
Integrating Video Codec Design and Network
Transport for Emerging Internet Video

Streaming Applications.

Devdeep Ray

CMU-CS-22-143

August 2022

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Srinivasan Seshan, Chair (Carnegie Mellon University)
Justine Sherry Martins (Carnegie Mellon University)

Anthony Rowe (Carnegie Mellon University)
David Chu (Magic Leap)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy.

Copyright © 2022 Devdeep Ray

This research was sponsored by Vanguard Charitable and the National Science Foundation under award numbers
CNS-1345305, CNS-1564009, CNS-1565343, CNS-1700521, and CNS-1956095, and through Google research
grants and the use of Cloud Lab resources.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Video, Networks, Bandwidth, Latency, Packet loss, Streaming, Cloud, Live,
Low-latency, Real-time, Gaming, Virtual Reality, Augmented Reality, Compression, Codec,
Congestion Control

This thesis is dedicated to everyone who has played an instrumental role in my life in getting me
where I am at today.

iv

Abstract

Video streaming applications on the Internet are diverse, and have very distinct
notions of the quality of experience (QoE). These distinctions require carefully de-
signed systems and protocols in order to balance factors like video quality, delay,
bandwidth utilization, and video coding performance in a manner that is appropri-
ate for each specific application. While these trade-offs are clear cut and simple
to implement for traditional video streaming applications (eg. conferencing, live
TV broadcasts, video-on-demand), emerging video streaming applications like so-
cial live video streaming, cloud gaming and remote-rendered AR/VR have unique
properties and demanding QoE requirements that make choosing the right trade-offs
and achieving the desired QoE challenging.

Conventional video streaming systems largely treat the two key aspects of video
streaming, video encoding and data transmission, as separate entities, and rely on
naı̈vely combining techniques that have been developed independently in the field
of video coding and network transport. This approach severely limits the capability
to navigate the complex trade-offs required to achieve good QoE for emerging video
streaming applications. In this thesis, we explore techniques that use encoder and
network co-design techniques that expand the breadth of the trade-offs that can be
achieved by a video streaming system, and thus, enable designs that are tailored to
the demands of specific video streaming applications. Our work shows that integra-
tion of video encoding and network transport at various levels is crucial in achiev-
ing good QoE for emerging video streaming applications like social live streaming,
cloud gaming and cloud AR/VR.

We first explore the space of social live video streaming (SLVS), where the key
distinction from traditional video streaming applications is the presence of viewers
who view the video stream at different delays. Our system, Vantage [1], dynami-
cally optimizes bandwidth allocation across low latency video frames and selective
quality-enhancing retransmissions. In the presence of bandwidth variations, Van-
tage enables low-latency interaction for real-time viewers, and achieves high video
quality for time-shifted viewers.

Second, we explore the application space of cloud-rendered video games. Cloud
gaming demand extremely low interaction latency, and very high video quality in
order to achieve parity with locally-rendered applications - a challenging task when
streaming over the Internet. We developed a new end-to-end video streaming ar-
chitecture, called Prism, in order to improve the frame delay and video quality in
the presence of transient packet loss. When a video stream is affected by transient
packet loss, Prism carefully splits the available bandwidth between a low latency
stream, and a quality-preserving secondary stream, where the different sub-streams
address different stages of loss recovery. Prism accounts for the complex relation-
ships between video compression bitrate and the resulting video quality in order to
achieve higher video quality and lower video frame delay. Optimizing the allocation
of bandwidth between the streams enables the use of aggressive loss prediction tech-
niques, rapid loss recovery, and high quality post-recovery, with zero computational
and bandwidth overhead during normal operation - avoiding the pitfalls of existing
approaches.

vi

Third, we show that existing approaches for performing congestion control in
the context of emerging Internet video streaming applications like cloud gaming and
cloud AR/VR severely limit the QoE. We demonstrate that the design choices made
by existing congestion control algorithms severely limit their suitability for the de-
manding requirements of cloud streaming applications, and discuss how the complex
interactions between the congestion control algorithm and the video encoder rate
control mechanism have a significant impact on the video frame delay and video
quality. We also discuss the challenges with testing and deploying new congestion
control algorithms designed for emerging applications. We propose a tool called
CC-Fuzz for automatically stress testing a congestion control algorithm in order to
identify problems with the design and implementation of the congestion control al-
gorithm, with the goal of inspiring confidence in the design of the algorithm and
catching implementation bugs.

This work shows that rethinking traditional designs for video streaming with a
focus on integrated video codec and network transport design enables novel QoE
trade-off modalities that are able to push the QoE envelope of video streaming sys-
tems and achieve the demanding QoE goals of emerging Internet video streaming
applications.

vii

viii

Acknowledgments
I would like to express my deepest gratitude to my advisor, Srinivasan Seshan,

who supported my ideas and lent his technical expertise on various topics. I am
extremely grateful to the members of my thesis committee, Justine Sherry-Martins,
Anthony Rowe, and David Chu. I would like to thank the National Science Founda-
tion for supporting my research through various grants, Vanguard Charitable, Cloud-
lab, and Google for various internship opportunities and funding.

Special thanks to everyone who collaborated with me during my PhD journey.
Thanks to Matthew K. Mukerjee for guiding me in the initial parts of my PhD and for
the opportunity to collaborate on VDX [2]. I would like to thank my co-authors on
the Vantage [1] project, Rashmi KV, and Jack Kosaian, for their contributions. I am
also thankful to Vicente Bobadilla Riquelme and Deklin Caban for being awesome
summer interns. Vicente’s work on neural network loss prediction was instrumental
for Prism. Deklin did a great job on understanding CCAs used for cloud gaming.
I would also like to thank everyone who attended the Tuesday Lunch seminar for
excellent presentations on networking topics, and Srini’s research group, including
Sagar, Anup, Ray, Shawn, Chris, Mallesh, and Daehyeok. Sincere thanks to all
of my mentors at Google (Jason Glasgow, Tarun Bansal, Seungjoon Lee, Connor
Smith, Teng Wei, David Chu, and Neal Cardwell), and Pierre Alliez, who mentored
my first research experience at Inria.

I sincerely thank my parents, Ujjal Kumar Ray and Maytreyi Ray, and my sister,
Dipanwita Ray for being the best sibling. I would not be where I am without your
constant love and support. A shout out to Pratik Fegade, my forever roommate for
helping me debug weird bugs, and to my other roommates, neighbors, and friends
who have been my family away from home - Arijit, Siddhant, Nishanth, Abhijeet,
Aditi, Akshay, Rohit, Maahin, Shivani, Shreyanshi, Meghna, and Sheona.

Finally, I would not have made it through the isolation of COVID’19 without
aviation - for that, I would like to thank my flight instructor, Tim Depaolis, and
everyone else at High Flight Academy. In addition, I would like to thank a friend
whose first solo post inspired me to turn my childhood dream of being a pilot into
reality - you constantly amaze me, and have always inspired me to push myself.

x

Contents

1 Introduction 1
1.1 Quality of Experience for Video Streaming Applications 2
1.2 Limitations of Existing Approaches . 5
1.3 Thesis Statement . 7
1.4 Summary of Contributions . 9

1.4.1 Vantage . 9
1.4.2 Prism . 10
1.4.3 ViXNN . 12
1.4.4 SQP . 12
1.4.5 CC-Fuzz . 13

2 Background 15
2.1 Video Streaming Systems . 15
2.2 Video Compression . 17

2.2.1 Overview of Compression Schemes . 17
2.2.2 Intra-frame Schemes . 18
2.2.3 Inter-frame Schemes . 18
2.2.4 Motion Compensation and Streaming Video 19

3 Vantage: Optimizing video upload for time-shifted viewing of social live streams 21
3.1 Social Live Video Streaming (SLVS) . 21
3.2 Overview of Contributions . 22
3.3 Background and Opportunity . 23

3.3.1 SLVS Architectures . 23
3.3.2 Time-shifted viewing in SLVS . 24
3.3.3 Variability in the upload path . 24

3.4 Supporting Time-shifted Viewing . 25
3.4.1 Inadequacy of existing techniques . 26
3.4.2 Proposed approach . 29

3.5 Design of Vantage . 32
3.5.1 Overview . 32
3.5.2 Scheduler design . 33
3.5.3 Mitigating bandwidth estimation error 35
3.5.4 Encoding retransmissions . 36

xi

3.5.5 Reducing memory overhead . 36
3.5.6 Discussion . 37
3.5.7 Implementation details . 38

3.6 Evaluation Methodology . 38
3.6.1 Metrics . 38
3.6.2 Baselines . 38
3.6.3 Evaluation setup . 39

3.7 Results . 41
3.7.1 Overall improvements . 41
3.7.2 Inspecting Vantage’s improvements 42
3.7.3 Adapting to viewer-delay distributions 44
3.7.4 Quality improvements for dynamic videos 45
3.7.5 Optimizer period. 45
3.7.6 Errors in bandwidth estimation. 46
3.7.7 Ablation studies. 47

3.8 Related Work . 48
3.9 Conclusion and Key Takeaways . 49

4 Prism: Handling packet loss for ultra-low latency video. 51
4.1 Packet Loss Mitigation for Real-Time Video . 51
4.2 Overview of Contributions . 52
4.3 Video Compression Background . 53

4.3.1 Understanding Video Quality - SSIM 54
4.3.2 I-frames vs. P-frames Compression Efficiency 55
4.3.3 Bitrate Transitions and P-frame Quality 57

4.4 Loss Detection and Recovery . 59
4.4.1 Loss Detection . 59
4.4.2 Reactive Loss Recovery . 59
4.4.3 Proposed Hybrid Approach . 60

4.5 Design . 61
4.5.1 Overall Architecture . 61
4.5.2 Optimizing Bandwidth Allocation . 62
4.5.3 Offline Analysis Pipeline . 64
4.5.4 Loss Prediction . 66

4.6 Evaluation . 68
4.7 Video Dataset . 69

4.7.1 Optimization Framework . 71
4.7.2 End-to-end Evaluation . 75
4.7.3 Web Page Load Timeseries . 76

4.8 Related Work . 81
4.9 Conclusion and Key Takeaways . 82

xii

5 ViXNN: A deep learning approach to loss resilient image and video transmission. 85
5.1 Introduction . 86
5.2 Background . 87

5.2.1 Video coding . 87
5.2.2 Scalable video coding . 89

5.3 Using Neural Networks . 90
5.3.1 Compression using neural networks . 90
5.3.2 Compression for lossy networks . 90
5.3.3 Neural networks background . 91

5.4 ViXNN Design . 91
5.4.1 Overview . 92
5.4.2 Compression Architecture . 93
5.4.3 Adding loss resilience and variable rate coding 94
5.4.4 Choosing a loss function . 95
5.4.5 Discussion on Leveraging Temporal Redundancy 95

5.5 Evaluation . 96
5.5.1 Compression using ViXNN . 97
5.5.2 Resilience to packet loss . 98
5.5.3 Resilience to bit errors . 100
5.5.4 Tunability of ViXNN . 100
5.5.5 Computational and storage requirements 102

5.6 Conclusion . 103

6 Congestion Control Design for Emerging Video Streaming Applications 105
6.1 Congestion Control Background for Low Latency Video Streaming 106

6.1.1 Traditional Congestion Control Algorithms 106
6.1.2 Low Latency Congestion Control . 109
6.1.3 Mode-switching Low Latency CCAs 113
6.1.4 Congestion Control for Cloud Gaming/AR/VR. 115
6.1.5 Congestion Control and Encoder Integration 115

6.2 SQP overview. 117
6.3 Related Work . 119
6.4 Preliminary Study . 120

6.4.1 Variable Bandwidth Link . 120
6.4.2 Short Timescale Variations . 122

6.5 Design . 123
6.5.1 Architecture Overview . 123
6.5.2 Bandwidth Sampling . 125
6.5.3 Tracking Minimum One-way Delay . 127
6.5.4 Bandwidth Estimate Update Rule . 128
6.5.5 Pacing and Target Multipliers . 128

6.6 Analysis of SQP Dynamics . 129
6.6.1 Competing Flows . 129
6.6.2 Intra-protocol Dynamics and Fairness 131

xiii

6.6.3 Adaptive Min One-way Delay Tracking 133
6.7 Evaluation . 134

6.7.1 Emulation Setup . 135
6.7.2 Metrics . 135
6.7.3 Simple Variable Bandwidth Link . 135
6.7.4 Real-world Wireless Traces . 136
6.7.5 Competing with Queue-building Flows 137
6.7.6 Shallow Buffers . 139
6.7.7 Short Timescale Variations . 140
6.7.8 Impact of Feedback Delay . 140
6.7.9 Fairness . 140
6.7.10 SQP Video Codec Integration . 144

6.8 Real-World Performance . 145
6.9 Conclusion . 146

7 CC-Fuzz: Genetic algorithm-based fuzzing for stress testing congestion control al-
gorithms. 147
7.1 Introduction . 148
7.2 Motivation and Related Work . 149
7.3 Design . 149

7.3.1 Network Model . 150
7.3.2 Link Fuzzing . 151
7.3.3 Traffic Fuzzing . 152
7.3.4 Scoring Function . 153
7.3.5 Selection Algorithm . 153
7.3.6 Emulation vs. Simulation . 154

7.4 Findings . 154
7.4.1 BBR - Stuck Throughput . 156
7.4.2 TCP-CUBIC Incorrect CWND Update 157
7.4.3 Other Findings . 157

7.5 Future Directions . 157
7.6 Conclusion . 159

8 Conclusion 161
8.1 Key Takeaways . 162
8.2 Future Work . 162

Bibliography 165

xiv

List of Figures

1.1 Application requirements and the quality-delay trade-off achieved by traditional
video streaming systems. 3

3.1 High-level architecture of social live video streaming systems. The upload path
(focus of this chapter) is highlighted with a red box. 23

3.2 An example bandwidth trace from MahiMahi [3] for an LTE cellular link. 25
3.3 SSIM as a function of the frame size for the Sintel trailer [4, 5]. Each line cor-

responds to a single frame. The video was encoded multiple times with different
target bitrates to generate the data. 26

3.4 Toy example demonstrating the benefits of quality-enhancing retransmissions
over conventional techniques. 28

3.5 Vantage’s architecture. Solid lines indicate data-plane components. Dotted lines
indicate control-plane components. Components that are unchanged by Vantage
are shown in a darker shade. 32

3.6 Screenshots from the videos used in evaluation. Videos are drawn from the
Xiph.org Test Media repository [4]. 40

3.7 SSIM of frames at various viewing delays for the Talking Heads video and the
AT&T-LTE trace. The top row shows the utilization of the upload bandwidth.
The bottom three rows show the quality of the received video at real-time, 15
seconds, and 30 seconds of delay. The dark green region represents the instan-
taneous quality for the real-time timeseries. For the 15-second delay and the
30-second delay timeseries, the dark blue region represents the improvement in
quality compared to the real-time quality and the 15-second delay quality respec-
tively. The light green shaded regions in the 15-second and 30-second timeseries
represent the baseline video quality for the previous delay bucket (real-time and
15-second respectively). 42

3.8 Timeseries examples showing Vantage’s improvement on the two other traces.
Here, the yellow shaded regions in the 15-second and 30-second plots show the
improvement over real-time quality and the quality for 15-seconds of viewing
delay respectively. 43

3.9 Fine-grained time-shift results for the Talking Heads video and AT&T-LTE trace. 44
3.10 Performance of Vantage for various viewing delay distributions. 44
3.11 Effects of choosing different optimizer periods on the video quality. Vantage

uses P = 2 sec . 45

xv

3.12 Effects of bandwidth mis-estimation, and performance of Vantage compared to
using perfect bandwidth estimates. 46

3.13 Comparison of Vantage with simpler retransmission schemes based on restricted
versions of Vantage. 47

4.1 Visualization of the difference between I-frames vs P-frames at 10 Mbps, for the
videos with the highest and lowest difference in average quality. The SSIM is
denoted inside parentheses. 55

4.2 Comparison of average video quality using just I-frames and just P-frames at 10
Mbps, sorted in the order of increasing difference between the average quality. . 55

4.3 Difference between P-frame quality and I-frame quality across a range of bi-
trates. 56

4.4 Temporal behavior of the video quality of P-frames when encoding parameters
are changed (e.g. I-frame insertion, bitrate change). 57

4.5 Distribution of the time taken by a P-frame stream to converge to 80% of the
quality of a steady-state P-frame stream. 58

4.6 Visual comparison of motion compensation performance for two videos. Mo-
tion compensation is more effective at reducing the bitrate requirements for Top-
down 3D scrolling games like MapleStory. 58

4.7 . 60
4.8 Prism architecture. 62
4.9 T(f,5), T ′

(f,5) for various starting points (f) (Tekken) 65
4.10 SSIM prediction error - Prism vs. naı̈ve exponential decay. 65
4.11 Prism’s SSIM prediction for a particular encoding schedule. 66
4.12 Prism’s loss prediction input window and output window. 66
4.13 Prism’s loss prediction input window and output window. 67
4.14 Prism neural-net loss prediction accuracy trade-off 67
4.15 Screenshots from the raw videos. 70
4.16 Performance of Prism’s bandwidth split optimization algorithm. 72
4.17 Comparison of the DSSIM improvement achieved by a video-specific bandwidth

allocation table and a bandwidth allocation table optimized for all the videos
as a whole. The X-axis is the difference in the %-improvement in the DSSIM
between the two methods, and the Y-axis plots the cumulative distribution of this
gap across various bitrates and loss durations. 74

4.18 Timeseries comparing Prism and the two baselines (IDR-frames, retransmis-
sions) in the presence of random loss. 75

4.19 I-frame timeseries for loss caused by a competing flow performing a web page
load. 76

4.20 P-frame timeseries for loss caused by a competing flow performing a web page
load. 76

4.21 Prism timeseries for loss caused by a competing flow performing a web page load. 77
4.22 Prism loss prediction (MLabs trace). 77
4.23 I-frame timeseries without loss prediction for an MLabs trace. 78

xvi

4.24 P-frame timeseries for an MLabs trace. Note the large spikes in delay when
losses occur. 78

4.25 Prism timeseries without loss prediction for an MLabs trace. The video quality
quickly recovers after a loss event. 79

4.26 Prism timeseries with loss prediction for an MLabs trace. False predictions result
in some additional events where the video quality drops, but the delay is much
lower and stutters are reduced due to loss prediction. 79

4.27 I-frame timeseries with loss prediction for an MLabs trace. Note the frequent
drops in video quality for events where loss recovery is triggered without an
actuall loss. 79

4.28 Prism’s performance across various network types. 80
4.29 Loss rate distribution for various timescales. 81
4.30 Rate control accuracy comparison of Alfalfa (Salsify) and NvEnc. 83

5.1 A comparison of the requirements of various applications 86
5.2 Visual effects of packet loss for various compression techniques 88
5.3 ViXNN end-to-end architecture . 92
5.4 Compression performance of ViXNN without losses 98
5.5 ViXNN vs. H.264/AVC under packet loss . 99
5.6 Timeseries plots of PSNR and SSIM under 5% packet loss 99
5.7 ViXNN vs. H.264/AVC under bit errors . 100
5.8 Tuning ViXNN for different loss behaviors . 101
5.9 ViXNN trained for alternate reconstructions under loss 101
5.10 Tuning ViXNN for applications . 102
5.11 Encoding and decoding performance of ViXNN on an NVIDIA 1080 Ti GPU . . 103

6.1 Throughput achieved by TCP-Cubic and the corresponding queuing delay on a
link that oscillates between 12 Mbps and 6 Mbps. 107

6.2 Throughput achieved by TCP-BBR and the corresponding queuing delay on a
link that oscillates between 12 Mbps and 6 Mbps. 107

6.3 Throughput achieved by TCP-BBR and the corresponding queuing delay on a 20
Mbps link where TCP-BBR shares the link with TCP-Cubic. The blue line is the
TCP-BBR flow, and the green line is the TCP-Cubic flow. The TCP-Cubic flow
starts 5 seconds after the TCP-BBR flow. 108

6.4 Throughput achieved by TCP-Vegas and the corresponding queuing delay on a
link that oscillates between 12 Mbps and 6 Mbps. 109

6.5 Throughput achieved by Sprout and the corresponding queuing delay on a link
that oscillates between 12 Mbps and 6 Mbps. 109

6.6 Throughput achieved by TCP-Vegas and the corresponding queuing delay on a
20 Mbps link where TCP-Vegas shares the link with TCP-Cubic. The blue line is
the TCP-Vegas flow, and the green line is the TCP-Cubic flow. The TCP-Cubic
flow starts 5 seconds after the TCP-Vegas flow. 110

xvii

6.7 Throughput achieved by Sprout and the corresponding queuing delay on a 20
Mbps link where Sprout shares the link with TCP-Cubic. The blue line is the
Sprout flow, and the green line is the TCP-Cubic flow. The TCP-Cubic flow
starts 5 seconds after the Sprout flow. 111

6.8 Throughput achieved by PCC and the corresponding queuing delay on a 20 Mbps
link where PCC shares the link with TCP-Cubic. The blue line is the PCC flow,
and the green line is the TCP-Cubic flow. The TCP-Cubic flow starts 5 seconds
after the PCC flow. 112

6.9 Throughput achieved by PCC and the corresponding queuing delay on a link that
oscillates between 12 Mbps and 6 Mbps. 112

6.10 Throughput achieved by PCC-Vivace and the corresponding queuing delay on a
link that oscillates between 12 Mbps and 6 Mbps. 112

6.11 Throughput achieved by PCC-Vivace and the corresponding queuing delay on a
20 Mbps link where PCC-Vivace shares the link with TCP-Cubic. The blue line
is the PCC-Vivace flow, and the green line is the TCP-Cubic flow. The TCP-
Cubic flow starts 5 seconds after the PCC-Vivace flow. 113

6.12 Throughput achieved by Copa and the corresponding queuing delay on a 20
Mbps link where Copa shares the link with TCP-Cubic. The blue line is the
Copa flow, and the green line is the TCP-Cubic flow. The TCP-Cubic flow starts
5 seconds after the Copa flow. 114

6.13 Throughput achieved by Copa and the corresponding queuing delay on a link
that oscillates between 12 Mbps and 6 Mbps. 114

6.14 Congestion control performance on a variable link (link bandwidth shown as a
shaded light blue line). 121

6.15 A closer look at the short term delay and send rate variation on a constant 20
Mbps link. 122

6.16 Low-latency video streaming and SQP architectures. 124
6.17 SQP’s bandwidth samples converge towards the link rate and aid in draining

self-inflicted queues. The slope of the dotted red line represents the bandwidth
sample in each case. 125

6.18 Impact of the target multiplier on delay, link utilization and link share obtained
under cross traffic for a pacing multiplier m = 2. Experimental results validate
the theoretical analysis. In each case, the bottleneck link rate was 20 Mbps, the
one-way delay in each direction was 20 ms and the bottleneck buffer size was
120 ms. 129

6.19 Cubic delay variation increases with more cubic flows. 131
6.20 Vector field showing bandwidth update steps for different starting states for two

competing flows. SQP’s update rule significantly speeds up convergence to fair-
ness. 133

6.21 Impact of the min one-way delay multiplier on frame delay and throughput when
competing with other flows. The bottleneck setup is the same as Figure 6.18, and
T = 0.9,m = 2. 134

6.22 Congestion control performance on a variable link (link bandwidth shown as a
shaded light blue line). 134

xviii

6.23 Performance of various CCAs on a sample Wi-Fi network trace, with the bottle-
neck buffer size set to 200 packets. SQP rapidly adapts to the variations in the
link bandwidth, and achieves low packet queueing delay. 136

6.24 SQP’s performance over emulated real-world wireless network traces. The bot-
tleneck buffer size was set to 200 packets. In Figures 6.24a and 6.24b, the mark-
ers depict the median across traces and the whiskers depict the 25th and 75th

percentiles. 137
6.25 CCA performance when competing with queue-building cross traffic. The error

bars mark the P10 and P90 simulated frame bitrates (§ 6.7.2). 138
6.26 Performance impact of shallow buffers on a 20 Mbps, 40ms RTT link. 139
6.27 Short-timescale throughput and delay behavior on a 20 Mbps link (link band-

width shown as a shaded light blue line). 141
6.28 Impact of link RTT on throughput and delay, where link changes from 20 Mbps

to 5 Mbps at T=40s. 142
6.29 Fairness results with 10 flows sharing a bottleneck. SQP achieves a fair share of

throughput on average, and at smaller time-scales. CCAs like Sprout, WebRTC,
and Copa become excessively bursty at smaller time-scales. 142

6.30 Dynamic fairness and RTT fairness comparison. SQP quickly converges to fair-
ness, and has good RTT fairness. 143

6.31 SQP’s performance when application-limited. 144
6.32 Real world A/B testing of SQP and Copa-0.1. 145

7.1 . 150
7.2 . 151
7.3 Service curves generated using DISTPACKETS, with an average rate of 12 Mbps

and kAgg = 50ms. 152
7.4 Analyzing BBR with CC-Fuzz. 155
7.5 Distribution of service curves according to realism scores assigned by testing on

multiple CCAs. The traces were generated with DISTPACKETS, but without the
local rate constraints. 158

xix

xx

List of Tables

3.1 SQI-SSIM achieved by the baselines and Vantage for each combination of the
videos and the network traces. In each case, the average SQI-SSIM across delays
(indicated within parentheses) is the highest for Vantage (bolded). 39

6.1 Various CCAs that exist today, and their properties. 119

xxi

xxii

Chapter 1

Introduction

Video traffic over the Internet has grown significantly over the past decade and comprises of more
than 80% of the total traffic [6] on the Internet today. Video streaming applications are diverse,
ranging from applications like video-on-demand (VOD), live broadcasts, video conferencing,
social live video streaming (SLVS), cloud gaming, and remote-rendered augmented reality (AR)
and virtual reality (VR). While applications like VOD, live broadcasts and conferencing over the
Internet have been around for a while, recent technological advances have made more demanding
applications like social live video streaming (SLVS), cloud gaming and and remote-rendered
AR/VR streaming more ubiquitous.

While emerging applications like SLVS, cloud gaming and AR/VR streaming are able to
leverage existing infrastructure (eg. CDNs, edge-computing) and algorithms (eg. low latency
congestion control algorithms and real-time video streaming techniques developed for video
conferencing), the end-to-end quality of experience (QoE) achieved by existing techniques falls
short of the level of performance desired for these applications. One reason is that existing
systems are tuned to satisfy the needs of existing applications like live broadcasts and video con-
ferencing, whereas emerging applications have unique requirements that require a different set
of trade-offs. Even if these existing approaches are tuned in order to make them work better for
emerging video streaming applications, the maximum QoE achievable by these approaches is
limited. This is because the designs of existing techniques that are used for achieving the desired
QoE and for addressing the various challenges of streaming video on the Internet are usually
limited in scope to a small part of the entire video streaming stack, and do not consider interac-
tions between various sub-systems. For example, video quality improvements are usually from
improvements in the bandwidth obtained by the congestion control algorithm, or due to better
video compression algorithms. Similarly, typical packet loss recovery techniques are either done
at the codec layer (IDR-frames), or at the network layer (FEC, retransmissions). This restricts the
QoE envelope achievable by these techniques in the context of emerging applications. For exam-
ple, designing a congestion control algorithm that achieves low queuing delay may have bursty
packet transmission patterns, which can make it harder to translate the low queuing delay of a
congestion control algorithm to low end-to-end frame (since bursty transmissions at the network
layer requires buffering at the sender and receiver side in order to achieve smooth video play-
back). This requires careful design to ensure that a CCA’s transmission patters are compatible
with the traffic pattern of real-time video.

1

Compared to traditional video streaming applications, emerging video streaming applications
like social live video streaming (SLVS), cloud gaming, and remote-rendered AR/VR have unique
video quality and delay requirements:

1. Social Live Video Streaming (SLVS): SLVS is an evolution of personalized live video
broadcast, enabling viewers to interact with the viewers in real-time in the form of com-
ments, reactions and monetary donations [7], while also allowing viewers to view the
video in a time-shifted manner (eg. with some delay, or VOD-style viewing). Thus, SLVS
applications must achieve low end-to-end interaction latency for the real-time viewers,
and must simultaneously achieve high video quality and smooth video playback for time-
shifted viewers.

2. Cloud Gaming and remote-rendered AR/VR: These services offload compute-heavy
applications like video games and AR/VR rendering to the cloud or a networked machine,
and stream the rendered view-port to the end-user as a video stream. These services aim
to achieve parity with or exceed the QoE of running applications on a local device that
is physically connected to the display device using high bandwidth links (e.g. HDMI,
displayport). Thus, the transmitted video frames must be of very high quality with minimal
compression-induced artifacts, and must have very low end-to-end frame delay (few tens
of milliseconds [8]).

In this thesis, we study the benefits of a targeted, cross-layer approach for designing tech-
niques for the different aspects of video streaming, like video compression, loss recovery, and
congestion control. We show that designing video coding techniques and network algorithms
that are tailored to the needs of specific applications plays a big role in achieving the unique
and demanding QoE requirements of emerging video streaming applications. For example, ex-
isting systems for streaming video do not account for the existence of time-shifted viewers for
SLVS applications - in this case, designing a tailored solution that explicitly accounts for the
diverse viewing delays can result in a higher aggregate QoE across all the viewers. In addition,
we show that there are significant benefits of carefully considering the interactions between the
video codec layer and the network layer when designing systems and techniques for emerging
Internet video streaming applications (e.g. unique QoE requirements, adverse network condi-
tions like loss and variable bandwidth), and this can push the performance boundaries of existing
techniques. For example, designing congestion control algorithms that are explicitly designed to
work with the traffic pattern of video streaming can result in higher quality video and lower end-
to-end video frame delay, instead of integrating video agnostic congestion control algorithms
with the video compression layer.

1.1 Quality of Experience for Video Streaming Applications
The end-to-end QoE of a video streaming system is generally determined by the video quality
and the end-to-end video frame delay. The QoE requirements of some common video streaming
applications are shown in Figure 1.1a. Video-on-demand (or VOD) applications (e.g. YouTube,
Netflix) stream pre-recorded content. VOD applications require high video quality and smooth
playback, since common use cases include watching high quality movies for example. For VOD
applications, there is no need for interaction between the server hosting the video and the viewer

2

Social

live streaming

C
on

fe
re

nc
in

g

V
id

eo
 Q

ua
lit

y
VOD

content

C
lo

ud
ga

m
in

g

Li
ve

 T
V

br
oa

dc
as

t

High Delay Low Delay

(a) Desired video-quality and delay trade-off for
various applications.

Conferencing

V
id

eo
 Q

ua
lit

y

VOD content

Live TV
broadcast

High Delay Low Delay

Social live
streaming

(b) Video-quality and delay trade-off achieved by
current systems.

Figure 1.1: Application requirements and the quality-delay trade-off achieved by traditional
video streaming systems.

- the server simply needs to deliver video data at a rate that is faster than the rate at which it
is being played back. Large scale live broadcasts like live TV and webinars stream content in
real time, but there are no interaction between the viewers and the streamers. These applications
have relaxed end-to-end delay (5-10 seconds) requirements. The video quality requirements are
also relaxed compared to VOD - live broadcasts do not need to be as high quality as movies
that are streamed on VOD. Video conferencing applications, on the other hand, are interactive
applications - this imposes a real-time requirement on these applications. Video conferencing
applications require a maximum end-to-end delay of 100-200 milliseconds. On the other hand,
these applications are generally more tolerant to low quality video, stutters, and fluctuations in
video quality.

Compared to the traditional video streaming applications described above, emerging appli-
cations have unique and demanding QoE requirements. Social live video streaming (SLVS)
applications enable interactive broadcasting, with viewers interacting with the streamer in real-
time. In addition, the video is also typically archived in order to make it available for viewing
at a later time. In SLVS, the real-time viewers require low delay and are tolerant to low video
quality. The time-shifted viewers view the streamed content as VOD content, and thus, require
higher video quality, but do not require interactivity. In contrast to traditional video streaming
applications, SLVS applications require both, low delay and high video quality, but for different
sets of viewers.

Cloud gaming and remote-rendered AR/VR applications aim to replace local machines that
perform computationally demanding tasks like rendering. Thus, these applications require ex-
tremely low latency and very high video quality at the same time. In contrast to traditional video
streaming applications, where there is usually an acceptable trade-off between video frame delay
and video quality, cloud gaming and remote-rendered AR/VR applications have extremely high
QoE demands.

When designing a system for streaming video on the Internet, there are three important chal-

3

lenges that need to be solved:
1. Video Compression / Utilization of Available Bandwidth. Bandwidth on the Internet is

limited, and hence, each system must use the appropriate video compression scheme and
video frame transport mechanism in order to utilize the available bandwidth effectively in
order to achieve the QoE goals of the application.

2. Mitigating Packet Loss. Since the Internet is a best-effort service, packets sent over
the Internet are invariably subject to packet loss. Compressed video is highly sensitive to
packet loss, since lost parts of a frame prevent the frame and subsequent frames from being
decoded.

3. Congestion Control. Internet bandwidth can be highly variable, network links can exhibit
delay variations and jitter, and video traffic must compete with competing queue-building
flows. The congestion control algorithm used in a video streaming system determine how
much bandwidth the application can use for transmitting video data.

The design decisions made in a video streaming system with respect to each of the chal-
lenges mentioned above affects the QoE of the application. For example, when applications
require high video quality but lower delay, the video can be compressed using more efficient
techniques like B-frames 2.2.3, with the trade-off being higher video frame delay. The particular
packet loss recovery scheme used in a video streaming system must account for the application’s
QoE needs - for example, using packet retransmissions are fine for applications that are not
delay-tolerant, whereas using techniques like FEC are better for latency sensitive applications.
The properties of the congestion control algorithm used affects the QoE of the video streaming
application - low latency congestion control algorithms reduce the end-to-end delay, but can suf-
fer from low throughput in the presence of queue-building competing traffic and links with high
delay jitter. On the other hand, loss-based congestion control algorithms like TCP-Cubic can
effectively utilize the network bandwidth, but have much higher queuing delay, and hence, the
end-to-end frame delay will be higher. The delay-quality performance achieved using traditional
video streaming techniques for various applications are shown in Figure 1.1b

Most VOD and live TV broadcast services today use video streaming protocols like MPEG-
DASH [9] and HLS [10]. Since VOD applications do not have low-latency requirements, video
content is pre-encoded into multi-second video segments, which are downloaded by the client
into a local playback buffer before they are played. The chunk-based approach can leverage the
efficiency of traditional video compression techniques developed for stored video content (for
example, B-frames). The use of pre-encoded video segments also enables efficient dissemina-
tion at a large scale using traditional content delivery networks (CDNs). The video segments are
transmitted using reliable transport protocols like TCP, and use traditional congestion control al-
gorithms that prioritize throughput (eg. BBR [11], Cubic [12]). The use of TCP retransmissions
for loss recovery, and queue-building high-throughput CCAs like BBR and Cubic are appro-
priate for VOD applications, since they do not require low latency, and the video quality has a
significant impact on the QoE.

Video conferencing applications are interactive in nature, and thus, require low end-to-end
video frame delay (Figure 1.1a), but are more tolerant to low quality video. These applications
use low-latency video streaming protocols like WebRTC [13], RTMP, and Salsify [14], that pri-
oritize end-to-end video latency over video quality. Systems designed for video conferencing

4

use traditional video compression techniques, with specific configurations that reduce the end-
to-end video delay (e.g. avoiding B-frames) at the cost of reduced video quality. These systems
use low-latency congestion control algorithms (eg. Sprout [15], GoogCC), conservative video
encoding bitrates, and minimal client- and sender-side buffering in order to reduce the latency of
the video transmission pipeline. Various loss recovery schemes are used in these systems, like
retransmissions, I-frames, and FEC. Some systems like WebRTC dynamically select between the
three based on factors like bandwidth, loss duration, and the application delay requirements.

Emerging video streaming applications often borrow existing video streaming system de-
signs with few modifications. For example, SLVS applications use video streaming systems
like WebRTC and RTMP, which enables interactivity with the real-time viewers, but severely
hampers the QoE of time-shifted viewers. This is because video quality variations and video
stutters caused by packet loss, network outages, and bandwidth variations not only affect the
real-time viewers, but also affect the time-shifted viewers since the same version of the video
stream is archived for consumption by the time-shifted viewers. Cloud gaming applications also
use techniques like WebRTC, with some modifications like more aggressive congestion control
algorithms and smaller buffers at the sender and the receiver. While this approach can work when
the network conditions are excellent, they often fail to achieve the desired QoE level due to loss,
competing traffic and network bandwidth variations.

The diverse and dynamic nature of the Internet makes achieving a good balance between the
various factors that influence the QoE challenging. While there has been significant research on
navigating the video quality and frame delay trade-off for applications like VOD and conferenc-
ing, they are not sufficient to satisfy the unique and demanding QoE requirements of emerging
applications like SLVS, cloud gaming and AR/VR streaming.

The limitations of existing approaches in achieving the unique QoE requirements of emerging
video streaming applications are discussed in additional detail in the section below.

1.2 Limitations of Existing Approaches
The design of existing video streaming systems follow a “one size fits all” philosophy. The use
of generic, video agnostic congestion control algorithms, standard video codecs, and traditional
loss recovery mechanisms in video streaming systems severely limits the QoE of emerging video
streaming applications.

First, traditional video streaming techniques approach the problem of streaming video over
the Internet as multiple distinct sub-problems and the solutions are narrow and focus on a spe-
cific component of the video streaming system - Network congestion control deals with avoiding
congestion and queuing delays in the network, video coding techniques deal with efficient uti-
lization of the effective network throughput for optimizing video quality, and packet losses are
handled using traditional network-layer loss recovery schemes, or video codec level loss recovery
schemes. For example, in the case of VOD applications, they use generic congestion control al-
gorithms like TCP-Cubic and TCP-BBR, use network-layer loss recovery (via retransmissions),
and use adaptive bitrate (ABR) algorithms in order to select appropriate bitrates for each video
chunk based on the state of the video playback buffer in order to achieve the best possible video
quality without affecting playback smoothness. This is also true in the case of video conferencing

5

applications. For example, loss recovery techniques used for video conferencing either operate
at the codec layer (using I-frames), network layer (using retransmissions), or at the application
layer (using FEC). Similarly, congestion control algorithms used in conferencing applications are
often video-agnostic and work independently, and the video bitrate is determined using a separate
rate-control algorithm. This disjoint approach used by existing video streaming systems limits
the maximum achievable QoE when used in the context of emerging video streaming applica-
tions. In reality, the choices made with respect to congestion control algorithms, video coding
techniques, and network transport design do not affect the QoE in isolation - these sub-systems
interact with each other and have an impact on the end-user QoE in terms of video quality and
the end-to-end delay. For example, the impact on video quality when using I-frames for loss re-
covery is affected by the bandwidth availability, and the increase in frame delay when recovering
from loss using retransmissions is affected by the video decoder’s performance. Applications
like cloud gaming and AR/VR streaming simultaneously require low latency and high video
quality, in addition to stable, predictable performance since they aim to reproduce the experience
of running an application on local hardware. While these goals can be achieved to some extent
under an extremely narrow set of ideal network conditions by tuning real-time video streaming
techniques to work well, achieving a high QoE is a challenging task over real networks in the
presence of competing traffic, packet loss, and delay and bandwidth variations.

Second, systems for emerging video streaming applications are designed by tuning the so-
lutions for traditional video streaming application, instead of designing a tailored system that is
suited to the needs of the new application. Recall that SLVS applications have viewers in real-
time and viewers who view the video with some delay, and that these groups of viewers have
different video quality and delay requirements. SLVS platforms today commonly use protocols
like WebRTC and RTMP to transmit the video from the broadcaster to an ingestion point, af-
ter which it is processed for efficient delivery over a content delivery network. This approach
that is borrowed from existing techniques used for video conferencing applications, silos both
the real-time viewers and the delayed viewers into receiving the same video quality. This is
because techniques like WebRTC and RMP operate at a specific point on the video quality - de-
lay trade-off curve. Video streaming techniques that prioritize the real-time aspect of the video
stream force time-shifted viewers to view a low quality video stream that is affected by short-
term network issues like packet loss and bandwidth fluctuations. On the other hand, techniques
that prioritize video quality and smooth playback increase the viewing delay of the “live” feed,
resulting in poor interaction between broadcasters and real-time viewers. Thus, designing a sys-
tem that is specifically designed to cater to the diverse QoE requirements of the viewers with
different viewing delays can result in higher overall QoE across the entire set of viewers. A key
factor that differentiates applications like cloud gamign from traditional low-latency applications
like conferencing is that there is some level of control over the set of network conditions where
these applications are run, but this is much broader than the set of network conditions where
existing techniques can achieve the desired level of QoE. For example, cloud gaming platforms
like Stadia [16], GeForce Now [17] and Amazon Luna [18], each specify a minimum bandwidth
requirement for using their services, and will automatically terminate a streaming session when
heavy packet loss, significant network delay and jitter, or extremely low bandwidth is detected,
but they still need to address the challenges associated with competing queue-building cross traf-
fic, packet loss, delay, and bandwidth variations. Such relaxations can enable new designs that

6

are tailored to the types of networks these applications are run on, enabling optimizations that
are not feasible using traditional approaches.

In this thesis, we propose various techniques for addressing the different aspects of stream-
ing video over the Internet for emerging video streaming applications. The designs of these
techniques are tailored to suit the specific needs of each application, and the designs carefully
consider the interactions between multiple components of the video streaming stack. We show
that such an approach can satisfy the unique QoE requirements of emerging video streaming
applications, and significantly improve the QoE over what can be achieved by tuning existing
techniques used in traditional video streaming systems.

.

1.3 Thesis Statement

Application-specific video streaming systems that leverage holistic cross- layer optimizations
are needed to better satisfy the unique and demanding QoE requirements of emerging video
streaming services like SLVS, cloud gaming and AR/VR streaming.

Video streaming systems need to make some key choices with respect to networking design
and video compression algorithms, and these choices play a major role in determining the end-to-
end QoE by affecting the video quality and the end-to-end video frame delay. These decisions can
differ significantly based on the type of application (eg. Real-time versus pre-recorded content).
These decisions include how much, what, and when to transmit, which cover the core technical
components of a video streaming system.

Designing video streaming techniques for addressing the three key aspects mentioned above
boils down to deciding the following:

• How much to transmit. When designing a video streaming system, an important de-
sign decision is what bitrate the video should be encoded at. The video bitrate plays a
significant role when making design choices for addressing the challenges of streaming
video on the Internet, like video compression, packet loss recovery, and congestion con-
trol. For example, if efficient video compression techniques are used, the video bitrate can
be lowered in order to transmit additional data like FEC in order to make the video stream
loss resilient. Similarly, the manner in which the video bitrate interacts with the congestion
control’s transmission rate affects the end-to-end video delay. In the presence of bandwidth
variations, the choice of the video bitrate affects the interactivity and the video quality -
if the video bitrate adapts rapidly to network variations, the delay is lower but can lead to
fluctuations in video quality and video stutters, whereas if the video bitrate is based on the
average network bandwidth, the video quality is higher but the frame delay is also much
higher due to buffering requirements.

• What to transmit. A video streaming system must determine what is being transmitted in
order to effectively utilize the available bandwidth, and deciding what to transmit affects
the performance of the video streaming system in the presence of packet loss, and adverse
network conditions. For example, a video streaming system can encode the video in a less

7

efficient manner (e.g. I-frames), or can split the available bandwidth across video data and
FEC in order to achieve loss resilience.

• When to transmit. When video frames are transmitted can have a big impact on the end-
to-end QoE for emerging video streaming applications. For example, using buffers and
delaying transmissions of frames can result in smoother video with lower fluctuations in
the video quality, but will result in higher delays. When data is transmitted also affects
the performance in the presence of packet loss - for example, FEC transmits additional
data before loss occurs in order to recover from packet loss, resulting in lower delays,
but sacrificing video quality in the process due to a bandwidth overhead. On the other
hand, retransmissions transmit lost data after loss occurs, which results in higher delays.
The interactions between when the packets of a frame are transmitted and the congestion
control algorithm’s transmission patterns can affect the end-to-end video frame delay.

In this thesis, we present 3 systems that take a holistic approach at answering these questions
in order to address the three specific aspects of video streaming - addressing the unique QoE
requirements, mitigating packet loss, and performing congestion control.

We first discuss a system called Vantage for SLVS applications. Vantage uses the available
bandwidth for transmitting quality-enhancing retransmissions in addition to a real-time video
stream (what to transmit) in order to improve the video quality for time-shifted viewers. Vantage
uses an optimization formulation in order to determine how the available bandwidth must be split
between the real-time video stream and the retransmissions (how much to transmit), and which
segments must be repaired using quality enhancing retransmissions (when to transmit). Vantage
takes a holistic approach at designing a novel video streaming system in order to provide a
tailored solution that meets the unique QoE needs of SLVS applications.

Second, we discuss a system called Prism for mitigating packet loss for cloud gaming and
remote-rendered AR/VR. When packet loss occurs, Prism splits the available bandwidth across
a low-latency video stream at a lower quality, and a quality-preserving video stream (what to
transmit). The available bandwidth is carefully allocated across the two streams in order to
maximize the video quality during loss (how much to transmit). Prism’s design also includes
a loss prediction mechanism in order to trigger early loss recovery (when to transmit). Prism’s
design choices focus on the low latency and high video quality requirements of cloud gaming and
remote-rendered AR/VR applications, and it’s design is optimized across layers by taking into
account video compression properties, loss prediction performance and the available bandwidth.

Third, we discuss an alternate strategy for mitigating packet loss for wireless VR applications,
called ViXNN. ViXNN uses a neural network-based video compression technique (what to trans-
mit) in order to achieve error-resilient video coding. ViXNN’s robustness to packet losses enables
one-shot frame transmissions without relying on link-layer retransmissions (when to transmit).
ViXNN is also robust to bit errors enables the use of faster (but noisier) wireless modulation
schemes (how much to transmit). ViXNN is designed to work under specific environments that
have high bandwidth and high loss, and integrates the design of video compression and loss
resilience.

Fourth, we discuss the pitfalls of existing congestion control algorithms for cloud gaming
and remote-rendered AR/VR applications that have demanding QoE requirements. We present
a novel congestion control algorithm called SQP, that leverages video frame transmission pat-

8

terns (when to transmit) in order to probe the network for more bandwidth. SQP uses a novel
bandwidth estimation mechanism that enables it to achieve low delay when running in isolation,
achieve competitive throughput shares when competing with queue-building flows, and is tightly
integrated with video bitrate control (how much to transmit). SQP’s design does not require
unnecessary probing data in order to probe the network when enough video data is not being
generated by the encoder (what to transmit). SQP’s design tightly integrates the video codec and
the network congestion control in order to minimize encoder bitrate variations and reduce the
end-to-end video frame delay, and leverages application-specific properties (e.g. basic network
quality requirements of cloud gaming applications) in order to achieve good throughput and de-
lay performance. We also present a system called CC-Fuzz for stress testing congestion control
algorithms. CC-Fuzz uses a genetic algorithm in order to synthesize network traces that trig-
ger poor behavior in congestion control algorithms. CC-Fuzz can automatically find issues with
the design and catch implementation bugs, and can inspire confidence in a congestion control
algorithm before it is deployed in the wild.

Our contributions are summarized below, and detailed descriptions are discussed in later
chapters.

1.4 Summary of Contributions

1.4.1 Vantage

In chapter 3, we explore the application class of social live video streaming (SLVS). SLVS has
unique QoE requirements that are not addressed by existing live video streaming systems. In
SLVS, viewers view a live stream with different viewing delays - some viewers watch the video
stream in real time, whereas others may watch the video with some delay (time-shifted viewing)
or even after the live stream session has terminated. These distinct sets of viewers have differ-
ent expectations of video quality and interaction delay. For instance, viewers that interact with
the broadcaster using mechanisms like live chat and monetary donations, and co-broadcasters
in a multi-party live stream require low interaction delay, but can tolerate occasional stream in-
terruptions and drops in video quality. On the other hand, time-shifted viewers have a higher
expectation of video quality, and do not have any latency requirements since there is no real-time
interaction (similar to Video-on-Demand content). This unique QoE requirement presents an op-
portunity for redesigning the live video upload mechanism in order to satisfy the different QoE
requirements of different viewers who consume the content differently.

Our first contribution, Vantage [1], is a system that proposes a novel bandwidth allocation
and video frame transmission scheduling mechanism (bullet no. 1) in order to address the unique
QoE requirements of SLVS applications - real-time viewers require low latency whereas time-
shifted viewers expect higher video quality. A key challenge with streaming real-time video over
the Internet, especially from mobile devices on cellular networks, is that network bandwidth
is highly variable. In order to achieve low latency, it is desirable to adapt the video bitrate
such that it closely follows the instantaneous available bandwidth, and use minimal buffering
on both, the sender- and the receiver-sides. The downside of this approach is that there can be
undesirable fluctuations in video quality, and network interruptions can cause stuttering in the

9

video stream. While this is acceptable for real-time viewers, existing SLVS platforms simply
archive the same video stream for consumption by time-shifted viewers. This results in a less
than optimal experience for time-shifted viewers. On the other hand, if video is encoded at a
bitrate that matches the average bandwidth, and sufficiently large transmit and playback buffers
are used at the sender side and receiver side respectively, the fluctuations in video quality are
significantly reduced and much smoother video playback can be achieved. The downside of this
approach is that it adds a significant amount of delay between the broadcaster and the real-time
viewers.

The key idea in Vantage is to split the available bandwidth across two streams - a real-time
stream that enables low-latency interaction between the broadcaster and the real-time viewers,
and a secondary quality-enhancing video stream that improves the video quality for delayed
viewers. Vantage leverages a key property of lossy video compression algorithms - increasing
the video bitrate has decreasing returns in terms of video quality. Vantage reduces the bitrate
of the real-time video stream slightly, and carefully allocates the residual bandwidth to a sec-
ondary “quality enhancement” video stream. The purpose of the quality enhancement video
stream is to repair past segments that were affected by network variations and transient outages.
In order to optimizing the video quality for different viewing delays, Vantage uses an online op-
timization formulation in order to allocate the total available bandwidth across the low latency
stream and the quality enhancing retransmissions, carefully taking into account the relationship
between video bitrate and quality, the distribution of viewing delays and the available bandwidth.
Vantage’s design enables it to operate at multiple points on the quality-delay trade-off curve si-
multaneously, allowing the viewers to choose any point on the video quality and interaction delay
trade-off curve. Viewers who care about low delay are able to do so, albeit by sacrificing some
video quality, and time-shifted viewers are able to view higher quality version of the live stream.

This work was done in collaboration with my advisor (Srinivasan Seshan), Jack Kosaian,
and Rashmi Korlakai Vinayak. This material is based upon work supported by the National
Science Foundation Graduate Research Fellowship under Grant Nos. DGE-1745016 and DGE-
1252522, the National Science Foundation Computer and Network Systems under Grant No.
CNS-1565343, and the Facebook Communications and Networking Research award. Cloud-
Lab [19] resources were used in running experiments. We would also like to thank Keith Win-
stein for providing valuable feedback during the shepherding process.

1.4.2 Prism
In Chapter 4, we explore the problem space of handling packet loss for low-latency interactive
applications like cloud gaming and AR/VR streaming. Cloud gaming and cloud AR/VR appli-
cations aim to replace local versions of applications like video games and AR/VR applications
by cloud-rendered versions, where the heavy computational aspects like rendering is offloaded
to powerful machines in the cloud, and the rendered view-port is streamed as compressed video
to the end user. Since cloud rendering aims to replace the local counterparts, the experience
must be as close as possible to the local versions in terms of visual quality and the interaction
latency. Thus, cloud-rendered applications require extremely low latency and very high visual
quality. Since cloud-rendered applications are streamed over the internet, they invariably expe-
rience packet loss. Packet loss has a significant impact on video quality and video frame delay

10

due to the complex interactions between video compression techniques and loss recovery mech-
anisms. This is extremely detrimental to the QoE of low-latency video streaming applications
like cloud gaming and cloud AR/VR.

Our second contribution, Prism, is a system that proposes a novel packet loss recovery mech-
anism (bullet no. 2) in order to achieve the stringent quality and latency demands of cloud-
rendered applications. Video compression techniques leverage temporal redundancies in video
data in order to achieve high compression ratios, utilizing the available bandwidth to provide
the best possible video quality. This results in temporal dependencies between video frames
(predicted- or P-frames), and this makes low-latency compressed video extremely sensitive to
packet loss. If a single frame is lost, the subsequent video frames cannot be decoded until the
lost frame has been recovered, or the video codec state is reset using an independently encoded
frame (intra- or I-frame). Using retransmissions to recover the lost data adds significant latency
and causes video stutters, whereas independently encoded frames that can reset the decoder state
have much lower video quality for the same bitrate since they do not leverage temporal redun-
dancies in video data. In addition, due to the nature of video compression algorithms, the quality
of a frame depends on the quality of past frames as well - thus, a single independently encoded
frame affects the quality of multiple subsequent frames. Video skips, freezes, and quality drops
are detrimental to the QoE of cloud-rendered applications - users of cloud rendered applications
expect the experience to be as close as possible to running the application locally.

