A New Toolbox for Scheduling Theory

Ziv Scully

CMU-CS-22-132
August 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

THaESIS COMMITTEE

Mor Harchol-Balter, co-chair
Guy E. Blelloch, co-chair
Alan Scheller-Wolf
Anupam Gupta
Adam Wierman (Caltech)
Balaji Prabhakar (Stanford)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

© 2022 Ziv Scully

This research was sponsored by the National Science Foundation under Grant Nos. CMMI-1334194, CMMI-
1538204, CMMI-1938909, CSR-180341, CSR-1763701, and XPS-1629444; an NSF Graduate Fellowhip under
Grant Nos. DGE-125222 and DGE-1745016; an ARCS Foundation scholarship; and the CMU SCS Bryant
Fellowship. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any sponsoring institution,
the U.S. government, or any other entity.

Keywords: queueing theory; scheduling; response time; sojourn time; M/G/1; M/G/k;
heavy tails; light tails; priority queues; Least Attained Service (LAS); Shortest Remaining
Processing Time (SRPT); Shortest Expected Remaining Processing Time (SERPT); Gittins

index policy; Multi-Level Processor Sharing (MLPS); limited priority levels; preemption
checkpoints; job size estimates

To all of my teachers:
at school, at synagogue,
at camps math and jazz,
and most of all at home.

My grandmother Celia wrote these notes for middle-school me when I asked how to make logic
gates out of transistors.

Acknowledgments

While writing a PhD thesis is a solitary endeavor, I am delighted to report that every other
aspect of my PhD experience has been anything but. I have had a great time at CMU, for
which I have a long list of colleagues, friends, and family to thank.

To begin, I would like to thank Mor Harchol-Balter, one of my advisors. When I first
met Mor, I got the sense that this was the right person to train me to be the best researcher
I could be. That turned out to be 100% correct. Mor has given me and her other students
a veritable fire hose of advice on choosing research directions, writing, presenting, and
academic career planning. She leads her group with an infectious enthusiasm. I will miss
our group’s weekly SQUALL (Scheduling and QUeueing At LLunch) seminars.

I would next like to thank Guy Blelloch, my other advisor. Guy has a very broad set
of research interests and has built a group, which he guides with gentle but carefully
considered advice, with the same breadth. It is thanks to this breadth that I had a brief
foray into computer architecture, which was near the bottom of the list of topics I thought
I might study during my PhD. Even though my core research ended up drifting in a pure
queueing theory direction, which is outside even Guy’s broad research umbrella, Guy has
always been there with valuable advice at some of the most important decision points of
my PhD and job search.

I am very grateful to the other members of my thesis committee. Alan Scheller-Wolf
gave me some my first sips of the queueing theory Kool-Aid and has been a great mentor
in research and beyond. Anupam Gupta helped me connect some of the ideas in this thesis
to problems in (more traditional) theoretical computer science. Adam Wierman invited me
to Caltech in 2018 for a very productive visit and has been dispensing research and career
wisdom ever since. And Balaji Prabhakar, in addition to hosting me for a virtual visit to
Stanford in 2021, has provided feedback, ideas for new directions, and encouragement
throughout my thesis process.

There are a number of other faculty colleagues who I would like to thank. Michael
Mitzenmacher and Sid Banerjee have been wonderful collaborators and bastions of support.
Mark Squillante and Soumyadip Ghosh mentored me during an internship at IBM research,
during which we attacked problems ambitious enough to appear in the future work section
of this thesis’s conclusion. Gauri Joshi, Weina Wang, and Ben Mosely were always willing
to take time out of their busy schedules to meet with me. Onno Boxma and Jan-Pieter
Dorsman have now hosted me in Eindhoven and Amsterdam twice, and having experienced
a warm reception, stimulating conversations, and an enviable national rail network both
times, I am eager to make it thrice.

I have been blessed to work with a number of my fellow students. Isaac Grosof deserves
special thanks. Isaac brings their creativity and uncanny intuition every time we meet,
whether over research, dinner, or a social deduction game. Bouncing ideas off of each other
has led to some of my fondest research memories (to say nothing of some of our most
important research breakthroughs), and I hope our future holds more bouncy ideas. I am

vi Acknowledgments

also grateful to Haotian Jiang, with whom I spent much of a happy summer swimming and
discussing queueing problems, even though those problems turned out to be equivalent to
famously difficult open questions. I hope all of my future collaborators are as amiable and
insightful as Naama Ben-David, Lucas van Kreveld, Sahil Singla, Kunhe Yang, and Yige
Hong. Another special thanks goes to Ben Berg. It was great to go through the PhD ordeal
with such a knowledgeable and friendly academic twin. Ben, good luck as you start your
new faculty position, and I am sure we will see each other around.

I have come to believe more and more over the course of my PhD that the most impor-
tant output of CS research is not code or proofs, but rather the research’s communication.
There are countless folks with whom I have had great research conversations, from casual
hallway banter to approaching breakthroughs while skipping a conference’s business
meeting. Thank you to everyone who has taken the time to engage.

No research at CMU would happen without the support of CMU’s great staff. Nancy
Conway, Pat Loring, and Ben Cook have helped me with the administrative side of CMU
every step of the way. I would particularly like to thank Pat for helping me organize weekly
lunches at SQUALL this past year. Charlotte Yano makes CSD’s open house happen, and
it’s a highlight of every year. It was great working together to design the open house
website, with the fun atmosphere of our meetings making up for the occasional stress of
my amateur webmastery. And Deb Cavlovich, our CSD graduate program manager, has
my and every other grad students’ gratitude for serving double duty as both CSD’s atlas
and CSD’s Atlas.

Outside of research, I have been fortunate to have met a number of kind and generous
friends, a woefully inexhaustive set of whom I list here. Thanks to Charlie, Alex, and
David for the many evenings we spent absorbed in Gloomhaven. Thanks to Bailey for
conversations that are equally likely to have a laugh track, a genuine moment of insight,
or both. I promise we will turn our class project into a paper some day. Thanks to Sol and
Yvonne for, among many other things, spontaneously helping me move. Thanks to Daniel
and Dhruv, with whom I interned at IBM Research, for keeping in touch, welcoming me to
New York, and always-thoughtful conversations. Thanks to Ben Blum for a meaningful
game of Spirit Island, sage advice, and foisting yummy things in my direction. For and out
of the health and goodness of your and my hearts, respectively, I will always be happy
to take home some brownies. Finally, thanks to all of my Avalon good buddies and spy
buddies. It has been a pleasure being your Percival.

This last paragraph is for my family. Tal and Noam, thank you for all of the burritos,
board games, and long talks we’'ve shared. I feel so proud whenever I visit a space and am
identified as “Tal’s brother” or “Noam’s brother”. As for Mum and Dad, it says something
about the way they raised Tal, Noam, and me that the thought of thanking them feels
strange. They have supported the three of us to a degree that dwarfs attempts at thanks to
the point of dissuading them, making it clear that no thanks are expected. As such, they
will have to settle for the unexpected: thanks, Mum and Dad @.

This thesis was supported by beverages from Round Table Coffee under Product No. 04T-M1LK-L4T T3, and by
tasty treats from Five Points Artisan Bakeshop under Product Nos. S33D3D-FOUG4553 and P3C4N-GR4N0L4.

Abstract

Queueing delays are ubiquitous in many domains, including computer systems, service
systems, communication networks, supply chains, and transportation. Queueing and
scheduling theory provide a rigorous basis for understanding how to reduce delays with
scheduling, including evaluating policy performance and guiding policy design. Unfor-
tunately, state-of-the-art theory fails to address many practical concerns. For example,
scheduling theory seldom treats nontrivial preemption limitations, and there is very little
theory for scheduling in multiserver queues.

We present two new, broadly applicable tools that greatly expand the reach of schedul-
ing theory, using each to solve multiple open problems. The first tool, called “SOAP”, is a
new unifying theory of scheduling in single-server queues, specifically the M/G/1 model.
SOAP characterizes the delay distribution of a broad space of policies, most of which have
never been analyzed before. Such policies include the Gittins index policy, which minimizes
mean delay in low-information settings, and many policies with preemption limitations.
The second tool, called “WINE”, is a new queueing identity that complements Little’s law.
WINE enables a new method of analyzing complex queueing systems by relating them
to simpler systems. This results in the first delay bounds for SRPT (shortest remaining
processing time) and the Gittins index policy in multiserver queues, specifically the M/G/k
model.

vii

viii Abstract

Contents

Acknowledgments
Abstract
Contents

List of Figures

I Introduction

1 Introduction
1.1 What Is Scheduling Theory?
1.2 Where Existing Scheduling Theory Falls Short
1.3 Two New Theoretical Tools: SOAPand WINE
1.4 Organization of This Thesis

2 Prior Work
2.1 Scheduling inthe M/G/1 L.
2.2 The Gittins Policyin Queues
2.3 Scheduling in Multiserver Systems
24 OtherRelated Work
2.5 Publications Covered in This Thesis

3 SOAP Overview
3.1 Problem: Can Analyze Only a Small Set of Scheduling Policies
3.2 Key Idea: Unifying Language for Policies Enables a Universal Analysis
3.3 Impact: Broad Class of Policies Analyzed for the First Time in the M/G/1

4 WINE Overview
4.1 Problem: Analyzing and Optimizing Scheduling in Multiserver Systems . .
4.2 Key Idea: Relate Response Time to Work, a Much Simpler Quantity
4.3 Impact: Near-Optimal Mean Response Time in the M/G/k, and More

I SOAP

5 Core Modeling Assumptions and Queueing Theory Background
5.1 WhatlIsa Queueing System? L L.

vii

ix

xiii

13
13
18
19
22
23

25
25
28
34

37
37
40
43

45

47
47

Contents

10

11

12

5.2 Primary Model: The M/G/1 with Labels
53 Scheduling
54 Queueing Metrics o Lo
55 M/G/1CrashCourse.
5.6 Additional Preliminaries L.

SOAP Policies: Describing Scheduling with Rank Functions

6.1 WhatIsaSOAP Policy?
6.2 Previously Analyzed “Simple” SOAP Policies
6.3 Newly Analyzed “Complex” SOAP Policies
6.4 What Policies Are Not SOAP?

SOAP Analysis: One Response Time Formula for All Rank Functions

7.1 Warmup with Constant Ranks: Analyzing P-Prio.
7.2 The Relevant System: What Delays the TaggedJob
7.3 Handling Rank Increases: The Pessimism Principle.
7.4 Handling Rank Decreases: Analyzing the Impact of Recycled Jobs
7.5 SOAP Response Time Formulas

Work Decomposition Laws

8.1 Total Work Decomposition
8.2 Why Work Decomposition Is Useful for the M/G/k
8.3 Relevant Work Decomposition

Practical Preemption Limitations
9.1 Limited Priority Levels
9.2 Preemption Checkpoints

Gittins vs. Simpler Substitutes

10.1 Unknown Sizes: Use SERPT
10.2 Multiclass Systems: Again, Use SERPT
10.3 Size Estimates: Use PSJF-E for Low Noise, Ignore Estimates for High Noise

Monotonic SERPT (M-SERPT)

11.1 Problem: Bounding SERPT’s Mean Response Time
11.2 Main Result: M-SERPT Is a 5-Approximation for Mean Response Time .
11.3 Approximation Ratio Lower Bounds for SERPT and M-SERPT

Adapting SRPT to Noisy Job Size Estimates

12.1 Problem: SRPT-E Can Perform Poorly Even under Low Noise
12.2 Main Result: Adding a “Bounce” to SRPT Ensures Graceful Degradation .
12.3 PSJF Has Natural Graceful Degradation

111
111
115
116

121
121
128

135
136
139
143

147
147

. 149

150

153
153

. 157

Contents xi
13 Response Time Tail of SOAP Policies 161
13.1 Problem: Analyzing the Asymptotic Response Time Tail 161
13.2 Main Results: Conditions on a Rank Function that Ensure Tail Optimality . 163
13.3 Simultaneously Optimizing the Mean and Tail of Response Time 165
13.4 Ensuring Tail Optimality when Scheduling with Preemption Checkpoints . 166
III WINE 169
14 The Markov-Process Job Model 171
14.1 Markov-ProcessJobs 171
14.2 Examples of Markov-Process Jobs and Holding Costs 174
14.3 The Gittins Policy with Markov-Process Jobs 175
15 WINE: Relating Gittins-Flavored Relevant Work to Holding Cost 179
151 SRPT-Flavored WINE 180
15.2 The Gittins Game 183
15.3 Gittins-Flavored WINE 186
16 (Approximate) Gittins’s (Approximate) Optimality in the M/G/1 189
16.1 Optimality of Gittins 189
16.2 Approximate Optimality of Approximate Gittins 190
17 Response Time of Gittins in the M/G/k 193
17.1 Main Result: Mean Response Time Bound for Gittins-k 193
17.2 Proof: Combining WINE and Relevant Work Decomposition 194
IV Conclusion 201
18 Conclusion 203
18.1 Open Problems Solved 203
18.2 Future Work 205
Appendix 209
A Index of Notation 211
A1l General 211
A2 Distributions 211
A3 M/GArrivalso 211
A4 Queueing Metrics L 212
A5 Scheduling Policies L 212

xii Contents

A.6 SOAP and Rank Functions 213
A7 Relevant Work and Related Concepts 213

Bibliography 215

List of Figures

1.1
1.2
1.3
1.4

3.1
3.2
3.3

34

3.5

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2

9.1
9.2
9.3
9.4
9.5
9.6
9.7

Single-server queueing model Lo oL 5
Known vs. uncertain jobsizes 0L 7
Single-server vs. multiserver queueing systems 8
Simple vs. complex preemption constraints L. 9
SOAP expands the set of policies we know how to analyze in the M/G/1. . 27

Describing scheduling policies with rank functions 29
Rank function of SERPT, which serves the job of least expected remaining

WOrk . .o 30
Preemption limitations can be thought of as restrictions on a SOAP policy’s

rank function 31
The Pessimism Principle 33
[lustration of SRPT-flavored WINE 41
Using WINE to analyze the mean response time of Gittins-k in the M/G/k . 43

Examples of queueing systems L. 48
The M/G/1 withlabels 51
System work over time inan M/G/1 L. 63
Tree of a job’s busy period 64
Rank functions of LASand SRPT 71
Rank functions of FCFS, LCFS, and PLCFS 76
Rank functions of SERPT and Gittins 79
Rank function of Chk-7 for some SOAP policy 7 82
Rank function of LPL-7 for some SOAP policy 7 84
Rank function of P-Prio-7 for some SOAP policy # 85
Response time is the sum of waiting time and residence time 90

Relationship between worst future rank and the underlying rank function 100

Rank function of LPL-7 for some SOAP policy 7 122
Mean response time of LPL-SRPT as a function of number of levels 124
Mean response time of LPL-PSJF as a function of number of levels 125
Mean response time of LPL-LAS as a function of number of levels 126
Rank function of Chk-LAS 129
Mean response time of Chk-LAS as a function of the service quantum . . . 130
Mean response time of Chk-LAS as a function of the service quantum, load,

and checkpoint overhead o Lo oL 132

xiv List of Figures
10.1 Example job size distributiono o oo L 136
10.2 Rank functions of Gittins and SERPT for the example job size distribution . 137
10.3 Mean response times of several scheduling policies for the example job

size distribution Lo oL 138
10.4 Worst observed mean response time ratios relative to Gittins 138
10.5 Mean response time ratios relative to Gittins for each of SERPT and P-Prio 140
10.6 Comparison of the rank functions of Gittins, SERPT, and P-Prio 141
10.7 Worst observed mean response time ratios relative to Gittins for SERPT

andP-Prio 142
10.8 Mean response time ratios relative to SRPT for several size-estimation

noiselevels L 145
12.1 Rank functions of policies for scheduling with size estimates 154
15.1 Geometry of SRPT-flavored WINE 181
17.1 Combining WINE and Relevant Work Decomposition to analyze Gittins-k 195

PART I

Introduction

CHAPTER 1

Introduction

Queueing delays occur in any system where multiple entities contend for a shared but
limited resource. The main way we measure the performance of such queueing systems is
via the delay jobs experience, with lower delay generally being more desirable. Queueing
systems occur in a plethora of domains, including computing, service operations, trans-
portation, and healthcare. This thesis is in the field of queueing theory, which studies
queueing systems in the abstract in an attempt to gain insights that apply across multiple
domains. We call the entities contending for the limited resource jobs, and we suppose the
resource they need is service provided by a server.

How can system designers reduce the queueing delay jobs experience? The most
obvious approach is to acquire more or faster servers, but this may be costly. Another
idea is to reduce the amount of service each job needs, e.g. by inventing a more efficient
algorithm, but such innovation is not always possible. This thesis focuses on a third
approach: scheduling, namely altering the strategy by which we allocate resources to
clients. Scheduling is appealing in that it is virtually free, and it can be done with the
resources and know-how one already has.

Smart scheduling can indeed significantly reduce queueing delays, but figuring out
which scheduling policy is the “smart” one can be tricky. It is not always clear how
changing a queueing system’s scheduling policy will impact delays. Scheduling design thus
requires guidance from analysis and evaluation of scheduling policies, whether theoretical
or empirical. Experiments, both real-world and in simulation, can be very helpful for
comparing a handful of policies. But the space of possible scheduling policies is vast. The
only way to gain insight all at once into the entire space of policies, or at least large subsets
thereof, is by developing the theory of scheduling in queues, the subject of this thesis.

Given the challenge and potential impact of smart scheduling, it should come as no
surprise that queueing theorists have been studying scheduling for more than half a century.
Why, then, do we need more scheduling theory? The issue is (and has always been, and
will always be) that the scheduling theory we have does not adequately match scheduling
practice. Some examples of areas where scheduling theory is lacking are the following:

+ Scheduling under uncertainty, particularly regarding how much service a job needs.

« Scheduling with multiple servers.

« Scheduling with practical preemption constraints, meaning restrictions on the server’s

ability to switch from serving one job to serving another.
We would like to develop scheduling theory for these and other practical concerns. However,
each of these concerns makes theoretically analyzing and optimizing scheduling policies,
an already difficult endeavor, even more complicated.

This thesis contributes two new queueing-theoretic tools, which we apply to study
scheduling with concerns like uncertainty, multiple servers, and preemption constrains.

4 Chapter 1 Introduction

The two tools are called SOAP and WINE. In addition to developing these tools, we apply
them to prove numerous theorems that were previously intractable.

SOAP is a unifying theory of single-server scheduling. SOAP provides a universal analysis
of a broad set of scheduling policies, thereby greatly expanding the set of policies we can
analyze theoretically. We use SOAP to study scheduling under uncertainty and scheduling
with practical preemption constraints. Chapter 3 gives an overview of SOAP and its
applications, which together constitute Part II of this thesis.

WINE is a new queueing identity that synergizes with Little’s law, another famous
queueing identity [84]. WINE enables a method of analyzing complex systems by relating
them to similar but much simpler systems. Most notably, we use WINE to analyze schedul-
ing policies for multiserver systems, which are notoriously complicated, by relating them
to analogous policies in single-server systems, which are much simpler. Chapter 4 gives
an overview of WINE and its applications, which together constitute Part III of this thesis.

The rest of this chapter is structured as follows:

+ (§ 1.1) We give some basic scheduling theory background, describing the scope of

our work and the types of questions scheduling theory can answer.

« (§ 1.2) We discuss questions related to uncertainty, multiple servers, and preemption

constraints that existing scheduling theory falls short of answering.

+ (§1.3) We explain how SOAP and WINE enable us to answer many of these previously

intractable questions.

+ (§ 1.4) We give a chapter-by-chapter overview of the rest of the thesis.

1.1 What Is Scheduling Theory?

Scheduling is a vast field. This thesis is focused on scheduling in certain types of queueing
systems, which we briefly describe below (§ 1.1.1). We then give a taste of the sorts of
questions that one can answer with scheduling theory (§ 1.1.2).

1.1.1 Scope: Scheduling in Stochastic Queueing Models

In order to theoretically study queueing systems, we need to mathematically model them.
There are a wide variety of possible modeling choices, reflecting the fact that there are a
wide variety of queueing systems in practice. The queueing models we study in this thesis
work in the following way:

« Jobs arrive to the system over time. We assume arrivals occur according to a stochastic

process,! as opposed to considering worst-case arrival sequences.
« A server can serve one job at a time.
+ A single central queue holds jobs that are waiting for service.

« Each job has an amount of work, called its size, to be done by the server.

ISpecifically, we focus throughout on M/G arrival processes. See Chapter 5 for a full description of the
queueing model.

1.1 What Is Scheduling Theory? 5

JoB DETAIL
queue server

) }remaining work
size

il 8 -

Figure 1.1. Single-server queueing model we use throughout this thesis. Jobs of varying sizes
arrive over time according to a stochastic process. During service, a job’s age increases and its
remaining work decreases (red arrow). Once a job completes, meaning once its remaining work
reaches zero, it exits the system.

