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Abstract
Strategic interactions between agents can be formalized by game theory. In re-

cent years modern learning techniques, coupled with the ubiquity of data and pro-
liferation of compute, have paved the way towards computationally solving large
games, with broad applications ranging from poker to security. However, several
challenges arise when considering the current state of the art in large-scale game
solving: (i) game parameters in many realistic settings are often unspecified; and
(ii) there is a notable lack of scalable solvers for large, general-sum extensive-form
games (most existing approaches being limited to zero-sum games).

In this thesis, we tackle in these two challenges in two ways. First, we study the
inverse problem in game theory, where game parameters are to be learnt given only
samples drawn from its quantal response equilibrium. An end-to-end, differentiable
game-solving module fully compatible with modern deep learning architectures is
presented. This approach allows for the learning of game parameters in two-player
normal-form and extensive-form zero-sum games in a scalable manner via gradient
descent. Second, we extend state of the art online Nash solvers currently used in
zero-sum games to Stackelberg and correlated equilibria in general-sum extensive-
form games. In both cases, we present efficient online search algorithms which avoid
computation in branches of the game tree not encountered in actual play. These algo-
rithms allow approximate solving of large general-sum games which offline solvers
struggle with, while still providing guarantees on performance. Third, we show how
to solve Stackelberg equilibrium in large perfect information general-sum games by
learning Enforceable Payoff Functions—functions which capture tradeoffs in utility
between players — rather than the usual scalar values. We demonstrate how to learn
these functions using a variant of fitted value iteration, and quantify the suboptimal-
ity incurred by errors in function approximation.
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Chapter 1

Introduction

Recent work in artificial intelligence has led to huge advances in methods for solving large-scale,
zero-sum, extensive-form games, both from methodological and applied standpoints. Methods
based on counterfactual regret minimization (CFR) [193], first-order methods for game solving
[103], online search [28, 136, 156], reinforcement and meta-game learning [32, 33, 85, 110, 136,
164] have enabled the computation of solutions for larger and larger games. This has resulted
in an impressive number of landmark breakthroughs, including exceeding human performance
in 2-player and multiplayer no-limit poker [29, 31, 136], professional-level play in the real-time
strategy game Starcraft [174], essentially weakly solving limit poker [23], as well as applications
to popular games like Dark Chess [189], Mahjong [188] and hidden identity games such as
Avalon [158] and Among Us [101].

Much of research effort today is devoted towards solving board and digital games such as
those aforementioned. Beyond game-playing, a parallel line of work in "real-world" settings in-
volves modeling real-world problems as games and developing algorithms to solve them. These
have applications ranging from infrastructure security [150], wildlife poaching [59, 60] to cyber-
security [10, 145, 187] mostly under the formalism of security games [167]. There are, however
two key fundamental challenges in computational game theory which hinder the modeling and
solving of games. This first lies with difficulties in defining the game and the second has to do
with the scalability of game solvers.

1.1 Unspecified Game Parameters

A cornerstone of game theory is the von Neumann–Morgenstern utility theorem [176], which
states that under certain rationality axioms, (i) all preference orderings can be summarized by an
underlying utility function and (ii) rational agents behave such to maximize their expected utility.
Often, it is conveniently assumed that these utilities are known to solvers a-priori, or at least that
the solver has access to a black box simulator from which one can sample trajectories. The
assumption that utilities are readily available greatly simplifies downstream tasks—for example,
computer scientists need only focus on equilibrium selection and computation.

However, in many real-world situations certain elements of the game (most commonly, player
utilities) are unknown. If a game is grossly misspecified, then whatever solution that emerges
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must be treated with skepticism. Without some specification of (or at least, the ability to sample
from) the game, it is virtually impossible to reason about, much less solve. Here, we will describe
three existing (interrelated) approaches when faced with unknown payoffs.

• Estimate utilities using domain knowledge. In these situations, one way forward is to
simply assign payoffs based on one’s domain knowledge. For example, in an airport se-
curity setting, Pita et al. [149] base payoffs on the possible damage caused in the event
of an attack. Such an approach can unsatisfying and extremely subjective. Consider the
defender’s perspective when faced with a successful attack in a security application. Nat-
urally, one would assign a “very large” negative number to that outcome, but this precise
magnitude will directly affect the mixed equilibrium predicted. Attempting to obtain con-
clusive results when payoffs are somewhat arbitrarily chosen appears to be at best a thought
experiment and at worst a vexing attempt at forced storytelling which we hope to avoid.

• Specify ordinal utilities instead. Domain knowledge may not give us cardinal (numerical)
utilities, but may be enough for us to rank each possible outcome. This may be sufficient
to solve some games—for example, subgame perfect equilibrium can be found in perfect
information games by backward induction. Such an approach is favored in applications
such as modeling interstate conflict for its simplicity. For example, Brams [25] advocates
this approach in what he terms as the “Theory of Moves”. However, avoiding cardinal
utilities restricts both the equilibrium and games we can handle 1. Indeed, a follow-up
paper by Stone [165] criticizes Brams’s models as “backsliding” and “holding no promise
of generating theoretical progress”. Fundamentally, ordinal utilities cannot help us com-
pute expected utilities and hence lack the ability to predict or explain mixed strategies,
including mixed equilibrium in simultaneous move games such as Chicken.

• Basing parameters on field data. A more scientific approach would be to based payoffs
on data gathered from the field. For example, Fang et al. [60] model payoffs for anti-
poaching patrols by a zero-sum game with utilities based on the animal density in each
region. These animal densities were obtained by extensive prior studies such as tiger sur-
veys in the area of interest. However, field measurements are often difficult to directly be
mapped to utilities. In the anti-poaching application, player utilities can reasonably as-
sumed to be monotonic in animal density, yet it is unclear what their precise relationship
is—it could well be linear, convex, concave or otherwise. Furthermore, utilities are often
based on a combination of factors. Here, the authors adjusted utilities to penalized rough
terrain based on their own first-hand experience in walking routes, leading to a situation
where utility is now dependent on multiple factors whose importance has to be weighed ap-
propriately. This once again poses the same question: where do these weighting functions
come from?

The above examples are included not to downplay their importance, but rather to highlight
the harsh reality in applying game theory to the real world. Clearly, the problem is not computa-
tional, but one which stems from the inherent difficulty in specifying models2. One approach to

1In some 2 ˆ 2 matrix games, it is possible to characterize some equilibrium depending based on the relative
payoffs, but for larger games, analytically describing equilibrium as a function of payoffs is not possible.

2Sometimes, this problem can be alleviated by tweaking the solution concept. For example robust equilibrium
such as those by Kroer et al. [105] allow for the specification of the range of utilities allowed for each outcome,
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mitigating this problem lies exploiting data collected from past player actions.

Inverse Game Theory. If we indeed believe that some underlying game(s) underpins players’
decisions, then with some samples of players’ actions under equilibrium, we should be able to
learn the underlying game (and not just the equilibrium). This is in line with the current trend in
Machine Learning—that the data should describe the model. Just as game solving can be seen as
a “forward” problem, this reverse learning process is known as Inverse Game Theory3, and can
be treated in a similar fashion to a supervised learning problem. Crucially, none of the existing
work in computational game theory is compatible with the rich representational models afforded
by modern deep learning, which requires one to be able to take gradients with respect to game
parameters. This leads to our first research problem.

Q1: How could one approach Inverse Game Theory in a differentiable manner?

1.2 Scalable Solving of General-Sum Extensive Form Games

Many games are by nature general-sum—players are neither fully competitive nor cooperative.
In fact, these are often games which exhibit some of the most interesting behavior such as sig-
naling and threats, and include most classical games such as the Prisoners Dilemma, Chicken
and Ultimatum games, but also many of the modern applications such as those mentioned in
Chapter 1.1 and multiplayer board games.

Types of equilibria in general-sum games. Unlike with zero-sum games where these solution
concepts coincide, in general-sum games, solution concepts other than Nash equilibrium are
extensively studied and sometimes preferred, typically because they yield higher social welfare
(or utility to a single player), or because they are easier to compute. The appropriate choice of
equilibrium concept is highly domain specific. Here, we show two such alternatives.

• Stackelberg equilibrium (SSE) is often the equilibrium of choice in security games. Here,
the leader (sometimes termed the defender) is assumed to have commitment privileges,
allowing it to commit to some mixed strategy prior to the game beginning, while the fol-
lower (the attacker) is assumed to be best-responding. This asymmetry is justified by the
assumption that in the repeated setting, the leader can build a “reputation” for playing the
strategy committed to.

• Correlated equilibrium (CE) is preferred when players are able to coordinate their actions.
Traditionally, one assumes the existence of a trusted mediator or signaling device which
serves to coordinate player actions. For CE, the goal is often to maximize some notion
of social welfare (SW). It is well-known that by taking advantage of correlations, the CE

guaranteeing performance even if models are slightly misspecified. However, these approaches requires the pro-
vision of adequate confidence bounds and do not remedy the root problem—that these bounds themselves are not
easily specified.

3Not to be confused with the problem of mechanism design.
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can enjoy higher expected social welfare than Nash in games such as Chicken and, in the
extensive-form case, a non-zero sum variant of the classic game Battleship [63].

Computational complexity in solving general-sum games. Solving for Nash, SSE, or CE in
general-sum games is particularly difficult in extensive-form games (EFG). For example, while
finding an SSE in a matrix game can be done in polynomial time [47], the problem is known to
be NP-hard (in the size of the game tree) in virtually all extensive-form games, including games
with imperfect information and games with chance [115]. Similarly, finding a social-welfare
maximizing CE is NP-hard in extensive-form games [179]. Even in special cases where efficient
algorithms theoretically exist, the correlation plan is often too large to be stored or be of practical
use. For example, the benchmark game of Battleship played on a 3x2 grid with a single ship of
size 2 and 4 rounds of firing for each player may appear to be small, and in fact has an extensive-
form correlated equilibrium (EFCE) which can be found in polynomial time [64]4. However in
reality, it has a joint strategy profile requiring more than 100M entries just to represent.

Recent methods for large-scale game solving. There is a vast literature on game solving,
ranging from traditional methods involving mathematical programming to more recent algo-
rithms involving regret minimization. In very large games, computational constraints imply that
we often cannot even represent such game trees explicitly, calling for the need for algorithms able
to scale up. This has led to a series of approximate solvers using techniques such as (manual)
state abstraction to modern methods involving meta-game learning and reinforcement learning.
We pay special attention to the following two methods which have gained much popularity and
acceptance for solving zero-sum extensive form games.

• Online, depth-limited search. For large enough games, even traversing the game tree is
computationally infeasible. Instead of attempting to search to the end of the game tree,
one performs search to a limited depth and evaluates leaves based on heuristics or other
evaluation functions. After every move, search is then restarted from the new state, hence
avoiding the need to initiate search from states that are not reached in actual play. Such
methods have been used in part of classic minimax search in perfect information games,
with major successes in chess. More recently, such approaches have been extended to
imperfect information games with aliases such as online search and continual resolving,
and have been proven to be crucial in leading poker bots.

• Function approximation. Traditionally, one would estimate the value of a state by means
of heuristic evaluation functions. In chess, this can involve a significant amount of hu-
man engineering. Today, the preferred approach would be to learn the value of states as
a function of their features—typically one that is represented by a neural network. For
imperfect information games, the value of individual game states is undefined. Instead, a
value vector for public belief states is learnt. The use of function approximators has not
only saved on human engineering efforts, but has been shown to be able to generalize well
even to states not seen before.

4The EFCE is a relaxation of the CE. Its SW-maximizing solution can be found in polynomial time in games
without chance[179].
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First used in zero-sum games of perfect information, online search and function approximation
have non-trivial extensions to imperfect information games. Both approaches have not only
altered the landscape for game-solving, but are said to produce strategies which are not only
better performing, but also more “human”. However, neither method has seen widespread use
in general-sum games. This is somewhat surprising, since general-sum games are often more
computationally challenging than their zero-sum counterparts.

Q2: How do we extend existing techniques in solving zero-sum games to equilibrium in
general-sum games?

1.3 Organization of this Thesis
In Chapter 3, we present our solution to Q1—a method to learn games in a differentiable man-
ner. Our work leverages both the effectiveness of modern deep learning while still retaining
some rigor afforded by game theory. We present the first end-to-end differentiable game solving
module, fully capable of being embedded in any deep learning pipeline requiring gradient based
updates. This chapter is based on our papers [121, 122].

In Chapters 4 and 5, we present part of our answer to Q2—methods extending subgame
resolving for both Stackelberg and extensive-form correlated equilibrium. Our algorithms are, to
the best of our knowledge, the first instances where an online method has been applied to either
of these equilibrium notions with theoretical guarantees on performance5. We also touch on the
gadgets used in our algorithms for upper bounding player payoffs, which may be of independent
interest to other researchers. Both these chapters are based off [119, 120]. Part of the foundation
for Chapter 5 were part of collaborations and presented in [63, 64]; we do not discuss them here.
While independent, we recommend reading these chapters in order as the key techniques are
closely related.

In Chapter 6 we present the second part of our answer to Q2—the use of Function Approx-
imation in answering in the simplest of settings: finding Stackelberg equilibrium with signaling
(also known as SEFCE) in perfect-information games. We propose learning enforceable payoff
frontiers for each state, an analog of state values used in 2-player zero-sum games. This gives
rise to a variant of Fitted Value Iteration (FVI) allowing us to scale to large game trees. This
is one of the few methods applying function approximation to solve large EFGs while giving
performance guarantees. This line of work is based on [123].

5Subgame resolving was used in the multiplayer poker bot Pluribus [31]. However, their guarantees are signifi-
cantly different from ours.

5



6



Chapter 2

Preliminaries

Many problems in game theory begin with the specification of 2 components. First, we have
the game definition. Who are the players and what actions can each take? Given that players
have acted in a certain way, what are the payoffs to each of them? When do players take actions,
and what information does each player have when making decisions? Essentially, the game
specification captures the ‘rules of play’.

Once the game is defined, one has to decide on what is meant by ‘solving’ the game, known as
selecting an equilibrium concept. Even with the commonly held assumption that players are self
interested, there are often multiple reasonable equilibrium concepts, each modeling a different
human/bot behavior. Can players randomize? If so, are they allowed to correlate their strategies?
What if players are not perfectly rational and can make mistakes? These are design decisions that
depend on the domain and application one is interested in. For this thesis, we are concerned with
the behavior of players at the equilibrium, and not the dynamics taken to arrive at the equilibrium
(e.g., evolutionary game theory [185]). We are, however interested in the the algorithmic aspects
involved in the computation of the equilibrium, which can involve similar simulations.

This chapter covers the ideas and notation associated with games, various approaches for
representing player strategies, as well as some of the equilibrium concepts relevant to future
chapters. The bulk of this section is synthesized based on references from [115, 130, 143, 167,
179].

2.1 Normal Form Games

The most common game is the matrix, or normal form game. These represent situations where
players make their move simultaneously, with each player receiving a payoff depending on the
action of all players. In this thesis, we focus on 2-player games, with players P1,P2 equipped
with finite action set A1,A2 respectively. A normal form game G is represented using 2 payoff
matrices Pi “ R|A1|ˆ|An|, one for each player. Given an action profile a “ pa1, a2q, ai P Ai, Pi

receives a payoff of Pipa1, a2q. The space of strategies for P1 and P2 respectively are the prob-
ability simplices ∆A1 and ∆A2 . Given randomized strategies u P ∆A1 , v P ∆A2 , the expected
utility that Pi obtains is given by the bilinear expression uTPiv.
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Zero-sum Games. A game is zero-sum if P1 “ ´P2, otherwise it is general-sum. 2-player
zero-sum games can be concisely represented by a single payoff matrix P . Zero-sum games are
extremely well studied and enjoy nice properties, such as having a unique game value and being
easier to solve computationally.

2.2 Extensive Form Games
In many real-world situations, decisions are made sequentially, with each decision potentially
having consequences later. Furthermore, players are often required to make decisions without
perfect knowledge of the game state—for example, poker players do not know their opponent’s
hidden cards. This structure is neatly formalized by Extensive Form Games (EFGs) and form the
basis for the bulk of this thesis.

Game Structure. An EFG G is played on a rooted, finite game tree with nodes representing
game states, each belonging to P1, P2 or a special chance player C representing randomness in
nature (e.g., the dealer randomly distributing cards in a game of poker). The set of states is given
by S, which can be further partitioned into 4 sets S1,S2,SC,L, representing states belonging to
P1, P2, C, as well as the set of leaves (or terminal states). Each state s P SzL is associated with
a finite (possibly empty) action set Apsq. An edge directed downwards from state s to s1 has
a one-to-one mapping with Apsq, and represent actions by players or randomness from nature.
Every state s and action a P Apsq, leads immediately to a single next state s1, which we denote
by shorthand as sa. We say that state s precedes s1 if s ‰ s1 and s1 is a descendent of s in the
game tree. This is denoted by s ă s1. We write s ĺ s1 when allowing s “ s1, and used ą and ľ

when relationships are reversed. Note that ă is a partial order; states are comparable only when
they lie on some path starting from the root.

Utilities. In EFGs it is customary to associate player utilities to each s P L. Each leaf is
associated with a single path starting from the root (equivalently a list of actions taken by chance,
or either of the players). Leaves are associated with utility functions ri : L Ñ R which define
the utility received by Pi is ripℓq upon reaching leaf ℓ. As before, the social welfare is given by
rsw “ r1pℓq ` r2pℓq, and a game is zero-sum if rswpℓq “ 0 for all ℓ P L.

Imperfect Information. To account for imperfect information, states in Si are grouped into
information sets (abbrev. infosets). States belonging the same infoset are indistinguishable. That
is, Ii are partitions of Si. Each set (of states) Ii P Ii constitute a single infoset. We insist that
states belonging to the same infoset contain the same actions, i.e., s, s1 P Ii ùñ Apsq “ Aps1q.
If not, Pi could distinguish such states by comparing available actions. Hence, for simplicity we
can write ApIiq to refer to actions available at any s P Ii. We further assume players exhibit
perfect recall, which means that players never forget past observations and actions. Formally,
perfect recall requires that (i) if s and s1 belonging to Pi are in distinct information sets Ii and
I 1
i, then their descendants s ą s and s1 ą s1 never belong to the same information set, (ii) if

states s, s1, possibly equal, belong to the same information set Ii, which contains distinct actions
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Figure 2.1: Examples of EFGs. Rounded boxes indicate information sets, with player (and
chance) ownership denoted inside the box. Edges are labeled by action names. Note that we
have removed the option to call after P1 draws a king, since from a strategic perspective there is
no reason to do so.

a, a1, then the states s ľ sa and s1 ľ s1a1 belong to different information sets. Perfect recall
is satisfied by virtually any game of practical interest. 1 The function C : S Ñ r0, 1s is the
probability of reaching s assuming all players play to do so (or equivalently, the contribution of
C towards reaching s).

Example 1 (EFGs): Consider a very simple (zero-sum) variant of poker shown in Figure 2.1
adapted from Burch [34]. The game starts with chance, which deals either a jack or king to us.
The opponent is always dealt a queen. We (P1) are given the choice to check, which causes the
game to end with us receiving a payoff of ´1. Alternatively, we could bet, which gives our oppo-
nent (P2) the chance to call or fold. If it folds, we will earn a payoff of 1. If it calls, then we enter
a showdown, where we earn 2 if we held a king, and ´2 if we held a jack. Notice the information
set containing both our opponent’s state: these are bundled together since our opponent does not
know exactly which card we were dealt. This has important strategic consequences: if the oppo-
nent could see our card, the optimal strategy (obtained by minimax search) involves us betting
(and our opponent folding) when we are dealt a king, and checking when dealt a jack. However,
exploiting imperfect information allows us to squeeze out additional reward. This is done by
betting with probability 1{3 when dealt a jack. This way, we earn 1{3 regardless of whether the
opponent calls or folds. The strategy just described is called the Nash equilibrium, which will
be explained in Section 2.4. While the reasoning in this simple example was straightforward to

1Sometimes, whether a game has perfect recall can depend on how it is specified. For example, the card game
Bridge can be seen as having 4 players with perfect recall, with each pair of teammates sharing the same utilities
that are zero-sum across teams. However, one can also view this as a 2-player zero-sum game, with each team
representing a single player. Now, each player has imperfect recall. While this second formulation is somewhat
unnatural, it underpins why team games like Bridge cannot be solved via the same methods that were used in Poker.
Indeed, designing solvers which exploit this special substructure of imperfect recall is an active area of research.
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conduct by hand, the situation becomes significantly more complicated in larger games, often
requiring the use of more sophisticated solvers. Indeed, the subject of efficiently solving zero-
sum EFGs has been the topic of numerous influential theses [26, 34, 156] and important papers
[27, 136], and is the foundation of many modern bots in games like Poker, Dark Chess, and
Stratego.

2.3 Representing Strategies in Imperfect Information Exten-
sive Form Games

An important decision when computationally solving games is how to represent strategies for
each player Pi. Unlike single-player settings, we will have to represent randomized strategies.
The choice of representation will greatly influence algorithm design, including aspects like mem-
ory and time complexities. This section’s focus is on the case where players are playing inde-
pendently. The case where players correlate strategies is deferred to later chapters.

2.3.1 Normal Form Strategies

The traditional, albeit inefficient representation is obtained by converting G to normal form
Gnormal. In this new game, the set of deterministic strategies for each player is given by Cartesian
product of the set of actions available at each infoset, i.e.,

Anormal
i “

ą

IiPIi

ApIiq.

Any action anormal
i P Anormal

i tells Pi exactly what to do at each infostate. Randomized strategies
lie on the probability simplex ∆|Anormal

i |. For every action anormal
i P Anormal

i , we denote the action
taken at infoset Ii P Ii by anormal

i pIiq, and with a slight abuse of notation anormal
i psiq for s P Si.

We say that anormal
i is consistent with a state s if it makes Pi play to s, expressed by the binary

function

Consistentps, anormal
i q “

#

1, for all s1 P Si where s1 ă s, s1anormal
i ps1q ĺ s

0, otherwise
.

The payoff matrix P normal
i has entries given by

P normal
i panormal

1 , anormal
2 q “

ÿ

ℓPL
ri ¨ Cpℓq ¨

ź

iPt1,2u

Consistentpℓ, anormal
i q.

The probability of reaching each leaf is bilinear in anormal
1 and anormal

2 , which lends itself well
to optimization. Unfortunately, explicitly enumerating elements of Anormal

i incurs
ś

IiPIi |ApIiq|

space. This is computationally unappealing, since the number of infosets is typically exponential
in the depth of the tree.

10



2.3.2 Reduced Normal Form Strategies
The reduced normal form seeks to prune the space of normal form actions. Consider the modified
signaling game in Figure 2.1b. Here, P1 chooses to play G or B, followed by X or Y . P2 only
observes the second action. The normal form representation contains 8 deterministic actions.
However, some actions are strategically (and payoff) equivalent. For example, pG,XG, XBq and
pG,XG, YBq reach the same outcome regardless of whatever P2 plays. Indeed, if action G was
taken, it does not matter what action one would have taken if B was played. Thus, pG,XG, XBq

and pG,XG, YBq can be compressed into a single action pG,XG, ˚q, where ˚ is a “dummy” action.
This pruning step results in 4 actions pG,XGq, pG, YGq, pB,XBq, pB, YBq.

Remark 1: In certain settings, particularly when players are boundedly rational, the reduced
normal form is not equivalent to the normal form. This distinction will surface in Chapter 3.

2.3.3 Behavioral Form Strategies
Behavioral strategies overcome the problem of large representations. Instead of taking Cartesian
products for each player Pi, we represent strategies as a mapping πi : Ii Ñ ∆|AipIiq|. From
an implementation standpoint, we take the πipIiq at every infoset Ii P Ii and concatenate these
distributions into a vector of size

ř

IiPIi |ApIiq|.
Strategies in behavioral form are compact: it is of size

ř

IiPIi |ApIiq|, i.e., roughly linear in
the size of the game tree, and thus significantly more memory efficient than the normal form
representation. Behavioral strategies derive their power from Kuhn’s Theorem [12], which states
that in games with perfect recall, every normal form (potentially mixed) strategy is payoff equiv-
alent to some behavioral strategy.2 This implies that when solving games, we may restrict our
search to the relatively small space of behavioral strategies.

Unfortunately, given behavioral strategies π1 and π2, the probability of reaching a specific
leaf ℓ P L is the product of behavioral strategies (including chance) at each infoset leading up to
ℓ, yielding an expression containing multinomials with degree potentially as high as the depth of
the game. Thus the expected payoffs under π1 and π2 are linear combinations of multinomials.
This can be undesirable when computing equilibrium. That said, behavioral form strategies are
more “natural” representations compared to the normal and reduced form. In addition, they are
more in line with methods originating from reinforcement learning and other techniques used in
single-player settings.

2.3.4 Sequence Form Strategies
The sequence-form strategy, introduced by Von Stengel and Forges [179] achieves the spatial
compactness of behavioral strategies while maintaining the convenience afforded by normal form
strategies. Roughly speaking, for each player Pi, the sequence form is similar to the behavioral
strategy except that we scale the distribution πipIiq by the product of all actions that have to be
taken by Pi to reach Ii (due to perfect recall, there is only one such path).

2Loosely speaking, a strategy is payoff equivalent to another if they achieve the same payoffs regardless of
whatever action the opponent takes.
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More formally, we define the set of sequences for Pi as the set Σi :“ tpI, aq : I P Ii, a P

ApIq Y t∅u, where ∅ is known as the empty sequence. For any such sequence σi P Σi, we
write the unique last infoset of the sequence Infipσ1

iq “ I . For any infoset Ii P Ii, we denote by
denoted by SeqipIiq the parent sequence of I , which is the (unique) sequence which precedes I
from the root to any node in I . (If no action is played by Pi prior to I , then SeqipIq “ ∅.) For
convenience, we overload Seqipsq to represent parent sequence leading to s (this could be or ∅).
Furthermore, we will drop player ids and write Seq and Inf when the context is clear. Sequences
in Σi form a partial order.3 For sequences τ “ pI, aq, τ 1 “ pI 1, a1q P Σi, we write τ Ă τ 1 if there
exists states sa, s1 P I 1 belonging to Pi such that sa ĺ s1, and write τ Ď τ 1 if allowing τ “ τ 1.
If in addition, σpI 1q “ τ (or equivalently SeqpInfpτ 1qq “ τ ), we say that τ 1 is an immediate
successor of τ , denoted by τ Ă1 τ

1 and Parpτ 1q “ τ . Where necessary we will use τa to denote
τ 1. Lastly, infosets Ii, I 1

i P Ii which share the same parent sequence SeqpIiq “ SeqpI 1
iq are called

parallel infosets.
The sequence form replaces pure strategies by partial description of sequences specifying

the player’s moves over the game tree. Instead of probability vectors for each infoset, we are
interested in realization plans u P Rn

`, v P Rm
` , each a vector of size equal to possible actions

throughout the game , where n and m are 1 `
ř

IiPIi |ApIiq| respectively). Realization plans
are indexed by sequences, with entries upσq and vpσq represent probabilities of performing a
sequence of actions σ, in isolation from chance and other player’s moves. Note that u, v do not
generally sum to 1.

Treeplexes The sequence form can visualized as treeplexes [88, 104], with one for each player.
A treeplex is a tree with adjacent nodes alternating between infosets and sequences, with the
empty sequence forming the root of the treeplex. Treeplexes encode tree-form decision problems
(recall that infosets are essentially decisions points). An example of a treeplex for the classic
game of Kuhn poker [106] is given in Figure 2.2. In this example, a valid (pure) realization plan
would be to raise when one obtains a King, or Jack, and when dealt a Queen, call, and follow by
folding if the opponent raises thereafter.

Mixed strategies in sequence form are enforced by sequence form constraints for P1 (and
analogously for P2),

upHq “ 1

u pσiq “
ÿ

aPApIiq

u pσiaq @Ii P Ii, σi “ SeqipIiq.
(2.1)

The sequence form constraints may be visualized as ‘flow’ conservation constraints on the treeplex,
with this flow being duplicated for parallel information sets. We will sometimes express the se-
quence form compactly by the linear constraints Eu “ e, Fv “ f . The E,F are matrices of
size |I1| and |I2| with entries in t´1, 0, 1u, while e, f are vectors of size n and m with zeros
everywhere except for up∅q “ vp∅q “ 1. Thus, E and F encode parent-child relationships
in the treeplex, and may be seen as a generalization of normal form requirement that u, v lie
in probability simplexes. Deterministic strategies (i.e., those corressponding to a pure action in
Anormal

i ) satisfy (2.1) and contain only zeros and ones.
3Warning: sequences and information sets across players do not form a partial order, even with perfect recall.
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H

J

[Call] [Fold]

Raise

[Call]

Call Fold

[Raise]

Call

Q
K

Figure 2.2: Treeplex of player 1 in Kuhn Poker. Filled squares represent information sets, circled
nodes are terminal payoffs, hollow squares are points which lead to parallel information sets,
which are preceded by dashed lines. Actions/sequences are given by full lines, and information
from the second player is in square brackets. The treeplex is ‘rooted’ at the empty sequence.
Subtreeplexes for the J and K outcomes are identical and thus omitted.

Example 2 (Treeplexes): The treeplex of P1 for the game of Kuhn Poker [106] is shown in
Figure 2.2 (note that for simplicity we have only shown the treeplex after a queen was drawn;
the other branches are identical). There are 6 infosets, each with 2 actions. The initial 3 infosets
corresponding to the actions taken immediately after being dealt a card are parallel. There are
26 “ 64 normal form actions, 33 “ 27 reduced normal for actions (each card drawn gives us
3 possible actions to continue with, i.e., Raise, Call-Call and Call-Fold), and behavioral and
sequence form strategy of size 2 ¨ 6 “ 12. The sequences are of the form rcard dealts→Raise,
rcard dealts→Call, rcard dealts→Call→Call and rcard dealts→Call →Fold.

Payoffs in sequence form can be written as a n ˆ m sequence form payoff matrix, which like
the normal form is denoted by P . Every leaf can be associated with a pair of unique sequences
σ1 P Σ1 and σ2 P Σ2. (Note that the converse is not true, since not any pair of sequences
correspond to a leaf. In fact, there could be multiple leaves for each pair of sequences—e.g.,
when there are chance nodes after both players have taken their final actions.) The sequence
form payoff matrix has entries indexed by pσ1, σ2q, with entries

Pipσ1, σ2q “
ÿ

ℓPL:σk“Seqkpℓq

ripℓq ¨ Cpℓq,

i.e., the expected utility of player i over all nodes reached when executing the sequence pair
pσ1, σ2q. For most practical games, Pi would be sparse, since the majority of sequence pairs do
not correspond to any leaf. Just like the normal form, the Pi’s payoff under strategies u, v is
given by the bilinear term uTPiv.

2.4 Equilibrium Concepts
This thesis handles different equilibrium concepts. Here, we briefly touch on some of the key
ideas — more precise details will be introduced when needed.
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2.4.1 Best Response

Consider a G and a fixed, but possibly randomized strategy v of P2 (in EFGs, v can be in normal,
reduced, behavioral or sequence forms). The best-response of P1 to v, denoted by BR1pvq, is the
set of payoff maximizing strategies that P1 may play assuming P2 fixes their strategy to be v. The
best response of P2 is defined an analogous way. In a normal form game G with payoff matrices
Pi, P1’s best response to P2 strategy v is BR1pvq “ ArgmaxuP∆|A1|

uTP1v, where Argmax is
taken to be set valued. Similarly, when P and strategies u, v are written in sequence form, we
have BR1pvq “ Argmaxuě0,Eu“e u

TP1v. BR2 is defined analogously.
The best response in EFGs is easily visualized using treeplexes. In particular, once Py is

computed (in sequence form), a best response can be computed via a bottom-up traversal of the
treeplex — when parallel information sets are encountered, their children values are summed,
and when an information set is reached, we select the (deterministic) best action. After the
treeplex is traversed, actions chosen in each information set describe the behavioral strategy of
the computed best response.

Remark 2: In large games EFGs, we do not explicitly compute P1v by matrix-vector multipli-
cation. Instead, we can exploit sparsity by traversing the game tree bottom up while populating
P1v accordingly.

2.4.2 Nash Equilibrium

A 2-tuple of randomized profiles x “ px1, x2q is a Nash equilibrium (NE) if neither player
can strictly benefit by independently deviating to another (mixed) strategy, assuming the other
player plays according to their distribution. In normal (or reduced normal), and sequence form
representations, these may be expressed with linear constraints xx1

1, P1x2y ď xx1, P1x2y and
xx1, P2x

1
2y ď xx1, P2x2y, where x1

1, x
1
2 are taken to be over all strategies and Pi is taken to be

over normal or sequence form representations. A NE is pure if x is deterministic, and mixed if
either xi is randomized. NE (possibly randomized) are guaranteed to exist [141], though they
may not be unique.

Computing a NE even in 2-player normal form games is PPAD-hard and inapproximable
[45, 52]. In fact, even simple variants such as finding the social-welfare maximizing NE or de-
ciding if more than one NE exists is NP-hard [48, 74]. As a result, much effort has been spent in
distilling out games with special structure which can be exploited yield efficient solvers (e.g., po-
tential/congestion games [134], network [71], routing [153] and graphical [93, 98] games). There
have also been attempts at deriving polynomial-time approximate solutions, particularly in the
2-player setting [21, 50, 51, 100, 124, 172]. As a generalization of normal form games, com-
puting NE in general-sum EFGs is as expected, also computationally challenging. In practice,
finding some NE can be found in small to medium-size normal and EFGs by various methods,
e.g., reformulation into a Linear Complementary Problem (LCP), Lemke’s algorithm [113, 179],
mixed integer programming [151, 154], or homotopy type methods [86].

An important case arises when G is zero-sum, where finding a NE corresponds to finding
a saddle point in a convex-concave function. In this case, equilibrium can be found efficiently
(relative to the general case) by methods such as linear programming [2, 49, 70] and first or-
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der methods such as online learning/regret minimization [16, 43, 68, 69, 80, 83, 191]. These
algorithms can often be extended to EFGs, for example by formulating the problem as a linear
program using the sequence form [178] as well as newer methods based on smoothing [103].
This will surface later in Chapter 3. Amongst the most successful methods to solve EFGs is
perhaps counterfactual regret minimization (CFR) [193] and its many variants [30, 109, 168].
These form one of the key components of the landmark accomplishments in poker AI [27, 136].
Other approaches include meta game solving [110] (and its variants, e.g., [128]), reinforcement
learning [125, 147], and occasionally a combination of aforementioned techniques.

2.4.3 Stackelberg Equilibrium

The Stackelberg equilibrium models strategic interactions where P1 plays the role of a leader
and P2 the follower. It was first used to model competitive firms and the first mover’s advantage
([177]) and the ideas later extended by [180], which we use in this thesis. Informally, the leader
commits to a strategy while the follower best responds to this commitment. The leader’s goal
is to maximize its own utility under the assumption that the follower best responds to it; in the
event where there are multiple best-responses, the follower tiebreaks. That is, a pair of strategies
px1, x2q is a Stackelberg equilibrium if they jointly maximizes P1’s payoff under the constraint
that x2 P BRpx1q. When using the sequence or (reduced) normal form, this is equivalent to
finding a pair px1, x2q such that (i) x2 P BR2px1q and (ii) xx1, P1x2y ě xx1, P1x

1
2y for all x1

2 P

BR2px1q.

Remark 3: The case where tiebreaks are done in favor of P1 is known as the Strong Stackelberg
equilibrium (SSE). The alternative, where tiebreaking seeks to minimize P1’s utility is known
as the Weak Stackelberg equilibrium — this amounts to swapping the sign of inequality (2) in
the above definition. SSE are more commonly used in real-world applications—in almost all
games, the leader can avoid tiebreaking issues by committing to a strategy arbitrarily close to x1

such that the follower’s best response is unambiguously x2, thus it’s expected payoff is arbitrarily
close to xT

1 P1x2.
SSE will always exist and yields P1 no lower utility for P1 than any NE. This follows from

the fact that any px˚
1 , x

˚
2q pair satisfying the NE incentive constraints also satisfies the SSE best-

response constraints. In fact, Von Stengel and Zamir [180] show that SSE will yield a leader
payoff no lower than any correlated equilibrium, a superset of NE which we describe in Sec-
tion 2.4.4.4 In zero-sum games, SSE coincide exactly with NE. Computing a SSE in general-sum,
normal-form games can be done in polynomial time using the multiple linear program method.
However, it is intractable in most EFGs, with the exception of the special game of games with
perfect information and without chance[114]. SSEs have many applications, most notably in se-
curity applications such as wildlife poaching protection [60] and airport patrols [148]. The reader
is directed to [92, 95, 161, 162, 167, 186] for some excellent surveys on the topic. Such games
are often called security games, which model the interactions between attackers (followers) and
defenders (leaders), often impose additional structure in payoffs to ensure compact models and

4Von Stengel and Zamir [180] also show that a coarse correlated equilibrium could yield an even higher payoff
to the leader than SSE.
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more efficient game solving [99, 102]. One such example would be the classic “water-filling” by
Kiekintveld et al. [99], which has since been extended to more complicated settings (e.g., [72]).

2.4.4 Correlated Equilibrium

So far, we have assumed that players are behaving independently. For two-player zero-sum
games, this is sensible, since there is no reason to coordinate player actions. This is not the
case for general-sum games and cooperative games. The Correlated Equilibrium (CE) allows for
players to coordinate actions with the aid of a trusted mediator or a randomized correlation device
[11]. In a CE, the mediator recommend actions privately to the players according to a probability
distribution over joint actions that is known to all players, where this distribution is such that
rational players have no incentive to deviate from the recommended action. CE is known to
allow for outcomes which lead to a significantly higher social welfare as compared to NE—the
most notable example manifests in the classic “Game of Chicken”. Furthermore, unlike NEs, CE
in normal form games can be computed in polynomial time, making them computational viable
alternatives to the NE.

There are numerous ways to induce correlation between players in EFGs. For example,
one can convert the game to normal form and solve for a joint distribution there; this is known
as the Normal Form Correlated Equilibrium (NFCE). Another example is the Extensive Form
Correlated Equilibrium (EFCE), where the mediator gives recommendations for actions incre-
mentally at each infoset [179]. Recently, Morrill et al. [137] show a strong connection between
online learning and player deviations using the idea of ϕ-regret minimization [77, 90]. By care-
fully instantiating the set of available player deviations in an EFG, they recover a entire class of
EFCE-like equilibrium. In this thesis, we avoid these nuances and focus specifically on EFCE,
which will be introduced in more detail Chapter 5. It is also possible to combine correlation and
commitment—this leads to equilibrium concepts like the Stackelberg EFCE (SEFCE), which we
touch on in Chapter 6.

