
A Denotational Framework for
Fair Communicating Processes

Susan Older

December 1996
CMU-CS-96-204

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
Stephen Brookes, Chair

Edmund Clarke
Jeannette Wing

Prakash Panangaden, McGill University

Copyright c
 1996 Susan Older

This research was sponsored in part by the Office of Naval Research under Grant No. N00014-92-J-1298. The
views and conclusions contained in this document are those of the author and should not be interpreted as repre-
senting the official policies, either expressed or implied, of ONR or the U.S. Government.

Keywords: Denotational semantics, fairness, communicating processes, traces, concur-
rency, full abstraction.

For my parents, who refereed my earliest discourses on things (un)fair

iv

Abstract

The behavior of a parallel system depends not only on the properties of the in-
dividual components running in parallel, but also on theinteractionsamong those
components. These interactions in turn depend on external factors (such as the rel-
ative speed of processors or the particular scheduler implementation) whose details
can be complex or even unknown. By introducing appropriatefairness assump-
tions—which, roughly speaking, states that every sufficiently enabled component
eventually proceeds—we can abstract away from these details without ignoring
them completely. However, modeling fairness for communicating processes is es-
pecially difficult: synchronization requires the cooperation and active participation
of multiple processes, and hence the enabledness of a process depends on the abil-
ity of other processes to synchronize with it.

This dissertation introduces a general framework for modeling fairness for
communicating processes, based on the notion offair traces. Intuitively, a fair
trace is an abstract representation of a fair computation, providing enough struc-
ture to capture the important essence of the computation (e.g., the sequences of
states encountered or the communications made along it) as well as any contextual
information necessary for compositionality. Within this framework, the meaning
of a command is simply the set of fair traces that correspond to its possible fair
computations. For each construct of the language, we define a corresponding op-
eration on trace sets that reflects its operational behavior.

The use of traces provides a strong connection between the language’s opera-
tional semantics and its denotational semantics, allowing operational intuition to
guide formal, syntax-directed reasoning. Moreover, this trace framework is re-
markably robust. By varying the structure of the traces, we can construct several
different semantics that reflect different types of fairness assumptions for the same
language of communicating processes.

vi

Acknowledgments

I arrived at CMU with only vague ideas of what I was getting myself into: I had no research
experience and knew only that CMU had a “good” computer-science program. To my good
fortune, I found a wonderful advisor and mentor in Stephen Brookes. Steve was extremely
patient as I developed the necessary foundations for doing research, giving me both encour-
agement and the space to figure things out on my own. What I know about research I learned
from him.

I thank the other members of my committee—Ed Clarke, Jeannette Wing, and Prakash
Panangaden—for reading my dissertation in pieces and on short notice. Despite these working
conditions, they provided me with several good suggestions and insightful comments. I also
thank Prakash for fitting my defense into his busy traveling schedule.

Many people offered their friendship and helped make my years in Pittsburgh enjoyable.
Even during the most stressful times, my officemates—Maria, Matt and Sasha—made coming
into the office a pleasant prospect, providing advice, commiseration, and plenty of laughter.
The Brew Crew meant many evenings of good beer and cider and conversation; extra thanks
to Gary and Bonnie for letting us destroy their kitchen on a weekly basis. The Cache Cows
endured an occasionally volatile coach and provided a great excuse to put work aside and
get some fresh air; thanks to Jim for taking over the Mad Cows for one final season. Other
diversions through the years were provided by Bob, who organized summer croquet games,
and Wayne, who—despite his protestations of innocence—led many of us astray as necessary.
Phoebe and James (independently) gave me many pep talks, for which I am most appreciative.
Finally, Jonathan provided both technical and (far more importantly) emotional support on a
daily basis: I thank him with all my heart.

vii

viii

Contents

1 Introduction 1

1.1 The Case for Fairness . 1

1.2 Fairness: Complications and Criticisms 2

1.3 Thesis Scope . 4

1.3.1 Thesis approach 4

1.3.2 Thesis contributions . .. 6

1.4 Organization of the Dissertation . 7

2 Communicating Processes 11

2.1 A Language of Communicating Processes 11

2.1.1 Syntax . .. 11

2.1.2 Operational semantics .. 14

2.1.3 Processes .. 17

2.2 Fairness for Communicating Processes . 18

2.2.1 Process fairness 19

2.2.2 Channel fairness 22

2.2.3 Guard fairness 24

2.2.4 Communication fairness. 25

3 Strong Process Fairness 29

3.1 Parameterized Strong Fairness . 29

3.2 Strongly Fair Traces. 35

3.3 Strongly Fair Trace Semantics .. 37

3.4 Examples . 46

ix

4 Full Abstraction for Strong Fairness 53

4.1 Soundness and Full Abstraction. 54

4.2 Closed Trace Sets . 55

4.3 Computational Feasibility 61

4.4 Full Abstraction for the BehaviorM . 65

4.5 Other Notions of Program Behavior . 71

4.5.1 Simple trace behavior .. 72

4.5.2 Stuttering and mumbling. 73

4.5.3 Busy waiting 76

4.5.4 Communication traces .. 79

5 Strong Channel Fairness 85

5.1 Channels, Names, Durations, and Scopes . 85

5.2 Parameterized Channel Fairness . 87

5.3 Channel-Fair Traces. 91

5.4 Channel-Fair Trace Semantics . 94

5.5 Lack of Full Abstraction . 106

6 Weak Process Fairness 109

6.1 Parameterized Weak Fairness . 109

6.2 Weakly Fair Traces. 116

6.3 Weakly Fair Trace Semantics . 117

6.4 Final Comments onTw . 123

7 Hybrid Communicating Processes 125

7.1 A Language of Hybrid Processes. 126

7.1.1 Syntax . .. 127

7.1.2 Operational semantics .. 128

7.2 Fairness for Hybrid Processes . 131

7.3 Strongly Fair, Hybrid-Trace Semantics 135

7.3.1 A busy-waiting behavior. 135

x

7.3.2 Hybrid traces 136

7.3.3 Closure conditions 137

7.3.4 Hybrid trace semantics .. 138

7.4 Full Abstraction for the BehaviorW . 141

8 Conclusions 145

8.1 Related Work . 145

8.2 Directions for Future Work . 146

8.3 Thesis Contributions . 148

8.4 Final Comments . 150

xi

xii

List of Figures

2.1 Inductive definition offv[[c]]. 13

2.2 Inductive definition offc[[c]]. 13

2.3 The predicateterm. 14

2.4 Transition rules for sequential constructs. 15

2.5 Transition rules for guards and guarded commands. 16

2.6 Transition rules for parallel constructs. 16

2.7 The hierarchy of fairness notions for CSP. 19

2.8 The processesQi . 20

2.9 Channel fairness example. 24

2.10 The processP0. 25

2.11 The processQ0. 26

4.1 The programGuess(H;Gx; f1). 70

4.2 Some program equivalences validated byT †
s 71

5.1 Inductive definition ofcomms(c;s). 93

5.2 Some program equivalences validated byT †
ch. 108

6.1 The definitioninitsets(c;s). 111

7.1 The predicateterm for hybrid processes. 128

7.2 Axiom and inference rule for the generalized relations
λ

=). 128

7.3 Inference rules for the parallel constructs. 129

8.1 Summary of semantics in the fair-trace framework. 149

xiii

xiv

Chapter 1

Introduction

Reasoning about deterministic sequential programs is a relatively straightforward task: at any
particular instant, there is only one thread of control, and its next action can be determined
solely from the current state. The situation changes dramatically, however, when we start
considering parallel programs. When a system comprises several components running in par-
allel, its behavior depends not only on properties of the individual components but also on the
interactionsamong them. Any attempt to model or reason formally about parallel-program
behavior must take these interactions into account [Mil75]. However, the interactions in turn
depend on external factors, such as the relative speed of processors or the implementation of
the scheduler, whose details can be complex or (in many cases) unknown. As a result, reason-
ing formally about parallel systems often requires abstracting away from these details without
ignoring them completely. One common and useful abstraction, and the subject of this disser-
tation, isfairness.

This chapter provides a brief introduction to the concept of fairness and the reasons for
(and the arguments against) adopting fairness assumptions to reason about the behavior of
parallel programs. It also describes the goal of this dissertation—namely, the construction
of a denotational framework for fair communicating processes—and provides a sketch of the
approach taken. The chapter concludes with a roadmap for the remainder of the dissertation.

1.1 The Case for Fairness

To be precise, fairness is not a single abstraction but rather a collection of abstractions that
all express the same underlying theme:no component should forever be denied its rightful
opportunity to proceed. This simple theme applies to many settings; both Francez [Fra86]
and Kwiatkowska [Kwi89] provide extensive surveys. In each setting, the role of the fairness
assumption is to simplify the task of reasoning about program behavior.

2 Introduction

When we reason about programs, we typically want to prove that a program satisfies some
combination ofsafetyandlivenessproperties. Safety properties are those properties that state
that “nothing bad” ever happens: deadlock-freedom, data consistency, and mutual exclusion are
all examples of safety properties. Safety properties correspond to program invariants: proving
that a program satisfies a safety property amounts to showing that every reachable state satisfies
the necessary invariant. As a result, fairness assumptions are not necessary for proving safety
properties.

In contrast, liveness properties state that “something good” eventually happens, such as
termination, the granting of a request, or the occurrence of a particular event. Fairness itself
is a liveness property: the “something good” guaranteed to occur is a component’s eventual
progress. Whereas safety properties represent features of individual states, liveness properties
reflect characteristics ofsequencesof states. As a result, they depend on the particular events
that occur and the order in which those events occur. For example, consider the following
simple shared-variable program:

x:=0;y:=1;(while y 6= 0 do x:=x+1 k y:=0):

To determine whether the program terminates, we need to know how the two parallel subcom-
ponents are scheduled. For instance, if we know that the assignmenty:=0 occurs before the
first evaluation of the conditionaly 6= 0, then we can deduce that the program terminates with
the value ofx set to 0. More generally, if we know that the assignmenty:=0 occurs between the
nth and[n+1]st evaluations of the conditional, then we can deduce that the program terminates
with the value ofx set ton.

What can we deduce about the program’s termination without such detailed knowledge? As
first glance, we can deduce very little: a biased scheduler could prevent the assignmenty:=0

from ever occurring, in which case the program does not terminate. However, because every
reasonable scheduler is fair, we can abstract away from the scheduler details by assuming fair-
ness. Simply knowing that the scheduler is fair—that is, that the scheduler will eventually let
the assignment occur—allows us to deduce that the program terminates. In this case, fairness
allows us to prove a liveness property that we otherwise could not prove. Of course, assuming
fairness leaves us with very little information about the final value ofx: the most that we can
say is that the final value is a nonnegative integer. This example illustrates the phenomenon of
unbounded nondeterminismthat often arises with fairness: although the program is guaranteed
to terminate, there is an infinite number of possible final values forx.

1.2 Fairness: Complications and Criticisms

The underlying theme of fairness is simple yet powerful: by assuming only general features
of a scheduler, we can prove liveness properties of parallel programs. However, this simplic-

1.2 Fairness: Complications and Criticisms 3

ity belies the complexity of reasoning formally about fairness. The well-known relationship
between fairness and unbounded nondeterminism has hampered both operational and denota-
tional accounts of fairness, requiring the use of transfinite ordinals for proof rules and the use
of noncontinuous semantic operators [Par79, AP86]. Moreover, the halting problem for pro-
grams with unbounded nondeterminism isΠ1

1-complete [Cha78], as is predicate-satisfiability
under fairness assumptions [EC80]. The complications inherent to fairness have led some
people to discard it altogether; several arguments have been made against adopting fairness
[Dij88, Hoa78]. We address the most common criticisms here:

� Fairness is an unrealistic assumption, because no scheduler should be expected to gen-
erate all fair computations.

This criticism reflects a common misunderstanding. A fair scheduler does not need to
generateall fair computations; rather, it must generateonly fair computations. A simple
round-robin scheduler is fair, because it guarantees each process an opportunity to pro-
ceed. Indeed, any reasonable scheduler is fair: a parallel system that ignores arbitrary
processes is not much use.

� No finite experiment can distinguish a fair implementation from an unfair implementa-
tion, and hence the distinction between fair and unfair computations is meaningless.

Indeed, there is no way to distinguish a fair implementation from a unfair implementation
simply by looking at some finite portion of a resulting computation: such is the nature
of liveness properties in general. The fact is that we often want to reason about liveness
properties such as the eventual granting of all resource requests or the guaranteed mes-
sage delivery: these properties cannot be determined solely by examining finite portions
of computations either. Even proving termination of deterministic sequential programs
is undecidable, and yet very few would argue that the distinction between terminating
computations and nonterminating computations is meaningless.

� Fairness should not be part of a language definition: it is the programmer’s responsibility
to prove her programs correct without relying on a fair implementation.

Fairness does not need to be part of the language definition to be a useful abstraction.
Indeed, different implementations of the same language may provide different levels of
fairness. However, proving programs correct often involves proving that they satisfy
certain liveness properties, which in turn requires knowing general features or precise
details of the scheduler. Without fairness, the programmer must understand the underly-
ing implementation in detail or write her own scheduler.

In summary, fairness is a useful and often necessary abstraction, in spite of the technical
difficulties that it introduces. Whereas discarding fairness may avoid technical complications,
it does not reduce the complexity of reasoning about parallel programs.

4 Introduction

1.3 Thesis Scope

Communicating processes represent an important (and still relevant) paradigm for parallel-
program implementation in which processes communicate with one another through synchronous
or asynchronous message passing; this paradigm is reflected in (among others) CCS [Mil80],
CSP [Hoa78, Hoa85], occam [INM84], Ada [Uni80], and even the widely accepted MPI (Mes-
sage Passing Interface) standard [Mes94]. In this dissertation, I explore the problem of model-
ing fairness for synchronously communicating processes, developing a denotational framework
that incorporates a variety of fairness assumptions for these processes.

Modeling fairness for communicating processes is more difficult than for shared-variable
programs. In the shared-memory paradigm, processes communicate with one another through
changes to the shared global state. To avoid inadvertent (and inconsistent) simultaneous ac-
cesses to the shared state, shared-memory programs emphasize mutual exclusion. Whether a
given process is enabled depends only on the global state: a process’s ability to make progress
is independent of the status of the processes in parallel with it. In contrast, the emphasis in the
communicating-process paradigm is on synchronization, which requires the active cooperation
and participation of two (or possibly more) processes. As a result, a process’s ability to make
progress is no longer a local property: it depends on the ability of other processes to synchro-
nize with it. No matter how determined a process is to perform a particular communication,
and regardless of how benevolent the scheduler is, the communication can occur only if some
other process can synchronize with it. This dependence on other processes for progress has
important consequences for modeling fairness: determining whether a process is treated fairly
depends on knowing not only what the particular process is trying to do but also on what types
of actions the processes in parallel with it can perform.

Complicating the problem is the number of fairness assumptions that are applicable for
communicating processes. Several different types of fairness have been considered for com-
municating processes (see, for example, [Fra86] and [KdR83]), each one reflecting a different
type of obligation that we might wish to impose on the implementation. For example, in ad-
dition to expecting that every process makes progress, we might require that certain pairs of
processes communicate with one another or that particular communications eventually occur.
Each of these different fairness assumptions affects the allowable program behavior and im-
pacts the corresponding semantic model in some way. Can we construct a semantic framework
that accounts for these different assumptions in a unified way, making only the distinctions
necessary for dealing with the underlying differences in assumptions?

1.3.1 Thesis approach

Traces have long been used to model concurrency [Par79, Bro96b, Hoa81, BHR84, BR84,
Hen85, Jon94, Rus90, Jos92]. In this dissertation, I show that traces can be extended with

1.3 Thesis Scope 5

additional contextual information to support compositional reasoning aboutfair concurrency.
Intuitively, a trace is an abstract record of a program execution, capturing the important aspects
(e.g., communication sequences or state changes) of the execution while abstracting away from
unimportant details such as program syntax. By adding appropriate structure that represents
fairness-related contextual information (e.g., information about the communications that could
have occurred along the computation) to yieldfair traces, we can model the fair behaviors of
communicating processes in a compositional manner.

The contextual components of the fair traces are essential for modeling fairness accurately,
because they provide information about the type of situations in which the given trace rep-
resents a fair computation. However, determining exactly what type of structure these com-
ponents require can be difficult: the extent to which program contexts affect the perceived
fairness of (sub)computations depends on the particular notion of fairness under considera-
tion. Generally speaking, the fair computations of a parallel commandc1kc2 cannot be defined
only in terms of the fair computations ofc1 andc2. The problem is that, because synchronous
communications require the cooperation and participation of more than one process, a given
(sub)computation ofc1 can be either fair or unfair when made part of a larger computation of
c1kc2, depending on what type of synchronization opportunities the componentc2 provides.

As a result, it is necessary to consider “almost fair” computations, which can be considered
fair under certain assumptions (i.e., in certain contexts). By introducing notions ofparame-
terized fairness, we can make precise this notion of “almost fair”. Roughly speaking, these
parameterized forms of fairness capture the features of program contexts that affect the fair
progress of processes, such as the communications enabled along a computation and the types
of communications that blocked processes are trying to perform. These parameterized forms
of fairness are essential for the denotational (i.e., compositional) characterization of fairness.

Once the appropriate structure for the fair traces has been determined, the meaning of a
command is given by the set of fair traces that correspond to its computations. To characterize
this semantic function denotationally, we define operations on trace sets that reflect the oper-
ational behavior of the language constructs. For example, the computations of the sequential
compositionc1;c2 in essence arise from appending computations ofc2 to computations ofc1.
The trace set of the commandc1;c2 likewise can be created by appending traces ofc2 to traces
of c1.

The most difficult language construct to model is parallel composition. Generally speak-
ing, the computations ofc1kc2 arise from merging and interleaving computations ofc1 with
computations ofc2. However, not all pairs of computations can be merged and still reflect
meaningful computations: for example, the progress made by one component may affect the
perceived fairness of the other component’s actions. The role of the fair traces’ contextual
components is to provide information sufficient for determining which merges are meaningful;
we let a predicatemergeableindicate such combinations. It is also important that the merges
of the traces arefair merges[Par79]: a fair merge of tracesϕ1 andϕ2 consumes all ofϕ1 and

6 Introduction

all of ϕ2. To this end, we define a relationfairmerge�Φ�Φ�Φ on fair traces that guarantees
a fair merging and acknowledges the potential of synchronization between components. This
relation must also perform the necessary bookkeeping to maintain accurate information in the
traces’ contextual components. Intuitively, the triple(ϕ1;ϕ2;ϕ) is in fairmergeif and only if
ϕ represents a fair computation that can be obtained by merging the fair computations repre-
sented byϕ1 andϕ2. With these definitions in hand, we define parallel composition on trace
sets in the following way:

T1kT2 = fϕ j ϕ1 2 T1 & ϕ2 2 T2 & (ϕ1;ϕ2;ϕ) 2 fairmerge& mergeable(ϕ1;ϕ2;ϕ)g:

The particular definitions ofmergeableand fairmergevary depending on both the language
and notion of fairness under consideration. However, they play the same roles in each setting.
Indeed, the semantic functions in general are very similar from fairness notion to fairness
notion, because the operational intuition underlying the operations remains the same in each
case; only the bookkeeping operations vary, reflecting their dependence on the trace structure.

In this dissertation, I concentrate on modeling synchronously communicating processes.
However, this description of the framework is general enough to suit other paradigms as well.
Brookes’ transition trace semantics [Bro96b] for shared-variable programs is a simple exam-
ple of this general framework in which no additional contextual information is needed. In
Chapter 7, we see that the framework also accommodates a hybrid language of communicating
processes that includes features of shared-variable parallelism.

1.3.2 Thesis contributions

The primary contribution of this dissertation is the trace framework: it provides a general,
extendible, modular approach for constructing semantics that support reasoning about fair pro-
gram behavior. This framework can be viewed as an extension to existing trace models, iden-
tifying and adding the additional structure necessary for incorporating fairness assumptions.

Throughout this dissertation, I demonstrate the general robustness of the framework by con-
structing several different semantics that incorporate different types of fairness assumptions. In
particular, I focus on a simple language of communicating processes and construct different se-
mantics that incorporate assumptions of strong fairness (every process that is enabled infinitely
often makes progress infinitely often), strong channel fairness (every communication channel
on which communication is enabled infinitely often is used infinitely often), and weak fairness
(every process that is enabled continuously makes progress eventually). The resulting seman-
tics show that the same general approach can be applied for different notions of fairness: the
main differences between the different semantics are the bookkeeping operations necessary for
maintaining the fairness-related contextual information. By comparing these semantics, we

1.4 Organization of the Dissertation 7

can see how differences in fairness assumptions affect the type of semantic structure necessary
for reasoning about program behavior.

In the case ofstrong fairness, this approach yieldsfully abstractsemantics for several nat-
ural notions of program behavior: a semantics is fully abstract with respect to a notion of
observable behavior if it identifies precisely the terms that behave identically in all program
contexts. The full abstraction results reflect the suitability of the chosen contextual compo-
nents for modeling strong fairness: in each of these strongly fair semantics, the contextual
components of the fair traces remain the same.

1.4 Organization of the Dissertation

The remainder of this dissertation proceeds as follows:

� In Chapter 2, I introduce an imperative language of communicating processes that is
based on Hoare’s CSP [Hoa78] and Milner’s CCS [Mil80]. Using this language as a
backdrop, I also discuss and generalize the notions of fairness typically considered for
communicating processes: process fairness, channel fairness, guard fairness, and com-
munication fairness.

The particular syntax and operational semantics are not important from a technical per-
spective. However, they provide a convenient foundation for the technical details of
subsequent chapters.

� In Chapter 3, I describe a denotational semantics that incorporates assumptions ofstrong
process fairness, which requires every infinitely enabled process to proceed infinitely
often.

Because strongly fair computation cannot be characterized in an immediately compo-
sitional way, I first introduce a new notion ofparameterized strong fairnessthat can
be characterized compositionally. This parameterization guides the construction of the
strongly fair trace semantics. The meaning of a program is a set of traces that correspond
to its possible executions; each trace is augmented by certain enabling information that
is necessary for achieving compositionality.

The main artifact of the chapter is the strongly fair semantics. However, this chapter also
serves as the first illustration of the general trace framework, and many of the subsequent
chapters build on ideas introduced here.

� In Chapter 4, I discuss the property offull abstraction, a well-known objective criterion
for judging the utility of a semantics. Intuitively, a fully abstract semantics makes pre-
cisely the right distinctions to support compositional reasoning about program behavior.

8 Introduction

The strongly fair semantics of Chapter 3 is not fully abstract. However, by introducing
appropriate closure conditions on trace sets, I show how the semantics can be adapted to
yield full abstraction with respect to a natural notion of strongly fair behavior. Moreover,
small changes in the trace structure and the selection of closure conditions yield several
other fully abstract semantics for other notions of strongly fair program behavior.

Having a common underlying framework significantly simplifies the construction of the
additional semantics. In particular, the contextual components of the traces (that is, the
portion that relates to strong fairness) remain the same in each case and facilitate the
presentation and understanding of each new model. Moreover, because the contextual
components of traces remain the same, many of the necessary lemmas for full abstraction
can also be reused, greatly simplifying the subsequent full-abstraction proofs.

� In Chapter 5, I construct a semantics that incorporates assumptions ofstrong channel
fairness. Roughly speaking, strong channel fairness requires not only the progress of
infinitely enabled processes but also the infinite use of every infinitely enabled commu-
nication channel.

Once again, this semantics depends on a parameterization of fairness that can be char-
acterized in a compositional manner. The channel-fair semantics requires significantly
more structure than the process-fair semantics of the previous two chapters, and it is not
fully abstract. I discuss this lack of full abstraction and hint how full abstraction might
be achieved.

� In Chapter 6, I considerweak process fairness, which requires allcontinuouslyenabled
processes to make progress. Weak fairness is much easier to implement than strong
fairness, but it is extremely sensitive to both the nuances of the operational semantics and
the order in which independent actions occur. As a result, weak fairness is much harder
than strong fairness to model semantically for communicating processes. In particular,
the task of determining when processes are enabled continuously requires significantly
more structure than determining when they are enabled infinitely often.

As it turns out, the resulting weakly fair semantics is very similar in structure to the
channel-fair semantics of Chapter 5. This similarity is rather surprising, given that strong
process fairness is simultaneously stronger than weak process fairness and weaker than
strong channel fairness. I discuss the underlying reasons for this similarity.

� Chapter 7 is the final technical chapter of the dissertation. In it, I introduce a language
of hybrid distributed process that combines features of both the shared-variable and the
communicating-process paradigms. By combining Brookes’ transition trace semantics
for shared-variable programs [Bro96b] with my strongly fair semantics for communi-
cating processes, I construct a semantics for this hybrid language that incorporates a

1.4 Organization of the Dissertation 9

combination of weak and strong fairness assumptions. Moreover, suitable closure con-
ditions on trace sets again yield full abstraction, the proof of which is a straightforward
combination of the full-abstraction proofs for the original, independent semantics.

The ease with which these two distinct semantics can be combined reflects the generality
of the trace framework. Despite the underlying differences of the paradigms, the two
types of trace semantics can be combined in an intuitively appealing way.

� Finally, I conclude with a summary of the contributions of the thesis, some connections
to related work, and suggestions for future work.

10 Introduction

Chapter 2

Communicating Processes

In this chapter, we introduce a representative language of communicating processes, related to
Hoare’s CSP and Milner’s CCS, in which processes have private local states and communicate
with one another only via synchronous message passing. The particular syntax and operational
semantics of this language are uninteresting from a technical standpoint, but they provide a
convenient reference for the discussion of the relevant issues. In particular, throughout this
dissertation we will show how different types of fairness assumptions can be incorporated into
semantics for this same language. By modeling a single language, we can focus better on the
similarities and differences of the various fairness assumptions.

After giving the syntax and operational semantics of the language, we introduce the stan-
dard notions of fairness for communicating processes: process fairness, channel fairness, guard
fairness, and communication fairness. These notions of fairness have typically been identified
with CSP; because our language’s syntax differs from CSP in certain respects, we generalize
the definitions to suit our language as well.

2.1 A Language of Communicating Processes

For most of this dissertation, we shall consider a simple imperative language of communi-
cating processes originally introduced in [Bro94] and based on Hoare’s CSP [Hoa78, Hoa85]
and Milner’s CCS [Mil80]. As in occam [INM84], processes have disjoint local states and
communicate with one another via namedchannels.

2.1.1 Syntax

The abstract syntax of the language relies on the following seven syntactic domains:

12 Communicating Processes

� Ide, the set ofidentifiers, ranged over byi;

� BExp, the set ofboolean expressions, ranged over byb;

� Exp, the set of (integer)arithmetic expressions, ranged over bye;

� Chan, the set ofchannel names, ranged over byh;

� Gua, the set ofcommunication guards, ranged over byg;

� GCom, the set ofguarded commands, ranged over bygc;

� Com, the set ofcommands, ranged over byc.

We take for granted the syntax of identifiers, channel names, and boolean and arithmetic ex-
pressions. The syntax of guards, guarded commands and commands is given by the following
grammar:

g ::= h?i j h!e

gc ::= g! c j gc1�gc2

c ::= skip j i:=e j c1;c2 j if b then c1 else c2 j while b do c

j gc j c1kc2 j cnh

As is common, we often abbreviate the guarded commandg! skip simply asg. We also
use the notation∑n

i=1(gi ! ci) to abbreviate guarded commands of the form

(g1 ! c1)�(g2 ! c2)� � � ��(gn ! cn):

As in the original CSP, processes have disjoint local states. We therefore impose an ad-
ditional syntactic constraint to ensure that processes can affect one another’s behavior only
through handshake communication. We require that, for every command of formc1kc2, c1 and
c2 have disjoint free identifiers; that is,

fv[[c1]]\ fv[[c2]] = /0;

wherefv[[c]] is the set of free identifiers ofc. The setfv[[c]] can be defined by structural induction
in the standard way (see Figure 2.1), under the reasonable assumption thatfv[[b]] andfv[[e]] are
defined for boolean and arithmetic expressions. Likewise, the set of channel names occurring
free inc—written fc[[c]]—can be defined inductively, as in Figure 2.2.

2.1 A Language of Communicating Processes 13

fv[[skip]] = /0
fv[[i:=e]] = fig[fv[[e]]

fv[[c1;c2]] = fv[[c1]][fv[[c2]]

fv[[if b then c1 else c2]] = fv[[b]][fv[[c1]][fv[[c2]]

fv[[while b do c]] = fv[[b]][fv[[c]]

fv[[h?i]] = fig

fv[[h!e]] = fv[[e]]

fv[[g! c]] = fv[[g]][fv[[c]]

fv[[gc1�gc2]] = fv[[gc1]][fv[[gc2]]

fv[[c1kc2]] = fv[[c1]][fv[[c2]]

fv[[cnh]] = fv[[c]]:

Figure 2.1: Inductive definition offv[[c]].

fc[[skip]] = /0
fc[[i:=e]] = /0
fc[[c1;c2]] = fc[[c1]][fc[[c2]]

fc[[if b then c1 else c2]] = fc[[c1]][fc[[c2]]

fc[[while b do c]] = fc[[c]]

fc[[h?i]] = fhg

fc[[h!e]] = fhg

fc[[g! c]] = fc[[g]][fc[[c]]

fc[[gc1�gc2]] = fc[[gc1]][fc[[gc2]]

fc[[c1kc2]] = fc[[c1]][fc[[c2]]

fc[[cnh]] = fc[[c]]�fhg:

Figure 2.2: Inductive definition offc[[c]].

14 Communicating Processes

h�;siterm
hc1;s1iterm hc2;s2iterm

hc1kc2;s1[s2iterm
if disjoint(s1;s2)

hc;siterm
hcnh;siterm

Figure 2.3: The predicateterm.

2.1.2 Operational semantics

A state is a finite partial function from identifiers to integers. LettingZ represent the set of
integers, the setSof states can be defined as

S= [Ide * Z]:

For any states, [sji = n] is the state that agrees withsexcept that it assigns valuen to identifier
i. Thedomain of a states, writtendom(s), is the set of identifiers for whichshas a value. Two
statess1 ands2 are considereddisjoint when their domains are disjoint:dom(s1)\dom(s2) =
/0. In such cases, we writedisjoint(s1;s2).

For simplicity, we assume that an evaluation semantics is given for arithmetic and boolean
expressions, and that expression evaluation always terminates and produces no side effects. We
write he;si �!� n to indicate that expressione in states evaluates to valuen. Implicit in this
notation is the assumption that the free identifiers ofe are included in the domain ofs: that is,
fv[[e]]� dom(s). We use a similar notation for the evaluation of boolean expressions, and we
let B = ftt;ffg represent the set of truth values.

We use alabeled transition systemfor commands, guards, and guarded commands; this
approach is standard and follows that of [Plo83]. Aconfiguration is a pairhc;si (or more
generally,hg;si or hgc;si) for which states is defined on at least the free identifiers ofc (or g
or gc.) We introduce the place-holder� to represent termination, and allow configurations with
forms such ash�;si, h�kc2;si andh�nh;si. A configurationhc;si is terminal if the predicate
hc;siterm can be proved from the axioms and inference rules in Figure 2.3.

A label λ is a member of the set

Λ = fεg[fh!n; h?n j h2 Chan & n2 Zg:

Every transition has a label indicating the type of atomic action involved:ε represents an
internal action (e.g., assignment to a variable),h!n represents the transmission of valuen along
channelh, andh?n represents the receipt of valuen from channelh. Two labelsλ1 andλ2

match if and only if one has the formh!n and the otherh?n for some channelh and valuen; in
such a case, we writematch(λ1;λ2). For a labelλ, chan(λ) is the channel associated withλ;
by convention, we definechan(ε) = ε.

2.1 A Language of Communicating Processes 15

hskip;si
ε
�!h�;si

he;si �!� n

hi:=e;si
ε

�! h�; [s j I = n]i

hc1;si
λ
�! hc01;s

0i :hc01;s
0iterm

hc1;c2;si
λ
�! hc01;c2;s0i

hc1;si
λ
�! hc01;s

0iterm

hc1;c2;si
λ
�! hc2;s0i

hb;si �!� tt

hif b then c1 else c2;si
ε

�! hc1;si

hb;si �!� ff

hif b then c1 else c2;si
ε

�! hc2;si

hb;si �!� tt

hwhile b do c;si
ε

�! hc;while b do c;si

hb;si �!� ff

hwhile b do c;si
ε

�! h�;si

Figure 2.4: Transition rules for sequential constructs.

We write
hc;si

λ
�! hc0;s0i

to indicate that the commandc in states can perform a transition labeledλ, leading to the
commandc0 in states0. The transition rules for the sequential constructs are standard and
appear in Figure 2.4.

The transition rules for guards and guarded commands appear in Figure 2.5. The guardh?i
represents the ability to receive a value for identifieri on channelh, and the guardh!erepresents
the ability to transmit the value of expressionealong channelh. The guarded commandg! c
is a command that, after performing the action associated with guardg, behaves like command
c. The guarded commandgc1�gc2 represents a nondeterministic choice1 between the guarded
commandsgc1 andgc2: on its first step,gc1�gc2 can perform any action that eithergc1 or gc2

can, and afterwards behaves like the chosengci .

The transition rules for the parallel composition and channel restriction appear in Fig-
ure 2.6. The commandc1kc2 represents the parallel composition of commandsc1 andc2, and
it can perform any action that either component can perform. Additionally, if one component
can perform output and the other receive input on the same channel, then the two components
can synchronize, resulting in a singleε-transition of the parallel command; such handshakes
correspond to “distributed” assignments. Finally, the commandcnh behaves like the command
c, except that communication on the channelh is restricted to handshakes.

In many situations, we will be interested in the general properties of a communication (i.e.,
whether it is input or output, and on which channel it occurs) without caring for the particular
value transmitted. In such cases, we consider the set ofdirections. A direction is a member of

1This choice is anexternal choice, in that it can be influenced by the environment.

16 Communicating Processes

hh?i;si
h?n
�!h�; [s j i = n]i for eachn2 Z

he;si �!� n

hh!e;si
h!n
�! h�;si

hg;si
λ
�! h�;s0i

hg! c;si
λ
�! hc;s0i

hgc1;si
λ
�! hc;s0i

hgc1�gc2;si
λ
�! hc;s0i

hgc2;si
λ
�! hc;s0i

hgc1�gc2;si
λ
�! hc;s0i

Figure 2.5: Transition rules for guards and guarded commands.

hc2;s2i
λ
�! hc02;s

0

2i

hc1kc2;s1[s2i
λ
�! hc1kc02;s1[s02i

if disjoint(s1;s2)

hc1;s1i
λ1
�! hc01;s

0

1i hc2;s2i
λ2
�! hc02;s

0

2i

hc1kc2;s1[s2i
ε

�! hc01kc
0

2;s
0

1[s02i
if disjoint(s1;s2) & match(λ1;λ2)

hc;si
λ
�! hc0;s0i

hcnh;si
λ
�! hc0nh;s0i

if chan(λ) 6= h

Figure 2.6: Transition rules for parallel constructs.

the set
∆ = fh!;h? j h2 Chang:

Occasionally we will also be concerned with the extended set of directions

∆+ = ∆[fεg:

We writematch(d1;d2) when the directionsd1 andd2 match: that is, whenever one has the form
h! and the otherh? for some channelh. We often writed̄ for the unique direction that matches
d, and we writeX for the set of matching directions of the setX: X = fd̄ j d 2 Xg. Similarly,
we writematch(X1;X2) for setsX1;X2 � ∆ if there exist directionsd1 2 X1 andd2 2 X2 such
thatmatch(d1;d2). For any directiond, chan(d) is the channel associated withd. For a label
λ, dir(λ) is the direction associated withλ. Again, by convention, we letdir(ε) = ε.

A configurationhc;si is enabledif there exists a transitionhc;si
λ
�! hc0;s0i for some com-

mandc0, states0 and labelλ. A configuration isblocked (or disabled) if it is neither enabled
nor terminal. We writehc;sidead to indicate that the configurationhc;si is blocked. We define

2.1 A Language of Communicating Processes 17

a setinits(c;s) that contains the directions (possibly includingε) that can be used on transitions
from the configurationhc;si:

inits(c;s) = fdir(λ) j 9c0;s0:hc;si
λ
�! hc0;s0ig:

A computation is a finite or infinite, maximal sequence of transitions; apartial compu-
tation is a finite sequence of transitions. We call a finite computation ending in a terminal
configurationsuccessfuland one ending in a blocked configurationdeadlocked.

2.1.3 Processes

As a program executes, it has one or moreprocessesassociated with it; each process is a thread
of control in that execution. At every step along a computation, the active processes can be
determined from the syntactic portion of the current configuration. Although processes are
technically features of program executions, it is convenient to associate them with program
syntax. For example, in the command

b!0 k (a?x�a!1);

we say that there are two processes:b!0 and(a?x�a!1).

The number of processes can increase or decrease dynamically as a program executes. For
example, the following computation has one active process initially, two active processes after
the first transition, and no active processes in the final configuration:

ha!x! (y:=1kx:=1); [x= 0;y= 0]i
a!0
�! hy:=1kx:=1; [x= 0;y= 0]i

ε
�! hy:=1k�; [x= 1;y= 0]i

ε
�! h�k�; [x= 1;y= 1]i:

A process isenabledin a given configuration if it can contribute to a transition from that
configuration. That is, a process is enabled if it can perform an internal action, if it can perform
an external communication along an unrestricted channel, or if it is able to synchronize with
some other process. As a result, whether a process is enabled can depend upon the status of
the processes running in parallel with it: a process trying to communicate along a restricted
channel is enabled only if another process can synchronize with it.

Example 2.1.1 Consider the program

(Q1kQ2kQ3kQ4kQ5)nanb;

18 Communicating Processes

where the processesQ1, Q2, Q3, Q4 andQ5 are defined as follows:

Q1 � x:=x�1;

Q2 � a?y! y:=y+1;

Q3 � a!z! skip;

Q4 � b!w! w:=w+1;

Q5 � (b!5! skip)�(c!5! skip):

1. ProcessQ1 is enabled, because it can perform an internal action that decrements the
value ofx.

2. ProcessesQ2 andQ3 are both enabled, because they are able to synchronize with one
another along channela.

3. ProcessQ4 is disabled: its only potential transition requires synchronization on channel
b, and no other process can synchronize with it.

4. ProcessQ5 is enabled, because it can communicate along channelc. �

2.2 Fairness for Communicating Processes

Most of the common notions of fairness—and all of the ones discussed in this dissertation—
share the same general form:

Every entity that is enabled sufficiently often will eventually make progress.

Varying the interpretations ofentityandsufficiently oftenleads to different notions of fairness.
In the context of communicating processes, there are many different kinds of entity to consider,
each choice leading to a different notion of fairness. In particular, Francez [Fra86] and Kuiper
and de Roever [KdR83] have collectively identified a hierarchy of fairness notions for CSP
that includes the following forms of fairness: process fairness, channel fairness, guard fairness,
and communication fairness. Each of these fairness notions have weak and strong varieties,
which differ in the interpretation ofsufficiently often: weak forms of fairness are concerned
with continuouslyenabled entities, whereas strong forms of fairness are concerned with the
infinitelyenabled entities.

The hierarchy of fairness assumptions for CSP is sketched in Figure 2.7. Each link of
form A! B can be interpreted as “fairness notionA is subsumed by fairness notionB” or
(equivalently) “EveryB-fair computation is alsoA-fair.” For example, every weakly process-
fair computation is also weakly channel-fair, as well as strongly process-fair. Moreover, for

2.2 Fairness for Communicating Processes 19

WPF
@

@
@@I

�
�
���

WChF
@

@
@@I

WGF
@

@
@@I

�
�
���

WCoF
�
�
���

�
�
���

SPF
@

@
@@I

SChF
@

@
@@I

SGF
@

@
@@I

SCoF

S: Strong
W: Weak

CoF: Communication fairness
GF: Guard fairness

ChF: Channel fairness
PF: Process fairness

Figure 2.7: The hierarchy of fairness notions for CSP.

each linkA! B, there is a program that always terminates under the assumption ofB-fairness
but has nonterminating computations under the weaker assumption ofA-fairness [KdR83].

In this section, we define each of these fairness notions, first as defined originally for CSP
and then adapted to suit the more general syntax of our communicating processes. Process
and channel fairness figure prominently in subsequent chapters. Guard and communication
fairness—which are more strongly tied to program syntax—seem less reasonable as abstrac-
tions, because they are much more impractical to implement: they require the scheduler to keep
track of all (syntactic) communication points of a program and to ensure that each communi-
cation point enabled sufficiently often is used sufficiently often. As a result, we discuss guard
and communication fairness only in this section, to provide a more complete overview of the
hierarchy of fairness notions.

2.2.1 Process fairness

Process fairness is by far the most common notion from this hierarchy, due to its applicability
to contexts besides communicating processes and to the relative ease of implementing process-
fair schedulers.

Weak (process) fairness(also known asjustice [LPS81]) states that every process enabled
continuouslywill eventually make progress. Intuitively, weak fairness ensures that the sched-

20 Communicating Processes

while true do (
non-critical-sectioni;
sem?xi ; critical-sectioni;
sem!1

)

Figure 2.8: The processesQi .

uler will never forget a process forever. It is straightforward to implement weak fairness as a
scheduling policy, using a simple round-robin scheduling queue.

Despite the ease of implementing weak fairness, sometimes a stronger notion of fairness is
warranted. For example, consider the use of a semaphoresem, which we can implement as the
process

Sem� while true do (sem!1! sem?s);

to prevent processesQ1 andQ2 (sketched in Figure 2.8) from being in their critical sections at
the same time. In this scenario, it is reasonable to expect that each ofQ1 andQ2 will eventually
enter its critical section. However, weak fairness is not a strong enough assumption to ensure
such an outcome. A process waiting for the semaphore becomes disabled whenever the other
process successfully enters its critical section. A computation in whichQ1 repeatedly enters
its critical section whileQ2 never gains admission to its critical section is weakly fair, because
Q2 is not enabledcontinuouslybut only infinitely often.

Another problem with weak process fairness for communicating processes is that, in the
vocabulary of Apt and colleagues, it is notequivalence robust[AFK88]. That is, weak fairness
is very sensitive to the order in which independent actions are scheduled. For example, consider
the following program

(b!0 k Q3 k Q4)nb;

where the processesQ3 andQ4 are defined as follows:

Q3 � while true do (b?x�a!1); Q4 � while true do (b?y�a!2):

In the following computation, the processb!0 makes no progress, whileQ3 andQ4 repeatedly
perform the same sequence of actions:

h(b!0 k Q3 k Q4)nb;si
ε

�! h(b!0 k (b?x�a!1);Q3 k Q4)nb;si
ε

�! h(b!0 k (b?x�a!1);Q3 k (b?y�a!2);Q4)nb;si
a!1
�! h(b!0 k Q3 k (b?y�a!2);Q4)nb;si
a!2
�! h(b!0 k Q3 k Q4)nb;si

ε
�! �� �

2.2 Fairness for Communicating Processes 21

This computation is weakly process-fair, because the processb!0 does not have synchronization
enabled continuously. In contrast, consider the following computation, in which processesQ3

andQ4 make exactly the same transitions as in the preceding computation, but the order in
which the components’ transitions are interleaved varies:

h(b!0 k Q3 k Q4)nb;si
ε

�! h(b!0 k (b?x�a!1);Q3 k Q4)nb;si
ε

�! h(b!0 k (b?x�a!1);Q3 k (b?y�a!2);Q4)nb;si
a!1
�! h(b!0 k Q3 k (b?y�a!2);Q4)nb;si

ε
�! h(b!0 k (b?x�a!1);Q3 k (b?y�a!2);Q4)nb;si
a!2
�! h(b!0 k (b?x�a!1);Q3 k Q4)nb;si

ε
�! h(b!0 k (b?x�a!1);Q3 k (b?y�a!2);Q4)nb;si
a!1
�! �� �

This computation is not weakly process-fair, because the processb!0 is enabled for synchro-
nization continuously from the second configuration onwards. Thus weak process fairness
relies not only on the actions of the components running in parallel but also on the manner in
which those actions are scheduled.