« A server does work at a constant rate, so while a job is in service, its remaining work
decreases at a constant rate. We can therefore think of work as being measured in
units of time.

Figure 1.1 illustrates these concepts in the context of a single-server queueing system.

How do we evaluate the performance of a queueing model? The main metric we
consider in this work is response time, a.k.a delay or latency. A job’s response time is the
amount of time the job spends in the system, meaning the amount of time between its
arrival and the moment its remaining work reaches zero. We generally want jobs to have
low response times.

Jobs arrive stochastically over time, with different jobs experiencing different response
times. This means the system has a response time distribution, which we denote by T. We
therefore evaluate performance using this response time distribution, looking at metrics
like mean response time E[T] and the response time tail P[T > t] for various thresholds ¢.

There are many factors that affect a system’s response time distribution. The factor
we focus on in this thesis is the system’s scheduling policy, which decides which jobs to
serve at every moment in time. We consider other factors, like the number of servers or
the statistics of the stochastic arrival process, to be fixed and out of our control.

1.1.2 Questions We Can Answer with Queueing-Theoretic
Analysis

There is a single question at the core of much of the queueing-theoretic work on scheduling:
How does a system’s scheduling policy affect jobs’ response times?

In this section, we give a taste of some specific instances of this question that scheduling
theory can give insight into. For concreteness, we focus for now on a setting where
« the scheduler has knowledge of each job’s size, and thus knowledge of each job’s
remaining work;
« there is a single server; and

6 Chapter 1 Introduction

« the scheduler may freely preempt jobs, meaning interrupt one job to start serving
another, with no overhead.

Given that we generally want low response times, a natural objective is to minimize
mean response time E[T]. The scheduling policy that accomplishes this is Shortest Re-
maining Processing Time (SRPT), the policy that always serves the job of least remaining
work [116]. The intuition for SRPT’s optimality for E[T] is that by working on the job of
least remaining work, the next job completion happens as soon as possible, thus reducing
the total amount of waiting that happens across all jobs.

SRPT is appealing in that it minimizes mean response time E[T], but minimizing E[T]
is far from the only concern system designers have in practice. There are several questions
we might want to answer about SRPT before deploying it.

« There are policies that are simpler than SRPT, such as First-Come, First-Served (FCFS),
which is the default scheduling policy of most systems. Is the E[T] difference between
SRPT and FCFS worth the trouble of implementing SRPT?

« In addition to improving the average job’s experience, we would like to avoid jobs
having especially large response times. That is, we want to make sure SRPT does
not harm the tail P[T > t] for large thresholds t. How does SRPT perform in terms
of response time tail?

« SRPT prioritizes small jobs, but this means large jobs might experience longer
response times than they would under a policy that did not take into account job
sizes. Is SRPT unfair to large jobs?

Fortunately, queueing theory can give us insight into each of these questions. The key
ingredient is the queueing-theoretic analysis of SRPT, which was done by Schrage and
Miller [117] in 1966. This analysis gives a detailed characterization of SRPT’s response
time distribution T in terms of the stochastic arrival process. While the analysis of SRPT
does not by itself answer all of the questions above, it lays a theoretical foundation for
studying them. Indeed, follow-up work on SRPT has continued into the 2000s, applying
the analysis of Schrage and Miller [117] to better understand SRPT’s mean response time
[13, 14, 83, 146], response time tail [101, 103, 104], and fairness properties [15, 143-145].

1.2 Where Existing Scheduling Theory Falls Short

As we discuss in our review of prior work (Ch. 2), SRPT is far from the only policy that
has been queueing-theoretically analyzed. Nevertheless, the set of scheduling policies we
can analyze is in many ways limited, and several practical concerns remain outside the
reach of existing scheduling theory. We review three such concerns below. For each, we
ask multiple open questions, all of which we make progress on or solve in this thesis, as
indicated by forward references.

1.2 Where Existing Scheduling Theory Falls Short 7

remaining work: remaining work:
size: known known size: uncertain Riicearl
}age: known }age: known
(a) Job with known size, and thus known re- (b) Job with uncertain size, and thus uncertain
maining work. remaining work.

Figure 1.2. Known vs. uncertain job sizes.

1.2.1 Scheduling under Uncertainty

SRPT requires knowing each job’s exact size to implement. But it is often the case in
practice that job sizes are uncertain, meaning we do not know how much service a job
will need to complete, as illustrated in Figure 1.2. Uncertainty can mean having no size
information at all, having good but imperfect estimates of each job’s size, or something in
between, like very noisy size estimates.

How should one schedule in light of job size uncertainty? This question has been
studied, and there is a policy, called the Gittins policy, that is known to minimize mean
response time E[T] in preemptive single-server queueing systems when job sizes are
uncertain [44]. But, as discussed in Section 1.1.2, minimizing E[T] is not the only design
goal one might have, and there are number of questions about Gittins that remain open.

+ (Chs. 10 and 11) Gittins is a complicated policy that requires some potentially inten-

sive computation. Is the E[T] reduction Gittins provides worth the implementation
complexity, or do simpler alternatives suffice?

+ (Ch. 16) One way we might simplify Gittins is to accept approximations in its

underlying computations. Would such approximation significantly degrade E[T]?

+ (Ch. 13) How does Gittins perform in terms of response time tail P[T > t]?
Unfortunately, unlike SRPT, Gittins has never been queueing-theoretically analyzed, mak-
ing it difficult to study these questions.

1.2.2 Scheduling in Multiserver Systems

The vast majority of existing analyses of scheduling policies are for single-server queueing
systems. But multiserver queueing systems are ubiquitous. For instance, in computing,
multiserver systems occur at every scale, from the multiple CPU cores in a mobile device’s
to the thousands of machines in a data center.

How should we schedule in multiserver systems? Unfortunately, queueing theory
has relatively little to say about multiserver systems. This is because even the very sim-
plest scheduling policies, like FCFS, become intractable to exactly analyze in multiserver
queueing models, like the one shown in Figure 1.3.

As an example of the sort of question we might hope to answer, suppose we want to
minimize mean response time E[T] in a setting with known job sizes and unrestricted

8 Chapter 1 Introduction

S

i1@;

(a) Single-server system. (b) Multiserver system.

Figure 1.3. Single-server vs. multiserver queueing systems.

preemption. In a single-server setting, SRPT is optimal. In a multiserver setting, it is known
that SRPT is not perfectly optimal,? but beyond that, we know very little about SRPT’s
response time. Is SRPT nearly optimal for E[T] in multiserver systems, or is another policy
much better (Ch. 17)? Unfortunately, unlike single-server SRPT, multiserver SRPT has
never been queueing-theoretically analyzed.

We can of course ask an analogous question for the setting of uncertain job sizes. Is a
multiserver version of Gittins nearly optimal for E[T] in multiserver systems (Ch. 17)?
Given that there is no analysis of Gittins in single-server systems, let alone multiserver
systems, scheduling theory is even further from answering this question.

1.2.3 Scheduling with Practical Preemption Constraints

Most queueing-theoretic analyses of scheduling policies take one of two extreme stances
on preemption.
« Some work considers the fully nonpreemptible case, where once a job begins service,
it must stay in service until it completes.
 Other work considers the fully preemptible case, where jobs may be interrupted at
any time with no overhead or loss of work. For example, the single-server analysis
of SRPT [117] considers this case.
But many systems in practice lie between these two extremes. It might be that jobs are only
sometimes preemptible, as illustrated in Figure 1.4, or preemption may incur an overhead.
How should we schedule in light of practical preemption constraints? This is a very
broad question, because there are many possible preemption practicalities. Some more
concrete examples are the following:
+ (Ch. 9) In many some settings, jobs can only preempted at certain checkpoints.
An example is scheduling packet flows in a network, where it is undesirable to
stop transmission in the middle of a packet. Frequent checkpoints permit flexible

2SRPT’s suboptimality for E[T] in multiserver systems follows from prior work [81], but the details are
somewhat subtle. We discuss this further in our review of prior work in Chapter 2.

1.3 Two New Theoretical Tools: SOAP and WINE 9

preemption
allowed
job starts job completes
preemption preemption | preemption | preemption | preemption
not allowed allowed |notallowed | allowed | not allowed
job starts job completes job starts job completes
(a) Simple preemption constraints: preemption (b) Complex preemption constraints: preemp-
is either always allowed or never allowed. tion is sometimes but not always allowed.

Figure 1.4. Simple vs. complex preemption constraints.

preemption, but checkpoints may incur an overhead, e.g. a packet header. How do
we balance the tradeoff between preemption flexibility and avoiding overhead?

+ (Ch. 9) In network switches and other computing contexts, it is often the case that
scheduling policies must be designed to work with only a limited number of priority
levels [57, 96]. This precludes perfectly implementing SRPT, which uses a continuum
of priority levels. How should we adapt SRPT to fit into a small number of priority
levels? How many levels do we need for good mean response time?

+ (Ch. 16) In the fully preemptible setting with uncertain job sizes, the Gittins policy
is known to minimize mean response. Can we generalize Gittins and its optimality
proof to settings with preemption constraints?

1.3 Two New Theoretical Tools: SOAP and WINE

The main contribution of this thesis is introducing two new queueing-theoretic tools,
SOAP (§ 1.3.1) and WINE (§ 1.3.2), which we can use to at least begin to answer all of the
questions mentioned throughout Section 1.2.

1.3.1 SOAP: Unifying Theory of Single-Server Scheduling

SOAP consists of two new contributions.

+ (Ch. 6) SOAP policies: a newly identified broad class of scheduling policies.

+ (Ch. 7) SOAP analysis: a universal formula that characterizes the response time

distribution of a single-server system using any given SOAP policy.

SOAP stands for Scheduled Ordered by Age-based Priority, a phrase which briefly describes
the class of SOAP policies.

SOAP policies include a significant fraction of policies that have previously been
analyzed in single-server systems, such as FCFS and SRPT. But SOAP policies also includes
an infinite array of policies that have never previously analyzed, such as Gittins. The SOAP

10 Chapter 1 Introduction

analysis thus unifies many previous queueing-theoretic analyses while also generalizing
them far beyond what they could previously handle.

We use SOAP to answer numerous questions about scheduling in single-server systems.
For instance, Gittins is a SOAP policy, so we can use the SOAP analysis as a basis for
answer questions about Gittins. These include understanding Gittins’s response time tail
(Ch. 13) and determining when we can achieve near-optimal performance with simpler
alternative policies (Chs. 10 and 11). For example, we show that in systems with noisy size
estimates, if the noise is not too large, one can get near-optimal mean response time with
very simple policies (Ch. 12).

SOAP policies also include many policies that operate under preemption limitations,
so we can apply the SOAP analysis to answer questions about such policies (Ch. 9). These
include policies that use only a limited number of priority levels and policies that only
preempt jobs at certain checkpoints. For example, we characterize how the spacing between
checkpoints can affect the response time tail (Ch. 13).

1.3.2 WINE: New Queueing Identity

WINE is a new queueing identity that comes in many “flavors”. Its simplest flavor gives
a formula for the number of jobs in a queueing system, which we denote by N. WINE
expresses N in terms of a quantity which is related to system work, the total remaining
work of all jobs in the system (Ch. 15). Crucially, WINE holds in any queueing system,
whether single-server or multiserver. WINE stands for Work Integral Number Equality, a
phrase which briefly describes the identity.

Why might we want to know the number of jobs N in a queueing system? In some
systems, we might directly care about analyzing or optimizing metrics related to N, e.g. to
ensure adequate buffer size. But even if we only care about response time T, understand-
ing N still helps. Another queueing identity, Little’s law [84], states that E[T] and E[N]
are directly proportional, so minimizing E[T] and minimizing E[N] are equivalent goals.

WINE relates the number of jobs N, and therefore also mean response time E[T], to
system work. Why is this a useful relationship? It turns out that this is a crucial step
for analyzing multiserver systems. Determining E[T] for multiserver systems is very
challenging, even under simple scheduling policies like FCFS [73, 82], and using more
complex policies like SRPT and Gittins only increases the challenge. But it turns out that
analyzing system work in multiserver systems is more tractable. We derive new bounds
on system work (Ch. 8), which we use to give the first analyses of SRPT and Gittins in
multiserver systems.

While our main motivation for developing WINE is analyzing multiserver systems,
WINE also proves useful in single-server settings (Ch. 16). For example, we use WINE to
show that approximately computed Gittins still has approximately optimal mean response
time. This approximation result, in addition to being an interesting result in its own right,
turns out to itself have multiple applications throughout this thesis (Chs. 12 and 13).

1.4 Organization of This Thesis 11

1.4

Organization of This Thesis

We give a chapter-by-chapter summary of this thesis below. If in doubt, we recommend
that most readers start with Chapters 3 and 4, which give overviews of SOAP and WINE.

1.4.1

Parts | and IV: Motivation, Context, and Main Ideas

Chapter 1, the chapter you are reading now, gives a high-level description of the
problems this thesis aims to solve.

Chapter 2 reviews prior work. It also explains the relationship between the work
presented in this thesis and my prior publications on that work.

Chapter 3 gives an overview of SOAP, explaining the problem SOAP solves, one
of the key ideas behind how SOAP works, and the impact SOAP has in terms of
questions it helps us answer.

Chapter 4 gives an analogous overview of WINE.

Chapter 18 concludes by summarizing the problems solved in this thesis and dis-
cussing future directions.

1.4.2 Part1l: SOAP and Its Applications

Chapter 5 describes the queueing model we work with throughout Part II.

Chapter 6 defines the class of SOAP policies.

Chapter 7 carries out the SOAP analysis. The end result is a generic formula that
works for any SOAP policy.

Chapter 9 numerically applies the SOAP analysis to answer questions about schedul-
ing in systems with practical preemption limitations. These limitations include
having a limited number of priority levels and being restricted to preempt only at
certain checkpoints.

Chapter 10 numerically applies the SOAP analysis to investigate scheduling under
uncertainty. The specific question we focus on is whether we can achieve near-
optimal mean response time with policies that are simpler than the theoretically
optimal but complex Gittins policy.

Chapter 11 theoretically applies the SOAP analysis to prove that a newly proposed
policy achieves mean response time within a constant factor of optimal, despite
being much simpler than Gittins.

Chapter 12 theoretically applies the SOAP analysis to investigate how to design
policies that are robust to job size estimation errors. The policies we propose can make
use of high-quality job size estimates when they are available, and their performance
degrades gracefully as estimate quality decreases.

Chapter 13 theoretically applies the SOAP analysis to analyze the response time
tail P[T > t] of SOAP policies for large thresholds ¢. One of our results is that Gittins,
in addition to optimizing mean response time, sometimes also optimizes the response

12 Chapter 1 Introduction

time tail’s asymptotic decay.
For brevity, while we give the full technical details for the development of SOAP itself,
the chapters with theoretical applications summarize results and key ideas, with full proofs
outsourced to my prior publications.

1.4.3 Part lll: WINE and Its Applications

 Chapter 14 describes the queueing model we work with throughout Part III, which
is somewhat more general than the model we use in Part II. We also generalize the
Gittins policy to work in this more general model.

+ Chapter 15 presents the WINE queueing identity.

« Chapter 16 applies WINE to solve problems in single-server scheduling. One of
the main results is that Gittins’s performance degrades gracefully if its underlying
computations are approximated.

 Chapter 17 applies WINE to analyze SRPT and Gittins in multiserver systems, proving
bounds on their mean response times. The bounds are tight enough to imply that both
policies, which are optimal in single-server systems, are in some sense near-optimal
in multiserver systems.

CHAPTER 2

Prior Work

The two tools introduced in this thesis, SOAP and WINE, build on an extensive literature
of prior work in queueing theory and related fields. Most of this work fits into one of the
following categories.

+ (§ 2.1) Analyzing scheduling policies in the M/G/1. SOAP builds on this line of work,
unifying and generalizing a significant portion of it.

+ (§ 2.2) Defining and proving optimality of different versions of the Gittins policy,
which optimally solves several scheduling problems in the M/G/1. Unifying and
generalizing this line of work is one of the key steps in developing WINE.

« (Ch. 2) Work on central-queue multiserver systems, and in particular the M/G/k.
Most of this assumes First-Come, First-Served (FCFS) scheduling, but there is some
work on other scheduling policies. We apply WINE to contribute new results to this
line of work.

There are also a number of other topics which are either related to individual chapters or
are more tangentially related (§ 2.4). We conclude the chapter by clarifying the relationship
between this thesis and the publications of mine that it builds upon (§ 2.5).

2.1 Scheduling in the M/G/1

The M/G/1 is one of the canonical single-server queueing models [67], and there is an
extensive body of queueing theory literature that analyzes scheduling policies in the
M/G/1. See Cox and Smith [28] and Conway et al. [27] for influential early treatments of
the subject, and see Harchol-Balter [55, Part VII] for a modern overview.

This section begins by giving a history of analyzing scheduling policies in the M/G/1
(§ 2.1.1). We then review several ways these analyses have been applied (§§ 2.1.2-2.1.4).
Finally, we describe how SOAP builds upon this prior work, pointing out some important
precursors to its unifying analysis (§ 2.1.5).

A few of the results mentioned throughout apply to models more general than the
M/G/1, but for simplicity of exposition, we discuss only their implications for the M/G/1.

2.1.1 A Brief History of M/G/1 Scheduling

Static Priority

The first analyses of the M/G/1 are the seminal works of Pollaczek [108, 109] and Khint-
chine [70] in the early 1930s. Both results are for First-Come, First-Served (FCFS), which is
one of the simplest scheduling policies.

13

14 Chapter 2 Prior Work

From the perspective of this thesis, FCFES is a policy where all jobs always have the same
static priority, with ties within a priority broken by arrival order. One can imagine other
ways of breaking ties, which results in other scheduling policies. These include Last-Come,
First-Served (LCFS) [134], Random Order of Service (ROS) [72, 134], Preemptive Last-Come,
First-Served (PLCFS) [65, 100], and Processor Sharing [66, 74, 112, 153, 154], which were
analyzed in the 1960s and 1970s. Some of these policies, particularly PS, are significantly
more complicated to analyze than FCFS.

The 1950s and 1960s saw the first analyses of scheduling policies where different jobs
have different priorities. This includes the Nonpreemptive Priority (NP-Prio) [68, 69, 135]
and Preemptive Priority (P-Prio) [89, 135] policies, depending on whether a job is preempted
if a new job of higher priority arrives during its service. While both NP-Prio and P-Prio
assign different jobs different priorities, we can still view them as static priority policies,
because a job’s priority does not change after it arrives.

Dynamic Priority

The 1960s also saw the first analyses of scheduling policies with dynamic priorities, where
a job’s priority can change after it arrives. The two most notable examples are the following
o Shortest Remaining Processing Time (SRPT), analyzed by Schrage and Miller [117] in
1966. SRPT preemptively serves the job of least remaining work. SRPT is significant

in that it minimizes mean response time [116].

« Least Attained Service (LAS), analyzed by Schrage [115] in 1967. LAS preemptively
serves the job of least age, meaning the job that has been served the least so far. This
can result in sharing the server equally between multiple jobs if there is a tie for
least age.

Both of these policies have dynamic priority in that a job’s priority changes during service.
Under SRPT, a job’s priority gets better as its age increases, while under LAS, a job’s
priority gets worst as its age increases.

A number of other policies where a job’s priority varies during service have been
analyzed since the analyses of SRPT and LAS [48, 49, 74, 75, 105, 146]. All of these are in
the class of policies analyzed by SOAP, so we cover them in Section 2.1.5 when discussing
precursors to SOAP.

The past decade has seen progress on analyzing scheduling policies with a different
type of dynamic priority called accumulating priority, where a job’s priority improves over
time even if it is not in service. Stanford et al. [131] analyze Nonpreemptive Accumulating
Priority (NP-Acc-Prio), and Fajardo and Drekic [38] analyze Preemptive Accumulating
Priority (P-Acc-Prio). These developments are complementary to SOAP, as both policies
fall outside the class of policies SOAP can analyze.

How Does Analyzing a Policy Help?

In the above discussion, analyzing a scheduling policy in the M/G/1 means characterizing
its response time distribution, typically through a Laplace-Stieltjes transform. In many

2.1 Scheduling in the M/G/1 15

cases, conditional response time distributions are also characterized, such as the response
time distribution of jobs of a given size. However, these characterizations are often given
in an implicit form, which makes them just the first step to gaining insight into scheduling
design. In the following sections, we review several ways in which the analyses above
have been applied to answer questions about scheduling design.

