
Methods for robust training and evaluation
of deep neural networks

Leslie Rice

CMU-CS-23-108

May 2023

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
J. Zico Kolter, Chair

Matt Fredrikson
Aditi Raghunathan

Nicholas Carlini (Google DeepMind)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Leslie Rice

This research was sponsored by the National Science Foundation under award number 1522054, Intel, Robert
Bosch GMBH under award number 0087016732PCRPO0087023984, and the Defense Advanced Research Projects
Agency under award number HR00112020006. The views and conclusions contained in this document are those
of the author and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Keywords: adversarial robustness, deep learning

To Armen

iv

Abstract
As machine learning systems are deployed in real-world, safety-critical appli-

cations, it becomes increasingly important to ensure these systems are robust and
trustworthy. The study of machine learning robustness gained a significant amount
of interest upon discovering the brittle nature of deep neural networks. Intrigue and
concerns about this behavior have resulted in a significant body of work on adversar-
ial robustness, which studies a model’s performance on worst-case perturbed inputs,
known as adversarial examples. In the first chapter of this thesis, we present im-
provements on adversarial training methods for developing empirically robust deep
networks. First, we show that with certain modifications, adversarial training using
the fast gradient sign method can result in models that are significantly more robust
than previously thought possible, while retaining a much lower training cost com-
pared to alternative adversarial training methods. We then discuss our findings on
the harmful effects of overfitting that occur during adversarial training, and show
that by using validation-based early stopping, the robust test performance of an ad-
versarially trained model can be drastically improved.

An increasing interest in more natural, non-adversarial settings of robustness has
led researchers to alternatively measure robustness in terms of a model’s average
performance on randomly sampled input corruptions, a notion which also underlies
standard data augmentation strategies. In the second chapter of this thesis, we gen-
eralize the seemingly separate notions of average and worst-case robustness under
a unifying framework that allows us to evaluate models on a wide spectrum of ro-
bustness levels. For practical use, we introduce a path sampling-based method for
accurately approximating this intermediate robustness objective. We use this metric
to analyze and compare deep networks in zero-shot and fine-tuned settings to better
understand the effects of large-scale pre-training and fine-tuning on robustness. We
show that we can also train models to intermediate levels of robustness using this
objective, and further explore alternative, more efficient methods for training that
bridge the gap between average and worst-case robustness.

vi

Acknowledgments
I would like to begin by thanking my advisor Zico Kolter for these past five

years. I have learned so much, and I am exceedingly grateful for the opportunity
and research experience. I would additionaly like to thank Matt Fredrikson, Aditi
Raghunathan, and Nicholas Carlini for taking the time to serve on my thesis com-
mittee, and for providing valuable feedback on this work. I would also like to thank
my research collaborators who contributed to this work. Especially, I’d like to thank
Eric Wong, who worked with me on the research presented in Chapter 2 of this the-
sis, and who also acted as a mentor to me during my first few years as a graduate
student. I also would like to acknowledge Huan Zhang and Anna Bair for their sig-
nificant contribution to the work presented in Chapter 3 of this thesis. Additionally,
I’d like to thank all of the current and former members of the Locus Lab, whose
camaraderie and kindness I’ve greatly valued. I’d like to also acknowledge Gaurav
Manek for managing the lab’s GPU cluster for some time, without whom much of
this work would not have been possible. Thanks to Ann Stetser and Sara Golem-
biewski for their administrative assistance to the Locus Lab, and thanks to Deborah
Cavlovich and Jenn Landefeld for all their work in making the graduate program run
so smoothly. I’d also like to thank my internship hosts, Wan-Yi Lin at the Bosch
Center for AI, and Cyrus Rashtchian and Da-Cheng Juan at Google Research, for
providing wonderful internship experiences during my time in graduate school.

I’d also like to thank the people who helped me get into graduate school in the
first place – thanks to Alison Norman for encouraging me to get involved in research
at UT, Robert van de Geijn for being my undergraduate research advisor, and Jianyu
Huang for his research mentorship. Importantly, none of this would have been pos-
sible without the friends and family who have supported me during this endeavor.
Thanks to my parents, who gave me access to a great education that led me to where
I am today, and for their unfaltering love and support. Thanks to my brother Matthew
and future sister-in-law Clara for their friendship, and for their optimism that helps
remind me of the important things in life. Thanks to the Berberian family for their
support and encouragement these past several years. Finally, I would like to thank
my husband Armen for being there through the highs and lows of graduate school,
for moving to California for a summer so I could do an internship at Google, and
most importantly for bringing so much happiness to my life.

viii

Contents

1 Introduction 1
1.1 Contributions . 2

1.1.1 Identifying and mitigating pitfalls of adversarial training 2
1.1.2 Robustness between the average and worst case 2

2 Adversarial robustness 5
2.1 Background . 5
2.2 Methods for fast adversarial training . 7

2.2.1 Related work . 8
2.2.2 Revisiting the fast gradient sign method 10
2.2.3 Incorporating standard training acceleration techniques 12
2.2.4 Catastrophic overfitting . 13
2.2.5 Experiments . 14
2.2.6 Discussion . 20

2.3 Robust overfitting in adversarial training . 21
2.3.1 Related work . 23
2.3.2 The effect of overfitting in adversarial training 23
2.3.3 Learning rate schedules and robust overfitting 30
2.3.4 Early stopping to mitigate robust overfitting 33
2.3.5 Reconciling double descent curves . 34
2.3.6 Exploring alternative methods to prevent robust overfitting 36
2.3.7 Discussion . 42

3 Robustness between the worst and average case 45
3.1 Intermediate-q robustness . 46

3.1.1 Related work . 46
3.1.2 Defining a general robustness objective 47
3.1.3 Path sampling estimation of intermediate-q robustness 48
3.1.4 Using Hamiltonian Monte Carlo to sample from the loss-based distribution 51
3.1.5 Estimating the partition function during training 52
3.1.6 Experiments . 52
3.1.7 Discussion . 58

3.2 Evaluating the robustness of CLIP . 58
3.2.1 Intermediate-q robustness of CLIP . 59

ix

3.2.2 Evaluations on CIFAR-10 . 60
3.2.3 Discussion . 62

3.3 Improved training for intermediate robustness 63
3.3.1 Related work . 64
3.3.2 More accurately approximating the objective during training 65
3.3.3 Alternatives to intermediate-q robust training 66
3.3.4 Experiments . 66
3.3.5 Discussion . 74

4 Conclusion 77

Bibliography 79

x

List of Figures

2.1 Robust test accuracy of models trained using Uniform R+FGSM adversarial
training with different step sizes, where we consider ℓ∞-norm ball perturbations
with ϵ = 8/255. 12

2.2 Cyclic learning rates used for FGSM adversarial training on CIFAR-10 and Ima-
geNet over epochs. The ImageNet cyclic schedule is decayed further by a factor
of 10 in the second and third phases. 13

2.3 Learning curves for FGSM adversarial training plotting the training loss and
error rates incurred by an FGSM and PGD adversary when trained with zero-
initialization FGSM at ϵ = 8/255, depicting the catastrophic overfitting where
PGD performance suddenly degrades while the model overfits to the FGSM at-
tack. 14

2.4 Histogram of the resulting perturbations from a PGD adversary for each feature
for a successfully trained robust model and a catastrophically overfitted model
on CIFAR-10. 15

2.5 Robust test performance of FGSM adversarial training over different step sizes
for ϵ = 8/255 with early stopping to avoid catastrophic overfitting. 15

2.6 Performance of models trained on CIFAR-10 at ϵ = 8/255 using cyclic learning
rate schedules and mixed precision arithmetic, given varying numbers of epochs
across different adversarial training methods. Each point denotes the average
model performance over 3 independent runs, where the x axis denotes the num-
ber of epochs the model was trained for, and the y axis denotes the resulting
accuracy. The orange dots measure accuracy on natural images and the blue dots
plot the empirical robust (PGD) accuracy. The vertical dotted line indicates the
minimum number of epochs needed to train a model to 45% robust accuracy. . . 18

2.7 The learning curves for a robustly trained model replicating the experiment done
by Madry et al. [47] on CIFAR-10, plotting accuracy. The curves demonstrate
robust overfitting; shortly after the first learning rate decay the model momen-
tarily attains 56.8% robust accuracy, and is actually more robust than the model
at the end of training, which only attains 48.6% robust test accuracy against a
10-step PGD adversary for ℓ∞ radius of ϵ = 8/255. The learning rate is decayed
at 100 and 150 epochs. 22

2.8 Learning curves when training using PGD for robustness to ℓ2-norm ball pertur-
bations of radius 128/255 for CIFAR-10. 25

xi

2.9 Learning curves for adversarially training a CIFAR-10 classifier with a Uniform
R+FGSM adversary against different ℓp-norm ball threat models. 26

2.10 Learning curves when training using TRADES for robustness to ℓ∞ perturba-
tions of radius 8/255 on combinations of different learning rate schedules and
architectures for CIFAR-10. 27

2.11 Learning curves for adversarially training an SVHN classifier with a PGD adver-
sary against different ℓp-norm ball threat models. 28

2.12 Learning curves for adversarially training a CIFAR-100 classifier with a PGD
adversary against different ℓp-norm ball threat models. 29

2.13 Continuation of training released pre-trained ImageNet models for ℓ∞ (left) and
ℓ2 (right). The number of epochs indicate the number of additional epochs the
pre-trained models were trained for. 29

2.14 Robust test error over training epochs for various learning rate schedules on
CIFAR-10. None of the alternative smoother learning rate schedules can achieve
a peak performance competitive with the standard piecewise decay learning rate,
indicating that the peak performance is obtained by having a single discrete jump.
Note that the multiple decay schedule is actually run for 500 epochs, but com-
pressed into this plot for a clear comparison. 31

2.15 Learning curves for a piecewise decay schedule with a modified starting learning
rate. 32

2.16 Learning curves for a piecewise decay schedule with a modified ending learning
rate. 32

2.17 Learning curves for a piecewise decay schedule with a modified epoch at which
the decay takes effect. 32

2.18 Learning curves for a CIFAR-10 PreActResNet18 model trained with a hold-
out validation set of 1,000 examples. We find that the hold-out validation set
is enough to reflect the test set performance, and stopping based on the valida-
tion set is able to prevent overfitting and recover 53.1% robust test accuracy, in
comparison to 53.3% achieved by the best-performing model checkpoint. 34

2.19 Standard and robust error on the train and test set across Wide ResNets with
varying width factors depicting double descent for adversarially robust gener-
alization, where hypothesis class complexity is controlled by varying the width
factor. 35

2.20 Learning curves for training Wide ResNets with different width factors. 36
2.21 Standard and robust performance on the train and test set using varying degrees

of ℓ1 regularization. 38
2.22 Learning curves for adversarial training using ℓ1 regularization. 38
2.23 Standard and robust performance on the train and test set using varying degrees

of ℓ2 regularization. 39
2.24 Learning curves for adversarial training using ℓ2 regularization. 39
2.25 Standard and robust performance on the train and test set for varying cutout patch

lengths. 40
2.26 Learning curves for adversarial training using cutout data augmentation with dif-

ferent cutout patch lengths. 41

xii

2.27 Standard and robust performance on the train and test set for varying degrees of
mixup. 42

2.28 Learning curves for adversarial training using mixup with different choices of
hyperparameter α. 43

2.29 Learning curves for robust training with semi-supervised data augmentation,
where we do not see a severe case of robust overfitting. When robust training
accuracy has converged, there is a significant amount of variance in the robust
test accuracy, so the average final model performance is on par with pure early
stopping. Combining early stopping with semi-supervised data augmentation to
avoid this variance is the only method we find that significantly improves on pure
early stopping. 43

3.1 Convergence of path sampling and Monte Carlo estimations of the objective Ẑq

for different values of q on a single mini-batch of CIFAR-10 test data given an
ℓ∞-norm ball perturbation distribution. 56

3.2 Convergence of path sampling and Monte Carlo estimators on CIFAR-10 (spatial
transformations). 58

3.3 Estimated intermediate-q robust loss (Ẑq) over perturbations uniformly distributed
within the ℓ∞-norm ball with ϵ = 8.255, evaluated at different robustness levels
(q). 60

3.4 Estimated intermediate-q robust loss (Ẑq) over Gaussian perturbations with σ =
0.1, evaluated at different robustness levels (q). 62

3.5 Estimated intermediate-q robust loss (Ẑq) over perturbations uniformly distributed
within the ℓ∞-norm ball with ϵ = 8/255, evaluated at different robustness levels
(q). Each point represents the best (lowest) loss the training method achieves for
the given q-evaluation across different hyperparameter sweeps tested. 68

3.6 Estimated intermediate-q robust loss (Ẑq) over perturbations uniformly distributed
within the ℓ∞-norm ball with ϵ = 8/255, evaluated at different robustness levels
(q). Each figure evaluates models that were trained according to the specified
objective. 69

3.7 Estimated intermediate-q robust loss (Ẑq) over Gaussian perturbations with σ =
0.1, evaluated at different robustness levels (q). Each point represents the best
(lowest) loss the training method achieves for the given q-evaluation across dif-
ferent hyperparameter sweeps tested. 71

3.8 Estimated intermediate-q robust loss (Ẑq) over Gaussian perturbations with σ =
0.1, evaluated at different robustness levels (q). Each figure evaluates models
that were trained according to the specified objective. 72

xiii

xiv

List of Tables

2.1 Standard and robust test accuracy of models trained on CIFAR-10 according to
different adversarial training methods, and their corresponding training times.
The threat model considered is the ℓ∞-norm ball with radius ϵ = 8/255, and
the PGD test accuracy is calculated using 50 steps, step size α = 2/255, and 10
random restarts. 11

2.2 Robust test accuracy (%) of Uniform R+FGSM and PGD adversarial training on
MNIST. 16

2.3 Ablation study showing the performance of R+FGSM from Tramèr et al. [76]
and our proposed FGSM modifications, over 10 random seeds, on MNIST. 17

2.4 Time to train a robust CIFAR-10 classifier to 45% robust accuracy using various
adversarial training methods with the DAWNBench techniques of cyclic learning
rate schedules and mixed-precision arithmetic, showing significant speedups for
all forms of adversarial training. 18

2.5 Standard and robust accuracy of models trained using Uniform R+FGSM and
free adversarial training on ImageNet at ϵ = 2/255 and ϵ = 4/255, as well as
their corresponding training times. 19

2.6 Time to train a robust ImageNet classifier using Uniform R+FGSM and free
adversarial training methods. 19

2.7 Free adversarial training with DAWNBench on ImageNet, considering ℓ∞-norm
ball perturbations with radius ϵ = 4/255. 20

2.8 Performance of adversarial training over a variety of datasets, training algo-
rithms, and perturbation threat models, showing the occurrence of robust overfit-
ting. 24

2.9 Tuning experiments using stochastic gradient descent to optimize the best robust
test accuracy obtained from the piecewise decay schedule for a PreActResNet18
on CIFAR-10. 33

2.10 Performance of adversarially robust training over a variety of regularization tech-
niques for PGD-based adversarial training on CIFAR-10 for ℓ∞ with radius 8/255. 37

3.1 Evaluations of models according to standard, intermediate robust, and adversar-
ial robust (PGD-100) losses on MNIST considering ℓ∞-norm ball perturbations. . 53

3.2 Robust accuracy of models trained on MNIST for perturbations in the ℓ∞ ball of
radius ϵ = 0.3. 54

3.3 Evaluations of models according to standard, intermediate robust, and adversar-
ial robust (PGD-50) losses on CIFAR-10 considering ℓ∞-norm ball perturbations. 55

xv

3.4 Evaluations of models according to standard, intermediate robust, and worst-case
robust losses on CIFAR-10 considering spatial transformations 57

3.5 Evaluations of intermediate-q robustness on CIFAR-10 towards perturbations
uniformly distributed within the ℓ∞-norm ball with ϵ = 8/255. 60

3.6 Accuracy (%) on ℓ∞ perturbations with ϵ = 8/255 on CIFAR-10. 61
3.7 Evaluations of intermediate-q robustness on CIFAR-10 towards Gaussian pertur-

bations with σ = 0.1 . 61
3.8 Accuracy (%) on Gaussian perturbations with σ = 0.1 on CIFAR-10. PGD here

considers ℓ2 perturbations. 62
3.9 Evaluations of intermediate-q robustness on CIFAR-10 towards perturbations

uniformly distributed within the ℓ∞-norm ball with radius ϵ = 0.03. 67
3.10 Accuracy (%) on perturbations uniformly distributed within the ℓ∞-norm ball

with ϵ = 8/255 on CIFAR-10. 70
3.11 Evaluations of intermediate-q robustness on CIFAR-10 towards Gaussian pertur-

bations with σ = 0.1. 73
3.12 Accuracy (%) on Gaussian perturbations with σ = 0.1 on CIFAR-10. The PGD-

50 evaluation considers ℓ2-norm ball perturbations with ϵ = 0.5. 74
3.13 Average training times (in hours) for different robust training methods on CIFAR-

10. Each experiment was run on a single GeForce RTX 2080 Ti using the PreAc-
tResNet18 architecture. Models trained using PRL were trained for 115 epochs,
and the remainder were trained for 50 epochs. 75

xvi

Chapter 1

Introduction

As machine learning methods continue to be successful in a wide range of applications, the
problem of learning robust machine learning models remains an important area of research. As
machine learning becomes more integrated in safety and security focused applications, the ro-
bustness of machine learning models to noisy or perturbed inputs becomes a greater concern. The
classical definition of robustness in machine learning, known as adversarial robustness, traces its
roots back to robust optimization, a field in optimization theory that allows for the study of
worst-case uncertainty [6]. In particular, this view of robustness has been studied extensively
in the context of image classification using deep neural networks, after it was shown that such
networks are quite brittle in the presence of small, worst-case noise [72]. Despite a decade
having passed since the discovery of the susceptibility of deep neural networks to adversarial ex-
amples, training adversarially robust models still remains quite challenging, typically resulting
in an increased training cost compared to standard training and degraded performance on clean
(unperturbed) inputs. And while innovations in deep learning research have resulted in vastly
improved standard performance on image classification tasks, we have only seen comparatively
incremental gains in adversarial robustness, the largest of which have resulted from training with
additional data. The challenges of adversarial learning and the seemingly inevitable trade-off be-
tween standard and robust performance are some factors motivating alternative, less conservative
notions of robustness.

In this thesis, we begin by discussing our contributions to the field of adversarial robustness,
including improvements to adversarial training algorithms and analyses of differences between
adversarial learning and standard training of deep neural networks. We then discuss our contribu-
tions to alternative measures of robustness, proposing a novel robustness objective that enables
measuring robustness across a spectrum of stringency levels up to worst-case robustness. We
further show how this intermediate robustness metric can be used to evaluate and compare the
robustness of models trained in a variety of manners, and show how this metric can be used to
train deep networks to fine-grained levels of robustness.

1

1.1 Contributions

1.1.1 Identifying and mitigating pitfalls of adversarial training
Adversarial training is considered to be the most successful approach for training models to be
empirically robust to worst-case input perturbations. These methods typically use some form
of gradient-based attack to generate adversarial examples, and then train the model on these
examples. In Chapter 2, we highlight our contributions to the field of adversarial robustness,
specifically regarding methods for adversarial training. We identify different failure modes that
can occur in existing methods for adversarial training, and show how robust performance can
be improved by avoiding these pitfalls. In Section 2.2, we revisit the usage of the fast gradient
sign method (FGSM) [30] for adversarial training, which generates adversarial examples using
a single gradient step. While efficient, this method was largely ignored after appearing to be
ineffective at producing a model robust to a multi-step adversary like projected gradient descent
(PGD) [47]. We find that, on the contrary, training against an FGSM adversary can result in a
fairly robust model against PGD attacks so long as during training, we avoid a failure mode we
call “catastrophic overfitting” [79]. We further provide mechanisms to better avoid this pitfall
during training without increasing the algorithm’s computational complexity. Equipped with
a robust and efficient adversarial training algorithm, we show that we can further improve the
speed of adversarial training by combining FGSM with standard techniques for fast training of
deep neural networks, such as cyclic learning rate schedules and mixed precision arithmetic.

While catastrophic overfitting is specific to FGSM adversarial training, in Section 2.3 we
identify a separate form of overfitting, which we call “robust overfitting” that we discover neg-
atively affects all adversarial training methods [63]. While fitting exactly to the training set is
common when training standard deep neural networks, typically resulting in improved standard
test accuracy, we show that doing so in adversarial training results in significantly worse ro-
bust test accuracy. We further show that while most regularization techniques fail to mitigate
the harmful effect of robust overfitting, simply early stopping adversarial training can result in
a significant boost in robust test performance. In fact, with early stopping, we show that PGD
adversarial training remains competitive, or performs better, than supposed algorithmic improve-
ments introduced subsequently for training robust models.

1.1.2 Robustness between the average and worst case
While adversarial robustness remains an important topic of study, it is often criticized for being
an over-conservative objective to consider. For example, adversarial training often results in a
model that performs worse on unperturbed inputs than a model trained normally using standard
empirical risk minimization. Furthermore, the difficulty of computing the worst-case pertur-
bation subject to some constraints becomes increasingly challenging when considering more
realistic and ill-defined types of input corruptions. As an alternative to adversarial robustness,
researchers sometimes measure the robustness of a model in terms of average performance over
more “naturally-occurring” corruptions, e.g. fixed or randomly sampled, as opposed to adver-
sarial corruptions. Data augmentation can be equated to this average-case robustness objective,
typically involving training on random input transformations. However, a criticism of average-

2

case robustness is that it is not robust enough, as this objective largely ignores low probability
perturbations that incur a large loss for the model.

Average-case and worst-case robustness objectives have largely been studied separately, over
different perturbation sets. In Chapter 3, we introduce a new robustness objective that general-
izes these two notions of robustness under the same framework [64]. Our proposed objective
allows for interpolating between average-case and worst-case robustness, effectively measuring
intermediate robustness. We construct this objective via the observation that worst and average
case robustness each can be expressed as a (functional) q-norm over perturbation space, and this
formulation furthermore allows for intermediate notions of robustness. As computing these pro-
posed robustness objectives involves approximating a high-dimensional integral, we additionally
present an approach for accurate estimation using the Markov chain Monte Carlo-based path
sampling method [28]. We show that this metric is not only useful for evaluation purposes, but
also can be used as a training objective to train models to a specific desired robustness level.

We additionally show the usefulness of the intermediate robustness metric for comparing
models trained without any specific form of robust training. Specifically, we evaluate the ro-
bustness of CLIP (Contrastive Language-Image Pre-training) [61], a class of foundation model
known for its impressive zero-shot performance on a variety of tasks and distribution shifts. To
better understand how pre-training on vast, diverse sets of data, and subsequently fine-tuning
on a downstream task, affect robustness beyond the average case, we compare the intermediate
robustness of the zero-shot and fine-tuned CLIP models to those of the same architecture trained
from scratch. Lastly, we more deeply dive into training for intermediate robustness. We discuss
techniques for improved training using the intermediate robustness objective estimated via path
sampling, and additionally compare to alternative robust training methods to determine the most
efficient way of training for intermediate robustness.

3

4

Chapter 2

Adversarial robustness

2.1 Background

Neural networks have been shown to be be highly susceptible to adversarial examples, which
are inputs to the model that have been intentionally perturbed to cause the model to output an
incorrect prediction. Adversarial examples are commonly studied in the image classification set-
ting, and are inputs corrupted with additive noise that is typically constrained to be imperceptible
to the human eye. Adversarial examples are constructed by finding a bounded perturbation of
the input that maximizes the loss of the model, where the loss simply measures how different
the model’s prediction is from the ground truth label. Szegedy et al. [72] first discovered this
brittle nature of neural networks, finding adversarial perturbations to be extremely effective at
changing a model’s output, even when such perturbations are quite small. Since their existence
was discovered, adversarial examples have been studied extensively, due to the security risk they
pose when using machine learning in safety-critical scenarios.

More formally, considering a model h parameterized by θ, and loss function ℓ, we can define
an adversarial example for some input x with ground truth label y as the perturbed input x′ =
x+ δ∗, where the perturbation δ∗ is chosen to maximize the model’s loss, such that

δ∗ = argmaxδ∈∆(x)ℓ(hθ(x+ δ), y),

while being constrained to some set ∆. Typically, the set of allowable perturbations ∆ is chosen
to be an ℓp-norm ball with a small enough radius ϵ such that the perturbation is imperceptible to
a human observer, i.e.

∆ = {δ : ||δ||p ≤ ϵ}.

Following the discovery of adversarial examples, Goodfellow et al. [30] subsequently devel-
oped a method called the fast gradient sign method (FGSM) for efficiently generating adversarial
examples, and proposed training on these examples to improve a model’s adversarial robustness,
a technique which is known as adversarial training. FGSM generates adversarial examples with
a single gradient step to maximize the loss, such that

δ∗ = ϵ sign∇xℓ(hθ(x), y).

5

Adversarial training can be more formally described by the following robust optimization prob-
lem,

min
θ

∑
x,y∈D

max
δ∈∆

ℓ(hθ(x+ δ), y),

where the inner maximization can be approximated by an adversarial attack such as FGSM. The
full adversarial training procedure using FGSM is shown in Algorithm 1.

