
Compact Representations of
Graphs and Their Metrics

D Ellis Hershkowitz

CMU-CS-22-134
August 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Bernhard Haeupler (Co-Chair)

R. Ravi (Co-Chair)
Anupam Gupta

Michel Goemans (MIT)
Ola Svensson (EPFL)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2022 D Ellis Hershkowitz

This research was supported by NSF grants CCF-1527110, CCF-1618280, CCF-1814603, CCF-1910588, NSF
CAREER award CCF1750808, a Sloan Research Fellowship, funding from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation program (ERC grant agreement 949272), the
Swiss National Foundation (project grant 200021-184735), the Office of Naval Research under award number
N000141812099 and the Air Force Office of Scientific Research under award number FA9550-20-1-0080.

Keywords: Theoretical Computer Science, Metric Embeddings, Approximation Algorithms,
Online Algorithms, Distributed Algorithms, Tree Embeddings, Hop-Constrained Flows, Steiner
Point Removal.

For my grandparents.

iv

Abstract

Graphs and metrics are two of the most ubiquitous, versatile and powerful tools in
modern computing. Both are general enough to be widely applicable but structured
enough to facilitate efficient algorithms. Furthermore, the modern proliferation of
data has led to graphs and metrics of practical importance which are of unprecedented
size. For this reason, now more than ever, understanding how to sparsify or otherwise
effectively reduce the size of a graph or metric is of great importance. We give new
results in graph and metric sparsification using tools from combinatorial optimization,
metric embeddings, approximation algorithms and online algorithms.

In the first part of this thesis we provide two new so-called tree embeddings which
represent relevant aspects of an arbitrary input graph by a tree. The first embeds the
points in a metric into a single tree containing a small number of copies of each vertex.
Using these embeddings we give the first non-trivial deterministic approximation
algorithms for online group Steiner tree and the online covering Steiner tree problem.
The second is the first embedding of the hop-constrained distances in a graph into a
distribution over trees; the hop-constrained distance between two nodes is defined as
the minimum weight of a connecting path consisting of at most some hop constraint
many edges. Using these embeddings we give the first poly-log bicriteria algorithms
for the hop-constrained version of many classic network design problems.

In the second part of this thesis we provide new algorithms for a primitive at the
heart of recent advances in hop-constrained expander decompositions for graphs.
Specifically, we give the first algorithms for (1 − ϵ)-approximate h-length flows
running in sequential time Õ(m · poly(h, 1

ϵ
)), parallel time Õ(poly(h, 1

ϵ
)) with m

processors and distributed CONGEST time Õ(2O(
√
logn) · poly(h, 1

ϵ
)). Notably, these

algorithms are also deterministic. We give a variety of applications including simpli-
fied distributed and deterministic constructions of expander decompositions, efficient
algorithms for computing h-length cutmatches which form the backbone of recent
work in hop-constrained expander decompositions and what is to our knowledge the
first non-trivial distributed (1− ϵ)-approximation for b-matching.

In the last part of this thesis we investigate how graph structure can make metric
sparsification easier. In particular, we study the Steiner point removal problem where
we must vertex-sparsify a graph from a structured family. We give the first O(1)
distortion Steiner point removal solutions on series-parallel graphs as well as new
metric decompositions for series-parallel graphs.

vi

Acknowledgments

Grad school has given me the opportunity to dabble in the cosmic alchemy that is theoretical
computer science. I have spent countless hours squeezing arcane ideas into my head and what I
have found on the other end—brain bursting at the seams—is great joy. I am now never at a loss
for something fascinating to turn over; I am now never bored. This joy is something I hope to
carry with me the rest of my life and it would surely not have been possible without the incredible
support network that gave form to my 6 years at CMU.

Above all this would not be possible without my advisors, Bernhard and Ravi.

Bernhard, I came to CMU with little more in mathematical training than a faint notion of what
a Chernoff bound is. Despite this you took me on as your student; eagerly. You navigated me
along a steep learning curve, always unwavering in your support and always excited to generously
share vivid digestions of otherwise impenetrable ideas. Your talent for mining simplicity from
complexity invariably gave me a sense of “this is something that I too can do.” I will fondly look
back on many memories of you blasting into meetings with some fun new idea, scooter under
foot. Beyond technical guidance—and perhaps more importantly—you fiercely advocated for
balance in my grad school life. What is all too often some abstract institutional support for “grad
student work-life balance” is something you took on as a personal mission of pressing concern.
Notably, you led by example: I don’t know of any other grad students who have stories of both
doing acroyoga and floating down the Limmat with their advisors; maybe one but certainly not
both.

Ravi, you buoyed me in the middle years of grad school when classes are done but research is still
half-baked. I could count on coming out of meetings with you feeling better than I went in; always
full of that addictive sense of electricity that we all chase in research. You would invariably meet
me halfway, earnestly engaging with and building on the ideas I brought to our meetings, however
inchoate. If I bring to my own future mentorship just a small fraction of the warmth, cheer,
enthusiasm and snacks that you brought to our meetings then I will have succeeded as a mentor.
Beyond our meetings, you have been an advisor in every sense of the word, not just sharing with
me your expansive technical knowledge but seriously advocating for me professionally. I am ever
thankful for the extent to which you have really taken your role as my advisor to heart.

I hope to continue to learn from both of you into the future but I also hope to maintain these
friendships.

Thank you to Anupam—from whom I feel I learned a great deal despite a short collaboration—for
agreeing to be on my committee, always having an open door and some really supportive last-
minute job advice. Thank you to my entire committee for thoughtful comments and suggestions
and especially to Ola and Michel for graciously agreeing to join along.

vii

An additional thanks to my many mentors who preceded grad school: thank you especially to
Stefanie Tellex for introducing me to research, Michael Littman for patiently introducing me to
more theoretically-inclined research and Anna Lysyanskaya for encouraging me to pursue my
interest in theory.

Thank you to all the admins who have deftly shielded me from so much rigmarole and help to
make grad school really about the research; especially thank you to Deb for patiently answering
every tiny question I have ever had and Charlotte for the many dinosaur stickers.

Thank you to all my collaborators: Keren Censor-Hillel, Nathan Klein, David Wajc, Arnold
Filtser, Jason Li, Laxman Dhulipala, Thatchaphol Saranurak, Sahil Singla, Cam Allen, Yuu Jinnai,
George Konidaris, Michael Littman, Hossein Bateni, Rajesh Jayaram, Kuba Lacki, Yiting Wang,
Rico Zenklusen, Goran Zuzic, Bernhard Haeupler, R. Ravi, Christoph Grunau, Václav Rozhoň,
Anson Kahng, Dominik Peters, Gregory Kehne, Ariel Procaccia and Dave Abel; I could not have
done the research or had half as much fun doing it without all of you.

This has been an unusually isolating time to complete a PhD and I am beyond grateful to the
many friends that populate my Rolodex. Greg, you’ve become a staple of my social life. I could
not have made it through these past few years without our regular exchange of math chortles,
your patient listening or your quick wit. Dave, I can’t think of a friend who has so positively
influenced how I approach my own life; I hope to continue to osmose that inimitable Dave-like
wonder, excitement and thrill of discovery for many years to come. Thank you to Laxman for only
almost always beating me at chess, unparallelled thoughtfulness and many meandering walks.
Thank you to Anson for an ever-solid friendship, inspiringly understated intensity and genuinely
being a lovely collaborator. Thank you to Alex for tolerating my rants, pro bono ombudswork
and excellent hugs. Thank you to Roie for good jokes, refreshingly contrarian opinions and (one
day I’m sure) a fun collaboration. Thank you to Other Greg for your big grin and your breadth
of intellect that it’s not fair for anybody as mathematically sharp as you to have. Thank you to
Marina for a hail mary friendship of unusual depth and reminding me why I enjoy philosophy.
Thank you to Niko for tolerating many Esplanade walks and life talks despite a broken back.
Thank you to Will for being an unwaveringly supportive friend over nearly two decades. Thank
you to Anthony for always going out of his way to put time into our friendship and willingness to
talk. Thank you to Katherine for bringing art into my life and so eagerly putting together so many
lovely yet formidable adventures. Thank you to Yaffe for being a bastion of calm takes and clarity
of thought. Thank you to you all. I have spent hours and hours wandering through the woods with
nothing but my phone. I have never once felt lonely.

Many thanks to the many other characters that have made up my time in grad school. Thank you to
Goran for Croatian Wisdom and becoming that mythical friend-collaborator that we all hope for in
grad school. Thank you to Erika for supporting me through an uncommonly stressful time in my
life and just generally cultivating an unmatched aura of fun, thoughtfulness and self-improvement.
Thank you to Anna and Ellen for helping to provide the activation energy that is required to get
grad students to go backpacking. Thank you to Javier for teaching me the folly of powerlifting and
the merits of yoga. Also thank you to Sam for literally never not having a smile on his face except
when his talking about super serious research stuff. Thank you to Nathan Fulton for dealing with
Linux idiosyncrasies on my machine that I have no right not knowing how to fix myself at this
point. A special thank you to David and Naama for really invaluable advice in the job search and
just generally being lovely people. Lastly, a thanks to the many other people who have made my

viii

time in grad school what it is: Vijay, Nic, Jalani, Mark, Kevin, Pallavi, Mansur, Chaitanya, Piyumi
and I’m sure many that I’m missing.

Thank you to my family who, owing to present pandemic, have made up an unusually large
portion of my social life in grad school. Thank you to Cole, Sveta and Maryna for moving their
lives cross-country and bringing so much more family into my life these past few months. Thank
you to Luka for teaching me the value of an unshakable fixation on a narrow swath of human
knowledge; in his case trucks; in my case this thesis. Thank you to Ivan for being the only other
bald nuclear family member (for now). Thank you to Jeannie for reminding me that the river
also has things to say. Above all, thank you to my parents for filling my life with the joy of
learning new things, gourmand-worthy dinners, extensive plant knowledge and literally a lifetime
of support.

ix

x

Contents

1 Introduction 1
1.1 Overview . 2

1.1.1 New Tree Embeddings (Part I) . 2
1.1.2 New Primitives for Graph Decompositions (Part II) 4
1.1.3 Steiner Point Removal (Part III / Chapter 6) 5

1.2 Notation and Conventions . 5

I New Tree Embeddings 9

2 Tree Embedding Background 11
2.0.1 Network Design and Group Steiner Problems 12

3 Copy Tree Embeddings 15
3.1 Introduction . 15

3.1.1 Our Contributions . 16
3.2 Copy Tree Embedding Constructions . 19

3.2.1 From Padded Hierarchical Decompositions to Copy Tree Embeddings . . 20
3.2.2 Deterministically Constructing Padded Hierarchical Decompositions . . . 24
3.2.3 Construction 2: Merging FRT Support 30

3.3 Online Covering Steiner . 31
3.3.1 Online Covering Steiner on a Tree . 32
3.3.2 Online Covering Steiner on General Graphs 34

3.4 Deterministic Online Group Steiner Reductions 36
3.4.1 Deterministic Online Group Steiner Tree 36
3.4.2 Deterministic Online Group Steiner Forest 38

3.5 Conclusion and Future Work . 39

4 Hop-Constrained Tree Embeddings 41
4.1 Introduction . 41

4.1.1 Our Contributions . 42
4.2 Hop-Constrained Network Design Related Work 44
4.3 Approximating Hop-Constrained Distances . 45

4.3.1 Hop-Constrained Distances Are Inapproximable by Metrics 45
4.3.2 Distances Induced by Distributions Over Partial Metrics 46
4.3.3 Approximating Hop-Constrained Distances with Partial Tree Metrics . . 47

xi

4.4 h-Hop Partial Tree Embeddings . 52
4.4.1 Defining h-Hop-Partial Tree Embeddings 52
4.4.2 Projecting From The Graph to h-Hop Partial Tree Embeddings 54

4.5 Applications of h-Hop Partial Tree Embeddings 60
4.5.1 Oblivious Hop-Constrained Steiner Forest 60
4.5.2 Hop-Constrained Group Steiner Tree 63
4.5.3 Hop-Constrained k-Steiner Tree . 66
4.5.4 Hop-Constrained Oblivious Network Design 67

4.6 h-Hop Copy Tree Embeddings . 70
4.7 Applications of h-Hop Copy Tree Embeddings 71

4.7.1 Hop-Constrained Group Steiner Tree 71
4.7.2 Online Hop-Constrained Group Steiner Tree 71
4.7.3 Hop-Constrained Group Steiner Forest 72
4.7.4 Online Hop-Constrained Group Steiner Forest 73

4.8 Conclusion and Future Work . 74
4.9 Deferred Proofs of Section 4.3 . 74

II New Primitives for Graph Decompositions 77

5 Length-Constrained Flows 79
5.1 Introduction . 79

5.1.1 Our Contributions . 80
5.2 Chapter-Specific Notation and Conventions . 83
5.3 Length-Constrained Flows, Moving Cuts and Main Result 84
5.4 Intuition and Overview of Approach . 86

5.4.1 Using Lightest Path Blockers for Multiplicative Weights 86
5.4.2 Length-Weight Expanded DAG to Approximate h-Length Lightest Paths 88
5.4.3 Deterministic Integral Blocking Flows Paths via Flow Rounding 89
5.4.4 Overview of Chapter . 89

5.5 Preliminaries . 90
5.5.1 Deterministic CONGEST Maximal and Maximum Independent Set . . . 90
5.5.2 Deterministic Low Diameter Decompositions 90
5.5.3 Sparse Neighborhood Covers . 91
5.5.4 Cycle Covers . 92

5.6 Path Counts for h-Layer S-T DAGs . 93
5.7 Randomized Blocking Integral Flows in h-Layer DAGs 94
5.8 Deterministic and Distributed Near Eulerian Partitions 97

5.8.1 High-Girth Cycle Decompositions . 98
5.8.2 Efficient Algorithms for Computing Near Eulerian Partitions 101

5.9 Deterministic Blocking Integral Flows in h-Layer DAGs 102
5.9.1 Iterated Path Count Flows . 103
5.9.2 Deterministic Rounding of Flows in h-Layer DAGs 106
5.9.3 Deterministic Blocking Integral Flows 111

5.10 h-Length (1 + ϵ)-Lightest Path Blockers . 112
5.10.1 Length-Weight Expanded DAG . 113

xii

5.10.2 Decongesting Flows . 116
5.10.3 Computing h-Length (1 + ϵ)-Lightest Path Blockers 117

5.11 Computing Length-Constrained Flows and Moving Cuts 119
5.12 Application: Maximal and Maximum Disjoint Paths 123

5.12.1 Maximal and Maximum Disjoint Path Variants 123
5.12.2 Reducing Among Variants . 124
5.12.3 Maximal Disjoint Path Algorithms . 126
5.12.4 Maximum Disjoint Path Algorithms . 127
5.12.5 On the Hardness of Maximum Disjoint Paths 127

5.13 Application: Simple Distributed Expander Decompositions 128
5.14 Application: (1− ϵ)-Approximate Distributed Bipartite b-Matching 129
5.15 Application: Length-Constrained Cutmatches 130
5.16 Conclusion and Future Work . 131
5.17 Generalizing Our Results to Multi-Commodity 132

5.17.1 Multi-Commodity Flows, Cutmatches and Results 132
5.17.2 Computing Multi-Commodity Length-Constrained Flows and Moving Cuts134
5.17.3 Computing Multi-Commodity Length-Constrained Cutmatches 138

III Steiner Point Removal 141

6 Series-Parallel Steiner Point Removal 143
6.1 Introduction . 143

6.1.1 Our Contributions . 144
6.2 Related Work . 146
6.3 Preliminaries . 147

6.3.1 Characterizations of Series-Parallel Graphs 147
6.3.2 Scattering Partitions . 148

6.4 Intuition and Overview of Techniques . 149
6.4.1 General Approach . 149
6.4.2 Scattering Chops . 150
6.4.3 Hammock Decompositions and How to Use Them 151

6.5 Chapter-Specific Notation and Conventions . 152
6.6 Perturbing KPR and Scattering Chops . 153

6.6.1 Perturbing KPR . 153
6.6.2 Scattering Chops . 156

6.7 Hammock Decompositions . 157
6.7.1 Trees of Hammocks . 157
6.7.2 Hammock Decompositions . 162

6.8 Hammock Decompositions for Series-Parallel Graphs 163
6.8.1 Initial Hammocks Ĥ by Connecting Equivalence Classes 165
6.8.2 Extending Ĥ to H̄ by Hammock-Joining Paths 170
6.8.3 Extending H̄ to H̃ by LCA Paths . 175
6.8.4 Extending H̃ toH by Adding Dangling Subtrees 180

6.9 Scattering Chops via Hammock Decompositions 182
6.10 Future Work . 186

xiii

6.11 Ear Decompositions from Hammock Decompositions 186
6.12 Hammock Decomposition Construction Figures 188

IV Conclusion 191

7 Conclusion 193

Bibliography 195

xiv

List of Figures

3.1 Illustration of our first construction where we merge O(log n) partial tree embed-
dings. 17

3.2 Illustration of our second construction where we merge the O(n log n) trees in
the FRT support. 17

3.3 Illustration of a hierarchical decompositionH with h = 4 with n = 7. Each part
in each Pi ∈ H is colored according to i; singleton parts not pictured. We give
α-padded nodes in green and all other nodes in red where we illustrate why the
node on the far left is α-padded and the node on the far right is not by drawing
B(v, α · 2i) for i ≥ 1 in colors according to i for these two nodes. 20

3.4 How to turn a hierarchical decomposition into a partial tree embedding. We color
nodes from the input metric in green if they are padded and red otherwise. Remain-
ing nodes colored according to their corresponding hierarchical decomposition
part. r is the node on the far left of the tree. 22

3.5 Solution our algorithm gives after one group of groups, G1, is revealed where
r1 = 2. Nodes in groups in G1 outlined in green and nodes colored according to
the group of G1 which contains them. Saturated edges given in blue and edges
with 0 < xe < we annoted with “xe/we”. All other edges labeled by we. 33

4.1 An illustration of the top-level recursive call of the embedding of Theorem 37 on
graph G (edges omitted from illustration). Vertices in the partial vertex partition
of Theorem 40 given in purple. Vertices removed from the process given as empty
circles and all other vertices given as filled-in circles. 49

4.2 A counter-example to the naive charging argument for T (H, h) where Θ(k) =
Θ(n). Edges labeled with their weights, vertices of V (T) given as solid black
circles and vertices of V \ V (T) given as white-filled circles. Paths colored
according to their corresponding pair. 56

4.3 An illustration of an h-hop connector with congestion 1 and hop stretch 2 on a
graph G for a vertex set W ⊆ V (G) with h = 3. Vertices of W given as solid
black circles; all other vertices of G given as white circles. Edges in (W,P) and
paths in P colored according to their correspondence. 57

4.4 An illustration of how to compute an h-hop connector on an arbitrary graph G for
W ⊆ V (G) with h = 3. Vertices of W given as solid black circles; roots of F
given as black squares; all other vertices of G given as white circles. Paths in P1

and P2 colored to correspond to their edges in (W,P). 58

xv

5.1 An illustration of the first two iterations of our multiplicative-weights-type algo-
rithm where h = 5, S = {s} and T = {t} and capacities are all 1. Each arc is
labelled with the value we multiply its initial weight by (initialized to w0 := 1+ ϵ)
then length then flow. Our h-length shortest path blockers are in blue. 87

5.2 A digraph D with S = {s} and T = {t} where the 5-length lightest S-T paths
do not induce a DAG. 5.2a gives D where each arc is labeled with its weight (in
black) and length (in green). 5.2b shows how all lightest S-T paths have weight 2
and induce a DAG. 5.2c shows how the two 5-length lightest S-T paths (in blue
and red) have weight 6 and induce a digraph with a cycle. 88

5.3 An illustration of a near Eulerian partitionH and H+ for each H ∈ H. 5.3a gives
H which consists of one cycle and two paths. 5.3b gives the orientation of H
where the source of each path is in blue. 5.3c gives H+ (in green) and H \H+

(in red) for each H ∈ H. 107
5.4 An example of our flow rounding algorithm on digraph D with unit capacities.

5.4a gives the input flow where arcs are labelled with their flow and vertices are
labelled with their deficit. 5.4b gives D(2), the graph induced by all arcs with flow
value .5. 5.4c gives our oriented near Eulerian partition of D(2) (in blue). 5.4d
shows how we update our flow based on the near Eulerian partition. 5.4e gives the
result of this flow update; notice that some vertices not in S and T have non-zero
deficit. 5.4f gives the S-T subflow we return where only vertices in S and T have
non-zero deficit. 110

5.5 An illustration of how we round weights according to ϵ, λ and h. Here h = 5,
λ = 6 and ϵ = .5 and so we round to multiples of ϵ

h
λ = 3

5
. 5.5a gives our input

DAG where each arc is labeled with its weight, then length then capacity and 5.5b
gives the weights after we round them where we color each lightest 5-length path
from s to t. 113

5.6 An illustration of D(h,λ) where D and the parameters we use are given by Fig-
ure 5.5, κ = 100, S = {s} and T = {t}. Copy v(x, h′) of vertex v is in the
(x, h′)th grid cell and each arc is labelled with its capacity. We only illustrate the
subgraph between s(0, 0) and t(33

5
, 5). Each path is colored according to the path

in Figure 5.5b of which it is a copy. Notice that the graph induced by all 5-length
lightest paths in Figure 5.5b is not a DAG but D(h,λ) is. 114

5.7 Illustration of our reduction on a single edge or arc between u and v for reducing
maximal or maximum vertex-disjoint paths, edge-disjoint paths or vertex-disjoint
directed paths to arc-disjoint directed paths. 124

6.1 A summary of the SPR distortion for (connected) Kh-minor-free graphs achieved
in prior work and our own. Graph classes illustrated according to containment.
We also give the forbidden minors for each graph family. 144

6.2 In (a) we illustrate a clawed cycle where the cycle C is given in solid black and
each path is given in dotted black. In (b) we illustrate a scattering partition with
τ = 3 and how one path P of length at most ∆ is incident to at most three parts
where we color the subpaths of P according to the incident part. 147

6.3 Two levels of ∆-chops on the grid graph for ∆ = 3. We give the edges of the
BFS trees we use in pink; roots of these trees are given as squares. Background
colors give the annuli of nodes. 150

xvi

6.4 An example (of an outerplanar graph) where a ∆-chop does not produce a scatter-
ing partition but how perturbing said chop does. Here, we imagine that the root is
at the top of the graph and each edge incident to the root has length ∆− 3. We
highlight the path P that either ends up in many or one connected component
depending on whether we perturb our ∆-chop in yellow. 150

6.5 A c-fuzzy ∆-chop that is 1-scattering. We draw each fuzzy annulus in a distinct
color. In (b) we visualize some shortest paths of length at most ∆ and highlight
cut edges in red. 156

6.6 An illustration of a hammock and a hammock-fundamental cycle for e1, e2 ∈ Ec.
Edges of TBFS in pink, cross edges in black, hammock roots are a black square
and diamond and the hammock-fundamental cycle is in yellow. 158

6.7 An illustration of one tree of hammocks in a hammock decomposition {Hi}i
and a hammock decomposition consisting of two trees of hammocks. Each ri
and r′i given as a square and diamond colored according to corresponding Hi.
Edges in TBFS in pink and highlighted according to the Hi which contains them.
Edges of Ec colored according to the Hi which contains them. T0 in the hammock
decomposition given in dark red. 159

6.8 An illustration of the LCA-equivalence classes of a series-parallel graph G. Edges
of TBFS in pink. Edges of Ec in black in Figure 6.8a and colored according to their
LCA-equivalence class in Figure 6.8b. Notice that edges with the same LCA can
belong to distinct equivalence classes. 163

6.9 The three cases of the proof of Theorem 163. Edges in C solid, edges outside of
C transparent. TBFS in pink and Ec in black. In (a) we give the path between vl
and vr contained in TBFS(x) \ {x} with a dotted yellow path. In (b) we illustrate
give l(e1) = l(e2) at the top. In (c) we highlight the cycle and the paths of the
clawed cycle in solid and dotted yellow respectively. 167

6.10 An illustration of our initial hammocks Ĥ = {Ĥi}i and how we extend them to
our final hammocks H̄. Roots and edges of initial hammocks colored according
to i. Notice that one vertex is the root of two hammocks (and so colored with two
colors). 168

6.11 The contradiction in the proof of Theorem 167. In (a) we illustrate H̄i in light
blue and Hj in dark blue. In (b) we highlight Fj in solid yellow and P1, P2 and
P3 in dotted yellow. 169

6.12 An illustration of how in the proof of Theorem 173 we may assume that |C∩Ci| ≤
1 by shortcutting C in H̄i. We highlight C in yellow both before and after
shortcutting. 172

6.13 Each of the three contradictions we arrive at in the proof of Theorem 182 based
on the value of γ. In (c) we highlight the cycle of our clawed cycle in solid yellow
and each of its paths in dotted yellow. 178

6.14 An illustration of the paths of our hammock decomposition. Each such path
dotted and given in a color corresponding to its constituent hammock. On the left
we give the paths and on the right we give the result of adding these paths to H̄,
resulting in H̃. Notice that each root hammock has two paths in P 179

6.15 The result of adding the dangling trees to each of our hammocks and the final
hammock decomposition. On the right we give T0 in dark red. 181

xvii

6.16 Construction of a c-fuzzy, O(1)-scattering, ∆-chop. There are two hammocks in
the picture, Hj and Hk. 183

6.17 Setting for the proof of Theorem 189. The path P is the red, dotted path in the
left. The green cycle and the blue claw on the right together form a clawed cycle. 184

6.18 An illustration of the construction of our hammock decomposition on a series-
parallel graph. 189

xviii

List of Tables

4.1 Our bicriteria approximation results. All results are for poly-time algorithms that
succeed with high probability (at least 1− 1

poly(n)
). For some of the problems we

assume certain parameters are poly(n) to simplify presentation; see the relevant
sections for more details. All results are new except for the k-Steiner tree result
which is implied by [126]. 44

xix

xx

Chapter 1

Introduction

Graphs and metrics are two of the most versatile tools in modern computing. Both are general
enough to find wide-reaching applications but sufficiently structured enough to form the foundation
of many algorithms. Indeed the rich and beautiful structure of graphs and metrics has driven
algorithmic advances in areas as varied as computational biology, distributed computing, machine
learning and chip design. In large part these applications are made possible by the ability of
graphs and metrics to model costs, congestion and distances in a variety of networks—including
protein, transportation, manufacturing, computer, social and epidemiological networks. More
generally, their ability to mathematically formalize a notion of “connectedness” and “closeness”
lays the foundation for many applications such as planning and knowledge representation in AI.

While graphs and metrics form the foundation of much of modern computing, a proliferation
of data has led to modern graphs and metrics that dwarf their predecessors. For instance, the
social and knowledge graphs of companies like Google and Facebook have billions of vertices
and hundreds of billions of edges [63]. Similarly, a flurry of work in molecular biology has led to
the discovery of genomic and protein networks of interest whose interactions are described by
singularly massive graphs [53]. Thus, modern algorithms for graphs and metrics are faced with
the daunting task of computing over huge and complex inputs.

One of the most powerful and flexible tools for meeting the algorithmic challenges posed by
massive graphs and metrics is sparsification and compression. Here, otherwise intractably large
graphs and metrics are sparsified or otherwise made concise while preserving salient properties of
the input. As exact compressions of a graph or metric is often impossible, these techniques often
only approximately preserve certain properties of the graph. Applying these strategies can make
otherwise intractably large problems significantly smaller, thereby opening the door to efficient
algorithms.

In this thesis we give new results in graph sparsification and compression. Specifically,
we give two new types of so-called tree embeddings (copy tree embeddings and hop-
constrained tree embeddings), new algorithms for hop-constrained flows as well as
constant distortion solutions for Steiner point removal in series-parallel graphs. We
will use tools and perspectives from combinatorial optimization, metric embeddings,
approximation algorithms and online algorithms.

1

1.1 Overview
We provide a brief overview of the content of this thesis below. In the first part of this thesis we
provide new ways to embed a graph into a tree with applications in online and approximation
algorithms. In the second part we provide new algorithms for efficiently computing “hop-
constrained flows”, use these algorithms to efficiently decompose a graph into parts which admit
efficient communication. Lastly, in the third part we provide new vertex-sparsification results by
way of new results for the Steiner point removal problem.

1.1.1 New Tree Embeddings (Part I)
Trees are among the simplest graphs. Indeed, by way of classical ideas—such as dynamic
programming—their simple structure makes many otherwise intractable problems efficiently
solvable. For this reason a great deal of work has focused on how to approximate arbitrary graphs
and their metrics by trees by way of so-called “tree embeddings.” In the first part of this thesis
we study new tree embedding paradigms as well as tree embeddings that incorporate the “hop
structure” of a graph.

Copy Tree Embeddings (Chapter 3)

As an arbitrary metric is provably inapproximable by a single tree [7], conventional tree embed-
dings have focused on how to approximate a graph by a distribution over trees [23]. However,
the probabilistic nature of these embeddings makes these embeddings unsuitable for many well-
studied settings—such as online settings with adaptive adversaries.

In the first chapter of this thesis we provide new tree embeddings of metrics which deterministically
approximate an arbitrary metric by a tree. Our key insight is that a metric can be approximated by
a single tree if we allow our tree to contain (boundedly-many) copies of each vertex. We term these
embeddings copy tree embeddings. We give constructions of copy tree embeddings that O(log2 n)
approximate the cost of subgraphs while embedding each vertex into only O(log n) copies.
Specifically, subgraphs of the input graph will map to subgraphs in the tree at a multiplicative
cost increase of O(log2 n) while guaranteeing that if two vertices are connected in the original
subgraph then two of their copies will be connected in the tree.

The key insight to this construction is the observation that if we are only interested in embedding
a large subset of vertices into a tree then there do, in fact, exist trees which preserve distances
between these subsets; by combining many such trees we are able to achieve the above result.

We demonstrate the algorithmic utility by using them to give the first non-trivial deterministic
approximation algorithms for online group Steiner tree which is a generalization of the well-
studied set cover and Steiner tree problems. Similarly, we use our copy tree embeddings to give
the first deterministic (bicriteria) approximation algorithms for the covering Steiner problem, itself
a generalization of the group Steiner problem. Many of these results appear in a joint work with
Hauepler and Zuzic [112].

Hop-Constrained Tree Embeddings (Chapter 4)

In the next chapter, we proceed to study how the the interactions between graph structure and
their metric affects tree embeddings.

2

Specifically, while every graph induces a metric, a graph can provide a metric with rich structure
that a metric alone does not exhibit. While the metric we typically associate with a weighted
graph is the shortest path metric—where the distance between two vertices is the minimum weight
of a path connecting them—a weighted graph really induces two metrics. The first is the usual
shortest path metric but the second is the hop-distance metric where the distance between two
nodes is the minimum number of edges in a path connecting these nodes. These two metrics
together define a notion of hop-constrained distances where the distance between two nodes is
defined as the shortest path with at most some specified number of edges. A metric without the
graph that induces it provides no such notion of hop-constrained distances.

Just as it is useful to embed a metric into simple structures such as trees, so too is it useful to embed
hop-constrained distances into trees. Indeed, incorporating graph structure into a solution can be
of great practical value. Consider, for example, the case of hop-constrained minimum spanning
tree (MST). MST has been extensively used as a subroutine to compute low-cost (computer)
networks in which every node is able to communicate with every other node. A hop-constrained
MST naturally lead to networks with lower latencies as messages between nodes must travel
fewer links in the network [158, 167]. Additionally, if we imagine that a transmission over an
edge fails with some probability—as has been observed to occur in practice—then by minimizing
the number of edges messages must travel we can reduce the probability that a communication
fails and achieve more reliable networks [158, 167].

However, the complexity inherent in hop-constrained distances makes tree-like summarizations
significantly more challenging than the metric case. Indeed, not only are hop-constrained distances
not metric (as they fail to satisfy the triangle inequality) but, as we observe in this chapter, the path
graph demonstrates that they are, in some sense, inapproximable by metrics. This fact not only
rules out tree embeddings in the conventional sense, but it rules out embedding hop-constrained
distances into any distribution of metrics.

Despite these apparent roadblocks, we demonstrate how to concisely represent hop-constrained
distances by the metric of a weighted tree. The crucial insight we make is that the above
impossibility results only hold if we our goal is to embed the hop-constrained distances between
all nodes into a metric. By only embedding a (large) constant fraction of the nodes in the input
graph we are able to show how to O(log2 n) approximate the hop-constrained distances between
all nodes with a bicriteria O(log3 n) relaxation in the hop constraint. Likewise, we combine these
embeddings with the above notion of copy tree embeddings to give “hop-constrained copy tree
embeddings.”

Additionally, we critically rely on what we call the “mixture metric” which is a notion of distance
that encodes information about both hops and shortest path distances. In particular, it is a convex
combination of hop-distances (where the distance between two nodes is defined as the minimum
number of edges in a path that connects them) and the standard shortest path metric; as this notion
of distance indeed induces a metric we can make use of tools from metric embeddings and, in
particular, so-called low diameter decompositions to extract structure on this mixture metric. By
using a series of different convex combinations we will be able to encode different parts of the
hop-constrained shortest path distances, again, using metric embeddings to extract structure on
each of these parts.

We proceed to study several hop-constrained network design problems. Specifically, in classic
network design problems our goal is to find a minimum cost subgraph connecting certain nodes. In

3

hop-constrained network design problems our goal is to find a minimum cost subgraph connecting
certain nodes along paths that consist of boundedly-many edges. This additional constraint is
desirable for the above-stated reasons regarding MSTs.

Unfortunately, hop-constraints make network design problems significantly more challenging. For
example, while Steiner forest admits a constant approximation, Steiner forest with hop-constraints
is known to admit no o(2log

1−ϵ n)-approximation for any ϵ > 0 [68].

Nevertheless, using our embeddings of hop-constrained distances into trees and by relaxing our
algorithms to be bicriteria, we overcome these impossibility results and give the first poly-time
(poly-log, poly-log) bicriteria approximations for the hop-constrained versions of many classic
network design problems such as Steiner forest, group Steiner tree and group Steiner forest as
well as the online and oblivious versions of these problems. Much of this chapter is based on a
joint work with Haeupler and Zuzic [113].

1.1.2 New Primitives for Graph Decompositions (Part II)
Computing routing schemes that support both high throughput and low latency is one of the core
challenges of network optimization. Such routes can be formalized as h-length flows which are
defined as flows whose flow paths are restricted to have length at most h. Many well-studied
algorithmic primitives—such as maximal and maximum length-constrained disjoint paths—are
special cases of h-length flows.

These algorithmic primitives form the backbone of many recent algorithmic advances in so-called
expander decompositions of graphs which, informally speaking, partition a graph into its highly
expanding parts while only cutting a small fraction of edges. Likewise the optimal h-length flow
is a fundamental quantity in network optimization, characterizing, up to poly-log factors, how
quickly a network can accomplish numerous distributed primitives [109].

Fast Algorithms for Length-Constrained Flows (Chapter 5)

In this chapter, we give the first efficient algorithms for computing (1− ϵ)-approximate h-length
flows in several models of computation. We give deterministic algorithms that take Õ(poly(h, 1

ϵ
))

parallel time and Õ(poly(h, 1
ϵ
)·2O(

√
logn)) distributed CONGEST time. We also give a CONGEST

algorithm that succeeds with high probability and only takes Õ(poly(h, 1
ϵ
)) time.

The basic approach we take will be an instantiation of the multiplicative weights framework. In
particular, we will gradually add to our flow by finding a large batch of edge-disjoint h-length
paths along which to send a small amount of new flow. We will choose these paths by maintaining
a dual solution which we also gradually update. This dual solution corresponds to an edge
weighting and the paths that we send flow along will correspond to a collection of (near)-lightest
h-length paths which together “cover” all (near)-lightest h-length paths. Each time we send flow
along such a batch of paths we update our dual solution by a multiplicative (1 + ϵ) on all edges
incident to one of these paths; thus, each iteration of this process is guaranteed to substantially
increase the weight of the lightest h-length path between our sources and sinks and so overall we
will only require Õ(1)-many such iterations.

The main challenge in instantiating this idea then becomes efficiently finding such a collection of
paths and for this we develop some new approximate representations of (near)-lightest h-length

4

paths in arbitrary digraphs by DAGs as well as new deterministic flow rounding techniques in a
distributed setting by making use of so-called “cycle covers.”

Using our h-length flow algorithms, we give the first efficient deterministic CONGEST algorithms
for the maximal length-constrained disjoint paths problem—settling an open question of Chang
and Saranurak [45]—as well as essentially-optimal parallel and distributed approximation algo-
rithms for maximum length-constrained disjoint paths. The former greatly simplifies deterministic
CONGEST algorithms for computing expander decompositions. We also use our techniques to
give the first efficient (1− ϵ)-approximation algorithms for bipartite b-matching in CONGEST.
Lastly, using our flow algorithms, we give the first algorithms to efficiently compute h-length cut-
matches, an object at the heart of recent advances in length-constrained expander decompositions.
This chapter is based on a joint work with Saranurak and Haeupler [110].

1.1.3 Steiner Point Removal (Part III / Chapter 6)
Just as a graph imbues its metric with additional structure by way of its hop structure, so too can
a graph give additional structure to its metric by belonging to a structured family of graphs. In
particular, the set of all metrics induced by a minor-closed family of graphs is a strict subset of all
metrics: for example, not every metric can be induced by a planar graph.

In the last chapter of this thesis, we investigate how the structure of a graph can enable improved
compact representations of metrics. Specifically, we focus on the Steiner point removal (SPR)
problem wherein we are given a weighted graph and a collection of terminals and must compute a
weighted minor just on the terminals which approximates the input metric. It is conjectured that if
the input graph belongs to a (non-trivial) minor-closed family then such an embedding is possible
with multiplicative distortion O(1).

We show that series-parallel graphs—i.e. all K4-minor-free graphs admit O(1) distortion SPR
solutions, extending the frontier of what minor-closed families are known to admit O(1) distortion
SPR solutions. In particular, we give a general reduction of O(1) distortion SPR solutions in
Kr-minor-free graphs to what we call O(1)-scattering chops, which are, roughly, a separation of
the graph into annuli that respect the shortest path structure of the graph. Next, we give new metric
decompositions for series-parallel graphs which we call hammock decompositions. Roughly,
hammock decompositions decompose a series-parallel graph into a tree-like subgraph which
respect the shortest path structure of the input graph. We will argue that such a structure exists
because when it fails to exist we can find a K4-minor in our input graph. Lastly, we use our
hammock decompositions to show that series-parallel graphs admit O(1)-scattering chops. These
results appear in a joint work with Li [117].

1.2 Notation and Conventions
General: We let [k] := {1, 2, . . . , k} for any non-negative integer k. We let A ⊔ B denote the
disjoint union of A and B. We often use the Iverson bracket notation I[condition] which evaluates
to 1 when the condition is true and 0 otherwise.

Graphs: Given a graph G = (V,E) we denote its vertex set by V (G) and E(G), or simply V and
E if G is clear from context. We let n := |V |. Most commonly, we consider undirected weighted
graphs G = (V,E,w) with weights w : E → {1, 2, . . . , L}. The value L is called the aspect ratio

5

and throughout this thesis we assume L = poly(n). We will let wG be G’s weight function if G is
not clear from context.

Subgraphs: Given a weighted graph G = (V (G), E(G), wG), we will often consider a subgraph
H = (V (H), E(H)) where V (H) ⊆ V (G) and E(H) ⊆ E(G). We will often identify a
subset of edges E ′ ⊆ E(G) of a graph G with the subgraph induced by these edges, i.e., the
subgraph H with E(H) = E ′ and V (H) =

⋃
e∈E(H) e. We define the weight of a subgraph

wG(H) :=
∑

e∈E(H) wG(e) as the sum of weights of its edges. Given graphs G and H , we will
use the notation H ⊆ G to indicate that H is a subgraph of G. The weak diameter of a subgraph
H is maxu,v∈V (H) dG(u, v).

Induced Graphs and Edges: Given an edge set E and disjoint vertex sets V1 and V2, we let
E(V1, V2) := {e = {v1, v2} ∈ E : v1 ∈ V1, v2 ∈ V2} be all edges between V1 and V2. Given
graph G = (V,E) and a vertex set U ⊆ V , we let G[U] = (U,EU) be the “induced subgraph”
of G where {u′, v′} ∈ EU iff {u′, v′} ∈ E. Given a collection of subgraphs H = {Hi}i of a
graph we call G[H] := (

⋃
i V (Hi),

⋃
i E(Hi)) the induced subgraph ofH. Similarly, we will let

E(H) :=
⋃

i E(Hi) give the edges of H. We emphasize that it is not necessarily the case that
G[H] = G[V (H)].
Well-Separated Trees: We will often work with well-separated rooted trees. We say that a
weighted rooted tree T = (V,E,w) with root r ∈ V is well-separated if every root-to-leaf
path has weights that are decreasing powers of 2. That is, if e′ is a child edge of e in T then
w(e′) = 1

2
w(e).

Distances and Metrics: For a set V we call any positive real function d : V × V → R≥0

which is symmetric, i.e., satisfies d(u, v) = d(v, u) for all u, v ∈ V , and satisfies the identity
of indiscernibles, i.e., d(u, v) = 0 ⇔ u = v, a distance function (such a function is also often
called a semimetric). If d also satisfies the triangle inequality d(u,w) ≤ d(u, v) + d(v, u) for all
u, v, w ∈ V then d is called a metric. We also extend the definition of d to sets in the standard
way: d(U,U ′) := minu∈U,u′∈U ′ d(u, u′). We will talk about the diameter of a metric (V, d) which
is maxu,v∈V d(u, v). We use B(v, x) := {u ∈ V : d(v, u) ≤ x} to stand for the closed ball of v
of radius x in metric (V, d) and BG(v, x) if (V, d) is the shortest path metric of G and we need
to disambiguate which graph we are taking balls with respect to. We will sometimes identify a
graph with the metric which it induces.

Paths, Path Length, and Hop Length: A sequence P = (v0, v1, . . . , vℓ) of nodes in a graph G is
called a path if for all i ∈ [ℓ] we have {vi−1, vi} ∈ E(G) and we say E(P) :=

⋃
i{{pi−1, pi}} ⊆

E(G) is the edge set of P . Given a path P = (v0, v1, . . . , vk, vk+1) we will use internal(P) :=
{v1, . . . , vk} to refer to the internal vertices of P . We will say that a path P is between two vertex
sets U and W if its first and last vertices are in U and W respectively and internal(P)∩U = ∅ and
internal(P) ∩W = ∅. We will sometimes abuse notation and use P and E(P) interchangeably.
We will also sometimes say such a path is “from” U to W interchangeably with a path is “between”
U and W . We will use P ⊕ P ′ to refer to the concatenation of two paths which share an endpoint
throughout this thesis. If the nodes in P are distinct we say that P is simple. In this thesis paths
are not assumed to be simple. We denote the number of hops in P with hop(P) := ℓ and call
hop(P) the hop length of P . If G = (V,E,w) is weighted, we define the weight of a path P in G
to be the sum of weights of its edges: w(P) :=

∑
e∈E(P) w(e).

Hop Distance and Hop Diameter: For a (non-complete) subgraph H = (V (H), E(H)) of
a (complete) graph G we let hopH(u, v) be the minimum number of edges of a path between

6

u and v in H (i.e., using only the edges E(H)). We also define the hop diameter of H as
hop(H) := maxu,v∈V (H) hopH(u, v).

Shortest-Path Metric and Tree Metric: For a weighted graph G the distance between any two
nodes u, v ∈ V is defined as dG(u, v) := min{w(P) | path P between u, v}. It is easy to verify
that dG is a metric on V and for this reason dG is called the shortest path metric of G. Any metric
d on a set V which is identical to a shortest path metric of a weighted tree T = (V,E,w) is called
a tree metric; for this reason we will sometimes conflate a tree metric with its corresponding tree.

7

8

Part I

New Tree Embeddings

9

Chapter 2

Tree Embedding Background

Embeddings of general metrics into trees is one of the most versatile tools in combinatorial
and network optimization. The following definition gives the standard formalism for these
embeddings.

Definition 1 (Probabilistic Tree Embedding). Given graph G = (V,E) with edge weights
wG : E → R≥0, a probabilistic tree embedding with distortion α is a distribution over edge-
weighted trees T where each T ∈ T is on V , has its own weight function wT , edge set ET and
furthermore:

1. Non-Contracting: dG(u, v) ≤ dT (u, v) for any u, v ∈ V and any T ∈ T

2. Low Expected Distance Increase: ET∼T [dT (u, v)] ≤ α · dG(u, v) for any u, v ∈ V .

Observe that a given edge e = {u, v} in a given tree T ∈ T corresponds to a path Pe of only less
weight in G by the above non-contracting property. Thus, any subgraph HT of T ∈ T can be
“projected” to a subgraph HG :=

⋃
e∈HT

Pe of G where wG(HG) ≤ wH(HT) and where if u and
v are connected in HT then they will also be connected in HG.

The beauty and utility of these tree embeddings comes from the fact that their application is
often simple, yet extremely powerful. Indeed, when modeling a network with length, costs, or
capacities as a weighted graph, these embeddings often allow one to pretend that the graph is
a tree. A common template for countless network design algorithms is to (1) embed the input
weighted graph G into a tree that approximately preserves the weight structure of G by sampling
according to the above distribution; (2) solve the input problem on T to get subgraph HT and; (3)
return as the solution for the input problem the projection of HT back into G as described above.

By appealing to the low expexted distance increase, a simple proof shows that this template
provides a generic way of turning a β-approximation for many network design problems on a
tree into an α · β-approximation on general graphs where α is the distortion of the probabilistic
tree embedding. Thus, the natural question then becomes what sort of distortions are possible for
probabilistic tree embeddings.

A long and celebrated line of work [7, 23, 79, 122] culminated in the embedding of Fakcharoen-
phol, Rao and Talwar [79]—henceforth the “FRT embedding”—which showed that how to achieve
O(log n) distortion probabilistic tree embeddings. Together with the above template this reduces
many graph problems to much easier problems on trees at the cost of an O(log n) approximation

11

factor. This has lead to a myriad of approximation, online, and dynamic algorithms with poly-
logarithmic approximations and competitive ratios for NP-hard problems such as for k-server [20],
metrical task systems [26], group Steiner tree and group Steiner forest [8, 92, 149], buy-at-bulk
network design [15] and (oblivious) routing [153]. For many of these problems tree embeddings
are the only known way of obtaining such algorithms on general graphs.

There has also been considerable work on extending the power of tree embeddings to a variety of
settings including tree embeddings for planar graphs [131], online tree embeddings [27], dynamic
tree embeddings [48, 89], distributed tree embeddings [125] and tree embeddings where the
resulting tree is a subgraph of the input graph [1, 2, 7, 73, 134]. Lastly, the notion of Ramsey
trees and Ramsey tree covers is similar to several of the ideas we will explore in the subsequent
chapters. Specifically, it is known that for every metric (V, d) and k there is some subset S ⊆ V
of size at least n1−1/k which embeds into a tree—a so-called Ramsey tree—with distortion O(k)
[3, 32, 143, 147]. Iterating (a slight strengthening of) this fact shows that there exist collections
of Ramsey trees—so-called Ramsey tree covers—where each vertex v has some “home tree” in
which the distances to v are preserved.

2.0.1 Network Design and Group Steiner Problems
The field of network design studies how to efficiently construct and use large networks. Over
the past several decades researchers have paid particular attention to the construction of low-cost
computer and transportation networks that enable specified communication and delivery demands.

Formally, these problems require computation of low-cost structures in graphs, such as paths,
trees or subgraphs, that satisfy specified connectivity requirements.

Tree embeddings have been particularly successful in giving new approximation and online
algorithms for network design problems. Two problems—which we explore in the subsequent
two chapters—that have seen particular success with tree embeddings are the group Steiner tree
and group Steiner forest problems.

(Offline and Online) Group Steiner Tree

Offline Group Steiner Tree: In the (offline) group Steiner Tree problem we are given a weighted
graph G = (V,E,w) as well as pairwise disjoint groups g1, g2, . . . , gk ⊆ V and root r ∈ V . We
let N := maxi |gi|. Our goal is to find a tree T rooted at r which is a subgraph of G and satisfies
T ∩ gi ̸= ∅ for every i. We wish to minimize our cost, w(T) :=

∑
e∈E(T) w(e).

The group Steiner tree problem was introduced by Reich and Widmayer [156] as an important
problem in VLSI design. [92] gave the first randomized poly-log approximation for offline group
Steiner tree using linear program rounding. Charikar et al. [46] derandomized this result and
Chekuri et al. [49] showed that a greedy algorithm achieves similar results. Demaine et al. [62]
gave improved algorithms for group Steiner tree on planar graphs.

Online Group Steiner Tree: Online group Steiner tree is the same as group Steiner tree as
defined in Section 4.5.2 but where our solution need not be a tree and groups are revealed in time
steps t = 1, 2, That is, in time step t an adversary reveals a new group gt and the algorithm
must maintain a solution Tt where: (1) Tt−1 ⊆ Tt; (2) Tt is feasible for the group Steiner tree
problem on groups g1, . . . gt and; (3) Tt is competitive with the optimal offline solution for this
problem where the competitive ratio of our algorithm is maxtw(Tt)/OPTt where OPTt is the

12

cost of the optimal offline group Steiner tree solution on the first t groups. We assume that the
possible groups revealed by the adversary are known ahead of time as otherwise this problem is
known to admit no sub-polynomial approximations [8] and let k be the number of possible groups
revealed by the adversary.

Alon et al. [8] gave the first poly-logarithmic online algorithm for group Steiner tree. Alon et al.
[8] posed the existence of a deterministic poly-log approximation for online group Steiner tree as
an open question which has since been restated several times [31, 40]. Very recently Bienkowski
et al. [31] made exciting progress towards this open question by giving a poly-log deterministic
approximation for online non-metric facility location—which is equivalent to the online group
Steiner tree on trees with depth 2. Bartal et al. [27] also recently gave the first online algorithm
for this problem which does not have n in its approximation ratio.

(Offline and Online) Group Steiner Forest

Offline Group Steiner Forest: Group Steiner forest generalizes group Steiner tree. In the (offline)
group Steiner forest problem we are given a weighted graph G = (V,E,w) as well as pairs of
subsets of nodes (S1, T1), (S2, T2), . . . , (Sk, Tk) where Si, Ti ⊆ V . Our goal is to find a forest F
which is a subgraph of G and in which for each i there is an si ∈ Si and ti ∈ Ti such that si and ti
are connected in F . We wish to minimize our cost, w(F) :=

∑
e∈E(F) w(e).

[8] introduced the group Steiner forest problem to study online network formation. [52] gave
the first poly-log approximation algorithm for group Steiner forest. [149] gave a worse poly-log
approximation for group Steiner forest but one which was based on tree embeddings which will
be useful for our purposes.

Online Group Steiner Forest: Online group Steiner forest is the same as group Steiner forest
as defined in Section 4.7.3 but each pair (St, Tt) is revealed at time step t = 1, 2, . . . by an
adversary and in each time step t we must maintain a forest Ft which is feasible for pairs
(S1, T1), . . . (St, Tt) so that Ft−1 ⊆ Ft. The competitive ratio of an online algorithm with solution
{Ft}t is maxtw(Ft)/OPTt where OPTt is the optimal offline solution for the group Steiner
forest problem we must solve in time step t. We assume that the possible pairs revealed by the
adversary are known ahead of time as otherwise this problem is known to admit no sub-polynomial
approximations [8] and let k be the number of possible pairs.

The existence of a poly-log-competitive online algorithm for group Steiner forest was first posed
as an open question by [52]. [149] answered this question in the affirmative by showing that such
an algorithm exists.

Note that group Steiner forest directly generalizes group Steiner tree since a tree instance on a
weighted graph G with root r ∈ V (G) can be reduced to an equivalent forest instance on the same
graph G by mapping each group g to the pair ({r}, g). This reductions is valid in both the offline
and online setting.

13

14

Chapter 3

Copy Tree Embeddings

3.1 Introduction

Probabilistic tree embeddings have one drawback: Algorithms based on them naturally require
randomization and their approximation guarantees only hold in expectation. For approximation
algorithms—i.e., in the offline setting—there are derandomization tools, such as the FRT deran-
domizations given in [24, 47, 79], to overcome these issues. These derandomization results are so
general that essentially any offline algorithm based on tree embeddings can be transformed into a
deterministic algorithm with matching approximation guarantees (with only a moderate increase
in running time). Unfortunately, these strategies are not applicable to online or dynamic settings
where an adversary progressively reveals the input. Indeed, most online and dynamic algorithms
that use FRT are randomized (e.g. [8, 26, 75, 76, 80, 100, 106, 149]).

This overwhelming evidence in the literature is driven by a well-known and fundamental barrier
to the use of probabilistic tree embeddings in deterministic online and dynamic algorithms. More
specifically and even worse, this is a barrier which prevents these algorithms from working against
all but the weakest type of adversary. In particular, designing an online or dynamic algorithm
which is robust to an oblivious adversary (which fixes all requests in advance, independently of
the algorithm’s randomness) is often much easier than designing an algorithm which is robust to
an adaptive adversary (which chooses the next request based on the algorithm’s current solution).
As the actions of a deterministic algorithm can be fully predicted this distinction only holds for
randomized algorithms—any deterministic algorithm has to always work against an adaptive
adversary. For these reasons, many online and dynamic algorithms have exponentially worse
competitive ratios in the deterministic or adaptive adversary setting than in the oblivious adversary
setting. This is independent of computational complexity considerations.

The above barrier results from a repeatedly recognized and seemingly unavoidable phenomenon
which prevents online algorithms built on FRT from working against adaptive adversaries. Specifi-
cally, there are graphs where every tree embedding must have many node pairs with polynomially-
stretched distances [23]. There is nothing that prevents an adversary then from learning through
the online algorithm’s responses which tree was sampled and then tailoring the remainder of the
online instance to pairs of nodes that have highly stretched distances. The exact same phenomenon
occurs in the dynamic setting; see, for example, Guo et al. [100] and Gupta et al. [106] for dynamic
algorithms with expected cost guarantees that only hold against oblivious adversaries because

15

they are based on FRT. In summary, online and dynamic algorithms that use probabilistic tree
embeddings seem inherently randomized and seem to necessarily only work against adversaries
oblivious to this randomness.

Overall it seems fair to say that prior to this work tree embeddings seemed fundamentally incapable
of enabling adaptive-adversary-robust and deterministic algorithms in several well-studied settings.

3.1.1 Our Contributions
We provide a new type of metric embedding—the copy tree embedding— which is deterministic
and therefore also adaptive-adversary-robust. Specifically, we show that any weighted graph G
can be deterministically embedded into a single weighted tree with a small number of copies for
each vertex. Any subgraph of G will project onto this tree in a connectivity and approximate-cost
preserving way.

To precisely define our embeddings we define a copy mapping ϕ which maps a vertex v to its
copies.

Definition 2 (Copy Mapping). Given vertex sets V and V ′ we say ϕ : V → 2V
′

is a copy
mapping if every node has at least one copy (i.e. |ϕ(v)| ≥ 1 for all v ∈ V), copies are disjoint (i.e.
ϕ(v) ∩ ϕ(u) = ∅ for u ̸= v) and every node in V ′ is a copy of some node (i.e. for every v′ ∈ V ′

there is some v ∈ V where v′ ∈ ϕ(v)). For v′ ∈ V ′, we use the shorthand ϕ−1(v′) to stand for the
unique v ∈ V such that v′ ∈ ϕ(v).

A copy tree embedding for a weighted graph G now simply consists of a tree T on copies of
vertices of G with one distinguished root and two mappings πG→T and πT→G which map subsets
of edges from G to T and from T to G in a way that preserves connectivity and approximately
preserves costs. We say that two vertex subsets U,W are connected in a graph if there is a u ∈ U
and w ∈ W such that u and w are connected. We also say that a mapping π : 2E → 2E

′ is
monotone if for every A ⊆ B we have that π(A) ⊆ π(B).

Definition 3 (α-Approximate Copy Tree Embedding with Copy Number χ). Let G = (V,E,w)
be a weighted graph with some distinguished vertex r ∈ V called the root. An α-approximate copy
tree embedding with copy number χ consists of a weighted rooted tree T = (V ′, E ′, w′), a copy
mapping ϕ : V → 2V

′
and edge mapping functions πG→T : 2E → 2E

′
and πT→G : 2E

′ → 2E

where πT→G is monotone and:

1. Connectivity Preservation: For all F ⊆ E and u, v ∈ V if u, v are connected by F ,
then ϕ(u), ϕ(v) ⊆ V ′ are connected by πG→T (F). Symmetrically, for all F ′ ⊆ E ′ and
u′, v′ ∈ V ′ if u′ and v′ are connected by F ′ then ϕ−1(u′) and ϕ−1(v′) are connected by
πT→G(F

′).

2. α-Cost Preservation: For any F ⊆ E we have w(F) ≤ α · w′(πG→T (F)) and for any
F ′ ⊆ E ′ we have w′(F ′) ≤ w(πT→G(F

′)).

3. Copy Number: |ϕ(v)| ≤ χ for all v ∈ V and ϕ(r) = {r′} where r′ is the root of T .

A copy tree embedding is efficient if T , ϕ, and πT→G are deterministically poly-time computable
and well-separated if T is well-separated.

We emphasize that, whereas standard tree embeddings guarantee costs are preserved in expectation,
our copy tree embeddings preserve costs deterministically. Also notice that for efficient copy

16

(a) Graph G. (b) Compute partial tree embeddings. (c) Merge trees.

Figure 3.1: Illustration of our first construction where we merge O(log n) partial tree embeddings.

(a) Graph G. (b) Enumerate FRT support. (c) Merge trees.

Figure 3.2: Illustration of our second construction where we merge the O(n log n) trees in the FRT support.

tree embeddings we do not require that πG→T is efficiently computable; this is because πG→T

will be used in our analyses but not in any of our algorithms. The idea of embeddings which
map vertices to several copies has previously been explored by Bartal and Mendel [25] and was
recently explored in a concurrent work of Filtser [84]. The key difference between these works
and our own is that the number of copies that each vertex is mapped to is unboundedly large (in the
case of Bartal and Mendel [25]) or only small in expectation (in the case of Filtser [84]). On the
other hand, the analogue of α-cost preservation in Bartal and Mendel [25] (“path preservation”) is
stronger than our α-cost preservation.

We first give two copy tree embedding constructions which trade off between the number of copies
and cost preservation. Both constructions are based on the idea of merging appropriately chosen
tree embeddings as pictured in Figure 3.1 and Figure 3.2 where we color nodes according to the
node whose copy they are.

Construction 1: Merging Partial Tree Embeddings (Section 3.2). The cornerstone of our
first construction is the idea of merging embeddings which give good deterministic distance
preservation. If our goal is to embed the entire input metric into a tree this is impossible. However,
it is possible to embed a random constant fraction of nodes in an input metric into a tree in a way
that deterministically preserves distances of the embedded nodes; an embedding which we call
a “partial tree embedding” (see also Gupta et al. [105], Haeupler et al. [111]). We then use the
method of conditional expectation to derandomize a node-weighted version of this random process
and apply this derandomization O(log n) times, down-weighting nodes as they are embedded.
The result of this process is O(log n) partial tree embeddings where a multiplicative-weights-type
argument shows that each node appears in a constant fraction of these embeddings. Merging these
O(log n) embeddings gives our copy tree while an Euler-tour-type proof shows that subgraphs of
the input graph can be mapped to our copy tree in a cost and connectivity-preserving fashion. The
following theorem summarizes our first construction.

Theorem 4. There is a poly-time deterministic algorithm which given any weighted graph
G = (V,E,w) and root r ∈ V computes an efficient and well-separated O(log2 n)-approximate
copy tree embedding with copy number O(log n).

Construction 2: Merging FRT Support (Section 3.2.3). Our second construction follows from
a known fact that the size of the support of the FRT distribution can be made O(n log n) and this

17

support can be computed deterministically in poly-time [47]. Merging each tree in this support
at the root and some simple probabilistic method arguments give a copy tree embedding that is
O(log n)-cost preserving but with an O(n log n) copy number. Equivalently, it can be inferred
from Bartal and Mendel [25]. The next theorem summarizes this construction.

Theorem 5. There is a poly-time deterministic algorithm which given any weighted graph
G = (V,E,w) and root r ∈ V computes an efficient and well-separated O(log n)-approximate
copy tree embedding with copy number O(n log n).

While our second construction achieves a slightly better cost bound than our first construction,
it has the significant downside of a linear copy number. Notably, this linear copy number
makes our second construction unsuitable for some applications, including, for example, our
second application as described below. Moreover, our first construction also has several desirable
properties which our second does not which we expect might be useful for future applications.
These include: (1) πG→T is monotone (in addition to πT→G being monotone as stipulated by
Theorem 3); (2) if u and v are connected by F ⊆ E then Ω(log n) vertices of ϕ(u) are connected
to Ω(log n) vertices of ϕ(v) in πG→T (F) (as opposed to just one vertex of ϕ(u) and one vertex
of ϕ(v) as in Theorem 3) and; (3) if u is connected to r by F ⊆ E then every vertex in ϕ(u) is
connected to ϕ(r) in πG→T (F) (as opposed to just one vertex of ϕ(u) as in Theorem 3).

The reason our embeddings are well-suited to group Steiner problems and its generalizations
is that mapping it onto a copy tree embedding simply results in another instance of the group
Steiner tree problem, this time on a tree. Indeed, our embeddings almost immediately reduce the
open question of Alon et al. [8]—solving online group Steiner tree and forest deterministically
on a general graph—to its tree case (see Section 3.4 for details). Equivalently, this reduction
be inferred from the embeddings Bartal and Mendel [25], though Alon et al. [8] seems to have
overlooked this connection.

Application: Deterministic Online Covering Steiner (Section 3.3). As an application of our
embedding we make progress on the aforementioned open question of Alon et al. [8] by showing
that the online covering Steiner problem admits a bicriteria deterministic poly-log approximation.
Specifically, note that the covering Steiner problem generalizes group Steiner tree but unlike
group Steiner tree it admits a natural bicriteria relaxation: instead of connecting, for example,
1
2

of the nodes in each group we could require that our algorithm only connects, say, (1−ϵ)
2

of
all nodes in each group for some ϵ > 0. Thus, our result can be seen as showing that there is
indeed a deterministic poly-log competitive algorithm for online group Steiner tree—as posed
in the above open question of Alon et al. [8]—provided the algorithm can be bicriteria in the
relevant sense. We use our embeddings for this application. Those of Bartal and Mendel [25] or
Filtser [84] are not suitable for our first application since this application requires a bound on the
number of copies of each vertex. More formally, we obtain a deterministic poly-log bicriteria
approximation for this problem which connects at least 1−ϵ

2
of the nodes in each group (notated

“(1− ϵ)-connection competitive” below) by using our copy tree embeddings and a “water-filling”
algorithm to solve the tree case.

Theorem 6. There is a deterministic poly-time algorithm for online covering Steiner (on general
graphs) which is O(log

3 n
ϵ
·maxi

|gi|
ri
)-cost-competitive and (1− ϵ)-connection-competitive.

As we later observe, providing a deterministic poly-log-competitive algorithm for the online
covering Steiner problem with any constant bicriteria relaxation is strictly harder than providing a

18

deterministic poly-log-competitive algorithm for online (non-group) Steiner tree. Thus, this result
also generalizes the fact that a deterministic poly-log approximation is known for online (non-
group) Steiner tree [119]. Additionally, as a corollary we obtain the first non-trivial deterministic
approximation algorithm for online group Steiner tree—albeit one with a linear dependence on
the maximum group size.1

Corollary 7. There is an O(N log3 n)-competitive deterministic algorithm for online group
Steiner tree where N := maxi |gi| is the maximum group size.

3.2 Copy Tree Embedding Constructions

In this section we give our two constructions of copy tree embeddings. We begin by giving our
first copy tree embedding construction based on merging partial tree embeddings.

Theorem 4. There is a poly-time deterministic algorithm which given any weighted graph
G = (V,E,w) and root r ∈ V computes an efficient and well-separated O(log2 n)-approximate
copy tree embedding with copy number O(log n).

If it were possible to give a single tree embedding which simultaneously preserved all distances
between all nodes then we could simply take such a tree embedding as our copy tree embedding.
However, such a tree embedding is, in general, impossible. The key insight we use to overcome
this issue is that one can approximately preserve distances in a deterministic way if one only
embeds a constant fraction of all nodes in the input metric; we call such an embedding a partial
tree embedding. Combining O(log n) such partial tree embeddings will give our construction.

In more detail, in Section 3.2.1 we show that an appropriate O(log n) “padded hierarchical
decompositions” gives O(log n) partial tree embeddings where every node is embedded a constant
number of times. Next, we show that such a collection of partial tree embeddings indeed gives us
a copy tree embedding as in Theorem 4; the main observation that this reduction relies on is the
constant congestion induced by Euler tours which will allow us to project from our input graph to
our partial tree embeddings in a cost and connectivity-preserving fashion. Many of the ideas in
this section appear either implicitly or explicitly in other works, including those of Mendel and
Naor [143] and Gupta et al. [105]. Thus, our goal after this point is to compute an appropriate
collection of padded hierarchical decompositions.

In Section 3.2.2 we proceed to show how to compute the required collection of padded hierarchical
decompositions. Our construction of hierarchical decompositions will make use of the FRT cutting
scheme and paddedness properties of it previously observed by Gupta et al. [105]. To this end,
we provide a novel derandomization of a node-weighted version of the FRT cutting scheme by
combining the powerful multiplicative weights methodology [13] together with the classic method
of conditional expectation and pessimistic estimators. The recent concurrent work of Filtser
[84] achieves similar results but by quite different means, namely though a deterministic metric
Ramsey-type embedding which is inherently node-weighted.

1We explicitly note here that this bicriteria guarantee does not yield a solution to the open problem of Alon et al.
[8] of finding a poly-log deterministic approximation to the online group Steiner tree problem.

19

(a) Hierarchical decomposition. (b) Why node on left is padded and node on right is not.

Figure 3.3: Illustration of a hierarchical decomposition H with h = 4 with n = 7. Each part in each Pi ∈ H is
colored according to i; singleton parts not pictured. We give α-padded nodes in green and all other nodes in red where
we illustrate why the node on the far left is α-padded and the node on the far right is not by drawing B(v, α · 2i) for
i ≥ 1 in colors according to i for these two nodes.

3.2.1 From Padded Hierarchical Decompositions to Copy Tree Embeddings
Gupta et al. [105] introduced the idea of padded hierarchical decompositions which we illustrate
in Figure 3.3.

Definition 8. A hierarchical decompositionH of a metric (V, d) of diameter D is a sequence of
partitions P0, . . . ,Ph of V where h = Θ(logD) and:

1. The partition Ph is one part containing all of V ;

2. Each part in Pi has diameter at most 2i;

3. Pi is a refinement of Pi+1; that is, every part in Pi is contained in some part of Pi+1.

Notice that each part of P0 is a singleton node by our assumption that edge weights are at least 1
(we assume that the constant in the theta notation of h = Θ(logD) is sufficiently large).

Definition 9 (α-Padded Node). For some α ≤ 1, a node v is α-padded in hierarchical de-
composition P0, . . . ,Ph if for all i ∈ [0, h] the ball B(v, α · 2i) is contained in some part of
Pi.

The main result we show in this section is how to use a collection of padded hierarchical decom-
positions to construct a copy tree embedding.

Lemma 10. Let {Hi}ki=1 be a collection of hierarchical decompositions of weighted graph
G = (V,E,w) such that every v is α-padded in at least .9k decompositions. Then, there is a
poly-time deterministic algorithm which, given {Hi}ki=1 and a root r ∈ V , returns an efficient and
well-separated O(k

α
)-approximate copy tree embedding with copy number k.

From Padded Hierarchical Decompositions to Partial Tree Embeddings

We now formalize the notion of a partial tree embedding.

Definition 11 (Partial Tree Embedding). A γ-partial tree embedding of metric (V, d) is a well-
separated weighted tree T = (V ′, E ′, w) where:

1. Partial Embedding: V ′ ⊆ V ;

20

2. Worst-Case Distance Preservation For any u, v ∈ V ′ we have d(u, v) ≤ dT (u, v) ≤
γ · d(u, v).

In the remainder of this section we show how good padded hierarchical decompositions determin-
istically give good partial tree embeddings.

The reason padded decompositions will be useful for us is that—as we prove in the following
lemma—all distances between padded nodes are well-preserved.2 Given a hierarchical decom-
position H we let TH be the natural well-separated tree corresponding to H. In particular, a
hierarchical decompositionH naturally corresponds to a well-separated tree which has a node for
each part and an edge of weight 2i between a part in Pi and a part in Pi+1 if the latter contains
the former. In Figure 3.4a we illustrate the well-separated tree corresponding to the hierarchical
decomposition in Figure 3.3a. We will slightly abuse notation and identify each singleton set in
such a tree with its one constituent vertex.

Lemma 12. If nodes u, v are α-padded in a hierarchical decomposition H then d(u, v) ≤
dTH(u, v) ≤ O

(
1
α
· d(u, v)

)
.

Proof. Let TH be the well-separated tree corresponding toH. Let w be the least common ancestor
of u and v in TH and let l be the height of w in TH. By the definition of TH, the distance between
u and v in TH is dTH(u, v) = 2 ·

∑l
i=0 2

i and so we have

2l+1 ≤ dTH(u, v) ≤ 2l+2. (3.2.1)

We next prove that dTH(u, v) ≤ O(1
α
· d(u, v)). Notice that for j = ⌈log(d(u, v)/α)⌉ we know

that B(v, α · 2j) contains u since for this j it holds that α · 2j ≥ d(u, v). SinceH is α-padded it
follows that B(v, α · 2j) is contained in some part of Pj; but it then follows that the least common
ancestor of u and v is at height at most j and so l ≤ ⌈log(d(u, v)/α)⌉. Combining this with the
upper bound in Equation (3.2.1) we have

dTH(u, v) ≤ 2l+2

≤ 2⌈log(d(u,v)/α)⌉+2

≤ O

(
1

α
· d(u, v)

)

We now prove that d(u, v) ≤ dTH(u, v). Since the diameter of each part in Pi is at most 2i

we know that the least common ancestor of u and v in T corresponds to a part with diameter
at most 2l. However, since the least common ancestor of u and v corresponds to a part which
contains both u and v, we must have d(u, v) ≤ 2l ≤ 2l+1. Combining this with the lower bound
in Equation (3.2.1) we have d(u, v) ≤ dTH(u, v) as desired.

We show how to turn a hierarchical decomposition into a partial tree embedding in the next lemma
which we illustrate in Figure 3.4.

Lemma 13. Given a hierarchical decomposition H on metric (V, d) and root r ∈ V which
is α-padded in H, one can compute in deterministic poly-time a O(1

α
)-partial tree embedding

2This fact seems to be implicit in Gupta et al. [105] among other works but there does not seem to be a readily
citable version of it.

21

r
1 11

1 1 1
12222

4 4

(a) Tree corresponding to Figure 3.3a
hierarchical decomposition.

r

1

1

1 1 1
122

2
4

(b) Contract to ensure r is root of re-
sulting tree.

r
8

4
8

16

(c) Multiply weights by 4 and contract
non-α-padded vertices.

Figure 3.4: How to turn a hierarchical decomposition into a partial tree embedding. We color nodes from the input
metric in green if they are padded and red otherwise. Remaining nodes colored according to their corresponding
hierarchical decomposition part. r is the node on the far left of the tree.

T = (V ′, E ′) with root r where V ′ := {v ∈ V : v is α padded},

Proof. Let TH be the well-separated tree which corresponds toH as described above.

We construct T from TH using Theorem 12 and a trick of Konjevod et al. [131]. Let V ′ be all
leaves of TH whose corresponding nodes are α-padded inH. Next, contract the path from r to the
root of TH and identify the resulting node with r. Then, delete from TH all sub-trees which do not
contain a node in V ′; in the resulting tree every node is either in V ′ or the ancestor of a node in
V ′. Next, while there exists a node v such that its parent u is not in V ′ we contract {v, u} into one
node and identify the resulting node with v. Lastly, we multiply the weight of every edge by 4
and return the result as T = (V ′, E ′, w) where, again, w is the weight function of TH times 4.

Clearly, the vertex set of T will be V ′. Moreover, T is well-separated since TH was well-separated
and r will be the root of T by construction.

We now use an analysis of Konjevod et al. [131] to show that for any pair of vertices u, v ∈ V ′ we
have

dTH(u, v) ≤ dT (u, v) ≤ 4 · dTH(u, v) (3.2.2)

The upper bound is immediate from the fact that we only contract edges and then multiply all
edge weights by 4. To see the lower bound—dTH(u, v) ≤ dT (u, v)—notice that if u and v have
a least common ancestor a at height l in TH, then dTH(u, v) = 2l+2 − 4. However, the closest
u and v can be in T is if (without loss of generality) u is identified with a and (without loss of
generality) v is a child of u in T ; the length of this edge is the length of a child edge of a in TH
times four which is 2l+2. Thus dTH(u, v) = 2l+2 − 4 ≤ 2l+2 = dT (u, v).

Finally, we conclude by applying Theorem 12. In particular, it remains to show d(u, v) ≤
dT (u, v) ≤ O(1

α
· d(u, v)) but this is immediate by combining Theorem 12 and Equation (3.2.2).

From Partial Tree Embeddings to Copy Tree Embeddings

We now describe how partial tree embeddings satisfy useful connectivity properties and then
use these properties to construct a copy tree embedding from a collection of good partial tree
embeddings.

The following two lemmas demonstrate how to map to and from partial tree embeddings in a way
that preserves cost and connectivity.

22

Lemma 14 (Graph→ Partial Tree Projection). Let G = (V,E,wG) be a weighted graph and
let T = (V ′, E ′, wT) be a γ-partial tree embedding of (the metric induced by) G. There exists a
deterministic, poly-time computable function π : 2E → 2E

′
such that for all sets of edges F ⊆ E

the following holds:

1. Connectivity Preservation: If u, v ∈ V ′ are connected by F in G, then they are connected
in π(F) in T ;

2. Cost Preservation: wT (π(F)) ≤ O(γ) · wG(F).

Proof. We first simplify F by noticing it is sufficient to prove the claim on every connected
component in isolation. Furthermore, we can assume without loss of generality that F is a
tree since taking a spanning tree of F can only decrease wG(F) and appropriately maintains
connectivity. Finally, we delete every leaf that is not in V ′, which decreases wG(F) and maintains
connectivities in V ′.

We define π(F) to be the unique minimal subtree of T which contains all nodes of V ′ that are
incident to an edge in F . By transitivity of connectedness, we know that if u, v ∈ V ′ are connected
in F then they must also be connected in π(F). Also, note that π is trivially deterministic poly-time
computable.

It remains to argue the γ-cost preservation property. Double the edges of F ; we call this multigraph
2F . Since the degree of every vertex in 2F is even, we know that 2F has an Euler tour. Using this
tour we can partition 2F into a set P of paths where each path connects two nodes in V ′ and the
paths in P are multiedge-disjoint. Therefore, we have that 2wG(F) =

∑
P∈P wG(P).

