A Denotational Framework for
Fair Communicating Processes

Susan Older

December 1996
CMU-CS-96-204

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Stephen Brookes, Chair
Edmund Clarke
Jeannette Wing
Prakash Panangaden, McGill University

Copyright(©) 1996 Susan Older

This research was sponsored in part by the Office of Naval Research under Grant No. N0O0014-92-J-1298. The
views and conclusions contained in this document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of ONR or the U.S. Government.

Keywords: Denotational semantics, fairness, communicating processes, traces, concur-
rency, full abstraction.

For my parents, who refereed my earliest discourses on things (un)fair

Abstract

The behavior of a parallel system depends not only on the properties of the in-
dividual components running in parallel, but also onititeractionsamong those
components. These interactions in turn depend on external factors (such as the rel-
ative speed of processors or the particular scheduler implementation) whose details
can be complex or even unknown. By introducing appropfiai®ess assump-
tions—which, roughly speaking, states that every sufficiently enabled component
eventually proceeds—we can abstract away from these details without ignoring
them completely. However, modeling fairness for communicating processes is es-
pecially difficult: synchronization requires the cooperation and active participation
of multiple processes, and hence the enabledness of a process depends on the abil-
ity of other processes to synchronize with it.

This dissertation introduces a general framework for modeling fairness for
communicating processes, based on the notiofaioftraces Intuitively, a fair
trace is an abstract representation of a fair computation, providing enough struc-
ture to capture the important essence of the computation (e.g., the sequences of
states encountered or the communications made along it) as well as any contextual
information necessary for compositionality. Within this framework, the meaning
of a command is simply the set of fair traces that correspond to its possible fair
computations. For each construct of the language, we define a corresponding op-
eration on trace sets that reflects its operational behavior.

The use of traces provides a strong connection between the language’s opera-
tional semantics and its denotational semantics, allowing operational intuition to
guide formal, syntax-directed reasoning. Moreover, this trace framework is re-
markably robust. By varying the structure of the traces, we can construct several
different semantics that reflect different types of fairness assumptions for the same
language of communicating processes.

Vi

Acknowledgments

| arrived at CMU with only vague ideas of what | was getting myself into: | had no research
experience and knew only that CMU had a “good” computer-science program. To my good
fortune, | found a wonderful advisor and mentor in Stephen Brookes. Steve was extremely
patient as | developed the necessary foundations for doing research, giving me both encour-
agement and the space to figure things out on my own. What | know about research | learned
from him.

| thank the other members of my committee—Ed Clarke, Jeannette Wing, and Prakash
Panangaden—for reading my dissertation in pieces and on short notice. Despite these working
conditions, they provided me with several good suggestions and insightful comments. | also
thank Prakash for fitting my defense into his busy traveling schedule.

Many people offered their friendship and helped make my years in Pittsburgh enjoyable.
Even during the most stressful times, my officemates—Maria, Matt and Sasha—made coming
into the office a pleasant prospect, providing advice, commiseration, and plenty of laughter.
The Brew Crew meant many evenings of good beer and cider and conversation; extra thanks
to Gary and Bonnie for letting us destroy their kitchen on a weekly basis. The Cache Cows
endured an occasionally volatile coach and provided a great excuse to put work aside and
get some fresh air; thanks to Jim for taking over the Mad Cows for one final season. Other
diversions through the years were provided by Bob, who organized summer croquet games,
and Wayne, who—despite his protestations of innocence—led many of us astray as necessary.
Phoebe and James (independently) gave me many pep talks, for which | am most appreciative.
Finally, Jonathan provided both technical and (far more importantly) emotional support on a
daily basis: | thank him with all my heart.

Vil

viii

Contents

1 Introduction 1
1.1 TheCaseforFairness it 1
1.2 Fairness: Complications and Criticisms 2
1.3 ThesisScope e 4
1.3.1 Thesisapproach 4
1.3.2 Thesiscontributions 6
1.4 Organization of the Dissertation 7
2 Communicating Processes 11
2.1 AlLanguage of Communicating Processes 11
211 Syntax e e e 11
2.1.2 Operationalsemantics 14
2.1.3 Processes 17
2.2 Fairness for CommunicatingProcesses 18
221 Processfairness e 19
2.2.2 Channelfairness oo 22
223 Guardfairness 24
2.2.4 Communicationfairness 25
3 Strong Process Fairness 29
3.1 Parameterized Strong Fairness o 29
3.2 StronglyFairTraces. o i i 35
3.3 Strongly Fair Trace Semantics. 37
3.4 Examples 46

4 Full Abstraction for Strong Fairness 53

4.1 Soundness and Full Abstraction. 54
42 ClosedTrace Sets i 55
4.3 Computational Feasibility 61
4.4 Full Abstraction for the Behavil 65
4.5 Other Notions of Program Behavior 71
45.1 Simpletrace behavior o Lo 72
45.2 Stutteringandmumbling. 73
453 Busywaiting 76
454 Communicationtraces 79
5 Strong Channel Fairness 85
5.1 Channels, Names, Durations, and Scopes 85
5.2 Parameterized Channel Fairness 87
5.3 Channel-Fair Traces. e 91
5.4 Channel-Fair Trace Semantics 94
5.5 Lackof Full Abstraction, 106
6 Weak Process Fairness 109
6.1 Parameterized Weak Fairness 109
6.2 WeaklyFairTraces. e 116
6.3 Weakly Fair Trace Semantics 117
6.4 FinalCommentsoly e 123
7 Hybrid Communicating Processes 125
7.1 Alanguage of Hybrid Processes 126
7.1.1 Syntax e e 127
7.1.2 Operationalsemantics 128
7.2 Fairness for Hybrid Processes 131
7.3 Strongly Fair, Hybrid-Trace Semantics 135
7.3.1 Abusy-waitingbehavior 0oL 135

X

7.3.2 Hybridtraces e 136

7.3.3 Closureconditions 137

7.3.4 Hybridtracesemantics... 138
7.4 Full Abstraction for the BehaviW 141
Conclusions 145
8.1 RelatedWork 145
8.2 Directionsfor Future Work 146
8.3 ThesisContributions 148
8.4 FinalComments. 150

Xi

Xii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

4.1
4.2

5.1
5.2

6.1

7.1

7.2
7.3

8.1

Inductive definition ofv[c]. L. 13
Inductive definitionofc[[c]. 13
The predicatesrm. e 14
Transition rules for sequential constructs. 15
Transition rules for guards and guarded commands. 16
Transition rules for parallel constructs. 16
The hierarchy of fairness notionsforCSP. 19
The processadi. 20
Channel fairnessexample. 24
TheprocesB. 25
Theproces®. e 26
The progranGuess(H,Gy,f1). oo 70
Some program equivalences validated’ §y 71
Inductive definition ofomms(c,s).o 93
Some program equivalences validated ﬂy 108
The definitiorinitsets(C,S). 111
The predicatesrm for hybrid processes. 128
Axiom and inference rule for the generalized relatiehs. 128
Inference rules for the parallel constructs. 129
Summary of semantics in the fair-trace framework. 149

Xiii

Xiv

Chapter 1

Introduction

Reasoning about deterministic sequential programs is a relatively straightforward task: at any
particular instant, there is only one thread of control, and its next action can be determined
solely from the current state. The situation changes dramatically, however, when we start
considering parallel programs. When a system comprises several components running in par-
allel, its behavior depends not only on properties of the individual components but also on the
interactionsamong them. Any attempt to model or reason formally about parallel-program
behavior must take these interactions into account [Mil75]. However, the interactions in turn
depend on external factors, such as the relative speed of processors or the implementation of
the scheduler, whose details can be complex or (in many cases) unknown. As a result, reason-
ing formally about parallel systems often requires abstracting away from these details without
ignoring them completely. One common and useful abstraction, and the subject of this disser-
tation, isfairness

This chapter provides a brief introduction to the concept of fairness and the reasons for
(and the arguments against) adopting fairness assumptions to reason about the behavior of
parallel programs. It also describes the goal of this dissertation—namely, the construction
of a denotational framework for fair communicating processes—and provides a sketch of the
approach taken. The chapter concludes with a roadmap for the remainder of the dissertation.

1.1 The Case for Fairness

To be precise, fairness is not a single abstraction but rather a collection of abstractions that
all express the same underlying themm& component should forever be denied its rightful
opportunity to proceed This simple theme applies to many settings; both Francez [Fra86]
and Kwiatkowska [Kwi89] provide extensive surveys. In each setting, the role of the fairness
assumption is to simplify the task of reasoning about program behavior.

Introduction

When we reason about programs, we typically want to prove that a program satisfies some
combination ofsafetyandlivenessproperties. Safety properties are those properties that state
that “nothing bad” ever happens: deadlock-freedom, data consistency, and mutual exclusion are
all examples of safety properties. Safety properties correspond to program invariants: proving
that a program satisfies a safety property amounts to showing that every reachable state satisfies
the necessary invariant. As a result, fairness assumptions are not necessary for proving safety
properties.

In contrast, liveness properties state that “something good” eventually happens, such as
termination, the granting of a request, or the occurrence of a particular event. Fairness itself
is a liveness property: the “something good” guaranteed to occur is a component’s eventual
progress. Whereas safety properties represent features of individual states, liveness properties
reflect characteristics ;lequencesf states. As a result, they depend on the particular events
that occur and the order in which those events occur. For example, consider the following
simple shared-variable program:

x:=0;y:=1; (while y # 0 do x:=x+1 || y:=0).

To determine whether the program terminates, we need to know how the two parallel subcom-
ponents are scheduled. For instance, if we know that the assigymenhbccurs before the

first evaluation of the conditiongl+# 0, then we can deduce that the program terminates with
the value ok set to 0. More generally, if we know that the assignmyes occurs between the

nt" and[n+ 1]% evaluations of the conditional, then we can deduce that the program terminates
with the value ok set ton.

What can we deduce about the program’s termination without such detailed knowledge? As
first glance, we can deduce very little: a biased scheduler could prevent the assigraent
from ever occurring, in which case the program does not terminate. However, because every
reasonable scheduler is fair, we can abstract away from the scheduler details by assuming fair-
ness. Simply knowing that the scheduler is fair—that is, that the scheduler will eventually let
the assignment occur—allows us to deduce that the program terminates. In this case, fairness
allows us to prove a liveness property that we otherwise could not prove. Of course, assuming
fairness leaves us with very little information about the final value: dhe most that we can
say is that the final value is a nonnegative integer. This example illustrates the phenomenon of
unbounded nondeterminigimat often arises with fairness: although the program is guaranteed
to terminate, there is an infinite number of possible final values.for

1.2 Fairness: Complications and Criticisms

The underlying theme of fairness is simple yet powerful: by assuming only general features
of a scheduler, we can prove liveness properties of parallel programs. However, this simplic-

1.2 Fairness: Complications and Criticisms 3

ity belies the complexity of reasoning formally about fairness. The well-known relationship
between fairness and unbounded nondeterminism has hampered both operational and denota-
tional accounts of fairness, requiring the use of transfinite ordinals for proof rules and the use
of noncontinuous semantic operators [Par79, AP86]. Moreover, the halting problem for pro-
grams with unbounded nondeterminisrrl'l%—complete [Cha78], as is predicate-satisfiability
under fairness assumptions [EC80]. The complications inherent to fairness have led some
people to discard it altogether; several arguments have been made against adopting fairness
[Dij88, Hoa78]. We address the most common criticisms here:

e Fairness is an unrealistic assumption, because no scheduler should be expected to gen-
erate all fair computations.

This criticism reflects a common misunderstanding. A fair scheduler does not need to
generatall fair computations; rather, it must generatdy fair computations. A simple
round-robin scheduler is fair, because it guarantees each process an opportunity to pro-
ceed. Indeed, any reasonable scheduler is fair: a parallel system that ignores arbitrary
processes is not much use.

¢ No finite experiment can distinguish a fair implementation from an unfair implementa-
tion, and hence the distinction between fair and unfair computations is meaningless.

Indeed, there is no way to distinguish a fair implementation from a unfair implementation
simply by looking at some finite portion of a resulting computation: such is the nature

of liveness properties in general. The fact is that we often want to reason about liveness
properties such as the eventual granting of all resource requests or the guaranteed mes-
sage delivery: these properties cannot be determined solely by examining finite portions
of computations either. Even proving termination of deterministic sequential programs

is undecidable, and yet very few would argue that the distinction between terminating
computations and nonterminating computations is meaningless.

e Fairness should not be part of a language definition: it is the programmer’s responsibility
to prove her programs correct without relying on a fair implementation.

Fairness does not need to be part of the language definition to be a useful abstraction.
Indeed, different implementations of the same language may provide different levels of
fairness. However, proving programs correct often involves proving that they satisfy
certain liveness properties, which in turn requires knowing general features or precise
details of the scheduler. Without fairness, the programmer must understand the underly-
ing implementation in detail or write her own scheduler.

In summary, fairness is a useful and often necessary abstraction, in spite of the technical
difficulties that it introduces. Whereas discarding fairness may avoid technical complications,
it does not reduce the complexity of reasoning about parallel programs.

Introduction

1.3 Thesis Scope

Communicating processes represent an important (and still relevant) paradigm for parallel-
program implementation in which processes communicate with one another through synchronous
or asynchronous message passing; this paradigm is reflected in (among others) CCS [Mil80],
CSP [Hoa78, Hoa85], occam [INM84], Ada [Uni80], and even the widely accepted MPI (Mes-
sage Passing Interface) standard [Mes94]. In this dissertation, | explore the problem of model-
ing fairness for synchronously communicating processes, developing a denotational framework
that incorporates a variety of fairness assumptions for these processes.

Modeling fairness for communicating processes is more difficult than for shared-variable
programs. In the shared-memory paradigm, processes communicate with one another through
changes to the shared global state. To avoid inadvertent (and inconsistent) simultaneous ac-
cesses to the shared state, shared-memory programs emphasize mutual exclusion. Whether a
given process is enabled depends only on the global state: a process’s ability to make progress
is independent of the status of the processes in parallel with it. In contrast, the emphasis in the
communicating-process paradigm is on synchronization, which requires the active cooperation
and participation of two (or possibly more) processes. As a result, a process’s ability to make
progress is no longer a local property: it depends on the ability of other processes to synchro-
nize with it. No matter how determined a process is to perform a particular communication,
and regardless of how benevolent the scheduler is, the communication can occur only if some
other process can synchronize with it. This dependence on other processes for progress has
important consequences for modeling fairness: determining whether a process is treated fairly
depends on knowing not only what the particular process is trying to do but also on what types
of actions the processes in parallel with it can perform.

Complicating the problem is the number of fairness assumptions that are applicable for
communicating processes. Several different types of fairness have been considered for com-
municating processes (see, for example, [Fra86] and [KdR83]), each one reflecting a different
type of obligation that we might wish to impose on the implementation. For example, in ad-
dition to expecting that every process makes progress, we might require that certain pairs of
processes communicate with one another or that particular communications eventually occur.
Each of these different fairness assumptions affects the allowable program behavior and im-
pacts the corresponding semantic model in some way. Can we construct a semantic framework
that accounts for these different assumptions in a unified way, making only the distinctions
necessary for dealing with the underlying differences in assumptions?

1.3.1 Thesis approach

Traces have long been used to model concurrency [Par79, Bro96b, Hoa81, BHR84, BR34,
Hen85, Jon94, Rus90, Jos92]. In this dissertation, | show that traces can be extended with

1.3 Thesis Scope 5

additional contextual information to support compositional reasoning dhmutoncurrency.
Intuitively, a trace is an abstract record of a program execution, capturing the important aspects
(e.g., communication sequences or state changes) of the execution while abstracting away from
unimportant details such as program syntax. By adding appropriate structure that represents
fairness-related contextual information (e.g., information about the communications that could
have occurred along the computation) to yitdd traces we can model the fair behaviors of
communicating processes in a compositional manner.

The contextual components of the fair traces are essential for modeling fairness accurately,
because they provide information about the type of situations in which the given trace rep-
resents a fair computation. However, determining exactly what type of structure these com-
ponents require can be difficult: the extent to which program contexts affect the perceived
fairness of (sub)computations depends on the particular notion of fairness under considera-
tion. Generally speaking, the fair computations of a parallel comrogftd cannot be defined
only in terms of the fair computations of andc,. The problem is that, because synchronous
communications require the cooperation and participation of more than one process, a given
(sub)computation of; can be either fair or unfair when made part of a larger computation of
c1/|c2, depending on what type of synchronization opportunities the compopenbvides.

As aresult, itis necessary to consider “almost fair” computations, which can be considered
fair under certain assumptions (i.e., in certain contexts). By introducing notioparaime-
terized fairnesswe can make precise this notion of “almost fair”. Roughly speaking, these
parameterized forms of fairness capture the features of program contexts that affect the fair
progress of processes, such as the communications enabled along a computation and the types
of communications that blocked processes are trying to perform. These parameterized forms
of fairness are essential for the denotational (i.e., compositional) characterization of fairness.

Once the appropriate structure for the fair traces has been determined, the meaning of a
command is given by the set of fair traces that correspond to its computations. To characterize
this semantic function denotationally, we define operations on trace sets that reflect the oper-
ational behavior of the language constructs. For example, the computations of the sequential
compositioncy; ¢z in essence arise from appending computations &b computations of;.

The trace set of the commang ¢, likewise can be created by appending traces @b traces
of c1.

The most difficult language construct to model is parallel composition. Generally speak-
ing, the computations af; ||c; arise from merging and interleaving computationspfvith
computations ot,. However, not all pairs of computations can be merged and still reflect
meaningful computations: for example, the progress made by one component may affect the
perceived fairness of the other component’s actions. The role of the fair traces’ contextual
components is to provide information sufficient for determining which merges are meaningful;
we let a predicatenergeablendicate such combinations. It is also important that the merges
of the traces aréair mergegPar79]: a fair merge of tracels, and¢$, consumes all op; and

Introduction

all of ¢,. To this end, we define a relatié@irmergeC ® x ® x ® on fair traces that guarantees

a fair merging and acknowledges the potential of synchronization between components. This
relation must also perform the necessary bookkeeping to maintain accurate information in the
traces’ contextual components. Intuitively, the tripdg, d2, ¢) is in fairmergeif and only if

¢ represents a fair computation that can be obtained by merging the fair computations repre-
sented byp; and¢,. With these definitions in hand, we define parallel composition on trace
sets in the following way:

T To={¢|01€T1 & p2€ T2 & ($1,02,0) € fairmerge& mergeabléds, ¢2,¢)}.

The particular definitions ofmergeableand fairmergevary depending on both the language

and notion of fairness under consideration. However, they play the same roles in each setting.
Indeed, the semantic functions in general are very similar from fairness notion to fairness
notion, because the operational intuition underlying the operations remains the same in each
case; only the bookkeeping operations vary, reflecting their dependence on the trace structure.

In this dissertation, | concentrate on modeling synchronously communicating processes.
However, this description of the framework is general enough to suit other paradigms as well.
Brookes’ transition trace semantics [Bro96b] for shared-variable programs is a simple exam-
ple of this general framework in which no additional contextual information is needed. In
Chapter 7, we see that the framework also accommodates a hybrid language of communicating
processes that includes features of shared-variable parallelism.

1.3.2 Thesis contributions

The primary contribution of this dissertation is the trace framework: it provides a general,
extendible, modular approach for constructing semantics that support reasoning about fair pro-
gram behavior. This framework can be viewed as an extension to existing trace models, iden-
tifying and adding the additional structure necessary for incorporating fairness assumptions.

Throughout this dissertation, | demonstrate the general robustness of the framework by con-
structing several different semantics that incorporate different types of fairness assumptions. In
particular, | focus on a simple language of communicating processes and construct different se-
mantics that incorporate assumptions of strong fairressry process that is enabled infinitely
often makes progress infinitely ofjestrong channel fairness\(ery communication channel
on which communication is enabled infinitely often is used infinitely pféerd weak fairness
(every process that is enabled continuously makes progress eventiiakyresulting seman-
tics show that the same general approach can be applied for different notions of fairness: the
main differences between the different semantics are the bookkeeping operations necessary for
maintaining the fairness-related contextual information. By comparing these semantics, we

1.4 Organization of the Dissertation 7

can see how differences in fairness assumptions affect the type of semantic structure necessary
for reasoning about program behavior.

In the case ostrong fairnessthis approach yieldiully abstractsemantics for several nat-
ural notions of program behavior: a semantics is fully abstract with respect to a notion of
observable behavior if it identifies precisely the terms that behave identically in all program
contexts. The full abstraction results reflect the suitability of the chosen contextual compo-
nents for modeling strong fairness: in each of these strongly fair semantics, the contextual
components of the fair traces remain the same.

1.4 Organization of the Dissertation

The remainder of this dissertation proceeds as follows:

e In Chapter 2, | introduce an imperative language of communicating processes that is
based on Hoare’s CSP [Hoa78] and Milner's CCS [Mil80]. Using this language as a
backdrop, | also discuss and generalize the notions of fairness typically considered for
communicating processes: process fairness, channel fairness, guard fairness, and com-
munication fairness.

The particular syntax and operational semantics are not important from a technical per-
spective. However, they provide a convenient foundation for the technical details of
subsequent chapters.

¢ In Chapter 3, | describe a denotational semantics that incorporates assumpstosgf
process fairnesswhich requires every infinitely enabled process to proceed infinitely
often.

Because strongly fair computation cannot be characterized in an immediately compo-
sitional way, | first introduce a new notion plrameterized strong fairnegbat can

be characterized compositionally. This parameterization guides the construction of the
strongly fair trace semantics. The meaning of a program is a set of traces that correspond
to its possible executions; each trace is augmented by certain enabling information that
is necessary for achieving compositionality.

The main artifact of the chapter is the strongly fair semantics. However, this chapter also
serves as the firstillustration of the general trace framework, and many of the subsequent
chapters build on ideas introduced here.

¢ In Chapter 4, | discuss the propertyfafl abstraction a well-known objective criterion
for judging the utility of a semantics. Intuitively, a fully abstract semantics makes pre-
cisely the right distinctions to support compositional reasoning about program behavior.

Introduction

The strongly fair semantics of Chapter 3 is not fully abstract. However, by introducing
appropriate closure conditions on trace sets, | show how the semantics can be adapted to
yield full abstraction with respect to a natural notion of strongly fair behavior. Moreover,
small changes in the trace structure and the selection of closure conditions yield several
other fully abstract semantics for other notions of strongly fair program behavior.

Having a common underlying framework significantly simplifies the construction of the
additional semantics. In particular, the contextual components of the traces (that is, the
portion that relates to strong fairness) remain the same in each case and facilitate the
presentation and understanding of each new model. Moreover, because the contextual
components of traces remain the same, many of the necessary lemmas for full abstraction
can also be reused, greatly simplifying the subsequent full-abstraction proofs.

In Chapter 5, | construct a semantics that incorporates assumptict®o channel
fairness Roughly speaking, strong channel fairness requires not only the progress of
infinitely enabled processes but also the infinite use of every infinitely enabled commu-
nication channel.

Once again, this semantics depends on a parameterization of fairness that can be char-
acterized in a compositional manner. The channel-fair semantics requires significantly
more structure than the process-fair semantics of the previous two chapters, and it is not
fully abstract. | discuss this lack of full abstraction and hint how full abstraction might

be achieved.

In Chapter 6, | considereak process fairneswhich requires altontinuouslyenabled
processes to make progress. Weak fairness is much easier to implement than strong
fairness, but it is extremely sensitive to both the nuances of the operational semantics and
the order in which independent actions occur. As a result, weak fairness is much harder
than strong fairness to model semantically for communicating processes. In particular,
the task of determining when processes are enabled continuously requires significantly
more structure than determining when they are enabled infinitely often.

As it turns out, the resulting weakly fair semantics is very similar in structure to the
channel-fair semantics of Chapter 5. This similarity is rather surprising, given that strong
process fairness is simultaneously stronger than weak process fairness and weaker than
strong channel fairness. | discuss the underlying reasons for this similarity.

Chapter 7 is the final technical chapter of the dissertation. In it, | introduce a language
of hybrid distributed process that combines features of both the shared-variable and the
communicating-process paradigms. By combining Brookes’ transition trace semantics
for shared-variable programs [Bro96b] with my strongly fair semantics for communi-
cating processes, | construct a semantics for this hybrid language that incorporates a

1.4 Organization of the Dissertation 9

combination of weak and strong fairness assumptions. Moreover, suitable closure con-
ditions on trace sets again yield full abstraction, the proof of which is a straightforward
combination of the full-abstraction proofs for the original, independent semantics.

The ease with which these two distinct semantics can be combined reflects the generality
of the trace framework. Despite the underlying differences of the paradigms, the two
types of trace semantics can be combined in an intuitively appealing way.

e Finally, | conclude with a summary of the contributions of the thesis, some connections
to related work, and suggestions for future work.

10

Introduction

Chapter 2

Communicating Processes

In this chapter, we introduce a representative language of communicating processes, related to
Hoare’'s CSP and Milner’'s CCS, in which processes have private local states and communicate
with one another only via synchronous message passing. The particular syntax and operational
semantics of this language are uninteresting from a technical standpoint, but they provide a
convenient reference for the discussion of the relevant issues. In particular, throughout this
dissertation we will show how different types of fairness assumptions can be incorporated into
semantics for this same language. By modeling a single language, we can focus better on the
similarities and differences of the various fairness assumptions.

After giving the syntax and operational semantics of the language, we introduce the stan-
dard notions of fairness for communicating processes: process fairness, channel fairness, guard
fairness, and communication fairness. These notions of fairness have typically been identified
with CSP; because our language’s syntax differs from CSP in certain respects, we generalize
the definitions to suit our language as well.

2.1 A Language of Communicating Processes

For most of this dissertation, we shall consider a simple imperative language of communi-
cating processes originally introduced in [Bro94] and based on Hoare’s CSP [Hoa78, Hoa85]
and Milner's CCS [Mil80]. As in occam [INM84], processes have disjoint local states and
communicate with one another via nanetnnels

2.1.1 Syntax

The abstract syntax of the language relies on the following seven syntactic domains:

12 Communicating Processes

¢ Ide, the set oidentifiers ranged over by,

e BEXp, the set oboolean expressionsanged over b;

e EXxp, the set of (integerarithmetic expressionsanged over bg;
e Chan, the set otthannel namesanged over b,

e Gua, the set otommunication guardsanged over by;

e GCom, the set ojuarded commandsanged over bygc;

e Com, the set otommandsranged over byg.

We take for granted the syntax of identifiers, channel names, and boolean and arithmetic ex-
pressions. The syntax of guards, guarded commands and commands is given by the following
grammar:

g == h%|hle
gc = g—clgalge
Cc = skip|i:=e|cy;cy|if bthen ¢y else ¢y | whilebdo c

|gc|caflez | c\h

As is common, we often abbreviate the guarded comngardskip simply asg. We also
use the notatiofy|._;(gi — ¢i) to abbreviate guarded commands of the form

(91— c1)0(g2 = c2) O -+~ O (gn — Cn)-

As in the original CSP, processes have disjoint local states. We therefore impose an ad-
ditional syntactic constraint to ensure that processes can affect one another’s behavior only
through handshake communication. We require that, for every command o€ffyom c; and
¢z have disjoint free identifiers; that is,

fv[ci] Nfvce]] = 0,

wherefv[c] is the set of free identifiers af The setv([c] can be defined by structural induction

in the standard way (see Figure 2.1), under the reasonable assumptivijlthaindfv]e] are
defined for boolean and arithmetic expressions. Likewise, the set of channel names occurring
free inc—written fc[[c]—can be defined inductively, as in Figure 2.2.

2.1 A Language of Communicating Processes 13

fv[skip] = 0

fi=e] = {i}ufv]e]
fvcyco] = fvfe Ufvca]]

fv[if bthen cpelse co]] = fv[[b] Ufv[ca] Ufv]cy]
fv[whilebdoc] = fv[b]ufv]c]

fv[h?] = {i}

fvhle] = fv]e]
fv[g—c] = fvg]ufv]c]

fvlgaDge] = fvga]ufvlge]

fvlallc] = fvcufv[er]
fv[c\h] = fv[c].

Figure 2.1: Inductive definition offv[/c].

fc[skip] = 0
fcii=¢] = 0
feferical = fefea]] Ufelcy]
fc[if bthen cpelse o] = fef[cr]] Ufe[cy]
fc[whilebdoc] = fc[c]
fe[h?] = {h}
fe[hte] = {h}
fef[g—c] = fe[g]ufc[c]
fcfgatige] = fe[ge]Ufclge]
fe[erllea] = fe[ea] Ufelca]
fefe\h] = fefc] - {h}.

Figure 2.2: Inductive definition offc[[].

14 Communicating Processes

(C1,S1)term (Cp,Sp)term
(c1]|c2, s1USp)term

(C,S)term
(c\h,s)term

(e,S)term if disjoint(s1, %)

Figure 2.3: The predicateerm.

2.1.2 Operational semantics

A state is a finite partial function from identifiers to integers. Lettihgepresent the set of
integers, the se$ of states can be defined as

S=lde —~ Z].

For any states, [s|i = n] is the state that agrees wilexcept that it assigns valugo identifier
i. Thedomain of a states, writtendom(s), is the set of identifiers for whickhas a value. Two
statess; ands, are consideredisjoint when their domains are disjoirtom(s;) Ndom(sp) =
0. In such cases, we writisjoint(s1,).

For simplicity, we assume that an evaluation semantics is given for arithmetic and boolean
expressions, and that expression evaluation always terminates and produces no side effects. We
write (e,s) —* n to indicate that expressianin states evaluates to valua. Implicit in this
notation is the assumption that the free identifiers afe included in the domain &f that is,
fv]e] € dom(s). We use a similar notation for the evaluation of boolean expressions, and we
letB = {tt,ff} represent the set of truth values.

We use dabeled transition systerfor commands, guards, and guarded commands; this
approach is standard and follows that of [Plo83].cénfiguration is a pair(c,s) (or more
generally,(g,s) or (gc,s)) for which states is defined on at least the free identifierscdbr g
or gc.) We introduce the place-holdetto represent termination, and allow configurations with
forms such age,s), (e||c2,S) and(e\h,s). A configuration(c,s) is terminal if the predicate
(c,s)term can be proved from the axioms and inference rules in Figure 2.3.

A label A is a member of the set
AN={e}u{hin,h|heChan & ne Z}.

Every transition has a label indicating the type of atomic action invohedepresents an
internal action (e.g., assignment to a variabié),represents the transmission of vatualong
channelh, andh?n represents the receipt of valmefrom channelh. Two labelsA; andA»
match if and only if one has the forrh!n and the otheh?n for some channdi and valuen; in
such a case, we writ@atch(A1,A2). For a label\, chan(A) is the channel associated with
by convention, we definehan(g) = €.

2.1 A Language of Communicating Processes 15

ki £ /e (e,s) —*n
(skip.8) (2. 5) (ii=e,s) — (o,[s|1 =n])
(c1,8) 2 (},8) —(c),S)term (c1,8) 2 (¢, S)term
(c1;C2,9) A, (c];C2,9) (€1;¢C2,S) N (Cp,S)
(b,s) —* tt (b,s) —* £f

(if b then c; else ¢y, S) LN (c1,8) (if bthen ¢y else p,S) BN (C2,9)

(b,s) —* tt (b,s) —* ff
(while bdo c,s) — (c;whilebdo c,s) (while bdo c,s) — (e,s)

Figure 2.4: Transition rules for sequential constructs.

We write
(c.s) 2 (d.9)

to indicate that the commandin states can perform a transition labeled leading to the
commandc’ in states. The transition rules for the sequential constructs are standard and
appear in Figure 2.4.

The transition rules for guards and guarded commands appear in Figure 2.5. Theguard
represents the ability to receive a value for identifiem channeh, and the guarti!erepresents
the ability to transmit the value of expressiealong channeh. The guarded commargl— ¢
is a command that, after performing the action associated with géehaves like command
c. The guarded commangt; [1gc, represents a nondeterministic chdibetween the guarded
commandgc; andgc: on its first stepgci [1gc, can perform any action that eithge; or gc,
can, and afterwards behaves like the chaggn

The transition rules for the parallel composition and channel restriction appear in Fig-
ure 2.6. The command ||c, represents the parallel composition of commandandc,, and
it can perform any action that either component can perform. Additionally, if one component
can perform output and the other receive input on the same channel, then the two components
can synchronize, resulting in a singldransition of the parallel command; such handshakes
correspond to “distributed” assignments. Finally, the comn@hdehaves like the command
c, except that communication on the chanméd restricted to handshakes.

In many situations, we will be interested in the general properties of a communication (i.e.,
whether it is input or output, and on which channel it occurs) without caring for the particular
value transmitted. In such cases, we consider the s#texftions A direction is a member of

1This choice is amxternal choicein that it can be influenced by the environment.

16 Communicating Processes

(e,) —*n

(2, 8)" (e, [s] i =) for eachn € Z (hie,s) 2% (o,5)

(6,5) 2 (,8)
(g—c,s) LN (c,s)

(ge1,s) 2 (c,8) (92,8 2= (c,8)
(ga0ge,s) 25 (c,s) (galge,s) 2 (c,s)

Figure 2.5: Transition rules for guards and guarded commands.

(C2,% b — (¢5,S)) if disjoint(sy, %)
<Cl||c2:SlU32 CUPETEY

<Cl, Sl)\1 C/]_7 g_]_ <C’2,)\2 C/27 %>
(callez, s1Usy) = d||dz,§1U§z

if disjoint(s1,S2) & match(A1,A2)

€9 =2 it canr) 1
(c\h, s> <c’\h s’>

Figure 2.6: Transition rules for parallel constructs.

the set
A= {h!,h?| he Chan}.

Occasionally we will also be concerned with the extended set of directions
At =AU {g}.

We writematch(ds, d2) when the directiond; andd, match: thatis, whenever one has the form
h! and the otheh? for some channdl. We often writed for the unique direction that matches
d, and we writeX for the set of matching directions of the se&tX = {d | d € X}. Similarly,
we write match(Xy, Xp) for setsXy, X C A if there exist directionsl; € X; andd; € X, such
thatmatch(ds,dz). For any directiord, chan(d) is the channel associated with For a label

A, dir(A) is the direction associated with Again, by convention, we Ietir() =€.

A configuration(c, s) is enabledif there exists a transitiofc, s) — (c/,d) for some com-
mandc/, states’ and label\. A configuration isblocked (or disabled) if it is neither enabled
nor terminal. We writgc, s)dead to indicate that the configuratidpe, s) is blocked. We define

2.1 A Language of Communicating Processes 17

a setinits(c, s) that contains the directions (possibly includg)dhat can be used on transitions
from the configuratiorc, s):

inits(c,s) = {dir(\) | 3, €.(c,s) 2 (¢, §)}.

A computation is a finite or infinite, maximal sequence of transitiongaatial compu-
tation is a finite sequence of transitions. We call a finite computation ending in a terminal
configurationsuccessfubnd one ending in a blocked configuratdeadlocked

2.1.3 Processes

As a program executes, it has one or man@cesseassociated with it; each process is a thread

of control in that execution. At every step along a computation, the active processes can be
determined from the syntactic portion of the current configuration. Although processes are
technically features of program executions, it is convenient to associate them with program
syntax. For example, in the command

b!0 || (ax[Jall),

we say that there are two processg$:and(a[Ja!l).

The number of processes can increase or decrease dynamically as a program executes. For
example, the following computation has one active process initially, two active processes after
the first transition, and no active processes in the final configuration:

(alx — (y:=1||x:=1),[x =0,y = 0]) 2, (y:=1||x:=1,[x =0,y = 0])

€
— (y:=1||e,[x =1,y =0])
€
— (oflo,[x=1,y=1]).
A process inabledin a given configuration if it can contribute to a transition from that
configuration. That s, a process is enabled if it can perform an internal action, if it can perform
an external communication along an unrestricted channel, or if it is able to synchronize with
some other process. As a result, whether a process is enabled can depend upon the status of

the processes running in parallel with it: a process trying to communicate along a restricted
channel is enabled only if another process can synchronize with it.

Example 2.1.1 Consider the program

(Q]|Q2[|Qs[|Qal|Qs)\a\b,

18 Communicating Processes

where the processé€d, Q2, Qs, Q4 andQs are defined as follows:

Q1 = xi=x—1,

Q = a¥y —y=y+1,
Q3 = alz— skip,
Qs = blw—wi=w+1,

Qs = (b!5 — skip) O (c!5 — skip).

1. Process); is enabled, because it can perform an internal action that decrements the
value ofx.

2. Processe®, and Qs are both enabled, because they are able to synchronize with one
another along channel

3. Proces$); is disabled: its only potential transition requires synchronization on channel
b, and no other process can synchronize with it.

4. Proces$)s is enabled, because it can communicate along channel o

2.2 Fairness for Communicating Processes

Most of the common notions of fairness—and all of the ones discussed in this dissertation—
share the same general form:

Every entity that is enabled sufficiently often will eventually make progress.

Varying the interpretations antity andsufficiently ofterieads to different notions of fairness.

In the context of communicating processes, there are many different kinds of entity to consider,
each choice leading to a different notion of fairness. In particular, Francez [Fra86] and Kuiper
and de Roever [KdR83] have collectively identified a hierarchy of fairness notions for CSP
that includes the following forms of fairness: process fairness, channel fairness, guard fairness,
and communication fairness. Each of these fairness notions have weak and strong varieties,
which differ in the interpretation a$ufficiently often weak forms of fairness are concerned

with continuouslyenabled entities, whereas strong forms of fairness are concerned with the
infinitely enabled entities.

The hierarchy of fairness assumptions for CSP is sketched in Figure 2.7. Each link of
form A — B can be interpreted as “fairness notiAns subsumed by fairness noti@i or
(equivalently) “EveryB-fair computation is alsé-fair.” For example, every weakly process-
fair computation is also weakly channel-fair, as well as strongly process-fair. Moreover, for

2.2 Fairness for Communicating Processes 19

S: Strong
SCoF W: Weak
/ \ CoF: Communication fairness
GF: Guard fairness
WCoF SGF ChF: Channel fairness
\ / \ PF: Process fairness
WGF SChF
WChF SPF

Figure 2.7: The hierarchy of fairness notions for CSP.

each linkA — B, there is a program that always terminates under the assumptifaohess
but has nonterminating computations under the weaker assumptfefaohess [KdR83].

In this section, we define each of these fairness notions, first as defined originally for CSP
and then adapted to suit the more general syntax of our communicating processes. Process
and channel fairness figure prominently in subsequent chapters. Guard and communication
fairness—which are more strongly tied to program syntax—seem less reasonable as abstrac-
tions, because they are much more impractical to implement: they require the scheduler to keep
track of all (syntactic) communication points of a program and to ensure that each communi-
cation point enabled sufficiently often is used sufficiently often. As a result, we discuss guard
and communication fairness only in this section, to provide a more complete overview of the
hierarchy of fairness notions.

2.2.1 Process fairness

Process fairness is by far the most common notion from this hierarchy, due to its applicability
to contexts besides communicating processes and to the relative ease of implementing process-
fair schedulers.

Weak (process) fairnesgalso known agustice [LPS81]) states that every process enabled
continuouslywill eventually make progress. Intuitively, weak fairness ensures that the sched-

20 Communicating Processes

while true do (
non-critical-sectiof
sem?X;; critical-section;
sem!l

)

Figure 2.8: The processeg.

uler will never forget a process forever. It is straightforward to implement weak fairness as a
scheduling policy, using a simple round-robin scheduling queue.

