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Abstract
Predicting strategic goal-oriented multi-agent behavior from observations of play

is a ubiquitous task that spans not only computer science, but economics, finance,
decision theory, and psychology. Unlike in the single-agent setting, agents cannot
myopically maximize their utility. Instead, they must reason about the intentions and
goals of the others’ to compete for common resources or to cooperate to achieve a
common goal. This complicates matters dramatically, as the natural solution con-
cepts are computationally intractable and do not fail gracefully when even a single
player deviates from the equilibrium. Furthermore, the behavior we observe is typi-
cally non-smooth and often intentionally deceptive to improve robustness and incor-
porate aspects of information hiding, e.g., bluffing, misleading or slow-playing.

In this thesis, we advocate estimating dual variables, i.e., utilities and regrets,
instead of working with the primal behavior directly. We argue these dual variables
are easier to estimate, in both theory and practice, than the primal behavior. In par-
ticular, these utilities are often relatively smooth, and exhibit nice problem-specific
structure. Additionally, in some cases these dual estimates are all that are available—
primal procedures are simply inapplicable.

We consider behavior prediction in normal-form games and introduce the inverse
correlated equilibria (ICE) polytope. This polytope contains the joint-strategies that
have no more internal regret than the demonstrated behavior under a potentially un-
known utility function. This is similar in spirit, and inspired by, single-agent imi-
tation learning/inverse reinforcement learning methods like Abbeel and Ng [1] and
Ziebart et al. [97], which guarantee the expected reward of the prediction matches
the demonstrated behavior. Our method, MaxEnt ICE, predicts the maximum en-
tropy joint-strategy from the ICE polytope. This results in a convex objective that
we efficiently optimize with simple gradient-based algorithms as well as strong sta-
tistical guarantees on the quality of the resulting prediction. This approach provides
robust game-theoretic behavior estimates even when observations are scarce. We ex-
periment with our approach on human behavior from psychological studies, as well
as real-world firm market entry behavior.

To conclude, we tie our estimation approach to the large body of work on game
abstraction and equilibrium computation in zero-sum extensive-form games. In par-
ticular, a crucial step of equilibrium computation is estimating the utilities induced
by a strategy. The chosen abstraction serves as a model class providing computa-
tional tractability and improving generalization. Following this insight, we introduce
regression counterfactual regret minimization (RCFR), a generalization of CFR, an
algorithm for zero-sum equilibrium computation. In essence, RCFR drastically im-
proves flexibility in abstraction design.
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Chapter 1

Introduction

The task of predicting purposeful agent behavior is well-studied and of interest across numer-
ous disciplines. In the econometrics field, it is common to use publicly available information,
like demographic and regulatory indices along with tax and sales records, to uncover consumer
preferences or infer hidden production costs [63, 74]. For example, it was determined that there
is no price fixing in the ready-to-eat cereal market despite the consumer prices vastly exceeding
production costs [69]. Through analysis of sales and market data, researchers determined the un-
accounted for revenue was being spent on advertising. Other studies have examined the midscale
hotel market in Texas to determine the effects of government regulation [91] and market entry
costs [17]; as well as substitution effects in the automobile market [4].

In the decision theory community, the same overarching task is viewed from a different an-
gle. It is common knowledge that game-theoretic solution concepts fail to accurately predict
human behavior. Some argue that this is due to a modeling problem—the theory is correct, but
crucial information is lost or simply unavailable when describing a decision-making scenario as
a mathematical object. Not surprisingly, a wide range of exogenous factors influence a person’s
utility and behavior. For example, people are typically risk averse, overly sensitive to low proba-
bility outcomes, and easily influenced by framing effects [26, 67]. Additionally, interactions are
often repeated and thus issues relating to reputation beyond the model come into play [26]. Even
when maintaining a reputation is unnecessary, behavior is often altruistic. Furthermore, when
this goodwill is taken advantage of one might be spiteful in future interactions, even with an
unrelated individual. Laboratory studies using small games are well-suited for isolating and val-
idating these effects, but understanding how they all combine into a single number, the player’s
utility, is challenging and not at all well-understood.

Others believe that humans are simply irrational either due to the inability to fully reason
about a situation or that their behavior is subject to errors in execution. For example, even if
one’s only goal is to win a Chess match, flawless play by a human is surely unattainable in
such a complex game. Such reasoning argues that the standard game-theoretic solution concepts,
such as the Nash equilibrium, are not sufficient to describe human behavior. We need to ex-
plicitly model our limitations, like bounded memory and the inability to forecast beyond a short
horizon [13, 25]. This has led to the introduction of new equilibrium concepts, like the quantal
response equilibrium [64]. Here, players are expected to err with more costly mistakes being less
likely than minor ones. Like the Nash equilibrium, these new solution concepts are accompanied
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by a host of computational issues and hyperparameters dramatically hindering their ability to
scale beyond toy games.

Roughly, econometricians are most interested in the underlying causes and intentions be-
hind observed market behavior. The particular workings of the market, like its pricing rules, are
fixed a priori. In contrast, the decision theory community aims to understand operationally how
humans make decisions. Machine learning applications, on the other hand, consider predictive
performance the primary goal. In single-agent settings, inverse optimal control (IOC) techniques
assume that the observed behavior is an approximate solution to a parameterized decision prob-
lem [1, 70, 75, 76, 99]. By identifying the problem’s parameters, an off-the-shelf planner or
another suitable decision-making algorithm can imitate the original behavior in novel scenarios.
Successful applications include robotic path planning [75, 82] and foot placement [76]; crowd
navigation [44] and pedestrian movement prediction [54]; personalized route planning [97]; taxi
cab route prediction [98]; and video car racing [78].

Though much of the work from the machine learning community has focused on the single-
agent setting, some have delved into strategic behavior prediction. Ortiz et al. suggest that one
predict the maximum entropy correlated equilibrium in the absence of observations. Though
this optimization is convex, and thus tractable, it requires known utility functions, assumes com-
pletely rational players, and makes no use of observations of play [72]. Gao and Pfeffer learn
both the game’s structure and the players’ strategies simultaneously by reduction to a constraint
satisfaction problem [34]. Wright and Leyton-Brown use local search techniques to learn the
best fitting hyperparameters of a number of equilibrium concepts from observations of human
play [96]. Both the latter methods are computationally intensive and have trouble scaling beyond
toy problems.

In this thesis, we tackle strategic behavior prediction from the machine learning viewpoint.
Our goal is to construct accurate predictions of the players’ behavior using few observations of
play. We aim primarily for strong predictive performance as it is measurable, unlike cause or
intention upon which we can only speculate. Low sample complexity is of particular importance
in multi-agent scenarios as typically the size of a game scales exponentially in the number of
players. Consequently, our procedures must be robust to a large amount of noise.

The main contributions of this thesis are:
• A family of computationally tractable methods for estimating multi-agent behavior from

regret-feature estimates, MaxEnt ICE (Inverse Correlated Equilibrium) and friends.
• Experimental validation advocating for and demonstrating the efficacy of MaxEnt ICE.
• A generalized view of game abstraction combined with a new method for equilibrium

computation in zero-sum extensive-form games, Regression CFR (RCFR).
In Chapter 2, we introduce the overarching theme of our thesis—rather than estimating the

agents’ behavior directly, the so-called primal problem, we instead first estimate their regret, the
dual problem. This is akin to methods for single-agent settings that estimate the player’s utility.
We present a computationally efficient procedure based on the principle of maximum entropy to
convert these regret estimates into the primal behavior.

We argue that estimating regrets (or in the zero-sum case, utility given to the opponent), is
much easier than estimating the primal behavior directly. There are at least three reasons for this.
First, when there are three or more agents with (potentially) correlated behavior there is simply
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fewer regrets to estimate than primal joint-actions. Second, when behavior is strategic the regrets
are often simpler and smooth in ways that the primal behavior is not. For example, in poker it
is common to bluff, e.g., bet with a poor hand hoping your opponent folds a better hand. This
results in discontinuities in the primal strategy, e.g., checking with medium strength hands and
betting with both weak and strong hands. Here, despite the jagged primal strategy, the utility of
each hand increases smoothly with rank. Third, in games of imperfect information, we typically
do not completely observe the players’ primal strategy even in the limit of infinite observations.
For example, in poker we do not observe an opponents’ hand—his private information—when
he folds. We know our own private cards. Thus, we completely observe the utility the player
provides us, i.e., the dual variables that we advocate estimating.

An additional selling-point of our approach is that our recovery procedure is, in a sense,
game-theoretic and robust to errors in our regret estimates. In sequential decision-making sce-
narios, we often do not observe play in all situations that may arise. For example, a chess grand-
master will rarely blunder his queen, thus we cannot know how he will continue playing after
such a mistake. Both primal and dual procedures must somehow cope with these unobserved
situations. Our maximum entropy recovery procedure is robust to errors in regret estimates. That
is, in unobserved situations, or rarely observed situations, we do not require our prediction to as
closely match our regret estimates. In these situations, it will simply predict “good” equilibrium-
like behavior consistent with the remainder of the strategy.

We conclude Chapter 2 with experimental results on a number of small matrix games played
by humans for social science experiments in laboratory settings. We compare our approach to a
variety of machine learning and game-theoretic approaches.

In Chapter 3, we extend our approach to situations where the agents’ utility is not known.
Here, we assume instead that the agents’ utility is an unknown linear function of known utility
features. This is particularly important from a modelling perspective as players’ utility is often
a combination of a number of factors and subject to personal taste. For example, consider a
player choosing between taking public transit or driving to work. These two choices trade off
between time, money and comfort. These are features we can (to an extent) observe, but how
they combine into a single number, the player’s utility, cannot be known a priori and will vary
from person to person.

We conclude Chapter 3 with experimental results predicting where mid-scale hotels will be
built in the state of Texas. Here, we observe a number of demographic and regulatory features of
each county as well as public tax records from which we determine when and where hotels are
built. That is, we do not observe each hotel’s profit or their true utility (which likely is not purely
profit). In this setting, prior game-theoretic approaches cannot be applied, both because they do
not scale to games of this size and because the utility cannot be specified.

Finally in Chapter 4, we extend our dual estimation approach to zero-sum extensive-form
games with known utility. Additionally, we integrate our regret estimation technique with a
modern equilibrium-finding approach, counterfactual regret minimization (CFR). This integra-
tion allows us to draw parallels between our estimation technique and modern game abstraction
techniques [80]. In particular, we can view modern game abstraction as defining a piecewise
constant model class. During equilibrium computation, we model the players’ regrets by a func-
tion in this class, which we update each iteration. From this viewpoint, it is clear that it is not
necessary to use a piecewise constant estimator—we can choose to use any other functional form.

3



Together, these contributions demonstrate that we can accurately and tractably estimate
strategic behavior in a plethora of multi-agent scenarios. These estimates are theoretically sound
backed by both game theory and information theory. Furthermore, they are empirically validated
by a wide range of applications from decision theory, economics and game playing.
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Chapter 2

Behavior Prediction with Known Utility

2.1 Definitions
Normal-form games, or matrix games, are the canonical tool used by game-theorists to study
competitive and cooperative behavior [73]. Well known examples include the famous “Prisoner’s
Dilemma”, the “Dove and Hawk” game used to model mutually assured destruction during the
Cuban missile criss, and the “Battle of the Sexes”. They are complete in the sense that they can
represent any finite interaction, but often not in the most concise fashion. Like those before us,
we begin our journey on behavior prediction here.
Definition 1 (based on Osborne and Rubinstein [73]). Formally, a vector-valued normal-form
game or matrix game is a tuple Γ = (N,A, u, w∗) where

• [N ] is the set of players,
• A = ×i∈[N ]Ai is the set of joint-actions or outcomes,
• Ai is the set of player i’s actions,
• ui : A → RK is player i’s utility feature function, and
• w∗ ∈ RK is the true utility function, a linear function.
We let A = maxi∈[N ] |Ai| be the maximum number of actions available to any player. In

general the description of such a game is of size |A| = O(AN).
Unlike the standard definition, the games we consider are vector-valued—each outcome is

endowed with a whole vector of utility features. Each feature measures a quantity of the outcome
that may correlate with the agents’ utilities, like money spent, time taken, fuel used, oranges
consumed, etc. We assume that the true utility is formed by a common linear function of these
utility features, w∗ ∈ RK . For now, we assume that w∗ is known to us. We will relax this
assumption in future chapters. Note that we can facilitate player-specific utility functions by
simply expanding the feature space.

A matrix game is a one-shot interaction between the N players. Simultaneously and without
knowledge of the others’ choices, each player i ∈ [N ] chooses an action ai from its action set Ai.
These actions form the game’s outcome, a tuple a = (a1, a2, . . . , aN), and each player receives
utility 〈ui(a), w∗〉, a cardinal measure of happiness or individual well-being.

A player draws its action from its mixed strategy, σi ∈ ∆Ai
, a probability distribution over

its actions. A strategy profile, σ = (σ1, σ2, . . . , σN), is a tuple of strategies, one for each player.
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We use σ−i to denote the tuple of strategies from profile σ excluding player i.
Given a strategy profile σ, player i’s expected utility features are defined as

ui(σ)
.
= Ea∼σ [ui(a)]

=
∑
a∈A

ui(a)
∏
i∈[N ]

σi(ai),

and its expected utility is 〈ui(σ), w∗〉.
If player i knows all the strategies for the other players, σ−i, its best response is any strategy

maximizing its utility:

σBR
i ∈ argmax

σi∈∆Ai

〈ui(σi, σ−i), w∗〉

Unlike in the single agent setting, players cannot myopically maximize their own utility, i.e.,
play a best response, because they are not privileged to the others’ strategies. They must reason
about the others’ intentions and act accordingly, e.g., to coordinate to achieve a common goal
or to strategically battle for a shared resource. For this reason, we generally need an alternative
criteria to evaluate the optimality of the entire strategy profile.

A strategy profile is stable, or in equilibrium if no player can benefit by deviating from it.
Said another way, each player’s strategy in profile σ is a best response. We say that a strategy
profile is an ε-Nash equilibrium if no player can benefit more than ε by deviating:〈

ui(σ
BR
i , σ−i), w

∗〉 ≤ 〈ui(σ), w∗〉+ ε ∀i ∈ [N ]

John Nash’s celebrated theorem, for which he won a Nobel prize, demonstrates non-constructively
that such an equilibrium exists in any game [68]. Unfortunately, in general computing a Nash
equilibrium is computationally hard; specifically, it is PPAD-complete [20]. There is no known
polynomial time algorithm to compute such a profile. Additionally, many decision problems
associated with Nash equilibria are NP-hard, such as determining if a game has a pure strategy
Nash equilibrium, or determining if an action is in the support of any equilibrium [16]. Fur-
thermore, there are no known dynamics that converge to a Nash equilibrium. We will elaborate
further on these deficiencies of this solution concept in future sections.

2.1.1 Zero-Sum Games
We call a game two-player zero-sum, or just zero-sum, if N = 2 and

〈u2(x, y), w∗〉 = −〈u1(x, y), w∗〉 . ∀x ∈ A1, y ∈ A2

That is, what one player wins the other player loses. Zero-sum games are purely strategic—there
is no way to benefit by cooperating with the opponent.

