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Abstract
In most of the world’s democracies, policy decisions are primarily made by

elected political officials. However, under mounting dissatisfaction with represen-
tative government due to issues ranging from social inequality to public distrust, a
new proposal is taking off: to augment representative democracy with mechanisms
by which the public can directly participate in policymaking.

The guiding application of this thesis will be one particular model of participa-
tion, deliberative minipublics (DMs), though we will argue that our contributions
may apply to many models of direct participation. In a DM, a panel of citizens is
selected by lottery from the population; then, this panel convenes around a particular
policy issue to study background information, deliberate amongst themselves, and
then weigh in on the issue. DMs have been gaining momentum over the past decade,
and they are now being used at national and supranational levels, and are even being
integrated into representative governments.

Motivated by this application domain, we make the following main contribu-
tions: In Part I, we design algorithms for performing the random selection of DM
participants, a process known as sortition. Our sortition algorithms permit users
to make optimal trade-offs between descriptive representation and other desirable
properties conferred by randomness, and we characterize these tradeoffs using game
theory, optimization, and empirics. In Part II, we use a novel social choice the-
ory framework to investigate a notion of representation that departs from descriptive
representation in a key way: it accounts for the political reality that people may
be affected to widely varying degrees by any given policy decision. In Part III,
we study an important hypothesized impact of deliberation: increasing the extent to
which participants consider how others in their society may be affected by different
policies. In Part IV, we highlight how the enclosed research illustrates new ways to
combine tools from political science and computer science.
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0.1 Introduction

Democracy as a form of governance�despite its long-debated and evolving imperfections�remains
prized for its foundational principle:citizens should have the right to participate actively in gov-
erning their society.In democratic countries around the world, this philosophy tends to be imple-
mented viarepresentativegovernment, in which citizens elect representatives to make decisions
on their behalf and, in theory, in their interests. In recent decades, many have begun sounding
the alarm about a �crisis in democracy�, spurred by mounting evidence that many feel decreas-
ingly represented by, trusting in, and able to in�uence their governments [74, 168, 217, 282, 283].
Others might argue that the more enduring crisis is that, over the past centuries, many of the
world's democratic powers have consistently under-served the interests of entire subsets of their
constituents, including indigenous populations, racial and ethnic minorities, people with disabil-
ities, and the unhoused (e.g., [20, 171, 202, 228, 236, 262]). Either perspective leads to the same
basic conclusion: there is a need to create more e�ective and inclusive access to governing power.

In this thesis, we focus on a proposed solution that is now gaining widespread momentum: aug-
menting representative democracy with processes that permitdirect citizen participationin poli-
cymaking.1 Our aim will be to contribute tools that support the principled design, implementa-
tion, and proliferation of these processes.

To start, in Section0.1.1we will design from the ground up ahypotheticalprocess for facilitating
direct participation in policymaking. Our goal here is not to build a perfect process, or even
survey all possible design choices. Rather, we aim to illustrate some of the major challenges
associated with involving citizens directly in policymaking, and to motivate the tools and ideas
we will study in response.

0.1.1 Facilitating Direct Participation, Hypothetically

We start from what might seem to many like the biggest hurdle:Do everyday people have the
expertise to make high-quality policy recommendations?If we imagine an average member of
the public being asked to recommend a policy under everyday conditions, a reasonable answer
might beNo: there is signi�cant data supporting that people are susceptible to misinformation
and propaganda [271], polarized [265], and politically disengaged [73, 108].

Fortunately, we are not bound to everyday conditions. This the proposal ofdemocratic deliber-
ation: to have people reason about politics through a structured discussion that is grounded in
evidence and reasoning.2 A growing community experts have high hopes for deliberation, see-
ing it as a way to facilitate high-quality political reasoning among everyday people even under
conditions of polarization, misinformation, and political distrust [3, 100, 123, 222]. We add this
tool to our hypothetical process so that prior to weighing in on what should be done, the citizens
weighing in will engage in informed deliberation.

1We will use �citizen� to refer toany constituent of a democracy, implying nothing about legal citizenship status.
2Underlying this simple de�nition, there is signi�cant research dedicated to the precise de�nition ofdeliberation

in a democratic context (e.g., [200]).
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Policy 
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Deliberation

Population

For all its potential bene�ts, democratic deliberation has the downside that it is time- and resource-
intensive: it often takes place over several days, in-person, and participants are necessarily com-
pensated and reimbursed. As a result, not everyone in the population can participate. In practice,
the solution is usually to choose a smaller group of citizens, which we will call aPanel, that
ultimately participates in the discussion.

As soon as we need to select a smaller panel from within the population, we encounter a second
major challenge:whose should be given a seat at the table?This challenge engages the concept
of representation, on which there is a rich scholarship investigating who can, and who should,
represent who? (e.g., [199, 229]). In many real-world decision-making contexts, it is popular
to aim for descriptiverepresentation of the population � that is, proportional representation of
population subgroups � at least with respect to a prede�ned set of identities. We will adopt this
goal for now, though we will revisit it later.

Policy 
proposal

Deliberation

Panel
(Representative) 

Population

Finally, regardless of the notion of representation we want to ensure, we must decide:how should
we select our representative panel? Here, we take inspiration from a centuries-old example of di-
rect citizen participation: in ancient Athenian democracy, political representatives were selected
directly from the population by lottery�a concept known assortition [272]. Randomly selec-
tion may seem unprincipled compared to, e.g., choosing citizens who are especially quali�ed by
some criteria. However, it is precisely thisabsence of reasonsfor which many advocate sortition,
arguing that a uniform lottery gives everyone a fair chance to participate; mitigates perverse
and �ltration mechanisms produced by elections; and as an added bonus, produces descriptive
representation [71].

Unfortunately, adding sortition to our process will be a bit less straightforward than running
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a uniform lottery: when participation is voluntary (as it typically is in models of direct demo-
cratic participation), those who are willing to partake tend to be highly skewed demographically
and ideologically compared to the underlying population. Under this circumstance, known as
selection bias, a uniform lottery will faithfully replicate this skew, failing to ensure the descrip-
tive representation we desire. We therefore must implement a random selection procedure that
strikes a desirable tradeo� between the representation we want, and the randomness that origi-
nally conferred sortition's de�ning bene�ts. We punt, for now, on how to do this, as it will be a
central focus of this thesis.

Figure1 depicts our resulting hypothetical process for facilitating direct citizen participation in
governance.

Policy 
proposal

Population

Deliberation

Panel

Random Selection

(Representative) 

Figure 1: Our hypothetical process for facilitating direct citizen participation in governance.

0.1.2 From a Hypothetical Process to Real Participation Models

Although this process is hypothetical, in developing it we had to posit solutions for challenges
that are somewhat fundamental to the task of facilitating direct participation in policymaking:
to ensure participants can make well-reasoned decisions, processes often need to be somewhat
intensive. When processes are intensive and the underlying population is large, it is often nec-
essary to choose only a subset of the public to participate. When we must choose a subset of the
public, we must make judgements about whose representation should be ensured, and how to
choose participants in a way that best serves the goals of direct participation.

Given the fundamental nature of these challenges, it is perhaps unsurprising that the process in
Figure1 has many hallmarks in common with real participatory models being adopted around
the world:

� In participatory budgeting, a subset of citizens are appointed asbudget delegates, and they con-
vene to review evidence and collectively decide on how to divide a public budget over candi-
date public-interest projects. Although budget delegates are not typically selected randomly,
many participatory budgeting resources reference the importance of representation among par-
ticipants, especially from communities that are marginalized in standard politics [223, 244, 255].
In many cases, delegates engage in deliberation or other similar modes of learning about and
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collaboratively weighing project alternatives [89, 192]. One guide even proposesdeliberative par-
ticipatory budgeting, suggesting the use of sortition to select a representative deliberative body
[36]. Since 2013, participatory budgeting has been used to allocate billions of dollars (or other
units of currency) [16]. In 2019 alone, there were upwards of 11,000 participatory budgeting
events worldwide spanning 71 countries [89].

� In deliberative town halls, citizens have moderated many-on-one discussions with their elected
o�cials [ 211]. Deliberative town halls are built around goal of facilitating deliberative interaction
between constituents and o�cials [212]. While they are sometimes open to all members of the
community, in high-stakes applications with large populations, participants have been randomly
selected with measures to ensure descriptive representation [178]. Deliberative town halls, often
run through OSU'sConnecting to Congressinitiative [13], were recently used as part of Chile's
national e�ort to amend their constitution [8, 9], and this participation model is now being scaled
up through the online platformPrytaneum[15].

� In independent redistricting commissions, a group of voters is convened to draw the boundaries
of voting districts in a way that is hopefully more impartial than those produced through partisan
gerrymandering. It is often paramount that the members of these commissions are representative
on dimensions like political leaning; in some cases, the selection of participants involves random-
izing; and many times, the process of collaboratively drawing new maps can involve substantial
discussion [66, 245]. Independent redistricting commissions have been increasing in uptake over
the past few years, having been used recently to draw congressional districts in Michigan, New
York, Virginia, and Colorado [83].

� Finally, the participation model that perhaps most closely resembles Figure1 is thedeliberative
minipublic (DM). A DM proceeds much like our hypothetical model: a representative sample of
the public is chosen by lottery to serve on a panel. Then, this panel convenes around a policy issue
for several days, learning from experts, deliberating, and then �nally weighing in on what should
be done. DMs are actually an entire category of democratic paradigms, encompassingcitizens'
assemblies, citizens' panels, citizens' juries, deliberative polls, and more.1 DMs constitute one of
the most rapidly-growing models of citizen participation globally, with hundreds having been run
around the world in just the past decade [4,225]. DMs have been used at the national level in many
countries including Mongolia [1], South Korea [7], Ireland [169], France [2, 65], and Germany
[5]; they have even been used at the supranational scale (e.g., in the COP 26 Global Climate
Assembly [11]). In the past few years, several instances have begun charting a path toward formal
integration of deliberative minipublics into representative government. Citizens' assemblies are
being integrated as permanent arms of governing bodies in major regions and cities, including
Ostbelgian [215], Madrid [29], and Brussels [6], and there is now a law in Mongolia requiring
deliberative polls before making certain kinds of constitutional amendments [1].

1The main distinction deliberative polls and many other DMs is how opinions are elicited post-deliberation:
deliberative polls end with an anonymous poll of participants [125], while many other DMs end with participants
collaboratively forming a policy proposal.
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0.2 Thesis Overview

In this thesis, we will consider each of the three key components depicted in Figure1: in Part I,
we study procedures for randomly sampling a representative panel when there is selection bias;
in Part II, we consider the implications of descriptive representation and explore an alternative;
and in Part III, we examine potential impacts of deliberation on participants' political reasoning.
Our work on these tools will be guided primarily by the application of deliberative minipublics,
and sometimes citizens' assemblies in particular. However, given these tools' relevance to even
just the participation models that already exist�and the fact that new ones are emerging all the
time [12, 14, 91, 289]�we hope the ideas in this thesis can be applied to many other participatory
processes as the landscape of citizen participation evolves.

Across Parts I - III, this thesis contains eight completed original papers [32, 43, 128, 130, 131, 134,
135], each in their own chapter.1 Each of these Parts is laid out as follows:

� A background chapter outlines the problems we will solve, their context and motivation,
modeling notions that apply across chapters, and an overview of the chapters themselves.

� Severalresearch chapters each enclose the body of a single original paper.

� An ongoing and future work chapter discusses limitations of the existing work and
some of the follow-up questions needed to address them.

Part IV is the Discussion, and Part V contains the appendices of all enclosed papers.

0.3 A Final Comment on Motivation

The primary motivation for the enclosed research, as discussed above, is advancing and support-
ing deliberative minipublics and other emerging models of direct citizen engagement. However,
it is important to acknowledge that the political potential of these processes is yet unclear: mul-
tiple of these paradigms have so far shown mixed impacts [167, 220, 244, 267], and in many cases
there remains the question of how to balance giving adequate authority to citizens' input while
also maintaining robustness against bad actors [268, 284].

I tend to interpret these concerns as an indication that direct participation is a necessarily complex
solution to a complex problem, and while it may have great potential to work, a lot of research is
required to get there. The uncertainty of the present, however, requires us to address the question:
what does this research contribute, in the event that direct citizen participation does not ultimately
�nd a path to integration into representative government?