Despite the ease of implementing weak fairness, sometimes a stronger notion of fairness is
warranted. For example, consider the use of a semaleogavhich we can implement as the
process

Seme while true do (sem!1l — sem?),

to prevent process€®; andQ- (sketched in Figure 2.8) from being in their critical sections at

the same time. In this scenario, itis reasonable to expect that e@zhaodQ, will eventually

enter its critical section. However, weak fairness is not a strong enough assumption to ensure
such an outcome. A process waiting for the semaphore becomes disabled whenever the other
process successfully enters its critical section. A computation in wQicrepeatedly enters

its critical section whileQ, never gains admission to its critical section is weakly fair, because

Q2 is not enableadontinuouslybut onlyinfinitely often

Another problem with weak process fairness for communicating processes is that, in the
vocabulary of Apt and colleagues, it is reqjuivalence robugAFK88]. That is, weak fairness
is very sensitive to the order in which independent actions are scheduled. For example, consider
the following program

(b!0 || Q3 || Qa4)\b,

where the process€¥ andQ, are defined as follows:
Qs = while true do (bx[Jall), Q4 = while true do (b?y[Ja!2).

In the following computation, the proces¥) makes no progress, whi@s andQ, repeatedly
perform the same sequence of actions:
€

((b!0]| Q3] Qa)\b,s) — ((blO| (bx[all); Qs || Qa)\b,S)

55 ((b10]] (bxDa!1l); Qs || (b?yTal2);Qa)\b,S)
((
((

(k=

b'0 || Qs || (b?¥[a!2);Q4)\b,S)
b!0 [| Q3 || Qa)\b,S)

15
N

l= 4

2.2 Fairness for Communicating Processes 21

This computation is weakly process-fair, because the prat@soes not have synchronization
enabled continuously. In contrast, consider the following computation, in which proc@sses
and Q4 make exactly the same transitions as in the preceding computation, but the order in
which the components’ transitions are interleaved varies:

€

(b10 || Q31| Qa)\b,) —> ((b10 || (b(1al1); Q3 || Qa)\b,S)
“£5 {((b10 || (bXOal1); Qs]| (by[al2);Q4)\b,S)
2 ((b10 || Qs || (bAYDal2);Qa)\b,S)
—55 {((b10]| (bxDOa!1); Qs || (b Dal2);Qa)\b,S)
22 (b0]| (bXDal1);Qs || Qa)\b,9)
“£5 ((b10 || (bxOal1); Q3| (by[al2);Q4)\b,S)
ﬂ)

This computation is not weakly process-fair, because the prdt@ss enabled for synchro-
nization continuously from the second configuration onwards. Thus weak process fairness
relies not only on the actions of the components running in parallel but also on the manner in
which those actions are scheduled.

As an alternative to weak fairnesstrong (process) fairnessstates that everinfinitely
enabledprocess makes progresdinitely often Strong fairness is equivalence robust, and
hence does not depend on the order in which individual transitions are scheduled. As a result,
strong process fairness is a much more natural notion of fairness to consider for communicating
processes.

Because strong fairness reflects a stronger expectation of scheduler behavior, it is more
difficult than weak fairness to implement as a scheduling policy. One way to implement strong
fairness is to employ a priority queue scheme involving two process queaes B. All
processes originate in the lower priority queBg (vhich behaves like the simple round-robin
scheduler for weak fairness. However, if a process cycles through this queue too many times
(for some previously determined valuetob many without making progress, it transfers to the
higher priority queueA). Processes iA are given preference whenever they have transitions
enabled, and they retain their positionAmuntil they make progress, at which point they return
to the end oB. In particular, a process in queids scheduled immediately upon becoming
enabled (assuming it has the highest priority among all enabled processes iguBeeause
processes iA are given preference until they make progress, a process can fail to make infinite
progress only if it becomes permanently disabled. A scheduler that implements this policy
for some fixed value afoo manyis strongly fair, because every execution that it generates is
strongly fair. Strong fairness is the abstraction that lets us ignore the specific védoaadny

22 Communicating Processes

2.2.2 Channel fairness

Definitions for channel fairness appear in both [Fra86] and [KdR83]. Although the two defini-
tions differ, both formulations are intrinsically tied to the syntax of original CSP. In this subsec-
tion, we present Francez’s definition and adapt it to suit our language. Kuiper and de Roever’s
definition of channel fairness—which coincides with what Francez teonsmunication fair-
ness—is discussed in Subsection 2.2.4.

In the original CSP, processes have hames and communicate by name, so that (for example)
the proces®); uses the guar@j!eto represent its willingness to transmit the value of expres-
sioneto proces®)j. Similarly, the proces®; uses the guar@®;?x to indicate its willingness
to receive a value for identifierfrom Q;. As a result, Francez interprets a channel as simply a
pair of processes, and he defines strong channel fairness as the following assumption:

Every pair of processes that are infinitely often able to synchronize with one an-
other will do so infinitely often.

This definition for channel fairness includes an implicit minimal liveness assumption [OL82]:
a process will never block if it can perform an internal action such as assignment.

Every strongly channel-fair computation is also strongly process-fair, because channel fair-
ness ensures the eventual progress of every infinitely enabled process. Every infinitely enabled
process has either infinitely many opportunities for internal actions or infinitely many opportu-
nities to synchronize with other processes. In the former case, the minimal liveness assumption
ensures that the process makes progress. In the latter case, there must be at least one process
with which the process has infinitely many opportunities to synchronize, and channel fairness
ensures that the synchronization happens.

Because CSP processes communicate by name, each channel corresponds precisely to a
pair of processes: only two processes communicate along any given channel, and only one
channel is used between any two processes. In our language, any number of processes may
communicate along a given channel, and two processes may communicate along any number
of channels. As a result, it is possible for a particular channel to be used infinitely often and
yet for another process to become blocked while trying to use that same channel. For example,
the program

[(while true do a!0) || (while true do a%) || a!2 |\a

has an infinite computation in which the chanaét used infinitely often and yet the process
a!2 remains blocked.

This example raises an interesting question: should an infinitely enabled process be allowed
to block along a strongly channel-fair computation? If we ansyggrthen we must forfeit the
“hierarchy” concept of fairness notions, because process fairness will no longer be subsumed

2.2 Fairness for Communicating Processes 23

by channel fairness. If we answap, then we must build strong process fairness into our
notion of strong channel fairness. We take the latter approach and incorporate strong fairness
into our definition of strong fairness; this choice not only preserves the fairness hierarchy but
also satisfies the obligation to include a minimal liveness assumption.

Bearing these considerations in mind, we arrive at the following generalized definition for
strong channel fairness. A computatiorstsongly channel-fair if it satisfies the following
two conditions:

e Every process enabled infinitely often makes progress infinitely often.

e Every channel on which communication is enabled infinitely often is used infinitely of-
ten.

This definition of strong channel fairness generalizes the Francez definition, while preserving
the notion of channel fairness as it applies to CSP programs. In particular, every CSP fPogram
can be translated into a progrdhin our language in a straightforward manner. In each case,
the (Francez-defined) channel-fair behaviorPaotorrespond precisely to the (generalized)
channel-fair behaviors d¥'.

If we view different channels as representing different types of messages, then channel
fairness ensures that every type of message that is infinitely often deliverable gets delivered
infinitely often. Implementing strong channel fairness requires a mechanism similar to that
described for strong process fairness, suitably updated to ensure that infinitely enabled channels
are used infinitely often.

To understand the extra strength over process fairness provided by channel fairness, con-
sider the program

(PIIQI[RNa \b\c,

where the processdy Q, andR are defined as in Figure 2.9. (Following [AFK88], we as-
sume for now that communications are possible only when all three processes are inside their
loops. We impose this assumption only to simplify the exposition here; we remove this as-
sumption in subsequent chapters. Moreover, we return to this matter in Chapter 5, particularly
in Examples 5.4.2 and 5.4.3.) Termination of the program cannot be guaranteed under strong
process fairness: it is perfectly acceptable for eadh afdQ to communicate only with pro-
cessR, each doing so infinitely often. However, in any infinite computation, synchronization

is enabled infinitely often on each of the channgls andc. As a result, in any channel-fair
computation, procesB must eventually transmit the value 0 along charnedn action that
eventually leads to the termination of the entire program.

24 Communicating Processes

n:=1,
while (x # 0) do while (w # 0) do
(al0 — x:=00 b!1—skip) (a2 — clw Ocln = ni=n+1)
(a) Proces® (b) Proces®)

while (v # 0) do (cA — skip O b — skip)

(c) Proces®

Figure 2.9: Channel fairness example.

2.2.3 Guard fairness

Guard fairness places even more restrictions on what types of computations can be considered
fair. Informally, strong guard fairness states that ewgurd that is enabled infinitely often

will be chosen infinitely ofter. A guard is enabled in a given configuration if it can contribute

to a transition from that configuration. Hence, a guard of proBeissenabled if it involves
communication on an unrestricted channel or if it involves communication on a restricted chan-
nel and a “matching” guard of another process is also enabled. For example, tha!guard
enabled in the configurations

(al0b!0,s) and ((a'0l]ax)\a,s),

but not in the configuration
((al00b)\a,s).

Strong guard fairness provides a stronger assumption than strong channel fairness, as illus-
trated by the following example. Consider the program

(PIQIR)\a \b\c,
whereQ andR are as defined in Figure 2.9 aRtlis defined in Figure 2.10. (We again suppose
that communications occur only when all three processes are inside their loops.) This program
does not always terminate under strong channel fairness. Although chamrmedt be used
infinitely often along any infinite computation, it is permissible under channel fairness for the
a!l0 guard ofP’ to be ignored while the guaed1 synchronizes continually witQ's a?n guard.
In such a computation, none of the variabtew, orv ever gets set to 0, and hence the program
never terminates. In contrast, under strong guard fairness, the g@anaust eventually be
involved in a handshake communication withw, leading to termination of the program.

2To be precise, we also assume a minimal liveness property that ensures that no process becomes stuck in a
configuration in which it can perform an internal action will block.

2.2 Fairness for Communicating Processes 25

while (x # 0) do
(al0 - x=00all — skip O bl1 — skip)

Figure 2.10: The proces#’ .

2.2.4 Communication fairness

Communication fairnessprovides an even stronger assumption than guard fairness. Infor-
mally, communication fairness states that every communication enabled infinitely often will
occur infinitely often. For CSP, a communication corresponds to two “matching” guards, which
necessarily appear in two processes. Thus communication fairness for CSP can be stated as
follows:

For every pair of process€} andQ;, and for every paifg;,g;j) of (syntactically)
matching guards from the two processes iindg; arejointly enablednfinitely
often, then they will synchronize infinitely often.

The notion of communication fairness—Ilike guard fairness—has a very strong syntactic fla-
vor: a scheduler must be able to distinguish two separate occurrences of the same guard in
a program. The syntactic requirements behind this fairness notion seem inappropriate for a
practical abstraction, and hence we will not discuss communication fairness in the rest of this
dissertation. However, to complete the overview of the hierarchy, we introduce an appropriate
generalization of communication fairness for our language.

The interpretation oEommunications trickier for our language than for CSP, again be-
cause any number of processes may communicate along a given channel. In particular, we
need to consider not only synchronizations among the processes that we know about but also
possible interactions with the external environment. For example, compare the program

P = (while true do (a? — skip da?y — skip) || while true do a!0)\a,
which is (in effect) a CSP program translated directly into our language, with the program
P’ = while true do (a — skip (Ja?y — skip) || while true do a!0.

For programP, the synchronizations between the guas@sanda!0 and between the guards
a? andal0 are the only possible communications. Thus every strongly communication-fair
computation of progran® should include infinitely many synchronizations on each pair. In
contrast, prograr®’ also permits three types of external communication: reading a valug into
reading a value intg, and transmitting the value 0. These external communications must also

SKuiper and de Roever call this notion of fairnesmnnel fairness

26 Communicating Processes

n:=1;
while (w # 0) do
(a?w — clw
Ocln = ni=n+1
[Ja?n —c!l)

Figure 2.11: The proces).

occur infinitely often along any strongly communication-fair computatioR’oto represent
the potential for communication with processes placed in parallelRith

We therefore introduce the following generalized notion of strong communication fairness.
A computation is considerestrongly communication-fair if it satisfies the following two
conditions:

e Every handshake communication enabled infinitely often is chosen infinitely often.

e Every external action enabled infinitely often is chosen infinitely often.

When only closed programs (i.e., programs having no free channels) are considered, this defi-
nition of communication fairness coincides with the original notion of communication fairness
introduced for CSP-style programs.

To distinguish communication fairness from guard fairness, consider the program

(PIQIRNa \b \c,

where processdé® andR are as defined previously, and proc€éss defined as in Figure 2.11.
(Once again, we assume that communications occur only when all three processes are inside
their loops.) Under strong guard fairness, the program does not necessarily terminate. Each
of the guards!0, a!1, aw anda?n must be used infinitely often in any infinite computation,

but it is permissible for the two guardd0 and a?n to synchronize only with one another,

and likewise for the guards!l anda?w. In such an execution, the value 0 will never be
transmitted to procesR in such a way that the value ef gets set to 0. In contrast, under
strong communication fairness, each of the guatdsanda!l must synchronize with each of

the guarda™v anda?n, resulting in the eventual termination of the program.

As the preceding discussion illustrates, the choice of fairness assumption affects what we
can prove about program behavior: for example, there are programs that necessarily terminate
under assumptions of strong channel fairness but may not terminate under strong process fair-
ness. In the next several chapters, we see how the choice of fairness assumption also affects
the semantic structure that is necessary for modeling fair behavior. We concentrate on three of
these fairness assumptions: strong process fairness, strong channel fairness, and weak process

2.2 Fairness for Communicating Processes 27

fairness. We show how the framework adapts for each fairness notion, discussing the differ-
ences in semantic structure for each case. Perhaps surprisingly, the complexity of the semantic
structure for a given notion of fairness is not linked directly to that notion’s place in the hi-
erarchy: as we shall see, strong process fairness is much simpler to model than either strong
channel fairness or weak process fairness, despite falling between them in the hierarchy.

28

Communicating Processes

Chapter 3

Strong Process Fairness

In this chapter, we show how assumptions of strong process fairness can be incorporated into
the general denotational framework described in Section 1.3. Modeling fairness in a compo-
sitional way is tricky, because the fairness of a subcomponent is context-dependent: whether
a process can become blocked along a fair computation depends on the processes running in
parallel with it. To model this dependence accurately, we must first introduce a parameterized
form of strong fairness that take contexts into account.

After introducing parameterized strong fairness, we show how fair computations can be
represented by traces, and we construct a denotational semantics based on these traces that
incorporates assumptions of strong process fairness. This strongly fair semantics first appeared
in [BO95], with a slightly different formulation. The chapter concludes with some simple
examples illustrating how the semantics can be used to reason about program behavior.

3.1 Parameterized Strong Fairness

The enabledness of a process depends upon the context in which it appears. This contextual
dependency has important consequences for any attempt to define fair computations in a com-
positional way. For example, consider the program

C = (C1[|(C2]IC3))\a\b,
whereCy, C; andCs are defined as follows:
C1 = while true do a?, Cp = while true do al0, Cgz = while true do (b!0 — all).

Any compositional treatment of fairness must allow the fair computatioistofbe defined
in terms of the fair computations @; andC,||Cz. In turn, the fair computations @;||Cs

30 Strong Process Fairness

must be defined in terms of the fair computationefandCs. BecauseC, andCs are both
enabled infinitely often along any computation@f|Cs, every strongly fair computation of
C,||Cs must contain infinitely many outputs along each of the channafsdb. WhenC;||Cs

is placed in the larger context of progrdnhowever, the proces3s becomes blocked when
trying to perform output on channét communication on the channel is restricted, and no
matching input is ever available. In contrast, charaislalso restricted in this context, bQO#

is repeatedly enabled for synchronization vith Thus the prograr@ has an infinite, strongly
fair execution in whichCz becomes permanently blocked, but none in whighor C, ever
becomes permanently blocked.

This example highlights two problems that arise in trying to characterize strongly fair com-
putations in a compositional way. First, the strongly fair computations of a command cannot
always be determined solely from the strongly fair computations of its component commands.
In the preceding example, for instance, the strongly fair computatio@saaiuld not be de-
termined solely from the strongly fair computations@f andC;||Cs. In particular, simply
omitting the occurrences of channethat appear along the fair computationg3f/Cs would
lead to impossible computations for the larger command: each adtichat appears along
the fair computations dof;||Cs is possibleonly when the actiorb!0 appears first. Second, the
restricted channels alone are insufficient for identifying which subcommands will be enabled
along any given computation: even though communication was restricted on chael
could make continual progress by synchronizing wW@thnfinitely often.

To address these problems, we introduce generalized notions of enabledness and fairness,
parameterizing each by a set of directions representing fairness constraints. In effect, we can
talk about “almost blocked” configurations and “almost fair” computations, and the sets of di-
rections provide a precise interpretation of “almost”. Moreover, these sets of directions provide
a description of those program contexB—] for which the “almost fair” computations will
represent the transitions ofn a truly fair computation oPJc]|.

For every finite sef of directions, we characterize those computations thas@oagly
fair modulo F. Roughly speaking, a computatignof the commana is strongly fair mod-
ulo F if every process enabled infinitely often either makes progress infinitely often (just as
in traditional strong fairness) or eventually stops in a configuration in which its only possible
transitions are labeled by directions fhand it cannot synchronize with any other process.
Intuitively, even though the directions &f may be enabled infinitely often alomy it is pos-
sible to construct a program conte®Xt—| that restricts communication on the channel§in
and fails to provide synchronization opportunities for memberg;ofor such contexts, the
computatiorp will representc’s contribution to a strongly fair computation Bfc|. In particu-
lar, those processes can be ignored fairly in any program context that restricts communication

1A program contexP[—] is simply a program with a “hole”, anBl[c] is the program that results from filling
the hole with command.

3.1 Parameterized Strong Fairness 31

on the channels df and does not provide sufficient opportunities for them to synchronize.
For example, the infinite computation 6§||Cs that never performs output along chanbel
can be characterized as fair mod{ld }: the contex{C;||—)\a\b restricts communication on
channeb and provides no synchronization opportunities@g’s b!0 action.

Unlike the traditional notion of strong fairness, parameterized fairness can be characterized
compositionally. Before doing so formally, however, we introduce some auxiliary definitions
and give an informal explanation.

Definition 3.1.1 Let F be a finite set of directions. A configuratida s) is enabled modulo
F if inits(c,s) — F is nonempty, anttlocked moduloF if inits(c,s) C F. o

Thus a configuration is enabled mod®#af it can perform an action (either internal or other-
wise) not labeled by a direction F, and blocked modul& otherwise. Any configuration that
is blocked moduld- is necessarily blocked moduld for all F’ O F.

Unlike strong fairness, parameterized strong fairness can be characterized compositionally.
Just as every finite computation is strongly fair, every finite computation is strongly fair modulo
F, for all setsF. A partial computation is strongly fair modul® provided its final configura-
tion is blocked moduld-. The fairness of an infinite computatipnof a command depends
on the syntactic structure afand on the form op, as follows.

In general, an infinite computation of a commamnahherits its fairness constraints from
the underlying computations ofs component commands. For example, an infinite computa-
tion p of the commandat; ¢, arises either from an infinite computation@for from a finite
computation ot; followed by an infinite computation ab. The computatiom is fair modF
whenever the infinite computation of or ¢, is fair modF; any subcomponent that is blocked
mod F alongp must also be blocked mdé along the corresponding infinite computation of
c1 or cp. Similarly, an infinite computation of the commandlile true do ¢ arises either from
infinitely many finite computations afor from finitely many finite computations offollowed
by an infinite computation af. The computatiop is fair modF when all of these component
computations ot are fair modF: thusp is fair modF whenever it contains infinitely many
finite computations of or when the single infinite computation ofs fair modF.

Similar reasoning governs the fairness conditions for most of the remaining nonparallel
commands. An infinite computation gf— c is fair modF when the sequence of transitions
made byc is fair modF, and an infinite computation of b then c; else ¢p is fair modF
when the sequence of transitions made by the selected beamlfiair modF. An infinite
computation ofgc; [1gc, is fair modF if, after making its choice of componengs on the
first step, it behaves like a fair métdcomputation of the selecteyt;.

Placing a command within the scope of channel restriction has the effect of discharging
any context assumptions involving the newly restricted channel. For example, sypgase

32 Strong Process Fairness

infinite computation of the commaraih. If the it transition ofp is (ci,s) L> (Cit1,S+1),

then there is a corresponding computa@dof ¢ such that thé'" transition ofp’ is (c,s) N

(¢, 1,S+1), with ¢ = ¢{\h. If the computatiorp’ is fair modF U {h!,h?}, then there may be
subprocesses afthat are willing to communicate on chantreand yet fail to make progress
alongp’. However, whert appears in the contekt]\h, those subprocesses no longer have
communication enabled along chanhednd are no longer treated unfairly with respechto

In effect, placing: in the context—]\h discharges the assumption tiatill eventually appear

in a context that restricts communication knHence a computatiop of c\h is fair modF
whenever its underlying computationofs fair modF U {h!, h?}.

Determining the fairness of parallel commands requires more care. Every compptation
of the commana; ||c; arises from interleaving and merging a computaparof c; with a
computationp, of c. Intuitively, whenps is fair modF; and p; is fair modF, p should
inherit fairness constraints from both and therefore be fair fodF,: processes blocked
mod F; alongp1 do not make progress alomg and likewise for, and p,. However, this
analysis is valid only when neither component violates the assumptions incorporated in the
other component’s fairness set. For example, suppose a pRoéss becomes (and remains)
blocked mod~; alongp;. If the computatiorp, providesQ with infinitely many opportunities
to synchronize, then the implicit assumption tQawill have insufficient opportunities to make
progress is violated, and hengeannot be fair (mod anly). It is also essential to ensure that
none of the directions i, appear infinitely often along,, for the following reason. The
fairness sef; reflects the assumption thet (and thereforees ||c2) will appear in a context
that restricts communication on the channels associatedrwitlf a direction inF; appears
infinitely often alongp,, thenp, can represent,’s transitions only if the context provides
infinitely many opportunities to synchronize withon that direction. In such a case, however,
the context would also be enabling synchronization with any processeshait were blocked
in configurations in which they could use that direction, violating the assumptions inherent in
F1.

We can now give a formal, inductive characterization of strongly fair computation modulo
F. WhenF = 0, this characterization coincides with the traditional notion of strong process
fairness, as given in [Fra86, AO91].

Definition 3.1.2 A computationp of commanc is strongly fair modulo F (or, fair mod F)
providedp satisfies one of the following conditions:

e pis afinite, successfully terminating computation;
e pis a partial computation whose final configuration is blocked mo#uilo

e pis an infinite computatiorg has form(cy; cy) or (if b then c; else ¢2), and the underly-
ing infinite computation o€; or ¢, is fair modF;

3.1 Parameterized Strong Fairness 33

e pis an infinite computation¢ has form(while b do ¢’) or (g — ¢’), and each op’s
component computations ofis fair modF;

p is an infinite computatiorg has form(g — c’), and the underlying computation df
is fair modF;

p is an infinite computatiorg has form(gc; [Jgc), and the underlying computation of
the selectedg is fair modF;

p is an infinite computatiorg has formc’\ h, and the underlying computation dfis fair
moduloF U {h!, h?};

p is an infinite computatiorg has forme, ||c2, and there exist sef§ andF, and compu-
tationsp; of ¢; andp, of ¢, such thaip; is fair modF, p» is fair modF,, F D FLU R,
p can be obtained by merging and synchronizma@ndp,, neitherp; enables infinitely
often any direction matching a membertgf(i #), and neithep; uses a direction if;
infinitely often. o

The following example highlights the compositional aspect of this characterization.

Example 3.1.3Let C be the programwvhile true do c!1, and consider the computation

p = (((a!0 — b0) || C)\b,8) 2% (b0 || C)\b,s) —=+ (b0 || c!1;C)\b,s) = -

in which theb!0 action never occursp is strongly fair (that is, strongly fair mo#), for the
following reasons:
1. The partial computatiop; = (a!0 — b!0,s) — 2, (b!0,s) is fair modulo{b!}.

2. The infinite computation
€ . c'l € . cll €
p2=(C,s) — {(c!1;C),s) — (C,s) — ((c!1;C),s) — (C,s) —>
is fair mod0. Moreover, the only direction enabled infinitely often algngs c!.

3. Letp’ be the infinite computation
(a10 = bl1) | C,s) 2% (bl1 | C,s) = (bl1 || (c!1;C),s)

cl1

<L (b1 C,8) 5 (b1]| (c!1;C),8) =5 -

in which theb!0 action never occurs. This computation can be obtained by mepging
andp,. Becaus, does not use or enable synchronization witinfinitely often, p’ is
fair modulo{b!}.

34 Strong Process Fairness

4. Because the underlying computatiorpds p’, p is fair modulo®. o

The next example illustrates the role that the fairness Bgbday in determining those
contexts in which a given computation can be considered fair.

Example 3.1.4

1. LetC be the programwhile true do (a!1b!1), and consider the computation

pe = (C,9) - ((al1Obl1):C,9) 25 (C,9) -5 ((al1Obl1);C,s) 25

that never outputs along chanmel

The set of directions enabled infinitely often alopgis {a!,b!}, but p is fair mod 0
because there are no parallel subcomponerstbat become blocked alomg.

2. DefineCy = while true do all andCy = b!1 — (while true do b!1), and consider the
computation

= (C1] C2,8) = ((a'1,Cy) [| C2,9) 25 (C1 || Cay9) —

that never outputs along chanmel

The set of infinitely enabled directions pfs also{a!,b!}. The computatiop is not fair
mod 0, because the componed4 remains blocked modlb!}. However,p is fair mod

{b!}.
3. LetCp be the programwhile true do (a!l000b?z), and letpp, be the computation

(CpyS) —= ((al0TIb%2);Cp, S) 2> (Cp,S) — ((al0TIb22);Cp,S) 2 -

that never receives input along chanbelpy, is fair mod® and enables both! and b?
infinitely often.

Let P[—] be the program contexi—] || Cp)\b. There is a fair (mod®) computation of
P[c] that corresponds to a merging@f andpp and hence involves no synchronizations
on channeb. In contrast, every fair (mo@l) computation ofP[C;||C,] must eventually
synchronize on channe| because it is unfair fa€, to be forced to block ob! when a
matching direction is enabled infinitely often. Thus there is no fair executiBfCaf|Cy|

in which theCp component performgp. o

3.2 Strongly Fair Traces 35

3.2 Strongly Fair Traces

We define a set afteps
2=SxAxS

intuitively, the step(s,A,s) corresponds to a transition of the foro,s) A, (c,d). Thus
each steffs, A, s) records the initial and final states of a transition, as well as the label of the
action that occurred. We also introduce a set of empty traBes {es | s€ S}, with eaches
corresponding to configurations of forfn,s). The set of finite traces & = >°U>*, where

Z+ = {(507)\0,51)(51,)\1752) (Sk’)\k,sk%»l) | kz 0&Vi S k-(37)\i73+1) € Z}

is the set of nonempty finite traces. We ¥t = z* UZ®, where the seX® of infinite traces is
defined by

2% = {(%0,M0,51)(51,A1,2) - .. (Sks Aks Skp1) - - - | Vi > 0.(Si,Ai,Siy1) € 2}

Each tracex € Z* represents a finite or infinite transition sequence.

Two tracesa and3 arecomposablef a is infinite or if the final state ofi is the first state
of 3; we writecomposablgn,) in such cases. For composable tragemndp, the tracenf is
their (string-like) concatenation. For exampleqif (So, Ao, S1)(S1,A1,S2) andP = (S, A2, 3),
then

GB = (507)\0, Sl) (Sl,)\17 SZ) (327)\2, S\’)) .

The traces of° serve as local units for concatenatiomes = o andes = B whens is the
final state ofa and the first state d3. Infinite concatenation is the obvious extension of finite
concatenation. An infinite sequence of tracgsa1, 0>, ... is composable if, for every> 0,
the tracesipa ... 0 andaj, are composable; their concatenation is the trace

Qpod102...0n0N741--- -

These simple traces are insufficient for reasoning about strong process fairness compo-
sitionally, because they fail to record the necessary contextual information made explicit in
Definition 3.1.2. For any infinite computatiqgn we need to know which directions are en-
abled infinitely often alon@. We also need to know for which contextsill represent a fair
computation; that is, we need to know for which sétthe computatiom is fair moduloF.

Every finite computation is fair moH for all setsF. However, because a finite computation
may be used to generate an infinite computation, we also need to know which directions are
enabled along a finite computation. Finally, to reason about deadlock and blocking, we need
information about partial computations. For a partial computagpiowe need to know what

type of actions (including) are possible from the final configuration @f Because a partial

36 Strong Process Fairness

computation will never be iterated in a looping context, we do not need to record the directions
enabled along that computation.

We combine simple traces with this additional contextual information to yasdraces.
Letting

M= fPﬁn(A+) X fPﬁn(A+) X {f,i,p}

capture the necessary contextual information, we define the SeX® x I of fair traces as

® = " x(Psn(D) x Psin(D) x {£})
U Z9% (Pin(A) X Psin(A) x {1})
U Z X (Pin(AT) x Prin (A1) x {p}).

For convenience, we occasionally UBg,, ®int, and®p, to refer to the subsets df with tags
f, i, andp, respectively.

Intuitively, the fair trace(a, (F,E,f)) represents a fair moH, successfully terminating
computation with enabled directiofis the tag t” merely indicates that the trace represents
a finite computation. Similarly, the fair trace, (F,E,1)) represents an infinite, fair mde
computation with infinitely often enabled directioBsthe tag ‘4" indicates that the trace rep-
resents an infinite computation. The fair trdce (F,E,p)) (with F O E) represents a partial
computation for which the directioris (possibly includingg) are enabled in the final config-
uration. Where is not inE, the blocked computation is necessarily fair nidand therefore
fair mod F as well. Again, the tagp” merely indicates that the trace represents a partial
computation. Technically, thE-component of the contextual tuple is unnecessary for finite
traces because every finite computation is necessarily fair. Similarly; tt@mponent of a
partial computation does not provide any essential information not already incorporated in the
E-component. However, the inclusion of these components allows a consistent representation
for all fair traces, which will be convenient for subsequent definitions.

For every (possibly partial) computatipntrace(p) is the simple trace that corresponds to
the transitions made alomqy For example, ip is the computation

A A M—
<C7&J> —0> <Clasl> —1> k—l> <Ck73(>7

thentrace(p) = (S0, A0,S1)(S1,A1,%) -+ - (S%_1,Ak_1,%)- The seken(p) contains the “relevant”
directions enabled along whenp is a finite computationen(p) contains the directions en-
abled alongp; whenp is an infinite computationen(p) contains the directions enabled in-
finitely oftenp.

We can give an operational characterization of a fair trace semdgticSom — P(®P) as

3.3 Strongly Fair Trace Semantics 37

follows:
Ts[c] = {(trace(p), (F,en(p),£)) |

p= (c.50) * (ers1) -+
U {(trace(p), (F,E,p)) | E =inits(cx,%) & F D E

H
lf
=

= (Cx,) term is fair modF}
A A

p=(c So>—°><cl,sl>—> - = (o S) & (o, Sqterm}

p=(c,s0) — (C1,S1) —> - M s strongly fair mod}.

3.3 Strongly Fair Trace Semantics

In the previous section, we gave an operational characterization of a fair trace semantics

In this section, we show how to give a denotational characterization of this same semantic
function. We do this by defining, for each construct in the language, a corresponding operation
on trace sets.

We assume semantic functioBs BExp — P(Sx B) andE : Exp — P(Sx Z) character-
ized operationally by

Bb] ={(sv) | (b.s) —"v}, E[e]={(sn)|(es)—"n}.
We also introduce a semantic functibg: BExp — P(®) such that

Ts[b] = {((s.€,9), (F.0,1)), (es, (FU{e}.{e},p)) | (s,tt) € B[[b] & F € Prin(2)}.

Intuitively, Ts[[b]] contains the idle steps possible from states satisfying the boolean expression
b. Note that, for any boolean expressimn

Ts[-b] = {{(se;s),(F,0.1)), (&s (FU{e},{e},p)) | (s,tt) € B[-b] & F € Psin(D)}
= {<(S’£7S)’(F’07f)>7 <£Sa (F U{S},{E},p)> | (S’ff) € B[[b]] & F e inin(A)}'
Consequently, bothg[[b]] andT[[-b]] can be defined solely in terms lof
Based on the operational characterizatiod Hfit should be easy to see that
Ts[[skip] = {{(s,€,9), (F,0,f)) [s€ S& F € Pfin(A)}
U {(es, (F.{e},p)) [s€ S& F D {¢}}
and
T[i:=€]] = {((s,&,[s]i =n]), (F,0,f)) | fv[i:=€] C dom(s) & F € Psn(A) & (s,n) € E[€]}
U{(es, (F.{e},p)) | fv[i:=€]] € dom(s) & F 2 {e}}.

38 Strong Process Fairness

Similarly, for guards we obtain

Ts[hA] = {((s.h,[s]i = n]), (F, {h?},£)) | i € dom(s) & NE Z & F € Ppin(D)}
U{(&s (F,{h?},p)) |i € dom(s) & F 2 {h?}}

and

Ts[hte] = {((s,hin,s), (F,{h},£)) | (s,n) € Efle] & F € Prin(8)}
U{(es, (F,{h'},p)) [fv[[€] < dom(s) & F 2 {h!}}.

Sequential composition

The command;; ¢, represents the sequential composition of commandsdc,: each com-
putation ofcy; ¢, corresponds to a computation@fthat, if successful, is followed by a com-
putation ofc,. If the computation o€; terminates successfully in staghen the computation
of co must begin from stats; if the computation ot; instead is infinite or becomes blocked,
then the computation af, never begins. We can construct the traces;0f, by combining
traces ofc; with traces ofc, in a similar way.

Two fair tracesp; andd, are composable whenev@i is an infinite or partial trace, or
when their simple trace components are composable (that is, when the final state of the first
trace is the initial state of the second trace). We wedmposabl@h1, o) whend; andd, are
composable. Whed; = (a, (F1,E1,Ry)) andd, = (B, (F2, E2, R2)) are composable fair traces,
their concatenatiof1¢- is defined by:

¢17 if Rl € {17P},
¢1¢2: <GB,(F27 E1UE2,f)>, if Rl: R2:f,
(aB, (R, E2,R2)), if Ri=f andR; € {i,p}.

As is evident from this definition, the necessary contextual information for the resulting trace
depends on the form of the individual traces. Wierepresents an infinite or partial compu-
tation, the contextual information @ becomes irrelevant: the computation representefl by
never begins, because the computation representedlbgs not terminate. Whenrepresents

a finite, successful computation, its fairness constraints (as represented by the fairkgss set
become irrelevant; however, the finite enabling information provideBjoyust be preserved
when the resulting trace also represents a finite, successful computation.

Thus we define sequential composition on trace Eetd T, by

Tl;Tz = {¢1¢2 | ¢1 € T1 & ¢2 € T2 & composabl@bl,q)z)}.

3.3 Strongly Fair Trace Semantics 39

We can then define

Ts[[e1; cafl = Ts[[eall; Ts[eall,
Ts[g — cf = Ts[gl; Ts[c,

and

T4[[if b then ¢y else ¢ = Ts[[b]l; Ts[[ca]] U Ts[—b]; Ts[[c2].

lteration

Loops correspond to the finite or infinite iteration of a single command. Thus we base our
semantics for loops on the iteration of trace sets.

When{X; | i > 0} is a collection of finite sets, we Ie@oxi be the set of elements appearing
=
in infinitely many sets. That is,

,Eu'joxi —{d|Vj>0.3k> j.de X
i=

We then introduce composability criteria for infinite collections of fair traces. (tet”,
represent an infinite sequence of fair traces

¢07¢17"' 7¢n7"'7

such that, for each> 0, ¢; = (aj, (F,E,R)). The sequencéi)? , is composable, written
composable(cb), o), if, for eachi, the traceshod1...$i_1 and¢; are composable and the

sets U F and U E. are finite. (These sets must be finite to ensure that the resulting trace is
well- formed) We then define infinite concatenation as follows:

<0(00(1...0(n...,(_woﬁ,_oni,i», if Vi.R = £,
i= i=
(001 .. .0k, (F, Ex,R«)), if Vi < kR =f andRy € {i,p}.

When eaclhp; is finite, the infinitely enabled directions of the resulting trace are those directions
that appear in infinitely many of the sdfg and similarly for the infinitely visible directions.
When at least ong; is an infinite or partial trace, the infinite concatenation is simply the finite
concatenatiood . . . dx, wheredy is the first infinite or partial trace of the series.

The definitions for finite and infinite iteration on trace sets follow directly from the defini-
tions of concatenation and sequential composition. Finite iteration on the tracessggfined

by
=T,
i=0

doh102... = {

40 Strong Process Fairness

whereTO = {(gs, (0,0,f)) | s€ S} andT™?1 = T";T. Infinite iteration on the trace s@tis
defined as follows:

TO={dod1...0k...| (Vi>0.0i € T) & composablgdi)i° o) }-
We can give the semantics of loops using these definitions of iteration:

Ts[while b do cf} = (Ts[[b]; Ts[[c]) U (Ts[[bll; Ts[c])"; Ts[—b].

Guarded choice

The commandjc; [1gc, represents a choice, to be made on the first step, between the guarded
commandgc; andgc,. Every computation ofic; and ofgc, therefore gives rise to a cor-
responding computation @fc; [1gc, that, on its initial step, can perform any action enabled
by either component. Whenever a fair tragceepresents an infinite computation (or a partial
computation involving at least one step)geh or go, ¢ necessarily also represents a compu-
tation ofgc; C1gc,. Whend represents a finite computation (or a partial computation involving
no steps) ofyc; or gcp, however, the enabling compondatmust be augmented with those
directions that were enabled initially by the unchosen component. This additional enabling
information can be generated by looking at the “empty” partial traces of the unchosen compo-
nent: if (s, (F,E,p)) is a trace ofjg, thengg must be able to perform the actioBon its first

step. Thus we define guarded choice on trace sets as follows:

T10T, = {(a,(F,E,i)) e iUz |a € Z°}u{{a,(F,E,p)) c TIUT, |a € ="}
U{(es,(FLUR, E1UE2,p)) | (&, (F1,E1,p)) € T1 & (&s,(F2,E2,p)) € T2}
U {<G, (F17 ElU E2,f)> | <€Sa7 (Flv Elaf)> € Tl & <887 (F27 E27p)> € T2 & € ¢ EZ}
U {<a7 (FZ, E1U E27f)> | <85a7 (F27 Ez,f)> € T2 & <£S, (Fl, E17p)> € Tl &€ ¢ El}
The final two clauses impose conditions of foeng E; when (&g, (K, Ej,p)) is a trace of the
unchosen component. Technically, these conditions are moot: we perform the op&ratipn
only whenT1 andT, are trace sets of guarded commands, argdnever enabled on the first
step of guarded commands. However, in Chapter 4 we introduce semantic variations in which

€ may appear to be enabled on the initial step, and these conditions maintain the integrity of
the resulting traces’ sets of enabled directions.

We defineT¢[ge 0gc;]] = Ts[ga] OTs[gc].

Channel restriction

The computations of\ h are the computations afthat do not use channhlfor visible com-
munications. Correspondingl¥,\h can be obtained frori by first removing those traces in

3.3 Strongly Fair Trace Semantics 41

which h is visible and then deleting? andh! from the enabling and fairness sets of the re-
maining traces. For a trace chans(a) is the set of channels appearing aleng-or a seX of
directions, we leX\h be the seX with references to channklremoved:X\h = X — {h!,h?}.

We then defind \ h by

T\h={(a,(F,E\h,R)) | (a,(F,E,R) €T & & F' D F\h& h¢ chans(a)}.
so thaTg[c\h] = Ts[c]\h.