Zero-sum games are an important special-case. Many popular games played by humans
are zero-sum, e.g., chess, checkers, backgammon, go and some forms of poker. Furthermore,
unlike general matrix-games, there are efficient approximation algorithms for computing ε-Nash
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equilibrium in large games. Additionally, there are also simple dynamics that converge towards
a Nash equilibrium [29, 61].

Nash equilibria correspond directly with the saddle-points of the convex minimax problem:

max
σ1∈∆A1

min
σ2∈∆A2

〈u1(σ), w∗〉 .

There are many algorithms to tackle this minimax problem directly. For example, Newton’s
method, the fixed point iteration, or two no-regret learners in self-play. Alternatively, it is in-
sightful to convert the problem into the linear program:

(σNE
1 , v∗) ∈ argmax

σ1∈∆A1
,v
v subject to:

〈u1(σ1, y), w∗〉 ≥ v. ∀y ∈ A2

We call v∗ the value of game Γ. This value is unique, and the first player can always attain it
by playing a Nash equilibrium strategy. That is, playing a Nash equilibrium in a zero-sum game
is minimax optimal. This is known as von Neumann’s minimax theorem [92]. Unlike in general-
sum games, there is no equilibrium selection problem. All Nash equilibrium are exchangeable.
It is safe to play an equilibrium against an unknown opponent.

A further consequence of the linear programming formulation is that we can write the set of
ε-Nash equilibrium strategies for player one as:

Σε-NE
1 = {σ1 ∈ ∆A1 | 〈u1(σ1, y), w∗〉 ≥ v∗ − ε,∀y ∈ A2} .

It is convenient to define player one’s strategy value function, v1 : ∆A1 → R as

v1(σ1) = min
σ2∈∆A2

〈u1(σ), w∗〉 .

Note that we have v1(σ1) ≤ v∗ for all σ1 ∈ ∆A1 .
We also define player one’s exploitability function ε1 : ∆A1 → R as

ε1(σ1) = v∗ − v1(σ1).

With this notation, we can write the set of ε equilibrium strategies more concisely,

Σε-NE
1 = {σ1 ∈ ∆A1 | ε1(σ1) ≤ ε} .

We will focus on behavior prediction in zero-sum games. This will allow us to derive com-
putationally tractable algorithms with the ability to scale to large games. We will soon argue that
this restriction is not a major hindrance, i.e., we will be able to apply our techniques in non-zero-
sum games as well. Specifically, we will attain this by considering the correlated equilibrium
solution concept.
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2.2 Problem Statement
Initially, imagine we wish to estimate the strategy of player one in a zero-sum game from a small
set of observations of play. We assume that the observations are drawn from a static strategy
σ1 ∈ ∆A1 , i.e., player one is not learning or adapting. We call σ1 the true behavior. We call
our estimator, σ̂1, the predicted behavior. We take the role of an outside observer—we take
no actions in the game and we aim for strong predictive performance. We do not try maximize
utility in the game, by say constructing a counter-strategy.

There are two ways that we can formally define the set of observations we recieve. The first
and most obvious set of observations we call the primal view. In the primal view, we observe
a sequence of T actions from player one in game Γ, {xt ∈ A1}Tt=1. When privileged to primal
observations, it is as if we are watching the game from over the shoulder of player one. Recall,
we are not privileged to player one’s actual strategy; only to samples from it.

The second set of observations we call the dual view. Here, we observe a sequence of T
utility feature functions for player two,

{
ut2 : A2 → RK

}T
t=1

, where E[ut2(y)] = u2(xt, y) for all
y ∈ A2. That is, ut2(y) is an unbiased estimate of the utility for player two at time t. Dual
observations are akin to watching the game from over the shoulder of player two.

Note that the dual view is strictly weaker than the primal view. Given primal observations,
we can construct dual observations. The converse is not true. For example, in a hand of poker
where player one folds, player two does not know with certainty what hand his opponent held,
i.e., player two does not completely observe player one’s private information. As a consequence,
the dual estimation methods are more broadly applicable than primal methods.

In many applications, such as opponent modelling and opponent exploitation, we are not
privileged to primal observations. Despite this, most prior techniques require the more natural
primal observations [3, 31, 47, 48]. Thus, these methods are in theory unimplementable for
almost all imperfect information games. In practice, one typically employs dubious heuristics to
fake full primal observations from the available partial information [30].

We reiterate that when we observe the game from player two’s point-of-view, we will take no
actions in the game. Unlike in sequential settings, this is inconsequential in normal-form games,
as exploratory actions are not necessary to examine the entire space of strategies.

We will measure the quality of our prediction by the Kullback-Leibler divergence (KL) to the
true behavior [59],

KL(σ1‖σ̂1)
.
= Ea∼σ1 [log2 σ1(a)− log2 σ̂1(a)] .

The KL divergence measures the number of extra bits required to code σ using σ̂. That is, it is
zero if and only if the two distributions are the same. It is not a metric, as it is not symmetric and
does not satisfy the triangle inequality.

Of primary concern is the statistical complexity (i.e., sample complexity) of an approach.
That is, how many samples T are necessary to accurately predict the agents’ behavior. For
example, in multi-player games if we naively view the joint behavior as a high-dimensional
multinomial distribution we may need O(AN) observations to estimate its parameters. The hope
is that we can leverage the fact that the behavior is purposeful, or goal driven, to derive tractable
estimation methods.
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A secondary concern is the computational complexity of an estimator. Many game-theoretic
solution concepts, like Nash equilibria in general games, are computationally hard to compute.
These concepts are inapplicable beyond toy scenarios and the motivation that they represent
how imperfect agents reason is dubious at best. Using these intractable solution concepts as
the foundation of an estimator unnecessarily limits scalability or forces us to make modeling
concessions.

2.3 Dual Strategy Estimation
Before we introduce our dual strategy estimation technique, let us review the correlated equilib-
rium solution concept. This will allow us to predict behavior in any game, e.g., with more than
two players, by predicting a single player’s behavior in a zero-sum game.

2.3.1 Correlated Equilibria and Zero-sum Games
If the players are able to communicate prior to play they can agree on joint-strategy, σ ∈ ∆A, a
distribution over the game’s joint-actions that governs how they will play. This allows the players
to coordinate and cooperate should it be advantageous to do so.

Operationally, coordination can occur in a number of ways. For example, a neutral third party
can sample an outcome a ∼ σ and privately tell each player i its action ai. Without any loss of
generality, this is the viewpoint commonly taken in theoretical works. Alternatively, the players
may simply all observe a common random signal, e.g., the color of a traffic signal, or simply
a stream of random bits. Less obviously, in repeated settings the players can communicate and
coordinate through their action histories [28, 40]—no explicit communication, i.e., through a
side channel, is necessary to achieve correlated behavior.

Given a joint-strategy σ ∈ ∆A, we write player i’s expected utility features as

ui(σ) = Ea∼σ [ui(a)] .

In the simultaneous one-shot setting, the players have no additional information available to
them when they are to choose their action. Here, they know their portion of the sampled joint-
action. When choosing whether or not to deviate, they may condition on this information [5].
We define a switch deviation as

switchx→yi (a) =

{
y if a = x
a otherwise

We write the set of switch deviations

Φint = {switchx→yi | i ∈ [N ], x, y ∈ Ai} .

In general, a deviation for player i is any function fi : Ai → Ai. We overload fi : A → A to
be the function that modifies player i’s action by deviation fi and leaves all other players’ actions
unchanged. Note, there is no additional power gained by considering stochastic deviations.
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The regret concept corresponding the set of switch deviations is internal regret. We write
the internal regret features with respect to switch deviation where player i changes x to y as

rx→yi (σ) = ui(switchx→yi (σ))− ui(σ).

An encompassing regret concept is swap regret, which corresponds to the set of swap devi-
ations. Swap deviations allow a player to arbitrarily map any action to any other action. That is,
a player may choose a switch deviation for every available action.

A joint-strategy is stable, or in equilibrium, if none of the players have any incentive to
deviate through any combination of switch deviations.
Definition 2 (from Aumann [2]). A joint-strategy is an ε-correlated equilibrium if it has no more
than ε swap regret.∑

x∈Ai

max
y∈Ai

〈rx→yi (σ), w∗〉 ≤ ε. ∀i ∈ [N ]

The number of swap deviations is exponential in the number of actions. Fortunately, swap
regret is bounded by internal regret, which has only a polynomial number of deviations.
Lemma 1. If a joint-strategy is an ε-correlated equilibrium then

〈rx→yi (σ), w∗〉 ≤ ε. ∀i ∈ [N ], x, y ∈ Ai

Proof.

max
y∈Ai

〈rx→yi (σ), w∗〉 ≥ 〈rx→xi (σ), w∗〉 = 0 ∀i ∈ [N ], x ∈ Ai

max
x,y∈Ai

〈rx→yi (σ), w∗〉 ≤
∑
x∈Ai

max
y∈Ai

〈rx→yi (σ), w∗〉 ≤ ε

Lemma 2. If a joint-strategy has ε internal regret, then it is an Aε-correlated equilibrium.

Proof.

max
i∈[N ]

∑
x∈Ai

max
y∈Ai

〈rx→yi (σ), w∗〉 ≤ max
i∈[N ]

∑
x∈Ai

ε

≤ Aε

We will now demonstrate a reduction from anN -player game to a two-player zero-sum game
whose ε-Nash equilibrium correspond to joint-strategies with 2ε internal regret. This will ease
our exposition as we will need only to concern ourselves with behavior prediction techniques
for two-player zero-sum games. Additionally, it may provide some operational insight into the
workings of a correlated equilibrium.
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Let Γ = (N,A, u, w∗) denote the original N -player game and Γzero = ([2],Azero, uzero, w∗)
our corresponding zero-sum matrix game. The first player of our new game will be the modera-
tor, and the second will represent all N players simultaneously.

The moderator in the zero-sum game chooses a joint-action in the N -player game, a ∈
Azero

1 = A. The opponent represents all the original games’ players. Simultaneously and without
knowledge of the moderators choice, the opponent chooses a switch deviation, (i, x, y) ∈ Azero

2
∼=

Φint. The opponent is then compensated for the incurred regret: uzero
2 (a, i, x, y) = 〈rx→yi (a), w∗〉.

We can view this construction as the moderator simply paying the players to act in a particular
way. The players need not concern themselves with deviating in the actual game as the moderator
will subsidize them appropriately for any inaccuracy that it asks them to perform.

We will now show that the set of ε-Nash equilibrium strategies for the moderator correspond
to the set of joint-strategies with ε internal regret. This is easy barring one subtlety; we must
show that the value of this game is zero.

First, note the value of Γzero is at most zero. The second player can always receive zero
by choosing not to deviate, e.g., by choosing (1, x, x) for any x ∈ A1. Phrased another way,
the moderator never receives payment from the players if they deviate optimally. Now let us
construct a matching upper bound.

Let σε−CE ∈ ∆A be any ε-correlated equilibrium. By definition,〈
rx→yi (σε−CE), w∗

〉
≤ ε ∀i ∈ [N ], x, y ∈ Ai

In particular, for any λ ∈ ∆Φint ,

uzero
2 (σε−CE, λ) =

∑
i∈[N ]
x,y∈Ai

λx→yi

〈
rx→yi (σε−CE), w∗

〉
≤
∑
i∈[N ]
x,y∈Ai

λx→yi ε = ε.

If the moderator plays an ε-correlated equilibrium, it never pays the players more than ε. By
choosing ε = 0, we have matching lower and upper bounds, i.e., the value of Γzero is zero.

Now we can show that if σ ∈ ∆A, λ ∈ ∆Φint is an ε-Nash equilibrium of Γzero then σ has no
more than 2ε internal regret in Γ. From the premise, we have for all i ∈ [N ], x, y ∈ Ai,

uzero
2 (σ, i, x, y)− uzero

2 (σ, λ) ≤ ε

〈rx→yi (σ), w∗〉 ≤ ε+ uzero
2 (σ, λ) ≤ 2ε.

The last inequality follows since the expected utility of an ε-Nash equilibrium is no more than ε
from the game’s value.

From this construction, we see that estimating the joint behavior of all the players in a multi-
player game is equivilent to estimating the behavior of the moderator in our zero-sum game. In
particular, if we take the dual view, we will observe estimates of the players’ internal regrets,
i.e., the utility that the moderator bestows onto the players.

2.3.2 Rational Behavior
Now we are ready to build our dual behavior estimation technique. Roughly speaking, there are
two steps. First, we will derive a set of necessary conditions—player rationality assumptions—
that our predictor should satisfy. These “game-theoretic” conditions will bias our prediction
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towards purposeful, or goal-oriented, behavior. With these conditions we hope to make a suc-
cessful bias-variance trade-off. That is, even when our assumptions do not hold exactly we hope
to make more accurate predictions under low sample sizes.

We will use an information-theoretic criteria to select amongst behavior satisfying these con-
ditions. In a sense, we aim to make our necessary conditions sufficient as well. This criteria, the
principle of maximum entropy, will result in a convex optimization that we can efficiently solve.
This will allow our technique to scale to larger games than prior approaches. Additionally, we
will inherit its strong theoretic predictive guarantees.

In single-agent settings, we say an agent is rational if they maximize their utility. This as-
sumption provides the foundation for a host of single-agent imitation learning techniques [1, 75,
97]. Following the same spirit, we require an analogous statement for zero-sum games. Intu-
itively, we say a player is rational if it maximizes its utility against an optimal adversary. That
is, if he achieves the game’s value.

More formally, we say the player is strongly rational, or simply rational, if

v1(σ1) = v∗,

or equivalently,

〈u1(σ1, y), w∗〉 ≥ v∗. ∀y ∈ A2

That is, the player achieves the value of the game against a worst-case adversary, i.e., he plays
an equilibrium strategy, σ1 ∈ ΣNE

1 .
Relaxing the assumption slightly, we say the player is ε-strongly rational if

〈u1(σ1, y), w∗〉 ≥ v∗ − ε. ∀y ∈ A2

That is, σ1 ∈ Σε-NE
1 .

Our approach will first estimate ε̂ from our dual observations. Then, we will require that our
estimator, σ̂1, is ε̂-rational. This results in the desirable quality that our estimation of the player’s
behavior will be at least as good (in terms of exploitability) as the true behavior.

More formally, so long as our estimator ε̂ is consistent, i.e., ε̂→ ε, we will have

v1(σ̂1)→ v1(σ1).

That is, the value of our prediction approaches the value of the player’s true behavior.

2.3.3 Exploitability Estimation
Now we derive a consistent estimator of ε from dual observations and analyze its properties.

First, from the dual observations we estimate the opponent’s utility feature function by simply
averaging the observed functions,

ũ2(y) =
1

T

T∑
t=1

ut2(y). ∀y ∈ A2
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Next, we write the definition of exploitability in terms of u2 due to the zero-sum property of
the game.