Prism’s design uses a hybrid dual-stream video encoding and transmission scheme, leverag-
ing various properties of video coding like the difference in coding efficiency of I-frames and
P-frames and the temporal dependency of the quality of P-frames. When packet loss occurs,
Prism transmits two separate video streams - a primary stream that leverages the compression
efficiency of P-frames to preserve high quality of the video stream, and a secondary low-latency
stream that reduces the end-to-end frame delay during periods of transient loss. The available
bandwidth is carefully allocated across the two sub-streams (bullet no. 1) in order to optimize
the overall video quality. The goal of the optimization is to improve the video quality over sim-
ply using I-frames for recovery, while Prism’s dual stream architecture ensures that the latency is
comparable to that of using I-frames. In order to make this approach feasible in real-time, Prism’s
bandwidth allocations are based on the results of an offline analysis pipeline that analyzes the
video encoding properties of the specific game style or scene. This aims to optimize the alloca-
tion for particular scene types, since the type of content significantly affects the quality-bitrate
trade-offs for I-frames and P-frames, and thus, the optimal bandwidth allocation across the two
streams during periods of loss. Our experiments show that Prism can achieve good performance
over lossy networks, and has zero run-time overhead when good network conditions prevail.

A second benefit of Prism is that the video quality penalty when loss recovery mechanism
is falsely triggered is significantly minimized compared to using I-frames for recovery. This
enables aggressive loss prediction mechanisms, leading to further reductions in the end-to-end
video frame delay during periods of loss. We implemented a simple neural-network based packet
loss prediction mechanism based on real-world network traces, and use this in conjunction with
Prism in order to demonstrate it’s benefits when used for packet loss recovery in cloud-rendered
applications (e.g. cloud gaming and cloud AR/VR).

This work was done under the guidance of my advisor, Srinivasan Seshan, and funded by
National Science Foundation Grant No. CNS-1956095.

11

1.4.3 ViXNN

We present an alternative approach for handling packet loss for extremely delay sensitive ap-
plications like wireless VR. Wireless VR operates over local networks, with a last-hop wireless
link between the router and the VR headset. We propose an end-to-end loss-resilient video com-
pression technique called ViXNN. In ViXNN, we design a novel neural network architecture for
compressing video data in a manner that is resilient to packet losses, instead of the traditional
approach of tacking on loss-recovery mechanisms onto existing video codecs.

ViXNN’s neural network architecture uses a convolutional autoencoder in order to compress
video, but includes a novel design of the narrow waist that outputs the compressed representation
of the data. ViXNN’s narrow waist has multiple outputs called descriptors, where each descriptor
represents a portion of the compressed data. During training, we simulate the loss of descriptors,
which forces the neural network to learn a loss-resilient compression scheme. As a result, the
quality of the decompressed frame degrades gracefully as the number of descriptors are lost.
In addition, due to the inherent resilience of neural-network-based representations to bit errors,
the compressed descriptors are also resilient to bit errors. Additionally, compressed data can be
treated as analog data, which allows the use of approaches like SoftCast [20], which provides
further reduction in the end-to-end frame delay by eliminating link-layer retransmissions.

In our approach, we focus on compressing each individual frame separately, which is unable
to leverage the temporal redundancies in video data. With recent advances in end-to-end neural
video compression, ViXNN’s core design can be leveraged in order to achieve highly efficient,
practical end-to-end loss resilient video compression for extremely low latency applications.

This idea originated from a class project in the course Visual Computing Systems, taught by
Kayvon Fatahalian. This work was done in collaboration with my advisor (Srinivasan Seshan),
Pratik Fegade, and Kayvon.

1.4.4 SQP

We explore the design of congestion control algorithms for low latency applications like cloud
gaming and cloud AR/VR. Cloud gaming applications require extremely high video quality and
very low end-to-end frame delay. Thus, congestion control algorithms designed for cloud gaming
applications must have low queuing delay, must achive high throughput under variable links and
in the presence of queue-building cross traffic, and must be compatible with the video frame
traffic pattern in order to minimize the end-to-end frame delay and maximize the utilization of
the available bandwidth.

We present SQP, a congestion control algorithm developed in collaboration with Google for
Google’s AR streaming platform. SQP is designed to work in harmony with the traffic pattern of
low latency video, and takes a different approach to solving the problem of conflicting goals of
minimizing delay and maximizing throughput in the presence of queue-building flows. SQP cou-
ples the transmission of video frames and network probing, and provides bandwidth estimates
that can be directly used to set the video bitrate. SQP’s frame coupled design enables it to achieve
low end-to-end frame delay in addition to low packet delay. SQP uses frame pacing and a unique
one-way-delay based formulation for estimating the bandwidth, which addresses the challenges
with using a packet-train-based bandwidth measurement mechanism. SQP’s design includes

12

mechanisms to improve convergence to fairness. SQP makes key application-specific trade-offs
that enable SQP to achieve good throughput when competing with queue-building flows, which
enables higher video quality - this is critical for cloud gaming and cloud AR/VR applications.
SQP demonstrates fairness in competition with homogeneous traffic, and works well on shal-
low buffers. We theoretically analyze SQP’s behavior, and validate the analysis through various
emulated experiments. We evaluated SQP on real-world wireless networks via Google’s AR
streaming platform. Under A/B testing of SQP and Copa [21] on Google’s AR streaming plat-
form, SQP achieves significantly more sessions that have acceptable video bitrate and end-to-end
frame delay. We also evaluated SQP under a variety of emulated network scenarios. Across emu-
lated wireless traces, SQP’s throughput is 11% higher than Copa (without mode switching) with
comparable P90 frame delays, while Copa (with mode switching), Sprout [22], and BBR [11] in-
cur a 140-290% increase in the end-to-end frame delay relative to SQP. In addition, SQP achieves
high and stable throughput when competing with buffer-filling cross traffic. Compared to Copa
(with mode switching), SQP achieves 70% higher P10 bitrate when competing with Cubic [12],
and 36% higher link share when competing with BBR.

This work was done in collaboration with Google under the guidance of my advisor, Srini-
vasan Seshan, and includes contributions from Connor Smith (Google), David Chu (Google),
and Teng Wei (Google).

1.4.5 CC-Fuzz
We explore the challenges of implementing congestion control and integrating it with video bi-
trate selection (bullets 1 and 3) for low-latency interactive applications like cloud gaming and
AR/VR streaming. Cloud-rendered applications simultaneously require high video quality and
low end-to-end frame delay, and we show that existing congestion control algorithms are unable
to achieve these dual goals. Traditionally, congestion control algorithms have been designed to
achieve maximum throughput and fairness, while preventing congestion collapse. These algo-
rithms often exhibit queue-building behavior, which limits their applicability for cloud-rendered
applications due to excessive network queuing delays. Recently, many low-latency congestion
control algorithms have been proposed. We show that these video-agnostic approaches are not
suitable for cloud-rendered applications. Specifically, we show that these algorithms exhibit poor
performance when competing with queue-building flows (which are ubiquitous in the wild), and,
at frame-level timescales, exhibit packet transmission patterns that make it challenging to inte-
grate congestion control and video frame encoding and transmission.

Many of these limitations stem from the fact that most congestion control algorithms are de-
signed to be as generic as possible, and we discuss the potential benefits of designing application-
specific congestion control algorithms that account for the scope of environments in which appli-
cations like cloud gaming and cloud AR/VR are expected to operate. For example, if a network
link is severely bandwidth limited, or has very high latency/packet loss, cloud-rendered appli-
cations are not expected to operate under such environments. The potential to incorporate such
non-traditional trade-offs may allow congestion control algorithms to achieve the desired perfor-
mance goals of latency and bandwidth by limiting the scope of operation.

A challenge with developing custom congestion control algorithms for specific applications
has it’s own challenges. Traditional congestion control algorithms have the benefit of massive

13

world-scale testing across multiple years of usage, which helps in slowly ironing out bugs and
other issues over time. On the other hand, designing, testing and deploying a new congestion
control algorithm on a small-to-medium scale is very challenging, since there are limited op-
portunities for testing in the real-world. Our third contribution, CC-Fuzz, aims to address this
challenge. CC-Fuzz is a congestion control testing framework that uses a genetic algorithm in or-
der to automatically test congestion control algorithms by generating adversarial network traces
that trigger poor behavior in a congestion control algorithm. CC-Fuzz enables the designer of a
congestion control algorithm to automatically find situations where the congestion control algo-
rithm is unable to meet the performance goals. For example, CC-Fuzz can automatically generate
network traces where a congestion control algorithm cannot maintain low delay, or is unable to
achieve high throughput, or results in catastrophic packet loss. Such testing can inspire confi-
dence in the design and implementation of a congestion control algorithm, and catch many bugs
early on without warranting a large scale deployment.

14

Chapter 2

Background

In this section, we will briefly describe the designs of some traditional video streaming systems
and discuss their limitations. We will also briefly discuss some background on video compression
algorithms and the trade-offs between different video encoding parameters, video quality, bitrate
and video encode/decode performance.

2.1 Video Streaming Systems
Video streaming systems can be categorized into three broad categories:

1. Stored Video or Video-on-Demand (VOD). VOD streaming systems are designed to dis-
seminate stored, pre-recorded video to viewers for media consumption (eg. YouTube, Net-
flix). VOD systems prioritize high-quality, smooth playback of stored media and aim to
simplify large scale distribution of video content. Some examples of VOD systems include
MPEG-DASH and HLS.
Like any video streaming system, VOD systems must make decisions regarding how much
to transmit, what to transmit and when to transmit (Section 1.3). The workflow of a typical
VOD system is outlined below:

• Video is first encoded into short chunks, typically 2-4 seconds long. Each chunk
is encoded at different bitrates at varying qualities. The advantage of this approach
is that no real-time video encoding is required, and the chunks can be efficiently
disseminated using content delivery networks (CDNs).

• When streaming a video, the bitrate of the chunk is chosen based on network perfor-
mance using adaptive bitrate algorithms (ABR).

• The video chunks are transmitted using TCP [23] using a congestion control algo-
rithm like Cubic or BBR. Packet loss is handled at the TCP layer using retransmis-
sions, since there is no requirement for very low latency, and the clients typically
maintain a multi-second long buffer for playback.

• The ABR algorithm also makes decisions regarding pre-fetching of chunks, and how
much buffer should be maintained on the client side for a smooth, stutter-free play-
back.

15

• The receiver decodes entire chunks, and queues the decoded frames in a buffer for
displaying on screen.

This document focuses on applications that have a real-time streaming component as op-
posed to purely VOD style applications. These application categories are discussed below.

2. Real-time Video Streaming. Real-time video streaming applications are designed for in-
teractive applications like cloud gaming and video conferencing. These systems prioritize
low latency over video quality in order to enable real-time interaction. Some examples of
real-time streaming systems include WebRTC, RTMP, and proprietary streaming systems
used by cloud gaming services like Stadia, Luna and GeForce Now.
Real-time streaming systems must also make the same key decisions we talked about in
Section 1.3, but make very different decisions in order to achieve their application QoE
goals. A typical frame in a real-time streaming system goes through the following steps:

• Frames are generated by an application or device (eg. Video game or a rendered
application for cloud gaming and AR/VR streaming, camera device in the case of
conferencing).

• Based on a bandwidth estimate from the encoder rate control mechanism and the
congestion controller (eg. GoogCC for WebRTC [13]), the video frame is encoded
by the encoder and packetized for transmission.

• The packetized video frames are queued for transmission. Some applications may
make use of techniques like forward error correction (FEC) to enable recovery when
packet loss occurs.

• The packets are transmitted by the transport layer, where the congestion control al-
gorithm determines how the packets are transmitted over time (eg. pacing, ACK
clocking).

• The receiver receives the packets and re-assembles them into encoded frames, which
are then decoded and immediately displayed on the screen in order to minimize la-
tency.

• When packets are lost and the decoder is unable to decode the video, it signals the
sender to start frame-loss recovery. This may take the shape of packet retransmissions
to retransmit the lost segments, or the transmission of an IDR frame, which skips
forward in time to the most up-to-date frame.

• Feedback from the receiver is used by the congestion control algorithm and the en-
coder rate control algorithm to determine the video encoder bitrate.

While applications like conferencing can tolerate delays of the order of a few hundred
milliseconds, cloud gaming and AR/VR streaming applications require the delay to be of
the order of a few tens of milliseconds. In addition, cloud gaming and AR/VR streaming
also operate at much higher bandwidths since they require much higher video quality. In
this thesis proposal, we aim to design new congestion control and packet loss recovery
mechanisms in order to achieve the desired QoE for emerging applications as opposed to
using existing video streaming systems that are used for traditional real-time applications
like video conferencing.

16

3. Real-time and VOD Hybrid Video Streaming. Hybrid video streaming systems are de-
signed for applications that have a real-time interactive component as well as time-shifted
viewers. An example is social live video streaming, where some viewers view the video
stream in real-time and interact with the broadcaster, while a second set of viewers view
an archived version of the video stream. Traditional video streaming systems designed for
hybrid video streaming typically use the following workflow:

• Applications use a real-time streaming protocol (eg. WebRTC) between the video
streamer and an initial ingestion point.

• The video at the ingestion point is transcoded in real-time for the real-time viewers.
The transcoded video is distributed using low-latency live streaming protocols like
LLDASH [24], LLHLS [25], and RTP [26].

• An archival version is also simultaneously generated where the video is encoded
into chunks at varying bitrates (similar to VOD-style video streaming), which can be
viewed by viewers who watch the live stream with larger delays in order to achieve
efficient content distribution.

Existing real-time and VOD hybrid video streaming systems use traditional real-time video
streaming techniques on the upload path. This thesis aims to develop novel video upload
mechanisms that account for the diversity in viewing delays in order to optimize the video
quality across the time-shifted viewers.

2.2 Video Compression
Video compression techniques are at the heart of video streaming systems and applications. The
primary goal of a video compression scheme is to reduce the amount of bytes required to transmit
the video without significantly affecting the perceived quality of the video frames. In addition to
the bandwidth requirement and the video quality, video compression schemes also differ in terms
of their sensitivity to packet loss, the video encoding-decoding speed, and compute and memory
requirements.

In this section, we discuss some common techniques that are used for video compression
and how these impact various factors like video quality, bandwidth requirements, video encode-
decode performance, and sensitivity to packet loss in the context of video streaming applications.

2.2.1 Overview of Compression Schemes
Video compression is made possible due to two key factors - (1) video data has a significant
amount of spatial and temporal redundancy, and (2) humans are less sensitive to higher frequency
spatial data. Most video compression schemes combine the use of lossless compression and
lossy compression. The use of lossless compression leverages the spatio-temporal redundancy
in video data, whereas the lossy step leverages the human factor in order to further improve the
compression ratio. A common way to compare the compression performance of a particular
scheme is to compare the relationship between the video picture quality and the bitrate of the
compressed video. Video quality is typically measured using metrics like SSIM [27] (Structural

17

SIMilarity) and PSNR (Peak Signal-to-Noise Ratio), where each compressed video frame to
the original video frame and aggregated across a video. In this section, we will first discuss a
scheme called Motion JPEG [28] (MJPEG) that only leverages spatial redundancy for the lossless
compression component, and then discuss the high-level video compression architecture used by
most modern video codecs.

2.2.2 Intra-frame Schemes
Motion JPEG (M-JPEG) is an intra-frame only compression scheme: each frame is compressed
as an image using JPEG. Due to the wide-spread availability of optimized JPEG compression
libraries and hardware, this was commonly used in PC multimedia applications, and in certain
older digital cameras and security cameras.

Since M-JPEG compresses each frame individually, it is unable to leverage the temporal
redundancy in a video stream that arises from most adjacent frames of a video being very similar.
Thus, it requires more bits to encode video at a given quality compared to schemes that leverage
the temporal redundancy in video data.

The compression mechanism of M-JPEG is identical to JPEG. JPEG splits the frame into 8x8
blocks. These blocks undergo a DCT transform, following by a lossy quantization step, where
the high frequency components are scaled down and quantized. These values are then entropy-
coded using techniques like Huffman coding and arithmetic coding, which serves the purpose of
leveraging spatial redundancies for additional compression.

There are a few benefits of using an intra-frame only compression scheme. The first benefit
is that the quality of a video frame for a given bitrate only depends on the static contents of
the frame, and not on the relative motion between frames. It does not matter if two consecutive
frames are very different, since each frame is independently compressed. The second benefit is
that if some packets are lost during streaming, that frame can simply be skipped and the next
frame can be decoded and displayed. In addition, this approach inherently supports temporal
scaling: frames can be dynamically dropped if the receiver cannot keep up with the decoding of
frames.

Modern video codecs use other techniques for intra-frame compression, but they are very
similar to JPEG compression in principle. For example, intra-frame compression in H.264 [29]
involves representing blocks that are similar to other blocks as translations, and compressing the
residuals in a manner that is similar to JPEG. This improves the compression ratio for frames
where large areas have a similar color and repeating patterns.

2.2.3 Inter-frame Schemes
Inter-frame schemes use a technique called motion compensation to leverage the temporal redun-
dancies in video data. Motion compensation significantly improves the compression ratio that
can be achieved when compressing video data. Most modern codecs like H.264 [29], H.265 [30],
VP8 [31], VP9 [32] and AV1 [33] leverage inter-frame compression in addition to the intra-frame
compression techniques discussed in § 2.2.2.

The key idea in motion compensation is to search for similar blocks in adjacent frames that
come before and after the current frame. The blocks of the frame being encoded are represented

18

as motion vectors from the similar blocks in the adjacent frames. Since the reference blocks are
not identical, but only similar to the blocks being encoded, the residual error is encoded using
block compression techniques discussed in § 2.2.2.

2.2.4 Motion Compensation and Streaming Video
While inter-frame compression has significant benefits in terms of compression ratios, there are a
few important considerations when motion compensation-based techniques are used for stream-
ing video. To understand these limitations, we must first understand how intra-frame and inter-
frame techniques are combined for video compression.

The first frame in a video stream is always an intra-only compressed frame (also called an
IDR frame, or independent data refresh frame). The role of an IDR frame is to initialize the
state of the video decoder. For improving the compression efficiency, the subsequent frames use
motion compensation. There are two kinds of motion-compensated frames, P-frames (predicted,
only use past frames as reference) and B-frames (bidirectional, use past and future frames as
reference). While B-frames achieve better compression efficiency and are useful for VOD style
content where the video is pre-encoded into 2-4 second chunks, they are not typically used for
real-time streaming video. This is because the encoder would have to wait for future frames to
encode a particular frame, which increases the end-to-end video frame delay. Real-time stream-
ing applications encode new frames as P-frames, where blocks in the frame are approximated
from past frames.

The first issue with motion compensation is the additional computational overhead required
for searching motion vectors. While compression efficiency can be improved by performing a
more comprehensive search for motion vectors, this can significantly increase the time required
to encode a frame, resulting in higher frame delays. The second issue arises when packet loss
occurs, causing the partial or total loss of a P-frame. Since subsequent frames depend on the
P-frame, the decoder cannot proceed until it can decode the P-frame or a new IDR frame is sent,
which can cause higher delays or lower video quality respectively.

Recovering from packet loss using retransmissions and FEC can have a significant overhead
in terms of delay and bandwidth requirements, and hence, the inherent loss resiliency of a video
compression scheme is an important consideration when designing real-time video streaming
applications that have stringent delay requirements and depend on the real-time bandwidth avail-
ability.

While some compression schemes are able to deal with packet loss during real-time stream-
ing, some schemes may require extraneous mechanisms like retransmissions or special codec-
level recovery procedures that may result in worse end-to-end delay, require more bandwidth, or
suffer from poor video quality. Many available video codecs have features that can improve the
loss resiliency of the video stream, but they can result in lower compression efficiency, may re-
quire higher computational overhead, and may not meet the requirements for some applications.

For example, Intra-refresh is a common technique for improving the loss resilience of a
video stream, where a different part of each frame is transmitted as an I-frame, covering the
entire display area across multiple frames. Thus, if some packets are lost, the video impairment
lasts for a few frames until the I-frame segments span the entire video area. The limitation of
this approach is that each frame requires additional bits for the same video quality, and a video

19

impairment will persist for the duration of a few frames, which is unacceptable for applications
like cloud gaming and AR/VR streaming.

Other techniques like SVC (Scalable video coding) and MDC (Multiple Descriptor Coding)
also improve the loss resilience, but have a similar impact on compression efficiency and also
require significantly higher computational overhead.

20

Chapter 3

Vantage: Optimizing video upload for
time-shifted viewing of social live streams

Social live video streaming (SLVS) applications are becoming increasingly popular with the rise
of platforms such as Facebook-Live, YouTube-Live, Twitch and Periscope. A key characteristic
that differentiates this new class of applications from traditional live streaming is that these live
streams are watched by viewers at different delays; while some viewers watch a live stream in
real-time, others view the content in a time-shifted manner at different delays. In the presence
of variability in the upload bandwidth, which is typical in mobile environments, existing solu-
tions silo viewers into either receiving low latency video at a lower quality or a higher quality
video with a significant delay penalty, without accounting for the presence of diverse time-shifted
viewers.

In this chapter, we present Vantage, a live-streaming upload solution that improves the over-
all quality of experience for diverse time-shifted viewers by using selective quality-enhancing
retransmissions in addition to real-time frames, optimizing the encoding schedules to balance
the allocation of the available bandwidth between the two.

3.1 Social Live Video Streaming (SLVS)

Mobile live video traffic has grown significantly over the last decade [6]. This growth has been
propelled by improvements in mobile camera technology, computing power, and wireless tech-
nology, which enables the capture, encoding, and transmission of high-quality video in real-time
from mobile devices. Applications for video-conferencing and live broadcasting have become
ubiquitous on mobile devices today. Social live video streaming (SLVS) applications like Face-
book Live [34], YouTube Live [35], and Periscope [36], are a new and increasingly popular class
of applications that bring the power of live streaming to individuals.

A unique feature that differentiates SLVS platforms from traditional live video applications
is the ability to view real-time, time-shifted, and archival versions of a single stream. SLVS
applications enable viewers to interact with broadcasters via comments and reactions in real-
time [37, 38], and also archive the video to enable viewing after the live streaming session has
ended. Furthermore, platforms like Hangouts-on-air [39] and Facebook Live [40] allow multiple

21

users to broadcast simultaneously on a single live-stream. For viewers using interactive features
such as real-time comments, as well as broadcasters taking part in collaborative broadcasting [39,
40], it is critical to deliver the video stream at a low-latency, whereas a higher streaming latency
is acceptable for the other viewers.

In contrast, traditional live video streaming applications target a single viewing delay. In
video conferencing applications, participants require low-latency for interactivity, while viewers
of a broadcast event can typically tolerate tens of seconds of delay. Existing approaches for
handling network bandwidth variations are tailored for one particular viewing delay. In low-
latency applications like videoconferencing, video bitrate is chosen to closely follow the available
bandwidth in order to ensure that frames are received before their real-time playback deadline, at
the expense of lower quality during periods of low bandwidth. On the other hand, when higher
delays are acceptable, applications use buffers to absorb network variations and the video bitrate
is chosen to match the average bandwidth. This results in higher video quality and smoother
playback at the cost of higher latency.

Due to lack of better alternatives, current SLVS platforms make the same tradeoffs between
latency and quality as traditional live streaming, despite the diversity of viewing delays. Oper-
ating at a single point on the latency-quality tradeoff spectrum is inadequate for providing high
quality-of-experience (QoE) for all the viewers of SLVS streams. The problem is further exas-
perated by the fact that SLVS streams are commonly initiated from mobile devices, which have
particularly unpredictable network behavior [22].

3.2 Overview of Contributions
Vantage is a live video upload solution explicitly designed to address the time-shifted viewing
characteristic of SLVS in the face of bandwidth variations. Vantage exploits the variability of the
upload path to it’s advantage: periods with high bandwidth can be used to correct for a loss in
quality due to previous periods of network impairment. Vantage optimizes the video upload pro-
cess across different time-shifted viewing delays by using quality-enhancing retransmissions in
conjunction with a low-latency video stream. Vantage formulates bitrate selection and transport
scheduling as a joint optimization problem that maximizes the video quality across the diverse
viewing delays.

Several challenges need to be addressed to make the use of quality-enhancing retransmissions
practical and effective: (1) allocating bandwidth and scheduling transmissions for the real-time
and retransmitted frames such that the QoE is optimized for all users, (2) handling the com-
putational overheads and latencies associated with complex optimization decisions and video
compression, and (3) dealing with the network unpredictability and its impact on scheduling de-
cisions. Vantage incorporates several system design choices like approximations, pipelining, and
fallback mechanisms to handle the challenges related to optimization and unpredictability.

We have implemented Vantage and evaluated it on a wide variety of mobile network traces [3]
and videos [4]. Our evaluation shows that Vantage achieves high quality for low-latency and
time-shifted viewing simultaneously. Specifically, for delayed viewing, Vantage achieves an
average improvement of 19.9% over real-time optimized streaming techniques across all the net-
work traces and test videos, with observed gains of up to 42.9%. The quality achieved by Vantage

22

Mobile
Device

Internet

Video Ingestion
 +

Transcoding Server

Real-time
viewer

Real-time
viewer

Time-shifted
Viewer

Time-shifted
Viewer

Time-shifted
Viewer

Time-shifted
Viewer

Time-shifted
Viewer

Time-shifted
Viewer

Long-term storage /
CDN

Low-latency video streaming
(e.g. HLS, LLDASH)

Real-time video
upload (e.g.
WebRTC)

VOD-style
streaming

(e.g. DASH)

Figure 3.1: High-level architecture of social live video streaming systems. The upload path
(focus of this chapter) is highlighted with a red box.

for delayed viewing is within 7.7% on average of the maximum quality achievable by delay toler-
ant techniques. These benefits come at the cost of an average drop 3.3% in the real-time quality,
with a maximum drop of 7.1%. These results demonstrate the significant performance benefits
of using Vantage over current techniques used for SLVS applications, which primarily optimize
the video upload for real-time viewing.

3.3 Background and Opportunity

In this section, we discuss SLVS architectures and the network variability observed on mobile
upload paths used in SLVS.

3.3.1 SLVS Architectures

We describe common designs and practices employed by four of the most widely used SLVS
platforms as of 2019: Facebook Live, YouTube Live, Twitch, and Periscope. Our descriptions
are informed by recent studies [37] and industry engineering material [41, 42].

The high level architecture typically used by social live video streaming platforms is shown in
Figure 3.1. Live video is captured and encoded by a broadcaster’s device (e.g., a mobile phone)
and uploaded via RTMP [43] or WebRTC [44] to an ingestion point (a point-of-presence or a
data center server), where the upload path connection is terminated. We refer to this ingestion

23

point as the upload endpoint. The ingested video is re-encoded at the upload endpoint. The re-
encoding serves two purposes - first, for real-time viewers, the video is re-encoded into a format
that supports large-scale distribution with low delay (e.g. MPEG-LLDASH, HLS), and for the
delayed viewers, the video is re-encoded to support efficient VOD-style delivery (e.g. MPEG-
DASH) using CDNs. A variety of techniques are used for distributing the video after ingestion,
and these techniques have been widely studied in the past [45, 46, 47].

The key limitation of this approach is that the video is only uploaded once, using a real-
time streaming protocol on the upload path (e.g. WebRTC [48] or RTMP [43]) - this means
that the video re-encoding for both, the real-time viewers and the time-shifted viewers use the
same source material. The quality of the source material is affected by network fluctuations on
the upload path. Thus, network disruptions during video upload also affects the time-shifted
viewers.

This paper focuses on improvements for the upload path of SLVS applications (highlighted
using a red box in Figure 3.1) in order to support the different QoE requirements of the real-time
and time-shifted viewers.

3.3.2 Time-shifted viewing in SLVS

SLVS differs from traditional live-streaming in that it enables viewing of the same video stream
at different delays. Traditional live streaming applications are tailored either for interactive, low-
latency streaming (e.g., Skype and Hangouts) or for high quality viewing at larger delays (e.g.,
ESPN and CNN). On the other hand, SLVS platforms enable both real-time and delayed viewing
of the same stream. We term this characteristic “time-shifted viewing.”

Time-shifted viewing takes a number of forms within an SLVS stream. Some viewers interact
with broadcasters via comments and reactions, and thus require real-time latencies [37, 38].
SLVS platforms also archive video streams to allow for viewing after the live stream has ended,
and also allow viewers to seek back to older segments during the live stream and watch the video
with a time-shifted delay. Moreover, collaborative broadcasting platforms like Hangouts-on-
air [39] and Facebook Live [40] allow collaborative streaming where the co-broadcasters have
stronger low latency requirements compared to the viewers.

In summary, SLVS streams have audiences with a wide variety of viewing delays, and thus
have varying degrees of latency tolerance. This presents a new and important dimension for
improving the quality of experience of SLVS platforms.

3.3.3 Variability in the upload path

Many SLVS broadcasts are initiated from mobile devices over cellular networks like LTE, which
experience frequent bandwidth fluctuations [22]. One such cellular LTE trace is shown in Fig-
ure 3.2. This forces the broadcaster’s device to either adapt the bitrate of encoded video (i.e.,
alter quality), or use large sender side buffers (i.e., alter the delay of transmission).

To illustrate the variability of bandwidth in mobile uplinks, we analyzed the network traces
from the Mahimahi [3] project. Across the eight upload traces, we made the following observa-
tions:

24

Figure 3.2: An example bandwidth trace from MahiMahi [3] for an LTE cellular link.

1. Periods of low/high bandwidth are common: 17.1% and 17.4% of the time, upload
bandwidth is 50% or less and 150% or more than the average for a particular trace, respec-
tively.

2. Periods of low/high bandwidth are short-lived: Periods with less than 50% and more
than 150% of the average bandwidth last, on average, 789 ms and 809 ms, respectively.

3. More bandwidth is gained during high periods than is lost during low periods: In
five out of the eight traces, we find that there is at least 1.25× additional bandwidth when
the bandwidth is above 150% of the average than the amount lost when bandwidth drops
below 50% of the average.

These observations suggest that periods of high bandwidth can be exploited to improve the
quality of frames that were previously affected by periods of low bandwidth. In Figure 3.2,
some regions where the bandwidth is highly variable are highlighted using red boxes. In the next
section, we show how an SLVS upload solution can make use of these properties to improve the
QoE for all time-shifted viewers.

3.4 Supporting Time-shifted Viewing

In this section, we show that conventional live-streaming upload techniques are inadequate for
providing high QoE for applications that support time-shifted viewing. We then describe an
approach for providing high QoE for viewers at different time-shifted delays.

25

Figure 3.3: SSIM as a function of the frame size for the Sintel trailer [4, 5]. Each line corresponds
to a single frame. The video was encoded multiple times with different target bitrates to generate
the data.

3.4.1 Inadequacy of existing techniques

We use a simple example to demonstrate the inadequacy of existing live streaming upload tech-
niques at providing high QoE for diverse time-shifted viewers. Consider a broadcaster capturing
and uploading an SLVS stream to an upload endpoint. Consider a 20 second period where the
upload bandwidth between the broadcaster and the upload endpoint is 0.5Mbps during the first
10 seconds and 3Mbps during the final 10 seconds, as depicted in Figure 3.4a.

The structural similarity (SSIM) index is a common metric used to measure the perceptual
quality of video frames. The relationship between video bitrate and SSIM is typically observed
to be a concave, non-decreasing function [49]. Figure 3.3 shows the relationship between the
frame size and the SSIM for each frame of the Sintel [4, 5] trailer. To keep the discussion in
this section simple, we use a hypothetical model that reflects this relationship between the video
bitrate (b) and the SSIM (Q). Specifically, we assume Q = 1 − 1

2b+1
for each video frame. In

Sections 3.4.1.1 and 3.4.1.2, we analyze the SSIM of the video received at the upload endpoint
when transmitted using conventional live upload techniques.

3.4.1.1 Uploading for delayed viewing

We first consider uploading a live stream using techniques commonly used for applications like
ESPN and CNN, which typically deliver live content to viewers with up to few tens of seconds
of delay. It is common for such techniques to adapt the video bitrate slowly in response to
changes in the network bandwidth, and to buffer frames when there is insufficient bandwidth for
transmission at the target bitrate. There has been a significant amount of work [50, 51, 52] in

26

the space of bitrate adaptation and buffer allocation for video streaming applications that do not
have strict low latency requirements.

For the sake of this example, assume that the uploading client has knowledge of the average
bandwidth during the next 20 seconds, which in this case is 1.75Mbps. The client thus encodes
each frame at 1.75Mbps. Figure 3.4b (purple dotted line) depicts the video quality using this
strategy for delayed viewing. Between 0 s and 10 s, the available bandwidth is lower than the
target bitrate. The uploading client consequently buffers frames during this period and begins
draining the buffer when the available bandwidth increases at 10 s. This results in an average
SSIM of 0.777 for the entire video when viewed at delays of 20 seconds or more.

3.4.1.2 Uploading for real-time viewing

We next consider videoconferencing applications like Skype and Hangouts, which use live-
streaming techniques that are tailored for real-time viewing. The technique of buffering frames
in the face of bandwidth drops described in Section 3.4.1.1 is inadequate for this setting be-
cause buffering delays the transmission of frames beyond the real-time deadline required for
interactivity. Real-time video streaming solutions like WebRTC [44] significantly underutilize
bandwidth [53] to ensure timely delivery of video frames. Salsify [14] explores video encoding
techniques that can accurately match the network bandwidth to reduce buffering for low latency
playback.

Assuming that the uploading client has accurate instantaneous upload bandwidth estimates,
Figure 3.4b (yellow crossed line) depicts the real-time video quality when using streaming tech-
niques optimized for low latency. Between times 0 s and 10 s, frames are encoded at 0.5Mbps to
minimize buffering delay. When the bandwidth increases at 10 s, frames are encoded at 3Mbps.
This results in an average SSIM of 0.679 across the entire received video.

3.4.1.3 Uploading for more than one viewing delay?

While the techniques for live video upload described in Sections 3.4.1.1 and 3.4.1.2 achieve high
QoE for a single viewing delay, they are inadequate for applications where the video is viewed
at different delays. Tailoring upload for delayed playback (i.e., Section 3.4.1.1) results in high
QoE for viewing beyond a certain delay, but renders the video unplayable at smaller time-shifts.
On the other hand, while real-time streaming techniques (i.e., Section 3.4.1.2) are suitable for
low-latency viewing, this limits the QoE for viewers at larger time-shifts: in the example above,
upload optimized for real-time viewers results in an average SSIM of 0.679, whereas uploading
for delayed viewing results in an average SSIM of 0.777.

As described in Section 3.3.2, SLVS applications enable time-shifted viewing in which view-
ers can watch the same video at different delays. Thus, optimizing live video upload for a single
viewing delay is inadequate for SLVS applications, necessitating changes in the architecture of
the live video upload process to improve the quality of experience for both real-time and time-
shifted viewers.

27

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

0

2

4

M
bp

s Bandwidth

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

0.0

0.5

1.0

SS
IM

Real-time optimized Delay optimized

(a) Example bandwidth trace.0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

0

2

4

M
bp

s Bandwidth

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

0.0

0.5

1.0

SS
IM

Real-time optimized Delay optimized

(b) SSIM for conventional real-time and delayed
streaming techniques.

0
2
4

M
bp

s Bandwidth: Retransmissions Real-time

0.0
0.5
1.0

SS
IM

Real-time

0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

0.0
0.5
1.0

SS
IM

10 second delay

(c) Bandwidth utilization and improvement in video
quality with quality-enhancing retransmissions.

0 2 4 6 8 10 12
Time-shift delay (seconds)

0.0

0.2

0.4

0.6

0.8

SS
IM

Real-time optimized
Delay optimized
With quality enhancing retransmissions

(d) Comparison of average SSIM for different view-
ing delays for conventional techniques and the pro-
posed technique.

Figure 3.4: Toy example demonstrating the benefits of quality-enhancing retransmissions over
conventional techniques.

28

3.4.1.4 Current SLVS platforms do not cater to time-shifted viewing

In this section, we demonstrate that common SLVS platforms (Facebook Live, YouTube Live,
Twitch, and Periscope) today do not explicitly account for time-shifted viewing, thereby pre-
senting significant opportunities for improving the overall QoE. All the platforms we consider
support archival of the live stream for viewing after the termination of the live streaming session.
Hence, these platforms support at least two distinct “time-shifted viewing modes”: real-time
viewing during the live stream, and video-on-demand (VoD) style viewing after the live stream
has ended.

Opportunities to improve QoE for time-shifted viewers come into play after the network has
recovered from an impairment, where the video was encoded at a lower bitrate to prevent net-
work saturation. To determine whether a platform takes time-shifted QoE into consideration, we
initiate a live stream and let it run on an unimpaired network for 40 seconds and then momentar-
ily throttle the bandwidth to 0Mbps (no data can be transmitted) for 3 seconds. This is followed
by 30 seconds of transmission over an unimpaired network. We emulate an impaired network
using the dummynet [54] network emulator. Note that there is no impairment on the link be-
tween the live streaming platform’s upload endpoint and the viewer. While our experiments may
also contain variations that occurs in the upload path outside of the impairment we impose, we
found the upload path to be fairly stable during all experiments. We test the RTMP protocol
using OBS [55] with settings recommended by the platform under test, and the WebRTC proto-
col using Google Chrome’s WebRTC implementation. We compare the quality of the real-time
and the archival versions of the video by comparing the video at the receiver to the prerecorded
reference video that was uploaded.

The impairment introduced in this experiment mirrors that described in the toy-example from
Section 3.4.1: there is ample opportunity after the network impairment for improving the video
quality for the archived version. Yet, in all experiments, we find that the video frames in the
real-time and the archived videos are identical. Both videos experience identical frame drops,
resulting in pauses in the received video, and the received frames have identical SSIM values.

These experiments suggest that current SLVS platforms do not exploit opportunities to im-
prove the QoE for more than one viewing delay, leaving considerable opportunity for improving
QoE for viewers across diverse viewing delays.

3.4.2 Proposed approach

We now describe how a live upload solution can provide high QoE for multiple viewing delays.

3.4.2.1 Naı̈ve approach: re-uploading an entire stream.

A simple strategy to improve the QoE for archived viewing is to store a high quality version of the
captured video on the broadcaster’s device and re-upload the video after the stream has ended.
However, this approach only improves the archival quality; no improvements are achieved for
time-shifted viewers during the live stream. Further, this approach consumes a large amount of
storage on the broadcaster’s device and consumes at least twice as much bandwidth as one would
use without re-uploading the stream. These downsides are especially of concern for longer SLVS

29

sessions which may last for multiple hours [38, 56], and for video streams initiated from mobile
devices, which often have limited, metered bandwidth and insufficient internal storage.

3.4.2.2 Quality-enhancing retransmissions.

As described in Section 3.3.3, mobile networks commonly experience significant bandwidth
fluctuations, both low and high. Thus, low quality real-time frames transmitted during periods of
low bandwidth can be retransmitted at a higher bitrate during a later period of high bandwidth
while the live streaming session is ongoing, thus improving the video quality for delayed, time-
shifted viewers. We call these retransmitted frames “quality-enhancing retransmissions” because
they are retransmitted for the purpose of improving the quality of a frame compared to the initial
version of the frame transmitted for real-time viewing. Unlike typical retransmissions, quality-
enhancing retransmissions are not in response to packet loss.

Sending quality-enhancing retransmissions requires reducing the bitrate of real-time frames
for allocating sufficient bandwidth for high-quality retransmissions. Due to the concave nature of
bitrate-SSIM curves of common video encoding techniques [49], the bitrate of real-time frames
can be reduced without causing a significant drop in the video quality. This is evident from the
bitrate-SSIM data shown in Figure 3.3. The drop in quality when reducing the frame size of a
high quality frame (solid red arrow) is significantly smaller than the corresponding gain in quality
when increasing the frame size of a low quality frame (solid green arrow) by the same amount.

Sending quality-enhancing retransmissions comes at the expense of sending redundant bits
over the network and introducing additional computation for frames that have already been sent
at a lower quality. The use of scalable video coding (SVC)[57] techniques may result in bet-
ter performance in some cases. We discuss the implications of using an SVC based design in
Section 3.5.6.

Example of improvements for time-shifted viewing. Consider the example discussed in
Section 3.4.1. Under the approach of using quality-enhancing retransmissions, when the band-
width is low (t = 0 s to t = 10 s), the video is encoded at 0.5Mbps. This behavior is identical
to the real-time upload approach. When bandwidth is higher (t = 10 s to t = 20 s), older frames
can be retransmitted at a higher quality as quality-enhancing retransmissions along with the real-
time frames. The bitrate of the real-time frames needs to be lower than the available bandwidth
(3Mbps) to accommodate the extra network traffic from the quality-enhancing retransmissions.

The choice of bandwidth allocation between real-time frames and quality-enhancing retrans-
missions can be driven by high-level goals such as maximizing the viewer-count weighted SSIM
across the time-shifted delays. Choosing the optimal tradeoff between the drop in real-time
quality and the improvement in delayed video quality can be envisioned as a quality (SSIM)
maximization problem across the time-shifted delays. Assuming equal weights for real-time
quality and the time-shifted viewing quality at a viewing delay of 10 seconds, the bandwidth
allocation which maximizes the average quality across the two delays is 1.84Mbps for real-time
frames and 1.16Mbps for retransmitted frames. This bandwidth split is depicted in the top plot
(bandwidth) in Figure 3.4c. This results in an average SSIM of 0.643 and 0.742 for the real-time
and the delayed viewers, respectively. This is demonstrated in the bottom two plots in Figure
3.4c. The dark green region in the middle plot (labeled “Real-Time”) represents the real-time
video quality. The dark blue region in the bottom plot (labeled “10 second delay”) shows the im-

30

provement in video quality for delayed viewing over the real-time video quality (shown in light
green for reference). Figure 3.4d shows the average quality for time-shifted viewing between
t = 0 s (i.e., real-time) and t = 12 s for video uploaded by real-time optimized, delay-optimized,
and time-shift-aware upload strategies. Compared to real-time optimized streaming, using Van-
tage improves the SSIM for delayed viewing by 9.4%, while causing a drop of only 5.2% in
the SSIM of the real-time stream. Note that the drop in SSIM only occurs for the high-quality
frames, which still results in good real-time quality as opposed to delay-optimized streaming,
where real-time viewing is not feasible. We note here that although we plot the average SSIM
in this case to demonstrate the benefits of time-shift optimized streaming, for our evaluation, we
use a unified metric (described in Section 3.6.1) that combines the SSIM of the video frames and
the stalling events into a single metric.

Thus, by making use of quality-enhancing retransmissions and allocating bandwidth between
diverse time-shifted viewing delays, a SLVS upload solution can deliver high QoE to viewers
across a spectrum of viewing delays.

3.4.2.3 Key challenges

While the idea of sending quality-enhancing retransmissions by exploiting periods of high band-
width during the live streaming session is simple and promising, there are several critical chal-
lenges in designing a live streaming upload solution based on this idea.

Optimal, efficient bandwidth allocation in real time. As described in Section 3.4.2, al-
locating bandwidth between real-time frames and quality-enhancing retransmissions can be for-
mulated and solved as an optimization problem. However, finding an optimal solution to this
problem may take a non-trivial amount of time, making it challenging to design an optimization-
based system involving real-time streaming.

Bitrate-SSIM curve estimation. The bitrate-SSIM curves of frames inform the allocation
of bandwidth between real-time frames and quality-enhancing retransmissions. However, the
bitrate-SSIM curve of a video frame is not available before the frame is encoded, and thus must
be estimated for performing bandwidth allocation. Estimating bitrate-SSIM curves is challenging
as they depend on a variety of properties of each frame and the preceding frames.

Mitigating error in bandwidth estimation. Allocating bandwidth between real-time frames
and quality-enhancing retransmissions requires having an estimate of the future bandwidth. Ac-
curately estimating future bandwidth is challenging in its own right, and thus a system allocating
bandwidth between real-time frames and quality-enhancing retransmissions must be robust in
it’s abilities to adapt to inaccuracies in bandwidth estimation.

In section 3.7.7, we show that addressing these challenges are critical for improving the QoE
across all viewers for time-shifted viewing of live video streams, and in section 3.7.6, we show
that Vantage is able to robustly handle bandwidth mis-estimation due to our design choices made
in section 3.5.3.

31

Camera

Scheduler Execution
Engine

schedule

Compressed Storage

RT
Encoder

Retx
Encoder

queue
stats

adjusted schedule

raw
frame

Transport

control plane
data plane

frame
metadata

Figure 3.5: Vantage’s architecture. Solid lines indicate data-plane components. Dotted lines
indicate control-plane components. Components that are unchanged by Vantage are shown in a
darker shade.

3.5 Design of Vantage
In this section, we describe the design of Vantage and how Vantage overcomes the challenges
outlined in Section 3.4.2.3 in order to deliver high QoE to diverse time-shifted viewers.

3.5.1 Overview
We first describe the architectures of current live video upload systems, and then describe Van-
tage’s high-level operation.

3.5.1.1 Current live video upload systems

In current live video upload systems, the uploading client first captures raw video frames from
the camera on a mobile device. Frames are then compressed by an encoder and transmitted to
the upload endpoint. The system’s network transport mechanism estimates the available upload
bandwidth, which informs the level of compression used for encoding the video frames.

3.5.1.2 Architecture of Vantage

Figure 3.5 depicts Vantage’s high-level architecture. Vantage modifies the upload architecture de-
scribed in Section 3.5.1.1 to enable support for quality-enhancing retransmissions. Raw frames

32

from the camera are encoded and enqueued for real-time transmission. Vantage simultaneously
compresses these frames at a high quality and places them in memory for potential quality-
enhancing retransmissions in the future. Vantage’s scheduler generates a bandwidth allocation
schedule for the new frames captured by the camera as well as for quality-enhancing retrans-
missions. The execution engine coordinates the encoding of scheduled frames, and adjusts for
inaccuracies in the allocation determined by the scheduler (discussed in detail below in Sec-
tion 3.5.3). Frames that have been scheduled for transmission are enqueued for transmission by
a generic transport protocol that is unmodified by Vantage. We assume that the transport layer
provides network bandwidth estimates and drains packets from Vantage’s queues.

In the remainder of this section, we describe each of Vantage’s components in detail as well
as how Vantage overcomes the challenges presented in Section 3.4.2.3.

3.5.2 Scheduler design

Vantage’s scheduler takes as input a set of real-time frames and potential candidate frames for
retransmissions, and an estimate of the upload bandwidth in the near future in order to choose
(a) which frames to schedule for transmission and (b) the bitrate each scheduled frame should be
encoded at.

We formulate schedule generation as a mixed-integer optimization problem that generates a
transmission schedule that optimizes the quality for the viewers across time-shifted delays. The
precise formulation of the optimization problem is described in Section 3.5.2.1.

An important consideration with this approach is that the time taken to solve a mixed-integer
problem may be non-trivial and highly variable. To address this, Vantage’s scheduler is run every
P seconds and generates schedules for the next P seconds. When the scheduler is run at time
T = t, it receives a snapshot of the state (i.e., candidate frames and bandwidth estimation) at time
t, and generates a schedule for the period between T = t+P and T = t+2P . If the optimization
takes longer than P seconds, the scheduler is interrupted and the current, potentially sub-optimal
solution of the optimization is used as the schedule.

3.5.2.1 Optimization formulation

Next, we discuss the formulation of the optimization problem that is performed by the scheduler
every P seconds. Consider a single optimization iteration that starts at time T = t. We first list
the inputs to the optimizer and then subsequently discuss how these inputs are obtained. The
optimizer takes the following information as inputs:

1. An estimate of the number of bytes B that can be transmitted between T = t + P and
T = t+ 2P .

2. A set of future real-time frame ids (F) that will be sent between T = t+P and T = t+2P .

3. A set of past frame IDs (G) that are to be considered for retransmission. A retransmission
chosen in this iteration would happen at some time between T = t + P and T = t + 2P .
The difference between T = t + 2P and the time at which a frame g was captured is the
delay of the frame, which we denote as dg.

33

4. The quality of past frames that have been received by the upload endpoint. For each frame
g ∈ G, Rg denotes the SSIM of the version of frame g currently available at the upload
endpoint. We do not schedule queued or in-flight frames for retransmission.

5. The bitrate-SSIM curve for each frame g∈G. For each frame g ∈ G, Qg : size → ssim
represents the mapping from encoded frame size (in bytes) to the SSIM.

6. The predicted bitrate-SSIM curves for each of the real-time frames that will be sent be-
tween T = t+ P and T = t+ 2P . We denote this by Qf : size→ ssim.

7. The distribution of the viewing delays of the current set of viewers. For each viewing delay
d, N(d) represents the count of viewers watching the live stream at a viewing delay of d
seconds.

8. We also define a set of weights wg ∀g ∈G and a weight w0 for the real-time frames. We
discuss how these weights are computed from the delay distribution N in the subsequent
paragraphs.

The scheduler returns the target sizes sf ∀f ∈F for the real-time frames and a set of frames
G′ ⊂ G and the corresponding target size sg ∀g∈G′ for the quality-enhancing retransmissions.
We formulate the optimization problem as a maximization of the weighted viewing quality sub-
ject to bandwidth constraints.

The role of the bandwidth constraint is to ensure that the total amount of data scheduled for
transmission (including both the real-time frames and past frames) does not exceed the estimated
bandwidth. Thus, the bandwidth constraint is :∑

∀f∈F

sf +
∑
∀g∈G

sg ≤ B (3.1)

The objective function includes contributions from the real-time frames and the past frames.
For a real-time frame f ∈ F , the contribution to the objective function is

w0 ·Qf (sf) (3.2)

For a past frame g ∈ G, the contribution to the objective function is

wg ·max(Qg(sg), Rg) (3.3)

Note that the weights wg are different for each frame g ∈ G.
The net objective sums up the contribution from each of the real-time frames and the past

frames:

obj =
∑
∀f∈F

w0 ·Qf (sf) +
∑
∀g∈G

wg ·max(Qg(sg), Rg) (3.4)

Since the real-time frames serve as a base for delayed playback as well, the transmission of
a real-time frame benefits all delays. Similarly, a quality-enhancing retransmissions at a delay d
is useful for all viewing delays that are greater than d. Thus, we set the weights for the real-time
frames (w0) and the past frames (wg) in the objective function as follows.

w0 =
∑
d

N(d), wg =
∑
d>dg

N(d) (3.5)

34

The functions Qi that maps size to SSIM for a frame i is typically a non-linear curve (e.g.,
Figure 3.3) and can vary significantly across frames. We approximate these curves as piece-wise
linear functions in the formulation of the mixed-integer program. Since the number of frames
that can be encoded in P seconds is limited, we additionally limit the number of retransmissions
to |F |. This ensures that the computational requirements of encoding the quality-enhancing
retransmissions does not exceed that of the real-time frames.

3.5.2.2 Bitrate-SSIM curve estimation

Recall from Section 3.5.2.1 that the optimization problem uses bitrate-SSIM curves of all frames
that are candidates for scheduling (i.e., Qg for retransmissions and Qf for real-time frames).
This is required so that the optimization can make informed choices when reducing the real-time
quality to improve the quality of past frames.

Vantage uses a regression heuristic to estimate these curves from previous encoding data.
We use a function of the form Q(s) = 1 − 1

a·s+b
since it captures the concave non-decreasing

behavior (for a > 0, s > −b
a

) typical of bitrate-SSIM curves (e.g., Figure 3.3). Parameters a and b
are computed separately for each frame based on its observed size and SSIM when the frame has
already been previously encoded (i.e., for real-time or for quality-enhancing retransmissions).
These parameters are updated each time a frame is re-encoded for retransmission. However,
bitrate-SSIM information is not available for future real-time frames because they have not yet
been captured. Hence, for the future frames, we use the EWMA values of the past parameters for
computing the parameters of Qf ∀f ∈F because frames that are temporally local have similar
content, and thus similar bitrate-SSIM curves.

3.5.2.3 Optimizer performance

A preliminary evaluation of Vantage with a scheduling period P = 2 s indicated that the mixed-
integer solver often fails in finding an optimal solution within 2 seconds when |G| is large. One
alternative is to increase the scheduler period P , but this results in worse performance due to the
scheduler receiving stale bandwidth estimates. This is further discussed in Section 3.7.5. Instead,
Vantage filters G using a heuristic and only generates the variables in the mixed-integer program
for the 200 frames with the worst SSIM. Furthermore, we do not restrict the frame sizes to be
integers, and instead use an integer approximation for the continuous solution. We find that using
P = 2 seconds along with these approximations leads to the optimizer generating high-quality
schedules: 98.5% of optimization windows in our evaluation result in a schedule that is within
1% of the optimal solution.