1It omits four additional published papers [88, 132, 133, 279], two of which relate to topics in this thesis but were
deemed insu�ciently relevant to democratic participation to be included. The �rst of these studies voting axiom
satisfaction under a smoothed model of preferences, delineating classes of axioms and voting rules by whether semi-
random noise is enough to escape axiomatic impossibilities [132]. The second covers a student-designed discussion-
based course on diversity and inclusion in computer science [133], the discussion portion of which was in�uenced
by�and has in�uenced�my thinking around democratic deliberation.
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Fortunately, the ultimate implementation of these democratic innovations is not required for their
study to be worthwhile. As we will illustrate throughout this thesis, the process of trying to un-
derstand these innovations o�ers new angles from which to study concepts that are fundamental
to how citizens engage with democracy in general. Moreover, direct participation models o�er a
uniquelygood settings in which to study these concepts: �rst, they tend to bring people together
in a location for long periods, allowing more in-depth inquiry of people's political knowledge,
opinions, and patterns of political reasoning. Second, these processes are not yet entrenched in
institutions, and the resulting �uidity of their design makes them fertile ground for experimen-
tation. Several ideas in this thesis will make use of � or propose new ways for others to make use
of � these features for future research.
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Part I

Sortition : Representation by Random
Representatives
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1
Background

1.0.1 Why Sortition (In Theory)?

There is a large body of political science scholarship arguing for the use of sortition over other
methods for selecting political representatives. Here, we overview three of the arguments consid-
ered must centrally in this literature. We then distill these arguments into four technical ideals,
numbered(i)-(iv) , which we will pursue algorithmically throughout Part I. The arguments we
discuss here were originally laid out in 1989 by Fredrik Engelsted [112] and have since been ex-
panded upon by several scholars [98, 124, 259? ]. Importantly, this body of literature conceives of
sortition as auniform lotteryover the population, so for the purpose of interpreting the following
arguments, we will adopt this conception for now.

The �rst argument in favor of sortition, articulated here by Carson and Martin, is that �those
chosen [by sortition] are far more likely to be a typical cross section of the population, with
the same sort of distribution according to sex, age, ethnicity, income, occupation, and so forth�
[71]. Here, Carson and Martin refer to the fact that a uniform lottery will in expectation (andex
post, with high probability) choose a panel that is proportionally representative of all population
cross-sections. Fishkin makes a similar argument, speci�cally with regards to how sortition can
support the legitimacy of deliberative democracy: �We can only know [what the people would
think] if we start the deliberations with a good microcosm, as representative as possible in both
demographics and attitudes.� [124] We distill these points into the following ideal:

(i ) Descriptive Representation: The panel should be (at least nearly) proportionally represen-
tative of all population cross-sections.

A second popular argument for sortition has to do with its equal treatment of potential partici-
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pants. Carson and Martin talk about the importance ofequality of opportunity: �[Sortition] gives
everyone an equal chance of being chosen, whereas in elections, factors such as funding, appear-
ance, speaking ability, threats, and promises play a big role� [? ]. Peter Stone o�ers aallocative
justiceas a normative argument in favor of this type of equality: �Allocative justice...is to treat
public o�ce as a type of good to which citizens might have various claims...Random selection
is...appropriate...when all citizens have equal claims to that o�ce� [259]. We summarize these
these arguments as the following ideal:

(ii) Fairness: All people should have an equal opportunity to participate.

A third bene�t of sortition is its ability to protected against subversion. As put by Oliver Dowlen,
�[Sortition's] primary political potential is its ability to protect the public process of selection
from subversion by those who might...use it for their own private or partisan ends� [98]. To distill
technically well-de�ned ideals from this argument, we �rst ask:whomight want to subvert the
sortition process to their own ends? Peter Stone identi�es two such parties: the organizers who
select the panel, and the potential panel participants themselves [259].

According to Stone, sortition avoids potential subversion by the former group because �If [the
agent who must select o�cials] selects randomly, then she must act on the basis of no reasons,
and therefore cannot be in�uenced by corrupting or dominating interests even if she would like
to be� [259]. However, we note a caveat to this argument: it relies on the fact that the publiccan
con�rm the selection was random. Otherwise, what is to stop the organizers from hand-picking
a panel behind the scenes, and thenclaiming the selection was random? This can be avoided if
there istransparency:

(iii) Transparency: Observers of the panel selection process should be able to con�rm their prob-
ability of selection using only simple intuition about probability.

Fortunately, transparency is not hard to achieve when participants are selected by uniform lot-
tery: one can just run a public lottery using simple physical randomness (e.g., drawing balls from
bins).

The second entity who may want to subvert the sortition process are theparticipants themselves:
they might engage dishonestly in the selection process in order to stack the panel with people
supporting their interests. For reasons that will soon become clear, we will be concerned with one
particular method of dishonesty: misrepresenting one's attributes during the selection process
(and/or convincing others to do so). Of course, because a uniform lottery treats everyone equally
and independently, it ensures that this issue avoided. To capture this potential issue, we de�ne
the ideal ofmanipulation-robustness:

(iv) Manipulation-Robustness: Potential participants should not be able to a�ect their own
or others' probabilities of selection by misrepresenting their identities in the selection pro-
cess.
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1.0.2 Sortition in Practice

Today, one of the most prominent (and growing!) use cases of sortition is to choose participants
of deliberative minipublics. The practical reality of this use case, however, di�ers in a crucial way
from the ideal. In idealized sortition, it is assumed that any member of the population selected by
uniform lottery will participate. In contrast, organizers of modern deliberative minipublicscannot
compel participants to participate, and must rely on people to opt in. The typical rate of opting
in among the general population is around 2-5% [128], and as we will illustrate with data shortly,
those who agree to participate are usually highly demographically skewed. A simple uniform
lottery would replicate this skew, producing a panel that is far from descriptively representative.
Seeing this as an important issue for public and normative legitimacy, practitioners�at least of
citizens' assemblies, which will be the primary application of Part I�perform random selection
via the following two-stage process (depicted in Figure1.1).

Population
Pool

Panel

Invitation 
recipients Stage 1 Stage 2

Figure 1.1: The two-stage panel selection process commonly used to select citizens' assemblies in
practice. The dashed lines through the pool represent the fact that, the while the panel is designed
to resemble the population, the pool may be very skewed demographically and ideologically due
to selection bias.

Stage 1 (Uniform Lottery Invitations). Practitioners invite participants uniformly randomly
from the underlying population (usually via either letters or phone calls). Those who receive
an invitation and respond a�rmatively form thePoolof volunteers. Upon volunteering (i.e.,
joining the pool), all pool members must �ll out a survey about their demographic and ideological
attributes, which will be used in Stage 2 to ensure that the panel is representative.

Stage 2 (Panel Selection). The Panelis selected from within the pool. In practice, this panel
must satisfy two main requirements deterministically:

ˆ Panel size. The panel must contain exactly: members, where: is chosen by the panel
organizers. This requirement arises from budgetary constraints, as practitioners must cover
some per-participant cost.

ˆ Representative quotas. The panel must satisfy upper and lowerquotason a set of pre-
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de�ned attributes, again chosen by practitioners. More precisely, these quotas are struc-
tured in the following way:

Let � be a set of attribute categories, which we will callfeatures; for example, in a UK-
wide assembly on climate change in 2020 (our running example for the remainder of this
section),� included the featureseducation level, gender, age, climate concern level, race/eth-
nicity, geography 1,andgeography 2[232]. For each feature5 2 � , practitioners de�ne a set
of mutually exclusive and exhaustive values+5, which we callfeature-values. For example,
in the UK climate assembly,+climate concern levelcontained the valuesNot concerned, not very
concerned, fairly concerned, very concerned.

Upper and lower quotas are imposed at the feature-value level, denoted respectively as
�5 •E•D5 •Efor feature-value5 • E. Take the example of the feature-valuegender, female: lower
and upper quotas of�64=34A•5 4<0;4= 8 andD64=34A•5 4<0;4= 12 would mean that the panel
would be required to contain between 8 and 12 women. Typically, upper and lower quotas
are imposed on all feature-values in

Ð
52� +5, and enforce that each feature-value-de�ned

group receives a number of panel seats near-proportional to their share of the population.
For example, if women comprise 49% of the population, then quotas on a panel of size
: = 100might require between�5 •E= 48andD5 •E= 50women.1

Let # denote the pool, let5¹8º 2 +5 denote a pool member8's value for feature5, and let�+ :=Ð
52� +5 denote the set of feature-values on which quotas are imposed.I ¹�º will be the indicator

function. Then, aninstanceof the panel problem is de�ned by four quantities,#• ¹�5 •Ej5 • E2
�+ º•¹D5 •Ej5 • E2 �+ º• : . In any given instance, the set ofvalid panelsis

(

 :  � # ^ j  j = : ^
Õ

82 

I ¹5¹8º = Eº 2 »�5 •E•D5 •E¼for all 5 • E2 �+

)

”

An instance of the panel selection problem is solved by aselection algorithm, which is any pro-
cedure (mapping) that intakes an instance of the panel selection task and outputs a valid panel,
provided at least one valid panel exists.

1.1 Our Task: Sortition Subject to Quotas, Under Selection Bias

Notably absent from this discussion so far has been any discussion ofrandomness, the hallmark of
sortition. As the previous section suggests, in our version of sortition, we must randomizewithin
the quotas. This restriction already precludes one aspect of idealized sortition: we can no longer
independentlysample the panel members. The question is then whether we can still retain the

1Occasionally, practitioners impose quotas on combinations of attributes as well, though of course the extent
to which this is possible is limited by the combinatorial explosion of attribute combinations relative to the small
panel. To implement quotas on arbitrary combinations of attributes within this model, one would just make each
combination they care about a feature-value. For example, if you wanted to enforce representation on all intersections
of age and height, you would de�ne the feature5 =age� heightwith values+age� height = f young & short, young &
tall, old & short, old & tallg.
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other, perhaps more de�ning property of idealized sortition: giving peopleequal probability of
selection. Unfortunately, in the practical case, the answer isNo. This is because there is selection
bias in who opts into the pool from the population, meaning that the pool is far from represen-
tative of the population on the dimensions on which we impose quotas. To illustrate this point,
Figure1.2shows the compositions of thePopulation, PoolandPanelin the UK Climate Assembly
for two features: 5 = education levelwhose values we re+43D20C8>= ;4E4;= f 0•1•2•3•4̧ g where
higher levels correspond to more education, and5 = climate concern level, whose values were
+climate concern level= f Not concerned, not very concerned, fairly concerned, very concernedg. In the
�gure below, we group the two lowest levels of climate concern.

Population

Pool

Panel

0/1

2/3
4+

Education Level

Population Pool Panel

Not / not very concerned
Fairly concerned
Very concerned

Climate Concern Level

52%33%15%

67%28%

Population Pool Panel

36% 37%

27%

10%

27%

63%

15%

33%

52%

67%

28%

5%

Figure 1.2: Selection bias in the UK Climate Assembly across values of two features,education
levelandclimate concern level. Percentages are omitted abovePanelbars because by design, they
are essentially the same as those for thePopulation.

To see the selection bias in Figure1.2, we must compare the composition of the population versus
the pool. In making this comparison, note that because invitations to participate were sent out to
members of the population uniformly at random, the pool is e�ectively a uniform random sample
of people who would opt if invited. Examining the features ofeducationandclimate concern level
as in Figure1.2, we see that less educated groups and those who are less concerned about climate
change are dramatically underrepresented among those who opted into the pool.

To understand the implications of this selection bias for the panel selection problem, we now
compare the pool versus the panel. Comparing pool members with education level 0/1 versus
those with level 4+, notice that there areway more panel seats per personreserved for the former
group: there are about 1/12 as many pool members in the former group, and they are entitled to
about 1.5x as many panel seats. They key consequence is thatas a result, those with education
level 0/1 must be selected for the panel with higher probability, on average, than those with education
level 4+.This example illustrates a very general impossibility that grounds our subsequent work:

Key Impossibility: When we must satisfy representative quotas under the condition of selection
bias, we cannot select all pool members with equal probability.

Things now seem a bit bleak: in practical sortition, we cannot give people equal probabilities of
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selection, and thus cannot achieve the de�ning property of a uniform lottery. Our last hope is
that despite these impossibilities, we can still achieve ideals (i)-(iv) � i.e., the reasons for using
sortition at all � to at least a reasonable degree. This will be the goal of Part I, whose chapters we
now overview. For most of this part, we will consider the �rst ideal,(i) Descriptive Representation,
to be automatically satis�ed by the requirement of quotas. We examine the extent to which this
an oversimpli�cation in our ongoing and future work (Chapter7).

Remark 1.1.1 (The Case of Mandatory Participation ). One might argue that these algorithms�
designed around the challenge of selection bias�would become obsolete if participation in direct
democratic processes became required. The assumption implicit in this argument is that requir-
ing participation would eliminate selection bias and restore the viability of a uniform lottery; we
now examine this assumption via the case study of U.S. jury selection, in which participation is
legally required upon being summoned�except if the person meets one of the many criteria for
excused absence, commonly including being above a certain age, being a student, or having a
dependent child (precise regulations vary by jurisdiction, e.g., [138, 235]). These exemptions are
necessary to avoid placing undue burdens on citizens, and similar exemptions would undoubtedly
be needed if mandating participation in deliberative minipublics were mandated. Unsurprisingly,
these exemptions�along other issues with people simply failing to appear�result in documented
issues with certain populations being underrepresented among those who report for jury duty
[270], posing a concern for the equity of our justice system's verdicts [26]. Based on this case
study, it seems unlikely that a participation mandate�or any other intervention�could com-
pletely eliminate selection bias in deliberative minipublics, and moreover, failing to account for
what bias remains would likely lead to systematic exclusion of certain groups. Our algorithms
can ensure representation in the presence of selection bias, while retaining key properties of uni-
form lotteries to the greatest extent possible. Of course, as we will discuss in this thesis, e�orts to
decrease selection bias are extremely important; our algorithms align with this goal, improving
in performance as selection bias decreases in severity.