ε = v∗ − v1(σ1)

= v∗ − min
y∈A2

u1(σ1, y)

= max
y∈A2

v∗ − u1(σ1, y)

= max
y∈A2

v∗ + u2(σ1, y)

≥ v∗ + u2(σ1, y). ∀y ∈ A2

Substituting in our estimate of the opponent’s utility in place of the truth, we arrive our
estimator of the first player’s suboptimality,

ε ≥ v∗ + u2(σ1, y) ≈ v∗ + 〈ũ2(y), w∗〉 ∀y ∈ A2

ε̂ = max
y∈A2

v∗ + 〈ũ2(y), w∗〉 .

By Hoeffding’s inequality and the union bound we have the following theorem that bounds
the error in our estimator as a function of the number of observations.
Theorem 1. For all y ∈ A2, we have | 〈ũ2(y), w∗〉 − 〈u2(σ1, y), w∗〉 | ≤ ε with probability at
least 1− δ so long as T ≥ (2∆2/ε2) log(2|A2|/δ).

Here, ∆ is a bound on the magnitude of the game’s maximum utility.

Proof.

By Hoeffding’s inequality, we have for any particular y ∈ A2 the probability of failure is bounded

P (| 〈ũ2(y), w∗〉 − 〈u2(σ1, y), w∗〉 | ≥ ε) ≤ 2 exp

(
−Tε2

4∆2

)
Applying the union bound we have the total probability of failure is bounded

P

( ⋃
y∈A2

| 〈ũ2(y), w∗〉 − 〈u2(σ1, y), w∗〉 | ≥ ε

)
≤ 2|A2| exp

(
−Tε2

4∆2

)
≤ δ

Rearranging to isolate T we have

T ≥ 2∆2

ε2
log

2|A2|
δ

As a simple corollary, we can also bound the error in our estimate of ε by the same quantity.
Corollary 1. |ε̂− ε| ≤ ε with probability at least 1− δ so long as T ≥ (2∆2/ε2) log(2|A2|/δ).

Notice that our estimator has a logarithmic dependence on the number of action’s available
to player two. Recall that in order to estimate player one’s strategy directly from primal observa-
tions, we require O(|A1|) observations. That is, we require exponentially fewer observations to
estimate the utility to player two than to estimate the strategy of player one if both players have
equal sized strategy spaces.
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2.3.4 Principle of Maximum Entropy

We are now able to estimate the player’s suboptimality, and thus we have an estimate of the
set of ε-rational behavior—Σε̂-NE

1 . Next, we must devise an efficient strategy for selecting a
predictor from this set of behavior. Our selection must resolve the remaining ambiguity in a way
to guarantee strong predictive performance.

The principle of maximum entropy states that given known conditions or constraints on a
distribution, σ ∈ X , one should predict the distribution of maximum entropy [45]. Entropy,
defined as

H(σ) = Ea∼σ [− log σ(a)] = −
∑
a∈A1

σ(a) log σ(a),

is a measure of “energy” or randomness. By choosing the most random distribution that satisfies
our constraints, we aim to impose no further dependencies or correlations in the distribution. In
a sense, we aim to find the distribution where our conditions are both necessary and sufficient.

When the constraints are convex, e.g., they are linear equality and convex inequality con-
straints, then computing the maximum entropy distribution is a convex optimization problem.

σMaxEnt = argmax
σ∈∆

H(σ) subject to:

Aσ = b

f(σ) ≤ 0

The solutions to these optimization problems can be approximated to an arbitrary degree effi-
ciently, e.g., by gradient methods or second-order methods.

The principle of maximum entropy is the underlying assumption for many popular machine
learning methods, such as logistic regression and conditional random fields. As we will touch on
in a few sections, it has also been employed for behavior prediction in games.

A result due to Grünwald and Dawid provides some insight into the predictive properties of
the maximum entropy distribution.
Theorem 2 (Grünwald and Dawid [38]). The maximum entropy distribution minimizes the max-
imum log-loss subject to the known constraints. i.e.,

σMaxEnt = argmin
σ∈X

max
σ′∈X

Ea∈σ [− log σ′(a)]

The principle of maximum entropy is prevalent beyond machine learning. It is used in eco-
nomics and finance in the study of market makers, e.g., the logarithmic market scoring rule [39].
It also underlies the Kelly criterion for optimizing portfolio growth [53].

2.3.5 Maximum Entropy ε-Equilibrium Strategy

Our set of ε-rational behavior is indeed convex—in fact it is a polytope. Thus, choosing X =
Σε̂-NE

1 and using the principle of maximum entropy involves a convex optimization problem.
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The primal maximum entropy ε-equilibrium strategy convex program is:

max
σ1∈∆A1

H(σ1), subject to:

〈u1(σ1, y), w∗〉 ≥ v∗ − ε. ∀y ∈ A2

We can use standard optimization techniques to solve the primal directly, but it is advanta-
geous to consider the dual program:

min
λ≥0

(v∗ − ε) 〈e, λ〉+ logZ(λ), where

Z(λ) =
∑
x∈A1

exp

(∑
y∈A2

λ(y) 〈u1(x, y), w∗〉

)
.

Where e is the all-ones vector. The derivation of the dual follows directly from (A.2) and (A.4).
The dual objective is smooth and the optimization domain, the positive orthant, is simple. These
qualities are particularly appealing as they enable the use of the projected gradient method, an
incredibly simple optimization technique.

Note that the dual multipliers are similar to a strategy for the opponent with the exception that
they do not normalize to one, i.e., λ is not necessarily a probability distribution. This has a strong
and insightful connection to imperfect information game subgame re-solving first introduced in
Burch et al. [12]. We will elaborate on this connection in the conclusions and future work chapter.

The constraints in the primal problem are linear and feasible, as ε̂ ≥ 0, therefore by Slater’s
condition strong duality holds—there is no duality gap.

Since the primal is strongly convex, we can recover the unique solution from the dual solu-
tion,

σλ1 (x) = exp

(∑
y∈A2

λ(y) 〈u1(x, y), w∗〉

)
/Z(λ).

Note that σλ1 is a soft, or smoothed, best response to λ. That is, it is a best response where the
first player plays according to the softmax.

The gradient of the dual program is simple and of a familiar form:

∂

∂λ(y)
= v∗ − ε− E

[〈
u1(σλ1 , y), w∗

〉]
.

In words, the gradient is the difference between the value of the player’s observed strategy and
the value should the opponent play y. If this difference is negative, then the opponent should
play y more often.

Algorithmically, we can apply projected gradient descent to optimize for λ. Starting from an
arbitrary λ, e.g., λ = 0, we iterate

λ′(y) =
[
λ(y)− α

(
v∗ − ε− E

[〈
u1(σλ1 , y), w∗

〉])]
+

Here, [x]+ = max{x, 0} and α is a positive step-size. In practice, we choose α to either be a
constant or by using a line search.
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2.3.6 Relation to Maximum Entropy Correlated Equilibrium
In the absence observations of play, Ortiz et. al. recommend predicting that the agents will
play the maximum entropy correlated equilibrium. When we reduce a normal-form game to a
zero-sum game via the correlated equilibrium reduction from Section 2.3.1, their procedure is
equivalent to our dual estimation procedure using ε̂ = 0.

2.3.7 Maximum Entropy Opponent Utility Preserving Strategy
Our dual strategy estimation algorithm uses a single statistic to quantify the player’s behavior, its
suboptimality, ε. In order to estimate this parameter, though, we must estimate the opponent’s
utility for all possible opponent actions uniformly well. In a sense we have more information
available to us than we are using to determine our prediction. In this section, we derive the
analogous maximum entropy estimator that uses the entire utility estimate, ũ2.

Like before, we start with the primal estimation problem. Here, we replace the constraint that
the behavior be ε̂ suboptimal with a utility matching constraint. That is, our behavior estimate
should bestow the same utilities onto the opposing player.

max
σ1∈∆A1

H(σ1), subject to:

〈u2(σ1, y), w∗〉 = 〈ũ2(y), w∗〉 ∀y ∈ A2

The dual is similar in form to the previous dual. Here, the domain is unconstrained, as
opposed to the positive orthant.

min
λ

∑
y∈A2

λ(y) 〈û2, w
∗〉+ logZ(λ), where

Z(λ) =
∑
x∈A1

exp

(
−
∑
y∈A2

λ(y) 〈u2(x, y), w∗〉

)
.

This derivation of the dual follows directly from (A.1) and (A.4).
Again, there is no duality gap, and we can recover the primal solution from a dual solution.

σλ1 (x) = exp

(∑
y∈A2

λ(y)− 〈u2(x, y), w∗〉

)
/Z(λ).

The gradient of the objective is

∂

∂λ(y)
= 〈û2(y), w∗〉 − E

[〈
u2(σλ1 , y), w∗

〉]
.

It is the difference between the estimate of the opponent’s utility and the opponent’s utility of
the behavior defined by λ. Note that this quantity is zero only if the prediction bestows the same
utility to the opponent as our estimate, i.e., the primal constraints are satisfied.

Again, we use gradient descent to optimize this objective. Unlike before, no projection step
is necessary as we are optimizing over the entire vector space.
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In practice, it is important to add a regularization term to our objective to avoid overfitting
our prediction to the noise in our utility estimate. We incorporate both L1 and L2 regularization:

min
λ

∑
y∈A2

λ(y) 〈û2, w
∗〉+ logZ(λ) + κ‖λ‖2

2 + µ‖λ‖1

These regularization terms can be dealt with explicitly using generalized gradient descent.
By adding the regularization terms in the dual, we change the corresponding primal program.

In particular, the altered primal program no longer requires that the utility matching constraints
be satisfied exactly. Instead, the constraint residual need only be small in L1 and L2 norm, the
degree of which is controlled by κ and µ [24].

2.3.8 Experimental Results on Kuhn Poker
Kuhn Poker is a small poker game that was introduced and analyzed by Harold W. Kuhn. It
consists of a three card deck, and a single round of betting. The game is far too small to be in-
teresting to humans. Despite this, optimal play still exhibits interesting game-theoretic concepts,
such as domination and bluffing.

The game is played as follows. First, each of the two players antes a single chip into the
pot and is dealt a single private card from the shuffled deck—either a jack, a queen or a king.
The first player has the option of checking or betting a single chip. If the first player checks,
the second player may bet a single chip, moving action back to the first player, or check behind,
leading to a showdown. When either player is facing a bet, they may call, matching the bet and
ending play with a showdown, or fold, forfeiting the pot to the other player.

At a showdown, both players reveal their private cards and the player with the highest card
wins all the chips in the pot. In Kuhn poker there are no ties, as each card is unique. As a
consequence, if dealt a king a player knows they have the strongest hand, and thus should never
fold. Similarly, a player dealt a jack knows they cannot possibly win at a showdown. In optimal
play, the first player loses at a rate of 1/18 chips per hand.

We will also experiment with a generalization of Kuhn poker, one card poker, or N -card
poker, for fixed N ≥ 3 [37]. Here, the betting remains the same, but the deck now contains N
distinct ranks. This allows us to freely scale the game.

Representing Kuhn poker as a matrix game, the first player has 33 = 27 actions and the
second player has 43 = 64 actions. We will compute a strategy in Kuhn poker and use it to play
4-card poker. Four card Kuhn poker is of size 81 by 256.

To start, we generate 0.1-Nash equilibrium strategy for the first player using regret-matching
in self-play in Kuhn poker. We then translate this strategy into 4-card poker by mapping the
strategy for the middle two ranks to that of the queen in the Kuhn strategy. This is our ground
truth behavior. Note that our original strategy is suboptimal in Kuhn poker due to stopping the
equilibrium computation early. Additionally, the using abstraction further degrades the quality
of the strategy. That is, our ground truth is not rational.

We compare our dual strategy estimation technique to the standard multinomial estimator as
well as the restricted Nash estimator [48], both of which require primal observations. We will
now briefly describe these baselines.
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The primal multinomial estimator is simply an average of the primal observations mixed with
the uniform distribution (to ensure full support, and finite loss).

σ1(a) ∝ α +
1

T

T∑
t=1

I(xt = a)

This is equivalent to maximizing the likelihood of the primal observations subject to a Dirichlet
prior. We choose the strength of the prior, α > 0, using leave-one-out cross-validation.

The restricted Nash technique is technically not designed to estimate a player’s behavior, but
instead to robustly exploit it using primal observations [48]. It is operationally quite simple.
Similar to computing an equilibrium, two no-regret learners play against one-and-other in self-
play. There is one additional twist—the player we wish to exploit mixes in the observed behavior
with probability ε. As with the multinomial, we choose ε by cross-validation.

This mixing has a two-fold effect. First, the no-regret learner corresponding to the exploitee
learns a game-theoretic strategy that aims to mask or make up for the weaknesses in the observed
behavior. Second, as the exploitee is able to somewhat adapt to the exploiter, the exploiter
learns a robust counterstrategy. As the ε parameter varies from zero to one, the counterstrategy
interpolates non-linearly between a best response to an equilibrium strategy.

Though not originally designed to be predictive, we use the strategy that the exploitee learns
as a baseline to compare against our dual strategy estimation technique.

The performance of the behavior prediction algorithms is displayed in Figure 2.1. First, we
note that our dual estimator, and the dual utility estimator do much better than the multinomial
under low sample sizes. Furthermore, the performance of the dual utility estimator is almost
invariant to sample size. We can conclude that either the utility estimates more rapidly converge
to the true utilities, or that the induced behavior is stable with respect to noisy utility estimates.

Second, the multinomial and the restricted Nash estimators eventually overtake the dual util-
ity estimator. This is to be expected, as they are consistent—they will ultimately converge to the
true behavior. The dual estimators do not have this guarantee. This leads us to believe that it may
be fruitful to consider primal-dual estimators, which somehow mix between the two estimators
at a rate that depends on the number of observations.

In Figure 2.2, we show the error of the maximum entropy ε-Nash equilibrium. Note that
the loss hits its minimum of 1.69 at ε = 0.016. This is much lower than the loss of the dual
estimator, which hovers around 2.00. Upon inspection, it appears that in this case, shrinking the
value estimate towards the game’s value improves performance. This has the effect of placing a
prior on the agents’ performing rationally under lower sample sizes. This is similar in spirit to
the idea of [72], where it is assumed the agents are completely rational.

In Figure 2.3 we show both an optimal strategy for the first player as well as the corresponding
value for each rank in one card poker with a deck of thirteen cards. This figure is compelling
for two reasons. First, note that the optimal strategy is not at all smooth as a function of rank.
In particular, the first player bets with its low cards as bluffs, and its high cards for value. This
illustrates our claim that strategic behavior is jagged and complicated. Second, the value of each
card is a smooth function of rank. In this case it is fit nicely by a simple quadratic. Together,
these imply that we can more easily estimate the utility of each rank than the optimal strategy
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Figure 2.1: Kullback-Leibler divergence of behavior prediction algorithms in one card poker.

itself. For example, if we assume a quadratic form for the value function, we need only estimate
three parameters, not thirteen which would be required to estimate each individually.
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Chapter 3

Behavior Prediction with Unknown Utility

3.0.1 Rationality and the ICE Polytope
Let {a(t)}Tt=1 be a sequence of T independent observations of behavior in game Γ distributed
according to σ, the players’ true behavior. We call the empirical distribution of the observations,
σ̃, the demonstrated behavior.