Parallel composition

The command; ||c; represents the parallel execution of the comman@ndc,. The compu-
tations ofc, ||c; can be derived from interleavings and synchronizations of computatians of
with computations ot,. Likewise, the fair traces df; ||c, can be derived from interleavings
and synchronizations of traces@fwith traces ofc,.

Of course, only certain pairs of computations—and, correspondingly, traces—can be merged
in a meaningful way. For example, merging a partial computation represented by the fair trace
(a, ({h'}, {h!},p)) with an infinite computation represented by the fair trg8g0, {h?},1))
does not yield a fair computation of the parallel command: the first component cannot remain
blocked if it is enabled for synchronization infinitely often. For this reason, we introduce a
predicatanergeablehat indicates when a potential merging of fair traces is “meaningful”: the
predicatemergeablédi, ¢2) is true precisely when merging computations representegh by
and ¢ would yield a fair (modulo an appropriate de} computation of the corresponding
parallel command. The criteria for determining whether two traces are mergeable follow di-
rectly from the parallel clause of the parameterized fairness definition in Section 3.1. We let
vis(0) be the set of directions visible infinitely often along the simple t@céor example, if
a = (s,b!0,5)[(s,al0,5)]®, thenvis(a) = {a!}. We then define the predicateergeablédi, ¢2)
for fair tracesps = (a1, (F1,E1,R1)) andd, = (a2, (R, E2,Ry)) as follows:

mergeabléd1,$) < (Ri=f)or(Ro=f)or(Ri=Ry=p) or
(e ¢ FLUF & —match(F1,Ep) & —match(F,E1) & FiNvis(az) =0 & FNvis(ay) = 0).

Any trace can be merged safely with a finite, successful trace; hence two traces are mergeable
if either trace is finite. Additionally, two partial traces can always be merged to yield a partial
trace of the parallel command. The final clause specifies when an infinite trace can be merged
with another infinite trace or a partial trace; its individual conditions correspond precisely to the
conditions incorporated into the parallel-composition clause for parameterized strong fairness
in Definition 3.1.2. A partial trace represents a computation that can become blocked, provided
that noe-transition is possible from its final configuration. The conditiemnsatch(Fy, Ez) and
—match(F,, E1) ensure that neither component enables synchronization infinitely often with

42 Strong Process Fairness

any direction in the other component’s fairness set. Similarly, the condiEpnsis(az) =0
andR;Nvis(a1) = 0 ensure that neither component uses infinitely often a direction in the other
component’s fairness set.

Given two mergeable computations (or traces), only certain mergings of them will represent
fair computations (or traces) of the corresponding parallel command. In particular, every fair
merge of the trace$; and¢- should “consume” all oty and¢,. That is, every step of each
¢; should be accounted for in any fair merge¢afand¢,. We can capture this intuition by
defining a ternary relatiofairmergeC ® x ® x ® on fair traces, adapted from Park’s fairmerge
relation [Par79] to account for the possibility of synchronization, with the ideddhad,,d) €
fairmergeif and only if ¢ arises from a fair interleaving (and synchronizationjpefand ¢.

The definition offairmergerelies on two different sets of tripleboth whose triples represent

finite sequences of transitions made while both components are activenamdhose triples
represent transition sequences made by one component after the other has terminated. Before
defining these sets, we introduce some interleaving and merging operators on both simple and
fair traces.

Consider a parallel progra® ||C;, and suppose th&; can perform a finite transition
sequence represented by the simple tace (so,Ao0,51)(S1,A1,%) - - (Sk, Ak, Kr1)- If Sis a
local state ofCy, then the simple trace

alles = (S0US,Ap,S1US)(S1US,A1,92US) ... (SkUS, Ak, Skr1US)

represents a finite transition sequence of the parallel command in @hictakes the transi-
tions represented by andC; idles in its local state. The traae| s is similarly defined for
infinite tracesa, capturing the intuition that; can performa uninterrupted whe; has no
transitions possible from staseFor finite, nonempty, disjoidtracesa andp, we also define

a|B=(afl&)(Blles),

wheres andt are the final state ak and initial state of3, respectively. That isq || is the
trace that looks likex (with the first state of3 propagated), followed by (with the final
state ofa propagated). Intuitively, it and3 represent finite transition sequencesCefand
C, respectively, them || represents a transition sequenceCffC, in which C; makes the
transitions represented lay, followed by C, making the transitions represented By For
example, ifa = (s9,A0,51)(S1,A1,S2) andf3 = (to, o, t1) (t1, W1, t2), then

o ||B = (soUto, Ao, S1Uto) (S1 Uto, A1, S2 Uto) (S2 Uto, Mo, S2Uts) (S Uta, pa, 2 Ut).

2Two tracesa andp are disjoint if each state alormis disjoint from every state alon in such cases we
write disjoint(a, 3). Likewise, two fair trace$; = (a,01) andd, = (B,6,) are disjoint when their simple-trace
componentst andp are disjoint.

3.3 Strongly Fair Trace Semantics 43

The parallel comman@; ||C; may also have transition sequences in which the two compo-
nents repeatedly synchronize. Two nonempty, finite simple timee&sp, Ao, S1) - - - (Sk, Aks k1)
andp = (to, Mo, t1) - . - (tn, tn, the1) Match—and we writematch(a, 3)—if the two traces have
the same length and each stepnafnatches the corresponding stepafthat is, ifk = n and
match(Aj, 1) for eachi). Whena andp match,a||B is the trace in whiclu and synchronize
at each step:

al|f = (soUto,&,S1Ut1) ... (SkUtk, €, Skr1 Utkr1)-

Similarly, the fair trace$1 = (a, (F1, Ea, £)) andd, = (B, (F2, E2, £)) match when their simple-
trace components and3 match.

When computationp; of C; andp2 of C, are merged fairly to yield a computati@nof
C1/|Cy, the order in which their steps are interleaved and synchronized does not affect the gen-
eral properties (that is, the set of infinitely enabled directions or the relative fairneB$ set
of p. Instead, these properties can be determined solely from the corresponding properties of
the original computationg; andp,. Thus we define an operatby||6, for contextual triples
61,02 € I as follows, with the intuition that eadhe 6,||62 provides valid contextual informa-
tion for a computation that arises from merging computations with contextual inforntition
andos.

The result of merging two finite transition sequences is yet another finite transition se-
guence, and the set of directions enabled along that transition sequence is the union of the sets
enabled along each of the original sequences. Thus we define

(F1,E1,1)||(F2, E2,f) = {(F,E0UE2, f) | F D FLUR}.

Merging a finite (successful) transition sequence and a partial computation that can next per-
form actionsE; results in a partial computation that can next perform actiBssthus we
define

(F17 El,f)“(FZa EZ,P) = (FZ,E27P)||(F1, Elaf) = {(F, E27p) | F2o2FRU FZ}

Merging two partial computations—one of which can next perform actinand the other

of which can next perform actioi®— results in a third partial computation that, on its next
step, can perform any of the actioBsU E». In addition, when the sets; andE, match, the
resulting computation can also perform an internal action corresponding to a synchronization.
Thus we define

(Fl,ELp)H(FZ, E27p) = {(F7 E1UE2U{£ | matCh(El’EZ)}’p) | F 2 FlUFZ}

Merging a finite computation and an infinite computation with infinitely enabled direcigns
yields another infinite computation with infinitely enabled directigns

(F1,E1,f)||(F2, E2,1) = (F2,Ez,1)||(F1, B, £) = {(F,Ez, i) |[F D FIUR}.

44 Strong Process Fairness

Finally,®> merging a partial computation that can next perform act®nand an infinite com-
putation with infinitely enabled directiors results in an infinite computation with infinitely
enabled directiong; U Ez; thus we define

(F1,E1,p)||(F2,E2,1) = (F2,E2,1)||(F1,E1,p) = {(FE1UE2,i) |F D FLUR}.

Note that this last definition safely ignores the possibility of synchronization between the two
components: the seffl§ andE, are guaranteed not to match, because we perform this operation
only on traces; and¢, for which the predicatenergeabléds, §») is true.

Using this parallel operator on contextual triples, we can extend the interleg{jrand
merging (|) operators to fair traces in the obvious way. For fair trafges- (a,01) and¢z =
(B,82) such thatr || or a||B is defined, we defing1 ||d, andd1||d2 (respectively) as follows:

¢1l/¢2={(allB,0) [B€B[62}, dafld2= {(al[B,0) | O € 8162}

Thus the fair trace is in ¢4 || ¢ if its simple trace component is the interleavimg3 and its
contextual information corresponds to the merdiagB,. Similarly, ¢ isind1||¢2 if it captures
the information inherent in a synchronizationgafand¢..

We can now define the sdb®thC @ x ® x ® andoneC ® x ® x ®. The setothcorre-
sponds to the intuition that, as long as both components remain active, neither component can
be forever ignored. Thus the dmithcontains triples that reflect interleavings (or synchroniza-
tions) offinite portions of possibly infinite traces:

both = {(d1,¢2,9),(d2,91,9) | d1,92 € Pfin & disjoint(d1,$2) & ¢ € d1]/do}
U {(¢1,92,0) | d1,92 € Prin & disjoint(P1,d2) & match(d1,$2) & ¢ € d1][d2}.

Once one component terminates (or becomes permanently blocked), the other component can
proceed uninterrupted. Thus the seecontains triples that reflect the uninterrupted progress

of one component while the other component idles (and heneénvolves no synchroniza-

tions):

one= {(¢17¢27¢)7 (¢2,¢1,¢) | ¢1 cdP& ¢2 = <£S, 62> & (I) € ¢1J_|¢2 & diSjOint(q)Lq)Z)}'

To definefairmergefrom bothandone we define a dot operator) ¢hat extends concate-
nation of traces to sets of triples of traces in the obvious way. For example,YviaedY, are
sets of triples of traces,

Yi-Y2 = {(0107,$205,0303) | (01,92,03) € Y1 & (¢7,95,03) € Y2
& composabl@pi,d}) & composabl@h,, ¢5) & composablehs, d3)}.

3We do not provide a definition fofFy,Es,1)||(Fe,E2,1), because we never merge an infinite trace with
another infinite trace directly. Rather, we merge two infinite traces by merging finite portions of one with finite
portions of the other.

3.3 Strongly Fair Trace Semantics 45

Likewise,Y* andY® represent (respectively) the finite and infinite iterations of this dot operator
on the set. We then defindairmergeto be the greatest fixed point of the functional

F(Y) = both-YUone

so that

fairmerge= botH°Uboth" - one

The triple(¢,d’,) is in botH” if and only if the traces®, ¢/, andy can be written as infinite
concatenations of finite nonempty traces

=00 d19263 ..., o' = d71 ¢203 ..., Y=o Yo Y3 ...,

such that eacl; is in (¢i || U &{[|¢i U ¢i||¢i). Such triples represent the merging of two
infinite traces. Likewise, the triplgb, ¢’, y) is in both" - oneif and only if the trace, ¢’, and
Y can be written as finite concatenations

db=0dod1d20d3... on, ¢ = d10203 ... bp, W=Wo W1 W23 ... Up,

such that eacth;, ¢{ andy; (for i < n) is a nonempty finite trace, eagh (for i < n) is a member
of the set(¢i||d] U ¢ ||di U ¢ill$i), at least one o, and¢;, has form(es, 8), andy, is a
member of the sehn || ¢, U dr] dn)-

We can now define fair parallel composition on trace sets as follows:

T1||T2 = {(I) | (I)l S Tl & ¢2 S T2 & mergeabl@l,q)Z) & (¢1,¢27¢) € fairmerg@'

The traces off1|| T, are those traces that result from fair merges of mergeable tracesTfrom
andT,. We therefore defin&s[c1||co]] = Ts[[ca]|| Ts[c2].

We summarize the preceding discussion and give the following complete denotational char-
acterization of the trace semantics

46 Strong Process Fairness

Definition 3.3.1 The trace semantic functioy : Com — P(®) is defined by:

Ts[skip]] = {{(s.€,9), (F,0,£)) | s€ S& F € Pfin(D)}
U{(es, (F. {€},p)) [s€ S& F 2 {e}}
Ts[li:=e] = {{(s &, [sli =n]), (F,0,£)) |
fv[i:=€] C dom(s) & F € Psin(A) & (s,n) € E[€]}
{(es, (F,{e},p)) | fv][i:=€] C dom(s) & F 2 {e}}
Ts[ca]); Ts[cz]
Ts[[b]]; Ts[[ea] U Ts[[=b]}; Ts[[ca]
(Ts[[bl; Tsfcl) U (Ts[[o]; Ts[cl) s Ts[bl
{{(s,h™n,[s]i=n]),(F,{h?},£))|i €dom(s) & N€Z & F € Psn (L)}
{(gs, (F,{h?},p)) |1 € dom(s) & F D {h?}}
Ts[hte] = {((s,hin,s), (F, {h!},£)) | (s;n) € E[[e] & F € Piin(D) }
U{(es, (F,{h!},p)) | fv[e] € dom(s) & F 2 {h!}}
Ts[g— c] = Ts[g]l; Ts[c]

C

Ts[cr e

T4[[if b then c; else ¢
Ts[[while bdo ¢
Ts[h?

S

C

Ts[geOge] = Ts[[gen] O Ts[ge]
Tscallca] = Ts[ea] || Ts[[ca]
Ts[c\h] = Ts[c)\h.

<&

The following result shows that the denotational semantics accurately reflects the opera-
tional behavior of programs executing under the assumption of strong fairness.

Proposition 3.3.2 The denotational and operational characterizations of the fair trace seman-
tics Ts coincide.

Proof: By a straightforward but tedious induction on the structure of commands.

Most of the details concern parallel composition and make precise the connection with
the operational characterization of parameterized fairness given in Definition 3. 2.

3.4 Examples

In this section, we sketch how the semanfigean support reasoning about the behavior of
programs.

3.4 Examples 47

Example 3.4.1 Recall Example 3.1.3, where we defin@ek while true do c!1 and considered
a computation of the command
((a'l0 — bl1) || C)\b.

Ts[a!0 — b!1]] contains the partial tragl; = ((s,a!0,s), ({b!},{b'},p)), which represents
the blocked modb!} computation

p1 = (al0 — bl0,s) 2% (bl0,s).
T4[[C]] contains the infinite tracé, = ([(s,€,5)(s,c!1,5)]%, (0,{c!},1)), which represents the
fair mod0® computation

p2=(C,s) -5 ((c!1;C),9) <5 (C,8) -5 ((c!1;C),8) <5 (C,8) 55 --- .

The tracesp; and¢, are mergeable, becausenatch({b'},{c!}) and{b!} Nn{c!} = 0. More-
over,(d1,92,0) is in fairmerge where we leth be the trace

¢ = <(S7 a!O,S)[(S,S,S)(S,C! 175)](‘), ({b'}, {b!,C!}7 1)>
As aresultp isin Tg[(al0 — b!1)||C]}; not surprisingly$ corresponds to the computation

p'=((al0—=bl1)[|C,s 2% (bl1]C,9 —= (bl1]| (c!1;C),s)
cl1 € cll

<L bl C,8) 5 (b1 | (<!1;C),8) S -

which can be obtained by interleavipg andp,. It follows thatTs[[((a!0 — b!1)||C)\b]] con-
tains the tracéd(s,a!0,9)[(s,€,5)(s,c!1,5)]%, (0,{c!},1)), which corresponds to the computa-
tion p of Example 3.1.3. o

Example 3.4.2 Recall Example 3.1.4, which introduced the following programs:

C = whiletrue do (al1b!1),
C1|C; = (while true do a!l) || (b!1 — (while true do b!1)),
Cp = while true do (al00b?z).

T4[[C] contains the tracg = ([(s,€,5)(s,al1,9)]*, (0, {a!,b!}, 1)), corresponding to its fair mod
0 computation that enables the directiahandb! infinitely often and yet uses onby infinitely
often. In contrast]s[Cy||C;]] contains the trace

¢ = ([(s,&,9)(s,al1,5)]® ({b'},{a!,b!},i))

but not the trace, because its only computations that do not bisare fair mod{b!} but not
fair mod0.

48 Strong Process Fairness

Ts[[Cp]l contains the tracp = ([(S,€,9)(s,a!0,9)]%, (0,{a!,b?},1)), which corresponds to
its fair mod® computation that enables the directiah@ndb? infinitely often and repeatedly
performs the action!0. The trace$ and¢ are mergeable; letting be the trace

P = ([(sUt,,sUt)(sUt, g, sUt)(sUt,al0,sUt)(sUt,al1,sUt)]%, (0,{al,b!,b?},i)),

the triple (¢, ¢p, ¥) is in fairmerge and hencey is in T¢[[C||Cy]|. The tracap corresponds to
the following fair modd merging of computationg andpy:

(C || Cp, sUL) =5 ((al10b!1);C || Cp, SUL)
55 ((a'10b!1);C || (al00b%);Cp, SUL)
2% ((al10b!1);C | Cp, SUL)
2L (€| Cp, sUL) 55 -

In contrast, the traceg’ and ¢, are not mergeable, because the fairness{isgt of ¢’
matchespy's set{a!,b?} of infinitely enabled directions. The lack of mergeability reflects
Cp's inability to refuse to synchronize on chanmelvhenC, ||C; has a process blocked on the
directionb!. o

Example 3.4.3 Consider the progrartbtream; || Streamy || Merge)\left\right, where the pro-
cesse$treams, Streamo andMerge are defined as follows:

Stream; = while true do left!1,
Streamz = while true do right!2,
Merge = while true do (left? — out!x I right? — out!x).

None of the commands have any successful finite traces.

Every infinite trace oMerge has form(a, (F, {left?,right?,out!},1)). Therefore, the only
traces of(Stream; || Streamy) that can be merged with traceshérge are those whose fairness
sets do not contain the directiofet!, right! or out?. The only such traces are those that
represent computations in which bdikreams; and Stream, make infinite progress. These
traces necessarily have fortf, (F', {left!, right!}, 1)), where {left!, right!} N F' = 0 and 8
contains infinitely manyeft!1 actions and infinitely mankight!2 actions.

As a consequence, every trace (and therefore every fair computation) of
(Streamy || Streamy || Merge)\ left\right

must contain infinitely mangut!1 actions and infinitely mangut!2 actions. Therefor&lerge
represents a fair merger of the streams createsttagm, andStream,. o

3.4 Examples 49

The following example highlights the connection between fairness and unbounded nonde-
terminism, using the trace semantics to prove that a single program can terminate with any
possible integer value for the identifier(The program will also prove useful in certain proofs
in Chapter 4.)

Example 3.4.4 Let Pick_Int(x,y,w) be the command
(Data(x,y) || Control(w))\a\b,
whereData(x,y) andControl(w) are the following programs:

x:=0; y:=1;

Dataly) = \ihile'y # 0'do (al1 — xi=x-+ 1 0 b% — skip 0 all - xi= —x),

Control(w) = w:=1; while w # 0 do (a™w — skip(J b!0 — w:=0).

For all integersnandn, let s, abbreviate the stafe = n,y = 0] andt,, abbreviate the state
[x=n,y = 1], and letu, abbreviate the stafey = m|. For eachn € Z, let the tracesi, a,,,
anday, be defined by:

of = (th,all,tn)(tn, & the1) (ths1, € thra),
n (tl’ba!17tn) (tl’hs,t—n) (t—n78,t—n)7
ap = (th,b20,%)(Sn,&,%n)(Sn,€,%n)-

Q
S
I

Intuitively, o, represents the transitions madeDmta(x,y) in executing the code fragment
all - xi=x+1

from the statgx = n,y = 1], and then entering the loop again by verifying that the condition
y # 0 holds. Similarly,a,, represents the transitions made Dyta(x,y) in executing the
fragment

all - xi=—x

from the same state and reentering the loop. Finally, the m@aepresents the transitions
made byData(x,y) in which it receives the value 0 along chanhelnd finally terminates.

For every nonnegative integeywe can also define the simple traces
Yo = (50:&%) (50,8 t)(to, &, to)agay ...ap 50,
Yo = (%0,€%)(%0,8t)(to, & to)agas ...l jaqal,

Intuitively, yi (respectivelyy,,) represents a computation@$ta(x, y) that sets to n (respec-
tively, —n) and then terminates. Moreover, for eath 0, the tracesy;, (0, {a!,b?},£)) and

Yy ,(0,{al,b?},£)) are inTg[[Data(x,y)].

50 Strong Process Fairness

We can also define simple traces

B = (Ul, 3?17 ul) (U]_, g, U]_) (U]_, €, U]_), B. = (U]_, b'o, ul) (U]_, g, UO) (u07 g, u0)7

and (for eacm > 0) &, = (ug,&,uz)(ug,&,up)B"1B°. The traceE, represents a computation
of Control(w) that executes the guae®0 n— 1 times and then executes the guatd and
terminates. For each nonnegativehe trace(&p, (0,{a?,b!},f)) is in Ts[Control(w)].

Finally, using the notatiotts, A, s) to abbreviate the tracgs,A,s)(s,A,s)(s,A,s), we can
define the following simple traces, for all integer valumes

6 = (thUUL,&thUUL)(thU U1, &, thi1 Ut [(thi1UUs, € thir Up)]®
9; - (tnUUl,s,tnUU]_)(tnUUl,s,t_nUUl)[(t_nUUJ_,S,t_nUUl)]S
6, = (thUu,&,sUU1)(ShUUL,E,SaUUp)[(ShU Ug, €U uo)]s.

Intuitively, 6, arises from a merge af andp, 6, arises from a merge af, andp, andé?,
arises from a merge of}, andf3®. Letting! be the trace

(S0 U Uo, €,50U Up) (So U Up, €, to U Up) (to U Up, €, to U Up) (to U Up, €, to U U1) (to U U1, €, 1o U U1,

representing one possible merging of the “initial” portionsypfand &y, it follows that, for
each nonnegativwe the traces

(16467 ...61 ,6n,(0,0,{a!,a?,b!,b?},£))

and
(18487 ...8 18,6°,,(0,0,{a!,a?,b!,b?},£))

are inTg[[Data(x,y)||Control(w)]]. Consequently, the traces
(18§67 ...8 168, (0,0,£)) and (186 ...8; ;6,6°,,(0,0,1))

are inTg[[Pick_Int(x,y,w)]]. These traces reflect the fact that, for every intagethere is a
strongly fair computation oPick_Int(x,y,w) that terminates in a state where the identifier
has valuen. o

Example 3.4.5 As a postscript to the previous example Jiéte the infinite simple trace
(507 8, SO) (807 s,tO) (t07 s,tO)agaI A a:_l tery
so thaty represents a computation bhta(x,y) that continually increments. Similarly, let

& = (up,€,up)(ug, €, up)B?, so that represents a computation @bntrol(w) in which w is
never setto 0.

3.4 Examples 51

The trace(y, (0,{a!,b?},1)) is in Tg[Data(x,y)], and the traceg, (0,{a?b!},i)) is in
Tg[[Control(w)]. It follows that the trace

(18361 ...6 ..., (0,{al,a?,b!,b?}, 1))

is in T¢[Data(x,y) | Control(w)], and hence the traded}6; ...61 ..., (0,0,1)) is in
Ts[Pick_Int(x,y,w)]. The existence of this trace reflects the fact thak_Int(x,y,w) has
strongly fair computations that never terminate. o

These examples all illustrate how the strongly fair trace semantics can be used to reason
about strongly fair program behavior. What we have not yet addressed, however, is whether
a simpler semantics (that is, a semantics constructed at a higher level abstraction) would also
support such reasoning: are the fairnessiEetsd set& of enabled directions really necessary
for reasoning about strong process fairness? We address this question in the next chapter, where
we discusdgull abstraction Intuitively a semantics is fully abstract if it provides precisely the
right level of detail to support compositional reasoning about program behavior. We show in
the next chapter that the semanflgcan be made fully abstract and that the $etndE play
a vital role in modeling strongly fair computations.

52

Strong Process Fairness

Chapter 4

Full Abstraction for Strong Fairness

A single language can have several different semantics, each suited for reasoning about a dif-
ferent type of program behavior. The struggle for each semantics is to find a balance between
supporting compositional reasoning and maintaining an appropriate level of abstraction. For
example, a semantics intended to support reasoning about the sequence of states encountered
along a computation must capture intermediate states in some fashion. In contrast, that same
semantics may be unnecessarily complex for reasoning about a behavior that ignores inter-
mediate states; a semantics that also ignores intermediate states may provide a better level of
abstraction.

Given a semantics and a notion of program behavior, how do we determine whether—and,
if so, how well—the semantics supports reasoning about the behavior? One well-known crite-
rion for judging the utility of a semantics fsll abstraction[Mil75]. Informally, a semantics
is fully abstract with respect to a given notion of behavior if it gives identical meanings to
program terms exactly when those terms exhibit identical behaviors in all program contexts.
In essence, a fully abstract semantics supplies precisely the right level of detail to support
compositional reasoning about a given notion of behavior.

In this chapter, we introduce a natural notion of strongly fair behavior, and we show how
the semantic$s introduced in Chapter 3 can be adapted—through the introduction of suitable
closure conditions on trace sets—to yield full abstraction with respect to this behavior. We also
introduce several additional notions of strongly fair behavior and show how the same general
framework, with small changes to the specific semantics, yields full abstraction with respect to
these behaviors as well. Having a common underlying framework significantly simplifies the
construction of the additional semantics: the different traces share the same general structure,
the semantic operators represent the same type of operational behavior, and the full-abstraction
proofs rely on the same observations and necessary lemmas.

54 Full Abstraction for Strong Fairness

4.1 Soundness and Full Abstraction

A program context P[—] is a program with one or more “holes” into which a command can
be inserted.P[c] is the program that results from filling the holesRjf-] with commandc,
providedc “makes sense” in the given hole. For exampld[if-] is the context[—] — skip),
thenP[a!0] is the commanda!0 — skip), wheread[skip] is undefined:

A behavior notion is the set of program actions assumed to be visible to an external ob-
server. For example, the input—output behavior of a program provides a black-box view of
programs: a program’s initial input and final result are considered observable, but its interme-
diate states are not. For communicating processes, there are several natural notions of behavior
to consider, such as a program’s sequences of communications or the states encountered along
its possible executions. For most of this chapter, we focus on the following fostataf trace
behavior in Section 4.5, we discuss several other notions of strongly fair behavior.

Definition 4.1.1 The state trace behaviM : Com — P(S* U S*9) is defined by:

M[c] = {sos1...5|(C,50) = (C1,51) — -+ = (G, S)term}
U {so51---5D| (Co,50) — (C1,81) —= --- — (Ck, S)dead}
U {%0S1-..-%---|{Co,%) LN (c1,%1) BB (Ck,) s fair},

where we defin&d = {s51...5«0| Vi€ 0.k. 5 € S} o

The state trace behavitM incorporates the assumption that a program is a closed system
(that is, no external communication is permitted) and that an observer can detect each and
every state change. This notion of behavior captures exactly the information necessary for
reasoning about the linear-time temporal logic properties of programs; the assumption that
every state change is detectable corresponds to the inclusion of a next-time operator in the
temporal logic. Finally, this behavior reflects the assumption that deadlock is distinguishable
both from successful termination and from infinite chattering.

A semantics issound with respect to a given notion of behavior if whenever two terms
have the same meaning, they induce the same behaviors in all program contexts. Thus, when-
ever a sound semantics identifies two terms, either term can always be substituted for the other
in any program without affecting the program’s observable behavior. However, when a sound
semantics gives different meanings to program terms, the terms may or may not be safely inter-
changeable: they may have different meanings either because they induce different behaviors

1To be more precise and pedantic, each context should be tagged with a label that indicates whether the hole
takes guards or commands and a set of identifiers that are forbidden to be free in any command filling the hole.
For example, the context—] — skip || x:=1) would be tagged to indicate that it accepts guards that do not have
free identifierx.

4.2 Closed Trace Sets 55

in some program context or because the semantics provides too low a level of abstraction. For
example, the semantics that maps each term to its own syntactic representation is sound for any
notion of program behavior, but it is not very useful: two terms have the same meaning in this
semantics if and only if they are identical, and hence they necessarily behave the same in all
program contexts.

A semantics igequationally) fully abstract [Mil75] with respect to a notion of behavior
if it assigns two terms the same meaning exactly when they induce the same behaviors in all
program contexts. A fully abstract semantics faithfully captures Morris-style contextual equiv-
alence [Mor68], identifying two terms if and only if they are contextually equivalent. Thus a
fully abstract semantics makes precisely the right distinctions and retains just enough detail to
support compositional reasoning about the given behavior. When the semantic and behavioral
domains both come equipped with approximation orderings, we can also speak of a stronger
property callednequational full abstractiona semantics imequationally fully abstract with
respect to a notion of behavior provided that the meaning of a ¢tempproximates that of
exactly when the behavior afapproximates that of in all program contexts. Inequational
full abstraction necessarily implies equational full abstraction.

4.2 Closed Trace Sets

The semantic$s introduced in Chapter 3 soundwith respect tdM : for all commands and
C,a
Ts[c] = Ts[c] = vP[-].M [P[c]] = M [P[cT]].

The soundness dis for M follows directly from the compositionality ofs, the monotonicity

of the semantic operators, and the fact that the state traces ilMegefc]] correspond to the

traces ofP[c] that contain only-transitions. Howeverl s is not fully abstract with respect to

M, because it makes distinctions between programs that behave equivalently in all contexts.
These inappropriate distinctions arise because certain combinations of traces convey exactly
the same information as do certain other combinations.

For example, consider the following commai@jsandCo:

Ci = (al0—bl0)O(al0 — cl0),
C, = (al0— b10)((al0 — c!0) [(a0 — (b!0CIC!0)).

The trace®, = ((s,al0,s), ({b!,c!}, {b!,c!},p)) andd = ((s,al0,s)(s,b!0,s), (0, {al,b!,c!},£))

are both possible fd€, but not forC;. However, the two commands behave identically in all
program contexts: after performing ald, each command may perforbh0 or c!0, and each
command may refuse either one of these actions (but not both) Chltain enable each of

andc! along the same computation is not directly observable: any behavior possible when both

56 Full Abstraction for Strong Fairness

are enabled is also possible when only one of them is enabled. In essence, the parijg) trace
conveys no information that is not already conveyed by the partial traces

(I)]_:<(S,a!O,S),({b!},{b!},p)> and (I)2:<(S,a!O,S),({C!},{C!},p)>,

both of which are possible f&@; as well as folC,. More generally, the information provided

by the combination of partial tracéa, (F1,E1,p)) and{(a, (F2, E2,p)) encompasses any infor-
mation provided by the partial trace, (FLUF,, E; UE,p)). Consequently, it is safe to assume
that the latter trace exists in any trace set that contains the first two. Likewise, the finite trace
¢t above conveys no more information than that conveyed by the finite trace

((s,210,9)(s,bl0,5), (0, {a!, b}, £)),

which is possible for botlC; andCy. More generally, it is safe to assume that the finite or
infinite trace(a, (F’,E’,R)) is in any trace set containing the tra¢e, (F,E,R)), provided
ECE,F CF/,andRe {f,i}.

A similar situation arises with the following guarded comma@gandCy:

Cs
Ca

(al0 — bl0) O (al0 — (b10Tc!01d!0))
(al0 — b10)(al0 — (b!0Oc!0O1dI0)) T (al0 — (b!0CC!0)).

The two partial traces

$1 = ((s,al0,s), ({b!},{b!},p)), b2 = ((s,a!0,s), ({b!,c!,d'},{bl,c!,d!},p))

are possible for botlz andCy, but the partial tracé = ((s,a!0,s), ({b!,c!},{b!,c!},p)) is
possible only foiC4. However, for reasons similar to those above, the two commands behave
the same in all program contexts. Any information conveyed by the fra&also conveyed by

the combination of traces; and¢,, both of which are possible f@3 andC4. More generally,

the combination of partial traces

<a7(F17Elvp)> and <G,(F2, E27p)>

encompasses any information conveyed by the partial {l@dé, E,p)), providedE; C E C
Ex, i CF CF, andF DE.

Similar observations led to the imposition of saturation closure conditions in Hennessy’s
acceptance trees model [Hen85] and downwards and convex closure conditions for refusal sets
in the failures model for CSP [BHR84]. The need for these closure conditions arises from our
desire to model deadlock and is orthogonal to our attempts to model fairness. However, other
fairness-related difficulties also arise, due to the interactions between traces’ fairndss sets
and enabling sefs.

4.2 Closed Trace Sets 57

To understand why, recall that, in the infinite trglce (F,E, 1)), the setF represents con-
straints on the type of context in whichwill represent a fair transition sequence, and the set
E indicates which directions are enabled infinitely often along that sequence. Therefore, dis-
tinguishing between a process with the traae(F, E, i)) and one with the tracé, (F,E’, 1))
requires a context with a subcomponénthat can be enabled infinitely By but notE’ (or
vice versa). When placed in such a context, one process can pexftainy while Q blocks,
whereas the other process cannot performwithout eventually synchronizing witlp. For
example, suppose that the comm&h(but notC’) has the tracéa, (0,{a!,b!},1)) and thatC’
has the tracéa, (0, {a!,b!,c!},i)). The two commands can be distinguished by a context like
the following:

Pl—-]= ([-] || ¢X — flag:=1)\c.

The programP[C] has a fair behavior in whic® performs the transition sequenaeand in
which the identifieflag never gets set to 1. In contraB{C’] has no such behavior: @ tries
to perform the sequenae, the context’'s guard? will be enabled infinitely often, thereby
forcing a synchronization that leadsfteg getting set to the value 1.

Distinguishing a process with tra¢e, (F,E, 1)) from one with tracéa, (F',E, i)) requires
a different approach. In particular, the context must enable some directiéroimF’ (but
not both) infinitely often (without becoming blocked itself), thereby providing infinitely many

synchronization opportunities to a previously blocked ro@r F’) subcomponent of one of
the processes. For example, recall the commen@s||C, andC, from Example 3.1.4:

C = while true do (al0Ob!1),
C1/|C2 = (while true do a!0) || (b!1 — while true do b!1),
Cp = whiletruedo (al0db?z).

Letting a = [(s,€,9)(s,a!1,s)]®, the command€ andC,||C, have (respectively) the traces
(a,(0,{al,b!},i)) and(a, ({b!},{a!,b!},1)). The context

([=] || while true do (al0[0b?z))\b

can distinguish these commands, becauséheommand appears within a guarded choice.
The context’s infinite enabling df? is sufficient to forc&;||C, to synchronize on channb]
and yetC may refrain fairly from using at all.

Bearing these considerations in mind, we now consider two more commands that behave
the same in all program contexts and yet have different meanings under the serhantics

Cs = (al0— bl0— cl0)0(al0 — bX) T (al0 — (bl0TbX)),
Cs = (al0— bl0— cl0)(al0 — bX) T (al0 — (b!0Cb)) O (al0 — bl0).

58 Full Abstraction for Strong Fairness

These commands exhibit the same potential for deadlock (i.e., they share the same partial
traces), and they can perform the same sequences of communications. The only potential dif-
ference between these commands is@aatan perform the successfully terminating sequence

of actions[a!0 b!0] without enabling input on channkl This potential difference is reflected

in their trace sets: the trade= ((s,a!0,s)(s,b!0,s), (0, {a!,b!,b?},f)) is possible for botiCs

andCs, whereas the traol = ((s,a!0,s)(s,b!0,s), (0,{a!,b!},£)) is possible only foCgs. As

a result, the only possible way to distinguGkfrom Cs is to distinguishp’ from ¢, which re-

quires an argument based on fairness. In particular, distinguishing beGyeeaCs requires

a context that allows eadh to repeatedly perform!0 followed by b!0, while permitting an
observer to determine when the directigh is enabled only finitely often along the infinite
computation. Therefore, any potential distinguishing context must have at least the following
three separate components:

1. Aloop that repeats the relevadtinfinitely many times.

Intuitively, whenCg is placed in this loop, it can repeatedly perfosta followed byb!0,
without ever enabling the directids?. In contrast, whegs is placed in this loop and
performs the same sequence of actions, it necessarily enégbilesnitely often.

2. A component—placed in parallel with the aforementioned loop—that can block only
whenb? is not enabled by the relevadtinfinitely often.

To block whenb? is enabled only finitely often, this component must contain a guard
that blocks when trying to perform output on chanbeBecause blocking can happen
only when synchronization is required, both this component and the loop must appear in
the scope of channel restriction on chanmel

3. A component that repeatedly offers input opportunities for each of the loop’s attempted
b!0 actions.

The loop has communication on chanheeéstricted and yet needs to perform the action
b!0 infinitely often. Consequently, it requires an additional component that repeatedly
offers input opportunities on chanrglthus permitting synchronization.

Consequently, any distinguishing context must have the following general form:
(while true do [—] || b!0 — flag:=1 || while true do bAs)\b.

However, the second component (which is intended to block in certain situations) is always
provided infinitely many synchronization opportunities by the third component. As a result,
it can never become permanently blocked, regardless of whétharCg is inserted into the
context. In effectCs’s enabling (but non-use) af? is obscured b{s’'s use of the matching
directionb!. Because every possible distinguishing context must have the same general form,

4.2 Closed Trace Sets 59

Cs andCg are behaviorally indistinguishable. More generally, a trace set containing the finite or
infinite traced = (a, (F,EUX,R)), with X Nvis(a) = 0 andX C vis(a), cannot be distinguished
from one that also contains the tra@e (F,E,R)).

The final source of inappropriate distinction arises from pairs of traces whose fairness and
enabling sets conflict with one another. For example, consider the comBarel&, [1G,
andCg = G110 G2 [0 Ggs, where the guarded comman@s, G,, andG3 are defined as follows:

G1 = b!0— while true do (b!0Jax[Jal0)
G2 = bl!0— ((while true do b!0) || (a? — while true do a%))
Gz = b!0— while true do (b!0C0a™).

Letting a represent the simple tradés, b!0,s)(s,€,s)], the trace sets of; and Cg both
contain the trace¢1 = (a, (0,{b!,a?a!},i)) andd, = (a, ({a?},{b!,a?},1)), but the trace

$3 = (a,(0,{b!,a?},1)) is possible only foiCg. To distinguish betwee@7; andCg requires

a context in whichpsz can be distinguished from bothy and ¢, at the same timeAs dis-
cussed previously, distinguishigg from ¢, requires a context that places the relevgnin
parallel with a component that blocks while trying to perform input on chamnkl contrast,
distinguishingbs from ¢, requires a context that places the relev@nn parallel with a com-
ponent that enables output on chamnnglfinitely often and yet does not block. Therefore, any
distinguishing context for the comman@s andCg must contain both of these components
running in parallel, one continuously attempting to perform input and the other repeatedly
offering matching output. In such a context, the intended “blocking” component is enabled
infinitely often by the second component, regardless of which command is inserted. Thus, no
context can possibly distinguish the comma@gsndCs. More generally, whenever the traces
(a,(Fu{d},E,i)) and(a,(F,EU{d},1i)) are in a trace sel, it is impossible to determine
whether (and it is safe to assume that) the tracgF,E, 1)) isin T as well.

We formalize these observations by imposing the following closure conditions on trace sets.
Definition 4.2.1 Given a fair trace seT, the closure of T (written TT) is the smallest set
containingT and satisfying the following conditions:

e Union: If (a, (F1,E1,p)) and(a, (F2, E2,p)) are inTT, then(a, (FLUF2, E1UE>,p)) isin

T,

e Convexity If (a, (F1,Ex,p)) and(a, (F,Ez,p)) are inTT, Ey CE C Ep, FL CF C P,

andF D E, then(a, (F,E,p)) isinTT.

e Supersetlf (a,(F,E,R))isinT', Re {f,i}, F C F/, andE C E/, then(a, (F",E’,R))

isinTT.

e Displacementlf (a,(F,EUX,R))isinTT, Re {f,i}, XNvis(a) = 0, andX C vis(a),
then(a, (F,E,R))isinTT.