2.5 Notation Table

General

Notation Meaning
rns t1, . . . , nu

∆d Probability simplex with dimension d
∇xf Gradient of f with respect to x

ArgmaxS f Set of values in S which maximize f
argmaxS f One of the values in S which maximize f (tiebreaks done arbitrarily)
R`,Rn

` Nonnegative reals/orthant
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Extensive Form Games
Notation Meaning
Pi,C Player i, i P t1, 2u, Chance/Nature

S,Si,SC Set of all states, Set of states belonging to Pi/Chance
s ă s1, s ĺ s1 State s precedes (is an ancestor of) s1

L Set of leaves/terminal states
Ii Set of information sets for Pi

Ii P Ii, Ii Ď Si An information set for Pi

Apsq, ApIiq Set of actions at state s (resp. infoset Ii)
ripℓq Pi’s utility at leaf ℓ P L
rswpℓq r1pℓq ` r2pℓq
Cpsq Probability of reaching s assuming both players play to do so
sa P S Next state after player (or chance) takes a from s

Sequence Form Representation

Notation Meaning
Σi Set of sequences for Pi

∅ Empty sequence
Infpσq Infoset for last action taken in sequence σ
SeqpIq Parent sequence (sequence taken by Pi to reach) infoset Ii
Parpσq Parent sequence of σ, i.e., SeqpInfpσqq

σ Ă1 σ
1 Sequence σ immediately precedes σ1, i.e., Parpσ1q “ σ

σ Ă σ1, σ Ď σ1 Sequence σ precedes (or is) σ1

Pi Sequence form payoff matrix
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Chapter 3

Differentiable Learning of Zero-Sum
Games

In this chapter, we present an end-to-end framework for learning the parameters of uncertain
zero-sum games (both for normal-form and extensive-form games), purely by observing the ac-
tions of the agents. Although there has been a great deal of work at the intersection of game
theory and reinforcement learning [22, 36], most game-theoretic analysis either assumes that the
payoffs underlying the game are known (this is the standard game theory setting), or forgoes
trying to learn an explicit and complete representation of the game and instead looks for merely
learning agent strategies that will perform well [66, 115, 181]. However, in many cases when
the true underlying payoffs of the agents are not known, our primary goal is precisely to recover
or understand the payoffs. The few exceptions that focus on learning the payoffs often rely on
special structures of the game (e.g., symmetry in multiplayer setting [181]), or querying the best
response of the agent with unknown payoffs by asking other agents to play carefully designed
strategies [17, 115]. One relatively well studied area is the problem of identification (both in
valuations and structure) for the special case of auctions. For example, Athey and Haile [9]
study the problem of constructing tests which can differentiate between information structure
in asymmetric auctions (i.e., what does each bidder know) using varying level of observations
(e.g., winning bid, highest bid in second-price auctions etc). However, the general problem of
learning game parameters by observing actions is still relatively under-explored. Some of the
most closely-related works to our own is the computational rationalization framework of Waugh
et al. [184], as well as Kuleshov and Schrijvers [107] though 1) our approach differs in how the
utilities/payoffs are modeled; and 2) we crucially focus heavily on the extensive form settings,
whereas these past work considered only normal form or succinct games; and 3) we allow for
the game parameters to be a function of separately observed contextual features.

The crux of our approach is to consider the quantal response equilibrium (QRE), a general-
ization of Nash equilibrium (NE) that includes some possibility of agents acting suboptimally.
We show that the solution of the QRE is a differentiable function of the game payoff matrix, and
backpropagation can be computed analytically via implicit differentiation. We develop a solver
that jointly solves the QRE for two-player zero-sum games using a primal-dual Newton Method,
and allows us to compute the derivatives of agent actions with respect to the underlying payoff
matrix. This enables us to develop end-to-end learning approaches that can infer the payoff ma-
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Figure 3.1: An example architecture utilizing our proposed module.

trix or other parameters underlying a game merely from samples of the agents acting according
to their QREs. More generally, the method allows for (both normal form and extensive form)
game-solving to be integrated as a module in deep learning systems, a strategy that can find use
in multiple application areas.

In Section 3.1, we introduce the concepts of quantal response equilibrium and basics of our
differentiable game solving module. This yields a simple method applicable to normal form
games. In Section 3.2 we extend the method to imperfect information EFGs, and in Section 3.3
follow up by introducing an novel behavioral model for 2 player games. In Section 3.4 we
describe how to scale our method up using efficient first order methods. Lastly, Section 3.5 we
showcase some empirical results based on our method.

3.1 Learning and Quantal Response in Normal Form Games
Our game-solving module provides all the elements required to perform differentiable learning
through the game solution. The resulting learning approach learns a mapping from contextual
features x to payoff matrices P and computes equilibrium strategies pu˚, v˚q under a new set of
contextual features. For simplicity, we will assume that x is d-dimensional, i.e., x P X Ď Rd.

An example architecture is presented in Figure 3.1. Here, P is parameterized by a domain-
dependent low-dimensional vector ϕ, which is dependent on a differentiable function M1pxq.
Similarly, the loss function is taken after applying any differentiable M2pu

˚, v˚q. For technical
reasons, we focus on zero-sum games, which capture the simple but wide class of adversarial
environments (general-sum games suffer from a variety of complications, e.g., equilibrium se-
lection, having solutions that are nonsmooth/continuous, being difficult to compute in general).

This section focuses on normal form games. Although normal form games have limited real-
world utility due to the fact that they can only handle relatively small-scale settings, the game
solver and learning approach in this restricted setting captures much of the intuition and basic
methodology of our approach which extends naturally to sequential settings.

3.1.1 Zero-Sum Normal Form Games
In two-player zero-sum game with payoff matrix P , a classic min-max formulation to compute
the NE is as follows

min
u

max
v

uTPv (3.1)

subject to 1Tu “ 1, u ě 0 (3.2)

20



1Tv “ 1, v ě 0, (3.3)

u and v denote the (mixed) strategies employed by the min and max player respectively. The
solution pu˚, v0q to this optimization problem and the solution pu0, v

˚q of the corresponding
problem with inversed player order (i.e., minv maxu u

TPv) forms the Nash equilibrium pu˚, v˚q.

Warning. For this chapter, we assume that P1 is the minimizing player while P2 is maximizing.
This is in contrast to the convention in Chapter 2.

Here we present an introduction to our approach considering the case where the payoff matrix
P is not known a priori. P could represent either a single fixed but unknown payoff matrix, or,
in a more complex setting, depend on some external contextual features x. For example, in anti-
poaching games [59], P depends on temperature, precipitation, or terrain. In general, however,
we consider the case where we observe

1. Samples of actions apjq, j “ 1, . . . , N , each consisting of observed actions, from one or
both players (i.e., in Ai or A1 ˆ A2), sampled from the equilibrium strategies pu˚, v˚q.

2. Where existent, the contextual features xpjq P X .
The goal is to recover the true underlying payoff matrix P , or a function form P pxq depending
on the current context.

3.1.2 Quantal Response Equilibria
While extremely powerful both theoretically and as a modeling tool, the NE is poorly-suited for
our purposes because:

1. NEs are overly strict. In practice, many payoff matrices result in actions never being
played. This tends to be overly restrictive and does not adequately describe real-world
scenarios where players are boundedly rational.

2. NEs in zero-sum games may not be unique. While rare in practice, these pathological cases
may lead to difficulties when resolving which NE to select.

3. NEs are discontinuous with respect to P – a small change in P can lead to jumps in u˚, v˚.
This precludes integrating the technique into differentiable learning procedures.

To address these issues, in our learning setting we propose to model the player’s action with
the quantal response equilibria [130] instead. In general, QRE models situations where payoff
matrices are injected with some noise. Specifically, we consider the logit equilibrium, where
payoffs are perturbed by samples from a Gumbel distribution. The smoothness of the QRE with
respect to P makes gradient-based approaches feasible [5]. It is known that for zero-sum games,
the logit equilibrium obeys the unique fixed point

u˚
i “

expp´Pv˚qi
ř

qPrns
expp´Pv˚qq

, v˚
j “

exppP Tu˚qj
ř

qPrms
exppP Tu˚qq

, (3.4)

that is, u˚ and v˚ are the softmax of the reward vectors ´Pv˚ and P Tu. It is further known that
for a fixed opponent strategy, the logit equilibrium corresponds to a strategy regularized by the
Gibbs entropy [132]. Since the Gibbs entropy is strictly convex (and in fact, strongly convex in
|| ¨ ||1), the regularized best response is unique.
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Remark 4: In the QRE, there is an additional rationality (or temperature) parameter λ capturing
the strength of regularization. In this section, we fix λ “ 1 throughout. This is not a huge
restriction when learning payoffs, since scaling rationality parameters in the QRE is the same as
scaling payoff matrices by the same amount. This assumption will be lifted later on in Section 3.3
when introducing richer models for bounded rationality.

3.1.3 End-to-End Learning
In order to integrate zero-sum game solvers into an end-to-end learning framework, we need a
method for “differentiating through” the game solution itself; that is, we need to compute the
Jacobian (or more precisely, compute the Jacobian-vector products needed for backpropagation)
of the quantal equilibrium solution with respect to the payoff matrix. Our method for doing
so relies on techniques from differential calculus, and is a relatively straightforward extension
of similar approaches to differentiating through optimization problems [6, 75] However, as a
prelude to the more involved extensive form solution that we will discuss shortly, we describe
our method in some detail, which involves both a particular approach to solving the QRE and to
differentiating through its solution.

QRE Solver We observe that finding the fixed point in (3.4) is equivalent to solving the regu-
larized min-max game

min
uPRn

`

max
vPRm

`

uTPv ´ Hpvq ` Hpuq

subject to 1Tu “ 1, 1Tv “ 1,
(3.5)

where Hpyq is the Gibbs entropy
ř

i yi log yi. Notice that the non-negative constraints are im-
plicit from the entropy term, and that the entropy regularization renders the equilibrium con-
tinuous with respect to P . Intuitively, entropy regularization encourages players to play more
randomly, and no action has probability 0. Furthermore, since the objective is strictly a convex-
concave problem, it has a unique saddle point which corresponds to pu˚, v˚q.

This formulation leads to a solver for the QRE for two-player zero-sum games, using a
primal-dual Newton Method. To begin, the KKT conditions for the above problem are

Pv ` logpuq ` 1 ` µ1 “ 0

P Tu ´ logpvq ´ 1 ` ν1 “ 0

1Tu “ 1, 1Tv “ 1,

(3.6)

where µ, ν are Lagrange multipliers for the equality constraints on u, v respectively. Following
Newton’s method, we get the following update rule, which provides a convergent method for
computing the QRE for 2 player zero-sum games

Q

»

—

—

–

∆u
∆v
∆µ
∆ν

fi

ffi

ffi

fl

“ ´

»

—

—

–

Pv ` log u ` 1 ` µ1
P Tu ´ log v ´ 1 ` ν1

1Tu ´ 1
1v ´ 1

fi

ffi

ffi

fl

, (3.7)
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where Q is the Hessian of the Lagrangian, given by

Q “

»

—

—

–

diagp 1
u

q P 1 0
P T ´diagp 1

v
q 0 1

1T 0 0 0
0 1T 0 0

fi

ffi

ffi

fl

. (3.8)

Differentiating Through QRE Solutions The QRE solver also provides a method for com-
puting the necessary Jacobian-vector products. The derivation follows in a similar manner to
recent work in differentiating equality-constrained optimization problems [6, 75, 94] (the only
difference being the min-max objective instead of a pure minimization objective, but since we
compute differentials via the KKT conditions, the differences are minor). Specifically, given the
solution pu˚, v˚q to the QRE, and considering some loss function Lpu˚, v˚q (for example, the
log-likelihood of some observed data given this equilibrium probabilities), we show here how to
compute the gradient of the loss with respect to the payoff P . In particular, taking differentials
of the KKT conditions and rearranging leads to the following expression

Q
“

du dv dµ dν
‰T

“
“

´dPv ´ dP Tu 0 0
‰T

. (3.9)

For small changes denoted by du, dv, we have

dL “
“

∇uL ∇vL 0 0
‰ “

du dv dµ dν
‰T

“
“

∇uL ∇vL 0 0
‰

Q´1
“

´dPv ´ dP Tu 0 0
‰T

“
“

vTdP T uTdP 0 0
‰

Q´1
“

´∇uL ´ ∇vL 0 0
‰T

,

where the last step is from symmetry of Q. This expression governs how small changes in dP
affect L. For example, we may obtain the change in L after perturbing a single entry in P .
Applying this procedure to all entries in P , simplifying and taking limits as dP is small yields

∇PL “ yuv
T

` uyTv , (3.10)

where
“

yu yv yµ yν
‰T

“ Q´1
“

´∇uL ´ ∇vL 0 0
‰T

. (3.11)

Hence, the forward and backward passes with our module are respectively given by: 1) Using
the expression in (3.7), solve for the logit equilibrium given P , and 2) Using ∇uL and ∇vL,
obtain ∇PL using (3.10). It is stressed that the module is sufficiently general to be included in
any existing architecture where having a zero-sum game module is appropriate.

Remark 5: It is natural to ask if the games are identifiable – that is, is there a unique P which
under the logit QRE, generates u˚, v˚? The answer is no, in general. Assuming u˚, v˚ are fixed,
we can rewrite the KKT conditions in (3.6) as a system of linear equations in P . This system has
Opnmq unknowns but only Opn ` mq constraints. This implies that without a sufficiently com-
pact parametrization, there will be infinitely many payoff matrices leading to identical equilibria.
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For example, one can add a constant to all entries in P without changing the QRE. Another ex-
ample arises when in rock paper scissors, but with payoffs for wins and losses swapped—both
have uniform distribution as QREs. When under-constrained, one cannot expect to recover P .
We believe characterizing the set of possible P ’s that agree with available data is an interesting
but diffuclt problem that we leave to future work. However, in this thesis we show empirically
that there are many settings where it is possible to recover underlying parameters.

Remark 6: We can use this differentiable game solver within an automatic differentiation frame-
work to easily obtain gradients of virtually any loss with respect to any of the game parameters.
Specifically we used the PyTorch library [144] to backpropagate gradients.

Remark 7: The derivation for ∇PL may equivalently be derived using the implicit function the-
orem. See [14] for a detailed discussion on how this is done with convex optimization problems.
The general technique of “differentiating through” optimization problems is known as differen-
tiable optimization. Today, differentiable optimization is sufficiently advanced to be integrated
into generic convex optimization packages [3, 4, 56], allowing them to be used off-the-shelf
without having to explicitly perform the above derivations. Recently, this automated process has
been extended to saddle-point problems. These generic methods are not optimized for EFGs,
since generic solvers do not take into account structure and can be prohibitively slow for large
EFGs. Scalability is addressed in Section 3.4.

3.2 Learning Extensive Form Games
In practice, many games are more naturally represented in extensive form. Can we learn game
parameters in a similar fashion to payoff matrices in normal form? Does this have implications
when modeling bounded rationality? How do we ensure that forward and backward passes are
performed efficiently? This section addresses these issues.

3.2.1 Dilated Entropy Regularization in the Sequence Form
Learning payoff matrices of their equivalent normal form representation is computationally in-
feasible even for small games. For example, one-card poker has 226 pure strategies per player.
To facilitate learning of EFGs, we turn to the sequence form representation [178], which is suffi-
ciently rich to represent all strategic behaviors given perfect recall (see Section 2.3.4).

Recall that sequence form strategies are given by realization plans u P Rn
`, v P Rm

` , where
n and m are equal to the size of the game tree’s action nodes for each player plus 1, where upσq

and vpσq represent probabilities of performing a sequence of actions σ in isolation from chance
and other player’s moves. As shown in (2.1), these are represented by sequence form constraints
Eu “ e, Fv “ f . The expected payoff is given by uTPv, where P is the sequence form payoff
matrix as defined in 2.3.4. Similar to the normal form representation, we propose solving the
regularized min-max problem

min
uPRn

max
vPRm

uTPv `
ÿ

IPI1

ÿ

aPApIq

upIaq ¨ log
upIaq

upSeqpIqq
´

ÿ

IPI2

ÿ

aPApIq

vpIaq ¨ log
vpIaq

vpSeqpIqq
(3.12)
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such that Eu “ e, u ě 0, Fv “ f, v ě 0 (3.13)

This form of regularization is known as dilated or normalized entropy [24, 103], and is strictly
convex/concave in u and v respectively. Roughly speaking, (3.12) adds in entropy regularization
for each information set I based on the behavioral strategy at that I but weighed according to
the probability of the parent sequence of I . Observe that this formulation operates in Opm ` nq

dimensions. This is bounded by the size of the game tree and is normally much smaller than the
number of pure strategies.

One of our primary results is the fact that this particular form of regularization applied to the
sequence form recovers the QRE as applied to the equivalent reduced normal form representation
2.3, i.e., the normal form representation but with unattainable strategies removed.

Theorem 1. The solution to the optimization problem in (3.12) is realization equivalent to
the QRE of the game in reduced normal form.

Proof. (Sketch, see Section 3.6.1 for details) For each player, traverse and transform the
treeplex bottom up. When encountering parallel infosets, take cartesian products and show
that applying the softmax operator over the joint action space is equivalent to performing
softmax independently for each infoset (since for a distribution with fixed marginals, entropy
is maximized with independence; this is known as the maximum entropy coupling problem).
When encountering a sequence, append the children actions (this explains why we get the
reduced but not the vanilla normal form).

Theorem 1 shows dilated entropy regularization leads to a well-accepted solution concept,
even if it differs slightly from the more traditional definition of the QRE for extensive form
games1 [131]. A side consequence is that under certain regimes, the excessive gap technique
[88, 103] used to quickly solve zero-sum EFGs converges to the NE specified by QRE in reduced
normal form, as the rationality-parameter tends to 8. Though not the focus of our work, solving
(3.12) is a much faster (not to mention cleaner) alternative to explicitly computing the reduced
normal form of the QRE.

3.2.2 Differentiable Learning in the Sequence Form
Here we derive a differentiable formulation of the sequence form QRE, mirroring our derivation
for the normal form case, but admittedly with significantly more complex notation due to the
more involved entropy term. The KKT conditions of our optimization problem are,

rPvspσ1q ` 1 ` log
upσ1q

u pParpσ1qq
´ Jpσ1q `

ÿ

cPCpσ1q

µpcq ´ µ pInfpσ1qq “ 0, @σ1 P Σ1

rP Tuspσ2q ´ 1 ´ log
vpσ2q

v pParpσ2qq
` Jpσ2q `

ÿ

cPCpσ2q

νpcq ´ ν pInfpσ2qq “ 0, @σ2 P Σ2

1McKelvey and Palfrey [131] propose the agent form QRE (AQRE), which roughly speaking treats each infoset
controlled by a separate player, each of which perform their own internal softmax.
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Eu ´ e “ 0, Fv ´ f “ 0, u ě 0, v ě 0

where Cpσ1q, Cpσ2q are the set of parallel infosets following sequences σ1 or σ2 and Jpσ1q, Jpσ2q

are their respective sizes |Cpσ1q|, |Cpσ2q|. The dual variables µ and ν are vectors indexed by the
infosets in I1 and I2. We stack and write the terms on the left hand side as a vector function
gpu, v, µ, νq. Taking derivatives again yields the updates for Newton’s method.

»

—

—

–

´Ξpuq P ET 0
P T Ξpvq 0 F T

E 0 0 0
0 F 0 0

fi

ffi

ffi

fl

»

—

—

–

∆u
∆v
∆µ
∆ν

fi

ffi

ffi

fl

“ ´gpu, v, µ, νq

where Ξpuq P Rnˆn and Ξpvq P Rmˆm with entries indexed by pairs of sequences in pa, bq P

Σ1 ˆ Σ1 and pa1, b1q P Σ2 ˆ Σ2

Ξpuqab “

$

’

’

’

’

&

’

’

’

’

%

´
1`Jpaq

upaq
, a “ b

1
upbq

, Parpaq “ b
1

upaq
, Parpbq “ a

0, otherwise

and Ξpvqa1b1 “

$

’

’

’

’

&

’

’

’

’

%

´
1`Jpa1q

vpa1q
, a1 “ b1

1
vpb1q

, Parpa1q “ b1

1
vpa1q

, Parpb1q “ a1

0, otherwise

.

The updates are done in exactly the same manner as (3.10)

∇PL “ yuv
T

` uyTv , (3.14)

where
»

—

—

–

yu
yv
yµ
yν

fi

ffi

ffi

fl

“

»

—

—

–

´Ξpuq P ET 0
P T Ξpvq 0 F T

E 0 0 0
0 F 0 0

fi

ffi

ffi

fl

´1»

—

—

–

´∇uL
´∇vL

0
0

fi

ffi

ffi

fl

. (3.15)

As expected, when there is only one infoset for each player, the expressions in (3.14) and (3.15)
are identical to (3.11) and (3.10).

3.3 Nested Logit Behavioral Models for Two-Player Games
One of the fundamental research problems in behavioral science is to mathematically model
seemingly irrational (or non-utility maximizing) human behavior. Indeed, the assumption that
players behave in accordance to the QRE of the reduced normal form (Theorem 1) severely limits
the space of player strategies, and is known to exhibit pathological behavior even in one-player
settings. To remedy this, we turn to models for bounded rationality in the single-player setting
and propose natural extensions in the general-sum setting. This culminates in the Nested Logit
QRE (NLQRE), which encompasses a wide range of rationality models and possesses rationality
parameters which can be likewise learnt using gradient descent.
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3.3.1 Nested Logit Models for One-Player Games

The class of the random utility models (RUM) [170] contain some of the most well-studied
models of bounded rationality. The most commonly studied RUM is the Logit model2, where
given a set of alternatives A each with (known) utility Ua, the probability that alternative a is
picked is u˚

a “
exppUaq

ř

a1PA exppUa1 q
. It is equivalent to the probability that alternative a has highest

utility under Gumbel noise, i.e., u˚
a “ P pargmaxa1pUa1 ` ϵa1q “ aq, where ϵa1 are i.i.d. Gumbel

distributed. However, the standard logit model suffers from limitations.

Example 3 (Red-Bus, Blue-Bus paradox3 McFadden et al. [129]): Suppose there are 3 alter-
natives for transport – a red bus, a blue bus, and a car. The player derives the same utility for each
alternative, xcar “ xred “ xblue. Applying the logit model gives an equal probability of choosing
each vehicle. However, one could very reasonably expect the car to be taken with probability
1{2 and each bus to be chosen with probability 1{4, since color of buses should have no material
impact on decisions—each bus is a perfect substitute for the other.

The problem in Example 3 arises because logit models obey the strong property of inde-
pendence of irrelevant alternatives, meaning that it does not take into account cases when al-
ternatives are ‘qualitatively’ similar. Nested-logit (NL) models [171] address this limitation by
grouping fundamentally similar alternatives together and allows for correlations between ϵ’s be-
longing to the same group. In Example 3, we can split the decision process into two levels—in
the first level, we decide whether to take a car or a bus, and in the second level (if reached), we
choose which bus to take. Each level includes one round of dilated entropy regularization. If we
have an extremely small amount of regularization at the second level compared to the first, then
we end up with equal probabilities of taking buses and cars. If we use a standard logit model,
then all 3 vehicles will be taken with probability 1{3. This suggests that we can vary the amount
of regularization smoothly to recover a range of models of bounded rationality.

In a general two-level NL model, A is divided into K disjoint clusters, with alternatives a
belonging to cluster kpaq chosen with probability

u˚
a9 exp

`

Ua{λkpaq

˘

¨

˝

ÿ

a1Pkpaq

exp
`

Ua1{λkpaq

˘

˛

‚

λkpaq´1

,

where λ’s are parameters governing noise correlation. These probabilities may be interpreted as
a two-stage decision making process: in the first stage, a cluster is chosen, and in the second
stage, the specific action is selected based on (scaled) softmax on Ua within the cluster. The
probability of choosing each cluster in the first stage is given by the softmax over the (scaled)
log-sum-exp of each cluster. When λ “ 1, the standard logit model is recovered, and when
λ Ñ 0`, the ‘elimination by aspects’ model is obtained [173]. NL models can have multiple
layers, leading to a NL tree representing the nested grouping. The reader is directed to Train
[171] for background about nested logits and their various interpretations.

2Logits are more commonly known by the machine learning community as the ‘softmax’ operator.
3This was earlier known as the Beethoven/Debussy [126] or the bicycle/pony [166] example.
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3.3.2 Nested-Logit Quantal Response Equilibria

Our proposed Nested-logit QRE (NLQRE) is a generalization of both the QRE (in zero-sum
games) and NL models. That is, it generalizes NL models to two player zero-sum games, or
equivalently, extends the QRE by permitting a more general nested logit structure. This allows
us to model a far wider range of player behaviors, and in particular, cases where player ratio-
nality varies between stages of the game. We assume that the grouping of actions within each
information set is known a-priori. The NLQRE is given by the unique solution to the following
optimization problem

min
uPRn

max
vPRm

uTPv `
ÿ

IPI1

λI

ÿ

aPApIq

upIaq log
upIaq

u pSeqpIqq
´

ÿ

IPI2

λI

ÿ

aPApIq

vpIaq log
vpIaq

v pSeqpIqq

such that Eu “ e, u ě 0, Fv “ f, v ě 0, (3.16)

where λI ą 0 is a different regularization parameter for every information set in I. The NL
model is recovered in a one-player setting (i.e., Pv is a constant vector) and the QRE is recovered
when there is no nesting and λ “ 1 everywhere. Here, we do not assume λ’s are known in our
solution concept and instead treat them as parameters to be learned.

Remark 8: Being a generalization of NL models implies that NLQREs also take care of the same
pathologies seen in single player settings, including the red-bus blue-bus paradox of McFadden
et al. [129]. In fact, the additional representation power brought by introducing λ’s to (3.16)
cannot be achieved by a simple scaling of the payoff matrix in (3.12), even in the non-nested
normal form games. A trivial counterexample is seen in a variant of rock-paper-scissors with
non-uniform rewards (i.e., the payoffs for winners depend on their specific action). Suppose
the game is played between ‘strong’ and ‘weak’ players reflected by low and high λ parameters
respectively. Due to differing λ’s for each player, the strategies of the two players in equilib-
rium are different. However, scaling P , or even changing individual payoffs for winners (while
maintaining symmetry) can only result in symmetric equilibrium.

Remark 9: Readers familiar with nested logits may recall that the most common form of nested
logits do not admit chance nodes (or in our 2-player setting, parallel information sets). It may
be shown that there is a natural way of doing so by considering representing each alternative as
a pure strategy in the reduced normal form, and by nesting each action based on the informa-
tion sets which have a non-zero probability of being reached. We discuss these distinctions in
Appendix 3.6.2.

Remark 10: The expression in (3.16) is fairly general. Broadly speaking, our framework allows
for 2 types of nesting. First we allow for nesting via information sets (i.e., each information set
gets its own λ, see Remark 1), and second, by clustering actions within an information set, which
is achieved by introducing intermediate information sets (e.g., the ‘red and blue bus’ example).
Our experiments in Section 3.5 focus on the former. However (3.16) and our proposed solver is
able to handle the latter case, assuming that the nesting structure is known a-priori.
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3.3.3 Differentiably Solving for NLQRE
Using the approach in Sections 3.1 and 3.2, we arrive at a naive solver for the NLQRE based
on Newton’s method. Recall Cpσ1q and Cpσ2q as sets of possible information sets immediately
following σ1 P Σ1 or σ2 P Σ2. Define Jpσq “

ř

hPCpσq
λh — note that this is exactly the same as

before if all λ’s were equal to 0. Following the same procedures, the KKT conditions for (3.16)
are, for all h1 P Iv, a

1 P Ah1 , and for all h P Iu, a P Ah,

rPvspσ1q ` λInfpσ1q ¨

ˆ

1 ` log
upσ1q

upParpσ1qq

˙

´ Jpσ1q `
ÿ

cPCpσq

µpcq ´ µpInfpσ1qq “ 0 @σ1 P Σ1

rP Tuspσ2q ´ λInfpσ2q ¨

ˆ

1 ` log
vpσ2q

vpParpσ2qq

˙

` Jpσ2q `
ÿ

cPCpσ2q

νpcq ´ νpInfpσ2qq “ 0 @σ2 P Σ2

Eu ´ e “ 0 Fv ´ f “ 0. (3.17)

These are necessary and sufficient conditions for NLQRE, implying that the NLQRE can be
found by applying Newton’s method to (3.17), yielding the following updates
»

—

—

–

Ξpuq P E 0
P T ´Ξpvq 0 F
ET 0 0 0
0 F T 0 0

fi

ffi

ffi

fl

»

—

—

–

∆u
∆v
∆µ
∆ν

fi

ffi

ffi

fl

“ ´gpu, v, µ, νq, Ξpuqab “

$

’

’

&

’

’

%

λρa`
ř

h1PCpaq λh1

upaq
, a “ b

´
λρa

upbq
, Parpaq “ b

´
λρb

upaq
, Parpbq “ a

,

(3.18)

where gpu, v, µ, νq contains terms in (3.17) and Ξpvq is defined analogously in terms of the
appropriate v and λ’s. Observe that Ξpuq and Ξpvq are diagonally dominant and symmetric,
implying that they are positive definite. In the backward pass, we require the gradients of the
loss L with respect to P and λ. Similar to prior work [6, 75, 121], this may be done by applying
the implicit function theorem or by simply manipulating differentials. This yields the gradients

∇PL “ yuv
T

` uyTv , (3.19)

∇λh
L “

#

κT
h yu @h P I1

´KT
h yv @h P I2

(3.20)

where

rκhspσ1q “

#

1 ` log pupσ1q{upParpσ1qq , Infpσ1q “ h

´1, h P Cpσ1q
, (3.21)

rKhspσ2q “

#

1 ` log pvpσ2q{vpParpσ2qqq , Infpσ2q “ h

´1, h P Cpσ2q
(3.22)

and,

»

—

—

–

yu
yv
yµ
yν

fi

ffi

ffi

fl

“

»

—

—

–

´Ξpuq P E 0
P T Ξpvq 0 F
ET 0 0 0
0 F T 0 0

fi

ffi

ffi

fl

´1»

—

—

–

´∇uL
´∇vL

0
0

fi

ffi

ffi

fl

. (3.23)
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3.4 Efficiently Performing Forward and Backward Passes
Each gradient step involves solving optimization problems. Thus, having efficient solvers is
crucial in scaling up. We focus on the two most expensive steps—the forward and backward
passes. For the forward pass, we have so far used Newton’s method, which requires solving
linear equations such as those in (3.18) in each Newton step. When the game tree is large, solving
(3.18) multiple times for a single gradient step dramatically slows down training. Similarly for
the backward pass, one needs to solve a single linear system shown in (3.7), (3.15), (3.23). Again,
when the game is large, naively solving the linear system is also prohibitively slow, even when
utilizing sparse matrices. In this section, we show how first-order iterative methods (FOM),
which do not require the solution of a linear system as a subroutine can be used to speed up
computation in both the forward and backward passes. FOMs are also computationally attractive
for solving extensive form games—unlike Newton’s method, FOMs easily exploit the underlying
tree structures in EFGs.

3.4.1 A Useful Subproblem
For both the forward and backward problems, the following regularized bilinear saddle point
problems of the following form is of interest:

min
Ex“x0

max
Fy“y0

xTPy ` Epxq ´ Fpyq, (3.24)

where Epxq and Fpyq are strictly convex functions and P is a sequence form payoff matrix. Note
that x and y are “almost” sequence form strategies — the primary difference is that we have
replaced e and f by general vectors x0 and y0 and no longer have non-negativity constraints. It
is obvious from (3.16) that the forward pass in our problem solves a problem in this form (the
dilated entropy regularization also serves as a natural barrier for the domain of x and y). As
we will show later, the linear system in the backward pass (3.23) can also be seen as solving a
problem of this form. Hence, solving (3.24) efficiently will make each gradient step much faster.

3.4.2 FOM for Solving Regularized Bilinear Saddle Point Problems
Many methods to efficiently solve problems of the form (3.24) have been proposed. In our work,
we adapt the method proposed by Chambolle and Pock [44]4, which alongside many other first
order methods, apply best response subroutines towards smoothed versions of the min or max
original problem taken in isolation. Their algorithm proceeds by alternating between regular-
ized best-responses to minimization and maximization. Their algorithm, shown in Algorithm 1
gives the high-level overview of the optimization procedure, where BR are smoothed best re-
sponses with appropriately chosen Bregman divergences D1, D2 , their associated convex func-
tions Ψ1,Ψ2, and step sizes τ1, τ2 ą 0.

BR1px̄, ỹ;P, τ1q “ argmin
Ex“x0

xTP ỹ ` Epxq `
1

τ
Dxpx, x̄q

4Their algorithm is more general and applies beyond game solving.
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BR2pȳ, x̃;P, τ2q “ argmin
Fy“y0

´x̃TPy ` Fpyq `
1

σ
Dypy, ȳq.

We first set τ1 “ τ2 for convenience. For Algorithm 1 to be practical, we will require the best
response oracles BR1,BR2 to be computed efficiently. By setting D1px, x̄q and D2py, ȳq to be
of specific form similar to Epxq and Fpyq respectively will simplify BR1 and BR2 to be (up to a
factor) of the forms argminx:Ex“x0

xT c1 `Epxq and argminy:Fy“y0 y
T c2 `Fpyq, for some c1, c2

as functions of x̄, ỹ (or ȳ, x̃ respectively). These smoothed best responses are then efficiently
computed by exploiting the tree-structure in extensive form games inherent in the Ex “ x0 and
Fy “ y0 constraints. The remainder of this section outlines in turn the procedures required for
both forward and backward passes.

Algorithm 1: FOM method of Chambolle and Pock [44] for solving (3.24)
Input: xp0q, yp0q, P, τ, σ
for i in t0, . . . u do

ỹ “ ypiq;
xpi`1q “ BR1pxpiq, ỹ;P, τq;
x̃ “ 2xpi`1q ´ xpiq;
ypi`1q “ BR2py

piq, x̃;P, σq;
end

3.4.3 Efficient Forward Passes using FOM
For this section, the u “ x, v “ y when referring Algorithm 1. Setting Epuq,Fpvq to be the
entropy terms in (3.16) and u0 “ e, v0 “ f gives the expression in the form of (3.24). The
natural divergence to be chosen is the standard entropy divergence adapted to the dilated setting
(dropping terms in Du which do not contain u).

Ψ1puq “ Epuq “
ÿ

hPI1

λh

ÿ

aPAphq

uphaq log
uphaq

upSeqphqq

D1pu, ūq “ Ψ1puq ´ uTΨ1
1pūq

rΨ1
1pūqspσ1q “ λInfpσ1q ´

ÿ

h1PCpσ1q

λh1 ` λInfpσ1q log
ūpσ1q

ūpParpσ1qq

where a similar expression holds for Dvpv, v̄q. Plugging into the expression for BR1 gives

BR1pū, ṽq “ argmin
Eu“e

τ

1 ` τ
uT

pP ṽ ` Ψ1
1pūqq ` Epuq.

It is known that, BR1pū, ṽq may be solved by a bottom-up and top-down traversal of the treeplex,
followed by a single sparse matrix-vector multiplication [88]. At each information set , we solve
for the best response in behavioral form, i.e., assuming that information set was the root. Each of
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these sub-problems may be expressed in closed form using log-sum-exp and softmax functions.
The sequence form is recovered from behavioral strategies with a single downwards traversal of
the tree. Details can be found in Section 3.6.3.

Remark 11: In recent years, there have been many new methods for solving general min-max
convex-concave problems, which includes the regularized bilinear saddle point problems in our
setting. Naturally, algorithms tailored for treeplexes would be more efficient [53, 62]. We note
that since publication, even more efficient methods to solve for QRE such as regret circuits
[62] have been proposed. This method appears to be more efficient than ours, however, it is
noteworthy that it relies on Theorem 1 and dilated entropy regularization.

3.4.4 Efficient Backward Passes using FOM
Recall that the backward pass also requires solving a linear system to obtain ryu yv yµ yνs. We
first begin by making the crucial observation that the solution to the (necessary and sufficient)
KKT conditions of the following optimization problem is precisely the solution to the linear
system in (3.23).

min
x

max
y

xTPy `
1

2
xTΞpuqx ´

1

2
yTΞpvqy ` ∇uL

Tx ` ∇vL
Ty

such that Ex “ 0 Fy “ 0.
(3.25)

Note that in the backward pass, u and v are constants, while we are optimizing over x, y, which
in turn are not probabilities (they are unbounded and do not satisfy sequence form constraints).

We show that (3.25) can be solved efficiently—more efficiently than a system of linear equa-
tions. This dramatically speeds up the backward pass. First, observe that since Ξpuq and Ξpvq

are positive definite, this is a convex-concave problem of the form required by Algorithm 1. We
select the natural distance generating function Ψ1 “ 1

2
xTΞpuqx which yields (ignoring terms

containing only x̄),

D1px, x̄q “
1

2
xTΞpuqx ´ xTΞpuqx̄

Plugging this into the expression for BR1px̄, ỹq and rearranging gives

argmin
Ex“0

τ

1 ` τ
xT

p∇uL ` P ỹ ´
1

τ
Ξpuqx̄q `

1

2
xTΞpuqx (3.26)

Letting c “ τ
1`τ

`

∇uL ` P ỹ ´ 1
τ
Ξpuqx̄

˘

in (3.26) gives the KKT conditions

c ` ETγ ` Ξpuqx “ 0, Ex “ 0

where γ are Lagrange multipliers. Multiplying by EΞ´1puq gives a linear system in γ

EΞ´1
puqc ` EΞ´1

puqETγ “ 0. (3.27)

Note that we should not have introduced new roots in doing so, since these are linear systems
and there is a unique solution to γ both before and after the multiplication. After solving for γ,
one may solve for x

x “ Ξ´1
puq

`

´c ´ ETγ
˘

. (3.28)

32



Section Setting Purpose
3.5.1 Rock, Paper, Scissors with side info. Learning matrix games with side information
3.5.2 One-Card Poker Learning in EFGs
3.5.3 Security Resource Allocation Learning with incomplete observations
3.5.4 Synthetic Multistage Game Scalability of FOM
3.5.5 Larger One-Card Poker Scalability of FOM, Learning NLQRE
3.5.6 Information Gathering Game Learning nested logits

Table 3.1: Summary of experiments performed for Chapter 3.

Theorem 2. Solving for γ and x in Equations (3.27) and (3.28) require linear time (in the size
of the game tree).

The derivation involves exploiting the tree-structure inherent in extensive form games. De-
tails may be found in Section 3.6.3. The entire derivation can be similarly performed to efficiently
compute BR2.

3.5 Experiments

We empirically demonstrate our module’s novel aspects – learning extensive form games in the
presence of side information, with partial observations. We also evaluate the ability of using
FOM in our effforts to scale up, as well as learning NLQRE. Due to space constraints, details such
as hyperparameters and experimental setups are omitted. They may be found in Appendix 3.5.7
or the full papers [121, 122]. Table 3.1 contains a list of the experiments conducted.

3.5.1 Learning Payoffs in Rock, Paper, Scissors with Side Information

Rock Paper Scissors (RPS) is among the most well-studied 2-player zero-sum game. It is well
known that playing uniformly is an NE and QRE for RPS. In this experiment, we consider the
following variant (Figure 3.2), which breaks symmetry between the 3 actions. Notice that the
traditional RPS is recovered when b1, b2, b3 are all 1.