We aim to learn a distribution σ̂, called the predicted behavior, an estimation of the true
behavior from these demonstrations. Moreover, we would like our learning procedure to extract
the motives for the behavior so that we may imitate the players in similarly structured, but unob-
served games. Initially, let us consider just the estimation problem. While deriving our method,
we will assume we have access to the players’ true behavior. Afterwards, we will analyze the
error introduced by approximating from the demonstrations.

Imitation appears hard barring further assumptions. In particular, if the agents are unmoti-
vated or their intentions are not coerced by the observed game, there is little hope of recovering
principled behavior in a new game. Thus, we require a form of rationality.
Proposition 1. The players in a game are rational with if they prefer joint-strategy σ over joint
strategy σ′ when

Regret(σ,w∗) < Regret(σ′, w∗)

Our rationality assumption states that the players are driven to minimize their regret. It is
not necessarily the case that they indeed have low or no regret, but simply that they can evaluate
their preferences and that they prefer joint strategies with low regret. Through this assumption,
we will be able to reason about the players’ behavior solely through the game’s features; this is
what leads to the improved statistical properties of our approach.

As agents’ true preferences w∗ are unknown, we consider an encompassing assumption that
requires that estimated behavior satisfy this property for all possible utility weights. A prediction
σ̂ is strongly rational if

∀w ∈ RK , Regret(σ̂, w) ≤ Regret(σ,w).

Note that this does not assume that the players are completely rational, i.e., they have no regret,
with respect to all utility functions.
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This assumption is similar in spirit to the utility matching assumption employed by single-
agent inverse optimal control techniques. We also have a similar if and only if guarantee relating
rationality and strong rationality [1, 97].
Theorem 3. If a prediction σ̂ is strongly rational and the players are rational, then they do not
prefer σ over σ̂.

This is immediate as w∗ ∈ RK .
Phrased another way, a strongly rational prediction is no worse than the true behavior.

Corollary 2. If a prediction σ̂ is strongly rational and the true behavior is an ε-correlated equi-
librium utility function w∗ ∈ RK , then σ̂ is also an ε-equilibrium.

Again, the proof is immediate as Regret(σ̂, w∗) ≤ Regret(σ,w∗) ≤ ε.
Conversely, if we are uncertain about the true utility function we must assume strong ratio-

nality or we risk predicting less desirable behavior.
Theorem 4. If a prediction σ̂ is not strongly rational and the players are rational, then there
exists a w∗ ∈ RK such that σ is preferred to σ̂.

The proof follows from the negation of the definition of strong rationality.
By restricting our attention to strongly rational behavior, at worst agents acting according

to their unknown preferences will be indifferent between our predictive distribution and their
behavior. That is, strong rationality is necessary and sufficient requirement on us, the observer,
if the players are rational and we have no knowledge of their true utility function.

Note that requiring a strongly rational prediction is not as restrictive as it may initially seem.
The players’ true behavior is strongly rational. Thus, the set of strongly rational predictions is
always non-empty. Furthermore, any guarantees we can make regarding the quality of a strongly
rational prediction with respect to the entire set of strongly rational behavior will also hold with
respect to the truth. That is, though the players themselves consider only a single utility function,
we lose nothing by considering them all.

Unfortunately, a direct translation of the strong rationality requirement into constraints on the
distribution σ̂ leads to an intractable optimization problem as it has an infinite number of con-
straints that it involves products of utility vectors with the behavior to be estimated. Fortunately,
we can provide an equivalent concise convex description of the constraints on σ̂ that ensures any
feasible distribution satisfies strong rationality. We denote this set of equivalent constraints as
the Inverse Correlated Equilibria (ICE) polytope.
Definition 3 (Standard ICE Polytope).

rf (σ̂) =
∑
g∈Φ

ηfg r
g(σ), ∀f ∈ Φ

ηf ∈ ∆Φ, ∀f ∈ Φ

σ̂ ∈ ∆A.

The following corollary equates strong rationality and the standard ICE polytope.
Corollary 3. A prediction σ̂ is strongly rational if and only if for all f ∈ Φ there exists ηf ∈ ∆Φ

such that σ̂ and η satisfy the standard ICE polytope.
We now show a more general result that implies Corollary 3. We start by generalizing the

notion of strong rationality by restricting w∗ to be in a known set K ⊆ RK . We say a prediction

24



σ̂ is K-strongly rational if

∀w ∈ K, Regret(σ̂, w) ≤ Regret(σ,w).

If K is convex with non-empty relative interior and 0 ∈ K, we derive the K-ICE polytope.
Definition 4 (K-ICE Polytope).

rf (σ̂)−
∑
g∈Φ

ηfg r
g(σ) ∈ −K∗ ∀f ∈ Φ

ηf ∈ ∆Φ, ∀f ∈ Φ

σ̂ ∈ ∆A.

Note that the above constraints are linear in σ̂ and η, and K∗, the dual cone, is convex. The
following theorem shows theK-ICE polytope coincides withK-strongly rational joint-strategies.
Theorem 5. A prediction σ̂ isK-strongly rational if and only if for all f ∈ Φ there exists ηf ∈ ∆Φ

such that σ̂ and η satisfy the K-ICE polytope.
The proof is provided in Appendix B.
By choosingK = RK , thenK∗ = {0} and the polytope reduces to the standard ICE polytope.

Thus, Corollary 3 follows directly from Theorem 5. By choosing K to be the positive orthant,
K = K∗ = RK

+ , the polytope reduces to the following inequalities. Here, we explicitly assume
the utility is positively correlated with the features.
Definition 5 (Positive ICE Polytope).

rf (σ̂) ≤
∑
g∈Φ

ηfg r
g(σ) ∀f ∈ Φ

ηf ∈ ∆Φ, ∀f ∈ Φ

σ̂ ∈ ∆A.

Predictive behavior within the ICE polytope will retain the quality of the demonstrations
provided. The following corollaries formalize this guarantee.
Corollary 4. If the true behavior is an ε-correlated equilibrium under w∗, then a prediction σ̂
that satisfies the standard ICE polytope is an Aε-correlated equilibrium.

This follows immediately from Lemma 2.

Geometeric Interpretation of the Standard ICE Polytope

Next, we take a brief aside to understand the geometry of the Standard ICE Polytope. The
Standard ICE Poltype is made up of a set of constraints of the form,

rf (σ̂) =
∑
g∈Φ

ηfg r
g(σ),

ηf ∈ ∆Φ,

σ̂ ∈ ∆A.
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Figure 3.1: A Geometric Visualization of the ICE Standard Polytope.

one for each deviation f ∈ Φ.
Consider the following linear program that aims to determine if b can be written as a convex

combination of the columns of A:

min
x∈∆

0, subject to: Ax = b

Its dual linear program is
max
w,δ

δ − b · w, subject to: ATw ≥ δe

and it can written as the unconstrained convex program
max
w

minATw − b · w

By duality and construction, if the primal program is feasible then for any w

minATw − b · w ≤ 0

as the dual’s objective value can never exceed the primal’s objective value.
Also due to duality and the fact that the dual program is feasible, if the primal program is

infeasible then there must exist a w such that

ATw − b · w > 0

Said in other words, we have proven a theorem of alternatives: either b can be written as a
convex combination of the columns of A, or there exists a hyperplane with normal w 6= 0 that
separates the columns of A from the vector b. This is shown visually in Figure 3.1. In Figure 3.1,
the columns ofA are the vertices of the pointed polytope. Vector b is separated from the polytope
by the grey hyperplane, but the vector b′ is contained in the cone so it cannot be separated.
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In the case of the Standard ICE Polytope, the columns of the matrix A correspond to the
rg(σ)–the demonstrated regret feature vectors for each deviation. The vector b corresponds to a
particular rf (σ̂), the regret feature vector for the predicted behavior under some deviation f ∈ Φ.
The constraints require that all the predicted regret feature vectors, one for each deviation f ∈ Φ,
must be contained within the demonstrated regret vector polytope.

3.0.2 The Principle of Maximum Entropy
As we are interested in the problem of statistical prediction of strategic behavior, we must find
a mechanism to resolve the ambiguity remaining after accounting for the rationality constraints.
The principle of maximum entropy, due to Jaynes [45], provides a well-justified method for
choosing such a distribution. This choice leads to not only statistical guarantees on the resulting
predictions, but to efficient optimization.

The Shannon entropy of a joint-strategy σ is

H(σ) = Ra∼σ [− log σ(a)] ,

and the principle of maximum entropy advocates choosing the distribution with maximum en-
tropy subject to known constraints [45]. That is,

σMaxEnt = argmax
σ∈∆A

H(σ), subject to:

σ ∈ X .

The constraint set X is typically chosen to capture the important or most salient characteristics
of the distribution. When it is convex, finding this distribution is an easy optimization problem.
The resulting log-linear family of distributions (e.g., logistic regression, Markov random fields,
conditional random fields) are widely used within statistical machine learning.

In the context of multi-agent behavior, the principle of maximum entropy has been employed
to obtain correlated equilibria with predictive guarantees in normal-form games when the utilities
are known a priori [72]. We will now leverage its power with our rationality assumption to select
predictive distributions in games where the utilities are unknown, but the important features that
define them are available.

For our problem, the constraints are precisely that the distribution is in the ICE polytope,
ensuring that whatever we predict has no more regret than the demonstrated behavior.
Definition 6. The primal maximum entropy ICE optimization problem is

max
σ̂,η

H(σ̂) subject to:

rf (σ̂)−
∑
g∈Φ

ηfg r
g(σ) ∈ −K∗ ∀f ∈ Φ

ηf ∈ ∆Φ, ∀f ∈ Φ

σ̂ ∈ ∆A.

This program is convex, feasible, and bounded. That is, it has a solution and is efficiently
solvable using simple techniques in this form.

Importantly, the maximum entropy prediction enjoys the following guarantee:
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Algorithm 1 Dual MaxEnt ICE Subgradient
Input: Let σ̂ be the prediction given the current dual weights, λ, as from Equation (3.1).
for f ∈ Φ do
gmax ← argmaxg∈Φ

〈
rg(σ), λf

〉
∂
∂λf

L(λ)← rg
max

(σ)− rf (σ̂)
end for
return ∂

∂λ
L(λ)

Lemma 3. The maximum entropy ICE distribution minimizes over all strongly rational distribu-
tions the worst-case log-loss, Ea∼σ [− log2 σ̂(a)], when σ is chosen adversarially but subject to
strong rationality.

The proof of Lemma 3 follows immediately from the result of Grünwald and Dawid [38].

3.0.3 Dual Optimization

In this section, we will derive and describe a procedure for optimizing the dual program for
solving the MaxEnt ICE optimization problem. We will see that the dual multipliers can be
interpreted as utility vectors and that optimization in the dual has computational advantages. We
begin by presenting the dual program.
Theorem 6. The dual maximum entropy ICE optimization problem is the following non-smooth,
but convex program:

min
λf∈K

L(λ)
.
=
∑
f∈Φ

Regret(σ, λf ) + logZ(λ), where

Z(λ) =
∑
a∈A

exp

(
−
∑
f∈Φ

〈
rf (a), λf

〉)
.

We derive the dual in Appendix B
As the dual’s feasible set has non-empty relative interior, strong duality holds by Slater’s

condition—there is no duality gap. We can also use a dual solution to recover σ̂.
Lemma 4. Strong duality holds for the maximum entropy ICE optimization problem and given
optimal dual weights λ∗, the maximum entropy ICE joint-strategy σ̂ is

σ̂(a) ∝ exp

(
−
∑
f∈Φ

〈
rf (a), λ∗,f

〉)
(3.1)

The dual formulation of our program has important inherent computational advantages. First,
so long as K is simple, the optimization is particularly well-suited for gradient-based optimiza-
tion, a trait not shared by the primal program. Second, the number of dual variables, |Φ|K, is
typically much fewer than the number of primal variables, |A|+ |Φ|2. Though the work per iter-
ation is still a function of |A| (to compute the partition function), these two advantages together
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let us scale to larger problems than if we consider optimizing the primal objective. Comput-
ing the expectations necessary to descend the dual gradient can leverage recent advances in the
structured, compact game representations: in particular, any graphical game with low-treewidth
or finite horizon Markov game [51, 52] enables these computations to be performed in time that
scales only polynomially in the number of decision makers.

Algorithm 1 describes the dual subgradient computation. This can be incorporated with any
non-smooth gradient method, such as the projected subgradient method [81], to approach the
optimal dual weights.

3.1 Behavior Estimation in Parameterized Matrix Games
To account for stochastic, or varying environments, we now consider distributions over games.
For example, rain may affect travel time, make certain modes of transportation less desirable, or
even unavailable. Operationally, nature samples a game prior to play from a distribution known
to the players. The players then as a group determine a joint strategy conditioned on the particular
game and an outcome is drawn by a coordination device. We let G denote our class of games and
ξ be chance’s distribution over G.

As before, we observe a sequence of T independent observations of play, but now in addi-
tion to an outcome we also observe nature’s choice at each time t. Let {(Γ(t), a(t))}Tt=1 be the
sequence of observations drawn from ξ and σ, the true behavior. The empirical distribution of
the observations, ξ̃ and σ̃, together are the demonstrated behavior.

Now we aim to learn a predictive behavior distribution, σ̂, for any Γ ∈ G, even ones we have
not yet observed. Clearly, we must leverage the observations across the entire family to achieve
good predictive accuracy. We continue to assume that the players’ utility is an unknown linear
function, w∗, of the games’ features and that this function is fixed across G. Next, we amend our
notion of regret and our rationality assumption.

3.1.1 Behavior Estimation through Conditional ICE
Ultimately, we wish to simply employ an additional expectation over the game distribution when
reasoning about the regret and regret features. To do this, our notion of a deviation needs to
account for the fact that it may be executed in games with different structures. Operationally,
one way to achieve this is by having a deviation not modify the player’s action in games with a
different structure, which increases the size of Φ by a factor of |G|. If the actions, and in turn the
deviations, have similar semantic meanings across our entire family of games, one can simply
share the deviations across all games. This allows for one to achieve transfer over an infinitely
large class. Given such a decision, we write the expected regret features under deviation f as

rf (σ) = EΓ∼ξ
[
Ea∼σΓ

[
rf (a)

]]
,

and the expected regret under utility function w as〈
rf (σ), w

〉
= EΓ∼ξ

[
Ea∼σΓ

[〈
rf (a), w

〉]]
,
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Again, we quantify the stability of a set of joint strategies using this new notion of expected
regret with respect to the deviation set Φ,

Regret(σ,w) = max
f∈Φ

EΓ∼ξ
[〈
rf (σ), w

〉]
,

which, in turn, entails a notion of an ε-equilibrium for a set of joint strategies, a modified ratio-
nality assumption, and a slight modification to the K-ICE polytope,
Definition 7 (Conditional K-ICE Polytope).