For each path P ∈ P in the tour between nodes u, v ∈ V ′, we say that P covers all edges in T
between u and v and let P ′ be the path in T between u and v. We note that every edge in π(F) is
covered by at least one path, hence wT (π(F)) ≤

∑
P∈P wT (P

′).

For every path in G connecting two nodes u, v ∈ V ′ the distance-preservation properties of
γ-partial tree embeddings implies that wT (P

′) ≤ O(γ) ·wG(P). Hence we have that wT (π(F)) ≤∑
P∈P wT (P

′) ≤ O(γ) ·
∑

P∈P wG(P) ≤ O(γ) · wG(F) as required.

We now show how to project in the reverse direction.

Lemma 15 (Partial Tree→ Graph Projection). Let G = (V,E,wG) be a weighted graph and
let T = (V ′, E ′, wT) be a γ-partial tree embedding of (the metric induced by) G. There exists a
deterministic, poly-time computable function ı : 2E

′ → 2E such that for all sets of edges F ′ ⊆ E ′

the following holds:

1. Connectivity Preservation: If u, v ∈ V ′ are connected by F ′ in T , then they are connected
by ı(F) in G;

2. Cost Preservation: wG(ı(F
′)) ≤ wT (F

′).

Proof. For an edge e′ ∈ E ′, connecting u, v ∈ V ′, we define ı({e′}) as some shortest path
between u and v in G. Note that this implies that wG(ı({e′})) ≤ wT (e

′) by the properties of a
partial tree embedding. We extend ı to F ′ ⊆ E ′ by defining ı(F ′) :=

⋃
e′∈F ′ ı({e′}). Notice that ı

is indeed deterministic, poly-time computable and is connectivity preserving by the transitivity of
connectivity.

We now verify the cost preservation of ı: we have that wG(ı(F
′)) = wG(

⋃
e′∈F ′ ı({e′})) ≤∑

e′∈F ′ wG(ı({e′})) ≤
∑

e′∈F ′ wT (e
′) = wT (F

′).

23

Using these two properties we can conclude our proof of Theorem 10, which we restate here.

Lemma 16. Let {Hi}ki=1 be a collection of hierarchical decompositions of weighted graph
G = (V,E,w) such that every v is α-padded in at least .9k decompositions. Then, there is a
poly-time deterministic algorithm which, given {Hi}ki=1 and a root r ∈ V , returns an efficient and
well-separated O(k

α
)-approximate copy tree embedding with copy number k.

Proof. Our embedding is gotten by combining the above lemmas in the natural way.

Specifically, we first apply Theorem 13 to all decompositions in {Hi}ki=1 in which r is α-padded to
get back O(1

α
)-partial tree embeddings {Ti}i where V (Ti) = {v : v is α-padded inHi}. Next we

apply Theorem 14 and Theorem 15 to each Ti to get back mapping functions πi and ıi respectively.

We now describe our O(k
α
)-approximate copy tree embedding (T, ϕ, πG→T , πT→G). We let

T be the tree resulting from taking all trees in {Ti}i and then identifying all copies of r as
the same vertex. Similarly, we let ϕ(v) be the set of all copies of v in T in the natural way.
Next we let πG→T (F) be

⋃
i πi(F) where πi is projected onto T in the natural way. We let

πT→G(F
′) :=

⋃
i ıi(F

′) be defined analogously.

Since each vertex appears in at least a .9 fraction of all Ti, by the pigeonhole principle we know
that any pair connected by F in G must occur in someHi together with r and so must be connected
in πi(F) for some i where Ti ∈ {Ti}i and so some pair of corresponding copies are connected
by πG→T ; an analogous result holds for πT→G. The remaining properties of our embedding are
immediate from the above cited lemmas.

3.2.2 Deterministically Constructing Padded Hierarchical Decompositions

In the previous section we reduced computing good copy tree embeddings to computing good
hierarchical decompositions. The existence of good hierarchical decompositions is immediate
from prior work of Gupta et al. [105] and FRT.

Lemma 17 (Gupta et al. [105]). LetH be the hierarchical decompositions resulting from a tree
drawn from the Fakcharoenphol et al. [79] cutting scheme. Then, every vertex is Ω(1

logn
)-padded

with constant probability inH.

A simple Chernoff and union bound proof then gives that O(log n) draws gives a collection of
hierarchical decompositions in which every vertex is Ω(1

logn
)-padded in a constant fraction of the

decompositions with high probability, i.e. at least 1− 1
poly(n)

.

However, we are ultimately interested in a deterministic algorithm which is robust to adaptive
adversaries and so we must derandomize the above with high probability result. We proceed to do
so in this section.

To our knowledge, prior derandomizations of this cutting scheme—see, e.g. Chekuri et al. [51]
or Fakcharoenphol et al. [79]—do not provide sufficiently strong guarantees for our purposes.
We also note that the authors of Gupta et al. [105] claim to give a deterministic algorithm for
computing hierarchical decompositions in a forthcoming journal version of their paper but said
journal version never seems to have been published.

24

Derandomization Intuition

The intuition behind our derandomization is as follows. A single draw from the FRT cutting
scheme guarantees that each node is Ω(1/ log n)-padded with constant probability. If we could
derandomize this result then we could produce one hierarchical decomposition such that at least a
.99 fraction of all nodes are Ω(1/ log n)-padded. Indeed, as we will see, standard derandomization
techniques—the method of pessimistic estimators and conditional expectation—will allow us to
do exactly this. However, since we must produce a collection of hierarchical decompositions in
which every node is in a large percentage in all decompositions it is not clear how, then, to handle
the remaining .01 fraction of nodes. One might simply rerun the aforementioned derandomization
result on the remaining .01 nodes, then on the remaining .001 nodes and so on logarithmically-
many times; however, it is easy to see that in the resulting collection of decompositions, while
every node is padded in some decomposition, no node is necessarily padded in a large fraction of
all the decompositions.

Rather, we would like to repeatedely run our derandomization on all nodes but in a way that takes
into account which nodes are already padded in a large fraction of the decompositions we have
already produced. In particular, if a node was already padded in most of the decompositions we
have so far produced, we need not worry about producing decompositions in which this node is
padded. Thus, we would like to derandomize in a way that would make such a node less likely to
be padded in the remaining decompositions we produce while making nodes which have not so
far been padded in many decompositions we produced more likely to be padded.

To accomplish this, we will formulate and then derandomize a node-weighted version of Theo-
rem 17; this, in turn, will allow us to down-weight nodes which are padded in a large fraction of
the decompositions we have so far produced when we run our derandomization; a multiplicative-
weights-type analysis will then allow us to conclude our deterministic construction.

The FRT Cutting Scheme

In order to give our deterministic construction we must unpack the black box of the FRT cutting
scheme.

The Fakcharoenphol et al. [79] cutting scheme (due to Calinescu et al. [41]) given metric (V, d)
where d(u, v) ≥ 1 for all u, v ∈ V produces a hierarchical decompositionH = {P0, . . . ,Ph} and
is as follows. We first pick a uniformly random permutation π on V and a uniformly random
value β ∈ [1

2
, 1). We let the radius for level i be ri := 2i−1 · β.

We let Ph be the trivial partition containing all vertices of V with h = O(logD). Next, we
construct Pi by refining Pi+1; in particular we divide each part Pi+1 ∈ Pi+1 into additional parts
as follows. Each v ∈ Pi+1 is assigned to the first vertex u in π for which v ∈ B(u, ri). Notice
that u need not be in Pi+1. Let Cu be all vertices in Pi+1 which are assigned to u and add to Pi all
Cu which are non-empty. Notice that here Cu really depends on i; we suppress this dependence in
our notation for cleanliness of presentation.

One can easily verify that the resulting partitions indeed form a hierarchical decomposition.

25

Derandomizing via Multiplicative Weights and Pessimistic Estimators

As discussed above, our goal is to derandomize Theorem 17 while taking node weights into
account. Suppose we have a distribution {pv}v over vertices in v; intuitively this distribution
how important each vertex is in regards to being α-padded. Then by Theorem 17 and linearity of
expectation we have

Eπ,β

[∑
v

pv · I
(
v is Ω

(
1

log n

)
-padded inH

)]
=
∑
v

pv · Pr
π,β

(
v is Ω

(
1

log n

)
-padded inH

)
≥ .99.

where I is the indicator function.

Thus, our goal will be to gradually fix the randomness of π and β until we have found a way
to deterministically set β and π so that at least a .95 fraction of nodes (weighted by pvs) are
Ω(1

logn
)-padded. That is, we aim to use the method of conditional expectation. We will treat

a permutation π as an ordering of the elements of [V]. E.g. (v2, v1, v3) is a permutation of
V = {v1, v2, v3}. Now, suppose we have fixed a prefix πP of π which orders nodes P ⊆ V and
among the remaining P̄ := V \ P we uniformly at randomly choose the remaining suffix πP̄ .
That is, π = πP ⊙ πP̄ where πP is fixed and πP̄ is a uniformly random permutation over P̄ and ⊙
is concatenation. Notice that it follows that every vertex of P will precede every vertex of P̄ in π.

LetH(πP , β) be the hierarchical decomposition returned when we run the FRT cutting scheme as
above with the input value of β and with π chosen as π = πP⊙πP̄ . Notice that provided P ̸= V we
have thatH is a randomly generated. Let f(πP , β) :=

∑
v pv·PrπP̄

(
v is Ω

(
1

logn

)
-padded inH(πP , β)

)
be the fraction of Ω(1

logn
)-padded nodes by weight in expectation inH(πP , β). We now show that

there is a so called “pessimistic estimator” f̂ of f .

Lemma 18. There is a function f̂ such that

1. Good start: There is some deterministically poly-time computable set R ⊆ R such that for
some β ∈ R we have f̂(π∅, β) ≥ .95.

and for any P ⊆ V , πP and β

2. Computable: f̂(πP , β) is computable in deterministic poly-time;

3. Monotone: f̂(πP , β) ≤ f̂(πP∪{v}, β) for some v ∈ P̄ ;

4. Pessimistic: f̂(πP , β) ≤ f(πP , β) for all πP and β.

Proof. We will use an analysis similar to Gupta et al. [105] but which accounts for the fixed prefix
πP of our permutation, demonstrates the above properties of our pessimistic estimator and which
guarantees that R is computable in deterministic, poly-time.

We begin by defining f̂ . Fix a πP and β and let α = Ω(1
logn

).

For node v, let Bi,v := B(v, α2i). Say that node u protects Bi,v if its ball at level i contains Bi,v,
i.e. if ri ≥ d(u, v) + 2iα. Say that u threatens Bi,v if its ball at level i intersects Bi,v but does not
contain it, i.e. d(u, v)− α2i < ri < d(u, v) + 2iα. Finally, say that u cuts Bi,v if it threatens Bi,v

and is the first node in π to threaten or protect Bi,v. Notice that if Bi,v is not cut by any node for
all i then v will be α-padded.

26

In order for Bi,v to be cut by u it must be the case that u threatens Bi,v and no node before u in π
threatens or protects Bi,v. By how we choose ri, u threatens Bi,v if

d(u, v)− 2iα < β · 2i−1 < d(u, v) + 2iα (3.2.3)

In order for u to be the first node to threaten or protect Bi,v, it certainly must be the case that every
node which is closer to v than u appears after u in π (since every such node either threatens or
protects Bi,v). Thus, we let Nv(u) := {w : d(w, v) ≤ d(u, v)} be all nodes which are nearer to v
than u.

Lastly, a node which is too far or too close to v cannot cut Bi,v. In particular, a node u can only
cut Bi,v if

2i−2 − 2iα ≤ d(u, v) ≤ 2i−1 + 2iα (3.2.4)

We let Ci,v := {u : 2i−2 − 2iα ≤ d(u, v) ≤ 2i−1 + 2iα} be all such nodes which might cut Bi,v.

It follows that we have that Bi,v is cut only if there exists some u in Ci,v which both threatens v
and precedes all w ∈ Nv(u) \ {u} in π. Thus, we define f̂ as follows

f̂(πP , β) := 1−
∑
v,i

pv
∑

u∈Ci,v

Pr
πP̄

(u precedes all w ∈ Nv(u) \ {u} in π) · I(u threatens Bi,v).

where, again, I is the indicator function. We now verify properties (2)-(4).

2. Computable: Clearly Ci,v is deterministically computable in poly-time since we need only
check if Equation (3.2.4) holds for each vertex. Similarly I(u threatens Bi,v) for each
u ∈ Ci,v can be computed by checking if Equation (3.2.3) holds. We can deterministically
compute PrπP̄

(u precedes all w ∈ Nv(u) \ {u} in π) for each u ∈ Ci,v as follows: if u
precedes all w ∈ Nv(u) ∩ πP then this probability is 1; if u is preceded in πP by some
w ∈ Nv(u) then this probability is 0; otherwise πP ∩ Nv(u) = ∅, meaning all nodes in
Nv(u)’s order in π are set by πP̄ ; in this case u precedes all nodes in Nv(u) \ {u} with
probability exactly 1

|Nv(u)| .

3. Monotonicity is immediate by an averaging argument: in particular, f̂(πP , β) is just an
expectation taken over the randomness of πP̄ and so there must be some way to fix an
element of P to achieve the expectation.

4. Pessimism is immediate from the above discussion; in particular, as discussed above a ball
Bi,v is cut only if there is some u ∈ Ci,v which threatens Bi,v and which precedes all w in
Nv(u) \ {u} in π; it follows by a union bound that v fails to be α-padded with probability
at most ∑

i

∑
u∈Ci,v

Pr
πP̄

(u precedes all w ∈ Nv(u) \ {u} in π) · I(u threatens Bi,v).

Finally, we conclude property (1): that there is some β ∈ R where R is computable in deterministic
poly-time and f̂(π∅, β) ≥ .95. Consider drawing a β ∈ [1

2
, 1] as in the FRT cutting scheme; we

will argue that Eβ

[
f̂(π∅, β)

]
≥ .95 and so there must be some β for which f̂(π∅, β) ≥ .95.

27

Letting π be a uniformly random permutation, we have

Eβ

[
f̂(π∅, β)

]
= 1−

∑
v,i

pv
∑

u∈Ci,v

Pr
π
(u precedes all w ∈ Nv(u) \ {u} in π) · Pr

β
(u threatens Bi,v).

If u is the sth closest node to v then we have that Prπ(u precedes all w ∈ Nv(u) \ {u} in π) = 1
s
.

Moreover, u threatens Bi,v only if Equation (3.2.3) holds and since β ·2i−1 is distributed uniformly
in [2i−2, 2i−1), this happens with probability 2i+1α/2i−2 = 8α. Next, we claim that for a fixed
v, each u occurs in at most 3 of the Ci,v. In particular, notice that if u is in Ci,v and Ci′,v

then we know that 2i−2 − 2iα ≤ d(u, v) ≤ 2i
′−1 + 2i

′
α which for α ≤ 1

8
(which we may

assume since α = Ω(1
logn

)) implies i < i′ + 3. Combining these facts with the fact that
Hn :=

∑n
i=1

1
i
≤ O(log n) we get

Eβ

[
f̂(π∅, β)

]
≥ 1−O(α log n).

and since α = Ω(1
logn

), by fixing the constant in the Ω(1
logn

) to be sufficiently small we have

Eβ

[
f̂(π∅, β)

]
≥ .95 as desired

Lastly, we define R and argue that there must be some β ∈ R such that f̂(π∅, β) ≥ .95. In
particular, notice that since Eβ

[
f̂(π∅, β)

]
≥ .95, it suffices to argue that there are polynomially-

many efficiently computable intervals which partition [1
2
, 1) such that any β1 and β2 in the same

interval satisfy f̂(π∅, β1) = f̂(π∅, β2); letting R take an arbitrary element from each such interval
will give the desired result.

Notice that f̂(π∅, β1) ̸= f̂(π∅, β2) only if there is some i, v and u such that u threatens Bi,v with
β set to β1 but does not threaten Bi,v with β set to β2. By definition of what it means to threaten,
we have

d(u, v)− 2iα < β1 · 2i−1 < d(u, v) + 2iα

but either d(u, v)− 2iα ≥ β2 · 2i−1 or β2 · 2i−1 ≥ d(u, v) + 2iα. We then have either

β2 ≤ d(u, v) · 21−i − 2α < β1 (3.2.5)

or

β1 < d(u, v) · 21−i + 2α ≤ β2. (3.2.6)

With Equations 3.2.5 and 3.2.6 in mind, we define Rl := {d(u, v) · 21−i + 2α : u, v ∈ V, i ∈ [h]}
to be all the lower thresholds of when a change in β affects f̂ and define Ru := {d(u, v) · 21−i −
2α : u, v ∈ V, i ∈ [h]} to be all such upper thresholds. Let t(l) be the lth largest element of
(Rl ∪ Rr) ∩ [1

2
, 1) and let R consist of one arbitrary element from the interval between t(l) and

t(l+1) for l ≥ 0 where the interval includes t(l) only if t(l) ∈ Rl and t(l+1) only if t(l+1) ∈ Ru;
t(0) = 1

2
is always included and t(|R|) = 1 is never included. By the above discussion every β1

and β2 which are in the same interval satisfy f̂(π∅, β1) = f̂(π∅, β1); moreover, these intervals
partition [1

2
, 1] by construction.

28

We know |R| = poly(n) since h ≤ O(log n) by our assumption that maxu,v d(u, v) is poly(n) and
there are n2 pairs u, v. Clearly R is computable in deterministic poly-time. Thus, by the above
discussion R must contain some β such that f̂(π∅, β) ≥ .95.

We now formalize our node-weighted derandomization.

Lemma 19. There is a deterministic algorithm which given metric (V, d) and a distribution {pv}v
over nodes returns a hierarchical decompositionH in which at least a .95 fraction of nodes are
Ω(1

logn
)-padded by weight; i.e.

∑
v

pv · I
(
v is Ω

(
1

log n

)
-padded inH

)
≥ .95.

Proof. Our derandomization algorithm is as follows. First, choose the β ∈ R which maximizes
f̂(π∅, β). Call this β∗. Next, initially let P = ∅ and repeat the following until P = V : for v ∈ P̄
we compute f(πP∪{v}, β

∗); we add to P whichever v maximizes f(πP∪{v}, β
∗). Lastly, we return

H(πV , β
∗).

By Theorem 18 we know that β∗ will satisfy f̂(π∅, β
∗) ≥ .95. Moreover, since f̂ is monotone

by Theorem 18 we know that the πV we choose will satisfy f̂(πV , β
∗) ≥ .95. Lastly, since f̂ is

pessimistic, it follows that f(πV , β
∗) ≥ f(πV , β

∗) ≥ .95 and so H(πV , β
∗) is padded on a .95

fraction of nodes by weight as desired.

The deterministic polynomial runtime of our algorithm is immediate from the deterministic
poly-time computability of f̂ and the fact that R is computable in deterministic poly-time.

Using the above node-weighted derandomization lemma gives our deterministic copy tree em-
bedding construction. In particular, we run the following multiplicative-weights-type algorithm
with ϵ = .01 and set the number of iterations as τ := 4 lnn/ϵ2. In the following we let
p
(t)
v := w

(t)
v /
∑

v w
(t)
v be the proportional share of v’s weight in iteration t.

1. Uniformly set the initial weights: w(1)
v = 1 for all v ∈ V .

2. For t ∈ [τ]:

(a) Run the algorithm given in Theorem 19 using distribution p(t) and let Ht be the
resulting hierarchical decomposition.

(b) Set mistakes: For each vertex v which is Ω(1
logn

)-padded in Ht let m(t)
v = 1. Let

m
(t)
v = 0 for all other v.

(c) Update weights: for all v ∈ V , let w(t+1)
v ← exp(−ϵm(t)

v) · w(t)
v .

3. Return (Ht)
τ
t=1.

We state a well-known fact regarding multiplicative weights in our notation. Readers familiar
with multiplicative weights may recognize this as the fact that the expected performance of
multiplicative weights over logarithmically-many rounds is competitive with every expert.

Lemma 20 ([13, 90]). The above algorithm guarantees that for any v ∈ V we have

1

T

∑
t≤τ

p(t) ·m(t) ≤ ϵ+
1

T

∑
t≤τ

m(t)
v

29

where p(t) ·m(t) :=
∑

v p
(t)
v m

(t)
v is the usual inner product.

Using this fact we conclude that we are able to produce a good set of hierarchical decompositions.

Lemma 21. The above algorithm returns a collection of hierarchical decompositions {Ht}τt=1

where τ = Θ(log n) and every vertex is Ω(1/ log n)-padded in at least .9τ of the decompositions.

Proof. Since τ := 4 lnn/ϵ2 we know that τ = Θ(log n).

We need only argue, then, that each node is padded in at least a .9 fraction of the τ totalHt. Let

fv :=
1

τ

∑
t≤τ

I

(
v is Ω

(
1

log n

)
-padded inHt

)
be the fraction of the decompositions in which v is padded. Consider a fixed node v. By
Theorem 20 we know that

1

τ

∑
t≤τ

p(t) ·m(t) ≤ ϵ+
1

τ

∑
t≤τ

m(t)
v (3.2.7)

By definition of m
(t)
v we have that the right hand side of Equation (3.2.7) is ϵ + fv. On

the other hand, by how we set m(t), the left hand side of Equation (3.2.7) is 1
τ

∑
t

∑
v p

(t)
v ·

I(v is Ω(1
logn

)-padded inH) which by Theorem 19 is at least .95. Combining these facts we have
.95 ≤ ϵ+ fv and so by our choice of ϵ we know .9 ≤ fv as desired.

Combining Theorem 21 with Theorem 10 gives Theorem 4.

3.2.3 Construction 2: Merging FRT Support
In this section we observe that the support of the FRT distribution can be merged to produce copy
tree embeddings with cost stretch O(log n) and copy number O(n log n). In particular, we rely
on the known fact that one can make the size of the support of the FRT distribution O(n log n)
and compute said support in deterministic poly-time, as summarized in the following theorem.

Theorem 22 ([47, 79, 131]). Given a weighted graph G = (V,E,w) and root r ∈ V , there exists
a distribution D being supported over O(n log n) well-separated weighted trees on V rooted at
r where for any u, v ∈ V we have ET∼D[dT (u, v)] ≤ O(log n · dG(u, v)) and for every T in the
support of D we have dG(u, v) ≤ dT (u, v). Also, (the support and probabilities of) D can be
computed in deterministic poly-time.

Merging the trees of this distribution and some simple probabilistic method arguments give a copy
tree embedding with the desired properties.

Theorem 5. There is a poly-time deterministic algorithm which given any weighted graph
G = (V,E,w) and root r ∈ V computes an efficient and well-separated O(log n)-approximate
copy tree embedding with copy number O(n log n).

Proof. Let T1, . . . , Tk with k = O(n log n) be the trees in the support of the distribution D as
guaranteed by Theorem 22. Then, we let T be the result of identifying each copy of r as the
same vertex in each Ti (but not identifying copies of other vertices in V as the same vertex);
that is, |V (T)| = k · n − (k − 1). T ’s weight function is inherited from each Ti in the natural

30

way. Similarly, we let ϕ(v) be the set containing each copy of v in each of the Ti. It is easy
to verify that ϕ is indeed a copy mapping. Also, note that ϕ(v) is computable in deterministic
poly-time, our copy number is O(n log n) by construction and that T is well-separated since each
Ti is well-separated.

We next specify πG→T (F) for a fixed F . For tree Ti, let T ′
i ⊆ Ti be the subgraph of Ti which

contains the unique tree path between u and v iff {u, v} ∈ F . By Theorem 22 we know
that ETi∼D[wTi

(T ′
i)] ≤ O(log n · wG(H)) and so there must be some j such that wTj

(T ′
j) ≤

O(log n · wG(F)). Thus, we let πG→T (F) := T ′
j . We argue that πG→T requires the stated

connectivity properties. In particular, notice that by construction we have that if u and v are
connected in F then they will have some copy connected in πG→T (F): if u and v are connected
in F by path (v1, v2, . . .) then the path in Tj which connects the copy of vl and the copy of vl+1

is contained in πG→T (F) and the concatenation of these paths for all l connects the copies of u
and v contained in Tj . Moreover, notice that πG→T (F) satisfies the required cost preservation
properties since wT (πG→T (F)) = wTj

(T ′
j) ≤ O(log n · wG(F)) by construction.

Lastly, we specify πT→G(F
′). We let πT→G(F

′) be the graph induced by {Puv : {u′, v′} ∈ F ′}
where Puv is an arbitrary shortest path in G between u and v and u′ and v′ are copies of u and
v. We first verify the required connectivity preservation properties: if u′ and v′ are connected
in F ′ by path (v′1, v

′
2 . . .) then we know that vl and vl+1 will be connected in πT→G(F

′) for
every l by Pvlvl+1

where v′i is some copy of vi. Thus, u and v will be connected in πT→G(F
′).

We next verify the required cost-preservation properties. By Theorem 22 we have for every
i that wTi

(e′) ≥ wG(Puv) for each e′ = {u′, v′} ∈ Ti. Thus, wT (F
′) =

∑
e′∈F ′ wT (e

′) ≥∑
{u′,v′}∈F ′ wG(Puv) ≥ wG(πT→G(F

′)) where we have again used u and v to stand for the ϕ−1(u′)

and ϕ−1(v′) respectively. Lastly, we note that πT→G(F
′) is trivially computable in deterministic

poly-time.

3.3 Online Covering Steiner
In this section we give a deterministic bicriteria algorithm for the online covering Steiner problem
which is the same as online group Steiner tree but where we must connect at least ri vertices
from each group gi to the root. The algorithm is bicriteria in the sense that it relaxes both the
ri-connectivity guarantee and the cost.

As mentioned in the introduction, this problem generalizes group Steiner tree. Moreover, it is
also easy to see that any deterministic bicriteria algorithm for online covering Steiner also gives
a poly-log-competitive deterministic (unicriteria) algorithm for online (non-group) Steiner tree.
In particular, given an instance of Steiner tree on weighted graph G = (V,E,w) with root r
where we must connect terminals A ⊆ V to r, it suffices to solve the covering Steiner problem
where each vertex in A is in a singleton group with any constant bicriteria relaxation. This is
because connecting any c > 0 fraction of each group to r will connect at least one vertex to
r by the integrality of the number of connected vertices. Thus, our result generalizes the fact
that deterministic poly-log approximations are known for online (non-group) Steiner tree [119].
However, we do note that our (deterministic) poly-log-approximate bicriteria online covering
Steiner problem algorithm does not imply there is a (deterministic) poly-log-approximate online
(non-partial) group Steiner tree algorithm (due to the nature of the bicriteria guarantee).

Offline Covering Steiner Problem: In the covering Steiner problem we are given a weighted

31

graph G = (V,E,w) as well as pairwise disjoint groups g1, g2, . . . , gk ⊆ V , desired connected
vertices 1 ≤ ri ≤ |gi| for each group gi and root r ∈ V . Our goal is to find a tree T rooted at r
which is a subgraph of G and satisfies |T ∩ gi| ≥ ri for every i. We wish to minimize our cost,
w(T) :=

∑
e∈E(T) w(e).

3

Online Covering Steiner Problem: The online covering Steiner problem is the same as offline
covering Steiner problem but where our solution need not be a tree and groups are revealed in time
steps t = 1, 2, That is, in time step t an adversary reveals a new group gt and the algorithm
must maintain a solution Tt where: (1) Tt−1 ⊆ Tt; (2) Tt is feasible for the (offline) covering
Steiner tree problem on groups g1, . . . gt and; (3) Tt is cost-competitive with the optimal offline
solution for this problem where the cost-competitive ratio of our algorithm is maxt w(Tt)/OPTt

where OPTt is the cost of the optimal offline covering Steiner problem solution on the first t
groups. We will give a bicriteria approximation for online covering Steiner; thus we say that an
online solution is ρ-connection-competitive if for each t we have |Tt ∩ gi| ≥ ri · ρ for every i ≤ t.

3.3.1 Online Covering Steiner on a Tree
We begin by giving a bicriteria deterministic online algorithm for covering Steiner on trees based
on a “water-filling” approach. Informally, in iteration t each unconnected vertex in each group
will grow the solution towards the root at an equal rate until at least ri · (1− ϵ) vertices in gt are
connected to r.

Problem

More formally we will solve a problem which is a slight generalization of covering Steiner on
trees. We solve this problem on a tree rather than just covering Steiner on a tree because, unlike
group Steiner tree, the “groupified” version of covering Steiner is not necessarily another instance
of covering Steiner. Roughly, instead of groups we now have groups of groups, hence we call this
problem 2-level covering Steiner.

Offline 2-Level Covering Steiner Problem: In the 2-level covering Steiner problem we are given
a weighted graph G = (V,E,w), root r ∈ V and groups of groups G1, . . .Gk where Gi consists
of groups {g(i)1 , . . . g

(i)
ki
} where each g

(i)
j ⊆ V . We are also given connectivity requirements

r1, . . . , rk. Our goal is to compute a minimum-weight tree T containing r where for each i ≤ k

we have |{g(i)j : g
(i)
j ∩ T ̸= ∅}| ≥ ri. We let ni := |{v : ∃j s.t. v ∈ g

(i)
j }|. Notice that covering

Steiner is just 2-level covering Steiner where each g
(j)
i is a singleton set.

Online 2-Level Covering Steiner Problem: Online 2-level covering Steiner is the same as the
offline problem but where Gt is revealed in time step t by an adversary. In particular, for each
time step t we must maintain a solution Tt where: (1) Tt−1 ⊆ Tt for all t; (2) Tt is feasible
for the (offline) 2-level covering Steiner problem on G1, . . . ,Gt with connectivity requirements
r1, . . . , rt and; (3) Tt is cost-competitive with the optimal offline solution for this problem where
the cost-competitive ratio of our algorithm is maxt w(Tt)/OPTt where OPTt is the cost of the
optimal offline 2-level covering Steiner problem solution on the first t groups of groups.

We will give a bicriteria approximation for online 2-level covering Steiner problem on trees; thus

3As with group Steiner tree the assumption that the tree is rooted and that the groups are pairwise disjoint is
without loss of generality.

32

4

1 5

2 3 3 1 5 1

1

1

(a) Graph T .

4

1 5

2 3 3 1 1

1

1

5

(b) G1 arrives.

4

1 2/5

2 3 3 1 4/5 1

1

1

(c) “Fill water.”

4

1 2/5

2 3 3 1 4/5 1

1

1

(d) Choose solution.

Figure 3.5: Solution our algorithm gives after one group of groups, G1, is revealed where r1 = 2. Nodes in groups in
G1 outlined in green and nodes colored according to the group of G1 which contains them. Saturated edges given in
blue and edges with 0 < xe < we annoted with “xe/we”. All other edges labeled by we.

we say that an online solution is ρ-connection-competitive if for each t we have |{g(i)j : g
(i)
j ∩ T ̸=

∅}| ≥ ρ · ri for every i ≤ t.

Algorithm

We now formally describe our algorithm for the 2-level covering Steiner problem on weighted
tree T = (V,E,w) given an ϵ > 0. We will maintain a fractional variable 0 ≤ xe ≤ we for each
edge indicating the extent to which we buy e where our xes will be monotonically increasing as
our algorithm runs. Say that an edge e is saturated if xe = we.

Let us describe how we update our solution in the tth time step. Let Tt be the connected component
of all saturated edges containing r. Then, we repeat the following until |{g(t)j : g

(t)
j ∩ Tt ̸= ∅}| ≥

rt · (1 − ϵ). Let G ′t := {g
(t)
j ∈ Gt : g

(t)
j ∩ Tt = ∅} be all groups in Gt not yet connected and let

g′t :=
⋃

S∈G′
t
S be all vertices in a group which have not yet been connected to r. We say that e

is on the frontier for v ∈ g′t if it is the first edge on the path from v to r which is not saturated.
Similarly, let re be the number of vertices in g′t for which e is on the frontier for v. Then, for each
edge e we increase xe by re · δ where δ = mine(we − xe)/re. Our solution in the tth time step is
Tt once |{g(t)j : g

(t)
j ∩ Tt ̸= ∅}| ≥ (1− ϵ) · rt.

We illustrate one iteration of this algorithm in Figure 3.5

Analysis

We proceed to analyze the above algorithm and give its properties.

Theorem 23. There is a deterministic poly-time algorithm for online 2-level covering Steiner on
trees which is 1

ϵ
· (maxi

ni

ri
)-cost-competitive and (1− ϵ)-connection-competitive.

Proof. We begin by verifying that our algorithm returns a monotonically increasing and (1− ϵ)-
connection-competitive solution. First, notice that our solution is monotonically increasing since
our xes are monotonically increasing and our solution only includes saturated edges. To see
that our solution is (1 − ϵ)-connection-competitive notice that at least one new edge becomes
saturated from each update to the xes (namely argmine(we − xe)/re) and since if all edges are
saturated then Tt = T which clearly satisfies |{g(t)j : g

(t)
j ∩ Tt ̸= ∅}| ≥ (1− ϵ) · rt, this process

will eventually halt with a (1− ϵ)-connection-competitive solution in the tth iteration. For the
same reason our algorithm is deterministic poly-time.

It remains to argue that our solution is 1
ϵ
· (maxi

ni

ri
)-cost-competitive. We will argue that we can

33

uniquely charge each unit of increase of our xes to an appropriate cost portion of the optimal
solution. Fix an iteration t. Next, let δ(i,j) for i ≤ t be the value of δ in the ith iteration the jth
time we increase the value of our xes. Similarly, let δ(i,j)x be the increase in

∑
e xe when we do so

and let δ(i,j)y be the increase in
∑

e∈T ∗
t
xe where T ∗

t is the optimal offline solution to the 2-level

covering Steiner problem we must solve in the tth iteration. Lastly, let y :=
∑

i≤t

∑
j δ

(i,j)
y be the

value of
∑

e∈T ∗
t
xe at the end of the tth iteration; clearly we have y ≤ OPTt. We claim that it

suffices to show that for each i ≤ t and each j that δ(i,j)x ≤ 1
ϵ
δ
(i,j)
y

ni

ri
since it would follow that at

the end of iteration t we have that

w(Tt) ≤
∑
e

xe =
∑
i≤t

∑
j

δ(i,j)x ≤ 1

ϵ

∑
i≤t

∑
j

ni

ri
δ(i,j)y ≤ 1

ϵ

(
max

i

ni

ri

)
y ≤ 1

ϵ

(
max

i

ni

ri

)
OPTt.

We proceed to show that δ(i,j)x ≤ 1
ϵ
δ
(i,j)
y

ni

ri
for each i ≤ t and j. We fix an i and j and for

cleanliness of notation we will drop the dependence on i and j in our δs henceforth.

First, notice that we have that

δx ≤ ni · δ (3.3.1)

since each vertex v ∈ gi is uniquely responsible for up to a δ increase on xe where e is the edge
on v’s frontier.

On the other hand, notice that if a group in Gi is connected to r by T ∗
t but is not yet connected by

Ti then such a group uniquely contributes at least δ to δy. Since T ∗
t connects at least ri groups in

Gi to r but at the moment of our increase Ti connects at most (1− ϵ) · ri, there are at least ϵ · ri
such groups in Gi which are connected to r by T ∗

t but not by Ti. Thus, we have that

δy ≥ ϵ · ri · δ (3.3.2)

Combining Equations 3.3.1 and 3.3.2 shows δx ≤ 1
ϵ
δy

ni

ri
as required.

3.3.2 Online Covering Steiner on General Graphs
Next, we apply our first construction to give an algorithm for covering Steiner on general graphs.
Crucially, the following result relies on a single copy tree embedding with poly-logarithmic copy
number, making our second construction unsuitable for this problem.

Theorem 6. There is a deterministic poly-time algorithm for online covering Steiner (on general
graphs) which is O(log

3 n
ϵ
·maxi

|gi|
ri
)-cost-competitive and (1− ϵ)-connection-competitive.

Proof. We will use our copy tree embedding to produce a single tree on which we must determin-
istically solve online 2-level covering Steiner. We will then apply the algorithm from Theorem 23
to solve online 2-level covering Steiner on this tree.

More formally, consider an instance of online covering Steiner on weighted graph G = (V,E,w)
with root r. Then, we first compute a copy tree embedding (T, ϕ, πG→T , πT→G) deterministically
with respect to G and r as in Theorem 4 with cost approximation O(log2 n) and copy number
O(log n). Next, given our instance It of covering Steiner on G with groups g1, . . . gt and con-

34

nection requirements r1, . . . , rt we let I ′t be the instance of 2-level covering Steiner on T with
groups of groups G1, . . .Gt where Gi = {ϕ(v) : v ∈ gi}, connection requirements r1, . . . , rt and
root ϕ(r). Then if the adversary has required that we solve instance It in time step t, then we
require that the algorithm in Theorem 23 solves I ′t in time step t and we let H ′

t be the solution
returned by our algorithm for I ′t. Lastly, we return as our solution for It in time step t the set
Ht := πT→G(H

′
t).

Let us verify that the resulting algorithm is indeed feasible (i.e. monotone and (1− ϵ)-connection-
competitive) and of the appropriate cost.

First, we have that Ht ⊆ Ht+1 for every t since H ′
t ⊆ H ′

t+1 because our algorithm for trees returns
a feasible solution for its online problem and πT→G is monotone by definition of a copy tree
embedding. Moreover, we claim that Ht connects at least (1− ϵ) · ri vertices from gi to r for i ≤ t
and every t. To see this, notice that there at least (1− ϵ) · ri groups from Gi containing a vertex
connected to r by H ′

t. Since each such group consists of the copies of a distinct vertex, by the
connectivity preservation properties of a copy tree it follows that Ht connects at least (1− ϵ) · ri
vertices from gi to r.

Next, we verify the cost of our solution. Let OPT′
t be the cost of the optimal solution to I ′t.

Notice that since our copy number is O(log n), it follows that ni ≤ O(log n · |gi|). Thus, by the
guarantees of Theorem 23 we have

wT (H
′
t) ≤

1

ϵ
·
(
max

i

ni

ri

)
OPT′

t ≤ O

(
log n

ϵ

)
·
(
max

i

|gi|
ri

)
OPT′

t. (3.3.3)

Next, we bound OPT′
t. Let H∗

t be the optimal solution to It. We claim that πG→T (H
∗
t) is feasible

for I ′t. This follows because H∗
t connects at least ri vertices from gi to r for i ≤ t and so by the

connectivity preservation property of copy tree embeddings we know that there are at least ri
groups in Gi with a vertex connected to r by πG→T (H

∗
t). Thus, combining this with the O(log2 n)

cost preservation of our copy tree embedding we have

OPT′
t ≤ wT (πG→T (H

∗
t)) ≤ O(log2 n) · wG(H

∗
t). (3.3.4)

Lastly, by the cost preservation property of our copy tree embedding we have that wG(Ht) ≤
wT (H

′
t) which when combined with Equations 3.3.3 and 3.3.4 gives

wG(Ht) ≤ O

(
log3 n

ϵ
·max

i

|gi|
ri

)
· wG(H

∗
t).

thereby showing that our solution is within the required cost bound.

Since group Steiner tree is exactly covering Steiner where ri = 1 in which case maxi
|gi|
ri
≤ N

where again N is the maximum size of a group. Moreover, since any solution can only connect an
integral number of vertices from each group, it follows that a 1

2
-connection-competitive solution

for covering Steiner where ri = 1 (i.e. for group Steiner tree) connects at least one vertex from
each group. Thus, as a corollary of the above result we have the following deterministic algorithm
for online group Steiner tree.4

4We note that one can use an aforementioned property of our first construction—that if u is connected to r by
F ⊆ E then every vertex in ϕ(u) is connected to ϕ(r) in πG→T (F)—to reduce the O(log3 n)s in this section to

35

Corollary 24. There is an O(N log3 n)-competitive deterministic algorithm for online group
Steiner tree where N := maxi |gi| is the maximum group size.

3.4 Deterministic Online Group Steiner Reductions
In this section we prove that the guarantees of our copy tree embeddings are sufficient to generalize
any deterministic algorithm for online group Steiner tree on trees to general graphs, thereby
reducing an open question posed by Alon et al. [8] to its tree case. We show that a similar result
holds for the online group Steiner forest problem which generalizes online group Steiner tree;
recall that these problems are defined in Section 2.0.1.

Theorem 25. If there exists an α-competitive poly-time deterministic algorithm for group Steiner
tree (resp. group Steiner forest) on well-separated trees then there exists an O(log n · α)-
competitive poly-time deterministic algorithm for group Steiner tree (resp. group Steiner forest)
on general graphs.

In general, mapping an instance of a problem P onto an equivalent instance I ′ on the copy
tree embedding often results that I ′ is not an instance of the same problem P . However, group
Steiner tree (resp., forest) problems have the notable property that mapping them onto a copy tree
embedding simply results in another instance of the group Steiner tree (resp., forest) problem, this
time on a tree. This property, albeit somewhat hidden in the proof, is the main reason why copy
tree embeddings are well suited for these two problems.

Because past work on group Steiner and group Steiner forest have stated runtimes and approx-
imation guarantees as functions of the maximum group size and number of groups rather than
just n—see e.g. [27, 92]—we will give our results in the same generality with respect to these
parameters.

3.4.1 Deterministic Online Group Steiner Tree
We begin with our results for online group Steiner tree.

Theorem 26. If there exists:

1. A poly-time deterministic algorithm to compute an efficient, well-separated α-approximate
copy tree embedding with copy number χ and;

2. A poly-time f(n,N, k)-competitive deterministic algorithm for online group Steiner tree on
well-separated trees

then there exists an (α · f(χn, χN, k))-competitive deterministic algorithm for group Steiner tree
(on general graphs).

Proof. We will use our copy tree embedding to produce a single tree on which we must solve
deterministic online group Steiner tree.

O(log2 n)s. In particular, if one were to use this property then when we map the solution to our covering Steiner
problem on G to our copy tree embedding, the resulting solution will connect at least ri groups in Gi at least Θ(log n)
times. It follows that when we run our water filling algorithm each time it increases

∑
e xe by 1 we know that it cover

at least Ω(log n) units of the optimal solution by weight rather than 1 unit of the optimal solution as in the current
analysis.

36

In particular, consider an instance of online group Steiner tree on weighted graph G = (V,E,w)
with root r. Then, we first compute a copy tree embedding (T, ϕ, πG→T , πT→G) deterministically
with respect to G and r as we assumed is possible by assumption. Next, given an instance
It of group Steiner tree on G with groups g1, . . . gt, we let I ′t be the instance of group Steiner
tree on T with groups ϕ(g1), . . . ϕ(gt) and root r′ := ϕ(r) where we have used the notation
ϕ(gi) :=

⋃
v∈gi ϕ(v). Then, if the adversary has required that we solve instance It in time step t,

then we require that our deterministic algorithm for online group Steiner tree on trees solves I ′t in
time step t and we let H ′

t be the solution returned by our algorithm for I ′t. Lastly, we return as our
solution for It in time step t the set Ht := πT→G(H

′
t).

Let us verify that the resulting algorithm is indeed feasible and of the appropriate cost.

First, we have that Ht ⊆ Ht+1 for every t since H ′
t ⊆ H ′

t+1 because our algorithm for trees returns
a feasible solution for its online problem and πT→G is monotone by definition of a copy tree
embedding. Moreover, we claim that Ht connects at least one vertex from each gi to r for i ≤ t
and every t. To see this, notice that H ′

t connects at least one vertex from ϕ(gt) to r′ = ϕ(r) in t
since it is a feasible solution for I ′t and so at least one copy of a vertex in gt; by the connectivity
preservation properties of a copy tree it follows that at least one vertex from gt is connected to r.
Thus, our solution is indeed feasible in each time step.

Next, we verify the cost of our solution. Let OPT′
t be the cost of the optimal solution to I ′t

and let n′ and N ′ be the number of vertices and maximum size of a group in I ′t for any t. By
our assumption on the cost of the algorithm we run on T and since n′ ≤ χn and N ′ ≤ χN by
definition of copy number, we know that

wT (H
′
t) ≤ OPT′

t · f(n′, N ′, k) = OPT′
t · f(χn, χN, k).

Next, let H∗
t be the optimal solution to It. We claim that πG→T (H

∗
t) is feasible for I ′t. This follows

because H∗
t connects a vertex from g1, . . . , gt to r and so by the connectivity preservation property

of copy tree embeddings we know that some vertex from each of ϕ(g1), . . . , ϕ(gt) is connected to
r′ = ϕ(r). Applying this feasibility of πG→T (H

∗
t) and the cost preservation property of our copy

tree embedding, it follows that OPT′
t ≤ wT (πG→T (H

∗
t)) ≤ α · wG(H

∗
t) = α ·OPTt.

Similarly, we know by the cost preservation property of our copy tree embedding that wG(πT→G(H
′
t)) ≤

wT (H
′
t). Combining these observations we have

wG(πT→G(H
′
t)) ≤ wT (H

′
t) ≤ OPT′

t · f(χn, χN, k) ≤ OPTt · α · f(χn, χN, k),

thereby showing that our solution is within the required cost bound.

Plugging in our first construction (Theorem 4) or our second construction (Theorem 5) of a copy
tree embedding immediately gives the follow corollary.

Corollary 27. If there is an f(n,N, k)-competitive deterministic algorithm for online group
Steiner tree on well-separated trees then there are O(log n · f(O(n2 log n), O(nN), k)) and
O(log2 n · f(O(n log n), O(N log n), k))-competitive deterministic algorithms for online group
Steiner tree (on general graphs).

37

3.4.2 Deterministic Online Group Steiner Forest

In this section we show a black-box reduction from the poly-log-approximate online deterministic
group Steiner forest in a general graph G to poly-log-approximate online deterministic group
Steiner forest when the underlying graph is a tree. A formal definition of the problem follows.

We now show that a deterministic algorithm for online group Steiner forest on trees gives a
deterministic algorithm for online group Steiner forest on general graphs up to small losses. These
results and the corresponding proofs will be quite similar to those of the previous section so we
defer a full proof to the appendix.

Theorem 28. If there exists:

1. A poly-time deterministic algorithm to compute an efficient, well-separated α-approximate
copy tree embedding with copy number χ and;

2. A poly-time f(n,N, k)-competitive deterministic algorithm for online group Steiner forest
on well-separated trees

then there exists an (α · f(χn, χN, k))-competitive deterministic algorithm for group Steiner
forest (on general graphs).

Proof. We will use our copy tree embedding to produce a single tree on which we must solve
deterministic online group Steiner forest.

In particular, consider an instance of online group Steiner forest on weighted weighted G =
(V,E,w). Then, we first compute a copy tree embedding (T, ϕ, πG→T , πT→G) deterministically
with respect to G and an arbitrary root r ∈ V as we assumed is possible by assumption. Next,
given an instance It of group Steiner forest on G with pairs (S1, T1), . . . (St, Tt), we let I ′t be
the instance of group Steiner forest on T with pairs (ϕ(S1), ϕ(T1)), . . . (ϕ(St), ϕ(Tt)) where we
have used the notation ϕ(W) :=

⋃
v∈W ϕ(v) for W ⊆ V . Then if the adversary has required that

we solve instance It in time step t, then we require that our deterministic algorithm for online
group Steiner forest on trees solves I ′t in time step and we let H ′

t be the solution returned by our
algorithm for I ′t. Lastly, we return as our solution for It in time step t the set Ht := πT→G(H

′
t).

Let us verify that the resulting algorithm is indeed feasible and of the appropriate cost.

First, we have that Ht ⊆ Ht+1 for every t since H ′
t ⊆ H ′

t+1 because our algorithm for trees returns
a feasible solution for its online problem and πT→G is monotone by definition of a copy tree
embedding. Moreover, we claim that Ht connects at least one vertex from Si to at least one vertex
from Ti for i ≤ t and every t. To see this, notice that H ′

t connects at least one vertex from ϕ(Si)
to some vertex in ϕ(Ti) since it is a feasible solution for I ′t and so at least one copy of a vertex
in ϕ(Si) is connected to at least one copy of a vertex in ϕ(Ti); by the connectivity preservation
properties of a copy tree it follows that at least one vertex from Si is connected to at least one
vertex from Ti. Thus, our solution is indeed feasible in each time step.

Next, we verify the cost of our solution. Let OPT′
t be the cost of the optimal solution to I ′t, let n′

be the number of vertices in T and let N ′ be the maximum size of a set in a pair in I ′t for any t.
By our assumption on the cost of the algorithm we run on T and since n′ ≤ χn and N ′ ≤ χN by
definition of copy number, we know that

wT (H
′
t) ≤ OPT′

t · f(n′, N ′, k) = OPT′
t · f(χn, χN, k).

38

Next, let H∗
t be the optimal solution to It. We claim that πG→T (H

∗
t) is feasible for I ′t. This follows

because H∗
t connects a vertex from Si to Ti for every i ≤ t and so by the connectivity preservation

property of copy tree embeddings we know that some vertex from ϕ(Si) is connected to some
vertex of ϕ(Ti) for every i ≤ t in πG→T (H

∗
t). Applying this feasibility of πG→T (H

∗
t) and the cost

preservation property of our copy tree embedding, it follows that OPT′
t ≤ wT (πG→T (H

∗
t)) ≤

α · wG(H
∗
t) = α ·OPTt.

Similarly, we know by the cost preservation property of our copy tree embedding that wG(πT→G(H
′
t)) ≤

wT (H
′
t). Combining these observations we have

wG(πT→G(H
′
t)) ≤ wT (H

′
t) ≤ OPT′

t · f(χn, χN, k) ≤ OPTt · α · f(χn, χN, k),

thereby showing that our solution is within the required cost bound.

Plugging in our first construction (Theorem 4) or our second construction (Theorem 5) of a copy
tree embedding immediately gives the follow corollary.

Corollary 29. If there is an f(n,N, k)-competitive deterministic algorithm for online group
Steiner forest on well-separated trees then there are O(log n · f(O(n2 log n), O(nN), k)) and
O(log2 n · f(O(n log n), O(N log n), k))-competitive deterministic algorithms for online group
Steiner forest (on general graphs).

Lastly, we note that Theorem 25 follows immediately from Theorem 27 and Theorem 29.

3.5 Conclusion and Future Work
Online and dynamic algorithms built on probabilistic tree embeddings seem inherently randomized
and necessarily not robust to adaptive adversaries. In this chapter we gave an alternative to
probabilistic tree embeddings—the copy tree embedding—which is better suited to deterministic
and adaptive-adversary-robust algorithms. We illustrated this by giving new results in online
algorithms, including a reduction of deterministic online group Steiner tree and group Steiner
forest to their tree cases and a bicriteria deterministic algorithm for online covering Steiner.

We conclude by providing some directions for such future works.

As mentioned earlier, Bienkowski et al. [31] recently gave a deterministic algorithm for online
non-metric facility location—which is equivalent to online group Steiner tree on trees of depth
2—with a poly-log-competitive ratio and stated that they expect their techniques will extend to
online group Steiner tree on trees. A very exciting direction for future work would thus be to
extend these techniques to general depth trees which, when combined with our reduction to the
tree case, would prove the existence of a deterministic poly-log-competitive algorithm for online
group Steiner tree, settling the open question of Alon et al. [8].

While our focus has been on two specific constructions, it would be interesting to prove lower
bounds on copy tree embedding parameters, such as, more rigorously characterizing the tradeoffs
between the number of copies and the cost approximation factor. One should also consider
the possibility of improved constructions. For example: Is it possible to get a logarithmic
approximation with few copies, maybe even a constant number of copies? It is easy to see
that with an exponential number of copies—one for each possible subgraph—a perfect cost
approximation factor of one is possible. Can one show that a sub-logarithmic distortion is

39

impossible with a polynomial number of copies? We currently do not even have a proof that
excludes a constant cost approximation factor with a constant copy number.

40

Chapter 4

Hop-Constrained Tree Embeddings

4.1 Introduction

When doing network design, connectivity alone is often not sufficient for fast and reliable networks.
Indeed, we often also desire that our networks be hop-constrained; namely we desire that demands
are not just appropriately connected but connected with a path consisting of a low number of
edges (a.k.a. hops). By reducing the number of traversed edges, hop constraints facilitate fast
communication [6, 61]. Furthermore, low-hop networks tend to also be more reliable: if a
transmission over an edge fails with some probability, the greater the number of hops between the
source and destination, the greater the probability that this transmission fails [158, 167].

Unfortunately, adding hop constraints to network design problems makes them significantly harder.
MST is solvable in polynomial time but MST with hop constraints is known to admit no o(log n)
poly-time approximation algorithm [21]. Similarly, Steiner forest has a constant approximation
[5] but hop-constrained Steiner forest has no poly-time o(2log

1−ϵ n)-approximation for any constant
ϵ > 0 [68].1 Indeed, although there has been extensive work on approximation algorithms for
simple connectivity problems like spanning tree and Steiner tree with hop constraints [9, 116,
121, 126, 130, 132, 142, 155], nothing is known regarding algorithms for many well-studied
generalizations of these problems with hop constraints. For instance, no non-trivial approximation
algorithms are known for Steiner forest, group Steiner tree, group Steiner forest or online Steiner
tree with hop constraints.

By allowing an algorithm to “pretend” that the input graph is a tree, probabilistic tree embeddings
have had enormous success as the foundation of many poly-log approximation algorithms for
network design; thus, we might naturally expect them to be useful for hop-constrained network
design. In the h-hop-constrained setting for some h ≥ 1, the natural notion of distance to
consider between vertices u and v is the h-hop-constrained distance—the length of the shortest
path between u and v according to w with at most h hops. Thus, to use tree embeddings for
hop-constrained network design we must first understand how to approximate these distances
with trees.

1Under standard complexity assumptions.

41

4.1.1 Our Contributions
In this chapter we initiate the study of metric approximations for hop-constrained distances and
their use in algorithms for hop-constrained network design. Broadly, our results fall into four
categories.

Impossibility of Approximating Hop-Constrained Distances with Metrics

We begin by observing that hop-constrained distances are inapproximable by metrics (Sec-
tion 4.3.1).

Results: Not only are hop-constrained distances not a metric (since they do not satisfy the
triangle inequality) but given a hop constraint there are weighted graphs where any metric that
approximates hop-constrained distances does so with an Ω(L) multiplicative error where L is the
aspect ratio (Theorem 32). This lower bound is matched by a trivial upper bound (Theorem 33).

Discussion: Since the expected distance between two nodes in a distribution over metrics is itself
a metric, our impossibility result also rules out approximating hop-constrained distances with
distributions over metrics as in FRT.

Techniques: This observation is proved by careful analysis of a simple example: a path graph.

Approximating Hop-Constrained Distances with Partial Tree Metrics

Despite these apparent roadblocks, we show that—somewhat surprisingly—it is indeed possible
to to approximate hop-constrained distances with trees (Sections 4.3.2, 4.3.3).

Results: We show that a distribution over “partial tree metrics” can approximate hop-constrained
distances with an expected distance stretch of O(log n log log n) and a worst-case distance stretch
of O(log2 n) with an O(log2 n) relaxation in the hop constraint (Theorem 37).

Discussion: This result differs from FRT in two notable ways: (1) our partial tree metrics are
partial in the sense that they contain only a constant fraction of nodes from the input graph—
indeed, this is what allows us to overcome the impossibility of approximating hop-constrained
distances with metrics; (2) our result provides a worst-case guarantee, unlike FRT which only
gives a guarantee in expectation.

Techniques: We show this result by first proving a decomposition lemma (Theorem 40), which
applies padded decompositions to a “mixture metric” that combines hops and (unconstrained)
distances. We then recursively apply this decomposition, using different combinations of hops
and distances in our recursive calls.

h-Hop Partial Tree Embeddings

We next build embeddings for hop-constrained network design from our metric approximations
(Sections 4.4, 4.6).

Results: Specifically, we show that one can construct a distribution over “h-hop partial tree
embeddings” of hop-constrained distances with expected distance stretch O(log n log log n) and a
worst-case distance stretch O(log2 n) with an O(log3 n) relaxation in the hop constraint (Theo-
rem 46). Further, we show that these embeddings can be used for hop-constrained network design
as in the above template for network design that uses FRT. Notably, our embeddings reduce many

42

hop-constrained network design problems to their non-hop-constrained versions on trees. Since
our embeddings, like our partial tree metrics, are also partial, we build on these embeddings by
constructing “h-hop copy tree embeddings,” which represent many draws from our distribution
over partial tree embeddings as a single tree.2

Discussion: Like our tree metrics and unlike FRT, our tree embeddings are partial and give
worst-case guarantees. Moreover, our embeddings follow almost immediately from our metric
approximations. However, a notable difference between our embeddings and those of FRT is that
demonstrating that they can be used for hop-constrained network design requires a non-trivial
amount of work. In particular, while appropriately projecting from an input graph to a tree
embedding is trivial in the FRT case, the partialness of our embeddings makes this projection
significantly more troublesome. Thus, we develop a projection theorem (Theorem 48), which
informally shows that a natural projection from G to one of our tree embeddings appropriately
preserves cost and connectivity.

Techniques: We prove our projection theorem using “h-hop-connectors” which are, informally, a
hop-constrained version of Euler tours. We emphasize that this projection theorem is only used in
the analysis of our algorithms.

Applications to Hop-Constrained Network Design

Lastly, we use our embeddings to develop the first non-trivial approximation algorithms for the
hop-constrained versions of many classic network design problems (Sections 4.5, 4.7).

Results: As detailed in Table 4.1, we give numerous (poly-log, poly-log) bicriteria algorithms
for hop-constrained network design problems that relax both the cost and hop constraint of the
solution.

Discussion: As noted above, bicriterianess is necessary for any poly-log approximation for
Steiner forest and its generalizations. Furthermore, while the results in Table 4.1 are stated
in utmost generality, many special cases of our results were to our knowledge not previously
known. For example, our algorithm for hop-constrained oblivious Steiner forest immediately
gives new algorithms for hop-constrained Steiner forest, hop-constrained online Steiner tree and
hop-constrained online Steiner forest, as well as min-cost h-spanner (see Section 4.5.1 for details).
Similarly, our algorithm for oblivious network design immediately gives new algorithms for the
hop-constrained version of the well-studied buy-at-bulk network design problem [15].

Techniques: All of our algorithms for these problems use the above mentioned tree embedding
template with either our h-hop partial tree embeddings or our h-hop copy tree embeddings.

Before proceeding we note that generally, weighted graphs in this chapter are assumed to be
complete, i.e., E =

(
V
2

)
. In the context of this chapter this is without loss of generality. In

particular, one can transform any non-complete weighted graph G = (V,E,w) with aspect ratio
L into an equivalent complete graph G′ with aspect ratio L′ = n2 · L which gives a weight of L′

to any edge not in E without affecting any of the results in this chapter.

2In a previous version of this work “h-hop copy tree embeddings” were called “h-hop repetition tree embeddings.”

43

Hop-Constrained Problem Cost Apx. Hop Apx. Cost In E Section
Offline Problems

Relaxed k-Steiner Tree O(log2 n) O(log3 n) 4.5.3

k-Steiner Tree O(log3 n) O(log3 n) 4.5.3

Group Steiner Tree O(log5 n) O(log3 n) 4.5.2, 4.7.1

Group Steiner Forest O(log7 n) O(log3 n) 4.7.3

Online Problems
Group Steiner Tree O(log6 n) O(log3 n) ✓ 4.7.2

Group Steiner Forest O(log8 n) O(log3 n) ✓ 4.7.4

Oblivious Problems
Steiner Forest O(log3 n) O(log3 n) 4.5.1

Network Design O(log4 n) O(log3 n) 4.5.4

Table 4.1: Our bicriteria approximation results. All results are for poly-time algorithms that succeed with high
probability (at least 1− 1

poly(n)). For some of the problems we assume certain parameters are poly(n) to simplify
presentation; see the relevant sections for more details. All results are new except for the k-Steiner tree result which
is implied by [126].

4.2 Hop-Constrained Network Design Related Work

Before proceeding we give a brief overview of additional work on approximation algorithms for
hop-constrained network design.

For some simple hop-constrained network design problems non-trivial (unicriteria) approximation
algorithms are known. [9] gave an O(log n) approximation for minimum depth spanning tree
on metrics. [130] gave a O(

√
log n) for the degree-bounded minimum diameter spanning tree

problem. [132] gave a O(d log n) approximation for computing a minimum cost Steiner tree with
depth at most d. [121] gave a constant approximation for the minimum depth Steiner tree problem
on a metric.

However, hop constraints often make otherwise easy problems so challenging that the only
non-trivial approximation algorithms known or possible are bicriteria. The apparent neces-
sity of bicriterianess in hop-constrained optimization is highlighted by the existence of many
bicriteria algorithms. For example, [155] and [142] gave an (O(log n), O(log n)) bicriteria ap-
proximation algorithms for MST and Steiner tree with hop constraints.3 Similarly, [116] gave
a (O(log4 n), O(log2 n))-bicriteria algorithm for k-Steiner tree with hop constraints which was
later improved to (O(log2 n), O(log n)) by [126]; here the first term is the approximation in the
cost while the second term is the approximation in the hop constraint.

Lastly, hop-constrained network design has also received considerable attention from the opera-
tions research community; see, for example, [6, 33, 35, 36, 61, 64, 65, 96, 97, 98, 99, 138, 158,
163, 165, 167] among many other papers.

3A later paper of [148] claimed to improve this result to a (O(log n), 2)-approximation but it is our understanding
that this paper was retracted due to a bug.

44

4.3 Approximating Hop-Constrained Distances
In this section we show that even though hop-constrained distances are not well-approximated by
any metric, they are approximated by a distribution over what we call partial tree metrics. More
specifically, we consider hop-constrained distances defined as follows.

Definition 30 (Hop-Constrained Distances). For a (complete) weighted graph G = (V,E,w) and
a hop constraint h ≥ 1 we define the h-hop distance between any two nodes u, v ∈ V as

d
(h)
G (u, v) := min{w(P) | path P in G between u, v with hop(P) ≤ h}.

As we have assumed that our graph G is complete without loss of generality, the above is always
well-defined for any u, v ∈ V . We note that all omitted proofs in this section appear in Section 4.9.

4.3.1 Hop-Constrained Distances Are Inapproximable by Metrics

We begin by observing that, not only is d(h)G not a metric, but it is, in general, innaproximable by
any metric.

It is easy to verify that d(h)G is a valid distance function on V (G). Indeed d
(h)
G is clearly symmetric,

i.e., d(h)(u, v) = d(h)(v, u), and satisfies the identity of indiscernibles, i.e., d(h)(u, v) = 0⇔ u =
v. However, it is also simple to see that hop-constrained distances are not necessarily metrics
since they do not obey the triangle inequality. Indeed, the existence of a short h-hop path from u
to v and a short h-hop path from v to w does not imply that the existence of a short h-hop path
between u and w. More formally it is possible that d(h)(u,w)≫ d(h)(u, v) + d(h)(v, w). See [11]
for a similar observation.

Of course with a factor 2 relaxation in the hop constraint the relaxed triangle inequality d(2h)(u,w) ≤
d(h)(u, v) + d(h)(v, w) holds for any graph G and any u, v, w ∈ V (G). This suggests—albeit
incorrectly—that one might be able to approximate hop-constrained distance by allowing constant
slack in the hop constraint and length approximation as in the following definition.4

Definition 31. A distance function d̃ approximates the h-hop constrained distances d
(h)
G for a

weighted graph G = (V,E,w) where h ≥ 1 with distance stretch α ≥ 1 and hop stretch β ≥ 1
if for all u, v ∈ V we have

d
(βh)
G (u, v) ≤ d̃(u, v) ≤ α · d(h)G (u, v).

As we next observe, no metric provides such an approximation without a very large hop or distance
stretch.

4In addition to naturally arising when trying to get hop-constrained distances to satisfy the triangle inequality,
relaxing hop distances is further motivated by the following. As we later show, a relaxation in the hop constraint in a
hop-constrained tree embedding propagates through to an approximation on the hop diameter of the solutions we find
for our network design problems. Since, as mentioned above, some amount of approximation on the hop diameter is
necessary for many of our problems to admit a poly-log approximation in the cost, relaxing our hop constraints in our
notion of approximating hop-constrained distances is a natural way we can set ourselves up for success when aiming
for poly-log cost approximations for our problems.

45

Lemma 32. For any hop constraint h ≥ 1, distance stretch α, hop stretch β and any L > 1, there
exists a graph G = (V,E,w) with aspect ratio L such that if a metric d̃ approximates d(h)G with
distance stretch α and hop stretch β then α(βh+ 1) ≥ L.

Indeed, an approximation with the above large stretch is always trivially attainable. In particular,
no metric can approximate d(h) any better than the trivial approximation by the scaled shortest-path
metric α · dG which gives value α · dG(u, v) to each u, v ∈ V , as shown by the following.

Lemma 33. Given any graph G = (V,E,w) with aspect ratio L and a distance stretch α and hop
stretch β satisfying α(βh+ 1) ≥ L, we have that α · dG approximates d(h)G with distance stretch α
and hop stretch β.

Thus, hop-constrained distances can be maximally far from any metric in the sense that the only
way to approximate them by a metric requires so much slack in the hop and distance stretch that
the approximation becomes trivial. Moreover, since the expected distance between two nodes in a
distribution over metrics is itself a metric, the above result also rules out approximating d(h) in a
non-trivial way with distributions over metrics as in FRT. This impossibility remains even when
one allows for relaxations of the hop constraint.

4.3.2 Distances Induced by Distributions Over Partial Metrics

While Theorem 32 shows that no metric can approximate d
(h)
G on all vertices, it does not rule out

the possibility that some metric approximates d(h)G on a large subset of V . Thus, we introduce the
following concept of partial metrics.

Definition 34 (Partial Metric). Any metric d defined on a set Vd is called a partial metric on V if
Vd ⊆ V .

We will often talk about how partial metric d approximates d
(h)
G on Vd with hop and distance

stretches α and β by which we mean that the inequality of Theorem 31—d
(βh)
G (u, v) ≤ d(u, v) ≤

α · d(h)G (u, v)—holds for every u, v ∈ Vd. Of course, a partial metric on the empty set trivially
approximates d(h)G and we are ultimately interested in estimating d(h) on all pairs of nodes. For
this reason, we give the following notions of exclusion probability and how a distribution over
partial metrics can induce a distance function between all nodes.

Definition 35 (Distances of Partial Metric Distributions). LetD be a distribution of partial metrics
of V for weighted graph G = (V, e, w). We say D has exclusion probability ϵ if for all v ∈ V we
have Prd∼D[v ∈ Vd] ≥ 1− ϵ. If ϵ ≤ 1

3
then we say that D induces the distance function dD on V ,

defined as
dD(u, v) := Ed∼D [d(u, v) · I[u, v ∈ Vd]] .

It is easy to verify that dD is indeed a distance function. In particular, we trivially have that
dD(v, v) = 0 since d(v, v) = 0 for all d in the support of D. An exclusion probability bounded
above by 1

2
guarantees that Prd∼D[u, v ∈ Vd] > 0 for any u, v ∈ V . This guarantees that

dD(u, v) > 0 for u ̸= v which makes dD a valid distance function.

Since we are treating the distance between u and v as 0 in trees which only contain one of u or v
it may happen that dD(u, v) < d(u, v) which may seem strange. However, provided ϵ is at most
some fixed constant, the above notion of distance (up to constants) is equal to the arguably more

46

natural notion of distance Ed∼Duv [d(u, v)] where Duv is D conditioned on both u and v being in
the drawn partial metric; for any u, v ∈ V this distance is always at least d(u, v). Thus, at the
loss of constants the reader may think of dD(u, v) as a conditional expected distance where we
condition on u and v both being in the metric drawn from D. We choose the above notion of
distance as opposed to the conditional expectation version as it simplifies our exposition but we
emphasize that since these two notions only differ by constants this choice does not impact any of
our results.

With these definitions in place we can define what it means for a distribution of partial metrics to
approximate hop-constrained distances.

Definition 36 (Stretch of Partial Metric Distribution). A distribution D of partial metrics on V
with exclusion probability at most 1

3
approximates d(h) on weighted graph G = (V,E,w) for hop

constraint h ≥ 1 with worst-case distance stretch αWC ≥ 1 and hop stretch β ≥ 1 if each d in
the support of D approximates d(h)G on Vd with distance stretch αWC and hop stretch β, i.e. for
each d in the support of D and all u, v ∈ Vd we have

d
(βh)
G (u, v) ≤ d(u, v) ≤ α · d(h)G (u, v).

Furthermore, D has expected distance stretch αE if for all u, v ∈ V we have

dD(u, v) ≤ αE · d(h)G (u, v).

4.3.3 Approximating Hop-Constrained Distances with Partial Tree Metrics
Even though h-hop distances are generally inapproximable by distributions over metrics, we now
show that they are well-approximated by distributions over very simple partial metrics, namely
well-separated partial tree metrics.

Theorem 37. For any (complete) weighted graph G, any hop-constraint h ≥ 1, and any 0 < ϵ < 1
3

there is a distributionD over well-separated tree metrics each of which is a partial metric on V (G)

such that D has exclusion probability at most ϵ and approximates d(h)G with expected distance
stretch αE = O(log n · log logn

ϵ
), worst-case distance stretch αWC = O(log

2 n
ϵ

) and hop stretch
β = O(log

2 n
ϵ

).

The rest of Section 4.3.3 is dedicated to the proof of Theorem 37. In Section 4.3.3 we define
simple “mixture metrics” and show how combining these metrics with padded decompositions
leads to random decompositions with desirable properties regarding hop-constrained distances. In
Section 4.3.3 we show how recursively refining these partitions gives a random partial tree metric
which proves Theorem 37.

Mixture Metrics and Padded Decompositions for Hop-Constrained Distances

To better understand the structure of hop-constrained distances, we develop a decomposition
lemma which gives structure both in terms of weights and hops. In particular, we call a collection
of disjoint vertex sets C1 ⊔ C2 ⊔ . . . ⊔ Ck a partial vertex partition; C1 ⊔ C2 ⊔ . . . ⊔ Ck is a
complete vertex partition if

⋃
iCi = V . In a nutshell, we decompose the vertices of a weighted

graph G into a partial vertex partition where (1) both the hop diameter and weight diameter of all

47

Ci’s is small, (2) Ci and Cj for i ̸= j are well-separated both in terms of hops and weight and (3)
almost every vertex is in the partial vertex partition. Our decomposition combines two simple
ingredient.

Our first ingredient is what we call the mixture metric which is obtained by mixing together hop
lengths and weights in the following way.

Definition 38 (Mixture Metric). Given a weighted graph G = (V,E,w), a hop scale h > 0,
and a weight scale b > 0, we define a mixture weight w′ : E → R≥0 of an edge e ∈ E as
w′(e) := 1/h + w(e)/b. The shortest path metric induced by w′ is called the mixture metric
d′ : V × V → R≥0.

The utility of the mixture metric is given by three easy to verify facts: It is a metric and so is
amenable to standard metric decomposition theorems; if d′(u, v) ≤ α in the mixture metric with
hop scale h and weight scale b, then d(α·h)(u, v) ≤ α · b; if d′(u, v) > α, then d(α·h/2)(u, v) >
α · b/2.

Our second ingredient is the well-studied padded decomposition [4, 103]. Given a metric space
(V, d) we denote the ball of radius r ≥ 0 around x ∈ V with Bd(x, r) := {y ∈ V | d(x, y) ≤ r} .
Next, let C = C1 ⊔ . . .⊔Ck be a (partial or complete) vertex partition. Then, for a subset U ⊆ V ,
we say that U is broken in C if |{i | U ∩ Ci ̸= ∅}| > 1. We also denote this event by U ̸⊆ C and
its logical negation by U ⊆ C. With this notation, we define padded decompositions:

Definition 39 (Padded Decompositions). Let (V, d) be a metric space and let C be a distribution
over complete vertex partitions. C is a (ρpad,∆)-padded decomposition if:

1. Diameter: maxu,v∈Ci
d(u, v) ≤ ∆ for each C = C1 ⊔ C2 ⊔ . . . ⊔ Ck in the support of C

and i ∈ [k].

2. Paddedness: PrC∼C[Bd(v, r) ̸⊆ C] <
r·ρpad
∆

for each v ∈ V and every r > 0.

In other words, each part of a partition in C has diameter at most ∆ and the probability of a
node being within r from a node in a different part is at most rρpad

∆
. The value ρpad is known as

the padding parameter.5 Combining padded decompositions with our mixture metric and its
properties as observed above gives our decomposition lemma.

Lemma 40. Let G = (V,E,w) be a weighted graph with padding parameter ρpad. For any
hop constraint h > 0, weight diameter b > 0, and exclusion probability γ > 0, there exists a
distribution C over partial vertex partitions where for every C = C1 ⊔ . . . ⊔ Ck in the support of
C:

1. Hop-Constrained Diameter: d(h)G (u, v) ≤ b for i ∈ [k] and u, v ∈ Ci;

2. Hop-Constrained Paddedness: d
(h γ

2ρpad
)

G (u, v) ≥ b · γ
2ρpad

for every u ∈ Ci and v ∈ Cj

where i ̸= j.

And:

3. Exclusion probability: PrC∼C[v ̸∈
⋃

i∈[k] Ci] ≤ γ for each v ∈ V where C = C1⊔ . . .⊔Ck;

4. Path preservation: PrC∼C[V (P) is broken in C] ≤ (hop(P)/h+ w(P)/b) · ρpad for each
path P .

5We note that our definition of ρpad slightly differs from that of other papers, albeit only by a constant factor.

48

(a) Graph G

C1

C2
C3

(b) Lem. 40 decomposition

T1

T2 T3

(c) Recursing

Δ Δ

(d) Merging recursions

Figure 4.1: An illustration of the top-level recursive call of the embedding of Theorem 37 on graph G (edges omitted
from illustration). Vertices in the partial vertex partition of Theorem 40 given in purple. Vertices removed from the
process given as empty circles and all other vertices given as filled-in circles.

Lastly, we note that it is known that every metric has padded decompositions with padding
parameter O(log n) and so our decomposition lemma holds with ρpad = O(log n).

Lemma 41 ([4, 103]). Every metric on n points admits a (ρpad,∆)-padded decomposition for
ρpad = O(log n) and any ∆ > 0. Furthermore, such a decomposition can be computed in
polynomial time.

Constructing Tree Metrics for Hop-Constrained Distances and the Proof of Theorem 37

Next, we recursively apply the random partial vertex partitions of Theorem 40 to obtain a
distribution over families of laminar subsets of nodes of G. This distribution will naturally
correspond to a distribution over well-separated tree metrics which approximate h-hop constrained
distances. In particular, a rough outline of our construction is as follows: we start with a large
weight diameter ∆ ≤ poly(n) and hop constraint about h and compute the partial vertex partition
C1⊔ . . .⊔Ck ⊆ V (G) of Theorem 40. We remove from our process any vertices not in our partial
vertex partition. We then recurse on each part Ci while keeping our hop constraint constant but
shrinking ∆ by a factor of 2. We combine the recursively constructed trees by hanging the roots of
the returned trees off of the root of a fixed but arbitrary tree with edges of length ∆. The recursion
stops when each Ci is a singleton. The resulting tree metric is partial since each application of
Theorem 40 removes a small fraction of nodes. We illustrate our construction in Figure 4.1 and
proceed to prove Theorem 37.