3.5.3 Mitigating bandwidth estimation error

As described in Section 3.5.2, Vantage’s scheduler generates an encoding and transmission
schedule for P seconds in the future based on an estimate of the future network bandwidth.

Since the optimizer uses a bandwidth estimate measured P seconds before the scheduled
frames are transmitted, the true available bandwidth may differ at the time when the scheduled

35

frames will be transmitted. Left uncorrected, the use of a schedule generated from a mispredicted
bandwidth estimate will lead to sub-optimal use of the network.

To mitigate the effects of bandwidth misestimation, Vantage’s execution engine makes adjust-
ments to the generated schedule prior to transmitting the frames. When the bandwidth estimate
used to generate the schedule under-estimated the amount of bandwidth available at transmis-
sion time, Vantage’s execution engine keeps the network saturated by increasing the bitrate of
the real-time video compared to the optimizer’s schedule, but only if the retransmissions sched-
uled in that iteration have been completed.

On the other hand, when the bandwidth estimate used to generate the schedule over-estimated
the amount of bandwidth available at transmission time, the execution engine prioritizes trans-
mission of real-time frames: frames scheduled for retransmission at that time are discarded and
real-time frames are encoded at a bitrate lower than that specified by the scheduler so as to avoid
over-saturating the network. Prioritizing real-time transmission in the event of bandwidth over-
estimation ensures high QoE for all time-shifted viewing delays, as real-time frames would be
available for viewing at all delays, whereas retransmitted frames only benefit viewers watching
with a time-shifted delay.

3.5.4 Encoding retransmissions
Frames that have been scheduled for retransmission at a particular time may not be temporally
close to the real-time frames scheduled at the same point in time. This presents a challenge for
encoding Vantage’s output stream because video encoding algorithms rely heavily on the similar-
ity between successive frames to achieve good compression ratios. Using the same encoder for
transmitting both the real-time video and the retransmissions would result in poor compression,
as the content in the retransmitted frames may differ significantly from real-time frames.

To address this challenge, Vantage uses two separate encoders for compressing real-time and
retransmitted frames. Real-time frames are encoded in the order in which they were captured.
Quality-enhancing retransmissions are encoded by a separate encoder based on the schedule de-
termined by the optimizer. Though retransmissions could be temporally far from one another,
we note that network impairment events commonly affect groups of neighboring frames. Thus,
if a particular frame is a good candidate for retransmission, it is more likely that its neighboring
frames are also good candidates for retransmission. We, therefore, add an additional regular-
ization objective to the optimization formulation to favor scheduling consecutive sequences of
frames among the retransmission candidates for quality-enhancing retransmissions.

3.5.5 Reducing memory overhead
Vantage keeps previously transmitted frames in memory so that they can be re-encoded as
quality-enhancing retransmissions at a later time. Naı̈vely storing raw video frames in mem-
ory is impractical for uploads initiated from a mobile device; the size of a raw frame can be as
large as 1.5 MB, thus requiring more than a gigabyte of memory for 30 seconds of video.

To address the high cost of storing raw video frames, Vantage compresses raw frames as
lossless I-frames using a tertiary encoder prior to storing in memory. This allows Vantage to
maintain a low memory footprint, but incurs additional computational cost. We believe that

36

this is an appropriate trade-off as hardware accelerated encoding and decoding solutions are
commonly available today, though we note that this design choice is not required by Vantage’s
framework.

3.5.6 Discussion

In this section, we briefly discuss required changes to the upload endpoint to support Vantage
and how Vantage would differ with the availability of an SVC codec.

Upload endpoint modifications. Recall from Section 3.3.1 that an SLVS upload stream is
terminated at an upload endpoint, which decodes the stream and re-encodes it into small video
segments for efficient delivery to the viewers over content delivery networks (CDNs) [37].

While the changes proposed in Vantage allow backward compatibility with real-time stream-
ing systems, the upload endpoint must be able to handle Vantage’s quality-enhancing retransmis-
sions. This requires the upload endpoint to re-transcode past video segments whenever quality-
enhancing retransmissions for that segment are received, and to disseminate these higher quality
video segments to the CDN. As described in Section 3.5.4, Vantage’s scheduler penalizes retrans-
missions that are spread apart, which helps limit the rate at which past video segments need to be
updated. Requiring only these minor changes to the upload endpoint makes Vantage well-suited
for current SLVS architectures.

Scalable video coding. Vantage’s approach of sending quality-enhancing retransmissions
bears similarity to the enhancement layers used in scalable video coding (SVC) techniques. In-
deed, Vantage’s design could be simplified by using an SVC codec, since the video would only
need to be encoded once, and storage of high-quality frames would not be necessary. Despite
these benefits, we have chosen not to design Vantage specifically for SVC codecs because

1. SVC codecs are not widely adopted, limiting hardware-accelerated encoding support, and

2. while simple SVC schemes with coarse grained scalability do not have significant over-
head, fine grained SVC schemes have poor compression efficiency and are significantly
more compute intensive compared to non-layered codecs.

Even in the absence of the aforementioned downsides of SVC, the use of SVC alone cannot
overcome the challenges involved with optimizing the video upload for multiple time-shifted de-
lays. An SVC based live video upload mechanism would still need to make bandwidth allocation
decisions between the real-time base video stream and the enhancement streams, and also choose
which frames to retransmit. While the ability to encode the video only once and not having to
store high quality frames is an advantage of using SVC, the use of non-layered codecs is better
in some situations. When retransmitting a sequence of contiguous frames, encoding a P-frame
with a high quality past frame as the reference is often more efficient than encoding the frame
with a low quality version of itself as the reference frame.

While SVC provides some clear benefits, we believe compatibility with standardized codecs
and hardware is more important for adoption in the real world today. We would only need to
make minor tweaks to the optimization formulation used in Vantage’s scheduler for generating
optimized schedules for SVC codecs.

Overhead of two encoders. Vantage’s approach of using two separate encoders to compress
real-time frames and quality-enhancing retransmissions is computationally expensive. We be-

37

lieve this overhead is well-justified: Vantage gains significant improvements in the QoE across
multiple viewing delays for SLVS applications, and the trend of increasing hardware acceleration
support further justifies this tradeoff.

3.5.7 Implementation details
We have implemented Vantage in C++, with the scheduler using the Gurobi [58] library to solve
the optimization problem. To reduce computational requirements, we limit Gurobi to run on a
single core and the execution engine to run on a single thread. Vantage uses the VP8 encoder
from Salsify [14] because it provides a convenient API for controlling the size of each frame. For
performance reasons, Vantage compresses the high-quality frames and encodes real-time frames
and the quality-enhancing retransmissions in parallel.

3.6 Evaluation Methodology
We evaluate Vantage and compare its performance to conventional live video upload techniques
for SLVS applications.

3.6.1 Metrics
Vantage is designed to improve the quality of video playback across the various time-shifted
viewing delays by replacing low quality frames with high-quality versions and filling in the gaps
caused due to skipped frames. While Vantage’s scheduler is designed to optimize the SSIM [59]
metric, Vantage can support other frame level reference metrics (like PSNR, etc.). We use the
SSIM metric when measuring the quality of a single frame and use the SQI-SSIM [60] metric
to compute an overall video quality score from the SSIM values of the individual frames. Most
objective video quality metrics do not consider the effect of stalling when calculating video
quality [61]. SQI-SSIM is a unified metric that takes into account the full reference quality of
each frame and also the duration and frequency of video stalls. SQI-SSIM uses an exponential
decay function instead of zeros to fill in the SSIM of missing frames. Thus, shorter stalls have
a smaller effect on the overall video quality. When video playback resumes after a stall, the
SSIM of the subsequent frames are penalized according to an exponential decay function, thus
accounting for the frequency of stalls. We note that Vantage can support other video quality
assessment metrics (such as PSNR).

3.6.2 Baselines
While there is significant prior work on optimizing video streaming for the individual cases
of live streaming and VOD-style video streaming, we are not aware of any prior research on
optimizing video quality simultaneously for real-time streaming and time-shifted viewing of the
streams. Vantage is designed to work with existing congestion control and video coding systems
and enhance the performance of these systems for scenarios involving time-shifted viewing of
live streams, and is not meant to be a standalone end-to-end solution for SLVS video upload.

38

We compare Vantage to the best case performance for low latency streaming and VOD-style
streaming using an idealized model for bandwidth estimation and congestion control:

Low latency streaming (Base-RT). Existing low latency optimized streaming systems like
WebRTC and Skype maintain low latency by conservatively utilizing the network bandwidth to
prevent network saturation. Recent approaches like Salsify [14] utilize the network better by
matching the instantaneous network estimate through tight coupling of the video encoder and
the transport protocol. Base-RT models these systems by encoding individual video frames at a
bitrate that closely follows the real-time network estimate. This results in optimal video quality
performance for low latency streaming.

Buffered streaming (Base-Delay). The use of larger buffers at the sender enables a stream-
ing application to encode video at the average network bandwidth. This is similar to conventional
ABR based video streaming solutions like HLS [10] and MPEG-DASH [9], which split the video
into small segments where each segment is encoded at a specific bitrate. To model the charac-
teristics of streaming techniques that use buffers and slower rate adaptation, we use a window of
30 seconds to compute the average bandwidth and encode the video at this bitrate. This results
in optimal video quality for cases where a delay of 30 seconds is acceptable.

Talking Heads City Panning Animation
Trace Delay Base-RT Base-Delay Vantage Base-RT Base-Delay Vantage Base-RT Base-Delay Vantage

Verizon
LTE

Real-time 0.8885 0.5854 0.8750 0.8003 0.6479 0.7792 0.9279 0.7504 0.9225
30s delay 0.8896 0.9552 0.9438 0.8012 0.8472 0.8306 0.9290 0.9818 0.9834

(0.8890) (0.7703) (0.9094) (0.8008) (0.7475) (0.8049) (0.9284) (0.8661) (0.9529)

AT&T
LTE

Real-time 0.5638 0.2236 0.5538 0.5224 0.4008 0.4880 0.6511 0.4370 0.6648
30s delay 0.5705 0.9098 0.8155 0.5285 0.7198 0.6760 0.6576 0.9600 0.9327

(0.5672) (0.5667) (0.6846) (0.5254) (0.5603) (0.5820) (0.6543) (0.6985) (0.7987)

TMobile
UMTS

Real-time 0.4957 0.1942 0.4604 0.3371 0.0965 0.3199 0.5055 0.1390 0.4833
30s delay 0.5054 0.6774 0.5840 0.3451 0.4834 0.4011 0.5169 0.7322 0.6143

(0.5005) (0.4358) (0.5222) (0.3411) (0.2899) (0.3605) (0.5112) (0.4356) (0.5488)

Table 3.1: SQI-SSIM achieved by the baselines and Vantage for each combination of the videos
and the network traces. In each case, the average SQI-SSIM across delays (indicated within
parentheses) is the highest for Vantage (bolded).

3.6.3 Evaluation setup
We evaluate Vantage with a combination of videos and network traces with different character-
istics. Our experiments were run on a machine with Intel(R) Xeon(R) processors, limiting the
Gurobi [58] solver to a single core for emulating computational limits in mobile environments.
Unless otherwise specified, we evaluate Vantage for a uniform time-shifted viewing delay dis-
tribution for the optimization described in Section 3.5.2.1 and use a 2 second period for the
optimizer. This choice is further discussed in Section 3.7.5. We evaluate the effects of different
distributions of the time-shifted viewing delays in Section 3.7.3. We run the live streams for
150 seconds and ignore the data for the last 30 seconds, since the measurements for the last 30
seconds may be affected by the early termination of the program. We repeat videos and traces
that are shorter than 150 seconds until the entire simulation is complete.

Videos. We chose three videos spanning three distinct video styles from the Xiph.org Test
Media repository [4] for our evaluation.

39

(a) Talking Heads: Talking head
video with a static background.

(b) City Panning: Panning motion
with high detail.

(c) Animation: Animated se-
quence with varying amounts of
motion.

Figure 3.6: Screenshots from the videos used in evaluation. Videos are drawn from the Xiph.org
Test Media repository [4].

Figure 3.6 shows screenshots of the three different videos considered for evaluation. “Talking
Heads” contains four people talking in front of a static background. This style of video is the
most common among SLVS streams [62] and is typically easier to encode. “City Panning” pans
across the city of Stockholm. This video is much harder to encode due to a higher amount of
moving content and very fine details. “Animation” is an animated video sequence with varying
degrees of motion over the duration of the video, which makes some segments easy to encode,
while other parts are harder to encode.

Bandwidth traces. We chose a diverse set of network traces from the Mahimahi [3] repos-
itory: a high bandwidth LTE trace, a highly variable LTE trace, and a low bandwidth UMTS
trace. We find these traces to be representative of Vantage’s performance across all traces in the
repository.

Transport layer emulation. We use a bandwidth averaging window of 100ms for Base-RT
and the real-time stream in Vantage. We use the average bandwidth in the past 1 second as the
bandwidth estimate to Vantage’s scheduler. For Base-Delay, we use the average bandwidth of
the previous 30 seconds. We run Vantage and the receiver on the same machine and emulate
packet transmissions according to the provided bandwidth trace.

Many live-streaming systems use FEC [63] or packet-level retransmission for dealing with
network losses. These techniques can be incorporated into the network model by reducing the
bandwidth estimates provided to Vantage and using the excess bandwidth for loss recovery mech-
anisms (e.g., FEC). Since we evaluate baselines using the same model, this provides a fair com-
parison between Vantage and existing techniques for live video upload.

Encoder performance. Salsify’s encoder is a software-based VP8 encoder written in C++.
Software encoders are much slower than hardware based encoders. We observed that even with
parallel encoding of the frames, the encoder was not able to achieve a rate of 30FPS while
encoding 1280 × 720 (HD) videos. Hence, we run Vantage with time dilation to allow the
encoder to run at 30FPS in virtual time, but limit the optimization to P seconds of wall clock
time. This allows us to evaluate Vantage in a manner that is agnostic to the encoding speed of the
specific encoder we chose.

Ethics. This work does not raise any ethical issues. We use test video sequences [4] and
anonymized bandwidth traces [3] that are publicly available.

40

3.7 Results

The highlights of our evaluation are as follows:
1. Across a variety of upload bandwidth traces and videos, Vantage improves the SQI-SSIM

for time-shifted viewing over Base-RT by 19.9% on average (Section 3.7.1).

2. Vantage simultaneously achieves high real-time video quality (within 3.3% of the quality
achieved by real-time optimized streaming techniques on average) and high quality for
delayed viewing (within 7.7% of the optimal quality achievable for delayed viewing on
average), demonstrating the effectiveness of using Vantage for applications that involve
time-shifted viewing such as SLVS applications (Section 3.7.1).

3. Vantage is able to adapt and achieve high QoE for skews in the distribution of viewing
delays (Section 3.7.3).

4. Vantage can also improve the QoE across different viewing delays for videos with highly
dynamic (i.e., harder to encode) content, even when there are no bandwidth variations
(Section 3.7.4).

5. Vantage is robust to bandwidth misestimation (Section 3.7.6).

3.7.1 Overall improvements

Table 3.1 contains the SQI-SSIM of the received video at both real-time and a delay of 30 seconds
for all the traces and videos. The average SQI-SSIM over the two delays (shown in brackets)
captures how a particular upload technique caters to both viewing delays.

We observe that in all cases, Vantage achieves significantly better quality than Base-RT (up
to 42.9%) for delayed viewing. The gains are biggest for the AT&T-LTE network trace; this
can be attributed to the significant variations in the bandwidth. Even for the TMobile-UMTS
network trace, which has very low bandwidth and significant periods of zero bandwidth, we
observe modest improvements in the delayed viewing quality over Base-RT. This demonstrates
that Vantage can simultaneously deliver high QoE for both real-time and time-shifted viewing.
We also find that, across all traces and videos, Vantage (bolded entries) significantly outperforms
both Base-RT and Base-Delay in average SQI-SSIM across the viewing delays.

As discussed in Section 3.4.2, the cost paid by Vantage is slightly worse quality for real-
time-only and delayed-only viewing as compared to upload transmission techniques optimized
individually for either of these settings. Across all traces and videos, we find that the SQI-SSIM
of real-time video resulting from Vantage is no more than 7.1% worse than that resulting from
Base-RT, with the improvement in the SQI-SSIM for delayed viewing being higher than the drop
in the real-time SQI-SSIM in all cases.

We note that while Base-RT and Base-Delay are specialized for real-time and delayed view-
ing, they are not necessarily optimal for these targets. Vantage can occasionally outperform the
baselines for these targets (as is seen in Table 3.1) for the following reasons: (1) Base-RT occa-
sionally sends real-time frames that are larger than the available bandwidth, which causes frames
to be dropped. In contrast, Vantage encodes real-time frames more conservatively because it
also performs retransmissions. (2) Base-Delay can build large buffers of frames that take longer

41

than 30 seconds to drain, while Vantage only schedules retransmissions that are expected to go
through in P seconds.

3.7.2 Inspecting Vantage’s improvements

0

10

M
bp

s Bandwidth: Retransmission Primary Unused

0.0
0.5
1.0

SS
IM

Real-time

0.0
0.5
1.0

SS
IM

15 second delay

0 20 40 60 80 100 120
Time (in seconds)

0.0
0.5
1.0

SS
IM

30 second delay

(a) Base-RT

0

10

M
bp

s Bandwidth: Retransmission Primary Unused

0.0
0.5
1.0

SS
IM

Real-time

0.0
0.5
1.0

SS
IM

15 second delay

0 20 40 60 80 100 120
Time (in seconds)

0.0
0.5
1.0

SS
IM

30 second delay

(b) Base-Delay

0

10

M
bp

s Bandwidth: Retransmission Primary Unused

0.0
0.5
1.0

SS
IM

Real-time

0.0
0.5
1.0

SS
IM

15 second delay

0 20 40 60 80 100 120
Time (in seconds)

0.0
0.5
1.0

SS
IM

30 second delay

(c) Vantage

Figure 3.7: SSIM of frames at various viewing delays for the Talking Heads video and the AT&T-
LTE trace. The top row shows the utilization of the upload bandwidth. The bottom three rows
show the quality of the received video at real-time, 15 seconds, and 30 seconds of delay. The dark
green region represents the instantaneous quality for the real-time timeseries. For the 15-second
delay and the 30-second delay timeseries, the dark blue region represents the improvement in
quality compared to the real-time quality and the 15-second delay quality respectively. The light
green shaded regions in the 15-second and 30-second timeseries represent the baseline video
quality for the previous delay bucket (real-time and 15-second respectively).

In this section, we analyze Vantage’s improvements over Base-RT and Base-Delay in detail
for a single video and bandwidth trace combination (AT&T-LTE trace and Talking Heads video).

42

0 20 40 60 80 100 120
0

1
M

bp
s

Bandwidth
Retransmission Primary Unused

0 20 40 60 80 100 120
0

1

SS
IM

Real-time

0 20 40 60 80 100 120
0

1

SS
IM

15 second delay

0 20 40 60 80 100 120
Time (in seconds)

0

1

SS
IM

30 second delay

(a) Vantage’s performance on Verizon-LTE

0 20 40 60 80 100 120
0

10

M
bp

s

Bandwidth
Retransmission Primary Unused

0 20 40 60 80 100 120
0

1

SS
IM

Real-time

0 20 40 60 80 100 120
0

1

SS
IM

15 second delay

0 20 40 60 80 100 120
Time (in seconds)

0

1

SS
IM

30 second delay

(b) Vantage’s performance on TMobile-UMTS

Figure 3.8: Timeseries examples showing Vantage’s improvement on the two other traces. Here,
the yellow shaded regions in the 15-second and 30-second plots show the improvement over
real-time quality and the quality for 15-seconds of viewing delay respectively.

Figure 3.7 compares the baseline approaches to Vantage by plotting the raw SSIM of each frame
of the video for various viewing delays. Frames not received in time for a particular viewing
delay are shown as zero.

Base-RT (Figure 3.7a) achieves reasonable quality for real-time viewing, skipping frames
when the network bandwidth is zero, but does not improve quality for higher viewing delays.
Whether a viewer views the stream in real-time or at a delay of 30 seconds, they would both
experience a 5-second pause in the video starting at approximately t ≈ 20 s.

Base-Delay (Figure 3.7b) on the other hand achieves smooth, high-quality video playback for
viewing delays of more than 30 seconds, but is unplayable at smaller time-shifts since a majority
of the video does not get delivered in time for real-time playback. Even at a delay of 15 seconds,
there is a large pause in the video playback between times t ≈ 18 s and t ≈ 33 s.

Vantage (Figure 3.7c) has no noticeable drops in the real-time video quality as compared
to Base-RT. The added benefit of using Vantage can be seen for higher viewing delays where
the video quality is dramatically improved. One example is the 5 s period starting at t ≈ 20 s,
where the network bandwidth is zero. We observe in Figure 3.7c that for viewing delay of 30 s
and higher, Vantage repairs this entire segment using quality-enhancing retransmissions, thus
resulting in significantly improved video quality over Base-RT. Vantage achieves this by reducing
the amount of bandwidth used for real-time frames slightly, and using the excess bandwidth for
sending the high-quality retransmissions, as shown in the bandwidth usage graph in the top
subplot in Figure 3.7c. With Vantage, the delayed viewing quality comes very close to that of
Base-Delay, while simultaneously achieving real-time playback quality that is comparable to
Base-RT.

43

Improvements at fine-grained time shifts.

0 5 10 15 20 25 30
Time-shift delay (seconds)

0.2

0.4

0.6

0.8

SQ
I-S

SI
M

Vantage
Base-RT
Base-Delay

(a) SQI-SSIM achieved by Vantage and the two
baselines for various time-shifted delays.

0 5 10 15 20 25 30
Time-shift delay (seconds)

0

500

1000

1500

2000

2500

Sk
ip

pe
d

fra
m

es

Vantage
Base-RT
Base-Delay

(b) Frames skipped in groups of 10 or more as a
function of the viewing delay.

Figure 3.9: Fine-grained time-shift results for the Talking Heads video and AT&T-LTE trace.

Figure 3.9a plots the SQI-SSIM of the video for each viewing delay. For real-time viewing,
Base-RT outperforms both Base-Delay and Vantage. At viewing delays beyond 15 seconds,
Base-Delay outperforms both Base-RT and Vantage. While the performance of Base-RT and
Base-Delay is unsatisfactory for the viewing delays that they are not optimized for, Vantage
provides a smooth increase in quality as time-shift delay increases. Vantage’s performance is
competitive simultaneously at the delays for whith the two baselines are separately optimized
for.

Figure 3.9b shows the number of frames of the received video that are skipped in groups of
10 or more frames for different delays. This quantifies the smoothness of the resulting video.
Both Base-RT and Base-Delay suffer from a large number of skipped frames for time-shifts that
they are not optimized for. In contrast, Vantage has nearly the same number of skipped frames as
the baselines at their respective optimal delays and significantly reduces the number of skipped
frames for intermediate delays.

3.7.3 Adapting to viewer-delay distributions

0 5 10 15 20 25 30
Time-shift delay (seconds)

0.6

0.7

0.8

SQ
I-S

SI
M

Real-time skew
Uniform distribution
Delay skew

Figure 3.10: Performance of Vantage for various viewing delay distributions.

44

An important aspect of Vantage is the ability to optimize the video upload process for differ-
ent distributions of the viewing delays. We evaluated the performance of Vantage for three dif-
ferent viewing delay distributions, one skewed towards real-time viewing, one skewed towards
delayed viewing and one with uniform weights for low latency and delayed viewing. Figure 3.10
shows the effect of these weights on the quality of video at different viewing delays between 0
and 30 seconds. For low viewing delays between 0 and 10 seconds, Vantage with a real-time
skewed delay distribution achieves the highest quality, whereas for highr viewing delays be-
tween 22 and 30 seconds, Vantage with a delay skewed distribution achieves the highest quality.
Vantage with a uniform delay distribution strikes a balance between the two across all delays,
achieving the highest quality for viewing delays between 10 and 22 seconds. This demonstrates
that Vantage can not only support multiple time-shifted viewing delays, but also be tuned to cater
to the exact distribution of the viewing delays for optimized QoE across the different delays.

3.7.4 Quality improvements for dynamic videos
In addition to improving QoE in the face of bandwidth variations, Vantage can also be used to
compensate for lower video quality for harder to encode segments of a video, even when there is
no bandwidth variation. Video content with varying compression difficulty is common in video
game streaming applications like Twitch, where the video is significantly harder to encode during
highly dynamic segments compared to more static segments like in-game menus. To emulate this
setting, we run Vantage and Base-RT for the Animation video, which is an animated sequence
with highly dynamic scene content, with a constant bandwidth of 1.5Mbps.

Base-RT causes 7 frames to be dropped. These drops not only affect real-time viewing, but
are also present during delayed viewing. On the other hand, Vantage drops 8 frames in real-time,
but retransmits these later during the live-stream, resulting in no lost frames for delayed playback
and a corresponding increase in the SQI-SSIM from 0.960 (for Base-RT) to 0.963.

3.7.5 Optimizer period.

0 5 10 15 20 25 30
Time-shift delay (seconds)

0.55

0.60

0.65

0.70

0.75

0.80

SQ
I-S

SI
M

1 sec
2 sec (Vantage)
4 sec
8 sec

Figure 3.11: Effects of choosing different optimizer periods on the video quality. Vantage uses
P = 2 sec

We ran Vantage with different values of P ranging from 1 second to 8 seconds, and the re-
sults are shown in Figure 3.11. Choosing a large time period allows the optimizer to spread

45

the retransmissions over a longer duration, resulting in better real-time quality, but smaller im-
provements for delayed viewing since the bandwidth estimates are stale. Smaller time periods
result in more accurate bandwidth estimates, but choosing a time period that is too small results
in a bigger drop in the real-time quality and smaller improvements for delayed viewing due to
retransmissions being squeezed into shorter periods.

3.7.6 Errors in bandwidth estimation.

0 5 10 15 20 25 30
Time-shift delay (seconds)

0.6

0.7

0.8

SQ
I-S

SI
M

50% underestimate
Exact future estimate
Past estimate (Vantage)
100% overestimate

(a) AT&T-LTE

0 5 10 15 20 25 30
Time-shift delay (seconds)

0.88

0.90

0.92

0.94

SQ
I-S

SI
M

50% underestimate
Exact future estimate
Past estimate (Janus)
100% overestimate

(b) Verizon-LTE

0 5 10 15 20 25 30
Time-shift delay (seconds)

0.45

0.50

0.55

SQ
I-S

SI
M

50% underestimate
Exact future estimate
Past estimate (Janus)
100% overestimate

(c) TMobile-UMTS

Figure 3.12: Effects of bandwidth mis-estimation, and performance of Vantage compared to
using perfect bandwidth estimates.

Recall from Section 3.5.3 that Vantage’s scheduler uses the average bandwidth from the pre-
vious 1 second to schedule frame transmissions for a time period that is 2 seconds in the future.
To evaluate the effect of bandwidth misestimation, we analyze how Vantage performs when the
bandwidth estimates provided to Vantage’s scheduler are incorrect. To do this, we test Vantage’s
scheduler with 4 different types of bandwidth estimates - (1) Perfectly accurate bandwidth esti-
mate using an oracle that provides the exact future bandwidth, (2) Bandwidth estimate based on
the past, which is practical to implement, (3) a bandwidth estimate that consistently overshoots
the oracle-based estimate by 100%, and (4) a bandwidth estimate that consistently undershoots
the oracle-basd estimate by 50%.

Figure 3.12 shows the SQI-SSIM for different time-shifted delays when Vantage is faced with
varying degrees of bandwidth estimation error for the three network traces using Talking Heads.

46

Vantage in its normal operation mode (i.e., using the average bandwidth of the past) is listed as
“Past estimate (Vantage).”

We see that Vantage achieves only slightly lower SQI-SSIM values across times-shift delays
compared to what it would achieve with knowledge of the exact future bandwidth. Across all
video-trace combinations, we find that Vantage results in drops in quality of at most 1.7%, 3.2%,
and 2.4% for real-time, 15 second, and 30 second viewing delays, as compared to what it would
achieve with knowledge of the exact future bandwidth. This suggests that Vantage’s approach
of using the average bandwidth from the previous 1 s is satisfactory for generating high-quality
bandwidth allocation schedules and Vantage is resilient to errors in bandwidth estimation.

Figure 3.12 further indicates that Vantage is highly resilient to even large bandwidth estima-
tion errors due to effective fallback mechanisms: Vantage achieves high SQI-SSIM even when
the bandwidth is severely mis-estimated. The real-time video is largely unaffected by bandwidth
misestimation in the scheduler since the execution engine adapts to rapid variations in the real-
time bandwidth (described in Section 3.5.3). When the generated retransmissions are too large
to be transmitted, the scheduler overwrites the schedule in the next iteration and does not send
the retransmissions, and instead allocates the available bandwidth to the real-time video stream.
On the other hand, when the generated retransmissions are small, they get transmitted faster and
the excess bandwidth is again allocated to real-time frames in order to utilize all of the available
bandwidth.

3.7.7 Ablation studies.

0 5 10 15 20 25 30
Time-shift delay (seconds)

0.55

0.60

0.65

0.70

0.75

0.80

SQ
I-S

SI
M

1 sec
2 sec (Vantage)
4 sec
8 sec

Figure 3.13: Comparison of Vantage with simpler retransmission schemes based on restricted
versions of Vantage.

The use of a quality enhancing retransmissions to improve the video quality for higher view-
ing delays can be implemented in multiple ways and it is important to understand the additional
benefits Vantage’s design provides over simpler mechanisms such as reserving a fixed amount
of bandwidth for enhancing the quality of the video frames affected by network impairments.
The effectiveness of using Vantage can be attributed to three core design ideas: (1) optimizing
bandwidth allocation across the real-time and retransmitted frames, (2) optimizing the choice of
which frames to retransmit based on the population distribution, (3) and predicting the SSIM
of the real-time and quality-enhancing frames for the optimization formulation. To understand

47

the benefits of using Vantage over simpler designs, we conducted ablation studies comparing
Vantage to restrained versions of Vantage.

Worst frame heuristic only considers the worst 30 frames for scheduling in each iteration,
but lets Vantage perform bandwidth allocation based on the bitrate-SSIM curves to optimize the
quality across the time-shifted delays. This is similar to a naiv̈e solution that performs optimal
bandwidth allocation, but selects frames for quality-enhancing retransmissions every 2 seconds
according to a heuristic that picks a few of the worst frames. This approach works well for
the two extreme viewing delays (real-time and 30 seconds of delay), but performs poorly for
intermediate delays.

Unweighted optimization runs Vantage with equal weights for each frame, giving equal
importance to real-time frames and retransmissions. This is similar to a slightly smarter heuristic
that prefers contiguous segments for retransmission (since we penalize the selection of isolated
frames in the optimization).

No SSIM prediction runs Vantage with a fixed bitrate-SSIM curve. As a comparison point
for Vantage, this ablation demonstrates the importance of performing smart bandwidth allocation
across individual frames based on the actual video quality instead of a simple heuristic based
bandwidth allocation strategy.

The results of running Vantage and the restrained versions on the AT&T LTE trace and the
talking heads video are shown in Figure 3.13. We observe that Vantage performs significantly
better than the restrained versions, demonstrating the benefits of each design feature Vantage’s
design.

3.8 Related Work

Previous work related to video streaming including WebRTC [44], RTMP [43], MPEG-DASH [9],
HLS [10] and SVC [57] are discussed in earlier sections. We discuss additional related work in
this section.
Joint bitrate selection and transport. Salsify [14] couples encoding and transport in order to
match available bandwidth for real-time communication. This improves the quality and delay
for interactive video but does not consider the variety of delays at which viewers interact with a
single video, which Vantage targets.

Downstream path. There has been a considerable amount of work in improving content de-
livery on the downstream path for various network conditions (e.g., [47, 64, 65, 66]). In contrast,
Vantage focuses on improving quality of experience by mitigating network variability on the
upload path. Targeting the upload path is critical since techniques for improving the download
quality are rendered ineffective if the quality of the uploaded video was poor to begin with. This
is especially relevant for SLVS platforms due to the high degree of variability of mobile networks
over which streams are commonly broadcasted.

Prioritization in multimedia. Several previous works have developed transport protocols [67]
and application-specific optimizations (e.g., 360-video [68, 69, 70, 71]) which prioritize multi-
media to improve quality. Vantage uses a similar technique (of selective prioritization) to priori-
tize real-time frames over retransmissions.

48

3.9 Conclusion and Key Takeaways
In this chapter, we presented the design of our system, Vantage. Vantage, a live video upload
system that explicitly accounts for the diverse time-shifted viewing delays common in social
live video streaming platforms. Vantage balances available upload bandwidth between real-time
frames and quality-enhancing retransmissions of previously impaired frames, resulting in high
QoE for real-time and time-shifted viewing simultaneously. Compared to existing live video
upload solutions tailored for either real-time or delayed viewing, Vantage improves the SQI-
SSIM for time-shifted viewing by 19.9% on average, with only minor reductions in real-time or
delayed quality.

The key takeaways from this chapter are
1. Traditional notions of QoE for video streaming applications are often not applicable for

emerging video streaming applications, or consider a severely limited perspective of the
QoE for applications like SLVS.

2. A carefully designed system that targets the specific QoE needs of a video streaming ap-
plication can significantly improve the end-user experience.

3. The use of cross-layer designs that leverage insights regarding the properties of video com-
pression algorithms in order to perform tasks like bitrate selection and frame scheduling
is a very useful paradigm in order to address the QoE requirements of emerging video
streaming applications.

49

50

Chapter 4

Prism: Handling packet loss for ultra-low
latency video.

Steady improvements in networking algorithms, hardware, and video coding techniques have
enabled the Internet to support a wide range of video applications (e.g. live conferencing, large-
scale broadcasts, video-on-demand). Recently, a new class of video streaming applications has
emerged: ultra-low latency interactive video. These applications offload compute and rendering
to the cloud, and stream the view-port to the end user. Examples of these applications include
virtual game consoles (Stadia [16], GeForce NOW [17], XCloud [72]), cloud AR [73], and
virtual desktop (Chrome Remote Desktop [74], Azure Virtual Desktop [75]). These applications
push the limits of existing streaming techniques and network infrastructure, and have extremely
demanding QoE requirements (video stream quality and end-to-end frame delay).

The Internet’s design fundamentally follows a best-effort philosophy - there are no guarantees
for reliable delivery of packets. As a result, applications must deal with issues such as packet
loss [76], which is especially harmful for low-latency video streaming applications due to the
interdependence between frames in compressed video (e.g. P- and B-frames in MPEG). Loss of
video data as a consequence of packet loss stalls the video decoder pipeline, since past frames
need to be decoded in order to decode a P-frame.

In this chapter, we present a system called Prism. Prism incorporates a novel frame transport
protocol, optimizations at the video codec level, and deep-learning based packet loss prediction
to significantly improve the QoE by achieving smoother video playback without significantly
sacrificing video quality.

4.1 Packet Loss Mitigation for Real-Time Video
Packet loss mitigation strategies fall into four broad categories:

1. Preventing data loss: Techniques like FEC [77, 78] transmit redundant packets to avoid
data loss even if some packets are lost.

2. Concealing lost data: Techniques like partial P-slice decoding [79, 80], error conceal-
ment [81, 82], joint source-channel coding [20], and scalable coding [57, 83] (SVC) are
able to continue decoding the video at a reduced quality when packet losses occur.

51

3. Recovering lost data: Packet- or frame-level retransmissions [84] can be used to recover
lost video data, and has the benefit zero bandwidth or performance overhead when no
losses occur.

4. Recovering from data loss: IDR-frames and slice-based intra-refresh [85] result in lower
delays compared to (3) by eliminating the need for the video decoding pipeline to catch up
to the current frame.

Techniques that prevent or conceal data loss (FEC, partial decoding, error concealment, scal-
able coding) enable packet loss mitigation without requiring receiver feedback, and thus, do
not incur a round-trip penalty for loss recovery. On the other hand, these techniques break down
when packet losses exceed a certain threshold, resulting in non-recoverable video data loss. Non-
recoverable video data loss when using FEC has the same implications as a packet loss when not
using FEC, whereas with techniques like loss concealment, packet losses manifest as undesirable
artifacts that significantly degrade the QoE for immersive applications like cloud gaming, AR,
and VR.

There are two techniques used for recovering from video data loss: packet retransmissions,
and IDR frames. These solutions force applications to make difficult tradeoffs between accept-
ing significantly degraded picture quality, or significantly higher frame delay when affected by
packet loss [79, 86]. For instance, during bursty loss events, transmitting IDR frames reduces
frame delay since they can be independently decoded. On the other hand, since IDR frames do
not leverage temporal redundancies in video data, they require more bits per frame compared
to P-frames for equivalent picture quality. In the case of retransmission based recovery, high
picture quality is maintained since the frames are still encoded as P-frames. Unfortunately, since
the receiver accumulates a backlog of undecoded frames until the lost data has been recovered,
the end-to-end frame delay remains high until the decoder catches up.

In order to recover from non-recoverable video data loss, the sender must first be notified,
after which the sender can retransmit packets or send IDR frames to recover from the data loss
event. This process incurs a minimum delay of 1 RTT before the sender can trigger loss recovery.
In order to reduce this delay, one could use speculative loss prediction mechanisms [87, 88], but
this approach has the risk of false positives, which can affect the video quality significantly (eg.
when using IDR frames).

4.2 Overview of Contributions
In this chapter, we present the design of our system called Prism. Prism is a hybrid predictive-
reactive packet loss recovery scheme that uses a split-stream video coding technique to meet the
needs of ultra-low latency video streaming applications. Prism’s approach enables aggressive
loss prediction, rapid loss recovery, and high video quality post-recovery, with zero overhead
during normal operation - avoiding the pitfalls of existing approaches.

Prism leverages the insights that (1) IDR-frames enable rapid recovery of a video stream
after a loss event, since they are immediately decodable and reset the decoder state, and (2) A
stream of P-frames can sustain high quality for some time even after a reduction in bitrate, and
thus enable rapid recovery post-recovery. When Prism identifies a potential loss event, it splits
the video stream into two substreams - a low-latency, unreliable IDR-frame stream, and a high

52

quality, reliable P-frame stream. The IDR-frames enable the application to continue displaying
frames with low delay, albeit at a lower quality. When the lost P-frame data is retransmitted and
the pending frames are decoded, the application can quickly switch back to the higher quality
P-frame stream. Prism carefully allocates the total available bandwidth between the two streams
by using results from a novel video analysis and optimization pipeline that runs offline, and thus
avoids real-time computational overhead.

Prism’s approach reduces the impact of falsely triggering loss recovery, enabling the use of
deep-learning based loss prediction. This allows Prism to take action before potential losses
occur, reducing the time to recovery. When Prism’s recovery mechanism is falsely triggered, the
receiver can simply decode and display the high quality P-frame stream. Prism eliminates the
hard tradeoffs present in traditional approaches and provides a more flexible trade-off between
delay and video quality.

Prism’s key contributions include:
1. Split Stream Video Coding: During packet loss, Prism splits the available bandwidth

across a low latency IDR-frame stream and a high quality P-frame stream. This enables low
frame delay during loss events, and ensures high video quality post recovery. In addition,
the impact of falsely triggering Prism’s loss recovery is low; this enables Prism to use loss
prediction mechanisms to respond early to potential packet loss.

2. Deep-learning Based Loss Prediction: Prism incorporates deep-learning based packet
loss prediction, allowing Prism to react to losses earlier, reducing the network round-trip
penalty for recovery from packet loss.

3. Video Analysis Pipeline: Prism analyzes video scenes offline to optimize the bandwidth
allocation across the two video streams. Prism’s novel black box encoder modeling tech-
nique provides fast approximations of the video quality for given bitrate configurations,
speeding up the optimization pipeline by multiple orders of magnitude.

Our evaluation of Prism’s real-time implementation using a diverse set of video game footage
and on a variety of emulated network conditions shows that Prism reduces the quality penalty
of using IDR-frames for loss recovery, while preserving the low delay benefits of using I-frames
for recovery. Simulation of Prism’s algorithm using discrete event simulation techniques on real
world network traces from M-Labs [89] shows that Prism can outperform IDR-frame based re-
covery and P-frame transmissions by handling packet loss better in the presence of significant
delay and bandwidth variation, reducing the quality penalty of I-frames by 81 % on average. Ad-
ditionally, Prism’s aggressive loss prediction mechanism reduces delay by proactively triggering
loss recovery, and in conjunction with Prism’s split-stream approach, achieves much higher video
quality compared to using I-frames for recovery with loss prediction.

4.3 Video Compression Background

Video frames are comprised of slices, where each slice can be one of three types: (1) Intra (or
I), (2) Predicted (or P), and (3) Bidirectional (or B). An I-slice is encoded and decoded indepen-
dently, whereas P-slices depend on past frames and B-slices may depend on both, past and future
frames. P- and B-slices leverage inter-frame redundancy by using motion compensation [90]

53

to approximate the slice by using localized motion vector references to past and future frames,
significantly reducing the bitrate requirement to achieve the desired picture quality.

Low latency streaming applications rely heavily on the use of IDR-frames (independent data
refresh) and P-frames. These applications encode video as P-frames during normal operation
due to their compression efficiency - thus, a single missing packet stalls prevents the decoding of
subsequent frames. IDR-frames are special I-frames (contains only I-slices) that are commonly
used to recover from video data loss, since they reset the decoder state which can then discard
previous undecoded frames and decode the most recent frames with minimal delay. In the sub-
sequent text, we will use the terms IDR-frame and I-frame interchangeably since we are talking
about loss recovery. It is possible to have an I-frame that does not reset the decoder state. In this
case, the P-frames that come after this frame can still use other past frames as reference. These
frames are often used in VOD content in order to support efficient seeking operations during
playback.

Prism leverages some key properties of video compression - (1) The quality of an I-frame
depends only on the bitrate and the content of a particular frame, (2) I- and P-frames demonstrate
diminishing returns with respect to the video quality as the bitrate increases, and (3) In addition
to motion, frame content, and the bitrate, the quality of a P-frame also depends on the quality of
previous frames since they are approximated from previous frames using motion vectors.

4.3.1 Understanding Video Quality - SSIM
SSIM (Structural Similarity [27]) is an objective metric that is used to evaluate the visual quality
of a video frame. SSIM is computed by comparing small windows extracted from the source
frame (reference frame) and the compressed frame, and uses the average, variance, and covari-
ance of the pixel values in these windows. We use FFMPEG (lavfi [91]) to compute the SSIM
values (the parameters used for SSIM like window size can vary across implementations). It’s
value typically ranges from 0 (worst quality) to 1 (best quality) (Note: The raw SSIM value can
be negative, if the covariance between the two frames being compared is negative. Most tools
will adjust the value to be in a range of 0-1 in a linear manner). In this chapter, we use this metric
in order to evaluate the quality of a frame, and also as the metric to optimize for in our system.
Note that we could use any other quality metric, like the peak signal-to-noise ratio (PSNR) or
VMAF [92]. It is useful to get a high level understanding of what different SSIM values mean,
and how video content influences the numerical SSIM values.

The visual quality difference between I-frames and P-frames for Minecraft (video with the
lowest difference) and for FF XV (video with the highest difference) is shown in Figure 4.1.

In the case of Minecraft, while the difference in SSIM between I-frames and P-frames for
Minecraft is small, the visual impact is significant in terms of what Minecraft should look like.
Since Minecraft uses macro-pixel like textures, if the pixel edges are blurry, this looks quite
different from what Minecraft is expected to look like. On the other hand, the SSIM value does
not change much, because in the SSIM computation window, the edge of a macro-pixel plays
a much smaller role. This is because the edges of the pixel textures in Minecraft comprise a
smaller portion of the overall frame - the blurry edges only reduce the SSIM by a small amount.

Thus, even if the difference in SSIM values is small, there can be a large difference in visual
quality for some videos. This makes it harder to interpret the visual quality based on absolute

54

(a) Minecraft
I-frame (0.91)

(b) Minecraft
P-frame (0.96)

(c) Minecraft
Raw

(d) FF XV
I-frame (0.62)

(e) FF XV
P-frame (0.90)

(f) FF XV Raw

Figure 4.1: Visualization of the difference between I-frames vs P-frames at 10 Mbps, for the
videos with the highest and lowest difference in average quality. The SSIM is denoted inside
parentheses.

Minecraft

Rayman Legends

Overwatch GTA-V

Bejeweled 3

Dauntless Apex
Fortnite

Black Desert
Tekken

Maple Story
LoL TF

FF XV
0.7

0.8

0.9

1.0

SS
IM

 a
t 1

0
M

bp
s I-Frame

P-Frame

Figure 4.2: Comparison of average video quality using just I-frames and just P-frames at 10
Mbps, sorted in the order of increasing difference between the average quality.

values of SSIM. This is not a significant factor for our use case, since we never compare absolute
SSIM values across different videos. Later, in our evaluation (Section 4.6), instead of the absolute
difference in SSIM values, we use the relative difference between the structural dissimilarity
(DSSIM), defined as (1 − SSIM) for SSIM values that have been adjusted to be in the range
[0, 1], or (1−SSIM)

2
for raw SSIM values in the range [−1, 1]. The relative DSSIM values represent

how much closer the video frames are to the source video frame instead of a baseline SSIM value
of 0 (or -1, in the case of raw SSIM values that lie between -1 and 1).

For example, in the case of Minecraft (shown in Figure 4.1), the DSSIM of (b) is 0.04, and
the DSSIM of (a) is 0.09. Thus, (b) represents a 56% reduction in distortion over (a) with respect
to the source image, (c). Similarly, in the case of FF-XV, (e) represents a 74% reduction in
distortion over (d) with respect to the source image, (f).

4.3.2 I-frames vs. P-frames Compression Efficiency
In Figure 4.2, we compare the average video quality when the video is encoded using only I-
frames, and when the video is encoded using P-frames at 10 Mbps. We analyze videos in the
CGVDS [93] dataset, and the videos are described in Section 4.7. The videos are sorted in the
order of increasing difference in the quality from left to right. The difference in video quality
between I-frames and P-frames is a key factor that influences Prism’s design, which we discuss

55

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Bitrate (Mbps)

0.05

0.10

0.15

SS
IM

 D
iff

. (
P

vs
. I

)
GTA V

BlackDesert

FFXV
Tekken

LoLTF

Dauntless

RaymanLegends
Overwatch

Minecraft

MapleStory

Fortnite Bejeweled3

Apex

Figure 4.3: Difference between P-frame quality and I-frame quality across a range of bitrates.

in Section 4.5.2. The difference in quality between I-frames and P-frames is affected by the
following factors:

1. The baseline quality of I-frames: If a video has simple textures and areas with large,
flat colors, intra-compression is very effective and the video quality is already high, which
reduces the impact of motion compensation. This is true for videos like Minecraft (large
area occupied by sky, areas inside the pixel textures are flat colors), Rayman Legends,
Overwatch, and Bejeweled 3 (simplified textures). On the other hand, I-frames are ineffi-
cient when videos have complex textures, and the relative difference between I-frame and
P-frame coding efficiency can be very large, i.e. P-frames may be highly beneficial in such
scenarios.

2. The efficacy of P-frames: If a video has complex textures, and the inter-frame motion is
not a simple 2D translation or affine transform (eg. 3D first person/ third person games),
motion compensation is not very effective. This is true for videos like Minecraft (the
edges of the pixelated blocks don’t align well after motion compensation) and Overwatch
(aliasing in frames is not stable across frames). Motion compensation is very effective
for videos like LoL TF (static background) and Maple Story (translating background). In
addition, when the video quality achieved using I-frames is low, there is a larger gap in the
video quality between using just I-frames versus using P-frames and motion compensation.
This is because there is more room for improvement in the video quality (since there are
decreasing returns if the baseline quality is already high), and thus using P-frames tends to
result in a larger increase in SSIM (eg. Black Desert, FF XV).

The impact of bitrate on the difference between I-frame and P-frame quality is shown in
Figure 4.3. The difference in video quality reduces as the bitrate increases. In the case of a local
network game streaming setup, where the video bitrate can be much higher, the best approach to
mitigate the adverse impact of packet loss can be to simply transmit I-frames all the time, since
there is enough bandwidth available that I-frames achieve sufficient video quality. This avoids
video decoding stalls caused by the loss of P-frames.

56

(a) Impact of I-frame insertion on the video quality.

0 20 40 60 80

Frame number

0.75

0.80

0.85

0.90

S
S
IM

I-frames

P-frames

First I-frame

Tr
an

sit
io
n

to
 2

0
M
bp

s

Tr
an

sit
io
n

to
 1

0
M
bp

s

(b) Change in video quality with bitrate changes.

Figure 4.4: Temporal behavior of the video quality of P-frames when encoding parameters are
changed (e.g. I-frame insertion, bitrate change).

4.3.3 Bitrate Transitions and P-frame Quality

Another video coding property that is relevant for Prism’s design is how the video quality of a
P-frame stream converges to the steady state video quality. Since P-frames use past frames as
reference, for a given bitrate, the video quality of a P-frame will be lower if the reference frame
used during video encoding has lower quality. Eventually, the video quality of the P-frames
will converge to the steady state. For example, the gradual convergence behavior of P-frames
determines the video quality when the bitrate of a P-frame stream is changed, or when an I-
frame is inserted in a video stream.

In Figure 4.4a, we show the SSIM of a sample video encoded as P-frames. The Orange line
shows the video quality of the P-frame stream at a fixed bitrate (10 Mbps). The Blue line shows
the quality of the P-frame stream at the same bitrate, but with I-frames inserted periodically
(every 15 frames). The I-frames are encoded at the same bitrate, and thus, have lower quality
than the steady state P-frame stream. Note how the insertion of an I-frame not only results in an
immediate drop in the video quality, but the low quality is sustained across multiple frames. This
is the main challenge with using I-frame based recovery for real-time streaming video - I-frames
have a significant impact on video quality, and can result in pixelation and block artifacts - this
is highly undesirable for cloud-streaming applications like cloud gaming and cloud AR/VR.

In Figure 4.4b, we compare the temporal behavior of SSIM when the bitrate is changed. We
encode the video twice, once purely as I-frames, and a second time as a pure P-frame stream.
The bitrate is initially set to 10 Mbps, and is increased to 20 Mbps at frame 30. At frame 60, the
bitrate again drops to 10 Mbps. The red line shows the quality of the I-frame stream. In this case,
the change in quality is instantaneous - the SSIM of an I-frame only depends on the contents of
the frame and the encoding bitrate. The purple line shows the quality of the P-frame stream. In
this case, the SSIM increases gradually when the bitrate is increased, and decreases gradually
when the bitrate is reduced. This property is a core aspect of Prism’s design, and we discuss this
in Section 4.4.3.

In Figure 4.5, we plot the distribution of the number of frames until a P-frame stream con-
verges to 80% of the steady state quality when the bitrate changes (increase and decrease).

When motion compensation is very effective, the video quality decays slowly when the bitrate

57

0 8 16 24 32 40
Num. Frames until 80% converged

0.0

0.2

0.4

0.6

0.8

1.0
Pr

op
or

tio
n

GTA-V
Black Desert
FF XV
Tekken
LoL TF
Dauntless
Rayman Legends
Overwatch
Minecraft
Maple Story
Fortnite
Bejeweled 3
Apex

(a) Bitrate Decrease.

0 4 8 12 16 20
Num. Frames until 80% converged

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

GTA-V
Black Desert
FF XV
Tekken
LoL TF
Dauntless
Rayman Legends
Overwatch
Minecraft
Maple Story
Fortnite
Bejeweled 3
Apex

(b) Bitrate Decrease.

Figure 4.5: Distribution of the time taken by a P-frame stream to converge to 80% of the quality
of a steady-state P-frame stream.

(a) Overwatch motion
vectors

(b) Overwatch residuals (c) MapleStory motion
vectors

(d) MapleStory residuals

Figure 4.6: Visual comparison of motion compensation performance for two videos. Motion
compensation is more effective at reducing the bitrate requirements for Top-down 3D scrolling
games like MapleStory.

is lowered (eg. LoL TF and MapleStory). On the other hand, motion compensation is less
effective for videos like Overwatch, and each compressed frame consists of a large amount of
encoded residuals, making each frame more like an I-frame. Thus, the video quality converges
quickly, and Prism is less effective.

On the other hand, when intra-compression is more effective (eg. Rayman Legends), the
quality increases quickly to converge to the steady state. This results in higher video quality for
the I-frame baseline, resulting in lower gains for Prism (eg. Rayman Legends in Figure 4a in the
main paper).

In Figure 4.6, we show the motion vectors overlaid on a motion compensated frame for
Overwatch and MapleStory, and also the residual difference between the motion compensated
frame (reconstructed using just the motion vectors) and the uncompressed frame. In the case of
Overwatch, the motion compensated frame differs significantly from the uncompressed frame,
whereas in the case of Maple Story, the motion compensated frame is very close to the uncom-
pressed frame, with small residuals present at sharp edges and object boundaries. Thus, P-frames
in the case of Overwatch behave closer to I-frames, since a large component of the compressed
video frame data is the residual. Thus, the SSIM transition times for the P-frames are much

58

lower. On the other hand, the P-frames of Maple Story are largely comprised of motion vectors,
with very small residuals that need to be encoded. Hence, the SSIM transition times are much
longer.