As an alternative to weak fairness,strong (process) fairnessstates that everyinfinitely
enabledprocess makes progressinfinitely often. Strong fairness is equivalence robust, and
hence does not depend on the order in which individual transitions are scheduled. As a result,
strong process fairness is a much more natural notion of fairness to consider for communicating
processes.

Because strong fairness reflects a stronger expectation of scheduler behavior, it is more
difficult than weak fairness to implement as a scheduling policy. One way to implement strong
fairness is to employ a priority queue scheme involving two process queuesA and B. All
processes originate in the lower priority queue (B), which behaves like the simple round-robin
scheduler for weak fairness. However, if a process cycles through this queue too many times
(for some previously determined value oftoo many) without making progress, it transfers to the
higher priority queue (A). Processes inA are given preference whenever they have transitions
enabled, and they retain their position inA until they make progress, at which point they return
to the end ofB. In particular, a process in queueA is scheduled immediately upon becoming
enabled (assuming it has the highest priority among all enabled processes in queueA.) Because
processes inA are given preference until they make progress, a process can fail to make infinite
progress only if it becomes permanently disabled. A scheduler that implements this policy
for some fixed value oftoo manyis strongly fair, because every execution that it generates is
strongly fair. Strong fairness is the abstraction that lets us ignore the specific value oftoo many.

22 Communicating Processes

2.2.2 Channel fairness

Definitions for channel fairness appear in both [Fra86] and [KdR83]. Although the two defini-
tions differ, both formulations are intrinsically tied to the syntax of original CSP. In this subsec-
tion, we present Francez’s definition and adapt it to suit our language. Kuiper and de Roever’s
definition of channel fairness—which coincides with what Francez termscommunication fair-
ness—is discussed in Subsection 2.2.4.

In the original CSP, processes have names and communicate by name, so that (for example)
the processQi uses the guardQj !e to represent its willingness to transmit the value of expres-
sione to processQj . Similarly, the processQj uses the guardQi?x to indicate its willingness
to receive a value for identifierx from Qi . As a result, Francez interprets a channel as simply a
pair of processes, and he defines strong channel fairness as the following assumption:

Every pair of processes that are infinitely often able to synchronize with one an-
other will do so infinitely often.

This definition for channel fairness includes an implicit minimal liveness assumption [OL82]:
a process will never block if it can perform an internal action such as assignment.

Every strongly channel-fair computation is also strongly process-fair, because channel fair-
ness ensures the eventual progress of every infinitely enabled process. Every infinitely enabled
process has either infinitely many opportunities for internal actions or infinitely many opportu-
nities to synchronize with other processes. In the former case, the minimal liveness assumption
ensures that the process makes progress. In the latter case, there must be at least one process
with which the process has infinitely many opportunities to synchronize, and channel fairness
ensures that the synchronization happens.

Because CSP processes communicate by name, each channel corresponds precisely to a
pair of processes: only two processes communicate along any given channel, and only one
channel is used between any two processes. In our language, any number of processes may
communicate along a given channel, and two processes may communicate along any number
of channels. As a result, it is possible for a particular channel to be used infinitely often and
yet for another process to become blocked while trying to use that same channel. For example,
the program

[(while true do a!0) k (while true do a?x) k a!2]na

has an infinite computation in which the channela is used infinitely often and yet the process
a!2 remains blocked.

This example raises an interesting question: should an infinitely enabled process be allowed
to block along a strongly channel-fair computation? If we answeryes, then we must forfeit the
“hierarchy” concept of fairness notions, because process fairness will no longer be subsumed

2.2 Fairness for Communicating Processes 23

by channel fairness. If we answerno, then we must build strong process fairness into our
notion of strong channel fairness. We take the latter approach and incorporate strong fairness
into our definition of strong fairness; this choice not only preserves the fairness hierarchy but
also satisfies the obligation to include a minimal liveness assumption.

Bearing these considerations in mind, we arrive at the following generalized definition for
strong channel fairness. A computation isstrongly channel-fair if it satisfies the following
two conditions:

� Every process enabled infinitely often makes progress infinitely often.

� Every channel on which communication is enabled infinitely often is used infinitely of-
ten.

This definition of strong channel fairness generalizes the Francez definition, while preserving
the notion of channel fairness as it applies to CSP programs. In particular, every CSP programP
can be translated into a programP0 in our language in a straightforward manner. In each case,
the (Francez-defined) channel-fair behaviors ofP correspond precisely to the (generalized)
channel-fair behaviors ofP0.

If we view different channels as representing different types of messages, then channel
fairness ensures that every type of message that is infinitely often deliverable gets delivered
infinitely often. Implementing strong channel fairness requires a mechanism similar to that
described for strong process fairness, suitably updated to ensure that infinitely enabled channels
are used infinitely often.

To understand the extra strength over process fairness provided by channel fairness, con-
sider the program

(PkQkR)na nb nc;

where the processesP, Q, andR are defined as in Figure 2.9. (Following [AFK88], we as-
sume for now that communications are possible only when all three processes are inside their
loops. We impose this assumption only to simplify the exposition here; we remove this as-
sumption in subsequent chapters. Moreover, we return to this matter in Chapter 5, particularly
in Examples 5.4.2 and 5.4.3.) Termination of the program cannot be guaranteed under strong
process fairness: it is perfectly acceptable for each ofP andQ to communicate only with pro-
cessR, each doing so infinitely often. However, in any infinite computation, synchronization
is enabled infinitely often on each of the channelsa, b andc. As a result, in any channel-fair
computation, processP must eventually transmit the value 0 along channela, an action that
eventually leads to the termination of the entire program.

24 Communicating Processes

while (x 6= 0) do

(a!0! x:=0� b!1!skip)

(a) ProcessP

n:=1;
while (w 6= 0) do

(a?w! c!w � c!n! n:=n+1)

(b) ProcessQ

while (v 6= 0) do (c?v! skip � b?v! skip)

(c) ProcessR

Figure 2.9: Channel fairness example.

2.2.3 Guard fairness

Guard fairness places even more restrictions on what types of computations can be considered
fair. Informally, strong guard fairness states that everyguard that is enabled infinitely often
will be chosen infinitely often.2 A guard is enabled in a given configuration if it can contribute
to a transition from that configuration. Hence, a guard of processP is enabled if it involves
communication on an unrestricted channel or if it involves communication on a restricted chan-
nel and a “matching” guard of another process is also enabled. For example, the guarda!0 is
enabled in the configurations

ha!0�b!0;si and h(a!0ka?x)na;si;

but not in the configuration
h(a!0�b?x)na;si:

Strong guard fairness provides a stronger assumption than strong channel fairness, as illus-
trated by the following example. Consider the program

(P0kQkR)na nb nc;

whereQ andRare as defined in Figure 2.9 andP0 is defined in Figure 2.10. (We again suppose
that communications occur only when all three processes are inside their loops.) This program
does not always terminate under strong channel fairness. Although channela must be used
infinitely often along any infinite computation, it is permissible under channel fairness for the
a!0 guard ofP0 to be ignored while the guarda!1 synchronizes continually withQ’s a?n guard.
In such a computation, none of the variablesx, w, orv ever gets set to 0, and hence the program
never terminates. In contrast, under strong guard fairness, the guarda!0 must eventually be
involved in a handshake communication witha?w, leading to termination of the program.

2To be precise, we also assume a minimal liveness property that ensures that no process becomes stuck in a
configuration in which it can perform an internal action will block.

2.2 Fairness for Communicating Processes 25

while (x 6= 0) do

(a!0! x= 0� a!1! skip � b!1! skip)

Figure 2.10: The processP0.

2.2.4 Communication fairness

Communication fairness3 provides an even stronger assumption than guard fairness. Infor-
mally, communication fairness states that every communication enabled infinitely often will
occur infinitely often. For CSP, a communication corresponds to two “matching” guards, which
necessarily appear in two processes. Thus communication fairness for CSP can be stated as
follows:

For every pair of processesQi andQj , and for every pairhgi;gji of (syntactically)
matching guards from the two processes, ifgi andgj arejointly enabledinfinitely
often, then they will synchronize infinitely often.

The notion of communication fairness—like guard fairness—has a very strong syntactic fla-
vor: a scheduler must be able to distinguish two separate occurrences of the same guard in
a program. The syntactic requirements behind this fairness notion seem inappropriate for a
practical abstraction, and hence we will not discuss communication fairness in the rest of this
dissertation. However, to complete the overview of the hierarchy, we introduce an appropriate
generalization of communication fairness for our language.

The interpretation ofcommunicationis trickier for our language than for CSP, again be-
cause any number of processes may communicate along a given channel. In particular, we
need to consider not only synchronizations among the processes that we know about but also
possible interactions with the external environment. For example, compare the program

P� (while true do (a?x! skip �a?y! skip) k while true do a!0)na;

which is (in effect) a CSP program translated directly into our language, with the program

P0 � while true do (a?x! skip �a?y! skip) k while true do a!0:

For programP, the synchronizations between the guardsa?x anda!0 and between the guards
a?y anda!0 are the only possible communications. Thus every strongly communication-fair
computation of programP should include infinitely many synchronizations on each pair. In
contrast, programP0 also permits three types of external communication: reading a value intox,
reading a value intoy, and transmitting the value 0. These external communications must also

3Kuiper and de Roever call this notion of fairnesschannel fairness.

26 Communicating Processes

n:=1;
while (w 6= 0) do

(a?w! c!w
� c!n! n:=n+1

� a?n! c!1)

Figure 2.11: The processQ0.

occur infinitely often along any strongly communication-fair computation ofP0, to represent
the potential for communication with processes placed in parallel withP0.

We therefore introduce the following generalized notion of strong communication fairness.
A computation is consideredstrongly communication-fair if it satisfies the following two
conditions:

� Every handshake communication enabled infinitely often is chosen infinitely often.

� Every external action enabled infinitely often is chosen infinitely often.

When only closed programs (i.e., programs having no free channels) are considered, this defi-
nition of communication fairness coincides with the original notion of communication fairness
introduced for CSP-style programs.

To distinguish communication fairness from guard fairness, consider the program

(P0kQ0kR)na nb nc;

where processesP0 andRare as defined previously, and processQ0 is defined as in Figure 2.11.
(Once again, we assume that communications occur only when all three processes are inside
their loops.) Under strong guard fairness, the program does not necessarily terminate. Each
of the guardsa!0, a!1, a?w anda?n must be used infinitely often in any infinite computation,
but it is permissible for the two guardsa!0 and a?n to synchronize only with one another,
and likewise for the guardsa!1 and a?w. In such an execution, the value 0 will never be
transmitted to processR in such a way that the value ofw gets set to 0. In contrast, under
strong communication fairness, each of the guardsa!0 anda!1 must synchronize with each of
the guardsa?w anda?n, resulting in the eventual termination of the program.

As the preceding discussion illustrates, the choice of fairness assumption affects what we
can prove about program behavior: for example, there are programs that necessarily terminate
under assumptions of strong channel fairness but may not terminate under strong process fair-
ness. In the next several chapters, we see how the choice of fairness assumption also affects
the semantic structure that is necessary for modeling fair behavior. We concentrate on three of
these fairness assumptions: strong process fairness, strong channel fairness, and weak process

2.2 Fairness for Communicating Processes 27

fairness. We show how the framework adapts for each fairness notion, discussing the differ-
ences in semantic structure for each case. Perhaps surprisingly, the complexity of the semantic
structure for a given notion of fairness is not linked directly to that notion’s place in the hi-
erarchy: as we shall see, strong process fairness is much simpler to model than either strong
channel fairness or weak process fairness, despite falling between them in the hierarchy.

28 Communicating Processes

Chapter 3

Strong Process Fairness

In this chapter, we show how assumptions of strong process fairness can be incorporated into
the general denotational framework described in Section 1.3. Modeling fairness in a compo-
sitional way is tricky, because the fairness of a subcomponent is context-dependent: whether
a process can become blocked along a fair computation depends on the processes running in
parallel with it. To model this dependence accurately, we must first introduce a parameterized
form of strong fairness that take contexts into account.

After introducing parameterized strong fairness, we show how fair computations can be
represented by traces, and we construct a denotational semantics based on these traces that
incorporates assumptions of strong process fairness. This strongly fair semantics first appeared
in [BO95], with a slightly different formulation. The chapter concludes with some simple
examples illustrating how the semantics can be used to reason about program behavior.

3.1 Parameterized Strong Fairness

The enabledness of a process depends upon the context in which it appears. This contextual
dependency has important consequences for any attempt to define fair computations in a com-
positional way. For example, consider the program

C� (C1k(C2kC3))nanb;

whereC1, C2 andC3 are defined as follows:

C1 � while true do a?x; C2 � while true do a!0; C3 � while true do (b!0! a!1):

Any compositional treatment of fairness must allow the fair computations ofC to be defined
in terms of the fair computations ofC1 andC2kC3. In turn, the fair computations ofC2kC3

30 Strong Process Fairness

must be defined in terms of the fair computations ofC2 andC3. BecauseC2 andC3 are both
enabled infinitely often along any computation ofC2kC3, every strongly fair computation of
C2kC3 must contain infinitely many outputs along each of the channelsa andb. WhenC2kC3

is placed in the larger context of programC, however, the processC3 becomes blocked when
trying to perform output on channelb: communication on the channel is restricted, and no
matching input is ever available. In contrast, channela is also restricted in this context, butC2

is repeatedly enabled for synchronization withC1. Thus the programC has an infinite, strongly
fair execution in whichC3 becomes permanently blocked, but none in whichC1 or C2 ever
becomes permanently blocked.

This example highlights two problems that arise in trying to characterize strongly fair com-
putations in a compositional way. First, the strongly fair computations of a command cannot
always be determined solely from the strongly fair computations of its component commands.
In the preceding example, for instance, the strongly fair computations ofC could not be de-
termined solely from the strongly fair computations ofC1 andC2kC3. In particular, simply
omitting the occurrences of channelb that appear along the fair computations ofC2kC3 would
lead to impossible computations for the larger command: each actiona!1 that appears along
the fair computations ofC2kC3 is possibleonly when the actionb!0 appears first. Second, the
restricted channels alone are insufficient for identifying which subcommands will be enabled
along any given computation: even though communication was restricted on channela, C2

could make continual progress by synchronizing withC1 infinitely often.

To address these problems, we introduce generalized notions of enabledness and fairness,
parameterizing each by a set of directions representing fairness constraints. In effect, we can
talk about “almost blocked” configurations and “almost fair” computations, and the sets of di-
rections provide a precise interpretation of “almost”. Moreover, these sets of directions provide
a description of those program contexts1 P[�] for which the “almost fair” computations will
represent the transitions ofc in a truly fair computation ofP[c].

For every finite setF of directions, we characterize those computations that arestrongly
fair modulo F. Roughly speaking, a computationρ of the commandc is strongly fair mod-
ulo F if every process enabled infinitely often either makes progress infinitely often (just as
in traditional strong fairness) or eventually stops in a configuration in which its only possible
transitions are labeled by directions inF and it cannot synchronize with any other process.
Intuitively, even though the directions ofF may be enabled infinitely often alongρ, it is pos-
sible to construct a program contextP[�] that restricts communication on the channels inF
and fails to provide synchronization opportunities for members ofF; for such contexts, the
computationρ will representc’s contribution to a strongly fair computation ofP[c]. In particu-
lar, those processes can be ignored fairly in any program context that restricts communication

1A program contextP[�] is simply a program with a “hole”, andP[c] is the program that results from filling
the hole with commandc.

3.1 Parameterized Strong Fairness 31

on the channels ofF and does not provide sufficient opportunities for them to synchronize.
For example, the infinite computation ofC2kC3 that never performs output along channelb

can be characterized as fair modulofb!g: the context(C1k�)nanb restricts communication on
channelb and provides no synchronization opportunities forC3’s b!0 action.

Unlike the traditional notion of strong fairness, parameterized fairness can be characterized
compositionally. Before doing so formally, however, we introduce some auxiliary definitions
and give an informal explanation.

Definition 3.1.1 Let F be a finite set of directions. A configurationhc;si is enabled modulo
F if inits(c;s)�F is nonempty, andblocked moduloF if inits(c;s)� F. �

Thus a configuration is enabled moduloF if it can perform an action (either internal or other-
wise) not labeled by a direction inF , and blocked moduloF otherwise. Any configuration that
is blocked moduloF is necessarily blocked moduloF 0 for all F 0 � F.

Unlike strong fairness, parameterized strong fairness can be characterized compositionally.
Just as every finite computation is strongly fair, every finite computation is strongly fair modulo
F, for all setsF. A partial computation is strongly fair moduloF provided its final configura-
tion is blocked moduloF. The fairness of an infinite computationρ of a commandc depends
on the syntactic structure ofc and on the form ofρ, as follows.

In general, an infinite computation of a commandc inherits its fairness constraints from
the underlying computations ofc’s component commands. For example, an infinite computa-
tion ρ of the commandc1;c2 arises either from an infinite computation ofc1 or from a finite
computation ofc1 followed by an infinite computation ofc2. The computationρ is fair modF
whenever the infinite computation ofc1 or c2 is fair modF; any subcomponent that is blocked
modF alongρ must also be blocked modF along the corresponding infinite computation of
c1 or c2. Similarly, an infinite computation of the commandwhile true do c arises either from
infinitely many finite computations ofc or from finitely many finite computations ofc followed
by an infinite computation ofc. The computationρ is fair modF when all of these component
computations ofc are fair modF: thusρ is fair modF whenever it contains infinitely many
finite computations ofc or when the single infinite computation ofc is fair modF.

Similar reasoning governs the fairness conditions for most of the remaining nonparallel
commands. An infinite computation ofg! c is fair modF when the sequence of transitions
made byc is fair modF, and an infinite computation ofif b then c1 else c2 is fair modF
when the sequence of transitions made by the selected branchci is fair modF. An infinite
computation ofgc1�gc2 is fair modF if, after making its choice of componentsgci on the
first step, it behaves like a fair modF computation of the selectedgci .

Placing a command within the scope of channel restriction has the effect of discharging
any context assumptions involving the newly restricted channel. For example, supposeρ is an

32 Strong Process Fairness

infinite computation of the commandcnh. If the ith transition ofρ is hci;sii
λi
�! hci+1;si+1i,

then there is a corresponding computationρ0 of c such that theith transition ofρ0 is hc0i;sii
λi
�!

hc0i+1;si+1i, with ci � c0inh. If the computationρ0 is fair modF [fh!;h?g, then there may be
subprocesses ofc that are willing to communicate on channelh and yet fail to make progress
alongρ0. However, whenc appears in the context[�]nh, those subprocesses no longer have
communication enabled along channelh and are no longer treated unfairly with respect toh.
In effect, placingc in the context[�]nh discharges the assumption thatc will eventually appear
in a context that restricts communication onh. Hence a computationρ of cnh is fair modF
whenever its underlying computation ofc is fair modF [fh!;h?g.

Determining the fairness of parallel commands requires more care. Every computationρ
of the commandc1kc2 arises from interleaving and merging a computationρ1 of c1 with a
computationρ2 of c2. Intuitively, whenρ1 is fair modF1 and ρ2 is fair modF2, ρ should
inherit fairness constraints from both and therefore be fair modF1[F2: processes blocked
mod F1 alongρ1 do not make progress alongρ, and likewise forF2 andρ2. However, this
analysis is valid only when neither component violates the assumptions incorporated in the
other component’s fairness set. For example, suppose a processQ of c1 becomes (and remains)
blocked modF1 alongρ1. If the computationρ2 providesQ with infinitely many opportunities
to synchronize, then the implicit assumption thatQ will have insufficient opportunities to make
progress is violated, and henceρ cannot be fair (mod anyF). It is also essential to ensure that
none of the directions inF1 appear infinitely often alongρ2, for the following reason. The
fairness setF1 reflects the assumption thatc1 (and thereforec1kc2) will appear in a context
that restricts communication on the channels associated withF1. If a direction inF1 appears
infinitely often alongρ2, thenρ2 can representc2’s transitions only if the context provides
infinitely many opportunities to synchronize withc2 on that direction. In such a case, however,
the context would also be enabling synchronization with any processes ofc1 that were blocked
in configurations in which they could use that direction, violating the assumptions inherent in
F1.

We can now give a formal, inductive characterization of strongly fair computation modulo
F. WhenF = /0, this characterization coincides with the traditional notion of strong process
fairness, as given in [Fra86, AO91].

Definition 3.1.2 A computationρ of commandc is strongly fair modulo F (or, fair mod F)
providedρ satisfies one of the following conditions:

� ρ is a finite, successfully terminating computation;

� ρ is a partial computation whose final configuration is blocked moduloF;

� ρ is an infinite computation,c has form(c1;c2) or (if b then c1 else c2), and the underly-
ing infinite computation ofc1 or c2 is fair modF;

3.1 Parameterized Strong Fairness 33

� ρ is an infinite computation,c has form(while b do c0) or (g! c0), and each ofρ’s
component computations ofc0 is fair modF;

� ρ is an infinite computation,c has form(g! c0), and the underlying computation ofc0

is fair modF ;

� ρ is an infinite computation,c has form(gc1�gc2), and the underlying computation of
the selectedgci is fair modF;

� ρ is an infinite computation,c has formc0nh, and the underlying computation ofc0 is fair
moduloF [fh!;h?g;

� ρ is an infinite computation,c has formc1kc2, and there exist setsF1 andF2 and compu-
tationsρ1 of c1 andρ2 of c2 such thatρ1 is fair modF1, ρ2 is fair modF2, F � F1[F2,
ρ can be obtained by merging and synchronizingρ1 andρ2, neitherρi enables infinitely
often any direction matching a member ofFj (i 6= j), and neitherρi uses a direction inFj

infinitely often. �

The following example highlights the compositional aspect of this characterization.

Example 3.1.3 Let C be the programwhile true do c!1, and consider the computation

ρ = h((a!0! b!0) kC)nb;si
a!0
�! h(b!0 kC)nb;si

ε
�! h(b!0 k c!1;C)nb;si

c!1
�! �� �

in which theb!0 action never occurs.ρ is strongly fair (that is, strongly fair mod/0), for the
following reasons:

1. The partial computationρ1 = ha!0! b!0;si
a!0
�! hb!0;si is fair modulofb!g.

2. The infinite computation

ρ2 = hC;si
ε

�! h(c!1;C);si
c!1
�! hC;si

ε
�! h(c!1;C);si

c!1
�! hC;si

ε
�! �� �

is fair mod /0. Moreover, the only direction enabled infinitely often alongρ2 is c!.

3. Letρ0 be the infinite computation

h(a!0! b!1) kC;si
a!0
�! hb!1 kC;si

ε
�! hb!1 k (c!1;C);si

c!1
�! hb!1 kC;si

ε
�! hb!1 k (c!1;C);si

c!1
�! �� �

in which theb!0 action never occurs. This computation can be obtained by mergingρ1

andρ2. Becauseρ2 does not use or enable synchronization withb! infinitely often,ρ0 is
fair modulofb!g.

34 Strong Process Fairness

4. Because the underlying computation ofρ is ρ0, ρ is fair modulo/0. �

The next example illustrates the role that the fairness setsF play in determining those
contexts in which a given computation can be considered fair.

Example 3.1.4

1. LetC be the programwhile true do (a!1�b!1), and consider the computation

ρc = hC;si
ε

�! h(a!1�b!1);C;si
a!1
�! hC;si

ε
�! h(a!1�b!1);C;si

a!1
�! �� �

that never outputs along channelb.

The set of directions enabled infinitely often alongρc is fa!;b!g, but ρc is fair mod /0
because there are no parallel subcomponents ofC that become blocked alongρc.

2. DefineC1 � while true do a!1 andC2 � b!1 ! (while true do b!1), and consider the
computation

ρ = hC1 kC2;si
ε

�! h(a!1;C1) kC2;si
a!1
�! hC1 kC2;si

ε
�! �� �

that never outputs along channelb.

The set of infinitely enabled directions ofρ is alsofa!;b!g. The computationρ is not fair
mod /0, because the componentC2 remains blocked modfb!g. However,ρ is fair mod
fb!g.

3. LetCp be the programwhile true do (a!0�b?z), and letρp be the computation

hCp;si
ε

�! h(a!0�b?z);Cp;si
a!0
�! hCp;si

ε
�! h(a!0�b?z);Cp;si

a!0
�! �� �

that never receives input along channelb. ρp is fair mod /0 and enables botha! andb?
infinitely often.

Let P[�] be the program context([�] k Cp)nb. There is a fair (mod/0) computation of
P[c] that corresponds to a merging ofρc andρp and hence involves no synchronizations
on channelb. In contrast, every fair (mod/0) computation ofP[C1kC2] must eventually
synchronize on channelb, because it is unfair forC2 to be forced to block onb! when a
matching direction is enabled infinitely often. Thus there is no fair execution ofP[C1kC2]
in which theCp component performsρp. �

3.2 Strongly Fair Traces 35

3.2 Strongly Fair Traces

We define a set ofsteps
Σ = S�Λ�S;

intuitively, the step(s;λ;s0) corresponds to a transition of the formhc;si
λ
�! hc0;s0i. Thus

each step(s;λ;s0) records the initial and final states of a transition, as well as the label of the
action that occurred. We also introduce a set of empty tracesΣ0 = fεs j s2 Sg, with eachεs

corresponding to configurations of formhc;si. The set of finite traces isΣ� = Σ0[Σ+, where

Σ+ = f(s0;λ0;s1)(s1;λ1;s2) : : :(sk;λk;sk+1) j k� 0 & 8i � k:(si;λi;si+1) 2 Σg

is the set of nonempty finite traces. We letΣ∞ = Σ�[Σω, where the setΣω of infinite traces is
defined by

Σω = f(s0;λ0;s1)(s1;λ1;s2) : : :(sk;λk;sk+1) : : : j 8i � 0:(si;λi;si+1) 2 Σg:

Each traceα 2 Σ∞ represents a finite or infinite transition sequence.

Two tracesα andβ arecomposableif α is infinite or if the final state ofα is the first state
of β; we writecomposable(α;β) in such cases. For composable tracesα andβ, the traceαβ is
their (string-like) concatenation. For example, ifα = (s0;λ0;s1)(s1;λ1;s2) andβ = (s2;λ2;s3),
then

αβ = (s0;λ0;s1)(s1;λ1;s2)(s2;λ2;s3):

The traces ofΣ0 serve as local units for concatenation:αεs = α andεsβ = β whens is the
final state ofα and the first state ofβ. Infinite concatenation is the obvious extension of finite
concatenation. An infinite sequence of tracesα0;α1;α2; : : : is composable if, for everyi � 0,
the tracesα0α1 : : :αi andαi+1 are composable; their concatenation is the trace

α0α1α2 : : :αnαn+1 : : : :

These simple traces are insufficient for reasoning about strong process fairness compo-
sitionally, because they fail to record the necessary contextual information made explicit in
Definition 3.1.2. For any infinite computationρ, we need to know which directions are en-
abled infinitely often alongρ. We also need to know for which contextsρ will represent a fair
computation; that is, we need to know for which setsF the computationρ is fair moduloF.
Every finite computation is fair modF for all setsF. However, because a finite computation
may be used to generate an infinite computation, we also need to know which directions are
enabled along a finite computation. Finally, to reason about deadlock and blocking, we need
information about partial computations. For a partial computationρ, we need to know what
type of actions (includingε) are possible from the final configuration ofρ. Because a partial

36 Strong Process Fairness

computation will never be iterated in a looping context, we do not need to record the directions
enabled along that computation.

We combine simple traces with this additional contextual information to yieldfair traces.
Letting

Γ = Pfin(∆+)�Pfin(∆+)�ff;i;pg

capture the necessary contextual information, we define the setΦ� Σ∞�Γ of fair traces as

Φ = Σ�� (Pfin(∆)�Pfin(∆)�ffg)
[Σω� (Pfin(∆)�Pfin(∆)�fig)
[Σ�� (Pfin(∆+)�Pfin(∆+)�fpg):

For convenience, we occasionally useΦfin, Φinf , andΦpar to refer to the subsets ofΦ with tags
f, i, andp, respectively.

Intuitively, the fair tracehα;(F;E;f)i represents a fair modF, successfully terminating
computation with enabled directionsE; the tag “f” merely indicates that the trace represents
a finite computation. Similarly, the fair tracehα;(F;E;i)i represents an infinite, fair modF
computation with infinitely often enabled directionsE; the tag “i” indicates that the trace rep-
resents an infinite computation. The fair tracehα;(F;E;p)i (with F � E) represents a partial
computation for which the directionsE (possibly includingε) are enabled in the final config-
uration. Whenε is not inE, the blocked computation is necessarily fair modE, and therefore
fair mod F as well. Again, the tag “p” merely indicates that the trace represents a partial
computation. Technically, theF-component of the contextual tuple is unnecessary for finite
traces because every finite computation is necessarily fair. Similarly, theF-component of a
partial computation does not provide any essential information not already incorporated in the
E-component. However, the inclusion of these components allows a consistent representation
for all fair traces, which will be convenient for subsequent definitions.

For every (possibly partial) computationρ, trace(ρ) is the simple trace that corresponds to
the transitions made alongρ. For example, ifρ is the computation

hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;ski;

thentrace(ρ) = (s0;λ0;s1)(s1;λ1;s2) : : :(sk�1;λk�1;sk). The seten(ρ) contains the “relevant”
directions enabled alongρ: whenρ is a finite computation,en(ρ) contains the directions en-
abled alongρ; whenρ is an infinite computation,en(ρ) contains the directions enabled in-
finitely oftenρ.

We can give an operational characterization of a fair trace semanticsTs : Com! P(Φ) as

3.3 Strongly Fair Trace Semantics 37

follows:

Ts[[c]] = fhtrace(ρ);(F;en(ρ);f)i j

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;skiterm is fair modFg

[fhtrace(ρ);(F;E;p)i j E = inits(ck;sk) & F � E

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;ski & :hck;skitermg

[fhtrace(ρ);(F;en(ρ);i)i j

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk
�! �� � is strongly fair modFg:

3.3 Strongly Fair Trace Semantics

In the previous section, we gave an operational characterization of a fair trace semanticsTs.
In this section, we show how to give a denotational characterization of this same semantic
function. We do this by defining, for each construct in the language, a corresponding operation
on trace sets.

We assume semantic functionsB : BExp ! P(S� B) andE : Exp! P(S�Z) character-
ized operationally by

B[[b]] = f(s;v) j hb;si �!� vg; E [[e]] = f(s;n) j he;si �!� ng:

We also introduce a semantic functionTs : BExp! P(Φ) such that

Ts[[b]] = fh(s;ε;s);(F; /0;f)i; hεs;(F [fεg;fεg;p)i j (s;tt) 2 B[[b]] & F 2 Pfin(∆)g:

Intuitively, Ts[[b]] contains the idle steps possible from states satisfying the boolean expression
b. Note that, for any boolean expressionb,

Ts[[:b]] = fh(s;ε;s);(F; /0;f)i; hεs;(F [fεg;fεg;p)i j (s;tt) 2 B[[:b]] & F 2 Pfin(∆)g
= fh(s;ε;s);(F; /0;f)i; hεs;(F [fεg;fεg;p)i j (s;ff) 2 B[[b]] & F 2 Pfin(∆)g:

Consequently, bothTs[[b]] andTs[[:b]] can be defined solely in terms ofb.

Based on the operational characterization ofTs, it should be easy to see that

Ts[[skip]] = fh(s;ε;s);(F; /0;f)i j s2 S& F 2 Pfin(∆)g
[fhεs;(F;fεg;p)i j s2 S& F � fεgg

and

Ts[[i:=e]] = fh(s;ε; [sji = n]);(F; /0;f)i j fv[[i:=e]]� dom(s) & F 2 Pfin(∆) & (s;n) 2 E [[e]]g

[fhεs;(F;fεg;p)i j fv[[i:=e]]� dom(s) & F � fεgg:

38 Strong Process Fairness

Similarly, for guards we obtain

Ts[[h?i]] = fh(s;h?n; [sji = n]);(F;fh?g;f)i j i 2 dom(s) & n2 Z & F 2 Pfin(∆)g
[fhεs;(F;fh?g;p)i j i 2 dom(s) & F � fh?gg

and

Ts[[h!e]] = fh(s;h!n;s);(F;fh!g;f)i j (s;n) 2 E [[e]] & F 2 Pfin(∆)g
[fhεs;(F;fh!g;p)i j fv[[e]]� dom(s) & F � fh!gg:

Sequential composition

The commandc1;c2 represents the sequential composition of commandsc1 andc2: each com-
putation ofc1;c2 corresponds to a computation ofc1 that, if successful, is followed by a com-
putation ofc2. If the computation ofc1 terminates successfully in states, then the computation
of c2 must begin from states; if the computation ofc1 instead is infinite or becomes blocked,
then the computation ofc2 never begins. We can construct the traces ofc1;c2 by combining
traces ofc1 with traces ofc2 in a similar way.

Two fair tracesϕ1 andϕ2 are composable wheneverϕ1 is an infinite or partial trace, or
when their simple trace components are composable (that is, when the final state of the first
trace is the initial state of the second trace). We writecomposable(ϕ1;ϕ2) whenϕ1 andϕ2 are
composable. Whenϕ1 = hα;(F1;E1;R1)i andϕ2 = hβ;(F2;E2;R2)i are composable fair traces,
their concatenationϕ1ϕ2 is defined by:

ϕ1ϕ2 =

8><
>:

ϕ1; if R1 2 fi;pg,

hαβ;(F2;E1[E2;f)i; if R1 = R2 = f,

hαβ;(F2;E2;R2)i; if R1 = f andR2 2 fi;pg.

As is evident from this definition, the necessary contextual information for the resulting trace
depends on the form of the individual traces. Whenα represents an infinite or partial compu-
tation, the contextual information ofβ becomes irrelevant: the computation represented byβ
never begins, because the computation represented byα does not terminate. Whenα represents
a finite, successful computation, its fairness constraints (as represented by the fairness setF1)
become irrelevant; however, the finite enabling information provided byE1 must be preserved
when the resulting trace also represents a finite, successful computation.

Thus we define sequential composition on trace setsT1 andT2 by

T1;T2 = fϕ1ϕ2 j ϕ1 2 T1 & ϕ2 2 T2 & composable(ϕ1;ϕ2)g:

3.3 Strongly Fair Trace Semantics 39

We can then define

Ts[[c1;c2]] = Ts[[c1]];Ts[[c2]];

Ts[[g! c]] = Ts[[g]];Ts[[c]];

and

Ts[[if b then c1 else c2]] = Ts[[b]];Ts[[c1]][Ts[[:b]];Ts[[c2]]:

Iteration

Loops correspond to the finite or infinite iteration of a single command. Thus we base our
semantics for loops on the iteration of trace sets.

WhenfXi j i � 0g is a collection of finite sets, we let
∞
d

i=0
Xi be the set of elements appearing

in infinitely many setsXi . That is,
∞
d

i=0
Xi = fd j 8 j � 0:9k> j: d 2 Xkg:

We then introduce composability criteria for infinite collections of fair traces. Lethϕii
∞
i=0

represent an infinite sequence of fair traces

ϕ0;ϕ1; : : : ;ϕn; : : : ;

such that, for eachi � 0, ϕi = hαi;(Fi;Ei;Ri)i. The sequencehϕii
∞
i=0 is composable, written

composable(hϕii
∞
i=0), if, for each i, the tracesϕ0ϕ1 : : :ϕi�1 and ϕi are composable and the

sets
∞
d

i=0
Fi and

∞
d

i=0
Ei are finite. (These sets must be finite to ensure that the resulting trace is

well-formed.) We then define infinite concatenation as follows:

ϕ0ϕ1ϕ2 : : : =

8<
:hα0α1 : : :αn : : : ;(

∞
d

i=0
Fi;

∞
d

i=0
Ei;i)i; if 8i:Ri = f,

hα0α1 : : :αk;(Fk;Ek;Rk)i; if 8i < k:Ri = f andRk 2 fi;pg.

When eachϕi is finite, the infinitely enabled directions of the resulting trace are those directions
that appear in infinitely many of the setsEi , and similarly for the infinitely visible directions.
When at least oneϕi is an infinite or partial trace, the infinite concatenation is simply the finite
concatenationϕ0ϕ1 : : :ϕk, whereϕk is the first infinite or partial trace of the series.

The definitions for finite and infinite iteration on trace sets follow directly from the defini-
tions of concatenation and sequential composition. Finite iteration on the trace setT is defined
by

T� =
∞[

i=0

Ti
;

40 Strong Process Fairness

whereT0 = fhεs;(/0; /0;f)i j s2 Sg andTn+1 = Tn;T. Infinite iteration on the trace setT is
defined as follows:

Tω = fϕ0ϕ1 : : :ϕk : : : j (8i � 0:ϕi 2 T) & composable(hϕii
∞
i=0)g:

We can give the semantics of loops using these definitions of iteration:

Ts[[while b do c]] = (Ts[[b]];Ts[[c]])
ω[(Ts[[b]];Ts[[c]])

�;Ts[[:b]]:

Guarded choice

The commandgc1�gc2 represents a choice, to be made on the first step, between the guarded
commandsgc1 andgc2. Every computation ofgc1 and ofgc2 therefore gives rise to a cor-
responding computation ofgc1�gc2 that, on its initial step, can perform any action enabled
by either component. Whenever a fair traceϕ represents an infinite computation (or a partial
computation involving at least one step) ofgc1 or gc2, ϕ necessarily also represents a compu-
tation ofgc1�gc2. Whenϕ represents a finite computation (or a partial computation involving
no steps) ofgc1 or gc2, however, the enabling componentE must be augmented with those
directions that were enabled initially by the unchosen component. This additional enabling
information can be generated by looking at the “empty” partial traces of the unchosen compo-
nent: ifhεs;(F;E;p)i is a trace ofgci , thengci must be able to perform the actionsE on its first
step. Thus we define guarded choice on trace sets as follows:

T1�T2 = fhα;(F;E;i)i 2 T1[T2 j α 2 Σωg[fhα;(F;E;p)i 2 T1[T2 j α 2 Σ+g
[fhεs;(F1[F2;E1[E2;p)i j hεs;(F1;E1;p)i 2 T1 & hεs;(F2;E2;p)i 2 T2g

[fhα;(F1;E1[E2;f)i j hεsα;(F1;E1;f)i 2 T1 & hεs;(F2;E2;p)i 2 T2 & ε 62 E2g

[fhα;(F2;E1[E2;f)i j hεsα;(F2;E2;f)i 2 T2 & hεs;(F1;E1;p)i 2 T1 & ε 62 E1g:

The final two clauses impose conditions of formε 62 Ei whenhεs;(Fi;Ei;p)i is a trace of the
unchosen component. Technically, these conditions are moot: we perform the operationT1�T2

only whenT1 andT2 are trace sets of guarded commands, andε is never enabled on the first
step of guarded commands. However, in Chapter 4 we introduce semantic variations in which
ε may appear to be enabled on the initial step, and these conditions maintain the integrity of
the resulting traces’ sets of enabled directions.

We defineTs[[gc1�gc2]] = Ts[[gc1]]�Ts[[gc2]].

Channel restriction

The computations ofcnh are the computations ofc that do not use channelh for visible com-
munications. Correspondingly,Tnh can be obtained fromT by first removing those traces in

3.3 Strongly Fair Trace Semantics 41

which h is visible and then deletingh? andh! from the enabling and fairness sets of the re-
maining traces. For a traceα, chans(α) is the set of channels appearing alongα. For a setX of
directions, we letXnh be the setX with references to channelh removed:Xnh= X�fh!;h?g.
We then defineTnh by

Tnh= fhα;(F 0
;Enh;R)i j hα;(F;E;R)i 2 T & & F 0 � Fnh & h 62 chans(α)g:

so thatTs[[cnh]] = Ts[[c]]nh.

Parallel composition

The commandc1kc2 represents the parallel execution of the commandsc1 andc2. The compu-
tations ofc1kc2 can be derived from interleavings and synchronizations of computations ofc1

with computations ofc2. Likewise, the fair traces ofc1kc2 can be derived from interleavings
and synchronizations of traces ofc1 with traces ofc2.

Of course, only certain pairs of computations—and, correspondingly, traces—can be merged
in a meaningful way. For example, merging a partial computation represented by the fair trace
hα;(fh!g;fh!g;p)i with an infinite computation represented by the fair tracehβ;(/0;fh?g;i)i
does not yield a fair computation of the parallel command: the first component cannot remain
blocked if it is enabled for synchronization infinitely often. For this reason, we introduce a
predicatemergeablethat indicates when a potential merging of fair traces is “meaningful”: the
predicatemergeable(ϕ1;ϕ2) is true precisely when merging computations represented byϕ1

and ϕ2 would yield a fair (modulo an appropriate setF) computation of the corresponding
parallel command. The criteria for determining whether two traces are mergeable follow di-
rectly from the parallel clause of the parameterized fairness definition in Section 3.1. We let
vis(α) be the set of directions visible infinitely often along the simple traceα: for example, if
α = (s;b!0;s)[(s;a!0;s)]ω, thenvis(α) = fa!g. We then define the predicatemergeable(ϕ1;ϕ2)
for fair tracesϕ1 = hα1;(F1;E1;R1)i andϕ2 = hα2;(F2;E2;R2)i as follows:

mergeable(ϕ1;ϕ2) () (R1 = f) or (R2 = f) or (R1 = R2 = p) or

(ε 62 F1[F2 & :match(F1;E2) & :match(F2;E1) & F1\ vis(α2) = /0 & F2\ vis(α1) = /0):

Any trace can be merged safely with a finite, successful trace; hence two traces are mergeable
if either trace is finite. Additionally, two partial traces can always be merged to yield a partial
trace of the parallel command. The final clause specifies when an infinite trace can be merged
with another infinite trace or a partial trace; its individual conditions correspond precisely to the
conditions incorporated into the parallel-composition clause for parameterized strong fairness
in Definition 3.1.2. A partial trace represents a computation that can become blocked, provided
that noε-transition is possible from its final configuration. The conditions:match(F1;E2) and
:match(F2;E1) ensure that neither component enables synchronization infinitely often with

42 Strong Process Fairness

any direction in the other component’s fairness set. Similarly, the conditionsF1\ vis(α2) = /0
andF2\vis(α1) = /0 ensure that neither component uses infinitely often a direction in the other
component’s fairness set.

Given two mergeable computations (or traces), only certain mergings of them will represent
fair computations (or traces) of the corresponding parallel command. In particular, every fair
merge of the tracesϕ1 andϕ2 should “consume” all ofϕ1 andϕ2. That is, every step of each
ϕi should be accounted for in any fair merge ofϕ1 andϕ2. We can capture this intuition by
defining a ternary relationfairmerge�Φ�Φ�Φ on fair traces, adapted from Park’s fairmerge
relation [Par79] to account for the possibility of synchronization, with the idea that(ϕ1;ϕ2;ϕ)2
fairmergeif and only if ϕ arises from a fair interleaving (and synchronization) ofϕ1 andϕ2.
The definition offairmergerelies on two different sets of triples:both, whose triples represent
finite sequences of transitions made while both components are active, andone, whose triples
represent transition sequences made by one component after the other has terminated. Before
defining these sets, we introduce some interleaving and merging operators on both simple and
fair traces.