We assume that each of the b’s is a linear function of some features x P R2, i.e., by “

xTwy, y P t1, 2, 3u, where wy P R2 are to be learned. Features x in the dataset and ground-truth
weights w are drawn uniformly from r0, 1s, and r0, 10s respectively. Experiments were evaluated
with a fixed test set of size 2000. The results presented in Figure 3.3 illustrate 2 key points. The
first plot shows that accuracy dramatically improves with larger datasets, both in terms of MSE
of learned parameters and predicted strategies. The second plot shows that with a reasonably
sized dataset, convergence is stable and is fairly quick. As expected, the quality of learned
parameters improves as the number of data points increases. We also observe that predicted
strategies improve significantly when going from 2000 to 5000 samples, showing that despite
not converging to better parameters, the network still demonstrates a marked improvement in
predicting player strategies.
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R P S
R 0 ´b1 b2
P b1 0 ´b3
S ´b2 b3 0

Figure 3.2: Payoff matrix of modified Rock-Paper-Scissors. Values shown are for the row player.

Figure 3.3: Results for Rock, Paper, Scissors. Left: MSE of parameters and predicted mixed
strategies. Right: Convergence over 2000 epochs, using a dataset of size 2000.

3.5.2 Learning Card Distributions in One-Card Poker
We consider a simple variant of Kuhn poker with n cards. Here, players are dealt a single card
labelled from 1 to n. Players have bets of 10, and there are two stages of betting for the first
player. Both players begin with an ante of 10. Player 1 decides whether to bet an additional 10,
followed by Player 2 (who folds if he does not call). Lastly, Player 1 may choose to bet if Player
2 raises. Both players are obliged to reveal their card at the end of each game.

While relatively simple, the game contains the key elements in extensive-form games and the
strategic concepts in poker such as slow playing (e.g. not betting even if Player 1 holds the high
card) and bluffing (e.g. betting even if the player holds a low card). Despite its simple structure,
the game with n cards has 22n normal form pure strategies for each player. However, in sequence
form, we only need to work with realization plans of size 4n.

We assume that the deck is stacked non-uniformly. Our goal is to learn this distribution of
cards after observing many rounds of play. Let d P Rn, d ě 0,

ř

i di “ 1 be the weights of
cards. The probability that the players are dealt cards pi, jq (i ‰ j) is di ˆ

dj
1´di

. Note that this
distribution is asymmetric between players.

Instantiating the sequence form constraint matrices . We have the following possible in-
stantiation of the sequence form constraints when n “ 4.

E “

„

I I 0 0
´I 0 I I

ȷ

, F “

„

I 0 I 0
0 I 0 I

ȷ

, e “ r11110000s
T , f “ r11111111s

T ,

where E,F P R2nˆ4n. (For simplicity we have pushed the “empty sequence “ 1” constraint into
the leading infosets.) When the card distribution is uniform, i.e. d “ r0.25, 0.25, 0.25, 0.25s we
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define the sequence form payoff matrix P in terms of the showdown and resign matrices

S “
1

12

»

—

—

–

0 1 1 1
´1 0 1 1
´1 ´1 0 1
´1 ´1 ´1 ´1

fi

ffi

ffi

fl

, R “
1

12

»

—

—

–

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

fi

ffi

ffi

fl

, P “

»

—

—

–

S 0 0 0
0 0 ´R 2S
0 R 0 0
0 2S 0 0

fi

ffi

ffi

fl

where by our convention, the row player is the minimizing player. Each block in P is of size
4 ˆ 4, and gives possible outcomes for each of the 42 possible ways of dealing cards. The 4
blocks for the row player correspond (in order) to the actions ‘fold on first move’, ‘raise on first
move’, ‘fold on second move’, ‘raise on second move’. For the column player, the 16 actions are
‘fold after first player folded’, ‘raise after first player folded’, ‘fold after first player raised’, ‘raise
after first player raised’. The normalizing factor 1{12 arises from the fact there are 12 possible
ways of distributing cards to players. When d is not uniform, the sequence form payoff matrix
can be written in terms of the n ˆ n distribution matrix D,

P “

»

—

—

–

D ˝ S 0 0 0
0 0 ´1 ˝ D 2D ˝ S
0 1 ˝ D 0 0
0 2D ˝ S 0 0

fi

ffi

ffi

fl

, where Dij “
didj
1 ´ di

,

i.e. every 4 ˆ 4 block is pointwise weighted by the chance of being dealt the relevant cards. It
may be seen that the resign matrix R is really just the all-ones matrix multiplied pointwise by D.

Remark 12: While counting cards seems to be a straightforward way to learn the card distribution
when d does not change over time, our method is suited to learn the player’s perceived or believed
distribution of cards, which may be different from the distribution of cards dealt. This may even
be a function of contextual features such as demographics of players.

A total of three experiments were run with n “ 4. For each experiment, d „ Dirp1, 1, 1, 1q,
that is, the card distribution is sampled from a Dirichlet distribution. Each experiment comprises
5 runs of training, with same weights but different training sets. Training was for 2500 epochs,
which was observed to be after convergence. The mean squared error of learned parameters are
averaged over all runs and are presented in Figure 3.4.

3.5.3 Learning Target Payoffs Security Resource Allocation Game
In this set of experiments, we demonstrate the ability to learn from incomplete observations in a
setting that abstracts attacks in a cybersecurity domain. The defender possesses k indistinguish-
able and indivisible defensive resources, e.g., cyber analysts, which he splits among n targets,
tT1, ..., Tnu. In an attacking attempt, the attacker (row player) chooses one target. In the event an
attack on Ti succeeds, the attacker obtains a reward of Ri (and the defender ´Ri), otherwise, the
payoffs to both parties are 0. Each defensive resource independently prevents an intrusion with
probability 0.5. For example, if there are two defenders guarding T1, the chance of a successful
attack on T1 is 1

22
. This creates a scenario where the marginal benefit of each defensive resources

decreases, thus requiring the defender to strike a balance. The matrix of expected payoffs when
n “ 2, k “ 3 is shown in Figure 3.5.
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Figure 3.4: MSE of card weights (left) and realization plans (right). Each colored plot illustrates
a different ground truth to be learned.

{0, 3} {1, 2} {2, 1} {3, 0}
T1 ´R1 ´1

2
R1 ´1

4
R1 ´1

8
R1

T2 ´1
8
R2 ´1

4
R2 ´1

2
R2 ´R2

Figure 3.5: Security Resource Allocation Game: Payoff matrix with n “ 2, k “ 3.

We also consider a multi-stage game where the attacker can launch t attacks, one in each
stage while the defender chooses his allocation of resources in stage 1 and cannot change it in
later stages. On the other hand, the attacker has the option of changing his target between stages.
This describes a setting where analysts are deployed to specific network assets on a daily basis,
while attackers are sufficiently nimble to make multiple attacks in a single day. To understand
why the attacker may change target, consider that target Ti is attacked in stage 1 and the attack
is unsuccessful. It may be inferred that it is more likely that Ti is better guarded, prompting the
attacker to switch targets.

Three experiments are run with n “ 2, k “ 5 for games with single attack and double attack,
i.e, t “ 1 and t “ 2. Crucially, in this set of experiments, we learn Ri only based on observations
of the defender’s actions. This setting yields a 10 ˆ 6 sequence form payoff matrix. For each
experiment, R1 and R2 are drawn uniformly in r0, 2s. Each experiment is run 10 times for at least
2000 epochs per run. The mean and standard error over each run is presented in Figure 3.6. The
results show that our algorithm can still recover the game setting by only observing defender’s
actions.

3.5.4 Scaling up in Synthetic Multistage Games
Here we use randomly generated extensive form games to illustrate the computational efficiency
of our proposed first order method compared to Newton’s method. We evaluate the solvers for the
forward and backward passes in isolation. The experiments are run over several depths d, where
normal form games have d “ 1. For d ą 1, players play d distinct simultaneous sub-games
in succession, where each simultaneous sub-game has n̂ actions and transitions to the next sub-
game is governed by the joint action by both players, i.e., the size of P will be exponential
in d. The payoff matrices P were generated with each non-zero entry uniformly chosen from
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Figure 3.6: Security Resource Allocation Game: MSE of target values over 3 runs. Left: t “ 1,
Right: t “ 2. Each colored plot illustrates a different ground truth to be learned.

r´10, 10s, and rationality parameter λ for each information set uniformly and independently
chosen between r0.9, 1.1s.

Evaluation of Forward Passes In the forward pass, we compared the baseline Newton solver
to our proposed first-order method. However, the termination criterion for the 2 methods are
non-identical; as Newton’s method minimizes the residual rather than duality gap. To strike a
fair comparison, we evaluated the 2 methods by first running Newton’s method till a residual of
less than 10´3 is achieved. The duality gap of that solution is computed and subsequently used
as the termination criterion for the FOM5. The timings and speedup are averaged over 50 trials
and presented in Figure 3.7.

Evaluation of Backward Passes In the backward pass, the comparison for our proposed FOM
is against solving the linear system in (3.23) directly. In the loss function, we will concern
ourselves with the setting where the true matrix P and λ parameters are used in computing u, v
for the forward pass. This corresponds to the case the model is already fairly well trained. The
results over 50 trials are presented in Figure 3.8.

It is clear from both figures that our method scales much better than Newton’s method for
randomly generated matrices. Speedups of more than an order of magnitude are fairly common,
and the improvement increases with problem size. Furthermore, it was also observed that our
method consumed far less memory than sparse solvers. In fact, solving the sparse system when
d “ 3, n̂ “ 17 (not plotted) required more than 10GB of memory. On the other hand, our FOM
was able to solve such instances in less than a minute, and with no noticeable increase in memory
usage. Note that P contains more than 1.4 million rows and columns in this setting.

3.5.5 Learning Rationality Parameters and Scaling up in One-Card Poker
Here, we operate in a slightly different setting. Instead of trying to learn underlying card distri-
butions, we learn player rationality parameters. We assume that player rationality is independent

5On occasion, the Newton solver gave a gap extremely close to numerical precision. In these cases, we apply to
a termination criterion of 10´12.
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Figure 3.7: Timings (top) and speedup (bottom) for forward passes for d “ 1 (left) and 2 (right).
Error bars represent 1 standard deviation.

of the cards being drawn, and only depends on the past actions of (both) players. In this setting,
there are just 4 parameters to be learned (independent of the size of the deck). To demonstrate
the ability of FOM in scaling up, we use a deck size of 200 as opposed to just 4 in Section 3.5.2

We generate our data assuming that player rationality is some linear function of a scalar
feature, i.e., there are 4 weights to be learned. The weight vector is drawn uniformly from
r0, 0.01s. Feature vectors are drawn between r0, 1s. Our model is λh “ wi ˆf ` ϵλ. The addition
of a small ϵλ ensures that the λ’s will always remain positive; in our experiments, ϵλ “ 0.001. For
each feature, we compute the λ’s and find its corresponding equilibrium from which we sample
player actions. The results are plotted in Figure 3.9.

In all 3 cases, the log-loss is close to optimal given around 30 epochs. As expected, our
exact solver exhibits behavior almost identical to that of Newton’s method on a per-epoch basis.
Our solver is significantly faster than the baseline. It was observed that at almost all stages of
training, Newton’s method took almost 2 orders of magnitude longer to learn a model of similar
performance. In fact, a single epoch using Newton’s method takes as much time as training the
entire model using our solver.

3.5.6 Learning Nested Logit Models in the Information Gathering Game
Here we demonstrate the applicability of the nested logit model (i.e., a one player game) using a
publicly available dataset [89]. The game proceeds as follows. Suppose there are 4 faced-down
cards ranging from 1-10 placed in a 2 ˆ 2 matrix (with potential repetitions). The goal of the
game is to select the row containing cards with the largest sum. The game proceeds in 4 stages.
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Figure 3.8: Timings (top) and speedup (bottom) for backward passes. From left to right, d “

1, 2, 3. Error bars represent 1 standard deviation.

At each stage of the game, the player may make a guess prematurely, or spend some points in
revealing a new card. At the fourth and final stage, the player has to make a guess. The player
obtains a reward of 60 and -50 points for correct and incorrect guesses, and may only guess
once. The challenge is for the player to judge if it is worth paying to gather more information.
Computationally, the optimal policy may be easily obtained using dynamic programming.

We model bounded rationality using the nested logit model. It is assumed that the level of
rationality should be a function of a) how many cards are already open, and b) side information
such as one’s educational qualifications. This leads to a natural description of the game with 4
different λ’s, each of which is some function of features, which we describe below.

Two models are trained for this experiment. NOFEAT refers to the case when there are no
features (i.e., we are simply learning λ) and FEAT when we are exploiting demographic infor-
mation. In this case, features comprise the player’s academic qualifications and age, both with
one-hot encodings. A player’s age is split into 8 age ranges, and education levels follow that of
the UK (i.e., GCSE, A levels, Undergraduate, Graduate). Our model employs a neural network
with 3 hidden layers of width 100, interspersed by rectified linear activations. To ensure λ’s are
positive, all inputs were exponentiated before being fed into the solver. Figure 3.10 shows the
log loss over the overall game as well as the loss at each individual stage. For comparison, we
also provide the results for a player who picks a random action at every stage of the game. The
learned λ parameters for each configuration of features is presented in Figure 3.11.

From Figure 3.10, we can see that both trained models significantly outperform UNIFORM.
Log losses at each stage appear to decrease with the stage number. This is unsurprising since
players behave more rationally (and hence predictably) as more information is revealed. How-
ever, our model appears to perform worse at stage 4, which is in fact a problem with full ob-
servability. We suspect this higher loss is a consequence of our model overfitting to be overly
confident at the final stage, incurring a huge loss on the rare occasion a player answers incorrectly.
Several trends are observed from Figure 3.11. First, notice that λ decrease by approximately a
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Figure 3.9: Results for Larger One-Card Poker. Top: log-loss and mse per epoch, Bottom: time
required to obtain a particular log loss or mse.

loss loss(1) loss(2) loss(3) loss(4)
UNIFORM 1.833 1.099 1.099 1.099 0.693
NOFEAT 1.422 0.878 0.863 0.826 0.130
FEAT 1.419 0.874 0.866 0.818 0.145

Figure 3.10: Log losses for the information gathering dataset. The first column shows losses
over the whole game, other columns show losses for individual stages.
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Figure 3.11: Rationality parameters λ for each stage of the game as a function of age and educa-
tion (row major ordering). Ages are binned within age ranges. All respondents below the age of
18 were grouped together in a single age range.

factor of 10 between stages. This is fairly expected, since each information gathering leads to 10
other potential states. Also unsurprisingly, better educated respondents exhibit more rationality
(recall a lower λ implies a more rational player). Interestingly, we can see a U-shaped trend in
all stages, suggesting that people in the mid twenties and thirties are most rational. Both these
observations agree with the findings by [89], where it was shown that higher educated and middle
aged respondents obtained the most reward.

3.5.7 Implementation Details

All of the experiments are run using CPU cycles. The proposed first order method was imple-
mented using Cython[15]. We chose to do so since the best-response subroutines require tree-
traversals which are expensive in Python, while the second order method used the Numpy[81]
and Scipy[175] libraries for the solution of linear systems. Where possible, we utilized the Scipy
sparse matrix library. This was seen to provide a significant speedup for sparse P for both our
method and Newton’s method. The PyTorch automatic differentiation library [144] was used to
automatically obtain gradients for components outside the game solving module.

1. Rock, paper, scissors. Experiments are run on an Amazon c4.2xlarge EC2 instance. The
learning rate is 0.01, batch size of 128, using the Adam optimizer. The maximum number
of epochs before termination is 1000.

2. One card poker. Experiments are run on an Amazon c4.2xlarge EC2 instance. The learn-
ing rate is 0.002, batch size of 128, using the RMSProp optimizer [87]. Weights are ini-
tialized to be uniform. The maximum number of epochs is 2500, although convergence
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occurs significantly faster. Since there are no side-features, experiments may be sped up
by computing the forward pass just once for each minibatch.

3. Security resource allocation game. The case where t “ 1 was run on an Amazon
c4.2xlarge EC2 instance. The experiment where t “ 2 was performed on a 3.1 GHz
Intel Core i5 with 16GB of RAM. In theory, this difference in environment should only
affect wall-clock time, which is not the focus of this particular experiment.

4. Synthetic multistage games. All timings presented are wall-clock timings when run on
identical Amazon EC2 instances. We set τ “ 0.1 when evaluating FOM.

5. Scaling and learning rationality parameters in one card poker. The training set of
size 2000, with an independent test set of size 1000. We minimized the log loss using the
Adam optimizer with a batch size of 64 and learning rate of 10´4. We compared our solver
against Newton’s method, which terminates at a residual of 10´8. We fixed τ “ 1 for the
forward solver and τ “ 0.1 for the backward solver.

For experiments (1)-(3), the learning rate is 0.002 using the RMSProp optimizer (all other
hyperparameters are left as the defaults in Pytorch). Each run was 5000 epochs. The weights are
passed through fpxq “ ptanhpxq ` 1q to clip rewards to between r0, 2s before parameterizing the
payoff matrix.

3.6 Technical Proofs and Experimental Details

In this section, we describe the proofs for Theorems 1 and 2. We also derive the representation
of NLQRE as a nested-logit.

3.6.1 Proof of Theorem 1 (Dilated Entropy to Reduced Normal Form)

We first present the proof of one of our main technical results, that the dilated entropy regular-
ization of a extensive form game is equivalent to the standard entropy-regularized QRE of the
equivalent reduced normal-form game (Section 2.3.2).

Outline Consider the max player’s treeplex shown in Figure 3.12a. Red nodes are vertices
and black nodes are information sets. White squares represent sibling actions of A, which may
in turn, contain other parts of the game tree. The information states associated with I1, I2 are
parallel information states, i.e. both of which may be reached from A with non-zero probability
(assuming suitable opponent/chance actions). We show that the optimal solution using dilated
entropy regularization on the game in Figure 3.12a is realization equivalent to the optimum of
the reduced game in Figure 3.12b. Essentially, this operation converts part of the sequences to
the normal form, by replacing parts of the tree with all possibly contingencies. Repeated ap-
plication of this operation eventually translates the sequence-form representation to the reduced
normal form. This is performed on the tree in a bottom-up manner while maintaining realization
equivalence at each stage.
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(a) Original treeplex.

I

A(11,21) A(11,22) A(12,21) A(12,22)

(b) Treeplex after a single iteration.

Figure 3.12: Treeplexes before and after one iteration of a transformation which preserves real-
ization equivalence under the QRE. Repeatedly performing this operation eventually yields a flat
treeplex where the actions remaining correspond to those in the reduced normal form.

Part 1: A Simple Case

Let A be the an action such that all immediate child actions are leaves (e.g. Figure 3.12a). We
condition on having taken the action A. We will first show that after conditioning the resultant
reduced normal form is equivalent to its sequence form.

Notation. Recall CA “ tIku denotes the children information sets of A. The action set at Ik is
denoted by Ak “ tAkju “ ta P Av|ρa “ Iku. For the purposes of this derivation, the opponent’s
strategy is fixed, and his strategy profile is combined to give P1’s payoff vector P Tu “ x.

In normal form, all contingencies are accounted for, and the set of pure strategies are given
by the Cartesian product of action sets ÂA “

ś

k Ak. We denote the normal form mixed strategy
profile, payoff matrix, and normal form payoff vector as v̂, P̂ and x̂ “ P̂ T û. Note that the sizes of
these vectors/matrices are not equivalent to their counterparts in sequence form. For convenience,
we define fpv̂q to be a function mapping v̂ to v by performing the appropriate marginalization.
Let gpv, jq be the distribution of actions extracted from v supposing an information state of Ij .
For simplicity let H now define the Shannon entropy, Hpyq “

ř

yi logpyiq.
Derivation. The resultant QRE in the reduced normal form is,

max
v̂

v̂T x̂ ` Hpv̂q

“max
v̂

fpv̂q
Tx ` Hpv̂q

“max
v̂

fpv̂q
Tx ` H

˜

â

j

gpfpv̂q, jq

¸

“max
v̂

fpv̂q
Tx `

ÿ

j

Hpgpfpv̂q, jqq
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“max
v

vTx `
ÿ

j

Hpgpv, jqq.

The first line is by definition. The second line is the most crucial, and holds from the fact that joint
entropy is maximized by independent random variables (induced by the marginals gpfpv̂q, jq).
That is, if this independence relationship does not hold, then we could construct a strictly better
candidate solution. The third line is because the joint entropy of mutually independent random
variables is equal to the sum of their entropies. The last line is true since every sequence form
strategy is induced by at least one reduced normal form strategy (i.e. the image of f is equal to
the domain of v).

Part 2: The General Case

In Part 1, we showed realization equivalence when the white square is non-existent, i.e. there
are no other children of I . Now, we relax that assumption. Let gpv̂q map v̂ to the probability
distribution of actions taken at the first step (together with all contingencies if A is chosen).
Let fpv̂q map v̂ to the probability distribution of actions taken, excluding contingencies for A
(i.e. all actions taking A are condensed) and denote fpûq0 to be the probability that the first
action is A. Let Ẑpv̂q be the dilated entropy terms not attributed to the root of A, i.e. Zpv̂q “
ř

i,i‰I

ř

aPAi
v̂a log

v̂a
v̂pi

. The entropy term associated with the root is given by gpv̂q. This may be
decomposed by conditioning on fpv̂q, i.e. the first action in the pre-operation reduced form.

Hpgpv̂qq “
ÿ

j

fpv̂qjHpgpv̂q|fpv̂qjq ` Hpfpv̂qq (3.29)

“ fpv̂q0Hpgpv̂q|fpv̂q0q ` Hpfpv̂qq (3.30)

Our objective is

max
v̂

v̂T x̂ ` fpv̂q0Hpgpv̂q|fpv̂q0q ` Ẑpv̂q ` Hpfpûqq (3.31)

The objective may be written in 2 stages – first optimizing fpv̂q and second, optimizing the other
elements of v̂, i.e. actions that are not rooted to I or contain A, while respecting all the flow
constraints. Terms in the former group are written as v̂Ak

and the latter by v̂r. Their related
payoffs are vectors x̂A and x̂r.

Observe that given f̂pv̂q, the first 3 terms may decomposed into terms dependent only on
either v̂A and v̂r, allowing us to perform maximization independently. We have

v̂T x̂ “ v̂TAx̂A ` v̂Tr x̂r (3.32)

since payoffs at non-terminal actions are 0. Furthermore, given f̂pv̂q, Ẑpv̂q is only dependent on
v̂r, since the only values of f̂pv̂q dictate the constraints that terms in Ẑ must satisfy. Specifically,
Zpv̂q “

ř

i,i‰I v̂pi
ř

aPAi

v̂a
v̂pi

log v̂a
v̂pi

. Lastly, the second term in (3.31) is equivalent to maximizing
the entropy given A taken. Putting this together, we have the objective

max
f̂pv̂q

max
v̂A

max
v̂r

v̂TAx̂A ` v̂Tr x̂r ` fpv̂q0Hpgpv̂q|fpv̂q0q ` Ẑpv̂q ` Hpfpûqq (3.33)
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“max
f̂pv̂q

pHpfpûqq ` max
v̂A

`

v̂TAx̂A ` fpv̂q0Hpgpv̂q|fpv̂q0q
˘

` max
v̂r

´

v̂Tr x̂r `
ˆ
Zpv̂q

¯

q (3.34)

Observe that v̂TAx̂A

fpv̂q0
is the payoff obtained conditioned on A being taken as the first move. Hence,

the left inner maximization may be written as fpv̂q0 ¨ maxv̂A

´

v̂TAx̂A

fpv̂q0
` Hpgpv̂q|fpv̂q0q

¯

, which
is precisely fpv̂q0 multiplied by the sequence form objective which was described in Part 1 (i.e.
conditioned on A being taken).

Substituting the result from Part 1 and merging the maximization terms together recovers our
desired result. The final piece of the proof is to relax the assumption that I is the root. This may
be done repeatedly, by conditioning on reaching I and marginalizing probabilities as necessary.

3.6.2 Best response of the NLQRE as a nested logit

Here we show that the best-response in the NLQRE, which may contain parallel information sets
(either due to chance or actions by other players) may be regarded as a nested logit. The idea is
to express each strategy in the reduced normal form into a sequence of decisions, each describing
what is to be done in each parallel information set.

Consider the following game in Figure 3.13a. Chance (or the other player), labelled as (2),
first chooses out of 2 actions, which is made known to the player. For example, this could be the
private cards which are dealt to a player in a game of poker. The nodes T1 and T2 are the subtrees
following these 2 actions by the chance player.

Without loss of generality, let T 1
1 and T 1

2 be the tree representation of the player’s strategies
in subgame T1 and T2, i.e., T 1

1 and T 1
2 are decision trees for the player. Given that chance could

have chosen either action to begin with, the pure strategies are the cross product of all strategies
between T 1

1 and T 1
2, i.e., the player has to account for all possible contingencies. This may be

written as a 2-stage decision process in Figure 3.13b, where the first and second stages are choices
from T 1

1 and T 1
2 respectively, where T 1

2 is duplicated nleaves times, where nleaves is the number of
possible leaves for T 1

1.
The rewards are additive in each stage, implying that the best response for each of the dupli-

cated trees are identical. (Note however that the actual payoffs are modulated by the probability
of the chance player choosing the left or right action, but this factor is identical for each copy
of T 1

2). Furthermore, the leaves of T 1
1 form a probability vector (since T 1

1 is a decision tree).
This implies that setting the rationality parameters for the roots of all copies T 1

2 to be λ2 and
the rationality parameter at T 1

1 to be λ1 yields precisely one-player version of the optimization
problem in (3.16), since the objective in each copy of T 1

2 is identical and their coefficients sum to
1. Recursively applying this process bottom up to each subtree (i.e., making duplicate copies of
subtrees whenever we encounter parallel information sets) gives the desired result.

Observe that each pure strategy (path) in Figure 3.13b is a pure strategy in reduced normal
form. However, each path may pass through different information sets (for example, when there
is nesting of actions in the bus example), and hence different λ parameters. This is in line with
what one would expect with nested logits.
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(a) Full 2-player game tree. (b) Player’s decision tree.

Figure 3.13: Example showing the equivalence The first action is performed by chance (or the
other player). The player has to provide for contingencies in both the red and blue trees. Red and
blue components are decision trees for the player. Each leaf (or path from the root to a leaf) is a
pure strategy in the reduced normal form of the game in Figure 3.13a.

3.6.3 Efficient computation for forward and backward passes
In this section, we provide the complete computational details and proofs with regard of how to
compute best responses for the forward and backward passes.

Forward Pass

Recall from Section 3.4.3 that we needed to find the expression for the following regularized best
response using a single bottom-up traversal of the game tree and a single sparse matrix-vector
multiplication.

BR1pū, ṽq “ argmin
Eu“e

τ

1 ` τ
uT

pP ṽ ` Ψ1
1pūqq ` Epuq.

At each information set , we solve for the ‘behavioral’ best response (i.e., assuming that in-
formation set was the root). Each of these sub-problems may be conveniently expressed using
log-sum-exp and softmax functions. Denoting cpūq “ P ṽ ` Ψ1

1pūq, we compute

min
u,Eu“e

uT cpūq `
ÿ

IPI1

λIupInfpIqq
ÿ

aPApIq

upIaq

upInfpIqq
log

ˆ

upIaq

upInfpIqq

˙

,

where the constraint that u ą 0 is implicit from the log barrier.
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Optimization of the inner summation, along with the relevant part of the inner product may
be done in closed form using log-sum-exp. The tree constraints for u allows them to perform
traversals bottom up. Throughout the traversal process, denote zI as the ‘value’ of each infoset I
and rσ as the value of each action.

zI “ λI log

¨

˝

ÿ

aPApIq

exp

ˆ

rIa
λI

˙

˛

‚, rσ “ ´cpūqσ `
ÿ

I 1:SeqpI 1q“σ

zI 1

The behavioral strategies ûpaq are be expressed using the softmax function. For an action a
belonging to infoset I ,

ûpaq “
expprIa{λIq

ř

a1PApIq
expprIa1{λIq

(3.35)

The sequence form may be recovered from behavioral strategies using a single downwards traver-
sal of the tree.

Backward Pass

Recall that we needed to prove Theorem 2, i.e., that solving for γ and x in Equations (3.27) and
(3.28) require linear time. We reproduce both the equations here for convenience.

EΞ´1
puqc ` EΞ´1

puqETγ “ 0

x “ Ξ´1
puq

`

´c ´ ETγ
˘

.

Proof. We first verify the following useful results by straightforward algebraic manipulation.
Theorem 3. Ξ´1puqET “

“

α1, α2, . . . , α|Iu|

‰

, where αI’s are column vectors of size equal to
Σ1, each containing upσq{λI’s when σ is some descendent of I , and 0 otherwise.

Taking transposes gives the following, EΞ´1puq is equal to
“

β1, . . . , β|Au|

‰

, where the βσ’s
are column vectors of length equal to |I1|, and have entries equal to upσq

λI
if the infoset I is an

ancestor of σ.
Theorem 4. EΞ´1puqET “ diagptupSeqpIquq, i.e. equal to a square matrix of size |I1|, with
diagonal entries equal to the upSeqpIqq

λI
corresponding to a given information state’s parent action.

Theorem 5. For any vector c, EΞ´1puqc may be computed in linear time by traversing the tree
bottom-up.

Now we are ready to prove our main theorem. We first solve for γ. Applying Theorem 3
and Theorem 4 gives an expression for γ without requiring any explicit multiplication. Then, we
can obtain γ by applying Theorem 5 together with the fact that EΞ´1ET is diagonal. Note that
the computation of c requires Py, which may be done in time linear in the size of the extensive
form game tree. In the extreme case, the game could be a single-stage simultaneous move game,
resulting in P being dense, though for typical EFGs, P should be fairly sparse.

Once γ has been computed, we may solve for x

x “ Ξ´1
puq

`

´c ´ ETγ
˘

(3.36)
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Since Ξpuq is tree-structured, the inversion may be done in linear time using Gaussian Elimi-
nation. Similarly, ETγ may be computed in linear time because of sparsity in E. That is, the
number of non-zero elements in E is equal to the sum of the number of actions over all informa-
tion sets (recall that each row in E has non-zero entries for the actions for a given information
set and its parent).

3.7 Conclusion
In this chapter, we have described an fully differentiable, novel game solving module which
facilitates the learning of unknown game parameters and utilities in an end-to-end fashion. In
order to better model bounded rationality, we have also proposed the NLQRE, which can be seen
as an extension of nested logits to the multiplayer setting. By utilizing more modern solvers
in our game solving module, we are also able to scale learning to medium-sized games. Since
then, our work has been extended in many directions [73, 84, 117, 182], demonstrating the broad
applicability of differentiable game solvers.

The primary limitation of our proposed method is the strong assumptions we make, particu-
larly the zero-sum and QRE (or NLQRE) assumptions. Many real world games are general-sum,
which are difficult to compute and brings up tricky questions like choice of equilibrium concept
and/or equilibrium selection. Similarly, QREs are smooth, which makes its computation easier.
However, in many sequential settings the non-zero mass placed on each action makes it unreal-
istic in practice. The problem of non-identifiablity can be fairly severe, and we do not have a
rigorous framework to analyze the space of game parameters (beyond simple transformations)
with equilibrium matching the data collected. We now list several ideas for extending our work.

• One natural extension is to use other variants of the QRE, e.g., those arising from random
utility models. It is unclear if these would be equivalent to adding strictly convex/concave
regularizer like in (3.5) and 3.12 and hence unclear if resultant fixed points are unique. One
could also define variants of equilibrium using different types of regularization directly,
for example, by using Rényi or Tsallis entropies over Shannon entropies. For example, the
Tsallis entropy has been used to regularize Bellman equations in single-player reinforce-
ment learning and can be proven to yield policies with sparse support [111], which may
more suitable for human behavior in large, sequential environments. It is unclear if our
theoretical or algorithmic results will extend to these new settings.

• Another interesting avenue is to consider applying priors over the game parameters of
interest. For example, we may have some prior belief over player rationality, game utilities,
or chance nodes based on previous studies. One simple way to incorporate this into our
framework is to add L2 regularization on those parameters — this would constitute MAP
inference under a Gaussian prior. Can we do this in a fully Bayesian manner?

• Other interesting directions include alleviating the problem of non-identifiability by allow-
ing us to learn sets of parameters which are consistent with data, characterizing such sets
of parameters in special classes of games, extensions to other equilibrium, learning co-
operation/information sharing structure in multiplayer games, and actively learning game
parameters via interventions, drawing from the literature on causal inference.
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Chapter 4

Subgame Resolving for Strong Stackelberg
Equilibrium in Extensive Form Games

Strong Stackelberg equilibria (SSE) have found many uses in security domains, such as wildlife
poaching protection [60] and airport patrols [148]. Many of these settings, particularly those
involving patrolling, are sequential by nature and are best represented as extensive-form games
(EFGs). Unfortunately, even though finding a SSE in general EFGs is provably intractable [114],
existing methods for computing SSE in general-sum EFGs are entirely offline. That is, they
compute a (often expensive) solution for the entire game ahead of time and always play ac-
cording to that offline solution. In contrast, subgame resolving (also known as safe search)
additionally leverages online computation to improve the strategy for the specific situations that
come up during play. Subgame resolving has been a key component for AI in single-agent
settings [82, 118], perfect-information games [37, 159, 160, 169], and zero-sum imperfect-
information games [29, 31, 136]. In order to apply resolving to two-player zero-sum imperfect-
information games in a way that would not do worse than simply playing an offline strategy,
safe resolving techniques were developed [28, 35, 135]. Safe resolving begins with a blueprint
strategy that is computed offline. The resolving algorithm then adds extra constraints to ensure
that its solution is no worse than the blueprint (that is, that it approximates an equilibrium at least
as closely as the blueprint).

However, safe resolving algorithms have so far been primarily developed for two-player zero-
sum games. In this chapter, we introduce the key elements of subgame resolving and show how
this can be extended to compute Strong Stackelberg equilibria (SSE) in general-sum games. Our
algorithms represent the first instance of subgame resolving being applied in the general-sum
Stackelberg games with formal guarantees on performance. We show that by using resolving,
one can approximate leader-optimal SSEs in games much larger than purely offline methods. We
also show that our resolving procedure is itself solving a smaller SSE, thus making our method
complementary to other methods based on strategy generation. Experimental results show that
in large games our resolving algorithm outperforms offline methods while requiring significantly
less computation.
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4.1 Background and Related Work
We consider a general-sum imperfect information EFG G with two players, P1 and P2. We now
review the notation and ideas used in EFGs, the sequence form representation and treeplexes
previously described Section 2.3.4, as well as the ideas behind Strong Stackelberg Equilibrium
(SSE). We then introduce the key idea behind safe subgame resolving.

4.1.1 Review of EFGs and the Sequence Form
Recall that S is the set of all vertices in the game tree, which in turn belong to S1 (for P1), S2 (for
P2) and SC (for the chance player PC). Apsq is the set of actions available at s and Ppsq is the
player to act at s. Each leaf ℓ P L Ď S is associated with payoff ri : L Ñ R for each player. The
function C : S Ñ r0, 1s is the probability of reaching a state s if both players play to do so (i.e.,
the contribution of PC along the path to s. Nodes belonging to each Si are further partitioned
into infosets Ii P Ii, where nodes are indistinguishable, meaning that any (possibly randomized)
strategy for Pi must behave the same way for all nodes in Ii. Since nodes in the same infoset
have the same actions, we overload ApIq to mean the set of actions in any state s P I . We assume
that G has perfect recall, meaning that players do not forget their past actions and observations.

Since G has perfect recall, we utilize the sequence form representation. A sequence σi is
an ordered list of actions taken by Pi before reaching some state s. The empty sequence ∅ is
a special sequence without any actions. The set of possible sequences is denoted Σi. We write
σia “ σ1

i if a sequence σ1
i P Σi is obtained by appending action a to σi, which we denote by

SeqipIiq or Seqipsq. Conversely, Infipσ1
iq denotes the information set containing the last action

taken in σ1
i. We drop the subscript i when the player is clear from infoset/state. Using the se-

quence form, mixed strategies are given by realization plans, u : Σ1 Ñ R and v : Σ2 Ñ R, which
represent distributions over sequences. The realization plans upσ1q and vpσ2q give the probability
that σi will be played, assuming all other players (including PC) plays such as to reach Infpσiq.
Concretely, they obey nonnegativity and the sequence form constraints, i.e., upHq “ 1, @I P I1,
u pSeqpIqq “

ř

aPApIq
u pσ1aq and similarly for P2 with realization plan v. The polytope of re-

alization plans for each player may be visualized using treeplexes (Section 2.3.4). Informally,
a treeplex is a tree rooted at H with subsequent nodes alternating between information sets and
sequences, and are operationally useful for providing recursive implementations for common
operations in EFGs such as finding best responses.

4.1.2 Stackelberg Equilibria in EFGs
Strong Stackelberg Equilibria (SSE) describe games in which there is asymmetry in the com-
mitment powers of players. By convention, P1 and P2 play the role of leader and follower
respectively. The leader P1 is able to commit to a (potentially mixed) strategy. The follower
best-responds to this strategy, while breaking ties by favoring the leader. By carefully commit-
ting to a mixed strategy, the leader implicitly issues threats and incentives such that followers
best-respond in a manner favorable to the leader. Our goal is to find one such commitment for
the leader. SSE are guaranteed to exist and the value of the game for each player is unique. In
matrix games, an SSE can be found in polynomial time using the multiple-LP approach [47].
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Unfortunately, solving for SSE in EFGs in general-sum games with either chance or im-
perfect information is known to be NP-hard in the size of the game tree [114] due to there
being exponentially many pure strategies. Bosansky and Cermak [18] avoid transformation to
normal form and formulate a compact mixed-integer linear program (MILP) which uses a bi-
nary sequence-form follower best response variable to modestly-sized problems. More recently,
Černỳ et al. [41] propose heuristically guided incremental strategy generation. All of these meth-
ods are fully offline—that is, computation is performed before the game even begins.

4.1.3 Review: Solving SSEs in EFGs using Mixed Integer Linear Pro-
grams

In this section, we review the Mixed Integer Linear Program (MILP) proposed by Bosansky and
Cermak [18]. This is not necessarily the fastest solver today, but is a fairly efficient baseline to
compare against. The MILP is linear in the size of the game tree, and typically runs much faster
than solving the equivalent normal form game.

max
p,u,v,V,q

ÿ

ℓPL
ppℓq ¨ r1pℓq ¨ Cpℓq (4.1)

VInfpσ2q “ qpσ2q `
ÿ

I 1PI2:Seq2pI 1q“σ2

V pI 1
q `

ÿ

σ1PΣ1

u pσ1q ¨ g2 pσ1, σ2q @σ2 P Σ2 (4.2)

upHq “ 1, vpHq “ 1 (4.3)

u pσ1q “
ÿ

aPA1pIq

u pσ1aq @I P I1, σ1 “ Seq1 pIq (4.4)

v pσ2q “
ÿ

aPA2pIq

v pσ2aq @I P I2, σ2 “ Seq2 pIq (4.5)

0 ď qpσ2q ď p1 ´ v pσ2qq ¨ M @σ2 P Σ2 (4.6)
0 ď ppℓq ď v pSeq2pℓqq @ℓ P L (4.7)
0 ď ppℓq ď u pSeq1pℓqq @ℓ P L (4.8)
ÿ

ℓPL
ppℓq ¨ Cpℓq “ 1 (4.9)

v pσ2q P t0, 1u @σ2 P Σ2 (4.10)
0 ď u pσ1q ď 1 @σ1 P Σ1 (4.11)

Conceptually, ppℓq is the product of player probabilities to reach leaf ℓ P L, such that the final
probability of reaching ℓ is ppℓq¨Cpℓq. The variables u and v are the leader and follower strategies
in sequence form respectively, while V is the EV of each follower information set when strategies
u, v are adopted. q is the (non-negative) slack for each sequence/action in each information set,
i.e., the difference of the value of an information set and the value of a particular sequence/action
within that information set. The term gipσi, σ´iq is the EV of player i over all nodes reached
when executing a pair of sequences pσi, σ´iq, i.e., gipσi, σ´iq “

ř

ℓPL:σk“Seqkpℓq ripℓq ¨ Cpℓq.
Constraint (4.2) ties in the values of the information set V to the slack variables q and payoffs.