Proof of Theorem 37. We describe a recursive and randomized procedure that induces a dis-
tribution over well-separated rooted trees where each tree can be interpreted as a partial tree
metric with the required properties. Given hop constraint h′, weight diameter ∆ and vertex set
V ′ ⊆ V where d

(h′)
G (u, v) ≤ ∆, our procedure returns a rooted tree (V (T), E(T), wT) satisfying

V (T) ⊆ V ′. Let ρpad be the padding parameter of G; we will give our proofs in terms of ρpad and
then conclude by applying Theorem 41. We fix h′ := h ·κ where we define κ := O(ϵ−1ρpad log n)
throughout the procedure. We emphasize that h′ will also be the same for all of our recursive
calls. The construction procedure is initially invoked with the parameters V ′ := V and weight
scale ∆ equal to the smallest power of 2 which is at least the aspect ratio L ≤ poly(n). That is,
∆ ∈ [L, 2L) ≥ maxu,v d

(h′)
G (u, v).

Construction procedure: We use the decomposition of Theorem 40 with hop constraint h′,
weight diameter ∆/2, and exclusion probability γ := ϵ/O(log n) (for a sufficiently large hidden

49

constant) to obtain a partial vertex partition C1 ⊔ C2 ⊔ . . . ⊔ Ck ⊆ V ′ where, plugging in our
choice of parameters and the guarantees of Theorem 40, we have:

1. maxu,v∈Ci
d
(h′)
G (u, v) ≤ ∆/2;

2. d
(h)
G (Ci, Cj) = d

(h′/κ)
G (Ci, Cj) ≥ ∆/(2κ) for each i, j ∈ [k] where j ̸= i;

3. Pr[v ̸∈
⋃k

i=1 Ci] ≤ ϵ
O(logn)

for all v ∈ V .

We recursively construct k rooted trees T1 = (V1, E1, w1), . . . , Tk = (Vk, Ek, wk) by calling the
same procedure with our distance scale set to ∆′ ← ∆/2 on sets C1, . . . , Ck. We construct the
tree T = (V (T), E(T), wT) returned by the procedure by connecting the roots of T2, . . . , Tk to
the root of T1 via a tree edge of weight ∆. The procedure is stopped when the set of nodes V ′ is a
singleton, at which point the trivial one-node tree is returned.

Exclusion probability analysis: Consider a recursive call with v ∈ V ′ and suppose that the
partial vertex partition in the call is C1 ⊔ . . . ⊔ Ck. By the properties of the partition, Pr[v ̸∈⋃k

i=1Ci] ≤ ϵ/O(log n) (for a sufficiently large constant). First, we note that v ̸∈ V (T) if and only
if there is a recursive call where v ∈ V ′ \ (

⋃
i Ci), which happens with probability ϵ/O(log n).

Since v is in a unique recursive call on each level and there are O(log n) levels, we conclude via
a union bound that this happens in at least one level with probability at most ϵ, proving that the
exclusion probability of each node v ∈ V is a most ϵ.

Worst-case distance stretch and hop stretch analysis: In the final tree T , for two nodes
u, v ∈ V (T) let eu,v := argmax{wT (e) | e ∈ Tu,v} be the heaviest weight tree edge on the
unique tree path between u and v. The weights wT are strictly decreasing powers of 2 on any root-
leaf path. Therefore, wT (eu,v) ≤ dT (u, v) ≤ O(wT (eu,v)). Edge eu,v was created via a recursive
call with the parameters V ′ and ∆ where V ′ ⊆ V , u, v ∈ V ′ and d(h

′)(u′, v′) ≤ ∆ = wT (eu,v) for
all u′, v′ ∈ V ′. Let C1 ⊔ . . .⊔Ck be the partial vertex partition created by this recursive call where
each Ci has weight diameter ∆/2 and d(h)(Ci, Cj) ≥ ∆/(2κ) when i ̸= j. Since u, v ∈ V (T) we
have that u ∈ Ci and v ∈ Cj for i ̸= j (since otherwise eu,v would not be created by this recursive
call), hence d

(h)
G (u, v) ≥ ∆

2κ
= wT (eu,v)

2κ
= Θ(dT (u,v)

κ
). Consequently, dT (u, v) ≤ O(κ · d(h)G (u, v)).

Furthermore, since u, v ∈ V ′ we have that d(h′)(u, v) ≤ ∆ ≤ dT (u, v), which can be rewritten as
d(βh)(u, v) ≤ dT (u, v) for β := O(κ). Combining the two bounds on dT we have that both the
worst-case distance stretch αWC and hop stretch β are O(κ) = O(ϵ−1 log n · ρpad) which gives
the desired bound when we plug in the ρpad = O(log n) padded decomposition of Theorem 41.

Expected distance stretch analysis: Let ∆l be the weight diameter of recursive calls at level
l ∈ [O(log n)]. In particular, ∆1 ∈ (L, 2L] and ∆l+1 = ∆l/2. Fix u, v ∈ V , let P be a path in G

between u and v with at most h hops and weight δ := d
(h)
G (u, v) and let eu,v be defined—as in the

worst-case distance stretch analysis—as the heaviest weight tree edge between u and v. As in the
worst-case stretch analysis, it suffices to bound wT (eu,v). We now partition the O(log n) levels
into three phases H1 ⊔H2 ⊔H3 where l ∈ H1 iff ∆l > δ · (2κ), l ∈ H3 iff ∆l ≤ δ · (2ρpad) and
l ∈ H2 in the remaining case where ∆l ∈ (δ · 2ρpad, δ · 2κ]. We proceed to bound the probability
that eu,v is created by a recursive call in H1, H2 and H3 which, in turn, gives a bound on the
expected distance between u and v.

We begin with calls at levels in H1. In particular, we argue that a call at level l ∈ H1 cannot
create the edge eu,v (i.e., it cannot be that ∆l = wT (eu,v)). This follows from the worst-case
distance stretch analysis, which stipulates that d(h)G (u, v) ≥ ∆l/(2κ). However, this would yield

50

d
(h)
G (u, v) > δ, which is a contradiction. Therefore, the contribution of edges corresponding to

levels in H1 to wT (eu,v) is 0:∑
l∈H1

Pr[eu,v created by level l call] ·∆l · I[u, v ∈ V (T)] = 0

Next, suppose that l ∈ H2 and suppose eu,v was created via a level l call with the vertex set V ′

and partial vertex partition C1 ⊔ . . . ⊔ Ck ⊆ V ′. If this is the case, the path P between u and v is
broken in C1 ⊔ . . . ⊔ Ck, which by Theorem 40 happens with probability at most

ρpad

(
hop(p)

h′ +
wG(p)

∆l/2

)
≤ ρpad

(
h

h′ +
δ

∆l/2

)
=

ρpad
κ

+
ρpadδ

∆l/2
.

Moreover, note that |H2| = O(log(κ/ρpad)) = O(log(ϵ−1 log n)) since ∆l+1 = ∆l/2. Therefore:∑
l∈H2

Pr[eu,v created by level l call] ·∆l · I[u, v ∈ V (T)] ≤
∑
l∈H2

(
ρpad
κ

+
ρpadδ

∆l/2

)
·∆l · 1

≤
∑
l∈H2

(
∆l ·

ρpad
κ

+ 2ρpadδ
)

≤ ρpad
κ
· (δ · 2κ) + 2ρpadδ|H2|)

≤ δ ·O(ρpad log(ϵ
−1 log n)).

Lastly, for H3 notice that we can coarsely upper bound
∑

l∈H3
Pr[eu,v created by level l call] ·

∆l · I[u, v ∈ V (T)] as
∑

l∈H3
∆l ≤ δ · 4ρpad by our choice of H3 and the fact that our weight

diameters are geometrically decreasing.

Combining our upper bounds on the probability that eu,v is created in each level gives an upper
bound on the expectation of wT (eu,v), which in turn bounds the expected value of dT (u, v) since
dT (u, v) = O(wT (eu,v)). In the following we let (. . .) stand for Pr[eu,v created by level l call] ·
∆l · I[u, v ∈ V (T)].

E[wT (eu,v) · I[u, v ∈ V (T)]] ≤
O(logn)∑

l=1

Pr[eu,v created by level l call] ·∆l · I[u, v ∈ V (T)]

≤
∑
l∈H1

(. . .) +
∑
l∈H2

(. . .) +
∑
l∈H3

(. . .)

≤ 0 + δ ·O(ρpad log(ϵ
−1 log n)) + δ · (4ρpad)

= δ ·O(ρpad log(ϵ
−1 log n))

Plugging in the padded decompositions of Theorem 41, we conclude that the expected distance
stretch is O(ρpad log(ϵ

−1 log n)) = O(log n log(ϵ−1 log n)), as required.

51

4.4 h-Hop Partial Tree Embeddings
In the preceding section we demonstrated that hop-constrained distances can be well-approximated
by distributions over partial tree metrics. In this section we describe how this result gives
embeddings which can be used for hop-constrained network design problems. In particular, in
Section 4.4.1 we will define h-hop partial tree embeddings which are partial tree metrics along
with a mapping of each edge in the tree metric to a path in G. As an (almost) immediate corollary
of our results in the previous section, we have that one can produce such an embedding where
h-hop distances are approximately preserved by T and each path to which we map an edge has a
low number of hops and less weight than the corresponding edge in T .

However, ultimately we are interested in using these embeddings to instantiate the usual tree
embedding template and the above properties alone are not sufficient to do so. In particular, recall
that in the usual tree embedding template for network design we embed our input graph into a
tree, solve our problem on the tree and then project our solution back onto the input graph. If
the problem which we solve on the tree has a much greater cost than the optimal solution on our
input graph then our solution has no hope of being competitive with the optimal solution. Thus,
we require some way of projecting the optimal solution of G onto our embeddings in a way that
produces low-cost, feasible solutions for our tree problems.

When tree embeddings are not partial—as in FRT—such a projection is trivial. However, the
partial nature of our embeddings along with the fact that we must preserve “h-hop connectivity”
makes arguing that such a low cost solution exists significantly more challenging than in the
FRT case. Somewhat surprisingly, we show that a natural projection of the optimal solution onto
T produces an appropriate subgraph of T , despite the fact that an FRT-like charging argument
seems incapable of proving such a result. Our proofs will be based on what may be viewed as a
hop-constrained version of Euler tours which we call h-hop connectors. We give further intuition
and details in Section 4.4.2. Thus, while Section 4.4.1 is a straightforward extension of our results
from the previous section, the primary technical contribution of this section is the projection result
of Section 4.4.2 which shows that, indeed, these embeddings may be used for tree-embedding
algorithms in the usual way.

4.4.1 Defining h-Hop-Partial Tree Embeddings

We begin by defining our partial tree embeddings and proceed to argue that we can map from the
trees in these embeddings to our graphs in a weight and connectivity-preserving fashion.

We now define hop and distance stretch of partial tree embeddings analogously to how we defined
these concepts for partial metrics and for the non-hop-constrained setting in the previous chapter
(Theorem 11).

Definition 42 (h-Hop Partial Tree Embedding). An h-hop partial tree embedding consists of a
rooted and weighted tree T = (V (T), E(T), wT) with V (T) ⊆ V (G) and a path TG

e ⊆ G for
every e ∈ E(T) between e’s endpoints satisfying wG(T

G
e) ≤ wT (e). We say this embedding has

distance stretch α ≥ 1 and hop stretch β ≥ 1 for graph G = (V (G), E(G), wG) if

1. d
(βh)
G ≤ dT (u, v) ≤ α · d(h)(u, v) for all u, v ∈ V (T) ⊆ V (G);

2. hop(TG
uv) ≤ βh for all u, v ∈ V (T) ⊆ V (G).

52

In the above we extend the notation of TG
e to nodes in T which are not adjacent: for any

two vertices u, v ∈ V (T), if ei is the ith edge in Tuv (ordered, say, from u to v) then TG
uv :=

TG
e1
⊕ TG

e2
⊕ . . . where ⊕ is concatenation.

Notice that the above definitions show that one can map subgraphs of an h-hop partial tree
embedding (T, {TG

e }e∈E(T)) for G to subgraphs of G in a cost and connectivity preserving way.
In particular, given a T ′ ⊆ T we have that H :=

⋃
e∈E(T ′) T

G
e satisfies (1) wG(H) ≤ wT (T

′) and
(2) if u and v are connecting in T ′ then hopH(u, h) ≤ βh. In the next section we give a much
more involved and interesting proof showing that one can also project from subgraphs of G to T
in a cost and connectivity preserving way.

The next observation confirms that, up to an O(log n), hop stretch and distance stretch for h-
hop partial tree embeddings and partial metrics are equivalent, provided the relevant trees are
well-separated.

Lemma 43. Let G be a weighted graph and let h ≥ 1 be a hop constraint.

• If (T, {TG
e }e∈E(T)) is an h-hop partial tree embedding with distance stretch α and hop

stretch β then T is a partial tree metric which approximates d(h)G with distance stretch α
and hop stretch β.

• Conversely, if T is a partial tree metric with hop diameter DT := hop(T) which approx-
imates d

(h)
G with distance stretch α and hop stretch β then there is a collection of paths

{TG
e }e∈E(T) where (T, {TG

e }e∈E(T)) is a partial tree embedding with distance stretch α and
hop stretch DT · β.

Proof. Let (T, {TG
e }e∈E(T)) be a partial tree embedding. Then we immediately have that T is a

partial tree embedding with distance stretch α and hop stretch β by definition of a partial tree
embedding and partial tree metric.

On the other hand, let T be a partial tree metric which approximates the h-hop constrained
distances d(h)G of G on V (T) with distance stretch α and hop stretch β. By definition, for every
edge e ∈ E(T) with e = {u, v} we have d

(βh)
G (u, v) ≤ wT (e). In particular, there exists a path

between the endpoints of e with at most βh hops and length at most wT (e) in G. Defining TG
e to

be this path for every edge e ∈ E(T) completes T into a partial tree embedding. The distance
stretch of this partial tree embedding is trivial by definition. Similarly, for u and v not adjacent in
T we have, by definition of TG

uv that TG
uv consists of at most βDT · h hops as required.

Analogously to our results for partial metrics, we will also talk about the exclusion probability
of distributions over partial tree, the distances they induce and how well they approximate hop-
constrained distances; in particular, the following definitions are analogous to Theorem 35 and
Theorem 36 respectively. For the sake of presentation, here and later in the chapter we let (T, ·)
be shorthand for (T, {TG

e }e∈E(T)).

Definition 44 (Distances of Partial Tree Embedding Distributions). Let D be a distribution of
partial tree embeddings on weighted graph G = (V,E,w). We say D has exclusion probability ϵ
if for all v ∈ V we have Pr(T,·)∼D[v ∈ V (T)] ≥ 1− ϵ. If ϵ ≤ 1

3
then we say that D induces the

distance function dD on V , defined as

dD(u, v) := E(T,·)∼D [dT (u, v) · I[u, v ∈ V (T)]] .

53

Definition 45 (Stretch of Partial Tree Embedding Distribution). A distribution D of h-hop partial
tree embeddings on V with exclusion probability at most 1

3
approximates d(h) on weighted graph

G = (V,E,w) for hop constraint h ≥ 1 with worst-case distance stretch αWC ≥ 1 and hop
stretch β ≥ 1 if each (T, ·) in the support of D approximates d(h)G on V (T) with distance stretch
αWC and hop stretch β, i.e. for each (T, ·) in the support of D and all u, v ∈ V (T) we have

d
(βh)
G (u, v) ≤ dT (u, v) ≤ α · d(h)G (u, v).

Furthermore, D has expected distance stretch αE if for all u, v ∈ V we have

dD(u, v) ≤ αE · d(h)G (u, v).

Concluding, we have that there exists an efficiently-computable distribution over partial tree
embeddings with poly-logarithmic stretches.

Theorem 46. Given weighted graph G = (V,E,w), 0 < ϵ < 1
3

and root r ∈ V , there is
a poly-time algorithm which samples from a distribution over h-hop partial tree embeddings
whose trees are well-separated and rooted at r with exclusion probability ϵ, expected distance
stretch αE = O(log n · log logn

ϵ
), worst-case distance stretch αWC = O(log

2 n
ϵ

) and hop stretch
β = O(log

3 n
ϵ

).

Proof. We begin by remarking that Theorem 37 can be adapted so that all trees are rooted at r in
the following way. First, we can assume that r ∈ V (T) by resampling trees until r is in V (T). By
a union bound, this increases the exclusion probability by a factor of at most 2, leaves the hop
stretch and worst-case distance stretch unchanged, and increases the expected distance stretch by
a factor of at most 1

1−ϵ
= O(1); these modifications to our sampling process leave the statement

of our theorem unchanged.

Now, suppose that a sampled tree has r ∈ V (T); we will observe that r can be assumed to be
the root of T . In particular, recall that in the construction of T in Theorem 37 we recursively
constructs trees T1, . . . , Tk on the parts of a partial vertex partition and then outputs a tree by
connecting the root of T2, . . . , Tk to the root of T1. We note that T1 is chosen arbitrarily, and so we
can choose T1 to be the tree containing r. Since we may assume inductively that r is the root of
T1, the tree we return has r as its root. Choosing a root in this way does not change the guarantees
of our partial tree metrics.

Our result then follows immediately from the fact that well-separated trees have hop diameter
O(log n), Theorem 43, Theorem 37 and the observation that the construction procedures of
Theorem 37 and Theorem 43 are poly-time.

4.4.2 Projecting From The Graph to h-Hop Partial Tree Embeddings

In this section we show how to project the optimal solution for a hop-constrained problem onto
a partial tree embedding to get a low-cost subgraph which will be feasible for the optimization
problems on trees which we later solve. In particular, we show that it is possible to project any
subgraph H ⊆ G onto an h-hop partial tree embedding (T, ·) with worst-case distance stretch α
in a way that α-approximately preserves the cost of H and preserves “h-hop connectivity”: that

54

is, the projection of H will have cost at most O(α ·wG(H)) and if u and v are within h hops in H
then they will be connected by the projection of H onto our embedding.

In the (non-partial) tree embedding setting where we typically only care about the connectivity
structure of nodes—as in FRT—such a projections is trivial. In particular, if T is a tree drawn
from the FRT distribution then an edge e ∈ E(G) can be projected onto the simple tree path
Tuv ⊆ T between u and v in T and the resulting path will have expected weight O(log n · wG(e)).
Thus, we can project a subgraph H ⊆ G to T (H) :=

⋃
{u,v}∈E(H) Tuv. If u and v are connected in

H then they are connected in T (H) and so the connectivity of nodes is preserved. Moreover, we
can upper bound the weight of T (H) by summing up wT (Tuv) over all {u, v} ∈ E(H) to get that,
in expectation, wT (T (H)) ≤ O(log n · wG(H)) and so the cost of the projection is appropriately
low.

We might naturally try to use the same projection as is used in the FRT case but only for the
nodes embedded by T . Specifically, suppose that T is now the tree of a partial tree embedding
with worst-case distance stretch α. Then, we could project H to T (H) :=

⋃
Tuv where the

⋃
is

taken over all u, v such that {u, v} ∈ E(H) and u, v ∈ V (T). Although we trivially have that
wT (T (H)) ≤ α · wG(H) by summing up over edges in E(H), such a projection has no hope of
preserving h-hop-connectivity as required: if, for example, u and v are connected by exactly one
path in H with h hops then if there is even a single node along this path which is not in V (T) then
u and v may not be connected in T (H).

We could try to fix these connectivity issues by forcing all vertices in T which are within h hops
in H to be connected in T as captured by the following definition.

Definition 47 (T (H, h)). Let (T, ·) be a partial tree embedding. Then T (H, h) :=
⋃
Tuv where

the
⋃

is taken over u, v such that u, v ∈ V (T) and hopH(u, v) ≤ h.

T (H, h) trivially preserve h-hop connectivity as needed: if u and v are connected by an h-hop
path in H then they will be connected in T (H, h). However, while T (H, h) preserves h-hop
connectivity, it seems to yield a subgraph of T of potentially unboundededly-bad cost. For
example, let h = 3 and suppose H is a spider graph with O(n) nodes in which one leg connects
vertex r to center c with a cost 1 edge and the remaining ith leg connects c to ui to vi with a
sufficiently small ϵ > 0 cost edge. Further, suppose that V (T) consists of r and all vi. This
example is illustrated in Figure 4.2a. T (H, h) will buy Trvi for every i since there is an h-hop
path from r to vi (all such pairs illustrated in Figure 4.2b). Our worst-case distance guarantee
ensures that wT (Trvi) is at most α · dG(vi, r) ≈ α and so we might hope to bound the cost of
T (H, h) as within O(α) times wG(H). However, if we try to apply the usual FRT-type proof
and upper bound the cost of T (H, h) in T as

∑
dT (r, vi) then our sum comes out to O(α · n).

On the other hand, wG(H) ≈ 1 and so wT (T (H, h)) is a factor of O(n · α) larger than wG(H)
while we would like it to only be an O(α) factor larger. Thus, whereas FRT can charge each path
in the projection of H to a unique edge of H , the partialness of our embedding means that we
must charge paths in T (H, h) to paths in H . These paths in H may induce large congestion—as
illustrated in Figure 4.2c—which causes us to “overcharge” edges of H .

Surprisingly, in what follows we show that, while the above naive charging argument cannot
succeed, a more nuanced proof shows that the above T (H, h) is, in fact, competitive with the
optimal solution up to small constants in the hop and distance stretch.

Theorem 48. Fix h ≥ 1, let H be a subgraph of weighted graph G = (V,E,wG) and let

55

…ϵ
ϵ

ϵ
ϵ
ϵ

ϵ
ϵ
ϵ

1 c

u1

u2
u3

uk

v1

v2

v3

vk

(a) Graph H

…

(b) Pairs in Charged Sum

…

(c) Congestion of Charged Paths

Figure 4.2: A counter-example to the naive charging argument for T (H,h) where Θ(k) = Θ(n). Edges labeled
with their weights, vertices of V (T) given as solid black circles and vertices of V \V (T) given as white-filled circles.
Paths colored according to their corresponding pair.

(T, ·) be an 8h-hop partial tree embedding of G with worst-case distance stretch α. Then
wT (T (H, h)) ≤ 4α · wG(H).

The basic idea of our proof will be to identify a collection of low congestion paths in H to which
we can charge T (H, h).

Warm-Up: Low Diameter Tree Case

To illustrate this idea we begin by showing how to prove Theorem 48 in the simple case where G
is a tree with diameter at most h. In particular, on a tree of diameter at most h we can mitigate
the congestion of charged paths by buying an Euler tour restricted to our embedded nodes;
conveniently T (H, h) will also be a subgraph of the projection of such an Euler tour onto T .

More specifically, suppose G is a tree with diameter at most h and let (T, ·) be a partial tree
embedding of G. Let G2 be the multigraph of G where each edge is doubled. Let t = (v1, v2, . . .)
be an Euler tour of G2 and let t′ = (w1, w2, . . .) be the vertices of V (T) visited by this tour in
the order in which they are visited. That is, t′ is gotten from t be deleting from it all vertices not
in V (T) while leaving the ordering of the remaining vertices unchanged. Notice that vertices in
V (T) might occur multiple times in t′. We let Pℓ be the path in G between wℓ and wℓ+1 and let
P := {Pℓ}ℓ. Next, consider T (P) which is the union of Tuv for every u, v where u and v form
the endpoints of some path in P .

First, notice that T (H, h) ⊆ T (P). This follows since every u, v ∈ V (T) which are within h
hops (namely all u, v ∈ V (T)) are also visited by t′ and so if Tuv is included in T (H, h) then it
will also be included in T (P). Next, notice that wT (P) ≤ 2α · wG(H) since our Euler tour when
projected onto G visited each edge at most twice. This proves Theorem 48 for the h-diameter tree
case.

h-Hop Connectors

The key observation of the above warm-up is that Euler tours allow us to mitigate the congestion
induced in our charging arguments by providing a low-congestion collection of paths. We abstract
such a collection of paths out in the form of what we call h-hop connectors.

For undirected and unweighted graph G = (V,E) with W ⊆ V , we let P(h)(W) be all simple
paths between vertices in W with at most h hops. That is, each P ∈ P(h)(W) has vertices in W
as its first and last vertices and satisfies |P ∩W | = 2 and hop(P) ≤ h. Given a collection of paths
P in G between vertices in W , we abuse notation and let (W,P) be the graph with vertex set W

56

(a) Graph G (b) (W,Ph) (c) P in G (d) (W,P)

Figure 4.3: An illustration of an h-hop connector with congestion 1 and hop stretch 2 on a graph G for a vertex set
W ⊆ V (G) with h = 3. Vertices of W given as solid black circles; all other vertices of G given as white circles.
Edges in (W,P) and paths in P colored according to their correspondence.

and an edge {u, v} iff there is a P ∈ P with endpoints {u, v}. We will refer to (W,P(h)(W)) as
the h-hop connectivity graph of W . We let ce(P) := |P ∈ P : e ∈ P | be the congestion of e with
respect to a collection of paths P . With this notation in hand, we give our definition of h-hop
connectors which we illustrate in Figure 4.3.

Definition 49 (h-Hop Connector). Let G = (V,E) be an undirected and unweighted graph, let
h ≥ 1 and let W ⊆ V . An h-hop connector P of W with congestion C and hop stretch β is a
collection of paths in G between vertices of W such that:

1. Connecting: all u, v ⊆ W which are connected in (W,P(h)(W)) are connected in (W,P);
2. Edge Congestion: For all e ∈ E we have ce(P) ≤ C;

3. Hop Stretch: hop(P) ≤ β · h for all P ∈ P .

It is easy to observe that the existence of good h-hop connectors are sufficient to show Theorem 48.

Lemma 50. Fix h ≥ 1, let H ⊆ G be a subgraph of weighted graph G = (V,E,wG) and let (T, ·)
be a (βh)-hop partial tree embedding of G with worst-case distance stretch α. If H has an h-hop
connector on V (T) with hop stretch β and congestion C then wT (T (H, h)) ≤ Cα · wG(H).

Proof. Let P be the stated h-hop connector, let S := {(u, v) : (u, . . . , v) ∈ P} be the endpoints
of its path and let T (P) :=

⋃
(u,v)∈S Tuv be the subgraph of T corresponding to P . By the

connecting property of our h-hop connector any u, v which are within h hops in H must also
be connected in T (P) and so T (H, h) ⊆ T (P). Combining this with the edge congestion
and hop stretch of our h-hop connector with the worst-case distance stretch of T we have
wT (T (H, h)) ≤ wT (T (P)) ≤ Cα · wG(H).

Thus, we devote the remainder of this section to showing that every graph has an h-hop connector
with hop stretch 8 and congestion 4.

A simple proof similar to the above warm-up shows that trees with low diameter have good h-hop
connectors.

Lemma 51. Let G = (V,E) be a tree with diameter at most βh for h ≥ 1. Then, G has an h-hop
connector with congestion at most 2 and hop stretch at most β for every W ⊆ V .

Proof. Suppose G is a tree. Let G2 be the multigraph of G where each edge is doubled. Let
t = (v1, v2, . . .) be an Euler tour of G2 and let t′ = (w1, w2, . . .) be the vertices of W visited by
this tour in the order in which they are visited. That is, t′ is gotten from t be deleting from it all
vertices not in W while leaving the ordering of the remaining vertices unchanged. Notice that

57

(a) Graph G (b) Forest F (c) First offset and P1

(d) Second offset and P2

r1 r2

(e) P = P1 ∪ P2 on G

r1 r2

(f) (W,P)

Figure 4.4: An illustration of how to compute an h-hop connector on an arbitrary graph G for W ⊆ V (G) with
h = 3. Vertices of W given as solid black circles; roots of F given as black squares; all other vertices of G given as
white circles. Paths in P1 and P2 colored to correspond to their edges in (W,P).

vertices in W might occur multiple times in t′. We let Pℓ be the path in G between wℓ and wℓ+1

and let P := {Pℓ}ℓ.
Since every vertex in W occurs at least once in t′ we have that all vertices in W are connected in
(W,P). Since t used each edge of G2 once, it follows that ce(P) ≤ 2. Lastly, hop(Pℓ) ≤ βh for
all Pℓ ∈ P since each Pℓ is a simple path in a tree with diameter at most βh.

We proceed to show how to construct an h-hop connector with congestion 4 and hop stretch 8 on
any graph. We first reduce the general graph case to the forest case: we show that, up to a factor
of 2 in the hop stretch, every graph G has as a subgraph a forest F where an h-hop connector for
F is an h-hop connector for G. We then reduce the forest case to the low diameter tree case by
cutting each tree in F at O(h)-spaced annuli from an arbitrary root so that the resulting trees have
low diameter. We apply Theorem 51 to the resulting low-diameter trees. More specifically, we
perform these cuts and applications of Theorem 51 twice with two different offsets to get back
paths P1 and P2; we then take our h-hop connector to be P := P1 ∪P2. We illustrate this strategy
in Figure 4.4.

We begin with a simple technical lemma which shows that the graphs induced by the connected
components of the h-hop connectivity graph are disjoint. For a collection of paths P in G we let
G[P] := G[

⋃
P∈P V (P)] be the graph induced by the union of all such paths.

Lemma 52. Let G = (V,E) be a graph, let W ⊆ V , and let U and U ′ be the vertices of
two distinct connected components of (W,P(h)(W)). Then G[P(h)(U)] and G[P(h)(U ′)] are
vertex-disjoint.

Proof. It suffices to show that for any P, P ′ ∈ P(h)(W) if V (P) ∩ V (P ′) ̸= ∅ then the edges cor-
responding to P and P ′ in (W,P(h)(W)) are in the same connected components in (W,P(h)(W)).
Let u, v ∈ W be the endpoints of P and let u′, v′ ∈ W be the endpoints of P ′. Suppose some
x ∈ V (P) ∩ V (P ′). Let Pux and Pxv be the subpaths of P from u and v to x respectively and
define P ′

u′x and P ′
xv′ symmetrically. Then, without loss of generality Pux and P ′

u′x both have at

58

most h/2 edges meaning the concatenation of Pux and P ′
u′x at x is in P(h)(W). It follows that u

and u′ are in the same connected component in (W,P(h)(W)) and therefore, v and v′ are also in
this component.

Applying the above lemma, we show that, up to a factor of 2 in the hop stretch, we may assume
that our graph is a forest. We let P(h)

G (W) be all paths with at most h hops between vertices in W
in graph G.

Lemma 53. Let G = (V,E) be a graph, let W ⊆ V . Then there exists a subgraph F ⊆ G which is
a forest where u, v ∈ W are connected in (W,P(h)

G (W)) iff u, v are connected in (W,P(2h)
F (W)).

Proof. We will iteratively construct F . Specifically, for each connected component of (W,P(h)
G (W))

with vertex set U we will maintain a collection of paths PU where these paths are all contained in
G[P(h)(U)] and F is the graph induced by the union of all these paths. It follows that by Theo-
rem 52 if G[PU] is a tree then the connected components of our final solution are indeed a forest.
We will maintain the following invariants for our PUs where hopG(v, U) := minu∈U hopG(v, u):

1. U ′ := U ∩ V (G[PU]) is connected in (U ′,PU);

2. G[PU] is a tree;

3. hop(P) ≤ 2h for every P ∈ PU ;

4. hopG[PU](v, U) ≤ h for every v ∈ V (G[PU]).

We initialize PU to contain a path consisting of exactly one (arbitrary) vertex in U . Notice that
our construction trivially satisfies these invariants initially.

Next, we repeat the following until U ′ = U . Let u be a vertex in U \ U ′ where u has a path P
of at most h hops to a vertex in U ′; such a u and P must exist by the definition of U . Let x be
the first vertex in P ∩G[PU] where we imagine that P starts at u and let Pux be the subpath of P
from u to x. By invariant 4 we also know there is some path in G[PU] from x to a u′ ∈ U ′ with at
most h hops; call this path Pxu′ and let P ′ be the concatenation of Pux and Pxu′ ; we add P ′ to PU .
Notice that this adds u to U ′ and so this process will eventually terminate at which point U ′ = U .

Let us argue that our invariants hold. Our first invariant holds since before adding u to U ′, U ′ was
connected and after adding u to U ′, u is connected to u′ by P ′. Our second invariant holds since
x was the first vertex in G[PU] incident to P . Our third invariant holds since Pux and Pxu′ were
each of at most h hops. Our fourth invariant holds since the only new vertices we add to G[PU]
are the vertices of Pux, all of which are within h hops of u.

Lastly, notice that once U ′ = U for every U , our claim follows from invariants 1,2 and 3.

By turning our graph into a forest with Theorem 53 and then cutting the constituent trees at
O(h)-spaced level sets with two different initial offsets, we can conclude that every graph has
h-hop connectors with constant congestion and hop stretch.

Lemma 54. Let G = (V,E) be a graph. Then G has an h-hop connector with congestion 4 and
hop stretch 8 for every W ⊆ V .

Proof. By Theorem 53 we know that there is a forest F such that u, v are connected in (W,P(h)
G (W)

iff u, v are connected in (W,P(2h)
F (W)). Let T be a tree in this forest and notice that to get an

h-hop connector on G with hop stretch 8 and congestion 4, it suffices to find a 2h-hop connector
on T with hop stretch 4 and congestion 4.

59

We do so as follows. Root T arbitrarily at root r and let T1, T2, . . . be the subtrees resulting from
cutting T once every 4h levels and let T ′

1, T
′
2, . . . be the subtrees resulting from cutting T every 4h

levels with an initial offset of 2h. That is, Ti = T [V (Ti)] and v ∈ V (Ti) iff 4h(i−1) ≤ dT (v, r) <
4h · i and T ′

i = T [V (T ′
i)] where v ∈ V (T ′

i) iff max(4h(i− 1)− 2h, 0) ≤ dT (v, r) < 4h · i− 2h.
Notice that each Ti and T ′

i has diameter at most 4(2h). Thus, by Theorem 51 we know that each
Ti and T ′

i have 2h-hop connectors Pi and P ′
i with congestion at most 2 and hop stretch at most 4.

Thus, we let P1 := {Pi}i and P2 := {P ′
i}i and we let our h-hop connector for T be P := P1∪P2.

Let us argue that P is a 2h-hop connector on T with hop stretch 8 and congestion 4. Our
congestion bound is immediate from Theorem 51 and the fact that each edge occurs in at most
2 trees among all Ti and T ′

i . To see why P is connecting notice that if u, v are within 2h hops
of one another in T by some path P then this path must be fully contained in some Ti or T ′

i ; it
follows that u and v will be connected in some Pi or P ′

i and so connected in P . Lastly, our hop
bound is immediate by Theorem 51 since each Ti and T ′

i has diameter at most 4(2h).

Combining Theorem 54 with Theorem 50 immediately gives Theorem 48.

Before proceeding to our applications, we remark on a subtle issue regarding independence and
expected distance stretch versus worst case distance stretch. Theorem 48 bounded the cost of
projecting a subgraphs of G onto a partial tree embedding of G based on the tree embedding’s
worst-case distance stretch; one might naturally wonder if similar results are possible in terms of
the expected distance stretch of a distribution over partial tree embeddings. Here, dependence
issues and the partialness of our embeddings work against us. Specifically, one would have to
argue that T (H, h)—and, in particular, the relevant h-hop connector for T (H, h)—has low cost
in expectation where (T, ·) is drawn from a distribution. However, while it is true that for a
fixed H and T the relevant h-hop connector for H and T has low cost in expectation over the
entire distribution of tree embeddings, it need not be the case that this h-hop connector has low
cost when we condition on the fact that T is the tree we drew from our distribution. In short,
Theorem 50 seems to fail to hold for the expectation case.

4.5 Applications of h-Hop Partial Tree Embeddings

In this section we apply our embeddings of d(h) to give approximation algorithms for hop-
constrained versions of several well-studied network design problems; namely, oblivious hop-
constrained Steiner forest, hop-constrained group Steiner tree, hop-constrained k-Steiner tree
and hop-constrained oblivious network design. If unspecified, OPT will stand for the optimal
value of the relevant hop-constrained problem throughout this section. We improve our results for
hop-constrained group Steiner tree in a later section (Section 4.7.1).

4.5.1 Oblivious Hop-Constrained Steiner Forest

In this section we give our approximation algorithms for oblivious hop-constrained Steiner forest.
While we give our results for oblivious hop-constrained Steiner forest, it is easy to see that an
approximation algorithm for the oblivious version gives an approximation algorithm with the
same approximation ratios for the online and offline versions of the problem; to our knowledge
nothing was known for any of these variants prior to our work.

60

(Hop-Constrained Oblivious) Steiner Forest: In Steiner forest we are given a weighted graph
G = (V,E,w).

• Offline: In offline Steiner forest we are also given a collection of pairs of nodes {(si, ti)}i.
Our goal is to find a subgraph H ⊆ G so that every si is connected to every ti in H .

• Online: In online Steiner forest in each time step t = 1, 2, . . . a new pair of vertices (ut, vt)
is revealed and we must maintain a solution Ht for each t where Ht−1 ⊆ Ht which connects
pairs in {(u1, v1), . . . , (ut, vt)}.

• Oblivious: In oblivious Steiner forest we must specify a path Puv for each pair of vertices
(u, v) ∈ V × V before seeing any demands. The demands {(si, ti)}i are then revealed,
inducing our solution H :=

⋃
i Psiti .

In all three problems the cost of our solution H is w(H) :=
∑

e∈E(H) w(e). In the oblivious and
offline versions, our approximation ratio is w(H)/OPT where OPT is the cost of the optimal
offline solution for the given demand pairs. The competitive ratio of our solution in the online
case is maxt w(Ht)/OPTt where OPTt is the minimum cost subgraph of G connecting pairs in
{(u1, v1), . . . , (ut, vt)}.
In the hop-constrained versions of each of these problems we are additionally given a hop
constraint h ≥ 1 and if (si, ti) is a demand pair then our solution H must satisfy hopH(si, ti) ≤ h
for all i. The optimal solution against which we measure our approximation ratio is similarly
hop-constrained.

Notice that, unlike in the Steiner forest problem where we may assume without loss of generality
that each connected component of H is a tree, in hop-constrained Steiner forest each connected
component of H might not be a tree.

Related Work: We give some brief highlights from work in Steiner forest and hop-constrained
Steiner forest: while NP-hard Agrawal et al. [5] gave the first constant approximation for offline
Steiner forest; Berman and Coulston [30] gave an (optimal) O(log k) approximation for online
Steiner forest and Gupta et al. [105] gave the first non-trivial approximation algorithm for oblivious
Steiner forest, an O(log2 n) approximation. There has also been quite a bit of work on approxi-
mation algorithms for h-spanners which can be seen as a special case of offline hop-constrained
Steiner forest; see, for example, Dinitz and Zhang [66] and references therein. Notably for our
purposes, Elkin and Peleg [71] and Dinitz et al. [67] show that unless NP ̸⊆ BPTIME(2poly logn)
hop-constrained Steiner forest admits no O(2log

1−ϵ n) approximation; this immediately rules out
the possibility of a poly-log (unicriteria) approximation for hop-constrained Steiner forest. We
also note that a recent work of Babay et al. [17] gave results for hop-constrained Steiner forest
from a parameterized complexity perspective.

Algorithm: Roughly, our algorithm follows the usual tree-embedding template: we first apply
our h-hop partial tree embeddings to reduce oblivious hop-constrained Steiner forest to oblivious
Steiner forest on a tree; we then observe that oblivious Steiner forest is trivially solvable on trees
and project our solution back to G. The only minor caveats are: (1) since our tree embeddings
will only embed a constant fraction of nodes, we must repeat this process O(log n) times and (2)
for each tree embedding we must use Theorem 48 to argue that there is a cheap, feasible solution
for the relevant Steiner forest problem on each tree.

Formally, our algorithm to compute our solution H is as follows. We begin by applying The-
orem 46 to sample 8h-hop partial tree embeddings T1, T2, . . . , Tk where k := O(log n) for a

61

sufficiently large hidden constant, ϵ = .1 and an arbitrary root. Given u, v ∈ V , assign the pair
(u, v) to an arbitrary Tj such that u, v ∈ V (Tj) (we will argue that such a Tj exists with high
probability). Next, we let our path for u, v be Puv := (Tj)

G
uv the projection of the tree path between

u and v onto G.

We now give the analysis of our algorithm.

Theorem 55. There is a poly-time algorithm which given an instance of h-hop-constrained
oblivious Steiner forest returns a collection of paths such that the induced solution H for any
demand set satisfies w(H) ≤ O(OPT · log3 n) and hopH(si, ti) ≤ O(h · log3 n) with high
probability.

Proof. We use the above algorithm. We begin by arguing that H connects every si to ti for
every i with high probability with a path of at most O(log3 n · h) edges. Fix a vertex v. A
standard Chernoff-and-union-bound-type argument shows that v is in at least .8k of the Tj with
high probability. Specifically, let Xj be the random variable which indicates if v is in V (Tj), let
X :=

∑
j Xj and apply a Chernoff bound to X .

Taking a union bound over all v we have that with high probability every v is in at least .8k of the
Tj . Since we have k total Tj , by the pigeonhole principle it follows that any pair of vertices (si, ti)
simultaneously occur in at least .6k of the Tj , meaning that for each such pair there is a Tj where
we buy (Tj)

G
siti

and so si will be connected to ti in our solution. Since hop((Tj)
G
siti

) ≤ O(h·log3 n)
by Theorem 46, it follows that hopH(si, ti) ≤ O(h · log3 n).
We next argue that our solution satisfies the stated cost bound. Let HTj

be the minimal subgraph
of Tj connecting all pairs assigned to Tj and let Hj :=

⋃
e∈HTj

(Tj)
G
e be the projection of HTj

onto G. Notice that it suffices to argue that wTj
(HTj

) ≤ O(OPT · log2 n) for every j since if
this held we would have by Theorem 46 that the cost of our solution is w(H) ≤

∑
j w(Hj) ≤∑

j

∑
e∈HTj

w((Tj)
G
e) ≤

∑
j

∑
e∈HTj

wTj
(e) =

∑
j wTj

(HTj
) ≤ O(OPT · log3 n). However,

applying Theorem 48 to the optimal solution H∗ on G shows that T (H∗, h) is a feasible solution
for the Steiner forest problem on Tj which connects all pairs assigned to Tj with cost at most
O(log2 n ·OPT). Since HTj

is the optimal solution for such a Steiner forest problem, it follows
that wTj

(HTj
) ≤ O(OPT · log2 n) as required.

Bicriteria Min-Cost Spanner Approximations

We end this section by remarking that our hop-constrained Steiner forest algorithm gives new bi-
criteria approximation algorithms for spanner problems. Notably, the aforementioned Ω(2log

1−ϵ n)
hardness of approximation reductions break down for bicriteria approximation algorithms. For
this reason, Chlamtáč and Dinitz [56] state the following regarding bicriteria approximation
algorithms for spanner problems:

Obtaining good bicriteria approximations, or proving that they cannot exist, is an
extremely interesting area for future research...

As a corollary to our hop-constrained Steiner forest problem result, we give a new such bicriteria
approximation algorithms for spanners. Specifically, in the minimum cost client-server h-spanner
problem we are given a client graph Gc = (V,Ec) and a weighted server graph Gs = (Vs, Es, w)
and integer h ≥ 1. We must find a subgraph H of Gs which minimizes w(H) subject to the
constraint that for each {u, v} ∈ Ec we have hopH(u, v) ≤ h. [70] and [72] studied the unit cost

62

version of this problem for h = 2 and h > 3, giving bicriteria algorithms in the latter, but, to
our knowledge no (poly-log, poly-log) bicriteria approximation algorithms are known for either
the unit-cost version of this problem or the min-cost spanner problem (i.e. this problem when
Es = Ec).

By creating an offline hop-constrained Steiner forest problem which has a demand pair for each
client edge, it is easy to see that Theorem 55 gives such a bicriteria approximation algorithm for
min-cost client-server h-spanner.

Corollary 56. There is a poly-time algorithm for min-cost client-server h-spanner which returns
an H ⊆ Gs where w(H) ≤ O(OPT · log3 n) and for each {u, v} ∈ Ec we have hopH(u, v) ≤
O(h · log3 n).

4.5.2 Hop-Constrained Group Steiner Tree
As both set cover and Steiner tree are special cases of it, the group Steiner tree problem is one
of the most general covering problems. In this section, we give (O(poly log n), O(poly log n))
bicriteria approximation algorithms for the hop-constrained variant of group Steiner tree. We
later give an improved approximation based on “h-hop copy tree embeddings” which build on our
h-hop partial tree embeddings. However, we include this result to highlight the fact that h-hop
partial tree embeddings alone are sufficient for solving many hop-constrained problems.

Hop-Constrained Group Steiner Tree: See Section 2.0.1 for a definition of group Steiner
Tree. Hop-constrained group Steiner tree is defined as group Steiner tree but we are additionally
given a hop bound h ≥ 1 and we must ensure that hopT (gi, r) ≤ h where hopT (gi, r) :=
minv∈gi∩V (T) hopT (v, r).6 Unlike hop-constrained Steiner forest, the optimal solution for hop-
constrained Steiner tree is, in fact, a tree. In particular, if H is a feasible solution, then the shortest
path tree on H rooted at r is also a feasible solution of cost at most the cost of H .

Algorithm: Our algorithm will reduce solving hop-constrained group Steiner tree to a series of
group Steiner tree problems on trees. For this reason, we restate the following known result for
group Steiner tree on trees.

Theorem 57 ([92]). There exists a randomized algorithm which with high probability given an
instance of group Steiner tree on a tree returns a solution of cost at most O(OPT · logN log k).

We might naively hope to realize the usual tree embedding template: sample O(log n) partial
tree embeddings using Theorem 46, apply Theorem 57 to the resulting trees and then project
the solutions back to the input graph. However, things are not so simple: since our partial tree
embeddings only embed a subset of nodes, the optimal solution on the group Steiner tree problem
on each of our partial tree embeddings has no guarantees of being close to optimal. For example,

6The assumption that the tree is rooted in group Steiner tree is without loss of generality as we may always
brute-force search over a root. Similarly, the assumption that all groups are pairwise disjoint is without loss of
generality since if v is in groups {g1, g2, . . .} then we can remove v from all groups and add vertices v1, v2, . . . to G
which are connected only to v so that vi ∈ gi and w((v, vi)) = 0 for all i. For the unrooted hop-constrained group
Steiner tree problem we might define the problem as unrooted group Steiner tree but with the additional constraint that
T has diameter at most h; all of our results will hold for this unrooted version of the problem though its worth noting
that in this case the optimal solution is no longer a tree without loss of generality. The aforementioned transformation
also allows us to assume that groups are pairwise disjoint in hop-constrained group Steiner tree at a possible loss of
an additive 1 in our hop stretch.

63

suppose gi = {vi, v′i} where w((r, vi)) = ϵ for some small ϵ > 0 and w((r, v′i)) = 1 for each
group gi. Then, if our partial tree embedding embeds v′i but not vi, connecting gi to r on our tree
will be arbitrarily more expensive than OPT.

We solve this issue by relaxing the instance of hop-constrained Steiner tree that we solve on
each of our trees. Specifically, we will randomly merge groups so that there always exists a low
cost group Steiner solution. For example, in the above example we could randomly partition
groups into super-groups each consisting of Θ(log n) groups. If we then solved group Steiner
tree on our tree on these super-groups we would know that—by a standard Chernoff-union bound
proof—every super-group has at least one constituent vi embedded on the tree and so the optimal
group Steiner tree problem restricted to embedded nodes on our tree still has low cost.

Formally, our algorithm for constructing our solution T is as follows. Initially every group is
active; we let a be the number of active groups throughout our algorithm.

1. For phase j ∈ [1000 log n log k] or until a ≤ 10 log n

(a) For iteration ℓ ∈ [1000 log n]

i. Apply Theorem 46 with hop bound 8h, ϵ = .1 and root r on G to get partial tree
embedding Tjℓ

ii. Let (g′jι)
k′
ι=1 form a uniformly random partition of the vertices of all active groups

where k′ = ⌈ a
10 logn

⌉ and an active gi ⊆ g′jι with probability 1/k′

iii. Apply Theorem 57 to the group Steiner tree instance on Tjℓ with root r and groups
(g′jι)

k′
ι=1 to get back solution Hjℓ

(b) Let j∗ := argminℓ wTjl
(Hjℓ)

(c) Add TG
e to T for every e ∈ E(Hjj∗)

(d) Set all gi which are now connected to r by T as inactive

2. For the up to 10 log n remaining active groups we add to T the shortest path in G from r to
each such group with at most h hops

3. Lastly, we set T to be a BFS tree on T rooted at r to ensure that T is a tree

We apply Theorem 48 and a standard Chernoff-union-bound-type argument to argue that each of
our instances of group Steiner tree on a tree have a cheap solution.

Lemma 58. Fix a phase j and let OPTℓ be the cost of the optimal group Steiner tree instance
on Tjℓ with root r and groups (g′jι)

k′
i=1. Then minℓ OPTℓ ≤ O(log2 n ·OPT) with probability at

least 1− 1
n5 .

Proof. Since we have fixed a j, for ease of notation we let Tℓ := Tjℓ and g′ι = g′jι for the remainder
of the proof.

We will construct a solution T ′
ℓ for every ℓ which has cost at most O(log2 n ·OPT) and which is

feasible for the aforementioned group Steiner instance with probability at least 1
3
. Our claim will

then immediately follow from this and the fact that the feasibility of each T ′
ℓ will be independent,

meaning with probability at least 1− (1
3
)1000 logn ≥ 1− 1

n5 there is some feasible T ′
ℓ with cost at

most O(log2 n ·OPT).

Fix an arbitrary ℓ. Let T ∗ be the optimal solution to our h-hop-constrained group Steiner tree
problem on G and let W := V (Tℓ) be all vertices embedded by Tℓ. Let T ′

ℓ := Tj(T
∗, h) where

64

Tj(T
∗, h) is as defined in Theorem 47. By Theorem 48 we have wTj

(Tj(T
∗, h)) ≤ O(log2 n·OPT)

as desired.

We now argue that T ′
ℓ is feasible with probability at least 1

3
. It suffices to show that some vertex

from g′ι is in W ∩ V (T ∗) for every ι ∈ [k′] with probability at least 1
3
.

Let I := {i : gi ∩W ∩ V (T ∗) ̸= ∅} be all groups with at least one embedded vertex from the
optimal solution. We know by Theorem 46 and linearity of expectation that E[|I|] ≥ .9a but since
|I| ≤ a, it follows by Markov’s inequality that Pr(|I| ≥ .8a) ≥ 1

2
.

Fix a super-group g′ι. For group gi, let Xi be the indicator of whether gi ⊆ g′ι. Similarly, let I⃗ be a
fixed value in the support of I and let X(I⃗)

ι :=
∑

i∈I⃗ Xi. Notice that E[X(I⃗)
ι] ≥ |I⃗| · 1000 logn

a
and

that for a fixed I⃗ if I = I⃗ and X
(I⃗)
ι ≥ 1 then T ′

ℓ will connect g′ι to r.

Since for a fixed I⃗ we know that each Xi in
∑

i∈I⃗ Xi is independent, a Chernoff-bound shows
that

Pr

(
X(I⃗)

ι ≤ |I⃗| · 900 log n
a

)
≤ exp

(
−(.1)2 · 1000 log n · |I⃗|

3a

)
≤ exp

(
−3|I⃗| · log n

a

)

It follows that if |I⃗| ≥ .8a we have that Pr (XI⃗ = 0) ≤ 1
n2 . Combining this with a union bound

and the fact that |I| is at least .8a with probability at least 1
2
, we have that T ′

ℓ contains a vertex
from every g′ι except with probability∑

I⃗

Pr(I = I⃗) · Pr(X(I⃗)
ι = 0 for some ι) ≤

∑
(I⃗)

Pr(I = I⃗)
∑
ι

Pr(X(I⃗)
ι = 0)

=
∑

I⃗:|I⃗<.8a|

Pr(I = I⃗)
∑
ι

Pr(X(I⃗)
ι = 0)

+
∑

I⃗:|I⃗≥.8a|

Pr(I = I⃗)
∑
ι

Pr(X(I⃗)
ι = 0)

≤ 1

2
+

1

2n3

≤ 2

3
.

We conclude with our approximation algorithm for hop-constrained group Steiner tree.

Theorem 59. There is a poly-time algorithm which given an instance of h-hop-constrained group
Steiner tree returns a tree T such that w(T) ≤ O(log3 n logN log2 k ·OPT) and hopH(gi, r) ≤
O(h · log3 n) with high probability for every gi.

Proof. We use the algorithm described above. We first argue our cost bound. By Theorem 58,
Theorem 57 and a union bound over all phases we have that with high probability wTjj∗ (Hjj∗) ≤
O(log2 n logN log2 k · OPT) for every j. Since each of the at most 10 log n shortest paths we

65

buy cost at most OPT, we can apply the properties of our embeddings and sum up over all phases,
to see that wG(T) ≤ O(log3 n logN log2 k ·OPT).

Next, notice that T satisfies the stated hop bounds by Theorem 46.

To see why T connects all groups notice that in a given phase j where we have a unconnected
groups and a ≥ 10 log n, we newly connect at least a

10 logn
groups. Thus, the number of uncon-

nected groups after this iteration is at most (1− 1
10 logn

)a. Assume for the sake of contradiction
that the number of unconnected groups after 1000 log n log k phases is more than 10 log n. Then,
we have that the number of unconnected groups after 1000 log n log k phases is at most,

k ·
(
1− 1

10 log n

)1000 logn log k

≤ k · e− log k ≤ 1

a contradiction.

4.5.3 Hop-Constrained k-Steiner Tree

In this section we give a bicriteria approximation algorithm for the hop-constrained k-Steiner tree
problem and a relaxed version of it. Notably, unlike most other problems to which we apply our
embeddings, the hop-constrained version of k-Steiner tree and its relaxed version have previously
been studied under the name “Shallow-Light k-Steiner Trees” [116, 126]. While both our tech-
niques and prior work yield bicriteria approximation algorithms with polylogarithmic guarantees,
our techniques are simpler (i.e., follow directly from the theory of partial tree embeddings), and
for the relaxed problem give the best known cost approximation (at the cost of a worse hop stretch
than known results).

Hop-Constrained k-Steiner Tree: Let G = (V,E,wG) be a weighted graph. Given a terminal
set S ⊆ V , an integer 1 ≤ k ≤ |S|, and a root r ∈ V we want to find the connected subgraph
H ⊆ G which minimizes wG(H) :=

∑
e∈E(H) wG(e) that contains r and has at least k terminals

(i.e., |V (H) ∩ S| ≥ k). In the hop-constrained version, we are additionally given a hop constraint
h ≥ 1 and need to satisfy that the hop diameter of H is at most h (i.e., hopH(u, v) ≤ h for all
u, v ∈ V (H)). In the relaxed version, we must find an h-hop-diameter subgraph H with at least
k/8 terminals, but we compare our cost to the optimal solution on k-terminals whose value we
denote OPT.

Related work: Hajiaghayi et al. [116] solve the relaxed hop-constrained k-Steiner tree with
O(log n) hop stretch and O(log3 n) cost approximation. They show that the relaxed and non-
relaxed problems are equivalent up to a O(log k) factor in the cost and they use a black-box
reduction to reduce the relaxed problem to a new problem (without hop constraints) called the
“buy-at-bulk k-Steiner tree problem” (which we do not define here), achieving a O(log4 n) cost
approximation and O(log2 n) hop approximation. Khani and Salavatipour [126] improve the hop-
constrained k-Steiner tree guarantee to O(log n) hop stretch and O(log2 n) cost approximation by
improving the buy-at-bulk k-Steiner tree cost approximations.

Algorithm for the h-hop relaxed k-Steiner tree problem: We sample an 8h-hop partial tree
embedding T of G with root r, hop stretch O(log3 n), worst-case distance stretch O(log2 n), and
exclusion probability 1

4
via Theorem 46. Let H ′ be the optimal k

8
-Steiner tree solution (without

hop constraints and containing the root) on T with the terminal set V (T)∩ S, which can be found

66

with a standard (poly-time) dynamic programming algorithm. We return H :=
⋃

e∈E(H′) T
G
e , i.e.,

the projection of H ′ back to G.

Lemma 60. There is a poly-time algorithm for relaxed hop-constrained k-Steiner tree which
produces a solution H that contains r, at least k/8 terminals, and has hop diameter O(log3 n · h).
With constant probability, H satisfies wG(H) ≤ O(log2 n ·OPT).

Proof. Suppose that H∗ is the optimal solution of weight wG(H
∗) = OPT and hop diameter at

most h. Furthermore, let SOPT := S ∩ V (H∗) be the set of terminals in the optimal solution.
Since T was sampled from a distribution with exclusion probability 1/4, we have that E[|V (T) ∩
SOPT|] = k/4, hence we have Pr[|V (T) ∩ SOPT| ≥ k/8] ≥ k/4−k/8

k−k/8
= 1/7. Furthermore, we

can find a “projection” F ∗ = T (H∗, h) ⊆ T of H∗ to the tree T (using Theorem 48) where
wG(F

∗) ≤ 4α · OPT and |V (F ∗) ∩ S| = |V (T) ∩ SOPT| ≥ k/8 with constant probability.
Therefore, there exists an optimal solution F ∗ on T solving the (un-hop-constrained) k/8-Steiner
tree problem with value at most 4α ·OPT. Hence wG(H

′) ≤ 4α ·OPT with constant probability.

Finally, we project H ′ back to G to obtain the output H and deduce that the hop diameter is
O(log3 n · h) and wG(H) ≤ 4α · OPT with constant probability (since the partial embeddings
are dominating, i.e., wG(T

G
e) ≤ wT (e)), as required.

Algorithm for the (non-relaxed) h-hop k-Steiner tree problem: We can easily boost the k/8-
Steiner algorithm from constant probability to high probability by repeating it O(log n) times and
taking the minimum solution. We can then apply this high-probability algorithm O(log k) times
and take the union of the results as our solution. Note that in each iteration, a 1/8-fraction of the
remaining terminals will be added to the final solution and so by a standard covering argument
O(log k) iterations suffice to cover all terminals. The hop diameter does not increase during the
iterations since all solutions share a common root r, while the cost of our solution increases by
O(OPT · log2 n) in each iteration. This proves the following result.

Lemma 61. There is a poly-time algorithm for the k-Steiner tree problem which outputs a solution
H with wG(H) ≤ O(log2 n · log k) · OPT and hop diameter at most O(log3 n · h) with high
probability.

4.5.4 Hop-Constrained Oblivious Network Design
In this section we give a bicriteria approximation algorithm for hop-constrained oblivious network
design which generalizes the hop-constrained version of many well-studied oblivious network
design problems.

(Hop-Constrained) Oblivious Network Design: In the oblivious network design problem we are
given a weighted graph G = (V (G), E(G), wG), a monotone subadditive function f : R≥0 → R≥0

(satisfying f(a + b) ≤ f(a) + f(b) and f(a) ≤ f(a + b) for all a, b ≥ 0). For each pair of
vertices (u, v) ∈ V×V we need to select a single path Puv between u and v. An adversary then
reveals a set of k demand pairs {(si, ti)}ki=1, inducing our solution

⋃
i Pi where Pi := Psiti . For

an edge e ∈ E(G) let ℓe := |{i : Pi ∋ e}| be the “load” of our induced solution: that is, the
number of paths passing through e. The cost of our induced solution is

∑
e∈E(G) wG(e) · f(ℓe). In

hop-constrained oblivious network design we are additionally given a hop constraint h ≥ 1 and
require that each Puv satisfies hop(Puv) ≤ h for all i. (Non-oblivious) network design is identical
but we are shown the demand pairs before we must fix our paths. We emphasize that OPT in this

67

section will refer to the cost of the optimal hop-constrained network design problem; that is, the
cost of the optimal solution which knows the demand pairs before it fixes its paths.

Related Work: [105] introduced the oblivious network design problem as an oblivious gener-
alization of many well-studied problems such as Steiner forest and buy-at-bulk network design
[15].

Algorithm: We sample 5h-hop partial tree embeddings with trees T1, T2, . . . , TO(logn) by applying
Theorem 46 to G with ϵ = .1 and an arbitrary root. Next, we fix a Tj and do the following. We let
Sj := {(u, v) : u, v ∈ V (Tj)} be the pairs of vertices embedded by Tj . For each pair (u, v) ∈ Sj ,
we let P ′

uv ← (Tj)uv be the unique simple path between u and v in Tj (possibly overwriting a
previous P ′

uv). Lastly, we let Puv := (Tj)
G
uv be P ′

uv’s projection onto G.

Our proof will use the usual partial tree-embedding template along with the idea of mixture
metrics which we introduced in Section 4.3.3. We let Ij be the

Lemma 62. Given the revealed demand pairs, let Ij be the indices of all pairs with vertices in Tj

and let ALGj be the optimal cost of the network design problem (without hop constraints) on the
tree Tj with demand pairs Ij . Then ALGj ≤ O(log3 n ·OPT) with high probability.

Proof. We introduce some notation. We write T := Tj , ALG := ALGj , and I := Ij for brevity.
Let α = O(log2 n) be the worst-case distance stretch of T (as in Theorem 46). For a tree edge
e = {u, v} ∈ E(T) where u is the parent of v, we define Se ⊆ V (T) as the set of nodes in
the subtree of e (including v, but excluding u). Furthermore, given a set W ⊆ V (T) we write
unmatched(W) := |{i ∈ I : {si, ti} ∩W = 1}| as the number of “unmatched terminals” in W .

Remember that T is well-separated (as stipulated by Theorem 46), meaning each root-to-leaf has
edges of weights that are decreasing powers of 2. Specifically, wT (e) = 2p for some p. From now
on we fix a value p.

We define “mixture weights” w′
G on the graph G: for an edge e ∈ E(G) we define w′

G(e) :=
1/h + wG(e) · 5α

2p
. By d′G : V (G) × V (G) → R≥0 we denote the distances induced by w′

G.
Furthermore, given a node v ∈ V (G), radius r > 0, we define the “ball” B′

G(r, v) as the set of all
(fractional) edges f such that there exists a path Q in G between v and (any endpoint of) f with
w′

G(Q) ≤ r. Here we consider an edge to be subdivided into infinitesimal pieces, hence one can
talk about a fractional portion of an edge—while this can be made fully formal by considering a
version of G where an edge e ∈ E(G) is subdivided into ξ →∞ pieces of weight wG(e)/ξ, hops
1/ξ, and mixture weight w′

G(e)/ξ, we choose to keep it slightly informal for simplicity. Next, we
extend B′

G(r,W) :=
⋃

v∈W B′
G(r, v) for a subset W ⊆ V (G).

For each tree edge e ∈ E(T) of weight wT (e) = 2p we associate the ball Ae := B′
G(2, Se)

to e. We show that the balls assigned to different edges e and f of the same weight 2p are
disjoint. Clearly, since T is well-separated, there is no root-leaf path that contains both e and
f . Note that 2p ≤ dT (u, v) ≤ α · d(5h)G (u, v) for u ∈ Se (subtree below e) and v ̸∈ Se, implying
d
(5h)
G (Se, Sf) ≥ 2i

α
. Therefore, any path Q between (a node in) Se and (a node in) Sf has

hop(Q) > 5h or wG(Q) ≤ 2i

α
. Since w′

G(Q) = hop(Q)/h+wG(Q) · 5α
2p

we have that w′
G(Q) ≥ 5.

We conclude that d′G(Se, Sf) ≥ 5. Therefore, the balls Ae and Af (of radius 2) are disjoint.

Let {P ∗
i }i be an optimal hop-constrained solution on G. Fix a tree edge e ∈ E(T) of weight

wT (e) = 2p. With a slight abuse of notation, let P ∗
i ∩Ae be the sub-path of P ∗

i from its start in Se

to the first node (in the infinitesimal graph) not contained in the ball Ae. We claim that for each

68

unmatched terminal si ∈ Se (or ti, but we will WLOG assume it is si) it holds wG(P
∗
i ∩Ae) ≥ 2p

5α
.

First, since by definition si ∈ Se and ti ̸∈ Se, then d′G(si, ti) ≥ 5 (as in the previous paragraph).
Therefore, since the radius of Ae is 2 < 5 we have that w′

G(P
∗
i ∩ Ae) ≥ 2. Furthermore, let

Q := P ∗
i ∩Ae, and we have 2 ≤ w′

G(Q) = hop(Q)/h+wG(Q) · 5α
2p
≤ 1 +wG(Q) · 5α

2p
giving us

wG(Q) ≥ 2p

5α
as claimed.

Continuing to fix {P ∗
i }i and e ∈ E(T) with wT (e) = 2p, we define ℓ∗f to be the load of {P ∗

i }i
on any edge f ∈ E(G) and then define OPT(p, e) :=

∑
f∈Ae

wG(f) · ℓ∗f . Furthermore, since for
each p the balls {Ae}e∈E(T),wT (e)=2p are disjoint, we conclude that (for each p)

OPT =
∑

f∈E(G)

wG(f)ℓ
∗
f ≥

∑
e∈E(T),wT=2p

∑
f∈Ae

wG(f)ℓ
∗
f =

∑
e∈E(T),wT (e)=2p

OPT(p, e).

Fix tree edge e ∈ E(T) with wT (e) = 2p. As proven before, for each i where si or ti are an
unmatched terminal in Se we have that wG(P

∗
i ∩Ae) ≥ wT (e)

5α
and all such {P ∗

i ∩Ae) are contained
within the same set of edges Ae. By subadditivity, the contribution to OPT(p, e) is minimized
when the paths {P ′

i ∩ Ae}unmatched i in Se are identical for all i, leading to a contribution of at least
OPT(p, e) ≥ 2p

5α
f(unmatched(Se)).

Note that there are at most O(log n) values for p since T is well-separated and the aspect ratio of
G is poly(n). Therefore, the value of the algorithm can be written as

ALG ≤
O(logn)∑
p=1

∑
e∈E(T),wT (e)=2p

2pf(unmatched(Se)) ≤
O(logn)∑
p=1

∑
e∈E(T),wT (e)=2p

O(α)OPT(p, e)

= O(α)

O(logn)∑
p=1

OPT.

Therefore, ALG ≤ O(α log n ·OPT) = O(log3 n ·OPT).

We conclude the analysis of the above algorithm.

Theorem 63. There is a poly-time algorithm for h-hop-constrained oblivious network design
which with high probability outputs a selection of paths {Puv}(u,v)∈V×V each with at most
O(log3 n · h) hops such that the induced solution for any set of demand pairs has cost at most
O(log4 n ·OPT).

Proof. First, since we sample from a partial tree distribution D with Pr(T,·)∼D[v ∈ V (T)] ≥ 0.9,
we conclude using a standard Chernoff and union bound that both nodes of each demand pair
(si, ti) appear in at least one partial tree embedding Tj , with high probability. Therefore, with high
probability, each pair is assigned a valid path at least once. Furthermore, since the distribution is
h-hop with hop stretch O(log3 n), we have that hop(Pi) ≤ O(log3 n)h.

Let ALGj be the cost of the (unique) solution in the tree Tj with respect to all demand pairs Ij .
We have ALGj ≤ O(log3 n ·OPT) by Theorem 62. Since for each j we purchase a subset of the
paths corresponding to the cost ALGj solution on Tj and since projecting such a solution back
to G only decreases its cost and there are O(log n) trees Tj , we conclude that our cost is at most
O(log4 n)OPT.

69

4.6 h-Hop Copy Tree Embeddings
In the preceding section we showed how many hop-constrained problems reduce to solving
O(log n) non-hop-constrained problems on trees by sampling O(log n) partial tree embeddings
as in Theorem 46. In this section, we show how to compactly represent O(log n) draws from
Theorem 46 in a single “h-hop copy tree embedding” to reduce many hop-constrained problems
to a single non-hop-constrained problem on a tree. This will allow us to give several online
algorithms for hop-constrained problems and improve the approximation guarantees for offline
hop-constrained group Steiner tree which we gave in the preceding section. Roughly, a copy tree
embedding is a tree embedding where a vertex maps to many copies of itself.

To precisely define our h-hop copy tree embeddings we will use the idea of a copy mapping
(Theorem 2) from the previous chapter, a function ϕ from the vertex set V to subsets of V ′. ϕ(v)
should be understood as the “copies” of v in V ′.

Definition 64 (h-Hop Copy Tree Embedding). Let G = (V,E,w) be a weighted graph with some
distinguished root r ∈ V and fix h ≥ 1. An h-hop copy tree embedding with cost stretch α and
hop stretch β consists of a weighted rooted tree T = (V ′, E ′, w′), a copy mapping ϕ : V → 2V

′

and monotone edge mappings πG→T : 2E → 2E
′

and πT→G : 2E
′ → 2E such that:

1. α-Approximate Cost Preservation: For any F ⊆ E we have w(F) ≤ α · w′(πG→T (F))
and for any F ′ ⊆ E ′ we have w′(F ′) ≤ w(πT→G(F

′)).

2. β-Approximate h-Hop-Connectivity Preservation: For all F ⊆ E and u, v ∈ V if
hopF (u, v) ≤ h, then ϕ(u), ϕ(v) ⊆ V ′ are connected via πG→T (F). Symmetrically, for all
F ′ ⊆ E ′ and u′, v′ ∈ V ′ if u′ and v′ are connected by F ′ then hopπT→G(F ′)(ϕ

−1(u′), ϕ−1(v′)) ≤
βh.

3. Root mapping: ϕ(r) = {r′} where r′ is the root of T .

We say an h-hop copy tree embedding is efficient if ϕ, πG→T and πT→G are all deterministically
poly-time computable.

A simple consequence of our main embedding theorem (Theorem 46), along with our projection
mapping theorem (Theorem 48), shows that we can compute h-hop copy tree embeddings with
poly-log hop and cost stretch.

Theorem 65. Given h ≥ 1, there is a poly-time algorithm which given any weighted graph
G = (V,E,w) and root vertex r ∈ V computes an efficient h-hop copy tree embedding from G
into some weighted and rooted tree T with hop stretch O(log3 n) and cost stretch O(log3 n) with
high probability. Further, T is well-separated and satisfies |ϕ(v)| ≤ O(log n) for all v.

Proof. We compute our h-hop copy tree embedding as follows. First, apply Theorem 46 to
compute Θ(log n) 8h-hop partial tree embeddings T1, T2, . . . with exclusion probability ϵ =
.01, root r, worst-case distance stretch O(log2 n) and hop stretch O(log3 n). We let our copy
tree embedding T be the result of identifying r in each of our Ti as the same vertex; that is,
V (T) = {r} ⊔

⊔
i V (Ti) \ {r}. Let ϕ map from a vertex in V to its copies in the natural way.

We let πG→T (F) :=
⋃

i Ti(G[F], h) where Ti(G[F], h) is as defined in Theorem 47. We also let
πT→G(F

′) :=
⋃

e∈F ′ TG
e . Notice that our mappings are monotone by definition. Also notice that

our tree satisfies root mapping by construction. Lastly, our tree satisfies O(log3 n)-approximate
cost preservation as an immediate consequence of Theorem 46, Theorem 48 and the fact that we

70

sampled Θ(log n) trees. Our tree satisfies O(log3)-approximate h-hop-connectivity preservation
by Theorem 46 and a Chernoff bound which shows that any u, v have some copies that appear in
the same Ti with high probability. The well-separatedness and number of copies of each vertex
trivially follow from Theorem 46.

4.7 Applications of h-Hop Copy Tree Embeddings
In this section we apply our h-hop copy tree embeddings to give approximation algorithms for the
hop-constrained versions of group Steiner tree, online group Steiner tree, group Steiner forest and
online group Steiner forest. As in our previous section, we let OPT stand for the optimal value of
the relevant hop-constrained problem throughout.

4.7.1 Hop-Constrained Group Steiner Tree
Here we give an approximation algorithm for hop-constrained group Steiner tree which improves
over our result in Section 4.5.2 by using h-hop copy trees. For a problem definition and related
work see Section 4.5.2.

Algorithm: We first sample an h-hop copy tree T with high probability as in Theorem 65 with
mappings πG→T , πT→G and ϕ and root r. Next, consider the group Steiner tree instance on T
whose root is the one vertex in ϕ(r) and whose groups are (g′i)i where g′i :=

⋃
v∈gi ϕ(v). We apply

Theorem 57 to this group Steiner tree problem to get back tree T ′ ⊆ T and let H ′ := πT→G(T
′
t)

be its projection onto G. We let our solution H be a BFS tree of H ′ rooted at r where edges have
unit cost in the BFS.

The properties of our h-hop copy tree embeddings immediately show that this algorithm is
competitive.

Theorem 66. There is a poly-time algorithm which with high probability given an instance of h-
hop-constrained group Steiner tree returns a tree T such that w(T) ≤ O(log3 n logN log k ·OPT)
and hopH(gi, r) ≤ O(h · log3 n) for every gi.

Proof. We use the above algorithm. The root mapping and β-approximate h-hop connectivity
preservation properties of our h-hop copy tree embedding along with the feasibility of T ′ guar-
antees that H ′ connects gi to r for every i ≤ t with at most O(h · log3 n) hops; it follows that H
does the same. The bound on our cost comes from combining the fact that πG→T (H

∗) is feasible
for the group Steiner tree instance we solve on T where H∗ is the optimal solution on G, the
O(log3 n)-approximate cost preservation of our h-hop tree embedding and the cost guarantee of
Theorem 67.

4.7.2 Online Hop-Constrained Group Steiner Tree
In this section we show that our h-hop copy trees reduce solving online hop-constrained group
Steiner tree to online group Steiner tree on a tree; we then apply a known solution for online
group Steiner tree on trees.

Online Hop-Constrained Group Steiner Tree: Online group Steiner tree is defined in Sec-
tion 2.0.1. Online hop-constrained group Steiner tree is the same as group Steiner tree but we

71

are also given a hop-constraint h ≥ 1 and the optimal solution as well as each of our trees must
satisfy hopTt

(r, gi) ≤ h for every i ≤ t. We assume that the possible groups revealed by the
adversary are known ahead of time as otherwise this problem is known to admit no sub-polynomial
approximations [8] and let k be the number of possible groups revealed by the adversary.

We recall a result of [8] that solves online group Steiner tree on trees.

Theorem 67 ([8]). There is a poly-time algorithm for online group Steiner tree on trees with
expected competitive ratio O(log2 n log k).

We then combine this result with our h-hop copy trees to get our algorithm for online hop-
constrained group Steiner tree.

Algorithm: We first sample an h-hop copy tree T with high probability as in Theorem 65 with
root r and mappings πG→T , πT→G and ϕ. Next, consider the online group Steiner tree instance
on T whose root is the one vertex in ϕ(r) where group g′t :=

⋃
v∈gt ϕ(v) is revealed in time step

t. Apply Theorem 67 to maintain solution T ′
t for this problem in time step t on T and let our

solution in time step t on G be Tt := πT→G(T
′
t).

The properties of our h-hop copy tree embeddings immediately give the desired properties of our
algorithm.

