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Abstract

Existing cluster schedulers face many limitations in scheduling adaptive deep learning
training jobs on large heterogeneous GPU clusters – many are not heterogeneity-aware,
few are adaptivity-aware, and none scale to large clusters without sacrificing allocation
fidelity or cluster efficiency. Emerging clusters further complicate this problem — they
will be larger, more heterogeneous, run more increasingly diverse jobs, and require
optimizing more dimensions of adaptivity. It is very desirable to have a cluster scheduler
that quickly and efficiently co-optimizes job allocations and execution parameters during
runtime to maximize efficient use of expensive GPU resources. This dissertation develops
new scheduling approaches and algorithms that can (1) scale to emerging clusters with
hundreds of thousands of GPUs and many GPU types, (2) quickly optimize high-fidelity
allocations for adaptive DL training jobs with low scheduler overhead, and (3) efficiently
adapt to changing cluster conditions to improve goodput on the limited GPU resources.

We first introduce Sia—a round-based scheduler that efficiently optimizes adaptive
jobs in a heterogeneous cluster with many GPU types. Sia uses GPU resources
judiciously to gather information on job-GPU fit-levels using a mix of online and offline
profiling, and continuously co-optimizes the GPU resources allocated to jobs and their
execution parameters at runtime to maximize cluster-wide training progress. Using job
traces derived from real-world datacenters, we find that Sia’s allocations are fair and
efficient, and are quickly computed using an efficient formulation, even for 1000-GPU
clusters.

Second, we observe that schedulers whose policies are formulated as constrained
optimization problems must sacrifice cluster efficiency for responsive scheduling at
larger scales. This arises due to a disconnect between the per-round modeling of
scheduling problems as independent optimization problems and the slow evolution
of these problems at large-scale as a result of job and resource changes, leading to
solvers bottlenecking schedulers at scale. We introduce continual optimization — a
new paradigm that explicitly models the slow evolution of resource-allocation problems
at scale to reduce solver runtime for quick responses to changes in jobs or resources.
We then introduce COpter, our approach to continual optimization that (a) efficiently
updates the optimization problems for job and resource changes using a differential
interface, (b) implements a factorization-free warm-started LP solver to benefit from
the slowly-evolving nature of the allocations, and (c) implements lightweight heuristics
to recover feasible integral solutions with negligible quality loss. In our evaluations,
COpter speeds up Sia scheduler policy by a few orders of magnitude on clusters with
tens of thousands of GPUs without sacrificing job completion times and makespan.

Third, COpter is easily applied to resource-allocation problems in other domains
(e.g. shard load-balancing, WAN traffic engineering) and we see 57− 83× reductions
in solver runtimes. Compared to problem partitioning approaches (POP), COpter
simultaneously improves allocation quality and reduces end-to-end allocator runtimes
by 1.5− 30×.
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Chapter 1

Introduction

Deep Learning (DL) training has grown to become a staple datacenter workload in recent
years. Deep learning models are trained on sizeable clusters with powerful accelerators
(GPUs, TPUs, etc) that are often shared among multiple users for cost-efficiency reasons,
thus necessitating the use of a cluster scheduler to allocate resources to training jobs. In
recent years, DL clusters have grown to contain tens of thousands of accelerators[35], each
with unique trade-offs that affect completion time of DL training jobs in distinct ways[79].
The problem of assigning the right resources to DL training jobs is further complicated by
an increasing state-space of adaptivity choices — the number, type and arrangement of GPU
resources and training parameters for a DL training job (e.g., training batch size, learning
rate, etc.). We categorize these adaptivity choices into two classes — resource-adaptivity
where the count and type of GPU resources allocated to jobs are adapted in response to
cluster conditions (i.e., job arrivals, completions, and phase changes), and job-adaptivity
where the execution parameters for a training job are adapted at runtime to maximize
training progress on allocated resources (i.e., choosing best batch-size and learning rate for
the allocated GPUs).

A DL cluster scheduler must choose the right adaptivity choices for each DL training job
to minimize the average job completion time for a given job mix. However, the choice of
adaptivity for any given job is also influenced by the amount of training progress already
made[79] by the training job and the adaptivity choices made for all other jobs in the cluster.
As a result, the cluster scheduler must optimize adaptivity for all jobs together in the cluster
to use limited expensive GPU resources efficiently.

The optimal choice of adaptivity for each job is also affected by changes to the cluster
composition (i.e., the set of jobs and resources). Job arrivals and resource failures increase
competition for the limited GPU resources, and similarly, job completions and new resource
deployments reduce contention. Since training progress also affects the choice of adaptivity [79],
the optimal choice of adaptivity for each job also changes over time. As a result, the cluster
scheduler must frequently re-optimize each job’s adaptivity to maintain high cluster efficiency
and reduce job runtimes.

An efficient and responsive cluster scheduler for modern DL cluster schedulers must
address the following challenges:

• Heterogeneity-awareness: New GPU resources are deployed incrementally into
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existing GPU clusters, often resulting in newer GPU types being added over time. A
GPU cluster scheduler must be heterogeneity-aware and take into account the various
trade-offs that result from differing capabilities across GPU types when deciding job
allocations.

• Adaptivity-awareness: Users may request the scheduler to optimize one or more
adaptivity choices during job submission (i.e., some may want job but not resource
adaptivity), and the GPU cluster scheduler must support such requests.

• Low scheduler overhead: Scheduler overheads arise from multiple sources — (a)
setup and teardown costs from preemption, migration and/or adaptation actions, and
(b) profiling overheads incurred in learning performance characteristics of each job on all
possible allocation choices. An efficient GPU cluster scheduler must minimize scheduler
overheads so it can use as many GPU resources as possible towards completing jobs.

• Quick response to changes in cluster: As discussed before, clusters undergo changes
frequently from job arrivals/ departures, resource failures/deployments and job phase
changes. The GPU cluster scheduler must respond to these change events quickly by (a)
re-optimizing job allocations in response to job arrivals/departures, and (b) recovering
from software and hardware failures without losing training progress. Round-based
schedulers can achieve quick response times by invoking the scheduler once every few
minutes.

• Scalable scheduling: DL clusters now span over 100,000 GPUs (up from a few
thousand in 2019 [43]) with a corresponding increase in users and jobs requesting
these resources. Cluster schedulers must operate efficiently at these scales without any
tradeoffs in resource utilization or job completion times.

Existing state-of-the-art GPU cluster schedulers for DL training workloads fall short of
addressing some or all of the above challenges: for example, adaptivity-aware schedulers are
not heterogeneity-aware [79] and heterogeneity-aware schedulers are not adaptivity-aware [68].
Complex scheduler policies that address one or many adaptivity dimensions can be formulated
as optimization problems [111, 68, 79] solvable by off-the-shelf numerical solvers, but are
bottlenecked by the solver runtime for clusters with thousands of GPUs. This dissertation
identifies two crucial bottlenecks that preclude efficient solutions from addressing the above
challenges all at once:

• State space explosion: It is impractical to explore every possible choice of adaptivity for
each job: the number of possible allocations and their mappings to physical resources
is exponential in the number of GPUs, further compounded by the choice of GPU type
and job execution parameters for each job.

• Solver time explosion: Scheduler policies are formulated as optimization problems
using one variable for each allocation choice for each job. For responsive scheduling in
large clusters, this means solvers must find a feasible solution to problems with tens of
millions of variables within a few minutes.
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This dissertation introduces techniques to manage the state-space and solver time explo-
sions by discovering and exploiting structure and redundancy in (a) state-space of adaptivity
choices and (b) scheduling problems across time.
Thesis statement. It is possible to develop powerful cluster schedulers for DL training jobs
running on large heterogeneous GPU clusters that can run frequently and quickly, and adapt
training jobs and their resource allocations efficiently with low overheads.

This dissertation consists of three parts – first, we resolve the bottleneck of state-space
explosion by developing a scheduler (Sia) to efficiently adapt DL training jobs on heterogeneous
GPU clusters with low per-job overhead, and second, we resolve the bottleneck of solver-time
explosion by introducing continual optimization to exploit the slowly-evolving nature of the
scheduling problems (COpter) and their optimal allocations at scale, and third, we observe
that many other resource-allocation problems of interest and their optimal solutions are also
slowly-evolving and can be solved quicker using continual optimization as implemented in
COpter.

The first part of this dissertation proposes a design and implementation for a scheduler
capable of co-optimizing multiple dimensions of adaptivity for each training job to maximize
cluster-wide training progress in heterogeneous GPU clusters. We show that Sia— our
scheduler — can learn DL training jobs’ performance on many GPU types to quickly and
efficiently optimize job-resource co-adaptivity in heterogeneous GPU clusters with a few
thousand GPUs. Through extensive evaluations, in a physical cluster and in simulation,
we show that Sia significantly improves training performance (job runtime, GPU efficiency,
fairness) in heterogeneous GPU clusters with minimal scheduler overheads. Sia policy
formulated as an Integer Linear Program (ILP) scales to clusters with a few thousand GPUs
with a runtime of just a few seconds. However, since emerging GPU clusters for DL workloads
are expected to span hundreds of thousands of GPUs, Sia runs into the same bottlenecks
as existing optimization-based schedulers – the time taken to optimize the scheduler policy
bottlenecks the efficacy of the scheduler.

The solver runtime bottleneck affects many state-of-the-art round-based schedulers for-
mulated as Linear/Mixed-Integer Linear Programs (MILPs). We find that this is because
traditional approaches to round-based scheduling solve the scheduling problem in each round
independently from scratch, thereby discarding all computational effort spent in solving prior
scheduling problems to obtain optimal allocations.

The second part of this dissertation introduces continual optimization, a new paradigm
for round-based scheduling. Continual optimization exploits the observation that scheduling
problems at larger scales often evolve slowly between rounds — relative to the size of the
cluster and current set of jobs, few jobs enter and exit the system, and few resources fail or are
added back. Additionally, as a result of these changes, the scheduler changes allocations for a
few jobs and retains allocations for most jobs between rounds. Continual optimization aims
to exploit this slow evolution in the structure and solution present in scheduling problems
to resolve the solver-runtime explosion bottleneck that precludes efficient and responsive
scheduling in clusters with tens of thousands of GPUs.

This dissertation develops COpter— an approach to continual optimization of cluster
scheduling policies formulated as LP/MILPs. COpter addresses scalability challenges in
optimization of scheduling policies through three key innovations. First, it uses a differential
interface to efficiently update the mathematical representation of the scheduling problems as
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they slowly evolve over time from changes in the set of GPU resources and jobs requesting
them. Second, it uses a factorization-free, warm-started LP solver that provably benefits
from solution proximity — by starting the solving process for the current round’s scheduling
problem from the previous round’s optimal allocations, it benefits from most jobs’ allocations
persisting across rounds. Third, it employs lightweight heuristics to quickly find high-quality
integer solutions for MILPs, completely bypassing the expensive combinatorial search phase
employed in state-of-the-art MILP solvers [29, 60]. COpter finds high-quality allocations
within a minute for the Sia scheduler policy in clusters with tens of thousands of GPUs
and many GPU types, while commercial state-of-the-art MILP solvers fail to scale beyond
a few thousand GPUs. COpter improves over POP, a state-of-the-art problem partitioning
approach, on both solution quality (i.e., lower average job completion times and makespan)
and solver times.

The third part of this dissertation finds that many resource-allocation problems from other
domains, like shard-load-balancing in elastic database systems [85] and traffic engineering in
Wide-Area-Networks (WAN) [102, 2], are formulated as LP/MILPs, evolve slowly over time,
and finding the optimal solution to these problems faces solver bottlenecks for large numbers
of resources and requests. Similar to Sia, scaling up these problems sacrifices allocation
quality for manageable solver runtime. We find that applying continual optimization to these
problems using COpter provides us similar quality solutions as those found by state-of-the-art
numerical solvers, but with 57− 83× faster runtimes.
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Chapter 2

Background

In this chapter, we will go over some necessary background required to understand our work
in scheduling and optimization of scheduling policies.

2.1 Deep Learning training

Deep learning. Deep learning is a class of machine learning methods that learn a function
f(x; θ), where f(x; θ) is a deep neural network (DNN) comprising of many layers, and where
θ is the set of parameters for each layer. Each layer is a function that operates on the output
of a previous layer, to produce the input for the next layer. The function for the ith layer can
be written as fi(x;Ai, bi, σi) = σi(Aix+ bi) where (Ai, bi) are the parameters and σi is the
activation function for the ith layer. Then, the output of the DNN can be computed as a
composition of the layer-wise functions: f = f1 ◦ f2 . . . ◦ fn. The parameters of f is defined
as the list of parameters for each layer: θ = [(A1, b1), (A2, b2), . . . (An, bn)]. For example, in
image classification, x can be an input image, and ŷ could be the probability that the image
contains an object belonging to some class (e.g. a bird, or an animal).
Deep learning training. Deep learning training is the process of learning the parameters of
the function f(x; θ), using a dataset – examples of the form (x, y) where x is the input to the
model and y is the expected output. ML practitioners specify a loss function – a measure of
error between the expected output y and the output of the model for the input x, ŷ = f(x; θ),
denoted by L(x, y, θ) for an example (x, y) in the training dataset. Gradient-descent is then
used to obtain the parameters θ that minimize the average loss on the training dataset using
the gradient of the loss function w.r.t. the model parameters ∇θL(x, y, θ). Gradient-descent
uses the following simple update rule:

θk+1 = θk − α ∗
i=N∑
i=1

∇θL(xi, yi, θi) (2.1)

where α is the learning rate, θk, θk+1 are the model parameters after k and k+ 1 iterations of
gradient-descent, respectively, (xi, yi) is the i

th example, and N is the number of examples in
the training dataset.
Stochastic gradient descent (SGD). Deep learning models are typically trained using
datasets with millions to billions of examples, and using all examples to compute the gradient
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in Equation (2.1) is inefficient for a single update to θ. Stochastic gradient descent (SGD)
uses a random subset of the training dataset to approximate the gradient. The size of this
subset is termed the minibatch size (represented by B), and the update rule is accordingly
modified as follows:

θk+1 = θk − α

i=B∑
i=1

∇θL(xi, yi, θi) (2.2)

Parallelism in DL training. DL training can be parallelized across multiple GPUs in
many ways. Data-parallelism replicates the model parameters on each GPU and splits the
gradient-computation work on the mini-batch (i.e. data) axis. Data-parallelism (DP) consists
of two distinct phases:

• Compute – Each GPU computes gradients for the model on the subset of the minibatch
assigned to it

• Communication – All GPUs synchronously exchange their computed gradients using
all-reduce to realize the average minibatch gradient on each GPU

After the communication phase, every GPU has a local copy of the average gradient on the
minibatch and a local copy of the model parameters. Equation (2.2) is then used to update
the local model parameters and this completes one iteration of SGD.

Another form of parallelism partitions the model parameters and gradient computation
along the parameter axis. This style of parallelism is more attractive when a model is too
large to fit into the limited memory of a single GPU, and as a result, data-parallelism (which
requires a copy of the model on each GPU) cannot be used to scale-out training. Pipeline
model parallelism partitions the layers and their associated parameters, with each GPU
performing gradient computation only on the subset of the layers assigned to it. Yet another
form of parallelism (tensor-parallelism) partitions the individual layer computations across
multiple GPUs by exploiting the massive parallelism available in the matrix-multiplications
for each layer. Large-scale training often requires using more than one style of parallelism
(hybrid-parallel) to scale training to thousands of GPUs. The optimal combination of
parallelism techniques depends on the model size (number of parameters × the byte-size of a
parameter), GPU memory capacity, inter-GPU communication bandwidth and topology, and
inter-node communication bandwidth and topology. In this document, we will focus primarily
on data-parallelism for models that fit into the memory of a single GPU, and hybrid data +
pipeline model parallelism for models that do not.
Performance metrics. Performance of a DL training job is typically measured using
throughput – number of examples processed per second. For a fixed number of GPUs,
increasing the minibatch-size B (up-to GPU memory limits) also increases the training
throughput as parallelism within and across GPUs is exploited more efficiently, resulting in
higher GPU utilization (i.e. the fraction of time the GPU is active and performing compute).
For a fixed minibatch size B, increasing the number of GPUs (strong-scaling) gives us
diminishing returns: while the added GPUs parallelize the compute phase better, they also
increase the communication time. Instead, if we increase the minibatch-size proportionally
with the number of GPUs (weak-scaling), throughput increases without sacrificing GPU
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utilization. However, increasing the minibatch size also reduces the statistical efficiency [79] –
the amount of training progress made per sample processed (i.e. minibatch training progress
/ minibatch-size). Say we scale out training to 8x GPUs and also scale the minibatch size
by 8x. Then, the training throughput goes up ≈8x, but the model does not converge to the
same quality in 8x fewer SGD iterations, resulting in a sub-linear scaling of training-time
w.r.t. number of GPUs used. We adopt the definition of statistical efficiency as defined by
Pollux[79] (based on simple noise-scale[61]). Statistical efficiency at a batch-size B relative
to a baseline batch-size B0 is defined as follows:

statistical-efficiency(B,B0) =
ϕ+B0

ϕ+B
(2.3)

where ϕ is the preconditioned gradient noise scale (PGNS) as defined in Pollux [79].Equa-
tion (2.3) implies that using a batch-size of B makes about statistical-efficiency(B,B0)
fraction of the progress made with a single batch of size B0. For a fixed batch-size B,
statistical efficiency is also a function of time t [79].
Goodput. Pollux [79] introduces the notion of goodput to capture the trade-off between
batch-size B and training throughput. Goodput is defined as the rate of progress per example
processed, and is computed using the following expression:

GOODPUT(B,N) = statistical-efficiency(B)× throughput(B,N) (2.4)

where B is the batch-size and N is the number of GPUs. For a fixed set of resources,
the batch-size B that maximizes Equation (2.4) makes the most training progress per unit
time. This optimal batch-size, however, is not constant throughout the lifetime of a training
job because the statistical efficiency for a given batch-size changes as the model training
progresses. As a result, the batch-size that produces the highest goodput for a fixed set of
resources also changes over time.
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2.2 Cluster scheduling for deep learning training jobs

Large clusters for DL training are typically shared between many users and/or organizations
for cost-efficiency and utilization reasons, and a cluster scheduler allocates GPU resources to
the DL training jobs in the cluster. Cluster schedulers typically aim to reduce the average job
completion time (JCT) – the delay between submitting a training job to the scheduler and
completion of the model training. The cluster scheduler runs at discrete time intervals – called
scheduling rounds – and in each scheduling round, it uses a scheduler policy to determine the
allocations for each job in the scheduler queue.
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Figure 2.1: Scaling of goodput with number of GPUs for different GPU type and training job
combinations. For each job type, goodput is shown relative to goodput obtained on one NVIDIA

T4 GPU. See [42] for more details.

Characteristics of DL training jobs. DL training jobs have the following unique
characteristics that combine with DL cluster expense to necessitate the use of custom
schedulers:

• Predictable performance: SGD iterations using a fixed batch-size complete in
approximately the same time without any dependency on the content of the batches for
the iterations. So, the runtime of a single iteration with a batch-size B is predictable
at any point in the job’s lifetime if it has been measured at least once.

• Preemptible computation: DL training jobs are preemptible – they can be inter-
rupted once they start running and can be resumed at a later point on (potentially)
different resources. Preemption is often performed at SGD iteration boundaries, and
a checkpoint consisting of the model parameters, and optimizer and dataset states is
sufficient to resume training without any loss in progress[79].

• Elastic computation: DL training jobs are also elastic – they can be scaled up/down
using many forms of parallelism (e.g. data and pipeline model parallelism as discussed
in the previous section).

• Fungible resources: DL training requires accelerating tensor, matrix and vector
operations and are easily executed on many GPU types with minimal code changes.
As a result, a job that runs on one GPU type (e.g. NVIDIA A100) can also (typically)
run on another GPU type (e.g. NVIDIA H100).