Consider a parallel programC1kC2, and suppose thatC1 can perform a finite transition
sequence represented by the simple traceα = (s0;λ0;s1)(s1;λ1;s2) : : :(sk;λk;sk+1). If s is a
local state ofC2, then the simple trace

αccεs = (s0[s;λ0;s1[s)(s1[s;λ1;s2[s) : : :(sk[s;λk;sk+1[s)

represents a finite transition sequence of the parallel command in whichC1 makes the transi-
tions represented byα andC2 idles in its local state. The traceαccεs is similarly defined for
infinite tracesα, capturing the intuition thatC1 can performα uninterrupted whenC2 has no
transitions possible from states. For finite, nonempty, disjoint2 tracesα andβ, we also define

αccβ = (αccεt)(βccεs);

wheres andt are the final state ofα and initial state ofβ, respectively. That is,αccβ is the
trace that looks likeα (with the first state ofβ propagated), followed byβ (with the final
state ofα propagated). Intuitively, ifα andβ represent finite transition sequences ofC1 and
C2 respectively, thenαccβ represents a transition sequence ofC1kC2 in which C1 makes the
transitions represented byα, followed byC2 making the transitions represented byβ. For
example, ifα = (s0;λ0;s1)(s1;λ1;s2) andβ = (t0;µ0; t1)(t1;µ1; t2), then

αccβ = (s0[t0;λ0;s1[t0)(s1[t0;λ1;s2[t0)(s2[t0;µ0;s2[t1)(s2[t1;µ1;s2[t2):

2Two tracesα andβ are disjoint if each state alongα is disjoint from every state alongβ; in such cases we
write disjoint(α;β). Likewise, two fair tracesϕ1 = hα;θ1i andϕ2 = hβ;θ2i are disjoint when their simple-trace
componentsα andβ are disjoint.

3.3 Strongly Fair Trace Semantics 43

The parallel commandC1kC2 may also have transition sequences in which the two compo-
nents repeatedly synchronize. Two nonempty, finite simple tracesα=(s0;λ0;s1) : : :(sk;λk;sk+1)
andβ = (t0;µ0; t1) : : :(tn;µn; tn+1) match—and we writematch(α;β)—if the two traces have
the same length and each step ofα matches the corresponding step ofβ (that is, if k = n and
match(λi;µi) for eachi). Whenα andβ match,αkβ is the trace in whichα andβ synchronize
at each step:

αkβ = (s0[t0;ε;s1[t1) : : :(sk[tk;ε;sk+1[tk+1):

Similarly, the fair tracesϕ1 = hα;(F1;E1;f)i andϕ2 = hβ;(F2;E2;f)imatch when their simple-
trace componentsα andβ match.

When computationsρ1 of C1 andρ2 of C2 are merged fairly to yield a computationρ of
C1kC2, the order in which their steps are interleaved and synchronized does not affect the gen-
eral properties (that is, the set of infinitely enabled directions or the relative fairness setF)
of ρ. Instead, these properties can be determined solely from the corresponding properties of
the original computationsρ1 andρ2. Thus we define an operatorθ1kθ2 for contextual triples
θ1;θ2 2 Γ as follows, with the intuition that eachθ 2 θ1kθ2 provides valid contextual informa-
tion for a computation that arises from merging computations with contextual informationθ1

andθ2.

The result of merging two finite transition sequences is yet another finite transition se-
quence, and the set of directions enabled along that transition sequence is the union of the sets
enabled along each of the original sequences. Thus we define

(F1;E1;f)k(F2;E2;f) = f(F;E1[E2;f) j F � F1[F2g:

Merging a finite (successful) transition sequence and a partial computation that can next per-
form actionsE2 results in a partial computation that can next perform actionsE2; thus we
define

(F1;E1;f)k(F2;E2;p) = (F2;E2;p)k(F1;E1;f) = f(F;E2;p) j F � F1[F2g:

Merging two partial computations—one of which can next perform actionsE1 and the other
of which can next perform actionsE2— results in a third partial computation that, on its next
step, can perform any of the actionsE1[E2. In addition, when the setsE1 andE2 match, the
resulting computation can also perform an internal action corresponding to a synchronization.
Thus we define

(F1;E1;p)k(F2;E2;p) = f(F;E1[E2[fε jmatch(E1;E2)g;p) j F � F1[F2g:

Merging a finite computation and an infinite computation with infinitely enabled directionsE2

yields another infinite computation with infinitely enabled directionsE2:

(F1;E1;f)k(F2;E2;i) = (F2;E2;i)k(F1;E1;f) = f(F;E2;i) j F � F1[F2g:

44 Strong Process Fairness

Finally,3 merging a partial computation that can next perform actionsE1 and an infinite com-
putation with infinitely enabled directionsE2 results in an infinite computation with infinitely
enabled directionsE1[E2; thus we define

(F1;E1;p)k(F2;E2;i) = (F2;E2;i)k(F1;E1;p) = f(F;E1[E2;i) j F � F1[F2g:

Note that this last definition safely ignores the possibility of synchronization between the two
components: the setsE1 andE2 are guaranteed not to match, because we perform this operation
only on tracesϕ1 andϕ2 for which the predicatemergeable(ϕ1;ϕ2) is true.

Using this parallel operator on contextual triples, we can extend the interleaving (cc) and
merging (k) operators to fair traces in the obvious way. For fair tracesϕ1 = hα;θ1i andϕ2 =
hβ;θ2i such thatαccβ or αkβ is defined, we defineϕ1ccϕ2 andϕ1kϕ2 (respectively) as follows:

ϕ1ccϕ2 = fhαccβ;θi j θ 2 θ1kθ2g; ϕ1kϕ2 = fhαkβ;θi j θ 2 θ1kθ2g:

Thus the fair traceϕ is in ϕ1ccϕ2 if its simple trace component is the interleavingαccβ and its
contextual information corresponds to the mergingθ1kθ2. Similarly,ϕ is in ϕ1kϕ2 if it captures
the information inherent in a synchronization ofϕ1 andϕ2.

We can now define the setsboth� Φ�Φ�Φ andone� Φ�Φ�Φ. The setbothcorre-
sponds to the intuition that, as long as both components remain active, neither component can
be forever ignored. Thus the setbothcontains triples that reflect interleavings (or synchroniza-
tions) offiniteportions of possibly infinite traces:

both = f(ϕ1;ϕ2;ϕ);(ϕ2;ϕ1;ϕ) j ϕ1;ϕ2 2 Φfin & disjoint(ϕ1;ϕ2) & ϕ 2 ϕ1ccϕ2g

[f(ϕ1;ϕ2;ϕ) j ϕ1;ϕ2 2Φfin & disjoint(ϕ1;ϕ2) & match(ϕ1;ϕ2) & ϕ 2 ϕ1kϕ2g:

Once one component terminates (or becomes permanently blocked), the other component can
proceed uninterrupted. Thus the setonecontains triples that reflect the uninterrupted progress
of one component while the other component idles (and henceone involves no synchroniza-
tions):

one= f(ϕ1;ϕ2;ϕ); (ϕ2;ϕ1;ϕ) j ϕ1 2 Φ & ϕ2 = hεs;θ2i & ϕ 2 ϕ1ccϕ2 & disjoint(ϕ1;ϕ2)g:

To definefairmergefrom bothandone, we define a dot operator (�) that extends concate-
nation of traces to sets of triples of traces in the obvious way. For example, whenY1 andY2 are
sets of triples of traces,

Y1 �Y2 = f(ϕ1ϕ0

1;ϕ2ϕ0

2;ϕ3ϕ0

3) j (ϕ1;ϕ2;ϕ3) 2Y1 & (ϕ0

1;ϕ
0

2;ϕ
0

3) 2Y2

& composable(ϕ1;ϕ0

1) & composable(ϕ2;ϕ0

2) & composable(ϕ3;ϕ0

3)g:

3We do not provide a definition for(F1;E1;i)k(F2;E2;i), because we never merge an infinite trace with
another infinite trace directly. Rather, we merge two infinite traces by merging finite portions of one with finite
portions of the other.

3.3 Strongly Fair Trace Semantics 45

Likewise,Y� andYω represent (respectively) the finite and infinite iterations of this dot operator
on the setY. We then definefairmergeto be the greatest fixed point of the functional

F(Y) = both�Y[one;

so that

fairmerge= bothω[both� �one:

The triple(ϕ;ϕ0;ψ) is in bothω if and only if the tracesϕ, ϕ0, andψ can be written as infinite
concatenations of finite nonempty traces

ϕ = ϕ0 ϕ1 ϕ2 ϕ3 : : : ; ϕ0 = ϕ0

0 ϕ0

1 ϕ0

2 ϕ0

3 : : : ; ψ = ψ0 ψ1 ψ2 ψ3 : : : ;

such that eachψi is in (ϕiccϕ0

i [ϕ0

iccϕi [ϕikϕi). Such triples represent the merging of two
infinite traces. Likewise, the triple(ϕ;ϕ0;ψ) is in both� �oneif and only if the tracesϕ, ϕ0, and
ψ can be written as finite concatenations

ϕ = ϕ0 ϕ1 ϕ2 ϕ3 : : : ϕn; ϕ0 = ϕ0

0 ϕ0

1 ϕ0

2 ϕ0

3 : : : ϕ0

n; ψ = ψ0 ψ1 ψ2 ψ3 : : : ψn;

such that eachϕi , ϕ0

i andψi (for i < n) is a nonempty finite trace, eachψi (for i < n) is a member
of the set(ϕiccϕ0

i [ϕ0

iccϕi [ϕikϕi), at least one ofϕn andϕ0

n has formhεs;θi, andψn is a
member of the set(ϕnccϕ0

n [ϕ0

nccϕn).

We can now define fair parallel composition on trace sets as follows:

T1kT2 = fϕ j ϕ1 2 T1 & ϕ2 2 T2 & mergeable(ϕ1;ϕ2) & (ϕ1;ϕ2;ϕ) 2 fairmergeg:

The traces ofT1kT2 are those traces that result from fair merges of mergeable traces fromT1

andT2. We therefore defineTs[[c1kc2]] = Ts[[c1]]kTs[[c2]].

We summarize the preceding discussion and give the following complete denotational char-
acterization of the trace semanticsTs.

46 Strong Process Fairness

Definition 3.3.1 The trace semantic functionTs : Com! P(Φ) is defined by:

Ts[[skip]] = fh(s;ε;s);(F; /0;f)i j s2 S& F 2 Pfin(∆)g
[fhεs;(F;fεg;p)i j s2 S& F � fεgg

Ts[[i:=e]] = fh(s;ε; [sji = n]);(F; /0;f)i j
fv[[i:=e]]� dom(s) & F 2 Pfin(∆) & (s;n) 2 E [[e]]g

[fhεs;(F;fεg;p)i j fv[[i:=e]]� dom(s) & F � fεgg
Ts[[c1;c2]] = Ts[[c1]];Ts[[c2]]

Ts[[if b then c1 else c2]] = Ts[[b]];Ts[[c1]][Ts[[:b]];Ts[[c2]]

Ts[[while b do c]] = (Ts[[b]];Ts[[c]])
ω[(Ts[[b]];Ts[[c]])

�;Ts[[:b]]

Ts[[h?i]] = fh(s;h?n; [sji = n]);(F;fh?g;f)i j i 2 dom(s) & n2 Z & F 2 Pfin(∆)g
[fhεs;(F;fh?g;p)i j i 2 dom(s) & F � fh?gg

Ts[[h!e]] = fh(s;h!n;s);(F;fh!g;f)i j (s;n) 2 E [[e]] & F 2 Pfin(∆)g
[fhεs;(F;fh!g;p)i j fv[[e]]� dom(s) & F � fh!gg

Ts[[g! c]] = Ts[[g]];Ts[[c]]

Ts[[gc1�gc2]] = Ts[[gc1]]�Ts[[gc2]]

Ts[[c1kc2]] = Ts[[c1]]kTs[[c2]]

Ts[[cnh]] = Ts[[c]]nh:

�

The following result shows that the denotational semantics accurately reflects the opera-
tional behavior of programs executing under the assumption of strong fairness.

Proposition 3.3.2 The denotational and operational characterizations of the fair trace seman-
ticsTs coincide.

Proof: By a straightforward but tedious induction on the structure of commands.

Most of the details concern parallel composition and make precise the connection with
the operational characterization of parameterized fairness given in Definition 3.1.2.

3.4 Examples

In this section, we sketch how the semanticsTs can support reasoning about the behavior of
programs.

3.4 Examples 47

Example 3.4.1 Recall Example 3.1.3, where we definedC� while true do c!1 and considered
a computation of the command

((a!0! b!1) kC)nb:

Ts[[a!0! b!1]] contains the partial traceϕ1 = h(s;a!0;s);(fb!g;fb!g;p)i, which represents
the blocked modfb!g computation

ρ1 = ha!0! b!0;si
a!0
�! hb!0;si:

Ts[[C]] contains the infinite traceϕ2 = h[(s;ε;s)(s;c!1;s)]ω;(/0;fc!g;i)i, which represents the
fair mod /0 computation

ρ2 = hC;si
ε

�! h(c!1;C);si
c!1
�! hC;si

ε
�! h(c!1;C);si

c!1
�! hC;si

ε
�! �� � :

The tracesϕ1 andϕ2 are mergeable, because:match(fb!g;fc!g) andfb!g\fc!g= /0. More-
over,(ϕ1;ϕ2;ϕ) is in fairmerge, where we letϕ be the trace

ϕ = h(s;a!0;s)[(s;ε;s)(s;c!1;s)]ω;(fb!g;fb!;c!g;i)i:

As a result,ϕ is in Ts[[(a!0! b!1)kC]]; not surprisingly,ϕ corresponds to the computation

ρ0 = h(a!0! b!1) kC;si
a!0
�! hb!1 kC;si

ε
�! hb!1 k (c!1;C);si

c!1
�! hb!1 kC;si

ε
�! hb!1 k (c!1;C);si

c!1
�! �� � ;

which can be obtained by interleavingρ1 andρ2. It follows thatTs[[((a!0! b!1)kC)nb]] con-
tains the traceh(s;a!0;s)[(s;ε;s)(s;c!1;s)]ω;(/0;fc!g;i)i, which corresponds to the computa-
tion ρ of Example 3.1.3. �

Example 3.4.2 Recall Example 3.1.4, which introduced the following programs:

C � while true do (a!1�b!1);

C1kC2 � (while true do a!1) k (b!1! (while true do b!1));

Cp � while true do (a!0�b?z):

Ts[[C]] contains the traceϕ= h[(s;ε;s)(s;a!1;s)]ω;(/0;fa!;b!g;i)i, corresponding to its fair mod
/0 computation that enables the directionsa! andb! infinitely often and yet uses onlya! infinitely
often. In contrast,Ts[[C1kC2]] contains the trace

ϕ0 = h[(s;ε;s)(s;a!1;s)]ω;(fb!g;fa!;b!g;i)i

but not the traceϕ, because its only computations that do not useb! are fair modfb!g but not
fair mod /0.

48 Strong Process Fairness

Ts[[Cp]] contains the traceϕp = h[(s;ε;s)(s;a!0;s)]ω;(/0;fa!;b?g;i)i, which corresponds to
its fair mod /0 computation that enables the directionsa! andb? infinitely often and repeatedly
performs the actiona!0. The tracesϕ andϕp are mergeable; lettingψ be the trace

ψ = h[(s[t;ε;s[t)(s[t;ε;s[t)(s[t;a!0;s[t)(s[t;a!1;s[t)]ω; (/0;fa!;b!;b?g;i)i;

the triple(ϕ;ϕp;ψ) is in fairmerge, and henceψ is in Ts[[CkCp]]. The traceψ corresponds to
the following fair mod/0 merging of computationsρ andρp:

hC kCp; s[ti
ε

�! h(a!1�b!1);C kCp; s[ti
ε

�! h(a!1�b!1);C k (a!0�b?z);Cp; s[ti
a!0
�! h(a!1�b!1);C kCp; s[ti
a!1
�! hC kCp; s[ti

ε
�! �� �

In contrast, the tracesϕ0 and ϕp are not mergeable, because the fairness setfb!g of ϕ0

matchesϕp’s setfa!;b?g of infinitely enabled directions. The lack of mergeability reflects
Cp’s inability to refuse to synchronize on channelb whenC1kC2 has a process blocked on the
directionb!. �

Example 3.4.3 Consider the program(Stream1 k Stream2 kMerge)nleftnright, where the pro-
cessesStream1, Stream2 andMerge are defined as follows:

Stream1 � while true do left!1;

Stream2 � while true do right!2;

Merge � while true do (left?x! out!x � right?x! out!x):

None of the commands have any successful finite traces.

Every infinite trace ofMerge has formhα; (F;fleft?; right?;out!g;i)i. Therefore, the only
traces of(Stream1 k Stream2) that can be merged with traces ofMerge are those whose fairness
sets do not contain the directionsleft!, right! or out?. The only such traces are those that
represent computations in which bothStream1 andStream2 make infinite progress. These
traces necessarily have formhβ;(F 0;fleft!; right!g;i)i, wherefleft!; right!g \ F 0 = /0 and β
contains infinitely manyleft!1 actions and infinitely manyright!2 actions.

As a consequence, every trace (and therefore every fair computation) of

(Stream1 k Stream2 kMerge)nleftnright

must contain infinitely manyout!1 actions and infinitely manyout!2 actions. ThereforeMerge

represents a fair merger of the streams created byStream1 andStream2. �

3.4 Examples 49

The following example highlights the connection between fairness and unbounded nonde-
terminism, using the trace semantics to prove that a single program can terminate with any
possible integer value for the identifierx. (The program will also prove useful in certain proofs
in Chapter 4.)

Example 3.4.4 Let Pick Int(x;y;w) be the command

(Data(x;y) k Control(w))nanb;

whereData(x;y) andControl(w) are the following programs:

Data(x;y) �
x:=0; y:=1;
while y 6= 0 do (a!1! x:=x+1 � b?y! skip � a!1! x:=� x),

Control(w) � w:=1; while w 6= 0 do (a?w! skip� b!0! w:=0):

For all integersmandn, let sn abbreviate the state[x= n;y= 0] andtn abbreviate the state
[x= n;y = 1], and letum abbreviate the state[w = m]. For eachn2 Z, let the tracesα+n , α�

n ,
andα�

n be defined by:

α+n = (tn;a!1; tn)(tn;ε; tn+1)(tn+1;ε; tn+1);

α�

n = (tn;a!1; tn)(tn;ε; t�n)(t�n;ε; t�n);

α�

n = (tn;b?0;sn)(sn;ε;sn)(sn;ε;sn):

Intuitively, α+n represents the transitions made byData(x;y) in executing the code fragment

a!1! x:=x+1

from the state[x = n;y = 1], and then entering the loop again by verifying that the condition
y 6= 0 holds. Similarly,α�

n represents the transitions made byData(x;y) in executing the
fragment

a!1! x:=� x

from the same state and reentering the loop. Finally, the traceα�

n represents the transitions
made byData(x;y) in which it receives the value 0 along channelb and finally terminates.

For every nonnegative integern, we can also define the simple traces

γ+n = (s0;ε;s0)(s0;ε; t0)(t0;ε; t0)α+0 α+1 : : :α
+

n�1α�

n;

γ�n = (s0;ε;s0)(s0;ε; t0)(t0;ε; t0)α+0 α+1 : : :α
+

n�1α�

n α�

�n:

Intuitively, γ+n (respectively,γ�n) represents a computation ofData(x;y) that setsx to n (respec-
tively, �n) and then terminates. Moreover, for eachn� 0, the traceshγ+n ;(/0;fa!;b?g;f)i and
hγ�n ;(/0;fa!;b?g;f)i are inTs[[Data(x;y)]].

50 Strong Process Fairness

We can also define simple traces

β = (u1;a?1;u1)(u1;ε;u1)(u1;ε;u1); β� = (u1;b!0;u1)(u1;ε;u0)(u0;ε;u0);

and (for eachn� 0) ξn = (u0;ε;u1)(u1;ε;u1)βn�1β�. The traceξn represents a computation
of Control(w) that executes the guarda?0 n� 1 times and then executes the guardb!0 and
terminates. For each nonnegativen, the trace(ξn;(/0;fa?;b!g;f)) is in Ts[[Control(w)]].

Finally, using the notation(s;λ;s)3 to abbreviate the trace(s;λ;s)(s;λ;s)(s;λ;s), we can
define the following simple traces, for all integer valuesn:

θ+n = (tn[u1;ε; tn[u1)(tn[u1;ε; tn+1[u1)[(tn+1[u1;ε; tn+1[u1)]
3

θ�n = (tn[u1;ε; tn[u1)(tn[u1;ε; t�n[u1)[(t�n[u1;ε; t�n[u1)]
3

θ�n = (tn[u1;ε;sn[u1)(sn[u1;ε;sn[u0)[(sn[u0;ε;sn[u0)]
3
:

Intuitively, θ+n arises from a merge ofα+n andβ, θ�n arises from a merge ofα�

n andβ, andθ�n
arises from a merge ofα�

n andβ�. Lettingι be the trace

(s0[u0;ε;s0[u0)(s0[u0;ε; t0[u0)(t0[u0;ε; t0[u0)(t0[u0;ε; t0[u1)(t0[u1;ε; t0[u1);

representing one possible merging of the “initial” portions ofγ+n andξn, it follows that, for
each nonnegativen, the traces

hιθ+0 θ+1 : : :θ
+

n�1θ�n;(/0; /0;fa!;a?;b!;b?g;f)i

and
hιθ+0 θ+1 : : :θ

+

n�1θ�n θ�
�n;(/0; /0;fa!;a?;b!;b?g;f)i

are inTs[[Data(x;y)kControl(w)]]. Consequently, the traces

hιθ+0 θ+1 : : :θ
+

n�1θ�n;(/0; /0;f)i and hιθ+0 θ+1 : : :θ
+

n�1θ�n θ�
�n;(/0; /0;f)i

are inTs[[Pick Int(x;y;w)]]. These traces reflect the fact that, for every integern, there is a
strongly fair computation ofPick Int(x;y;w) that terminates in a state where the identifierx

has valuen. �

Example 3.4.5 As a postscript to the previous example, letγ be the infinite simple trace

(s0;ε;s0)(s0;ε; t0)(t0;ε; t0)α+0 α+1 : : :α
+

n�1 : : : ;

so thatγ represents a computation ofData(x;y) that continually incrementsx. Similarly, let
ξ = (u0;ε;u1)(u1;ε;u1)βω, so thatξ represents a computation ofControl(w) in which w is
never set to 0.

3.4 Examples 51

The tracehγ;(/0;fa!;b?g;i)i is in Ts[[Data(x;y)]], and the tracehξ;(/0;fa?;b!g;i)i is in
Ts[[Control(w)]]. It follows that the trace

hιθ+0 θ+1 : : :θ
+

n : : : ;(/0;fa!;a?;b!;b?g;i)i

is in Ts[[Data(x;y)kControl(w)]], and hence the tracehιθ+0 θ+1 : : :θ
+
n : : : ;(/0; /0;i)i is in

Ts[[Pick Int(x;y;w)]]. The existence of this trace reflects the fact thatPick Int(x;y;w) has
strongly fair computations that never terminate. �

These examples all illustrate how the strongly fair trace semantics can be used to reason
about strongly fair program behavior. What we have not yet addressed, however, is whether
a simpler semantics (that is, a semantics constructed at a higher level abstraction) would also
support such reasoning: are the fairness setsF and setsE of enabled directions really necessary
for reasoning about strong process fairness? We address this question in the next chapter, where
we discussfull abstraction. Intuitively a semantics is fully abstract if it provides precisely the
right level of detail to support compositional reasoning about program behavior. We show in
the next chapter that the semanticsTs can be made fully abstract and that the setsF andE play
a vital role in modeling strongly fair computations.

52 Strong Process Fairness

Chapter 4

Full Abstraction for Strong Fairness

A single language can have several different semantics, each suited for reasoning about a dif-
ferent type of program behavior. The struggle for each semantics is to find a balance between
supporting compositional reasoning and maintaining an appropriate level of abstraction. For
example, a semantics intended to support reasoning about the sequence of states encountered
along a computation must capture intermediate states in some fashion. In contrast, that same
semantics may be unnecessarily complex for reasoning about a behavior that ignores inter-
mediate states; a semantics that also ignores intermediate states may provide a better level of
abstraction.

Given a semantics and a notion of program behavior, how do we determine whether—and,
if so, how well—the semantics supports reasoning about the behavior? One well-known crite-
rion for judging the utility of a semantics isfull abstraction[Mil75]. Informally, a semantics
is fully abstract with respect to a given notion of behavior if it gives identical meanings to
program terms exactly when those terms exhibit identical behaviors in all program contexts.
In essence, a fully abstract semantics supplies precisely the right level of detail to support
compositional reasoning about a given notion of behavior.

In this chapter, we introduce a natural notion of strongly fair behavior, and we show how
the semanticsTs introduced in Chapter 3 can be adapted—through the introduction of suitable
closure conditions on trace sets—to yield full abstraction with respect to this behavior. We also
introduce several additional notions of strongly fair behavior and show how the same general
framework, with small changes to the specific semantics, yields full abstraction with respect to
these behaviors as well. Having a common underlying framework significantly simplifies the
construction of the additional semantics: the different traces share the same general structure,
the semantic operators represent the same type of operational behavior, and the full-abstraction
proofs rely on the same observations and necessary lemmas.

54 Full Abstraction for Strong Fairness

4.1 Soundness and Full Abstraction

A program context P[�] is a program with one or more “holes” into which a command can
be inserted.P[c] is the program that results from filling the holes ofP[�] with commandc,
providedc “makes sense” in the given hole. For example, ifP[�] is the context([�]! skip),
thenP[a!0] is the command(a!0! skip), whereasP[skip] is undefined.1

A behavior notion is the set of program actions assumed to be visible to an external ob-
server. For example, the input–output behavior of a program provides a black-box view of
programs: a program’s initial input and final result are considered observable, but its interme-
diate states are not. For communicating processes, there are several natural notions of behavior
to consider, such as a program’s sequences of communications or the states encountered along
its possible executions. For most of this chapter, we focus on the following form ofstate trace
behavior; in Section 4.5, we discuss several other notions of strongly fair behavior.

Definition 4.1.1 The state trace behaviorM : Com! P(S∞[S�δ) is defined by:

M [[c]] = fs0s1 : : :sk j hc;s0i
ε
�! hc1;s1i

ε
�! �� �

ε
�! hck;skitermg

[fs0s1 : : :skδ j hc0;s0i
ε

�! hc1;s1i
ε

�! �� �
ε
�! hck;skideadg

[fs0s1 : : :sk : : : j hc0;s0i
ε

�! hc1;s1i
ε

�! �� �
ε

�! hck;ski
ε

�! �� � is fairg;

where we defineS�δ = fs0s1 : : :skδ j 8i 2 0::k: si 2 Sg �

The state trace behaviorM incorporates the assumption that a program is a closed system
(that is, no external communication is permitted) and that an observer can detect each and
every state change. This notion of behavior captures exactly the information necessary for
reasoning about the linear-time temporal logic properties of programs; the assumption that
every state change is detectable corresponds to the inclusion of a next-time operator in the
temporal logic. Finally, this behavior reflects the assumption that deadlock is distinguishable
both from successful termination and from infinite chattering.

A semantics issound with respect to a given notion of behavior if whenever two terms
have the same meaning, they induce the same behaviors in all program contexts. Thus, when-
ever a sound semantics identifies two terms, either term can always be substituted for the other
in any program without affecting the program’s observable behavior. However, when a sound
semantics gives different meanings to program terms, the terms may or may not be safely inter-
changeable: they may have different meanings either because they induce different behaviors

1To be more precise and pedantic, each context should be tagged with a label that indicates whether the hole
takes guards or commands and a set of identifiers that are forbidden to be free in any command filling the hole.
For example, the context([�]! skip k x:=1) would be tagged to indicate that it accepts guards that do not have
free identifierx.

4.2 Closed Trace Sets 55

in some program context or because the semantics provides too low a level of abstraction. For
example, the semantics that maps each term to its own syntactic representation is sound for any
notion of program behavior, but it is not very useful: two terms have the same meaning in this
semantics if and only if they are identical, and hence they necessarily behave the same in all
program contexts.

A semantics is(equationally) fully abstract [Mil75] with respect to a notion of behavior
if it assigns two terms the same meaning exactly when they induce the same behaviors in all
program contexts. A fully abstract semantics faithfully captures Morris-style contextual equiv-
alence [Mor68], identifying two terms if and only if they are contextually equivalent. Thus a
fully abstract semantics makes precisely the right distinctions and retains just enough detail to
support compositional reasoning about the given behavior. When the semantic and behavioral
domains both come equipped with approximation orderings, we can also speak of a stronger
property calledinequational full abstraction: a semantics isinequationally fully abstract with
respect to a notion of behavior provided that the meaning of a termc approximates that ofc0

exactly when the behavior ofc approximates that ofc0 in all program contexts. Inequational
full abstraction necessarily implies equational full abstraction.

4.2 Closed Trace Sets

The semanticsTs introduced in Chapter 3 issoundwith respect toM : for all commandsc and
c0,

Ts[[c]] = Ts[[c
0]] =) 8P[�]:M [[P[c]]] = M [[P[c0]]]:

The soundness ofTs for M follows directly from the compositionality ofTs, the monotonicity
of the semantic operators, and the fact that the state traces in eachM [[P[c]]] correspond to the
traces ofP[c] that contain onlyε-transitions. However,Ts is not fully abstract with respect to
M , because it makes distinctions between programs that behave equivalently in all contexts.
These inappropriate distinctions arise because certain combinations of traces convey exactly
the same information as do certain other combinations.

For example, consider the following commandsC1 andC2:

C1 � (a!0! b!0)�(a!0! c!0);

C2 � (a!0! b!0)�(a!0! c!0)�(a!0! (b!0�c!0)):

The tracesϕp= h(s;a!0;s);(fb!;c!g;fb!;c!g;p)i andϕ f = h(s;a!0;s)(s;b!0;s);(/0;fa!;b!;c!g;f)i
are both possible forC2 but not forC1. However, the two commands behave identically in all
program contexts: after performing ana!0, each command may performb!0 or c!0, and each
command may refuse either one of these actions (but not both). ThatC2 can enable each ofb!
andc! along the same computation is not directly observable: any behavior possible when both

56 Full Abstraction for Strong Fairness

are enabled is also possible when only one of them is enabled. In essence, the partial traceϕp

conveys no information that is not already conveyed by the partial traces

ϕ1 = h(s;a!0;s);(fb!g;fb!g;p)i and ϕ2 = h(s;a!0;s);(fc!g;fc!g;p)i;

both of which are possible forC1 as well as forC2. More generally, the information provided
by the combination of partial traceshα;(F1;E1;p)i andhα;(F2;E2;p)i encompasses any infor-
mation provided by the partial tracehα;(F1[F2;E1[E2;p)i. Consequently, it is safe to assume
that the latter trace exists in any trace set that contains the first two. Likewise, the finite trace
ϕ f above conveys no more information than that conveyed by the finite trace

h(s;a!0;s)(s;b!0;s);(/0;fa!;b!g;f)i;

which is possible for bothC1 andC2. More generally, it is safe to assume that the finite or
infinite tracehα;(F 0;E0;R)i is in any trace set containing the tracehα;(F;E;R)i, provided
E � E0, F � F 0, andR2 ff;ig.

A similar situation arises with the following guarded commandsC3 andC4:

C3 � (a!0! b!0)�(a!0! (b!0�c!0�d!0))

C4 � (a!0! b!0)�(a!0! (b!0�c!0�d!0))�(a!0! (b!0�c!0)):

The two partial traces

ϕ1 = h(s;a!0;s);(fb!g;fb!g;p)i; ϕ2 = h(s;a!0;s);(fb!;c!;d!g;fb!;c!;d!g;p)i

are possible for bothC3 andC4, but the partial traceϕ = h(s;a!0;s);(fb!;c!g;fb!;c!g;p)i is
possible only forC4. However, for reasons similar to those above, the two commands behave
the same in all program contexts. Any information conveyed by the traceϕ is also conveyed by
the combination of tracesϕ1 andϕ2, both of which are possible forC3 andC4. More generally,
the combination of partial traces

hα;(F1;E1;p)i and hα;(F2;E2;p)i

encompasses any information conveyed by the partial tracehα;(F;E;p)i, providedE1 � E �

E2, F1 � F � F2, andF � E.

Similar observations led to the imposition of saturation closure conditions in Hennessy’s
acceptance trees model [Hen85] and downwards and convex closure conditions for refusal sets
in the failures model for CSP [BHR84]. The need for these closure conditions arises from our
desire to model deadlock and is orthogonal to our attempts to model fairness. However, other
fairness-related difficulties also arise, due to the interactions between traces’ fairness setsF
and enabling setsE.

4.2 Closed Trace Sets 57

To understand why, recall that, in the infinite tracehα;(F;E;i)i, the setF represents con-
straints on the type of context in whichα will represent a fair transition sequence, and the set
E indicates which directions are enabled infinitely often along that sequence. Therefore, dis-
tinguishing between a process with the tracehα;(F;E;i)i and one with the tracehα;(F;E0;i)i
requires a context with a subcomponentQ that can be enabled infinitely byE but notE0 (or
vice versa). When placed in such a context, one process can performα fairly while Q blocks,
whereas the other process cannot performα without eventually synchronizing withQ. For
example, suppose that the commandC (but notC0) has the tracehα;(/0;fa!;b!g;i)i and thatC0

has the tracehα;(/0;fa!;b!;c!g;i)i. The two commands can be distinguished by a context like
the following:

P[�]� ([�] k c?x!
ag:=1)nc:

The programP[C] has a fair behavior in whichC performs the transition sequenceα and in
which the identifier
ag never gets set to 1. In contrast,P[C0] has no such behavior: ifC0 tries
to perform the sequenceα, the context’s guardc?x will be enabled infinitely often, thereby
forcing a synchronization that leads to
ag getting set to the value 1.

Distinguishing a process with tracehα;(F;E;i)i from one with tracehα;(F 0;E;i)i requires
a different approach. In particular, the context must enable some direction inF or F 0 (but
not both) infinitely often (without becoming blocked itself), thereby providing infinitely many
synchronization opportunities to a previously blocked modF (or F 0) subcomponent of one of
the processes. For example, recall the commandsC, C1kC2 andCp from Example 3.1.4:

C � while true do (a!0�b!1);

C1kC2 � (while true do a!0) k (b!1! while true do b!1);

Cp � while true do (a!0�b?z):

Letting α = [(s;ε;s)(s;a!1;s)]ω, the commandsC andC1kC2 have (respectively) the traces
hα;(/0;fa!;b!g;i)i andhα;(fb!g;fa!;b!g;i)i. The context

([�] k while true do (a!0�b?z))nb

can distinguish these commands, because theb?z command appears within a guarded choice.
The context’s infinite enabling ofb? is sufficient to forceC1kC2 to synchronize on channelb,
and yetC may refrain fairly from usingb at all.

Bearing these considerations in mind, we now consider two more commands that behave
the same in all program contexts and yet have different meanings under the semanticsTs:

C5 � (a!0! b!0! c!0)�(a!0! b?x)�(a!0! (b!0�b?x));

C6 � (a!0! b!0! c!0)�(a!0! b?x)�(a!0! (b!0�b?x))�(a!0! b!0):

58 Full Abstraction for Strong Fairness

These commands exhibit the same potential for deadlock (i.e., they share the same partial
traces), and they can perform the same sequences of communications. The only potential dif-
ference between these commands is thatC6 can perform the successfully terminating sequence
of actions[a!0 b!0] without enabling input on channelb. This potential difference is reflected
in their trace sets: the traceϕ = h(s;a!0;s)(s;b!0;s);(/0;fa!;b!;b?g;f)i is possible for bothC5
andC6, whereas the traceϕ0 = h(s;a!0;s)(s;b!0;s);(/0;fa!;b!g;f)i is possible only forC6. As
a result, the only possible way to distinguishC6 from C5 is to distinguishϕ0 from ϕ, which re-
quires an argument based on fairness. In particular, distinguishing betweenC6 andC5 requires
a context that allows eachCi to repeatedly performa!0 followed byb!0, while permitting an
observer to determine when the directionb? is enabled only finitely often along the infinite
computation. Therefore, any potential distinguishing context must have at least the following
three separate components:

1. A loop that repeats the relevantCi infinitely many times.

Intuitively, whenC6 is placed in this loop, it can repeatedly performa!0 followed byb!0,
without ever enabling the directionb?. In contrast, whenC5 is placed in this loop and
performs the same sequence of actions, it necessarily enablesb? infinitely often.

2. A component—placed in parallel with the aforementioned loop—that can block only
whenb? is not enabled by the relevantCi infinitely often.

To block whenb? is enabled only finitely often, this component must contain a guard
that blocks when trying to perform output on channelb. Because blocking can happen
only when synchronization is required, both this component and the loop must appear in
the scope of channel restriction on channelb.

3. A component that repeatedly offers input opportunities for each of the loop’s attempted
b!0 actions.

The loop has communication on channelb restricted and yet needs to perform the action
b!0 infinitely often. Consequently, it requires an additional component that repeatedly
offers input opportunities on channelb, thus permitting synchronization.

Consequently, any distinguishing context must have the following general form:

(while true do [�] k b!0!
ag:=1 k while true do b?v)nb:

However, the second component (which is intended to block in certain situations) is always
provided infinitely many synchronization opportunities by the third component. As a result,
it can never become permanently blocked, regardless of whetherC5 or C6 is inserted into the
context. In effect,C5’s enabling (but non-use) ofb? is obscured byC5’s use of the matching
directionb!. Because every possible distinguishing context must have the same general form,

4.2 Closed Trace Sets 59

C5 andC6 are behaviorally indistinguishable. More generally, a trace set containing the finite or
infinite traceϕ= hα;(F;E[X;R)i, with X\vis(α)= /0 andX� vis(α), cannot be distinguished
from one that also contains the tracehα;(F;E;R)i.

The final source of inappropriate distinction arises from pairs of traces whose fairness and
enabling sets conflict with one another. For example, consider the commandsC7 � G1�G2

andC8 � G1�G2�G3, where the guarded commandsG1, G2, andG3 are defined as follows:

G1 � b!0! while true do (b!0�a?x�a!0)

G2 � b!0! ((while true do b!0) k (a?x! while true do a?x))

G3 � b!0! while true do (b!0�a?x):

Letting α represent the simple trace[(s;b!0;s)(s;ε;s)]ω, the trace sets ofC7 and C8 both
contain the tracesϕ1 = hα;(/0;fb!;a?;a!g;i)i andϕ2 = hα;(fa?g;fb!;a?g;i)i, but the trace
ϕ3 = hα;(/0;fb!;a?g;i)i is possible only forC8. To distinguish betweenC7 andC8 requires
a context in whichϕ3 can be distinguished from bothϕ1 andϕ2 at the same time.As dis-
cussed previously, distinguishingϕ3 from ϕ1 requires a context that places the relevantCi in
parallel with a component that blocks while trying to perform input on channela. In contrast,
distinguishingϕ3 from ϕ2 requires a context that places the relevantCi in parallel with a com-
ponent that enables output on channela infinitely often and yet does not block. Therefore, any
distinguishing context for the commandsC7 andC8 must contain both of these components
running in parallel, one continuously attempting to perform input and the other repeatedly
offering matching output. In such a context, the intended “blocking” component is enabled
infinitely often by the second component, regardless of which command is inserted. Thus, no
context can possibly distinguish the commandsC7 andC8. More generally, whenever the traces
hα;(F [fdg;E;i)i andhα;(F;E[fd̄g;i)i are in a trace setT, it is impossible to determine
whether (and it is safe to assume that) the tracehα;(F;E;i)i is in T as well.

We formalize these observations by imposing the following closure conditions on trace sets.

Definition 4.2.1 Given a fair trace setT, the closure of T (written T†) is the smallest set
containingT and satisfying the following conditions:

� Union: If hα;(F1;E1;p)i andhα;(F2;E2;p)i are inT†, thenhα;(F1[F2;E1[E2;p)i is in
T†.

� Convexity: If hα;(F1;E1;p)i andhα;(F2;E2;p)i are inT†, E1 � E � E2, F1 � F � F2,
andF � E, thenhα;(F;E;p)i is in T†.

� Superset: If hα;(F;E;R)i is in T†, R2 ff;ig, F � F 0, andE � E0, thenhα;(F 0;E0;R)i
is in T†.

� Displacement: If hα;(F;E[X;R)i is in T†, R2 ff;ig, X\ vis(α) = /0, andX � vis(α),
thenhα;(F;E;R)i is in T†.

60 Full Abstraction for Strong Fairness

� Contention: If hα;(F [fdg;E;i)i andhα;(F;E[fd̄g;i)i are inT†, thenhα;(F;E;i)i
is in T†. �

Closure is obviously monotonic (ifT1 � T2, thenT†
1 � T†

2) and idempotent (T† = (T†)†).
Moreover, any trace introduced by a closure condition has the same tag as the trace(s) that led
to its introduction: for example, convexity introduces partial traces when certain partial traces
are in the set, and contention introduces infinite traces when certain infinite traces are in the set.
As a result, if the setsTf , Tp andTi contain only finite, partial and infinite traces, respectively,
then(Tf [Tp[Ti)

† = T†
f [T†

p [T†
i . We use this fact in many subsequent definitions.

As we shall see in Section 4.4, these closure conditions are precisely what is needed to
obtain full abstraction. LetP†Φ be the set of closed sets of fair traces. We define aclosed
trace semantic functionT †

s : Com ! P†Φ denotationally, modifying the semantic equations
given for Ts in Definition 3.3.1 by building the closure property into each clause. Letting
T †

s [[b]] = Ts[[b]]†, we defineT †
s as follows.

Definition 4.2.2 The closed trace semantic functionT †
s : Com! P†Φ is defined by:

T †
s [[skip]] = fh(s;ε;s);(F; /0;f)i j s2 S& F 2 Pfin(∆)g†

;

[fhεs;(F;fεg;p)i j s2 S& F � fεgg†
;

T †
s [[i:=e]] = fh(s;ε; [sji = n]);(F; /0;f)i j

fv[[i:=e]]� dom(s) & F 2 Pfin(∆) & (s;n) 2 E [[e]]g†

[fhεs;(F;fεg;p)i j fv[[i:=e]]� dom(s) & F � fεgg†

T †
s [[c1;c2]] = (T †

s [[c1]];T †
s [[c2]])

†

T †
s [[if b then c1 else c2]] = (T †

s [[b]];T †
s [[c1]][T †

s [[:b]];T †
s [[C2]])

†

T †
s [[while b do c]] = ((T †

s [[b]];T †
s [[c]])ω[(T †

s [[b]];T †
s [[c]])�;T †

s [[:b]])†

T †
s [[h?i]] = fh(s;h?n; [sji = n]);(F;fh?g;f)i j i 2 dom(s) & n2 Z & F 2 Pfin(∆)g†

[fhεs;(F;fh?g;p)i j i 2 dom(s) & F � fh?gg†

T †
s [[h!e]] = fh(s;h!n;s);(F;fh!g;f)i j (s;n) 2 E [[e]] & F 2 Pfin(∆)g†

[fhεs;(F;fh!g;p)i j fv[[e]]� dom(s) & F � fh!gg†

T †
s [[g! c]] = (T †

s [[g]];T †
s [[c]])†

T †
s [[gc1�gc2]] = (T †

s [[gc1]]�T †
s [[gc2]])

†

T †
s [[c1kc2]] = (T †

s [[c1]]kT †
s [[c2]])

†

T †
s [[cnh]] = (T †

s [[c]]nh)†
:

�

4.3 Computational Feasibility 61

For all commandsc, T †
s [[c]] is precisely the closure ofTs[[c]]: that is, for all commands

c, T †
s [[c]] = (Ts[[c]])†. Proving this fact, however, requires a detour provided by the following

section. In particular, the obvious inductive proof requires that we prove that

(T †
s [[c1]]kT †

s [[c2]])
† = (Ts[[c1]]

†
kTs[[c2]]

†)† = (Ts[[c1]]kTs[[c2]])
†
:

Although this equality holds, we can prove it only by referring to particular properties of the
trace setsTs[[c1]] andTs[[c2]]: the property(T†

1 kT
†
2)

† = (T1kT2)
† does not hold for arbitrary

trace sets. For example, consider the following two trace sets:

T1 = fhα1;(/0;fd; d̄;eg;i)i; hα1;(fdg;fd;eg;i)ig;

T2 = fhα2;(fdg; /0;fd; d̄g;i)ig:

The set(T1kT2)
† is empty, because the single trace inT2 is not mergeable with either trace in

T1. However, it is mergeable with the tracehα1;(/0;fd;eg;i)i, which is inT†
1 by contention,

and hence(T†
1 k T†

2)
† is not empty.