Theorem 68. There is a poly-time algorithm for online hop-constrained group Steiner tree which
with high probability maintains a solution {Tt}t that is O(log k · log5 n)-cost-competitive in
expectation where hopTt

(r, gi) ≤ O(log3 n · h) for all t and i ≤ t.

Proof. We use the above algorithm. The root mapping and β-approximate h-hop connectivity
preservation properties of our h-hop copy tree embedding along with the feasibility of T ′

t guar-
antees that our solution Tt connects gi to r for every i ≤ t with at most O(h · log3 n) hops. The
bound on our cost comes from combining the fact that πG→T (T

∗
t) is feasible for the group Steiner

tree instance we solve on T in time step t where T ∗
t is the optimal solution on G in time step t,

the O(log3 n)-approximate cost preservation of our h-hop tree embedding and the cost guarantee
of Theorem 67.

4.7.3 Hop-Constrained Group Steiner Forest
As both group Steiner tree and Steiner forest are special cases of it, the group Steiner forest is one
of the most general studied connectivity problems; for this reason it is also sometimes referred to
as the “generalized connectivity problem.”

Hop-Constrained Group Steiner Forest: Group Steiner forest is defined in Section 2.0.1. In
hop-constrained group Steiner forest we are additionally given a hop bound h ≥ 1 and for every i
we must ensure that hopF (si, ti) ≤ h for some si ∈ Si and ti ∈ Ti. We will use the shorthand
hopF (Si, Ti) := minsi∈Si,ti∈Ti

hopF (si, ti).

We use our copy tree embeddings to reduce hop-constrained group Steiner forest to the tree case.
We then apply an algorithm of Naor et al. [149] which shows how to solve group Steiner forest on
trees.

Theorem 69 ([149]). There is a poly-time algorithm for group Steiner forest on trees of depth d
which achieves an approximation ratio of O(d · log2 n log k) with high probability.

72

Algorithm: Formally, we first apply Theorem 65 to sample a copy tree T with depth O(log n), an
arbitrary root and mappings ϕ, πG→T and πT→G. Next, we apply Theorem 69 to solve the group
Steiner forest on T with pairs to be connected (S ′

1, T
′
1), . . . (S

′
k, T

′
k) where S ′

i :=
⋃

v∈Si
ϕ(v) and

symmetrically T ′
i :=

⋃
v∈Ti

ϕ(v). Let F ′ be the resulting solution on T . We return as our solution
F := πT→G(F

′).

Theorem 70. There is a poly-time algorithm for h-hop-constrained group Steiner forest which with
high probability returns a solution F such that w(F) ≤ O(OPT·log6 n log k) and hopF (Si, Ti) ≤
O(h · log3 n) for every i.

Proof. We use the above algorithm. A polynomial runtime is immediate from Theorem 65 and
Theorem 69. The hop guarantee is immediate from the correctness of the algorithm of Theorem 69
and the properties of πT→G as given in Theorem 65. To see the bound on cost, notice that
πG→T (F

∗) is feasible for the group Steiner forest problem that we solve on T and has cost at most
O(log3 n ·OPT) by the properties of πG→T as specified in Theorem 65 where F ∗ is the optimal
solution to the input group Steiner forest problem on G. The bound then follows from the fact
that T is well-separated and so has depth at most O(log n).

4.7.4 Online Hop-Constrained Group Steiner Forest

In this section we give our algorithm for online hop-constrained group Steiner forest. It follows,
almost immediately, from our h-hop copy tree embeddings and a result of [149] for online group
Steiner forest on trees.

Online Hop-Constrained Group Steiner Forest: Online group Steiner forest is defined in
Section 2.0.1. Online hop-constrained group Steiner forest is the same as online group Steiner
forest but we are given a hop constraint h and we must ensure that for each t and i ≤ t there
is some si ∈ Si and ti ∈ Ti such that hopFt

(si, ti) ≤ h. We assume that the possible pairs
revealed by the adversary are known ahead of time as otherwise this problem is known to admit
no sub-polynomial approximations [8] and let k be the number of possible pairs.

We use our copy tree embeddings to reduce online hop-constrained group Steiner forest to the tree
case. We then apply an algorithm of Naor et al. [149] which shows how to solve group Steiner
forest on trees.

Theorem 71 ([149]). There is a randomized poly-time algorithm for group Steiner forest on trees
of depth d with expected competitive ratio O(d · log3 n log k).

Algorithm: Formally, we first apply Theorem 65 to sample a copy tree T with depth O(log n), an
arbitrary root and mappings ϕ, πG→T and πT→G. Next, we apply Theorem 71 to solve the online
group Steiner forest on T with pairs to be connected (S ′

1, T
′
1), . . . (S

′
t, T

′
t) in time step t where

S ′
i :=

⋃
v∈Si

ϕ(v) and symmetrically T ′
i :=

⋃
v∈Ti

ϕ(v). Let F ′
t be the resulting solution on T in

time step t. In time step t we return as our solution on G the subgraph Ft := πT→G(F
′
t).

We conclude with the properties of our online group Steiner forest algorithm.

Theorem 72. There is a poly-time algorithm for online h-hop-constrained group Steiner forest
which with high probability maintains a solution {Ft}t that is O(log7 n log k)-cost-competitive in
expectation where hopFt

(Si, Ti) ≤ O(h · log3 n) for all t and i ≤ t.

73

Proof. We use the above algorithm. A polynomial runtime is immediate from Theorem 65 and
Theorem 71. The hop guarantee is immediate from the correctness of the algorithm of Theorem 71
and the properties of πT→G as given in Theorem 65. To see the bound on cost, notice that
πG→T (F

∗
t) is feasible for the group Steiner forest problem that we solve on T and has cost at most

O(log3 n ·OPT) by the properties of πG→T as specified in Theorem 65 where F ∗
t is the optimal

solution to the input group Steiner forest problem on G in time step t. The bound then follows
from the fact that T is well-separated and so has depth at most O(log n).

4.8 Conclusion and Future Work
In this chapter we showed that, while far from any metric, hop-constrained distances are well-
approximated by partial tree metrics. We used this fact to develop new embeddings for hop-
constrained distances which we then used to give the first bicriteria (poly-log, poly-log) approxi-
mation algorithms for many classic network design problems.

We conclude by giving directions for future work. Reducing the stretch in our embeddings, or
proving lower bounds stronger than those immediately implied by the FRT lower bounds is our
main open question. A recent work [85] has made significant progress in this direction. Another
point to note is that we lose an O(log n) in the hop stretch when moving from partial tree metrics
to partial tree embeddings. This loss does not seem to have an analogue in the (non-partial) tree
embedding setting and it is not clear if such a loss is necessary.

Moreover, while tree embeddings have proven useful for many network design problems, there
are many other problems such as k-server [20], metrical task systems [26] and requirement cuts
[145] where tree embeddings enabled the first poly-log approximations. Thus, while the focus
of this chapter has been on the hop-constrained versions of network design problems, we expect
that our embeddings will prove useful for the hop-constrained versions of many of these other
problems.

Lastly, as we discussed at the end of Section 4.4, our h-hop partial tree embeddings are built on
the worst-case stretch guarantees of our partial metrics; it would be interesting if it were possible
to construct embeddings based on the expected stretch guarantees of our partial metrics. Such a
result would immediately give several randomized algorithms for hop-constrained problems with
low expected cost.

4.9 Deferred Proofs of Section 4.3
Lemma 73. For any hop constraint h ≥ 1, distance stretch α, hop stretch β and any L > 1, there
exists a graph G = (V,E,w) with aspect ratio L such that if a metric d̃ approximates d(h)G with
distance stretch α and hop stretch β then α(βh+ 1) ≥ L.

Proof. Set k := βh + 1 and consider the path graph with vertices v0, v1, . . . , vk where the
edges have a uniform weight of 1 (and all other edges have length L). Note that d̃(vi, vi+1) ≤
α · d(h)(vi, vi+1) = α. Applying the triangle inequality k times gives d̃(v0, vk) ≤ αk. However,
αk ≥ d̃(v0, vk) ≥ d(hβ)(v0, vk) = L, giving us that α(βh+ 1) ≥ L.

Lemma 74. Given any graph G = (V,E,w) with aspect ratio L and a distance stretch α and hop

74

stretch β satisfying α(βh+ 1) ≥ L, we have that α · dG approximates d(h)G with distance stretch α
and hop stretch β.

Proof. Set d̃(u, v) := α·dG(u, v) where dG is the standard shortest-path metric on G. It remains to
check that d̃(u, v) satisfies the requirements of Theorem 31. The right hand side of the inequality
in Theorem 31 clearly holds since dG(u, v) ≤ d

(h)
G (u, v) implies that d̃(u, v) = αdG(u, v) ≤

αd
(h)
G (u, v). We now argue the left hand side, i.e., d̃(u, v) ≥ d

(βh)
G (u, v), by considering two cases:

on the one hand, if dG(u, v) > βh then d̃(u, v) = αdG(u, v) ≥ α(βh + 1) ≥ L ≥ d
(βh)
G (u, v).

On the other hand, if dG(u, v) ≤ βh, this value must come from an unconstrained shortest-path
with hop distance (and length) of at most βh in which case d

(βh)
G (u, v) = dG(u, v) and therefore

d̃(u, v) = α · dG(u, v) ≥ dG(u, v) = d
(βh)
G (u, v) as desired.

Lemma 75. Let G = (V,E,w) be a weighted graph with padding parameter ρpad. For any
hop constraint h > 0, weight diameter b > 0, and exclusion probability γ > 0, there exists a
distribution C over partial vertex partitions where for every C = C1 ⊔ . . . ⊔ Ck in the support of
C:

1. Hop-Constrained Diameter: d(h)G (u, v) ≤ b for i ∈ [k] and u, v ∈ Ci;

2. Hop-Constrained Paddedness: d
(h γ

2ρpad
)

G (u, v) ≥ b · γ
2ρpad

for every u ∈ Ci and v ∈ Cj

where i ̸= j.

And:

3. Exclusion probability: PrC∼C[v ̸∈
⋃

i∈[k] Ci] ≤ γ for each v ∈ V where C = C1⊔ . . .⊔Ck;

4. Path preservation: PrC∼C[V (P) is broken in C] ≤ (hop(P)/h+ w(P)/b) · ρpad for each
path P .

Proof. Let d′ be the mixture metric of G with hop scale h and weight scale b and let ∆ := 2ρpad.
We first take a (distribution over) (ρpad,∆)-padded decompositions C ′ = C ′

1 ⊔ C ′
2 ⊔ . . . ⊔ C ′

k

using d′ as the underlying metric. Next, we construct Ci ⊆ C ′
i by starting with Ci := C ′

i and
removing all vertices v ∈ C ′

i where Bd′(v, 2γ) ̸⊆ C ′
i. Now Pr[v ̸∈

⋃
i∈[k] Ci] ≤ 2γ·ρpad

∆
≤ γ for

each vertex v ∈ V , as stipulated by (3).

Fix u, v ∈ Ci. Since every C ′
i has d′-diameter at most ∆, there exists a sequence of edges

P = (e1, e2, . . . , eℓ) between u and v whose d′-length is at most ∆. Therefore:

∆ ≥
ℓ∑

i=1

(
∆

h
+

∆ · w(ei)
b

)
=

∆ · hop(P)

h
+

∆ · w(P)

b
.

In other words, hop(P) ≤ h and w(P) ≤ b, implying that d(h)G (u, v) ≤ b for any u, v ∈ C ′
i.

Therefore, the same claim holds for u, v ∈ Ci ⊆ C ′
i, giving (1).

For u ∈ Ci and v ∈ Cj where i ̸= j we argue that d(γh/∆)(u, v) > γb/∆, i.e. (2). Suppose for
the sake of contradiction that d(γh/∆)

G (u, v) ≤ γb/∆. It follows that there exists a path P with
hop(P) ≤ γh/∆ and w(P) ≤ γb/∆. However, the d′-length of P is at most hop(P)∆

h
+ w(P)∆

b
≤

2γ. Thus, we have contradicted how we constructed Ci from C ′
i. Hence d

(γh/2ρpad)
G (u, v) >

γb/2ρpad since ∆ = 2ρpad.

75

Finally, consider a path P from u to v and let δ′ := hop(P)∆/h+ w(P)∆/b. If P is broken in
C1 ⊔ . . . ⊔ Ck then Bd′(u, δ

′) ̸⊆ P . We therefore have (4), namely

Pr[P is broken in C1⊔. . .⊔Ck] ≤ Pr[Bd′(u, δ
′) ̸⊆ P] <

δ′ · ρpad
∆

=
δ′

2
≤ (hop(P)/h+w(P)/b)·ρpad.

76

Part II

New Primitives for Graph Decompositions

77

Chapter 5

Length-Constrained Flows

5.1 Introduction

In the previous chapter we saw several examples of how to incorporate both hop distances and
metric distances into compact representations of graphs, namely tree embeddings. In this chapter,
we further explore the interplay between classic graph structures and a notion of distances, namely
length-constrained flows. These algorithms, in turn, give a variety of new results in expander
decompositions, a well-studied graph decomposition.

Throughput and latency are two of the most fundamental quantities in a communication network.
Given node sets S and T , throughput measures the rate at which bits can be delivered from S to T
while the worst-case latency measures the maximum time it takes for a bit sent from S to arrive at
T . Thus, a natural question in network optimization is:

How can we achieve high throughput while maintaining a low latency?

If we imagine that each edge in a graph incurs some latency and edges in a graph can only support
limited bandwidth, then achieving high throughput subject to a latency constraint reduces to
finding a large collection of paths that are both short and non-overlapping. One of the simplest
and most well-studied ways of formalizing this is the maximal edge-disjoint paths problems
(henceforth we use h-length to mean length at most h).

Maximal Edge-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and two disjoint sets S, T ⊆ V , find a collection of h-length edge-disjoint S to T
paths P such that any h-length S to T path shares an edge with at least one path in P .

The simplicity of the maximal edge-disjoint paths problem has made it a crucial primitive in
numerous algorithms. For example, algorithms for maximal edge-disjoint paths are used in
approximating maximum matchings [140] and computing expander decompositions [59, 160].
While efficient randomized algorithms are known for maximal edge-disjoint paths in the CON-
GEST model of distributed computation [45, 140], no deterministic CONGEST algorithms are
known. Indeed, the existence of such algorithms was stated as an open question by Chang and
Saranurak [45].

Of course, a maximal collection of routing paths need not be near-optimal in terms of cardinality
and so a natural extension of the above problem is its maximum version.

79

Maximum Edge-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and disjoint sets S, T ⊆ V , find a max cardinality collection of h-length edge-disjoint
S to T paths.

While this problem and its variants have received considerable attention [29, 39, 129], it is
unfortunately known to suffer from strong hardness results: the above problem has an Ω(h)
integrality gap and is Ω(h)-hard-to-approximate under standard complexity assumptions in the
directed case [18, 107]. Indeed, as observed in several works [11, 113, 129], working in the
presence of latency bounds in the form of a length constraint can make otherwise tractable
problems computationally infeasible and render otherwise structured objects poorly behaved.

In large part, the above problems are common primitives because their solutions are special cases
of a more general class of routing schemes that are central to distributed computing. Namely, they
are special cases of length-constrained flows.

Maximum Length-Constrained Flow: Given digraph D = (V,A), length constraint
h ≥ 1 and two disjoint sets S, T ⊆ V , find a collection of h-length S to T paths P
and a value fP ≥ 0 for P ∈ P where

∑
P∋a fP ≤ 1 for every a ∈ A and

∑
P fP is

maximized.

In several formal senses, length-constrained flows are the problem that describes how to efficiently
communicate in a network. Haeupler et al. [109] showed that, up to poly-log factors, the maximum
length-constrained flow gives the minimum makespan of multiple unicasts in a network, even
when (network) coding is allowed. Even stronger, the “best” length-constrained flow gives, up to
poly-log factors, the optimal running time of a CONGEST algorithm for numerous distributed
optimization problems, including minimum spanning tree (MST), approximate min-cut and
approximate shortest paths [114]. Despite the key role these flows play in distributed computing,
there are currently no known distributed (or even parallel!) algorithms for computing them. The
need for algorithms for length-constrained flows is further highlighted by the fact that many
classic optimization problems (such as matchings) reduce to length-constrained flows with small
values of h.

Thus, in summary a well-studied class of routing problems aims to capture both latency and
throughput concerns. These problems are known to serve as important algorithmic primitives as
well as complete characterizations of the distributed complexity of many problems. However,
even the simplest of these problems—maximal edge-disjoint paths—lacks good deterministic
CONGEST algorithms; even worse virtually nothing is known about parallel or distributed
algorithms for the maximum version of this problem and its fractional generalization, length-
constrained flows.

5.1.1 Our Contributions
We give the first efficient algorithms for computing these objects in several models of computation.

Algorithms for Length-Constrained Flows

Given a digraph with n nodes and m arcs, our main theorem shows how to deterministically com-
pute h-length flows that are (1− ϵ)-approximate in Õ(poly(h, 1

ϵ
)) parallel time with m processors

and Õ(poly(h, 1
ϵ
) · 2O(

√
logn)) distributed CONGEST time. We additionally give a randomized

80

CONGEST algorithm that succeeds with high probability and runs in time Õ(poly(h, 1
ϵ
)). Our

distributed algorithms for length-constrained flows algorithms can be contrasted with the best
distributed algorithms for (non-length-constrained) flows which run in (D+

√
n) · no(1) time [94],

nearly matching an Ω̃(D +
√
n) lower bound of Sarma et al. [161].1

As an immediate consequence of our parallel algorithms we also get deterministic sequential
algorithms running in Õ(m · poly(h, 1

ϵ
)) time. To our knowledge this is the first algorithm for

sequentially computing length-constrained flows with a linear dependence on m; a recent work of
Altmanová et al. [10] gave sequential algorithms with a dependence on m of O(m2) (but with a
smaller polynomial dependence on h and 1

ϵ
).

Additionally, our algorithms satisfy three desirable properties.

1. General Capacities, Lengths and Multi-Commodity: Our algorithms work for general
arc capacities (i.e. connection bandwidths), general lengths (i.e. connection latencies) and
multi-commodity flow variants.

2. Dual Solution: Not only do our algorithms compute a primal solution for length-constrained
flows but they also compute a certifying dual solution; a so-called moving cut, which is an
object of algorithmic utility in its own right; see, e.g. [57, 114].

3. Optimal Integrality: The flows we compute are “as integral as possible.” In particular,
for constant ϵ > 0 (and unit capacities) they are a convex combinations of Õ(h) sets of
arc-disjoint paths. No near-optimal h-length flow can be a convex combination of o(h) such
sets since, by an averaging argument, this would violate the aforementioned Ω(h) integrality
gap.

We give a more formal description of our results for length-constrained flows in Section 5.3.

Applications of our Length-Constrained Flow Algorithms

We give several applications of our length-constrained flow algorithms.

Maximal and Maximum Edge-Disjoint Paths First, as an almost immediate corollary of our
length-constrained flow algorithms, we derive the first deterministic CONGEST algorithms for
maximal edge-disjoint paths and essentially-optimal parallel and distributed algorithms for the
maximum edge-disjoint paths problem as well as for many variants of these problems. The former
result settles the open question of Chang and Saranurak [45]. The latter result crucially relies on the
optimal integrality of our length-constrained flows and matches known hardness-of-approximation
results. See Section 5.12 for details.

Simpler Distributed Expander Decompositions Deterministically. As a consequence of
our maximal edge-disjoint paths algorithms, we are able to greatly simplify known distributed
algorithms for deterministically computing expander decompositions.

We refer the reader to Chang and Saranurak [45] for a more thorough overview of the area, but
provide a brief synopsis here. An (ϵ, ϕ) expander decomposition removes an ϵ fraction of edges
from a graph so as to ensure that each remaining connected component has conductance at least ϕ.

1We use Õ notation to suppress dependence on poly(log n) factors, “with high probability” to mean with
probability at least 1− 1

poly(n) and D for the diameter of the input graph.

81

Expander decompositions have led to many recent exciting breakthroughs, including in solving
linear systems [162], unique games [14, 154, 164], minimum cut [124], and dynamic algorithms
[146].

Chang and Saranurak [45] gave the first deterministic CONGEST algorithms for constructing
expander decompositions. However, while much of expander decomposition construction reduces
to maximal edge-disjoint paths, the authors observe:

In the deterministic setting, we are not aware of an algorithm that can [efficiently]
solve [maximal disjoint paths]... [A solution to this problem would] simplify our
deterministic expander decomposition and routing quite a bit. [45]

As a result of the lack of such algorithms, the authors employ significant technical work-arounds.

Our deterministic CONGEST algorithms for maximal edge-disjoint paths when plugged into
the results of Chang and Saranurak [45] greatly simplify deterministic distributed algorithms for
expander decompositions. See Section 5.13 for further details.

Bipartite b-Matching. Using our length-constrained flow algorithms, we give the first efficient
(1− ϵ)-approximations for bipartite b-matching in CONGEST. b-matching is a classical problem
in combinatorial optimization which generalizes matching where we are given a graph G = (V,E)
and a function b : V → Z>0. Our goal is to assign integer values to edges so that each vertex v
has at most b(v) assigned value across its incident edges. b-matching and its variants have been
extensively studied in distributed settings [19, 37, 87, 87, 88, 133]. A standard folklore reduction
which replaces vertex v with b(v) non-adjacent copies and edge e = {u, v} with a bipartite
clique between the copies of u and v reduces b-matching to matching but requires overhead
max{u,v}∈E b(u) · b(v) to run in CONGEST. Thus, the non-trivial goal here is a CONGEST
algorithm whose running time does not depend on b. Currently, the best algorithm in CONGEST
is a (1

2
− ϵ)-approximation of Fischer [87] running in time Õ(poly(log 1

ϵ
)).

Similarly to classical matching, it is easy to reduce bipartite b-matching to an O(1)-length
flow problem. Thus, applying our algorithms for length-constrained flows and some of the flow
rounding techniques we develop in this chapter allows us to give the first (1−ϵ)-approximation for
b-matching in bipartite graphs running in CONGEST time Õ(poly(1

ϵ
) · 2O(

√
logn)). Our algorithms

are deterministic though similar results even for the randomized setting do not seem to be known.
See Section 5.14 for further details.

Length-Constrained Cutmatches. Lastly, our results allow us to give the first efficient con-
structions of length-constrained cutmatches. Informally, an h-length cutmatch with congestion γ
is a collection of h-length γ-congestion paths between two vertex subsets along with a moving
cut that shows that adding any more h-length paths to this set would incur congestion greater than
γ. See Section 5.15 for details.

A recent work [115] uses our algorithms for length-constrained cutmatches to give the first
efficient constructions of a length-constrained version of expander decompositions. This work,
in turn, uses these constructions to, among other things, give CONGEST algorithms for many
problems including MST, (1 + ϵ)-min-cut and (1 + ϵ)-shortest paths that are guaranteed to run in
sub-linear rounds as long as such algorithms exist on the input network.

82

5.2 Chapter-Specific Notation and Conventions
Before moving on to a formal statement of length-constrained flows, moving cuts and our results
we introduce some notation and conventions. Suppose we are given a digraph D = (V,A).

Digraph Notation. We will associate three functions with the arcs of D. We clarify these here.

1. Lengths: We will let l = {la}a be the lengths of arcs in A. These lengths will be input to
our problem and determine the lengths of paths when we are computing length-constrained
flows. Throughout this chapter we imagine each la is in Z>0. Informally, one may think of l
as giving link latencies. We will assume la is always poly(n).

2. Capacities: We will let U = {Ua}a be the capacities of arcs in A. These capacities
will specify a maximum amount of flow (either length-constrained or not) that is allowed
over each arc. Throughout this chapter we imagine each Ua is in Z≥0 and we let Umax

give maxa Ua. We will assume Umax is poly(n). Informally, one may think of U as link
bandwidths.

3. Weights: We will let w = {wa}a stand for the weights of arcs in A. These weights will be
given by our moving cut solutions. Throughout this chapter each wa will be in R>0.

Unlike the rest of this thesis, here it will be convenient to treat a path P = ((v1, v2), (v2, v3), . . .)
as series of consecutive arcs in A (all oriented consistently towards one endpoint). For any one of
these weighting functions ϕ ∈ {l, U, w}, we will let dϕ(u, v) give the minimum value of a path in
D that connects u and v where the value of a path P is ϕ(P) :=

∑
a∈P ϕ(a). That is, we think of

dϕ(u, v) as the distance from u to v with respect to ϕ. We will refer to paths which minimize w as
lightest paths (so as to distinguish them from e.g. shortest paths with respect to l).

We let δ+(v) := {a : a = (v, u)} and N+(v) := {u : (v, u) ∈ A} give the out arcs and out
neighborhoods of vertex v. δ−(v) := {a : a = (u, v)} and N− := {u : (u, v) ∈ A} are defined
symmetrically. We let P(u, v) be all simple paths between u and v and for W,W ′ ⊆ V , we let
P(W,W ′) :=

⋃
w∈W,w′∈W ′ P(w,w′) give all paths between vertex subsets W and W ′.

Given sources S ∈ V and sinks T ∈ V , we say that D is an S-T DAG if δ−(v) = ∅ iff v ∈ S
and δ+(v) = ∅ iff v ∈ T . We say that such an S-T DAG is an h-layer DAG if the vertex set V
can be partitioned into h + 1 layers S = V1 ⊔ V2 ⊔ . . . ⊔ Vh+1 = T where any arc a = (u, v) is
such that u ∈ Vi and v ∈ Vj for some i and j > i. We say that D has diameter at most d if in the
graph where we forget about arc directions in D every pair of vertices is connected by a path of at
most d edges. Notice that the diameter of an h-layer S-T DAG might be much larger than h, for
example, when S and T are large sets of vertices.

(Non-Length Constrained) Flow Notation and Conventions. We will make extensive use of
non-length constrained flows and so clarify our notation for such flows here.

Given a DAG D = (V,A) with capacities U we will let a flow f be any assignment of non-
negative values to arcs in a where fa gives the value that f assigns to a and fa ≤ Ua for
every a. If it is ever the case that fa > Ua for some a, we will explicitly state that this “flow”
does not respect capacities. We say that f is an integral flow if it assigns an integer value to
each arc. We let f(A′) :=

∑
a∈A′ fa for any A′ ⊆ A. We define the deficit of a vertex v as

deficit(f, v) := |
∑

a∈δ+(f,v) fa −
∑

a∈δ−(v) fa|. We will let supp(f) := {a : fa > 0} give the

83

support of flow f .

Given desired sources S and sinks T , we let deficit(f) :=
∑

v ̸∈S∪T deficit(f, v) be the total amount
of flow produced but not at S plus the amount of flow consumed but not at T ; likewise, we say
that a flow f is an S-T flow if fdeficit(f) = 0. We let s.t. (f) =

⋃
s∈S f(δ

+(s)) be the amount
of flow delivered by an S-T flow f and we say that f is α-approximate if s.t. (f) ≥ α · s.t. (f ∗)
where f ∗ is the S-T flow that maximizes s.t. . We say that f is α-blocking for α ∈ [0, 1] if for
every path from S to T there is some a ∈ P where fa ≥ α · Ua. We say that a 1-blocking flow is
blocking. We say that flow f ′ is a subflow of f if f ′

a ≤ fa for every a.

Given a maximum capacity of Umax, we may assume that every flow f is of the form f =
∑

i f
(i)

where (f (i))a ∈ {0, 2log(Umax)−i} for every a and i; that is, a given flow can always be decomposed
into its values on each bit. We call f (i) the ith bit flow of f and call the decomposition of f into
these flows be the bitwise decomposition of f .

Length-Constrained Notation. Given a length function l, vertices u, v ∈ V and length con-
straint h ≥ 1, we let Ph(u, v) := {P ∈ P(u, v) : l(P) ≤ h} be all paths between u and v
which have length at most h. For vertex sets W and W ′, we let Ph(W,W ′) := {P ∈ P(W,W ′) :

l(P) ≤ h}. If G also has weights w then we let d(h)w (u, v) := minP∈Ph(u,v) w(P) give the mini-
mum weight of a length at most h path connecting u and v. For vertex sets W,W ′ ⊆ V we define
d
(h)
w (W,W ′) := minP∈Ph(W,W ′) w(P) analogously. As mentioned an h-length path is a path of

length at most h.

Parallel and Distributed Models. Throughout this chapter the parallel model of computation
we will make use of is the EREW PRAM model [123]. Here we imagine that we are given some
number of processors as well as shared random access memory; every memory cell can be read or
written to by only one processor at a time.

The distributed model we will make use of is the CONGEST model, defined as follows [152].
The network is modeled as a graph G = (V,E) with n = |V | nodes and m = |E| edges.
Communication is conducted over discrete, synchronous rounds. During each round each node
can send an O(log n)-bit message along each of its incident edges. Every node has an arbitrary
and unique ID of O(log n) bits, first only known to itself. The running time of a CONGEST
algorithm is the number of rounds it uses. We will slightly abuse terminology and talk about
running a CONGEST algorithm in digraph D; when we do so we mean that the algorithm runs in
the (undirected) graph G which is identical to D but where we forget the directions of arcs. In this
work, we will assume that if an arc a has capacity Ua then we allow nodes to send O(Ua · log n)
bits over the corresponding edge, though none of our applications rely on this assumption.2

5.3 Length-Constrained Flows, Moving Cuts and Main Result
We proceed to more formally define a length-constrained flow, moving cuts and our main result
which computes them. While we have defined length-constrained flows in Section 5.1 for unit
capacities, it will be convenient for us to formally define length-constrained flows for general
lengths and capacities in terms of a relevant linear program (LP). We do so now.

2We only make use of this assumption once and only make use of it in our deterministic algorithms (in Theo-
rem 109). Furthermore, we do not require this assumption if the underlying digraph is a DAG.

84

Suppose we are given a digraph D = (V,A) with arc capacities U , lengths l and specified source
and sink vertices S and T . A maximum S to T flow in D in the classic sense can be defined
as a collection of paths between S and T where each path receives some value and the total
value incident to an edge does not exceed its capacity. This definition naturally extends to the
length-constrained setting where we imagine we are given some length constraint h ≥ 1 and
define a length-constrained flow as a collection of S to T paths each of length at most h where
each such path P receives some some value fP . Additionally, these values must respect the
capacities of arcs. More precisely, we have the following LP with a variable fP for each path
P ∈ Ph(s, t).

max
∑

P∈Ph(S,T)

fP s.t. (Length-Constrained Flow LP)

∑
P :a∈P

fP ≤ Ua ∀a ∈ A

0 ≤ fP ∀P ∈ Ph(s, t)

For a length-constrained flow f , we will use the shorthand f(a) :=
∑

P∋a fP and supp(f) :=
{P : fP > 0} to give the support of f . We will let s.t. (f) :=

∑
P∈Ph(s,t)

fP give the value of f .
An h-length flow, then, is simply a feasible solution to this LP.

Definition 76 (h-Length Flow). Given digraph D = (V,A) with lengths l, capacities U and
vertices S, T ⊆ V , an h-length S-T flow is any feasible solution to Length-Constrained Flow LP.

With the above definition of length-constrained flows we can now define moving cuts as the dual
of length-constrained flows. In particular, taking the dual of the above LP we get the moving cut
LP with a variable wa for each a ∈ A.

min
∑
a∈A

Ua · wa s.t. (Moving Cut LP)∑
a∈P

wa ≥ 1 ∀P ∈ Ph(S, T)

0 ≤ wa ∀a ∈ A

An h-length moving cut is simply a feasible solution to this LP.

Definition 77 (h-Length Moving Cut). Given digraph D = (V,A) with lengths l, capacities U
and vertices S, T ⊆ V , an h-length moving cut is any feasible solution to Moving Cut LP.

We will use f and w to stand for solutions to Length-Constrained Flow LP and Moving Cut LP
respectively. We say that (f, w) is a feasible pair if both f and w are feasible for their respective
LPs and that (f, w) is (1± ϵ)-approximate for ϵ ≥ 0 if the moving cut certifies the value of the
length-constrained flow up to a (1− ϵ); i.e. if (1− ϵ)

∑
a Ua · wa ≤

∑
P fP .

We clarify what it means to compute (f, w) in CONGEST. When we are working in CONGEST
we will say that f is computed if each vertex v stores the value fa(h

′) :=
∑

P∈Ph,h′ (s,a,t)
fP for

every a incident to v and h′ ≤ h. Here, we let Ph,h′(s, a, t) be all paths in Ph(s, t) of the form
P ′ = (a1, a2, . . . a, b1, b2, . . .) where the path (a, b1, b2, . . .) has length exactly h′ according to l.
We say moving cut w is computed if each vertex v knows the value of wa for its incident arcs.

85

Likewise, we imagine that each node initially knows the capacities and lengths of its incident arcs.

With the above notions, we can now state our main results which say that one can efficiently
compute a feasible pair (f, w) in parallel and distributedly. In the following we say f is integral if
fP is an integer for every path in Ph(S, T). The notable aspect of our results is the polynomial
dependence on h and 1

ϵ
; the polynomials could be optimized to be much smaller.

Given a digraph D = (V,A) with capacities U , lengths l, length constraint h ≥ 1, ϵ > 0 and
source and sink vertices S, T ⊆ V , one can compute a feasible h-length flow, moving cut pair
(f, w) that is (1± ϵ)-approximate in:

1. Deterministic parallel time Õ(1
ϵ9
· h17) with m processors

2. Randomized CONGEST time Õ(1
ϵ9
· h17) with high probability;

3. Deterministic CONGEST time Õ
(

1
ϵ9
· h17 + 1

ϵ7
· h16 · (ρCC)

10
)
.

Also, f = η ·
∑k

j=1 fj where η = Θ̃(ϵ2), k = Õ
(

h
ϵ4

)
and each fj is an integral h-length S-T flow.

All of our algorithms compute and separately store each fj . The above result immediately gives
the deterministic parallel and randomized CONGEST algorithms running in time Õ(poly(h, 1

ϵ
))

mentioned in Section 5.1.1. For our deterministic CONGEST algorithms, ρCC in the above gives
the quality of the optimal deterministic CONGEST cycle cover algorithm. We formally define
this parameter in Section 5.5 but for now we simply note that ρCC ≤ 2O(

√
logn) by known results

[118, 151]. Applying this bound on ρCC gives deterministic CONGEST algorithms running in
time Õ(poly(h, 1

ϵ
) · 2O(

√
logn)). If ρCC is shown to be poly(log n), we immediately would get

an Õ(poly(h, 1
ϵ
)) time deterministic algorithm for solving (1 − ϵ)-approximate h-length flow

in CONGEST. Also, as mentioned in Section 5.1.1, k in the above result is optimal up to Õ(1)
factors by the results of Guruswami et al. [107] and Baier et al. [18].

5.4 Intuition and Overview of Approach
Before moving on to details, we give an overview of our strategy for computing length-constrained
flows. For simplicity, we will assume that the capacity Ua of arc a is 1 in this section.

5.4.1 Using Lightest Path Blockers for Multiplicative Weights
Computing a length-constrained flow, moving cut pair is naturally suggestive of the following
multiplicative-weights-type approach. We initialize our moving cut value wa to some very small
value for every a. Then, we find a lightest h-length path from S to T according to w, send some
small (≈ ϵ) amount of flow along this path and multiplicatively increase the value of w on all
arcs in this path by ≈ (1 + ϵ). We repeat this until S and T are at least 1 apart according to d

(h)
w .

This general idea was recently used by Altmanová et al. [10] to compute length-constrained flows
sequentially and is an adaptation of ideas of Garg and Könemann [91].

The principle shortcoming of using such an algorithm for our setting is that it is easy to construct
examples where there are polynomially-many arc-disjoint h-length paths between S and T and so
we would clearly have to repeat the above process at least polynomially-many times until S and T

are at least 1 apart according to d
(h)
w . This is not consistent with our goal of poly(h) complexities

since h may be much smaller than n. To solve this issue, we use an algorithm similar to the

86

above but instead of sending flow along a single path at a time, we send it along a large batch of
arc-disjoint paths.

What can we hope to say about how long such an algorithm takes to make S and T at least 1 apart
according to d

(h)
w ? If it were the case that every lightest (according to w) h-length path from S to

T shared an arc with some path in our batch of paths then after each batch we would know that
we increased d

(h)
w (S, T) by some non-zero amount. However, there is no way to lower bound this

amount; in principle we might only increase d
(h)
w (S, T) by some tiny ϵ′ > 0. To solve this issue

we find a batch of arc-disjoint paths which have weight essentially d
(h)
w (S, T) but which share an

arc with every h-length path with weight at most (1 + ϵ) · d(h)w (S, T). Thus, when we increment
weights in our batch we know that all near-lightest h-length paths have their weights incremented
and this, in turn, allows us to lower bound the rate at which d

(h)
w (S, T) increases and therefore to

argue that our algorithm completes quickly.

Thus, in summary we repeatedly find a batch of arc-disjoint h-length paths between S and T

which have weight about d(h)w (S, T); these paths satisfy the property that every h-length path from
S to T with weight at most (1 + ϵ) · d(h)w (S, T) shares an edge with at least one of these paths; we
call such a collection an h-length (1 + ϵ)-lightest path blocker. We then send a small amount of
flow along these paths and multiplicatively increase the weight of all incident edges, appreciably
increasing d

(h)
w (S, T). We repeat this until our weights form a feasible moving cut. See Figure 5.1.

s t

, , w0 1 0 , , w0 1 0

, , w0 1 0
, , w0 1 0

, ,
w0 1 0

, , w0 1 0

, , w0 2 0

, , w0 1 0

, ,
w 0 1 0

, , w0 1 0
, ,

w0 2 0 , ,
w 0 1 0

, ,
w 0 1 0

, ,
w 0 2 0

, ,
w 0 1 0

(a) Compute lightest path blocker.

s t

, , w0 1 0 , , w0 1 0

, , w20 1 ϵ

, , w20 1 ϵ

, ,
w 20 1 ϵ

, , w20 1 ϵ

, , w0 2 0

, , w20 1 ϵ

, ,
w

20
1 ϵ

, , w0 1 0
, ,

w 20 2 ϵ , ,
w

20
1 ϵ

, ,
w 0 1 0

, ,
w 0 2 0

, ,
w 0 1 0

(b) Update flow and weights.

s t

, , w0 1 0 , , w0 1 0

, , w20 1 ϵ

, , w20 1 ϵ

, ,
w 20 1 ϵ

, , w20 1 ϵ

, , w0 2 0

, , w20 1 ϵ

, ,
w

20
1 ϵ

, , w0 1 0
, ,

w 20 2 ϵ , ,
w

20
1 ϵ

, ,
w 0 1 0

, ,
w 0 2 0

, ,
w 0 1 0

(c) Compute lightest path blocker.

s t

, , w20 1 ϵ , , w20 1 ϵ

, , w20 1 ϵ

, , w20 1 ϵ

, ,
w 30 1 2ϵ

, , w30 1 2ϵ

, , w0 2 0

, , w20 1 ϵ

, ,
w

20
1 ϵ

, , w20 1 ϵ

, ,
w 30 2 2ϵ , ,

w
20

1 ϵ

, ,
w

20
1 ϵ

, ,
w 0 2 0

, ,
w

20
1 ϵ

(d) Update flow and weights.

Figure 5.1: An illustration of the first two iterations of our multiplicative-weights-type algorithm where h = 5,
S = {s} and T = {t} and capacities are all 1. Each arc is labelled with the value we multiply its initial weight by
(initialized to w0 := 1 + ϵ) then length then flow. Our h-length shortest path blockers are in blue.

87

s t

, 4 1

1, 3

, 1 1 , 1 1

, 4 1

, 1 3

(a) Digraph D.

s t

, 4 1

1, 3

, 1 1 , 1 1

, 4 1

, 1 3

(b) Lightest paths of D.

s t

, 4 1

, 1 3

, 1 1 , 1 1

, 4 1

, 1 3

(c) Lightest 5-length paths of D.

Figure 5.2: A digraph D with S = {s} and T = {t} where the 5-length lightest S-T paths do not induce a DAG.
5.2a gives D where each arc is labeled with its weight (in black) and length (in green). 5.2b shows how all lightest
S-T paths have weight 2 and induce a DAG. 5.2c shows how the two 5-length lightest S-T paths (in blue and red)
have weight 6 and induce a digraph with a cycle.

5.4.2 Length-Weight Expanded DAG to Approximate h-Length Lightest
Paths

The above strategy relies on the computation of h-length lightest path blockers. Without the
presence of a weight constraint computing such an object easily reduces to computing an integral
blocking S-T flow on an h-layer S-T DAG. Specifically, consider the problem of computing a
collection of paths from S to T so that every lightest S to T path shares an arc with one path in
this collection. It is easy to see that all lightest paths between S and T induce an h′-layer S-T
DAG where h′ is the minimum weight of a path between S and T . One can then consider this
DAG and compute an integral blocking S-T flow in it—i.e. a maximal arc-disjoint collection
of h′-length S-T paths. By maximality of the flow, the paths corresponding to this flow will
guarantee that every h′-length S to T path shares an arc with one path in this collection.

However, when we are working in the presence of both a length constraint and weight constraint
computing such an object becomes significantly more tricky. Indeed, lightest paths subject to
length constraints are known to be notoriously poorly behaved; not only do lightest paths subject
to a length constraint not induce a metric but they are also arbitrarily far from any metric [11, 113].
As a consequence of this, all lightest paths subject to a length constraint from S to T do not induce
a DAG, much less an h-layer S to T DAG; see Figure 5.2 for an example.

Our solution to this issue is to observe that, if we are allowed to duplicate vertices, then we can
construct an S-T DAG with about h2 layers that approximately captures the structure of all h-
length (1 + ϵ)-lightest paths. Specifically, we discretize weights and then make a small number of
copies of each vertex to compute a DAG D(h,λ)—which we call the length-weight expanded DAG.
D(h,λ) will satisfy the property that if we compute an integral blocking flow in it and then project
this back into D as a set of paths P , then P is almost a (1 + ϵ)-lightest path blocker. In particular,
P will guarantee that some arc of any h-length path with weight at most (1 + ϵ) · d(h)w (S, T) is
used by some path in P; however, the paths of P may not be arc-disjoint which is required of
our lightest path blockers. Nonetheless, by carefully choosing the capacities in D(h,λ), we will be
able to argue that P is nearly arc-disjoint and these violations of arc-disjointness can be repaired
with bounded loss by a “decongesting” procedure. Summarizing, these ideas reduce computing
h-length (1+ ϵ)-lightest path blockers to computing integral blocking flows in layered S-T DAGs.

88

5.4.3 Deterministic Integral Blocking Flows Paths via Flow Rounding
Lastly, we describe how we compute integral blocking flows in layered S-T DAGs.

A somewhat straightforward adaptation of a randomized algorithms of Lotker et al. [140] solves
this problem in Õ(poly(h)) time both in parallel and in CONGEST. This algorithm samples an
integral S-T flow in D (i.e. a collection of arc-disjoint S to T paths) according to a carefully
chosen distribution based on “path counts”, deletes these paths and repeats. The returned solution
is the flow induced by all paths that were ever deleted. Unfortunately Lotker et al. [140]’s
algorithm seems inherently randomized and our goal is to solve this problem deterministically.

We derandomize the algorithm of Lotker et al. [140] in the following way. Rather than integrally
sampling according to Lotker et al. [140]’s distribution and then deleting arcs that appear in
sampled paths, we instead calculate the probability that an arc is in a path in this distribution and
then “fractionally delete” it to this extent. We repeat this until every path between S and T has
some arc which has been fully deleted. In other words, we run a smoothed version of Lotker
et al. [140] which behaves (deterministically) like the algorithm of Lotker et al. [140] does in
expectation. A simple counting argument shows that we need only iterate this process about h
times to separate S and T . The fractional deletion values of arcs at the end of this process induce
a blocking S-T flow but a blocking flow that may be fractional. We call this flow the “iterated
path count flow.”

However, recall that our goal is to compute an integral blocking flow in an S-T DAG. Thus, we
may naturally hope to round the iterated path count flow. Indeed, drawing on some flow rounding
techniques of Cohen [60], doing so is not too difficult in parallel. Unfortunately, it is less clear
how to do so in CONGEST. Indeed, Chang and Saranurak [45] state:

...Cohen’s algorithm that rounds a fractional flow into an integral flow does not seem
to have an efficient implementation in CONGEST...

Roughly, Cohen’s technique relies on partitioning edges in a graph into cycles and paths and then
rounding each cycle and path independently. The reason this seems infeasible in CONGEST is
that the cycles and paths that Cohen’s algorithm relies on can have unbounded diameter and so
communicating within one of these cycles or paths is prohibitively slow. To get around this, we
argue that, in fact, one may assume that these cycles and paths have low diameter if we allow
ourselves to discard some small number of arcs. This, in turn allows us to orient these cycles
and paths and use them in rounding flows. We formalize such a decomposition with the idea of a
(1− ϵ)-near Eulerian partition. Arguing that discarding these arcs does bounded damage to our
rounding then allows us to make use of Cohen-type rounding to deterministically round the path
count flow, ultimately allowing us to compute h-length (1 + ϵ)-lightest path blockers.

5.4.4 Overview of Chapter
In Section 5.6 we more formally define path counts. In Section 5.7 we describe how to use these
path counts with randomization to compute integral blocking flows in an h-layer S-T DAG. In
Section 5.9 we do the same but deterministically, employing the above flow rounding strategy
and the idea of near Eulerian partitions as introduced and constructed in Section 5.8. Next, in
Section 5.10 we show how to use these blocking flow primitives along with our length-weight
expanded DAG to compute (1 + ϵ)-lightest path blockers. In Section 5.11 we formalize how to
use these (1 + ϵ)-lightest path blockers to compute length-constrained flows and moving cuts by

89

applying multiplicative-weights-types arguments, thereby showing our main result.

In Section 5.12 we observe that our main result solves the aforementioned problem of Chang and
Saranurak [45] by giving deterministic algorithms for many disjoint paths problems in CONGEST.
We also observe that our algorithms give essentially optimal parallel and distributed algorithms
for maximum arc-disjoint paths. In Section 5.13 we give more details of how our results simplify
expander decomposition constructions. In Section 5.14 we give our new algorithms for bipartite
b-matching based on our flow algorithms and in Section 5.15 we show how to compute length-
constrained cutmatches using our main theorem. Lastly, in Section 5.17 we observe that our
length-constrained flow algorithms generalize to the multi-commodity setting.

5.5 Preliminaries
Before moving on to our own technical content, we briefly review some well-known algorithmic
tools and slight variants thereof (mostly for deterministic CONGEST).

5.5.1 Deterministic CONGEST Maximal and Maximum Independent Set
We will rely on deterministic CONGEST primitives for maximal and maximum independent
sets. Given graph G = (V,E), a subset of vertices V ′ ⊆ V is independent if no two vertices in
V ′ are adjacent in G. A maximal independent set (MIS) is an independent set V ′ such that any
w ∈ V \ V ′ is adjacent to at least one node in V ′. If we are additionally given node weights {xv}v
where xv > 0 for every v, then a maximum independent set is an independent set V ′ maximizing∑

v∈V ′ xv; we say that an independent set is α-approximate if its total weight is within α of that
of the maximum independent set.

The following summarizes the deterministic CONGEST algorithm we will use for MIS.

Theorem 78 (Censor-Hillel et al. [42]). There is a deterministic CONGEST algorithm which given
a graph G = (V,E) with diameter D, outputs a maximal independent set in time O(D · log2 n).
The following gives the deterministic CONGEST algorithm we will use for maximum independent
set.

Theorem 79 (Bar-Yehuda et al. [22]). There is a deterministic CONGEST algorithm which given
an instance of maximum independent in a graph G = (V,E) with maximum degree ∆ and node
weights {xv}v, outputs a solution that is 1

∆
-approximate in time O(∆ + log∗ n).

5.5.2 Deterministic Low Diameter Decompositions
A well-studied object in metric theory is the low diameter decomposition which is usually defined
as a distribution over vertex partitions [139, 144]. For our deterministic algorithms, we will make
use of a deterministic version of these objects defined as follows where G[Vi] := (Vi, {{u, v} ∈
E : u, v ∈ Vi}) gives the induced graph on Vi.

Definition 80 (Deterministic Low Diameter Decomposition). Given graph G = (V,E), a deter-
ministic low diameter decomposition (DLDD) with diameter d and cut fraction ϵ is a partition of
V into sets V1, V2, . . . where:

90

1. Low Diameter: G[Vi] has diameter at most d for every i;

2. Cut Edges: The number of cut edges is at most ϵ|E|; i.e. |{e = (u, v) : u ∈ Vi ∧ v ∈
Vj ∧ i ̸= j}| ≤ ϵ|E|.

One can efficiently compute DLDDs deterministically in CONGEST as a consequence of many
well-known results in distributed computing. We will use a result of Chang and Ghaffari [44] to
do so.

Theorem 81. Given a graph G = (V,E) and desired diameter d, one can compute a DLDD with
diameter d and cut fraction ϵ = Õ(1

d
) in deterministic CONGEST time Õ(d).

Proof. Theorem 1.2 of Chang and Ghaffari [44] states that there is a deterministic CONGEST
algorithm which, given a graph G = (V,E) and desired diameter d′, computes a set V̄ ⊆ V
where |V̄ | ≤ 1

d′
· |V | and G[V \ V̄] has connected components C1, C2, . . . , Ck where each Ci has

diameter at most Õ(d′) in Õ(d′) rounds.

Given graph G = (V,E) we can compute a DLDD in G by applying the above result in a new
graph G′ = (V ′, E ′). For each vertex v ∈ V , G′ will have a clique of ∆(v)-many vertices where
∆(v) is the degree of v in G. We then connect these cliques in the natural way. More formally, to
construct G′ we do the following. For each v with edges to vertices v1, v2, . . . , v∆(v) we create
a clique of vertices v(v1), v(v2), . . . , v(v∆(v)). Next, for each edge e = {u, v} in E, we add the
edge {v(u), u(v)} to G′. Observe that each vertex of G′ corresponds to exactly one edge in G;
that is, v(u) in V ′ corresponds to the edge {u, v} ∈ E.

Next, we apply the above theorem of Chang and Ghaffari [44] to G′ to get set V̄ . Let Ē ⊆ E be
the set of edges to which these vertices correspond. We return as our solution Ē. Observe that the
size of Ē is

|Ē| ≤ |V̄ |

≤ 1

d′
· |V ′|

=
2

d′
|E|.

Letting d′ = 1
Θ̃(1)
· d for an appropriately large hidden poly-log in Θ̃(1) gives us that each

component in G has diameter at most d since otherwise there would be a component in G′ after
deleting v̄ with diameter more than d′. Likewise, the above gives us cut fraction at most Õ(1

d
).

Simulating a CONGEST algorithm on G′ on G is trivial since each vertex can simulate its
corresponding clique and so the entire algorithm runs in time Õ(d′) = Õ(d).

5.5.3 Sparse Neighborhood Covers
A closely related notion to low diameter decompositions is that of the sparse neighborhood
cover [16]. We use the following definition phrased in terms of partitions.

Definition 82 (Sparse Neighborhood Cover). Given a simple graph G = (V,E), an s-sparse
k-neighborhood cover with weak-diameter d and overlap o is a set of partitions V1,V2, . . . ,Vs
of V where each partition is a collection of disjoint vertex sets V (j)

i ⊂ V whose union is V , i.e.,

91

Vi = {V (1)
i , V

(2)
i , . . .} and:

1. Weak-Diameter and Overlap: Each V
(j)
i comes with a rooted tree T

(j)
i in G of diameter at

most d that spans all nodes in V
(j)
i ; Any node in G is contained in at most o trees overall.

2. Neighborhood Covering: For every node v its k neighborhood Bk(v), containing all
vertices in G within distance k of v, is fully covered by at least one cluster, i.e., ∀v ∃i, j :

Bk(v) ⊆ V
(j)
i .

The below summarizes the current state of the art in deterministic sparse neighborhood covers in
CONGEST.

Lemma 83 ([44, 93, 159]). There is a deterministic CONGEST algorithm which given any radius
r ≥ 1, computes an s-sparse r-neighborhood cover with s, o = Õ(1) and diameter at most Õ(r)
in Õ(r) time.

Furthermore, there is a deterministic CONGEST algorithm which given an O(k)-bit value xv for
every v computes xi,v for every v and i in Õ(r + k) rounds, where xi,v is the maximum x-value
among nodes in the same cluster as v in the partition Vi. That is, letting Vi(v) be the one cluster
in Vi containing v, we have

xi,v = max
u∈Vi(v)

xu.

5.5.4 Cycle Covers
Our flow rounding algorithm will make use of low diameter cycles. Thus, it will be useful for us
to make use of some recent insights into distributely and deterministically decomposing graphs
into low diameter cycles. We define the diameter of a cycle C as |C| and the diameter of a
collection of cycles C as the maximum diameter of any cycle in it. Likewise the congestion of C is
maxe |{C : e ∈ C}|.
The idea of covering a graph with low congestion cycles is well-studied [58, 118, 151] and
formalized by the idea of a cycle cover.

Definition 84 (Cycle Cover). Given a simple graph G = (V,E) where E0 are all non-bridge
edges3 of G, a (d, c) cycle cover is a collection of (simple) cycles C in G such that:

1. Covering: Every e ∈ E0 is contained in some cycle of C;

2. Low Diameter: maxC∈C |C| ≤ d;

3. Low Congestion: maxe∈E |{C : e ∈ C}| ≤ c.

We now formally define the parameter ρCC ; recall that this parameter appears in the running time
of our deterministic CONGEST algorithm in our main theorem (Section 5.3).

Definition 85 (ρCC). Given a deterministic CONGEST algorithm that constructs a (d, c) cycle
cover in worst-case time T in graphs of diameter D, we say that the quality of this algorithm is
max{ d

D
, c, T

D
}. We let ρCC be the smallest quality of any deterministic CONGEST algorithm for

constructing cycle covers.

3Recall that a bridge edge of a graph is one whose removal increases the number of connected components in the
graph.

92

The following summarizes the current state-of-the-art in deterministic cycle cover computation in
CONGEST.

Theorem 86 ([118, 151]). There is a deterministic CONGEST algorithm that given a graph G
with diameter D computes a (d, c) cycle cover with d = 2O(

√
logn) ·D and c = 2O(

√
logn) in time

2O(
√
logn) ·D. In other words, ρCC ≤ 2O(

√
logn)

5.6 Path Counts for h-Layer S-T DAGs
We begin be recounting the notion idea of path counts which we will use for our randomized
algorithm to sample flows and for our deterministic algorithms to compute the iterated path count
flow. This idea has been used in several prior works [45, 60, 140].

Suppose we are given an h-layer S-T DAG D with capacities U . We define these path counts as
follows. We define the capacity of a path as the product of its edge capacities, namely given a path
P we let U(P) :=

∏
a∈P Ua. Recall that we use P(S, T) to stand for all paths between S and T .

We will slightly abuse notation and letP(v, T) = P({v}, T) andP(S, v) = P(S, {v}). For vertex
v we let n+

v be the number of paths from v to T , weighted by U , namely n+
v :=

∑
P∈P(v,T) U(P).

Symmetrically, we let n−
v :=

∑
P∈P(S,v) U(P). For any arc a = (u, v), we define na as

na := n−
u · Ua · n+

v .

Equivalently, we have that na is the number of paths in P(S, T) that use a weighted by capacities:

na =
∑

P∈P(S,T):a∈P

U(P).

It may be useful to notice that if we replace each arc a with Ua-many parallel arcs then na exactly
counts the number of unique paths from S to T that use a in the resulting (multi) digraph. A
simple dynamic-programming type algorithms that does a “sweep” from S to T and T to S shows
that one can efficiently compute the path counts.

Lemma 87. Let D be a capacitated h-layer S-T DAG. Then one can compute n+
v and n−

v for
every vertex v and na for every arc a in:

1. Parallel time O(h) with m processors;

2. CONGEST time Õ (h2).

Proof. To compute na it suffices to compute n+
v and n−

v . We proceed to describe how to compute
n−
v ; computing n+

v is symmetric.

First, notice that n−
v can be described by the recurrence

n−
v :=

{
1 if v ∈ S∑

(u,v)∈δ−(v) Uuv · n−
u otherwise

We repeat the following for iteration i = 2, . . . , h+ 1. Let Vi be all vertices in the ith layer of our
graph. In iteration i we will compute n−

v for every v ∈ Vi by applying the above recurrence.

93

Running one of the above iterations in parallel is trivial to do in O(1) parallel time with m
processors, leading to the above parallel runtime. Running one iteration of this algorithm in
CONGEST requires that every vertex in v ∈ Vj for j < i broadcast its n−

v . Since n−
v ≤ (n ·Umax)

h

this can be done in h
(
1 + logUmax

logn

)
rounds of CONGEST, leading to the stated CONGEST

runtime.

5.7 Randomized Blocking Integral Flows in h-Layer DAGs
We now describe how to compute blocking integral flows in h-layer S-T DAGs with high
probability by using the path counts of the previous section. This is the general capacities version
of the problem described in Section 5.4.3. More or less, the algorithm we use is one of Chang and
Saranurak [45] adapted to the general capacities case; the algorithm of Chang and Saranurak [45]
is itself an adaptation of an algorithm of Lotker et al. [140]. We mostly include these results for
the sake of completeness.

Our randomized algorithm will repeatedly sample an integral flow proportional to the path counts
of Section 5.6, add this to our existing flow, reduce capacities and then repeat. We will argue
that we need only iterate this process a small number of times until we get a blocking integral
flow by appealing to the fact that “high degree” paths have their capacities reduced with decent
probability.

One can see this as essentially running the randomized MIS algorithm of Luby [141] but with
two caveats: (1) the underlying graph in which we compute an MIS has a node for every path
between S and T and so has up to O(nh)-many nodes; as such we cannot explicitly construct this
graph but rather can only implicitly run Luby’s algorithm on it; (2) Luby’s analysis assumes nodes
attempt to enter the MIS independently but our sampling will have some dependencies between
nodes (i.e. paths) entering the MIS which must be addressed in our analysis.

More formally, suppose we are given a capacitated S-T DAG D. For a given path P ∈ P(S, T)
we let ∆P be

∑
P ′
∏

a∈P ′\P Ua be the “degree” of path P where the sum over P ′ ranges over all
P ′ that share at least one arc with P and are in P(S, T). We let ∆ = maxP∈P(S,T) ∆P be the
maximum degree. Similarly, we let P≈max := {P : ∆P ≥ ∆

2
} be all paths with near-maximum

degree. The following summarizes the flow we repeatedly compute; in this lemma the constant
2046
2047

is arbitrary and could be optimized to be much smaller.

Lemma 88. Given a h-layer S-T DAG D with capacities U and ∆̃ satisfying ∆
2
≤ ∆̃ ≤ ∆,

one can sample an integral S-T flow f where for each P ∈ P≈max we have
∏

a∈P (Ua − fa) ≤
2047
2048
· U(P) with probability at least Ω(1). This can be done in:

1. Parallel time O(h) with m;

2. CONGEST time Õ (h2) with high probability.

Proof. The basic idea is to have each path P sample about U(P)/∆̃ copies of itself.

More formally, we do the following. Consider the (multi) digraph D′ that is created by starting
with D and replacing each arc a with Ua copies. For a given path P in D′ from S to T , we let
∆′

P be the number of distinct S to T paths in D′ which share an arc with P . Likewise, we let
∆′ = maxP ∆′

P where this max is taken over all S to T paths in D′. We let P ′
≈max be all paths

P for which ∆′
P ≥ ∆′/2. By how we defined the degree of paths in D, if a given path P is in

94

P ′
≈max then so too is its corresponding path in D in P≈max. Lastly, we let N(P) be all paths from

S to T in D′ which share an arc with P other than P itself and let N+(P) := N(P) ∪ {P}.

In what follows we show how to sample a collection of arc-disjoint paths P2 in D′ where each
P ∈ P ′

≈max is such that with probability at least 1
1024

the set P2 ∩N+(P) is non-empty. Before
doing so, we observe that this suffices to show our claim. In particular, we can construct a flow f
by setting its value on arc a to be |{P ∈ P2 : a ∈ P}|. Observe that by the arc-disjointness of P2

and how we constructed D′, f is indeed a feasible S-T flow. Moreover, we claim that for a given
P̃ ∈ P≈max in D we have

∏
a∈P̃ (Ua − fa) ≤ 1

2
U(P̃) with probability Ω(1). In particular, let XP

be the indicator of whether a given path P in D′ from S to T is such that N+(P) ∩ P2 = ∅ so
that E[XP] ≤ 1023

1024
. Also, let P̃ be all the paths in D′ that visit the same vertices as P̃ in D. Then

we have ∏
a∈P̃

(Ua − fa) =
∑
P∈P̃

XP .

But, looking at the expectation of this, we have

E

∑
P∈P̃

XP

 ≤∑
P∈P̃

1023

1024

=
1023

1024
· U(P̃)

Thus, by Markov’s inequality we have that
∑

P∈P̃ XP ≥ 2047
2046
· E
[∑

P∈P̃ XP

]
with probability

at most 2046
2047

and so with probability Ω(1) we get that
∑

P∈P̃ XP ≤ 2047
2046
· E
[∑

P∈P̃ XP

]
≤

2047
2048
· U(P̃).

Thus, it remains to show how to sample our collection of arc-disjoint paths P2 in D′ where each
P ∈ P ′

≈max is such that with probability at least 1
1024

the set P2 ∩N+(P) is non-empty. We will

sample P2 as follows. Imagine that s initially receives B
(
n+
s ,

1
64∆̃

)
-many balls where B(n, p)

is a binomial with n trials each with probability of success p. We let na and n+
v be as defined in

Section 5.6 for D′ where Ua′ = 1 for every arc a′ in D′.

When a vertex v receives a ball, it tosses it to vertex u ∈ N+(v) with probability n+
u /n

+
v . As

n+
v =

∑
w∈N+(v) n

+
w this induces a valid probability distribution. Let P1 be the (multi) set of all

paths traced out by balls. We will let P2 be all paths in P1 which are arc-disjoint (in D′) from all
other paths in P1.

We first consider this process from the perspective of a single path P from S to T in D′. Specifi-
cally, notice that the probability that a ball traces out a path P = (s = v1, v2, . . . , vh+1 = t) where
s ∈ S and t ∈ T is uniform over paths. In particular, the probability that a given ball traces out
path P in D′ from s to t nicely telescopes as

n+
v2

n+
v1

·
n+
v3

n+
v2

· . . . ·
n+
vh+1

n+
vh

=
n+
vh+1

n+
v1

=
1

n+
s

.

95

Thus, each ball that starts at s traces out a uniformly random path incident to s in P(S, T).
Applying the parameters of our binomial distribution, it follows that the expected number of times
a given path P is included in P1 is 1

64·∆̃ . Markov’s inequality then shows that a given path has
some copy in P1 with probability at most 1

64·∆̃ ≤
1

32·∆ . On the other hand, P has exactly one copy

included in P1 with probability 1
64∆̃

n+
s · 1

n+
s

(
1− 1

n+
s

)n+−1

≥ 1
128∆̃

. Thus, P has at least one copy

in P1 with probability at least 1
128∆̃

≥ 1
128∆

.

We proceed to bound two simple probabilities regarding how paths are sampled. In particular,
fix a path P ∈ P ′

≈max in D′ from S to T . Next, fix a P ′ ∈ N+(P). Then, let E1(P ′) be the event
that some copy of P ′ is in P1 and no other path in N+(P) has a copy in P1. Likewise, let E2(P ′)
be the event that no path in N(P ′) is in P1. Notice that if E1(P ′) and E2(P ′) hold then we have
P ′ ∈ P2.

• Bounding Pr(E1(P ′)). We will argue that Pr(E1(P ′)) ≥ 1
256∆

.

Notice that since N+(P) \ {P ′} consists of at most ∆-many paths, the expected number of
copies of paths in N+(P) \ {P ′} in P1 is at most 1

32
. It follows by a Markov bound that

with probability at least 1
2

we have N+(P) \ {P ′} ∩ P1 = ∅.
Next, imagine that we condition on the event N+(P) \ {P ′} ∩ P1 = ∅. Conditioning on
this event can only increase the probability that a ball traces out P ′. Since some copy of P ′

is included in P1 with probability at least 1
128∆

when we don’t condition on this event, we
conclude that

Pr(E1(P ′)) = Pr(N+(P) \ {P ′} ∩ P1 = ∅) · Pr(P ′ ∈ P1 | N+(P) \ {P ′} ∩ P1 = ∅)
≥ Pr(N+(P) \ {P ′} ∩ P1 = ∅) · Pr(P ′ ∈ P1)

≥ 1

256∆
.

• Bounding Pr(E2(P ′) | E1(P ′)). We argue that Pr(E2(P ′) | E1(P ′)) ≥ 1
2
.

Notice that Pr(E2(P ′) | E1(P ′)) is minimized when N+(P) is of size exactly ∆ + 1.
However, in this case we have Pr(E2(P ′) | E1(P ′)) ≥ Pr(E2(P ′)). Thus, we conclude by a
union bound that in general Pr(E2(P ′) | E1(P ′)) ≥ Pr(E2(P ′)) ≥ 1−∆ · 1

32∆
≥ 1

2
.

Putting these facts together and applying the fact that P ∈ P ′
≈max, we have that there is path in

N+(P) included in P2 with probability at least∑
P ′∈N+(P)

Pr(E1(P ′)) · Pr(E2(P ′) | E2(P ′)) ≥
∑

P ′∈N+(P)

1

512∆

≥ 1

1024
.

as required.

It remains to argue that we can accomplish the above sampling of P1 and the construction of
our flow f in the stated times. Constructing f from P1 is trivial to do in parallel and CONGEST
so we focus on sampling P1. By Theorem 87 we can compute n+

v in the stated times. Passing
balls to construct P1 and then P2 and constructing the above flow is trivial to do in the stated
parallel time. For the CONGEST algorithm, we note that expected number of balls to cross any

96

one arc in D′ when constructing P1 is at most 1 and so a Chernoff and union bound shows that
with high probability we never need to transmit more than O(log n) balls across an arc in D′

when constructing P1, with high probability. It follows that we never need to transmit more than
Õ(Umax) balls across any one arc in D. Since it suffices to just transmit the number of balls, this
can be done in Õ(logUmax) = Õ(1) rounds with high probability. Thus we can pass all balls from
one layer to the next in Õ(1) rounds of CONGEST with high probability. Lastly, constructing P2

from P1 is trivial to do in O(h) rounds of CONGEST.

Lemma 89. There is an algorithm which, given an h-layer S-T DAG D with capacities U ,
computes an integral S-T flow that is blocking in:

1. Parallel time Õ(h3) with m processors with high probability;

2. CONGEST time Õ(h4) with high probability.

Proof. Our algorithm simply repeatedly calls Theorem 88. In particular we initialize our output
flow f̂ to be 0 on all arcs and our working capacities on D to be Û = U . Then for each
∆̃ = (n ·Umax)

h, (n ·Umax)
h/2, (n ·Umax)

h/4, . . . we repeat the following Θ(h · log n · logUmax)
times. Let f be the flow computed according to Theorem 88. Update Ûa = Ûa − fa for every a
and update f̂ = f̂ + f . Clearly f̂ is an integral S-T flow.

We need only verify that f̂ is blocking. Since initially ∆ ≤ (n · Umax)
h, to do so it suffices

to argue that when we fix a value of ∆̃ for which ∆
2
≤ ∆̃ ≤ ∆, then over the course of the

Θ(h · log n · logUmax) iterations where we use this value of ∆̃ we have that ∆ decreases by at
least a factor of 2 with high probability.

Consider Θ(h · log n · logUmax) contiguous iterations of the above with a ∆̃ that satisfies ∆
2
≤

∆̃ ≤ ∆ at the beginning of these iterations. Let P0 be P≈max at the beginning of these iterations.
To show that ∆ decreases by at least a factor of 2 over the course of these Θ(h · log n · logUmax)
iterations it suffices to show that no path in P0 is in P≈max for all of these iterations. Suppose
for the sake of contradiction that some path P ∈ P0 is in P≈max for all of these iterations. Then,
applying the guarantees of Theorem 88, we get that with high probability U(P) decreases by a
2047
2048

factor at least Θ(h · logUmax)) times. However, since U(P) ≤ O((Umax)
h), we get that after

these iterations we would have reduced U(P) to 0 with high probability by a union bound, i.e. ∆
must have reduced by at least a factor of 2.

The running time of our algorithm is immediate from the fact that we simply invoke Theorem 88
Õ(h2) times.

5.8 Deterministic and Distributed Near Eulerian Partitions
In the previous section we showed how to efficiently compute blocking integral flows in h-layer
DAGs with high probability. In this section, we introduce the key idea we make use of in doing so
deterministically, a near Eulerian partition.

Informally, a near Eulerian partition will discard a small number of edges and then partition the
remaining edges into cycles and paths. Because these cycles and paths will have small diameter in
our construction, we will be able to efficiently orient them in CONGEST. In Section 5.9 we will
see how to use these oriented cycles and paths to efficiently round flows in a distributed fashion in
order to computer a blocking integral flow in h-layer DAGs.

97

We now formalize the idea of a (1− ϵ)-near Eulerian partition.

Definition 90 ((1 − ϵ)-Near Eulerian Partition). Let G = (V,E) be an undirected graph and
ϵ ≥ 0. A (1− ϵ)-near Eulerian partitionH is a collection of edge-disjoint cycles and paths in G,
where

1. (1− ϵ)-Near Covering: The number of edges in E[H] is at least (1− ϵ) · |E|;
2. Eulerian Partition: Each vertex is the endpoint of at most one path inH.

The following is the main result of this section and summarizes our algorithms for construction
(1− ϵ)-near Eulerian partitions. In what follows we say that a cycle is oriented if every edge is
directed so that every vertex in the cycle has in and out degree 1; a path P is oriented if it has
some designated source and sink sP and tP . We say that a collection of paths and cycles H is
oriented if each element ofH is oriented. In CONGEST we will imagine that a cycle is oriented if
each vertex knows the orientation of its incident arcs and a path is oriented if every vertex knows
which of its neighbors are closer to sP .

Lemma 91. One can deterministically compute an oriented (1− ϵ)-near Eulerian partitions in:

1. Parallel time Õ(1) with m processors and ϵ = 0;

2. CONGEST time Õ(1
ϵ5
· (ρCC)

10) for any ϵ > 0.

Again, see Section 5.5.4 for a definition of ρCC .

5.8.1 High-Girth Cycle Decompositions
In order to compute our near Eulerian partitions we will make use of a slight variant of cycle
covers which we call high-girth cycle decompositions (as introduced in Section 5.5.4). The ideas
underpinning these decompositions seem to be known in the literature but there does not seem to
be a readily citable version of quite what we need; hence we give details below.

To begin, in our near-Eulerian partitions we would like for our cycles to be edge-disjoint so that
each cycle can be rounded independently. Thus, we give a subroutine for taking a collection of
cycles and computing a large edge-disjoint subset of this collection. This result comes easily from
applying a deterministic approximation algorithm for maximal independent set (MIS). Congestion
and dilation in what follows are defined in Section 5.5.4.

Lemma 92. There is a deterministic CONGEST algorithm that, given a graph G = (V,E) and a
collection of (not necessarily edge-disjoint) cycles C with congestion c and diameter d, outputs a
set of edge disjoint cycles C ′ ⊆ C which satisfies |E[C ′]| ≥ 1

d2c2
· |E[C]| in time Õ(c3d3).

Proof. Our algorithm simply computes an approximately-maximum independent set in the conflict
graph which has a node for each cycle. In particular, we construct conflict graph G′ = (C, E ′) as
follows. Our vertex set is C. We include edge {C,C ′} in E ′ if C ∈ C and C ′ ∈ C overlap on an
edge; that is, if E[C] ∩ E[C ′] ̸= ∅.
Observe that since each cycle in C has at most d-many edges and since each edge is in at most
c-many cycles, we have that the maximum degree of G′ is cd. Next, we let the “node-weight” of
cycle C ∈ C be |C|. We apply Theorem 79 with these node-weights to compute a 1

cd
-approximate

maximum independent set C ′. We return C ′ as our solution.

98

First, observe that since C ′ is an independent set in G′, we have that the cycles of C ′ are indeed
edge-disjoint.

Next, we claim that |E[C ′]| ≥ 1
d2c2
· |E[C]|. Since Theorem 79 guarantees that C ′ is a 1

dc
-

approximate solution, to show this, it suffices to argue that |E[C∗]| ≥ 1
dc
· |E[C]| where C∗ ⊆ C

is the set of edge-disjoint cycles of maximum edge cardinality, i.e. the maximum node-weight
independent set in G′. However, notice that since the total node weight in G′ is

∑
C∈C |E[C]|

and the max degree in G′ is at most cd, we have that the maximum node-weight independent
set in G′ must have node-weight at least 1

cd

∑
C∈C |E[C]| ≥ 1

cd
|E[C]|. Thus, we conclude that

|E[C ′]| ≥ 1
d2c2
· |E[C]|.

Next, we argue that we can implement the above in the stated running times. Computing our
1
cd

-approximate maximum independent set on G′ takes deterministic CONGEST time Õ(cd) on
G′ by Theorem 79. Furthermore, we claim that we can simulate a CONGEST algorithm on G′

in G with only an overhead of O(c2d2). In particular, since the maximum degree on G′ is cd, in
each CONGEST round on G′ each node (i.e. cycle in G) receives at most cd-many messages. Fix
a single round of CONGEST on G′. We will maintain the invariant that if v ∈ V is a node in a
cycle C ∈ C, then in our simulation v receives all the same messages as C in our CONGEST
algorithm on G′. We do so by broadcasting all messages that C receives in this one round on
G′ to all nodes in C. As a cycle in G′ receives at most cd messages in one round of CONGEST
on G′ and each edge is in at most c-many cycles, it follows that in such a broadcast the number
of messages that need to cross any one edge is at most c2d. Since the diameter of each cycle is
at most d, we conclude that this entire broadcast can be done deterministically in time O(c2d2),
giving us our simulation.

Combining this O(c2d2)-overhead simulation with the Õ(cd) running time of our approximate
maximum independent set algorithm on G′ gives an overall running time of O(c3d3).

Recall that the girth of a graph is the minimum length of a cycle in it. The following formalizes
the notion of high-girth cycle decompositions that we will need.

Definition 93 (High-Girth Cycle Decomposition). Given a graph G = (V,E) and ϵ > 0 where
E0 are all non-bridge edges of G, a high-girth cycle decomposition with diameter d and deletion
girth k is a collection of edge-disjoint (simple) cycles C such that:

1. High Deletion Girth: The graph (V,E \ E[C]) has girth at least k.

2. Low Diameter: maxC∈C |C| ≤ d;

The following theorem gives the construction of high-girth cycle decompositions that we will use.

Theorem 94. There is a deterministic CONGEST algorithm that, given a graph G = (V,E) and
desired girth k ≥ 0, computes a high-girth cycle decomposition with diameter Õ(k · ρCC) and
girth k in time Õ(k5 · (ρCC)

10).

