I, ∆P

−i,−0(z′|I, a, σ, σ′) = 0, ∆P
−i,−0(z|I, σ, σ′) = 0, and ∆P

−i,−0(Î ′
Î
|I, a, σ, σ′) = 0

then for all players i and σ = (σi, σ
↑σ′
−i) we have

59

Mdiff(r, σ, σ′−i)−Mdiff(r, σ↑σ
′
, σ′−i) ≤ 2 max

~a∈χi

∑
I∈Ii

πσ
↑σ′

(I|~a)

[∑
z∈Z~aI

πσ
↑σ′

−i (z|I)∆R(z, φI(z))

+
∑

z′∈Zg(~a)
I′
I

∆0(z′[I]|I)πσ
′
−i(z

′|z′[I]) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′)ui(z
′)

∑
Î∈C~aI

∑
ĥ′∈Î′

Î

∆0(ĥ′[I ′I]|I)πσ
′
−i(ĥ

′|ĥ′[I ′I]) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(ĥ

′|th
′
0

a′)

W σ′
i (Î ′

Î
)

]
def
= Mdiffi(σ

↑σ′ , σ′)

Proof. If we unroll the recursive definition of Mdiff and use the fact that σ−i = σ↑σ
′

−i we get

Mdiff(r, σ, σ′−i)−Mdiff(r, σ↑σ
′
, σ′−i)

=
∑
I∈Ii

∑
a∈AI

[
πσi (I)σ(I, a)− πσ↑σ

′

i (I)σ↑σ
′
(I, a)

]
πσ
↑σ′

−i (I)

∑
z∈ZaI

πσ
↑σ′

−i (z|I)∆R(z, φI(z))

+
∑

z′∈Zg(a)
I′
I

∆P
−i(z

′|I, a, σ↑σ′ , σ′)ui(z′) +
∑

Î′
Î
∈Cg(a)

I′
I

∆P
−i(Î

′
Î
|I, a, σ↑σ′ , σ′)W σ′

i (Î ′
Î
)

≤2 max
~a∈χi

∑
I∈Ii

πσ
↑σ′

(I|~a)

∑
z∈Z~aI

πσ
↑σ′

−i (z|I)∆R(z, φI(z)) +
∑

z′∈Zg(~a)
I′
I

∆P
−i(z

′|I,~a, σ↑σ′ , σ′)ui(z′)

+
∑

Î′
Î
∈Cg(~a)

I′
I

∆P
−i(Î

′
Î
|I,~a, σ↑σ′ , σ′)W σ′

i (Î ′
Î
)

 (4.14)

Now by Lemmas 7 and 8 we have

2 max
~a∈χi

∑
I∈Ii

πσ
↑σ′

(I|~a)

∑
z∈Z~aI

πσ
↑σ′

−i (z|I)∆R(z, φI(z))

+
∑

z′∈Zg(~a)
I′
I

∆0(z′[I]|I)πσ
′
−i(z

′|z′[I]) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(z

′|th
′
0

a′)ui(z
′)

∑
Î∈C~aI

∑
ĥ′∈Î′

Î

∆0(ĥ′[I ′I]|I)πσ
′
−i(ĥ

′|ĥ′[I ′I]) +
∑
h∈Ih′

∑
h0∈H0:hvh0

πσ
↑σ′

−i (h0|I)∆A
0 (h0)πσ

′
−i(ĥ

′|th
′
0

a′)

W σ′
i (Î ′

Î
)

60

We can combine Proposition 2 with Theorem 8 to get a bound that is independent of the
best-response strategy:
Corollary 2. If σ′ is an abstract ε′-Nash equilibrium, satisfies the condition of Proposition 2,
and Pdiff is zero everywhere, then any lifted strategy profile σ↑σ

′
is an ε-Nash equilibrium where

ε is less than maxi∈N Mdiffi(σ
↑σ′ , σ′) + ε′

This bound generalizes the bound of Sandholm and Singh [152] while simultaneously tight-
ening their bound.

Corollary 2 shows a result for ε-Nash equilibrium computed in the abstraction. An analo-
gous corollary for abstract strategies with bounded immediate regret can easily be obtained by
combining Proposition 2 with Theorem 9.

In the next sections we will discuss a particular assumption that, together with choosing a
lifted strategy that assigns all probability to a single action in each g−1(a′), implies the conditions
given in Proposition 2. This assumption is analogous to the assumption of passing through the
same information-set-action pairs for nodes that map to each other given by [109], which they
use in order to get a condition similar to that of Proposition 2.
Assumption 1. For every player i, information set I ∈ Ii and leaf z ∈ ZI the sequence obtained
by applying g to each non-Chance action on the path to z yields the abstract action sequence
from f(I) to φI(z) across all players, and the path from the root to z′ for all non-Chance players
except i.

4.5.2 Level-by-level abstraction
Prior game abstraction algorithms typically proceed level by level in the game tree—possibly
moving both up and down—e.g. [64, 66, 67, 68, 70, 71, 84, 152, 179]. We give a general frame-
work for a large class of level-by-level abstraction algorithms, and investigate the required sub-
routines. We then present an impossibility result for level-by-level abstraction.

First we give a general framework for computing abstractions level by level. The algorithm
operates on a game Γ, and a set of nodes S at some level k, where S would usually be an informa-
tion set. It proceeds to build the set AIso, a set of action pairs that are eligible for merging, along
with the cost c of merging them. This is done by iterating over all action pairs a1, a2 available at
the nodes, and calling the subroutine APPROXIMATELYISOMORPHIC, which computes whether
the actions can be merged and at what cost, for each node h ∈ S. Once the set AIso has been
constructed, the algorithm calls a subroutine COMPUTEPROTOTYPES, which selects the subset
of actions that are kept (we call these prototypes), with the remaining branches mapped onto the
prototypes.2

The two subroutines APPROXIMATELYISOMORPHIC and COMPUTEPROTOTYPES perform
the brunt of the work in this algorithm. We will now, in turn, examine what the subroutines
entail.

2The theory from earlier in this chapter also applies to the setting where the abstract game has new actions, if
the new action is constructed from an action in the original game (and that subtree under that action) by simply
changing payoffs in that subtree. However, as in all prior abstraction algorithms, in this algorithms section we focus
on abstraction that selects action prototypes from the actions in the original game.

61

Algorithm 3 A framework for level-by-level abstraction with bounded loss in extensive-form
games.
Input: A game Γ, a set of nodes S at some level k such that they have the same action set

available
Output: An abstract game Γ′

AIso ← ∅
for each action pair a1, a2 ∈ AS do

for each node h ∈ S do Test APPROXIMATELYISOMORPHIC(tha1 , t
h
a2

) ;
Let c be the cost of merging a1, a2 over all h ∈ S
if isomorphic for all s ∈ I then add ((a1, a2), c) to AIso ;
Call COMPUTEPROTOTYPES(AIso) to compute a set of prototypes that the remaining actions
map onto.

end

Extensive-form game tree isomorphism

In order to determine whether two given actions can be merged at some information set (the
function APPROXIMATELYISOMORPHIC above), it must be determined what the cost of merging
the subtrees are at each node in the information set. A special, and simple, case is when the
subtrees are subgames, and there is only a single node in the information set. Consider such two
subgames rooted at nodes h1, h2. Since we are assuming that abstraction is conducted level by
level, the algorithmic problem amounts to finding the cheapest onto mapping of h1 onto h2. To
reason about this problem, we introduce the extensive-form game tree isomorphism problem.

First we introduce a simple notion of isomorphism. It does not capture everything we need
for the APPROXIMATELYISOMORPHIC subroutine, but we will later show that even this simple
notion is hard to compute. For two game trees to be isomorphic, this definition requires two parts.
First, the trees must be isomorphic in the traditional sense. Second, for any node pairs from the
same information set, their mapped nodes have to be in the same information set, and for any
node pairs in different information sets, their mapped nodes must be in different information sets.

Definition 7. (Extensive form game tree topology isomorphism) A topology isomorphism (TI)
between extensive form games Γ,Γ′ is an onto mapping φ such that

1. For nodes h1, h2 ∈ H belonging to the same information set I , φ(h1) and φ(h2) belong to
the same information set in Γ′.

2. For nodes h1 ∈ I1 and h2 ∈ I2, where I1 6= I2, φ(h1) and φ(h2) belong to different
information sets in Γ′.

3. For nodes h and hc, where hc is a child of h, φ(hc) is a child of φ(h).
We give an example game in Figure 4.3. The games have different values at the leaves, but

are topologically equivalent. We can map the two nodes in the information sets any way we
want, and the lone nodes at level 2 must map to each other. For any tree isomorphism on two
extensive-form game trees (that is, ignoring information sets), any node at level k in Γ will map
to a node at level k in Γ′. For leaf nodes, they are the only nodes with out degree one, so leaf
nodes must map to leaf nodes. Likewise, the root node r must map to the root node in Γ′, since

62

Figure 4.3: Two topologically isomorphic extensive-form games.

they are each the unqiue parent-less node in the respective game trees. Now consider some node
h at height k, at depth d. φ(h) must be at height k in order to be isomorphic, and the shortest
path to the root node must be of length d.

We now present a refinement of TI, which we call extensive form game tree strategic isomor-
phism (SI), that captures the chance and utility structure of the game. This refinement is what
we need to compute for the APPROXIMATELYISOMORPHIC subroutine. For subtrees where this
isomorphism does not exist, we want to compute the mapping that minimizes the distance to
strategic isomorphism.
Definition 8. (Extensive form game tree strategic isomorphism) An extensive form game tree
strategic isomorphism (SI) is a TI that satisfies the following further constraints.

1. For all chance nodes h ∈ H0 and children hc, π0(h, hc) = π0(φ(h), φ(hc).
2. For all leaf nodes z ∈ Z and players i ∈ N , Vi(z) = Vi(φ(z)).
We now show that both TI and SI are graph isomorphism-complete. A graph isomorphism

complete problem is a problem such that there exists a polynomial time reduction both to and
from the graph isomorphism problem [16].
Theorem 10. Deciding whether two game trees are extensive-form game tree topologically iso-
morphic or extensive-form game tree strategically isomorphic is graph isomorphism-complete.

Proof. First we show a reduction to GI. For TI, consider a given extensive form game Γ. We
modify the game tree such that it forms a graph GΓ in the following way. For each information
set, we make the nodes in the information set a clique. For nature nodes, we leave them the way
they are, and ignore the probability distributions. For leaf nodes, since we are only concerned
with topological isomorphism, we just convert them to an unlabeled node with no value. Finally,
a unique clique size is chosen for the roots to be converted to. An example is given in Figure 4.4.
Here we have a single information set containing all the nodes at height 2. We turn those nodes
into a clique in the transformation, and convert the utilities at leaf nodes to regular leaf nodes.
First we show that any GI mapping φ computed on GΓ, GΓ′ corresponds to a TI on Γ,Γ′. We will
do this by induction on the height k.

Consider leaf nodes at height k = 1. Leaf nodes are the only nodes with degree 1, and thus
for any leaf node z ∈ ZΓ, φ(z) must be a leaf node in Γ′, and vice versa. There are no information
sets to respect at the leaf level.

Now consider height k, and assume that all nodes at heights below k are correctly mapped.
For any node h at height k, we have that φ(h) must also be at height k in Γ′, and they must have

63

Figure 4.4: On the left is an extensive form game. On the right is the resulting graph after turning
the information set in to a clique, and converting utilities at leaf nodes to regular leaf nodes.

the same length path to r, φ(r) respectively, since tree isomorphism preserves levels, as described
above when we introduced our isomorphism definitions. Our added edges do not change this,
since they only connect vertices within the level. Now consider some information set I at height
k, and h1, h2 ∈ I . h1, h2 are connected by information set edges, and thus φ(h1), φ(h2) must
also be connected, which is only the case if they’re in an information set together. Conversely,
if h1 ∈ I1, h2 ∈ I2, I1 6= I2, then they do not have an edge between them, and neither does
φ(h1), φ(h2), which is only the case if φ(h1), φ(h2) are in separate information sets.

Now, we show that if φ is an isomorphic mapping for Γ,Γ′ then it also defines an isomorphic
mapping for GΓ, GΓ′ . By the same reasoning as above, we have that all nodes must be at their
respective levels, and leaf nodes must be correct. For h1, h2 ∈ I at some level k, we have that
φ(h1), φ(h2) share an information set as well, and thus the nodes are connected by an edge in
both augmented graphs. Similarly, for h1 ∈ I1, h2 ∈ I2, I1 6= I2, φ(h1), φ(h2) do not share
an information set, and thus the nodes are not connected by an edge in either of the augmented
graphs.

For SI, we perform the same transformation as above, except for leaf nodes and nature nodes.
For every nature node type, we insert a separate unique structure. Then only nature nodes of the
same type can map to each other. Further, for nature nodes that have uniform distribution over
their actions, we can treat them as normal nodes, since they will only be merging with other
nature nodes at the same level with uniform distribution, and the same number of actions. This
can be any unique structure, one option is to use cliques of varying sizes, one size for each type,
where the path from the root enters by some node in the clique, and leaves from some other node.
This is a separate unqiue structure from the information set cliques, since those had edges going
in and out of the clique from every node in the clique. Further, to make sure that we map the
correct probability edges to each other, we can insert another unique structure along each unique
edge probability, for example a circle, with circles of length {3, . . . , 3 + |nature edge types|}.

Now consider some leaf node z ∈ ZΓ, with values v1, . . . , vn for the players. From the node
z, we insert a clique of size i + 2 for each player i, and add an edge from some node u in the
clique to z. We then construct a cycle graph of size c(vi), and connect u to some node in the cycle
graph. c(vi) is the smallest unique cycle size. This type of clique is again unique, since edges

64

enter and leave the clique from the same node u, which is different from the nature cliques. Now,
for two leaf nodes z ∈ Γ, z′ ∈ Γ′, we have that they are only isomorphic to each other if they have
the same payoffs for each player, since each player has a uniquely sized clique, and the circles
at the cliques must be of the same size. An example is given in Figure 4.5. On the left is a leaf
node with payoffs [2, 2, 3] for players 1, 2, 3 respectively. On the right is the resulting subgraph
that replaces the leaf node. At the top is the leaf node. Connected to the leaf are cliques, one for
each player, of size 2 + i for Player i. For each clique, we have the value that the player attains
as a cycle graph connected to that player’s clique.

Figure 4.5: On the left is a leaf node with payoffs [2, 2, 3] for players 1, 2, 3 respectively. On the
right is the subgraph that replaces the lead node in the reduction.

Now we show that GI reduces to TI, which suffices to show GI completeness, since TI is a
special case of SI. Given a graph G = {V,E}, we construct the following extensive form game.
First we add a root node. For each vertex v ∈ V , we add a node hv descending from the root
node, in an information set by itself. Thus, at depth two, we have |V | nodes. Now, for any two
nodes v, ĥ ∈ V that share an edge, we create nodes hv,v̂, hv̂,v at depth three, each descending
from their respective nodes hv, hv̂, and put them in an information set together.

Now consider determining isomorphism between graphs G = {V,E}, G′ = {V ′, E ′} given
an isomorphic mapping φ between their game representation. If nodes hv, hv̂ share an informa-
tion set at their child nodes, then φ(hv), φ(hv̂) must share an information set at their child nodes.
However, this can only happen if both sets share an edge. Conversely, if nodes hv, hv̂ do not
share an information set at their child nodes, then φ(hv), φ(hv̂) also do not share an information
set at their child nodes. This implies that neither of the sets share an edge in their respective
graphs. Thus, we get that any game isomorphism φ defines a graph isomorphism as well. We
can apply the exact same logic to achieve the converse result.

We have shown that both TI and SI can be reduced to GI, and that GI reduces to TI. Thus, we
have that TI and SI are GI-complete.

Game isomorphism has been studied to a limited extent in the literature. The more general
question of whether two games are isomorphic across game types has been studied by Gabarró
et al. [62]. Peleg et al. [142] and Sudhölter et al. [159] study extensive form game tree isomor-
phism in the context of strategic equivalence, but do not consider the computational problem.

65

To our knowledge, ours is the first work to introduce the question of computing extensive-form
game tree isomorphisms.

Choosing the set of prototypes

After computing the loss incurred by merging the different action pairs available at the set of
nodes under consideration, the subroutine COMPUTEPROTOTYPES computes a subset of the
action pairs whose subtrees are kept as the abstract game, with the remaining subtrees mapped
onto these. We now show that, even when the values of merging all action pairs have been
computed, the problem of choosing the optimal subset of actions is NP-complete.
Definition 9. (Action subset selection problem) The input is a set of actions A, a cost ca1,a2 for
merging each action pair a1, a2 ∈ A, some value k that specifies the number of actions to be
selected, and a cost c. The action subset selection problem asks if there exists a set of k actions
and a mapping of the remaining actions onto this set, such that the cost is less than or equal to c.
Theorem 11. The action subset selection problem is NP-complete.3

Proof. The problem is easily seen to be in NP. To show NP-hardness, we reduce from SAT.
Consider some SAT problem consisting of variables V and clauses C. For each variable v ∈ V ,
we construct an action for each of the literals v,¬v. We let the cost of merging these actions
be 0, and the cost of merging two literals that are not from the same variable be M . Here M
is some large number. Now, for each clause, we make an action. We make the cost of merging
this action with any other clause or any literal not in the clause M , and 0 if merged with a literal
in the clause. We also add add an extra dummy action for each variable, which has cost 0 of
merging with either of the two literals in the clause, and M for everything else. Now we ask if
there is some abstraction with |V | actions and cost zero. Clearly, the clauses cannot be chosen
as prototypes without incurring a loss of M , because of the dummy actions. Instead, for each
variable one of the two literals must be chosen as a prototype, and if there is such a set, it means
that all clauses can map onto some literal, and must therefore be satisfied. Conversely, if there
is a satisfying assignment, then we can pick the literals in the assignment as prototypes, and the
clauses can be mapped onto the chosen literals with 0 loss.

The problem of computing an extensive form game abstraction that minimizes any bound via
abstracting actions, including minimizing Mdiff error, is easily seen to be NP-complete as well
since a special case is a single player and the action subset selection problem. The action subset
selection problem reduces to a two-level game tree by making a chance node as the root, with
all children being in the same information set of size |A|, with |A| actions available, where each
node is used to ensure the correct cost of merging for a single action pair, with all other merges
being free at the node. Thus it holds for zero-sum games also.

3Sandholm and Singh [152] show that in stochastic games it is NP-complete to compute an abstraction where
one of the players does not automatically receive the worst possible payoff. However, some bound-minimizing
solutions do not solve the problem that is reduced from. Thus that result does not imply that minimizing the bound
is NP-complete.

66

4.5.3 Level-by-level impossibility
We now show a a non-computational issue with level-by-level abstraction. It can leave valid
(even lossless) abstractions undiscovered: reasoning across merges at different levels and in dif-
ferent subtrees simultaneously is required in order to stay within the set of valid abstractions
throughout the traversal of the game tree. To show this, we show a slightly broader result: de-
termining whether a merge is within the desired error bound can require reasoning about merges
in subtrees different from the ones considered for merging. This result is motivated by the
GameShrink algorithm [68], which performed abstraction in the way that the below theorem
proves is not always valid.
Theorem 12. Any abstraction technique that computes the abstraction by merging subtrees must
satisfy at least one of the following properties.

1. It does not always find the smallest abstraction in the space of valid abstractions for a
given bound.

2. When merging two nodes at a level, it must ensure that future merges at other levels in
the tree, outside of the two subtrees below those two nodes, will enable returning to an
abstraction within the bound.

This applies even if the game is a game of ordered signals [68], zero-sum, and only information
abstraction is performed.

Proof. Consider a two-player poker game where the card deck consists of two kings and two
jacks. Each player is dealt a private card and then a single public card is dealt. We consider two
variants based on what the payoffs at the leaves are. In the first variant, Player 1 always wins.
The second variant is a slight modification, where if Player 2 pairs a private J2 with a public K2
she beats a private J1, and otherwise Player 1 wins. Both variants are zero-sum games of ordered
signals. Figure 4.6 shows the possible sequences of cards dealt. The two variants are obtained by
setting δ equal to 1 or −1 in Figure 4.6, respectively. If Player 1 always wins (δ = 1), the whole

P1

P2

A

1

K1

δ

K2

J2

A

1

J2

1

K2

K1

A

1

J2

1

K1

K2

J1

P2

A

1

K1

1

K2

J1

A

1

J1

1

K2

K1

A

1

J1

1

K1

K2

J2

P2

A

1

J2

1

K2

J1

A

1

J1

1

K2

J2

A

1

J1

1

J2

K2

K1

P2

A

1

J2

1

K1

J1

A

1

J1

1

K1

J2

A

1

J1

1

J2

K1

K2

Figure 4.6: A signal tree for a simple poker game. Nodes labeled P1 or P2 denote the card being
dealt privately to player 1 or 2, respectively. Nodes labeled A denote a public card. A leaf node
labeled 1 indicates Player 1 winning.

game can be abstracted into a single string of cards dealt, as none of them matter. If Player 2
wins (δ = −1), the two public kings cannot be abstracted into a single king when Player 1 holds
J1 and Player 2 holds J2 based on the following reasoning. Consider K1 and K2 dealt to Player
1 at the root. Player 2 has two information sets that consist of him holding a J2 and the public

67

card being a king. Each of those two information sets has two nodes corresponding to Player 1
holding the other jack or the other king. The two information sets differ based on whether the
public king is K1 or K2. If K1 and K2 at the root are abstracted into a single tree, then one of
these two information sets loses a node, since the sequence K1,J2,K2 would map onto K2,J2,K1,
or vice versa. This leads to Player 2 being able to deduce exactly which card Player 1 has for the
information set that is now a singleton. For the other information set, the probability on the node
where Player 1 has a private king would be higher than the probability on the node where Player
1 has a private jack. Thus, if a lossless abstraction is desired, the choice of whether to abstract
K1 and K2 at the root hinges on whether δ is set to 1 or not.

One consequence is that the GameShrink lossless abstraction algorithm [68] does not work
correctly for all games of ordered signals. A proof that the game in Figure 4.6 is a game
of ordered signals and that merging K1 and K2 constitutes an abstraction transformation of
GameShrink can be found in the appendix.

4.5.4 Generating abstractions by considering all levels at once
Motivated by the problems described in Section 4.5.2, we developed an integer program (IP) for
computing abstractions with bounded loss according to Corollary 2 that operates on all levels at
once (we aim to minimize an ex-post bound, so we take the maximum over all expectations that
depend on the choice of strategy profile). The only assumption we make about structure of the
game, is that we only allow nature nodes to merge if they have the same number of actions, and
only allow different branches to merge if they have the same probability of occurring. The IP is
shown in the appendix.

We applied our IP model to a simple poker game. Our game has a deck of five cards: two
jacks, a queen, and two kings. Two players play the game, and after each round of cards is dealt,
up to two rounds of betting occur. A full description of the game is given in the appendices.

One advantage of poker games for testing our approach is that the chance outcomes can be
decoupled from the player actions using the signal tree. The signal tree is defined conceptually
by removing all player actions from the game tree, and only considering the tree of possible
nature moves (aka signals). Clearly, for this decoupling to be possible, the nature moves can
be conditioned only on which prior nature events have occurred, not on player actions. Any
abstraction computed on the signal tree can easily be converted to an abstraction of the full
game. Gilpin and Sandholm [68] introduced the signal tree in the specific setting of games of
ordered signals, a game class closely resembling poker. More generally, in any game where the
player’s action options are independent of nature’s moves, abstraction can be performed on the
signal tree. In poker the signal tree is the tree of possible card dealings throughout the game.

In our poker game, the unabstracted signal tree has 86 nodes; the game tree has 4806 nodes.
The IP has 4,427 binary variables (one for each pair of nodes at each level of the signal tree,
plus additional bookkeeping variables) and 38,813 constraints. To solve the IP, we used CPLEX
version 12.5.

For the model where a bound is given as input and the objective is to minimize tree size, we
ran experiments with a bound ranging from 0 to 20 chips. Figure 4.7 Left shows a plot of the
game sizes as a function of the bound. As can be seen, tree size is a step function of the given

68

bound. Four different abstraction sizes were found. The coarsest abstraction has four signal
tree nodes, and thus represents a single sequence of outcomes where the players act essentially
without seeing any cards. The coarsest lossless abstraction has size 30. It is not until we allow
a loss bound of 5 that the algorithm finds a lossy abstraction (of size 14). For the model where

Figure 4.7: Left: Number of nodes in the signal tree (left y-axis) and in the game tree (right
y-axis) as a function of the allowed loss in the IP model when minimizing tree size. Right:
Exploitability as a function of the allowed signal tree size. Exploitability for both players is
shown, along with our theoretical bound.

a maximum tree size is given as input and the objective is to minimize the regret bound, we ran
experiments for signal tree size bounds from 4 to 54. Figure 4.7 Right shows exploitability as
a function of allowed signal tree size. Three plots are shown, the exploitability of each of the
two players, and the exploitability bound given by Corollary 2. By and large, the three plots
decrease with signal tree size, with a non-monotonicity at size 6, where Player 1’s exploitability
goes up compared to that at size 4. This is an instance of abstraction pathology, which exists in
games: refining an abstraction can cause the equilibrium strategies to have higher exploitability
in the original game [168]. when we allow a tree size of 30, the lossless abstraction is found, and
beyond that all experiments show zero exploitability.

4.6 Imperfect-recall abstraction
Imperfect-recall abstraction is currently the most important type of abstraction employed in prac-
tice [27, 28, 170]. This is in spite of the fact that computing a Nash equilibrium in an imperfect-
recall zero-sum game is NP-hard [92]4, and the CFR algorithm is known to cycle on certain
imperfect-recall games [109]. For practical purposes, imperfect-recall abstractions are generated
via clustering, and regret-minimization algorithms perform well. We now show how our decom-
position results can be used to reason about particular classes of imperfect-recall abstractions.

4That said, the type of game used in showing hardness is most likely substantially more complicated than the
types of imperfect-recall abstractions encountered in practice

69

4.6.1 Imperfect-recall abstraction without probability-error dependence
on strategies

We now show that, similar to mapping error, if the reach of leaf nodes in the original and abstract
game are the same without considering Chance moves, we can bound partitioning error with an
expression that does not depend on the best response σ∗i of Player i.
Proposition 3. If σ′ is such that πσ

′
−0(z′|I ′I , a′) = πσ

′
−0(ẑ′|I ′, a′) for all I ′I , a

′, z′, ẑ′ ∈ φI′I (z′), then

Pdiff(I ′I , σ
′
I→σ∗)− Pdiff(I ′I , σ

′) ≤ 2 max
a′∈AI′

[∑
z′∈Za′

I′

πσ
′
(z′|I ′, a′)∆R

i (z′|I ′I)

+ πσ
′
−0(z′|I ′I , a′)

∑
ẑ′∈φI′

I
(z′)

[
πσ
′

0 (ẑ′|I ′, a′))− πσ′0 (z′|I ′I , a′
]]def

= Pdiff(I ′I , σ
′
I→σ∗ , σ

′),
∀σ′I→σ∗

Proof. Since πσ′I→σ(z′|I ′) = πσ
′
(z′|I ′, a′)σ′I→σ(I ′, a′) we can write the difference as

Pdiff(I ′I , σ
′
I→σ∗)− Pdiff(I ′I , σ

′) =
∑
a′∈AI′

[σ′I→σ∗(I
′, a′)− σ′(I ′, a′)]

[
∑
z′∈Za′

I′

πσ
′
(z′|I ′, a′)∆R(z′|I ′I) +

∑
z′∈Za′

I′
I

∆P (z′|I ′I , σ′, a′)ui(z′)
]

(4.15)

We can bound this by two times the maximum value of the expression in the second brackets,
where the maximum is over all a′ ∈ AI′ to get

(4.15) ≤2 max
a′∈AI′

 ∑
z′∈Za′

I′

πσ
′
(z′|I ′, a′)∆R(z′|I ′I) +

∑
z′∈Za′

I′
I

∆P (z′|I ′I , σ′, a′)ui(z′)

Now by our condition πσ′−0(z′|I ′I , a′) = πσ

′
−0(ẑ′|I ′, a′) we have

∆P (z′|I ′I , σ′, a′) = πσ
′
(z′|I ′I , a′)−

∑
ẑ′∈φI′

I
(z′)

πσ
′
(ẑ′|I ′, a′)

=πσ
′
(z′|I ′I , a′)−

∑
ẑ′∈φI′

I
(z′)

πσ
′
−0(z′|I ′I , a′)πσ

′
0 (ẑ′|I ′, a′)

=πσ
′
(z′|I ′I , a′)−

∑
ẑ′∈φI′

I
(z′)

πσ
′
−0(z′|I ′I , a′)

[
πσ
′

0 (z′|I ′I , a′) +
(
πσ
′

0 (ẑ′|I ′, a′))− πσ′0 (z′|I ′I , a′
)]

=πσ
′
−0(z′|I ′I , a′)

∑
ẑ′∈φI′

I
(z′)

[
πσ
′

0 (ẑ′|I ′, a′))− πσ′0 (z′|I ′I , a′
]

which proves the theorem.

70

This can be combined with our main theorems in order to get results for ε-Nash equilibrium
or strategies with bounded regret where the partition error does not depend on the best response.