1.2 Overview of Chapters

We begin by posing the question of whether our Key Impossibility above is really so fundamen-
tally problematic. That impossibility says that we cannot give allpool membersan equal chance
of selection; however, it seems like to imitate idealized sortition, we should care about giving
all population membersan equal chance of participating, rather than all pool members. We now
consider the implications of this distinction for the most directly-related ideal,(ii) Fairness. We
make the distinction explicit by delineating two possible interpretations of fairness:

Fairness ofoutcome. All population members should have the same probability ofparticipating.

Fairness ofopportunity . All population members should have the same probability ofreceiving
the opportunity to participate.

To unpack these notions, we �rst de�ne the central object of Part I: a pool member'sselection
probabilityis their probability of being chosen for the panel. These two notions of fairness, then,
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di�er fundamentally in what they mean for the ideal selection probabilities. The �rst notion
amounts to giving allpopulation membersan equal probability of ending up on the panel, which
would be achieved by choosing each pool member with a probabilityinversely proportionalto
their chance of opting into the pool. The second notion amounts giving equal selection probability
to all pool members, because the �rst stage is a uniform lottery, which gives everyone the same
probability of being invited; then, to maintain equalopportunityto participate, we need to give
all those who opted in an equal chance of being chosen for the panel in the second stage.

For reasons that will become apparent throughout Part I, we will focus primarily on the second
notion of Fairness. However, the �rst notiona priori perhaps seems more theoretically natural,
so in Chapter2, we explore what it would take to design a selection algorithm that achieves it.

Chapter 2: A Selection Algorithm for Explicitly Reversing Self-Selection Bias

Based onNeutralizing Self-Selection Bias in Sampling for Sortition[128].

In this chapter, we design a selection algorithm that achieves the �rst notion of(ii) Fairness
via the intuition above: if each population member8opts into the pool (conditional on being
invited) with probability@8, we want to choose them with probability proportional to1•@8 in
the second stage. This will give all population members an equal probability of ending up on
the panel end-to-end, regardless of their opt-in probability.

The key technical challenges here are (1)knowingindividuals' unobservable opt-in probabil-
ities@8, so that our algorithm can set probabilities correctly; (2) determining conditions under
which we can set all pool members' selection probabilities proportionally1•@8such that they
remain in »0•1¼; and �nally, (3) designing a procedure for turning these probabilities into
a �nal panel that a. preserves these probabilities and b. is deterministically guaranteed to
satisfy descriptively representative quotas.

Our approach to challenge (1) begins with the observation that, by comparing the compo-
sition of the pool to that of the population, one can make inferences about which types of
people tend to participate. For example, if the population is 50% women but the pool is only
20% women, you might infer that being a woman decreases one's chance of participating. We
formalize this intuition by using these data to �t a model predicting the@8's via maximum
likelihood estimation. Addressing challenge (2) requires an assumption that no participation
probability is too low, and our guarantees depend on the extent to which this assumption
holds. Finally, we address challenge (3) by designing a dependent rounding procedure based
on a celebrated discrepancy theorem by Beck and Fiala [40]. This dependent rounding pro-
cedure preserves the1•@8-proportional selection probabilities, while also guaranteeing that
the �nal panel does not deviate from perfect proportional representation by more than�j � j.

While the selection algorithm presented in Chapter2 is theoretically appealing, we argue that
a main takeaway of this chapter is thattrying to explicitly reverse self-selection bias in practice
is fraught with risks. First, the levels ofDescriptive RepresentationandFairnessachieved by this
method hinge on one's ability to accurately estimate pool members' individual opt-in probabil-
ities. In practice, this estimation must be done by comparing the pool versus the population
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composition, which makes estimations fundamentally susceptible to errors for several reasons:
(1) the population data serves as the �control group�, but it truly contains many people who might
have opted in if invited, so we have no data on exclusively people whodecline to participate; (2)
the available population data may be limited, especially at the level ofcombinationsof attributes;1

and (3) practitioners typically know very few feature-values about pool members, so predictions
would likely be based on onlysomeof the features that are crucial to the decision to opt-in.

Even if we could perfectly estimate pool members' opt-in probabilities, our rounding-based ap-
proach does not give strong enough guarantees on ex-post representation: in contrast to the
custom quotas practitioners prefer to use, this rounding method may relax representation byj� j,
which in practice typically ranges from 4-8; for groups that are small (which is not uncommon in
real instances), this relaxation can dramatically weaken or even eliminate any guarantee of their
inclusion. While it might be possible to drop this bound to

p
j� j based on a conjecture by Beck

and Fiala [40], it seems unlikely that it could be improved further due to a lower bound previously
proven by Olson and Spencer [221]. In principle, one could altogether abandon the approach of
�rst determining selection probabilities and then rounding them, though there is not a clear al-
ternative approach that would reverse the selection bias while meaningfully circumventing this
issue.

For the remainder of Part I, we will for now abandon the goal ofFairness ofoutcome, and instead
pursueFairness ofopportunity , which we will henceforth refer to asFairness. Our goal will
now be to design selection algorithms that achieve the ideals outlined above�(ii) Fairness, (iii)
Transparency, and(iv) Manipulation Robustness,�to the greatest degree possible subject to custom
practitioner-de�ned quotas (standing in for(i) Descriptive Representation).

Our approach begins from the observation that these ideals were originally conferred by giving
peopleequalselection probabilities. Given that this is impossible by our Key Impossibility, we
pursue the next best goal: to make pool members' selection probabilitiesas equal as possible,
subject to the quotas. Solving this technical task is the purpose of Chapter3, whose primary
contribution is an algorithmic framework that will serve as the basis of all later chapters.

Chapter 3. An Algorithmic Framework for Maximal Equality .

Based onFair Algorithms for Selecting Citizens' Assemblies[130].

Before designing any algorithms of its own, this paper's �rst contribution was to evaluate
the selection algorithms that were being used in practice at the time. These pre-existing
algorithms were greedy heuristics whose main goal was to �ndany valid panel, randomizing
in ad-hoc fashion where possible along the way (this was a reasonable �rst goal, given that
�nding any single valid panel is NP-hard [130]). In our empirical evaluation, we found that a
popular such algorithm�whose probabilistic properties had never been characterized�was
prone to giving a large portion of the pool near-zero chance of selection, posing a signi�cant

1For example, the European Social Survey data (the public population-level data corresponding to the UK climate
assembly) is missing 335 of the 762 unique feature-value combinations that appear in the pool.
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issue from the perspective ofFairness.

In response, our goal was to design a selection algorithm that made pool members selection
probabilitiesmaximally equal, subject to practitioner-de�ned quotas. A natural question, of
course, is how one should measure �maximally equal�. The algorithms we present in this
paper will permit the use ofany convex functionthat intakes a vector of selection proba-
bilities and outputs a real-numbered measurement of their level of equality�a class which
encompasses well-known notions likeMaximin(no one receives too little selection probabil-
ity), Nash Welfare(the geometric product of selection probabilities), or theGini Coe�cient (a
popular measure of inequality).

The algorithmic framework we present, at a high level, �rst computes a distribution over
valid panels, which we call apanel distribution, and then samples the �nal panel from that
distribution. Note that by taking this approach, we ensure that the resulting panel is valid.
Then, since any panel distribution implies selection probabilitiesa, our task boils down to
�nding an optimalpanel distribution�i.e., one that makes pool members' selection probabil-
ities maximally equal.

The major technical challenge in computing an optimal panel distribution is thata priori, any
optimal distribution might need to place selection probability on all valid panels, of which
in practice there are astronomically many. Fortunately, we show that due to our equality
objective being a function of just the selection probabilities (a very low-dimensional object
relative to the space of all valid panels), by Caratheodory's theorem there must exist an opti-
mal solution over only very few panels. Unfortunately, this theorem does not tell us how to
�nd such a small-support distribution.

Our main contribution is an algorithmic framework for �nding an optimal panel distribution
over a practicable (but not theoretically bounded, in the worst case) number of panels. To
understand this algorithm, it is useful to envision the primal program: we have one variable
per every possible valid panel, corresponding to the probability we will place on that panel.
Our goal is to �nd values of these (astronomically many) variables that optimize our convex
objective function, which captures the equality of the selection probabilities implied by our
panel distribution. The framework solves this massive program by solving its dual, using col-
umn generation to iteratively add panels to the support (corresponding to adding constraints
to the dual) until a stopping condition is reached. As we prove, this stopping condition is
su�cient for the existence of a KKT-condition-satisfying solution to the full dual program,
corresponding to the current randomization being optimal among all randomizations over
all valid panels.

aGiven a panel distribution, the selection probability of any pool member is simply the probability of draw-
ing a panel containing them.

With this algorithmic framework in hand, the question is then,How can we best use it to serve
our ideals of Fairness, Manipulation-Robustness, and Transparency?This is the main question that
will occupy us for the rest of Part I.

16



In the paper from Chapter3, we instantiated our framework with an equality objective chosen
to promoteFairness. To translate this ideal into a mathematical objective, we began from the
allocative justice perspective [259] that the chance to hold public o�ce is a good to which people
areentitledto their fair share. Accordingly, we de�ned �maximal fairness� according to the objec-
tive Maximin, which when optimized maximizes theminimum selection probability received by
any pool member, corresponding to ensuring that no one receives too much less than their share.
Our implementation (of a slight re�nement of this objective calledLeximin) is publicly available
on Panelot.organd on the widely-used selection tool of theSortition Foundation, a major orga-
nizer of citizens' assemblies [163]. Since 2020, this algorithm has been used to select high-pro�le
assemblies, including the Global Climate Assembly in 2020, Michigan's statewide assembly on
COVID-19 in 2021, Scotland's national climate assembly in 2022, Germany's National Assembly
on Nutrition in 2023, and Ostbelgien's permanent assembly in 2023.

An additional contribution of Chapter3 is a proposal for an algorithmic add-on targeting the goal
of Transparency. In its standard implementation, our algorithmic framework from Chapter3
is not very transparent; it computes a complicated distribution over a few thousand panels, and
then samples this distribution. In principle, one could publish this distribution, and then sample
it by publicly running code that generates a random number. Needless to say (but we will say it
anyway), this would be virtually impossible for the average person to understand. To remediate
this, we proposed the following approach:

1. Roundthe optimal panel distribution produced by our algorithmic framework so that all
probabilities in the panel distribution are multiples of 1/1000 (or some other integer de-
nominator of the user's choice), while ensuring it remains a valid distribution.

2. Numberthese probability blocs from 000...999. Note that each bloc corresponds to a panel
(with multiple blocs potentially corresponding to the same panel). Now, one has a list of
1000 panels (with duplicates).

3. Uniformly samplethis list of panels to choose the �nal panel. By construction, this corre-
sponds to sampling the rounded distribution from step 1.

This method is transparent in an important sense: if the list of panels and their (anonymized)
members can be made public�which in practice, it has been [130]�this uniform lottery over
panels allows the public to observe their own and other pool members' selection probabilities
by the same simple reasoning required to understand that by buying more lottery tickets, you
increase your chance of winning the lottery.1

Although Chapter3proposedthis method, it left out an important open question:Does the round-
ing of the optimal panel distribution signi�cantly compromise its optimality?In Chapter4, we
prove that it does not.

1If someone sees that they are on 20 out of 1000 panels, they immediately see that their chance of selection is
20/1000 = 2%.
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Chapter 4. Transparency.

Based onFair Sortition Made Transparent[131].

In this paper, we propose several algorithms for rounding the panel distribution output by the
algorithm in Chapter3. For each rounding algorithm, we upper-bound the maximum extent
that it can changeany individual selection probabilityin order to quantize any panel distri-
bution. Though we extend these bounds to bound the optimality loss for only two equality
objectives�MaximinandNash Welfare�our bounds on changes to individual selection prob-
abilities are general enough to bound optimality loss for most reasonable equality objectives.
Finally, we empirically evaluate these rounding algorithms in real citizens' assembly datasets.
This analysis identi�es a simple and fast rounding procedure that almost exactly retains the
optimality of the original panel distribution across instances. We conclude thatTransparency
comes at essentially no cost to maximal equality in practice, and at a practically bounded cost
in theory.