That is, for every sequence σ2 of the follower, the value of its preceding information set is equal to
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the EV of all information sets I 1 immediately following σ2 (second term) added with the payoffs
from all leaf sequences terminating with σ2 (third term), compensated by the slack of σ2 (first
term). Constraints (4.3), (4.4),(4.5) are the sequence form constraints [178]. Constraint (4.6)
ensures that, for large enough values of M , if the follower’s sequence form strategy is 1 for some
sequence, then the slack for that sequence cannot be positive, i.e., the follower must be choosing
the best action for himself. Constraints (4.7), (4.8), and (4.9) ensure that ppℓq ¨ Cpℓq is indeed
the probability of reaching each leaf. Constraints (4.10) and (4.11) enforce that the follower’s
best response is pure, and that sequence form strategies must lie in r0, 1s for all sequences. The
objective (4.1) is the expected utility of the leader, which is linear in ppℓq.

4.1.4 Safe Subgame Resolving

As its name suggests, much of the literature surrounding subgame resolving is the idea of sub-
games. We suppose that the game tree is can be decomposed into disjoint subgames.

Definition 1. A set of states Ssub Ď S is a subgame if (a) if s Ă s1 and s P Ssub then s1 P Ssub,
and (b) if s P Ii for some Ii P Ii and s P Ssub, then for all s1 P Ii we have s1 P Ssub.

Condition (a) implies that one cannot leave a subgame after entering it, while (b) ensures that
information sets are ‘contained’ within subgames—if any history in an information set belongs
to a subgame, then every history in that information set belongs to that subgame. For the j-
th subgame Sj

sub, Ij
i Ď Ii is the set of information sets belonging to Pi within subgame j.

Furthermore, let Ij
i,head Ď Ij

i be the ‘head’ information sets of Pi in subgame j, i.e., Ii P Ij
i,head if

and only if InfipSeqipIiqq does not exist or does not belong to Ij
i . With a slight abuse of notation,

let Iji,headpℓq be the (unique, if existent) information set in Ij
i,head preceding leaf ℓ P Sj

sub X L.
Intuitively, if such an information set does not exist, then the probability of reaching ℓ is only
dependent on one player’s actions inside the the subgame j (though it could well depend on
either or both player’s strategy prior to entering the subgame). For simplicity in notation, we will
assume that this edge case does not occur.

Remark 13: A more common definition of subgame is in terms of public states. For example,
all states with the same public cards (which constitute all the public information there is) will be
grouped as to the same public states. Using the definition based on public states will satisfy the
requirements of Definition 1

At the beginning, we are given a blueprint strategy for the leader. This is typically best
possible strategy we can compute using purely offline methods. The leader follows the blueprint
strategy in actual play until reaching some subgame. Upon reaching the subgame, the leader
computes a refined strategy for that particular subgame and follows it thereafter. The pseudocode
is given in Algorithm 2. The computational advantage stems from us only having to compute a
refinement for a single subgame, and not all of them.

Our goal is to develop effective algorithms for the refinement step (*). Algorithm 2 implicitly
defines a leader strategy distinct from the blueprint. Crucially, this implies that the follower best
responds to this implicit strategy and not just the blueprint. Functionally, it is as though the leader
uploaded the blueprint alongside the refinement algorithm (*); from the follower’s perspective it
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Algorithm 2: Generic subgame resolving template for SSE
Input: EFG specification, leader blueprint
while game is not over do

if currently in some subgame j then
if first time in this subgame then

(*) Refine leader strategy for subgame j
end
Play action according to refined strategy

else
Play action according to blueprint

end
end

is best responding the combination of both of them. Resolving is said to be safe if after applying
Algorithm 2, the leader’s expected payoff is no less than the blueprint assuming the follower best
responds to the algorithm. We design refinement algorithms that give rise to strategies that are
(i) safe, and (ii) give the leader a high expected reward under the follower’s best response.

Remark 14: The focus of this work is on the resolving step (*). To this end, we will assume that
the blueprint is given to use a-priori. Naturally, the quality of blueprint will affect the leader’s
expected payoff; indeed, one cannot expect a high leader payoff for arbitrary blueprints. In
practice, there are ways to specify reasonable blueprints. The most common is to solve a small,
abstracted game. For example, in no-limit poker, the blueprint can be obtained by restricting bet
sizes, and hence the size of action spaces. The resultant abstracted game is small enough to be
solved offline and used as the basis for refinements. Such an abstraction was applied the poker
bot Libratus [27].

Remark 15: The bulk of our effort is to guarantee safety in our algorithms. Performing unsafe
search is possible, and has been done for zero-sum games [189]. These tend to perform better
in practice, but often has no performance guarantees. Another advantage of unsafe search is that
one need not specify the blueprint strategy beyond the pre-subgame portion of the game.

Remark 16: In zero-sum games, resolving/search is often done in a nested manner (also known
as continual resolving). This was employed in the poker bots Libratus and DeepStack [27, 136].
For example, Libratus performed refinements in increasingly finer abstractions of the game as
the game is played. Nested resolving gives an algorithm that is closer in spirit to depth limited
search used in perfect information games like chess (see [157] for one such example) We do not
explore nested resolving in this thesis. This could be an interesting avenue for future work.

4.2 Causes of Unsafe Subgame Resolving
To motivate our algorithm, we first explore how unsafe behavior may arise using a method known
as naïve resolving. Naïve resolving assumes that prior to entering a subgame, the follower
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plays the best-response to the blueprint. For each subgame, the leader computes a normalized
distribution of initial (subgame) states and solves a new game with initial states in obeying this
distribution. Consider the 2-player EFG in Figure 4.1a. After the initial chance node, the follower
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Figure 4.1: Causes of unsafe naïve search. Boxed regions denote subgames. Expected values for
each player under (i) the blueprint strategy and its best response and (ii) under naïve search is
shown in the box, as are bounds guaranteeing no change of follower strategies after refinement.

decides to e(X)it, or (S)tay; the latter brings the game into a subgame denoted by the dotted box.
Upon reaching A (or B), the follower receives an expected value (EV) of 1 (resp. 0) when best
responding to the blueprint. Thus, under the blueprint, the follower chooses to stay (exit) on the
left (right) branches. The expected payoff per player is p1.5, 1.5q.

4.2.1 Insufficient Incentives and Threats
Suppose the leader performs naïve resolving in Figure 4.1a, which improves the leader’s EV in
A from 1 to 2 but reduces the follower’s EV in A from 1 to ´1. The follower is aware that the
leader will perform resolving and thus chooses X1 over S1 even before entering A, since exiting
gives a payoff of 0. Conversely, suppose resolving improves the leader’s EV in B from 0 to 1 and
also improves the follower’s EV from 0 to 4. Now, the higher post-resolving payoff in B causes
the follower to switch from X2 to S2. These changes together cause the leader’s EV to drop from
1.5 to 0.5, which is worse than the blueprint, implying that naïve resolving is unsafe.1

Insight: Naïve resolving may induce changes in the follower’s strategy before the subgame,
which adjusts the probability of entering each state within the subgame. If one could enforce
that in the refined subgame, payoffs to the follower in A remain no less than 0, then the follower
would continue to stay, but possibly with leader payoffs greater than the blueprint. Similarly, we
may avoid entering B by enforcing that follower payoff in B not exceed 2.

4.2.2 Resolving with Multiple Subgames
Consider the game in Figure 4.1b. Here, the follower chooses to exit or stay before the chance
node is reached. If the follower chooses stay, then the chance node determines which of two

1This counterexample arises from the general-sum nature of this game, and does not occur in zero-sum games.
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identical subgames is entered. Under the blueprint, the follower receives an EV of 1 for choosing
stay and an EV of 0 for choosing exit. We consider 2 cases. Case (i): Resolving is performed
only in the left subgame, which decreases the follower’s EV in that subgame from 1 to ´1. Then,
the expected payoff for staying is p1.5, 0q. The follower continues to favor staying (breaking
ties in favor of the leader) and the leader’s EV increases from 1.0 to 1.5. Now consider Case
(ii), where resolving is performed on whichever subgame is encountered during play. Here the
follower knows that his EV for staying will be ´1 regardless of which subgame is reached. Thus,
he will exit, which decreases the leader’s payoff to 0, which is less than the blueprint value of 1,
and hence unsafe.2

Insight: Performing resolving using Algorithm 2 is equivalent to performing resolving for
all subgames. Even if conducting resolving only in a single subgame does not cause a shift in the
follower’s strategy, the combined effect of applying resolving to multiple subgames may. Again,
one could remedy this by carefully selecting constraints. If we bound the follower post-resolving
EVs for each of the 2 subgames to be ě 0, then we can guarantee that X would never be chosen.
Note that this is not the only scheme which ensures safety, e.g., a lower bound of 1 and ´1 for
the left and right subgame is safe too.

4.3 A Safe Algorithm for Subgame Resolving

The crux of our method is to modify naïve resolving such that the follower’s pre-subgame best
response remains the same even when resolving is applied. This, in turn, can be achieved by
enforcing bounds on the follower’s EV in any subgame strategies computed via resolving. Con-
cretely, our resolving method comprises 3 steps:

1. Preprocess the follower’s best response to the blueprint and its values.

2. Identify a set of non-trivial safety bounds on follower payoffs 3.

3. Solve for the SSE in the subgame reached in actual play constrained to respect the safety
bounds computed.

Steps 1 and 2 are independent of which subgame was reached in practice. Thus, they may
computed offline (though they do not have to be) and reused if the game is played repeatedly.

4.3.1 Preprocessing of Blueprint

Denote the leader’s sequence form blueprint strategy as ubp. We will assume that the game
is small enough such that the follower’s best response (pure, tiebreaks leader-favored) to the
blueprint may be computed, which we denote by vbp. We call the set of information sets which,
based on vbp have non-zero probability of being reached the trunk, T Ď I2 : v

bppSeq2pT qq “ 1.
Next, we traverse the follower’s treeplex bottom up and compute the payoffs at each information
set and sequence (accounting for chance factors Cpzq for each leaf). We term these as best-
response values (BRVs) under the blueprint. These are computed for both σ2 P Σ2 and I2 P I2

2This issue occurs in zero-sum games as well [28].
3One could trivially achieve safety by sticking to the blueprint.
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Figure 4.2: Example of bounds computation. Filled boxes represent information sets, circled
nodes are terminal payoff entries, hollow boxes are sequences which may be followed by paral-
lel information sets, which are in turn preceded by dashed lines. The dashed rectangle indicates
subgames, of which we only show the head information sets of. BRVs of sequences and infor-
mation sets are within the boxes and the (labels, computed bounds) are placed next to them.

recursively via the following

BRV pI2q “ max
aPApI2q

BRV pI2aq

BRV pσ2q “
ÿ

I 1:Seq2pI 1q“σ2

BRV pI 1
q `

ÿ

σ1PΣ1

upσ1q ¨ g2pσ1, σ2q,

where g2pσ1, σ2q is the expected utility of player 2 over all nodes reached when executing the
sequence pair pσ1, σ2q, i.e.,

g2pσ1, σ2q “
ÿ

ℓPL:σk“Seqkpℓq

r2pℓq ¨ Cpℓq.

This processing step involves just a single traversal of the game tree.

4.3.2 Generating Safety Bounds
We traverse the follower’s treeplex top down while propagating follower payoffs bounds which
guarantee that the follower’s best response remains vbp. This is recursively done until we reach
an information set I belonging to some subgame j. The EV of I is then required to satisfy its
associated bound for future steps of the algorithm. Example 4 illustrates these key ideas.

Example 4: Consider the treeplex in Figure 4.2. Values of information sets and sequences are
in blue and annotated in order of traversal alongside their bounds. The bounds are generated as
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follows. The reader should verify that under these generated bounds, the best response of P2

prior to entering subgames remains equal to vbp.
• The empty sequence H requires a value greater than ´8.
• For each information set (in this case, B) which follows H, we require (vacuously) for

their values to be ě ´8.
• We want the sequence C to be chosen. Hence, the value of C has to be ě 3, which, with

the lower bound of ´8 gives a final bound of ě 3.
• Sum of values for parallel information sets D and H must be greater than C. Under the

blueprint, their sum is 5. This gives a ‘slack’ of 2, split evenly between D and H, yielding
bounds of 2 ´ 1 “ 1 and 3 ´ 1 “ 2 respectively.

• Sequence E requires a value no smaller than F, G, and the bound for by the D, which
contains it. Other actions have follower payoffs smaller than 1. We set a lower bound of 1
for E and an upper bound of 1 for F and G.

• Sequence I should be chosen over J. Furthermore, the value of sequence I should be ě 2—
this was the bound propagated into H. We choose the tighter of the J’s blueprint value and
the propagated bound of 2, yielding a bound of ě 2.5 for I and a bound of ď 2.5 for J.

• Sequences K and L should not be reached if the follower’s best response to the blueprint
is followed—we cannot make this portion too appealing. Hence, we apply upper bounds
of 1.5 for sequences K and L.

The formal procedure shown in Algorithm 3 is recursive and mirrors the worked example. It
takes as input the game G, blueprint ubp, best response vbp, follower BRVs and returns upper and
lower bounds BpIq for all head information sets of subgame j, Ij

2,head. Since the blueprint strategy
and its best response satisfies these bounds, feasibility is guaranteed. By construction, lower and
upper bounds are obtained for information sets within and outside the trunk respectively. The
bounds computation require only a single traversal of the follower’s treeplex, which is smaller
than the game tree.

The COMPUTEBOUNDS function is the starting point of the bounds generation algorithm.
It takes in an EFG specification, a blueprint given, and the BRVs (of sequences σ P Σ2 and
information sets I P I2 computed while preprocessing the blueprint. Our goal is to populate the
function BpIq which maps information sets I P Ij

2,head to upper/lower bounds on their values. We
begin the recursive procedure by calling EXPSEQTRUNK on the empty sequence H and vacuous
lower bound ´8. Note that H is by definition in the trunk. This recursive process comprises
4 sub-procedures, one for each infoset and sequence in and outside the trunk. While expanding
an infoset in the trunk, we may remain or leave the trunk. Once leaving the trunk, we will never
return.

• EXPSEQTRUNK takes in some sequence σ P Σ2 and a lower bound lb. Note that we are
guaranteed that lb ď BRV pσq. The function compute a set of lower bounds on payoffs
of information sets I2 following σ such that (a) the best response to the blueprint satisfies
these suggested bounds and (b) under the given bounds on values of I2, the follower can
at least expect a payoff of lb. This is achieved by computing the slack, the excess of the
blueprint with respect to lb split equally between all I2 following σ. For each of these I2,
we require their value be no smaller than the lower bound given by their BRVs minus the
slack. Naturally, this bound is weaker than the BRV itself.
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Algorithm 3: Bounds generation procedure.

Function COMPUTEBOUNDS
Input : EFG, Blueprint and its BRVs
Output: Bounds BpIq for all I P Ij

2,head
EXPSEQTRUNK(H,´8)

end
Function EXPSEQTRUNK(σ, lb)

for I2 P tI2| Seq2pI2q “ σu do
slack Ð

BRVpσq´lb
|tI2| Seq2pI2q“σu|

EXPINFTRUNK(I2, BRVpI2q-slack)
end

end
Function EXPSEQNONTRUNK(σ, ub)

for I2 P tI2| Seq2pI2q “ σu do
slack Ð

ub´BRVpσq

|tI2| Seq2pI2q“σu|

EXPINFNONTRUNK(I2,
BRV(I2)+slack)

end
end

Function EXPINFTRUNK(I , lb)
if I P Ij

2,head then
BpIq Ð lb
return

end
σ˚, σ1 Ð best, second best sequences in I
under blueprint
v˚, v1 Ð BRVpσ˚q,BRVpσ1q

bound Ð max
`

v˚`v1

2
, lb

˘

for σ P tΣ2| Inf2pσq “ Iu do
if σ “ σ˚ is in best response then

EXPSEQTRUNK(σ, bound)
else

EXPSEQNONTRUNK(σ, bound)
end

end
end
Function EXPINFNONTRUNK(I , ub)

if I P Ij
2,head then

BpIq Ð ub; return
end
for σ P tΣ2| Inf2pσq “ Iu do

EXPSEQNONTRUNK(σ, ub)
end

end
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• The function EXPINFTRUNK does the same bound generation process for a given infor-
mation set I inside the trunk, given a lower bound lb. First, if I is part of the head of a
game in subgame j, then we simply store lb into BpIq. If not, then we look at all sequences
immediately following I—specifically, we compare the best and second best sequences,
given by σ˚ and σ1. To ensure that the best sequence still remains the best response, we
need to decide on a threshold bound such that (i) all sequences other than σ˚ does not ex-
ceed bound, and the value of σ˚ is no less than bound and (ii) the blueprint itself must obey
bound. One way to specify bound is to take the average of the BRVs of σ˚ and σ1. For σ˚

we recursively compute bounds by calling EXPSEQTRUNK. For all other sequences, we
enter a new recursive procedure which generates upper bounds.

• The function EXPSEQNONTRUNK is similar in implementation to its counterpart EX-
PSEQTRUNK, except that we compute upper instead of lower bounds. Likewise, EXPIN-
FONONTRUNK stores an upper bound if I is in the head of subgame j, otherwise, it uses
recursive calls to EXPINFNONTRUNK to make sure that all immediate sequences follow-
ing I does not have value greater than ub.

Alternative safe bounds. These are not the only bounds to guarantee safety. In particular,
there are at least two methods to generate safe bounds.

1. Suppose we are splitting lower bounds at an information set I between child sequences
(e.g., the way bounds for sequences E, F, G under information set D were computed). Let
I have a lower bound of BpIq and the best and second best actions σ˚ and σ1 under the
blueprint is w˚ and w1 respectively. Our implementation sets lower and upper bounds for
σ˚, σ1 to be max tpw˚ ` w1q{2,BpIqu. However, any bound of the form maxtα ¨w˚ `p1´

αq ¨ w1,BpIqu, α P r0, 1s achieves safety.

2. Splitting lower bounds at sequences σ between parallel information sets under σ (e.g.,
when splitting the slack at C between D and H, or in Example 2.). Our implementation
splits slack evenly though any non-negative split suffices.

We explore the empirical effect of these design decisions in our experiments (Section 4.4).

Alternative unsafe bounds. Bounds can also be generated in unsafe ways.In Section 4.4, we
experiment with increasing the slack by some factor β ě 1. That is, we alter the computation
of slack in EXPSEQTRUNK by multiplying it by β. This can potentially lead to unsafe behavior,
since the follower’s payoff under this sequence may possibly be strictly less than lb, but can lead
to better performance in practice. A similar unsafe procedure was first explored by Brown and
Sandholm [28] in solving zero-sum games.

Remark 17: Safe bounds guarantee safety by ensuring the follower’s best response does not
deviate from vbp in pre-subgame infostates. This may not be the only way to do so—for a given
blueprint, it may be possible to yield a higher payoff by performing refinements which induce the
follower to change its best response even for infostates outside of subgames, yet yield a higher
payoff for the leader.
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4.3.3 MILP Formulation for Constrained SSE
Once safety bounds are generated, we can include them in a MILP similar to that of Bosansky
and Cermak [18]. The solution of this MILP is the strategy of the leader, normalized such that
upSeq1pI1qq “ 1 for all I1 P Ij

1,head. Let Lj be the set of terminal states which lie within subgame
j, Lj “ L X Sj

sub. Let Cjpℓq be the new chance probability when all actions (for both players)
taken prior to the subgame are converted to be by chance, according to the blueprint. That
is, Cjpℓq “ Cpℓq ¨ ubp pSeq1pI1,headpℓqqq ¨ vbp pSeq2pI2,headpℓqqq. Similarly, we set gj2pσ1, σ2q “
ř

ℓPLj :σk“Seqkpℓq r2pℓq ¨ Cjpℓq. Let Mpjq be the total probability mass entering subgame j in the
original game when the blueprint strategy and best response, Mpjq “

ř

ℓPLj Cpℓq¨ubppSeq1pℓqq¨

vbppSeq2pℓqq.

max
p,u,v,V,q

ÿ

ℓPLj

ppℓq ¨ r1pℓq ¨ Cj
pℓq (4.12)

V pInf2 pσ2qq “ qpσ2q `
ÿ

I 1PI2;
Seq2pI 1q“σ2

V pI 1
q `

ÿ

σ1PΣ1

u pσ1q g
j
2 pσ1, σ2q @σ2 P Σj

2 (4.13)

upσ1q “ 1 DI1 P Ij
1,head : Seq1pI1q “ σ1 (4.14)

vpσ2q “ 1 DI2 P Ij
2,head : Seq2pI2q “ σ2 (4.15)

u pσiq “
ÿ

aPAipIiq

u pσiaq @I1 P Ij
1 : σ1 “ Seq1 pI1q (4.16)

v pσ2q “
ÿ

aPA2pI2q

v pσ2aq @I2 P Ij
2 : σ2 “ Seq2 pI2q (4.17)

0 ď qpσ2q ď p1 ´ v pσ2qq ¨ M @σ2 P Σj
2 (4.18)

0 ď ppℓq ď v pSeq2pℓqq @ℓ P Lj (4.19)

0 ď ppℓq ď u pSeq1pℓqq @ℓ P Lj (4.20)
ÿ

ℓPLj

ppℓq ¨ Cj
pℓq “ Mpjq (4.21)

V pI2q ě BpI2q @I2 P Ij
2,head X T (4.22)

V pI2q ď BpI2q @I2 P Ij
2,head X T (4.23)

v pσ2q P t0, 1u @σ2 P Σj
2 (4.24)

0 ď u pσ1q ď 1 @σ1 P Σj
1 (4.25)

Conceptually, ppℓq is such that the probability of reaching leaf ℓ is ppℓq ¨ Cpℓq. Variables u and
v are the leader and follower sequence form strategies, V is the value of information set for P2

when u and v are adopted and q is the slack for each sequence.
Objective (4.12) is the expected payoff in the full game that the leader gets from subgame

j, (4.14), (4.15), (4.16), (4.17), (4.24) and (4.25) are sequence form constraints for each player,
where head information sets of each subgame are constrained to 1. (Note the follower is only
allowed to have pure best responses (hence the binary constraints (4.24).) Constraints (4.18),
(4.19), (4.20), and ensure the follower is best responding, and (4.21) ensures that the probability
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mass entering j is identical to the blueprint. Constraints (4.22) and (4.23) are bounds previously
generated and are the ones which ensure the follower does not deviate from vbp pre-subgame in
the refined strategy. This MILP is roughly the size of the subgame, rather than the full G. This
decrease in size is substantial, given that there are often thousands of subgames in real-world
problems and the fact that solving SSEs in EFGs is NP-hard.

Remark 18: The MILP we propose for solving the constrained subgame is similar in spirit to
that of [18] which we presented in Section 4.1.3. Constraints (4.13)-(4.21), (4.24) and (4.25)
are analogous to constraints (4.2)-(4.9), (4.10), (4.11) except that they apply to the subgame j
instead of the full game. Similarly, the objective (4.12) is to maximize the payoffs from within
subgame j. The key addition is constraint (4.22) and (4.23), which are precisely the bounds
computed earlier when traversing the treeplex.

4.3.4 Constrained SSEs Interpreted as Solutions to Transformed SSE

Here we show that the the solution to the constrained SSE is the solution of a transformed SSE
problem. This implies that besides the MILP, we can employ other SSE solvers, such as those
involving strategy generation [41]. This transformation is achieved by means of gadgets. Our
construction enforces lower bounds in a manner similar to the original gadget of Burch et al.
[35], while the upper bounds are enforced in a novel way. Let us assume that the tranformation
is performed on the j-th subgame, under the mild assumption that follower head information sets
Ij
2,head are the initial states in Sj

sub. More detail is provided in Section 4.5. Figure 4.3 shows an
example construction based on the game in Figure 4.1a.

For every state h P Ij
2,head, we compute the probability ωh of reaching h under the blueprint,

assuming the follower plays to reach it. The transformed game begins with chance leading to a
normalized distribution of ω over these states. Now, recall that we need to enforce bounds on
follower payoffs for head information sets I2 P Ij

2,head. To enforce a lower bound BRV pI2q ě

BpI2q, we use a technique described by Burch et al. [35]. Before each state h P I2, insert an
auxiliary state h1 belonging to a new information set I 1

2, where the follower may opt to terminate
the game with a payoff of p´8,BpI2q{pωh|I2|qq or continue to h, whose subsequent states are
unchanged.4 If the leader’s strategy has BRV pI2q ă BpI2q, the follower would do better by
terminating the game, leaving the leader with ´8 payoff.

Enforcing upper bounds BRV pI2q ď BpI2q may be done analogously. First, we reduce the
payoffs to the leader for all leaves underneath I2 to ´8. Second, the follower has an additional
action at I2 to terminate the game with a payoff of p0,BpI2q{pωh|I2|qq. If the follower’s response
to the leader’s strategy gives BRV pI2q ą BpI2q, then the follower would choose some action
other than to terminate the game, which nets the leader ´8. If the bounds are satisfied, then the
leader gets a payoff of 0, which is expected given that an upper bound implies that I2 is not part
of the trunk.

4The factor ωh|I2| arises since B was computed in treeplexes, which already takes into account chance.
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terminate continue
0.5

terminate continue
0.5

C
A’ B’

p´8, 0q p0, 2q
A B´8

Figure 4.3: The transformed tree for solving the constrained SSE with the safety bounds of
Figure 4.1a. A’ and B’ are auxiliary states introduced for the follower. B´8 is identical to B,
except that leader payoffs are ´8.

4.4 Experiments

In this section we show experimental results for our resolving algorithm (based on the MILP in
Section 4.3.3) in synthetic 2-stage games, Goofspiel (where no player wins in a tie) and Leduc
hold’em poker (with rake). Experiments were conducted on a Intel i7-7700K @ 4.20GHz with
4 cores and 64GB of RAM. We use the commercial solver Gurobi [79] to solve all instances of
MILPs.

We show that even if Stackelberg equilibrium computation for the entire game (using the
MILP of Bosansky and Cermak [18]) is warm started using the blueprint strategy ubp and fol-
lower’s best response vbp, then in large games it is still intractable to compute a strategy. In fact,
in some cases it is intractable to even generate the model, let alone solve it. In contrast, our
safe resolving algorithm can be done at a far lower computational cost and with far less memory.
Since our games are larger than what Gurobi is able to solve to completion in reasonable time,
we instead constrain the time allowed to solve each (sub)game and report the incumbent solution.
We consider only the time taken by Gurobi in solving the MILP, which dominates preprocessing
and bounds generation, both of which only require a constant number of passes over the game
tree. In all cases, we warm-start Gurobi with the blueprint strategy.

To properly evaluate the benefits of resolving, we perform resolving on every subgame and
combine the resulting subgame strategies to obtain the implicit full-game strategy prescribed by
Algorithm 2. The follower’s best response to this strategy is computed and used to evaluate
the leader’s payoff. Note that this is only done to measure how closely the algorithm approxi-
mates a SSE—in practice, resolving is applied only to the subgame reached in actual play and is
performed just once. Hence, the worst-case time for a single playthrough is no worse than the
longest time required for resolving over a single subgame (and not the sum over all subgames).

We compare our method against the MILP proposed by Bosansky and Cermak [18] rather the
more recent incremental strategy generation method proposed by Černỳ et al. [41]. The former
is flexible and applies to all EFGs with perfect recall, while the latter involves the Stackelberg
Extensive Form Correlated Equilibrium (SEFCE) as a subroutine for strategy generation. Com-
puting an SEFCE is itself computationally difficult except in games with no chance, in which
case finding an SEFCE can be written as a linear program.
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4.4.1 Synthetic Two-Stage Games
The two-stage game closely resembles a 2-step Markov game. In the first stage, both players
play a general-sum matrix game Gmain of size n ˆ n, after which, actions are made public. In
the second stage, one out of M secondary games tGj

secu, each general-sum and of size m ˆ m
is chosen and played. Each player obtains payoffs equal to the sum of their payoffs for each
stage. Given that the leader played action a1, the probability of transitioning to game j is given
by the mixture, PpG

pjq
sec|a1q “ κ ¨ Xj,a1 ` p1 ´ κq ¨ qj , where Xj,a1 is a M ˆ n transition matrix

non-negative entries and columns summing to 1 and qj lies on the M dimensional probability
simplex. Here, κ governs the level of influence the leader’s strategy has on the next stage. 5

The columns of X are chosen by independently drawing weights uniformly from r0, 1s and
re-normalizing, while q is uniform. We generate 10 games each for different settings of M , m,
n and κ. A subgame was defined for each action pair played in the first stage, together with
the secondary game transitioned into. The blueprint was chosen to be the SSE of the first stage
alone, with actions chosen uniformly at random for the second stage. The SSE for the first stage
was solved using the multiple LP method and runs in negligible time (ă 5 seconds). For full-
game solving, we allowed Gurobi to run for a maximum of 1000s. For resolving, we allowed
100 seconds—in practice, this never exceeds more than 20 seconds for any subgame.

We report the average quality of solutions in Table 4.1. The full-game solver reports the
optimal solution if converges. This occurs in the smaller game settings where (M “ m ď 10).
In these cases resolving performs near-optimally. In larger games (M “ m ě 100), full-game
resolving fails to converge and barely outperforms the blueprint strategy. In fact, in the largest
setting only 2 out of 10 cases resulted in any improvement from the blueprint, and even so,
still performed worse than our method. Our method yields substantial improvements from the
blueprint regardless of κ.

4.4.2 Goofspiel
Goofspiel [152] is a game where 2 players simultaneously bid over a sequence of n prizes, valued
at 0, ¨ ¨ ¨ , n´ 1. Each player owns cards worth 1, ¨ ¨ ¨ , n, which are used in closed bids for prizes
auctioned over a span of n rounds. Bids are public after each round. Cards bid are discarded
regardless of the auction outcome. The player with the higher bid wins the prize. In a tie, neither
player wins and the prize is discarded. Hence, Goofspiel is not zero-sum, players can benefit by
coordinating to avoid ties.

In our setting, the n prizes are ordered uniformly in an order unknown to players. Subgames
are selected to be all states which have the same bids and prizes after first m rounds are resolved.
As m grows, there are fewer but larger subgames. When m “ n, the only subgame is the entire
game. The blueprint was chosen to be the NE under a zero (constant)-sum version of Goofspiel,
where players split the prize evenly in ties. The NE of a zero-sum game may be computed
efficiently using the sequence form representation [178]. Under the blueprint, the leader obtains
a utility of 3.02 and 5.03 for n “ 4 and n “ 5 respectively.

5One may be tempted to first solve the M Stackelberg games independently, and then apply backward induction,
solving the first stage with payoffs adjusted for the second. This intuition is incorrect—the leader can issue non-
credible threats in the second stage, inducing the follower to behave favorably in the first.
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n M m κ Blueprint Ours Full-game

2 2 2
0 1.2945 1.4472 1.4778
0.1 1.2945 1.4477 1.4779
0.9 1.2951 1.4519 1.4790

2 10 10
0 1.1684 1.6179 1.6186
0.1 1.1689 1.6180 1.6186
0.9 1.1723 1.6183 1.6190

2 100 100
0 1.1730 1.6696 1.3125
0.1 1.1729 1.6696 1.2652
0.9 1.1722 1.6696 1.4055

5 100 100
0 1.3756 1.8722 1.4074
0.1 1.3756 1.8723 1.4073
0.9 1.3752 1.8723 1.4534

Table 4.1: Average leader payoffs for two-stage games.

Table 4.2 summarizes the solution quality and running time as we vary n,m. When n “ m,
Gurobi struggles to solve the program to optimality and we report the best incumbent solution
found within a shorter time frame. As a sanity check, observe the leader’s utility is never worse
than the blueprint. When n “ 4, the incumbent solution for solving the full game has improved
significantly from the blueprint in fewer than 5 seconds. This indicates that the game is suffi-
ciently small that performing resolving is not a good idea. However, when n “ 5, solving the
full game (m “ 5) required 180 times longer compared to resolving (m P t3, 4u) in order to
obtain any improvement over the blueprint, while resolving only needed 100 seconds in order to
improve upon the blueprint in a subgame. Furthermore, full-game solving required more than 50
GB of memory while resolving required less than 5 GB.

4.4.3 Leduc Hold’em

Leduc hold’em [163] is a simplified form of Texas hold’em. Players are dealt a single card in the
beginning. In our variant there are n cards with 2 suits, 2 betting rounds, an initial bet of 1 per
player, and a maximum of 5 bets per round. The bet sizes for the first and second round are 2 and
4. In the second round, a public card is revealed. If a player’s card matches the number of the
public card, then he/she wins in a showdown, else the higher card wins (a tie is also possible).

Our variant of Leduc includes rake, which is a commission fee to the house. We assume
for simplicity a fixed rake ρ “ 0.1. This means that the winner receives a payoff of p1 ´ ρqx
instead of x. The loser still receives a payoff of ´x. When ρ ą 0, the game is not zero-
sum. Player 1 assumes the role of leader. Subgames are defined to be all states with the same
public information from the second round onward. The blueprint strategy was obtained using the
unraked (ρ “ 0, zero-sum) variant and is solved efficiently using a linear program. We limited
the full-game method to a maximum of 5000 seconds and 200 seconds per subgame for our
method. We reiterate that since we perform resolving only on subgames encountered in actual
play, 200 seconds is an upper bound on the time taken for a single playthrough when employing
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n p|Σ|, |I|q m
Num. Max. time

of sub- per sub- Leader
games game (s) utility

p2.1, 1.7q ¨ 104

2 1728 5 3.02
3 64 5 3.07

4 5 4.06
4; 1 1.0 ¨ 102 4.15

5.5 ¨ 102
: 4.23

p2.7, 2.2q ¨ 106

3 8000 1.0 ¨ 102 5.19
4 125 1.0 ¨ 102 5.29

5 1.0 ¨ 103 5.03
5; 1 1.0 ¨ 104 5.03

1.8 ¨ 104
: 5.65

Table 4.2: Results for Goofspiel. :This is the earliest time that the incumbent solution achieves
the given utility. ;This is equivalent to full-game resolving.

n |Σ| |I| Blueprint Ours Full-game
3 5377 2016 -0.1738 -0.1686 -0.1335
4 9985 3744 -0.1905 -0.1862 -0.1882
5 16001 6000 -0.2028 -0.2003 -0.2028
6 23425 8784 -0.1832 -0.1780 -0.1832
8 42497 15936 -0.1670 -0.1609 N/A

Table 4.3: Leader payoffs for Leduc hold’em with n cards.

resolving (some SSE are easier than others to solve).
The results are summarized in Table 4.3. For large games, the full-game method struggles

with improving on the blueprint. In fact, when n “ 8 the number of terminal states is so large that
the Gurobi model could not be created even after 3 hours. Even when n “ 6, model construction
took an hour—it had near 7 ¨ 105 constraints and 4 ¨ 105 variables, of which 2.3 ¨ 104 are binary.
Even when the model was successfully built, no progress beyond the blueprint was made.

Varying Bound Generation Parameters.

We now explore how varying α affects solution quality. Furthermore, we experiment with mul-
tiplying the slack (see information sets D and H in Section 4.3) by a constant β ě 1. This results
in weaker but potentially unsafe bounds. Results on Goofspiel and Leduc are summarized in
Figure 4.4. We observe that lower values of α yield slightly better performance in Leduc, but
did not see any clear trend for Goofspiel. As β increases, we observe significant improvements
initially. However, when β is too large, performance suffers and even becomes unsafe in the case
of Leduc. These results suggest that resolving may be more effective with principled selections
of α and β, which we leave for future work.
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α 0.1 0.25 0.5:: 0.75 0.9

Goofspiel 5.32 5.34 5.29 5.31 5.30
Leduc -0.184 -0.185 -0.186 -0.188 -0.189
β 1:: 2 4 8 16

Goofspiel 5.29 5.35 5.55 5.56 5.50
Leduc -0.186 -0.182 -0.178 -0.212 -0.212

Table 4.4: Leader payoffs for varying α and β. We consider Goofspiel with n “ 5,m “ 4 and
Leduc Hold’em with n “ 4. Time constraints are the same as previous experiments. ::These are
the default values for α and β.

4.5 Technical Proofs
In this section we provide more details on how the constrained SSE can be cast as another SSE
problem. The general idea is loosely related to the subgame resolving method of Burch et al.
[35], although our method extends to general sum games, and allows for the inclusion of both
upper and lower bounds as is needed for our search operation.

The broad idea behind Burch et al. [35] is to (i) create an initial chance node leading to all
leading states in the subgame (i.e., all states h P Hj

sub such that there are no states h1 P Hj
sub

such that h1 ă h) based on the normalized probability of encountering those states under rbp
i and

(ii) enforce the constraints using a gadget; specifically, by adding a small number of auxiliary
information sets/actions to help coax the solution to obey the required bounds.

4.5.1 Restricted case: initial states h in head information sets
To make exposition easier, we begin with the assumption that the Ij

2,head is a subset of the initial
states in subgame j. This assumption will be relaxed later.

Preliminaries For some sequence form strategy pair u, v for leader and follower respectively,
the expected payoff to Pi is given by

ř

ℓPL:σi“Seqipℓq
upσ1q ¨vpσ2q ¨ripℓq ¨Cpℓq, i.e., the summation

of the utilities ripℓq of each leaf of the game, multiplied by the probability that both players play
the required sequences, u (and v) and the chance factor Cpℓq. That is, the utility from each leaf
z is weighed by the probability of reaching it upσ1q ¨ vpσ2q ¨ Cpℓq. The value of an information
set Ii P Ii is the contribution from all leaves under Ii, i.e., VipIiq “

ř

ℓPL:σk“Seqkpℓq upσ1q ¨ vpσ2q ¨

ripℓq¨Cpℓq, taking into account the effect of chance for each leaf. Now let bipσiq be the behavioral
strategy associated with σi, i.e.,

b1pσ1q “

#

upσ1q{upParpσ1qqq if upσ1q ą 0

0 otherwise,

and likewise for P2 and sequence form strategy v. The sequence form upσ1q is the product
of behavioral strategies in previous information sets. Hence, each of these terms in Vi (be it
from leader, follower, or chance) can be separated into products involving those before or after
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ǔjpℓtq ¨ v̌jpℓtq ¨ Čjpℓtq

ωhj

ℓt
¨ 1 ωhj

ℓt̂

¨ 0

away from j
start of game

hj
ℓt

hj

ℓt̄

ℓt ℓt̄
ppℓtq “ ωhj

ℓt
¨ ǔjpℓtq ¨ v̌jpℓtq ¨ Čjpℓtq

It2 I t̄2

Subgame j

Figure 4.4: Decomposition of probabilities for subgame j. Curly lines indicate a series of actions
from either player or chance. The dashed box shows subgame j, while dotting boxes are head
information sets in Ij

2,head. Thick lines belong to states that are below information sets belonging
to the trunk. States that do not lead to subgame j are omitted. Note that the subtrees under the 2
information sets are not disjoint, as information sets of the leader can span over both subtrees.

subgame j. That is, for a leaf ℓ P Lj , the probability of reaching it can be written as ppℓq “

ûjpℓq ¨ v̂jpℓq ¨ Ĉjpℓq ¨ ǔjpℓq ¨ v̌jpℓq ¨ Čjpℓq, where p̂¨q
j and p̌¨q

j represent probabilities accrued
before and after subgame j respectively.