2.1.2 Heavy-Traffic Scaling of Mean Response Time

A famous fact in queueing theory is that the mean response time of an M/G/1 under FCFS
increases as a function of the system’s load (a.k.a. utilization), a parameter p € [0, 1)
describing how busy the system is. One interpretation is that p is the fraction of time
that the server is busy, which must be less than 1 to ensure stability. For a fixed job size
distribution, FCFS’s mean response time E[Trcrs] scales as

1
E[Trcrs] = @)(—)
I-p
in the p — 1 limit, which is known as the heavy-traffic regime. The same scaling applies
to several other policies, such as LCFS, ROS, PLCFS, and PS.

The above state of affairs prompts a question: is it possible to schedule in a way that
improves upon the @(ﬁ) scaling? A natural place to start is SRPT, which minimizes
mean response time [116]. Bansal [13] gives the first result on the heavy-traffic scaling of
SRPT, showing that for exponential job sizes,

1 1
el = Q(W) ()

Further work shows similar results for general size distributions with infinite support
(14, 83].

Heavy-traffic analysis of mean response time under other scheduling policies with
dynamic priorities is relatively scarce. We are aware of only two instances: Kamphorst
and Zwart [64] and predecessors [14, 102] characterize the heavy-traffic scaling of LAS,
and Bansal et al. [16] characterize the heavy-traffic scaling of a policy called Randomized
Multi-Level Feedback (RMLF) [17, 63].

We have used SOAP to obtain new heavy-traffic analyses in the M/G/1 [119], though
we do not cover these results in this thesis.

2.1.3 Asymptotic Response Time Tail

The response time characterizations of Section 2.1.1 do not usually yield nice formulas
for the response time tail P[T > t]. As such, queueing theorists turn to a more tractable
problem: analyzing the asymptotic response time tail, namely the behavior of P[T > t] in
the t — oo limit. We refer the reader to Boxma and Zwart [23] for a survey of this topic,
reviewing just the main takeaways below.

16 Chapter 2 Prior Work

Heavy-Tailed Size Distributions

When the job size distribution is heavy-tailed, meaning (roughly speaking) Pareto-like,
Nufiez-Queija [101] shows that SRPT, LAS, and PS are all tail-optimal [101, 103], meaning
P[T > t] decays as quickly as possible in a big-® sense in the t — oo limit. In contrast,
FCFS is tail-pessimal [20, 25], meaning P[T > t] decays as slowly as possible.

We use SOAP to provide a simple sufficient condition which implies tail optimality
in the heavy-tailed case, which greatly expands the set of policies that are known to be
tail-optimal (Ch. 13). Most notably, we show that the Gittins policy satisfies the condition,
so it is tail-optimal.

Light-Tailed Size Distributions

The situation for light-tailed job sizes is essentially the reverse of the heavy-tailed case:
FCFS is tail-optimal [23, 133], while SRPT, LAS, and PS are all tail-pessimal [102, 103].
Wierman and Zwart [149] show that this is inevitable: policies can be tail-optimal for
either heavy-tailed or light-tailed job size distributions, but not both.

Wierman and Zwart [149] also conjecture that FCFS is tail-optimal not just in a big-©
sense, but that the leading constant is also optimal. However, Grosof et al. [53] show that
the leading constant can be improved. The policy they use to do so, called Nudge, is not
a SOAP policy, and our results suggest that no SOAP policy can match Nudge’s leading
constant (Ch. 13).

2.1.4 Fairness

It is known that SRPT minimizes mean response time [116]. However, because SRPT
prioritizes small jobs, there is a concern that SRPT might treat large jobs unfairly. This
gives rise to the study of several fairness metrics [15, 143-145], which attempt to quantify
the degree to which a scheduling policy pays adequate attention to jobs of all sizes. One
result is that for the purposes of mean response time, SRPT is, perhaps surprisingly, often
as fair as PS [144], which due to its symmetry is a common benchmark for fairness.

One could in principle use the SOAP analysis as a basis for proving results about
fairness, but we have not yet done so.

2.1.5 Precursors to SOAP

SOAP (Chs. 3, 6, and 7) greatly expands the set of scheduling policies we can analyze in
the M/G/1. Roughly speaking, SOAP can analyze any policy where a job’s priority varies
during service, but stays the same as long as the job is not in service, a class we call SOAP
policies. There are two ways in which SOAP is notable:
« The class of SOAP policies is very broad and includes many relatively complex
scheduling policies.
« SOAP gives a universal analysis that applies to all SOAP policies at once.

2.1 Scheduling in the M/G/1 17

With that said, SOAP is neither the first analysis of a relatively complex scheduling policy,
nor is it the first universal analysis of an entire class of scheduling policies. This section
reviews precursors to SOAP in both of these categories.

Analyzing Increasingly Complex Scheduling Policies

The first analyses of policies with dynamic priorities were for relatively simple policies,
namely SRPT and LAS [115, 117]. These initial analyses use a technique called the tagged
job approach, which analyzes response time by following a generic “tagged” job in its
journey through the system.

Queueing theorists were quick to recognize that the tagged job approach could be used
for a wide variety of scheduling policies, many more complex than SRPT and LAS. To
name just a few, the tagged job approach has been used to analyze

« a version of SRPT with preemption checkpoints [48],

« versions of LAS with limited priority levels [86, 115],

« aversion of P-Prio that uses SRPT within each class [49],

« policies that use noisy job size estimates instead of exact job sizes [36, 92], and
« special cases of the Gittins policy [105].

All of these analyses follow a similar strategy, though the details are different in each case.
It turns out that these similarities are not coincidental: all of the above policies are SOAP
policies. The SOAP analysis thus unifies all of the above analyses.

The MLPS Class

There are two significant classes of policies that have been analyzed prior to SOAP in a
unified way. The first of these is the Multi-Level Processor Sharing (MLPS) class, introduced
and analyzed by Kleinrock and Muntz [75]. MLPS consists of policies that combine FCFS,
LAS, and PS in the following way. We partition R, into a number of intervals called
levels, with the ith level denoted by [aj, a;4+1). Jobs are prioritized by the level their age is
in, with lower levels having better priority. This means that much like LAS, a job’s priority
generally gets worse as its age increases. However, each level i uses one of FCFS, LAS, or
PS to analyze jobs within that level. The analysis of MLPS is generic in the sense that with
a single analysis, it gives the mean or Laplace-Stieltjes transform of response time in terms
of the level boundaries a; and the policy used in each level. See Kleinrock [74, § 4.7] for a
comprehensive account.

SOAP contains all MLPS policies that use only FCFS or LAS within each level. However,
the MLPS analysis of Kleinrock and Muntz [75] requires a restriction on the job size
distribution when a level uses PS. As such, SOAP strictly generalizes the MLPS analysis
for the case for fully general job size distributions.

18 Chapter 2 Prior Work

The SMART Class

The second significant class of policies analyzed prior to SOAP in a unified way is the
SMAII Response Times (SMART) class, introduced and analyzed by Wierman et al. [146].
Roughly speaking, SMART includes policies that, like SRPT, prioritize smaller jobs over
larger jobs, with a job’s priority possibly getting better during service. Among the results
of Wierman et al. [146] is that all SMART policies have mean response time within a factor
of 2 of SRPT.

SOAP contains only a subset of SMART policies. However, the SMART analysis of
Wierman et al. [146] gives only bounds on response time. As such, for most of the subset
of SMART that SOAP includes, SOAP gives the first exact response time analysis.

We note that Wierman and Nuyens [147] introduce and analyze an extension to the
SMART class called e-SMART, which includes policies that use inexact job size estimates.
Unfortunately, the response time bounds obtained for e-SMART are significantly looser
than the corresponding bounds for SMART. SOAP can be used to compute exact response
time results for many e-SMART policies.

2.2 The Gittins Policy in Queues

The Gittins policy [44], named after its principal inventor [45], is a policy that minimizes
mean response time in the M/G/1 queue when job sizes are unknown. Actually, Gittins is
somewhat more general than this: for a wide variety of M/G/1 models, Gittins minimizes the
mean total holding cost of jobs in the system, where each job may have a different holding
cost. This is because Gittins is not really a single policy but rather a policy construction:
given a stochastic model of what the scheduler knows about each job and a holding cost
function, we can construct a version of Gittins that minimizes mean holding cost. By
Little’s law [84], minimizing mean response time corresponds to the case where all jobs
have the same constant holding cost.

We note that versions of the Gittins policy have also been used extensively outside of
queueing. See Gittins et al. [44] for a recent treatment of the topic.

2.2.1 Analyzing Gittins’s Response Time

There has been some work on characterizing properties of Gittins [3, 4], but aside from
some special cases [105, 141], the actual mean response time or mean holding cost achieved
by Gittins is not known, let alone other properties of Gittins’s response time distribution.

Fortunately, Gittins is a SOAP policy, so we are able to use SOAP to obtain the first full
analysis of Gittins’s response time distribution, which plays a role in many of our results
(Chs. 10, 11, and 13).

2.3 Scheduling in Multiserver Systems 19

2.2.2 Proofs of Gittins’s Optimality

Given that Gittins is more of a policy construction than a single policy, it should come
as no surprise that there are many proofs of Gittins’s optimality in the M/G/1 [18, 28,
29, 43, 76, 79, 116, 128, 128, 136, 141]. Each proof makes different assumptions on what
information the scheduler knows about each job, what structure the job size distribution
has, when preemption is allowed, and when a job’s holding cost can change. Many of the
proofs also have technical limitations which are seldom acknowledged in the literature.
See Scully and Harchol-Balter [122, Section II] for a detailed review of these prior proofs.

We use WINE to give a unified account of Gittins’s optimality in the M/G/1, unifying
and generalizing the prior proofs cited above (Ch. 16). Moreover, our approach naturally
extends to give performance bounds on variations of Gittins where a job’s priority is
computed only approximately. Key to our approach is a very general job model that can
capture many types of uncertainty the scheduler might have about a job’s remaining work
(Ch. 14).

2.2.3 Precursors to WINE

WINE (Chs. 4 and 15) is a queueing identity that gives a formula for the number of jobs
in the system, or more generally for the total holding cost of jobs in the system. WINE is
intimately tied to the Gittins policy. Roughly speaking, each version of Gittins gives rise
to a new version of WINE.

Just as prior proofs of Gittins’s optimality are special cases of our proof (Ch. 16), there
have a number of previously introduced identities that are special cases of WINE. These
include results of Glazebrook and Nifio-Mora [47, Lem. 3] and Glazebrook [46, Thm. 1(a)],
who, as we discuss further in Section 2.3.2, analyze versions of Gittins in multiserver
queues. In addition to our presentation of WINE being more general, we believe our
statement and proof is also easier to understand. With that said, one advantage of the
presentations of Glazebrook and Nifio-Mora [47] and Glazebrook [46] is that they make
clear the connection between WINE and a previous technique called the achievable region
method [18, 29], which lurks behind our presentation without making itself fully visible.

There are other identities that are similar to WINE, though not special cases of it, that
have been used to analyze scheduling policies. These include results of Righter et al. [111,
Lem. (3.12)] and Banerjee et al. [12, Lem. 13], the latter of which has a common special
case with WINE but generalizes it in a different direction.

2.3 Scheduling in Multiserver Systems

Multiserver systems like the M/G/k have posed a significantly greater challenge to queueing
theory than single-server systems like the M/G/1. For example, Kingman [73] highlights
analyzing the M/G/k as a challenge to revisit as queueing theory enters its second century.

20 Chapter 2 Prior Work

2.3.1 Approximate Analyses of the M/G/k under FCFS

While much progress towards understanding the M/G/k has been made in queueing
theory’s first century, the vast majority of it is for FCFS scheduling. This progress has come
partly in the form of response time bounds, for which Li and Goldberg [82] provide both
both an excellent overview and a remarkable recent example. Other work on the M/G/k
includes determining when response time moments are finite [113, 114, 138], diffusion
approximations [71, 139, 152], and heavy-traffic analyses [77, 78].

While we prove results for SRPT and Gittins in the M/G/k, we have relatively little to
say about the M/G/k under FCFS, except in the few special cases where Gittins reduces
to FCFS. This suggests that using policies designed to lower mean response time might
actually make the M/G/k easier to analyze.

2.3.2 Scheduling in the M/G/k and Similar Models

There has been some progress on analyzing scheduling policies in the M/G/k, but it is
limited to relatively simple policies like P-Prio [56, 91, 130]. Moreover, these results assume
phase-type size distributions.

We use WINE to provide the first analyses of SRPT and Gittins in the M/G/k, without
any assumptions on the size distribution (Ch. 17). There is some prior work on SRPT and
Gittins in multiserver settings, which we review below.

Multiserver SRPT

SRPT has been studied in central-queue multiserver systems with adversarial arrival
processes, as opposed to the stochastic arrival processes of traditional queueing models
like the M/G/k. Specifically, it is known that even though SRPT minimizes mean response
time in single-server systems with adversarial arrivals [116], SRPT becomes suboptimal
with multiple servers. Specifically, Leonardi and Raz [81] show that the competitive ratio
of SRPT. Nevertheless, Leonardi and Raz [81] also show that SRPT is in some sense the
best one can do in multiserver systems.

One can show that even with the stochastic arrivals of the M/G/k, SRPT is still subop-
timal.! However, the existing bounds on SRPT for adversarial arrivals [81] are too loose
to give a good sense of whether SRPT is close to optimal. We resolve this question by
showing that SRPT is indeed close to optimal in the M/G/k (Ch. 17).

Concurrently with the work that led to this thesis, Dong and Ibrahim [34] have analyzed
the heavy-traffic behavior of SRPT in a setting with customer abandonment. This work
is complementary to ours. For instance, they consider a steady-state overloaded regime,
which exists due to abandonment, while we only consider systems with load less than the
service capacity.

Personal communication with Isaac Grosof, August 2022. Roughly speaking, even though arrivals are
stochastic in the M/G/k, there is a positive probability of arrival sequences similar to those Leonardi and
Raz [81] construct to show SRPT’s suboptimality under adversarial arrivals.

2.3 Scheduling in Multiserver Systems 21

Multiserver Gittins

Both Glazebrook and Nifio-Mora [47] and Glazebrook [46] analyze particular cases of
the Gittins policy in the M/G/k, bounding its mean response time or, more generally,
mean holding cost. However, both results make restrictive assumptions on the job size
distributions, and both consider cases where, roughly speaking, jobs are always in one
of finitely many states.? The means that there is a “worst state” in which jobs have
their maximum possible expected remaining work, and this maximum possible expected
remaining work plays a role in the bound. But there are plenty of scenarios where there is
no upper bound on jobs’ expected remaining size, such as scheduling with unknown sizes
under a heavy-tailed size distribution. Our work on Gittins in the M/G/k overcomes this
obstacle with an analysis that works for any size distribution, without assuming finitely
many job states (Ch. 17).

Multiserver Gittins has also received some attention in the adversarial scheduling
literature. For example, Megow and Vredeveld [87] study scheduling with adversarial arrival
times but stochastic job sizes. The prove that Gittins is a constant-factor approximation for
mean completion time. However, completion time is a subtly different metric than response
time: a job’s response time is its completion time minus its arrival time. This means that
while minimizing mean completion time and mean response time are equivalent objectives,
approximation ratios for completion time do not carry over to response time. Our work on
Gittins in the M/G/k thus avoids working with completion time, instead reasoning directly
in terms of response time (Ch. 17).

2.3.3 Scheduling in More Complicated Multiserver Models

In addition to central-queue multiserver systems, scheduling and related problems have
been considered in more complicated multiserver architectures. These include

 immediate-dispatch systems [61, 62, 81],

« systems with redundant job replicas [6, 7, 41, 42],
polling systems [19, 21, 148],

« input-queued switches [37, 59, 60, 85, 132], and

« systems where jobs occupy multiple servers [58, 137, 151].
We have only just begun to understand scheduling in these systems. For instance, the
literature on input-queued switches provides sophisticated algorithms for deciding which
of many possible subsets of queues to serve, but the scheduling policy within each queue
is always assumed to be FCFS.

We have taken a first step in this direction, studying immediate-dispatch systems with
SRPT scheduling at each queue [51], though we do not cover this result in this thesis.

2Specifically, Glazebrook and Nifio-Mora [47] analyze the preemptive M/M/1 with Bernoulli feedback, in
which jobs can be modeled as finite-state Markov chains; and Glazebrook [46] analyzes (a generalization
of) the nonpreemptive M/G/1 with Bernoulli feedback, in which jobs are piecewise-deterministic Markov
processes with continuous state spaces, but preemption is allowed in only finitely many states. See Chapter 14
for more on modeling jobs as Markov processes.

22 Chapter 2 Prior Work

2.4 Other Related Work

2.4.1 Work Decomposition Laws

Chapter 8 is about work decomposition laws. These are theorems that decompose the
steady-state amount of work in a queueing system into a sum of two random variables,
one of which is the amount of work in a simpler queueing system. Our results follow in
the tradition of a long line of work on decomposition laws [22, 39, 40, 46, 47, 94]. While
we believe our results are new, they are a natural extension of known decomposition
laws. Roughly speaking, we apply the techniques of Miyazawa [94] to a wider variety of
systems. This yields decomposition results similar to those of Glazebrook and Nino-Mora
[47, Thm. 1] and Glazebrook [46, Lem. 1], but our results are more general, and our proofs
are significantly simpler.

2.4.2 Size Estimates

Chapters 10 and 12 both study scheduling with noisy size estimates. This is a setting where
the scheduler learns an estimate of each job’s size when it arrives and must make do with
these estimates when scheduling.

Most work on scheduling with size estimates has used simulations, with Dell’Amico
et al. [32] starting a fruitful series of simulation studies [5, 30, 31, 36, 92, 93]. While there
has been some analytical work on scheduling with size estimates [36, 92], the analysis is
still applied numerically.

Our study of size estimates uses the SOAP analysis applied both numerically and
theoretically, building on the prior work in two ways. First, thanks to the flexibility of
SOAP, we can compare against the policy that minimizes mean response time, namely
Gittins, resulting in new insights (Ch. 10). Second, we use SOAP to prove mean response
time guarantees on policies for scheduling with size estimates, yielding theoretical results
that hold for a range of noise models (Ch. 12).

We note that the e-SMART policies of Wierman and Nuyens [147] are related to
scheduling with size estimates, but they are not quite the same. This is because e-SMART
policies assume dynamically updating estimates for a job’s remaining work, as opposed to
a static estimate of a job’s initial size.

2.4.3 Practical Preemption Limitations

Limited Priority Levels

Some systems only give the scheduler a limited number of priority levels to work with. A
notable example is network switches, which might have, say, eight priority levels. One of
the challenges to using policies like SRPT in systems with limited priroity levels is deciding
how to partition the range of possible remaining work amounts, or more generally the
range of possible ideal priorities, into a small number of levels. Work in the systems

2.5 Publications Covered in This Thesis 23

literature has contended with this question in settings like network switches [96], web
servers [57], GPU cluster scheduling [54], and TCP flow scheduling [86].

We use SOAP to study scheduling with limited priority levels (Ch. 9). While we do not
model all of the concerns of the aforementioned systems, we arrive at similar conclusions,
particularly for adapting SRPT to limited priority levels [57, 96].

Preemption Checkpoints

Some systems do not allow preempting jobs at any time but instead have preemption
checkpoints. Preempting a job between checkpoints may be disallowed, or it may be
undesirable due to the risk of losing progress. Most queueing-theoretic prior work on
preemption checkpoints studies the problem of placing checkpoints to minimize lost
progress [8, 33, 99].

To the best of our knowledge, the only queueing-theoretic work on preemption check-
points in scheduling is that of Goerg [48], who analyzes a version of SRPT with preemption
checkpoints. Using the analysis, Goerg [48] studies the question of how frequent pre-
emption checkpoints should be to ensure good mean response time, assuming that each
checkpoint incurs some overhead. We use SOAP to study an analogous question about
LAS with preemption checkpoints (Ch. 9).

2.4.4 Scheduling in Adversarial Models

This chapter has focused almost exclusively on scheduling in the queueing theory commu-
nity. However, scheduling has also been studied extensively by the algorithms community,
typically with adversarial arrivals or all arrivals in a single initial batch. See Pinedo [107]
and Lenstra and Shmoys [80] for recent treatments of this area. Throughout this chapter,
we have mentioned a few scheduling results from the algorithms community that are
particularly related to problems studied in this thesis [10, 11, 17, 63, 81, 87, 110].

2.5 Publications Covered in This Thesis

This thesis is based on a number of publications of which I was a coauthor. These publica-
tions are listed below, along with the chapters based on them. We also comment on ways
where either prior publications or the thesis goes beyond what the other covers.

+ (Chs. 6 and 7) Scully et al. [124] introduces SOAP. We have slightly extended SOAP
in a subsequent publication [121], but we do not cover the extension here.

+ (Chs. 9 and 10) Scully and Harchol-Balter [123] numerically applies the SOAP analysis
to study practical scheduling questions. The second half of Chapter 10 is new material
not covered in the paper.