• Heterogeneity in training performance: Performance of a DL training does not
scale in a linear fashion with added GPUs, and the scaling behaviour depends on many
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factors – GPU type, model type, networking bandwidth and topology. Figure 2.1 shows
the scaling of goodput (i.e. rate of training progress) for different GPU types and jobs.
Jobs like BERT training ([Left] in Figure 2.1) scale better on one GPU type whereas
jobs like DeepSpeech2 training ([Right] in Figure 2.1) scale similarly on different GPU
types.

Heterogeneity in GPU clusters. Large GPU clusters are typically composed of GPUs
from many generations as newer GPUs are deployed incrementally into existing clusters for
improved capacity, performance and/or efficiency. GPUs exhibit heterogeneity along many
dimensions:

• Compute – hardened accelerator blocks (e.g. transformer units, tensor cores, etc),
support for specific data-types (e.g. FP16, FP8, INT8, FP4, etc) and core clock
frequencies (NVIDIA’s SXM GPUs clock higher than their PCIe variants)

• Memory – memory type, capacity (e.g. NVIDIA A100 has 40GB whereas a NVIDIA
H100 has 80GB of GPU memory), and bandwidth (A100 has 2TB/s and H100 has
3.4TB/s of memory bandwidth)

• Network – intra-node GPU P2P interconnect bandwidth and topology(NVIDIA
NVLink is 10 times faster than PCIe), inter-node bandwidth and topology (Infiniband
vs Ethernet)

Considerations in DL cluster scheduling. A DL cluster scheduler must consider all
dimensions to GPU heterogeneity when deciding allocation of heterogeneous GPU resources
to DL training jobs. Additionally, the placement for a job also impacts its performance
since data-parallel training is sensitive to the problem of straggler GPUs – where a single
slow GPU can stall all GPUs waiting on a distributed synchronization barrier. Thus, it is
important to choose the best placement for distributed training jobs to maintain high average
GPU utilization and low job runtimes in the cluster.

It is also important to frequently re-optimize allocations in a cluster as the optimal
allocation for each job depends on the cluster state that is in a constant flux due to (a)
changes in statistical efficiencies for running jobs, (b) new jobs arriving into the cluster
(necessitating scale-in decisions), and (c) running jobs completing and freeing up their
allocated GPUs (necessitating scale-out decisions). We use the term resource-adaptivity to
describe adaptation of the GPU resources allocated to a job, and job-adaptivity to describe
the adaptation of the job training parameters (for example, its training batch-size). So, an
ideal scheduler should continuously optimize both resource and job adaptivity to maintain
high efficiency in the cluster.

2.3 Constrained optimization

Many scheduling policies can be formulated as constrained optimization problems and can
be solved using off-the-shelf numerical solvers like GLPK [60], Gurobi [29], and CPLEX [39].
Constrained optimization is fundamental to optimizing scheduling policies that are formulated
as optimization problems. A constrained optimization problem finds an assignment of values
to variables x that minimizes an objective function f(x) (or maximizes −f(x)) subject to
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some constraints on the variables C. For the rest of this document, we restrict ourselves to
constrained optimization problems where both f and C are linear in the variables x (i.e.linear
programs). We are interested in solving problems with the following formulations:

min
x

f(x) = cTx subject to Ax ≤ b (2.5)

where x ∈ Rn is a vector of variables being optimized, c ∈ Rn is a vector of costs, A ∈ Rm×n

is the constraint matrix, and b ∈ Rm is the constraint vector. Additionally, for problems
called Integer Linear Programs, x could be constrained to take on only integral values (i.e.
x ∈ {{0} ∪ N}n), or just binary values (i.e. x ∈ {0, 1}n).

Equation (2.5) is often reformulated to express the inequality-constraint as an equality-
constraint using slack variables s ∈ Rm. This leads to the following equality-constrained
formulation:

min
x

f(x) = cTx subject to Ax+ s = b (2.6)

We can redefine Equation (2.6) to contain only one set of variables z = [x s] in the following
manner:

min
z

f̂(z) = ĉT z subject to Âz = b (2.7)

where ĉ = [c 0], Â = [A Im] and Im is the square identity-matrix with m rows.

2.3.1 Optimizing linear programs

There exist many methods to optimize linear programs formulated in Equation (2.7). We
briefly summarize a few methods below:

• Simplex methods. Simplex methods solve Equation (2.7) in an iterative manner.
They operate on the feasible region defined by the constraints, moving along the edges
of the polytope (defined by the constraints) to find the optimal solution. The method
starts from an initial feasible solution and iteratively improves the objective value
by transitioning to adjacent polytope vertices with higher objective values until the
optimum is reached. Simplex methods are efficient in practice and widely used in
commercial solvers like CPLEX[15] and GUROBI[29].

• Penalty Methods. Penalty methods convert Equation (2.7) into a sequence of
unconstrained optimization problems with the following objective:

min
x

f(x) + γ · g(Ax− b) (2.8)

where g is a penalty function and γ is the strength of the applied penalty. The solutions
to these problems eventually converge to the optimal solution of the original constrained
problem. They are, however, not commonly used in large-scale optimization.

• Interior-Point (barrier) methods (IPM). Similar to penalty methods, IPM algo-
rithms solve a series of unconstrained optimization problems, each of which produce a
feasible solution that is strictly in the interior of the constraint set. IPM algorithms are
widely implemented in common optimization packages like GUROBI[29] and MOSEK[5].
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• Augmented Lagrangian methods (ALM) Like Penalty methods and IPM algo-
rithms, ALM algorithms[78] also solve a sequence of unconstrained problems whose
solutions eventually converge to the optimal solution for the original problem. ALM
algorithms augment the Langrangian function for Equation (2.7) using a squared L2
norm penalty, resulting in the following unconstrained objective:

min
x

f(x) + λT (Ax− b) +
1

2µ
∥Ax− b∥22 (2.9)

where λ ∈ Rm is dual variable associated with the constraint Ax = b, µ controls the
penalty for constraint violation, and ∥·∥22 is the squared L2 norm operator. Practical
large-scale ALM solvers include LANCELOT[14] and QPALM[32].

• Alternating Direction Method of Multipliers (ADMM). ADMM[9] is a recent
class of algorithms that follows the ALM framework with a lower per-iteration cost.
ADMM algorithms are well suited for distributed optimization[103], but are typically
slower to converge to a high-quality quality solutions quickly[91, 84].
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Chapter 3

Sia: Heterogeneity-aware
goodput-optimized ML cluster
scheduling

In this chapter, we describe Sia– a powerful cluster scheduler for DL training jobs – capable
of co-adapting a training job’s hyper-parameters with the resources allocated to maximize
concurrent job progress in a shared heterogeneous GPU cluster. Sia efficiently explores the
large state-space of heterogeneous allocations and matches jobs to GPU counts and types
using minimal profiling. Our results indicate Sia’s decision making scales to thousands of
GPUs and many GPU types, and its scheduling policy improves job runtimes through fair
and efficient allocations in a heterogeneous cluster. Sia was published in 2023 at the ACM
Symposium on Operating Systems Principles (SOSP)[42]. In the following sections, we will
briefly go over the motivation for a scheduler (and the accompanying runtime) like Sia, its
design and scheduler policy, and finally, conclude with a summary of evaluation of Sia in
various settings.

3.1 Introduction

Sizable deep learning (DL) clusters, often shared by multiple users training deep learning
models for different problems, have become data center staples. A scheduler is used to assign
cluster resources to submitted jobs. Increasingly, DL clusters consist of a mix of GPU types1,
due to incremental deployment over time and advances in GPU design.

Recent work provides powerful schedulers for DL clusters, but none utilize heterogeneous
DL clusters well. To help explain why, we partition existing schedulers into two categories.
Heterogeneity-aware schedulers [68, 100, 56] explicitly consider differences among GPU
types in the cluster, with Gavel [68] as a state-of-the-art example, but existing options
only accommodate what we term rigid jobs. (“Rigid” jobs must run with a user-specified
number of GPUs, do not allow elastic scaling, and do not adapt to resource assignments.)

1For conciseness, we will use ”GPU” to refer to any accelerators used for DL model processing generally,
including both traditional GPUs and various others like TPUs [48], FPGAs, and other ML accelerators [55,
44, 7].
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Figure 3.1: Scheduler comparison for three scenarios. [Left] For resource-adaptive (non-rigid)
jobs on a homogeneous cluster, the left-most bars show that Pollux and Sia yield lower average job
completion times (JCTs) than Gavel. [Right] For rigid jobs on a 3-GPU-type heterogeneous cluster,
on the right, Gavel and Sia outperform Pollux. [Center] For non-rigid jobs and heterogeneous
resources, in the middle, Sia outperforms both state-of-the-art schedulers built for only one of the
two complexities. (The trace and cluster configurations are detailed in Section 3.4; the heterogeneous
cluster includes some faster GPUs, causing JCTs to decrease for all schedulers.)

Adaptivity-aware schedulers [75, 79, 88] explicitly consider how non-rigid jobs would adapt to
(e.g., batchsize adjustments) and perform with different numbers of GPUs, with Pollux [79]
being a state-of-the-art example, but existing options assume that the cluster’s GPUs are all
the same type.

Figure 3.1 illustrates the resulting problem. When only one degree of freedom (hetero-
geneous GPUs or adaptive jobs) is present, a state-of-the-art scheduler for addressing it
provides good performance. But when both are present, much opportunity is lost (see 40–70%
lower average JCTs in the middle trio of bars) because existing schedulers do not consider
both. Worse, for more intense workloads the gaps grow larger (e.g., see Figures 3.6 and 3.10),
because these schedulers scale poorly with contention (Gavel) and cluster size (Pollux).

Sia is a new scheduler designed for resource-adaptive DL training jobs and heterogeneous
resources, matching each state-of-the-art for their category but outperforming them when
both degrees of freedom are present. Conceptually, in each scheduling round, Sia considers
every possible assignment of GPUs (number and type) to current jobs, estimates their
aggregate “goodput”2 (including any job resizing costs), and selects the best cluster resource
assignment for the next period of time. This is challenging for two fundamental reasons: (1)
the search space is huge, for a sizable cluster, and much worse when there are multiple GPU
types and each job can use and adapt to any number of GPUs of any type; (2) different DL
jobs experience different performance changes when comparing one GPU type to another,
when increasing the number of GPUs (i.e., one may scale better than another), and when
comparing scaling with one GPU type to scaling with another (e.g., different GPU types can
have distinct compute-to-network-bandwidth ratios), and yet profiling each DL job for all
possible resource allocations is prohibitively expensive.

Sia addresses these challenges with a new solver formulation to deal with scale and a
new approach to online learning of per-job per-GPU-type throughput models. Sia’s new ILP
formulation, together with pragmatic search space reductions, allows it to efficiently find
assignments of GPU types, GPU counts, and batchsizes for all pending jobs even as load and
cluster size grow. Sia’s new approach to throughput modeling (as a function of GPU type,

2“Goodput” [79] is a DL efficiency metric that combines sample-processing throughput and statistical
efficiency to reflect rate of training progress.
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GPU count and batchsize) avoids extensive profiling, which could override scheduling benefits.
Instead, Sia bootstraps each new job’s throughput model with profiles of just one minimum-
sized3 configuration per GPU type, initially assumes simple scaling/projection across as-yet-
unknown configurations, and dynamically refines the model as different configurations are
used for the job. Experiments confirm that Sia’s approach yields good decisions with low
profiling overhead.

Extensive evaluations with workloads derived from three real cluster environments show
Sia’s effectiveness, scalability, and superiority to three state-of-the-art schedulers (Pollux,
Gavel, and Shockwave [111]), as well as others. Sia is implemented as a plugin-compatible
scheduler replacement in the open-source AdaptDL framework [40], allowing us to perform
head-to-head comparisons with the public Pollux implementation. Experiments with Sia,
Pollux, and Gavel on a 44-GPU 3-GPU-type cluster show that Sia provides 35% and 50%
lower average JCTs (avgJCT) than Pollux and Gavel, respectively. Importantly, these
experiments also re-validate the simulator from [79], which we use for broader explorations,
including larger clusters than we can obtain and more intense workloads. Indeed, we find
that Sia’s advantages grow with cluster load/contention, especially compared to Gavel (up to
95% lower avgJCT) and Shockwave (up to 47% lower avgJCT), which treat all jobs as rigid.

Overall, the results show that, for adaptive jobs on a heterogenenous cluster, dynamically
adapting job resource assignments (GPU type and count) is crucial and results in Sia
outperforming all three state-of-the-art schedulers on all performance metrics considered:
30–93% lower average JCT, 28–95% lower p99 JCT, 38-65% lower makespan, 12–60% lower
GPU hours used. Sia also outdoes the other schedulers on fairness metrics [59, 111], including
64% lower worst-case finish-time fairness and 99% lower unfair job fraction, even though
Shockwave was designed to provide fairness. Additional results confirm Sia’s (1) ability to
improve cluster efficiency even when many jobs disallow changing of batchsize or GPU count,
(2) ability to schedule and elastically scale Megatron[69]-style pipeline-model-parallel [66, 36]
jobs (scale-out using data-parallelism), (3) scheduler-runtime scalability to sizable clusters
(up to 2000 GPUs), (4) robustness to scheduler-parameter defaults, and (5) minor penalty
for initially-crude bootstrapped throughput-models.

3.2 DL cluster scheduling and related work

A deep learning (DL) training job trains a deep neural network (DNN) model on a dataset in
an iterative manner over multiple epochs. In each epoch, and for each minibatch in an epoch,
an optimizer updates model parameters by minimizing a loss function over the minibatch of
samples. Since the minibatch size is usually fixed for extended periods of training (if not the
entirety of training), most DL jobs take a consistent and predictable [90] amount of time to
complete a minibatch. These jobs are also generally pre-emptible, as one can checkpoint the
state of the job (including the model and optimizer states) after any minibatch and resume
the job from a checkpoint without losing much job progress. They are also amenable to

3For traditional data-parallel jobs, the minimum size is 1 GPU. For forms of model-parallel (e.g., pipeline
parallel [66, 36]), which we term “hybrid parallel”, the submitter-specified number of GPUs will be the
minimum.
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scaling as gradient computation can be parallelized across multiple GPUs on a single node
and across multiple nodes[86, 16, 1, 12, 74, 45].

Although various parallelization strategies exist [66, 36, 45, 87, 69], most training jobs
use synchronous data parallelism (DP)—given a set of GPUs, each GPU receives a replica
of the model and computes gradients on a partition of the minibatch, whose size is termed
local batch size. After the gradients from all the GPUs are reduced to a minibatch gradient,
such as by a collective all-reduce [86, 74], an optimizer (e.g., SGD or Adam [50]) applies
the gradient to generate the updated model parameters on each GPU. How well a given
DL job scales depends on characteristics of the job (e.g., compute intensity and number of
model parameters), the GPUs, and the inter-GPU network: for each minibatch, the gradient
computation phase is divided among the GPUs, while the reduce phase synchronizes them.
Prior work has shown that job scalability can be modeled effectively with relatively few
measurements [79, 75].

Some DL jobs use forms of model parallelism, such as pipeline model parallelism (PMP[66,
36]) or Tensor Model Parallelism (TMP[69]), when the model being trained is too large to fit
in a single GPU’s memory. Powerful optimizers [93, 110, 66] exist for modeling performance
of different configurations and partitioning a model across GPUs to maximize performance.
Recently, some increase scale by mixing multiple parallelism types—e.g., Megatron-LM[69]
mixes PMP and TMP at moderate scales and then employs synchronous data-parallelism to
scale out to 100s of nodes.

Elastic and resource-adaptive DL jobs. Data-parallel DL jobs can be elastically
re-sized over time, by checkpointing and then restarting on a different number of GPUs
(with a different division of each minibatch’s samples). Moreover, aspects of how the job
does its work can be adapted to assigned resources, if the job is designed to do so [79, 107].
For example, the minibatch size can be adapted, such as by increasing its size when using
more GPUs in order to increase the per-GPU compute for each minibatch and thereby
increase scalability. Different minibatch sizes do have different statistical efficiency impacts,
and the differences depend on job characteristics, but this effect can also be measured and
modeled [61, 79].

Other DL jobs are usually submitted to a scheduler with a predetermined configuration,
and changing it usually requires re-running the hybrid parallel optimizer. As discussed
above, however, they can also be scaled using a data-parallel style by replicating the original
configuration: for example, a PMP job that requires 4 GPUs for model and selected minibatch-
size could use 8 GPUs and a doubled minibatch, one for each 4-GPU instance of the original
configuration [69].

Resource heterogeneity. There are many GPU types, representing different product
lines and generations produced by different vendors, and they naturally differ in GPU memory
size and in compute and communication performance. It is common for a DL cluster to
contain multiple GPU types. In part, this occurs because many clusters are deployed and
grown over time, and the most cost-effective option can be selected each time new hardware
is purchased and added. Looking ahead, the rapid development of new DL accelerators [7, 48,
55, 44], including some targeting specific DL models [106], will make having multiple “GPU
types” a design feature rather than a deployment consequence. Unsurprisingly, a DL job
may perform differently on different GPU types, and it can also scale differently for different
GPU types (e.g., because the compute-to-network ratio changes). In addition, as illustrated
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in Figure 2.1, different DL jobs can experience different speedups and different scalability.
DL Cluster Schedulers. In practice, DLT jobs are submitted as requests to a shared

cluster, and the scheduler assigns resources to achieve cluster-wide goals. Many schedulers
only accommodate requests that specify a fixed number of GPUs, ignoring opportunities
presented by elasticity, resource-adaptivity, and heterogeneity. Others do address some of
these opportunities. Sia seeks to address them all.

3.2.1 Related work in DL cluster scheduling

To our knowledge, no prior scheduler optimizes assignments for resource-adaptive jobs on a
heterogeneous DL cluster. This section groups prior schedulers by unaddressed aspects.

Scheduling for heterogenenous DL clusters (no
resource-adaptive jobs). Among DL schedulers that are designed to handle hetero-
geneity within a cluster [11, 56, 68], none adaptively tune the number of GPUs assigned
nor account for other potential adaptations made by DL jobs. Instead, the user specifies a
number of GPUs for each job submitted.

Gavel[68] is the best-performing state-of-the-art heterogeneous DL cluster scheduler, using
a fast linear-program formulation that scales to large cluster sizes. However, Gavel does not
support job adaptivity, and only optimizes the assigned GPU type given the minibatch size
and GPU count specified by job submitter. This approach may lead to under-utilization
of newer, more powerful GPUs because of too-small batch sizes. Also, when the cluster is
congested, Gavel time-shares resources between jobs, wasting GPU time on checkpoint-restore
operations.

Most importantly, extending Gavel to handle job adaptivity is non-trivial: Gavel expresses
scheduling options using a throughput matrix populated with (job id, GPU type) pairs. If
one simply expands the throughput matrix to contain entries for each adaptivity choice
(job id, GPU type, num GPUs, minibatch size), it leads to two problems – (1) populating a
non-trivial portion of this matrix will require extensive per-job profiling, and (2) the resulting
optimization program is too large to be solved quickly.

Scheduling for elastic and resource-adaptive jobs (no heterogeneity). Among
DL schedulers that are designed to tune for elastic and resource-adaptive jobs [75, 101, 88,
79, 38], none consider GPU heterogeneity—they assume that all GPUs in the cluster are
identical.

Pollux [79] is a state-of-the-art DL cluster scheduler for elastic resource-adaptive jobs for
homogeneous clusters. Pollux uses per-job goodput models to assign both a number of GPUs
and a batchsize setting to each current job, and it re-considers all assignments each scheduling
cycle based on updated job behavior and job queue information. By doing so, it exploits
elasticity to avoid unused or over-committed GPU resources. Each job’s goodput model
consists of two component models: one for statistical efficiency (a rate of training progress
per sample, based on Gradient Noise Scale [61]) as a function of batchsize, and one for
throughput (samples processed per second) as a function of both GPU count and batch-size.
How each job scales with GPU count is learned by scaling it up, measuring each count tried,
and interpolating for others. Pollux uses the per-job models with a genetic algorithm to
search the space of resource allocations (and corresponding batchsizes) for all current jobs
to maximize aggregate cluster-wide goodput weighted by fairness. Unfortunately, Pollux’s
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no-pre-profiling throughput modeling approach blocks consideration of GPU heterogeneity.
Worse, Pollux’s formulation of the scheduling problem as a genetic optimization problem
results in very poor cluster-size scaling even for homogeneous clusters with 100s of GPUs,
which would only worsen with GPU heterogeneity.