Corollary 3. If σ′ has bounded counterfactual regret r(I ′) at every information set I ′ ∈ I ′,
satisfies the condition of Proposition 3, and Mdiff is zero everywhere, then any lifted strategy
σ↑σ

′
is an ε-Nash equilibrium where ε = maxi∈N εi and

εi ≤
∑
I∈Ii

πσ
∗
(I)
[
δf(I)Ir(f(I)) + Pdiff(I ′I , σ

′
I→σ∗ , σ

′)
]

An analogue to Corollary 3 but for ε-Nash equilibrium can be obtained by combining Theo-
rem 8 with Proposition 3.
Corollary 4. If σ′ is an abstract ε′-Nash equilibrium, satisfies the condition of Proposition 2,
and Mdiff is zero everywhere, then any lifted strategy profile σ↑σ

′
is an ε-Nash equilibrium where

ε = maxi∈N εi and
εi ≤ ε′ +

∑
I∈Ii

πσ
∗
(I)Pdiff(I ′I , σ

′
I→σ∗ , σ

′)

For practical game solving, Corollary 3 has an advantage over Corollary 4: any algorithm
that provides guarantees on immediate counterfactual regret in imperfect-recall games can be
applied. For example, the CFR algorithm can be run on an imperfect-recall abstraction, and
achieve the bound in Corollary 3, with the information set regrets πσ∗(I)r(f(I)) decreasing at a
rate of O(

√
(T)). Conversely, no good algorithms are known for computing Nash equilibria in

imperfect-recall games.

4.6.2 Chance-relaxed skew-well-formed (CRSWF) games

Now we introduce a class of imperfect-recall games that we consider as potential abstractions of
a perfect-recall game. This class of games is guaranteed to satisfy the condition in Proposition 3
and thus we can bound the regret of strategies computed in abstractions of this game class. We
call this class CRSWF games. A CRSWF game is an imperfect-recall game where there exists
a perfect-recall refinement of the game that satisfies a certain set of properties that we introduce
below. We will focus on the general problem of computing solution concepts in CRSWF games
and mapping the solution concept to a perfect-recall refinement. Typically, the perfect-recall
refinement is the original game, and the CRSWF game is an abstraction that is easier to solve.

Intuitively, a CRSWF game is an imperfect-recall game where there exists a refinement that
satisfies two intuitive properties for any pair of information sets that are separated in the perfect-
recall refinement. The first is that a bijection exists between the leaf nodes of the information
set pair such that leaves mapped to each other pass through the same non-nature actions on the
path from the information set to the leaf. This ensures that the probability of reaching pairs of
leaves that map to each other is similar. The second is that a bijection exists between the nodes
in the pair of information sets, such that the path leading to two nodes mapped to each other
passes through the same information set-action pairs over all players except the acting player

71

and nature. This ensures that the conditional distribution over nodes in the information sets is
similar.

We will say that a perfect-recall game Γ refines Γ′ if the games are identical, except that
the information sets in Γ are such that they partition each of the information sets in Γ′. This
is completely analogous to our notion of Γ′ being an abstraction of Γ, where the information
sets in Γ correspond to a partitioning of each information set in Γ′. We let P(I ′) be the set of
information sets in Γ that refine the particular information set I ′ of Γ′.
Definition 10. For an EFG Γ′ and a refinement Γ, we say that Γ′ is a CRSWF game with respect
to Γ if for all i ∈ N, I ′ ∈ I ′i, I, Ĭ ∈ P(I ′), there exists a bijection φI,Ĭ : ZI → ZĬ such that for
all z ∈ ZI:

1. For leaf nodes z and φI,Ĭ(z) mapped to each other, the action sequences of all players
except i and Chance on those two paths must be the same in the abstraction.5

2. For leaf nodes z and φI,Ĭ(z) mapped to to each other, the action sequence of Player i from
I to z and from Ĭ to φI,Ĭ(z) must be the same in the abstraction.

Our definition implicitly assumes that leaf nodes are all at the same level. This is without
loss of generality, as any perfect-recall game can be extended to satisfy this.

We can think of an CRSWF game as an abstraction of any of its refinements. Thus we can
apply our general theory. Since a CRSWF game Γ′ and a refinement Γ are identical except for the
information-set structure, actions and leaf nodes in either game uniquely identify actions and leaf
nodes in the other game. Thus we refer to actions and leaf nodes in either game as convenient.
If we view P as a partitioning of Γ′ information sets then it satisfies the theory of Section 4.6.1.
Thus Corollaries 3 and 4 apply to CRSWF games and their refinements, and we get that strategies
computed in Γ′ have bounded regret in any refinement.

Instead of our probability error terms, Lanctot et al. [109] require π0(z|I) = lI,Ĭπ0(φI(z)|Ĭ),
where lI,Ĭ is a scalar defined on a per-information-set-pair basis. We omit any such constraint,
and instead introduce probability error terms as above. Our definition allows for a richer class
of abstractions. Consider some game where every nature probability in the game differs by a
small amount. For such a game, no two information sets can be merged according to the SWFG
definition, whereas our definition allows such abstraction. The solution quality bounds we get
are exponentially stronger than those of Lanctot et al. [109], which had a linear dependence on
the number of information sets in the game tree, and did not weight the leaf reward error by the
probability of a given leaf being reached. The reward error term in our result has only a linear
dependence on tree height (actually, just the number of information sets any single player can
experience on a path of play). Our leaf reward error term is weighted by the probability of the
leaf being reached. Furthermore, our bounds are independent of the equilibrium computation
method, while that prior work was only for CFR.

Figure 4.8 shows two subtrees of an example game tree. Dotted lines with arrow heads show
a CRSWF abstraction of the game. First consider the left node for P2, which maps to the right P2
node. It has probability approximation error of 0.2 · 10 = 2 (the maximizing sequences of player
actions ~a are [a, l] or [a, r]). Finally, the node has reward approximation error 1 · 0.5, since the

5It is possible to relax this notion slightly: if two actions of another player are not the same, as long as they are
on the path (at the same level) to all nodes in their respective full-game information sets (I and Ĭ), they do not affect
the distribution over nodes in the information sets, and are thus allowed to differ in the abstraction.

72

biggest utility difference between nodes mapped to each other is 1, and the definition of reward
approximation error allows taking a weighted sum at nature nodes. Now consider the leftmost
information set for P1. The distribution approximation error at this information set is 0.2 · 10,
since the conditional probability of being at each of the two nodes in the information set differs
by 0.1 from the node in the information set that it is mapped to. The transition approximation
error is zero for both nodes in the information set. The reward approximation error is zero, since
all leaf nodes under the information set are mapped to leaf nodes with the same utility.

P2

N

P1

10 0

P1

0 10

N

P1

10 0

P1

0 9

P2

N

P1

10 0

P1

0 10

N

P1

10 0

P1

0 10

a

0.5

l r

0.5

l r

b

0.5

L R

0.5

L R

A

0.4

l r

0.6

l r

B

0.5

L R

0.5

L R

Figure 4.8: Two subtrees of a game tree. Information sets are denoted by dotted lines. A CRSWF
abstraction is shown, with merged information sets and their node mapping denoted by dotted
lines with arrowheads. All actions are mapped to their corresponding upper/lower-case actions
in the merged information sets.

4.6.3 Complexity and algorithms
We now investigate the problem of computing CRSWF abstractions with minimal ex-ante error
bounds. By ex-ante we mean that we take maxima over all probabilities relating to the choice
of player strategies in the bounds. First, we show that this is hard, even for games with a single
player and a game tree of height two.6

Theorem 13. Given a perfect-recall game and a limit on the number of information sets, deter-
mining whether a CRSWF abstraction with a given ex-ante bound as in Corollary 3 or 4 exists is
NP-complete. It follows that it is NP-complete to compute the minimum number of information
sets given a maximum bound. This holds even if there is only a single player, and the game tree
has height two.

Proof. Consider the two-dimensional k-center clustering decision problem with the Lq distance
metric. It is defined as follows: given a set P = {(x1, y1), . . . , (xn, yn)} of n points in the plane,
and an integer k, does there exist a partition of P into k clusters C = {c1, . . . , ck} such that
the maximum distance ‖p − p′‖q ≤ c between any pair of points p, p′ in the same cluster is
minimized. This problem is NP-hard to approximate within a factor of 2 for q = ∞, amongst
others [61].

Given such a problem, we construct a perfect-recall game as follows. For each point p ∈
P , we construct an information set Ip. We insert two nodes hxp , h

y
p in each information set Ip,

6Sandholm and Singh [152] already showed hardness of computing an optimal abstraction when minimizing the
actual loss of a unique equilibrium.

73

representing the dimensions x, y respectively. All these nodes descend directly from the root
node r, where Player 1 acts. At each information set we have two actions, ac, av. For any point
p, we add leaf nodes at the branch ac with payoff M, 2M at the nodes hxp , h

y
p respectively. If we

pick a sufficiently large M , this ensures that for any two points p, p′, their nodes hxp , h
x
p′ will map

to each other, and similarly for y. This also ensures that the scaling variable has to be set to 1
for all information set mappings. For the branches av, we add leaf nodes with utility equal to the
x, y coordinate of p at the hxp , h

y
p nodes respectively.

There is a one-to-one mapping between clusterings of the points P and partitions of the
information sets {Ip : p ∈ P}. The quality of a clustering is

max
z∈{x,y}

max
j=1,...,k

max
p,p′∈cj

|p(z)− p′(z)| .

Since Player 1 acts at r, the abstraction quality bound is equal to the maximum difference over
any two leaf nodes mapped to each other, as there are no chance outcome differences. This is the
same as the quality measure of the clustering. Thus, an optimal k size clustering is equivalent to
an optimal k information set abstraction.

Given some CRSWF abstraction, verifying the solution is easy to do: in one top-down traver-
sal of the game tree, compute the node distributions at each information set. For each full-game
information set, this gives the distribution-approximation error. For each information set pair
mapped to each other, the transition- and reward-approximation error can now be computed by a
single traversal of the two. Thus the problem is in NP.

The hardness proof is by reduction from clustering, which also hints that clustering tech-
niques could be used in an abstraction algorithm within our framework. Performing abstraction
at a single level of the game tree that minimizes our bound reduces to clustering if the informa-
tion sets considered for clustering satisfy the conditions of Definition 10. The distance function
for clustering depends on how the trees match on utility and nature error, and the objective func-
tion depends on the topology higher up the tree. In such a setting, an imperfect-recall abstraction
with solution quality bounds can be computed by clustering valid information sets level-by-
level in a bottom-up fashion. In general, a level-by-level approach has no optimality guarantees,
as some games allow no abstraction unless coupled with other abstraction at different levels (a
perfect-recall abstraction example of this is shown in Figure 4.6). However, considering all levels
simultaneously is often impossible in practice.

A medical example of a setting where a level-by-level scheme would work well is given by
[41], where an opponent initially chooses a robustness measure, which impacts nature outcomes
and utility, but not the topology of the different subtrees. Similarly, the die-roll poker game
introduced by Lanctot et al. [109] as a game abstraction benchmark is amenable to this approach.

We now show that single-level abstraction problems (SLAPs) where the conditions of Def-
inition 10 are satisfied for all merges form a metric space together with the distance function
that measures the error bound for merging information set pairs. Clustering problems over
metric spaces are often computationally easier, yielding constant-factor approximation algo-
rithms [61, 73].
Definition 11. A metric space is a set M and a distance function d : M ×M → R such that
the following holds for all x, y, z ∈ M : (a) d(x, y) ≥ 0 (b) d(x, y) = 0 ⇔ x = y (identity

74

of indiscernibles) (c) d(x, y) = d(y, x) (symmetry) (d) d(x, y) ≤ d(x, z) + d(z, y) (triangle
inequality) .
Proposition 4. For a set of information sets Im such that any partitioning of Im yields a CRSWF
abstraction (with no scaling, i.e. δI,Ĭ = 1,∀I, Ĭ ∈ Im), and a function d : Im × Im → R
describing the loss incurred in the error bound when merging I, Ĭ ∈ Im, the pair (Im, d) forms
a metric space.

Proof. The first condition follows from the other three. Condition b, identity of indiscernibles,
does not hold for information sets. However, any pair of information sets with distance zero
can be merged losslessly in preprocessing, thus rendering the condition true (having distance
zero is transitive, so the minimal preprocessing solution is unique). Condition c, symmetry,
holds by definition, since our distance metric is defined as the error incurred from merging two
information sets, which considers the error from both directions of the mapping.

Finally, we show that Condition d, the triangle inequality holds. Consider any three informa-
tion sets I1, I2, I3 ∈ Im. We need to show that d(I1, I3) ≤ d(I1, I2) + d(I2, I3). Let φI1,I2 , φI2,I3
be the mappings for I1, I2 and I2, I3 respectively. We construct a mapping φI1,I3 = φI2,I3 ◦ φI1,I2
and show that it satisfies the triangle inequality. For the leaf payoff error, since δI1,I2 = δI2,I3 = 1,
at any leaf z ∈ ZI1 we get:

ui(z) ≤ ui(φI1,I2(z)) + εI1,I2(z) ≤ ui(φI2,I3(φI1,I2(z))) + εI2,I3(φI1,I2(z)) + εI1,I2(z)

For the nature leaf probability error we can apply the same reasoning:

πσ0 (z[I1], z)

≤ πσ0 (φI1,I2(z[I1]), φI1,I2(z)) + ε0I1,I2
≤ πσ0 (φI2,I3(φI1,I2(z[I1])), φI2,I3(φI1,I2(z))) + ε0I2,I3(φI1,I2(z)) + ε0I1,I2(z)

Again, we derive the distribution error using a similar approach:

π0(z[I1])

π0(I1)

≤ π0(φI1,I2(z[I1]))

π0(I2)
+ εDI1,I2(z[I1])

≤ π0(φI2,I3(φI1,I2(z[I1])))

π0(I3)
+ εDI2,I3(φI2,I3(z[I1])) + εDI1,I2(z[I1])

This completes the proof.

Conversely to our result above, if the scaling variables can take on any value, the triangle
inequality does not hold, so (Im, d) is not a metric space.

Consider three information sets I1, I2, I3, each with two nodes reached with probability 0.9
and 0.1, respectively. Let there be one action at each information set, leading directly to a leaf
node in all cases. Let I1 = {1, 2}, I2 = {5, 11}, I3 = {10, 23}, where the name of the node is
also the payoff of Player 1 at the node’s leaf. We have that I1 and I2 map onto each other with
scaling variable δI1,I2 = 5 to get εRI1,I2 = 1 and I2,3 with δI2,I3 = 2, εRI2,I3 = 1. However, I1 and I3

75

map onto each other with δI1,I3 = 10 to get εRI1,I3 = 3 which is worse than the sum of the costs of
the other two mappings, since all reward errors on the right branches are multiplied by the same
probability 0.1, i.e., 0.1 · εRI1,I2 + 0.1 · εRI2,I3 < 0.1 · εRI1,I3 .

The objective function for our abstraction problem has two extreme versions. The first is
when the information set that is reached depends entirely on players not including nature. In
this case, the error bound over the abstraction at each level is the maximum error of any single
information set. This is equivalent to the minimum diameter clustering problem, where the goal is
to minimize the maximum distance between any pair of nodes that share a cluster; Gonzalez [73]
gave a 2-approximation algorithm when the distance function satisfies the triangle inequality.
Coupled with Proposition 4 this gives a 2-approximation algorithm for minimizing our bound
on SLAPs. The other extreme is when each of the information sets being reached differ only
in nature’s actions. In this setting, the error bound over the abstraction is a weighted sum of
the error at each information set. This is equivalent to clustering where the objective function
being minimized is the weighted sum over all elements, with the cost of each element being the
maximum distance to any other element within its cluster. To our knowledge, clustering with
this objective function had not been studied in the literature, even when the weights are uniform,
prior to our introduction of this objective function. However, inspired by the problem-setting
presented in this chapter, Gupta et al. [74] developed approximation algorithms for this problem
based on a pre-publication manuscript of our work.

Generally, the objective function can be thought of as a tree, where a given leaf node repre-
sents some information set, and takes on a value equal to the maximum distance to any informa-
tion set with which it is clustered. Each internal node either takes the maximum or weighted sum
of its child-node errors. The goal is to minimize the error at the root node. In practice, integer
programs (IPs) have sometimes been applied to clustering information sets for EFG abstrac-
tion [67, 70] (without bounds on solution quality, and just for perfect-recall abstractions), and
are likely to perform well in our setting. An IP can easily be devised for any objective function
in the above form.

For abstraction problems across more than a single level, Proposition 4 does not give any
guarantees. While the result can be applied level-by-level, the abstraction performed at one level
affects which information sets are valid for merging at other levels, and thus the approximation
factor is not preserved across the levels.

4.6.4 Experimental performance of CRSWF abstractions
We now investigate what the optimal single-level CRSWF abstraction bounds (in terms of Corol-
lary 3) look like for the die roll poker (DRP) game, a benchmark game for testing abstraction
[109]. Die-roll poker is a simple two-player zero-sum poker game where dice, rather than cards,
are used to determine winners. At the beginning of the game, each player antes one chip to the
pot. The game then consists of two rounds. In each round, each player rolls a private die (making
the game imperfect information). Afterwards a betting round occurs. During betting rounds, a
player may fold (causing the other player to win), call (match the current bet), or raise by a fixed
amount, with a maximum of two raises per round. In the first round, each raise is worth two
chips. In the second round, each raise is worth four chips. The maximum that a player can bet is
13 chips, if each player uses all their raises. At the end of the second round, if neither player has

76

folded, a showdown occurs. In the showdown, the player with the largest sum of the two dice
wins all the chips in the pot. If the players are tied, the pot is split.

DRP has the nice property that abstractions computed at the bottom level of the tree satisfy
the conditions of Definition 10. At heights above that one we can similarly use our clustering
approach, but where two information sets are eligible for merging only if there is a bijection
between their future die rolls such that the information sets for the future rolls in the bijection
have been merged. A clustering would be computed for each set in the partition that represents a
group of information sets eligible for merging. In the experiments in this section we will focus on
abstraction at the bottom level of the tree. We use CPLEX to solve an IP encoding the single-level
abstraction problem of minimizing our bound given a limit on the number of abstract information
sets. The results are shown in Figure 4.9. For one or two clusters, the bound is bigger than the

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
number of abstract information sets

re
gr

et
 b

ou
nd

 (
in

 c
hi

ps
)

Figure 4.9: Regret bounds for varying single-level abstraction problem sizes in DRP. The x-axis
shows the number of information sets in the abstraction, and the y-axis shows the theoretical
bound on solution quality. The total number of information sets in the original game is 36

largest payoff in the game, but already at three clusters it is significantly lower. At eight clusters,
the bound is smaller than that of always folding, and decreases steadily to zero at eleven clusters
(the original game has 36 information sets). While these experiments show that our bound is
relatively small for the DRP game, they are limited in that we only performed abstraction at a
single level. If abstraction at multiple levels is performed, the bound is additive in the error over
the levels.

Another important question is how well strategies computed in abstractions that are good—as
measured by our bound—perform in practice. Lanctot et al. [109] conducted experiments to in-
vestigate the performance of CFR strategies computed in imperfect-recall abstractions of several
games: DRP, Phantom tic-tac-toe (where moves are unobserved), and Bluff. They found that
CFR computes strong strategies in imperfect-recall abstractions of all these games, even when
the abstraction did not necessarily fall under their framework. Their experiments validate a sub-
set of the class of CRSWF abstractions: ones where there is no nature error. Due to this existing
experimental work, we focus our experiments on problems where abstraction does introduce na-
ture error. One class of problems where such error can occur are settings where players observe

77

imperfect signals of some phenomenon. For such settings, one would expect that there is corre-
lation between the observations made by the players. Examples include negotiation, sequential
auctions, and strategic acquisition.

DRP can be thought of as a game where the die rolls are the signals. Regular DRP has
a uniform distribution over the signals. We now consider a generalization of DRP where die
rolls are correlated: correlated die-roll poker (CDRP). There are many variations on how one
could make the rolls correlated; we use the following. We have a single correlation parameter
c, and the probability of any pair of values (v1, v2), for Player 1 and 2 respectively, is 1

#sides2
−

c |v1 − v2|. The probabilities for the second round of rolls is independent of the first round.
As an example, the probability of Player 1 rolling a 3 and Player2 rolling a 5 with a regular
6-sided die in either round would be 1

36
− 2c. We generate DRP games with a 4-sided die and

c ∈ {0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07}.
For each value of c, we compute the optimal bound-minimizing abstraction for the second

round of rolls, with a static mapping between information sets such that for any sequence of
opponent rolls, the nodes representing that sequence in either information set are mapped to each
other. The bound cost of the mappings is precomputed, and the optimal abstraction is found with
a standard MIP formulation of clustering. scheme ensures that we compute an imperfect-recall
abstraction that falls under the CRSWF game class. After computing the optimal abstraction for
a given game, we run CFR on the abstraction, and measure the regret for either player in terms
of their regret in the full game. Figure 4.10 shows the results of these experiments. On the x-axis
is the number of CFR iterations. On the y-axis is r1 + r2, where ri is the regret for Player i
for the strategy at a given iteration. Furthermore, the horizontal lines denote the regret bound of
Corollary 3 for an exact Nash equilibrium. On the left in Figure 4.10 is shown the results for the

100 101 102 103 104

iterations

10−2

10−1

100

re
gr

et

0

0.01

0.02

0.03

100 101 102 103 104

iterations

100

re
gr

et

0.04

0.05

0.06

0.07

Figure 4.10: Log-log plots of the sum of the two players’ regrets as a function of CFR iterations
on the bound-minimizing abstraction of CDRP. The legends give the amount of correlation in
the die rolls of the different CDRP games on which we ran experiments. The horizontal lines
show the respective ex-ante regret bound of Corollary 3 for each of the CDRP games. (In the
first game on the left where the correlation is zero, the abstraction is lossless, so the horizontal
line (not shown) would be at zero.)

four smallest values of c, on the right the four largest values. As can be seen, CFR performs well
on the abstractions, even for large values of c: when c = 0.7, a very aggressive abstraction, the
sum of regrets still goes down to∼ 0.25 (for reference, always folding has a regret of 1). We also
see that for c ≥ 0.2, the regret stops decreasing after around 1000 iterations. This is likely where

78

CFR converges in the abstraction, with the remaining regret representing the information lost
through the abstraction. We also see that our theoretical bound is at the same order of magnitude
as the actual bound even when CFR converges.

4.7 Neccessity of distributional similarity of reach probabili-
ties

We now show that the style of bound given by Lanctot et al. [109] as well as our corrolar-
ies 2 and 3 cannot generalize to games where opponents do not have the same sequence of
information-set-action pairs, or in our case the slightly weaker requirements in Propositions 2
and 3, for game nodes that map to each other in the abstraction. The two games that we will use
as counterexamples are shown in Figure 4.11. From the perspective of our results, the usefulness
of assuming the same sequence of information-set-action pairs is that it implies the condition
used in Propositions 2 and 3; the following counterexamples thus also show that this assumption
is a useful way to disallow bad abstractions such as the ones presented here (although overly
restrictive from a practical perspective). Contrary to the prior results, our Theorems 8 and 9 still
apply to the games below. Our two theorems would give weak bounds commensurate with the
large error in the abstract equilibrium; this error is contained in the terms that depend on ∆P .

1

2

v, ε 0, 0

`

2

v, 0 0, ε

r

1
2

1

2

v, 0 0, ε

`

2

v, ε 0, 0

r

1
2

1

−ε
2

−1
`

1

r

1
4

1

ε
2

1
`
−1
r

1
4 1

ε
2

−1
`

1

r

1
4 1

−ε
2

1
`
−1
r

1
4

Figure 4.11: Left: General-sum EFG with abstraction. Right: zero-sum EFG with abstraction
where Player 1 wants to minimize. Orange dashed lines denote information sets joined in the
abstraction. Bold edges denote actions taken with probability 1 in the abstracted equilibrium.

On the left in Figure 4.11 is a general-sum game where the two nodes belonging to Player 1
are abstracted into a single information set. If we map ` onto ` and r onto r we get an abstraction
with low payoff error: ε at every node. At a high level, the idea in this counterexample is that
Player 2, because their nodes are not abstracted, can play opposite actions in the left and right
subtrees, thus changing whether Player 1 prefers going left or right. In the original game Player
1 can react to this by choosing different actions, but not in the abstraction. Formally: Let ε > 0.
Player 2 plays the bolded edges at nodes with non-zero probability of being reached. In the
abstraction, Player 1 gets v

2
for every strategy. In the full game, Player 1 can choose ` in the left

subtree and r in the right subtree for a payoff of v. Thus in every equilibrium where Player 2
plays according to the bolded edges (which includes all equilibrium refinements) Player 1 loses
v
2

from abstracting, despite the payoff error being arbitrarily small. If we set ε = 0, equilibria
where Player 2 plays the bolded edges still have high loss—despite zero payoff error. This
example showed that information-set-action structure has to be taken into account in order to
get satisfying bounds in general. While the example is very simple (and can thus easily occur

79

in the context of a larger game), it does exploit the fact that Player 1 utility is discontinuous in
Player 2 utility. We next show that a more intricate counterexample can avoid relying on this
discontinuity.

On the right in Figure 4.11 is a zero-sum game where the two bottom information sets be-
longing to Player 2 have been abstracted. Consider the following abstract equilibrium: Player 1
plays the bolded edges with probability 1, and Player 2 plays `, r with equal probability. Player
2 gets expected utility − ε

2
, but in the full game Player 2 can choose ` (r) in the left (right) infor-

mation set to get utility 1−ε
2

. Thus Player 2 has a utility loss of 1
2

despite a payoff error of 0. The
idea in this example is that, because Player 1 is not abstracted, they control the distribution over
nodes in Player 2’s information set in the abstraction in a way that is inconsistent with Player
2’s original-game information sets: in the abstraction they get an equal distribution over nodes
where ` or r is the preferred action, whereas in the original game the corresponding strategy for
Player 1 means that they know exactly which node they are at.

4.8 Conclusions and future work

We showed an exact decomposition of the error resulting from solving an abstraction of an EFG
rather than the original game. This decomposition had a dependence on the strategies played
and best responses, and thus it is not immediately helpful for ex-ante analysis of abstractions.
However, we went on to show that this decomposition can be combined with assumptions on
the information-set-action structure of the game, in order to get state-of-the-art ex-ante bounds
on solution quality. Our ex-ante bounds generalize the only class of abstractions where bounds
were previously known, while being exponentially better. We showed results for both perfect-
and imperfect-recall abstractions. Our results were also the first algorithm-agnostic bounds, and
the first to allow ε-Nash equilibria computed in the abstraction. We then showed that computing
optimal abstractions is computationally hard for several different variants of the problem, and
that it is generally impossible to give bounds on solution quality purely based on payoff and
chance-outcome error.

In spite of our hardness and impossibility results abstraction is employed to great success
in practice (e.g. the Libratus agent). The computational issues are circumvented by reducing
the problem to clustering, and employing off-the-shelf clustering algorithms that perform well in
spite of the theoretical hardness of the problem. One way forward would be to analyze particular
game classes where one could potentially prove that our impossibility result does not apply. This
is complicated by the fact that our zero-sum EFG counterexample probably applies to certain
strategy profiles even in poker. Thus any such approach would most likely need to argue that this
does not happen in strategies that matter, for example ones near equilibrium.

In work subsequent to this thesis work, Čermák et al. [36] investigate a particular class of
imperfect-recall abstraction, called A-loss recall games, and show that some computational prob-
lems are tractable in this class while being hard in general imperfect-recall games. It would be
interesting to relate that game class to abstraction-quality results.

From a theoretical perspective it would also be interesting to understand how abstraction
relates to timeability issues [80].

80

4.9 Discretizing continuous action spaces
This thesis, and the computational EFG literature at large, has focused on games where the action
spaces are discrete at every node of the game. Indeed, most algorithms for solving extensive-form
games require this (e.g. [79, 108, 139, 165, 179]). (One notable exception to this was introduced
by Johanson et al. [83], where a technique was demonstrated for handling continuous action
spaces for nature in a fairly restricted sense.) However, not all games encountered in practice are
discrete. Sources of continuity include noise (e.g. Gaussian) being modeled by a nature node,
bid sizes in auctions, betting sizes in no-limit poker games, type profiles in mechanism design,
and power levels in jamming games. This section extends our work on abstraction to certain
types of continuous games.

In the past, such continuity has largely been handled by heuristic discretization, with no
theoretical guarantees on solution quality. In contrast, we develop the first general bounds on
solution quality for discretizations of continuous action spaces in a very broad class of games.
Building on our results on perfect-recall abstraction in Section 4.5 (though the proofs presented
here use an earlier version of our results presented in Kroer and Sandholm [95]), we show how
to discretize continuous action spaces in a way that gives theoretical bounds on solution quality
when using any Nash equilibrium computed in the discretized game to form a strategy in the full
(continuous) game.

We then proceed to investigate the computation of discretizations that minimize an error
bound. We first formulate the general problem, making only the assumption that the error bound
function is monotonic, which intuitively requires that the error gets worse the farther a point
gets from the discrete point to which it maps. Since our problem formulation consists of linear
constraints, this immediately leads to the conclusion that convex error functions can typically be
minimized in polynomial time. We then go on to consider error functions of the form derived
in our theoretical solution-quality bounds. We show that when individual leaf and nature node
error functions are linear, and nature always picks uniformly over continuous action intervals,
the bound-minimizing solution is to uniformly discretize each continuous interval. We further
show how to decompose the problem and we develop a general framework for optimizing the
decomposed formulation for convex functions. We then develop a mixed-integer program (MIP)
for computing optimal discretizations when only player action spaces are being discretized and
the error functions are piecewise linear.

4.9.1 Continuous action spaces
We will assume that we are dealing with a game Γ, where one or more nodes h ∈ H have one or
more continuous action intervals Ah,c = [αh,c, βh,c] ⊆ Ah for c ∈ Ch, where Ch is an index set
of the continuous action spaces at h. We also assume that each layer of the game tree belongs to
a single player. The set of heights in the game tree will be denotedH andHi is the set of heights
belonging to Player i.