The original game. Figure 4.4 illustrates our setting. For head information set h P Ij
2,head,

define ωbp
h to be the probability of reaching h following the leader’s blueprint assuming the fol-

lower plays to reach h. Now denote by hj
ℓ the first state in subgame j leading to leaf ℓ such that

ωbp
hj
ℓ

“ ûbppℓq ¨ Ĉjpℓq is the product of the contributions from the leader and chance, but not the

follower. The probability of reaching leaf ℓ is given by ppℓq “ ωbp
hj
ℓ

¨ v̂jpzq ¨ ǔjpℓq ¨ v̌jpℓq ¨ Čjpℓq.

Observe that if ℓt lies beneath an infoset I t2 P Ij
2,head X T (i.e., it lies in the trunk and the follower

under the blueprint plays to I), v̂jpℓtq “ 1 (since vbppSeqpI2qq “ 1). Conversely, if z t̄ lies under
I t̄2 P Ij

2,head X T̄ , i.e., not part of the trunk, then v̂jpℓt̄q “ 0, and the probability of reaching the
leaf (under ûbp and v̂bp) is 0. From now onward, we will drop the superscript p¨qbp from ω when
it is clear we are basing it on the blueprint strategy. This is consistent with the notation used in
in Section 4.3.

We want to find a strategy ǔj such that for every information state I2 P Ij
2,head, when û “ ûbp

and v̂ “ v̂bp, the best response ǔj
2 ensures that V2pI2q obeys some upper or lower bounds. That

is, value of the information set V2 in this game, given by

V2pI2q “
ÿ

ℓPL,hPI2,
hăℓ

ωhj
ℓ

¨ ǔj
pℓq ¨ v̌jpℓq ¨ Čj

pℓq ¨ r2pℓq, (4.26)
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ǔjpℓtq ¨ v̌jpℓtq ¨ Čjpℓtq

ηjωht ηjωht̄

C

ℓt ℓt̄
ppℓtq “ ηjωhj

ℓt
¨ ǔjpℓtq ¨ v̌j2pℓtq ¨ Čjpℓtq

It2 I t̄2

It2
1

I t̄2
1

p´8,
BpIt

2q

ωht |It
2|

q p0,
BpI t̄

2q

ω
ht̄ |I t̄

2|
q

Figure 4.5: An example of the transformed game of Figure 4.4. Information sets I t2
1 and I t̄2

1

are newly added information sets. Auxiliary actions are in blue, all belonging to newly added
information sets. Leaves which are descendants of head information sets not belonging to the
trunk are given by red crosses—their payoff to the leader is set to ´8, while keeping the follower
payoffs the same.

should be no greater/less than some BpI2q.

The transformed game. Now consider the transformed subgame described in Section 4.3.
Figure 4.5 illustrates how this transformation may look like and the corresponding probabilities.
We look at all possible initial states in subgame j, and start the game with chance leading to
head states h with a distribution proportional to ωh. For subgame j, let the normalizing constant
over initial states be ηj ą 0. Note that since we are including states outside of the trunk, ηj may
be greater or less than 1. We duplicate every initial state and head information set, giving the
follower an option of terminating or continuing on with the game, where terminating yields an
immediate payoff of

´

´8,
BpIt2q

ωh|It2|

¯

when the information set containing h belongs to the trunk,

and
´

0,
BpIt2q

ωh|It2|

¯

otherwise. For leaves which are descendants of non-trunk information sets, i.e.,

ℓ P L, h P I2 P Ij
2,head X T̄, h ă ℓ, the payoffs for the leaders are adjusted to ´8. There is a

one-to-one correspondence between the behavioral strategies in the modified subgame and the
original game simply by using ǔj (as well as v̌j) interchangeably. Next, we show that (i)
the bounds B are satisfied by the solution to the transformed game, (ii) for head information
sets in the trunk, any solution satisfying B will never achieve a higher payoff by selecting an
auxiliary action, and (iii) for head information sets outside of the trunk, the solutions satisfying
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B will, by selecting the auxiliary action, achieve a payoff greater or equal to continuing with the
game. For (i), we first consider information set I t2, which is a head infoset also within the trunk.
The terminate action will result in a follower payoff (taking into account the initial chance node
which was added) independent of the leader’s subgame strategy ǔj ,

ÿ

hPIt2

BpI t2q

ωh|I t2|
¨ ηjωht “ ηjBpI t2q. (4.27)

If the follower chooses to continue the game, then his payoff (now dependent on the leader’s
refined strategy ǔj

1 is obtained by performing weighted sums over leaves

ηj
ÿ

ℓPL,hPIt2
hăℓ

ωht ¨ ǔj
pℓq ¨ v̌jpℓq ¨ Čj

pℓq ¨ r2pℓq. (4.28)

If the leader is to avoid obtaining ´8, then the follower must choose to remain in the game,
which will only happen when (4.28) ě (4.27), i.e.,

ÿ

ℓPL,hPIt2
hăℓ

ωht ¨ ǔj
pℓq ¨ v̌jpℓq ¨ Čj

pℓq ¨ r2pℓq ě BpI t2q. (4.29)

The expression on the left hand side of the inequality is precisely the expression in (4.26). Since
the leader can always avoid the ´8 payoff by selecting ǔ and v̌ in accordance with the blueprint,
the auxiliary action is never chosen and hence, the lower bounds for the value of trunk informa-
tion sets is always satisfied.

Similar expressions can be found for non-trunk head-infosets. (4.27) holds completely anal-
ogously. The solution to the transformed game needs to make sure the follower always selects
the auxiliary action is always chosen for information sets not belonging to the trunk, so as to
avoid ´8 payoffs from continuing. Therefore, the solution to the transformed game guarantees
that (4.29) holds, except that the direction of the inequality is reversed. Again, the left hand side
of the expression corresponds to (4.26). Hence, the SSE for the transformed game satisfies our
reqired bounds. Furthermore, by starting from (4.26) and working backward, we can also show
that any solution ǔj satisfying the constrained SSE does not lead to a best response of ´8 for
the leader.

Finally, we show that the objective function of the game is identical up to a positive constant.
In the original constrained SSE problem, we sum over all leaf descendants of the trunk and
compute the leader’s utilities weighed by the probability of reaching those leaves.

ÿ

I2PIj
2,headXT

ÿ

hPL,h1PI2
h1ăh

ωhj

ℓt
¨ ǔj

pℓq ¨ v̌jpℓq ¨ Cj
pℓq ¨ r1pℓq

the same expression, except for an additional factor of η. Unlike the constrained SSE setting, the
initial distribution has a non-zero probability of starting in a non-trunk state h P I2 P I2,head X T̄ .
However, since the auxiliary action is always taken under optimality, the leader payoffs from
those branches will be 0.
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4.5.2 The general case

The general case is slightly more complicated. Now, the initial states in subgames may not
belong to the follower. The issue with trying to add auxiliary states the same way as before is
that there could be leader actions lying between the start of the subgame and the (follower) head
information set. These leader actions have probabilities which are not yet fixed during the start
of the search process. To over come this, instead of enforcing bounds on information sets, we
enforce bounds on parts of their parent sequences (which will lie outside the subgame).

We first partition the head information sets into groups based on their parent sequence.
Groups can contain singletons. Observe that information sets in the same group are either all
in the trunk or all are not. Let the groups be Gk “ tIk2,1, I

k
2,2, ..., I

k
2,mk

u, Ik2,q P Ij
head, and the

group’s heads be the initial states which contain a path to some state in the group, i.e, they are:
Gk,head “ th|h ă h1, h1 P Ik2,q P Ij

2,head and Eh2 P Hj
sub, h

2 ă hu. Crucially, note that for two
distinct groups Gi, Gk, i ‰ k, their heads Gi,head and Gk,head are disjoint. This because (i) there
must be some difference in prior actions that player 2 took (prior to reaching the head informa-
tion sets) that caused them to be in different groups, and (ii) this action must be taken prior to the
subgame by the definition of a head information set.

If 2 information sets I2,1, I2,2 P Ij
2,head have the same parent sequence σ2 “ Seq2pI2,1q “

Seq2pI2,2q, i.e., they belong to the same group, Gk, it follows that their individual bounds
BpI2,1q,BpI2,2q must have come from some split on some bound (upper or lower) on the value of
σ2. Instead of trying to enforce that the bounds for I2,1 and I2,2 are satisfied, we try to enforce
bounds on the sum of the values of I2,1, I2,2, since the sum is what is truly important in the bounds
for σ2 when we perform the bounds generation procedure.

The transformation then proceeds in the same way as the restricted case, except that we
operate on the heads of each group, rather than on the head information sets. The bounds for
heads of each group is the sum of the bounds of head information sets in that group, and that the
factor containing the size of the head information set is replaced by the number of heads for that
group.

Upper and lower bounds are enforced using the same gadget as the restricted case, depending
on whether the bound is an upper or lower bound. Figure 4.6 shows an example of a lower bound
in group Gk. Note that the follower payoff in the auxiliary actions contains a sum over bounds
over all information sets belonging to the group. Technically, we are performing safe search
while respecting weaker (but still safe) bounds. Upper bounds are done the same way analogous
to the restricted case.

4.6 Conclusion

In this chapter, we have shown how to extend safe resolving to the realm of SSE. We show
that safety may be achieved by adding a few straightforward bounds on the value of follower
information sets. We showed it is possible to cast the bounded resolving problem as another
SSE, which makes our approach complementary to other offline methods. Our experimental
results on Leduc hold’em demonstrate the ability of our method to scale to large games beyond
those which MILPs may solve.
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I 1
2,k

Ik2,1 Ik2,2

h

p´8,
ř

q BpIk
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ωh|Gk,head|
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Figure 4.6: An example of a general transformation. Brown dashed lines are the heads of in-
dividual groups. Ik2,1 and Ik2,2 belong to the same group Gk with the heads Gk,head. The newly
created auxiliary states are in the new information set I 1

2,k. In this case, Gk is in the trunk, hence
we enforce a lower bound being enforced for Gk.

There are several shortcomings in our framework. The first is scalability. An ideal algorithm
is one which does applies to games larger than we can possibly traverse, as is the case when
subgame solving is applied to zero-sum games. However, the current algorithm requires us to
compute a set of safe bounds, which in turn requires us to traverse the follower’s treeplex. The
second would be the strong assumption on follower’s behavioral model. In our work (and Chap-
ter 6), we assumed that the follower best responds to any commitment of the leader. This is a
fundamental difference between equilibrium in general-sum games compared to Nash equilib-
rium in zero-games. There, we would do no worse than our exploitability even if our opponent is
boundedly rational. Here, assuming our opponent is fully rational (including tiebreaking) when
in fact it was not, can lead to “unboundedly” worse outcomes. The problem is that we do not
have an accurate follower behavioral model.

One future direction is to include incorporating function approximation and machine learning
to further scale (we touch on this a little in Chapter 6). We also believe there is a lot to be explored
(both empirically and theoretically) as to what constitutes a good blueprint, whether we can avoid
full traversal of the game tree to compute safe bounds, or to avoid explicit computation of these
bounds in the first place. We suspect that with a better understanding of subgame solving there
is huge potential for unsafe search to perform well in practice with the right tuning of parame-
ters. We are also looking at developing algorithms to exploit special structures in games (e.g.,
security and patrolling games), as well as more general solution concepts, e.g., multiple leaders
or followers. Dealing with bounded rationality of the follower is one that plagues most appli-
cations employing the Stackelberg equilibrium (or for the matter, most equilibrium concepts in
general-sum games). For example, much work has been done in investigating the use of quantal-
response like responses [1, 7, 42, 142, 162]. We believe there is more to be done here in terms
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of robustness to entire classes of bounded rationality. For example, we believe that our safety
guarantees would apply even if the follower’s change in best response (from the best response
of the blueprint) only applied to any (unknown to the leader) collection of “sub-treeplexes”, as
opposed to the entire game. Can we do better?

72



Chapter 5

Subgame Resolving for Extensive Form
Correlated Equilibrium

Correlation between players is a powerful tool in game theory. The Correlated Equilibrium (CE)
is an equilibrium that allows for players to coordinate actions with the aid of a mediator or a
randomized correlation device1, and is known to allow for outcomes which lead to a signifi-
cantly higher social welfare as compared to solution concepts which require independent play,
such as Nash Equilibrium (NE), on top of being computationally more tractable. In a CE, the
mediator recommend actions privately to the players according to a probability distribution over
joint actions that is known to all players, and the players have no incentive to deviate from the
recommended action if they are perfectly rational.

A natural extension of CE to extensive form games (EFG) is the Extensive Form Correlated
Equilibrium (EFCE), where players are recommended actions at each decision point [179]. Fa-
rina et al. [63] examine behavior observed in EFCEs; for example, in peaceful conflict resolution
in a variant of the board game Battleship and a bargaining game based on the Sheriff of Notting-
ham. The ability to correlate strategies allow outcomes which (in expectation) Pareto dominate
the best possible Nash equilibrium. Furthermore, Von Stengel and Forges [179] showed that 2-
player games without chance (and later generalized by [61] to triangle-free games), EFCEs can
be found in polynomial time. Unfortunately, solving and storing an EFCE possibly still requires
space that is quadratic in the size of the game tree. This is a significant barrier towards solving
large games: for example, storing an EFCE for a simplified variant of Battleship [63] with a grid
size of 3 ˆ 2 and 4 timesteps requires storing a vector with more than 108 entries.

In this chapter, we extend subgame resolving to approximate EFCE in 2-player games without
chance. Instead of announcing the full correlation plan that specifies the probability of recom-
mending different actions at each decision point, the mediator computes the EFCE strategies
online. Conceptually, it can be viewed as having the mediator publish the algorithm of choos-
ing recommended actions, and the algorithm is designed in a way such that the rational players
will have no incentive to deviate from the recommended actions. One potential application is in
ridesharing applications, where a central mediator can recommend which routes drivers take (it

1One can also define CE (alongside similar classes of equilibrium [137]) in terms of average strategies between
no-regret agents. We avoid this definition in this paper, although we do employ no-regret algorithms as a means of
equilibrium computation.
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is non ideal to have players go to the same area). Here, recommendations must ensure that every
driver is incentivized to continue using the application.

This chapter presents three key contributions.
1. We lay out the framework for safe subgame resolving for EFCE in terms of the exploitabil-

ity of a correlation plan with respect to a correlation blueprint.

2. We show that for games without chance, the structure of the polytope of correlation plans
contains a sufficient level of independence between subgames to facilitate independent
solving.

3. Third, we provide two refinement algorithms, the first based on a modification of the linear
program (LP) of Von Stengel and Forges [179], and the second utilizing a recent and more
efficient method based on regret minimization [64]. To the best of our knowledge, this
is the first application of subgame resolving to the correlated setting. We experimentally
show its scalability in benchmark games.

5.1 Background and Related Work
We first review EFGs and the sequence form (Section 2.3.4), followed by subgames and subgame
resolving from Chapter 4. Note that there are some additions and simplifications in notation. We
then introduce extensive-form correlated equilibrium (EFCE), the polytope of correlation plans
which represents the space of joint strategies. We then briefly describe some existing methods
for efficiently solving EFCE.

5.1.1 EFGs and the Sequence Form

In this chapter, restrict our focus to 2-player EFGs G without chance. As before, this is repre-
sented by a finite game tree: nodes represent game states, belonging to either player P1 or P2,
while actions are represented by edges directed down the tree. To represent imperfect informa-
tion, G is supplemented with information sets (infosets) Ii P Ii, i P r2s, which are collection of
states belonging to but are indistinguishable to Pi. States in the same infoset contain the same
actions ai P ApIiq. We denote by ha the state that is reached immediately after taking action a
at state h. We say that state h precedes h1, denoted by h ă h1 if h ‰ h1 and h1 is a descendent of
h in the game tree, and use the notation h ĺ h1 when allowing h “ h1. We assume players have
perfect recall, that is, players never forget past observations and past actions. The set of terminal
states L are known as leaves. Each leaf is associated with utilities received by Pi, given by riphq.
For a given leaf ℓ P L, the social welfare is given by r1pℓq ` r2pℓq.

We define the set of sequences for Pi as the set Σi :“ tpI, aq : I P Ii, a P ApIqu Y t∅u,
where ∅ is known as the empty sequence. For any infoset Ii P Ii, we denote by SeqpIiq the
parent sequence of I , which is defined as the (unique) sequence which precedes I from the root
to any node in I; if no such sequence exists, then σpIq “ ∅. Sequences in Σi form a partial
order; for sequences τ “ pI, aq, τ 1 “ pI 1, a1q P Σi, we write τ Ă τ 1 if there exists states ha and
h1 P I 1 belonging to Pi such that ha ĺ h1, and write τ Ď τ 1 if allowing τ “ τ 1. If in addition,
SeqpI 1q “ τ , we say that τ 1 is an immediate successor of τ and write τ Ă1 τ 1. Since the game
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has no chance, each leaf h P L is uniquely identified by a pair of sequences pσ1, σ2q. With a
slight abuse of notation we write pσ1, σ2q P L, and denote corresponding player payoffs and
social welfare by uipσ1, σ2q and upσ1, σ2q respectively.

Sequence-form strategies. In the sequence form, a (mixed) strategy for Pi is represented by
a vector xi, indexed by the sequences σ “ pI, aq P Σi. The entry xirσs contains the product of
the probabilities of Pi taking actions from the root to information set I . , including a itself, with
the base case given by xir∅s “ 1.2 Hence, valid sequence-form strategies must satisfy the ‘flow’
constraints; for every I P Ii, we have

ř

aPApIq
xirpI, aqs “ SeqpIq. Sequence-form strategies

have size roughly equal to the number of actions (summed over all infosets) of the player, while
flow constraints can be seen as a generalization of the sum-to-one constraints for strategies in the
simplex.

5.1.2 Subgames
Our definition of a subgame is identical to that of Chapter 4. Some additional notation is in order.
Definition 2. (Subgame) Let G be an EFG with perfect recall. Let H be a subset of nodes in G
and ǦH be the subgraph induced by H . We call ǦH a subgame of G when: (i) if state s P H , then
s1 Ą s implies s1 P H , and (ii) for all information sets I P I1 Y I2, we have H X I “ I or H.3

Definition 3. (Subgame Decomposition) Let H “ tHju be sets of vertices of G. We call H a
valid subgame decomposition if (i) H contains non-intersecting sets, (ii) each Hj P H induces a
valid subgame ǦHj

(Ǧj for short).
For this chapter, we will assume that we are equipped with a valid subgame decomposition

H, which induces J disjoint subgames tǦju. There are many possible ways to obtain subgame
decomposition, but by far the most natural and common one is based on public information. In
this chapter, we make no additional assumptions on subgames apart from those in the definition.
We call nodes that are not included in any H as pre-subgame, with an induced subtree Ĝ. Note
that Ĝ obeys property (ii) of a subgame; if some infoset is only partially contained in Ĝ, then
it must be partially contained in some subgame, which is disallowed. Consequently, leaves,
infosets, and sequences may be likewise partitioned. We denote these sets by Ľj, L̂, Ǐi,j, Îi, and
Σ̌i,j, Σ̂i. As an example, the game in Figure 5.1 has two subgames, both starting off with P2

making his move. Here, P2’s infosets belong to separate subgames, while P1’s infosets all lie in
Ĝ. Similarly, all of P2’s non-empty sequences lie in a subgame, while all of P1’s sequences do
not. Another valid subgame decomposition is to have all but the root be in a single subgame.

5.1.3 Extensive-Form Correlated Equilibria
Extensive-form correlated equilibria (EFCE) is a natural extension of CE to EFGs. Unlike regular
CEs, players do not receive recommendations for the full game upfront; instead, recommenda-
tions are received sequentially, and only for infosets the players are currently in. In the original
paper by Von Stengel and Forges [179], this is achieved by means of sealed recommendations,

2Perfect recall implies there is only one such series of actions.
3Alternatively if h P Ǧ and belongs to some infoset I , then all states h1 P I are contained in Ǧ.
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while Farina et al. [63] have the mediator generating recommendations over the course of the
game, but ceasing all future recommendations if a player deviates from a recommendation. We
call the recommended actions trigger sequences σ! [58, 63]. Trigger sequences contain the last
recommended action from the mediator before any deviation, and implicitly contains informa-
tion about all previous recommendations (due to perfect recall). EFCEs are incentive-compatible,
players do not expect to benefit by unilaterally deviating from recommended actions.

Polytope of correlation plans A significant benefit of EFCEs over regular CEs is computa-
tional cost: computing a CE that achieves maximum social welfare is NP-complete [179], while
in 2-player perfect recall games without chance4, the constraints that define an EFCE may be
expressed in a polynomial number of linear constraints and hence may be solved using a linear
program. Crucial to these positive results is a theorem by Von Stengel and Forges [179] which
characterizes Ξ, the polytope of correlation plans which compactly represents the space of joint
(reduced) normal-form strategies up to strategic equivalence.
Definition 4. (Connected infosets, I é I 1) Let I, I 1 be infosets from either player. We say that
I, I 1 are connected and write I é I 1 if there exists nodes u P I, v P I 1 in G lying on a path
starting from the root, i.e., u ĺ v or v ĺ u.
Definition 5. (Relevant sequences, σ1 ’ σ2) Let σ1 P Σ1, σ2 P Σ2. We say that the sequence
pair pσ1, σ2q is relevant, denoted by σ1 ’ σ2 if (i) either σ1 or σ2 is ∅ or (ii) σ1 “ pI1, a1q, σ2 “

pI2, a2q for I1 é I2 and some actions a1, a2. For convenience, we use the same notation σ1 ’ I2
when either σ1 “ ∅ or if σ1 “ pI1, a1q and I1 é I2, with a symmetric definition for I1 é σ2.

Definition 6. (Von Stengel and Forges) Let G be a perfect recall game without chance. Then,
Ξ is a convex polytope of correlation plans which contains non-negative vectors indexed by
relevant sequence pairs, with constraints

Ξ :“

$

&

%

ξ ě 0 :

ξr∅,∅s “ 1,
ř

aPApIq
ξrpI1, aq, σ2s “ ξrSeqpI1q, σ2s,

ř

aPApIq
ξrσ1, pI2, aqs “ ξrσ1,SeqpI2qs

,

.

-

where the second and third constraints are over all I1 ’ σ2 and σ1 é I2 respectively.

For clarity, we use boldface (e.g., ξ) to refer to an entire correlation plan and ξrσ1, σ2s to
reference the entry entry given by relevant sequences σ1 and σ2. Visually, one can view Ξ as a
2-dimensional ‘checkerboard’ of size |Σ1|¨|Σ2| with entries to be filled in indices where σ1 ’ σ2.
The second and third constraints are simply the sequence-form constraints [179] applied to each
row and column of the checkerboard. For example, for the game in Figure 5.1, all sequence
pairs are relevant, and we have row constraints ξrσ1, ℓxs ` ξrσ1, rxs “ ξrσ1,∅s and ξrσ1, ℓys `

ξrσ1, rys “ ξrσ1,∅s for all sequences σ1 P Σ1, and column constraints ξrG, σ2s ` ξrB, σ2s “

ξr∅, σ2s, ξrXG, σ2s`ξrYG, σ2s “ ξrG, σ2s, and ξrXB, σ2s`ξrYB, σ2s “ ξrB, σ2s for all σ2 P Σ2.

4and more generally in games that are triangle-free[61]
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(a) Modified signaling game
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(b) Polytope of correlation plans

Figure 5.1: Left: Modified signaling game used in [179] with 2 subgames. Subgames are shaded
in different colors. Right: A correlation plan ξ of Figure 5.1a indexed by sequence pairs pσ1, σ2q.
Circles denote fill-in order under the decomposition of Farina et al. [64]. Dashed rectangles show
sequence pairs in different subgames.

LP-based EFCE solvers. Observe that Ξ contains a polynomial number of unknowns and
linear constraints. A correlation plan in Ξ is an EFCE if it also satisfies incentive constraints that
enforce incentive compatibility such that it is optimal for a player to follow the recommendation.
Von Stengel and Forges show that the incentive constraints can be also expressed in a polynomial
number of linear constraints over ξ. Specifically, incentive constraints when σ! “ pI, a!q is
recommended for P1 (the case for P2 follows naturally) are expressed by5

µpσ!
q ě βpσ1;σ!

q σ1
“ pI, a1

q, a1
P ApIqzta!u (5.1)

µpσq “
ÿ

σ2:pσ,σ2qPL

r1pσ, σ2qξrσ, σ2s `
ÿ

σ1:σ1ą1σ

µpσ1
q (5.2)

βpσ1;σ
!
q “

ÿ

pσ1,σ2qPL

r1pσ1, σ2qξrσ!, σ2s `
ÿ

I 1:σpI 1q“σ1

νpI 1;σ!
q (5.3)

νpI;σ!
q ě βpσ;σ!

q a P IpIq (5.4)

Here, µpσq gives the expected utility of P1 if he abides to this and all following recommen-
dations. Together, (5.3) and (5.4) recursively define the values of the best response of P1 for
deviating to σ1 given σ! was recommended. The term ξrσ!, σ2s essentially contains the (unnor-
malized) posterior of P2’s sequence given that σ! was recommended.

Bilinear saddle-point problems and regret minimization More recent work by [63, 64] show
that the problem of finding an EFCE can be formulated as a bilinear saddle point problem, i.e.,
an optimization problem of the form minxPX maxyPY xTAy. Conceptually, this can be seen a
zero-sum game between two entities, (i) a mediator who optimizes ξ P Ξ, and (ii) a deviator
who selects for each sequence σ! P Σi the strategy (for all σ Ą σ!) that is to be taken after

5Readers familiar with the work of Von Stengel and Forges [179] will notice that we use a slightly different LP.
This is to make our future definition of exploitability more convenient.
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deviating from σ! given the mediator’s choice of ξ. Essentially, the mediator tries to increase
the value of µ, while the deviator seeks to increase ν, which makes the inequality in (5.1) more
difficult to achieve. Farina et al. characterize Ξ in terms of a series of convexity-preserving
operations known as scaled extensions and provide a regret minimizer for sets constructed via
scaled extensions. This construction leads to an efficient EFCE solver that runs in linear space,
which we adapt in one of our resolving algorithms.

Quality of correlation plans The quality of any correlation plan ξ is measured by (i) its ex-
pected social welfare,

ř

pσ1,σ2qPL ξrσ1, σ2srpσ1, σ2q, where r “ r1 ` r2, and (ii) the degree to
which the ξ violates the incentive constraints.
Definition 7. (Exploitability) Given a trigger sequence σ! of P1, and a strategy ξ P Ξ, the value
of the best-deviating response to σ! “ pI, a!q is given by

β˚
pξ;σ!

q “ max
aPApIqzta!u

βppI, aq, ξ;σ!
q

βpσ, ξ;σ!
q “

ÿ

σ2:pσ,σ2qPL

r1pσ, σ2qξrσ!, σ2s `
ÿ

I:SeqpIq“σ

νpI, ξ;σ!
q

νpI, ξ;σ!
q “ max

aPIta1u
βppI, aq, ξ;σ!

q

with a similar definition for P2. The exploitability of ξ for a trigger sequence σ! is given by

δ˚
pξ, σ!

q “ β˚
pξ;σ!

q ´ µpξ, σ!
q (5.5)

where µpξ, σ!q is the value of the σ! if it and all future recommendations are followed, as defined
in (5.2).

β˚pξ;σ!q is the highest reward a player can get from deviating from the trigger sequence σ!,
while δ˚ measures the gain from doing so. If δ˚pξ;σ!q ď 0 for all σ! P I1 Y I2, then ξ is an
EFCE. In LP-based solvers, the social welfare is maximized through the objective function, while
exploitability is ď 0 using linear constraints. In the regret minimization method, exploitability
is bounded by the average regret incurred by the solvers, which goes to 0 at a rate of 1{

?
T .

Maximizing social welfare with regret minimizers can be done by including another constraint
lower bounding the social welfare and wrapping this around a binary search to maximize this
lower bound.

5.2 Subgame Resolving for Extensive Form Correlated Equi-
librium

Subgame resolving exploits the sequential nature of EFGs to refine strategies online. We begin
with an analog of the blueprint used in Chapter 4 known as a correlation blueprint, typically a
guess or approximation of an EFCE.
Definition 8. (Correlation blueprint) A correlation blueprint ξ0 P Ξ for the game G is an oracle
ξ0rσ1, σ2s which can be accessed in constant time for all σ1 ’ σ2.

78



Remark 19: Blueprint strategies ξ0 may not necessarily be stored explicitly: all we require is
that its entries may be accessed efficiently. For example, a blueprint may have players playing
independently according to sequence form strategies ξpiqpσq, such that ξ0rσ1, σ2s “ ξp1qpσ1q ¨

ξp2qpσ2q, i.e., no correlation between players’ actions in this special blueprint. In the Battleship
benchmark of Farina et al. [63], the blueprint could recommend players to place ships and fire
uniformly at random. For games that are close to zero-sum (e.g., Goofspiel), we can solve the
zero-sum variant efficiently and then report each player’s independent strategy.

At the beginning of the game, players receive recommendations from the blueprint strategy.
Once the game enters a subgame, an equilibrium refinement step is performed only for that
subgame entered, and recommended actions are instead drawn from that refined correlation plan
for the rest of the game. Subgame resolving is an online method; instead of solving for the
equilibrium upfront, it defers part of its computation to when the game is being played. A
generic algorithm is shown in Algorithm 4.

5.2.1 Refinements of Correlation Blueprint
Subgame resolving for EFCEs differs significantly from prior work for zero-sum and Stackelberg
games. This is because we are now updating relevant sequence pairs of ξ0 in the correlation
polytope Ξ, which unlike the space of sequence form strategies, has no obvious hierarchical
structure. Fortunately, Definitions 6 and 2 provide enough structure to perform resolving.

Theorem 6. (Independence between subgames) For j P rJs, let the set Sj contain relevant
sequences pσ1 ’ σ2q where either σ1 or σ2 is belongs to Ǧj , i.e., (i) σ1, σ2 P Ǧj , (ii) σ1 P

Ĝ, σ2 P Ǧj or (iii) σ1 P Ǧj, σ2 P Ĝ. Furthermore, let S0 be the set of relevant sequence pairs
such that σ1, σ2 P Ĝ. Then tS0, ¨ ¨ ¨ , SJu forms a partition of relevant sequence pairs.

Proof. The cases are disjoint. Hence, it suffices to show that there does not exist σ1 ’ σ2, where
σ1 “ pI1, a1q P Ǧj, σ2 “ pI2, a2q P Ǧk for j ‰ k. By definition σ1 é σ2 implies that there exists
a path from the root passing through vertices v1 P I1 and v2 P I2. WLOG suppose that v1 ă v2
in this path. Then v2 must lie in Ǧj by property (i) of the subgame. This is a contradiction.

A relevant sequence pair pσ1, σ2q is pre-subgame, written shorthand by pσ1, σ2q P Ĝ if
pσ1, σ2q P S0. Similarly, we write pσ1, σ2q P Ǧj if pσ1, σ2q P Sj . Theorem 6 shows exactly
one of these must hold.
Definition 9. (Refinements) For a given blueprint ξ0 P Ξ and subgame decomposition H, a
correlation plan ξ̃ P Ξ is called a complete refinement if ξ̃rσ1, σ2s “ ξ0rσ1, σ2s for all pσ1, σ2q P

Ĝ. Let Ξj be Ξ but restricted to sequence pairs pσ1, σ2q P Ǧj Y Ĝ. We call ξ̃j P Ξj a refinement
of subgame j if ξ̃jrσ1, σ2s “ ξ0rσ1, σ2s for all pσ1, σ2q P Ĝ.

Example 5: In Figure 5.1, a complete refinement involves updating all but the first column of
Figure 5.1b, since for P2, all but the empty sequence is in some subgame. For the left subgame,
we have Ξj being the first 3 columns; finding a refinement involves updating the columns con-
taining ℓx, rx (sequences which are contained in the subgame) and dropping the last 2 columns,
while respecting the constraints in Definition 6. For the right subgame, a refinement will update
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Algorithm 4: Subgame Resolving for EFCE
Input: EFG, blueprint ξ0

1: while game is not over do
2: if currently in some subgame j then
3: if first time in subgame then
4: (*) Refine ξ0 Ñ ξ̃j
5: end if
6: Recommend action according to ξ̃j
7: else
8: Recommend action according to ξ0
9: end if

10: end while

ℓy and ry. A complete refinement updates all sequence pairs without modifying the first column
corresponding to the empty sequence ∅, i.e., the shaded entries in Figure 5.1b.

Theorem 6 implies that updated entries in a complete refinement (shaded entries in Fig-
ure 5.1b) for each refinement do not overlap. This implies refined correlation plans can be com-
bined to form complete refinements. Let tξ̃ju contain a refinement for each subgame. Then,
tξ̃ju “ tξ̃1, . . . , ξ̃Ju induces a natural complete refinement ξ̃ where

ξ̃rσ1, σ2s “

#

ξ0rσ1, σ2s pσ1, σ2q P Ĝ

ξ̃jrσ1, σ2s pσ1, σ2q P Ǧj

.

Observe that ξ̃ P Ξ since no constraint of Ξ involves sequences pairs across different subgames.
The independence property of sequence pairs extends to EFCE incentive constraints for trig-

ger sequences within subgames. For every trigger sequence σ! in Ǧj , the best-deviating response
(see Definition 7) will never have to reference sequence pairs containing any sequence outside
Ǧj . This is intuitively true, since once inside Ǧj , a potential deviating player will never encounter
states outside of Ǧj in the future, and hence need not consider them. This suggests may be pos-
sible to perform refinements of subgames independently without solving other entries containing
sequences from other subgames. However, this independence of incentive constraints does not
apply to pre-subgame trigger sequences σ! P Σ̂i. For those sequences, δ˚pξ, σ!q will in general
depend on refined solutions from multiple, distinct subgames. Handling these constraints is a
primary challenge addressed in this chapter.

5.2.2 Safe Refining Algorithms
An important property when performing subgame-resolving for independent, uncorrelated strate-
gies is that of safety, and was the central issue discussed extensively in solving NE in zero-sum
games [28]. There, it was observed naive application of resolving algorithms can result in so-
lutions which are of lower quality than the blueprint. The fundamental problem is that when
P1 performed resolving, the best-response of P2 in the pre-subgame portion differs from the
blueprint, hence whatever initial distribution over states at the beginning of the subgame no
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longer holds. This phenomenon is known as unsafe resolving. A similar phenomenon quantified
in terms of exploitability holds for EFCEs.
Definition 10. (Safe refinements) A complete refinement ξ̃ of ξ0 is safe if for all trigger se-
quences σ!

δ˚
pξ̃;σ!

q ď max
`

0, δ˚
pξ0;σ

!
q
˘

,

i.e., the exploitability of ξ̃ for all σ! is 0 or less than the blueprint. We say that ξ̃ is fully safe if
in addition, the social welfare (assuming no deviations) under ξ̃ is no less than ξ0. A resolving
algorithm is said to be (fully) safe if the complete refinement induced by all j refinements ξ̃j is
(fully) safe.

In safe refinements, players are at least as incentivized to follow the resolved strategy than the
blueprint. Fully safe refinements ensures further that the social welfare will not be diminished.
Apart from incurring additional computing costs, there can be no harm in applying fully safe
resolving. Clearly, a fully safe resolving algorithm exists in the form of one that trivially returns
the blueprint.

Remark 20: We point out that the notion of safety in this chapter is slightly different from the
one in Chapter 4. There, safety was defined in terms of the leader’s payoff after the follower
best responds. Here, safety (and full safety) is defined in terms of the degree that players have
to deviate (and the social welfare). There are two reasons for these distinctions. First, in SSEs,
our goal is to refine the leader’s blueprint under the assumption that the follower best responds.
The leader’s strategy (blueprint or refinement) does not have to obey any explicit incentive con-
straints, only the follower’s best response does. Here, our goal for EFCEs is to propose a joint
strategy between players—this implies both players have distinct incentive constraints. Indeed,
we reiterate that ξ0 may not even satisfy incentive constraints. Second, there are two objectives
here — that of social welfare and incentive compatibility. This explains distinction between
safe and fully safe refinements. Fully safe refinements "Pareto dominate" the blueprint in both
objectives.

Resolving with multiple subgames. In Definition 10, we required that the induced complete
refinement ξ̃ be used to measure safety, and not just the refined strategy of a subgame ξ̃j . This
may seem odd at first, since the primary advantages of resolving was that it did not require
computing strategies for subgames not reached in actual play. However, it turns out that this is
necessary. Consider the perspective of Pi who in the pre-subgame portion of G was recommended
a sequence σ! and was considering deviation. At that point of decision making, Pi does not
know which subgame will be reached in the future; however, it knows that whichever subgame
is encountered (if at all), refinement will be performed. Thus, when contemplating deviation,
Pi in fact computes the value of a best-deviating response to the complete refinement ξ̃. This is
despite the fact that in a single playthrough of the game, at most one subgame can be encountered
in reality. Another interpretation is that the mediator publishes the refinement algorithm which
implicitly defines the complete ξ̃, which players contemplate best responses to. Hence, even
though the resolving algorithm does not explicitly compute a complete refinement, it should
still guarantee safety as if it did. This is analogous to the insight made for SSEs, discussed in
Section 4.2.2.
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5.3 Algorithms for Safe Subgame Resolving
Suppose the mediator has thus far given recommendations based on ξ0 and the players have just
entered subgame j. Following Algorithm 4, the mediator computes a refinement ξ̃j which he
uses for all future recommendations. Our approach mirrors that of Chapter 4, we (i) begin by
computing a set of bounds which guarantee safety if enforced and (ii) run a “naïve” optimization
which additionally, enforces those bounds. Step (i) involves a search process reminiscent of
Chapter 4, except that there are now 2 players and a correlation blueprint ξ0. We again provide 2
algorithms for step (ii), the first uses a linear program, while the second uses regret minimization.

5.3.1 Computing a Set of Safety Bounds
On top of the structural constraints of Ξj , we have 3 categories (A-C) of additional constraints
that ensure safety. Constraint set (A) enforces safety for trigger sequences σ! P Ǧj , in an manner
identical to (5.1), while constraint sets (B-C) ensures that the complete refinement ξ̃ is safe;
loosely speaking, (B) contains lower bounds that ensure that following recommendations will
yield a high enough payoff to a player contemplating deviation, while (C) contains upper bounds
which ensure that players which have deviated do not get rewarded too much.