This is because Pollux considers a very large number of adaptivity choices: for each (job,
GPU count) pair, it considers every possibly way to place this job across all nodes. As a
result, the number of possible solutions is exponential in the number of nodes and number
of GPUs per node. For clusters with 1000+ GPUs, it is too slow to respond to changes in
cluster as it takes tens of minutes for the genetic algorithm to terminate (see Figure 3.10).

Scheduling for rigid jobs on homogeneous DL clusters. Most existing DL schedulers
require the submitter to specify GPU count (and job configuration) for each job [27, 59,
111]. These schedulers do not adjust the number of GPUs assigned based on current load or
scalability/efficiency of current jobs. They also do not consider GPU type differences, instead
assuming that all GPUs in the cluster are identical. As such, these schedulers use DL cluster
resources less efficiently than schedulers from the two prior categories [79, 68]. As a recent
example, Shockwave [111] improves performance and fairness relative to prior schedulers in
this category, and we include it in our evaluations. Some batch-schedulers like Kubeflow and
Volcano can adjust GPU count to improve GPU utilization, but do not co-adapt batch-size,
GPU count and type simultaneously.

Parallelism optimizers that are not cluster schedulers. There are various op-
timizers [66, 93, 110, 6, 94, 45, 97] for selecting an individual job’s configuration before
acquiring cloud resources for it or submitting it to a cluster scheduler. Such optimizers are
especially important and popular for hybrid parallelism approaches. However, they cannot
be considered cluster schedulers as they consider an individual job in isolation, without
considering cluster load or trade-offs in assigning a particular resource to one job rather
than another. To our knowledge, no existing scheduler co-optimizes non-data-parallel job
configurations and cluster resource assignments, even for homogeneous clusters.

3.3 Sia Design and Implementation

Sia is a pre-emptive, round-based scheduler that optimizes allocations for a set of jobs to
maximize cluster-wide goodput. In each round, jobs receive bundles of resources (CPU, GPU
and network, like VMs in cloud) and Sia uses checkpoint-restore preemption to optimize job
adaptivity.

3.3.1 Sia components and job life cycle

Figure 3.2 illustrates the life-cycle for a job J under Sia. A user submits a job J to Sia
( 1○) and declares both the maximum batchsize (max bsz) and GPU count (max ngpus) for
execution. Sia then profiles throughput of J on a few batchsizes using one GPU of each
type( 2○). Goodput Estimator bootstraps a throughput model for J on each GPU type
using the profiles. Goodput estimates for J on various resource configurations are provided
to the policy optimizer( 8○) for informed scheduling. Job J stays in the queue ( 4○) until
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Figure 3.2: Lifecyle of a job under Sia. After a job is submitted, it is profiled once on each

GPU type for a few batchsizes. Upon receiving an allocation, the job begins a cycle of continuous

optimization (steps 5-8) for the remainder of its life in the cluster. Policy continuously optimizes

allocations for the job, while Goodput Estimator provides up-to-date performance and gradient

statistics to Policy to aid in decision making.

Sia allocates some GPUs to it and then enters a cycle where its adaptivity is continuously
optimized by Sia as follows.

Continuously optimized job adaptivity. Sia Policy uses goodput estimates from each
job’s Goodput Estimator and finds an optimal partitioning of cluster resources among the jobs
in the cluster, giving job J , say, 2 GPUs of type GREEN ( 5○ in Figure 3.2). (The Goodput
Estimator combines Sia’s throughput model with a statistical efficiency model borrowed from
Pollux [79].) Placer then determines the 2 GPUs to assign to job J ( 6○) given the current
assignment of GPUs to jobs and attempts to reduce unnecessary job migrations due to
resource de-fragmentation. Sia runs jobs on Adaptive Executors that support (1) transparent
checkpoint-restore for low-overhead job pre-emption and resource scaling, (2) batchsize
adaptivity to maximize statistical efficiency, and (3) frequent reporting of gradient and
throughput statistics for current allocation (default = 30 seconds). After J starts running on
Adaptive Executors, Goodput Estimator uses J ’s gradient and throughput statistics (reported
by Adaptive Executors) to update the goodput model for J on GPU type GREEN( 7○).
In the next scheduling round, Sia Policy queries the updated goodput estimates for J on
all GPU types ( 8○) and completes the loop in the Sia architecture ( 5○→ 6○→ 7○→ 8○. . .),
allowing us to continuously optimize J ’s goodput until its termination/completion.

Heterogeneous Execution. Sia transparently handles GPU heterogeneity in number
and capabilities – GPU memory capacity, interconnect speeds, throughput are modeled in
the goodput estimator, and Adaptive Executors optimize for goodput given a fixed set of
resources. Gradient accumulation is used if statistical efficiency dictates higher batchsize than
supported by GPU memory limits, with goodput optimized over a larger range of per-GPU
batchsizes for GPUs with larger memories, fully exploiting whichever GPU type for optimal
job progress.

Job Scaling policy. Sia uses a simple scale-up policy – start each job with exactly 1 GPU,
and scale the job up by a maximum of 2× in each scheduling round. If a job requires a
minimum of min ngpus to start execution, Sia will respect this minimum and ignores all
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allocations smaller than min ngpus for this job. Jobs may also be scaled down to a minimum
of min ngpus to accommodate more jobs in the cluster (determined by the scheduling
objective).
Decoupled allocation and placement. Given a set of heterogeneous resources to be
partitioned among a set of jobs, Sia decomposes the problem into two stages – (a) an
Allocation stage ( 5○) that determines the number and type of resources to assign to each job,
and (b) a Placement stage ( 6○) that determines the exact physical resources (and the network
topology) to satisfy allocations for all jobs. This decoupling allows us to restrict the space of
placements for an allocation (there exist many placements for a given allocation[89]). Sia uses
three rules to obtain placement in Placer: (a) partial node (fewer GPUs than max GPUs per
node requested) allocations must not be split across two nodes, (b) whole node allocations
must take whole nodes, and (c) if there exists no placement satisfying (a) and (b) (resource
fragmentation), evict some jobs and try again. Evictions resulting from fragmentation are
quite rare and often result in fewer than 3 evictions at once. As we will see in Section 3.3.3,
restricting allocations to a particular set allows us to guarantee a placement for all valid
allocations output by Sia.

3.3.2 Bootstrapping of throughput models

A naive approach to constructing each job’s throughput model (as a function of GPU count
and batchsize) for every GPU type would require profiling a variety of multi-GPU allocations
for each GPU type to collect compute and communication times. This profiling overhead
grows linearly in both the number of GPU types and the number of nodes of each GPU type.
Sia takes a different approach, starting with minimal profiling information and refining based
on observed allocations.

For each job, Sia learns one throughput model for each GPU type and one statistical
efficiency model for the job. Consider a job J submitted to Sia running on a cluster with two
GPU types A and B. Let’s assume that J needs min GPU count=> 1 GPUs per data-parallel
worker. Sia first profiles J on one GPU of each type (corresponding to 2○in Figure 3.2).
Starting from a minimum batchsize, Sia profiles increasingly larger batch sizes till it hits
GPU memory limits (typically 10 profiled batchsizes per GPU type); altogether, the average
per-job profiling cost is < 20 GPU seconds per GPU type. This gives us two crucial pieces of
information: (1) compute times for various combinations of GPU type and batchsizes, and (2)
comparison of compute times across GPU types. Importantly, compute time is independent
of GPU count increases (since we scale via data-parallelism with all-reduce), this leaves only
the communication time to be predicted.

Sia initializes J ’s throughput models for each GPU type using their 1-GPU profiles. These
throughput models are used by Sia to place J on 1-GPU of some type, say A. Once J starts
running on a single A GPU, online profiling is used to (a) learn a statistical efficiency model
for J as a function of batch size, and (b) refine throughput model for J on 1-GPU of A type.
These throughput models, however, cannot estimate communication time, so Sia makes a
one-time simplifying assumption to estimate J ’s throughput on 2-GPUs of A: throughput
of two data-parallel replicas is twice the throughput of a single replica (i.e. perfect scaling
with zero communication time). Say Sia then assigns 2-GPUs of type A to J . Using online
profiling, Sia refines J ’s throughput model for A GPUs using the measured communication
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times on a multi-GPU allocation. Sia can now use the refined throughput model to estimate
J ’s throughput on multi-GPU allocations on A GPUs as it accurately models both compute
and communication time. However, since J has not yet run on a multi-GPU allocation on B
GPUs, the throughput model for B GPUs does not model communication time on B GPUs
as it was learned from initial profiling and cannot be used to estimate J ’s throughput on, say,
4-GPUs of B type. To overcome this problem, Sia combines J ’s learned throughput model
for A GPUs with the initially profiled single-GPU throughputs for both A and B to obtain a
crude bootstrapped throughput model for B GPUs. In our example, J ’s throughput on N
GPUs of B type is estimated with a bootstrapped throughput model, est-xputB, given by:

est-xputB(N) =
xputB(1)

xputA(1)
∗ xputA(N) (3.1)

where xputB(1)

xputA(1)
is the ratio of 1-GPU throughputs and xputA(N) is the throughput for N

GPUs of A type. This simple estimator assumes that if we do not know the communication
time for B, the scaling of compute:communication ratio for B is the same as A (which is
known). In Section 3.5.8, we show that bootstrapped throughput models are accurate enough
to guide Sia towards taking useful explorative steps.

We use est-xputB to estimate goodput for multi-GPU allocations on B GPUs and if
J runs with a multi-GPU allocation on B GPUs, we can safely discard the bootstrapped
throughput model (from Equation (3.1)). This is because using online profiling, Sia can
refine xputB to accurately predict communication time on B GPUs (which is now known),
eliminating the need for the crude bootstrapped model est-xputB.

3.3.3 Configurations

A configuration represents a bundle of resources (CPU, GPU, Network, etc) and is similar to
virtual machine sizes in the cloud. Configurations can be represented as a 3-tuple – (n, r, t)
where n is the number of nodes containing a total of r resources of type t. For example,
(2, 16, T4) represents a configuration with 2 nodes containing 16 T4 GPUs in total.

Sia’s Policy supports efficient job adaptivity by optimizing for allocations over a small
valid set of configurations designed to simplify placement logic in Placer. This set can be
decomposed into two sets: a single-node allocation set which contains allocations that do not
cross a node boundary (i.e. n = 1), and a multi-node set that contains allocations that span
node boundaries (i.e. n > 1). We provide a construction of these sets below.

Consider a cluster with N physical nodes, containing R GPUs of type X per node, the
configuration set C is given by a union of the single-node and multi-node sets –

C ={(1, 20, X), (1, 21, X), . . . (1, R,X)}∪ ← single-node

{(2, 2R,X), . . . , (N,N ·R,X), n ∈ N} ← multi-node

The single-node set constrains allocations to be powers of 2 within a node, and at most R,
the number of GPUs within a node. If R is not a power of 2, one can decompose R as a
sum of powers of 2, and model each physical node with R GPUs as multiple virtual nodes
with different GPU counts. The multi-node set constrains all allocations to use all available
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GPUs in a node (i.e. GPU count is a multiple of R). Using these allocation and resource
sets, we can rely on existing literature (Submesh Shape Covering theorem [110]) to guarantee
a placement for all valid allocations where no two distributed jobs share any nodes. This is
especially desirable because it eliminates resource contention on the NICs which can cause
significant slowdown to all contending jobs [79, 43].

In a homogeneous cluster, Sia matches Pollux’s performance (Table 3.4), despite optimizing
over a smaller configuration set. Pollux optimizes over the full space of (GPU count x
placement) choices for each job (O(NR)), while Sia restricts the configuration set to a size of
(N +log2R) for a cluster with N nodes and R GPUs each. This suggests that our restrictions
do not significantly impact job runtimes. This reduction in problem complexity allows Sia’s
optimization to scale to clusters with thousands of GPUs (see Section 3.5.7) with practical
runtimes.

3.3.4 Scheduler objective

This section describes the Sia scheduler objective. We use a running example where a
heterogeneous cluster has 2 GPU types - (a) one node with 2 GPUs of type A and (b) one
node with 4 GPUs of type B. Let J = {J1, J2} be the set of jobs in the scheduler queue,
both of which require a minimum of 1 GPU to run.
Valid configurations. Using rules described in Section 3.3.3, we construct the set of valid Sia
configurations C. For the example cluster, C = {(1, 1, A), (1, 2, A), (1, 1, B), (1, 2, B), (1, 4, B)}.
Recall that if Sia assigns a configuration c = (n,m,X) ∈ C to a job, the job runs with m
GPUs of type X split across n nodes. A job receives either no resources in a scheduling
round, or a set of resources identified by a valid configuration.
Goodput estimation. Sia uses one throughput model for each (job, GPU type) combination
to model job and hardware heterogeneity effectively. Sia optimizes for goodput cluster-wide,
so we use the per-job statistical efficiency models to derive goodput estimators, one for
each (job, GPU type) combination. Let (fA, fB) and (gA, gB) be the goodput estimators
for jobs J1 and J2 and GPU types A,B, respectively. We define a goodput matrix G of
size |J | × |C|, where Gij is the estimated goodput for job Ji ∈ J using resources defined by
configuration cj ∈ C. For a given job Ji, all values in that row are comparable: Gij > Gik

means configuration cj is better than ck for the job Ji. However, for a given configuration
cj, Gmj > Gnj does not derive that Jm deserves to run in configuration cj over job Jn. We
apply a simple row-normalization technique to make values in G comparable across jobs for
each configuration.
Normalized goodput matrix. For each job Ji with minimum required GPU count Nmin

i ,

Gij ← Nmin
i · Gij

minj Gij

where minj Gij is the minimum of goodput values for the job Ji across all configurations in
C. The result matrix G is called a normalized goodput matrix.

Using the row-minimum values to normalize each row in G provides two benefits. First, we
can interpret G as a utility-matrix for jobs J , with Gij capturing the utility of configuration
Cj to job Ji. Second, we can compare utilities for a given configuration across job types.
Choosing the configuration with the highest value along a job’s row in G makes the most
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progress for that job, and a configuration is best used by the job with the highest value along
the configuration’s column in G.

Each new job adds a row to G, and the completion of a job delete its respective row,
which keeps G up to date with goodputs only for active jobs. If a job’s statistical efficiency
changes, or its throughput model gets more refined, G is updated to track the most recent
values. For our running example, Table 3.1 shows the normalized goodput matrix G.

(1, 1, A) (1, 2, A) (1, 1, B) (1, 2, B) (1, 4, B)

J1 1 1 2 3 4

J2 2 4 1 2 3

Table 3.1: Normalized goodput matrix G. Boxed entries show the allocation that maximizes

sum of goodput for jobs J1, J2.

Scheduler objective. G represents the utility of the set of configurations C to the set of
jobs in J , and Sia selects the (job, configuration) pairs that maximize the sum of normalized
goodputs for jobs in the chosen configurations. Each configuration maps to a unique allocation
and by constraining the number of allocated resources, a valid schedule can be determined.

We define a binary matrix A with the same shape as G where Aij = 1 if configuration cj
is chosen for job Ji and 0 otherwise. We formulate the problem of choosing the best pairs (as
outlined above) as the following optimization problem over A:

max
A

|J |∑
i=1

( |C|∑
j=1

Aij ·Gij + λ(1− ||Ai||1)
)

(3.2)

where ||v||1 denotes the ℓ1 norm of a vector v. This objective is composed of two terms: a
sum of normalized goodputs of jobs in all chosen configurations, and a scheduler penalty for
not choosing any configuration for each job—no penalty if some configuration is chosen for
job Ji (Aij = 1 for some j, so ||Ai||1 = 1), and a constant penalty −λ otherwise. The penalty
λ can also be thought of as an incentive to reduce scheduler queue occupancy: if λ is large,
then Sia will allocate at-least one GPU to each job in the cluster, if available.

We formulate the Sia scheduler objective as a (binary) Integer Linear Program task with
the binary matrix A as an optimization variable and the following added constraints:

wide Each job chooses at-most one configuration: ||Ai||1 ≤ 1

wiide Allocated number of GPUs does not exceed available GPUs for each GPU type

Solving the optimization problem gives us a binary solution matrix A that contains allocations
for the next scheduling round: a job Ji receives no resources if ||Ai||1 = 0, otherwise (there
must exist an Aij = 1) it runs under configuration cj for the next scheduling round. For the
normalized goodput matrix G shown in Table 3.1, optimizing Equation (3.2) gives us the
allocations : J1 gets configuration (1, 4, B) and J2 gets (1, 2, A). The corresponding entries
in G are each highlighted with a box in Table 3.1.
Restart Factor. To prevent frequent job restarts which can harm performance, a re-
allocation factor, ri, is used to adjust the utilities in G for configurations that differ from
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the currently allocated configuration for each job Ji. This multiplicative factor models the
expected goodput for such configurations by projecting the historical rate of restarts into
the future, and is necessary because the restarting cost for deep learning jobs can be high
(e.g., 25-250 seconds for the models listed in Table 3.2). Consider a job Ji with age Ti,
wasting Si GPU seconds per restart operation and having restarted Ni times previously. The
re-allocation factor ri for the job Ji is computed as follows:

ri =
Ti −Ni · Si

Ti + Si

(3.3)

If job Ji is currently running under a configuration ck, we discount goodput values for
all other configurations cj ̸= ck that require a restart by the restart factor: Gij ← ri · Gij.
Without a restart factor, each tiny changes in G would result in altering some jobs’ resources
and additional checkpoint-restore overheads. By applying a restart factor to only those utility
values in G that require restarting the job, Sia only restarts jobs if not doing so results in a
big reduction in optimal value for its scheduling objective.
Balancing goodput with fairness. We provide a simple knob to tune fairness of allocations
in Sia – a parameter p that can be used to manipulate the scale-free matrix G by raising
the elements to the power of p. If p < 0, we flip the sign of the objective (i.e., minimize the
original objective instead of maximizing) to preserve its semantics. We investigate the effect
of p on Sia’s scheduler metrics in Section 3.5.8, showing that it provides robust fairness with
minimal negative impact on efficiency metrics across a range of settings between -1.0 and 1.0.
We use a default of -0.5. Sia’s full scheduler objective, for p > 0, is as follows:

max
A

|J |∑
i=1

( |C|∑
j=1

Aij ·
(
ri ·Gij

)p
+ λ(1− ||Ai||1)

)
(3.4)

Support for limited adaptivity. Sia supports executing jobs with some adaptations
disabled (batch size, GPU count and/or type). Large batch sizes result in high throughput
and GPU utilization, but may result in a generalization gap for the trained model[61, 49]: a
phenomena where the final model performs poorly on unseen samples. Sia supports different
types of jobs with varying degrees of adaptivity to accommodate diverse reasons for limited
adaptivity: strong-scaling jobs run with a fixed batch size, but allow the GPU count and type
to be optimized, while rigid jobs run with a fixed batch size and GPU count, only leaving
GPU type to be optimized. Both strong-scaling and rigid jobs preserve model quality and
training semantics by keeping batch size fixed, but allow Sia to optimize job execution in a
limited manner. Given a fixed batch size, goodput is directly proportional to throughput; so
for strong-scaling jobs, Sia directly uses throughput in place of goodput in Equation (3.4).
For rigid jobs, we add the following objective to Equation (3.4):

max
B

|JR|∑
i=1

( Ng∑
g=1

Big ·
(
ri · Tig

)p
+ λ(1− ||Big||1)

)
(3.5)

where JR is the set of rigid jobs, Ng is the number of GPU types, Tig is the goodput of job
Ji on GPU type g and ri is the job’s restart count. We then update constraints for the ILP
to constrain total GPUs allocated for each GPU type across all active jobs.
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In a similar manner, with few changes to Equation (3.4) and optimization program
constraints, Sia’s flexible scheduling formulation can support scheduling custom resource
requests and jobs with user-defined parallelism tuned to a specific GPU count, type and/or
batch size.
Preemption and reservation. Sia assumes all jobs are preemptive, but can also support a
small number of non-preemptive jobs in the cluster (as long as their aggregate demand can
be satisfied): for each non-preemptive job, we add a constraint to Equation (3.4) to force the
requested resources to be allocated. This constraint ensures that the non-preemptive jobs
get allocated first, guaranteeing non-preemption in each scheduling round. Reservations are
implemented in a similar manner.
Support for other parallelization techniques. In general, Sia only requires that a job
provide a goodput estimator that can be evaluated on valid configurations.