Let Ha be the set of nodes in the subtree reached by taking action a ∈ Ah,c at node h. We
assume there is a one-to-one mapping φa,â = φâ,a between Ha and Hâ for any two actions
a, â ∈ Ah,c, where nodes at a given height map onto nodes at the same height, and the condition
of Definition 12 is satisfied. Intuitively, the condition requires that nodes that are mapped to each

81

other are either (1) in the same information set, or (2) their information sets contain no nodes
from outside the (infinitely large) set of subtrees reachable by taking actions from Ah,c at h, and
for any other node in the same information set and same subtree, the nodes mapped to must
similarly be in the same information set.
Definition 12. For any node ĥ ∈ Ha in the subtree at a ∈ Ah,c, we require one of the two
following conditions to hold for all a′:

1. φa,a′(ĥ) ∈ Iĥ
2. Iĥ ⊂

⋃
ā∈[αh,c,βh,c] Sā, and for any other node h̄ ∈ Iĥ, h̄ ∈ Ha: φa,a′(h̄) ∈ Iφa,a′ (ĥ)

For each leaf node z ∈ Ztha for some a ∈ Ah,c, we assume that the payoff to Player i can
be described as ui(z) = µiz(a), where µiz = µiφa,â(z) for all â ∈ Ah,c. Intuitively, all leaf nodes
that map to each other have their payoffs described by the same function, with the actual value
depending on the choice of a. Similarly, the probability of each outcome at each nature node h′

in the subtree rooted at tha is described by a function ρh′(a) where ρh′ = ρφa,â(h
′) for all â ∈ Ah,c.

Since we require a bijection mapping φa,â between the subtrees for any two actions a, â ∈
[αh,c, βh,c] for each node h with continuous action interval c, the infinitely many subtrees can
equivalently be thought of as infinitely many instantiations of a single game-tree prototype, where
payoffs and nature outcome probabilities are parameterized by the choice of a ∈ [αh,c, βh,c], and
the information set topology of the instantiations satisfy Definition 12.

An example game is shown in Figure 4.12. On the left is a game with three players: nature(N),
Player 1 (P1), and Player 2 (P2). Nature first chooses between L and R (with some unspecified
fixed probability distribution). If L is chosen, a discrete subgame is reached. If R is chosen,
P1 has a continuous action space [α, β]. In the middle and right are shown two specific sub-
trees under the continuous action space, for P1 choosing actions a, b ∈ [α, β], respectively. The
information set that spans across the trees is an example of one that satisfies Condition 1 of
Definition 12, while the one that does not span across the trees satisfies Condition 2.

N

P1

P2

2

c

0
d

a

1
b

L

P1

R

βα

N

P2

µz1(a)

g

µz2(a)
h

ρc(a)

P2

µz3(a)

g

µz4(a)
h

ρd(a)

P2

µz5(a)

g

µz6(a)
h

ρe(a)

P2

µz7(a)

g

µz8(a)
h

ρf (a)

a ∈ [α, β]

N

P2

µz1(b)

g

µz2(b)
h

ρc(b)

P2

µz3(b)

g

µz4(b)
h

ρd(b)

P2

µz5(b)

g

µz6(b)
h

ρe(b)

P2

µz7(b)

g

µz8(b)
h

ρf (b)

b ∈ [α, β]

Figure 4.12: An example of a game tree with the triangle representing a subtree with a continuous
action space at the node.

So far we have described our notation in terms of discretizing a single continuous action
space at some node. When there is more than one node with a continuous action space that is
being discretized, we have to consider two groups of nodes with continuous action spaces.

The first group is the set of all nodes h that have one or more continuous action intervals,
and h is the first node on the path from the root to h with a continuous action space. Let the set
of all such nodes be S1 ⊆ H . These nodes are handled exactly as described above. If there are

82

additional continuous action spaces in the subtree after taking some action a ∈ Ah,c for some
h, c, then the bijections between subtrees simply map uncountably many nodes.

The second group is the set of all nodes h′ such that there is at least one node-action pair h, a
on the path from the root to h′, where h has a continuous action space Ah,c such that a ∈ Ah,c.
Let this set of nodes be called S2 ⊂ H . Let ~a ∈ Rn, where n is the number of continuous
action spaces leading to h′ and including the one at h′, such that ai ∈ [αi, βi] where [αi, βi] is
the continuous action space for the i’th node with a continuous action space on the path to h′.
We then require that the payoff and nature functions are functions of ~a rather than a single action
choice. For fixed choices in the past, the functions then behave exactly as the functions for nodes
in S1.

We fix some ordering of all continuous intervals, and defineA = ×h∈S1∪S2,c∈ChAh,c to be the
Cartesian product over all continuous intervals. We will use j to denote indices into this ordering
I. We let [αj, βj] denote the endpoints of interval j ∈ I. From now on we will use ~a ∈ A to
denote elements of this set. A discretization is a finite set of points A′ ⊂ A. The size |A′| = m
is the number of discrete points chosen for each interval. If fewer than m points are desired for
some interval Ah,c with index j ∈ I, we can simply let ~aj = ~a′j for distinct points ~a,~a′ ∈ A′.
For a node h, we will use ~ah to refer to the subset of actions taken on the path to h such that
the action is part of a continuous action interval. We will overload the notation of the payoff and
nature error functions so that for a given f or h for a node h, they take elements ~a ∈ A as input,
with the implicit understanding that the value of the function depends only on ~ah. We will let
π0(~a) denote the product of probabilities over each index j into ~a such that nature acts at ~aj .

The game Γ′ = 〈H ′, Z ′, A′,H, σ0, {I ′}, {ui}〉 is the discrete extensive-form game obtained
by restricting players to selecting actions that are part of the discretization A′.

4.9.2 Discretization model

Discretization mapping and error terms

We will need to reason about the similarity of the full game Γ and the induced game Γ′ for a
given discretizationA′. To do this we will require a mapping of the continuous action space onto
the discretization:
Definition 13. A discretization mapping is a surjective function g : A → A′ that maps the
continuous action space A onto the discretization A′. We require that g is decomposable, so for
all ~a ∈ A, g(~a)j depends only on ~aj . GA′ denotes the set of legal discretization maps for a given
discretization A′.

The discretization mapping along with the bijections φa,a′ for all h ∈ H, c ∈ Ch, a, a′ ∈ Ah,c
immediately defines a mapping of the nodes H onto the nodes H ′. Denote this node mapping
function by φ : H → H ′. For any node h ∈ H ∩H ′, φ(h) = h. For h ∈ H, h /∈ H ′, φ(h) is the
node in H ′ reached by inductively applying the maps g and φ~ahj ,g(~ah)j

at each continuous action
space on the path to h.

Due to the constraints in Definition 12, g also leads to an information set mapping, as any
two nodes h1, h2 ∈ I for some I must map to the same information set: φ(h1), φ(h2) ∈ I ′ for
some I ′. We let f : I → I ′ be this information set mapping.

83

For all three functions g, φ, f we also define their inverses g−1, φ−1, f−1, that return all in-
tervals Ā ⊆ A, nodes H̄ ⊂ H , and information sets Ī ⊆ I, respectively, that map onto given
~a ∈ A′, h′ ∈ H ′, and I ′ ∈ I ′, respectively. We denote by φ−1

I (h′) the intersection φ−1(h′) ∩ I .
Given a discretization mapping g, it will be convenient to define aggregate utility error terms

for nodes of the real game:

εRh,i =

maxa∈Ah ε

R
tha ,i

if h is a player node∫
a∈Ah

σ0(h, a)εR
tha ,i

if h is a nature node

|µih(~a)− µih(g(~a))| if h is a leaf node

Similarly, we define aggregate error terms for nature error. We define the nature distribution error
of an information set I and node h′ ∈ f(I) to be

ε0I,h′ =

∣∣∣∣∣
∫
h∈φ−1

I (h′) σ0(h)

σ0(I)
− σ′0(h′)

σ′0(f(I))

∣∣∣∣∣
This is the difference between nature’s probability of reaching h′ and its probability of reaching
any node in φ−1

I (h′), normalized by the probability of reaching the given information sets. The
nature error for information set I is

ε0I =
∑

h′∈f(I)

ε0I,h′

For a nature node h at height k ∈ H0 and h′ = φ(h), we define the nature action a′ ∈ Ah′
error and node error to respectively be

ε0h,h′,a′ =

∣∣∣∣σ′0(h′, a′)−
∫
a∈g−1(a′)∩Ah

σ0(h, a)

∣∣∣∣
ε0h =

∑
a′∈Ah′

ε0h,h′,a′

The nature error at height k is

ε0k =

{∫
I∈Ik

π(I)ε0I if k /∈ H0∫
h∈Hk

π(h)ε0h if k ∈ H0

Finally, we let W̄ = maxi∈N,z∈Z ui(z) be the maximum payoff at any leaf node.

Strategy mapping

Once a Nash equilibrium has been computed in the discretized game, we need to define a way of
converting that strategy profile to a strategy profile for the full game. We perform this mapping
in the following simple way. Since all subtrees under discretized intervals have the same shape
(based on how we defined the discretization problem in Section 4.9.1) and thus same number of
actions, we can simply implement the same strategy that we computed for a given discretized

84

subtree at all subtrees that map to it. Specifically, let σ′ be the strategy profile computed for
the discretized game. Then for each real node s ∈ H , we set σ(h, a) = σ′(φ(h), a′), where a′

is the action at h′ that leads to φ(tha). For continuous intervals, we simply pick each discrete
point a with the probability that it was chosen in the discrete game, and every other action with
probability zero. This mapping yields a strategy profile that satisfies the following property,
which we will use to derive bounds later:
Proposition 5. For a strategy profile σ′ computed in a discretized game Γ′, our method of strategy
conversion leads to a strategy profile σ for the full game Γ so that for any information set pair
I, I ′ such that I maps onto I ′, σ−0(I) > 0, and σi(I) > 0,∣∣∣∣∣∣σ(h′)

σ(I ′)
−

∑
h∈g−1

I (h′)

σ(h)

σ(I)

∣∣∣∣∣∣ ≤ ε0I,h′

This follows immediately from how we defined the mapping.

4.9.3 Overview of our approach

Given some game with continuous action spaces, the goal in this work is to pick a finite set of
points for each continuous action interval. This will induce a finite extensive-form game. A (po-
tentially approximate) Nash equilibrium is then computed in the discrete game. The computed
Nash equilibrium is then mapped to a strategy profile in the full (continuous) game. Figure 4.13
illustrates the approach.

Nash equilibrium ε-Nash equilibrium

Discrete game

Discretization

Equilibrium-finding
algorithm

Map to real game

Real game

Figure 4.13: An overview of our discretization approach.

Under reasonable assumptions, we will derive solution quality bounds for any Nash equi-
librium computed in the abstraction when implemented in the full game. More specifically, we
will show that such strategy profiles constitute ε-Nash equilibria in the full game, where the ε
depends on the error terms we defined in the previous section. These results are anlogous to the
solution-quality results for perfect-recall abstraction in Section 4.5.

85

4.9.4 Discretization quality bounds
We start by showing an error bound on solution quality for any given discretization and dis-
cretization mapping, leveraging our result on bounded solution quality for perfect-recall abstrac-
tion.
Theorem 14. For any game Γ with continuous action spaces A that satisfy the constraint given
in Definition 12, discretization A′ ⊂ A, and discretization mapping g : A → A′, any Nash
equilibrium σ computed in Γ′ constitutes an ε-Nash equilibrium when implemented in Γ, where

ε = max
i

{
2εRh,i +

∑
k∈Hi

ε0kW
}

+ 2
∑
k∈H0

ε0kW

Proof. We can view the game Γ′ obtained by this discretization as an abstraction, where g defines
a mapping of each real action a to some abstract action a′. Coupled with the bijection φa,a′ , this
induces a node mapping h and information set mapping f , as argued in Section 4.9.2.

Theorem 4.2 of Kroer and Sandholm [95] gives error bound results for abstractions like this.
To see that f indeed forms a surjective function that respects h, consider Conditions 1 and 2 of
Definition 12, which ensure that any discretization induces an information set mapping. First
consider when Condition 1 is satisfied. In this case the information set mapping is obviously
respected, as the nodes that map to each other were already in the same information set.

Now consider any information set I such that a node s ∈ I is mapped onto another node
ĥ ∈ Î , Î 6= I . Condition 2 ensures that this only happens for information sets completely
contained in the subtrees rooted at the continuous interval in question. We have to show that I is
surjectively mapped onto Î . Condition 2 states that for any other node h̄ ∈ I , h̄ must map to a
node in the same information set as ĥ. Thus we just have to verify that every node h∗ ∈ Î has a
node from I mapped onto it. This is immediately seen by applying Definition 12 to the bijection
from the perspective if Î , as the bijection has to be the same when applying the definition in both
directions.

Theorem 4.2 of Kroer and Sandholm [95] also requires that the strategy implemented in the
full game is an undivided lifted strategy. We did not quite guarantee this property with our
strategy mapping described in Section 4.9.2. However, this property is only used in the very last
step of the proof of Theorem 4.2 in their paper, where they use it to apply Proposition 3.1 of their
paper. Instead, we can apply our Proposition 5, which achieves the same effect.

The result as presented by Kroer and Sandholm [95] takes the maximum nature outcome
error for each height. Their proof is easily modified to take the expected value, ε0k, instead, as we
do in the theorem. (This approach was also taken by Kroer and Sandholm [98].)

The bounds as given here are in their most general form. In particular, the two nature error
terms

∑
k∈Hi ε

0
kW and 2

∑
k∈H0

ε0kW are not given in terms of the functions ρh that describe
the change in nature outcome probabilities. ε0k can easily be bounded for all k in Hi and H0

respectively:

ε0k ≤
∫
I∈Ik

π(I)
∑

h′∈f(I)

∣∣∣∣∣
∫
h∈φ−1

I (h′)
π0(~ah)− π0(~ah

′
)

∣∣∣∣∣ = ξ0
k

86

ε0k ≤
∫
h∈Hk

π(h)
∑
a′∈Ah′

∣∣∣∣∣
∫
a∈g−1

I (a′)
σ0(h, a)− σ0(h′, a′)

∣∣∣∣∣ = ξ0
k

This gives the following corollary:
Corollary 5. For any game Γ with continuous action spaces A that satisfy the constraint given
in Definition 12, discretization A′ ⊂ A, and discretization mapping g : A → A′, any Nash
equilibrium σ computed in Γ′ constitutes an ε-Nash equilibrium when implemented in Γ, where

ε = max
i

{
2εRh,i +

∑
k∈Hi

ξ0
kW
}

+ 2
∑
k∈H0

ξ0
kW

The ξ0
k terms do not diverge. While an infinite sum is taken in both cases, the terms are

probability weighted, and
∫
I∈Ik

π(I) = 1,
∫
h∈Hk

π(h) = 1. Since we are dealing with probability
distributions, we can take the maximum over Ik or Hk. In practical settings, it may be desireable
to take several maxima. First, in the current form of both Theorem 14 and Corollary 5, the bound
depends on the strategy profile of the players, not just nature. To make the bound independent
of player actions, one can take the maximum over player actions. Second, instead of computing
the infinite sum of errors over Ik or Hk, it may be useful to take the probability-weighted sum of
errors over discrete points, and then compute the maximum error over each discrete point.

4.9.5 Discretization algorithms

In this section we consider general bounded discretization problems that are largely independent
of the specific error bound to be minimized. This means that our algorithms will apply to the
results from Section 4.9.4, and also to any (potentially stronger or more general) bounds obtained
in the future, as long as they fall under the setting described in Section 4.9.5.

Optimal discretization as an optimization problem

We consider a more general class of problems than those described in Section 4.9.1. We consider
a game Γ where one or more h ∈ H has a continuous action space. We again let A be the set
of all intervals to be discretized with index set I and let ~alj refer to the kj discrete points chosen
for interval j. We assume the points in the discretization are ordered, so ~alj < ~al+1

j for all
j ∈ I, l ∈ [kj].

We start by formulating the optimization problem very generally. We assume that we have
an error bounding function Ψ : Ak × GA → R that takes as input a discretization A′ and
discretization map g and returns a real-valued error bound Ψ(A′, g). We make two innocuous
assumptions about Ψ to represent the natural condition that the error increases the further an
actual point is from the discrete point to which it maps.

First, each point maps to its nearest lower or upper discrete point. Formally, for all j ∈ I,
and any point al, ~alj < al < ~al+1

j not in the discretization, Ψ is minimized at g(al) = ~alj or
g(al) = ~al+1

j .

87

Second, for all j ∈ I, and any two points al, âl, ~alj < al < âl < ~al+1
j not in the discretization,

if Ψ is minimized when g(âl) = ~alj then Ψ is minimized when g(al) = ~alj , and if Ψ is minimized
when g(al) = ~al+1

j then Ψ is minimized when g(âl) = ~al+1
j .

We will say that an error function Ψ that satisfies our two assumptions is monotonic. Given
a monotonic Ψ and a discretization A′, the optimal mapping for each interval j ∈ I can be
determined by finding the splitting point between each interval

[
~alj,~a

l+1
j

]
such that the left side

of the splitting point is mapped onto ~alj and right side is mapped onto ~al+1
j .

For each interval j ∈ I, we introduce real-valued variables ~alj ∈ Aj, l ∈ [kj] and gτh,c, τ ∈
[kj − 1], where kj is the desired number of discrete points for interval Aj . The variables ~alj
represent the discrete points, while gτj represents the point between ~aτj and ~aτ+1

j that separates
the interval, such that the points in the interval

[
~aτj , g

τ
j

]
map onto ~aτj and the points in the interval[

gτj ,~a
τ+1
j

]
map onto ~aτ+1

j . Since any set of values for ~alj, g
τ
j over all j ∈ I, l ∈ [kj] , τ ∈

[kj − 1] completely specifies a discretization and discretization mapping, we let A′v, gv denote
the discretization and mapping obtained by a solution. The feasible set of this problem is

F =

A
′
v, gv :

~alj ≤ ~al+1
j ∀j ∈ I, l ∈ [kj − 1]

~aτj ≤ gτj ≤ ~aτ+1
j ∀j ∈ I, τ ∈ [kj − 1]

~alj ∈ Aj ∀j ∈ I, l ∈ [kj]

gτj ∈ Aj ∀j ∈ I, τ ∈ [kj − 1]

 (4.16)

With this notation, we arrive at the most generic form of the optimal discretization problem
for monotonic error functions:

min {Ψ(A′v, gv) : (A′v, gv) ∈ F} (4.17)

Setting k = 1, one can see that this is equivalent to minimizing any function, so this general
form will not get us far. Fortunately, there is often further structure in practical games. In the rest
of the algorithms section, we will consider various forms of structure that enable us to design
efficient algorithms for finding good discretizations.

Convex error function The constraints specified in (4.16) are all linear. Thus, if Ψ is convex,
solving (4.17) becomes a convex minimization problem over linear constraints. These are solv-
able in polynomial time under mild assumptions [11]7. Perhaps more importantly, large subsets
of this class of error functions have practically efficient solution methods—e.g., an error function
that is conic-quadratic or semi-definite representable (Ben-Tal and Nemirovski [11] give a thor-
ough discussion of such representability), smooth, or non-smooth with certain structure [8, 133].

Decomposable error function

In Section 4.9.4, we considered error functions that are a mixture of maximums (player nodes)
and probability-weighted sums (nature nodes) of the error functions at individual nodes. We

7 A heavily updated version of this great book can be found at http://www2.isye.gatech.edu/
˜nemirovs/.

88

http://www2.isye.gatech.edu/~nemirovs/
http://www2.isye.gatech.edu/~nemirovs/

now consider how to (recursively) represent such error functions using linear inequalities, for the
purpose of computation.

Let ξj : Aj × gj → R be an error function that gives the error incurred at interval j ∈ I when
choosing discretization A′j and mapping gj at Aj . Recursively taking the maximum or weighted
sum can be implemented by recursively applying the following linear inequalities, where variable
eδ represents the error at a given node or information set δ:

E =

eh ≥

∑
a∈Ah

σ0(s, a)etha

eh ≥max
a∈Ah

etha

eh ≥ξj

 (4.18)

The same linear formulation can also be used to formulate the error bound in the case where
ξh : A × g are functions that give the error for each leaf and nature node. In a slight abuse of
notation, we denote the set of error function solutions described in (4.18) by E .

If each error function ξj depends only on the subset of A that consists of interval j and any
descendant intervals, the discretization problem can be decomposed: find each interval j ∈ I that
is the first continuous interval from the root to the interval. Each such interval, along with its
subtrees and any intervals therein, can be minimized separately.

Minimizing our bound

We will now study the game class that satisfies Definition 12 and minimization of the bound
given in Corollary 5. We will consider various types of error functions.

Linear error functions In this section we consider games Γ where the utility and nature out-
come distribution functions µz, ρh, at all z ∈ Z, h ∈ H that are descendants of a continuous
interval, are Lipschitz continuous with Lipschitz constant Lz/h. This encompasses two impor-
tant practical classes of game: (1) all the functions µ and ρ are linear, and (2) the functions
are non-linear but the bound being derived is based on knowing (only) that the functions are
Lipschitz continuous.

If all continuous intervals at nature nodes have a uniform distribution, we get the following
simple results: all intervals should be discretized into uniform interval sizes.
Theorem 15. For a game Γ with continuous action spaces A, where each utility and nature
outcome distribution function is Lipschitz continuous with constant Lz/h for each leaf z or nature
node h, and all continuous nature intervals are uniformly distributed, the bound-minimizing kj-
point discretization at each interval A′j is:

~alj = αj +

(
l − 1

2

)
·
(
βj − αj
kj

)
∀l ∈ [kj]

gτj = αj + τ ·
(
βj − αj
kj

)
∀τ ∈ [kj − 1]

We will call this a uniform discretization.

89

Proof. Consider such a discretization and mapping. We will show that any other discretization
or mapping can not be better. For an interval j ∈ I at a player node, this is easily seen. The error
of the interval is the maximum error over the interval. Since all functions are linear, this is simply
the point a ∈ Aj with the largest distance to its discrete point. For a uniform discretization, this
is either endpoint αj, βj or some inner point gτj , which all have distance βj−αj

2kj
. For any other

discretization, some point must have distance strictly greater than this to its discrete point, thus
worsening the bound.

For an interval j ∈ I at some nature node h, we first observe that the error function is convex.
The error at each leaf or nature node in the subtrees is linear (and thus convex). The error at
each other node is the finite sum or maximum over descendant errors. The error over the interval
is the integral over error at each subtree. Since taking finite sums, maxima, and integrals all
preserve convexity (see Boyd and Vandenberghe [22] for a calculus of convex functions), we
get that the error over the interval is convex. For convex functions, local minimizers are global
minimizers. Thus, it is sufficient to show that the derivative is zero at the uniform discretization.
Since the subtrees have the same structure, by the conditions given in Definition 12, and the
fact that the error functions depends only on the distance, we get that the error between any two
points a1, a2 ∈ Aj can be represented by some function ∆(|a1 − a2|). Using this representation,
we consider the error of each interval

[
~alj, g

l
j

]
:∫ glj

~alj

1

βj − αj
∆
(∣∣~alj − t∣∣) dt =

1

βj − αj

∫ glj−~alj

0

∆ (t) dt (4.19)

Using exactly the same approach, we can also get the error of the interval
[
glj,~a

l+1
j

]
:

1

βj − αj

∫ ~al+1
j −glj

0

∆ (t) dt (4.20)

We see that for any subgradient x of (4.19), −x is a subgradient of (4.20). Using additivity of
subdifferentials (see Rockafellar [145] chapter 23), we get that 0 is a subgradient of glj . We can
apply exactly the same approach to each ~alj to see that 0 is a subgradient there as well.

When the conditions of the above theorem do not hold, the decomposition results from Sec-
tion 4.9.5 and the recursive linearization (4.18) still apply. In the following two subsections, we
leverage this fact.

Convex error functions As we pointed out above, taking the maximum, sum, and integral all
preserve convexity. Thus, if the error

|µz(a)− µz(a′)| or |ρh(a)− ρ(a′)|
at each leaf or nature node can be represented by a convex function, the linear constraints in
(4.18) can be used to represent the overall error as a convex function. As discussed in Sec-
tion 4.9.5, this would, depending on the specific structure, allow the application of various ef-
ficient polynomial-time methods. We do not give specific algorithms here, but merely point
out that optimal solutions can be found in polynomial time. In practice, the specific choice of
which polynomial-time algorithm to apply should be informed by the exact structure of the error
functions of the given game.

90

Piecewise linear error functions We now consider piecewise linear utility error functions
and piecewise linear nature probability error functions for discretizing continuous player action
intervals. We do not consider discretizing nature actions here because even with linear functions
and a uniform nature distribution, discretizing nature intervals would lead to quadratic error, as
shown in the proof of Theorem 15. Even if the actual error functions are not piecewise linear,
this can be used for arbitrarily accurate approximation.

Finding a bound-minimizing discretization, subject to a limit on the number of discretization
points, is NP-hard. This is easily seen from Theorem 11, and representing their discrete game-
abstraction problem using a step function.

However, it can be represented by a MIP, where the number of binary variables is equal to
the number of pieces summed over all functions. This number can be significantly decreased if
the interval pieces over the different functions µ, ρ under some interval j ∈ I align. We use the
same variable formulation ~alj, g

l
j as defined in (4.16), and the feasible set F remains the same.

Consider an interval j ∈ I and the set of points where some function in the subtrees at j changes
piece. This set of points divides the interval [αj, βj] into pieces. Let Pj be an index set into these
pieces. The size of Pj is clearly bounded by the sum of pieces in functions in subtrees at j. We
introduce a Boolean variable bγ,lj , c

γ,τ
j for each γ ∈ Pj , l ∈ [kj], and τ ∈ [kj − 1], representing

whether ~alj, g
τ
j fall into the interval representing piece γ ∈ Pj , respectively. When bγ,lj (cγ,τj) = 1,

we restrict ~alj(g
τ
j) as follows:

αγj · bγ,lj ≤ ~alj, ~alj ≤ βγj + (βj − βγj) · bγ,lj
The sum

∑
γ∈Pj b

γ,l
j = 1 ensures that only one interval is chosen. The constraints for cγ,τj , gτj

are completely analogous. For each leaf node z with piecewise payoff function µγz , and l ∈ [kj],
we can then introduce price variables plz, p

l
z(~a

l
j), p

l
z(g

l
j) ∈ R, with the latter two for the interval[

~alj, g
l
j

]
, and constrain them linearly as follows:

P =

plz ≥plz(glj)− plz(~alj)

plz(g
l
j) ≥µγz (glj)−M · cγ,τj ∀γ ∈ Pj

plz(~a
l
j) ≤µγz (~alj) +M · bγ,lj ∀γ ∈ Pj

 (4.21)

This is correct for sufficiently large M ∈ R. We now have variables plz representing each error
function for the discrete points, and can apply the linear constraints from (4.18) to get a linear
representation of the overall error. Thus we get the following MIP, where er is the objective value
at the root according to (4.18):

min
{
er : er ∈ E , (A′v, gv) ∈ F ∩ P , bγ,lj , cγ,τj ∈ {0, 1}

}
(4.22)

4.9.6 Applications
In this section, we discuss some applications of our results. We will focus on three recent prob-
lems that have included continuity in their problem formulation, or discretized away continuity:
robust policy optimization under parameter uncertainty [41], security games [90, 119, 177], and
sequential wifi-jamming under battery constraints [51].

91

Chen and Bowling [41] propose the use of zero-sum extensive-form game solving as a way
of tractably computing optimally robust policies for Markov Decision Processes (MDPs) with
parameter uncertainty. They design robustness criteria that can be implemented via nature first
sampling parameter instances, and an opponent then choosing the worst of these. This sampling
by nature was necessary in order to get games where the action space for the players is finite.
Now, with our discretization-quality results, it is possible to use a broader class of robustness
measures that allow continuous action spaces, while obtaining solution quality bounds.

Several papers have investigated continuous settings for security games. These have been
for single-shot [90, 177] or repeated Bayesian Stackelberg games [119]. Since our framework
is for the more general setting of extensive-form games, our solution-quality bounds apply to all
these settings. Furthermore, they would also apply to more sophisticated models that include
both sequential actions and imperfect information. Marecki et al. [119] mention as future work
the setting where the follower also behaves strategically. Our results immediately yield solution
quality bounds for discretizations for this setting.

Another area with continuity is wifi jamming. In recent work, sequential-interaction models
were introduced for this domain [51]. These models employ discretized action spaces, where
both the jammer and transmitter have a (small) finite set of possible power levels to transmit
at. However, this is an abstraction of reality, where software-defined radios mean that action
spaces can be continuous (at least up to the bit-precision of the hardware). Using the techniques
developed in this section, we can give solution quality bounds on the utility loss obtained from
considering only a discrete number of possible power levels (possibly by padding the game tree
with dummy actions to satisfy Definition 12). DeBruhl et al. [51] also mention that in a more
realistic model, both transmitter and jammer would be modeled as observing only noisy signals
of the actions taken by the other player. Since these observations would be of a continuum,
the noise would likewise be continuous. The discretization quality bounds derived here would
immediately apply to this setting. A subsequent paper to this work investigates the use of game
abstraction in wireless resource scheduling [43], though they focus on stochastic games. It would
be interesting to consider more sophisticated models with imperfect information.

4.9.7 Differences to abstraction practice in poker
We have already discussed how our framework can be used to give theoretical bounds on solution
quality in practical scenarios. In particular, we showed that a uniform discretization is optimal
for linear error functions (for discretizing nature this required a uniform distribution over the
continuous action space). This stands somewhat in contrast to how practical abstractions are
created for poker.