 (Ch.11) Scully et al. [125] introduces a simple scheduling policy whose mean response
time is comparable to Gittins’s. We give just an overview here, referring the reader
to the paper for full proofs.

24

Chapter 2 Prior Work

(Ch. 13) Scully et al. [127] and Scully and van Kreveld [126] characterize the asymp-
totic response time tail of Gittins and other SOAP policies. We give just an overview
here, referring the reader to the papers for full proofs.

(Ch. 12) Scully et al. [120] studies scheduling with noisy size estimates. We give just
an overview here, referring the reader to the paper for full proofs.

(Chs. 8 and 17) Scully et al. [118] analyzes SRPT and Gittins in the M/G/k. This paper
is the culmination of other work of ours on multiserver scheduling [50, 51, 119], but
we do not cover these precursors here.> The results of Chapter 8 are more general
than those in the paper.

(Chs. 14-16) Scully and Harchol-Balter [122] introduces WINE and applies it to
proving Gittins’s optimality in the M/G/1, though the name “WINE” is new as of
this thesis. A prior publication of ours [118] develops many of the same ideas but in
a less general setting. The second half of Chapter 10 is new material not covered
in the paper, though special cases of it have appeared in other publications of ours
[120, 126].

3Grosof et al. [50], which gives the first analysis of SRPT in the M/G/k, deserves a brief discussion. This

paper started our work on multiserver scheduling by analyzing SRPT in the M/G/k. In particular, it does so
without using WINE. As such, our claim that we use WINE to give the first analysis of SRPT in the M/G/k is
a simplification: we give the first analysis of SRPT in the M/G/k, and the version of that analysis presented
in this thesis uses WINE, even though the original analysis did not use WINE. In contrast, WINE seems to be
essential for analyzing Gittins in the M/G/k [119, Appx. A].

CHAPTER 3

SOAP Overview

A three-point summary of SOAP:

+ (§ 3.1) Our ability to analyze the response time distribution of scheduling policies
is limited to a small set of relatively simple policies. Beyond our reach are policies
designed to deal with important concerns, such as job size uncertainty and practical
preemption limitations. But the state of the art advances slowly, because each new
policy generally requires its own custom-tailored analysis.

+ (§3.2) SOAP defines a broad class of scheduling policies and gives a universal analysis
of all policies in the class. The SOAP policy class covers most previously analyzed
policies, but also many policies that have never been analyzed before.

+ (§ 3.3) SOAP gives the first response time analyses of scheduling policies that deal
with job size uncertainty, practical preemption limitation, and more. We use these
analyses to answer many theoretically and practically motivated questions about
scheduling policy design.

3.1 Problem: Can Analyze Only a Small Set of
Scheduling Policies

3.1.1 Why Analyzing Scheduling Policies Matters

Scheduling can significantly improve a queueing system’s response time, but it can be
hard to determine the precise impact a particular scheduling design decisions will have.
For example, consider using Shortest Remaining Processing Time (SRPT) in a single-server
queueing system. SRPT, which always serves whichever job has the least remaining work,
is known to minimize mean response time [116], but there are other questions we might
have about SRPT’s performance.
« How well does SRPT perform on non-mean response time metrics, such as response
time tail?
« How are SRPT’s response time benefits distributed across different types of jobs? Is
SRPT unfair to large jobs?
Fortunately, thanks to the fact that SRPT has been analyzed [117], queueing theorists can
answer these and many other questions about SRPT [13-15, 83, 101, 103, 104, 143-146].

What Is “Analyzing” A Policy?

When we say that SRPT has been “analyzed”, we mean that its response time distribution
has been characterized in a single-server queueing model, specifically the M/G/1 queue

25

26 Chapter 3 SOAP Overview

(Ch. 5). However, this response time characterization is often still rather complicated,
making it just the first step towards answering questions about the policy’s performance.
For instance, while Schrage and Miller [117] analyzed SRPT in 1966, it was not until
decades later that the analysis was used to investigate SRPT’s response time tail [103] and
fairness [142].

3.1.2 Prior Scheduling Analyses Fall Short

Many scheduling policies have been analyzed in the M/G/1 in the years since Schrage and
Miller [117] analyzed SRPT, as illustrated in Figure 3.1(a). However, as we discuss in our
review of prior work (§ 2.1), this set of policies is still limited, and M/G/1 scheduling theory
has little to say even slightly beyond the borders of what has already been analyzed.

Practical Concerns Are Out of Reach

For example, we saw in Section 3.1.1 how SRPT’s analysis helped us answer some questions
a system designer might want to know before implement SRPT. However, in practice, few
systems will perfectly implement SRPT, leading to a number of further questions.

« SRPT assumes knowledge of each job’s exact size. But in practice, some systems can
provide only a noisy estimate of each job’s size. How should we adapt SRPT to be
robust to noisy size estimates? How does performance degrade as a function of the
amount of noise?

« SRPT assumes arbitrary granularity in how it prioritizes jobs. But in practice, some
systems have only a limited number of priority levels available to the scheduler. How
should we adapt SRPT to settings with a limited number of priority levels? How
many levels do we need for good performance?

« SRPT assumes jobs may be preempted at any time. But in practice, some systems
allow jobs to be preempted only at certain checkpoints, and due to overhead, such
checkpoints cannot be too frequent. How should we adapt SRPT to settings with
preemption checkpoints? What checkpoint frequency balances good performance
with low overhead?

Notice that these questions are not about SRPT itself, but about practical variations that
deviate from true SRPT. Such practical variations are generally outside the scope of what
we can currently analyze. In particular, the first and second questions above have not been
theoretically studied in the M/G/1 prior to SOAP, though as we will discuss below, there is
some work on the third question [48].

There are a number of other questions that are out of reach of current analysis. We
might ask analogues of the second and third questions for preemptive policies other than
SRPT. Or, as a variation on the first question, we might consider scheduling in a setting
where size estimates are extremely noisy or nonexistent. In such a setting, we likely want
to abandon SRPT altogether. One alternative is to use historical job size data to compute
the expected remaining work of each job, then prioritize jobs based on that. This policy is
called Shortest Expected Remaining Processing Time (SERPT), but it has never been analyzed.

3.1 Problem: Can Analyze Only a Small Set of Scheduling Policies 27

MLPS . P-ACC-P.I'IO « ROS
« NP-Acc-Prio - Nudge SMART
- FCFS » SRPT
» LAS -
« LCFS
s « PSJF
« PLCFS
« LPL-LAS « Chk-SRPT
« P-Prio e
+ NP-Prio

(a) Scheduling policies analyzed in the M/G/1, excluding those analyzed with SOAP. See Chapter 2
for further discussion on many of the policies shown.

MLPS . P-ACC-P.I’IO « ROS
« NP-Acc-Prio - Nudge | SMART
. FCFS SOAP * SRPT
3 . SERPT
- o - PSJF)
. PLCFS * Gittins
« LPL-LAS o Chk-SRPT
« P-Prio - SIF
« Chk-LAS « NP-Prio P LPLSRET

(b) Scheduling policies analyzed in the M/G/1, including those analyzed with SOAP, which are
highlighted in bold. This includes two policies, Chk-SRPT and RS, for which mean response time,
but not distribution of response time, was previously known.

Figure 3.1. SOAP expands the set of policies we know how to analyze in the M/G/1, a single-server
queueing model. (a) Prior to SOAP, most policies were analyzed one-by-one, with a few relatively
small classes of policies analyzed (§ 2.1.5). (b) SOAP unifies and generalizes the state of the art
with a single universal analysis for a broad class of policies, subsuming much of what was already
known while also analyzing many policies for the first time.

28 Chapter 3 SOAP Overview

Most Prior Analysis Happens One Policy at a Time

Some good news about the questions above is that there has been work analyzing SRPT
with preemption checkpoints, with Goerg [48] providing a mean response time formula.
Unfortunately, the analysis is specific to SRPT, so we are out of luck if we want to adapt a
different policy for a system with preemption checkpoints.

This is just one instance of a larger issue with the state of the art in M/G/1 scheduling:
for the most part, scheduling policies are analyzed one by one. There are numerous
publications analyzing a single policy or small number of similar policies (§ 2.1). Analyzing
a policy or few evidently takes a publication-sized amount of research effort. But expending
so much effort on every single policy is unsustainable in light of the vast space of possible
scheduling policies.

Ideally, we would hope to analyze many scheduling policies at once. Two examples of
this are analyses of classes of policies: Multi-Level Processor Sharing (MLPS) policies [74] and
SMAIL Response Times (SMART) [146]. Both classes represent significant steps that increase
our ability to analyze many policies at once. Unfortunately, both classes are somewhat
limited in scope (§ 2.1.5). Roughly speaking, SMART includes only relatives of SRPT, and
MLPS includes only specific combinations of simple policies like FCFS and LAS (§ 3.2.1).

3.2 Key Idea: Unifying Language for Policies Enables
a Universal Analysis

Despite the fact that the state of the art in M/G/1 scheduling is analyzing policies one by
one, there are common ideas that appear across multiple analyses. For example, part of
Harchol-Balter [55], an introductory queueing text, is devoted to analyzing ten different
scheduling policies in the M/G/1. But nine out of ten of the analyses follow a common
overall strategy, albeit with different details. Can we unify the analyses of these nine
policies? If so, can that help us analyze even more policies?

SOAP, which stands for Schedule Ordered by Age-based Priority, answers both questions
affirmatively. SOAP consists of two parts:

* (§3.2.1) SOAP policies: a broad class of scheduling policies, which can all be described

in a single unifying language.

* (§ 3.2.2) SOAP analysis: a single universal analysis that applies to all SOAP policies.

SOAP thus unifies and generalizes prior analyses, as shown in Figure 3.1(b).

3.2.1 Unifying Language: Rank Functions

The key idea behind SOAP is its unifying language for describing scheduling policies,
which we call rank functions. A rank function assigns each job a rank, or numerical priority,
based on the job’s age, which is the amount of time the job has been served so far. We use
the convention that lower rank is better. A rank function thus encodes a scheduling policy:

3.2 Key Idea: Unifying Language for Policies Enables a Universal Analysis 29

rankpas(a) i=a ranksgpr(s,a) '=s—a
s —
0 > a 0 ‘ > a
0 0 S
(a) Rank function of LAS. (b) Rank function of SRPT for job of size s.

Figure 3.2. A rank function describes a scheduling policy in the following way. Each job, based
on its age a and possibly other static characteristics, is assigned a rank, or numerical priority, by
the rank function. (a) Under LAS, a job’s rank is simply its age. (b) Under SRPT, a job’s rank is its
remaining work, which depends on both its age and its initial size.

the scheduler serves the job of minimal rank at every moment in time. In the case of ties,
we usually use the convention that ties are broken in first-come, first-served (FCFS) order.!

A SOAP policy is any scheduling policy that can be described using a rank function.
We give some examples of rank functions below. For many more examples, as well as a
more formal definition of SOAP policies and rank functions, see Chapter 6.

Simple Examples of Rank Functions

Perhaps the simplest example of a policy that can be described as a rank function is Least
Attained Service (LAS), which always serves the job of least age. LAS can be represented
by the rank function

rankpas(a) == a.

See Figure 3.2(a) for an illustration.

Another example is the aforementioned Shortest Remaining Processing Time (SRPT).
Here a job’s rank is its remaining work, which is difference between the job’s initial size s
and the work done so far. The work done so far is simply the job’s age a, so

ranksgpr(s, a) == s — a.

See Figure 3.2(b) for an illustration.

One last example of a rank function is that of First-Come, First-Served (FCFS), which
serves jobs in arrival order. FCFS can be represented by many rank functions. In particular,
thanks to our FCFS tiebreaking convention, any constant function rankgcrs(a) = ¢ suffices.

'We actually also allow for last-come, first-served tiebreaking (LCFS) as well. Whether using FCFS or
LCFS tiebreaking, there are several subtleties to consider, which Chapter 6 explains in detail.

30 Chapter 3 SOAP Overview

rankSERpT(a) = E[S —a | S > a]

9
8,
74 1
6 1 W.p. 3
_ 1
4 S=496 wp.3
14 wp. 3
0 T T — a
01 6 14

Figure 3.3. The SERPT policy always serves the job of least expected remaining work. We show
the rank function of SERPT for the given job size distribution S, meaning jobs have size 1, 6, or 14.
Initially, a job’s expected size is E[S] = 7, and its expected remaining work decreases while it
is served. This continues until age 1, at which point one of two things happens: either the job
completes and exits the system, or we learn from its continued presence that it is not size 1. Its
expected remaining work then jumps up to E[S — 1| S > 1] = 9. A similar jump occurs at age 6.

More Complex Examples of Rank Functions

LAS, SRPT, and FCFS all have relatively simple rank functions. It is therefore unsurprising
that all three of these policies have been analyzed. But, as we will see in examples below,
policies with more complex rank functions arise in practical situations, and these complex
rank functions are harder to analyze (§ 3.2.2).

As a first example, suppose we are scheduling in a system with unknown job sizes
with the goal of lowering mean response time. Ideally, we would use SRPT, but we cannot
implement SRPT without knowing job sizes. How can we mimic SRPT using only jobs’
ages? One policy that does this is Shortest Expected Remaining Processing Time (SERPT).
SERPT uses the job size distribution to compute the expected remaining work of each job
based on its age. Specifically, for job size distribution S, SERPT’s rank function is?

rankSERpT(a) = E[S —a | S > a].

The way to understand the right-hand side is as follows. The job’s size is a random variable S.
When the job has age a, the remaining work is the difference S — a. But if the job is not yet
complete, it must be that the job’s remaining work is positive, so we condition on S > a.

We illustrate and explain SERPT’s rank function for an example job size distribution
in Figure 3.3. Notice that SERPT’s rank function is nonmonotonic, unlike the previously
mentioned rank functions of LAS, SRPT, and FCFS. It turns out that with a single exception
(discussed below), all SOAP policies that have been analyzed in the past have nonmonotonic
rank functions. As we explain in Section 3.2.2, rank nonmonotonicity is the main technical
obstacle we overcome in the SOAP analysis.

2 Abusing notation slightly, below, we write S for both the size distribution and also for the random variable
representing a generic job’s size. See (Ch. 5) for details regarding this and other notation conventions.

3.2 Key Idea: Unifying Language for Policies Enables a Universal Analysis 31

rank; (a) rankchk-» (@)
0 > a 0 : ‘ ‘ ‘ > a
0 0 A 2A 3A 4A 5A
(a) Rank function of generic SOAP policy 7. (b) Rank function of Chk-z, with rank of x

shown for reference (dashed orange line).

Figure 3.4. Preemption limitations can be thought of as restrictions on a SOAP policy’s rank
function. For example, given (a) a generic SOAP policy 7, we can define (b) a new policy Chk-r,
which is like 7z but only preempts jobs at checkpoint ages. These checkpoint ages are evenly spaced
with gap A.

We have seen in SERPT that nonmonotonic rank functions can arise from unknown
job sizes. They can also arise from other practical concerns, such as preemption limitations.
Suppose we wish to schedule in a system where jobs can only be preempted at certain
checkpoint ages. Perhaps these checkpoints occur every A units of time while serving a job.
One example of this is scheduling packet flows in a network switch where A is the packet
size, because we want to avoid interrupting transmission in the middle of a packet.

We can model scheduling with checkpoint ages using rank functions as follows. Let 7
be a generic SOAP policy.> We can define a variant of 7, which we call Checkpointed n
(Chk-r), which is essentially a version of 7 that only preempts jobs at checkpoint ages.
The rank function of Chk-7 is

rankcpk-(a) := rank,;(a) 1(a = nA for some n € IN).

We illustrate an example in Figure 3.4. Notice that Chk-7 can have a nonmonotonic
rank function even if 7’s rank function is monotonic. For example, Chk-SRPT, which was
analyzed by Goerg [48], has a nonmonotonic rank function. This makes Chk-SRPT the only
nonmonotonic rank function to be analyzed prior to SOAP.# But Chk-LAS and essentially
every other policy with checkpoints is also nonmonotonic, and none of these have been
analyzed prior to SOAP.

3For simplicity of notation, we assume that 7’s rank function is always positive and takes only a job’s
age as input, as opposed to also needing a job’s size or other properties.

*With that said, Goerg [48] only derives the mean response time of Chk-SRPT, so the SOAP analysis still
provides the first distributional characterization of Chk-SRPT’s response time.

32 Chapter 3 SOAP Overview

3.2.2 Main Obstacle to Universal Analysis: Nonmonotonic Rank
Functions

The SOAP analysis characterizes the response time of any SOAP policy in the M/G/1. Here
we describe the main obstacles we overcome in the analysis. See Chapter 7 for the full
analysis, and in particular Theorem 7.15 for the main result.

A number of SOAP policies have been analyzed in the past, but virtually all of them
have monotonic rank functions. The SOAP analysis improves on this state of the art in
two ways.

« SOAP unifies prior analyses. While LAS, SRPT, FCFS, and other SOAP policies were
previously each analyzed separately, the SOAP analysis gives one formula that works
for any rank function.

« SOAP generalizes prior analyses. In particular, virtually all prior analyses were for
monotonic rank functions, but the SOAP analysis also applies to nonmonotonic rank
functions.

What are the main obstacles to these improvements, and how do we overcome them?
For unifying prior analyses, the answer is more subjective, but I believe the main obstacle
is the lack of a uniform way of defining scheduling policies. This is why the idea of
representing policies as rank functions is important: without a unifying language for
policies, we have no hope of a universal analysis that applies to all of them.

For generalizing prior analyses, there is a much more concrete obstacle: nonmonotonic
rank functions. In the rest of this section, we explain why policies with nonmonotonic
rank functions are hard to analyze, then give the main insight that enables us to analyze
them.

Why Nonmonotonic Rank Functions Are Challenging to Analyze

Perhaps the most common method of analyzing a scheduling policy’s response time in the
M/G/1 is the tagged job approach. The approach works by considering a single “tagged”
job’s journey through the system. By appropriately randomizing the tagged job’s size and
other attributes, the jobs already in the system when the tagged job arrives, and the arrivals
that occur after the tagged job, the distribution of the tagged job’s response time becomes
the system’s response time distribution [150].

How do we determine the tagged job’s response time? This boils down to determining
how long each other job delays the tagged job, meaning receives service while the tagged
job is in the system. The tagged job’s response time is the sum of these delays, plus its own
size.

The SOAP analysis thus boils down to determining how long each other job delays the
tagged job. Under monotonic policies like SRPT, this is not too hard to do. For example,
suppose the tagged job has size s, and another job has remaining work r when the tagged
job arrives.

« If r < s, then the other job outranks the tagged job both now and hereafter, so the

other job delays the tagged job by r.

3.2 Key Idea: Unifying Language for Policies Enables a Universal Analysis 33

rank, (a)
worst future rank
-................
\
N
.........“
‘-....l
0 ‘ > a
0 tagged job’s size

Figure 3.5. The Pessimism Principle states that the tagged job’s response time is unaffected if
instead of following the ordinary rank function (orange solid line), we increase its rank at each age
to its worst future rank (magenta dotted line).

« If r > s, then the tagged job outranks the other job both now and hereafter, so the
other job does not delay the tagged job at all.
However, under nonmonotonic policies, determining the delay due to another becomes
more complicated. Whether the other job outranks the tagged job can change over time,
with alternating periods of the tagged job and the other job having better priority, then
the other job having better priority.

Insight: Remove Some Nonmonotonicity from the Analysis

The SOAP analysis uses the tagged job approach described above, but in a way that avoids
dealing with the worst of the complexities introduced by nonmonotonic rank functions. It
turns out that a single observation effectively removes some of the nonmonotonicity from
the analysis. This observation, which we call the Pessimism Principle, is the following:

The tagged job’s response time is unaffected if we increase its current rank to
its worst future rank.

Figure 3.5 shows the relationship between the rank function and the tagged job’s worst
future rank.

Why is the Pessimism Principle helpful? Without the Pessimism Principle, with of the
tagged job and other job has better rank can alternate back and forth. With the Pessimism
Principle, the tagged job’s rank never increases, as shown in Figure 3.5. This means the
other job outranks the tagged job until it is served for some amount of time ¢, after which
it never outranks the tagged job again. Having a single interval of delay makes the tagged
job’s response time much easier to analyze.

But why is the Pessimism Principle true? The key is that the amount of time ¢ the other
job is served under the Pessimism Principle is the amount of time until it completes or
reaches the tagged job’s worst future rank. But without the Pessimism Principle, the total

34 Chapter 3 SOAP Overview

delay due to the other job is this same amount ¢, because the tagged job will eventually
reach its worst future rank. Increasing the tagged job’s rank to its worst future rank thus
does not create extra delay. It simply “clumps together” smaller delays, which simplifies
the analysis.