60 Full Abstraction for Strong Fairness

e Contention If (a,(FU{d},E,i)) and{(a, (F,EU{d},1)) are inTT, then(a, (F,E, 1))
isinTT. o

Closure is obviously monotonic (if; C T, thenT,' C T.)) and idempotentTt = (TH").
Moreover, any trace introduced by a closure condition has the same tag as the trace(s) that led
to its introduction: for example, convexity introduces partial traces when certain partial traces
are in the set, and contention introduces infinite traces when certain infinite traces are in the set.
As a result, if the set$¢, Ty andT; contain only finite, partial and infinite traces, respectively,

then(Tr UT,UT) T = TfT UTJ UTiT. We use this fact in many subsequent definitions.

As we shall see in Section 4.4, these closure conditions are precisely what is needed to
obtain full abstraction. LePT®d be the set of closed sets of fair traces. We defiméoaed
trace semantic functiofh'sT : Com — PTd denotationally, modifying the semantic equations
given for T in Definition 3.3.1 by building the closure property into each clause. Letting
T [b] = Ts[b]T, we defineT, ' as follows.

Definition 4.2.2 The closed trace semantic functidg : Com — PTd is defined by:

Td [skip] = {((s.€,9), (F.0,£)) | s€ S& F € Prn(8)},
U{(es, (F.{e}.p)) | S€ S& F 2 {e}},
T li:=€] = {{(s.&,[sli =), (F,0,£)) |
fu[[i:=e] C dom(s) & F € Psin(A) & (s,n) € E[[e]}'
U{(es, (F.{e}.p)) | fv[[i:=€] C dom(s) & F 2 {e}}
Te o] TS fe])’
T Ib0: T Tea U TS [-b]; T IC2]) '
Q) E N 5 D QN) PPN 5 D AN) D
{((s,;h™,[sli=n]), (F,{h?},£)) |i € dom(s) & N€ Z & F € Psn(A)}
U{(es, (F,{h?},p)) | i € dom(s) & F 2 {h?}}
TJ[hie] = {{(s.hin.9), (F. {h'}.£)) [(s,n) € E[€] & F € Prin(A)}
U{(es, (F,{h'},p)) | fv[[e] € dom(s) & F 2 {hi}}

Toens el =

Tif b then ¢y else ¢ =
T [while bdo c]] =

T h]

(
(
(

T Mg — cl = (Ts [al; Ts [c])?
Ts lgc0ge] = (T Mga] OT Tac]) '
Ts [eallca] = (T Teal) I T ea])
Ts [e\h] = (TS T\ .

4.3 Computational Feasibility 61

For all commands, TJ'[[c] is precisely the closure dfs[c]: that is, for all commands
¢, T[] = (Ts[c])T. Proving this fact, however, requires a detour provided by the following
section. In particular, the obvious inductive proof requires that we prove that

(T Teal TS Teal) " = (Tsleall 1 Tsleal) = (Teleal I Tzl

Although this equality holds, we can prove it only by referring to particular properties of the
trace setds[c1] and Td[cz]): the property(T{||T,)T = (T1[|T2)t does not hold for arbitrary
trace sets. For example, consider the following two trace sets:

1 = {<a17(07{d7d_76}’i)>’ <a17({d}’{d’e}7i)>}7
T2 = {<02,({d},0,{d,d},i)>}.

The set(Ty||T2)T is empty, because the single traceTinis not mergeable with either trace in
T;. However, it is mergeable with the trades, (0,{d,e},1)), which is inTlT by contention,
and henceT," || T,) T is not empty.

4.3 Computational Feasibility

For any command, the trace sets[[c] necessarily satisfies certain properties that an arbitrary
trace set may not. These properties stem from the nature of programs, computations, and the
definition of parameterized fairness. Several of these properties are essential for proving full
abstraction and hence are worth making explicit.

Because every successfully terminating computation is fair fdkde trace(a, (0,E, £))
is in Tg[[c]] whenever any tracé, (F,E, £)) is. Similarly, because a fair mdél computation
is also fair modF’ for all {a, (F’,E,R)) is in Tg[c] whenever(a, (F,E,R)) is in Ts[c] and
F'DF.

A partial computation with final configuratiofr,s) is fair mod F if and only if F D
inits(c,s). In particular, if E = inits(c,s), then the computation is blocked mé&dbut not
blockedE’ for anyE’ C E. As a result, the tracé, (E,E,p)) is in Tg[[c] whenever any trace
(a,(F,E,p)) is in Tg[c]. Similarly, the trace(a, (F,E,p)) is in Ts[c] whenever= D E and
(a,(E,E,p))isin Tg[c].

The remaining properties concern the relationships between a computation’s infinitely en-
abled directions, infinitely used directions, and blocked processes. The directions that are used
in visible communications infinitely often along a computation are clearly enabled infinitely
often. As aresult, for any trader, (F,E, 1)) in Tg[c]], it must be thatis(a) C E. Similarly, no
process can become blocked while capable of using a direction that is used infinitely often by
some other process: if a fair moB U X) computation uses the directionsininfinitely often,

62 Full Abstraction for Strong Fairness

then the computation must also be fair nfodTherefore, whenever the trae, (F UX,E, 1))

is in Tg[[c] andX C vis(a), the trace(a, (F,E, 1)) also must be ins[[c[. Moreover, the set

of directions enabled infinitely often along a computation provide an upper bound on the di-
rections on which processes are permanently blocked: if a fair (fRadX) computation has
infinitely enabled directionk andX NE = 0, then no blocked mo@- U X) process can actu-

ally used the directions iK, and thus the computation is also fair medAs a result, it is safe

to remove the seX from the tracga, (FUX, E,i)) in Ts[[c]] wheneveiX NE = 0.

The final property is subtle but extremely important. Intuitively, a trace with form
(a,(Fu{d},Eu{d,d}, 1)

represents a computatigrthat enables the directiomsandd (among others) infinitely often
and is fair mod~ U {d}. Thus any subcomponent othat is blocked modF U {d}) alongp
must be blocked in a configuration in which its only transitions involve the direckanéd} .

If we assume thatl ¢ F, then any process capable of using directibhas infinitely many
opportunities to synchronize, because the matching diredtisralso enabled infinitely often.
Therefore, any subcomponent blocked nffod {d} must also be blocked mde, and hence
the computation is also fair mdel. As a result, the trace

(a,(F,EU{d,d},i))

must be in the séfis[c] whenever the original trace is. However, once we start considering the
closed trace séfi.[c]), we need to account for the possibility that the trace

(a,(Fu{d},Eu{d,d},1))

is in (Ts[c])T by superset closure from the trage (F U {d},EU{d},1)) in T[c].

There are, of course, other general properties that are true for all §efisthat are not
incorporated into the following definition afomputational feasibility The properties that
are included suffice for proving that'[[c] = Ts[[c] for all commands and thatT' is fully
abstract.

Definition 4.3.1 A fair trace setT is computationally feasibleif it satisfies the following
properties:

e If the trace(a, (F,E,f)) isin T, then the tracéa, (0,E,f)) isinT.
e If the trace(a, (F,E,R))isinT,Re {f,i}, andF C F/, then(a, (F’,E,R))isinT.
e The trace(a, (F,E,p))isin T ifand only if F O E and the tracéa, (E,E,p))isinT.

e If the trace(a, (F,E,1)) isin T, thenvis(a) C E.

4.3 Computational Feasibility 63

e If the trace(a, (FUX,E,i))isinT andX C vis(a), then the tracéa, (F,E,i))isinT.
e If (a,(FUX,E,i))isinT andXNE = 0, then(a, (F,E,1))isinT.

e If (a,(FU{d},EU {d,d},i))isin T andd ¢ F, then at least one of the traces
(a,(F,EU{d,d},i)) and(a, (FuU{d},EU{d},i))isinT. o

The following lemma shows that the definition of computational feasibility indeed captures
general properties of commands’ trace sets.

Lemma 4.3.2 For all commands cJs[[c] is computationally feasible.

Proof: By a straightforward but tedious induction on the structure.offo give a flavor of
the proof, we prove thdls[c:||c2] satisfies the sixth condition: {fx, (F UX,E,i)) isin
Ts[[ci||c2] andX NE = 0, then(a, (F,E, 1)) is in Tg[[ca||c2]).

Suppose thap = (a, (FUX,E, i)) is in Tg[c1||c2]] and thatX NE = 0. By definition of
parallel composition, there exist traces

$1 = (ag, (F1,Eq,Re)) € Tg[[ea]l, $2 = (az, (R, E2, Rp)) € T[[co]]

such tha{$1,d2,¢) € fairmerge At least one o1, ¢ is infinite; without loss of gener-
ality, we assume thdt; is infinite. As a result, we know thdfF UX) D F; UF; and that
E=E;(f RR=f)orE=E1UE, (if Ry # £).

BecauseX NE = 0 andE D E;, we know thaE; N X =0 (andEoNX = 0if Ry # £). By
the inductive hypothesi3s[[ci1]] andTg[[c2] are computationally feasible, and hence

01 = (a1, (F1—X,Ep,i)) € Ts[ar], 2= (a2, (F2— X,E2,Rp)) € Tq[[cz].

(The existence a5, follows because eithdé®, = £ (in which case any choice &fis per-
missible forg’) or E;NX = 0.) Letting¢’ = (a, (F,E, 1)), it follows that(¢7,d5,9’) €
fairmerge and hencé’ is in Ts[[c1] || Ts[c2]] = Ts[c1/c2] as required. .

The following two lemmas show that closure preserves computational feasibility and dis-

tributes over the various semantic operators when applied to computationally feasible trace
sets.

Lemma 4.3.3 If the trace set T is computationally feasible, thehi§ also computationally
feasible.

64 Full Abstraction for Strong Fairness

Proof. By a straightforward but tedious case analysis showing that each possible trace intro-
duced by closure respects computational feasibility. To give a flavor of the proof, we
show that displacement preserves the final property of the definition of computational
feasibility.

Let T be a computationally feasible trace set, andlet (a, (F U {d},Eu{d,d},1)) be
a trace ofT T that arises by displacement from oneTd$ traces

(a,(FU{d},EU{d,d}UY,i)),

whereY Nvis(a) = 0 andY C vis(a). We need to show that ™ also contains either
¢’ = (a,(F,EU{d,d},i)) or¢” = (a, (Fu{d},Eu{d},i)).

Becausd is computationally feasible, we know thas(a) C Eu{d, d_} and thafTl also
contains at least one of the following two traces:

(a,(F,EU{d,d}UY,1)), (a,(FU{d},EU{d}UY,1)).
It follows by displacement that ' contains eithed’ or ¢” as required. .

Lemma 4.3.4 For all computationally feasible trace sets T, and b, the following properties
hold:

(T)" = (T T,)! (T = (T T\ = (TN
(TUTe) = (T uT)! (TO)t = (7T (TuT2) "= (T TH T
(MO = (o)’

Proof: In general, the proof of each property is based on a simple case analysis that shows
that whenever a trace is |'F£r EBTZT (for each relevant operatap), the trace is also in

(TL® T2)'. Because closure is monotonic and idempotent, it foIIows(fﬁfalea TZT)Jr =
(o T)". .

The following result shows that, for all commangthe meaning given to by the closed
trace semantick,! is exactly the closure ofs[[c].

Proposition 4.3.5 For all commands ¢ [c] = Ts[[c]".

Proof: By a straightforward induction on the structurecpfising the properties of Lemma 4.3.4.
For example, the case for parallel composition proceeds as follows, relying on the induc-
tive hypothesis thal '] = Ts[c] for eachi:

Tdledllca] = (T'fea] || Ts'eal)" = (Tslfea]l" | o2l
= (Tsea) | T[e2]) ™ = Tsfeallea]"

4.4 Full Abstraction for the Behavior M 65

4.4 Full Abstraction for the Behavior M

In this section, we prove that the semant'l’g’éis fully abstract with respect to the state trace
behaviorM : Ts gives identical meanings to two program terms if and only if they exhibit
the same state trace behaviors in all program contexts. We begin with some definitions and
necessary lemmas.

Definition 4.4.1 An elementd = (a, (F,E,R)) of a trace sef is minimal if for every ¢’ =
(o,(FL,E,R)inT,(FFCF&E'CE) = ¢=0¢" R

Thus a finite or infinite tracé € T is minimal if there is no trace’ € T that would yieldd

through closure under subset; a partial trgce (a, (F,E,p)) € T is minimal if F = E and

every other partial tracf’ = (a, (F’,E’,p)) in T has a directionl € E' — E. A closed trace set

is uniquely characterized by its set of minimal traces: each of its finite or infinite traces can be
obtained from minimal traces by superset closure, and every partial trace can be obtained by a
combination of union and convex closure.

For a trace sel and a simple trace, it is often necessary to talk about the (minimal)
traces ofT with the simple componert. In the following definition, we concern ourselves
only with infinite traces; clearly, a similar definition can be given for finite traggsas well
as a distinction between successful and pastitriaces.

Definition 4.4.2 Let T be a trace set. The setin(T,a) is the set of minimal (nonpartial)
a-traces inT; thatis,min(T,a) = {¢ = (a, (F,E,R)) € T | ¢ is minimal inT & Re {f,i}}. ¢

The minimal traces of a computationally feasible trace set all satisfy certain conditions
relating the fairness sét to the enabling seE. For a minimal finite trace = (a, (F,E, f)),
the setF is necessarily empty; for any minimal partial trage= (a, (F,E,p)), it must be the
case thaF = E. If the infinite tracep = (a, (F,E, 1)) is minimal in a computationally feasible
trace set, thefr C E, because directions enabled only finitely often do not introduce fairness
constraints. Moreover, if the directiahis in the setF (representing a fairness constraint of
some component), then eitheérs also inF (indicating that exactly one subcomponent enables
each ofd andd, with insufficient synchronization opportunities) @is not enabled infinitely
often. We call infinite traces that satisfy these crit@aaentially minimal

Definition 4.4.3 An infinite trace¢ = (a, (F,E, 1)) is potentially minimal if F C E and, for
all directionsd e F,de F < d € E. o

Every potentially minimal tracé is a minimal trace of some computationally feasible trace set
T; in particular,$ is a minimal trace of the computationally feasible trace{$af’. Moreover,
every minimal trace of a computationally feasible trace set is potentially minimal.

66 Full Abstraction for Strong Fairness

Suppose a closed, computationally feasible tracel sebes not contains the potentially
minimal tracep = (a, (F,E, i)). If T does contain othex-traces (that s, ifnin(T,a) # 0), then
each minimal tracea, (F,E;j, 1)) in T must have an additional fairness constraint (represented
by a directiond € F; — F) or enable an additional direction infinitely often (represented by a
directiond € E; — E). The idea is that, by carefully selecting one of these fairness constraints
d € | —F or infinitely enabled directiond; € E; — E for each minimalp;, we can construct
a context that distinguishes the tragpefrom the traces inf. For reasons similar to those
that motivated the introduction of the contention closure condition, it is important that none
of the selected fairness constraints matches any of the selected infinitely enabled directions.
We formalize this “careful selection” asanflict-free resolutionas given in the following
definition.

Definition 4.4.4 Let T be atrace set not containing the trgce (a, (F,E,1)). A conflict-free
resolution of T for ¢ is a total function

R :min(T,a) — (A x {F,E})
satisfying the following two conditions:
e For all tracesp; € min(T,a),

R(pi) = (d,F) = deR-F & R(¢i)=(dh,E) = dicE-E.
e For all tracespi,d; € min(T,a), ¢i=(d,F) & ¢j = (dj,E) = —match(d;,d;). ¢

As a consequence of the following lemma, a conflict-free resolutioRJdc] for ¢ can
always be constructed, for any commarahd any potentially minimal trage ¢ T4 [[c].. That
Is, the necessary “careful selection” is always possible. This fact will be necessary for proving
full abstraction.

Lemma4.4.5Let T be a closed, computationally feasible trace set not containing the poten-
tially minimal trace$ = (a, (F,E, 1)). If the setmin(T, a) is finite, then there is a conflict-free
resolution of T forp.

Proof: Assume thamin(T,a) is finite, and letR be a total functiorR : min(T,a) — (A x
{F,E}) such that, for all traceg; € min(T,a),

R(i) = (di,F) = deR-F & R(¢i)=(d,E) = dieE-E.

We say thatR has conflicts on channélif there exist trace$i,¢; € min(T,a) and a
directiond such thatk(¢;) = (d,F), R(¢;) = (d,E), andchan(d) = h. We introduce a

4.4 Full Abstraction for the Behavior M 67

well-ordering< on channels, and we show tt#&tan be transformed into a conflict-free
resolution by removing conflicts in a systematic way, using the channel ordering.

Supposeh is the least channel on whicR has conflicts. There must be traags=
(a, (F, Ex,1)) anddy = (a, (R, Ey,1)) in min(T,a) such thatR($x) = (d,F), R(dy) =
(d,E), andchan(d) = h. Exactly one of the following cases must hold:

Case:d¢ E
Becausd is computationally feasible anjg is minimal, it must be thad € Ex— E
as well. Thus every mapping td,F) in R can be replaced by a mapping(thE);
likewise, every mapping t¢d,F) can be replaced by a mapping td,E). The
resulting resolution has no conflicts on chanriketsh or on channeh.

Case: d € E and (i_e Fy or de)
Becauseal € E, R does not map any trace to the paitE). As a result, replacing

R(dy) or R(dx) (or both, when possible) by a mappingthF) will remove at least
one conflict on channdl, without introducing any conflicts on channé&ls: h.

Case: d € E andd ¢ F, andd ¢ F

Becausepy is minimal, we know thatl ¢ F,. BecauseT is closed under superset,
T contains the traces

(o, (kU Fy, (ExUEy) — {d},1)) and (o, ((RU Fy) —{d},ExUEy, 1)),
via ¢y and¢y, respectively. It follows that the trace

(a, (FcURy) — {d}, (ExUEy) — {d}, 1))

isinT by contention, and thus there must be some minimal tpaee(a, (K, E;, 1))

in T such that C (FkUF)) — {d} andE; C (ExUEy) — {d}.

If R(¢r) = (e,E) (for some directiore), thene € E;, — E, and hences € Ex— E
orec Ey,—E. Likewise, if R(¢;) = (e,F), theneec K, — F, and hences € (Fx—
F)U(Fy—F). Thus at least one &&(¢x) andR(¢dy) can be replaced by a mapping
to R(¢r). This change cannot introduce any new conflicts on charknels and
reduces the number of conflicts on chanimel

Becausenin(T,a) is finite, repeating the preceding analysis eventually removes all con-
flicts on channeh, without introducing any conflicts on any chantke& h. Moreover,
because there can be only finitely many channels mentioned in theirgét, o), the
analysis must be applied for only a finite number of channels, eventually resulting in a
conflict-free resolution fog. .

We can now prove full abstraction of the semanfigsfor the behavioM .

68 Full Abstraction for Strong Fairness

Proposition 4.4.6 The closed trace semantitg' is inequationally fully abstract with respect
to M : for all commands c and'¢

T [e] € TIe] <= vP[-].M[P[c]] € MP[c]].

Proof: The forward implication follows from the compositionality Bf', the monotonicity of
operations on trace sets, and the fact that, whéfc] C T[],

M[P[c]] = {states(a)|3E. (a,(0,E,R)) e T [P[c]] & Re {f,i} & chans(a) = {&}}
U {states(a)d] (a,(0,0,p)) € TJ [P[c]] & chans(a) = {e}}
C {states(a) | JE. (a, (0,E,R)) € TST[[P[C']]] & Re {f,i} & chans(a) = {&}}
U {states(a)d] (a,(0,0,p)) € TS [P[c']] & chans(a) = {e}}

M [P[C]].

[We write states(a) to indicate the sequence of states encountered alofay example,
if 0 = (s0,€,51)(S1,€, %) - .- (S & Sk+1), thenstates(a) = 91 . - kSkt-1-]
For the reverse implication, considee= (a, (F,E,R)) in TS [[c] — T [c].

Case: ¢ = (a, (F,E, 1))
Becausel[c] and TS [¢'] are computationally feasible, we can assume without
loss of generality that = 0. Let(a, (0,E1,f)),...,(a, (0,En £)) be the (necessar-
ily finite number of) minimala-traces inT4 [¢']. Closure under superset ensures
thatE; ¢ E for eachi < m; thus for each we can choose a directiah € E; — E.
Let x1,...,X, be the free identifiers af, and leth4,...,hx be the channel nhames
appearing irc. We letx,y,flag,step,vi,...,Vy be fresh identifiers, and we define
guardsy; (for eachi < m) so that each guarg “matches” the direction: g = h!0
whend; = h?, andg; = h? whend; = hl. We also define a commariatch j(a)
inductively as follows:

Matchy i((S,€,5)) = step:=i
Matchy i((s,hin,s)) = h?y — step:=i
Matchy i ((s,h™n,s)) = hin — step:=i

Matchy j(0B) = Match, j(0); Matchy j+1(B).

Intuitively, the commandMatchy 1(a) can synchronize with the trace keeping
track of the number of steps performed along the way.

We now letP[—] be the following context:

while true do

(V1i=X1;V2i=Xg; -}V,
([=] I Matchy 1 (a
X1:=V1;X2:=Vp;- - ,xn =Vn)

i G — flagi=1) | \ho\ -\

4.4 Full Abstraction for the Behavior M 69

Becausep never enables synchronization with any of the guakd¥ [P[c]] has
a behavior that corresponds to the infinite iteratiomah which the variablélag
is never set to 1. In contrast, every computatiorP@f] that iteratesx infinitely
many times must enable synchronization infinitely often with at least one guyard
consequently, any behavior M [[P[c']] corresponding to the infinite iteration af
must eventually setag to 1.

Case: ¢ = (a, (F,E,p))
Without loss of generality, we can assume that E. We letx,y, flag, step be fresh
identifiers, and we lehy, ... , he be the channel names appearing.itVe leta be a
fresh channel name not appearingior .
Let (a, (E1,E1,p)),..., {0, (Em,Em,p)) be the finite number of minimal partiat
traces inl¢ [¢], and letz = U™, E;. Closure under union ensures tbat(Z,Z,p))
is in TS [¢']; by convex closure, it must be that (for eaick m) ~(E; C E C Z).
Therefore, eitheE Z Z or for each, E; Z E.
If E Z Z, then there exists a directiahe E — Z. Letg be a matching guard faf if
d # €, and letP[—] be the following context:

([=] || Matchy 1(a); flag:=1;g — flag:=2)\hz\ - - - \ k.

(Whend = ¢, replace the code fragmeng “ flag:=2" by “flag:=2".) M [PIc]]
has a behavior that begins with a correspondenag followed byflag being set
to 1 and then, exactly two steps later, being set to 2. In confva§P[c’]]] has no
such behavior.

If eachE; € E, then for each choose a directiod; € E; — E. Letg; be a matching
guard ford; wheneved; # €, and letg; be the guara!0 whend, = €. Let P[] be
the following context:

(-] Matchle(O();y::O;.igi — flag:=1)\hp\ - - -\ hg\a.

M [[P[c]] has a deadlocked behavior correspondingitm which the final step
involves setting to 0. In contrast, every deadlocked behavioMrP[c]] corre-
sponding tax must take at least one step after setiirig O.

Case: ¢ = (a, (F,E, 1))
Without loss of generality, assume thifats minimal inTsT[[c]]. We letx, vy, f1, 2,

synch, value, comm, andcount be fresh identifierdys,... , hg be the channel names
appearing irc, anda be a fresh channel name not appearingan ¢’

Letd1 = (a,(F1,E1,1)),...,0m= (a, (Fm, Em, 1)) be the minimabi-traces ifT J/[¢'].
By Lemma 4.4.5, there is a conflict-free resolutiBrof T[] for ¢. Define sets

70

Full Abstraction for Strong Fairness

count:=count + 1;synch:=1,
while true do

Pick_Int(comm);

Pick_Int(value);

case (comm mod (2k+ 1)) of
1: synch:=0; ((hy!value — synch:=1)0 ¥ 4c(g — f1:=1))
2: synch:=0; ((hyvalue — synch:=1)0 ¥ 4c(g — f1:=1))

2k — 1: synch:=0; ((h!value — synch:=1)0 ¥ 4. (g — f1:=1))
2k: synch:=0; ((hx?value — synch:=1)0 § 4cc(g — fl:=1))
0: synch:=0; (((anvalue — synch:=1)0 § ycc(g — f1:=1))|[al0)\a
endcase;
count:=count + 1.

Figure 4.1: The progranGuess(H, Gy, f1).

X={d[1<i<m& R($p;) =(d;,F)} andY ={d; | 1 <i <m& R(¢i) = (di,E) };
becaus& is conflict-free, it follows that-match(X,Y).

Define set$5, = {h!0 | h? € X} U {h | h! € X} andG, = {hl0 | h?e Y} U {h% |

h! € Y} so that each direction iX has a matching guard 8, and each direction
in'Y has a matching guard i@,. Let Guess(H,G,f1) abbreviate the command in
Figure 4.1, with thease construct used as syntactic sugar for the corresponding se-
ries of nestedf-statements. Intuitively, the progra@uess(H, G, f1) can synchro-
nize with any computation of any program that uses only the chammels , hg

for visible communication. For each synchronizatiGogss(H, G,,f1) “guesses”
the particular communication necessary for synchronizatidloreover, in any
infinite computation ofGuess(H, G, f1), the directions associated with the guards
in G, are enabled infinitely often. Consequently, if the program in parallel with
Guess(H, Gy, f1) treats any of the directions X unfairly, the flagf1 will necessar-

ily be set to 1 eventually.

Let P[—] be the following context:

([=] || Guess(H,G,f1) | 'S g— f2:=1)\ha\---\h.
geiy

M [[P[c]]] has a behavior correspondingatan which neitheifl norf2 is ever set to
1. In contrast, every behavior 8 [[P[c]] corresponding ta must eventually set
at least one of the flagd andf2 to 1. .

The case whereomm mod (2k + 1) = 0 is necessary whem involves only finitely many visible communi-

cations (e.g.(s,€,5)?).

4.5 Other Notions of Program Behavior 71

allcec = cla
(caflc2) || €3 ¢ || (c2f[c3)
(cillez)\h = c1 [(c2\h), providedh ¢ fc[cy]
c\h ¢, providedh ¢ fc[[c]
(al0 — b!0) O (b!0 — al0) = al0 || blo
(if b then ¢ else ¢p);C if bthen cq;celse ¢p;C
(if bthen cyelse cp) || € if b then (cq|c) else (cz||c)
(if b then c; else cp) || (skip;c) if b then (c1 || skip;c) else (c || skip;C)

11 Nl

Figure 4.2: Some program equivalences validatedTy

This full abstraction result show th&t" provides precisely the correct level of abstraction
to support compositional reasoning about the program behdiorAs a consequence, the
semanticd ' validates several natural program (in)equivalences (with respédt)tthat hold
under strong fairness. Figure 4.2 lists several of these properties, where we writeto
indicate thatT4' [c] = TJ'[c']. Many of these properties appear obvious, but proving them
using purely operational methods is very difficult. Moreover, “obvious” properties may not
hold under certain notions of fairness; for example, the equivalence

(al0 — b!0) O (b0 — al0) = al0 || bl0

does not hold under weak fairness, as we shall see in Chapter 6.

4.5 Other Notions of Program Behavior

The state trace behavidd introduced in Definition 4.1.1 incorporates the assumptions that
external communication is prohibited, that every state change can be detected, and that dead-
lock can be distinguished from successful termination and infinite chattering. In this section,
we consider several other notions of behavior that relax one or more of these assumptions, in
each case showing how the semantics can be adapted to yield full abstraction. The changes to
the semantics primarily affect the simple trace components of the fair traces. The underlying
notion of parameterized strong fairness, and thus the extra contextual information necessary to
incorporate fairness assumptions, remain the same.

The ease with which the semantics can be modified to yield full abstraction for these other
notions of behavior reflects the robustness of the framework. In particular, the notion of com-
putational feasibility and the related definitions and lemmas of Section 4.4 are independent of

72 Full Abstraction for Strong Fairness

the structure of simple traces and can be revised for other types of simple traces effortlessly.
As a result, the proofs of full abstraction for the behaviors in this section all follow the proof
of Proposition 4.4.6 very closely.

4.5.1 Simple trace behavior

The state trace behavidd adopts a view of programs as closed systems that cannot com-
municate with the external world. According to this view, all communication is internal and
synchronous; an observer cannot possibly detect visible (i.e., external) communications, be-
cause such communications are not possible in a closed system. However, it is reasonable
to relax this assumption and to assume instead that an open system'’s interactions with its en-
vironment are observable. Moreover, to reason about the possible interactions a command
may have with its environment, it is essential to assume that these communications can be ob-
served. If we adopt this view, then it is natural to considerdingple tracebehavior function
S:Com — P(z*UZ*) defined by:

S = {trace(p) | p = (G:50) % {or.51) 2 -+~ ™3 (g, 5term}
U {trace(p)8| p = (c,%0) % (c1,81) 5 --- M3 (g, s dead)

U {trace(p) | p = (c,50) 2% - X (6,50 2% - is fair).

This behaviorS again incorporates the assumption that deadlock can be distinguished from
both successful termination and infinite chattering, and that every single transition can be de-
tected.

The behavioS clearly includes more information about a command’s possible computa-
tions thanM does: for any command the setS[[c] is a superset oM [[c]. However, as the
following full abstraction result attests, the two behaviors induce exactly the same notion of
contextual equivalence: two programs exhibit the s&théehaviors in all program contexts
if and only if they exhibit the sam& behaviors in all program contexts. The reason for this
apparent contradiction is that both behaviors require the same support for compositional rea-
soning: to reason compositionally abadsteps along a computation of a parallel command,
we need to know the communications that are possible for individual components.

Proposition 4.5.1 The closed trace semantiEg,T is inequationally fully abstract with respect
to S: for all commands c and'¢

T € T[] = vP[-].S[P[c]] € S[P[C]].
Proof: The forward implication follows from the compositionality ®f', the monotonicity

of operations on trace sets, and the fact that, for all commeyftifc] can be extracted
from T4'[[c].

4.5 Other Notions of Program Behavior 73

For the reverse implication, assufg[c] Z TS [[¢]. By Proposition 4.4.6, there exists
a contextP[—] and a behaviop that is inM [[P[c]]] — M [[P[c/]]. Because

M [[P[c]] = {B € STPIc]] | chans(B) = {e}}
(and likewise forM [[P[c']]}), B must also be irs [P[c]]] — S[P[c]]. .

4.5.2 Stuttering and mumbling

The behaviord andS both assume an “omniscient” observer capable of detecting every state
change made during a computation. This assumption corresponds to the use of next-time oper-
ators in various temporal logics, whereby (for example) the commskiglaindskip; skip can

be distinguished. In many cases, however, an observer cannot be guaranteed to detect each and
every state change. Moreover, the concept of “next state” can be ill-defined, because states in
the operational semantics do not always correspond to processor states in a meaningful way.
For example, suppose a program is distributed across multiple machines with different clock
speeds. Even if an observer can look at any (or all) of the machines at any time instant, it
is unclear which intervals between those instants correspond to transitions in the operational
semantics. When a process on a (relatively) fast processor can perform internal actions, each
clock tick may indicate a transition; when that same process is waiting to synchronize with a
slower process, intermediate clock ticks may not correspond to transitions in any meaningful
way. As a result, it is often appropriate to assume only that an observer is capable of seeing
some subsequence of the states encountered during a computation. In doing so, we obtain no-
tions of behavior based on the reflexive, transitive closures of the one-step transition relations.

We first introduce generalized relations Aen), where=%> is the reflexive, transitive
closure of-%+, and=2 (for A +# €) is defined so thatc, s) == (¢, if and only if there exist

C1, 2, 1, S for which (c,8) =% (c1,81) 2 (2, 9) == (¢',§). Based on these generalized
relations, we define the generalized state transition trace beHdvioCom — P(S° U S0)
and the generalized simple trace beha$ior Com — P(S* U S"d) as follows:

M.[[c] = {sost...5|(C,%0) SN (c1,%1) £ (Ck,) term}
U {sost...53| (Co,S0) == (C1,51) == -+ == (C, S)dead}
U {S0S1...5-.. | (Co,S0) = -+ == (G, &) = --- is fair},

Sl = {trace(p)|p= (c,%0) 2% (cr,81) 25 - Mt (g g)term)
{trace(p)3 | p = (C,50) 2% (C1,51) 2% - 2 (G,) dead}

U {trace(p) | p = (¢, 50) 2% --- 2= (g 50 25 ... is fair).

74 Full Abstraction for Strong Fairness

To account properly for the reflexivity and transitivity of the relatioﬁ‘s, we need to
Impose closure conditions on trace sets corresponding to “stuttering” and “mumbling” [Lam83,
Bro96b]. Stuttering captures the reflexivity@% and has the effect of introducing idle steps
into traces. A trace of fornja3, 0) stutters to the tracé(s, €,s)B3,0) whensis the final state
of a and the initial state off. Each partial trace of fornia, (F, E,p)) also stutters to the trace
(a,({e},{€},p))- Such stuttering steps introduce the relevant partial traces for every possible
idle-step introduction: the fairness and enabling $ejsreflect the possibility of an idle step
immediately followinga.

Mumbling has the effect of absorbimgsteps, just as thes relations absorb-transitions.
A trace with form(a(s,¢,s)(s,A,s")B,0) or (a(s,A,s)(s,€,5")B,0) mumbles to the trace
(a(s,A,s")B,6). Each partial tracda(s,e,s), (F,E,p)) also mumbles to the partial trace
(a,(Fu{e},EU{e},p)). Such mumbling steps capture the intuition thatx ifepresents a
transition sequence ending in configuratims), then each direction it U {€} represents

some=2s-transition possible from the configuration s).

We summarize these stuttering and mumbling sets by the relatioiis ® x ® andmumbC
® x ® defined as follows:

ags,0), (a(s,g,9)B,0)) |apez*—52& se S}

o, (F.E,p)),(a,({e},{e},p))) [a € I},
a(se,9)(9,A,9)B,0), (a(s,A,)B,8)) | a(s,A,s")B € =%}
a(s,A,9)(5,¢,9")B,0), (a(s,A,)B,8)) | a(s,A,s")B e =%}
a(se,s), (F,E,p)),(a,(Fu{e},EU{e},p))) | a(s,e,¢) € =*}.

stut =

-

{((

{((

mumb = {({
U {(

U {(
Intuitively, the pair(¢1,2) is in stutif ¢, can be obtained fromp; by inserting an extra idle

step. Similarly, the paifd1,¢2) is in mumbif ¢, can be obtained fronh; by absorbing an
e-step.

Letting id = {(a,a) | o € Z*} be the identity relation on simple traces, we follow the
approach of [Bro96a] and defirstut® andmuml¥ to be the (respective) greatest fixed points
of the functionals

F(R) = stut- RUId, G(R) = mumb Ruid.

That is, we define
stuf® = stut'-id U stuf®, mumt® = mumb -id U mumty,

with the concatenation operato) &nd the iterative operators-{ and—%) extended to sets of
pairs of traces. Intuitively, the paijih,¢’) is in stut® (respectivelymumiy) if ¢’ can be ob-
tained by inserting an idle step (respectively, elidinggastep) at some of the positions along

4.5 Other Notions of Program Behavior 75

¢’s simple-trace component. In particular, whiems an infinite trace, the stuttering and mum-
bling operations can be applied at potentially infinitely many places ajdmgt not infinitely
many times at any particular place alopigThis point is essential for avoiding the accidental
introduction of divergence: stuttering should not transform the finite t(ése, s), (0,0,f))
into the infinite trace(s, €,5)%, (0,0,1)).

With these definitions in hand, we define closure under stuttering and mumbling on trace
sets in the following way.

Definition 4.5.2 Given a trace setl, T, is the smallest set containiny and closed under
stuttering and mumbling:

e If disinT, and(9,d’) € stuf®, thend’ is also inT..

e If ¢ isinT, and(d,¢’) € muml¥, thend’ is also inT... o

These closure conditions can be combined with the conditions introduced in Definition 4.2.1.
For a trace s€T, we defineT,” = (T.)T, so thafT,' is closed under stuttering and mumbling, as
well as superset, union, convexity, displacement and contention.

We letPId be the set of closed sets of traces. Much as before, we can define a denotational
semantic functiols' : Com — PI® such that, for all commands Ts/[c] = (Ts[c])!. The
addition of the stuttering and mumbling closure conditions is sufficient to yield full abstraction
with respect to the generalized behavibts andS., as shown by the following results.

Proposition 4.5.3 The semanticﬂ;'sl is inequationally fully abstract with respect M, for
all commands c and'c

Tsi[c] € Tl[] <= VP[-].M.[P[c]]] € M.[P[cT].

Proof: (Sketch) The forward implication follows from the compositionality'ﬁﬂ, the mono-
tonicity of operations on trace sets, and the fact that, for all commarids|[c] can be
extracted fronis [[c].

The reverse implication follows from a case analysis similar to that used in the proof of
Proposition 4.4.6. In fact, the cases for finite and infinite traces are exactly the same; the
case for partial traces needs to be modified only slightly, as follows.

Suppose the partial trage= (a, (F,E,p)) is in Ts/[c] — Ts/[¢'], and without loss of
generality assume th&t = E. Lethy,..., hg be the channel names appearing,m@and
let x andflag be fresh identifiers, not appearingdior c’.

Let (a, (E1,E1,p)),.-., {0, (Em,Em,p)) be the finite number of minimal partiattraces
in T[], and letz = U™, E;. Closure ofTJ/[[¢] under union and convexity again
ensures that eithét Z Z or, foreach <m, E; Z E.

76

Full Abstraction for Strong Fairness

WhenE ¢ Z, the distinguishing context is identical to that used in the proof of Proposi-
tion 4.4.6. If (instead) each; ¢ E, then for each choose a directiod; € E; — E such
that (when possible); # €. Letg; be a matching guard fak wheneved; # €, and define

the setG = {di | di #€ & 1 <i < m}. Let P[] be the following context:

([=] Il Match, 1 (a);y:=0; %g_}ﬂag::l)\hl\'“\hk.
ge

The only difference between this distinguishing context and the one used for the same
case in the proof of Proposition 4.4.6 is that we do not include an arbitrary gltafor
chosen directiond; = €. The cases wherd = € can be ignored, because such steps are
either idle steps (in which case some other chakea appropriate), steps in which the
state changes (and are therefore noticeable), or steps that lead to divergence.

M..[[P[c]]] has a deadlocked behavior corresponding ia which the value of in the
final state is 0 and’s local portion of the state looks like the final stateoofin contrast,
every behavior ifM, [[P[c]]] with a prefix corresponding t@ must do one of the follow-
ing: set the value oflag to 1; terminate or deadlock in a state in whié local portion
Is not the same as the final stateogfor make an infinite number @ftransitions. .

Proposition 4.5.4 The semanticﬁsl is inequationally fully abstract with respect $q: for all
commands c and ¢

Tsi[c] € Tl <= vP[-].S.[P[c]] < S.[P[cT].

Proof: By obvious analogy with the proof of Proposition 4.5.1. .

4.5.3 Busy waiting

The behaviordM andS (as well as their generalized forrd, andS,) assume that deadlock

can be distinguished from both successful termination and infinite chattering. The semantics
TS and TSI are well-suited to this assumption, using different forms of traces to represent
successfully terminating, infinite and deadlocked computations. From an implementation point
of view, however, deadlock and blocking often appear in the guise of busy-waiting. Because a
scheduler cannot always detect a priori whether a process has become blocked, it may continue
to allocate processor cycles to a process that has no transitions enabled. This view of the world
can be captured by the followirgusy-waiting tracebehaviorW : Com — P(S), in which
deadlock is modeled as busy-waiting:

Wc] = {sosi...S|(C,S0) = (C1,51) = --- == (Ck, S)term}
{S081- - S(50) | (Co,S0) = (€1,51) => - => (C, K)dead}

U
U {oS1...5--. | (Co,S0) == - == (Ck,) == --- is strongly fai.