EΓ∼ξ

[
rf (σ̂Γ)−

∑
g∈Φ

ηfg r
g(σΓ)

]
∈ −K∗ ∀f ∈ Φ

ηf ∈ ∆Φ, ∀f ∈ Φ

σ̂Γ ∈ ∆A. ∀Γ ∈ G

All that remains is to adjust our notion of entropy to take into account a distribution over
games. In particular, we choose to maximize the expected entropy of our prediction, which is
conditioned on the game sampled by chance.
Definition 8. The conditional Shannon entropy of a set of strategies σ when games are dis-
tributed according to ξ is

H(σ) = EΓ∼ξ
[
H(σΓ)

]
.

The modified dual optimization problem has a familiar form. We now use the new notion of
regret and take the expected value of the log partition function.
Theorem 7. The dual conditional maximum entropy ICE optimization problem is

min
λf∈K

∑
f∈Φ

Regret(σ, λf ) + EΓ∼ξ
[
ZΓ(λ)

]
.

The proof of this is a straightforward extension of Theorem 5 and Theorem 6. To recover the
predicted behavior, we use the same exponential family form as before.

As with any machine learning technique, it is advisable to employ some form of complexity
control on the resulting predictor to prevent over-fitting. As we now wish to generalize to unob-
served games, we too should take the appropriate precautions. In our experiments, we employ
L1 and L2 regularization terms to the dual objective for this purpose. Regularization of the dual
weights effectively alters the primal constraints by allowing them to hold approximately, leading
to higher entropy solutions [24].

3.2 Sample Complexity
In practice, we do not have full access to the agents’ true behavior—if we did, prediction would
be straightforward and we would not require our estimation technique. Instead, we may only
approximate the desired expectations by averaging over a finite number of observations,〈

rf (σ), w
〉
≈ 1

T

T∑
t=1

〈
rf (a(t)), w

〉
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Figure 3.2: Visual interpretation of the Regression ICE algorithm.

In real applications there are costs associated with gathering these observations and, thus, there
are inherent limitations on the quality of this approximation. Next, we will analyze the sensitivity
of our approach to these types of errors.

First, although |A| is exponential in the number of players, our technique only accesses σ
through expected regret features of the form rf (σ). That is, we need only approximate these
features accurately, not the distribution σ. For finite-dimensional vector spaces, we can bound
how well the regrets match in terms of |Φ| and the dimension of the space.
Theorem 8. With probability at least 1− δ, for any w, by observing T ≥ 1

2ε2
log 2|Φ|K

δ
outcomes

we have for all deviations
〈
rf (σ̃), w

〉
≤
〈
rf (σ), w

〉
+ ε∆‖w‖1.

Where ∆ is the maximum possible regret over all basis directions. The proof is an application
of the union bound and Hoeffding’s inequality much like the proof of Theorem 1.

Alternatively, we can bound how well the regrets match independently of the space’s dimen-
sion by considering each utility function separately.
Theorem 9. With probability at least 1 − δ, for any w, by observing T ≥ 1

2ε2
log |Φ|

δ
outcomes

we have for all deviations
〈
rf (σ̃), w

〉
≤
〈
rf (σ), w

〉
+ ε∆(w).

Where ∆(w) is the maximum possible regret under w.
Both of the above bounds imply that, so long as the true utility function is not too complex,

with high probability we need only logarithmic many samples in terms of |Φ| and K to closely
approximate the regrets and avoid a large violation of our rationality condition. That is, when
using internal regret the sample complexity is logarithmic in terms of all quantities of interest,
the number of actions, players and features.
Theorem 10. If for all f ∈ Φ,

〈
rf (σ̃), w

〉
≤
〈
rf (σ), w

〉
+ γ, then

Regret(σ̃, w) ≤ Regret(σ,w) + γ.

Proof. For all deviations, f ∈ Φ,
〈
rf (σ̃), w

〉
≤
〈
rf (σ), w

〉
+γ ≤ Regret(σ,w)+γ. In particular,
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this holds for the deviation that maximizes the demonstrated regret.
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3.3 Experimental Results

3.3.1 Human Laboratory Studies

The games we consider are taken from a number of psychological studies designed to study
various aspects of strategic human decision making [18, 19, 36, 41, 42, 77, 86, 87, 88]. Study
participants were shown a matrix of utilities defining a two-player game and asked to choose an
action for the first player. They were not shown the outcome, i.e., the opponent’s choice of action,
or their reward—they received no feedback during the study. Upon completion, participants
were rewarded with a monetary sum proportional to their overall performance against the other
participants. These studies were aggregated and examined previously by Wright and Leyton-
Brown [96]. In total, there are 123 games of size 3× 3 to 5× 5, and 11, 771 observations of play.
Here, the observations are actions taken by a single player, not joint-actions reached by a pair of
players. Now we will briefly discuss the design and purpose of each study.

Cooper and Van Huyck [18] examine human behavior in 2 × 2 extensive-form games. The
games are all structured such that the first player chooses either left or right. The second player
acts only if the first player takes the left action. All games of this form are isomorphic to one
of thirty six canonical games. Half of these canonical games result in a dominant strategy for
the first player, while in the other half the first player must deduce how the second will act to
choose the best action. Of these thirty six, eight games were selected for 187 student participants
from Texas A&M University to play in a laboratory setting. Of these eight, six required the
players to speculate about their opponent’s decision. The games were presented to some students
in extensive-form and to others in normal-form. Though the behavior differed based on the
representation, surprisingly the difference could not be explained by the ability to do backwards
induction, i.e., the ability to reason about how the second player would act. Instead the authors
conclude that when presented the extensive-form the participants were more likely to choose the
action that lead to the second player’s decision.

Costa-Gomes et al. [19] study the strategic sophistication of human decision-making. That
is, to what extent does a player reason about the other’s behavior and how does this reasoning
effect their decision. The authors posit that the player population is composed of a number of
types of players and aim to infer the proportions of these types from the observations of play.
Some examples of types include: a uniform random player, also known as a level zero player; an
altruistic player, who defaults to behavior that benefits the other; a pessimistic; a naive player or
a level one player, who best responds to a uniform player; a level two player, who best responds
to a naive player; and so on. The study examined eighteen games of size 2 × 2 to 4 × 4 played
by 144 students from the University of Arizona. The authors concluded that level one and level
two players accounted for between 67% and 89% of the population.

Stahl and Haruvy [86], Stahl and Wilson [87], Stahl and Wilson [88], Haruvy and Stahl [41],
and Haruvy et al. [42] all originated from the University of Texas and followed very similar ex-
perimental procedures. Each examined human behavior in 3× 3 symmetric games. All together,
107 games were considered and data was collected from 440 undergraduate participants. In one
study, the authors conclude that humans are good at avoiding dominated strategies, but are skep-
tical regarding others’ ability to do the same. For example, when presented with a coordination
game where it is clear how both players should cooperate to achieve the maximum reward, many
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players will pay a small cost to opt out of playing rather than trust the other player will deduce the
mutually beneficial action. Haruvy et al. [42] examine diversity within player types. They posit
these intra-type deviations are due to execution errors on the part of the player. These errors are
modelled with a logit model closely related to the quantal response model, which we will discuss
in the future.

Goeree and Holt [36] consider ten coordination games that each show in a particular way that
the Nash equilibrium solution concept fails to accurately predict human behavior. For example,
Kreps’ game, which exhibits two pure strategy Nash equilibria, is examined in the study. To
avoid the equilibrium selection problem in this game, humans tend to prefer a slightly suboptimal
alternative action. Another game includes a non-Nash action that dampens the games utility.
Humans, being risk averse, often select this action despite it never arising in optimal play. This
study collected play from 50 participants from the University of Virginia.

Rogers et al. [77] is the final study in this collection. Overall, it includes 17 games played by
74 participants. The authors assume that play follows a quantal response equilibrium, an model
that explicitly incorporates execution error to account for bounded player rationality. Each player
has an unknown type, which represents the magnitude of this error. The study aims to determine
the type distribution of the player population. This study is very closely related to those out
of the University of Texas and University of Arizona that aim to model the population with
heterogeneous types of players. There, the types come from a discrete set and are related to the
levels in the cognitive hierarchy. Here, the execution error is a continuous variable.

Fictitious Play

Fictitious play is a multi-agent learning algorithm introduced by Brown [7]. It is conceptually
simple and operationally it mimics how humans often reason in multi-agent scenarios.

The algorithm proceeds iteratively. Throughout, the players maintain a model of how the
others will act. On each round, the players best respond to the current behavior. To incorperate
the responses into the model, we simply averaging them in.

Formally, we let σti denote player i’s response at time t and let σ̄Ti be the average of i’s
responses up to and including T . That is,

σti ∈ argmax
σi∈∆Ai

ui(σi, σ̄
t−1
−i ), and

σ̄Ti =
1

T

T∑
t=1

σti .

Occationally, we choose to weight the rounds differently, i.e., we define the weighted average
strategy

σ̄Ti =
T∑
t=1

αtσti/

T∑
t=1

αt
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If fictitious play converges, then it will converge to a Nash equilibrium. In general, though,
it is not guaranteed to converge. There are some criteria under which we can guarantee con-
vergence, e.g., if a game is two-player and zero-sum, or if it is solvable by iteratively removing
dominated strategies.

Fictitious play and its variants form the basis of many behavior prediction schemes. In par-
ticular, it affords the inductive notion of a “level”. We say a player is on level zero if they play
uniformly. We say a player is on level k + 1 if they best respond to players level k and below.
That is, a level k player plays the strategy profile σk.

It is thought that humans do not often reason beyond level two.
Wright and Leyton-Brown use a sophistocated local search procedure to learn a model of hu-

man population’s level distribution. This model is then combined with fictitious play to compute
predictive strategies in small matrix games.
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Figure 3.3: Fictitious Play KL divergence from true behavior varying number of iterations.

Iterative Sampling and Reweighting

Sample weighted averaging (SAW) and inertia sample weighted averaging (I-SAW) are decision-
theoretic tweaks to fictitious play.
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The SAW algorithm explores, i.e., chooses a uniform action, with probability p. The remain-
der of the time it proceeds like fictitious play—choosing the most profitable past action. The
difference is in how SAW estimates the value of the actions. Fictitious play simply estimates
these values with the mean utility observed so far. In SAW, we also keep a seperate mean to
estimate the value of each action over a short history, say the last three iterations. This history
component results in behavior switching when the recent past is surprising or different than the
overall play.

The I-SAW algorithm adds one further mode to SAW that captures the notion of interia. That
is, players are more likely to choose the same action given little changes between iterations. In
particular, the algorithm defines a surprise factor by summing the difference between the action’s
value with its expected value. When this factor is low, the algorithm is likely to repeat its last
choice.

Quantal Response

The quantal response equilibrium (QRE) is a generalization of the Nash equilibrium introduced
by McKelvey and Palfrey [64]. It allows the players to err, with more costly mistakes being less
likely than minor ones.

The logit QRE is its most common instantiation. It introduces an additional parameter, λ ∈
R+, that controls an additional degree of irrationality by the players. Mathematically, a strategy
profile is a λ-QRE if

σti(x) ∝ exp
(
λui(x, σ̄

t−1
−i )

)
.

That is, each strategy is a soft best response to the others, as opposed to a Nash equilibrium
where each strategy must be a best response. As λ → ∞ the λ-QRE approaches a unique
Nash equilibrium. A λ-QRE always exists, and is unique. That is, it does not suffer from the
equilibrium selection problem.

Finding a quantal response equilibrium is computationally hard and there are no known dy-
namics to reach one. This is not surprising as it well approximates a Nash equilibrium for high
values of λ. Typically, one uses a homotopy method to trace the path of QREs. That is, starting
with λ = 0, the uniform strategy profile is the unique QRE. One then slightly increases λ and
uses Newton’s root finding method to correct the strategy profile. We must take care not to in-
crease λ too much to ensure the previous strategy profile is a good starting point for Newton’s
method.

We can use the quantal response equilibrium itself to predict behavior in small matrix games,
or we can use quantal fictitious play.

3.3.2 Market Entry Game
We next evaluate our approach against a number of baselines on data gathered for the Market
Entry Prediction Competition [27]. The game has four players and is repeated for fifty trials and
is meant to simulate a firm’s decision to enter into a market. On each round, all four players
simultaneous decide whether or not to open a business. All players who enter the market receive
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Figure 3.4: γ-Quantal Fictitious Play KL divergence from true behavior varying γ.

a stochastic payoff centered at 10−kE, where k is a fixed parameter unknown to the players and
E is the number of players who entered. Players who do not enter the market receive a stochastic
payoff with zero mean. After each round, each player is shown its reward, as well as the reward
it would have received by choosing the alternative.

Observations of human play were gathered by the CLER lab at Harvard [27]. Each student
involved in the experiment played ten games lasting fifty rounds each. The students were in-
centivized to play well through a monetary reward proportional to their cumulative utility. The
parameter k was randomly selected in a fashion so that the Nash equilibrium had an entry rate
of 50% in expectation. In total, 30, 000 observations of play were recorded. The intent of the
competition was to have teams submit programs that would play in a similar fashion to the hu-
man subjects. That is, the data was used at test time to validate performance. In contrast, our
experiments use actual observations of play at training time to build a predictive model of the
human behavior. As we are interested in stationary behavior, we train and test on only the last
twenty five trials of each game.

We compared against two baselines. The first baseline, labeled Multinomial in the figures, is
a smoothed multinomial distribution trained to minimize the leave-one-out cross validation loss.
This baseline does not make use of any features of the games. That is, if the players indeed play
according to the Nash equilibrium we would expect this baseline to learn the uniform distribution.
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The second baseline, labeled Logistic Regression in the figures, simply uses regularized logistic
regression to learn a linear classification boundary over the outcomes of the game using the
same features presented to our method. Operationally, this is equivalent to using MaxEnt Inverse
Optimal Control in a single-agent setting where the utility is summed across all the players. This
baseline has similar representational power to our method, but lacks an understanding of the
strategic elements of the game.
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Figure 3.5: Test log loss using only the game’s expected utility as a feature in the market entry
experiment.

In Figure 3.5, we see a comparison of our method against the baselines when only the game’s
true expected utility is used as the only feature. We see that our method outperforms both base-
lines across all sample sizes. We also observe the multinomial distribution performs slightly bet-
ter than the uniform distribution, which attains a log loss of 4, though substantially worse than
logistic regression and our method, indicating that the human players are not particularly well-
modeled by the Nash equilibrium. Our method substantially outperforms logistic regression,
indicating that there is indeed a strategic interaction that is not captured in the utility features
alone.

In Figure 3.6, we see a comparison of our method against the baselines using a variety of
predictive features. In particular, we summarize a round using the observed action frequencies,
average reward, and reward variance up to that point in the round. To weigh recent observations
more strongly, we also employ exponentially-weighted averages. We observe that the use of
these features substantially improves the predictive power of the feature-based methods. Inter-
estingly, we also note that the addition of these summary features also narrows the gap between
logistic regression and MaxEnt ICE. Under low sample sizes, the logistic model performs the
best, but our method overtakes it as more data is made available for training. It appears that in
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Figure 3.6: Test log loss using a number of history summary features in the market entry experi-
ment.

this scenario, much of the strategic behavior demonstrated by the participants can be captured by
these history features.