4.4 Loss Detection and Recovery
The goal of this paper is to design a video data loss recovery mechanism that simultaneously
achieves (1) low delay and smooth video playback, (2) high picture quality, (3) minimal quality
impact under false packet loss triggers, enabling aggressive loss prediction without significant
penalties, and (4) zero overhead under normal operation. While loss prevention techniques (e.g.
error coding, FEC) can reduce the frequency of video data loss with some bandwidth and com-
pute overhead, they provide no guarantees. Transmitting IDR-frames on video data loss achieves
(1) and (4), and retransmission of lost P-frame packets achieves (2), (3) and (4). In the following
subsections, we discuss: (1) the impact of loss detection mechanisms, (2) the two reactive recov-
ery mechanisms, and (3) an example in Section 4.4.3 to show how Prism’s split stream approach
can achieve all of the above properties simultaneously.

4.4.1 Loss Detection
The sender getting notified of video data loss is the first step in loss recovery, which then triggers
the loss recovery mechanism. Since packet losses are often accompanied by periods where no
ACKS are received, or an increase in delay (e.g. due to cross traffic running loss-based TCP),
speculatively triggering loss recovery using aggressive loss prediction (e.g. sub-RTT timeouts,
loss prediction using machine learning) can reduce video stuttering and frame delays [94, 95]. On
the other hand, noisy networks, queue-building cross traffic (e.g. BBR [96]), packet reordering
and ACK loss [97] may result in frequent false triggers. Excessive false triggering of recovery
mechanisms (like IDR-frames) harms video quality (§ 4.3). Delaying recovery until packet loss
can be verified results in significant video stutter, which is unacceptable for ultra-low latency
video streaming applications. Prism drastically reduces the impact of false loss recovery triggers
on video quality, and thus enables the use of aggressive loss prediction mechanisms in order to
reduce video stutter under packet loss.

4.4.2 Reactive Loss Recovery
Packet Retransmissions: A video data loss in a P-frame stream can be recovered using packet
retransmissions. This approach achieves high picture quality by leveraging the compression
efficiency of P-frames due to motion compensation, but results in higher end-to-end frame de-
lays and video stutter. Consider a video stream being sent over a link with an RTT of 60 ms.
When a loss occurs, the sender is only notified 60 ms after having sent the original data. Dur-
ing this period, the sender keeps encoding frames as P-frames, and these frames get queued at
the decoder without being displayed, until the lost packets are retransmitted. On receipt of the
retransmissions, the decoder needs to “catch up” to the current frame, which may take a long
time depending on decode performance. For example, for a 60FPS video where each frame takes

59

0 10 20 30
Frame number

0.95

0.96

0.97

0.98

0.99
SS

IM
P-frames(20 Mbps)
I-frame insertion
(10 Mbps)
Prism (Spurious Loss
8/2 Mbps Split)
Prism (Real Loss
8/2 Mbps Split)

(a) SSIM behavior when inserting I-frames or
changing P-frame bitrate.

Frame number

Av
l.

B
W

Lo
ss

En
c.

SS
IM

0

D
ec

.
SS

IM

Loss

5 10 15 20

(b) Prism timeline depicting the flow of
events when a packet loss occurs.

Figure 4.7

10ms to decode, catching up with 60ms of backlogged frames can take up to 100 ms 1. When
streaming in 4K to low power client devices like mobile phones and TV streaming sticks, the
decode time can be much closer to the frame time, significantly increasing the recovery delay.

I-frames: When packet loss occurs, transmitting the latest frames as I-frames (IDR) resets
the decoder state, and thus, the latest frames can be decoded and displayed immediately. Us-
ing I-frames in conjunction with aggressive loss detection can significantly reduce video stutter
and improve video smoothness. Unfortunately, (1) IDR frames have much lower video quality
compared to P-frames encoded at the same bitrate, and (2) the low quality of an IDR frame also
affects the video quality of subsequent P-frames, since their quality depends on the video quality
of past frames.

4.4.3 Proposed Hybrid Approach
The two loss recovery mechanisms discussed above have their own benefits and downsides: P-
frame retransmissions achieve higher picture quality, but incur higher delays and stutter. On
the other hand, IDR-frames improve video smoothness and reduce latency at the cost of video
quality. In Prism, we propose a hybrid architecture that combines the two mechanisms to achieve
a better trade-off between latency and video quality by leveraging two key properties (§ 4.3): (1)
The diminishing returns of video quality with higher bitrate, and (2) the dependence of the quality
of a P-frame on the quality of past frames. When packet loss occurs, the quality of a P-frame
stream can be preserved for a short duration at a reduced bitrate, while the residual bandwidth
can be used for transmitting I-frames in order to maintain low delay until the P-frame stream
recovers using packet retransmissions.

In Figure 4.7a, we encode a video segment for “GTA-V” using different encoding configu-
rations. The yellow line is the steady state P-frame SSIM at 20 Mbps (best case scenario, no
packet loss). The line marked “I-frame insertion” demonstrates the instantaneous drop in picture

1Let x be the delay after the loss until P-frames recover. Frames decoded: x
10 , frames sent: 60+x

16 . Solving, we
get x=100

60

quality, and the impact on the quality of subsequent P-frames when I-frames at 10 Mbps are used
during loss recovery (between frames 5 and 10). During loss recovery, Prism splits the avail-
able bandwidth in order to continue the P-frame stream (at a lower bitrate), while additionally
transmitting low delay I-frames. As an example, suppose we allocate 2 Mbps for the P-frame
stream and 8 Mbps for the I-frames during loss. The I-frames reduce latency during the ongoing
loss event, and the receiver switches back to the P-frame stream after frame 10. The key insight
here is that when the bitrate is reduced, the quality of the P-frame stream is preserved for a short
duration. The line marked as “Real Loss” denotes Prism’s video quality when real loss occurs
- while the quality during loss is slightly lower compared to I-frames (at 10 Mbps), the video
quality post-recovery is much higher. The line marked as “Spurious Loss” denotes Prism’s video
quality when loss recovery is falsely triggered (i.e. the quality of the P-frame stream), and thus,
Prism’s approach works well with aggressive loss-prediction techniques as opposed to I-frame
insertion.

4.5 Design
In this section, we discuss Prism’s system design, and how it robustly mitigates video data loss
for interactive video streaming applications like cloud gaming, and AR/VR streaming.

4.5.1 Overall Architecture
Figures 4.8a and 4.8b show Prism’s streamer and receiver architectures respectively. The network
transport layers at the streamer and the receiver are responsible for packetization and multiplex-
ing of the two video streams over a single connection. In order to trigger loss recovery, the Prism
controller combines signals from a deep-learning based loss predictor and loss signals from the
transport layer. The controller also determines the allocation of the available bandwidth across
the two video streams.

When no packet loss occurs, frames are encoded as P-frames using all of the available band-
width. The receiver reassembles the packets, decodes and displays the frame. When the trans-
port layer or the loss predictor indicates packet loss, each frame is encoded as a P-frame (by
the primary encoder) and an IDR-frame (by the secondary encoder), and the Prism controller
allocates the total bandwidth across the two streams. The P-frame is transmitted reliably using
packet retransmissions, and the IDR-frames are transmitted as one shot (no retransmissions).
The P-frames after a packet loss are stored in a buffer at the receiver while the transport layer
retransmits the lost packets. Meanwhile, the IDR-frames that make it through are immediately
decoded and displayed, maintaining low video latency while the P-frame stream recovers from
the loss.

Prism needs to optimize the bandwidth allocation in order to maximize the benefit of this
approach, and ensure that the quality is better than simply using I-frames. Prism’s offline anal-
ysis pipeline uses prerecorded training video sequences to compute compact bandwidth alloca-
tion tables using a greedy heuristic in order to make bandwidth allocation decisions in real-time
(§ 4.5.2). Prism uses a novel black box encoder modeling technique that enables fast and accurate
estimation of the video quality for arbitrary video encoding schedules (bitrate, IDR-frame inser-

61

Raw
Frame

Primary
Encoder

Secondary
Encoder

InternetPrism
Controller

Packetized
Frames

Encoding
bitrate

Encoding
bitrate

Control Plane
Data Plane

Representative
Video Segments

Prism Analysis
Pipeline

Offline Analysis

Decision Table

Network
Transport

Loss
Predictor

Network
feedback

(a) Streamer architecture.

Internet
Network

Transport

Frame Packets

Acks
Secondary
Decoder

Primary
Decoder

Prism
Receiver

Displayed
Frame

P-frame Reorder
Buffer

(b) Receiver architecture.

Figure 4.8: Prism architecture.

tions) without actually encoding the video, which reduces the amount of computation required
for generating the bandwidth allocation tables by multiple orders of magnitude (§ 4.5.3).

4.5.2 Optimizing Bandwidth Allocation

Consider the timeline shown in Figure 4.7b, with the X-axis denoting the frame number. In the
example, no packet losses occur until frame 5, and frames 6 through 9 are affected by packet
loss (shown in the loss timeline). The video bitrate of the P-frame stream before loss recovery is
triggered is Bpre Mbps, and the available bandwidth during the period of loss recovery is Bloss

(Bpre and Bloss are determined by the congestion control and rate control algorithms, assumed
to be constant here for simplicity). During the recovery period, let the encoding bitrate of the
I-frames and the P-frames be EI(f) and EP (f) respectively, where f is the frame number. This

62

gives us the constraint

EI(f) + EP (f) = Bloss ∀ f0 ≤ f ≤ f1 (4.1)

Since the duration of loss is not known beforehand, we propose a greedy optimization strat-
egy: when transmitting a frame during loss recovery, Prism splits the bandwidth assuming that
it is the last frame in the loss recovery state. Thus, given the bandwidth split until frame fi,
Prism needs to determine the allocation for frame fi+1 that balances three things: (1) The video
quality during loss (the quality of the I-frames), (2) the video quality after the loss event (quality
of the last P-frame sent during loss recovery), and (3) the video quality when the loss is spurious
(quality of the P-frames during loss recovery).

We first derive the optimization objective for a known video segment, where the loss recovery
begins at f0 and ends at f1. The mappings between video bitrate and video quality are defined
as:

1. QI(x, f): The quality of frame f when encoded at a bitrate x as an I-frame.

2. QP ([x1...xf], f): The quality of frame f when frames 1...f are encoded as P-frames, and
the bitrate of frame i is xi.

For a frame f transmitted during loss recovery, we define two objective functions, O1 and
O2, to denote the video quality during real loss, and when loss recovery was falsely triggered
respectively. When real loss occurs, the video quality is determined by the quality of the I-frames
(QI in Figure 4.7b) and the quality of the P-frames after recovery (QP after f1 in Figure 4.7b).
If the I-frame allocation is x,

O1(x) = QI(x, f) +

f+K∑
i=f+1

QP ([xf0 ...xf−1, Bloss − x,Bloss...Bloss], i) (4.2)

where K is a fixed horizon of future frames that are assumed to be encoded at Bloss to account
for the quality convergence of the P-frames, and xf0 ...xf−1 are fixed according to the allocations
for past frames during the current loss event (greedy approximation).

When spurious loss occurs, the video quality is determined solely by the quality of the P-
frame stream. Thus,

O2(x) =

f+K+1∑
i=f

QP ([xf0 ...xf−1, Bloss − x,Bloss...Bloss], i) (4.3)

This allows us to define objective function for determining the bandwidth split for a frame f :

xf = argmax
x

w ·O1 + (1− w) ·O2 (4.4)

Here, w is the weight for real loss, and 1− w is the weight for false loss recovery triggers. w is
set based on the accuracy of the loss prediction mechanism (eg. a smaller value for w is better if
false loss recovery triggers are frequent).

In order to find the best split, it is sufficient to sweep different values of x, and pick the
value that maximizes the objective function. Unfortunately, this optimization cannot be solved in

63

real-time since objective function requires the quality of future frames, which are not available
for real-time applications. Prism’s key insight is that while video properties can vary across
individual frames, the result of the optimization is “stable” for a given video style. In 4.5.3, we
describe an offline approach to compute bandwidth allocation tables for a particular video style
using prerecorded training segments, enabling Prism to run in real-time without any runtime
computational overhead.

4.5.3 Offline Analysis Pipeline
Solving the optimization problem in real-time when a loss event occurs is impractical not only
from a delay or overhead perspective, but also not possible since the objective function includes
the quality of future frames. To address this issue, Prism analyzes pre-recorded video segments
that are representative of particular scene types, and runs the optimization for a wide range of
bandwidth values and loss durations, for various starting points in the pre-recorded video. The
results are aggregated across the starting points in the video into a decision table that maps
(Bpre, Bloss) → [xf ...xf+D], where D is a maximum limit on loss recovery duration before
Prism falls back onto traditional techniques. Prism uses the appropriate decision tables for the
particular video style in order to determine the bandwidth split in real-time during loss recovery.

Consider the optimization run for a particular section of a pre-recorded video segment. If we
limit the maximum loss duration to 10 frames, and limit Bpre, Bloss, and xf to 1 − 20 Mbps in
steps of 1 Mbps, the brute force approach requires ≈ 20 × 20 × 10 × 10, ie. 40000 different
encoding schedules to be evaluated. In addition, for each evaluation, we must consider around
1 second of video before and after loss recovery for allowing the quality of the P-frames to
converge. Thus, analyzing a single location in a training video requires 80000 seconds of video
encoding (22 hours). This scales up linearly as we sample more locations in the training video
in order to generalize the decision table for a particular video style.

4.5.3.1 Black box encoder modeling

In Prism, we propose a unique approach to reduce the complexity of the offline analysis step,
speeding it up by multiple orders of magnitude. Prism analyzes data from a small set of carefully
designed video encoding runs, which enables Prism to accurately predict video quality for the
given video sample when (1) a frame is encoded as an I-frame, (2) the encoding bitrate of a
P-frame stream is changed, or (3) an I-frame is inserted in a P-frame stream. This enables Prism
to avoid encoding the actual video to compute the objective function when performing a brute
force sweep of the search space for determining the optimal bandwidth splits. To our knowledge,
this method is unique to Prism and has not been published in past work.

Suppose we are given a long sample video of duration N seconds. First, we encode the video
only using I-frames for all bitrates ranging from 1−20 Mbps (20×N seconds of video encoded),
enabling us to compute QI(x, f). Second, we sample K segments (each segment starts at frame
f , duration of 1 second) from the video, and encode each segment in the following manner for
each bitrate E value between 1 Mbps and 20 Mbps:

1. Encode the first frame at a very low bitrate, and the subsequent frames at the chosen bitrate
as P-frames (20 ×K seconds of video encoded). Let’s denote this family of functions as

64

300 350 400 450 500 550 600 650 700
Frame number

0.70

0.75

0.80

0.85

0.90

SS
IM

T(f, 5)

T ′(f, 5)
Steady state (5 Mbps)

Figure 4.9: T(f,5), T ′
(f,5) for various starting points (f) (Tekken)

0 1 2 3 4 5
Absolute SSIM prediction error (%)

0.0

0.2

0.4

0.6

0.8

1.0 Minecraft (Prism)
Minecraft (Naive)
Apex (Prism)
Apex (Naive)
LoL TF (Prism)
LoL TF (Naive)
Overall (Prism)
Overall (Naive)

Figure 4.10: SSIM prediction error - Prism vs. naı̈ve exponential decay.

T(f,E), shown as the red flow lines in Figure 4.9.

2. Encode the first frame at a very high bitrate, and the subsequent frames at the chosen bitrate
as P-frames (20 ×K seconds of video encoded). Let’s denote this family of functions as
T ′
(f,E), shown as the red flow lines in Figure 4.9.

T(f,E) and T ′
(f,E) can be combined and interpolated as a vector field that denotes the quality

convergence of P-frames for a given bitrate E, enabling us to compute the video quality of a
P-frame encoded at E when the video quality of the previous frame is known.

If we sample K = 100 segments from the original video of duration N = 20s, the total
duration of video encoding required is 400s for I-frame qualities, and 4000s for the P-frame
transition properties. This enables us to compute the SSIM of the 40000 encoding schedules for
each starting point in the video discussed in § 4.5.3 without requiring any additional encoding.
If the optimization aggregates across 100 different starting points in the video, this technique
provides more than a three orders of magnitude speed up.

To measure the accuracy of our algorithm, we generated video encoding schedules with ran-
dom changes in the video bitrate and with random I-frame insertions. Each video is encoded
with 100 different random schedules. A zoomed in view of one such random schedule is shown
in Figure 4.11. The lower subplot shows the bitrate schedule and the I-frame insertions, while

65

0.8

0.9

SS
IM

True SSIM
Prism
Exponential decay algorithm

250 275 300 325 350 375 400 425 450
Frame number

0

10

20
Bi

tra
te

 (M
bp

s) Bitrate
I-frames

Figure 4.11: Prism’s SSIM prediction for a particular encoding schedule.

Figure 4.12: Prism’s loss prediction input window and output window.

the true SSIM and the predicted SSIM are shown in the top subplot . We also compared the
results of our algorithm discussed in Section 4.5.3 to a simpler algorithm where the SSIM of the
video converges to the steady state P-frame SSIM using exponential decay (we choose the decay
parameter that minimizes the total absolute error for each encoding schedule). The prediction
error CDFs for three videos (best, worst and one in-between) are shown in Figure 4.10, along
with the overall prediction error CDF across all 13 videos (§ 4.6). Our algorithm for modeling
the video SSIM is very accurate, with 90% of the predictions being within 1% of the true SSIM.
The naı̈ve approach using exponential decay fails to capture the SSIM variations across frames
during transition periods.

4.5.4 Loss Prediction

Prism’s design enables the use of aggressive loss prediction which in turn reduces video frame
delay, since the decoder can utilize the higher quality P-frame stream if the loss prediction was
a false trigger. We designed a simple convolutional neural network that uses network statistics

66

Figure 4.13: Prism’s loss prediction input window and output window.

0.0 0.2 0.4 0.6 0.8 1.0
Loss Pred. Threshold

0.00

0.25

0.50

0.75

1.00

P
ro

p
o
rt

io
n

Loss - Correct Prediction

Loss - Not Predicted

No Loss - Loss Predicted

No Loss - Correct Prediction

Optimal
operation
band

Fewer, but
accurate loss
predictions

Excessive
false loss
triggers

Figure 4.14: Prism neural-net loss prediction accuracy trade-off

from a past window and predicts the occurence of packet loss for a short period in the future.
Prism’s loss prediction neural network uses data from a 200 ms window in the past in order to
predict if there will be a loss in the next 50 ms. The 200 ms window comprises of multiple
overlapping 50 ms windows with a stride of 10 ms. This is shown in Figure 4.12. Each 50 ms
window includes statistics like minimum RTT, maximum RTT, mean RTT, RTT variance, RTT
linear fit, and the number of packets sent and lost. We also include an additional field to mark
windows where no data was available, and use 0 for the other fields for such windows.

The architecture of Prism’s loss predictor is shown in Figure 4.13. The neural network con-
sists of three convolutional layers and three dense layers, and outputs a value between 0 and
1. Loss recovery can be triggered by comparing the output to a threshold, where the threshold
determines the trade-off between mispredicting real losses and falsely triggering loss recovery.
The simplicity of this architecture results in low computational overhead - predicting loss for a
50 ms window takes less than 1 ms on an Intel Core i7 CPU on a single thread. We trained this
model on 9 days of M-Labs NDT data [89], and tested the packet loss prediction performance
for a tenth day.

The neural network outputs a value in the range 0-1, where a value closer to 1 indicates that

67

loss is very likely, and a value close to 0 indicates that loss is unlikely. This design enables Prism
to choose a probability threshold for triggering loss recovery, which determines the trade-off
between loss prediction accuracy and false triggering of loss recovery. This trade-off between
accuracy and false loss recovery triggers is shown in Figure 4.14. While a low threshold for loss
prediction is able to identify many more packet loss events, thus enabling faster loss detection
and recovery for lower delay and smoother video, it also results in a significant number of false
packet loss triggers - Prism is able to adapt it’s bandwidth allocation to the accuracy of loss
prediction since it includes a tuning parameter w (§ 4.5.2) that balances the quality between real
losses and false loss triggers.

4.5.4.1 Training details

We use data from the M-Labs [89] project in order to train Prism’s loss predictor. We use network
traces from a period of 9 days to train the network, and test the performance on data from the
10th day. We filtered the data to only include traces that contained at least 500 windows and had
a maximum RTT less than 200 ms.

Naturally, the training data was heavily skewed towards examples with no loss - less than
20% of files analyzed contained any loss at all, and less than 3% of training examples contained
loss events. In order to avoid training bias, we ensured that each training batch had an equal
number of loss and no loss examples by oversampling the windows with packet loss.

4.5.4.2 Discussion

Note that since Prism is predicting loss over a 50 ms interval, it forces loss recovery to last
for at least 50 ms each time it is triggered - reducing the size of the prediction window may
improve video quality when losses are falsely triggered, but we believe it would be a challenging
task to train a model that accurately predicts packet losses over smaller windows. We leave this
exploration to future work.

4.6 Evaluation
Prism’s evaluation has two broad themes: evaluation of the optimization framework, and end-to-
end evaluation of the system.

Optimization Framework. Prism uses pre-computed bandwidth allocation tables for differ-
ent video types, since optimizing the video quality in real-time is not feasible (§ 4.5.2). We eval-
uate Prism’s optimization strategy using the CGVDS [93] dataset, which contains a diverse set
of 13 video game captures that have very different video compression properties. These videos
are described in Section 4.7. This section of the evaluation provides a better understanding of
Prism’s efficacy in achieving better quality compared to recovery using I-frames. In § 4.7.1.1,
we evaluate the impact of overall bandwidth availability on Prism’s performance. In §§ 4.7.1.2
and 4.7.1.3, we quantify the impact of using a single decision table for an entire scene, as op-
posed to the “ideal” bandwidth split for a particular location in a given video, and quantify the
impact of loss duration on video quality.

68

End-to-End Evaluation. In the second part, we evaluate Prism’s performance using two
different approaches: (1) we evaluate Prism’s implementation that runs in real-time and uses the
generated decision tables for allocating bandwidth across the two streams, and (2) we evaluate
Prism using a discrete event simulator that uses real-world network traces from M-Labs [89] and
Prism’s neural-network based loss prediction.

We compare Prism’s end-to-end performance to the two key video data loss recovery tech-
niques: IDR-frames, and packet retransmissions (§ 4.4.2). For comparing video quality, we use
SQI-SSIM [98], a metric based on SSIM that imposes an exponential decay penalty when video
frames are delayed (accounting for the length of video stalls), and penalizes the quality for some
time after each stall event (accounting for frequency of stalls). We also compare the end-to-end
frame delay (including transmission delay, propagation delay and decoding delay) for frames
that end up getting displayed on the screen. SQI-SSIM and the frame delay together provide a
holistic view of the QoE for low-latency streaming applications.

4.7 Video Dataset
In our evaluation of Prism, we use videos from CGVDS [93]. This dataset includes a variety of
gameplay footage with different gameplay and artistic styles. Screenshots from these videos are
shown in Supp. Figure 4.15. In this section, we give a brief description of each video game, and
discuss key aspects of each video game that affects it’s video compression properties.

1. Bejeweled 3: A tile matching game, with mostly static content across frames. The motion
is localized (object movements) with the background not moving at all, apart from some
light animations.

2. Black Desert: A 3rd person online multiplayer role-playing game (RPG). The video sam-
ple used is a fast-paced scene inside a forest with fine textures like grass and gravel, and
uses a lot of light-streak weapons animations. In addition, the textures are dithered, which
means that the codec has to encode the dithering noise across frames in order to preserve
the quality of the raw footage.

3. Dauntless: A similar setting to Black Desert, but with simplified textures. For example,
the grass blades are thick with smooth color gradients, instead of finely textured grass.
Weapon animations are simpler compared to Black Desert.

4. FF XV: Final Fantasy XV is another RPG and is very similar to Black Desert, with fine-
textured elements like grass and gravel, and fast paced action and weapons animations.

5. Fortnite: A third-person shooter that is stylistically similar to Dauntless, with simple tex-
tures and color gradients instead of fine textures and patterns.

6. GTA V: Grand Theft Auto V is a third person action-adventure game. The scene we eval-
uate has hard-to-compress features like fine textures (roads and grass), but also includes
flatter textures like sky, which are easier to compress.

7. LoL-TF: League of Legends Team Fight is a special mode where players battle in a static
arena, with the camera fixed in a top-down view. Compared to Bejeweled 3, the static part
of the scene has more textures, and thus, intra-compression is harder.

69

(a) Bejeweled 3 (b) Black Desert (c) Dauntless

(d) FF XV (e) Fortnite (f) GTA V

(g) LoL Teamfight (h) Maple Story (i) Minecraft

(j) Overwatch (k) Apex Legends (l) Rayman Legends

(m) Tekken

Figure 4.15: Screenshots from the raw videos.

70

8. Maple Story: A top-down scrolling game, where the entire background scrolls, while the
main player is always at the center of the screen. This style of video is highly amenable
to motion compensation, since most of the scene can be approximated well using motion
vectors.

9. Minecraft: A sandbox building game, with pixellated textures. The pixellated textures
make motion compensation challenging, since the block size used in video compression
is typically larger than the pixel textures in the game. Since the game is 3D, movement
results in an affine transform to the texture pixels, which means the edges are not faithfully
approximated using just motion compensation. On the other hand, the area inside the
texture pixels are flat colors, and the scene we evaluate is a night-time scene, with a large
portion of the video being occupied by a dark sky, which results in a higher baseline video
quality for a given bitrate due to better intra compression.

10. Overwatch: A first-person shooter with simplified textures and large areas with flat col-
ors/mild color gradients. This video style benefits significantly from intra-compression,
since each frame has a lot of redundancy.

11. Apex Legends: A first-person shooter that has a combination of fine textures (on the
ground) and flat regions (like walls and the sky). The footage we used in our evaluation has
antialiasing disabled, which increases the complexity of the frame and results in temporal
aliasing noise during movement, making motion compensation less effective.

12. Rayman Legends: A side-scrolling 2D platformer. The scene we evaluate has smooth,
simple textures, which makes it easy to encode, and the scrolling nature makes motion
compensation very effective.

13. Tekken: An arena combat game. Fine textures in the arena environment make intra-
compression less effective. The camera movement primarily involves lateral panning
movements (no rotation or 3D movement), which makes motion compensation more ef-
fective even though there are fine textures in the environment.

4.7.1 Optimization Framework
In our plots, we compare structural dissimilarity (DSSIM), defined as 1−SSIM

2
, which quantifies

the amount of distortion from the reference image. For consistency, we use decision tables
generated using w = 0.5 throughout (equal weights for real and spurious loss).

4.7.1.1 Bandwidth Sensitivity

Video quality gains achieved by Prism depend on the overall bandwidth availability. Transmitting
two separate streams is inefficient when the available bandwidth is low, since a large portion of
this bandwidth would be taken up by redundant data shared across the frames. On the other hand,
when a lot of bandwidth is available, the impact of I-frames on video quality is insignificant.
Figure 4.16a shows the improvement (reduction) in DSSIM vs. using I-frames, for different
values of pre-loss bandwidth (shown on the X-axis). The data points on the Y-axis aggregate the
improvements across all the values of loss bandwidth that are greater than half of the pre-loss
bandwidth.

71

1.04 1.02 1.00 0.98 0.96
1.05

1.00

0.95

GTA-V
Black Desert

FF XV
Tekken

LoL TF
Dauntless

Rayman Legends
Overwatch

Minecraft
Maple Story

Fortnite
Bejeweled 3

Apex

8000 10000 12000 14000 16000 18000 20000
Pre-loss bitrate (Kbps)

0

10

20

30

40

DS
SI

M
 im

pr
ov

em
en

t (
%

)

(a) Impact of network bandwidth on Prism’s performance.

0 2 4 6 8 10 12
DSSIM improvement optimality gap (%)

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

(b) DSSIM gap when optimizing for an entire scene vs. a specific
point in the video.

2 4 6 8 10
Loss duration (frames)

0

10

20

30

40

DS
SI

M
 im

pr
ov

em
en

t (
%

)

(c) Impact of loss duration on DSSIM improvement.

Figure 4.16: Performance of Prism’s bandwidth split optimization algorithm.

72

Prism’s gains are higher for videos like “LoL TF”, where P-frames are particularly efficient
at encoding the video data. On the other hand, games like “Minecraft” and “Tekken” have
smaller gains since intricate textures and complex motion reduce the efficiency of P-frames (see
appendix). Further, Prism’s gains are lower at very high bitrates, since I-frames have sufficient
video quality.

4.7.1.2 Scene Stability

Prism’s optimization pipeline generates a single decision table for an entire scene by aggregating
the objective function across multiple segments extracted from the sample scene. The underlying
assumption behind this approximation is that while the SSIM of individual frames can vary, the
transition properties and the relative quality between I-frames and P-frames are stable across a
particular scene type. To verify this assumption, we compute the CDF of the percentage differ-
ence in the objective function when using the decision table, versus the optimal bandwidth split
that is optimized for a specific video section. We generate data points using various pre-loss and
loss bitrates, and multiple loss durations.

The results (shown in Figure 4.16b) show that the performance when using a single decision
table computed per-video is almost as good as using the optimal split for a specific segment.
This approximation enables Prism to make bandwidth allocation decisions in real-time by simply
performing a table lookup.

In Figure 4.17, we show the difference in the video quality improvement achieved by Prism’s
per-video optimization strategy and an alternate strategy that generates a single bandwidth allo-
cation table across all of the videos. The data points in the figure are aggregated across a range
of bitrates and loss durations. When using a single bandwidth allocation table, the improvement
in video quality can be up to 15 percent lower at the 80th percentile. In addition, the distribu-
tions for most videos have a heavy tail, indicating that it can be much worse than optimizing the
bandwidth allocation per-video in some cases.

Note that since our algorithm is greedy and not truly optimal, the single bandwidth allocation
table gets lucky sometimes and beats the per-video optimized allocation table - hence, there are
some data points on the negative side of the X-axis.

4.7.1.3 Loss duration sensitivity

Prism’s benefits are realized due to two fundamental video coding properties: P-frames are more
efficient at encoding video data, and the quality of a P-frame stream exhibits a gradual transition
when the bitrate is changed. The benefits of Prism can be realized even for very long periods
of packet loss if the P-frames are extremely efficient (eg. “LoL TF”). When P-frames are not
as efficient, Prism still demonstrates quality gains for shorter loss durations (e.g. “Overwatch”).
This is shown in Figure 4.16c, which plots the improvement in video quality over simply using
I-frames, as a function of the loss duration. Prism’s optimization algorithm accounts for scenar-
ios like “Overwatch”, switching to sending I-frames only after running in split-stream mode for
a few frames. For extended loss durations, this approach is only slightly worse than transmit-
ting I-frames right from the beginning, and stems from Prism’s greedy approach for allocating
bandwidth across the two streams.

73

10 5 0 5 10 15 20 25 30
DSSIM improvement (%) gap

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

GTA-V
Black Desert
FF XV
Tekken

LoL TF
Dauntless
Rayman Legends

Overwatch
Minecraft
Maple Story

Fortnite
Bejeweled 3
Apex

Figure 4.17: Comparison of the DSSIM improvement achieved by a video-specific bandwidth
allocation table and a bandwidth allocation table optimized for all the videos as a whole. The
X-axis is the difference in the %-improvement in the DSSIM between the two methods, and the
Y-axis plots the cumulative distribution of this gap across various bitrates and loss durations.

74

These results also suggest that game developers designing games for cloud platforms can im-
prove streaming performance by making encoder-friendly choices for artistic styles and game-
play mechanics.

4.7.2 End-to-end Evaluation

We evaluated the end-to-end performance of Prism in two different ways: (1) A real-time imple-
mentation of Prism that streams video over an emulated lossy link (§ 4.7.2.1), and (2) a discrete
event simulator that evaluates Prism on real-world M-Labs [89] traces, and integrates Prism’s
neural network based loss prediction mechanism (§ 4.7.3.1).

4.7.2.1 Real-time Streaming Experiments

We implemented a real-time video streaming testbed that enables the comparison of various loss
recovery mechanisms and allows us to compare Prism’s performance to baselines like I-frame
based recovery and packet level retransmissions. This testbed uses the NvEnc [99] encoder
and the H.264 [29] video codec2, and implements a video streaming API that provides direct
control over each frame’s encoding configuration. For simplicity, we assume that the available
bandwidth under normal operation is 20 Mbps, droping down to 15 Mbps during periods of loss.
Note that Prism can work with any congestion control algorithm, Prism just needs to know the
instantaneous available bandwidth and needs a trigger for loss recovery. In these experiments,
we use the Mahimahi [3] network emulator to emulate a 25 Mbps link with a 40 ms RTT. We
evaluate two types of packet loss - (1) random packet loss, and (2) loss caused by queue-building
flows (e.g. loading a web page with wget that uses TCP-Cubic).

4.7.2.2 Emulated Network with Random Loss

0.8

1.0

SS
IM

8 9 10 11 12
Time (seconds)

0

200

De
la

y
(m

s) Display
I-frame
Discarded
Lost

(a) IDR-frames on packet loss.

0.8

1.0

SS
IM

8 9 10 11 12
Time (seconds)

0

200

De
la

y
(m

s) Display
I-frame
Discarded

(b) Prism.

0.8

1.0

SS
IM

8 9 10 11 12
Time (seconds)

0

200

De
la

y
(m

s) Display

(c) Packet retransmissions.

Figure 4.18: Timeseries comparing Prism and the two baselines (IDR-frames, retransmissions)
in the presence of random loss.

2Any other codec that is supported by FFMPEG [100] and NvEnc can be used.

75

In Figure 4.18, we show timelines comparing I-frame based recovery, packet retransmissions,
and Prism under random loss. Each loss event results in a large, sustained drop in video quality
when using I-frames. While the quality of Prism’s I-frames are slightly lower, the video quality
recovers rapidly after the loss event. In the case of packet retransmissions, the delay spike that
occurs after a loss event takes a significant amount of time to recover since the decoder needs to
catch up to the latest frame after receiving the retransmissions for the lost packets. Secondary
losses can compound this delay, resulting in very low QoE.

4.7.3 Web Page Load Timeseries

0.8

1.0

SS
IM

2 4 6 8 10 12 14 16 18
Time (seconds)

0

200

De
la

y
(m

s) Display
I-frame
Discarded
Lost

Figure 4.19: I-frame timeseries for loss caused by a competing flow performing a web page load.

0.8

1.0

SS
IM

2 4 6 8 10 12 14 16 18
Time (seconds)

0

200

De
la

y
(m

s) Display

Figure 4.20: P-frame timeseries for loss caused by a competing flow performing a web page
load.

We evaluated Prism’s real-time implementation over an emulated bottleneck using MahiMahi [3],
where we induce packet losses by introducing a competing Cubic flow that downloads a web
page. In this experiment, we use a simple RTT threshold filter as a dummy loss prediction tech-
nique in order to clearly show how loss prediction impacts the video quality and delay.

The time series depicting the performance of I-frames (SSIM and frame delay) is shown in
Supp. Figure 4.19. During each run, the web page is downloaded 3 times, and each page load
lasts for a duration of about 1.5 seconds, which can be seen by the regions with increased delay.
For each event, there is one false loss trigger at the beginning (due to the increased RTT as Cubic
starts filling the buffer), and one true loss event. When I-frames are used for recovery, there is

76

0.8

1.0

SS
IM

2 4 6 8 10 12 14 16 18
Time (seconds)

0

200

De
la

y
(m

s) Display
I-frame
Discarded

Figure 4.21: Prism timeseries for loss caused by a competing flow performing a web page load.

0

20

M
bp

s Sent
Lost

Actual loss
Predicted loss

0 2 4 6 8 10
Time (seconds)

50
100 RTT (ms)

Figure 4.22: Prism loss prediction (MLabs trace).

a significant drop in video quality during both, the false loss trigger and the actual loss event.
In addition, the video quality takes a long time to recover back to the steady state quality. The
benefit of using I-frames is that the end-to-end frame delay is low, since the receiver is able to
decode and display the latest frame always.

Supp. Figure 4.20 shows the video quality and delay when using packet retransmissions for
recovering from packet loss. In this case, there is no drop in the video quality, but there is a large
video stutter until the missing packet is retransmitted. In addition, the frame delay remains high
for around half a second after the loss event while the backlogged P-frames are decoded by the
receiver.

Supp. Figure 4.21 shows the timeline for Prism. The three key benefits of Prism are high-
lighted here - (1) The drop in video quality when a loss is falsely triggered is minimal, (2) Once
loss recovery is complete, the video quality recovers to the steady state P-frame quality quickly,
and (3) the delay remains low throughout the recovery process.

77

0.8

1.0

SS
IM

0 2 4 6 8 10
Time (seconds)

0

200

De
la

y
(m

s) Display
Discarded

Figure 4.23: I-frame timeseries without loss prediction for an MLabs trace.

0.8

1.0

SS
IM

0 2 4 6 8 10
Time (seconds)

0

200

De
la

y
(m

s) Display

Figure 4.24: P-frame timeseries for an MLabs trace. Note the large spikes in delay when losses
occur.

4.7.3.1 Trace-based Discrete Event Simulation

In order to evaluate Prism’s performance under real-world network conditions, we designed a
discrete event simulator that replicates Prism’s protocol and integrates Prism’s neural network
based loss predictor. We evaluate Prism on ≈ 50 different network traces from M-Labs. These
traces exhibit multiple loss events, and delay and bandwidth fluctuations, and were not used in
the training of the loss predictor.

The bandwidth and delay of a sample trace is shown in Figure 4.22, along with the output of
Prism’s loss predictor. Aggressive loss prediction enables Prism to initiate recovery earlier, which
reduces video stutter and delay. While Prism’s loss predictor has quite a few false positives, recall
that Prism’s design significantly reduces the impact of falsely triggering loss recovery (§ 4.4.3).

Figures 4.23, 4.24 and 4.25 show the timelines for I-frames, retransmissions and Prism re-
spectively for one trace from the M-Labs dataset. Prism avoids the extended drop in video quality
that occurs when using I-frames for recovery, while simultaneously achieving lower delay than
packet retransmission based recovery.

Figures 4.26 and 4.27 show the timelines for Prism and I-frames respectively when using
loss prediction. Loss prediction reduces the end-to-end frame delay in both cases. In the case of
I-frames, the video quality drops significantly for an extended period of time when loss recovery
is triggered. Prism avoids this drop in some cases when the loss recovery is falsely triggered
(first two events), and thus achieves overall higher video quality than I-frame based recovery.

78

0.8

1.0
SS

IM

0 2 4 6 8 10
Time (seconds)

0

200

De
la

y
(m

s) Display
I-frame
Discarded

Figure 4.25: Prism timeseries without loss prediction for an MLabs trace. The video quality
quickly recovers after a loss event.

0.8

1.0

SS
IM

0 2 4 6 8 10
Time (seconds)

0

200

De
la

y
(m

s) Display
I-frame
Discarded

Figure 4.26: Prism timeseries with loss prediction for an MLabs trace. False predictions result
in some additional events where the video quality drops, but the delay is much lower and stutters
are reduced due to loss prediction.

0.8

1.0

SS
IM

0 2 4 6 8 10
Time (seconds)

0

200

De
la

y
(m

s) Display
Discarded

Figure 4.27: I-frame timeseries with loss prediction for an MLabs trace. Note the frequent drops
in video quality for events where loss recovery is triggered without an actuall loss.

79

0.70

0.75

0.80

SQ
I-S

SI
M

I-Frames
Retransmissions
Prism

Prism (Loss Prediction)
I-Frames (Loss Prediction)

Random
Loss

Web
Traffic

MLab
Traces

0

50

100
De

la
y

(m
s)

Figure 4.28: Prism’s performance across various network types.

4.7.3.2 Results Summary

In Figure 4.28, we compare the performance of Prism over the two emulated network conditions
mentioned earlier (random loss, web-page load cross-traffic), and the network traces from M-
Labs. The results are aggregated across 5 videos (“LoL TF”, “Apex”, “GTA-V”, “Overwatch”,
and “FF XV”), and multiple runs for random packet loss and web-page load cross traffic (with
staggered page load timing in each run), and across all the M-Labs traces. In our analysis, we
use a simple clustering algorithm (see appendix) to extract events of interest (e.g. I-frames, large
stutter, frame loss) and compare the results from these periods (as opposed to the quality of an
entire run, which may only have a few loss events) to highlight the performance of our system.
The filter identifies frames in the video where there were large delay spikes, missing frames,
I-frames and retransmissions, and expands these events into windows of interest that include
additional frames after the event in order to account for the transition properties of the video
quality of P-frames. For example, in Figure 4.23, the red boxes highlight the events automatically
detected by our filtering algorithm. The video quality and delay from these windows across
various networking environments are aggregated in the results shown in Figure 4.28.

Across all the three scenarios, Prism achieves higher SQI-SSIM than a pure I-frame based
approach for recovering from video data loss, since Prism’s P-frame stream enables it to achieve
higher video quality after recovery from loss (§ 4.7a). Prism’s SQI-SSIM is also higher than re-
transmission based recovery on M-Labs traces - some of these traces have significant bandwidth
and delay variations, and Prism’s recovery stream is able to meet more playback deadlines due to
it’s lower bitrate and since it is composed entirely of I-frames. In all cases, Prism achieves lower
delay than I-frame based recovery and packet retransmissions. While it is clear why Prism’s
delay is lower than packet retransmissions (avoids delays from the decoder needing to catch up),
the reasoning behind Prism’s lower delay compared to I-frames is subtle - since the bandwidth of

80

0.0 0.2 0.4 0.6 0.8 1.0
Fraction Lost

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

1 frame window
2 frame window
3 frame window

4 frame window
5 frame window

Figure 4.29: Loss rate distribution for various timescales.

Prism’s I-frames are lower, they have lower encoding, decoding, transmission and propagation
delays.

This figure also shows the trade-offs of using loss prediction - Prism with loss prediction
achieves lower end-to-end delay at the cost of lower video quality, but the video quality is much
higher than I-frame based recovery with loss prediction since Prism’s receiver simply ignores the
recovery stream and uses the higher quality P-frame stream during a false loss recovery trigger.

4.8 Related Work
A key body of related work is the field of error correcting codes (forward error correction).
These techniques aim to prevent video data loss by transmitting redundant packets in addition
to the base video data. A given FEC scheme makes the assumption that over a certain window
of time, the loss rate is lower than a predetermined threshold. When packet loss exceeds this
threshold, video data loss occurs and the only solution is a reactive loss recovery approach like
Prism, I-frames or packet retransmissions. For handling 50% packet loss, the FEC code rate must
be at least double of the video bitrate, and needs to be even higher for higher loss rates.

To understand the impact of Internet loss patterns on FEC designs, we plot the distribution of
the fraction of data lost for different windows of time (Figure 4.29). Even over durations as long
as 5 frames (∼80ms for 60FPS video), the 80th percentile loss rate is over 80%, which makes
FEC impractical for low latency streaming applications [101]. FEC schemes that operate over
larger windows add significant latency for recovery when losses occur, and also add a significant
amount of computational overhead. Thus, systems that use FEC still require video data loss
recovery mechanisms to handle unrecoverable packet loss. Prism’s design is complementary to

81

FEC - Prism simply needs to know the effective available bandwidth after accounting for the
overhead of using FEC. No other changes are required to Prism’s core algorithm.

Salsify [14] proposes a joint video codec and network transport design that aims to avoid
inducing losses by matching the size of the compressed frames to the estimated network capacity.
While this approach is suitable for low bandwidth environments where the video traffic is itself
likely to cause queuing and packet losses, Prism targets a different set of network conditions
- cloud streaming applications require much higher bandwidth, and losses are often caused by
external factors like queue-building cross traffic or noisy wireless links.

In addition, a key contribution of Salsify was a functional video encoder (Alfalfa). Alfalfa
supports state saving and restoration in the video encoder. Salsify uses this stateful video encoder
interface to encode each frame at two target quantization parameters. Salsify then chooses the
encoded version of the frame that can be safely sent under the current network conditions based
on the frame size, in an attempt to avoid inducing packet loss altogether. In our experience with
using NvEnc, NVIDIA’s GPU-based hardware encoder, we found the rate control algorithm to
be very accurate with the low latency preset.

Figures 4.30a and 4.30b compare the rate control performance of Alfalfa (the codec used
in Salsify) and the NvEnc codec. We encoded each video 5 times with a random target bitrate
for each frame, and compared the requested target size and the size of the encoded frame. For
Alfalfa, we used the REALTIME QUALITY preset with two pass encoding, and for NvEnc
we used recommended options by NVIDIA for real-time streaming [102]. Alfalfa overshoots
significantly for bitrates lower than 10 Mbps, with some frame-size overshoots present even at
higher bitrates. On the other hand, we do not see any overshoots at the 90th percentile for NvEnc.
Thus, rate control algorithms of hardware-based video codecs today work extremely well, and
there is no need to use a slower software-based codec like Alfalfa.

4.9 Conclusion and Key Takeaways
In this paper, we presented the design of Prism, a novel approach for recovering from transient
packet loss for ultra-low latency applications like cloud streaming. Prism uses a hybrid approach,
splitting the available bandwidth between an I-frame stream and a P-frame stream to balance the
video quality during loss recovery and video quality post-recovery while having zero overhead
when network conditions are stable. Prism proposes a novel algorithm to model video SSIM
which significantly reduces the computational requirements for optimizing the bandwidth allo-
cation. Prism’s approach also significantly reduces the impact of spurious losses on video quality,
which enables aggressive loss prediction that can further reduce the end-to-end latency, resulting
in overall improved QoE for low-latency interactive streaming applications like cloud gaming
and AR/VR streaming.

The key takeaways from this chapter are:
1. Emerging video streaming applications like cloud gaming have demanding video quality

and frame delay requirements, and addressing these requirements is key to their success,
since they aim to replace an existing solution, local rendering, which does not have to deal
with network issues when displaying rendered visual contents.

2. Network bandwidth, packet loss, and video compression interact in complex ways, and

82

5 10 15 20
Target Bitrate (Mbps)

0

50

100

150
P9

0
fra

m
e

siz
e

de
lta

 (%
)

bejeweled3
blackdesert
dauntless
ffxv
fortnite
gtav
loltf
maplestory
minecraft
overwatch
r5apex
raymanlegends
tekken

(a) Alfalfa (Salsify) video encoder rate control accuracy. Significant overshoot is present, especially at
lower bitrates.

5 10 15 20
Target Bitrate (Mbps)

20

15

10

5

0

P9
0

fra
m

e
siz

e
de

lta
 (%

)

bejeweled3
blackdesert
dauntless
ffxv
fortnite
gtav
loltf
maplestory
minecraft
overwatch
r5apex
raymanlegends
tekken

(b) NvEnc video encoder rate control accuracy. Most frames respect the target size, with very few over-
shoots.

Figure 4.30: Rate control accuracy comparison of Alfalfa (Salsify) and NvEnc.

83

designing solutions based on individual components are not sufficient (e.g. retransmis-
sions/FEC attempt to solve the problem from a networking perspective, and IDR-frames
are a solution at the video codec level).

3. A solution like Prism that takes an integrated approach at solving the issue of packet loss,
taking into account the various interactions between bandwidth, loss, and video compres-
sion can significantly improve the QoE over existing, narrow solutions.

84

Chapter 5

ViXNN: A deep learning approach to loss
resilient image and video transmission.

In recent years, there has been a significant amount of growth in the space of virtual reality
applications. Early VR headsets were cumbersome, used thick wires to connect to a powerful PC
and and required multiple physical tracking stations to be installed (outside-in tracking). Today,
the most popular VR headset is the Oculus Quest [103]. The Oculus Quest is a stand-alone
android based device with it’s own compute capabilities, and inside-out tracking using multiple
cameras on the head-mounted display (HMD). The biggest benefit of the Oculus Quest is that it
can run VR applications without being tethered to a machine using thick wires. This design has
it’s downsides:

1. Since the compute on the HMD is limited, it is limited to running applications with simple
graphics, and is unable to run applications with highly immersive graphics.

2. Even if the amount of compute on the HMD can be increased in future versions, power
consumption can be an issue, since the HMD needs to be lightweight and comfortable.

3. In comparison to tethered headsets, VR headsets with stand-alone compute capability get
obsolete much more quickly.

Since it’s launch, the Oculus Quest received software updates that allows PC users to use
the Oculus Quest as purely an HMD to display applications running on a PC. Initially, it was
supported via a USB cable connected to the headset, and recently, wireless streaming to the
HMD was enabled by a software update [104]. Streaming rendered content over a local wireless
network has many benefits - desktop-class VR applications can be experienced without wires
connecting the HMD to a physical machine, the HMD uses much less power since it does not
need to perform any rendering, and the compute capabilities can be updated without the need to
buy a completely new headset.

Unfortunately, this approach also has it’s downsides. Since the rendered content would need
to be compressed before it can be transmitted wirelessly to the HMD over conventional Wi-Fi,
noisy wireless environments and wireless packet loss can significantly harm the QoE. Conven-
tional video coding techniques are designed to primarily work with reliable storage and transport
mechanisms.

Deep learning based techniques have made great strides in the compression of visual data.

85

Research has shown that neural networks can outperform conventional, state of the art, image
and video compression techniques [105, 106]. Machine learning based techniques enable the op-
timization of the compression pipeline for specific data distributions and quality metrics, which
gives them a leading edge in compression performance over conventional video codecs that are
more general purpose.

Motivated by these observations, we propose ViXNN, an end-to-end neural network archi-
tecture for loss resilient video compression. ViXNN can adapt to different loss patterns and ap-
plication specific requirements. ViXNN’s design incorporates a novel multi-path neural network
architecture which simulates data loss during the training phase which can be used to learn dif-
ferent schemes for loss resilience. When using conventional video codecs for streaming, packet
losses and bit errors cause frame skips, delays, and stutters when frames are not decodable, and
visible artifacts if the frames are decoded with error concealment techniques. On the other hand,
when packet losses and bit errors affect video data compressed using ViXNN, it results in a
graceful degradation of the video quality instead of visible artifacts or frame stutters.

We also show that using structured loss emulation in the narrow waist of the neural network
architecture, we can train the neural network to learn highly customizable scalable video codecs.

5.1 Introduction
VR applications require extremely low end-to-end latency in order to maintain immersion and
avoid motion sickness. When streaming VR applications wirelessly as compressed video, packet
loss can have a significant impact on the QoE. In the context of VR applications, apart from
latency, the frame rate also has a big impact on the QoE.

Traditional video codecs use intra- and inter-frame compression in order to significantly re-
duce the bandwidth requirement. When packet losses lead loss of compressed video data, the
video frames cannot be decoded. When the video is streamed as a series of P-frames, the loss
of a single frame can cause the video decode pipeline to stall until the lost data is retransmitted
or an I-frame is sent. In the case of VR streaming from a computer on the local network, the
latency is very low, and hence, the lost data can be retransmitted fairly quickly. Unfortunately,
this would still cause atleast 1 frame to get dropped, since it would not be displayed on time.
This problem exists even if P-frames are not used, and every frame is transmitted as an I-frame.

Table 5.1 shows a comparison of 5 common applications. The video coding and transmission
pipeline must be flexible enough to achieve the desired trade-off between compression, loss
resilience, latency, bandwidth adaptability and content specialization.

Application Acceptable latency Sensitivity to loss Bandwidth Network variability Content specialization
Social live streaming Few seconds Moderate Variable Yes Low
Gaming on demand 50 ms Very high High No Moderate
Virtual Reality 10 ms Very high High No Moderate
Video telephony 150 ms Moderate Variable Yes Moderate
Surveillance 10s of ms to a few seconds Moderate Low Yes High

Figure 5.1: A comparison of the requirements of various applications

In this paper, we propose ViXNN, an end-to-end neural network architecture for video encod-
ing. ViXNN’s design is motivated by the need for a video encoding and transmission pipeline

86

that can deal with network losses, heterogeneous multi-cast, variable transmission bandwidth,
while being able to adapt to application specific quality metrics and leverage specialized content
for a high QoE. ViXNN’s design incorporates a multi-path neural network design, enabling the
neural network to learn a compression scheme that achieves the desired trade-off between loss
resilience, compression and bandwidth adaptability. Our evaluation shows that ViXNN can learn
highly tailored compression schemes that are competitive with, and often better than conventional
techniques for a wide array of scenarios. Finally, we discuss the computational requirements and
the performance of ViXNN for encoding and decoding videos in real time, and some important
considerations for deploying ViXNN in the real world.

5.2 Background
H.264/AVC, H.265/HEVC, VP8 and VP9 are the most commonly deployed standards today.
These codecs perform intra-frame and inter-frame redundancy elimination to achieve compres-
sion of video data.