(A) Safety for in-subgame triggers For each Pi and each sequence in subgame j, i.e., σ! “

pI !, a!q P Σ̌i,j , we require

µpξ̃;σ!
q ě β˚

pξ̃;σ!
q ´ δ˚

pξ0;σ
!
q (5.6)

where the µ, ν have constraints identical to (5.2), (5.4). These constraints only involve sequence
(pairs) that lie within Ǧj and not other subgames, so no modifications are needed.

Computing safe infoset value bounds Now we turn to constraints (B) and (C), which guaran-
tee safety for trigger sequences in Ĝ. Our approach is to, for each trigger-sequence σ! “ pI, a!q,
generate a set of linear constraints which guarantee that the safety for σ! is satisfied, in accor-
dance to Definition 10. What are some sufficient conditions on µpξ̃;σ!q and βpσ1, ξ̃;σ!q where
σ1 P tIa|a ‰ a!u such that the safety condition in Definition 10 is satisfied for σ!? To an-
swer this, let us consider α “ maxp0, δ˚pξ0;σ

!qq. There are 2 cases. (i) If α “ 0, then the
blueprint was already sufficiently unexploitable for σ!. Thus we could afford to decrease µpξ̃;σ!q

and increase βpσ1, ξ̃;σ!q relative to the blueprint, if it would lead to higher social welfare. (ii)
If α ě 0, then σ! was exploitable and we do not want to worsen exploitability. This can be
avoided if we could somehow ensure µpξ, σ!q and βpσ1, ξ̃;σ!q do not decrease or increase respec-
tively. Concretely, in case (i), we can require β˚pξ̃;σ!q ď “βpσ;σ!q “ β˚pξ0;σ

!q ´ δ˚pξ0;σ
!q{2,

and µpξ̃;σ!q ě µ̆pσ;σ!q “ µpξ0, σ
!q ` δ˚pξ0;σ

!q{2. In case (ii), we can require β˚pξ̃;σ!q ď
“βpσ;σ!q “ β˚pξ0;σ

!q, and µpξ̃;σ!q ě µ̆pσ;σ!q “ µpξ0, σ
!q. These are sufficient conditions to

guarantee that safety is maintained for σ!. Yet, enforcing this is not possible, since µpξ̃;σ!q and
βpσ1, ξ̃;σ!q can depend on relevant sequence pairs belonging to other subgames. The trick is to
recursively unroll µ and β, maintaining bounds which guarantee for safety at each step. This is
repeated until we reach infosets belonging to subgames.
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Definition 11. (Head infosets) For a player i and subgame j, I P Ii is a head infoset of subgame
j if I P Îi,j and there does not exist I 1 preceding I such that I 1 R Îi. The set of head infosets for
player i in subgame j is denoted by Ihead

i,j Ď Ǐi,j . I is called a head infoset if it is a head infoset
of some subgame. The set of all head infosets for player i is denoted Ihead

i .

(B) Lower bounds on µpξ̃, σ!q Recall that µpξ̃, σ!q is the expected utility accrued from leaves
pσ1, σ2q P L, where σ1 ľ σ!. We can recursively decompose µpξ̃, σ!q into values of infosets,
sequences and their summations.

dpσ;σ!
q “

`

µpξ0, σq ´ µ̆pσ;σ!
q
˘

{
ˇ

ˇtI|σpIq “ σu
ˇ

ˇ (5.7)

v̆pI;σ!
q “ vpIq ´ dpσpIq;σ!

q (5.8)

fpI;σ!
q “ pvpξ0, Iq ´ v̆pI;σ!

qq{
ˇ

ˇApIq
ˇ

ˇ (5.9)

µ̆pσ;σ!
q “ µpξ0, σq ´ fpI;σ!

q I : σ “ pI, aq (5.10)

where vpξ0, Iq “
ř

σ:pI,aq,aPApIq
µpξ0, σq, For every σ, starting from σ!, we compute in (5.7)

the slack, i.e., the difference between our desired lower bound µ̆pσq and what was achieved with
the blueprint. In (5.8), this slack is split equally between all infosets which have σ as the parent
sequence. A similar process is repeated for infosets in (5.9) and (5.10). We alternate between
computing lower bounds for sequences and infosets until we have computed v̆pIq for I P Ihead

i

in (5.8). We repeat this for all σ! P Ĝ and take the tighter of the bounds to obtain v̆pIheadq for all
Ihead P Ihead

i .

(C) Upper bounds on β˚pξ̃;σ!q Recall that β˚ is the value of the best-deviating response.
We can unroll the inequalities using Definition 7 and stop once a head infoset is reached, i.e.,
when we encounter a term νpI, ξ̃;σ!q for some I P Ihead

i . If these terms were upper-bounded
appropriately, then β˚pξ̃;σ!q would be upper-bounded. One possible way is to compute upper
bounds recursively

spσ;σ!
q “

´

“βpσ;σ!
q ´ βpσ, ξ0;σ

!
q

¯

{
ˇ

ˇtI|σpIq “ σu
ˇ

ˇ (5.11)

“νpI;σ!
q “ νpI, ξ0;σ

!
q ` s (5.12)

“βpσ;σ!
q “ “νpI;σ!

q. (5.13)

At the end of the bounds computation step, we have sets “Bi,j “ tpI, σ!, “νpI;σ!qu and B̆i,j “

tpI, v̆pIqqu, each containing constraints of the form vpξ̃; Iheadq ě v̆pIheadq and νpIhead, ξ̃;σ!q ď

“νpI;σ!q for some I P Ihead
i,j .

As one might expect, a complete refinement is safe when the computed bounds B̆i,j and “Bi,j

are obeyed. This is shown in the following the following theorem.

Theorem 7 (Bounds imply safety). If a correlation plan ξ̃ satisfies all constraints in B̆i,j

and “Bi,j for all i P t1, 2u and j P rJs, then δ˚pξ̃;σ!q ď max
`

0, δ˚pξ0;σ
!q
˘

for all σ! P Ĝ.

Similar to the bounds generation process in Chapter 4, it’s proof is largely by construction
and its derivation can be found in [120].
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5.3.2 Safe Refinement Based on Linear Programs

Once the bounds B̆i,j and “Bi,j have computed, enforcing them is simply a matter of placing them
on top of the constraints for trigger sequences in Ǧj in (5.6). For lower bounds of the form
pI, v̆pIqq P B̆i,j , we introduce variables vpIq, where vpIq “

ř

σ:pI,aq,aPApIq
µpσq and enforce

vpIq ě v̆pIq. Note that the auxiliary variables µpσq has already been introduced as part of
exploitability of Ǧj when enforcing (5.6). For upper bounds pI, σ!, “νpI;σ!qq P “Bi,j , we introduce
variables νpI;σ!q and enforce νpI;σ!q ď “νpI;σ!q. To ensure that νpI;σ!q is indeed the value of
the infoset given a trigger sequence σ!, we will have to introduce auxiliary variables similar to
(5.3), (5.4) recursively. This LP is always feasible, since the blueprint would trivially satisfy all
bounds constraints. To achieve full safety, we simply set the objective to be the component of
social welfare culminating from subgame j.

The rest of this section describes the LP in detail and may be skipped without affecting the
rest of the chapter. There are 2 classes of constraints in the LP, (i) structural constraints and (ii)
the incentive constraints. Structural constraints enforce that ξ̃j lies in Ξj . Incentive constraints
consist of three sets of constraints (A-C) which ensure safety. (A) ensures that safety is achieved
for in-subgame triggers, while (B) and (C) ensures safety for triggers that lie in Ĝ.

Structural Constraints

Let us first describe the structure of Ξj . The components of Ξj are indexed by sequence pairs
pσ1, σ2q, where σi is either ∅ or pIi, aiq. As with Ξ, we require σ1 ’ σ2. Furthermore, we also
require that none of σi lies in another Gk, k ‰ j, i.e., Sk in Theorem 6. That is, if σi is non-
empty and σi “ pIi, aiq, then Ii lies in subgame j. Naturally, we require that ξ̃j ě 0, and that
ξ̃jr∅,∅s “ 1. We also need the following two constraints to hold.

• Sequence-form constraints on rows and columns of ξ̃j . These are similar to the flow
conservation constraints, but are for the probability of sequence pairs. For example, in the
left subgame game in Figure 5.1, Ξj is determined by the first 3 columns, and we have row
constraint ξrσ1, ℓxs ` ξrσ1, rxs “ ξrσ1,∅s, and column constraints ξrG, σ2s ` ξrB, σ2s “

ξr∅, σ2s, ξrXG, σ2s ` ξrYG, σ2s “ ξrG, σ2s, and ξrXB, σ2s ` ξrYB, σ2s “ ξrB, σ2s for
σ2 P t∅, ℓx, rxu. Generally, we have

Ξj :“

$

&

%

ξ ě 0 :

ξr∅,∅s “ 1,
ř

aPApIq
ξrpI1, aq, σ2s “ ξrσpI1q, σ2s,

ř

aPApIq
ξrσ1, pI2, aqs “ ξrσ1, σpI2qs

,

.

-

,

The constraints defining Ξj are essentially identical to that of Ξ — the convex polytope of
correlation plans in the original game, except we now work with a restricted index set.

• Equality-to-blueprint constraints. These ensures that ξ̃j is indeed a refinement of ξ0. In
Figure 5.1, this would mean that the entries in Ĝ (entries in the first column) is equal to the
blueprint, i.e., ξ̃jrσ1,∅s “ ξ0rσ1,∅s for all σ1 P Σ1. More generally, for all pσ1, σ2q P S0

(i.e., σ1, σ2 are both either equal to ∅ both or do not belong to a subgame), we require that
ξ̃jrσ1, σ2s “ ξ0rσ1, σ2s.
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Auxiliary Variables

Enforcing the constraint set (A-C) described in Section 5.3.1 using B̆i,j and “Bi,j requires the
introduction of numerous variables, which can be simplified by the introduction of auxiliary
variables. For this part, unless otherwise stated, these variables are with respect to ξ̃j . We will
make it explicit if we need to reference the blueprint ξ0.

• Values of sequences assuming no deviation. The first are the variables µpσq, which
exist for each player for all σ “ pI, aq P Σi, where I P Ǐj . These capture the value of
contribution of payoffs for Pi assuming both players abide to all recommendations under
ξ̃j for all leaves involving sequences σ1 Ě σ. These can be computed recursively the same
way as the original LP of Von Stengel and Forges [179] in (5.2).

µpσq “
ÿ

σ2;pσ,σ2qPL

u1pσ, σ2qξ̃jrσ, σ2s `
ÿ

σ1ą1σ

µpσ1
q,

that is, value of each sequence σi is given by the rewards for Pi from leaves containing σi,
plus the rewards from future sequences (computed recursively). Note that by the definition
of a subgame (Definition 2), during the recursive process, we will never have to ‘address’ a
µpσ1q where σ1 lies outside of Σ̌j . The number of variables and constraints is approximately
|Σ̌j|. We will eventually use these in constraints for in-subgame triggers (A), as well as the
lower bounds in (B).

• Value of infosets assuming no deviations. For convenience, we will write the value of
infosets of I as vpIq “

ř

σ:pI,aq,aPApIq
µpσq. These are used for the lower bounds in (A). In

our implementation, they are also used as auxiliary variables while recursively computing
µpσq. This is equivalent to the definition of µpσq provided above. The number of variables
here is |Ǐj| (which is in turn upper bounded by |Σ̌j|.

• Values of infosets under deviations. Next, we have the variables νpI;σ!q. These represent
the values of infoset I given that the player was triggered by σ!, deviated and plays the best
response after his deviation. Let σ! “ pI !, a!q be a trigger sequence, and σ1 “ pI !, a1q, a1 ‰

a! is the sequence which was deviated to. vpI;σ!q exists for each I P Ij where σpIq Ě σ1,
i.e., I (which belongs in the subgame j) could be encountered after deviating to σ1, which
lies in the same infoset as σ!. The variables in ν can be further split into 2 groups. If
σ! lies in Σ̌j , then this is similar to the variable in (5.4). If not, then note that these are
only created for infosets within subgame j. The former is used in enforcing safety for in-
subgame triggers (A) and the latter for constraint set (C). The total number of variables here
for each Pi is no greater (and in practice, usually much smaller) than p|Σ̂i| ` |Σ̌i,j|q ¨ |Ǐi,j|.

• Value of sequences under deviations. βpσ;σ!q is very similar to ν, in that it is the value of
a sequence assuming the last recommendation received and deviated from was σ!. Again,
we are only concerned with sequences σ P Σ̌j , and those which could be reached after
deviation from σ!. For a fixed trigger sequence σ!, βpσ;σ!q and νpI;σ!q can be computed
together recursively using Equations (5.4) and (5.3). The inequalities ensure that the values
in ν and β are such that these are no less than best-responses towards ξ̃j . The number of
variables here is no greater than p|Σ̂i| ` |Σ̌i,j|q ¨ |Σ̌i,j|.
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Incentive Constraint Sets (A)-(C)

• Incentive Constraint Set (A) Recall that these ensure that safety is achieved for σ! P Σ̌j .
For each such σ!, we have constraints of the form

µpξ̃;σ!
q ě β˚

pξ̃;σ!
q ´ δ˚

pξ0;σ
!
q. (5.14)

• Incentive Constraint Set (B) These are intended to guarantee lower bounds on µpσ!q,
where σ P Σ̂i. The sufficient conditions for doing so are in the set B̆i,j , each of the form
pI, v̆pIqq. We will need

vpIhead
q ě v̆pIhead

q

for some Ihead P Ihead
i,j .

• Incentive Constraint Set (C) Similarly, (C) is intended to upper bound β˚pσ!q, i.e., ensure
that deviating would not be too beneficial. This is achieved by making sure β˚pσ;σ!q for
all σ ‰ σ! and σ “ pI !, aq. This can be achieved when νpIhead;σ!q ď “νpI, σ!q for each
tuple pI, σ!, “vpI;σ!qq P “Bi,j .

5.3.3 Safe Refinements using Regret Minimization
Our second algorithm is based on regret minimization. We solve a saddle-point problem using
self-play, utilizing the scaled extension operator of Farina et al. [64] to provide an efficient regret
minimizer over Ξj . This leads to a significantly more efficient algorithm, which we now give a
brief overview of.

The first step is to rewrite the refinement LP as a bilinear saddle point problem, similar to
what Farina et al. [63] did. Observe that a refinement ξ̃j is safe if and only if the greatest violation
of the safety constraints to be equal to 0. Building on this intuition, we introduce for each safety
constraint, multipliers λδ

i,σ! , λν
i,I,σ! and λv

i,I — for exploitability (in Ǧj), upper bounds, and lower
bounds respectively. These multipliers are non-negative and sum to 1. Additionally, we introduce
variables y̌i,σ! P Y̌i,σ! for pI !, a!q “ σ! P Σ̌i,j . Similarly, for trigger sequences pI !, a!q “ σ! P Σ̂i,
we introduce ŷi,σ! P Ŷi,σ! . These y’s represent the components of the best-deviating responses
to trigger sequences σ!, and whose polytopes can be easily represented using the sequence-form
representation of Von Stengel [178]. Resolving is equivalent to solving the following bilinear
saddle point problem:

min
ξ̃j

max
i,λ,y

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ř

i,σ!PΣ̌i,j

”

ξ̃Tj R
δzδ

i,σ! ` ξ̃Tj

´

λδ
i,σ!b

δ
i,σ!

¯ı

`

ř

i,pI,σ!,¨q

P “Bi,j

”

ξ̃Tj R
νzν

i,σ! ` ξ̃Tj

´

λν
i,σ!b

ν
i,σ!

¯ı

`

ř

i,pI,¨qPB̆j

ξ̃Tj
`

λv
i,Ib

v
i,I

˘

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

, (5.15)

where zδ
i,σ! “ λδ

i,σ! y̌i,σ! and zδ
i,σ! “ λν

i,σ! ŷi,σ! , for appropriately chosen constants R, b (which may
vary on ξ0).
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Algorithm 5: Refinement with Regret Minimization
Input: EFG, blueprint ξ0

1: Decompose Ξj into series of scaled extensions.
2: Construct regret RM’er X over Ξj .
3: Construct regret RM’er Y over deviators.
4: while saddle point gap ě ϵ do
5: ξ̃

ptq
j Ð X .recommend; yptq Ð Y .recommend

6: X .observeLoss(yt); Y .observeLoss(ξt)
7: end while

The second step is to treat the refinement problem as a zero-sum game between a mediator,
who chooses a refinement ξ̃j and deviator, who chooses multipliers and best-deviating responses.
This zero-sum game can be solved by running self-play between two Hannan-consistent regret
minimizers and taking average strategies. A regret minimizer for the deviator is constructed effi-
ciently using counterfactual regret minimization [193]. A regret minimizer over Ξj is constructed
using the decomposition technique used by Farina et al. [64] with some additional tiebreaking
rules to ensure we do not have to "fill-in" sequence pairs in Ĝ.

In the following, we go into some details of the saddle-point reformulation and construction
of regret minimizers. These details are not necessary for to understand the rest of this chapter.

Refinements as a Bilinear Saddle-point Problem

The LP without the objective (and by extension, safe resolving) can be written as a bilinear saddle
point problem. Consider a refinement ξ̃j . The largest violation of a constraint is:

max
iPt1,2u

$

’

’

’

’

&

’

’

’

’

%

max
σ!PΣ̌i,j

δ˚pξ̃;σ!q ´ δ˚pξ0;σ
!q

max
pI,σ!,“νpI;σ!qqP “Bi,j

νpI, ξ̃j;σ
!q ´ “νpI;σ!q

max
pI,v̆pIqqPB̆i,j

v̆pIq ´ vpξ̃j; Iq

,

/

/

/

/

.

/

/

/

/

-

.

The inner maximizations are for (A) safety for trigger sequences σ! P Ǧj (C) upper bounds on val-
ues head infoset I under the best deviating response to a the trigger sequences σ!, and (B) lower
bounds on values of head infosets assuming no deviation occurs. If the ξ̃j satisfies the LP, then
the above expression is non-positive. These nested maximizations can be rewritten as the maxi-
mization of a linear function over a polytope with a polynomial number of constraints. For each
i P t1, 2u we introduce multipliers for each of the maximizations: λδ

i,σ!@σ
! P Σ̌i,j, λ

ν
i,I,σ! , λ

v
i,I .

max
i,λδ

i,σ! ,λ
ν
i,I,σ! ,λ

v
i,I

ř

p
ř

λδ`
ř

λν`λv“1

$

’

&

’

%

λδ
i,σ!pδ

˚pξ̃j;σ
!q ´ δ˚pξ0;σ

!qq`

λν
i,I,σ!pνpI, ξ̃j;σ

!q ´ “νpI;σ!qq`

λv
i,Ipv̆pIq ´ vpξ̃j; Iqq

,

/

.

/

-

Optimizing over ν is simply finding the best-deviating response to a trigger sequence σ! over a
polytope Yi,σ! using the sequence form representation [178]. Given µ as well as the bounds are
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constants, the expression can be written as a single linear maximization over the multipliers and
y P Yi,σ! . Thus, we can rewrite the entire expression into a single bilinear maximization problem
over ξ̃ and the multipliers:

min
ξ̃j

max
i,λ,y

$
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’

’

’
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&
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’

%
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σ!z

δ
i,σ! ` ξ̃Tj
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ř
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”

ξ̃Tj R
ν
I,σ!z

ν
i,σ! ` ξ̃Tj

´
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ν
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-
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where zδ
i,σ! “ λδ

i,σ! y̌i,σ! and zδ
i,σ! “ λν

i,σ! ŷi,σ! , for appropriately chosen constants R, b (which may
vary on ξ0). Hence, we can treat the refinement problem as a zero-sum game between a mediator,
who chooses a refinement ξ̃j and deviator, who chooses multipliers and best-deviating responses.
This zero-sum game can be solved by running self-play between two Hannan-consistent regret
minimizers and taking average strategies. A regret minimizer for the deviator can be constructed
efficiently using existing techniques [62] or simply CFR [193].

We now briefly describe what R and b contain. Rδ and Rν are constants for each trigger
sequence σ!, such that for a best response (weighted by λδ and λν), ξ̃Tj R

δzδ
i,σ! gives the largest

possible reward for deviating, and in the case of ν the value of the head infoset. b contains two
components (i) the bound (either upper/lower or safety bounds for in-subgame deviations), and
(ii) the value of sequences /infosets assuming best-responses.

Decomposition of Ξj Using Scaled Extensions

We briefly describe the decomposition algorithm of Farina et al. [64]. The reader is directed
there for more details. Our first component is the scaled extension operator, introduced in [64] is
a convexity preserving operation between sets. It was used to incrementally extend the strategy
space Ξ in a top-down, rather than bottom-up fashion.
Definition 12. Scaled Extension (Farina et al. [64]) Let X and Y be non-empty, compact, and
convex sets, and let h : X Ñ R` be a nonnegative affine real function. The scaled extension of
X with Y via h is defined as the set

X ◁h Y :“ tpx,yq : x P X , y P hpxqYu

Scaled extensions preserve convexity, non-emptiness, and compactness of sets.

Expressing Ξ using scaled extensions. The idea is that some of the structural constraints
of Ξ were redundant.

Example 6: Suppose we were trying to express Ξ in Figure 5.1. In top-down fashion, we begin
with ξr∅,∅s. Now, we look at the constraints that sum to ξr∅,∅s. This gives 3 options: expand
block 2, or blocks 11 or 12. Let us expand block 2. By ‘expand’ what we do is to apply the scaled
extension using a set Y which is a simplex of size 2. The function h is chosen to be 0 everywhere
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except for the index which we are expanding from (in this case ξr∅,∅s. It increases the ‘size’
of the set by 2 dimensions. We can see that the scaled extension have handled the structural
constraints so far. It turns out we can repeatedly apply this and fill in blocks 3-8 the same way,
and in that order. Now, we need to fill-in blocks 9-12. It turns out, however, that the constraints
which involve blocks 9-12 already explicitly fix those entries. That is, there is no longer any
degree of freedom for those entries: they can be inferred from the other entries. Crucially, note
that block 9 is uniquely determined by blocks 4 and 7, without any inconsistencies or clashes.
Since this is the case, we will express 9-12 as a sum of entries in the partially built Ξ. Again,
this can be done using the scaled extension, by setting Y to be a singleton, but choosing h “ 0
except for the indices we want to sum from.

The order of expansion in Example 6 was carefully chosen. For example, if we had expanded
11 and 12 first, followed by blocks 9-10. However, in almost all cases, we have painted ourselves
into the corner: block 2’s constraints are such that it needs to be summed to by both 9 and 10.
For example we set columns rx, ry “ 0, and expanded r∅, ℓxs, r∅, ℓys “ 1. Next, we expanded
downwards we set rG, ℓxs “ 1 and rB, ℓys “ 1. The, we try to ‘backfill’ 2 using the constraints
that involve 2. This would end up as having rG,∅s and rB,∅s both being equal to 1. But this
in turn means that they sum to 1 (the structural constraints of r∅,∅s). This shows that the order
of expansion is crucial: not all will work well. In this example, the choice of expanding block
2 rather than blocks 11, and 12 was crucial. It turns out that a ‘good’ order of decomposition
always exists in games without chance.
Definition 13. (Critical infosets Farina et al. [64]) Let pσ1, σ2q be a relevant sequence pair and
let I1 P I1 be an infoset for P1 such that σpI1q “ σ1. Inofset I1 is called critical for σ2 if there
exists at least one I2 P I2 with σpI2q “ σ2 such that I1 é I2. A symmetric definition holds for
I2 P I2.

A key result of [64] was that in games without chance, for any relevant sequence pair pσ1, σ2q

at least one player has at most one critical infoset for the opponent’s sequence. That player is
called the critical player.

The DECOMPOSE subroutine This expands a sequence pair pσ1, σ2q and adds it into X . It
is recursive in nature and comprises 3 main steps. The reader is directed to Farina et al. [64] for
a more detailed explanation.

1. Find a critical player from pσ1, σ2q, where σi “ pIi, aiq. This is guaranteed to exist. WLOG
let that player be P1. Then, expand all infosets I if σ2 “ ∅ or I1 é pI2, a2q, and σpIq “ σ1.
Each expansion is done using the scaled extension, with h being 0 everywhere and a 1 in
the index of admission.

2. For each sequence σ1 immediately under I , call DECOMPOSEpσ1, σ2q. After this step, all
indices in tpσ1, σ

1
2q|σ1

2 Ą σ2u.

3. We perform backfilling of structural constraints tpσ1, σ
1
2|σ

1
2 Ą σ2u. First, if the critical

player does have a critical infoset, then we will backfill—there are no longer any degrees
of freedom. We will assign the value based on the constraint. If there is no critical infoset,
then this we split by attaching more scaled extensions to simplexes.

A key tiebreaking rule. We perform the decomposition of Ξ in the same order one would
if we were performing for the full game [64], except that we terminate whenever encountering a
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sequence pair pσ1, σ2q R Ĝ Y Ǧj . We show that this process expresses Ξj and can be viewed as a
series of scaled extensions. Consequently, there exists a regret minimizer over Ξj .

However, there is an additional tiebreaking element which we may encounter in the decom-
position algorithm: when faced with a choice to expand a sequence pair, we should prioritize
sequence pairs which do not lie in subgames over those which do. This prioritization is natural,
since we do not want to fill in sequence pairs in the subgame before pre-subgame sequence pairs.
This tiebreaking rule will not interfere with the rest of the decomposition algorithm.

Example 7: Consider a 2 ˆ 2 matrix game. Here, actions are simply sequences. We call the
sequences for Pi, σi,1 and σi,2. Now the matrix game can be expressed in terms of an EFG.
We assume player moves first, and takes an action. After that, P2 takes his action, but without
knowledge of P1’s action. This is achieved using an information set that spans over the 2 states
after P1 took his action. Now, let us suppose a single subgame which contains only P2’s actions,
i.e., P1 making his move was pre-subgame. This in turn means that the relevant sequence pairs
pσ1,1,∅q and pσ1,2,∅q are not in a subgame (i.e., in a refinement, they are supposed to follow the
blueprint), while all other sequence pairs (except for p∅,∅q) are in the subgame.

Now, if were to just apply the expansion order of Farina et al. [64], we would have two
options: either expand σ1,1 and σ1,2 first, or there other way round. The reader may verify that
expanding σ1,1 and σ1,2 first works fine. That is, we can expand σ1,1 and σ1,2, followed by
pσ1, σ2q, since neither σ1 and σ2 are the empty sequence. Then, we can backfill σ2,1 and σ2,2.
However, if we were to expand alongside P2, i.e., σ2,1 and σ2,2, then a nasty situation occurs.
After filling up the correlated non-empty sequence pairs, we have to backfill σ1,1 and σ1,2. This
is not possible, since σ1,1 and σ1,2 were part of the blueprint! In general, we are not permitted to
perform the backfill when the ‘source’ is in a subgame and the ‘destination’ is pre-subgame.

The solution to the problem in Example 7 is simple: when there is a tie as to which sequence
pairs should be expanded, always select the one that is pre-subgame. Can this simple solution
always work? If we expanded the infosets that are not in subgames first before the other player’s
infoset (which is in a subgame), then we can be sure that in the backfill step we will never fill
in a sequence pair in Ĝ with sum of sequence pairs in Ǧj . However, can this expansion rule ever
conflict with the expansion rule of [64]—i.e., expanding infosets belonging to the critical player?
It turns out this clash will never occur.
Theorem 8. Let pσ1, σ2q be a relevant sequence pair and I1, I2, I 1

2 be infosets such that SeqpI1q “

σ1, SeqpI2q “ σ2, SeqpI 1
2q “ σ2, I1 é I2 and I1 é I 1

2 (implying that I1 is a critical infoset for
pσ1, σ2q). It cannot be that I1 belongs to some subgame but either or both of I2, I 1

2 do not.

Proof. First, note that if any of I2 or I 1
2 lies in a subgame, it must be the same one as I1, there

exists a path starting from the root passing through I1 and that infoset (I2 or I 1
2). Now, suppose

WLOG that I2 is not in a subgame but I1 is. We will demonstrate a contradiction.
First, we know that there exists a state h2 P I2 and a state h1 P I1 where h2 ă h1. This is

because I2 é I1. It cannot be that h1 ă h2, since that would imply that I2 must belong to a
a subgame (which contradicts our assumption). Since I 1

2 é I1, there exists a state h1
2 P I2 and

h1
1 P I1 which are along a path from the root (though this time, we do not know which precedes

the other). Let w be the lowest-common-ancestor of h2 and h1
2. The state w cannot be a chance

node (since G has no chance). It also cannot belong to P1, since this would mean that h1 and h1
1
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are in different infosets (they must have been the result of different actions of P1 at w). Hence,
w must belong to P2. But that is also impossible, since we assumed from the beginning that
SeqpI2q “ SeqpI 1

2q “ σ2. Clearly this cannot be the case since they have different preceding
sequences starting from w.

Put together, this means that the rules of expansion will not conflict. If there ever needs to
be backfilling, it will be either entirely within or outside a subgame, or backfilling entries within
a subgame from entries before a subgame, and not the other way around (which will violate the
equality-to-blueprint constraints).

5.4 Experiments
We evaluate our algorithms using the LP-based and regret minimization-based refining. We use
the benchmark game of EFCE called Battleship, introduced by Farina et al. [63]. This game is
played in 2 stages. In the placement stage, players privately place their ship(s) of size 1 by m
on W ˆ H grid. In the firing stage, players take turns firing at each other over T timesteps, or
until a player’s ship is destroyed. Each shot is at a single tile, and a ship is considered destroyed
when all tiles in the ship are shot at least once. Locations of shots are known to both players,
and cannot be made at the same location more than once. A player gets 1 point for destroying
the opponent’s ship, but loses γ ą 1 points if its ship is destroyed (i.e., players are afraid of
losing more than they desire to win). If no ship is destroyed by the end of the game, the game
ends in a tie and both players get 0. Naturally, the NE is for players to place and fire their ships
uniformly at random6. It was found by Farina et al. [63] that in a SW-maximizing EFCE, media-
tors can recommend players to miss their shots (i.e., shoot into the unoccupied areas), leading to
more frequent peaceful resolutions while remaining incentive compatible. The intuitive explana-
tion given is that when players who deviate from the recommendation to fire in the sea will be
“punished” by the mediator by having their ship’s location revealed to the opponent.

We use 2 different correlation blueprints for our experiments, Uniform and Jittered. Both
correlation plans are based on independent player strategies stored using the sequence form.
That is, ξ0rσ1, σ2s “ ξ

p1q

0 pσ1q ¨ ξ
p2q

0 pσ2q, where ξ
p1q

0 , ξ
p2q

0 are sequence form strategies for each
player. In Uniform, ξpiq

0 have actions uniformly at random at each infoset. In Jittered, each
player has randomly generated behavioral strategies. Here, for infoset I P Ii, action aj P ApIq is
played with probability ppaj; Iq “ κI,j{

ř

k κI,k, with κI,k “ 1`w ¨εI,k, where each εI,k is drawn
independently and uniformly from r´1, 1s and w P r0, 1s is a width parameter governing the level
of deviation from uniform strategies. Note that ξ0 need not be independent in general. However,
independent strategies are more compactly represented (see Remark 19). Indeed, since ξ0 is
large, it is unrealistic to represent a blueprint explicitly without exploiting some form of game
abstraction.

Subgames are defined based on public information, which at the k-th step of firing are pre-
cisely the locations fired by each player. We base subgames on the shot history up till timestep
T 1 ă T . T 1 balances the trade-off between accuracy versus computational costs. For a grid of
size n, we have J “

śT
k“T´T 1`1 k

2 subgames. When T 1 is small, we have fewer subgames, but

6at least when ships are of size 1.
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n, T
|Ξj| γ

Uniform Jittered
J BP Refined BP Refined

3, 2,
382

2 -3.70 -3.70 -3.55 -3.55
9 5 -14.8 -14.8 -14.2 -14.2

4, 3,
3.2e3

2 -3.13 -2.95 -3.24 -3.10
16 5 -12.5 -11.4 -13.0 -11.8
5, 3,

2.3e4
2 -1.92 -1.34 -1.95 -1.25

25 5 -7.68 -4.80 -7.82 -4.32
6, 3,

1.2e5
2 -1.23 -.772 -1.25 -.627

36 5 -4.94 -2.47 -4.99 -1.95

Table 5.1: Comparison of social welfare between blueprint (BP) and SW-maximizing safe re-
finement with ships of size 1. Social welfare is reported at a scale of 1e-2.

can achieve better social welfare. All experiments are run on an Apple M1 Chip with 16GB of
RAM with 8 cores. LPs are solved using Gurobi [79].

Safe resolving with SW maximization We first show using our LP-based method that ensures
fully safe resolving can lead to significantly higher social welfare as compared to the blueprint.
We set T 1 “ 1 and we use ships with m “ 1, i.e., the game is over once any ship is hit.
Consequently, the game is entirely symmetric in terms of location. The NE here is to play and
shoot uniformly at random. Hence, Uniform is a valid, though not SW-optimal EFCE. Under
Uniform, the exploitability δ˚ under the blueprint is 0, implying that the complete refinement ξ̃
is also an EFCE. We perform refinement on the first subgame (this without loss of generality
due to symmetry) and compare the SW accumulated from the subgame under the blueprint and
refinement. For Jittered, we repeated the experiment 10 times with different seeds and report
the mean. The results are reported in Table 5.1. In all our experiments, our refined strategy ξ̃j
gives a much higher SW. For example, in the largest example with γ “ 2, SW increases by 4.6e-
3. This is not a negligible improvement; since this is applied to all 36 subgames, the expected
improvement in SW of the complete refinement ξ̃ is actually 0.167. |Ξj| is significantly smaller
than |Ξ|, such that each refinement is computed in no more than 10 seconds.

Safe resolving using regret minimization We now demonstrate the scalability of refinement
based on regret minimization. Our goal here is to demonstrate that subgame resolving can be
performed efficiently for games that are too large for ξ to even be stored in memory. We run
refinement using our regret minimization algorithm and report the "pseudo"-exploitability of ξ̃j
(i.e., the value of the inner maximization over pi, λ, yq, (5.15), or the most violated incentive
constraint of the LP). We use T 1 “ 1, γ “ 2 and the Uniform blueprint. The results are reported
in Figure 5.2. Our huge instance is several times larger than the largest instance in Farina et al.
[64], and it would require a significant amount of memory to store a full correlation plan ξ̃ . We
find that in practice, resolving requires less than 0.5 seconds per iteration, while using no more
than 2GB of memory.

92



Med. Large Huge
W,H 3,2 3,2 3,2
T 4 4 5
m 1 2 2
|Ξ| 3.89M 111M 360M

Figure 5.2: Left: Most violated incentive constraint of ξ̃ plot against iteration number. Right:
Parameters of game.

5.5 Conclusion
In this chapter, we have proposed a novel subgame resolving technique for EFCE. We offer
two algorithms, the first based on LPs and the second uses regret minimization, both of which
consume significantly less compute than full-game solvers. Our technique is, to the best of our
knowledge, the first online algorithm towards solving EFCE.

As another variant of subgame solving for general-sum EFGs, many of the shortcomings in
Chapter 4 hold, especially with respect to bounded rationality and scalability. The latter is a
particularly serious problem, since correlation plans are much larger than independent strategies.

Other future directions include relaxing the assumption that the game is without chance, as
well as extensions to other variants of correlated equilibria [138]. It would also be interesting
to extend subgame resolving (with similar types of guarantees) to multiplayer (ą 2 players)
EFCE [39, 65], where more modern solvers are decentralized and often more efficient than the
methods in [64]. It is also worth exploring (perhaps in certain important classes of games),
as to how suboptimal subgame solving is compared to an optimal solution, either with respect
to incentive compatibility or social welfare. Another important direction is to explore using
function approximation in a fashion similar to DeepStack [136], in fact, we explore this direction
a little in Chapter 6.
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Chapter 6

Function Approximation for Stackelberg
Equilibrium

6.1 Introduction

A central challenge in modern game solving is to handle large game trees, particularly those
too large to traverse or explicitly specify. These include board games like Chess, Poker [13,
27, 31, 76, 136, 159, 160] and modern video games with large state and action spaces [174].
Today, scalable game solving is frequently achieved via function approximation (FA), typically
by using neural networks to model state values and harnessing the network’s ability to generalize
its evaluation to states never encountered before [136, 157, 159, 160]. Methods employing FA
have achieved not only state-of-the-art performance, but also exhibit more human-like behavior
[97].

Surprisingly, FA is rarely applied to solution concepts used in general-sum games such as
Stackelberg equilibrium, which are generally regarded as being more difficult to solve than the
perfectly cooperative/competitive Nash equilibrium. Indeed, the bulk of existing literature cen-
ters around methods such as exact backward induction [19, 20], incremental strategy generation
[40, 41, 91, 96], and mathematical programming [18].1 While exact, these methods rarely scale
to large game trees, especially those too large to traverse, severely limiting our ability to tackle
general-sum games that are of practical interest, such as those in security domains like wildlife
poaching prevention [60] and airport patrols [149]. However, for many equilibrium concepts in
general-sum games, the value of a state often cannot be summarized as a scalar (or fixed sized
vector), rendering the direct application of FA-based zero-sum solvers like [160] infeasible.

In this paper, we propose applying FA to model the Enforceable Payoff Frontier (EPF) for
each state and using it to solve for the Stackelberg extensive-form correlated equilibrium (SE-
FCE) in two-player games of perfect information. Introduced in [19, 20, 114], EPFs capture the
tradeoff between player payoffs and is analogous to the state value in zero-sum games.2 Specif-
ically, we (i) study the pitfalls that can occur with using FA in general-sum games, (ii) propose

1Meta-game solving [110, 183] is used in zero-sum games, but not general-sum Stackelberg games.
2The idea of an EPF was initially used by [114] to give a polynomial time solution for SSEs. However, they (as

well as other work) do not propose any naming.
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a method for solving SEFCEs by modeling EPFs using neural networks and minimizing an ap-
propriately designed Bellman-like loss, and (iii) provide guarantees on incentive compatibility
and performance of our method. Our approach is the first application of FA in Stackelberg set-
tings without relying on best-response oracles for performance guarantees. Experimental results
show that our method can (a) approximate solutions in games too large to explicitly traverse, and
(b) generalize learned EPFs over states in a repeated setting where game payoffs vary based on
features.

6.2 Preliminaries and Notation

A 2-player perfect information game without chance G is represented by a finite game tree with
game states s P S given by vertices and action space Apsq given by directed edges starting
from s. Each state belongs to either player P1 or P2; we denote these disjoint sets by S1 and S2

respectively. Every leaf (terminal state) ℓ P L Ď S of G is associated with payoffs, given by ripℓq
for each player i. Taking action a P Apsq at state s R L leads to s1 “ T pa; sq, where s1 P S is the
next state and T is the deterministic transition function. Let Cpsq “ ts1 | T pa; sq “ s1, a P Apsqu

denote the immediate children of s. We say that state s precedes (Ă) state s1 if s ‰ s1 and s is an
ancestor of s1 in G, and write Ď if allowing s “ s1. An action a P Apsq leads to s1 if s Ă s1 and
T pa; sq Ď s1. With a slight abuse of notation, we denote T pa; sq Ď s1 by a Ă s1 or ps, aq Ă s1.
Since G is a tree, for states s, s1 where s Ă s1, exactly one a P Apsq such that ps, aq Ď s1. We use
the notation Ě and Ą when the relationships are reversed. Since G has perfect information, there
is no meaningful distinction between the relationships Ď and ĺ, and we stick to Ď throughout
this chapter.