Algorithm 1 FGSM adversarial training for T epochs, given some radius ϵ, and a dataset of size
M for a network hθ.

for t = 1 . . . T do
for i = 1 . . .M do

// Perform FGSM adversarial attack
δ = ϵ · sign(∇δℓ(hθ(xi), yi))
θ = θ −∇θℓ(hθ(xi + δ), yi) // Update model weights with some optimizer, e.g. SGD

end for
end for

FGSM was eventually determined to be a relatively weak attack as more effective approx-
imations to the inner maximization problem were developed. FGSM was initially enhanced
by adding a randomization step, and referred to as R+FGSM [76]. The basic iterative method
then further improved upon the one-step approach by taking multiple, smaller gradient steps,
projecting the updated perturbation back to the perturbation set after each step [43]. This itera-
tive adversarial attack was further strengthened by repeating the basic iterative method multiple
times with a different random initialization of the perturbation, and was also shown to be partic-
ularly effective when used in the adversarial training procedure [47]. These improvements form
the basis of what is widely understood today as adversarial training against a projected gradi-
ent descent (PGD) adversary, and the resulting method is recognized as an effective approach
to learning empirically robust networks. The full adversarial training procedure using PGD is
shown in Algorithm 2.

Algorithm 2 PGD adversarial training for T epochs on a dataset of size M for a network h
parameterized by θ. The perturbation set is an ℓ∞ ball with radius ϵ, and we use step size α.

for t = 1 . . . T do
for i = 1 . . .M do

// Perform PGD adversarial attack
δ = Uniform(−ϵ, ϵ)
for j = 1 . . . N do
δ = δ + α · sign(∇δℓ(hθ(xi + δ), yi))
δ = max(min(δ, ϵ),−ϵ)

end for
θ = θ −∇θℓ(hθ(xi + δ), yi) // Update model weights with some optimizer, e.g. SGD

end for
end for

6

Further proposed improvements to both the PGD adversary and the training procedure in-
clude incorporating momentum into the adversary [20], leveraging matrix estimation [84], logit
pairing [55], and feature denoising [83]. Most notably, Zhang et al. [91] proposed the method
TRADES for adversarial training that balances the trade-off between standard and robust errors,
and achieves state-of-the-art performance on several benchmarks, minimizing the objective

min
θ

∑
x,y∈D

[
ℓ(hθ(x), y) + βmax

δ∈∆
ℓ(hθ(x), hθ(x+ δ))

]
.

Because multi-step adversarial training methods are significantly more time consuming than
standard training, several works have focused on improving the efficiency of adversarial training
by reducing the computational complexity of calculating gradients and reducing the number of
attack iterations [67, 90]. While most adversarial training studies consider additive perturbations
bounded by some ℓp-norm, separate works have also expanded the general PGD adversarial
training algorithm to different threat models including image transformations [22, 82], different
distance metrics [78], and multiple threat models [48, 75].

Other adversarial defenses that have been proposed were not always successful, such as dis-
tillation [13, 60] and detection of adversarial examples [11, 12, 25, 50, 73], which eventually
were defeated by stronger attacks. Adversarial examples were also believed to be ineffective in
the real world across different viewpoints [46] until proven otherwise [4], and a large number
of adversarial defenses were shown to be relying on obfuscated gradients and ultimately ren-
dered ineffective [3], including thermometer encoding [10] and various preprocessing techniques
[32, 70].

2.2 Methods for fast adversarial training
While effective, PGD adversarial training comes at a non-trivial computational cost due to the
multiple gradient steps required to generate the adversarial examples, often increasing training
time by an order of magnitude over standard training. In response to this difficulty, there was a
surge in work that tried to to reduce the complexity of generating an adversarial example while
retaining the strength of the PGD attack [67, 90]. While these works present reasonable im-
provements to the runtime of adversarial training, they are still significantly slower than standard
training, which has been greatly accelerated due to competitions for optimizing both the speed
and cost of training [16].

We address this problem of improving the efficiency of adversarial training by revisiting the
original adversarial attack used in adversarial training, namely the single-step, fast gradient sign
method. As discussed in Section 2.1, FGSM adversarial training was previously shown to be
completely ineffective in producing models robust to a stronger attack such as PGD. Contrary
to this prior belief, we find that several slight modifications to the FGSM attack generation can
result in significantly improved robustness against a PGD adversary. Specifically, by simply
randomly initializing the perturbation before the single gradient step update, and using a larger
step size than the typical choice of radius ϵ, the resulting model is significantly more robust to
PGD attacks than one trained according to the original FGSM adversarial training method. We
find that these modifications help avoid a failure mode of FGSM adversarial training that we

7

term “catastrophic overfitting”, where the model’s robust performance against a PGD adversary
suddenly drops during training. We further show that this modified version of FGSM adversarial
training (and to a lesser extent, other adversarial training methods) can be drastically accelerated
using standard techniques for efficient training of deep networks, cyclic learning rates [69] and
mixed-precision training [52].

The end result is that, with these approaches, we are able to train (empirically) robust clas-
sifiers far faster than in previous work. For example, we can train an image classifier on the
CIFAR-10 dataset to 45% robust test accuracy against ℓ∞-norm bounded perturbations with ra-
dius ϵ = 8/255 in just 6 minutes; previous works reported times of 80 hours for the same level
attained using the original PGD-based training [47] and 10 hours using free adversarial training
[67], one of the proposed faster alternatives to PGD. Similarly, we can train an an ImageNet
classifier to 43% top-1 robust test accuracy against ℓ∞-norm bounded perturbations with radius
ϵ = 2/255 (again matching previous results at the time) in 12 hours of training, compared to
50 hours using free adversarial training, according to Shafahi et al. [67]. Both of these times
roughly match the comparable time for quickly training a standard non-robust model to reason-
able accuracy. We extensively evaluate these FGSM-trained models against strong PGD-based
attacks, and show that they obtain robustness close or equal to that originally reported by Madry
et al. [47] using slower PGD-based training.

2.2.1 Related work
As discussed in Section 2.1, the fast gradient sign method (FGSM) was the original method for
constructing adversarial examples, and is quite efficient due to its use of a single gradient step.
This method was used to perturb the inputs to the model before performing backpropagation as
an early form of adversarial training, as shown in Algorithm 1. The FGSM attack was enhanced
by adding a randomization step, which was referred to as R+FGSM [76], where the perturbation
is initialized on the surface of a hypercube with radius ϵ/2, such that δ = ϵ

2
N (0, 1), where ϵ is

the radius of the norm ball that comprises the allowable perturbations, and then takes a single
gradient step of size ϵ/2. However, both FGSM and R+FGSM were shown to be ineffective for
training models to be robust to the stronger PGD attack.

Despite the eventual defeat of other adversarial defenses, adversarial training with a PGD
adversary remains empirically robust to this day. However, running a strong PGD adversary
within an inner loop of training is expensive, and some earlier work in this topic found that taking
larger but fewer steps did not always significantly change the resulting robustness of a network
[77]. Several prior works have studied how to train for adversarial robustness at a reduced cost
compared to projected gradient descent. One such work shows that when performing a multi-
step PGD adversary, it is possible to cut out redundant calculations during backpropagation when
computing adversarial examples for additional speedup [90].

Alternatively, to combat the increased computational overhead of the PGD defense, some
recent work has looked at regressing the k-step PGD adversary to a variation of its single-step
FGSM predecessor called “free” adversarial training, which can be computed with little overhead
over standard training by using a single backwards pass to simultaneously update both the model
weights and also the input perturbation [67]. This method takes FGSM steps with full step sizes
α = ϵ followed by updating the model weights for N iterations on the same mini-batch (also re-

8

Algorithm 3 Free adversarial training for T epochs, N mini-batch replays, and a dataset of size
M for a network hθ. The threat model is an ℓ∞-norm ball with radius ϵ.

δ = 0
// Iterate T/N times to account for mini-batch replays and run for T total epochs
for t = 1 . . . T/N do

for i = 1 . . .M do
// Perform simultaneous FGSM adversarial attack and model weight updates T times
for j = 1 . . . N do

// Compute gradients for perturbation and model weights simultaneously
∇δ,∇θ = ∇ℓ(hθ(xi + δ), yi)
δ = δ + ϵ · sign(∇δ)
δ = max(min(δ, ϵ),−ϵ)
θ = θ −∇θ // Update model weights with some optimizer, e.g. SGD

end for
end for

end for

ferred to as “mini-batch replays”). A key difference between FGSM and free adversarial training
is that the latter uses a single backwards pass to compute gradients for both the perturbation and
the model weights, while FGSM adversarial training needs two backwards passes to compute
gradients separately for the perturbation and the model weights. The algorithm for free adversar-
ial training is summarized in Algorithm 3, where we highlight the fact that the perturbations are
not reset between mini-batches. To account for the additional computational cost of mini-batch
replay, the total number of epochs is reduced by a factor of N to make the total cost equivalent
to T epochs of standard training. Although free adversarial training is faster than the standard
PGD adversarial training, Shafahi et al. [67] still need to run over 200 epochs in over 10 hours
to learn a robust CIFAR-10 classifier and two days to learn a robust ImageNet classifier, whereas
standard training can be accomplished in minutes and hours for the same respective tasks.

There has also been increasing study on speeding up non-adversarial training of deep net-
works. For example, top performing training methods from the DAWNBench competition [16]
are able to train CIFAR-10 and ImageNet architectures to standard benchmark metrics in mere
minutes and hours respectively, using only a modest amount of computational resources. Some
general techniques such as cyclic learning rates [69] and half-precision computations [52] have
been quite successful in the top ranking submissions, and we show these techniques can also be
useful for adversarial training.

Our high-performance modifications to FGSM are similar to that of R+FGSM and free adver-
sarial training in that the perturbation is not initialized to zero. However, we ultimately find that
FGSM adversarial training with our choice of initialization and step size results in significantly
better robustness against a PGD adversary when compared to R+FGSM. While free adversarial
training can result in similar robustness levels as our modified FGSM training, it is less amenable
to the reduced epoch, cyclic learning rate schedule, likely due to training with mini-batch replays.

9

Algorithm 4 Uniform R+FGSM adversarial training for T epochs on a dataset of size M for a
network h parameterized by θ. The perturbation set is an ℓ∞ ball with radius ϵ.

for t = 1 . . . T do
for i = 1 . . .M do

// Perform FGSM adversarial attack
δ = Uniform(−ϵ, ϵ)
δ = δ + α · sign(∇δℓ(hθ(xi + δ), yi))
δ = max(min(δ, ϵ),−ϵ)
θ = θ −∇θℓ(hθ(xi + δ), yi) // Update model weights with some optimizer, e.g. SGD

end for
end for

2.2.2 Revisiting the fast gradient sign method

We find that minor modifications to the fast gradient sign method can result in significant im-
provements in robustness against a PGD adversary. Those modifications include uniform random
perturbation initialization and a step size larger than ϵ. In this section, we discuss our intuition
for these modifications, and best practices for implementing these modifications. Algorithm 4
outlines our complete modified FGSM training method, which we call Uniform R+FGSM.

Perturbation initialization Despite being quite similar to FGSM adversarial training, free ad-
versarial training has been shown to be empirically robust against PGD attacks in contrast to
the original FGSM adversarial training. To analyze why, we identify a key difference between
the methods: a property of free adversarial training is that the perturbation from the previous
iteration is used as the initial starting point for the next iteration. However, there is little reason
to believe that an adversarial perturbation for a previous example is a reasonable starting point
for the next example. As a result, we hypothesize that the main benefit comes from starting from
a non-zero initial perturbation. In light of this difference, we test simply randomly initializing
the perturbation, according to a uniform random distribution between −ϵ and ϵ for an ℓ∞-norm
ball perturbation set with radius ϵ, before applying the FGSM attack. We find that this simple
adjustment to FGSM adversarial training can be used as an effective empirical defense. Cru-
cially, we find that starting from a non-zero initial perturbation is the primary driver for success,
regardless of the actual initialization, so long as the initialization is not restricted beyond the ϵ
ball constraints. In fact, both starting with the previous mini-batch’s perturbation or initializing
from a uniformly random perturbation allow FGSM adversarial training to succeed at being sig-
nificantly more robust to full-strength PGD adversarial attacks than previously believed. While
randomized initialization for FGSM is not a new idea and was previously studied by Tramèr et al.
[76], crucially, Tramèr et al. [76] use a different, more restricted random initialization and step
size, which does not result in models robust to full-strength PGD adversaries.

1As reported by Shafahi et al. [67] using a different network architecture and an adversary with 20 steps and 10
restarts, which is strictly weaker than the adversary used in this work.

2As reported by Madry et al. [47] using a different network architecture and an adversary and an adversary with
20 steps and no restarts, which is strictly weaker than the adversary used in this work

10

Table 2.1: Standard and robust test accuracy of models trained on CIFAR-10 according to dif-
ferent adversarial training methods, and their corresponding training times. The threat model
considered is the ℓ∞-norm ball with radius ϵ = 8/255, and the PGD test accuracy is calculated
using 50 steps, step size α = 2/255, and 10 random restarts.

Test accuracy (%)
Train method Standard PGD-50 Train time (min)

FGSM + DAWNBench
+ zero init. 85.18 0.00 12.37

+ early stopping 71.14 38.86 7.89
+ previous init. 86.02 42.37 12.21
+ random init. 85.32 44.01 12.33

+ α = 10/255 83.81 46.06 12.17
+ α = 16/255 86.05 0.00 12.06

+ early stopping 70.93 40.38 8.81

Free (m = 8) [67]1 85.96 46.33 785
+ DAWNBench 78.38 46.18 20.91

PGD-7 [47]2 87.30 45.80 4965.71
+ DAWNBench 82.46 50.69 68.8

To test the effect of initialization in FGSM adversarial training, we train several models,
using the PreActResNet18 architecture, to be robust to ℓ∞-norm ball perturbations at a radius
ϵ = 8/255 on CIFAR-10, starting with the most “pure” form of FGSM, which takes steps of
size α = ϵ from a zero-initialized perturbation. The results, given in Table 2.1, are consistent
with the literature, and show that the model trained with zero-initialization (i.e. the original
FGSM specification) is not robust against a PGD adversary. However, surprisingly, simply using
a uniform random or previous mini-batch initialization instead of a zero initialization actually
results in reasonable robustness levels (with uniform random initialization performing slightly
better) that are comparable to both the free and the original PGD adversarial training methods.

Step size We recognize that an FGSM step with size α = ϵ from a non-zero initialization is
not guaranteed to lie on the boundary of the ℓ∞ ball, and so this defense could potentially be too
weak. We find that increasing the step size by a factor of 1.25 to α = 10/255 further improves
the robustness of the model so that it is on par with the best reported result using free adversarial
training, as shown in Table 2.1. However, while increasing the step size to α = 10/255 improves
the robustness of the final model, we simultaneously find that forcing the resulting perturbation
to lie on the boundary with a step size of α = 2ϵ results in a model that is not robust to PGD
adversarial attacks at all. This result is also shown in Table 2.1, where using α = 16/255 results
in 0% PGD accuracy. We show additional results of FGSM adversarial training with different
step sizes in Figure 2.1, where we plot the mean and standard error of the robust test accuracy
for models trained for 30 epochs over 3 random seeds, varying the step size from α = 1/255 to

11

0 2 4 6 8 10 12 14 16
Step Size (x/255)

0

10

20

30

40

50

%
 P

G
D

 A
cc

ur
ac

y

Figure 2.1: Robust test accuracy of models trained using Uniform R+FGSM adversarial training
with different step sizes, where we consider ℓ∞-norm ball perturbations with ϵ = 8/255.

α = 16/255. We find that we get improved robust performance as we increase the step size up
to α = 10/255. Beyond this, we see no further benefit, or worse, find that the model lacks any
robustness to a PGD adversary. We discuss this failure mode in more detail in Section 2.2.4.

2.2.3 Incorporating standard training acceleration techniques
Given modifications to FGSM that result in successfully training robust models, we further find
that FGSM can outperform free adversarial training in terms of efficiency when combining ad-
versarial training with standard training speedup techniques. Ultimately, while these speedup
techniques can be applied to any adversarial training technique, we find that free adversarial
training is less amenable to these techniques. The acceleration techniques we consider have been
largely publicized by the DAWNBench competitions, at which top submissions have shown that
CIFAR-10 and ImageNet classifiers can be trained at significantly quicker times and at much
lower cost than traditional training methods. Although some of the submissions can be quite
unique in their approaches, we identify two generally applicable techniques which have a signif-
icant impact on the convergence rate and computational speed of standard training.

Cyclic learning rate schedule Introduced by Smith [68] for improving convergence and re-
ducing the amount of tuning required when training networks, a cyclic schedule for a learning
rate can drastically reduce the number of epochs required for training deep networks [69]. A
simple cyclic learning rate schedule increases the learning rate linearly from zero to a maximum
learning rate and back down to zero (examples can be found in Figure 2.2). Using a cyclic learn-
ing rate allows CIFAR-10 architectures to converge to benchmark accuracies in tens of epochs
instead of hundreds.

Mixed-precision arithmetic When GPU architectures have tensor cores specifically built for
rapid half-precision calculations, using mixed-precision arithmetic when training deep networks
can also provide significant speedups for standard training [52]. This can drastically reduce the
memory utilization, and when tensor cores are available, also reduce run time.

12

0 5 10
0.0

0.1

0.2

(a) CIFAR-10

0 5 10 15
0.0

0.2

0.4

(b) ImageNet

Figure 2.2: Cyclic learning rates used for FGSM adversarial training on CIFAR-10 and ImageNet
over epochs. The ImageNet cyclic schedule is decayed further by a factor of 10 in the second
and third phases.

We adopt these two techniques for use in adversarial training, which allows us to drastically
reduce the number of training epochs as well as the run time on GPU infrastructure with tensor
cores, while using modest amounts of computational resources. Notably, both of these improve-
ments can be easily applied to existing implementations of adversarial training by adding a few
lines of code with very little additional engineering effort, and so are easily accessible by the
general research community.

2.2.4 Catastrophic overfitting

The failure modes of starting from a zero-initialized perturbation and using too large of a step
size may explain why previous attempts at FGSM adversarial training failed. Many of the varia-
tions of FGSM adversarial training which have been found to not succeed all fail similarly: the
model will very rapidly (over the span of a couple of epochs) appear to overfit to the FGSM ad-
versarial examples. What was previously a reasonably robust model will quickly transform into
a non-robust model which suffers 0% robust accuracy with respect to a PGD adversary. We find
that in these scenarios, an interesting phenomenon occurs, where at some point during training,
the FGSM train error suddenly decreases, while at the same time, the PGD test error suddenly
increases. This phenomenon, which we call catastrophic overfitting, can be seen in Figure 2.3
which plots the learning curves for vanilla FGSM adversarial training from zero-initialization.

We find that this occurrence of this phenomenon can be detected on the training set as well,
i.e. if we measure the PGD error on the training set we see similar curves to those in Figure
2.3, suggesting that the model overfits to the FGSM attack. Due to the rapid deterioration of
robust performance, FGSM adversarial training can be salvaged to some degree with a simple
early-stopping scheme by measuring PGD accuracy on a small mini-batch of training data, with
minimal computational cost. In practice, we find that this can be a simple as a single mini-batch
with a 5-step PGD adversary, which can be quickly checked at the end of the epoch. If robust ac-
curacy with respect to this adversary suddenly drops, then the model has catastrophically overfit.
Using a PGD adversary on a training mini-batch to detect catastrophic overfitting, we can early
stop to avoid catastrophic overfitting and achieve a reasonable amount of robust performance.
By using early stopping to catch the model at its peak performance before overfitting, FGSM
adversarial training with larger step sizes can actually achieve some degree of robust accuracy,
as shown in Figure 2.5. The recovered results for some of these failure modes are also shown

13

0 5 10 15 20 25 30
Epochs

0

2

4

6

Lo
ss

PGD Test
FGSM Train

0 5 10 15 20 25 30
Epochs

0

25

50

75

100

%
 E

rr
or

PGD Test
FGSM Train

Figure 2.3: Learning curves for FGSM adversarial training plotting the training loss and error
rates incurred by an FGSM and PGD adversary when trained with zero-initialization FGSM at
ϵ = 8/255, depicting the catastrophic overfitting where PGD performance suddenly degrades
while the model overfits to the FGSM attack.

in Table 2.1. While too large of a step size can cause catastrophic overfitting in FGSM adver-
sarial training, other design decisions, including specific learning rate schedules or numbers of
training epochs, can also make catastrophic overfitting more likely to occur. Our modified ver-
sion of FGSM adversarial training (with uniform random initialization and adjusted step size)
successfully avoids catastrophic overfitting entirely when combined with the cyclic learning rate
schedule, achieving its best robust performance with only 30 epochs of training. However, by
training longer, or using a different learning rate schedule, even our Uniform R+FGSM algorithm
can result in catastrophic overfitting.

We initially hypothesize that one of the reasons for this failure may lie in the lack of diversity
in adversarial examples generated by these FGSM adversaries. For example, as opposed to PGD
or Uniform R+FGSM, using FGSM with a zero initialization or using the random initialization
scheme from Tramèr et al. [76] will result in adversarial examples whose features have been
perturbed by {−ϵ, 0, ϵ}. We attempt to test this hypothesis by running a PGD adversarial attack
on models which have catastrophically overfitted, and find that the perturbations tend to be more
in between the origin and the boundary of the threat model (relative to a non-overfitted model,
which tends to have perturbations near the boundary), as seen in Figure 2.4. However, follow-up
work to ours further tests this hypothesis by training a model using PGD adversarial training
but projecting the perturbations onto {−ϵ, ϵ}, and does not observe any catastrophic overfitting
[2]. Andriushchenko and Flammarion [2] instead suggest that the overfitting results from the
nature of the single-step approximation to the inner maximization rather than the diversity of
perturbations.

2.2.5 Experiments

To demonstrate the effectiveness of Uniform R+FGSM adversarial training with the acceleration
techniques described in Section 2.2.3, we run a number of experiments on MNIST, CIFAR-
10, and ImageNet benchmarks. All CIFAR-10 experiments in this section are run on a single
GeForce RTX 2080 Ti using the PreActResNet18 architecture [34], and all ImageNet experi-
ments are run on a single machine with four GeForce RTX 2080 Tis using the ResNet50 ar-
chitecture [33]. Our code for reproducing all experiments in this section and the corresponding

14

[0
, 1

)

[1
, 2

)

[2
, 3

)

[3
, 4

)

[4
, 5

)

[5
, 6

)

[6
, 7

)

[7
, 8

) 8

Absolute value of perturbations

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 p

er
tu

rb
at

io
ns Robust model

Catastrophically overfitted model

Figure 2.4: Histogram of the resulting perturbations from a PGD adversary for each feature for
a successfully trained robust model and a catastrophically overfitted model on CIFAR-10.

0 2 4 6 8 10 12 14 16
Step Size (x/255)

0

10

20

30

40

50

%
 P

G
D

 A
cc

ur
ac

y

Figure 2.5: Robust test performance of FGSM adversarial training over different step sizes for
ϵ = 8/255 with early stopping to avoid catastrophic overfitting.

15

Table 2.2: Robust test accuracy (%) of Uniform R+FGSM and PGD adversarial training on
MNIST.

PGD Verified
Method Standard ϵ = 0.1 ϵ = 0.3 ϵ = 0.1

PGD 99.20 97.66 89.90 96.7
Uniform R+FGSM 99.20 97.53 88.77 96.8

trained model weights are made publicly available3.

Implementation details All experiments using FGSM adversarial training are carried out with
(uniform) random initial starting points and step size α = 1.25ϵ as described in Section 2.2.2.
All PGD adversaries used at evaluation are run with 10 random restarts for 50 iterations (with
the same hyperparameters as those used by Shafahi et al. [67] but further strengthened with
random restarts). Speedup with mixed-precision is incorporated with the Apex amp package at
the O1 optimization level for ImageNet experiments and O2 without loss scaling for CIFAR-10
experiments.4 For all methods, we use a batch size of 128, and SGD optimizer with momentum
0.9 and weight decay 5 · 10−4. We report the average results over 3 random seeds. For FGSM
and PGD adversarial training, we use a maximum learning rate of 0.2, and for free adversarial
training we use a maximum learning rate of 0.04. For Table 2.1, we train FGSM for 30 epochs,
PGD for 40 epochs, and free for 96 epochs. For runs using early-stopping, we use a 5-step
PGD adversary with 1 restart on a single training mini-batch to detect overfitting to the FGSM
adversaries, as described in Section 2.2.4.

MNIST

Verified performance on MNIST To demonstrate that FGSM adversarial training confers real
robustness to the model, in addition to evaluating against a PGD adversary, we leverage mixed-
integer linear programming (MILP) methods from formal verification to calculate the exact ro-
bustness of small, but verifiable models [74]. We train two convolutional networks with 16 and 32
convolutional filters followed by a fully connected layer of 100 units, the same architecture used
by Tjeng et al. [74]. We use both PGD and Uniform R+FGSM adversarial training at ϵ = 0.3,
where the PGD adversary for training uses 40 iterations with step size 0.01 as done by Madry
et al. [47]. The exact verification results can be seen in Table 2.2, where we find that FGSM
adversarial training confers empirical and verified robustness which is nearly indistinguishable
to that of PGD adversarial training on MNIST.5

3https://github.com/locuslab/fast_adversarial
4Since CIFAR-10 does not suffer from loss scaling problems, we find using the O2 optimization level without

loss scaling for mixed-precision arithmetic to be slightly faster.
5Exact verification results at ϵ = 0.3 for both the FGSM and PGD trained models are not possible since the size

of the resulting MILP is too large to be solved in a reasonable amount of time. The same issue also prevents us
from verifying networks trained on datasets larger than MNIST, which have to rely on empirical tests for evaluating
robustness.

16

https://github.com/locuslab/fast_adversarial

Table 2.3: Ablation study showing the performance of R+FGSM from Tramèr et al. [76] and our
proposed FGSM modifications, over 10 random seeds, on MNIST.