This design allows Sia to support jobs with more advanced parallelization strategies [66,
110, 97]. We extend Sia’s throughput models to support jobs that use a combination of pipeline
[36, 66] and data parallelism, allowing Sia to schedule jobs with multi-billion-parameter
models.

These jobs employ a mix of data and pipeline parallelism [69] where a pipeline parallel
strategy partitions a large model onto many GPUs, and data parallelism is used to scale up
training (see Section 3.5.3). Each model partition is mapped to one or more GPUs, say P
GPUs across all partitions. A job with N data-parallel replicas uses exactly N × P GPUs.
Given a mini-batch size of M and micro-batch size of m, each replica computes gradients
locally using M

mN
micro-batches of size m each across P GPUs. Then, N replicas of these

pipelines synchronize using a gradient all-reduce, thus finishing one training iteration. The
distinct compute and communication phases [69] allow us to leverage Sia’s throughput models
for goodput estimation at various batch sizes. Since these jobs scale as units of P GPUs each,
we add additional terms to our scheduling objective with the appropriate constraints (similar
to Equation (3.5)). We discuss adaptation for one such hybrid-parallel model in more detail
in Section 3.5.3.

Existing hybrid-parallel optimizers are time-consuming[110, 63], so we leave the problem
of efficient elastic scaling without fixing non-data-parallel degrees as future work.
Scheduling other workload types. Sia exploits characteristics unique to deep learning
training, but we believe it could also handle other batch-processing workloads by using a
goodput estimator customized to each workload type. For example, one can use Sia to schedule
batch deep learning inference jobs that run inference on a large dataset. Here, throughput
can be used as a proxy for goodput, yielding a simple goodput estimator. For latency
sensitive inference jobs, one could use Sia to pick the right set of resources: goodput=1 if a
configuration can support inference within the promised latency constraints and 0 otherwise.

3.3.5 Implementation

We implement Sia using the open-source AdaptDL framework, replacing its scheduler and
data-loader implementations with our own, as the PyTorch-based framework provides native
support for dynamically adjusting batch-size and number of GPUs for DL training jobs on
Kubernetes-managed GPU clusters. For a data-parallel DL training job, we use AdaptDL
data-loaders to vary batch-size during training, and use all-reduce to synchronize gradients
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across workers. Sia Adaptive Executor continually profiles minibatch runtimes and gradient
statistics, periodically (default 30s), optimizes goodput model parameters using these profiles
and communicates the new goodput model parameters to Sia Policy. It also selects the
batch-size that maximizes goodput given allocated resources and scales the learning rate
in accordance with the selected batch size using a configurable learning rate scaling rule.
For models listed in Table 3.2, we use the square-root learning-rate scaling rule[52] for
models using the AdamW [58] optimizer and AdaScale[47] scaling rule for models with SGD
optimizers.

Sia Policy runs as a Kubernetes service, and at the start of each scheduling round, uses
the latest goodput model parameters for each job to optimize resource allocation using
( Equation (3.4)). We formulate Equation (3.4) as a Mixed-Integer Linear Program using the
GLPK MI [60] solver from the CVXPY package [21] and use the output solution to determine
job allocations.
Preemption with checkpoint-restore. If a DL training job’s allocation changes, Sia
preempts the job only after the current minibatch has finished processing so there is no
communication in flight. First, Sia checkpoints the latest model weights, data-loader (e.g.,
sampler and iterator states) and optimizer states (e.g. gradient statistics for Adam[50]) to
shared persistent storage and releases all GPUs allocated to the job. Then, on the new
resources, Sia launches one Adaptive Executor per GPU, restores training state from the
checkpoint on disk, and resumes model training.

Sia also uses the checkpoint-restore mechanism to recover from worker failures. After
every epoch, Sia checkpoints model weights and optimizer states to disk, so if some workers
fail in the next epoch, model training can be resumed from the last saved checkpoint on
different resources.

3.4 Experimental Setup

We compare Sia with state-of-the-art schedulers in both homogeneous and heterogeneous
clusters using workloads derived from real-world environments. This section describes the
workloads, configurations and the schedulers used.

Table 3.2: Models used in our evaluations.

Size Task Model Dataset Target Metric Batch Sizes Optimizer
S Image Classification ResNet18 [31] CIFAR-10 [53] 94% Top-1 acc [128 - 4096] SGD

M
Question-Answering BERT [20] SQuAD [81] 0.88 F1 score [12 - 384] AdamW [58]
Speech Recognition DeepSpeech2 [3] CMU-ARCTIC [51] 25% word err [20 - 640] SGD

L Object Detection YOLOv3 [83] PASCAL-VOC [22] 85% mAP [8 - 512] SGD
XL Image Classification ResNet50 [31] ImageNet-1k [19] 75% Top-1 acc [200, 12800] SGD
XXL LLM Finetuning 2.8B GPT [80] SQuAD 0.88 F1 score [48, 384] AdamW

3.4.1 Workloads and Traces

We use traces derived from three production DL clusters, using a common approach from
recent work [111, 79, 68]. We categorize each job in a trace based on its total GPU time:
Small (0-1 hrs), Medium (1-10 hrs), Large (10-100 hrs) and Extra-large (XL, ¿100 hrs). We
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map each category into one or more representative jobs as listed in Table 3.2. XXL models
are only used for hybrid-parallel experiments in Section 3.5.3.

Philly is from 100k jobs executed over two months in a multi-tenant cluster with multiple
GPU types at Microsoft [43].

Helios is from the Saturn cluster in the Helios cluster traces [35]. The original traces
contain 3.3M jobs recorded over a six-month period in a heterogeneous cluster with over 6k
GPUs. Compared to Philly, Helios jobs request more GPUs and run for longer, resulting
in a higher cluster load.

We derive ten traces for each workload by randomly sampling the 8 busiest hours in the
respective real-world trace using an average job arrival rate of 20 jobs/hr, resulting in a total
of 160 jobs submitted over the 8-hour window.

newTrace is a more recent trace from a production system for deep learning jobs that
spans multiple clusters with thousands of GPUs. Similar to the Microsoft Philly traces [43],
this production system allocates Virtual Machines (VMs) to DL training jobs where each VM
instance is provisioned a pre-configured amount of CPU, GPU and memory resources. Similar
to other production environments, we observe a wide range of resource requests exhibiting
diurnal patterns with bursts of resource requests coming by virtue of job submission scripts
(e.g., hyper-parameter tuning). We sample 10 traces over a 48 hour period at an average
arrival rate of 20 jobs/hr (total 960 jobs submitted in each trace).

The longer 48-hour newTrace traces are used to evaluate a more realistic setting
where congestion slowly builds up in a cluster from long-running jobs over a long duration.
newTrace sees a significant variance in job arrival rates from 5 to 100 jobs/hr over the
48-hour job submission window and gives us valuable insights into how schedulers can deal
with congestion and variance in cluster loads.

3.4.2 Hardware measurements and simulator

Most of our experiments use the discrete-time simulator open-sourced [40] by authors of
Pollux whose fidelity is verified by prior work [79] and our own measurements. We added
a Gavel implementation and the open-source Shockwave [111] to the simulator, as well as
extended the original version of Pollux to support heterogeneous clusters. The simulator
allows us to experiment on a range of cluster sizes and hardware configurations.

We use four different types of GPUs in our experiments: a cluster of 16 t4instances [79]
and three on-premise node types (3x rtx, 2x a100, and 1x quad):

t4 – [Cloud] g4dn.12xlarge AWS EC2 instance with 4 NVIDIA T4 (16GB VRAM) GPUs.

rtx – [On-prem] commodity node with 8 NVIDIA RTX 2080Ti (11GB VRAM) GPUs and
50Gb/s Ethernet.

a100 – [On-prem] high-performance NVIDIA DGX-A100 node with 8 NVIDIA A100 (40GB
VRAM) GPUs and 1.6Tb/s Infiniband.

quad – [On-prem] workstation node with 4 NVIDIA Quadro RTX6000 (24GB VRAM) GPUs
and 200 Gb/s Infiniband.
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We were able to get a limited amount of dedicated time with the on-prem nodes, which
allowed for direct experiments on a 44-GPU, 3-GPU-type cluster. The results (Section 3.5.1)
confirm Sia’s efficacy and the simulator’s fidelity.

The original simulator from [79] simulates checkpoint-restore with the same constant
delay for all jobs, which we replaced with model-specific checkpoint-restore delays.

3.4.3 Evaluated settings

We compare schedulers in the following three settings:

• Physical : Physical cluster with 3 rtx, 2 a100, and 1 quad nodes for a total of 44 GPUs.
In Sec. 3.5.1, we compare Sia with Pollux and Gavel.

• Homogeneous : Simulated cluster with 16 t4 nodes(64 GPUs). In Sec. 3.5.2, we compare
Sia to Pollux, a state-of-the-art job-autoscaling scheduler for homogeneous clusters,
and inelastic schedulers Shockwave [111], Themis [59], and Gavel [68].

• Heterogeneous : Simulated cluster with 6 t4, 3 rtx, and 2 a100 nodes (64 total GPUs).
In Sec. 3.5.2, we compare Sia with Pollux and Gavel, a state-of-the-art heterogeneity-
aware scheduler.

Tuning job hyper-parameters. Gavel lacks support to auto-tune job parameters, so we
manually tune the batch size and requested number of GPUs for each job in our sampled
traces to ensure optimal performance. We follow the approach used in [79] and optimize
each job’s batch size and GPU count: we search over (batch size, GPU count) combinations
(GPU count ≤ 64 GPUs for Homogeneous, and ≤ 16 GPUs for Physical and Heterogeneous
settings) and randomly choose a combination (bsz, GPU count) such that the simulated
runtime using (bsz, GPU count) is 50-80% of ideal speedup over the runtime of a 1-GPU
baseline with the optimal batch size. We refer to these optimized job configurations as
TunedJobs (TJ) in our evaluations, even though real-world jobs may be submitted with worse
performing job parameters.

Fixing mixed-GPU allocations from Pollux: To make Pollux work on our heterogeneous
clusters, we present 8-GPU nodes as 2 virtual 4-GPU nodes to eliminate heterogeneity in
node capacities. However, Pollux may still schedule a job on more than one GPU type (not
allowed in our setup). So, we apply a simple heuristic: the GPU type with the most GPUs is
selected, and in case of a tie, the more powerful GPU type is chosen (a100 ¿ quad ¿ rtx ¿
t4). Although not perfect, this heuristic enables fair comparisons to Pollux in heterogeneous
settings ( Section 3.5). Our paper’s focus is not on designing the perfect heuristic.

Default parameters. Unless explicitly stated otherwise, all experiments use the following
parameters: p = −0.5, λ = 1.1 for Sia, p = −1 for Pollux (same as [79]), (10, 1e-1) for
Shockwave (same as [111]. We choose a scheduler round duration of 60s for Sia and Pollux,
and choose 360s for Gavel, Themis and Shockwave. We choose the max-sum-throughput
scheduling policy [68] for Gavel as it results in the lowest average JCT on Philly traces among
the policies listed in [68]. We investigate sensitivity of Sia to its parameters in Section 3.5.8.

27



3.5 Evaluation

This section evaluates Sia, showing that it outperforms state-of-the-art cluster schedulers
for both resource-adaptive and rigid jobs running on both homogeneous and heterogeneous
resources. Results also show that Sia provides better finish-time fairness, scales to large
cluster sizes, and is not overly sensitive to our default parameter settings.

3.5.1 Physical cluster experiments

We compare Sia with Pollux and Gavel in the 44-GPU physical cluster setting (Sec. 3.4.1)
that consists of 3 rtx + 1 quad + 2 a100 nodes. We sample a smaller, single 3-hour trace
with 30 jobs with a mix of all the models listed in Table 3.2 and run all schedulers on the
physical cluster. Owing to resource availability constraints,4 we run Sia, Gavel and Pollux
four times to account for any randomness in their schedules.

Figure 3.3 shows the results of our physical cluster experiment side-by-side with those
predicted by the simulator. On the physical cluster, Sia provided lower average JCT than
Gavel or Pollux by 50% and 35–50%, respectively.

Figure 3.4 shows resource allocations for three jobs over 45 minutes, illustrating how
Sia dynamically adjusts GPU count and type. Rising congestion triggers Sia to scale down
and then move the ImageNet job (top) to rtx GPUs, leaving the fastest (a100) GPUs for
incoming CIFAR-10 jobs. Over time, Sia scales up and refines throughput models for each
job (e.g. DeepSpeech2 job in Figure 3.4) while adapting to GPU type and count changes.
When congestion decreases sufficiently, Sia shifts ImageNet back to a100 and scales out
DeepSpeech2 on rtx GPUs for better throughput.

Simulator fidelity. The simulator was found to have less than 5% error in average JCT
and Makespan for both Sia and Gavel, validating its accuracy yet again. However, Pollux
performed significantly worse on the physical cluster than predicted by the simulator, due
in part to the modifications we made to the simulator giving Pollux an advantage when
scheduling a single job over heterogeneous resources (Section 3.4.3). The schedules produced
by Pollux can have large variations due to randomness in its optimization and its potentially
misguided job adaptivity (due to noisy throughput estimators), resulting in bad worst-case
scenarios. Additionally, the heterogeneity of the underlying hardware mapped to the virtual
nodes that Pollux assumes are homogeneous can also contribute to the variation.

3.5.2 Simulator experiments

Table 3.3 shows key performance metrics for Sia, Pollux, and Gavel running on the heteroge-
neous cluster with traces described in Section 3.4.1. Across all traces and evaluated metrics,
Sia outperforms heterogeneity-aware schedulers like Gavel and job auto-scaling schedulers
like Pollux. Sia reduces average JCT by 30–93% and 99th-percentile JCT (p99 JCT) by
28–95%, compared to Pollux and Gavel. In doing so, Sia is also more resource efficient– it
allocates 12-60% fewer GPU hours per job compared to Pollux and Gavel.

4Unlike profiling runs, our scheduler experiments require extended isolated control over the entire collection
of machines, blocking out all users for which the machines were acquired.
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Figure 3.3: (Left) AvgJCTs on the Physical testbed, and (Right) CDF of job completion
times for Sia predicted by the simulator (Simulated) compared to a run on Physical testbed
(Real). Error bars represent the extreme values seen across 200 simulator and 4 physical cluster

runs.

Figure 3.4: Resource allocations for three jobs in the Sia physical cluster experiment, along
with number of active jobs in cluster. Colors indicate GPU type and whitespaces represent

checkpoint-restore delays caused by Sia’s scheduling decisions.

Trace Policy
JCT

Makespan
Avg. GPU-
hours/job

Contention Avg. job
restartsAvg. p99 Avg. Max.

Philly
Sia 0.6h ± 0.1 9.5h 14.2 ± 1.9h 4.0 ± 0.7 6.9 31 2.9

Pollux 1.0 ± 0.1h 14.9h 24.5 ± 7.9h 5.6 ± 1.1 7.2 42 5.8
Gavel+TJ 1.9 ± 0.3h 30.0h 33.8 ± 8.6h 9.0 ± 6.3 9.9 56 5.7

Helios
Sia 0.7 ± 0.1h 10.9h 14.9 ± 1.7h 4.8 ± 0.7 7.4 32 3.4

Pollux 1.0 ± 0.2h 15.0h 25.5 ± 8.0h 5.9 ± 0.7 6.9 47 5.3
Gavel+TJ 2.5 ± 0.9h 38.7h 43.0 ± 10.9h 12.1 ± 3.7 9.2 48 7.5

new-
Trace

Sia 0.7 ± 0.1h 4.6h 52.2 ± 1.3h 3.0 ± 0.1 13 69 5.0
Pollux 1.5 ± 0.2 h 10.3h 62.3 ± 4.6h 3.4 ± 0.2 22 85 5.4

Gavel+TJ 11.3 ± 3.0h 98.1h 110 ± 21.5h 6.4 ± 1.1 96 243 4.5

Table 3.3: Comparison of Sia, Gavel, and Pollux in the Heterogeneous setting. TJ is short for

TunedJobs, Contention is the number of jobs contending for resources in the cluster.

Gavel+TunedJobs performs poorly compared to Sia for two reasons: (1) time-sharing
overheads reduce the useful GPU time spent on training progress in a given round, and (2)
using a batch size that fits the smallest (in memory) GPU leads to under-utilization of more

29



powerful GPUs. Pollux outperforms Gavel due to job adaptivity, but falls behind Sia for two
reasons: (1) it treats heterogeneous hardware as homogeneous, failing to exploit performance
heterogeneity, and (2) it can output placements spanning more than one GPU type; fixing
them so they only span one GPU type forces some GPUs into idling, but it is better than
using a mix of GPU types and running at speed of the slowest.

From Table 3.3, we see that Pollux restarts jobs twice as often as Sia for moderately
congested clusters (Philly and Helios). This is because it optimizes job allocations in steps
of 1 GPU, while Sia only allocates configurations with steps as large as an entire node (as
defined in Section 3.3.3).
Congestion in newTrace. Compared to Philly and Helios traces, newTrace contains
bursts of up to 100 jobs/hr during the busiest hour. Gavel struggles to handle these bursts,
and as congestion worsens, this problem compounds creating a positive feedback loop: rising
contention forces Gavel to swap jobs in/out more frequently, wasting significant GPU capacity
on executing checkpoint-restore operations when GPUs are already scarce. As a result, the
average and p99 JCTs for Gavel degrade far worse compared to Sia and Pollux. During peak
congestion, Sia and Pollux both scale jobs down to just 1-GPU per job, resulting in a smaller
gap between them. However, Sia’s heterogeneity-aware scheduling better matches jobs to
GPUs, improving cluster goodput over Pollux even during congestion.

Figure 3.5: (Min-normalized) GPU hours consumed per model for Sia (S), Pollux (P), and
Gavel (G) using Helios traces.

Matching jobs to GPU types. Figure 3.5 shows the average GPU hours used to train
each model(Table 3.2) using Helios traces. Pollux is heterogeneity-unaware and has no
distinct (job, GPU type) preferences, whereas Gavel and Sia are heterogeneity-aware and
strongly prefer certain GPU types for particular models. Figure 3.5 shows that Sia allocates
BERT models almost exclusively to a100 GPUs, aggressively exploiting the heterogeneity in
model goodputs across GPU types. Gavel’s time-sharing approach, however, forces BERT jobs
to rotate between a100, rtx, and t4GPUs, resulting in less-efficient execution. Similarly, Sia
prefers to use rtx GPUs for DeepSpeech2 and leaves the a100 GPUs free for BERT models,
achieving significant reduction in GPU hours consumed per job compared to Gavel’s approach.
On average, YOLOv3 and DeepSpeech2 models consume about 5% more GPU hours under
Sia compared to heterogeneity-unaware Pollux, as Pollux gives them more GPU time to jobs
on faster GPUs (out of randomness).
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Workload Intensity. Figure 3.6 shows the average JCT as a function of average arrival
rate for each of our evaluated schedulers. We sample jobs from Helios traces at various job
arrival rates and evaluate them in the Heterogeneous setting with a fixed cluster of 64GPUs.