3.3.3 Mid-scale Hotel Market Entry
For our final experimental evaluation, we considered the task of predicting the behavior of mid-
scale hotel chains, like Holiday Inn and Ramada, in the state of Texas. Given demographic and
regulatory features of a county, we wish to predict if each chain is likely to open a new hotel or
to close an existing one. The observations of play are derived from quarterly tax records over a
fifteen year period from forty counties, amounting to a total of 2, 205 observations. The particular
counties selected had records of all of the demographic and regulatory features, had at least four
action observations, and none was a chain’s flagship county. Figure 3.7 highlights the counties
and visualizes their regulatory practices.

The demographic and regulatory features were aggregated from various sources and gener-
ously provided to us by Prof. Junichi Suzuki (2010). The demographic features for each county
include quantities such as size of its population and its area, employment and household income
statistics, as well as the presence or absence of an interstate, airport or national park. The reg-
ulatory features are indices measuring quantities such as commercial land zoning restrictions,
tax rates and building costs. In addition to these noted features, which are fixed across all time
periods, there are time-varying features such as the number of hotels and rooms for each chain
and the aggregate quarterly income.

We model each quarterly decision as a parameterized simultaneous-move game with six play-
ers. Each player, a mid-scale hotel chain, has the action set {Close,NoAction,Open}, resulting
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Figure 3.7: Regulatory index values for select counties in Texas. Blue means little regulation and
lower costs to enter the market. Red means higher costs.

in 729 total outcomes. For the game’s utility, we allocated the county’s features to each player in
proportion to how many hotels they owned. That is, if a player operated 3 out of 10 hotels, the
features associated with utility at that outcome would be the county’s feature vector scaled by
0.3. We included bias features associated with each action to account for fixed costs associated
with opening or closing a hotel.

In the observation data, there are a small number of instances where a chain opens or closes
more than one hotel during a quarter. These events are mapped to Open and Close respectively.
Though the outcome-space is quite large, the outcome distribution is extremely biased and the
actions of the chains are highly correlated. In particular, over 80% of time the time no action
is taken, around 17% of the time a single chain acts, and less than 3% of the time more than
one chain acts. As a result, one expects the featureless multinomial estimator to have reasonable
performance despite a large number of classes.

For experimentation, we evaluated four algorithms: a smoothed multinomial distribution
trained to minimize the leave one out cross-validation loss, MaxEnt inverse optimal control
trained once for all players, multi-class logistic regression over the joint action space, and regret-
matching ICE with utility matching constraints. As the resulting optimizations for the latter two
algorithms are smooth, we employed the L-BFGS quasi-Newton method with L2-regularization
for training [71]. As a substitute for L1-regularization, we selected the 23, out of the 63, best
features based on their reduction in training error when using logistic regression. Of the top 23
features selected, 11 were regulatory indices.

For the logistic regression and ICE predictors, we only used utility features on the 13 high
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probability outcomes (no firms build, and one firm acting). The remaining outcomes had only
bias features associated with them to help prevent overfitting. We experimented with a number
of types of bias features, for example, 4 bias features (one for no firms build, one for a single
firm builds, one for a single firm closes and one for all remaining outcomes), as well as 729
bias features (one for each outcome). We found that, though on their own the different bias
features had varied predictive performance, when combined with utility and regret features they
were quite similar given the appropriate regularization. In the best performing model, which we
present here, we used 729 bias features resulting in 1, 028 parameters to the logistic regression
model.

In the ICE predictor, we tied together the weights for each deviation across all the players
to reduce the number of model parameters. For example, all players shared the same dual pa-
rameters for the NoAction → Open deviation. Effectively, this alters the rationality assumption
such that the average regret across all players is the quantity of interest, instead of the maximum
regret. Operationally, this is implemented as summing each deviation’s gradient in the dual. This
treats the players anonymously, thus we implicitly and incorrectly assume that conditioned on
the county’s parameters each firm is identical. Due to the use parameter tying, the ICE predictor
has an additional 156 model parameters.

Figure 3.8: The marginalized probability that a chain will build a hotel in Spring 1996 predicted
by MaxEnt ICE. Brighter shades of green denote higher probabilities.

The test losses reported were computed using ten-fold cross validation. To fit the regular-
ization parameters for logistic regression, MaxEnt IOC and MaxEnt ICE, we held out 10% of
the training data and performed a parameter sweep. For logistic regression, a separate param-
eter sweep and regularization was used for the bias and utility features. For MaxEnt ICE, an
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Figure 3.9: (Left) Test log loss on the full outcome space relative to the smoothed multinomial,
which has log loss 1.58234± 0.058088. (Center) Test log loss no build vs. build outcomes only.
Loss is relative multinomial, with log loss 0.721466±0.016539. (Right) Test log loss conditioned
on build outcomes only. Loss is relative multinomial, with log loss 6.5911± 0.116231.

additional regularization parameter was selected for the regret parameters. A sample of the pre-
dictions from MaxEnt ICE are shown in Figure 3.8.

In the left of Figure 3.9, we present the test errors of the three parameterized methods in
terms of their offset from that of the featureless multinomial. This quantity has lower variance
than the absolute errors, allowing for more accurate comparisons. We see that the addition of
the regret features more than doubles the improvement of logistic regression from 2.6% to 6.3%,
where as the inverse optimal control method only sees a 4.3% improvement.

In the center of Figure 3.9, we show the test log-loss when the methods are only required to
predict if any firm acts. Here, the models are still trained over their complete outcome spaces
and their predictions are marginalized. We see that all three methods are equal within noise.
That is, the differences in the predictive performances come solely from each method’s ability
to predict who acts. We additionally performed this experiment without the use of regulatory
features and found that the logistic regression method achieved a relative loss of −0.027300.
Using a paired comparison between the two methods, we note that this difference of 0.004443 is
significant with error 0.001886. This echoes Suzuki’s conclusions the regulatory environment in
this industry affect firms’ decisions to build new hotels [91], measured here by improvements in
predictive performance.

In the right of Figure 3.9, we demonstrate the test log loss conditioned on at least one firm
acting—the portion of the loss that differentiates the methods. The logistic regression method
with only utility features performs the worst with a 1.8% improvement over the multinomial base
line, the individual inverse optimal control method improves by 4.1% and MaxEnt ICE performs
the best with a 6.3% improvement. That is, the addition of regret features, and hence accounting
for the strategic aspects of the game, have a significant effect on the predictive performance in
this setting. We note that replacing the regulatory features in the regret portion of the MaxEnt
ICE model actually slightly improves performance to −0.471763, though not by a significant
margin. This implies that the regulatory features have little or no bearing on predicting exactly
the firm that will act, which suggests the regulatory practices are unbiased.
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Chapter 4

Zero-sum Equilibrium Computation

The contributions from this chapter were done in collaboration with Michael Bowling and Dustin
Morrill.

4.1 Regression Regret Matching
Let us begin by presenting a new, yet simple, algorithm for the standard online learning frame-
work. Let A be the set of N actions or experts. On each time step t ∈ [T ] ≡ {1, . . . , T}, the
online algorithm chooses xt ∈ ∆A, a distribution over the experts, then observes ut, a bounded
reward vector where ‖ut‖∞ ≤ L. The algorithm receives reward (xt · ut) and then updates its
prediction.

An algorithm’s external regret compares its performance to the best expert in hindsight. To
be no-regret is to have regret grow sublinearly in T ,

Rext = max
x∗∈∆A

T∑
t=1

(x∗ · ut)− (xt · ut) ∈ o(T ).

That is, its average regret goes to zero in the worst-case.
A simple algorithm with this property is regret-matching.

Definition 9 (Regret-matching). Define the vector of cumulative regret as

RT ≡
T∑
t=1

ut − (xt · ut)e

where e is the vector of all ones. Choose xt ∝ max{0, Rt−1}.
Theorem 11 (Hart and Mas-Colell [40]). Regret-matching is no-regret. In particular, Rext ≤
L
√
NT .
We often have structure between the available actions, e.g., when an action corresponds to

betting a particular amount or choosing an acceleration. It is common to model such situations
by discretizing the range of available actions and using a single action per interval. In this case,
the structure linking actions is completely lost after this abstraction.
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Algorithm 2 Regret-matching with Regret Regression
X ← [], y ← []
for t ∈ [T ] do
f ← TrainRegressor(X, y)
for a ∈ A do
z(a)← f(ϕ(a))

end for
xt ∝ max{0, zt}
Observe ut

for a ∈ A do
X ← X ∪ ϕ(a)
y ← y ∪ (ut(a)− (xt · ut))

end for
end for

In more complicated stateful settings, we can describe each action a ∈ A with a feature
vector, ϕ(a) ∈ X . In poker, there are numerous ways to quantify the strength of a particular
hand. For example, its expected value against different possible opponent holdings as well as
potential-aware statistics, like the variance of the expected value. Current techniques use eight
to ten such statistics to describe the portion of the state space representing the player’s hand.

To reduce the action space in these settings, prior work uses unsupervised clustering tech-
niques on the actions in feature space. This can essentially be thought of as an informed dis-
cretization of the space. The hope is that actions with similar features can be collapsed, or made
indistinguishable, without incurring too much loss [80]. We use this feature vector to retain the
structure during learning. To reduce to the standard framework, we can simply use an indicator
feature for each action.

Algorithm 2 contains the pseudocode for our approach. It employs an arbitrary mean-
squared-error minimizing regressor to estimate the cumulative regret. In particular, the training
procedure is expected to produce f where f(ϕ(a)) ≈ Rt(a)/t, or equivalently, the algorithm’s
regret estimate is R̃t(a) = tf(ϕ(a)).

We consider the error of our regressor with the l2 distance between the approximate and true
cumulative regret vectors: ‖Rt − R̃t‖2. Note that this quantity is related to the representational
power and recall of the regressor. In particular, if we cannot represent the true cumulative regret
then it will be non-zero due to this bias. The regret of Algorithm 2 can then be bounded in terms
of this representational power.
Theorem 12. If for each t ∈ [T ], ‖Rt − R̃t‖2 ≤ ε, then regression regret-matching has regret
bounded by

√
TNL2 + 2TLε.

The proof is in Appendix C.
This is a worst-case bound. That is, so long as ε is small regression regret-matching cannot

be much worse than normal regret-matching. It is possible that there are cases where regression
regret-matching can do better than regret-matching if the structure is favorable.

The first subtlety we must note is that the regressor minimizes the mean-squared error of the

44



immediate regrets, i.e. {(
ϕ(a), ui(a)− ui · xi

)
| ∀a ∈ A, i ∈ [t]

}
forms the training set. If the hypothesis class can represent the regrets, then tf(ϕ(a)) = Rt(a)
obtains the minimum mean-squared error. Note that this error is likely not zero even in the
realizable case!

In words, the theorem states that if the error of the regressor decreases like O(1/T ) then the
algorithm obtains a O(

√
T ) regret bound. Note that the cumulative regret can grow like O(T ),

so a fixed ε across time implies a decreasing error rate. The algorithm remains no-regret so long
as the bias goes to zero and recall goes to one, i.e., it is asymptotically unbiased. If the bias is
constant then there is a constant term in the regret bound. When solving a game, this constant
term constitutes the error introduced by a lossy abstraction.

Note that it is sufficient to make the estimator asymptotically unbiased by including indicator
features for each action with proper regularization. In a sense, this allows the algorithm to move
from an estimate of the true regrets as time increases, i.e., as the true regrets stabilize.

Next, we aim to use our algorithm for sequential decision-making and to relate it to current
abstraction techniques. Before we can accomplish this, we must review the extensive-form game
framework.

4.2 Regression CFR
We are now ready to put the pieces together to form our new regret algorithm for sequential
decision-making scenarios: Regression CFR (RCFR). The algorithm is simple. We will mini-
mize counterfactual regret at every information set using estimates of the counterfactual regret
that comes from a single common regressor shared across all information sets. The common
regressor uses features, ϕ(I, a), that are a function of the information-set/action pair. This al-
lows the regressor to generalize over similar actions and similar situations in building its regret
estimates.

As with CFR, we can derive a regret bound, which in turn implies a worst-case bound on the
quality of an approximate equilibrium resulting from self-play.
Theorem 13. If for each t ∈ [T ] at every information set I ∈ Ii, ‖Rt(·|I)− R̃t(·|I)‖2 ≤ ε, then
RCFR has external regret bounded by |Ii|

√
TNL2 + 2TLε.

The proof combines Theorem 12 together with the CFR convergence proof of Zinkevich et al.
[101].

Now that we have presented RCFR, let us examine how it relates to modern abstraction
techniques.

4.3 Generalized Game Abstraction
As noted in the introduction, often the problem we wish to solve, when viewed without any
structure, is intractably large. For example, representing a behavioral strategy profile in no-limit
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Texas Hold’em1 requires 8.2 · 10160 entries [49, p. 12]. To surmount this, we typically first distill
the game to a tractably-sized abstract game. Then, after solving it, we map its solution into the
full game. The hope is that the abstract game and its solution roughly maintain the important
strategic aspects of the full game. Though this turns out to be false [95], it appears to not occur
with any significance in the large games of interest [3, 50].

The common way to abstract a game is to simply group together similar information sets [35,
46]. That is, we take situations in the full game that the player can differentiate and make them
indistinguishable in the abstract game. If the two situations have similar behavior in equilibrium,
then at the very least we have not lost representational power in doing so. This form of abstraction
provides a function f mapping full game information sets to abstract game information sets.

To create such an abstraction requires some notion of similarity and compatibility of infor-
mation sets, and a clustering algorithm, like k-means. Ultimately, the size of the abstract game is
a function of the number of clusters—how the information sets collapse together. Let us assume
that we have a function ϕ : I×A→ X that maps information-set/action pairs to domain-specific
features in space X . We can use such a function to define the similarity of compatible informa-
tion sets I and I ′ by, for example, the cumulative inner product,

∑
a∈A 〈ϕ(I, a), ϕ(I ′, a)〉, which

can be passed to k-means to cluster the information sets (often subject to constraints such as
preserving perfect recall).

In order to compare the approach to RCFR, consider a single iteration of the counterfactual
regret update in both the original game and the abstract game where the players’ strategies are
fixed. In particular, we have

r̃ti(a|Iabstract) =
∑

I full∈f−1(Iabstract)

rti(a|I full).

That is, the regret at information set Iabstract in the abstract game, r̃ti(·|Iabstract) is the sum of the
regrets in the full game of all information sets that map to it, f−1(Iabstract). Taking this view-point
in reverse, using CFR on the abstract game is operationally equivalent to solving the full game
where we maintain and update the regrets r̃ti(·|f(I full)), i.e., we approximate the true regrets with
a tabular regressor rti(a|I full) ≈ r̃ti(a|f(I full)). Thus, abstraction can be thought of as a special-
case of RCFR with a particular choice for how to approximate the cumulative counterfactual
regret.

RCFR is, of course, not restricted to tabular regressors and so can capture structure that goes
beyond traditional abstraction. For example, using linear or kernel regression provides a sort of
“soft” abstraction. That is, the regret of two distinct (in feature space) actions can effect one
another without making the two completely indistinguishable, which is the only option available
to traditional “hard” abstraction.