4.3 Computational Feasibility

For any commandc, the trace setTs[[c]] necessarily satisfies certain properties that an arbitrary
trace set may not. These properties stem from the nature of programs, computations, and the
definition of parameterized fairness. Several of these properties are essential for proving full
abstraction and hence are worth making explicit.

Because every successfully terminating computation is fair mod/0, the tracehα;(/0;E;f)i
is in Ts[[c]] whenever any tracehα;(F;E;f)i is. Similarly, because a fair modF computation
is also fair modF 0 for all hα;(F 0;E;R)i is in Ts[[c]] wheneverhα;(F;E;R)i is in Ts[[c]] and
F 0 � F.

A partial computation with final configurationhc;si is fair mod F if and only if F �

inits(c;s). In particular, if E = inits(c;s), then the computation is blocked modE but not
blockedE0 for anyE0 � E. As a result, the tracehα;(E;E;p)i is in Ts[[c]] whenever any trace
hα;(F;E;p)i is in Ts[[c]]. Similarly, the tracehα;(F;E;p)i is in Ts[[c]] wheneverF � E and
hα;(E;E;p)i is in Ts[[c]].

The remaining properties concern the relationships between a computation’s infinitely en-
abled directions, infinitely used directions, and blocked processes. The directions that are used
in visible communications infinitely often along a computation are clearly enabled infinitely
often. As a result, for any tracehα;(F;E;i)i in Ts[[c]], it must be thatvis(α)� E. Similarly, no
process can become blocked while capable of using a direction that is used infinitely often by
some other process: if a fair mod(F [X) computation uses the directions inX infinitely often,

62 Full Abstraction for Strong Fairness

then the computation must also be fair modF. Therefore, whenever the tracehα;(F[X;E;i)i
is in Ts[[c]] andX � vis(α), the tracehα;(F;E;i)i also must be inTs[[c]]. Moreover, the set
of directions enabled infinitely often along a computation provide an upper bound on the di-
rections on which processes are permanently blocked: if a fair mod(F [X) computation has
infinitely enabled directionsE andX\E = /0, then no blocked mod(F [X) process can actu-
ally used the directions inX, and thus the computation is also fair modF. As a result, it is safe
to remove the setX from the tracehα;(F [X;E;i)i in Ts[[c]] wheneverX\E = /0.

The final property is subtle but extremely important. Intuitively, a trace with form

hα;(F [fdg;E[fd; d̄g;i)i

represents a computationρ that enables the directionsd andd̄ (among others) infinitely often
and is fair modF [fdg. Thus any subcomponent ofc that is blocked mod(F [fdg) alongρ
must be blocked in a configuration in which its only transitions involve the directionsF [fdg.
If we assume that̄d 62 F, then any process capable of using directiond has infinitely many
opportunities to synchronize, because the matching directiond̄ is also enabled infinitely often.
Therefore, any subcomponent blocked modF [fdg must also be blocked modF, and hence
the computation is also fair modF. As a result, the trace

hα;(F;E[fd; d̄g;i)i

must be in the setTs[[c]] whenever the original trace is. However, once we start considering the
closed trace setT †

s [[c]], we need to account for the possibility that the trace

hα;(F [fdg;E[fd; d̄g;i)i

is in (Ts[[c]])† by superset closure from the tracehα;(F [fdg;E[fdg;i)i in Ts[[c]].

There are, of course, other general properties that are true for all setsTs[[c]] that are not
incorporated into the following definition ofcomputational feasibility. The properties that
are included suffice for proving thatT †

s [[c]] = Ts[[c]]† for all commandsc and thatT †
s is fully

abstract.

Definition 4.3.1 A fair trace setT is computationally feasible if it satisfies the following
properties:

� If the tracehα;(F;E;f)i is in T, then the tracehα;(/0;E;f)i is in T.

� If the tracehα;(F;E;R)i is in T, R2 ff;ig, andF � F 0, thenhα;(F 0;E;R)i is in T.

� The tracehα;(F;E;p)i is in T if and only if F � E and the tracehα;(E;E;p)i is in T.

� If the tracehα;(F;E;i)i is in T, thenvis(α)� E.

4.3 Computational Feasibility 63

� If the tracehα;(F [X;E;i)i is in T andX � vis(α), then the tracehα;(F;E;i)i is in T.

� If hα;(F [X;E;i)i is in T andX\E = /0, thenhα;(F;E;i)i is in T.

� If hα;(F [fdg;E[fd; d̄g;i)i is in T andd̄ 62 F, then at least one of the traces
hα;(F;E[fd; d̄g;i)i andhα;(F [fdg;E[fdg;i)i is in T. �

The following lemma shows that the definition of computational feasibility indeed captures
general properties of commands’ trace sets.

Lemma 4.3.2 For all commands c,Ts[[c]] is computationally feasible.

Proof: By a straightforward but tedious induction on the structure ofc. To give a flavor of
the proof, we prove thatTs[[c1kc2]] satisfies the sixth condition: ifhα;(F [X;E;i)i is in
Ts[[c1kc2]] andX\E = /0, thenhα;(F;E;i)i is in Ts[[c1kc2]].

Suppose thatϕ = hα;(F [X;E;i)i is in Ts[[c1kc2]] and thatX\E = /0. By definition of
parallel composition, there exist traces

ϕ1 = hα1;(F1;E1;R1)i 2 Ts[[c1]]; ϕ2 = hα2;(F2;E2;R2)i 2 Ts[[c2]]

such that(ϕ1;ϕ2;ϕ) 2 fairmerge. At least one ofϕ1;ϕ2 is infinite; without loss of gener-
ality, we assume thatϕ1 is infinite. As a result, we know that(F [X)� F1[F2 and that
E = E1 (if R2 = f) or E = E1[E2 (if R2 6= f).

BecauseX\E = /0 andE� E1, we know thatE1\X = /0 (andE2\X = /0 if R2 6= f). By
the inductive hypothesis,Ts[[c1]] andTs[[c2]] are computationally feasible, and hence

ϕ0

1 = hα1;(F1�X;E1;i)i 2 Ts[[c1]]; ϕ0

2 = hα2;(F2�X;E2;R2)i 2 Ts[[c2]]:

(The existence ofϕ0

2 follows because eitherR2 = f (in which case any choice ofF is per-
missible forϕ0

2) or E2\X = /0.) Lettingϕ0 = hα;(F;E;i)i, it follows that(ϕ0

1;ϕ
0

2;ϕ
0) 2

fairmerge, and henceϕ0 is in Ts[[c1]]kTs[[c2]] = Ts[[c1kc2]] as required.

The following two lemmas show that closure preserves computational feasibility and dis-
tributes over the various semantic operators when applied to computationally feasible trace
sets.

Lemma 4.3.3 If the trace set T is computationally feasible, then T† is also computationally
feasible.

64 Full Abstraction for Strong Fairness

Proof: By a straightforward but tedious case analysis showing that each possible trace intro-
duced by closure respects computational feasibility. To give a flavor of the proof, we
show that displacement preserves the final property of the definition of computational
feasibility.

Let T be a computationally feasible trace set, and letϕ = hα;(F [fdg;E[fd; d̄g;i)i be
a trace ofT† that arises by displacement from one ofT ’s traces

hα;(F [fdg;E[fd; d̄g[Y;i)i;

whereY\ vis(α) = /0 andY � vis(α). We need to show thatT† also contains either
ϕ0 = hα;(F;E[fd; d̄g;i)i or ϕ00 = hα;(F [fdg;E[fdg;i)i.
BecauseT is computationally feasible, we know thatvis(α)� E[fd; d̄g and thatT also
contains at least one of the following two traces:

hα;(F;E[fd; d̄g[Y;i)i; hα;(F [fdg;E[fdg[Y;i)i:

It follows by displacement thatT† contains eitherϕ0 or ϕ00 as required.

Lemma 4.3.4 For all computationally feasible trace sets T , T1 and T2, the following properties
hold:

(T1;T2)
† = (T†

1 ;T†
2)

† (T�)† = (T†)�
†

(Tnh)† = (T†
nh)†

(T1[T2)
† = (T†

1 [T†
2)

† (Tω)† = (T†)ω†
(T1kT2)

† = (T†
1 kT

†
2)

†

(T1�T2)
† = (T†

1 �T†
2)

†

Proof: In general, the proof of each property is based on a simple case analysis that shows
that whenever a trace is inT†

1 �T†
2 (for each relevant operator�), the trace is also in

(T1�T2)
†. Because closure is monotonic and idempotent, it follows that(T†

1 �T†
2)

† =
(T1�T2)

†.

The following result shows that, for all commandsc, the meaning given toc by the closed
trace semanticsT †

s is exactly the closure ofTs[[c]].

Proposition 4.3.5 For all commands c,T †
s [[c]] = Ts[[c]]†.

Proof: By a straightforward induction on the structure ofc, using the properties of Lemma 4.3.4.
For example, the case for parallel composition proceeds as follows, relying on the induc-
tive hypothesis thatT †

s [[ci]] = Ts[[ci]]
† for eachi:

T †
s [[c1kc2]] = (T †

s [[c1]] k T †
s [[c2]])

† = (Ts[[c1]]
†
k Ts[[c2]]

†)†

= (Ts[[c1]] k Ts[[c2]])
† = Ts[[c1kc2]]

†
:

4.4 Full Abstraction for the Behavior M 65

4.4 Full Abstraction for the Behavior M

In this section, we prove that the semanticsT †
s is fully abstract with respect to the state trace

behaviorM : Ts gives identical meanings to two program terms if and only if they exhibit
the same state trace behaviors in all program contexts. We begin with some definitions and
necessary lemmas.

Definition 4.4.1 An elementϕ = hα;(F;E;R)i of a trace setT is minimal if for every ϕ0 =
hα;(F 0;E0;R)i in T, (F 0 � F & E0 � E) =) ϕ = ϕ0. �

Thus a finite or infinite traceϕ 2 T is minimal if there is no traceϕ0 2 T that would yieldϕ
through closure under subset; a partial traceϕ = hα;(F;E;p)i 2 T is minimal if F = E and
every other partial traceϕ0 = hα;(F 0;E0;p)i in T has a directiond 2 E0�E. A closed trace set
is uniquely characterized by its set of minimal traces: each of its finite or infinite traces can be
obtained from minimal traces by superset closure, and every partial trace can be obtained by a
combination of union and convex closure.

For a trace setT and a simple traceα, it is often necessary to talk about the (minimal)
traces ofT with the simple componentα. In the following definition, we concern ourselves
only with infinite tracesα; clearly, a similar definition can be given for finite tracesα, as well
as a distinction between successful and partialα-traces.

Definition 4.4.2 Let T be a trace set. The setmin(T;α) is the set of minimal (nonpartial)
α-traces inT; that is,min(T;α) = fϕ = hα;(F;E;R)i 2 T j ϕ is minimal inT & R2 ff;igg. �

The minimal traces of a computationally feasible trace set all satisfy certain conditions
relating the fairness setF to the enabling setE. For a minimal finite traceϕ = hα;(F;E;f)i,
the setF is necessarily empty; for any minimal partial traceϕ = hα;(F;E;p)i, it must be the
case thatF = E. If the infinite traceϕ = hα;(F;E;i)i is minimal in a computationally feasible
trace set, thenF � E, because directions enabled only finitely often do not introduce fairness
constraints. Moreover, if the directiond is in the setF (representing a fairness constraint of
some component), then either̄d is also inF (indicating that exactly one subcomponent enables
each ofd andd̄, with insufficient synchronization opportunities) or̄d is not enabled infinitely
often. We call infinite traces that satisfy these criteriapotentially minimal.

Definition 4.4.3 An infinite traceϕ = hα;(F;E;i)i is potentially minimal if F � E and, for
all directionsd 2 F, d̄ 2 F () d̄ 2 E. �

Every potentially minimal traceϕ is a minimal trace of some computationally feasible trace set
T; in particular,ϕ is a minimal trace of the computationally feasible trace setfϕg†. Moreover,
every minimal trace of a computationally feasible trace set is potentially minimal.

66 Full Abstraction for Strong Fairness

Suppose a closed, computationally feasible trace setT does not contains the potentially
minimal traceϕ= hα;(F;E;i)i. If T does contain otherα-traces (that is, ifmin(T;α) 6= /0), then
each minimal tracehα;(Fi;Ei;i)i in T must have an additional fairness constraint (represented
by a directiond 2 Fi �F) or enable an additional direction infinitely often (represented by a
directiond 2 Ei �E). The idea is that, by carefully selecting one of these fairness constraints
di 2 Fi �F or infinitely enabled directionsdi 2 Ei �E for each minimalϕi , we can construct
a context that distinguishes the traceϕ from the traces inT. For reasons similar to those
that motivated the introduction of the contention closure condition, it is important that none
of the selected fairness constraints matches any of the selected infinitely enabled directions.
We formalize this “careful selection” as aconflict-free resolution, as given in the following
definition.

Definition 4.4.4 Let T be a trace set not containing the traceϕ= hα;(F;E;i)i. A conflict-free
resolution of T for ϕ is a total function

R : min(T;α)! (∆�fF;Eg)

satisfying the following two conditions:

� For all tracesϕi 2min(T;α),

R(ϕi) = (di;F) =) di 2 Fi �F & R(ϕi) = (di;E) =) di 2 Ei �E:

� For all tracesϕi;ϕ j 2min(T;α), ϕi = (di;F) & ϕ j = (dj ;E) =) :match(di;dj). �

As a consequence of the following lemma, a conflict-free resolution ofT †
s [[c]] for ϕ can

always be constructed, for any commandc and any potentially minimal traceϕ 62 T †
s [[c]]. That

is, the necessary “careful selection” is always possible. This fact will be necessary for proving
full abstraction.

Lemma 4.4.5 Let T be a closed, computationally feasible trace set not containing the poten-
tially minimal traceϕ = hα;(F;E;i)i. If the setmin(T;α) is finite, then there is a conflict-free
resolution of T forϕ.

Proof: Assume thatmin(T;α) is finite, and letR be a total functionR : min(T;α)! (∆�
fF;Eg) such that, for all tracesϕi 2min(T;α),

R(ϕi) = (di;F) =) di 2 Fi �F & R(ϕi) = (di;E) =) di 2 Ei �E:

We say thatR has conflicts on channelh if there exist tracesϕi;ϕ j 2 min(T;α) and a
directiond such thatR(ϕi) = (d;F), R(ϕ j) = (d̄;E), andchan(d) = h. We introduce a

4.4 Full Abstraction for the Behavior M 67

well-ordering< on channels, and we show thatR can be transformed into a conflict-free
resolution by removing conflicts in a systematic way, using the channel ordering.

Supposeh is the least channel on whichR has conflicts. There must be tracesϕx =
hα;(Fx;Ex;i)i andϕy = hα;(Fy;Ey;i)i in min(T;α) such thatR(ϕx) = (d;F), R(ϕy) =
(d̄;E), andchan(d) = h. Exactly one of the following cases must hold:

Case: d 62 E

BecauseT is computationally feasible andϕx is minimal, it must be thatd2Ex�E
as well. Thus every mapping to(d;F) in R can be replaced by a mapping to(d;E);
likewise, every mapping to(d̄;F) can be replaced by a mapping to(d̄;E). The
resulting resolution has no conflicts on channelsk< h or on channelh.

Case: d 2 E and (d̄ 2 Fy or d̄ 2 Fx)

Becaused 2 E, R does not map any trace to the pair(d;E). As a result, replacing
R(ϕy) orR(ϕx) (or both, when possible) by a mapping to(d̄;F) will remove at least
one conflict on channelh, without introducing any conflicts on channelsk< h.

Case: d 2 E andd̄ 62 Fy andd̄ 62 Fx

Becauseϕy is minimal, we know thatd 62 Fy. BecauseT is closed under superset,
T contains the traces

hα;(Fx[Fy;(Ex[Ey)�fd̄g;i)i and hα;((Fx[Fy)�fdg;Ex[Ey;i)i;

via ϕx andϕy, respectively. It follows that the trace

hα;((Fx[Fy)�fdg;(Ex[Ey)�fd̄g;i)i

is inT by contention, and thus there must be some minimal traceϕr = hα;(Fr ;Er ;i)i
in T such thatFr � (Fx[Fy)�fdg andEr � (Ex[Ey)�fd̄g.

If R(ϕr) = (e;E) (for some directione), thene2 Er �E, and hencee2 Ex�E
or e2 Ey�E. Likewise, ifR(ϕr) = (e;F), thene2 Fr �F , and hencee2 (Fx�

F)[(Fy�F). Thus at least one ofR(ϕx) andR(ϕy) can be replaced by a mapping
to R(ϕr). This change cannot introduce any new conflicts on channelsk< h and
reduces the number of conflicts on channelh.

Becausemin(T;α) is finite, repeating the preceding analysis eventually removes all con-
flicts on channelh, without introducing any conflicts on any channelk< h. Moreover,
because there can be only finitely many channels mentioned in the setmin(T;α), the
analysis must be applied for only a finite number of channels, eventually resulting in a
conflict-free resolution forϕ.

We can now prove full abstraction of the semanticsT †
s for the behaviorM .

68 Full Abstraction for Strong Fairness

Proposition 4.4.6 The closed trace semanticsT †
s is inequationally fully abstract with respect

to M : for all commands c and c0,

T †
s [[c]]� T †

s [[c0]] () 8P[�]:M [[P[c]]]� M [[P[c0]]]:

Proof: The forward implication follows from the compositionality ofT †
s , the monotonicity of

operations on trace sets, and the fact that, whenT †
s [[c]]� T †

s [[c0]],

M [[P[c]]] = fstates(α) j 9E: hα;(/0;E;R)i 2 T †
s [[P[c]]] & R2 ff;ig & chans(α) = fεgg

[fstates(α)δ j hα;(/0; /0;p)i 2 T †
s [[P[c]]] & chans(α) = fεgg

� fstates(α) j 9E: hα;(/0;E;R)i 2 T †
s [[P[c0]]] & R2 ff;ig & chans(α) = fεgg

[fstates(α)δ j hα;(/0; /0;p)i 2 T †
s [[P[c0]]] & chans(α) = fεgg

= M [[P[c0]]]:

[We write states(α) to indicate the sequence of states encountered alongα: for example,
if α = (s0;ε;s1)(s1;ε;s2) : : :(sk;ε;sk+1), thenstates(α) = sos1s2 : : :sksk+1.]

For the reverse implication, considerϕ = hα;(F;E;R)i in T †
s [[c]]�T †

s [[c0]].

Case: ϕ = hα;(F;E;f)i
BecauseT †

s [[c]] andT †
s [[c0]] are computationally feasible, we can assume without

loss of generality thatF = /0. Let hα;(/0;E1;f)i; : : : ;hα;(/0;Em;f)i be the (necessar-
ily finite number of) minimalα-traces inT †

s [[c0]]. Closure under superset ensures
thatEi 6� E for eachi �m; thus for eachi we can choose a directiondi 2 Ei �E.
Let x1; : : : ;xn be the free identifiers ofc, and leth1; : : : ;hk be the channel names
appearing inc. We letx;y;
ag;step;v1; : : : ;vn be fresh identifiers, and we define
guardsgi (for eachi �m) so that each guardgi “matches” the directiondi : gi = h!0
whendi = h?, andgi = h?x whendi = h!. We also define a commandMatchy;i(α)
inductively as follows:

Matchy;i((s;ε;s0))� step:=i

Matchy;i((s;h!n;s))� h?y! step:=i

Matchy;i((s;h?n;s))� h!n! step:=i

Matchy;i(σβ)�Matchy;i(σ);Matchy;i+1(β):

Intuitively, the commandMatchy;1(α) can synchronize with the traceα, keeping
track of the number of steps performed along the way.
We now letP[�] be the following context:2

664
while true do

(v1:=x1;v2:=x2;� � � ;vn:=xn;
([�] kMatchy;1(α));
x1:=v1;x2:=v2;� � � ;xn:=vn)

m

∑
i=1

(gi !
ag:=1)

3
775nh1n� � �nhk:

4.4 Full Abstraction for the Behavior M 69

Becauseϕ never enables synchronization with any of the guardsgi , M [[P[c]]] has
a behavior that corresponds to the infinite iteration ofα in which the variable
ag
is never set to 1. In contrast, every computation ofP[c0] that iteratesα infinitely
many times must enable synchronization infinitely often with at least one guardgi;
consequently, any behavior inM [[P[c0]]] corresponding to the infinite iteration ofα
must eventually set
ag to 1.

Case: ϕ = hα;(F;E;p)i
Without loss of generality, we can assume thatF = E. We letx;y;
ag;step be fresh
identifiers, and we leth1; : : : ;hk be the channel names appearing inc. We leta be a
fresh channel name not appearing inc or c0.

Let hα;(E1;E1;p)i; : : : ;hα;(Em;Em;p)i be the finite number of minimal partialα-
traces inT †

s [[c0]], and letZ=
Sm

i=1Ei . Closure under union ensures thathα;(Z;Z;p)i
is in T †

s [[c0]]; by convex closure, it must be that (for eachi � m) :(Ei � E � Z).
Therefore, eitherE 6� Z or for eachi, Ei 6� E.

If E 6� Z, then there exists a directiond 2 E�Z. Let g be a matching guard ford if
d 6= ε, and letP[�] be the following context:

([�] kMatchx;1(α);
ag:=1;g!
ag:=2)nh1n� � �nhk:

(Whend = ε, replace the code fragment “g!
ag:=2” by “
ag:=2”.) M [[P[c]]]
has a behavior that begins with a correspondence toα, followed by
ag being set
to 1 and then, exactly two steps later, being set to 2. In contrast,M [[P[c0]]] has no
such behavior.

If eachEi 6� E, then for eachi choose a directiondi 2 Ei �E. Let gi be a matching
guard fordi wheneverdi 6= ε, and letgi be the guarda!0 whendi = ε. Let P[�] be
the following context:

([�] kMatchx;1(α);y:=0;
m

∑
i=1

gi !
ag:=1)nh1n� � �nhkna:

M [[P[c]]] has a deadlocked behavior corresponding toα in which the final step
involves settingy to 0. In contrast, every deadlocked behavior inM [[P[c0]]] corre-
sponding toα must take at least one step after settingy to 0.

Case: ϕ = hα;(F;E;i)i
Without loss of generality, assume thatϕ is minimal inT †

s [[c]]. We letx, y, f1, f2,
synch, value, comm, andcount be fresh identifiers,h1; : : : ;hk be the channel names
appearing inc, anda be a fresh channel name not appearing inc or c0.

Let ϕ1= hα;(F1;E1;i)i; : : : ;ϕm= hα;(Fm;Em;i)i be the minimalα-traces inT †
s [[c0]].

By Lemma 4.4.5, there is a conflict-free resolutionR of T †
s [[c0]] for ϕ. Define sets

70 Full Abstraction for Strong Fairness

count:=count+1;synch:=1;
while true do

Pick Int(comm);
Pick Int(value);
case (comm mod(2k+1)) of

1: synch:=0;((h1!value! synch:=1)� ∑g2G(g! f1:=1))
2: synch:=0;((h1?value! synch:=1)� ∑g2G(g! f1:=1))
...
2k�1: synch:=0;((hk!value! synch:=1)� ∑g2G(g! f1:=1))
2k: synch:=0;((hk?value! synch:=1)� ∑g2G(g! f1:=1))
0: synch:=0;(((a?value! synch:=1)� ∑g2G(g! f1:=1))ka!0)na

endcase;
count:=count+1.

Figure 4.1: The programGuess(H;Gx; f1).

X = fdi j 1� i �m& R(ϕi) = (di;F)g andY = fdi j 1� i �m& R(ϕi) = (di;E)g;
becauseR is conflict-free, it follows that:match(X;Y).
Define setsGx = fh!0 j h?2 Xg[fh?x j h! 2 Xg andGy = fh!0 j h?2Yg[fh?y j
h! 2Yg so that each direction inX has a matching guard inGx and each direction
in Y has a matching guard inGy. LetGuess(H;Gx; f1) abbreviate the command in
Figure 4.1, with thecase construct used as syntactic sugar for the corresponding se-
ries of nestedif-statements. Intuitively, the programGuess(H;Gx; f1) can synchro-
nize with any computation of any program that uses only the channelsh1; : : : ;hk

for visible communication. For each synchronization,Guess(H;Gx; f1) “guesses”
the particular communication necessary for synchronization2. Moreover, in any
infinite computation ofGuess(H;Gx; f1), the directions associated with the guards
in Gx are enabled infinitely often. Consequently, if the program in parallel with
Guess(H;Gx; f1) treats any of the directions inX unfairly, the flagf1 will necessar-
ily be set to 1 eventually.
Let P[�] be the following context:

([�] k Guess(H;Gx; f1) k ∑
g2Gy

g! f2:=1)nh1n� � �nhk:

M [[P[c]]] has a behavior corresponding toα in which neitherf1 nor f2 is ever set to
1. In contrast, every behavior ofM [[P[c0]]] corresponding toα must eventually set
at least one of the flagsf1 andf2 to 1.

2The case wherecomm mod(2k+1) = 0 is necessary whenα involves only finitely many visible communi-
cations (e.g.,(s;ε;s)ω).

4.5 Other Notions of Program Behavior 71

c1kc2 � c2kc1

(c1kc2) k c3 � c1 k (c2kc3)

(c1kc2)nh � c1 k (c2nh); providedh 62 fc[[c1]]

cnh � c; providedh 62 fc[[c]]

(a!0! b!0) � (b!0! a!0) � a!0 k b!0

(if b then c1 else c2);c � if b then c1;c else c2;c

(if b then c1 else c2) k c 6� if b then (c1kc) else (c2kc)

(if b then c1 else c2) k (skip;c) � if b then (c1 k skip;c) else (c2 k skip;c)

Figure 4.2: Some program equivalences validated byT †
s .

This full abstraction result show thatT †
s provides precisely the correct level of abstraction

to support compositional reasoning about the program behaviorM . As a consequence, the
semanticsT †

s validates several natural program (in)equivalences (with respect toM) that hold
under strong fairness. Figure 4.2 lists several of these properties, where we writec� c0 to
indicate thatT †

s [[c]] = T †
s [[c0]]. Many of these properties appear obvious, but proving them

using purely operational methods is very difficult. Moreover, “obvious” properties may not
hold under certain notions of fairness; for example, the equivalence

(a!0! b!0) � (b!0! a!0) � a!0 k b!0

does not hold under weak fairness, as we shall see in Chapter 6.

4.5 Other Notions of Program Behavior

The state trace behaviorM introduced in Definition 4.1.1 incorporates the assumptions that
external communication is prohibited, that every state change can be detected, and that dead-
lock can be distinguished from successful termination and infinite chattering. In this section,
we consider several other notions of behavior that relax one or more of these assumptions, in
each case showing how the semantics can be adapted to yield full abstraction. The changes to
the semantics primarily affect the simple trace components of the fair traces. The underlying
notion of parameterized strong fairness, and thus the extra contextual information necessary to
incorporate fairness assumptions, remain the same.

The ease with which the semantics can be modified to yield full abstraction for these other
notions of behavior reflects the robustness of the framework. In particular, the notion of com-
putational feasibility and the related definitions and lemmas of Section 4.4 are independent of

72 Full Abstraction for Strong Fairness

the structure of simple traces and can be revised for other types of simple traces effortlessly.
As a result, the proofs of full abstraction for the behaviors in this section all follow the proof
of Proposition 4.4.6 very closely.

4.5.1 Simple trace behavior

The state trace behaviorM adopts a view of programs as closed systems that cannot com-
municate with the external world. According to this view, all communication is internal and
synchronous; an observer cannot possibly detect visible (i.e., external) communications, be-
cause such communications are not possible in a closed system. However, it is reasonable
to relax this assumption and to assume instead that an open system’s interactions with its en-
vironment are observable. Moreover, to reason about the possible interactions a command
may have with its environment, it is essential to assume that these communications can be ob-
served. If we adopt this view, then it is natural to consider thesimple tracebehavior function
S : Com! P(Σ∞[Σ�δ) defined by:

S [[c]] = ftrace(ρ) j ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;skitermg

[ftrace(ρ)δ j ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;skideadg

[ftrace(ρ) j ρ = hc;s0i
λ0
�! �� �

λk�1
�! hck;ski

λk
�! �� � is fairg:

This behaviorS again incorporates the assumption that deadlock can be distinguished from
both successful termination and infinite chattering, and that every single transition can be de-
tected.

The behaviorS clearly includes more information about a command’s possible computa-
tions thanM does: for any commandc, the setS [[c]] is a superset ofM [[c]]. However, as the
following full abstraction result attests, the two behaviors induce exactly the same notion of
contextual equivalence: two programs exhibit the sameM behaviors in all program contexts
if and only if they exhibit the sameS behaviors in all program contexts. The reason for this
apparent contradiction is that both behaviors require the same support for compositional rea-
soning: to reason compositionally aboutε-steps along a computation of a parallel command,
we need to know the communications that are possible for individual components.

Proposition 4.5.1 The closed trace semanticsT †
s is inequationally fully abstract with respect

to S : for all commands c and c0,

T †
s [[c]]� T †

s [[c0]] () 8P[�]:S [[P[c]]]� S [[P[c0]]]:

Proof: The forward implication follows from the compositionality ofT †
s , the monotonicity

of operations on trace sets, and the fact that, for all commandsc, S [[c]] can be extracted
from T †

s [[c]].

4.5 Other Notions of Program Behavior 73

For the reverse implication, assumeT †
s [[c]] 6� T †

s [[c0]]. By Proposition 4.4.6, there exists
a contextP[�] and a behaviorβ that is inM [[P[c]]]�M [[P[c0]]]. Because

M [[P[c]]] = fβ 2 S [[P[c]]] j chans(β) = fεgg

(and likewise forM [[P[c0]]]), β must also be inS [[P[c]]]�S [[P[c0]]].

4.5.2 Stuttering and mumbling

The behaviorsM andS both assume an “omniscient” observer capable of detecting every state
change made during a computation. This assumption corresponds to the use of next-time oper-
ators in various temporal logics, whereby (for example) the commandsskip andskip; skip can
be distinguished. In many cases, however, an observer cannot be guaranteed to detect each and
every state change. Moreover, the concept of “next state” can be ill-defined, because states in
the operational semantics do not always correspond to processor states in a meaningful way.
For example, suppose a program is distributed across multiple machines with different clock
speeds. Even if an observer can look at any (or all) of the machines at any time instant, it
is unclear which intervals between those instants correspond to transitions in the operational
semantics. When a process on a (relatively) fast processor can perform internal actions, each
clock tick may indicate a transition; when that same process is waiting to synchronize with a
slower process, intermediate clock ticks may not correspond to transitions in any meaningful
way. As a result, it is often appropriate to assume only that an observer is capable of seeing
some subsequence of the states encountered during a computation. In doing so, we obtain no-
tions of behavior based on the reflexive, transitive closures of the one-step transition relations.

We first introduce generalized relations
λ

=) (λ 2 Λ), where
ε

=) is the reflexive, transitive

closure of
ε

�!, and
λ

=) (for λ 6= ε) is defined so thathc;si
λ

=) hc0;s0i if and only if there exist

c1;c2;s1;s2 for which hc;si
ε

=) hc1;s1i
λ
�! hc2;s2i

ε
=) hc0;s0i. Based on these generalized

relations, we define the generalized state transition trace behaviorM� : Com ! P(S∞[S�δ)
and the generalized simple trace behaviorS� : Com! P(S∞[S�δ) as follows:

M�[[c]] = fs0s1 : : :sk j hc;s0i
ε

=) hc1;s1i
ε

=) ���
ε

=) hck;skitermg

[fs0s1 : : :skδ j hc0;s0i
ε

=) hc1;s1i
ε

=) ���
ε

=) hck;skideadg

[fs0s1 : : :sk : : : j hc0;s0i
ε

=) ���
ε

=) hck;ski
ε

=) ��� is fairg;

S�[[c]] = ftrace(ρ) j ρ = hc;s0i
λ0=) hc1;s1i

λ1=) ���
λk�1
=) hck;skitermg

[ftrace(ρ)δ j ρ = hc;s0i
λ0=) hc1;s1i

λ1=) ���
λk�1
=) hck;skideadg

[ftrace(ρ) j ρ = hc;s0i
λ0=) ���

λk�1
=) hck;ski

λk=) ��� is fairg:

74 Full Abstraction for Strong Fairness

To account properly for the reflexivity and transitivity of the relations
λ

=), we need to
impose closure conditions on trace sets corresponding to “stuttering” and “mumbling” [Lam83,
Bro96b]. Stuttering captures the reflexivity of

ε
=) and has the effect of introducing idle steps

into traces. A trace of formhαβ;θi stutters to the tracehα(s;ε;s)β;θi whens is the final state
of α and the initial state ofβ. Each partial trace of formhα;(F;E;p)i also stutters to the trace
hα;(fεg;fεg;p)i. Such stuttering steps introduce the relevant partial traces for every possible
idle-step introduction: the fairness and enabling setsfεg reflect the possibility of an idle step
immediately followingα.

Mumbling has the effect of absorbingε-steps, just as the
λ

=) relations absorbε-transitions.
A trace with formhα(s;ε;s0)(s0;λ;s00)β;θi or hα(s;λ;s0)(s0;ε;s00)β;θi mumbles to the trace
hα(s;λ;s00)β;θi. Each partial tracehα(s;ε;s0);(F;E;p)i also mumbles to the partial trace
hα;(F [fεg;E[fεg;p)i. Such mumbling steps capture the intuition that, ifα represents a
transition sequence ending in configurationhc;si, then each direction inE[fεg represents

some
λ

=)-transition possible from the configurationhc;si.

We summarize these stuttering and mumbling sets by the relationsstut�Φ�Φ andmumb�
Φ�Φ defined as follows:

stut = f(hαεsβ;θi;hα(s;ε;s)β;θi) j αβ 2 Σ∞�Σ0 & s2 Sg

[f(hα;(F;E;p)i;hα;(fεg;fεg;p)i) j α 2 Σ�g;

mumb = f(hα(s;ε;s0)(s0;λ;s00)β;θi;hα(s;λ;s00)β;θi) j α(s;λ;s00)β 2 Σ∞g

[f(hα(s;λ;s0)(s0;ε;s00)β;θi;hα(s;λ;s00)β;θi) j α(s;λ;s00)β 2 Σ∞g

[f(hα(s;ε;s0);(F;E;p)i;hα;(F[fεg;E[fεg;p)i) j α(s;ε;s0) 2 Σ�
g:

Intuitively, the pair(ϕ1;ϕ2) is in stut if ϕ2 can be obtained fromϕ1 by inserting an extra idle
step. Similarly, the pair(ϕ1;ϕ2) is in mumbif ϕ2 can be obtained fromϕ1 by absorbing an
ε-step.

Letting id = f(α;α) j α 2 Σ∞g be the identity relation on simple traces, we follow the
approach of [Bro96a] and definestut∞ andmumb∞ to be the (respective) greatest fixed points
of the functionals

F(R) = stut�R[id; G(R) = mumb�R[id:

That is, we define

stut∞ = stut� � id [stutω; mumb∞ = mumb� � id [mumbω;

with the concatenation operator (�) and the iterative operators (�� and�ω) extended to sets of
pairs of traces. Intuitively, the pair(ϕ;ϕ0) is in stut∞ (respectively,mumb∞) if ϕ0 can be ob-
tained by inserting an idle step (respectively, eliding anε-step) at some of the positions along

4.5 Other Notions of Program Behavior 75

ϕ’s simple-trace component. In particular, whenϕ is an infinite trace, the stuttering and mum-
bling operations can be applied at potentially infinitely many places alongϕ but not infinitely
many times at any particular place alongϕ. This point is essential for avoiding the accidental
introduction of divergence: stuttering should not transform the finite traceh(s;ε;s);(/0; /0;f)i
into the infinite traceh(s;ε;s)ω;(/0; /0;i)i.

With these definitions in hand, we define closure under stuttering and mumbling on trace
sets in the following way.

Definition 4.5.2 Given a trace setT, T� is the smallest set containingT and closed under
stuttering and mumbling:

� If ϕ is in T� and(ϕ;ϕ0) 2 stut∞, thenϕ0 is also inT�.

� If ϕ is in T� and(ϕ;ϕ0) 2mumb∞, thenϕ0 is also inT�. �

These closure conditions can be combined with the conditions introduced in Definition 4.2.1.
For a trace setT, we defineT†

� = (T�)†, so thatT†
� is closed under stuttering and mumbling, as

well as superset, union, convexity, displacement and contention.

We letP†
�Φ be the set of closed sets of traces. Much as before, we can define a denotational

semantic functionTs
†
�

: Com ! P
†
�Φ such that, for all commandsc, Ts

†
�
[[c]] = (Ts[[c]])

†
�. The

addition of the stuttering and mumbling closure conditions is sufficient to yield full abstraction
with respect to the generalized behaviorsM� andS�, as shown by the following results.

Proposition 4.5.3 The semanticsTs
†
�

is inequationally fully abstract with respect toM�: for
all commands c and c0,

Ts
†
�
[[c]]� Ts

†
�
[[c0]] () 8P[�]:M�[[P[c]]]� M�[[P[c

0]]]:

Proof: (Sketch)The forward implication follows from the compositionality ofTs
†
�
, the mono-

tonicity of operations on trace sets, and the fact that, for all commandsc, M�[[c]] can be
extracted fromTs

†
�
[[c]].

The reverse implication follows from a case analysis similar to that used in the proof of
Proposition 4.4.6. In fact, the cases for finite and infinite traces are exactly the same; the
case for partial traces needs to be modified only slightly, as follows.

Suppose the partial traceϕ = hα;(F;E;p)i is in Ts
†
�
[[c]]� Ts

†
�
[[c0]], and without loss of

generality assume thatF = E. Let h1; : : : ;hk be the channel names appearing inc, and
let x and
ag be fresh identifiers, not appearing inc or c0.

Let hα;(E1;E1;p)i; : : : ;hα;(Em;Em;p)i be the finite number of minimal partialα-traces
in T †

s [[c0]], and letZ =
Sm

i=1Ei . Closure ofT †
s [[c0]] under union and convexity again

ensures that eitherE 6� Z or, for eachi �m, Ei 6� E.

76 Full Abstraction for Strong Fairness

WhenE 6� Z, the distinguishing context is identical to that used in the proof of Proposi-
tion 4.4.6. If (instead) eachEi 6� E, then for eachi choose a directiondi 2 Ei �E such
that (when possible)di 6= ε. Letgi be a matching guard fordi wheneverdi 6= ε, and define
the setG= fdi j di 6= ε & 1 � i � mg. Let P[�] be the following context:

([�] kMatchx;1(α);y:=0; ∑
g2G

g!
ag:=1)nh1n� � �nhk:

The only difference between this distinguishing context and the one used for the same
case in the proof of Proposition 4.4.6 is that we do not include an arbitrary guarda!0 for
chosen directionsdi = ε. The cases wheredi = ε can be ignored, because such steps are
either idle steps (in which case some other chosendj is appropriate), steps in which the
state changes (and are therefore noticeable), or steps that lead to divergence.

M�[[P[c]]] has a deadlocked behavior corresponding toα in which the value ofy in the
final state is 0 andc’s local portion of the state looks like the final state ofα. In contrast,
every behavior inM�[[P[c0]]] with a prefix corresponding toα must do one of the follow-
ing: set the value of
ag to 1; terminate or deadlock in a state in whichc’s local portion
is not the same as the final state ofα; or make an infinite number ofε-transitions.

Proposition 4.5.4 The semanticsTs
†
�

is inequationally fully abstract with respect toS�: for all
commands c and c0,

Ts
†
�
[[c]]� Ts

†
�
[[c0]] () 8P[�]:S�[[P[c]]]� S�[[P[c0]]]:

Proof: By obvious analogy with the proof of Proposition 4.5.1.

4.5.3 Busy waiting

The behaviorsM andS (as well as their generalized formsM� andS�) assume that deadlock
can be distinguished from both successful termination and infinite chattering. The semantics
T †

s and Ts
†
�

are well-suited to this assumption, using different forms of traces to represent
successfully terminating, infinite and deadlocked computations. From an implementation point
of view, however, deadlock and blocking often appear in the guise of busy-waiting. Because a
scheduler cannot always detect a priori whether a process has become blocked, it may continue
to allocate processor cycles to a process that has no transitions enabled. This view of the world
can be captured by the followingbusy-waiting tracebehaviorW : Com ! P(S∞), in which
deadlock is modeled as busy-waiting:

W [[c]] = fs0s1 : : :sk j hc;s0i
ε

=) hc1;s1i
ε

=) ���
ε

=) hck;skitermg

[fs0s1 : : :sk(sk)
ω j hc0;s0i

ε
=) hc1;s1i

ε
=) ���

ε
=) hck;skideadg

[fs0s1 : : :sk : : : j hc0;s0i
ε

=) ���
ε

=) hck;ski
ε

=) ��� is strongly fairg:

4.5 Other Notions of Program Behavior 77

This behavior does not distinguish between deadlock and infinite idle chattering. Thus, for
example,W [[a!0na]] = W [[while true do skip]] = fsω j s2 Sg.

To reason compositionally aboutW , we introduce a semantics that is related toTs
†
�

but
that represents blocked computations by infinite traces. Intuitively, a partial computation that
becomes blocked modF in a configurationhc;si can be represented by the fair trace

hα(s;ε;s)ω
;(F;E;i)i;

whereα is the finite trace corresponding to the transitions made before the computation became
blocked andE � F is the set of directions on whichc was trying to communicate. Intuitively,
a computation that is blocked modE is fair modE (and fair modF � E), and the infinitely
enabled directions are the elements ofE.