Figure 3.6: Avg. JCT for Sia, Pollux, and Gavel for various job arrival rates sampled using
Helios traces.

Pollux and Sia outperform Gavel at larger arrival rates because they can scale down
running jobs to use fewer GPUs rather than having to time-share GPUs. Sia consistently
outperforms Pollux by 50–65% by aggressively matching jobs to preferred GPU types. As jobs
arrival rates increase, jobs wait longer for resources, a problem that worsens with increasing
congestion. However, an 8-hour job submission window is too short to observe these effects;
on the 48-hour newTrace ( Table 3.3), Gavel sees about 7× more contention compared to
Sia (< 2× on the 8-hour traces), adding evidence to our claim.

3.5.3 Adapting hybrid parallel jobs

We simulate training of a 2.8B GPT model that uses pipeline model parallelism to scale
to a few GPUs, and data-parallelism with gradient all-reduce to scale to multiple nodes.
We borrow statistical efficiency profiles from BERT (closest match) to simulate a DL job
finetuning the GPT model, and profile compute times for micro-batches and all-reduce times
for different placements on a100 and rtx GPUs to seed the simulator. Finally, we assume
this job uses the commonly used Gpipe schedule [36] internally for PMP. We use 2 and 8
stages (1 per GPU) for a100 and rtx GPUs, respectively, to account for the larger memories
on a100 GPUs. Each data-parallel replica runs 48 microbatches of size 1 each.

(Left) shows the hybrid-parallel GPT model’s throughput scaling linearly with GPU count
as computation dominates communication for this model. (Right) shows Sia adaptation
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decisions for this model in response to changing cluster conditions. As expected, Sia scales
the GPT model in response to congestion: scaling it down around the 1hr mark and back
up around the 4-hr mark. Sia is the first cluster scheduler to support elastically scaling
hybrid-parallel jobs on heterogeneous resources; supporting additional adaptation dimensions
for PMP jobs is left to future work.

3.5.4 Attribution of primary benefits

We show the importance of having the scheduler directly address each key aspect (resource
heterogeneity and job adaptability) by evaluating scenarios where only one is present.

Job adaptability, but not resource heterogeneity. We compare Sia against Pol-
lux[79], Shockwave[111], Themis[59], and Gavel[68] using the Philly traces in a Homogeneous
setting. We use TunedJobs for Shockwave, Themis and Gavel and re-tuned the job hyper-
parameters to fully exploit the 64-GPU cluster. Table 3.4 (and the left-most bars in Figure 3.1)
shows average and 99th percentile (p99) job completion times, average job makespan and
average number of GPU hours consumed to train a job.

Policy
JCT

Makespan
GPU
hrs/jobAvg. p99

Sia 1.9h 18.1h 21.4h 8.4h

Pollux[79] 2.0h 19.3h 21.7h 8.6h

Shockwave[111]+TJ 3.6h 32.8h 35.0h 12.5h

Themis[59]+TJ 5.4h 44.7h 49.7h 17.2h

Gavel[68]+TJ 4.3h 37.1h 44.3h 15.3h

Table 3.4: Comparison of Sia against state-of-the-art in the Homogeneous setting. TJ is short

for TunedJobs.

Pollux was designed for this scenario, and Sia matches it on all metrics, even outperforming
Pollux as its ILP formulation can guarantee a global optimum (Pollux’s genetic algorithm
does not). Sia had fewer restarts compared to Pollux – 2.6 vs 5.1 restarts per job, so Sia
wasted fewer GPU hours on checkpoint-restore operations. Shockwave [111] is the best
inelastic scheduler as its objective optimizes for job progress and finish-time-fairness while
penalizing schedules that result in large makespan. Themis (optimizing FTF) and Gavel
(optimizing cluster throughput) fall behind Shockwave on all metrics. Sia and Pollux both
exploit adaptivity and show a 50-70% improvement over the state-of-the-art inelastic baselines
in all metrics.

Resource heterogeneity, but not job adaptability. The right-most bars in Figure 3.1
show average JCTs for the three schedulers, but with every job being treated as rigid – it
must be run with the batch size and GPU count specified in the trace. Said differently,
auto-scaling and co-adaptive batch size tuning is disabled for Sia and Pollux, evening the
playing field with Gavel that cannot exploit job adaptivity. Even though Gavel was designed
for this scenario, Sia outperforms it by about 25%. This can be atttributed to the fact that
Sia explicitly optimizes for goodput (aka a max-sum-goodput policy) while Gavel optimizes
for cluster throughput (max-sum-throughput policy). So, with inelastic jobs, Sia will always
provides higher per-GPU goodput, resulting in better performance over Gavel. Pollux also
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Figure 3.7: CDF of (left) Finish-Time Fairness ratio ρ[59], and (right) job completion times
for Sia, Pollux, Gavel and Shockwave using Helios traces in the heterogeneous setting.

optimizes for sum of goodput, but produces worse JCTs as it is blind to and cannot exploit
the GPU heterogeneity in the cluster.

3.5.5 Finish Time Fairness

Mahajan et al. [59] propose finish-time fairness (FTF [59]) as a metric that captures fairness
of allocations to a job over its lifetime in a cluster. Assume job J sees an average contention
(total number of jobs requesting resources) of Navg and takes Ts to complete. Finish-time
fairness (FTF) ratio ρ for the job J is defined as the ratio of a job’s completion time in a
shared cluster (Ts) to its JCT in an isolated and fair-sized cluster (Tf), where the isolated

cluster contains Ngpus

Navg
, and Ngpus is the cluster size. We extend finish-time-fairness, defined

originally for homogeneous clusters [59], to heterogeneous clusters as follows –

ρ =
∑
G

P (G = g) · ρg (3.6)

where ρg is the FTF ratio for GPU type g.P (G = g) is the probability that a random GPU in

the cluster is of type g, given by Ng

Ntotal
where Ng is the number of GPUs of type g, and Ntotal

is sum of Ng across GPU types. ρg is computed using the homogeneous-cluster definition [59]
and only for the Ng GPUs of type g. If there exists only one GPU type, Equation (3.6) reduces
to the homogeneous-cluster definition, preserving the metric’s semantics. For heterogeneous
clusters, ρ can be interpreted as the expectation of the FTF ratio taken over multiple GPU
types.

ρ > 1 means unfair executions: job finishes faster in isolation than using scheduler’s
policy, while ρ < 1 means sharing resources can improve job runtimes using idle GPUs. A
vertical CDF for ρ with all jobs having ρ ≤ 1 means a perfectly finish-time-fair scheduler.
We are interested in three metrics: (a) worst FTF ratio [111, 59] across all jobs, (b) unfair
job fraction [111](fraction of jobs with ρ > 1), and (c) CDF(ρ).

Figure 3.7 (left) shows the CDF of finish-time-fairness ratios for Sia, Pollux, Gavel and
Shockwave using the Helios traces in a heterogeneous-setting. From Figure 3.7, we see
visually that Sia is more fair (more vertical and <1) than Gavel, Pollux or Shockwave. Indeed,
Sia provides a worst FTF ratio of 1.2 and unfair fraction of ¡0.3%.
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The worst FTF ratio for the other schedulers in Figure 3.7 are: Pollux=4.6, Gavel=27.8,
Shockwave=3.3. Their unfair job fractions are 28%, 15% and 14%, respectively. Shockwave
does better than Gavel and Pollux, since it penalizes jobs with high FTF ratios, trading
worst FTF ratio for unfair job fraction when compared to other schedulers. Sia achieves by
far the lowest unfair job fraction and worst FTF ratio.

Figure 3.7 shows job completion times for Gavel, Shockwave, and Sia. Gavel and
Shockwave prioritize either makespan or long jobs, resulting in worse outcomes for short
jobs during periods of congestion. Sia adapts to prioritizing minimizing average JCT or
makespan based on congestion levels: scale down long jobs during congestion to prioritize
incoming short jobs (reduces congestion) and scaling out long jobs during reduced congestion
to minimize makespan.

3.5.6 Congestion
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Figure 3.8: Visualization of GPU activity for Gavel, and Sia with and without timeshare
penalty for a 1.5hr period starting from t = 2.75hrs in the Spike-240 trace. The numbers in
parentheses represent the average JCT of the jobs submitted during the 1.5hr window.
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Figure 3.9: Job arrival rate for the 6-hour Spike-240 trace.

In a production deployment, congestion in the cluster could worsen any minute as a result
of the bursty nature of job arrivals. Further, as long jobs settle into the cluster, fewer GPUs
are available to autoscale any new jobs and reduce congestion. To evaluate our scheduler in
a congested setting, we sample a 6-hour trace (Spike-240) from the busiest period in our
internal production traces with double the job arrival rate of newTrace at 40 jobs/hr for a
total of 240 jobs submitted over the 6-hour window. We visualize the average job arrival rate
for the Spike-240 trace in Figure 3.9.
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We visualize the resource allocation for a small subset of jobs (Job IDs 60-200) in the
trace for a 1.5-hour period (hours 2.75− 4.25) in Figure 3.8 – a job Ji is colored green at time
t if the job Ji received any service in the scheduling interval starting at time t. Note that
yellow bands correspond to queueing delays for Ji i.e. scheduling intervals where a job did
not receive any allocation and white bands correspond to periods before job submission and
after the job completion. For the rest of this subsection, we focus only on the jobs submitted
in the 30-minute window starting at hour 2.5 corresponding to a burst of submissions in the
Spike-240 trace (see Figure 3.9). For visualizations presented in Figure 3.8, this window
corresponds to the region inside the dotted rectangles.

We run both Gavel and Sia schedulers on the Spike-240 trace and visualize the GPU
activity under the schedulers in Figures 3.8a and 3.8b, respectively. During the congested
period, Gavel either runs a job Ji till the end of the scheduling interval (or completion,
whichever is earlier) or idles it – job Ji sits in the scheduler queue with no allocation for the
entire interval. For each job in Figure 3.8a, we can observe the sparse GPU activity resulting
from the repeated execution and eviction (and thereby queueing) using Gavel. Unlike Gavel,
Sia can respond quickly to changing loads by rapidly scaling down jobs to free up GPUs that
are then allocated to incoming jobs. Indeed, we observe this behaviour for Sia in Figure 3.8b
where some incoming jobs receive allocations as soon as they enter the system (e.g. Job
ID 165). However, as the number of jobs vastly exceeds the number of GPUs in the cluster
(around hour 3 in Figure 3.8b), Sia simply picks a subset of jobs to execute and recomputes
allocations only if one of two conditions is met: (1) a new job arrives into or an existing job
departs from the cluster, or (2) a running job changes its learning rate and this produces a
stark change in statistical efficiency for the job, requiring re-optimization of resources.

As a result, Sia tends to maintain the current allocations (as seen in Figure 3.8b). So, a
fraction of the new Small and Medium jobs submitted during this period receive allocation
and finish execution quickly while the remainder wait in the scheduler queue for their turn at
execution. We observe that this queueing delay could be significant and could span multiple
hours. For example, consider the job corresponding to jobID = 180 in Figure 3.8b. This
job waits at least 1.5 hours before starting execution, increasing the average JCT due to the
queueing delay.

We propose amending that scheduler objective such that it provides each job with an
opportunity to execute (preferably uninterrupted) on some GPU type in an attempt to reduce
cluster load. To reduce the cluster load, ideally, we would like to execute jobs that need the
fewest GPU hours to complete execution (aka Shortest Remaining Processor Time (SRPT)).
However, since we do not have an estimate of the remaining GPU time for our jobs, we
instead opt to time-share the GPUs between jobs in a clever manner. Given a large number
of jobs and very few GPUs to allocate, Sia allocates exactly one GPU to each job in an
attempt to minimize the penalty for not allocating any resources to a given job. In doing so,
if multiple jobs prefer a single GPU type to the same extent, Sia simply picks one to execute
till completion.

To time-share GPUs between these jobs efficiently, we vary the no-alloc penalty for jobs
over time. Let λn(i, t) be the no-alloc penalty for a job Ji. Let si(τ) denote the number of
seconds for which the job Ji was running on some GPU in the last τ seconds. If a job has
received service throughout the window (i.e. si(τ) = τ), we set λn(i, t) = 0 for the next τ
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seconds. Otherwise, λn(i, t) =
(

τ−si(τ)
τ

)
where δ is the length of each scheduling interval

(default δ = 60s).Intuitively, this time-varying penalty attempts to provide τ seconds of GPU
time to each job during periods of intense congestion. In doing so, all the new Small and
Medium jobs should receive service as soon as they enter the system, albeit at the expense
of some long-running old job. Figures 3.8c and 3.8d visualize the allocations under Sia
using time-sharing penalties with τ = 180s and τ = 300s respectively. Visually, we see a
significant reduction of queuing delay for new jobs before they begin execution at the expense
of queuing some older long-running jobs. We see that the time-varying penalty produces
bands of execution for each job indicating that the jobs run uninterrupted for as long as τ
seconds before being pre-empted for time-sharing purposes.

Incorporating the time-sharing penalties reduces queueing delays significantly and reduces
the average JCT for the Spike-240 trace by 14% when running Sia with τ = 180s over
baseline Sia. However, using τ = 180s might not be very efficient as each job spends an
average of 30 seconds in container setup and checkpoint-restore, giving us about 150s of
GPU time per job per 180 second window (30 seconds or 17% GPU time wasted per job).
Setting τ = 300 reduces the overhead to just 30 seconds per 300 seconds window ( 10% GPU
cycles wasted), at the expense of increasing the average JCT by just 1.5% over τ = 180.
We conclude that τ = 300s provides the best compromise between wasted GPU cycles and
average JCT for experiments using the time-varying timeshare penalty.

3.5.7 Policy overhead and scalability

In the 64-GPU Heterogeneous setting with Helios traces, Sia’s policy optimization has a
median and 95th percentile runtime of 96ms and 426ms, respectively(insignificant overheads
for 60s scheduling rounds). Pollux takes longer with median and p95 times at 2.2s and 4.8s,
respectively, indicating it may not scale to larger cluster sizes. Gavel is significantly faster
with a median and p95 policy runtime of 13ms and 28ms, respectively.

Figure 3.10 shows scheduling policy runtime as a function of cluster size. Experiments
are conducted using the Heterogeneous setting running Helios traces, scaled up to 2048
GPUs (traces scaled accordingly). Sia scales well, with a single-second runtime for policy
optimization, enabling management of large clusters with thousands of GPUs and many
GPU types. Pollux’s genetic algorithm runs significantly slower ( 100x slower than Sia’s ILP
formulation) and struggles to find optimal solutions for large clusters due to an explosion
of search space complexity (even without considering the extra complexity induced by
heterogeneity). Gavel is much quicker, because it does not consider job-adaptation.

3.5.8 Sia Parameter Sensitivity

Fairness parameter (p). Figure 3.11 shows scheduler metrics for Sia, as a function of p
computed using the Helios traces.

The impact of p on 99th percentile JCT is very evident as Sia allocates more GPUs to
jobs that can take advantage of both scale and newer GPU types better (particularly BERT

and ImageNet training jobs). Since these jobs also tend to run for a long duration, this
drastically reduces their JCTs, bringing down the p99 JCTs the expense of average JCT. This
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Figure 3.10: Median policy runtime for Sia, Pollux, and Gavel for various cluster sizes using
proportionally-sized Helios traces. Error bars represent 25th and 75th percentiles.

also affects fairness of allocations and we notice that p = 1.0 has higher unfair job fraction
(not shown here) compared p = −0.5. We choose p = −0.5 since it performs the best among
all the p values we tested along the average JCT, average makespan and finish-time-fairness
metrics.

Figure 3.11: (Left) Trend for average and 99th percentile JCTs, and makespan for various
values of p for Sia, and (Right) Average JCT for Sia for different scheduling round durations.

Scheduling round duration. We use a 60-second scheduling round duration for all
our experiments. Increasing round duration from 60s to 300s increased average JCT for Sia
by 333s (12%), while a shorter duration (30s) resulted in a higher rate of re-allocations and
worsened average JCT. Sia’s policy optimization takes less than 1 second, even for moderately
sized clusters, and we choose a round duration of 60s since it performed the best. There was
no significant change in p99 JCT or makespan observed.
Fraction of jobs supporting adaptivity. Sia supports adapting batch size, GPU count,
and GPU type. Figure 3.12 shows the average JCT and makespan for Sia, normalized to
all AdaptiveJobs (0% constrainted), as we vary the percentage of jobs with restrictions on
which dimensions are adapted. Strong-scaling adaptivity constrains a job to use a fixed
(user-supplied) batch size, but allows Sia to optimize the number and type of GPUs allocated
to this job. Rigid jobs constrain a job to use a fixed batch size and fixed GPU count, but allow
Sia to optimize the GPU type allocated. From Figure 3.12, we can conclude the following:
(1) optimizing number of GPUs in addition to the GPU type improves avg JCT by 56%, and
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Figure 3.12: Average JCT and makespan for Sia on Philly traces as a function of the % of
jobs that support (Left) only strong-scaling adaptivity, and (Right) no adaptivity (Rigid)

(2) additionally optimizing batch size (with number of GPUs and GPU type) improves avg
JCT by another 13%.

Profiling Overheads. Profiling jobs incurs overheads, and profiling every possible con-
figuration is impractical. Too little profiling and Sia might produce sub-optimal schedules,
while too much profiling can waste cluster resources for marginal improvement in cluster
efficiencies. To understand this trade-off, we evaluate Sia on Helios traces in three settings:
(a) Oracle is an ideal setting where Sia knows a job’s throughput on any set of resources (a
best-case scenario for Sia) (b) No Prof does not profile initially and adopts a profile-as-
you-go approach, resulting in zero profiling overhead (but no initial info for Sia); and (c)
Bootstrap uses min-GPU profiles and extrapolates throughput for yet-to-run configurations
(see Section 3.3), requiring ≈0.1 GPU hrs of profiling for each job—a middle ground between
the extremes. Note that Oracle only serves as a baseline to quantify the effectiveness of Sia’s
bootstrap approach; it is impractical in most clusters, as it would need to profile 100s-1000s
of placements across GPU types (1-10 GPU hrs/job).

Figure 3.13: Average JCT for Sia on Helios traces with varying profiling overheads.

Sia with Bootstrap performs 30% better than No Prof and only 8% worse than Oracle,
demonstrating the effectiveness of its bootstrapping mechanisms for heterogeneity-aware job
adaptivity with minimal profiling overhead. We also found that profiling two GPU counts per
GPU type performed worse that Sia’s minimized approach. Sia’s bootstrappping also scales
well: for a cluster with 20 GPU types, bootstrapping adds ¡5% overhead to a job’s execution.
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3.6 Conclusion

Sia efficiently schedules adaptive DL jobs on heterogeneous resources, co-adapting each job’s
assignment of GPU count, GPU type, and batch size, resulting in increased DL cluster
performance. Experiments show 30–93% reductions in average JCT, 28–95% reductions
in p99 JCT and makespan, and 22–31% reductions in the unfair job fraction, when Sia is
compared to existing schedulers. As such, Sia provides a critical component for emerging
heterogeneous DL clusters.
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Chapter 4

COpter-Sia: Scaling Sia scheduler to
large GPU clusters efficiently using
continual optimization

4.1 Introduction

In deep learning clusters, schedulers must allocate thousands of GPUs to jobs with diverse
requirements while balancing throughput and fairness [67, 42]. Like the Sia scheduler,
many scheduling policies are formulated as optimization problems (e.g., linear/mixed-integer
linear programs) that are then solved by numerical solvers like GLPK [60](open-source) or
GUROBI [29](commercial).