Consider no-limit Texas hold’em (NLHE). This game is the premier testbed for (discrete)
extensive-form game solving algorithms [148]. Each year, the Annual Computer Poker Compe-
tition is held, where research groups submit highly-tuned poker-playing programs. The winning
programs are based on computing Nash equilibrium approximations in abstractions of the full
extensive-form game [148].

In NLHE, at each betting step, the acting player may bet any amount from the minimum bet to
their entire stack of chips. To handle this action space, the top agents devise betting abstractions.
These are completely analogous to the discretizations considered in this chapter. The payoff

92

functions under the subtrees are all linear in the specific actions chosen. At a cursory glance, one
might say that Theorem 15 suggests that the optimal discretization would be uniform. However,
the discretizations employed by the poker bots are more akin to a geometric progression. For
example, Brown et al. [28] describe using a betting abstraction consisting of 0.5, 0.75, 1, 1.5, 2
and 5 times the pot size, as well as the all-in action. At the start of betting, all-in is approximately
133 times the pot size. Both examples and experiments by Ganzfried and Sandholm [63] support
the idea that the uniform mapping is not optimal.

A potential explanation for this is that the subtrees reached for different choices of bet size
technically do not fall under the constraints of Definition 12. Consider a group of bets, say raising
in the range of [1, 2] (here we consider continuous bets in this small continuous range due to ease
of exposition, one can construct similar examples with larger integer ranges) with a stack size of
2.5. The subtree where the player bets 2 exists as a subset of the subtree at every other betsize.
These subsets all map to each other in a way that obeys Definition 12. However, if the player bets
1 instead, the opponent may reraise by 1, in which case the agent can call. This scenario does not
exist when betting 2, as the player already bet her entire stack. For any two bet sizes a1 < a2,
these discrepancies due to extra actions exist. To resolve this issue, one could pad the tree with
extra actions such that Definition 12 is satisfied, but it is unclear how this would interact with the
solution-quality bound, and could thus lead to nonoptimality of the uniform discretization.

4.9.8 Conclusions and future work
We analyzed the problem of developing solution-quality bounds for discretization of extensive-
form games with continuous action spaces. To our knowledge, we developed the first such
bounds. We developed bounds for a very general class of continuous games: ones where there
is a finite set of prototype trees, such that the instantiation of a given prototype has its nature
probability outcomes and utilities parameterized by the choice on the continuous intervals. We
developed bounds both where they depend on the specific Nash equilibrium (Theorem 14) and
where they are independent of the Nash equilibrium chosen (Corollary 5).

We then considered the problem of computing bound-minimizing discretizations. First we
developed very general bound-minimization formulations that allow a broad class of error-bounding
functions. We discussed how such functions can be minimized in polynomial time when they
are convex. We then considered the more specific problem of minimizing our bound devel-
oped for Corollary 5. For the case where all utility error and nature probability error functions
are Lipschitz continuous (without additional structure), and nature chooses uniformly over each
continuous interval, we showed that the bound-minimizing solution is to discretize uniformly.
For the case where the error functions at individual nodes can be represented by convex func-
tions, we showed how to generate a convex optimization formulation of the overall problem. We
also developed a MIP for piecewise linear error functions, which can also be used for arbitrarily
accurate approximation. We also showed how the problem can be decomposed into separately
optimizable components.

Ganzfried and Sandholm [63] dicuss randomized mappings, where each real point has a
probability distribution over which of its nearest discrete points it maps to. Their experiments
strongly suggest that such randomization is desirable. Incorporating randomized mappings in our
work could potentially lead to better discretizations, almost certainly in practice, and potentially

93

also in theory. We leave this as future research.
Here we showed that our results on perfect-recall abstraction can be used to prove bounds

for EFGs with continuous action spaces. It would be interesting to show similar results for the
imperfect-recall setting as well.

94

Chapter 5

Equilibrium refinement

In spite of their popularity, Nash equilibria suffer from a potential deficiency: they might not
play reasonably in parts of the game tree that are reached with zero probability in equilibrium. In
particular, the only guarantee that Nash equilibrium gives in these parts of the game tree is that
it does not give up more utility than the value of the game. Thus, if the opponent makes a big
mistake, Nash equilibrium might give back all the utility gained from the opponent making that
mistake, since it is only maintaining the value of the game (Miltersen and Sørensen [121] show
nice examples of such behavior).

The above shows that Nash equilibrium is not always satisfactory in extensive-form games,
and is the motivation for equilibrium refinements [154]. When information is perfect, the clas-
sical solution concept of subgame-perfect equilibrium (SPE) can be satisfactory, while it is not
when information is imperfect. In this latter case, refinements are usually based on the idea of
perturbations representing mistakes of the players. In a quasi-perfect equilibrium (QPE) [162],
a player maximizes her utility in each decision node taking into account the future mistakes of
the opponents only, whereas, in an extensive-form perfect equilibrium (EFPE), players maximize
their utility in each decision node taking into account the future mistakes of both themselves and
their opponents [77, 154].

Computation of Nash equilibrium refinements in EFGs has received some attention in the
literature. Von Stengel et. al. [164] give a pivoting algorithm for computing normal-form-perfect
equilibria in EFGs. Miltersen and Sørensen [121] give an algorithm for computing quasi-perfect
equilibria. Miltersen and Sørensen [120] show how to compute a normal-form-proper equilib-
rium. Farina and Gatti [57] give an algorithm for computing extensive-form perfect equilibria.
All these results rely on linear programming (LP) (in the zero-sum case) or linear complementary
programming (LCP). In zero-sum games, several of these solution concepts can be computed in
polynomial time using an LP or a series of LPs. However, as previously argued, even for the
easier case of Nash equilibria, the LP approach is not scalable for large games (beyond roughly
108 nodes in the game tree [68]). Each iteration of an LP-solving algorithm is expensive, and the
LP might even be too large to fit in memory. Thus, as with Nash equilibria, we would like to use
faster iterative algorithms for computing equilibrium refinements.

In this chapter, we show how to extend the FOMs results from the previous chapter to the
computation of an approximate variant of EFPE. Miltersen and Sørensen [121] and Farina and
Gatti [57] presented perturbed polytopes of EFGs that capture equilibrium refinements where

95

each action has to be played with positive probability. We prove that recent results on smoothing
techniques for EFGs based on dilating the entropy function can be modified to provide smoothing
for such perturbed games, where the perturbations are with respect to behavioral strategies.
We then instantiate this method for the perturbed game of Farina and Gatti, which leads to our
approximate EFPE.

We then experimentally validate our method. We show that it is effective at obtaining low
maximum regret at each information set of the game—even ones that have low probability of
being reached—while simultaneously achieving the same practical convergence rate that FOMs
and the best CFR variants traditionally achieve for just Nash equilibrium. This has benefits both
in approximate Nash equilibrium finding (such approximation is necessary in practice in large
games) where some probabilities are low while possibly heading toward zero in the limit, and
exact Nash equilibrium computation where the low probabilities are actually zero.

5.1 Preliminaries

In the previous chapter we showed how to efficiently compute Nash equilibrium approxima-
tions for large-scale games. We will rely on the treeplex and convex optimization concepts and
notation developed in that chapter.

We now show an example of why Nash equilibrium may not be satisfactory when deal-
ing with EFGs, independently of whether the game has perfect or imperfect information, and
whether it is general- or zero-sum. A Nash equilibrium σ might prescribe irrational play in those
information sets that are visited with zero probability when playing according to σ (e.g., [120]).
In the general-sum case, consider the left example of Figure 5.1: the strategy profile (σ1, σ2)
where player 1 always chooses action x and player 2 always chooses action y is a NE. However,
this strategy profile is irrational: Player 2 is “threatening” to play a suboptimal action, and Player
1 is caving in to the threat. Yet, the threat is not credible: if Player 1 were to actually play action
y, it would be irrational for Player 2 to honor the threat.

Player 1

(1, 5)

x y
Player 2

(5, 1) (0, 0)

x y

Player 1

(1,−1)

x y
Player 2

(−5, 5) (0, 0)

x y

Figure 5.1: General-sum (left) and zero-sum (right) games where Nash equilibrium prescribes
irrational play. Numbers in parentheses denote the payoffs to Players 1 and 2.

The right example in Figure 5.1 shows that even in zero-sum games, a NE can fail to capture
(sequential) rationality. In this game, the same strategy profile as in the previous game is again
a NE. If Player 2 plays according to this profile, she gives up a potential payoff of 5 if Player 1
plays action y.

96

5.1.1 Perturbations and Extensive-Form Perfection
A way to mend the issue just described is to introduce the idea of “trembling hands”: each player
cannot fully commit to a pure strategy, and ends up making mistakes with a small (yet strictly
positive) probability. This guarantees that the whole game tree gets visited. More formally,
let l(I, a) be the perturbation of the game, a (positive) function defining the minimum amount
of probability mass with which the player playing at information set I in the game will select
action a when playing in I . Let Γl be the game where players are subject to such perturbation:
an extensive-form perfect equilibrium of the game Γ is any limit point of the sequence of Nash
equilibria of the game Γl, as l vanishes [154]. In this chapter, we deal with the simplest form of
perturbation – a uniform perturbation lε for ε > 0, defined as lε(I, a) = ε for all a and I . We will
denote the game Γlε as Γε.

We let Qε refer to a ξ-perturbed variant of a treeplex Q, for the perturbed game Γξ. Qε is the
intersection of Q with the set of constraints qj ≥ εqpj for all j ∈ SQ. By constructing perturbed
polytopes X ε,Yε and using these rather than X ,Y in (3.1), we get an approximate variant of
EFPEs.

5.2 Distance-generating functions for the ξ-perturbed game
Let ds be a DGF for the n-dimensional simplex ∆n. As in the previous chapter we construct a
DGF forQ by dilating ds for each simplex in SQ and taking their sum: d(q) =

∑
j∈SQ βjqpjds(

qj

qpj
).

We show that ds and d can be used to implement a smoothing function forQε and reason about its
properties. To construct a smoothing function for Qε, we first construct a smoothing function for
an ε-perturbed simplex ∆ε

n = {qs : ‖qs‖1 = 1, qs ≥ ε}, with ε > 0. We construct a smoothing
function for ∆ε

n by composing ds with a simple affine mapping φ(q̃s) = q̃s−ε
1−nε , which sets up a

one-to-one mapping between ∆n and ∆ε
n. The inverse of this function is φ−1(qs) = (1−nε)qs+ε.

We let dεs = ds(φ(q̃s)). We will show that dεs retains all nice DGF properties of ds.
Since ds is continuously differentiable, we can apply the chain rule to get

∇dεs(qs) = (1− nε)−1∇ds(q̃s). (5.1)

For our new DGF to be practical we need the conjugate and its gradient to be easily computable.
We show that this reduces to a simple transformation of the conjugate of ds:
Lemma 9. For a simplex DGF ds and its ε-perturbed variant dεs, the convex conjugate and its
gradient for dεs can be computed as

dε,∗s (g) = d∗s((1− nε)g) + 〈g, ε〉

∇dε,∗s (g) = (1− nε)∇d∗s((1− nε)g) + ε

Proof. Follows by the definition of conjugate and the chain rule for gradients.

Thus computing our conjugate reduces to computing the conjugate for ds coupled with simple
linear transformations. Hoda et. al. [79] showed that the conjugate for a treeplex based on a sum
over dilated simplex DGFs is easy to compute. Combined with Lemma 9, their result shows that

97

the conjugate of a treeplex DGF consisting of a sum over dilated perturbed simplex DGFs is easy
to compute, as long as the same holds for the individual conjugates.

We now focus on the case where ds is the entropy DGF for a simplex, that is, ds(qs) =∑
i q
s
i log(qsi). Formally, we get the following DGF for a perturbed treeplex:

dεQ(q) =
∑
j∈SQ

βjqpj
∑
i∈Ij

qi/qpj − ε
1− njεj

log

(
qi/qpj − ε
1− njεj

)
In the previous chapter we showed strong convexity and convergence results for the class of

dilated entropy functions for treeplexes. We now show how that result can be leveraged to prove
strong convexity bounds for the perturbed entropy DGF.
Theorem 16. The dilated perturbed entropy DGF on a treeplex with weights that satisfy the
following recurrence

αj = 1 + max
i∈Ij

∑
k∈Dij

αkβk
βk − αk

, ∀j ∈ SQ,

βj > αj, ∀i ∈ Ij and ∀j ∈ SQ s.t. bjQ > 0,

βj = αj, ∀i ∈ Ij and ∀j ∈ SQ s.t. bjQ = 0.

is strongly convex modulus 1 with respect to the `2 norm and modulus 1
MQ

with respect to the `1

norm.

Proof. We will show that the quadratic over the Hessian of dεQ can be expressed as a constant
times the quadratic over the unperturbed dilated entropy DGF for Q. This will allow us to invoke
the strong convexity results in Theorems 2 and 3.

Consider q ∈ ri (Qε) and any h ∈ Rn. For each j ∈ SQ and i ∈ Ij , the second-order partial
derivates of dεQ(·) with respect to qi are:

∇2
q2i
dεs(q) =

βj
(1− njεj)(qi − εqpj)

+
∑
k∈Dij

∑
l∈Ik

βkq
2
l

(1− nkεk)(ql − εqi)q2
i

(5.2)

Also, for each j ∈ SQ, i ∈ Ij , the second-order partial derivates with respect to qi, qpj are given
by:

∇2
qi,qpj

dεs(q) = ∇2
qpj ,qi

dεs(q) = − βjqi
(1− njε)(qi − εqpj)qpj

. (5.3)

Then equations (5.2) and (5.3) together imply

h>∇2ω(q)h =
∑
j∈SQ

∑
i∈Ij

[
h2
i

(
βj

(1− njεj)(qi − εqpj)

+
∑
k∈Dij

∑
l∈Ik

βkq
2
l

(1− nkεk)(ql − εqi)q2
i

−hihpj

2βjqi
(1− njε)(qi − εqpj)qpj

]
. (5.4)

98

Given j ∈ SQ and i ∈ Ij , we have pk = i for each k ∈ Dij and for any k ∈ Dij , there exists
some other j′ ∈ SQ corresponding to k in the outermost summation. Then we can rearrange the
following terms: ∑

j∈SQ

∑
i∈Ij

h2
i

∑
k∈Dij

∑
l∈Ik

βkq
2
l

(1− nkεk)(ql − εqi)q2
i

=
∑
j∈SQ

∑
i∈Ij

βj
h2
pj
q2
i

(1− njεj)(qi − εqpj)q2
pj

.

Using this equality in (5.4) leads to

(5.4) =
∑
j∈SQ

∑
i∈Ij

[
βjh

2
i

(1− njεj)(qi − εqpj)
+

βjh
2
pj
q2
i

(1− njεj)(qi − εqpj)q2
pj

− 2βjhihpjqi

(1− njε)(qi − εqpj)qpj

]

=
∑
j∈SQ

∑
i∈Ij

βjqi

(
h2i
qi

+
h2pj qi

q2pj
− 2hihpj

qpj

)
(1− njεj)(qi − εqpj)

(5.5)

Now we can view the three terms inside the brackets as a convex function of hi. First-
order optimality implies that this function is nonnegative. Furthermore, since qi ≥ εqpj we have

qi
qi−εqpj

≥ 1. Combined, this gives

(5.5) ≥
∑
j∈SQ

∑
i∈Ij

βj
(1− njεj)

(
h2
i

qi
+
h2
pj
qi

q2
pj

− 2hihpj
qpj

)

≥
∑
j∈SQ

βj

∑
i∈Ij

(
h2
i

qi
− 2hihpj

qpj

)
+
h2
pj

qpj

 (5.6)

The last step follows because qi
qpj

form simplex weights. By Lemma 1 in Kroer et. al. [103]
this is exactly the expression for the quadratic of the Hessian of the unperturbed dilated entropy
function on Q with weights βj . Since our weights satisfy the requirements in Theorems 1 and 2
of Kroer et. al., the unperturbed dilated entropy function with these weights is strongly convex
on Q, and thus we get (5.6) ≥ c‖h‖2 where c = 1 when ‖ · ‖ is the l2 norm (by Theorem 1 of
Kroer et. al.) and c = 1

MQ
when ‖ · ‖ is the l1 norm (by Theorem 2 of Kroer et. al.). By Fact 3

this proves our theorem.

Using Theorem 16 we can use the perturbed dilated entropy function to instantiate EGT.
Since the value of the perturbed entropy on ∆ε

n can be lower-bounded by log(n) exactly the
same way as with the unperturbed entropy, we can apply Theorem 3 of Kroer et. al. [103], to
bound EGT convergence rate as follows:
Theorem 17. For a perturbed treeplex Qε, the dilated perturbed entropy function with simplex
weights βj = MQ(2 +

∑dj
r=1 2r(MQj ,r − 1)) for each j ∈ SQ results in Ω

ϕ
≤ M2

Q2dQ+2 logm

where m is the dimension of the largest simplex ∆j for j ∈ SQ in the treeplex structure.

99

Theorem 17 immediately leads to the following convergence rate result for EGT equipped
with dilated perturbed entropy DGFs to solve perturbed EFGs.
Theorem 18. The EGT algorithm equipped with the dilated perturbed entropy DGF with weights
βj = 2 +

∑dj
r=1 2r(MXj ,r − 1) for all j ∈ SX and the corresponding setup for Y will return a ε-

accurate solution to the perturbed variant of (3.1) in at most the following number of iterations:(
max
i,j
|Ai,j|

√
M2
X2dX+2M2

Y2dY+2 logm

)
/ε,

where the matrix norm is given by:

‖A‖ = max
y∈Y
{‖Ay‖∗1 : ‖y‖1 = 1} = max

i,j
|Ai,j|.

To our knowledge, this is the first result for FOMs that compute an approximate Nash equilibrium
refinement.

5.3 Experiments
We conducted experiments to investigate the practical performance of our smoothing approach
when used to instantiate the EGT algorithm. We compare EGT with our smoothing approach
to EGT on an unperturbed polytope using the smoothing technique by Kroer et. al. [103] and
CFR+ [161]. We conducted the experiments on Leduc hold’em poker [157], a widely-used
benchmark in the imperfect-information game-solving community, except we tested on a larger
variant of the game in order to better test scalability. In our enlarged version, Leduc 5, the deck
consists of 5 pairs of cards 1 . . . 5, for a total deck size of 10. Each player initially pays one chip
to the pot, and is dealt a single private card. After a round of betting, a community card is dealt
face up. After a subsequent round of betting, if neither player has folded, both players reveal
their private cards. If either player pairs their card with the community card they win the pot.
Otherwise, the player with the highest private card wins. In the event that both players have the
same private card, they draw and split the pot. Kroer et. al. [103] point out that the theoretically
sound scale at which the overall weight on the DGF should be set is too conservative. We tune
an overall weight on each DGF by choosing the weight that performs best with EGT and ε = 0
among 1, 0.1, 0.05, 0.01, 0.005 on the first 20 iterations. We test our approach on ε-perturbed
polytopes of the strategy spaces for ε ∈ {0.1, 0.05, 0.01, 0.005, 0.001}.

The first experiment measures convergence to Nash equilibrium (Figure 5.2). The x-axis
shows the number of tree traversals performed per algorithm1. The y-axis shows the sum of
player regrets in the full (unperturbed) game. We find that the ε perturbations have almost no
effect on overall convergence rate until convergence within the perturbed polytope, at which
point the regret in the unperturbed game stops decreasing, as expected. This shows that our
approach can be utilized in practice: there is no substantial loss of convergence rate. Later in the
run once the perturbed algorithms have bottomed out, there is a tradeoff between exploitability
in the full game and refinement (i.e., better performance in low-probability information sets).

1Game tree traversals are equally expensive for all the algorithms studied. Treeplex traversal for each player is
slower in EGT than CFR due to requiring exponentiation exp(·), but the algorithms spend significantly less time
on treeplex traversals than tree traversals, so this difference between the algorithms is insignificant.

100

101 102 103 104 105

10−4

10−3

10−2

10−1

100

EGT(0)

EGT(0.1)
EGT(0.05)

EGT(0.001)

EGT(0.01)
EGT(0.005)

Number of tree traversals

ε-
ap

p
ro

x
im

at
io

n
of

N
E

in
Γ
0

Leduc5

Figure 5.2: Regret as a function of the number of iterations for EGT with various ε perturbations
(denoted in parentheses) and CFR+. Both axes are on a log scale.

The second experiment shows a measure of refinement convergence (Figure 5.3). The x-axis
shows the number of tree traversals performed. The y-axis shows the maximum regret at any
individual information set. Information set regret is calculated assuming that the information set
is reached with probability one and applying Bayes’ rule to get a distribution over nodes at the
information set; the regret is the increase in expected utility from best-responding throughout
all information sets in the subtrees rooted at the information set. Both CFR+ and unperturbed
EGT perform badly with respect to this measure of refinement. Both have maximum regret two
orders of magnitude worse than the perturbed approach. The maximum regret one can possibly
cause in an information set in Leduc 5 is 22, so CFR+ and unperturbed EGT also do poorly
in that sense. In contrast to this, we find that our ε-perturbed solution concepts converge to a
strategy with low regret at every information set. The choice of ε is important: for ε = 0.001, the
smallest perturbation, we see that it takes a long time to converge at low-probability information
sets, whereas we converge reasonably quickly for ε = 0.01 or ε = 0.005; for ε = 0.1 and
ε = 0.05 the perturbations are too large, and we end up converging with relatively high regret
(due to being forced to play every action with probability ε). Thus, within this set of experiments,
ε ∈ [0.005, 0.01] seems to be the ideal amount of perturbation.

5.4 Conclusions and future research

We studied the extension of FOMs to the computation of Nash-equilibrium refinements. We
developed a smoothing scheme based on perturbations of smoothing schemes for standard EFG
solving, and proved that the convergence rate is comparable to that of solving the original game
for Nash equilibrium. We performed numerical simulations where we showed that our approach
has an overall convergence rate that is comparable to that of state-of-the-art Nash equilibrium
methods. At the same time, we showed that our approach leads to solutions that have substan-
tially better performance in subsets of the game tree that are reached with low probability. This

101

0 1 · 105 2 · 105 3 · 105 4 · 105

0.1

1

EGT(0)

EGT(0.1)

EGT(0.05)

EGT(0.001)

EGT(0.01)

EGT(0.005)

Number of tree traversals

M
ax

in
fo
rm

at
io
n
se
t
re
gr
et

Leduc5

Figure 5.3: Maximum regret at any individual information set, as a function of the number of
iterations.

has benefits both in approximate Nash equilibrium finding (such approximation is necessary in
practice in large games) where some probabilities are low while possibly heading toward zero in
the limit, and exact Nash equilibrium computation where the low probabilities are actually zero.

Our work suggests several research directions. It would be interesting to find a way to sys-
tematically decrease the ε-perturbations over time, so that we eventually converge to an exact
Nash equilibrium in the full game. This requires at least two extensions. First, FOMs usually
assume static domains, whereas this would involve a slowly expanding domain. Second, the ε
would need to be decreased at a rate that is simultaneously fast enough that it converges at a
reasonable rate, and slow enough that we actually converge to a refinement.

We showed how to compute approximate EFPE refinements using methods that scale to large
games. It would be interesting to find a way to instantiate scalable methods such as FOMs
or CFR+ for other equilibrium refinement concepts as well. The perturbed polytope due to
Miltersen and Sørensen could be used to construct a notion of approximate QPE that would lead
to an optimization setup similar to ours. However, this will require constructing a DGF for the
perturbed-QPE polytope, which has ε-perturbations on the realization plans. Our approach relied
on ε-perturbations to the behavioral strategies, and so it is likely that a different DGF class is
needed to handle approximate QPE.

102

Chapter 6

Limited lookahead in sequential games

Limited lookahead has been a central topic in AI game playing for decades. To date, it has
been studied in single-agent settings and perfect-information games—specifically in well-known
games such as chess, checkers, Go, etc., as well as in random game tree models [20, 94, 128, 129,
140, 141, 143, 144]. In this chapter, we initiate the game-theoretic study of limited lookahead
in imperfect-information games. Such games are more broadly applicable to practical settings—
for example auctions, negotiations, security, cybersecurity, and medical settings—than perfect-
information games. Mirrokni et al. [122] conducted a game-theoretic analysis of lookahead, but
they consider only perfect-information games, and the results are for four specific games rather
than broad classes of games. Instead, we analyze the questions for imperfect information and
general-sum extensive-form games.

As is typical in the literature on limited lookahead in perfect-information games, we derive
our results for a two-agent setting. One agent is a rational player (Player R) trying to optimally
exploit a limited-lookahead player (Player L). Our results extend immediately to one rational
player and more than one limited-lookahead player, as long as the latter all break ties according to
the same scheme (statically, favorably, or adversarially—as described later in the chapter). This
is because such a group of limited-lookahead players can be treated as one from the perspective
of our results.

The type of limited-lookahead player we introduce is analogous to that in the literature on
perfect-information games. Specifically, we let the limited-lookahead player L have a node
evaluation function h that places numerical values on all nodes in the game tree. Given a strategy
for the rational player, at each information set at some depth i, Player L picks an action that
maximizes the expected value of the evaluation function at depth i + k, assuming optimal play
between those levels. Our study is the game-theoretic, imperfect-information generalization of
lookahead questions studied in the literature and we believe this makes it interesting in its own
right. However, the model also has applications such as biological games, where the goal is to
steer an evolution or adaptation process (which typically acts myopically with lookahead 1) [150]
and security games where opponents are often assumed to be myopic (as makes sense when the
number of adversaries is large [176]). Furthermore, investigating how well a rational player can
exploit a limited-lookahead player lends insight into the limitations of using limited-lookahead
algorithms in multiagent decision making.

We then design algorithms for finding an optimal strategy to commit to for the rational player.

103

We focus on this rather than equilibrium computation because the latter seems nonsensical in this
setting: the limited-lookahead player determining a Nash equilibrium strategy would require her
to reason about the whole game for the rational player’s strategy, which rings contrary to the
limited-lookahead assumption. Computing optimal strategies to commit to in standard rational
settings has previously been studied in normal-form games [45] and extensive-form games [110],
the latter implying some complexity results for our setting as we will discuss.

As in the literature on lookahead in perfect-information games, a potential weakness of our
approach is that we require knowing the evaluation function h (but make no other assumptions
about what information h encodes). In practice, this function may not be known. As in the
perfect-information setting, this can lead to the rational exploiter being exploited if their model
of h is sufficiently wrong.

6.1 Model of limited lookahead
We now describe our model of limited lookahead. We use the term optimal hypothetical play
to refer to the way the limited-lookahead agent thinks she will play when looking ahead from a
given information set. In actual play part way down that plan, she may change her mind because
she will then be able to see to a deeper level of the game tree.

Let k be the lookahead of Player L, and SkI,a the nodes at lookahead depth k below informa-
tion set I that are reachable (through some path) by action a. As in prior work in the perfect-
information game setting, Player L has a node-evaluation function h : S → R that assigns a
heuristic numerical value to each node in the game tree.

Given a strategy σR for the other player and fixed action probabilities for Nature, Player L
chooses, at any given information set I ∈ IL at depth i, a (possibly mixed) strategy whose sup-
port is contained in the set of actions that maximize the expected value of the heuristic function
at depth i+ k, assuming optimal hypothetical play by her (maxσl in the formula below). We will
denote this set by A∗I =

{a : a ∈ arg max
a∈AI

max
σL

∑
s∈I

πσ−L(s)

πσ−L(I)

∑
s′∈SkI,a

πσ(tsa, s
′)h(s′)},

where σ = {σL, σR} is the strategy profile for the two players. Here moves by Nature are
also counted toward the depth of the lookahead. The model is flexible as to how the rational
player chooses σR and how the limited-lookahead player chooses a (possibly mixed) strategy
with supports within the sets A∗I . For one, we can have these choices be made for both players
simultaneously according to the Nash equilibrium solution concept. As another example, we can
ask how the players should make those choices if one of the players gets to make, and commit
to, all her choices before the other.

6.2 Complexity
In this section we analyze the complexity of finding strategies according to these solution con-
cepts.

104

6.2.1 Nash equilibrium

Finding a Nash equilibrium when Player L either has information sets containing more than one
node, or has lookahead at least 2, is PPAD-hard [137]. This is because finding a Nash equilibrium
in a 2-player general-sum normal-form game is PPAD-hard [42, 48], and any such game can be
converted to a depth 2 extensive-form game (where the second player does not know what the
first player moved), where the general-sum payoffs are the evaluation function values.

If the limited-lookahead player only has singleton information sets and lookahead 1, an op-
timal strategy can be trivially computed in polynomial time in the size of the game tree for the
limited-lookahead player (without even knowing the other player’s strategy σR) because for each
of her information sets, we simply have to pick an action that has highest immediate heuristic
value. To get a Nash equilibrium, what remains to be done is to compute a best response for the
rational player, which can also be easily done in polynomial time [82].

6.2.2 Commitment strategies

Next we study the complexity of finding commitment strategies. The complexity depends on
whether the game has incomplete information (information sets that include more than one node)
for the limited-lookahead player, how far that player can look ahead, and how she breaks ties in
her action selection.
No information sets, lookahead 1, static tie-breaking As for the Nash equilibrium case, if
the limited-lookahead player only has singleton information sets and lookahead 1, an optimal
strategy can be trivially computed in polynomial time. We can use the same approach, except
that the specific choice among the actions with highest immediate value is dictated by the tie-
breaking rule. With this strategy in hand, finding a utility-maximizing strategy for PlayerR again
consists of computing a best response.
No information sets, lookahead 1, adversarial tie-breaking When ties are broken adversar-
ially, the choice of response depends on the choice of strategy for the rational player. The set
of optimal actions A∗s for any node s ∈ SL can be precomputed, since Player R does not affect
which actions are optimal. Player L will then choose actions from these sets to minimize the
utility of Player R. We can view the restriction to a subset of actions as a new game, where
Player L is a rational player in a zero-sum game. An optimal strategy for Player R to commit to
is then a Nash equilibrium in this smaller game. This is solvable in polynomial time by an LP
that is linear in the size of the game tree [165], and algorithms have been developed for scaling
to large games [64, 68, 79, 95, 98, 108, 179].
No information sets, lookahead 1, favorable tie-breaking In this case, Player L picks the
action from A∗s that maximizes the utility of Player R. Perhaps surprisingly, computing the
optimal solution in this case is harder than when facing an adversarial opponent.
Theorem 19. Computing a utility-maximizing strategy for the rational player to commit to is
NP-hard if the limited-lookahead player breaks ties in favor of the rational player.