Proof. The basic idea is: take a sparse neighborhood cover; compute cycle covers on each part of
our neighborhood cover; combine all of these into a single cycle cover; decongest this cycle cover
into a collection of edge-disjoint cycles; delete these cycles; repeat.

More formally, our algorithm is as follows, We initialize our collection of cycles C to ∅.
Next, we repeat the following Θ̃ (k2 · (ρCC)

4) times. Apply Theorem 83 to compute an Õ(1)-
sparse k-neighborhood cover of G with diameter Õ(k) and overlap Õ(1). Let V1,V2, . . . be the

99

partitions of this neighborhood cover. By definition of a neighborhood cover, for each Vi and each
V

(j)
i ∈ Vi, we have that V (j)

i comes with a tree T
(j)
i where each node in the tree is in Õ(1) other

V
(j)
i . We let H(j)

i := G[V
(j)
i] ∪ T

(j)
i be the union of this tree and the graph induced on V

(j)
i . By

the guarantees of our neighborhood cover we have that the diameter of H(j)
i is at most Õ(k). We

then compute a cycle cover C(j)i of each H
(j)
i with diameter Õ(k · ρCC) and congestion ρCC (we

may do so by definition of ρCC). We let C0 =
⋃

i,j C
(j)
i be the union of all of these cycle covers.

Next, we apply Theorem 92 to compute a large edge-disjoint subset C ′0 ⊆ C0 of C0. We add C ′0 to
C and delete from G any edge that occurs in a cycle in C ′0.

We first argue that the solution we return is indeed a high-girth cycle decomposition. Our solution
consists of edge-disjoint cycles by construction. Next, consider one iteration of our algorithm.
Observe that since each C(j)i has congestion at most ρCC , it follows by the Õ(1) overlap and Õ(1)

sparsity of our neighborhood cover that C0 has congestion Õ(ρCC). Likewise, since each H
(j)
i has

diameter Õ(k), it follows that each C(j)i has diameter at most Õ(k · ρCC) and so C0 has diameter
at most Õ(k · ρCC). Thus, C0 has congestion at most Õ(ρCC) and diameter at most Õ(k · ρCC).
Since C ′0 ⊆ C0, it immediately follows that the solution we return has diameter at most Õ(k · ρCC).

It remains to show that the deletion of our solution induces a graph with high girth. Towards this,
observe that applying the congestion and diameter of C0 and the guarantees of Theorem 92, it
follows that

|E[C ′0]| ≥ Ω̃

(
1

k2(ρCC)4

)
· |E[C0]|. (5.8.1)

On the other hand, let E0 be all edges in cycle of diameter at most k at the beginning of this
iteration. Consider an e ∈ E0. Since V1,V2, . . . is a k-neighborhood cover we know that there is
some C(j)i which contains a cycle which contains e. Thus, we have

|E[C0]| ≥ |E0|. (5.8.2)

Combining Equation (5.8.1) and Equation (5.8.2), we conclude that

|E[C ′0]| ≥ Ω̃

(
1

k2(ρCC)4

)
· |E0|.

However, since in this iteration we delete every edge in E[C ′0], it follows that we reduce the number
of edges that are in a cycle of diameter at most k by at least a 1−Ω̃

(
1

k2(ρCC)4

)
multiplicative factor.

Since initially the number of such edges is at most |E|, it follows that after Õ(k2 · (ρCC)
4)-many

iterations we have reduced the number of edges in a cycle of diameter at most k to 0; in other
words, our graph has girth at most k. This shows the high girth of our solution, namely that
(V,E \ E[C]) has girth at least k after the last iteration of our algorithm.

Next, we argue that we achieve the stated running times. Fix an iteration.

• By the guarantees of Theorem 83, the sparse neighborhood cover that we compute takes
time Õ(k).

• We claim that by definition of ρCC , the Õ(k) diameter of each part in our sparse neigh-
borhood cover and the Õ(1) overlap of our sparse neighborhood cover, we can compute

100

every C(j)i in time Õ(k · ρCC). Specifically, for a fixed i we run the cycle cover algorithm
simultaneously in meta-rounds, each consisting of Θ̃(1) rounds. In each meta-round a node
can send the messages that it must send for the cycle cover algorithm of each of the H

(j)
i to

which it is incident by our overlap guarantees. Since the total number of i is Õ(1) by our
sparsity guarantee, we conclude that we can compute all C(j)i in a single iteration in at most
Õ(k · ρCC) time.

• Lastly, by the guarantees of Theorem 92 and the fact that C0 has congestion at most Õ(ρCC)
and diameter at most Õ(k · ρCC), we can compute C ′0 in time Õ(k3 · (ρCC)

6).

Combining the above running times with the fact that we have Θ̃ (k2 · (ρCC)
4)-many iterations

gives us a running time of Õ(k5 · (ρCC)
10).

5.8.2 Efficient Algorithms for Computing Near Eulerian Partitions
We conclude by proving the main section of this theorem, namely the following which shows how
to efficiently compute near Eulerian partitions in deterministic CONGEST by making use of our
high-girth cycle decomposition construction and DLDDs.

Lemma 95. One can deterministically compute an oriented (1− ϵ)-near Eulerian partitions in:

1. Parallel time Õ(1) with m processors and ϵ = 0;

2. CONGEST time Õ(1
ϵ5
· (ρCC)

10) for any ϵ > 0.

Proof. The parallel result is well-known since a 1-near Eulerian partition is just a so-called
Eulerian partition; see e.g. Karp and Ramachandran [123].

The rough idea of our CONGEST algorithm is as follows. First we compute a high-girth
cycle decomposition (Theorem 93), orient these cycles and remove all edges covered by this
decomposition. The remaining graph has high girth by assumption. Next we compute a DLDD
(Theorem 80) on the remaining graph; by the high girth of our graph each part of our DLDD is a
low diameter tree. Lastly, we decompose each such tree into a collection of paths.

More formally, our CONGEST algorithm to return cycles C and paths P is as follows. Apply
Theorem 94 to compute a high-girth cycle decomposition C with deletion girth Θ̃(1

ϵ
) and diameter

Õ(1
ϵ
· ρCC). Orient each cycle in C and delete from G any edge in a cycle in C. Next, apply

Theorem 81 to compute a DLDD with diameter Θ̃(1
ϵ
) and cut fraction ϵ. Delete all edges cut by

this DLDD. Since C has deletion girth Θ̃(1
ϵ
), by appropriately setting our hidden constant and

poly-logs, it follows that no connected component in the remaining graph contains a cycle; in
other words, each connected component is a tree with diameter Θ̃(1

ϵ
).

We decompose each tree T in the remaining forest as follows. Fix an arbitrary root r of T . We
imagine that each vertex of odd degree in T starts with a ball. Each vertex waits until it has
received a ball from each of its children. Once a vertex has received all such balls, it pairs off
the balls of its children arbitrarily, deletes these balls and adds to P the concatenation of the two
paths traced by these balls in the tree. It then passes its up to one remaining ball to its parent.
Lastly, we orient each path in P arbitrarily.

We begin by arguing that the above results in a (1 − ϵ)-near Eulerian partition. Our paths and
cycles are edge-disjoint by construction. The only edges that are not included in some element
of C ⊔ P are those that are cut by our DLDD; by our choice of parameters this is at most an ϵ

101

fraction of all edges in E. To see the Eulerian partition property, observe that every vertex of odd
degree in G[C ⊔ P] is an endpoint of exactly one path in P since each odd degree vertex starts
with exactly one ball. Likewise, a vertex of even degree will never be the endpoint of a path since
no such vertex starts with a ball.

It remains to argue that the above algorithm achieves the stated CONGEST running time.

• Computing C takes time at most Õ(1
ϵ5
· (ρCC)

10) by Theorem 94. Furthermore, by Theo-
rem 94, each cycle in C has diameter Õ(1

ϵ
· ρCC) and so can be oriented in time Õ(1

ϵ
· ρCC).

• Computing our DLDD takes time Õ(1
ϵ
) by Theorem 81.

• Since our DLDD has diameter Õ(1
ϵ
), we have that the above ball-passing to comptue P can

be implemented in time at most Õ(1
ϵ
).

Thus, overall our CONGEST algorithm takes time Õ(1
ϵ5
· (ρCC)

10).

5.9 Deterministic Blocking Integral Flows in h-Layer DAGs
In Section 5.7 we showed how to efficiently compute blocking integral flows in h-layer DAGs
with high probability. In this section, we show how to do so deterministically by making use of
the near Eulerian partitions of Section 5.8. Specifically, we show the following.

Lemma 96. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
computes an integral S-T flow that is blocking in:

1. Parallel time Õ(h3) with m processors;

2. CONGEST time Õ(h6 · (ρCC)
10).

The above parallel algorithm is more or less implied by the work of Cohen [60]. However, the
key technical challenge we solve in this section is a distributed implementation of the above.
Nonetheless, for the sake of completeness we will include the parallel result as well alongside our
distributed implementation.

Our strategy for showing the above lemma has two key ingredients.

Iterated Path Count Flow. First, we construct the iterated path count flow. This corresponds
to repeatedly taking the expected flow induced by the sampling of our randomized algorithm
(as given by Theorem 88). As the flow we compute is the expected flow of the aforementioned
sampling, this process is deterministic. The result of this is a Ω̃(1

h
)-blocking but not necessarily

integral flow. We argue that any such flow is also Ω̃(1
h2)-approximate and so the iterated path

count flow is nearly optimal but fractional.

Flow Rounding. Next, we provide a generic way of rounding a fractional flow to be in integral
in an h-layer DAG while approximately preserving its value. Here, the main challenge is
implementing such a rounding in CONGEST; the key idea we use is that of a (1 − ϵ)-near
Eulerian partition from Section 5.8 which discards a small number of edges and then partitions
the remaining graph into cycles and paths.

102

These partitions enables us to implement a rounding in the style of Cohen [60]. In particular, we
start with the least significant bit of our flow, compute a (1 − ϵ)-near Eulerian partition of the
graph induced by all arcs which set this bit to 1 and then use this partition to round all these bits
to 0. Working our way from least to most significant bit results in an integral flow. The last major
hurdle to this strategy is showing that discarding a small number of edges does not damage our
resulting integral flow too much; in particular discarding edges in the above way can increase the
deficit of our flow. However, by always discarding an appropriately small number of edges we
show that this deficit is small and so after deleting all flow that originates or ends at vertices not
in S or T , we are left with a flow of essentially the same value of the input fraction flow. The end
result of this is a rounding procedure which rounds the input fractional flow to an integral flow
while preserving the value of the flow up to a constant.

Our algorithm to compute blocking integral flows in h-layer DAGs deterministically combines
the above two tools. Specifically, we repeatedly compute the iterated path count flow, round
it to be integral and add the resulting flow to our output. As the iterated path count flow is
Ω̃(1

h2)-approximate, we can only repeat this about h2 time (otherwise we would end up with a
flow of value greater than that of the optimal flow).

5.9.1 Iterated Path Count Flows
In this section we define our iterated path count flows and prove that they are Ω̃(1

h
)-approximate.

Specifically, the path counts of Section 5.6 naturally induce a flow. In particular, they induce what
we will call the path count flow where the flow on arc (u, v) is defined as:

fa = Ua ·
na

maxa∈A na

.

It is easy to see these path counts induce an S-T flow.

Lemma 97. For a given capacitated S-T DAG the path count flow is an S-T flow.

Proof. The above flow does not violate capacities by construction. Moreover, it obeys flow
conservation for all vertices other than those in S and T since it is a convex combination of paths
between S and T . More formally, for any vertex v ̸∈ S ∪ T we have flow conservation by the
calculation: ∑

a=(u,v)∈δ−(v)

fa =
Ua

maxa∈A na

∑
a=(u,v)∈δ−(v)

∑
P∈P(S,T):a∈P

U(P)

=
Ua

maxa∈A na

∑
a=(u,v)∈δ+(v)

∑
P∈P(S,T):a∈P

U(P)

=
∑

a=(u,v)∈δ+(v)

fa

where the second line follows from the fact that every path from S to T which enters v must also
exit v.

Path count flows were first introduced by Cohen [60]. Our notion of an iterated path count flow is

103

closely related to Cohen [60]’s algorithm for computing blocking flows in parallel. In particular,
in order to compute an integral blocking flow, Cohen [60] iteratively computes a path count
flow, rounds it, decrements capacities and then iterates. For us it will be more convenient to do
something slightly different; namely, we will compute a path count flow, decrement capacities
and iterate; once we have a single blocking fractional flow we will apply our rounding once.
Nonetheless, we note that many of the ideas of this section appear implicitly in Cohen [60].

We proceed to define the iterated path count flow which is always guaranteed to be near-optimal.
The iterated path count flow will be a sum of several path count flows. More formally, suppose
we are given an h-layer capacitated S-T DAG D = (V,A) with capacities U . In such a DAG we
have na ≤ (n · Umax)

h. We initialize f0 to be the flow that assigns 0 to every arc and U0 = U . We
then let Di = (V,A) with capacities Ui where Ui = Ui−1− fi−1 and fi−1 is the path count flow of
Di−1. Lastly, we define the iterated path count flow as a convex combination of these path count
flows iterated k = Θ(h · (log n) · log(n · Umax)) times. That is, the iterated path count flow is

f̃ :=
k∑

i=0

fi.

We begin by observing that the iterated path count flow is reasonably blocking.

Lemma 98. The iterated path count flow f̃ is a (not necessarily integral) blocking S-T flow.

Proof. Since each path count flow is an S-T flow by Theorem 97, by how we reduce capacities it
immediately follows that f̃ is an S-T flow.

Thus, it remains to argue that f̃ is blocking. Towards this, consider computing the ith path count
flow when the current path counts are {na}a and the flow over arc a is (fi)a = (Ui)a · na

maxa na
.

Letting A≈max be all arcs for which na ≥ 1
2
maxa na, we get that (Ui+1)a ≤ 1

2
· (Ui)a for all a ∈

A≈max. It follows that after Θ(log n) iterations we will reduce maxa na by at least a multiplicative
factor of 2. Since initially na ≤ (n ·Umax)

h, it follows that after k = Θ(h · (log n) · log(n ·Umax))
iterations we have reduced na to 0 for every arc which is to say that for any path P between S
and T we have that there is some arc a ∈ P it holds that

∑
i(fi)a = Ua. Since f̃a =

∑
i(fi)a, we

conclude that f̃ is blocking.

Next, we observe that any blocking flow is near-optimal.

Lemma 99. Any α-blocking S-T flow in an h-layer S-T DAG is
(
α
h

)
-approximate.

Proof. Let f be our α-blocking flow and let D be the input graph. Let f ∗ be the optimal S-T flow
in the input DAG and let

∑
P fP be it’s flow decomposition into path flows where each P is a

directed path from S to T and (fP)a is 1 if a ∈ P and 0 otherwise.

Since f is blocking, for each such path there is some arc, aP where faP ≥ α · UaP ≥ α · f ∗
aP

.
Let A′ = {aP : P in flow decomposition of f ∗} be the union of all such blocked arcs. Thus,
s.t. (f ∗) ≤

∑
a∈A′ f ∗

a ≤
∑

a∈A′
fa
α

. However, since D is h-layered, by an averaging argument we
have that there must be some j such that f(δ+(Vj) ∩ A′) ≥ 1

h

∑
a∈A′ fa where Vj is the jth layer

of our digraph. On the other hand, s.t. (f) ≥ f(δ+(Vj)) ≥ f(δ+(Vj) ∩ A′) and so we conclude
that

s.t. (f) ≥ f(δ+(Vj) ∩ A′)

104

≥ 1

h
·
∑
a∈A′

fa

≥ α

h
· s.t. (f ∗),

showing that f is
(
α
h

)
-approximate as desired.

We conclude that the iterated path count flow is near-optimal and efficiently computable; our
CONGEST algorithm will make use of sparse neighborhood covers to deal with potentially large
diameter graphs.

Lemma 100. Let D be a capacitated h-layer S-T DAG with diameter at most Õ(h). Then one
can deterministically compute a (possibly non-integral) flow f̃ :

1. In parallel that is Ω
(
1
h

)
-approximate in time Õ(h2) with m processors;

2. In CONGEST that is Ω̃
(
1
h

)
-approximate in time Õ (h4).

Proof. Combining Theorem 98 and Theorem 99 shows that the iterated path count flow is an S-T
flow that is Ω(1

h
)-approximate.

For our parallel algorithm, we simply return the iterated path count flow. The iterated path
count flow is simply a sum of k = Θ(h · (log n) · log(n · Umax)-many path count flows. Thus, it
suffices to argue that we can compute path count flows in O(h) parallel time with m processors.
By Theorem 87 we can compute na for every a in these times and so to then compute the
corresponding path count flows we need only compute maxa na which is trivial to do in parallel
in the stated time.

For our CONGEST algorithm we do something similar but must make use of sparse neighborhood
covers, because we cannot outright compute maxa na as the diameter of D might be very large.
Specifically, we do the following. Apply Theorem 83 to compute an s-sparse h-neighborhood
cover with diameter Õ(h) and partition V1,V2, . . . ,Vs for s = Õ(1). Then we iterate through
each of these partitions for i = 1, 2, . . . , s. For each part V (j)

i ∈ Vi, we let f̃ (j)
i be the iterated path

count flow of D[V
(j)
i] with source set S ∩ V

(j)
i and sink set T ∩ V

(j)
i . We let f̃i :=

∑
j f

[j]
i be the

path count flows associated with the ith partition and return as our solution the average path count
flow across partitions; namely we return

f̃ =
1

s
·
∑
i

f̃i.

This flow is an S-T flow since it is a convex combination of S-T flows. We now argue that this
flow is Ω̃(1

h
)-optimal. Let f̂ [j]

i be the optimal flow on D[V
(j)
i] with source set S ∩ V

(j)
i and sink

set T ∩ V
(j)
i . As our path count flows are Ω(1

h
)-approximate, we know that

s.t. (f̃ [j]
i) ≥ Ω̃

(
1

h

)
· s.t. (f̂ [j]

i).

Moreover, since every h-neighborhood is contained in one of the V [j]
i , it follows that

∑
i,j s.t. (f̂ [j]

i) ≥
s.t. (f ∗) where f ∗ is the optimal S-T flow on D with source set S and sink set T . Thus, we

105

conclude that

s.t. (f̃) =
1

s
·
∑
i,j

f̃
[j]
i

≥ Ω

(
1

h

)
· 1
s
·
∑
i,j

f̂
[j]
i

≥ Ω̃

(
1

h

)
· s.t. (f ∗).

Lastly, we argue the running time of our CONGEST algorithm. We describe how to compute
f̃i for a fixed i. Again, f̃i on each part is simply a sum of k = Θ̃(h)-many path count flows.
To compute one of these path count flows we first compute the path counts {na}a on each part
by applying Theorem 87 which takes Õ(h2) time. Next, we compute maxa na in Õ(h) time by
appealing to Theorem 83 and the fact that maxa na ≤ O(nh). Thus, computing each f̃i takes time
Õ(h3) and since there are Õ(h) of these, overall this takes Õ(h4) time.

5.9.2 Deterministic Rounding of Flows in h-Layer DAGs
In the previous section we showed how to construct our iterated path count flows and that they
were near-optimal but possibly fractional. In this section, we give the flow rounding algorithm
that we will use to round our iterated path count flows to be integral. Specifically, in this section
we show the following flow rounding algorithm.

Lemma 101. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
ϵ = Ω(1

poly(n)
) and (possibly fractional) flow f , computes an integral S-T flow f̂ in:

1. Parallel time Õ(h) with m processors;

2. CONGEST time Õ(1
ϵ5
· h5 · (ρCC)

10).

Furthermore, s.t. (f̂) ≥ (1− ϵ) · s.t. (f).

Parts of the above parallel result are implied by the work of Cohen [60] while the CONGEST
result is entirely new.

Turning Flows on (1− ϵ)-Near Eulerian Partitions

As discussed earlier, our rounding will round our flow from the least to most significant bit. To
round the input flow on a particular bit we will consider the graph induced by the arcs which set
this bit to 1. We then compute an oriented near-Eulerian partition of these edges and “turn” flow
along each cycle and path consistently with its orientation. We will always turn flow so as to not
increase the deficit of our flow.

We now formalize how we use our (1 − ϵ)-near Eulerian partitions to update our flow. Given
a path or cycle H , our flow update will carefully choose a subset of arcs of H along which to
increase flow (denoted H+) and decrease flow along all other arcs of H . Specifically, let H be
an oriented cycle or path of a graph produced by forgetting about the directions in a digraph
D = (V,A). Then H+ is illustrated in Figure 5.3 and defined as follows:

106

(a) Near Eulerian PartitionH. (b) Orientation ofH. (c) H+ for each H ∈ H.

Figure 5.3: An illustration of a near Eulerian partitionH and H+ for each H ∈ H. 5.3a givesH which consists of
one cycle and two paths. 5.3b gives the orientation ofH where the source of each path is in blue. 5.3c gives H+ (in
green) and H \H+ (in red) for each H ∈ H.

• Suppose H is an oriented cycle. Then, we let H+ be all arcs of D in this cycle that point in
the same direction as their orientation.

• Suppose H = (sH = v0, v1, v2, . . .) is an oriented path. We let H+ be all arcs of D in this
path that point in the same direction as the one arc in D incident to sH (i.e. the designated
source of the path). That is either (v0, v1) or (v1, v0) are in D. In the former case we let H+

be all arcs in D of the form (vi, vi+1) for some i. In the latter case we let H+ be all arcs in
D of the form (vi+1, vi) for some i.

With our definition of H+ in hand, we now define our flow updates as follows.

Definition 102 ((1− ϵ)-Near Eulerian Partition Flow Update). Let f be a flow in a capacitated
DAG for which fa ∈ {0, c} for every a ∈ A for some c and let H be an oriented (1 − ϵ)-near
Eulerian partition of supp(f) after forgetting about edge directions. Then if H ∈ H, we define
the flow fH on arc a:

(fH)a :=

{
2c if a ∈ H+

0 otherwise

Likewise, we define the flow corresponding to (f,H) as

fH :=
∑
H∈H

fH .

The following shows that our flow update will indeed zero out the value of each bit on each edge
while incurring a negligible deficit.

Lemma 103. Let f be a flow in a capacitated DAG D with specified source and sink vertices S
and T where fa ∈ {0, c} for every a ∈ A for some c. LetH be an oriented (1− ϵ)-near Eulerian
partition of supp(f) after forgetting about edge directions. Then fH (as defined in Theorem 102)
satisfies:

1. (fH)a ∈ {0, 2c} for every a ∈ A;

2. deficit(fH) ≤ deficit(f) + 2ϵ ·
∑

a fa.

Proof. (fH)a ∈ {0, 2c} holds by the definition of fH and the fact that the elements of H are
edge-disjoint.

107

We next argue that deficit(f ′) ≤ deficit(f) + 2ϵ ·
∑

a fa. The basic idea is that each edge in the
support of f which does not appear in A[H] contributes its value to the deficit but any way of
turning a cycle inH leaves the deficit unchanged and the way we chose to turn paths also leaves
the deficit unchanged.

We let f ′ be f projected onto the arcs in A[H]. That is, on arc a the flow f ′ takes value

f ′
a =:

{
fa if a ∈ A[H]
0 otherwise

We have that deficit(f ′) ≤ deficit(f) + 2ϵ ·
∑

a fa since each arc a ̸∈ A[H] increases the deficit
of f ′ by at most 2fa and, from Theorem 90, there are at most ϵ-fraction of arcs not in A[H]. Thus,
to show our claim it suffices to argue that deficit(fH) ≤ deficit(f ′). For a given vertex v, we let
ni(v) be the number of elements ofH in which v has in-degree 2. Similarly, we let no(v) be the
number of elements of H for which v has out-degree 2. Lastly, we let s(v) be the indicator of
whether v is the source of some path inH and t(v) be the indicator of whether v is the sink of a
path inH. Thus, we have

deficit(f ′, v) = 2c · |ni(v)− no(v)|+ c · (s(v) + t(v))

and so

deficit(f ′) =
∑
v

2c · |ni(v)− no(v)|+ c · (s(v) + t(v))

= 2c|P|+
∑
v

2c · |ni(v)− no(v)|

On the other hand, we have

deficit(fH, v) ≤ 2c · |ni − no|+ 2c · t(v)

and so

deficit(fH) ≤
∑
v

2c · |ni(v)− no(v)|+ 2c · t(v)

= 2c|P|+
∑
v

2c · |ni(v)− no(v)|

showing deficit(fH) ≤ deficit(f ′) as required.

Extracting Integral S-T Subflows

The last piece of our rounding deals with how to fix the damage that the accumulating deficit
incurs. Specifically, as we round each bit we discard some edges, increasing our deficit. This
means that after rounding all bits we are left with some (small) deficit. In this section we show
how to delete flows that originate or end at vertices not in S or T , thereby reducing the value of
our flow by the deficit but guaranteeing that we are left with a legitimate S-T flow.

108

Lemma 104. Let f̂ be an integral (not necessarily S-T) flow on an h-layer S-T DAG. Then
one can compute an S-T integral flow f ′ which is a subflow of f̂ and satisfies s.t. (f ′) ≥
s.t. (f̂)− deficit(f̂) in:

1. Parallel time O(h) with m processors;

2. CONGEST time Õ(h).

Proof. Our algorithm will simply delete out flow that originates not in S or ends at vertices not in T .
More formally, we do the following. We initialize our flow f ′ to f̂ . Let S = V1, V2, . . . , Vh+1 = T
be the vertices in each layer of our input S-T DAG D = (V,A). Recall that we defined a flow f̂
as an arbitrary function on the arcs so that f̂a ≤ Ua for every a. The basic idea of our algorithm is
to first push all “positive” deficit from left to right and then to push all “negative” deficit from
right to left. The deficit will be non-increasing under both of these processes.

More formally, we push positive deficit as follows. For i = 2, 3, . . . h we do the following. For
each v ∈ Vi, let

deficit+(v) := max

0,
∑

a∈δ+(v)

f ′
a −

∑
a∈δ−(v)

f ′
a

be the positive deficit of v. Then, we reduce

∑
a∈δ+(v) f

′
a to be equal to

∑
a∈δ−(v) f

′
a by arbitrarily

(integrally) reducing f ′
a for some subset of a ∈ δ+(v).

It is easy to see by induction that at this point we have deficit+(v) = 0 for all v ̸∈ S∪T . Likewise,
we have that

∑
v ̸∈S∪T deficit+(v) is non-increasing each time we iterate the above. Thus, if

deficit+ is the initial value of
∑

v ̸∈S∪T deficit+(v) then in the last iteration of the above we may
decrease the flow into T by at most deficit(f̂).

Next, we do the same thing symmetrically to reduce the negative deficits. For i = h, h− 1, . . . , 2
we do the following for each v ∈ Vi. Let

deficit−(v) := max

0,
∑

a∈δ−(v)

f ′
a −

∑
a∈δ+(v)

f ′
a

be the negative deficit of v. Then, we reduce

∑
a∈δ−(v) f

′
a to be equal to

∑
a∈δ+(v) f

′
a by arbitrarily

(integrally) reducing f ′
a for some subset of a ∈ δ−(v). Notice that this does not increase deficit+(v)

for any v ̸∈ S ∪ T .

Symmetrically to the positive deficit case, it is easy to see that at the end of this process we
have reduced deficit−(v) to 0 for every v ̸∈ S ∪ T while reducing the flow out of S by at most
deficit(f̂).

Thus, at the end of this process we have an S-T integral flow f ′ whose value is at least s.t. (f̂)−
deficit(f̂). Implementing the above in the stated running times is trivial; the only caveat is that
updating a flow in CONGEST requires updating it for both endpoints but since the flow is integral
and we reduce it integrally, this can be done along a single arc in time O(logUmax) = Õ(1) by
assumption.

109

S T
1

1

1

1

1

1

.51

1

1

1

1

1

.5
.5

.5
.5
.5

.5
.5

.5
.5

.5

.5

+1

+1

+1

+1

+1

+1 −1

−1

−1

−1

−1

−10

0

0

0

0

0

0

0

0

0

0

0

(a) Fractional flow on D.

S T

(b) D(2).

S T

(c) Near Eulerian partitionH.

S T
1

1

1

1

1

1

1

1

1

1

1

1

+1

+1

+1

+1

+1

+1 −1

−1

−1

−1

−1

−10

0

0

0

0

0

0

0

0

0

0

0

.5
.5

.5
.5

.5
.5

.5
.5

.5
.5

.5

.5

(d) Flow update usingH.

S T
1

1

1

1

1

1

01

1

1

1

1

1

0
1

0
0
0

1
0

1
0

1

0

+1

+1

+1

+1

+1

+1 −1

−1

−1

−1

−1

−10

0

0

0

0

0

0

0

0

0

+1

−1

(e) Flow after flow update.

S T
0

1

1

1

1

1

1

1

0

1

1

1

+1

+1

+1

+1

+1 −1

−1

−1

−1

−1

0

0

0

0

0

0

0

0

0

0

0 0

0 00
0

1
0

0
0

1
0

1
0

1

(f) Returned integral S-T flow.

Figure 5.4: An example of our flow rounding algorithm on digraph D with unit capacities. 5.4a gives the input
flow where arcs are labelled with their flow and vertices are labelled with their deficit. 5.4b gives D(2), the graph
induced by all arcs with flow value .5. 5.4c gives our oriented near Eulerian partition of D(2) (in blue). 5.4d shows
how we update our flow based on the near Eulerian partition. 5.4e gives the result of this flow update; notice that
some vertices not in S and T have non-zero deficit. 5.4f gives the S-T subflow we return where only vertices in S
and T have non-zero deficit.

Flow Rounding Algorithm

Having defined the flow update we use for each (1− ϵ)-near Eulerian partition and how to extract
a legitimate S-T flow from the resulting rounding, we conclude with our algorithm for rounding
flows from least to most significant bit. Our algorithm is given in Algorithm 1 and illustrated in
Figure 5.4.

We conclude that the above rounding algorithm rounds with negligible loss in the value.

Lemma 105. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
ϵ = Ω(1

poly(n)
) and (possibly fractional) flow f , computes an integral S-T flow f̂ in:

1. Parallel time Õ(h) with m processors;

2. CONGEST time Õ(1
ϵ5
· h5 · (ρCC)

10).

Furthermore, s.t. (f̂) ≥ (1− ϵ) · s.t. (f).

Proof. We use Algorithm 1.

We first argue that the above algorithm returns an integral flow. Notice that by the fact that we
initialize f̂ to

∑k
i=0 it follows that for j > k on every a we have f̂

(j)
a = 0 just before the first

110

Algorithm 1 Deterministic Flow Rounding

Input: h-layer DAG D, S-T flow f =
∑

i=0 f
(i) where (f (i))a ∈ {0, 2log(Umax)−i} for every a,

i.
Output: integral S-T flow f̂ .
f̂ ←

∑k
i=0 f

(i) for k = Θ(log n + log(Umax)).{Truncate lower order bits of input flow}
i = k, . . . , log(Umax)

Let f̂ =
∑

j f̂
(j) be the bitwise flow decomposition of f̂ (defined in Section 5.2) and let D(i) be

the undirected graph induced by the support of f (i).
Compute an oriented (1− ϵ′)-near Eulerian partitionH of D(i) (using Theorem 91 with ϵ′ = 0

for the parallel algorithm and ϵ′ = Θ
(

ϵ
h·logn

)
for the CONGEST algorithm).

f̂ ← f̂
(i)
H +

∑
j<i f̂

(j) (as defined in Theorem 102). {Turn flow alongH}
Let f̂ be an S-T subflow of f̂ (compute using Theorem 104).
f̂ .

iteration of our algorithm. Thus, to argue that the returned flow is integral it suffices to argue that
if f̂ (j) is the jth bit flow of f̂ just after the ith iteration then for j ≤ i we have f

(j)
a = 0 for every

a. However, notice that, by Theorem 103, after we update f̂ each f̂
(i)
a value is either doubled or

set to 0, meaning that f̂ (i)
a = 0 after this update.

Next, we argue that s.t. (f̂) ≥ (1 − ϵ) · s.t. (f). By Theorem 104 it suffices to argue that just
before we compute our S-T subflow of f̂ we have deficit(f̂) ≤ ϵ· s.t. (f). We may set the constant
in k = Θ(log n+ log(Umax)) to be appropriately large so that when we initialize f̂ we reduce the
flow value on each arc by at most 1

poly(n)
. It follows that at this point deficit(f̂) ≤ 2

poly(n)

∑
a fa.

Similarly, by Theorem 103 in the ith iteration of our algorithm we increase the deficit of f̂ by at
most 2ϵ′

∑
a f̂

(i)
a ≤ 2ϵ′

∑
a fa.

For our parallel algorithm, since we have ϵ′ = 0, it immediately then follows that deficit(f̂) ≤
2

poly(n)

∑
a fa ≤ ϵ · s.t. (f) by our assumption that ϵ = Ω(1

poly(n)
). For our CONGEST algorithm

we choose ϵ′ = Θ(ϵ
h logn

) for some appropriately small constant. Since we have Θ(log n) iterations
it follows that after all of our iterations (but before we compute an S-T subflow) it holds that
deficit(f̂) ≤ ϵ

h
·
∑

a fa ≤ ϵ · s.t. (f) where the last inequality follows from the fact that our flow
is h-length.

Lastly, we argue that the algorithm achieves the stated running times. The above algorithm
runs for k = Θ(log n) iterations. The computation in each iteration is dominated by computing
a (1 − ϵ′)-near Eulerian partition. For our parallel algorithm, computing each (1 − ϵ′)-near
Eulerian partition takes time at most Õ(1) with m processors by Theorem 91. For our CONGEST
algorithm computing each (1− ϵ′)-near Eulerian partition takes time at most Õ(1

ϵ5
· h5 · (ρCC)

10)

by Theorem 91. Lastly, we must compute an S-T subflow of f̂ which by Theorem 104 takes O(h)
parallel time with m processors or Õ(h) CONGEST time.

5.9.3 Deterministic Blocking Integral Flows
Having shown that the iterated path count flow is near-optimal and fractional but that we can
efficiently round fractional flows to be integral, we conclude with our algorithm to compute a

111

blocking integral flow by repeatedly rounding iterated path count flows.

Lemma 106. There is a deterministic algorithm which, given a capacitated h-layer S-T DAG D,
computes an integral S-T flow that is blocking in:

1. Parallel time Õ(h3) with m processors;

2. CONGEST time Õ(h6 · (ρCC)
10).

Proof. We repeatedly compute the iterated path count flow, round it to be integral, reduce
capacities appropriately and repeat. We will return flow f initialized to 0 on all arcs.

Specifically, we repeat the following Θ̃(h) times. Apply Theorem 100 to compute a Ω̃(1/h)-
approximate (possibly fractional) flow f̃ . Next, apply Theorem 101 with ϵ = .5 to round this to
an integral flow f̂ where s.t. (f̂) ≥ 1

2
s.t. (f̃). Next, we update f to f + f̂ and for each arc a we

reduce Ua by f̂a.

After each time we iterate the above Θ̃(h) times we must reduce the value of the optimal solution
by at least a multiplicative 1

2
since otherwise f would be a flow with value greater than the max

S-T flow in the graph at the beginning of these iterations. Since the optimal solution is at most
m · Umax, it follows that we need only iterate the above Θ̃(h) times until the value of the optimal
S-T flow is 0 which is to say that f is a blocking flow.

By Theorem 100 and Theorem 101 each of the above iterations takes parallel time Õ(h2) with m
processors and CONGEST time Õ(h5 · (ρCC)

10), giving the stated running times.

5.10 h-Length (1 + ϵ)-Lightest Path Blockers
In this section we show how to efficiently compute our main subroutine for our multiplicative-
weights-type algorithm; what we call h-length (1 + ϵ)-lightest path blockers. We will use
the blocking integral flow primitives of Section 5.7 for our randomized algorithm and that of
Section 5.9 for our deterministic algorithm.

Our (1 + ϵ)-lightest path blockers are defined below. In what follows, λ is intuitively a guess of
d
(h)
w (S, T). Also, in the following recall that if f is an h-length flow then f assigns flow values to

entire paths (rather than just arcs as a non-length-constrained flow does). As such the support of
f , supp(f), is a collection of paths. However, as mentioned earlier, for an h-length flow f , we
will use f(a) as shorthand for

∑
P∋a fP .

Definition 107 (h-length (1+ ϵ)-Lightest Path Blockers). Let G = (V,E) be a graph with lengths
l, weights w and capacities U . Fix ϵ > 0, h ≥ 1, λ ≤ d

(h)
w (S, T) and S, T ⊆ V . Let f be an

h-length integral S-T flow. f is an h-length (1 + ϵ)-lightest path blocker if:

1. Near-Lightest: P ∈ supp(f) has weight at most (1 + 2ϵ) · λ;

2. Near-Lightest Path Blocking: If P ′ ∈ Ph(S, T) has weight at most (1 + ϵ) · λ then there is
some a ∈ P ′ where f(a) = Ua.

The main theorem of this section we show is how to compute our (1 + ϵ)-lightest path blockers
efficiently.

Given digraph D = (V,A) with lengths l, weights w, capacities U , length constraint h ≥ 1, ϵ > 0,
S, T ⊆ V and λ ≤ d

(h)
w (S, T), one can compute an h-length (1 + ϵ)-lightest path blocker in:

112

t
, , 4 1 250

, ,1 3 150

, ,1 1 75 , , 1 1 5
, , 4 1 300

, , 1 3 275

, ,
32
5 5 1

s

u

v

(a) Digraph D with w.

, ,
6
5 3 275

, ,
21
5 1 300

, ,
6
5 1 5, ,

6
5 1 75

, ,
21
5 1 250

, ,
6
5 3 150

ts

, ,
33
5 5 1

u

v

(b) Digraph D with w̃.

Figure 5.5: An illustration of how we round weights according to ϵ, λ and h. Here h = 5, λ = 6 and ϵ = .5 and so
we round to multiples of ϵ

hλ = 3
5 . 5.5a gives our input DAG where each arc is labeled with its weight, then length

then capacity and 5.5b gives the weights after we round them where we color each lightest 5-length path from s to t.

1. Deterministic parallel time Õ(1
ϵ5
· h16) with m processors

2. Randomized CONGEST time Õ(1
ϵ5
· h16) with high probability;

3. Deterministic CONGEST time Õ
(

1
ϵ5
· h16 + 1

ϵ3
· h15 · (ρCC)

10
)
.

The main idea for computing these objects is to reduce finding them to computing a series
of blocking flows in a carefully constructed “length-weight expanded DAG.” In particular, by
rounding arc weights up to multiples of ϵ

h
λ we can essentially discretize the space of weights.

Since each path has at most h arcs, it follows that this increases the length of a path by at most
only λϵ. This discretization allows us to construct DAGs from which we may extract blocking
flows which we then project back into D and then “decongest” so as to ensure they are feasible
flows.

5.10.1 Length-Weight Expanded DAG
We now formally define the length-weight-expanded DAGs on which we compute blocking
integral flows. Roughly, the length-weight expanded graph will create many copies of vertices
and organize them into a grid where moving further down in rows corresponds to increases in
length and moving further along in columns corresponds to increases in weight.

Let D = (V,A) be a digraph with specified source and sink vertices S and T , lengths l, weights
w, capacities U and a parameter λ ≤ d

(h)
w (S, T). We let w̃ be w but rounded up to the nearest

multiple of ϵ
h
· λ. That is, for each a ∈ A we have

w̃a =
ϵ · λ
h
·
⌈
wa ·

h

ϵ · λ

⌉
See Figure 5.5 for an illustration of w̃.

Next, we define the length-weight expanded DAG D(h,λ) = (V ′, A′) with capacities U ′. See
Figure 5.6 for an illustration of D(h,λ).

• Vertices: We construct the vertices V ′ as follows. For each each vertex v ∈ V we make
κ = h · (h

ϵ
+ 2h) copies of v, where we let v(x, h′) be one of these vertices; here x ranges

over all multiples of ϵ
h
·λ up to (1+2ϵ) ·λ (of which there are h

ϵ
+2h) and h′ ≤ h. Intuitively,

113

0 27
5

21
5

6
5

12
5

0
1
2
3
4
5

33
5… … ………

Weight
Le

ng
th

u
t

v

… … … … …

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

t
v
s

u
t

v
s

u
t

v
s

t
v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t s
u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u
t

v
s

u

v

u

s 2
1

1

1 3

1

2

Figure 5.6: An illustration of D(h,λ) where D and the parameters we use are given by Figure 5.5, κ = 100, S = {s}
and T = {t}. Copy v(x, h′) of vertex v is in the (x, h′)th grid cell and each arc is labelled with its capacity. We only
illustrate the subgraph between s(0, 0) and t(335 , 5). Each path is colored according to the path in Figure 5.5b of
which it is a copy. Notice that the graph induced by all 5-length lightest paths in Figure 5.5b is not a DAG but D(h,λ)

is.

there will be a path from a copy of a vertex s ∈ S to a vertex v(x, h′) iff there is a path with
exactly x weight (according to w̃) and h′-length from s to v in D.

• Arcs: We construct the arcs A′ as follows. For each each vertex v ̸∈ T and each a =
(v, u) ∈ δ+(v) we do the following. For each copy v(x, h′) of v we add an arc to A′

from v(x, h′) to u(x + w̃a, h
′ + la) provided u(x + w̃a, h

′ + la) is actually a vertex in V ′.
That is, provided x + w̃a ≤ (1 + 2ϵ) · λ and h′ + la ≤ h. We say that the arc v(x, h′) to
u(x+ w̃a, h

′ + la) in A′ is a copy of arc a. For a given a ∈ A, we let A′(a) give all copies
of arc a that are in A′.

• Capacities: We construct the capacities U ′ as follows. For low capacity arcs we set the
capacity of all copies to 1; for high capacity arcs we evenly distribute the capacity across
all copies. Specifically, suppose arc a′ ∈ A′ is a copy of arc a ∈ A. Then if 0 < Uuv ≤ κ
we let U ′

a′ = 1. Otherwise, we let U ′
a′ have capacity ⌊Ua/κ⌋. As we will see later in our

proofs, this rebalancing of flows will guarantee that when we “project” a flow from D(h,λ)

to D, the only arcs that end up overcapacitated in D are arcs with capacity at most κ. This,
in turn, will allow us to argue that the conflict graph on which we compute an MIS is small.

We let V ′(S) and V ′(T) be all copies of S and T in D(h,λ) and we delete any vertex from D(h,λ)

that does not lie on a V ′(S) to V ′(T) path. This will guarantee that the resulting digraph is indeed
an V ′(S)-V ′(T) DAG.

Lastly, we clarify what it means for a path to have its copy in D(h,λ). Suppose P = (a1, a2, . . .)
is a path in D that visits vertices s = v1, v2, . . . , vk = t in D and let w̃i and li be the weight
(according to w̃) and length of P summed up to the ith vertex it visits. Then we let a′i be the arc
from vi(w̃i, li) to vi+1(w̃i+w̃ai , li+ lai). If a′i is in D(h,λ) for every i then we call P ′ = (a′1, a

′
2, . . .)

the copy of P in D(h,λ). Observe that a path in D has at most one copy in D(h,λ) but every path in
D(h,λ) is the copy of some path in D.

114

The following summarizes the key properties of our length-weight expanded digraphs.

Lemma 108. Let D = (V,A) be a digraph with weights w, S, T ⊆ V and some λ ≤ d
(h)
w (S, T).

Let D(h,λ) = (V ′, A) be the length-weight expanded digraph of D. Then D(h,λ) is an h-layer
V ′(S)-V ′(T) DAG which satisfies

1. Few Arc Copies: |A′(a)| ≤ O(h
2

ϵ
).

2. Forward Path Projection: For each path P in D from S to T of weight at most λ · (1 + ϵ)
according to w, there is a copy of P in D(h,λ) from V ′(S) to V ′(T).

3. Backward Path Projection: If P ′ is a V ′(S) to V ′(T) path in D(h,λ) then it is a copy of a
path with weight at most (1 + 2ϵ) · λ according to w.

4. Optimal Flow Preserving: the maximum S-T flow on D(h,λ) has value at least Ω(ϵ
h2) times

that of the maximum flow on D.

Proof. First, we argue that D(h,λ) is indeed a DAG. To see this, observe that if a′ is an arc in A′

from v(x1, h1) to v(x2, h2) then by construction it must be the case that h1 < h2. It follows that
D(h,λ) has no cycles and has at most h layers. Next, observe that D(h,λ) is a V ′(S)-V ′(T) DAG by
construction since we deleted any any vertices that do not lie on a path between V ′(S) and V ′(T).
Additionally, we have |A′(a)| ≤ O(h

2

ϵ
) for every a since each vertex has at most O(h

2

ϵ
)-many

copies.

Next, consider an arc a with weight wa according to w and weight w̃a according to w̃. Observe
that since we are rounding arc weights up we have wa ≤ w̃a. Combining this with the fact that we
are rounding to multiples of ϵ

h
· λ we have that

wa ≤ w̃a ≤ wa +
ϵ

h
· λ (5.10.1)

We next argue our forward path projection property. That is, for each h-length path P in D from
S to T of weight at most λ · (1 + ϵ) according to w, there is a copy of P in D(h,λ) from V ′(S) to
V ′(T). First, observe that P consists of at most h-many edges and so applying Equation (5.10.1),
its weight according to w̃ is at most λ · (1 + ϵ) + h · ϵ

h
· λ = λ · (1 + 2ϵ). Next, observe that since

P has weight at most λ · (1 + 2ϵ) according to w̃, it must have a copy in D(h,λ). In particular,
suppose P = (a1, a2, . . .) visits vertices s = v1, v2, . . . , vk = t in D and let w̃i and li be the
weight (according to w̃) and length of P up to the ith vertex it visits. Then D(h,λ) always includes
the arc from vi(w̃i, li) to vi+1(w̃i + w̃ai , li + lai) since w̃i ≤ (1 + 2ϵ)λ and li ≤ h for every i.

We argue our backward path projection property. That is, if P ′ is a V ′(S) to V ′(T) path in D(h,λ)

then it is a copy of a path with weight at most (1 + 2ϵ) · λ in D according to w. Since each arc
in D(h,λ) is a copy of some arc in D, we know that P ′ is a copy of some path in D. Moreover,
since we let v(x, h′) only range over x ∈ h

ϵ
+ 2h, it follows that the weight of this path according

to w̃ is at most (1 + 2ϵ) · λ. However, since weights according to w̃ are only larger than those
according to w by Equation (5.10.1), it follows that P ′ is a copy of a path with weight at most
(1 + 2ϵ) · λ according to w.

Lastly, to see the optimal flow preserving property notice that if f ∗ is the optimal flow on D then
by how chose the capacities of D(h,λ) we have that the flow that gives path P ′ in D(h,λ) value
Θ(ϵ

h2) · f ∗
P where P ′ is the copy of P is indeed a feasible flow in D(h,λ).

115

5.10.2 Decongesting Flows
Part of what makes using our length-weight expanded digraph non-trivial is that when we compute
a flow in it and then project this flow back into D, the projected flow might not respect capacities.
However, this flow will only violate capacities to a bounded extent and so in this section we show
how to resolve such flows at a bounded loss in the value of the flow. In the below we say that an
h-length flow f̂ is α-congested if any arc a where f̂(a) > Ua satisfies f̂(a) ≤ α.

Lemma 109. There is a deterministic algorithm that, given a digraph D = (V,A) with capacities
U , a length constraint h ≥ 1, S, T ⊆ V and an h-length α-congested S-T integral flow f̂ ,
computes an S-T h-length integral flow f where s.t. (f) ≥ 1

α2h2 · s.t. (f̂) in:

1. Parallel time Õ(α2 · h) with m processors;

2. CONGEST time Õ(α3 · h3).

Proof. The basic idea is to consider the conflict graph induced by our flow paths and then to
compute a approximate maximum-weighted independent set among these flow paths where flow
paths are weighted according to their flow value.

Specifically, construct our conflict graph G′ = (V ′, E ′) of supp(f̂) as follows. V ′ = supp(f̂) has
a vertex for each path in the support of f̂ . We say that P1 and P2 in supp(f̂) conflict if there is
some arc a in both P1 and P2 such that f̂(a) > Ua. Then we add edge {P1, P2} to E ′ iff P1 and
P2 conflict.

Observe that since each path in supp(f̂) consists of at most h arcs and since f̂ is α-congested, we
know that the maximum degree in G′ is at most h · α.

We then apply Theorem 79 to G′ to compute a 1
hα

-approximate maximum independent set in G′

in deterministic CONGEST time Õ(hα) with the node weight of P ∈ supp(f̂) as f̂P . Let I be
this independent set and let f =

∑
P∈I f̂P be the flow corresponding to this set. We return f .

We first argue that s.t. (f) ≥ s.t. (f̂)
α2h2 Since the total node weight in G′ is s.t. (f̂) and the maximum

degree in G′ is α · h, it follows that the maximum independent set in G′ has node weight at least
s.t. (f̂)
αh

. Since I is 1
αh

-approximate, we conclude that f has s.t. (f) ≥ s.t. (f̂)
α2h2 .

Lastly, we argue that we achieve the claimed running times. Notice that the total number of
vertices in G′ is at most m · α because each congested arc a where Ua < f̂(a) ≤ α is contained
in at most α integral flow paths. Hence, we can simulate any CONGEST algorithm in G′ with
at most α overhead. Theorem 79 tells us that we can compute I in time at most Õ(α · h) in G′,
giving our parallel running time.

It remains to describe how to simulate G′ in D in CONGEST. We keep the following invariant: if
a node P1 in G′ receives a message, we make sure that all vertices v ∈ P1 in G receive the same
message too. Because of this, any vertex v ∈ P1 in G can determine what P1 as a node in G′ will
do next. Let us assume that each message in G′ from P1 to P2 is of the form (msg, P1, P2). To
simulate sending (msg, P1, P2) in G, a vertex v1 ∈ P1 first forwards (msg, P1, P2) through P1

to make sure that every node in P1 gets this message. Let v2 ∈ P1 ∩ P2 be a common vertex in
both P1 and P2. Then, v2 forwards (msg, P1, P2) through P2. After we are done simulating all
messages sent in G′, our invariant is maintained.

Now, we analyze the overhead of simulating one round of G′ in G. The dilation for simulating
sending each message in G′ is clearly O(h). Next, we analyze the congestion. Each arc a is

116

contained in at most max{Ua, α} ≤ αUa paths. For each such path P , there are at most αh
messages needed to sent through a because the maximum degree in G′ at most αh. Therefore,
the congestion is at most αUa·αh

Ua
= α2h. Note that, here (and nowhere else in this work) we rely

on the fact that we may send O(Ua) messages over an arc a with capacity Ua in one round of
CONGEST.

To conclude, the deterministic simulation overhead is at most dilation times congestion which is
at most O(h) · α2h = O(α2h2). Combining this simulation with the Õ(α · h) running time of our
approximate maximal independent set algorithm gives our CONGEST running time.

5.10.3 Computing h-Length (1 + ϵ)-Lightest Path Blockers
Having described our length-weight expanded DAGs, their properties and how to decongest flows
that we compute using them, we now use these primitives to build our h-length (1 + ϵ)-lightest
path blockers. Again, the basic idea is to compute the length-weight expanded DAG D(h,λ),
compute blocking flows in D(h,λ), project these back into D, decongest the resulting flows and
then repeat. Algorithm 2 gives our algorithm. We prove its properties below.

Algorithm 2 (1 + ϵ)-Lightest Path Blocker

Input: D = (V,A) with weights w, lengths l, capacities U , h ≥ 1, S, T ⊆ V , λ > 0 and
ϵ > 0.

Output: h-length (1 + ϵ)-lightest path blocker f .
Initialize solution f to be 0 on all arcs.
Let D(h,λ) = (V ′, A′) be the length-weight expanded digraph of D with capacities Û = U

Θ̃(h
7

ϵ2
) repetitions

Blocking Flows: Let f ′ be a blocking integral flow in D(h,λ) with capacities Û (compute
using Theorem 89 with randomness or Theorem 96 deterministically).

Project Into D: Let f̃ be the h-length flow that gives path P value f ′
P ′ where P ′ is the

copy of P in D(h,λ).
Decongest Flow: Let f̂ be the result of decongesting f̃ with Theorem 109.
For each copy a′ ∈ A′ of a ∈ A update capacities as Ûa′ = Ûa′ − f̂(a).
Update f = f + f̂ .
f .

Given digraph D = (V,A) with lengths l, weights w, capacities U , length constraint h ≥ 1, ϵ > 0,
S, T ⊆ V and λ ≤ d

(h)
w (S, T), one can compute an h-length (1 + ϵ)-lightest path blocker in:

1. Deterministic parallel time Õ(1
ϵ5
· h16) with m processors

2. Randomized CONGEST time Õ(1
ϵ5
· h16) with high probability;

3. Deterministic CONGEST time Õ
(

1
ϵ5
· h16 + 1

ϵ3
· h15 · (ρCC)

10
)
.

Proof. We first argue that f is a h-length (1 + ϵ)-lightest path blocker (Theorem 107). f is an
integral h-length S-T flow by construction. Moreover, the support of f is near-lightest by the
backward path projection property of D(h,λ), as stated in Theorem 108.

Thus, it remains to argue the near-lightest path blocking property of f and, in particular that if
P ∈ Ph(S, T) is a path in D and P has weight at most (1 + ϵ) · λ according to w then there is

117

some a ∈ P where f(a) = Ua. Towards this, observe that by the forward path projection property
as stated in Theorem 108, such a path P has copy in D(h,λ). By how we construct f , it follows
that to show f(a) = Ua for some a, it suffices to show that Ûa = 0 by the end of our algorithm.
To show that such an a exists, it suffices to show that the maximum flow in D(h,λ) under the
capacities Û is 0 by the end of our algorithm.

We do so now. Our strategy will be to show that we have implicitly computed a flow on D(h,λ) of
near-optimal value and so after just a few iterations it must be the case that the optimal flow on
D(h,λ) is reduced to 0.

Consider a fixed iteration of our algorithm and let OPT(h,λ) be the value of the maximum V ′(S)-
V ′(T) flow on D(h,λ). Since f ′ is a blocking flow in D(h,λ) and D(h,λ) is an h-layer DAG by
Theorem 108, it follows from Theorem 99 that

s.t. (f ′) ≥ 1

h
·OPT(h,λ). (5.10.2)

Continuing, we claim that f̃ is an O(h
2

ϵ
)-congested flow. In particular, any arc a with capacity

in D greater than O(h
2

ϵ
) is such that the sum of its capacities across copies in D(h,λ) is at most

Ûa. Thus, such an arc is never overcongested by f̃ . Any arc with capacity less than O(h
2

ϵ
) in D′

has up to O(h
2

ϵ
) copies in D(h,λ) each of which has capacity 1; thus, such an arc may have flow

value up to O(h
2

ϵ
) in f̃ . Thus, by s.t. (f̃) = s.t. (f ′) and this bound on the congestedness of f̃ ,

we have from Theorem 109 that

s.t. (f̂) ≥ ϵ2

h6
· s.t. (f̃)

=
ϵ2

h6
· s.t. (f ′). (5.10.3)

Combining Equation (5.10.2) and Equation (5.10.3), we get

s.t. (f̂) ≥ ϵ2

h7
·OPT(h,λ). (5.10.4)

Lastly, let f ′′ be f̂ projected back into D(h,λ). That is, if arc a′ is a copy of arc a then f ′′ assigns to
a′ the flow value

∑
P∋a f̂P . Observe that by construction of f̂ , we know that f ′′ is a V ′(S)-V ′(T)

flow in D(h,λ) of value s.t. (f ′′) = s.t. (f̂). Thus, applying this and Equation (5.10.4) we get

s.t. (f ′′) ≥ ϵ2

h7
·OPT(h,λ).

Since we decrement the value of Ûa by f ′′
a in each iteration, it follows that after Õ(h

7

ϵ2
) many

repetitions of Algorithm 2, we must decrease the value of the optimal flow in D(h,λ) by at least a
constant fraction since otherwise we would have computed a flow with value greater than that of
the optimal flow. Since initially OPT(h,λ) ≤ poly(n), we get that after Õ(h

7

ϵ2
)-many repetitions

we have reduced the value of the optimal flow to 0 on D(h,λ), therefore showing that f satisfies

118

the near-lightest path blocking property.

It remains to show our running times. The computation in each of our iterations is dominated by
constructing the length-expanded digraph D(h,λ), computing our maximal integral flow f (h) in
D(h,λ) and decongesting our flow.

• We can construct D(h,λ) by e.g. Bellman-Ford for Õ(h) rounds for a total running time of
Õ(h) in either CONGEST or parallel. Likewise projecting flows back from D(h,λ) is trivial.

• It is is easy to simulate D(h,λ) in either CONGEST or in parallel with an overhead of O(h
2

ϵ
)

since this is a bound on the number copies of each vertex.

With randomization, by Theorem 89 computing f ′ takes time Õ(h3) in parallel with m pro-
cessors or Õ(h4) in CONGEST on D(h,λ) and so Õ(h

5

ϵ
) in parallel or Õ(h

6

ϵ
) in CONGEST

on D.

For our deterministic algorithm, by Theorem 96 doing so takes Õ(h3) in parallel with m
processors and CONGEST time Õ(h6 · (ρCC)

10) on D(h,λ) and so Õ(1
ϵ
· h5) parallel time

on D or Õ(1
ϵ
· h8 · (ρCC)

10) CONGEST time on D.

• Lastly, decongesting our flow by Theorem 109 and the fact that f̃ is O(h
2

ϵ
)-congested takes

deterministic parallel time Õ(h
5

ϵ2
) and deterministic CONGEST time Õ(h

9

ϵ3
).

Combining these running times with our Õ(h
7

ϵ2
)-many repetitions gives the stated running times.

5.11 Computing Length-Constrained Flows and Moving Cuts
Having shown how to compute an h-length (1 + ϵ)-lightest path blocker, we now use a series
of these as batches to which we apply multiplicative-weights-type updates. The result is our
algorithm which returns both a length-constrained flow and a (nearly) certifying moving cut.

Algorithm 3 Length-Constrained Flows and Moving Cuts

Input: digraph D = (V,A) with lengths l, capacities U , h ≥ 1, S, T ⊆ V and ϵ ∈ (0, 1).
Output: (1± ϵ)-approximate h-length flow f and moving cut w.
Let ϵ0 = ϵ

6
, let ζ = 1+2ϵ0

ϵ0
+ 1 and let η = ϵ0

(1+ϵ0)·ζ ·
1

logm
.

Initialize wa ←
(

1
m

)ζ for all a ∈ A.
Initialize λ←

(
1
m

)ζ .

Initialize fP ← 0 for all P ∈ Ph(S, T). λ < 1: Θ
(

h log1+ϵ0
n

ϵ0

)
iterations:

Compute h-length (1 + ϵ0)-lightest path blocker f̂ (using Section 5.10 with current λ).
Length-Constrained Flow (Primal) Update: f ← f + η · f̂ .
Moving Cut (Dual) Update: wa ← (1 + ϵ0)

f̂(a)/Ua · wa for every a ∈ A.
λ← (1 + ϵ0) · λ
(f, w).

As a reminder for an h-length flow f , we let f(a) :=
∑

P∋a fP . Throughout our analysis we
will refer to the innermost loop of Algorithm 3 as one “iteration.” We begin by observing that λ
always lower bounds d(h)w (S, T) in our algorithm.

119

Lemma 110. At the beginning of each iteration of Algorithm 3 we have λ ≤ d
(h)
w (S, T)

Proof. Our proof is by induction. The statement trivially holds at the beginning of our algorithm.

Let λi be the value of λ at the beginning of the ith iteration. We argue that if d(h)w (S, T) = λi

then after Θ
(

h log1+ϵ0
n

ϵ0

)
additional iterations we must have d

(h)
w (S, T) ≥ (1 + ϵ0) · λi. Let

λ′
i = (1 + ϵ0) · λ be λ after these iterations. Let f̂j be our lightest path blocker in the jth iteration.

Assume for the sake of contradiction that d(h)w (S, T) < λ′
i after i + Θ

(
h log1+ϵ0

n

ϵ0

)
iterations. It

follows that there is some path P ∈ Ph(S, T) with weight at most λ′
i after i + Θ

(
h log1+ϵ0

n

ϵ0

)
many iterations. However, notice that by definition of an h-length (1 + ϵ0)-lightest path blocker
(Theorem 107), we know that for every j ∈

[
i, i+Θ

(
h log1+ϵ0

n

ϵ0

)]
there is some a ∈ P for which

f̂j(a) = Ua. By averaging, it follows that there is some single arc a ∈ P for which f̂j(a) = Ua

for at least Θ
(

log1+ϵ0
n

ϵ0

)
of these j ∈ [i, i+Θ

(
h log1+ϵ0

n

ϵ0

)
]. Since every such arc starts with dual

value (1
m
)ζ and multiplicatively increases by a (1+ ϵ0) factor in each of these updates, such an arc

after i+Θ
(

h log1+ϵ0
n

ϵ0

)
many iterations must have wa value at least (1

m
)ζ ·(1+ϵ0)

Θ

(
log1+ϵ0

n

ϵ0

)
≥ n2

for an appropriately large hidden constant in our Θ. However, by assumption, the weight of P is
at most λ′

i after i+Θ
(

h log1+ϵ0
n

ϵ0

)
iterations and this is at most 2 since λi < 1 since otherwise our

algorithm would have halted. But 2 < n2 and so we have arrived at a contradiction.

Repeatedly applying the fact that λ′
i = (1 + ϵ0)λi gives that λ is always a lower bound on

d
(h)
w (S, T).

We next prove the feasibility of our solution.

Lemma 111. The pair (f, w) returned by Algorithm 3 are feasible for Length-Constrained Flow
LP and Moving Cut LP respectively.

Proof. First, observe that by Theorem 110 we know that λ is always a lower bound on d
(h)
w (S, T)

and so since we only return once λ > 1, the w we return is always feasible.

To see that f is feasible it suffices to argue that for each arc a, the number of times a path
containing a has its primal value increased is at most Ua

η
. Notice that each time we increase

the primal value on a path containing arc a by η we increase the dual value of this edge by a
multiplicative (1 + ϵ0)

1/Ua . Since the weight of our arcs according to w start at (1
m
)ζ , it follows

that if we increase the primal value of k paths incident to arc a then wa = (1 + ϵ0)
k/Ua · (1

m
)ζ . On

the other hand, by assumption when we increase the dual value of an arc a it must be the case
that wa < 1 since otherwise d

(h)
w (S, T) ≥ 1, contradicting the fact that λ always lower bounds

d
(h)
w (S, T). It follows that (1 + ϵ0)

k/Ua · (1
m
)ζ ≤ 1 and so applying the fact that ln(1 + ϵ0) ≥ ϵ0

1+ϵ0
for ϵ0 > −1 and our definition of ζ and η we get

k ≤ ζ · (1 + ϵ0)

ϵ0
· Ua logm

=
Ua

η

as desired.

120

We next prove the near-optimality of our solution.

Lemma 112. The pair (f, w) returned by Algorithm 3 satisfies (1− ϵ)
∑

awa ≤
∑

P fP .

Proof. Fix an iteration i of the above while loop and let f̂ be our lightest path blocker in this
iteration. Let ki be s.t. (f̂), let λi be λ at the start of this iteration and let Di :=

∑
awa be our

total dual value at the start of this iteration. Notice that 1
λi
· w is dual feasible and has cost Di

λi
by

Theorem 110. If β is the optimal dual value then by optimality it follows that β ≤ Di

λi
, giving us

the upper bound on λi of Di

β
. By how we update our dual, our bound on λi and (1 + x)r ≤ 1 + xr

for any x ≥ 0 and r ∈ (0, 1) we have that

Di+1 =
∑
a

(1 + ϵ0)
f̂(a)/Ua · wa · Ua

≤
∑
a

(
1 +

ϵ0f̂(a)

Ua

)
· wa · Ua

= Di + ϵ0
∑
a

f̂(a)wa

≤ Di + ϵ0(1 + 2ϵ0) · kiλi

≤ Di

(
1 +

(1 + 2ϵ0)ϵ0 · ki
β

)
≤ Di · exp

(
(1 + 2ϵ0)ϵ0 · ki

β

)
.

Let T − 1 be the index of the last iteration of our algorithm; notice that DT is the value of w in
our returned solution. Let K :=

∑
i ki. Then, repeatedly applying this recurrence gives us

DT ≤ D0 · exp
(
(1 + 2ϵ0)ϵ0 ·K

β

)
=

(
1

m

)ζ−1

exp

(
(1 + 2ϵ0)ϵ0 ·K

β

)

On the other hand, we know that w is dual feasible when we return it, so it must be the case that
DT ≥ 1. Combining this with the above upper bound on DT gives us 1 ≤

(
1
m

)ζ
exp

(
(1+2ϵ0)ϵ0·K

β

)
.

Solving for K and using our definition of ζ gives us

β logm · ζ − 1

(1 + 2ϵ0) · ϵ0
≤ K

β logm · 1
ϵ20
≤ K.

However, notice that Kη is the primal value of our solution so using our choice of η and rewriting
this inequality in terms of Kη by multiplying by η = ϵ0

(1+ϵ0)·ζ ·
1

logm
and applying our definition of

121

ζ = 1+2ϵ0
ϵ0

+ 1 gives us

β

ϵ0 · (1 + ϵ0) · ζ
≤ Kη

β

(1 + ϵ0)(1 + 3ϵ0)
≤ Kη. (5.11.1)

Moreover, by our choice of ϵ0 = ϵ
6

and the fact that 1
1+x+x2 ≥ 1− x for x ∈ (0, 1) we get

1− ϵ ≤ 1

1 + ϵ+ ϵ2

≤ 1

(1 + 1
2
ϵ)2

≤ 1

(1 + 3ϵ0)2

≤ 1

(1 + ϵ0)(1 + 3ϵ0)
. (5.11.2)

Combining Equation (5.11.1) and Equation (5.11.2) we conclude that

(1− ϵ) · β ≤ Kη.

We conclude with our main theorem by proving that we need only iterate our algorithm Õ
(

h
ϵ4

)
times. Given a digraph D = (V,A) with capacities U , lengths l, length constraint h ≥ 1, ϵ > 0
and source and sink vertices S, T ⊆ V , one can compute a feasible h-length flow, moving cut pair
(f, w) that is (1± ϵ)-approximate in:

1. Deterministic parallel time Õ(1
ϵ9
· h17) with m processors

2. Randomized CONGEST time Õ(1
ϵ9
· h17) with high probability;

3. Deterministic CONGEST time Õ
(

1
ϵ9
· h17 + 1

ϵ7
· h16 · (ρCC)

10
)
.

Also, f = η ·
∑k

j=1 fj where η = Θ̃(ϵ2), k = Õ
(

h
ϵ4

)
and each fj is an integral h-length S-T

flow.

Proof. We use Algorithm 3. By Theorem 111 and Theorem 112 we know that our solution is
feasible and (1± ϵ)-optimal so it only remains to argue the runtime of our algorithm and that the
returned flow decomposes in the stated way.

We argue that we must only run for O
(

h log2 n
ϵ4

)
total iterations. Since λ increases by a mul-

tiplicative (1 + ϵ0) after every Θ
(

h logn
ϵ20

)
iterations and starts at at least

(
1
m

)Θ(1/ϵ0), it follows

by Theorem 110 that after y ·Θ
(

h logn
ϵ20

)
total iterations the h-length distance between S and T

is at least (1 + ϵ0)
y ·
(

1
m

)Θ(1/ϵ0). Thus, for y ≥ Ω
(

log1+ϵ0
m

ϵ0

)
= Ω

(
logn
ϵ20

)
we have that S and

T are at least 1 apart in h-length distance. Consequently, our algorithm must run for at most
O
(

h log2 n
ϵ40

)
= O

(
h log2 n

ϵ4

)
many iterations.

122

Our running time is immediate from the the bound of O
(

h log2 n
ϵ4

)
on the number of iterations of the

while loop and the running times given in Section 5.10 for computing our h-length (1+ϵ0)-lightest
path blocker.

Lastly, the flow decomposes in the stated way because we have at most O
(

h log2 n
ϵ4

)
iterations

and each fj is an integral S-T flow by Section 5.10. Thus, our final solution is η ·
∑k

j=1 fj and
k = Õ

(
h
ϵ4

)
.

5.12 Application: Maximal and Maximum Disjoint Paths
In this section we show that our main theorem (Section 5.3) almost immediately gives deterministic
CONGEST algorithms for many varieties of maximal disjoint path problems as well as essentially-
optimal algorithms for many maximum disjoint path problems. In Section 5.12.1 we give the
variants we study. In Section 5.12.2 we observe that it suffices to solve the arc-disjoint directed
variants of these problems. Lastly, we give our results for maximal and maximum disjoint path
problems in Section 5.12.3 and Section 5.12.4 respectively where we observe in Section 5.12.5
that our algorithms for the latter are essentially optimal.

5.12.1 Maximal and Maximum Disjoint Path Variants
We consider the following maximal disjoint path variants.

Maximal Vertex-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and two disjoint sets S, T ⊆ V , find a collection of h-length vertex-disjoint S to T
paths P such that any h-length S to T path shares a vertex with at least one path in P .

Maximal Edge-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and two disjoint sets S, T ⊆ V , find a collection of h-length edge-disjoint S to T
paths P such that any h-length S to T path shares an edge with at least one path in P .

Maximal Vertex-Disjoint Directed Paths: Given digraph D = (V,A), length
constraint h ≥ 1 and two disjoint sets S, T ⊆ V , find a collection of h-length vertex-
disjoint S to T paths P such that any h-length S to T path shares a vertex with at
least one path in P .

Maximal Arc-Disjoint Directed Paths: Given digraph D = (V,A), length constraint
h ≥ 1 and two disjoint sets S, T ⊆ V , find a collection of h-length arc-disjoint S to
T paths P such that any h-length S to T path shares an arc with at least one path in
P .

As discussed in Section 5.1.1, the existence of efficient deterministic algorithms for the above
problems (specifically the maximal vertex-disjoint paths problem) in CONGEST was stated as an
open question by Chang and Saranurak [45] and the lack of these algorithms is a major barrier to
simple deterministic constructions of expander decompositions.

We consider the following maximum disjoint path variants.

Maximum Vertex-Disjoint Paths: Given graph G = (V,E), length constraint
h ≥ 1 and disjoint sets S, T ⊆ V , find a max cardinality collection of h-length
vertex-disjoint S to T paths.

123

u v

u(o) v(o)

v(i)u(i)

(a) Vertex-disjoint paths.

u v u v

x(i)
e

x(o)
e

(b) Edge-disjoint paths.

u v

u(o) v(o)

v(i)u(i)

(c) Vertex-disjoint directed paths.

Figure 5.7: Illustration of our reduction on a single edge or arc between u and v for reducing maximal or maximum
vertex-disjoint paths, edge-disjoint paths or vertex-disjoint directed paths to arc-disjoint directed paths.

Maximum Edge-Disjoint Paths: Given graph G = (V,E), length constraint h ≥ 1
and disjoint sets S, T ⊆ V , find a max cardinality collection of h-length edge-disjoint
S to T paths.

Maximum Vertex-Disjoint Directed Paths: Given digraph D = (V,A), length
constraint h ≥ 1 and disjoint sets S, T ⊆ V , find a max cardinality collection of
h-length vertex-disjoint S to T paths.

Maximum Arc-Disjoint Directed Paths: Given digraph D = (V,A), length con-
straint h ≥ 1 and disjoint sets S, T ⊆ V , find a max cardinality collection of h-length
arc-disjoint S to T paths.

5.12.2 Reducing Among Variants

We begin by observing that the arc-disjoint directed paths problem is the hardest of the above
variants and so it will suffice to solve this problem. The reductions we use are illustrated in
Figure 5.7.

Lemma 113. If there is a deterministic algorithm for maximal arc-disjoint directed paths in
CONGEST running in time T then there are deterministic CONGEST algorithms for maximal
vertex-disjoint paths, edge-disjoint paths and vertex-disjoint directed paths all running in time
O(T).

Likewise, if there is a deterministic (resp. randomized) parallel with m processors or CONGEST
algorithm for maximum arc-disjoint directed paths in CONGEST running in time T with approxi-
mation ratio Õ(h) then there are deterministic (resp. randomized) parallel with m processors and
CONGEST algorithms for maximum vertex-disjoint paths, edge-disjoint paths and vertex-disjoint
directed paths all running in time O(T) with approximation ratio Õ(h).

Proof. We reduce each of maximal vertex-disjoint paths, maximal edge-disjoint paths and maxi-
mal vertex-disjoint directed paths to maximal arc-disjoint directed paths and do the same for the
maximum variants of these problems.

Reducing from maximal/maximum vertex-disjoint paths. Consider an instance of maximal
or maximum vertex-disjoint paths on graph G = (V,E) with length constraint h and vertex sets
S and T . We create a digraph D = (V ′, A) as follows:

• Vertices: V ′ is constructed as follows: for each v ∈ V we add to V ′ vertex v(i) and v(o).

• Arcs: For each v ∈ V we add an arc from v(i) to v(o). Furthermore, for each e = {u, v} ∈ E
we add to A the arcs (u(o), v(i)) and (v(o), u(i)).

124

A collection of arc-disjoint paths in D from S ′ = {s(i) : s ∈ S} to T ′ = {t(o) : t ∈ T} with length
constraint 2h− 1 uniquely corresponds to an equal cardinality collection of S-T vertex-disjoint
paths in G with length constraint h. Thus, an Õ(h) approximation on D for the maximum S ′-T ′

arc-disjoint directed paths problem gives an Õ(h) approximation for the maximum vertex-disjoint
paths problem on G. Likewise, a maximal collection of arc-disjoint S ′-T ′ paths on D with length
constraint 2h− 1 corresponds to a maximal collection of vertex-disjoint S-T paths with length
constraint h. Lastly, a T -time CONGEST algorithm on D can be simulated on G in time O(T)
since each v ∈ V can simulate v(o) and v(i).

Reducing from maximal/maximum edge-disjoint paths. Consider an instance of maximal or
maximum edge-disjoint paths on graph G = (V,E) with length constraint h and vertex sets S
and T . We create a digraph D = (V ′, A) as follows:

• Vertices: V ′ consists of V along with two vertices for each edge e, namely x
(i)
e and v

(o)
e for

each e ∈ E.

• Arcs: For each e ∈ {u, v} ∈ E we add to A an arc from x
(i)
e to x

(o)
e as well as an arc from

u and v to x
(i)
e and an arc from x

(o)
e to u and v.

A collection of arc-disjoint S-T paths in D with length constraint 3h uniquely corresponds to an
equal cardinality collection of S-T edge-disjoint paths in G with length constraint h. Thus, an
Õ(h) approximation on D for the maximum S-T arc-disjoint directed paths problem gives an
Õ(h) approximation for the maximum edge-disjoint paths problem on G. Likewise, a maximal
collection of arc-disjoint S-T paths on D with length constraint 3h corresponds to a maximal
collection of edge-disjoint S-T paths with length constraint h on G. Lastly, a T -time CONGEST
algorithm on D can be simulated on G in time O(T) since the endpoints of e ∈ E can simulate
x
(i)
e and x

(o)
e with constant overhead.