It is practical to run these policies at small-to-medium scales, but they can falter quickly
as cluster sizes sizes grow—a reality driven by the recent explosive growth of computational
infrastructure. Deep learning clusters now deploy over 100,000 GPUs (up from a few thousand
in 2019 [43]), with a corresponding increase in users and jobs requesting these resources.
Optimizing the scheduling policies at this scale with off-the-shelf solvers often exceeds practical
time limits. For example, scaling up the Sia scheduling policy [42] from a 10k GPU cluster
to 25k GPUs leads to an ≈ 100× increase in solver run-times. As a result, the fraction
of problems solved within the allocated round duration of 1 minute decreases from 85%
to only 15%. Increasing round duration is not sustainable: GPUs released by completed
jobs sit idle for longer while newly arrived jobs wait for GPU allocation in the scheduler
queue, leading to reduced GPU utilization and increased job completion times. Practitioners
have developed various strategies to scale optimization-based scheduling to large problem
sizes: Warm-starting can be beneficial, but is not universally applicable and/or supported by
existing commercial solvers [39, 29]; solver computation is not efficiently parallelized [102]; and
GPU acceleration is not always applicable and/or beneficial [84] owing to the sparse nature
of the solver compute. Forcibly terminating solvers early by setting a compute/time budget
can return sub-optimal and/or infeasible solutions that are often meaningless. Partitioning
problems by exploiting problem-specific properties can help scale many scheduling policies to
larger cluster sizes with minimal effort, albeit at the cost of solution quality. POP [67] is a
state-of-the-art problem-partitioning approach that partitions a large problem by randomly
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Figure 4.1: [Left] Solver runtime for three approaches of solving the Sia scheduler policy
MILP [42] and their [Right] quality-runtime trade-offs. The approaches are evaluated on a
trace with 100k jobs submitted to a 25k GPU cluster with 7 GPU types over 24-hours. LP*
solves the LP-relaxation of the MILP in each round independently using a commercial LP
solver [39]. POP -k partitions the set of GPUs and jobs into k equal sizes (whenever possible)
and solves the MILP for each partition using an MILP solver[24] in parallel. COpter uses
continual optimization (see Section 4.3).

partitioning the set of resources and requests, solves subproblems on the partitions in parallel,
and combines their allocations to exploit parallelism for large-scale scheduling under practical
time constraints. However, there exists a quality-runtime tradeoff from applying POP, as
can be seen in Figure 4.1[Right]: 32-way partitioning (POP-32 ) consistently meets scheduler
deadlines but with poor quality allocations, whereas 4-way (POP-4 ) recovers higher quality
allocations but frequently misses the 1-minute scheduler deadline.

All the approaches discussed thus far employ a commercial or open-source solver in a
black-box manner. This means that the scheduling problem in each round is treated as an
independent problem instance that is to be passed on to the solver. However, this leads
to a fundamental mismatch between the modeling of round-based scheduling problems and
the dynamics of the clusters to which these problems are applied: many large-scale clusters
evolve slowly across rounds, exhibiting a certain structure across rounds. For example, in a
small enough round duration (2-5 minutes) in GPU clusters, few GPUs fail, most jobs from
the previous round continue executing without much change to their allocations, and few
new jobs arrive into the cluster. By ignoring this structure and treating each round as an
independent problem, existing methods forfeit an opportunity to amortize solving effort over
time.

Adapting existing solvers to reuse computational effort from prior rounds is not straight-
forward. First, a small change to the input problem (e.g., the addition of just one new
job) would require reconstructing solver-specific problem representations (e.g., constraint
matrices), inducing significant setup cost for even the smallest change. Second, solvers need
to reconstruct key internal transformations, such as matrix (Barrier methods [29, 60]) or
basis (Simplex methods [39, 71, 60, 37]) factorizations, discarding all prior computational
effort. Third, for MILP scheduling problems [42, 111], since converting non-integer valued
variables to their integer counterparts dominates solver time, this further exacerbates the
scalability challenge for large problems.

To address these limitations, we propose continual optimization — a paradigm that
formulates scheduling problems in round-based scheduling as a sequence of interconnected
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optimization programs with the goal of amortizing solver work/overhead over multiple rounds.
We propose COpter as a system for performing continual optimization and show that it is
possible to (a) reflect small changes in the scheduling problem to its optimization formulation
using an efficient differential update interface to the problem; (b) exploit the slow evolution
of the optimal solution to efficiently (and provably) warm-start subsequent problem solves;
and (c) use lightweight heuristics to recover high quality integer solutions for MILPs that
bypass expensive combinatorial searches entirely.

In this chapter, we demonstrate COpter’s effectiveness by applying to the Sia [42] scheduler
for heterogeneous GPU clusters, discussed in the previous chapter, and defer discussion
of COpter for other resource-allocation problems to the next chapter. In our evaluations, we
find that COpter recovers high quality solutions, solves problems with millions of variables
using just a few CPU threads, and reduces solver times by orders of magnitude compared
to traditional use of state-of-the-art commercial solvers (Section 4.5.1 in this chapter, and
Sections 5.2.1 and 5.2.2 in the next), with minimal quality loss (Sections 4.5.1 and 5.2.1).
Compared to using POP, COpter can simultaneously improve allocation quality and reduce
end-to-end allocator runtimes by 1.5–30×.

A paper describing continual optimization and COpter for many resource allocation
problems was accepted at the ACM Symposium on Operating Systems Principles (SOSP)
2025.

4.2 Background and Motivation

In this section, we describe formulating scheduling problems as linear programs, the com-
putation involved in solving linear programs using modern numerical solvers, and discuss
challenges in scaling optimization-based scheduling to large problem sizes. We discuss other
related work in Section 4.6.

4.2.1 Scheduling Problems as Linear Programs

Many scheduling policies can be formulated as linear programs (LPs) or mixed integer linear
programs (MILPs) [68]. Given a set of resources (e.g., GPUs, CPUs) and resource requests
(e.g., jobs, tasks), the goal with these programs is to find an allocation of resources to requests
in a way that optimizes the given objective (e.g., maximizing throughput, minimizing job
completion time, or ensuring fairness). Additionally, constraints are added to ensure that the
resulting allocations are valid, realizable, and satisfy any policy requirements (e.g., priority
requests must be satisfied before other requests).

Standard form linear program. Without loss of generality, let us consider linear
programs in their standard form:

min
x

f(x) = cTx

subject to: Ax ≤ b, x ≥ 0 (4.1)

where: x ∈ Rn is a vector of decision variables, f(x) = cTx is the linear objective function
on the decision variables, A ∈ Rm×n is the constraint matrix, b ∈ Rm is the right-hand side
vector. Additionally, in mixed-integer LPs (MILPs), some or all variables are constrained to
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integral values. MILPs are particularly useful in resource allocation as the decision variables
in many problems are inherently discrete. For example, a resource is either allocated to some
job or none, and a job is allocated some resource or none.

Example: GPU Cluster Scheduling. Consider a simplified GPU cluster scheduler
that allocates a fixed number of GPUs to non resource-adaptive jobs. Let the cluster have
N GPUs and M jobs. Let gj be the number of GPUs requested by job j, and cj be its
throughput when using gj GPUs. We wish to allocate resources to maximize the throughput
of jobs in the cluster under the GPU capacity constraints. This can be stated as the following
linear program:

min
x
− cTx

subject to: G · x ≤ N, xj ∈ {0, 1} ∀j

where c = [c1, c2, . . . , cM ] is the throughput vector, G = [g1, g2, . . . , gM ] is a 1×M matrix, and
x = [x1, x2, . . . xM ] is the vector of variables. The variable xj = 1 iff gj GPUs are allocated
to job j (0 otherwise).

4.2.2 Solving linear programs

The LP/MILP formulation for a scheduling problem is solved in two stages, with an additional
third stage for MILPs.

1. Program compilation. This stage transforms the scheduling problem into a form
that existing solvers can consume. For example, in the example GPU scheduling problem
in Section 4.2.1, this involves (a) ordering the M active jobs and assigning them an index in
{1 . . .M}, (b) building the c vector and (c) building the G matrix.

2. Program solving. The solver then uses one or more optimization algorithms to find
an optimal solution to the compiled linear program. If the input program constrains some
variables to take only integral values (MILPs), this stage ignores such constraints and finds
an optimal solution to the LP relaxation of the MILP instead.

3. (Optional) Integerization. This stage only applies to MILPs and converts any pos-
sibly non-integer values for variables with integer constraints to an integer value. Techniques
like branch-and-cut often require alternating between the solving and integerization stages as
it progressively assigns integral values to variables with integer constraints [60].

High-level modeling frameworks, such as CVXPY and Google OR-Tools [21, 76], provide
powerful abstractions to specify optimization problems common in systems, like resource
allocation. Developers define problems programmatically using symbolic variables and
functions mirroring the mathematical formulation that are then automatically compiled into
solver-compatible representations, shielding users from low-level implementation details.

4.2.3 Scalability challenges in solving linear programs

Traditional approaches to round-based scheduling reformulates and solves one scheduling
problem from scratch in each round. This means that, in each round, we recompile the
current linear program from scratch, pass this to an LP solver, and use a procedure like
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Figure 4.2: Changes to the solution between consecutive scheduling rounds over a 24-hour
period in a 25k GPU cluster running Sia policy [42]. Most variables remain unchanged: fewer
than 0.01% of variables change values and at-most a few % are added/removed between
consecutive rounds.

branch-and-bound [29, 60] to recover integer-valued solutions to the problem as needed. As
problem sizes grow (e.g., clusters with tens of thousands of GPUs/jobs), each stage in solving
an LP faces scalability challenges, which we discuss below.

Program re-compilation discards prior computational effort. For any scheduling
problem, the bulk of the compilation time is spent in constructing the constraint matrix.
Constraint matrices are often quite sparse— each row in the matrix corresponds to a constraint
on resource or request, and applies to a small subset of variables at once. For large scheduling
problems, even the sparse representation can contain tens of millions of non-zero values and
can take tens of seconds to populate in each round. Further, since current approaches trigger
full recompilation for small changes to the problem (e.g., add/remove resources/requests),
they discard all prior computational effort spent in creating the constraint matrices for
previous rounds. We show in Section 4.3 that it is possible to reduce this overhead of
recompilation every round by adopting a problem-level differential interface, significantly
reducing end-to-end runtimes.

Independently solving LPs ignores problem evolution. Many large scale scheduling
problems evolve slowly, i.e., between two consecutive rounds t and t+ 1, few resources are
added/removed and few jobs are added/removed (relative to the current sizes of resource
and request sets). While, in general, small changes in problems can still induce large changes
in the optimum solution, we observe that for scheduling problems, the optimal solutions in
rounds t and t+ 1 only differ by a small amount (see Figure 4.2).

State-of-the-art LP and MILP solvers [29, 39] use either an Interior-Point (Barrier) or
Simplex algorithm, both of which maintain internal state that cannot be easily updated
to benefit from the slow evolution of the problems. Interior-Point methods maintain ma-
trix factorizations and adding new variables and/or constraints to the problem requires a
refactorization. Similarly, the Simplex algorithm maintains a basis factorization. While
theoretically amenable to warm-started updates when adding variables and/or constraints, in
practice this process necessitates expensive updates to the factorization and triggers numerous
pivot operations to restore feasibility. Solvers using first-order algorithms like ADMM [9] or
Proximal Point Algorithm [73] often maintain very little internal state, so they do not suffer
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from the same issues, and form the basis for our approach.

Warm-start not well exploited by existing approaches. Consecutive scheduling
problems often exhibit a significant overlap in the set of resources and jobs. Often, even the
optimal solutions from successive rounds, x∗

t−1, x
∗
t are also close to each other in Euclidean

distance (ℓ2 norm). Intuitively, one might expect that initializing a solver with a point
already close to optima would lead to faster convergence. Conventional solvers, however,
face challenges in effectively exploiting this ℓ2 proximity. The runtime of Simplex methods
depends on traversing the vertices of the constraint polytope (defined by the constraint
matrix A and vector b). A small ||x∗

t − x∗
t−1||2 does not guarantee a short path between the

corresponding vertices. Furthermore, even minor modifications, such as removing a single
constraint, can theoretically lead to worst-case exponential runtime for deterministic Simplex.
Interior-Point methods, while capable of warm-starting, measure the quality of an initial
point relative to the problem-specific central path. A small ||x∗

t − x∗
t−1||2 does not necessarily

imply proximity to this central path, making the practical benefit of such warm-starts difficult
to predict or control [105, 46]. First-order methods [9, 4, 91, 72] can benefit from a small
||x∗

t − x∗
t−1||2, but may suffer from slow practical convergence to acceptable tolerances.

Combinatorial explosion for MILPs. Mixed Integer formulations of scheduling
problems are typically solved using a two-stage process. First, a traditional, often a Simplex-
based, LP solver is used to find an optimal solution to the LP-relaxation of the MILP, where
integer constraints are temporarily ignored. However, this solution could assign non-integral
values to variables that require integers, leading to integer infeasibilities, that are resolved
in the second stage using an algorithm like branch-and-cut [60, 29, 39]. Branch-and-cut
systematically explores a tree of refined LP problems: it selects an integer-infeasible variable,
say xj, creates branches by adding constraints that push its value towards adjacent integers
(e.g., xj ≤ ⌊x∗

j⌋ and xj ≥ ⌈x∗
j⌉), and solves the resulting LPs recursively by choosing another

xk for k ̸= j. This continues until we find a solution with zero integer infeasibilities and whose
objective value is close (i.e., within a MIP gap) to the LP relaxation’s optimum. However, the
number of LPs to solve can scale exponentially, making this stage computationally prohibitive
for large problems. We show in Section 4.5 that problem-specific heuristics are effective in
circumventing this bottleneck by efficiently finding feasible integer solutions with negligible
quality impact.

4.3 Continual Optimization

In this section we first introduce a notion of slowly evolving linear programs and then describe
the continual optimization paradigm along with its goals. We then describe COpter— our
proposed approach for continual optimization of large-scale round-based scheduling problems.

4.3.1 Slowly Evolving LPs and Continual Optimization

As discussed in Section 4.2.3, in many real-world systems, scheduling problems and their
associated optimal solutions evolve slowly over time (see Figure 4.2). Naturally, such a slowly
evolving nature suggests the idea of reusing prior allocations or computation across rounds
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to improve run-times: if the scheduling problem in each round largely remains unchanged,
then the solve times should remain small.

Let us describe some notation needed to formalize the notion of slow evolution. We
use t to index successive rounds in a cluster scheduling process. With a minor overloading
of the notation, let minx LPt(x) denote the LP/MILP solved in round t. In the standard
form (Equation (4.1)), LPt(x) can be fully defined using a 3-tuple (ct, bt, At), where ct is
the cost vector, and At, bt are the constraint matrix and vector, respectively. Let x∗

t be an
optimal solution to the problem in round t, i.e. x∗

t ∈ argminx LPt(x). The size of these
LPs is determined by the number of variables n and constraints m (also the dimensions of
A ∈ Rm×n). We define problem dimension ηt = max(mt, nt) as the larger of the two for
round t, and ηmax = maxt ηt as the largest problem dimension over all rounds 1 ≤ t ≤ T .

Definition 1 (Slowly Evolving Linear Programs). We consider a sequence of round-based
scheduling problems {LPt(x)}Tt=1 as slowly evolving, if there exists some small α, β ∈ [0, 1],
α≪ 1, β ≪ 1 such that,

1. Pη(T ) =
∑T

t=2 |ηt − ηt−1| = O(Tαηmax), and,

2. Px(T ) =
∑T

t=2∥x∗
t − x∗

t−1∥2 = O(T βB),

where B > 0 is such that ∥xt∥2 ≤ B for all feasible x and all t.

The quantities Pη(T ) and Px(T ) are often referred to as path-lengths as they represent the
trajectory of a sequence of values: problem dimensions in the case of Pη(T ) and the optimal
solutions in the case of Px(T ). The quantities α and β are used to interpolate between two
cases—one where consecutive programs do not change at all (both α = 0 and β = 0), and
the other where they change drastically (either α = 1 or β = 1). For example, consider the
hypothetical scenario in GPU resource scheduling where an adversary cycles between taking
all the GPU nodes offline and then bringing them back online. In such a scenario, in rounds
where no nodes are available, the optimal allocation x∗ is all zeros and in rounds where the
GPU nodes come back online, x takes on non-zero values. Assuming xi ∈ [0, 1], the maximum
ℓ2 distance between consecutive optima is at most

√
n (i.e. ∥x∗

t − x∗
t−1∥2 ≤ n), and therefore,

Px(T ) =
∑T

t=2∥x∗
t − x∗

t−1∥2 ≤ Tn and β = 1. Similarly, on the other extreme, consider the
scenario where the resources and requests, and therefore the allocations all remain unchanged.
This means that x∗

t = x∗
1 ∀ t ≤ T , so Px(T ) = 0 and β = 0.

Continual optimization. Given the model of round-based scheduling as a sequence of
programs, {LPt(x)}Tt=1, and path lengths Px(T ) and Pη(T ) as defined in Definition 1, the
goal of continual optimization is to develop approaches where the total end-to-end time to
allocation, say τ(T ), depends on problem-specific path lengths, Px(T ) and Pη(T ) as follows:

τ(T ) = O
(
Px(T ),Pη(T )

)
Scheduling problems have small Px(T ) and Pη(T ) (i.e α≪ 1, β ≪ 1), and so we can expect
continual optimization to enable significant speedups in runtime when compared to treating
each problem independently (see Figure 4.3 [Right]). This notion of problem-dependent
bounds have recently received extensive attention in the online optimization literature [109,
108, 8] in the context of dynamic regret, the sum of optimality gaps across all T rounds.
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Figure 4.3: Existing approaches for optimization round-based scheduling problems cannot
scale to large sizes because: (a) any changes to a problem (from adding/removing resources
and/or jobs) require problem recompilation; (b) recompiling a problem discards any solver
work done for previous rounds; and (c) warm-starting is either not supported or often not
beneficial in reducing solver runtimes. [Left] We propose continual optimization and imple-
ment a prototype (COpter) with techniques designed for (a) efficient problem manipulation,
(b) solver state re-use, and (c) efficient warm-starting. [Right] For the LP-relaxation of
the Sia ILP policy [42], COpter using continual optimization is a few orders of magnitude
faster than memoryless optimization with any open-source solver, and scales better to larger
problem sizes (see Section 4.5 for comparisons with commercial solvers).

Continual optimization differs in that we additionally care about the end-to-end runtime for
the scheduling problem.

Note that since programs across rounds are allowed to have different dimensions ηt, the
distance ∥x∗

t − x∗
t−1∥2 is defined by padding x∗

t and x∗
t−1 so their dimensions are exactly ηmax,

the largest problem dimension. We also note that the definition of slowly evolving programs
also admits bursts of resources and/or jobs as long as such events are not too frequent in the
measured T rounds.

4.3.2 COpter for Continual Optimization

In this section, we describe COpter, our proposed approach for continual optimization of
round-based scheduling problems. Figure 4.3[Left] shows the high-level overview of the
scalability challenges in existing memoryless approaches and our proposed approach using
continual optimization. COpter proposes techniques to address scalability challenges in each
of the three stages involved in solving scheduling problems as described in Section 4.2. Taken
together, these techniques enable COpter to efficiently reuse computational effort from prior
rounds to reduce overall runtimes.

Differential interface for problem updates. COpter uses a differential interface at
the problem level that reflects changes to the scheduling problem from the addition and/or
removal of resources and requests between rounds.

To support such differential updates to the problem we need to efficiently support the
following methods:

• add-request(job ID, num variables): modifies A by (a) appending num variables
columns to A, c, and x, (b) appropriately filling in the newly appended columns for all
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constraints affected by adding this job, and (c) adding any additional constraints (one
row per constraint) for the new job to A and b.

• remove-request(job ID): modifies A by (a) deleting columns associated with the job,
from A, c, and x, and (b) removing any associated constraints from A.

• add/remove-resources(resource ID, count): modifies b to reflect the change in
number of resources of type resource ID by ±count units as appropriate.