Unlike traditional abstraction where f is chosen a priori, RCFR is also able to learn the
structure of the abstraction online upon seeing actual data. And since the regressor is trained after
each time step, RCFR can effectively re-abstract the game on-the-fly as necessary. Furthermore,
the abstraction is informed by the game in a way that is compatible with the learner. Imperfect
information games have an interesting property in that portions of the game that are never reached

1We consider the game with 50-100 blinds with 20,000 chip stacks as played in the Annual Computer Poker
Competition.

46



in optimal play have strategic effects. For example, if one player was to behave suboptimally,
the other might benefit by deviating into an otherwise undesirable space. Without the possibility
of deviating there may be no way to punish the poor play. Practically, this presents as a rather
annoying hurdle for abstraction designers. In particular, seemingly ideal abstractions tailored
perfectly to the structure of an equilibrium may actually lead to poor solutions due to missing
important, but seemingly unnecessary, parts of the strategy space. RCFR avoids all of this as the
regressor tunes the abstraction to the current policy, not the solution.

4.4 Leduc Hold’em Experimental Results
In order to illustrate the practicality of RCFR, we test its performance in Leduc Hold’em, a sim-
plified poker game. Our goal is to compare the strategies found by RCFR with varying regressors
to strategies generated with conventional abstraction techniques. In addition, we examine the it-
erative behaviour of RCFR compared to CFR.

Leduc Hold’em is a poker game based on Kuhn poker [84]. It provides a good testbed as
common operations, like best response and equilibrium computations, are tractable and exact.

The game has two betting rounds, the preflop and flop. At the beginning of the game both
players ante a single chip into the pot and are dealt a single private card from a shuffled deck of
six cards—two jacks, two queens and two kings. Then begins the preflop betting round where the
first player can either check or bet. If the first player checks, passing their turn, then the second
player can end the betting round by checking as well, or continue by betting. When facing a
bet; the player can raise by placing two chips into the pot; call by matching the bet in the pot
and ending the round; or fold by forfeiting the pot to the opponent. There is a maximum of two
wagers per round, i.e., one bet and one raise. A single public card is dealt face up for both players
to see at the beginning flop. If the flop betting ends without either player folding, a showdown
occurs and the player with the best hand takes the pot. A player that pairs, i.e., their card matches
the public card, always has the best hand no matter the rank of the paired card or the opponent’s
card. If neither player pairs, the one with the highest rank card wins. In the event of a tie, the pot
is split. The size of a wager preflop is two chips, and is doubled to four chips on the flop.

Leduc Hold’em has 672 sequences. At equilibrium, the first player is expected to lose 0.08
chips per hand. We show results in milliblinds/antes per hand (mb/h), a thousandth of a chip, i.e.,
optimally the first player loses 80 mb/h.

We use a regression tree aiming to minimize mean-squared error as our regressor. When
training, we examine all candidate splits on a single feature and choose the one that results in
the best immediate error reduction. The data is then partitioned according to this split and we
recursively train both sets. If the error improvement at a node is less than a threshold, or no
improvement can be made by any split, a leaf is inserted that predicts the average. It is this error
threshold that we manipulate to control the complexity of the regressor—the size of the tree. All
the training data is kept between iterations, as in Algorithm 2.

Eight features were chosen such that the set of features would be small, thus allowing fast
regression tree training, which is done on every RCFR iteration, but still descriptive enough to
have a unique feature expansion for every sequence: 1) the expected hand strength (E[HS]),
or the probability of winning the hand given the available information, and marginalized over a

47



uniform distribution of opponent hands and possible future board card; 2) the rank of the board
card, or zero on the preflop; 3) the pot size; 4) the pot relative size of the wager being faced, or
zero if not facing a wager; 5) the number of actions this hand; 6) the number of wagers this hand;
7) an indicator on whether or not the next action would be a fold action; and 8) the pot relative
size of the wager that would be made by taking the next action, or zero if the next action would
be a check or call.

Features (1) and (2) refer to private and public card information, (3) through (6) are public
chip and action information, while (7) and (8) fully describe the next potential action in the
sequence2.

We evaluate the empirical performance of RCFR here according to three metrics: 1) conver-
gence properties, 2) exploitability, and 3) one-on-one competitions.

Strategies were computing using RCFR and four different error threshold values. Each
threshold was chosen so that RCFR’s regressor would have similar complexity to that of a con-
ventional abstraction, or that of the full game. In Leduc Hold’em, a typical abstraction is one
that groups together cards on the preflop and only distinguishes between pairing and non-pairing
board cards on the flop. These hand-crafted abstractions are analogous to the E[HS] based
abstractions commonly used in Texas Hold’em. Abstractions are denoted, for example, J.QK
to describe the abstraction that can distinguish between a jack and a queen or king, but cannot
distinguish between a queen and king. The remaining three abstractions are then JQK, JQ.K,
and J.Q.K. One may also note that J.Q.K is a strict refinement of the other three abstractions,
and J.QK and JQ.K both are strict refinements of JQK. To generate strategies, chance sampling
CFR [100] was run for 100, 000 iterations to solve each abstract game.

Each different RCFR strategy is denoted, for example, RCFR-22%, to describe RCFR using
a regressor 22% the size of a strategy in the full game. RCFR-22%, RCFR-47%, and RCFR-66%
correspond to JQK, J.QK/JQ.K, and J.Q.K, respectively, in terms of complexity. RCFR-96%
corresponds to FULL, which denotes no abstraction, and it was made by setting the error thresh-
old to zero, so the regressor was free to split on every feature and become as large as the full
game. RCFR and CFR were run for 100, 000 iterations to generate the set of RCFR strategies
and a FULL strategy, respectively.

Figure 4.1 shows that all RCFR strategies improve at the same rate as an unabstracted CFR
strategy (FULL) until a plateau is reached, the height of which is determined by the error thresh-
old parameter of that RCFR instance. These plateaus are essentially the exploitability cost in-
curred by estimating regrets instead of computing and storing them explicitly. Larger thresholds,
reducing regressor complexity, incur a greater cost and thus have a higher plateau. As expected,
when the error threshold is set to zero, as in the case of RCFR-96%, RCFR’s progression mimics
unabstracted CFR for the full set of 100, 000 iterations.

Figure 4.2 shows that RCFR, given complexity restrictions equivalent to those of conven-
tional abstractions, finds significantly less exploitable strategies. RCFR-66%’s regressor is 2%
smaller than the size of the J.Q.K abstract game, yet J.Q.K is sixteen times more exploitable!
The closest corresponding strategies in terms of exploitability are RCFR-47% and JQ.K where

2No explicit check/call feature is necessary because it is implicitly encoded by features (7) and (8) in combina-
tion. The action would be a check/call if and only if both are zero (the action would not be a fold nor a wager, and
the game has only three action types).
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RCFR-22% JQK RCFR-47% J.QK JQ.K

RCFR-22% 319.50± 1.81 −97.61± 1.31 58.25± 1.45 −100.70± 1.26

JQK −319.50± 1.81 −453.35± 1.85 −405.96± 1.97 −363.66± 1.70

RCFR-47% 97.61± 1.31 453.35± 1.85 140.32± 1.44 14.19± 1.27

J.QK −58.25± 1.45 405.96± 1.97 −140.32± 1.44 −107.66± 1.35

JQ.K 100.70± 1.26 363.66± 1.70 −14.19± 1.27 107.66± 1.35

RCFR-66% 123.70± 1.30 452.82± 1.85 34.91± 1.26 147.86± 1.42 46.71± 1.26

J.Q.K 88.90± 1.34 369.79± 1.83 −18.07± 1.29 94.31± 1.45 33.16± 1.30

RCFR-96% 135.89± 1.34 495.46± 1.85 44.91± 1.26 149.31± 1.41 53.90± 1.27

FULL 139.90± 1.33 486.06± 1.86 47.98± 1.27 156.26± 1.43 56.77± 1.27

RCFR-66% J.Q.K RCFR-96% FULL Mean

RCFR-22% −123.70± 1.30 −88.90± 1.34 −135.89± 1.34 −139.90± 1.33 −38.62± 1.39

JQK −452.82± 1.85 −369.79± 1.83 −495.46± 1.85 −486.06± 1.86 −418.33± 1.84

RCFR-47% −34.91± 1.26 18.07± 1.29 −44.91± 1.26 −47.98± 1.27 74.47± 1.37

J.QK −147.86± 1.42 −94.31± 1.45 −149.31± 1.41 −156.26± 1.43 −56.00± 1.49

JQ.K −46.71± 1.26 −33.16± 1.30 −53.90± 1.27 −56.77± 1.27 45.91± 1.33

RCFR-66% 33.65± 1.26 −10.17± 1.25 −9.41± 1.24 102.51± 1.35

J.Q.K −33.65± 1.26 −36.82± 1.26 −37.69± 1.25 57.49± 1.37

RCFR-96% 10.17± 1.25 36.82± 1.26 0.00± 1.25 115.81± 1.36

FULL 9.41± 1.24 37.69± 1.25 0.00± 1.25 116.76± 1.36

Table 4.1: One-on-one competition crosstable. Each cell is the bankroll for the row player
in mb/h and 95% confidence interval of playing the row agent against the column agent for
30,000,000 hands.

JQ.K is only three and a half times more exploitable.
Another useful practical property of RCFR is that it appears to avoid non-monotonicities that

have been observed in hand-crafted abstractions [95]. That is, increasing the complexity of the
regressor appears to improve the full game exploitability of the resulting strategy. Table 4.1 is
the one-on-one competition crosstable between each of the agents. Against almost every oppo-
nent, each RCFR variant outperforms its corresponding strategy. The exceptions, for example,
JQ.K wins 100.70 mb/h against RCFR-22% while RCFR-47% wins only 97.61 mb/h against
this same opponent, are small margins. In addition, each RCFR strategy defeats or, in the case
of RCFR-96%, ties its counterparts. RCFR-22% and RCFR-47% even win against larger ab-
stract strategies J.QK and J.Q.K, respectively. Dividing the agents into an RCFR team and a
conventional agents team, the RCFR team wins 2033.34 mb/h in aggregate.
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Figure 4.1: Convergence of RCFR using various error thresholds (complexity limitations) com-
pared with CFR on the unabstracted game (FULL).
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the complexity of the solution method as a percentage of the size of the unabstracted game.
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abstraction is the size of its abstract game.
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Chapter 5

Connections, Future Work and
Conclusions

5.1 Future Applications

A recent paper by Koster et al. [55] demonstrates an exciting and promising application of deep
reinforcement learning to a mechanism design problem. In particular, they study a scenario
where four human players repeatedly invest as a group and the learned-mechanism redistributes
the investment returns to the group depending on the players’ total capital and the amount they
chose to invest. For example, the strict egalitarian mechanism would divide the returns equally
regardless of each players’ investment amount, and the liberal egalitarian mechanism divides
the returns according to the fraction of the total investment amount. Neither of these example
mechanisms account for a players’ initial advantage relative to the others, which can can lead to
poor outcomes if there is a large disparity in capital at the beginning of the game. Koster et al.
[55] trained their agent to imitate humans that redistribute investment returns and found that their
agent was preferred over a number of baselines.

There are a number of limitations of this experimental setting that could potentially be over-
come by incorporating an ICE-like approach into the mechanism learner. One such limitation is
that there is a single resource–investment capital–that is considered. An important consequence
of this is that the mechanism is privileged to the players’ true utility. When there are multiple
resources then an individual player may prefer one resource to another and this individual prefer-
ence cannot be known a priori by the others. A similar consequence could also arise from having
multiple investment actions as well, e.g., choosing between a high risk/high reward investment
or a safer one that either has a lower reward or a longer term.

Multiple resources can also be used to represent situations where the players’ have competi-
tive advantages over one-and-other, e.g., a farmer can grow wheat to trade to a baker for bread.
Finally, in this experimental setup the players themselves do not really need to act strategically,
that is, they do not need to carefully consider and change their actions based on the actions and
preferences of the others. This strategic reasoning can take the form of either collaboration or
competition. For example, the farmer and the baker cooperate, but the baker and the chef both
demand flour and the goods they produce are somewhat substitutable. As above, a reinforcement
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learning approach may struggle in a richer experimental setup where the players’ actions are not
obviously utility maximizing due to others.

5.2 Single Utility Function

During the thesis proposal, it was suggested that one utility function is all that should be neces-
sary, as opposed to one per deviation. It is unclear how to construct a rationality constraint from
the primal problem that uses a single utility function, but we can consider using a single utility
function from the MaxEnt ICE dual problem.

If for all f ∈ Φ we choose λf = λ, we have the dual problem:

min
λ∈K

∑
f∈Φ

Regret(σ, λ) + logZ(λ), where

Z(λ) =
∑
a∈A

exp

(
−
∑
f∈Φ

〈r(a), λ〉

)
.

Using (A.3) and (A.4) and after simplifying, we observe that this corresponds to the primal
problem:

max
σ̂∈∆A,η∈∆Φ

H(σ̂) subject to:

∑
f∈Φ

[
rf (σ̂)−

∑
g∈Φ

ηgr
g(σ)

]
∈ −K∗

In particular, if we consider no restrictions on the utility function, i.e., for K = Rn then
K∗ = {0}: ∑

f∈Φ

rf (σ̂) = |Φ|
∑
g∈Φ

ηgr
g(σ)

which corresponds to the rationality constraint∑
f∈Φ

〈
rf (σ), w

〉
= |Φ| 〈Regret(σ), w〉 ∀w ∈ Rn

In words, this restricts the prediction’s average regret over all deviations must equal the demon-
strated behavior’s overall regret under all utility functions. This is slightly awkward in that the
predicted behavior and the demonstrated behavior are using different notions of regret.

This scheme does not generally have any computational or statistical benefits. The compu-
tation of the partition function still requires O(|A|) operations. The storage requirement and
weight update are reduced by a factor of |Φ|. Furthermore, it still requires accurately estimating
all of the deviation regret features.
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5.3 Scaling to Sequential Decision-Making Scenarios
There are numerous issues that have yet to be overcome when moving from behavior prediction
in normal-form games to sequential decision-making scenarios.

First, it may simply not be generally possible to accurately predict multi-agent behavior with
only trajectories sampled from the true behaviour, especially with unknown utility functions.
That is, we may need additional ways to query the demonstrated behavior. For example, even in
single-agent scenarios with known utility Ross et al. [78] show in Theorem 2.2 that the expected
loss grows linearly with respect to the trajectory length. Roughly speaking, if the predicted
behavior makes even a slight error early in the trajectory then that error can easily compound,
e.g., by moving to state where little or no training data has been gathered to support it. Ross
et al. [78] show that by iteratively gathering training data using the predicted behavior as the
exploration policy can correct for these issues.

In multi-agent behavior, these types of errors can occur for additional reasons. For example,
when learning a minimax optimal strategy in zero-sum games, the agents must have certain
dominated strategies available to them, as though these strategies are never played at equilibrium
they can counter or dominate certain opponent strategies. That is, even with a priori knowledge
that an action does not support any equilibrium it cannot be safely pruned from the strategy
space during learning. This is still true with full knowledge of the support for both players one
cannot prune the strategy space. Said another way, why an agent acts in a particular fashion in an
observed state often depends on how they reason about states that are never visited at equilibrium.