4.5 Other Notions of Program Behavior 77

This behavior does not distinguish between deadlock and infinite idle chattering. Thus, for
exampleW [[a!0\a]] = W [[while true do skip]] = {s® | s€ S}.

To reason compositionally aboMlY , we introduce a semantics that is relatedl g@:) but
that represents blocked computations by infinite traces. Intuitively, a partial computation that
becomes blocked mdel in a configuration(c,s) can be represented by the fair trace

(a(s,e,9)%, (F,E 1)),

wherea is the finite trace corresponding to the transitions made before the computation became
blocked ancE C F is the set of directions on whiahwas trying to communicate. Intuitively,

a computation that is blocked mdglis fair modE (and fair modF D E), and the infinitely
enabled directions are the element&of

Employing the closure operators defined in Definitions 4.5.2 and 4.2.1 (and ignoring the
conditions for partial traces), we introduce closure into our semantics from the beginning. We
can give an operational characterization of the trace semdnfjic€om — iPI(dJ) as follows:

Tsplcll = ({{trace(p), (F,en(p), 1)) |
A

p=(C.%0) 2% (cr,51) 25 - 2% (0,1, Sra)term is fair modF}

U {(trace(p) (s, &, %)%, (F,E,i)) | F D E =inits(cx,) & EZE &

A A A
p=(C,50) == (C1,51) == --- == (0, S) & —(Ci, S)term}

U {(trace(p), (F,en(p),1)) |
A1

p=(c,50) =% (c1,51) 25 ... 2% ...is strongly fair modF})!.

The denotational characterizationaf, is very similar to the denotational characterization
of Ts andT,'. Once again we define operations on trace sets corresponding to each of the
constructs of the language. In general, the operations on trace sets remain the same; the clauses
for traces with form{a, (F,E,p)) are simply ignored. However, the definition of the guarded-
choice operator on trace sets depends critically on partial traces with{&rff, E,p)) for
generating the correct enabling information for finite traces. We therefore need to adapt the
definition to use infinite traces instead of partial traces.

We first introduce a predicatéle on simple traces, such thdte(a) is true whenevea has
the form(s, g, s)® for some stats. Because the first true step of any computation of a guarded
command necessarily involves a netransition, every idle traca necessarily represents a
partial computation “stuck” in the initial state. Consequently, we can always determine which
actions are possible for a given component by examining those directions enabled infinitely
often along an idle trace originating in the appropriate state. By replacing each mention of the

78 Full Abstraction for Strong Fairness

partial trace(es, (F, E,p)) in the original definition by the infinite tracgs, €,9), (F,E,1)), we
define the new guarded-choice operator as follows:
10T, = {{a,(F,E,i)) e TiUT |a € Z¥ & —idle(a)}
U{(a,(RUR,E1UE 1)) | (a,(F1,E1,1)) € T1 & (a, (F,,Epz,i)) € T2 & idle(a)}
U {<G, (Fl, EiU Ez,f)> | <83(1, (Fl, El,f)> ceTh & <(S,€,S)w, (Fz, Eo, 1)> S Tz}
U {<G, (Fz, EiU Ez,f)> | <83(1, (Fg, Ez,f)> e & <(S,€,S)w, (Fl, E1, 1)> S Tl}.

The altered definition of the guarded-choice operator represents the only necessary change
to the operations on trace sets. The trace semahticsCom — TI((D) therefore can be
defined in its entirety as follows. Note that the partial traceskar, assignment, and guards
are now represented by infinite, idle traces.

Definition 4.5.5 The trace semantic functiony,: Com — iPI((D) is defined by:

Tsolskip] = {{(s.€,9), (F,0,£)) | S€ S& F € Pin (D)}
Tsplli==€]] = {{(s,&,[sli =n]), (F,0,1)) |
fuli:=€] C dom(s) & F € Pin(A) & (s,n) € Ee]}]
Tepllct; 2] = (Tspcall; Tsolcz])]
Tspllif b then c; else ¢]] = (Tsp[[b]); Ts[ca]] U Tso —b]l; Tsp[Ca]))!
]

Tsp[while b do c]] = ((Tsp[b]; Tsu[c]]) U (Tsulb]; Tswlc)*; Tso[~b]) !
Tsp[NA] = {((s,h2n,[sli = n]), (F,{h?},£)) | i € dom(s) & N€ Z & F € Pyin(A)}]
U{((s.&,9) (F,{h?},1)) |i € dom(s) & F D {h?}}]
Tsp[h'e] = {((s.hin,s), (F,{h'},£)) | (s,n) € E[[€] & F € Psin(A)}]
U{((s.e,9) (F,{h},1)) | fv[e] C dom(s) & F D {hi}}]
Tsplg — ¢ = (Tsulg]l; Tsolc]) !
Tsolgca0gez] = (Tsplgea] O Tsolgez])!
so[C1l|c2]] = (Tsp[ca]| Tsolc2]) !
so[C\N] = (Tsp[c[\N)

<

Proposition 4.5.6 The semantic$ g, is inequationally fully abstract with respect W : for
all commands c and'c

Tsllc] € Tspl[c] <= VP[-].W [P[c]] € W [P[cT].

4.5 Other Notions of Program Behavior 79

Proof: The forward implication follows from the compositionality &f;,, the monotonicity of
operations on trace sets, and the fact that, for all commendé]c| can be extracted
from Tgy[C].

The reverse implication uses an abbreviated version of the case analysis in the proof of
Proposition 4.4.6. In particular, the cases for finite and infinite traces remain the same,
and the case for partial traces disappears. .

45.4 Communication traces

Each of the behaviors considered so far incorporates the assumption that intermediate states
encountered along a computation are observable. However, in many cases, it is appropriate to
consider programs (or the processors on which they run) as black boxes whose internal states
are private and whose only observable characteristics are their interactions with their environ-
ment. For example, object-oriented programming and abstract data types are built on this tenet:
a program’s implementation details should be hidden, and only its interface should be acces-
sible. In this subsection, we considecammunication trace behavidhat incorporates the
assumption that states are truly private and that only the sequence of visible communications
that occur along a computation is observable.

We introduce setd* andA® that correspond (respectively) to finite and infinite sequences
of visible communications. We redefine
A={hIn.h™n|he Chan& ne Z}

to be the set of “interesting” communications, and weNet= {e} UAT be the set of finite
communication sequences. The set of all communication sequences is

A” =N U AN {e}® U A%
For each communication sequemge A, we define a generalized relatiefs> as follows:

o Whenn is finite, (c,s) = (¢/,) indicates that the commadn states can perform the
sequence of visible communicationgpossibly with some intermediatetransitions),

leading to the command in states. Whenn is the single label, SN corresponds
precisely to the definition of2 given in Subsection 4.5.2.

e Whenn is infinite, (c,s) =L indicates that there is a strongly fair computation of the
commanc, originating in states, with the sequence of communicatiapnswWhenn has
the formae®, the computation diverges afterwith internal chattering.

80 Full Abstraction for Strong Fairness

Note that the empty sequengés distinct from the communication sequergée the former
represents a finite sequence (possibly having length zero) of internal actions, whereas the latter
represents an infinite sequence of internal actions.

We can now define theommunication trace behavi@r : Com — P(A* UA*d) as follows:
Cle] = {n|3ss.¢.(c.s) = (¢ &)term}

U {nd|3s,¢,c.(c,s) = (', S)dead}
U {n|3sc,s) =L is strongly fair.

To support compositional reasoning ab@ytwe introduce yet another variant of the se-
manticsT4' that records only the initial and terminal states of computations. Even though
initial and finial states are not observable in the behdvidghey are necessary for determining
which traces can be composed in a meaningful way: in particular, the thacés; andd, of
Cp can be used to generate a traceQt, only if the computation represented by originates
in the final state of the computation represente@dhy

To this end, we introduce a new style of simple traces. For technical reasons, we need
two types of finite traces, one to represent successful computations and one to represent partial
computations; thus we define the set of finite simple traces

2= (SxXAN" x9S U (SxA"),

with traces(s,n,s) representing successful computations and trégeg representing partial
computations. Intuitively, the need for this distinction arises because we can “observe” the final
state of a successful computation by transmitting the value of the finite number of variables
along some channel; in contrast, there is no reliable way to interrupt a computation to observe
intermediate states. Similarly, because there is no final state of an infinite computation, the set
of infinite simple traces is

= Sx A%,

We then letXy = Z{ UZ® be the set of all finite and infinite traces, and—using the same
contextual information as before—we define the®gbf fair communication traces by

O = 2 x (Prin(A) x Prin(A) x {£})
U ZX (Pin(A) X Piin(A) x {1})
U Zgx (Prin(AT) x Prin(AT) x {p}).

We now introduce a trace semantic functidg : Com — P(®.) characterized opera-
tionally as follows:

Tsdlcl = {((sn,s),(Fen(p),£)) | p= (c,8) = (c,)term is fair modF }
{{(s,n),(F,E,p)) | p= (C,S>:n>< g) & =(c¢,s)term & F D E = inits(c’,s)}
{{((sn), (F,en(p),1)) | p= (c,5) =% is fair modF}.

cC C

4.5 Other Notions of Program Behavior 81

As before, two simple traces and[3 are composable wheneveris an infinite or partial
trace, or when the initial state @fis the final state ofi. Whena and[3 are composable, their
concatenatiom 3 is defined as follows:

(sn) if a=(sn)
aB =4 (s,n1n2,s), ifa=(snys") & B=(s"n2y9), forsomes’ € S
(sninz), ifa=(sny,s’) & B=(s",n2), forsomes’ € S
In turn, two fair tracesh; andd, are composable whenever their simple trace components

are composable. Whey = (a, (F1,E1,R1)) andd, = (B, (R, E2, Rp)) are composable, their
concatenatiop1¢» is defined by:

(O(, (Fl’ Ea, R1)>’ if Ry € {iap}’
$1¢2 = ¢ (aB, (F2,E1UEy, f)), if Ri=Rx =",
(CXB, (Fz, Ez,R2)>, if Ry =f andRy € {i,p}.

This definition looks exactly the same as the definition for concatenation given in Section 3.3;
the only difference is the interpretation of the simple-trace concatenafioiVe then define

T; o= {102 | p1 € T1 & §2 € T» & composableh1,d»)}. We also define infinite concatena-
tion as before, with the obvious new interpretation of infinite concatenation on simple traces.

The definition of guarded choice on trace sets is very similar to the original definition
presented in Section 3.3, the only modification in the structure of partial traces:

s,n),(F.E,p)) EMUTz | n#¢}

s,€), (FLUR,E1UE2,p)) | ((s,€), (F1,E1,p)) € TL & ((s,€), (P2, E2,p)) € T2}
s,n,s), (F1,E1UE2, 1)) [((sn,9), (F, E1,£)) € T1 & ((s,€), (F2, E2,p)) € T2}
sN,9), (F,E1UE2, £)) | {(sn,8), (F2, Bz, 1)) € T2 & ((S,€), (F1,E1,p)) € T}

The definition for channel restriction is identical to that in Section 3.3, with the obvious
change in interpretation for simple traceesWe need to introduce new definitions for parallel
composition, but the definitions are natural simplifications of those introduced before.

We define the interleaving of two disjoint, finite simple tra¢gsn1,s;) and(s,n2,s,) by
(s1,N1,81) [l (82,N2, %) = (S1US2,N1N2, 81 US).

The interleaving of a finite simple tra¢ei,n1,s;) with either a partial or infinite simple trace
(s2,N2) is (respectively) a partial or infinite simple trace, and we define

(s1,N1,91) || (2, N2) = (S1US2,N1N2)

82 Full Abstraction for Strong Fairness

when the traces are disjoint. Finally, the interleaving of a partial or infinite tf&cq) with
the empty and disjoint partial trag¢s, €) is the infinite trace defined by

(s1,n)[I(s,€) = (s1Us,N).

For context triple®1,0, € I, the parallel operatdd; ||6, is as defined in Section 3.3, and for
fair tracesp; = (a,01) andd, = (3, 6,) we again define

¢1]/¢2 = {(al|B,0) | 6 € 84|62}

Two nonempty, finite traces = (s, Ag...A,S) andB = (t,Wo. - . pn,t') match if k=nand
match(A;j,) for eachi. For matching, disjoint traces andp, a||(is the trace in whiclu and
B synchronize at each step]| = (sut,g,s Ut’). Likewise, for fair traces, = (a,6;) and

¢2: <Bv(F27 E2762)>|
d1/ld2 = {(a]|B,6) | B € 61(|82}.

Using these new interpretations fior || 2 andd1 ||$2, we can define the relatidairmerge C
P x D x P in much the same way as before. We define

fairmerge = botH’ Ubottf; - one,,
with the setdoth. andone. defined as follows:

bothy = {(¢1,42,0),(d2,01,0) | d1,02 € Pfin & disjoint(d1,92) & ¢ € b1][d2}
U {($1,92,0) | 1,92 € Prin & disjoint(§1, $2) & match(d1,92) & ¢ € da[[2},
one = {(¢1,92,9), (¢2,¢1,0) |
¢1 € P & ¢2 = <(S,€,S),92> & diSjOint(¢1,¢2) & ¢ € ¢1J_|¢2},
U {(91,02,9), (¢2,91,9) |
b1 € Dc & 2 = ((s,€),62) & disjoint(d1,02) & ¢ € b1/ 2}

The mergeability criteria remain the same, and we define

Ti||T2= {0 | $p1 € T1 & ¢ € T, & mergeablédi, d2) & (¢1,42,9) € fairmerge }.

Letting Tsc[b] = {((s,€,9), (F,0,£)) | (s,tt) € B[[b] & F € Psin(A)}, we can characterize
the trace semantids: Com — P(®d.) denotationally in the following manner. With the new
interpretations for the semantic operators, the semantic clausés fook almost identical to
the previous semantics; the only obvious difference is the absence of final states for the partial
traces forkip, assignment, and guards.

4.5 Other Notions of Program Behavior 83

Definition 4.5.7 The trace semantic functiony.: Com — P(®P,) is defined by:

Ts[[skip] = {((s,€,9), (F,0,)) | s€ S& F € Psn(A)},
U{((s.e),(F.{e},p)) |s€ S& F 2 {e}}
Tsdi:=€] = {{(s,&,[sli = n]), (F,0,1)) |
fv[i:=€] C dom(s) & F € Psin(A) & (s,n) € E[€]}
U{((s:€).(F.{e},p)) | fv[i:=e] € dom(s) & F 2 {e}}

Tsdlca; o]l = Tsc[eal]; Tsdlcz]]

Tsc[lif b then ¢ else co]] = Ts[b]); Tsd[ca]] U Tsc[—b]); Tsd[c2]l
Tsc[while b do] = (Tsd[b]l; Tsd[e]) U (Tsc[b]; Tsd[c]l) s Tsc[—b]

{((s;,hm,[s]i = n), (F,{h?},£)) |

Tsc[h] =
i €dom(s) & neZ & F € Psin(A)}
U{{(s,€), (F,{h?},p)) | i € dom(s) & F 2 {h?}}
Tsdhte] = {{(s,hin,s), (F, {h'},£)) | (s;n) € E[[e] & F € Prin(D)}
U{{(s;e),(F,{ht},p)) [fv[e] C dom(s) & F 2 {h!} & }
Tsc[g— cfl = Tsdlg]; Tsd[C]
Tsdlger 9] = Ts[ga] O Tsc[ge]
Tsd[caf|cz]l = Tsdlea]ll[Tsc]c2]
Tsc[e\h] = Tsc[c[\h

<

Not surprisingly, the semantidss is sound with respect to the behavioy but not fully
abstract. To achieve full abstraction, we again need to close trace sets under the closure con-
ditions introduced in Definition 4.2.1. As before, we can then define a closed trace semantic
functionT4. : Com — PT(d.) denotationally, so that, for each command L[c]] = Tsc[c]".

The proof of full abstraction is similar to the full abstraction proof in Section 4.4. We
make the initial and final states of computations “observable” by transmitting the value of state
variables along a fresh channel.

Proposition 4.5.8 The closed trace semantﬂi;{ is (inequationally) fully abstract with respect
to C: for all commands c and'¢

Tedlcl C Tei[¢] <= vP[-].C[P[c]] € C[P[c]].
Proof. (Sketch) As in the previous full abstraction proofs, the forward implication follows

from the compositionality o S\, the monotonicity of operations on trace sets, and the
fact that, for all commands C[[c] can be extracted froffi.i[[c].

Full Abstraction for Strong Fairness

The reverse implication follows from a case analysis similar to that used in the proof
of Proposition 4.4.6. The main difference is that the distinguishing contexts must ac-
count for an observable behavior that is communication-based rather than state-based.
Whereas the previous contexts signal the occurrence of particular events by setting the
values of certain identifiers, these contexts must signal such occurrences with visible
communication events.

For example, suppose thathas an infinite tracé(s,n), (F,E,i)) thatc’ does not.
Let x1,...,% be the free identifiers of andc’; without loss of generalitydom(s) =
{X1,...,%n}. Lethy,..., hg be the channel names appearing iandc’, and leta,b and
Cy,...,Ck be fresh channel names. Finally, let the €gt&indG, be constructed from the
minimal a-traces oft’ as in previous proofs.

The distinguishing context we construct uses a modification of the com@anslused
previously. Roughly speaking, each pair of lines

2i — 1: synch:=0; ((hi!value — synch:=1)0 ¥ ycc(g — f1:=1))
2i: synch:=0; ((hiValue — synch:=1)[0 Y (g — fl:=1))

in Guess(H, G, f1) of Figure 4.1 can be replaced by the following pair of lines, where
C1,...,Ck andb are fresh channels:

2i — 1: ((hi!value — G0 — Gilvalue) (1 5 gea (g — bl0))
2i: ((hivalue — ¢!l — ¢ilvalue) 0§ 4ec(g — b0))

Each communication along chanrglis signaled by two outputs along chaneglthe

first indicating whether input or output occurred and the second indicating the “trans-
ferred value”. The guarbl!0 serves the same purpose that the variélbieplayed in the
previous proof.

We then letP[—| be the following context, where we use communications on channel
to record the initial state:

(alxg — alxp — ...alXy — [—] || Guess(H, Gy, b!0) || g— bl0)\hg\ -+ \hg.
9ely

C[[P[c]] contains a behavior corresponding(®n) in which the communicatiob!0
never occurs. In contrast, every behavio€¢P[c']]] corresponding ta must eventually
perform the actiom!0. .

Chapter 5

Strong Channel Fairness

In Chapters 3 and 4, we constructed several trace semantics that incorporate assumptions of
strong process fairness and yield full abstraction with respect to specific notions of strongly
fair behavior. The ease with which we adapted the strongly fair semantics to yield several full
abstraction results indicates a certain robustness of the trace framework. In this chapter, we
further demonstrate the framework’s robustness by constructing a semantics that incorporates
assumptions oftrong channel fairnesg he channel-fair semantics retains a lot of the essence

of the strongly fair semantics. However, the additional burden of determining when com-
munication is enabled infinitely often on a given channel requires a more complex semantic
structure.

We begin by formalizing the concept of channel fairness and introducing a parameterized
form of channel fairness. This parameterization of channel fairness admits a compositional
characterization and guides the construction of the channel-fair semantics. The need to de-
termine when communication is enabled infinitely often on particular channels makes the re-
sulting channel-fair semantics more complex than the strongly fair semantics of the previous
chapter, and it is not fully abstract. We conclude the chapter by discussing this lack of full
abstraction: we hint how the semantics might be altered to achieve full abstraction, and we
describe why the lack of full abstraction is not an indictment of either the trace framework or
the channel-fair semantics.

5.1 Channels, Names, Durations, and Scopes

Informally, a computation istrongly channel-faiif it satisfies the following two conditions:

e Every process enabled infinitely often makes progress infinitely often.

86 Strong Channel Fairness

e Every channel on which communication is enabled infinitely often is used infinitely of-
ten.

That is, strong channel fairness combines strong process fairness with additional constraints
on the use of infinitely enabled channels. Thus, for example, every channel-fair computation
of the command

(while true do (a!00b!1) || while true do (a[Jb?))\a\b

uses each of the channalsandb infinitely often, thereby changing the value of identifier

from O to 1 (and vice versa) infinitely often. Such a computation is also strongly process-fair.
However, strong process fairness does not require the infinite use of both channels, as long as
both processes make infinite progress: the infinite computation in wirehnains set to O is

also strongly fair.

To formalize strong channel fairness, however, we must make explicit what we mean by
the termchannel So far, we have used the term in two distinct ways. First, we have used itas a
synonym forchannel namgmeaning a member of the syntactic cl@san. Second, we have
usedchannetlto refer to the abstract (and rather nebulous) concept of a link by which processes
communicate with one another and their external environment; in this sense, a channel is a
semantic entity. Because channel names provide the only way to refer to particular links, we
tend to blur the distinction between names and links, using the phrase “chérnaihean
“the channel designated by nam& This distinction may seem a trifling detail, but it is
crucial for defining and understanding channel fairness. Intuitively, the relationship between
channel names and channels is analogous to that between a procedure’s local variables and
their instantiation during procedure activation. We make this connection more explicit in the
following discussion.

Let c be a command in which the channel name occurs freelfiefc[[c]]). The restriction
operator \h” binds the free occurrences tifin ¢, and each occurrence bfin the command
c\h is said to bebound.! For any command and channel namle, the (syntactic) scopeof
an occurrence o in c is the smallest subcommand oin which that occurrence is bound
by h; when the occurrence is free its scope is the commarudtself. For example, in the
command

Q = while true do ((a!00b!1) || (ax[b%))\a,

the scope of each occurrencead$ the command(a!01b!1) || (a[b%))\a, and the scope
of each occurrence a@fis the command. A single nameh may have multiple scopes within
a progranmc, with each scope being the scope of some occurrenbdarot. For example, in
the program

(all||a?x)\a; (while true do (a!0[|a?))\a,

lindeed, a more suggestive syntax for the commahdmight be ‘hew channel in ¢, which emphasizes the
similarity between channel names and local variables.

5.2 Parameterized Channel Fairness 87

the name has two different scopesa!1||a?)\a and(while true do (al0||a?))\a.

During program execution, each entry into a channel name’s scope creates a new channel,
and each exit from a name’s scope destroys that channetluragon (or extent) of a channel
is that portion of the execution during which the channel exists. For example, consider an
infinite computation of the program

P; = (while true do (al00b!1 || a?[Ob?))\a\b.

The two namesa andb are associated with two different channels, each of which has infinite
duration. Because communication is enabled on both channels infinitely often, every strongly
channel-fair computation & must change the value ofrom 0 to 1 (and vice versa) infinitely
often. In contrast, consider the infinite computations of the program

P> = while true do ((a!00b!1 || axOb?)\a\b).

Each iteration through the loop creates (and subsequently destroys) new channels identified by
the namea andb; each such channel has only finite duration. No channel ever can be enabled
infinitely often in an infinite computation &%, because no channel ever has infinite duration.

As a result, an infinite computation & that never sets the value ®fto 1 is still strongly
channel-fair.

The programd?; and P; illustrate the difference between channel names and channels,
as well as the effect this distinction has on channel fairness: althBughd P, can match
each other step-for-step, has channel-fair computations that do not correspond to channel-
fair computations ofP;. Out of necessity, we shall continue to refer to channels by their
names throughout this dissertation. However, it is important to remember that channel fairness
involves assumptions about channels, not channel names.

5.2 Parameterized Channel Fairness

As demonstrated in Section 3.1, the fair computations of a command cannot be characterized
(in general) by referring only to the fair computations of its subcommands. Synchronous com-
munication requires two active participants, and hence the enabledness of a process (or of a
particular communication) depends on the status of other processes. The solution for strong
process fairness was to consider “almost strongly fair” computations; we adopt a similar ap-
proach here for channel fairness.

A computation can fail to be strongly channel-fair for one of two reasons: (1) some pro-
cess is enabled infinitely often and yet makes only finite progress, or (2) some channel on
which communication is enabled infinitely often is used only finitely often. Similarly, an “al-
most channel-fair” computation can be characterized by a combinatiproéss constraints

88 Strong Channel Fairness

(representing the infinitely enabled processes that fail to make infinite progresshamukel
constraintyrepresenting the infinitely enabled channels that do not get used infinitely often).

It is important to separate the process and channel constraints, because they represent dif-
ferent types of assumptions. Intuitively, the process constraints (which we can represent by a
setF of directions, as in Chapter 3) correspond to infinitely enabled processes that, when the
original command is placed in a larger context, cease to be enabled infinitely often and hence
are not treated unfairly. In this sense, process constraints limit the types of communications
other processes are allowed to provide. In contrast, the channel constraints (which we can rep-
resent by a sl of channels) correspond to infinitely enabled channels that, when the original
command is placed in a larger context, cease to be treated unfairly, either because they are no
longer enabled infinitely often, or because some other component uses them infinitely often.
Thus, in some sense, channel constraints can actually encourage other processes to perform
certain types of communications.

Combining process and channel constraints, we parameterize strong channel fairness by
pairs(F,H), whereF is a finite set of directions and is a finite set of channels. Informally,
a computatiorp is channel-fair modF,H) if and only if it is strongly fair modF and the
setH contains exactlthose channels that are enabled infinitely often but used only finitely
often alongp. When the set& andH are both empty, this characterization coincides with
the traditional notion of strong channel fairness introduced in Subsection 2.2.2. The formal
characterization of parameterized channel fairness follows.

Definition 5.2.1 A computationp of commanct is strongly channel-fair modulo (F,H) (or,
channel-fair mod (F,H)) providedp satisfies one of the following conditions:

e pis a finite, successfully terminating computation, &he- 0;

p is a partial computation whose final configuration is blocked moBukandH = 0;

p is an infinite computatiorg has form(cy; cy), (if b then c; else ¢p), or (g — ¢1), and
the underlying infinite computation af or c; is fair mod(F,H);

p is an infinite computatior; has form(while b do '), all underlying computations of
¢’ are fair mod~, andH contains exactly those channels that are enabled infinitely often
but used only finitely often along;

p is an infinite computatiorg has form(gc; [0 gc), and the underlying computation of
the selectedq is fair mod(F,H);

2There is an asymmetry in this parameterization: th&ssta superset of a computation’s process constraints,
whereas the séd contains precisely its channel constraints. Hauhfe a superset of the channel constraints
would still permit an accurate compositional characterization; the choice toth@eatain exactly the relevant
constraints merely simplifies the presentation of the channel-fair trace semantics in the next section.

5.2 Parameterized Channel Fairness 89

e pis an infinite computatior; has formc’\ h, the underlying computatiop of ¢’ is fair
modulo(F U {h!,h?},H U {h}), and synchronization onis not enabled infinitely often
alongp’;

e pis an infinite computation; has formc, ||co, and there exist sets, F», Hi, Hp, and
computation1 of ¢; andp, of ¢, such that:
— p1 is fair mod(F1,H;) andp; is fair mod(F,, Ha),
— p can be obtained by merging and synchronizsa@ndp,,

— F DR URandH = H3 UH2 — (uchans(p1) Uuchans(pz)), whereuchans(p;) is the
set of channels used infinitely often alopg

— neitherp; enables infinitely often any direction matching a membéf;df # j),

— neitherp; uses a direction ifj infinitely often { # j). o

This definition captures the inherent duality between process and channel constraints. Pro-
cess constraints are verified during parallel composition to guarantee that neither component
violates the other’s assumptions, and they are discharged through channel restriction. In con-
trast, channel constraints are discharged either through parallel composition (when one com-
ponent uses another’s unused channels) or through restriction (provided synchronization is not
enabled infinitely often), and they are always verified during channel restriction to ensure that
no channel with synchronization enabled infinitely often gets ignored.

The following examples illustrate the notion of parameterized channel fairness.

Example 5.2.2 Consider the command3; = while true do Q] and Q. = while true do Q5,
whereQ; andQ, are defined as follows:

Q1 =a!0— (b!0 — skip (I c!0 — skip), Q5 = (al0 — skip O b — skip).

e Letp; be the following computation d; in which channeb is never used:

(Q,s1) — ((al0 — (b!0 — skip I c!0 — skip)); Q1,51)
alo

— ((b!0 — skip O c!0 — skip); Q1,S1)
O skip; Qn,81) —5 (Q1,81) —5 -+

This computation is channel-fair md@, {b}): no process blocks, and chanmhek the
only infinitely enabled channel not used infinitely often.

90 Strong Channel Fairness

e Let p2 be the following computation d- in which the channe) is never used:
(Qo,2) — ((al0 — skip 00 b — skip); Qz,S2)
25 (skipi Q2 %2) — (Q2,%2) = -+

This computation is also channel-fair m¢@ {b}).

e Letp be the following computation, which results from an interleaving of the computa-
tionsp; andpa:

(Q1]l Q2.8 —= (Q1 || ((a'0 — skip T b2 — skip); Qz),5)

— ((al0 — (b'0 — skip O c!0 — skip)); Q1 || ((a'0 — skip O b — skip); Q2),S)
210 ((al0 — (b0 — skip 01 10 — skip)); Q1 || (skip; Q2),S)

20 ((b10 — skipOc!0 — skip); Qq || (skip: Q2),S)

<% ((skip; Qu) || (skip: Q2).9)

5 (Qu | (skip; Q2),9)

= (]| Q29

IO

This computation is channel-fair md@, {b}). Moreover, because synchronization on
channeb is never enabled, the corresponding computatiaitef|Qz)\b is channel-fair
mod (0, 0). o

The next example illustrates how the channel fairness of a computation can depend on the order
in which independent actions occur.

Example 5.2.3 Let p; andp, be the computations defined in the previous example, arpd let
be the following computation, which also arises from an interleaving @ndp,:

Q1] Q2,8 —=5 (Q1]| (al0 — skip O b2 — skip); Qo2,S)
=4 {(a'0 — (b!0 — skip I c!0 — skip)); Q1 || (al0 — skip 01 b — skip); Q2,S)
2% ((bl0 — skip O c!0 — skip); Q1 || (a!0 — skip 01 b — skip); Q2.)
all
—

Q
o

(skip; Qu) || (skip;Q2),S)
Q1 || (skip; Q2),s)

{
{
{
((b!0 — skipc!0 — skip); Q1 || (skip; Q2),S)
{
{
(Q1 [l Q2;9)

lo e I= [

5.3 Channel-Fair Traces 91

The computatiop’ is also channel-fair mo¢, {b}). However, synchronization on chantel
is enabled in each of the (infinitely many) configurations with form

((b'0 — skip O c!0 — skip); Q1 || (al0 — skip O b — skip); Qz,S).

As aresult, the computation ¢91(|Q2)\b that corresponds @ is not channel-fair mo¢, 0).
<&

Finally, the following example highlights the dual nature of the process and fairness constraints.
Example 5.2.4 Consider the following two commands
Cy = (b!0 || while true do (a!01c!0)), Co = while true do (¢ || !0).

Let p1 be an infinite computation @, that repeatedly uses chanaelnd never uses channels
b andc; such a computation is channel-fair mofb!},{b,c}). Additionally, let p, be an
infinite computation ofZ, in which the componenis andc!0 repeatedly synchronize with
one another; this computation is channel-fair niéd).

Finally, letp be an infinite computation @ ||C; that results from some fair interleaving of
the computationp; andp,. The computatiom is channel-fair mod{b!},{b}): p2 respects
p1'S process constraints (that is, it does not enaBlenfinitely often or usé! infinitely often),
and it discharges one @f’s channel constraints by using channehfinitely often. Because
synchronization is not enabled on chanbéhfinitely often, it follows that the corresponding
computation 0{C; ||Cy)\b is channel-fair mod0, 0). o

5.3 Channel-Fair Traces

The definition of parameterized strong fairness is clearly embedded in the definition of param-
eterized channel fairness. Moreover, the only difference between the two definitions is that the
latter also manipulates sdtsof channel constraints. This strong connection might lead us to
expect that we can construct appropriate channel-fair traces simply by adding to the strongly
fair traces an additional component that records the relevant channel constraints: for example,
the tracga, (F,H, E, i)) might represent a channel-fair m@ H) computation with infinitely
enabled directionk.

Unfortunately, the apparent simplicity of the parameterized channel-fairness definition ob-
scures an important fact: determining whether synchronization is enabled on a particular chan-
nel requires more information than merely the sets of directions enabled along a transition
sequence. For example, recall the commands

Q] =a!0 — (b!0 — skip[c!0 — skip), Q, = (a0 — skip) (1 (b — skip)

92 Strong Channel Fairness

from Examples 5.2.2 and 5.2.3. The comm&}d| Q,, has two different computations that can
each be represented by the simple trace

(s,al0,s)(s,al0,s)(s,cl0,s)(s,€,5)(S,€,9),

one in whichQ; makes the first move and one in whi@h makes the first move. In each case,
input and output are both enabled on charndiut synchronization on channielis enabled

only whenQ] makes the first transition. Simply knowing thg} enablesb! and Q,, enables

b? along their respective computations is insufficient to determine whether synchronization on
channeb is enabled: we also need to know whetheand b? are enabledt the same time
Generally speaking, even knowing that both directions of a given channel are enabled at the
same time may still be inadequate for determining whether synchronization is enabled. For
example, consider the following two commands

Qs = (al000b%) || (al0Ibl0),
Qs = (al0— (al0dbl0)) O (al0 — (al0Tb))
O (b — (al001b10)) O (b10 — (al00b)),

both of which have computations that can be represented by the simplédralfes)(s,a!0,s).
In each case, botkl andb? are enabled in the initial configuration. However, synchronization
on channeb is enabled only along the computation(@j.

For this reason, we consider sequencesr@bling setswhich are finite sets of channels
and directions such that the chanhedppears only in sets that also contain the directlths
andh!. Intuitively, the presence of channein an enabling sef indicates that synchronization
on channeh is enabled,and the absencéandicates that synchronization dns not enabled.
Given commands; andcy with enabling set&; andEy, respectively, the set

Ei||[E2 = E;UE;U{h|3d € E1. d € E; & chan(d) = h}

represents the enabling set of the parallel comneafich: the parallel command can perform
any action either component can, and it can also synchronize on any channel on which the two
components’ enabling sets match.

For any configuratioric, s), comms(c, S) is the set of directions and channels that describe
the possible communications from the configuratjoss). A structurally inductive definition
of comms(c,s) appears in Figure 5.1. The seinms(c, s) is related to the setits(c,s), except
that it may include channels and it never includesn particular, the channéi, rather than
the labelg, indicates the possibility of synchronization on chanmelAs is clear from the
inductive definition, channels appeardsmms(c,s) only through parallel composition. Thus,
for example, the program®; and Q4 described earlier can be distinguished based on their
initial enabling setscomms(Qs,s) = {a!,b!,b?,b}, whereagomms(Qa,s) = {a!,b!, b?}.

5.3 Channel-Fair Traces 93

comms(skip,s) =0
comms(i:=e,;s) =0
comms(Cy; Cp, comms(C1, S)

S) =
comms(if b then c; else Cp,9) =
S) =

0

comms(while b do c, ()

comms(h?,s) = {h?}

comms(hle s) = {h!}

comms(g — C,S) = comms(g, S)

(gc1,S) Ucomms(gcy, S)
(
(

comms(gc Jge, S) = comms
S) = comms

C1,S) || comms(cy,S)
comms(c\h,s) = comms(c,s) — {h!,h? h}.

comms(cy||co,

Figure 5.1: Inductive definition okomms(c,s).

Reusing the seX® of simple traces defined in Section 3.3, we can now define th@get
of channel-fair tracesby

Dch = Z° X (Pin(AT) X Piin(AT) x Pin(AUChan)® x {f,p,i}).

Intuitively, the tracga, (F,U, &,f)) represents a (necessarily channel-fair) successfully termi-
nating computation having the finite sequecef enabling sets and the détof enabled but
unused channels. The trage (F,U, £,1)) represents an infinite, fair mdé,U) computation
having the infinite sequenckof enabling sets. Finally, the trada, (F,0,&,p)) represents a
partial computation having the finite sequeidcef enabling sets; as in strongly fair traces, the
setF is a superset ahits(ck,), where(cy,) is the final configuration of.

For any computatiop, trace(p) is (as before) the simple trace that records the transitions
made along, andunused(p) is the set of channels that are enabled but not used @lokiée
also defineEn(p) to be the sequence of enabling sets encountered along the compptation
For example, ip is the (possibly partial) computation

A A M—
p = <C,SO> —O> <C1,S]_> —1> k‘% <Ck,5k>,

then the sequenden(p) is defined agn(p) = (Eo,Eq, ... ,Ex), whereE; = comms(c;,s) for

eachi. Note that, when the configuratidu, s¢) is terminal, the seEx = comms(cy, s) = 0.
Moreover, for any finite transition sequengef lengthk, En(p) is a sequence df+ 1 sets.

For technical reasons that will be made explicit in the next section, it is important to record the
types of communications enabled in the final configuration of a transition sequence.

94 Strong Channel Fairness

Using these definitions, we can give an operational characterization of a channel-fair trace
semanticd ¢ : Com — P(Pgp,) as follows:

Ten[cl) = {(trace(p), (F, unused(p), En(p), 1)) |

p = (c,%0) Po, (c1,51) LS (ck, Se)term is channel-fair modF,0)}

U{(trace(p), (F,0,En(p),p)) | F D inits(ce, S¢) &

A M A
P = (C,S0) —% (C1,51) —= -+ =3 (Ck,) & —(Ck, S)term}

U {(trace(p), (F,U,En(p),1)) |

p=(c,%) Lo, (C1,%1) 21, . M is channel-fair modF,U)}.

5.4 Channel-Fair Trace Semantics

To give a denotational characterization of the semantic fundtignwe follow the approach

taken in Section 3.3: for each language construct, we introduce an operation on trace sets that
reflects the construct’s operational behavior. Because the semantic operators reflect operational
behavior, they retain the flavor of the operators introduced on strongly fair trace sets. In fact,
the manipulation of the simple-trace components and the fairness sesains the same. As

a result, the explanations of the semantic operators that follow focus on the new aspects of
channel-fair traces, namely the sequences of enabling sets and the sets of insufficiently used
channels.

We begin with a semantic functiohy, : BExp — P(®¢p) such that, for each boolean ex-
pressiorb,

Ten[b] = {{(s&,9),(F,0,(0,0),1)) | (s tt) € B[b] & F € Psin(8)}
U {(& (F,0,(0),p)) | (s tt) € B[b] & F 2 {e}}.

Intuitively, each finite tracé(s,e,s), (F,0,(0,0),£)) in Ty[b] represents a transition made in
the evaluation of the boolean expressimpreither to unroll a loop or to select the appropriate
component of a conditional. Such a step (taken in isolation) is fair hedd has no com-
munications enabled along it. Similarly, the partial tréeg (F, 0, (0),p)) indicates that, from
any initial states satisfyingb, there is exactly one type of transition possible, and it involves an
internal action.

Based on the operational characterizatiol gf it is easy to see that

Ten[[skip] = {((s,€,9), (F,0,(0,0),£)) | s€ S& F € Psn(A)}
U {(&s: (F,0,(0),p)) |s€ S& F D {e}}

5.4 Channel-Fair Trace Semantics 95

and

Tenlli:=€]] = {((s,&,[sli =n]), (F,0,(0,0),£)) | i € dom(s) & F € Pfin(D) & (s,n) € E[e]l}
U{(es, (F,0,(0),p)) | fv[i:=€]] C dom(s) & F D {&}}.
Because neithekip nor assignment enables communication along any channels, none of their
traces include any insufficiently used channels.
For guards, we obtain the following semantic definitions:

Ten[h?] = {((s,h™n,[sli =), (F, 0, ({h?},0),£)) |i € dom(s) & n€ Z & F € Piin(8)}
U {(&s, (F,0,{h?}, p)> |i €dom(s) & F 2 {h?}},
Ten[hte] = {{(shin,s),(F,0,{{h},0),£)) | (s,n) € E[e] & F € Prin(8)}
{

U {{es(F,0,{h},p)) [fv[e] € dom(s) & F 2 {h!}}.