Method Step size Initialization Robust accuracy (%)

R+FGSM [76] 0.15 Hypercube(0.15) 34.58± 36.06
R+FGSM (+ full step size) 0.30 Hypercube(0.15) 26.53± 32.48
R+FGSM (+ uniform init.) 0.15 Uniform(0.3) 72.92± 10.40
Uniform + full (ours) 0.30 Uniform(0.3) 86.21± 00.75

Comparison to R+FGSM on MNIST We now show the improvement of our modified version
of FGSM (Uniform R+FGSM) to R+FGSM, a randomized version of FGSM adversarial training
proposed by Tramèr et al. [76]. As described in Section 2.2.1, R+FGSM differs from our method
in two ways. First, it initializes the perturbation on the surface of a hypercube with radius ϵ/2,
such that δ = ϵ

2
N (0, 1). Second, it uses a step size of ϵ/2. To study the effect of these two

differences, we run all combinations of either initialization with either step size on MNIST. The
results are summarized in Table 2.3.

We find that using a uniform initialization adds the greatest marginal improvement to the
original R+FGSM attack, while using a full step size does not appear to help on its own. Imple-
menting both of these improvements results in the form of FGSM adversarial training presented
in this work. Additionally, we note that R+FGSM as done by Tramèr et al. [76] has high variance
in robust performance when done over multiple random seeds, whereas our version of FGSM
adversarial training is significantly more consistent and has a very low standard deviation over
random seeds.

CIFAR-10

We begin our CIFAR-10 experiments by using cyclic learning rate schedules and mixed-precision
arithmetic from Section 2.2.3 with various forms of adversarial training. For N epochs, we use a
cyclic learning rate that increases linearly from 0 to λ over the first N/2 epochs, then decreases
linearly from λ to 0 for the remaining epochs, where λ is the maximum learning rate. For each
method, we individually tune λ to be as large as possible without causing the training loss to
diverge, which is the recommended learning rate test from Smith and Topin [69].

To identify the minimum number of epochs needed for each adversarial training method,
we repeatedly run each method over a range of maximum epochs N , and then plot the final
robustness of each trained model. While all the adversarial training methods benefit greatly from
the cyclic learning rate schedule, we show in Figure 2.6 that both FGSM and PGD adversarial
training require much fewer epochs than free adversarial training, and consequently reap the
greatest speedups.

6Runtimes calculated on our hardware using the publicly available training code at https://github.com/
MadryLab/cifar10_challenge.

7Runtimes calculated on our hardware using the publicly available training code at https://github.com/
ashafahi/free_adv_train.

17

https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/cifar10_challenge
https://github.com/ashafahi/free_adv_train
https://github.com/ashafahi/free_adv_train

5 15 25 35 45
0

40

80

(a) Uniform R+FGSM

5 15 25 35 45
0

40

80

(b) PGD

8 32 56 80
0

40

80

(c) Free (m = 8)

Figure 2.6: Performance of models trained on CIFAR-10 at ϵ = 8/255 using cyclic learning
rate schedules and mixed precision arithmetic, given varying numbers of epochs across different
adversarial training methods. Each point denotes the average model performance over 3 inde-
pendent runs, where the x axis denotes the number of epochs the model was trained for, and the
y axis denotes the resulting accuracy. The orange dots measure accuracy on natural images and
the blue dots plot the empirical robust (PGD) accuracy. The vertical dotted line indicates the
minimum number of epochs needed to train a model to 45% robust accuracy.

Table 2.4: Time to train a robust CIFAR-10 classifier to 45% robust accuracy using various adver-
sarial training methods with the DAWNBench techniques of cyclic learning rate schedules and
mixed-precision arithmetic, showing significant speedups for all forms of adversarial training.

Method Epochs Seconds/epoch Total time (minutes)

PGD-7 + DAWNBench 10 104.94 17.49
Free (m = 8) + DAWNBench 80 13.08 17.44
Uniform R+FGSM + DAWNBench 15 25.36 6.34

PGD-7 [47]6 205 1456.22 4965.71
Free (m = 8) [67]7 205 197.77 674.39

Using the minimum number of epochs needed for each training method to reach a baseline
of 45% robust test accuracy, we report the total training time in Table 2.4. We find that while
all adversarial training methods benefit from the DAWNBench improvements, FGSM adversar-
ial training is the fastest, capable of learning a robust CIFAR-10 classifier in 6 minutes using
only 15 epochs. Interestingly, we also find that PGD and free adversarial training take compa-
rable amounts of time, largely because free adversarial training does not benefit from the cyclic
learning rate as much as PGD or FGSM adversarial training.

ImageNet

Finally, we apply all of the same techniques (Uniform R+FGSM adversarial training, mixed-
precision, and cyclic learning rate schedules) on the ImageNet benchmark. In addition, the top
submissions from the DAWNBench competition for ImageNet utilize two more improvements
on top of this, the first of which is the removal of weight decay regularization from batch nor-
malization layers. The second addition is to progressively resize images during training, starting
with larger batches of smaller images in the beginning and moving on to smaller batches of larger
images later. Specifically, training is divided into three phases, where phases 1 and 2 use images

18

Table 2.5: Standard and robust accuracy of models trained using Uniform R+FGSM and free
adversarial training on ImageNet at ϵ = 2/255 and ϵ = 4/255, as well as their corresponding
training times.

Accuracy (%)
Method ϵ Standard PGD+1 PGD+10 Total time (hrs)

Uniform R+FGSM + DAWNBench 2/255 60.90 43.46 43.43 12.14
Free (m = 4) 2/255 64.37 43.31 43.28 52.20

Uniform R+FGSM + DAWNBench 4/255 55.45 30.28 30.18 12.14
Free (m = 4) 4/255 60.42 31.22 31.08 52.20

Table 2.6: Time to train a robust ImageNet classifier using Uniform R+FGSM and free adversar-
ial training methods.

Method Precision Epochs Min/epoch Time (hrs)

Uniform R+FGSM (phase 1) single 6 22.65 2.27
Uniform R+FGSM (phase 2) single 6 65.97 6.60
Uniform R+FGSM (phase 3) single 3 114.45 5.72

Uniform R+FGSM single 15 14.59

Free single 92 34.04 52.20

Uniform R+FGSM (phase 1) mixed 6 20.07 2.01
Uniform R+FGSM (phase 2) mixed 6 53.39 5.34
Uniform R+FGSM (phase 3) mixed 3 95.93 4.80

Uniform R+FGSM mixed 15 12.14

Free mixed 92 25.28 38.76

resized to 160 and 352 pixels respectively, and phase 3 uses the entire image. We train models
to be robust at ϵ = 2/255 and ϵ = 4/255 and compare to free adversarial training in Table 2.5,
showing similar levels of robustness. In addition to using ten restarts, we also report the PGD
accuracy with one restart to reproduce the evaluation done by Shafahi et al. [67].

With these techniques, we can train an ImageNet classifier using 15 epochs in 12 hours using
FGSM adversarial training, taking a fraction of the cost of free adversarial training as shown in
Table 2.6.8 We compare to the best performing variation of free adversarial training which which
uses m = 4 mini-batch replays over 92 epochs of training (scaled down accordingly to 23 passes
over the data).

8We use the implementation of free adversarial training for ImageNet publicly available at https://github.
com/mahyarnajibi/FreeAdversarialTraining and reran it on the our machines to account for any
timing discrepancies due to differences in hardware

19

https://github.com/mahyarnajibi/FreeAdversarialTraining
https://github.com/mahyarnajibi/FreeAdversarialTraining

Table 2.7: Free adversarial training with DAWNBench on ImageNet, considering ℓ∞-norm ball
perturbations with radius ϵ = 4/255.

Accuracy (%)
Method Step size Epochs Standard PGD+1 PGD+10

Free (m = 3) + DAWNBench 4/255 15 49.87 22.78 22.18
Free (m = 3) + DAWNBench 5/255 15 50.48 22.88 22.25
Free (m = 3) + DAWNBench 4/255 30 49.87 28.17 27.08
Free (m = 3) + DAWNBench 5/255 30 50.48 28.73 27.81

Free (m = 4) 4/255 92 60.42 31.22 31.08
Uniform R+FGSM + DB 5/255 15 55.45 30.28 30.18

Comparison to free adversarial training + DAWNBench Free adversarial training can also
be enhanced with mixed-precision arithmetic, which reduces the runtime by 25%, but directly
combining free adversarial training with the other fast techniques used in FGSM adversarial
training for ImageNet (cyclic learning rate schedules, progressive resizing, and batch-norm reg-
ularization) results in reduced performance. Since ImageNet is too large to run a comprehensive
search over the various parameters as was done for CIFAR-10 in Table 2.4, we instead test the
performance of free adversarial training when used as a drop-in replacement for FGSM adver-
sarial training with all the same optimizations used for FGSM adversarial training. We use free
adversarial training with m = 3 mini-batch replays, with 2 epochs for phase one, 2 epochs for
phase two, and 1 epoch for phase three to be equivalent to 15 epochs of standard training. The
results are shown in Table 2.7.

This is not to claim that free adversarial training is completely incompatible with the DAWN-
Bench optimizations on ImageNet. By giving free adversarial training more epochs, it may be
possible recover the same or better performance. However, tuning the DAWNBench techniques
to be optimal for free adversarial training is not the objective of this work, and so this is merely to
show what happens if we naively apply the same DAWNBench tricks used for FGSM adversarial
training to free adversarial training. Since free adversarial training requires more epochs even
when tuned with DAWNBench improvements for CIFAR-10, we suspect that the same behav-
ior occurs here for ImageNet, and so 15 epochs is likely not enough to obtain top performance
for free adversarial training. Since one epoch of FGSM adversarial training is slower than one
epoch of free training, a fairer comparison is to give free adversarial training a larger number of
training epochs. Even with double the number of training epochs, we find that the final robust
performance is better, but does not quite reach the original robust performance of free adversarial
training.

2.2.6 Discussion

Our findings show that FGSM adversarial training, when used with uniform random initialization
and an adapted step size, can result in much stronger robustness levels than vanilla FGSM adver-
sarial training, while being significantly faster than alternative methods of adversarial training.

20

While a single iteration of FGSM adversarial training is computationally more expensive than
that of free adversarial training, training using FGSM converges significantly faster, especially
when using a cyclic learning rate schedule. As a result, we are able to learn adversarially robust
classifiers for CIFAR-10 in minutes and for ImageNet in hours, even faster than free adversar-
ial training but with comparable levels of robustness. Leveraging these significant reductions in
time to train robust models can enable future work to iterate even faster, and accelerate research
in learning models which are resistant to adversarial attacks.

2.3 Robust overfitting in adversarial training
In standard training of deep networks, it is common practice to use overparameterized networks
and train for as long as possible. There are numerous studies that show, both theoretically and
empirically, that such practices surprisingly do not unduly harm the generalization performance
of the classifier [89]. Deep learning models can often be trained to zero training error, effectively
memorizing the training set, seemingly without causing any detrimental effects on the general-
ization performance. This phenomenon has been widely studied both from the theoretical [58]
and empirical perspectives [5], and remains such a hallmark of deep learning practice that it is
often taken for granted.

In this section, we empirically study this phenomenon in the setting of adversarial training,
finding that overfitting to the training set in this setting does in fact harm robust performance
to a very large degree. This is shown, for instance, in Figure 2.7 for adversarial training on
CIFAR-10, where the robust test error decreases immediately after the first learning rate decay,
and only increases beyond this point. We show that this phenomenon, which we refer to as
“robust overfitting”, can be observed on multiple datasets beyond CIFAR-10, including SVHN,
CIFAR-100, and ImageNet.

Based upon this observed effect, we show that the performance gains of many algorithmic
improvements upon PGD-based adversarial training [55, 83, 84, 91] can be matched by simply
early stopping during training. Specifically, by just using an earlier checkpoint, the robust per-
formance of adversarially trained deep networks can be drastically improved, to the point where
the original PGD-based adversarial training method can actually achieve the same robust per-
formance as state-of-the-art methods, a result which we evaluate externally [17]. For example,
vanilla PGD-based adversarial training [47] can achieve 56.8% robust test accuracy against a
PGD adversary, considering ℓ∞-norm ball perturbations with radius ϵ = 8/255, on CIFAR-10
when training is stopped early, on par with the 56.6% robust test accuracy reported by TRADES
[91] against the same adversary. We find that this phenomenon is not unique to ℓ∞-norm ball
perturbations and is also seen in adversarial training for robustness towards ℓ2-norm ball pertur-
bations. For instance, early stopping a model trained on CIFAR-10 against an ℓ2 adversary with
radius 128/255 can increase the robust test accuracy from 68.9% to 71.6%.

We further study various empirical properties of overfitting for adversarially robust training
and how they relate to standard training. Since the effects of such overfitting appear closely
tied to the learning rate schedule, we begin by investigating how changes to the learning rate
schedule affect the prevalence of robust overfitting and its impacts on model performance. We
next explore how known connections between the hypothesis class size and generalization in

21

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r

Test robust
Train robust

Test standard
Train standard

Figure 2.7: The learning curves for a robustly trained model replicating the experiment done by
Madry et al. [47] on CIFAR-10, plotting accuracy. The curves demonstrate robust overfitting;
shortly after the first learning rate decay the model momentarily attains 56.8% robust accuracy,
and is actually more robust than the model at the end of training, which only attains 48.6% robust
test accuracy against a 10-step PGD adversary for ℓ∞ radius of ϵ = 8/255. The learning rate is
decayed at 100 and 150 epochs.

deep networks translate to the robust setting, and show that the “double descent” generalization
curves seen in standard training [5] also hold for robust training [56]. However, although this
is used as a justification for the lack of overfitting in the standard setting, surprisingly, changing
the hypothesis class size does not actually mitigate the robust overfitting that is observed during
training.

Our final contribution is to investigate several techniques for preventing robust overfitting.
We first explore the effects of classic statistical approaches for combating overfitting beyond
early stopping, namely explicit ℓ1 and ℓ2 regularization. We then study more modern approaches
using data augmentation, including cutout [19], mixup [92], and semisupervised learning meth-
ods, which are known to empirically reduce overfitting in deep networks. Ultimately, while
these methods can mitigate robust overfitting to varying degrees, when trained to convergence,
we find that no other approach to combating robust overfitting performs better than simple early
stopping. In fact, even combining regularization methods with early stopping tends to not sig-
nificantly improve on early stopping alone. We find that the one exception is data augmentation
with semi-supervised learning, where although the test performance can vary wildly even when
training has converged, at select epochs it is possible to find a model with improved robust perfor-
mance over simple early stopping. The code for reproducing all the experiments in this section,
along with pre-trained model weights and training logs, is made publicly available.910

9https://github.com/locuslab/robust_overfitting
10Since there are over 75 models trained in this work, we selected a subset of pretrained models to release (e.g.

those which are for Wide ResNets since those take the most time to train, and can achieve the best performance.)

22

https://github.com/locuslab/robust_overfitting

2.3.1 Related work
Highly relevant to work presented in this section are those that study the general problem of
overfitting in machine learning. Both regularization and early stopping have been well-studied
in classical statistical settings to reduce overfitting and improve generalization. Although ℓ2 reg-
ularization (also known as weight decay) is commonly used for training deep networks [41],
early stopping is less commonly used despite being studied as an implicit regularizer for control-
ling model complexity for neural networks at least 30 years ago [54]. Indeed, it is now known
that the standard bias-variance trade-off from classical statistical learning theory fails to explain
why deep networks can generalize so well [89]. Consequently, it is now standard practice in
many modern deep learning tasks to train for as long as possible and use large overparameterized
models, since test set performance typically continues to improve past the point of dataset inter-
polation in what is known as “double descent” generalization [5, 56]. The generalization gap for
robust deep networks has also been studied from a learning theoretic perspective in the context
of data complexity [66] and Rademacher complexity [86].

Also relevant to this work are methods specific to deep learning that empirically reduce over-
fitting and improve performance of deep networks. For example, dropout is a commonly used
stochastic regularization technique that randomly drops units and their connections from the net-
work during training [71] with the intent of preventing complex co-adaptations on the training
data. Data augmentation is another technique frequently used when training deep networks that
has been empirically shown to reduce overfitting. Cutout [19] is a form of data augmentation
that randomly masks out a section of the input during training, which can be considered as aug-
menting the dataset with occlusions. Another technique known as mixup [92] trains on convex
combinations of pairs of data points and their corresponding labels to encourage linear behavior
in between data points. Semi-supervised learning methods augment the dataset with unlabeled
data, and have been shown to improve generalization when used in the adversarially robust set-
ting [1, 14, 88].

2.3.2 The effect of overfitting in adversarial training
In the standard, non-robust deep learning setting, it is common practice to train for as long as
possible to minimize the training loss, as modern convergence curves for deep learning generally
observe that the test loss continues to decrease with the training loss. On the contrary, for the
setting of adversarially robust training we discover that unlike the standard setting of deep net-
works, overfitting for adversarially robust training can result in worse test set performance. This
phenomenon, which we refer to as “robust overfitting”, results in convergence curves as shown in
Figure 2.7. Although training appears normal in the earlier stages, after the learning rate decays,
the robust test error briefly decreases but begins to increase as training progresses. This behavior
indicates that the optimal performance is not obtained at the end of training, unlike in standard
training for deep networks.

In order to better understand the scope of robust overfitting, we train a number of models on

11Note that the TRADES repository does not provide default training parameters or a PGD adversary for ℓ2
training on CIFAR-10 nor could we find any such description in the corresponding paper, and so we used our attack
parameters which were successful for PGD-based adversarial training (10 steps of size 15/255)

23

Table 2.8: Performance of adversarial training over a variety of datasets, training algorithms, and
perturbation threat models, showing the occurrence of robust overfitting.

Robust test accuracy (%) Standard test accuracy (%)
Dataset Method Norm ϵ Final Best Diff. Final Best Diff.

SVHN PGD ℓ∞ 8/255 54.4± 0.40 61.0 −6.6 90.0± 0.15 89.8 0.2
ℓ2 128/255 73.6± 0.27 74.8 −1.2 93.0± 0.23 92.8 0.2

CIFAR-10

PGD ℓ∞ 8/255 48.6± 0.41 56.8 −8.2 86.6± 0.19 86.1 0.5
ℓ2 128/255 68.9± 0.46 71.6 −2.7 89.0± 0.08 88.7 0.3

FGSM ℓ∞ 8/255 40.2± 0.09 46.3 −6.1 87.6± 0.21 86.4 1.2
ℓ2 128/255 68.4± 0.18 70.8 −2.4 90.1± 0.16 89.5 0.6

TRADES ℓ∞ 8/255 49.4± 0.31 55.0 −5.6 85.0± 0.24 84.1 0.9
ℓ2

11 128/255 41.8± 0.66 46.4 −4.6 66.1± 0.95 84.3 −18.2

CIFAR-100 PGD ℓ∞ 8/255 21.4± 0.39 28.1 −6.7 54.1± 0.23 52.7 1.4
ℓ2 128/255 37.5± 0.09 43.2 −5.7 60.1± 0.22 62.5 −2.4

ImageNet PGD ℓ∞ 4/255 14.5± 8.87 37.3 −22.8 49.5± 14.32 63.0 −13.5
ℓ2 76/255 5.2± 1.16 37.0 −31.8 36.8± 6.80 59.9 −23.1

different datasets (SVHN, CIFAR-10, CIFAR-100, and ImageNet), using different adversarial
training methods (PGD, FGSM, and TRADES), and with different perturbation threat models
(ℓ∞ and ℓ2). We observe the learning curves and compare the best and final checkpoint of each
training run. We find that robust overfitting occurs across all of these datasets, algorithmic ap-
proaches, and perturbation threat models, indicating that it is a general property of the adversarial
training formulation and not specific to a particular problem, as can be seen in Table 2.8. The fi-
nal accuracy is an average over the final 5 epochs of when the model has converged, whereas the
best accuracy is the highest test accuracy of all model checkpoints during training. We consis-
tently find that there is a significant gap between the best robust test performance during training
and the final robust test performance at the end of training, observing a decrease of 8.2% robust
accuracy for CIFAR-10 and 22.8% robust accuracy for ImageNet against an ℓ∞ adversary, to
highlight a few. Robust overfitting is also not specific to PGD-based adversarial training, and
affects fast adversarial training methods such FGSM adversarial training, as well as top perform-
ing algorithms for adversarially robust training such as TRADES [91]. We discuss these results,
as well as experimental details, below.

Implementation details We default to using the PreActResNet18 model architecture, with the
exception of Wide ResNet with width factor 10 for ℓ∞ adversaries on CIFAR-10 (for a proper
comparison to what is reported for TRADES), and ResNet50 for ImageNet. For CIFAR-10 and
CIFAR-100, we train with the SGD optimizer using a batch size of 128, a piecewise learning rate
decay set initially at 0.1 and divided by 10 at epochs 100 and 150, and weight decay 5 · 10−4.
For SVHN, we use the same parameters except with a starting learning rate of 0.01 instead. For
ImageNet, we fine-tune the pretrained model from Engstrom et al. [23] and continue training
with the exact same parameters with a learning rate of 0.001. We consider the ℓ∞ threat model

24

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r

Test robust
Train robust

Test standard
Train standard

Figure 2.8: Learning curves when training using PGD for robustness to ℓ2-norm ball perturba-
tions of radius 128/255 for CIFAR-10.

with radius 8/255, with the PGD adversary taking 10 steps of size 2/255 on all datasets except
for ImageNet, which uses an adversary with 5 steps of size 0.9/255 within a ball of radius 4/255.
We consider the ℓ2 threat model with radius 128/255, with the PGD adversary taking 10 steps of
size 15/255 on all datasets except for ImageNet, which uses an adversary with 7 steps of size 0.5
within a ball of radius 3.

Robust overfitting of various adversarial training methods on CIFAR-10

We first show that robust overfitting is not specific to one adversarial training algorithm, but
appears to be a universal phenomenon. We run several experiments on CIFAR-10 using PGD,
Uniform R+FGSM, and TRADES adversarial training, and show the occurrence of robust over-
fitting in each setting below.

PGD We have already shown in Figure 2.7 that robust overfitting occurs when using PGD
adversarial training for ℓ∞-norm ball perturbations. We also show in Figure 2.8 that robust
overfitting occurs for PGD when training for robustness towards ℓ2-norm ball perturbations.

Uniform R+FGSM For Uniform R+FGSM training on CIFAR-10, we find that when training
until convergence using the piecewise decay learning rate schedule, the recommended step size
of α = 10/255 for ℓ∞ training eventually results in catastrophic overfitting. We resort to reduc-
ing the step size of the ℓ∞ adversary to 7/255 to avoid catastrophic overfitting, but still see robust
overfitting. The convergence curves showing that robust overfitting still occurs in both the ℓ∞
and ℓ2 settings are shown in Figure 2.9. We emphasize catastrophic overfitting is a distinct and
separate behavior from robust overfitting: while catastrophic overfitting is a product of a model
overfitting to a weaker adversary and can be detected by a stronger adversary on the training set,
robust overfitting is a degradation of robust test set performance under the same adversary used

25

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

Er
ro

r
Test robust
Train robust

Test standard
Train standard

(a) ℓ∞

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

Er
ro

r

Test robust
Train robust

Test standard
Train standard

(b) ℓ2

Figure 2.9: Learning curves for adversarially training a CIFAR-10 classifier with a Uniform
R+FGSM adversary against different ℓp-norm ball threat models.

during training which cannot be detected on the training set. Indeed, even successful FGSM
adversarial training can suffer from robust overfitting when given enough epochs without catas-
trophically overfitting, as shown in Figure 2.9, suggesting that this is related to the generalization
properties of adversarially robust training rather than the strength of the adversary.

TRADES For TRADES we use the publicly released implementation of both the defense and
attack from Zhang et al. [91] to remove the potential for any confounding factors resulting from
differences in implementation. We consider two possible options for learning rate schedules:
the default schedule used by TRADES which decays at 75 and 90 epochs and runs for 100
epochs total (denoted as TRADES learning rate),12 and the standard learning rate schedule used
by Madry et al. [47] for PGD adversarial training, which decays at 100 epochs and 150 epochs
(denoted as Madry learning rate). We additionally explore both the PreActResNet18 architecture
that we use extensively in this work, as well as the Wide ResNet architecture which TRADES
uses. The corresponding learning curves for each combination of learning rate schedule and
model architecture can be found in Figure 2.10 for the ℓ∞ threat model. We note that in three
of the four cases, we see a clear instance of robust overfitting. Only the TRADES learning rate
schedule on the smaller, PreActResNet18 model doesn’t indicate any degradation in robust test
set performance. This is likely due the shortened learning rate schedule, which implicitly early
stops training, combined with the regularization induced by a smaller architecture having less
representational power. The shortened TRADES learning rate schedule does not show the full
extent of robust overfitting, as the models have not yet converged, whereas the Madry learning
rate schedule does (and also achieves a slightly better best checkpoint).

12This is the learning rate schedule described in the paper by Zhang et al. [91]. Note that this differs slightly from
the implementation in the TRADES repository, which uses the same schedule but only trains for 76 epochs, which
is one more epoch after decaying. In our reproduction of the TRADES experiment, the checkpoint after the initial
learning rate decay ends up with the best test performance over all 100 epochs.

26

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

Er
ro

r f
or

 P
re

ac
tiv

at
io

n
R

es
N

et
18

TRADES + TRADES learning rate

0 50 100 150 200

TRADES + Madry learning rate

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

Er
ro

r f
or

 W
id

eR
es

N
et

0 50 100 150 200

Standard training error
Standard test error
PGD test error

Epochs

Figure 2.10: Learning curves when training using TRADES for robustness to ℓ∞ perturbations of
radius 8/255 on combinations of different learning rate schedules and architectures for CIFAR-
10.