Since its proposal, this rounding method has been used in conjunction with our algorithmic
framework to select multiple citizens' assemblies, including aforementioned assemblies in Michi-
gan and Germany.

We now turn our attention to the ideal ofManipulation Robustness . In an unfortunate turn of
events, our study of this ideal will reveal some bad news about the equality objectives we have
studied so far.

Chapter 5. Manipulation Robustness

Based onManipulation-Robust Citizens' Assembly Selection[135].

In Chapter3, translating the conceptual ideal ofFairnessto a mathematical equality objective
to plug into our algorithmic framework was relatively straightforward. However, the analo-
gous transformation forManipulation Robustnessis less straightforward: to understand what
equality objective minimizes incentives for pool members to misreport their features, we �rst
need to de�ne a game theoretic model. Instead of de�ning just one such model, we de�ne
three, each corresponding to di�erent potential motive for misreporting one's features: to
increase one's own selection probability, decrease someone else's, or tosteal seats�that is,
you might impersonate another group so that if you are selected, you will have taken a panel
seat reserved for that group.

Our �rst �nding is quite troubling: we show that Maximin and Nash Welfare, the two ob-
jectives we've studied for their prioritization ofFairness, arearbitrarily manipulable�that is,
they permit a pool member, by misreporting their features, to gain selection probability 1.
This is a worst-case result, but we show that this �nding also holds in real datasets, even for
very rudimentary manipulations requiring no knowledge of the algorithm.

The most striking aspect of this impossibility is that it persistseven as the pool grows arbitrar-
ily large relative to the panel.a To see why this is surprising, let= be the pool size; as= grows
relative to: , theaverageselection probability: •= should go down. Then, it seems that there
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is less probability available per person, so shouldn'teveryone'sselection probability decrease,
both pre- and post-manipulation, thereby decreasing the amount of probability that can be
gained by manipulating? The key to understanding this impossibility is the intuition peo-
ple can misreport combinations of features thatdo not exist in the pool, and which can make
them �unicorns� to the objectivesMaximinandNash Welfare�both which almost exclusively
care about making sure the lowest probability is not too low.b Here, someone is a �unicorn�
when giving them more selection probability makes it feasible to raise the lowest selection
probabilities. When someone misreports a combination of features that makes them a uni-
corn, bothMaximin andNash Welfaremay pile probability onto them to the greatest extent
possible, bringing their selection probability up to 1.

Based on the intuition thathighselection probabilities are a problem for manipulation robust-
ness, it should not come as a surprise that the equality objectiveMinimax, which minimizes
the maximum selection probability, provably minimizes manipulation incentives.c We show
that the manipulation incentives induced byMinimax decline at a rate of$ ¹: •=º as= grows
relative to: , which is the optimal possible rate for any selection algorithm.

a�Growing the pool� just means sending out more letters in the �rst stage, so the composition of the pool
(and thus the level of selection bias) remains relatively constant.

bMaximin does this by de�nition. Nash Welfare, by being theproductof selection probabilities, is relatively
una�ected by probabilities near 1, but is extremely a�ected by even a single probability near 0.

cIn the paper, we do not strictly study the objectiveMinimax, but rather the�? norms of selection proba-
bilities, which e�ectively converge toMinimax as? ! 1 (a regime we characterize). In subsequent work, we
will considerMinimax in place of the�1 norm.

Remark 1.2.1 (Revisiting Our Approach From Chapter2). With Chapters4and5under our belt,
we can now identify another reason why the approach taken in Chapter2�to make pool mem-
bers' probabilities inversely proportional to their chance of opting in�is practically dicey. The
key reason is that this method will make pool members' probabilities widely di�erent�far more
di�erent, potentially, than algorithms maximizing their equality. This is a problem forTrans-
parency: if we make selection probabilities visible to the public and they are extremely disparate,
this may create the sentiment that the process is very unfair (and the estimates upon which these
probabilities are based are hard to soundly and transparently justify). Second, these disparate
problems are an evenbiggerproblem for Manipulation Robustness: the higher the probability
someone can receive based on their features, the stronger the incentives for manipulation.

We have now studiedFairness, Transparency, andManipulation Robustness; in our �nal research
chapter in Part I, we will study the extent to which we can achieve these idealssimultaneously.
If we can achieve this, we will complete our original goal: to design a sortition algorithm that
achieves ideals (i)-(iv) to the greatest extent possible given the non-ideal conditions of real-world
sortition.

Chapter 6. Fairness, Manipulation-Robustness , and Transparency
Based onFair, Manipulation-Robust, and Transparent Sortition[31].

Setting asideTransparencyfor a moment, the previous chapters reveal a potential tradeo�
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betweenFairnessandManipulation Robustness: low probabilities are a problem for the former
(essentially by de�nition), and high probabilities are a problem for the latter. No equality
objective we have studied achieves anywhere close to both ideals:Maximin/LeximinandNash
Welfarecontrol only low probabilities, making them very fair but arbitrarily manipulable; by
controlling only high probabilities,Minimax is optimally manipulation-robust but arbitrarily
unfair, giving many pool members zero chance of selection.

In this chapter, we propose a new equality objective, calledGoldilocks, that aims to achieve
these ideals simultaneously by controlling both high and low selection probabilities, and
which can be optimized via the framework in Chapter3. The fundamental challenge in con-
trolling high and low probabilities simultaneously is that manipulating coalitions, by misre-
porting, can a�ect thequality of available lotteriesby reporting features between which there
must be fundamental gaps between the maximum and minimum probability. Thus, in order
to analyze our algorithm, we must �rst characterize the extent to manipulation can damage
the space of feasible solutions, andthenwe can analyze the ability of our algorithm to recover
good solutions despite this.

After circumventing these challenges, we give theoretical bounds (many of them tight) on
the extent to whichGoldilocksachievesFairnessand Manipulation Robustness, �nding that
in a very important sense,Goldilocksrecovers among the best available solutions in a given
instance. We then extend these theoretical bounds to the case where the output ofGoldilocks
is transformed to achieve a third goal,Transparency. Our empirical analysis ofGoldilocksin
real data is even more promising: we �nd that this objective achieves nearly instance-optimal
minimum and maximum selection probabilitiessimultaneouslyin most real instances � an
outcome not even guaranteed to be possible for any algorithm.

Although there is always room for future work here, in many respects,Goldilockscloses the ques-
tion of whether we can simultaneously achieve three key ideals of sortition �Fairness, Manipu-
lation Robustness, andTransparency� and contributes a practicable algorithm for doing so. Now
that we better understand what is possible in lottery design regarding ideals(ii)-(iv), in ongoing
and future work, we can circle back to the very �rst ideal�(i) Descriptive Representation�and
consider the implications of how quotas are used to enforce it.

Chapter 7: Ongoing and Future Work. In our �rst ongoing project, we are trying to
help practitioners set more principled quotas. Currently, practitioners hand-design quotas
without insight into how small changes in the quotas may change the lottery � changes
that are di�cult to predict, given the combinatorial relationship between the quotas and the
space of possible lotteries. To close this gap, we are designing a deployable tool for �ne-tuning
quotas that are optimized to permit better lotteries. Empirically, our preliminary results show
that small changes in quotas can permit signi�cantly more uniform lotteries.

Sometimes our quota-tuning method relaxes a quota, e.g., reserving 22 instead of 24 seats for
women, in favor of a far more uniform lottery. Often, we think of loosening quotas asde�ni-
tively harmingrepresentation; however, expanding our conception of representation beyond
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just the few features protected by quotas, it is not actually clear: a more uniform lottery can
alsosupport representation by ensuring that no groupunprotectedby quotas is systematically
given low selection probability, plus it can decrease incentives for representation-corrupting
manipulation. We are investigating this ambiguity by studying how di�erent trade-o�s be-
tween quota tightness and lottery uniformity a�ectsrepresentation of unprotected groupsand
the diversityof the resulting panel.

Additional ongoing and future work aims to alleviate other bottlenecks in the selection pro-
cess, including the need to select alternate panel members to handle dropout.
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2
A Selection Algorithm for Explicitly

Reversing Selection Bias

Neutralizing Self-Selection Bias in Sampling for Sortition[128].
Bailey Flanigan, Paul Gölz, Anupam Gupta, and Ariel D. Procaccia.

NeurIPS2020.

2.1 Introduction

What if political decisions were made not by elected politicians but by a randomly selected panel
of citizens? This is the core idea behindsortition, a political system originating in the Athenian
democracy of the 5th century BC [272]. A sortition panelis a randomly selected set of individuals
who are appointed to make a decision on behalf of population from which they were drawn.
Ideally, sortition panels are selected via uniform sampling without replacement � that is, if a panel
of size: is selected from a population of size=, then each member of the population has a: •=
probability of being selected. This system o�ers appealing fairness properties for both individuals
and subgroups of the population: First, each individual knows that she has the same probability of
being selected as anyone else, which assures her an equal say in decision making. The resulting
panel is also, in expectation,proportionally representativeto all groups in the population: if a
group comprisesG%of the population, they will in expectation compriseG%of the panel as well.
In fact, if : is large enough, concentration of measure makes it likely that even a group'sex
postshare of the panel will be close toG%. Both properties stand in contrast to the status quo
of electoral democracy, in which the equal in�uence of individuals and the fair participation of
minority groups are often questioned.

Due to the evident fairness properties of selecting decision makers randomly, sortition has seen
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a recent surge in popularity around the world. Over the past year, we have spoken with several
nonpro�t organizations whose role it is to sample and facilitate sortition panels [75]. One of these
nonpro�ts, the Sortition Foundation, has organized more than 20 panels in about the past year.1

Recent high-pro�le examples of sortition include the Irish Citizens' Assembly,2 which led to Ire-
land's legalization of abortion in 2018, and the founding of the �rst permanent sortition chamber
of government,3 which occurred in a regional parliament in the German-speaking community of
Belgium in 2019.

The fairness properties of sortition are often presented as we have described them � in the setting
where panels are selectedfrom the whole populationvia uniform sampling without replacement.
As we have learned from practitioners, however, this sampling approach is not applicable in
practice due to limited participation: typically, only between 2 and 5% of citizens are willing to
participate in the panel when contacted. Moreover, those who do participate exhibit self-selection
bias, i.e., they are not representative of the population, but rather skew toward certain groups with
certain features.

To address these issues, sortition practitioners introduce additional steps into the sampling pro-
cess. Initially, they send a large number of invitation letters to a random subset of the popula-
tion. If the recipients are willing to participate in a panel, they can opt into apoolof volunteers.
Ultimately, the panel of size: is sampled from the pool. Naturally, the pool is unlikely to be rep-
resentative of the population, which means that uniformly sampling from the pool would yield
panels whose demographic composition is unrepresentative of that of the population. To prevent
grossly unrepresentative panels, many practitioners impose quotas on groups based on orthog-
onal demographic features such as gender, age, or residence inside the country. These quotas
ensure that the ex-post number of panel members belonging to such a group lies within a nar-
row interval around the proportional share. Since it is hard to construct panels satisfying a set
of quotas, practitioners typically sample using greedy heuristics. While these heuristics tend to
be successful at �nding valid panels, the probability with which an individual is selected is not
controlled in a principled way.

Since individual selection probabilities are not deliberately chosen, the current panel selection
procedure gives up most of the fairness guarantees associated with sortition via sampling from
the whole population. Where uniform sampling selects each person with equal probability: •=,
currently-used greedy algorithms do not even guarantee a minimum selection probability for
members of thepool, let alone fair �end-to-end� probabilities with which members of the popula-
tion will end up on the panel. As a further downside, the greedy algorithms we have seen being
applied may need many attempts to produce a valid panel and might take exponential time to
produce a valid panel even if one exists.

1https://www.youtube.com/watch?v=hz2d_8eBEKgat 8:53.
2https://2016-2018.citizensassembly.ie/en/
3https://www.politico.eu/article/belgium-democratic-experiment-citizens-assembly/
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2.1.1 Our Techni�es and Results

The main contribution of this paper is a more principled sampling algorithm that, even in the
setting of limited participation, retains the individual fairness of sampling without replacement
while allowing the deterministic satisfaction of quotas. In particular, our algorithm satis�es the
following desiderata:

� End-to-End Fairness:The algorithm selects the panel via a process such that all members of
the population appear on the panel with probability asymptotically close to: •=. This also
implies that all groups in the population have near-proportional expected representation.

� Deterministic Quota Satisfaction:The selected panel satis�es certain upper and lower quotas
enforcing approximate representation for a set of speci�ed features.

� Computational E�ciency:The algorithm returns a valid panel (or fails) in polynomial time.

Deterministic quota satisfaction is a guarantee of group fairness, while end-to-end fairness, which
recovers most of the ex ante guarantees of sampling without replacement, can be seen primarily
as a guarantee of individual fairness. The phraseend-to-endrefers to the fact that we are fair
to individuals with respect to their probabilities of going frompopulationto panel, across the
intermediate steps of being invited, opting into the pool, and being selected for the panel.