The successful computations i and h!'e necessarily use channkel the only channel on
which communication is enabled. As a result, their traces do not include any insufficiently
used channels.

Sequential composition

The composability criterion for channel-fair traces is the same as that for strongly fair traces:
¢1 andd, are composable whenewgy is an infinite or partial trace, or when is a finite trace

and the initial state ob, is the final state ob;. Whend¢; is an infinite or partial trace, the
concatenatiop1¢» is simply the tracep;. Whend1 is a finite trace, the concatenatipnd,

must account accurately for the sequences of enabling sets as well as for the unused channels
of the resulting trace. We discuss these concerns in turn.

Afinite traced; = (a, (F1,U1, €1, f)) represents a successfully terminating computgsion
of some command;. However, wherp; is used to generate a computation of the command
(c1;¢2), the final configuration op; is skipped:c;’s final action instead leads to the initial
configuration of a computation @p. Likewise, in combining the finite traof; with a trace
d2 = (B, (R, U2, E2,Ry)), the final element o€ should not appear in the resulting trace’s se-
guence of enabling sets. Therefore, for sequeBigendE,, we let€1E2 indicate the standard
notion of sequence concatenation, and we define€, to be the sequence that looks like
(with its final element removed), followed t8p. For example, i€1 = (Ao, A1, ... ,Ak—1,Ak)
and&z = (Bo, By, ... ,Bn), then€1E2 and&y - €5 are defined as follows:

8182 = <A0,A17 cen 7Ak—l,Ak, BO7 Bl,- .. ,Bn>,
8].' 82 - <A07A17"' 7Ak717807 Bl:"' 7Bn>-

96 Strong Channel Fairness

The sequencé; - £, accurately represents the sequence of enabling sets encountered along
(the computation represented by) the tragé-.

The definition of concatenation must also account properly for the insufficiently used chan-
nels of the resulting trace. When combining the finite trége= (a, (F1,U1,E1,£)) with a
partial or infinite tracep, = (B, (F2,U2, £2,R2)), the selU, adequately represents the channel
constraints of the resulting traci, is either partial (in which case the 4ét = 0 is appro-
priate) or infinite (in which casé1’s finitely enabled channels are irrelevant). However, the
case where both traces are finite requires more care: a trace’s set of unused channels is defined
relative to the directions enabled along the trace, and one trace may use some of the other’s
unused channels. The enabled but unused channélghgfare those channels iy that are
not used along», combined with those channelslWy that are not used alorfy. For each
traced;, theusedchannels ofp; are those channels that appear along the sequgrimé not
in the setJ;. Given an enabling sé&, we letchans(E) be the set of channels with directions
in E:

chans(E) = {h| 3d € E.chan(d) = h}.

Likewise, chans(&) is the set of channels with directions occurring along the sequénee
channelh is in chans(€) if there is a seE occurring alongE such thath is in chans(E). It
follows that the used channels of the finite trggean be given by the sebans(€&;) —U;, and
theunusedchannels of the traog; ¢, can be given by the set

(Ul — (chans(82) — Uz)) U (Uz — (chans(81) — Ul)).

We therefore define concatenation on the finite trdge= (a, (F1,U1, E1,£)) and the finite,
partial, or infinite traceb, = (B, (F2,Uz, €2, R2)) by

¢1¢2 = <GB7 (F27U) 81 ' 82, R2>,

where the sdt) of insufficiently used channels is in turn defined as

U (Ug — (chans(&2) —U2)) U (U2 — (chans(€1) —Uy)), if Ro=1,
B Uo, if Ro € {i,p}.

As before, we define sequential composition on tracelgeasd T, by

Tl;Tz = {¢1¢2 | ¢1 € Tl & ¢2 € T2 & composablé!bl,q)z)},
and thus we can define

Ten[c; c2]] = Ten[call; Ten[c2]l,
Ten[9 — cfl = Ten[[gll; Tenlcll,

and

Tch[[if b then Cy else Cz]] = Tch[[b]];TCh[[Cl]] U Tch[[—!b]];TCh[[Cz]].

5.4 Channel-Fair Trace Semantics 97

Iteration

Let (¢i)i>, be an infinite sequence of channel-fair traces such that, for ieach, ¢; =

(ai, (F,Ui, &, R)). The sequencébi);>, is composable if the s_eLOEJOF. is finite and (for each
1=

i) the tracesod1 ... ¢i 1 andd; are composable.

When eachp; is finite, the insufficiently used channels of the infinite concatenation are
those channels that appear in infinitely many ski@nd in only finitely many setshans(&;) —
Ui. Thus we define the infinite concatenation of the infinite sequémgg , of finite traces to
be

Pod102... = <Godl. ..QOp..., (igthigOUi — igo(chans(gi) — Ui), Eo-€1-E-..., i)),
whereg-E€1-E2-... is the obvious extension of the operatién- £, to the infinite series of

finite sequences;.

When at least one of the tracésis partial or infinite, then the first suah provides the
relevant contextual information for the resulting trace; thugifis the first nonfinite trace,
then the infinite concatenation of the seque e is

God102... = (doas...0k, (R, Uk, E0-E1-E2-...- €k, Ry))-

Finite iteration on the trace sé&tis again defined by
T =T,
i=0

where we defind® = {(gg, (0,0, (0),£)) | s€ S} andT"L = T"; T. Infinite iteration on the
trace sefl is defined as follows:

TO={dod1...0k...| (Vi>0.0i € T) & composablgdi)i° o) }-

Using these definitions, we give the following semantics for loops:

Ten[while bdo cf} = (Tenb]; Tenllc]) U (Ten[b]l; Tenllel)®; Tenl—b]-

Guarded choice

Every computatiop of gc; or gc; induces a computation gt [1gc, that looks likep, with the
following exception: the actions enabled in its initial configuration are those actions enabled by
either component. Intuitively, every channel-fair tracef gc; or gc, should likewise induce

98 Strong Channel Fairness

a channel-fair trace ofic;[Jgc, that looks liked, with the following related exception: its
initial enabling set should contain those directions initially enabled by either component. For
example, ifp1 = (esa, (F1,U1, (E1)€1,R1)) represents a computation of the chosen component
and¢z = (g, (2,0, (E2),p)) is an initial partial trace of the unchosen component, then there
is a computatiomp of gc; [1gc, whose representative trace has simple-trace componandl

initial enabling seE; U E>. Whend; is finite, we may also need to update the resulting trace’s
set of unused channels. The insufficiently used channels of the finite compytaierthose
channels used insufficiently alordg (i.e.,U;) plus those channels i, that are not enabled
along¢ (i.e.,Ex — chans((E1)&1)).

We therefore define guarded choice on channel-fair trace sets as follows:

T T, = {(G, (Fl,Ul, <E1U E2>81,R1)> | R € {p,i}
& (e, (F1,U1, (E1)€1,R1)) € T1 & (g5, (F2, 0, (E2),p)) € T2}
U {(G, (Fg,Uz, <E1U E2>82, R2)> | Ry € {p, i}
& (est, (F2,Uz, (E2)€2,Rp)) € T2 & (g5, (F1, 0, (Ea),p)) € Ta}
U {{a,(F1, UrU (chans(Ep) —chans({E1)€1)), (E1UE2)E1, £)) |
(esar, (F1, U1, (E1)€1,£)) € T1 & (g5, (F2, 0, (E2),p)) € To}
U {{a, (R, UU (chans(Ey) —chans({E2)€E2)), (E1UE2)E2, £)) |
(€501, (F2,U2, (E2)E0,£)) € T2 & (g5, (F1,0,(E1),p)) € T1}.

Unlike the definition of guarded choice for strongly fair trace sets, this definition needs to
account accurately for the initial enabling sets and the sets of unused channels. However, the
underlying essence of the operation remains the same. We define

Ten[ga 0 gce]) = Tenl[gen] O Twgc].-

Channel restriction

For process-fair trace sets, the traceT®gt is constructed from the s@&t by discarding those
traces that use channebisibly, and then removing! and h? from the enabling and fairness

sets of the traces that remain. We can define a similar operation on channel-fair trace sets,
but this operation must also verify that the fairness constraints on chhramelsatisfied. In
particular, we should discard any infinite trage- (a, (F,U, &, 1)) that has the channalboth

in its setU of insufficiently used channels and in infinitely many of the sets along its sequence
€ of enabling sets: such traces correspond to non—channel-fair computations that usefthannel
only finitely often despite having synchronizationtoanabled infinitely often. For a sequence

€ of enabling sets, we let€ be the set of directions that appear in infinitely many of the sets

along€&, and we discard any trace for whibhe U andh € UWE.

5.4 Channel-Fair Trace Semantics 99

For any enabling sdf, E\h is the set that results from removing all references to channel
h: E\h = E — {h!l,h? h}. This operation extends to sequences of sets in the obvious way:
for example(Ep,E1, Ep,. .. ,Ex)\h = (Eo\h,E1\h,E2\h,... ,E\h). Given a trace sef and a
channeh, we then define the channel restrictiorhadn T by

T\h = {{a,(F,U\h,E\h,£)) | (a,
U {(a,(F,0,e\h,p)) | (0, (F,0,€,p)) € T & F' D F\h & h ¢ chans(a)}
& (heU = h¢gwe) & F' DF\h& h¢chans(a)},

(F,U,&,£))eT& F' DF\h& h¢ chans(a)}

and we defind cp[[c\h]] = Ten[[c]\h.

Parallel composition

Parameterized channel fairness relies on two types of fairness constpaitsss constrainis

which place limits on which computations can be combined through parallel composition, and
channel constraintsvhich place limits on which computations can be “restricted” (in the sense

of channel restriction). Because only the process constraints affect which computations can be
combined meaningfully, the mergeability requirements (anchibegeablegpredicate) remain

the same as for process fairness, modulo the need to extract the set of infinitely enabled direc-
tions from the sequence of enabling sets. For channel-fair tdacesa, (F1,U1, €1, Ry)) and

d2 = (02, (F,U2,E2,Ry)), we define the predicataergeabléds,) as follows:

mergeabléd1,¢,) <— (Ri=f)or(Rp=f)or(Ri=Ry=p)or(e¢FHUR
& —match(F1,UE2) & —match(Fp,WE1) & FrNvis(az) =0 & FNvis(ag) = 0).

This predicate makes no mention of the $¢fsandU,: channel constraints are orthogonal to
the issue of mergeability.

To define afairmergeoperation on channel-fair traces, we employ an approach similar
to that taken in Section 3.3, defining new sktdh and onethat account for traces’ unused
channels and sequences of enabling sets. However, before constructing these sets, we need to
define several auxiliary operations.

We begin by introducing a concatenation-like operator channel-fair traces that allows us
to combine traces that repressegmentsf computations (rather than complete computations)
while maintaining accurate enabling information. The idea is that, given two t¢acasd¢-,
their fair merges are defined by interleaving and synchronizing finite portions of each (at least
until one or both traces “run out”) and then combining all of the partial results. To record the
sequences of enabling sets accurately, we need a way to splipgiabh the appropriate finite

100 Strong Channel Fairness

portions without losing any of the relevant enabling information. For example, consider the
transition sequence

A A An_
p=(c,S0) — (C1,51) — -+ == (Cn, Sn),
which can be separated into the following two transition sequences (fdany

M

A A
p1 = <C, SO> —O> <C1,S]_> —1> e <Ck,5k>,

A A An—
P2 = (CoS) = (Ot k1) —% -+ 23 (G,).

For eaclhp, there are as many such decompositions as there are configurations occurring along
p; in each case, the final configurationmfis the initial configuration op,. If we let channel-

fair tracesp, andd, represenp; andpa, respectively—ignoring for the moment that is not

a successfully terminating computation—then we should be able to define an opéiatjon

that represents the computatipn The traced; - > needs to be defined only when is a

finite trace with form(ay, (F1, £1(X),f)) andd, has form{ay, (F, (X)E€2, R))—that is, when

the final enabling set df; is the first enabling set @f,. In such cases, we define

d1- 92 = (0100, (F2, E1(X)E2,R)),

which indeed is a valid representation for the computatiaiiNote that, when defined, the trace

¢1- ¢2 is precisely the more general concatenatpath,. We can also extend this operation to
infinite sequences of traces in the obvious way, basing it on infinite concatenation.) We then
extend this operation to sets of triples of traces in the obvious way: folrsatslY,,

Yi-Yo={(01- 97,02 02,03 ¢3) | ($1,02,03) € Y1 & (07,02, 03) € Y2
& 1-01, ¢2-95, d3-¢3are all definedl.

We also define the obvious iterative extensions to the dot operator. Foaosdtiples of
traces, the finite iteration of is defined by

Y =JY,
i=0

whereY? = {(¢,9,9) | Is€ SX € Pin(L).¢ = (s, (0,0, (X),£))} andY™L =Y".Y. The
infinite iteration ofY is defined by

YO = {(Go 01 o i e B Dy O OGdY)
Vi > 0. (0i,97,0) €Y & ¢i-diy1, Of-¢iyq, Of iy are all defined.

We again make use of the interleaving|@) and mergingd||[3) operators on simple traces,
and we introduce corresponding operators on sequences of enabling sets. For a (finite or infi-
nite) sequencé and the enabling sé, & ||E is the sequence with the setE propagated: for
example,
(Eo,E1,Ez,... . B |E = (Eol[E, Ba[[E, E2||E, ... E[[E).

5.4 Channel-Fair Trace Semantics 101

For finite sequence8; = (Ag,A,...,As) and €, = (B, By,...,By), the sequencé|| &z is
the sequencé; (with the setBy propagated) followed by the sequentge (with the setAy
propagated). That is,

81J_| 82 - (81J_| BO) . (82J_|Ak) - <A0||807 Al”BO> ceey Ak*]-“BOv Ak||807 A|(||B]-7 ceey A|(||Bn>

Intuitively, if €1 is the sequence of enabling sets occurring along the transition sequence rep-
resented byx and &£ is the sequence of enabling sets frthené, || €> is the sequence of
enabling sets that occurs along the transition sequence represemtg@ byhis definition re-
quires knowing which directions are enabled in the final configuration of a transition sequence
(and, indeed, it is precisely for this reason that we include the final enabling set in the channel-
fair traces). After one component performs its transitionghe directions enabled in its final
configuration remain enabled as the other component makes its tran§itidfar example,
consider the transition sequences

p1=(al0 = bl0 — a%, 1) 22 (b10 — a, 1) 2% (a, S1)

and "
p2 = (all = bl1,5) == (bl1,sp),

which can be interleaved to yield the following transition sequence:

p=((al0 = bl0 —a%) || (all = bl1),s) 2> ((bl0— a) || (all — bl1),s)
B0 @ || (all — bl1),s)
all

AL x| bll,s).

Just before the right component makesalts transition, the direction?—which is enabled
in the final configuration op;—is also enabled for the parallel command. The transition
sequencep; andp, can be represented by the channel-fair traces

¢1 = ((s1,a0,51)(s1,b!0,1), (0,0, ({a'}, {b!},{a?}),T))

and
b2 = ((s2,2!1,%),(0,0,({al}, {b!}),£)).

The sequence of enabled sets alpraan therefore be defined by
({al}, {b'},{a?}) || ({a!},{b!}) = ({al},{b!,al}, {a?al,a}, {a? bl }).

Finally, analogous to the definition of|3 for matching simple traces andf3, we define
the operatior€1||€, when&q and €, are sequences of enabled sets with equal length. That is,
if £1=(A0,Aq,...,A), E2=(Bo,Bu,...,Bn), andk = n, we define

€1]|€2 = (Ao||Bo, A1||B1, ..., Al|Bxk).

102 Strong Channel Fairness

Intuitively, £1]|E2 represents the sequence of enabling sets encountered along a transition se-
guence in which the two components of a parallel command repeatedly synchronize with one
another.

With these operations in hand, we can define the related operatidi¢s andd ||¢» on fi-
nite channel-fair traces. For finite trages= (a1, (F1,U1, €1, £)) anddo = (az, (F2,Uz, €2, £))
such thatis ||az is defined, we define

b1]]d2 = {{az]jaz, (F,(U1—M2)U(Uz—My),E1]|€2,£)) |F 2 (RLUR)},

where we again ld¥l; = chans(€1) —U; andM; = chans(€2) — U be the sets of used channels
for ¢1 andd,. Intuitively, each trace € ¢1]/d2 represents a transition sequence of a parallel
command in which one component performs actions correspondigg, tiollowed by the
other component performing actions correspondindptoLikewise, for matching finite traces
$1= (a1, (F1,U1,E1,f)) anddo = (0o, (F2,Uz2, €2, 1)), 1|92 is the set of traces corresponding
to their synchronization at each step:

¢1||¢2 = {<G1||G2, (F7U1UU2781||827f)> | F2 (F]-UFZ)}

In the case of synchronization, the two traces necessarily use the same channels; as a result,
the set of insufficiently used channels is simplyuU,. We can now define the sbbth C

Dch x Dep X DPep, Whose triples represent transition sequences made while both components
are active, as follows:

both = {($1,02,9), ($2,01,) | 61 = (0, (F,U1,€1,%)) & b2 = (B, (F, Uz, €2,8)) &
disjoint(a,B) & ¢ € ¢1]/d2}
O {(01:2:0) [91 = (a0, (FL.U1, £1,5)) & 62 = (B. (F2.Uz.£2.)) &
disjoint(a, B) & match(a,B) & ¢ € d1||d2}.

Once one component of a parallel command has either terminated successfully or become
permanently blocked, the remaining component may proceed uninterrupted. Of course, the
remaining component may itself eventually terminate, or it may become blocked (modulo some
setF), or it may proceed indefinitely. We extend the opergtoon channel-fair traces to
account for each of these cases as well. Suppose that we have a parallel corpjoaiial
whichcy has terminated in its local stadethe future execution af, can be represented by the
empty traceb, = (g, (P2, 0, (0),£)), for any set. If the future execution of; is represented
by the traced; = (a, (F1,U1,E1,Ry)), then the parallel command’s future execution can be
represented by any of the fair traces in the set

¢1]/¢2 = {(a]es, (F,U1, E]|O,Ry)) | F D FLUR}.

If, instead of terminating successfullgys becomes blocked mok, in local states, then its
future execution can be represented by a partial tggce (g, (F2,0,(E),p)). In this case,

5.4 Channel-Fair Trace Semantics 103

again lettingh, = (a, (F1,U1, £1,R1)) represent the future executionaf the future execution
of the parallel command can be defined as follows:

{(a]les, (F,U1,€1]|E,p)) |F D RUR}, if Ri€ {f,p},
{(a]es, (F,U1,€1]|E,1)) |F 2 (RUR)}, if Ri=1i.

We therefore define the seheC ¢, x Dch x Dcn, Whose triples reflect transition sequences
made when only one component remains active, as follows:

one = {(¢17¢27¢)7 (¢27¢17¢) | ¢1 - <G, (F]_,Ul,gl,R» & ¢2 - <887 (F27U27827R)> &
disjoint(a,s) & ¢ € ¢1]|Pp2}.

b1]l92 = {

We then define
fairmerge= botH> Uboth" - one

The triple(¢,¢’,) is in botH* if and only if the trace®, ¢’, andy can be written as
O=0o-¢1-02-03-..., ' =00-01-02-¢5-..., W=Wo-Wr-Y2-Y3-...,

such that eacl;, &/ andy; is finite, and eachp; is in the set(di |o! U o!||di U dil|di).
Such triples represent the merging of two infinite traces. Likewise, the {ipl¥,) is in
both's - oneif and only if the trace®, ¢’, andy can be written as

O=00-01-02-03-... dn, ¢ =dp-07-05-¢3-... b, W=Wo-W1-Y2-W3-...-p,

such that eacth;, ¢/ andy; (for i < n) is a nonempty finite trace, eagh (for i < n) is a member

of the set(di ||¢! U ¢/||¢i U dil|di), at least one ob, and¢), has form(es, 8), andy, is a
member of the sefdn||dr, U ¢1,]|¢n). These triples represent the merging of traces when at
least one of them is finite or partial.

Finally, we define channel-fair parallel composition on trace sets as

T1||T2 - {q) | ¢1 € Tl & ¢2 € T2 & mergeabl@laq)Z) & (¢17¢27¢) € fairmerQQ7

so thatTen[[cal|cz]] = Ten[ea]l | Ten[c2ll

We summarize the preceding discussion by giving the following complete denotational
characterization of the trace semantigg. This characterization of the semantikcg, looks
essentially the same as the denotational characterizations of the various strongly fair seman-
tics introduced previously. The only obvious difference is the inclusion of the (trivial) sets of
unused channels and the sequences of enabling sefisigpassignment, and the input and
output guards. The real differences in the semantics lie in the new interpretations of the vari-
ous semantic operators, and these differences reflect only the more complicated bookkeeping
necessary for modeling channel fairness.

104 Strong Channel Fairness

Definition 5.4.1 The channel-fair trace semantic functibg, : Com — P(®Pgy,) is defined by:

Tenl[skip] = {{(s&,9),(F,0,(0,0),f))|s€ S& F € Psin(A)}
U {(& (F,0,{(0).p)) |s€ S& F O {&}}
Tch[[i::e]] = {((S,Ev [S|| = n])’ (F’ 07 <®7 0>7f)> |
i € dom(s) & F € Psin(A) & (s,n) € E[[e]}
U {(&s,(F,0,(0),p)) | dom(s) D {i} Ufv[e] & F D {e}}
Tenllcr;c2] = Tenllea]l; Tenlcz]l,

]
Tch[[lf b then C1 else Cz]] = Tch[[b]];Tch[[Cl]] UTCh[[—Ib]];TCh[[Cz]]
Ten[while bdoc] = (Ten[b]); Ten[lc]) U (Ten[[b]; Tenl[cl))*; Ten[[—b]
ch[[h?l]] = {((S’ h?n, [S|| = n])’ (F’ 0, <{h?}70>7f)> |
i€dom(s) & neZ & F € Psin(A)}

U {(&s (F,0,({h?}),p)) | i € dom(s) & F O {h?}}
Ten[nte] = {{(s,hin,s),(F,0,({h'},0),£)) | (s,;n) € E[€] & F € Prin(d)}
U {(&s (F, 0, {{h!}),p)) | fv][e] C dom(s) & F O {h!}}
Terlg—cll = Tenldl; Tenlc]
Ten[gaOge]l = Ten[ge] O Ten[gc:]
Tch[[c\h]] = Tch[[c]]\h
Tenlcallca] = Tenllcalll[Tenl[c2].-

<

The following two examples illustrate how the strongly channel-fair semahgjcsan be
used to reason about the channel-fair behavior of programs.

Example 5.4.2 Recall the following processes introduced in Figure 2.9, where we assumed
that communication occurred only when all processes were inside their loops:

P = while (x#0) do (al0 — x:=0 b!1 — skip),

Q = n:=1; while (w#0) do (a?w — clw O cln = n:=n+1),

R = while (v# 0) do (¢ — skip O bA — skip).
Using the trace semantidsy, we illustrate why this assumption was necessary for proving
termination of the prograniP||Q||R)\a\b\c under strong channel fairness. In particular, we

now show that the program cannot be guaranteed to terminate under strong channel fairness
without this assumption.

Ten[P]] contains an infinite trace of form

(a,(0,{a},(0,{al,b!},0)*,1)),

5.4 Channel-Fair Trace Semantics 105

wherea involves onlye-transitions and output actions on chanmeSimilarly, Tcn[Q]) contains

an infinite trace of form
(B, (0,{a},(0)(0,{al,c!},0)® 1)),

wherep involves onlye-transitions and output actions on chanaehs a result]T¢[[P||Q] has
an infinite trace with form
(v, (0,{a},(0)¢,1)),

wherey is an interleaving merge af andp and& = (0, {a!,b!},0,0,{a!,c!},0)“ is an inter-
leaving of the sequencé®, {a!,b!},0)® and(0, {a!,c!},0)®. In this trace, synchronization on
channeh is never enabled, because the commdhdadQ are never inside their loops at the
same time; despite the infinite occurrencealadnda? alongé, the channeh does not occur
alongé.

To wrap up the detaild,cn[R] has a trace with forndy, (0,0,€&’,1)) in whichy alternates
b?1 actions withc?h actions. Therefore, there is a tracelgf[[P||Q||R]] with form

(€ (0.{a}, ", 1)),

whereé&” is an interleaving of andé&’ and{ is a trace in which each communicationyoi
synchronized with a communication @f Because neither! nor a? can possibly occur along
&', the channeh does not appear alorflf. It follows that there is an infinite trace with form
(€, (0,0,(0),1)) in Ter[[(PJ|Q||R)\a\b\c]}, corresponding to a nonterminating, channel-fair
computation of the prograifP||Q||R)\a\b\c. o

In the following example, we modify the previous example to ensure termination under
strong channel fairness. Essential to proving termination is the introduction of additional com-
munications that keep the processes synchronized with one another: communications on chan-
nelsa, b andc can occur only when all three processes are inside their loops.

Example 5.4.3 Consider the following process®s Q andR/, which are revised versions of
the processeB, Q, andR (respectively) of the previous example:

P = while (x#0) do
sync!l — (al0 —» x:=00 bl1 — e!l1 — skip [e — skip),
n:=1;
while (w # 0) do
syncw — syncw — (aw — clw O c!ln — ell — ni=n+1 0 e — skip),
R = while (v# 0) do sync!l — (c — skip O b — skip).

QI

We use the trace semantitg, to prove that the prograrfP’||Q||R)\sync\e\a\b\c always
terminates under strong channel fairness.

106 Strong Channel Fairness

Let C abbreviate the prograif®’||Q'||R))\sync\e. The only infinite computations & are
those in which each d¥, Q' andR’ make infinite progress: the need to synchronize on channel
sync prevents two processes from conspiring against the third. Moreover, in any such infinite
computation, synchronization on the chanae$ enabled infinitely often. Therefore, every
infinite trace ofC has form(a, (F,U,&,1)), where the channel is in the setu€. (That is,

the channed, in addition to the directions! anda?, appears in infinitely many sets along the
sequence€.) As a result, the only possible infinite trace<dka have form

(a,(F',U\a, &\a,i)),

whereF’ D F\a.

However, every infinite trace & has form(B, (Fp,Up, £p,1)), wherep involves no com-
munications on channelanda is inU,. Thereforea must also be iV, and hence the traces of
Ten[[C] with form {(a, (F,U, €,1)) (that is, all the infinite traces) must be discarded in creating
the seflcp[C\a]. It follows that there are no infinite traces in the $gt]C\a], and therefore
no infinite traces in the sdi[C\a\b\c]] = Ten[[(P'[|Q|IR)\sync\e\a\b\c].

A similar analysis shows that deadlock of the program is impossible, and hence the program
must always terminate successfully. o

5.5 Lack of Full Abstraction

The semantic$, is sound with respect to all of the (channel-fair equivalents of the) behaviors
introduced in Chapter 4, but it is fully abstract with respect to none of them. Of course, this
is not surprising: the strongly fair semantiEsrequired the addition of closure conditions to
yield full abstraction.

Some of the inappropriate distinctions madelgycan indeed be eliminated by the simple
introduction of closure conditions. For example, recall the comm@n@sdC, that led us to
introduce union and superset closure conditions for strong fairness:

Ci = (al0—bl0)O(al0— cl0),
C, = (al0— bl0)O(al0 — c!0)O(al0 — (b!0TIC!0)).

These commands have different trace sets and yet are indistinguishable in all program contexts,
even under channel fairness. Introducing union and superset conditions suited to channel-fair
traces can eliminate the distinction betwé&arandC,.

5.5 Lack of Full Abstraction 107

However, other inappropriate distinctions cannot be remedied so easily. For instance, con-
sider the following two commands:

Cs = al0— ((b!0— while true do a!0) O (c!0 — skip))
0 al0 — (b!0 — skip O d!0 — skip),
Cs = CzgOal0o— ((b'0— while true do a!0) O (d!'0 — skip)).

Let a be the simple tracé¢s,al0,s)(s,b!0,s)[(s,€,9)(s,al0,5)]%, and let€ be the infinite se-
quence(0, {a!})®. The infinite traceps = (a, (0, ({a!}, {b!,c!})E,1)) is possible for botiC;

andCy4, whereas the infinite tracgs = (a, (0, ({a!},{b!,d!})&,1)) is possible only forCa.

These two traces differ in the sets of directions enabled on their second steps. Despite this
difference, the command3 andC,4 exhibit the same behaviors in all program contexts. In
essence, the traces andd, are indistinguishable from the standpoint of strong-channel fair-
ness, because they share the same infinite suffix of enabling sets: after some finite period of
time, both enable the same communications on precisely the same steps.

In general, eliminating this type of distinction requires a more direct approach than closure
conditions provide: every pair of congruent (i.e., sharing the same simple trace component and
fairness set§ andU) traces that also share an infinite suffix of enabling sequences must be
considered equivalent. Formalizing such relationships requires the introduction of an equiv-
alence relation on traces that identifies exactly such pairs, followed by the imposition of a
quotient structure on trace sets based on this equivalence relation. It seems likely that such
an approach would yield a fully abstract channel-fair semantics. However, it is unclear that
these technical contortions would would provide significantly (if any) more insight than the
semanticd ., already provides.

The difficulty in achieving fully abstraction (and the expected complexity of such a model)
should not be construed automatically as an indictment of the general trace framework. Rather,
they reflect the inherent complexity that underlies the notion of strong channel fairness. Strong
channel fairness is n@quivalence robugiAFK88], in that the specific order in which inde-
pendent actions occur affects the fairness of a given computation. For example, recall Exam-
ples 5.2.2 and 5.2.3: the order in which the computatmnand p, are interleaved affects
the channel fairness of the resulting computation. Because channel-fairness depends on the
order in which actions are enabled and occur, any semantics that incorporates assumptions of
channel-fairness must account for this dependence in some way. It should not be surprising
that the resulting semantics is complex when the underlying notion of fairness is as well.

The lack of full abstraction should also not be interpreted as a condemnation of the se-
manticsTqh. Full abstraction is an ideal that is not always easily achievable, and it is well
known that certain notions of behavior for certain languages do not admit fully abstract mod-
els [Mil77, AP86, Sto88]. Moreover, the semanticg still supports compositional reasoning
about strongly channel-fair behavior, and its soundness for several behavioral notions still pro-
vides useful, if incomplete, information about program equivalence and substitutability: two

108

Strong Channel Fairness

cillcz

(cillc2) || c3

(cillcz2)\h

c\h

(al0 — b!0) O (b!0 — a!0)

Colc1

cy || (c2]|ca)

c1 || (c2\h), providedh ¢ fc[cy]
c, providedh ¢ fc[c]

al0 || b0

Figure 5.2: Some program equivalences validatedl'lg&

program terms are guaranteed to behave equivalently whehgwgives them identical mean-
ings. For example, the soundnesslgf is sufficient for validating the program equivalences
(with respect to any of the channel-fair equivalents of the behalbrs, W or C) of Fig-
ure 5.2, properties which also hold under strong-fairness assumptions.

Chapter 6

Weak Process Fairness

This chapter focuses on weak process fairness, which requires every continuously enabled pro-
cess to make progress. The assumption of weak fairness is weaker (and therefore more general)
than strong fairness. Perhaps ironically, then, incorporating weak-fairness assumptions into a
semantics for communicating processes is more complicated than incorporating strong-fairness
assumptions. In particular, the task of determining which processes are ecabteaiously
requires significantly more structure than determining which processes are enabled infinitely
often does: not only can a process be enabled continuously along a computatigjtof
without being enabled continuously along either component’s subcomputation, but it can be
enabled continuously without any one of its possible actions being enabled continuously.

In this chapter, we show how to adapt the trace framework to incorporate assumptions of
weak process fairness. We discuss why weak fairness is harder to model than strong fairness,
and we indicate what type of additional semantic structure weak fairness requires. Based on
these observations, we introduce a parameterized form of weak fairness that is based on param-
eterized strong fairness but tailored for reasoning about@néinuousenabling of processes.

This parameterization guides our construction of a weakly fair trace semantics that is strikingly
similar to the channel-fair semantics of Chapter 5.

6.1 Parameterized Weak Fairness

In Section 3.1, we introduced the notion of parameterized strong process fairness to permit a
compositional characterization of strongly fair computation. Roughly speaking, we tag “al-
most strongly fair” computations with sets of directions that represent the actions possible for
those processes that are treated unfairly. These sets do not distinguish between the actions pos-
sible for a single process and the actions possible for a collection of processes, because such

110 Weak Process Fairness

distinctions are irrelevant for strong fairness. A prodadsaving the set of enabled directions
E; is enabled infinitely along a given computation if and only if some elemekt sfenabled
infinitely often. Similarly, some member of the collection of proceq$gs... ,F} is enabled

for communication infinitely often along a given computation if and only if some direction in
one of the sets iREy, ... ,Ex} is enabled infinitely often. Thus, for example, the single process

Q1 =a!l0— b!0 I bl0— all
has precisely the same set of fairness constraints as the parallel command
Q2= (al0 || b0);

eachQ; is enabled for synchronization infinitely often along a computatio®;d€ (for any
commandC) if and only if C enables input on channebr b infinitely often.

The situation changes, however, when we considectimtinuousenabling of directions
and processes. The procéssan be enabled continuously along a computation without any
particular element d&; being enabled for synchronization continuously. For example, consider
the command

C = (while true do (a[Jc!1)) || (while true do (b?y[1c!2)),

and letp be a computation o such that (1) both parallel subcomponents repeatedly perform
output on channel; and (2) at any time after the initial step, at least one of the components is
inside its loop. Along this computatigm the directiona? andb? are each enabled infinitely
often and disabled infinitely often; moreover, at any time after the first step, at least one of the
directionsa? andb? is enabled.

Because the single proceQs can perform output on either chanrebr channeb, it is
enabled continuously in any computation(€§;||C)\a\b in which C performs the transition
sequence. As a result, in any weakly fair computation @1 |C)\a\b, C must eventually
deviate from the transition sequenpe In contrast, there are weakly fair computations of
(Q2/|C)\a\b in whichC performs the transitiors Q2 contains two processes, neither of which
is enabled continuously by. Whereas the command® and Q. have identical behaviors
under strong fairness, they can exhibit different behaviors under weak fairness. For this reason,
parameterized weak fairness—unlike parameterized strong fairness—must distinguish between
the actions possible for a single process and the actions possible for a collection of processes.

To this end, we tag “almost weakly fair” computations with a $eif sets of directions
each seF € J intuitively indicating that one or more subprocesses are blocked médHor
example, we use the set

F1={{al,b!}}

6.1 Parameterized Weak Fairness 111

initsets(skip,s) = {{e}}
initsets(i:=e,s) = {{e}}
initsets(if b then ¢y else ¢p,5) = {{e}}
initsets(while bdo ¢c,s) = {{¢}}
initsets(C1;C2,S) = initsets(Cy,S)
initsets(h?,s) = {{h?}}
initsets(hle,s) = {{h'}}
initsets(g — C,S) initsets(g, S)
initsets(gc; 1 g, S) {XgUXz | X1 € initsets(gcy,S) & X € initsets(gcy, S)}
initsets(C1||C2,5) = initsets(Cq,S) Uinitsets(Cz,S)
{{€} | match(initsets(cy,S), initsets(Cy,S)) }
{F —{h!l,h?} | F € initsets(c,s)}

-

initsets(c\h, s)

Figure 6.1: The definitioninitsets(c,s).

to tag computations in which one or more subprocesses are blocked rjedbld; the partial
computation/Q1,s) can be tagged b¥;. In contrast, we use the set

F2={{a!},{b!}}

to tag computations in which one or more processes are blocked miadilland one or more
processes are blocked modylsl }; the partial computatiofQ,,s) can be tagged b§f.

The setinits(c,s), introduced in Section 2.1, is the set of directions (possibly inclugjng
corresponding to the possible transitions from configurafios). We can likewise define a set
initsets(c, s) that containsetsof directions (possibly includinge}), with the intuition that each
set reflects the transitions possible for one (or morejsosubprocesses from the configuration
(c,s). A structurally inductive definition of the séatitsets(c,s) appears in Figure 6.1 When
the command has only one associated proces#sets(c,s) is necessarily a singleton set;
in particular, the seinitsets(gci [1gcy,S) is a singleton set whose only element may contain
several directions. This definition provides a way to distinguish the comm@ndadQ- as
required: for all states, initsets(Q1,s) = {{a!,b!} }, whereasnitsets(Q2,s) = {{a!},{b!}}.

Finally, we note that different sets may represent the same weak-fairness constraints. For
example, consider the sef§ = {{a!,b!},{a!}} andF, = {{a!,b!}}. Both sets represent

1This inductive definition relies on the obvious extension of the predioateh to sets of sets of directions:
for such sets(; andX», the predicatenatch(X1,X>) is true if and only if there exists se¥§ € X; andX; € X»
such thaimatch(Xg, X2).

112 Weak Process Fairness

identical constraints: each will be enabled for synchronization continuously along any com-
putation that enables the sgt!,b!} continuously. In effect, the possibilities inherent in the
set{a!} are subsumed by the sgi!,b!}: any computation that provides the det} with
continuous synchronization opportunities necessarily provides tHa!set} with continuous
synchronization opportunities. We use downwards closure to yield canonical representations
of the fairness constraints.

Definition 6.1.1 Let F be a member ofsi,(Psin(4)). Thedownwards closureof &, written
F |, is the set of all subsets of memberstof F|={F'|3F € F.F CF}. o

Intuitively, the sets¥; and 3, represent identical weak-fairness constraints whengyee
Fol.

Definition 6.1.2 LetJ be a member dPsin(Psin(A)). A configuration(c,s) is blocked modulo
F if initsets(c,s) — F =0, and it isenabled moduloJ otherwise. o

Thus a configuration is blocked modulbif each of its subprocesses is blocked ntodor
someF € F .

Example 6.1.3 Recall the command3; = a!0 — b!0b!0 — al0 andQ, = (a!0 || b!0), with
the sets of enabled communications

initsets(Q1,8) = {{al,bl}}, initsets(Qz,8) = {{al}, {b!}}.
The configuration$Q1,s) and(Qz,s) are both blocked modulp{a!,b!}}, because (for eadh
initsets(Qy,s) C {{al,bl}}|={0,{al},{b!},{al,bl}}.
However, only the configuratiofQ.,s) is blocked moduld {a!},{b!}}:
initsets(Qy,s) — {{a!}, {b!}} |= 0, wheread{a!,b!} € initsets(Qq,s) — {{a!},{b!}} | .

<

We can now give a parameterized notion of weak fairness that mimics the parameterization
of strong fairness in Section 3.1 but also accounts for the additional structure of the fairness
setsF. A computation is weakly fair (in the standard sense) if and only if it is weakly fair
modulo®.