27

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

Er
ro

r
Test robust
Train robust

Test standard
Train standard

(a) ℓ∞

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

Er
ro

r

Test robust
Train robust

Test standard
Train standard

(b) ℓ2

Figure 2.11: Learning curves for adversarially training an SVHN classifier with a PGD adversary
against different ℓp-norm ball threat models.

Occurrence of robust overfitting on additional datasets

We next show that robust overfitting during adversarial training is not specific to one dataset, but
occurs on multiple datasets. We run several experiments on SVHN, CIFAR-100, and ImageNet,
and show the occurrence of robust overfitting in each setting below.

SVHN Figure 2.11 contains the convergence plots for the PGD-based adversarial training ex-
periments on SVHN for ℓ∞ and ℓ2 perturbations. We find that robust overfitting occurs even
earlier on this dataset, before the initial learning rate decay, indicating that the learning rate
threshold at which robust overfitting begins to occur has already been passed. The best check-
point for ℓ∞ achieves 61.0% robust accuracy, which is a 6.6% improvement over the 54.4%
robust accuracy achieved at the end of training.

CIFAR-100 Figure 2.12 contains the convergence plots for the PGD-based adversarial training
experiments on CIFAR-100 for ℓ∞ and ℓ2 perturbations respectively. We find that robust over-
fitting on this dataset reflects the CIFAR-10 case, occurring after the initial learning rate decay.
Note that in this case, both the robust test accuracy and the standard test accuracy are degraded
from robust overfitting. The best checkpoint for ℓ∞ achieves 28.1% robust accuracy, which is a
6.7% improvement over the 21.4% robust accuracy achieved at the end of training.

ImageNet Figure 2.13 contains the convergence plots for our continuation of PGD-based ad-
versarial training experiments on ImageNet for ℓ∞ and ℓ2 perturbations respectively. Using train-
ing logs provided by Engstrom et al. [23], we know the pretrained ℓ2 robust ImageNet model has
already been trained for 100 epochs at learning rate 0.1 followed by at least 10 epochs at learning
rate 0.01, and so we continue training from there and further decay the learning rate at the 150th
epoch to 0.001. Logs could not be found for the pretrained ℓ∞ model, and so it is unclear how

28

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Test robust
Train robust

Test standard
Train standard

(a) ℓ∞

0 50 100 150 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

Test robust
Train robust

Test standard
Train standard

(b) ℓ2

Figure 2.12: Learning curves for adversarially training a CIFAR-100 classifier with a PGD ad-
versary against different ℓp-norm ball threat models.

0 20 40 60 80 100 120
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 20 40 60 80 100 120
Epochs

0.4

0.5

0.6

0.7

0.8

0.9

Er
ro

r

Robust test error
Standard test error

Robust training error

Figure 2.13: Continuation of training released pre-trained ImageNet models for ℓ∞ (left) and ℓ2
(right). The number of epochs indicate the number of additional epochs the pre-trained models
were trained for.

29

long it was trained and under what schedule, however the pretrained model checkpoint indicates
that the model has been trained for at least one epoch at learning rate 0.001, so we continue
training from this point on. The ℓ∞ pre-trained model appears to have not yet converged for the
checkpointed learning rate, and so further training without any form of learning rate decay is able
to gradually deteriorate the performance of the model. The ℓ2 pre-trained model seems to have
already converged at the checkpointed learning rate, and so we do not see any significant changes
in performance until after decaying the learning rate down to 0.001. The learning curves here
are smoothed by taking an average over a consecutive 10 epoch window, as the actual curves are
quite noisy in comparison to other datasets. This noise is reflected in Table 2.8, where ImageNet
has the greatest variation in final accuracy (both robust and standard). Training the models fur-
ther can in fact improve the performance of the pretrained model slightly at specific checkpoints
(e.g. from 33.6% initial robust test accuracy up to 37.3% robust test accuracy at the best check-
point for ℓ∞), however eventually the ImageNet models suffer greatly from robust overfitting,
with an average decrease of 22.8% robust accuracy for the ℓ∞ model and 31.8% robust accuracy
for the ℓ2 model.

2.3.3 Learning rate schedules and robust overfitting

Since the change in performance appears to be closely linked with the first drop in the scheduled
learning rate decay, we explore how different learning rate schedules affect robust overfitting on
CIFAR-10, as shown in Figure 2.14. We consider the following types of learning rate schedules:

1. Piecewise decay: This schedule decays the learning rate by a constant factor at fixed
epochs. We begin with a learning rate of 0.1 and decay it by a factor of 10 at the 100th and
150th epochs, for 200 total epochs.

2. Multiple decay: This is a piecewise constant schedule which reduces the learning rate at
a linear rate in order to make the drop in learning rate less drastic. Specifically, the learning
rate begins at 0.1 and is reduced by 0.01 every 50 epochs over 500 total epochs, eventually
reaching a learning rate of 0.01 in the last 50 epochs.

3. Linear decay: This schedule does a linear interpolation of the drop from 0.1 to 0.01,
resulting in a piecewise linear schedule. The learning rate is trained at 0.1 for the first 100
epochs, then linearly reduced down to 0.01 over the next 50 epochs, and further trained at
0.01 for the last 50 epochs for a total of 200 epochs.

4. Cyclic: This schedule grows linearly from 0 to to some maximum learning rate λ, and then
is reduced linearly back to 0 over training as proposed by Smith [68]. We adopt the version
which peaks 2/5 of the way through training at a learning rate of 0.2 over 200 epochs.

5. Cosine: This schedule reduces the learning rate using the cosine function to interpolate
from 0.1 to 0 over 200 epochs.

We find that smoother learning rate schedules (which take smaller decay steps or interpolate
the change in learning rate over epochs) simply result in smoother curves that still exhibit robust
overfitting. Furthermore, with each smoother learning rate schedule, the best robust test accu-
racy during training is strictly worse than the best robust test accuracy during training with the
discrete piecewise decay schedule. The cyclic learning rate is the exception here, which has two

30

0 25 50 75 100 125 150 175 200
Epochs

0.50

0.55

0.60

0.65

0.70

R
ob

us
t t

es
t e

rr
or

Piecewise decay
Multiple decay
Linear decay
Cyclic
Cosine

Figure 2.14: Robust test error over training epochs for various learning rate schedules on CIFAR-
10. None of the alternative smoother learning rate schedules can achieve a peak performance
competitive with the standard piecewise decay learning rate, indicating that the peak performance
is obtained by having a single discrete jump. Note that the multiple decay schedule is actually
run for 500 epochs, but compressed into this plot for a clear comparison.

phases corresponding to when the learning rate is growing and shrinking, with the best check-
point occurring near the end of the second phase. In both phases, the robust performance begins
to improve, but then robust overfitting eventually occurs and keeps the model from improving
any further. We find that stretching the cyclic learning rate over a longer number of epochs (e.g.
300) results in a similar learning curve but with worse robust test accuracy for both the best
checkpoint and the final converged model.

Tuning the piecewise decay schedule Since the piecewise decay schedule appears to be the
most effective method for finding a model with the best robust performance, we investigate
whether this schedule can be potentially tuned to improve the robust performance of the best
checkpoint even further. The discrete piecewise decay schedule has three possible parameters:
the starting learning rate, the ending learning rate, and the epoch at which the decay takes effect.
We omit the last 50 epochs of the final decay, since the bulk of the impact from robust overfitting
occurs shortly after the first decay in this setting.

While tuning the starting learning rate and the decay epoch largely results in either similar
or worse performance, we find that adjusting the learning rate used after the decay epoch can
actually slightly improve the robust accuracy of the best checkpoint by 0.5%, as seen in Table
2.9. Note that robust overfitting still occurs in these tuned learning rate schedules as seen in
Figures 2.15, 2.16, and 2.17, which show the learning curves for each one of the models shown
in Table 2.9.

31

0 100
0.0

0.5

Er
ro

r

Learning rate = 0.06

0 100

Learning rate = 0.08

0 100

Learning rate = 0.3

0 100

Learning rate = 0.5

Epochs

Test robust err Train robust err Test err Train err

Figure 2.15: Learning curves for a piecewise decay schedule with a modified starting learning
rate.

0 100

0.25

0.50

0.75

Er
ro

r

Learning rate = 0.006

0 100

Learning rate = 0.008

0 100

Learning rate = 0.03

0 100

Learning rate = 0.05

Epochs

Test robust err Train robust err Test err Train err

Figure 2.16: Learning curves for a piecewise decay schedule with a modified ending learning
rate.

0 50 100

0.25

0.50

0.75

Er
ro

r

Drop epoch = 60.0

0 50 100

Drop epoch = 70.0

0 50 100

Drop epoch = 80.0

0 50 100

Drop epoch = 90.0

Epochs

Test robust err Train robust err Test err Train err

Figure 2.17: Learning curves for a piecewise decay schedule with a modified epoch at which the
decay takes effect.

32

Table 2.9: Tuning experiments using stochastic gradient descent to optimize the best robust test
accuracy obtained from the piecewise decay schedule for a PreActResNet18 on CIFAR-10.

Decay epoch Start LR End LR PGD acc. (%)

100 0.10 0.01 53.3

60

0.10 0.010

52.6
70 52.7
80 53.1
90 52.7

100

0.06

0.010

52.6
0.08 53.3
0.30 51.3
0.50 49.0

100 0.10

0.006 54.0
0.008 53.9
0.030 52.2
0.050 50.7

2.3.4 Early stopping to mitigate robust overfitting
Proper early stopping, an old form of implicit regularization, calculates a metric on a hold-
out validation set to determine when to stop training in order to prevent overfitting. Since the
test performance does not monotonically improve during adversarially robust training due to
robust overfitting, it is advantageous for robust networks to use early stopping to achieve the best
possible robust performance.

We find that, for example, the publicly released code for TRADES uses the best robust per-
formance on the test set from an earlier checkpoint in order to achieve their top reported result
of 56.6% robust accuracy against an ℓ∞ PGD adversary with ϵ = 8/255 on CIFAR-10, a num-
ber which was viewed as a substantial algorithmic improvement in adversarial robustness over
standard PGD-based adversarial training. In our own reproduction of the TRADES experiment,
we confirm that allowing the TRADES algorithm to train until convergence results in significant
degradation of robust performance. Specifically, the robust test accuracy of the model at the
checkpoint with the best performance on the test set is 55.9% whereas the robust test accuracy
of the model at the end of training has decreased to 49.4%.13

Surprisingly, when we early stop vanilla PGD adversarial training, selecting the model check-
point with the best performance on the test set, we find that PGD-based adversarial training per-
forms just as well as more recent algorithmic approaches such as TRADES. Specifically, when
using the same architecture (a Wide ResNet with depth 28 and width factor 10) and the same
20-step PGD adversary for evaluation used by Zhang et al. [91] for TRADES, the model check-
point from PGD training with the best performance on the test set achieves 57.7% robust test

13We use the public implementation of TRADES available at https://github.com/yaodongyu/
TRADES and simply run it to completion using the same learning rate decay schedule used by Madry et al. [47].

33

https://github.com/yaodongyu/TRADES
https://github.com/yaodongyu/TRADES

0 25 50 75 100 125 150 175 200
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

R
ob

us
t l

os
s

Test
Train
Val

Figure 2.18: Learning curves for a CIFAR-10 PreActResNet18 model trained with a hold-out
validation set of 1,000 examples. We find that the hold-out validation set is enough to reflect
the test set performance, and stopping based on the validation set is able to prevent overfitting
and recover 53.1% robust test accuracy, in comparison to 53.3% achieved by the best-performing
model checkpoint.

accuracy, which is actually slightly better than the best reported result for TRADES from Zhang
et al. [91].14

Early stopping based on the test set performance, however, leaks test set information and
goes against the traditional machine learning paradigm. Instead, we find that it is still possi-
ble to recover the best test performance achieved during training with a true hold-out validation
set. By holding out 1,000 examples from the CIFAR-10 training set for validation purposes, we
use validation-based early stopping to achieve 53.1% robust accuracy on the test set, in com-
parison to the 53.3% robust accuracy achieved by the best-performing model checkpoint for a
PreActResNet18 architecture. The resulting validation curve during training closely matches the
testing curve as seen in Figure 2.18, and suggests that although robust overfitting degrades the
robust test set performance, selecting the best checkpoint in adversarially robust training for deep
networks still does not appear to significantly overfit to the test set (which has been previously
observed in the standard, non-robust setting [62]).

2.3.5 Reconciling double descent curves

Modern generalization curves for deep learning typically show improved test set performance for
increased model complexity beyond data point interpolation in what is known as double descent
[5]. This suggests that overfitting by increasing model complexity using overparameterized neu-
ral networks is beneficial and improves test set performance. However, this appears to be at odds
with the main findings of this work; since training for longer can also be viewed as increasing

14We found that our implementation of the PGD adversary to be slightly more effective, increasing the robust test
accuracy of the TRADES model and the PGD trained model to 55.0% and 56.8% respectively.

34

Train

0.0

0.1

0.2

0.3

0.4

R
ob

us
t e

rr
or

Test

0.425

0.450

0.475

0.500

0.525

5 10 15 20

0.00

0.05

0.10

0.15

St
an

da
rd

 e
rr

or

5 10 15 20

0.14

0.16

0.18

0.20

0.22

Width factor

Best checkpoint Final model

Figure 2.19: Standard and robust error on the train and test set across Wide ResNets with varying
width factors depicting double descent for adversarially robust generalization, where hypothesis
class complexity is controlled by varying the width factor.

model complexity, the fact that training for longer results in worst test set performance seems to
contradict double descent.

We find that, while increasing either training time or architecture size can be viewed as in-
creasing model complexity, these two approaches actually have separate effects; training for
longer degrades the robust test set performance regardless of architecture size, while increasing
the model architecture size still improves the robust test set performance despite robust overfit-
ting. This was briefly noted by Nakkiran et al. [56] for the ℓ2 robust setting, and so in this section
we show that this generally holds also in the ℓ∞ robust setting.

We explore these properties by training multiple adversarially robust Wide ResNets [87]
with depth 28 and varying widths to control model complexity. All models were trained with the
same training parameters described in Section 2.3.2. We record the final model performance as
the average performance over the last 5 epochs with the corresponding width factor from training
until convergence, and save the checkpoint with the highest robust test accuracy measured during
training as the “best” checkpoint.

In Figure 2.19, we see that no matter how large the model architecture is, robust overfitting
still results in a significant gap between the best and final robust test performance. This can also
be visualized by looking at the learning curves for each width, shown in Figure 2.20. Notably, we
also see that adversarially robust training still produces the double descent generalization curve,

35

0.0

0.5

width factor 1.0 width factor 2.0 width factor 3.0 width factor 4.0

0.0

0.5

width factor 5.0 width factor 6.0 width factor 7.0 width factor 8.0

0 100 200
0.0

0.5

width factor 9.0

0 100 200

width factor 10.0

0 100 200

width factor 15.0

0 100 200

width factor 20.0

Epochs

Er
ro

r

Test robust err Train robust err Test err Train err

Figure 2.20: Learning curves for training Wide ResNets with different width factors.

as the robust test error increases and then decreases again with architecture size, suggesting that
the double descent and robust overfitting are separate phenomenon. Even the lowest robust test
error achieved during training continues to decrease with increased model complexity, suggesting
that larger architecture sizes are still beneficial for adversarially robust training despite robust
overfitting.

In contrast to the standard setting, we observe that the double descent occurs well before
robust interpolation of the training data at a width factor of 5, after which the robust test set
performance of the final model continues to improve with even larger architecture sizes. The
network with width factor 20, the largest that we could run on our hardware, achieves 51.2%
robust test accuracy at the end of training and 58.2% robust test accuracy at the best checkpoint.
This marks a further improvement over the more typical choice of width factor 10 which achieves
48.6% robust test accuracy at the end of training and 56.8% robust test accuracy at the best
checkpoint.

2.3.6 Exploring alternative methods to prevent robust overfitting

We also explore whether common methods for combating overfitting in standard training are suc-
cessful at mitigating robust overfitting in adversarial training. We run a series of ablation studies
on CIFAR-10 using classical and modern regularization techniques, yet ultimately find that no
technique performs as well in isolation as early stopping, as shown in Table 2.10. Unless oth-
erwise stated, we begin each experiment with the standard setup for ℓ∞ PGD-based adversarial

36

Table 2.10: Performance of adversarially robust training over a variety of regularization tech-
niques for PGD-based adversarial training on CIFAR-10 for ℓ∞ with radius 8/255.

PGD accuracy (%) Standard accuracy (%)
Regularization method Final Best Diff Final Best Diff

Early stopping w/ val 53.1 53.3 −0.2 81.8 81.8 0.0
ℓ1 regularization 47.0± 0.39 51.4 −4.4 84.1± 0.13 84.6 −0.5
ℓ2 regularization 48.6± 0.73 53.6 −5.0 84.3± 0.21 85.1 −0.8
Cutout 51.2± 0.79 53.3 −2.1 83.2± 0.21 83.6 −0.4
Mixup 50.9± 1.32 53.7 −2.8 76.7± 3.04 81.0 −4.3
Semi-supervised 52.9 59.8 −6.9 77.0± 3.82 82.8 −5.8

training with a 10-step adversary with step size 2/255 using a PreActResNet18 [34].

Explicit regularization

A classical method for preventing overfitting is to add an explicit regularization term to the loss,
penalizing the complexity of the model parameters. Specifically, the term is typically of the form
λΩ(θ), where θ contains the model parameters, Ω(θ) is some regularization penalty, and λ is a
hyperparameter to control the regularization effect. A typical choice for Ω is ℓp regularization for
p ∈ {1, 2}, where ℓ2 regularization is canonically known as weight decay and commonly used in
standard training of deep networks, and ℓ1 regularization is known to induce sparsity properties.

We explore the effects of using ℓ1 and ℓ2 regularization when training robust networks on
robust overfitting, and sweep across a range of hyperparameter values. 15. Although explicit reg-
ularization does improve the performance to some degree, on its own, it is still not as effective
as early stopping, with the best explicit regularizer achieving 44.8% robust test accuracy with
ℓ2 regularization and parameter λ = 5 · 10−3. Additionally, neither of these regularization tech-
niques can completely remove the detrimental effects of robust overfitting without drastically
over-regularizing the model. We include additional details about each regularization method
below.

ℓ1 regularization Figure 2.21 shows the training and test performance of models using various
degrees of ℓ1 regularization. We perform a search over regularization parameters λ = {5 ·
10−6, 5 · 10−5, 5 · 10−4, 5 · 10−3}, and find that both the final checkpoint and the best checkpoint
have an optimal regularization parameter of 5 · 10−5. Note that we only see robust overfitting at
smaller amounts of regularization, since the larger amounts of regularization actually regularize
the model to the point where the performance is being severely hurt. Figure 2.22 shows the
corresponding learning curves for these four models. We see clear robust overfitting for the
smaller two options in λ, and find no overfitting but highly regularized models for the larger two

15Proper parameter regularization only applies the penalty to the weights w of the affine transformations at each
layer, excluding the bias terms and batch normalization parameters.

37

Train

0.2

0.4

0.6

R
ob

us
t e

rr
or

Test

0.50

0.55

0.60

0.65

0.70

10−6 10−5 10−4

0.0

0.2

0.4

0.6

St
an

da
rd

 e
rr

or

10−6 10−5 10−4

0.2

0.3

0.4

0.5

0.6

`1 regularization

Best checkpoint Final model

Figure 2.21: Standard and robust performance on the train and test set using varying degrees of
ℓ1 regularization.

0 100 200
0.0

0.5

Er
ro

r

¸= 5e-07

0 100 200

¸= 5e-06

0 100 200

¸= 5e-05

0 100 200

¸= 0.0005

Epochs

Test robust err Train robust err Test err Train err

Figure 2.22: Learning curves for adversarial training using ℓ1 regularization.

38

Train

0.2

0.4

0.6

0.8

R
ob

us
t e

rr
or

Test

0.5

0.6

0.7

0.8

0.9

10−3 10−2 10−1 100 101

0.0

0.2

0.4

0.6

0.8

St
an

da
rd

 e
rr

or

10−3 10−2 10−1 100 101

0.2

0.4

0.6

0.8

`2 regularization

Best checkpoint Final model

Figure 2.23: Standard and robust performance on the train and test set using varying degrees of
ℓ2 regularization.

0.00

0.25

0.50

0.75

1.00
¸= 0.0005 ¸= 0.005 ¸= 0.01

0 50 100 150 200

0.00

0.25

0.50

0.75

1.00
¸= 0.05

0 50 100 150 200

¸= 0.5

0 50 100 150 200

¸= 5.0

Epochs

Er
ro

r

Test robust err Train robust err Test err Train err

Figure 2.24: Learning curves for adversarial training using ℓ2 regularization.

39

5 10 15 20
Cutout length

0.2

0.3

0.4

0.5
Tr

ai
n

ro
bu

st
 e

rr
or

5 10 15 20
Cutout length

0.475

0.500

0.525

0.550

0.575

Te
st

 ro
bu

st
 e

rr
or

Best checkpoint Final model

Figure 2.25: Standard and robust performance on the train and test set for varying cutout patch
lengths.

options, to the extent that there is no generalization gap and the training and test curves actually
appear to match.

ℓ2 regularization Figure 2.23 shows the training and test performance of models using various
degrees of ℓ2 regularization. We perform a search over regularization parameters λ = {5 · 10k}
for k ∈ {−4,−3,−2,−1, 0} as well as λ = 0.01. Note that 5 · 10−4 is a fairly widely used
value for weight decay in deep learning. We find that only the smallest choices for λ result in
robust overfitting (e.g. λ ≤ 0.1). However, inspecting the corresponding learning curves in
Figure 2.24 reveals that the larger choices for λ have a similar behavior to the larger forms of
ℓ1 regularization, and end up with highly regularized models whose test performance perfectly
matches the training performance at the cost of converging to a worse final robust test accuracy.

Data augmentation for deep learning

Data augmentation has been empirically shown to reduce overfitting in modern deep learning
tasks that involve very high-dimensional data by enhancing the quantity and diversity of the
training data. Such techniques range from simple augmentations like random cropping and hor-
izontal flipping to more recent approaches leveraging unlabeled data for semi-supervised learn-
ing, and some work has argued that robust deep learning requires more data than standard deep
learning [66]. We scan a range of hyperparameters for both the cutout [19] and mixup [92] data
augmentation techniques, and find a similar story to that of explicit ℓp regularization; either the
regularization effect of cutout and mixup is too low to prevent robust overfitting, or too high and
the model is over-regularized, as seen in Figures 2.25 for cutout and Figures 2.27 for mixup.
When trained to convergence, neither cutout nor mixup is as effective as early stopping.

Lastly, we additionally consider a semi-supervised data augmentation technique [1, 14, 88]
which uses a standard classifier to label unlabeled data for use in robust training. Although there
is a large gap between best and final robust performance, we find that this is primarily driven
by high variance in the robust test accuracy during training rather than from robust overfitting,
even when the model has converged. Due to this variance, the final model’s average robust

40

0.0

0.5

Cutout length 2.0 Cutout length 4.0 Cutout length 6.0 Cutout length 8.0

0.0

0.5

Cutout length 10.0 Cutout length 12.0 Cutout length 14.0 Cutout length 16.0

0 100 200
0.0

0.5

Cutout length 18.0

0 100 200

Cutout length 20.0

Epochs

A
cc

ur
ac

y

Test robust err Train robust err Test err Train err

Figure 2.26: Learning curves for adversarial training using cutout data augmentation with differ-
ent cutout patch lengths.

performance of 52.9% robust test accuracy is similar to the performance obtained by early stop-
ping. By combining early stopping with semi-supervised data augmentation, this variance can
be avoided. In fact, we find that the combination of early stopping and semi-supervised data aug-
mentation is the only method that results in significant improvement over early stopping alone,
resulting in 59.8% robust test accuracy.16 We include more details about each data augmentation
technique below.

Cutout To analyze the effect of cutout on generalization, we range the cutout hyperparameter
of patch length from 2 to 20. Figure 2.25 shows the training and test performance of models
using varying choices of patch lengths. Additionally, for each hyperparameter choice, we plot
the resulting learning curves in Figure 2.26. We find the optimal length of cutout patches to
be 14, which on its own is not quite as good as vanilla early stopping, but when combined with
early stopping merely matches the performance of vanilla early stopping. In all cases, we observe
robust overfitting to steadily degrade the robust test performance throughout training, with less
of an effect as we increase the cutout patch length.

Mixup When training using mixup, we vary the hyperparameter α from 0.2 to 2.0. The training
and test performance of models using varying degrees of mixup can be found in Figure 2.27. The

16We used the data from https://github.com/yaircarmon/semisup-adv containing 500K pseudo-
labeled TinyImages

41

https://github.com/yaircarmon/semisup-adv

0.5 1.0 1.5 2.0
®

0.60

0.65

0.70

0.75
Tr

ai
n

ro
bu

st
 e

rr
or

0.5 1.0 1.5 2.0
®

0.46

0.48

0.50

0.52

0.54

Te
st

 ro
bu

st
 e

rr
or

Best checkpoint Final model

Figure 2.27: Standard and robust performance on the train and test set for varying degrees of
mixup.

resulting learning curves for each choice of α can be found in Figure 2.28. For mixup, we find
an optimal parameter value of α = 1.4. Similar to cutout, when combined with early stopping, it
can only attain similar performance to vanilla early stopping, and otherwise converges to a worse
model. However, although the learning curves for mixup training are significantly noisier than
other methods, we do observe the robust test accuracy to steadily increase over training, indi-
cating that mixup does stop robust overfitting to some degree (but does not obtain significantly
better performance).