The key challenge in satisfying these desiderata is self-selection bias, which can result in the pool
being totally unrepresentative of the population. In the worst case, the pool can be so skewed
that it contains no representative panel � in fact, the pool might not even contain: members.
As a result, no algorithm can produce a valid panel from every possible pool. However, we are
able to give an algorithm that succeeds with high probability, under weak assumptions mainly
relating the number of invitation letters sent out to: and the minimum participation probability
over all agents.

Crucially, any sampling algorithm that gives (near-)equal selection probability to all members
of the population must reverse the self-selection bias occurring in the formation of the pool. We
formalize this self-selection bias by assuming that each agent8in the population agrees to join the
pool with some positive participation probability@8 when invited. If these@8 values are known
for all members of the pool, our sampling algorithm can use them to neutralize self-selection bias.
To do so, our algorithm selects agent8for the panel with a probability (close to) proportional to
1•@8, conditioned on8being in the pool. This compensates for agents' di�ering likelihoods of
entering the pool, thereby giving all agents an equal end-to-end probability. On a given pool,
the algorithm assigns marginal selection probabilities to every agent in the pool. Then, to �nd a
distribution over valid panels that implements these marginals, the algorithm randomly rounds
a linear program using techniques based on discrepancy theory. Since our approach aims for a
fair distributionof valid panels rather than just a single panel, we can give probabilistic fairness
guarantees.

As we mentioned, our theoretical and algorithmic results take the probabilities@8of all pool mem-
bers8as given in the input. While these values are not observed in practice, we then show that

24



they can be estimated from available data. We cannot directly train a classi�er predicting partic-
ipation, however, because practitioners collect data only on those whodojoin the pool, yielding
only positively labeled data. In place of a negatively labeled control group, we use publicly avail-
able survey data, which is unlabeled (i.e., includes no information on whether its members would
have joined the pool). To learn in this more challenging setting, we use techniques fromcon-
taminated controls, which combine the pool data with the unlabeled sample of the population to
learn a predictive model for agents' participation probabilities. Finally, we use data from a real-
world sortition panel to show that plausible participation probabilities can be learned and that the
algorithm produces panels that are close to proportional across features. For a synthetic popula-
tion produced by extrapolating the real data, we show that our algorithm obtains fair end-to-end
probabilities.

2.1.2 Related Work

Our work is broadly related to existing literature on fairness in the areas ofmachine learning,
statistics, andsocial choice. Through the lens of fair machine learning, our quotas can be seen
as enforcing approximate statistical fairness for protected groups, and our near-equal selection
probability as a guarantee on individual fairness. Achieving simultaneous group- and individual-
level fairness is a commonly discussed goal in fair machine learning [49, 151, 166], but one that
has proven somewhat elusive. To satisfy fairness constraints on orthogonal protected groups,
we draw upon techniques from discrepancy theory [34, 40], which we hope to be more widely
applicable in this area.

Our paper addresses self-selection bias, which is routinely faced in statistics and usually addressed
by sample reweighting. Indeed, our sampling algorithm can be seen as a way of reweighting the
pool members under the constraint that weights must correspond to the marginal probabilities
of a random distribution. While reweighting is typically done by the simpler methods of post-
strati�cation, calibration [165], and sometimes regression [233], we use the more powerful tool
of learning with contaminated controls [185, 277] to determine weights on a more �ne-grained
level.

Our paper can also be seen as a part of a broader movement towards statistical approaches in
social choice [195, 197, 252]. The problem of selecting a representative sortition panel can be seen
as a fair division problem, in which: indivisible copies of a scarce resource must be randomly
allocated such that an approximate version of the proportionality axiom is imposed. Our group
fairness guarantees closely resemble the goal of apportionment, in which seats on a legislature
are allocated to districts or parties such that each district is proportionally represented within
upper and lower quotas [33, 58, 157].

So far, only few papers in computer science and statistics directly address sortition [44, 246, 274].
Only one of them [44] considers, like us, how to sample a representative sortition panel. Un-
fortunately, their strati�ed sampling algorithm assumes that all agents are willing to participate,
which, as we address in this paper, does not hold in practice.
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2.2 Model

Agents. Let # be a set of= agents, constituting the underlying population. Let� be a set
of features, where feature5 2 � is a function 5 : # ! +5, mapping the agents to a set+5
of possible values of feature5. For example, for the featuregender, we could have+gender =
f male, female, non-binaryg. Let thefeature-value pairsbe

Ð
52� f¹ 5 • Eº j E2 +5g. In our example,

the feature-value pairs are¹gender•maleº, ¹gender•femaleº•and ¹gender•non-binaryº. Denote the
number of agents with a particular feature-value pair¹5 • Eº by =5 •E.

Each agent8 2 # is described by herfeature vector� ¹8º := f¹ 5 • 5¹8ºº j 5 2 � g, the set
of all feature-value pairs pertaining to this agent. Building on the example instance, suppose
we add the featureeducation-level, so� = f gender•education levelg. If education levelcan take
on the valuescollegeand no college, a college-educated woman would have the feature-vector
f¹ gender•femaleº•¹education level•collegeºg.

Panel Selection Process.Before starting the selection process, organizers of a sortition panel
must commit to the panel's parameters. First, they must choose the number ofrecipientsAwho
will be invited to potentially join the panel, and the requiredpanel size: . Moreover, they must
choose a set of features� and valuesf+5g52� over which quotas will be imposed. Finally, for all
feature-value pairs¹5 • Eº, they must choose alower quota�5 •Eand anupper quotaD5 •E, implying
that the eventual panel of: agents must containat least�5 •Eandat mostD5 •Eagents with value
Efor feature 5. Once these parameters are �xed, the panel selection process proceeds in three
steps:

population
STEP 1

������! recipients
STEP 2

������! pool
STEP 3

������! panel

In STEP 1, the organizer of the panel sends outAletters, inviting a subset of the population � sampled
with equal probability and without replacement � to volunteer for serving on the panel. We refer
to the random set of agents who receive these letters asRecipients. Only the agents inRecipients
will have the opportunity to advance in the process toward being on the panel.

In STEP 2, each letter recipient may respond a�rmatively to the invitation, thereby opting into
the pool of agents from which the panel will be chosen. These agents form the random setPool,
de�ned as the set of agents who received a letter and agreed to serve on the panel if ultimately
chosen. We assume that each agent8joins the pool with someparticipation probability@8 ¡ 0. Let
@� be the lowest value of@8across all agents82 # . A key parameter of an instance isU B @� A•: ,
which measures how large the number of recipients is relative to the other parameters. Larger
values ofUwill allow us the �exibility to satisfy stricter quotas.

In STEP 3, the panel organizer runs asampling algorithm, which selects the panel from the pool.
This panel, denoted as the setPanel, must be of size: and satisfy the predetermined quotas for
all feature-value pairs. The sampling algorithm may also fail without producing a panel.

We consider the �rst two steps of the process to be fully prescribed. The focus of this paper is
to develop a sampling algorithm for the third step that satis�es the three desiderata listed in the

26



introduction: end-to-end fairness, deterministic quota satisfaction, and computational e�ciency.

2.3 Sampling Algorithm

In this section, we give an algorithm which ensures, under natural assumptions, that every agent
ends up on the panel with probability at least

�
1 � >¹1º

�
: •= as= goes to in�nity.1 Furthermore,

the panels produced by this algorithm satisfy non-trivial quotas, which ensure that the ex-post
representation of each feature-value pair cannot be too far from being proportional.

Our algorithm proceeds in two phases:I. assignment of marginals, during which the algorithm
assigns a marginal selection probability to every agent in the pool, andII. rounding of marginals,
in which the marginals are dependently rounded to0•1 values, the agents' indicators of being
chosen for the panel. As we discussed previously, our algorithm succeeds only with high proba-
bility, rather than deterministically; it may fail in phase I if the desired marginals do not satisfy
certain conditions. We refer to pools on which our algorithm succeeds asgood pools. A good pool,
to be de�ned precisely later, is one that is highly representative of the population � that is, its
size and the prevalence of all feature values within it are close to their respective expected values.
We leave the behavior of our algorithm on bad pools unspeci�ed: while the algorithm may try its
utmost on these pools, we give no guarantees in these cases, so the probability of representation
guaranteed to each agent must come only from good pools and valid panels. Fortunately, under
reasonable conditions, we show that the pool will be good with high probability. When the pool
is good, our algorithm always succeeds, meaning that our algorithm is successful overall with
high probability.

Our algorithm satis�es the following theorem, guaranteeing close-to-equal end-to-end selection
probabilities for all members of the population as well as the satisfaction of quotas.

Theorem 2.3.1. Suppose thatU ! 1 and=5 •E� =•: for all feature-value pairs5 • E. Consider a
sampling algorithm that, on a good pool, selects a random panel,Panel, via the randomized version
of lemma2.3.3, and else does not return a panel. This process satis�es, for all8in the population, that

P»82 Panel¼ � ¹1 � >¹1ºº : •=”

All panels produced by this process satisfy the quotas�5 •EB ¹1 � U� ”49º : = 5 •E•= � j � j andD5 •EB
¹1 ¸ U� ”49º : = 5 •E•= ¸ j � j for all feature-value pairs5 • E.

The guarantees of the theorem grow stronger as the parameterU = @� A•: tends toward in�nity,
i.e., as the numberAof invitations grows. Note that, sinceA � =, this assumption requires that
@� � : •=. We defer all proofs to appendixA.2and discuss the preconditions in appendixA.2.1.

2.3.1 Algorithm Part I: Assignment of Marginals

To a�ord equal probability of panel membership to each agent8, we would like to select agent
8with probability inversely proportional to her probability@8 of being in the pool. For ease of

1We allow: � 1 andA� 1 to vary arbitrarily in = and assume that the feature-value pairs are �xed.
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notation, let08 B 1•@8 for all 8. Speci�cally, for agent8, we want P»8 2 Panel j 8 2 Pool¼
to be proportional to08. Achieving this exactly is tricky, however, because each agent'sselection
probabilityfrom pool%, call it c8•%, must depend on those of all other agents in the pool, since their
marginals must add to the panel size: . Thus, instead of reasoning about an agent's probability
across all possible pools at once, we take the simpler route of setting agents' selection probabilities
for each pool separately, guaranteeing thatP»8 2 Panel j 8 2 %¼is proportional to08 across all
members8of a good pool%. For any good pool%, we select each agent82 %for the panel with
probability

c8•%B : 0 8•
Í

92%09”

Note that this choice ensures that the marginals always sum up to: .

De�nition of Good Pools. For this choice of marginals to be reasonable and useful for giving
end-to-end guarantees, the pool%must satisfy three conditions, whose satisfaction de�nes agood
pool%. First, the marginals do not make much sense unless allc8•%lie in »0•1¼:

0 � c8•%� 1 882 %” (2.1)

Second, the marginals summed up over all pool members of a feature-value pair5 • Eshould not
deviate too far from the proportional share of the pair:

¹1 � U� ”49º : = 5 •E•= �
Í

82%:5¹8º=Ec8•%� ¹ 1 ¸ U� ”49º : = 5 •E•= 85 • E” (2.2)

Third, we also require that the term
Í

82%08 is not much larger thanE»
Í

82Pool 08¼= A, which
ensures that thec8•%do not become to small:

Í
82%08 � A•¹ 1 � U� ”49º” (2.3)

Under the assumptions of our theorem, pools are good with high probability, even if we condition
on any agent8being in the pool:

Lemma 2.3.2. Suppose thatU ! 1 and=5 •E� =•: for all 5 • E. Then, for all agents82 Population,
P»Pool is goodj 82 Pool¼ ! 1.

Note that only constraint (2.1) prevents Phase II of the algorithm from running; the other two
constraints just make the resulting distribution less useful for our proofs. In practice, if it is
possible to rescale thec8•%and cap them at1 such that their sum is: , running phase II on these
marginals seems reasonable.

2.3.2 Algorithm Part II: Rounding of Marginals

The proof of Theorem2.3.1now hinges on our ability to implement the chosenc8•%for a good
pool%as marginals of a distribution over panels. This phase can be expressed in the language of
randomized dependent rounding: we need to de�ne random variables- 8 = 1f82 Panelgfor each
82 Pool such thatE»- 8¼= c8•%. This di�culty of this task stems from the ex-post requirements on
the pool, which require that

Í
8- 8 = : and that

Í
8:5¹8º=E- 8 is close to: = 5 •E•= for all feature-value
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pairs5 • E. While o�-the-shelf dependent rounding [78] can guarantee the marginals and the sum-
to-: constraint, it cannot simultaneously ensure small deviations in terms of the representation
of all 5 • E.