3.3 Impact: Broad Class of Policies Analyzed for the
First Time in the M/G/1

The SOAP analysis boils down to a single result, Theorem 7.15, that characterizes the
response time distribution in the M/G/1 under any SOAP policy. But the breadth of SOAP
policies makes it a high-impact result with a wide variety of applications.

Our applications of SOAP can be grouped into roughly three settings.

* (§3.3.1) We apply SOAP to scheduling with unknown job sizes. This involves analyzing
policies like SERPT (Fig. 3.3).

+ (§3.3.3) We apply SOAP to scheduling with noisy job size estimates. For instance, we
analyze multiple SRPT-like policies to determine which are most robust to noise.

+ (§ 3.3.2) We apply SOAP to scheduling with practical preemption limitations. One
example of such a limitation is only allowing preemption at checkpoints (Fig. 3.4).

In each of these settings, we apply SOAP in two distinct ways.

« Numerical: We evaluate formulas from the SOAP analysis for specific rank functions,
size distributions, and loads. Sometimes the rank functions involved are parameter-
ized, allowing us to numerically optimize those parameters to achieve some objective.
Despite their simplicity, computational applications teach us many important lessons
about scheduling policy design.

« Theoretical: We use the SOAP analysis as a starting point for proving a theorem that
holds for a broad class of rank functions, size distributions, or loads. Theoretical
applications give more rigorous guarantees than what we can learn from computa-
tional applications. However, they are much harder to obtain, as they require novel
theoretical insight on top of the already complex SOAP analysis.

Because the SOAP analysis is for the M/G/1, all of the applications described in this section
are in single-server systems.

3.3.1 Unknown Job Sizes

How Good Is SERPT’s Mean Response Time?

Recall from Figure 3.3 that SERPT is the policy that always serves the job of least expected
remaining work. SERPT is one way to generalize SRPT to settings with unknown job sizes.

Given that SRPT minimizes mean response time when job sizes are known, it is natural
to ask: does SERPT minimize mean response time when job sizes are unknown? Unfortu-
nately, it is not so simple. Instead, a different, more complicated policy called the Gittins

3.3 Impact: Broad Class of Policies Analyzed for the First Time in the M/G/1 35

policy is known to be optimal with unknown sizes (§ 2.2).

Despite its suboptimality for mean response time, SERPT has an intuitive appeal, and
it is significantly simpler than Gittins. Does SERPT achieve mean response time close
enough to Gittins to serve as a substitute for it in practice? We use SOAP to investigate
this question both numerically and theoretically.

+ (Ch. 10) Numerically, we find that SERPT does indeed seem to have near-optimal

mean response time in a variety of situations.

+ (Ch. 11) Theoretically, we unfortunately are unable to prove results about SERPT
itself. In light of this, we propose a new variant of SERPT, called monotonic SERPT
(M-SERPT), that is even simpler to implement. We are able to prove a mean response
time guarantee for M-SERPT, specifically that its mean response time is always
within a factor of 5 of Gittins’s.

How Good Are SERPT’s, M-SERPT’s, and Gittins’s Response Time Tails?

We have seen above that SERPT, M-SERPT, and Gittins have good mean response time.
However, mean response time is not the be-all and end-all of queueing metrics. Another
important metric is the response time tail, namely the probability that a job experiences
response time larger than some threshold. By looking at the asymptotic behavior of the
response time tail, we can understand the probability with which jobs have especially long
response time.

We theoretically apply the SOAP analysis to investigate the asymptotic response time
tail of SERPT, M-SERPT, and Gittins (Ch. 13). Our main question is whether any of these
policies have asymptotically optimal response time tail, because if so, we would have a
policy that performs well for both the mean and tail of response time.

« For heavy-tailed size distributions, all three policies have optimal asymptotic tail.

« For light-tailed size distributions, all three policies can have asymptotic tail that

is optimal, pessimal, or in between. But we can tweak either policy to avoid the
pessimal case without significantly harming mean response time.

3.3.2 Practical Preemption Limitations

Queueing theoretic study of preemptive scheduling typically assumes that preemption is
unrestricted and incurs no overhead, but preemption can be a lot messier in practice. We
have already seen that we can use SOAP policies to model some of these practicalities, such
as only being able to preempt jobs at certain checkpoints, as in the Chk-z policy. Another
type of preemption limitation that occurs in practice is having only a limited number of
priority levels to work with when designing a policy. This happens, for instance, when
scheduling packet flows in network switches [96], as there are typically a small number of
priority levels baked into a switch’s hardware.

How should we adapt preemptive scheduling policies to handle practical preemp-
tion concerns like limited priority levels and preemption checkpoints? We use SOAP to
investigate this question both numerically and theoretically.

36 Chapter 3 SOAP Overview

+ (Ch. 9) Numerically, we find rules of thumb for scheduling in systems with limited
priority levels and preemption checkpoints. For example, we find that whether job
sizes are known or unknown, one can often achieve near-optimal mean response
time with just 5 or 6 priority levels.

+ (Ch. 13) Theoretically, we investigate how frequent checkpoints need to be to ensure
asymptotic optimality of the response time tail. We find that a constant gap between
checkpoints never harms tail optimality, but we also find that tail optimality is still
possible even when the checkpoint gap grows as a function of age.

3.3.3 Noisy Size Estimates

SRPT minimizes mean response time assuming access to perfect job size information.
However, information provided in a practical system will virtually always be imperfect.
This prompts a question: is SRPT robust to noise in the job size information it is given? If
not, can we design a new policy that is? We use SOAP to investigate this question both
numerically and theoretically.

+ (Ch. 10) Numerically, we find that naively using SRPT with noisy size estimates can
lead to surprisingly poor performance. Fortunately, we find a promising alternative in
a policy called Preemptive Shortest Job First (PSFF), which prioritizes jobs by (original)
size instead of remaining work. PSJF is known to nearly match SRPT’s performance
when given perfect job size information [146], but we find that as estimation noise
increases, PSJF is much more robust than SRPT.

+ (Ch. 12) Theoretically, we use the SOAP analysis to prove theorems that explain the
aforementioned non-robustness of SRPT and robustness of PSJF. We also propose a
new variant of SRPT, whose design is guided by the SOAP analysis, that we prove
has robustness properties similar to PSJF.

CHAPTER 4

WINE Overview

A three-point summary of WINE:

+ (§ 4.1) We do not know how to schedule jobs in multiserver systems to optimize
response time objectives. Are policies like SRPT and Gittins, which are good in
single-server systems, also good in multiserver systems? We cannot answer this
question because we do not even know how to analyze the response time of a given
policy. Existing techniques for single-server systems, such as SOAP Chapter 3, do
not generalize to multiserver systems.

+ (§ 4.2) WINE is a new queueing identity that relates a system’s performance to a
much simpler quantity: the relevant work in the system. WINE is helpful because
it turns bounds on relevant work, which can be obtained using other techniques
(Ch. 8), into bounds on mean response time. WINE works in any queueing system,
unlike SOAP, which is limited to single-server systems.

* (§ 4.3) We use WINE to bound the mean response time of SRPT and Gittins in
multiserver systems. The bounds are tight enough to imply near-optimality for
mean response time in the multiserver setting. And although we developed WINE
for multiserver systems, it turns out to have several applications in single-server
scheduling, too.

4.1 Problem: Analyzing and Optimizing Scheduling
in Multiserver Systems

Multiserver queueing systems are ubiquitous in practice. For example, virtually all computer
systems today have multiple processing units, from smartphones with multiple cores to
datacenters with thousands of machines. Unfortunately, while queueing theorists have
studied scheduling in single-server systems for decades, there is currently very little
queueing theory that can help us analyze or optimize scheduling policies in multiserver
systems.

For concreteness, consider the problem of minimizing mean response time in a system
with known job sizes. In single-server systems, it has long been known that SRPT, which
always serves the job of least remaining work (§ 3.2.1), is the optimal policy [116]. SRPT is
actually proven optimal not just in the M/G/1, which has stochastic arrivals, but also in
single-server systems with adversarial arrivals (§ 5.1.3).

Although SRPT’s optimality proof only holds with a single server, the general idea
of serving jobs that will complete soon seems wise even we have multiple servers. We
therefore ask:

Is SRPT also optimal, or at least near-optimal, in multiserver systems?

37

38 Chapter 4 WINE Overview

We focus for now on central-queue systems, like the M/G/k, in which k > 2 servers are
connected to a single queue.

When necessary for disambiguation, we append a “-k” to a policy’s name when dis-
cussing its k-server version. That is, SRPT-1 is the single-server policy that always serves
the job of least remaining work, and SRPT-k is the k-server policy that always serves the
k jobs with the k least amounts of remaining work, or all jobs if there are fewer than k.

4.1.1 Prior Work on SRPT-k Is Not Enough

Scheduling in multiserver systems has received some study, though the core question
of whether SRPT-k performs well in the M/G/k is still open. Below we discuss the most
immediately relevant prior work, which studies SRPT-k in an adversarial model, and
explain why it does not give a strong indication as to whether SRPT-k performs well in
the M/G/k. Chapter 2 gives a more comprehensive account of prior work.

SRPT-k Can Perform Poorly under Adversarial Arrivals

Leonardi and Raz [81] show that under adversarial arrivals, SRPT-k is suboptimal with
unbounded competitive ratio. This means that an offline policy 7-k, meaning one that knows
the sizes and arrival times of past and future jobs, can achieve mean response time much
better than SRPT-k’s for some arrival sequences, making E[Tsgpr-i | /E[T;-«] arbitrarily
large for those sequences. With that said, Leonardi and Raz [81] also show that no other
policy can have bounded competitive ratio, and SRPT-k’s competitive ratio is essentially
the best possible.

How Good is SRPT-k under Stochastic Arrivals?

The proof that SRPT-k has unbounded competitive ratio under adversarial arrivals uses an
arrival sequence specifically constructed to be bad for SRPT-k. But such arrival sequences
are unlikely to occur naturally in practice. Therefore, to determine whether SRPT-k is a
policy one should use in practice, it is helpful to analyze its performance in stochastic
models, such as the M/G/k.

Unfortunately, the above results for adversarial arrivals give us little clue as to how
well SRPT-k performs in the M/G/k. On one hand, SRPT-k has the best possible competitive
ratio, which seems to be a good sign. But on the other hand, that competitive ratio is
unbounded, indicating that SRPT-k can perform poorly. It is unclear whether some other
policy with the same competitive ratio as SRPT-k, or maybe even a worse competitive
ratio, might significantly outperform SRPT-k in the M/G/k.

Unknown Job Sizes and the Gittins Policy

We have thus far focused our discussion on SRPT-k, which requires known job sizes to
implement. But we can ask the same questions for scheduling with unknown job sizes, or

4.1 Problem: Analyzing and Optimizing Scheduling in Multiserver Systems 39

more generally any level of partial information about job sizes.

In settings with any amount of job size information,! mean response time is minimized
by a policy called the Gittins policy (§ 3.3.1). In fact, SRPT can be seen as the special case
of Gittins for the case where the amount information known about each job is the job’s
exact size.

We might hope to use Gittins in a multiserver setting like the M/G/k. Fortunately,
defining a multiserver version of Gittins is straightforward. In a single-server setting,
Gittins works much like SRPT: it assigns each job a numerical rank and always serves the
job of least rank (§ 3.2.1). We can thus define Gittins-k to be the policy that serves the
k jobs with the k least ranks, much like SRPT-k.

Given that Gittins-1 minimizes mean response time in the M/G/1, it is natural to ask: is
Gittins-k also optimal or near-optimal in the M/G/k? Unfortunately, there is no prior work
on the mean response time of Gittins-k, so this question is wide open.

4.1.2 Why the M/G/k Is Harder to Analyze than the M/G/1

We use SOAP, the other tool in this thesis (Ch. 3), to analyze a wide variety of policies in the
M/G/1. What prevents us from doing a similar style of analysis in the M/G/k? Answering
this requires describing how the SOAP analysis works at a high level.

Background: Relevant Work

The SOAP analysis uses a technique called the tagged job approach which is common in
M/G/1 scheduling theory (§ 2.1). The basic idea is to follow a generic “tagged” job on its
journey through the system, tracking how long it spends in service and how long it spends
waiting in the queue. As we discuss in Chapter 3, this is challenging because each job’s
rank can go up and down, including the tagged job’s rank, and jobs arrive and depart over
time.

Fortunately, there is a trick that helps simplify the above story. Roughly speaking,
rather than tracking the exact states of all the jobs that might delay the tagged job, we
track a summary quantity called relevant work. Roughly speaking, relevant work is the
total amount of work that currently outranks the tagged job. Put another way, if new jobs
suddenly stopped arriving, then the amount of time until the tagged job would next enter
service is the amount of relevant system work. If the tagged job’s current rank is r, then
we call relevant work <r-work, because it’s work on jobs with rank r or better.

Why Relevant Work Helps More in the M/G/1 than in the M/G/k

Keeping track of relevant work for a given rank r is usually easier than keeping track of
every job’s state, because relevant work summarizes the many job states with a single

ISpecifically, we assume job sizes follow some stochastic model, and while this stochastic model is known
to the scheduler, the future size outcome for any particular job is unknown. One simple example of this is
the one discussed in Section 3.3.1, where the scheduler knows the job size distribution but not any job’s size.

40 Chapter 4 WINE Overview

number. And remarkably, tracking relevant work turns out to be enough to analyze SOAP
policies in the M/G/1. The reason why is that in the M/G/1, the single server acts as a
“choke point”. This means that all relevant work is strictly prioritized over the tagged job,
which in turn is strictly prioritized over any other work.

Unfortunately, the situation is more complicated in the M/G/k. Because there are
multiple servers, there is no single “choke point”. While the tagged job is in service at one
server, other servers can serve other jobs, which may have rank better or worse than the
tagged job’s rank. This means that just looking at relevant work does not tell the whole
story in the M/G/k, which makes a tagged job analysis much more difficult.?

4.2 Key Idea: Relate Response Time to Work, a Much
Simpler Quantity

We have seen that the tagged job approach which is successful for the M/G/1 is difficult to
translate to the M/G/k. One of the principle obstacles is that relevant work, the amount of
work with priority over the tagged job, plays a much clearer role in determining the tagged
job’s response time in the M/G/1 than it does in the M/G/k. Nevertheless, relevant work
remains a promising idea for summarizing the system state. Is there a way to translate
relevant work into response time without using the tagged job approach?

WINE, which stands for Work Integral Number Equality”, answers this question affir-
matively. WINE is a new queueing identity that directly relates the number of jobs in a
queueing system to relevant work. Crucially, WINE holds in any queueing system, and
in particular in the M/G/k. By combining WINE with Little’s law [84], which relates the
number of jobs to mean response time, WINE gives an exact formula for mean response
time in the M/G/k in terms of relevant work.

Of course leaves us with a burning question: how much relevant work is in the M/G/k?
This is still a much harder question than analyzing relevant work in the M/G/1. Our key
idea here is to relate relevant work in the M/G/k to relevant work in an M/G/1 whose
server is k times as fast. We prove a result called Relevant Work Decomposition (Ch. 8),®

There are actually many versions, or “flavors”, of WINE. The rest of this section
fully illustrates one of the simplest flavors of WINE (§ 4.2.1) and gives a quick taste of
other flavors (§ 4.2.2). Section 4.3 explains in more detail how WINE and Relevant Work
Decomposition combine to analyze the M/G/k under SRPT-k and Gittins-k.

2As we discuss in our review of prior work (§ 2.5), we actually have managed to complete tagged job
analyses of SRPT-k and a few other relatively simple policies in multiserver systems [51, 52, 119], but the
technique has little hope of generalizing to more complex policies like Gittins-k [119].

3Relevant Work Decomposition appears in Part II instead of Part III because it turns out that a special
case of Relevant Work Decomposition helps with the SOAP analysis, so we introduce it when needed.

4.2 Key Idea: Relate Response Time to Work, a Much Simpler Quantity 41

single job’s <r-work system <r-work
ﬁ.
area 1 total area
. N=4
: -
areal =
X g [S
1 area 1 .
areal O
. area 1 .
0 Q > 1/r 0 T T T o— 1/r
0 1/x 0 1/x1 1/xy 1/x3 1/x4

(a) Integrating the <r-work of a single job with (b) Integrating system <r-work with N = 4 jobs
remaining work x. present.

Figure 4.1. Illustration of SRPT-flavored WINE, which relates the number-in-system N to an
integral of <r-work. Recall that SRPT assigns a job rank equal to its remaining work.

4.2.1 Basic “SRPT-Flavored” WINE

How can we hope to translate between relevant work and the number of jobs? For con-
creteness, let us consider SRPT, under which a job’s rank is its remaining work.

Wl is for Work Integral

There is a hint in the WINE name: the number of jobs results from an integral of <r-work.
How might we design such an integral? The key idea is to look at one job at a time: if
we can make a single job’s <r-work integrate to 1, then the system’s total <r-work will
integrate to the number of jobs.

Consider a single job with remaining work x.* What is this single job’s <r-work under
SRPT? Recall that SRPT assigns the job rank x. If x < r, then the job is relevant, so its

<r-work is its remaining work x. If instead x > r, then the job is irrelevant, so its <r-work
is 0. That is,

single job’s <r-work = x1(x < r).
How can we integrate this quantity to get r? Figure 4.1(a) gives one way of doing so:

® single job’s <r-work

dr.

1= / (single job’s <r-work) d(1/r) = /
0 0

r2

*To clarify, even though we are looking at one job at a time, this is not a tagged job analysis. As will soon
become clear, instead of following this job in its journey through the system, we will examine it at a specific
moment in time.

42 Chapter 4 WINE Overview

This means that if we integrate the total system <r-work instead of a single job’s <r-work,
we get the number of jobs N currently in the system, as illustrated in Figure 4.1(b):

* system <r-work
2

N:/ (system <r-work) d(1/r) :/ dr.
0 0

r

This equation is SRPT-flavored WINE.

Under What Conditions Does SRPT-Flavored WINE Hold?

A subtle note that should be appreciated about SRPT-flavored WINE is that, despite being
SRPT-flavored, it holds in any queueing system under any scheduling policy. Specifically,
the only place we appealed to SRPT was in determining a job’s <r-work, which we might
more specifically call “SRPT-flavored” <r-work. But we can still look at the system from
the perspective of SRPT’s rank function, even if another scheduling policy is being used.

4.2.2 Other Flavors of WINE

We have seen SRPT-flavored WINE gives a formula for the number of jobs that holds
under very general conditions. However, it requires analyzing SRPT-flavored <r-work,
which seems like it might be difficult to do for policies other than SRPT. It turns out that
SRPT-flavored WINE can in fact help us analyze policies other than SRPT (§ 4.3), but there
is nevertheless some merit to this concern. Are there other flavors of WINE?

It turns out there are an infinite array of flavors of WINE. Roughly speaking, SRPT-
flavored WINE comes from looking at the system from SRPT’s perspective, which assumes
each job’s size is known. The key idea to generalizing WINE is to look at the system
from a less-informed perspective where job sizes are uncertain. There are many types of
uncertainty: we might have no idea as to each job’s size, or we might have very accurate
size estimates, or somewhere in between. Each of these “types of uncertainty”, a concept
we formalize in Chapter 14, yields a new flavor of WINE.

There is actually another way we can generalize WINE. So far, we have integrated
relevant work to compute the number of jobs, which is useful for computing mean response
time. But if we are in a setting where some jobs are more important than others, we might
instead want to optimize for a weighted mean response time metric. We derive flavors of
WINE that give different jobs different weights, yielding new formulas for weighted mean
response time.

How do we derive these different flavors of WINE? It turns out the key is to look at
relevant work from the perspective of the Gittins policy. That is, these other versions of
WINE are “Gittins-flavored”. Deriving the general form of WINE thus amounts to proving
properties of Gittins’s rank function.

4.3 Impact: Near-Optimal Mean Response Time in the M/G/k, and More 43

il g >[I

M/G/k M/G/1
(server speed 1/k) (server speed 1)
Goal
e » ElTGittins-1]
Little’s lawI ILittle’s law
E[NGittins-«] E[NGittins-1]

WIN EI IWIN E

E[Waittins-k (<7)] < > E[Waittins-1(<7)]

Relevant Work Decomposition

Figure 4.2. Using WINE to analyze the mean response time of Gittins-k in the M/G/k.

4.3 Impact: Near-Optimal Mean Response Time in the
M/G/k, and More

Figure 4.2 illustrates how we use WINE to analyze mean response time in the M/G/k. The
figure shows Gittins, but we use the same approach for SRPT.?

The main idea behind analyzing the M/G/k is to scale its servers’ speeds so that their
total speed is 1. This gives the M/G/k the same total server speed as an M/G/1. One might
therefore hope that the M/G/k and M/G/1 have similar amounts of <r-work. We can use
Relevant Work Decomposition (Ch. 8) show that this is indeed the case, resulting in a
precise comparison between the mean relevant system work E[W (<r)] under Gittins-k to
that under Gittins-1. WINE converts this comparison into a comparison of mean number-in-
system E[N], which Little’s law [84] in turn converts into a comparison of mean response
time E[T]. The end result, presented in Chapter 17, has the form

E[TGittins-k] < E[TGittins-1] + (kK — 1) (“something small”).