Semi-supervised learning For semi-supervised training, we use a batch size of 128 with equal
parts labeled CIFAR-10 data and pseudo-labeled TinyImages data, as recommended by Carmon
et al. [14]. Each epoch of training is now equivalent in computation to two epochs of standard
adversarial training. Note that the PreActResNet18 is a smaller architecture than used by Carmon
et al. [14], and so in our reproduction, the best checkpoint which achieves 59.8% accuracy is
about 2% lower than 61.5%, which is what Carmon et al. [14] can achieve with a Wide ResNet.
Note that in the typical adversarially robust setting without additional semi-supervised data, a
Wide ResNet can achieve about 3.5% higher accuracy than a PreActResNet18.

We observe that the semi-supervised approach does not exhibit severe robust overfitting, as
the smoothed learning curves tend to be somewhat relatively flat and don’t show significant
decreases in robust test accuracy. However, relative to the base setting of using only the original
dataset, the robust test performance is extremely variable, with a range spanning almost 10%
robust accuracy even when training accuracy is relatively flat and has converged. As a result, it
is critical to still use the best checkpoint even without robust overfitting, in order to avoid the
fluctuations in test performance induced by the augmented training data.

2.3.7 Discussion
Unlike in standard training, overfitting in robust adversarial training decays test set performance
during training in a wide variety of settings. While overfitting with larger architecture sizes
results in better test set generalization, it does not reduce the effect of robust overfitting. Our

42

0.25

0.50

0.75

® = 0.2 ® = 0.4 ® = 0.6 ® = 0.8

0.25

0.50

0.75

® = 1.0 ® = 1.2 ® = 1.4 ® = 1.6

0 100 200

0.25

0.50

0.75

® = 1.8

0 100 200

® = 2.0

Epochs

Er
ro

r

Test robust err Train robust err Test err Train err

Figure 2.28: Learning curves for adversarial training using mixup with different choices of hy-
perparameter α.

0 50 100 150 200
Epochs

0.2

0.4

0.6

0.8

Er
ro

r

Test robust
Train robust

Test standard
Train standard

Figure 2.29: Learning curves for robust training with semi-supervised data augmentation, where
we do not see a severe case of robust overfitting. When robust training accuracy has converged,
there is a significant amount of variance in the robust test accuracy, so the average final model
performance is on par with pure early stopping. Combining early stopping with semi-supervised
data augmentation to avoid this variance is the only method we find that significantly improves
on pure early stopping.

43

extensive suite of experiments testing the effect of implicit and explicit regularization methods
on preventing overfitting found that most of these techniques tend to over-regularize the model or
do not prevent robust overfitting, and all of them in isolation do not improve upon early stopping.

Especially due to the prevalence of robust overfitting in adversarial training, we note the im-
portance of using validation sets when performing model selection in this regime, and to analyze
the learning curves of their models. This work exposes a key difference in generalization proper-
ties between standard and robust training, which is not fully explained by either classic statistics
or modern deep learning, and re-establishes the competitiveness of the simplest adversarial train-
ing baseline.

44

Chapter 3

Robustness between the worst and average
case

Evaluating the robustness of machine learning models can be broadly interpreted as evaluating
their performance not just on a test set, but also evaluating the performance relative to some
additional (possibly domain-specific) uncertainty or bounds on the problems. Although there
are many formal definitions of robustness, most work in this area has focused on two particular
settings. We focused one of these settings, adversarial robustness, in Chapter 2 of this thesis. As
we discussed in Chapter 2, in the “classical” sense of robustness, we can consider evaluating the
classifier in terms of its worst-case loss under some perturbation set applied to the inputs, i.e.,
we could evaluate (via finite sample approximation)

Ex,y∼D

[
max
δ∈∆(x)

ℓ(h(x+ δ), y)

]
(3.1)

where D denotes a distribution over x, y pairs, h denotes the hypothesis function, ℓ denotes a
loss, and ∆(x) denotes some (input-dependent) uncertainty region. This formulation underlies
adversarial examples and also motivates the classical adversarial training approaches discussed in
Chapter 2. However, substantial work has also been done in evaluating the setting of robustness
to random perturbations, i.e., evaluating a classifier via the loss

Ex,y∼D
[
Eδ∼P(x)[ℓ(h(x+ δ), y)]

]
(3.2)

where now P(x) denotes some (again, input-dependent) distribution over possible perturbations.
This formulation underlies common data augmentation strategies in deep learning, as well as
most formulations of “natural” robustness [35] (even if not always written in this formal manner).

Until now, worst-case and average-case robustness have typically been seen as largely sepa-
rate notions. We believe there is inherent value in generalizing these two notions to place them in
a unified framework. The main criticism of worst-case robustness is that it focuses “too much”
on the worst case, while the criticism of average-case is that it is “not robust enough”. It seems
very likely that what people actually want in terms of robustness is precisely something in the
middle, between these two extremes.

In this chapter, we first present a natural generalization of robustness objectives between the
worst and average case, and show how these objectives can be used for evaluating, and training

45

for, intermediate robustness. We further extend initial work presented in the beginning of this
section, by applying the intermediate robustness objective for evaluating the foundation model
CLIP, with the goal of understanding the robustness gains from large-scale pre-training, and the
trade-offs that result from fine-tuning on a downstream task. We then present improvements for
intermediate-q robustness training, and explore alternative, more efficient, methods of training
for intermediate robustness that could perform similarly at a reduced computational cost.

3.1 Intermediate-q robustness
In this section, we advocate for a more fine-grained spectrum of robustness definitions, which
naturally interpolates between both these two extremes. In particular, we argue that robustness
to random perturbations and worst-case robustness can be naturally interpreted as (functional) ℓq
norms of the loss function evaluated over the perturbation distribution (which can be a uniform
distribution in the case of traditional adversarial loss). In particular, the random setting corre-
sponds to the choice of q = 1 and the adversarial setting corresponds to the choice of q = ∞.
We believe that it is also valuable and informative to consider the performance of classifiers in
a wide range in between these two extremes, i.e., the performance of “intermediate-q” robust-
ness. However, evaluating this intermediate-q robustness is non-trivial, owing to the fact that
it requires computing a high dimensional integral over the perturbation space. Thus, our main
technical contribution in this section is the proposal of a simple approach for evaluating the rel-
evant robustness norms, using the Markov chain Monte Carlo (MCMC) based path sampling
technique. Despite their seeming complexity, in this particular case the eventual estimators take
the very simple form of a geometric mean computed over samples from an annealed distribution
over the perturbation region.

We evaluate our approach on networks trained via standard training, data augmentation, and
adversarial training. In all the cases our proposed approach shows a clear trade-off between dif-
ferent levels of robustness that would missed by solely considering just the random or adversarial
perturbation setting. Furthermore, we show that our path sampling estimator based on Hamil-
tonian Monte Carlo (HMC) for intermediate-q robustness is vastly superior to naive estimates
produced e.g. by Monte Carlo sampling. We also highlight the ability to train networks using
these estimators to create classifiers more robust to these intermediate notions of robustness. The
code for reproducing experiments in this section is made publicly available1.

3.1.1 Related work

When considering robustness to more “realistic” perturbations, the focus is often shifted from
robustness to the worst-case perturbation within some set to robustness to random perturbations
[27, 35, 36, 37, 85]. It was been further studied whether such corruptions can universally improve
robustness to real-world distribution shifts, such as geographic location, or camera hardware [38].
While there have been significant research efforts on both sides of worst-case and average-case
robustness, there have been much fewer efforts focusing on robustness in between these two

1https://github.com/locuslab/intermediate_robustness

46

https://github.com/locuslab/intermediate_robustness

extremes. While some work such as Meunier et al. [51] could be interpreted as an interpola-
tion between random and adversarial noise, as could tilted empirical minimization [44, 45], a
modification of empirical risk minimization allowing for the influence of outliers to be increased
or decreased, generally the field faces a divide between studies on adversarial robustness and
robustness to random data perturbations.

Because our definition of intermediate-q robustness involves computation of a high dimen-
sional integral over a perturbation distribution, our work can also be related to methods for esti-
mating an intractable partition function of a probability distribution. The problem of computing
normalizing constants ties to the problem of computing differences in free energy in physics.
Several Monte Carlo sampling-based approaches exist for approximately estimating normalizing
constants. Importance sampling is one approach at estimating ratios of normalizing constants
that relies on sampling from some alternative density that approximates the target density. An
improvement over importance sampling, bridge sampling [7, 49] is a way of further reducing
the approximation errors that involves sampling from more than one approximate density to re-
duce the distance between the target and proposal densities. Taking this one step further, path
sampling [28], which originated under the name of thermodynamic integration in physics [59],
is an estimator that can be viewed as using infinitely many bridge densities to more accurately
approximate the partition function.

Sampling from these approximate densities is done using Markov chain Monte Carlo methods
(MCMC). When the distribution is non-differentiable, a method such as random-walk Metropolis
Hastings can be used. When the distribution is differentiable, Hamiltonian Monte Carlo methods
can be used to improve the sample efficiency the estimator [8, 21, 57]. Hamiltonian Monte Carlo
(HMC) is useful due to its avoidance of random walks, and is compatible with sampling in a
constrained space through use of reflection [53].

3.1.2 Defining a general robustness objective

We first make the simple observation that there is a natural interpolation between the notions of
adversarial robustness and robustness to random perturbations. Specifically, we note that both
these notions can be expressed as function ℓq norms over the perturbation space2. Specifically,
we define the following functional norm
Definition 1. f : Rn → R and density µ : Rn → R+,

∫
µ(x)dx = 1, let ∥f∥µ,q be the q-norm of

the function under this density

∥f∥µ,q = Ex∼µ [|f(x)|q]1/q =
(∫

|f(x)|qµ(x)dx
)1/q

(3.3)

Then random perturbation loss and adversarial perturbation loss simply correspond to two
extremes of this functional norm over the perturbation δ, as formalized by the following propo-
sition.

2We should emphasize that this use of ℓq norms is entirely orthogonal to the use of ℓp balls as perturbation
regions, commonly done in adversarial robustness. The ℓq norms here can be applied to any perturbation region, as
we will highlight.

47

Proposition 1. Let δ be a random variable with density µ and consider the expectation

Ex,y∼D

[
∥ℓ(h(x+ δ), y)∥µ,q

]
. (3.4)

Then (for a smooth loss ℓ) this corresponds to the expected loss on random samples from µ when
q = 1, and to the expected adversarial loss over the domain of µ when q = ∞.

This proposition follows immediately from the fact that losses are non-negative, and the fact
that the ℓ∞ norm is given by the pointwise maximum of the function, assuming a smooth loss
ℓ (i.e. not the zero-one loss). Note that the “traditional” adversarial loss actually arises more
specifically when q = ∞ and µ is a uniform distribution over some norm ball (unrelated to the
norm q). When we have 1 < q < ∞, we enable a full spectrum of robustness measurements,
which we refer to as intermediate-q robustness, that evaluates the performance of classifiers in
a wide range in between these two extreme cases. Furthermore, we argue that there are nat-
urally appealing properties of these intermediate-q robustness measures: whereas adversarial
robustness may overestimate the risk of what effectively amount to “measure zero” regions of
the perturbation space, random robustness may likewise fail to take into account smaller but
non-negligible regions that do contain areas of high loss.

As an example, when considering δ to have a Gaussian distribution, adversarial loss (q = ∞)
is not meaningful because the worst case perturbation can be arbitrarily far away from x. Mean-
while, random data augmentation with Gaussian noise (q = 1) is often insufficient for evalu-
ating robustness because random Gaussian samples are rarely good adversarial examples. Our
intermediate-q robustness allows us to consider a middle ground where the model is robust un-
der a certain degree of adversarial noise (stronger than randomly sampled Gaussian noise) while
the evaluation is not hindered by very rare events (e.g., an extremely low probability Gaussian
sample far away from x).

3.1.3 Path sampling estimation of intermediate-q robustness
Of course, simply writing the loss in this manner is not particularly useful on its own. In most
cases, the integral in Equation 3.3 cannot be computed exactly, and so we must resort to nu-
merical approximation methods. Specifically, in order to estimate the q-norm robustness for an
arbitrary nonlinear model h, loss ℓ, and (known) density µ, we consider the problem of comput-
ing the integral

Z :=

(∫
ℓ(h(x+ δ), y)qµ(δ)dδ

)(1/q)

. (3.5)

One could naively estimate this integral by using Monte Carlo sampling, and sample δ(1),
. . . , δ(m) randomly from density µ, and approximate the objective as the following,

ẐMC =
(1

m

m∑
i=1

ℓ(h(x+ δ(i)), y)q
)(1/q)

. (3.6)

However, because the integral in (3.5) will be dominated by values with large loss ℓ(h(x+δ), y),
simply using Monte Carlo sampling will be insufficient to approximate this integral well for
larger values of q, as random sampling will place too much weight on regions of low loss.

48

Instead, in this work we argue that it is beneficial to interpret the task at hand as one of
evaluating the partition function of a particular unnormalized probability density. Specifically,
we define an (unnormalized) density over the perturbation δ

p̃(δ) = ℓ(h(x+ δ), y)qµ(δ). (3.7)

Then clearly, just from construction, we see that the task of evaluating the partition function (the
normalizing constant) of this distribution is exactly the same as that of computing the integral of
interest.

The advantage of this perspective on the integral of interest, however, is that we can use a
wealth of techniques developed for partition function estimation in order to better estimate this
particular integral. Specifically, we argue to use the path sampling [28] approach, a Markov chain
Monte Carlo based method, to approximate the desired partition function. In fact, we show that
for the precise form of the integral in question, the eventual estimator produced by this method
takes on a very simple form: it consists of a geometric mean over samples generated from a
certain annealed distribution. This makes the estimator particularly simple to implement and
even in some cases to train networks based upon, via standard automatic differentiation toolkits.

We state our main result on the path sampling formulation of the integral of interest via the
following theorem.
Theorem 1. Consider the task of approximately computing the following integral:

Z :=

(∫
ℓ(h(x+ δ), y)qµ(δ)dδ

)(1/q)

.

Let {t(1), t(2), · · · , t(m)} be m scalars corresponding to linearly interpolated values from 0 to q.
For i = 1, . . . ,m, sample δ(i) from the following unnormalized density

δ(i) ∼ p(δ|t(i)), where, p(δ|t) ∝ ℓ(h(x+ δ), y)tµ(δ).

Then the following estimator, given by the geometric mean of the resulting samples

ẐPS :=
(m∏

i=1

ℓ(h(x+ δ(i)), y)
)1/m

. (3.8)

is a consistent estimator of our integral Z. Practically, the m samples can be drawn using
MCMC.

Proof. For notation completeness, we define the density

p(δ|t) = 1

z(t)
p̃(δ|t) (3.9)

where
p̃(δ|t) = ℓ(h(x+ δ), y)tµ(δ). (3.10)

and where z(t) denotes the partition function of this distribution

z(t) =

∫
p̃(δ|t)dδ. (3.11)

49

Taking the log of both sides of and differentiating with respect to t, we get:

d

dt
log(z(t)) =

d

dt
log

∫
p̃(δ|t)dδ

=

∫
d
dt
p̃(δ|t)dδ∫
p̃(δ|t)dδ

=

∫
p̃(δ|t)
z(t)

d
dt
p̃(δ|t)
p̃(δ|t)

dδ

= Eδ∼p(δ|t)

[d
dt

log p̃(δ|t)
]

= Eδ∼p(δ|t)

[
log ℓ((h(x+ δ), y))

]
(3.12)

where we use the fact that

log p̃(δ|t) = t log ℓ((h(x+ δ), y)). (3.13)

Then we can integrate (3.12) from 0 to q to get

log
[z(q)
z(0)

]
=

∫ q

0

Eδ∼p(δ|t)

[
log(ℓ(h(x+ δ), y))

]
dt (3.14)

Given in our case z(0) = 1 and incorporating the exponent of (1/q), we have

log
[
z(q)(1/q)

]
=

1

q

∫ q

0

Eδ∼p(δ|t)

[
log(ℓ(h(x+ δ), y))

]
dt (3.15)

Then the right hand side of Equation 3.15 can be interpreted as the expectation of log(ℓ(h(x +
δ), y)) over the joint distribution of (δ, t), where t is a random variable with a uniform distribution
in [0, q].

log
[
z(q)(1/q)

]
= Et∼U [0,q]

[
Eδ∼p(δ|t)

[
log(ℓ(h(x+ δ), y))

]]
(3.16)

Finally, sampling (δ(i), t(i)) for i = 1, . . . ,m from this joint distribution p(δ, t) (which we
can do by linearly interpolating t(i) between 0 and q and then sampling δ(i) from p(δ|t(i))), we
have the fact that

ẐPS := exp
(1

m

m∑
i=1

log(ℓ(h(x+ δ(i)), y))
)
=

(m∏
i=1

ℓ(h(x+ δ(i)), y)
)1/m

, (3.17)

is a consistent estimator of the desired integral.

The key point of this result is that it allows us to approximate the desired integral just through
the ability to sample from the distribution p(δ|t). While this is still a challenging task, sampling
from unnormalized probability distributions is a well-studied problem, and we can apply MCMC
sampling methods to this task. Further, while the sampling of (δ(i), t(i)) can be done in different
ways, we choose to linearly anneal t(i) from 0 to q, and then draw δ(i) ∼ p̃(δ|t) using some
MCMC sampler. This has the nice feature that it starts with sampling from an “easy” distribution
(when t = 0, the distribution over δ is simply given by µ), and gradually anneals to a more
peaked distribution as t increases. The resulting algorithm for evaluating a network using this
geometric mean estimator is shown in Algorithm 5.

50

Algorithm 5 Evaluating the intermediate-q robustness of a neural network function h using path
sampling estimation with m MCMC samples with x, y ∼ D for some norm q.

Initialize δ(0) randomly
for i = 1 . . .m do

Let t(i) := q · i−1
m−1

Sample δ(i) ∼ p(δ|t(i)) using MCMC from initial state δ(i−1)

end for
return

(∏m
i=1 ℓ(h(x+ δ(i)), y)

)1/m

3.1.4 Using Hamiltonian Monte Carlo to sample from the loss-based dis-
tribution

In order to generate the samples for the path sampling estimation (3.17) from the desired dis-
tribution p(δ, t), we use Markov chain Monte Carlo (MCMC) methods to sample δ from the
unnormalized distribution p̃(δ|t). When the loss is a differentiable function of the perturba-
tion distribution, we can take advantage of gradient-based methods to reduce random walk
behavior in MCMC sampling and achieve more efficient sampling. Hamiltonian Monte Carlo
(HMC) is one such gradient-based MCMC method that simulates Hamiltonian dynamics to im-
prove sample efficiency in high-dimensional spaces. HMC is based on the Hamiltonian function
H(q, p) = U(q) +K(p), where q is a d-dimensional position vector (corresponding to the cur-
rent sampling state), and p is a (fictitiously introduced) d-dimensional momentum vector. U(q)
is the “potential energy” of the system, which in our setting is just the negative log probabil-
ity density of the distribution we want to sample from, U(δ) = − log(ℓ(x + δ), y)tµ(δ)), and
K(p) = ||p||2/(2σ2) is the “kinetic energy” of the system. Putting this all together, the Hamilto-
nian function H is equal to the following:

H(δ, p) = −t log(ℓ(h(x+ δ), y)) + log µ(δ) +
||p||2

σ2
(3.18)

In order to make use of Hamiltonian dynamics in practice, Hamiltonian’s equations must
be discretized. The Leapfrog method is one such discretization of Hamiltonian dynamics, us-
ing a small stepsize α to discretize time and numerically integrating the system of differential
equations as follows:

p = p+ αt∇δ log(ℓ(h(x+ δ), y))/2

δ = δ + αp/σ2

p = p+ αt∇δ log(ℓ(h(x+ δ), y))/2

(3.19)

The HMC algorithm begins by first sampling a new momentum vector p ∼ N (0, σ2), inde-
pendent of the current state of δ. Then, the Leapfrog method in (3.19) is repeated for L steps
to propose a new Markov state (δ′, p′). This proposed state is then accepted with probability
min[1, exp(−∆H)], where ∆H = H(δ′, p′) − H(δ, p)). If the state (δ′, p′) is not accepted, the
next state is then set to (δ, p).

51

Given that in general, our perturbation distribution will likely be constrained in some manner,
we need to modify the HMC algorithm so that our proposals remain within the boundaries of the
perturbation distribution. Consider the case where our perturbation distribution is the ℓ∞ norm
ball with radius ϵ, so that each element of δ is constrained to be within −ϵ and ϵ. In order
to enforce these constraints while preserving the dynamics, we incorporate what is known as
reflection in HMC. In this case, after setting δ = δ + αp/σ2, we check if any δ′i > ϵ or δ′i < −ϵ
for i = 1, . . . , n. If so, we negate the corresponding momentum term, pi, and if δ′i > ϵ, we set
δi = 2ϵ − δ′i, whereas if δ′i < −ϵ, we set δ′i = −2ϵ − δ′i. We repeat this reflection step until δi
satisfies our constraints. One can think of this behavior as effectively simulating reflecting off a
physical boundary.

We note that we can still easily use the path sampling estimator for non-differentiable per-
turbations by replacing the Hamilton Monte Carlo sampler with any other non-gradient based
MCMC sampler, such as a random walk Metropolis. This is roughly similar to random sam-
pling, but with a more subtle weighting on terms that involve higher loss.

3.1.5 Estimating the partition function during training

We further consider the possibility of training networks using the estimators we have discussed
to achieve better intermediate robustness. However, this becomes less computationally feasible
due to the number of samples required to get a good estimate of the objective, due to the m× L
iterations of the path sampling estimator with Hamiltonian Monte Carlo, where L is the number
of Leapfrog steps. Additionally, the step size α and number of Leapfrog steps L in HMC require
careful tuning. However, for larger values of q, the path sampling estimator is essential to getting
accurate estimates of the training objective, as random sampling will be much less likely to come
across regions of the perturbation distribution with high loss. Path sampling draws samples
from the unnormalized loss distribution using MCMC, and so with increased q, there will be
higher weighting on samples that induce higher loss. The Hamiltonian Monte Carlo method has
the additional benefit of following the gradient (along with some noise), and so for larger q, even
with a small number of iterations, path sampling can have advantages over Monte Carlo sampling
during training.

3.1.6 Experiments

In this section, we evaluate the intermediate-q robustness of models trained using standard train-
ing, data augmentation, and adversarial training on MNIST and CIFAR-10 towards ℓ∞-norm
ball perturbations. We show that our proposed intermediate-q robustness objective interpolates
between the average loss over random perturbations, and worst-case loss over the perturbation
set (i.e. the adversarial loss). We compare approximations of the functional q-norm of the cross
entropy loss function evaluated over the perturbation distribution computed using Monte Carlo
sampling (3.6) to that computed using path sampling (3.8) with Hamiltonian Monte Carlo (Sec-
tion 3.1.4). We show that path sampling with HMC results in more accurate estimates for larger
values of q, more closely approaching the adversarial loss. We additionally show initial results of
training according to the intermediate-q robustness objective, which we improve upon in Section

52

Table 3.1: Evaluations of models according to standard, intermediate robust, and adversarial
robust (PGD-100) losses on MNIST considering ℓ∞-norm ball perturbations.

Train m. Standard ẐMC,1 ẐMC,10 ẐMC,102 ẐMC,103 ẐPS,1 ẐPS,10 ẐPS,102 ẐPS,103 PGD

Standard 0.028 0.043 0.140 0.251 0.268 0.043 0.160 1.420 4.456 11.649
±0.001 ±0.004 ±0.023 ±0.041 ±0.045 ±0.004 ±0.028 ±0.202 ±0.495 ±0.893

ẐMC,1 0.034 0.032 0.084 0.143 0.154 0.032 0.088 0.692 2.133 7.363
±0.001 ±0.000 ±0.001 ±0.002 ±0.003 ±0.000 ±0.002 ±0.026 ±0.087 ±0.435

ẐMC,10 0.027 0.026 0.058 0.098 0.105 0.026 0.058 0.412 1.336 3.722
±0.001 ±0.002 ±0.002 ±0.002 ±0.002 ±0.002 ±0.001 ±0.011 ±0.050 ±0.231

ẐMC,102 0.026 0.025 0.055 0.093 0.099 0.025 0.055 0.388 1.261 3.492
±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.015 ±0.069 ±0.291

ẐMC,103 0.026 0.025 0.055 0.093 0.100 0.025 0.055 0.390 1.268 3.488
±0.002 ±0.002 ±0.001 ±0.002 ±0.001 ±0.002 ±0.001 ±0.013 ±0.059 ±0.242

ẐPS,10 0.034 0.031 0.075 0.126 0.135 0.031 0.075 0.467 1.307 5.012
±0.001 ±0.001 ±0.001 ±0.002 ±0.003 ±0.001 ±0.001 ±0.014 ±0.029 ±0.353

ẐPS,102 0.030 0.028 0.060 0.099 0.107 0.028 0.058 0.304 0.816 2.613
±0.003 ±0.002 ±0.006 ±0.010 ±0.011 ±0.002 ±0.006 ±0.007 ±0.027 ±0.193

ẐPS,103 0.0240.0240.024 0.0240.0240.024 0.0470.0470.047 0.077 0.083 0.0240.0240.024 0.0450.0450.045 0.239 0.684 1.646
±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.001 ±0.008 ±0.037 ±0.095

PGD-50 0.032 0.039 0.051 0.0760.0760.076 0.0810.0810.081 0.039 0.048 0.1010.1010.101 0.1870.1870.187 0.2700.2700.270
±0.005 ±0.006 ±0.007 ±0.010 ±0.011 ±0.006 ±0.007 ±0.016 ±0.040 ±0.033

3.3. Lastly, we consider non-differentiable spatial transformations, and evaluate the intermediate-
q robustness of models trained using standard training, data augmentation, and intermediate-q
robust training on CIFAR-10 towards these transformations.