Employing the closure operators defined in Definitions 4.5.2 and 4.2.1 (and ignoring the
conditions for partial traces), we introduce closure into our semantics from the beginning. We
can give an operational characterization of the trace semanticsTsb : Com! P

†
�(Φ) as follows:

Tsb[[c]] = (fhtrace(ρ);(F;en(ρ);f)i j

ρ = hc;s0i
λ0=) hc1;s1i

λ1=) ���
λk=) hck+1;sk+1iterm is fair modFg

[fhtrace(ρ)(sk;ε;sk)
ω
;(F;E;i)i j F � E = inits(ck;sk) & ε 62 E &

ρ = hc;s0i
λ0=) hc1;s1i

λ1=) ���
λk�1
=) hck;ski & :hck;skitermg

[fhtrace(ρ);(F;en(ρ);i)i j

ρ = hc;s0i
λ0=) hc1;s1i

λ1=) ���
λk=) ��� is strongly fair modFg)†

�
:

The denotational characterization ofTsb is very similar to the denotational characterization
of Ts and T †

s . Once again we define operations on trace sets corresponding to each of the
constructs of the language. In general, the operations on trace sets remain the same; the clauses
for traces with formhα;(F;E;p)i are simply ignored. However, the definition of the guarded-
choice operator on trace sets depends critically on partial traces with formhεs;(F;E;p)i for
generating the correct enabling information for finite traces. We therefore need to adapt the
definition to use infinite traces instead of partial traces.

We first introduce a predicateidle on simple traces, such thatidle(α) is true wheneverα has
the form(s;ε;s)ω for some states. Because the first true step of any computation of a guarded
command necessarily involves a non-ε transition, every idle traceα necessarily represents a
partial computation “stuck” in the initial state. Consequently, we can always determine which
actions are possible for a given component by examining those directions enabled infinitely
often along an idle trace originating in the appropriate state. By replacing each mention of the

78 Full Abstraction for Strong Fairness

partial tracehεs;(F;E;p)i in the original definition by the infinite traceh(s;ε;s)ω;(F;E;i)i, we
define the new guarded-choice operator as follows:

T1�T2 = fhα;(F;E;i)i 2 T1[T2 j α 2 Σω & :idle(α)g
[fhα;(F1[F2;E1[E2;i)i j hα;(F1;E1;i)i 2 T1 & hα;(F2; ;E2;i)i 2 T2 & idle(α)g
[fhα;(F1;E1[E2;f)i j hεsα;(F1;E1;f)i 2 T1 & h(s;ε;s)ω

;(F2;E2;i)i 2 T2g

[fhα;(F2;E1[E2;f)i j hεsα;(F2;E2;f)i 2 T2 & h(s;ε;s)ω
;(F1;E1;i)i 2 T1g:

The altered definition of the guarded-choice operator represents the only necessary change
to the operations on trace sets. The trace semanticsTsb : Com ! P

†
�(Φ) therefore can be

defined in its entirety as follows. Note that the partial traces forskip, assignment, and guards
are now represented by infinite, idle traces.

Definition 4.5.5 The trace semantic functionTsb : Com! P
†
�(Φ) is defined by:

Tsb[[skip]] = fh(s;ε;s);(F; /0;f)i j s2 S& F 2 Pfin(∆)g†
�

Tsb[[i:=e]] = fh(s;ε; [sji = n]);(F; /0;f)i j
fv[[i:=e]]� dom(s) & F 2 Pfin(∆) & (s;n) 2 E [[e]]g†

�

Tsb[[c1;c2]] = (Tsb[[c1]];Tsb[[c2]])
†
�

Tsb[[if b then c1 else c2]] = (Tsb[[b]];Tsb[[c1]][Tsb[[:b]];Tsb[[C2]])
†
�

Tsb[[while b do c]] = ((Tsb[[b]];Tsb[[c]])
ω[(Tsb[[b]];Tsb[[c]])

�;Tsb[[:b]])†
�

Tsb[[h?i]] = fh(s;h?n; [sji = n]);(F;fh?g;f)i j i 2 dom(s) & n2 Z & F 2 Pfin(∆)g†
�

[fh(s;ε;s)ω
;(F;fh?g;i)i j i 2 dom(s) & F � fh?gg†

�

Tsb[[h!e]] = fh(s;h!n;s);(F;fh!g;f)i j (s;n) 2 E [[e]] & F 2 Pfin(∆)g†
�

[fh(s;ε;s)ω
;(F;fh!g;i)i j fv[[e]]� dom(s) & F � fh!gg†

�

Tsb[[g! c]] = (Tsb[[g]];Tsb[[c]])
†
�

Tsb[[gc1�gc2]] = (Tsb[[gc1]]�Tsb[[gc2]])
†
�

Tsb[[c1kc2]] = (Tsb[[c1]]kTsb[[c2]])
†
�

Tsb[[cnh]] = (Tsb[[c]]nh)
†
�
:

�

Proposition 4.5.6 The semanticsTsb is inequationally fully abstract with respect toW : for
all commands c and c0,

Tsb[[c]]� Tsb[[c
0]] () 8P[�]:W [[P[c]]]� W [[P[c0]]]:

4.5 Other Notions of Program Behavior 79

Proof: The forward implication follows from the compositionality ofTsb, the monotonicity of
operations on trace sets, and the fact that, for all commandsc, W [[c]] can be extracted
from Tsb[[c]].

The reverse implication uses an abbreviated version of the case analysis in the proof of
Proposition 4.4.6. In particular, the cases for finite and infinite traces remain the same,
and the case for partial traces disappears.

4.5.4 Communication traces

Each of the behaviors considered so far incorporates the assumption that intermediate states
encountered along a computation are observable. However, in many cases, it is appropriate to
consider programs (or the processors on which they run) as black boxes whose internal states
are private and whose only observable characteristics are their interactions with their environ-
ment. For example, object-oriented programming and abstract data types are built on this tenet:
a program’s implementation details should be hidden, and only its interface should be acces-
sible. In this subsection, we consider acommunication trace behaviorthat incorporates the
assumption that states are truly private and that only the sequence of visible communications
that occur along a computation is observable.

We introduce setsΛ� andΛω that correspond (respectively) to finite and infinite sequences
of visible communications. We redefine

Λ = fh!n;h?n j h2 Chan & n2 Zg

to be the set of “interesting” communications, and we letΛ� = fεg[Λ+ be the set of finite
communication sequences. The set of all communication sequences is

Λ∞ = Λ� [Λ�fεgω [Λω
:

For each communication sequenceη2Λ∞, we define a generalized relation
η

=) as follows:

� Whenη is finite,hc;si
η

=)hc0;s0i indicates that the commandc in statescan perform the
sequence of visible communicationsη (possibly with some intermediateε transitions),

leading to the commandc0 in states0. Whenη is the single labelλ,
η

=) corresponds

precisely to the definition of
λ

=) given in Subsection 4.5.2.

� Whenη is infinite, hc;si
η

=) indicates that there is a strongly fair computation of the
commandc, originating in states, with the sequence of communicationsη. Whenη has
the formαεω, the computation diverges afterα with internal chattering.

80 Full Abstraction for Strong Fairness

Note that the empty sequenceε is distinct from the communication sequenceεω: the former
represents a finite sequence (possibly having length zero) of internal actions, whereas the latter
represents an infinite sequence of internal actions.

We can now define thecommunication trace behaviorC : Com!P(Λ∞[Λ�δ) as follows:

C [[c]] = fη j 9s;s0;c0:hc;si
η

=) hc0;s0itermg

[fηδ j 9s;s0;c0:hc;si
η

=) hc0;s0ideadg

[fη j 9s:hc;si
η

=) is strongly fairg:

To support compositional reasoning aboutC , we introduce yet another variant of the se-
manticsT †

s that records only the initial and terminal states of computations. Even though
initial and finial states are not observable in the behaviorC , they are necessary for determining
which traces can be composed in a meaningful way: in particular, the tracesϕ1 of c1 andϕ2 of
c2 can be used to generate a trace ofc1;c2 only if the computation represented byϕ2 originates
in the final state of the computation represented byϕ1.

To this end, we introduce a new style of simple traces. For technical reasons, we need
two types of finite traces, one to represent successful computations and one to represent partial
computations; thus we define the set of finite simple traces

Σ�

c = (S�Λ��S) [(S�Λ�);

with traces(s;η;s0) representing successful computations and traces(s;η) representing partial
computations. Intuitively, the need for this distinction arises because we can “observe” the final
state of a successful computation by transmitting the value of the finite number of variables
along some channel; in contrast, there is no reliable way to interrupt a computation to observe
intermediate states. Similarly, because there is no final state of an infinite computation, the set
of infinite simple traces is

Σω
c = S�Λω

:

We then letΣ∞
c = Σ�

c [Σω
c be the set of all finite and infinite traces, and—using the same

contextual information as before—we define the setΦc of fair communication traces by

Φc = Σ�

c� (Pfin(∆)�Pfin(∆)�ffg)
[Σω

c � (Pfin(∆)�Pfin(∆)�fig)
[Σ�

c� (Pfin(∆+)�Pfin(∆+)�fpg):

We now introduce a trace semantic functionTsc : Com ! P(Φc) characterized opera-
tionally as follows:

Tsc[[c]] = fh(s;η;s0);(F;en(ρ);f)i j ρ = hc;si
η

=) hc0;s0iterm is fair modFg

[fh(s;η);(F;E;p)i j ρ = hc;si
η

=) hc0;s0i & :hc0;s0iterm & F � E = inits(c0;s0)g

[fh(s;η);(F;en(ρ);i)i j ρ = hc;si
η

=) is fair modFg:

4.5 Other Notions of Program Behavior 81

As before, two simple tracesα andβ are composable wheneverα is an infinite or partial
trace, or when the initial state ofβ is the final state ofα. Whenα andβ are composable, their
concatenationαβ is defined as follows:

αβ =

8><
>:
(s;η) if α = (s;η)
(s;η1η2;s0); if α = (s;η1;s00) & β = (s00;η2;s0), for somes00 2 S,

(s;η1η2); if α = (s;η1;s00) & β = (s00;η2), for somes00 2 S.

In turn, two fair tracesϕ1 and ϕ2 are composable whenever their simple trace components
are composable. Whenϕ1 = hα;(F1;E1;R1)i andϕ2 = hβ;(F2;E2;R2)i are composable, their
concatenationϕ1ϕ2 is defined by:

ϕ1ϕ2 =

8><
>:
hα;(F1;E1;R1)i; if R1 2 fi;pg,

hαβ;(F2;E1[E2;f)i; if R1 = R2 = f,

hαβ;(F2;E2;R2)i; if R1 = f andR2 2 fi;pg.

This definition looks exactly the same as the definition for concatenation given in Section 3.3;
the only difference is the interpretation of the simple-trace concatenationαβ. We then define
T1;T2 = fϕ1ϕ2 j ϕ1 2 T1 & ϕ2 2 T2 & composable(ϕ1;ϕ2)g. We also define infinite concatena-
tion as before, with the obvious new interpretation of infinite concatenation on simple traces.

The definition of guarded choice on trace sets is very similar to the original definition
presented in Section 3.3, the only modification in the structure of partial traces:

T1�T2 = fhα;(F;E;i)i 2 T1[T2 j α 2 Σωg

[fh(s;η);(F;E;p)i 2 T1[T2 j η 6= εg
[fh(s;ε);(F1[F2;E1[E2;p)i j h(s;ε);(F1;E1;p)i 2 T1 & h(s;ε);(F2;E2;p)i 2 T2g

[fh(s;η;s0);(F1;E1[E2;f)i j h(s;η;s0);(F1;E1;f)i 2 T1 & h(s;ε);(F2;E2;p)i 2 T2g

[fh(s;η;s0);(F2;E1[E2;f)i j h(s;η;s0);(F2;E2;f)i 2 T2 & h(s;ε);(F1;E1;p)i 2 T1g:

The definition for channel restriction is identical to that in Section 3.3, with the obvious
change in interpretation for simple tracesα. We need to introduce new definitions for parallel
composition, but the definitions are natural simplifications of those introduced before.

We define the interleaving of two disjoint, finite simple traces(s1;η1;s01) and(s2;η2;s02) by

(s1;η1;s
0

1)cc(s2;η2;s
0

2) = (s1[s2;η1η2;s
0

1[s02):

The interleaving of a finite simple trace(s1;η1;s01) with either a partial or infinite simple trace
(s2;η2) is (respectively) a partial or infinite simple trace, and we define

(s1;η1;s
0

1)cc(s2;η2) = (s1[s2;η1η2)

82 Full Abstraction for Strong Fairness

when the traces are disjoint. Finally, the interleaving of a partial or infinite trace(s1;η) with
the empty and disjoint partial trace(s;ε) is the infinite trace defined by

(s1;η)cc(s;ε) = (s1[s;η):

For context triplesθ1;θ2 2 Γ, the parallel operatorθ1kθ2 is as defined in Section 3.3, and for
fair tracesϕ1 = hα;θ1i andϕ2 = hβ;θ2i we again define

ϕ1ccϕ2 = fhαccβ;θi j θ 2 θ1kθ2g:

Two nonempty, finite tracesα = (s;λ0 : : :λk;s0) andβ = (t;µ0: : :µn; t 0) match if k= n and
match(λi;µi) for eachi. For matching, disjoint tracesα andβ, αkβ is the trace in whichα and
β synchronize at each step:αkβ = (s[t;ε;s0[t 0). Likewise, for fair tracesϕ1 = hα;θ1i and
ϕ2 = hβ;(F2;E2;θ2)i,

ϕ1kϕ2 = fhαkβ;θi j θ 2 θ1kθ2g:

Using these new interpretations forϕ1ccϕ2 andϕ1kϕ2, we can define the relationfairmergec�
Φc�Φc�Φc in much the same way as before. We define

fairmergec = bothω
c [both�c �onec;

with the setsbothc andonec defined as follows:

bothc = f(ϕ1;ϕ2;ϕ);(ϕ2;ϕ1;ϕ) j ϕ1;ϕ2 2Φfin & disjoint(ϕ1;ϕ2) & ϕ 2 ϕ1ccϕ2g

[f(ϕ1;ϕ2;ϕ) j ϕ1;ϕ2 2Φfin & disjoint(ϕ1;ϕ2) & match(ϕ1;ϕ2) & ϕ 2 ϕ1kϕ2g;

onec = f(ϕ1;ϕ2;ϕ); (ϕ2;ϕ1;ϕ) j
ϕ1 2Φc & ϕ2 = h(s;ε;s);θ2i & disjoint(ϕ1;ϕ2) & ϕ 2 ϕ1ccϕ2g;

[f(ϕ1;ϕ2;ϕ); (ϕ2;ϕ1;ϕ) j
ϕ1 2Φc & ϕ2 = h(s;ε);θ2i & disjoint(ϕ1;ϕ2) & ϕ 2 ϕ1ccϕ2g:

The mergeability criteria remain the same, and we define

T1kT2 = fϕ j ϕ1 2 T1 & ϕ2 2 T2 & mergeable(ϕ1;ϕ2) & (ϕ1;ϕ2;ϕ) 2 fairmergecg:

Letting Tsc[[b]] = fh(s;ε;s);(F; /0;f)i j (s;tt) 2 B[[b]] & F 2 Pfin(∆)g, we can characterize
the trace semanticsTsc : Com! P(Φc) denotationally in the following manner. With the new
interpretations for the semantic operators, the semantic clauses forTsc look almost identical to
the previous semantics; the only obvious difference is the absence of final states for the partial
traces forskip, assignment, and guards.

4.5 Other Notions of Program Behavior 83

Definition 4.5.7 The trace semantic functionTsc : Com! P(Φc) is defined by:

Tsc[[skip]] = fh(s;ε;s);(F; /0;f)i j s2 S& F 2 Pfin(∆)g;
[fh(s;ε);(F;fεg;p)i j s2 S& F � fεgg

Tsc[[i:=e]] = fh(s;ε; [sji = n]);(F; /0;f)i j
fv[[i:=e]]� dom(s) & F 2 Pfin(∆) & (s;n) 2 E [[e]]g

[fh(s;ε);(F;fεg;p)i j fv[[i:=e]]� dom(s) & F � fεgg
Tsc[[c1;c2]] = Tsc[[c1]];Tsc[[c2]]

Tsc[[if b then c1 else c2]] = Tsc[[b]];Tsc[[c1]][Tsc[[:b]];Tsc[[c2]]

Tsc[[while b do c]] = (Tsc[[b]];Tsc[[c]])
ω
[(Tsc[[b]];Tsc[[c]])

�;Tsc[[:b]]

Tsc[[h?i]] = fh(s;h?n; [sji = n]);(F;fh?g;f)i j

i 2 dom(s) & n2 Z & F 2 Pfin(∆)g
[fh(s;ε);(F;fh?g;p)i j i 2 dom(s) & F � fh?gg

Tsc[[h!e]] = fh(s;h!n;s);(F;fh!g;f)i j (s;n) 2 E [[e]] & F 2 Pfin(∆)g
[fh(s;ε);(F;fh!g;p)i j fv[[e]]� dom(s) & F � fh!g & g

Tsc[[g! c]] = Tsc[[g]];Tsc[[c]]

Tsc[[gc1�gc2]] = Tsc[[gc1]]�Tsc[[gc2]]

Tsc[[c1kc2]] = Tsc[[c1]]kTsc[[c2]]

Tsc[[cnh]] = Tsc[[c]]nh:

�

Not surprisingly, the semanticsTsc is sound with respect to the behaviorC , but not fully
abstract. To achieve full abstraction, we again need to close trace sets under the closure con-
ditions introduced in Definition 4.2.1. As before, we can then define a closed trace semantic
functionT †

sc : Com! P†(Φc) denotationally, so that, for each commandc, T †
sc[[c]] = Tsc[[c]]†.

The proof of full abstraction is similar to the full abstraction proof in Section 4.4. We
make the initial and final states of computations “observable” by transmitting the value of state
variables along a fresh channel.

Proposition 4.5.8 The closed trace semanticsT †
sc is (inequationally) fully abstract with respect

to C : for all commands c and c0,

T †
sc[[c]]� T †

sc[[c
0]] () 8P[�]:C [[P[c]]]� C [[P[c0]]]:

Proof: (Sketch) As in the previous full abstraction proofs, the forward implication follows
from the compositionality ofT †

sc, the monotonicity of operations on trace sets, and the
fact that, for all commandsc, C [[c]] can be extracted fromT †

sc[[c]].

84 Full Abstraction for Strong Fairness

The reverse implication follows from a case analysis similar to that used in the proof
of Proposition 4.4.6. The main difference is that the distinguishing contexts must ac-
count for an observable behavior that is communication-based rather than state-based.
Whereas the previous contexts signal the occurrence of particular events by setting the
values of certain identifiers, these contexts must signal such occurrences with visible
communication events.

For example, suppose thatc has an infinite traceh(s;η); (F;E;i)i that c0 does not.
Let x1; : : : ;xn be the free identifiers ofc andc0; without loss of generality,dom(s) =
fx1; : : : ;xng. Let h1; : : : ;hk be the channel names appearing inc andc0, and leta;b and
c1; : : : ;ck be fresh channel names. Finally, let the setsGx andGy be constructed from the
minimalα-traces ofc0 as in previous proofs.

The distinguishing context we construct uses a modification of the commandGuess used
previously. Roughly speaking, each pair of lines

2i�1: synch:=0;((hi!value! synch:=1)� ∑g2G(g! f1:=1))
2i: synch:=0;((hi?value! synch:=1)� ∑g2G(g! f1:=1))

in Guess(H;G; f1) of Figure 4.1 can be replaced by the following pair of lines, where
c1; : : : ;ck andb are fresh channels:

2i�1: ((hi!value! ci !0! ci !value)� ∑g2G(g! b!0))
2i: ((hi?value! ci !1! ci !value)� ∑g2G(g! b!0))

Each communication along channelhi is signaled by two outputs along channelci , the
first indicating whether input or output occurred and the second indicating the “trans-
ferred value”. The guardb!0 serves the same purpose that the variable
ag played in the
previous proof.

We then letP[�] be the following context, where we use communications on channela

to record the initial state:

(a!x1 ! a!x2 ! : : :a!xn ! [�] k Guess(H;Gx;b!0) k ∑
g2Gy

g! b!0)nh1n� � �nhk:

C [[P[c]]] contains a behavior corresponding to(s;η) in which the communicationb!0
never occurs. In contrast, every behavior ofC [[P[c0]]] corresponding toα must eventually
perform the actionb!0.

Chapter 5

Strong Channel Fairness

In Chapters 3 and 4, we constructed several trace semantics that incorporate assumptions of
strong process fairness and yield full abstraction with respect to specific notions of strongly
fair behavior. The ease with which we adapted the strongly fair semantics to yield several full
abstraction results indicates a certain robustness of the trace framework. In this chapter, we
further demonstrate the framework’s robustness by constructing a semantics that incorporates
assumptions ofstrong channel fairness. The channel-fair semantics retains a lot of the essence
of the strongly fair semantics. However, the additional burden of determining when com-
munication is enabled infinitely often on a given channel requires a more complex semantic
structure.

We begin by formalizing the concept of channel fairness and introducing a parameterized
form of channel fairness. This parameterization of channel fairness admits a compositional
characterization and guides the construction of the channel-fair semantics. The need to de-
termine when communication is enabled infinitely often on particular channels makes the re-
sulting channel-fair semantics more complex than the strongly fair semantics of the previous
chapter, and it is not fully abstract. We conclude the chapter by discussing this lack of full
abstraction: we hint how the semantics might be altered to achieve full abstraction, and we
describe why the lack of full abstraction is not an indictment of either the trace framework or
the channel-fair semantics.

5.1 Channels, Names, Durations, and Scopes

Informally, a computation isstrongly channel-fairif it satisfies the following two conditions:

� Every process enabled infinitely often makes progress infinitely often.

86 Strong Channel Fairness

� Every channel on which communication is enabled infinitely often is used infinitely of-
ten.

That is, strong channel fairness combines strong process fairness with additional constraints
on the use of infinitely enabled channels. Thus, for example, every channel-fair computation
of the command

(while true do (a!0�b!1) k while true do (a?x�b?x))nanb

uses each of the channelsa andb infinitely often, thereby changing the value of identifierx

from 0 to 1 (and vice versa) infinitely often. Such a computation is also strongly process-fair.
However, strong process fairness does not require the infinite use of both channels, as long as
both processes make infinite progress: the infinite computation in whichx remains set to 0 is
also strongly fair.

To formalize strong channel fairness, however, we must make explicit what we mean by
the termchannel. So far, we have used the term in two distinct ways. First, we have used it as a
synonym forchannel name, meaning a member of the syntactic classChan. Second, we have
usedchannelto refer to the abstract (and rather nebulous) concept of a link by which processes
communicate with one another and their external environment; in this sense, a channel is a
semantic entity. Because channel names provide the only way to refer to particular links, we
tend to blur the distinction between names and links, using the phrase “channela” to mean
“the channel designated by namea”. This distinction may seem a trifling detail, but it is
crucial for defining and understanding channel fairness. Intuitively, the relationship between
channel names and channels is analogous to that between a procedure’s local variables and
their instantiation during procedure activation. We make this connection more explicit in the
following discussion.

Let c be a command in which the channel name occurs free (i.e.,h2 fc[[c]]). The restriction
operator “nh” binds the free occurrences ofh in c, and each occurrence ofh in the command
cnh is said to bebound.1 For any commandc and channel nameh, the (syntactic) scopeof
an occurrence ofh in c is the smallest subcommand ofc in which that occurrence is bound
by h; when the occurrence is free inc, its scope is the commandc itself. For example, in the
command

Q� while true do ((a!0�b!1) k (a?x�b?x))na;

the scope of each occurrence ofa is the command((a!0�b!1) k (a?x�b?x))na, and the scope
of each occurrence ofb is the commandQ. A single nameh may have multiple scopes within
a programc, with each scope being the scope of some occurrence ofh in c. For example, in
the program

(a!1ka?x)na;(while true do (a!0ka?x))na;

1Indeed, a more suggestive syntax for the commandcnh might be “new channel in c”, which emphasizes the
similarity between channel names and local variables.

5.2 Parameterized Channel Fairness 87

the namea has two different scopes:(a!1ka?x)na and(while true do (a!0ka?x))na.

During program execution, each entry into a channel name’s scope creates a new channel,
and each exit from a name’s scope destroys that channel. Theduration (or extent) of a channel
is that portion of the execution during which the channel exists. For example, consider an
infinite computation of the program

P1 � (while true do (a!0�b!1 k a?x�b?x))nanb:

The two namesa andb are associated with two different channels, each of which has infinite
duration. Because communication is enabled on both channels infinitely often, every strongly
channel-fair computation ofP1 must change the value ofx from 0 to 1 (and vice versa) infinitely
often. In contrast, consider the infinite computations of the program

P2 � while true do ((a!0�b!1 k a?x�b?x)nanb):

Each iteration through the loop creates (and subsequently destroys) new channels identified by
the namesa andb; each such channel has only finite duration. No channel ever can be enabled
infinitely often in an infinite computation ofP2, because no channel ever has infinite duration.
As a result, an infinite computation ofP2 that never sets the value ofx to 1 is still strongly
channel-fair.

The programsP1 and P2 illustrate the difference between channel names and channels,
as well as the effect this distinction has on channel fairness: althoughP1 andP2 can match
each other step-for-step,P2 has channel-fair computations that do not correspond to channel-
fair computations ofP1. Out of necessity, we shall continue to refer to channels by their
names throughout this dissertation. However, it is important to remember that channel fairness
involves assumptions about channels, not channel names.

5.2 Parameterized Channel Fairness

As demonstrated in Section 3.1, the fair computations of a command cannot be characterized
(in general) by referring only to the fair computations of its subcommands. Synchronous com-
munication requires two active participants, and hence the enabledness of a process (or of a
particular communication) depends on the status of other processes. The solution for strong
process fairness was to consider “almost strongly fair” computations; we adopt a similar ap-
proach here for channel fairness.

A computation can fail to be strongly channel-fair for one of two reasons: (1) some pro-
cess is enabled infinitely often and yet makes only finite progress, or (2) some channel on
which communication is enabled infinitely often is used only finitely often. Similarly, an “al-
most channel-fair” computation can be characterized by a combination ofprocess constraints

88 Strong Channel Fairness

(representing the infinitely enabled processes that fail to make infinite progress) andchannel
constraints(representing the infinitely enabled channels that do not get used infinitely often).

It is important to separate the process and channel constraints, because they represent dif-
ferent types of assumptions. Intuitively, the process constraints (which we can represent by a
setF of directions, as in Chapter 3) correspond to infinitely enabled processes that, when the
original command is placed in a larger context, cease to be enabled infinitely often and hence
are not treated unfairly. In this sense, process constraints limit the types of communications
other processes are allowed to provide. In contrast, the channel constraints (which we can rep-
resent by a setH of channels) correspond to infinitely enabled channels that, when the original
command is placed in a larger context, cease to be treated unfairly, either because they are no
longer enabled infinitely often, or because some other component uses them infinitely often.
Thus, in some sense, channel constraints can actually encourage other processes to perform
certain types of communications.

Combining process and channel constraints, we parameterize strong channel fairness by
pairs(F;H), whereF is a finite set of directions andH is a finite set of channels. Informally,
a computationρ is channel-fair mod(F;H) if and only if it is strongly fair modF and the
setH contains exactly2 those channels that are enabled infinitely often but used only finitely
often alongρ. When the setsF andH are both empty, this characterization coincides with
the traditional notion of strong channel fairness introduced in Subsection 2.2.2. The formal
characterization of parameterized channel fairness follows.

Definition 5.2.1 A computationρ of commandc is strongly channel-fair modulo (F;H) (or,
channel-fair mod (F;H)) providedρ satisfies one of the following conditions:

� ρ is a finite, successfully terminating computation, andH = /0;

� ρ is a partial computation whose final configuration is blocked moduloF, andH = /0;

� ρ is an infinite computation,c has form(c1;c2), (if b then c1 else c2), or (g! c1), and
the underlying infinite computation ofc1 or c2 is fair mod(F;H);

� ρ is an infinite computation,c has form(while b do c0), all underlying computations of
c0 are fair modF, andH contains exactly those channels that are enabled infinitely often
but used only finitely often alongρ;

� ρ is an infinite computation,c has form(gc1�gc2), and the underlying computation of
the selectedgci is fair mod(F;H);

2There is an asymmetry in this parameterization: the setF is a superset of a computation’s process constraints,
whereas the setH contains precisely its channel constraints. HavingH be a superset of the channel constraints
would still permit an accurate compositional characterization; the choice to haveH contain exactly the relevant
constraints merely simplifies the presentation of the channel-fair trace semantics in the next section.

5.2 Parameterized Channel Fairness 89

� ρ is an infinite computation,c has formc0nh, the underlying computationρ0 of c0 is fair
modulo(F [fh!;h?g;H [fhg), and synchronization onh is not enabled infinitely often
alongρ0;

� ρ is an infinite computation,c has formc1kc2, and there exist setsF1, F2, H1, H2, and
computationsρ1 of c1 andρ2 of c2 such that:

– ρ1 is fair mod(F1;H1) andρ2 is fair mod(F2;H2),

– ρ can be obtained by merging and synchronizingρ1 andρ2,

– F � F1[F2 andH = H1[H2�(uchans(ρ1)[uchans(ρ2)), whereuchans(ρi) is the
set of channels used infinitely often alongρi,

– neitherρi enables infinitely often any direction matching a member ofFj (i 6= j),

– neitherρi uses a direction inFj infinitely often (i 6= j). �

This definition captures the inherent duality between process and channel constraints. Pro-
cess constraints are verified during parallel composition to guarantee that neither component
violates the other’s assumptions, and they are discharged through channel restriction. In con-
trast, channel constraints are discharged either through parallel composition (when one com-
ponent uses another’s unused channels) or through restriction (provided synchronization is not
enabled infinitely often), and they are always verified during channel restriction to ensure that
no channel with synchronization enabled infinitely often gets ignored.

The following examples illustrate the notion of parameterized channel fairness.

Example 5.2.2 Consider the commandsQ1 � while true do Q0

1 andQ2 � while true do Q0

2,
whereQ0

1 andQ0

2 are defined as follows:

Q0

1 � a!0! (b!0! skip � c!0! skip); Q0

2 � (a!0! skip � b?x! skip):

� Let ρ1 be the following computation ofQ1 in which channelb is never used:

hQ1;s1i
ε

�! h(a!0! (b!0! skip � c!0! skip));Q1;s1i

a!0
�! h(b!0! skip � c!0! skip);Q1;s1i

c!0
�! hskip;Q1;s1i

ε
�! hQ1;s1i

ε
�! �� �

This computation is channel-fair mod(/0;fbg): no process blocks, and channelb is the
only infinitely enabled channel not used infinitely often.

90 Strong Channel Fairness

� Let ρ2 be the following computation ofQ2 in which the channelb is never used:

hQ2;s2i
ε
�! h(a!0! skip � b?x! skip);Q2;s2i

a!0
�! hskip;Q2;s2i

ε
�! hQ2;s2i

ε
�! �� �

This computation is also channel-fair mod(/0;fbg).

� Let ρ be the following computation, which results from an interleaving of the computa-
tionsρ1 andρ2:

hQ1 k Q2;si
ε

�! hQ1 k ((a!0! skip � b?x! skip);Q2);si
ε

�! h(a!0! (b!0! skip � c!0! skip));Q1 k ((a!0! skip � b?x! skip);Q2);si
a!0
�! h(a!0! (b!0! skip � c!0! skip));Q1 k (skip;Q2);si
a!0
�! h(b!0! skip�c!0! skip);Q1 k (skip;Q2);si
c!0
�! h(skip;Q1) k (skip;Q2);si

ε
�! hQ1 k (skip;Q2);si

ε
�! hQ1 k Q2;si

ε
�! �� �

This computation is channel-fair mod(/0;fbg). Moreover, because synchronization on
channelb is never enabled, the corresponding computation of(Q1kQ2)nb is channel-fair
mod(/0; /0). �

The next example illustrates how the channel fairness of a computation can depend on the order
in which independent actions occur.

Example 5.2.3 Let ρ1 andρ2 be the computations defined in the previous example, and letρ0
be the following computation, which also arises from an interleaving ofρ1 andρ2:

hQ1 k Q2;si
ε

�! hQ1 k (a!0! skip � b?x! skip);Q2;si
ε

�! h(a!0! (b!0! skip � c!0! skip));Q1 k (a!0! skip � b?x! skip);Q2;si
a!0
�! h(b!0! skip � c!0! skip);Q1 k (a!0! skip � b?x! skip);Q2;si
a!0
�! h(b!0! skip�c!0! skip);Q1 k (skip;Q2);si
c!0
�! h(skip;Q1) k (skip;Q2);si

ε
�! hQ1 k (skip;Q2);si

ε
�! hQ1 k Q2;si

ε
�! �� �

5.3 Channel-Fair Traces 91

The computationρ0 is also channel-fair mod(/0;fbg). However, synchronization on channelb

is enabled in each of the (infinitely many) configurations with form

h(b!0! skip � c!0! skip);Q1 k (a!0! skip � b?x! skip);Q2;si:

As a result, the computation of(Q1kQ2)nb that corresponds toρ0 is not channel-fair mod(/0; /0).
�

Finally, the following example highlights the dual nature of the process and fairness constraints.

Example 5.2.4 Consider the following two commands

C1 � (b!0 k while true do (a!0�c!0)); C2 � while true do (c?x k c!0):

Let ρ1 be an infinite computation ofC1 that repeatedly uses channela and never uses channels
b and c; such a computation is channel-fair mod(fb!g;fb;cg). Additionally, let ρ2 be an
infinite computation ofC2 in which the componentsc?x andc!0 repeatedly synchronize with
one another; this computation is channel-fair mod(/0; /0).

Finally, letρ be an infinite computation ofC1kC2 that results from some fair interleaving of
the computationsρ1 andρ2. The computationρ is channel-fair mod(fb!g;fbg): ρ2 respects
ρ1’s process constraints (that is, it does not enableb? infinitely often or useb! infinitely often),
and it discharges one ofρ1’s channel constraints by using channelc infinitely often. Because
synchronization is not enabled on channelb infinitely often, it follows that the corresponding
computation of(C1kC2)nb is channel-fair mod(/0; /0). �

5.3 Channel-Fair Traces

The definition of parameterized strong fairness is clearly embedded in the definition of param-
eterized channel fairness. Moreover, the only difference between the two definitions is that the
latter also manipulates setsH of channel constraints. This strong connection might lead us to
expect that we can construct appropriate channel-fair traces simply by adding to the strongly
fair traces an additional component that records the relevant channel constraints: for example,
the tracehα;(F;H;E;i)imight represent a channel-fair mod(F;H) computation with infinitely
enabled directionsE.

Unfortunately, the apparent simplicity of the parameterized channel-fairness definition ob-
scures an important fact: determining whether synchronization is enabled on a particular chan-
nel requires more information than merely the sets of directions enabled along a transition
sequence. For example, recall the commands

Q0

1 � a!0! (b!0! skip�c!0! skip); Q0

2 � (a!0! skip)�(b?x! skip)

92 Strong Channel Fairness

from Examples 5.2.2 and 5.2.3. The commandQ0

1kQ
0

2 has two different computations that can
each be represented by the simple trace

(s;a!0;s)(s;a!0;s)(s;c!0;s)(s;ε;s)(s;ε;s);

one in whichQ0

1 makes the first move and one in whichQ0

2 makes the first move. In each case,
input and output are both enabled on channelb, but synchronization on channelb is enabled
only whenQ0

1 makes the first transition. Simply knowing thatQ0

1 enablesb! andQ0

2 enables
b? along their respective computations is insufficient to determine whether synchronization on
channelb is enabled: we also need to know whetherb! andb? are enabledat the same time.
Generally speaking, even knowing that both directions of a given channel are enabled at the
same time may still be inadequate for determining whether synchronization is enabled. For
example, consider the following two commands

Q3 � (a!0�b?x) k (a!0�b!0);

Q4 � (a!0! (a!0�b!0)) � (a!0! (a!0�b?x))

� (b?x! (a!0�b!0)) � (b!0! (a!0�b?x));

both of which have computations that can be represented by the simple trace(s;a!0;s)(s;a!0;s).
In each case, bothb! andb? are enabled in the initial configuration. However, synchronization
on channelb is enabled only along the computation ofQ3.

For this reason, we consider sequences ofenabling sets, which are finite sets of channels
and directions such that the channelh appears only in sets that also contain the directionsh?
andh!. Intuitively, the presence of channelh in an enabling setE indicates that synchronization
on channelh is enabled,and the absence ofh indicates that synchronization onh is not enabled.
Given commandsc1 andc2 with enabling setsE1 andE2, respectively, the set

E1kE2 = E1[E2[fh j 9d 2 E1: d̄ 2 E2 & chan(d) = hg

represents the enabling set of the parallel commandc1kc2: the parallel command can perform
any action either component can, and it can also synchronize on any channel on which the two
components’ enabling sets match.

For any configurationhc;si, comms(c;s) is the set of directions and channels that describe
the possible communications from the configurationhc;si. A structurally inductive definition
of comms(c;s) appears in Figure 5.1. The setcomms(c;s) is related to the setinits(c;s), except
that it may include channels and it never includesε: in particular, the channelh, rather than
the labelε, indicates the possibility of synchronization on channelh. As is clear from the
inductive definition, channels appear incomms(c;s) only through parallel composition. Thus,
for example, the programsQ3 andQ4 described earlier can be distinguished based on their
initial enabling sets:comms(Q3;s) = fa!;b!;b?;bg, whereascomms(Q4;s) = fa!;b!;b?g.

5.3 Channel-Fair Traces 93

comms(skip;s) = /0
comms(i:=e;s) = /0
comms(c1;c2;s) = comms(c1;s)

comms(if b then c1 else c2;s) = /0
comms(while b do c;s) = /0

comms(h?i;s) = fh?g

comms(h!e;s) = fh!g

comms(g! c;s) = comms(g;s)

comms(gc1�gc2;s) = comms(gc1;s)[comms(gc2;s)

comms(c1kc2;s) = comms(c1;s) k comms(c2;s)

comms(cnh;s) = comms(c;s)�fh!;h?;hg:

Figure 5.1: Inductive definition ofcomms(c;s).

Reusing the setΣ∞ of simple traces defined in Section 3.3, we can now define the setΦch

of channel-fair tracesby

Φch = Σ∞� (Pfin(∆+)�Pfin(∆+)�Pfin(∆[Chan)∞�ff;p;ig):

Intuitively, the tracehα;(F;U;E;f)i represents a (necessarily channel-fair) successfully termi-
nating computation having the finite sequenceE of enabling sets and the setU of enabled but
unused channels. The tracehα;(F;U;E;i)i represents an infinite, fair mod(F;U) computation
having the infinite sequenceE of enabling sets. Finally, the tracehα;(F; /0;E;p)i represents a
partial computation having the finite sequenceE of enabling sets; as in strongly fair traces, the
setF is a superset ofinits(ck;sk), wherehck;ski is the final configuration ofρ.

For any computationρ, trace(ρ) is (as before) the simple trace that records the transitions
made alongρ, andunused(ρ) is the set of channels that are enabled but not used alongρ. We
also defineEn(ρ) to be the sequence of enabling sets encountered along the computationρ.
For example, ifρ is the (possibly partial) computation

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;ski;

then the sequenceEn(ρ) is defined asEn(ρ) = hE0;E1; : : : ;Eki, whereEi = comms(ci;si) for
eachi. Note that, when the configurationhck;ski is terminal, the setEk = comms(ck;sk) = /0.
Moreover, for any finite transition sequenceρ of lengthk, En(ρ) is a sequence ofk+1 sets.
For technical reasons that will be made explicit in the next section, it is important to record the
types of communications enabled in the final configuration of a transition sequence.

94 Strong Channel Fairness

Using these definitions, we can give an operational characterization of a channel-fair trace
semanticsTch : Com! P(Φch) as follows:

Tch[[c]] = fhtrace(ρ);(F;unused(ρ);En(ρ);f)i j

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;skiterm is channel-fair mod(F; /0)g

[fhtrace(ρ);(F; /0;En(ρ);p)i j F � inits(ck;sk) &

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;ski & :hck;skitermg

[fhtrace(ρ);(F;U;En(ρ);i)i j

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk
�! �� � is channel-fair mod(F;U)g:

5.4 Channel-Fair Trace Semantics

To give a denotational characterization of the semantic functionTch, we follow the approach
taken in Section 3.3: for each language construct, we introduce an operation on trace sets that
reflects the construct’s operational behavior. Because the semantic operators reflect operational
behavior, they retain the flavor of the operators introduced on strongly fair trace sets. In fact,
the manipulation of the simple-trace components and the fairness setsF remains the same. As
a result, the explanations of the semantic operators that follow focus on the new aspects of
channel-fair traces, namely the sequences of enabling sets and the sets of insufficiently used
channels.

We begin with a semantic functionTch : BExp ! P(Φch) such that, for each boolean ex-
pressionb,

Tch[[b]] = fh(s;ε;s);(F; /0;h /0; /0i;f)i j (s;tt) 2 B[[b]] & F 2 Pfin(∆)g
[fhεs;(F; /0;h /0i;p)i j (s;tt) 2 B[[b]] & F � fεgg:

Intuitively, each finite traceh(s;ε;s);(F; /0;h /0; /0i;f)i in Tw[[b]] represents a transition made in
the evaluation of the boolean expressionb, either to unroll a loop or to select the appropriate
component of a conditional. Such a step (taken in isolation) is fair modF and has no com-
munications enabled along it. Similarly, the partial tracehεs;(F; /0;h /0i;p)i indicates that, from
any initial statessatisfyingb, there is exactly one type of transition possible, and it involves an
internal action.

Based on the operational characterization ofTch, it is easy to see that

Tch[[skip]] = fh(s;ε;s);(F; /0;h /0; /0i;f)i j s2 S& F 2 Pfin(∆)g
[fhεs;(F; /0;h /0i;p)i j s2 S& F � fεgg

5.4 Channel-Fair Trace Semantics 95

and

Tch[[i:=e]] = fh(s;ε; [sji = n]);(F; /0;h /0; /0i;f)i j i 2 dom(s) & F 2 Pfin(∆) & (s;n) 2 E [[e]]g

[fhεs;(F; /0;h /0i;p)i j fv[[i:=e]]� dom(s) & F � fεgg:

Because neitherskip nor assignment enables communication along any channels, none of their
traces include any insufficiently used channels.

For guards, we obtain the following semantic definitions:

Tch[[h?i]] = fh(s;h?n; [sji = n]);(F; /0;hfh?g; /0i;f)i j i 2 dom(s) & n2 Z & F 2 Pfin(∆)g
[fhεs;(F; /0;fh?g;p)i j i 2 dom(s) & F � fh?gg;

Tch[[h!e]] = fh(s;h!n;s);(F; /0;hfh!g; /0i;f)i j (s;n) 2 E [[e]] & F 2 Pfin(∆)g
[fhεs;(F; /0;fh!g;p)i j fv[[e]]� dom(s) & F � fh!gg:

The successful computations ofh?i andh!e necessarily use channelh, the only channel on
which communication is enabled. As a result, their traces do not include any insufficiently
used channels.

Sequential composition

The composability criterion for channel-fair traces is the same as that for strongly fair traces:
ϕ1 andϕ2 are composable wheneverϕ1 is an infinite or partial trace, or whenϕ1 is a finite trace
and the initial state ofϕ2 is the final state ofϕ1. Whenϕ1 is an infinite or partial trace, the
concatenationϕ1ϕ2 is simply the traceϕ1. Whenϕ1 is a finite trace, the concatenationϕ1ϕ2

must account accurately for the sequences of enabling sets as well as for the unused channels
of the resulting trace. We discuss these concerns in turn.