Reducing from maximal/maximum vertex-disjoint directed paths. Consider an instance of
maximal or maximum vertex-disjoint directed paths on graph D = (V,A) with length constraint
h and vertex sets S and T . We create a digraph D′ = (V ′, A′) as follows:

• Vertices: V ′ consists of vertices v(o) and v(i) for each v ∈ V .

• Arcs: For each v ∈ V we add to A′ the arc (v(i), v(o)). For each arc a = (u, v) ∈ A we add
to A′ the arc (u(o), v(i)).

A collection of arc-disjoint paths in D′ from S ′ = {s(i) : s ∈ S} to T ′ = {t(o) : t ∈ T} with
length constraint 2h− 1 uniquely corresponds to an equal cardinality collection of S-T vertex-
disjoint paths in D with length constraint h. Thus, an Õ(h) approximation on D′ for the maximum
S ′-T ′ arc-disjoint directed paths problem gives an Õ(h) approximation for the maximum S-T
vertex-disjoint directed paths problem on D. Likewise, a maximal collection of arc-disjoint S ′-T ′

paths on D′ with length constraint 2h− 1 corresponds to a maximal collection of vertex-disjoint
S-T paths with length constraint h on D. Lastly, a T -time CONGEST algorithm on D′ can be
simulated on D in time T each v ∈ V can simulate v(i) and v(o).

125

5.12.3 Maximal Disjoint Path Algorithms

We now observe that our length-constrained flow algorithms allow us to solve maximal arc-disjoint
directed paths and therefore all of the above variants efficiently.

Theorem 114. There are deterministic CONGEST algorithms for maximal vertex-disjoint paths,
edge-disjoint paths, vertex-disjoint directed paths and arc-disjoint directed paths running in time
Õ (h18 + h17 · (ρCC)

10).

Proof. By Theorem 113, it suffices to show that maximal arc-disjoint directed paths can be solved
in time Õ (h18 + h17 · (ρCC)

10). We proceed to do so on digraph D with length constraint h and
vertex sets S and T for the rest of this proof.

Specifically, we repeat the following until no path between S and T consists of h or fewer
edges. Apply Section 5.3 to compute a (1 − ϵ)-approximate h-length S-T flow f in D for
ϵ = .5 (any constant would suffice) with unit capacities. By the properties of f as guaranteed
by Section 5.3, we have that f = η ·

∑k
j=1 fj for η = Θ̃(1) and k = Õ (h) where each fj is

an integral flow. For each vertex v we let f (v)
j be fj restricted to its flow paths out of v and let

f
(v)
j∗ := argmax

f
(v)
j

s.t. (f (v)
j). Then, we let fj∗ :=

∑
v f

(v)
j∗ (notice that we cannot simply define

fj∗ as argmaxfj s.t. (fj) since we cannot compute s.t. (fj) effiicently in CONGEST because D
may have diameter much larger than h). Observe that since fj∗ is integral and h-length, it exactly
corresponds to an arc-disjoint collection of S-T paths P ′ in D each of which consists of at most h
edges. We add P ′ to P , delete from D any arc incident to a path of P ′ and continue to the next
iteration.

As the above algorithm removes at least one path from S to T each time, it clearly terminates with
a feasible solution for the maximal arc-disjoint directed paths problem.

Stronger, though, we claim that we need only iterate the above Õ(h)-many times until S and T are
disconnected. Specifically, fix one iteration and let P∗ be the collection of vertex-disjoint paths
from S to T of maximum cardinality at the beginning of this iteration. By the (1− ϵ)-optimality
of our flow and an averaging argument we have that s.t. (fj∗) ≥ Ω̃

(
1
h

)
· |P∗| which is to say

that |P ′| ≥ Ω̃
(
1
h

)
· |P∗|. However, it follows that after Θ̃(h)-many iterations for a large hidden

constant we must at least halve |P ∗| since otherwise we would have computed a collection of
vertex-disjoint S-T paths whose cardinality is larger than the largest cardinality of any set of
vertex-disjoint S-T paths. Since initially |P ∗| ≤ n, it follows that after iterating the above Õ(h)-
many times we have reduced |P ∗| to 0 which is to say we have solved the maximal arc-disjoint
directed paths problem.

Our running time is immediate from Section 5.3 and the above bound we provide on the number
of required iterations of Õ(h) as well as the fact that each vertex can easily compute f

(v)
j∗ and P

deterministically in parallel or CONGEST time Õ(h) since our flows are h-length.

Applying the fact that it is known that ρCC ≤ 2O(
√
logn) (see Section 5.5.4), the above gives

deterministic CONGEST algorithms running in time Õ(poly(h) · 2O(
√
logn)). If ρCC where

improved to be poly-log in n then we would get a Õ(poly(h)) running time.

126

5.12.4 Maximum Disjoint Path Algorithms
Lastly, we observe that our length-constrained flow algorithms allow us to Õ(h)-approximate
maximum arc-disjoint directed paths and therefore all of the above variants efficiently.

Theorem 115. There are Õ(h)-approximation algorithms for maximum vertex-disjoint paths,
edge-disjoint paths, vertex-disjoint directed paths and arc-disjoint directed paths running in:

• Deterministic parallel time Õ(h17) with m processors;

• Randomized CONGEST time Õ(h17) with high probability;

• Deterministic CONGEST time Õ (h17 + h16 · (ρCC)
10).

Proof. By Theorem 113, it suffices to provide a Õ(h)-approximate algorithm for maximum
arc-disjoint directed paths with the stated running times. We do so for the rest of this proof. Let
the input be digraph D = (V,A) with length constraint h ≥ 1 and disjoint sets S, T ⊆ V .

We apply Section 5.3 to compute an ϵ-approximate h-length constrained flow f in D for ϵ = .5
(any constant would suffice) and capacities Ua = 1 for every a. By the properties of f as
guaranteed by Section 5.3, we have that f = η ·

∑k
j=1 fj for η = Θ(1) and k = Õ (h) where each

fj is an integral flow. For each vertex v we let f (v)
j be fj restricted to its flow paths out of v and

let f (v)
j∗ := argmax

f
(v)
j

s.t. (f (v)
j). Then, we let fj∗ :=

∑
v f

(v)
j∗ . Observe that since fj∗ is integral

and h-length, it exactly corresponds to an arc-disjoint collection of paths P in D each of which
consists of at most h edges. We return P as our solution.

Letting P∗ be the optimal solution to the input problem we have by k = Õ(h) and an averaging
argument that

|P| = s.t. (fj∗) ≥ Ω̃

(
1

h

)
· |P∗|

and so our solution is Ω̃(1
h
)-approximate.

For our running time, observe that each vertex can easily compute f
(v)
j∗ and P deterministically

in parallel or CONGEST time Õ(h) since our flows are h-length. Thus, our running time is
dominated by Section 5.3.

5.12.5 On the Hardness of Maximum Disjoint Paths
Guruswami et al. [107] give hardness results for a variety of length-constrained maximum disjoint
path problems. In their work they state hardness of approximation result in terms of m, the
number of edges in the graph. In the following we restate these results but in terms of h, the
length-constraint.

Theorem 116 (Adaptation of Theorem 1 of Guruswami et al. [107]). Assume the strong exponen-
tial time hypothesis (SETH). Then there does not exist a polynomial-time O(h)-approximation algo-
rithm solving the maximum arc-disjoint directed paths problem for instances where h = Ω(log n).

Observe that it follows that assuming SETH, the parallel algorithm in Theorem 115 is optimal up
to poly-logs.

127

5.13 Application: Simple Distributed Expander Decomposi-
tions

In this section, we explain how our maximal disjoint path algorithm can significantly simplify the
distributed deterministic expander decomposition of Chang and Saranurak [45].

The key algorithmic primitive of [45] in their distributed deterministic expander decomposition is
their Lemma D.8. Instead of computing maximal bounded-length disjoint paths, they were only
be able to compute a set of paths that are “nearly maximal”. The formal statement is as follows:

Lemma 117 (Nearly maximal disjoint paths (Lemma D.8 of [45]). Consider a graph G = (V,E)
of maximum degree ∆. Let S ⊆ V and T ⊆ V be two subsets. There is an O(d3β−1 log2∆ log n)-
round deterministic algorithm that finds a set P of S − T vertex-disjoint paths of length at most d,
together with a vertex set B of size at most β|V \ T | < β|V |, such that any S − T path of length
at most d that is vertex-disjoint to all paths in P must contain a vertex in B.

The set P from the lemma is nearly maximal in the sense that if B is deleted from G, then P
would be maximal. However, we can see that there might possibly be many additional disjoint
paths that go through B. This set B complicates all of their later algorithmic steps.

The high-level summary of the issue is that all their flow primitives that are based on Lemma
D.8 must work with source/sink sets that are very big only. Otherwise, the guarantee becomes
meaningless or the running time becomes very slow.

Now, we explain in more details. Given two sets S and T where |S| ≤ |T |, normally if the
matching player from the cut-matching game does not return a sparse cut, then it returns an
embedding of a matching where every vertex in S is matched to some vertex in T . However, in
Lemma D.9 of [45], the matching player based on Lemma D.8 may return an embedding that
leaves as many as ≈ β|V \ T | vertices in S unmatched. This is called the “left-over” set. We
think of β ≥ 1/no(1) as the round complexity of Lemma D.8 is proportional to β−1. Therefore, it
is only when |S|, |T | ≥ 2β|V | ≥ |V |/no(1) that Lemma D.9 in [45] may give some meaningful
guarantee, yet this is still weaker than normal.

The same issue holds for their multi-commodity version of the matching player (i.e. Lemma D.11
of [45]). For the same reasoning, the lemma is meaningful only when the total number of source
and sink is at least Ω(β|V |). The issue propagates to their important subroutine (Theorem 4.1
of [45]) for computing most balanced sparse cut. The guarantee holds when only the returned
cut C is such that |C| ≥ Ω(β|V |). At the end, they managed to obtain an deterministic expander
decomposition (just treat the edges incident to the left-over part as inter-cluster edges at the end).
However, they need to keep track of this left-over parameter from the first basic primitive until the
end result.

In contrast, in their randomized algorithm for computing expander decomposition, this issues
does not appear anyway because of the randomized maximal disjoint path algorithm. Therefore,
by plugging in our deterministic maximal disjoint path algorithm into the expander decomposition
of [45], all these issue will be resolved immediately.

128

5.14 Application: (1− ϵ)-Approximate Distributed Bipartite
b-Matching

In this section we give the first efficient (1− ϵ)-approximate CONGEST algorithms for maximum
cardinality bipartite b-matching. In fact, our results are for the slightly more general edge-
capacitated maximum bipartite b-matching problem, defined as follow.

Edge-Capacitated Maximum Bipartite b-Matching: Given bipartite graph G =
(V,E), edge capacities U and function b : V → Z>0 compute an integer xe ∈ [0, Ue]
for each e ∈ E maximizing

∑
e xe so that for each v ∈ V we have

∑
e∈δ(v) xe ≤ b(v).

Notice that the case where b(v) = 1 for every v is just the classic maximum cardinality matching
problem. “b-matching” seems to refer to two different problems in the literature depending on
whether edges can be chosen with multiplicity: either it is the above problem where Ue = 1 for
every e ∈ E or it is the above problem where Ue = maxv bv for each e ∈ E. Our algorithms will
work for both of these variants since they solve the above problem which generalizes both of these
problems.

The following theorem summarizes our main result for bipartite b-matching in CONGEST. Again,
recall that ρCC is defined in Theorem 85 and is known to be at most 2O(

√
logn).

Theorem 118. There is a deterministic (1− ϵ)-approximation for edge-capacitated maximum
bipartite b-matching running in CONGEST time Õ

(
1
ϵ9
+ 1

ϵ7
· (ρCC)

10
)
.

Proof. Our algorithm works in two steps. First, we reduce edge-capacitated b-matching to length-
constrained flow and use our length constrained flow algorithm to efficiently compute a fractional
flow. Then, we apply the flow rounding technology we developed in Section 5.9.2 to round this
flow to an integral flow which, in turn, corresponds to an integral b-matching.

More formally our algorithm is as follows. Suppose we are given an instance of edge-capacitated b-
matching on bipartite graph G = (V,E). Let L and R be the corresponding bipartition of vertices
of G. We construct the following instance of length-constrained flow on digraph D = (V ′, A)
with h = 3 as follows. Each v ∈ V has two copies v(i) and v(o) in V ′. We add arc (v(i), v(o)) to
A with capacity b(v). If {u, v} ∈ E where u ∈ L and v ∈ R then we add arc (u(o), v(i)) with
capacity Ue to A. Lastly, we let S = {u(i) : u ∈ L}, T = {v(o) : v ∈ R} and the length of each
arc in D be 1. Next, we apply Section 5.3 to compute a (1− ϵ1)-approximate maximum 3-length
S-T flow f on D for some small ϵ1 to be chosen later. Since D is a 3-layer S-T DAG we may
interpret this as a (non-length-constrained) flow where the flow value on arc a is f(a).

We then apply Theorem 101 to this non-length-constrained flow to get integral S-T flow f ′

satisfying s.t. (f ′) ≥ (1 − ϵ2) · s.t. (f) for some small ϵ2 to be chosen later. We return as our
solution the b-matching which naturally corresponds to f ′. Namely, if e = {u, v} then since f ′ is
integral it assigns arc (u(o), v(i)) a value in {0, 1, . . . , Ue}. We let xe be this value for e = {u, v}
and we return as our b-matching solution {xe}e.
f ′ is a (1− ϵ1)(1− ϵ2)-approximate maximum S-T flow. Letting OPT be the value of the optimal
b-matching solution, it is easy to see that the maximum S-T flow has value OPT and so the
solution we return has value at least (1 − ϵ1)(1 − ϵ2) · OPT. Letting ϵ1 = ϵ2 = Θ(ϵ) for an
appropriately small hidden constant we get that (1− ϵ1)(1− ϵ2) ·OPT ≥ (1− ϵ) ·OPT.

Lastly, we argue our running time. Our running time is dominated by one call to Section 5.3

129

with ϵ1 = Θ(ϵ) which takes Õ
(

1
ϵ9
+ 1

ϵ7
· (ρCC)

10
)

and one call to Theorem 101 with ϵ2 = Θ(ϵ)

which takes Õ(1
ϵ5
· (ρCC)

10). Combining these running times gives the overall running time of our
algorithm.

5.15 Application: Length-Constrained Cutmatches
As it captures low-latency communication subject to bandwidth constraints, the problem of
computing low-congestion h-length paths between two set of nodes S and T occurs often in
network optimization.

In this section we give algorithms that either finds a low-congestion h-length collection of paths
between two sets of nodes or, if this is not possible, finds as large of such a collection of paths as
possible together with a moving cut that (approximately) certifies that there is no low-congestion
way of extending the current collection of paths. Such a construction is called a length-constrained
cutmatch.

A recent work [115] uses the algorithms we give for cutmatches to give the first efficient con-
structions of a length-constrained version of expander decompositions. These constructions were
then used to give the first distributed CONGEST algorithms for many problems including MST,
(1 + ϵ)-min-cut and (1 + ϵ)-lightest paths that are guaranteed to run in sub-linear rounds as long
as such algorithms exist on the input network.

In what follows, for a vertex subset W ⊆ V we let U+(W) =
∑

v∈W
∑

a∈δ+(v) Ua and U−(W) =∑
v∈W

∑
a∈δ−(v) Ua. We also let δ±(S, T) :=

⋃
v∈S δ

+(v) ∪
⋃

v∈T δ−(T)

Definition 119 (h-Length Cutmatch). Given digraph D = (V,A) with capacities U and lengths l,
an h-length ϕ-sparse cutmatch of congestion γ between two node sets S, T ⊆ V with U+(S) ≤
U−(T) consists of:

• An integral h-length S-T flow f in D with capacities {Ua}a∈δ±(S,T) ∪ {γ · Ua}a̸∈δ±(S,T);

• A moving cut w of S and T in D with capacities {Ua − fa}a∈δ±(S,T) ∪ {Ua}a̸∈δ±(S,T) of
value

∑
awa ≤ ϕ (U+(S)− s.t. (f)).

We proceed to show how to efficiently compute a cutmatch using our previous algorithm. As a
reminder ρCC is defined in Section 5.5.4 and is known to be at most 2O(

√
logn).

Theorem 120. Suppose we are given a digraph D = (V,A) with capacities U and lengths l.
There is an algorithm that, given two node sets S, T ⊆ V with U+(S) ≤ U−(T) and two integer
parameters h ≥ 1 and ϕ ≤ 1, outputs an h-length ϕ-sparse cutmatch of congestion γ between S
and T , where γ = Õ(1

ϕ
). This algorithm runs in:

1. Deterministic parallel time Õ(γ · h18) with m processors

2. Randomized CONGEST time Õ(γ · h18) with high probability;

3. Deterministic CONGEST time Õ (γ · h18 + γ · h17 · (ρCC)
10).

Proof. We initialize the flow we return f to be 0 on all arcs. We set our working capacities to be
Û = U initially. The algorithm runs for at most O(h · γ) iterations for a small hidden constant. In
each iteration i ∈ [1, O(h · γ)] we use Section 5.3 with ϵ = .5 (any constant would suffice) to find
a length-constrained flow, moving cut pair, (f̂ , ŵ) where δ = Θ̃(1), k = Õ (h), f = δ ·

∑k
j=1 fj

130

and fj is an integral h-length flow from S to T using capacities Û . By averaging there must be
some fj such that s.t. (fj) ≥ s.t. (f̂)/k. We let f̃ be this fj .

If s.t. (f̃) > Ω
(

logn·Û+(S)
hγ

)
then we update our solution as f = f + f̃ and decrement Ûa by f̃(a)

for every a ∈ δ±(S, T). Otherwise, we return the pair (f, ŵ) as our solution.

In each iteration i in which s.t. (f̃) > Ω
(

logn·Û+(S)
hγ

)
, we have that Û+(S) decreases multiplica-

tively by at least a 1 − 2 logn
hγ

factor. Such a shrinking can happen at most O(h · γ) times until
Û+(S) is reduced to 0. Thus, our algorithm requires at most O(h · γ) iterations until terminating.
Furthermore, notice when we return a moving cut ŵ we have∑

a

ŵa ≤ 2 · s.t. (f̂)

≤ h · s.t. (f̃)

≤ Õ

(
Û+(S)

γ

)

= Õ

(
U+(S)− s.t. (f)

γ

)
as desired. Also, observe that f is indeed an integral S-T flow in D with the stated capacities
since we always have f̃(a) ≤ Ûa.

The running time is exactly that of running at most O(h · γ) invocations of Section 5.3 with
ϵ = .5.

5.16 Conclusion and Future Work
In this chapter we gave the first efficient randomized and deterministic algorithms for computing
(1 − ϵ)-approximate length-constrained flows both in parallel and in the CONGEST model of
distributed computation. We used these algorithms to give new results in maximal and maximum
disjoint path problems, expander decompositions, bipartite b-matching and length-constrained
cutmatches. We conclude with several open questions and directions for future work.

1. Our length-constrained flow algorithms have a dependence of poly(h) which when plugged
into the techniques of Haeupler et al. [115] give CONGEST algorithms for many distributed
problems, e.g. MST, whose running time is poly(OPT) (up to sub-linear factors) where
OPT is the optimal CONGEST running time for the input problem. It would be exciting to
improve the dependence on h of our algorithms to, say, O(h) as this result when combined
with those of Haeupler et al. [115] would give CONGEST algorithms running in time
O(OPT) (up to sub-linear factors).

2. The running time of many of our algorithms depends on ρCC , the best quality of a
CONGEST algorithm for cycle cover (as defined in Theorem 85). It is known that
ρCC ≤ 2O(

√
logn) but it would be extremely interesting to show that ρCC ≤ Õ(1). Such

an improvement would immediately improve the dependency on n from no(1) to Õ(1) for
our CONGEST algorithms for deterministic length-constrained flows, deterministic maxi-

131

mal and maximum disjoint paths, (1− ϵ)-approximate b-matching and length-constrained
cutmatches. Such a result does not seem to be known even for the randomized case.

3. Lastly, many classic problems can be efficiently solved by reducing to flows but, in particular,
by reducing to length-constrained flows with a length-constraint h = O(1). Indeed this
is how we were able to give new algorithms for b-matching in this work. It would be
interesting to understand which additional classic problems our length-constrained flow
algorithms give new algorithms for in CONGEST.

5.17 Generalizing Our Results to Multi-Commodity
In this section we generalize our main result for computing length-constrained flows and moving
cuts to the setting where have many source sink pairs and we are trying to maximize the total flow
between corresponding pairs subject to congestion constraints.

5.17.1 Multi-Commodity Flows, Cutmatches and Results
We now more formally define a multi-commodity length-constrained flow and moving cut.
Suppose we are given a digraph D = (V,A) with arc capacities U , lengths l and κ source set,
sink set pairs {(Si, Ti)}i. Then, we have the following LP with a variable f

{i}
P for each i and path

P ∈ Ph(Si, Ti). We let f {i} gives the entire flow for commodity i.

max
∑
i

∑
P∈Ph(Si,Ti)

f
{i}
P s.t. (Multi Length-Constrained Flow LP)

∑
i

∑
P∋a

f
{i}
P ≤ Ua ∀a ∈ A

0 ≤ f
{i}
P ∀i ∈ [κ], P ∈ Ph(Si, Ti)

For a multi-commodity length-constrained flow f , we will use the shorthand f(a) =
∑

i

∑
P∋a f

{i}
P .

Likewise we let s.t. (f) =
∑

i s.t. (f {i}) be the total flow we send. An h-length multi-commodity
flow, then, is simply a feasible solution to this LP.

Definition 121 (h-Length Multi-Commodity Flow). Given digraph D = (V,A) with lengths
l, capacities U and source, sink pairs {(Si, Ti)}i, an h-length {(Si, Ti)}i flow is any feasible
solution to Multi Length-Constrained Flow LP.

With the above definition of multi-commodity length-constrained flows we can now define moving
cuts as the dual of length-constrained flows. In particular, taking the dual of the above LP we get
the multi-commodity moving cut LP with a variable wa for each a ∈ A and a variable yi for every
i ∈ [κ].

min
∑
a∈A

Ua · wa s.t. (Multi Moving Cut LP)∑
a∈P

wa ≥ 1 ∀i ∈ [κ], P ∈ Ph(Si, Ti)

0 ≤ wa ∀a ∈ A, i ∈ [κ]

132

A multi-commodity h-length moving cut is simply a feasible solution to this LP.

Definition 122 (h-Length Moving Cut). Given digraph D = (V,A) with lengths l, capacities U
and source, sink pairs {(Si, Ti)}i, a multi-commodity h-length moving cut is any feasible solution
to Multi Moving Cut LP.

We will use f and w to stand for solutions to Multi Length-Constrained Flow LP and Multi
Moving Cut LP respectively. We say that (f, w) is a feasible pair if both f and w are feasible for
their respective LPs and that (f, w) is (1± ϵ)-approximate for ϵ > 0 if the moving cut certifies the
value of the length-constrained flow up to a (1− ϵ); i.e. if (1− ϵ)

∑
a Ua · wa ≤ mini s.t. (f {i}).

When we are working in CONGEST we will say that f is computed if each vertex v stores the
value f

(h′,i)
a :=

∑
P∈Ph,h′ (s,a,t)

f
{i}
P . Here, we let Ph,h′(s, a, t) be all paths in Ph(s, t) of the form

P ′ = (a1, a2, . . . a, b1, b2, . . .) where the path (a, b1, b2, . . .) has length exactly h′ according to l.
We say multi-commodity moving cut w is computed in CONGEST if each vertex v knows the
value of wa for every arc incident to v. Likewise, we imagine that each node in the first round
knows the capacities and lengths of its incident edges.

With the above notions, we can now state our main result for multi-commodity length-constrained
flows and moving cuts which say that one can compute a feasible pair (f, w) in parallel and
distributedly. In the following we say that length-constrained flow f is integral if f {i}

P is an integer
for every path in Ph(Si, Ti) for every i.

More generally than κ commodities, we solve the problem provided our commodoties can be
grouped into κ batches that are far apart.

Definition 123 (κ-Batchable). Given digraph D with lengths l and source, sink set pairs {Si, Ti}i
we say that a {Si, Ti}i is κ-batchable if the pairs of {Si, Ti}i can be partitioned into batches
{Sj, Tj}j if

1. For each i there some j such that Si ∈ Sj and Ti ∈ Tj;
2. For each i and i′, if v ∈ Si ∪ Ti and v′ ∈ Si′ ∪ Ti′ and Si, Si′ ∈ Sj for some j then

dl(v, v
′) > 2h.

Observe that if the number of commodities is κ then the set of source, sink pairs is trivially
κ-batchable.

The following summarizes our main result for computing multi-commodity length-constrained
flows and moving cuts. Given a digraph D = (V,A) with capacities U , lengths l, length
constraint h ≥ 1, 0 < ϵ < 1 and source and sink vertices S, T ⊆ V , and κ-batchable source,
sink pairs {Si, Ti}i, one can compute a feasible multi-commodity h-length flow, moving cut pair
(f, w) that is (1± ϵ)-approximate in:

1. Deterministic parallel time Õ(κ · 1
ϵ9
· h17) with m processors

2. Randomized CONGEST time Õ(κ · 1
ϵ9
· h17) with high probability;

3. Deterministic CONGEST time Õ
(
κ · 1

ϵ9
· h17 + κ · 1

ϵ7
· h16 · (ρCC)

10
)
.

Furthermore, f = η ·
∑k

j=1 fj where η = Θ̃(ϵ2), k = Õ
(
κ · h

ϵ4

)
and fj is an integral h-length

Si-Ti flow for some i.

Using the above algorithm, we can compute a multi-commodity version of cutmatches. As

133

before, for a vertex subset W ⊆ V we let U+(W) =
∑

v∈W
∑

a∈δ+(v) Ua and U−(W) =∑
v∈W

∑
a∈δ−(v) Ua. We also let δ±(S, T) :=

⋃
v∈S δ

+(v) ∪
⋃

v∈T δ−(T). The following formal-
izes the object we compute.

Definition 124 (Multi-Commodity h-Length Cutmatch). Given digraph D = (V,A) with capaci-
ties U and lengths l, an h-length ϕ-sparse cutmatch of congestion γ between sink source node
sets {(Si, Ti)}i where Si, Ti ⊆ V for each i with U+(Si) ≤ U−(Ti) consists of:

• An integral multi-commodity h-length {(Si, Ti)}i flow f in D where for each arc a we have∑
i:a∈δ±(Si,Ti)

f {i}(a) +
1

γ
·

∑
i:a̸∈δ±(Si,Ti)

f {i}(a) ≤ Ua;

• A multi-commodity moving cut w of {(Si, Ti)}i in D where arc a has capacity

Ua −
∑

i:a∈δ±(Si,Ti)

f {i}(a)

and w has value ∑
a

wa ≤ ϕ

(∑
i

U+(Si)− s.t. (f)

)
.

Using the above algorithm for multi-commodity h-length flows, we can efficiently compute multi-
commodity h-length cutmatches. Suppose we are given a digraph D = (V,A) with capacities U
and lengths l. There is an algorithm that, given κ-batchable sink source pairs {(Si, Ti)}i where
Si, Ti ⊆ V with U+(Si) ≤ U−(Ti) for every i and two integer parameters h ≥ 1 and ϕ ≤ 1,
outputs a multi-commodity h-length ϕ-sparse cutmatch of congestion γ between S and T , where
γ = Õ(1

ϕ
). This algorithm runs in:

1. Deterministic parallel time Õ(κ2 · γ · h18) with m processors

2. Randomized CONGEST time Õ(κ2 · γ · h18) with high probability;

3. Deterministic CONGEST time Õ (κ2 · γ · h18 + κ · γ · h17 · (ρCC)
10).

5.17.2 Computing Multi-Commodity Length-Constrained Flows and Mov-
ing Cuts

We proceed to use our (1 + ϵ)-lightest path blockers and multiplicative weights to compute
multi-commodity length-constrained flows and moving cuts. Our strategy is more or less that
of Section 5.11 but now we iterate through our batches of commodities; our analysis is mostly
unchanged but we include it here for completeness.

Formally, our algorithm is given in Algorithm 4. Throughout our analysis we will refer to the
innermost loop of Algorithm 4 as one “iteration.”

We begin by observing that λ always lower bounds d(h)w (Si, Ti) for every i.

Lemma 125. It always holds that λ ≤ d
(h)
w (Sx, Tx) for every x in Algorithm 4.

134

Algorithm 4 Multi-Commodity Length-Constrained Flows and Moving Cuts

Input: digraph D = (V,A) with lengths l, capacities U , length constraint h and κ-batchable
source, sink pairs {Si, Ti}i where Si, Ti ⊆ V for every i and an ϵ ∈ (0, 1).

Output: (1± ϵ)-approximate h-length multi-commodity flow f and moving cut w.
Let ϵ0 = ϵ

6
, let ζ = 1+2ϵ0

ϵ0
+ 1 and let η = ϵ0

(1+ϵ0)·ζ ·
1

logm
.

Initialize wa ←
(

1
m

)ζ for all a ∈ A.
Initialize λ←

(
1
m

)ζ .
Initialize f

{i}
P ← 0 for all i and P ∈ Ph(Si, Ti). λ < 1:

j ∈ [κ] and each batch (Sj,Sj) each (Si, Ti) with Si ∈ Sj and Ti ∈ Tj in parallel

Θ
(

h log1+ϵ0
n

ϵ0

)
repetitions

Compute an h-length (1 + ϵ0)-lightest path blocker f̂ (using Section 5.10 with λ).
Length-Constrained Flow (Primal) Update: f {i} ← f {i} + η · f̂ .
Moving Cut (Dual) Update: wa ← (1 + ϵ0)

f̂(a)/Ua · wa for every a ∈ A.
λ← (1 + ϵ0) · λ
(f, w).

Proof. Fix an x and a value of λ and let S = Sx and T = Tx. Our proof is by induction. The
statement trivially holds at the beginning of our algorithm.

Let λi be the value of λ at the beginning of the ith iteration. We argue that if d(h)w (S, T) = λi

then after Θ
(

h log1+ϵ0
n

ϵ0

)
additional iterations we must have d

(h)
w (S, T) ≥ (1 + ϵ0) · λi. Let

λ′
i = (1 + ϵ0) · λ be λ after these iterations. Let f̂j be our lightest path blocker in the jth iteration

for (Sx, Tx).

Assume for the sake of contradiction that d(h)w (S, T) < λ′
i after i + Θ

(
h log1+ϵ0

n

ϵ0

)
iterations. It

follows that there is some path P ∈ Ph(S, T) with weight at most λ′
i after i + Θ

(
h log1+ϵ0

n

ϵ0

)
many iterations. However, notice that by definition of an h-length (1+ ϵ0)-lightest path blocker f̂j
(Theorem 107), we know that for every j ∈

[
i, i+Θ

(
h log1+ϵ0

n

ϵ0

)]
there is some a ∈ P for which

f̂j(a) = Ua. By averaging, it follows that there is some single arc a ∈ P for which f̂j(a) = Ua

for at least Θ
(

log1+ϵ0
n

ϵ0

)
of these j ∈ [i, i+Θ

(
h log1+ϵ0

n

ϵ0

)
]. Since every such arc starts with dual

value (1
m
)ζ and multiplicatively increases by a (1+ ϵ0) factor in each of these updates, such an arc

after i+Θ
(

h log1+ϵ0
n

ϵ0

)
many iterations must have wa value at least (1

m
)ζ ·(1+ϵ0)

Θ

(
log1+ϵ0

n

ϵ0

)
≥ n2

for an appropriately large hidden constant in our Θ. However, by assumption, the weight of P is
at most λ′

i after i+Θ
(

h log1+ϵ0
n

ϵ0

)
iterations and this is at most 2 since λi < 1 since otherwise our

algorithm would have halted. But 2 < n2 and so we have arrived at a contradiction.

Repeatedly applying the fact that λ′
i = (1 + ϵ0)λi gives that λ is always a lower bound on

d
(h)
w (S, T).

We next prove the feasibility of our solution.

Lemma 126. The pair (f, w) returned by Algorithm 4 are feasible for Multi Length-Constrained

135

Flow LP and Multi Moving Cut LP respectively.

Proof. First, observe that by Theorem 125 we know that λ is always a lower bound on d
(h)
w (Si, Ti)

for every i and so since we only return once λ > 1, the w we return is always feasible.

To see that f is feasible it suffices to argue that for each arc a, the number of times a path
containing a has its primal value increased is at most Ua

η
. Notice that each time we increase

the primal value on a path containing arc a by η we increase the dual value of this edge by a
multiplicative (1 + ϵ0)

1/Ua . Since the weight of our arcs according to w start at (1
m
)ζ , it follows

that if we increase the primal value of k paths incident to arc a then wa = (1 + ϵ0)
k/Ua · (1

m
)ζ . On

the other hand, by assumption when we increase the dual value of an arc a it must be the case
that wa < 1 since otherwise d

(h)
w (S, T) ≥ 1, contradicting the fact that λ always lower bounds

d
(h)
w (S, T). It follows that (1 + ϵ0)

k/Ua · (1
m
)ζ ≤ 1 and so applying the fact that ln(1 + ϵ0) ≥ ϵ0

1+ϵ0
for ϵ0 > −1 and our definition of ζ and η we get

k ≤ ζ · (1 + ϵ0)

ϵ0
· Ua logm

=
Ua

η

as desired.

We next prove the near-optimality of our solution.

Lemma 127. The pair (f, w) returned by Algorithm 4 satisfies (1−ϵ)
∑

a wa ≤
∑

i

∑
P∈Ph(Si,Ti)

fP .

Proof. Fix an iteration i which is an iteration for the jth batch and let f̂ be the sum of all lightest
path blockers that we compute in parallel for each (Si, Ti) ∈ (Sj, Tj) in this iteration. Let ki be
s.t. (f̂), let λi be λ at the start of this iteration and let Di :=

∑
a wa be our total dual value at the

start of this iteration. Notice that 1
λi
· w is dual feasible and has cost Di

λi
by Theorem 125. If β is

the optimal dual value then by optimality it follows that β ≤ Di

λi
, giving us the upper bound on λi

of Di

β
. By how we update our dual, our bound on λi and (1 + x)r ≤ 1 + xr for any x ≥ 0 and

r ∈ (0, 1) we have that

Di+1 =
∑
a

(1 + ϵ0)
f̂(a)/Ua · wa · Ua

≤
∑
a

(
1 +

ϵ0f̂(a)

Ua

)
· wa · Ua

= Di + ϵ0
∑
a

f̂(a)wa

≤ Di + ϵ0(1 + 2ϵ0) · kiλi

≤ Di

(
1 +

(1 + 2ϵ0)ϵ0 · ki
β

)
≤ Di · exp

(
(1 + 2ϵ0)ϵ0 · ki

β

)
.

136

Let T − 1 be the index of the last iteration of our algorithm; notice that DT is the value of w in
our returned solution. Let K :=

∑
i ki. Then, repeatedly applying this recurrence gives us

DT ≤ D0 · exp
(
(1 + 2ϵ0)ϵ0 ·K

β

)
=

(
1

m

)ζ−1

exp

(
(1 + 2ϵ0)ϵ0 ·K

β

)
On the other hand, we know that w is dual feasible when we return it, so it must be the case that
DT ≥ 1. Combining this with the above upper bound on DT gives us 1 ≤

(
1
m

)ζ
exp

(
(1+2ϵ0)ϵ0·K

β

)
.

Solving for K and using our definition of ζ gives us

β logm · ζ − 1

(1 + 2ϵ0) · ϵ0
≤ K

β logm · 1
ϵ20
≤ K.

However, notice that Kη is the primal value of our solution so using our choice of η and rewriting
this inequality in terms of Kη by multiplying by η = ϵ0

(1+ϵ0)·ζ ·
1

logm
and applying our definition of

ζ = 1+2ϵ0
ϵ0

+ 1 gives us

β

ϵ0 · (1 + ϵ0) · ζ
≤ Kη

β

(1 + ϵ0)(1 + 3ϵ0)
≤ Kη. (5.17.1)

Moreover, by our choice of ϵ0 = ϵ
6

and the fact that 1
1+x+x2 ≥ 1− x for x ∈ (0, 1) we get

1− ϵ ≤ 1

1 + ϵ+ ϵ2

≤ 1

(1 + 1
2
ϵ)2

≤ 1

(1 + 3ϵ0)2

≤ 1

(1 + ϵ0)(1 + 3ϵ0)
. (5.17.2)

Combining Equation (5.17.1) and Equation (5.17.2) we conclude that

(1− ϵ) · β ≤ Kη.

We conclude with our main theorem by proving that we need only iterate our algorithm Õ
(
κ · h

ϵ4

)
times. Given a digraph D = (V,A) with capacities U , lengths l, length constraint h ≥ 1,
0 < ϵ < 1 and source and sink vertices S, T ⊆ V , and κ-batchable source, sink pairs {Si, Ti}i,
one can compute a feasible multi-commodity h-length flow, moving cut pair (f, w) that is (1± ϵ)-

137

approximate in:

1. Deterministic parallel time Õ(κ · 1
ϵ9
· h17) with m processors

2. Randomized CONGEST time Õ(κ · 1
ϵ9
· h17) with high probability;

3. Deterministic CONGEST time Õ
(
κ · 1

ϵ9
· h17 + κ · 1

ϵ7
· h16 · (ρCC)

10
)
.

Furthermore, f = η ·
∑k

j=1 fj where η = Θ̃(ϵ2), k = Õ
(
κ · h

ϵ4

)
and fj is an integral h-length

Si-Ti flow for some i.

Proof. By Theorem 126 and Theorem 127 we know that our solution is feasible and (1 ± ϵ)-
optimal so it only remains to argue the runtime of our algorithm and that the returned flow
decomposes in the stated way.

We argue that we must only run for O
(
κ · h log2 n

ϵ4

)
total iterations. Since λ increases by a

multiplicative (1 + ϵ0) after every Θ
(
κ · h logn

ϵ20

)
iterations and starts at least

(
1
m

)Θ(1
ϵ0

), it follows

by Theorem 125 that after y ·Θ
(
κ · h logn

ϵ20

)
total iterations the h-length distance between every

Si and Ti is at least (1 + ϵ0)
y ·
(

1
m

)Θ(1/ϵ0). Thus, for y ≥ Ω
(

ln1+ϵ0 m

ϵ0

)
= Ω

(
lnn
ϵ20

)
we have that

every Si and Ti are at least 1 apart in h-length distance. Consequently, our algorithm must run for
at most O

(
κ · h log2 n

ϵ40

)
= O

(
κ · h log2 n

ϵ4

)
many iterations.

Our running time is immediate from the the bound of O
(
κ · h log2 n

ϵ4

)
on the number of iterations

of the while loop, the fact that commodities in the same batch can be updated in parallel and the
running times given in Section 5.10 for computing our h-length (1 + ϵ0)-lightest path blocker.

Lastly, the flow decomposes in the stated way because we have at most O
(
κ · h log2 n

ϵ4

)
iterations

and each fj is an integral S-T flow by Section 5.10. Thus, our final solution is η ·
∑k

j=1 fj and
k = Õ

(
h
ϵ4

)
.

5.17.3 Computing Multi-Commodity Length-Constrained Cutmatches
We proceed to use our multi-commodity length-constrained flow algorithms to compute multi-
commodity length-constrained cutmatches.

Suppose we are given a digraph D = (V,A) with capacities U and lengths l. There is an algorithm
that, given κ-batchable sink source pairs {(Si, Ti)}i where Si, Ti ⊆ V with U+(Si) ≤ U−(Ti)
for every i and two integer parameters h ≥ 1 and ϕ ≤ 1, outputs a multi-commodity h-length
ϕ-sparse cutmatch of congestion γ between S and T , where γ = Õ(1

ϕ
). This algorithm runs in:

1. Deterministic parallel time Õ(κ2 · γ · h18) with m processors

2. Randomized CONGEST time Õ(κ2 · γ · h18) with high probability;

3. Deterministic CONGEST time Õ (κ2 · γ · h18 + κ · γ · h17 · (ρCC)
10).

Proof. We initialize the flow we return f to be 0 on all arcs. We set our working capacities to be
Û = U initially. The algorithm runs for at most O(h · κ · γ) iterations for a small hidden constant.
In each iteration l ∈ [1, O(h ·κ ·γ)] we use Section 5.17.1 with ϵ = .5 (any constant would suffice)
to find a multi-commodity length-constrained flow, moving cut pair, (f̂ , ŵ) where δ = Θ̃(1),

138

k = Õ (κ · h), f = δ ·
∑k

j=1 fj and fj is an integral multi-commodity h-length flow on {(Si, Ti)}i
using capacities Û . By averaging there must be some fj such that s.t. (fj) ≥ s.t. (f̂)/k. We let
f̃ be this fj .

If s.t. (f̃) > Ω
(

logn·
∑

i Û
+(Si)

κhγ

)
then we update our solution as f = f + f̃ and decrement Ûa by∑

i:a∈δ±(Si,Ti)
f̃ {i}(a) for each a. Otherwise, we return the pair (f, ŵ) as our solution.

In each iteration l in which s.t. (f̃) > Ω
(

logn·
∑

i Û
+(Si)

κhγ

)
, we have that

∑
i Û

+(Si) decreases

multiplicatively by at least a 1− 2 logn
κhγ

factor. Such a shrinking can happen at most O(κ · h · γ)
times until

∑
i Û

+(Si) is reduced to 0. Thus, our algorithm requires at most O(κ · h · γ) iterations
until terminating. Furthermore, notice when we return a moving cut ŵ we have∑

a

ŵa ≤ 2 · s.t. (f̂)

≤ κh · s.t. (f̃)

≤ Õ

(∑
i Û

+(Si)

γ

)

= Õ

(∑
i U

+(Si)− s.t. (f)
γ

)
as desired. Also, observe that f is indeed an integral {(Si, Ti)}i flow in D with the stated capacities
since we always have f̃(a) ≤ Ûa.

The running time is exactly that of running at most O(κh · γ) invocations of Section 5.17.1 with
ϵ = .5.

139

140

Part III

Steiner Point Removal

141

Chapter 6

Series-Parallel Steiner Point Removal

6.1 Introduction
Compact representations of graphs are particularly interesting when we assume that G is a member
of a minor-closed graph family such as tree, cactus, series-parallel or planar graphs.1 As many
algorithmic problems are significantly easier on such families—see e.g. [12, 108, 166]—it is
desirable that G′ is not only a simple approximation of G’s metric but that it also belongs to the
same family as G.

Steiner point removal (SPR) formalizes the problem of producing a simple G′ in the same graph
family as G that preserves G’s metric. In SPR we are given a weighted graph G = (V,E,w) and
a terminal set V ′ ⊆ V where V \ V ′ are called “Steiner points.” We must return a weighted graph
G′ = (V ′, E ′, w′) where:

1. G′ is a minor of G;

2. dG(u, v) ≤ dG′(u, v) ≤ α · dG(u, v) for every u, v ∈ V ′;

and our aim is to minimize the multiplicative distortion α. We refer to a G′ with distortion α as an
α-SPR solution. In the above dG and dG′ give the distances in G and G′ respectively.

If we only required that G′ satisfies the second condition then we could always achieve α = 1
by letting G′ be the complete graph on V ′ where w′({u, v}) = dG(u, v) for every u, v ∈ V ′.
However, such a G′ forfeits any nice structure that G may have exhibited. Thus, the first condition
ensures that if G belongs to a minor-closed family then so does G′. The second condition ensures
that G′’s metric is a good proxy for G’s metric. G′ is simpler than G since it is a graph only on V ′

while G′ is a proxy for G’s metric by approximately preserving distances on V ′.

As Gupta [101] observed, even for the simple case of trees we must have α > 1. For example,
consider the star graph with unit weight edges where V ′ consists of the leaves of the star. Any tree

1A graph G′ is a minor of a graph G if G′ can be attained (up to isomorphism) from G by edge contractions as
well as vertex and edge deletions. A graph is F -minor-free if it does not have F as a minor. A family of graphs G
is said to be minor-closed if for any G ∈ G if G′ is a minor of G then G′ ∈ G. A seminal work of Robertson and
Seymour [157] demonstrated that every minor-closed family of graphs is fully characterized by a finite collection of
“forbidden” minors. In particular, if G is a minor-closed family then there exists a finite collection of graphsM where
G ∈ G iff G does not have any graph inM as a minor. Here and throughout this chapter we will use “minor-closed”
to refer to all non-trivial minor-closed families of graphs; in particular, we exclude the family of all graphs which is
minor-closed but trivially so.

143

Trees

Cactus

Outerplanar

Series-Parallel
α = O(1) [This work]

α = O(1) [Basu and Gupta]

α = O(1) [Filtser]

α ≤ 8 [Gupta]
α ≥ 8 [Chan et al.]

+

Figure 6.1: A summary of the SPR distortion for (connected) Kh-minor-free graphs achieved in prior work and our
own. Graph classes illustrated according to containment. We also give the forbidden minors for each graph family.

G′ = (V ′, E ′, w′) has at least two vertices u and v whose connecting path consists of at least two
edges. On the other hand, the length of any edge in G′ is at least 2 and so dG′(u, v) ≥ 4. Since
dG(u, v) = 2 it follows that α ≥ 2. While this simple example rules out the possibility of 1-SPR
solutions on trees, it leaves open the possibility of small distortion solutions for minor-closed
families.

In this vein several works have posed the existence of O(1)-SPR solutions for minor-closed
families as an open question: see, for example, [28, 43, 55, 83, 136] among other works. A
line of work (summarized in Figure 6.1) has been steadily making progress on this question
for the past two decades. Gupta [101] showed that trees (i.e. connected K3-minor-free graphs)
admit 8-SPR solutions.Filtser et al. [86] recently gave a simpler proof of this result. Chan et al.
[43] proved this was tight by showing that α ≥ 8 for trees which remains the best known lower
bound for Kh-minor-free graphs. In an exciting recent work, Filtser [83] reduced O(1)-SPR in
Kh-minor-free graphs to computing “O(1) scattering partitions” and showed how to compute
these partitions for several graph classes, including cactus graphs (i.e. all connected F -minor-free
graphs where F is K4 missing one edge). Lastly, a work of Basu and Gupta [28] generalizes these
results by showing that outerplanar graphs (i.e. graphs which are both K4 and K2,3-minor-free)
have α = O(1) solutions.

6.1.1 Our Contributions

In this work, we advance the state-of-the-art for Steiner point removal in minor-closed graph
families. We show that series-parallel graphs (i.e. graphs which are K4-minor-free) have O(1)-
SPR solutions. The following theorem summarizes the main result of this chapter.

Theorem 128. Every series-parallel graph G = (V,E,w) with terminal set V ′ ⊆ V has a
weighted minor G′ = (V ′, E ′, w′) such that for any u, v ∈ V ′ we have

dG(u, v) ≤ dG′(u, v) ≤ O(1) · dG(u, v).

Moreover, G′ is poly-time computable by a deterministic algorithm.

144

Series-parallel graphs are a strict superset of all of the aforementioned graph classes for which
O(1)-SPR solutions were previously known; again, see Figure 6.1. Series-parallel graphs are one
of the most well-studied graph classes in metric embeddings and serve as a frequent test bed for
making progress on long-standing open questions. For example, series-parallel graphs are one
of the few graph classes for which the well-known GNRS conjecture in metric embeddings has
been successfully proven [104]. For further examples see, among many other works, those of
Brinkman et al. [38], Gupta et al. [103] and Emek and Peleg [74].

Relation to Prior Results. From a metric-embeddings perspective, series-parallel graphs are
significantly more complex than outerplanar graphs (the largest minor-free graph class for which
O(1)-distortion Steiner point removal was known prior to our work). For example, Gupta
et al. [102] showed that outerplanar graphs can be embedded into “dominating tree metrics”
with constant distortion but that such an embedding for series-parallel graphs incurs Ω(log n)
distortion. Likewise, outerplanar graphs embed isometrically into l1 which is known to not be
possible for series-parallel graphs; see Okamura and Seymour [150] and Chekuri et al. [50] for
details. Thus, the metrics induced by series-parallel graphs often behave very differently and in
less well-structured ways than those induced by outerplanar graphs.

Furthermore, the techniques on which we rely are quite different than those of Basu and Gupta
[28] for the outerplanar case. At least two aspects of these techniques may be of independent
interest. We defer a more thorough overview of our techniques to Section 6.4 but briefly highlight
these two points now.

A New Approach for Steiner Point Removal. First, much of our approach generalizes to any
Kh-minor-free graph so our approach seems like a promising avenue for future work on O(1)-SPR
in minor-closed families. Specifically, we prove our result by beginning with the “chops” used
by Klein et al. [128] to build low diameter decompositions for Kh-minor-free graphs. For input
∆ > 0 and root vertex r, these chops consist of deleting any edge which for some i ∈ Z has
endpoints at distance i∆ and i∆+ 1 from r; removing such edges partitions the input graph into
width ∆ “annuli.” We begin with these chops but then slightly perturb them to respect the shortest
path structure of the graph, resulting in what we call O(1)-scattering chops. We argue that the
result of repeating such scattering chops is a scattering partition which by the results of Filtser
[83] can be used to construct an O(1)-SPR solution.

The key to this strategy is arguing that series-parallel graphs admit a certain structure—which we
call a hammock decomposition—that enables one to perform these perturbations in a principled
way. If one could demonstrate a similar structure for Kh-minor-free graphs or otherwise demon-
strate the existence of O(1)-scattering chops for such graphs, then the techniques laid out in our
work would immediately give O(1)-SPR solutions for all Kh-minor-free graphs.

New Geometric Structure for Series-Parallel Graphs. Second, our hammock decompositions
are a new metric decomposition for series-parallel graphs which may be interesting in their own
right. We give significantly more detail in Section 6.7 but briefly summarize our decomposition
for now. We show that for any fixed BFS tree TBFS there is a forest-like subgraph which contains
all shortest paths between cross edges of TBFS.2 Specifically, the “nodes” of this forest are not

2Here and throughout this chapter a cross edge is an edge that is in the input graph but not in TBFS.

145

vertices but highly structured subgraphs of the input series-parallel graph which we call hammock
graphs. A hammock graph consists of two subtrees of the BFS tree and the cross edges between
them. See Figure 6.7 for a visual preview of our decomposition.

Our hammock decompositions stand in contrast to the fact that the usual way in which one embeds
a graph into a tree—by way of dominating tree metrics—are known to incur distortion Ω(log n) in
series-parallel graphs [104]. Furthermore, our decomposition can be seen as a metric-strengthening
of the classic nested ear decompositions for series-parallel graphs of Khuller [127] and Eppstein
[78]. In general, a nested ear decomposition need not reflect the input metric. However, not only
can one almost immediately recover a nested ear decomposition from a hammock decomposition,
but the output nested ear decomposition interacts with the graph’s metric in a highly structured
way (see Section 6.11).

Open Questions Resolved. Lastly, we note that, in addition to making progress on the existence
of O(1)-SPR solutions for every minor-closed family, our work also settles several open questions.
The existence of O(1)-SPR solutions for series-parallel graphs was stated as an open question by
both Basu and Gupta [28] and Chan et al. [43]; our result answers this question in the affirmative.
Furthermore, Filtser et al. [86] posed the existence of O(1) scattering partitions for outerplanar and
series-parallel graphs as an open question; we prove our main result by showing that series-parallel
graphs admit O(1) scattering partitions, settling both of these questions.

6.2 Related Work
We briefly review additional related work.

Since the introduction of SPR by Gupta [101], a variety of works have studied the bounds
achievable for well-behaved families of graphs for several very similar problems. Krauthgamer
et al. [136] studied a problem like SPR but where distances in G must be exactly preserved by G′

and the number of Steiner vertices—that is, vertices not in V ′—must be made as small as possible;
this work showed that while O(k4) Steiner vertices suffice (where k = |V ′|) for general graphs,
better bounds are possible for well-behaved families of graphs. More generally, Cheung et al. [55]
studied how to trade off between the number of terminals and distortion of G′, notably showing
(1 + ϵ) distortion is possible in planar graphs with Õ(k2/ϵ2) Steiner vertices. Englert et al. [77]
showed that in minor-closed graphs distances can be preserved up to O(1) multiplicative distortion
in expectation by a distribution over minors as opposed to preserving distances deterministically
with a single minor as in SPR.

A variety of recent works have also studied how to find minors which preserve properties of
G other than G’s metric. Englert et al. [77] studied a flow/cut version of SPR where the goal
is for G′ to be a minor of G just on the specified terminals while preserving the congestion
of multicommodity flows between terminals: this work showed that a convex combination of
planar graphs can preserve congestion on V ′ up to a constant while for general graphs a convex
combination of trees preserves congestion up to an O(log k). Similarly, Krauthgamer and Rika
[135] studied how to find minimum-size planar graphs which preserve terminal cuts. Goranci
et al. [95] studied how to find a minor of a directed graph with as few Steiner vertices and which
preserves the reachability relationships between all k terminals, showing that O(k3) vertices
suffices for general graphs but O(log k · k2) vertices suffices for planar graphs.

146

P1

P2

v1

v2

v3

r

P3
C

(a) A clawed cycle.

≤ Δ
V1

V2

V3

V4
V5

(b) A scattering partition.

Figure 6.2: In (a) we illustrate a clawed cycle where the cycle C is given in solid black and each path is given in
dotted black. In (b) we illustrate a scattering partition with τ = 3 and how one path P of length at most ∆ is incident
to at most three parts where we color the subpaths of P according to the incident part.

There has been considerable effort in the past few years on developing good SPR solutions for
general graphs. Kamma et al. [120] gave O(log5 k)-SPR solutions for general graphs. This was
improved by Cheung [54] who gave O(log2 k)-SPR solutions which was, in turn, improved by
Filtser [81] and Filtser [82] who gave O(log k)-SPR solutions for general graphs. We also note
that Filtser [83] also achieved similar results by way of scattering partitions, albeit with a worse
poly-log factor as well as the first O(1)-SPR solutions for bounded pathwidth graphs.

6.3 Preliminaries
Before giving an overview of our approach we summarize the characterization of series-parallel
graphs we use throughout this chapter as well as the scattering partition framework of Filtser [83]
on which we build.

6.3.1 Characterizations of Series-Parallel Graphs
There are some minor inconsistencies in the literature regarding what is considered a series-parallel
graph and so we clarify which notion of series-parallel we use throughout this chapter. Some
works—e.g. Eppstein [78]—take series parallel graphs to be those which can be computed by
iterating parallel and series compositions of graphs. Call these series-parallel A graphs.3 Strictly
speaking, series-parallel A graphs are not even minor-closed as they are not closed under edge or
vertex deletion. Other works—e.g. Filtser [83]—take series-parallel graphs to be graphs whose
biconnected4 components are each series-parallel A graphs; call these series-parallel B graphs.
Series-parallel B graphs clearly contain series-parallel A graphs and, moreover, are minor-closed.

3The following is a definition of series-parallel A graphs due to Eppstein [78]. A graph is two-terminal if it has
a distinct source s and sink t. Let G and H be two two-terminal graphs with sources s and s′ and sinks t and t′.
Then the series composition of G and H is the graph resulting from identifying t and s′ as the same vertex. The
parallel composition of G and H is the graph resulting from identifying s and s′ as the same vertex and t and t′ as the
same vertex. A two-terminal series-parallel graph is a two-terminal graph which is either a single edge or the graph
resulting from the series or parallel composition of two two-terminal series-parallel graphs. A graph is series-parallel
A if it has some pair of vertices with respect to which it is two-terminal series-parallel.

4A connected component C is biconnected if C remains connected even after the deletion of any one vertex in C.

147

For the rest of this chapter we will use the more expansive series-parallel B notion; henceforth we
use “series-parallel” to mean series-parallel B.

It is well-known that a graph is K4-minor-free iff it is series-parallel [34]. Similarly a graph has
treewidth at most 2 iff it is series-parallel [34]. In this chapter we will use an alternate definition
in terms of “clawed cycles” which we illustrate in Figure 6.2a.5

Definition 129 (Clawed Cycle). A clawed cycle is a graph consisting of a root r, a cycle C and
three paths P1 P2 and P3 from r to vertices v1, v2, v3 ∈ C where v1 ̸= v2 ̸= v3

The fact that series-parallel graphs are exactly those that do not have any clawed cycles as a
subgraph was proven by Duffin [69]; we give a proof for completeness.

Lemma 130 (Duffin [69]). A graph G is series-parallel iff it does not contain a clawed cycle as a
subgraph.

Proof. K4 is itself a clawed cycle and so a graph with no clawed cycle subgraphs is K4-minor-free
and therefore series-parallel. If a graph contains a clawed cycle then we can construct a K4 minor
by arbitrarily contracting the graph into v1, v2, v3 and r, as defined in Theorem 129.

6.3.2 Scattering Partitions
Our result will be based on a new graph partition introduced by Filtser [83], the scattering partition.
Roughly speaking, a scattering partition of a graph is a low-diameter partition which respects the
shortest path structure of the graph; see Figure 6.2b.6

Definition 131 (Scattering Partition). Given a weighted graph G = (V,E,w), a partition P =
{Vi}i of V is a (τ , ∆) scattering partition if:

1. Connected: Each Vi ∈ P is connected;

2. Low Weak Diameter: For each Vi ∈ P and u, v ∈ Vi we have dG(u, v) ≤ ∆;

3. Scattering: Every shortest path P in G of length at most ∆ satisfies |{Vi : Vi∩P ̸= ∅}| ≤ τ .

Filtser [83] extended these partitions to the notion of a scatterable graph.

Definition 132 (Scatterable Graph). A weighted graph G = (V,E,w) is τ -scatterable if it has a
(τ,∆)-scattering partition for every ∆ ≥ 0.

We will say that G is deterministic poly-time τ -scatterable if for every ∆ ≥ 0 a (τ,∆)-scattering
partition is computable in deterministic poly-time.

As a concrete example of a τ -scatterable graph and as observed by Filtser [83] notice that all trees
are O(1)-scatterable. In particular, suppose we are given a tree and a ∆ > 0. If we fix a root
vertex r and then delete any edge which for some i ∈ Z has endpoints at distance i·∆

2
and i·∆

2
+ 1

from r this breaks the input tree into connected components. Each component has diameter at
most ∆ by construction. Furthermore, it is easy to see that any path of length at most ∆ is incident
to a constant number of these components and so these components indeed form a scattering
partition with τ = O(1). This construction is essentially a single chop of the aforementioned
KPR strategy. However, while a KPR chop can be used to construct scattering partitions on trees,

5We note that clawed cycles are also called “embedded Wheatstone bridge.”
6We drop one of the parameters of the definition of Filtser [83] as it will not be necessary for our purposes.

148

as we will see shortly, KPR chops on series-parallel graphs do not, in general, result in scattering
partitions.

Lastly, the main result of Filtser [83] is that solving SPR reduces to showing that every induced
subgraph is scatterable. In the following G[A] is the subgraph of G induced by the vertex set A.

Theorem 133 (Filtser [83]). A weighted graph G = (V,E,w) with terminal set V ′ ⊆ V has
an O(τ 3)-SPR solution if G[A] is τ -scatterable for every A ⊆ V . Furthermore, if G[A] is
deterministic poly-time scatterable for every A ⊆ V then the O(τ 3)-SPR solution is computable
in deterministic poly-time.

6.4 Intuition and Overview of Techniques
We now give intuition and a high-level overview of our techniques. As discussed in the previous
section, solving SPR with O(1) distortion for any fixed graph reduces to showing that the subgraph
induced by every subset of vertices is O(1)-scatterable. Moreover, since every subgraph of a
Kh-minor-free graph is itself a Kh-minor-free graph, it follows that in order to solve SPR on any
fixed Kh-minor-free graph, it suffices to argue that every Kh-minor-free graph is O(1)-scatterable.

Thus, the fact that we dedicate the rest of this document to showing is as follows.

Theorem 134. Every series-parallel graph G is deterministic, poly-time O(1)-scatterable.

Combining this with Theorem 133 immediately implies Theorem 128.

6.4.1 General Approach
Given a series-parallel graph G and some ∆ ≥ 1, our goal is to compute an (O(1),∆)-scattering
partition for G. Such a partition has two non-trivial properties to satisfy: (1) each constituent part
must have weak diameter at most ∆ and (2) each shortest path of length at most ∆ must be in at
most O(1) parts (a property we will call “scattering”).

A well-known technique of Klein et al. [128]—henceforth “KPR”—has proven useful in finding
so-called low diameter decompositions for Kh-minor-free graphs and so one might reasonably
expect these techniques to prove useful for finding scattering partitions. Specifically, KPR shows
that computing low diameter decompositions in a Kh-minor-free graph can be accomplished by
O(h) levels of recursive “∆-chops”. Fix a root r and a BFS tree TBFS rooted at r. Then, a ∆-chop
consists of the deletion of every edge with one vertex at depth i ·∆ and another vertex at depth
i · ∆ + 1 for every i ∈ Z≥1; that is, it consists of cutting edges between each pair of adjacent
∆-width annuli. KPR proved that if one performs a ∆-chop and then recurses on each of the
resulting connected component then after O(h) levels of recursive depth in a Kh-minor free graph
the resulting components all have diameter at most O(∆). We illustrate KPR on the grid graph in
Figure 6.3.

Thus, we could simply apply ∆-chops O(h) times to satisfy our diameter constraints (up to
constants) and hope that the resulting partition is also scattering. Unfortunately, it is quite easy to
see that (even after just one ∆-chop!) a path of length at most ∆ can end up in arbitrarily many
parts of the resulting partition. For example, the highlighted shortest path in Figures 6.4a and 6.4b
repeatedly moves back and forth between two annuli and ends up in arbitrarily many parts after

149

(a) First ∆-chop. (b) Second ∆-chop. (c) Resulting connected components.

Figure 6.3: Two levels of ∆-chops on the grid graph for ∆ = 3. We give the edges of the BFS trees we use in pink;
roots of these trees are given as squares. Background colors give the annuli of nodes.

(a) A ∆-chop
(b) Components not scatter-
ing. (c) A perturbed ∆-chop. (d) Components scattering.

Figure 6.4: An example (of an outerplanar graph) where a ∆-chop does not produce a scattering partition but how
perturbing said chop does. Here, we imagine that the root is at the top of the graph and each edge incident to the root
has length ∆− 3. We highlight the path P that either ends up in many or one connected component depending on
whether we perturb our ∆-chop in yellow.

a single ∆-chop. Nonetheless, this example is suggestive of the basic approach of our work. In
particular, if we merely perturbed our first ∆-chop to cut “around” said path as in Figures 6.4c
and 6.4d then we could ensure that this path ends up in a small number of partitions.

More generally, the approach we take in this chapter is to start with the KPR chops but then
slightly perturb these chops so that they do not cut any shortest path of length at most ∆ more
than O(1) times. That is, all but O(1) edges of any such path will have both vertices in the
same (perturbed) annulus. We then repeat this recursively on each of the resulting connected
components to a constant recursion depth. Since each subpath of a shortest path of length at most
∆ is itself a shortest path with length at most ∆, we know that each such shortest path is broken
into a constantly-many-more shortest paths at each level of recursion. Moreover, since we recurse
a constant number of times, each path ends up in a constant number of components.

Implementing this strategy requires meeting two challenges. First, it is not clear that the com-
ponents resulting from KPR still have low diameter if we allow ourselves to perturb our chops.
Second, it is not clear how to perturb a chop so that it works simultaneously for every shortest
path. Solving the first challenge will be somewhat straightforward while solving the second will
be significantly more involved. In particular, what makes the second challenge difficult is that
we cannot, in general, perturb a chop on the basis of one violated shortest path as in the previous
example; doing so might cause other paths to be cut too many times which will then require
additional, possibly conflicting, perturbations and so on. Rather, we must somehow perturb our
chops in a way that takes every shortest path into account all at once.

6.4.2 Scattering Chops
The easier issue to solve will be how to ensure that our components have low diameter even if we
perturb our chops. Here, by closely tracking various constants through a known analysis of KPR
we show that the components resulting from KPR with (boundedly) perturbed cuts are still low

150

diameter.

We summarize this fact and the above discussion with the idea of a scattering chop. A (τ,∆)-
scattering chop consists of cutting all edges at about every ∆ levels in the BFS tree in such a
way that no shortest path of length at most ∆ is cut more than τ times. Our analysis shows
that if all Kh-minor-free graphs admit (O(1),∆)-scattering chops for every ∆ then they are also
O(1)-scatterable and therefore also admit O(1)-SPR solutions; this holds even for h > 4.

6.4.3 Hammock Decompositions and How to Use Them
The more challenging issue we must overcome is how to perturb our chops so that every shortest
path of length at most ∆ is only cut O(1) times. Moreover, we must do so in a way that does
not perturb our boundaries by too much so as to meet the requirements of a scattering chop.
We solve this issue with our new metric decomposition for series-parallel graphs, the hammock
decomposition.

Consider a shortest path P of length at most ∆. Such a path can be partitioned into a (possibly
empty) prefix consisting of only edges in TBFS, a middle portion whose first and last edges are
cross edges of TBFS and a (possibly empty) suffix which also only has edges in TBFS. Thus, if we
want to compute a scattering chop, it suffices to guarantee that any shortest path of length at most
∆ which is either fully contained in TBFS or which is between two cross edges of TBFS is only cut
O(1) times by our chop; call the former a BFS path and the latter a cross edge path.

Next, notice that all BFS paths are only cut O(1) times by our initial KPR chops. Specifically,
each BFS path can be partitioned into a subpath which goes “up” in the BFS tree and a subpath
which goes “down” in the BFS tree. As our initial KPR chops are ∆ apart and each such subpath is
of length at most ∆, each such subpath is cut at most O(1) times. Thus provided our perturbations
do not interfere too much with the initial structure of our KPR chops we should expect that our
BFS paths will only be cut O(1) times.

Thus, our goal will be to perturb our KPR chops to not cut any cross edge path more than
O(1) times while mostly preserving the initial structure of our KPR chops. Our hammock
decompositions will allow us to do exactly this. They will have two key components.

The first part is a “forest of hammocks.” Suppose for a moment that our input graph had a forest
subgraph F that contained all cross edge paths of our graph which were also shortest paths. Then,
it is not too hard to see how to use F to perturb our chops to be scattering for all cross edge
paths. Specifically, for each tree T in our forest F we fix an arbitrary root and then process edges
in a BFS order. Edges which we process will be marked or unmarked where initially all edges
are unmarked. To process an edge e = {u, v} we do the following. If e is marked or u and v
both belong to the same annulus then we do nothing. Otherwise, e is unmarked and u is in some
annulus A but v is in some other annulus A′ (before any perturbation). We then propagate A an
additional Θ(∆) deeper into T ; that is if we imagine that v is the child of u in F then we move all
descendants of u in F within Θ(∆) of u into A. We then mark all edges in T whose endpoints are
descendants of u and within Θ(∆) of u. A simple amortized analysis shows that after performing
these perturbations every cross edge path is cut O(1) times: if we think of following a cross edge
path from one endpoint to the other, then each time this path is cut there must be at least Ω(∆)
many edges we get to traverse until the next time it is cut again.

Unfortunately, it is relatively easy to see that such an F may not exist in a series-parallel graph.

151

The forest of hammocks component of our decompositions is a subgraph which will be “close
enough” to such an F , thereby allowing us to perturb our chops similarly to the above strategy.
As mentioned in the introduction, a hammock graph consists of two subtrees of a BFS tree and
the cross edges between them. A forest of hammocks is a graph partitioned into hammocks where
every cycle is fully contained in one of the constituent hammocks. While the above perturbation
will guarantee that our cross edge paths are not cut too often, it is not clear that such a perturbation
does not change the structure of our initial chops in a way that causes our BFS paths to be cut too
many times.

The second part of our hammock decompositions is what we use to guarantee that our BFS paths
are not cut too many times by preserving the structure of our initial KPR chops. Specifically, the
forest structure of our hammocks will reflect the structure of TBFS. In particular, we can naturally
associate each hammock Hi with a single vertex, namely the LCA of any u and v where u is
in one tree of Hi and v is in the other. Then, our forest of hammocks will satisfy the property
that if hammock Hi is a “parent” of hammock Hj in our forest of hammocks then the LCA
corresponding to Hi is an ancestor of the LCA corresponding to Hj in TBFS; even stronger, the
LCA of Hj will be contained in Hi. Roughly, the fact that our forest of hammocks mimics the
structure of TBFS in this way will allow us to argue that the above perturbation does not alter the
initial structure of our KPR chops too much, thereby ensuring that BFS paths are not cut too many
times.

The computation of our hammock decompositions constitutes the bulk of our technical work
but is somewhat involved. The basic idea is as follows. We will partition all cross edges into
equivalence classes where each cross edge in an equivalence class shares an LCA in TBFS (though
there may be multiple, distinct equivalence classes with the same LCA). Each such equivalence
class will eventually correspond to one hammock in our forest of hammocks. To compute our
forest of hammocks we first connect up all cross edges in the same equivalence class. Next we
connect our equivalence classes to one another by cross edge paths which run between them. We
then extend our hammocks along paths towards their LCAs to ensure the above-mentioned LCA
properties. Finally, we add so far unassigned subtrees of TBFS to our hammocks. We will argue
that when this process fails it shows the existence of a K4-minor and, in particular, a clawed cycle.

6.5 Chapter-Specific Notation and Conventions
Before proceeding to our formal results we specify the notation we use throughout this work
as well as some of the assumptions we make on our input series-parallel graph without loss of
generality (WLOG).

Assumption of Unique Shortest Paths and Unit Weights: We will assume throughout this work
that in our input series-parallel graph for any vertices u and v the shortest path between u and v is
unique and that w(e) = 1 for every e. It is easy to see that our algorithms extend to non-unique
shortest paths and the non-unit weight edge cases by standard techniques. In particular, one
can randomly perturb the initial weights of the input graph so as to guarantee the uniqueness of
shortest paths. Similarly, one can expand each edge of weight w(e) into a path of w(e) edges
while preserving series-parallelness and the metric on the nodes from the original graph which
suffices for our purposes.

Tree Paths: For a tree T , we will let T (u, v) stand for the unique path between u and v in T for

152

u, v ∈ V (T). We will sometimes assume that a path from a vertex set to another vertex set is
directed in the natural way.

BFS Tree Notation: For much of this chapter we will fix a series-parallel graph G = (V,E)
along with a fixed but arbitrary root r ∈ V and a fixed but arbitrary BFS tree TBFS with respect
to r. When we do so we will let Ec := E \ E(TBFS) be all cross edges of TBFS. For u, v ∈ V ,
if u ∈ TBFS(r, v) \ {v} then we say that u is an ancestor of v. In this case, we also say that v
is a descendant of u. If u is an ancestor of v or v is an ancestor of u then we say that u and v
are related; otherwise, we say that u and v are unrelated. For two vertices u, v ∈ V we will use
the notation u ≺ v to indicate that v is an ancestor of u and we will use the notation u ⪯ v to
indicate that v is an ancestor of or equal to u. It is easy to verify that ⪯ induces a partial order.
We let TBFS(v) := TBFS[{v} ∪ {u ∈ V : u is a descendant of v}] be the subtree of TBFS rooted at
v. Given a connected subgraph T ⊆ TBFS, we will let high(T) be the vertex in V (T) which is
an ancestor of all vertices in V (T). Given a path P ⊆ TBFS we will say that P is monotone if
high(P) is an ancestor of all vertices in P and there is some vertex low(P) which is a descendant
of all vertices in P . We let h(v) give the height of a vertex in TBFS (where we imagine that the
nodes furthest from r are at height 0). We let LCA(e) be the least common ancestor of u and v in
TBFS for each e = {u, v} ∈ E.

6.6 Perturbing KPR and Scattering Chops
In this section we show that KPR still gives low diameter components even if its boundaries
are perturbed and therefore somewhat “fuzzy.” We then observe that this fact shows that “O(1)-
scattering chops” imply the existence of O(1)-scattering partitions for Kh-minor-free graphs and
therefore O(1)-SPR solutions.

6.6.1 Perturbing KPR
We will repeatedly take the connected components of annuli with “fuzzy” boundaries. We
formalize this with the idea of a c-fuzzy ∆-chop; see Figure 6.5a for an illustration.

Definition 135 (c-Fuzzy ∆-Chop). Let G = (V,E,w) be a weighted graph with root r and
fix 0 ≤ c < 1 and ∆ ≥ 1. Then a c-fuzzy ∆-chop is a partition of V into “fuzzy annuli”
A = {A1, A2, . . .} where for every i and v ∈ Ai we have

(i− 1)∆− c∆

2
≤ d(r, v) < i ·∆+

c∆

2
.

As each fuzzy annulus in a fuzzy chop may contain many connected components we must be
careful when specifying how recursive application of these chops break a graph into connected
components; hence the following definitions. Given fuzzy annulus Ai, we let Ci be the connected
components of Ai.

Definition 136 (Components Resulting from a c-Fuzzy ∆-Chop). Let G = (V,E,w) be a
weighted graph and let C be a partition of V into connected components. Then we say that C
results from one level of c-fuzzy ∆-chops if there is a c-fuzzy ∆-chop A with respect to some
root r ∈ V satisfying C =

⋃
i:Ai∈A Ci. Similarly, for h ≥ 2 we say that C results from h-levels of

153

c-fuzzy ∆-chops if there is some C ′ which results from one level of c-fuzzy ∆-chops and C is the
union of the result of h− 1 levels of c-fuzzy ∆-chops on each C ′ ∈ C ′.
We will now claim that taking h− 1 levels of fuzzy chops in a Kh-minor-free graph will result in
a connected, low weak diameter partition. In particular, we show the following lemma, the main
result of this section.

Lemma 137. Let ∆ and h satisfy 2 ≤ h, ∆ ≥ 1 and fix constant 0 ≤ c < 1. Suppose C is the
result of h− 1 levels of c-fuzzy ∆-chops in a Kh-minor-free weighted graph G. Then, the weak
diameter of every C ∈ C is at most O(h ·∆).

For the rest of this section we identify the nodes of a minor of graph G with “supernodes.” In
particular, we will think of each of the vertices of the minor as corresponding to a disjoint,
connected subset of vertices in G (a supernode) where the minor can be formed from G (up to
isomorphism) by contracting the constituent nodes of each such supernodes.

Our proof will closely track a known analysis of KPR [137]. The sketch of this strategy is as
follows. We will argue that if we fail to produce parts with low diameter then we have found Kh

as a minor. Our proof will be by induction on the number of levels of fuzzy chops. Suppose C
is produced by h− 1 levels of fuzzy chops; in particular, suppose C is produced by taking some
fuzzy chop to get C ′ and then taking h− 2 levels of fuzzy chops on each C ′ ∈ C ′. Also assume
that there is some C ∈ C which has large diameter. Then, C must result from taking h− 2 levels
of fuzzy chops on some C ′ ∈ C where C ′ lies in some fuzzy annulus Ai of G. By our inductive
hypothesis it follows that C contains Kh−1 as a minor. Our goal is to add one more supernode
to this minor to get a Kh minor. We will do so by finding disjoint paths of length O(∆) in the
annulus above Ai from each of the Kh−1 supernodes all of which converge on a single connected
component. By adding these paths to their respective supernodes in the Kh−1 minor and adding
the connected component on which these paths converge to our collection of supernodes, we will
end up with a Kh minor.