We refer to the intermediate-q robustness objective estimated via Monte Carlo sampling as
ẐMC,q, and the objective estimated via path sampling as ẐPS,q. Each training and evaluation run is
performed using a single Quadro RTX 8000 GPU. We report results from multiple training runs
using 3 different random seeds.

Robustness over the ℓ∞-norm ball

In order to easily translate the notion of intermediate-q robustness to that of adversarial robust-
ness, we consider perturbations uniformly distributed within an ℓ∞-norm ball with radius ϵ.

MNIST On MNIST, we train a set of models using standard training, data augmentation (corre-
sponding to ẐMC,1), and PGD adversarial training. For the model trained with data augmentation,
we train on m = 50 random perturbations per image. For PGD adversarial training, we use 50
PGD steps.We consider perturbations uniformly distributed within the ℓ∞-norm ball with radius
ϵ = 0.3. Each model is trained using the Adam optimizer for 10 epochs with a starting learning
rate of 0.001. We use a convolutional ReLU architecture with two convolutional layers with 32
and 64 channels and kernel sizes of 4 × 4, which are followed by a fully connected layer with
1024 units.

We compare the intermediate-q test robustness (ẐMC,q and ẐPS,q) of these models to the stan-
dard test loss and the adversarial test loss computed using PGD with 100 steps in Table 3.1. ẐMC,q

53

Table 3.2: Robust accuracy of models trained on MNIST for perturbations in the ℓ∞ ball of radius
ϵ = 0.3.

Train method PGD-100 accuracy (%)

Standard 4.69

ẐMC,1 25.21

ẐMC,10 43.54

ẐMC,102 47.27

ẐMC,103 45.45

ẐPS,10 43.57

ẐPS,102 65.11

ẐPS,103 69.45
PGD-50 91.55

is computed with m = 2000 samples, and ẐPS,q is computed with m = 100 samples, using HMC
with L = 20 Leapfrog steps. Our evaluations show that the intermediate-q robustness objec-
tive (ẐMC,q and ẐPS,q) naturally interpolates between the average loss over random perturbations
(ẐMC,1) and the adversarial loss with increasing values of q. For larger values of q, specifically
q = 102 and q = 103, the intermediate-q objective approximated via path sampling with HMC
(ẐPS,q) is a more accurate estimation of the desired integral than that approximated via Monte
Carlo estimation (ẐMC,q). This is inferred based on the fact that the value of ẐPS,q is higher and
more closely approaching the adversarial loss.

We additionally show the potential benefits of training using the intermediate-q robustness
objective. We train according to either ẐMC,q or ẐPS,q for q = {10, 102, 103}, and evaluate
the resulting models in Table 3.1. Because computing these estimates of the intermediate-q
objective is computationally expensive, during training we use m = 50 samples to compute
ẐMC,q, and m = 25 samples with L = 2 Leapfrog steps to compute ẐPS,q. We find that most
models trained according to ẐPS,q outperform those trained using ẐMC,q for the same value of q.
In other words, path sampling-based intermediate robust training results in a model with better
intermediate robustness. This suggests that even with a reasonably small number of samples,
path sampling can still result in a better estimate of the objective than Monte Carlo estimation.

We also include the test robust accuracy of each trained model (from the PGD-100 evalu-
ation) in Table 3.2, which shows that training using these estimates with increasingly large q
does indeed improve worst-case robust performance. We do not include standard accuracy here,
because on MNIST, an adversarially trained model does not lose much in terms of standard per-
formance, however on more challenging datasets, we would expect to see a similar decrease in
standard accuracy as we increase q, and thus one could choose a value of q based on the desired
trade-off between standard and robust accuracy.

CIFAR-10 We also evaluate models trained with standard training, data augmentation (ẐMC,1),
and PGD adversarial training on CIFAR-10. For the model trained with data augmentation, we
train on m = 10 random perturbations per image. For PGD experiments, we set the step size

54

Table 3.3: Evaluations of models according to standard, intermediate robust, and adversarial
robust (PGD-50) losses on CIFAR-10 considering ℓ∞-norm ball perturbations.

Train m. Standard ẐMC,1 ẐMC,10 ẐMC,102 ẐMC,103 ẐPS,1 ẐPS,10 ẐPS,102 ẐPS,103 PGD

Standard 0.3820.3820.382 0.453 0.787 1.153 1.216 0.453 0.841 2.718 4.991 18.142
±0.002 ±0.006 ±0.023 ±0.037 ±0.039 ±0.006 ±0.026 ±0.090 ±0.117 ±0.448

ẐMC,1 0.400 0.405 0.532 0.717 0.756 0.405 0.546 1.490 3.140 14.240
±0.005 ±0.004 ±0.006 ±0.009 ±0.010 ±0.004 ±0.006 ±0.015 ±0.017 ±0.011

ẐMC,10 0.393 0.3980.3980.398 0.468 0.598 0.630 0.3980.3980.398 0.471 1.037 2.365 12.051
±0.002 ±0.003 ±0.004 ±0.005 ±0.005 ±0.003 ±0.004 ±0.013 ±0.019 ±0.036

ẐMC,102 0.399 0.402 0.4660.4660.466 0.5890.5890.589 0.6200.6200.620 0.402 0.4680.4680.468 0.980 2.269 12.084
±0.003 ±0.003 ±0.003 ±0.003 ±0.004 ±0.003 ±0.003 ±0.006 ±0.020 ±0.135

ẐMC,103 0.399 0.405 0.469 0.593 0.625 0.405 0.471 0.993 2.302 12.173
±0.003 ±0.003 ±0.002 ±0.003 ±0.004 ±0.003 ±0.002 ±0.005 ±0.009 ±0.128

PGD-10 0.731 0.733 0.734 0.743 0.761 0.733 0.734 0.7430.7430.743 0.7960.7960.796 1.4111.4111.411
±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.005 ±0.003 ±0.009

such that α = 2.5 · ϵ/m, where m is the number of PGD steps, and we use early stopping for
adversarial training based on the adversarial validation loss. For PGD adversarial training, we
use 10 PGD steps. For experiments using Hamiltonian Monte Carlo, we use σ = 0.1, and set
the step size such that α = ρ · σ2/L. For q = 1 and q = 10, we set ρ = 0.6, for q = 100 we
set ρ = 0.4, and for q = 1000, we set ρ = 0.2. Each model is trained with a PreActResNet18
architecture using the SGD optimizer for 200 epochs with a starting learning rate of 0.1 that is
divided by 10 halfway and two thirds of the way through training, Nesterov momentum of 0.9,
and weight decay 0.0005. We do not use random flip/crop data augmentation that is typically
used for training CIFAR-10.

We evaluate the test performance of these models according to the standard cross entropy
loss, intermediate-q robustness objectives, and the adversarial loss, computed using PGD with
50 steps. The results are shown in Table 3.3. ẐMC,q is computed with m = 500 samples, and
ẐPS,q is computed with m = 50 samples, using HMC with L = 10 Leapfrog steps. The evalu-
ation results on CIFAR-10 are consistent with those on MNIST. The intermediate-q robustness
objective interpolates between the average and worst-case robustness objectives, and for larger
values of q, the path sampling estimate of the intermediate-q robustness objective is a more
accurate approximation as compared to the Monte Carlo estimate. The advantage of the path
sampling estimator over the Monte Carlo estimator is further illustrated in Figure 3.1, where we
show the convergence of their corresponding estimates of the functional q-norm of the loss over
this same perturbation distribution given increasing number of samples. Specifically, we com-
pare the approximated values ẐMC,q and ẐPS,q computed using the same number of “iterations”,
which corresponds to m for the Monte Carlo estimator, and m×L for the path sampling estima-
tor, where L = 10. While for q = 1 the estimates converge to the same value, for q = 100, the
estimates quickly diverge, with path sampling producing a much higher, more accurate estimate,
approaching the adversarial loss.

We additionally train on CIFAR-10 using the intermediate-q objective, as shown in Table 3.3.
However, the computational complexity given the number of samples required to get a reasonable
estimate makes training more challenging compared to the smaller MNIST dataset. While for

55

0 1000 2000 3000 4000 5000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5
E

st
im

at
e

Path sampling + HMC Monte Carlo

(a) q = 1

0 1000 2000 3000 4000 5000
Iterations

0.0

0.2

0.4

0.6

0.8

E
st

im
at

e

Path sampling + HMC Monte Carlo

(b) q = 10

0 1000 2000 3000 4000 5000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
st

im
at

e

Path sampling + HMC Monte Carlo

(c) q = 100

0 1000 2000 3000 4000 5000
Iterations

0

1

2

3

4

E
st

im
at

e

Path sampling + HMC Monte Carlo

(d) q = 1000

Figure 3.1: Convergence of path sampling and Monte Carlo estimations of the objective Ẑq

for different values of q on a single mini-batch of CIFAR-10 test data given an ℓ∞-norm ball
perturbation distribution.

models trained with ẐMC,q, we do see an improvement in intermediate-q robust performance from
training with q = 10 vs. q = 1, training using values of q larger than 10 does not provide much,
if any, additional benefit. Given the same number of iterations, we were not able to improve
upon these results by training using the path sampling estimator, using m = 5 samples and
L = 2 Leapfrog steps, suggesting that this number of samples is not large enough to get a good
estimate of the objective. However, we show later, in Section 3.3, how using more samples and
Leapfrog steps can improve training in this setting.

Robustness over (non-differentiable) spatial transformations

In order to show that the path sampling estimator can naturally be extended to non-differentiable
perturbations, we consider a perturbation set consisting of parameterizations of spatial transfor-
mations on CIFAR-10. The parameters of the spatial transformations include horizontal flips,

56

Table 3.4: Evaluations of models according to standard, intermediate robust, and worst-case
robust losses on CIFAR-10 considering spatial transformations

Train m. Standard ẐMC,1 ẐMC,10 ẐMC,102 ẐMC,103 ẐPS,1 ẐPS,10 ẐPS,102 ẐPS,103 Adv.

Standard 0.186 0.450 2.268 3.687 3.865 0.444 2.450 4.636 4.889 5.625
±0.007 ±0.017 ±0.067 ±0.095 ±0.114 ±0.017 ±0.068 ±0.113 ±0.111 ±0.134

ẐMC,1 0.1540.1540.154 0.1910.1910.191 0.8000.8000.800 1.2461.2461.246 1.3001.3001.300 0.1860.1860.186 0.8790.8790.879 1.615 1.711 2.021
±0.011 ±0.002 ±0.026 ±0.024 ±0.023 ±0.004 ±0.018 ±0.039 ±0.018 ±0.036

ẐMC,10 0.963 1.019 1.086 1.348 1.423 1.015 1.078 1.4161.4161.416 1.5021.5021.502 1.5961.5961.596
±0.014 ±0.012 ±0.010 ±0.027 ±0.029 ±0.012 ±0.010 ±0.033 ±0.078 ±0.038

ẐMC,102 2.014 2.131 2.131 2.137 2.164 2.130 2.131 2.136 2.171 2.190
±0.001 ±0.002 ±0.001 ±0.002 ±0.001 ±0.002 ±0.002 ±0.002 ±0.001 ±0.006

rotations between −10 to 10 degrees, scaling factors between 0.9 to 1.1, and cropping between
0 to 4 pixels horizontally and vertically. Because the applied spatial perturbations are non-
differentiable, in place of Hamiltonian Monte Carlo we use Gaussian random walk Metropolis
Hastings to sample from the unnormalized loss distribution. Specifically, we use the following
proposal distributions: 1) perform a horizontal flip with probability 0.5; 2) scale the image by
resizing by a factor of r ∼ N (0, 0.5); 3) rotate d degrees with d ∼ N (0, 5); 4) crop x or y in
the horizontal or vertical direction, each drawn i.i.d. ∼ N (0, 2) and then rounded to the nearest
integer value. Additionally, at each value of the annealed t, we perform 20 burn-in steps and only
keep the last value for estimation purposes.

Unless otherwise specified, the training setup is the same as described in Section 3.1.6 for
CIFAR-10. We train a standard model on CIFAR-10 for 50 epochs and train according to ẐMC,q

(for q ∈ {1, 10, 100}) for 200 epochs. We use a learning rate schedule that linearly increases from
0 to the maximum value of 0.1 for the first two fifths of training epochs, and then linearly de-
creases to 0. When training using ẐMC,q, we do not perform random flip/crop data augmentation.
For evaluation, estimates ẐMC,q and ẐPS,q are computed with m = 500 samples. For training,
For training, we use m = 10 samples to compute capture the entire spectrum of robustness. Due
to the computational complexity, we only evaluate on the first 1000 CIFAR-10 test examples.
The adversarial loss is approximated by averaging the maximum loss value encountered for each
example during the Metropolis Hastings sampling process.

For each model, we compare the estimates of the functional q-norm of the loss over this
perturbation distribution generated by the Monte Carlo estimator to those generated by the path
sampling estimator using Gaussian random-walk Metropolis sampling. The results in Table 3.4
show that with larger q, the path sampling estimator produces better (higher) estimates than ran-
dom sampling. For q = 103, the path sampling estimation approaches the adversarial loss over
the transformation space, suggesting that this estimator, even without the advantage of Hamil-
tonian Monte Carlo, can effectively capture the entire spectrum of robustness. The convergence
plots for estimating the objective for q = 1 and q = 10 are shown in Figure 3.2.

As with the case of the ℓ∞-norm ball perturbation distribution on CIFAR-10, a larger number
of samples are needed to get good estimates of the desired integral, making training using these
estimates challenging, as shown by the lack of improvement in robust performance for larger
values of q for models trained according to ẐMC,q.

57

0 200 400 600 800 1000
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6
E

st
im

at
e

Path sampling + MCMC Monte Carlo

(a) q = 1

0 200 400 600 800 1000
Iterations

0

1

2

3

4

E
st

im
at

e

Path sampling + MCMC Monte Carlo

(b) q = 10

Figure 3.2: Convergence of path sampling and Monte Carlo estimators on CIFAR-10 (spatial
transformations).

3.1.7 Discussion

In this section, we proposed a definition of intermediate-q robustness that smooths the gap be-
tween robustness to random perturbations and adversarial robustness by generalizing these no-
tions of robustness as functional ℓq norms of the loss function over the perturbation distribu-
tion. In order to evaluate intermediate-q robustness in practice, we introduced an approach for
approximating the high dimensional integral over the perturbation distribution that uses path
sampling, an effective estimator based on MCMC sampling. We showed that across different
datasets, models trained on different training objectives, and different perturbation distributions
(both differentiable and non-differentiable cases), our path sampling approach produces much
better estimates of the integral than simple Monte Carlo sampling. Additionally, we illustrated
the benefit of using the gradient-based Hamiltonian Monte Carlo method as the MCMC sampler
when the loss is differentiable with respect to the perturbation distribution. We further illus-
trated that the intermediate-q objective is differentiable, and can be used for training. In the next
section, we’ll discuss how we can further improve training for intermediate robustness, and we
consider alternatives to training using the intermediate-q robustness objective.

While we showed the utility of our proposed intermediate robustness metric for evaluating
models on a range of robustness values, we note that it is not entirely clear in practice how to
choose a value of q to evaluate on. Future work could study how to make this a more interpretable
parameter, and additionally how to better evaluate these robustness levels in terms of accuracy.

3.2 Evaluating the robustness of CLIP

In this section, we consider evaluating the robustness of foundation models [9] using the intermediate-
q robustness metric. Increasingly, these large models trained on vast amounts of diverse data are
made publicly available, such as OpenAI’s CLIP (Contrastive Language–Image Pre-training)

58

model [61]. CLIP models are trained on 400 million image/text pairs, with the task of predicting
which text is paired with a given image. The zero-shot performance of these models on a variety
of tasks is often on par with state-of-the-art models trained using standard supervised learning.
CLIP can also be easily fine-tuned for a given task, which is appealing due to the reduction in
training time as compared to training a model from scratch, and the diverse pre-training com-
bined with fine-tuning can often improve the final performance of the model on a given dataset
as compared to standard supervised learning. Zero-shot CLIP models have been deemed “ro-
bust” in the sense that these models have been shown to generalize well across tasks and across
distribution shifts. However, while zero-shot CLIP has been shown to robust in this sense of
being able to generalize to different tasks and distributions, CLIP is non-robust in the sense that
it is still susceptible to adversarial examples, resulting in 0% adversarial accuracy [26].

We evaluate CLIP in the context of intermediate robustness, between the worst and average-
case. The adversarial robustness objective is not entirely useful for comparing non-adversarially
trained models, given the fact that even models pre-trained on vast amounts of data are still
susceptible to small additive adversarial perturbations. However, comparing models using the
intermediate robustness objectives we have discussed in this chapter could give us a better idea of
how pre-training on vast, diverse sets of data (without any specific form of robust training) affects
robustness beyond the average-case. While it has been shown that adversarial training requires
substantially more samples than standard training to achieve adversarial robustness [66], the
effects of sample complexity and dataset diversity on a (non-adversarially) pre-trained model’s
test-time robustness remain an open question.

We further study how the robustness of CLIP is affected by fine-tuning a linear classifier on
top of the model for a particular task. It has been shown that fine-tuning a model on a downstream
task can degrade the robustness of the model to distribution shifts [42]. To understand how
this relates to robustness to corruptions, we study the effect of fine-tuning on robustness when
considering input perturbations rather than distribution shifts. While several works have tried
incorporating adversarial training methods in the pre-training phase, and studied how adversarial
robustness transfers during fine-tuning [15, 24], in this work, we study how the intermediate
robustness of the model is affected by the large-scale pre-training process and the fine-tuning
process, without any adversarial training in either step.

3.2.1 Intermediate-q robustness of CLIP
We evaluate zero-shot and fine-tuned CLIP models, along with a model trained from scratch
with no extra data, on the CIFAR-10 dataset. For simplicity, and ease of training a model from
scratch, we evaluate the CLIP model with the ResNet50 architecture. We evaluate the robustness
of each of these models towards ℓ∞-norm ball perturbations and Gaussian perturbations, using
the intermediate-q robustness objective as well as the quantile accuracy metric from Robey et al.
[65]. We find that while in terms of quantile accuracy, the zero-shot CLIP model performs worse
than the fine-tuned and standard (trained from scratch) models, our intermediate-q robustness
objective shows a different result. Ultimately, we find that as we increase q, effectively increas-
ing the evaluation robustness level, at a certain point the zero-shot CLIP model overtakes the
fine-tuned and standard models, having better intermediate robustness. This shows that first, our
intermediate-q robustness objective shows properties of models that other objectives do not, and

59

Table 3.5: Evaluations of intermediate-q robustness on CIFAR-10 towards perturbations uni-
formly distributed within the ℓ∞-norm ball with ϵ = 8/255.

Train method Standard ẐMC,1 ẐPS,10 ẐPS,102 ẐPS,103 PGD-50

Standard 0.1750.1750.175 0.304 0.854 4.999 14.686 50.791
CLIP zero-shot 1.030 1.144 1.384 2.6022.6022.602 4.9954.9954.995 14.13014.13014.130
CLIP fine-tuned 0.273 0.2890.2890.289 0.7750.7750.775 4.275 11.135 45.752

0 200 400 600 800 1000
q

0

2

4

6

8

10

12

14

Z q

CLIP zero-shot
CLIP fine-tuned
Standard

Figure 3.3: Estimated intermediate-q robust loss (Ẑq) over perturbations uniformly distributed
within the ℓ∞-norm ball with ϵ = 8.255, evaluated at different robustness levels (q).

second, that zero-shot CLIP does exhibit some more than average robustness to noise perturba-
tions.

3.2.2 Evaluations on CIFAR-10

Implementation details For exact comparison purposes, we train a ResNet50 from scratch on
CIFAR-10, using the same ResNet50 implementation used for CLIP3. Note that this particular
architecture takes inputs of size 224 × 224, and so we resize the 32 × 32 CIFAR-10 images
to 224 × 224 during training. For the fine-tuned model, we append a linear head to the CLIP
ResNet50 model and fine-tune (updating all model parameters) on CIFAR-10 for 100 epochs
using a starting learning rate of 0.005. For the model trained from scratch, we train for 200
epochs using a starting learning rate of 0.1. For both models, we train using SGD, with mixed
precision, weight decay 5 · 10−4, momentum 0.9, and use a cosine decay learning rate schedule.
As in the previous section, we use m = 100 perturbation samples to evaluate each metric, and
L = 10 Leapfrog steps for the path sampling-based objective. We apply the perturbations at the
32× 32 resolution and then resize the images to 224× 224.

3https://github.com/openai/CLIP

60

https://github.com/openai/CLIP

Table 3.6: Accuracy (%) on ℓ∞ perturbations with ϵ = 8/255 on CIFAR-10.

ProbAcc(ρ)
Method Standard Rand. 0.1 0.05 0.01 PGD-50

Standard 95.2495.2495.24 91.96 87.72 86.00 81.58 0.00
CLIP zero-shot 67.09 61.10 42.70 37.35 27.08 0.00
CLIP fine-tuned 95.22 93.3693.3693.36 88.4488.4488.44 86.9286.9286.92 82.2482.2482.24 0.00

Table 3.7: Evaluations of intermediate-q robustness on CIFAR-10 towards Gaussian perturba-
tions with σ = 0.1

Train method Standard ẐMC,1 ẐPS,10 ẐPS,102 ẐPS,103 PGD-50

Standard 0.1750.1750.175 3.816 6.159 16.723 39.354 39.838
CLIP zero-shot 1.030 2.2772.2772.277 2.3372.3372.337 3.6583.6583.658 6.1706.1706.170 13.66013.66013.660
CLIP fine-tuned 0.273 4.581 6.242 15.304 32.444 34.393

Robustness to ℓ∞-norm ball perturbations We first consider robustness towards perturba-
tions uniformly distributed within the ℓ∞-norm ball with ϵ = 128/255. We compare intermediate-
q robustness in Table 3.5 for different values of q. While for q = 1 and q = 10, the fine-tuned
CLIP model has the lowest intermediate robust loss, at higher robustness levels beyond q = 10,
we find the zero-shot CLIP model has significantly better intermediate robustness. We see that
the fine-tuned model has better intermediate robustness than the standard model (trained from
scratch) for large values of q, suggesting that the model still retains some of its robust properties
from the pre-training phase. These results can be visualized for additional values of q in Figure
3.3. We find that these robustness results additionally hold for the adversarial loss, computed
using PGD, with the zero-shot model having the lowest loss value. However, we show that these
findings are not reflected by the quantile accuracy metric in Table 3.6, where we observe the fine-
tuned CLIP model has the highest accuracy on all values of ρ. Consistent with findings from the
previous section, the different results suggest that the quantile accuracy metric considers a less
strict notion of robustness, not taking low-probability, large loss-inducing samples as strongly
into account.

Robustness to Gaussian perturbations We also compare the robustness of these models to
isotropic Gaussian perturbations with σ = 0.1. We compare intermediate-q robustness in Table
3.7 for different values of q, and plot additional values of q in 3.4. For this more challenging
perturbation distribution, we find that the zero-shot CLIP model has the best intermediate-q ro-
bustness for all evaluated values of q. Interestingly, this is not the case for accuracy on random
Gaussian perturbations, shown in Table 3.8. Rather, for the quantile accuracy metric, the stan-
dard model (trained from scratch) has the highest accuracy for each value of ρ. We hypothesize
that this could be due to the fact that the quantile accuracy does not take overconfident, incorrect
predictions into account.

61

0 200 400 600 800 1000
q

5

10

15

20

25

30

35

40

Z q

CLIP zero-shot
CLIP fine-tuned
Standard

Figure 3.4: Estimated intermediate-q robust loss (Ẑq) over Gaussian perturbations with σ = 0.1,
evaluated at different robustness levels (q).

Table 3.8: Accuracy (%) on Gaussian perturbations with σ = 0.1 on CIFAR-10. PGD here
considers ℓ2 perturbations.

ProbAcc(ρ)
Method Standard Rand. 0.1 0.05 0.01 PGD

Standard 95.2495.2495.24 31.0531.0531.05 16.1816.1816.18 13.5213.5213.52 9.139.139.13 0.08
CLIP zero-shot 67.09 18.57 5.40 3.32 0.78 0.00
CLIP fine-tuned 95.22 28.80 11.52 8.09 3.71 0.200.200.20

3.2.3 Discussion

In this section, we evaluated the intermediate robustness of the large, pre-trained CLIP model
to better understand how pre-training on large diverse datasets affects robustness to input cor-
ruptions. We found that the intermediate-q objective shows a robustness property of zero-shot
CLIP that other objectives do not. While these are rather preliminary findings on the robustness
of large-scale pre-trained networks to input corruptions, they present interesting directions for
future work. For example, one could use the intermediate-q objective to evaluate different fine-
tuning methods, many of which have been proposed to improve out-of-distribution robustness
preservation. Some examples of such fine-tuning methods include the following: Kumar et al.
[42] suggest an alternative strategy of linear probing followed by fine-tuning for preserving the
robustness to distribution shifts. Model soups, constructed by averaging the weights of multiple
fine-tuned models, have also been shown to have improved robustness [80]. Wortsman et al. [81]
interpolate the weights of fine-tuned and zero-shot models, and Goyal et al. [31] fine-tune us-
ing the contrastive loss used for CLIP pre-training with the end result of improving downstream
robustness. Ultimately, evaluating resulting fine-tuned models according to intermediate-q ro-
bustness metrics could help better enlighten us on the advantages and disadvantages of different

62

fine-tuning methods.