Proof. We reduce from 3SAT. A picture illustrating our reduction is given in Figure 6.1, and a
description is given below.

105

Let the root node be a chance node. It chooses with equal probability between |C| child
nodes, each representing a clause. Each such descendant clause node is a singleton information
set belonging to Player L. Each clause node has three actions, representing the three literals in
the clause. Each such action leads to a node representing that literal. Player L gets the same
value from each action and is therefore indifferent. Player R acts at each literal node, with all
literal nodes representing the same variable being in an information set together. Thus, Player R
has an information set for each variable. At each variable information set, there is a true and false
action. For a given literal node in some variable information set, the true action leads a payoff of
1 if the literal requires the variable to be true, and 0 otherwise. Similarly, the false action leads
to a payoff of 1 if the literal requires the variable to be false, and 0 otherwise.

The decision problem is then: does there exist a strategy for Player R with expected payoff
1? This is the case if and only if the strategy for Player R represents a satisfying assignment to
V,C, as each clause must have some action available where a satisfying assignment for the literal
is chosen with probability 1.

N

1

t

0

f

v1

0

t

1

f

¬v2

0

t

1

f

¬v3

c1

1

t

0

f

v2

0

t

1

f

¬v3

0

t

1

f

¬v4

cm...

Figure 6.1: The game tree in our proof of Theorem 19. Dashed lines denote information sets.

No information sets, lookahead > 1, favorable tie-breaking It is NP-hard to compute an op-
timal strategy to commit to in extensive-form games when both players are rational [110]. That
was proven by reducing from knapsack to a 2-player perfect-information game of depth 4. This
immediately gives us two results: (1) finding an optimal strategy for Player R to commit to is
NP-hard if Player L has lookahead at least 4, and (2) computing an optimal strategy to commit
to for Player L is NP-hard even with lookahead 1. Their result also implies NP-hardness of com-
puting a strategy to commit to for the rational player, if our L player has lookahead of at least 4.
We tighten this to lookahead 2:
Theorem 20. Computing a utility-maximizing strategy for the rational player to commit to is
NP-hard if the limited lookahead player has lookahead at least 2.

Proof. We reduce from 3SAT. We use the same reduction as for Theorem 19, except that at each
clause node, we also add an “unsatisfied” action that leads directly to a leaf node with payoff 0
for Player R and payoff 2

3
for Player L.

For all leaf nodes under a variable node, we set the payoff to 1 for Player R, and 0 or 1 for
Player L, for when the leaf represents the ancestor literal being unsatisfied or satisfied, respec-
tively. The modifications are shown for a single clause in Figure 6.2.

The question is whether Player R can compute a strategy such that Player L selects a literal
action for each clause, assuming that Player L breaks ties such that the unsatisfied action is least

106

preferred. For a given variable, choosing a strategy strictly between 0, 2
3

for the two actions leads
to zero utility gain, since Player 2 will then always prefer the unsatisfied actions over any literal
belonging to the variable. Thus we can assume that Player R plays a pure strategy, since at most
one action can have its probability set high enough to yield utility gain. Now, for each clause,
Player L will only choose a literal action if that variable is set to the correct value to satisfy the
clause. Thus, if Player R can compute a strategy that gives expected utility 1, each clause node
must have at least one variable with a satisfying assignment.

c1

(0, 2
3)

unsat

1

t

0

f

v1

0

t

1

f

¬v2

0

t

1

f

¬v3

Figure 6.2: The clause modification in our proof of Theorem 20.

Limited-lookahead player has information sets When the limited lookahead player has infor-
mation sets, we show that computing a strategy to commit to is NP-hard:
Theorem 21. Computing a utility-maximizing strategy for the rational player to commit to is
NP-hard if the limited lookahead player has information sets of at least size 6.

Proof. We reduce from 3SAT. Let the root node be a chance node. It chooses with equal prob-
ability between all variable and clause pairs v, c such that v ∈ c. Player R acts at each child
node, being able to distinguish only which variable was chosen. For each information set, Player
1 can choose between a true and a false action, representing setting the associated variable to
true or false, respectively. At the next level where Player L is active. The information sets at the
level are constructed as follows. For each c ∈ C an information set is constructed, containing all
nodes representing Player R choosing both true and false for each v ∈ c. For each information
set representing some clause c, Player L has 4 actions. First is an unsat action, leading to payoff
0 for Player 1 and payoff 1 for Player L, no matter which node in the information set play has
reached. Second, an action for each variable v ∈ c leading to payoff 1 for Player R, and payoff
3 to Player L if play reached a node representing v with true or false chosen such that it satisfies
c, and payoff 0 for all other nodes in the information set.

We claim that there is a satisfying assignment if and only if Player 1 can commit to a strategy
with expected payoff 1. Let φ : V → {true, false} be a satisfying assignment to V,C. Let
Player R deterministically pick actions at each variable information set according to φ. If play
reaches a singleton node, Player L has only one action available, guarateeing payoff 1. If play
reaches some information set representing a clause c, Player L has expected payoff of 3 · 1

3
when

picking any action representing a satisfied literal l ∈ c, as the conditional probability of being
at a node representing v(l) is 1

3
, and Player R chooses the satisfying action with probability 1.

Since Player L breaks ties such that unsatisfied actions are least preferred, she will pick an action
representing a variable for each information set, yielding payoff 1 to Player R. This covers all
possible outcomes, giving an expected payoff of 1 to Player R.

107

Given some strategy for PlayerR that gives payoff 1 in expectation, we show how to construct
a satisfying assignment to V,C. For a strategy to have payoff 1, Player L must be choosing
variable actions at each information set for some clause c. This is the case if and only if Player
R selects the satisfying truth value with probability 1 for some v ∈ c, since the expected payoff
of taking a variable action is otherwise strictly smaller than the unsatisfied action. This leads
directly to a satisfying assignment, by choosing the corresponding value assignment for each
action that is selected with probability 1, and choosing an arbitrary assignment for every other
variable.

N

1

t

0

f

t

0

t

1

f

f

v1, c1
v1, cm

1

vn, cm
...

Figure 6.3: The game tree for our proof of Theorem 21.

6.3 Algorithms
In this section we will develop an algorithm for solving the hard commitment-strategy case.
Naturally its worst-case runtime is exponential. As mentioned in the introduction, we focus
on commitment strategies rather than Nash equilibria because Player L playing a Nash equi-
librium strategy would require that player to reason about the whole game for the opponent’s
strategy. Further, optimal strategies to commit to are desirable for applications such as biological
games [150] (because evolution is responding to what we are doing) and security games [176]
(where the defender typically commits to a strategy).

Since the limited-lookahead player breaks ties adversarially, we wish to compute a strategy
that maximizes the worst-case best response by the limited-lookahead player. For argument’s
sake, say that we were given A, which is a fixed set of pairs, one for each information set I
of the limited-lookahead player, consisting of a set of optimal actions A∗I and one strategy for
hypothetical play σIl at I . Formally, A =

⋃
I∈Il〈A∗I , σIl 〉. To make these actions optimal for

Player L, Player R must choose a strategy such that all actions inA are best responses according
to the evaluation function of Player L. Formally, for all action triples a, a∗ ∈ A, a′ /∈ A (letting
π(s) denote probabilities induced by σIL for the hypothetical play between I, a and s):∑

s∈SkI,a

π(s) · h(s) >
∑
s∈Sk

I,a′

π(s) · h(s) (6.1)

∑
s∈SkI,a

π(s) · h(s) =
∑

s∈Sk
I,a∗

π(s) · h(s) (6.2)

108

Player R chooses a worst-case utility-maximizing strategy that satisfies (6.1) and (6.2), and
Player L has to compute a (possibly mixed) strategy from A such that the utility of Player R
is minimized. This can be solved by a linear program:
Theorem 22. For some fixed choice of actions A, Nash equilibria of the induced game can
be computed in polynomial time by a linear program that has size O(|S|) + O(

∑
I∈IL |AI | ·

maxs∈S |As|k).
To prove this theorem, we first design a series of linear programs for computing best re-

sponses for the two players. We will then use duality to prove the theorem statement.
In the following, it will be convenient to change to matrix-vector notation, analogous to that

of von Stengel [165], with some extensions. Let A = −B be matrices describing the utility
function for Player R and the adversarial tie-breaking of Player L overA, respectively. Rows are
indexed by Player R sequences, and columns by Player L sequences. For sequence form vectors
x, y, the objectives to be maximized for the players are then xAy, xBy, respectively. Matrices
E,F are used to describe the sequence form constraints for Player R and L, respectively. Rows
correspond to information sets, and columns correspond to sequences. Letting e, f be standard
unit vectors of length |IR| , |IL|, respectively, the constraints Ex = e, Fy = f describe the se-
quence form constraint for the respective players. Given a strategy x for PlayerR satisfying (6.1)
and (6.2) for some A, the optimization problem for Player L becomes choosing a vector of y′

representing probabilities for all sequences in A that minimize the utility of Player R. Letting a
prime superscript denote the restriction of each matrix and vector to sequences in A, this gives
the following primal (6.3) and dual (6.4) LPs:

max
y′

(xTB′)y′

F ′y′ = f ′

y ≥ 0

(6.3)
min
q′

q′Tf ′

q′TF ′ ≥ xTB′ (6.4)

where q′ is a vector with |A| + 1 dual variables. Given some strategy y′ for Player L, Player R
maximizes utility among strategies that induce A. This gives the following best-response LP for
Player R:

max
x

xT (Ay′)

xTET = eT

x ≥ 0

xTH¬A − xTHA ≤ −ε
xTGA∗ = xTGA

(6.5)

where the last two constraints encode (6.1) and (6.2), respectively. The dual problem uses the
unconstrained vectors p, v and constrained vector u and looks as follows

min
p,u,v

eTp− ε · u

ETp+ (H¬A −HA)u+ (GA∗ −GA)v ≥ A′y′

u ≥ 0

(6.6)

109

We can now merge the dual (6.4) with the constraints from the primal (6.5) to compute a minimax
strategy: Player R chooses x, which she will choose to minimize the objective of (6.4),

min
x,q′

q′Tf ′

q′TF ′ − xTB′ ≥ 0

−xTET = −eT
x ≥ 0

xTHA − xTH¬A ≥ ε

xTGA − xTGA∗ = 0

(6.7)

Taking the dual of this gives

max
y′,p

−eTp+ ε · u

−ETp+ (HA −H¬A)u+ (GA −GA∗)v ≤ B′y′

F ′y′ = f ′

y, u ≥ 0

(6.8)

We are now ready to prove Theorem 22.

Proof. The LPs in Theorem 22 are (6.7) and (6.8). We will use duality to show that they provide
optimal solutions to each of the best response LPs. Since A = −B, the first constraint in (6.8)
can be multiplied by −1 to obtain the first constraint in (6.6) and the objective function can be
transformed to that of (6.6) by making it a minimization. By the weak duality theorem, we get
the following inequalities

q′Tf ′ ≥ xTB′y′; by LPs (6.3) and (6.4)

eTp− ε · u ≥ xTA′y′; by LPs (6.5) and (6.6)

We can multiply the last inequality by −1 to get:

q′Tf ′ ≥ xTB′y′ = −xTA′y′ ≥ −eTp+ ε · u (6.9)

By the strong duality theorem, for optimal solutions to LPs (6.7) and (6.8) we have equality in
the objective functions q′Tf ′ = −eTp+εuwhich yields equality in (6.9), and thereby equality for
the objective functions in LPs (6.3), (6.4) and for (6.5), (6.6). By strong duality, this implies that
any primal solution x, q′ and dual solution y′, p to LPs (6.7) and (6.8) yields optimal solutions to
the LPs (6.3) and (6.5). Both players are thus best responding to the strategy of the other agent,
yielding a Nash equilibrium. Conversely, any Nash equilibrium gives optimal solutions x, y′

for LPs (6.3) and (6.5). With corresponding dual solutions p, q′, equality is achieved in (6.9),
meaning that LPs (6.7) and (6.8) are solved optimally.

It remains to show the size bound for LP (6.7). Using sparse representation, the number of
non-zero entries in the matrices A,B,E, F is linear in the size of the game tree. The constraint
set xTHA − xTH¬A ≥ ε, when naively implemented, is not. The value of a sequence a /∈

110

A∗I is dependent on the choice among the cartesian product of choices at each information set
I ′ encountered in hypothetical play below it. In practice we can avoid this by having a real-
valued variable vdI (I

′) representing the value of I ′ in lookahead from I , and constraints vdI (I
′) ≥

vdI (I
′, a) for each a ∈ I ′, where vdI (I

′, a) is a variable representing the value of taking a at I ′.
If there are more information sets below I ′ where Player L plays, before the lookahead depth is
reached, we recursively constrain vdI (I

′, a) to be:

vdI (I
′, a) ≥

∑
Ǐ∈D

vdI (Ǐ) (6.10)

whereD is the set of information sets at the next level where Player L plays. If there are no more
information sets where Player L acts, then we constrain vdI (I

′, a):

vdI (I
′, a) ≥

∑
s∈Sk

I′,a

πσ−〈h(s) (6.11)

Setting it to the probability-weighted heuristic value of the nodes reached below it. Using this,
we can now write the constraint that a dominates all a′ ∈ I, a′ /∈ A as:∑

s∈SkI,a

πσ(s)h(s) ≥ vdI (I)

There can at most be O(
∑

I∈IL |AI |) actions to be made dominant. For each action at some
information set I , there can be at most O(maxs∈S |As|min{k,k′}) entries over all the constraints,
where k′ is the maximum depth of the subtrees rooted at I , since each node at the depth the player
looks ahead to has its heuristic value added to at most one expression. For the constraint set
xTGA−xTGA∗ = 0, the choice of hypothetical plays has already been made for both expressions,
and so we have the constraint ∑

s∈SkI,a

πσ(s)h(s) =
∑
s∈Sk

I,a′

πσ
′
(s)h(s)

for all I ∈ IL, a, a′ ∈ I, {a, σL}, {a′, σ〈,′} ∈ A, where

σ = {σ−L, σL}, σ′ = {σ−L, σ〈,′}

There can at most be
∑

I∈IL |AI |
2 such constraints, which is dominated by the size of the previ-

ous constraint set.
Summing up gives the desired bound.

In reality we are not given A. To find a commitment strategy for Player R, we could loop
through all possible structures A, solve LP (6.7) for each one, and select the one that gives
the highest value. We now introduce a mixed-integer program (MIP) that picks the optimal in-
duced game A while avoiding enumeration. The MIP is given in (6.12). We introduce Boolean
sequence-form variables that denote making sequences suboptimal choices. These variables
are then used to deactivate subsets of constraints, so that the MIP branches on formulations

111

of LP (6.7), i.e., what goes into the structure A. The size of the MIP is of the same order as that
of LP (6.7).

min
x,q,z

qTf

qTF ≥ xTB − zM
Ex = e

xTHA ≥ xTH¬A + ε− (1− z)M

xTGA = xTGA∗ ± (1− z)M∑
a∈AI

za ≥ za′

x ≥ 0, z ∈ {0, 1}

(6.12)

The variable vector x contains the sequence form variables for Player R. The vector q is
the set of dual variables for Player L. z is a vector of Boolean variables, one for each Player L
sequence. Setting za = 1 denotes making the sequence a an inoptimal choice. The matrix M is
a diagonal matrix with sufficiently large constants (e.g. the smallest value in B) such that setting
za = 1 deactivates the corresponding constraint. Similar to the favorable-lookahead case, we
introduce sequence form constraints

∑
a∈AI za ≥ za′ where a′ is the parent sequence, to ensure

that at least one action is picked when the parent sequence is active. We must also ensure that
the incentivization constraints are only active for actions in A:

xTHA − xTH¬A ≥ ε− (1− z)M (6.13)

xTGA − xTGA∗ = 0± (1− z)M

for diagonal matrices M with sufficiently large entries. Equality is implemented with a pair of
inequality constraints {≤,≥}, where ± denotes adding or subtracting, respectively.

The values of each column constraint in (6.13) is implemented by a series of constraints.
We add Boolean variables σIL(I ′, a′) for each information set action pair I ′, a′ that is potentially
chosen in hypothetical play at I . Using our regular notation, for each a, a′ where a is the action
to be made dominant, the constraint is implemented by:∑

s∈SkI,a

vi(s) ≥ vdI (I), vi(s) ≤ σIL(I ′, a′) ·M (6.14)

where the latter ensures that vi(s) is only non-zero if chosen in hypothetical play. We further
need the constraint vi(s) ≤ πσ−L(s)h(s) to ensure that vi(s), for a node s at the lookahead depth,
is at most the heuristic value weighted by the probability of reaching s.

6.4 Experiments
In this section we experimentally investigate how much utility can be gained by optimally ex-
ploiting a limited-lookahead player. We conduct experiments on Kuhn poker [106], a canonical
testbed for game-theoretic algorithms, and a larger simplified poker game that we call KJ. Kuhn

112

poker consists of a three-card deck: king, queen, and jack. Each player antes 1. Each player
is then dealt one of the three cards, and the third is put aside unseen. A single round of betting
(p = 1) then occurs. In KJ, the deck consists of two kings and two jacks. Each player antes 1.
A private card is dealt to each, followed by a betting round (p = 2), then a public card is dealt,
follower by another betting round (p = 4). If no player has folded, a showdown occurs. For both
games, each round of betting looks as follows:
• Player 1 can check or bet p.

If Player 1 checks Player 2 can check or raise p.
− If Player 2 checks the betting round ends.
− If Player 2 raises Player 1 can fold or call.
· If Player 1 folds Player 2 takes the pot.
· If Player 1 calls the betting round ends.

If Player 1 raises Player 2 can fold or call.
− If Player 2 folds Player 1 takes the pot.
− If Player 2 calls the betting round ends.

In Kuhn poker, the player with the higher card wins in a showdown. In KJ, showdowns have two
possible outcomes: one player has a pair, or both players have the same private card. For the
former, the player with the pair wins the pot. For the latter the pot is split. Kuhn poker has 55
nodes in the game tree and 13 sequences per player. The KJ game tree has 199 nodes, and 57
sequences per player.

To investigate the value that can be derived from exploiting a limited-lookahead opponent,
a node evaluation heuristic is needed. In this work we consider heuristics derived from a Nash
equilibrium. For a given node, the heuristic value of the node is simply the expected value of
the node in (some chosen) equilibrium. This is arguably a conservative class of heuristics, as a
limited-lookahead opponent would not be expected to know the value of the nodes in equilibrium.
Even with this form of evaluation heuristic it is possible to exploit the limited-lookahead player,
as we will show. We will also consider Gaussian noise being added to the node evaluation
heuristic, more realistically modeling opponents who have vague ideas of the values of nodes in
the game. Formally, let σ be an equilibrium, and i the limited-lookahead player. The heuristic
value h(s) of a node s is:

h(s) =

{
ui(s) if s ∈ Z∑

a∈As σ(s, a)h(tsa) otherwise
(6.15)

We consider two different noise models. The first adds Gaussian noise with mean 0 and standard
deviation γ independently to each node evaluation, including leaf nodes. Letting µs be a noise
term drawn from N (0, γ): ĥ(s) = h(s) + µs. The second, more realistic, model adds error
cumulatively, with no error on leaf nodes:

h̄(s) =

{
ui(s) if s ∈ Z[∑

a∈As σ(s, a)h̄(tsa)
]

+ µs otherwise
(6.16)

Using MIP (6.12), we computed optimal strategies for the rational player in Kuhn poker and
KJ. The MIP models were solved by CPLEX version 12.5. The results are given in Figure 6.4.

113

The x-axis is the noise parameter γ for ĥ and h̄. The y-axis is the corresponding utility for
the rational player, averaged over at least 1000 runs per tuple 〈game, choice of rational player,
lookahead, standard deviation〉. Each figure contains plots for the limited-lookahead player hav-
ing lookahead 1 or 2, and a baseline for the value of the game in equilibrium without limited
lookahead.

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Standard deviation

U
ti
lit

y

Lookahead 1

Lookahead 2

Value of game

(a) Kuhn Player 1, ĥ

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Standard deviation

U
ti
lit

y

Lookahead 1

Lookahead 2

Value of game

(b) Kuhn Player 2, ĥ

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

Standard deviation

U
ti
lit

y

Lookahead 1

Lookahead 2

Value of game

(c) KJ Player 1, ĥ

0 0.2 0.4 0.6 0.8 1
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Standard deviation

U
ti
lit

y

Lookahead 1

Lookahead 2

Value of game

(d) KJ Player 2, ĥ

Figure 6.4: Winnings in Kuhn poker and KJ for the rational player as Player 1 and 2, respectively,
for varying per-node independent evaluation function noise. Error bars show standard deviation.

Figures 6.4a and b show the results for using evaluation function ĥ in Kuhn poker, with the
rational player in plot a and b being Player 1 and 2, respectively. For rational Player 1, we see that,
even with no noise in the heuristic (i.e., the limited-lookahead player knows the value of each
node in equilibrium), it is possible to exploit the limited-lookahead player if she has lookahead
1. (With lookahead 2 she achieves the value of the game.) For both amounts of lookahead, the
exploitation potential steadily increases as noise is added.

114

Figures 6.4c and d show the same variants for KJ. Here, lookahead 2 is worse for the
limited-lookahead player than lookahead 1. To our knowledge, this is the first known imperfect-
information lookahead pathology. Such pathologies are well known in perfect-information games [7,
128, 140], and understanding them remains an active area of research [117, 129, 174]. This ver-
sion of the node heuristic does not have increasing visibility: node evaluations do not get more
accurate toward the end of the game. Our experiments on KJ with h̄ in Figures 6.6 g and h do
not have this pathology, and h̄ does have increasing visibility.

Figure 6.5 shows a simple subtree (that could be attached to any game tree) where deeper
lookahead can make the agent’s decision arbitrarily bad, even when the node evaluation function
is the exact expected value of a node in equilibrium.

P1 P2∗

P1∗

α

−α1

0

01

0

0

Figure 6.5: A subtree that exhibits lookahead pathology.

We now go over the example of Figure 6.5. Assume without loss of generality that all payoffs
are positive in some game. We can then insert the subtree in Figure 6.5 as a subgame at any node
belonging to P1, and it will be played with probability 0 in equilibrium, since it has expected
value 0. Due to this, all strategies where Player 2 chooses up can be part of an equilibrium.
Assuming that P2 is the limited-lookahead player and minimizing, for large enough α, the node
labeled P1∗ will be more desirable than any other node in the game, since it has expected value
−α according to the evaluation function. A rational player P1 can use this to get P2 to go down
at P2∗, and then switch to the action that leads to α. This example is for lookahead 1, but we can
generalize the example to work with any finite lookahead depth: the node P1∗ can be replaced
by a subtree where every other leaf has payoff 2α, in which case P2 would be forced to go to the
leaf with payoff α once down has been chosen at P2∗.

Figures 6.6e and f show the results for Kuhn poker with h̄. These are very similar to the
results for ĥ, with almost identical expected utility for all scenarios. Figures 6.4g and h, as
previously mentioned, show the results with h̄ on KJ. Here we see no abstraction pathologies,
and for the setting where Player 2 is the rational player we see the most pronounced difference
in exploitability based on lookahead.

6.5 Conclusions and future research
This chapter initiated the study of limited lookahead in imperfect-information games. We char-
acterized the complexity of finding a Nash equilibrium and optimal strategy to commit to for
either player. Figure 6.7 summarizes those results.

We then designed a MIP for computing optimal strategies to commit to for the rational player.
The problem was shown to reduce to choosing the best among a set of two-player zero-sum
games (the tie-breaking being the opponent), where the optimal strategy for any such game can

115

(a) Kuhn Player 1, h̄

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Standard deviation

U
ti
lit

y

Lookahead 1

Lookahead 2

Value of game

(b) Kuhn Player 2, h̄

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

Standard deviation

U
ti
lit

y

Lookahead 1

Lookahead 2

Value of game

(c) KJ Player 1, h̄

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Standard deviation

U
ti
lit

y

Lookahead 1

Lookahead 2

Value of game

(d) KJ Player 2, h̄

Figure 6.6: Winnings in Kuhn poker and KJ for the rational player as Player 1 and 2, respectively,
for varying cumulative evaluation function noise. Error bars show standard deviation.

be computed with an LP. We then introduced a MIP that finds the optimal solution by branching
on these games.

We experimentally studied the impact of limited lookahead in two poker games. We demon-
strated that it is possible to achieve large utility gains by exploiting a limited-lookahead oppo-
nent. As one would expect, the limited-lookahead player often obtains the value of the game
if her heuristic node evaluation is exact (i.e., it gives the expected values of nodes in the game
tree for some equilibrium)—but we provided a counterexample that shows that this is not suffi-
cient in general. Finally, we studied the impact of noise in those estimates, and different looka-
head depths. While lookahead 2 usually outperformed lookahead 1, we uncovered an imperfect-
information game lookahead pathology: deeper lookahead can hurt the limited-lookahead player.
We demonstrated how this can occur with any finite depth of lookahead, even if the limited-

116

Information sets

{PPAD,NP}-hardLookahead depth > 1

Solution concept

Tie-breaking rule

NP-hardP

Adversarial, static Favorable
P

Equilibrium Commitment
{PPAD,NP}-hard

yes no

no yes

Figure 6.7: Our complexity results. {PPAD,NP}-hard indicates that finding a Nash equilibrium
(optimal strategy to commit to) is PPAD-hard (NP-hard). P indicates polytime.

lookahead player’s node evaluation heuristic returns exact values from an equilibrium.
Our algorithms in the NP-hard adversarial tie-breaking setting scaled to games with hun-

dreds of nodes. For some practical settings more scalability will be needed. There are at least
two exciting future directions toward achieving this. One is to design faster algorithms. The
other is designing abstraction techniques for the limited-lookahead setting. As noted in Chap-
ter 4, abstraction plays an important role in large-scale game solving [148]. Limited-lookahead
games have much stronger structure, especially locally around an information set, and it may be
possible to utilize that to develop abstraction techniques with significantly stronger solution qual-
ity bounds. Also, leading practical game abstraction algorithms (e.g., [64]), while theoretically
unbounded, could immediately be used to investigate exploitation potential in larger games.

In work that was subsequent to the work presented in this chapter, Brown et al. [30] develop
an approach for depth-limited subgame solving. It would be interesting to relate our results on
limited lookahead to that paper.

In the next section we present results on Robust Stackelberg equilibria both with and without
limited lookahead, thus extending the results of this section to a robust setting.

117

118

Chapter 7

Robust Stackelberg equilibria

In a Stackelberg equilibrium, a leader commits to a strategy first, and then a follower chooses a
strategy for herself. By committing to a strategy the leader may gain utility by guiding the out-
come, in spite of the follower choosing a best response. This was originally studied in the context
of using pure strategies to commit to quantity [47] or price [12] in deterring market entry [163].
Further power can be gained by committing to a mixed (i.e., randomized) strategy [45, 167].
Stackelberg equilibria have become important as a solution concept in computational game the-
ory, largely inspired by practical problems such as security settings, where the leader is a defender
who picks a mixed (i.e., potentially randomized) strategy first, and then the follower who is the
attacker decides where to attack, if at all.

Most work on Stackelberg equilibria has focused on normal-form (aka. matrix-form) games.
Conitzer and Sandholm [46] studied the problem of computing an optimal strategy to commit to
in normal-form games. That line of work has been extended to many security-game applications.
In practice, there is typically uncertainty about the opponent’s payoffs. In normal-form games
this has been studied as Bayesian Stackelberg games where the players have private information
about their own payoffs, and there is common knowledge of the prior distribution over the pay-
offs [45, 138, 160]. As an alternative, the robust (distribution-free) approach has been suggested
for security games: bounds are assumed on the follower’s payoffs [91, 136].

Extensive-form games (EFGs)—i.e., tree-form games—are a very general game representa-
tion language. EFGs are exponentially more compact and also more expressive than normal-form
games. Letchford and Conitzer [110] study how to compute an optimal strategy to commit to in
EFGs and prove hardness results under several assumptions about the game structure. Generally,
they show that finding an SSE in an EFG is NP-hard. Furthermore, because Bayesian games are
a special case of EFGs with Nature moves the results of De Nittis et al. [50] imply Poly-APX
hardness for EFGs with Nature moves as well. In robust settings, such as ours, computing an
optimal strategy to commit to is already NP-hard for normal-form games with interval uncer-
tainty and inapproximable with a discrete uncertainty set [111]. Bošanskỳ et al. [19] provide
further results specifically for perfect-information EFGs. Bošanskỳ and Čermák [18] develop a
mixed-integer program (MIP) for computing a Stackelberg strategy, and Čermák [33] develop an
iterative approach based on upper-bounding solutions from extensive-form correlated Stackel-
berg equilibria.

To our knowledge, we are the first to consider uncertainty about the opponent in Stackelberg

119

strategies for EFGs. This is important because EFGs are a powerful representation language and
because in practice there is typically uncertainty about the opponent. We take a robust approach
to modeling this uncertainty. We introduce robust Stackelberg equilibria for EFGs, where the
uncertainty is about the opponent’s payoffs, as well as ones where the opponent has limited
lookahead and the uncertainty is about the opponent’s node evaluation function.