The main challenge in this strategy is to show how to find paths as above which are disjoint. We
will do so by choosing these paths from a “representative” from each supernode where initially
the representatives are Ω(h∆) far-apart and grow at most O(∆) closer at each level of chops;
since we do at most O(h) levels of chops, the paths we choose will never intersect.

To formalize this strategy we must state a few definitions which will aid in arguing that these
representatives are far apart.

Definition 138 (∆-Dense). Given sets S, U ⊆ V we say S is ∆-dense in U if d(u, S) ≤ ∆ for
every u ∈ U .

Definition 139 (R-Represented). A Kh minor is R-represented by set S ⊆ V if each supernode
Vi ⊆ V of the minor in G contains a representative vi ∈ S ∩ Vi and these representatives are
pairwise at least R apart in G.

Since V is clearly (1 + c)∆-dense in V , we can set S to V and j to h− 1 in the following lemma
to get Theorem 137.

Lemma 140. Fix 0 ≤ c < 1 and h > j ≥ 0. Let S be any set which is (1 + c)∆-dense in V and
suppose C is the result of j levels of c-fuzzy ∆-chops and some C ∈ C has weak diameter more
than 22h∆. Then there exists a Kj+1 minor which is 8(h− j)∆-represented by S.

154

Proof. Our proof is by induction on j. The base case of j = 0 is trivial as K1 is a minor of any
graph with a supernode +∞-represented by any single vertex in V .

Now consider the inductive step on graph G = (V,E). Fix some set S which is (1 + c)∆-dense
in V and let C be the result of j levels of c-fuzzy chops using root r with some C ′ ∈ C of diameter
more than 22h∆. Suppose C ′ is in fuzzy annulus Ak and suppose that C ′ is the result of applying
j − 1 levels of c-fuzzy chops to some C which resulted from 1 level of c-fuzzy chops in G; note
that C is a connected component of Ak and that C ′ is contained in C.

As an inductive hypothesis we suppose that any j − 1 levels of c-fuzzy ∆-chops on any graph H
which results in a cluster of weak diameter more than 22h∆ demonstrates the existence of a Kj

minor in H which is 8(h− j + 1)∆-represented by any set S ′ which is (1 + c)∆-dense in V (H).
Here weak diameter is with respect to the distances induced by the original input graph.

Thus, by our inductive hypothesis we therefore know that C contains a Kj minor which is
8(h− j + 1)∆-represented by any S ′ ⊆ V (C) which is (1 + c)∆-dense in V (C). In particular,
we may let S ′ be the “upper boundary” of C; that is, we let S ′ be all vertices v in C such that
the shortest path from v to r does not contain any vertices in C. Clearly the shortest path from
any vertex in C to r intersects a node in S ′; moreover, when restricted to C this shortest path has
length at most ∆+ c∆ (since C is contained in Ak) which is to say that S ′ is (1+ c)∆-dense in C.
Thus, by our induction hypothesis there is a Kj minor in C which is 8(h− j + 1)∆-represented
by S ′. Let V1, . . . , Vj be the nodes in the supernodes of the Kj minor.

We now describe how to extend the Kj minor to a Kj+1 minor which is 8(h− j)∆-represented
by S. We may assume that k ≥ 9h+ 1; otherwise the distance from every node in Ak to r would
be at most (9h + 1)∆ + c∆

2
≤ (9h + 3

2
)∆ and so the weak diameter of C ′ would be at most

(18h + 3)∆ ≤ 21h∆, contradicting our assumption on C ′’s diameter. It follows that for every
v ∈ Ak we have

d(v, r) ≥ (k − 1)∆− c∆

2
≥ 9h∆− c∆

2
≥ 8h∆. (6.6.1)

We first describe how we grow each supernode Vi from the Kj minor to a new supernode V ′
i . Let

vi be the representative in S ′ for Vi. Consider the path which consists of following the shortest
path from vi to r for distance 2∆ and then continuing on to the nearest node in S; let v′i be this
nearest node; this path from vi to v′i has length at most (3 + c)∆ since S is (1 + c)∆-dense in
V (G). Let V ′

i be the union of Vi with the vertices in this path. Since each of these paths is of
length at most (3 + c)∆ ≤ 4∆, it follows that each of these paths for each i must be disjoint since
each vi is at least 8(h− j + 1)∆ > 8∆ apart. Further, every v′i must also, therefore, be at least
8(h− j)∆ apart. Therefore, we let these v′i form the representatives in S for each of the V ′

i .

We now describe how we construct the additional supernode, V0, which we add to our minor to
get a Kj+1 minor. V0 will “grow” from the root to S and each of the V ′

i . In particular, let ui ∈ V ′
i

be the node in V ′
i which is closest to r and let Pi be the shortest path from r to ui, excluding ui.

Similarly, let v′0 be the node in S closest to r and let P0 be the shortest path from r to v′0, including
v′0. Then, we let V0 be P0 ∪ P1 ∪ . . . ∪ Pj and we let v′0 be the representative for V0 in S. We
claim that for every i ≥ 1 we have

d(P0, V
′
i) ≥ 8(h− j)∆. (6.6.2)

155

r

≈ Δ

(a) A c-fuzzy ∆-chop.

r

(b) Visualizing some paths.

Figure 6.5: A c-fuzzy ∆-chop that is 1-scattering. We draw each fuzzy annulus in a distinct color. In (b) we visualize
some shortest paths of length at most ∆ and highlight cut edges in red.

In particular, notice that since S is (1+c)∆-dense in V (G) we know that d(r, v′0) ≤ (1+c)∆ ≤ 2∆
and since d(v, r) ≥ 8h∆ for every v ∈ Ak by Equation (6.6.1) and d(v′i, Ak) ≤ (3 + c)∆ ≤ 4∆,
it follows that d(P0, V

′
i) ≥ (8h − 6)∆ ≥ 8(h − j)∆. Consequently, d(v′0, v

′
i) ≥ 8(h − j)∆ for

every i ≥ 1. Thus, our representatives of each supernode are appropriately far apart.

It remains to show that our supernodes indeed form a Kj+1 minor; clearly by construction they
are all pair-wise adjacent and so it remains only to show that they are all disjoint from one another.
We already argued above that for i, j ≥ 1 any V ′

i and V ′
j are disjoint so we need only argue that V ′

0

is disjoint from each V ′
i for i ≥ 1. P0 must be disjoint from each V ′

i for i ≥ 1 by Equation (6.6.2)
and so we need only verify that Pi is disjoint from V ′

j for i, j ≥ 1;

By construction if i = j we know that Pi is disjoint from V ′
j so we assume i ̸= j and that Pi

intersects V ′
j for the sake of contradiction. Notice that each Pi has length at most k∆+ c∆

2
−2∆ =

k∆ + c∆ − 2∆ − c∆
2

< (k − 1)∆ − c∆
2

by how we construct V ′
i . Thus, Pi must be disjoint

from Ak. It follows that if Pi intersects V ′
j then it must intersect V ′

j \ Vj . However, since
d(vi, vj) ≥ 8(h − j + 1)∆ ≥ 16∆ and the length of paths V ′

i \ Vi and V ′
j \ Vj are at most 4∆

we know that d(V ′
i \ Vi, V

′
j \ Vj) ≥ 8(h− j)∆ ≥ 8∆. Thus, after intersecting V ′

j \ Vj and then
continuing on to a vertex adjacent to V ′

i \Vi, we know Pi must travel at least 8∆; since the vertices
of Pi are monotonically further and further from r, and the vertex in V ′

j \ Vj that Pi intersects
must be distance at least (k− 1)∆− c∆

2
− 4∆ ≥ (k− 5)∆ from r, then the last vertex of Pi must

be distance at least (k + 3)∆ from r, meaning Pi must intersect annulus Ak, a contradiction.

6.6.2 Scattering Chops
Using Theorem 137 we can reduce computing a good scattering partition and therefore computing
a good SPR solution to finding what we call a scattering chop. The following definitions are
somewhat analogous to Theorem 131 and Theorem 132. However, notice that the second definition
is for a family of graphs (as opposed to a single graph as in Theorem 132). We illustrate a τ -
scattering chop in Figure 6.5.

Definition 141 (τ -Scattering Chop). Given a weighted graph G = (V,E,w), let A be a c-fuzzy
∆-chop with respect to some root r ∈ V . A is a τ -scattering chop if each shortest path of length
at most ∆ has at most τ edges cut by A where we say that an edge is cut by A if it has endpoints
in different fuzzy annuli of A.

Definition 142 (τ -Scatter-Choppable Graphs). A family of graphs G is τ -scatter-choppable if

156

there exists a constant 0 ≤ c < 1 such that for any G ∈ G and ∆ ≥ 1 there is some τ -scattering
and c-fuzzy ∆-chop A with respect to some root.

We will say that G is deterministic poly-time τ -scatter-choppable if the above chop A for each
G ∈ G can be computed in deterministic poly-time.

Lastly, we conclude that to give an O(1)-scattering partition—and therefore to give an O(1)-SPR
solution—for a Kh-minor-free graph family it suffices to show that such a family is O(1)-scatter
choppable.

Lemma 143. Fix a constant h ≥ 2 and let Gh be all Kh-minor-free graphs. Then, if Gh is
τ -scatter-choppable then every G ∈ Gh is O(τh−1)-scatterable.

Proof. The claim is almost immediate from Theorem 137 and the fact that all subpaths of a
shortest path are themselves shortest paths.

In particular, first fix a sufficiently small constant c′ to be chosen later. Then, consider a G ∈ Gh
and fix a ∆. By assumption we know that G is τ -scatter-choppable and since each subgraph of G
is in Gh so too is each subgraph of G. Thus, we may let C be the connected components resulting
from h− 1 levels of c-fuzzy and (c′∆)-chops which are τ -scattering.

We claim that for sufficiently small c′ we have that C is a
(

τh−1

c′
,∆
)

-scattering partition. By
Theorem 137 the diameter of each part in C is at most O(c′ · h ·∆) ≤ ∆ for sufficiently small c′.
Next, consider a shortest path P of length at most ∆. We can partition the edges of P into at most
1
c′

shortest paths P1, P2, . . ., each of length at most c′ ·∆. Thus, it suffices to show that each Pi

satisfies |{C ∈ C : Pi ∩ C ̸= ∅}| ≤ τh−1.

We argue by induction on the number of levels of chops that after h′ < h chops we have
|{C ∈ C : Pi ∩ C ̸= ∅}| ≤ τh

′ . Suppose we perform just one chop; i.e. h′ = 1. Then, since
our chops are τ -scattering we know that P will be cut at most τ times and so be incident to at
most τ components of C as required. Next, suppose we perform h′ > 1 levels of chops. Then
our top-level chop will partition the vertices of Pi into at most τ components. By induction and
the fact that each subpath of Pi is itself a shortest path of length at most c′∆, we know that the
vertices of Pi in each such component are broken into at most τh′−1 components and so Pi will be
incident to at most τh′ components as required. As we perform h− 1 levels of chops, it follows
that C is indeed a

(
τh−1

c′
,∆
)

-scattering partition.

6.7 Hammock Decompositions
In this section we formally define our hammock decompositions and give some of their properties.
For the rest of this section we will assume we are working with a fixed graph G = (V,E) with a
fixed but arbitrary root r ∈ V and a fixed but arbitrary BFS tree TBFS rooted at r. Throughout this
section we will extensively use the notational conventions specified in Section 6.5, especially the
BFS tree notation.

6.7.1 Trees of Hammocks
We begin by formalizing and establishing the properties of the key component of our hammock
decompositions, the tree of hammocks. Roughly speaking, a tree of hammocks will be a tree in

157

high(T) high(T′)

(a) A hammock.

high(T) high(T′)
e1

e2

(b) A hammock-fundamental cycle.

Figure 6.6: An illustration of a hammock and a hammock-fundamental cycle for e1, e2 ∈ Ec. Edges of TBFS in pink,
cross edges in black, hammock roots are a black square and diamond and the hammock-fundamental cycle is in
yellow.

the usual graph-theoretic sense whose nodes are structured subgraphs which we call hammocks.
Much of this section will be concerned with showing that a tree of hammocks, despite having
subgraphs as its nodes, satisfies nice properties analogous to those of a tree of nodes.

We begin by defining a hammock graph as two subtrees of TBFS along with all cross edges between
them. We illustrate a hammock in Figure 6.6a. Recall that Ec := E \ E(TBFS) gives the “cross”
edges of TBFS and high gives the vertex closest to the root of TBFS.

Definition 144 (Hammock Graph). We say that subgraph H ⊆ G is a hammock if H = G[V (H)]
and V (H) can be partitioned into sets V1 and V2 where its “hammock trees” T := TBFS[V1] and
T ′ := TBFS[V2] are connected, Ec(T, T

′) ̸= ∅ and the “hammock roots” high(T) and high(T ′)
are unrelated.

Notice that given a hammock H and two distinct edges e1 = {v, v′}, e2 = {u, u′} ∈ Ec(T, T
′)

where v, u ∈ T and v′, u′ ∈ T ′, we have that there is a unique cycle containing e1 and e2, namely
T (v, u)⊕ e1 ⊕ T ′(u′, v′)⊕ e2. We will refer to this cycle as the hammock-fundamental cycle of
e1 and e2. We illustrate a hammock-fundamental cycle in Figure 6.6b.

For the following definition of a tree of hammocks, recall that ifH is a collection of subgraphs of
G then G[H] gives the graph induced by the union of the subgraphs contained inH.

Definition 145 (Tree of Hammocks). We say that a collection of edge-disjoint hammocksH =
{Hi ⊆ G}i forms a tree of hammocks if every simple cycle C in G[H] satisfies |Hi : E(C)∩Hi ̸=
∅| = 1 and G[H] has a single connected component.

We illustrate a tree of hammocks in Figure 6.7a. Just as it is often useful to root a tree of vertices,
so too will it be useful for us to root our trees of hammocks.

Definition 146 (Rooted Tree of Hammocks). Suppose H = {Hi}i forms a tree of hammocks.
Then we say that H forms a rooted tree of hammocks if some Hk ∈ H is designated a “root
hammock.”

While the above definitions are concerned with trees of hammocks, they extend naturally to a
notion of forests of hammocks.

Definition 147 (Rooted Forests of Hammocks). We say that a collection of edge-disjoint hammocks

158

(a) A tree of hammocks.

r

(b) A hammock decomposition.

Figure 6.7: An illustration of one tree of hammocks in a hammock decomposition {Hi}i and a hammock decom-
position consisting of two trees of hammocks. Each ri and r′i given as a square and diamond colored according to
corresponding Hi. Edges in TBFS in pink and highlighted according to the Hi which contains them. Edges of Ec

colored according to the Hi which contains them. T0 in the hammock decomposition given in dark red.

H = {Hi}i forms a (rooted) forest of hammocks if for each connected component W of G[H] we
have that {Hi : V (Hi) ∩ V (W) ̸= ∅} forms a (rooted) tree of hammocks. We call the trees of
hammocks formed by each such connected component the trees of hammocks ofH.

All of our notation and definitions will extend from trees of hammocks to forests of hammocks in
the natural way.

Parents and Ancestors in Trees of Hammocks

While defining a root for a tree of nodes immediately determines the parents and ancestors of
each node, it is not so clear that defining a root hammock in a tree of hammocks determines a
reasonable notion of parents and ancestors of hammocks. In this section, we provide some simple
observations that, in turn, will allow us to coherently define parent and ancestor relationships in
a tree of hammock. Along the way we will provide an explicit tree representation of a tree of
hammocksH as a tree TH.

We begin by showing how, given a fixed root hammock in a tree of hammocks, we can define what
it means for one hammock to be the parent of another hammock. To do so we need the following
simple observation. LetH be a forest of hammocks and let P be a path in the graph induced by
H between hammocks Hi and Hj . We say that P passes through hammock Hl ∈ H if it contains
at least one edge of Hl. Then, we have the following fact which is analogous to the fact that there
is a unique simple path in a tree between any two vertices in a tree. We remind the reader that a
path is from subgraph Hi to subgraph Hj (in what follows these subgraphs are hammocks) iff its
first and last vertices are in Hi and Hj and these are the only vertices of the path in Hi and Hj .

Lemma 148. Suppose H forms a tree of hammocks. Then for any Hi, Hj ∈ H if P and P ′ are
both from Hi to Hj then both P and P ′ pass through the same hammocks ofH in the same order.

Proof. Suppose that P passes through H1, H2, . . . and P ′ passes through H ′
1, H

′
2, Moreover,

let H0, H
′
0 := Hi and let Hk, H

′
k′ := Hj . We will consider the paths induced by P and P ′ from

when they diverge to when they come back together and then argue that this gives a cycle with
edges in multiple distinct hammocks. Specifically, let x be any index such that Hx = H ′

x but
Hx+1 ̸= H ′

x+1 and let y be the lowest index larger than x such that Hy = H ′
y′ for some y′ > x.

159

By our choice of H0 and our assumption that both paths pass through different hammocks we
know that x is well-defined while our choice of Hk and H ′

k′ shows that y and y′ are well-defined.
Let P̄ and P̄ ′ be P and P ′ restricted to the corresponding subpath between Hx and Hy and let
vx and vy and v′x and v′y be the endpoints of P̄ and P̄ ′ in Hx and Hy respectively. Then we have
that P̄ combined with P̄ ′ along with the path between vx and v′x in Hx and the path between vy
and v′y in Hy is a cycle; call this cycle C. Moreover, since P̄ and P̄ ′ each pass through at least 1
distinct hammock we have that such a cycle satisfies |Hl : E(C) ∩Hl ̸= ∅| ≥ 2, contradicting
our assumption thatH is a forest of hammocks as defined in Theorem 145.

The above lemma now allows us to formally define what it means for a hammock to be the parent
of another hammock in a tree of hammocks.

Definition 149 (Parent/Child Hammocks). SupposeH is a rooted tree of hammocks with root Hk.
Then, we say that Hk is the parent of all Hj for j ̸= k which share a vertex with Hk. Similarly,
for any other Hj ̸= Hk we let the parent of Hj be Hi where Hi is the unique hammock any path
from Hj to Hk first passes through (as guaranteed to exist by Theorem 148). Symmetrically, Hj is
a child of hammock Hi if Hi is a parent of Hj .

More generally, we can use this notion of what it means for a hammock to be a parent of another
hammock in order to make the “treeness” of a tree of hammocks more explicit and to define what
it means for a hammock to be the ancestor of another hammock.

Definition 150 (Tree Representation TH). SupposeH = {Hi}i forms a rooted tree of hammocks
with root Hk. Then TH is the graph with vertex set {Hi}i and root Hk which has an edge between
Hj and Hi iff Hi is the parent of Hj inH.

Lemma 151. IfH is a rooted tree of hammocks then TH is a tree where Hi is a parent of Hj in
TH iff Hi is a parent of Hj inH.

Proof. Let Hk be the designated root hammock inH. Now assume for the sake of contradiction
that we have a cycle H0, H1, . . . , Hx−1 in H. Since each vertex/hammock in H has at most
one parent, it follows that Hi+1 mod x is the parent of Hi for every i ∈ [x − 1] (where we have
assumed WLOG that Hi+1 mod x is the parent of Hi and not that Hi is the parent of Hi+1 mod x).
By definition of what it means for Hi+1 mod x to be the parent of Hi, it follows that every path
from Hi to Hk must pass through Hi+1 mod x, Hi+2 mod x and so on. However, since we have a
cycle it then follows that every path from Hi to Hk must pass through Hi itself, contradicting the
fact that there is a path in G[H] between Hi and Hk which does not pass through Hi since G[H]
is connected.

Moreover, by how we define TH it follows that Hi is a parent of Hj in TH iff Hi is a parent of Hj

inH.

As we have established that TH is a tree, we henceforth assume it is rooted at Hk, the designated
root hammock ofH. With this in mind, we can define ancestors and descendants inH.

Definition 152 (Ancestor/Descendant Hammock). LetH = {Hi}i be a rooted tree of hammocks.
Hi is an ancestor (resp. descendant) of Hj inH iff Hi is an ancestor (resp. descendant) of Hj in
TH.

Similarly to our BFS tree notation, we will use the notation Hj ⪯H Hi to indicate that Hj is a
descendant of Hi in tree of hammocksH.

160

The Structure of Paths in Trees of Hammocks

We now observe that if H is a tree of hammocks then any path in G[H] coincides with the
corresponding path in TH.

We begin by observing the following simple technical lemma.

Lemma 153. IfH = {Hi}i is a tree of hammocks then for every i, j we have Hi∩Hj ̸= ∅ implies
that Hi ∩Hj consists of a single vertex which is an articulation vertex for G[H].

Proof. Suppose for the sake of contradiction that two hammocks Hi and Hj share a vertex v
which is not an articulation point for the graph induced byH and let vi and vj be vertices adjacent
to v in Hi and Hj respectively. Then, since v is not an articulation point there is a path P from vi
to vj not containing v. It follows that C := {v, vi} ⊕ P ⊕ {vj, v} is a cycle. However, we then
have {Hi, Hj} ⊆ {Hl : E(C) ∩Hl ̸= ∅}, violating Theorem 145.

Concluding, we have the fact that the paths in G[H] adhere to the structure of TH. This fact is
obvious if one inspects a picture of a tree of hammocks (see e.g. Figure 6.7a), but formalizing
it requires a little bit of careful thought and notation. Again recall that if a path is between two
subgraphs Hi and Hj then by definition the only vertices of Hi and Hj in this path are its first
and last vertices; for this reason the indices of Px begin at 1 and end at l − 1 in the following
definition.

Lemma 154. LetH be a rooted tree of hammocks, let P be a path in G[H] between hammocks
Hi and Hj and let TH(Hi, Hj) = (Hi = H0, H1, H2, . . . , Hl = Hj) be the path between Hi and
Hj in the tree representation TH ofH. Then P is of the form P1 ⊕ P2 . . .⊕ Pl−1 where for each
x ∈ [l − 1] we have:

1. Px is a subpath of P gotten by restricting P to V (Hx) where E(Px) ⊆ E(Hx) and;

2. The first and last vertices of Px are articulation vertices b(x−1)x and bx(x+1) where V (Hx−1)∩
V (Hx) = {b(x−1)x} and V (Hx) ∩ V (Hx+1) = {bx(x+1)}.

Proof. We begin with the following simple observation. Suppose e = {u, v} ∈ P . Then if u is in
some Hx but v ̸∈ Hx then the suffix of P after and including v cannot include any vertices of Hx.
Suppose for the sake of contradiction that it did and let P ′ be the subpath of P from u back to
some u′ ∈ Hx. Then combining P ′ with the path in Hx connecting u and u′ gives a cycle with
edges in more than one hammock, a contradiction. The symmetric statement holds for prefixes of
P .

As our hammocks inH are edge-disjoint we know that we can partition the edges of P into their
constituent hammocks. By our above observation we know that for each Hx ∈ H it holds that
Hx ∩ E(P) is a connected (possibly singleton) subpath of P . We let P ′

x := Hx ∩ E(P) be each
such subpath and let P ′ be all such induced non-empty subpaths by hammocks along TH(Hi, Hj).

We proceed to show that P ′
x is the xth path in P among all paths in P ′. Let Hm be the hammock

at maximum height in TH among all hammocks in TH(Hi, Hj). By definition of a parent, we
know that in any path incident to a vertex in Hx, if said path has a vertex of Hx’s parent’s parent
then such a path must pass through Hx’s parent. Moreover, as each hammock is connected and
shares a vertex with its parent, we know that there is a path from Hi to Hj . It follows that there is
a path P ′ from Hi to Hj which passes through every hammock in TH(Hi, Hj) except for possibly
Hm. If P ′ passes through Hm then our claim holds by Theorem 148 and our above observation. If

161

P ′ does not pass through Hm then by Theorem 148 we must verify that the vertex in both P ′
m−1

and P ′
m+1 is in Hm. However, since Hm is the parent of both Hm−1 and Hm+1 we know that any

vertices shared by Hm−1 and Hm+1 must be in Hm as it is easy to see that otherwise we could
construct a cycle with edges in multiple hammocks by connecting Hm−1 and Hm+1 via this vertex
as well as through Hm.

Lastly, we note that each bx(x+1) is an articulation vertex and the only vertex in V (Hx)∩ V (Hx+1)
by Theorem 153.

6.7.2 Hammock Decompositions
We now define a hammock decomposition. Roughly, a hammock decomposition is a forest of
hammocks which both contains all shortest paths which start and end with cross edges and whose
forest structure reflects the LCA structure of the BFS tree TBFS. Recall that, ultimately, we will
show that every series-parallel graph has such a decomposition and use this decomposition to
perturb our KPR chops.

We will call a path a cross edge path if its first and last edges are in the cross edges of TBFS (that
is, in Ec) and a shortest cross edge path if it is both a cross edge path and it is a shortest path in G.
For a hammock Hi, we will henceforth use Ti and T ′

i to stand for the hammock trees of Hi and use
ri = high(Ti) and r′i = high(T ′

i) to stand for the hammock roots of Hi. In the below definitions
we will without loss of generality (WLOG) assume that each ri satisfies certain properties and
that r′i satisfies certain other properties.

We begin by formalizing the sense in which a forest of hammocks can reflect the LCA structure
of the BFS tree. Specifically, recall that given a hammock Hi with hammock roots ri and r′i, by
definition we know ri and r′i are unrelated in TBFS. Thus, we can naturally associate hammock Hi

with the vertex LCA(ri, r
′
i). Then the condition we would like to enforce is that if hammock Hi

is an ancestor of Hj in a forest of hammocks H then LCA(ri, r
′
i) is an ancestor of LCA(rj, r

′
j)

in TBFS. In fact, we will be able to enforce an even stronger condition than this in our hammock
decompositions, as formalized by the following notion of an LCA-respecting forest of hammocks.

Definition 155 (LCA-Respecting Forest of Hammocks). Let H = {Hi}i be a rooted forest of
hammocks . Then, we say thatH is LCA-respecting if for every pair Hi, Hj where Hi is the parent
of Hj inH then:

1. V (Hi) ∩ V (Hj) = {rj};
2. The parent of r′j in TBFS is LCA(rj, r′j) and LCA(rj, r′j) ∈ V (Hi) ∪ {LCA(ri, r′i)}.

Furthermore, we say thatH is LCA-respecting with base tree T0 ⊆ TBFS if for each root hammock
Hk ∈ H we also have

1. rk ∈ V (T0);

2. The parent of rk and r′k in TBFS is LCA(rk, r′k) and LCA(rk, r′k) ∈ V (T0).

Notice that it follows that if H is LCA-respecting then if Hi is an ancestor of Hj in H then
LCA(ri, r

′
i) is an ancestor of LCA(rj, r

′
j) in TBFS. Even stronger, though, we know that if Hi is a

parent of Hj then LCA(rj, r
′
j) ∈ V (Hi) or LCA(rj, r

′
j) is equal to LCA(ri, r

′
i).

Concluding we may now give our definition of a hammock decomposition. Since every hammock
contains a cross edge we cannot, in general, expect to decompose a graph into hammocks. For

162

r

(a) Series-parallel graph G.

r

(b) LCA-equivalence classes.

Figure 6.8: An illustration of the LCA-equivalence classes of a series-parallel graph G. Edges of TBFS in pink. Edges
of Ec in black in Figure 6.8a and colored according to their LCA-equivalence class in Figure 6.8b. Notice that edges
with the same LCA can belong to distinct equivalence classes.

example, if the input graph was just a tree then said graph would contain no hammocks. Thus, our
hammock decomposition will partition a series-parallel graph into a forest of hammocks along
with a tree T0 and a “parent edge” for each hammock in our forest of hammocks.

Definition 156 (Hammock Decomposition). A hammock decomposition of graph G = (V,E)
with root r and BFS tree TBFS is a partition of E into E(T0) ⊔ E(H) ⊔ Ep where:

1. T0 is a subtree of TBFS containing r;

2. H is an LCA-respecting rooted forest of hammocks with base tree T0 such that G[H]
contains every shortest cross edge path in G;

3. Ep := {ei : Hi ∈ H} where ei is the parent edge of r′i in TBFS.

Thus, roughly, a hammock decomposition consists of a base tree T0 with trees of hammocks
“hanging off” of T0. We illustrate a hammock decomposition where H consists of two trees of
hammocks in Figure 6.7b.

6.8 Hammock Decompositions for Series-Parallel Graphs
In this section we show how to construct hammock decomposition for a series-parallel graph.
For the rest of this section we will assume we are working with a fixed series-parallel graph
G = (V,E) with a fixed but arbitrary root r ∈ V and a fixed but arbitrary BFS tree TBFS rooted at
r. As in the previous section we will extensively make use of the notation laid out in Section 6.5.
The following theorem summarizes the main result of this section.

Theorem 157. Every series-parallel graph has a hammock decomposition which can be computed
in deterministic poly-time.

The main idea of our construction is to partition all cross edges into equivalence classes based on
the behavior of the cross edges’ least common ancestors. Notably, two cross edges with the same
least common ancestors may end up in different equivalence classes. Each such equivalence class
will correspond to one hammock in each of our hammock decomposition.

More specifically, we build a series of forests of hammocks where at each step we add on to our

163

forest of hammocks to guarantee one of the required properties of our hammock decomposition.
We will use different notation for each of these forests of hammocks. For example Ĥ will be our
first forest of hammocks where a constituent hammock will be notated Ĥi with hammock trees T̂i

and T̂ ′
i and hammock roots r̂i and r̂′i. We will also let Ĥ be the subgraph induced by Ĥ; and use

symmetric notation for our other forests of hammocks. Our progression of forests of hammocks
is as follows.

1. Ĥ: we will initialize our forest of hammocks by connecting each cross edge that falls
into the same equivalence class. The result of this will be one hammock for each of our
equivalence classes.

2. H̄: Next, we will extend each Ĥi to H̄i by connecting these hammocks to one another along
“hammock-joining” paths. The result of this will be a forest of hammocks H̄ which contains
every shortest cross edge path.

3. H̃: Next we will extend each H̄i along paths towards LCA(r̄i, r̄
′
i), resulting in H̃i, to make

our forest of hammocks LCA-respecting

4. H: Lastly, we will add any edges of TBFS which do not appear in a hammock to an incident
hammock (with the exception of the connected component of unassigned edges which
contain r). This step will ensure that our hammock decomposition indeed partitions all
edges of the graph.

We will illustrate this process on the series-parallel graph given in Figure 6.8a throughout this
section where Figure 6.15b gives the final hammock decomposition we compute for this graph.
We also give all illustrations of the construction in a single figure in the appendix in Figure 6.18.

Most of our proofs will revolve around finding clawed cycles when the above procedure fails to
produce a forest of hammocks with the desired properties. As our proofs are quite lengthy, we
will briefly highlight three of the major conceptual milestones of this section before proceeding.

1. Connected Below Subgraphs: Connected below subgraphs will be a useful abstraction
to help us find clawed cycles. An edge e = {u, v} ∈ H where u is the parent of v in TBFS

is connected below if there is a path from r to TBFS(v) which only intersects TBFS(u) at
TBFS(v). A subgraph will be connected below if each of its edges are. We will argue that
the subgraph induced by our construction is connected below. As the paths guaranteed
to exist for any connected below edges {u, vl} and {u, vr} (for vl and vr children of u
and vl ̸= vr) have distinct endpoints in TBFS(u), we will often use these paths along with
TBFS(r, u) as the paths of our clawed cycles. Theorem 163 gives a concise summary of this
technique, showing that any connected below subgraph with at most one edge in each Ci is
a forest. The forest structure given by this lemma will be at the core of our proof of why
our construction gives a forest of hammocks.

2. Assignments of Hammock-Joining Path Components: As alluded to above, after com-
puting our Ĥis we will then connect these subgraphs to one another. We will do this
by considering the graph induced by all “hammock-joining paths”—roughly, the shortest
paths which connect cross edges in different equivalence classes. We will then assign each
connected component in this graph to one of its incident hammocks. The main idea here is
to first argue that any assignment which is valid (in some later-described technical sense)
will result in a forest of hammocks; see Theorem 173. Next, we will argue that no matter
which valid assignment we use, for each collection of hammocks incident to one of the

164

components which we are assigning there is some hammock which will always end up as
an ancestor hammock of the other incident hammocks in the resulting forest of hammocks
(Theorem 174). We will therefore assign each component to this always-ancestor hammock.
That we may assume that each component is assigned to a hammock which is the ancestor
of all other incident hammocks will further assist in arguing that our construction gives a
forest of hammocks.

3. Tree of Hammock Ancestry↔ LCA Ancestry: The idea that forms the foundation of
how we extend our H̄is to our H̃is to be LCA-respecting is as follows. We will argue that if
H̄j is a descendant of H̄i in H̄ then the LCA corresponding to the cross edges of H̄j must
be a descendant of the LCA corresponding to the cross edges of H̄i in TBFS. Theorem 182
summarizes this fact. The fact that H̄’s forest structure reflects the LCA structure of TBFS

will be what allows us to ensure that our hammocks are LCA-respecting.

6.8.1 Initial Hammocks Ĥ by Connecting Equivalence Classes
In this section we describe our initial forest of hammocks Ĥ. Roughly, we will define an
equivalence relation for cross edges and then if two cross edges fall into the same equivalence we
will connect the cross edges to one another. We will also introduce the notion of connected below
subgraphs which will help us to argue that the result of this (and the next step in our construction)
is a forest of hammocks.

LCA-Equivalent Edges

In this section we define the behavior of cross edges’ least common ancestors which we will
use to partition our cross edges into equivalence classes. Formally, we partition our cross edges
based on “LCA-equivalence” which we define as follows. In the following we WLOG distinguish
between the endpoints of e and e′.

Definition 158 (LCA-Equivalent Edges). Let e = {u, v} and e′ = {u′, v′}. Then we say that e
and e′ are LCA-equivalent if l(e) = l(e′), l(u, u′) ≺ l(e) and l(v, v′) ≺ l(e).

We emphasize that two cross edges with the same LCA may end up in different equivalence
classes. We illustrate these equivalence classes in Figure 6.8b. Next, we verify that, indeed, these
sets form an equivalence relation.

Lemma 159. The set of LCA-equivalent edges forms an equivalence relation.

Proof. Reflexivity and symmetry are trivial. We prove transitivity. Suppose e = {u, v} and
e′ = {u′, v′} are LCA-equivalent and e′ and e′′ = {u′′, v′′} are LCA-equivalent. We claim that e
and e′′ are LCA-equivalent. In particular, we have l(e) = l(e′) and l(e′) = l(e′′) so l(e) = l(e′′).
Now consider the (monotone) path from u′ to l(e); this path contains both l(u, u′) and l(u′, u′′);
WLOG suppose l(u′, u′′) occurs higher in TBFS in this path. It follows that l(u′, u′′) has both
u and u′′ as a descendant and so l(u, u′′) ⪯ l(u′, u′′) ≺ l(e). A symmetric argument shows
l(v, v′′) ≺ l(e) and so we conclude that e and e′′ are LCA-equivalent.

For the remainder of this section we will let C := {Ci}i be the equivalence classes of the above
equivalence relation. We will let l(Ci) give the LCA of any edge in Ci. Similarly, we will let
h(Ci) give the height of l(Ci) in TBFS. We will also slightly abuse notation and let ⪯ be the partial

165

ordering of these equivalence classes according to their LCAs: Cj ⪯ Ci iff l(Cj) ⪯ l(Ci) and
Cj ≺ Ci iff l(Cj) ≺ l(Ci) where again ≺ and ⪯ give the “ancestry” partial ordering in TBFS.

Connected Below Subgraphs

The crucial property of the edges which we use to connect edges in the same LCA-equivalence
class and to connect our Ĥis will be the following notion of “connected below.” This property of
these edges will aid us in finding disjoint paths which will, in turn, allow us to construct clawed
cycles when our hammock decomposition construction fails.

Definition 160 (Connected Below). We say that e = {u, v} ∈ TBFS where v ≺ u is connected
below if there is a path P in G between r and TBFS(v) which satisfies P ∩ TBFS(u) ⊆ TBFS(v).
We say that a subgraph GU = (U,EU) ⊆ G is connected below if each edge of EU ∩ TBFS is
connected below.

The following gives a slightly different but useful characterization of what it means for an edge to
be connected below.

Lemma 161. Let e = {u, v} ∈ TBFS be connected below where v ≺ u and let F be a non-empty
subgraph of G with vertices contained in TBFS(v). Then there is a path P in G between r and F
where P ∩ TBFS(u) ⊆ TBFS(v).

Proof. By the definition of e being connected below we know that there is a path P ′ from r
to TBFS(v) satisfying P ′ ∩ TBFS(u) ⊆ TBFS(v). Extending this path through TBFS(v) to F gives
P .

A simple proof by contradiction shows that two adjacent connected-below edges cannot also have
a path connecting their children vertices in a series-parallel graph.

Lemma 162. There does not exist a vertex x with distinct children vl and vr in TBFS such that
{x, vl} and {x, vr} are connected below and there exists a path in G contained in TBFS(x) \ {x}
between vl and vr

Proof. Suppose for the sake of contradiction that the stated path exists and call it P . Let C be the
cycle created by taking the union of P , {x, vl} and {x, vr}. Applying Theorem 161 to the fact
that el and er are connected below, we have that there exists a path Pl from r to C which does
not intersect TBFS(x) \ TBFS(vr). Symmetrically, there is a path Pr from r to Ce which does not
intersect TBFS(x) \ TBFS(vl). Letting Px := TBFS(r, x), we have that Ce with paths Px, Pl and Pr

forms a clawed cycle, a contradiction.

Building on the previous lemma, we have our main fact for this section: any subgraph connected
below with at most one edge from each equivalence class is a forest. That such a graph is a
forest will form the basis of our proof that our hammock decompositions are indeed forests of
hammocks.

Lemma 163. Suppose GU = (U,EU) is a subgraph of G which is connected below and where
|Ci ∩ EU | ≤ 1 for every i. Then GU is a forest.

Proof. Assume for the sake of contradiction that GU has a cycle C. Since GU has at most one
edge from each Ci, we know that |Ci ∩C| ≤ 1 for all i and that C contains at least one edge from
Ec. Say that vertex v ∈ C is a local max if no vertex in C is an ancestor of v; clearly there is at

166

el erxvl vr

(a) One local max.

e1

e2

x1
u1

v2

u2 v1
x2

l(e1) = l(e2)

(b) Two local maxes.

x1

x2 x3

r

(c) At least three local maxes.

Figure 6.9: The three cases of the proof of Theorem 163. Edges in C solid, edges outside of C transparent. TBFS in
pink and Ec in black. In (a) we give the path between vl and vr contained in TBFS(x) \ {x} with a dotted yellow path.
In (b) we illustrate give l(e1) = l(e2) at the top. In (c) we highlight the cycle and the paths of the clawed cycle in
solid and dotted yellow respectively.

least one such local max in C. We case on the number of local maxes in C. For each of our three
cases we illustrate the contradiction we arrive at in Figures 6.9a, 6.9b and 6.9c respectively.

1. Suppose there is 1 local max x in C. Let el = {vl, x} and er = {vr, x} be the two edges of
C incident to x. Since every vertex in C is a descendant of x we know that el and er are in
TBFS and are therefore connected below since otherwise we would have an edge in Ec from
a vertex to one of its descendants. However, it follows that the subgraph of C connecting vr
and vl which does not contain x—call it P—is contained in TBFS(x) \ {x}. Thus P along
with el and er contradicts Theorem 162.

2. Suppose there are 2 local maxes x1 and x2 in C. We will contradict the fact that |C∩Ci| ≤ 1
for every i. To do so, we first claim that there are distinct edges e1 = {u1, v2}, e2 =
{u2, v1} ∈ Ec ∩ C where u1, v1 ∈ TBFS(x1) and v2, u2 ∈ TBFS(x2). To see this, notice that
each subpath of C in TBFS is contained in either TBFS(x1) or TBFS(x2) and so since C is a
cycle two such edges must exist. Next, notice that it therefore follows that e1 and e2 are LCA-
equivalent: l(u2, v2) ∈ TBFS(x2) and l(u1, v1) ∈ TBFS(x1) but l(x1, x2) = l(e1) = l(e2)
where x1, x2 ≺ l(x1, x2) by our assumption that x1 and x2 are local maxes. Thus, we know
that e1 and e2 lie in the same Ci, a contradiction to the fact that |C ∩ Ci| ≤ 1 for every i.

3. Suppose there are at least 3 local maxes; let x1, x2 and x3 be an arbitrary but distinct three
of these maxes. Then cycle C along with paths P1 := TBFS(r, x1), P2 := TBFS(r, x2) and
P3 := TBFS(r, x3) form a clawed cycle since each xi is an ancestor of or unrelated to every
other vertex in C.

Constructing Ĥ

We now define subgraph Ĥi and argue that Ĥi is indeed a hammock. Our initial hammocks will
connect all “LCA-free minimal” cross edge paths.

Definition 164 (Minimal, LCA-Free Cross Edge Paths). We say that a cross edge path P ⊆ G is
LCA-free if l(ef), l(el) ̸∈ P . We say that P is minimal if only its first and last edges are in Ec.

Definition 165 (Ĥi). Ĥi is the subgraph of G induced by all LCA-free minimal cross edge paths

167

r

(a) Initial hammocks Ĥ.

r

(b) Extending Ĥ to H̄.

Figure 6.10: An illustration of our initial hammocks Ĥ = {Ĥi}i and how we extend them to our final hammocks H̄.
Roots and edges of initial hammocks colored according to i. Notice that one vertex is the root of two hammocks (and
so colored with two colors).

between edges in Ci.

As a reminder we let T̂i, T̂ ′
i , r̂i and r̂′i refer to the two hammock trees and hammock roots of

hammock Ĥi. Similarly, we let Ĥ := {Ĥi}i be the collection of all of our initial hammocks and
let Ĥ be its corresponding induced subgraph of G. We illustrate Ĥ in Figure 6.10a.

Lemma 166. Each Ĥi ∈ Ĥ is a hammock.

Proof. Consider a fixed Ĥi. Fix an arbitrary edge e0 = (u0, v0) ∈ Ci. Now consider an arbitrary
e = {u, v} ∈ Ci. By definition of Ci we know that (WLOG) u0 and u have an LCA which
is a descendant of l(e) = l(e′); thus, there is a minimal LCA-free cross edge path of the form
(v0, u0, . . . , u, v) which connects e0 and e which is included in Ĥi. Symmetrically, there is a
minimal cross edge connecting path of the form (u0, v0, . . . , v, u). We therefore know that u and
v are in the same connected components in Ĥi \ Ec as u0 and v0 respectively. Moreover, since
Ĥi \ Ec ⊆ TBFS, it follows that Ĥi \ Ec consists of at most two trees (the tree containing u0 and
the tree containing v0). Even stronger, since l(Ci) is not contained in any of the constituent paths
of Ĥi, we know that Ĥi \ Ec consists of exactly two trees and these trees are vertex-disjoint. We
let these two trees T and T ′ be the hammock trees of Ĥi. Next, to argue that Ĥi is a hammock we
must argue that every cross edge between T and T ′ is included in Ĥi. However, any such edge
e′ = {u′, v′} has l(e′) = l(Ci). Moreover, since u′, v′ ̸= l(Ci), we have that (WLOG) l(u0, u

′)
and l(v0, v

′) are descendants of l(Ci) and so e′ ∈ Ci and therefore e′ ∈ Ĥi. Lastly we must
show that high(T) and high(T ′) are unrelated. However, notice that if (WLOG) high(T ′) where
a descendant of high(T) then there would have been be a minimal LCA-free cross edge path
included in Ĥi which would have connected T and T ′, contradicting the fact that they are vertex
disjoint.

As our His must ultimately be edge-disjoint, we will need that our Ĥis are edge-disjoint.

Lemma 167. Ĥi and Ĥj are edge-disjoint for i ̸= j.

Proof. By Theorem 166 we may assume that Ĥi and Ĥj are hammocks. Suppose for the sake of
contradiction that E(Ĥi) ∩ E(Ĥj) ̸= ∅ for i ̸= j and let e = {u, v} be an edge included in Ĥi

and Ĥj . We illustrate the resulting situation, described below, in Figure 6.11a. We will argue that

168

l(Ci)
l(Cj)

eui

vi

uj vj

u′ j v′ j

ej

e′ j

u

v

r

(a) Theorem 167 proof setup.

e

ej

e′ j

uj vj

u′ j v′ j

u

l(Cj)
l(Ci)

v
vi

ui

r

(b) Theorem 167 proof contradiction.

Figure 6.11: The contradiction in the proof of Theorem 167. In (a) we illustrate H̄i in light blue and Hj in dark blue.
In (b) we highlight Fj in solid yellow and P1, P2 and P3 in dotted yellow.

this situation leads to a clawed cycle, illustrated in Figure 6.11b. By definition of Ĥi and Ĥj , such
an edge must an edge in TBFS and so we assume WLOG v ≺ u.

We claim that in this case l(Ci) and l(Cj) are related; to see this notice that l(Ci) and l(Cj)

must both be ancestors of or equal to u by virtue of the fact that e ∈ Ĥi, Ĥj and that Ĥi and Ĥj

are hammocks. WLOG we assume that Cj ⪯ Ci. Since Cj contains e we know that |Cj| ≥ 2

and, in particular, that Ĥj contains a hammock-fundamental cycle containing e; let Fj be this
cycle with edges ej = {uj, vj} and e′j = {u′

j, v
′
j} in Ec where we imagine WLOG that uj

and u′
j are in the same hammock tree of Ĥj as e; we will construct a clawed cycle with this

cycle. Let P1 := TBFS(r, l(uj, u
′
j)) and P2 := TBFS(r, l(vj, v

′
j)) be our first two paths to Fj . By

definition of a hammock we know that l(uj, u
′
j) ̸= l(vj, v

′
j); also notice that u ⪯ l(uj, u

′
j) and

l(vj, v
′
j) ̸∈ TBFS(l(uj, u

′
j)).

Next, notice that since e ∈ Ĥi, there must be some edge ei = {ui, vi} ∈ Ci where vi ∈ TBFS(v).
Let P ′

3 be the path from vi to Fj along TBFS(vi, v) and let P3 := TBFS(r, ui)⊕ ei ⊕ P ′
3.

To show that Fj along with P1, P2 and P3 are a clawed cycle it suffices to argue that P3 does not
contain l(uj, u

′
j) or l(vj, v′j) and so we verify that none of ei, P ′

3 or TBFS(r, ui) contain l(uj, u
′
j)

or l(vj, v′j).

• First, we argue that l(uj, u
′
j), l(vj, v

′
j) ̸∈ ei. Since vi ∈ TBFS(v) and l(vj, v

′
j) ̸∈ TBFS(v)

we know that vi ̸= l(vj, v
′
j). Similarly, since vi ⪯ v ≺ u ⪯ l(uj, u

′
j), we know that

vi ̸= l(uj, u
′
j). Now, consider ui. It cannot be the case that ui ∈ TBFS(l(uj, u

′
j)) since

otherwise we would have l(Ci) ⪯ l(uj, u
′
j) and so Ci ≺ Cj , a contradiction. It follows

that ui ̸= l(uj, u
′
j). Similarly, we cannot have ui = l(vj, v

′
j) since then we would have that

Ci = Cj .

• Since P ′
3 ⊆ TBFS(v) ⊆ TBFS(l(uj, u

′
j)) \ {l(uj, u

′
j)}, we know that P ′

3 contains neither
l(uj, u

′
j) nor l(vj, v′j).

• Lastly, suppose for the sake of contradiction that l(uj, u
′
j) ∈ TBFS(r, ui). It follows that

l(Ci) ⪯ l(uj, u
′
j), contradicting the fact that l(uj, u

′
j) ≺ l(Cj) ⪯ l(Ci). Lastly, suppose

for the sake of contradiction that l(vj, v′j) ∈ TBFS(r, ui). It follows that l(Ci) = l(vi, ui) ⪯
l(l(uj, u

′
j), l(vj, v

′
j)) = l(Cj) and since l(Cj) ⪯ l(Ci), it follows that l(Ci) = l(Cj). Since

ui ∈ TBFS(l(uj, u
′
j)) and vi ∈ l(vj, v

′
j) we then would have Ci = Cj , a contradiction.

169

Lastly, as alluded to above, we must establish that each of our Ĥis are connected below.

Lemma 168. Every Ĥi is connected below for every i.

Proof. Consider an edge e ∈ Ĥi ∩ TBFS. By definition of Ĥi, we know that e ∈ Ĥi because there
are edges e1 = {u1, v1}, e2 = {u2, v2} ∈ Ci which are connected by an LCA-free minimal cross
edge path P12 between e1 and e2 containing e. Thus, one of e1 and e2 has an endpoint in TBFS(v);
WLOG suppose e1 does. We may also assume that e1 has at most one endpoint in TBFS(u) (and so
has exactly one endpoint in TBFS(v)) since if both endpoints of e1 were in TBFS(u) then we would
have l(e1) ∈ TBFS(u) and so P12 would contain l(e1), contradicting its LCA-freeness. Thus, we
assume that v1 ∈ TBFS(v) but u1 ̸∈ TBFS(u). Next, we let P := TBFS(r, u1) ⊕ e1; we know that
P is from r to TBFS(v) and is internally vertex disjoint from TBFS(u) since u1 ̸∈ TBFS(u), thereby
demonstrating that e is connected below.

Notice that it immediately follow from Theorem 163, Theorem 166, Theorem 167 and Theo-
rem 168 that Ĥ is a forest of hammocks.

6.8.2 Extending Ĥ to H̄ by Hammock-Joining Paths
We now describe how we extend Ĥ to H̄ via what we call “hammock-joining” paths. We do so to
ensure that our final forest of hammocks contains all shortest cross edge paths. We illustrate this
process in Figure 6.10b.

Definition 169 (Hammock-Joining Paths). We say that path P ⊆ TBFS is a hammock-joining path
if

1. P is between distinct hammocks Ĥi, Ĥj ∈ Ĥ;

2. l(Ci), l(Cj) ̸∈ P .

We let HHJ be the subgraph induced by all hammock-joining paths for the rest of this section.

Lemma 170. Every e ∈ HHJ is connected below.

Proof. Consider an edge e = {u, v} where u is the parent of v in TBFS which is part of a
hammock-joining path Pij between Ĥi and Ĥj . We will construct a path P from r to TBFS(v)
where P ∩ TBFS(u) ⊆ TBFS(v) as required by the definition of connected below. WLOG we
assume Pij’s endpoint in Ĥi is in TBFS(u). Since every vertex in Ĥi is a descendant of l(Ci)
and l(Ci) ̸∈ P since P is hammock-joining, we know that l(Ci) ̸∈ TBFS(u). Notice that, by
construction, each leaf of each of Ĥi’s hammock trees is incident to an edge of Ci. Thus, we
know that there is some ei = {ui, vi} ∈ Ci where WLOG vi ∈ TBFS(u) but ui ̸∈ TBFS(u). Then,
we can let P be TBFS(r, ui). We know that P is internally vertex-disjoint from TBFS(u) since
ui ̸∈ TBFS(u). Thus, P is from r to F and P ∩ TBFS(u) ⊆ TBFS(v) as required.

Next, we describe how we will assign each collection of connected components in HHJ to one of
our hammocks. We always assign such a component to an incident hammock, hence the following
definition.

Definition 171 (I(T)). For a connected component T of HHJ \ Ĥ , we let I(T) := {i : V (Ĥi) ∩
V (T) ̸= ∅} be the indices of initial hammocks which intersect T .

170

The following definition formalizes the notion of a valid assignment of connected components of
HHJ to hammocks.

Definition 172 (Valid Assignment of Connected Components). Let π be a mapping from compo-
nents of HHJ \ Ĥ to non-negative integers. Then we say that π is an assignment of the connected
components of HHJ \ Ĥ if it maps each component T ⊆ HHJ \ Ĥ to an index in I(T). We say that
H̄ = {H̄i}i results from π if H̄i = Ĥi ∪

⋃
T :π(T)=i T . We say that π is valid if it holds that when

π(T) = i then l(Ci) ̸∈ T for every component T ⊆ HHJ \ Ĥ .

We now show that, provided connected components of HHJ \ Ĥ are assigned in a valid way, the
result is a forest of hammocks.

Lemma 173. Let π be a valid assignment of the connected components of HHJ \ Ĥ . Then if H̄
results from π then H̄ is a forest of hammocks.

Proof. We let H̄ be the subgraph induced by H̄ for the remainder of this proof. We first note that
by Theorem 168 and Theorem 170, H̄ is connected below; we will use this fact several times in
this proof.

We begin by verifying that every H̄i is indeed a hammock. By Theorem 166 H̄i is a hammock
when we initialize it to Ĥi. Next, we claim that adding connected components of HHJ \ Ĥ to H̄i

does not violate its hammockness. First, notice that H̄ does not contain any fundamental cycles of
TBFS since H̄ is connected below so such a cycle would be a connected below subgraph violating
Theorem 162. Thus, since each of the connected components of HHJ \ Ĥ we add to H̄i intersect
with Ĥi on some vertex, we know H̄i continues to be spanned by two subtrees of TBFS. To verify
that H̄i is a hammock we must also show that the edges between these two trees in Ec are exactly
Ci; since Ci ⊆ Ĥi, it suffices to show that no additional edges from Ec become incident to the
two hammock trees of H̄i as we add connected components of HHJ \ Ĥ to H̄i. However, notice
that the existence of such an edge would give us a cycle in H̄ incident to two LCA-equivalence
classes, contradicting Theorem 163. Lastly, it remains to argue that the roots of H̄is hammock
trees are unrelated. This is immediate from our assumption that π is valid—i.e. if π(T) = i then
l(Ci) ̸∈ T for every component T ⊆ HHJ \ Ĥ—since the roots of H̄i’s hammock trees would only
become related if l(Ci) were included in some T assigned to i.

Next, notice that the H̄is are edge-disjoint by construction. In particular, the Ĥis are disjoint by
Theorem 167. Moreover, each connected component of HHJ \ Ĥ is pair-wise edge-disjoint by
definition and also disjoint from any Ĥi by construction. Thus, in constructing H̄i by adding
connected components from HHJ \ Ĥ to Ĥi, our resulting H̄is must be edge-disjoint.

Lastly, we verify our cycle property: we must show that any cycle C in H̄ satisfies |H̄i :
E(C)∩H̄i ̸= ∅| = 1. We use a “shortcutting” argument—which we illustrate in Figure 6.12—and
Theorem 163. In particular, suppose that H̄ contains a cycle C where |H̄i : E(C) ∩ H̄i ̸= ∅| ≥ 2.
Then, we claim that H̄ also contains a cycle C ′ where |H̄i : E(C ′) ∩ H̄i ̸= ∅| ≥ 2 and
|Ci ∩ E(C)| ≤ 1 for all i. To see this, notice that, since our H̄is are edge-disjoint we may
“shortcut” C through the trees of H̄i. In particular, let H̄i be one of our hammocks where
|Ci∩E(C)| ≥ 2 and let x and y be the first and last vertices of H̄i visited by C (for some arbitrary
cyclic ordering of the edges in C). Then, if x and y are in the same hammock tree of H̄i then we
replace the portion of C between x and y with TBFS(x, y). If x and y are in different hammock
trees, we replace the portion of C between x and y with an arbitrary path in H̄i which uses at
most one edge of Ci. Doing these replacements does not affect |H̄i : E(C)∩ H̄i ̸= ∅| and reduces

171

x

y

(a) C in H̄i.

x

y

(b) Shortcutting C in H̄i.

Figure 6.12: An illustration of how in the proof of Theorem 173 we may assume that |C ∩ Ci| ≤ 1 by shortcutting
C in H̄i. We highlight C in yellow both before and after shortcutting.

the number of H̄i with |Ci ∩E(C)| ≥ 2 by at least 1; thus, after iterating a finite number of times
we produce our desired C ′.

The existence of C ′ allows us to arrive at a contradiction. In particular, since H̄ is connected
below we know that C ′ is connected below where |Ci ∩ C ′| ≤ 1; but C ′ is a cycle, contradicting
Theorem 163.

Henceforth we will assume that the root hammock of each tree of hammocks T in H̄ is
maxi:H̄i∈T h(Ci) where we break ties arbitrarily. As a reminder, h(Ci) is the height of l(Ci)
in TBFS.

Lemma 174. For any connected component T of HHJ \ Ĥ there is some i ∈ I(T) such that for
any valid assignment π of the connected components of HHJ \ Ĥ with H̄ as the resulting forest of
hammocks we have H̄j ⪯H̄ H̄i for all j ∈ I(T).

Proof. Let H̄ := Ĥ ∪HHJ where Ĥ = G[Ĥ]. Fix a connected component of H̄; notice that we
always choose the same root hammock for this component regardless of π; we let H̄k be said root
hammock. Fix a component T of HHJ \ Ĥ and let I := I(T) for the rest of this proof.

If H̄k is incident to T then the claim trivially holds since H̄j ⪯H H̄k for any assignment and
j ∈ I \ {k} and so we will assume that k ̸∈ I .

Fix an arbitrary valid assignment π of the connected components of HHJ\Ĥ , let H̄ be the resulting
forest of hammocks as per Theorem 173 and say that i is a local max with respect to π if there
is no j ∈ I \ {i} where H̄i is a descendant of H̄j in H̄. Notice that there is at least 1 local max
since, by definition of HHJ, there are at least two distinct hammocks among H̄ with a vertex in T .
To prove our claim it suffices to show that there is 1 local max under each assignment and this
local max is always the same.

We claim that the number of local maxes with respect to π is at most 1. To see this, assume for
the sake of contradiction that there are 2 local maxes H̄i and H̄j where i, j ∈ I . Since H̄i and H̄j

are both local maxes neither of which is the root hammock H̄k then by virtue of H̄ being a forest
of hammocks we know that any path from H̄i to Hj in G[H̄] must contain at least one vertex of
the parent of H̄i as per Theorem 154. On the other hand, since i, j ∈ I , we know there is a path
P ⊆ T between H̄i and H̄j . Letting H̄i′ be the parent of H̄i in H̄, it follows that V (H̄i′) ∩ P ̸= ∅
and so i′ ∈ I , contradicting the fact that H̄i is a local max.

172

Thus, for any assignment we know that the number of local maxes is 1. We proceed to show that
this is always the same local max. In particular, we show that if H̄i is the local max under some
assignment π, then H̄i is the local max under any other assignment π′. Suppose for the sake of
contradiction that i is the local max under π but j for j ̸= i is the local max under some other
π′. Let H̄ and H̄′ be the forest of hammocks resulting from π and π′ as per Theorem 173. Let
H̄i and H̄ ′

i be i’s hammock in H̄ and H̄′ and let H̄j and H̄ ′
j be j’s hammock in H̄ and H̄′. We

emphasize that H̄i and H̄ ′
j need not be edge-disjoint since they are hammocks in two different

forests of hammocks.

Now by virtue of the fact that i is a local max in H̄ and i ̸= k, we know by Theorem 154 that every
path between H̄k and H̄j contains an edge of H̄i; it follows that every path between Ĥk and Ĥj

contains an edge of H̄i. We additionally make the stronger claim that every path between Ĥk and
Ĥj contains an edge of Ĥi. To see this, suppose for the sake of contradiction that there was a path
P between Ĥk and Ĥj whose only edges in H̄i are contained in H̄i \ Ĥi ⊆ HHJ \ Ĥ . Let H̄i′ be
the parent of H̄i in H̄ and let P ′ be the subpath of P restricted to H̄i where P ′ is between vertices
u and v where u ∈ H̄i′ . Since u ∈ H̄i′ and P ′ ⊆ HHJ \ Ĥ it follows that i′ ∈ I , contradicting our
assumption that i is a local max under π. Thus, indeed, every path between Ĥk and Ĥj contains
an edge of Ĥi.

On the other hand, by virtue of the fact that j is a local max in H̄′, we know by Theorem 154 that
in G[H̄′] there is a path from H̄ ′

k to H̄ ′
j which does not have an edge in H̄ ′

i. Extending this path
through H̄ ′

k and H̄ ′
j on either end, we have that there is a path from Ĥk to Ĥj which does not have

an edge in H̄ ′
i and therefore no edge in Ĥi. However, this contradicts the above claim that every

path between Ĥk and Ĥj contains an edge of Ĥi.

Lemma 175. There is at least one valid assignment of the components of HHJ \ Ĥ .

Proof. Fix a connected component T of HHJ\Ĥ . Recall that T is a connected subtree of TBFS. Let
x be the highest vertex in TBFS in T . Since x is included in HHJ it must lie on a hammock-joining
path Pij between some Ĥi and Ĥj . We know that neither l(Ci) nor l(Cj) lie on Pij and so
neither l(Ci) nor l(Cj) are in T . Thus, assign T to i. Doing so for each such T results in a valid
assignment.

By Theorem 175 there is at least one valid assignment of the components of HHJ \ Ĥ . It follows
that by Theorem 174 there is some valid assignment π̄ which by Theorem 173 results in a forest
of hammocks H̄ where we have H̄j ⪯H̄ H̄i for all j ∈ I(T). We use this assignment in our
construction. In particular, henceforth we let H̄ be the forest of hammocks which results from π̄
and let H̄ := G[H̄] be its induced subgraph. We will let T̄i, T̄ ′

i , r̄i and r̄′i refer to the two hammock
trees and hammock roots of H̄i henceforth.

We proceed to argue that H̄ is a rooted forest of hammocks. To do so, we first prove two simple
technical lemmas. Recall from Theorem 153 that two hammocks share at most one vertex in a
rooted tree of hammocks.

Lemma 176. Let T be a rooted tree of hammocks and let H̄i be the parent of H̄j in T where vij
is the one vertex in V (H̄i) ∩ V (H̄j). Then there is a path P from r to vij where P ∩ H̄j = {vij}.

Proof. Let H̄k be the root hammock of T . Notice that it suffices to prove that there is a path from
r to H̄k which is vertex disjoint from H̄j since we can continue such a path through G[T] to vij
and such a path will only intersect H̄j at vij by Theorem 154.

173

Let P0 := TBFS(r, l(Ck)). We claim that V (H̄j)∩P0 = ∅; to see this notice that if H̄j had a vertex
in P0 then we would have l(Ck) ≺ l(Cj), contradicting our choice of H̄k.

Next, let r̄k and r̄′k be the roots of H̄k’s trees and let P := TBFS(l(Ck), r̄k) and P ′ := TBFS(l(Ck), r̄
′
k)

be the paths from the LCA of H̄k to its roots. We claim that either P ∩ V (H̄j) = ∅ or
P ′ ∩ V (H̄j) = ∅; this is sufficient to show our claim since P0 concatenated with the non-
intersecting path will give us our required path to H̄k.

Suppose for the sake of contradiction that P ∩ V (H̄j) ̸= ∅ and P ′ ∩ V (H̄j) ̸= ∅. Let Tj and T ′
j

be the hammock trees of H̄j with respective roots r̄j and r̄′j . We cannot have that both P and P ′

have a vertex in Tj since then it would follow that l(Ck) ∈ V (Tj) and so l(Ck) ≺ l(Cj) (since
u ≺ l(Cj) for every u ∈ Tj), again contradicting our choice of H̄j . Thus, it must be the case that
(WLOG) P has a vertex in Tj and P ′ has a vertex in T ′

j . It follows that l(Ck) = l(Cj). However,
we claim that it also follows that Ck = Cj . In particular, any edges ek = {uk, vk} ∈ Ck and
ej = {uj, vj} ∈ Cj then satisfy (WLOG) l(uk, uj) ⪯ r̄j and l(vk, vj) ⪯ r̄′j . Since l(Cj) = l(Ck),
we know that r̄j ̸= l(Cj) and r̄′j ̸= l(Cj) and so, indeed, ej and ek are LCA-equivalent. This is a
contradiction since we have assumed that j ̸= k in assuming that H̄j has a parent H̄i in T .

Lemma 177. Fix i. Suppose there is some x ∈ Ĥi in WLOG T̂i where x ̸= r̂i. Then Ĥi has a
hammock-fundamental cycle C containing x where x ̸= high(V (C) ∩ V (T̂i)).

Proof. By construction of Ĥi we know that every leaf of T̂i is incident to an edge of Ec(T̂i, T̂
′
i)

and that r̂i has at least two children. Thus, there is a path which contains x from r̂i to some
vertex u where {u, u′} ∈ Ec(T̂i, T̂

′
i) and another edge-disjoint path in T̂i from r̂i to some v where

{v, v′} ∈ Ec(T̂i, T̂
′
i). Connecting these paths in T̂ ′

i gives the stated fundamental cycle.

Concluding, we have that H̄ is indeed a rooted forest of hammocks containing all shortest cross
edge paths.

Lemma 178. H̄ is a rooted forest of hammocks where if H̄i is a parent of H̄j then H̄i∩ H̄j = {r̄j}.
Furthermore, G[H̄] contains all shortest cross edge paths.

Proof. Since by Theorem 173 H̄ is a forest of hammocks, it remains to show that vij = r̄j for any
i, j pair where H̄i is a parent of H̄j in H̄ and, as before, vij ∈ V (H̄i) ∩ V (H̄j) is the one vertex
in both H̄i and H̄j . Let Tj and T ′

j be the two hammock trees of H̄j with roots r̄j and r̄′j and let
T̂j ⊆ Tj and T̂ ′

j ⊆ T ′
j be the corresponding hammock trees of Ĥj with roots (i.e. highest vertices

in TBFS) r̂j and r̂′j . We assume WLOG that vij ∈ Tj and so it suffices to show that vij = r̄j .

Assume for the sake of contradiction that vij ̸= r̄j . We claim that it follows that vij ̸= r̂j: if
vij = ˆ̄jr then since vij ∈ H̄i, by how we construct H̄ we know that no component of HHJ \ Ĥ
incident to vij would be assigned to j (because it could have been assigned to i) and so if vij were
r̂j (which is to say it is the highest vertex in T̂j), then it would also be the highest vertex in Tj

as no component of HHJ \ Ĥ assigned to H̄j could have a vertex higher than vij , contradicting
our assumption that vij ̸= r̄j . On the other hand it must be the case that vij ∈ Ĥj: no component
of HHJ \ Ĥ which vij is incident to will be assigned to H̄i and so it cannot be the case that
vij ∈ H̄j \ Ĥj .

Applying Theorem 177, it follows that H̄j contains a fundamental cycle C with highest vertices
vj and v′j in Tj and T ′

j respectively where vj, v
′
j ̸= vij . Such a cycle gives a contradiction since

174

it follows that C along with TBFS(r, vj), TBFS(r, v
′
j) and the path from r to vij as guaranteed by

Theorem 176 gives a clawed cycle.

It remains to verify that G[H̄] indeed contains every shortest cross edge path. It suffices to show
that G[H̄] contains all LCA-free cross edge paths (recall that an LCA-free cross edge path is one
between two cross edges which contains neither of the cross edges’ LCAs) since every shortest
cross edge path is LCA-free. Let P be an arbitrary LCA-free cross edge path.

1. If P is between two edges e, e′ where e, e′ ∈ Ci for some i then we know that E(P) ⊆ Ĥi

by definition of Ĥi.

2. On the other hand, suppose P is between e ∈ Ci and e′ ∈ Cj for i ̸= j. Let P ′ be the edges
of P which are not in Ĥi or Ĥj . P ′ must be a connected subpath by definition of Ĥi and
Ĥj and so P ′ is a hammock-joining path between Ĥi and Ĥj; thus every edge of P will be
included in H .

It follows that G[H̄] contains all shortest cross edge paths.

6.8.3 Extending H̄ to H̃ by LCA Paths
The second to last step in the construction of our hammock decomposition is to extend H̄i along
the path between r̄′i and LCA(r̄i, r̄

′
i) to the child of LCA(r̄i, r̄

′
i) in TBFS which contains r̄′i in its

TBFS subtree. This will allow us to argue that our final hammock decomposition is LCA-respecting.

Hammock Ancestry↔ LCA Ancestry in H̄

The key to extending along LCA paths will be to show that the LCA structure of our LCA
equivalence classes reflects the ancestry structure of the hammocks in our forest of hammocks.
As with the proofs of the previous section, we will leverage the connected belowness of certain
edges, as summarized in the following lemma.

Lemma 179. Suppose V (H̄i) ∩ V (H̄j) = {vij} where Cj ≺ Ci and let e = {l(Cj), v} be the
child edge of l(Cj) in TBFS satisfying vij ∈ TBFS(v). Then e is connected below.

Proof. Our aim is to construct a path from r to TBFS(v) whose only vertex in TBFS(l(Cj)) is its
endpoint in TBFS(v). We assume WLOG that vij ∈ T̄ ′

i .

If e ∈ H then we know that e is connected below since by Theorem 168 and Theorem 170 H is
connected below. Thus, we may assume that e ̸∈ H . It follows that l(Cj) ̸∈ H̄i: if l(Cj) were in
H̄i then it would have to be in T̄ ′

i since vij ∈ T̄ ′
i and no vertex in T̄i is related to a vertex in T̄ ′

i

but vij and l(Cj) are related; however if l(Cj) were in T̄ ′
i then since vij is also in T̄ ′

i and T̄ ′
i is a

connected subtree of TBFS, it would follow that e ∈ H̄i and therefore e ∈ H and connected below.

Given that l(Cj) ̸∈ H̄i, we can construct our path P from r to TBFS(v) as follows. First, take
the path P1 := TBFS(r, r̄i) from r to r̄i. Continue this through an arbitrary path P2 ⊆ H̄i to any
vertex in TBFS(v), using a single edge of Ec; P2 is well-defined since vij ∈ TBFS(v) ∩ T̄ ′

i . Let
P = P1 ⊕ P2 be the resulting path. Since vij ∈ TBFS(v) this path is indeed from r to TBFS(v).

It remains to verify that P ∩ TBFS(l(Cj)) ⊆ TBFS(v) and in particular we show that P ∩
TBFS(l(Cj)) = {vij}. It cannot be the case that P1 intersects TBFS(l(Cj)) since it would then follow
that l(Cj) is an ancestor of r̄j and since l(Cj) is an ancestor of vij and also therefore an ancestor
of r̄′i so l(Ci) ⪯ l(Cj), contradicting our assumption that Cj ≺ Ci. Similarly, we know that T̄i

175

does not contain any vertices of TBFS(l(Cj)) since it would then follow that l(Ci) ⪯ l(Cj). Thus,
edges of P2 in T̄i have no vertices from TBFS(l(Cj)); similarly, edges of P2 in T̄ ′

i cannot contain
vertices of TBFS(l(Cj)) \ TBFS(v) since T̄ ′

i is a connected subtree of TBFS(v) by our assumption
that l(Cj) ̸∈ H̄i. Concluding, it follows that P ∩ TBFS(l(Cj)) ⊆ TBFS(v) as desired.

In arguing that the LCA structure reflects the hammock ancestry structure, we will distinguish
between hammocks based on which of their parent’s trees they connect to.

Definition 180 (Left, right child). Let H̄j be a child of H̄i in H̄. Then H̄j is a left child of H̄i if
r̄j ∈ T̄i and a right child of H̄i if r̄j ∈ T̄ ′

i .

The following will allow us to argue that the paths we construct for left children in our forest of
hammocks interact with their parents in an appropriate way.

Lemma 181. If H̄j is a left child of H̄i and H̄i is not a root hammock then l(Cj) ∈ TBFS(r̄i, r̄j) ⊆
T̄i.

Proof. First, notice that since r̄j ∈ T̄i we know that both l(Cj) and l(Ci) are ancestors of r̄j and so
l(Cj) and l(Ci) are related. Thus, if l(Cj) ̸∈ TBFS(r̄i, r̄j) then it must be the case that r̄i ≺ l(Cj);
suppose for the sake of contradiction that indeed r̄i ≺ l(Cj).

We first claim that there is a path P1 with edges contained in T̄i from r̄j to a vertex v which is
in a cycle C in Ĥi. Further, if u = high(V (T̄i) ∩ V (C)) and u′ = high(V (T̄ ′

i) ∩ V (C)) then we
will have v ̸= u, u′. Let us argue why such a P1 exists. It suffices to argue that there is some
v ∈ T̂i where v ̸= r̂i and a path between r̄j and T̂i ending in v since by Theorem 177 the existence
of such an v would give us our required cycle. By noting that r̂i = r̄i we can further simplify
what we must prove. In particular, let H̄i′ be the parent of H̄i in H̄ which we know exists by our
assumption that H̄i is not a root hammock. Additionally, notice that we always know that r̄i = r̂i
since if r̄i were strictly higher than r̂i it would be because it lies in a connected component of
HHJ \ Ĥ incident to both r̄i and r̂i. Such a component is incident to H̄i′ by definition of a forest
of hammocks. Even stronger, such a component must be incident to Ĥi′ since every component
of HHJ \ Ĥ incident to H̄i′ is also incident to Ĥi′ which means that any such component would
always be assigned to i′.

Thus, it suffices to argue that that there is some v ∈ T̂i where v ̸= r̄i and a path between r̄j and T̂i

ending in v. Note that r̄j was added to T̄i either because a component of HHJ \ Ĥ was assigned to
i or because it was already T̂i. In particular, either r̄j ∈ T̂i or r̄j ∈ T̄i \ T̂i.

1. Suppose r̄j ∈ T̂i. In this case we can let our path from r̄j to T̂i be the trivial path consisting
only of r̄j; it remains only to show that r̄j ̸= r̄i. However, it cannot be the case that r̄j = r̄i
since otherwise we would have that Hj is a child of H̄i′ not Hi in H̄, a contradiction.

2. Suppose r̄j ∈ T̄i \ T̂i. It follows that r̄j is incident to a component F ⊆ TBFS of HHJ \ Ĥ
which is assigned to i with exactly one vertex v in V (T̂i). In this case we can let our path
from r̄j to T̂i be the path in F from r̄j to v; it remains only to argue that v ̸= r̄i. However, if
v were equal to r̄i then we would have that F shares a vertex with H̄i′ and, even stronger, F
shares a vertex with Ĥi′ . It follows that F would be assigned to H̄i′ , not H̄i, a contradiction.

Next, we claim that there is a path P2 from r to r̄j such that P2 ∩ V (H̄i) = {r̄j}. Let P ′
2 an

arbitrary path contained in H̄j from r̄′j to r̄j . Since H̄i and H̄j’s vertex sets only intersect on r̄j ,
it follows that P ′

2 ∩ V (H̄i) = {r̄j}. Next we form P2 by concatenating P ′
2 with TBFS(l(Cj), r̄

′
j).

We claim that TBFS(l(Cj), r̄
′
j) ∩ V (H̄i) = ∅. Suppose for the sake of contradiction that there is

176

some x ∈ TBFS(l(Cj), r̄
′
j) ∩ V (H̄i). If x ∈ T̄i then r̄i is an ancestor of both r̄j and r̄′j and so

l(Cj) ≺ l(Ci), contradicting our assumption that r̄i ≺ l(Cj). On the other hand, if x ∈ T̄ ′
i then

we have that r̄′i is an ancestor of r̄′j; since r̄j ∈ T̄i, it follows that Ci = Cj , contradicting our
assumption that Ci and Cj are distinct LCA-equivalence classes. Thus, P2 is indeed from r to r̄j
and satisfies P2 ∩ V (H̄i) = {r̄j}.
We conclude by observing that the above gives us a clawed cycle with C as the cycle with paths
TBFS(r, u), TBFS(r, u

′) and P1 ⊕ P2, a contradiction.