5.2.1 Video coding
5.2.1.1 Intra-frame coding

In intra-frame coding, individual blocks of the frame are predicted from the values of the pixels
on the edge of the block. The prediction error is quantized and entropy coded based on the bitrate
and quality settings.

If the video stream is encoded as a sequence of intra-frames, the effects of a packet loss
do not propagate across frames, since each frame is independently encoded. This is similar to
transmitting each frame as an image (e.g. Motion JPEG). The flip side of this approach is that
the corruption of a single pixel can corrupt large regions of the frame.

5.2.1.2 Inter-frame coding

Inter-frame coding leverages the temporal redundancy in video data. Inter-frame compression
schemes rely on the observation that a patch in a frame can be approximated by a neighboring
patch in the previous frame, since successive frames differ due to camera panning or object
motion. This technique is also known as motion compensation. The generated video stream has
three types of frames: I (independent), P(forward predicted) and B (bidirectional predicted). The
residual error is quantized and entropy coded, just like intra-frame coding. In real-time systems,
B-frames are not used, since this adds encoding and decoding latency, since future frames are
required in order to encode and decode video when B-frames are used. Real-time systems use
P-frames in order to achieve better compression efficiency. The downside of using P-frames is
that an error in a single frame can propagate to all the other frames that depend on it. A minimal
set of frames which only depend on each other is called a group of pictures (GOP).

Figure 5.2 illustrates the impact that losses can have on these codecs. Codecs like JPEG and
H.264 introduce very noticeable block artifacts under high compression settings (highlighted
in red in the figure). The H.264 artifacts persist across multiple frames, i.e., until an I frame

87

(a) Original frame (b) JPEG
(c) H.264 with conceal-
ment

(d) Neural network

Figure 5.2: Visual effects of packet loss for various compression techniques

refreshes that portion of the image. These artifacts result in poor performance on video quality
metrics such as PSNR and SSIM.

Error Concealment. Video codecs like H.264/AVC provide some tools that help make the
data stream resilient to losses. H.264/AVC provides a data partitioning scheme that separates the
more important syntax elements from the less important data elements. This allows the usage of
unequal error protection schemes. Motion vectors and quantization parameters are usually small
in size and can be given higher protection than block coefficients. Uncorrupted syntax elements
can be used for better error concealment at the decoder. Figure 5.2(c) is an example where the
errors at the bottom of the frame were concealed to some extent by H.264/AVC. Data interleaving
spreads the effect of lost packets throughout the frame as opposed to losing a large patch. This
allows better concealment of errors because it is more likely that a corrupt pixel has a valid
neighborhood. The GOP size used for encoding the video also has a profound effect on the loss
resiliency of the data stream. Using only I-frames results in a more robust data stream because it
stops the temporal propagation of errors, but at the cost of reduced compression efficiency.

Handling packet loss in traditional video compression techniques: If only I-frames are
being used, and packet loss occurs, there are two choices -

1. Decode the frame with error concealment: This causes visible artifacts that appear tem-
porarily for the duration of the frame that is affected. Such artifacts are not acceptable for
immersive applications like VR.

2. Skip the frame: Since every frame is an I-frame, the decoding can resume when the next
frame that has not been affected by packet loss arrives. This can cause stuttering, especially
in the case of burst losses that last across frame boundaries, where all of the affected frames
would have to be skipped.

When using P-frames, there are three choices when packet loss occurs -
1. Decode the frame with error concealment: In the case of P-frames, this causes visible

artifacts that persist across multiple frames, until an I-frame is transmitted in order to reset
the decoder state.

2. Wait until lost packets are retransmitted: In this case, the decoder stops decoding frames
until the lost packets have been recovered. Once the lost packets are recovered, the decoder
needs to catch up to the latest frame - this can cause stuttering, which can be severe if
packets from multiple frames are lost.

88

3. Wait for the next I-frame: The decoder stops decoding frames until the next I-frame is
received. In this case, the stutter performance is similar to skipping frames when using
only I-frames for streaming the video.

5.2.2 Scalable video coding

Scalable coding is a general class of techniques which attempt to solve the problem of packet loss
and multi-rate transmission. While the use of techniques like error correcting codes and reliable
transport assume that the data needs to be transmitted without any loss, scalable coding takes
advantage of the fact that video data is analog in nature and graceful degradation of video quality
in the form of noise, reduced frame rate or reduced resolution is acceptable when losses occur.
The general approach of scalable codecs involve generating multiple streams of data where each
stream has partial information. These streams can be aggregated for higher quality decoding.
There are two broad categories of scalable codecs: SVC (Scalable Video Coding) and MDC
(Multiple Description Coding).

SVC. Scalable video coding [57] is a hierarchical layered approach to video coding. The
video is encoded into a base stream and multiple hierarchical enhancement streams. The base
stream is required while the enhancement streams are optional. When video is encoded using
SVC, the loss of the base layer makes the data undecodable, whereas if the enhancement layers
are lost, the video quality degrades gracefully. This enables the use of differential error protection
for the base layer and the enhancement layers. For example, the application of high levels of FEC
to the base layer would reduce the chance of data loss in the base layer, and the video will be
decodable even if the enhancement layers are lost.

MDC. Multiple description coding [107] is a non-hierarchical approach. Every stream can
be decoded individually and higher quality decoding can be achieved by using a larger number
of streams. This implies that every stream must have some basic information which is common
across all streams. This reduces the efficiency of MDC coding, but improves loss resiliency. This
is because unlike SVC, any subset of streams can be lost, and the video would still be decodable
at a lower quality. Thus, there is no need to have additional loss protection mechanisms like
differential error protection. Unless all of the streams are lost, the video decoding can proceed,
resulting in smooth, stutter free video.

Both SVC and MDC techniques solve the problem of multi-rate video transmission. The
source can perform one-shot encoding and send as many streams as possible based on the current
uplink speed.

MDC is better than SVC at handling packet losses at the cost of worse coding efficiency. This
is a result of the stream priorities in SVC. If the base stream is lost, the entire video stream is
lost. SVC can still be useful with prioritized drops and unequal error protection of streams. This
idea is used in SoftCast [20], which is a cross layer solution for wireless video transmission. The
more important data is scaled up compared to the less important data and then transmitted over
raw OFDM. This provides greater protection to the base data stream from bit errors due to noise.
The results in graceful degradation when the wireless signal-to-noise ratio drops.

89

5.3 Using Neural Networks
Artificial neural networks have recently gained considerable popularity for a variety of learn-
ing and prediction tasks ranging from natural language processing [108] and computer vision,
to finding approximate solutions to the traveling salesman problem [109]. This can partially be
attributed to the lower training and inference times enabled by the development of general pur-
pose GPUs and CUDA. Even mobile devices today are now capable of running complex neural
networks [110]. The second reason for the skyrocketing interest in the use of neural networks is
the recent advancements in deep learning techniques and architectures, which have been shown
to surpass the performance of many hand crafted computer vision algorithms.

5.3.1 Compression using neural networks
Data compression using neural networks is a widely researched topic, that has experienced re-
newed interest among researchers in recent times. Neural networks can learn patterns in the data
and encode them as high level representations, with the potential of achieving higher compres-
sion ratios than conventional compression techniques. In [105], the authors propose a neural
network architecture that can learn a compression scheme for generic images. Their architecture
can outperform JPEG at higher compression ratios. The authors use an architecture based on
recurrent neural networks to achieve variable bit rate compression. They use an iterative process
to generate encoded bits, where the input to each iteration is the residual error of the output of
the previous iteration. In [106], the authors show that real-time image compression can be per-
formed using neural networks. They use an adversarial model to make the reconstructed images
more visually pleasing. The authors also show that using neural networks enables the learning
of context adaptive compression schemes, which can outperform traditional approaches that are
meant to work on generic datasets. In [111], the authors explore the use of generative adversarial
networks (GANs) for image and video compression. GANs have recently gained tremendous
popularity owing to their ability to generate visually meaningful outputs. To extend their ap-
proach to video, the authors show that they can drop intermediate frames altogether, and predict
these frames by interpolating the compressed representations.

5.3.2 Compression for lossy networks
Neural network based approaches have already been shown to have high compression and the
ability to adapt to the context, surpassing traditional approaches for compression. The goal
of our work is not to improve the quality or compression achieved by the past literature, but
rather look at how the flexibility of neural networks can be used to compress video data for a
growing range of video transmission scenarios. Specifically, we seek to answer the question of
whether neural networks can learn to generate representations that are resilient to network loss,
amenable to multirate streaming, and tunable to operate at the desired point of trade-off between
compression, loss resilience and bitrate adaptability.

An important aspect of compression and loss resilience is the manifestation of artifacts under
high compression and loss rates. While the impact on traditional codecs is perhaps better known,
Figure 5.2 also illustrates the impact that losses can have on neural network codecs. In this case,

90

the data was serialized in a row-wise manner, which is why, the loss impacts a particular section
of the frame. On the other hand, if the data is packetized in a different way (e.g. according to a
reversible pseudorandom pattern), the impact will be much more spread out spatially and harder
to notice. Note that his type of distortion under error conditions may not apply to all neural
network codecs. For example, in [111], the reconstruction output under high compression ratios
may produce a completely different image (e.g. a Ford car may be replaced by a Chevy). This
is a result of using GANs, which trains the neural network to generate realistic looking images
rather than a noisy approximation of the actual input. While this may be acceptable in some
applications, we leave understanding the trade-offs of GAN-based designs to future work. In this
paper, we focus on whether we can design a neural network based scheme that can be tuned to
achieve alternate forms of degradation under compression and loss.

5.3.3 Neural networks background
The general architecture used to compress data using artificial neural networks is called an au-
toencoder. Autoencoders are neural networks trained to replicate the input layer at the output.
Autoencoders usually have a hidden layer with a size smaller than the input, which forces the
network to learn high level representations in a fewer number of bits. Training an autoencoder
is an unsupervised process, i.e. there is no need for human intervention to augment the training
data, since the neural network just needs learn to match the input to the output.

Neural networks for visual applications typically use convolutional neural networks[112]. A
convolution layer in a neural network is a group of 3D filters which perform 2D convolution over
the inputs. Each convolution filter reduces the input to a single feature with the same spatial
resolution. Each convolutional layer has many such filters.

In the absence of any other layer, convolutional layers generally lead to an explosion in the
size of the intermediate data. A pooling layer fixes this by spatially localized aggregation of
the output of a convolutional layer. Another approach is to skip pixels in the spatial domain
leading to strided convolutions. Strided convolutions result in significant savings in memory and
compute because there is no need to calculate and store values which will be discarded after a
pooling step. Strided convolutions are also better because they learn the pooling function rather
than choosing a fixed pooling function.

Neural networks are trained by back-propagating the loss gradient from the output layer
towards the input layer. The loss function of a neural network must be a differentiable function
whose value is low if the output is ‘closer’ to the desired output. Mean squared error is an
example of a loss function that can be used to train an autoencoder.

5.4 ViXNN Design
In this section, we describe the architecture of ViXNN. We first introduce the high level design
ideas that allow ViXNN to learn loss resilient compression schemes. This is followed by a
description of ViXNN’s compression architecture that allows it to leverage various redundancies
in video data for efficient compression. Finally, we discuss ViXNN’s training procedure, which
includes details regarding the loss function to be optimized and the generation of training data.

91

Encoder

Conv + LeakyReLU

Filter size: 3 x 3
Num filters: 32
Stride: 2 x 2

Conv + LeakyReLU

Filter size: 3 x 3
Num filters: 128
Stride: 2 x 2

Conv + LeakyReLU

Filter size: 3 x 3
Num filters: 256
Stride: 2 x 2

Conv + LeakyReLU

Filter size: 3 x 3
Num filters: 256
Stride: 2 x 2

Decoder

Conv + LeakyReLU

Filter size: 1 x 1
Num filters: 256
Stride: 1 x 1

Conv + LeakyReLU
+ Depth2Space

Filter size: 2 x 2
Num filters: 256
Stride: 1 x 1

Conv + LeakyReLU
+ Depth2Space

Filter size: 3 x 3
Num filters: 256
Stride: 1 x 1

Conv + LeakyReLU
+ Depth2Space

Filter size: 3 x 3
Num filters: 128
Stride: 1 x 1

Conv + LeakyReLU
+ Depth2Space

Filter size: 3 x 3
Num filters: 64
Stride: 1 x 1

Conv +
Sigmoid +
Scale to [0, 255]

Filter size: 1 x 1
Num filters: 3
Stride: 1 x 1

Input

Size H x W x 3

Features

Size (H/16) x (W/16) x
256

Output

Size H x W x 3

Binarizer

Conv + tanh

Filter size: 1 x 1
Num filters: K
Stride: 1 x 1

Binarizer

Conv + tanh

Filter size: 1 x 1
Num filters: K
Stride: 1 x 1

N units Conv + Binarizer

N descriptors, Encoded

Size (H/16) x (W/16) x K

N Binary codes

Size (H/16) x (W/16) x K

Concatenate

Figure 5.3: ViXNN end-to-end architecture

5.4.1 Overview
Any compression architecture has two primary components: the encoder and the decoder. The
encoder takes as input raw frame data and generates a compressed representation of the input
data. The compressed data is transmitted over the network and sent to the receiver, where the
decoder is used to recover uncompressed data from the compressed bits.

ViXNN achieves loss resilience by generating multiple streams of compressed video that
constructively interact to generate higher quality video at the receiver. This is stylistically similar
to SVC or MDC coding (as described in Section 5.2.2). ViXNN applies multiple non-linear
transforms to the input frame, which are then compressed and transmitted over the network. The
decoder expands the compressed data to recover the feature maps and then combines them to
generate the final frame.

ViXNN uses an auto-encoder architecture based on [105]. The autoencoder has a narrow
waist, whose output represents the compressed data. In ViXNN, we modify the architecture to
have multiple narrow waists. These “descriptors” represent portions of data, that when combined,

92

give higher quality. This property is imposed on the neural network by simulating loss in the
neural network during the training phase. During training, the whole architecture behaves as a
single neural network, and we simulate packet losses in the narrow waist by dropping descriptors
at random. The descriptor drop pattern is based on how much loss resilience is required, and if
MDC or SVC style compression is desired.

A key advantage ViXNN has over traditional SVC or MDC coding techniques is that the
neural network can implicitly learn how the video data is semantically split across the multiple
descriptors or streams, in order to optimize the performance for different loss scenarios.

5.4.2 Compression Architecture
ViXNN’s end-to-end architecture is shown in Figure 5.3. In our design of ViXNN, we focus
on compressing individual frames - while this does not leverage temporal redundancies in video
data, we believe ViXNN’s design can be adapted to more modern video compression architec-
tures that leverage temporal redundancy. A discussion is presented in Section 5.4.5.

The architecture has three major componenents: first, the encoder transforms the input data
into feature space using a series of strided convolutions. The features are then converted into
multiple descriptors using multiple parallel convolutional layers. The role of these convolutional
layers is to combine the features in different ways in order to generate multiple descriptors that
constructively interact and result in higher quality compression. At the decoder, the multiple
descriptors are concatenated, and passed through a series of convolutional filters and spatial
expansion layers that restore the size of the original frame and reconstruct the pixel values.

The encoder first performs a feature transform on an input RGB frame using 4 fully convo-
lutional layers. Each convolution has a stride of 2, which reduces each spatial dimension by a
factor of 2 after every convolutional layer. Assuming the input is a color image of size H×W×3,
the spatial dimensions of the output of the first layer is H

2
× W

2
. Hence, The final output of the

encoder has a size of H
16
× W

16
.

The output of every convolutional layer in the encoder is gated using a non-linear activation
function. Specifically, in our implementation, we use the Leaky ReLU [113] activation function.

After the feature transform, the output is fed to N different convolutional layers simultane-
ously in order to generate multiple descriptors. These convolutional layers have K filters each,
and have a filter size of 1x1 and a stride of 1x1. Each convolutional layer selects and combines
the features differently in order to generate multiple descriptors that interact constructively to
give higher video quality. The output of these convolutions are gated using a tanh activation
layer and passed through a binarizer layer, that digitizes the values by quantizing the output of
the tanh activation into 0-1 bits.

Thus, after the entire encoding process, there are N descriptors, each of size H
16
×W

16
×K bits.

The descriptors can then be packetized for transmission. The packetization scheme is designed
such that a single packet contains data from at most one of the N descriptors, such that a packet
loss corresponds to losing a particular descriptor.

At the decoder, the received descriptors are concatenated, with the missing descriptors re-
placed by zeros. In order to keep the average of the compressed data the same before decoding,
the values of the descriptors are scaled by N

Nd
, where Nd is the number of descriptors being

decoded, and N is the total number of descriptors.

93

The decoder involves a series of convolutions, that are interspersed with (2 × 2) depth-to-
space operations. A (2 × 2) depth-to-space operation on an input with height H , width W and
C channels produces an output that has a height 2×H , width 2×W , and C

4
channels. This step

essentially reverses the strided convolutions in the encoder, increasing the spatial dimension to
the original image resolution. The intermediate layers use leaky ReLU as the activation function.
The final convolution generates an image with three channels. We use a sigmoid activation in
the final convolution, which has an output range (0, 1), and scale up the values by 255 in order
to generate pixel values in the range of the original input.

5.4.3 Adding loss resilience and variable rate coding
Scalable video coding techniques achieve two goals: loss resilience and variable rate coding.
We follow a similar design philosophy to add loss resilience and variable rate coding to ViXNN.
ViXNN’s compressed output generates multiple descriptors, which are concatenated at the re-
ceiver and decoded. If the end-to-end neural architecture is trained without any additional steps,
the multiple descriptors simply behave like a single large layer. In this case, the neural network
does not learn any loss resilience at the descriptor scale, and only has the inherent bit-error re-
silience of using neural networks to compress data. The video quality of the decoded image
degrades rapidly as more descriptors are lost.

The key observation we make here is that we can simulate the dropping of the descriptors
during training, and the neural network will learn representations of the input frame that are
resilient to losses at the descriptor level. In order to do this, we add a custom loss simulation
layer after the binarizer. During training, the loss simulation layer will randomly drop descriptors
by multiplying them by zero.

Different patterns, probabilities and structures can be used when randomly dropping descrip-
tors. This enables ViXNN to learn MDC- and SVC-like loss resilience. Traditional MDC de-
scriptors are designed so that the output can be decoded from any subset of descriptors. In order
to force the neural network to do so, we can simply drop or keep each descriptor according to
a fixed random probability. The value of this probability affects the video quality and the loss
resilience. When descriptors are dropped with high probability, the neural network will learn
a video encoding that achieves good video quality when many descriptors are dropped, but the
peak video quality with all the descriptors will be lower than what would be achieved without
simulating loss during training. This is because the encoding learned by the neural network will
share more redundant data across all the descriptors, since during the training phase, only a few
descriptors will be on during each iteration. This leaves less space for representing finer details
in the descriptors. If the descriptors are dropped with lower probability, the neural network will
share less redundant data across all the descriptors, since it is less likely to have seen situations
with only a few descriptors that haven’t been dropped during the training phase. This will in-
crease the rate at which the video quality falls off as descriptors are lost, but will result in higher
peak quality when no descriptors are dropped. This is because there are more bits available for
representing the finer details.

In SVC coding, the descriptors have a hierarchical structure, and the enhancement layers that
represent finer details require the base layers to be decoded first. If the base layer is lost, then
the frame cannot be decoded. To simulate this in ViXNN, we simulate the loss of descriptors

94

such that descriptor i is dropped, everything after that descriptor is also dropped. In order to do
this, we sample an index i between 1 and N , where N is the number of descriptors, and drop
everything after descriptor i during training. SVC-like approaches are better when packet loss is
not a major concern, but bitrate adaptability is important. For example, in the case of wireless
broadcast, an SVC like approach enables each receiver to perform their own rate control, and
requires only a single encoding of the video data.

ViXNN’s design also enables variable bitrate encoding. If the sender is bandwidth con-
strained, it can simply fewer descriptors. Compared to [105], ViXNN is able to achieve variable
bitrate using a single-shot encoding, although the limitation is that the maximum bitrate, and
hence, the maximum quality is limited. In [105], the authors propose iteratively encoding the
residuals, which does not impose a static maximum limit on the bitrate.

5.4.4 Choosing a loss function

One of the biggest advantages of using neural networks for compression is the ability to use
arbitrary loss functions to optimize the behavior for the desired goals. The loss function is the
prediction error between the original input data and the reconstructed output after going through
compression. The simplest option is to use the L2 distance as the error metric. This implies that
the the neural network will get trained to maximize the PSNR value. A second option is to use
the dissimilarity index (DSSIM), which is essentially the inverse of SSIM as the loss function.
This will optimize the neural network for SSIM.

There are other potential benefits of using an architecture like ViXNN for general video com-
pression tasks. For instance, the loss function can be different based on how many descriptors
were lost - this enables learning end-to-end compression schemes where the quality degrades
in a desired manner when descriptors are lost. For example, when all descriptors are available,
ViXNN could be trained to reconstruct the original image, but when few descriptors are avail-
able, ViXNN could be trained to optimize for generating a low color-depth image instead. We
demonstrate using a simple example in Section 5.5.4.

5.4.5 Discussion on Leveraging Temporal Redundancy

Video data has a lot more redundancy than image data. This arises due to the temporal nature
of video and the fact that successive frames are very similar, differing due to object motion and
camera panning movements. The focus of this chapter is to show the power of neural networks
in learning end-to-end loss resilient compression schemes, and thus, focuses on a simple frame-
by-frame compression approach. Below, we discuss some possible extensions and alternative
approaches that can leverage temporal redundancy, and thus, achieve higher compression ratios.

The first approach is to stack multiple frames together at the input and compress them simul-
taneously. This approach does have a latency trade-off - before compression, the encoder needs
to wait for all of the frames that are being compressed together to be available before they are
compressed and transmitted. Thus, this solution is not well suited for low latency applications
like VR streaming. There are alternate applications where this approach would be useful - for
example, this approach could be used for multi-rate wireless broadcasts, similar to Softcast [20].

95

This is similar to the approach used in Softcast, with the key difference that the core compression
methodology is learned by the neural network instead of a human designed compression scheme.

A potential second approach is to temporally compress the outputs of the binarizer layer.
Suppose the binarizer layer had 24 channels. The output of the binarizer layer has width W

4

and height H
4

. The 24 bits in the channel dimension can be interpreted as three 8 bit color
channels, and then compressed using a traditional video compression scheme. Unfortunately, in
our experience, this does not seem to improve the compression ratio. The primary reason is that
we cannot leverage the benefits of lossy compression at this stage. Traditional video compression
schemes quantize the data for lossy compression, which causes the loss of bit values. While this
makes sense if the 8 bits representing each color was derived from real pixel data - in this case,
the least significant bits are less important. In the case of ViXNN’s output at the binarizer layer,
each bit is equally important, which causes significant reconstruction errors if 24 bits in the
channel dimension are interpreted as the color value of a pixel and quantized.

The third approach, which is most promising, is to incorporate the core idea in ViXNN -
training the neural network for loss resilience - into more recent end-to-end neural network ar-
chitectures that have been proposed for video compression. These include works like DVC [114]
and [115]. These modern neural video compression techniques are also able to leverage the
temporal redundancy in video data - this can significantly improve the compression efficiency,
resulting in higher video quality for a given bitrate.

5.5 Evaluation
We first compare ViXNN and JPEG to demonstrate ViXNN’s compression abilities. We then
show how ViXNN performs under packet losses and bit errors and compare it to a few configu-
rations of H.264/AVC encoding. We then show how ViXNN can be tuned to achieve the desired
loss behavior for the needs of specific applications.

Training data One of the motivations for using neural networks for compression was their
ability to learn the characteristics of the data and achieve better performance than codecs de-
signed for general use. In our evaluation, we do not train the neural network for specialized
data. We use the LabelMe-12-50k [116] dataset, which is a collection of 50,000 natural images.
To improve the performance of ViXNN across multiple scales of images, we extracted multi-
resolution patches from the dataset and resized them to 32× 32 patches to generate our training
set. This results in a good mix of high and low frequency patches for training.

Training for loss resilience In our evaluation, we use a 128 bit binarizer with 8 descriptors.
Each descriptor thus generates 16 bits for each 16x16 patch in the input data. This architecture
can achieve a maximum of 0.5 bpp. We trained four versions of ViXNN, each with different loss
behavior. We trained three models with MDC like dropout. In each model, the descriptors are
independently randomly dropped with a probability of 0.1, 0.3 and 0.5 respectively. We will refer
to these models as ViXNN 0.1, ViXNN 0.3 and ViXNN 0.5. The fourth model was trained using
SVC like dropout. We refer to this model as ViXNN SVC. In each training iteration, a random
prefix of the descriptors are dropped. The length of the prefix is decided by sampling a uniform
random variable. To drop a descriptor, the output of a descriptor is set to zero. In practice,
lost descriptors can be detected by adding a small amount of metadata to each descriptor which

96

includes the frame number and the sequence number of the descriptor.
Loss function A typical choice for the loss function for training an autoencoder is the mean

squared error. Optimizing for the mean squared error directly optimizes the PSNR. This often
results in blurry images. The SSIM [59] index, or more accurately, the structural dissimilarity
index (DSSIM) can also be used as the objective function. We use a 50-50 weighted combination
of the mean squared error and the DSSIM as the loss function.

Comparison with H.264/AVC We use the H.264/AVC codec as a baseline for comparing the
performance of ViXNN under packet loss and bit errors. We use FFmpeg [117] as the front end
to the libx264 [118] implementation on Linux. We use three different sets of configuration
options for libx264 in our comparison. In the first configuration, which we will refer to as
“GOP1” for simplicity, we set the GOP size to 1. In this mode, each frame is independently
coded, checking the propagation of errors to successive frames. In the second configuration, we
set the GOP size to 8, but disable B frames since B frames increase the latency significantly
and increases the susceptibility to losses. We refer to this configuration as “GOP8”. In the third
configuration, we enable the intra-refresh feature of H.264. We refer to this as “Intra”. Intra
refresh uses a wave of I blocks instead of using a single I frame in every GOP. This guarantees
that some part of the picture is refreshed every frame, reducing the propagation of errors to
successive frames.

To ensure a fair comparison, we use a bit-rate that is comparable to the bit-rate generated
by ViXNN. It is important to note that the goal of the paper is not comparing the compression
performance of ViXNN when no losses occur. H.264/AVC is a very advanced codec and easily
surpasses ViXNN when there are no losses. Another point to keep in mind while reading the
evaluation is that our models were trained for a limited time on limited data. The performance of
neural networks can be vastly improved by fine tuning various parameters like the learning rate
and batch size, and choosing the best instance out of multiple training sessions.

Test data It is important to choose a diverse set of videos for testing. We chose a set of 4
videos (akiyo, foreman, coastguard, bus) from the Xiph.org Video test media [119] collection for
our evaluation. These videos are uncompressed videos without chroma sub-sampling. We use
the test images on http://imagecompression.info/test_images/ to evaluate the
baseline compression performance on different resolutions.

Implementation details We implemented the neural network with Keras [120] using the
Tensorflow [121] backend. We used the Adam [122] optimizer for training the models. We
switched between using an EC2 GPU instance and an NVIDIA 1080 Ti on a local machine for
the training and evaluation.

5.5.1 Compression using ViXNN

We used ViXNN SVC to compress the test images from http://imagecompression.info/test_images/
at different bpp values. We compare the performance of ViXNN and JPEG on two sets of reso-
lutions. In Figure 5.4, HR (high resolution) refers to the original images. To get the second set
of plots, we resized the images to fit in a 256 × 256 box. A bpp value of 0.5 is obtained when
all the descriptors are used for decoding. We deterministically drop the descriptors to get lower
bitrate coding.

97

SS
IM

0.5

0.6

0.7

0.8

0.9

Bits per pixel (bpp)

0 0.15 0.3 0.45 0.6

JPEG ViXNN
JPEG HR ViXNN HR

Figure 5.4: Compression performance of ViXNN without losses

ViXNN outperforms JPEG for low resolution images and lower bitrates. ViXNN successfully
achieves variable bitrate encoding without retraining, and while using one-shot compression in-
stead of iterative residual compression [105]. We believe that the reason for poor performance
on higher resolution images is the inability to take advantage of large scale spatial redundancies
in the data. In Section 5.4.5, we discuss potential approaches in order to leverage temporal re-
dundancy in video data for additional compression. One of the primary reasons why algorithms
like JPEG can achieve high compression is quantization, but the bit vector generated by ViXNN
cannot be quantized. The reason is that a small difference in numerical value can result in a large
hamming distance in the bit vector. We think that intelligently mapping the bit vector will allow
lossy compression of the compressed data, but we leave that for future work.

To keep the comparison fair, the JPEG bitrates were calculated by subtracting the size of the
metadata, including the huffman coding tables and the quantization tables.

5.5.2 Resilience to packet loss
We evaluate the performance of ViXNN 0.3 and compare it to H.264/AVC’s behavior under
packet loss ranging from 1% to 20%. 20% is a very high packet loss rate, but is not uncommon
in transient conditions on wireless networks with mobile endpoints.

A typical system that uses H.264/AVC over a lossy network most likely uses some form
of forward error correction to recover from packet losses. To simulate the performance of
H.264/AVC with FEC, we assume a linear FEC block code. We assume that the coding pa-
rameters are (n = 10, k = 7), which implies that all the data can be recovered using k = 7 out

98

SS
IM

0.5
0.6
0.7
0.8
0.9

1

Percentage of packets lost
0 5 10 15 20

ViXNN ViXNN8 GOP1
Intra GOP8 FEC

(a) Average SSIM vs packet loss

SS
IM

0
0.2
0.4
0.6
0.8

1

Percentage of packets lost
0 5 10 15 20

ViXNN ViXNN8 GOP1
Intra GOP8 FEC

(b) Minimum SSIM vs packet loss

Figure 5.5: ViXNN vs. H.264/AVC under packet loss

PS
NR

 (d
B)

10

20

30

40

50

Frame #
0 20 40 60 80 100

ViXNN ViXNN8 GOP1
Intra GOP8

SS
IM

0.5
0.6
0.7
0.8
0.9

1

Frame #
0 20 40 60 80 100

ViXNN ViXNN8 GOP1
Intra GOP8

Figure 5.6: Timeseries plots of PSNR and SSIM under 5% packet loss

of n = 10 blocks. For a given packet loss rate p, we calculate the effective group loss rate using
the following formula:

pgroup = 1− (q10 +10 C1q
9p+10 C2q

8p2 +10 C3q
7p3) (5.1)

where q = 1− p.
We also evaluate an alternate byte ordering technique for ViXNN. When a burst loss occurs,

it can wipe out all the descriptors generated by ViXNN for a single frame. We reorder the data
so that the corresponding descriptors of a sequence of 8 frames are contiguous. This reduces the
chance that a single packet loss can result in the loss of many descriptors. The caveat is that it
introduces a delay of 8 frames, but achieves better resilience to packet loss. We refer to this as
ViXNN8.

Figure 5.5 shows the results of simulating packet loss on H.264/AVC and ViXNN. For loss
rates below 10%, H.264/AVC outperforms ViXNN in terms of the average SSIM, but the min-
imum values across the frames are much worse than ViXNN for even small amounts of packet
loss. H.264/AVC with FEC performs better than ViXNN for loss rates below 10%, but degrades
sharply beyond that. It is also evident from the minimum SSIM values that ViXNN8 is more
robust to packet losses than ViXNN.

Figure 5.6 is a frame-by-frame plot of the PSNR and SSIM for ViXNN, ViXNN8 and the
three configurations of H.264/AVC. GOP1 is relatively stable compared to GOP8 and Intra, but

99

SS
IM

0.5
0.6
0.7
0.8
0.9
1

BER
1E
-08

1E
-07

1E
-06

1E
-05

1E
-04

1E
-03

1E
-02

1E
-01

ViXNN GOP1
Intra GOP8

(a) Average SSIM vs BER

SS
IM

0
0.2
0.4
0.6
0.8
1

BER
1E
-08

1E
-07

1E
-06

1E
-05

1E
-04

1E
-03

1E
-02

1E
-01

ViXNN GOP1
Intra GOP8

(b) Minimum SSIM vs BER

Figure 5.7: ViXNN vs. H.264/AVC under bit errors

exhibits sharp drops in quality on packet loss events. ViXNN also exhibits sharp drops on packet
loss, but they are less pronounced as compared to GOP1. On the other hand, ViXNN8 has no
sharp drops in quality. The effect of a packet loss is spread over 8 frames and the quality of each
frame drops slightly.

The time series figures also give important insight into the behavior of Intra and GOP8. When
a packet loss occurs in GOP8, the quality remains low until an I-frame is received. At this point,
the effects of the packet loss are nullified. On the other hand, the quality of Intra ramps up
smoothly. This is because each frame has a few new I blocks which gradually nullify the effects
of the packet loss event.

5.5.3 Resilience to bit errors
Using neural networks for compression has the added bonus of resilience to bit errors [123]. We
evaluate the performance of ViXNN under bit errors and compare it to H.264/AVC in Figure 5.7.
ViXNN outperforms H.264/AVC for BER greater than 10−7 in the worst case. The average
PSNR and SSIM values suffer a sharp drop for BER greater than 10−5 in the case of H.264/AVC.
ViXNN is highly robust to bit errors for BER values as high as 10−2. Individual frames are not
perceivably affected by bit errors in the case of ViXNN.

5.5.4 Tunability of ViXNN
The architecture of ViXNN provides immense flexibility in terms of the behavior under loss.
ViXNN can be trained to behave as desired by using different dropout strategies during the
training phase.

Figure 5.8 compares the behavior of ViXNN 0.1, 0.3, 0.5 and SVC when descriptors are
dropped. Since ViXNN 0.5 was trained to be robust to higher drop rates, the PSNR and SSIM
values drop at a slower rate than ViXNN 0.1 and 0.3. The trade-off is the maximum quality
achieved when there is no loss. ViXNN 0.5 is the worst. ViXNN SVC trades off resilience to

100

SS
IM

0.6

0.7

0.8

0.9

1

Dropped descriptors

0 1 2 3 4 5 6 7

ViXNN 0.1 ViXNN 0.3
ViXNN 0.5 ViXNN SVC

Figure 5.8: Tuning ViXNN for different loss behaviors

(a) Decoding without color
descriptors

(b) Decoding with low color
depth descriptors only

(c) Decoding with all the
descriptors

Figure 5.9: ViXNN trained for alternate reconstructions under loss

loss of arbitrary descriptors with higher overall quality. It is interesting to note that the plots for
ViXNN 0.5 and ViXNN SVC are almost parallel. We think it is due to the fact that the expected
number of descriptors dropped during each training iteration is the same for both.

We also showed earlier that ViXNN can trade off latency for better resilience to packet losses
by rearranging the bits of the compressed data.

ViXNN can also be trained to have alternate low fidelity reconstructions under loss. We
trained ViXNN with a dynamically weighted loss function based on the number of active de-
scriptors. Figure 5.9(a) shows the output when ViXNN was trained to generate gray scale recon-
structions under loss. Figure 5.9(b) was obtained from training ViXNN to reconstruct a low bit
depth image when losses occurred.

This demonstrates the flexibility of ViXNN and it’s ability to be adapted to the requirements
of the application at hand. Consider two example applications, wireless VR and live mobile
video.

Wireless VR VR applications have high bandwidth requirements and cannot tolerate drops in
quality. An important aspect of wireless transmission is the ability to perform rate adaptation
based on the SNR to reduce the bit error rate, but VR applications cannot tolerate these laten-
cies. Obstacles can also cause errors and packet drops, especially when using high bandwidth

101

SS
IM

0.8

0.85

0.9

0.95

1

BE
R

1E-07

1E-05

1E-03

Frame #

0 50 100 150 200 250 300

BER Lossy No loss

(a) ViXNN for VR

SS
IM

0.7

0.8

0.9

Ba
nd

w
id

th
 (k

bp
s)

200

250

300

350

400

Frame #

0 50 100 150 200 250 300

Tx Rx 1 kbps Rx2 kbps
Rx1 SSIM Rx2 SSIM

(b) ViXNN for live video

Figure 5.10: Tuning ViXNN for applications

millimeter wave WiFi [124].
Live mobile video Live mobile video is multicast in nature, and thus requires rate adaptation to
cater to diverse set of receiver bandwidths. The data is typically transmitted over the Internet,
where it is more prone to packet losses than bit errors. These applications can often tolerate a
few hundred milliseconds of latency.

A setup similar to ViXNN 0.1 can be used for wireless VR. The encoded data can be trans-
mitted at a constant data rate without worrying about bit errors or rate adaptation as ViXNN is
robust to bit errors. All error correction mechanisms would have to be disabled. Packet losses
may occur due to obstructions, but they are less frequent since bit errors do not cause packet
drops. Using ViXNN 0.1 will give better quality as it is trained for lower packet loss rates.

On the other hand, ViXNN 0.5 can be used for live mobile video as it caters to a wider range
of bitrates. The transmitter can encode the video and transmit all the descriptors as multicast
datagrams. The receivers receive data based on their available bandwidth and the quality grace-
fully scales with the number of descriptors received. ViXNN 0.1 would result in slightly better
quality but result in poor performance for receivers with low bandwidth.

Figure 5.10 shows the performance of ViXNN for VR and live video. In the case of VR, we
simulated 5% packet loss for a period of 20 frames after every 50 frame interval. The bit error
rate was set to 10−5 for the first and last 100 frames, going up to 10−4 for the 100 frames in the
middle. We simulated time varying bandwidth for the transmitter and heterogeneous receivers
with constant bandwidth for live video.

5.5.5 Computational and storage requirements

Neural networks are computationally intensive and require powerful GPUs for evaluation. We
tested the encoding and decoding performance of ViXNN on an NVIDIA 1080 Ti GPU. The
results are shown in Table 5.11.

Although these numbers are low, various techniques can be used to reduce the computational
requirements, hence speeding up the encoding and decoding process. The design space of the
encoder and decoder architectures can be explored to create light weight architectures. There has
been a lot of work on approximate evaluation by leveraging the intrinsic redundancy present in

102

Resolution Encode fps Decode fps
SD (640× 480) 72 49
FHD (1920× 1080) 12 7
VR (3840× 1080) 6 4
4k (3840× 2160) 3 2

Figure 5.11: Encoding and decoding performance of ViXNN on an NVIDIA 1080 Ti GPU

neural networks [125]. In [126], the authors compare neural network evaluation speed on CPUs,
GPUs and ASICs. ASICs can be up to 100× faster than GPUs, while consuming less power.

The size of the trained models is also an important factor, as these models need to be sent to
the end points and stored. Models tailored to the data may need to be retrained and redeployed
from time to time when the data characteristics change. This requires expensive bandwidth and
storage space on remote devices. ViXNN’s encoder and decoder are each approximately 40MB
in size. While this is not a lot, it is beneficial to have smaller models that can be deployed
cheaply. Various model compression techniques can be used to reduce the sizes of the trained
models. These techniques often have the added benefit of reducing computational and memory
requirements[127]. [127] [128] proposes the joint training of encoders and decoders with dif-
ferent capacities, which allows the deployment of different models based on the performance
limitations of the devices.

5.6 Conclusion
In this chapter, we discussed a technique to compress image and video data using neural networks
in a loss resilient manner by incorporating loss simulation during the training of the neural net-
work. This shows a promising way to achieve end-to-end loss resilient video compression that is
highly tailored to the particular network loss patterns, video properties, and bandwidth regime.
While ViXNN’s evaluation is based on frame-by-frame compression, recent advances in neural
video compression show promise and incorporating ViXNN into these new video compression
architectures can achieve superior loss resilient video compression for low latency applications.

103

104

Chapter 6

Congestion Control Design for Emerging
Video Streaming Applications

Cloud gaming and AR/VR applications aim to achieve parity or perform better than the locally
rendered versions. Thus, systems designed for these applications must consistently achieve high
video frame quality with minimal artifacts, and low end-to-end frame delay. Video quality and
delay heavily depends on the performance of the congestion control algorithm (CCA). Conges-
tion control algorithms for ultra-low latency applications must be able to achieve high throughput
and low queuing delay, and must work well with the traffic pattern of streaming video in order
to achieve low end-to-end frame delay. There are two key challenges that are not addressed by
congestion control algorithms today:

1. In the presence of queue-building cross traffic, existing low-latency congestion control
algorithms are not able to sustain high throughput in a reliable manner.

2. Most congestion control algorithms are video agnostic, and are not tightly integrated with
the traffic pattern of streaming video - this can result in higher end-to-end frame delay even
if the algorithm on its own can achieve low end-to-end packet delay.

In this chapter, we first list the key requirements for designing a congestion control algorithm
for ultra-low latency video streaming applications like cloud gaming and AR/VR streaming. We
then discuss some low-latency congestion control algorithms and their pitfalls when used for low-
latency video streaming applications like cloud gaming and cloud AR/VR. We then show how
the interactions between the video encoder, the congestion control algorithm, and the network
affect the end-to-end frame delay, and present a case for designing tailored congestion control
algorithms that tightly integrates network measurements, congestion control, and video encoding
in order to achieve the demanding QoE requirements of emerging applications like cloud gaming
and cloud AR/VR.

Following the general discussion on congestion control algorithms for emerging applications,
we present a congestion control algorithm for cloud gaming and cloud AR/VR applications called
SQP. SQP uses frame-coupled, paced packet trains to sample the network bandwidth, and uses an
adaptive one-way delay measurement to recover from queuing, for low, bounded queuing delay.
SQP rapidly adapts to changes in the link bandwidth, ensuring high utilization and low frame
delay, and also achieves competitive bandwidth shares when competing with queue-building
flows within an acceptable delay envelope. SQP has good fairness properties, and works well on

105

links with shallow buffers.

6.1 Congestion Control Background for Low Latency Video
Streaming

6.1.1 Traditional Congestion Control Algorithms

Traditionally, congestion control algorithms (CCAs) have been designed with the following key
goals in mind:

1. Prevention of Congestion Collapse: This is the primary goal of any congestion control
algorithm. When multiple flows share a bottleneck, each CCA must take appropriate ac-
tions in order to avoid falling into a state of high offered load and low throughput due to
catastrophic packet losses. For example, in the case of traditional algorithms like TCP-
Reno [129] and TCP-Cubic [12], this involves reducing the congestion window to a safe
level when packet losses occur.

2. High Throughput: The CCA must be able to utilize the available bandwidth in an effec-
tive manner in order to maximize the application layer throughput. Traditional loss-based
CCAs use mechanisms like slow-start and additive increase in order to probe the network
for more bandwidth, and maintain occupancy in the bottleneck queues in order to fully
utilize the network bandwidth.

3. Fairness: Multiple flows sharing a bottleneck must get a fair share of the bottleneck link,
and must avoid starvation. Traditional CCAs like TCP-Reno and TCP-Cubic achieve fair-
ness without co-ordination due to their congestion window increase and decrease mecha-
nism. For instance, TCP-Reno fairness mechanism is it’s Additive Increase - Multiplicative
Decrease (AIMD) mechanism of changing the congestion window.

Loss-based CCAs like TCP-Reno and TCP-Cubic largely satisfy these goals. Unfortunately,
loss-based CCAs fall short in terms of meeting the performance requirements for many emerg-
ing applications and network environments. Emerging applications like cloud gaming, cloud
AR/VR, and other real-time video streaming applications require very low delays. Loss-based
CCAs use packet loss as a signal of congestion, which only happens when the in-network queues
are filled up. This queue-building behavior results in very high end-to-end delays, and this is
not acceptable for low-latency video streaming applications. We ran a simple test using the Pan-
theon [130] test-bed (using MahiMahi [3] for emulating the bottleneck). The throughput and
delay graphs are shown in Figure 6.1 - while TCP-Cubic is able to fully utilize the link, the cost
of doing that is very high queuing delays. In practice, these delays can be much higher depending
on the size of the in-network queues and the available bandwidth.

Various Active Queue Management (AQM) schemes have been proposed in order to reduce
the in-network queuing delays of loss-based CCAs, like RED and CoDel. These schemes work
by dropping packets early before the router buffers fill up, which avoids the excessive delays
caused by deep router buffers. While these approaches work well in controlled environments
like data centers and home networks, deploying AQM schemes widely across the internet is an
extremely challenging task.

106

(a) Throughput. (b) Delay.

Figure 6.1: Throughput achieved by TCP-Cubic and the corresponding queuing delay on a link
that oscillates between 12 Mbps and 6 Mbps.

Some algorithms like TCP-BBR prioritize high throughput, but have design elements that aim
to reduce the delay compared to loss-based CCAs like TCP-Cubic and TCP-Reno. For instance,
TCP-BBR does not use loss as a signal, and instead, attempts to create a model of the network
by using probes. TCP-BBR uses two types of probes - a bandwidth probe, and a round-trip time
(RTT) probe. Every 8 RTTs, BBR increases it’s send rate by a factor of 1.25 for 1 RTT, followed
by a drain phase when it sends at a rate that is 0.75 × it’s bandwidth estimate. For the next
6 RTTs, BBR transmits at it’s bandwidth estimate. In addition, BBR measures the minimum
RTT by significantly reducing the congestion window every 10 seconds. This serves the purpose
of draining any built-up network queues, and allows BBR to get an estimate of the baseline link
delay, which it uses for capping the maximum in-flight data to twice the bandwidth-delay product
(BDP).

(a) Throughput. (b) Delay.

Figure 6.2: Throughput achieved by TCP-BBR and the corresponding queuing delay on a link
that oscillates between 12 Mbps and 6 Mbps.

Under normal operation on a very stable link, BBR can maintain low delays, but this is not
true in the presence of delay jitter, bandwidth variations, and other network phenomenon like

107

ACK-aggregation and packet aggregation. In such scenarios, BBR fills the in-network queues
until the in-flight data hits the 2 × BDP cap. This is shown in Figure 6.2 - after each min-RTT
probe and whenever the link rate goes up to 12 Mbps (e.g., at 10s, 14s, 20s, and 30s), the delay
is initially low, but BBR slowly fills up the queue until it hits the 2 BDP cap. This is due to slight
over-estimation of the link bandwidth in each probing cycle (MahiMahi emulates throughput at
the millisecond-level, causing packet aggregation at the millisecond scale). The queue also fills
up temporarily when the link bandwidth drops. BBR’s rate estimate is based on the maximum
bandwidth sample in a past window, and this causes high delays when the network bandwidth is
variable at RTT-level timescales.

(a) Throughput. (b) Delay.

Figure 6.3: Throughput achieved by TCP-BBR and the corresponding queuing delay on a 20
Mbps link where TCP-BBR shares the link with TCP-Cubic. The blue line is the TCP-BBR
flow, and the green line is the TCP-Cubic flow. The TCP-Cubic flow starts 5 seconds after the
TCP-BBR flow.

When BBR shares the bottleneck link with queue-building flows like TCP-Cubic or TCP-
Reno, the min-RTT probe may not entirely drain the queue since the queue now also contains
packets from the other flow. This causes BBR’s delay floor to go up, and subsequently, BBR’s
maximum in-flight cap increases. This is an intentional design feature that enables BBR to
compete with loss-based, queue-building flows like TCP-Cubic and TCP-Reno. This is shown in
Figure 6.3.

The design of BBR makes it unsuitable for emerging applications like cloud gaming and
cloud AR/VR because of the following reasons:

• BBR can build up to 1 BDP of in-network queues, causing higher delays that are not
acceptable for latency sensitive real-time video streaming applications.

• BBR’s minRTT probing mechanism means that no video frames can be sent during the
probing period (2̃00ms) - this would result in the video stream stuttering for 200ms every
10 seconds. This is unacceptable for immersive applications like cloud gaming and cloud
AR/VR.

108

6.1.2 Low Latency Congestion Control

In recent times, there has been increasing interest in designing new congestion control algo-
rithms for achieving low delay by reducing the in-network queuing. Achieving the three goals
mentioned in Section 6.1.1 in addition to the requirement of low delay is not an easy task. Net-
work traffic on the Internet needs to navigate a diverse range of network conditions, like variable
link bandwidth, delay jitter, lossy networks, and must share the bottleneck with other flows that
may exhibit queue-building flows and use other congestion control algorithms. Thus, designing
a CCA with low delay invariably comes with trade-offs, like low throughput in the presence of
delay jitter, or poor fairness when competing with other queue-building flows.

(a) Throughput. (b) Delay.

Figure 6.4: Throughput achieved by TCP-Vegas and the corresponding queuing delay on a link
that oscillates between 12 Mbps and 6 Mbps.

(a) Throughput. (b) Delay.

Figure 6.5: Throughput achieved by Sprout and the corresponding queuing delay on a link that
oscillates between 12 Mbps and 6 Mbps.

109

6.1.2.1 CCAs that Prioritize Low Delay

Congestion control algorithms like Sprout [22], TCP-Vegas [131] and TCP-Lola [132] prioritize
low delay in their design. These algorithms work well in isolation and maintain low delay while
achieving good utilization.

Figure 6.4 shows the throughput and delay achieved by TCP-Vegas on a link that oscillates
between 12 Mbps and 6 Mbps. In the initial part of the trace, TCP-Vegas induces a large amount
of queuing, but this is eventually drained and Vegas is able to maintain low delay. There are
some delay spikes when the link rate drops, but Vegas recovers quickly from these self-induced
queues by reducing the send rate.

Sprout behaves in a similar manner to TCP-Vegas. Figure 6.5 shows the throughput and
delay achieved by Sprout on a link that oscillates between 12 Mbps and 6 Mbps. While Sprout’s
delay is slightly higher than the delay caused by TCP-Vegas, it is more consistent and the delay
spikes when the network bandwidth drops are much shorter in duration. The peak delay when
the link drops is higher than TCP-Vegas - this can be attributed to the fact that Sprout does not
use a congestion window mechanism and is not ACK-clocked. Instead, Sprout transmits at a
rate that is determined based on packet receive timestamps. This causes Sprout to transmit at the
previous rate (i.e. 12 Mbps) when the link drops to 6 Mbps for one round trip, until the feedback
is received by the sender.

(a) Throughput. (b) Delay.

Figure 6.6: Throughput achieved by TCP-Vegas and the corresponding queuing delay on a 20
Mbps link where TCP-Vegas shares the link with TCP-Cubic. The blue line is the TCP-Vegas
flow, and the green line is the TCP-Cubic flow. The TCP-Cubic flow starts 5 seconds after the
TCP-Vegas flow.

While these algorithms are able to maintain low delay, their performance suffers when com-
peting with queue-building flows, and in networks with significant delay jitter. When high delays
are caused by competing flows, these CCAs have no way to know whether or not the delay was
self-induced or caused by competing flows, and hence, they reduce the throughput in response
to any observed increase in delay. Figures 6.6 and 6.7 show the performance of TCP-Vegas and
Sprout, respectively, when they shares the link with a TCP-Cubic flow. As soon as the Cubic flow
enters the link, the throughputs of the both, the Vegas flow, and the Sprout flow, drop drastically
and these flows are unable to attain their fair share of the bottleneck link.

110

(a) Throughput. (b) Delay.

Figure 6.7: Throughput achieved by Sprout and the corresponding queuing delay on a 20 Mbps
link where Sprout shares the link with TCP-Cubic. The blue line is the Sprout flow, and the green
line is the TCP-Cubic flow. The TCP-Cubic flow starts 5 seconds after the Sprout flow.

The inability to achieve a fair share of the throughput when competing with queue-building
flows makes CCAs that prioritize low delay unsuitable for emerging video streaming applications
like cloud gaming and cloud AR/VR. This is because cloud-rendered applications require high,
stable bandwidth in order to ensure high video frame quality and minimal video compression
artifacts.

6.1.2.2 Utility-based CCAs

Congestion control algorithms like PCC [133, 134] have been proposed in order to solve the
challenges associated with CCAs that prioritize low delay. PCC’s congestion control mechanism
involves conducting randomized experiments in real time, where the sending rate is changed for
short probing durations in order to probe the network for more throughput or to measure the
amount of network queuing. The performance achieved as a result of running these experiments
are fed into a utility function based on delay and throughput, which is used to determine whether
the bandwidth estimate should increase or decrease.

Compared to CCAs that prioritize low delay, PCC achieves higher throughput when compet-
ing with a queue-building flow like TCP-Cubic. This is shown in Figure 6.8. Note that while
PCC is stable and achieves high throughput in the short term, it’s throughput eventually drops in
the presence of a long running Cubic flow.

PCC’s stable throughput when competing with queue-building flows has a flip-side - on vari-
able links, PCC converges extremely slowly. This results in high delays when the link bandwidth
drops. This is shown in Figure 6.9 - PCC barely responds to the drop in the link rate to 6 Mbps.
In addition, PCC does not utilize the available bandwidth fully when the link rate goes back up
to 12 Mbps.

PCC-Vivace [134] is a more reactive version of PCC. It’s performance on the oscillating link
is shown in Figure 6.10. While PCC-Vivace is faster when probing for more bandwidth when
the link rate increases, it also suffers from slow convergence when the link rate drops, causing
high delays.