Our algorithm uses an iterative rounding procedure based on a celebrated theorem by Beck and Fi-
ala [40]. We sketch here how to obtain a deterministic rounding satisfying the ex-post constraints;
the argument can be randomized using results by Bansal [34] or via column generation (Ap-
pendixA.2.4).1 The iterated rounding procedure manages a variableG8 2 »0•1¼for each82 Pool,
which is initialized asc8•%. As theG8are repeatedly updated, more of them are �xed as either 0 or
1 until the G8 ultimately correspond to indicator variables of a panel. Throughout the rounding
procedure, it is preserved that

Í
8G8 =

Í
8c8•%= : , and the equalities

Í
8:5¹8º=EG8 =

Í
8:5¹8º=Ec8•%

are preserved until at mostj� j variablesG8 in the sum are yet to be �xed. As a result, the �nal
panel has exactly: members, and the number of members from a feature-value pair5 • Eis at leastÍ

8:5¹8º=Ec8•%� j � j � ¹ 1 � U� ”49º : = 5 •E•= � j � j (symmetrically for the upper bound).2 As we show
in appendixA.2.4,

Lemma 2.3.3. There is a polynomial-time sampling algorithm that, given a good pool%, produces
a random panelPanel such that (1)P»8 2 Panel¼= c8•%for all 8 2 %, (2) jPanelj = : , and (3)Í

8:5¹8º=Ec8•%� j � j � jf 82 Panel j 5¹8º = Egj �
Í

8:5¹8º=Ec8•%̧ j � j.

Our main theorem follows from a simple argument combining Lemmas2.3.2and 2.3.3(Ap-
pendixA.2.5).

While the statement of theorem2.3.1is asymptotic in the growth ofU, the same proof gives
bounds on the end-to-end probabilities for �nite values ofU. If one wants bounds for a speci�c
instance, however, bounds uniquely in terms ofU tend to be loose, and one might want to relax
Condition (2.2) of a good pool in exchange for more equal end-to-end probabilities. In this case,
plugging the speci�c values of=•A• :•@� •=5 •Einto the proof allows to make better trade-o�s and
to extract sharper bounds.

2.4 Learning Participation Probabilities

The algorithm presented in the previous section relies on knowing@8 for all agents8in the pool.
While these@8 are not directly observed, we can estimate them from data available to practition-
ers.

First, we assume that an agent8's participation probability@8 is a function of her feature vector
� ¹8º. Furthermore, we assume that8makes her decision to participate through a speci�c genera-
tive model known assimple independent action[119, as cited in [280]]. First, she �ips a coin with

1Bansal [34] gives a black-box polynomial-time method for randomizing our rounding procedure. We found
column-generation-based algorithms to be faster in practice, with guarantees that are at least as tight.

2Observe that our Beck-Fiala-based rounding procedure only increases the looseness of the quotas by a constant
additive term beyond the losses to concentration. The concentration properties of standard dependent randomized
rounding do not guarantee such a small gap with high probability. Moreover, our bound does not directly depend
on the number of quotas (i.e., twice the number of feature-value pairs) but only depends on the number of features,
which are often much fewer.
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probability V0 of landing on heads. Then, she �ips a coin for each feature5 2 � , where her coin
pertaining to5 lands on heads with probabilityV5 •5¹8º. She participates in the pool if and only if
all coins she �ips land on heads, leading to the following functional dependency:

@8 = V0
Î

52� V5 •5¹8º”

We think of 1� V5 •Eas the probability that a reason speci�c to the feature-value pair5 • Eprevents
the agent from participating, and of1� V0 as the baseline probability of her not participating for
reasons independent of her features. The simple independent action model assumes that these
reasons occur independently between features, and that the agent participates i� none of the
reasons occur.

If we had a representative sample of agents � say, the recipients of the invitation letters � labeled
according to whether they decided participate (�positive�) or not (�negative�), learning the pa-
rametersV would be straightforward. However, sortition practitioners only have access to the
features of those who enter the pool, and not of those who never respond. Without a control
group, it is impossible to distinguish a feature that is prevalent in the population and associ-
ated with low participation rate from a rare feature associated with a high participation rate.
Thankfully, we can use additional information: in place of a negatively-labeled control group, we
use abackground sample� a dataset containing the features for a uniform sample of agents, but
without labels indicating whether they would participate. Since this control group contains both
positives and negatives, this setting is known ascontaminated controls. A �nal piece of informa-
tion we use for learning is the fraction@B jPoolj•A, which estimates the mean participation
probability across the population. In other applications with contaminated controls, including@
in the estimation increased model identi�ability [277].

To learn our model, we apply methods for maximum likelihood estimation (MLE) with contami-
nated controls introduced by Lancaster and Imbens [185]. By reformulating the simple indepen-
dent action model in terms of the logarithms of theV parameters, their estimation (with a �xed
value of@) reduces to maximizing a concave function.

Theorem 2.4.1. The log-likelihood function for the simple independent action model under con-
taminated controls is concave in the model parameters.

By this theorem, proven in AppendixA.3, we can directly and e�ciently estimateV. Logistic
models, by contrast, require more involved techniques for e�cient estimation [277].

2.5 Experiments

Data. We validate our@8estimation and sampling algorithm on pool data fromClimate Assembly
UK,1 a national-level sortition panel organized by the Sortition Foundation in 2020. The panel
consisted of: = 110many UK residents aged 16 and above. The Sortition Foundation invited all
members of 30 000 randomly selected households, which reached an estimatedA= 60 000eligible

1https://www.climateassembly.uk/
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Figure 2.1: Expected and realized numbers of panel seats our algorithm gives each feature-value
pair in the Climate Assembly pool.

participants.1 Of these letter recipients, 1 715 participated in the pool,2 corresponding to a mean
participation probability of@� 2”9%. The feature-value pairs used for this panel can be read o�
the axis of �g.2.1. We omit an additional featureclimate concern levelin our main analysis because
only 4 members of the pool have the valuenot at all concerned, whereas this feature-value pair's
proportional number of panel seats is 6.5. To allow for proportional representation of groups with
such low participation rates,Ashould have been chosen to be much larger. We believe that the
merits of our algorithm can be better observed in parameter ranges in which proportionality can
be achieved. For the background sample, we used the 2016 European Social Survey [216], which
contains 1,915 eligible individuals, all with features and values matching those from the panel.
Our implementation is based on PyTorch and Gurobi, runs on consumer hardware, and its code
is available ongithub. AppendixA.4contains details on Climate Assembly UK, data processing,
the implementation, and further experiments (including the climate concern feature).

Estimation of mV Parameters. We �nd that the baseline probability of participation isV0 =
8”8%. Our V5 •Eestimates suggest that (from strongest to weakest e�ect) highly educated, older,
urban, male, and non-white agents participate at higher rates. These trends re�ect these groups'
respective levels of representation in the pool compared to the underlying population, suggesting
that our estimatedV values �t our data well. Di�erent values of the remaining feature, region
of residence, seem to have heterogeneous e�ects on participation, where being a resident of the
South West gives substantially increased likelihood of participation compared to other areas.
The lowest participation probability of any agent in the pool, according to these estimates, is
@� = 0”78%, implying that U � 4”25. See AppendixA.4.4for detailed estimation results and
validation.

1Note that every person in the population has equal probability¹30 000•#householdsº of being invited. We
ignore correlations between members of the same household.

2Excluding 12 participants with gender �other� as no equivalent value is present in the background data.
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Running the Sampling Algorithm on the Pool. The estimated@8 allow us to run our algo-
rithm on the Climate Assembly pool and thereby study its fairness properties for non-asymptotic
input sizes. We �nd that the Climate Assembly pool is good relative to our@8 estimates, i.e., that
it satis�es eqs. (2.1) to (2.3). As displayed in �g.2.1, the marginals produced by Phase I of our
algorithm give each feature-value pair5 • Ean expected number of seats,

Í
82%•5¹8º=Ec8•%, within

one seatof its proportional share of the panel,: = 5 •E•=. By lemma2.3.3, Phase II of our algo-
rithm then may produce panels from these marginals in which5 • Ereceives up toj� j = 6 fewer
or more seats than its expected number. However, as the black bars in �g.2.1show, the actual
number of seats received by any5 • Eacrossany panelproduced by our algorithm on this input
never deviates from its expectation by more than 4 seats. As a result, while theorem2.3.1only
implies lower quotas of”51: = 5 •E•= � j � j and upper quotas of1”49: = 5 •E•= ¸ j � j for this instance,
the shares of seats our algorithm produces lie in the much narrower range: = 5 •E•= � 5 (and even
: = 5 •E•= � 3 for 18 out of 25 feature-value pairs). This suggests that, while the quotas guaranteed
by our theoretical results are looser than the quotas typically set by practitioners, our algorithm
will often produce substantially better ex-post representation than required by the quotas.

End-to-End Probabilities. In the previous experiments, we were only able to argue about the
algorithm's behavior on a single pool. To validate our guarantees on individual end-to-end proba-
bilities, we construct a synthetic population of size 60 million by duplicating the ESS participants,
assuming our estimated@8 as their true participation probabilities. Then, for various values ofA,
we sample a large number of pools. By computingc8•%values for all agents8in each pool, we
can estimate each agent's end-to-end probability of ending up on the panel. Crucially, we assume
that our algorithm does not produce any panel for bad pools, analogously to theorem2.3.1. As
shown in the following graph, forA = 60 000(as was used in Climate Assembly UK), all agents
in our synthetic population, across the full range of@8, receive probability within”1: •= of : •=
(averaged over 100 000 random pools):
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That these end-to-end probabilities are so close to: •= also implies that bad pools are exceedingly
rare for this value ofA. As we show in appendixA.4.6, we see essentially the same behavior for
values ofAdown to roughly15 000, whenU � 1. For even lowerA, most pools are bad, so end-to-
end probabilities are close to zero under our premise that no panels are produced from bad pools.

To demonstrate that our algorithm's theoretical guarantees lead to realized improvements in in-
dividual fairness over the state-of-the-art, we re-run the experiment above, this time using the
Sortition Foundation's greedy algorithm to select a panel from each generated pool. Since their
algorithm requires explicit quotas as input, we set the lower and upper quotas for each feature-
value group to be the �oor and ceiling of that group's proportional share of seats. This is a popular
way of setting quotas in current practice.
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The results of this experiment show that the individual end-to-end probabilities generated by the
currently-used greedy algorithm range from below0”5: •= up to 1”3: •=. In comparison to the
end-to-end probabilities generated by our algorithm, those generated by the greedy algorithm
are substantially skewed, and tend to disadvantage individuals with either low or high participa-
tion probabilities. One might argue that the comparison between our algorithm and the greedy is
not quite fair, since the greedy algorithm is required to satisfy stronger quotas. However, looser
quotas do not improve the behavior of the greedy algorithm; they simply make it behave more
similarly to uniform sampling from the pool, which further disadvantages agents with low par-
ticipation probability (for details, see appendixA.4.5).

Taken together, these results illustrate that, although greedy algorithms like the one we examined
achieve proportional representation of a few pre-speci�ed groups via quotas, they do not achieve
fairness to individuals or to groups unprotected by quotas. Compared to the naive solution of
uniform sampling from the pool, greedily striving for quota satisfaction does lead to more equal
end-to-end probabilities, as pool members with underrepresented features are more likely to be
selected for the panel than pool members with overrepresented features. However, this e�ect
does not neutralize self-selection bias when there are multiple features, even when selection bias
acts through the independent-action model as in our simulated population. Indeed, in this exper-
iment, the greedy algorithm insu�ciently boosts the probabilities of agents in the intersection of
multiple low-participation groups (the agents with lowest@8), while also too heavily dampening
the selection probability of those in the intersection of multiple high-participation groups (with
highest@8). These observations illustrate the need for panel selection algorithms that explicitly
control individual probabilities.

2.6 Discussion

In a model in which agentsstochasticallydecide whether to participate, our algorithm guarantees
similar end-to-end probabilities to all members of the population. Arguably, an agent's decision
to participate when invited might not be random, but ratherdeterministicallypredetermined.

From the point of view of such an agent8, does our algorithm, based on a model that doesn't
accurately describe her (and her peers') behavior, still grant her individual fairness? If8deter-
ministically participates, the answer is yes (if not, of course she cannot be guaranteed anything).
To see why, �rst observe that, insofar as it concerns8's chance of ending up on the panel, all other
agents might as well participate randomly.1 Indeed, from agent8's perspective, the process looks

1Fix a group of agents who, assuming the stochastic model, will participate if invited with probability@. Then,
sampling letter recipients from this set of agents in the stochastic model is practically equivalent to sampling recip-
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like the stochastic process where every other agent9participates with probability@9, where8
herself always participates, and where the algorithm erroneously assumes that8joins only with
some probability@8. Therefore, the pool is still good with high probability conditioned on8being
in it, as argued in lemma2.3.2. Even if the algorithm knew that@8 = 1, 8's end-to-end probability
would be at least

�
1 � >¹1º

�
: •=, and the fact that the algorithm underestimates her@8 only in-

creases her probability of being selected from the pool. It follows that8's end-to-end probability
in this setting still must be at least around: •=.