Second, typically when considering sequential decision-making scenarios one typically de-
composes the problem in a fashion where individual decisions can be considered separately. For
example, the counterfactual regret decomposition reduces minimizing overall regret over the en-
tire strategy space to minimizing external regret at individual decisions [101]. More precisely,
counterfactual regret allows one to consider deviating from one action to another at a single de-
cision as opposed to deviating from an action to an entire strategy for the remainder of the game.
When considering games with unknown utility functions, as we have in the normal-form case,
this leads to to building sets of possible future utility features, as opposed to a single utility value.
Loosely speaking, a best response simply takes the max utility of all actions at a decision and
propagates it to the parent decision. As we do not know the true utility we must propagate the
information required to perform that max once the true utility is specified to the parent decision.
This may lead to an exponentially-sized description of the future utility feature set. To com-
bat this, one can consider working with the primal problem directly and somehow performing
constraint generation on the utility functions. Another possibility is to consider a more restric-
tive type of game, like a Markov game, where one could consider using MaxEnt ICE inside an
algorithm like Minimax-Q [62].

Third, as discussed in the thesis proposal, extensive-form correlated equilibria are particularly
challenging even to solve for with known utility. Since the proposal, there has been advances in
this area. Particularly, Celli et al. [14] present a counterfactual-regret-like online learning al-
gorithm that converges to an extensive-form correlated equilibrium. Of particular interest, this
algorithm demonstrates that the agents can converge to correlated behavior without explicit com-
munication in sequential decision-making scenarios. Despite this result, there are still a number
of challenges regarding extensive-form correlated equilibria that make behavior prediction chal-
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lenging. Specifically, the number of constraints defining the set of extensive-form correlated
equilibria is in general exponential. Second, the representation of an arbitrary joint-strategy is
also in general exponentially-sized in the game description. Celli et al. [14] does not avoid the
latter issue as they must store all the strategies encountered and they do not provide a bound
on the convergence, i.e., they never form an explicit joint-strategy and their algorithm is poten-
tially exponential in both computation and memory. A further consequence of these issues is
that it may not be possible to optimize for/select a particular extensive-form correlated equilib-
rium in polynomial time. One would hope and need to argue that with a bounded number of
trajectories from a extensive-form correlated equilibrium that the representation of the predicted
behavior also be of bounded size and require bounded computation to find. In particular, Dudı́k
and Gordon [23] show that one can efficiently approximate the maximum entropy extensive-
form correlated equilibrium in polynomial time, giving hope that a maximum entropy approach
to behavior prediction is possible at least with known utility.

5.4 Safe Subgame Resolving
Shortly after we introduced MaxEnt ICE, Burch et al. [12] introduced an algorithm, CFR-D,
which allows one to decompose a zero-sum equilibrium computation in an imperfect information
game. Specifically, the game is partitioned into subgames along its public tree. There are a
number of specific conditions as to what a valid public tree decomposition is, but for the purposes
of this exposition one can think of it as requiring all histories in the transitive closure over both
players’ information to be grouped together, e.g., in poker the betting tree along with any public
cards forms the public tree.

The magic of CFR-D is that one can summarize the equilibrium strategy for a player in a
subgame by two vectors–the probability that the player reaches the subgame for every one of
the player’s initial decisions in the subgame, and the value to the opponent of every one of their
initial decisions. With this information, one can perform what has become known as a safe
re-solve computation to recover the equilibrium strategy.

The re-solve computation itself is an equilibrium computation on a slightly modified game,
known as a gadget game. Specifically, upon the opponent reaching their initial decision, they
may choose to opt-out of playing the subgame and instead receive the value of that decision.
Upon solving the gadget game, the player’s (and not the opponent’s) strategy will approximate
an equilibrium strategy in that subgame. Since the original paper, others have determined other
ways to formulate the gadget game [65].

Recalling the discussion of the dual estimation procedure for zero-sum games in Chapter 2,
we advocate instead of estimating the strategy for one player that one estimate the regrets of the
opponent, just as is being done here. Further, inspection of the re-solve computation itself elu-
cidates that we can interpret it as a behavior prediction program with known utility and without
any additional selection criteria. Specifically, the strategy set for the player is the set of strategies
bestowing the at least the known values to the opponent at their initial decisions.

Safe re-solving is a critical component in a number of recent high profile results: Deep-
Stack [66], a expert-level no-limit poker agent; Libratus, the first no-limit poker agent to beat
strong professionals [8, 9, 10]; and Player of Games, a generalization of AlphaZero to imperfect
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information games [79, 83].
A significant issue with AlphaZero and Player of Games is the sheer volume of data, and thus

compute, required to train a strong agent. For example, AlphaZero required 44 million training
games played over nine hours on expensive specialized hardware to learn to play Chess. To
make it possible for a graduate student to reproduce such results we will need to either reduce the
number of samples required by the algorithm, or reduce the dependency on specialized hardware.
By viewing this problem with a behavior prediction lens it may be possible to make progress on
both of these fronts.

5.5 Beyond Regression CFR

Regression CFR has spearheaded a line of research on computing Nash equilibria in zero-sum
games by employing machine learning techniques to learn strategy representations [11, 22, 43,
60, 85, 89, 90]. Unfortunately, R-CFR as well as its successors have not yet been as successful
as the search-based methods like AlphaZero, DeepStack, and Player of Games [66, 79, 83].

There at least two issues holding back these methods. First, it can be hard for these methods
to get started. Specifically, when starting from a random strategy the regrets do not exhibit as
much structure as might be required to learn a good predictor. This can make it hard or impossible
to move away from the initial random strategy. This is less of a problem for the search-based
methods as the search itself, given that it is deep enough, imposes some structure on the targets.

Second, when computing a Nash equilibrium in an imperfect information game using a self-
play method like CFR or fictitious play, it is the average policy that converges to the equilibrium,
not the final policy of the players. That is, these methods must somehow record or be able to
recover the average strategy at test time. Our work on R-CFR did not tackle this problem at all,
but subsequent work has gravitated towards recording trajectories of play during the self-play
computation in a large replay buffer and then learning an average strategy predictor at the end
of self-play. That is, they are performing behavior prediction in the way that DAgger tells us
can fail catastrophically [78]. Additionally, the behavior prediction problem here involves only a
single-agent. That is, this presents a perfect opportunity to apply DAgger, or some other hybrid
re-solve-based method to push the state-of-the-art in this area.

5.6 Additional Publications
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• M. Schmid, M. Moravčı́k, N. Burch, R. Kadlec, J. Davidson, K. Waugh, N. Bard, F. Tim-
bers, M. Lanctot, Z. Holland, E. Davoodi, A. Christianson, and M. Bowling. Player of
games, 2021. URL https://arxiv.org/abs/2112.03178.

• C. Kroer, K. Waugh, F. Kılınç-Karzan, and T. Sandholm. Faster algorithms for extensive-
form game solving via improved smoothing functions. Mathematical Programming, 179
(1):385–417, 2020.
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• M. Moravčı́k, M. Schmid, N. Burch, V. Lisý, D. Morrill, N. Bard, T. Davis, K. Waugh,
M. Johanson, and M. Bowling. Deepstack: Expert-level artificial intelligence in heads-up
no-limit poker. Science, 356:508–513, 2017.
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Appendix A

Behavior Prediction with Known Utility

To begin, we recall some useful definitions and properties of convex functions will aid us in our
proofs. For more details see Boyd and Vandenberghe [6].

Recall the definition of the convex conjugate of a function f : Rn → R:

f ∗(λ) = max
x
〈λ, x〉 − f(x)

Consider minimizing f subject to linear equality constraints:

min
x

f(x), subject to: Ax = b

Introducing Lagrange multiplier λ we have
= min

x
max
λ

f(x) + 〈λ, b− Ax〉

So long as the constraints are satisfiable and the minimum exists
= max

λ
min
x

f(x) + 〈λ, b− Ax〉

= max
λ
〈λ, b〉+ min

x
f(x)− 〈λ,Ax〉

= max
λ
〈λ, b〉 −max

x
〈λ,Ax〉 − f(x)

= max
λ
〈λ, b〉 − f ∗(ATλ) (A.1)

i.e., we can write the dual problem in terms of the convex conjugate.
A similar dual results from when minimizing f subject to linear inequality constraints, again

subject to the constraints being satisfiable and the minimum existing:

min
x

f(x), subject to: Ax ≥ b

= max
λ≥0

〈λ, b〉 − f ∗(ATλ) (A.2)

Unlike previously, here λ is restricted to the non-negative orthant.
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Generalizing further, let K ⊆ Rm be a non-empty convex set. Recall, that the dual cone
K∗ = {y | 〈y, x〉 ≥ 0,∀x ∈ K}. If we minimize f subject to the convex inclusion constraint:

min
x

f(x), subject to: Ax− b ∈ K

So long as there exists x such that Ax− b ∈ int(K) and the minimum exists
= min

x
max
λ∈K∗

f(x)− 〈λ,Ax− b〉

= max
λ∈K∗

min
x

f(x)− 〈λ,Ax− b〉

= max
λ∈K∗

〈λ, b〉 −max
x
〈λ,Ax− b〉 − f(x)

= max
λ∈K∗

〈λ, b〉 − f ∗(ATλ) (A.3)

The constraint qualification above is sufficient for strong duality to hold for arbitrary K, but it is
not always necessary. For example, when K = {0} we recover the first dual we derived, which
requires simply that the constraints are satisfiable.

Finally, recall the convex conjugate of the negative entropy fuction is:

−H(x) =
N∑
i=1

xi log xi subject to: x ∈ ∆

−H∗(g) = log
N∑
i=1

exp(gi) (A.4)
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Appendix B

Behavior Prediction with Unknown Utility

Lemma 5. ∀x ∈ R and ∀a1, a2, ..., an ∈ R,

x ≤ max
i∈[n]

ai

⇐⇒ ∃η ∈ ∆n s.t. x ≤
n∑
i=1

ηiai

Proof. Let j = argmaxi∈[n] ai. If x ≤ maxi∈[n] ai then choose ηj = 1,

x ≤ aj =
n∑
i=1

ηiai

If there exists η ∈ ∆n such that

x ≤
n∑
i=1

ηiai, then

≤
n∑
i=1

ηiaj = aj = max
i∈[n]

ai
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Proof of Theorem 5. For any σ̂ ∈ ∆A:

∀w ∈ K, Regret(σ̂, w) ≤ Regret(σ,w)
⇐⇒ ∀w ∈ K, max

f∈Φ

〈
rf (σ̂), w

〉
≤ max

g∈Φ
〈rg(σ), w〉

⇐⇒ ∀w ∈ K, f ∈ Φ,
〈
rf (σ̂), w

〉
≤ max

g∈Φ
〈rg(σ), w〉

Applying Lemma 5
⇐⇒ ∀w ∈ K, f ∈ Φ ∃ηf ∈ ∆Φ,

〈
rf (σ̂), w

〉
≤
∑
g∈Φ

〈
ηfg r

g(σ), w
〉

⇐⇒ ∀w ∈ K, f ∈ Φ ∃ηf ∈ ∆Φ,

〈
rf (σ̂)−

∑
g∈Φ

ηfg r
g(σ), w

〉
≤ 0

By the definition of the dual cone K∗
⇐⇒ ∀f ∈ Φ ∃ηf ∈ ∆Φ, rf (σ̂)−

∑
g∈Φ

ηfg r
g(σ) ∈ −K∗

Proof of Theorem 6. Recall the primal MaxEnt ICE optimization problem:

max
σ̂,η

H(σ̂) subject to:

rf (σ̂)−
∑
g∈Φ

ηfg r
g(σ) ∈ −K∗ ∀f ∈ Φ

ηf ∈ ∆Φ, ∀f ∈ Φ

σ̂ ∈ ∆A.

Momentarily just considering the objective

max
σ̂,η

H(σ̂) = max
η

max
σ̂

H(σ̂)

= max
η
−min

σ̂
−H(σ̂)

Now applying (A.3) using the definition of the negative entropy’s conjugate function (A.4)

max
η,λ

∑
f∈Φ

∑
g∈Φ

ηfg
〈
rg(σ), λf

〉
+ logZ(λ), where

Z(λ) =
∑
a∈A

exp

(
−
∑
f∈Φ

〈
rf (a), λf

〉)
, subject to:

ηf ∈ ∆Φ, λ
f ∈ K. ∀f ∈ Φ

Finally, we eliminate η by applying Lemma 5 to get the stated MaxEnt ICE dual problem

max
λf∈K

∑
f∈Φ

max
g∈Φ

〈
rg(σ), λf

〉
+ logZ(λ), where

Z(λ) =
∑
a∈A

exp

(
−
∑
f∈Φ

〈
rf (a), λf

〉)
.
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Appendix C

Zero-sum Equilibrium Computation

Proof of 12. This proof is based on the proof of the polynomially weighted forecaster from [15].
Define Φ(R) =

∑N
i=1 ‖R+‖2, where R is a vector of N regrets.

Suppose that for any ‖ut‖∞ ≤ L we have〈
∇Φ(Rt), ut − ut · xt+1e

〉
=
〈
∇Φ(Rt), rt+1

〉
≤ εt

By the Lipschitz continuity of Φ we have

Φ(Rt+1) ≤ Φ(Rt) + 2
〈
Φ(Rt), Rt+1 −Rt

〉
+ ‖Rt+1 −Rt‖2

2

= Φ(Rt) + 2
〈
Φ(Rt), rt+1

〉
+ ‖rt+1‖2

2

By our assumption
≤ Φ(Rt) + 2εt + ‖rt+1‖2

2

≤ Φ(Rt) + 2εt +NL2

Iterating the inequality

≤ (t+ 1)NL2 + 2
t∑

k=1

εk

Finally, we bound the overall regret by the regularized regret

max
i∈[N ]

RT
i ≤ max

i∈[N ]
(RT

i )+ = ‖(RT
i )+‖∞

≤ ‖(RT
i )+‖2 =

√
Φ(RT )

≤

√√√√TNL2 + 2
T∑
t=1

εt
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[58] C. Kroer, K. Waugh, F. Kılınç-Karzan, and T. Sandholm. Faster algorithms for extensive-
form game solving via improved smoothing functions. Mathematical Programming, 179
(1):385–417, 2020.

[59] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical
Statistics, 22(1):79–86, 1951. 2.2

[60] H. Li, K. Hu, S. Zhang, Y. Qi, and L. Song. Double neural counterfactual regret mini-
mization. In International Conference on Learning Representations (ICLR), 2020. 5.5

[61] N. Littlestone and M. Warmuth. The weighted majority algorithm. Information and Com-
putation, 108:212–261, 1994. 2.1.1

[62] M. Littman. Markov games as a framework for multi-agent reinforcement learning. In
International Conference on Machine Learning (ICML), 1994. 5.3

[63] D. McFadden. The measurement of urban travel demand. Journal of Public Economics,
3(4):303–328, 1974. 1

[64] R. McKelvey and T. Palfrey. Quantal response equilibria for normal form games. Games
and Economic Behavior, 10:6–38, 1995. 1, 3.3.1
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