Definition 6.1.4 Let F be a member ofsin (Pin(A)). A computationp of the command is
weakly fair modulo F providedp satisfies one of the following conditions:

e pis afinite, successfully terminating computation;

6.1 Parameterized Weak Fairness 113

e pis a partial computation whose final configuration is blocked mofilo

p is an infinite computatiorg has form(cy; c2) or (if b then c; else ¢y), and the underly-
ing infinite computation o€; or ¢, is weakly fair mod7;

p is an infinite computation; has form(while b do ¢’) or (g — ¢’), and all underlying
computations o€’ are weakly fair modF;

p is an infinite computatiorg has form(gc; [Jgc), and the underlying computation of
the selectedg is weakly fair mod7;

p is an infinite computationg has formc’\h, andp’s underlying computation of’ is
weakly fair modulo{F U {h!,h?} | F € F};

p is an infinite computatiorg has formcy ||c;, and there exist sefs; andJ», and com-
putationgp; of ¢; andpa of ¢y, such that:

— p1 is weakly fair mod¥; andp, is weakly fair mod¥s,
— p can be obtained by merging and synchronizs@ndp,,
) (StlUStz) J,and

— no subcomponent of; or ¢, that fails to make infinite progress is enabled for
synchronization almost everywhere algqng o

The final condition in the parallel-composition clause ensures that no process that becomes
blocked moduld¥ continuously has some opportunity to synchronize. Unlike the parallel-
composition clause for parameterized strong fairness constraints do not depend solely on
p2 (and likewise foic; andp;): a (sub)process can be enabled for synchronization continuously
along the computatiop without being enabled for synchronization continuously along either
p1 or p2. For example, consider the commands

Cy1 = a || while true do (a!1b!1), Co = while true do (a!2[1b!2).

Suppose that; is an infinite, weakly fair mod{a?}} computation ofC; in which the process

a? makes no progress, and lgi be a weakly fair computation &€>. The procesa? is
enabled for synchronization infinitely often—but not continuously—along each of the compu-
tationsp1 andp,. However, the computatiomg andp, can be interleaved to yield a computa-

tion p of C1]|C; in such a way that the proces® is enabled for synchronization continuously
alongp. As aresult, it is often necessary to look at the resulting computation of the parallel
command to determine whether any blocked processes are actually enabled continuously. We
explore this situation in more detail in the following examples.

114 Weak Process Fairness

Example 6.1.5Let C; andC, be the commands of the preceding discussion:
Cy1 = a || while true do (a!1b!1), C, = while true do (a!2[1b!2).

For notational expediency, we Ietabbreviate the commanhile true do (a!l10b!1), so that
Ci=a%||C.

1. Letp be the following infinite computation

€

pr= (a%||C,s) — (a%| (allOb!1);C,s)

PLoGax||C, s -5 -
in which the process? never makes a transmission and the value 1 is repeatedly trans-
mitted along channéi.

The computatiorp; is weakly fair modulo{{a?}}: the only continually enabled pro-
cess that does not make progress is blocked mofi{d8}}, and it is not enabled for
synchronization continuously.

2. Letps be the infinite computation

p2= (Co, t) — ((al20b!2);Cy, t)

P,) S
that repeatedly transmits the value 2 along chahn&he computatiop; is weakly fair
modulo0.

3. Letp be the following interleaving op1 andp in which every transition o€; is fol-
lowed by a transition o€, and vice versa:

p= (a% || C|[Cs, SUt) —=5 (a% || (al10b!1);C || Co,sUL)

(
£ (a% || (a!10b!1);C || (al20b!2);Cp, sUL)
L a% || C || (al20b12);Cp, sUL)
P2 (@ C | Cp,5Ut) 55 -

The computatiomp is weakly fair mod{{a?}}, because the proces® never becomes
enabled for synchronization continuously algngn particular,a? is disabled for syn-
chronization at every configuratiga? || C||Cp, sUt).

6.1 Parameterized Weak Fairness 115

4. The corresponding computation @;||C2)\a in which the process? never makes a
transition is weakly fair modul@. o

The following example, taken together with the preceding one, shows how the order in
which independent actions occur can affect the weak fairness of a computation.

Example 6.1.6 Let the command€; andC,, and the computations; andp,, be as defined
in the preceding example, and [#tbe the following interleaving gb; andpo:

€

p' = (a% | C||Cz, sUt) —=5 (a || (al1db!1);C || Cp,5Ut)
£ (a% || (al1Ob!1);C || (al200b!2);Cp, sUL)
P a% || C || (al20b12);Cp,sUL)
5 (a%]| (al10b!1);C || (al20b!2);Cp, sUL)
22 (ax || (al1Obl1);C || Gy, sUL)
£ (a%]| (al1Ob!1);C || (al20b!2);Cp, sUL)
&,

In this computation, from the second configuration onward, at least c@entiC, is always
inside its loop. As a result, the procesX is enabled for synchronization continuously, and the
computatiorp’ is not weakly fair moduld {a?}}. As a result, the corresponding computation
of (C1||C2)\a is not weakly fair. o

The following example shows that, under weak fairness, a process can block on a commu-
nication, even though that same channel is used for synchronization infinitely often by other
processes.

Example 6.1.7 Let P, andP, be the following processes:

P = while true do (b [a!l), P, = while true do (b?y[a!2[1b!2).

1. The infinite computation
p1= ((b10[|P),[x=2]) —= ((bl0]| (bXxDa!l);Py),[x=2])

22 (b0 || Py),[x=2])

€
—

that repeatedly receives the value 2 on chamnahd never performs the actidho is
weakly fair modulo{{b!}}.

116 Weak Process Fairness

2. The infinite computation

€

p2= (P ly=1]) — ((byOal200b!2);Ps, [y =1])

22 Py, ly=1))

€
—

that repeatedly transmits the value 2 on chamrislweakly fair moduld.

3. Letsrepresent the stafe= 2,y = 1], and letp be the following computation, which can
be obtained by interleaving and mergingandp,:
(BlO[| Py) || P2ys) —= ((bl0 || (bB%Call);Py) || Pa,s)

€

— ((b!0 || (bXOa!l);P1) || (bYyTal200b!12); Py, s)

€

— ((blO[[Py) [| P2,8)

€
—

The computatiom is weakly fair modulo{{b!}}: although the proceds0 is enabled

for synchronization infinitely often, it is not enabled for synchronization continuously.
In particular, the computation is weakly fair modul¢b!}} despite the infinite use of
channeb for synchronization betwedd andPs.

4. It follows that the corresponding computation(@!0 || P1) || P2)\b is weakly fair. <

6.2 Weakly Fair Traces

The definition of parameterized weak fairness, combined with the experience of defining strongly
fair and channel-fair traces, guides us in the construction of appropriate weakly fair traces.
First, we need set$ of sets of directions to represent the process constraints, because a pro-
cess can be enabled continuously without any particular action being enabled continuously.
Second, we need to record the directions enabtezhch ste@long a computation, because
directions can be enabled continuously along a computation of a parallel command without
being enabled continuously by any individual component.

We therefore define the s&, of weakly fair traces by
Oy = %X Pin(Prin(AT)) x (Pin(AUChan))” x {£,1,p}.

Intuitively, the weakly fair trac€a, (F,E,£)) represents a (necessarily weakly fair) success-
fully terminating computation having the finite sequerécef enabling sets. Similarly, the

6.3 Weakly Fair Trace Semantics 117

weakly fair trace(a, (F,&,1)) represents an infinite, weakly fair mddcomputation having
the infinite sequencé of enabling sets. Finally, the weakly fair trate, (F, £,p)) represents
a partial computation such thatD initsets(ck,), Where(cy, S) is the final configuration of
p; € again represents the sequence of enabling sets encountered along the computation.

We characterize a weakly fair trace semantigs Com — P(d,,) operationally as follows:

Twlc] = {(trace(p), (F,En(p),)>|

= (c, % (c1,51) 2L - Ry (Ck, Sc)term is weakly fair modF}
U {(trace(p), (T, En(),p)) | FLD initsets(ck, k) &
M, 2 (6,8 & {0k S)term)

U {(trace(p), (%, En();:1)
= (c,

A1

(c1,91) —> - LM s weakly fair modF}.

s0) 2%

)

= (c.50) 2% (c1,51) s -
) |

> 0

6.3 Weakly Fair Trace Semantics

The denotational characterization of the weakly fair trace semahics very similar to that

for the channel-fair trace semanti€g,. In fact, many of the semantic operators are simpler

for weakly fair trace sets: we no longer have to keep track of insufficiently used channels, and
the setsF of sets can be manipulated in pretty much the same way aF sdtdirections. As

a result, almost all the explanations that accompany the semantic definitions in this section are
abbreviated forms of those encountered in Chapter 5.

We first introduce a semantic functidg, : BExp — P(®,,) such that
TW[[b]] = {<(S,€,S), (?7 <07 0>7f)> | (Satt) € B[[b]] & Je ?fin(?fin(A))}
U{(es, (F,(0),p)) | (s,tt) € BIb] & FID {{e}}}.

As in the earlier semantics, each finite tracd yfb]] represents a transition made in the eval-
uation of the boolean expressibn

Based on the operational characterization gfit should be easy to see that

Tw[skip] = {{(s,€,9), (F,(0,0),£)) | s€ S& F € Psin(Psin(D))}
U {(&s, (F.(0),p)) | s€ S& F|2 {{e}}}

and

Twli:==€l] = {{(s,&,[sli = n),(5,(0,0),1)) | i € dom(s) & T € Psin(Phin(8)) & (s,n) € E[e]}}
U {(&s: (F,(0),p)) | fv[i:=€] € dom(s) & F |2 {{e}}}.

118 Weak Process Fairness

Similarly, for guards we obtain

Twl[hA] = {((shn, [s]i =), (F, ({h?},0),£)) |i € dom(s) & N€ Z & T € Prin(Prin(D)) }
U {(es; (3, ({h?}),p)) [€ dom(s) & F|2 {{h?}}}

and

Tw[h'e] = {{(s,h!n;s),(F, ({h!},0),£)} [(s,n) € E[e] & F € Prin(Prin(2)) }
U {(es; (3, ({N'}),p)) [fv[[€] dom(s) & F |2 {{h!}}}.

Note the use of downwards closure in the partial traces of the communication guards: for all
suitable states, the configurationh?,s) is blocked moduld for all setsF | D {{h?}}, and
similarly for (hle,s).

Sequential composition

Two weakly fair tracesh; and¢, are composable whenewi is an infinite or partial trace,

or whend1 is a finite trace and the initial state ¢$ is the final state ob1. Moreover, their
concatenatiop1¢» is defined almost identically to the concatenation of channel-fair traces,

except that we no longer need to keep track of the unused channels. For composable traces
¢l = <G, (‘rfl: 817f)> andq)z = <Bv (?27 827 R2)>’ we define

¢l¢2 _ ¢1 if Ry € {p, i},
(0B, (F2,€1-E2,Rp)), If Ry =T1.

We then define sequential composition on weakly fair traceTlgedad T, in the familiar way:

T;To = {01291 € T & ¢p2 € To & composabléh1, ¢2)}.

Finally, we define

Twlcy; czl) = Twlea]; Twllez],
Twllg— cll = Twlgll; Twllc],

and

Tw[[if b then ¢y else co]] = Tw[[b]J; Tw]c1]] U Tw[—b]; Tw]cz]-

6.3 Weakly Fair Trace Semantics 119

Iteration

Let (¢i)>, be an infinite sequence of weakly fair traces such that, for eaeld, ¢; =
(ai, (F,&i,R)). The sequencedi);”, is composable if the settuoff". is finite and (for each

i) the traceshod1...9i 1 andd; are composable. When eaghis finite, the infinite concate-
nation of the infinite sequende;);? , of finite traces is

dod1d2... = (Ao01. . (u?.,eo €1-82- ...,1)).

When at least one of the tracésis a partial or infinite trace, then the first sughprovides
the relevant contextual information for the resulting trace; thuls i the first nonfinite trace,
then we define the infinite concatenation of the sequépgg , to be

God102... = (0oaz... 04, (Fi, o E1- ... - ERK)).

Once again, the definitions for finite and infinite iteration on trace sets follow directly from
the definitions of concatenation and sequential composition. We define finite iteration on the
trace sefl by

:UTi,

whereT? = {(gs, (0,(0),f)) | s€ S} andT"*! = T", T. We define infinite iteration on trace set
T as follows:

= {doP1...Pk...| (Vi > 0.9i € T) & composablgdi)i-g)}.

The semantics of loops again relies on the definitions of iteration:

Tw[while bdo cf = (Tw[b]; Tw(c])®U (Twb]; Twl[c])*; Tw[—b].

Guarded choice

The definition of guarded choice on weakly fair trace sets is a simple generalization of that for
channel-fair traces: there is no need to keep track of the unused channels. For weakly fair trace
setsT; and Ty, we define:

T0T = {(a,(F(EUE)ER)) | (e, (F1,(E0)E,R)) € Ty & (g, (F2,(E),p)) € T2}
U {(G, (?27<E0UE>87R)> | <830,(92,<E0>8,R)> ch& <€Sv (917<E>7p)> € Tl}'

We then defind[gci 0gc] = Twlga] O Twlgc].

120 Weak Process Fairness

Channel restriction

The weakly fair trace sét\h can be obtained from by first removing those traces in whibth

is visible and then deleting all mentionstofrom enabling sequences and fairness sets. For a
setF of sets of directions, we defiriE\h in the obvious wayF\h = {F\h | F € F}. We then
define

T\h= {{a,(F,&\h,R)) | (0, (F,&,R)H e T & F'|D (F\h)] & h¢chans(a)},

so thatTy,[c\h]] = Tw[c]\h.

Parallel composition

To define parallel composition for sets of weakly fair traces, we follow the same general ap-
proach taken in Chapter 3 for strongly fair traces. In particular, we define a reflatiorerge
as the greatest fixed point of a functional

F(Y) = both-YUone

and we introduce a predicateergeablethat indicates which mergings of computations are
meaningful. Because the weak fairness of a computation can depend on the particular order in
which independent actions occur, tmergeableredicate depends not only on the traces to be
merged but also on the resulting trace. We therefore begin by defaimngerge deferring for

now the question of which fair merges correspond to weakly fair computations.

The fairmergerelation for weakly fair traces is a simple generalization of fliemerge
relation for channel-fair traces: we need only omit the sets of unused channels and use fairness
setsT of sets rather than fairness s&tof directions. For completeness, the definitions are
included here, but with very few accompanying explanations.

For finite trace®; = (a1, (F1,E1,f)) anddo = (a2, (Fo, €2, f)) such thatrq || a, is defined,
we define

¢1l/¢2 = {(asfJaz, (F,E1]]€2,1)) [F 12 (F1UT2) L}

Each traced € ¢1||d, represents a transition sequence of a parallel command in which one
component performs actions correspondingtofollowed by the other component performing
actions corresponding t,. Likewise, for matching finite trace; = (a1, (51,&1,£)) and
b2 = (02, (F2,E2,1)), d1||¢p2 is the set of traces corresponding to their synchronization at each
step:

d1lld2 = {{aaaz, (F,E1][€2,£)) | FID (F1UTF2) L}

6.3 Weakly Fair Trace Semantics 121

These two operations on traces form the basis for theadtC ®, x d,, x Py, whose triples
reflect finite transition sequences that occur while both components remain active:

both = {(¢1,92,9),(d2,01,9) [1= (1, (F1,E1,1)) & b2 = (B,(F2,€2,1)) &
disjoint(c,B) & & € 0162}
U {(01,02,0) |01 =(0,(F1,E1,)) & P2 = (B, (F2,E2,£)) &
disjoint(a,) & match(a,B) & ¢ € ¢1][d2}.

Once a component terminates successfully or becomes permanently blocked (modulo some
setd), the other component may proceed uninterrupted. Such situations are reflect by traces
in the setd1||d2, whereds = (a, (F1,E1,R)) represents the active component gndis an
empty finite trace(es, (F2, (0),£)) or an empty partial tracees, (F2, (E),p)). Whend, =
(€s, (F2, (D), £)), we define

¢1l/¢2 = {(alles, (F,€]0,Ry)) | F 12 (F1UF2) L}

Wheno, = (g, (F2, (E),p)), we define

{(alles, (F,€4][E,p)) [FI2 (F1UTF2) L}, if Rue {f,p},

b1ll¢2= {{(Gﬂs& (F,€1]|E,1)) | FI2 (F1UTF2)]}, if Rp=1.

These definitions provide the basis for the see C @, x ®y x Py, Whose triples reflect
transition sequences in which only one component remains active:

one = {(¢17¢27¢) | ¢1 - <G,(9‘~,8,R)> & ¢2 - <887 (9:7 Elv R)> &
disjoint(a,s) & ¢ € 1]/ Pp2}.

We can now also definirmerge = botH® U both' - ong again with the intuition that the
triple (1, ¢2,9) is in fairmergeif and only if the trace} is a fair merging and interleaving of
the tracesh; and¢». In particular, just as for strong channel fairness, the triple’,) is in
botH* if and only if the trace®, ¢’, andy can be written as

O=0¢0-01-¢2-03-..., ¢ =dp-01-¢2-03-..., W=Wo-Y1-W2-Y3-...,
such that eaclp;, ¢/ andy; is finite, and eachy; is in the set(d; ||d] U & [|¢i U ¢il|¢i).

Likewise, the triple(d,¢’,) is in both* - oneif and only if the traces, ¢’, andy can be
written as

O=00 d1-d2-d3... bn, ' =00 919595 dn, W=Wo Wi W2- W3- U,

122 Weak Process Fairness

such that eacth;, ¢/ andy; (for i < n) is a nonempty finite trace, eagh (for i < n) is a member
of the set(di ||¢] U ¢ [|di U ¢il|di), at least one ob, and¢;, has form(es, 6), andyy is a
member of the sethn||d;, U &7,/ dn).

However, defining the triple&s, d2,¢) of fairmergeis not enough for defining parallel
composition on weakly fair trace sets. Despite being a fair merging of the two tiacesy
not represent a weakly fair computation: it is important to verify that the subprocesses that are
blocked fairly alongh1 and¢, are not enabled continuously alopgThus, we define a ternary
predicatanergeableC ®,, x ®, x @y, that not only takes into account the propertieg paind
¢, but also ensures that the resulting parallel tgasatisfies all necessary process constraints.

A set F of directions is enabled for synchronization with the enablingEsetwritten
enabled(F, E)—if there exists a directionl € F such thatchan(d) € E. Intuitively, the set
F represents the set of directions enabled by some subprQoafss command;. If E is the
enabling set of the parallel commaed|c,, then the proces is enabled for synchronization
with another process if and only if there is some directanQ such that the channehan(d)
appears irk.

A setF of directions isblocked alongE—uwritten blocked (F, £)—if £ is finite or if there
are infinitely many setg alongé& such thaf is not enabled for synchronization with That
is, lettingE; represent thé" element of the sequenée the predicatélocked(F, €) is defined
as follows:

blocked(F,) <= Vi > 0.3 > i.—enabled(F, E).

We extend this notion of blocking to sefsof sets of directions as well: the s&tis blocked
alongé if every member off is blocked alongE. That is,

blocked(F,€) <= VF € F.blocked(F,E).

This notion of blocking forms the basis of the ternary predicat¥geable for tracesdp; =
(a1, (F1,€1,R1)), b2 = (02, (F2,€2,Rp)), andd = (a, (F,€,R)),

mergeabléd1,$2,¢) <= (R=£)or (R=p) or ({e} ¢ F1UTF2 & blocked(F1UF2,a)).

Thus the predicatmergeablédi, ¢2,) is true wheneved is a finite or partial trace, or if no
member ofF; U F7 is enabled for synchronization continuously along the infinite tgace

Finally, we define fair parallel composition on trace sets as follows:
T[Tz = {¢|d1=(0,(F1,€1,R1)) €T1 & $p2=(B,(F2,E2R)) € T2 &
(¢17 ¢27 (I)) S fairmerge& mergeablé(l):b ¢27 (I))}

It follows that Ty[[c1|c2] = Tw[ca]|[Twc2].

We can now give the denotational characterization of the weakly fair trace sembptics
in its entirety. Once again, this characterization looks essentially the same as the denotational

6.4 Final Comments onl, 123

characterizations of the strongly fair and the strongly channel-fair semantics of previous chap-
ters. The only differences are the sets of process constraints and the bookkeeping operations
that underlie the new interpretations of the semantic operators.

Definition 6.3.1 The trace semantic functioy, : Com — P(®y,) is defined by:

Tw[skip] = {{(s,&,9),(7,(0,0),£)) | s€ S& F € Psin(Phin(8)) }
U {(es (F,(0),p)) | s€ S& T2 {{e}}}
Twli:=e] = {((s,&,[s]i =n), (5,(0,0),1)) |
i € dom(s) & F € Prin(Piin(8)) & (s,n) € E[e]}
U {(&s (F,(0),p)) | v[i:=€] C dom(s) & F |2 {{e}}}

Twlea; ca]] = Twlea]; Twlcal
Twlif b then ¢y else ca]] = Tw[b]l; Tw[c1]] U Tw[—b]; Tw[ca]
Tw[lwhile b do cf} = (Tw[[b]; Tw][c])® U (Tw(b]l; Tw[lc])"; Twl-b]
Tw[[h?] = {((s, hn, [s]i = n)), (F, ({h?},0),1)) |

i €dom(s) & neZ & F € Psn(Prin(D))}
U {(&s, (3, ({h?}),p)) | i € dom(s) & F |2 {{h?}}}
Tw[hte] = {((s,hin,s),(F,({h!},0),£)) | (s;n) € E[[e] & F € Prin(Prin(L))}
U {<857(,({h'}),p)) [fv]e] € dom(s) & F 1D {{h!}}}

Twlg—] = Tu[g]; Twlc]
TwlgarO0ge] = Tw[ga | O Tw[gc]]
Twlcallez] = Tw[[c MITwlcz]

Tw[[c\n] = Tw[c]\h.

6.4 Final Comments onT,,

The semanticd,, is sound with respect to all the (weakly fair equivalents of the) behaviors
introduced in Chapter 4. However, it is not fully abstract with respect to any of them, for many
of the same reasons that the channel-fair semantics fails to be fully abstract.

Despite the problems with full abstraction, the semaritjgstill sheds light on the problem
of incorporating fairness assumptions into denotational semantics. It demonstrates the further
applicability and robustness of the trace framework. Simply by replacing simple sets of actions
by sets of sets of actions, we can parameterize and model weak process constraints instead of

124 Weak Process Fairness

strong process constraints. Perhaps surprisingly, the weakly fair semantics retains a signifi-
cant portion of the structure necessary for the channel-fair semantics, despite the underlying
differences in the notions of fairness. In particular, both the channel-fair and the weakly fair
semantics require sequences of enabling sets to account for the effect that the ordering of inde-
pendent actions can have on the perceived fairness of a computation. Such sequences seem a
natural consequence of fairness notions that are not equivalence robust.

Chapter 7

Hybrid Communicating Processes

Both Brookes’ fair transition traces for shared-variable programs [Bro96b] and the fair traces
for communicating processes in this dissertation play the same role in their respective seman-
tics: they serve as abstract representations of fair computations. In each semantics, the mean-
ing of a command is the set of traces corresponding to its fair computations (or, more accu-
rately, corresponding to its fair transition sequences), and the structure of the traces reflects the
communication features of the underlying paradigm. Transition traces represent transition se-
guences in which the external environment may alter the state between successive transitions.
In contrast, the fair traces we developed for communicating processes represent transition se-
guences in which the environment never makes a state change and may interact with processes
only by message passing. Because a process’s external environment cannot alter its private
state, state changes between steps of a fair trace are disallowed. The fair traces also require an
additional contextual component that chronicles the relevant information for modeling fairness.

These two different kinds of trace structure are intuitively orthogonal, representing distinct
but compatible aspects of computation. In particular, the two structures can be combined in a
very intuitive way to yield a semantics for a hybrid language of processes that communicate
through both message passing and shared memory. In this chapter, we introduce such a hybrid
language, and we construct for it a semantics that incorporates assumptions of strong fairness.
Horita, de Bakker, and Rutten define a fully abstract semantics for a similar hybrid language
[HdBR94]; the semantics of this chapter generalizes their semantics by incorporating fairness
assumptions.

The addition of shared-variable parallelism requires a generalization of parameterized strong
fairness that accounts for state interruptions. By combining the shared-variable transition traces
with the communicating processes’ strongly fair traces in a natural way, we construct a hybrid
trace semantics suitable for reasoning about the behavior of these hybrid processes. This se-
mantics is also fully abstract, and the full-abstraction proof is a natural amalgam of the full-
abstraction proofs of the original two semantics. The full-abstraction result indicates that the

126 Hybrid Communicating Processes

hybrid traces accurately capture the type of information necessary for reasoning about systems
in which communication occurs both through message passing and through changes to shared
memory.

The ease with which these two different semantics can be combined demonstrates the mod-
ularity of the semantic features and provides further evidence that the transition traces and the
strongly fair traces accurately capture the important essence of fair computation for their un-
derlying paradigms. The resulting hybrid semantics requires the same closure conditions for
full abstraction as the original two semantics did, and the full-abstraction proof relies on the
same observations and subsidiary lemmas that underly the full-abstraction proofs of the orig-
inal semantics. Indeed, part of the value of the hybrid semantics’ full-abstraction result is the
ease with which we obtain it.

7.1 A Language of Hybrid Processes

The language of communicating processes that we have considered so far allows processes
to communicate only through synchronous message passing. In this section, we add shared-
variable parallelism and conditional critical regions to yield a hybrid language of processes that
can communicate with one another both by message passing and by changes to shared memory.
The resulting language captures the following abstract view of systems.

Intuitively, a system is a (possibly dynamic) collectionredlms with potentially multi-
ple threads of controln each realm. Each realm has its own local state, and communication
between threads in the same realm occurs via this shared local memory. In contrast, communi-
cation between threads in different realms occurs via message passing along named channels.
For example, one can imagine several clusters of workstations connected to one another by
high-speed networks, with processes on same-cluster workstations communicating across dis-
tributed shared memory and distant-cluster workstations communicating by messages across
the network; each cluster is a realm, and the processes on the individual workstations are the
threads of that realm. This view of systems encompasses (and generalizes) both the shared-
memory and the communicating-process models. Shared-variable programs correspond to a
single realm containing multiple threads; communicating processes correspond to multiple-
realm systems in which each realm has precisely one thread of control.

This type of hybrid language supports the modeling of systems such as distributed databases,
automated banking systems (i.e., ATMs), airline-reservation systems, and so on. These appli-
cations all share three common features: (1) various nodes can be physically distant from one
another, making message passing the only viable communication mechanism; (2) “local” pro-
cesses may require fine-grained sharing, making shared memory the most efficient mechanism;
and (3) clients (either software or human) cannot or will not tolerate being ignored forever,
making fairness an essential feature of the system.

7.1 A Language of Hybrid Processes 127

The language’s syntax and operational semantics are very similar to those described in
Section 2.1 for the simple communicating processes.

7.1.1 Syntax

The abstract syntax of the language relies on the following seven syntactic domains:

¢ Ide, the set ofdentifiers ranged over by;

BEXp, the set oboolean expressionsanged over by;

Exp, the set ofinteger) arithmetic expressionsanged over bg;

Chan, the set otthannel namesanged over by,

Gua, the set ocommunication guardsanged over by;

GCom, the set ofguarded commandsanged over byc;
e Com, the set otommandsranged over byg.

We again take for granted the syntax of identifiers, channel names, and boolean and arith-
metic expressions. The syntax of guards, guarded commands, and commands is given by the
following grammar:

g = h%|hle
gc = g—clgalge
c = skip|i:=e|cy;cy|if bthen ¢y else ¢y |whilebdoc|gc

| await b then c| ¢y ||c2 | c1f|c2 | €\h

We impose two additional syntactic constraints. First, in commands of the form
await b then c,

we require that the commarctontains only assignments asidps. This requirement ensures

that the commana terminates, and it represents a reasonable expectation of the scheduler:
it is straightforward for a scheduler to disable all other processes to allow a single process to
perform a finite series of assignments uninterrupted, but it is unreasonable for the scheduler
to disable other processes permanently to allow a process to enter what may turn out to be an
infinite loop. Moreover, this syntactic restriction does not restrict the expressive power of the
language. Second, for commands of faeiico, we require that; andc, have disjoint free
identifiers. This restriction ensures that the processes associatet} \&itklc, maintain their

own private state spaces: the only way that either component can affect the other’s execution
is through handshake communications.

128 Hybrid Communicating Processes

(C1,S)term (Cp,S)term
(C1]| co, S)term

(e,S)term

(c,s)term (C1,S1)term (Cp,Sp)term
(c\h,s)term (c1)|c2, 51 USp)term

if disjoint(sy,%)

Figure 7.1: The predicateerm for hybrid processes.

(c,9 == (c1,51) (c1,51) 2 (%) (€2,9) == (€,S)

A

(c,s) = (c,s) (c,s) = (C,d)

Figure 7.2: Axiom and inference rule for the generalized relatiefs.

7.1.2 Operational semantics

The operational semantics makes use of a labeled transition system very similar to that used
in Section 2.1. A configuration is a pajc,s), wheres is a state defined at least on the free
identifiers ofc. We use the place-holderto represent termination, allowing (for example)
configurations with form{e||c,s) or (e || c,s). A configuration(c,s) is terminalis the predicate
(c,s)term can be proved from the axiom and inference rules in Figure 7.1.

For simplicity, we assume that an evaluation semantics for boolean and arithmetic expres-
sions is already known, and that expression evaluation is atomic, always terminates, and pro-
duces no side effects.

We again write(c, s) N (c/,d) to indicate that the commardis states can perform an
action labeled\, leading to command’ in states. The transition relations™> (and their

generalized formsé)) are characterized by a collection of axioms and inference rules. The

transitions for sequential constructs, guards and guarded commands are identical to those in-
troduced for communicating processes in Figures 2.4 and 2.5. The appropriate inference rules
for the various parallel constructs appear in Figures 7.3. The inference rules for the generalized

transition relations== appear in Figure 7.2.

The transition rules for parallel composition highlight the distinction between the two dif-
ferent types of parallel commands,|| c; andc,||c,. The command; || ¢, represents the par-
allel composition of components that share a common state and communicate with one another
only by changes to this shared state: transitions made by either component affect the global
state, and handshakes between the two components are impossible. In contrast, the command
ci1||c2 represents the parallel composition of components with disjoint local states that com-
municate with one another only by message passing: transitions made independently by one

7.1 A Language of Hybrid Processes 129

(b,s) —*tt (c,s) == (¢,)term (b,s) —* £f
(await b then ¢,s) —= (¢,) (await b then ¢, s) — (await b then c,s)
(c1,8) 2+ (¢},) (c2,8) = (&).8)
(cllc9 2 (@ llcas) (eallcas) 2 (calchS)

(c1,51) l> (1,8

if disjoint(s1, %)
<cl||02,81U32> (ci]|c2, 51 Usp)

(c2,%2) 2 (Ch,)

)\ if disjoint(s1,Sp)
(callc2,s1US2) — (caf|ch, 51US))

L) = () (e, %) 5 (D) it rmatch(hahg) & dis
, joint(Sg,S2)
(cil|c2,s1Us2) — (Cy]|c5, 81 US)) o 1

(c,8) 2 (c, <)
A

if chan(A) #h
(c\h,s) — (c’\h,s)

Figure 7.3: Inference rules for the parallel constructs.

component affect only its local portion of the state, and the components may also handshake
along a given channel.

The set of enabled directions for a configurat{ors) is again given by the set

inits(c,s) = {dir(A) | 3¢,S. (c, s) (c,d)}.

Note that, given the inference rules of Figure 7.3, the configurdtienit b then c,s) always

has are-transition enabled, regardless of the value of the expressibno$tates. Therefore

the only configurations that can be blocked are those that are trying to communicate along
restricted channels.

A quasi-computation of a command from states is a maximal sequence of transitions
starting in(c,s) in which the state may be changed between successive transitions. For exam-
ple, the following sequence of transitions is a quasi-computation of the comfrasi a!x)
from statelx = 0]:

(x:=1;alx, [x = 0]) -5 (alx, [x=1]) & (alx, [x = 3]) 2> (e, [x = 3)).

130 Hybrid Communicating Processes

We use the notation

k 0
(Gi,s) 25 <qm>} , {<q,s> IR

to abbreviate (respectively) the finite quasi-computation

(€,50) 2% (C1,) & (Cr,51) 25 (Co,) & - & (G, S % (Car,) term,

and the infinite quasi-computation

(C,50) 2% (C1,) & (C1,51) 2 (C2rSh) & -+ & (G S) — (Cky1,50 & -+ -

A computation ofc is a quasi-computation in which the state is never changed between suc-
cessive transitions; that is, a computation israarference-free quasi-computation

Quasi-computations capture the intuition that a process’s execution can be interrupted—
and the state altered—by an external force (namely, the process’s environment). In general,
the computations af; ||| c2 cannot be defined solely in terms of the computationg @ndcy,
precisely because of this interference. For example, consider the following two commands:

c1 = x:=0;if x= 1theny:=0 else y:=1,
c; = x:=1.

The parallel command, ||| c2 has a computation that sets the valug taf O, but there is no way
to generate this computation by considering only computations ahdcy: the commana;
does not access and every computation @f setsy to 1.

However, the quasi-computationsmf|| ¢, can be defined in terms of the quasi-computations
of c; andcy. For example, combining the quasi-computations

p1 = (c1, [x=2y=2]) = (if x= 1 then y:=0 else y:=1, [x = 0,y = 2])
& (if x=1theny:=0else yi=1, [x =1,y = 2]) = (yi=0, [x =1L,y = 2])
& (yi=0, [x=1y =2]) = (e, [x=1y =0]),
and
P2 = (o [x=2y=2]) = (o,[x=1y=2))

yields a (quasi-)computation of||c,. It is this insight that drives the use of transition traces
to model shared-variable programs.

7.2 Fairness for Hybrid Processes 131

7.2 Fairness for Hybrid Processes

All the notions of fairness for communicating processes introduced in Section 2.2 can be
adapted for hybrid communicating processes. In this chapter, we shall consider the follow-
ing version of strong fairness:

Every process that is enabled infinitely often makes progress infinitely often.

To be precise, this notion of fairness constitutes strong fairness only because the operational
semantics models blocking akait-statements by busy-waiting (i.e., by idle steps). As a result,

the only “true” blocking of a process arises from unsatisfiable communication attempts. If,
instead, the operational semantics represented blockiagaif-statements by true blocking

(that is, if we omitted the idle-step transition rule fawait-statements), then the intended
notion of fairness might be described more accurately as follows:

Every continuously enabled process, and every process infinitely able to commu-
nicate, eventually makes progress.

That is, a process can block fairly await-statements whose conditionals are not enabled con-
tinuously and on communications that are not enabled infinitely often. Imposing different fair-
ness requirements on different types of transitions is not a new idea: Manna and Pnueli discuss
the abstract construction of temporal proof systems predicated on identifying both strongly fair
and weakly fair transition sets [MP83].

We introduce a parameterized form of strong fairness that is based on the parameteriza-
tion of strong fairness given in Definition 3.1.2. This parameterization includes clauses for the
shared-variable construci&ait b then c andcy || c,. Moreover, because in general the com-
putations ofc ||| c2 cannot be defined solely in terms of the computatiorg @indc,, we base
this definition on quasi-computations.

Every infinite quasi-computation afvait b then c involves the repeated evaluation of the
boolean expressidmin states that do not satisby In every such quasi-computation, the single
process repeatedly makes progress, and hence it is treated fairly. (Equivalently, an infinite
quasi-computation indicates that theait-statement is infinitely often disabled and hence can
block fairly under weak fairness.)

The requirements for fairness of the state-based parallel comeadiing are similar to (but
simpler than) those for the message-based parallel comméngl Intuitively, every quasi-
computationp of ¢ || c; arises from interleaving a quasi-computatmnof c; with a quasi-
computatiorp, of co, andp inherits its fairness constraints from bghandp,. In particular,
if p1is fair modF; andp; is fair modF,, thenp is fair modF; UF,, provided that the two quasi-
computations respect the fairness constraints of one another. As with message-based parallel

132 Hybrid Communicating Processes

commands, neither component can use directions that appear in the other’s fairness set, for the
following reason. Intuitively, the fairness dgtrepresents the assumption that the comnaand

(and hence ||| cp) will appear in a context that restricts communication on the channéls of
without providing synchronization opportunities for themcdfused a direction i infinitely

often, then the eventual context would have to prowgfinitely many synchronization op-
portunities for that direction, thereby offerirg those same opportunities as well. However,

it is legitimate for one component to enable (and perhaps even use) infinitely often directions
whose matching counterparts appear in the other’s fairness set: for examplay enable the
directiona! infinitely often even ifa? is inF,. Because there is no possibility of handshaking
betweenc; andc,, the directions enabled by one component do not affect the other’s fairness
constraints.

Definition 7.2.1 A quasi-computatiop of commandc is fair modulo F providedp satisfies
one of the following conditions:

e pis afinite, successfully terminating quasi-computation;
e pis a partial quasi-computation whose final configuration is blocked mdeulo

e pis an infinite quasi-computation,has form(cy;cy) or (if b then c; else ¢), and the
underlying infinite quasi-computation of or ¢, is fair modF;

e pisaninfinite quasi-computationhas form(while bdo c) or (g— c), and all underlying
quasi-computations afare fair modF;

e p is an infinite quasi-computatiort, has form(gc [1gc), and the underlying quasi-
computation of the selectayt; is fair modF;

e pis an infinite quasi-computation, aedas formawait b then c;

e pis an infinite quasi-computation has forme; || ¢, and there exists sefs andF, and
guasi-computationg; of ¢; andp, of ¢, such thaips is fair modF, p2 is fair modF,,
F O FLUR,, and neithep; uses a direction ifj (i # j) infinitely often;

e pis an infinite quasi-computationhas formc’\ h, and the underlying quasi-computation
of ¢ is fair moduloF U {h!, h?};

e pis an infinite quasi-computatior,has formc, ||c,, and there exist setg andF,; and
guasi-computationpy of ¢; andp, of ¢ such thatp is fair modFy, p, is fair mod
F, F D FLUR, p can be obtained by merging and synchronizmagndp,, neitherp;
enables infinitely often any direction matching a membeFofi # j), and neithep;
uses a direction ifyj infinitely often. o

7.2 Fairness for Hybrid Processes 133

The following two examples, taken together, illustrate the difference in how fairness con-
straints are combined for the two different types of parallel composition. In particular, there are
unfair computations of the commang|c; that, step for step, behave like fair computations of
cf ca.

Example 7.2.2 Consider the commandR; ||| R2)||Rs)\a, whereR;, R, andRs; are defined as
follows:

R1 = al0, Ry = while true do a, R3 = while true do a!l.

1. The comman®; has the partial (quasi-)computation

p1 = (al0,[x =1]),
which is fair modulofa!}.

2. Letp> be the following infinite (quasi-)computation B, which repeatedly receives the
value 1 along channat

P2 = (Ro,[x = 1]) = (a% Ry, [x = 1]) 225 (Ry, [x = 1]) - ---

This computation is fair mod@.

3. Letps be the following infinite (quasi-)computation in whiéf repeatedly transmits the
value 1 along channet

Pz = (Ra,ly = 1)) - (al1;Ra, [y = 1]) 25 (Ra, [y = 1]) = --- .

This computation is also fair madal

4. Letp be the following infinite (quasi-)computation Bf || Ry:

p=(Ru[|Re,[x = 1]) — (Ru[| (a2 Ro), [x = 1) =5 (Ry [Rp, [x = 1) 5 -

The computatiorp can be obtained by a (trivial) interleaving pf and p,. Because
neitherpy nor p2 uses a direction in the other computation’s fairnessgetherits the
fairness constraints of its underlying quasi-computations and is fair{algd

In particular,p is fair mod{a!} despite the fact tha, enables (and uses) the direction
a? infinitely often:R; andR, are processes that can communicate with one another only
through state changes.

134 Hybrid Communicating Processes

5. The following computation of(R; || R2) || Rs), in whichR, andR3 repeatedly handshake
on channeh, can be obtained by merging and synchroniziandps:

€

(RellRe) [Re;s) — ((Rull (a?Ry)) || Ra;$)
(Rl (@ Re)) || (a!1;Ra),8)

N
= ((R]|Re) || Re.S)
N

This computation is also fair modufa!}.