Thus, in a deterministic model of participation, our individual guarantees are reminiscent of the
axiom of population monotonicity in fair division:If the whole population always participated
when invited, every agent would reach the panel with probability: •=. The fact that some agents do
not participate cannot (up to lower-order terms) decrease the selection probabilities for those who do.

ients from this group in the deterministic model, if a@fraction of the group deterministically participate.
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3
A Framework of Sortition Algorithms

Fair Algorithms for Selecting Citizens Assemblies[130].
Bailey Flanigan, Paul Gölz, Anupam Gupta, Brett Hennig, & Ariel D. Procaccia.

Nature,2021.

This exposition is adapted from the slightly modi�ed version of this paper enclosed in [152].

3.1 Introduction

In representative democracies, political representatives are usually selected by election. However,
over the last 35 years, an alternative selection method has been gaining traction among politi-
cal scientists [71, 87, 90] and practitioners [126, 203, 222, 225]: sortition, the random selection of
representatives from the population. The chosen representatives form a panel, commonly called
a citizens' assembly, which convenes to deliberate on a policy question. Citizens' assemblies are
now being administered by around 50 organizations in over 25 countries[92], and just one of these
organizations, the Sortition Foundation in the UK, recruited 29 panels in 2020. While many citi-
zens' assemblies are initiated by civil-society organizations, [71, 87, 90, 92, 126, 203, 222, 225] they
are also increasingly being commissioned by public authorities on municipal, regional, national,
and supranational levels [222]. In fact, since 2019, multiple regional parliaments in Belgium and
the Council of Paris have internally established permanent sortition bodies [137, 215]. Citizens'
assemblies' growing utilization by governments is giving their decisions a more direct path to
policy impact. For example, two recent citizens' assemblies commissioned by Ireland's national
legislature led to the legalization of same-sex marriage and abortion [169].

Ideally, a citizens' assembly selected via sortition acts as a microcosm of society: its participants
are representative of the population, and thus its deliberation simulates the entire population
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convening �under conditions where it can really consider competing arguments and get its ques-
tions answered from di�erent points of view� [124]. Whether this goal is realized in practice,
however, depends on exactly how assembly members are chosen.

Panel selection is generally done in three stages: �rst, thousands of randomly chosen constituents
are invited to participate. Second, a subset of the invited constituents opt into apoolof volunteers.
Third, a panel of pre-speci�ed size is randomly chosen from the pool via some �xed procedure,
which we call aselection algorithm[82, 170, 211, 218]. As the �nal and most complex component
of the selection process, the selection algorithm has great power in deciding who will be chosen
to represent the population. In this chapter, we introduce selection algorithms that preserve the
key desirable property of existing algorithms, while also more fairly distributing the sought-after
opportunity [82, 170, 211, 218] of being a representative.

To our knowledge, all of the selection algorithms used in practice aim to satisfy one particular
property, known asdescriptive representation, the idea that the panel should re�ect the compo-
sition of the population [124]. Unfortunately, the pool from which the panel is chosen tends
to be far from representative. Speci�cally, it tends to overrepresent groups whose members are
more likely to accept an invitation to participate, such as high educational attainment. To en-
sure descriptive representation despite the biases of the pool, selection algorithms require that
the panels they output satisfy upper and lowerquotason a set of speci�ed features, which are
roughly proportional to each feature's population rate (e.g. quotas might require that a 40-person
panel contain between 20 and 21 women). These quotas are generally imposed on feature cate-
gories delineated by gender, age, education level, and other attributes relevant to the policy issue
at hand. We note that quota constraints of this form are more general than those achievable via
strati�ed sampling,a common technique for drawing representative samples.

Selection algorithms that pre-date this work focused solely on satisfying quotas, leaving unad-
dressed a second property that is also central to sortition: that all individuals should have an
equal chanceof being chosen for the panel. Several political theorists present equality of selec-
tion probabilities as a central advantage of sortition, stressing its role in promoting the ideals
such asequality of opportunity[71, 224], democratic equality[123, 124, 224, 258], and allocative
justice[257, 258]. In fact, Engelstad, who introduced an in�uential model of sortition's bene�ts,
argues that this form of equality constitutes �The strongest normative argument in favor of sor-
tition� [ 112]. (See AppendixB.4for more details on sortition desiderata from political theory.) In
addition to political theorists, major practitioner groups have also advocated for equal selection
probabilities [21, 201]. However, they face the fundamental hurdle that, in practice, the quotas
almost always necessitate selecting people with somewhat unequal probabilities, as individuals
from groups that are underrepresented in the pool must be chosen with disproportionately high
probabilities to satisfy the quotas.

Though it is generally impossible to achieveperfectlyequal probabilities, the reasons to strive
for equality also motivate a more gradual version of this goal: making probabilities as equal
as possible, subject to the quotas. We refer to this goal asmaximal fairness.We �nd that our
benchmark, a selection algorithm representing the previous state of the art, falls far short of this
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goal, giving volunteers drastically unequal probabilities across several real-world instances. This
algorithm even consistently selects certain types of volunteers withnear-zeroprobability, thereby
excluding them in practice from the chance to serve. We further show that, in these instances,
it is possible to give all volunteers probability well above zero while still satisfying the quotas,
demonstrating that the level of inequality produced by the benchmark is avoidable.

In this chapter, we close the gaps we have identi�ed, both in theory and in practice. We �rst
introduce not just one selection algorithm that achieves maximal fairness, but a more general (I)
algorithmic framework for producing such algorithms. Motivated by the multitude of possible
ways to quantify the fairness of an allocation of selection probabilities, our framework gives a
maximally fair selection algorithm for any measure of fairness with a certain functional form.
Notably, such measures include the most prominent from the literature onfair division[55, 206],
and we show that these well-established metrics can be applied to our setting by casting the
problem of assigning selection probabilities as one of fair resource allocation. Then, to bring this
innovation into practice, we implement a (II) deployable selection algorithm, which is maximally
fair according to one speci�c measure of fairness. We evaluate this algorithm and �nd that it is
substantially fairer than the benchmark on several real-world datasets and by multiple fairness
measures. Our algorithm is now in use by a growing number of sortition organizations around
the world, making it one of only a few [62, 114, 150, 261] deployed applications of fair division.

3.2 Contribution I: Algorithmic Framework

3.2.1 Definitions

We begin by introducing necessary terminology. We refer to the input to a selection algorithm � a
pool of size=, a set of quotas, and the desired panel size: � as an instanceof the panel selection
problem. Given an instance, a selection algorithm randomly selects apanel, which is a quota-
compliant set of: pool members. We de�ne the algorithm'soutput distributionon an instance
as the distribution specifying the probabilities with which the algorithm outputs each possible
panel. Then, a pool member'sselection probabilityis the probability that they are on a panel
randomly drawn from the output distribution. We refer to the mapping from pool members to
their selection probabilities as theprobability allocation, which we aim to make as fair as possible.
Finally, afairness measureis a function that maps a probability allocation to a fairness �score�
(e.g. the geometric mean of probabilities, where higher is fairer). An algorithm is calledoptimal
with respect to a fairness measure if, on any instance, the fairness of the algorithm's probability
allocation is at least as high as that of any other algorithm.

3.2.2 Formulating the Optimization Task

To inform our approach, we �rst analyze the algorithms pre-dating ours. Those we have seen in
use all have the same high-level structure: they select individuals for the panel one-by-one, in
each step randomly choosing whom to add next from among those who, according to a myopic
heuristic, seem unlikely to produce a quota violation later. Since �nding a quota-compliant panel
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is an algorithmically hard problem,1 it is already an achievement that such simple algorithms �nd
any panel in most practical instances. Due to their focus on �nding any panel at all, however,
these algorithms do not tightly controlwhich panel they output, or more precisely, their out-
put distribution (the probabilities with which they output di�erent panels). Since an algorithm's
output distribution directly determines its probability allocation, existing algorithms' probability
allocations are also uncontrolled, leaving room for them to be highly unfair. In contrast to these

Figure 3.1: The steps of the algorithm optimizing the fairness measure� . The left-hand panel
shows the implementation of step (1): constructing a maximally fair output distribution over
panels (denoted by white boxes), which is done by iteratively building an optimal portfolio of
panels and computing the fairest distribution over that portfolio. The right-hand panel shows
step (2): sampling the distribution to select a �nal panel.

existing algorithms, which have output distributions that arise implicitly from a sequence of my-
opic steps, the algorithms in our framework (1)explicitly compute their own output distribution,
and then (2) sample from that distribution to select the �nal panel (�g.3.1). Crucially, the maxi-
mal fairness of the output distribution found in the �rst step makes our algorithms optimal. To
see why, note that the behavior ofany selection algorithm on a given instance is described by
some output distribution; thus, since our algorithm �nds thefairest possibleoutput distribution,
it is always at least as fair as any other algorithm.

Since step (2) of our selection algorithm is simply a random draw, we have reduced the problem
of �nding an optimal selection algorithm to the optimization problem in step (1) � �nding a max-
imally fair distribution over panels. Now, to fully specify our algorithm, it remains only to solve
this optimization problem.

1Seesupplementary information 6.
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3.2.3 Solving the Optimization Task

A priori, it would seem that computing a maximally fair distribution might require constructing
all possiblepanels, since achieving optimal fairness might necessitate assigning non-zero proba-
bility to all of them. Such an approach would be impracticable, however, as the number of panels
in most instances is intractably large. Fortunately, since we measure fairness according to only in-
dividual selection probabilities, there must exist anoptimal portfolio� a set of panels over which
there exists a maximally fair distribution � containing few panels by Carathéodory's theorem:

Proposition 3.2.1. Fix an arbitrary instance and a fairness measure� for this instance. If there
exists any maximally fair distribution over panels for� , there exists a maximally fair output distri-
bution whose support includes at most= ¸ 1 panels.

Proof.Consider the hypercube»0•1¼=, and associate each dimension with one pool member. A
panel%can be embedded into this space by its characteristic vector®E% 2 f0•1g=, whose8th
component is one exactly if pool member8is contained in%.

Fix a maximally fair output distribution, letP denote its support, and letf _%g%2P denote its
probability mass function. Note that

®? B
Õ

%2P

_%®E%

is a probability allocation maximizing� , and that it is a convex combination of thef®E%g%2P . By
Carathéodory's theorem, there is a subsetP0 � P of size at most= ¸ 1 such that®? still lies in the
convex hull of this smaller set. Thus, there are nonnegative real numbersf _0

%g%2P0 adding up to
one such that

®? =
Õ

%2P0

_0
%®E%”

These_0
% form the probability mass function of a distribution over at most= ¸ 1 panels, which

has the same probability allocation®? as the original maximally fair distribution, which implies
that the new distribution is also maximally fair for� . �

This result brings a practical algorithm within reach, and shapes the goal of our algorithm: to
�nd an optimal portfolio while constructing as few panels as possible.

We accomplish this goal using an algorithmic technique calledcolumn generation, where, in our
case, the �columns� being generated correspond to panels. A more in-depth discussion and for-
mal description of this algorithm, as well as proofs of correctness, can be found insupplementary
information 8. As shown in �g.3.1, our algorithms �nd an optimal portfolio by iteratively adding
panels to a portfolioP, in each iteration alternating between two subtasks: (i) �nding the optimal
distribution D over only the panels currently inP and (ii) adding a panel toP that, based on the
gradient of the fairness measure, will move the portfolio furthest towards optimality. This second
subtask makes use ofinteger linear programming, which we use to generate quota-compliant pan-
els despite the theoretical hardness of the problem. Eventually, the panel with the most promising
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gradient will already be inP, in which caseP is provably optimal andD must be a maximally
fair distribution. In practice, we observe that this procedure terminates after few iterations.

Our techniques extend column generation methods that are typically applied to linear programs,
allowing them to be used to solve a large set of convex programs.This extension allows our frame-
work to be used with a wide range of fairness measures � essentially any for which the fairest
distribution over a portfolio can be found via convex programming. Supported measures include
those most prominent in the fair division literature: egalitarian welfare [111], Nash welfare [206],
Gini inequality [110, 187], and the Atkinson indices [110, 247][ 247]. Our algorithmic approach
also has the bene�t of easily extending to organization-speci�c constraints beyond quotas; for
example, practitioners can prevent multiple members of the same household from appearing on
the same panel. Due to its generality, our framework even applies to domains outside of sortition,
including the allocation of classrooms to charter schools [182] and kidney exchange [243].