3.3 Improved training for intermediate robustness
In this section, we discuss work towards further improving training for intermediate robustness.
Because approximating the intermediate-q robustness objective requires multiple MCMC sam-
ples per training image, the computational complexity of training according to this objective is
non-trivial. In order to reduce this computational burden, we first look at applying the training
acceleration techniques discussed in Section 2.2.3, e.g. mixed precision arithmetic and cyclic
learning rate schedules. The cyclic learning rate schedule allows us to reduce the number of
epochs required for training from 200 to 50 on CIFAR-10, for example, and mixed precision
arithmetic reduces the time to complete one epoch of training. By taking advantage of these
computational speedups, we can use more samples m and Leapfrog steps L during training to
improve the estimate of the intermediate-q robustness objective without significantly increasing
the total training time.

An additional challenge of training according to the intermediate-q robustness objective when
using the path sampling estimator with Hamiltonian Monte Carlo is tuning the HMC parameters,
which are described in more detail in Section 3.1.4. The step size α and number of Leapfrog
steps L determine the trajectory length αL and must be carefully tuned for HMC to work well.
Given a fixed number of Leapfrog steps, too large of a step size and the algorithm will reject too
many proposals, whereas too small of a step size will result in wasted computation. Similarly, if
L is too large, then the trajectory can “loop back” to the initial state, and if L is too small, then
the resulting samples will be highly correlated. Either case is suboptimal for the convergence of
the estimator, and will likely result in an inaccurate approximation of the objective given a fixed
number of samples. While several works have proposed methods for automatically tuning the
HMC parameters [39, 40] to meet an optimal acceptance rate of 65% [57], we choose to use a
simple incremental update approach that we find works well in practice for our purposes, without
significantly affecting the total training time. We find that automatically tuning the HMC param-
eters, along with using more samples and Leapfrog iterations, improves upon preliminary results
presented in Section 3.1.6. Specifically, we find that models trained using the path sampling-
based objective greatly outperform the models trained using the Monte Carlo-based objective for
the same value of q.

Finally, we explore alternatives to training using the intermediate-q robustness metric, con-
sidering more efficient training methods that could be used to train models that to intermediate
robustness levels. While we find that the models trained according to the path-sampling based
objectives perform quite well in terms of intermediate robustness when compared to those trained
according to the Monte Carlo-based objectives, and we use training acceleration techniques to
make training more efficient, we ultimately admit that it is still a rather expensive training pro-
cedure. For this reason, we consider other training methods that balance standard and robust
performance in some manner, and evaluate the intermediate-q robustness of the resulting mod-
els, to determine the best alternative. Specifically, we train models using TRADES varying the
trade-off between standard and adversarial performance, probabilistic robustness (PRL) varying
the robustness tolerance, and PGD varying the perturbation size. We find that with the optimal

63

hyperparameter for a given robustness evaluation level, these alternative training methods can
result in similar robustness to the model trained using the path sampling-based objective at that
value of q. In some cases, the best setting of the alternative training methods we consider, can
outperform the path sampling model trained. Ultimately, this study sheds more light on how to
best train for robustness between the worst and average case.

3.3.1 Related work

Tuning MCMC parameters In Markov chain Monte Carlo (MCMC) sampling, often a burn-
in period is used until the Markov chain converges to the target distribution, such that these initial
burn-in samples are discarded. One common practice is to tune any MCMC parameters during
the burn-in phase, and then freeze the parameters during sampling thereafter [29]. Hamiltonian
Monte Carlo, discussed in Section 3.1.4, is one of the more efficient MCMC sampling meth-
ods. However this efficiency depends largely on two parameters: the step size α and number of
Leapfrog steps L. There exists a large body of work on methods for automatically tuning the
HMC parameters [39, 40]. However, we simply use the basic approach of using a fixed number
of Leapfrog steps L and adjusting the step size until the sampling acceptance rate is close to
optimal. The optimal acceptance rate for HMC can be analytically derived, and is 65% [57].

Alternative methods for balancing robustness TRADES, discussed in Section 2.1, is an ad-
versarial training method that balances robust and standard accuracy by minimizing a surrogate
loss with the first term encouraging low standard error, and the second term, weighted by β,
encouraging low adversarial error. Typically TRADES is used with the setting of β = 6, which
has been chosen for the best adversarial performance. In this section, we explore how different
values of β affect the resulting intermediate-q robustness of the final model.

Following our introduction of the intermediate-q robustness objective, Robey et al. [65] pro-
posed the notion of a probabilistically robust learning (PRL) based on the loss,

I{Pδ∼µ(hθ(x+ δ) ̸= y) > ρ},

where 0 ≤ ρ < 1. Probabilistic robustness encourages robustness to most perturbations, where
ρ determines the level of robustness, with smaller values of ρ corresponding to stricter levels of
robustness. This notion of probabilistic robustness can be generalized to any loss function, where

u∗(ρ) = min
u∈R

u

s.t. Pδ∼µ[ℓ(hθ(x+ δ), y) ≤ u] > 1− ρ.

More plainly, perturbations that incur high loss but are within a subset of the perturbation set that
has probability less than ρ, can be ignored. In order to train using this objective, Robey et al. [65]
uses the conditional value-at-risk (CVaR) convex upper bound, which can be computed using
SGD by sampling perturbations from the perturbation distribution. In this section, to explore
alternative training methods as well as compare alternative notions of intermediate robustness,
we compare how varying ρ affects intermediate-q robustness for different values of q. Robey

64

et al. [65] also introduced a quantile accuracy metric based on the zero-one probabilistically
robust loss, such that

ProbAcc(ρ) = I[Pδ∼µ[hθ(x+ δ) = y] ≥ 1− ρ.

This metric essentially measures the percentage of examples that are probabilistically robust,
given tolerance level ρ. In this section, in addition to evaluating the trained models using our
intermediate-q objective, we also evaluate models according to this quantile accuracy metric.

3.3.2 More accurately approximating the objective during training
In order to improve the approximation of the intermediate-q objective during training, we in-
crease both the number of samples m and the number of Leapfrog steps L, as compared to pre-
liminary training results presented in Section 3.1.6, and incorporate automatic step size tuning
for HMC to maintain an optimal average acceptance rate throughout training.

Automatically tuning the HMC step size For simplicity, we choose to fix the number of
Leapfrog steps and use a simple burn-in phase to determine the step size. Recall that our usage of
HMC for path sampling involves sampling from multiple different (annealed) distributions rather
than a single distribution. Given a mini-batch of data and an initial guess for the step size, we
use path sampling to approximate the intermediate-q robustness objective on this mini-batch, and
record the acceptance rate of HMC when sampling from the m annealed distributions p(δ|t(i))
(as described in Algorithm 5). We compute the average acceptance rate over the m sampling
distributions, and over the mini-batch. To achieve an average acceptance close to the optimal
65% [57], we then adjust the step size to increase or decrease the acceptance rate accordingly.
Specifically in our implementation, if the acceptance rate is larger than 70%, we increase the step
size by 20%, or if the acceptance rate is smaller than 60%, we decrease the step size by 20%,
repeatedly evaluating over the given mini-batch with the updated step size (and a random initial
state) until the acceptance rate is between 60% and 70%.

During training, we observe that a single burn-in period at the beginning of training is insuf-
ficient. We find that the step size needs to be re-adjusted with the updated model parameters as
training progresses in order to maintain the optimal acceptance rate of around 65%. To handle
this, we include a burn-in phase at the beginning of each training epoch using a single mini-batch
of training data to determine any step size adjustments. In practice, we limit the number of burn-
in iterations to avoid excessively long burn-in periods, however with a reasonable initial guess
for the step size, we observe that the acceptance rate criterion is usually met before the limit is
hit. We also observe that this burn-in phase typically requires more iterations during the first few
epochs of training, but then the acceptance rate begins to stabilize for later epochs.

We ultimately improve intermediate-q robustness training via better approximations of the
objective during training through this combination of automatically adjusting the HMC step size
at the beginning of each epoch, using more samples, and taking more Leapfrog steps. The use of
mixed precision arithmetic and cyclic learning rate schedules, along with using a small network
architecture (PreActResNet18), makes these improvements computationally feasible. We also
note that the choice of m is upper bounded by what GPU memory will allow, given a fixed batch
size.

65

3.3.3 Alternatives to intermediate-q robust training

While the cyclic learning rate schedule and the use of mixed precision arithmetic make training
using intermediate-q robustness objectives more computationally reasonable, approximating the
objective using path sampling with HMC is still quite expensive. While we may allow a compu-
tationally expensive evaluation procedure, in practice, for training purposes, we might seek less
costly alternatives. For this reason, in addition to training according to intermediate-q objectives,
we also explore alternative training methods that encourage robustness between the worst and
average case. For example, we train models using TRADES varying the parameter β that trades
off standard and adversarial performance. We also train models according to the probabilistically
robust learning (PRL) objective proposed by Robey et al. [65] and vary the robustness tolerance
parameter ρ. Lastly, we consider training using the worst-case objective varying the parameters
of the perturbation distribution to change the size of the threat model. For example, we consider
training with PGD on smaller perturbation sets than considered during evaluation. We evaluate
the intermediate-q robustness of each of these models across robustness levels (different values of
q) to better determine how these alternative training methods engender intermediate robustness.
We additionally evaluate the quantile accuracy [65] of each model with respect to the evaluation
perturbation distribution.

3.3.4 Experiments

We consider robustness on CIFAR-10 with respect to two different additive noise perturbations,
including perturbations uniformly distributed within ℓ∞-norm ball with radius ϵ = 8/255 and
isotropic Gaussian perturbations with σ = 0.1.

Evaluation implementation details When computing Ẑ{MC, PS},q for evaluation purposes, we
use m = 100 samples. When computing ẐPS,q with HMC, we use L = 10 Leapfrog steps. We
use a burn-in period on one mini-batch of test data to determine an appropriate HMC step size
and then fix this step size and compute the intermediate-q robustness objective on the full test
set. We evaluate intermediate-q robustness for q ∈ [1, 1000]. We limit the number of burn-in
steps during evaluation to 25, scaling the step size α by 20% in the proper direction at each burn-
in step accordingly. Following Robey et al. [65], we use m = 100 random samples from the
perturbation distribution to compute ProbAcc(ρ), and evaluate for ρ ∈ {0.01, 0.05, 0.1}.

Training implementation details For all models, besides those trained using the PRL objec-
tive of Robey et al. [65], we train for 50 epochs using a cyclic learning rate schedule. We use
the default settings of the cyclic learning rate scheduler implemented in PyTorch4. We use the
SGD optimizer with a maximum learning rate of 0.2, batch size of 128, momentum of 0.9, and
weight decay of 5 · 10−4. For training using Ẑ{MC, PS},q, we use m = 10 samples. For training
with ẐPS,q, with HMC, we use L = 10 Leapfrog steps. We use a burn-in phase on a single
mini-batch of training data at the beginning of each epoch and limit the number of burn-in steps

4torch.optim.lr scheduler.OneCycleLR

66

Table 3.9: Evaluations of intermediate-q robustness on CIFAR-10 towards perturbations uni-
formly distributed within the ℓ∞-norm ball with radius ϵ = 0.03.

Train method Variation Standard ẐMC,1 ẐPS,10 ẐPS,102 ẐPS,103 PGD-50

Standard 0.188 0.297 0.747 3.732 8.948 25.835

ẐMC

q = 1 0.206 0.203 0.364 1.825 5.562 23.944
q = 10 0.198 0.198 0.277 1.057 3.601 19.638
q = 102 0.199 0.198 0.264 0.951 3.353 19.447
q = 103 0.190 0.190 0.258 0.956 3.379 19.432

ẐPS

q = 1 0.200 0.199 0.327 1.533 4.985 23.231
q = 10 0.186 0.1900.1900.190 0.233 0.700 2.168 17.184
q = 102 0.218 0.220 0.2320.2320.232 0.368 0.924 8.622
q = 103 0.227 0.228 0.238 0.3420.3420.342 0.845 7.115

TRADES

β = 0.01 0.189 0.205 0.359 1.732 5.026 22.933
β = 0.05 0.199 0.202 0.251 0.745 1.985 13.770
β = 0.25 0.263 0.264 0.286 0.486 1.203 6.978
β = 1 0.299 0.301 0.312 0.418 0.848 3.928
β = 6 0.738 0.742 0.743 0.749 0.803 1.3181.3181.318

PRL

ρ = 0.5 0.890 0.890 0.896 0.987 1.455 5.916
ρ = 1 0.867 0.868 0.875 0.981 1.401 5.056
ρ = 2 0.882 0.882 0.888 0.986 1.360 4.094
ρ = 4 0.902 0.904 0.910 0.999 1.352 3.509

PGD-10

ϵ = 0.001 0.1800.1800.180 0.191 0.266 0.999 3.096 18.71
ϵ = 0.0075 0.225 0.228 0.241 0.370 0.663 6.48
ϵ = 0.015 0.285 0.288 0.293 0.348 0.5690.5690.569 2.884
ϵ = 0.03 0.520 0.523 0.525 0.542 0.689 1.377

to 10, scaling the step size α by 20% until an optimal acceptance rate is recorded. For train-
ing using the PRL objective, we modify our training setup to match that described in Robey
et al. [65], training for 115 epochs using an initial learning rate of 0.01, decaying the learning
rate by a factor of 10 at epochs 55, 75, and 90, and using a weight decay of 3.5 · 10−3. We
train with ρ ∈ {0.5, 1.0, 2.0, 4.0}, also finding that larger values of ρ result in higher levels of
robustness, as observed by Robey et al. [65]. For TRADES, we use 10 steps and train with
β ∈ {0.01, 0.05, 0.25, 0.5, 6.0}. We implement mixed precision training using the automatic
mixed precision package included with PyTorch5, and use mixed precision for all training runs.

Robustness to ℓ∞-norm ball perturbations

We first evaluate the robustness of models trained on CIFAR-10 towards perturbations uniformly
distributed within the ℓ∞-norm ball with radius 0.03. The intermediate-q robust losses for each

5torch.amp

67

0 200 400 600 800 1000
q

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Z q

ZMC

ZPS

TRADES
PRL
PGD

Figure 3.5: Estimated intermediate-q robust loss (Ẑq) over perturbations uniformly distributed
within the ℓ∞-norm ball with ϵ = 8/255, evaluated at different robustness levels (q). Each point
represents the best (lowest) loss the training method achieves for the given q-evaluation across
different hyperparameter sweeps tested.

model and hyperparameter are shown in Table 3.9 for q ∈ {1, 10, 102, 103}, along with standard
and PGD losses. Intermediate robust losses at more fine-grained intervals between 1 and 103

are plotted for each method in Figure 3.6. This figure further helps to visualize the robustness
trade-offs across hyperparameter sweeps for each training method. Finally, we also plot the best
robustness achieved across all hyperparameter sweeps for each method at each value of q in
Figure 3.5.

We find that models trained using ẐPS,q for q ∈ {10, 102, 103} have the best intermediate-q
robustness (a lower value of the objective) for evaluated robustness levels up to and including
q = 102. At robustness level q = 103, the models trained using PGD or TRADES (with β =
6) exhibit more robustness. Because accurately approximating the intermediate-q objective at
larger values of q typically requires more samples, likely the number of samples used during
training under-approximates the objective for q = 103. This can also be observed in Figure
3.6b, which shows that the curve for the model trained with q = 103, plotting intermediate-q
objective values for increasing q, does not differ much from that of the model trained with q =
102. Regardless, we find that these updates to the path sampling-based training procedure, even
with the still relatively small number of samples m = 10, much more effectively approximates
the desired objective as compared to using Monte Carlo-based training. As shown in Figure
3.6a, Monte Carlo-based training with values of q greater than 10 does not significantly change
the intermediate robustness of the resulting model. The superiority of the path-sampling based
objective for training compared to the Monte-Carlo based objective can further be visualized in
Figure 3.5, where after q = 102, the best Monte-Carlo trained models have a much higher robust
loss than the best path sampling trained models.

We find that reducing the value of β when training for TRADES, which reduces the weight
of the adversarial loss term in the TRADES objective, does result in a trade-off in different lev-
els of robustness, which is more easily visualized in Figure 3.6c. The best TRADES trained

68

0 200 400 600 800 1000
q

0

1

2

3

4

5

Z q
q = 1
q = 10

q = 102

q = 103

(a) ẐMC varying q.

0 200 400 600 800 1000
q

0

1

2

3

4

5

Z q

q = 1
q = 10

q = 102

q = 103

(b) ẐPS varying q.

0 200 400 600 800 1000
q

0

1

2

3

4

5

Z q

= 0.01
= 0.05
= 0.25

= 1
= 6

(c) TRADES varying β.

0 200 400 600 800 1000
q

0.9

1.0

1.1

1.2

1.3

1.4

Z q

= 0.5
= 1.0

= 2.0
= 4.0

(d) PRL varying ρ.

0 200 400 600 800 1000
q

0.5

1.0

1.5

2.0

2.5

3.0

Z q

= 0.001
= 0.007
= 0.015
= 0.03

(e) PGD-10 varying ϵ.

Figure 3.6: Estimated intermediate-q robust loss (Ẑq) over perturbations uniformly distributed
within the ℓ∞-norm ball with ϵ = 8/255, evaluated at different robustness levels (q). Each figure
evaluates models that were trained according to the specified objective.

69

Table 3.10: Accuracy (%) on perturbations uniformly distributed within the ℓ∞-norm ball with
ϵ = 8/255 on CIFAR-10.

ProbAcc(ρ)
Train method Variation Standard Rand. 0.1 0.05 0.01 PGD-50

Standard 94.37 91.36 86.21 84.39 79.22 0.00

ẐMC

q = 1 94.03 94.10 91.82 90.84 88.43 0.00
q = 10 93.99 94.06 92.19 91.45 90.02 0.05
q = 102 93.73 93.84 92.23 91.61 90.25 0.05
q = 103 93.86 93.87 92.12 91.55 90.39 0.03

ẐPS

q = 1 93.97 93.87 91.39 90.57 88.78 0.00
q = 10 94.32 94.2994.2994.29 92.9692.9692.96 92.5692.5692.56 91.3191.3191.31 0.17
q = 102 92.90 92.82 91.87 91.65 91.05 8.26
q = 103 92.33 92.21 91.38 91.09 90.50 10.64

TRADES

β = 0.05 93.64 93.61 92.25 91.74 90.62 0.88
β = 0.25 92.24 92.21 91.20 91.00 90.42 20.78
β = 1 90.87 90.85 90.00 89.60 89.06 37.40
β = 6 81.69 81.59 80.85 80.62 80.13 50.7150.7150.71

PRL

ρ = 0.5 89.85 89.48 85.86 84.47 81.38 1.13
ρ = 1 90.36 89.70 86.50 85.21 82.44 1.02
ρ = 2 91.68 91.24 88.29 87.21 84.93 5.00
ρ = 4 92.37 92.22 89.58 88.70 86.31 11.06
ρ∗6 93.82 93.77 91.45 90.63 88.55 0.71

PGD-10
ϵ = 0.001 94.4794.4794.47 94.13 92.65 91.95 90.34 0.05
ϵ = 0.0075 92.72 92.59 91.74 91.53 90.85 18.22
ϵ = 0.015 90.43 90.32 89.56 89.38 88.72 35.85
ϵ = 0.03 83.88 83.72 82.94 82.73 82.10 49.90

models start to outperform models trained using ẐPS on intermediate-q robustness for values of
q ∈ [600, 1000]. We find that none of the models trained with the PRL objective perform as well
as those trained with the intermediate-q, TRADES, or PGD objectives on any of the evaluation
metrics. We note that while we did base our PRL implementation on the official code repository7

and used hyperparameters from Robey et al. [65], there could be some implementation differ-
ences. As shown in Table 3.9 and Figure 3.6d, training with different values of ρ does not change
the test-time intermediate-q robustness very significantly, with most of the model differences be-
coming more apparent at stricter evaluation robustness levels. We see that training with PGD
with a smaller radius results in better intermediate robustness when evaluated at ϵ = 0.03 than
training using PGD with the same ϵ = 0.03, as shown in Figure 3.6e and actually performs the
best out of all the considered training methods for values of q ≥ 200. However, decreasing the

7https://github.com/arobey1/advbench

70

https://github.com/arobey1/advbench

0 200 400 600 800 1000
q

0

2

4

6

8

10

12

Z q

ZMC

ZPS

PRL
PGD

Figure 3.7: Estimated intermediate-q robust loss (Ẑq) over Gaussian perturbations with σ =
0.1, evaluated at different robustness levels (q). Each point represents the best (lowest) loss
the training method achieves for the given q-evaluation across different hyperparameter sweeps
tested.

radius too small, e.g. ϵ = 0.001 in this case, can unsurprisingly result in degraded intermediate
robustness.

Finally, we also compare each of these models in terms of standard accuracy, adversarial
(PGD) accuracy, average accuracy on random samples (denoted by Rand.) and the quantile
accuracy metric (ProbAcc(ρ)) proposed by Robey et al. [65], shown in Table 3.10. We find
that the model trained using ẐPS,10 performs best on random perturbations along with all of the
quantile accuracy metrics. This suggests that the quantile accuracy metric is less strict than the
intermediate-q robustness metrics we consider. However, this is not surprising, as this metric
does not consider loss values. Additionally, the samples the models are evaluated on are ran-
domly drawn from the perturbation distribution, and so low probability “hard” samples are less
likely to be drawn.

From Table 3.10, we can also examine the trade-off between standard and robust accuracy
for different hyperparameters. For example, one can observe the trade-off between standard and
robust accuracy that occurs as we increase q when training with Ẑ{PS, MC},q, and as we increase
β when training with TRADES. Similarly, as we decrease ϵ on PGD, we see an increase in
all accuracy metrics, other than adversarial accuracy. However, for PRL we observe that the
standard accuracy increases with the robust accuracy as we increase ρ, supporting the observation
by Robey et al. [65] that there appears to be difficulty in learning with lower values of ρ.

Robustness to Gaussian perturbations

Next, we present evaluations of models trained for robustness towards isotropic Gaussian pertur-
bations with σ = 0.1. We compare intermediate-q robust loss values in Table 3.11 and Figure
3.8. We note PGD here refers to ℓ2-norm ball with ϵ = 128/255, and should not be interpreted
as the “worst-case” for this perturbation distribution.

71

0 200 400 600 800 1000
q

0.0

2.5

5.0

7.5

10.0

12.5

Z q

q = 1
q = 10

q = 102

q = 103

(a) ẐMC varying q.

0 200 400 600 800 1000
q

0.0

2.5

5.0

7.5

10.0

12.5

Z q

q = 1
q = 10

q = 102

q = 103

(b) ẐPS varying q.

0 200 400 600 800 1000
q

1.0

1.5

2.0

2.5

3.0

Z q

= 0.5
= 1.0

= 2.0
= 4.0

(c) PRL varying ρ.

0 200 400 600 800 1000
q

2

4

6

8

Z q

= 0.5
= 1.0
= 1.5

(d) PGD (ℓ2) varying ϵ.

Figure 3.8: Estimated intermediate-q robust loss (Ẑq) over Gaussian perturbations with σ =
0.1, evaluated at different robustness levels (q). Each figure evaluates models that were trained
according to the specified objective.

72

Table 3.11: Evaluations of intermediate-q robustness on CIFAR-10 towards Gaussian perturba-
tions with σ = 0.1.

Train method Variation Standard ẐMC,1 ẐPS,10 ẐPS,102 ẐPS,103 PGD-50

Standard 0.1880.1880.188 5.007 6.685 12.124 18.172 19.433

ẐMC

q = 1 0.371 0.323 1.117 5.624 13.530 3.624
q = 10 0.326 0.3050.3050.305 0.705 4.051 12.367 2.123
q = 102 0.327 0.309 0.669 3.887 12.738 1.956
q = 103 0.333 0.313 0.671 3.875 12.892 1.946

ẐPS

q = 1 0.363 0.313 0.914 4.953 14.00 2.90
q = 10 0.352 0.346 0.5060.5060.506 2.328 9.969 1.254
q = 102 0.548 0.555 0.582 0.8910.8910.891 4.681 0.889
q = 103 1.166 1.176 1.179 1.205 1.5151.5151.515 1.296

PRL
ρ = 0.5 0.959 0.938 1.027 1.674 3.211 1.745
ρ = 1 0.947 0.926 1.018 1.605 2.899 1.714
ρ = 2 0.948 0.927 1.017 1.571 2.482 1.666
ρ = 4 0.967 0.948 1.037 1.544 2.076 1.586

PGD-10
ϵ = 0.5 0.345 0.623 0.729 1.933 8.379 0.883
ϵ = 1 0.533 0.622 0.694 1.071 5.205 0.8450.8450.845
ϵ = 1.5 0.780 0.866 0.876 0.992 2.848 0.978

As shown in Table 3.11, we find that the models trained using ẐPS,q perform best on the
intermediate-q evaluation that corresponds to the value of q they were trained with for q > 1.
Consistent with the ℓ∞-norm ball setting, we find that for all values of q > 1, the model trained
using ẐPS,q outperforms the corresponding model trained using ẐMC,q, suggesting that even with
a limited number of samples during training, the path sampling estimator more accurately ap-
proximates the objective for this perturbation distribution as well. Figure 3.8a especially shows
the inability of the Monte Carlo estimator to accurately approximate the objective over this Gaus-
sian perturbation distribution for larger values of q, as all of the models trained with larger levels
of q result in similar intermediate robust performance. Additionally, given this more challenging
perturbation distribution, we find the trade-off between (large q) robustness and standard perfor-
mance is more extreme. This is especially notable for the model trained with ẐPS,103 , which has
the lowest intermediate robust loss for evaluations at q = 103, but has much higher intermediate
robust losses at lower values of q (which approach average robustness).