A robust Stackelberg EFG with uncertainty can be equivalently represented by a robust
normal-form game. Letchford et al. [111] studied robust normal-form games from the perspec-
tive of optimizing against a worst-case type of the follower, as well as interval uncertainty on
payoffs. They show hardness results and develop a MIP for computing optimal leader strategies.
However, this equivalent representation requires an exponential blowup in problem size, and is
thus not appropriate for most EFGs (their hardness results mentioned previously show hardness
of our setting however). Instead we tackle the EFG directly.

We develop a new MIP for the deterministic limited-lookahead setting. We then extend
the MIP to the robust setting for Stackelberg equilibrium under unlimited and under limited
lookahead by the opponent. We show that for the specific case of interval uncertainty about the
opponent’s payoffs (or about the opponent’s node evaluations in the case of limited lookahead),
robust Stackelberg equilibria can be computed with a MIP that is of the same asymptotic size as
that for the deterministic setting.

Our results for robust Stackelberg equilibria in EFGs are relevant to security-game settings
with sequential interactions, where EFG models can more compactly represent certain games, as
compared to a normal-form representation [18]. Robust models are important in security games,
where opponent models often have uncertainty, both in standard security games [89, 91, 136],
and green security games [135].

Our limited-lookahead results are useful for settings where it is not always desirable to model
adversaries as fully rational, but as having limited lookahead capability. This includes settings
such as biological games, where the goal is to steer an evolutionary process or an adaptation
process which typically acts myopically without lookahead [99, 150] and security games where
opponents are often assumed to be myopic (which can be especially well motivated when the
stakes are low such as in fare evasion [176] or in the case of opportunistic criminals [147, 178]).
Our model of limited lookahead is an extension of that of Kroer and Sandholm [97] to a robust
setting. Kroer and Sandholm [97] gave a MIP for computing an optimal strategy to commit to in
the deterministic setting. We show an alternative MIP for computing such a strategy to commit
to, which we then extend to the robust setting.

Finally, the question of robust variants of optimization problems has been studied extensively
in the optimization literature [9, 10, 14]. In that literature, the assumption is that we are given
some nominal mathematical program, and then the robust variant requires that each constraint in
the nominal program holds with respect to every instantiation of a set of uncertainty parameters.
This makes the setting substantially different from our setting, where there is no nominal pro-
gram: the best response of the follower does not need to be a best response for every uncertainty
instantiation (this would be the equivalent to robust optimization, and often infeasible), but rather
the best response is chosen after the uncertainty parameters are chosen.

120

7.1 Stackelberg setting
In this section we focus on Stackelberg EFGs. These are two-player games where there is a
designated leader and a designated follower rather than the usual two players. We will focus
on settings where the leader first commits to a strategy that the follower observes. The follower
then plays a best response to the leader strategy. A strong Stackelberg equilibrium (SSE) is a
pair of strategies rl, rf such that rf is a best response to rl and rl is a solution to the optimization
problem of maximizing u(rl, rf) over rl and rf , subject to the constraint that rf is a best response
to rl. This definition implies the common assumption that the follower breaks ties in favor of
Player l [46, 138, 160]. A weak Stackelberg equilibrium assumes minimization over the set of
optimal best responses.

In this section we will investigate settings where there is uncertainty about the follower’s
utility function uf . Specifically, the follower’s utility can be any function from some given
uncertainty set Uf consisting of functions that map from the set of leaf nodes to R. We leave the
exact structure of Uf undefined for now; in our algorithmic section we show that the case where
each leaf has independent interval uncertainty can be solved using a MIP.

It will be convenient to have function expressing expected values for a given pair of se-
quences. Given two sequences σl and σf , we let

gl(σl, σf) =
∑

h∈Z;σf (h)=σf ;σl(h)=σl

π0(h)ul(h),

g
uf
f (σl, σf) =

∑
h∈Z;σf (h)=σf ;σl(h)=σl

π0(h)uf (h)

be the expected utilities, for the leader and follower respectively, over leaf nodes that are reached
with σf , and σl as the corresponding last player sequences. The function for the follower guff
depends on the choice of utility function uf , whereas we always know the utility function for the
leader.1 Given two realization plans rl, rf and a utility function ui, we overload notation slightly
and let the expected value for Player i induced by the realization plans be denoted by

ui(rl, rf) =
∑

σl∈Σl,σf∈Σf

rl(σl)rf (σf)gi(σl, σf).

7.2 Limited-lookahead model
We will also consider a limited-lookahead variant of EFGs. There has been a significant amount
of work on limited lookahead in perfect-information games (such as chess and checkers) in the AI
community. Modeling limited lookahead in imperfect-information games (that have information
sets) is more intricate. A model for that was presented recently [97], and we use that model. In
that model, the follower can only look ahead k steps. He uses a node-evaluation function ũ :

1In Stackelberg equilibrium, the follower does not have to be concerned about the leader’s utility function be-
cause the leader commits to his strategy and declares his strategy to the follower.

121

H → R that associates a heuristic utility with any node in the game tree. At any information set
I ∈ If , the follower has a set of nodes H̃I ⊂ H called the lookahead frontier. When choosing his
action at information set I , the follower chooses an action that maximizes the expected value of
ũ, assuming that they choose actions so as to maximize ũ at any follower information sets reached
before H̃I . We let gI(σl, σf) be the expected value over lookahead-frontier nodes according to the
node-evaluation function (analogous to gi for the setting without limited lookahead). We assume
that for any information set I ′ ∈ If that comes after I , all the nodes of I ′ are entirely contained
in the set of nodes that precede H̃I , or entirely disjoint with the set of preceding nodes (this is
in order to avoid any information sets belonging to the follower being only partially contained in
the hypothetical decision making under I). We let the set of information sets that come after I
such that their nodes are all preceding H̃I be denoted by II . We ΣI

f ⊆ Σf denote the set of all
sequences beneath a given information set I that are within the lookahead frontier.

In the prior chapter on limited lookahead in imperfect-information games [97] it was assumed
that the leader knows the follower’s node evaluation function exactly. That seems quite unreal-
istic. Therefore, we will extend the work to the case where the leader has uncertainty about the
follower’s node evaluation function.

7.3 Best responses and how to compute them
Our solution concept will depend on the notion of a best response for the follower. For a given
leader strategy rl and utility function uf ∈ Uf , the set of best responses is

BR(rl, uf) = {rf : uf (rl, rf) = max
r′f

uf (rl, r
′
f)}.

Given a strategy rl for the leader and a utility function uf , the value of each information set
can be computed with the following feasibility program (this holds outside of a leader-follower
setting as well):

vinff (σf) = sσf +
∑
I′∈If

σf (I′)=σf

vI′ +
∑
σl∈Σ

rl(σl)g
uf
f (σl, σf) ∀I ∈ If , σf = σf (I) (7.1)

0 ≤ sσf ≤M(1− bf (σf)) ∀σf ∈ Σf (7.2)∑
a∈A(I) bf (σa) = 1 ∀I ∈ If , σf = σf (I) (7.3)

bf (σf) ∈ {0, 1} ∀σf ∈ Σf (7.4)

The variables vI represent the value of a given information set I , bf (σf) represents whether σf
is a best response at its respective information set, and sσf represents how much less utility the
follower gets by following the sequence σf rather than the optimal action at inf(σf). It is easy to
show via induction that the feasibility MIP given in equations (7.1-7.4) computes a best response
to rl and the variables vI represent the values of information sets I when best-responding to rl:
For the base case of an information set with no future information sets belonging to the follower,
disregarding sσf , the RHS of (7.1) clearly represents the value of choosing σf at the information
set. Now, since all sσf are nonnegative and (7.1) is an equality, it follows that vI upper bounds

122

the value of each individual sequence at I . But since sσf = 0 for some σf , it must be an equality
for said σf . Thus vI upper bounds the value of all sequences at I , but is also equal to the value
of some sequence, and therefore it represents the value when best responding. Applying the
inductive hypothesis to any information set I that has future information sets belonging to the
follower reduces the expression for vI to one that is equivalent to the base case.

7.4 Extension to uncertainty about the opponent
We now extend the EFG model to incorporate uncertainty about the follower’s utility function.
We will take a robustness approach, where we care about the worst-case instantiation of the
uncertainty set Uf . For limited-lookahead EFGs we will analogously consider uncertainty over
the node-evaluation function.

Due to the uncertainty (represented by the uncertainty set Uf), defining a Stackelberg equi-
librium is not straightforward. We take the perspective that a robust Stackelberg solution is a
strategy for the leader that maximizes the leader utility in the worst-case instantiation of Uf :
Definition 14. A robust strong Stackelberg solution (RSSS) is a realization plan rl such that

rl ∈ arg max
r′l∈Rl

inf
uf∈Uf

max
r′f∈BR(rl,uf)

ul(rl, r
′
f).

The robustness is represented by the minimization over Uf . Intuitively, if the actual instan-
tiation of uf does not take on the minimizer over Uf , the leader can only receive better utility,
so we are computing the maximin utility against the robustness. Typically one is interested in
finding an RSSS strategy for the leader, but we nonetheless define the entire equilibrium concept
as well:
Definition 15. A robust strong Stackelberg equilibrium (RSSE) is a realization plan rl and a
(potentially uncountably large) set of realization plans {ruff : ∀uf ∈ Uf} such that rl is an RSSS
and ruff ∈ BR(rl, uf) for all uf ∈ Uf .

Whether an RSSE is even practical to represent is highly dependent on the structure of the
specific game and uncertainty sets at hand, as it would frequently need to be represented para-
metrically. On the other hand, once we have rl, the best response for a specific uf can easily be
computed. One method for doing this is to first compute the follower value u∗ under uf when
best responding to rl (e.g., via a single tree traversal), and then solving the linear program (LP)
that consists of maximizing the leader’s utility over the set of follower strategies that achieve u∗

(this can be done by adding a single constraint to the sequence-form best-response LP given by
von Stengel [165]).

One might consider applying the robustness after the follower chooses her strategy (in a
sense, swapping the inner max and min). In this case, we cannot represent this as a minimization
on the inside since the set of best responses is defined with respect to the choice of uf . Arguably
the most natural way to apply robustness after the best response of the follower would be to ask
for a pair of strategies rl, rf such that rf is a best response no matter the instantiation of uf . This
definition of robustness would allow us to apply standard robust optimization techniques to any
Stackelberg MIP. However, this definition has several drawbacks. First, if we are applying a ro-
bust model, we are often interested in maximizing our worst-case utility. By applying robustness

123

after choosing rf , we would not be doing that, but instead would be maximizing utility subject to
the constraint that we want to be sure what the follower response is. Second, a robust Stackelberg
equilibrium defined that way would not necessarily exist: if there is overlap between the range
of possible utilities associated with a pair of actions at some information set, there would be no
way to guarantee that a single action will always be a best response.

7.5 MIP for full-certainty setting

We now give a MIP for computing a Stackelberg equilibrium in a game where the follower has
limited lookahead.

max
p,r,v,s

∑
z∈Z

p(z)ul(z)π0(z) (7.5)

vI = sσf +
∑

I′∈If :σf (I′)=σf

vI,I′ +
∑
σl∈Σl

rl(σl)gI(σl, σf) ∀σf ∈ Σf , I = inff (σf) (7.6)

vI,inf(σf) = sIσf +
∑

I′∈If :σf (I′)=σf

vI,I′ +
∑
σl∈Σl

rl(σl)gI(σl, σf) ∀I ∈ I, σf ∈ ΣI
f (7.7)

ri(∅) = 1 ∀i ∈ {l, f} (7.8)

ri(σi) =
∑

a∈A(Ii)
ri(σia) ∀i ∈ {l, f}, Ii ∈ Ii (7.9)

0 ≤ sσf ≤ (1− rf (σf))M ∀σf ∈ Σf (7.10)

0 ≤ sIσf ≤
(
1− rIf (σf)

)
M ∀I ∈ If , σIf ∈ ΣI

f (7.11)

rf (σf) ∈ {0, 1} ∀σf ∈ Σf (7.12)

rIf (σf) ∈ {0, 1} ∀I ∈ Ifσf ∈ ΣI
f (7.13)

0 ≤ p(z) ≤ ri(σi(z)) ∀i ∈ {l, f}, z ∈ Z (7.14)

1 =
∑

z∈Z p(z)π0(z) (7.15)

0 ≤ rl(σl) ≤ 1 ∀σl ∈ Σl (7.16)

This MIP is an extension of the MIP given by Bošanskỳ and Čermák [18] to the limited-lookahead
setting of Kroer and Sandholm [97]. Eq. (7.5) is the expected leader value over leaf nodes. Equa-
tions (7.6) to (7.13) set up best-response constraints for each follower information set, as well as
for each pair of information sets I, I ′ such that I ′ ∈ II (these constraints are completely analo-
gous to (7.1)-(7.4) except that the constraints involving vI,I′ must be set up for each I in order
to represent best responses when applying the lookahead evaluation function at I). Equations
(7.14) and (7.15) ensure that the probabilities over leaves are correct. Finally (7.8), (7.9), and
(7.16) ensure that rl is a valid leader strategy.

124

7.6 MIP with uncertainty about follower payoff
We now move to the computation of RSSS for the setting with uncertainty about follower payoff
but no limited lookahead. We will consider a particular class of uncertainty functions: interval
uncertainty on each leaf payoff. More concretely, the uncertainty set will be

Uf = {uf : uf (h) ∈ [L(h), U(h)],∀h ∈ Z},

where L(h), U(h) are given upper and lower bounds on the interval that the payoff for leaf node
h must be chosen from.

One issue that now arises is that we may not be able to make a single action optimal: if the
maximum-to-minimum utility intervals for two sequences are guaranteed to overlap we cannot
make either sequence the optimal choice for the follower player. Instead, we allow choosing
both sequences, and we then assume that the leader player receives the minimum over the two.
Intuitively, this can be thought of as a zero-sum game played within the space of actions made
optimal for the follower player (a similar technique was used in Kroer and Sandholm [97]). More
generally, we may have k > 1 actions at a given information set that can all be made optimal
under various instantiations of the utility function. We now introduce a set-valued function that,
under some given strategy for the follower rf , returns the set of actions at a given follower
information set that can be made optimal under some instantiation of the utility function, given
the tie-breaking rule,

AI(rf) = {a ∈ AI : @ a′ ∈ AI , vLI (a′) ≥ vUI (a)}.

For any a ∈ AI(rf), the minimization over the uncertainty can choose an instantiation making
a the only best-response action at I . Conversely, for a /∈ AI(rf), even if the utility function is
chosen to maximize the value of action a, there exists some other action a′ whose worst-case
instantiation is at least as good; if a leads to better leader utility than a′ then the minimization
over utility functions will not allow them to be tied, and if a leads to worse utility than a′, then
even if a utility function causing a tie is chosen, the best-response tie-breaking in favor of the
leader means that a′ will be chosen. Thus, a′ (or some other action) is always chosen over a.2

The function AI(rf) is illustrated in Figure 7.1. The general intuition can be seen from the
figure: the dotted line denotes the split between potentially optimal actions (black bars) and
actions that cannot be made optimal through any utility-function choice (opaque bars). The
dotted line is touched by interval end-points from both sets: this means that the two actions
could be tied, but the lower-value would never be chosen, since it is either worse for the leader,
in which case the tie-breaking does not choose it even in case of a tie, or if it is better then the
minimization over the intervals will break the tie and make it inoptimal.

The intuition behind our robust MIP consists of three components: 1) the best-response fea-
sibility MIP described in (7.1)-(7.4), instantiated independently for both the set of maximal and
minimal valuation functions, 2) a set of constraints for computing the set AI(rf) for a given rf
via best-response values for the maximal and minimal utility functions, and 3) a minimization
similar to the dual best-response LP from the standard sequence-form LP [165].

2Here we rely on the assumption that every action has a strict inequality vUI (a) > vLI (a). Without this assumption
our MIP still works, but the math becomes more cumbersome.

125

Utility

Figure 7.1: A set of action value-uncertainty intervals.

In the robust MIP given below, gUf , g
L
f are the functions giving the expected value over leaf

nodes consistent with a pair of sequences, when every node has its payoff set to the maximal
(gUf) and minimal (gUf) payoff, respectively.

min
r,v,s,y

y0 (7.17)

yinff (σf) ≥
∑
I′∈If

σf (I′)=σf

yI′ −
∑
σl∈Σl

gl(σl, σf)rl(σl)−M(1− rf (σf)), ∀σf ∈ Σf (7.18)

vqinff (σf) = sqσf +
∑
I′∈If

σf (I′)=σf

vqI′ +
∑
σl∈Σ

rl(σl)g
q
f (σl, σf), ∀σf ∈ Σf , q ∈ {U,L} (7.19)

0 ≤ sqσf ≤M(1− bqf (σf)), ∀σf ∈ Σf , q ∈ {U,L} (7.20)∑
a∈A(I) b

q
f (σf (I)a) = 1, ∀q ∈ {U,L}, I ∈ If (7.21)

bqf (σf) ∈ {0, 1}, ∀σf ∈ Σf , q ∈ {U,L} (7.22)

vUI − sUσf ≥ vLI −M(1− rf (σf)), ∀σf ∈ Σf (7.23)

vUI − sUσf ≤ vLI +Mrf (σf), ∀σf ∈ Σf (7.24)

ri(∅) = 1, ∀i ∈ {l, f} (7.25)

rl(σ) =
∑
a∈A(I)

rl(σa), ∀I ∈ Il, σ = σl(I) (7.26)

rf (σ) ≤
∑
a∈A(I)

rf (σa), ∀I ∈ If , σ = σf (I) (7.27)

rf (σf) ∈ {0, 1}, ∀σf ∈ Σf (7.28)

0 ≤ rl(σl) ≤ 1, ∀σl ∈ Σl (7.29)

Equations (7.17) and (7.18) implement the minimization over the set of potentially optimal ac-
tions AI(rl) at a given information set I . Equations (7.19) to (7.22) ensure that vUI , v

L
I represent

the correct value of each information set under the maximal and minimal utility function. Equa-
tions (7.23) and (7.24) ensure that actions in or not in AI(rl) can potentially be made optimal
(7.23) or cannot be made optimal (7.24). Equations (7.25) to (7.29) ensure that rl is a valid
sequence-form leader strategy and that one more pure strategies are active for the follower. We
prove that this MIP computes a RSSS.
Theorem 23. The interval uncertainty MIP computes a robust Stackelberg equilibrium for an

126

EFG with interval uncertainty on each leaf payoff for the follower.

Proof. First we show that a robust Stackelberg equilibrium corresponds to a solution to the MIP.
Let rl, rf be a robust Stackelberg equilibrium. Without loss of generality, assume that rf is a pure
strategy (for any mixed-strategy best response, by the assumption of tie-breaking in favor of the
leader, a pure best response exists yielding the same utility for the leader). Set all MIP variables
rl(σl) according to the equilibrium strategies. For all σf ∈ Ainf(σf)(rl) set the corresponding MIP
variable rf (σf) = 1, and for all σf /∈ Ainf(σf)(rl) set rf = 0. For any information set I , the action
a played in the pure strategy rf must be in AI(σl): if not it could not be made optimal by any
utility function. Conversely, it must be the action providing the lowest utility to the leader among
actions in AI(σl), or the minimization over utility functions would not have made it optimal.
Choose y so as to minimize (7.17) subject to (7.18). This corresponds exactly to minimizing the
leader utility over the set of follower sequences such that rf (σf) = 1, and thus the objective is
equal to the value of the RSSE. This can also be seen by realizing that (7.17, 7.18) correspond to
the dual sequence-form best-response LP of an opponent wishing to minimize the leader utility
overAI(rl). Set vUI , bU , s

U
σf

and vLI , bL, s
L
σf

equal to the values obtained by arbitrarily chosen best
responses according to the maximal and minimal utility functions respectively. By our choices
for MIP variables it is clear that (7.18), (7.19), and (7.25)-(7.29) are satisfied. For (7.23) we set
rf (σf) = 1 only for variables in Ainf(σf)(σl), that is, sequences where their upper-bound value is
greater than every lower-bound value, and thus vUI − sUσf , which is exactly the upper-bound value
associated with σf , is greater than vLI . Conversely, for σf such that rf (σf) = 0 we know that
their upper-bound value is less than some lower-bound value, and thus vUI − sUσf ≤ vLI .

Now consider an optimal solution to the MIP. The leader strategy for an RSSE is exactly
the values computed for rl(σl) for all σl. By the same logic as for the standard Stackelberg
MIP, vUI , v

L
I represent the information-set values according to the maximal and minimal utility

functions for the follower [18, 156]. Since vUI − sUσ corresponds exactly to the information-set
value associated with a given sequence σ ∈ ΣI , (7.23) implies that rf (σ) = 1 if and only if
vUI (σ) ≥ vLI (σ′) for all σ′ ∈ ΣI . In other words, σ ∈ AI(rl). Conversely rf (σ) = 0 implies
σ /∈ AI(rl). Thus the set of active sequences is exactly the set of sequences that can be made
optimal for some choice of utility function for the follower. Because y is chosen to minimize the
utility over active variables, this corresponds to the utility achieved when committing to rl.

Since every RSSE is a solution of the MIP, and the optimal solution to the MIP corresponds to
the payoff received by the leader if they were to commit to the strategy computed by the MIP, we
conclude that the MIP computes an RSSS. If not, there would exist some RSSE which achieves
better utility than what is computed by the MIP. This would be a contradiction, since such an
RSSE would also be feasible and its objective would be equal to the RSSE value.

7.6.1 MIP for Limited-Lookahead Interval Uncertainty
We also present an extension of the full-certainty MIP for limited lookahead to a setting with
uncertainty about the limited-lookahead node-evaluation function. That MIP joins the ideas from
both the full-certainty MIP with limited lookahead ((7.5)-(7.16)) and the robust MIP ((7.17)-
(7.29)) and is thus the most comprehensive, but it combines the novel ideas from the former two
MIPs in a fairly straightforward way.

127

min
r,v,s,y

y0 (7.30)

yinff (σf) ≥
∑
I′∈If

σf (I′)=σf

yI′ −
∑
σl∈Σl

gl(σl, σf)rl(σl)−M(1− rf (σf)) ∀σf ∈ Σf (7.31)

vqI,inff (σf) = sqI,σf +
∑
I′∈II

σf (I′)=σf

vqI,I′ +
∑
σl∈Σ

rl(σl)g
q
I(σl, σf), ∀I ∈ If , σf ∈ ΣI , q ∈ {U,L} (7.32)

0 ≤ sqI,σf ≤M(1− bqI(σf)) ∀I ∈ If , σf ∈ ΣI , q ∈ {U,L} (7.33)∑
a∈A(I′)

bI(σf (I
′)a) = 1 ∀I ∈ If , q ∈ {U,L}, I ′ ∈ II (7.34)

bqI(σf) ∈ {0, 1} ∀I ∈ If , σf ∈ ΣI , q ∈ {U,L} (7.35)

vUI,I − sUI,σ ≥ vLI,I −M(1− rf (σ)) (7.36)

vUI,I − sUI,σ ≤ vLI,I +Mrf (σ) (7.37)

ri(∅) = 1, ∀i ∈ {l, f} (7.38)

rl(σ) =
∑
a∈A(I)

rl(σa) ∀I ∈ Il, σ = σl(I) (7.39)

rf (σ) <=
∑
a∈A(I)

rf (σa) ∀I ∈ If , σ = σf (I) (7.40)

rf (σf) ∈ {0, 1} σf ∈ Σf (7.41)
0 ≤ rl(σl) ≤ 1 σl ∈ Σl (7.42)

7.7 Experiments

Using our MIPs presented in the previous section we investigated the scalability and qualita-
tive properties of RSSS solutions. We experimented with three kinds of EFG: Kuhn poker
(Kuhn) [106], a 2-card poker variant (2-card), and a parameterized security-inspired search game
(Search). The search game is similar to games considered by Bošanskỳ et al. [17] and Bošanskỳ
and Čermák [18]).

Kuhn consists of a three-card deck: king, queen, and jack. Each player first has to put a
payment of 1 into the pot. Each player is then dealt one of the three cards, and the third is put
aside unseen. A single round of betting then occurs (with betting parameter p = 1, explained
below).

128

In 2-card, the deck consists of two kings and two jacks. Each player first has to put a payment
of 1 into the pot. A private card is dealt to each, followed by a betting round (with betting
parameter p = 2), then a public card is dealt, followed by another betting round (with p = 4).

In both games, each round of betting goes as follows:
• Player 1 can check or bet p.

If Player 1 checks Player 2 can check or raise p.
− If Player 2 checks the betting round ends.
− If Player 2 raises Player 1 can fold or call.
· If Player 1 folds Player 2 takes the pot.
· If Player 1 calls the betting round ends.

If Player 1 raises Player 2 can fold or call.
− If Player 2 folds Player 1 takes the pot.
− If Player 2 calls the betting round ends.

If no player has folded, a showdown occurs. In Kuhn poker, the player with the higher card
wins in a showdown. In 2-card, showdowns have two possible outcomes: one player has a pair,
or both players have the same private card. For the former, the player with the pair wins the pot.
For the latter the pot is split.

Kuhn poker has 55 nodes in the game tree and 13 sequences per player. The 2-card game tree
has 199 nodes, and 57 sequences per player.

We also perform experiments on the Search game used previously in Section 3.9. It is restated
here for ease of reading. The search game is played on the graph shown in Figure 7.2. It is a
simultaneous-move game (which can be modeled as a turn-taking EFG with appropriately chosen
information sets). The leader controls two patrols that can each move within their respective
shaded areas (labeled P1 and P2), and at each time step the controller chooses a move for both
patrols. The follower is always at a single node on the graph, initially the leftmost node labeled
S and can move freely to any adjacent node (except at patrolled nodes, the follower cannot move
from a patrolled node to another patrolled node). The follower can also choose to wait in place
for a time step in order to clean up their traces. If a patrol visits a node that was previously
visited by the follower, and the follower did not wait to clean up their traces, they can see that the
follower was there. If the follower reaches any of the rightmost nodes they received the respective
payoff at the node (5, 10, or 3, respectively). If the follower and any patrol are on the same node
at any time step, the follower is captured, which leads to a payoff of 0 for the follower and a
payoff of 1 for the leader. Finally, the game times out after k simultaneous moves, in which case
the leader receives payoff 0 and the follower receives −∞ (because we are interested in games
where the follower attempts to reach an end node). We consider games with k being 5 and 6. We
will denote these by Search-5 and Search-6. Search-5 (Search-6) has 87,927 (194,105) nodes
and 11,830 and 69 (68,951 and 78) leader and follower sequences.

All experiments were conducted using Gurobi 7.5.1 to solve MIPs, on a cluster with 8 Intel
Xeon E5607 2.2Ghz cores and 47 GB RAM per experiment.

In the first set of experiments we investigate the impact on runtime caused by uncertainty
intervals in each of the four games, without considering limited lookahead. We compare the MIP
by Bošanskỳ and Čermák [18] (B&C) for the full-certainty setting to our robust MIP ((7.17)-
(7.29)) with an uncertainty interval of diameter d at each node in the game, for 6 different values
of d. The results are shown in Table 7.1. Interestingly, our robust MIP with interval 0 is sig-

129

P1 P2

S

5

10

3

Figure 7.2: The graph on which the search game is played.

Kuhn 2-card Search-5 Search-6

B&C 0 1 13 190
R-0 0 26 1 40

R-0.01 0 548 24 683
R-0.05 0 616 30 910
R-0.1 0 209 36 955
R-0.5 0 365 64 1648
R-1 0 42 41 395

Table 7.1: Runtime experiments for the MIP by Bošanskỳ and Čermák [18] (B& C) and our
robust Stackelberg MIP for increasing uniform uncertainty intervals (R-c where c is the interval
radius). All runtimes are in seconds.

nificantly faster than the B&C MIP for the Search games. (We do not specialize our robust
MIP to the full-certainty setting but instead let Gurobi presolve away most redundant variables
and constraints. One could easily specialize it and potentially make it even faster.) Once we
add uncertainty, the MIP gets harder to solve, with the runtime increasing for larger uncertainty
intervals—except for the largest uncertainty interval where the problem starts to get easier again.