In particular, this bound is tight enough to imply that Gittins-k is in a certain sense near-
optimal for mean response time, because the “something small” term usually grows more
slowly as a function of load than the E[Tgjttins-1] term.

While our main motivation for developing WINE is analyzing multiserver systems,
WINE is also useful in analyzing single-server systems. For example, in Chapter 16, we use

>In fact, SRPT can be viewed as a special case of Gittins (Pol. 6.12).

44 Chapter 4 WINE Overview

WINE to show that an approximately computed version of Gittins still has approximately
optimal mean response time in the M/G/1. This proves to be a critical step of Chapter 12,
which combines the WINE-based approximate Gittins result with additional analysis using
SOAP to design a variant of SRPT that is robust to job size estimation error.

PArT II

SOAP

CHAPTER 5

Core Modeling Assumptions and
Queueing Theory Background

There are many types of queueing systems, and there are many ways one might mathemat-
ically model them. The goal of this chapter is to introduce the types of queueing systems
we consider (§ 5.1) and specify the modeling choices we make (§ 5.2). We also introduce
queueing terminology and notation we use throughout our study (§§ 5.3-5.6).

We use the model described in this chapter throughout the entire thesis. We use it as-is
in Part I, and we add just one more feature (Ch. 14) in Part IIl. When we venture beyond
this default model, which occurs only occasionally, we clearly state what assumptions
change.

5.1 What Is a Queueing System?

At a high level, a queueing system consists of the following:

« Servers, entities that do some sort of useful work.

« Jobs, entities with some amount of work, called the job’s size, to be done at a server.

+ Queues, which hold jobs that are waiting for time at the server.

We model queueing systems that have a fixed configuration of servers and queues, some
examples of which are shown in Figure 5.1.! Jobs, in contrast, are transient: they arrive,
spend time in the system, then eventually depart when their work is complete.

While in the system, a job may spend time queueing, meaning in a queue, and spends
the rest of its time in service, meaning at a server. Likewise, each server is sometimes busy,
meaning serving a job, and is otherwise idle.

A canonical example of a queueing system is checkout in a grocery store: servers are
checkout counters, each of which has a queue, and jobs are customers, and a job’s size is
roughly determined by the number of items they are buying. Among the queueing systems
shown in Figure 5.1, the grocery store checkouts I frequent most resemble Figure 5.1(c),
with customers distributing themselves among the various checkout counters.

We assume that jobs only occupy one server at a time and that, for the most part,
servers serve one job at a time. Thus, whenever the system has more jobs than servers,
some jobs must wait in a queue. When this occurs, the system’s scheduler decides which
jobs to serve according to a scheduling policy (§ 5.3). Choosing the right scheduling policy
is an important aspect of designing queueing systems. Typically, a policy is chosen based

!For some applications, such as ride-sharing, it makes sense to also allow servers to arrive and depart,
but such systems are outside the scope of this thesis.

47

48 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

queue server

jobs arrive — Q—) jobs depart

(a) Single-server system.

/ dispatcher
LTTT 00 N O
(b) Central-queue multiserver system. (c) Immediate-dispatch multiserver system.

Figure 5.1. Examples of queueing systems.

on its performance on one or multiple metrics. These metrics include quantities like mean
response time, the average amount of time jobs spend in the system (§ 5.4.1).

In practice, all queues have a limited capacity, and jobs typically will not wait in a
queue forever. Returning to the grocery store example, even the largest supermarkets can
hold only so many people, and all but the most patient customers would leave the store
empty-handed instead of waiting in an hours-long checkout line. However, as an idealized
assumption, we assume that queues have unlimited capacity and that jobs, once they enter
the system, do not leave until they have been served.

5.1.1 What do Servers and Jobs Represent?

Exactly what the servers and jobs in our model represent depend on what real-world
system we wish to study. When studying queueing in data centers, we might make any of
the following choices, depending on what aspect of the system we want to focus on:

« A server represents a CPU core, and a job represents a single thread.

« A server represents a continuously running program, such as a database, and a job
represents a request to that program, such as a query.
A server represents a multicore computer, and a job represents a parallel program.
A server represents a network switch, and a job represents a packet flow.
A server represents a repair technician, and a job represents a broken computer or
network switch.
A server represents the entire data center, and a job represents a large distributed
computation.

Of course, this list is far from exhaustive: there are more examples of queueing in data

5.1 What Is a Queueing System? 49

centers, to say nothing of other domains.

Instead of committing to any one choice about what servers and jobs represent, we
consider queueing systems in the abstract. Many real-world systems resemble our model,
and our results can in principle provide insight into any of them, though the value of this
insight depends on how closely our modeling assumptions match the real-world system in
question.

5.1.2 Central-Queue vs. Imnmediate-Dispatch Systems

A queueing system may have one or multiple queues and one or multiple servers, as
illustrated in Figure 5.1. This thesis focuses on central-queue systems, in which all servers
are connected to a single queue. This means that any job may be served at any server. Both
Figures 5.1(a) and 5.1(b) show central-queue systems.

Figure 5.1(c) shows another type of system called immediate-dispatch: each server is
connected to its own queue, and jobs must be assigned to a server upon arrival. This
creates an additional scheduling constraint: jobs may only be served at the server to which
they were assigned. While a few of our intermediate results apply to immediate-dispatch
systems (Ch. 8), we primarily focus on central-queue systems.

5.1.3 Adversarial vs. Stochastic Arrivals

When modeling a queueing system, some of the most important choices concern how jobs
enter the system. When does each job arrive? What is each job’s size? What information
does the scheduler learn about each arriving job?

Broadly speaking, there are two ways theorists model arrival processes:

« Adversarial arrival models make few, if any, assumptions about what arrivals occur.

« Stochastic arrival models assume that arrivals are generated according to some

random process.

Each model has its strengths and weaknesses. Studying adversarial arrival models can
yield guarantees about a system’s performance in the worst-case scenario. However, the
lessons learned from adversarial models can be misleading if such worst-case scenarios
are uncommon: it may be that we optimize performance in a rare scenario but sacrifice
performance in more common scenarios. This is because adversarial models have no notion
of what scenarios are “rare” or “common”.

Optimizing for common scenarios is where stochastic arrival models shine: the assump-
tion of underlying randomness tells us that some scenarios are more likely than others.
We can thus optimize for probabilistic quantities, such as means and percentiles of key
metrics (§ 5.4). However, the lessons learned from stochastic models can be misleading if
the randomly generated arrivals do not closely enough resemble the real-world arrivals
being modeled.

We study stochastic arrival models. The distributional assumptions we make on the
arrival process, outlined in Section 5.2 below, aim to be general enough to teach us broadly

50 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

applicable lessons. For example, while we assume each job’s size is drawn randomly from
some distribution (§ 5.2.2), many of our results apply no matter what that distribution is.

5.2 Primary Model: The M/G/1 with Labels

One of the main goals of this thesis is to study entire classes of scheduling policies. Instead
of studying individual policies one by one, we seek generic results that yield insight into
many policies at once. This approach requires a model that allows us to study a wide range
of scheduling scenarios with a single vocabulary. A particular obstacle to doing so is that
in different scenarios, the scheduler uses different information about the jobs in the system
to make its scheduling decisions.

« There may be multiple priority classes of jobs, such as from different clients paying
for different qualities of service.

« The scheduler might have any level of size information about each job. In some
scenarios, job sizes might be exactly known. In others, only noisy estimates may be
available.

« There may be other metadata attached to each job, such as its geographic origin.
The purpose of this section is to define a single model that we can use to study all of the
above concerns and more.

Our model is a version of the venerable M/G/1, a stochastic single-server model with a
long history in queueing theory [26, 28, 74]. We call our model the M/G/1 with labels. Its
distinguishing feature is that each job has a label representing information the scheduler
knows about the job, though exactly what this information is depends on the particular
system being modeled. Hereafter, when we discuss the M/G/1, we mean the M/G/1 with
labels unless otherwise specified.

Figure 5.2 summarizes the key features of the M/G/1 with labels. The rest of this section
fills in the details by answering the following questions:

+ (§5.2.1) What do jobs look like, and what does it mean to serve a job?

+ (§5.2.2) How do new jobs arrive?

« (§ 5.2.3) What does the scheduler know about each job?

We conclude the section by describing the multiserver version of our model (§ 5.2.4). We
defer discussing how the scheduler decides which job to serve to Section 5.3.

5.2.1 Anatomy of a Job

As mentioned in Section 5.1, each job has some amount of work to be done at the server.
We follow the convention that the server serves work at rate 1. We thus measure work in
units of time: a job’s work is the amount of time it needs to be served.

At any moment in time, four pieces of data are associated with each job in the system:

« Size: the amount of work the job had initially when it arrived.

« Age: the amount of time the job has already been served.

« Remaining work: the amount of work the job has now.

5.2 Primary Model: The M/G/1 with Labels 51

queue server

jobs arrive — i [] I I a jobs depart

ARRIVAL PROCESS JoB DETAIL
arrival rate A . I }remaining work
label-size dist. (L, S) s1ze
load p = AE[S] l jage
label

Figure 5.2. The M/G/1 with labels. Several jobs of varying size, remaining work, ages, and labels
are present, with new jobs arriving over time according to a stochastic arrival process. The job
labeled MA is in service, so its work decreases and age increases at rate 1 (red arrow). Each job’s
label communicates some information to the scheduler, which in this case is the US state the job
came from.

+ Label: information about the job that is revealed to the scheduler upon arrival.
All four of these concepts are illustrated in Figure 5.2. When discussing job sizes, we use
the terms like small, smaller, large, and larger, which have their natural meanings.

A job’s size and label are static: they are determined upon arrival and never change.
A job’s age and remaining work are dynamic: they respectively increase and decrease at
rate 1 while a job is in service, though they do not change while a job is queueing. A job’s
size, age, and remaining work always satisfy

size = age + remaining work.

When a job completes, meaning when its remaining work reaches 0, it departs the system.

We assume that the job in service may be preempted, meaning paused and returned to
the queue, with no overhead or loss of work. We describe preemption in more detail in
Section 5.3.2.

5.2.2 The M/G Stochastic Arrival Process

The arrival process specifies when jobs arrive, what each job’s size is, and what each job’s
label is. We first address arrival times and sizes before moving on to labels. We use the
term M/G arrivals to refer to the arrival process described below, and we call a queueing
system with M/G arrivals an M/G system.

The name “M/G/1” is actually formal queueing theory notation [67], with the symbol

52 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

in each of the three positions communicating something about the system, the first two of
which concern the arrival process.
« The “M” in the first position means that job arrival times are generated by a memory-
less process, specifically a Poisson process with constant rate. We denote this arrival
rate by A.

« The “G” in the second position means that job sizes are drawn from a general distri-
bution. We denote this size distribution by S.

« The “1” in the third position means that there is a single server.

Both A and S are nonnegative by definition, and to avoid dwelling on uninteresting corner
cases, we assume that both are strictly positive.

It remains to explain how labels fit into this picture. We denote the set of possible labels
by L. Each job’s label-size pair is drawn from a label-size distribution (L, S), with L and S
denoting the label and size, respectively.

We assume that the arrival times and label-size pairs of all jobs are mutually inde-
pendent. We also assume that future arrivals cannot be anticipated in any way, so at any
moment in time, the future of the arrival process is independent of all past events. Note,
however, that an individual job’s label L and size S need not be independent. For example,
if jobs are labeled with a noisy size estimate, we would certainly hope that L and S are
correlated.?

Load and Stability

Given that jobs are arriving randomly over time, we might worry: can the arrivals over-
whelm the server and cause the system to be unstable? The key quantity to determine
whether this occurs is called load, which is

p = AE[S].

We can interpret load in multiple ways:

+ The average rate at which work arrives is p.

+ The average number of arrivals that occur while serving a job is p.

« If the system is stable, the fraction of time the server is busy is p.

Each of these perspectives makes it clear that we must have p < 1 to have any hope of
stability. It turns out that for the M/G/1 to converge to some steady-state distribution,
meaning stochastic equilibrium, it is necessary and sufficient to have the strict inequality
p < 1, so we assume this throughout (§ 5.6.1). Unless otherwise stated, we assume that
each queueing system we study is in steady state.

An M/G arrival process is uniquely characterized by its arrival rate A and label-size
distribution (L, S). Equivalently, one may specify the load p instead of the arrival rate, as
one can recover the arrival rate as A = p/E[S]. We use the latter convention throughout.
In particular, when we discuss a quantity varying as a function of changing load, unless

“Here we slightly abuse notation by conflating the label and size distributions with random variables that
represent an individual job’s label and size. As discussed in Section 5.6.2, we do so throughout this thesis.

5.2 Primary Model: The M/G/1 with Labels 53

otherwise specified, we mean that only the arrival rate is changing. For example, the
heavy-traffic limit is the p — 1 limit, namely the limit as the system approaches but does
not quite reach instability.

5.2.3 Labels and What the Scheduler Knows

It is natural to assume that the scheduler knows each job’s age, because ages can be tracked
in real time. We also assume that the scheduler knows each job’s label. We call the pair
(¢,a) of a job’s label £ and age a the job’s state. A job’s state thus encodes much of what
the scheduler knows about the job.> We generally do not assume that the scheduler knows
any job’s size or remaining work unless they can be deduced from the job’s state.

However, even when the scheduler does not know a job’s size, it may have have partial
information about the job’s size based on its state. Consider a job with label ¢ that just
arrived and has age 0. From the scheduler’s perspective, the job’s size is an unknown
random variable drawn from the label-conditional size distribution

S[::(SlL:f).

More generally, if the job has age a, then from the scheduler’s perspective, its remaining
work is an unknown random variable drawn from the state-conditional remaining work
distribution

Sta=(Se—al|Sp>a)=(S—a|L=¢S5>a).

Of course, the scheduler needs to know the label-size distribution (L, S) to compute
the above conditional distributions. We assume throughout that (L, S) is indeed known, as
one can imagine inferring it from past data. However, in practice, such inference would
yield only an approximation of (L, S). While we do consider one scenario in Chapter 12
where the scheduler knows (L, S) only approximately, scheduling when (L, S) is only
approximately known is area with many open problems.

This thesis is written in a style where we (meaning you, the reader, and me, the author)
often inhabit the role of the scheduler. Phrases like “we know each job’s size” thus refer to
what the scheduler knows.

The Unlabeled Case

In some scenarios, we do not have any relevant information that distinguishes one job
from another other than age. This is the case where there is only one label. We call this
the unlabeled case, and we denote the single trivial label by *, so I = {*}. We often drop =
from notation, such as writing S, instead of S, ,.*

3Specifically, in addition to a job’s label and age, the scheduler could keep track of other quantities, such
as when the job arrived or how . Our reasons for focusing especially on a job’s label and age will become
clear in Chapter 6.

*Whether S with a single subscript denotes a label-conditional size distribution (S, for £ € IL) or a
state-conditional remaining work distribution in the unlabeled case (S, for a > 0) will always be clear from
context.

54 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

What Do Labels Represent?

There is a sense in which saying “the scheduler knows each job’s label” is slightly mislead-
ing. This is because labels are a modeling tool: we are vague about what I is and what
information labels have because we as modelers get to decide. A better way to think about
labels is the other way around: “each job’s label is what the scheduler knows about it”. For
example, if we are modeling a system where the geographic origin of each job is known,
we would want the set of labels IL to encode that information. We might let IL be the set of
U.S. states, as in Figure 5.2.

Throughout this thesis, we typically let the set of labels be whatever is simplest for the
scheduling policy we are studying. That is, we do not include irrelevant information in
the label. For instance, when studying scheduling policies that use only job sizes and ages
to make scheduling decisions, we let each job’s label be its size, so I. = R, even though
other information might be available to the scheduler. See Chapter 6 for examples of how
we use different sets of labels for different scheduling policies.

Limitations of Labels

The M/G/1 with labels turns out to be a very flexible model that is suitable for studying a
wide array of scheduling scenarios, as we demonstrate with many examples in Chapter 6.
With that said, the model has two important limitations:

« Labels must be i.i.d. across jobs (§ 5.2.2). This means that, for instance, a job’s label
cannot specify what time of day the job arrived.

« Once a job arrives, its label is fixed. The only dynamic part of a job’s state is its age,
and so a job’s state only changes while it is in service. This means that we cannot
model scenarios where the scheduler dynamically learns information about jobs
while they wait in the queue.

We will partially relax the second limitation in Chapter 14, in which we extend our model
such that, roughly speaking, a job’s label can change alongside its age while the job is
in service. However, models where a job’s state changes while waiting in the queue are
beyond the scope of this thesis.

5.2.4 Multiserver Analogue: The M/G/k

One of the main topics we study in this thesis is scheduling in multiserver systems. Most
of our work on this topic studies the M/G/k, the central-queue multiserver analogue of the
M/G/1. The only difference between the M/G/1 and M/G/k is the servers:

» The M/G/1 has a single server with service rate 1.

« The M/G/k has k > 2 servers, each with service rate 1/k. That is, while a job is in
service, its work decreases and age increases at rate 1/k. A job of size s thus requires
ks time in service to complete.

All other aspects of the M/G/k are the same as the M/G/1: we have the same M/G arrival
process, and the scheduler still knows each job’s label and age.

5.3 Scheduling 55

Using service rate 1/k for the M/G/k’s servers is, of course, an arbitrary convention.
However, it plays an important intuitive role in our analysis. The M/G/k is a notoriously
difficult system to analyze directly, even when using the simplest scheduling policies
[73, 82]. Our general approach is to analyze the M/G/k by comparing it to an M/G/1
experiencing the same arrival process. Giving both systems total service rate 1 makes this
comparison a “fair fight”, meaning the systems behave similarly enough that we can gain
insight into the M/G/k by studying the considerably simpler M/G/1.

The M/G/k is a central-queue system, so the scheduler is free to assign any job to any
server. Most of our multiserver results are proven for the M/G/k. However, a few of our
results apply to any system with M/G arrivals (Ch. 8), or even to systems with other arrival
processes (Ch. 15).

5.3 Scheduling

The system’s scheduler decides which jobs to serve at every moment in time. The procedure
the scheduler uses to make this decision is called the system’s scheduling policy, or simply
policy when it is clear that scheduling is being discussed. Having already described what the
scheduler knows about each job (§ 5.2.3), we now give some simple examples of scheduling
policies (§ 5.3.1). We then discuss preemption and server sharing, which feature in several
of the example policies, in more detail (§ 5.3.2).

5.3.1 Examples of Scheduling Policies

All of the policies below are described assuming a single-server system like the M/G/1,
but most of them have analogues for central-queue multiserver systems like the M/G/k
(Ch. 6). We allude throughout our discussion to the mean response time metric, which is
the average amount of time jobs spend in the system (§ 5.4.1). We discuss mean response
times in more detail in Section 5.5.

Policies that Treat All Jobs the Same Way

If queueing systems have a single default scheduling policy, it is unquestionably First-Come,
First-Served (FCFS), which serves jobs in arrival order. FCES is a nonpreemptive policy:
once a job enters service, it remains in service until it completes. FCFS is appealing in
that it seems to treat jobs fairly. However, FCFS suffers from a drawback: a single very
large job can “block” the system for a long time, delaying many other jobs. For job size
distributions with high variance, this blocking leads to poor mean response time (§ 5.5.1).
Other nonpreemptive policies, such as Last-Come, First-Serve (LCFS) and Random Order of
Service (ROS), suffer from the same issue.’

> After each completion, LCFS serves the job that most recently arrived, whereas ROS serves a job chosen
uniformly at random.

56 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

In order to mitigate this blocking issue, a policy must be preemptive: it must occa-
sionally preempt, or interrupt, the job in service. One of the simplest preemptive policies
is Preemptive Last-Come, First-Served (PLCFS), which always serves whichever job most
recently arrived. That is, whenever a new job arrives, PLCFS preempts the job currently in
service and starts serving the new arrival. Counterintuitively, this frequent preemption
can lead to PLCFS having lower mean response time than FCFS for high-variance size
distributions [55].

Another policy that is designed to avoid blocking the server is Processor Sharing (PS).
This policy takes preemption to the extreme: it serves jobs in round-robin fashion, serving
each job for a short time § each cycle. Specifically, we consider PS in the § — 0 limit,
which creates the effect of sharing the server equally among all jobs in the system. That is,
if there are n jobs in the system, the server serves each job at rate 1/n (§ 5.3.2). By sharing
the server, PS avoids getting blocked by any one very large job.