111

(a) Throughput. (b) Delay.

Figure 6.8: Throughput achieved by PCC and the corresponding queuing delay on a 20 Mbps
link where PCC shares the link with TCP-Cubic. The blue line is the PCC flow, and the green
line is the TCP-Cubic flow. The TCP-Cubic flow starts 5 seconds after the PCC flow.

(a) Throughput. (b) Delay.

Figure 6.9: Throughput achieved by PCC and the corresponding queuing delay on a link that
oscillates between 12 Mbps and 6 Mbps.

(a) Throughput. (b) Delay.

Figure 6.10: Throughput achieved by PCC-Vivace and the corresponding queuing delay on a
link that oscillates between 12 Mbps and 6 Mbps.

112

(a) Throughput. (b) Delay.

Figure 6.11: Throughput achieved by PCC-Vivace and the corresponding queuing delay on a 20
Mbps link where PCC-Vivace shares the link with TCP-Cubic. The blue line is the PCC-Vivace
flow, and the green line is the TCP-Cubic flow. The TCP-Cubic flow starts 5 seconds after the
PCC-Vivace flow.

PCC-Vivace’s faster reaction times come with the downside that it achieves low throughput
when competing with queue-building flows like TCP-Cubic. Figure 6.11 shows the performance
of PCC-Vivace when competing with TCP-Cubic. As soon as the Cubic flow starts, the through-
put of PCC-Vivace drops drastically, and it is unable to probe for more bandwidth for the rest of
the duration.

Utility-based algorithms like PCC and PCC-Vivace have slower convergence times, which
causes high delays in situations where the network bandwidth drops and bandwidth underutiliza-
tion when the network bandwidth increases. In addition, these algorithms are not robust, and can
suffer from starvation (e.g. PCC-Vivace). Both of these properties make these algorithms not
suitable for cloud-rendered applications, since these emerging applications require consistent,
high throughput and extremely low delay.

6.1.3 Mode-switching Low Latency CCAs

Congestion control algorithms like Copa [21], and Nimbus [135] use a different approach in
order to achieve the dual goals of low delay when running in isolation, and high throughput
when sharing the bottleneck with queue-building flows. Copa is a low-delay algorithm that uses
an explicit mode-switching mechanism when it detects the presence of other queue-building
flows.

Copa’s core mechanism is a 5-RTT cycle, where it injects packets into the queue and subse-
quently drains the queue during the 5-RTT period. Copa’s target rate calculation uses a parameter
δ, which represents the algorithm’s bias towards delay or throughput. A lower value of δ makes
Copa more aggressive in terms of throughput, whereas a higher value of δ makes Copa more
sensitive to delay. When Copa detects that the queue has not drained after a 5-RTT period,
it switches to competitive mode, where δ is chosen dynamically in a manner that mimics the
AIMD mechanism of traditional loss-based congestion control algorithns. This is shown in Fig-
ure 6.12. In the first 5 seconds (before the TCP-Cubic flow starts), Copa is able to utilize the

113

(a) Throughput. (b) Delay.

Figure 6.12: Throughput achieved by Copa and the corresponding queuing delay on a 20 Mbps
link where Copa shares the link with TCP-Cubic. The blue line is the Copa flow, and the green
line is the TCP-Cubic flow. The TCP-Cubic flow starts 5 seconds after the Copa flow.

entire link bandwidth while maintaining low delay. When the TCP-Cubic flow starts, Copa is
able to attain it’s fair share of the link since it switches to competitive mode.

(a) Throughput. (b) Delay.

Figure 6.13: Throughput achieved by Copa and the corresponding queuing delay on a link that
oscillates between 12 Mbps and 6 Mbps.

This enables Copa to achieve low delay when running in isolation, and to achieve it’s fair
share when competing with queue-building flows. Unfortunately, this mechanism is fragile,
causing Copa to operate in the wrong mode [135] - this can cause occasional periods of very high
delay when running in isolation. In Figure 6.13, we see two instances where Copa incorrectly
switched modes to competitive mode, causing buffer bloat and high delays.

Nimbus [135] proposes an active measurement technique of the elasticity of the cross traffic
by transmitting traffic in the form of sinusoidal pulses. In the presence of elastic cross-traffic
(cross-traffic that responds to changes in the available link capacity), Nimbus uses a loss-based
CCA like TCP-Cubic. When the cross-traffic is inelastic, Nimbus uses a delay-based congestion
control mechanism. This enables Nimbus to achieve low delay when competing with inelastic
flows (or in isolation), and high throughput when competing with elastic flows.

114

Unfortunately, these techniques are either very fragile, or work at longer timescales. In the
case of cloud gaming, consistent performance is desirable, and thus, the CCA must be able to
sustain stable throughput in the presence of short queue-building flows, and must achieve low
delay when running in isolation over noisy, variable links.

6.1.4 Congestion Control for Cloud Gaming/AR/VR.
Congestion control algorithms designed for low-latency interactive streaming applications must
be carefully designed in order to achieve the right performance trade-off. These are listed below
in roughly the order of decreasing priority:

1. Low end-to-end Frame Delay: Minimize the video streaming delay by reducing in-
network queuing and additional delays due to buffering at the sender and the receiver.

2. High, stable throughput: Achieve high throughput in the presence of queue-building
flows and over links with time-varying throughput in order to achieve good video quality,
without sacrificing frame delay.

3. Video Awareness: The congestion control algorithm must work well with the traffic pat-
tern of streaming video by handling temporary frame-size overshoots and undershoots due
to encoder variations. The algorithm must not transmit packets in a bursty manner, since
this can cause video frames to get delayed at the sender due to the congestion control
algorithm’s flow control mechanism.

6.1.5 Congestion Control and Encoder Integration
As discussed in the sections above, a congestion control algorithm designed for emerging low-
latency video streaming applications like cloud gaming and cloud AR/VR must at least have low
in-network queuing delays and high bandwidth utilization. In addition to these properties, there
are additional factors to consider regarding how the congestion control algorithm fits into the
broader picture of video bitrate and frame delay.

In this section, we argue that low in-network queuing delay and high throughput are not suf-
ficient in order to guarantee good QoE for cloud streaming applications. Understanding how the
congestion control behavior is translated to the video bitrate, and how this integration affects the
video quality and video delay is a key step in designing effective congestion control algorithms
for cloud streaming applications.

Adaptive bitrate (ABR) algorithms are used in traditional Video-on-Demand (VOD) stream-
ing systems in order to match the amount of video data sent to the network capacity. In tradi-
tional VOD systems, the video is pre-encoded into chunks at multiple bitrates. ABR algorithms
can range from purely using buffer occupancy statistics (e.g. how much data has already been
buffered at the client), to using a combination of buffer occupancy and network congestion con-
trol statistics like bandwidth and delay. These algorithms work at a chunk-level granularity,
determining what the bitrate of the next chunk should be in order to ensure sufficient occupancy
of the playback buffer for smooth video playback.

Real-time streaming applications encode video on-the-fly in real time, and hence, enable fine-
grained control of the video bitrate. In the case of real-time streaming applications, the use of a

115

playback buffer is detrimental to the video delay. While real-time streaming systems designed
for latency tolerant applications like video conferencing and live broadcast use some degree
of buffering in order to reduce frame jitter, this approach is not suitable for cloud streaming
applications, since they require extremely low end-to-end frame delay. Thus, buffer-based ABR
algorithms are not used in real-time video streaming systems that require low latency. Instead,
these systems use real-time video bitrate control algorithms that translate the congestion control
signals into the video encoder bitrate.

For latency-tolerant real-time video streaming systems like video conferencing and live broad-
cast, it is sufficient to have some kind of loose coupling between the congestion control algorithm
and the video encoder bitrate. For example, one could use the average bandwidth in some small
past window to set the video encoder bitrate. If the video bitrate is set according to the average
bandwidth, the generated video data may occasionally be higher than the congestion control al-
gorithm’s instantaneous transmission rate. This means that frames can get delayed at the sender,
since the congestion control algorithm is transmitting at a rate that is lower than the video bitrate.
In order to achieve smooth playback, buffering can be used at the client side in order to absorb
such delay variations. The benefit of this approach is that it allows the use of any video-agnostic
congestion control algorithm that has a mostly steady transmission over windows of time on the
scale of the acceptable video delay (e.g. 200 ms in the case of video conferencing).

Unfortunately, such loosely coupled encoder bitrate control mechanisms in conjunction with
video-agnostic congestion control algorithms limit the QoE of ultra-low latency cloud streaming
applications. One example is the case of BBR. BBR uses a minRTT probing mechanism in order
to measure a baseline network round-trip value. During this phase, BBR significantly reduces the
congestion window for a period of 200 ms in order to drain any built-up queues. This implies that
none of the video frames generated during this 200 ms period can be transmitted, and instead,
get buffered at the sender. In general, consider a scenario where the transmission rate of the
congestion control temporarily drops for a short period of time for reasons other than the actual
network bandwidth going down. In the case of BBR, this can happen because of BBR’s min RTT
probe. In the case of Copa, the transmission rate oscillates over a period of 5 RTTs. This can
result in one of three things:

1. If the video is encoded at the average bitrate, and if no buffering is used at the client side,
this would result in a progressive increase in the frame delay until the transmission rate
goes back up, at which point the delay will slowly recover. In the case of BBR, where the
transmission rate drops to almost zero, the video playback would stall every 10 seconds,
which is unacceptable for cloud gaming or cloud AR/VR and is extremely detrimental to
the QoE.

2. If the video is encoded at the average bitrate, and if sufficient buffering is used at the client
side, the video playback would be smooth, but this would result in a much higher steady
state video frame delay (equal to the size of the buffer). Cloud gaming and cloud AR/VR
applications have strict low latency requirements, and the high video frame delay would
harm the user’s QoE.

3. If the video is encoded according to the instantaneous transmission rate, it would result in
a drop in the video quality. These fluctuations in the video quality are harmful for cloud
streaming applications, and must be avoided if possible (e.g. if the network bandwidth is

116

stable).

6.2 SQP overview.

For the end user experience of cloud gaming and cloud-rendered AR/VR to be comparable to
running the applications locally, the video must be encoded at the highest bitrate that still allows
the frames to be transmitted and received with minimal delay. A CCA for low-latency interactive
video streaming must have the following properties:

1. Low Queuing Delay: The CCA must be able to probe for more bandwidth without caus-
ing excessive queuing, and must quickly back off when the available bandwidth decreases
in order to reduce in-network queuing. CCAs like Cubic [12] fill up network queues un-
til packet loss occurs, and some CCAs, like PCC [133], are slow to react to drops in
bandwidth, resulting in very high delays that are unacceptable for low-latency interactive
streaming.

2. Link Utilization: The CCA must achieve high, stable bandwidth when competing with
queue-building flows (e.g., Cubic, BBR [11]), while achieving low delay when running in
isolation. Some low-delay CCAs have explicit mechanisms to prioritize throughput over
delay when queue-building cross traffic is detected, but they can be inherently unstable
(e.g., Copa [21] can misdetect self-induced queuing as competing traffic, resulting in addi-
tional self-induced queuing [136]), while others are slow to converge (e.g., Nimbus [136]
operates over 10s of seconds).

3. Fairness: Multiple homogeneous flows should converge to fairness quickly, and must be
fair at frame-level timescales.

4. Friendliness: The CCA must be friendly to other CCAs and must avoid starving them.
The maximum bandwidth for cloud gaming applications is typically capped to a maximum
value - this causes the bottleneck to typically be near the last mile. Thus, perfect fairness
with other CCAs is not necessary, and is not possible in general [137].

5. Video Awareness: The CCA must accommodate encoder frame size variations, and
achieve bandwidth probing in application-limited scenarios without the need for frame
padding. The CCA must use a rate-based congestion control mechanism to minimize the
end-to-end frame delay - the bursty nature and time-varying throughput of window-based
mechanisms necessitate an undesirable trade-off between bandwidth utilization, encoder
rate-control updates, and the end-to-end frame delay.

While most CCAs aim to achieve high throughput, low delay, and competitive performance
when competing with queue-building flows, simultaneously achieving these requirements is chal-
lenging in an environment as diverse as the Internet. Choosing the right trade-offs and correctly
prioritizing the design requirements (listed above in decreasing order of priority) enables a de-
sign that is highly optimized for the specific application class. Existing CCAs make different
trade-offs based on their particular design goals, and some of these design choices make them
unsuitable for low-latency interactive streaming applications.

SQP is a novel congestion control algorithm that was developed in conjunction with Google’s
AR streaming platform. SQP’s key features are listed below:

117

1. Prioritizing Delay over Link Utilization: Since delay is more critical for the QoE of low-
latency interactive video streaming applications, SQP sacrifices peak bandwidth utilization
when running in isolation in order to achieve low delay and delay stability. For example,
on a 20 Mbps link where SQP is the only flow, it is acceptable to utilize 18 Mbps if this
trade-off reduces delays across a wider range of scenarios.

2. Application-specific Trade-offs : SQP is designed for low-latency interactive streaming
applications, which have specific requirements in terms of minimum bandwidth and max-
imum delay. If these parameters are outside the acceptable range due to external factors
(e.g., poor link conditions, very high delays due to queue-building cross traffic), it is ac-
ceptable to end the streaming session. In contrast to traditional algorithms, SQP restricts
its operating environment, which enables SQP to achieve acceptable throughput and delay
performance across a wider range of relevant scenarios.

3. Frame-focused Operation : In-network queuing is a key mechanism that allows CCAs
to detect the network capacity. CCAs that probe infrequently (e.g., PCC, GoogCC) have
lower average delay, but suffer from link underutilization on variable links. SQP piggy-
backs bandwidth measurements onto each frame’s transmission by sending each frame
as a short (paced) burst, and updates its bandwidth estimate after receiving feedback for
each frame. For low-latency interactive streaming applications, the QoE is determined
by the end-to-end frame delay, and not just the in-network queuing delay. SQP network
probing relies on queuing at the sub-frame level without increasing the end-to-end frame
delay, and is able to adapt to changes in network bandwidth much faster than protocols like
PCC [133, 134] and GoogCC [138].

4. Direct Video Bitrate Control : SQP uses frame-level bitrate changes in order to respond to
congestion, and drains self-induced queues by reducing the video bitrate. SQP’s rate-based
congestion control minimizes the end-to-end frame delay compared to protocols that are
window-based (Copa), or throttle transmissions for network RTT measurements (BBR).

5. Competitive Throughput : SQP’s bandwidth probing and sampling mechanism is compet-
itive by default, and achieves high, stable throughput share when competing with queue-
building flows that cause delays within an acceptable range. SQP avoids high queuing
delays and starving other flows using mechanisms like adaptive one-way delay measure-
ments, a bandwidth target multiplier, and frame pacing. SQP’s design avoids the pitfalls
of delay-based CCAs that use explicit mode switching (e.g., Copa [21, 136]).

SQP’s evaluation on real-world wireless networks for Google’s AR streaming platform, and
across a variety of emulated scenarios, including real-world Wi-Fi and LTE traces show that:

1. Under A/B testing of SQP and Copa1 on Google’s AR streaming platform across ≈ 8000
individual streaming sessions, 71% of SQP sessions on Wi-Fi have P50 bitrate > 3 Mbps
and P90 frame RTT < 100 ms, compared to 56% for Copa. On cellular links, 36% of SQP
sessions meet the criteria versus only 9% for Copa.

2. Across emulated wireless traces, SQP’s throughput is 11% higher than Copa (without
mode switching) with comparable P90 frame delays, while Copa (with mode switching),
Sprout [22], and BBR incur a 140-290% increase in the end-to-end frame delay relative to
SQP.

1Adapted from mvfst [139], does not implement Copa’s mode switching.

118

3. SQP achieves high and stable throughput when competing with buffer-filling cross traffic.
Compared to Copa (with mode switching), SQP achieves 70% higher P10 bitrate when
competing with Cubic, and 36% higher link share when competing with BBR.

This work was done in collaboration with Google. My contributions include the theoretical
analysis of the impact of pacing and target multipliers on SQP, video encoder undershoot cor-
rection, SQP’s adaptive min-oneway delay measurement window, analysis of SQP’s update rule
and fairness, and extensive evaluation of SQP and other CCAs.

6.3 Related Work

Protocol Cate-
gory

Congestion
Detection

Competing
with
Queue-
building
Flows

Congestion
Control
Mecha-
nism

Comments

Explicit signal-
ing
DCTCP,
ABC, XCP

Explicit sig-
nals from
network to
detect con-
gestion

Compete
with ho-
mogeneous
flows

Various Lack of support, traf-
fic heterogeneity - unsuit-
able for Internet-based
interactive video stream-
ing

Low Delay
TCP-Lola, TCP-
Vegas, Sprout
(Salsify),
TIMELY, Swift

Packet
delay/delay-
gradient,
stochastic
throughput
forecast
(Sprout)

Queue-
building
flows
cause low
throughput

Window-
based,
Rate-based
(TIMELY),
hybrid
(Swift)

High, stable throughput
required - not achieved
with queue-building
cross-traffic, custom
encoder for handling
bursty CCA (Salsify)

Mode Switching
Copa, Nimbus,
GoogCC (We-
bRTC),

Packet
delay/delay-
gradient as
congestion
signal

More ag-
gressive
when com-
peting flow
detected

Window-
based,
Rate-based
(GoogCC)

Mode-switching is un-
stable (Copa, GoogCC),
can be slow to converge
(Nimbus, GoogCC)

Model-Based
BBR

minRTT
probe, pac-
ing gain for
bandwidth

Designed to
be compet-
itive with
Cubic

Rate- and
window-
based

200ms minRTT probe
throttles transmissions, 2
BDP in-flight under ACK
aggregation/competition

Utility-based
PCC,
PCC-Vivace

Explicit prob-
ing, delay,
packet loss

Measure
network
response to
rate change

Rate-based Inconsistent performance
with queue-building
flows, slow convergence
on dynamic links

Table 6.1: Various CCAs that exist today, and their properties.

119

A suitable congestion control algorithm for low-latency interactive video streaming must
satisfy the four key properties discussed in § 6.2. Various CCAs are summarized in Table 6.1.

Low-latency CCAs like TCP-Lola [140], TCP-Vegas [141], and Sprout (Salsify2) [14, 22]
that use packet delay as a signal have a key drawback: they are unable to achieve high through-
put when competing with queue-building cross-traffic. Some mode switching algorithms (e.g.,
Copa [21]) can misinterpret self-induced queues as competing flows, resulting in high delays,
whereas other CCAs like Nimbus [136], and GoogCC (WebRTC) [138, 142] converge slowly,
and can have unstable throughput when competing with queue-building flows.

BBR [11] periodically throttles transmissions to measure a baseline delay, which is prob-
lematic for interactive video streaming since frames cannot be transmitted during its minRTT
probe. Window-based protocols have a similar problem - they transmit packets in bursts, and a
mismatch between packet transmissions and frame generation require sender-side buffering, and
increase the end-to-end frame delay.

Utility-based algorithms like PCC [133, 134] explicitly probe the network and aim to maxi-
mize a utility function based on throughput, delay, and packet loss. These CCAs converge slowly
on dynamic links, and have inconsistent performance when competing with queue-building
flows.

CCAs use rate-based or window-based mechanisms in order to control the transmission rate
under congestion. Rate-based CCAs are better suited for video streaming due to the burst-free
nature of packet transmissions, whereas the bursty window-based mechanisms can block frame
transmissions at the sender and make encoder rate-control challenging (e.g., Salsify-Sprout).
The other benefit of rate-based CCAs is that their internal bandwidth estimate can be used to
directly set the video bitrate, whereas window-based mechanisms require additional mechanisms
for setting the video bitrate.

Some CCAs require explicit signals from the network and specialized hardware, or work un-
der tightly controlled environments (e.g. DCTCP [143], ABC [144], XCP [145], TIMELY [146],
Swift [147]) - these are not applicable for Internet video streaming applications since explicit sig-
naling mechanisms are not currently widely deployed on the Internet.

6.4 Preliminary Study
To illustrate the shortcomings of existing congestion control algorithms in the context of low-
latency interactive streaming, we present some preliminary experimental results using the Pan-
theon [3, 130] testbed. Details regarding the specific CCA implementations are provided in
§ 6.7.1.

6.4.1 Variable Bandwidth Link
We ran a single flow for 120 seconds over a 40 ms RTT link, where the bandwidth temporarily
drops down to 5Mbps from 20Mbps. The goal of this experiment is to see if the algorithm
can (1) quickly discover additional bandwidth when the available bandwidth increases, and (2)
maintain low delay when the available bandwidth decreases.

2Salsify streamer uses Sprout as the CCA (used interchangeably)

120

Copa-0.1

PCC-Vivace

Sprout (Salsify)

PCC

TCP-CUBICTCP-BBR

GoogCC (WebRTC)Copa-Auto

40 60 80 100
Time (seconds)

0

5

10

15

20

Se
nd

 R
at

e
(M

bp
s)

(a) Send rate timeseries.

40 60 80 100
Time (seconds)

20

80

320

Pa
ck

et
 D

el
ay

 (m
s)

(b) Packet delay timeseries.

Figure 6.14: Congestion control performance on a variable link (link bandwidth shown as a
shaded light blue line).

Figure 6.14 shows the throughput and delay timeseries between t = 30s and t = 100s.
Throughout the entire trace, Cubic operates with the queues completely full, resulting in high

link utilization at the cost of high queuing delays. Among the low-delay algorithms, the delay
performance differs greatly across specific algorithms. When the link rate goes down to 5Mbps,
Sprout and Copa-0.1 (Copa without mode switching, δ = 0.13) are able to adapt rapidly without
causing a delay spike. PCC-Vivace [134], GoogCC and BBR are slower to adapt, causing 3-8
seconds long delay spike. Throughout the low bandwidth period, PCC maintains persistent, high
queuing delay, whereas Copa-Auto (Copa with mode-switching, adaptive δ) incorrectly switches
to competitive mode, significantly increasing queuing delay.

In addition to the delay that occurs when the link rate drops, some algorithms have inherently
more queuing than others. BBR can maintain up to 2 BDP in-flight, causing up to 1 BDP of
in-network queuing. Both, Copa-0.1 and Copa-Auto demonstrate significant short-term delay
variations due to Copa’s 5-RTT probing cycle, which serves the role of probing the network for
additional capacity. The peak delay is inversely proportional to the value of δ, and is worse in
the case of Copa-Auto, since it periodically misinterprets its own delay as delay caused due to
a competing queue-building flow, and consequently reduces the value of δ in response. There is
significant variation in Sprout’s packet delay due to the bursty nature of its packet transmissions,
even though it is significantly underutilizing the link. GoogCC also demonstrates a delay spike
around t = 90s, when its send rate hits the link limit after an extended ramp-up period. PCC-
Vivace, Copa-Auto, Copa-0.1, and BBR are able to rapidly probe for more bandwidth when the
link rate increases. On the other hand, PCC and GoogCC are the slowest to converge, taking more
than 20-30 seconds to ramp up after the link rate increases, resulting in severe underutilization.

3A lower delta makes Copa more aggressive, sacrificing low delay for higher throughput. The original paper
proposes using 0.5, whereas the version on Pantheon uses 0.1. Facebook’s testing of Copa [148] used 0.04.

121

34.0 34.2 34.4 34.6 34.8 35.0
Time (seconds)

20

80
Pa

ck
et

 D
el

ay
 (m

s)
PCC-Vivace
Copa-Auto
TCP-BBR

(a) Short-term delay variation.

34.0 34.2 34.4 34.6 34.8 35.0
Time (seconds)

0

10

20

30

40

Se
nd

 R
at

e
(M

bp
s)

PCC-Vivace
Copa-Auto
TCP-BBR

(b) Short-term send rate variation.

Figure 6.15: A closer look at the short term delay and send rate variation on a constant 20 Mbps
link.

In order to achieve high link utilization and low delays for low-latency interactive video
streaming, the CCA must quickly identify the link capacity without causing queuing delays, and
quickly back off when the delay is self-induced. SQP is able to achieve these requirements, as
shown in Section 6.7.3.

6.4.2 Short Timescale Variations

In this section, we examine the short timescale behavior of existing protocols to see if they can
provide the low packet delay and stable throughput [149] needed to support the requirements of
low-latency streaming applications. We present three algorithms that demonstrate distinct short-
term behavior: Copa-Auto, BBR and Vivace (additional results in Section 6.7.7). Copa-0.1 and
Sprout behave similar to Copa-Auto, and PCC behaves similar to Vivace in these experiments.
We ran each algorithm on a fixed 20 Mbps link with 20 ms of delay in each direction. Fig-
ure 6.15a shows the one-way packet delays and Figure 6.15b shows the packet transmission rate
for each frame period (16.66 ms at 60FPS).

Copa-Auto’s one-way packet delay oscillates between 20 ms and 60 ms over a 12-frame pe-
riod, with large variations in the send rate at frame-level timescales. If a smooth video bitrate
is determined using the average send rate to maximize utilization, the frames at T = 34.3, 34.5
would get delayed at the sender. To lower the sender-side queuing delay, the encoder rate selec-
tion mechanism must either: (1) choose a conservative video bitrate, resulting in underutilization,
or (2) have frequent rate control updates.

While BBR is not particularly suitable for interactive streaming because of its higher queuing
delay, BBR’s RTT probing mechanism is especially problematic. Every 10 seconds, BBR throt-
tles transmissions (transmitting at most 4 packets per round trip) for 200 ms to measure changes
in the link RTT (between T = 34.2 and T = 34.4). During this period the generated video
frames will be queued at the sender, resulting in 200 ms of video stutter every 10 seconds.

Rate-based algorithms like PCC and Vivace are better suited for streaming applications, since

122

the internal rate-tracking mechanism can be used to set the video bitrate, and frames are not de-
layed at the sender if the encoded frames do not overshoot the requested target bitrate. While
Salsify [14] attempts to solve this problem using a custom encoder that can match the instan-
taneous transmission rate of a bursty CCA like Sprout [22], rearchitecting the CCA is a more
universal and practical solution that can leverage advances in hardware video codecs that have
good rate control mechanisms.

To minimize the end-to-end frame delay, the CCA must transmit encoded frames immedi-
ately, and pace faster than the rate at which the network can deliver the packets. SQP directly
controls the video bitrate using smooth bandwidth estimates, and the transmissions are synchro-
nized with the frames, which reduces the end-to-end frame delay (Section 6.7.7).

6.5 Design

Low-latency interactive streaming applications generate raw frames at a fixed frame-rate. The
video bitrate is determined by an adaptive bitrate (ABR) algorithm using signals from the CCA
in order to manage frame delay, network congestion, and bandwidth utilization. The compressed
frames are transmitted over the network, and eventually decoded and displayed at the client
device.

SQP is a rate- and delay-based CCA for low-latency interactive video streaming, and aims to
(1) provide real-time bandwidth estimates that ensure high utilization and low end-to-end frame
delay on highly variable links, and (2) achieve competitive throughput in the presence of queue-
building cross traffic. SQP’s congestion control mechanism must be purely rate-based in order
to avoid the undesirable trade-offs between bandwidth utilization, encoder bitrate changes, and
the end-to-end frame delay (§ 6.2).

6.5.1 Architecture Overview

SQP’s role in the end-to-end streaming architecture and its key components are shown in Fig-
ures 6.16a and 6.16b. SQP relies on QUIC [150] to reliably transmit video frames, perform
frame pacing, and provide packet timestamps for estimating the network bandwidth. SQP di-
rectly controls the video bitrate, and a simple hysteresis filter serves as a bridge between SQP
and the encoder to reduce the frequency of bitrate changes.

Internally, SQP’s components work together in order to achieve the key design goals:
1. Bandwidth Probing: SQP transmits each frame as a short, paced burst, and the band-

width sampler uses frame-level packet dispersion statistics from the interval tracker for
discovering additional bandwidth.

2. Recovery from Transient Queues: SQP’s bandwidth samples are penalized when the delay
increases over a short period (§ 6.5.2), enabling it to recover from transient self-induced
queuing.

3. Recovery from Standing Queues: SQP uses a target multiplier mechanism (§ 6.5.5) to
maintain some slack in the link utilization, enabling recovery from self-induced standing
queues. SQP remains competitive when competing flows cause standing queues (within

123

Raw
frame Frame info

Encoder QUIC
channel

Compressed
Frame

Hysterisis
filter

Pacing
Rate

SQP

Network
 feedback

Bandwidth
Estimate

Encode Rate

(a) Video streaming architecture.

Interval Feedback

Pacing rate
Interval
tracker

Frame
info

Interval
sample

Bandwidth
sampler

Smooth
estimate

Bandwidth
estimator

Bandwidth
estimate

Network feedback

Pacing
Rate

SQP
controller

QUIC
channel

SQP

(b) SQP internal architecture.

Figure 6.16: Low-latency video streaming and SQP architectures.

124

Underutilization
Sample

Pa
ck

et
 S

eq
. N

um

Time

Send
Receive

(a) SQP’s bandwidth samples
are higher than the video bitrate
when the link is underutilized,
indicating that the video bitrate
should be increased.

Overutilization
SamplePa

ck
et

 S
eq

. N
um

Time

(b) SQP’s bandwidth samples are
lower than the link rate when
the link is overutilized, indicat-
ing that the video bitrate should
be reduced.

Uncorrected
samplePa

ck
et

 S
eq

. N
um

Corrected
sample

Time

(c) Bandwidth samples from
frames that are smaller than the
target bitrate are more sensi-
tive to transient queuing. SQP’s
corrected bandwidth sample is
closer to the link rate than the
uncorrected sample.

Figure 6.17: SQP’s bandwidth samples converge towards the link rate and aid in draining self-
inflicted queues. The slope of the dotted red line represents the bandwidth sample in each case.

acceptable delay limits) since it uses a small, dynamic window to track the transient delay
(§ 6.5.3).

4. Rate-based congestion control: SQP aims to carefully pace each frame faster than the
rate at which the network can deliver the packets (§ 6.5.5), and responds to congestion
by smoothly changing the bandwidth estimate (and consequently, the video bitrate) using
gradient-based updates (§ 6.5.4). As opposed to using ACK-clocking and window-based
mechanisms, rate-based congestion control simplifies integration with the video encoder
and reduces the end-to-end frame delay (§ 6.4.2).

5. Fairness and Interoperability: SQP’s bandwidth estimator (§ 6.5.4) is based on maximiz-
ing a logarithmic utility function, which improves dynamic fairness due to its AIMD-style
updates (§ 6.6.2). SQP’s frame pacing and the bandwidth target multiplier mechanisms en-
sure dynamic fairness across multiple SQP flows (§ 6.6.2) and provide a theoretical upper
bound on SQP’s share when competing with elastic flows (§ 6.6.1).

For the initial part of the discussion, we will assume the existence of a ‘perfect’ encoder with
the following properties: (1) the target bitrate can be changed on a per-frame basis without any
negative consequences, as long as the target bitrate does not change significantly from frame to
frame, and (2) the encoder does not overshoot or undershoot the specified target rate. In § 6.7.10,
we discuss how SQP works in a practical setting when encoders do not satisfy some of these
assumptions.

6.5.2 Bandwidth Sampling

The goal of SQP’s bandwidth sampling algorithm is to measure the end-to-end frame transport
rate that achieves high link utilization while avoiding self-induced queuing and packet transmis-
sion pauses (e.g., Copa and BBR in § 6.4.2). SQP transmits each frame as a short burst that

125

is faster than the network delivery rate, which causes a small amount of queuing. This queue
is drained by the time the next frame arrives at the bottleneck if the average video bitrate is
lower than the available bottleneck link capacity. SQP uses the dispersion of the frame-based
packet train [151] to measure link capacity, with some key differences that aid in congestion
control compared to basic packet-train techniques. SQP’s probing works at sub-frame timescales
(< 16.66 ms @ 60FPS), in contrast to CCAs that probe for bandwidth over longer timescales
(PCC:2RTT, BBR:1 min-RTT, and Copa:2.5 RTT).

Consider an application generating frames at a fixed frame rate. As shown in Figure 6.17,
a frame of size F is transmitted every inter-frame time interval, I (e.g., 16.66 ms at 60FPS),
and the average bitrate is F

I
. Each frame is paced at a rate that is higher than F

I
(shown by the

steep slope of the green dots). If there are no competing flows (competition scenario discussed
in § 6.6.1), and the link bandwidth is lower than the pacing rate, the packets will get spaced out
according to the bandwidth of the bottleneck link (slope of the red dots). SQP computes the
end-to-end frame transport bandwidth sample as:

S =
F

Rend − Sstart −∆min

(6.1)

This is the slope of the red dotted line in Figure 6.17. Sstart and Rend are the send and receive
times of the first and last packets of a frame, respectively, and ∆min is the minimum one-way
delay (delta between send and receive timestamps) for packets sent during a small window in the
past (§ 6.5.3). ∆min and Rend −Sstart have the same clock synchronization error (sender-side vs.
receiver-side timestamps) and cancel each other out.

Underutilization Sample: When the network is underutilized or 100% utilized, no addi-
tional queuing occurs across multiple frames (∆ = Rstart − Sstart = ∆min remains constant).
Thus, as shown in Figure 6.17a, the sample is equal to the packet receive rate for a frame (ie.
the bottleneck link bandwidth). The samples during link underutilization are higher than the
video bitrate (F

I
), and SQP increases its bandwidth estimate. When the link is 100% utilized, the

samples are equal to the video bitrate, indicating good link utilization.
Overutilization Sample: Transient overutilization due to frame size overshoots, bandwidth

overestimation (link aggregation, token bucket policing), or a drop in network bandwidth can
cause queuing that builds up across multiple frames. This results in an increase in ∆−∆min for
subsequent frames, which lowers the bandwidth samples for subsequent frames (Figure 6.17b,
slope of dotted red line for the second frame). Thus, SQP lowers the video bitrate below the link
rate and recovers from transient queuing. When packets are lost, SQP scales down its samples by
the fraction of lost packets, primarily responding to sustained loss events (e.g., shallow buffers,
§ 6.7.6).

Video Encoder Undershoot: While SQP is also able to discover the link bandwidth quickly
in application-limited scenarios since it relies on the pacing burst rate, and not the average video
bitrate, bandwidth samples from small frames are unfairly penalized due to delay variations.
SQP often has to deal with application-limited scenarios where the bitrate of the encoded video
is less than the bandwidth estimate. This can be due to conservative rate control mechanisms that
serve as a bridge between the bandwidth estimate and the encoder bitrate to reduce the frequency
of encoder bitrate updates, or due to encoder undershoot during low complexity scenes that do
not warrant encoding frames at the full requested target bitrate (eg. low-motion scenes like

126

menus). When SQP is application-limited, queuing delay from past frames can unfairly penalize
the bandwidth sample (Figure 6.17c). While padding bytes can be used to bring up the video
bitrate to SQP’s bandwidth estimate, this results in wastage of bandwidth. To improve SQP’s
robustness under application-limited scenarios, we modify the bandwidth sampling equation to
account for undershoot:

S =
F · γ

Rend − Sstart −∆min + (Rend −Rstart) · (γ − 1)
(6.2)

where γ = Fmax

F
is the undershoot correction factor, Fmax is the hypothetical frame size without

undershoot, and (Rend −Rstart) · (γ − 1) is the predicted additional time required for delivering
the hypothetical full-sized frame. This computes the bandwidth sample by extrapolating the
delivery of a small frame to the full frame size that is derived from SQP’s current estimate.
In Figure 6.17c, the solid dots are actual packets for a frame, and the hollow dots show the
extrapolated transmission and delivery of the packets.

6.5.3 Tracking Minimum One-way Delay

The minimum packet transmission delay, ∆min, serves as a baseline for detecting self-inflicted
network queuing. The window size for tracking ∆min represents the duration of SQP’s memory
of ∆min, which affects SQP’s self-induced queuing and throughput when competing with queue-
building cross traffic. If a small, fixed window were used (e.g., 0.1-0.5 s), when self-induced
queuing occurs, ∆min could expire before SQP can recover. While a larger, fixed window (e.g.,
10-30 s) would aid recovery from self-induced queues by anchoring SQP to the lowest one-way
delay observed over the window, SQP’s bandwidth samples would be more sensitive to delay
variations caused by the queue-building cross traffic, lowering SQP’s throughput share.

To balance these trade-offs, SQP uses an adaptive window size of 2 × sRTT [152]. This
has two advantages. First, for self-induced queuing, SQP’s adaptive window grows quickly,
and in conjunction with SQP’s bandwidth target multiplier mechanism (§ 6.5.5), enables SQP to
drain self-induced queues. Second, when competing queue-building flows build standing queues,
∆min quickly increases in response, so that SQP doesn’t react to the competitor’s standing queue.
Since SQP paces frames into the network faster than SQP’s current share, it can probe for more
bandwidth when competing with queue-building flows, even if the combined link utilization of
SQP and the cross traffic is near 100%. Together, this enables SQP to obtain a high throughput
share when those queue-building flows (1) do not cause very high delays, and (2) have low
queuing delay variation over periods of 2× sRTT (§ 6.7.5).

While the role of SQP’s ∆min mechanism is similar to BBR’s minRTT mechanism, SQP
does not need an explicit probing mechanism for ∆min since it (1) increases the window size
when self-induced queuing occurs, and (2) reduces the video bitrate to drain the self-induced
queue, which provides organic stability. While BBR’s explicit probing of the baseline network
RTT is more accurate, the need to significantly limit packet transmissions for 200 ms makes this
approach unsuitable for real-time interactive streaming media. We evaluate the impact of the
window size scaling parameter in § 6.6.3.

127

6.5.4 Bandwidth Estimate Update Rule
SQP’s bandwidth estimator processes noisy bandwidth samples measured by SQP’s bandwidth
sampler to provide a smooth bandwidth, which is used to set the video encoder bitrate. SQP’s
update rule is inspired from past work on network utility optimization [153], and is derived
by optimizing a logarithmic reward for higher bandwidth estimates and a quadratic penalty for
overestimating the bandwidth:

max log(1 + α ·B)− β · (B − e)2 (6.3)

where B is SQP’s bandwidth estimate, α is the reward weight for a higher bandwidth estimate, β
is the penalty for overestimating the bandwidth, and e is a parameter derived from the bandwidth
sample S, such that the function is maximized when B = S. Taking the derivative of this
expression and evaluating the expression with B set to the current estimate provides a gradient
step towards the maxima. Simplifying the derivative of the expression 6.3, and the constant
expressions involving α and β, the update rule can be rewritten as

B′ = B + δ

(
r

(
S

B
− 1

)
−
(
B

S
− 1

))
(6.4)

B′ and B are the updated and current estimates, r is the reward weight for bandwidth utiliza-
tion and δ is the step size and represents a trade-off between the smoothness of the bandwidth
estimate and the convergence time under dynamic network conditions. SQP empirically sets
δ = 320 kbps, and r = 0.25.

SQP’s target and pacing multiplier mechanisms (§ 6.6.1) work in conjunction with the update
rule to improve SQP’s convergence to fairness (§ 6.20).

6.5.5 Pacing and Target Multipliers
SQP’s design includes two key mechanisms for ensuring friendliness with other flows - instead
of transmitting each frame as an uncontrolled burst at line rate, SQP paces each frame at a
multiple of the bandwidth estimate, and targets a slightly lower video bitrate than the samples
(determined by a target multiplier). Suppose SQP is sharing a bottleneck link with a hypothetical
elastic CCA [136] that perfectly saturates the bottleneck link without inducing any queuing delay.
If SQP transmitted frames as uncontrolled bursts, the elastic flow might not be able to insert any
packets between SQP’s packets. Thus, the bandwidth samples would match the link rate, and
SQP would starve the elastic flow by utilizing the entire link bandwidth.

SQP paces each frame at a rate P , which is a multiple of the current bandwidth estimate,
ie. P = m · B (m > 1.0). Thus, each frame is transmitted over I

m
, where I is the frame

interval. While pacing enables competing traffic to disperse SQP’s packets, SQP’s bandwidth
samples would still be higher than the average rate it is sending at, and SQP would eventually
starve the other flow. To avoid this problem, SQP combines frame pacing with a bandwidth target
multiplier mechanism. SQP multiplies bandwidth samples with a target multiplier T < 1 before
calculating the bandwidth estimate. SQP’s target multiplier serves three key roles: (1) it allows
SQP to drain any self-inflicted standing queues over time, (2) in conjunction with the pacing

128

U = 0.9 U = 1.0 T=0.90 T=0.70 T=0.63 T=0.60

0.0 0.2 0.4 0.6 0.8 1.0
Available Link Fraction (A)

0.0
0.2
0.4
0.6
0.8
1.0
1.2

SQ
P

Ut
iliz

at
io

n
(U

)

1.
00

0.
50

0.
33

0.
25

(a) Theoretical utilization
of available capacity.

0.90 0.70 0.63 0.60
Target

0.0

0.2

0.4

0.6

0.8

SQ
P

Lin
k

Ut
iliz

at
io

n Cross Traffic
Copa-0.1
BBR
CUBIC
Ideal

(b) Single SQP flow
throughput when com-
peting with cross traffic.

1 2 3 4 5 6
Num Flows

30
40
50
60
70
80

P9
0

De
la

y
(m

s)

(c) P90 packet delay for
SQP flows sharing a bot-
tleneck.

1 2 3 4 5 6
Num Flows

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k

Ut
iliz

at
io

n

(d) Total link utilization
for SQP flows sharing a
bottleneck.

Figure 6.18: Impact of the target multiplier on delay, link utilization and link share obtained
under cross traffic for a pacing multiplier m = 2. Experimental results validate the theoretical
analysis. In each case, the bottleneck link rate was 20 Mbps, the one-way delay in each direction
was 20 ms and the bottleneck buffer size was 120 ms.

multiplier, it prevents SQP from starving competing flows, and (3) enables multiple SQP flows
to converge to fairness. We empirically set m = 2 and T = 0.9, and analyze the impact of other
values of T in Section § 6.6.1.

6.6 Analysis of SQP Dynamics

6.6.1 Competing Flows
SQP’s pacing multiplier (m) and bandwidth target multiplier (T) mechanisms provide important
guarantees that prevent SQP from starving other flows, and enable SQP to achieve fairness when
competing with other SQP flows. In this section, we derive SQP’s theoretical maximum share
when competing with elastic flows, and the conditions under which SQP achieves queue-free
operation when competing with inelastic flows. This analysis provides valuable insight into how
SQP’s parameters can be tuned for application-specific performance requirements.

SQP adds B · I bytes (i.e., the frame size, equal to the bandwidth estimate times the frame
interval) to the bottleneck queue over a period I

m
(§ 6.5.5), during which a competing flow

transmitting at a rate R adds R·I
m

bytes to the queue. Thus, the time to drain the queue (Td) is

Td =
B · I + R·I

m

C
(6.5)

where C is the link capacity. If the link is not being overutilized (∆min remains constant),

Td = Rend −Rstart = Rend − Sstart −∆min (6.6)

From Eq. 6.6 and Eq. 6.1, SQP’s bandwidth sample (S) can be written as S = B·I
Td

. After
substituting the value of Td from Eq. 6.5 and simplifying the equation, we get:

S =
C

1 + R
m·B

(6.7)

129

Note that we assume m ·B +R > C (link is not severely underutilized), otherwise no queue
will build up during the SQP’s pacing burst, and the bandwidth sample would simply be m · B.
SQP multiplies the bandwidth sample (S) with a target multiplier (T) before it is used to update
the current bandwidth estimate using Eq. 6.4. Steady state occurs when the bandwidth estimate
(B) is equal to the bandwidth target, ie. BT = S · T . Substituting S from Eq. (6.7), we get:

B = C · T − R

m
(6.8)

If A = C−R
C

is the fraction of the link capacity available for SQP, and U = B
C−R

is SQP’s
utilization of the of the available link capacity, Eq. 6.8 can be re-written as

U =
m · T + A− 1

m · A
(6.9)

This equation predicts SQP’s behavior in a variety of scenarios. Figure 6.18a plots U on the
Y-axis as a function of A on the X-axis for various target multipliers and for a pacing multiplier
of 2.

Recovery From Self-Induced Queuing When SQP is the only flow on a bottleneck link,
the available link share A = 1 (right edge of Figure 6.18a). This implies that SQP will always
underutilize the link slightly (specifically, it will use fraction T of the total link capacity), which
will result in standing queues getting drained over time. The value of T caps SQP’s maximum
link utilization in the steady state, and determines how quickly SQP will recover from self-
induced standing queues. In our evaluation and for SQP’s deployment in Google’s AR streaming
service (§ 6.8), we use a target multiplier of 0.9, which achieves good link utilization and is able
to drain standing queues reasonably well.

Inelastic Cross Traffic. When SQP competes with an inelastic flow (transmitting at a fixed
rate), the available link fraction (A) is fixed. For SQP to operate without any queuing, U (SQP’s
utilization of the available capacity) must be less than 1. Thus, the available bandwidth must be
greater than the value at which the utilization curve crosses U = 1 in Figure 6.18a.

For example, with a pacing multiplier of 2 and a target multiplier of 0.9, SQP requires at least
80% of the link to be available so that it can consistently maintain a slight underutilization of the
link. When less than 80% of the link is available, SQP will tend to overutilize its share and cause
queuing. While SQP’s initial window size for tracking ∆min (6.5.3) may not be large enough
for SQP to completely drain the self-induced queue, the increase in the RTT due to queuing will
eventually cause the window to grow to a size that is large enough to stabilize SQP’s queuing.
While a smaller target value would enable SQP to operate without queuing for lower values of
A, it would sacrifice link utilization when there are no competing flows.

Elastic Cross Traffic. The minimum value of A for queue-free operation of SQP when
competing with inelastic flows is also the maximum bound for SQP’s share of the throughput
when it is competing with elastic traffic. When SQP is not using its entire share (U < 1), the
elastic flow will increase its own share since the link is underutilized. This reduces the available
link share for SQP, moving the operating point to the left in Figure 6.18a until the entire link is
utilized (U = 1). If SQP is over-utilizing its share, the elastic flow will decrease its own share
and move the operating point to the right until the link is no longer being over-utilized.

130

Figure 6.19: Cubic delay variation increases with more cubic flows.

This is an upper-bound of SQP’s share. Non-ideal elastic flows can cause queuing delays
that will cause SQP to increase its one-way delay tracking window, whch in turn will make the
bandwidth samples more sensitive to delay variations caused by the cross traffic. Figure 6.18b
shows the share of a single SQP flow competing with various elastic flows, for different target
multipliers. Copa-0.1 closely resembles an ideal elastic flow which does not cause queuing and
has low delay variation. Hence, SQP’s share (shown in blue) is close to the theoretical maximum
(shown in red). With BBR and Cubic, SQP’s share is less than the theoretical maximum since the
higher delays induced by BBR and Cubic make SQP more reactive to queuing delay variations.

Heterogeneous fairness In general, it is not possible for heterogeneous CCAs to achieve
fairness when competing with each other. Let’s consider the fairness behavior of BBR. We
ran a simple experiment where BBR flows compete with Cubic flows. When one BBR flow
competes with one Cubic flow on a 20 Mbps link, each flow achieves approximately 50% of
the link capacity. When 4 BBR flows compete with a single Cubic flow, each flow achieves
approximately 20% of the link, which is also fair. The third case, which is interesting, is the case
when a single BBR flow competes with 4 Cubic flows. In this case, BBR achieves approximately
40% of the link capacity, and each Cubic flow only achieves 15% of the link capacity [154]. The
key issue here is that BBR does not account for loss rate, which is the key signal used by Cubic.

In contrast BBR’s fairness behavior, SQP’s throughput also depends on the queuing and delay
variations. In the particular case of SQP competing with Cubic, where one SQP flow competes
with multiple Cubic flows, the delay variation caused by Cubic increases with the number of
Cubic flows. This is shown in Figure 6.19, where 6 cubic flows start with an interval of 10
seconds between them. The excess delay variation reduces SQP’s share as the number of Cubic
flows increase, which results in better heterogeneous fairness compared to BBR.

6.6.2 Intra-protocol Dynamics and Fairness
From the analysis in § 6.6.1, we can also infer the number of SQP flows that can operate without
queuing on a shared bottleneck, with some caveats. The underlying assumption in § 6.6.1 is that
packet arrivals at the bottleneck are evenly spaced. The analysis also holds in the case of Poisson
arrivals since the bandwidth samples are smoothed out by the update rule (§ 6.5.4). Multiple SQP

131

flows transmit frames as regularly spaced bursts, and thus, the packet dispersion observed by one
SQP flow depends on how its frames align with the frames of the other flows. If the two flows that
are sharing the bottleneck have perfectly aligned frame intervals, each flow will observe exactly
half of the link rate, and they will operate without queuing since T < 1. If the frame intervals are
offset exactly by I/2 (when pacing at 2X), each flow will see the full link bandwidth until link
overutilization triggers SQP’s transient delay recovery mechanism. When the intervals are offset
by I/4, the packet dispersion is the same as the dispersion caused by a uniform flow. Note that
this is only a concern if there are very few SQP flows, and the applications have perfectly timed
frames. As the number of SQP flows increase, the aggregate traffic pattern gets smoothed out.

Figures 6.18c and 6.18d show the 90th percentile delay and the total link utilization respec-
tively on the Y-axis as a function of the number of flows for various target multipliers. Fig-
ure 6.18d plots the theoretical link utilization of multiple SQP flows using dashed lines. The
pacing multiplier was set to 2.0 for all runs. To avoid the impact of frame alignment in our
experiment, we incorporate 1 ms of jitter into the frame generation timing4. When T = 0.9, a
single SQP flow in isolation maintains low delay and utilizes 90% of the link; two or more SQP
flows fully utilize the link and stabilize at a slightly higher delay (similar to SQP’s behavior with
inelastic cross-traffic, § 6.6.1). Reducing the target value reduces the steady state queuing delay,
with the trade-off that an isolated SQP flow will have lower link utilization (Figure 6.18d) and
will obtain less throughput share when competing with elastic flows (§ 6.6.1).

While SQP can be adapted to use more sophisticated mechanisms like dynamic frame timing
alignment across SQP flows and dynamically lowering the target and pacing multipliers when the
presence of multiple SQP flows is detected, we defer this to future work and only evaluate the
base SQP algorithm with a fixed target multiplier T = 0.9 and a fixed pacing multiplier m = 2
in § 6.7.

Fairness. When competing with other SQP flows, there are two key mechanisms that en-
able SQP to converge to fairness: SQP’s pacing-based bandwidth probing (§ 6.5.2), and SQP’s
logarithmic utility-based bandwidth smoothing (§ 6.5.4).

Let’s consider a scenario where SQP is not using bandwidth smoothing, and directly updates
its bandwidth estimate according to the sample. When overutilization occurs, each flow observes
a common delay signal, and hence the bandwidth is reduced by a multiplicative factor. For
various values of each flow’s initial rate, we compute the update step as S × T − B, where S
is computed using Eq. 6.7 (average case behavior with randomized frame alignment, § 6.6.1).
When the link is severely underutilized by a flow (the pacing burst of SQP does not cause queuing
- see § 6.6.1), the update step is 2× B − B = B. These update steps are shown in Figure 6.20a
as arrows, where the tail of the arrow is anchored at the initial condition, and the length of the
arrow is proportional to the step size. In the cyan region, neither of the flows cause queuing due
to their pacing burst, and hence, the rates undergo a multiplicative increase. In the purple region,
both flows cause queuing due to their pacing burst, and the slower flow increases its rate more
than the faster flow (whose increase is sublinear). The green and orange regions depict a region
of transition, where only one of the flows observes pacing-induced queuing. Thus, while SQP
will undergo multiplicative increase when the link is severely underutilized, as the link utilization

4Incorporating 1ms of sub-frame jitter into an application’s frame rendering will have minimal impact on video
smoothness

132

0.0 0.2 0.4 0.6 0.8 1.0
Flow 1 Rate (Norm.)

0.0

0.2

0.4

0.6

0.8

1.0
Fl

ow
 2

 R
at

e
(N

or
m

.)

(a) Raw sample update

0.0 0.2 0.4 0.6 0.8 1.0
Flow 1 Rate (Norm.)

0.0

0.2

0.4

0.6

0.8

1.0

Fl
ow

 2
 R

at
e

(N
or

m
.)

(b) Using update rule

Figure 6.20: Vector field showing bandwidth update steps for different starting states for two
competing flows. SQP’s update rule significantly speeds up convergence to fairness.

increases, the increases become sublinear.

In Figure 6.20b, we compute the update steps by incorporating SQP’s logarithmic utility-
based bandwidth update rule. In this case, SQP undergoes sublinear increase when the link is
underutilized, and linear decrease when the link is overutilized, which still converges to fairness
(similar to AIMD). The linear increase speeds up convergence for multiple SQP flows from an
under-utilized state, whereas the additive decrease makes SQP’s throughput stable when com-
peting with queue-building flows. SQP’s bandwidth update rule also ensures that the updates
are proportional to the difference relative to the current estimate, as opposed to fixed-size steps
(e.g., additive increase in Cubic) or velocity-based mechanisms (e.g., Copa). We evaluate SQP’s
fairness in § 6.7.9.