To efficiently implement such an interface, we manipulate the constraint matrix A in-place.
Since the matrix A is mostly sparse (i.e. few non-zeros per row), it is common to store
the non-zero entries in A in a contiguous array with a majorization either along the rows
or the columns of A — compressed sparse row (CSR) representation for row level access,
and compressed sparse column (CSC) for columns. However, a contiguous memory layout
does not permit efficient modifications to the matrix (like adding or removing rows/columns)
without incurring a full copy cost of Θ(min{mn, nnz(A)}). So, even when existing solvers
provide interfaces for incremental modifications [29, 39], the cost of recompilation from an
existing in-memory matrix does not improve significantly.

COpter trades the cache-friendly, contiguous memory layouts for a List-of-List (LoL)
representation as a compromise between the latency advantages of contiguous layout and the
ease of modification of a non-contiguous representation. We use pointer manipulations to
efficiently add and remove rows (i.e. add/remove constraints) in the row-major LoL format.
The corresponding column operations are still expensive, but only affect a few rows because
A is sparse, and are trivially parallelized over rows. We show in Section 4.5.2 that differential
problem updates cut compilation times by upto 30× compared to recompilation each round.

Factorization-free, efficiently warm-started LP solvers. State-of-the-art solvers
rely on internal problem transformations of some form, often a factorization of the constraint
matrix A, to speed up solving times. In the context of continual optimization, changes to
the A matrix from adding/removing resources and/or jobs are common operations. However,
these changes make the factorizations from prior rounds invalid, forcing us to discard all prior
computational work (or adopt expensive procedures to restore factorizations to a reusable
state). Additionally, in a slowly evolving system, the optimal allocation for a majority of the
requests remains unchanged, and so the previous solution serves as a good starting point for
the solver in the current round. However, Simplex and Interior-Point(Barrier) based methods
cannot be easily warm-started with guesses that are close in ℓ2 norm to the optimal solution.
A simple workaround is to adopt a solver based on first-order methods such as ADMM [9] or
Proximal Point Algorithms (PPA) [73] that maintain an easily recomputable internal state.

We choose the Proximal Point Algorithm (PPA) as our workhorse for its practical
convergence behavior, ability to be warm-started and its ability to recover largely integral
solutions for LP-relaxations of MILPs. PPA transforms LPt(x) into a sequence of quadratic
programs whose solutions converge to that of LPt(x). Successive iterations improves both
feasibility and optimality of the current iterate by a multiplicative factor. We efficiently
warm-start PPA by starting its first iteration for round t with x∗

t−1 – the optimal solution to
LPt−1(x) from round t− 1. To solve the quadratic subproblems, we employ a fast coordinate
descent (CD) [104] algorithm. This enables our solver to (1) maintain minimal internal
state, as coordinate descent is factorization-free, (2) benefit from sparsity in the constraint
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Figure 4.4: Solution composition for LP-relaxations of MILP formulations for two scheduling
problems using a commercial simplex based LP solver (CPLEX [39]): Sia scheduler policy
for GPU cluster scheduling [42] and Shard Load Balancing (see Section 5.1.1). In the optimal
solution to the LP-relaxations, ≥ 99.99% values are either 0 or 1 with ≤ 0.01% values in
(0, 1).

matrix and solution vectors through sparse matrix-vector (SpMv) operations and an active-set
strategy, and (3) provably benefit from a good initial guess. At large scales, our approach
solves problems orders of magnitude faster than the alternative of solving linear systems, all
while using just a few CPU threads (see Figure 4.3 and Section 4.5.1).

Lightweight integerization for MILPs. The applicability of traditional MILP solvers
to large-scale optimization-based scheduling is often limited by the runtime cost of enforcing
integer constraints with minimal loss of optimality. After solving the LP relaxation of the
MILP, techniques like branch-and-cut [60, 39, 29] are used to fix integer infeasibilities. Since
this integer resolution stage frequently dominates the overall solution time, it creates a
significant scalability bottleneck.

We find that for many resource allocation MILPs (see Sections 4.4.1 and 5.1.1), solvers
using Simplex[39] or COpter’s PPA (see Figure 4.4) often produce solutions to the LP
relaxation with only a few integer infeasibilities, in contrast to ADMM-based solvers [9, 72].
While conventional MILP solvers invoke expensive branch-and-cut [60, 39, 29] to guarantee
optimality of the integer-feasible solution, this is a bottleneck step and COpter introduces
lightweight post-processing, using shims, to produce integer-feasible solutions from the
optimal solution to the LP-relaxation of the MILP. Shims operate heuristically: they round
fractional variables and then apply fast, local corrections to restore constraint feasibility, and
are deliberately designed to prioritize problem feasibility over optimality.

The crucial result is that COpter delivers high-quality, feasible solutions for large-scale
MILPs (millions of variables) in milliseconds, effectively circumventing the traditional bottle-
neck with minimal impact on quality (Sections 4.5.1 and 5.2.1).
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4.4 COpter-Sia

We will first recap the MILP formulation of Sia policy and then describe how COpter realizes
continual optimization for the Sia policy. We defer evaluations of COpter-Sia to Section 4.5.

4.4.1 Sia policy — a quick recap

The MILP formulation for Sia policy starts with the goodput matrix G where Gij is the
normalized goodput for job i estimated on configuration j. X is an allocation matrix (same
dimension as G) and job i is allocated configuration j if Xij = 1, or no resources if Xij = 0.
Let NGPU(Cj, k) be the number of GPUs of type k in configuration Cj, and Nk be the total
number of GPUs of type k in the cluster. The MILP formulation for the Sia policy is as
follows:

max
X

∑NJ

i=1

∑NC

j=1Xij ·Gij + λ
∑

i

(
1−

∑
j Xij

)
(a)

subject to:
∑NC

j=1Xij ≤ 1 ∀i (b)∑NJ

i=1

∑NC

j=1 NGPU(Cj, k) ·Xij ≤ Nk ∀k (c)

Xij ∈ {0, 1} ∀ i, j (d)

where (a) is the objective that maximizes cluster-wide goodput with an incentive λ ≥ 0
to reduce scheduler queue occupancy[42], (b) ensures each job is allocated at-most one
configuration, (c) ensures that each GPU type k is not over-subscribed (i.e. allocations do
not exceed capacity), and (d) ensures that for any job, choice of a configuration is binary.

Applying COpter. We first relax the binary constraints on Xij to 0 ≤ Xij ≤ 1 ∀i, j.
Then, we solve the relaxed LP and apply a shim to its optimum solution to recover binary
and feasible allocations in each round. For each job, the shim simply picks the configuration
with highest weight in the solution to the LP-relaxation without violating GPU constraints.
If it finds no such configuration for the job, it receives no allocation in this round.

The resulting allocations are both binary and feasible, but possibly sub-optimal. We
show in Section 4.5.1 that COpter’s allocations result in negligible increases to average job
completion times and makespan in clusters with 10,000+ GPUs.

4.5 Experiments

This section evaluates the effectiveness of applying continual optimization via COpter to
the Sia scheduler policy formulated as an MILP. In the next chapter, we will describe and
evaluate COpter when applied to resource-allocation problems from other domains like elastic
database and WAN traffic engineering systems.

We run the Sia policy [42], in simulation, with 60 second round on two clusters with 7
GPU types, and 10k and 25k GPUs, respectively. We sample a job traces with 40k and 100k
jobs submitted over 24-hours from a real GPU datacenter trace [99], and map each sampled
job to one of 10 representative jobs (same as prior work [42, 79]).
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Cluster size: 10k GPUs
Avg JCT
(hours)

Makespan
(hours)

Solve time
(p99, seconds)

LP* 0.35 29.3 233.4
POP 0.41 31.0 2.9
COpter 0.36 29.4 6.5

Cluster size: 25k GPUs
LP* 0.35 29.3 2277
POP 0.39 30.9 66.5
COpter 0.36 29.4 40.3

Table 4.1: Summary of experiments for the GPU cluster scheduling case study using the Sia
policy [42] for 10k and 25k GPU clusters using COpter, POP and a commercial LP solver[39].

Testbed. We run our experiments on a 2-socket AMD EPYC 7742 64-core processor
with 1TB of DDR4 memory, but limit solvers to 8 threads (no significant speedup is observed
beyond 8 threads [102]).

4.5.1 Effectiveness of applying COpter to Sia

Evaluated approaches. We compare COpter against two approaches: (a) POP [67] splits
the ILP formulation of the Sia policy into 16 sub-problems with equal resources (and jobs
whenever possible), solves subproblems in parallel (using ray [64]+cvxpy [21]) with a Simplex-
based solver[24], and (b) LP* solves the LP-relaxation of the Sia ILP using a commercial
solver [39] and obtains binary allocations each round using the shim described in Section 4.4.1.

Metrics. We are interested in the following metrics: (1) average job completion times
(avg. JCTs) is the average time taken to execute a job from submission to completion,
averaged over all jobs in the trace (lower is better), (2) makespan is the time taken for all
jobs in a trace to complete (i.e. time between first job submission and last job completion,
lower is better), and (3) solver runtime measures the end-to-end runtime for the scheduler
policy (including the time spent in shim for COpter and LP*, lower is better).

We summarize the results of our experiments in Table 4.1 and the CDF of the solver
runtimes in Figure 4.5. From Table 4.1, we see that for both cluster sizes, COpter is 30− 40×
faster than LP* and achieves a similar average JCT and makespan. POP’s 99th percentile
solve time is faster than COpter for the 10k GPU cluster, but exceeds the 60-second threshold
for the 25k GPU cluster owing to the combinatorial explosion for the MILP solved in each
subproblem. Despite solving the ILP formulation directly, POP’s solutions result in 11− 17%
and 6% increase in average JCT and makespan, respectively. This also highlights the efficacy
of our shims – despite using a heuristic to obtain integer solutions to the MILP, solutions
for both COpter and LP* result in lower average job completion times and makespan. This
indicates that the combinatorial explosion from the integerization stage can be bypassed for
large resource-allocation problems without much penalty.

Figure 4.5 also highlights another characteristic of MILP solvers: the number of variables
in the ILP does not always dictate the solver runtime due to the unpredictability of the
runtimes for the integerization stage. Since POP solves the ILP formulation directly in each
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Figure 4.5: CDFs of end-to-end solver runtimes for Sia policy [42] in two clusters with 10k
and 25k GPUs respectively. We compare COpter to (1) POP, which partitions the ILP 16-way
and solves the sub-problems in parallel, and (2) LP*, which solves the LP-Relaxation with a
commercial solver [39] and recovers binary solutions using a shim.

subproblem, we see a large spread of runtimes – over a 30x difference between the 90th and
100th percentile solver times. COpter, on the other hand, shows predictable runtimes – the
slowest runtime (70.4s) corresponds to the problem with the most number of variables (over
11-million variables) with just a 2-3x difference between the 90th and 100th percentile solver
times.

4.5.2 Attribution of benefits

COpter provides a varying amount of benefits in our benchmarks. Differential program
updates help if the set of resources and requests change, so this only benefits the GPU
cluster scheduling problem. While all three problems benefit from our factorization-free,
sparsity-aware efficiently warm-started solver, lightweight integerization via problem-specific
shims only benefits GPU cluster scheduling and shard load balancing problems.

Figure 4.6 illustrates the stacking benefits from COpter on the LP-relaxation of the Sia
ILP [42] in the previously described 10k GPU cluster. We choose the LP relaxation, and
not the ILP directly, as many problems are directly formulated as LPs (like WAN traffic
engineering) and do not benefit from using lightweight shims to resolve integer infeasibilities.

Figure 4.6 shows the impact of (a) using the custom solver implementation that benefits
from problem and solution sparsity, (b) using a differential interface to reflect problem updates
efficiently, and (c) efficiently warm-starting the custom solver using previous round’s solution
as the initial guess for the current round. On average, each of these contribute a stacking
5×, 3.5×, and 1.5× speedup, respectively, for a total speedup of 24× over independently
solving problems using existing LP solvers. Additionally, as we will see later in Section 5.2.1,
solving MILPs by first solving its LP-relaxation and then applying a problem-specific shim
can lead to an end-to-end speedup of 2 − 3× (using the same solver [39] for both MILP
and LP-relaxation of the load balancing problem). Thus, we can expect COpter to provide
24− 72× speedup for MILPs.
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Figure 4.6: Speedups in end-to-end solver runtimes from two of the three techniques that
make up COpter compared to a commercial LP solver (CPLEX [39]). We show mean, median,
10th and 90th percentile speedups for the LP-relaxation of the Sia ILP [42] for 1 minute
rounds on a 10k GPU cluster.

4.6 Related Work and Discussion

In this section, we discuss some systems that formulate scheduling problems as optimization
programs, describe existing approaches to solving these optimization programs, look at the
landscape of methods used to reduce solver times in large-scale resource-allocation and
contrast our approach to methods in existing literature. We also discuss some best and
worst-case scenarios for COpter.

4.6.1 Scheduling as Optimization Problems

Plan-ahead schedulers like Tetri-Sched [96] and Shockwave [111] solve one MILP to determine
allocations for multiple rounds, and as a result, are reasonably robust to missing scheduler
deadlines in large clusters at the cost of increased queue times and reduced resource utilization.
Meta’s RAS [70] solves MILPs hourly for large-scale capacity reservation uses a two-stage
decomposition (MILP for server-reservation assignment, then parallel container allocation),
but requires problem-specific optimizations and heuristics to scale the MILP stage to large
scales. Tetris [13] solves MILPs for load balancing ML workloads and data placement
optimization across regions, and employs multi-level scheduling for scalability at the cost of
global optimality. Gavel [68] supports time-slicing DNN jobs across heterogeneous GPUs
using LP formulations for many scheduling objectives, but runs into solver bottlenecks if jobs
request space-sharing leading to missed scheduler deadlines in large clusters. Rebalancer[54]
is a framework to express and compile scheduling policies into MILPs. The MILPs are then
solved using off-the-shelf solvers at small scales, and use a faster, sub-optimal local search
algorithm on a graph representation at larger scales. COpter complements Rebalancer in two
ways – (a) potentially extending the size of problems directly solvable as MILPs, and (b)
using COpter’s outputs as initial guesses to initialize the local-search algorithm at scale for
better quality solutions.
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4.6.2 Solving Optimization Problems

Offline optimization. Offline optimization deals with problems that are fully specified before
optimization starts. State-of-the-art LP and MILP solvers (e.g., CPLEX [39], Gurobi [29],
GLPK [60]) often use simplex or interior-point (barrier) methods that rely on solving linear
systems iteratively, and employ optimizations like matrix factorizations (LU, QR, LDL) [60,
39]. These methods scale poorly to large problems issues due to high per-iteration costs.
Additionally, factorization often destroys sparsity patterns in the constraint matrices and must
be recomputed if the problem changes, rendering them inefficient for continual optimization
where problems change frequently. First-order methods (OSQP [91], ADMM [9], ALCD [104,
98], PGD [10], PDLP [4]) address these scalability challenges by trading slower convergence
for lower per-iteration costs, and have proven useful in large-scale applications [18, 104,
98]. Stochastic variants like SGD reduce per-iteration costs further, sacrificing convergence
guarantees and quality of optimum.

Online optimization. Online optimization[30] deals with problems that are revealed
over time, often minimizing regret against a fixed optimum (static regret)[30, 82]. Static regret
is less suitable for resource allocation problems whose optimal solution changes with time.
Instead, dynamic regret, that compares against a sequence of changing optima [109, 108, 8], is
more relevant. However, existing work does not focus on runtime efficiency that is important
for slowly evolving resource-allocation problems. Our focus in continual optimization is
different: we seek algorithms that provide both low dynamic regret and runtimes that scale
favorably with the amount of change in the optimal solution over time, especially for slowly
evolving resource-allocation problems that are the focus of this paper.

4.6.3 When to use COpter?

COpter is best applied to critical, large-scale resource allocation problems where the set of
resources and requests change slowly over time. Many such problems have received extensive
attention in recent literature, like:

• Cluster scheduling for DL workloads (e.g., Pollux [79], Sia [42], Shockwave [111]) and
best-effort batch scheduling (e.g., Google Borg [95])

• Shard placement for elastic databases (e.g., Accordion [85], E-Store [92], see Sec-
tion 5.1.1)

• Virtual Machine/Container/Data Placement (e.g., Meta’s RAS [70] and MAST [13])

• Traffic Engineering (e.g., Google’s B4 [41], Microsoft’s SWAN [33]) (see Section 5.1.2)

COpter is not a great fit when resource needs and/or availability change dramatically
from round-to-round, rather than in relatively small amounts over time, such as serverless
functions or fine-grained streaming tasks.
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4.7 Conclusion

We find that large-scale scheduling problems are better formulated as sequence of intercon-
nected problems. COpter is our approach towards efficient continual optimization of slowly
evolving LPs. It pairs a differential problem update interface with a factorization-free LP
solver to seamlessly reuse computational effort across rounds, and uses lightweight problem-
specific heuristics to recover high-quality feasible solutions to MILPs. In our evaluations, we
find that applying COpter to the Sia scheduling policy finds allocations 10 − 100× faster
than state-of-the-art solvers with negligible loss in allocation quality. Further, COpter also
outperforms POP in allocation quality with 1.5× reduction in tail solver times, for a more
predictable policy optimization time.
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Chapter 5

Continual optimization for other
resource-allocation problems

It is common to see resource-allocation problems from other domains formulated as linear/mixed-
integer linear programs. In Wide Area Newtork (WAN) traffic engineering, operators allocate
flows to links to maximize network utilization and minimize latency [102]. In elastic database
systems, the query load to a fixed number of shards must be periodically re-balanced given
a fixed set of servers [85]. We study these two problems thoroughly in this chapter, ap-
ply continual optimization and compare our approach using COpter against both heuristic
and problem-partitioning approaches often used to scale these problems to large problem
instances.

5.1 Problem descriptions

Similar to Sia, we describe the shard-load-balancing and traffic engineering problems in detail,
and our approach to continual optimization of these problems.

5.1.1 Shard Load-Balancing

The shard load-balancing problem frequently arises in the operation of elastic database
systems [17, 85, 92] where replicas of data shards are shuffled around a fixed pool of servers
to ensure a consistent load across the server fleet.

Problem Formulation. Let L = {l1, l2, . . . , lD} be the load on each of the D shards, and
let N be the number of servers in the fleet. Let T denote the existing shard-server assignment
where Tij = 1 iff a replica of shard j exists on server i, S = {s1, s2, . . . , sD} denote the size
of each shard, and M = {m1,m2, . . .mN} denote the memory capacities of each of the N
servers. The optimization problem uses two related variables for each (server, shard) pair
(i, j): Rij and Xij. Rij ≥ 0 denotes the fraction of load for shard j routed to server i, and
Xi,j ∈ {0, 1} denotes if a server i hosts a replica of shard j. So, Rij > 0 =⇒ Xij = 1, and
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Rij = 0 ⇐⇒ Xij = 0. The MILP is defined as follows:

min
R,X

∑
i

∑
j(1− Tij) · si ·Xij (a)

subject to:
∑N

i=1Rij = 1 ∀ j (b)

L − ϵ ≤
∑

j Xij · lj ≤ L+ ϵ ∀ i (c)∑D
j=1Xij · sj ≤ mi ∀ i (d)

Rij ≤ Xij, Xij ∈ {0, 1} ∀ i, j (e)

where (a) is the objective that minimizes the cost of starting up new replicas on servers
without a replica for each data shard, (b) ensures all load for each shard j is accounted for,

(c) ensures the load on each server is within ϵ of the average load L =
∑

j li

N
, (d) ensures a

server i’s memory usage does not exceed its capacity mi, and (e) ensures that if a server i
executes queries for shard j, it hosts a replica of shard j, and that shard-server assignment
variables X are binary. Note that (c) allows for 2ϵ load imbalance – the difference in load
between the most and least loaded servers – by design.