A final policy that treats all jobs the same way is Least Attained Service (LAS). This
policy always serves the job of least age. If multiple jobs are tied for least age, LAS shares the
server equally among the tied jobs.® The idea behind the LAS policy is that by prioritizing
the jobs with small ages, very small jobs will be served very quickly, without needing to
wait behind larger jobs that have been in the system for a long time.

Policies with Multiple Classes of Jobs

There are many systems where some jobs are more important than others for one reason
or another. Perhaps some requests are especially urgent, or perhaps some clients pay extra
for expedited service. One way to model such a system is to give each job a priority class.
In the simplest version, there are n classes of jobs 1, ..., n. Class 1 has priority over class 2,
which has priority over class 3, and so on.

Two natural policies for scheduling in systems with priority classes are Preemptive
Priority (P-Prio) and Nonpreemptive Priority (NP-Prio). Both policies prioritize jobs according
to their class, and both serve jobs in arrival order within each class. The difference between
the policies is when they make scheduling decisions.

« P-Prio makes scheduling decisions continuously. It will thus preempt a job of class i

if a job of class j < i arrives.

« NP-Prio makes scheduling decisions at discrete points in time, namely when jobs

arrive while the server is idle and when jobs depart while the queue is nonempty.
If a job of class i is in service when a job of class j < i arrives, NP-Prio completes
the class i job then begins serving whichever job has the best priority. This next job
might be the class j job, but it could be a different job with even better priority.
The advantage of P-Prio is that it is stricter in its prioritization: each job can essentially

%This sharing arises naturally in the following way. Suppose LAS repeatedly served the job of least age
for an interval of length &, breaking ties arbitrarily. Given multiple jobs tied for least age, this version of LAS
would alternate between them, because being served for § time increases a job’s age by 8. The § — 0 limit
thus results in sharing the server, analogous to the situation with PS.

5.3 Scheduling 57

pretend that lower priority jobs don’t exist. The advantage of NP-Prio is that it does not
require preemption to implement.

When modeling systems with multiple classes, one typically lets the labels be the set of
classes I. = {1,..., n}, with each job labeled by its class. However, one would use a larger
set of labels if each job carried additional pertinent information in addition to its class.

We have described P-Prio and NP-Prio for a finite number of classes above, but the
same descriptions easily generalize to any totally ordered set of classes.

Policies that Use Job Size Information

It turns out that to achieve low mean response time, it is crucial to use information about
each job’s size. The intuition is that if the scheduler serves a small job before a large job,
that causes a small amount of waiting, whereas serving the large job before the small job
causes a large amount of waiting.

One way to prioritize jobs by size is to use P-Prio and NP-Prio, using a job’s size as
its class and prioritizing smaller sizes. The resulting policies are more commonly called
Preemptive Shortest Job First (PSJF) and Shortest Job First (SF), respectively. For most
size distributions, PSJF has lower mean response time than SJF, especially when the size
distribution has high variance [55].

However, it is possible to do even better than PSJF when it comes to minimizing mean
response time. PSJF prioritizes each job using its initial amount of work, namely its size. But
this may be different than the amount of work the job currently has, namely its remaining
work. When deciding the order in which to serve two jobs, we cause the least amount of
waiting by considering the jobs’ remaining work, as opposed to their sizes.

The policy that always serves the job of least remaining work is called Shortest Remain-
ing Processing Time (SRPT). A classic result in scheduling theory is that SRPT minimizes
mean response time in single-server queueing systems under very general conditions [116],
even when arrivals are adversarial rather than stochastic (§ 5.1.3).

5.3.2 Preemption and Server Sharing

Several of the scheduling policies described in Section 5.3.1 preempt jobs, with PS and
LAS using very frequent preemption to share the server between multiple jobs. We take a
moment here to describe more precisely the assumptions we make about preemption and
server sharing.

Preemption Is Free

We assume that when the scheduler preempts a job to begin serving a different job, the
switch occurs with no overhead and no loss of work.
+ No overhead means that preemption is immediate: the server switches instantly from
serving one job to serving another.

58 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

« No loss of work means that when a job is preempted, its remaining work and age are
unaffected.
Our default assumption is that the scheduler may preempt jobs at any time, though we
occasionally make more restrictive assumptions (Chs. 9, 14, and 16).

Server Sharing Follows from Free Preemption

Our assumptions about preemption allow the server to rapidly switch between a number
of jobs, effectively sharing a server between multiple jobs. It turns out that the simplest
approach to modeling this phenomenon is to explicitly allow the scheduler to share the
server between multiple jobs. Formally, we allow a server with service rate u > 0 may
serve any number of jobs n, serving the ith such job at rate v; > 0. Serving a job at rate v
decreases its remaining work and increases its age at rate v. The total job service rate must
not exceed the server’s service rate, meaning).\, v; < u.

For simplicity of language, we often use phrases that assume that servers serve one
job at a time. For example, we often discuss “the job in service” at a server. These phrases
should be understood as meaning what they would if the scheduler really were alternating
rapidly between serving different jobs to simulate sharing. For example, “the job in service”
at a server refers to a randomly chosen job among those that are currently sharing the
server, with with each job i being chosen with probability proportional to its service rate v;.

Server Sharing with Multiple Servers

Our above discussion of server sharing is sufficient for systems where each queue is
connected to its own server, such as the M/G/1. However, there is an additional subtlety
we must consider for central-queue multiserver systems, such as the M/G/k. The M/G/k
has k servers, each with service rate 1/k. We can think of the scheduler as assigning each
job a service rate at every moment in time. There are two types of constraints on what the
scheduler’s actions:
« Because the total service rate of all the servers is 1, it must be that the total service
rate of all jobs is at most 1.
+ Because we intend server sharing to be the limit of rapidly alternating which job
is in service at each server, it must be that each job’s service rate is at most 1/k.
Otherwise, we would be effectively allowing two servers to serve the same job at
the same time.

5.4 Queueing Metrics

5.4.1 Response Time

One of the most important aspects of a queueing system’s performance is jobs’ response
times. A single job’s response time is the amount of time it spends in the system between

5.4 Queueing Metrics 59

arrival and departure. This includes time queueing and time in service. In most queueing
systems, lower response time, and in particular less time spent queueing, is generally
desirable.

Of course, the queueing models we study involve many jobs arriving over time, so the
natural object to study is a system’s response time distribution, denoted T. Intuitively, T is
the distribution of response times we would observe by watching a very large number of
jobs pass through the system. We give two more precise definitions in Section 5.4.2.

There are multiple response time metrics one might hope to optimize, including:

« Mean response time E[T]: the average amount of time jobs spend in the system.

« Response time tail probability P[T > t]: the probability jobs have response time larger

than a parameter ¢.

* Response time quantile t; = min{t > 0 | P[T < t] > g}: the threshold #, such that (at

most) a g fraction of jobs have response time at most .
Which of these metrics is most important depends on the system being modeled. For
example, when designing for the goal of preventing especially large response times, tail
probabilities and quantiles would be more important metrics to optimize than the mean.

In this thesis, we focus primarily on mean response time and the asymptotic response
time tail, meaning the asymptotic behavior of P[T > t] in the t — oo limit. While we do
not discuss quantiles specifically, results about the asymptotic tail imply results about the
q — 1 limiting behavior of quantiles.

What Factors Affect Response Time?

For concreteness, consider an M/G/1 with labels. Its response time distribution T is a
function of the following factors:

« The M/G arrival process, namely the arrival rate A and label-size distribution (L, S).

+ The scheduling policy. For example, we have seen in Section 5.3.1 that scheduling

can affect mean response time E[T].
Beyond the M/G/1, other aspects of the queueing system’s architecture can affect its
response time. For example, in an M/G/k, the number of servers k is an important factor. To
reduce clutter, we often leave T’s dependence on the various factors that affect it implicit in
our notation. When we wish to make some dependence explicit, we write it as a subscript.
For the most part, this means specifying the scheduling policy: T,; denotes the response
time distribution under policy 7.

The above discussion applies not just to response time, but also to many other quantities
that depend on the system parameters, such as the distribution of the number of jobs in
the system (§ 5.4.3). In particular, we use the same subscript notation convention.

Some of the above factors affect response time in obvious ways. For instance, increas-
ing the arrival rate essentially always increases response times. But other effects are
less straightforward. For instance, in an M/G/1, suppose we change S by increasing its
variance Var[S] while keeping its mean E[S] fixed.

+ Under FCFS, mean response time E[T] increases as a function of Var[S] (§ 5.5.1).

60 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

« Under SRPT, the specifics of S matter, but as a rule of thumb, mean response time
E[T] decreases as a function of Var[S] [146].
The fact that scheduling can counterintuitively affect response time is one of the main
reasons I believe scheduling theory is so important (Ch. 1).

5.4.2 Characterizing Response Time with PASTA

We introduced T earlier as the distribution of response times one would observe by
watching a large number of jobs pass through the system. More formally, if T, is the
distribution of the first n jobs’ response times, then T,, converges in distribution to T in the
n — oo limit (§ 5.6.1).

For systems with M/G arrivals, we can define T in another way. Consider a generic job,
meaning one with label-size pair drawn from (L, S), arriving to a steady-state system. This
new arrival’s response time is a random variable distributed as T.

The equivalence of the above two ways of defining T follows from the Poisson Arrivals
See Time Averages (PASTA) property [150] and our assumption that the systems we study
are in steady state (§ 5.6.1). While the first perspective is the reason we really care about T,
the second perspective is often the more useful one when it comes to characterizing T
theoretically (Ch. 7). In particular, we often compute T by way of the conditional response

time distribution
T(t,s)=(T|L=¢tS=s),

which is the response time distribution of a job with given label £ and size s arriving to a
steady-state system.’

5.4.3 Number-in-System

Another important aspect of a queueing system’s performance is the number of jobs in
the system, which we call the number-in-system, denoted N.

By default, N refers to the number-in-system of a steady-state system, but we occasion-
ally look at non-steady-state scenarios. We use the same convention for other quantities
defined in terms of the system’s current state (§ 5.6.1).

Just as one can define multiple metrics from the response time distribution T, one can
define multiple metrics based in the number-in-system distribution N. In this thesis, we
primarily concern ourselves with the mean number-in-system E[N]. This is largely because
the mean number-in-system is related to mean response time via Little’s law [84], which
states

E[N] = AE[T].

Little’s law holds for a wide variety of queueing systems, even those with arrival processes
other than M/G arrivals, so long as there is a well-defined average arrival rate A. Its main

"The definition of T(#, s) contains a mild abuse of notation: we use the notation for distributions to stand
for random variables with those distributions. We use similar abuse of notation throughout this thesis, as
discussed in more detail in Section 5.6.2.

5.5 M/G/1 Crash Course 61

implication is that given a fixed arrival process, minimizing mean response time and
minimizing mean number-in-system are equivalent objectives.

5.4.4 Weighted Response Time and Holding Cost

Metrics based on response time T or number-in-system N are limited in that they treat
all jobs the same way. However, there are various reasons we might want a performance
metric that gives different jobs different values.

« In a system with multiple priority classes, we might care more about the response
times of jobs with better priority.

+ The amount of delay that is acceptable for a job may depend on its size. For example,
delaying a 100-minute job for 10 minutes may barely be noticed, whereas delaying a
1-minute job for 10-minutes may feel like a major delay.

In these situations, a metric that assigns different jobs different weights may be more
appropriate. One notable example of a weighted response time metric is slowdown T/S,
the ratio of a job’s response time to its size.

More generally, we can consider each job to have a holding cost, and we might aim
to minimize the mean system holding cost, namely the mean total holding cost of all jobs
in the system. We do not discuss holding cost in detail until Part III, so we defer further
details to Chapter 14.

5.5 M/G/1 Crash Course

We have thus far discussed a variety of scheduling policies (§ 5.3) and performance metrics
(§ 5.4). One of the main goals of this thesis is to answer many versions of the following
question:

How well does a given scheduling policy perform on a given metric in a given
queueing system?

As a warm-up to answering many difficult instances of this question in the rest of the
thesis, we take a moment to answer some simple versions of it by reviewing the M/G/1
response times of two basic scheduling policies: FCFS and PLCFS. With that said, the true
purpose of this section is to introduce two key queueing theory concepts, system work
(§ 5.5.1) and busy periods (§ 5.5.2). We use these concepts not just to analyze FCFS and
PLCEFS here but to analyze a great deal of scheduling policies throughout this thesis.

5.5.1 System Work

As discussed in Section 5.4.2, one way to analyze a system’s response time is to imagine
a job arriving to a steady-state system. To that end, consider a generic job arriving to a
steady-state M/G/1 using FCFS. We can divide the job’s response time into two parts: time
in service and time queueing,.

62 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

+ The amount of time the job spends in service is simply its size S.

« Because jobs are being served in arrival order, the amount of time the job spends
queueing is the total remaining work of all the other jobs that in the system when it
arrives. We call this quantity the system work, denoted W.

Because future arrivals are independent of the past (§ 5.2.2), the arriving job’s size S
and system work W it observes are independent, so we can write response time as an
independent sum

Trcrs =st W + S, (5.1)

where =y denotes equality of distributions (§ 5.6.2).

Of course, we have only shifted the problem of determining FCES’s response time to the
problem of characterizing the steady-state system work W. Fortunately, characterizations
of W are among the earliest results obtained for the M/G/1. We give a derivation of our
own in Chapter 8, but for now, we focus on just its mean, which is [55]

E[W] = 2E[S?] _ LE[S] + %Var[S].
1-p 1-p

We thus obtain a formula for FCFS’s mean response time:

JE[s?] LE[S] = (1-2)E[S] + ’%Var[S].
1-p l-p

E[Tgcrs] = (5.2)

Takeaways for FCFS’s Response Time

The most important things to notice about E[Trcps]| is how it is affected by load p and job
size variance Var[S].
« Asload p approaches 1, which is the maximum load under which the system is stable
(§ 5.6.1), mean response time E[Trcps] diverges. This occurs under any scheduling
policy, although some have a growth rate slower than FCFS’s @(ﬁ) (§2.1.2).8
« As job size variance Var[S] increases while E[S] and p remain fixed, mean response
time E[Trcrps] increases. In particular, arbitrarily large variance can yield arbitrarily
large mean response times, even at low loads. We will soon see that not all scheduling
policies suffer from this issue (§ 5.5.2).

System Work Is Scheduling-Invariant

Above, we reduced the problem of characterizing FCFS’s response time Tgcrs to the problem
of characterizing the steady-state system work W. Why is this a helpful step?

One of the main reasons system work is such a helpful concept is that in single-server
systems like the M/G/1, system work is scheduling-invariant, meaning the same under

8Recall from Section 5.2.2 that when we discuss a quantity varying as a function of changing load, we
mean that the arrival rate is changing while the size distribution remains fixed.

5.5 M/G/1 Crash Course 63

system work

A~

job]J job K

Oueanunnnns

\ > time

S

0 J’s busy period K’s busy period

Q

Figure 5.3. System work over time under a non-idling scheduling policy in an M/G/1. Each arriving
job causes an upward jump, increasing system work by the arriving job’s size. During busy periods,
meaning whenever system work is nonzero, system work decreases at rate 1.

any scheduling policy, under a very mild condition: the system must be using a non-idling
policy, meaning one that never leaves the server idle while system work is nonzero. This is
because system work undergoes the same upward jumps (due to arrivals) and downward
slopes (due to service) under any non-idling policy, as illustrated in Figure 5.3.

In the interest of transparency, I should mention that analyzing Trcrs and analyzing W
are tasks of essentially equivalent difficulty, as witnessed by (5.1). But the general strategy of
reducing analysis of a scheduling policy’s response time to scheduling-invariant quantities
will serve us well throughout this thesis, including in the very next section.

5.5.2 Busy Periods

We now move on to analyzing the response time of PLCFS. Just as system work helped us
analyze FCFS, another queueing theory concept will help us analyze PLCFS: busy periods.
Roughly speaking, a busy period is an interval of time during which a system has nonzero
system work, as illustrated in Figure 5.3. After defining busy periods more precisely, we
see they are exactly what we need to understand to analyze PLCFS.

Somewhat confusingly, the term “busy period” actually refers to multiple related but
slightly different concepts. In an attempt to clarify, we introduce some more specific terms
below. Consider a particular job J that at some point arrives to an M/G/1. The busy period
started by job J, or simply F’s busy period, consists of the following two entities:

+ The busy period’s tree is the following random rooted tree. Let every job be a vertex,
and draw a directed edge from a job K to another job L if L arrives while K is in
service.” The busy period’s tree is all vertices accessible from J, as illustrated in
Figure 5.4.

°If the server is sharing between multiple jobs when a job L arrives (§ 5.3.2), we choose which job from
which to draw the edge to L randomly from among those in service, picking each job with probability
proportional to its service rate when L arrives.

64 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

Figure 5.4. Tree of job I's busy period. An edge from a job A to another job B indicates that B
arrives while A is in service. Job J’s busy period’s tree (gray box) is the subtree rooted at J.

« The busy period’s work is the total size of all jobs in the busy period’s tree. We can
divide work into initial work, which is J’s size, and new work, which is the total size
of the other jobs in the tree.

When unambiguous, we occasionally use just “busy period” to refer to a busy period’s tree
or work. Some busy periods are highlighted in Figure 5.3.

We write B(s) for the distribution of the work of a busy period started by a job of
size s, and we write B := B(S) for the work of a generic busy period, meaning a busy period
started by a generic job with size distributed as S. Characterizations of B(s) and B are
standard results in queueing theory. For now, we show just their means [55]:

PLCFS Response Time Is a Busy Period

What is PLCFS’s response time distribution? Recall from Section 5.3.1 that PLCEFS is the
policy that always serves whichever job most recently arrived. By PASTA (§ 5.4.2), it
suffices to consider the response time of a generic job, which we will call J, arriving to a
steady-state M/G/1.

What is job J’s response time? When J arrives, it becomes the most recently arrived
job in the system, so it immediately begins service. However, new arrivals may preempt]
before it completes, and still newer arrivals may preempt those new arrivals, and so on.
The key observation is that PLCFS prioritizes another job over J if and only if the other job

5.5 M/G/1 Crash Course 65

is in J’s busy period’s tree. This means J’s response time is its busy period’s work, so

TpLcrs =st B,
E[S]

E[Tprcrs] = E

In particular, note that PLCFS’s mean response time does not depend on the job size
distribution beyond its mean. This is in contrast to FCFS, which, as shown in (5.2), depends
also on the variance.

Busy Periods are Scheduling-Invariant

One important feature of busy periods in the M/G/1 is that they are scheduling-invariant.
Strictly speaking, as we explain below, busy periods are only scheduling-invariant in a dis-
tributional sense, but this is adequate for our purposes. Busy periods thus join system work
as scheduling-invariant quantities that prove useful for a variety of analyses throughout
this thesis.

To consider how scheduling decisions affect the busy period of some job J, let Y; be the
list of label-size pairs of arrivals that occur while J is in service under some scheduling
policy, and let Y, be the same for another policy. On one hand, changing when] is served
will affect which jobs arrive while serving J, so Y; # Y, in general. This means busy periods
are not scheduling-invariant for a fixed arrival sequence. But on the other hand, we do not
have a fixed arrival sequence: M/G arrivals are a stochastic process. In particular, arrivals
are distributed, roughly speaking, “time-invariantly”. The upshot is that under M/G arrivals,
we have Y] =4 Y7, meaning Y; and Y, have the same distribution. Applying this observation
recursively, we find that the distribution of J’s busy period is scheduling-invariant.°

An important consequence of scheduling invariance of busy periods is that we can
broaden our view on what can start a busy period. Instead of limiting ourselves to busy
periods started by a job, we can consider busy periods started by an amount of initial work.
This work can come from multiple jobs, and it can even include parts of jobs. Busy periods
started by initial work v are essentially the same as busy periods started by a job of size v.!!
In particular, such a busy period’s work distribution is also B(v).

9T the queueing theory literature, scheduling invariance of busy periods under M/G arrivals is sometimes
phrased as a system having job-linked arrivals [44, Section 4.8]. The idea is that we can imagine that because
the arrivals during a job’s service have a scheduling-invariant distribution, we may view the arrivals during
a job as being predetermined.

UThe only difference is that when discussing the busy period’s tree, the root represents the initial work,
as opposed to representing a specific job.

66 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

5.6 Additional Preliminaries

5.6.1 Convergence to Stochastic Equilibrium

We assume that the systems we study in this thesis are ergodic and converge to a stochastic
equilibrium. To make this precise, we need to specify what the state of the system is.

Recall that we write N for the number of jobs in the system. The state of the system
consists of the following:

+ The number of jobs N.

« The state (L;, A;) of the ith job in the system for alli € {1,...,N}.

« Any additional state the scheduling policy needs to maintain to make its scheduling

decisions.
Provided the scheduling policy’s state is detailed enough, an M/G system with the above
state description becomes a continuous-time Markov process.