6.6.3 Adaptive Min One-way Delay Tracking

SQP’s adaptive min one-way delay window is a key mechanism that enables SQP to recover
from network overutilization. Recall that SQP’s window scales with the currently observed sRTT
(§ 6.5.3). A larger window speeds up recovery from queuing caused by overutilization, but results
in poor performance when competing with queue-building cross traffic. Different multipliers are
evaluated in Figure 6.21. With T = 0.9 and m = 2, more than one SQP flows sharing a
bottleneck require a larger ∆min window to stabilize. A multiplier of 2 results in acceptable level
of steady state queuing (nearly as low as 3× and 4×), while achieving reasonable throughput in
the presence of queue-building cross traffic like Cubic and BBR. SQP competing with Sprout is
also shown as a worst case example; Sprout causes significant delay variation due to its bursty
traffic pattern, causing SQP to achieve low throughput.

133

1*sRTT 2*sRTT 3*sRTT 4*sRTT
Min OWD Window

25

50

75

100

125
P9

0
De

la
y

(m
s)

Num Flows
1
2
3
4

(a) P90 packet delay for multiple SQP flows.

1*sRTT 2*sRTT 3*sRTT 4*sRTT
Min OWD Window

0.0

0.2

0.4

0.6

SQ
P

Lin
k

Sh
ar

e

CUBIC
BBR
Sprout
Copa-Auto

(b) Throughput of 1 SQP flow in the presence of
cross traffic.

Figure 6.21: Impact of the min one-way delay multiplier on frame delay and throughput when
competing with other flows. The bottleneck setup is the same as Figure 6.18, and T = 0.9,m =
2.

6.7 Evaluation

SQP’s evaluation has three broad themes. § 6.7.4 evaluates SQP’s performance on a large set of
calibrated emulated links modeled after real-world network traces obtained from Google’s game
streaming service. §§ 6.7.5-6.7.10 evaluate SQP’s throughput when competing with cross traffic,
impact of shallow buffers, fairness, and bandwidth probing in application-limited scenarios. In
§ 6.8, we compare SQP and Copa (without mode switching) in the real world on Google’s AR
streaming service. In this section we compare SQP’s performance to recently proposed high per-
formance low latency algorithms like PCC [133], Copa [21] (with and without mode switching),
Vivace [134] and Sprout [22], traditional queue-building algorithms like TCP-Cubic [12] and
TCP-BBR [11], and WebRTC (using GoogCC as CCA), an end-to-end low-latency streaming

Copa-0.1 PCC-Vivace Sprout (Salsify) Copa-Auto TCP-BBR SQPGoogCC (WebRTC)

40 60 80 100
Time (seconds)

0

5

10

15

20

Se
nd

 R
at

e
(M

bp
s)

(a) Send rate timeseries.

40 60 80 100
Time (seconds)

20

80

320

Pa
ck

et
 D

el
ay

 (m
s)

(b) Packet delay timeseries.

35 40 45 50
Time (seconds)

20

80

320

Pa
ck

et
 D

el
ay

 (m
s)

(c) Packet delay timeseries
(zoomed in).

Figure 6.22: Congestion control performance on a variable link (link bandwidth shown as a
shaded light blue line).

134

solution.

6.7.1 Emulation Setup
We use the Pantheon [130] congestion control testbed, which works well for links under 100Mbps.
For the baselines, we use the implementations available on Pantheon. These include kernel-space
(Linux) implementations of Cubic and BBR-v1 [155] (iperf3 [156]), user-space implementations
of PCC [157], Vivace [158], Copa [159], and Sprout, and Chromium’s version of WebRTC (with
GoogCC, max bitrate changed to 50 Mbps from 2 Mbps). Additionally, we evaluate the Copa
algorithm with a fixed delta (δ = 0.1). We implement additional functionality in Pantheon, in-
cluding flow-specific RTTs, start and stop times, and testing of heterogeneous CCAs sharing a
link. For experiments with fixed bandwidth links, we choose a queue size of 10 packets / Mbps
(≈ 120ms for 20 Mbps) and the drop-tail queuing discipline. We fix T = 0.9 and m = 2.0 for
SQP.

6.7.2 Metrics
While metrics like average throughput and packet delay are sufficient for evaluating a general
purpose congestion control algorithm, they do not accurately reflect the impact on quality-of-
experience (QoE) of a low-latency streaming application that is using a particular congestion
control algorithm [160]. To evaluate how a CCA affects the QoE of low-latency streaming, we
need metrics that quantify properties like video bitrate and frame delay.

After an experiment is run, Pantheon generates detailed packet traces with the timestamps
of packets entering and leaving the bottleneck. We compute a windowed rate from the ingress
packet traces, which serves as a baseline for the video bitrate. For a time slot t, the frame size
F (t) is:

F (t) = max

(
S(t, t+ n · I)− p

n
, S(t, t+ I)− p, 0

)
(6.10)

where p denotes the pending unsent bytes from previous frames, I is the frame interval, S(t1, t2)
is the number of bytes sent by an algorithm between t1 and t2 and n is the window size in
number of frames used for smoothing. This ensures that none of the bytes the algorithm sent in
a particular interval are wasted (maximum utilization).

To quantify video frame delay, we simulate the transmission of the frames to measure the
end-to-end frame delay. For zero size frames, we assume that the delay of the frame is the
time until the next frame. The choice of n limits the worst case sender-side queuing delay to n
frames, which can occur when an algorithm sends a burst of packets during the nth frame slot
after a quiescence period of n− 1 frames.

6.7.3 Simple Variable Bandwidth Link
We evaluated SQP on a link that runs at 20 Mbps for 40 seconds, drops to 5 Mbps for 20 seconds,
and then recovers back to 20 Mbps (same as the experiment described in § 6.4.1). The throughput

135

Copa-0.1 PCC-Vivace

Sprout (Salsify)PCC Copa-Auto GoogCC(WebRTC)

SQPTCP-CUBICTCP-BBR

0 20 40 60
Time (seconds)

0

20

40

S
e
n
d
 R

a
te

 (
M

b
p
s)

(a) Throughput timeseries for a sample Wi-Fi
trace.

0 20 40 60
Time (seconds)

0

50

100

150

P
a
ck

e
t

D
e
la

y
 (

m
s)

(b) Packet delay timeseries for the trace shown in
6.23a.

Figure 6.23: Performance of various CCAs on a sample Wi-Fi network trace, with the bottleneck
buffer size set to 200 packets. SQP rapidly adapts to the variations in the link bandwidth, and
achieves low packet queueing delay.

is shown in Figure 6.22a, and the delay is shown in Figure 6.22b, with a zoomed version of the
delay in Figure 6.22c. SQP quickly probes for bandwidth after the link rate increases (T = 60),
and is able to maintain consistent, low delay when the link conditions are stable. When the link
rate drops, SQP’s recovery is faster than PCC-Vivace, and as fast as BBR. While GoogCC’s
recovery is slightly faster, it takes a very long time compared to SQP in order to ramp up once
the link rate increases back to 20.

6.7.4 Real-world Wireless Traces
To evaluate SQP’s performance on links with variable bandwidth, delay jitter and packet aggre-
gation, we obtained 100 LTE and 100 Wi-Fi throughput and delay traces from a cloud gaming
service. Each network trace was converted to a MahiMahi trace using packet aggregation to
emulate the delay variation, and the link delay was set to the minimum RTT for each trace.

Figures 6.23a and 6.23b show the throughput and delay of a single flow operating on a rep-
resentative Wi-Fi trace. The thick gray line represents the link bandwidth. SQP achieves high
link utilization and can effectively track the changes in the link bandwidth while maintaining low
delay. While Copa-Auto, Sprout, and BBR achieve high link utilization, they incur a high delay
penalty. WebRTC, PCC and Vivace are unable to adapt to rapid changes in the link bandwidth,
resulting in severe link underutilization and occasional delay spikes (e.g., Vivace at T=22s).

The aggregated results for the Wi-Fi traces are shown in Figure 6.24a. Across all Wi-Fi
traces, SQP achieves 78% average link utilization compared to 46%, 35% and 59% for PCC,
Vivace and Copa-0.1 respectively while only incurring 4-8 ms higher delay. While Cubic, BBR,

136

Copa-0.1 PCC-Vivace

Sprout (Salsify)PCC Copa-Auto GoogCC(WebRTC)

SQPTCP-CUBICTCP-BBR

256 128 64 32 16
P75 Frame Delay (ms)

0.2

0.4

0.6

0.8

1.0

A
vg

. L
in

k
U

til
iz

at
io

n

Be
tte

r

(a) Performance across 100 real-world Wi-Fi
traces.

256 128 64 32 16
P75 Frame Delay (ms)

0.2

0.4

0.6

0.8

1.0

A
vg

. L
in

k
U

til
iz

at
io

n

Be
tte

r

(b) Performance across 100 real-world LTE traces.

Figure 6.24: SQP’s performance over emulated real-world wireless network traces. The bot-
tleneck buffer size was set to 200 packets. In Figures 6.24a and 6.24b, the markers depict the
median across traces and the whiskers depict the 25th and 75th percentiles.

Sprout, and Copa-Auto achieve higher link utilization, this is at a cost of significantly higher
delay (130-342% higher).

Figure 6.24b shows the performance various CCAs across 100 real-world LTE traces. SQP
and Copa-0.1 have good throughput and delay characteristics, whereas other CCAs either have
very high delays or insufficient throughput.

6.7.5 Competing with Queue-building Flows
Next, we evaluate the ability of various congestion control algorithms to support stable video
bitrates in the presence of queue-building cross traffic. We ran the experiment for 60 seconds on
a 20 Mbps bottleneck link with 120 ms of packet buffer, and a baseline RTT of 40 ms, where
each algorithm is run for 10 seconds before the cross traffic is introduced. Figure 6.25a shows the
average normalized throughput and P10-P90 spread of the windowed bitrate for each algorithm
versus the P90 simulated frame delay after a BBR flow is introduced. Figure 6.25c shows the
average normalized throughput versus the P90 simulated frame delay when the CCA being tested
starts 10 seconds after a BBR flow is already running on the link. We ran similar experiments
with Cubic as the cross traffic, and the results are shown in Figures 6.25b and 6.25d.

SQP is able to achieve high and stable throughput due to SQP’s bandwidth sampling mech-
anism (§ 6.5.2) and the use of a dynamic min-oneway delay window size (§ 6.5.3). While PCC
performs well when it starts before the competing traffic is introduced on the link, PCC’s nor-
malized throughput is less than 0.2 when it starts on a link that already has a BBR or Cubic flow
running on it. GoogCC’s slower start affects its throughput, with things improving slightly if

137

Copa-0.1 PCC-Vivace Sprout PCC TCP-CUBIC Copa-Auto TCP-BBR SQPWebRTC

80100120140160180
P90 Frame Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. T
hr

ou
gh

pu
t (

no
rm

.)

(a) Streaming performance when a BBR flow starts
after the primary flow has reached steady state.

80100120140160180
P90 Frame Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. T
hr

ou
gh

pu
t (

no
rm

.)

(b) Streaming performance when a Cubic flow starts
after the primary flow has reached steady state.

80100120140160180
P90 Frame Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. T
hr

ou
gh

pu
t (

no
rm

.)

(c) Streaming performance when a CCA starts after
a BBR flow has reached steady state.

80100120140160180
P90 Frame Delay (ms)

0.0

0.2

0.4

0.6

0.8

1.0

A
vg

. T
hr

ou
gh

pu
t (

no
rm

.)

(d) Streaming performance when a CCA starts after
a Cubic flow has reached steady state.

Figure 6.25: CCA performance when competing with queue-building cross traffic. The error
bars mark the P10 and P90 simulated frame bitrates (§ 6.7.2).

138

Copa-0.1 PCC-Vivace

Sprout (Salsify)PCC Copa-Auto GoogCC(WebRTC)

SQPTCP-CUBICTCP-BBR

10 20 30 40 50
Buffer Depth (packets)

0

5

10

15

20

Re
ce

iv
ed

 R
at

e
(M

bp
s)

(a) Ingress and Egress rate vs. Buffer Depth.

10 20 30 40 50
Buffer Depth (packets)

0

20

40

60

%
 p

ac
ke

ts
 lo

st

(b) Packet Loss rate vs. Buffer Depth.

Figure 6.26: Performance impact of shallow buffers on a 20 Mbps, 40ms RTT link.

the Cubic flow starts after 20s, and it is also suffers from the latecomer effect. Vivace, Copa-0.1
and Sprout are unable to maintain high throughput in all the cases. While Copa-Auto has good
average throughput, its performance is unstable at the frame timescale, which is evident by the
spread between the P10 and P90 bitrate.

6.7.6 Shallow Buffers
For the target workload of interactive video with I = 16.66 ms (60FPS) and a pacing multiplier
m = 2, SQP’s pacing-based bandwidth probing only requires approximately 8 ms of packet
buffer at the bottleneck link to be able to handle the burst for each frame. The lines in Fig-
ure 6.26a show the link egress rate for various CCAs for different buffer sizes, and the shaded
regions denote the rate of loss (i.e., the top of the shaded region is the link ingress rate). The loss
rate is also shown in Figure 6.26b. SQP achieves its maximum throughput with a buffer of 15
packets or more, which corresponds to 8 ms of queuing on a 20 Mbps link. If the buffer size is
smaller than 15 packets, SQP transmits at 18 Mbps (T = 0.9 fraction of the link capacity), but the
packets that correspond to the tail end of each frame are lost. Copa-Auto, Sprout and GoogCC
require larger buffers, whereas BBR (˜4% loss with a 5 packet buffer), and both PCC versions
(¡1% loss with a 5 packet buffer) excel at handling shallow buffers. Typical last-mile network
links like DOCSIS, cellular, and Wi-Fi links have much larger packet buffers [161]. When SQP
competes with other flows (vs. SQP, inelastic flows), SQP may require a higher level of queuing
to stabilize. Dynamic pacing and target mechanisms are required to handle such scenarios, and
we leave that for future work.

Discussion: While SQP causes sub-frame queuing since it paces each frame at 2X of the
bandwidth estimate, this queuing is limited to a maximum of 8 ms (14 packets for 20 Mbps).
Hence, for buffer sizes of 15 packets and above, SQP has exactly zero loss. Sprout on the other

139

hand has 10-20 % loss for buffer sizes all the way up to 50 packets, and more than 60% of
packets sent by Copa-Auto are lost for buffer sizes lower than 20 packets. GoogCC (WebRTC)
has around 10% packet loss for the entire range of buffer sizes evaluated here, which may be due
to WebRTC sending FEC packets in response to the loss observed.

6.7.7 Short Timescale Variations

In Figure 6.27, we show the short-term throughput and delay behavior of SQP and other various
CCAs, over a period of 0.5 seconds (see § 6.4.2). Figure 6.27a shows the transmission rate for
each frame period (16.66 ms at 60 FPS). SQP’s transmission rate is very stable, and does not vary
at all across multiple frames. Figure 6.27b shows the packet delay for various CCAs over 0.5
seconds. Since SQP transmits each packet as a short (paced) burst, it causes queuing at sub-frame
timescales, but since SQP does not use more than 90% of the link (due to T = 0.9, § 6.5.5), there
is no queue buildup that occurs across frames. While sprout’s probing looks similar, the queuing
caused by Sprout is much higher. We note that Sprout’s dips in throughput may be caused by
the fact that the burst frequency of the Sprout sender used in our test is 50 cycles per second.
This may not be a factor for video streaming if the burst frequency matches the video frame rate.
Sprout’s inadequacy for low-latency interactive streaming applications primarily stems from its
inability to achieve sufficient bandwidth when competing with other queue-building flows.

6.7.8 Impact of Feedback Delay

Since SQP receives the frame delivery statistics at the sender after 1-RTT, it is important to
evaluate the impact of delayed feedback on SQP’s dynamics. Figure 6.28a shows the average
delay, and Figure 6.28b shows the average throughput after a 20 Mbps link steps down to 5
Mbps, for various baseline network RTT values. The link is run at 20 Mbps for 40 seconds,
following which the link is run at 5 Mbps for an additional 20 seconds. Figure 6.28a shows the
average delay for the last 20 seconds, when the link is operating at 5 Mbps. SQP’s performance
is consistent across the entire range, even though the feedback is delayed, and can be attributed
to the fact that SQP uses a larger window for ∆min on higher RTT links. Sprout and Copa-Auto
have lower delay on higher RTT links, but for different reasons: Sprout’s link utilization drops
sharply as the link RTT increases from 40 to 80 ms (Figure 6.28b), and hence, it’s delay is lower,
whereas Copa-Auto incorrectly switches to competitive mode on low RTT links, causing very
high delays (Figure 6.28c shows the delay timeseries for a 10ms RTT link). PCC-Vivace can
only maintain low delay across a 10ms RTT link, and PCC is unable to drain the queuing caused
after the link rate drops in all cases.

6.7.9 Fairness

The first experiment evaluates the performance of 10 homogeneous flows sharing a 60Mbps
bottleneck link, with a link RTT of 40ms. Figure 6.29a compares the average throughput and the
P90 one-way packet delay for each flow. The ideal behavior is that each flow achieves exactly 6
Mbps and low delay, ie. the points should be clustered at the 6 Mbps line and be towards the right

140

Copa-0.1 PCC-Vivace Sprout (Salsify) SQP

Copa-Auto TCP-BBR GoogCC (WebRTC)

34.5 34.6 34.7 34.8
Time (seconds)

0

10

20

30

Se
nd

 R
at

e
(M

bp
s)

(a) Send rate timeseries.

20

40
SQP

20

40
GoogCC

20

40
PCC-Vivace

20

40

Pa
ck

et
 D

el
ay

 (m
s)

Copa-Auto

20

40
Copa-0.1

20

40
TCP-BBR

34.5 34.6 34.7 34.8
Time (seconds)

20

40
Sprout

(b) Packet delay timeseries.

Figure 6.27: Short-timescale throughput and delay behavior on a 20 Mbps link (link bandwidth
shown as a shaded light blue line).

141

Copa-0.1 PCC-Vivace Sprout (Salsify) PCC TCP-CUBIC Copa-Auto TCP-BBR SQPGoogCC (WebRTC)

10 20 40 80
RTT (ms)

0

100

200

300

400

Po
st

-D
ro

p
Av

g.
 D

el
ay

 (m
s)

(a) Average delay after the link
rate drops for various RTTs.

10 20 40 80
RTT (ms)

40

60

80

100

Av
. L

in
k

Ut
iliz

at
io

n
(%

)
(b) Average link utilization for
different RTTs. Sprout has low
utilization on higher RTT links,
and thus, lower delay.

0 20 40 60
Time (seconds)

16

64

256

Pa
ck

et
 D

el
ay

 (m
s)

(c) Packet delay timeseries for
10ms RTT link. Copa-Auto runs
in competitive mode on low RTT
links (10ms).

Figure 6.28: Impact of link RTT on throughput and delay, where link changes from 20 Mbps to
5 Mbps at T=40s.

Copa-0.1 PCC-Vivace

Sprout (Salsify)PCC Copa-Auto GoogCC(WebRTC)

SQPTCP-CUBICTCP-BBR

5075100125150
P90 Delay (ms)

2

4

6

8

10

12

A
vg

. T
hr

ou
gh

pu
t (

M
bp

s)

Better

(a) Throughput-delay performance of 10 flows
sharing a 60Mbps bottleneck link.

50100150200
P90 Frame Delay (ms)

0

1

2

3

4

5

P
10

 B
itr

at
e

(M
bp

s)

Better

(b) Bitrate-frame delay performance of 10 flows
sharing a 60Mbps bottleneck link.

Figure 6.29: Fairness results with 10 flows sharing a bottleneck. SQP achieves a fair share
of throughput on average, and at smaller time-scales. CCAs like Sprout, WebRTC, and Copa
become excessively bursty at smaller time-scales.

142

Copa-0.1 PCC-Vivace

Sprout (Salsify)PCC Copa-Auto GoogCC(WebRTC)

SQPTCP-CUBICTCP-BBR

20 30 40 50
Time (seconds)

0.5

0.6

0.7

0.8

0.9

1.0

Ja
in

's
 I
n
d
e
x

2 flows 3 flows 2 flows

(a) Jain’s fairness index over time for homogeneous
flows entering and exiting the bottleneck link.

20 40 60 80
Second flow RTT (ms)

0.6

0.7

0.8

0.9

1.0

P
1

0
 J
a
in

's
 F

a
ir

n
e
ss

 I
n
d

e
x

(b) P10 fairness (500 ms windows) for flows with
different RTTs. First flow RTT = 20 ms.

Figure 6.30: Dynamic fairness and RTT fairness comparison. SQP quickly converges to fairness,
and has good RTT fairness.

in the plot. SQP flows5 achieve equal share of the link, with lower P90 one-way packet delay
compared to Sprout, PCC, BBR and Cubic (75 ms). While BBR, and both versions of Copa
achieve good fairness with respect to the average throughput for the full experiment duration,
neither version of PCC is able to do so. While WebRTC has very low P90 packet delay, the
flows cumulatively underutilize the link and do not achieve fairness. Figure 6.29b compares the
streaming performance of the algorithms by plotting the P10 bitrate and the P90 frame delay
for different bitrate estimation windows ranging from 1 frame to 32 frames in multiplicative
steps of 2 (§ 6.7.2). The streaming performance of Copa-0.1, Sprout, Cubic and WebRTC are
significantly worse than their average throughput and packet delay due to bursty transmissions
when multiple flows share the bottleneck link.

In the second experiment, we evaluate dynamic fairness as flows join and leave the network.
Flows 2 and 3 start 10 s and 20 s after the first flow respectively, and stop at 40 s and 50 s respec-
tively. Figure 6.30a plots the Jain fairness index [162] computed over 500 ms windows versus
time. SQP converges rapidly to the fair share, whereas both versions of PCC, Copa-0.1 and
WebRTC cannot reliably achieve fairness at these time scales.

SQP also demonstrates good fairness across flows with different RTTs. We evaluated steady-
state fairness among flows that share the same bottleneck, but have different network RTTs. In
Figure 6.30b, we plot the P10 fairness (using Jain’s fairness index) across windowed 500 ms
intervals. When two flows have the same RTT, SQP, Copa-Auto, TCP-BBR and Sprout achieve
perfect fairness. As the RTT of the second flow increases, SQP and Copa-Auto are able to
maintain reasonable throughput fairness but the fairness degrades rapidly in the case of TCP-
BBR, Cubic and Sprout as the RTT of one flow increases. The slight drop in fairness in the case

5Inter-frame timing jitter enabled (§ 6.6.1)

143

Video Bitrate SQP Bandwidth Estimate

0

10

20
M

bp
s

1000 1250 1500 1750 2000
Frame Number

20
40
80

160

De
la

y
(m

s)

(a) SQP in isolation.

0

10

20

M
bp

s

1000 1250 1500 1750 2000
Frame Number

20
40
80

160

De
la

y
(m

s)

(b) Competing with Cubic.

Figure 6.31: SQP’s performance when application-limited.

of SQP is because the flow with the higher RTT achieves lower throughput since its minimum
one way delay window size is larger. PCC, Vivace, and WebRTC also achieve low fairness for
flows with different RTTs and do not demonstrate any particular pattern as the RTT difference
between the flows increases. In order to achieve additional fairness when competing with other
loss-based CCAs, SQP could incorporate loss signals into it’s bandwidth estimate in a manner
similar to TCP-friendly rate control (TFRC [149]).

6.7.10 SQP Video Codec Integration
We evaluated SQP’s bandwidth estimation in a scenario where the video bitrate is significantly
lower than the bandwidth estimate. We tested SQP by artificially limiting the video bitrate on
a 20 Mbps, 40 ms RTT link with 120 ms of bottleneck buffer. The encoder bitrate is artifically
capped to 2 Mbps for three 2-second intervals. In Figure 6.31a, SQP maintains a high bandwidth
estimate, which is appropriate since SQP is the only flow on the link. SQP also obtains a rea-
sonable estimate of the link bandwidth under application-limited scenarios when competing with
other flows. Figure 6.31b shows SQP’s bandwidth estimate when the video bitrate is lower than
the target bitrate and SQP is competing with a Cubic flow. When the video bitrate is lower than
the target, SQP is able to maintain a high bandwidth estimate, which demonstrates that SQP is
able to maintain a high bandwidth estimate without requiring additional padding data. This al-
lows SQP to quickly start utilizing its share when the video bitrate is no longer limited (matches
the target bitrate), instead of acquiring its throughput share from scratch, which would take much
longer. These experiments demonstrate that padding bits are not necessary for SQP to achieve
good link utilization.

The generated video bitrate can also overshoot the requested target bitrate. In such scenarios,
it is typically the encoder’s responsibility to make sure that the average video bitrate matches the
requested target bitrate, although SQP can handle and recover from occasional frames size over-
shoots since they would cause subsequent bandwidth samples to be lower. Persistent overshoot

144

0100200300400500
P90 Frame RTT (ms)

2000

4000

6000

P
5

0
 B

it
ra

te
 (

K
b

p
s) SQP

COPA

(a) Wi-Fi performance.

0100200300400500
P90 Frame RTT (ms)

2000

4000

6000

P
5

0
 B

it
ra

te
 (

K
b

p
s) SQP

COPA

(b) LTE performance.

Figure 6.32: Real world A/B testing of SQP and Copa-0.1.

can occur in very complex scenes when the target bitrate is low. In such cases, the application
must take corrective actions that include reducing the frame rate or changing the video reso-
lution. Salsify [14] proposes encoding each frame at two distinct bitrates, choosing the most
appropriate size just before transmission. In Chapter 4, we show that standard modern hardware
encoders like NvENC have very accurate rate control mechanisms, and thus, there is no need to
rely on highly custom encoders like the one used in Salsify. Note that SQP can serve as a viable
replacement for Sprout in Salsify.

6.8 Real-World Performance

To evaluate SQP’s performance in the real world, we deployed SQP in Google’s AR stream-
ing platform. We also deployed Copa-0.1 (without mode switching) on the same platform by
adapting the MVFST implementation of Copa [139] and performed A/B testing, comparing the
performance of the two algorithms. We chose Copa-0.1 since it consistently maintained low
delay compared to other CCAs (e.g. Sprout (Salsify) has very high delays) on emulated tests,
and has been demonstrated to work well for low-latency live video in a production environ-
ment [148] 6. For Copa, we use CWND

sRTT
to set the encoder bitrate, and reduce the bitrate by Qsender

D

when sender-side queuing occurs (Qsender = pending bytes from previous frames, D = 200ms
is a smoothing factor), gradually reducing the sender-side queue over a period of 200 ms. We
ran the experiment for 2 weeks and obtained data for approximately 2400 Wi-Fi sessions and
1600 LTE sessions for each algorithm. Figure 6.32 shows the scatter plots of the median bitrate
and the P90 frame RTT (fRTT; send start to notification of delivery) in addition to the separate
distributions for each metric. 64 SQP and 105 Copa sessions over LTE, and 36 SQP and 52 Copa
sessions over Wi-Fi had a P90 fRTT higher than 500 ms, and these are not shown in the figure.

6In addition, Salsify’s custom software encoder cannot sustain the frame rates required for low-latency interactive
streaming applications

145

71% of SQP sessions over Wi-Fi had good performance (bitrate > 3 Mbps, fRTT < 100
ms), compared to 56% of Copa-0.1 sessions. On LTE links, 36% of SQP sessions had good
performance, compared to 9% of Copa sessions. Across all the sessions, fRTT was less than 100
ms for 64% of SQP sessions and only 39% of Copa sessions. These regions are highlighted with
green boxes in Figure 6.32.

SQP achieves lower frame delay compared to Copa across both Wi-Fi and LTE. SQP on
Wi-Fi also achieves higher bitrate compared to Copa. On LTE connections, SQP demonstrates
a bi-modal distribution of the bitrate, with a significant number of sessions being stuck at a low
bitrate despite having a low RTT. We believe SQP gets stuck at a low bandwidth estimate due to
a combination of noisy links, a low bandwidth estimate and encoder undershoot, although this
needs to be investigated further (Eq. 6.2 was not used). On the other hand, the bitrates for Copa
sessions over LTE are more evenly distributed, but also incur higher delays compared to SQP.

Our results from emulation and real-world experiments demonstrate that SQP can efficiently
utilize wireless links with time-varying bandwidth and simultaneously maintain low end-to-end
frame delay, making it suitable for wireless AR streaming and cloud gaming applications.

6.9 Conclusion
In this chapter, we have presented the design, evaluation, and results from real-world deployment
of SQP, a congestion control algorithm designed for low-latency interactive streaming applica-
tions. SQP is designed specifically for low-latency interactive video streaming, and makes key
application-specific trade-offs in order to achieve its performance goals. SQP’s novel approach
for congestion control enables it to maintain low queuing delay and high utilization on dynamic
links, and also achieve high throughput in the presence of queue-building cross traffic like Cubic
and BBR, without the caveats of explicit mode-switching techniques. SQP’s video-aware de-
sign is an important design aspect that enables SQP to achieve low end-to-end frame delay, as
opposed to video-agnostic congestion control algorithms.

The key takeaways from this chapter are:
1. Emerging video streaming applications like cloud gaming, and remote-rendered AR/VR

have demanding QoE requirements, which include high video quality and extremely low
end-to-end video frame delay. Existing congestion control algorithms are not adequate.

2. Adverse interactions between the video frame traffic pattern and a video-agnostic conges-
tion control algorithm’s transmission pattern can lead to sub-optimal QoE in terms of video
frame delay and video quality.

3. A congestion control algorithm that makes application-specific trade-offs and takes an
integrated approach that cuts across the video and network layer can significantly improve
the QoE of emerging video streaming applications.

146

Chapter 7

CC-Fuzz: Genetic algorithm-based fuzzing
for stress testing congestion control
algorithms.

Traditional congestion control algorithms (CCAs) were designed with the core goals of high
throughput and fairness, while preventing congestion collapse. Unfortunately, traditional loss-
based CCAs fall short in terms of meeting the performance requirements for many emerging
applications and network environments. Recent research has shown a significant interest in de-
signing new congestion control algorithms for achieving specific performance goals, or improv-
ing general CCA performance. For example, SCReAM [163], GoogCC [138], and Sprout [22]
are designed for low latency video streaming, with the key goal of achieving low end-to-end
delay. Some CCAs are designed to extract maximum performance from special networking
infrastructure avaiable in data center settings, such as programmable NICs (Swift, TIMELY),
switches supporting AQM (DCTCP), and hybrid optical-packet networks [164]. Other CCAs
like Copa [21], Nimbus [135], and TCP-BBR [96] use complex network modeling techniques in
order to achieve dual goals of (1) low delay, and (2) high throughput when competing with other
flows.

A significant fraction of new CCAs are developed by the academic community, where the op-
portunities for large scale testing in the real-world are limited. In order to deploy a new CCA on
the Internet or in large-scale data centers, where the packets traverse across a variety of network
conditions and encounter diverse cross traffic patterns, it is important to evaluate the robustness of
a CCA and it’s implementation across a wide range of scenarios. This is a challenging task in an
academic setting - many newly proposed CCAs are evaluated using a combination of small scale
deployment [130], and local scenario-based emulation and simulation [165]. These new CCAs
are much more complex compared to traditional loss-based CCAs like TCP-CUBIC and TCP-
Reno, and the tests typically performed at an academic scale can easily miss situations where the
algorithm fails to achieve it’s goals (like high utilization, fairness, or low delay [135, 137]), or
corner cases where bugs in the CCA implementation are triggered.

In this chapter, we present CC-Fuzz, an automated congestion control testing framework that
uses a genetic search algorithm in order to stress test congestion control algorithms by generating
adversarial network traces and traffic patterns. Initial results using this approach are promising

147

- CC-Fuzz automatically found a bug in BBR that causes it to stall permanently, and is able to
automatically discover the well-known low-rate TCP attack, among other things.

7.1 Introduction

In this paper, we describe the design of our testing framework called “CC-Fuzz1”, and demon-
strate the value of using genetic search algorithms for exploring the search space of link behavior
and cross traffic patterns in order to identify issues with CCAs and their implementations, or in-
spire confidence in a CCA before it is deployed in the real-world. A genetic algorithm is a search
heuristic that is inspired from the Darwinian theory of biological evaluation - the algorithm main-
tains a pool of traces and on every iteration, each entity in the population is assigned a fitness
score. The fitness scores are used to generate the next population generation in a manner that
is similar to natural selection. In our case, the population entities are network traces, the fitness
scores are based on the performance of a CCA for each trace, and evolution involves modifying
the traces in the population in a manner such that eventually we find traces that trigger poor
behavior in the CCA being tested (convergence).

CC-Fuzz has two modes - (1) Link mode aims to identify bottleneck packet transmission
patterns, and (2) Traffic mode aims to identify cross traffic patterns, that that result in poor
performance for the particular CCA being tested. We believe these two approaches can trigger
different behaviors, since variations in the link rate model arbitrary delay jitter, whereas the delay
is bounded when injecting cross traffic. In order to generate realistic link behavior and cross
traffic, CC-Fuzz uses (1) heuristics during trace generation, and (2) leverages the generality of
genetic algorithms by using carefully designed fitness scores for imposing implicit constraints
that are hard to model using heuristics. In Section 7.5, we propose an alternate way to impose
realism on network traces as part of future work.

We present a version of CC-Fuzz that uses NS3-based [167] simulation in order to evaluate
CCAs and assign fitness scores for the traces, and we evaluate the pre-defined CCAs in NS3. We
discuss the challenges of using emulation-based testing in Section 7.3.6. Our findings (§ 7.4)
include:

1. BBR: CC-Fuzz is able to generate network traces that cause BBR to permanently stall due
to the way ACKs and spurious retransmissions interact with each other during a retrans-
mission timeout. CC-Fuzz is also able to generate traffic patterns that trigger BBR to cause
high queuing delays.

2. CUBIC: CC-Fuzz is able to generate traffic patterns that trigger a NS3-specific implemen-
tation bug in CUBIC regarding CWND updates.

3. Reno: CC-Fuzz is able to generate traffic patterns that are similar to the TCP low-rate
attack [168].

In the remainder of the paper, we discuss the design of CC-Fuzz (§ 7.3) and present directions
for future work (§ 7.5).

1CC-Fuzz is a pun on Sisyphus. Wikipedia notes, “tasks that are both laborious and futile are therefore described
as Sisyphean” [166]

148

7.2 Motivation and Related Work
Newly proposed CCAs are often evaluated using metrics such as throughput, delay and fairness
across a range of simple scenarios like testing a CCAs ability to track available bandwidth at
macroscopic time-scales, and coexist with other flows (e.g. by introducing competing flows
using various CCAs).

Past work has shown that commonly evaluated scenarios often fail to catch surprising fail-
ure modes - In [137], the authors use mathematical modeling to show that multiple BBR flows
are unfair towards loss-based CCAs. In CCAC [169], the authors argue that basic evaluation
techniques are not sufficient for capturing every scenario that causes undesirable behavior, and
propose a formal verification technique that can generate network behavior that satisfy queries
about CCA performance. Formal approaches are limited since they analyze “theoretical models”
of CCAs. This step can hide key bugs and issues present in real implementations. In addi-
tion, formal techniques become intractable when the fidelity of the model is increased or when
verifying properties over long time periods (e.g. BBR’s minRTT probing behavior).

Fuzzing [170] is a widely used technique for discovering vulnerabilities in code. TCPwn [171]
uses model-based fuzzing in order to identify manipulation attacks (e.g. dup ACK injection,
ACK storm, sequence desynchronization) on CCAs. TCP-Fuzz [172] tests TCP stack imple-
mentations for bugs, and ACT [173] uses state space exploration to generate particular numerical
values of the state variables in the CCA implementation that triggers buggy behavior.

Packetdrill [174] uses scripted tests to detect bugs in the networking stack and for regression
testing of CCAs. Packetdrill has proven successful in catching many issues over time, but it
requires clearly laid out networking scenarios that must be developed by hand - this can miss
many situations.

The goal of CC-Fuzz is to find realistic situations where CCA performance suffers due to
packet delivery timing and losses automatically. We do not aim to find protocol-level bugs that
are triggered by injecting spoofed packets - the tools mentioned above can be used for low-
level bug finding. We are not aware of any existing system that automatically generates network
environments for stress-testing CCAs for high level throughput and other performance objectives.

7.3 Design
CC-Fuzz explores the search space of network behavior and cross traffic by using a genetic
algorithm for generating network traces in order to identifying network behaviors that cause the
CCA to perform poorly. CC-Fuzz’s high level loop is described in Figure 7.1. CC-Fuzz’s core
components include the following:

1. Trace Generator: Generates initial traces, and defines functions for performing cross-
overs between pairs of traces, and mutating individual traces.

2. Scoring Function: Simulates or emulates the CCA’s performance for a link or traffic trace,
and assigns a score based on the property being evaluated (e.g. throughput, delay, loss, or
a combination).

3. Selection Algorithm: Selects trace pairs for generating cross-over traces for the next gen-
eration, and selects traces that will be mutated before being added to the next generation

149

Algorithm Genetic Algorithm Loop
procedure CC-FUZZ

TRACES ← Initial pool of traces
kElite← Number of traces that live on unmodified.
kCrossover← Count of new traces generated by

combining traces with high scores.
repeat

for trace ∈ TRACES do
SCORE(i)← Score when CCA run with

TRACES(i)

ELITE ← Top kElite traces
CROSSOVER ← kCrossover traces that are

generated by combining traces
MUTATED ← len(TRACES) - kElite - kCrossover

traces generated by modifiying traces
TRACES ← ELITE + CROSSOVER + MUTATED

until convergence

Figure 7.1

trace pool.
These components are discussed in further detail below.

7.3.1 Network Model
CC-Fuzz uses a simple network topology with two sources (one source uses the CCA being
tested, and the other source generates cross traffic) that are connected to a gateway with high
speed links. The gateway is connected to a sink via a bottleneck link with a fixed propagation
delay. The gateway consists of a fixed-size drop-tail FIFO queue.

CC-Fuzz has two distinct modes -
1. Link Fuzzing: We generate bottleneck service curves that define the rate at which packets

are drained from the bottleneck queue and transmitted over the link.
2. Traffic Fuzzing: We generate traffic traces that determine the injection of cross traffic

into the bottleneck queue, and the bottleneck transmission rate is fixed.
We explore two different modes due to the following reasons:

1. A fixed rate link with variable cross traffic cannot model unbounded delays that can be
caused by variable links with a fixed bottleneck buffer size.

2. Variable links with a fixed bottleneck buffer size cannot model loss with bounded delay,
which can be caused by queue-building cross traffic.

3. A realistic link may exhibit aggregation and delay jitter, and some degree of long-term
temporal rate variation. On the other hand, realistic cross-traffic can be highly adversarial.

150

Algorithm Packet Distribution Algorithm
procedure DISTPACKETS(num, start, end)

if num == 0 then return []

if num == 1 then return [start+end
2

]

rate← num
end−start

loop
tsplit← U(start, end)
numleft← U(0, num)

▷ U is uniform random sampling.
if end− start < kAgg then break
lrate← numleft

tsplit−start , rrate← num - numleft
end−tsplit

if lrate > 2× rate or rrate > 2× rate then
continue

if lrate < 0.5× rate or rrate < 0.5× rate then
continue

return DISTPACKETS(numleft, start, tsplit)
+ DISTPACKETS(num - numleft, tsplit, end)

Figure 7.2

Separating out link and traffic fuzzing enables us to model such constraints and makes the
results easier to understand.

These two modes are quite general, but they do not capture certain behaviors like random
packet losses. This and other approaches like combining link and traffic fuzzing can be potential
directions for future work (§ 7.5).

7.3.2 Link Fuzzing
Link fuzzing aims to generate bottleneck service curves that trigger poor performance in the CCA
being tested. We represent the service curve as a sequence of packet transmissions (similar to
the model used in MahiMahi [165]). This representation lends itself well for modeling jitter, and
imposing high-level constraints on the service curve. For link fuzzing, we fix the total number
of packets that can be serviced by the link during a run (and thus, the average bandwidth).

Initial Trace Generation. In order to generate realistic traces, but still cover a large portion
of the search space, CC-Fuzz distributes the packet transmissions over time using the DISTPACK-
ETS algorithm shown in Figure 7.2. The key idea is to recursively divide packets by splitting the
time length and number of packets into two in each step, and ensuring that in each step, the aver-
age rate for each division lies within a multiplicative range of the average rate. This mechanism
is a heuristic that bounds the long term variation in the bandwidth. Deeper in the recursion, when
the time length drops below a threshold (kAgg), the bound checks are relaxed in order to allow
arbitrary short-term rate variations to model packet aggregation and jitter. In Figure 7.3, we show

151

0 2000 4000
Time (ms)

0

1000

2000

3000

4000

5000
Pa

ck
et

 C
ou

nt

(a) 5 second interval.

0 20 40
Time (ms)

0

10

20

30

40

Pa
ck

et
 C

ou
nt

(b) 50 millisecond interval.

Figure 7.3: Service curves generated using DISTPACKETS, with an average rate of 12 Mbps and
kAgg = 50ms.

the distribution of service curves generated by this algorithm.
Evolution Mechanism Typical genetic algorithms have two evolution mechanisms: muta-

tions, and crossovers. Mutation mechanisms choose entities that have the desired properties,
and modify them in order to generate new entities for populating the next generation. Crossover
mechanisms pick two or more traces that have the desired properties, and combine them in some
way for generating new entities.

When creating a new generation from a pool of link traces from a previous generation, CC-
Fuzz must ensure that the same properties as that of the initial generation hold - otherwise, the
constraints we want to impose on the traces can be violated to arbitrary extents after only a few
generations. For mutating a link trace, CC-Fuzz selects a random split point in the trace, and
redistributes packets (DISTPACKETS) on either the left or the right side of the split point (chosen
using a coin toss). This preserves the properties of the trace from the initial generation step.
CC-Fuzz does not use crossovers for link fuzzing, since there is no obvious way of combining
two independent service curves while maintaining the core properties of the two subtraces(e.g.
total packets transmitted, rate variation heuristics). In order to generate easier to understand
link traces, CC-Fuzz optionally supports trace annealing. After evaluating a trace and before
performing mutations, CC-Fuzz applies Gaussian smoothing to the packet timestamps. Over
multiple generations, this reduces the link variation in regions that are not relevant for triggering
the poor behavior.

7.3.3 Traffic Fuzzing
CC-Fuzz uses the same algorithm (DISTPACKETS) for generating traffic traces, with some mod-
ifications.

152

1. Trace generation heuristics: We eliminate the local rate constraints, allowing bursty
cross traffic.

2. Crossover operation: By eliminating local rate constraints, we define the crossover
operation as follows: randomly choose a split point by packet count, randomly select the
left half of one trace and the right half of the other trace around the split point, and combine
the two sets of timestamps.

In the case of traffic fuzzing, it is desirable to generate “minimal” traffic injection vectors that
induce poor behavior in CCAs. For example, a large burst of cross traffic where many packets
of the cross traffic are lost will have the same impact if the lost packets were never sent. In
addition, cross traffic arrives and departs the bottleneck queue when the CCA under test is silent
(e.g. when TCP is waiting for ACKs after filling the CWND) has no impact.

In order to impose these properties, we allow a variable number of cross traffic packets up
to a maximum limit. When regenerating a portion of the trace during a mutation operation,
the number of packets in that portion are changed randomly. During a crossover operation, the
number of traffic packets naturally change based on whether the trace on the right side has more
or less packets. This is combined with a change to the scoring function (§ 7.3.4) in order to
implicitly impose constraints like minimizing the number of cross-traffic packets required to
trigger poor performance in the CCA being tested.

7.3.4 Scoring Function

The scoring function is a key aspect of a genetic algorithm - it determines which traces were
successful in triggering specific performance behavior, and allows implicit modeling of desirable
properties in a link or traffic trace. As part of calculating the score for a trace, CC-Fuzz runs the
CCA using the link or traffic trace (simulated using NS3. Emulation using tools like MahiMahi
can also be used - comparison in Section 7.3.6), and analyzes the queuing behavior. The score
assigned to each trace in a generation has two components: performance score and trace score.

Performance Score. The performance score can be designed for specific types of poor be-
havior like high loss rate, high delay or low utilization. For example, for quantifying low utiliza-
tion, CC-Fuzz calculates windowed throughput for the run, and takes the average of the lowest
20% of the windows. Compared to using the overall throughput, this prevents the algorithm
preferring traces that trigger poor behavior early on, improving trace diversity.

Trace Score. In order to model properties of the traces that are hard to model during trace
generation, each trace can be assigned a score based on how well it satisfies the desired prop-
erties. For example, CC-Fuzz scores traffic traces using the (negation of) total traffic packets
and the total traffic packets dropped in order to make the genetic algorithm gravitate towards
generating minimal traffic vectors.

7.3.5 Selection Algorithm

Once the traces in a generation have been assigned scores, we rank the traces from highest
score to lowest score. We first pick kElite of the highest scored traces that make it to the next
generation unchanged. We assign a relative probability of 1

rank to each trace and then choose

153

kCrossover pairs of traces according to these probabilities, and combine them for generating
crossover traces. The same probabilities (based on rank) are used for picking traces that undergo
mutation for generating the rest of the traces in order to maintain a constant population size.

7.3.6 Emulation vs. Simulation

Our current implementation of CC-Fuzz uses NS3-based simulation for evaluating a CCA’s per-
formance for a link or traffic trace. An alternative is to use a network emulator like MahiMahi.
In either case, CC-Fuzz will test a combination of the CCA implementation and the run-time
framework, finding failures in either system and their interactions.

The benefit of emulation is the ability to test a real implementation of a CCA. Unfortunately,
emulating multiple traces in parallel in a reproducible manner is challenging. We need to ensure
that the performance is not affected due to CPU and memory bottlenecks, and that the start time
of a flow is synchronized with the network trace. Otherwise, the CCA behavior can be very
different across generations for a given trace, which can delay or even prevent convergence of
the genetic algorithm.

Simulation, on the other hand, will generate identical results across repeated runs, resulting
in faster convergence. In addition, for link rates in 10s of Mbps, simulation is likely to be
faster than real-time emulation, and the results of the simulation are not affected by machine
load - this makes it easy to massively parallelize the algorithm on a single machine. The key
drawback of simulation is that it does not test the actual implementation, but a re-implementation
in the simulation framework (e.g. NS3). Tools like DCE [175] can mitigate this drawback by
simulating real network stacks.

In addition, randomization in a CCA’s implementation can also prevent convergence. In such
cases, we need to modify the CCA implementation so that the randomization is repeatable (fix
the random seed). This is much easier in a simulated setup as opposed to modifying kernel CCA
code in an emulated environment. In the future, we plan to explore the use of emulation for
CC-Fuzz.

7.4 Findings

In this section, we will discuss some interesting findings that CC-Fuzz was able to automatically
discover. For all of our tests, we set the bottleneck bandwidth to 12 Mbps (average bandwidth
in the case of link fuzzing) and set the propagation delay of the bottleneck link to 20 ms. TCP-
SACK and delayed ACKs are enabled (Linux defaults), and min-RTO is set to 1 second (as
per RFC 6298/2.4, Linux uses 200 ms). We use a population size of 500, and use an island-
isolation [176] strategy with 20 islands for solution diversity, where 10% of the traces migrate
every 10 generations. Across island generations, the best trace is preserved (kElite = 1), 30% of
the traces are crossovers, and the rest are mutations.

154

0 2 4
Time (s)

0

10

20

30

M
bp

s

Ingress
Egress
Traffic
Link Rate

(a) CC-Fuzz traffic trace that causes
BBR to get stuck.

0 2 4
Time (s)

0

10

20

30

M
bp

s

Ingress
Egress
Link Rate

(b) CC-Fuzz link trace that causes BBR
to get stuck.

Tim
e

(c) Timeline showing how BBR’s bug is
triggered.

0 20 40
Generations

2000

3000

4000

Pa
ck

et
s s

en
t

Default BBR
BBR (ProbeRTT on RTO)

(d) CC-Fuzz performance with and without
BBR patch.

0 2 4
Time (s)

0

100

200

Qu
eu

in
g

De
la

y
(m

s) BBR Flow
Cross Traffic

(e) CC-Fuzz triggering high delays in
BBR with cross traffic.

Figure 7.4: Analyzing BBR with CC-Fuzz.

155

7.4.1 BBR - Stuck Throughput

We tested NS3’s version of TCP-BBR with CC-Fuzz, and after a few generations, it produced
traces that triggered low throughput for BBR where it get’s stuck permanently. One such trace
is shown in Figure 7.4a. For understanding the root cause, we dug into NS3 code and generated
various internal logs from BBR’s code and from the NS3 TCP socket code.

BBR uses an 8-RTT gain cycle for estimating bandwidth, where it sends at 1.25X the current
bandwidth estimate for the first RTT, 0.75X on the second RTT and at 1X for the rest of the gain
cycle. Each RTT is considered as a probing round. The measured rate in each probing round
is processed through a windowed max-filter that keeps the estimates from the last 10 rounds of
probing.

We found the root cause to be BBR’s mechanism for timing it’s bandwidth probing cycles in
terms of RTT. For each packet, the TCP send buffer tracks the number of bytes delivered when
that packet was sent in the SKB. At the beginning of a probing round, BBR records the number
of bytes delivered so far. The probe ends when the prior delivered of the packet most recently
ACK (i.e. bytes delivered when the ACKed packet was sent) exceeds the bytes delivered at the
beginning of the probing round.

Suppose a packet P (0) is transmitted at time T0, and is lost. Fast retransmit will cause
the first retransmission to occur at some time T1 > T0 + RTT , and an RTO timer will be set
for T1 + minRTO. At T1 + minRTO, P (0) is retransmitted for the second time. Suppose
P (i)...P (j) were the last few packets sent before the second retransmission for P (0), and the
SACKs for these have not arrived yet. After transmitting P (0) for the second time, P (i) will be
transmitted again (a spurious retransmission). Here, the prior delivered for P (i) is updated in the
SKB for P (i) to the current bytes delivered. If the SACK for the original transmission of P (i)
arrives right after the second transmission of P (i), BBR will prematurely end the current probe
cycle, since the value of prior delivered for P (i) increased when the spurious retransmission was
sent, and now likely exceeds threshold at which the current probing round was supposed to end.
This sequence of events is depicted in Figure 7.4c. Thus, BBR’s rate sample is now incorrect, as
it is using the time and bytes delivered between the ACK for the original packet, and the packet’s
spurious retransmission, to calculate the rate. This can result in a low value for the bandwidth
sample. This can repeat for the other packets P (i + 1)...P (j) that were in-flight when P (0)
was transmitted the second time. If this continues for 10 or more packets, the true bandwidth
estimates in the bandwidth max-filter expire, and BBR’s bandwidth estimate becomes low. With
a very low bandwidth estimate, delayed ACKs can cause a positive feedback loop, causing BBR
to send slower and slower, stalling BBR indefinitely. It is possible that this is the same issue
being referenced in [177].

CC-Fuzz was able to trigger this behavior with both, link fuzzing and traffic fuzzing. Fig-
ure 7.4b shows a link trace generated by CC-Fuzz that triggers the same bug. The traffic trace
generated by CC-Fuzz is very easy to understand - CC-Fuzz’s implicit constraints on traffic traces
generate a clean, minimal trace. On the other hand, despite our trace annealing mechanism sig-
nificantly smoothing out the bandwidth variations, the link trace is harder to reason about. In the
future, we plan to implement better heuristics and implicit constraints in order to generate easier
to understand link traces that trigger poor behavior.

In order to try and mitigate this behavior, we made BBR trigger a minRTT probe when an

156

RTO occurs - this slows down BBR momentarily which allows BBR to receive the in-flight
ACKs, and thus avoid the spurious retransmissions that cause poor RTT-clocking for BBR’s
bandwidth probes. Figure 7.4d plots the average of the top 20 traces with the lowest throughput
in each generation. Our proposed fix reduces throughput a little bit, but avoids the permanent
stalling behavior observed in BBR without the fix.

7.4.2 TCP-CUBIC Incorrect CWND Update
When testing TCP-CUBIC, we discovered a bug in NS3’s implementation of CUBIC’s window
update during slow start. When a packet is lost, and it’s retransmission triggered by fast re-
transmit is also lost, the CCA goes into slow start after RTO. The sender performs a second
retransmission for the packet, and when the ACK for this is received, there is a large jump in the
cumulative ACK. CUBIC’s slow start window-increase function is called with the large number
of segments ACKed. At this point, the CWND must only be increased upto the slow-start thresh-
old. In NS3, this check is not performed, and the congestion window is increased by a large
value - causing CUBIC to send almost 1-RTO (1 second in the case of NS3) worth of pending
data, causing catastrophic losses. This leads to CUBIC going into slow start again. As of com-
mit 60e1e403, this bug is still present in NS3. This computation is performed correctly in the
Linux kernel source code.