Behavioral Strategies. In this chapter, it will be convenient to use the behavioral representa-
tion for strategies. A strategy πi, i P t1, 2u, is a mapping from state s P Si to a distribution
over actions Apsq, i.e., πipa, sq ě 0 and

ř

aPApsq
πipa; sq “ 1 or equivalently, πip¨, sq P ∆Apsq.

Given strategies π1 and π2, the probability of reaching ℓ P L starting from s is given by the
product ppℓ|s; π1, π2q “

ś

iPt1,2u

ś

ps1,aq;sĎs1,ps1,aqĂℓ,s1PSi
πipa; s

1q, and player i’s expected payoff
starting from s is Rips; π1, π2q “

ř

ℓPL ppℓ|s; π1, π2qripℓq. We use as shorthand ppℓ; π1, π2q and
Ripπ1, π2q if s is the root. A strategy π2 is a best response to a strategy π1 if R2pπ1, π2q ě

R2pπ1, π
1
2q for all strategies π1

2. The set of best responses to π1 is written as BR2pπ1q.
The grim strategy argminπ1

maxπ2 R2pπ1, π2q of P1 towards P2 is one which guarantees
the lowest payoff for P2. Conversely, the joint altruistic strategy argmaxπ1,π2

R2pπ1, π2q is
one which maximizes P2’s payoff. We restrict grim and altruistic strategies to those which are
subgame-perfect, i.e., they remain the optimal if the game was rooted at some other state.3 Grim
and altruistic strategies ignore P1’s own payoffs and can be computed by backward induction.
For each state, we denote by V psq and V psq the internal values of P2 for grim and altruistic
strategies obtained via backward induction.

3This is to avoid strategies which play arbitrarily at states which have 0 probability of being reached.
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s

s1

p10,´1q p´1, 1q

stay

pk1, k2q

exit

Figure 6.1: Toy example. Leader , follower and leaf ˝ states are vertices while edges are
actions. Payoffs at leaves ℓ P L are given by pr1pℓq, r2pℓqq, i.e., the leader’s payoff comes first.

1 0 14
0
4
8

Unenforceable
Enforceable

(a) EPF at vertex s1.
1 0 14

0
4
8 Degenerate EPF

(b) EPF after exiting.
1 0 14

0
4
8 EPF in envelope

Not in envelope

(c) EPF at root vertex s.

Figure 6.2: Example EPFs based on the game in Figure 6.1. The x and y axes are follower
(µ2) and leader payoffs (Uspµq). In (a) and (b) the pink regions give P2 too little reward and are
truncated. In (c), the pink region is not part of the upper concave envelope and hence removed.

6.2.1 Stackelberg Equilibrium in Perfect Information Games
In a Strong Stackelberg equilibrium (SSE), there is a distinguished leader and follower, which
we assume are P1 and P2 respectively. The leader commits to any strategy π1 and the follower
best responds to the leader, breaking ties by selecting π2 P BR2pπ1q such as to benefit the leader.
4 Solving for the SSE entails finding the optimal commitment for the leader, i.e., a pair π “

pπ1, π2q such that π2 P BR2pπ1q and R1pπ1, π2q is to be maximized.
It is well-known that the optimal SSE will perform no worse (for the leader) than Nash

equilibrium, and often much better. Consider the game in Figure 6.1 with k1 “ k2 “ 0. If the
expected follower payoff from staying is less than 0, then it would exit immediately. Hence,
solutions such as the subgame perfect Nash gives a leader payoff of 0. The optimal Stackelberg
solution is for the leader to commit to a uniform strategy—this ensures that staying yields the
follower a payoff of 0, which under the tie-breaking rules of SSE nets the leader a payoff of 4.5.

Stackelberg Extensive-Form Correlated Equilibrium For this paper, we will focus on a re-
laxation of the SSE known as the Stackelberg extensive-form correlated equilibirum (SEFCE)
[20], which allows the leader to explicitly recommend actions to the follower at the time of deci-
sion making. If the follower deviates from the recommendation, the leader is free to retaliate—
typically with the grim strategy. In a SEFCE, P1 takes and recommends actions to maximize
its reward, subject to the constraints that the recommendations are sufficiently appealing to P2

relative to threat of P2 facing the grim strategy after deviating.

4Commitment rights are justified by repeated interactions. If the P1 reneges on its commitment, P2 plays another
best response, which is detrimental to the leader. This setting is unlike [54] which uses binding agreements.

97



Definition 14 (Minimum required incentives). Given s P S2, s1 P Cpsq, we define the minimum
required incentive τps1q “ maxs!PCpsq;s!‰s1 V ps!q, i.e., the minimum amount that P1 needs to
promise P2 under s1 for it to be reached.

Definition 15 (Stackelberg Extensive Form Correlated Equilibrium). A strategy pair π “

pπ1, π2q is a Stackelberg Extensive Form Correlated equilibrium (SEFCE) if it is incentive
compatible, i.e., for all s P S2, a P Apsq, π2pa; sq ą 0 ùñ R2pT pa; sq; π1, π2q ě τpT pa; sqq.
Additionally, π is optimal if R1pπ1, π2q is maximized.

In Section 6.3, we describe how optimal SEFCE can be computed in polynomial time for
perfect information games by backward induction.

Remark 21: In Definition 15 we have chosen to distinguish between incentive compatibility and
optimality. This is unlike the definition used in Section 2.4.3. This distinction is useful, since
we will want to find pπ1, π2q which are incentive compatible but not necessarily optimal (due to
approximation errors). Note that the optimality of SEFCE implies the leader-favored “strong”
tie-breaking aspect seen in SSE.

Remark 22 (Connection to other equilibrium concepts): Stackelberg equilibrium can be seen as
a modification of the Nash equilibrium, where the leader’s incentive constraints are removed in
lieu of having an objective to maximize the leader’s payoff. Conitzer and Korzhyk [46] intro-
duced the analogous idea of committing to correlated strategies for normal form game. One
begins with correlated equilibrium constraints then, omits the leader incentive constraints and
then maximizes the leader’s utility. The SEFCE follows the exact same process but for EFCE
constraints (which were introduced in Chapter 5). The complexity of SEFCE is significantly
lower in this chapter because of our restriction to perfect information games.

Remark 23: A rule of thumb is that chance and imperfect information each make equilibrium-
finding more difficult. On the other hand, correlation makes the problem easier. If G has imper-
fect information and chance, solving for SEFCE and SSE is NP-hard. If G has perfect informa-
tion but with chance, then finding SSE remains NP-hard, but SEFCE may be found in polynomial
time. When the game has neither perfect information nor chance, then both SSE and SEFCE may
be found in polynomial time. Finer grained analysis of computational complexities (for example,
in stochastic games) can be found in [19] and our full paper [123].

6.2.2 Function Approximation of State Values
When finding Nash equilibrium in perfect information games, the value vs of a state is a crucial
quantity which summarizes the utility obtained from s onward, assuming optimal play from all
players. It contains sufficient information for one to obtain an optimal solution after using them
to ‘replace’ subtrees. Typically vs should only rely on states s1 Ě s. In zero-sum games, vs “ V s

while in cooperative games, vs “ V s. Knowing the true value of each state immediately enables
the optimal policy via one-step lookahead. While vs can be computed over all states by backward
induction, this is not feasible when G is large. A standard workaround is to replace vs with an
approximate ṽs which is then used in tandem with some search algorithm (depth-limited search,
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Monte-Carlo tree search, etc.) to obtain an approximate solution. Today, ṽs is often learned. By
representing ṽ with a rich function class over state features (typically using a neural network),
modern solvers are able to generalize ṽ across large state spaces without explicitly visiting every
state, thus scaling to much larger games.

Fitted Value Iteration. A class of methods closely related to ours is Fitted Value Iteration
(FVI) [57, 108, 139]. The idea behind FVI is to optimize for parameters such as to minimize the
Bellman loss over sampled states by treating it as a regular regression problem. 5 The Bellman
loss measures the distance between ṽs and the estimated value using one-step lookahead based
on ṽ. If this distance is 0 for all s, then ṽ matches the optimal v. However, small errors in FA
accumulate and cascade across states. Thus, it is important to bound performance as a function
of the Bellman loss over all s.

6.2.3 Related Work

Some work has been done in generalizing state values in general-sum games, but few involve
learning them. Related to ours is [55, 127, 140], which approximate the achievable set of payoffs
for correlated equilibrium, and eventually SSE [116] in stochastic games. These methods are
analytical in nature and scale poorly with the state space. [78, 146] propose a Q-learning-like
algorithm over general-sum Markov games, but do not apply FA and only consider stationary
strategies which preclude strategies involving long range threats like the SSE. [192] show a class
of general-sum Markov games where value-iteration like methods will necessarily fail. [190]
study reinforcement learning in the Stackelberg setting, but only consider followers with myopic
best responses. [38] apply FVI in a multiobjective setting, but do not consider the issue of
incentive compatibility. Another approach is to apply reinforcement learning and self-play [112].
Recent methods account for the nonstationary environment each player faces during training [67,
147]; however they have little game theoretical guarantees in terms of incentive compatibility,
particularly in non zero-sum games.

6.3 Review: Solving Stackelberg Equilibrium via Enforceable
Payoff Frontiers

In Section 6.2, we emphasized the importance of the value function v in solving zero-sum games.
In this section, we review the analogue for SEFCE in the general-sum games, which we term as
Enforceable Payoff Frontiers (EPF), although they were introduced by Letchford and Conitzer
[114] while studying the complexity of solving Stackelberg equilibrium in EFGs,
Definition 16 (Informal). The Enforceable Payoff Frontier at state s is a function Us : R ÞÑ R Y

t´8u, such that Uspµ2q gives the maximum leader payoff for a SEFCE (possibly suboptimal!)
for a game rooted at s, on condition that P2 obtains a payoff of µ2. By convention, Uspµ2q “ ´8

if P2 cannot obtain a payoff of µ2.

5We distinguish RL and FVI in that the transition function is known explicitly and made used of in FVI.
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All leaves s P L have degenerate EPFs Uspr2psqq “ r1psq and ´8 everywhere else. EPFs
capture the tradeoff in payoffs between P1 and P2, making them ideal candidates for solving
SEFCEs. We now review the two-phase algorithm of [20] using the example game in Figure 6.1
with k1 “ k2 “ 0. This approach forms the basis for our proposed FA method.

Phase 1: Computing EPF by Backward Induction. The EPF at s1 is given by the line seg-
ment connecting payoffs of its children EPF and ´8 everywhere else. This is because the leader
is able to freely mix over actions. To compute Us, we first consider in turn the EPFs after staying
or exiting.

• Case 1: P1 is recommending P2 to stay. For incentive compatibility, it needs to promise
P2 a payoff of at least 0 under T pstay; sq “ s1. Thus, we left-truncate the regions of the
EPF at s1 which violate this promise, leaving behind the blue segment (Figure 6.2a). This
represents the payoffs at s1 that are enforceable by P1.

• Case 2: P1 is recommending P2 to exit. To discourage P2 from staying, it commits (i.e.,
threatens) to the grim strategy at s1 if P2 chooses to stay. This threat yields P2 a payoff of
´1 ď k2 “ 0. Hence, no truncation is needed and the set of enforceable payoffs is the
(degenerate) blue line segment (Figure 6.2b).

Finally, we recover Us, using the two children EPFs of s. Observe that we could achieve payoffs
on any line segment connecting point across the EPFs of s’s children. This union of points on
such lines (ignoring those leader-dominated) is given by the upper concave envelope of the
blue segments in Figure 6.2a and 6.2b; this removes tp0, 0qu, resulting in the EPF shown in
Figure 6.2c.

More generally, let g1 and g2 be functions such that gj : R ÞÑ R Y t´8u. We denote by
g1
Ź

g2 their upper concave envelope, i.e., infthpµq | h is concave and h ě maxtg1, g2u over Ru.
Since

Ź

is associative and commutative, we use as shorthand
Ź

t¨u
when applying

Ź

repeatedly
over a finite set of functions. In addition, we denote g Ź t as the left-truncation of the g with
threshold t P R, i.e., rg Ź tspµq “ gpµq if µ ě t and ´8 otherwise. Note that both

Ź

and Ź are
closed over concave functions. For any s P S, its EPF Us can be concisely written in terms of its
children EPF Us1 (where s1 P Cpsq) using

Ź

, Ź and τps1q.

Uspµq “

$

&

%

”

Ź

s1PCpsq
Us1

ı

pµq if s P S1
”

Ź

s1PCpsq
Us1 Ź τps1q

ı

pµq if s P S2

, (6.1)

which we apply in a bottom-up fashion to complete Phase 1.

Phase 2: Extracting Strategies from EPF. Once Us has been computed for all s P S, we can
recover the optimal strategy π1 by applying one-step lookahead starting from the root. First, we
extract pOPT2,OPT1q, the coordinates of the maximum point in Uroot, which contain payoffs
under the optimal π. Here, this is p0, 4.5q. We initialize µ2 “ OPT2, which represents P1’s
promised payoff to P2 at the current state s. Next, we traverse G depth-first. By construction,
Uspµ2q ą ´8 and the point pµ2, Uspµ2qq is the convex combination of either 1 or 2 points
belonging to its children EPFs. The mixing factors correspond to the optimal strategy πpa; sq. If
there are 2 distinct children s1, s2 with mixing factor α1, α2, we repeat this process for s1, s2 with

100



Algorithm 6: Training Pipeline

1: Sample trajectory s
p1q
new, . . . , s

ptq
new

2: Update replay buffer B with sp1q, . . . , sptq

3: for i P t1, . . . , tu do
4: Sample batch S “ tsp1q, . . . spnqu Ď B
5: ℓ Ð COMPUTELOSSpS;Eϕq

6: Update ϕ using Bℓ{Bϕ
7: end for

µ1
2 “ µ2{α

1, µ2
2 “ µ2{α

2, otherwise we repeat the process for s1 and µ1
2 “ µ2. For our example,

we start at s, µ2 “ 0, which was obtained by P2 playing ‘stay’ exclusively, so we keep µ2 and
move to s1. At s1, µ “ 0 by mixing uniformly, which gives us the result in Section 6.2.
Theorem 9 (Structure of EPFs [19, 20]). Let s be a state in a perfect information EFG. Then,
we have Us is piecewise linear concave with number of knots6 no greater than the number of
leaves beneath s. Using backward induction, EPFs (and hence SEFCE) for all states can be
computed in time (poly p|S|q).

Markovian Property. Just like state values vs in zero-sum games, we can replace any internal
vertex s in G with its EPF while not affecting the optimal strategy in all other branches of the
game. This can done by adding a single leader vertex with actions leading to terminal states with
payoffs corresponding to the coordinates of the knots of Us. Since Us is obtained via backward
induction, it only depends on states beneath s. In fact, if two games G and G1 (which could be
equal to G) shared a common subgame rooted in s and s1 respectively, we could reuse the Us

found in G for Us1 in G1. This observation underpins the inspiration for our work—if s and s1 are
similar in some features, then Us and Us1 are likely similar and it should be possible to learn and
generalize EPFs over states.

6.4 Challenges in Function Approximation for Enforceable
Payoff Frontiers

We now return to our original problem of applying FA to find SEFCE. Our idea, outlined in
Algorithm 6 and 7 is a straightforward extension of FVI. Suppose each state has features fpsq—in
the simplest case this could be a state’s history. We design a neural network Eϕpfq parameterized
by ϕ. This network maps state features fpsq to some representation of rUs, the approximated
EPFs. To achieve a good approximation, we optimize ϕ by minimizing an appropriate Bellman-
like loss (over EPFs) based on Equation (6.1) while using our approximation rUs in lieu of Us.
Despite its simplicity, there remain several design considerations.

6Knots are where the slope of the EPF changes.
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Algorithm 7: COMPUTELOSSpS;Eϕq

1: for i P t1 . . . nu do
2: rUspiq Ð Eϕpfpspiqqq

3: rU
s

pjq
next

Ð Eϕpfps
pjq
nextqq for all spjq

next P Cpspiqq

4: Compute rU target
spiq using Equation (6.1) and tŨ

s
pjq
next

u

5: end for
6: return

ř

i LpŨspiq , Ũ
target
spiq q

EPFs are the ‘right’ object to learn. Unlike state values, representing an exact EPF at a state s
could require more than constant memory since the number of knots could be linear in the number
of leaves underneath it (Theorem 9). Can we get away with summarizing a state with a scalar
or a small vector? Unfortunately, any ‘lossless summary’ which enjoys the Markovian property
necessarily encapsulates the EPF. To see why, consider the class of games Gk in Figure 6.1 with
k1 “ ´2 and k “ k2 P r´1, 1s. The optimal leader payoff for any Gk is 9´11k

2
, which is precisely

Us1pkq (Figure 6.2a). Now consider any lossless summary for s1 and use it to solve every Gk. The
resultant optimal leader payoffs can recover Us1pµ2q between µ2 P r´1, 1s. This implies that no
lossless summary more compact than the EPF exists.

Unfulfillable Promises Arising from FA Error. Consider the game in Figure 6.3a with k1 “

´10, k2 “ ´1. The exact Us1 is the line segment combining the points p´1, 10q and p1 ´ ϵ,´1q,
shown in green in Figure 6.4a. Now suppose that due to function approximation errors we instead
learned the blue line segment containing p´1, 10q and p1,´1q. Performing Phase 2 using rU , the
policy extracted at s1 is once again the uniform policy and requires us to promise the follower
a utility of 1 in s2. However, achieving a payoff of 1 is impossible regardless of how much
the leader is willing to sacrifice, since the maximum outcome under s2 is 1 ´ ϵ. Since this is
an unfulfillable promise, the follower’s best responds by exiting in s, which gives the leader a
payoff of ´10. In general, unfulfillable promises due to small FA error can lead to arbitrarily
low payoffs. Indeed, the problem arises because rU does not even define an incentive compatible
policy in G.

Costly Promises. Consider the case where k1 “ ´30, k2 “ 1 while keeping rUs1 the same.
Here, the promise of 1 at s2 is fulfillable, but involves incurring a cost of ´30, which is even
lower than having follower staying (Figure 6.4b). In general, this problem of costly promises
stems from the EPF being wrongly estimated, even for a small range of µ2. We can see how costly
promises arise even from small ϵ is. The underlying issue is that in general, Us can have large
Lipschitz constants (e.g., proportionate to pmaxs r1psq ´ mins r1psqq {pmin |r2psq´r2psq|q). The
existence of costly payoffs rules out EPF representations based on discretizing the space of µ2,
since small errors incurred by discretization could lead to huge drops in performance.
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s
s1

p10,´1q
s2

pk1, k2q p´1, 1 ´ ϵq

p´10, 0q

(a) Game illustrating unfulfillable and costly
promises.

s

s1

p0, 0q p´1,´1q

refuse

pq1,´q2q

accede

(b) Stage game used in the TANTRUM game.

Figure 6.3: Game trees used in Sections 6.4 and 6.6.2. Leader , follower and leaf ˝ states are
vertices while edges are actions. Payoffs at leaves ℓ P L are given by pr1pℓq, r2pℓqq.

(a) Unfulfillable promise. (b) Costly promise. .

Figure 6.4: EPFs for (a) unfulfillable promises and (b) costly promises. Blue lines are estimated
EPFs rUs1 , solid and dotted green lines are true EPFs Us1 , Us2 . In both cases, FA error leads us
to believe that the payoff given by the blue square at p0, 4.5q can be achieved by mixing the
endpoints of rUs1 with probability α1 “ α2 “ 0.5 (black arrows).

6.5 Function Approximation of Enforceable Payoff Frontiers

We now design our method using the insights from Section 6.4. We learn EPFs without relying
on discretization over P2 payoffs µ2. Unfulfillable promises are avoided entirely by ensuring that
the set of µ2 where rUspµ2q ą ´8 lies within some known set of achievable P2 payoffs, while
costly promises are mitigated by suitable loss functions.

6.5.1 Representing EPFs using Neural Networks

Our proposed network architecture represents EPFs by a small set of m ě 2 points Pϕpsq “

tpxj, yjqu, for j P rms. Here, m is a hyperparameter trading off complexity of the neural network
Eϕ with its representation power. The approximated EPF rUs is the linear interpolation of these
m points; and rUs “ ´8 if µ2 ą maxj xj or µ2 ă minj xj . For now, we make the assumption
that follower payoffs under the altruistic and grim strategy (V psq and V psq) are known exactly
for all states. Through the architecture of Eϕ that for all j P rms, we have V psq ď xj ď V psq.
As we will see, this helps avoid unfulfillable promises and allows for convenient loss functions.

Concretely, our network Eϕpfpsq;V psq, V psqq takes in as inputs state features fpsq, lower
and upper bounds V psq ď V psq and outputs a matrix in Rmˆ2 representing tpxj, yjqu where
x1 “ V psq and xm “ V psq. For simplicity, we use a multilayer feedforward network with depth
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d, width w and ReLU activations for each layer. Serious applications should utilize domain
specific architectures. Denoting the output of the last fully connected layer by hpdqpfpsqq P Rw,
for j P t2 . . .m ´ 1u and k P rms we set

xj “ σ
`

zTx,jh
pdq

pfpsqq ` bx,j
˘

¨
`

V psq ´ V psq
˘

` V psq,

yk “ zTy,kh
pdq

pfpsqq ` by,k,

and x1 “ V psq and xm “ V psq, where σpxq “ 1{p1 ` expp´xqq. Here, zx,j, zy,k P Rw and
bx,j, by,k P R are weights and biases, which alongside the parameters from feedforward network
form the network parameters ϕ to be optimized. Since rUs is represented by its knots (given by
Pϕpsq),

Ź

and consequently, (6.1) may be performed explicitly and efficiently, returning an entire
EPF represented by its knots (as opposed to the EPF evaluated at a single point). This is crucial,
since the computation is performed every state every iteration (Line 4 of Algorithm 7).

6.5.2 Loss Functions for Learning EPFs

Given 2 EPFs rUs, rU
1
s we minimize the following loss to mitigate costly promises,

L8prUs, rU
1
sq “ max

µ2

|rUspµ2q ´ rU 1
spµ2q|.

L8 was chosen specifically to incur a large loss if the approximation is wildly inaccurate in a
small range of µ2 (e.g., Figure 6.4b). Achieving a small loss requires that rUspµ2q approximates
rU 1
spµ2qq well for all µ2. This design decision is particularly important. For example, contrast

L8 with another intuitive loss L2prUs, rU
1
sq “

ş

µ2
prUspµ2q ´ rU 1

spµ2qq2dµ2. Observe that L2 is
exceedingly small in the example of Figure 6.4b — in fact, when ϵ is small enough leads to
almost no loss, even though the policy as discussed in Section 6.4 is highly suboptimal. This
phenomena leads to costly promises, which was indeed observed in our tests.

6.5.3 Theoretical Guarantees
Any learned rU implicitly defines a policy π̃ “ pπ̃1, π̃2q by one-step lookahead using Equa-
tion (6.1) and the method described in Phase 2 (Section 6.3). Extracting π̃ need not be done
offline for all s P S; in fact, when G is too large it is necessary that we only extract π̃p¨; sq

on-demand. Nonetheless, π̃ enjoys some important properties.

Theorem 10 (Incentive Compatibility). For any policy π̃ “ pπ̃1, π̃2q obtained using our
method, any s P S2, a P Apsq, we have π̃2pa; sq ą 0 ùñ R2pT pa; sq; π̃1, π̃2q ě τpT pa; sqq.
Theorem 11 (FA Error). If L8prUs, rU

target
s q ď ϵ for all s P S, then |R1pπ̃q ´ R1pπ

˚q| “

OpDϵq where D is the depth of G and π˚ “ pπ˚
1 , π

˚
2 q is the optimal strategy.

The proofs of Theorems 10 and 11 are based on backward induction. Since the details are
fairly laborious, we defer them to Section 6.7. Here, T pa; sq is transition function (Section 6.2).
Recall from Section 6.2 that for π to be an optimal SEFCE, we require (i) incentive compatibility
and (ii) R1pπq to be maximized. Theorems 10 and 11 illustrate how our approach disentangles
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these criteria. Theorem 10 guarantees that P2 will always be incentivized to follow P1’s rec-
ommendations, i.e., there will be no unexpected outcomes arising from unfulfillable promises.
Crucially, this is a hard constraint which is satisfied solely due to our choice of network architec-
ture, which ensures that rUspµ2q “ ´8 when µ2 ą V s for any π̃ obtained from rU . Conversely,
Theorem 11 shows that the goal of maximizing R1 subject to incentive compatibility is achieved
by attaining a small FA error across all states. This distinction is important. Most notably, incen-
tive compatibility is no longer dependent on convergence during training. This explicit guarantee
stands in contrast with methods employing self-play reinforcement learning agents; there, incen-
tive compatibility follows implicitly from the apparent convergence of a player’s strategy. This
guarantee has practical implications, for example, evaluating the quality of π̃ can be done by es-
timating R1pπ̃q based on sampled trajectories, while implicit guarantees requires incentive com-
patibility to be demonstrated using some approximate best-response oracle and usually involves
expensive training of a RL agent.

The primary limitation of our method is when V and V (and hence τ ) are not known ex-
actly. As it turns out, we can instead use upper and lower approximations while still retaining
incentive compatibility. Let π̃grim

1 be an approximate grim strategy. Define V
r

psq to be the ex-
pected follower payoffs at s when faced best-responding to π̃grim

1 , i.e., R2ps; π̃
grim
1 , π2q, where

π2 P BRS2pπ̃grim
1 q. Following Definition 14, the approximate minimum required incentive is

τ̃ps1q “ maxs!PCpsq;s!‰s1 V
r

ps!q for all s P S2, s1 P Cpsq. Similarly, let π̃alt be an approximate joint
altruistic strategy and its resultant internal payoffs in each state be rV psq.

Under the mild assumption that π̃alt always benefits P2 more than the π̃grim
1 , i.e., rV psq ě V

r

psq

for all s, we can replace the τ, V and V with τ̃, V
r

and rV and maintain incentive compatibility
(Theorem 10). The intuition is straightforward: if P2’s threats are ‘good enough’, parts of the EPF
will still be enforceable. Furthermore, promises will always be fulfillable since EPFs domains
are now limited to be no greater than rV psq, which we know can be achieved by definition.
Unfortunately, Theorem 11 no longer holds, not even in terms of maxs |τ̃psq ´ τpsq|. This is
again due to the large Lipschitz constants of Us. However, we have the weaker guarantee (whose
proof follows that of Theorem 11) that performance is close to that predicted at the root.
Theorem 12 (FA Error with Weaker Bounds). If L8prUs, rU

target
s q ď ϵ for all s P S, then

|R1pπ̃q ´ ĆOPT2| “ OpDϵq where D is the depth of G and ĆOPT2 “ maxµ2
rUrootpµ2q.

Remark 24: The key technical difficulty here is finding rV . In our experiments, π̃grim
1 can be

found analytically. In general large games, we can approximate π̃grim
1 , rV by searching over S2,

but use heuristics when expanding nodes in S1.

6.5.4 Implementation Details

In this section we describe some of the techniques used to improve and speed up training.
• Employing techniques from reinforcement learning used to stabilize learning, e.g., target

networks and prioritized experience replay [8, 133, 155].
• Using a modified loss function based on the sum of squared differences evaluated at the

knots, i.e., L “
ř

µ2Ptknotsu
rrUspµ2q ´ rU 1

spµ2qs2.
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• Speeding up training by implementing the upper concave envelope and left truncation by
using GPU-friendly operations in PyTorch [144]. This allows the training pipeline to be
run end-to-end efficiently

• Training on a variant of rUs which accounts only for the decreasing portion of EPFs—
intuitively, the increasing region (i.e., portions to the left of the decreasing parts) is Pareto-
dominated and we do not want to “waste” effort learning them.

• Schemes for sampling trajectories used to populate the replay buffer.
We stress that these techniques appeared to improve performance (training stability, speed, qual-
ity of policy), at least on surface. However, these implementation details are not the core contri-
bution of our work, and we did not perform extensive experiments to verify their importance.

Borrowing Training Techniques from RL and FVI

We employ target networks [133]. Instead of performing gradient descent on the ‘true’ loss, we
create a ‘frozen’ copy of the network which we use the compute rU 1

s (i.e., rU target
s ). However, rU is

still computed from the main network (with weights to be updated in gradient descent). The key
idea is that the target rU 1

s is no longer update at every epoch, which can destabilize training. We
update the target network with the main network once every 2000 episodes.

For larger games, we noticed that the bulk of loss was attributed to a small fraction of states.
To focus attention on these states, we employ prioritized replay [155]. We set the probability of
selecting each state s in the replay buffer to be proportionate to the square root of the last loss,
i.e., LpUs, U

1
sq

α observed. We used α “ 0.5 for convenience ([155] suggest a value of 0.7).
Finding out the best hyperparameters for target networks, experience and prioritized replay

is beyond the scope of this paper and left as future work.

Modified Loss Function

Our experience is that L8 does manage to learn EPFs well, however, learning can be slow and
sometimes unstable. Our hypothesis is that slow learning is due to the fact only the point respon-
sible for the loss, as well as its neighbors has its coordinates updated during training. This ‘local’
learning of rUs makes learning slow, particularly at the start of training. Second, we found that
rather than L8, using the square of the largest absolute pointwise difference tends to stabilize
training (though Theorem 11 would have to be modified to be in terms of

?
ϵ instead).

Let Us and U 1
s be two EPFs represented by k1 and k2 knots. Let X1 “ tx1, . . . xk1u and

X2 “ tx1
1, . . . x

1
k2

u be the x-coordinates of the knots in Us and U 1
s respectively. Then, we use the

following loss

LpUs, U
1
sq “

ÿ

xPX1YX2

pUspxq ´ U 1
spxqq

2
. (6.2)

This loss still avoids costly promises since we are still taking pointwise differences (rather than
over an integral).
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Practical Implementation of Upper Concave Envelope and Left-Truncation

Theoretically, finding the upper concave envelope of k points can be found in linear time. How-
ever, this algorithm requires a significant number of backtracking and if-else statements, making
this implementation unsuitable for batch operations on a GPU. The alternative which we employ
runs in Opk3q time which is in practice much faster when run on a GPU. For every distinct pairs
of points pxi, yiq, and pxj, yjq, we check, for every point pxa, yaq where xa P rxi, xjs whether
pxa, yaq lies below or above the line segment pxi, yiq, pxj, yjq. If a point pxa, yaq is below any
such line segment, we flag it as ‘not included’, indicating that the upper concave envelope will
not include this point. The overall scheme is complicated (see attached code) but runs signif-
icantly faster than the linear time method when batch sizes are greater than 32. An important
downside, however is (a) the amount of GPU memory used for intermediate calculations and (b)
the poor scaling (cubic) in terms of number of knots (which is βm, where β is the branching
factor and m the number of knots) per EPF. The actual implementation for these routines can be
found in the main paper and the source code [123].

Dealing with different number of actions at each vertex and truncated points. Rather than
removing points and padding them (to make each batch fit nicely in rectangular tensor), we
maintain a ‘mask’ matrix which indicates that such a point is inactive. These points will not be
used in computation of upper concave envelopes (both as potential points and as part of a line
segment). Furthermore, this scheme makes it convenient to truncate points (simply mask those
truncated points out and perform interpolation to get the new point on at τps1q).

Training only using decreasing portions of EPF Learning the increasing portion of an EPF
is not useful, since points there are Pareto dominated. When extracting π̃, we will never select
those points. As such, we instead consider a slight variation of the EPF Us : R ÞÑ R Y t´8u

that gives the maximum leader payoff given the follower gets a payoff of at least µ2 (rather than
exactly µ2). This slight change ensures that EPFs are never increasing, while keeping all of the
properties we proved earlier on. Omitting the increasing portions saves us from wasting any
of the m knots on the increasing portions, and instead focus on the decreasing portion (where
there is a real trade-off between payoffs between P1 and P2. One example of this is shown in
Figure 6.6a and Figure 6.6b, where we showed the ‘true’ EPF and the modified EPFs that we use
for our experiments.

Concretely, let rU 1
s be computed based on (6.1) with its representation given by the set of

knots tpx1, y1q, . . . , pxk, ykqu, assumed to be sorted in ascending order of x-coordinates, and
where x1 “ V psq. Let the j “ argmaxi yi. Then, the set of points which we use for training is
the modified set tpV psq, yjq, pxj, yjq, pxj`1, yj`1q, . . . pxk, ykqu.

Sampling of Training Trajectories

One of the design decisions in FVI is how one should sample states, or trajectories. In the single-
player setting, it is commonplace to use some form of ϵ-greedy sampling. In our work, we use
an even simple sampling scheme which takes actions uniformly at random.
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There are a few exceptions. For RC sampled states uniformly at random. This was made
possible because the game was small and we could enumerate all states. The implication is that
each leaf is sampled much more frequently than from actual trajectories. Our experience is that
since the game is small, getting samples from uniform trajectories should still work well. For
TANTRUM, the game has a depth of 50. In many cases, states in the middle are not learning
anything meaningful because their children EPFs have not been learned well. As such, we adopt
a ‘layered’ approach, where initially we only allow for states s at most dmax to be added to the
replay buffer, dmax is gradually increased as training goes on. This helps EPFs to be learned for
states deeper in the tree first before their parents. We find that for TANTRUM (the non-featurized
version with n “ 25q, this was essential to get stable learning of EPFs (recall that in our setting,
TANTRUM has a size of roughly „ 325 and a depth of 50. A uniform trajectory leaves some states
to be sampled with probability 1{250). We start off at dmax “ 20 and reduce dmax by 1 for every
50000 epochs. For other games, uniform trajectories work well enough since the game is not too
deep.

6.6 Experiments
Our experiments are designed to the answer the following:

• Can EPFs be learned in a stable manner using our proposed FVI-like method? To what
sizes can we scale, and what are the bottlenecks and caveats in our proposed method?

• What is the accuracy of learned EPFs compared to the ground truth? More importantly, do
they yield good policies, relative to (i) the true SEFCE and (ii) other simple equilibrium,
e.g., subgame perfect Nash.

• How useful are the learned EPFs. In particular, can EPFs be used to generalize not just
across states in the same game, but states across different games with slightly varying
parameterizations?

Our code is made publicly available at https://github.com/lingchunkai/learn-epf-sefce.

6.6.1 Games of Interest
There are few large general-sum EFGs available in the literature that exhibit interesting leader-
follower behavior yet enjoy perfect information. As such, we created the following two synthetic
games. An explanation of optimal strategy and precise experiment environments are deferred to
Section 6.7.

Tantrum. TANTRUM is the game in Figure 6.3b repeated n times, with q1 ą 0, q2 ě 1, and
rewards accumulated over stages. The only way P1 can get positive payoffs is by threatening
to throw a trantrum with the mutually destructive p´1,´1q outcome. Since q2 ą 1, P2 has to
use threats spanning over stages to sufficiently entice P2 to accede. Even though TRANTRUM

has Op3nq leaves, it is clear that the grim (resp. altruistic) strategy is to throw (resp. not throw)
a tantrum at every step. Hence V and V are known even when n is large, making TANTRUM

a good testbed. The raw features fpsq is a 5-dimensional vector, the first 3 are the occurrences
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# ∆OPT ∆SP ∆non

RC 10 -.0247 .200 .265
TANTRUM 5 -.0262 8.89 N/A

RC+ 3 N/A N/A .421

Figure 6.5: Results for games with fixed parameters averaged over # specifies # trials. ∆OPT,
∆SP, and ∆non is the average difference between our method and the optimal SEFCE, subgame
perfect Nash, and non-strategic leader commitment respectively.
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(a) EPF after 100k epochs
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(b) EPF after 2M epochs
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Target
Lookahead

(c) Failure case

Figure 6.6: (a)-(b) Learned EPFs at the root for RC. (c) A failure case in TANTRUM, even though
learned policies are still near-optimal.

count of outcomes for previous stages, and the last 2 being a one-hot vector indicating the current
state.

Resource Collection (RC). RC is played on a J ˆ J grid with a time horizon n. Each cell
contains varying quantities of 2 different resources r1px, yq, r2px, yq ě 0, both of which are
collected (at most once) by either players entering. Players begin in the center and alternately
choose to either move to an adjacent cell or stay put. Each Pi is only interested in resource i,
and players agree to pool together resources when the game ends. RC gives P1 the opportunity
to threaten P2 with going ‘on strike’ if P2 does not move to the cells that P1 recommends. RC
has approximately Op25nq leaves. The grim strategy is for P1 to stay put. However, unlike
TANTRUM, computing V and V still requires search (at least for P2) at each state, which is still
computationally expensive. We use as features (a) one-hot vector showing past visited locations,
(b) the current coordinates of each player and whose turn it is (c) the amount of each resource
collected, and (d) the number of rounds remaining.

6.6.2 Experimental Setup
Experiments on Games with Fixed Parameters.

These are environments which are fixed: the training and testing environments are equivalent,
and the goal is to demonstrate generalization over states. We run 3 sub-experiments.

• [RC] We experimented with RC with J “ 7, n “ 4 over 10 different games. Rewards
ri were generated using a log-Gaussian process over px, yq to simulate spatial correlations
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n κ greedy-κ stress-κ
5 .993 .828 .997
6 .982 .773 .982
7 .968 .778 .921

10 .938 .775 .898

(a) Results (fraction of optimum) for our
method, a greedy baseline, a stress test based
on training using out of sample distributions. (b) Proportion of trials which give κ ă κthresh.

Figure 6.7: Results for Featurized TRANTRUM as depth n varies.

(details in Appendix). We also report the payoffs from a ‘non-strategic’ P1 which optimizes
only for resources it collects, while letting P2 best respond.

• [TANTRUM] We ran TANTRUM with n “ 25, q1 “ 1 and q2 chosen randomly. These
games have ą 1e12 states; however, we can still obtain the optimal strategy due to the
special structure of the game (note the subgame perfect equilibrium gives P1 zero payoff).

• [RC+] We ran RC with J “ 9, n “ 6. Since G is large, we use approximates (τ̃ , rV , V
r

)
obtained from π̃grim

1 and π̃alt. π̃grim
1 is for P2 to stay put, while V

r

is obtained by applying
search online (i.e., when s appears in training) for P2 starting from s. Thus τ̃psq can
also be computed online from V

r

. π̃alt is obtained by running exact search to a depth of 4
(counted from the root) and then switching to a greedy algorithm. On the rare occasion
that rV psq ă V

r

psq, we set rV psq Ð V
r

psq.
We report results in Figure 6.5, which show the difference between P1’s payoff for our method
and (i) the optimal SEFCE, (ii) the subgame perfect Nash, and (iii) the non-strategic leader
commitment.

Featurized TANTRUM.