We also observe that, similarly to the ℓ∞-norm ball setting, varying ρ when training with the
PRL objective does not significantly change the resulting intermediate robustness of the models
as compared to other training methods, as visualized in Figure 3.8c. We see that training with
increasing robustness levels on Gaussian perturbations here also improves adversarial robustness
to ℓ2-norm ball perturbations. Conversely, training using ℓ2 PGD adversarial training with differ-
ent values of ϵ has an effect on the intermediate-q robustness of the resulting models, as shown
in Table 3.11. However, as compared to the ℓ∞ setting, the optimal choice of ϵ is less obvious,

73

Table 3.12: Accuracy (%) on Gaussian perturbations with σ = 0.1 on CIFAR-10. The PGD-50
evaluation considers ℓ2-norm ball perturbations with ϵ = 0.5.

ProbAcc(ρ)
Train method Variation Standard Rand. 0.1 0.05 0.01 PGD-50

Standard 94.3794.3794.37 23.87 12.24 10.02 5.79 0.02

ẐMC

q = 1 89.60 90.4590.4590.45 82.96 79.70 71.52 38.93
q = 10 89.74 90.22 84.2284.2284.22 81.78 75.88 51.93
q = 102 89.13 89.82 84.08 82.04 76.21 52.89
q = 103 89.30 89.77 84.11 81.82 76.09 53.05

ẐPS

q = 1 88.64 89.72 82.20 78.95 70.92 40.18
q = 10 88.31 88.56 84.01 82.2982.2982.29 78.3478.3478.34 63.79
q = 102 81.90 81.79 77.99 77.08 74.73 67.62
q = 103 67.55 67.19 64.58 63.80 62.10 59.42

PRL
ρ = 0.5 82.39 84.48 73.54 69.05 58.94 56.41
ρ = 1 83.60 84.95 75.14 71.20 62.22 53.38
ρ = 2 85.39 86.44 77.53 74.02 64.98 54.85
ρ = 4 87.49 88.16 80.01 76.37 67.78 58.13

PGD-10
ϵ = 0.5 88.33 78.01 73.02 71.29 67.68 68.38
ϵ = 1 82.87 76.54 72.64 71.36 68.96 68.8968.8968.89
ϵ = 1.5 75.00 70.89 67.85 66.96 65.04 65.39

and the best performance of ℓ2 PGD never surpasses that of ẐPS,q, as shown in Figure 3.7.
Lastly, we also compare model accuracy on Gaussian perturbations in Table 3.12. We again

see that the models trained with q = 10 perform best on the quantile accuracy metrics, with
the path sampling-based training performing best for the more stringent robustness levels of
ρ ∈ {0.05, 0.01}. The model trained with path sampling at q = 103 has especially degraded
accuracy across these metrics, due to the stringency of the robust training method.

3.3.5 Discussion

In this section, we improved training for intermediate-q robustness, and explored alternative
methods for training for fine-grained levels of robustness. Training using the intermediate-
q objective approximated using path sampling with HMC resulted in the best intermediate-q
robustness for smaller values of q for the ℓ∞ perturbation setting, until more samples are re-
quired for a more accurate estimation of the objective. For the Gaussian setting, training using
the intermediate-q objective approximated using path sampling with HMC resulted in the best
intermediate-q robustness for all values of q. We showed that training using ẐPS,q also out-
performed alternatives in terms of quantile accuracy, a probabilistic robustness metric, for both
perturbation distributions. However, we recognize that training using ẐPS,q is still significantly
slower than alternatives, even after incorporating general acceleration techniques, as shown in

74

Table 3.13: Average training times (in hours) for different robust training methods on CIFAR-
10. Each experiment was run on a single GeForce RTX 2080 Ti using the PreActResNet18
architecture. Models trained using PRL were trained for 115 epochs, and the remainder were
trained for 50 epochs.

Train method Train time (hrs)

Standard 0.31

ẐMC 1.28

ẐPS 16.13
TRADES 2.83
PRL 6.85
PGD-10 1.44

Table 3.13. Furthermore, while we were able to train according to ẐPS,q in a reasonable amount
of time due to using a small network architecture, we note that when using a larger architecture,
the training batch size will likely need to be reduced based on the number of samples m due to
GPU memory considerations. However, we showed that it is possible to improve intermediate
robustness by varying the parameters of alternative training methods, for example by reducing
the radius of the ℓ∞-norm ball and training using PGD. We showed that our intermediate-q ro-
bustness evaluation metric remains valuable for evaluating these alternative training methods at
intermediate robustness levels.

Some interesting directions for future work are further accelerating the estimation of ẐPS,q

during training, and applying HMC parameter tuning techniques to the parameter L in addition
to step size. Another direction that would be of benefit, is making the choice of q a more in-
terpretable parameter. Lastly, another interesting direction could be to use model soups (linear
combinations of model parameters), which have been used to trade-off robustness to different
ℓp-norm ball perturbation sets [18], to trade-off average-case and worst-case robustness.

75

76

Chapter 4

Conclusion

In this thesis, we have presented methods for training and evaluating the robustness of machine
learning models. In Chapter 2, we discussed the topic of adversarial robustness, which studies
robustness of machine learning models to worst-case input perturbations. We presented several
improvements upon adversarial training, an empirical approach for producing robust networks
by training on worst-case perturbed inputs, or adversarial examples. We showed that the orig-
inal adversarial training approach using the fast gradient sign method, which had been largely
determined to be ineffective against the later introduced projected gradient descent attack, can
surprisingly result in models robust to PGD attacks with certain training modifications. The effi-
ciency of this single-step adversarial training method, combined with techniques for accelerating
standard training of deep neural networks, allowed us to train robust networks much faster than
before. We also uncovered a property of adversarial training that does not commonly occur in
the standard training of deep neural networks, namely that overfitting during robust training sig-
nificantly harms robust test performance. By early stopping training, we achieved significant
gains in the robustness of the final trained models, across different forms of adversarial training,
datasets and threat models. We showed that projected gradient descent remains competitive with
subsequently proposed algorithmic improvements for training robust deep networks.

In Chapter 3, we transitioned from focusing on worst-case robustness, and discussed mo-
tivation for an alternative notion of robustness that lies between average-case and worst-case
robustness. We showed that there exists a natural interpretation of robustness that encompasses
both average-case and worst-case notions of robustness, while also capturing the spectrum of
robustness between these two extremes. Our proposed objective ultimately allows for evaluating
the robustness of models on a wide range of robustness levels. We further showed that we can
train on this objective to achieve models that perform well at stricter robustness levels, while
being less conservative than adversarial training. We then discussed the utility of our metric for
evaluating the robustness of models trained without any specific robustness objective. Specifi-
cally, we applied our metric to measure how large-scale pre-training and task-specific fine-tuning
affects robustness to input corruptions by evaluating OpenAI’s CLIP model. We found that our
proposed robustness metric showed the robustness of the zero-shot predictor, and the degradation
in robustness that results from fine-tuning with respect to input corruptions where other metrics
did not. Finally, we showed ways of improving training using the path sampling-based inter-
mediate robustness objective, and compared to alternative methods for training for robustness

77

between the worst and average case.

78

Bibliography

[1] Jean-Baptiste Alayrac, Jonathan Uesato, Po-Sen Huang, Alhussein Fawzi, Robert Stan-
forth, and Pushmeet Kohli. Are labels required for improving adversarial robustness? Ad-
vances in Neural Information Processing Systems, 32, 2019. 2.3.1, 2.3.6

[2] Maksym Andriushchenko and Nicolas Flammarion. Understanding and improving fast ad-
versarial training. Advances in Neural Information Processing Systems, 33:16048–16059,
2020. 2.2.4

[3] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. In International con-
ference on machine learning, pages 274–283. PMLR, 2018. 2.1

[4] Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust
adversarial examples. In International conference on machine learning, pages 284–293.
PMLR, 2018. 2.1

[5] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern
machine-learning practice and the classical bias–variance trade-off. Proceedings of the
National Academy of Sciences, 116(32):15849–15854, 2019. 2.3, 2.3.1, 2.3.5

[6] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization, vol-
ume 28. Princeton university press, 2009. 1

[7] Charles H Bennett. Efficient estimation of free energy differences from monte carlo data.
Journal of Computational Physics, 22(2):245–268, 1976. 3.1.1

[8] Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv preprint
arXiv:1701.02434, 2017. 3.1.1

[9] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On
the opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.
3.2

[10] Jacob Buckman, Aurko Roy, Colin Raffel, and Ian Goodfellow. Thermometer encoding:
One hot way to resist adversarial examples. In International conference on learning repre-
sentations, 2018. 2.1

[11] Nicholas Carlini. Is ami (attacks meet interpretability) robust to adversarial examples?
arXiv preprint arXiv:1902.02322, 2019. 2.1

[12] Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: By-

79

passing ten detection methods. In Proceedings of the 10th ACM workshop on artificial
intelligence and security, pages 3–14, 2017. 2.1

[13] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In 2017 ieee symposium on security and privacy (sp), pages 39–57. Ieee, 2017. 2.1

[14] Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Un-
labeled data improves adversarial robustness. Advances in Neural Information Processing
Systems, 32, 2019. 2.3.1, 2.3.6, 2.3.6

[15] Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang.
Adversarial robustness: From self-supervised pre-training to fine-tuning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 699–708,
2020. 3.2

[16] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi Nardi,
Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. Dawnbench: An end-to-end
deep learning benchmark and competition. Training, 100(101):102, 2017. 2.2, 2.2.1

[17] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with
an ensemble of diverse parameter-free attacks. In International conference on machine
learning, pages 2206–2216. PMLR, 2020. 2.3

[18] Francesco Croce, Sylvestre-Alvise Rebuffi, Evan Shelhamer, and Sven Gowal. Seasoning
model soups for robustness to adversarial and natural distribution shifts. arXiv preprint
arXiv:2302.10164, 2023. 3.3.5

[19] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017. 2.3, 2.3.1, 2.3.6

[20] Yinpeng Dong, Fangzhou Liao, Tianyu Pang, Hang Su, Jun Zhu, Xiaolin Hu, and Jianguo
Li. Boosting adversarial attacks with momentum. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 9185–9193, 2018. 2.1

[21] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid monte
carlo. Physics letters B, 195(2):216–222, 1987. 3.1.1

[22] Logan Engstrom, Brandon Tran, Dimitris Tsipras, Ludwig Schmidt, and Aleksander
Madry. A rotation and a translation suffice: Fooling cnns with simple transformations.
2017. 2.1

[23] Logan Engstrom, Andrew Ilyas, Shibani Santurkar, and Dimitris Tsipras. Robustness
(python library), 2019. URL https://github.com/MadryLab/robustness.
2.3.2, 2.3.2

[24] Lijie Fan, Sijia Liu, Pin-Yu Chen, Gaoyuan Zhang, and Chuang Gan. When does con-
trastive learning preserve adversarial robustness from pretraining to finetuning? Advances
in Neural Information Processing Systems, 34:21480–21492, 2021. 3.2

[25] Reuben Feinman, Ryan R Curtin, Saurabh Shintre, and Andrew B Gardner. Detecting
adversarial samples from artifacts. arXiv preprint arXiv:1703.00410, 2017. 2.1

[26] Stanislav Fort. Adversarial examples for the openai clip in its zero-shot classification
regime and their semantic generalization. https://stanislavfort.github.io/

80

https://github.com/MadryLab/robustness
https://stanislavfort.github.io/blog/OpenAI_CLIP_adversarial_examples/
https://stanislavfort.github.io/blog/OpenAI_CLIP_adversarial_examples/
https://stanislavfort.github.io/blog/OpenAI_CLIP_adversarial_examples/

blog/OpenAI_CLIP_adversarial_examples/, 2021. 3.2

[27] Robert Geirhos, Patricia Rubisch, Claudio Michaelis, Matthias Bethge, Felix A Wichmann,
and Wieland Brendel. Imagenet-trained cnns are biased towards texture; increasing shape
bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231, 2018. 3.1.1

[28] Andrew Gelman and Xiao-Li Meng. Simulating normalizing constants: From importance
sampling to bridge sampling to path sampling. Statistical science, pages 163–185, 1998.
1.1.2, 3.1.1, 3.1.3

[29] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis.
Chapman and Hall/CRC, 1995. 3.3.1

[30] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014. 1.1.1, 2.1

[31] Sachin Goyal, Ananya Kumar, Sankalp Garg, Zico Kolter, and Aditi Raghunathan. Fine-
tune like you pretrain: Improved finetuning of zero-shot vision models. arXiv preprint
arXiv:2212.00638, 2022. 3.2.3

[32] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens Van Der Maaten. Countering
adversarial images using input transformations. arXiv preprint arXiv:1711.00117, 2017.
2.1

[33] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 2.2.5

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep
residual networks. In European conference on computer vision, pages 630–645. Springer,
2016. 2.2.5, 2.3.6

[35] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to com-
mon corruptions and perturbations. arXiv preprint arXiv:1903.12261, 2019. 3, 3.1.1

[36] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. Using self-supervised
learning can improve model robustness and uncertainty. Advances in neural information
processing systems, 32, 2019. 3.1.1

[37] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lak-
shminarayanan. Augmix: A simple data processing method to improve robustness and
uncertainty. arXiv preprint arXiv:1912.02781, 2019. 3.1.1

[38] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan
Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of
robustness: A critical analysis of out-of-distribution generalization. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8340–8349, 2021. 3.1.1

[39] Matthew Hoffman, Alexey Radul, and Pavel Sountsov. An adaptive-mcmc scheme for set-
ting trajectory lengths in hamiltonian monte carlo. In International Conference on Artificial
Intelligence and Statistics, pages 3907–3915. PMLR, 2021. 3.3, 3.3.1

[40] Matthew D Hoffman, Andrew Gelman, et al. The no-u-turn sampler: adaptively setting
path lengths in hamiltonian monte carlo. J. Mach. Learn. Res., 15(1):1593–1623, 2014.

81

https://stanislavfort.github.io/blog/OpenAI_CLIP_adversarial_examples/
https://stanislavfort.github.io/blog/OpenAI_CLIP_adversarial_examples/
https://stanislavfort.github.io/blog/OpenAI_CLIP_adversarial_examples/

3.3, 3.3.1

[41] Anders Krogh and John Hertz. A simple weight decay can improve generalization. Ad-
vances in neural information processing systems, 4, 1991. 2.3.1

[42] Ananya Kumar, Aditi Raghunathan, Robbie Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. arXiv preprint
arXiv:2202.10054, 2022. 3.2, 3.2.3

[43] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learning at scale.
arXiv preprint arXiv:1611.01236, 2016. 2.1

[44] Tian Li, Ahmad Beirami, Maziar Sanjabi, and Virginia Smith. Tilted empirical risk mini-
mization. arXiv preprint arXiv:2007.01162, 2020. 3.1.1

[45] Tian Li, Ahmad Beirami, Maziar Sanjabi, and Virginia Smith. On tilted losses in machine
learning: Theory and applications. arXiv preprint arXiv:2109.06141, 2021. 3.1.1

[46] Jiajun Lu, Hussein Sibai, Evan Fabry, and David Forsyth. No need to worry about adversar-
ial examples in object detection in autonomous vehicles. arXiv preprint arXiv:1707.03501,
2017. 2.1

[47] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017. (document), 1.1.1, 2.1, 2.2, 2, 2.1, 2.2.5, 2.4, 2.3, 2.7, 2.3.2,
13

[48] Pratyush Maini, Eric Wong, and Zico Kolter. Adversarial robustness against the union of
multiple perturbation models. In International Conference on Machine Learning, pages
6640–6650. PMLR, 2020. 2.1

[49] Xiao-Li Meng and Wing Hung Wong. Simulating ratios of normalizing constants via a
simple identity: a theoretical exploration. Statistica Sinica, pages 831–860, 1996. 3.1.1

[50] Jan Hendrik Metzen, Tim Genewein, Volker Fischer, and Bastian Bischoff. On detecting
adversarial perturbations. arXiv preprint arXiv:1702.04267, 2017. 2.1

[51] Laurent Meunier, Meyer Scetbon, Rafael B Pinot, Jamal Atif, and Yann Chevaleyre. Mixed
nash equilibria in the adversarial examples game. In International Conference on Machine
Learning, pages 7677–7687. PMLR, 2021. 3.1.1

[52] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David
Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al.
Mixed precision training. arXiv preprint arXiv:1710.03740, 2017. 2.2, 2.2.1, 2.2.3

[53] Hadi Mohasel Afshar and Justin Domke. Reflection, refraction, and hamiltonian monte
carlo. Advances in neural information processing systems, 28, 2015. 3.1.1

[54] Nelson Morgan and Hervé Bourlard. Generalization and parameter estimation in feedfor-
ward nets: Some experiments. Advances in neural information processing systems, 2, 1989.
2.3.1

[55] Marius Mosbach, Maksym Andriushchenko, Thomas Trost, Matthias Hein, and Diet-
rich Klakow. Logit pairing methods can fool gradient-based attacks. arXiv preprint

82

arXiv:1810.12042, 2018. 2.1, 2.3

[56] Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya
Sutskever. Deep double descent: Where bigger models and more data hurt. Journal of
Statistical Mechanics: Theory and Experiment, 2021(12):124003, 2021. 2.3, 2.3.1, 2.3.5

[57] Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain
monte carlo, 2(11):2, 2011. 3.1.1, 3.3, 3.3.1, 3.3.2

[58] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. Advances in neural information processing systems, 30,
2017. 2.3

[59] Yosihiko Ogata. A monte carlo method for high dimensional integration. Numerische
Mathematik, 55:137–157, 1989. 3.1.1

[60] Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, and Ananthram Swami. Distilla-
tion as a defense to adversarial perturbations against deep neural networks. In 2016 IEEE
symposium on security and privacy (SP), pages 582–597. IEEE, 2016. 2.1

[61] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning trans-
ferable visual models from natural language supervision. In International Conference on
Machine Learning, pages 8748–8763. PMLR, 2021. 1.1.2, 3.2

[62] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10
classifiers generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018. 2.3.4

[63] Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning.
In International Conference on Machine Learning, pages 8093–8104. PMLR, 2020. 1.1.1

[64] Leslie Rice, Anna Bair, Huan Zhang, and J Zico Kolter. Robustness between the worst
and average case. Advances in Neural Information Processing Systems, 34:27840–27851,
2021. 1.1.2

[65] Alexander Robey, Luiz FO Chamon, George J Pappas, and Hamed Hassani. Probabilis-
tically robust learning: Balancing average-and worst-case performance. arXiv preprint
arXiv:2202.01136, 2022. 3.2.1, 3.3.1, 3.3.3, 3.3.4, 3.3.4, 3.3.4

[66] Ludwig Schmidt, Shibani Santurkar, Dimitris Tsipras, Kunal Talwar, and Aleksander
Madry. Adversarially robust generalization requires more data. Advances in neural in-
formation processing systems, 31, 2018. 2.3.1, 2.3.6, 3.2

[67] Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson,
Christoph Studer, Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial train-
ing for free! Advances in Neural Information Processing Systems, 32, 2019. 2.1, 2.2, 2.2.1,
1, 2.1, 2.2.5, 2.4, 2.2.5

[68] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE winter
conference on applications of computer vision (WACV), pages 464–472. IEEE, 2017. 2.2.3,
4

[69] Leslie N Smith and Nicholay Topin. Super-convergence: Very fast training of neural net-
works using large learning rates. In Artificial intelligence and machine learning for multi-

83

domain operations applications, volume 11006, pages 369–386. SPIE, 2019. 2.2, 2.2.1,
2.2.3, 2.2.5

[70] Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixelde-
fend: Leveraging generative models to understand and defend against adversarial examples.
arXiv preprint arXiv:1710.10766, 2017. 2.1

[71] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural networks from overfitting. The journal of
machine learning research, 15(1):1929–1958, 2014. 2.3.1

[72] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013. 1, 2.1

[73] Guanhong Tao, Shiqing Ma, Yingqi Liu, and Xiangyu Zhang. Attacks meet interpretabil-
ity: Attribute-steered detection of adversarial samples. Advances in Neural Information
Processing Systems, 31, 2018. 2.1

[74] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356, 2017. 2.2.5

[75] Florian Tramer and Dan Boneh. Adversarial training and robustness for multiple perturba-
tions. Advances in neural information processing systems, 32, 2019. 2.1

[76] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. arXiv preprint
arXiv:1705.07204, 2017. (document), 2.1, 2.2.1, 2.2.2, 2.2.4, 2.3, 2.2.5, 2.2.5

[77] Jianyu Wang and Haichao Zhang. Bilateral adversarial training: Towards fast training of
more robust models against adversarial attacks. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 6629–6638, 2019. 2.2.1

[78] Eric Wong, Frank Schmidt, and Zico Kolter. Wasserstein adversarial examples via projected
sinkhorn iterations. In International Conference on Machine Learning, pages 6808–6817.
PMLR, 2019. 2.1

[79] Eric Wong, Leslie Rice, and J Zico Kolter. Fast is better than free: Revisiting adversarial
training. arXiv preprint arXiv:2001.03994, 2020. 1.1.1

[80] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-
Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith,
et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In International Conference on Machine Learning, pages
23965–23998. PMLR, 2022. 3.2.3

[81] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca
Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong,
et al. Robust fine-tuning of zero-shot models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7959–7971, 2022. 3.2.3

[82] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially
transformed adversarial examples. arXiv preprint arXiv:1801.02612, 2018. 2.1

84

[83] Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature
denoising for improving adversarial robustness. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages 501–509, 2019. 2.1, 2.3

[84] Yuzhe Yang, Guo Zhang, Dina Katabi, and Zhi Xu. Me-net: Towards effective adversarial
robustness with matrix estimation. arXiv preprint arXiv:1905.11971, 2019. 2.1, 2.3

[85] Dong Yin, Raphael Gontijo Lopes, Jon Shlens, Ekin Dogus Cubuk, and Justin Gilmer. A
fourier perspective on model robustness in computer vision. Advances in Neural Informa-
tion Processing Systems, 32, 2019. 3.1.1

[86] Dong Yin, Ramchandran Kannan, and Peter Bartlett. Rademacher complexity for adversar-
ially robust generalization. In International conference on machine learning, pages 7085–
7094. PMLR, 2019. 2.3.1

[87] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016. 2.3.5

[88] Runtian Zhai, Tianle Cai, Di He, Chen Dan, Kun He, John Hopcroft, and Liwei Wang.
Adversarially robust generalization just requires more unlabeled data. arXiv preprint
arXiv:1906.00555, 2019. 2.3.1, 2.3.6

[89] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning (still) requires rethinking generalization. Communications of the
ACM, 64(3):107–115, 2021. 2.3, 2.3.1

[90] Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only
propagate once: Accelerating adversarial training via maximal principle. Advances in Neu-
ral Information Processing Systems, 32, 2019. 2.1, 2.2, 2.2.1

[91] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric Xing, Laurent El Ghaoui, and Michael
Jordan. Theoretically principled trade-off between robustness and accuracy. In Interna-
tional conference on machine learning, pages 7472–7482. PMLR, 2019. 2.1, 2.3, 2.3.2,
2.3.2, 12, 2.3.4

[92] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. 2.3, 2.3.1, 2.3.6

85

	1 Introduction
	1.1 Contributions
	1.1.1 Identifying and mitigating pitfalls of adversarial training
	1.1.2 Robustness between the average and worst case

	2 Adversarial robustness
	2.1 Background
	2.2 Methods for fast adversarial training
	2.2.1 Related work
	2.2.2 Revisiting the fast gradient sign method
	2.2.3 Incorporating standard training acceleration techniques
	2.2.4 Catastrophic overfitting
	2.2.5 Experiments
	2.2.6 Discussion

	2.3 Robust overfitting in adversarial training
	2.3.1 Related work
	2.3.2 The effect of overfitting in adversarial training
	2.3.3 Learning rate schedules and robust overfitting
	2.3.4 Early stopping to mitigate robust overfitting
	2.3.5 Reconciling double descent curves
	2.3.6 Exploring alternative methods to prevent robust overfitting
	2.3.7 Discussion

	3 Robustness between the worst and average case
	3.1 Intermediate-q robustness
	3.1.1 Related work
	3.1.2 Defining a general robustness objective
	3.1.3 Path sampling estimation of intermediate-q robustness
	3.1.4 Using Hamiltonian Monte Carlo to sample from the loss-based distribution
	3.1.5 Estimating the partition function during training
	3.1.6 Experiments
	3.1.7 Discussion

	3.2 Evaluating the robustness of CLIP
	3.2.1 Intermediate-q robustness of CLIP
	3.2.2 Evaluations on CIFAR-10
	3.2.3 Discussion

	3.3 Improved training for intermediate robustness
	3.3.1 Related work
	3.3.2 More accurately approximating the objective during training
	3.3.3 Alternatives to intermediate-q robust training
	3.3.4 Experiments
	3.3.5 Discussion

	4 Conclusion
	Bibliography