A finite traceϕ1 = hα;(F1;U1;E1;f)i represents a successfully terminating computationρ1

of some commandc1. However, whenρ1 is used to generate a computation of the command
(c1;c2), the final configuration ofρ1 is skipped:c1’s final action instead leads to the initial
configuration of a computation ofc2. Likewise, in combining the finite traceϕ1 with a trace
ϕ2 = hβ;(F2;U2;E2;R2)i, the final element ofE1 should not appear in the resulting trace’s se-
quence of enabling sets. Therefore, for sequencesE1 andE2, we letE1E2 indicate the standard
notion of sequence concatenation, and we defineE1 �E2 to be the sequence that looks likeE1

(with its final element removed), followed byE2. For example, ifE1 = hA0;A1; : : : ;Ak�1;Aki

andE2 = hB0;B1; : : : ;Bni, thenE1E2 andE1 �E2 are defined as follows:

E1E2 = hA0;A1; : : : ;Ak�1;Ak;B0;B1; : : : ;Bni;

E1 �E2 = hA0;A1; : : : ;Ak�1;B0;B1; : : : ;Bni:

96 Strong Channel Fairness

The sequenceE1 �E2 accurately represents the sequence of enabling sets encountered along
(the computation represented by) the traceϕ1ϕ2.

The definition of concatenation must also account properly for the insufficiently used chan-
nels of the resulting trace. When combining the finite traceϕ1 = hα;(F1;U1;E1;f)i with a
partial or infinite traceϕ2 = hβ;(F2;U2;E2;R2)i, the setU2 adequately represents the channel
constraints of the resulting trace:ϕ1ϕ2 is either partial (in which case the setU2 = /0 is appro-
priate) or infinite (in which caseϕ1’s finitely enabled channels are irrelevant). However, the
case where both traces are finite requires more care: a trace’s set of unused channels is defined
relative to the directions enabled along the trace, and one trace may use some of the other’s
unused channels. The enabled but unused channels ofϕ1ϕ2 are those channels inU1 that are
not used alongϕ2, combined with those channels inU2 that are not used alongϕ1. For each
traceϕi , theusedchannels ofϕi are those channels that appear along the sequenceEi but not
in the setUi. Given an enabling setE, we letchans(E) be the set of channels with directions
in E:

chans(E) = fh j 9d 2 E:chan(d) = hg:

Likewise, chans(E) is the set of channels with directions occurring along the sequenceE: a
channelh is in chans(E) if there is a setE occurring alongE such thath is in chans(E). It
follows that the used channels of the finite traceϕi can be given by the setchans(Ei)�Ui, and
theunusedchannels of the traceϕ1ϕ2 can be given by the set

(U1� (chans(E2)�U2)) [(U2� (chans(E1)�U1)):

We therefore define concatenation on the finite traceϕ1 = hα;(F1;U1;E1;f)i and the finite,
partial, or infinite traceϕ2 = hβ;(F2;U2;E2;R2)i by

ϕ1ϕ2 = hαβ;(F2;U;E1 �E2;R2i;

where the setU of insufficiently used channels is in turn defined as

U =

(
(U1� (chans(E2)�U2))[(U2� (chans(E1)�U1)); if R2 = f,

U2; if R2 2 fi;pg.

As before, we define sequential composition on trace setsT1 andT2 by

T1;T2 = fϕ1ϕ2 j ϕ1 2 T1 & ϕ2 2 T2 & composable(ϕ1;ϕ2)g;

and thus we can define

Tch[[c1;c2]] = Tch[[c1]];Tch[[c2]];

Tch[[g! c]] = Tch[[g]];Tch[[c]];

and

Tch[[if b then c1 else c2]] = Tch[[b]];Tch[[c1]][Tch[[:b]];Tch[[c2]]:

5.4 Channel-Fair Trace Semantics 97

Iteration

Let hϕii
∞
i=0 be an infinite sequence of channel-fair traces such that, for eachi � 0, ϕi =

hαi;(Fi;Ui;Ei;Ri)i. The sequencehϕii
∞
i=0 is composable if the set

∞
d

i=0
Fi is finite and (for each

i) the tracesϕ0ϕ1 : : :ϕi�1 andϕi are composable.

When eachϕi is finite, the insufficiently used channels of the infinite concatenation are
those channels that appear in infinitely many setsUi and in only finitely many setschans(Ei)�
Ui. Thus we define the infinite concatenation of the infinite sequencehϕii

∞
i=0 of finite traces to

be

ϕ0ϕ1ϕ2 : : := hα0α1 : : :αn : : : ;(
∞
d

i=0
Fi;

∞
d

i=0
Ui �

∞
d

i=0
(chans(Ei)�Ui);E0 �E1 �E2 � : : : ;i)i;

whereE0 �E1 �E2 � : : : is the obvious extension of the operationE1 �E2 to the infinite series of
finite sequencesEi.

When at least one of the tracesϕi is partial or infinite, then the first suchϕi provides the
relevant contextual information for the resulting trace; thus, ifϕk is the first nonfinite trace,
then the infinite concatenation of the sequencehϕii

∞
i=0 is

ϕ0ϕ1ϕ2 : : := hα0α1 : : :αk;(Fk;Uk;E0 �E1 �E2 � : : : �Ek;Rk)i:

Finite iteration on the trace setT is again defined by

T� =
∞[

i=0

Ti
;

where we defineT0 = fhεs;(/0; /0;h /0i;f)i j s2 Sg andTn+1 = Tn;T. Infinite iteration on the
trace setT is defined as follows:

Tω = fϕ0ϕ1 : : :ϕk : : : j (8i � 0:ϕi 2 T) & composable(hϕii
∞
i=0)g:

Using these definitions, we give the following semantics for loops:

Tch[[while b do c]] = (Tch[[b]];Tch[[c]])
ω[(Tch[[b]];Tch[[c]])

�;Tch[[:b]]:

Guarded choice

Every computationρ of gc1 orgc2 induces a computation ofgc1�gc2 that looks likeρ, with the
following exception: the actions enabled in its initial configuration are those actions enabled by
either component. Intuitively, every channel-fair traceϕ of gc1 or gc2 should likewise induce

98 Strong Channel Fairness

a channel-fair trace ofgc1�gc2 that looks likeϕ, with the following related exception: its
initial enabling set should contain those directions initially enabled by either component. For
example, ifϕ1 = hεsα;(F1;U1;hE1iE1;R1)i represents a computation of the chosen component
andϕ2 = hεs;(F2; /0;hE2i;p)i is an initial partial trace of the unchosen component, then there
is a computationρ of gc1�gc2 whose representative trace has simple-trace componentα and
initial enabling setE1[E2. Whenϕ1 is finite, we may also need to update the resulting trace’s
set of unused channels. The insufficiently used channels of the finite computationρ are those
channels used insufficiently alongϕ1 (i.e.,U1) plus those channels inE2 that are not enabled
alongϕ1 (i.e.,E2� chans(hE1iE1)).

We therefore define guarded choice on channel-fair trace sets as follows:

T1�T2 = fhα;(F1;U1;hE1[E2iE1;R1)i j R1 2 fp;ig

& hεsα;(F1;U1;hE1iE1;R1)i 2 T1 & hεs;(F2; /0;hE2i;p)i 2 T2g

[fhα;(F2;U2;hE1[E2iE2;R2)i j R2 2 fp;ig

& hεsα;(F2;U2;hE2iE2;R2)i 2 T2 & hεs;(F1; /0;hE1i;p)i 2 T1g

[fhα;(F1; U1[(chans(E2)� chans(hE1iE1)); hE1[E2iE1; f)i j

hεsα;(F1;U1;hE1iE1;f)i 2 T1 & hεs;(F2; /0;hE2i;p)i 2 T2g

[fhα;(F2; U2[(chans(E1)� chans(hE2iE2)); hE1[E2iE2; f)i j

hεsα;(F2;U2;hE2iE2;f)i 2 T2 & hεs;(F1; /0;hE1i;p)i 2 T1g:

Unlike the definition of guarded choice for strongly fair trace sets, this definition needs to
account accurately for the initial enabling sets and the sets of unused channels. However, the
underlying essence of the operation remains the same. We define

Tch[[gc1�gc2]] = Tch[[gc1]]�Tw[[gc2]]:

Channel restriction

For process-fair trace sets, the trace setTnh is constructed from the setT by discarding those
traces that use channelh visibly, and then removingh! andh? from the enabling and fairness
sets of the traces that remain. We can define a similar operation on channel-fair trace sets,
but this operation must also verify that the fairness constraints on channelh are satisfied. In
particular, we should discard any infinite traceϕ = hα;(F;U;E;i)i that has the channelh both
in its setU of insufficiently used channels and in infinitely many of the sets along its sequence
E of enabling sets: such traces correspond to non–channel-fair computations that use channelh
only finitely often despite having synchronization onh enabled infinitely often. For a sequence
E of enabling sets, we letdE be the set of directions that appear in infinitely many of the sets

alongE, and we discard any trace for whichh2U andh2 dE.

5.4 Channel-Fair Trace Semantics 99

For any enabling setE, Enh is the set that results from removing all references to channel
h: Enh = E�fh!;h?;hg. This operation extends to sequences of sets in the obvious way:
for example,hE0;E1;E2; : : : ;Ekinh= hE0nh;E1nh;E2nh; : : : ;Eknhi. Given a trace setT and a
channelh, we then define the channel restriction ofh onT by

Tnh = fhα;(F 0
;Unh;Enh;f)i j hα;(F;U;E;f)i 2 T & F 0 � Fnh & h 62 chans(α)g

[fhα;(F 0
; /0;Enh;p)i j hα;(F; /0;E;p)i 2 T & F 0

� Fnh & h 62 chans(α)g
[fhα;(F 0

;Unh;Enh;i)i j hα;(F;U;E;i)i 2 T

& (h2U =) h 62 dE) & F 0 � Fnh & h 62 chans(α)g;

and we defineTch[[cnh]] = Tch[[c]]nh.

Parallel composition

Parameterized channel fairness relies on two types of fairness constraints:process constraints,
which place limits on which computations can be combined through parallel composition, and
channel constraints, which place limits on which computations can be “restricted” (in the sense
of channel restriction). Because only the process constraints affect which computations can be
combined meaningfully, the mergeability requirements (and themergeablepredicate) remain
the same as for process fairness, modulo the need to extract the set of infinitely enabled direc-
tions from the sequence of enabling sets. For channel-fair tracesϕ1 = hα1;(F1;U1;E1;R1)i and
ϕ2 = hα2;(F2;U2;E2;R2)i, we define the predicatemergeable(ϕ1;ϕ2) as follows:

mergeable(ϕ1;ϕ2) () (R1 = f) or (R2 = f) or (R1 = R2 = p) or (ε 62 F1[F2

& :match(F1;dE2) & :match(F2;dE1) & F1\ vis(α2) = /0 & F2\ vis(α1) = /0):

This predicate makes no mention of the setsU1 andU2: channel constraints are orthogonal to
the issue of mergeability.

To define afairmergeoperation on channel-fair traces, we employ an approach similar
to that taken in Section 3.3, defining new setsboth andone that account for traces’ unused
channels and sequences of enabling sets. However, before constructing these sets, we need to
define several auxiliary operations.

We begin by introducing a concatenation-like operator� on channel-fair traces that allows us
to combine traces that representsegmentsof computations (rather than complete computations)
while maintaining accurate enabling information. The idea is that, given two tracesϕ1 andϕ2,
their fair merges are defined by interleaving and synchronizing finite portions of each (at least
until one or both traces “run out”) and then combining all of the partial results. To record the
sequences of enabling sets accurately, we need a way to split eachϕi into the appropriate finite

100 Strong Channel Fairness

portions without losing any of the relevant enabling information. For example, consider the
transition sequence

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λn�1
�! hcn;sni;

which can be separated into the following two transition sequences (for anyk):

ρ1 = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;ski;

ρ2 = hck;ski
λk
�! hck+1;sk+1i

λk+1
�! �� �

λn�1
�! hcn;sni:

For eachρ, there are as many such decompositions as there are configurations occurring along
ρ; in each case, the final configuration ofρ1 is the initial configuration ofρ2. If we let channel-
fair tracesϕ1 andϕ2 representρ1 andρ2, respectively—ignoring for the moment thatρ1 is not
a successfully terminating computation—then we should be able to define an operationϕ1 �ϕ2

that represents the computationρ. The traceϕ1 �ϕ2 needs to be defined only whenϕ1 is a
finite trace with formhα1;(F1;E1hXi;f)i andϕ2 has formhα2;(F2;hXiE2;R)i—that is, when
the final enabling set ofϕ1 is the first enabling set ofϕ2. In such cases, we define

ϕ1 �ϕ2 = hα1α2;(F2;E1hXiE2;R)i;

which indeed is a valid representation for the computationρ. (Note that, when defined, the trace
ϕ1 �ϕ2 is precisely the more general concatenationϕ1ϕ2. We can also extend this operation to
infinite sequences of traces in the obvious way, basing it on infinite concatenation.) We then
extend this operation to sets of triples of traces in the obvious way: for setsY1 andY2,

Y1 �Y2 = f(ϕ1 �ϕ0

1;ϕ2 �ϕ0

2;ϕ3 �ϕ0

3) j (ϕ1;ϕ2;ϕ3) 2Y1 & (ϕ0

1;ϕ
0

2;ϕ
0

3) 2Y2

& ϕ1 �ϕ1; ϕ2 �ϕ0

2; ϕ3 �ϕ0

3 are all definedg:

We also define the obvious iterative extensions to the dot operator. For a setY of triples of
traces, the finite iteration ofY is defined by

Y�� =
∞[

i=0

Yi
;

whereY0 = f(ϕ;ϕ;ϕ) j 9s2 S;X 2 Pfin(∆):ϕ = hεs;(/0; /0;hXi;f)ig andYn+1 = Yn �Y. The
infinite iteration ofY is defined by

Yω� = f(ϕ0 �ϕ1 � : : : �ϕk � : : : ;ϕ0

0 �ϕ
0

1 � : : : �ϕ
0

k � : : : ;ϕ
00

0 �ϕ
00

1 � : : : �ϕ
00

k � : : :) j

8i � 0: (ϕi;ϕ0

i;ϕ
00

i) 2Y & ϕi �ϕi+1; ϕ0

i �ϕ
0

i+1; ϕ00

i �ϕ
00

i+1 are all definedg:

We again make use of the interleaving (αccβ) and merging (αkβ) operators on simple traces,
and we introduce corresponding operators on sequences of enabling sets. For a (finite or infi-
nite) sequenceE and the enabling setE, EccE is the sequenceE with the setE propagated: for
example,

hE0;E1;E2; : : : ;EkiccE = hE0kE; E1kE; E2kE; : : : ;EkkEi:

5.4 Channel-Fair Trace Semantics 101

For finite sequencesE1 = hA0;A1; : : : ;Aki andE2 = hB0;B1; : : : ;Bni, the sequenceE1ccE2 is
the sequenceE1 (with the setB0 propagated) followed by the sequenceE2 (with the setAk

propagated). That is,

E1ccE2 = (E1ccB0) � (E2ccAk) = hA0kB0; A1kB0; : : : ; Ak�1kB0; AkkB0; AkkB1; : : : ; AkkBni:

Intuitively, if E1 is the sequence of enabling sets occurring along the transition sequence rep-
resented byα andE2 is the sequence of enabling sets forβ, thenE1ccE2 is the sequence of
enabling sets that occurs along the transition sequence represented byαccβ. This definition re-
quires knowing which directions are enabled in the final configuration of a transition sequence
(and, indeed, it is precisely for this reason that we include the final enabling set in the channel-
fair traces). After one component performs its transitionsα, the directions enabled in its final
configuration remain enabled as the other component makes its transitionsβ. For example,
consider the transition sequences

ρ1 = ha!0! b!0! a?x;s1i
a!0
�! hb!0! a?x;s1i

b!0
�! ha?x;s1i

and
ρ2 = ha!1! b!1;s2i

a!1
�! hb!1;s2i;

which can be interleaved to yield the following transition sequence:

ρ = h(a!0! b!0! a?x) k (a!1! b!1);si
a!0
�! h(b!0! a?x) k (a!1! b!1);si
b!0
�! ha?x k (a!1! b!1);si
a!1
�! ha?x k b!1;si:

Just before the right component makes itsa!1 transition, the directiona?—which is enabled
in the final configuration ofρ1—is also enabled for the parallel command. The transition
sequencesρ1 andρ2 can be represented by the channel-fair traces

ϕ1 = h(s1;a!0;s1)(s1;b!0;s1);(/0; /0;hfa!g;fb!g;fa?gi;f)i

and
ϕ2 = h(s2;a!1;s2);(/0; /0;hfa!g;fb!gi;f)i:

The sequence of enabled sets alongρ can therefore be defined by

hfa!g;fb!g;fa?gicchfa!g;fb!gi= hfa!g;fb!;a!g;fa?;a!;ag;fa?;b!gi:

Finally, analogous to the definition ofαkβ for matching simple tracesα andβ, we define
the operationE1kE2 whenE1 andE2 are sequences of enabled sets with equal length. That is,
if E1 = hA0;A1; : : : ;Aki, E2 = hB0;B1; : : : ;Bni, andk= n, we define

E1kE2 = hA0kB0; A1kB1; : : : ; AkkBki:

102 Strong Channel Fairness

Intuitively, E1kE2 represents the sequence of enabling sets encountered along a transition se-
quence in which the two components of a parallel command repeatedly synchronize with one
another.

With these operations in hand, we can define the related operationsϕ1ccϕ2 andϕ1kϕ2 on fi-
nite channel-fair traces. For finite tracesϕ1 = hα1;(F1;U1;E1;f)i andϕ2 = hα2;(F2;U2;E2;f)i
such thatα1ccα2 is defined, we define

ϕ1ccϕ2 = fhα1ccα2;(F;(U1�M2)[(U2�M1);E1ccE2;f)i j F � (F1[F2)g;

where we again letM1 = chans(E1)�U1 andM2 = chans(E2)�U2 be the sets of used channels
for ϕ1 andϕ2. Intuitively, each traceϕ 2 ϕ1ccϕ2 represents a transition sequence of a parallel
command in which one component performs actions corresponding toϕ1, followed by the
other component performing actions corresponding toϕ2. Likewise, for matching finite traces
ϕ1 = hα1;(F1;U1;E1;f)i andϕ2 = hα2;(F2;U2;E2;f)i, ϕ1kϕ2 is the set of traces corresponding
to their synchronization at each step:

ϕ1kϕ2 = fhα1kα2;(F;U1[U2;E1kE2;f)i j F � (F1[F2)g:

In the case of synchronization, the two traces necessarily use the same channels; as a result,
the set of insufficiently used channels is simplyU1[U2. We can now define the setboth�
Φch�Φch�Φch, whose triples represent transition sequences made while both components
are active, as follows:

both = f(ϕ1;ϕ2;ϕ);(ϕ2;ϕ1;ϕ) j ϕ1 = hα;(F1;U1;E1;f)i & ϕ2 = hβ;(F2;U2;E2;f)i &

disjoint(α;β) & ϕ 2 ϕ1ccϕ2g

[f(ϕ1;ϕ2;ϕ) j ϕ1 = hα;(F1;U1;E1;f)i & ϕ2 = hβ;(F2;U2;E2;f)i &

disjoint(α;β) & match(α;β) & ϕ 2 ϕ1kϕ2g:

Once one component of a parallel command has either terminated successfully or become
permanently blocked, the remaining component may proceed uninterrupted. Of course, the
remaining component may itself eventually terminate, or it may become blocked (modulo some
set F), or it may proceed indefinitely. We extend the operatorcc on channel-fair traces to
account for each of these cases as well. Suppose that we have a parallel commandc1kc2 in
whichc2 has terminated in its local states; the future execution ofc2 can be represented by the
empty traceϕ2 = hεs;(F2; /0;h /0i;f)i, for any setF2. If the future execution ofc1 is represented
by the traceϕ1 = hα;(F1;U1;E1;R1)i, then the parallel command’s future execution can be
represented by any of the fair traces in the set

ϕ1ccϕ2 = fhαccεs;(F;U1;Ecc /0;R1)i j F � F1[F2g:

If, instead of terminating successfully,c2 becomes blocked modF2 in local states, then its
future execution can be represented by a partial traceϕ2 = hεs;(F2; /0;hEi;p)i. In this case,

5.4 Channel-Fair Trace Semantics 103

again lettingϕ1 = hα;(F1;U1;E1;R1)i represent the future execution ofc1, the future execution
of the parallel command can be defined as follows:

ϕ1ccϕ2 =

(
fhαccεs;(F;U1;E1ccE;p)i j F � F1[F2g; if R1 2 ff;pg,

f(αccεs;(F;U1;E1ccE;i)) j F � (F1[F2)g; if R1 = i.

We therefore define the setone� Φch�Φch�Φch, whose triples reflect transition sequences
made when only one component remains active, as follows:

one = f(ϕ1;ϕ2;ϕ);(ϕ2;ϕ1;ϕ) j ϕ1 = hα;(F1;U1;E1;R)i & ϕ2 = hεs;(F2;U2;E2;R)i &

disjoint(α;s) & ϕ 2 ϕ1ccϕ2g:

We then define
fairmerge= bothω� [both�� �one:

The triple(ϕ;ϕ0;ψ) is in bothω� if and only if the tracesϕ, ϕ0, andψ can be written as

ϕ = ϕ0 �ϕ1 �ϕ2 �ϕ3 � : : : ; ϕ0 = ϕ0

0 �ϕ
0

1 �ϕ
0

2 �ϕ
0

3 � : : : ; ψ = ψ0 �ψ1 �ψ2 �ψ3 � : : : ;

such that eachϕi , ϕ0

i andψi is finite, and eachψi is in the set(ϕiccϕ0

i [ϕ0

iccϕi [ϕikϕi).
Such triples represent the merging of two infinite traces. Likewise, the triple(ϕ;ϕ0;ψ) is in
both�� �oneif and only if the tracesϕ, ϕ0, andψ can be written as

ϕ = ϕ0 �ϕ1 �ϕ2 �ϕ3 � : : : ϕn; ϕ0 = ϕ0

0 �ϕ
0

1 �ϕ
0

2 �ϕ
0

3 � : : : ϕ0

n; ψ = ψ0 �ψ1 �ψ2 �ψ3 � : : : �ψn;

such that eachϕi , ϕ0

i andψi (for i < n) is a nonempty finite trace, eachψi (for i < n) is a member
of the set(ϕiccϕ0

i [ϕ0

iccϕi [ϕikϕi), at least one ofϕn andϕ0

n has formhεs;θi, andψn is a
member of the set(ϕnccϕ0

n [ϕ0

nccϕn). These triples represent the merging of traces when at
least one of them is finite or partial.

Finally, we define channel-fair parallel composition on trace sets as

T1kT2 = fϕ j ϕ1 2 T1 & ϕ2 2 T2 & mergeable(ϕ1;ϕ2) & (ϕ1;ϕ2;ϕ) 2 fairmergeg;

so thatTch[[c1kc2]] = Tch[[c1]]kTch[[c2]].

We summarize the preceding discussion by giving the following complete denotational
characterization of the trace semanticsTch. This characterization of the semanticsTch looks
essentially the same as the denotational characterizations of the various strongly fair seman-
tics introduced previously. The only obvious difference is the inclusion of the (trivial) sets of
unused channels and the sequences of enabling sets forskip, assignment, and the input and
output guards. The real differences in the semantics lie in the new interpretations of the vari-
ous semantic operators, and these differences reflect only the more complicated bookkeeping
necessary for modeling channel fairness.

104 Strong Channel Fairness

Definition 5.4.1 The channel-fair trace semantic functionTch : Com! P(Φch) is defined by:

Tch[[skip]] = fh(s;ε;s);(F; /0;h /0; /0i;f)i j s2 S& F 2 Pfin(∆)g
[fhεs;(F; /0;h /0i;p)i j s2 S& F � fεgg

Tch[[i:=e]] = fh(s;ε; [sji = n]);(F; /0;h /0; /0i;f)i j
i 2 dom(s) & F 2 Pfin(∆) & (s;n) 2 E [[e]]g

[fhεs;(F; /0;h /0i;p)i j dom(s)� fig[fv[[e]] & F � fεgg
Tch[[c1;c2]] = Tch[[c1]];Tch[[c2]];

Tch[[if b then c1 else c2]] = Tch[[b]];Tch[[c1]][Tch[[:b]];Tch[[c2]]

Tch[[while b do c]] = (Tch[[b]];Tch[[c]])
ω[(Tch[[b]];Tch[[c]])

�;Tch[[:b]]

Tch[[h?i]] = fh(s;h?n; [sji = n]);(F; /0;hfh?g; /0i;f)i j
i 2 dom(s) & n2 Z & F 2 Pfin(∆)g

[fhεs;(F; /0;hfh?gi;p)i j i 2 dom(s) & F � fh?gg

Tch[[h!e]] = fh(s;h!n;s);(F; /0;hfh!g; /0i;f)i j (s;n) 2 E [[e]] & F 2 Pfin(∆)g
[fhεs;(F; /0;hfh!gi;p)i j fv[[e]]� dom(s) & F � fh!gg

Tch[[g! c]] = Tch[[g]];Tch[[c]];

Tch[[gc1�gc2]] = Tch[[gc1]]�Tch[[gc2]]

Tch[[cnh]] = Tch[[c]]nh

Tch[[c1kc2]] = Tch[[c1]]kTch[[c2]]:

�

The following two examples illustrate how the strongly channel-fair semanticsTch can be
used to reason about the channel-fair behavior of programs.

Example 5.4.2 Recall the following processes introduced in Figure 2.9, where we assumed
that communication occurred only when all processes were inside their loops:

P � while (x 6= 0) do (a!0! x:=0� b!1! skip);

Q � n:=1; while (w 6= 0) do (a?w! c!w � c!n! n:=n+1);

R � while (v 6= 0) do (c?v! skip � b?v! skip):

Using the trace semanticsTch, we illustrate why this assumption was necessary for proving
termination of the program(PkQkR)nanbnc under strong channel fairness. In particular, we
now show that the program cannot be guaranteed to terminate under strong channel fairness
without this assumption.

Tch[[P]] contains an infinite trace of form

hα;(/0;fag;h /0;fa!;b!g; /0iω;i)i;

5.4 Channel-Fair Trace Semantics 105

whereα involves onlyε-transitions and output actions on channelb. Similarly,Tch[[Q]] contains
an infinite trace of form

hβ;(/0;fag;h /0ih /0;fa!;c!g; /0iω;i)i;

whereβ involves onlyε-transitions and output actions on channelc. As a result,Tch[[PkQ]] has
an infinite trace with form

hγ;(/0;fag;h /0iE;i)i;

whereγ is an interleaving merge ofα andβ andE = h /0;fa!;b!g; /0; /0;fa!;c!g; /0iω is an inter-
leaving of the sequencesh /0;fa!;b!g; /0iω andh /0;fa!;c!g; /0iω. In this trace, synchronization on
channela is never enabled, because the commandsP andQ are never inside their loops at the
same time; despite the infinite occurrences ofa! anda? alongE, the channela does not occur
alongE.

To wrap up the details,Tch[[R]] has a trace with formhγ0; (/0; /0;E0;i)i in which γ0 alternates
b?1 actions withc?n actions. Therefore, there is a trace ofTch[[PkQkR]] with form

hζ; (/0;fag;E00;i)i;

whereE00 is an interleaving ofE andE0 andζ is a trace in which each communication ofγ is
synchronized with a communication ofγ0. Because neithera! nor a? can possibly occur along
E0, the channela does not appear alongE00. It follows that there is an infinite trace with form
hζ; (/0; /0;h /0iω;i)i in Tch[[(PkQkR)nanbnc]], corresponding to a nonterminating, channel-fair
computation of the program(PkQkR)nanbnc. �

In the following example, we modify the previous example to ensure termination under
strong channel fairness. Essential to proving termination is the introduction of additional com-
munications that keep the processes synchronized with one another: communications on chan-
nelsa, b andc can occur only when all three processes are inside their loops.

Example 5.4.3 Consider the following processesP0, Q0 andR0, which are revised versions of
the processesP, Q, andR (respectively) of the previous example:

P0 � while (x 6= 0) do

sync!1! (a!0! x:=0� b!1! e!1! skip � e?x! skip);

Q0 � n:=1;

while (w 6= 0) do

sync?w! sync?w! (a?w! c!w � c!n! e!1! n:=n+1 � e?w! skip);

R0 � while (v 6= 0) do sync!1! (c?v! skip � b?v! skip):

We use the trace semanticsTch to prove that the program(P0kQ0kR0)nsyncnenanbnc always
terminates under strong channel fairness.

106 Strong Channel Fairness

Let C abbreviate the program(P0kQ0kR0)nsyncne. The only infinite computations ofC are
those in which each ofP0, Q0 andR0 make infinite progress: the need to synchronize on channel
sync prevents two processes from conspiring against the third. Moreover, in any such infinite
computation, synchronization on the channela is enabled infinitely often. Therefore, every
infinite trace ofC has formhα;(F;U;E;i)i; where the channela is in the setdE. (That is,

the channela, in addition to the directionsa! anda?, appears in infinitely many sets along the
sequenceE.) As a result, the only possible infinite traces inCna have form

hα;(F 0
;Una;Ena;i)i;

whereF 0 � Fna.

However, every infinite trace ofP0 has formhβ;(Fp;Up;Ep;i)i, whereβ involves no com-
munications on channela anda is inUp. Therefore,a must also be inU , and hence the traces of
Tch[[C]] with form hα;(F;U;E;i)i (that is, all the infinite traces) must be discarded in creating
the setTch[[Cna]]. It follows that there are no infinite traces in the setTch[[Cna]], and therefore
no infinite traces in the setTch[[Cnanbnc]] = Tch[[(P0kQ0kR0)nsyncnenanbnc]].

A similar analysis shows that deadlock of the program is impossible, and hence the program
must always terminate successfully. �

5.5 Lack of Full Abstraction

The semanticsTch is sound with respect to all of the (channel-fair equivalents of the) behaviors
introduced in Chapter 4, but it is fully abstract with respect to none of them. Of course, this
is not surprising: the strongly fair semanticsTs required the addition of closure conditions to
yield full abstraction.

Some of the inappropriate distinctions made byTch can indeed be eliminated by the simple
introduction of closure conditions. For example, recall the commandsC1 andC2 that led us to
introduce union and superset closure conditions for strong fairness:

C1 � (a!0! b!0)�(a!0! c!0);

C2 � (a!0! b!0)�(a!0! c!0)�(a!0! (b!0�c!0)):

These commands have different trace sets and yet are indistinguishable in all program contexts,
even under channel fairness. Introducing union and superset conditions suited to channel-fair
traces can eliminate the distinction betweenC1 andC2.

5.5 Lack of Full Abstraction 107

However, other inappropriate distinctions cannot be remedied so easily. For instance, con-
sider the following two commands:

C3 � a!0! ((b!0! while true do a!0) � (c!0! skip))

� a!0! (b!0! skip � d!0! skip);

C4 � C3 � a!0! ((b!0! while true do a!0) � (d!0! skip)):

Let α be the simple trace(s;a!0;s)(s;b!0;s)[(s;ε;s)(s;a!0;s)]ω, and letE be the infinite se-
quenceh /0;fa!giω. The infinite traceϕ3 = hα;(/0;hfa!g;fb!;c!giE;i)i is possible for bothC3

andC4, whereas the infinite traceϕ4 = hα;(/0;hfa!g;fb!;d!giE;i)i is possible only forC4.
These two traces differ in the sets of directions enabled on their second steps. Despite this
difference, the commandsC3 andC4 exhibit the same behaviors in all program contexts. In
essence, the tracesϕ3 andϕ4 are indistinguishable from the standpoint of strong-channel fair-
ness, because they share the same infinite suffix of enabling sets: after some finite period of
time, both enable the same communications on precisely the same steps.

In general, eliminating this type of distinction requires a more direct approach than closure
conditions provide: every pair of congruent (i.e., sharing the same simple trace component and
fairness setsF andU) traces that also share an infinite suffix of enabling sequences must be
considered equivalent. Formalizing such relationships requires the introduction of an equiv-
alence relation on traces that identifies exactly such pairs, followed by the imposition of a
quotient structure on trace sets based on this equivalence relation. It seems likely that such
an approach would yield a fully abstract channel-fair semantics. However, it is unclear that
these technical contortions would would provide significantly (if any) more insight than the
semanticsTch already provides.

The difficulty in achieving fully abstraction (and the expected complexity of such a model)
should not be construed automatically as an indictment of the general trace framework. Rather,
they reflect the inherent complexity that underlies the notion of strong channel fairness. Strong
channel fairness is notequivalence robust[AFK88], in that the specific order in which inde-
pendent actions occur affects the fairness of a given computation. For example, recall Exam-
ples 5.2.2 and 5.2.3: the order in which the computationsρ1 and ρ2 are interleaved affects
the channel fairness of the resulting computation. Because channel-fairness depends on the
order in which actions are enabled and occur, any semantics that incorporates assumptions of
channel-fairness must account for this dependence in some way. It should not be surprising
that the resulting semantics is complex when the underlying notion of fairness is as well.

The lack of full abstraction should also not be interpreted as a condemnation of the se-
manticsTch. Full abstraction is an ideal that is not always easily achievable, and it is well
known that certain notions of behavior for certain languages do not admit fully abstract mod-
els [Mil77, AP86, Sto88]. Moreover, the semanticsTch still supports compositional reasoning
about strongly channel-fair behavior, and its soundness for several behavioral notions still pro-
vides useful, if incomplete, information about program equivalence and substitutability: two

108 Strong Channel Fairness

c1kc2 � c2kc1

(c1kc2) k c3 � c1 k (c2kc3)

(c1kc2)nh � c1 k (c2nh); providedh 62 fc[[c1]]

cnh � c; providedh 62 fc[[c]]

(a!0! b!0) � (b!0! a!0) � a!0 k b!0

Figure 5.2: Some program equivalences validated byT †
ch.

program terms are guaranteed to behave equivalently wheneverTch gives them identical mean-
ings. For example, the soundness ofTch is sufficient for validating the program equivalences
(with respect to any of the channel-fair equivalents of the behaviorsM , S , W or C) of Fig-
ure 5.2, properties which also hold under strong-fairness assumptions.

Chapter 6

Weak Process Fairness

This chapter focuses on weak process fairness, which requires every continuously enabled pro-
cess to make progress. The assumption of weak fairness is weaker (and therefore more general)
than strong fairness. Perhaps ironically, then, incorporating weak-fairness assumptions into a
semantics for communicating processes is more complicated than incorporating strong-fairness
assumptions. In particular, the task of determining which processes are enabledcontinuously
requires significantly more structure than determining which processes are enabled infinitely
often does: not only can a process be enabled continuously along a computation ofc1kc2

without being enabled continuously along either component’s subcomputation, but it can be
enabled continuously without any one of its possible actions being enabled continuously.

In this chapter, we show how to adapt the trace framework to incorporate assumptions of
weak process fairness. We discuss why weak fairness is harder to model than strong fairness,
and we indicate what type of additional semantic structure weak fairness requires. Based on
these observations, we introduce a parameterized form of weak fairness that is based on param-
eterized strong fairness but tailored for reasoning about thecontinuousenabling of processes.
This parameterization guides our construction of a weakly fair trace semantics that is strikingly
similar to the channel-fair semantics of Chapter 5.

6.1 Parameterized Weak Fairness

In Section 3.1, we introduced the notion of parameterized strong process fairness to permit a
compositional characterization of strongly fair computation. Roughly speaking, we tag “al-
most strongly fair” computations with sets of directions that represent the actions possible for
those processes that are treated unfairly. These sets do not distinguish between the actions pos-
sible for a single process and the actions possible for a collection of processes, because such

110 Weak Process Fairness

distinctions are irrelevant for strong fairness. A processPi having the set of enabled directions
Ei is enabled infinitely along a given computation if and only if some element ofEi is enabled
infinitely often. Similarly, some member of the collection of processesfP1; : : : ;Pkg is enabled
for communication infinitely often along a given computation if and only if some direction in
one of the sets infE1; : : : ;Ekg is enabled infinitely often. Thus, for example, the single process

Q1 � a!0! b!0 � b!0! a!0

has precisely the same set of fairness constraints as the parallel command

Q2 � (a!0 k b!0);

eachQi is enabled for synchronization infinitely often along a computation ofQikC (for any
commandC) if and only if C enables input on channela or b infinitely often.

The situation changes, however, when we consider thecontinuousenabling of directions
and processes. The processPi can be enabled continuously along a computation without any
particular element ofEi being enabled for synchronization continuously. For example, consider
the command

C� (while true do (a?x�c!1)) k (while true do (b?y�c!2));

and letρ be a computation ofC such that (1) both parallel subcomponents repeatedly perform
output on channelc; and (2) at any time after the initial step, at least one of the components is
inside its loop. Along this computationρ, the directionsa? andb? are each enabled infinitely
often and disabled infinitely often; moreover, at any time after the first step, at least one of the
directionsa? andb? is enabled.

Because the single processQ1 can perform output on either channela or channelb, it is
enabled continuously in any computation of(Q1kC)nanb in which C performs the transition
sequenceρ. As a result, in any weakly fair computation of(Q1kC)nanb, C must eventually
deviate from the transition sequenceρ. In contrast, there are weakly fair computations of
(Q2kC)nanb in whichC performs the transitionsρ: Q2 contains two processes, neither of which
is enabled continuously byρ. Whereas the commandsQ1 andQ2 have identical behaviors
under strong fairness, they can exhibit different behaviors under weak fairness. For this reason,
parameterized weak fairness—unlike parameterized strong fairness—must distinguish between
the actions possible for a single process and the actions possible for a collection of processes.

To this end, we tag “almost weakly fair” computations with a setF of sets of directions,
each setF 2 F intuitively indicating that one or more subprocesses are blocked moduloF. For
example, we use the set

F1 = ffa!;b!gg

6.1 Parameterized Weak Fairness 111

initsets(skip;s) = ffεgg
initsets(i:=e;s) = ffεgg

initsets(if b then c1 else c2;s) = ffεgg
initsets(while b do c;s) = ffεgg

initsets(c1;c2;s) = initsets(c1;s)

initsets(h?i;s) = ffh?gg

initsets(h!e;s) = ffh!gg

initsets(g! c;s) = initsets(g;s)

initsets(gc1�gc2;s) = fX1[X2 j X1 2 initsets(gc1;s) & X2 2 initsets(gc2;s)g

initsets(c1kc2;s) = initsets(c1;s)[initsets(c2;s)

[ffεg jmatch(initsets(c1;s); initsets(c2;s))g

initsets(cnh;s) = fF�fh!;h?g j F 2 initsets(c;s)g

Figure 6.1: The definitioninitsets(c;s).

to tag computations in which one or more subprocesses are blocked modulofa!;b!g; the partial
computationhQ1;si can be tagged byF1. In contrast, we use the set

F2 = ffa!g;fb!gg

to tag computations in which one or more processes are blocked modulofa!g and one or more
processes are blocked modulofb!g; the partial computationhQ2;si can be tagged byF2.

The setinits(c;s), introduced in Section 2.1, is the set of directions (possibly includingε)
corresponding to the possible transitions from configurationhc;si. We can likewise define a set
initsets(c;s) that containssetsof directions (possibly includingfεg), with the intuition that each
set reflects the transitions possible for one (or more) orc’s subprocesses from the configuration
hc;si. A structurally inductive definition of the setinitsets(c;s) appears in Figure 6.1.1 When
the commandc has only one associated process,initsets(c;s) is necessarily a singleton set;
in particular, the setinitsets(gc1�gc2;s) is a singleton set whose only element may contain
several directions. This definition provides a way to distinguish the commandsQ1 andQ2 as
required: for all statess, initsets(Q1;s) = ffa!;b!gg, whereasinitsets(Q2;s) = ffa!g;fb!gg.

Finally, we note that different sets may represent the same weak-fairness constraints. For
example, consider the setsF1 = ffa!;b!g;fa!gg andF2 = ffa!;b!gg. Both sets represent

1This inductive definition relies on the obvious extension of the predicatematch to sets of sets of directions:
for such setsX1 andX2, the predicatematch(X1;X2) is true if and only if there exists setsX1 2 X1 andX2 2 X2

such thatmatch(X1;X2).

112 Weak Process Fairness

identical constraints: eachFi will be enabled for synchronization continuously along any com-
putation that enables the setfa!;b!g continuously. In effect, the possibilities inherent in the
setfa!g are subsumed by the setfa!;b!g: any computation that provides the setfa!g with
continuous synchronization opportunities necessarily provides the setfa!;b!g with continuous
synchronization opportunities. We use downwards closure to yield canonical representations
of the fairness constraints.

Definition 6.1.1 Let F be a member ofPfin(Pfin(∆)). Thedownwards closureof F, written
F#, is the set of all subsets of members ofF: F#= fF 0 j 9F 2 F:F0 � Fg. �

Intuitively, the setsF1 andF2 represent identical weak-fairness constraints wheneverF1#=
F2#.

Definition 6.1.2 LetF be a member ofPfin(Pfin(∆)). A configurationhc;si is blocked modulo
F if initsets(c;s)�F#= /0, and it isenabled moduloF otherwise. �

Thus a configuration is blocked moduloF if each of its subprocesses is blocked modF for
someF 2 F#.

Example 6.1.3 Recall the commandsQ1 � a!0! b!0�b!0! a!0 andQ2 � (a!0 k b!0), with
the sets of enabled communications

initsets(Q1;s) = ffa!;b!gg; initsets(Q2;s) = ffa!g;fb!gg:

The configurationshQ1;si andhQ2;si are both blocked moduloffa!;b!gg, because (for eachi)

initsets(Qi;s)� ffa!;b!gg#= f /0;fa!g;fb!g;fa!;b!gg:

However, only the configurationhQ2;si is blocked moduloffa!g;fb!gg:

initsets(Q2;s)�ffa!g;fb!gg#= /0; whereasfa!;b!g 2 initsets(Q1;s)�ffa!g;fb!gg# :

�

We can now give a parameterized notion of weak fairness that mimics the parameterization
of strong fairness in Section 3.1 but also accounts for the additional structure of the fairness
setsF. A computation is weakly fair (in the standard sense) if and only if it is weakly fair
modulo /0.

Definition 6.1.4 Let F be a member ofPfin(Pfin(∆)). A computationρ of the commandc is
weakly fair modulo F providedρ satisfies one of the following conditions:

� ρ is a finite, successfully terminating computation;

6.1 Parameterized Weak Fairness 113

� ρ is a partial computation whose final configuration is blocked moduloF;

� ρ is an infinite computation,c has form(c1;c2) or (if b then c1 else c2), and the underly-
ing infinite computation ofc1 or c2 is weakly fair modF;

� ρ is an infinite computation,c has form(while b do c0) or (g! c0), and all underlying
computations ofc0 are weakly fair modF;

� ρ is an infinite computation,c has form(gc1�gc2), and the underlying computation of
the selectedgci is weakly fair modF;

� ρ is an infinite computation,c has formc0nh, andρ’s underlying computation ofc0 is
weakly fair modulofF [fh!;h?g j F 2 Fg;

� ρ is an infinite computation,c has formc1kc2, and there exist setsF1 andF2, and com-
putationsρ1 of c1 andρ2 of c2, such that:

– ρ1 is weakly fair modF1 andρ2 is weakly fair modF2,

– ρ can be obtained by merging and synchronizingρ1 andρ2,

– F#� (F1[F2)#, and

– no subcomponent ofc1 or c2 that fails to make infinite progress is enabled for
synchronization almost everywhere alongρ. �

The final condition in the parallel-composition clause ensures that no process that becomes
blocked moduloF continuously has some opportunity to synchronize. Unlike the parallel-
composition clause for parameterized strong fairness,c1’s constraints do not depend solely on
ρ2 (and likewise forc2 andρ1): a (sub)process can be enabled for synchronization continuously
along the computationρ without being enabled for synchronization continuously along either
ρ1 or ρ2. For example, consider the commands

C1 � a?x k while true do (a!1�b!1); C2 � while true do (a!2�b!2):

Suppose thatρ1 is an infinite, weakly fair modffa?gg computation ofC1 in which the process
a?x makes no progress, and letρ2 be a weakly fair computation ofC2. The processa?x is
enabled for synchronization infinitely often—but not continuously—along each of the compu-
tationsρ1 andρ2. However, the computationsρ1 andρ2 can be interleaved to yield a computa-
tion ρ of C1kC2 in such a way that the processa?x is enabled for synchronization continuously
alongρ. As a result, it is often necessary to look at the resulting computation of the parallel
command to determine whether any blocked processes are actually enabled continuously. We
explore this situation in more detail in the following examples.