Applying COpter. We first relax the binary constraints on Xij to 0 ≤ Xij ≤ 1. Then
we solve the relaxed LP using continual optimization and apply a shim to recover a feasible
binary Xbin and continuous R. We start the shim with an initial shard placement Xbin

computed using R which may exceed some servers’ memory capacities. We pick a server i
whose memory capacity is exceeded in Xbin and greedily remove assigned shards j one by
one, starting with those placing the least load Rij ∗ lj. A shard j is only removed if it has
replicas on other servers, and if removed, we proportionally shift its load share Rij from
server i to all servers hosting its other replicas. We repeat until server i’s memory capacity is
not violated, and move on to the next overloaded server. The final server-shard assignment
Xbin and load distribution R does not violate hard-constraints like server-memory capacity,
but may violate the load imbalance soft-constraint.

We show in Section 5.2.1 that (Xbin, R) rarely violate the soft load balancing constraints,
and as a bonus, we find that COpter solutions are sometimes better-than-optimal — an
artifact of the problem formulation that allows for reducing the number of replicas for shards
without any penalties. We discuss this observation in more detail in Section 5.2.1.

Note that some solvers, particularly the ADMM-based SCS and OSQP [72, 91], produce
degenerate solutions to the LP-relaxation that suggest each shard’s load to be evenly split
across all N servers, making it an infeasible solution due to server memory capacity constraints.
However, our solver and Simplex based solvers produce mostly binary solutions to the LP-
relaxation natively (see Figure 4.4).

5.1.2 WAN Traffic Engineering

In WAN traffic engineering, demands (i.e. flows) are allocated link capacities in the network
to maximize total flow through the network of links and routers(max-flow [2, 67]) or minimize
the maximum link utilization (MLU [67, 102, 23]) for better network performance. As
the demands fluctuate, TE systems must frequently re-optimize flow allocations (often at
5-minute intervals [2, 67, 102]) to maintain optimal network performance. We describe the
LP formulation for the maximize total flow, or max-flow for short, objective below.
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Problem Formulation. Let D = {d1, . . . dk} be the set of demands such that demand j
for source sj and destination tj requests bandwidth dj. Let P = {P1, . . . Pk} be a set of N
pre-configured paths for each pair of routers in the network: Pj = {p1j , . . . pNj }, and ce be the
capacity of the link connecting routers u and v for each edge e = (u, v) ∈ E in the graph
G = (V,E) with routers as vertices V and links as edges E.

The path formulation LP [33, 34, 41], is defined as follows:

max
X

∑
j

∑
p∈Pj

Xp
j (a)

subject to:
∑

p∈Pj
Xp

j ≤ dj ∀j (b)∑
j,p∈Pj |e∈p X

p
j ≤ ce ∀ e ∈ E (c)

Xp
j ≥ 0 ∀ p ∈ Pj,∀ j (d)

where (a) is the objective maximizing the total allocated flow through the network, (b)
ensures each demand j is allocated at-most the requested bandwidth dj split across its N
pre-configured paths, (c) ensures that the sum of all flows through a link e is limited by the
link capacity ce, and (d) ensures that all flow allocations are non-negative.

Applying COpter. The variables Xp
j are continuous as they represent flow values in

Mb/s, so COpter will solve the above LP as-is using continual optimization without the use
of shims. We show in Section 5.2.2 that COpter’s flow allocations result in optimal max-flow
and for changes to demands across time, new and optimal allocations are quickly computed
from previous allocations.

5.2 Experiments

This section evaluates the effectiveness of applying continual optimization via COpter to
the resource-allocation problems previously described. We setup the experiments for each
problem as follows:

• Shard Load Balancing. We follow the experiment setup described in [67] and
simulate time-varying load distributions. We re-use the code open-sourced by authors
of POP [67] wherever possible and use the same load distributions to benchmark COpter

(implemented separately).

• Traffic Engineering. We optimize the max flow objective for two network topologies –
the Kentucky Data Link network (Kdl [67, 102]), and an AS-level topology (ASN [102]).
We implement COpter in the same evaluation framework as POP [67] to simulate
identical traffic patterns.

Testbed. We use the same testbed previously used to benchmark COpter- Sia. For
POP [67], we follow the approach used in prior work [67, 102], and solve each subproblem on
a single thread and report estimated parallel runtimes computed mathematically for 64 cores.

5.2.1 Load Balancing

Evaluated approaches. We compare COpter against three approaches: (a) Heuristic
is a greedy algorithm from E-Store [92], (b) Exact is the MILP formulation described
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Figure 5.1: Average load per server for 1024 shards load-balanced across 128 servers.

in Section 5.1.1 and solved using a commercial MILP solver[39], (c) LP-Relaxed solves the
LP-relaxation of the MILP formulation, and applies the shim described in Section 5.1.1 to
resolve integer infeasibilities, and (d) POP-k splits the set of servers and shards into k pieces
and solves the MILP formulation using a commercial MILP solver[39].

Metrics. We are interested in the three metrics: (a) average shard movements is the
average number of shards movements per round in response to changing load distributions
(lower is better), (b) average load imbalance is the difference in load between the most and
least loaded servers (lower is better), and (c) average load balancer time is the time taken to
compute shard-server assignments in each round and includes the time spent in the shim for
approaches that use it (lower is better).

Load distributions. We benchmark two load distributions computed using one Zipf
value zk for each round k – (a) Stateless where zk is uniformly random in [zmin, zmax] and
models an unpredictable and random query workload [67], and (b) Stateful where the
zk = zk−1 × (1± 0.1) with uniformly random direction (i.e. 10% increase/decrease in zk−1)
and models smoother changes to load distributions across rounds. Figure 5.1 shows the
average load per server for the two load distributions over time.

Additional details. We set ϵ = 5% (upto 10% load imbalance allowed), run for 100
rounds and exclude the first 20 to remove any startup effects. We evaluate two problem sizes
– 1024 shards, 128 servers and 2048 shards, 256 servers.

1024 Shards, 128 servers. Figure 5.2 (top) and (bottom) shows a summary of the
results for the two load distributions. Heuristic is quick, produces many shard movements
and falls short of maintaining load imbalance under the required 10%. POP-8 using 8
subproblems runs in about a second and reduces shard movements, but also fails to control
load imbalance – while all servers within a subproblem maintain low load imbalance, random
partitioning of shard loads leads to load imbalance across subproblems, creating imbalance
between pairs of servers across subproblems. Exact achieves perfect load imbalance with
almost minimum shard-movements by solving the MILP to optimality. LP-Relaxed uses
the same solver as Exact, but skips the integerization stage and uses a shim to speedup
end-to-end solver times by 2− 3× without any adverse impacts to either shard movements
or load imbalance. Finally, COpter employing continual optimization exploits the stability
of server-shard assignments resulting in the lowest shard movements and load imbalances.
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Figure 5.2: Summary of experiments with 1024 shards across 128 servers for Stateless (top)
and Stateful (bottom) loads.

However, since neither the set of shards nor the servers change over time, COpter does not
benefit from differential updates to the problem as only the cost and constraint vectors are
updated in each round.

Super-optimality. Curiously, LP-Relaxed and COpter both achieve lower shard move-
ments compared to Exact. Upon closer inspection, this super-optimality results from a
mismatch between the dynamics of the load variance across rounds and the corresponding
MILP formulation described in Section 5.1.1. Starting up a replica for a shard j on server
i has a non-zero objective cost, whereas deleting a replica has zero cost. Consider a shard
whose load increases between rounds k − 1 and k, incurring corresponding shard movements
in round k. Let the shard load decrease in the next round k + 1 – Exact will find a solution
that deletes a few replicas as they are no longer needed to maintain low load imbalance.
If the load increases in round k + 1, Exact will start up replicas again and incur shard
movements. LP-Relaxed and COpter do not suffer as much from this oscillation for two
reasons – (a) their solutions are not fully integral and using the shim to realize a binary
solution leads to temporally stable solutions, and (b) COpter maintains solution sparsity that
implicitly penalizes deletion of shards. COpter’s approach of continual optimization more
closely matches the problem dynamics and delivers better quality solutions at a fraction of
the runtime cost compared to Exact running with a commercial MILP solver.

2048 shards, 256 servers. Figure 5.3 (top) and (bottom) summarize our experiments
with the Stateless and Stateful loads for 2048 shards hosted on 256 servers. We omit Exact
from comparisons as each problem takes multiple hours to solve and is impractical for
meaningful round durations. Similar to the 1024 shard case, POP-16 is quick, but suffers
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Figure 5.3: Summary of experiments with 2048 shards across 256 servers for Stateless (top)
and Stateful (bottom) loads.

from load imbalance across subproblems. LP-Relaxed and COpter both meet load imbalance
constraints despite using shims to resolve integer infeasibilities, further evidence that we
can bypass the combinatorial explosion in large-scale resource allocation problems from
integerization stage for MILPs.

COpter obtains high-quality solutions about 2.8× faster than LP-Relaxed using our
factorization-free, sparsity-aware, and efficiently warm-started LP solver that benefits from
highly stable shard-server assignments.

5.2.2 Traffic Engineering

Evaluated approaches. We compare COpter against three approaches: (a) LP-All solves
the full LP on 8 threads using the Gurobi Commercial LP Solver (v11.0.3[29]), (b) LP-Top
solves the LP using Gurobi[29] only for top 10% of demands (by volume), and allocates
remaining demands to shortest paths (also called demand pinning [65]), and (c) POP-k [67]
splits the LP into k subproblems. Each subproblem in POP replicates the full topology, but
with 1

k
of its link capacities, solves the LP for a random 1

k
of the demands, and uses 4-way

client-splitting [67] for large demands to improve allocation quality. Subproblems are solved
in a single-thread and a parallel runtime is estimated mathematically.

Traffic matrices. We generate synthetic traffic matrices following the Poisson and
Bimodal distributions (similar to prior work[2, 67]). Figure 5.4 shows the probability
distribution of demands used for the Kdl topology. Poisson is dominated by few flows
requesting majority of the demand by volume, whereas Bimodal sees roughly even split
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between two low and high demand bands. In each round, we perturb demands from the
previous round by upto 10% to simulate time-varying demands. We run each experiment for
20 rounds and exclude the first 5 to remove startup effects.
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Figure 5.4: Distribution of demands in the two synthetic traffic matrices – in Poisson, few
large flows dominate the demands, and in Bimodal demand is split across two distinct bands.

Metrics. We consider three metrics: (a) Total allocated flow is the the sum of allocated
flow across all demands, averaged across rounds (higher is better), (b) Runtime is the average
time taken to compute flow allocations across rounds (lower is better), and (c) Optimality
Gap is the difference between the total allocated flow for a given approach and the optimal
value found by LP-All (lower is better). We compute optimality gap against COpter for the
ASN topology as LP-All takes tens of hours to solve for each round and COpter allocates the
most flow among the evaluated approaches.

Figure 5.5 and Figure 5.6 summarize our experiments for Poisson and Bimodal traffic
matrices, respectively. For the Bimodal traffic matrices, POP-128 takes multiple days to
solve all subproblems for a single round, so we present results only for the first round. The
first round runtime is representative of POP-128’s average runtime as it does not benefit from
any warm-starts because it creates new subproblems from random partitions in each round.

Poisson demands. Poisson is dominated by a small set of demands, so as expected,
LP-Top is two orders of magnitude quicker and allocates as much flow as LP-All for Kdl
topology, but only reaches 90% of COpter’s allocation for ASN showcasing the limitation
of heuristics. POP-64 for Kdl and POP-128 for ASN allocate > 99% of optimal flow with
runtimes well under the 5-minute round durations. COpter allocates > 99.9% of optimal and
the highest flows for Kdl and ASN topologies, respectively well under a minute.

Bimodal demands. LP-Top fails to allocate > 90% of optimal flow, but is still orders
of magnitude quicker than other approaches. LP-All exceeds the 5-minute round duration
for Kdl topology, and is omitted from comparisons for ASN as its runtime exceeds 24-hours
for each round. POP compares favorably for the Kdl topology, but takes over 20 minutes to
solve each problem for the ASN topology, rendering 5-minute durations impractical. COpter’s
approach using continual optimization runs in less than a minute and allocates the highest
total flow for the ASN topology — a 30× speedup while allocating 1.5% more flow.
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Figure 5.5: Summary of experiments with Poisson demands for Kdl (upper) and ASN (lower)
topologies. Dashed red-line indicates the commonly used 5-minute round duration in WAN
traffic engineering [102, 34].

5.3 Related Work and Discussion

In this section, we discuss some approaches to scaling traffic engineering that avoid solving
large optimization problems (like COpter).

Traffic Engineering. NCFlow [2] uses a decomposition explicitly designed for the
max-flow objective, similar in spirit to POP [67]. Teal [102] uses a learning-based approach
that uses historical data for fast online allocation using reinforcement learning coupled with
ADMM [9] to obtain feasible flow allocations in seconds. DOTE [77] bypasses formulating TE
objectives as LPs and directly computes optimal flow splitting using deep neural networks
trained on historical traffic demand data. Teal and DOTE are examples of learning-based
approaches for the TE problem. RedTE [28] proposes using distributed decision making with
routers computing allocations locally using multi-agent deep reinforcement learning for quicker
response to bursts in demands. MegaTE [62] re-architects the TE control loop for bottom-
up control that allows for asynchronous updates and finer-granularity flow allocations at
container level. RedTE and MegaTE are examples that bypass centralized TE optimization.
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Figure 5.6: Summary of experiments with Bimodal demands for Kdl (upper) and ASN (lower)
topologies.

5.4 Conclusion

Large-scale resource-allocation problems benefit from being formulated as a sequence of
interconnected problems. Continual optimization as implemented in COpter exploits the
structure and slowly-evolving nature of the problems and their optimal solutions efficiently by
re-use computational effort from prior rounds to reduce solver runtimes in a given round. On
the shard-load balancing and WAN traffic engineering resource-allocation problems, COpter
finds allocations 10−100× faster than state-of-the-art solvers with negligible loss in allocation
quality, and outperforms POP in allocation quality with 1.5− 30× speedups and predictable
solver runtimes.
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Chapter 6

Conclusion

This chapter summarizes the contributions of this dissertation and outlines a few limitations
and potential directions for future work.

6.1 Summary of contributions

This dissertation proposes and implements a heterogeneity and adaptivity-aware GPU cluster
scheduler that continuously optimizes many dimensions of adaptivity for adaptive DNN
training jobs in heterogeneous GPU clusters with tens of thousands of GPUs. Compared
to state-of-the-art schedulers that are either heterogeneity-aware or adaptivity-aware but
not both, our proposed scheduler reduces average job completion times by 30-93% while
using 12-60% fewer GPU hours with minimal scheduler overheads. Additionally, continual
optimization successfully scales our scheduler to clusters with tens of thousands of GPUs for
one-minute round durations.

Sia is our heterogeneity and adaptivity-aware GPU cluster scheduler. Sia uses the notion
of configurations to structure the ever-increasing state-space of adaptivity and allocation
choices and introduces bootstrapped throughput models efficiently estimate jobs’ goodputs on
the reduced state-space of configurations with minimal profiling overheads. Sia scheduler
policy maximizes cluster-wide training progress (aka goodput [79]) by assigning at-most one
configuration for each job given limited GPU resources. Formulated as a mixed-integer linear
program (MILP), the scheduler policy re-optimizes job allocations once a minute in response
to job arrivals, completions and phase changes and scales to clusters with a few thousand
GPUs and many GPU types.

COpter is our approach to continual optimization. Continual optimization is a new
paradigm that explicitly models the slow-evolution in round-based resource-allocation prob-
lems between successive rounds, and aims to exploit the slowly evolving nature of the optimal
allocations to reduce time-to-allocation in each round. COpter provides efficient continual
optimization at scale by eliminating bottlenecks that prevent re-using of computational
effort from prior rounds. First, it uses a differential problem update interface to efficiently
manipulate their mathematical representations for small changes in resources and/or re-
quests. Second, it employs a factorization-free LP solver that provably benefits from the
slowly-evolving nature of the optimal solutions to problems in successive rounds. Third, it
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employs problem-specific lightweight heuristics to recover feasible integral solutions with
negligible quality loss. Compared to problem partitioning approaches like POP, we find
that COpter also improves both allocation quality and solver runtime for many large-scale
resource-allocation problems.

Our results demonstrate that Sia and COpter taken together provide a responsive and
efficient scheduler for large GPU clusters with tens of thousands of GPUs and many GPU
types, and capable of adapting multiple adaptivity dimensions with low scheduler overheads,
fulfilling the goals of this dissertation.

6.2 Limitations and Future Work

This section highlights some limitations of our work as described in this dissertation and
suggests potential directions for future work.
Mix predictive modeling and online profiling. The Sia scheduler profiles each new
job on the smallest possible configuration for each GPU type. As the diversity in GPU
types increases, this profiling step might consume non-trivial resources in large clusters. It
may be possible to leverage the computation graph representation of DNN training jobs
to predict iteration times and throughputs, and bypass the profiling stage entirely. These
predictions need not be perfect, as evidenced by the efficacy of Sia’s bootstrapped models
in determining the right adaptivity choices with minimal overheads. Recent work in this
space shows that historical data and sufficient offline profiling can help predict iteration times
and memory usage for many models with little error[25, 57, 26]. Future work could look at
mixing predictive modeling with the online profiling techniques employed by Sia to achieve
low modeling error with zero initial profiling overheads.
Support diverse scheduling policies and improve solver integration. The Sia
scheduler policy is formulated as linear program with integer constraints whose linear
relaxation can be solved directly using the factorization-free solver implemented in COpter.
Since the solver relies on forming an Augmented-Lagrangian for the input programs, it can
also support any convex objective function. Future work could provide a generalized solver for
resource-allocation problems with support for convex objectives to accommodate more diverse
scheduling policies (e.g., Shockwave’s objective function uses a log objective function [111]).
The solver can also be integrated into a framework similar to Rebalancer [54] for ease of
programming and reduced friction of adoption.
Leverage historical data for predictive scheduling. Schedulers are long-lived compo-
nents of GPU clusters and future work could look at integrating predictions using historical
data to improve Sia and other GPU cluster schedulers. We describe a few directions below:

• Diurnal demands and availabilities: GPU demands show diurnal patterns (i.e.,
demands are different during the days compared to nights) [35, 99], so jobs can be
scaled up/down in anticipation of reduced/increased demands. Anticipatory scaling
can reduce the instantaneous load on shared networking and distributed storage by
distributing the load over time, reducing the pressure on these systems significantly.

• Geographic variations in demands and availabilities: GPU demands are not
equally distributed across the globe. Planet-scale scheduling [13, 88] can leverage the
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inequal GPU demand and availability to reduce job completion times and improve
resource utilization. To move training jobs between from one geographic region to
another, the scheduler must first copy the code, data and model checkpoints to the
destination before it can resume training. Copying this context can be time consuming
(may take tens of minutes), but can also alleviate GPU pressure in the source geographic
region. One can leverage historical data to predict GPU demand and availabilities, and
incorporate the transfer costs into the scheduler’s objective function for anticipatory
load shifting across geographic regions to reduce job completion times and improve
resource utilization across the global fleet of GPUs.

• Spot availabilities : Many cloud providers offer low-cost spot virtual machines (VMs)
that offer the same performance as traditional VMs, but can be de-allocated at a
moments notice to accommodate a traditional VM reservation at a higher cost. Spot
instances can reduce cost of training (often a fraction of the cost of traditional reserved
VMs), but carry the risk of increased runtimes from frequent VM allocation and de-
allocation. A cost-sensitive scheduler can leverage the historical data on spot VM
availability and eviction rates to seamlessly (and transparently) shift jobs from soon-
to-be evicted spot resources to recently acquired spot resources. This would allow for
low-cost training without the risk of unexpected preemption.

• Déjà vu : DL practitioners often train the same DNN model with different hyper-
parameters (e.g. learning rates, batch sizes, etc) in an attempt to discover the best
performing parameters. Repeated training of models with the same structure can
benefit from historical profiling data from prior executions by directly starting execution
with optimal resources, reducing scheduler overhead and improving GPU efficiency.
Additionally, with the rise of foundational models, DNN workloads using the same
foundational model can also benefit from each other’s profiling data in the same manner.
Future work could look at leveraging model structures to reduce profiling overheads by
re-using profiling data from prior execution and profiling of matching model structures.
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