7.4.3 Other Findings
For TCP-Reno, CC-Fuzz was able to find a traffic trace similar to the well-known low-rate TCP
attack [168] for a single flow, where traffic bursts cause the same packet sequence to get lost
after each retransmission, which triggers exponential RTO back-off. This prevented Reno from
ever ramping up after the initial slow start phase. CC-Fuzz can also test CCAs for goals other
than low throughput, by just changing the performance component of the scoring function. For
example, we ran traffic fuzzing on BBR with the goal of inducing high delays by setting the
score function to the 10th percentile delay. This caused CC-Fuzz to generate a traffic vector that
(1) fills up the queue just before BBR starts, so that BBR cannot see the true link RTT, and (2)
injects traffic right after BBR’s slow start phase to accelerate queue-growth caused by BBR. This
is shown in Figure 7.4e.

7.5 Future Directions
Realism Scoring. The current version of CC-Fuzz uses a heuristic-based approach for generating
realistic traces.

An alternate technique that can be used for generating realistic traces is to use aggregate per-
formance across multiple CCAs as a score function to quantify the realism of a trace, assigning
high scores to traces under which at least a few algorithms perform well, and vice versa. Fig-
ure 7.5 shows the traces accepted and rejected by this mechanism. Note how traces that have low
bandwidth initially and higher bandwidth later are rejected - such traces will naturally cause low
throughput in most CCAs.

157

0 2000 4000
Time (ms)

0

1000

2000

3000

4000

5000
Pa

ck
et

 C
ou

nt

(a) Valid traces.

0 2000 4000
Time (ms)

0

1000

2000

3000

4000

5000

Pa
ck

et
 C

ou
nt

(b) Invalid traces.

Figure 7.5: Distribution of service curves according to realism scores assigned by testing on
multiple CCAs. The traces were generated with DISTPACKETS, but without the local rate con-
straints.

In order to reduce the amount of computation required, the realism score can be computed
every few iterations instead of every iteration, or can be computed for a single randomly chosen
CCA instead of all CCAs in each generation.

Diversity and Semantic Scoring. Currently, CC-Fuzz tends to converge at a point where
most traces trigger the easiest to induce performance bug. In order to find other bugs, an iterative
process of fixing the bug and retesting, or defining a score function that negatively weights the
manifestation of that bug can be used. In order to make CC-Fuzz automatically find a diverse
set of bugs, machine learning techniques could be used to classify the different behaviors. This
information could be used to drop traces that trigger similar bugs across generations. Another
potential direction for future work is to create a framework that translates logical specifications of
performance goals into score functions, so that the user does not have to come up with complex
score functions themselves in order to make CC-Fuzz work.

Random Losses and Combined Fuzzing. Random packet losses are common on wireless
links. CC-Fuzz’s two modes, link, and traffic fuzzing, do not cover scenarios where random
losses occur without a corresponding queue build up. Loss fuzzing can be added to the set of
network models in CC-Fuzz in order to increase the testing coverage. Another potential direction
is to combine link, traffic, and loss fuzzing into a single process. Combined fuzzing will result
in much more complex network traces that include link variations, cross traffic and loss - these
are harder to understand, and thus, it is harder to pin-point the bug.

158

7.6 Conclusion
In this chapter, we have presented the design of an automated congestion control testing tool,
CC-Fuzz. Our results are highly promising with an initial prototype of CC-Fuzz are finding
both known and unknown issues with existing well-tested CCAs. We believe that with further
development, CC-Fuzz could fill an important gap in the development of new CCAs for emerging
applications by providing a simple way to identify environments in which a particular CCA
performs poorly.

159

160

Chapter 8

Conclusion

Video streaming is one of the most ubiquitous class of applications that run on the Internet
today. The Internet presents many challenges for real-time streaming video, like packet loss,
bandwidth limitations and variability, and network delay. Systems designed for video stream-
ing applications must navigate these challenges in order to achieve high QoE. Significant past
research has focused on optimizing video streaming systems for tasks like VOD streaming and
real-time video conferencing, where the QoE requirement is a single point on a video quality-
delay trade-off curve. Today, there are various emerging video streaming applications like so-
cial live video streaming, cloud gaming, and cloud AR/VR which have unique and demanding
QoE requirements, and existing systems are unable to satisfy the needs of emerging applica-
tions. For instance, social live video streaming requires operation at multiple points on the video
quality-delay trade-off curve in order to satisfy the needs of different time-shifted viewers, and
the QoE requirements of cloud gaming and cloud AR/VR applications lie beyond the typical
video quality-delay trade-offs that are achieved by existing systems, since they simultaneously
require extremely high video quality and extremely low end-to-end video frame delay.

In this thesis, we discuss various projects that have two key underlying design principles:

1. Tailored designs We show in this thesis that carefully considering the QoE requirements
and designing video systems that make key application-appropriate trade-offs is important
in order to meet the unique and demanding needs of various emerging video streaming
applications, as opposed to using highly optimized techniques that are more general.

2. Holistic design We show in this thesis that carefully considering the interactions between
various aspects of video streaming, like the amount of available bandwidth, the proper-
ties of video compression mechanisms, loss recovery techniques, and congestion control
enables better trade-offs and improves the QoE of emerging video streaming applications.

We show that combining these two principles can lead to highly optimized video streaming
systems for specific applications and environments, where the QoE achieved is much higher than
what can be achieved using existing video streaming techniques.

161

8.1 Key Takeaways
In this thesis, we presented various practical designs for addressing the unique and demanding
QoE of emerging video streaming applications.

We first explored the application space of social live video streaming, where real-time view-
ers require low delay and interactivity, whereas delayed viewers demand higher video quality.
Our system, Vantage addresses this by leveraging the relationship between bitrate, and video
quality, and optimizes video quality accounting for the distribution of the viewing delays. Van-
tage’s design demonstrates that carefully considering the specific requirements of the application
(i.e. diverse viewing delays), and using holistic design (i.e. by using codec- and transport-layer
optimizations to maximize a QoE metric like video quality) can achieve significantly higher QoE
than existing techniques.

We then explored the space of ultra-low latency immersive applications like cloud gaming,
cloud AR and VR - these applications have demanding QoE requirements, and require high video
quality and low latency simultaneously. We proposed two key designs - Prism and SQP - which
deal with loss recovery and congestion control for cloud-rendered applications.

Prism proposes a system design that enables high video quality and low latency during packet
loss. Prism’s design shows that carefully optimizing the video codec using deep insights into the
properties of different types of compressed video, leveraging the application-specific bandwidth
regime for cloud gaming, and leveraging network-level optimizations like packet loss prediction
can achieve significantly higher QoE in the face of packet loss compared to existing systems,
where the various subsystems are more general and designed in isolation.

SQP is a congestion control algorithm for achieving the demanding bandwidth requirements
and extremely low end-to-end frame delay for cloud gaming and AR/VR streaming applications.
SQP’s tightly integrated video coding and network measurements, and key application-specific
trade-offs enable SQP to achieve high throughput on time-varying links and in the presence of
competing queue-building flows, while simultaneously achieving low end-to-end video frame
delay.

In addition to the projects above, we discuss two additional projects. ViXNN is an end-to-end
video compression technique using neural networks which learns a loss-resilient video compres-
sion scheme by simulating loss during the training phase. ViXNN generates video compression
schemes that are optimized for rate-distortion, loss resiliency, and specific types of video content.
CC-Fuzz is a tool that uses a genetic algorithm to generate adversarial network traces with the
goal of testing the design and implementation of new congestion control algorithms, in order to
detect issues with rate adaptation and loss recovery.

8.2 Future Work
As the state of network technologies and video compression techniques evolve with hardware
and software advancements, there will be additional opportunities for performing cross-layer
optimizations in order to address the QoE demands of the growing space of emerging video
streaming applications. For instance, Prism transmits two parallel streams, and these streams
share a significant amount of redundancy between them. If hardware video codecs enable sup-

162

port for SVC or MDC codecs, systems like Prism can be adapted to use these new codecs in
order to leverage the benefits of reduced redundancy across multiple video streams in SVC
and MDC. Similarly, for Vantage, using SVC would eliminate the need for storing high qual-
ity frames separately, and will also eliminate the need to use a separate video encoder for the
enhancement stream - the scheduler will simply determine which enhancement layers must be
transmitted and for which frames. In the space of congestion control, wide scale deployment
of AQM schemes [178] can enable additional optimizations that can further improve CCA per-
formance to meet the demanding requirements of cloud streaming applications. In addition, the
SSIM modeling techniques we developed can be used for more wide-ranging applications like
designing CCAs that account for video quality in order to achieve QoE-based fairness across
multiple video streams [179]. With advancements in neural video compression techniques [180]
that also leverage temporal redundancy in video data, and with improvements in neural-network
performance stemming from hardware advancements, using neural networks for optimized end-
to-end video compression can be a viable approach in the future.

163

164

Bibliography

[1] Devdeep Ray, Jack Kosaian, K. V. Rashmi, and Srinivasan Seshan. Vantage: Optimizing
video upload for time-shifted viewing of social live streams. In Proceedings of the ACM
Special Interest Group on Data Communication, SIGCOMM ’19, page 380–393, New
York, NY, USA, 2019. Association for Computing Machinery. (document), 1.4.1

[2] Matthew K Mukerjee, Ilker Nadi Bozkurt, Devdeep Ray, Bruce M Maggs, Srinivasan Se-
shan, and Hui Zhang. Redesigning cdn-broker interactions for improved content delivery.
In Proceedings of the 13th International Conference on emerging Networking EXperi-
ments and Technologies, pages 68–80, 2017. (document)

[3] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein, James
Mickens, and Hari Balakrishnan. Mahimahi: Accurate record-and-replay for HTTP. In
2015 USENIX Annual Technical Conference (USENIX ATC 15), 2015. (document), 3.2,
3.3.3, 3.2, 3.6.3, 4.7.2.1, 4.7.3, 6.1.1, 6.4

[4] Xiph.org Test Media. https://media.xiph.org/. Last accessed 27 January 2019.
(document), 3.2, 3.3, 3.4.1, 3.6.3, 3.6, 3.6.3

[5] Colin Levy and Ton Roosendaal. Sintel. In ACM SIGGRAPH ASIA 2010 Computer Ani-
mation Festival, SA ’10, pages 82:1–82:1, New York, NY, USA, 2010. ACM. (document),
3.3, 3.4.1

[6] Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2016-2021. Technical
Report 1465272001663118, September 2017. 1, 3.1

[7] Katrin Scheibe, Kaja J Fietkiewicz, and Wolfgang G Stock. Information behavior on social
live streaming services. Journal of Information Science Theory and Practice, 4(2):6–20,
2016. 1

[8] Michael Jarschel, Daniel Schlosser, Sven Scheuring, and Tobias Hoßfeld. An evaluation
of qoe in cloud gaming based on subjective tests. In 2011 Fifth International Conference
on Innovative Mobile and Internet Services in Ubiquitous Computing, pages 330–335.
IEEE, 2011. 2

[9] Mpeg-dash standard. https://mpeg.chiariglione.org/standards/
mpeg-a/mpeg-dash. Last accessed 23 June 2019. 1.1, 3.6.2, 3.8

[10] Http live streaming. https://developer.apple.com/streaming/. Last ac-
cessed 19 June 2018. 1.1, 3.6.2, 3.8

[11] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and Van Ja-

165

https://media.xiph.org/
https://mpeg.chiariglione.org/standards/mpeg-a/mpeg-dash
https://mpeg.chiariglione.org/standards/mpeg-a/mpeg-dash
https://developer.apple.com/streaming/

cobson. Bbr: Congestion-based congestion control: Measuring bottleneck bandwidth and
round-trip propagation time. Queue, 14(5):20–53, 2016. 1.1, 1.4.4, 2, 6.3, 6.7

[12] Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: a new tcp-friendly high-speed tcp
variant. ACM SIGOPS operating systems review, 42(5):64–74, 2008. 1.1, 1.4.4, 1, 1, 6.7

[13] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Analysis and
Design of the Google Congestion Control for Web Real-time Communication (WebRTC).
In Proceedings of the 7th International Conference on Multimedia Systems (MMSys 16),
2016. 1.1, 2

[14] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and Keith
Winstein. Salsify: Low-Latency Network Video through Tighter Integration between a
Video Codec and a Transport Protocol. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), 2018. 1.1, 3.4.1.2, 3.5.7, 3.6.2, 3.8, 4.8, 6.3, 6.4.2,
6.7.10

[15] Yasir Zaki, Thomas Pötsch, Jay Chen, Lakshminarayanan Subramanian, and Carmelita
Görg. Adaptive congestion control for unpredictable cellular networks. In Proceedings
of the 2015 ACM Conference on Special Interest Group on Data Communication, pages
509–522, 2015. 1.1

[16] Stadia. https://stadia.google.com/. 1.2, 4

[17] Geforce now gaming anywhere —& anytime. https://www.nvidia.com/en-us/geforce-
now/. 1.2, 4

[18] Amazon luna: Amazon’s cloud gaming service. 1.2

[19] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing CloudLab: Scientific
infrastructure for advancing cloud architectures and applications. USENIX ;login:, 2014.
1.4.1

[20] Szymon Jakubczak and Dina Katabi. Softcast: Clean-slate scalable wireless video. In
Proceedings of the 2010 ACM workshop on Wireless of the students, by the students, for
the students, pages 9–12, 2010. 1.4.3, 2, 5.2.2, 5.4.5

[21] Venkat Arun and Hari Balakrishnan. Copa: Practical delay-based congestion control for
the internet. In 15th {USENIX} Symposium on Networked Systems Design and Implemen-
tation ({NSDI} 18), pages 329–342, 2018. 1.4.4, 6.1.3, 2, 5, 6.3, 6.7, 7

[22] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic forecasts achieve
high throughput and low delay over cellular networks. In 10th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 13), pages 459–471, 2013. 1.4.4,
3.1, 3.3.3, 6.1.2.1, 2, 6.3, 6.4.2, 6.7, 7

[23] Wright Stevens et al. Tcp slow start, congestion avoidance, fast retransmit, and fast recov-
ery algorithms. 1997. 1

[24] Nassima Bouzakaria, Cyril Concolato, and Jean Le Feuvre. Overhead and performance of
low latency live streaming using mpeg-dash. In IISA 2014, The 5th International Confer-
ence on Information, Intelligence, Systems and Applications, pages 92–97. IEEE, 2014.
3

166

[25] Kerem Durak, Mehmet N Akcay, Yigit K Erinc, Boran Pekel, and Ali C Begen. Evaluating
the performance of apple’s low-latency hls. In 2020 IEEE 22nd International Workshop
on Multimedia Signal Processing (MMSP), pages 1–6. IEEE, 2020. 3

[26] Henning Schulzrinne, Stephen Casner, Ron Frederick, Van Jacobson, et al. Rtp: A trans-
port protocol for real-time applications, 1996. 3

[27] Zhou Wang. The ssim index for image quality assessment. https://ece. uwaterloo. ca/˜
z70wang/research/ssim, 2003. 2.2.1, 4.3.1

[28] Boon-Lock Yeo and Bede Liu. A unified approach to temporal segmentation of motion
jpeg and mpeg compressed video. In Proceedings of the International Conference on
Multimedia Computing and Systems, pages 81–88. IEEE, 1995. 2.2.1

[29] Thomas Wiegand, Gary J Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview of the
h. 264/avc video coding standard. IEEE Transactions on circuits and systems for video
technology, 13(7):560–576, 2003. 2.2.2, 2.2.3, 4.7.2.1

[30] Dan Grois, Detlev Marpe, Amit Mulayoff, Benaya Itzhaky, and Ofer Hadar. Performance
comparison of h. 265/mpeg-hevc, vp9, and h. 264/mpeg-avc encoders. In 2013 Picture
Coding Symposium (PCS), pages 394–397. IEEE, 2013. 2.2.3

[31] Jim Bankoski, Paul Wilkins, and Yaowu Xu. Technical overview of vp8, an open source
video codec for the web. In 2011 IEEE International Conference on Multimedia and Expo,
pages 1–6. IEEE, 2011. 2.2.3

[32] Debargha Mukherjee, Jim Bankoski, Adrian Grange, Jingning Han, John Koleszar, Paul
Wilkins, Yaowu Xu, and Ronald Bultje. The latest open-source video codec vp9-an
overview and preliminary results. In 2013 Picture Coding Symposium (PCS), pages 390–
393. IEEE, 2013. 2.2.3

[33] Yue Chen, Debargha Murherjee, Jingning Han, Adrian Grange, Yaowu Xu, Zoe Liu, Sarah
Parker, Cheng Chen, Hui Su, Urvang Joshi, et al. An overview of core coding tools in the
av1 video codec. In 2018 Picture Coding Symposium (PCS), pages 41–45. IEEE, 2018.
2.2.3

[34] Facebook Live. https://live.fb.com/. Last accessed 18 June 2018. 3.1

[35] Youtube-Live. https://www.youtube.com/channel/
UC4R8DWoMoI7CAwX8_LjQHig. Last accessed 18 June 2018. 3.1

[36] Periscope. https://www.pscp.tv/. Last accessed 19 June 2018. 3.1

[37] Bolun Wang, Xinyi Zhang, Gang Wang, Haitao Zheng, and Ben Y Zhao. Anatomy of a
Personalized Livestreaming System. In Proceedings of the 2016 Internet Measurement
Conference (IMC 16), 2016. 3.1, 3.3.1, 3.3.2, 3.5.6

[38] Xiaodong Wang, Ye Tian, Rongheng Lan, Wen Yang, and Xinming Zhang. Beyond the
Watching: Understanding Viewer Interactions in Crowdsourced Live Video Broadcasting
Services. IEEE Transactions on Circuits and Systems for Video Technology, 2018. 3.1,
3.3.2, 3.4.2.1

[39] Hangouts On Air with YouTube Live. https://support.google.com/
youtube/answer/7083786?hl=en. Last accessed 4 July 2018. 3.1, 3.3.2

167

https://live.fb.com/
https://www.youtube.com/channel/UC4R8DWoMoI7CAwX8_LjQHig
https://www.youtube.com/channel/UC4R8DWoMoI7CAwX8_LjQHig
https://www.pscp.tv/
https://support.google.com/youtube/answer/7083786?hl=en
https://support.google.com/youtube/answer/7083786?hl=en

[40] More Ways To Connect with Friends in Facebook
Live. https://newsroom.fb.com/news/2017/05/
more-ways-to-connect-with-friends-in-facebook-live/. Last
accessed 4 July 2018. 3.1, 3.3.2

[41] Douglas Soo. Twitch Engineering: An Introduction and Overview. https://bit.ly/
2JGR5yb, 2015. Last accessed 19 June 2018. 3.3.1

[42] Facebook Live video for News Feed (part 2). https://atscaleconference.
com/videos/facebook-live-video-for-news-feed-part-2/, 2017.
Last accessed 19 June 2018. 3.3.1

[43] Real-Time Messaging Protocol (RTMP) Specification. https://www.adobe.com/
devnet/rtmp.html. Last accessed 19 June 2018. 3.3.1, 3.8

[44] WebRTC. https://webrtc.org/. Last accessed 19 June 2018. 3.3.1, 3.4.1.2, 3.8

[45] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving Fairness, Efficiency, and Stability
in HTTP-based Adaptive Video Streaming with FESTIVE. In Proceedings of the 8th Inter-
national Conference on Emerging Networking Experiments and Technologies (CoNEXT
12), 2012. 3.3.1

[46] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica, and Hui Zhang.
CFA: A Practical Prediction System for Video QoE Optimization. In 13th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 16), 2016. 3.3.1

[47] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive Video Stream-
ing with Pensieve. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, 2017. 3.3.1, 3.8

[48] Tsahi Levent-Levi. 10 Massive Applications Using WebRTC. https://bloggeek.
me/massive-applications-using-webrtc/, 2017. Last accessed 16 July
2018. 3.3.1

[49] Luis Teixeira. Rate-distortion Analysis for H.264/AVC Video Statistics. In Recent Ad-
vances on Video Coding. InTech, 2011. 3.4.1, 3.4.2.2

[50] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving fairness, efficiency, and stability
in http-based adaptive video streaming with festive. IEEE/ACM Trans. Netw., 22(1):326–
340, February 2014. 3.4.1.1

[51] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson. A
buffer-based approach to rate adaptation: Evidence from a large video streaming service.
In Proceedings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 187–
198, New York, NY, USA, 2014. ACM. 3.4.1.1

[52] Reza Rejaie, Mark Handley, and Deborah Estrin. Layered quality adaptation for internet
video streaming. IEEE Journal on Selected Areas in Communications, 18(12):2530–2543,
2000. 3.4.1.1

[53] Luca De Cicco, Gaetano Carlucci, and Saverio Mascolo. Experimental investigation of
the google congestion control for real-time flows. In Proceedings of the 2013 ACM SIG-
COMM Workshop on Future Human-centric Multimedia Networking, FhMN ’13, pages

168

https://newsroom.fb.com/news/2017/05/more-ways-to-connect-with-friends-in-facebook-live/
https://newsroom.fb.com/news/2017/05/more-ways-to-connect-with-friends-in-facebook-live/
https://bit.ly/2JGR5yb
https://bit.ly/2JGR5yb
https://atscaleconference.com/videos/facebook-live-video-for-news-feed-part-2/
https://atscaleconference.com/videos/facebook-live-video-for-news-feed-part-2/
https://www.adobe.com/devnet/rtmp.html
https://www.adobe.com/devnet/rtmp.html
https://webrtc.org/
https://bloggeek.me/massive-applications-using-webrtc/
https://bloggeek.me/massive-applications-using-webrtc/

21–26, New York, NY, USA, 2013. ACM. 3.4.1.2

[54] Luigi Rizzo. Dummynet: a Simple Approach to the Evaluation of Network Protocols.
ACM SIGCOMM Computer Communication Review (CCR), 1997. 3.4.1.4

[55] Open Broadcaster Software. https://obsproject.com/. Last accessed 19 June
2018. 3.4.1.4

[56] Zhenyu Li, Mohamed Ali Kaafar, Kave Salamatian, and Gaogang Xie. Characterizing and
Modeling user Behavior in a Large-scale Mobile Live Streaming System. IEEE Transac-
tions on Circuits and Systems for Video Technology, 27(12):2675–2686, 2017. 3.4.2.1

[57] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. Overview of the Scalable Video
Coding Extension of the H.264/AVC Standard. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 17(9):1103–1120, 2007. 3.4.2.2, 3.8, 2, 5.2.2

[58] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. 3.5.7, 3.6.3

[59] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE transactions on image
processing, 13(4):600–612, 2004. 3.6.1, 5.5

[60] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul Rehman, and Zhou Wang. A quality-of-
experience index for streaming video. IEEE Journal of Selected Topics in Signal Process-
ing, 11(1):154–166, 2016. 3.6.1

[61] Stefan Winkler and Praveen Mohandas. The evolution of video quality measurement:
from psnr to hybrid metrics. IEEE Transactions on Broadcasting, 54(3):660–668, 2008.
3.6.1

[62] John C Tang, Gina Venolia, and Kori M Inkpen. Meerkat and Periscope: I Stream, you
Stream, Apps Stream for Live Streams. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems (CHI 16), 2016. 3.6.3

[63] Stefan Holmer, Mikhal Shemer, and Marco Paniconi. Handling Packet Loss in WebRTC.
In 2013 20th IEEE International Conference on Image Processing (ICIP 13), 2013. 3.6.3

[64] Jongwon Yoon, Honghai Zhang, Suman Banerjee, and Sampath Rangarajan. MuVi: A
Multicast Video Delivery Scheme for 4G Cellular Networks. In Proceedings of the 18th
Annual International Conference on Mobile Computing and Networking (Mobicom 12),
2012. 3.8

[65] X Rex Xu, Andrew C Myers, Hui Zhang, and Raj Yavatkar. Resilient Multicast Support for
Continuous-Media Applications. In Proceedings of the IEEE 7th International Workshop
on Network and Operating System Support for Digital Audio and Video (NOSSDAV 97),
1997. 3.8

[66] Ming Tang, Lin Gao, Haitian Pang, Jianwei Huang, and Lifeng Sun. Optimizations
and Economics of Crowdsourced Mobile Streaming. IEEE Communications Magazine,
55(4):21–27, 2017. 3.8

[67] Aiman Erbad and Charles Buck Krasic. Sender-side buffers and the case for multimedia
adaptation. Communications of the ACM, 55(12):50–58, 2012. 3.8

169

https://obsproject.com/

[68] Hamed Ahmadi, Omar Eltobgy, and Mohamed Hefeeda. Adaptive multicast streaming of
virtual reality content to mobile users. In Proceedings of the on Thematic Workshops of
ACM Multimedia 2017, 2017. 3.8

[69] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei Han. Favor: Fine-
Grained Video Rate Adaptation. In Proceedings of the 9th ACM Multimedia Systems
Conference (MMSys 18), 2018. 3.8

[70] Xing Liu, Qingyang Xiao, Vijay Gopalakrishnan, Bo Han, Feng Qian, and Matteo
Varvello. 360 Innovations for Panoramic Video Streaming. In Proceedings of the 16th
ACM Workshop on Hot Topics in Networks (HotNets 17), 2017. 3.8

[71] Kaixuan Long, Chencheng Ye, Ying Cui, and Zhi Liu. Optimal Multi-Quality Multicast
for 360 Virtual Reality Video. arXiv preprint arXiv:1901.02203, 2019. 3.8

[72] Cloud gaming (beta) with xbox game pass: Xbox. https://www.xbox.com/en-US/xbox-
game-pass/cloud-gaming/home. 4

[73] Google cloud streams augmented reality. 4

[74] Chrome remote desktop. 4

[75] Deploy and scale your virtualized windows desktops and apps on azure. 4

[76] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. Feedback control for adaptive
live video streaming. In Proceedings of the second annual ACM conference on Multimedia
systems, pages 145–156, 2011. 4

[77] Rohit Puri, Kannan Ramchandran, Kang-Won Lee, and Vaduvur Bharghavan. Forward
error correction (fec) codes based multiple description coding for internet video streaming
and multicast. Signal Processing: Image Communication, 16(8):745–762, 2001. 1

[78] Yanlin Liu and Mark Claypool. Using redundancy to repair video damaged by network
data loss. In Multimedia Computing and Networking 2000, volume 3969, pages 73–84.
International Society for Optics and Photonics, 1999. 1

[79] Nick Feamster and Hari Balakrishnan. Packet loss recovery for streaming video. In 12th
International Packet Video Workshop, pages 9–16. PA: Pittsburgh, 2002. 2, 4.1

[80] Mark Claypool and Yali Zhu. Using interleaving to ameliorate the effects of packet loss
in a video stream. In 23rd International Conference on Distributed Computing Systems
Workshops, 2003. Proceedings., pages 508–513. IEEE, 2003. 2

[81] Yanling Xu and Yuanhua Zhou. H. 264 video communication based refined error con-
cealment schemes. IEEE Transactions on Consumer Electronics, 50(4):1135–1141, 2004.
2

[82] Bo Yan and Hamid Gharavi. Efficient error concealment for the whole-frame loss based
on h. 264/avc. In 2008 15th IEEE International Conference on Image Processing, pages
3064–3067. IEEE, 2008. 2

[83] Bernd Girod, Klaus Werner Stuhlmueller, M Link, and Uf Horn. Packet-loss-resilient
internet video streaming. In Visual Communications and Image Processing’99, volume
3653, pages 833–844. International Society for Optics and Photonics, 1998. 2

170

[84] Callstats. Error resilience mechanisms for webrtc video communications. 3

[85] ST Worrall, AH Sadka, AM Kondoz, and P Sweeney. Motion adaptive intra refresh for
mpeg-4. Electronics Letters, 36(23):1924–1925, 2000. 4

[86] Jason Greengrass, John Evans, and Ali C Begen. Not all packets are equal, part 2: The
impact of network packet loss on video quality. IEEE Internet Computing, 13(2):74–82,
2009. 4.1

[87] Anna Giannakou, Dipankar Dwivedi, and Sean Peisert. A machine learning approach for
packet loss prediction in science flows. Future Generation Computer Systems, 102:190–
197, 2020. 4.1

[88] Lopamudra Roychoudhuri and Ehab S Al-Shaer. Real-time packet loss prediction based
on end-to-end delay variation. IEEE transactions on Network and Service Management,
2(1):29–38, 2005. 4.1

[89] Measurement Lab NDT 2021 Data. The M-Lab NDT data set. https://
measurementlab.net/tests/ndt. 4.2, 4.5.4, 4.5.4.1, 4.6, 4.7.2

[90] Didier J Le Gall. The mpeg video compression algorithm. Signal Processing: Image
Communication, 4(2):129–140, 1992. 4.3

[91] Lavfi. 4.3.1

[92] Zhi Li, Christos Bampis, Julie Novak, Anne Aaron, Kyle Swanson, Anush Moorthy, and
JD Cock. Vmaf: The journey continues. Netflix Technology Blog, 25, 2018. 4.3.1

[93] 4.3.2, 4.6, 4.7

[94] Andy Backhouse and Irene YH Gu. A bayesian framework-based end-to-end packet loss
prediction in ip networks. In IEEE Sixth International Symposium on Multimedia Software
Engineering, pages 35–42. IEEE, 2004. 4.4.1

[95] Roger Immich, Pedro Borges, Eduardo Cerqueira, and Marilia Curado. Qoe-driven video
delivery improvement using packet loss prediction. International Journal of Parallel,
Emergent and Distributed Systems, 30(6):478–493, 2015. 4.4.1

[96] Neal Cardwell, Yuchung Cheng, S Hassas Yeganeh, and Van Jacobson. Bbr conges-
tion control. Working Draft, IETF Secretariat, Internet-Draft draft-cardwell-iccrg-bbr-
congestion-control-00, 2017. 4.4.1, 7

[97] TV Lakshman, Upamanyu Madhow, and Bernhard Suter. Tcp/ip performance with ran-
dom loss and bidirectional congestion. IEEE/ACM transactions on networking, 8(5):541–
555, 2000. 4.4.1

[98] Zhengfang Duanmu, Kai Zeng, Kede Ma, Abdul Rehman, and Zhou Wang. A quality-of-
experience index for streaming video. IEEE Journal of Selected Topics in Signal Process-
ing, 11(1):154–166, 2016. 4.6

[99] Abhijit Patait and Eric Young. High performance video encoding with nvidia gpus. In
2016 GPU Technology Conference (https://goo. gl/Bdjdgm), 2016. 4.7.2.1

[100] Suramya Tomar. Converting video formats with ffmpeg. Linux Journal, 2006(146):10,
2006. 2

171

https://measurementlab.net/tests/ndt
https://measurementlab.net/tests/ndt

[101] Ian Swett. Quic fec v1. 4.8

[102] Introduction. 4.8

[103] Oculus vr headsets, games and equipment - meta quest. 5

[104] Introducing oculus air link, a wireless way to play pc vr games on oculus quest 2, plus
infinite office updates, support for 120 hz on quest 2, and more. 5

[105] G. Toderici, D. Vincent, N. Johnston, S. J. Hwang, D. Minnen, J. Shor, and M. Covell. Full
Resolution Image Compression with Recurrent Neural Networks. ArXiv e-prints, August
2016. 5, 5.3.1, 5.4.1, 5.4.3, 5.5.1

[106] O. Rippel and L. Bourdev. Real-Time Adaptive Image Compression. ArXiv e-prints, May
2017. 5, 5.3.1

[107] Vivek K Goyal. Multiple description coding: Compression meets the network. IEEE
Signal processing magazine, 18(5):74–93, 2001. 5.2.2

[108] Ronan Collobert and Jason Weston. A unified architecture for natural language processing:
Deep neural networks with multitask learning. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages 160–167, New York, NY, USA, 2008.
ACM. 5.3

[109] Jean-Yves Potvin. The traveling salesman problem: A neural network perspective. 5.3

[110] N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao, L. Qendro, and F. Kawsar.
Deepx: A software accelerator for low-power deep learning inference on mobile devices.
In 2016 15th ACM/IEEE International Conference on Information Processing in Sensor
Networks (IPSN), pages 1–12, April 2016. 5.3

[111] Shibani Santurkar, David Budden, and Nir Shavit. Generative compression. arXiv preprint
arXiv:1703.01467, 2017. 5.3.1, 5.3.2

[112] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems, pages 1097–1105, 2012. 5.3.3

[113] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activa-
tions in convolutional network. arXiv preprint arXiv:1505.00853, 2015. 5.4.2

[114] Guo Lu, Wanli Ouyang, Dong Xu, Xiaoyun Zhang, Chunlei Cai, and Zhiyong Gao. Dvc:
An end-to-end deep video compression framework, 2018. 5.4.5

[115] XiangJi Wu, Ziwen Zhang, Jie Feng, Lei Zhou, and Junmin Wu. End-to-end optimized
video compression with mv-residual prediction, 2020. 5.4.5

[116] R. Uetz and S. Behnke. Large-scale object recognition with cuda-accelerated hierarchical
neural networks. In 2009 IEEE International Conference on Intelligent Computing and
Intelligent Systems, volume 1, pages 536–541, Nov 2009. 5.5

[117] Ffmpeg. http://www.ffmpeg.org. 5.5

[118] Laurent Aimar, Loren Merritt, Eric Petit, Min Chen, Justin Clay, Mns Rullgrd, Christian
Heine, and Alex Izvorski. x264-a free h264/avc encoder, 2005. 5.5

[119] C Montgomery et al. Xiph. org video test media (derf’s collection), the xiph open source

172

http://www.ffmpeg.org

community, 1994. Online, https://media. xiph. org/video/derf. 5.5

[120] François Chollet. keras. https://github.com/fchollet/keras, 2015. 5.5

[121] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit Steiner, Paul
Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
Tensorflow: A system for large-scale machine learning. In Proceedings of the 12th
USENIX Conference on Operating Systems Design and Implementation, OSDI’16, pages
265–283, Berkeley, CA, USA, 2016. USENIX Association. 5.5

[122] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. 5.5

[123] C. Torres-Huitzil and B. Girau. Fault and error tolerance in neural networks: A review.
IEEE Access, 5:17322–17341, 2017. 5.5.3

[124] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina Katabi. Enabling high-quality
untethered virtual reality. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17), pages 531–544, Boston, MA, 2017. USENIX Association.
5.5.4

[125] Yaman Umuroglu, Nicholas J. Fraser, Giulio Gambardella, Michaela Blott, Philip
Heng Wai Leong, Magnus Jahre, and Kees A. Vissers. FINN: A framework for fast,
scalable binarized neural network inference. CoRR, abs/1612.07119, 2016. 5.5.5

[126] E. Nurvitadhi, D. Sheffield, Jaewoong Sim, A. Mishra, G. Venkatesh, and D. Marr. Ac-
celerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic. In 2016
International Conference on Field-Programmable Technology (FPT), pages 77–84, Dec
2016. 5.5.5

[127] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and
acceleration for deep neural networks. CoRR, abs/1710.09282, 2017. 5.5.5

[128] Lucas Theis, Wenzhe Shi, Andrew Cunningham, and Ferenc Huszár. Lossy image com-
pression with compressive autoencoders. arXiv preprint arXiv:1703.00395, 2017. 5.5.5

[129] Jitendra Padhye, Victor Firoiu, Donald F Towsley, and James F Kurose. Modeling tcp
reno performance: a simple model and its empirical validation. IEEE/ACM transactions
on Networking, 8(2):133–145, 2000. 1

[130] Francis Y Yan, Jestin Ma, Greg D Hill, Deepti Raghavan, Riad S Wahby, Philip Levis, and
Keith Winstein. Pantheon: the training ground for internet congestion-control research.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 731–743, 2018.
6.1.1, 6.4, 6.7.1, 7

[131] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. Tcp vegas: New techniques
for congestion detection and avoidance. In Proceedings of the conference on Communi-
cations architectures, protocols and applications, pages 24–35, 1994. 6.1.2.1

[132] Mario Hock, Felix Neumeister, Martina Zitterbart, and Roland Bless. Tcp lola: Conges-
tion control for low latencies and high throughput. In 2017 IEEE 42nd Conference on

173

https://github.com/fchollet/keras

Local Computer Networks (LCN), pages 215–218. IEEE, 2017. 6.1.2.1

[133] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira. {PCC}:
Re-architecting congestion control for consistent high performance. In 12th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 15), pages 395–
408, 2015. 6.1.2.2, 1, 3, 6.3, 6.7

[134] Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten Godfrey, and
Michael Schapira. {PCC} vivace:{Online-Learning} congestion control. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 18), pages 343–356,
2018. 6.1.2.2, 6.1.2.2, 3, 6.3, 6.4.1, 6.7

[135] Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Srinivas Narayana, Mohammad Al-
izadeh, and Hari Balakrishnan. Elasticity detection: A building block for internet conges-
tion control. arXiv preprint arXiv:1802.08730, 2018. 6.1.3, 6.1.3, 7

[136] Prateesh Goyal, Akshay Narayan, Frank Cangialosi, Deepti Raghavan, Srinivas Narayana,
Mohammad Alizadeh, and Hari Balakrishnan. Elasticity detection: A building block for
delay-sensitive congestion control. In ANRW, page 75, 2018. 2, 5, 6.3, 6.5.5

[137] Ranysha Ware, Matthew K Mukerjee, Srinivasan Seshan, and Justine Sherry. Modeling
bbr’s interactions with loss-based congestion control. In Proceedings of the internet mea-
surement conference, pages 137–143, 2019. 4, 7, 7.2

[138] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. Analysis and de-
sign of the google congestion control for web real-time communication (webrtc). In Pro-
ceedings of the 7th International Conference on Multimedia Systems, pages 1–12, 2016.
3, 6.3, 7

[139] Facebookincubator. facebookincubator/mvfst. 1, 6.8

[140] Mario Hock, Felix Neumeister, Martina Zitterbart, and Roland Bless. Tcp lola: Conges-
tion control for low latencies and high throughput. In 2017 IEEE 42nd Conference on
Local Computer Networks (LCN), pages 215–218. IEEE, 2017. 6.3

[141] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. Tcp vegas: New techniques
for congestion detection and avoidance. In Proceedings of the conference on Communi-
cations architectures, protocols and applications, pages 24–35, 1994. 6.3

[142] Bart Jansen, Timothy Goodwin, Varun Gupta, Fernando Kuipers, and Gil Zussman. Per-
formance evaluation of webrtc-based video conferencing. SIGMETRICS Perform. Eval.
Rev., 45(3):56–68, mar 2018. 6.3

[143] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data center tcp (dctcp). In
Proceedings of the ACM SIGCOMM 2010 Conference, pages 63–74, 2010. 6.3

[144] Prateesh Goyal, Anup Agarwal, Ravi Netravali, Mohammad Alizadeh, and Hari Balakr-
ishnan. {ABC}: A simple explicit congestion controller for wireless networks. In 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pages
353–372, 2020. 6.3

[145] Yongguang Zhang and Thomas R Henderson. An implementation and experimental study

174

of the explicit control protocol (xcp). In Proceedings IEEE 24th Annual Joint Confer-
ence of the IEEE Computer and Communications Societies., volume 2, pages 1037–1048.
IEEE, 2005. 6.3

[146] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia
Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats. Timely: Rtt-
based congestion control for the datacenter. ACM SIGCOMM Computer Communication
Review, 45(4):537–550, 2015. 6.3

[147] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan MG Wassel, Xian Wu, Behnam
Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Michael Ryan, et al.
Swift: Delay is simple and effective for congestion control in the datacenter. In Proceed-
ings of the Annual conference of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols for computer communica-
tion, pages 514–528, 2020. 6.3

[148] Nitin Garg. Copa congestion control for video performance, Mar 2020. 3, 6.8

[149] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. Equation-based conges-
tion control for unicast applications. In Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, SIGCOMM
’00, page 43–56, New York, NY, USA, 2000. Association for Computing Machinery.
6.4.2, 6.7.9

[150] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic, Dan
Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. The quic transport
protocol: Design and internet-scale deployment. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication, pages 183–196, 2017. 6.5.1

[151] Constantinos Dovrolis, Parameswaran Ramanathan, and David Moore. Packet-dispersion
techniques and a capacity-estimation methodology. IEEE/ACM Transactions On Network-
ing, 12(6):963–977, 2004. 6.5.2

[152] Vern Paxson, Mark Allman, Jerry Chu, and Matt Sargent. Computing tcp’s retransmission
timer. Technical report, rfc 2988, November, 2000. 6.5.3

[153] Frank P Kelly, Aman K Maulloo, and David KH Tan. Rate control for communication
networks: shadow prices, proportional fairness and stability. Journal of the Operational
Research society, 49(3):237–252, 1998. 6.5.4

[154] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Seshan, and Justine Sherry. Modeling
bbr’s interactions with loss-based congestion control. In Proceedings of the Internet Mea-
surement Conference, IMC ’19, page 137–143, New York, NY, USA, 2019. Association
for Computing Machinery. 6.6.1

[155] Bbrv1: Linux kernel. 6.7.1

[156] Ajay Tirumala. Iperf: The tcp/udp bandwidth measurement tool. http://dast. nlanr.
net/Projects/Iperf/, 1999. 6.7.1

[157] PCC. https://github.com/modong/pcc, 2016. 6.7.1

[158] Vivace. https://github.com/PCCproject/PCC-Uspace/tree/

175

https://github.com/modong/pcc
https://github.com/PCCproject/PCC-Uspace/tree/NSDI-2018
https://github.com/PCCproject/PCC-Uspace/tree/NSDI-2018
https://github.com/PCCproject/PCC-Uspace/tree/NSDI-2018

NSDI-2018, 2016. 6.7.1

[159] genericCC. https://github.com/venkatarun95/genericCC, 2018. 6.7.1

[160] Yan Liu and Jack YB Lee. Streaming variable bitrate video over mobile networks with
predictable performance. In 2016 IEEE Wireless Communications and Networking Con-
ference, pages 1–7. IEEE, 2016. 6.7.2

[161] Jim Gettys. Bufferbloat: Dark buffers in the internet. IEEE Internet Computing, 15(3):96–
96, 2011. 6.7.6

[162] Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. A quantitative measure of
fairness and discrimination. Eastern Research Laboratory, Digital Equipment Corpora-
tion, Hudson, MA, 1984. 6.7.9

[163] Ingemar Johansson and Zaheduzzaman Sarker. Self-clocked rate adaptation for multime-
dia. Technical report, 2017. 7

[164] Matthew K Mukerjee, Christopher Canel, Weiyang Wang, Daehyeok Kim, Srinivasan Se-
shan, and Alex C Snoeren. Adapting {TCP} for reconfigurable datacenter networks. In
17th USENIX Symposium on Networked Systems Design and Implementation (NSDI 20),
pages 651–666, 2020. 7

[165] Ravi Netravali, Anirudh Sivaraman, Keith Winstein, Somak Das, Ameesh Goyal, and Hari
Balakrishnan. Mahimahi: A lightweight toolkit for reproducible web measurement. ACM
SIGCOMM Computer Communication Review, 44(4):129–130, 2014. 7, 7.3.2

[166] Wikipedia contributors. Sisyphus — Wikipedia, the free encyclopedia. https://en.
wikipedia.org/w/index.php?title=Sisyphus&oldid=1091831787,
2022. [Online; accessed 23-June-2022]. 1

[167] Gustavo Carneiro. Ns-3: Network simulator 3. In UTM Lab Meeting April, volume 20,
pages 4–5, 2010. 7.1

[168] Aleksandar Kuzmanovic and Edward W Knightly. Low-rate tcp-targeted denial of service
attacks: the shrew vs. the mice and elephants. In Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communications,
pages 75–86, 2003. 3, 7.4.3

[169] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad Alizadeh, and Hari
Balakrishnan. Toward formally verifying congestion control behavior. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, SIGCOMM ’21, pages 1–16, New York,
NY, USA, 2021. Association for Computing Machinery. 7.2

[170] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability
discovery. Pearson Education, 2007. 7.2

[171] Samuel Jero, Md Endadul Hoque, David R Choffnes, Alan Mislove, and Cristina Nita-
Rotaru. Automated attack discovery in tcp congestion control using a model-guided ap-
proach. In NDSS, 2018. 7.2

[172] Yong-Hao Zou, Jia-Ju Bai, Jielong Zhou, Jianfeng Tan, Chenggang Qin, and Shi-Min Hu.
{TCP-Fuzz}: Detecting memory and semantic bugs in {TCP} stacks with fuzzing. In
2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 489–502, 2021.

176

https://github.com/PCCproject/PCC-Uspace/tree/NSDI-2018
https://github.com/PCCproject/PCC-Uspace/tree/NSDI-2018
https://github.com/PCCproject/PCC-Uspace/tree/NSDI-2018
https://github.com/venkatarun95/genericCC
https://en.wikipedia.org/w/index.php?title=Sisyphus&oldid=1091831787
https://en.wikipedia.org/w/index.php?title=Sisyphus&oldid=1091831787

7.2

[173] Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. {Model-Agnostic} and efficient ex-
ploration of numerical state space of {Real-World}{TCP} congestion control implemen-
tations. In 16th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19), pages 719–734, 2019. 7.2

[174] Neal Cardwell, Yuchung Cheng, Lawrence Brakmo, Matt Mathis, Barath Raghavan, Nan-
dita Dukkipati, Hsiao-keng Jerry Chu, Andreas Terzis, and Tom Herbert. packetdrill:
Scriptable network stack testing, from sockets to packets. In 2013 USENIX Annual Tech-
nical Conference (USENIX ATC 13), pages 213–218, 2013. 7.2

[175] Hajime Tazaki, Frédéric Urbani, and Thierry Turletti. Dce cradle: Simulate network pro-
tocols with real stacks. In Workshop on NS3 (WNS3), 2013. 7.3.6

[176] Darrell Whitley, Soraya Rana, and Robert B Heckendorn. The island model genetic al-
gorithm: On separability, population size and convergence. Journal of computing and
information technology, 7(1):33–47, 1999. 7.4

[177] BBR-Development. Question on strange bbr behavior. https://groups.google.
com/g/bbr-dev/c/XUOKHJiAW80, 2022. [Online; accessed 23-June-2022]. 7.4.1

[178] Richelle Adams. Active queue management: A survey. IEEE communications surveys &
tutorials, 15(3):1425–1476, 2012. 8.2

[179] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki, Mehrdad Khani, Pra-
teesh Goyal, and Mohammad Alizadeh. End-to-end transport for video qoe fairness. In
Proceedings of the ACM Special Interest Group on Data Communication, pages 408–423.
2019. 8.2

[180] Dandan Ding, Zhan Ma, Di Chen, Qingshuang Chen, Zoe Liu, and Fengqing Zhu. Ad-
vances in video compression system using deep neural network: A review and case stud-
ies. Proceedings of the IEEE, 109(9):1494–1520, 2021. 8.2

177

https://groups.google.com/g/bbr-dev/c/XUOKHJiAW80
https://groups.google.com/g/bbr-dev/c/XUOKHJiAW80

	1 Introduction
	1.1 Quality of Experience for Video Streaming Applications
	1.2 Limitations of Existing Approaches
	1.3 Thesis Statement
	1.4 Summary of Contributions
	1.4.1 Vantage
	1.4.2 Prism
	1.4.3 ViXNN
	1.4.4 SQP
	1.4.5 CC-Fuzz

	2 Background
	2.1 Video Streaming Systems
	2.2 Video Compression
	2.2.1 Overview of Compression Schemes
	2.2.2 Intra-frame Schemes
	2.2.3 Inter-frame Schemes
	2.2.4 Motion Compensation and Streaming Video

	3 Vantage: Optimizing video upload for time-shifted viewing of social live streams
	3.1 Social Live Video Streaming (SLVS)
	3.2 Overview of Contributions
	3.3 Background and Opportunity
	3.3.1 SLVS Architectures
	3.3.2 Time-shifted viewing in SLVS
	3.3.3 Variability in the upload path

	3.4 Supporting Time-shifted Viewing
	3.4.1 Inadequacy of existing techniques
	3.4.2 Proposed approach

	3.5 Design of Vantage
	3.5.1 Overview
	3.5.2 Scheduler design
	3.5.3 Mitigating bandwidth estimation error
	3.5.4 Encoding retransmissions
	3.5.5 Reducing memory overhead
	3.5.6 Discussion
	3.5.7 Implementation details

	3.6 Evaluation Methodology
	3.6.1 Metrics
	3.6.2 Baselines
	3.6.3 Evaluation setup

	3.7 Results
	3.7.1 Overall improvements
	3.7.2 Inspecting Vantage's improvements
	3.7.3 Adapting to viewer-delay distributions
	3.7.4 Quality improvements for dynamic videos
	3.7.5 Optimizer period.
	3.7.6 Errors in bandwidth estimation.
	3.7.7 Ablation studies.

	3.8 Related Work
	3.9 Conclusion and Key Takeaways

	4 Prism: Handling packet loss for ultra-low latency video.
	4.1 Packet Loss Mitigation for Real-Time Video
	4.2 Overview of Contributions
	4.3 Video Compression Background
	4.3.1 Understanding Video Quality - SSIM
	4.3.2 I-frames vs. P-frames Compression Efficiency
	4.3.3 Bitrate Transitions and P-frame Quality

	4.4 Loss Detection and Recovery
	4.4.1 Loss Detection
	4.4.2 Reactive Loss Recovery
	4.4.3 Proposed Hybrid Approach

	4.5 Design
	4.5.1 Overall Architecture
	4.5.2 Optimizing Bandwidth Allocation
	4.5.3 Offline Analysis Pipeline
	4.5.4 Loss Prediction

	4.6 Evaluation
	4.7 Video Dataset
	4.7.1 Optimization Framework
	4.7.2 End-to-end Evaluation
	4.7.3 Web Page Load Timeseries

	4.8 Related Work
	4.9 Conclusion and Key Takeaways

	5 ViXNN: A deep learning approach to loss resilient image and video transmission.
	5.1 Introduction
	5.2 Background
	5.2.1 Video coding
	5.2.2 Scalable video coding

	5.3 Using Neural Networks
	5.3.1 Compression using neural networks
	5.3.2 Compression for lossy networks
	5.3.3 Neural networks background

	5.4 ViXNN Design
	5.4.1 Overview
	5.4.2 Compression Architecture
	5.4.3 Adding loss resilience and variable rate coding
	5.4.4 Choosing a loss function
	5.4.5 Discussion on Leveraging Temporal Redundancy

	5.5 Evaluation
	5.5.1 Compression using ViXNN
	5.5.2 Resilience to packet loss
	5.5.3 Resilience to bit errors
	5.5.4 Tunability of ViXNN
	5.5.5 Computational and storage requirements

	5.6 Conclusion

	6 Congestion Control Design for Emerging Video Streaming Applications
	6.1 Congestion Control Background for Low Latency Video Streaming
	6.1.1 Traditional Congestion Control Algorithms
	6.1.2 Low Latency Congestion Control
	6.1.3 Mode-switching Low Latency CCAs
	6.1.4 Congestion Control for Cloud Gaming/AR/VR.
	6.1.5 Congestion Control and Encoder Integration

	6.2 SQP overview.
	6.3 Related Work
	6.4 Preliminary Study
	6.4.1 Variable Bandwidth Link
	6.4.2 Short Timescale Variations

	6.5 Design
	6.5.1 Architecture Overview
	6.5.2 Bandwidth Sampling
	6.5.3 Tracking Minimum One-way Delay
	6.5.4 Bandwidth Estimate Update Rule
	6.5.5 Pacing and Target Multipliers

	6.6 Analysis of SQP Dynamics
	6.6.1 Competing Flows
	6.6.2 Intra-protocol Dynamics and Fairness
	6.6.3 Adaptive Min One-way Delay Tracking

	6.7 Evaluation
	6.7.1 Emulation Setup
	6.7.2 Metrics
	6.7.3 Simple Variable Bandwidth Link
	6.7.4 Real-world Wireless Traces
	6.7.5 Competing with Queue-building Flows
	6.7.6 Shallow Buffers
	6.7.7 Short Timescale Variations
	6.7.8 Impact of Feedback Delay
	6.7.9 Fairness
	6.7.10 SQP Video Codec Integration

	6.8 Real-World Performance
	6.9 Conclusion

	7 CC-Fuzz: Genetic algorithm-based fuzzing for stress testing congestion control algorithms.
	7.1 Introduction
	7.2 Motivation and Related Work
	7.3 Design
	7.3.1 Network Model
	7.3.2 Link Fuzzing
	7.3.3 Traffic Fuzzing
	7.3.4 Scoring Function
	7.3.5 Selection Algorithm
	7.3.6 Emulation vs. Simulation

	7.4 Findings
	7.4.1 BBR - Stuck Throughput
	7.4.2 TCP-CUBIC Incorrect CWND Update
	7.4.3 Other Findings

	7.5 Future Directions
	7.6 Conclusion

	8 Conclusion
	8.1 Key Takeaways
	8.2 Future Work

	Bibliography