114 Weak Process Fairness

Example 6.1.5 Let C1 andC2 be the commands of the preceding discussion:

C1 � a?x k while true do (a!1�b!1); C2 � while true do (a!2�b!2):

For notational expediency, we letC abbreviate the commandwhile true do (a!1�b!1), so that
C1 � a?x kC.

1. Letρ1 be the following infinite computation

ρ1 = ha?x kC; si
ε

�! ha?x k (a!1�b!1);C;si
b!1
�! ha?x kC; si

ε
�! �� �

in which the processa?x never makes a transmission and the value 1 is repeatedly trans-
mitted along channelb.

The computationρ1 is weakly fair moduloffa?gg: the only continually enabled pro-
cess that does not make progress is blocked moduloffa?gg, and it is not enabled for
synchronization continuously.

2. Letρ2 be the infinite computation

ρ2 = hC2; ti
ε

�! h(a!2�b!2);C2; ti
b!2
�! hC2; ti

ε
�! �� �

that repeatedly transmits the value 2 along channelb. The computationρ2 is weakly fair
modulo /0.

3. Let ρ be the following interleaving ofρ1 andρ2 in which every transition ofC1 is fol-
lowed by a transition ofC2 and vice versa:

ρ = ha?x kCkC2; s[ti
ε
�! ha?x k (a!1�b!1);C kC2;s[ti

ε
�! ha?x k (a!1�b!1);C k (a!2�b!2);C2;s[ti
b!1
�! ha?x kC k (a!2�b!2);C2;s[ti
b!2
�! ha?x kC kC2;s[ti

ε
�! �� �

The computationρ is weakly fair modffa?gg, because the processa?x never becomes
enabled for synchronization continuously alongρ. In particular,a?x is disabled for syn-
chronization at every configurationha?x kCkC2; s[ti.

6.1 Parameterized Weak Fairness 115

4. The corresponding computation of(C1kC2)na in which the processa?x never makes a
transition is weakly fair modulo/0. �

The following example, taken together with the preceding one, shows how the order in
which independent actions occur can affect the weak fairness of a computation.

Example 6.1.6 Let the commandsC1 andC2, and the computationsρ1 andρ2, be as defined
in the preceding example, and letρ0 be the following interleaving ofρ1 andρ2:

ρ0 = ha?x kCkC2; s[ti
ε

�! ha?x k (a!1�b!1);C kC2;s[ti
ε

�! ha?x k (a!1�b!1);C k (a!2�b!2);C2;s[ti
b!1
�! ha?x kC k (a!2�b!2);C2;s[ti

ε
�! ha?x k (a!1�b!1);C k (a!2�b!2);C2;s[ti
b!2
�! ha?x k (a!1�b!1);C kC2;s[ti

ε
�! ha?x k (a!1�b!1);C k (a!2�b!2);C2;s[ti

ε
�! �� �

In this computation, from the second configuration onward, at least one ofC andC2 is always
inside its loop. As a result, the processa?x is enabled for synchronization continuously, and the
computationρ0 is not weakly fair moduloffa?gg. As a result, the corresponding computation
of (C1kC2)na is not weakly fair. �

The following example shows that, under weak fairness, a process can block on a commu-
nication, even though that same channel is used for synchronization infinitely often by other
processes.

Example 6.1.7 Let P1 andP2 be the following processes:

P1 � while true do (b?x�a!1); P2 � while true do (b?y�a!2�b!2):

1. The infinite computation

ρ1 = h(b!0 k P1); [x= 2]i
ε

�! h(b!0 k (b?x�a!1);P1); [x= 2]i
b?2
�! h(b!0 k P1); [x= 2]i

ε
�! �� �

that repeatedly receives the value 2 on channelb and never performs the actionb!0 is
weakly fair moduloffb!gg.

116 Weak Process Fairness

2. The infinite computation

ρ2 = hP2; [y= 1]i
ε

�! h(b?y�a!2�b!2);P2; [y= 1]i
b!2
�! hP2; [y= 1]i

ε
�! �� �

that repeatedly transmits the value 2 on channelb is weakly fair modulo/0.

3. Lets represent the state[x= 2;y= 1], and letρ be the following computation, which can
be obtained by interleaving and mergingρ1 andρ2:

h(b!0 k P1) k P2;si
ε

�! h(b!0 k (b?x�a!1);P1) k P2;si
ε

�! h(b!0 k (b?x�a!1);P1) k (b?y�a!2�b!2);P2;si
ε

�! h(b!0 k P1) k P2;si
ε

�! �� �

The computationρ is weakly fair moduloffb!gg: although the processb!0 is enabled
for synchronization infinitely often, it is not enabled for synchronization continuously.
In particular, the computation is weakly fair moduloffb!gg despite the infinite use of
channelb for synchronization betweenP1 andP2.

4. It follows that the corresponding computation of((b!0 k P1) k P2)nb is weakly fair. �

6.2 Weakly Fair Traces

The definition of parameterized weak fairness, combined with the experience of defining strongly
fair and channel-fair traces, guides us in the construction of appropriate weakly fair traces.
First, we need setsF of sets of directions to represent the process constraints, because a pro-
cess can be enabled continuously without any particular action being enabled continuously.
Second, we need to record the directions enabledat each stepalong a computation, because
directions can be enabled continuously along a computation of a parallel command without
being enabled continuously by any individual component.

We therefore define the setΦw of weakly fair traces by

Φw = Σ∞�Pfin(Pfin(∆+))� (Pfin(∆[Chan))∞�ff;i;pg:

Intuitively, the weakly fair tracehα;(F;E;f)i represents a (necessarily weakly fair) success-
fully terminating computation having the finite sequenceE of enabling sets. Similarly, the

6.3 Weakly Fair Trace Semantics 117

weakly fair tracehα;(F;E;i)i represents an infinite, weakly fair modF computation having
the infinite sequenceE of enabling sets. Finally, the weakly fair tracehα;(F;E;p)i represents
a partial computation such thatF � initsets(ck;sk), wherehck;ski is the final configuration of
ρ; E again represents the sequence of enabling sets encountered along the computation.

We characterize a weakly fair trace semanticsTw : Com!P(Φw) operationally as follows:

Tw[[c]] = fhtrace(ρ);(F;En(ρ);f)i j

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;skiterm is weakly fair modFg

[fhtrace(ρ);(F;En(ρ);p)i j F#� initsets(ck;sk) &

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk�1
�! hck;ski & :hck;skitermg

[fhtrace(ρ);(F;En(ρ);i)i j

ρ = hc;s0i
λ0
�! hc1;s1i

λ1
�! �� �

λk
�! �� � is weakly fair modFg:

6.3 Weakly Fair Trace Semantics

The denotational characterization of the weakly fair trace semanticsTw is very similar to that
for the channel-fair trace semanticsTch. In fact, many of the semantic operators are simpler
for weakly fair trace sets: we no longer have to keep track of insufficiently used channels, and
the setsF of sets can be manipulated in pretty much the same way as setsF of directions. As
a result, almost all the explanations that accompany the semantic definitions in this section are
abbreviated forms of those encountered in Chapter 5.

We first introduce a semantic functionTw : BExp! P(Φw) such that

Tw[[b]] = fh(s;ε;s);(F;h /0; /0i;f)i j (s;tt) 2 B[[b]] & F 2 Pfin(Pfin(∆))g
[fhεs;(F;h /0i;p)i j (s;tt) 2 B[[b]] & F#� ffεggg:

As in the earlier semantics, each finite trace inTw[[b]] represents a transition made in the eval-
uation of the boolean expressionb.

Based on the operational characterization ofTw, it should be easy to see that

Tw[[skip]] = fh(s;ε;s);(F;h /0; /0i;f)i j s2 S& F 2 Pfin(Pfin(∆))g
[fhεs;(F;h /0i;p)i j s2 S& F#� ffεggg

and

Tw[[i:=e]] = fh(s;ε; [sji = n]);(F;h /0; /0i;f)i j i 2 dom(s) & F 2 Pfin(Pfin(∆)) & (s;n) 2 E [[e]]g

[fhεs;(F;h /0i;p)i j fv[[i:=e]]� dom(s) & F#� ffεggg:

118 Weak Process Fairness

Similarly, for guards we obtain

Tw[[h?i]] = fh(s;h?n; [sji = n]);(F;hfh?g; /0i;f)i j i 2 dom(s) & n2 Z & F 2 Pfin(Pfin(∆))g
[fhεs;(F;hfh?gi;p)i j i 2 dom(s) & F#� ffh?ggg

and

Tw[[h!e]] = fh(s;h!n;s);(F;hfh!g; /0i;f)i j (s;n) 2 E [[e]] & F 2 Pfin(Pfin(∆))g
[fhεs;(F;hfh!gi;p)i j fv[[e]]� dom(s) & F#� ffh!ggg:

Note the use of downwards closure in the partial traces of the communication guards: for all
suitable statess, the configurationhh?i;si is blocked moduloF for all setsF #� ffh?gg, and
similarly for hh!e;si.

Sequential composition

Two weakly fair tracesϕ1 andϕ2 are composable wheneverϕ1 is an infinite or partial trace,
or whenϕ1 is a finite trace and the initial state ofϕ2 is the final state ofϕ1. Moreover, their
concatenationϕ1ϕ2 is defined almost identically to the concatenation of channel-fair traces,
except that we no longer need to keep track of the unused channels. For composable traces
ϕ1 = hα;(F1;E1;f)i andϕ2 = hβ;(F2;E2;R2)i, we define

ϕ1ϕ2 =

(
ϕ1 if R1 2 fp;ig;

hαβ;(F2;E1 �E2;R2)i; if R1 = f:

We then define sequential composition on weakly fair trace setsT1 andT2 in the familiar way:

T1;T2 = fϕ1ϕ2 j ϕ1 2 T1 & ϕ2 2 T2 & composable(ϕ1;ϕ2)g:

Finally, we define

Tw[[c1;c2]] = Tw[[c1]];Tw[[c2]];

Tw[[g! c]] = Tw[[g]];Tw[[c]];

and

Tw[[if b then c1 else c2]] = Tw[[b]];Tw[[c1]][Tw[[:b]];Tw[[c2]]:

6.3 Weakly Fair Trace Semantics 119

Iteration

Let hϕii
∞
i=0 be an infinite sequence of weakly fair traces such that, for eachi � 0, ϕi =

hαi;(Fi;Ei;Ri)i. The sequencehϕii
∞
i=0 is composable if the set

∞
d

i=0
Fi is finite and (for each

i) the tracesϕ0ϕ1 : : :ϕi�1 andϕi are composable. When eachϕi is finite, the infinite concate-
nation of the infinite sequencehϕii

∞
i=0 of finite traces is

ϕ0ϕ1ϕ2 : : := hα0α1 : : :αn : : : ;(
∞
d

i=0
Fi;E0 �E1 �E2 � : : : ;i)i:

When at least one of the tracesϕi is a partial or infinite trace, then the first suchϕi provides
the relevant contextual information for the resulting trace; thus, ifϕk is the first nonfinite trace,
then we define the infinite concatenation of the sequencehϕii

∞
i=0 to be

ϕ0ϕ1ϕ2 : : := hα0α1 : : :αk;(Fk;E0 �E1 � : : : �Ek;Rk)i:

Once again, the definitions for finite and infinite iteration on trace sets follow directly from
the definitions of concatenation and sequential composition. We define finite iteration on the
trace setT by

T� =
∞[

i=0

Ti
;

whereT0 = fhεs;(/0;h /0i;f)i j s2Sg andTn+1 = Tn;T. We define infinite iteration on trace set
T as follows:

Tω = fϕ0ϕ1 : : :ϕk : : : j (8i � 0:ϕi 2 T) & composable(hϕii
∞
i=0)g:

The semantics of loops again relies on the definitions of iteration:

Tw[[while b do c]] = (Tw[[b]];Tw[[c]])
ω[(Tw[[b]];Tw[[c]])

�;Tw[[:b]]:

Guarded choice

The definition of guarded choice on weakly fair trace sets is a simple generalization of that for
channel-fair traces: there is no need to keep track of the unused channels. For weakly fair trace
setsT1 andT2, we define:

T1�T2 = fhα;(F1;hE0[EiE;R)i j hεsα;(F1;hE0iE;R)i 2 T1 & hεs;(F2;hEi;p)i 2 T2g

[fhα;(F2;hE0[EiE;R)i j hεsα;(F2;hE0iE;R)i 2 T2 & hεs;(F1;hEi;p)i 2 T1g:

We then defineTw[[gc1�gc2]] = Tw[[gc1]]�Tw[[gc2]].

120 Weak Process Fairness

Channel restriction

The weakly fair trace setTnh can be obtained fromT by first removing those traces in whichh
is visible and then deleting all mentions ofh from enabling sequences and fairness sets. For a
setF of sets of directions, we defineFnh in the obvious way:Fnh= fFnh j F 2 Fg. We then
define

Tnh= fhα;(F0
;Enh;R)i j hα;(F;E;R)i 2 T & F

0#� (Fnh)# & h 62 chans(α)g;

so thatTw[[cnh]] = Tw[[c]]nh.

Parallel composition

To define parallel composition for sets of weakly fair traces, we follow the same general ap-
proach taken in Chapter 3 for strongly fair traces. In particular, we define a relationfairmerge
as the greatest fixed point of a functional

F(Y) = both�Y[one;

and we introduce a predicatemergeablethat indicates which mergings of computations are
meaningful. Because the weak fairness of a computation can depend on the particular order in
which independent actions occur, themergeablepredicate depends not only on the traces to be
merged but also on the resulting trace. We therefore begin by definingfairmerge, deferring for
now the question of which fair merges correspond to weakly fair computations.

The fairmergerelation for weakly fair traces is a simple generalization of thefairmerge
relation for channel-fair traces: we need only omit the sets of unused channels and use fairness
setsF of sets rather than fairness setsF of directions. For completeness, the definitions are
included here, but with very few accompanying explanations.

For finite tracesϕ1 = hα1;(F1;E1;f)i andϕ2 = hα2;(F2;E2;f)i such thatα1ccα2 is defined,
we define

ϕ1ccϕ2 = fhα1ccα2;(F;E1ccE2;f)i j F#� (F1[F2)#g:

Each traceϕ 2 ϕ1ccϕ2 represents a transition sequence of a parallel command in which one
component performs actions corresponding toϕ1, followed by the other component performing
actions corresponding toϕ2. Likewise, for matching finite tracesϕ1 = hα1;(F1;E1;f)i and
ϕ2 = hα2;(F2;E2;f)i, ϕ1kϕ2 is the set of traces corresponding to their synchronization at each
step:

ϕ1kϕ2 = fhα1kα2;(F;E1kE2;f)i j F#� (F1[F2)#g:

6.3 Weakly Fair Trace Semantics 121

These two operations on traces form the basis for the setboth� Φw�Φw�Φw, whose triples
reflect finite transition sequences that occur while both components remain active:

both = f(ϕ1;ϕ2;ϕ);(ϕ2;ϕ1;ϕ) j ϕ1 = hα;(F1;E1;f)i & ϕ2 = hβ;(F2;E2;f)i &

disjoint(α;β) & ϕ 2 ϕ1ccϕ2g

[f(ϕ1;ϕ2;ϕ) j ϕ1 = hα;(F1;E1;f)i & ϕ2 = hβ;(F2;E2;f)i &

disjoint(α;β) & match(α;β) & ϕ 2 ϕ1kϕ2g:

Once a component terminates successfully or becomes permanently blocked (modulo some
setF), the other component may proceed uninterrupted. Such situations are reflect by traces
in the setϕ1ccϕ2, whereϕ1 = hα;(F1;E1;R)i represents the active component andϕ2 is an
empty finite tracehεs;(F2;h /0i;f)i or an empty partial tracehεs;(F2;hEi;p)i. When ϕ2 =
hεs;(F2;h /0i;f)i, we define

ϕ1ccϕ2 = fhαccεs;(F;Ecc /0;R1)i j F#� (F1[F2)#g:

Whenϕ2 = hεs;(F2;hEi;p)i, we define

ϕ1ccϕ2 =

(
fhαccεs;(F;E1ccE;p)i j F#� (F1[F2)#g; if R1 2 ff;pg,

f(αccεs;(F;E1ccE;i)) j F#� (F1[F2)#g; if R1 = i.

These definitions provide the basis for the setone� Φw�Φw�Φw, whose triples reflect
transition sequences in which only one component remains active:

one = f(ϕ1;ϕ2;ϕ) j ϕ1 = hα;(F;E;R)i& ϕ2 = hεs;(F;E
0
;R)i &

disjoint(α;s) & ϕ 2 ϕ1ccϕ2g:

We can now also definefairmerge= bothω� [both�� �one, again with the intuition that the
triple (ϕ1;ϕ2;ϕ) is in fairmergeif and only if the traceϕ is a fair merging and interleaving of
the tracesϕ1 andϕ2. In particular, just as for strong channel fairness, the triple(ϕ;ϕ0;ψ) is in
bothω� if and only if the tracesϕ, ϕ0, andψ can be written as

ϕ = ϕ0 �ϕ1 �ϕ2 �ϕ3 � : : : ; ϕ0 = ϕ0

0 �ϕ
0

1 �ϕ
0

2 �ϕ
0

3 � : : : ; ψ = ψ0 �ψ1 �ψ2 �ψ3 � : : : ;

such that eachϕi , ϕ0

i andψi is finite, and eachψi is in the set(ϕiccϕ0

i [ϕ0

iccϕi [ϕikϕi).
Likewise, the triple(ϕ;ϕ0;ψ) is in both�� � one if and only if the tracesϕ, ϕ0, andψ can be
written as

ϕ = ϕ0 �ϕ1 �ϕ2 �ϕ3 � : : : ϕn; ϕ0 = ϕ0

0 �ϕ
0

1 �ϕ
0

2 �ϕ
0

3 � : : : ϕ0

n; ψ = ψ0 �ψ1 �ψ2 �ψ3 � : : : �ψn;

122 Weak Process Fairness

such that eachϕi , ϕ0

i andψi (for i < n) is a nonempty finite trace, eachψi (for i < n) is a member
of the set(ϕiccϕ0

i [ϕ0

iccϕi [ϕikϕi), at least one ofϕn andϕ0

n has formhεs;θi, andψn is a
member of the set(ϕnccϕ0

n [ϕ0

nccϕn).

However, defining the triples(ϕ1;ϕ2;ϕ) of fairmergeis not enough for defining parallel
composition on weakly fair trace sets. Despite being a fair merging of the two traces,ϕ may
not represent a weakly fair computation: it is important to verify that the subprocesses that are
blocked fairly alongϕ1 andϕ2 are not enabled continuously alongϕ. Thus, we define a ternary
predicatemergeable�Φw�Φw�Φw that not only takes into account the properties ofϕ1 and
ϕ2, but also ensures that the resulting parallel traceϕ satisfies all necessary process constraints.

A set F of directions is enabled for synchronization with the enabling setE—written
enabled(F;E)—if there exists a directiond 2 F such thatchan(d) 2 E. Intuitively, the set
F represents the set of directions enabled by some subprocessQ of a commandc1. If E is the
enabling set of the parallel commandc1kc2, then the processQ is enabled for synchronization
with another process if and only if there is some directiond 2Q such that the channelchan(d)
appears inE.

A setF of directions isblocked alongE—written blocked(F;E)—if E is finite or if there
are infinitely many setsE alongE such thatF is not enabled for synchronization withE. That
is, lettingEi represent theith element of the sequenceE, the predicateblocked(F;E) is defined
as follows:

blocked(F;E) () 8i � 0:9 j > i::enabled(F;Ei):

We extend this notion of blocking to setsF of sets of directions as well: the setF is blocked
alongE if every member ofF is blocked alongE. That is,

blocked(F;E) () 8F 2 F:blocked(F;E):

This notion of blocking forms the basis of the ternary predicatemergeable: for tracesϕ1 =
hα1;(F1;E1;R1)i, ϕ2 = hα2;(F2;E2;R2)i, andϕ = hα;(F;E;R)i,

mergeable(ϕ1;ϕ2;ϕ) () (R= f) or (R= p) or (fεg 62 F1[F2 & blocked(F1[F2;α)):

Thus the predicatemergeable(ϕ1;ϕ2;ϕ) is true wheneverϕ is a finite or partial trace, or if no
member ofF1[F2 is enabled for synchronization continuously along the infinite traceϕ.

Finally, we define fair parallel composition on trace sets as follows:

T1kT2 = fϕ j ϕ1 = hα;(F1;E1;R1)i 2 T1 & ϕ2 = hβ;(F2;E2;R2)i 2 T2 &

(ϕ1;ϕ2;ϕ) 2 fairmerge& mergeable(ϕ1;ϕ2;ϕ)g:

It follows thatTw[[c1kc2]] = Tw[[c1]]kTw[[c2]].

We can now give the denotational characterization of the weakly fair trace semanticsTw

in its entirety. Once again, this characterization looks essentially the same as the denotational

6.4 Final Comments onTw 123

characterizations of the strongly fair and the strongly channel-fair semantics of previous chap-
ters. The only differences are the sets of process constraints and the bookkeeping operations
that underlie the new interpretations of the semantic operators.

Definition 6.3.1 The trace semantic functionTw : Com! P(Φw) is defined by:

Tw[[skip]] = fh(s;ε;s);(F;h /0; /0i;f)i j s2 S& F 2 Pfin(Pfin(∆))g
[fhεs;(F;h /0i;p)i j s2 S& F#� ffεggg

Tw[[i:=e]] = fh(s;ε; [sji = n]);(F;h /0; /0i;f)i j
i 2 dom(s) & F 2 Pfin(Pfin(∆)) & (s;n) 2 E [[e]]g

[fhεs;(F;h /0i;p)i j fv[[i:=e]]� dom(s) & F#� ffεggg
Tw[[c1;c2]] = Tw[[c1]];Tw[[c2]]

Tw[[if b then c1 else c2]] = Tw[[b]];Tw[[c1]][Tw[[:b]];Tw[[c2]]

Tw[[while b do c]] = (Tw[[b]];Tw[[c]])
ω[(Tw[[b]];Tw[[c]])

�;Tw[[:b]]

Tw[[h?i]] = fh(s;h?n; [sji = n]);(F;hfh?g; /0i;f)i j
i 2 dom(s) & n2 Z & F 2 Pfin(Pfin(∆))g

[fhεs;(F;hfh?gi;p)i j i 2 dom(s) & F#� ffh?ggg

Tw[[h!e]] = fh(s;h!n;s);(F;hfh!g; /0i;f)i j (s;n) 2 E [[e]] & F 2 Pfin(Pfin(∆))g
[fhεs;(F;hfh!gi;p)i j fv[[e]]� dom(s) & F#� ffh!ggg

Tw[[g! c]] = Tw[[g]];Tw[[c]]

Tw[[gc1�gc2]] = Tw[[gc1]]�Tw[[gc2]]

Tw[[c1kc2]] = Tw[[c1]]kTw[[c2]]

Tw[[cnh]] = Tw[[c]]nh:

�

6.4 Final Comments onTw

The semanticsTw is sound with respect to all the (weakly fair equivalents of the) behaviors
introduced in Chapter 4. However, it is not fully abstract with respect to any of them, for many
of the same reasons that the channel-fair semantics fails to be fully abstract.

Despite the problems with full abstraction, the semanticsTw still sheds light on the problem
of incorporating fairness assumptions into denotational semantics. It demonstrates the further
applicability and robustness of the trace framework. Simply by replacing simple sets of actions
by sets of sets of actions, we can parameterize and model weak process constraints instead of

124 Weak Process Fairness

strong process constraints. Perhaps surprisingly, the weakly fair semantics retains a signifi-
cant portion of the structure necessary for the channel-fair semantics, despite the underlying
differences in the notions of fairness. In particular, both the channel-fair and the weakly fair
semantics require sequences of enabling sets to account for the effect that the ordering of inde-
pendent actions can have on the perceived fairness of a computation. Such sequences seem a
natural consequence of fairness notions that are not equivalence robust.

Chapter 7

Hybrid Communicating Processes

Both Brookes’ fair transition traces for shared-variable programs [Bro96b] and the fair traces
for communicating processes in this dissertation play the same role in their respective seman-
tics: they serve as abstract representations of fair computations. In each semantics, the mean-
ing of a command is the set of traces corresponding to its fair computations (or, more accu-
rately, corresponding to its fair transition sequences), and the structure of the traces reflects the
communication features of the underlying paradigm. Transition traces represent transition se-
quences in which the external environment may alter the state between successive transitions.
In contrast, the fair traces we developed for communicating processes represent transition se-
quences in which the environment never makes a state change and may interact with processes
only by message passing. Because a process’s external environment cannot alter its private
state, state changes between steps of a fair trace are disallowed. The fair traces also require an
additional contextual component that chronicles the relevant information for modeling fairness.

These two different kinds of trace structure are intuitively orthogonal, representing distinct
but compatible aspects of computation. In particular, the two structures can be combined in a
very intuitive way to yield a semantics for a hybrid language of processes that communicate
through both message passing and shared memory. In this chapter, we introduce such a hybrid
language, and we construct for it a semantics that incorporates assumptions of strong fairness.
Horita, de Bakker, and Rutten define a fully abstract semantics for a similar hybrid language
[HdBR94]; the semantics of this chapter generalizes their semantics by incorporating fairness
assumptions.

The addition of shared-variable parallelism requires a generalization of parameterized strong
fairness that accounts for state interruptions. By combining the shared-variable transition traces
with the communicating processes’ strongly fair traces in a natural way, we construct a hybrid
trace semantics suitable for reasoning about the behavior of these hybrid processes. This se-
mantics is also fully abstract, and the full-abstraction proof is a natural amalgam of the full-
abstraction proofs of the original two semantics. The full-abstraction result indicates that the

126 Hybrid Communicating Processes

hybrid traces accurately capture the type of information necessary for reasoning about systems
in which communication occurs both through message passing and through changes to shared
memory.

The ease with which these two different semantics can be combined demonstrates the mod-
ularity of the semantic features and provides further evidence that the transition traces and the
strongly fair traces accurately capture the important essence of fair computation for their un-
derlying paradigms. The resulting hybrid semantics requires the same closure conditions for
full abstraction as the original two semantics did, and the full-abstraction proof relies on the
same observations and subsidiary lemmas that underly the full-abstraction proofs of the orig-
inal semantics. Indeed, part of the value of the hybrid semantics’ full-abstraction result is the
ease with which we obtain it.

7.1 A Language of Hybrid Processes

The language of communicating processes that we have considered so far allows processes
to communicate only through synchronous message passing. In this section, we add shared-
variable parallelism and conditional critical regions to yield a hybrid language of processes that
can communicate with one another both by message passing and by changes to shared memory.
The resulting language captures the following abstract view of systems.

Intuitively, a system is a (possibly dynamic) collection ofrealms, with potentially multi-
ple threads of controlin each realm. Each realm has its own local state, and communication
between threads in the same realm occurs via this shared local memory. In contrast, communi-
cation between threads in different realms occurs via message passing along named channels.
For example, one can imagine several clusters of workstations connected to one another by
high-speed networks, with processes on same-cluster workstations communicating across dis-
tributed shared memory and distant-cluster workstations communicating by messages across
the network; each cluster is a realm, and the processes on the individual workstations are the
threads of that realm. This view of systems encompasses (and generalizes) both the shared-
memory and the communicating-process models. Shared-variable programs correspond to a
single realm containing multiple threads; communicating processes correspond to multiple-
realm systems in which each realm has precisely one thread of control.

This type of hybrid language supports the modeling of systems such as distributed databases,
automated banking systems (i.e., ATMs), airline-reservation systems, and so on. These appli-
cations all share three common features: (1) various nodes can be physically distant from one
another, making message passing the only viable communication mechanism; (2) “local” pro-
cesses may require fine-grained sharing, making shared memory the most efficient mechanism;
and (3) clients (either software or human) cannot or will not tolerate being ignored forever,
making fairness an essential feature of the system.

7.1 A Language of Hybrid Processes 127

The language’s syntax and operational semantics are very similar to those described in
Section 2.1 for the simple communicating processes.

7.1.1 Syntax

The abstract syntax of the language relies on the following seven syntactic domains:

� Ide, the set ofidentifiers, ranged over byi;

� BExp, the set ofboolean expressions, ranged over byb;

� Exp, the set of(integer) arithmetic expressions, ranged over bye;

� Chan, the set ofchannel names, ranged over byh;

� Gua, the set ofcommunication guards, ranged over byg;

� GCom, the set ofguarded commands, ranged over bygc;

� Com, the set ofcommands, ranged over byc.

We again take for granted the syntax of identifiers, channel names, and boolean and arith-
metic expressions. The syntax of guards, guarded commands, and commands is given by the
following grammar:

g ::= h?i j h!e

gc ::= g! c j gc1�gc2

c ::= skip j i:=e j c1;c2 j if b then c1 else c2 j while b do c j gc

j await b then c j c1 jjjc2 j c1kc2 j cnh

We impose two additional syntactic constraints. First, in commands of the form

await b then c;

we require that the commandc contains only assignments andskips. This requirement ensures
that the commandc terminates, and it represents a reasonable expectation of the scheduler:
it is straightforward for a scheduler to disable all other processes to allow a single process to
perform a finite series of assignments uninterrupted, but it is unreasonable for the scheduler
to disable other processes permanently to allow a process to enter what may turn out to be an
infinite loop. Moreover, this syntactic restriction does not restrict the expressive power of the
language. Second, for commands of formc1kc2, we require thatc1 andc2 have disjoint free
identifiers. This restriction ensures that the processes associated withc1 andc2 maintain their
own private state spaces: the only way that either component can affect the other’s execution
is through handshake communications.

128 Hybrid Communicating Processes

h�;siterm
hc1;siterm hc2;siterm

hc1 jjjc2;siterm

hc;siterm
hcnh;siterm

hc1;s1iterm hc2;s2iterm
hc1kc2;s1[s2iterm

if disjoint(s1;s2)

Figure 7.1: The predicateterm for hybrid processes.

hc;si
ε

=) hc;si
hc;si

ε
=) hc1;s1i hc1;s1i

λ
�! hc2;s2i hc2;s2i

ε
=) hc0;s0i

hc;si
λ

=) hc0;s0i

Figure 7.2: Axiom and inference rule for the generalized relations
λ

=).

7.1.2 Operational semantics

The operational semantics makes use of a labeled transition system very similar to that used
in Section 2.1. A configuration is a pairhc;si, wheres is a state defined at least on the free
identifiers ofc. We use the place-holder� to represent termination, allowing (for example)
configurations with formh�kc;si or h�jjjc;si. A configurationhc;si is terminalis the predicate
hc;siterm can be proved from the axiom and inference rules in Figure 7.1.

For simplicity, we assume that an evaluation semantics for boolean and arithmetic expres-
sions is already known, and that expression evaluation is atomic, always terminates, and pro-
duces no side effects.

We again writehc;si
λ
�! hc0;s0i to indicate that the commandc is states can perform an

action labeledλ, leading to commandc0 in states0. The transition relations
λ
�! (and their

generalized forms
λ

=)) are characterized by a collection of axioms and inference rules. The
transitions for sequential constructs, guards and guarded commands are identical to those in-
troduced for communicating processes in Figures 2.4 and 2.5. The appropriate inference rules
for the various parallel constructs appear in Figures 7.3. The inference rules for the generalized

transition relations
λ

=) appear in Figure 7.2.

The transition rules for parallel composition highlight the distinction between the two dif-
ferent types of parallel commands,c1 jjjc2 andc1kc2. The commandc1 jjjc2 represents the par-
allel composition of components that share a common state and communicate with one another
only by changes to this shared state: transitions made by either component affect the global
state, and handshakes between the two components are impossible. In contrast, the command
c1kc2 represents the parallel composition of components with disjoint local states that com-
municate with one another only by message passing: transitions made independently by one

7.1 A Language of Hybrid Processes 129

hb;si �!� tt hc;si
ε

=) hc0;s0iterm

hawait b then c;si
ε

�! hc0;s0i

hb;si �!� ff

hawait b then c;si
ε

�! hawait b then c;si

hc1;si
λ
�! hc01;s

0i

hc1 jjjc2;si
λ
�! hc01 jjjc2;s0i

hc2;si
λ
�! hc02;s

0i

hc1 jjjc2;si
λ
�! hc1 jjjc02;s

0i

hc1;s1i
λ
�! hc01;s

0

1i

hc1kc2;s1[s2i
λ
�! hc01kc2;s01[s2i

if disjoint(s1;s2)

hc2;s2i
λ
�! hc02;s

0

2i

hc1kc2;s1[s2i
λ
�! hc1kc02;s1[s02i

if disjoint(s1;s2)

hc1;s1i
λ1
�! hc01;s

0

1i hc2;s2i
λ2
�! hc02;s

0

2i

hc1kc2;s1[s2i
ε

�! hc01kc
0

2;s
0

1[s02i
if match(λ1;λ2) & disjoint(s1;s2)

hc;si
λ
�! hc0;s0i

hcnh;si
λ
�! hc0nh;s0i

if chan(λ) 6= h

Figure 7.3: Inference rules for the parallel constructs.

component affect only its local portion of the state, and the components may also handshake
along a given channel.

The set of enabled directions for a configurationhc;si is again given by the set

inits(c;s) = fdir(λ) j 9c0;s0: hc;si
λ
�! hc0;s0ig:

Note that, given the inference rules of Figure 7.3, the configurationhawait b then c;si always
has anε-transition enabled, regardless of the value of the expression ofb in states. Therefore
the only configurations that can be blocked are those that are trying to communicate along
restricted channels.

A quasi-computation of a commandc from states is a maximal sequence of transitions
starting inhc;si in which the state may be changed between successive transitions. For exam-
ple, the following sequence of transitions is a quasi-computation of the command(x:=1;a!x)
from state[x= 0]:

hx:=1;a!x; [x= 0]i
ε

�! ha!x; [x= 1]i & ha!x; [x= 3]i
a!3
�! h�; [x= 3]i:

130 Hybrid Communicating Processes

We use the notation�
hci;sii

λi
�! hci+1;s

0

ii

�k

i=0
;

�
hci;sii

λi
�! hci+1;s

0

ii

�∞

i=0

to abbreviate (respectively) the finite quasi-computation

hc;s0i
λ0
�! hc1;s

0

0i & hc1;s1i
λ1
�! hc2;s

0

1i & � � � & hck;ski
λk
�! hck+1;s

0

kiterm;

and the infinite quasi-computation

hc;s0i
λ0
�! hc1;s

0

0i & hc1;s1i
λ1
�! hc2;s

0

1i & � � � & hck;ski
λk
�! hck+1;s

0

ki & � � � :

A computation ofc is a quasi-computation in which the state is never changed between suc-
cessive transitions; that is, a computation is aninterference-free quasi-computation.

Quasi-computations capture the intuition that a process’s execution can be interrupted—
and the state altered—by an external force (namely, the process’s environment). In general,
the computations ofc1 jjjc2 cannot be defined solely in terms of the computations ofc1 andc2,
precisely because of this interference. For example, consider the following two commands:

c1 � x:=0; if x= 1 then y:=0 else y:=1;

c2 � x:=1:

The parallel commandc1jjjc2 has a computation that sets the value ofy to 0, but there is no way
to generate this computation by considering only computations ofc1 andc2: the commandc2

does not accessy, and every computation ofc1 setsy to 1.

However, the quasi-computations ofc1jjjc2 can be defined in terms of the quasi-computations
of c1 andc2. For example, combining the quasi-computations

ρ1 = hc1; [x= 2y= 2]i
ε

�! hif x= 1 then y:=0 else y:=1; [x= 0;y= 2]i

& hif x= 1 then y:=0 else y:=1; [x= 1;y= 2]i
ε

�! hy:=0; [x= 1;y= 2]i

& hy:=0; [x= 1y= 2]i
ε

�! h�; [x= 1y= 0]i;

and

ρ2 = hc2; [x= 2y= 2]i
ε

�! h�; [x= 1y= 2]i

yields a (quasi-)computation ofc1kc2. It is this insight that drives the use of transition traces
to model shared-variable programs.

7.2 Fairness for Hybrid Processes 131

7.2 Fairness for Hybrid Processes

All the notions of fairness for communicating processes introduced in Section 2.2 can be
adapted for hybrid communicating processes. In this chapter, we shall consider the follow-
ing version of strong fairness:

Every process that is enabled infinitely often makes progress infinitely often.

To be precise, this notion of fairness constitutes strong fairness only because the operational
semantics models blocking ofawait-statements by busy-waiting (i.e., by idle steps). As a result,
the only “true” blocking of a process arises from unsatisfiable communication attempts. If,
instead, the operational semantics represented blocking ofawait-statements by true blocking
(that is, if we omitted the idle-step transition rule forawait-statements), then the intended
notion of fairness might be described more accurately as follows:

Every continuously enabled process, and every process infinitely able to commu-
nicate, eventually makes progress.

That is, a process can block fairly onawait-statements whose conditionals are not enabled con-
tinuously and on communications that are not enabled infinitely often. Imposing different fair-
ness requirements on different types of transitions is not a new idea: Manna and Pnueli discuss
the abstract construction of temporal proof systems predicated on identifying both strongly fair
and weakly fair transition sets [MP83].

We introduce a parameterized form of strong fairness that is based on the parameteriza-
tion of strong fairness given in Definition 3.1.2. This parameterization includes clauses for the
shared-variable constructsawait b then c andc1 jjjc2. Moreover, because in general the com-
putations ofc1 jjjc2 cannot be defined solely in terms of the computations ofc1 andc2, we base
this definition on quasi-computations.

Every infinite quasi-computation ofawait b then c involves the repeated evaluation of the
boolean expressionb in states that do not satisfyb. In every such quasi-computation, the single
process repeatedly makes progress, and hence it is treated fairly. (Equivalently, an infinite
quasi-computation indicates that theawait-statement is infinitely often disabled and hence can
block fairly under weak fairness.)

The requirements for fairness of the state-based parallel commandc1jjjc2 are similar to (but
simpler than) those for the message-based parallel commandc1kc2. Intuitively, every quasi-
computationρ of c1 jjj c2 arises from interleaving a quasi-computationρ1 of c1 with a quasi-
computationρ2 of c2, andρ inherits its fairness constraints from bothρ1 andρ2. In particular,
if ρ1 is fair modF1 andρ2 is fair modF2, thenρ is fair modF1[F2, provided that the two quasi-
computations respect the fairness constraints of one another. As with message-based parallel

132 Hybrid Communicating Processes

commands, neither component can use directions that appear in the other’s fairness set, for the
following reason. Intuitively, the fairness setF1 represents the assumption that the commandc1

(and hencec1 jjjc2) will appear in a context that restricts communication on the channels ofF1

without providing synchronization opportunities for them. Ifc2 used a direction inF1 infinitely
often, then the eventual context would have to providec2 infinitely many synchronization op-
portunities for that direction, thereby offeringc1 those same opportunities as well. However,
it is legitimate for one component to enable (and perhaps even use) infinitely often directions
whose matching counterparts appear in the other’s fairness set: for example,ρ1 may enable the
directiona! infinitely often even ifa? is inF2. Because there is no possibility of handshaking
betweenc1 andc2, the directions enabled by one component do not affect the other’s fairness
constraints.

Definition 7.2.1 A quasi-computationρ of commandc is fair modulo F providedρ satisfies
one of the following conditions:

� ρ is a finite, successfully terminating quasi-computation;

� ρ is a partial quasi-computation whose final configuration is blocked moduloF;

� ρ is an infinite quasi-computation,c has form(c1;c2) or (if b then c1 else c2), and the
underlying infinite quasi-computation ofc1 or c2 is fair modF;

� ρ is an infinite quasi-computation,chas form(while bdo c) or (g! c), and all underlying
quasi-computations ofc are fair modF;

� ρ is an infinite quasi-computation,c has form(gc1�gc2), and the underlying quasi-
computation of the selectedgci is fair modF;

� ρ is an infinite quasi-computation, andc has formawait b then c;

� ρ is an infinite quasi-computation,c has formc1 jjjc2, and there exists setsF1 andF2 and
quasi-computationsρ1 of c1 andρ2 of c2 such thatρ1 is fair modF1, ρ2 is fair modF2,
F � F1[F2, and neitherρi uses a direction inFj (i 6= j) infinitely often;

� ρ is an infinite quasi-computation,c has formc0nh, and the underlying quasi-computation
of c0 is fair moduloF [fh!;h?g;

� ρ is an infinite quasi-computation,c has formc1kc2, and there exist setsF1 andF2 and
quasi-computationsρ1 of c1 andρ2 of c2 such thatρ1 is fair modF1, ρ2 is fair mod
F2, F � F1[F2, ρ can be obtained by merging and synchronizingρ1 andρ2, neitherρi

enables infinitely often any direction matching a member ofFj (i 6= j), and neitherρi

uses a direction inFj infinitely often. �

7.2 Fairness for Hybrid Processes 133

The following two examples, taken together, illustrate the difference in how fairness con-
straints are combined for the two different types of parallel composition. In particular, there are
unfair computations of the commandc1kc2 that, step for step, behave like fair computations of
c1 jjjc2.

Example 7.2.2 Consider the command((R1 jjjR2)kR3)na, whereR1, R2 andR3 are defined as
follows:

R1 � a!0; R2 � while true do a?x; R3 � while true do a!1:

1. The commandR1 has the partial (quasi-)computation

ρ1 = ha!0; [x= 1]i;

which is fair modulofa!g.

2. Letρ2 be the following infinite (quasi-)computation ofR2, which repeatedly receives the
value 1 along channela:

ρ2 = hR2; [x= 1]i
ε
�! ha?x;R2; [x= 1]i

a?1
�! hR2; [x= 1]i

ε
�! �� �

This computation is fair mod/0.

3. Letρ3 be the following infinite (quasi-)computation in whichR3 repeatedly transmits the
value 1 along channela:

ρ3 = hR3; [y= 1]i
ε

�! ha!1;R3; [y= 1]i
a?1
�! hR3; [y= 1]i

ε
�! �� � :

This computation is also fair mod/0.

4. Letρ be the following infinite (quasi-)computation ofR1 jjjR2:

ρ = hR1 jjjR2; [x= 1]i
ε

�! hR1 jjj(a?x;R2); [x= 1]i
a?1
�! hR1 jjjR2; [x= 1]i

ε
�! �� �

The computationρ can be obtained by a (trivial) interleaving ofρ1 and ρ2. Because
neitherρ1 nor ρ2 uses a direction in the other computation’s fairness set,ρ inherits the
fairness constraints of its underlying quasi-computations and is fair modfa!g.

In particular,ρ is fair modfa!g despite the fact thatR2 enables (and uses) the direction
a? infinitely often:R1 andR2 are processes that can communicate with one another only
through state changes.