6. As an immediate consequence, the following computatio(Rf
strongly fair:

IR2) || Rs)\a is

((Re]IR2) [| Ra)\a,s) ((Rell (@ Re)) || Re)\a;)

((Rell (@ Re)) | (a!1;Ra))\a,s)
((Re]IR2) [| Ra)\a,s)

€
—
€
—
€
—
€
—

<&

The following example, when compared with the previous example, illustrates how the type
of communication possible between two components placed in parallel can affect the fairness
of a given computation. In particular, the commaiB || R2)||R2)\a has fair computations in
which Ry never makes a transition, but the commé#(i&;||R:)||R2)\a does not.

Example 7.2.3Let Ry, R, andR3 be defined as in the previous example, and consider the
program((Ry || R2) || Rs)\a. That is, letR; andR, now represent processes that communicate
with one another by message passing rather than by changes to the state.

Let p> be the computation dR, defined previously, and lgt} = (Ry,s) be a trivial par-
tial computation ofR; with x ¢ dom(s). The following computation oR;||R, that looks al-
most identical to the computatignof Ry || Rz, with state-based communication replaced by
message-based communication:

(Re[|Re, [slx = 1]) —= (Ru|(ax; Ro), [slx = 1]) 22 (Ry|Ro, [Six = 1]) —5 -+ .

Unlike p, this computation is not fair modula! }: R; is enabled for synchronization witRy
on channeh infinitely often and yet never makes progress. o

7.3 Strongly Fair, Hybrid-Trace Semantics 135

7.3 Strongly Fair, Hybrid-Trace Semantics

As hinted previously, we can define hybrid traces that combine the features of both the fair
transition traces for shared-variable programs and the strongly fair traces for communicating
processes. These traces provide the foundation for a trace semantics for the language of hybrid
communicating processes introduced in Section 7.1.

The development of the hybrid traces and the hybrid-trace semantics is very similar to the
development of the strongly fair trace semantics in Chapters 3 and 4. However, the order
of presentation differs, in part because the previous chapters provide a useful foundation for
concepts. For example, we can introduce the necessary closure conditions earlier, because
the previous chapters make their purpose clearer. Additionally, the desire to retain as much
structural similarity to both the transition traces and the strongly fair traces affects certain
semantic decisions; it makes sense to explain these choices at the point of occurrence. For
example, rather than constructing a semantics and then introducing a notion of behavior for
which it can be made fully abstract, we begin by introducing a notion of behavior for which
we will then construct a fully abstract semantics.

7.3.1 A busy-waiting behavior

We considered several different notions of strongly fair program behavior in Chapter 4. In this
chapter, we consider a single notion of program behavior, namely the following busy-waiting
behaviorW .

Definition 7.3.1 Thebusy-waiting state trackehavioW : Com — P(S”) is defined by:

Wc] = {sosi...S|(C,S0) = (C1,51) = --- == (Cy, Sc)term}
U {soS1...5(80® | (Co.S0) = (C1,81) == -+ == (G, S)dead}
U {s0S1...S...| (C0,S0) = -+ == (Ck,) == --- is strongly fait.

<

The choice of this behavior is a pragmatic oN&: corresponds both to the busy-waiting be-
havior W considered in Subsection 4.5.3 for communicating processes and to the behavior
considered in [Bro96b] for shared-variable programs. As a result, constructing a semantics for
reasoning about this notion of behavior should require minimal changes from the other two
semantics.

As before, this behavior does not distinguish between deadlock and infinite idle chatter-
ing. Thus, for exampléWV [[a!0\a]] = W [Jwhile true do skip]] = {s® | s€ S}. Of course, this
identification is consistent with the interpretation of deadlock as busy-waiting.

136 Hybrid Communicating Processes

7.3.2 Hybrid traces

We again employ the set of steps
2=SxXAXS§

with the intuition that the stefs, A, ') € X represents a transition of for(n, s) A, (c,d). We
define the sek ™ of finite traces by

2" = {(50,20,%) (S1,A1,81) - - (S Ak,) [K> 0 & Vi < k(s Ai,) € 2},

so that state changes between successive steps are permitted. Likewise, we defiré’tbe set
infinite traces by

5®={0¢0;...0k... | Vi > 0. 0j € I},

and we leE® = T U I® be the set of all simple traces. These traces are an obvious combi-
nation of the shared-variable transition traces (which allow intermediate state changes) and the
communicating-process traces (which include transition labels). Each simple teax® now
represents a quasi-computation, which allows us to relax the composability criteria for simple
traces: every combination of tracasand 3 is composable, as is every infinite collection of
simple traces.

Because we are interested in a behavior that models blocking by busy-waiting, we need only
finite and infinite traces, with the latter representing both partial (i.e., blocking) computations
and “true” infinite computations. To reason about strongly fair quasi-computations, we again
need to augment infinite traces with fairness sets (representing process constraints) and sets
of infinitely enabled directions. Similarly, because finite quasi-computations can be used to
generate infinite quasi-computations, we augment finite traces with sets of enabled directions.
Thus we again make use of the set

I = Pfin(8) X Phin(L) x {£,1}

to provide the relevant contextual information for traces, and we define thedfdair hybrid
tracesas

d® = 3¥x (fpﬁn(A) X Tfin(A) X {fv 1})

The finite trace(a, (F,E, £)) represents a (necessarily fair mbyl successfully terminating
quasi-computation with enabled directidas Likewise, the infinite tracga, (F,E, 1)) repre-
sents an infinite (or blocked), fair mde quasi-computation with infinitely enabled directions
E.

7.3 Strongly Fair, Hybrid-Trace Semantics 137

7.3.3 Closure conditions

Because the behavitW relies on the generalized transitiOﬁé, the semantics we develop
must be able to introduce and absertvansitions; that is, the semantics must be closed under
stuttering and mumbling. However, we now need a more general notion of stuttering that
permits the introduction of idle steps involving arbitrary states. We define the resdtion

@ x ® as follows:

stut = {((aB,0), (a(s,e,9)B,0) |apez®—3°& se S}.
We also define a relatiomumbC @ x @ that reflects the “absorption” ef= transitions:

mumb = {({a(s&9)(5,A,5")B,0), (a(s,A,s")B,0)) | a(s,A, ")Be =}
U {({a(s\,9)(5,&,9")B,0), (a(s,A,s")B,8)) | a(s,A, &')B € =°}.

These definitions are simplifications of the stuttering and mumbling relations introduced in
Subsection 4.5.2.

Again lettingid = {(a,a) | a € Z*} be the identity relation on simple traces, we define
stuf® andmuml§’ to be the (respective) greatest fixed points of the functionals

F(R) = stut- RUId, G(R) = mumb RuUid,

so thatstuf® = stuf®Ustut* - id andmumb® = mumB&’Umumb -id. Intuitively, the pair(d,¢’)

is in stuf® (respectivelymumiy) if ¢’ can be obtained by inserting an idle step (respectively,
eliding ane-step) at some of the positions alof simple-trace component. Although the
stuttering and mumbling steps can be applied at potentially infinitely many positions along a
trace, they cannot be applied infinitely many times at any single position along a trace. Once
again, this point is essential for preventing the accidental introduction of divergent traces.

To achieve full abstraction, we will also need the closure conditions superset, displacement,
and contention as introduced in Chapter 4. Because these conditions act only on the contextual
components of traces and not the simple-trace components, they translate directly to hybrid
trace sets.

Definition 7.3.2 For a sefl of hybrid tracesT ! is the smallest set containifgand satisfying
the following closure conditions:

e Supersetlf (a,(F,E,R))isinT!, Re {£,i}, F C F/, andE C E/, then(a, (F/,E/,R))
isinT.

e Displacementlf (a,(F,EUX,R)) isin TI, Re {£,i}, XNvis(a) = 0, andX C vis(a),
then(a, (F,E,R)) isin T!

138 Hybrid Communicating Processes

e ContentionIf (a,(FU{d},E,i))and(a, (F,EU{d},1)) are both i !, then(a, (F,E, 1))
is also inT..

e Stuttering If ¢ isinT! and(¢,¢’) € stut®, thend’ is also inT!.

e Mumbling If ¢ isinT! and(¢,¢’) € muml¥, thend’ is also inT!. o

7.3.4 Hybrid trace semantics

We characterize a closed trace semankjcsCom — TI((D) as follows, building closure into
the semantics from the beginning:

Thl[c]l = ({(trace(p), (F,en(p),£)) |
k

F e Tm0) & p= [(6.8) 2 @ad)| & (Gndtem)

U{(trace(p)a,(F,E,i)) | F D E = inits(Cx,) & € ¢ E & —{(Cky 1,5)term

k
p= {(Ciﬁ) = (Ci+1,#>] & a € {(sg,9) | fv[cea] € dom(s)} }

i=0
U{(trace(p), (F,en(p),1)) |
Ai

p= {(ci,sﬁ == <q+1,s’1>} is strongly fair mod:}):[.
i=0

00

The denotational characterization of this semantic function proceeds in the same manner
as in previous chapters. In particular, most of the semantic operators can be defined as in in
Section 3.3 and Subsection 4.5.3, with the only difference being the more liberal interpretation
of the predicateomposabléand the subsequent effects on traces).

For boolean expressiotswe define
Thb] = {((s.€,9), (F,0,£)) | (s,tt) € B[b] & F € Pin(8)}],

so that each trace if[[b] represents a sequence of idle steps, at least one of which occurs in
a state that satisfids

The infinite quasi-computations afvait b then ¢ are simply infinite sequences of idle
transitions from states that fail to satisfy the boolean expres&si®hus the closed set of infinite
traces ofawait b then c can be given b)(Th[[b]]‘*’)I. The command’s finite quasi-computations
reflect the intended atomicity of the commatidafter some finite sequence of idle steps in

7.3 Strongly Fair, Hybrid-Trace Semantics 139

which b is not satisfied, the commands executed atomically from a state satisfylmgrhus
the command’s closed set of finite traces can be defined by

(Th[-bl*;{{(s&.9), (F.E,£)) € Tlc] | (s tt) € B[]},
which (due to stuttering) is equivalent simply to
{{(s,8), (F,E,£)) € Tu[c] | (s,tt) € B[b]}].
It follows that

Thllawait b then] = (Ta[b]®)U{((s,&.S), (F.E,£)) € Tn[c] | (s, tt) € BIb]}!.

There are two types of parallel composition for the hybrid communicating processes: the
state-based compositian ||| c2, whereby the components communicate with one another via
shared memory; and the message-based compositjos, whereby the components commu-
nicate with one another via synchronous message passing. Both types of fair parallel composi-
tion can be defined on traces (and trace sets) through the introduction of fair-merge relations on
triples of traces. We have already seenftiamergerelation for the message-based communi-
cation in Chapters 3 and 4, which we again’usedefine message-based parallel composition
on hybrid trace set$; andTs:

T1||T2 = {(I) | ¢1 S Tl & ¢2 S T2 & mergeablé(bl,(bZ) & (¢1,¢27¢) € fairmerg@'

We can likewise define a relatidairmerge, C ® x ® x ®, whose triples represent fair
interleavings of steps made by processes that share a common state. Because each process
alters the shared state, these triples do not need to propagate states in the way that the triples
for message-basddirmergedo. Instead, we can define these triples using only trace concate-
nation, which performs the necessary bookkeeping operations on the contextual components
of traces.

The sebothy, represents the interleavings of steps that occur while both components remain
active. Intuitively, if the command; can perform a finite transition sequence represented by
¢1 and the command, can perform a finite transition sequence representeghbbyhen the

1To be precise, we need to extend the underlying operatidgifisanda |3 to traces with intermediate state
changes. However, these changes are straightforward: for exarmpte, (i€, Ao,) (S1,A1,9]) - - - (S, Ak, S) and
the statesis disjoint froma, then we define

alles= (SoUS, Ao, HUS) (S1US A1, S US) ... (SkUS Ak, S US).

Similarly, we definex ||B = (a|&)(B]]€s), wheresandt are the final state af and initial state of3, respectively.
The tracen || 3 again represents the stepwise synchronizatianarfidf3.

140 Hybrid Communicating Processes

parallel command; ||| c; can perform the corresponding finite transition sequences represented
by ¢1¢02 anddo¢d1. We therefore define the sedth, as follows:

bothy = {(¢1,92,0192), (d1,02,9201) | d1,92 € Pfin}.

Once one component has terminated successfully, the remaining component may proceed un-
interrupted. Such situations are captured by thesey, whose triples correspond to the steps
taken by one component after the other component has terminated. leattipgesent the null

trace, we define:

ongy= {(¢1,£7¢1)’ (3,¢1,¢1) | (I)l € (D}

We then defindairmerge, = botH, U both,- oney. The triple(¢,¢’, W) is in botHg, if and
only if the traces, ¢’, andy can be written as infinite concatenations of finite nonempty traces

é=0d0d19203 ..., o' = d71 ¢ 03 ..., W=oPrPoys ...,

such that eacly; is eitherid; or ¢/¢i. Such triples represent the interleaving of two infinite
traces. Likewise, the triplgh, ¢’,) is in bott, - oney, if and only if the trace®, ¢, andy can
be written as finite concatenations

d=0dod1d203 ... on, ¢ = 010203 ... 0p, W=Wo W1 W23 ... Yn,

such that eaclp;, ¢; andy; (for i < n) is a nonempty finite trace, at least onepafand¢y, is
the null trace, and eaap is eitherd;¢; or ¢;d;.

Finally, before defining state-based parallel composition on trace sets, we introduce a bi-
nary predicaténterleavabléd s, d) that indicates when the tracgs andé, can be interleaved
meaningfully (i.e., when they respect each other’s fairness constraints). Following the criteria
specified in Definition 7.2.1, we define the predicatierleavabléds, ¢») for hybrid traces

d1= (0, (F1,E1,Ry)) andd, = (B, (F2, E2,Rp)) as follows:
interleavabléd, ¢2) <= (Ry=1£) or (Ro=£) or (FiNvis(az) =0 & FNvis(ay) = 0).

A finite trace can always be interleaved with any other trace. Moreover, two infinite tpaces
and¢, can be interleaved as long as neither trace uses infinitely often a direction that appears
in the other’s fairness set. We then define

T To={0|d1 €T & 2 € T2 & interleavabléd1,d2) & (d1,02,0) € fairmerga,},

so thatTn[cs || c2] = (Thllea I Taez])!-

In summary, we present the following complete denotational characterization of the se-
mantic functionl,. Other than the newly introduced clauses for the shared-variable constructs
await b then candcy ||| c2, this characterization looks identical to that given for the busy-waiting
semanticd gpin Subsection 4.5.3. Once again, the true differences are the underlying interpre-
tations of the semantic operators: in particular, the semantic operators have been extended to
operate on sets whose traces may contain intermediate state changes.

7.4 Full Abstraction for the Behavior W

141

Definition 7.3.3 The trace semantic functiol, : Com — TPI(CD) is defined by:

Th(skip]
Th[li==€]

Thlcs;c2] =

Th[[if b then c; else co]] =
Th[while bdo c]] =
Th[[await b then c]] =

Thl[hA] = {((s hn, [sfi = n)), (F, {h?}. £
{(a,(F,{h?}.1)) | a € {(s.&,5)°|i € dom(s)}* & F 2 {h?}}]

= {((s,&,9),(F,0,£)) | s€ S& F € Pin(8)}!
= {((s,&,[gli=n]),(F,0,1)) |
| C do
T

fv[[i:=€
call; Thllcal)).
b; Ta[ca]l U Ta[—b]); ThIC2])!
((Twllb]l; Talc])®U (Thlol); Thlcl)*; Ta[—b])]
(Talb]®)fU{{(s,€,S), (F,E,£)) € Tullc] | (s,tt) € Bb},
{))|iedom(s) & neZ & F € Piin(A)}

m(s) & F € Pin(8) & (s,n) € E[€]}]
(Th

I
(Thl

Thlh'e] = {((s,hin,s). (F, {h}.£)) | (s.n) € E[€] & F € Pn(A)}]

Th[g—c] =
Th[gc Ogey]
Thlca] c]
Thlcallcz]

| =
| =
| =
Thlle\h] =

U{{a, (F, {h}, 1)) | a € {(s.&,5) | fv[e] C dom(s)}* & F 2 {h?}}]

(Tllg]; TalcD)!
(Thlgcal O Thlgel)!
(Thllcal |l Tullca)?
(Thllca]l Trllczl)!
(Thllc]\h).

7.4 Full Abstraction for the Behavior W

The semantidy, is fully abstract with respect to the busy-waiting trace behalointroduced

in Definition 7.3.1. Indeed, the full abstraction proof captures the flavor of the full abstraction
proofs of both the transition trace semantics for shared-variable programs and the strongly fair
trace semantics for communicating processes.

Proposition 7.4.1 The closed trace semanti€g is inequationally fully abstract with respect
to W : for all commands c and’¢

Thllc] € Ta[c] <= YP[—].W[[P[c]] € M [W[CT]].

142 Hybrid Communicating Processes

Proof: The forward implication follows from the compositionality of, the monotonicity of
operations on trace sets, and the fact that, whgn] C Th[cT],

WIP[c]] = {states(a)|a e Ty[P[c]] & chans(a) = {€}}
U {states(a) | 3(a, (0,E,i)) € Th[P[c]] - chans(a) = {€} & intfree(a)}
C {states(a) | a € Ty[P[C']] & chans(a) = {e}}
U {states(a) | I(a, (0,E,1)) € Th[P[c]] . chans(a) = {€} & intfree(a)}
— WIP].

For the reverse implication, consid@r= (a, (F,E,R)) in Ty[[c] — Th[c]. Because the
analysis differs only slightly depending on whetlgers finite or infinite, we consider

both cases together. The distinguishing context we construct combines features from the
full abstraction proofs for both strongly fair communicating processes and weakly fair
shared-variable programs.

Let (a, (F1,E1,R)),...,(a, (Fn,Em,R)) be the (necessarily finite number of) mininoal
traces inT4 [¢']. We define setX andY of directions, and a simple conte®{—], as
follows:

e If R= £, then we can assume without loss of generality fhat 0 for eachi.
Closure under superset ensures that E for eachi < m; thus for each we can
choose a directiod; € E; —E. We letX =0 andY = {d; | 1 <i < m}, and we let
Q[—] be the contexQ[—] = while true do [—].

e If R=1, then Lemma 4.4.5 ensures a conflict-free resoluliai T[] for ¢. We
define

X={d|1<i<m& R(¢i) = (d,F)},
Y={di|1<i<m& R(¢i) = (di,E)}.

BecauseR is conflict-free, it follows that-match(X,Y). We letQ[—]| be the simple
context[—].

Intuitively, the contex@Q is the minimal context necessary for generating an infinite com-
putation from the trace. Every direction inX represents a direction that is enabled by
a permanently blocked process along some quasi-computat@ft'df Every direction
inY is a direction enabled infinitely along some quasi-computatid@[df and yet en-
abled only finitely often along (or ¢%, if a is finite). Moreover, every computation of
Q[c/] with the simple trace (or a®) must have an infinitely enabled directionYobr a
blocked process with an enabled directiorXin

7.4 Full Abstraction for the Behavior W 143

Let x andy be fresh identifiers, and define sets of “matching guards’XfandY as
follows:

Gy = {hi0 | h?e X}U{hX |hl € X}, G, ={h0|h?eY}U{h |h €Y}

In the full abstraction proofs of Chapter 4, this analysis sufficed for constructing the
distinguishing context: we place&g@—] in parallel with command&uess(H, G,,f1) and
>gec, 9 — f2:1=1, and onlyQ|c] could perform the transitions of without setting either

flag f1 or f2 to 1. However, we now also have to consider the the possibilitycthraay

not be interference-free. For example, if

o= (So,)\o, %) (5177\17 d_L) e (Skv)\kv #()7

our distinguishing context must provide a way to “fill in the gaps” and convert each state
S intoSi11.

Let xq,...,Xy be the free identifiers af andc’, and lethy, ..., h¢ be the channel names
appearing irc. Without loss of generality, we can assume that each state appearing along
a is defined on precisely the identifiexg xo, ... ,X,. Letf1,f2,ct,t,y1,---,Yn,21,--- ,2Zn

be fresh identifiers.

Let X:=y abbreviate the command:=y;;X2:=Y2; - ; Xh:=Yn, let x:=0 abbreviate the
commandk;:=0;x2:=0;- - - ; X,:=0, and letx= ¥y represent the boolean expression

(x1=Y1) & (X2=Y2) & *-+ & (Xn =Yn).
Let Choose(¥,t) be the following command:
y=0;t:=0; (t=1
|| whilet=0doyy:=y1+1
I whilet =0do y2:=y; +2

-
|| while t =0do yn:=Yn+2
)

Intuitively, the commandhoose(¥,t) can “guess” states: for every staeith domain
{X1,..., %}, Choose(¥,t) has a successfully terminating computation whose final state
assigns to variablg the value ofx; in states.

Finally, we construct the following commaridoseGap(X,V,Z t,ct), which provides the
mechanism to close’s state gaps:

while true do
(Choose(¥,t); Choose(Z,t);
cti=ct+1;
await (X =¥) then x:=y

)

144

Hybrid Communicating Processes

Intuitively, this command has a computation that, onitftsteration through the loop,
guesses the values ¢ki,... ,xn} in states (storing them in{y1,...,yn}) and in state
S+1 (storing them in{z, ... ,z,}), waits until states is reached, and then changes the
state froms to 541 atomically. The identifiect indicates which state gap is being closed:
ct changes value fromto i + 1 on the iteration that closes the gap between statesd
S+1-

We can now define the distinguishing contBxt-| as follows:

(Q[—] ||| CloseGap(X,¥,Z t,ct)) || Guess(H,G,f1) || g— f2::1)] \hp\---\hg.

gely

M [[P[c]]] has a behavior correspondingatan which neitheifl norf2 is ever setto 1. In
contrast, every behavior & [P[c]] corresponding tor must eventually set at least one
of the flagsf1 andf2 to 1. .

This full abstraction result is meaningful not only for what it says about the utility of the

semanticd, but also for what it says about the robustness and applicability of the general trace
framework. By combining two fully abstract semantics for different languages in a natural way,
we construct a third semantics that is fully abstract for a hybrid language based on the original
two languages. Moreover, the full-abstraction proof for the hybrid semantics arises as a natural
combination of the two original full-abstraction proofs.

Chapter 8

Conclusions

In this dissertation, | have described a general, trace-based, denotational framework for mod-
eling fair communicating processes. In this chapter, | discuss some connections between this
framework and related work, as well as some directions for future work. | conclude with a
summary of the contributions of this thesis and some final thoughts.

8.1 Related Work

The framework that | have described builds on a long history of trace models for concurrency
[Par79, Bro96b, Hoa81, BHR84, BR84, Hen85, Jon87, Rus90, Jos92, JJH90]. In fact, my
fair trace semantics can be viewed as extensions to both the CSP failures model and the CCS
acceptance-tree model for dealing with fair, infinite computations. Of course, | am not the first
to provide extensions for modeling fairness.

For dataflow and asynchronous networks, Jonsson provides a fully abstract trace model
that incorporates assumptions of weak fairness [Jon94]. By modeling channels as transition
systems with their own fairness constraints and limiting use of each channel, he ensures that
every process makes progress if enabled infinitely often. Essential for modeling weak fairness
are the assumptions that each channel is used for input by at most one node, that each channel
is used for output by at most one node, and that no channel is used for both input and output
by any node.

In [Hen87], Hennessy extends acceptance trees with limit points that indicated which in-
finite paths were fair. The notion of fairness incorporated into this semantics is a form of
unconditional fairness: an infinite computation is considered fawéryprocess makes in-
finitely many transitions along that computation. In particular, certain commands—such as
(skip || while true do skip)—do not have any fair computationskip cannot make infinitely

146 Conclusions

many transitions andhile true do skip can never terminate. Brookes adds infinite traces to
Hoare’s trace semantics [Hoa81] to model fair, infinite computations [Bro94], adapting Park’s
fairmerge operator [Par79] to handle the potential of synchronization between parallel com-
ponents. The result of these modifications is a semantics suited for reasoning about a slightly
more liberal notion of fairness: an infinite computation is considered fair if every process either
makes infinitely many transitions or terminates successfully.

Neither of these semantics is sufficient for reasoning about more general notions of fairness
in which processes may become blocked, such as weak or strong process fairness. The problem
is that synchronous communication requires the active cooperation and participation of more
than one process: a process’s ability to make progress can depend on the processes in parallel
with it and their willingness to synchronize. As a result, to support reasoning about these
types of fairness, it is essential to augment traces with additional information about the types
of communications possible along the computation.

This observation, which underlies my framework, also provides a foundation for Daron-
deau’s fully abstract, strongly fair semantics for a stateless, CCS-like language [Dar85]. In this
semantics, the meaning of a term is a sdtisfories each having forngd, p, d): p is a (finite or
infinite) trace of a program’s interactions with its environmens, a set containing the actions
on which processes are blocked, ah@vhich is disjoint fromd) is a set containing the actions
enabled infinitely often (but not involved in blocking) along the tracesenerally speaking,
an infinite tracela, (F,E, 1)) in my framework corresponds to a histgify, o, (E — F)).

| discovered Darondeau’s work late in the process of writing this dissertation, two years
after first developing the strongly fair semantics of Chapter 3. Although developed indepen-
dently, my framework places Darondeau’s work in a more general light. In addition to its
statelessness, the language he considers has no notion of sequential composition and only a
very limited form of recursion based on iteration: the iterative constructs generate only infinite
computations, and no other language constructs can appear in the context of these iterative
constructs. Moreover, my development makes explicit the underlying concept of parameter-
ized strong fairness, which can be used either to aid operational reasoning or to ease the task
of developing semantics for other notions of fairness. In contrast, Darondeau provides hints of
the source of the fairness-related s&@ndd, but he never presents an exact explanation of
what these sets represent. As a result, it is unclear how he would extend his approach to other
notions of fairness.

8.2 Directions for Future Work

Throughout this dissertation, we have focused on a simple language of communicating pro-
cesses. However, we have omitted several common language features, including recursion and
more general message types. We now consider these features briefly in turn.

8.2 Directions for Future Work 147

To give semantics to loops, we introduced finite and infinite iteration on trace sets. Al-
though we did not state so explicitly, the meaning of the Ioahgle b do ¢) could be formulated
equivalently as the greatest fixed point of the functional

F(X) = ([b]; [el); X L [-b],

as in [Bro96b]. Likewise, for general recursive constructs suae@s.t, we should again be
able to use greatest fixed points, using functionals of the general form

F'(X) = [t] p[X/X],

wherep is a fixed environment for the free variablestafther than the recursion variab¥e
However, this type of characterization not only requires the introduction of environments (as in
“standard” denotational semantics) but also obscures the understanding of the role of fairness
constraints. For example, how do the fair computatior{seafx.a.x)|| (rec x.b.x) compare with

the fair computations afc x.(a.x||b.x)? They share the same finite prefixes, and yet the latter
generates significantly more processes dynamically (each with its own fairness constraints).

The only types of messages allowed in the simple language we have considered are integer
values, but it is easy to imagine more general message types. For examptecdluellus
[MPW92] allows the transmission oflameswhich may refer to links (i.e., channels) between
processes; similarly, there are higher-order calculi that allow processes themselves to be sent
as messages [Tho89]. In these situations, messages can alter the communication topology
dynamically. Related to this situation is the potential of procedures that accept channel names
or processes as parameters. In both cases, an accurate semantics must account for the dual
role of channel names: they not only refer to the communication links between processes, they
also provide necessary information about fairness constraints. | expect that environments that
reflect this dual role of channels can be introduced in a straightforward way.

There are several results that classify the relative expressive power of various fair-merge
[PS88b, PS88a] and fair-choice [MPS88] operators for dataflow networks, as well as the power
of different delay operators for SCCS [CP91]. A similar question arises in the setting of com-
municating processes. As mentioned in Chapter 2, there are programs that terminate under one
notion of fairness that do not necessarily terminate under other notions of fairness. However,
is the hierarchy also one of implementability? For example, can a weakly fair scheduler be
used to implement a strongly fair scheduler, and (if so) what type of language features are
necessary?

Throughout this dissertation, | have hinted how the trace framework might support rea-
soning about fair behavior, but the question remains: how does this framework help the prac-
titioner? Fairness is an abstraction introduced to support reasoning about program behavior.
While the framework provides a way to model fairness compositionally, the model is useful
only if it helps the task of reasoning about programs. An important open question is: what

148 Conclusions

type of insight does this framework provide the programmer, either directly or indirectly? Are
there particular structuring techniques that facilitate reasoning about programs under fairness
assumptions? For example, we saw that modeling weak fairness required a significant amount
of program semantic structure: are there certain classes of programs for which modeling weak
fairness become simpler?

8.3 Thesis Contributions

In this dissertation, | have presented a general framework for constructing denotational seman-
tics that incorporate fairness assumptions for communicating processes. The primary units of
this framework ardair traces which are abstract representations of program computations.
The meaning of a program is the set of fair traces that correspond to its fair computations;
the semantic operators on trace sets correspond intuitively to the operational behavior of the
program constructs. The use of traces provides an intuitive connection between a program’s
operational behavior and its semantic meaning.

This framework is the primary contribution of this thesis: it provides a general, extendible,
modular approach for constructing semantics that support reasoning about fair program behav-
ior. To demonstrate the robustness of the framework, | have focused on a single language and
constructed for it several semantics that incorporate different types of fairness assumptions. In
the process, | developed:

e Several fully abstract, strongly fair denotational semantics for state-based communicat-
ing processes.

¢ A sound channel-fair denotational semantics for communicating processes.
¢ A sound weakly fair denotational semantics for communicating processes.

| also constructed a fully abstract, strongly fair semantics for a language that combines both
synchronous message passing and shared-variable parallelism. Figure 8.1 summarizes these
semantics, highlighting the structure of the fair traces for each semantics.

Through these semantics, the framework also provides the following secondary contribu-
tions:

e The introduction and formalization garameterized fairnessvhich provides a compo-
sitional characterization of fairness.

The definition of parameterized strong process fairness, and the related parameterized
definitions for channel fairness and weak process fairness, were introduced to permit

a denotational characterization of fairness. However, they are also suitable for purely

operational reasoning, allowing syntax-directed reasoning about program behavior.

8.3 Thesis Contributions 149

__________ Communicating Processfs

CP with Shared Variabli

strongly fair weakly fair strongly
T (a,(FER) (a,(5.6,R) channel-fair
strongly fair (o, (F,H,E,R))

(@,(F.ER)

a : interference-free traces a : interruptible traces
F,E : sets of directions H : sets of channels J: set of sets of directions
€ : sequence of sets of directions/channels

Figure 8.1: Summary of semantics in the fair-trace framework.

¢ Implicit comparison of several different fairness assumptions.

When taken together, the strongly process-fair semantics, the strongly channel-fair se-
mantics, and the weakly process-fair semantics provide an interesting side-by-side com-
parison of some of the notions of fairness commonly considered for communicating
processes. Because these semantics have all been constructed for the same language,
they highlight both the differences in semantic structure that these various assumptions
require and the effects that these fairness assumptions have on program behavior.

In particular, the channel-fair and weakly fair semantics require significantly more struc-
ture than the strongly fair semantics does, reflecting their lack of equivalence robustness
[AFK88]. The need to keep track of the communications enabled at each step not only
complicates the semantic models but also suggests that perhaps these notions fairness do
not provide useful and practical abstractions to the programmer.

e Fully abstract semantics for strong process fairness.

The full-abstraction results validate the suitability of the strongly fair traces for reasoning
about strongly fair behavior. In particular, they indicate that the strongly fair traces

provide precisely the necessary information for reasoning about strongly fair program
behavior in a compositional, syntax-directed way.

The fully abstract semantics also provide interesting technical results, indicating that
fairness can be modeled accurately in spite of the expected difficulties.

150 Conclusions

8.4 Final Comments

Fairness provides an important abstraction to the programmer, but the problems inherent in
modeling fairness have prevented its widespread use in reasoning formally about program be-
havior. The introduction of fair traces helps bridge this gap: they permit operational intuition to
guide formal reasoning. Moreover, the notion of parameterized fairness provides an accessible
way to reason about fair behavior in a systematic, syntax-directed way.

Bibliography

[AFK88] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in lan-
guages for distributed programministributed Computing2(4):226-241, 1988.

[AO91] K. R. Aptand E.-R. OlderogVerification of Sequential and Concurrent Programs
Springer-Verlag, 1991.

[AP86] K. R. Aptand G. D. Plotkin. Countable nondeterminism and random assignment.
JACM 33(4):724—767, October 1986.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processe3ACM 31(3):560-599, July 1984.

[BO95] Stephen Brookes and Susan Older. Full abstraction for strongly fair communicating
processes. In S. Brookes, M. Main, A. Melton, and M. Mislove, editBreceed-
ings of thel1™™ Annual Conference on Mathematical Foundations of Programming
Semanticsvolume 1 ofElectronic Notes in Computer Scienédsevier, June 1995.

[BR84] S. D. Brookes and A. W. Roscoe. An improved failures model for communicating
processes. In S. D. Brookes, A. W. Roscoe, and G. Winskel, edBersjnar on
Concurrency volume 197 ofLecture Notes in Computer Sciengages 281-305,
Pittsburgh, PA, July 1984. Springer-Verlag.

[Bro94] Stephen Brookes. Fair communicating processed Giassical Mind: Essays in
Honour of C.A.R. Hoarechapter 4. Prentice-Hall, January 1994.

[Bro96a] Stephen Brookes. The essence of Parallel AlgdPrérceedings of th&1™" Annual
IEEE Symposium on Logic in Computer ScienE&E Computer Society Press, July
1996.

[Bro96b] Stephen Brookes. Full abstraction for a shared-variable parallel langnégea-
tion and Computationl27(2):145-163, June 15, 1996.

152 Bibliography

[Cha78] Ashok K. Chandra. Computable nondeterministic function®rdeeedings of the
19" Annual Symposium on Foundations of Computer Scjeramges 724—-767. IEEE,
1978.

[CP91] Carol Critchlow and Prakash Panangaden. The expressive power of delay operators
in sccs.Acta Informatica 28:447-452, 1991.

[Dar85] Philippe Darondeau. About fair asynchronyTheoretical Computer Science
37(3):305-336, 1985.

[Dij88] Edsger W. Dijkstra. Position paper on “fairness’Software Engineering Notes
13(2):18-20, April 1988.

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In J.W. de Bakker and J. van Leeuwen, edi-
tors, Proceedings ' ICALP, number 85 in LNCS, pages 264—277. Springer-Verlag,
1980.

[Fra86] Nissim FrancezFairness Texts and Monographs in Computer Science. Springer-
Verlag, 1986.

[HdBR94] E. Horita, J. W. de Bakker, and J. J. M. M. Rutten. Fully abstract models for
nonuniform concurrent languagesiformation and Computatiqri15(1):125-178,
November 15, 1994.

[Hen85] M. Hennessy. Acceptance tre@8CM, 32(4):896-928, 1985.

[Hen87] Matthew Hennessy. An algebraic theory of fair asynchronous communicating pro-
cessesTheoretical Computer Scienc#9:121-143, 1987.

[Hoa78] C. A. R. Hoare. Communicating Sequential Proces<e8CM 21(8):666—-677,
August 1978.

[Hoa81] C. A.R. Hoare. A model for communicating sequential processes. Technical Report
PRG-22, Oxford University Programming Research Group, Oxford, England, 1981.

[Hoa85] C. A. R. HoareCommunicating Sequential Process8eries in Computer Science.
Prentice Hall, 1985.

[INM84] INMOS Limited. The Occam Programming ManuaPrentice-Hall International,
1984.

[JJH90] He Jifeng, M. B. Josephs, and C. A. R. Hoare. A theory of synchrony and asyn-
chrony. InProceedings of the IFIP Working Conference on Programming Concepts
and Methodspages 459—-78. North-Holland, 1990.

Bibliography 153

[Jon87] Bengt JonssorCompositional Verification of Distributed Systen®hD thesis, Up-
psala University, 1987.

[Jon94] Bengt Jonsson. A fully abstract model for dataflow and asynchronous networks.
Distributed Computing7(4):197-212, 1994.

[Jos92] Mark B. Josephs. Receptive process thedeya Informatica29(1):17-31, 1992.

[KdR83] R. Kuiper and W. P. de Roever. Fairness assumptions for CSP in a temporal logic
framework. In D. Bjgrner, editoiRroceedings of the IFIP Working Conference on
Formal Description of Programming Concepts ; plages 159-167. North-Holland,
1983.

[Kwi89] M. Z. Kwiatkowska. Survey of fairness notionsiformation and Software Technol-
ogy, 31(7):371-386, September 1989.

[Lam83] Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editéwrmation
Processing 83: Proceedings of the IFIP 9orld Congresspages 657—668. IFIP,
North Holland, September 1983.

[LPS81] D.Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of
concurrent termination. In O. Kariv and S. Even, editétgceedings 8 ICALP,
number 115 in LNCS, pages 264-277. Springer-Verlag, 1981.

[Mes94] Message Passing Interface Forum. MPI: a message-passing interface statetard.
national Journal of Supercomputer Applications and High Performance Computing
8(3/4):169-416, 1994.

[Mil75] Robin Milner. Processes: A mathematical model of computing agents. In H. E. Rose
and J. C. Shepherdson, editarsgic Colloquium 73 volume 80, pages 157-173.
North-Holland/American Elsevier, 1975.

[Mil77] Robin Milner. Fully abstract models of typed lambda-calctlheoretical Computer
Science4:1-22, 1977.

[Mil80] Robin Milner. A Calculus of Communicating Systemslume 92. Springer-Verlag,
1980.

[Mor68] James H. MorrisLambda-Calculus Models of Programming Languad®tD thesis,
Massachusetts Institute of Technology, 1968.

[MP83] Zohar Manna and Amir Pnueli. How to cook a temporal proof system for your pet
language. IrProceedings of Tenth ACM Symposium on Principles of Programming
Languagespages 141-154, 1983.

154

Bibliography

[MPS88] David McAllester, Prakash Panangaden, and Vasant Shanbhogue. Nonexpressibility

of fairness and signaling. In $9Annual Symposium on Foundations of Computer
Sciencepages 377-86, 1988.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,

[OL82]

[Par79]

[Plo83]

[PS88a]

[PS88b]

[Rus90]

[Sto88]

[Tho89]

[Unigo]

I. Information and Computatiqri00(1):1-40, September 1992.

Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent pro-
grams.ACM Transactions on Programming Languages and Sys#{85455-495,
July 1982.

D. Park. On the semantics of fair parallelism. In D. Bjgrner, editostract Software
Specificationsvolume 86 ofLecture Notes in Computer Sciengages 504-526.
Springer-Verlag, 1979.

G. D. Plotkin. An operational semantics for CSP. In D. Bjgrner, edtaceedings
of the IFIP Working Conference on Formal Description of Programming Concepts -
II, pages 199-225. North-Holland, 1983.

Prakash Panangaden and Vasant Shanbhogue. Mccarthy’s amb cannot implement
fair merge. InProceedings of th&!" Conference on Foundations of Software Tech-
nology and Theoretical Computer Scienpages 348-63. Springer-Verlag, 1988.

Prakash Panangaden and Eugene W. Stark. Computations, residuals, and the power
of indeterminacy. pages 439-54, 1988.

James R. RusselFull Abstraction and Fixed-Point Principles for Indeterminate
Computation PhD thesis, Cornell University, April 1990. Available as TR 90-1120.

Allen Stoughton. Fully Abstract Models of Programming LanguageResearch
Notes in Theoretical Computer Science. Pitman Publishing, London, 1988.

Bent Thomsen. A calculus of higher order communicating systentolteedings
of Sixteenth ACM Symposium on Principles of Programming Langupgges 143—
54, 1989.

United States Department of Defen$&eference Manual for the Ada Programming
Language 1980.