Here, we see if we are able to generalize across games that have similar structures but differing
parameters. We allow q1, q2 to vary between stages of G, giving vectors qi P r1,8sn. Each
trajectory uses different qi, which we append as features to our network, alongside the payoffs
already collected for each player. For training, we draw i.i.d. samples of qj

i „ expp1q ` 1. The
evaluation metric is κ “ R1pπ̃q{OPT, i.e., the ratio of P1’s payoffs under π̃ compared to the
optimal π. For each n, we test on 100 q-vectors not seen during training and compare their κ
against a ‘greedy’ strategy which recommends P2 to accede as long as there are sufficient threats
in the remainder of the game for P1 (details in Appendix). We also stress test π̃ on a different
test distribution q̂j

i „ expp1q ` 4. We report results in Figure 6.7a and 6.7b.

6.6.3 Results and Discussion

For fixed parameter games small enough such that the optimal strategy may be computed, we
observe near optimal performance which significantly outperforms other baselines. In the case

110



of [RC], the average value of each an improvement of .5 is approximately equal to moving an
extra half move (on average). In [TANTRUM], the subgame perfect equilibrium is vacuous as P1

is unable to issue threats and gets a payoff of 0. In [RC+], the game is too large we are unable to
fully expand the game tree, however, we still significantly outperform the non-strategic baseline.

For featurized TANTRUM, we perform near-optimally for small n, even when stress tested
with out-of-distribution q’s (Figure 6.7a). Performance drops as n becomes larger, which is
natural as EPFs become more complex. While performance degrades as n increases, we still
significantly outperform the greedy baseline. The stress test suggests that the network is not
merely memorizing data.

Figures 6.6a and 6.6b shows the learned EPFs at the root for epochs 100k and 2M, obtained
directly or from one-step lookahead. As explained in Section 6.5, we only learn the decreasing
portions of EPFs. After 2M training epochs, the predicted EPFs and one-step lookahead mirrors
the true EPF in the decreasing portions, which is not the case at the beginning. At the beginning
of training, many knots (red markers) are wasted on learning the ‘useless’ increasing portions on
the left. After 2M epochs, knots (blue markers) were learning the EPF at the ‘useful’ decreasing
regions (see Section 6.5.4).

Figure 6.6c gives an state in TANTRUM whose EPF yields high loss even after training. This
failure case is not rare since TANTRUM is large. Yet, the resultant action is still optimal—in this
case the promise to P2 was µ2 “ ´25.5 which is precisely V psq. Like MDPs, policies can be
near-optimal even with high Bellman losses in some states.

6.7 Technical Proofs and Implementation Details
We end this section by presenting first presenting the technical proofs of Theorems 10, 11 and
12, Next, we discuss the properties of optimal SEFCE in the games we experimented on.

6.7.1 Preliminaries
Let rUs be our predicted EPF at state s. For s P SzL, we denote as shorthand

rU 1
s “ rU target

s “

$

&

%

”

Ź

s1PCpsq
rUs1

ı

pµq if s P S1
”

Ź

s1PCpsq
rUs1 Ź τps1q

ı

pµq if s P S2

what is obtained from one-step lookahead using Section 6.3, and for s P L,

rUspµ2q “ rU 1
spµ2q “

#

r1psq µ2 “ r2psq

´8 otherwise
.

For clarity, we denote likewise for the exact EPFs U 1
s (which will be equal by definition to Us).

Domains of EPFs Given any function h : R ÞÑ RYt´8u, we denote its domain by Domrhs “

tx|hpxq ą ´8u. The following Theorem ensure that the required domains all match. This
theorem is added for completeness; the reader can skip over this section if desired.

111



Theorem 13. For all s P S, DomrUss “ DomrU 1
ss “ DomrrUss “ DomrrU 1

ss “ rV psq, V psqs.
The proof of Theorem 13 is straightforward and left to Section 6.7.5.

Depth of a state Let the depth of a state Dpsq be the longest path needed to reach a leaf, i.e.,

Dpsq “

#

0 s P L
maxs1PCpsq Dps1q ` 1 otherwise

.

Note that depth is defined in terms of the number of steps remaining, not the more natural notion
of how many actions have already been taken. Since G is finite, D “ maxsPS Dpsq and is finite.
Since errors accumulate in each Bellman backup, it is unsurprising that the D is involved in our
FA guarantee.

Upper Concave Envelopes and Left Truncations Since Us and rUs are one dimensional func-
tions,

Ź

can be written alternatively as
»

–

ľ

s1PCpsq

Us1

fi

fl pµ2q “ max
s1,s2PCpsq

tPr0,1s;µ1,µ2PR
tµ1`p1´tqµ2“µ2

tUs1pµ1
q ` p1 ´ tqUs2pµ2

q, (6.3)

that is, the maximum that could be obtained by interpolating between at most two points across
2 children states s1, s2 P Cpsq [114].

Recall that τps1q is defined only for s1 P Cpsq, where s P S2. For convenience, we define
βps1q “ τps1q when s P S2 and ´8 when s P S1. β plays the same role as τ , since left truncating
at ´8 does not change anything, i.e., f Ź p´8q “ f for any f : R ÞÑ R Y t´8u. Using
β allows us to perform a ‘dummy’ left truncation when s P S1 and avoid having to split into
different cases.

6.7.2 Proof of Theorem 10
Recall that Theorem 10 asserts that all recommendations made to P2 are incentive compatible:
Theorem 10 (Incentive Compatibility). For any policy π̃ “ pπ̃1, π̃2q obtained using our method,
any s P S2, a P Apsq, we have π̃2pa; sq ą 0 ùñ R2pT pa; sq; π̃1, π̃2q ě τpT pa; sqq.

Proof. We know that for all s P SzL, µ2 P rV psq, V psqs, our policy pπ̃1, π̃2q is obtained by
solving the optimization problem

argmax
s1,s2PCpsq

tPr0,1s;µ1,µ2PR
tµ1`p1´tqµ2“µ2

trrUs1 Ź βps1
qspµ1

q ` p1 ´ tqrrUs2 Ź βps2
qspµ2

q, (6.4)

Clearly, R2ps; π̃1, π̃2q lies in rV psq, V psqs. We also know that the value of the objective of (6.4)
is greater than ´8. Because of the left-truncation operator, we can see that any value of µ1 and
µ2 chosen must be greater than βps1q and βps2q respectively (or that t or 1 ´ t must be equal to
0). Recall that βps1q “ τps1q for s1 P S2, and that s1 “ sa “ T pa; sq for some action a (and
similarly for s2). We conclude by noting that the actions leading to s1 and s2 are the only ones
that are possibly played with strictly non-zero probability.
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6.7.3 Proof of Theorem 11
We prove that the estimate rUs is not too different from the optimal Us. This is done by backward
induction on the tree. Next, we prove that the extracted policy π̃ is near optimal as well. Roughly
speaking, this is done by “top-down” traversal of the game tree.

Our Goal Our goal is to show that assuming that the L8 loss is low for all states s, i.e.,

max
µ2PrV psq,V psqs

|rUspµ2q ´ rU 1
spµ2q| ď ϵ (6.5)

then we will enjoy good performance, i.e, the leader gets a payoff of order OpϵDq less than
optimal (additively).

Learned EPFs are Approximately Optimal

The first half of the theorem is to show that our learned EPFs Ũs are for all s, close to the true Us

pointwise. This is done by strong induction on the states by increasing depth and applying (6.1).
Our induction hypothesis is

Kj : max
µ2PrV psq,V psqs

|rUspµ2q ´ Uspµ2q| ď jϵ @s where Dpsq “ j.

By definition, K0 satisfies our requirement since s P L. Thus, the base case is satisfied. Now we
prove the inductive case. Assume that K0, ¨ ¨ ¨ ,Kj´1 are all satisfied. We want to show Kj using
(6.5).
Theorem 14. Let s P S such that Dpsq “ j. Suppose K0, . . .Kj´1 are true. Then we have
|rU 1

spµ2q ´ U 1
spµ2q| ď ϵpj ´ 1q for all µ2 P rV psq, V psqs.

Proof. Fix µ2. We want to show |rU 1
spµ2q ´U 1

spµ2q| ď ϵpj ´ 1q. Now, let σ̂ “ pŝ1, ŝ2, t̂, µ̂1, µ̂2q be
the parameters which achieves the maximum

argmax
s1,s2PCpsq

tPr0,1s;µ1,µ2PR
tµ1`p1´tqµ2“µ2

trUs1 Ź βps1
qspµ1

q ` p1 ´ tqrUs2 Ź βps2
qspµ2

q (6.6)

and similarly when we are working with learned EFPs, σ̃ “ ps̃1, s̃2, t̃, µ̃1, µ̃2q

argmax
s1,s2PCpsq

tPr0,1s;µ1,µ2PR
tµ1`p1´tqµ2“µ2

trrUs1 Ź βps1
qspµ1

q ` p1 ´ tqrrUs2 Ź βps2
qspµ2

q, (6.7)

which are the arguments that optimized give U 1
spµ2q and rU 1

spµ2q respectively. That is, σ̂ and σ̃
gives how the point at the EPF with the x coordinate equal to µ2 is obtained as a mixture of at
most 2 points from the upper convex envelope (when s1 “ s2, we simply repeat the 2 points and
set t “ 1{2 for simplicity). We proceed by showing a contradiction. We have two cases.
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Case 1. Suppose that rU 1
spµ2q ą U 1

spµ2q ` ϵpj ´ 1q. Then we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t̃rrUs̃1 Ź βps̃1
qspµ̃1

q ` p1 ´ t̃qrrUs̃2 Ź βps̃2
qspµ̃2

q
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“rU 1
spµ2qąU 1

spµ2q`ϵpj´1q

´ t̃rUs̃1 Ź βps̃1
qspµ̃1

q ` p1 ´ t̃qrUs̃2 Ź βps̃2
qspµ̃2

q
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

ďU 1
spµ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
t̃
´

rrUs̃1 Ź βps̃1
qspµ̃1

q ´ rUs̃1 Ź βps̃1
qspµ̃1

q

¯

` p1 ´ t̃q
´

rrUs̃2 Ź βps̃2
qspµ̃2

q ´ rUs̃2 Ź βps̃2
qspµ̃2

q

¯ˇ

ˇ

ˇ

ď ϵpj ´ 1q

(6.8)

and where first inequality inside | ¨ | follows from our assumption in case 1, and the second
from the fact that U 1

spµ2q was taken from an argmax, i.e., (6.6). The third line holds from our
induction hypothesis Ki (6.5), where i P r0, j ´ 1s, the fact that Dps1q ă Dpsq “ j and how the
Ź operator cannot increase the absolute error of the difference.7 However, these 3 inequalities
cannot hold simultaneously, thus the assumption for Case 1 cannot be true, i.e., we must have
rU 1
spµ2q ď U 1

spµ2q ` ϵpj ´ 1q

Case 2. Suppose that rU 1
spµ2q ă U 1

spµ2q ´ ϵpj ´ 1q. Then using a similar derivation we have

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

t̂rUŝ1 Ź βpŝ1
qspµ̂1

q ` p1 ´ t̂qrsUŝ2 Ź βpŝ2
qspµ̂2

q
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

“U 1
spµ2qąrU 1

spµ2q`ϵpj´1q

´ t̂rrUŝ1 Ź βpŝ1
qspµ̂1

q ` p1 ´ t̂qrrUŝ2 Ź βpŝ2
qspµ̂2

q
loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

ďrU 1
spµ2q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
t̂
´

rUŝ1 Ź βpŝ1
qspµ̂1

q ´ rrUŝ1 Ź βpŝ1
qspµ̂1

q

¯

` p1 ´ t̂q
´

rUŝ2 Ź βpŝ2
qspµ̂2

q ´ rrUŝ2 Ź βpŝ2
qspµ̂2

q

¯
ˇ

ˇ

ˇ

ď ϵpj ´ 1q

(6.9)

where the first inequality inside | ¨ | comes from case 2’s assumption, the second is from the
fact that rU 1

spµ2q was taken from an argmax, i.e., (6.7). The third line follows from the induc-
tion hypothesis Ki, where i P r0, j ´ 1s and the depth of s. These 3 inequalities cannot hold
simultaneously, so our assumption in case 2 cannot be true and rU 1

spµ2q ě U 1
spµ2q ´ ϵpj ´ 1q.

Combining the result from both cases gives the desired result.

7Note that since σ̃ is the argmax, we are guaranteed to not have values of µ̃ that lie outside the domains of the
truncated EPFs.
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Now, we consider the µ2 which has the worst possible discrepancy, which gives

max
µ2PrV psq,V psqs

|rUspµ2q ´ Uspµ2q|

ď max
µ2PrV psq,V psqs

|rUspµ2q ´ rU 1
spµ2q| ` |rU 1

spµ2q ´ Uspµ2q|

“ max
µ2PrV psq,V psqs

|rUspµ2q ´ U 1
spµ2q| ` |rU 1

spµ2q ´ U 1
spµ2q|

ď max
µ2PrV psq,V psqs

|rUspµ2q ´ rU 1
spµ2q| ` max

µ2PrV psq,V psqs

|rU 1
spµ2q ´ U 1

spµ2q|

ď max
µ2PrV psq,V psqs

|rU 1
spµ2q ´ U 1

spµ2q| ` ϵ

ďϵj,

(6.10)

where the second line follows from the triangle inequality, the third line using the equality be-
tween Uspµ2q and U 1

spµ2q, the fourth from the fact that maxx |fpxq ` gpxq| ď maxx |fpxq| `

maxy |gpyq|, the fifth from the assumption (6.5), the the last line from Theorem 14. The main
theorem for this part follows by induction on Dpsq, the fact that Dpsq is bounded by the depth of
the tree, and the fact that the base case K0 is trivially true.
Theorem 15. If L8prUs, rU

1
sq ď ϵ for all s P S, then maxµ2PrV psq,V psqs |rUspµ2q ´ Uspµ2q| ď ϵD,

where D is the depth of the game.

Proof. This follows from the definition of L8 and the above derivations.

Leader’s Payoffs from Induced Strategy is Close-To-Expected (Theorem 11)

Theorem 15 tells us that our EPF everywhere is close (pointwise) to the true EPF if ϵ is small.
Now we need to establish the suboptimality when playing according to π̃, which is a joint policy
implicit from rUs. We begin with some notation.

Let rQspµ2q : rV psq, V psqs ÞÑ R be the payoff to P1 assuming we started at state s, promised
a payoff of µ2 to P2 and used the approximate EPFs rUs for all descendent states s1 Ě s (the
domain precludes unfulfilled promises). That is, given σ̃ “ ps̃1, s̃2, t̃, µ̃1, µ̃2q given by

argmax
s1,s2PCpsq

tPr0,1s;µ1,µ2PR
tµ1`p1´tqµ2“µ2

trrUs1 Ź βps1
qspµ1

q ` p1 ´ tqrrUs2 Ź βps2
qspµ2

q, (6.11)

the induced policy is to play to s̃1 with probability t̃ and a consequent promise of µ̃1, as well
as playing to s̃2 with probability p1 ´ t̃q and a promised payoff of µ̃2. By definition, if s P L,
rQs “ rUs “ Us trivially. We also have the following recursive equations for a given s R L, µ2

rQspµ2q “ t̃ rQs̃1pµ̃1
q ` p1 ´ t̃q rQs̃2pµ̃2

q. (6.12)

Theorem 16.
ˇ

ˇ

ˇ

rQspµ2q ´ rUspµ2q

ˇ

ˇ

ˇ
ď ϵD for all s P S and for all µ2 P rV psq, V psqs.
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Proof. The proof is given by strong induction on the Dpsq again. Let

Hj :
ˇ

ˇ

ˇ

rQspµ2q ´ rUspµ2q

ˇ

ˇ

ˇ
ď ϵj @s where Dpsq “ j (6.13)

By definition H0 is true. Now let us suppose that H0 . . .Hj´1 is true. We have for s P S, Dpsq “

j,

ˇ

ˇ

ˇ

rQspµ2q ´ rUspµ2q

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

rQspµ2q ´ rU 1
spµ2q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

rU 1
spµ2q ´ rUspµ2q

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

rQspµ2q ´ rU 1
spµ2q

ˇ

ˇ

ˇ
` ϵ

“

ˇ

ˇ

ˇ
t̃ rQs̃1pµ̃1

q ` p1 ´ t̃q rQs̃2pµ̃2
q ´ t̃rrUs̃1 Ź βps̃1

qspµ̃1
q ´ p1 ´ t̃qrrUs̃2 Ź βps̃2

qspµ̃2
q

ˇ

ˇ

ˇ
` ϵ

ďt̃
ˇ

ˇ

ˇ

rQs̃1pµ̃1
q ´ rUs̃1pµ̃1

q

ˇ

ˇ

ˇ

loooooooooomoooooooooon

ďϵpj´1q

`p1 ´ t̃q
ˇ

ˇ

ˇ

rQs̃2pµ̃2
q ´ rUs̃2pµ̃2

q

ˇ

ˇ

ˇ

looooooooooomooooooooooon

ďϵpj´1q

`ϵ

ďϵj

The second line follows from the triangle inequality. The third line follows from our FA assump-
tion (6.5). The fourth line follows from expansion of the definitions of rQs and rU 1

s, i.e., (6.12)
and (6.7) The fifth line follows the induction hypothesis and the fact that s1, s2 P Cpsq have at
least one lower depth than s. Also, the truncation operator never causes any element to exceed
domain bounds (which would give ´8 values). By strong induction Hj is true for all j P r0, Ds

and the theorem follows through directly.

Piecing Everything Together

Let µ˚
2 “ argmaxµ2

Urootpµ2q, i.e., the promise given to the follower at the root under the optimal
policy π˚. Let µ̃2 “ argmaxµ2

rUrootpµ2q, which is the promise to be given to the follower at the
root under π̃. We have

Urootpµ
˚
2q ´ rQrootpµ̃2q

“Urootpµ
˚
2q ´ rUrootpµ

˚
2q

looooooooooomooooooooooon

|¨|ďϵD

` rUrootpµ
˚
2q

looomooon

ďrUrootpµ̃2q

´ rQrootpµ̃2q

ďϵD `

ˇ

ˇ

ˇ

rUrootpµ̃2q ´ rQrootpµ̃2q

ˇ

ˇ

ˇ

ď2ϵD.

The inequalities in the second line come from Theorem 15 and the definition of µ̃2; specifically
that it is taken over the argmax. The last line comes from Theorem 16. To complete the proof,
we simply observe that rQrootpµ̃2q is precisely R1pπ̃1, π̃2q by definition.
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6.7.4 Proof of Theorem 12
The proof is essentially the same as presented in Section 6.7.3, except that we are working with
approximate bounds rather than strict ones. We have, using the new bounds,

For s P SzL, we denote using shorthand

rU 1
s “ rU target

s “

$

&

%

”

Ź

s1PCpsq
rUs1

ı

pµq if s P S1
”

Ź

s1PCpsq
rUs1 Ź τ̃ps1q

ı

pµq if s P S2

be what is obtained from one-step lookahead using Section 6.3, and for s P L,

rUspµ2q “ rU 1
spµ2q “

#

r1psq µ2 “ r2psq

´8 otherwise
.

This is the same as the case with exact V s, V s, but with a stricter truncation τ̃ps1q for each
s1 P Cpsq. We define β̃ just like before: β̃ps1q “ τ̃ps1q when s P S2 and ´8 when s P S1. We
follow along the same way as Theorem 11 in Section 6.7.3.

Let rQspµ2q : rV
r

psq, rV psqs ÞÑ R be the payoff to P1 assuming we started at state s, promised
a payoff of µ2 to P2 and used the approximate EPFs rUs for all descendent states s1 Ě s (the
domain precludes unfulfilled promises). That is, given σ̃ “ ps̃1, s̃2, t̃, µ̃1, µ̃2q given by

argmax
s1,s2PCpsq

tPr0,1s;µ1,µ2PR
tµ1`p1´tqµ2“µ2

trrUs1 Ź β̃ps1
qspµ1

q ` p1 ´ tqrrUs2 Ź β̃ps2
qspµ2

q, (6.14)

the induced policy is to play to s̃1 with probability t̃ and a consequent promise of µ̃1, as well
as playing to s̃2 with probability p1 ´ t̃q and a promised payoff of µ̃2. By definition, if s P L,
rQs “ rUs “ Us trivially. Just like before, we also have the following recursive equations for a
given s R L, µ2

rQspµ2q “ t̃ rQs̃1pµ̃1
q ` p1 ´ t̃q rQs̃2pµ̃2

q. (6.15)

Let our induction hypothesis be

Hj :
ˇ

ˇ

ˇ

rQspµ2q ´ rUspµ2q

ˇ

ˇ

ˇ
ď ϵj @s where Dpsq “ j. (6.16)

By definition H0 is true. Now let us suppose that H0 . . .Hj´1 is true. We have for s P S, Dpsq “

j,
ˇ

ˇ

ˇ

rQspµ2q ´ rUspµ2q

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

rQspµ2q ´ rU 1
spµ2q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

rU 1
spµ2q ´ rUspµ2q

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

rQspµ2q ´ rU 1
spµ2q

ˇ

ˇ

ˇ
` ϵ
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“

ˇ

ˇ

ˇ
t̃ rQs̃1pµ̃1

q ` p1 ´ t̃q rQs̃2pµ̃2
q ´ t̃rrUs̃1 Ź β̃ps̃1

qspµ̃1
q ´ p1 ´ t̃qrrUs̃2 Ź β̃ps̃2

qspµ̃2
q

ˇ

ˇ

ˇ
` ϵ

ďt̃
ˇ

ˇ

ˇ

rQs̃1pµ̃1
q ´ rUs̃1pµ̃1

q

ˇ

ˇ

ˇ

loooooooooomoooooooooon

ďϵpj´1q

`p1 ´ t̃q
ˇ

ˇ

ˇ

rQs̃2pµ̃2
q ´ rUs̃2pµ̃2

q

ˇ

ˇ

ˇ

looooooooooomooooooooooon

ďϵpj´1q

`ϵ

ďϵj

The second line follows from the triangle inequality. The third line follows from our FA assump-
tion (6.5). The fourth line follows from expansion of the definitions of rQs and rU 1

s, i.e., (6.12) and
(6.7) The fifth line follows the induction hypothesis and the fact that s1, s2 P Cpsq have at least
one lower depth than s. Also, the truncation operator never causes any element to exceed domain
bounds (which would give ´8 values). By strong induction Hj is true for all j P r0, Ds. Finally,
we observe that rQspµ2q “ R1pπ̃q when µ̃2 “ argmaxµ2

rUspµ2q. This completes the proof.

6.7.5 Proof of Theorem 13
Theorem 17. For all s P S, DomrUss = DomrU 1ss “ rV psq, V psqs.

Proof. The first equality is by definition. We now show that DomrUss “ rV , V s by definition.
Consider the state s we are applying (6.1) to and the 2 possible cases.

Case 1: s P S1. By definition V psq “ maxs1PCpsq V ps1q, and V psq “ mins1PCpsq V psq. First,
observe that

max tDom rU 1
ssu “ max

$

&

%

Dom

»

–

ľ

s1PCpsq

Us1

fi

fl

,

.

-

“ max
s1PCpsq

max tDom rUs1su

“ max
s1PCpsq

V ps1
q

“ V psq,

(6.17)

where the second line follows from the fact that the largest x-coordinate after taking the upper-
concave-envelope is the largest of the largest-x coordinates over each Us1 . Similarly, we have

min tDom rU 1
ssu “ min

$

&

%

Dom

»

–

ľ

s1PCpsq

Us1

fi

fl

,

.

-

“ min
s1PCpsq

min tDom rUs1su

“ min
s1PCpsq

V ps1
q

“ V psq,

(6.18)

where the second line comes again from the fact that the lowest x-coordinate after taking up-
per concave envelopes is the smallest of all the smallest x-coordinates over each Us1 . Now,
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(6.17) and (6.18) established the lower and upper limits of U 1
s. Since U 1

s is concave, for every
mintDomrU 1

ssu ď µ2 ď maxtDomrU 1
ssu we have

U 1
spµ2q ě minpU 1

spmintDomrU 1
ssuq, U 1

spmaxtDomrU 1
ssuqq ą ´8

. This completes Case 1.

Case 2: s P S2. By definition, V psq “ maxs1PCpsq V ps1q and V psq “ maxs1PCpsq V ps1q (note
the difference with Case 1, since P2 decides the current action). We again work out upper and
lower bounds of DomrU 1

ss.

max tDom rU 1
ssu “ max

$

&

%

Dom

»

–

ľ

s1PCpsq

Us1 Ź τps1
q

fi

fl

,

.

-

“ max
s1PCpsq

max tDom rUs1 Ź τps1
qsu

“ max
s1PCpsq

max
␣

rV ps1
q, V ps1

qs X rτps1
q,8q

(

“ max
s1PCpsq

V ps1
q

“ V psq,

(6.19)

where the fourth line follows from the fact that “ maxs1PCpsq V ps1q ě maxs!PCpsq;s!‰s1 V ps!q ě

maxs!PCpsq;s!‰s1 V ps!q “ τps1q (i.e., that the highest x coordinate in U 1
s is never part of the left-

truncation step). For any s1 P Cpsq,

Dom rUs1 Ź τps1
qs “

$

’

&

’

%

H max tDomrUs1su ă τps1q

Dom rUs1s τps1q ă min tDom rUs1su

rτps1q,max tDomrUs1sus otherwise
. (6.20)

For s1 where Dom rUs1 Ź τps1qs ‰ H, we have

min tDom rUs1 Ź τps1
qsu “ max

s2PCpsq
min tDom rUs2su . (6.21)

Note that this is not dependent on s1. Also, note that it cannot be the case that Dom rUs1 Ź τps1qs “

H for all s1. In particular, consider s˚ “ argmaxs1PCpsq maxtDomrUs1su, clearly, maxtDomrUs1su ě

τps˚q so we do not wind up with the empty set in (6.20). For simplicity, let minH “ 8. Hence,
we can write

min tDom rU 1
s Ź τps1

qsu “ min

$

&

%

Dom

»

–

ľ

s1PCpsq

Us1 Ź τps1
q

fi

fl

,

.

-

“ min
s1PCpsq;

min tDom rUs1 Ź τps1
qsu

“ min
s1PCpsq

max
s2PCpsq

min tDom rUs2su

“ max
s2PCpsq

min tDom rUs2su

“ V psq.

(6.22)
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Figure 6.8: Left to right: An example of reward maps used for P1 and P2 in RC+.

The first line is by definition. The second line uses the same argument as in case 1. The second
line follows (6.21) and the fact that at least one s˚ exists. The last line follows from the definition
of V psq. As with case 1, we use (6.19), (6.22) and the fact that U 1

s is concave to show that
U 1
spµ2q ą ´8 for µ2 P rV psq, V psqs. This completes the proof.

We are now ready to tackle the proof of Theorem 13 (reproduced here): For all s P S,

DomrUss “ DomrU 1
ss “ DomrrUss “ DomrrU 1

ss “ rV psq, V psqs,

Proof. The first equality was shown in Theorem 17. We can, in fact reuse the proof of Theo-
rem 17 by replacing U 1

s and Us with rU 1
s and rUs. This completes this Theorem 13.

6.7.6 Additional Details on Experimental Setup
Environment Details

For all our experiments, the network is a multilayer fully connected network of width 128, depth
8, ReLU activations and number of knots m “ 8. We used the PyTorch library [144] and a GPU
to accelerate training. No hyperparameter tuning was done.

RC Map Generation Details

Maps were generated with each reward map being drawn independently from a log Gaussian
process (with query points given by the px, yq coordinates on the grid). We use the square-
exponential kernel, a length scale of 2.0 and a standard deviation of 0.1. This way of generating
maps was to encourage spatial smoothness in rewards for more realism. Figure 6.8 give examples
of maps generated using this procedure. From the figures, one cans see that good regions for P1

may not be good for P2 and vice versa.

TANTRUM Generation

For [TANTRUM], the values of q2 were chosen (somewhat arbitrarily) to be in t1.5, 2.1, 3.4, 5.1, 6.7u.
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# Epochs State sampling method Prioritized replay Traj. frequency
RC 2M Random state N/A N/A

TANTRUM 4M Unif. trajectory, layered Yes 10
Feat. TANTRUM 2.7M Uniform trajectory Yes 10

RC+ 1.7M Uniform trajectory Yes 20

Table 6.1: Differences in experimental setups over each game. Traj. frequency refers to how
many epochs before we sample a new trajectory.

Training Hyperparameters

We used the Adam optimizer (Kingma and Ba) with AMSGrad (Reddi et. al.) with a learning
rate of 1e-5 (except for RC, where we found using a learning rate of 1e-4 was more suitable). We
use the implementation provided in the PyTorch [144] library. The replay buffer was of a size of
1M. The minibatch size was set to 128. The target network’s parameters was updated once every
2000 training epochs.

Number of Epochs and Termination Criterion

Unfortunately, it is very rare to have a small loss for every single state. Hence, we terminate
training at a fixed iteration. The number of epochs are given in Table 6.1.

6.7.7 Qualitative Discussion of Optimal Strategies in TANTRUM

We explore TANTRUM in the special case when q1 “ 1 and q2 ą 1. Intuitively, we should ‘use’
as many threats as possible. That is achieved by the leader committing to p´1,´1q for all future
states. If P1 does that from the beginning, it will give P2 ´n (the number of times the stage game
is repeated) payoff to each player. Naturally, one upper-bound on how much P1 can get is n{q2,
that is, P2 chooses to accede on average of n{q2 times per playthrough. P1 cannot possible get
more since that would lead to to P2 losing more than n (which is the worst possible threat the
leader can make from the beginning).

In our experiments, this was indeed true, and can be achieved by the following strategy. Let π
be such that (a) the P1 plays to p0, 0q at all leader vertices and P2 accedes for the first j “ tn{q2u
stages with probability 1. At the j ` 1-th vertex, it plays a mixed strategy (or rather, it receives
the recommendation to mix) strategies, with probability pn ´ jq2q{q2 it accedes. Clearly, the
expected payoff for P2 is ´n, and P2 cannot do any better.

However, this result does not hold for all settings, typically when n is small. This is because
we need to consider the threat is strong enough at every stage. Consider the case where n “ 3
and q2 “ 2. Our derivation suggests that at the first stage, the follower accedes with probability
1 and at the second stage, it accedes with probability 0.5.

At the first stage, P2 is indeed incentivized to accede. since if it will suffer from ´3 if not,
since acceding yields ´2 payoff, which when combined with the expected payoff of ´1 in the
future, is equivalent to the threat of ´3. At the second stage, it is just barely incentive compatible
for the follower to accede. Specifically, if the player accedes, it will receive a payoff of ´4 (it
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has already accumulated ´2 from the previous stage). On the other hand, the grim trigger threat
gives a payoff of only ´4 (´2 from the past and ´2 from the future). Hence, after receiving the
recommendation P2 is just incentivized to not deviate. However, when q2 is increased by just a
little (say to 2.1), this incentive is not sufficient. The future threat from not acceding is ´2, but
the follower already loses 2.1 from acceding. 8

In general, for our derived bound to be tight, we will require

n ´ tn{qu
loooomoooon

threat from grim trigger

ě q
loomoon

cost from acceding this time round

,

that is, at the last accede recommendation (possibly with some probability), we still have enough
rounds remaining as threats to maintain incentive compatibility. Technically we require this for
all previous rounds; however this condition being satisfied for the last round implies that it is
satisfied for all previous rounds.

We can also see from this discussion that in this repeated setting, it is always beneficial to
recommend accede to the follower higher up the tree; this way, there is more room for the leader
to threaten the follower with future p´1,´1q actions.

Featurized TANTRUM As far as we know, there is no simple closed form solution for
featurized TANTRUM.

6.8 Conclusion
We proposed a novel method of performing FA on EPFs that allows us to efficiently solve for
SEFCE. This is to the best of our knowledge, the first time a such an object has been learned from
state features, leading to a FA-based method of solving Stackelberg games with performance
guarantees. We have explored some challenges faced when applying FA to solve SEFCE and
showed how to overcome them with by using appropriate architectures and loss functions. Our
result method is guaranteed to be incentive compatible and enjoys performance that is bounded
by FA error. We believe that our approach will help to close the current gap between solving
zero-sum and general-sum games.

Our approach suffers from several limitations, the largest of which would be the requirement
to compute the grim trigger (or an approximate of it). Computing the grim trigger exactly re-
quires solving for the minimax value of a zero-sum game exactly. This requires traversal of the
game tree (in the absence of any special structure). We showed in our work that we can relax this
requirement a little, by only requiring optimal play from the follower but not the leader in this
grim trigger computation. However, this at best reduces the depth of the search tree by a factor
of 2 (this effect is roughly equal to having the perfect action orderings when doing alpha-beta
pruning). This is not enough to handle truly large games. Other limitations include not allowing
for imperfect information, strong assumptions on perfect rationality from the follower (already
discussed in Chapter 4), and the fairly restricted setting of SEFCE, which assumes correlation
between players. We propose the following ideas as future work.

8This phenomena is very similar to the difference between a coarse correlated equilibrium and a regular CE. The
difference is that a player has to decide to deviate before or after receiving its recommended actions.
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• We believe that learning achievable payoffs (a generalization of EPFs introduced in [116])
may be possible in stochastic games in a similar manner. One advantage achievable sets of
payoffs allows us to generate nonstationary policies, which traditional scalar-based values
are not able to without including notion of memorizing history[192]. However, this poses
fresh technical challenges, since learning sets is much more challenging than scalar func-
tions: do we learn the extreme points of this set, or supporting hyperplanes (in the case of
polytopes)? Can the Bellman backups be performed efficiently in these representations?

• A natural extension would be to combine both subgame solving and function approxima-
tion in general sum games, similar to what was done in DeepStack. This is in line with
existing work in zero-sum games.

• For scalability, one could consider learning follower payoffs as well. However, care must
be taken because of the potential for unfulfillable promises. A possible approach would
be to learn follower payoffs with some kind of confidence bound. This would limit the
probability that an unfulfillable promise is made, and allow us to bound (in a probabilistic
sense) the quality of our policy. In fact, unfulfillable promises may not be all that bad: if
the follower chooses a path not recommended, it could still yield a reasonable payoff for
the leader. Thus, we could design algorithms where accurate learning of (follower) payoffs
is focused on these “risky” states.

• Extensions to the reinforcement learning setting. In our work, we assumed that payoffs
to both players were given in the game specification. What if we had to learn them while
exploring the game? How do we come out with a good exploration strategy? A simple
ϵ-greedy approach may not be ideal, since EPFs rarely dominate each other.

• Other nontrivial extensions are: handling imperfect information games, extensions to other
general-sum equilibrium concepts, and studying simplifications in special cases (graphical,
potential, mean field games etc.).

123



124



Chapter 7

Conclusion

This thesis tackles the problems of inverse game theory and scalable solving of general-sum
extensive form games, with the goal of making game theory more applicable in real-world de-
ployments. Inverse game theory is concerned with learning game parameters from player ac-
tions. We have designed an end-to-end machine learning algorithm based on differentiable op-
timization, allowing us to learn game parameters from samples of player data. Our algorithm is
(relatively) scalable and allows us to efficiently learn game parameters assuming players play in
accordance to the Quantal response equilibrium. Scalable general-sum game solving remains
one of the most challenging problems in computational game theory. This thesis chips away at
this problem in two separate directions: subgame solving and function approximation, both of
which have been extremely successful in zero-sum games. We find that with some significant
changes and restrictions, both approaches can be applied to general-sum games as well.

AI-driven decision making systems are rapidly gaining acceptance, driving the need for safe,
sound, and efficient ways to handle multiagent interactions. This thesis is a step towards solving
some of the practical problems that could be faced in real-world deployments. There are still
many fertile grounds over and beyond those presented at the end of each chapter. These include
dealing with a large number of agents, handling interactions with humans, lifelong learning,
handling continuous time games, adaptively choosing appropriate equilibrium concepts. We
hope that this thesis will inspire others to explore similar problems in the future.
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[20] Branislav Bošanskỳ, Simina Brânzei, Kristoffer Arnsfelt Hansen, Troels Bjerre Lund, and
Peter Bro Miltersen. Computation of stackelberg equilibria of finite sequential games.
ACM Transactions on Economics and Computation (TEAC), 5(4):1–24, 2017. 6.1, 6.2.1,
6.3, 9

[21] Hartwig Bosse, Jaroslaw Byrka, and Evangelos Markakis. New algorithms for approxi-
mate nash equilibria in bimatrix games. In Internet and Network Economics: Third Inter-
national Workshop, WINE 2007, San Diego, CA, USA, December 12-14, 2007. Proceed-
ings 3, pages 17–29. Springer, 2007. 2.4.2

[22] Michael Bowling and Manuela Veloso. An analysis of stochastic game theory for mul-
tiagent reinforcement learning. Technical report, CARNEGIE-MELLON UNIV PITTS-
BURGH PA SCHOOL OF COMPUTER SCIENCE, 2000. 3

[23] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015. 1

[24] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004. 3.2.1

[25] Steven J Brams. Game theory: Pitfalls and opportunities in applying it to international
relations. International Studies Perspectives, 1(3):221–232, 2000. 1.1

[26] Noam Brown. Equilibrium finding for large adversarial imperfect-information games.
PhD thesis, 2020. 1

[27] Noam Brown and Tuomas Sandholm. Libratus: the superhuman ai for no-limit poker. In

128

http://arxiv.org/abs/1507.07677


Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
2017. 1, 2.4.2, 14, 16, 6.1

[28] Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-
information games. In Advances in neural information processing systems, pages 689–
699, 2017. 1, 4, 2, 4.3.2, 5.2.2

[29] Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libra-
tus beats top professionals. Science, page eaao1733, 2017. 1, 4

[30] Noam Brown and Tuomas Sandholm. Solving imperfect-information games via dis-
counted regret minimization. In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 1829–1836, 2019. 2.4.2

[31] Noam Brown and Tuomas Sandholm. Superhuman ai for multiplayer poker. Science, 365
(6456):885–890, 2019. 1, 5, 4, 6.1

[32] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual
regret minimization. In International conference on machine learning, pages 793–802.
PMLR, 2019. 1

[33] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep re-
inforcement learning and search for imperfect-information games. Advances in Neural
Information Processing Systems, 33:17057–17069, 2020. 1

[34] Neil Burch. Time and space: Why imperfect information games are hard. 2018. 1, 1

[35] Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information
games using decomposition. In Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014. 4, 4.3.4, 4.5

[36] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey of
multiagent reinforcement learning. IEEE Transactions on Systems, Man, And Cybernetics-
Part C: Applications and Reviews, 38 (2), 2008, 2008. 3

[37] Murray Campbell, A Joseph Hoane Jr, and Feng-hsiung Hsu. Deep blue. Artificial intel-
ligence, 134(1-2):57–83, 2002. 4

[38] Andrea Castelletti, Francesca Pianosi, and Marcello Restelli. Multi-objective fitted q-
iteration: Pareto frontier approximation in one single run. In 2011 International Confer-
ence on Networking, Sensing and Control, pages 260–265. IEEE, 2011. 6.2.3

[39] Andrea Celli, Alberto Marchesi, Gabriele Farina, and Nicola Gatti. No-regret learning dy-
namics for extensive-form correlated equilibrium. Advances in Neural Information Pro-
cessing Systems, 33:7722–7732, 2020. 5.5

[40] Jiri Cermak, Branislav Bosansky, Karel Durkota, Viliam Lisy, and Christopher Kiek-
intveld. Using correlated strategies for computing stackelberg equilibria in extensive-form
games. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 30, 2016.
6.1
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