In the second set of experiments, we investigate the cost of computing an RSSS against a
follower utility function that is different from the one actually employed by the follower. These
experiments were conducted on the Search-5 game. On Search-6 it would take prohibitively long
to conduct all the experiments, and the experiments would not be interesting on Kuhn and 2-card
because they are zero-sum games (the leader will end up getting the value of the game as long
as the correct utility function is contained in the uncertainty intervals). The setup is as follows.
We use our robust MIP to compute a leader strategy for the original payoffs in Search-5. We in-
stantiate the MIP with several different uncertainty-interval widths (given in the leftmost column
in Table 7.2). For each leader strategy, we then conduct a grid search over triplets of numbers
in {±0.1,±0.5,±1,±2,±3}3, where the three numbers correspond to a change in utility being
added to each of the three rightmost payoff nodes in Figure 3.2. For each payoff change, we
compute the follower’s best response (breaking ties in favor of the leader) to the leader strategy
under the new game and the resulting leader utility. The second column in Table 7.2 (EV) denotes
the value that the leader is expected to get if he were solving the correct game. The following
three columns, labeled ≤ 1,≤ 2,≤ 3, show the worst utility achieved by the leader when the
grid search is restricted to payoff changes of at most 1, 2, and 3, respectively. For example, in the
case ≤ 1 we only do the grid search over {±0.1,±0.5,±1}3 The experiment shows that when
uncertainty is not taken into account, all amounts of perturbation leads to a large decrease in
leader utility. Conversely, taking uncertainty into account leads to much better utility in almost

130

EV ≤ 1 ≤ 2 ≤ 3

0 0.842 0.474 0.474 0.474
0.1 0.834 0.479 0.479 0.479
0.5 0.800 0.500 0.500 0.500
1 0.758 0.616 0.526 0.526
2 0.688 0.688 0.417 0.417
4 0.667 0.667 0.667 0.667
6 0.667 0.667 0.667 0.667

40 0.500 0.500 0.500 0.500

Table 7.2: Leader utility when maximizing utility against an incorrect utility function. Each
row corresponds to a different size of uncertainty interval used for computing the leader strategy
(interval size is given in the leftmost column). The columns are ordered in increasing amounts
of incorrectness allowed in the follower utility function.

every case.
In the third set of experiments, we investigate the cost to the leader from having to take

uncertainty into account against a limited-lookahead follower. We perform this experiment on
Kuhn and 2-card, both zero-sum games, which allows us to apply the same node-evaluation
scheme as in Kroer and Sandholm [97]. In order to construct the limited-lookahead evaluation
function, we first compute a Nash equilibrium of the game. We then recursively define the value
of each node to be the weighted sum over the values of nodes beneath it, where the weights are the
probabilities of each action in the Nash equilibrium, and then add Gaussian noise to the computed
value (we do not add any noise to leaf nodes). Since the value of a node is based on the noisy
value of nodes beneath it, the farther away from leaf nodes a node is, the noisier the estimate of
the node’s value (from Nash equilibrium) is. We then use our robust limited-lookahead MIP to
solve the limited-lookahead game resulting from having the follower apply this node-evaluation
function. We consider lookahead depths of 1 and 2. The results for 2-card are shown in Table 7.3
and the results for Kuhn are shown in Table 7.4. The different rows in the tables correspond to
varying standard deviations in the Gaussian noise, and columns correspond to increasing sizes of
uncertainty intervals. For all games, lookahead depths, and noise levels, we see that the amount
that the leader can exploit the follower goes down as uncertainty intervals get larger. However,
we also see that for most noise amounts, some amount of robustness can be added without losing
substantial leader utility. Coupled with our results from the second set of experiments, which
showed that uncertainty intervals are necessary if there is mis-specification in the model, this
suggests that uncertainty intervals can lead to substantially more robust outcomes, potentially at
a small cost to optimality even if the initial model turns out to be correct.

7.8 Conclusions and future research
We initiated the study of robustness in the context of Stackelberg EFGs. We introduced MIPs that
can compute the optimal strategy to commit for the leader in several settings, including standard
Stackelberg and against a limited-lookahead opponent. The MIP relies on interval uncertainty
around payoffs. It would be interesting to find mathematical programs for more general uncer-
tainty sets, ideally while staying within a class of practically-solvable mathematical programs.

131

Lookahead depth: 1

Noise σ 0.01 0.05 0.1 0.5 1 2

0.1 1.35 1.33 1.33 1.15 0.25 0.00
0.5 1.42 1.41 1.33 1.33 0.61 0.00
1 1.50 1.50 1.50 1.33 1.33 0.34
2 1.50 1.50 1.50 1.44 1.33 1.33

Lookahead depth: 2

Noise σ 0.01 0.05 0.1 0.5 1 2

0.1 0.67 0.43 0.05 0.00 0.00 0.00
0.5 0.69 0.69 0.68 0.05 0.00 0.00
1 0.73 0.72 0.71 0.48 0.08 0.00
2 0.80 0.79 0.78 0.71 0.59 0.19

Table 7.3: Limited-lookahead with depth 1 and 2 in 2-card.

Lookahead depth: 1

Noise σ 0.01 0.05 0.1 0.5 1 2

0.1 0.33 0.33 0.33 0.25 -0.06 -0.06
0.5 0.33 0.33 0.33 0.33 -0.06 -0.06
1 0.33 0.33 0.33 0.33 0.33 0.16
2 0.87 0.87 0.87 0.86 0.84 0.22

Lookahead depth: 2

Noise σ 0.01 0.05 0.1 0.5 1 2

0.1 -0.03 -0.05 -0.06 -0.06 -0.06 -0.06
0.5 0.29 0.28 0.28 0.16 -0.06 -0.06
1 0.41 0.41 0.40 0.30 0.22 0.16
2 0.87 0.87 0.87 0.86 0.84 0.22

Table 7.4: Limited-lookahead with depth 1 and 2 in Kuhn.

132

We showed experimentally that the loss due to not considering uncertainty can be quite large,
and that this can be ameliorated with our approach. We also showed that robust models can be
solved at a modest increase in runtime, about a factor of 10.

While we showed that our technique scales to medium-size games, in practice we would
often like to scale to even larger games. The iterative LP-based approach of Čermák [33] could
potentially be extended to the robust setting. Černỳ et al. [38] extend the iterative LP approach
to incorporate strategy-generation, in order to increase scalability since many strategies do not
need to be generated. It would be interesting to develop a strategy-generation approach for our
robust setting, which is likely to yield greater scalability. It would also be beneficial to develop
a more traditional column-generation approach in order to understand what type of incremental
approach is better.

Abstraction methods have dramatically increased the scalability of Nash equilibrium finding
in EFGs (e.g., [28, 68, 95, 98, 109]) and could potentially be adapted to the robust Stackel-
berg setting as well. This could be done while giving guarantees on follower behavior by only
abstracting the strategy space of the leader.

In recent work that is not part of this thesis, coauthors and I studied equilibrium refinement in
Stackelberg EFGs [60]. The robust framework presented in this chapter could potentially be com-
bined with some notion of Stackelberg equilibrium refinement. Questions include whether there
is a benefit to refinement when using a robust follower model, whether the problem becomes
algorithmically harder, and whether scalable techniques such as MIP can still be leveraged.

133

134

Chapter 8

Concluding remarks and further thoughts

We showed how FOMs can be made state-of-the-art for solving large-scale EFGs by constructing
a dilated entropy function. There is some reason to think that our DGF construction is the “right”
way to measure distances over treeplexes (and thus EFG strategy spaces): we showed that our
analysis is tight, and most importantly we showed that it generalizes the well-known dimension
independence of the entropy DGF on a simplex. From a practical perspective we showed that our
approach beats all the best recent algorithms for solving zero-sum EFGs except for the CFR+

algorithm. This is especially encouraging because our smoothing approach is a general technique
that can be combined with many different FOMs. There is a large, and increasing, number of
algorithms for solving saddle-point problems, and so an important future direction is to find the
best FOM for solving EFGs in practice. Since this approach automatically benefits from future
developments in FOMs it seems plausible that our DGF can eventually be combined with some
FOM that can beat CFR+. In a similar vein, the space of stochastic FOMs combined with our
DGF remains largely unexplored from a practical perspective. Here it again seems plausible
that some stochastic FOM variant combined with our DGF could eventually lead to practical
performance gains over the MCCFR approach.

Poker AIs like Libratus [27] and DeepStack [124] have shown that Nash equilibria combined
with methods for scaling up to very large games allows creating superhuman AIs. Creating
strong AIs for general-sum, and potentially n-player, EFGs remains a large unsolved problem.
Both practical abstraction approaches and our theoretical abstraction framework developed in
this thesis extend to such games. However, we do not have scalable algorithms for computing
Nash equilibria in the resulting abstractions, and more fundamentally it is unclear whether Nash
equilibrium is even the right solution concept: there are equilibrium selection problems, and so
even if some Nash equilibrium is known to perform well, we also need to guarantee that our
algorithm finds that Nash equilibrium, and not some other bad equilibrium. Furthermore, in
zero-sum games we know that if the opponent does not play a best response to our strategy we
can only be better off. This is not so in general, and so deploying a Nash equilibrium in a poker
game with 5 other players is not guaranteed to be a strong strategy if they do not play according
to our equilibrium. Čermák et al. [34] show that strategies computed by CFR perform well in
small general-sum poker games and random EFGs when compared to various other solution
concepts when playing against a number of non-equilibrium strategies in randomly generated
games. One could similarly explore the solution quality from smoothed-best-response iteration

135

that would arise from applying a FOM with the dilated entropy. One potentially more rigorous
approach would be to find a way to exploit near-zero-sum properties of certain games, and use
regularization to compute an approximate equilibrium that does not skew too heavily towards
favoring or disfavoring any players.

For abstraction, the most significant future work is to find a way to leverage our decom-
position result to give ex-ante solution-quality bounds for the types of abstraction employed in
practice. As evidenced by our counterexamples this will not be possible for general abstrac-
tions. Instead, it may be possible to leverage Theorem 8 or 9 for special game classes that
can capture practical abstractions. In the two recent results on strong poker AIs [27, 124] only
Libratus [27] applied abstraction in order to scale up the equilibrium finding, whereas Deep-
Stack [124] used deep learning in order to estimate values of actions (both approaches relied on
iterative equilibrium-finding algorithms for solving subgames in realtime). Since the DeepStack
approach is not guaranteed to learn a correct estimator this begs the obvious question of whether
we can give a characterization of what sort of solution-quality can be expected given a certain
accuracy in the estimator. Similarly, since both agents employed real-time near-exact subgame
solving it would be useful to understand how such re-solving interacts with the overall solution-
quality bounds for the abstract game originally solved (or in the case of DeepStack, the game
solved via estimated payoffs).

In chapter 5 on equilibrium refinement we showed that our DGF approach can be extended to
the computation of approximate Nash equilibrium refinements via a perturbation to the entropy
DGF employed at each simplex in the treeplex. This shows that iterative methods can be extended
to computing refinements, and provides hope that it may be possible to employ equilibrium
refinements in practice (since exact approaches rely on LPs that are not scalable to large EFGs).
However, the approach relies on a fixed perturbation, which may be either too large and cause
too much strategy perturbation, or it may be so small that it is impractical for converging to a
solution. An obvious remedy would be to find a way to adaptively decrease the perturbation
in sync with our convergence to a solution. This would require developing a FOM variant that
handles the slowly-changing strategy polytope, or proving that this is implicitly handled by some
existing FOM. In the vein of scaling up equilibrium-refinement computation there is also the
question of whether the abstraction framework developed in this thesis can be modified to give
some form of approximation quality toward equilibrium refinement.

Another potentially-exciting application of our work would be to apply our smoothing ap-
proach to the computation of Stackelberg equilibria. For example, it may be possible to smooth
the strategy space of the leader, while performing the follower best-responses computations as
part of each iteration that incrementally updates the leader strategy space. An obvious caveat
to this approach is that the utility for the leader is non-convex due to the discontinuity of best
responses. It would be interesting to investigate whether there are convex relaxations that can be
handled efficiently.

From a practical perspective there are many interesting problems for which EFGs hold promise.
One area of application that has already started to see some work is security settings, where EFGs
can capture temporal interactions and imperfect information. Such models are being explored
in green security games, where rangers in parks with endangered wildlife wish to protect ani-
mals from poaching [55, 56, 88]. Green security games are naturally modeled as EFGs because
rangers and poachers move around the park, but have imperfect information about the adver-

136

sary’s movements: when they observe tracks, old campsites, and similar signals they can adapt
to try to track down the poachers (or avoid the rangers if the poachers observe such signals).
Such games are extremely large, and so scalability techniques play a key role. Cybersecurity is
another emerging topic being modeled via game theory. Examples include modeling increased
threat risk and adaptive defense due to anomalies such as crashes (which can be from an attacker
probing the system) [172], adaptive defense against distributed denial-of-service attacks [158],
strategic honeypot placement [32], network hardening [52, 53], and defensive and attacking use
of vulnerability discovery and exploitation [3, 123]. Sequential decision making and EFGs are
also being explored for steering evolutionary biological adaptation processes [99, 151]. How-
ever, there are many other interesting applications waiting for further study: high-level strategy
selection in real-time games, negotiation, strategic pricing, financial strategy, sequential auctions,
electricity-market strategy, and many more.

137

138

Bibliography

[1] ACPC. Annual Computer Poker Competition website. http://www.
computerpokercompetition.org/, 2016. [Online; accessed 23-Feb-2016].
1

[2] C. Archibald and Y. Shoham. Modeling billiards games. In International Conference on
Autonomous Agents and Multi-Agent Systems (AAMAS), Budapest, Hungary, 2009. 1

[3] Tiffany Bao, Yan Shoshitaishvili, Ruoyu Wang, Christopher Kruegel, Giovanni Vigna,
and David Brumley. How shall we play a game?: A game-theoretical model for cyber-
warfare games. In 2017 IEEE 30th Computer Security Foundations Symposium (CSF),
pages 7–21. IEEE, 2017. 8

[4] Anjon Basak, Fei Fang, Thanh Hong Nguyen, and Christopher Kiekintveld. Abstrac-
tion methods for solving graph-based security games. In International Conference on
Autonomous Agents and Multiagent Systems, pages 13–33. Springer, 2016. 4.1

[5] Anjon Basak, Fei Fang, Thanh Hong Nguyen, and Christopher Kiekintveld. Combin-
ing graph contraction and strategy generation for green security games. In International
Conference on Decision and Game Theory for Security, pages 251–271. Springer, 2016.
4.1

[6] Nicola Basilico and Nicola Gatti. Automated abstractions for patrolling security games.
In AAAI Conference on Artificial Intelligence (AAAI), 2011. 4, 4.1

[7] Donald F Beal. An analysis of minimax. Advances in computer chess, 2:103–109, 1980.
6.4

[8] Amir Beck and Marc Teboulle. Smoothing and first order methods: A unified framework.
SIAM Journal on Optimization, 22(2):557–580, 2012. 1.1, 4.9.5

[9] Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and applica-
tions. Mathematical Programming, 92(3):453–480, 2002. 7

[10] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Prince-
ton University Press, 2009. 7

[11] Ahron Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analy-
sis, algorithms, and engineering applications, volume 2. Siam, 2001. 4.9.5

[12] Joseph Louis François Bertrand. Theorie mathematique de la richesse sociale. Journal
des Savants, pages 499–508, 1883. 7

[13] Dimitri P Bertsekas. Proximal algorithms and temporal difference methods for solving

139

http://www.computerpokercompetition.org/
http://www.computerpokercompetition.org/

fixed point problems. Computational Optimization and Applications, 70(3):709–736,
2018. 3.11

[14] Dimitris Bertsimas, David B Brown, and Constantine Caramanis. Theory and applications
of robust optimization. SIAM review, 53(3):464–501, 2011. 7

[15] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence
Schauenberg, and Duane Szafron. Approximating game-theoretic optimal strategies for
full-scale poker. In Proceedings of the International Joint Conference on Artificial Intel-
ligence (IJCAI), 2003. 4, 4.1

[16] Kellog S Booth and Charles J Colbourn. Problems polynomially equivalent to graph
isomorphism. Computer Science Department, Univ., 1979. 4.5.2

[17] B Bošanskỳ, Christopher Kiekintveld, V Lisý, and Michal Pěchouček. An exact double-
oracle algorithm for zero-sum extensive-form games with imperfect information. Journal
of Artificial Intelligence Research, pages 829–866, 2014. 3.1, 3.8, 7.7

[18] Branislav Bošanskỳ and Jiřı́ Čermák. Sequence-form algorithm for computing Stackel-
berg equilibria in extensive-form games. In Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015. (document), 3.8, 7, 7.5, 7.6, 7.7, 7.7, 7.1

[19] Branislav Bošanskỳ, Simina Brânzei, Kristoffer Arnsfelt Hansen, Troels Bjerre Lund, and
Peter Bro Miltersen. Computation of Stackelberg equilibria of finite sequential games.
ACM Transaction on Economics and Computation (TEAC), 5(4):23:1–23:24, December
2017. ISSN 2167-8375. 7

[20] Bruno Bouzy and Tristan Cazenave. Computer go: an AI oriented survey. Artificial
Intelligence, 132(1):39–103, 2001. 6

[21] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218), January 2015. 3, 3.1, 4.1

[22] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, 2004. 4.9.5

[23] Noam Brown and Tuomas Sandholm. Regret transfer and parameter optimization. In
AAAI Conference on Artificial Intelligence (AAAI), 2014. 3, 4, 4.1

[24] Noam Brown and Tuomas Sandholm. Simultaneous abstraction and equilibrium finding
in games. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2015. 3, 4, 4.1

[25] Noam Brown and Tuomas Sandholm. Strategy-based warm starting for regret minimiza-
tion in games. In AAAI Conference on Artificial Intelligence (AAAI), 2016. 3.8

[26] Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-
information games. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), pages 689–699, 2017. 5, 4.1

[27] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Li-
bratus beats top professionals. Science, page eaao1733, Dec. 2017. 3, 3.9, 3.10, 4.1, 4.2,
4.6, 8

140

[28] Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Hierarchical abstraction, dis-
tributed equilibrium computation, and post-processing, with application to a champion
no-limit Texas Hold’em agent. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2015. 1, 3.11, 4.1, 4.2, 4.6, 4.9.7, 7.8

[29] Noam Brown, Christian Kroer, and Tuomas Sandholm. Dynamic thresholding and pruning
for regret minimization. In AAAI Conference on Artificial Intelligence (AAAI), 2017. 3.1

[30] Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for
imperfect-information games. arXiv preprint arXiv:1805.08195, 2018. 6.5

[31] Neil Burch, Marc Lanctot, Duane Szafron, and Richard G Gibson. Efficient Monte Carlo
counterfactual regret minimization in games with many player actions. In Proceedings of
the Annual Conference on Neural Information Processing Systems (NIPS), pages 1880–
1888, 2012. 4.2

[32] Thomas E Carroll and Daniel Grosu. A game theoretic investigation of deception in net-
work security. Security and Communication Networks, 4(10):1162–1172, 2011. 8

[33] Jiřı́ Čermák. Using correlated strategies for computing Stackelberg equilibria in extensive-
form games. 7, 7.8

[34] Jiřı́ Čermák, Branislav Bošanskỳ, and Nicola Gatti. Strategy effectiveness of game-
theoretical solution concepts in extensive-form general-sum games. In Autonomous Agents
and Multi-Agent Systems, pages 1813–1814. International Foundation for Autonomous
Agents and Multiagent Systems, 2015. 8

[35] Jiřı́ Čermák, Branislav Bošansky, and Viliam Lisý. An algorithm for constructing and
solving imperfect recall abstractions of large extensive-form games. In Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), pages 936–942, 2017.
4.1

[36] Jiřı́ Čermák, Branislav Bošanskỳ, Karel Horák, Viliam Lisỳ, and Michal Pěchouček. Ap-
proximating maxmin strategies in imperfect recall games using a-loss recall property. In-
ternational Journal of Approximate Reasoning, 93:290–326, 2018. 4.8

[37] Jiřı́ Čermák, Viliam Lisý, and Branislav Bošansky. Constructing imperfect recall abstrac-
tions to solve large extensive-form games. arXiv preprint arXiv:1803.05392, 2018. 4.1

[38] Jakub Černỳ, Branislav Boỳanskỳ, and Christopher Kiekintveld. Incremental strategy
generation for stackelberg equilibria in extensive-form games. In Proceedings of the 2018
ACM Conference on Economics and Computation, pages 151–168. ACM, 2018. 7.8

[39] Antonin Chambolle and Thomas Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. Journal of Mathematical Imaging and Vision,
2011. 1.1, 3.11

[40] Antonin Chambolle and Thomas Pock. On the ergodic convergence rates of a first-order
primal–dual algorithm. Mathematical Programming, 159(1-2):253–287, 2016. 1.1

[41] Katherine Chen and Michael Bowling. Tractable objectives for robust policy optimiza-
tion. In Proceedings of the Annual Conference on Neural Information Processing Systems
(NIPS), 2012. 1, 4.6.3, 4.9.6

141

[42] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-
player Nash equilibria. Journal of the ACM, 2009. 1, 6.2.1

[43] Xianfu Chen, Zhu Han, Honggang Zhang, Guoliang Xue, Yong Xiao, and Mehdi Ben-
nis. Wireless resource scheduling in virtualized radio access networks using stochastic
learning. IEEE Transactions on Mobile Computing, (1):1–1, 2018. 1, 4.9.6

[44] Yunmei Chen, Guanghui Lan, and Yuyuan Ouyang. Optimal primal-dual methods for a
class of saddle point problems. SIAM Journal on Optimization, 24(4):1779–1814, 2014.
1.1

[45] Vincent Conitzer. Computing Slater rankings using similarities among candidates. In
Proceedings of the National Conference on Artificial Intelligence (AAAI), Boston, MA,
2006. Early version appeared as IBM RC 23748, 2005. 6, 7

[46] Vincent Conitzer and Tuomas Sandholm. Computing the optimal strategy to commit to.
In Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), Ann Arbor,
MI, 2006. 7, 7.1

[47] Antoine Augustin Cournot. Recherches sur les principes mathématiques de la théorie des
richesses (Researches into the Mathematical Principles of the Theory of Wealth). Ha-
chette, Paris, 1838. 7

[48] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complex-
ity of computing a nash equilibrium. SIAM Journal on Computing, 39(1), 2009. 1, 3.1,
6.2.1

[49] Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal no-regret
algorithms for zero-sum games. Games and Economic Behavior, 92:327–348, 2015. 1,
3.1

[50] Giuseppe De Nittis, Alberto Marchesi, and Nicola Gatti. Computing the strategy to com-
mit to in polymatrix games. In AAAI Conference on Artificial Intelligence (AAAI), 2018.
7

[51] Bruce DeBruhl, Christian Kroer, Anupam Datta, Tuomas Sandholm, and Patrick Tague.
Power napping with loud neighbors: optimal energy-constrained jamming and anti-
jamming. In Proceedings of the 2014 ACM conference on Security and privacy in wireless
& mobile networks, pages 117–128. ACM, 2014. 1, 4.9.6

[52] Karel Durkota, Viliam Lisỳ, Branislav Bošanskỳ, and Christopher Kiekintveld. Optimal
network security hardening using attack graph games. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2015. 8

[53] Karel Durkota, Viliam Lisỳ, Christopher Kiekintveld, Branislav Bošanskỳ, and Michal
Pěchouček. Case studies of network defense with attack graph games. IEEE Intelligent
Systems, 31(5):24–30, 2016. 8

[54] Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilibria and other
fixed points (extended abstract). In Proceedings of the Annual Symposium on Foundations
of Computer Science (FOCS), pages 113–123, 2007. 1

[55] Fei Fang, Peter Stone, and Milind Tambe. When security games go green: Designing

142

defender strategies to prevent poaching and illegal fishing. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), 2015. 8

[56] Fei Fang, Thanh H Nguyen, Robert Pickles, Wai Y Lam, Gopalasamy R Clements, Bo An,
Amandeep Singh, Brian C Schwedock, Milind Tambe, and Andrew Lemieux. Paws–
a deployed game-theoretic application to combat poaching. AI Magazine, 38(1):23–37,
2017. 8

[57] Gabriele Farina and Nicola Gatti. Extensive-form perfect equilibrium computation in two-
player games. In AAAI Conference on Artificial Intelligence (AAAI), 2017. 5

[58] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Regret minimization in
behaviorally-constrained zero-sum games. In International Conference on Machine
Learning (ICML), 2017. 1.3, 4.2

[59] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for
sequential decision processes and extensive-form games. In arXiv, 2018. 1.1

[60] Gabriele Farina, Alberto Marchesi, Christian Kroer, Nicola Gatti, and Tuomas Sandholm.
Trembling-hand perfection in extensive-form games with commitment. In Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI), pages 233–239,
2018. 7.8

[61] Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering. In
Proceedings of the Annual Symposium on Theory of Computing (STOC), 1988. 4.6.3

[62] Joaquim Gabarró, Alina Garcı́a, and Maria Serna. On the complexity of game iso-
morphism. In Mathematical Foundations of Computer Science 2007, pages 559–571.
Springer, 2007. 4.5.2

[63] Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-form games with
large action spaces: Axioms, paradoxes, and the pseudo-harmonic mapping. In Proceed-
ings of the International Joint Conference on Artificial Intelligence (IJCAI), 2013. 4.9.7,
4.9.8

[64] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with
earth mover’s distance in imperfect-information games. In AAAI Conference on Artificial
Intelligence (AAAI), 2014. 1.2, 4.1, 4.2, 4.5.2, 6.2.2, 6.5

[65] Richard Gibson, Marc Lanctot, Neil Burch, Duane Szafron, and Michael Bowling. Gener-
alized sampling and variance in counterfactual regret minimization. In AAAI Conference
on Artificial Intelligence (AAAI), 2012. 3

[66] Andrew Gilpin and Tuomas Sandholm. A competitive Texas Hold’em poker player via
automated abstraction and real-time equilibrium computation. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), pages 1007–1013, 2006. 1.2, 4, 4.1,
4.5, 4.5.2

[67] Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for im-
perfect information games, with application to Texas Hold’em poker. In International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1168–1175,
2007. 1.2, 4.1, 4.5.2, 4.6.3

143

[68] Andrew Gilpin and Tuomas Sandholm. Lossless abstraction of imperfect information
games. Journal of the ACM, 54(5), 2007. 1, 3.1, 4, 4.1, 4.5.2, 4.5.3, 12, 4.5.3, 4.5.4, 5,
6.2.2, 7.8, 8

[69] Andrew Gilpin and Tuomas Sandholm. Expectation-based versus potential-aware auto-
mated abstraction in imperfect information games: An experimental comparison using
poker. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2008.
Short paper. 1.2, 4.1, 4.5

[70] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. Potential-aware auto-
mated abstraction of sequential games, and holistic equilibrium analysis of Texas Hold’em
poker. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2007. 1.2,
4.1, 4.5, 4.5.2, 4.6.3

[71] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. A heads-up no-limit
Texas Hold’em poker player: Discretized betting models and automatically generated
equilibrium-finding programs. In International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), 2008. 4, 4.1, 4.5.2

[72] Andrew Gilpin, Javier Peña, and Tuomas Sandholm. First-order algorithm with
O(ln(1/ε)) convergence for ε-equilibrium in two-person zero-sum games. Mathemati-
cal Programming, 133(1–2):279–298, 2012. Conference version appeared in AAAI-08.
3.1, 3.6.1

[73] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoreti-
cal Computer Science, 38, 1985. 4.6.3, 4.6.3

[74] Anupam Gupta, Guru Guruganesh, and Melanie Schmidt. Approximation algorithms for
aversion k-clustering via local k-median. In 43rd International Colloquium on Automata,
Languages, and Programming, ICALP, pages 66:1–66:13, 2016. 4.6.3

[75] John Hawkin, Robert Holte, and Duane Szafron. Automated action abstraction of im-
perfect information extensive-form games. In AAAI Conference on Artificial Intelligence
(AAAI), 2011. 4, 4.1

[76] John Hawkin, Robert Holte, and Duane Szafron. Using sliding windows to generate ac-
tion abstractions in extensive-form games. In AAAI Conference on Artificial Intelligence
(AAAI), 2012. 4, 4.1

[77] John Hillas and Elon Kohlberg. Foundations of strategic equilibrium. Handbook of Game
Theory with Economic Applications, 2002. 5

[78] Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. Fundamentals of convex analysis.
2001. 3.5

[79] Samid Hoda, Andrew Gilpin, Javier Peña, and Tuomas Sandholm. Smoothing techniques
for computing Nash equilibria of sequential games. Mathematics of Operations Research,
35(2), 2010. 1.1, 3, 3.1, 3.4, 3.4, 3.5, 3.5, 3.6.1, 3.7, 3.8, 3.9, 4.2, 4.5, 4.9, 5.2, 6.2.2

[80] Sune K Jakobsen, Troels B Sørensen, and Vincent Conitzer. Timeability of extensive-
form games. In Proceedings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, pages 191–199. ACM, 2016. 4.8

144

[81] Albert Jiang and Kevin Leyton-Brown. Polynomial-time computation of exact correlated
equilibrium in compact games. In Proceedings of the ACM Conference on Electronic
Commerce (EC), 2011. 1, 3.1

[82] Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinkevich. Accelerating
best response calculation in large extensive games. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 2011. 3.9, 6.2.1

[83] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal ab-
stract strategies in extensive-form games. In AAAI Conference on Artificial Intelligence
(AAAI), 2012. 3, 4.9

[84] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. Evaluating
state-space abstractions in extensive-form games. In International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), 2013. 4, 4.1, 4.2, 4.5.2

[85] Anatoli Juditsky and Arkadi Nemirovski. First order methods for nonsmooth convex large-
scale optimization, i: general purpose methods. Optimization for Machine Learning, pages
121–148, 2011. 3.2.2, 3.5

[86] Anatoli Juditsky and Arkadi Nemirovski. First order methods for nonsmooth convex large-
scale optimization, ii: utilizing problems structure. Optimization for Machine Learning,
pages 149–183, 2011. 3.2.2

[87] Anatoli Juditsky, Arkadi Nemirovski, and Claire Tauvel. Solving variational inequalities
with stochastic mirror-prox algorithm. Stochastic Systems, 1(1):17–58, 2011. 1.1, 3.6.1,
3.10

[88] Debarun Kar, Benjamin Ford, Shahrzad Gholami, Fei Fang, Andrew Plumptre, Milind
Tambe, Margaret Driciru, Fred Wanyama, Aggrey Rwetsiba, Mustapha Nsubaga, et al.
Cloudy with a chance of poaching: adversary behavior modeling and forecasting with
real-world poaching data. In Autonomous Agents and Multi-Agent Systems, pages 159–
167. International Foundation for Autonomous Agents and Multiagent Systems, 2017. 8

[89] Christopher Kiekintveld, Milind Tambe, and Janusz Marecki. Robust Bayesian methods
for Stackelberg security games (extended abstract). In Autonomous Agents and Multi-
Agent Systems, 2010. Short paper. 7

[90] Christopher Kiekintveld, Janusz Marecki, and Milind Tambe. Approximation methods for
infinite bayesian stackelberg games: modeling distributional payoff uncertainty. In 10th