3.3 Contribution II: Deployable Selection Algorithm

To bring fair panel selection into practice, we develop an e�cient implementation of one speci�c
selection algorithm, which we callLexiMin (formally de�ned in supplementary information 10).
LexiMin optimizes the well-established fairness measureleximin [51, 182, 206], a fairness mea-
sure that is sensitive to the very lowest selection probabilities. In particular, leximin is optimized
by maximizing the lowest selection probability, then breaking ties between solutions in favor of
probability allocations with highest second-lowest probability, and so on. This choice of fairness
measure is motivated by the fact that, as we show in this section and insupplementary infor-
mation 13, Legacy gives some pool members a near-zero probability when much more equal
probabilities are possible. This type of unfairness is especially pressing because, if it consistently
impacted pool members with certain combinations of features, these individuals and their distinct
perspectives would be �systematically excluded from participation� [250], which runs counter to
a key promise of random selection.

To increase the accessibility ofLexiMin , we made its implementation available through an ex-
isting open-source panel selection tool [164] and onPanelot[153], a website where anyone can
run the algorithm without installation. LexiMin has since been deployed by several organiza-
tions, includingCascadia(US), theDanish Board of Technology(Denmark),Nexus(Germany),of
by for * (US),Particitiz(Belgium), and theSortition Foundation(UK). As of July 2021, the Sortition
Foundation alone had already usedLexiMin to select more than 40 panels.

We measure the impact of adoptingLexiMin over pre-existing algorithms by comparing its fair-
ness to that of a benchmark,Legacy(supplementary information 11), the algorithm used by the
Sortition Foundation prior to their adoption ofLexiMin . We chooseLegacyas a benchmark be-
cause it was widely used prior to this work, it is similar to several other selection algorithms used
in practice (seesupplementary information 13) and it is the only existing algorithm we found that
was fully speci�ed by an o�cial implementation. We compare theLexiMin andLegacyon ten
datasets from real-world panels, with respect to several fairness measures including the minimum
probability (table3.1), the Gini coe�cient, and the geometric mean. In this analysis, we �nd that
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instance = : # of
features

: •= Legacymin.
probability
(sampled)1

LexiMin min.
probability

(exact)

LexiMin
running time

sf(a) 312 35 6 11.2% � 0”32% 6.7% 20 sec
sf(b) 250 20 6 8.0% � 0”17% 4.0% 9 sec
sf(c) 161 44 7 27.3% � 0”15% 8.6% 6 sec
sf(d) 404 40 6 9.9% � 0”11% 4.7% 46 sec
sf(e) 1727 110 7 6.4% � 0”03% 2.6% 67 min
cca 825 75 4 9.1% � 0”03% 2.4% 7 min
hd 239 30 7 12.6% � 0”09% 5.1% 37 sec
mass 70 24 5 34.3% � 14”9% 20.0% 1 sec
nexus 342 170 5 49.7% � 2”24% 32.5% 1 min
obf 321 30 8 9.3% � 0”03% 4.7% 3 min

Table 3.1: List of instances used in our experiments. For theinstanceswe study, panels were
recruited by the following organisations.sf(a-e) : Sortition Foundation;cca: Center for Climate
Assemblies;hd: Healthy Democracy;mass: MASS LBP;nexus: Nexus;obf : of by for * (At the
request of practitioners, topics, dates, and locations of the panels are not identi�ed.)= is the pool
size,: is the panel size, and consequently,: •= is the mean selection probability. The# of features
is j� j, where each5 2 � has between 2 and 49 possible values (with the typical range being 2-5).

LexiMin is fairer on all instances we examine, and substantially so in nine out of ten.

3.4 Effect of Adopting LexiMin over Legacy

We study datasets from ten sortition panels, organized by six di�erent sortition organizations in
Europe and North America. As Table3.1shows, our instances are diverse in panel size (range:
20�170, median: 37.5) and number of quota categories (range: 4�8). On consumer hardware, the
run-time of our algorithm is well within the time available in practice.

Out of concern about low selection probabilities, we �rst compare the minimum selection prob-
abilities given byLegacy andLexiMin , summarized in the second and third columns from the
right in Table3.1. Strikingly, in all instances exceptmass(an outlier in that its quotas only mildly
restrict the fraction of panels that are feasible),Legacychooses some pool members with prob-
ability close to zero. In fact, we can identify combinations of features that lead to low selection
probabilitiesacross all instances,2 raising the concern thatLegacy may in fact systematically
exclude some groups from participation. By contrast,LexiMin selects no one nearly so infre-
quently, with minimum selection probabilities ranging from 26% to 65% (median: 49%) of: •=,
the �ideal� probability individuals would receive in the absence of quotas. One might wonder
whether this increased minimum probability achieved byLexiMin a�ects only a few pool mem-
bers most disadvantaged byLegacy. This is not the case: As shown in Figure3.2by the shaded

2See methods section�Individuals rarely selected byLegacy� of the full version.
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Figure 3.2: Selection probabilities given byLegacyandLexiMin to the bottom 60% of pool mem-
bers on six representative instances, where pool members are ordered in order of increasing
probability given by the respective algorithms. Shaded boxes denote the range of pool members
whose selection probability given byLegacy is lower than the minimum probability given by
LexiMin . Legacyprobabilities are estimated over 10,000 random panels and are indicated with
99% con�dence intervals (see methods section�Statistics�of the full version). For corresponding
graphs for all other instances and up to the 100th percentile, see Figures3.4and3.5respectively
in Section3.6.

boxes, between 13% and 56% of pool members (median 46%) across instances receive probability
from Legacy lower than theminimum given to anyoneby LexiMin (Table3.7). Thus, even just
the �rst stage of LexiMin , i.e., maximizing theminimum probability, provides a sizable section
of the pool with more equitable access to the panel.

We have so far comparedLegacy andLexiMin over only the lower end of selection probabili-
ties, as this is the range in whichLexiMin prioritizes being fair. However, even considering the
entirerange of selection probabilities, we �nd thatLexiMin is quanti�ably fairer than Legacy
on all instances by two established metrics of fairness, namely the Gini Coe�cient and the ge-
ometric mean (Table3.6). For example, across instances excludingmass, LexiMin decreases the
Gini coe�cient, a standard measure of inequality, by between 5 and 16 percentage points (me-
dian: 12; negligible improvement onmass). Strikingly, the 16-point improvement in the Gini
coe�cient achieved byLexiMin on the instanceobf (from 59% to 43%) approximately re�ects
the gap between relative income inequality in Namibia (59% in 2015) and the United States (42%
in 2019) [285].

3.5 Discussion

As the recommendations made by citizens' assemblies increasingly impact public decision-making,
so grows the urgency that selection algorithms distribute this power fairly across constituents.
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Figure 3.3: HowLexiMin 's output was used to select a panel via a live uniform lottery. (a) First,
the output distribution was transformed into a uniform distribution over 1,000 panels, numbered
000�999. (b) The three digits determining the �nal panel were drawn from lottery machines,
making each panel observably selected with equal probability. (c) The personalized interface
(screen-captured with (b)) shows each pool member the number of panels out of 1,000 they are
on, allowing them to verify their own and others' selection probabilities. Screenshots credit:of
by for *.

We have made substantial progress on this front: the optimality of our algorithmic framework
conclusively resolves the search for fair algorithms for a broad class of fairness measures, and
the deployment ofLexiMin puts an end to some pool members being virtually never selected in
practice.

Beyond these immediate bene�ts to fairness, the exchange of ideas we have initiated between
practitioners and theorists presents continuing opportunities to improve panel selection in areas
such as transparency. For example, for an assembly in Michigan, we assistedof by for * in se-
lecting their panel via a live lottery in which participants could easily observe the probabilities
with which each pool member was selected. This is an advance over the transparency possible
with previous selection algorithms. We found that, in this instance, the output distribution of
LexiMin could be transformed into a simple lottery without meaningful loss of fairness (�g.3.3).
Subsequent work by Flanigan et al. [131] developed general procedures and bounds for this trans-
formation.

TheOrganisation for Economic Co-operation and Development (OECD)describes citizens' assem-
blies as part of a broader democratic movement to �give citizens a more direct role in [. . .] shaping
the public decisions that a�ect them� [222]. By bringing mathematical structure, increased fair-
ness, and greater transparency to the practice of sortition, research in this area promises to put
practical sortition on �rmer foundations, and to promote citizens' assemblies' mission to give
everyday people a greater voice.
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3.6 Additional Methods and Empirical Analysis

3.6.1 Extended results for Figure 3.2,Table 3.1

Figure 3.4: Selection probabilities given byLegacyandLexiMin to the bottom 60% of pool mem-
bers on the 4 instances that are not shown in Figure3.2. Pool members are ordered across the x
axis in order of increasing probability given by the respective algorithms. Shaded boxes denote
the range of pool members with a selection probability given byLegacy that is lower than the
minimum probability given byLexiMin . Legacyprobabilities are estimated over 10,000 random
panels and are indicated with 99% con�dence intervals (as described in Statistics in the Methods).
Green dotted lines show the equalized probability¹: •=º.

3.6.2 Individuals rarely selected by Legacy

The empirical results in Table3.1demonstrate that, in most instances,Legacyselects some pool
members with very low probability. However, in any given citizens assembly, this does not auto-
matically imply that these individuals had low probability of serving on the panel. Indeed, if such
an individual would have been selected byLegacy with higher probability in most other pools
that could have formed (as a result of other sets of agents being randomly invited alongside this
individual), then the individual might still have had a substantial overall probability of serving
on the citizens assembly.

In this section, we show how our data suggest that this is not the case, and that some people do
in fact seem to have very low likelihood overall of ending up on the panel whenLegacyis used.
We make this case by demonstrating two separate points. First, we show that, across instances,
Legacytends to give very low selection probabilities to agents who have many features that are
overrepresented in the observed pool relative to the quotas. Second, we discuss why it is likely
that, across possible pools for the same citizens assembly, it is usually the same agents who have
many overrepresented features. These two points, taken together, suggest that agents who have
many overrepresented features in the pools we observe are rarely selected byLegacyoverall.
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Figure 3.5: Selection probabilities given byLegacyandLexiMin on all ten instances. Pool mem-
bers are ordered across the x axis in order of increasing probability given by the respective al-
gorithms. In contrast to Figure3.2and Figure3.4, this graph shows the full range of selection
probabilities (up to the 100th percentile). Shaded boxes denote the range of pool members with
a selection probability given byLegacy that is lower than the minimum probability given by
LexiMin . Legacyprobabilities are estimated over 10,000 random panels and are indicated with
99% con�dence intervals (as described in Statistics in the Methods). Green dotted lines show the
equalized probability¹: •=º.

Relationship between overrepresentation of features and selection probability. To mea-
sure the relationship between the level of overrepresentation of an agents features and that agents
selection probability byLegacy, we �rst construct a simple indicator called the ratio product,
which measures the level of overrepresentation of a given agents set of features in the pool. The
ratio product is composed of, for each of the features of an agent, the ratio between the fraction
of this feature in the pool and the fraction of the quotas of the feature (speci�cally, the mean of
lower and upper quota) in the panel. That is, if we denote the set of pool members with a feature
5 by # 5 and if we denote the lower and upper quotas of the feature by�5 andD5, respectively,
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Figure 3.6: Gini coe�cient and geometric mean of probability allocations of both algorithms, for
each instance. On every instance,Legacy has a lower Gini coe�cient and a larger geometric
mean. For computing the geometric mean, we slightly correct upward empirical selection prob-
abilities of Legacythat are close to zero (as described in Statistics in the Methods).

Figure 3.7: For each instance, the share of pool members selected with lower probability by
Legacy than the minimum selection probability ofLexiMin is shown. This corresponds to the
width of the shaded boxes in Figures3.2, 3.4and3.5.

then the ratio product of an agent8is de�ned as:

Ö

features5of 8

j# 5j • =

¹�5 ¸ D5º • 2:
”

Given that the quotas are typically set in proportion to the share of the feature in the population,
we say that agents with a high ratio product have many overrepresented features. Using this indi-
cator, we �nd that there is a clear negative relationship in all instances between the ratio product
of an individual and their selection probability byLegacy(Figure3.8). Most importantly, as this
trend would suggest, we �nd that the pool members with the largest ratio products consistently
have some of the lowest selection probabilities.
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Figure 3.8: Relationship between how overrepresented the features of an agent are and how likely
they are to be chosen by theLegacyalgorithm. The level of overrepresentation is quanti�ed as
the ratio product (as described in Individuals rarely selected byLegacy in the Methods); agents
further to the right are more overrepresented. Across instances, pool members with high ratio
product are consistently selected with very low probabilities.

The same agents probably have many overrepresented features across most possible
pools. Recall that we de�ne an instance with respect to a single pool. However, this observed
pool is only one among several hypothetical pools that could have resulted from the random
process of sending out invitation letters. We de�ne the ratio product of an agent with respect
to a single instance and, therefore, a single observed pool. Then, if a di�erent hypothetical pool
(including that agent) had instead been drawn during the invitation process, the ratio product
of the same agent with respect to that pool would probably be di�erent, depending on which
constituents were invited to join the pool alongside them. As the quotas and the target panel
size k would be the same for all these hypothetical instances, the di�erences in ratio product
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