134 Hybrid Communicating Processes

5. The following computation of((R1jjjR2) kR3), in whichR2 andR3 repeatedly handshake
on channela, can be obtained by merging and synchronizingρ andρ3:

h(R1 jjjR2) k R3;si
ε
�! h(R1 jjj(a?x;R2)) k R3;si

ε
�! h(R1 jjj(a?x;R2)) k (a!1;R3);si

ε
�! h(R1 jjjR2) k R3;si

ε
�! �� �

This computation is also fair modulofa!g.

6. As an immediate consequence, the following computation of((R1 jjjR2) k R3)na is
strongly fair:

h((R1 jjjR2) k R3)na;si
ε
�! h((R1 jjj(a?x;R2)) k R3)na;si

ε
�! h((R1 jjj(a?x;R2)) k (a!1;R3))na;si

ε
�! h((R1 jjjR2) k R3)na;si

ε
�! �� �

�

The following example, when compared with the previous example, illustrates how the type
of communication possible between two components placed in parallel can affect the fairness
of a given computation. In particular, the command((R1 jjjR2)kR2)na has fair computations in
whichR1 never makes a transition, but the command((R1kR2)kR2)na does not.

Example 7.2.3 Let R1, R2 and R3 be defined as in the previous example, and consider the
program((R1 k R2) k R3)na. That is, letR1 andR2 now represent processes that communicate
with one another by message passing rather than by changes to the state.

Let ρ2 be the computation ofR2 defined previously, and letρ01 = hR1;si be a trivial par-
tial computation ofR1 with x 62 dom(s). The following computation ofR1kR2 that looks al-
most identical to the computationρ of R1 jjjR2, with state-based communication replaced by
message-based communication:

hR1kR2; [sjx= 1]i
ε

�! hR1k(a?x;R2); [sjx= 1]i
a?1
�! hR1kR2; [sjx= 1]i

ε
�! �� � :

Unlike ρ, this computation is not fair modulofa!g: R1 is enabled for synchronization withR2

on channela infinitely often and yet never makes progress. �

7.3 Strongly Fair, Hybrid-Trace Semantics 135

7.3 Strongly Fair, Hybrid-Trace Semantics

As hinted previously, we can define hybrid traces that combine the features of both the fair
transition traces for shared-variable programs and the strongly fair traces for communicating
processes. These traces provide the foundation for a trace semantics for the language of hybrid
communicating processes introduced in Section 7.1.

The development of the hybrid traces and the hybrid-trace semantics is very similar to the
development of the strongly fair trace semantics in Chapters 3 and 4. However, the order
of presentation differs, in part because the previous chapters provide a useful foundation for
concepts. For example, we can introduce the necessary closure conditions earlier, because
the previous chapters make their purpose clearer. Additionally, the desire to retain as much
structural similarity to both the transition traces and the strongly fair traces affects certain
semantic decisions; it makes sense to explain these choices at the point of occurrence. For
example, rather than constructing a semantics and then introducing a notion of behavior for
which it can be made fully abstract, we begin by introducing a notion of behavior for which
we will then construct a fully abstract semantics.

7.3.1 A busy-waiting behavior

We considered several different notions of strongly fair program behavior in Chapter 4. In this
chapter, we consider a single notion of program behavior, namely the following busy-waiting
behaviorW .

Definition 7.3.1 Thebusy-waiting state tracebehaviorW : Com! P(S∞) is defined by:

W [[c]] = fs0s1 : : :sk j hc;s0i
ε

=) hc1;s1i
ε

=) ���
ε

=) hck;skitermg

[fs0s1 : : :sk(sk)
ω
j hc0;s0i

ε
=) hc1;s1i

ε
=) ���

ε
=) hck;skideadg

[fs0s1 : : :sk : : : j hc0;s0i
ε

=) ���
ε

=) hck;ski
ε

=) ��� is strongly fairg:

�

The choice of this behavior is a pragmatic one:W corresponds both to the busy-waiting be-
havior W considered in Subsection 4.5.3 for communicating processes and to the behavior
considered in [Bro96b] for shared-variable programs. As a result, constructing a semantics for
reasoning about this notion of behavior should require minimal changes from the other two
semantics.

As before, this behavior does not distinguish between deadlock and infinite idle chatter-
ing. Thus, for example,W [[a!0na]] = W [[while true do skip]] = fsω j s2 Sg. Of course, this
identification is consistent with the interpretation of deadlock as busy-waiting.

136 Hybrid Communicating Processes

7.3.2 Hybrid traces

We again employ the set of steps

Σ = S�Λ�S;

with the intuition that the step(s;λ;s0)2 Σ represents a transition of formhc;si
λ

=)hc0;s0i. We
define the setΣ+ of finite traces by

Σ+ = f(s0;λ0;s
0

0)(s1;λ1;s
0

1) : : :(sk;λk;s
0

k) j k� 0 & 8i � k:(si;λi;s
0

i) 2 Σg;

so that state changes between successive steps are permitted. Likewise, we define the setΣω of
infinite traces by

Σω = fσ0σ1 : : :σk : : : j 8i � 0: σi 2 Σg;

and we letΣ∞ = Σ+ [Σω be the set of all simple traces. These traces are an obvious combi-
nation of the shared-variable transition traces (which allow intermediate state changes) and the
communicating-process traces (which include transition labels). Each simple traceα2 Σ∞ now
represents a quasi-computation, which allows us to relax the composability criteria for simple
traces: every combination of tracesα andβ is composable, as is every infinite collection of
simple traces.

Because we are interested in a behavior that models blocking by busy-waiting, we need only
finite and infinite traces, with the latter representing both partial (i.e., blocking) computations
and “true” infinite computations. To reason about strongly fair quasi-computations, we again
need to augment infinite traces with fairness sets (representing process constraints) and sets
of infinitely enabled directions. Similarly, because finite quasi-computations can be used to
generate infinite quasi-computations, we augment finite traces with sets of enabled directions.
Thus we again make use of the set

Γ = Pfin(∆)�Pfin(∆)�ff;ig

to provide the relevant contextual information for traces, and we define the setΦ of fair hybrid
tracesas

Φ = Σ∞� (Pfin(∆)�Pfin(∆)�ff;ig):

The finite tracehα;(F;E;f)i represents a (necessarily fair modF) successfully terminating
quasi-computation with enabled directionsE. Likewise, the infinite tracehα;(F;E;i)i repre-
sents an infinite (or blocked), fair modF quasi-computation with infinitely enabled directions
E.

7.3 Strongly Fair, Hybrid-Trace Semantics 137

7.3.3 Closure conditions

Because the behaviorW relies on the generalized transitions
λ

=), the semantics we develop
must be able to introduce and absorbε-transitions; that is, the semantics must be closed under
stuttering and mumbling. However, we now need a more general notion of stuttering that
permits the introduction of idle steps involving arbitrary states. We define the relationstut�
Φ�Φ as follows:

stut = f(hαβ;θi; hα(s;ε;s)β;θi) j αβ 2 Σ∞
�Σ0 & s2 Sg:

We also define a relationmumb� Φ�Φ that reflects the “absorption” of
ε

=) transitions:

mumb = f(hα(s;ε;s0)(s0;λ;s00)β;θi;hα(s;λ;s00)β;θi) j α(s;λ;s00)β 2 Σ∞g

[f(hα(s;λ;s0)(s0;ε;s00)β;θi;hα(s;λ;s00)β;θi) j α(s;λ;s00)β 2 Σ∞
g:

These definitions are simplifications of the stuttering and mumbling relations introduced in
Subsection 4.5.2.

Again letting id = f(α;α) j α 2 Σ∞g be the identity relation on simple traces, we define
stut∞ andmumb∞ to be the (respective) greatest fixed points of the functionals

F(R) = stut�R[id; G(R) = mumb�R[id;

so thatstut∞ = stutω[stut� � id andmumb∞ = mumbω[mumb� � id. Intuitively, the pair(ϕ;ϕ0)
is in stut∞ (respectively,mumb∞) if ϕ0 can be obtained by inserting an idle step (respectively,
eliding anε-step) at some of the positions alongϕ’s simple-trace component. Although the
stuttering and mumbling steps can be applied at potentially infinitely many positions along a
trace, they cannot be applied infinitely many times at any single position along a trace. Once
again, this point is essential for preventing the accidental introduction of divergent traces.

To achieve full abstraction, we will also need the closure conditions superset, displacement,
and contention as introduced in Chapter 4. Because these conditions act only on the contextual
components of traces and not the simple-trace components, they translate directly to hybrid
trace sets.

Definition 7.3.2 For a setT of hybrid traces,T†
� is the smallest set containingT and satisfying

the following closure conditions:

� Superset: If hα;(F;E;R)i is in T†
�, R2 ff;ig, F � F 0, andE � E0, thenhα;(F 0;E0;R)i

is in T†
�.

� Displacement: If hα;(F;E[X;R)i is in T†
�, R2 ff;ig, X\ vis(α) = /0, andX � vis(α),

thenhα;(F;E;R)i is in T†
�.

138 Hybrid Communicating Processes

� Contention: If hα;(F[fdg;E;i)i andhα;(F;E[fd̄g;i)i are both inT†
�, thenhα;(F;E;i)i

is also inT†
�.

� Stuttering: If ϕ is in T†
� and(ϕ;ϕ0) 2 stut∞, thenϕ0 is also inT†

�.

� Mumbling: If ϕ is in T†
� and(ϕ;ϕ0) 2 mumb∞, thenϕ0 is also inT†

�. �

7.3.4 Hybrid trace semantics

We characterize a closed trace semanticsTh : Com! P
†
�(Φ) as follows, building closure into

the semantics from the beginning:

Th[[c]] = (fhtrace(ρ); (F;en(ρ);f)i j

F 2 Pfin(∆) & ρ =

�
hci;sii

λi=) hci+1;s
0

ii

�k

i=0
& hck+1;s

0

kiterm g

[fhtrace(ρ)α;(F;E;i)i j F � E = inits(ck;sk) & ε 62 E & :hck+1;s
0

kiterm

ρ =

�
hci;sii

λi=) hci+1;s
0

ii

�k

i=0
& α 2 f(s;ε;s) j fv[[ck+1]]� dom(s)gω g

[fhtrace(ρ); (F;en(ρ);i)i j

ρ =

�
hci;sii

λi=) hci+1;s
0

ii

�∞

i=0
is strongly fair modFg)†

�
:

The denotational characterization of this semantic function proceeds in the same manner
as in previous chapters. In particular, most of the semantic operators can be defined as in in
Section 3.3 and Subsection 4.5.3, with the only difference being the more liberal interpretation
of the predicatecomposable(and the subsequent effects on traces).

For boolean expressionsb, we define

Th[[b]] = fh(s;ε;s); (F; /0;f)i j (s;tt) 2 B[[b]] & F 2 Pfin(∆)g†
�
;

so that each trace inTh[[b]] represents a sequence of idle steps, at least one of which occurs in
a state that satisfiesb.

The infinite quasi-computations ofawait b then c are simply infinite sequences of idle
transitions from states that fail to satisfy the boolean expressionb. Thus the closed set of infinite
traces ofawait b then c can be given by(Th[[b]]ω)

†
�. The command’s finite quasi-computations

reflect the intended atomicity of the commandc: after some finite sequence of idle steps in

7.3 Strongly Fair, Hybrid-Trace Semantics 139

which b is not satisfied, the commandc is executed atomically from a state satisfyingb. Thus
the command’s closed set of finite traces can be defined by

(Th[[:b]]�;fh(s;ε;s0); (F;E;f)i 2 Th[[c]] j (s;tt) 2 B[[b]]g)†
�
;

which (due to stuttering) is equivalent simply to

fh(s;ε;s0); (F;E;f)i 2 Th[[c]] j (s;tt) 2 B[[b]]g†
�
:

It follows that

Th[[await b then c]] = (Th[[b]]
ω)†

�
[fh(s;ε;s0); (F;E;f)i 2 Th[[c]] j (s;tt) 2 B[[b]]g†

�
:

There are two types of parallel composition for the hybrid communicating processes: the
state-based compositionc1 jjjc2, whereby the components communicate with one another via
shared memory; and the message-based compositionc1kc2, whereby the components commu-
nicate with one another via synchronous message passing. Both types of fair parallel composi-
tion can be defined on traces (and trace sets) through the introduction of fair-merge relations on
triples of traces. We have already seen thefairmergerelation for the message-based communi-
cation in Chapters 3 and 4, which we again use1 to define message-based parallel composition
on hybrid trace setsT1 andT2:

T1kT2 = fϕ j ϕ1 2 T1 & ϕ2 2 T2 & mergeable(ϕ1;ϕ2) & (ϕ1;ϕ2;ϕ) 2 fairmergeg:

We can likewise define a relationfairmergesv� Φ�Φ�Φ, whose triples represent fair
interleavings of steps made by processes that share a common state. Because each process
alters the shared state, these triples do not need to propagate states in the way that the triples
for message-basedfairmergedo. Instead, we can define these triples using only trace concate-
nation, which performs the necessary bookkeeping operations on the contextual components
of traces.

The setbothsv represents the interleavings of steps that occur while both components remain
active. Intuitively, if the commandc1 can perform a finite transition sequence represented by
ϕ1 and the commandc2 can perform a finite transition sequence represented byϕ2, then the

1To be precise, we need to extend the underlying operationsαccβ andαkβ to traces with intermediate state
changes. However, these changes are straightforward: for example, ifα = (s0;λ0;s0

0)(s1;λ1;s0

1) : : : (sk;λk;s0

k) and
the states is disjoint fromα, then we define

αccεs = (s0[s;λ0;s0

0[s)(s1[s;λ1;s0

1[s) : : : (sk[s;λk;s
0

k[s):

Similarly, we defineαccβ = (αccεt)(βccεs), wheresandt are the final state ofα and initial state ofβ, respectively.
The traceαkβ again represents the stepwise synchronization ofα andβ.

140 Hybrid Communicating Processes

parallel commandc1jjjc2 can perform the corresponding finite transition sequences represented
by ϕ1ϕ2 andϕ2ϕ1. We therefore define the setbothsv as follows:

bothsv= f(ϕ1;ϕ2;ϕ1ϕ2); (ϕ1;ϕ2;ϕ2ϕ1) j ϕ1;ϕ2 2Φfing:

Once one component has terminated successfully, the remaining component may proceed un-
interrupted. Such situations are captured by the setonesv, whose triples correspond to the steps
taken by one component after the other component has terminated. Lettingε represent the null
trace, we define:

onesv= f(ϕ1;ε;ϕ1); (ε;ϕ1;ϕ1) j ϕ1 2 Φg:
We then definefairmergesv= bothω

sv [both�sv�onesv. The triple(ϕ;ϕ0;ψ) is in bothω
sv if and

only if the tracesϕ, ϕ0, andψ can be written as infinite concatenations of finite nonempty traces

ϕ = ϕ0 ϕ1 ϕ2 ϕ3 : : : ; ϕ0 = ϕ0

0 ϕ0

1 ϕ0

2 ϕ0

3 : : : ; ψ = ψ0 ψ1 ψ2 ψ3 : : : ;

such that eachψi is eitherϕiϕ0

i or ϕ0

iϕi . Such triples represent the interleaving of two infinite
traces. Likewise, the triple(ϕ;ϕ0;ψ) is in both�sv�onesv if and only if the tracesϕ, ϕ0, andψ can
be written as finite concatenations

ϕ = ϕ0 ϕ1 ϕ2 ϕ3 : : : ϕn; ϕ0 = ϕ0

0 ϕ0

1 ϕ0

2 ϕ0

3 : : : ϕ0

n; ψ = ψ0 ψ1 ψ2 ψ3 : : : ψn;

such that eachϕi , ϕ0

i andψi (for i < n) is a nonempty finite trace, at least one ofϕn andϕ0

n is
the null trace, and eachψi is eitherϕiϕ0

i or ϕ0

iϕi .

Finally, before defining state-based parallel composition on trace sets, we introduce a bi-
nary predicateinterleavable(ϕ1;ϕ2) that indicates when the tracesϕ1 andϕ2 can be interleaved
meaningfully (i.e., when they respect each other’s fairness constraints). Following the criteria
specified in Definition 7.2.1, we define the predicateinterleavable(ϕ1;ϕ2) for hybrid traces
ϕ1 = hα;(F1;E1;R1)i andϕ2 = hβ;(F2;E2;R2)i as follows:

interleavable(ϕ1;ϕ2) () (R1 = f) or (R2 = f) or (F1\vis(α2) = /0 & F2\vis(α1) = /0):

A finite trace can always be interleaved with any other trace. Moreover, two infinite tracesϕ1

andϕ2 can be interleaved as long as neither trace uses infinitely often a direction that appears
in the other’s fairness set. We then define

T1 jjjT2 = fϕ j ϕ1 2 T1 & ϕ2 2 T2 & interleavable(ϕ1;ϕ2) & (ϕ1;ϕ2;ϕ) 2 fairmergesvg;

so thatTh[[c1 jjjc2]] = (Th[[c1]] jjjTh[[c2]])
†
�.

In summary, we present the following complete denotational characterization of the se-
mantic functionTh. Other than the newly introduced clauses for the shared-variable constructs
await b then c andc1jjjc2, this characterization looks identical to that given for the busy-waiting
semanticsTsb in Subsection 4.5.3. Once again, the true differences are the underlying interpre-
tations of the semantic operators: in particular, the semantic operators have been extended to
operate on sets whose traces may contain intermediate state changes.

7.4 Full Abstraction for the Behavior W 141

Definition 7.3.3 The trace semantic functionTh : Com! P
†
�(Φ) is defined by:

Th[[skip]] = fh(s;ε;s);(F; /0;f)i j s2 S& F 2 Pfin(∆)g†
�

Th[[i:=e]] = fh(s;ε; [sji = n]);(F; /0;f)i j
fv[[i:=e]]� dom(s) & F 2 Pfin(∆) & (s;n) 2 E [[e]]g†

�

Th[[c1;c2]] = (Th[[c1]];Th[[c2]])
†
�

Th[[if b then c1 else c2]] = (Th[[b]];Th[[c1]][Th[[:b]];Th[[C2]])
†
�

Th[[while b do c]] = ((Th[[b]];Th[[c]])
ω[(Th[[b]];Th[[c]])

�;Th[[:b]])†
�

Th[[await b then c]] = (Th[[b]]
ω)†

�
[fh(s;ε;s0); (F;E;f)i 2 Th[[c]] j (s;tt) 2 B[[b]]g†

�
;

Th[[h?i]] = fh(s;h?n; [sji = n]);(F;fh?g;f)i j i 2 dom(s) & n2 Z & F 2 Pfin(∆)g†
�

[fhα;(F;fh?g;i)i j α 2 f(s;ε;s)ω j i 2 dom(s)gω & F � fh?gg†
�

Th[[h!e]] = fh(s;h!n;s);(F;fh!g;f)i j (s;n) 2 E [[e]] & F 2 Pfin(∆)g†
�

[fhα;(F;fh!g;i)i j α 2 f(s;ε;s)ω j fv[[e]]� dom(s)gω & F � fh?gg†
�

Th[[g! c]] = (Th[[g]];Th[[c]])
†
�

Th[[gc1�gc2]] = (Th[[gc1]]�Th[[gc2]])
†
�

Th[[c1 jjjc2]] = (Th[[c1]] jjjTh[[c2]])
†
�

Th[[c1kc2]] = (Th[[c1]]kTh[[c2]])
†
�

Th[[cnh]] = (Th[[c]]nh)
†
�
:

�

7.4 Full Abstraction for the Behavior W

The semanticTh is fully abstract with respect to the busy-waiting trace behaviorW introduced
in Definition 7.3.1. Indeed, the full abstraction proof captures the flavor of the full abstraction
proofs of both the transition trace semantics for shared-variable programs and the strongly fair
trace semantics for communicating processes.

Proposition 7.4.1 The closed trace semanticsTh is inequationally fully abstract with respect
to W : for all commands c and c0,

Th[[c]]� Th[[c
0]] () 8P[�]:W [[P[c]]]� M [[W[c0]]]:

142 Hybrid Communicating Processes

Proof: The forward implication follows from the compositionality ofTh, the monotonicity of
operations on trace sets, and the fact that, whenTh[[c]]� Th[[c0]],

W [[P[c]]] = fstates(α) j α 2 Th[[P[c]]] & chans(α) = fεgg
[fstates(α) j 9hα;(/0;E;i)i 2 Th[[P[c]]] : chans(α) = fεg & intfree(α)g
� fstates(α) j α 2 Th[[P[c

0]]] & chans(α) = fεgg
[fstates(α) j 9hα;(/0;E;i)i 2 Th[[P[c

0]]] : chans(α) = fεg & intfree(α)g
= W [[P[c0]]]:

For the reverse implication, considerϕ = hα;(F;E;R)i in Th[[c]]�Th[[c0]]. Because the
analysis differs only slightly depending on whetherϕ is finite or infinite, we consider
both cases together. The distinguishing context we construct combines features from the
full abstraction proofs for both strongly fair communicating processes and weakly fair
shared-variable programs.

Let hα;(F1;E1;R)i; : : : ;hα;(Fm;Em;R)i be the (necessarily finite number of) minimalα-
traces inT †

s [[c0]]. We define setsX andY of directions, and a simple contextQ[�], as
follows:

� If R= f, then we can assume without loss of generality thatFi = /0 for eachi.
Closure under superset ensures thatEi 6� E for eachi � m; thus for eachi we can
choose a directiondi 2 Ei �E. We letX = /0 andY = fdi j 1� i � mg, and we let
Q[�] be the contextQ[�]� while true do [�].

� If R= i, then Lemma 4.4.5 ensures a conflict-free resolutionR of Th[[c0]] for ϕ. We
define

X = fdi j 1� i � m& R(ϕi) = (di;F)g;

Y = fdi j 1� i � m& R(ϕi) = (di;E)g:

BecauseR is conflict-free, it follows that:match(X;Y). We letQ[�] be the simple
context[�].

Intuitively, the contextQ is the minimal context necessary for generating an infinite com-
putation from the traceα. Every direction inX represents a direction that is enabled by
a permanently blocked process along some quasi-computation ofQ[c0]. Every direction
in Y is a direction enabled infinitely along some quasi-computation ofQ[c0] and yet en-
abled only finitely often alongϕ (or ϕω, if α is finite). Moreover, every computation of
Q[c0] with the simple traceα (or αω) must have an infinitely enabled direction ofY or a
blocked process with an enabled direction inX.

7.4 Full Abstraction for the Behavior W 143

Let x andy be fresh identifiers, and define sets of “matching guards” forX andY as
follows:

Gx = fh!0 j h?2 Xg[fh?x j h! 2 Xg; Gy = fh!0 j h?2Yg[fh?y j h! 2Yg:

In the full abstraction proofs of Chapter 4, this analysis sufficed for constructing the
distinguishing context: we placedQ[�] in parallel with commandsGuess(H;Gx; f1) and
∑g2Gy

g! f2:=1, and onlyQ[c] could perform the transitions ofα without setting either
flag f1 or f2 to 1. However, we now also have to consider the the possibility thatα may
not be interference-free. For example, if

α = (s0;λ0;s
0

0)(s1;λ1;s
0

1) : : :(sk;λk;s
0

k);

our distinguishing context must provide a way to “fill in the gaps” and convert each state
s0i into si+1.

Let x1; : : : ;xn be the free identifiers ofc andc0, and leth1; : : : ;hk be the channel names
appearing inc. Without loss of generality, we can assume that each state appearing along
α is defined on precisely the identifiersx1;x2; : : : ;xn. Let f1; f2;ct; t;y1; : : : ;yn;z1; : : : ;zn

be fresh identifiers.

Let x̃:=ỹ abbreviate the commandx1:=y1;x2:=y2; � � � ;xn:=yn, let x̃:=0̃ abbreviate the
commandx1:=0;x2:=0;� � � ;xn:=0, and let ˜x= ỹ represent the boolean expression

(x1 = y1) & (x2 = y2) & � � � & (xn = yn):

Let Choose(ỹ; t) be the following command:

ỹ:=0̃;t:=0; (t:=1
jjj while t= 0 do y1:=y1+1
jjj while t= 0 do y2:=y1+2
jjj � � �

jjj while t= 0 do yn:=yn+2
)

Intuitively, the commandChoose(ỹ; t) can “guess” states: for every states with domain
fx1; : : : ;xng, Choose(ỹ; t) has a successfully terminating computation whose final state
assigns to variableyi the value ofxi in states.

Finally, we construct the following commandCloseGap(x̃; ỹ; z̃; t;ct), which provides the
mechanism to closeα’s state gaps:

while true do

(Choose(ỹ; t);Choose(z̃; t);
ct:=ct+1;
await (x̃= ỹ) then x̃:=ỹ

)

144 Hybrid Communicating Processes

Intuitively, this command has a computation that, on itsith iteration through the loop,
guesses the values offx1; : : : ;xng in states0i (storing them infy1; : : : ;yng) and in state
si+1 (storing them infz1; : : : ;zng), waits until states0i is reached, and then changes the
state froms0i tosi+1 atomically. The identifierct indicates which state gap is being closed:
ct changes value fromi to i +1 on the iteration that closes the gap between statess0i and
si+1.

We can now define the distinguishing contextP[�] as follows:"
(Q[�] jjjCloseGap(x̃; ỹ; z̃; t;ct)) k Guess(H;Gx; f1) k ∑

g2Gy

g! f2:=1)

#
nh1n� � �nhk:

M [[P[c]]] has a behavior corresponding toα in which neitherf1 nor f2 is ever set to 1. In
contrast, every behavior ofM [[P[c0]]] corresponding toα must eventually set at least one
of the flagsf1 andf2 to 1.

This full abstraction result is meaningful not only for what it says about the utility of the
semanticsTh but also for what it says about the robustness and applicability of the general trace
framework. By combining two fully abstract semantics for different languages in a natural way,
we construct a third semantics that is fully abstract for a hybrid language based on the original
two languages. Moreover, the full-abstraction proof for the hybrid semantics arises as a natural
combination of the two original full-abstraction proofs.

Chapter 8

Conclusions

In this dissertation, I have described a general, trace-based, denotational framework for mod-
eling fair communicating processes. In this chapter, I discuss some connections between this
framework and related work, as well as some directions for future work. I conclude with a
summary of the contributions of this thesis and some final thoughts.

8.1 Related Work

The framework that I have described builds on a long history of trace models for concurrency
[Par79, Bro96b, Hoa81, BHR84, BR84, Hen85, Jon87, Rus90, Jos92, JJH90]. In fact, my
fair trace semantics can be viewed as extensions to both the CSP failures model and the CCS
acceptance-tree model for dealing with fair, infinite computations. Of course, I am not the first
to provide extensions for modeling fairness.

For dataflow and asynchronous networks, Jonsson provides a fully abstract trace model
that incorporates assumptions of weak fairness [Jon94]. By modeling channels as transition
systems with their own fairness constraints and limiting use of each channel, he ensures that
every process makes progress if enabled infinitely often. Essential for modeling weak fairness
are the assumptions that each channel is used for input by at most one node, that each channel
is used for output by at most one node, and that no channel is used for both input and output
by any node.

In [Hen87], Hennessy extends acceptance trees with limit points that indicated which in-
finite paths were fair. The notion of fairness incorporated into this semantics is a form of
unconditional fairness: an infinite computation is considered fair ifeveryprocess makes in-
finitely many transitions along that computation. In particular, certain commands—such as
(skip k while true do skip)—do not have any fair computations:skip cannot make infinitely

146 Conclusions

many transitions andwhile true do skip can never terminate. Brookes adds infinite traces to
Hoare’s trace semantics [Hoa81] to model fair, infinite computations [Bro94], adapting Park’s
fairmerge operator [Par79] to handle the potential of synchronization between parallel com-
ponents. The result of these modifications is a semantics suited for reasoning about a slightly
more liberal notion of fairness: an infinite computation is considered fair if every process either
makes infinitely many transitions or terminates successfully.

Neither of these semantics is sufficient for reasoning about more general notions of fairness
in which processes may become blocked, such as weak or strong process fairness. The problem
is that synchronous communication requires the active cooperation and participation of more
than one process: a process’s ability to make progress can depend on the processes in parallel
with it and their willingness to synchronize. As a result, to support reasoning about these
types of fairness, it is essential to augment traces with additional information about the types
of communications possible along the computation.

This observation, which underlies my framework, also provides a foundation for Daron-
deau’s fully abstract, strongly fair semantics for a stateless, CCS-like language [Dar85]. In this
semantics, the meaning of a term is a set ofhistories, each having formhδ;ρ;di: ρ is a (finite or
infinite) trace of a program’s interactions with its environment,δ is a set containing the actions
on which processes are blocked, andd (which is disjoint fromδ) is a set containing the actions
enabled infinitely often (but not involved in blocking) along the traceρ. Generally speaking,
an infinite tracehα;(F;E;i)i in my framework corresponds to a historyhF;α;(E�F)i.

I discovered Darondeau’s work late in the process of writing this dissertation, two years
after first developing the strongly fair semantics of Chapter 3. Although developed indepen-
dently, my framework places Darondeau’s work in a more general light. In addition to its
statelessness, the language he considers has no notion of sequential composition and only a
very limited form of recursion based on iteration: the iterative constructs generate only infinite
computations, and no other language constructs can appear in the context of these iterative
constructs. Moreover, my development makes explicit the underlying concept of parameter-
ized strong fairness, which can be used either to aid operational reasoning or to ease the task
of developing semantics for other notions of fairness. In contrast, Darondeau provides hints of
the source of the fairness-related setsδ andd, but he never presents an exact explanation of
what these sets represent. As a result, it is unclear how he would extend his approach to other
notions of fairness.

8.2 Directions for Future Work

Throughout this dissertation, we have focused on a simple language of communicating pro-
cesses. However, we have omitted several common language features, including recursion and
more general message types. We now consider these features briefly in turn.

8.2 Directions for Future Work 147

To give semantics to loops, we introduced finite and infinite iteration on trace sets. Al-
though we did not state so explicitly, the meaning of the loop(while bdo c) could be formulated
equivalently as the greatest fixed point of the functional

F(X) = ([[b]]; [[c]]);X [[[:b]];

as in [Bro96b]. Likewise, for general recursive constructs such asrec x:t, we should again be
able to use greatest fixed points, using functionals of the general form

F 0(X) = [[t]] ρ[X=x];

whereρ is a fixed environment for the free variables oft other than the recursion variableX.
However, this type of characterization not only requires the introduction of environments (as in
“standard” denotational semantics) but also obscures the understanding of the role of fairness
constraints. For example, how do the fair computations of(rec x:a:x)k(rec x:b:x) compare with
the fair computations ofrec x:(a:xkb:x)? They share the same finite prefixes, and yet the latter
generates significantly more processes dynamically (each with its own fairness constraints).

The only types of messages allowed in the simple language we have considered are integer
values, but it is easy to imagine more general message types. For example, theπ-calculus
[MPW92] allows the transmission ofnames, which may refer to links (i.e., channels) between
processes; similarly, there are higher-order calculi that allow processes themselves to be sent
as messages [Tho89]. In these situations, messages can alter the communication topology
dynamically. Related to this situation is the potential of procedures that accept channel names
or processes as parameters. In both cases, an accurate semantics must account for the dual
role of channel names: they not only refer to the communication links between processes, they
also provide necessary information about fairness constraints. I expect that environments that
reflect this dual role of channels can be introduced in a straightforward way.

There are several results that classify the relative expressive power of various fair-merge
[PS88b, PS88a] and fair-choice [MPS88] operators for dataflow networks, as well as the power
of different delay operators for SCCS [CP91]. A similar question arises in the setting of com-
municating processes. As mentioned in Chapter 2, there are programs that terminate under one
notion of fairness that do not necessarily terminate under other notions of fairness. However,
is the hierarchy also one of implementability? For example, can a weakly fair scheduler be
used to implement a strongly fair scheduler, and (if so) what type of language features are
necessary?

Throughout this dissertation, I have hinted how the trace framework might support rea-
soning about fair behavior, but the question remains: how does this framework help the prac-
titioner? Fairness is an abstraction introduced to support reasoning about program behavior.
While the framework provides a way to model fairness compositionally, the model is useful
only if it helps the task of reasoning about programs. An important open question is: what

148 Conclusions

type of insight does this framework provide the programmer, either directly or indirectly? Are
there particular structuring techniques that facilitate reasoning about programs under fairness
assumptions? For example, we saw that modeling weak fairness required a significant amount
of program semantic structure: are there certain classes of programs for which modeling weak
fairness become simpler?

8.3 Thesis Contributions

In this dissertation, I have presented a general framework for constructing denotational seman-
tics that incorporate fairness assumptions for communicating processes. The primary units of
this framework arefair traces, which are abstract representations of program computations.
The meaning of a program is the set of fair traces that correspond to its fair computations;
the semantic operators on trace sets correspond intuitively to the operational behavior of the
program constructs. The use of traces provides an intuitive connection between a program’s
operational behavior and its semantic meaning.

This framework is the primary contribution of this thesis: it provides a general, extendible,
modular approach for constructing semantics that support reasoning about fair program behav-
ior. To demonstrate the robustness of the framework, I have focused on a single language and
constructed for it several semantics that incorporate different types of fairness assumptions. In
the process, I developed:

� Several fully abstract, strongly fair denotational semantics for state-based communicat-
ing processes.

� A sound channel-fair denotational semantics for communicating processes.

� A sound weakly fair denotational semantics for communicating processes.

I also constructed a fully abstract, strongly fair semantics for a language that combines both
synchronous message passing and shared-variable parallelism. Figure 8.1 summarizes these
semantics, highlighting the structure of the fair traces for each semantics.

Through these semantics, the framework also provides the following secondary contribu-
tions:

� The introduction and formalization ofparameterized fairness, which provides a compo-
sitional characterization of fairness.

The definition of parameterized strong process fairness, and the related parameterized
definitions for channel fairness and weak process fairness, were introduced to permit
a denotational characterization of fairness. However, they are also suitable for purely
operational reasoning, allowing syntax-directed reasoning about program behavior.

8.3 Thesis Contributions 149

Communicating Processes

CP with Shared Variables
�
�
�
��

strongly fair
hα;(F;E;R)i

weakly fair
hα;(F;E;R)i

B
B
B
BB

strongly
channel-fair

hα;(F;H;E;R)istrongly fair
hα̃;(F;E;R)i

α : interference-free traces α̃ : interruptible traces
F;E : sets of directions H : sets of channels F : set of sets of directions

E : sequence of sets of directions/channels

Figure 8.1: Summary of semantics in the fair-trace framework.

� Implicit comparison of several different fairness assumptions.

When taken together, the strongly process-fair semantics, the strongly channel-fair se-
mantics, and the weakly process-fair semantics provide an interesting side-by-side com-
parison of some of the notions of fairness commonly considered for communicating
processes. Because these semantics have all been constructed for the same language,
they highlight both the differences in semantic structure that these various assumptions
require and the effects that these fairness assumptions have on program behavior.

In particular, the channel-fair and weakly fair semantics require significantly more struc-
ture than the strongly fair semantics does, reflecting their lack of equivalence robustness
[AFK88]. The need to keep track of the communications enabled at each step not only
complicates the semantic models but also suggests that perhaps these notions fairness do
not provide useful and practical abstractions to the programmer.

� Fully abstract semantics for strong process fairness.

The full-abstraction results validate the suitability of the strongly fair traces for reasoning
about strongly fair behavior. In particular, they indicate that the strongly fair traces
provide precisely the necessary information for reasoning about strongly fair program
behavior in a compositional, syntax-directed way.

The fully abstract semantics also provide interesting technical results, indicating that
fairness can be modeled accurately in spite of the expected difficulties.

150 Conclusions

8.4 Final Comments

Fairness provides an important abstraction to the programmer, but the problems inherent in
modeling fairness have prevented its widespread use in reasoning formally about program be-
havior. The introduction of fair traces helps bridge this gap: they permit operational intuition to
guide formal reasoning. Moreover, the notion of parameterized fairness provides an accessible
way to reason about fair behavior in a systematic, syntax-directed way.

Bibliography

[AFK88] Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in lan-
guages for distributed programming.Distributed Computing, 2(4):226–241, 1988.

[AO91] K. R. Apt and E.-R. Olderog.Verification of Sequential and Concurrent Programs.
Springer-Verlag, 1991.

[AP86] K. R. Apt and G. D. Plotkin. Countable nondeterminism and random assignment.
JACM, 33(4):724–767, October 1986.

[BHR84] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating
sequential processes.JACM, 31(3):560–599, July 1984.

[BO95] Stephen Brookes and Susan Older. Full abstraction for strongly fair communicating
processes. In S. Brookes, M. Main, A. Melton, and M. Mislove, editors,Proceed-
ings of the11th Annual Conference on Mathematical Foundations of Programming
Semantics, volume 1 ofElectronic Notes in Computer Science. Elsevier, June 1995.

[BR84] S. D. Brookes and A. W. Roscoe. An improved failures model for communicating
processes. In S. D. Brookes, A. W. Roscoe, and G. Winskel, editors,Seminar on
Concurrency, volume 197 ofLecture Notes in Computer Science, pages 281–305,
Pittsburgh, PA, July 1984. Springer-Verlag.

[Bro94] Stephen Brookes. Fair communicating processes. InA Classical Mind: Essays in
Honour of C.A.R. Hoare, chapter 4. Prentice-Hall, January 1994.

[Bro96a] Stephen Brookes. The essence of Parallel Algol. InProceedings of the11th Annual
IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, July
1996.

[Bro96b] Stephen Brookes. Full abstraction for a shared-variable parallel language.Informa-
tion and Computation, 127(2):145–163, June 15, 1996.

152 Bibliography

[Cha78] Ashok K. Chandra. Computable nondeterministic functions. InProceedings of the
19th Annual Symposium on Foundations of Computer Science, pages 724–767. IEEE,
1978.

[CP91] Carol Critchlow and Prakash Panangaden. The expressive power of delay operators
in sccs.Acta Informatica, 28:447–452, 1991.

[Dar85] Philippe Darondeau. About fair asynchrony.Theoretical Computer Science,
37(3):305–336, 1985.

[Dij88] Edsger W. Dijkstra. Position paper on “fairness”.Software Engineering Notes,
13(2):18–20, April 1988.

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties
of parallel programs using fixpoints. In J.W. de Bakker and J. van Leeuwen, edi-
tors,Proceedings 7th ICALP, number 85 in LNCS, pages 264–277. Springer-Verlag,
1980.

[Fra86] Nissim Francez.Fairness. Texts and Monographs in Computer Science. Springer-
Verlag, 1986.

[HdBR94] E. Horita, J. W. de Bakker, and J. J. M. M. Rutten. Fully abstract models for
nonuniform concurrent languages.Information and Computation, 115(1):125–178,
November 15, 1994.

[Hen85] M. Hennessy. Acceptance trees.JACM, 32(4):896–928, 1985.

[Hen87] Matthew Hennessy. An algebraic theory of fair asynchronous communicating pro-
cesses.Theoretical Computer Science, 49:121–143, 1987.

[Hoa78] C. A. R. Hoare. Communicating Sequential Processes.CACM, 21(8):666–677,
August 1978.

[Hoa81] C. A. R. Hoare. A model for communicating sequential processes. Technical Report
PRG-22, Oxford University Programming Research Group, Oxford, England, 1981.

[Hoa85] C. A. R. Hoare.Communicating Sequential Processes. Series in Computer Science.
Prentice Hall, 1985.

[INM84] INMOS Limited. The Occam Programming Manual. Prentice-Hall International,
1984.

[JJH90] He Jifeng, M. B. Josephs, and C. A. R. Hoare. A theory of synchrony and asyn-
chrony. InProceedings of the IFIP Working Conference on Programming Concepts
and Methods, pages 459–78. North-Holland, 1990.

Bibliography 153

[Jon87] Bengt Jonsson.Compositional Verification of Distributed Systems. PhD thesis, Up-
psala University, 1987.

[Jon94] Bengt Jonsson. A fully abstract model for dataflow and asynchronous networks.
Distributed Computing, 7(4):197–212, 1994.

[Jos92] Mark B. Josephs. Receptive process theory.Acta Informatica, 29(1):17–31, 1992.

[KdR83] R. Kuiper and W. P. de Roever. Fairness assumptions for CSP in a temporal logic
framework. In D. Bjørner, editor,Proceedings of the IFIP Working Conference on
Formal Description of Programming Concepts - II, pages 159–167. North-Holland,
1983.

[Kwi89] M. Z. Kwiatkowska. Survey of fairness notions.Information and Software Technol-
ogy, 31(7):371–386, September 1989.

[Lam83] Leslie Lamport. What good is temporal logic? In R. E. A. Mason, editor,Information
Processing 83: Proceedings of the IFIP 9th World Congress, pages 657–668. IFIP,
North Holland, September 1983.

[LPS81] D. Lehmann, A. Pnueli, and J. Stavi. Impartiality, justice and fairness: The ethics of
concurrent termination. In O. Kariv and S. Even, editors,Proceedings 8th ICALP,
number 115 in LNCS, pages 264–277. Springer-Verlag, 1981.

[Mes94] Message Passing Interface Forum. MPI: a message-passing interface standard.Inter-
national Journal of Supercomputer Applications and High Performance Computing,
8(3/4):169–416, 1994.

[Mil75] Robin Milner. Processes: A mathematical model of computing agents. In H. E. Rose
and J. C. Shepherdson, editors,Logic Colloquium ’73, volume 80, pages 157–173.
North-Holland/American Elsevier, 1975.

[Mil77] Robin Milner. Fully abstract models of typed lambda-calculi.Theoretical Computer
Science, 4:1–22, 1977.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92. Springer-Verlag,
1980.

[Mor68] James H. Morris.Lambda-Calculus Models of Programming Languages. PhD thesis,
Massachusetts Institute of Technology, 1968.

[MP83] Zohar Manna and Amir Pnueli. How to cook a temporal proof system for your pet
language. InProceedings of Tenth ACM Symposium on Principles of Programming
Languages, pages 141–154, 1983.

154 Bibliography

[MPS88] David McAllester, Prakash Panangaden, and Vasant Shanbhogue. Nonexpressibility
of fairness and signaling. In 29th Annual Symposium on Foundations of Computer
Science, pages 377–86, 1988.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
I. Information and Computation, 100(1):1–40, September 1992.

[OL82] Susan Owicki and Leslie Lamport. Proving liveness properties of concurrent pro-
grams.ACM Transactions on Programming Languages and Systems, 4(3):455–495,
July 1982.

[Par79] D. Park. On the semantics of fair parallelism. In D. Bjørner, editor,Abstract Software
Specifications, volume 86 ofLecture Notes in Computer Science, pages 504–526.
Springer-Verlag, 1979.

[Plo83] G. D. Plotkin. An operational semantics for CSP. In D. Bjørner, editor,Proceedings
of the IFIP Working Conference on Formal Description of Programming Concepts -
II , pages 199–225. North-Holland, 1983.

[PS88a] Prakash Panangaden and Vasant Shanbhogue. Mccarthy’s amb cannot implement
fair merge. InProceedings of the8th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, pages 348–63. Springer-Verlag, 1988.

[PS88b] Prakash Panangaden and Eugene W. Stark. Computations, residuals, and the power
of indeterminacy. pages 439–54, 1988.

[Rus90] James R. Russell.Full Abstraction and Fixed-Point Principles for Indeterminate
Computation. PhD thesis, Cornell University, April 1990. Available as TR 90-1120.

[Sto88] Allen Stoughton. Fully Abstract Models of Programming Languages. Research
Notes in Theoretical Computer Science. Pitman Publishing, London, 1988.

[Tho89] Bent Thomsen. A calculus of higher order communicating systems. InProceedings
of Sixteenth ACM Symposium on Principles of Programming Languages, pages 143–
54, 1989.

[Uni80] United States Department of Defense.Reference Manual for the Ada Programming
Language, 1980.