International Conference on Autonomous Agents and Multiagent Systems AAMAS 2011,
2011. 4.9.6

[91] Christopher Kiekintveld, Towhidul Islam, and Vladik Kreinovich. Security games with
interval uncertainty. In Proceedings of the 2013 international conference on Autonomous
agents and multi-agent systems, pages 231–238. International Foundation for Autonomous
Agents and Multiagent Systems, 2013. 1.5, 7

[92] Daphne Koller and Nimrod Megiddo. The complexity of two-person zero-sum games in
extensive form. Games and Economic Behavior, 4(4):528–552, October 1992. 2.1, 4.6

[93] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of

145

equilibria for extensive two-person games. Games and Economic Behavior, 14(2), 1996.
1, 3.1, 3.2.2

[94] Richard Korf. Real-time heuristic search. Artificial Intelligence, 42(2-3):189–211, March
1990. 6

[95] Christian Kroer and Tuomas Sandholm. Extensive-form game abstraction with bounds.
In Proceedings of the ACM Conference on Economics and Computation (EC), 2014. 1.2,
3.1, 4.4, 4.9, 4.9.4, 6.2.2, 7.8

[96] Christian Kroer and Tuomas Sandholm. Discretization of continuous action spaces in
extensive-form games. In International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 2015. 1.2

[97] Christian Kroer and Tuomas Sandholm. Limited lookahead in imperfect-information
games. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2015. 1.4, 7, 7.2, 7.5, 7.6, 7.7

[98] Christian Kroer and Tuomas Sandholm. Imperfect-recall abstractions with bounds in
games. In Proceedings of the ACM Conference on Economics and Computation (EC),
2016. 1.2, 4.4, 4.9.4, 6.2.2, 7.8

[99] Christian Kroer and Tuomas Sandholm. Sequential planning for steering immune system
adaptation. In Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAI), 2016. 7, 8

[100] Christian Kroer and Tuomas Sandholm. A unified framework for extensive-form game
abstraction with bounds. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NIPS), 2018. 1.2

[101] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster first-
order methods for extensive-form game solving. In Proceedings of the ACM Conference
on Economics and Computation (EC), 2015. (document), 1.1, 3, 3.1, 3.6.1, 3.8, 3.8, 3.3,
3.8, 4.2, 4.5

[102] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Smoothing method for approx-
imate extensive-form perfect equilibrium. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 2017. 1.3

[103] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Theoretical
and practical advances on smoothing for extensive-form games. In Proceedings of the
ACM Conference on Economics and Computation (EC), 2017. 1.1, 3.9, 4.2, 4.5, 5.2, 5.3

[104] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Robust stackelberg equilibria
in extensive-form games and extension to limited lookahead. In AAAI Conference on
Artificial Intelligence (AAAI), 2018. 1.5

[105] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Solving large sequential games
with the excessive gap technique. In Proceedings of the Annual Conference on Neural
Information Processing Systems (NIPS), 2018. 1.1

[106] H. W. Kuhn. A simplified two-person poker. In H. W. Kuhn and A. W. Tucker, editors,
Contributions to the Theory of Games, volume 1 of Annals of Mathematics Studies, 24,

146

pages 97–103. Princeton University Press, Princeton, New Jersey, 1950. 6.4, 7.7

[107] Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365–397, 2012. 3.10

[108] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sam-
pling for regret minimization in extensive games. In Proceedings of the Annual Confer-
ence on Neural Information Processing Systems (NIPS), 2009. 3, 3.1, 3.6.1, 3.9, 3.10, 4.2,
4.5, 4.9, 6.2.2

[109] Marc Lanctot, Richard Gibson, Neil Burch, Martin Zinkevich, and Michael Bowling. No-
regret learning in extensive-form games with imperfect recall. In International Conference
on Machine Learning (ICML), 2012. 1.2, 4, 4.1, 1, 4.4, 4.5.1, 4.6, 4.6.2, 4.6.3, 4.6.4, 4.6.4,
4.7, 7.8

[110] Joshua Letchford and Vincent Conitzer. Computing optimal strategies to commit to in
extensive-form games. In Proceedings of the ACM Conference on Electronic Commerce
(EC), 2010. 6, 6.2.2, 7

[111] Joshua Letchford, Vincent Conitzer, and Kamesh Munagala. Learning and approximating
the optimal strategy to commit to. In International Symposium on Algorithmic Game
Theory, pages 250–262. Springer, 2009. 7

[112] Richard Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games using
simple strategies. In Proceedings of the ACM Conference on Electronic Commerce (ACM-
EC), pages 36–41, San Diego, CA, 2003. ACM. 1, 3.1

[113] Viliam Lisý, Trevor Davis, and Michael Bowling. Counterfactual regret minimization in
sequential security games. In AAAI Conference on Artificial Intelligence (AAAI), 2016. 1

[114] Michael Littman and Peter Stone. A polynomial-time Nash equilibrium algorithm for
repeated games. In Proceedings of the ACM Conference on Electronic Commerce (ACM-
EC), pages 48–54, San Diego, CA, 2003. 1, 3.1

[115] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik. Finite-
sample analysis of proximal gradient td algorithms. In Proceedings of the Thirty-First
Conference on Uncertainty in Artificial Intelligence, pages 504–513. AUAI Press, 2015.
3.11

[116] Bo Liu, Ji Liu, Mohammad Ghavamzadeh, Sridhar Mahadevan, and Marek Petrik. Proxi-
mal gradient temporal difference learning algorithms. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), pages 4195–4199, 2016. 3.11

[117] Mitja Luštrek, Matjaž Gams, and Ivan Bratko. Is real-valued minimax pathological? Ar-
tificial Intelligence, 170(6):620–642, 2006. 6.4

[118] Sridhar Mahadevan, Bo Liu, Philip Thomas, Will Dabney, Steve Giguere, Nicholas Jacek,
Ian Gemp, and Ji Liu. Proximal reinforcement learning: A new theory of sequential
decision making in primal-dual spaces. arXiv preprint arXiv:1405.6757, 2014. 3.11

[119] Janusz Marecki, Gerald Tesauro, and Richard Segal. Playing repeated stackelberg games
with unknown opponents. In International Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 2012, 2012. 4.9.6

147

[120] Peter Bro Miltersen and Troels Bjerre Sørensen. Fast algorithms for finding proper strate-
gies in game trees. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2008. 1.3, 5, 5.1

[121] Peter Bro Miltersen and Troels Bjerre Sørensen. Computing a quasi-perfect equilibrium
of a two-player game. Economic Theory, 42(1), 2010. 1.3, 5

[122] Vahab Mirrokni, Nithum Thain, and Adrian Vetta. A theoretical examination of practical
game playing: lookahead search. In Algorithmic Game Theory, pages 251–262. Springer,
2012. 6

[123] Tyler Moore, Allan Friedman, and Ariel D Procaccia. Would a’cyber warrior’protect us:
exploring trade-offs between attack and defense of information systems. In Proceedings
of the 2010 New Security Paradigms Workshop, pages 85–94. ACM, 2010. 8

[124] Matej Moravčı́k, Martin Schmid, Neil Burch, Viliam Lisý, Dustin Morrill, Nolan Bard,
Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack:
Expert-level artificial intelligence in heads-up no-limit poker. Science, 356(6337), May
2017. 3, 4.1, 8

[125] Enrique Munoz de Cote, Ruben Stranders, Nicola Basilico, Nicola Gatti, and Nick Jen-
nings. Introducing alarms in adversarial patrolling games. In Proceedings of the 2013
international conference on Autonomous agents and multi-agent systems, pages 1275–
1276. International Foundation for Autonomous Agents and Multiagent Systems, 2013.
1

[126] John Nash. Equilibrium points in n-person games. Proceedings of the National Academy
of Sciences, 36:48–49, 1950. 4.1

[127] John Nash. Non-cooperative games. Annals of Mathematics, 54:289–295, 1951. 2.2

[128] Dana S Nau. Pathology on game trees revisited, and an alternative to minimaxing. Artifi-
cial intelligence, 21(1):221–244, 1983. 6, 6.4

[129] Dana S Nau, Mitja Luštrek, Austin Parker, Ivan Bratko, and Matjaž Gams. When is it
better not to look ahead? Artificial Intelligence, 174(16):1323–1338, 2010. 6, 6.4

[130] Arkadi Nemirovski. Prox-method with rate of convergence O(1/t) for variational inequal-
ities with Lipschitz continuous monotone operators and smooth convex-concave saddle
point problems. SIAM Journal on Optimization, 15(1), 2004. 1.1, 3, 3.11

[131] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust
stochastic approximation approach to stochastic programming. SIAM Journal on opti-
mization, 19(4):1574–1609, 2009. 3.10

[132] Yurii Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Jour-
nal of Optimization, 16(1), 2005. 1.1, 3, 3.3.1, 3.3.1, 3.3.1, 3.8, 3.9

[133] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Program-
ming, 103, 2005. 1.1, 3.3.1, 3.3.1, 4.9.5

[134] Yurii Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
programming, 120(1):221–259, 2009. 1.1, 3.1

148

[135] Thanh H Nguyen, Francesco M Delle Fave, Debarun Kar, Aravind S Lakshminarayanan,
Amulya Yadav, Milind Tambe, Noa Agmon, Andrew J Plumptre, Margaret Driciru, Fred
Wanyama, et al. Making the most of our regrets: Regret-based solutions to handle pay-
off uncertainty and elicitation in green security games. In International Conference on
Decision and Game Theory for Security, pages 170–191. Springer, 2015. 7

[136] Thanh Hong Nguyen, Amulya Yadav, Bo An, Milind Tambe, and Craig Boutilier. Regret-
based optimization and preference elicitation for Stackelberg security games with uncer-
tainty. In AAAI, pages 756–762, 2014. 1.5, 7

[137] Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and system Sciences, 48(3):498–532, 1994.
6.2.1

[138] Praveen Paruchuri, Jonathan P Pearce, Janusz Marecki, Milind Tambe, Fernando Ordonez,
and Sarit Kraus. Playing games for security: An efficient exact algorithm for solving
Bayesian Stackelberg games. In Autonomous Agents and Multi-Agent Systems, 2008. 1.5,
7, 7.1

[139] François Pays. An interior point approach to large games of incomplete information. In
AAAI Computer Poker Workshop, 2014. 4.9

[140] Judea Pearl. Heuristic search theory: Survey of recent results. In IJCAI, volume 1, pages
554–562, 1981. 6, 6.4

[141] Judea Pearl. On the nature of pathology in game searching. Artificial Intelligence, 20(4):
427–453, 1983. 6

[142] Bezalel Peleg, Joachim Rosenmüller, and Peter Sudhölter. The canonical extensive form
of a game form: Symmetries. Springer, 1999. 4.5.2

[143] Raghuram Ramanujan and Bart Selman. Trade-offs in sampling-based adversarial plan-
ning. In ICAPS, pages 202–209, 2011. 6

[144] Raghuram Ramanujan, Ashish Sabharwal, and Bart Selman. On adversarial search spaces
and sampling-based planning. In ICAPS, volume 10, pages 242–245, 2010. 6

[145] R. Tyrell Rockafellar. Convex Analysis. Princeton University Press, 1970. 4.9.5

[146] I. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet
Mathematics, 3, 1962. 3.2.2

[147] Ariel Rosenfeld and Sarit Kraus. When security games hit traffic: Optimal traffic enforce-
ment under one sided uncertainty. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), 2017. 7

[148] Tuomas Sandholm. The state of solving large incomplete-information games, and appli-
cation to poker. AI Magazine, 2010. Special issue on Algorithmic Game Theory. 1, 3.1,
3.11, 4.9.7, 6.5

[149] Tuomas Sandholm. Abstraction for solving large incomplete-information games. In AAAI
Conference on Artificial Intelligence (AAAI), 2015. Senior Member Track. 4.1

[150] Tuomas Sandholm. Steering evolution strategically: Computational game theory and op-

149

ponent exploitation for treatment planning, drug design, and synthetic biology. In AAAI
Conference on Artificial Intelligence (AAAI), 2015. Senior Member Track. 1.4, 6, 6.3, 7

[151] Tuomas Sandholm. Steering evolution strategically: Computational game theory and op-
ponent exploitation for treatment planning, drug design, and synthetic biology. In AAAI
Conference on Artificial Intelligence (AAAI), 2015. Senior Member Track. 8

[152] Tuomas Sandholm and Satinder Singh. Lossy stochastic game abstraction with bounds.
In Proceedings of the ACM Conference on Electronic Commerce (EC), 2012. 4, 4.1, 4.2,
4.5.1, 4.5.1, 4.5.2, 3, 6

[153] David Schnizlein, Michael Bowling, and Duane Szafron. Probabilistic state translation
in extensive games with large action sets. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence (IJCAI), 2009. 4

[154] Reinhard Selten. Reexamination of the perfectness concept for equilibrium points in ex-
tensive games. International journal of game theory, 1975. 5, 5.1.1

[155] Jiefu Shi and Michael Littman. Abstraction methods for game theoretic poker. In CG
’00: Revised Papers from the Second International Conference on Computers and Games,
pages 333–345, London, UK, 2000. Springer-Verlag. 3.1, 4, 4.1

[156] Yoav Shoham and Kevin Leyton-Brown. Multiagent systems: Algorithmic, game-
theoretic, and logical foundations. Cambridge University Press, 2009. 7.6

[157] Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse
Billings, and Chris Rayner. Bayes’ bluff: Opponent modelling in poker. In Proceedings
of the 21st Annual Conference on Uncertainty in Artificial Intelligence (UAI), July 2005.
3, 3.8, 5.3

[158] Theodoros Spyridopoulos, G Karanikas, Theodore Tryfonas, and Georgios Oikonomou. A
game theoretic defence framework against dos/ddos cyber attacks. Computers & Security,
38:39–50, 2013. 8

[159] Peter Sudhölter, Joachim Rosenmüller, and Bezalel Peleg. The canonical extensive form
of a game form: Part II. representation. Journal of Mathematical Economics, 33(3):299–
338, 2000. 4.5.2

[160] Milind Tambe. Security and game theory: algorithms, deployed systems, lessons learned,
2011. 1.5, 7, 7.1

[161] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-
up limit Texas hold’em. In Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI), 2015. 1.1, 3, 3.1, 3.9, 5.3

[162] Eric van Damme. A relation between perfect equilibria in extensive form games and
proper equilibria in normal form games. International Journal of Game Theory, 1984. 5

[163] Heinrich von Stackelberg. Marktform und Gleichgewicht. Springer, Vienna, 1934. 7

[164] B. von Stengel, A. H. van den Elzen, and A. J. J. Talman. Computing normal form perfect
equilibria for extensive two-person games. Econometrica, 70, 2002. 5

[165] Bernhard von Stengel. Efficient computation of behavior strategies. Games and Economic

150

Behavior, 14(2):220–246, 1996. 1, 1.1, 1.3, 3, 3.2.2, 3.4, 4.5, 4.9, 6.2.2, 6.3, 7.4, 7.6

[166] Bernhard von Stengel and Françoise Forges. Extensive-form correlated equilibrium: Def-
inition and computational complexity. Mathematics of Operations Research, 33(4):1002–
1022, 2008. 3.11

[167] Bernhard von Stengel and Shmuel Zamir. Leadership games with convex strategy sets.
Games and Economic Behavior, 69(2):446–457, 2010. 7

[168] Kevin Waugh. Abstraction in large extensive games. Master’s thesis, University of Al-
berta, 2009. 4, 4.1, 4.5.4

[169] Kevin Waugh and Drew Bagnell. A unified view of large-scale zero-sum equilibrium com-
putation. In Computer Poker and Imperfect Information Workshop at the AAAI Conference
on Artificial Intelligence (AAAI), 2015. 1, 3.1

[170] Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schnizlein, and
Michael Bowling. A practical use of imperfect recall. In Symposium on Abstraction,
Reformulation and Approximation (SARA), 2009. 4.6

[171] Kevin Waugh, Dustin Morrill, Drew Bagnell, and Michael Bowling. Solving games with
functional regret estimation. In AAAI Conference on Artificial Intelligence (AAAI), 2015.
4, 4.1

[172] Michael P Wellman and Achintya Prakash. Empirical game-theoretic analysis of an adap-
tive cyber-defense scenario (preliminary report). In International Conference on Decision
and Game Theory for Security, pages 43–58. Springer, 2014. 8

[173] Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, Shih-Fen Cheng, and Rahul
Suri. Approximate strategic reasoning through hierarchical reduction of large symmetric
games. In Proceedings of the National Conference on Artificial Intelligence (AAAI), 2005.
4.1

[174] Brandon Wilson, Inon Zuckerman, Austin Parker, and Dana S Nau. Improving local
decisions in adversarial search. In ECAI, pages 840–845, 2012. 6.4

[175] Lin Xiao. Dual averaging methods for regularized stochastic learning and online opti-
mization. Journal of Machine Learning Research, 11(Oct):2543–2596, 2010. 3.10

[176] Z Yin, A Jiang, M Tambe, C Kietkintveld, K Leyton-Brown, T Sandholm, and J Sulli-
van. TRUSTS: Scheduling randomized patrols for fare inspection in transit systems. In
Innovative Applications of Artificial Intelligence (IAAI) Conference, 2012. 1.4, 6, 6.3, 7

[177] Zhengyu Yin and Milind Tambe. A unified method for handling discrete and continuous
uncertainty in bayesian stackelberg games. In International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2012, 2012. 4.9.6

[178] Chao Zhang, Shahrzad Gholami, Debarun Kar, Arunesh Sinha, Manish Jain, Ripple
Goyal, and Milind Tambe. Keeping pace with criminals: An extended study of designing
patrol allocation against adaptive opportunistic criminals. Games, 7(3):15, 2016. 7

[179] Martin Zinkevich, Michael Bowling, Michael Johanson, and Carmelo Piccione. Regret
minimization in games with incomplete information. In Proceedings of the Annual Con-
ference on Neural Information Processing Systems (NIPS), 2007. 1, 3, 3.1, 3.9, 4, 4.2, 4.2,

151

4.5, 4.5.2, 4.9, 6.2.2

152

Appendix

MIP for generating a perfect-recall abstraction by considering
all levels at once
Motivated by the problems described in Section 4.5.2, we develop an algorithm for computing
abstractions with bounded loss that operates on all levels at once. The only assumption we make
about structure of the game, is that we only allow nature nodes to merge if they have the same
number of actions, and only allow different branches to merge if they have the same probability
of occurring.

Using integer-programming (IP), we develop two similar models for computing abstractions.
One takes as input the maximum number of game tree nodes allowed and computes an abstraction
that minimizes the ex-ante variant of the bound given in Theorem 2. The other takes as input a
desired error bound and computes the smallest abstraction subject to satisfying the bound.

Variables

For each node si, we introduce a variable pi ∈ {0, 1} denoting whether si is a prototype. For
each level k ∈ H and ordered pair of nodes at height k, si, sj ∈ Sk, we introduce a variable
δi,j ∈ {0, 1} denoting whether si is mapped onto sj . For each unordered pair of information sets
Ii, Ij at height k, we introduce a variable Ii,j ∈ {0, 1} denoting whether the two information sets
map to the same abstract information set.

Objective functions

In the case where we are given a bound to satisfy and wish to compute the smallest abstraction,
we maximize the sum over all abstraction variables δi,j , thereby minimizing the number of nodes
in the game tree:

max
δi,j ,pi,Ii,j

∑
i,j

δi,j (1)

In the case where we are given a maximum tree size and want to minimize the bound, we min-
imize the sum over leaf nodes mapped onto each other, weighted by the absolute difference in
utility at the leaves:

min
δi,j ,pi,Ii,j

∑
z∈Z

∑
ẑ∈Z

max
i∈N
|Vi(z)− Vi(ẑ)|δi,j (2)

153

Constraints

To ensure that nodes are either prototypes or mapped onto a single prototype, we introduce the
following three constraints. The first and second constraints below are introduced for all nodes
si, and the third for all pairs of nodes si, sj at the same height.∑
j∈Sk

δi,j ≤ 1,∀si ∈ S, pi +
∑
j∈Sk

δi,j ≥ 1,∀si ∈ S, δj,i − pi ≤ 0,∀k ∈ H, si, sj ∈ Sk

(3)

The first constraint ensures that each node is mapped onto at most one other node. The second
and third constraints ensure that the variables pi accurately reflect whether si is a prototype.
The second constraint requires that pi = 1 unless si is mapped to some other node. The third
constraint sets pi = 0 if si is mapped onto any other node sj . Together, the last two constraints
ensure that nodes are only mapped onto prototypes, and that prototype nodes are not mapped
onto anything.

If a node si is mapped onto another node sj , satisfying the condition of Corollary 2 requires
that the children at si map onto the children at sj . This is ensured by the following constraint,
where Ci is the set of all child node indices of si.

δi,j −
∑
cj∈Cj

sci,cj ≤ 0,∀si ∈ S \ Z, ci ∈ Ci, (4)

If δi,j = 1, this constraint requires that sci is mapped onto some child node of sj by requiring that
at least one of them is set to one. Similarly, if si is mapped onto sj , we require that the parent
node of si, denoted by spi , is mapped onto the parent node of sj , denoted by spj . This gives
the following constraint, where the parent mapping variable δpi,pj is required to be set to one if
δi,j = 1.

δi,j − δpi,pj ≤ 0, ∀k ∈ H, si, sj ∈ Sk (5)

For each node pair si, sj at some height k, let Ii, Ij be their respective information sets and
Ii,j the variable denoting whether the information sets are merged. If the nodes are merged, we
require that their information sets are also merged, which is achieved by the following constraint.

δi,j − Ii,j ≤ 0,∀k ∈ H, si, sj ∈ Sk (6)

Information set merges are transitive, so if two information sets are both merged with the same
third information set, we require that they are themselves merged:

Ii,j + Ii,l − Ij,l ≤ 1,∀k ∈ H, Ii, Ij, Il ∈ Ik (7)

Using the variable Ii,j for two information sets Ii, Ij , we can ensure that each prototype node
in the abstract merged information set has a node from each information set mapping onto it.
Without loss of generality, assume sl ∈ Ii, we add the following constraint.

pl + Ii,j −
∑
sm∈Ij

δm,l ≤ 1,∀Ii, Ij, sl ∈ Ii (8)

154

This requires that if sl is a prototype, pl = 1, and if Ii,j = 1, at least one node from Ij maps onto
sl.

As mentioned above, we only allow nature outcomes to map onto each other if their proba-
bility is the same. Further, if for some nature node sj mapped onto a nature node si we have that
m > 1 child nodes of sj map onto the same child node of si, then we must ensure thatm−1 child
nodes at si map onto ci, in order to keep the nature distribution error at zero. This is achieved by
the following two constraints.

δci,cj = 0,∀si, sj, ci ∈ Ci, cj ∈ Cj, σ(si, ci) 6= σ(sj, cj) (9)∑
cj∈Cj

δcj ,ci =
∑
ck∈Ci

δck,ci + 1,∀si, sj ∈ S \ Z, ci ∈ Ci (10)

The first constraint just disallows mapping children of nature nodes that do not have equal prob-
ability of occurring. The second constraint ensures that the probability of a prototype child being
chosen at the nature node, which is equal to the sum of the probabilities of outcomes at the node
that are mapped to it, is equal to the sum of probabilities over outcomes mapped to it from sj .

For the case where a specific bound is given as input and we wish to compute the minimum
size abstraction, we add the following constraint.∑

zi,zj∈Z

max
i∈N
|Vi(zi)− Vi(ẑj)|δi,j ≤ εR (11)

This constraint sums over all leaf node pair mappings, and weights them by the difference in
utility at the pair. We require that this sum be less than εR, the given bound. For the case where a
maximum tree sizeK is given as input and we wish to minimize the bound, we add the following
constraint.

max
δi,j ,pi,Ii,j

∑
i,j

δi,j ≥ |S| −K (12)

This constraint requires that at least |S|−K merges are performed, so the abstraction has at most
K nodes.

The number of variables in the model is O(|Z|2). The largest constraint sets are those in
Equation 7 and those over all variable pairs at each level. The former is O(maxk∈H I3

k) and the
latter is O(|Z|2).

Games of ordered signals

Proof that the game in Figure 4.6 is a game of ordered signals
The game given in Figure 4.6 is only a signal tree. It can be coupled with any betting tree to form
a simple poker game. We prove that it satisfies the conditions for any betting tree (by betting tree
we mean any tree where the players take turns calling, checking, betting, raising, and folding,
with each action leading to the usual outcomes of such actions in a poker game). We assume that
a betting tree is played after the private cards are dealt, and another betting tree is played after
the public card is dealt.

155

Proof. We go through the conditions for games of ordered signals as given by Gilpin and Sand-
holm [68].

1. The number of players is 2 which is finite.
2. The game gives only a signal tree that can be used to define winners, and thus works with

any single-stage-game betting tree.
3. We only give a signal tree so this is not relevant.
4. The set of signals is {J1,J2,K1,K2}.
5. κ = {1}, γ = {1}.
6. The distribution over signals is the uniform distribution.
7. Any partial ordering with (K2,J2) ranked highest and (K2,J1) ranked lowest works.
8. Terminal nodes in the first stage game always map to over since we have only one stage

game.
9. We need to check that the utility of players satisfy the ordering property. If either player

has folded, the other player wins all money in the pot. If neither player folds, the signal tree
is used to determine who wins the pot; 1 means that Player 1 wins, −1 means that Player
2 wins. First we check that utilities are ordered for Player 1. The definition only requires
weak inequality, and Player 1 has the same payoff everywhere except when Player 1 has
(K2,J1) and Player 2 has (K2,J2); since (K2,J1) is the lowest-ranked hand the ordering is
satisfied for Player 1. Conversely, Player 2 loses everywhere except for (K2,J1,J2) where
they win. Since (K2,J2) is ranked highest this satisfies the ordering.

Proof that merging K1 and K2 in Figure 4.6 is a an ordered game isomor-
phic abstraction transformation
Proof. First we note which nodes are not isomorphic. At the first level the J1 node is not iso-
morphic to any other subtree. At the second level the J1,J2 node is not isomorphic to any other
subtree. At the third level the J1,J2,K2 leaf node is not isomorphic to any other leaf node.

We now consider the isomorphic nodes corresponding to private signals of K1 and K2 (bold
and in red in Figure 4.6). Merging the private K1 and K2 signals into a single information set
constitutes an ordered game isomorphic abstraction transformation: For each pair of K1 and K2
nodes at the two first levels, the subtrees are isomorphic.

156

	1 Introduction
	1.1 Algorithms for computing zero-sum Nash equilibria (Chapter 3)
	1.2 Abstraction for large general-sum games (Chapter 4)
	1.3 Equilibrium refinement (Chapter 5)
	1.4 Limited lookahead (Chapter 6)
	1.5 Robust Stackelberg equilibria (Chapter 7)

	2 Notation
	2.1 Extensive-form games
	2.2 Equilibrium concepts

	3 Algorithms for computing zero-sum Nash equilibria
	3.1 Related literature
	3.2 Problem setup
	3.2.1 Basic notation
	3.2.2 Sequence form

	3.3 Optimization setup
	3.3.1 General framework for FOMs

	3.4 Treeplexes
	3.5 Dilated entropy functions with bounded strong convexity
	3.5.1 Preliminary results for the proofs of our main results
	3.5.2 Proofs of our main theorems
	3.5.3 Treeplex width

	3.6 EGT for extensive-form game solving
	3.6.1 Improvements in extensive-form game convergence rate

	3.7 Smoothed best responses
	3.8 Small and medium-scale numerical experiments
	3.9 Large-scale numerical GPU experiments
	3.10 Sampling
	3.11 Conclusions and future work

	4 Abstraction for large general-sum games
	4.1 Introduction
	4.2 Game abstractions
	4.3 Measuring differences between the original game and the abstract game
	4.4 An exact decomposition of abstraction error
	4.5 Perfect-recall abstraction
	4.5.1 Removing probability-error dependence on strategies
	4.5.2 Level-by-level abstraction
	4.5.3 Level-by-level impossibility
	4.5.4 Generating abstractions by considering all levels at once

	4.6 Imperfect-recall abstraction
	4.6.1 Imperfect-recall abstraction without probability-error dependence on strategies
	4.6.2 Chance-relaxed skew-well-formed (CRSWF) games
	4.6.3 Complexity and algorithms
	4.6.4 Experimental performance of CRSWF abstractions

	4.7 Neccessity of distributional similarity of reach probabilities
	4.8 Conclusions and future work
	4.9 Discretizing continuous action spaces
	4.9.1 Continuous action spaces
	4.9.2 Discretization model
	4.9.3 Overview of our approach
	4.9.4 Discretization quality bounds
	4.9.5 Discretization algorithms
	4.9.6 Applications
	4.9.7 Differences to abstraction practice in poker
	4.9.8 Conclusions and future work

	5 Equilibrium refinement
	5.1 Preliminaries
	5.1.1 Perturbations and Extensive-Form Perfection

	5.2 Distance-generating functions for the -perturbed game
	5.3 Experiments
	5.4 Conclusions and future research

	6 Limited lookahead in sequential games
	6.1 Model of limited lookahead
	6.2 Complexity
	6.2.1 Nash equilibrium
	6.2.2 Commitment strategies

	6.3 Algorithms
	6.4 Experiments
	6.5 Conclusions and future research

	7 Robust Stackelberg equilibria
	7.1 Stackelberg setting
	7.2 Limited-lookahead model
	7.3 Best responses and how to compute them
	7.4 Extension to uncertainty about the opponent
	7.5 MIP for full-certainty setting
	7.6 MIP with uncertainty about follower payoff
	7.6.1 MIP for Limited-Lookahead Interval Uncertainty

	7.7 Experiments
	7.8 Conclusions and future research

	8 Concluding remarks and further thoughts
	Bibliography
	Appendix