We now demonstrate that the tree structure of H̄ reflects the structure of our LCA-equivalence
classes. As the previous lemma handled the left child case, most of this proof will be focused on
the right child case.

Lemma 182. H̄j ⪯H̄ H̄i implies Cj ⪯ Ci for every i, j.

Proof. It suffices to show that if H̄j is a child of H̄i in H̄ then Cj ⪯ Ci; thus, let H̄i and H̄j be
an arbitrary parent-child pair in H̄. Since H̄ is a rooted forest of hammocks by Theorem 178 we
know that V (H̄i) ∩ V (H̄j) = r̄j and since l(Ci) and l(Cj) are ancestors of every vertex in H̄i

and H̄j respectively, we know that l(Ci) and l(Cj) are both ancestors of r̄j and therefore either
Ci ≺ Cj or Cj ⪯ Ci.

Suppose for the sake of contradiction that Ci ≺ Cj and suppose minimality of this counter-
example; in particular, suppose that there are no ancestors H̄i′ and H̄j′ of H̄j in H̄ where H̄i′ is
the parent of H̄j′ but l(Ci′) ≺ l(Cj′). It follows that for every pair of parent-child pairs H̄i′ and
H̄j′ which are ancestors of H̄j in H̄ we know that Cj′ ⪯ Ci′ . Moreover, letting H̄k be the root
hammock of the tree of hammocks containing H̄i and H̄j in H̄, it follows that Ci′ ⪯ Ck for any
ancestor H̄i′ of H̄j . Additionally, since we chose H̄k to maximize h(Ck) and Cj ≺ Ci, there must
be some pair of ancestors H̄j′ and H̄i′ of H̄j where Cj′ ≺ Ci′ (since otherwise we would have
Ck ≺ Cj).

It follows that there is a sequence of hammocks H̄0, H̄1, H̄2, H̄3, . . . , H̄α, H̄α+1 where l(Cl) =
l(Cl′) for l, l′ ∈ [α] and H̄l+1 is the child of H̄l in H̄ for 0 ≤ l ≤ α where α ≥ 1 but l(C1) =
. . . = l(Cα) ≺ l(C0), l(Cα+1); here, we have slightly abused notation and relabeled H̄i′ , H̄j′ , H̄i

and H̄j to H̄0, H̄1, H̄α and H̄α+1 respectively. We let u := l(Cl) for l ∈ [α] and let vl be the child
of u in TBFS whose subtree contains rl Moreover, we claim that by Theorem 181 we know that
for each l ∈ [α] we must have that H̄l+1 is a right child of H̄l: to see why, notice that if H̄l+1 is
a left child of H̄l then Theorem 181 tells us that l(Cl+1) ∈ Tl and so l(Cl+1) ⪯ rl ≺ u; if l < α
this contradicts our assumption that l(Cl+1) = u and if l = α this contradicts our assumption that
l(Cα) = u ≺ l(Cα+1).

We will use the existence of such a sequence of right children to contradict Theorem 162.

First, we claim that v1 and vα+1 are connected in TBFS(u) \ {u}. To see why, first notice that
the graph induced by the union of H̄1, H̄2, . . . , H̄α is connected by virtue of each hammock in
this sequence being the parent of the next hammock in this sequence. v1 and vα+1 are therefore
connected in TBFS(u) \ {u} since we also know that r1 and rα+1 are both contained in this graph
and descendants of v1 and vα+1 respectively.

Notice that H̄0 and H̄1 intersect at r1 ⪯ v1 and H̄α and H̄α+1 intersect at rα+1 ⪯ vα+1. Thus, since
H̄0 ≺ H̄1 and H̄α+1 ≺ H̄α, it follows by Theorem 179 that {u, v1} and {u, vα+1} are connected
below.

177

u

v1v2 =

r1r′ 1

r2

(a) γ = 1: l(C1) ≺ u

r′ 1r1

r2
r′ 2

u
v2v1v3 =

r3

(b) γ = 2: C1 = C2

r2

r3

r′ 3

r4

v1v4 =
u

v2

v3

r′ 1r1

r′ 2

(c) γ ≥ 3: a clawed cycle

Figure 6.13: Each of the three contradictions we arrive at in the proof of Theorem 182 based on the value of γ. In (c)
we highlight the cycle of our clawed cycle in solid yellow and each of its paths in dotted yellow.

Thus, if we can show that v1 ̸= vα+1 then we will have contradicted Theorem 162. Suppose for
the sake of contradiction that v1 = vα+1. Then, there must be some contiguous subsequence
(vβ, vβ+1, . . . vβ+γ) of (v1, . . . , vα+1) for γ ≥ 1 where vβ = vβ+γ but vβ+x ̸= vβ+y for all x, y < γ
where y ̸= x. To simplify notation we assume that β = 1. We will show that all choices of γ
contradict the assumption that v1 = vγ+1 and so it must be the case that v1 ̸= vα+1. We illustrate
each of the following contradictions in Figures 6.13a, 6.13b and 6.13c.

1. Suppose γ = 1 (i.e. there is a single hammock H̄1 we are considering with an LCA of
u). Then we would have that r1 and r′1 are both descendants of v1 and vγ+1, meaning
l(C1) ⪯ v1 = vγ+1 ≺ u, a contradiction to the fact that l(C1) = u.

2. Suppose γ = 2. Since H̄2 is a right child of H̄1, we know that r2 ⪯ v2 and r′1 ⪯ v2.
Moreover, we know that r3 ⪯ v3 and r3 ∈ T ′

2 and so r′2 ⪯ v3 = v1. Summarizing, we have
r1, r

′
2 ⪯ v1 and r′1, r2 ⪯ v2; however since v1, v2 ̸= u, it follows that C1 = C2, contradicting

our assumption that they are distinct LCA-equivalence classes.

3. Suppose γ ≥ 3. Let P be an arbitrary path connecting r1 and rγ+1 in the graph induced by
H̄1, H̄2, . . . , H̄γ . By our assumption that H̄l+1 is a right child of H̄l for l ∈ [γ], we know
that such a path uses at least one edge in Cl for l ∈ [γ]. Moreover, we may assume WLOG
that P uses exactly one edge from Cl for l ∈ [γ]: if xl and yl are the first and last vertices
that P visits in Cl then by definition of a hammock there is a path from xl to yl which uses
exactly one edge of Cl; we assume that P ’s subpath restricted to Cl is this path. Next, since
we have assumed that v1 and vγ+1 are equal, we know that both r1 and rγ+1 lie in TBFS(v1).
By our choice of γ, we have that the graph induced by TBFS(r1, rγ+1) ∪ P contains a cycle
C with exactly one edge from at least three Cl. However, we can easily form a clawed cycle
from such a cycle. In particular, let P1, P2 and P3 be paths to C from u in TBFS via v1, v2
and v3 respectively. Then C with these paths is a clawed cycle, a contradiction.

Extending Along LCA Paths

In this section we show that the above mentioned paths are appropriately disjoint from one another
as well as from the thus far computed hammocks. We will then use this disjointness to extend
H̄ to H̃. We formally define these paths—which we illustrate in illustrate in Figure 6.14a—as
follows.

Definition 183 (LCA Paths Pi, P ′
i , Pi P). For each i we let Pi := internal(TBFS(r̄i, l(Ci))) and

178

r

(a) LCA paths.

r

(b) Extending H̄ to H̃ via LCA paths.

Figure 6.14: An illustration of the paths of our hammock decomposition. Each such path dotted and given in a color
corresponding to its constituent hammock. On the left we give the paths and on the right we give the result of adding
these paths to H̄, resulting in H̃. Notice that each root hammock has two paths in P .

P ′
i := internal(TBFS(r̄

′
i, l(Ci))) be the LCA paths from r̄i and r̄′i respectively to l(Ci), excluding

the endpoints. We let Pi be the set which always contains P ′
i and which additionally contains Pi if

H̄i is a root hammock in H̄. Lastly, we let P :=
⋃

iPi be the collection of all relevant LCA paths.

Given the above paths we now describe how we construct H̃ from H̄ be extending our hammocks
along these paths. Formally, we let H̃i be the graph induced in G by V (H̄i) along with all vertices
in paths in Pi. We also let the root hammocks of H̃ be the same as the root hammocks of H̄. We
illustrate this in Figure 6.14b.

To show that this yields an LCA-respecting tree of hammocks we first observe that all of the above
paths are appropriately disjoint.

Lemma 184. For each P ∈ P and i we have V (P)∩V (H̄i) = ∅. Similarly, for distinct P, P ′ ∈ P
we have V (P) ∩ V (P ′) = ∅.

Proof. First, let us show V (P) ∩ V (H̄i) = ∅. Let P ∈ Pj; we assume WLOG that P = P ′
j .

Suppose that there is some vertex v ∈ V (P ′
j) which is contained in V (H̄i) and let v be the lowest

such vertex in P ′
j . It follows that the path between r̄′j and v must be a hammock joining path

between H̄i and H̄j .

Continuing, let e be the parent edge of r̄′j in TBFS; e is in the above hammock-joining path and so
is contained in some hammock H̄l which intersects H̄j on r̄′j . Since H̄l and H̄j intersect on r̄′j , H̄l

must be either the parent, sibling or child of H̄l in H̄ as per Theorem 154. However, H̄l cannot be
the parent or sibling of H̄j since it intersects H̄j on T̄ ′

j; thus H̄l is the child of H̄j . We claim that
e ∈ Ĥl; indeed this is immediate from the fact that e is incident to r̄′j and since H̄j is the parent of
H̄l, e would have been included in H̄j , not H̄l, if it weren’t in Ĥl. However, since v is the parent
of r̄′j and r̄′j ∈ H̄l, we know that r̄′j ̸= r̂l, r̂

′
l.

Thus, applying Theorem 177 we know that there is a hammock-fundamental cycle C ⊆ Ĥl

containing r̄′j where r̄′j is not the highest vertex in either V (C) ∩ T̄l or V (C) ∩ T̄ ′
l ; let these

highest vertices be vl and v′l and notice that to arrive at a contradiction it suffices to argue that
there is a path P from r to r̄′j which is internally vertex disjoint from V (H̄l) since C along with
paths TBFS(r, vl), TBFS(r, v

′
l) and P would then form a clawed cycle. Let P be the concatenation

of TBFS(r, r̄j) with an arbitrary path in H̄j connecting r̄j and r̄′j and e. r̄′j is the only vertex

179

which the latter shares with H̄l so it suffices to show that TBFS(r, r̄j) shares no vertices with H̄l.
Suppose for the sake of contradiction that x ∈ TBFS(r, r̄j) ∩ V (H̄l). Then, if x and r̄′j were in the
same hammock trees of H̄l then we would have l(Cj) ≺ l(Cl), contradicting l(Cl) ⪯ l(Cj) by
Theorem 182 and the fact that H̄l is a child of H̄j . On the other hand, if x and r̄′j were in different
hammock trees of H̄l then we would have that Cj = Cl, contradicting the fact that Cj and Cl are
distinct. Thus, we conclude that V (P) ∩ V (H̄i) = ∅.
Next, let us show V (P) ∩ V (P ′) = ∅ for distinct P, P ′ ∈ P . We may assume that it is not the
case that P, P ′ ∈ Pi for some i since then P and P ′ are vertex-disjoint by construction. Thus,
WLOG we assume P = P ′

i and P ′ = P ′
j for i ̸= j. Suppose for the sake of contradiction that

P ′
i and P ′

j share a vertex x. By definition of P ′
i and P ′

j we know that x ̸= r̄′i, r̄
′
j . Moreover,

since in the first part of this proof we showed that V (Pi), V (Pj) ∩ V (H̄) = ∅, it follows that
TBFS(r̂

′
i, r̄

′
i)⊕ TBFS(r̄

′
i, x)⊕ TBFS(x, r̄

′
j)⊕ TBFS(r̄

′
j, r̂

′
j) is a hammock-joining path (Theorem 169)

and so would have been included in H̄ . However, then x would have been included in H̄ (by
definition of H̄). But, this contradicts the fact that V (P ′

i), V (P ′
j) ∩ V (H̄) = ∅.

We conclude that our forest of hammocks is indeed LCA-respecting (Theorem 155).

Lemma 185. H̃ is an LCA-respecting rooted forest of hammocks where for each root hammock
H̃k ∈ H̃ we have LCA(r̃k, r̃′k) is the parent of r̃k and r̃′k in TBFS.

Proof. It is easy to see by the disjointness of the paths in P that adding all vertices in Pi (along
with all induced edges) to H̄i indeed results in a hammock. To see that the result is a rooted forest
of hammocks we need only verify that any cycle C continues to only be incident to at most 1
hammock. However, notice that the disjointness properties of our paths guarantee that no cycle
can use an edge incident to a vertex in a path in P ; thus, since H̄ was a forest by Theorem 178, so
too is H̃.

Lastly, to see that the resulting rooted forest of hammocks is LCA-respecting notice that H̃j is
a child of H̃i in H̃ iff H̄i is a parent of H̄j in H̄ and so the first condition of LCA-respecting—
V (H̃i) ∩ V (H̃j) = {r̃j} whenever H̃i is a parent of H̃j in H̃—still holds by Theorem 178. The
second condition—the parent of r̃′j in TBFS is LCA(r̃j, r̃

′
j) and LCA(r̃j, r̃

′
j) ∈ H̃i ∪ {LCA(ri, r

′
i)}

where H̃i is the parent of H̃j—holds by definition of the paths in P and Theorem 182. The
condition on each hammock root similarly follows.

6.8.4 Extending H̃ toH by Adding Dangling Subtrees
The last step of our hammock decomposition involves adding subtrees of TBFS which consist of
unassigned nodes to hammocks. We do this to ensure that our hammock decompositions indeed
partitions all edges of the input series-parallel graph.

Formally, we constructH from H̃ as follows. Let Ep be the collection of the parent edges in TBFS

of r̃′i for every hammock Hi (where as usual we use r̃i and r̃′i to denote the hammock roots of
H̃i). We let T0 be the connected component of TBFS \ (Ep ∪ E(G[H̃])) which contains r. For
each connected component (i.e. dangling tree) T ̸= T0 of TBFS \ (Ep ∪ E(G[H̃])) we add T to an
arbitrary hammock which contains high(T). As a reminder, high(T) gives the vertex in T which
is highest in TBFS. Lastly we designate each hammock Hk inH such that rk ∈ V (T0) and H̃k was
designated a root hammock in H̃ as a root ofH. We illustrate the result of adding the dangling
trees in Figure 6.15a and the final hammock decomposition in Figure 6.15b.

180

r

(a) Adding dangling trees.

r

(b) Final hammock decomposition.

Figure 6.15: The result of adding the dangling trees to each of our hammocks and the final hammock decomposition.
On the right we give T0 in dark red.

We proceed to show that this indeed results in a hammock decomposition (Theorem 156). We
begin by observing thatH is an appropriate forest of hammocks.

Lemma 186. H is an LCA-respecting rooted forest of hammocks with base tree T0.

Proof. We first observe that each Hi is indeed a hammock: since we only add a dangling tree T
to H̃i if high(T) is contained in H̃i and so the roots of Hi are unrelated. Moreover all the Hi must
be edge disjoint by the edge disjointness of the H̃ and how we construct our Hi.

Next, we will argue the cycle property of forests of hammocks; namely that any cycle’s edges are
fully contained within a single hammock, thereby showing thatH is a forest of hammocks.

First, we observe that if {u, v} is an edge in a dangling tree T where v ≺ u then there does not
exist a cross edge ec = {uc, vc} ∈ Ec such that uc ∈ TBFS(v) but vc ̸∈ TBFS(u). To see why this
is the case suppose that such an ec existed and belonged to hammock H̃i ∈ H̃ and recall that
by Theorem 185 H̃ is an LCA-respecting rooted forest of hammocks. By definition of ec we
know that u ≺ LCA(r̃i, r̃

′
i) which is to say that LCA(r̃i, r̃

′
i) lies strictly higher in TBFS than u.

But, since H̃ is LCA-respecting and LCA(r̃k, r̃
′
k) is the parent of r̃′k for any root hammock H̃k by

Theorem 185, it follows that TBFS(uc,LCA(r̃i, r̃
′
i)) \ LCA(r̃i, r̃

′
i) is contained in H̃ and so {u, v}

is contained in H̃ , contradicting our assumption that it is in a dangling tree.

It follows that if a cycle uses two edges {w, u} and {u, v} and {u, v} lies in a dangling tree then
it must be the case that both edges are child edges of u, i.e. w, v ≺ u.

On the other hand, notice that if we have a cycle which uses {w, u} and {u, v} then there must be
some cross edge between TBFS(w) and TBFS(u). Such a cross edge will belong to some hammock
H̃i for which either w or v is r̃′i and so either {w, u} or {u, v} will be in Ep, contradicting the fact
that our cycle cannot use any edges of Ep. Thus, no cycle uses an edge of a dangling tree and so
H is a forest of hammocks.

Next, observe that by construction every connected component of G[H] will contain exactly one
hammock H̃k of H̃ which was designated a root in H̃ where r̃k = rk ∈ T0 and soH is a rooted
forest of hammocks (i.e. it assigns exactly one root per connected component of G[H]).
It remains to argue that H is LCA-respecting with base tree T0. In particular, we must show if
Hj is the child of Hi then V (Hi)∩ V (Hj) = {rj} and the parent of r′j in TBFS is LCA(rj, r

′
j) and

LCA(rj, r
′
j) ∈ V (Hi) or LCA(rj, r

′
j) = LCA(ri, r

′
i). Notice that if H̃j is the child of H̃i in H̃

181

then we know that Hj will be the child of Hi inH and so this is immediate from Theorem 185.
On the other hand, if Hj is the child of Hi but H̃j was not the child of H̃i then it must be the case
that there is some dangling tree T which connects r̃j to H̃i which was added to H̃i. It follows
that H̃j was a root hammock in H̃ and so by Theorem 185 we know that V (Hi) ∩ V (Hj) = {rj}
and the parent of r′j = r̃′j in TBFS is LCA(rj, r

′
j) and LCA(rj, r

′
j) ∈ V (Hi). Additionally we must

show that for each root hammock Hk we have rk ∈ V (T0) and the parent of rk and r′k in TBFS is
LCA(rk, r

′
k) and LCA(rk, r

′
k) ∈ V (T0). The former is immediate by how we choose our roots

and the latter follows from Theorem 185.

Concluding, we have our hammock decomposition.

Lemma 187. (T0,H, Ep) is a hammock decomposition which can be computed in deterministic
poly-time.

Proof. First, notice that (T0,H, Ep) indeed partitions all edges by construction. Moreover, by
Theorem 186 we know thatH is an LCA-respecting rooted forest of hammocks with base tree T0.
G[H] contains all shortest cross edge paths since G[H̄] contains all shortest cross edge paths by
Theorem 178 and G[H̄] is a subgraph of G[H].
Lastly, we note that the above hammock decomposition is easily computable in deterministic
poly-time. In particular Ĥ is trivial to compute, H̄ can be computed by applying one valid
assignment, seeing which is the hammock guaranteed to exist by Theorem 174 in I(T) for each T
in HHJ \ Ĥ and then assigning T to this hammock. H̃ is trivially computable from H̄ and H is
trivially computable from H̃.

The above lemma immediately gives Theorem 157.

6.9 Scattering Chops via Hammock Decompositions
In this section, we prove Theorem 134. In particular, we show that every series-parallel graph is
O(1)-scatter-choppable (Theorem 142) which by Theorem 143 demonstrates that every series-
parallel graph is O(1)-scatterable (in polynomial time). Combining this fact with Theorem 133
will give our SPR solution. We will demonstrate that every series-parallel graph is O(1)-scatter-
choppable by using our hammock decompositions and, in particular, Theorem 157.

The concrete lemma we will prove in this section is as follows. Clearly, the lemma below
combined with Theorem 143 proves Theorem 134.

Lemma 188. Consider a graph G with a hammock decomposition {Hj}. Then, there exists a
c-fuzzy, O(1)-scattering, ∆-chop of G with respect ot an arbitrary root r ∈ V .

Our c-fuzzy, O(1)-scattering, ∆-chop construction is as follows; see also Figure 6.16.

1. Compute the ∆-chops Ai = {v ∈ V : (i − 1)∆ ≤ d(r, v) < i∆}, and initialize A′
i = Ai

for all i

2. For each hammock Hj , independently in parallel:

(a) For each Ai with V (Hj) ∩ Ai ̸= ∅, independently in parallel:

i. If rj ∈ Ai and d(r, rj) ≥ i∆−c∆, then move all of {v ∈ V (H ′
j)∩Ai : i∆−c∆ ≤

d(r, v) < i∆} from A′
i to A′

i+1

182

(i− 1)∆

i∆ − c∆

i∆

i∆ + c∆

(i + 1)∆

(i + 1)∆ + c∆

r′j

rj

rk

r′k

Figure 6.16: Construction of a c-fuzzy, O(1)-scattering, ∆-chop. There are two hammocks in the picture, Hj and
Hk.

ii. If d(r, rj) < i∆−c∆, then move all {v ∈ V (H ′
j)∩Ai : d(r, v) ≤ (i−1)∆+c∆}

from A′
i to A′

i−1

In other words, A = {Ai} are the original ∆-chops and A′ = {A′
i} are the sets after the

modifications above. All steps can be performed independently in parallel because c = 1/3
means that there is no interference between different Ai.

3. For the base tree T0, treat it as a subgraph Hj with root rj = r (the root of TBFS), and apply
step 2(a) to it.

We begin with the following auxiliary lemmas:

Lemma 189. Let G be a series-parallel graph, and consider a (unique) shortest u–v path in G
that is contained in hammock Hi. Then, P contains at most 2 cross edges in Hi.

Proof. Assume for contradiction that P contains at least three cross edges. Then, there exist
u1, u2, u3 on one tree of the hammock and v1, v2, v3 on the other tree such that the path P contains
as a subpath the following edges/paths in order (see Figure 6.17): the edge (u, v), the v1–v2 path
in TBFS, the edge (v2, u2), the u2–u3 path in TBFS, and the edge (u3, v3). We first claim that it is
impossible for the following two conditions to hold simultaneously, since they would imply that
G contains a K4 minor:

1. LCA(v1, v2) is a descendant of LCA(v1, v2, v3) (the least common ancestor of v1, v2, v3),
and

2. LCA(u2, u3) is a descendant of LCA(u1, u2, u3).

Suppose for contradiction that both of these conditions hold. For ease of notation, define u23 =
LCA(u2, u3), u123 = LCA(u1, u2, u3), v12 = LCA(v1, v2), v123 = LCA(v1, v2, v3). Then, we can
find a clawed cycle as follows (see Figure 6.17). Take the cycle composed of edge (u1, v1), the
v1–v2 path in TBFS, the edge (v2, u2), and the u2–u1 path in TBFS, which contains u23 and u123 as
distinct vertices. Take the claw rooted at v123 with following branches: the v123–u123 path in TBFS,

183

u1u2u3 v1 v2 v3

u123

u23

v123

v12

u1u2u3 v1 v2 v3

u123

u23

v123

v12

Figure 6.17: Setting for the proof of Theorem 189. The path P is the red, dotted path in the left. The green cycle and
the blue claw on the right together form a clawed cycle.

the v123–v12 path in TBFS, and the path composed of the v123–v3 path in TBFS, the edge (v3, u3),
and the u3–u23 path in TBFS. This clawed cycle identifies a K4, contradicting the assumption that
G is series-parallel.

Therefore, one of the two conditions is false. Suppose first that (1) is false, which means that
v12 = v123. Replace the segment of P from v12 to v3 with the v123–v3 path in TBFS, which is a
shortest v123–v3 path, so the length of the path cannot increase after the replacement. It follows
that the replacement path is also a shortest u–v path, contradicting the assumption that the shortest
path is unique.

If (2) is false, then we can similarly replace the segment of P from u23 to u3 with the u123–u3

path in TBFS,

Lemma 190. For each monotone path P ∈ TBFS of length at most c∆, the path has O(1) edges
cut by A′.

Proof. First, suppose that the path P is disjoint from the base tree T0. We handle the base tree T0

at the end of the proof.

Suppose that for some i, the path P has an edge (u, v) cut by A′ that satisfies d(r, u), d(r, v) ∈
[i∆, i∆+ c∆]. The only way for this to happen is if u and v belong to two different hammocks
Hj, Hℓ, and step (a)ii. was applied to one hammock (say Hj) but not the other. In that case, we
have rj /∈ Aj , so d(r, rj) < i∆. Let v′ be the first vertex on P after exiting Hj . Then, we must
have d(r, v′) < d(r, rj) regardless of whether P exits Hj via rj or via LCA(rj, r

′
j). It follows that

d(r, v′) < d(r, rj) < i∆, and since P has length at most c∆ for c = 1/3, it will never again visit
a vertex whose distance from r is in [i′∆, i′∆+ c∆] for some integer i′.

Suppose next that P has an edge (u, v) cut by A′ that satisfies d(r, u), d(r, v) ∈ [i∆− c∆, i∆).
The only way for this to happen is if u and v belong to two different hammocks Hj, Hℓ, and
step (a)i. was applied to one hammock (say Hj) but not the other. In that case, we have d(r, rℓ) <
i∆ − c∆. By the same argument from before, P must exit Hℓ at some vertex v′ satisfying
d(r, v′) < d(r, rℓ) < i∆− c∆, and it will never again visit a vertex whose distance from r is in
[i′∆− c∆, i′∆) for some integer i′.

184

Finally, it is easy to see by steps (a)i. and (a)ii. that P cannot have any edge (u, v) cut by A′ that
satisfy d(r, u), d(r, v) ∈ (i∆+ c∆, (i+ 1)∆− c∆).

It follows that P cuts at most one edge in each of the ranges
⋃

i∈Z[i∆, i∆ + c∆],
⋃

i∈Z[i∆ −
c∆, i∆), and

⋃
i∈Z(i∆+ c∆, (i+ 1)∆− c∆), and at most O(1) edges in between the ranges.

Finally, we consider the case when P intersects the base tree T0. Let P0 = P ∩ T0 be the subpath
of P inside T0, and let P ′ = P − P0 be the remainder of P0, the latter of which has O(1) edges
cut by A′ from before. Since T0 is a tree, P0 cuts at most one edge in T0 by construction, so in
total, P = P0 ∪ P ′ has O(1) edges cut by A′.

Lemma 191. For each shortest cross edge path P of length less than c∆, the path has at most
O(1) edges cut by A′.

Proof. By property (1) of Theorem 156, the shortest cross edge path P is contained in G[H],
where H is the set of hammocks. Let Hm be the hammock of lowest depth (in T) that shares
an edge with Pm. Remove the subpath Pm ∩Hm from Pm, which splits it further into two paths
P1, P2, each of which is monotone with respect to the tree structure T in the following sense: the
set of hammocks that share edges with P1 form a monotone path in the tree T of hammocks, and
the same for P2. By Theorem 189, Pm ∩Hm is cut at most twice by A′. It suffices to argue that
P1 is cut O(1) times by A′; the argument for P2 will be symmetric.

Let (x, y) be the first edge on P1 that is cut by A′. (If none exist, then we are done.) Suppose that
x ∈ A′

i+1 and y ∈ A′
i, and let Hj be a hammock containing y. Our goal is to show that all edges

on P1 that are cut by A′ must belong to Hj . Assuming this, we are done by Theorem 189.

We have two cases:

1. x = rℓ is an endpoint for a child hammock Hℓ of Hj . In this case, regardless of whether
step (a)i. is applied, we must have i∆ − c∆ ≤ d(r, rℓ) ≤ i∆. We first claim that P1

cannot cross between A′
i and A′

i−1. Suppose otherwise that it contains an edge (u, v) with
u ∈ A′

i and v ∈ A′
i−1. Then, we must have d(r, v) ≤ (i − 1)∆ + c∆ (regardless if step

(a)ii. was applied). So the path P1 has length at least d(r, rℓ)− d(r, v) ≥ ∆− 2c∆ = c∆,
contradicting the assumption that P1 has length less than c∆.

We now claim that P1 cannot cross between A′
i and A′

i+1 in hammock Hj or beyond. In this
case, we must have d(r, rj) < i∆− c∆, since otherwise step (a)i. would add all vertices in
V (Hj) ∩ Ai to A′

i+1. Therefore, in order to cross between A′
i and A′

i+1 in Hj , the path P1

must reach a vertex v with d(r, v) > i∆+ c∆ since step (a)ii. was applied to Ai. But then
the path P1 has length at least d(r, v)− d(r, rℓ) ≥ c∆, contradicting the assumption that P1

has length less than c∆.

2. Hammock Hj contains both x, y. In this case, we must have d(r, rj) < i∆ − c∆, since
otherwise step (a)i. would add all vertices in V (Hj) ∩ Ai to A′

i+1. The argument that P1

cannot cross between A′
i and A′

i−1 is identical. We now claim that P1 cannot cross between
A′

i and A′
i+1 in any hammock after Hj . We have d(r, x) ≥ i∆ (regardless if step (a)ii. was

applied), and in order for P1 to travel to any hammock after Hj , it must reach either rj or
LCA(rj, r

′
j). But then it has length at least d(r, x)− d(r, rj) ≥ ∆, a contradiction.

With the above lemmas in hand, we finally prove Theorem 188. Consider two vertices u, v of
distance at most ∆ in G. We want to show that the (unique) shortest u–v path P0 has O(1) edges

185

cut by A′. Partition P0 into O(1) many subpaths of length less than c∆ each. We will transform
each subpath into a different shortest path between the two endpoints, and which has O(1) edges
cut by A′.

We further subdivide path P as follows. First, if P contains no cross edges, then it consists of
at most two monotone paths, so by Theorem 190, it is cut O(1) times by A′. Therefore, for the
rest of the proof, we assume that P has at least one cross edge. Let Pl be the subpath of P from
the beginning to just before the first cross edge of P , and let Pr be the subpath that begins just
after the last cross edge of P and continues until the end. Let Pm be the remaining subpath after
removing Pl, Pr, so that Pl, Pm, Pr partition the edges of P . The subpaths Pl, Pr consist of at
most two monotone paths in TBFS, so by Theorem 190, they are each cut O(1) times by A′. The
subpath Pm is a cross edge path, so by Theorem 191, it is cut O(1) times.

6.10 Future Work
We conclude with directions for future work. First, we reiterate the main open question in this
area as previously stated by many prior works:

1. For fixed h does every Kh-minor-free graph admit an O(1)-SPR solution?

The most exciting next step in settling this long-standing open question would be to tackle the
planar case. In particular, if one could demonstrate the existence of a forest-like structure similar
to hammock decompositions for planar graphs then the techniques introduced in this chapter
would solve the planar case. Notably, it is not too hard to see that the reduction of Filtser [83] of
O(1)-SPR to O(1)-scattering partitions works even if every shortest path is only approximately
preserved by the scattering partition. In particular, the reduction of Filtser [83] still works if
one can only provide a low-diameter partition where for any vertices u and v there is some path
between u and v with length at most O(1) · dG(u, v) which is incident to at most O(1) parts.
Consequently, the arguments presented in this chapter show that one need only demonstrate the
existence of a forest-like structure which approximates the distances between cross edges up
to a constant to make use of the scattering chops introduced in this work. Thus, an extremely
promising next avenue would be to show that every planar graph has a forest-like subgraph which
approximately preserves the distances between all cross edges.

6.11 Ear Decompositions from Hammock Decompositions
A classic result of Eppstein [78] shows that a graph is a 2-vertex-connected series-parallel graph
if it has a “nested ear decomposition.” These nested ear decompositions need not be unique and,
in general, may have little to do with the metric induced by the series-parallel graph. In this
section we show how to apply our hammock decompositions to find, among all possible nested
ear decompositions, a nested ear decomposition with strong properties regarding how the metric
and the nested ear decomposition interact.

We now give a series of definitions and theorems which formalize the nested ear decompositions
of Khuller [127] and Eppstein [78].

Definition 192 (Open Ear Decompositions). An ear is a path whose endpoints may coincide. An
ear decomposition is a partition of the edges of a graph into (the edges of) ears P1, P2, . . . where

186

for each i internal(Pi) is disjoint from all vertices in P1, . . . , Pi−1 and the two endpoints of Pi are
contained among the vertices of P1, . . . , Pi−1. An ear decomposition is open if the two endpoints
of each Pi for i ≥ 2 are distinct.

Khuller [127] introduced the notion of a tree ear decomposition and Eppstein [78] strengthened
this to the idea of a nested ear decomposition.

Definition 193 (Tree, Nested Ear Decomposition). A tree ear decomposition is an open ear
decomposition where for i > 1 we have that Pi has both endpoints in the same Pj . A nested ear
decomposition is a tree ear decomposition where for each Pj the collection of ears with both
endpoints in Pi form a collection of nested intervals.

Recall that a graph is 2-vertex connected if the deletion of any one vertex still leaves the graph
connected.

Theorem 194 (Eppstein [78]). A 2-vertex-connected graph is series-parallel if and only if it has
a nested ear decomposition.

Concluding, we apply our hammock decompositions to strengthen the result of Eppstein [78] to
respect the input metric in the following way. Recall that a shortest cross edge path is a path that
starts and ends with a cross edge and is also a shortest path.

Theorem 195. Let G = (V,E) be a 2-vertex-connected series-parallel graph with unit weights
and unique shortest path lengths. Fix a root r ∈ V and a BFS tree TBFS with cross edges
Ec := E \ E(TBFS). Then there is a collection of edges Ep ⊆ E(TBFS) such that G has a nested
ear decomposition P1, P2, . . . where

1. Each Pi is of the form Pu⊕{u, v}⊕ Pv where Pu and Pv are monotone paths from u and v
towards r and {u, v} ∈ Ec.

2. |E(Pi) ∩ Ep| ≤ 1 and (V,E \ Ep) contains all shortest cross edge paths. Furthermore
after deleting all ears which contain an edge of Ep any two ears in the same connected
component contain cross edges with the same LCA.

Proof. Let (T0,H, Ep) be the hammock decomposition (Theorem 156) as guaranteed by Theo-
rem 157.

We claim that since G is 2-vertex-connected it must be the case that T0 is a star with center r and
H consists of a single tree of hammocks where rk and r′k are children of r. To see why, notice that
since G is 2-vertex connected, for any children u and v of r there must be some cross edge with
one endpoint in TBFS(u) and another in TBFS(v) (since otherwise the deletion of r would separate
the graph into 2 connected components). It follows that such a cross edge will belong to a tree of
hammocks which contains both u and v as hammock roots. Applying this to all pairs of children
of r shows that all children of r must belong in the same hammock, thereby showing T0 is a star
andH consists of a single tree of hammocks.

Continuing, we can construct the claimed nested ear decomposition as follows. We let D be our
nested ear decomposition so far. We will process hammocks in H in a BFS order according to
the parent-child relationships induced between hammocks inH. To process a single hammock
Hi we simply find a candidate cross edge {u, v} = e ∈ D \ E(Hi) ∩ Ec and add to our nested
ear decomposition D the ear consisting of the concatenation of Pu, Pv and e where Pu is the path
gotten by going from u towards v until hitting a vertex in D and Pv is defined symmetrically. We

187

always choose as our cross edge {u, v} an edge such that there does not exist another cross edge
{u′, v′} in E(Hi) with either u ≺ u′ or v ≺ v′.

It is easy to verify that if no candidate cross edge with the above properties exists then there exists
a clawed cycle.

The above construction satisfies properties (1) and (2) in the above theorem statement by the
properties of our hammock decompositions and so it remains only to argue that the result is a
nested ear decomposition.

First, we observe that the result of the above process will indeed partition all edges. Every cross
edge is included by construction. An edge in TBFS will be added to D the first time any cross edge
with an endpoint below it is processed. Since our graph is 2-vertex connected every edge in TBFS

has some cross edge with an endpoint below it and so every edge in TBFS will end up in D

Our ear decomposition will be open by definition of our hammock decompositions and, in
particular, by the fact that the roots of a hammock are unrelated and by the fact that H is
LCA-respecting.

Next, we verify that the result of this process is a tree ear decomposition. Suppose for the sake
of contradiction that the result of our construction is not a tree ear decomposition. In particular,
suppose Pl is an ear with one endpoint in Pi and another endpoint in Pj . By definition of our
construction it must be the case that Pi and Pj are derived from cross edges, say ei and ej , which
belong to the same hammock. However, it then follows that the hammock fundamental cycle
formed by ei and ej can be used to construct a clawed cycle, a contradiction. A similar argument
shows that if our ear decomposition fails to be nested then we can find a clawed cycle.

6.12 Hammock Decomposition Construction Figures
In this section we give all of the illustrations of the construction of our hammock decompositions
on a single graph in Figure 6.18.

188

r

(a) Series parallel graph G.

r

(b) LCA-equivalence classes.
r

(c) Initial hammocks Ĥ.

r

(d) H̄ via hammock-joining paths.
r

(e) LCA paths P .

r

(f) H̃ via LCA paths.
r

(g)H via dangling trees.

r

(h) Final hammock decomposition with T0.

Figure 6.18: An illustration of the construction of our hammock decomposition on a series-parallel graph.

189

190

Part IV

Conclusion

191

Chapter 7

Conclusion

This thesis presents a variety of new results in how graphs and metrics can be made small or
simple while preserving or approximately preserving important properties.

In the first part we introduced two new ways a graph can be represented by tree-like objects—
namely copy tree embeddings and hop-constrained tree embeddings—the former approximately
preserving the shortest path metric and the latter approximately preserving the hop-constrained
distances between nodes. We illustrated the algorithmic utility of these tools by using them as the
basis of many new (polynomial-time) approximation algorithms for a variety of network design
problems.

In the subsequent part we gave new algorithms in a variety of computational models for computing
hop-constrained flows, a crucial primitive in various graph decompositions. We illustrated the
use of these algorithms by, among other things, giving the first efficient (1 − ϵ)-approximate
distributed algorithms for the bipartite b-matching problem.

In the last past of this thesis we provided new results for vertex sparsification. Specifically, we
showed that all series-parallel graphs admit so-called Steiner point removal solutions with only
constant distortion.

This thesis is a sampling of a variety of ways in which structure can be extracted from otherwise
unstructured objects with a provably reasonable faithfulness to the original object. By any other
description it is a study in abstraction and its limits as they pertain to graphs and metrics. The
generality of this topic of course means that innumerable exciting future directions abound;
throughout this thesis we have tried to enumerate some of them nevertheless.

193

194

Bibliography

[1] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning
tree. In Annual ACM Symposium on Theory of Computing (STOC), pages 395–406, 2012.
12

[2] Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning trees. In
Symposium on Foundations of Computer Science (FOCS), pages 781–790. IEEE, 2008. 12

[3] Ittai Abraham, Shiri Chechik, Michael Elkin, Arnold Filtser, and Ofer Neiman. Ramsey
spanning trees and their applications. In Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1650–1664. SIAM, 2018. 12

[4] Ittai Abraham, Cyril Gavoille, Anupam Gupta, Ofer Neiman, and Kunal Talwar. Cops,
robbers, and threatening skeletons: Padded decomposition for minor-free graphs. SIAM
Journal on Computing, 48(3):1120–1145, 2019. 48, 49

[5] Ajit Agrawal, Philip Klein, and Ramamoorthi Ravi. When trees collide: An approximation
algorithm for the generalized steiner problem on networks. SIAM Journal on Computing,
24(3):440–456, 1995. 41, 61

[6] İbrahim Akgün and Barbaros Ç Tansel. New formulations of the hop-constrained mini-
mum spanning tree problem via miller–tucker–zemlin constraints. European Journal of
Operational Research, 212(2):263–276, 2011. 41, 44

[7] Noga Alon, Richard M Karp, David Peleg, and Douglas West. A graph-theoretic game and
its application to the k-server problem. SIAM Journal on Computing, 24(1):78–100, 1995.
2, 11, 12

[8] Noga Alon, Baruch Awerbuch, Yossi Azar, Niv Buchbinder, and Joseph Naor. A general
approach to online network optimization problems. ACM Transactions on Algorithms
(TALG), 2(4):640–660, 2006. 12, 13, 15, 18, 19, 36, 39, 72, 73

[9] Ernst Althaus, Stefan Funke, Sariel Har-Peled, Jochen Könemann, Edgar A Ramos, and
Martin Skutella. Approximating k-hop minimum-spanning trees. Operations Research
Letters, 33(2):115–120, 2005. 41, 44

[10] Kateřina Altmanová, Petr Kolman, and Jan Vobornı́k. On polynomial-time combinatorial
algorithms for maximum l-bounded flow. In Algorithms and Data Structures Symposium
(WADS), pages 14–27. Springer, 2019. 81, 86

[11] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected

195

shortest paths via low hop emulators. In Annual ACM Symposium on Theory of Computing
(STOC), pages 322–335, 2020. 45, 80, 88

[12] Sanjeev Arora, Michelangelo Grigni, David R Karger, Philip N Klein, and Andrzej
Woloszyn. A polynomial-time approximation scheme for weighted planar graph tsp.
In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), volume 98, pages
33–41, 1998. 143

[13] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(1):121–164, 2012. 19, 29

[14] Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. Journal of the ACM (JACM), 62(5):1–25, 2015. 82

[15] Baruch Awerbuch and Yossi Azar. Buy-at-bulk network design. In Symposium on Founda-
tions of Computer Science (FOCS), pages 542–547. IEEE, 1997. 12, 43, 68

[16] Baruch Awerbuch and David Peleg. Sparse partitions. In Symposium on Foundations of
Computer Science (FOCS), pages 503–513. IEEE, 1990. 91

[17] Amy Babay, Michael Dinitz, and Zeyu Zhang. Characterizing demand graphs for (fixed-
parameter) shallow-light steiner network. arXiv preprint arXiv:1802.10566, 2018. 61

[18] Georg Baier, Thomas Erlebach, Alexander Hall, Ekkehard Köhler, Petr Kolman, Ondřej
Pangrác, Heiko Schilling, and Martin Skutella. Length-bounded cuts and flows. ACM
Transactions on Algorithms (TALG), 7(1):1–27, 2010. 80, 86

[19] Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. Journal of
the ACM (JACM), 68(5):1–30, 2021. 82

[20] Nikhil Bansal, Niv Buchbinder, Aleksander Madry, and Joseph Naor. A polylogarithmic-
competitive algorithm for the k-server problem. In Symposium on Foundations of Computer
Science (FOCS), pages 267–276. IEEE, 2011. 12, 74

[21] Judit Bar-Ilan, Guy Kortsarz, and David Peleg. Generalized submodular cover problems
and applications. Theoretical Computer Science, 250(1-2):179–200, 2001. 41

[22] Reuven Bar-Yehuda, Keren Censor-Hillel, Mohsen Ghaffari, and Gregory Schwartzman.
Distributed approximation of maximum independent set and maximum matching. In ACM
Symposium on Principles of Distributed Computing (PODC), pages 165–174, 2017. 90

[23] Yair Bartal. Probabilistic approximation of metric spaces and its algorithmic applications.
In Symposium on Foundations of Computer Science (FOCS), pages 184–193. IEEE, 1996.
2, 11, 15

[24] Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods. In
Annual European Symposium on Algorithms (ESA), pages 89–97. Springer, 2004. 15

[25] Yair Bartal and Manor Mendel. Multi-embedding and path approximation of metric
spaces. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), volume 3,
pages 424–433, 2003. 17, 18

196

[26] Yair Bartal, Avrim Blum, Carl Burch, and Andrew Tomkins. A polylog (n)-competitive
algorithm for metrical task systems. In Annual ACM Symposium on Theory of Computing
(STOC), pages 711–719, 1997. 12, 15, 74

[27] Yair Bartal, Nova Fandina, and Seeun William Umboh. Online probabilistic metric
embedding: a general framework for bypassing inherent bounds. In Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1538–1557. SIAM, 2020. 12, 13, 36

[28] Amitabh Basu and Anupam Gupta. Steiner point removal in graph metrics. Unpublished
Manuscript, available from http://www. math. ucdavis. edu/˜ abasu/papers/SPR. pdf, 1:25,
2008. 144, 145, 146

[29] Alok Baveja and Aravind Srinivasan. Approximation algorithms for disjoint paths and
related routing and packing problems. Mathematics of Operations Research, 25(2):255–280,
2000. 80

[30] Piotr Berman and Chris Coulston. On-line algorithms for steiner tree problems. In Annual
ACM Symposium on Theory of Computing (STOC), pages 344–353, 1997. 61

[31] Marcin Bienkowski, Bjorn Feldkord, and Pawel Schmidt. A nearly optimal deterministic
online algorithm for non-metric facility location. arXiv preprint, 2020. 13, 39

[32] Guy E. Blelloch, Yan Gu, and Yihan Sun. Efficient construction of probabilistic tree
embeddings. In International Colloquium on Automata, Languages and Programming
(ICALP), volume 80, pages 26:1–26:14, 2017. 12

[33] Andreas Bley, S Mehdi Hashemi, and Mohsen Rezapour. Ip modeling of the survivable hop
constrained connected facility location problem. Electronic Notes in Discrete Mathematics,
41:463–470, 2013. 44

[34] Hans L Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
computer science, 209(1-2):1–45, 1998. 148

[35] Quentin Botton, Bernard Fortz, Luis Gouveia, and Michael Poss. Benders decomposi-
tion for the hop-constrained survivable network design problem. INFORMS journal on
computing, 25(1):13–26, 2013. 44

[36] Quentin Botton, Bernard Fortz, and Luis Gouveia. On the hop-constrained survivable
network design problem with reliable edges. Computers & Operations Research, 64:
159–167, 2015. 44

[37] Sebastian Brandt and Dennis Olivetti. Truly tight-in-δ bounds for bipartite maximal
matching and variants. In ACM Symposium on Principles of Distributed Computing
(PODC), pages 69–78, 2020. 82

[38] Bo Brinkman, Adriana Karagiozova, and James R Lee. Vertex cuts, random walks, and
dimension reduction in series-parallel graphs. In Annual ACM Symposium on Theory of
Computing (STOC), pages 621–630, 2007. 145

[39] Andrei Z Broder, Alan M Frieze, and Eli Upfal. Existence and construction of edge-disjoint
paths on expander graphs. SIAM Journal on Computing, 23(5):976–989, 1994. 80

197

[40] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a
primal-dual approach. Now Publishers Inc, 2009. 13

[41] Gruia Calinescu, Howard Karloff, and Yuval Rabani. Approximation algorithms for the
0-extension problem. SIAM Journal on Computing, 34(2):358–372, 2005. 25

[42] Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local
distributed algorithms under bandwidth restrictions. Distributed Computing, 33(3):349–
366, 2020. 90

[43] T-H Hubert Chan, Donglin Xia, Goran Konjevod, and Andrea Richa. A tight lower bound
for the steiner point removal problem on trees. In International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), pages 70–81. Springer,
2006. 144, 146

[44] Yi-Jun Chang and Mohsen Ghaffari. Strong-diameter network decomposition. In ACM
Symposium on Principles of Distributed Computing (PODC), pages 273–281, 2021. 91, 92

[45] Yi-Jun Chang and Thatchaphol Saranurak. Deterministic distributed expander decom-
position and routing with applications in distributed derandomization. In Symposium on
Foundations of Computer Science (FOCS), pages 377–388. IEEE, 2020. 5, 79, 81, 82, 89,
90, 93, 94, 123, 128

[46] Moses Charikar, Chandra Chekuri, Ashish Goel, and Sudipto Guha. Rounding via trees:
deterministic approximation algorithms for group steiner trees and k-median. In Annual
ACM Symposium on Theory of Computing (STOC), pages 114–123, 1998. 12

[47] Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin. Approx-
imating a finite metric by a small number of tree metrics. In Symposium on Foundations of
Computer Science (FOCS), pages 379–388. IEEE, 1998. 15, 18, 30

[48] Shiri Chechik and Tianyi Zhang. Dynamic low-stretch spanning trees in subpolynomial
time. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 463–475.
SIAM, 2020. 12

[49] Chandra Chekuri, Guy Even, and Guy Kortsarz. A greedy approximation algorithm for the
group steiner problem. Discrete Applied Mathematics, 154(1):15–34, 2006. 12

[50] Chandra Chekuri, Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair.
Embedding k-outerplanar graphs into l1. SIAM Journal on Discrete Mathematics, 20(1):
119–136, 2006. 145

[51] Chandra Chekuri, Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R
Salavatipour. Approximation algorithms for non-uniform buy-at-bulk network design.
Symposium on Foundations of Computer Science (FOCS), pages 677–686, 2006. 24

[52] Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems
in undirected graphs and the directed steiner network problem. ACM Transactions on
Algorithms (TALG), 7(2):1–17, 2011. 13

[53] James Cheng, Yiping Ke, Shumo Chu, and M Tamer Özsu. Efficient core decomposition

198

in massive networks. In 2011 IEEE 27th International Conference on Data Engineering,
pages 51–62. IEEE, 2011. 1

[54] Yun Kuen Cheung. Steiner point removal—distant terminals don’t (really) bother. In
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1353–1360. SIAM,
2018. 147

[55] Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. Graph minors for preserving
terminal distances approximately-lower and upper bounds. In International Colloquium on
Automata, Languages and Programming (ICALP), 2016. 144, 146

[56] Eden Chlamtáč and Michael Dinitz. Lowest-degree k-spanner: Approximation and hard-
ness. Theory of Computing, 12(1):1–29, 2016. 62

[57] Eden Chlamtáč and Petr Kolman. How to cut a ball without separating: Improved approxi-
mations for length bounded cut. In International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020. 81

[58] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing
Wang. Graph sparsification, spectral sketches, and faster resistance computation via short
cycle decompositions. In Symposium on Foundations of Computer Science (FOCS). SIAM,
202. 92

[59] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. A deterministic algorithm for balanced cut with applications to dynamic
connectivity, flows, and beyond. In Symposium on Foundations of Computer Science
(FOCS), pages 1158–1167. IEEE, 2020. 79

[60] Edith Cohen. Approximate max-flow on small depth networks. SIAM Journal on Comput-
ing, 24(3):579–597, 1995. 89, 93, 102, 103, 104, 106

[61] Jérôme De Boeck and Bernard Fortz. Extended formulation for hop constrained distribution
network configuration problems. European Journal of Operational Research, 265(2):488–
502, 2018. 41, 44

[62] Erik D Demaine, MohammadTaghi Hajiaghayi, and Philip N Klein. Node-weighted steiner
tree and group steiner tree in planar graphs. In International Colloquium on Automata,
Languages and Programming (ICALP), pages 328–340. Springer, 2009. 12

[63] Laxman Dhulipala. Provably efficient and scalable shared-memory graph processing. Ph.
D. dissertation, 2020. 1

[64] Ibrahima Diarrassouba, Virginie Gabrel, Ali Ridha Mahjoub, Luı́s Gouveia, and Pierre
Pesneau. Integer programming formulations for the k-edge-connected 3-hop-constrained
network design problem. Networks, 67(2):148–169, 2016. 44

[65] Ibrahima Diarrassouba, Meriem Mahjoub, A Ridha Mahjoub, and Hande Yaman. k-node-
disjoint hop-constrained survivable networks: polyhedral analysis and branch and cut.
Annals of Telecommunications, 73(1-2):5–28, 2018. 44

199

[66] Michael Dinitz and Zeyu Zhang. Approximating low-stretch spanners. In Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 821–840. SIAM, 2016. 61

[67] Michael Dinitz, Guy Kortsarz, and Ran Raz. Min-rep instances with large supergirth and
the hardness of approximating basic spanners. In International Colloquium on Automata,
Languages and Programming (ICALP), 2012. 61

[68] Michael Dinitz, Guy Kortsarz, and Ran Raz. Label cover instances with large girth and the
hardness of approximating basic k-spanner. ACM Transactions on Algorithms (TALG), 12
(2):1–16, 2015. 4, 41

[69] Richard J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis
and Applications, 10(2):303–318, 1965. 148

[70] Michael Elkin and David Peleg. The client-server 2-spanner problem and applications to
network design. In International Colloquium on Structural Information and Communication
Complexity, 1999. 62

[71] Michael Elkin and David Peleg. Strong inapproximability of the basic k-spanner problem.
In International Colloquium on Automata, Languages and Programming (ICALP), pages
636–648. Springer, 2000. 61

[72] Michael Elkin and David Peleg. Approximating k-spanner problems for k¿ 2. Theoretical
Computer Science, 337(1-3):249–277, 2005. 62

[73] Michael Elkin, Yuval Emek, Daniel A Spielman, and Shang-Hua Teng. Lower-stretch
spanning trees. SIAM Journal on Computing, 38(2):608–628, 2008. 12

[74] Yuval Emek and David Peleg. A tight upper bound on the probabilistic embedding of
series-parallel graphs. SIAM Journal on Discrete Mathematics, 23(4):1827–1841, 2010.
145

[75] Matthias Englert and Harald Räcke. Reordering buffers with logarithmic diameter depen-
dency for trees. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1224–1234. SIAM, 2017. 15

[76] Matthias Englert, Harald Räcke, and Matthias Westermann. Reordering buffers for general
metric spaces. In Annual ACM Symposium on Theory of Computing (STOC), 2007. 15

[77] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Racke, Inbal Talgam-Cohen,
and Kunal Talwar. Vertex sparsifiers: New results from old techniques. SIAM Journal on
Computing, 43(4):1239–1262, 2014. 146

[78] David Eppstein. Parallel recognition of series-parallel graphs. Information and Computa-
tion, 98(1):41–55, 1992. 146, 147, 186, 187

[79] Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. Journal of Computer and System Sciences, 69(3):485–497,
2004. 11, 15, 24, 25, 30

[80] Amos Fiat and Manor Mendel. Better algorithms for unfair metrical task systems and
applications. SIAM Journal on Computing, 32(6):1403–1422, 2003. 15

200

[81] Arnold Filtser. Steiner point removal with distortion o(log k), using the noisy-voronoi
algorithm. arXiv preprint arXiv:1808.02800, 2018. 147

[82] Arnold Filtser. Steiner point removal with distortion o (log k). In Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1361–1373. SIAM, 2018. 147

[83] Arnold Filtser. Scattering and sparse partitions, and their applications. In International
Colloquium on Automata, Languages and Programming (ICALP), 2020. 144, 145, 147,
148, 149, 186

[84] Arnold Filtser. Clan embeddings into trees, and low treewidth graphs. arXiv preprint
arXiv:2101.01146, 2021. 17, 18, 19

[85] Arnold Filtser. Hop-constrained metric embeddings and their applications. In Symposium
on Foundations of Computer Science (FOCS), pages 492–503. IEEE, 2022. 74

[86] Arnold Filtser, Robert Krauthgamer, and Ohad Trabelsi. Relaxed voronoi: A simple frame-
work for terminal-clustering problems. In SIAM Symposium on Simplicity in Algorithms
(SOSA), 2018. 144, 146

[87] Manuela Fischer. Improved deterministic distributed matching via rounding. Distributed
Computing, 33(3):279–291, 2020. 82

[88] Manuela Fischer. Local Algorithms for Classic Graph Problems. PhD thesis, ETH Zurich,
2021. 82

[89] Sebastian Forster, Gramoz Goranci, and Monika Henzinger. Dynamic maintanance of low-
stretch probabilistic tree embeddings with applications. arXiv preprint arXiv:2004.10319,
2020. 12

[90] Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences, 55(1):119–139,
1997. 29

[91] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity
flow and other fractional packing problems. SIAM Journal on Computing, 37(2):630–652,
2007. 86

[92] Naveen Garg, Goran Konjevod, and R Ravi. A polylogarithmic approximation algorithm
for the group steiner tree problem. Journal of Algorithms, 37(1):66–84, 2000. 12, 36, 63

[93] Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small
messages: Spanners and dominating set. In International Symposium on Distributed
Computing (DISC). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 92

[94] Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow. In ACM Symposium on Principles of
Distributed Computing (PODC), pages 81–90, 2015. 81

[95] Gramoz Goranci, Monika Henzinger, and Pan Peng. Improved guarantees for vertex
sparsification in planar graphs. SIAM Journal on Discrete Mathematics, 34(1):130–162,
2020. 146

201

[96] Luis Gouveia. Using the miller-tucker-zemlin constraints to formulate a minimal spanning
tree problem with hop constraints. Computers & Operations Research, 22(9):959–970,
1995. 44

[97] Luis Gouveia. Multicommodity flow models for spanning trees with hop constraints.
European Journal of Operational Research, 95(1):178–190, 1996. 44

[98] Luis Gouveia and Thomas L Magnanti. Network flow models for designing diameter-
constrained minimum-spanning and steiner trees. Networks: An International Journal, 41
(3):159–173, 2003. 44

[99] Luis Gouveia and Cristina Requejo. A new lagrangean relaxation approach for the hop-
constrained minimum spanning tree problem. European Journal of Operational Research,
132(3):539–552, 2001. 44

[100] Xiangyu Guo, Janardhan Kulkarni, Shi Li, and Jiayi Xian. On the facility location problem
in online and dynamic models. In International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX). Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2020. 15

[101] Anupam Gupta. Steiner points in tree metrics don’t (really) help. In Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 682–690, 2001. 143, 144, 146

[102] Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Cuts, trees and l/sub
1/-embeddings of graphs. In Symposium on Foundations of Computer Science (FOCS),
pages 399–408. IEEE, 1999. 145

[103] Anupam Gupta, Robert Krauthgamer, and James R Lee. Bounded geometries, fractals, and
low-distortion embeddings. In Symposium on Foundations of Computer Science (FOCS),
pages 534–543. IEEE, 2003. 48, 49, 145

[104] Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair. Cuts, trees and
l1-embeddings of graphs. Combinatorica, 24(2):233–269, 2004. 145, 146

[105] Anupam Gupta, Mohammad T Hajiaghayi, and Harald Räcke. Oblivious network design.
In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 970–979, 2006.
17, 19, 20, 21, 24, 26, 61, 68

[106] Varun Gupta, Ravishankar Krishnaswamy, and Sai Sandeep. Permutation strikes back: The
power of recourse in online metric matching. In International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX), 2020. 15

[107] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce Shepherd, and
Mihalis Yannakakis. Near-optimal hardness results and approximation algorithms for
edge-disjoint paths and related problems. Journal of Computer and System Sciences, 67(3):
473–496, 2003. 80, 86, 127

[108] Frank Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM
Journal on Computing, 4(3):221–225, 1975. 143

[109] Bernhard Haeupler, David Wajc, and Goran Zuzic. Network coding gaps for completion

202

times of multiple unicasts. In Symposium on Foundations of Computer Science (FOCS),
pages 494–505. IEEE, 2020. 4, 80

[110] Bernhard Haeupler, D Ellis Hershkowitz, and Thatchaphol Saranurak. Fast algorithms for
hop-constrained flows and moving cuts. arXiv preprint arXiv:2111.01422, 2021. 5

[111] Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Tree embeddings for hop-
constrained network design. Annual ACM Symposium on Theory of Computing (STOC),
2021. 17

[112] Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Deterministic tree embeddings
with copies for algorithms against adaptive adversaries. In arXiv Preprint, 2021. 2

[113] Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Tree embeddings for hop-
constrained network design. In Annual ACM Symposium on Theory of Computing (STOC),
pages 356–369, 2021. 4, 80, 88

[114] Bernhard Haeupler, David Wajc, and Goran Zuzic. Universally-optimal distributed algo-
rithms for known topologies. In Annual ACM Symposium on Theory of Computing (STOC),
pages 1166–1179, 2021. 80, 81

[115] Bernhard Haeupler, Harald Raecke, and Mohsen Ghaffari. Hop-constrained expander
decompositions; oblivious routing, and distributed universal optimality. In Annual ACM
Symposium on Theory of Computing (STOC), 2022. 82, 130, 131

[116] Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R Salavatipour. Approxi-
mating buy-at-bulk and shallow-light k-steiner trees. Algorithmica, 53(1):89–103, 2009.
41, 44, 66

[117] D Ellis Hershkowitz and Jason Li. O(1) steiner point removal in series-parallel graphs.
arXiv preprint arXiv:2104.00750, 2021. 5

[118] Yael Hitron and Merav Parter. General congest compilers against adversarial edges. In
International Symposium on Distributed Computing (DISC). Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2021. 86, 92, 93

[119] Makoto Imase and Bernard M Waxman. Dynamic steiner tree problem. SIAM Journal on
Discrete Mathematics, 4(3):369–384, 1991. 19, 31

[120] Lior Kamma, Robert Krauthgamer, and Huy L Nguyen. Cutting corners cheaply, or how to
remove steiner points. SIAM Journal on Computing, 44(4):975–995, 2015. 147

[121] Erez Kantor and David Peleg. Approximate hierarchical facility location and applications
to the bounded depth steiner tree and range assignment problems. Journal of Discrete
Algorithms, 7(3):341–362, 2009. 41, 44

[122] Richard M Karp. A 2k-competitive algorithm for the circle. Manuscript, August, 5, 1989.
11

[123] Richard M Karp and Vijaya Ramachandran. A survey of parallel algorithms for shared-
memory machines. survey, 1989. 84, 101

203

[124] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-linear
time. Journal of the ACM (JACM), 66(1):1–50, 2018. 82

[125] Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Effi-
cient distributed approximation algorithms via probabilistic tree embeddings. Distributed
Computing, 25(3):189–205, 2012. 12

[126] M Reza Khani and Mohammad R Salavatipour. Improved approximations for buy-at-bulk
and shallow-light k-steiner trees and (k, 2)-subgraph. In Annual International Symposium
on Algorithms and Computation (ISAAC), pages 20–29. Springer, 2011. xix, 41, 44, 66

[127] Samir Khuller. Ear decompositions. SigAct News, 20(1):128, 1989. 146, 186, 187

[128] Philip Klein, Serge A Plotkin, and Satish Rao. Excluded minors, network decomposition,
and multicommodity flow. In Annual ACM Symposium on Theory of Computing (STOC),
pages 682–690, 1993. 145, 149

[129] Jon M Kleinberg. Approximation algorithms for disjoint paths problems. PhD thesis,
Massachusetts Institute of Technology, 1996. 80

[130] Jochen Könemann, Asaf Levin, and Amitabh Sinha. Approximating the degree-bounded
minimum diameter spanning tree problem. Algorithmica, 41(2):117–129, 2005. 41, 44

[131] Goran Konjevod, R Ravi, and F Sibel Salman. On approximating planar metrics by tree
metrics. Information Processing Letters, 80(4):213–219, 2001. 12, 22, 30

[132] Guy Kortsarz and David Peleg. Approximating shallow-light trees. In Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 103–110, 1997. 41, 44

[133] Christos Koufogiannakis and Neal E Young. Distributed fractional packing and maximum
weighted b-matching via tail-recursive duality. In International Symposium on Distributed
Computing, pages 221–238. Springer, 2009. 82

[134] Ioannis Koutis, Gary L Miller, and Richard Peng. A nearly-m log n time solver for sdd
linear systems. In Symposium on Foundations of Computer Science (FOCS), pages 590–598.
IEEE, 2011. 12

[135] Robert Krauthgamer and Havana Inbal Rika. Refined vertex sparsifiers of planar graphs.
SIAM Journal on Discrete Mathematics, 34(1):101–129, 2020. 146

[136] Robert Krauthgamer, Huy L Nguyen, and Tamar Zondiner. Preserving terminal distances
using minors. SIAM Journal on Discrete Mathematics, 28(1):127–141, 2014. 144, 146

[137] James R. Lee and Cyrus Rashtchian. A simpler proof of the kpr theorem. https:
//tcsmath.wordpress.com/tag/klein-plotkin-rao/, January 2012. 154

[138] Markus Leitner. Layered graph models and exact algorithms for the generalized hop-
constrained minimum spanning tree problem. Computers & Operations Research, 65:1–18,
2016. 44

[139] Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica, 13
(4):441–454, 1993. 90

204

https://tcsmath.wordpress.com/tag/klein-plotkin-rao/
https://tcsmath.wordpress.com/tag/klein-plotkin-rao/

[140] Zvi Lotker, Boaz Patt-Shamir, and Seth Pettie. Improved distributed approximate matching.
In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 129–136,
2008. 79, 89, 93, 94

[141] Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
journal on computing, 15(4):1036–1053, 1986. 94

[142] Madhav V Marathe, Ramamoorthi Ravi, Ravi Sundaram, SS Ravi, Daniel J Rosenkrantz,
and Harry B Hunt III. Bicriteria network design problems. Journal of algorithms, 28(1):
142–171, 1998. 41, 44

[143] Manor Mendel and Assaf Naor. Ramsey partitions and proximity data structures. In
Symposium on Foundations of Computer Science (FOCS), pages 109–118. IEEE, 2006. 12,
19

[144] Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using
random shifts. In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pages 196–203, 2013. 90

[145] Viswanath Nagarajan and Ramamoorthi Ravi. Approximation algorithms for require-
ment cut on graphs. In Approximation, Randomization and Combinatorial Optimization.
Algorithms and Techniques, pages 209–220. Springer, 2005. 74

[146] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic
minimum spanning forest with subpolynomial worst-case update time. In Symposium on
Foundations of Computer Science (FOCS), pages 950–961. IEEE, 2017. 82

[147] Assaf Naor and Terence Tao. Scale-oblivious metric fragmentation and the nonlinear
dvoretzky theorem. Israel Journal of Mathematics, 192(1):489–504, 2012. 12

[148] Joseph Naor and Baruch Schieber. Improved approximations for shallow-light spanning
trees. In Symposium on Foundations of Computer Science (FOCS), pages 536–541. IEEE,
1997. 44

[149] Joseph Naor, Debmalya Panigrahi, and Mohit Singh. Online node-weighted steiner tree
and related problems. In Symposium on Foundations of Computer Science (FOCS), pages
210–219. IEEE, 2011. 12, 13, 15, 72, 73

[150] Haruko Okamura and Paul D Seymour. Multicommodity flows in planar graphs. Journal
of Combinatorial Theory, Series B, 31(1):75–81, 1981. 145

[151] Merav Parter and Eylon Yogev. Optimal short cycle decomposition in almost linear time.
In International Colloquium on Automata, Languages and Programming (ICALP). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019. 86, 92, 93

[152] David Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000. 84

[153] Harald Racke. Minimizing congestion in general networks. In Symposium on Foundations
of Computer Science (FOCS), pages 43–52. IEEE, 2002. 12

[154] Prasad Raghavendra and David Steurer. Graph expansion and the unique games conjecture.
In Annual ACM Symposium on Theory of Computing (STOC), pages 755–764, 2010. 82

205

[155] R Ravi. Rapid rumor ramification: Approximating the minimum broadcast time. In
Symposium on Foundations of Computer Science (FOCS), pages 202–213. IEEE, 1994. 41,
44

[156] Gabriele Reich and Peter Widmayer. Beyond steiner’s problem: A vlsi oriented generaliza-
tion. In International Workshop on Graph-theoretic Concepts in Computer Science, pages
196–210. Springer, 1989. 12

[157] Neil Robertson and Paul D Seymour. Graph minors. xx. wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. 143

[158] André Rossi, Alexis Aubry, and Mireille Jacomino. Connectivity-and-hop-constrained
design of electricity distribution networks. European journal of operational research, 218
(1):48–57, 2012. 3, 41, 44

[159] Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network de-
composition and distributed derandomization. In Annual ACM Symposium on Theory of
Computing (STOC), pages 350–363, 2020. 92

[160] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2616–2635. SIAM, 2019. 79

[161] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness
of distributed approximation. SIAM Journal on Computing, 41(5):1235–1265, 2012. 81

[162] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In Annual ACM Symposium on
Theory of Computing (STOC), pages 81–90, 2004. 82

[163] Babacar Thiongane, Jean-François Cordeau, and Bernard Gendron. Formulations for the
nonbifurcated hop-constrained multicommodity capacitated fixed-charge network design
problem. Computers & Operations Research, 53:1–8, 2015. 44

[164] Luca Trevisan. Approximation algorithms for unique games. In Symposium on Foundations
of Computer Science (FOCS), pages 197–205. IEEE, 2005. 82

[165] Stefan Voß. The steiner tree problem with hop constraints. Annals of Operations Research,
86:321–345, 1999. 44

[166] Thomas Victor Wimer. Linear algorithms on k-terminal graphs. PhD Thesis, 1987.
AAI8803914. 143

[167] Kathleen A Woolston and Susan L Albin. The design of centralized networks with reliability
and availability constraints. Computers & Operations Research, 15(3):207–217, 1988. 3,
41, 44

206

	1 Introduction
	1.1 Overview
	1.1.1 New Tree Embeddings (par:NTE)
	1.1.2 New Primitives for Graph Decompositions (par:HCFED)
	1.1.3 Steiner Point Removal (par:SPR / cha:SPR)

	1.2 Notation and Conventions

	I New Tree Embeddings
	2 Tree Embedding Background
	2.0.1 Network Design and Group Steiner Problems

	3 Copy Tree Embeddings
	3.1 Introduction
	3.1.1 Our Contributions

	3.2 Copy Tree Embedding Constructions
	3.2.1 From Padded Hierarchical Decompositions to Copy Tree Embeddings
	3.2.2 Deterministically Constructing Padded Hierarchical Decompositions
	3.2.3 Construction 2: Merging FRT Support

	3.3 Online Covering Steiner
	3.3.1 Online Covering Steiner on a Tree
	3.3.2 Online Covering Steiner on General Graphs

	3.4 Deterministic Online Group Steiner Reductions
	3.4.1 Deterministic Online Group Steiner Tree
	3.4.2 Deterministic Online Group Steiner Forest

	3.5 Conclusion and Future Work

	4 Hop-Constrained Tree Embeddings
	4.1 Introduction
	4.1.1 Our Contributions

	4.2 Hop-Constrained Network Design Related Work
	4.3 Approximating Hop-Constrained Distances
	4.3.1 Hop-Constrained Distances Are Inapproximable by Metrics
	4.3.2 Distances Induced by Distributions Over Partial Metrics
	4.3.3 Approximating Hop-Constrained Distances with Partial Tree Metrics

	4.4 h-Hop Partial Tree Embeddings
	4.4.1 Defining h-Hop-Partial Tree Embeddings
	4.4.2 Projecting From The Graph to h-Hop Partial Tree Embeddings

	4.5 Applications of h-Hop Partial Tree Embeddings
	4.5.1 Oblivious Hop-Constrained Steiner Forest
	4.5.2 Hop-Constrained Group Steiner Tree
	4.5.3 Hop-Constrained k-Steiner Tree
	4.5.4 Hop-Constrained Oblivious Network Design

	4.6 h-Hop Copy Tree Embeddings
	4.7 Applications of h-Hop Copy Tree Embeddings
	4.7.1 Hop-Constrained Group Steiner Tree
	4.7.2 Online Hop-Constrained Group Steiner Tree
	4.7.3 Hop-Constrained Group Steiner Forest
	4.7.4 Online Hop-Constrained Group Steiner Forest

	4.8 Conclusion and Future Work
	4.9 Deferred Proofs of sec:apxHCD

	II New Primitives for Graph Decompositions
	5 Length-Constrained Flows
	5.1 Introduction
	5.1.1 Our Contributions

	5.2 Chapter-Specific Notation and Conventions
	5.3 Length-Constrained Flows, Moving Cuts and Main Result
	5.4 Intuition and Overview of Approach
	5.4.1 Using Lightest Path Blockers for Multiplicative Weights
	5.4.2 Length-Weight Expanded DAG to Approximate h-Length Lightest Paths
	5.4.3 Deterministic Integral Blocking Flows Paths via Flow Rounding
	5.4.4 Overview of Chapter

	5.5 Preliminaries
	5.5.1 Deterministic CONGEST Maximal and Maximum Independent Set
	5.5.2 Deterministic Low Diameter Decompositions
	5.5.3 Sparse Neighborhood Covers
	5.5.4 Cycle Covers

	5.6 Path Counts for h-Layer S-T DAGs
	5.7 Randomized Blocking Integral Flows in h-Layer DAGs
	5.8 Deterministic and Distributed Near Eulerian Partitions
	5.8.1 High-Girth Cycle Decompositions
	5.8.2 Efficient Algorithms for Computing Near Eulerian Partitions

	5.9 Deterministic Blocking Integral Flows in h-Layer DAGs
	5.9.1 Iterated Path Count Flows
	5.9.2 Deterministic Rounding of Flows in h-Layer DAGs
	5.9.3 Deterministic Blocking Integral Flows

	5.10 h-Length (1+)-Lightest Path Blockers
	5.10.1 Length-Weight Expanded DAG
	5.10.2 Decongesting Flows
	5.10.3 Computing h-Length (1+)-Lightest Path Blockers

	5.11 Computing Length-Constrained Flows and Moving Cuts
	5.12 Application: Maximal and Maximum Disjoint Paths
	5.12.1 Maximal and Maximum Disjoint Path Variants
	5.12.2 Reducing Among Variants
	5.12.3 Maximal Disjoint Path Algorithms
	5.12.4 Maximum Disjoint Path Algorithms
	5.12.5 On the Hardness of Maximum Disjoint Paths

	5.13 Application: Simple Distributed Expander Decompositions
	5.14 Application: (1-)-Approximate Distributed Bipartite b-Matching
	5.15 Application: Length-Constrained Cutmatches
	5.16 Conclusion and Future Work
	5.17 Generalizing Our Results to Multi-Commodity
	5.17.1 Multi-Commodity Flows, Cutmatches and Results
	5.17.2 Computing Multi-Commodity Length-Constrained Flows and Moving Cuts
	5.17.3 Computing Multi-Commodity Length-Constrained Cutmatches

	III Steiner Point Removal
	6 Series-Parallel Steiner Point Removal
	6.1 Introduction
	6.1.1 Our Contributions

	6.2 Related Work
	6.3 Preliminaries
	6.3.1 Characterizations of Series-Parallel Graphs
	6.3.2 Scattering Partitions

	6.4 Intuition and Overview of Techniques
	6.4.1 General Approach
	6.4.2 Scattering Chops
	6.4.3 Hammock Decompositions and How to Use Them

	6.5 Chapter-Specific Notation and Conventions
	6.6 Perturbing KPR and Scattering Chops
	6.6.1 Perturbing KPR
	6.6.2 Scattering Chops

	6.7 Hammock Decompositions
	6.7.1 Trees of Hammocks
	6.7.2 Hammock Decompositions

	6.8 Hammock Decompositions for Series-Parallel Graphs
	6.8.1 Initial Hammocks by Connecting Equivalence Classes
	6.8.2 Extending to by Hammock-Joining Paths
	6.8.3 Extending to by LCA Paths
	6.8.4 Extending to H by Adding Dangling Subtrees

	6.9 Scattering Chops via Hammock Decompositions
	6.10 Future Work
	6.11 Ear Decompositions from Hammock Decompositions
	6.12 Hammock Decomposition Construction Figures

	IV Conclusion
	7 Conclusion
	Bibliography