All the specific M/G systems we study are either M/G/1 or M/G/k queues, and their
scheduling policies do not require tracking any additional state at all. This makes them (non-
lattice) renewal processes, so p < 1 ensures positive recurrence and thereby our ergodicity
and equilibrium assumptions. However, the ergodicity and equilibrium assumptions are
implicit in results that apply to all M/G systems.

5.6.2 (Abuse of) Notation for Distributions and Random
Variables

Our notation throughout this thesis does not distinguish between two related but subtlety
different concepts:

« distributions, namely probability measures; and

« random variables, which have distributions.

Given a distribution V, we also write V for a new random variable with that distribution.
Unless otherwise specified, this new random variable is independent of all other random
variables. A notable exception is the label L and size S of a generic job, which we assume
to be correlated according to the joint label-size distribution (L, S).

In the other direction, given a random variable V to do with the system state (e.g.
system work W), we also write V to denote its steady-state distribution. More generally,
random variables that depend on the system state refer to steady-state systems unless
otherwise noted.

We use the following notation for some common distributions:

« Bernoulli(p): a “probability-p coin flip” which is 1 with probability p and is 0 other-

wise.

+ Geo(p): geometric distribution with parameter p and support at 0. This is the number

of independent probability-p coin flips before a 1 occurs, not counting the final 1.

« Normal(y, 0): Gaussian distribution with mean y and standard deviation o.

5.6 Additional Preliminaries 67

We write =g for equality in distribution. That is, U = V means P[U > t] = P[V > ¢]
for all t € R. Similarly, < denotes the usual stochastic partial order, so U <4 V means
P[U > t] <P[V > t] forallt € R.

5.6.3 Excess Distributions

In a steady-state queueing system, there is some probability the server is in the middle
of serving a job. Analyzing the system often involves determining the distribution of the
amount remaining work of the job in service. This is given by the excess of the job size
distribution S, as defined below.

Definition 5.1. The excess of distribution V, denoted EV, is the distribution defined by
the tail function

PIEV > 1] = ﬁ/tmp[v > u] du.

When we wish to denote n independent samples of the excess distribution EV, we denote

them (EV)4,...,(EV),.

5.6.4 Laplace-Stieltjes Transforms

Definition 5.2. The Laplace-Stieltjes transform (LST) of distribution V, denoted L[V], is
the function

L[V](0) = E[exp(-0V)].

Below, we review the well-known LST formulas for the excess of a distribution, the
system work in an M/G/1, and an M/G/1 busy period’s work.

Proposition 5.3. Let V be a nonnegative distribution. The LST of the excess EV is

rievy(e) = == _ém(e).

Proposition 5.4. The LST of the system work W in an M/G/1 is

1-p
- pL[ES](0)

Proposition 5.5. The LST of the work of a busy period started by a random amount of initial
work V'is

LIW)(0) =

L[B(W)](0) = L[V](5(0)),
where 1(0) is the principal solution to'?

n(0) = 0+ A(1- LIS1(1(6))).

12Specifically, when 0 > 0, there is a unique positive real solution, and taking the analytic continuation
covers other values of 6.

68 Chapter 5 Core Modeling Assumptions and Queueing Theory Background

While the busy period LST is given in terms of the implicitly defined 7 (6), the deriva-
tives of busy period LSTs yield equations that can be solved to obtain explicit expressions
for any integer moment.

One can show using Proposition 5.5 that busy periods are additive.

Corollary 5.6. Busy periods are additive in the following sense: for any independent non-
negative random variables U and V,

B(U+V) =4 B(U) +B(V),

where the two busy periods on the right-hand side are independent.

5.6.5 Neglected Measure-Theoretic Technicalities

This thesis plays somewhat fast and loose with measure theory. For example, we ought
to assume that the set of labels IL is a measure space, we should maybe assume that S
has no singular component, and we should verify that various functions on I. X R are
measurable. There are even more measure-theoretic technicalities to consider for the more
general job model we use in Part IIL

I find it easier to communicate the main ideas in this thesis without worrying about
measure-theoretic technicalities, and I hope that most readers will appreciate this choice.
Those concerned about the details should rest assured that in a great many cases of
practical interest, the technicalities can be worked out easily. More conservatively, all of
the sufficiently general theoretical results in this thesis, particularly those in Part III, can
be understood as “reductions to measure theory”. See Chapter 14 for further discussion.

5.6.6 Other Notes on Notation and Terminology

We conclude with some miscellaneous notes on notation and terminology:.
« We use f(x—) and f(x+) to refer to right and left limits of a function f at x.
« We use (x)* := max{x, 0} to denote the positive part of x.
« When it can be done without loss of clarity, we often omit parentheses around objects
like tuples to reduce clutter. For instance, for a function f applied to a tuple (x, y),
we might write f(x,y) instead of f((x,y)).
« The terms “increasing”, “decreasing”, and “monotonic” are meant in their weak sense
unless preceded by “strictly”.
« In addition to the usual numbering of theorems, lemmas, definitions, etc., we also
have several numbered policies, which we use for definitions of scheduling policies.
Most importantly, Appendix A contains an index of notation.

CHAPTER 6

SOAP Policies: Describing Scheduling
with Rank Functions

There is a large body of literature analyzing the response time distributions of various
scheduling policies in the M/G/1. Unfortunately, this prior work is lacking in two significant
ways.

« The M/G/1 scheduling literature is limited to relatively “simple” policies. This is a
problem because more “complex” policies naturally arise in practice, such as when
scheduling with uncertain job sizes or preemption limitations.

+ The M/G/1 scheduling literature, for the most part, analyzes policies one at a time,
with occasional analyses of classes of related policies [74, 146]. This is a problem
because there is a huge space of possible scheduling policies

The next few chapters introduce SOAP: Schedule Ordered by Age-based Priority, a

framework that takes a big step towards solving both of the above problems. The SOAP
framework consists of two things:

« SOAP policies: a broad class of scheduling policies that includes many complex
policies we would like to analyze.

« SOAP analysis: a generic analysis of the response time distribution in an M/G/1 using
any SOAP policy.

This chapter introduces SOAP policies, and Chapters 7 and 8 present the SOAP analysis.
The key idea behind SOAP is to define a unifying language for expressing scheduling
policies. We want this language to be flexible enough to describe a wide variety of policies,
but we also want it to be restrictive enough to admit a generic analysis of any policy
that can be expressed in the language. We thus begin this chapter by introducing a new
unifying language which provides a good balance of these features: rank functions (§ 6.1).
A SOAP policy is any policy that can be represented as a rank function. We spend most of
the chapter showcasing the breadth of the class of SOAP policies, using rank functions to
express a large fraction of the simple policies that have been analyzed previously (§ 6.2),
as well as many more complex policies that were never analyzed prior to SOAP (§ 6.3). We
conclude with a discussion of what policies are not SOAP (§ 6.4).

Throughout this section, by default, we discuss scheduling in the M/G/1 with labels
(§ 5.2), though we will briefly discuss SOAP policies in the M/G/k (§ 6.1.5).

This chapter is based on material from Scully et al. [124].

6.1 What Is a SOAP Policy?

Given that essentially all of Part II relies on the definition of SOAP policies, let us immedi-
ately answer the question posed in the section title.

69

70 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

A SOAP policy is a scheduling policy that works by always assigning each job a rank,
or numerical priority (lower is better), based on just its label and age (§ 5.2.3). A SOAP
policy is thus specified by a rank function

label age rank
—— N — ——

rank: L X Rsp — Rxo
All SOAP policies thus work in the same way:
At all times, serve the job of minimal rank, breaking ties in FCFS order.

The differences between SOAP policies thus rest entirely in the choice of rank function.

We give a more formal definition of SOAP policies later in this section (§ 6.1.2). The
rest of the section motivates this definition (§ 6.1.1), discusses its significance (§ 6.1.3), and
clarifies some technical concerns (§ 6.1.4).

6.1.1 Motivation: General, But Not Too General, Policy Class

There are many scheduling policies that work by assigning each job a numerical priority,
then serve the job with least or greatest numerical priority. Such policies are known as
index policies. For example, LAS and SRPT (§ 5.3) are both index policies: LAS always
serves the job of least age, and SRPT always serves the job of least remaining work.

Can we hope for a generic analysis of all index policies? Unfortunately, this is almost
certainly too much to ask for, because any policy can be framed as an index policy by
“retroactively” assigning indices: give the job the policy would serve priority 0, and give
jobs in the queue priority 1, then serve the job with the least numerical priority. This
construction tells us that for the notion of index policies to be helpful, we need to specify
what a job’s priority is allowed to depend on.

We can thus reduce our search for a suitable unifying language for scheduling policies to
a single question: to balance the concerns of modeling flexibility and theoretical tractability,
what should we allow a job’s priority to depend on? SOAP provides a new answer to this
question: letting a job’s priority depends only on its label and age turns out to strike a
good balance. The rest of this section defines the class of SOAP policies in more detail.

6.1.2 Defining SOAP Policies and Rank Functions

SOAP policies are the subset of index policies where a job’s priority depends only on its
label and age. We call a job’s priority its rank, and we use the convention that lower rank
means better priority, so a SOAP policy always serves the job of minimal rank. We formalize
this below.

6.1 What Is a SOAP Policy? 71

rankpas(a) i=a ranksgpr(s,a) '=s—a
s —
0 > a 0 ‘ > a
0 0 S
(a) Rank function of LAS. (b) Rank function of SRPT for job of size s.

Figure 6.1. Rank functions representing LAS (Pol. 6.4) and SRPT (Pol. 6.10), both of which are
SOAP policies.

Definition 6.1.

(a) A rank function on label set L is a function rank : I X Ry — Ry that maps
each label-age pair (¢, a) to a number rank(¢, a), which we call a rank. If a job is in
state (¢, a), then we call rank(¢, a) that job’s rank.

« Inthe unlabeled case, meaning when IL is a singleton (§ 5.2.3), we drop the trivial
label from the notation, writing just rank(a). We also call the rank function
itself unlabeled in this case.

(b) A SOAP policy is a scheduling policy x such that there exists some rank function
rank, on some label set such that 7 always serves the job assigned minimal rank by
rank,, breaking ties in FCFS order by serving whichever job arrived earliest among
the tied jobs. We say that rank;, represents policy .

« When a job J has priority over another job K, we say J outranks K. This happens
when J’s rank is strictly less than K’s, or when J and K have equal ranks but
the tiebreaker favors J.

« When we wish to disambiguate with (c) below, we use the term SOAP policy
with FCFS tiebreaking.

(c) A SOAP policy with LCEFS tiebreaking is the same as an ordinary SOAP policy as
defined in (b), except ties are broken in LCFS order by serving whichever job arrived
latest among the tied jobs.

As simple examples, LAS is the SOAP policy represented by rankyas(a) := a, and SRPT
is the SOAP policy represented by ranksrpr(s, a) := s — a, where a job’s label s is its size.
These rank functions are illustrated in Figure 6.1. We give many more examples of SOAP
policies in Sections 6.2 and 6.3.

For the most part, whenever we define a SOAP policy 7, we specify a canonical rank
function rank, representing it, which we call “the” rank function of 7. This is despite the
fact that many other rank functions can represent 7. For example, we define rankpas(a) := a

72 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

above, but any strictly increasing function of a represents LAS.

Whenever we are discussing the rank function of a specific SOAP policy , we typically
include 7 in the subscript, as in rank,. When discussing a generic rank function of an
unspecified SOAP policy, we typically omit the subscript.

6.1.3 “Simple” vs. “Complex” SOAP Policies

As we will see in Section 6.2, many classic scheduling policies that have been previously
analyzed the queueing literature are SOAP policies. However, these policies are all relatively
simple compared to other SOAP policies. We take a moment here to outline several features
rank functions that allow for expressing policies that are significantly more complex than
those previously analyzed.

Complexity from Nonmonotonicity

Definition 6.2.

(a) A rank function rank is increasing if rank(?, -) is increasing for all ¢ € IL.. We define
decreasing rank functions similarly. A rank function is monotonic if it is either
increasing or decreasing. Otherwise, it is nonmonotonic.

(b) A SOAP policy 7 is increasing if it can be represented by an increasing rank function.
We define decreasing and monotonic SOAP policies similarly. If a SOAP policy is not
monotonic, meaning it can only be represented by nonmonotonic rank functions,
then it is nonmonotonic.

Virtually all previously analyzed SOAP policies' are monotonic, including all of the
examples in Section 6.2. This is likely because, as we explain in Chapter 7, nonmonotonic
policies are significantly more difficult to analyze. Nevertheless, nonmonotonic policies
arise naturally in many scenarios, such as scheduling with uncertain job sizes (§ 6.3.1) or
under preemption limitations (§ 6.3.2). The fact that we can analyze the M/G/1 response
time of any SOAP policy, and in particular nonmonotonic ones, is one of the main ways
SOAP advances the state of the art in queueing theory.

Complexity from Policy Mixture and Multiple Types of Labels

SOAP policies that were previously analyzed tend to be represented by rank functions
where the set of labels IL contains, roughly speaking, one type of label. For instance, LAS
uses a single trivial label, and SRPT has all jobs labeled by their size. But what if one only
knows the sizes of certain jobs? One could model this scenario using a label set like?

IL = {unknown} U {known(s) | s > 0}.

!While we refer to “previously analyzed SOAP policies” throughout this chapter, we emphasize that such
policies were not identified as SOAP policies when they were first analyzed. SOAP policies and the SOAP
analysis were not introduced until 2018 [124].

2Below, unknown and known are purely symbolic, making I analogous to an algebraic data type in a
programming language like ML, Haskell, and Rust. Being symbolic means unknown is equal to itself and

6.1 What Is a SOAP Policy? 73

Using multiple types of labels allows one to express mixtures of policies. For instance, the
rank function

rank(unknown, a) = a,

rank(known(s), a) := s — a.

is a mixture of LAS and SRPT. We are aware of only a few previously analyzed SOAP
policies that mix policies together [49, 105], and none use multiple types of labels like in
the example above.

Complexity from Multidimensional Ranks

Definition 6.1 defines rank functions to always have codomain Rso. However, one can
in principle use a set of ranks with a richer ordering than Ry, such as R2 ordered
lexicographically. We are not aware of any previously analyzed SOAP policies that requires
multidimensional ranks to represent, but the SOAP analysis we present in Chapter 7 applies
essentially verbatim to multidimensional ranks as well. See Scully et al. [124] for more
details on multidimensional ranks.

With that said, while one can construct SOAP policies that do require multidimensional
ranks, we find that single-dimensional ranks are expressive enough for the policies we
wish to study. So for simplicity of presentation, we use R as the set of ranks throughout.

6.1.4 Clarifying Remarks on SOAP Policies and Rank Functions

Rank Ties and Server Sharing

Section 5.3.2 outlines how rank ties in LAS naturally lead to server sharing: when many
jobs are tied for minimal rank, whichever job is favored by the tiebreaking rule stops being
tied for minimal rank after an instant of service, due to its age increasing. Similar server
sharing can happen under any SOAP policy whose rank function at some point increases
with age. We outline how this works in detail in Algorithm 6.1. The algorithm is the natural
result of imagining that the server has a minimum service quantum &, then taking the
& — 0 limit.

Is SOAP Only for the M/G/1 with Labels?

Unless otherwise stated, all the examples in this chapter assume an M/G/1 with labels. While
labels are central to the definition of SOAP policies, nothing in the definition explicitly
mentions any assumptions about the arrival process. Can SOAP be defined for systems
other than the M/G/1 with labels? Extending SOAP to other M/G arrival systems, like
the M/G/k, is generally straightforward (§ 6.1.5). But even beyond that, the answer is at

nothing else, and known(s) is equal only to other terms of the form known(s’) for some s” > 0, with equality
if and only if s = s’. We reserve typewriter font for symbolic terms like these. A similar example arises in
Policy 6.18.

74 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

Algorithm 6.1. SOAP policy tiebreaking with server sharing.

INPUT A rank function rank and a set J of jobs currently tied for minimal rank.

OutpuT Subset of jobs in J to serve, with service rates if sharing the server between
multiple jobs.

PROCEDURE

+ Let K be the subset of J consisting of jobs with decreasing rank, meaning they are
in states (¢, a) with d% rank(¢,a) < 0.

« If K is nonempty, use FCES tiebreaking within K, meaning serve the job in K that
arrived earliest.

« Otherwise, K is empty, so share the server among all jobs in 7, choosing service
rates such that all the jobs’ ranks increase at the same rate. That is, serve a job in
state (¢, a) at rate proportional to 1/ % rank(¢, a), normalizing such that the total
service rate is 1.

least in principle yes: one can imagine a variety of arrival processes, both stochastic and
adversarial (§ 5.1.3), where each job is assigned a static label when it arrives.

However, it turns out that for the SOAP analysis, it is crucial that labels, and more
generally label-size pairs, are i.i.d. across jobs. This is one of the core assumptions of the
M/G/1 with labels (§ 5.2.3), and it turns out to be one of the main limits on what policies
the SOAP analysis applies to. As such, for the purposes of this thesis, policies that could
be represented by a rank function but require non-i.i.d. labels are not SOAP policies. We
give some examples of such policies in Section 6.4.3.

Terminology: “Rank” vs. “Index”

In Definition 6.1, we refer to a job’s numerical priority as its “rank”, with lower rank
indicating better priority. This is somewhat at odds with conventional terminology for
index policies, where a job’s numerical priority is called its “index”, with higher index
indicating better priority. A notable example is the literature on the Gittins policy [44],
which is in fact usually called the Gittins index policy and defined as serving the job of
maximal Gittins index.

In light of this, why do we introduce the additional term “rank” and use the lower-
is-better convention? Why not stick with “index” and higher-is-better? There are two
reasons, though both are ultimately matters of personal preference.

« It is useful to have separate terms for numerical priority in general, for which we
use the term “index”, and numerical priority that specifically only depends on a job’s
label and age, for which we use the term “rank”.?

« While I find that each of lower-is-better and higher-is-better can be more intuitive
in different cases, for most of the scheduling policies in this thesis, I prefer lower-is-

3In Chapter 14, we introduce a more general job model where a job’s state might not be its label-age pair,
but we continue to use “rank” to refer to priroity that depends only on that more general job state.

6.2 Previously Analyzed “Simple” SOAP Policies 75

better. In particular, SRPT is nicely framed as lower-remaining-work-is-better, and
several other policies we study are, in one way or another, generalizations of SRPT.

Technical Restrictions on Rank Functions

When discussing server sharing above, we implicitly assumed the existence of (right)
derivatives d% rank(¢, a). We also assume throughout Chapters 7 and 8 that various expec-
tations related to rank functions are well defined. The following assumptions suffice and
hold in essentially all cases of practical interest, so we assume them throughout.

Assumption 6.3.
(a) The label set IL is (a metric space isomorphic to) a subset of R” for some integer
n=>0.
(b) For all ages a > 0, the function rank(, a) is piecewise continuous.
(c) For all labels ¢ € L, the function rank(¢, -) is piecewise differentiable and is upper
semi-continuous, meaning rank(¢, a) > max{rank(¢, a—), rank(¢, a+)}.

These assumptions become even less restrictive if we allow a richer space of ranks
than Ry (§ 6.1.3). They can also likely be relaxed by stating them in measure-theoretic
language, but doing so is outside the scope of this thesis (§ 5.6.5).

6.1.5 SOAP Policies in the M/G/k

We have thus far discussed SOAP policies as they apply in a single-server setting like the
M/G/1 with labels. SOAP policies have natural interpretations in multiserver systems as
well. In the M/G/k, a SOAP policy serves the k jobs of minimal k minimal ranks, serving
all jobs if there are k — 1 or fewer. There are a few subtle details to note in the M/G/k
case: server sharing can become somewhat intricate (§ 5.3.2), and multiple rank functions
that represent the same policy in the M/G/1 may represent different policies in the M/G/k.
However, these details will not concern us.

When we wish to disambiguate between a SOAP policy 7 being used in a single-server
system and 7 being used in a multiserver system, we write 7-1 and 7-k for the single-server
and multiserver versions, respectively. This disambiguation is useful in Part III, where we
compare an M/G/k using a multiserver policy 7-k to an M/G/1 with the same total service
rate (§ 5.2.4) using the analogous single-server policy 7z-1.

6.2 Previously Analyzed “Simple” SOAP Policies

6.2.1 Simple SOAP Policies that Treat All Jobs the Same Way

For a SOAP policy, treating all jobs the same way corresponds to the unlabeled case.

76 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

rank(a) = 1(a = 0) rank(a) =1
1)[1
0 — a 0 > a
0 0

(a) Rank function of FCFS (or LCFS, if we use (b) Rank function of FCFS (or PLCFS, if we use
LCFS tiebreaking). LCFS tiebreaking).

Figure 6.2. Two rank functions that represent FCFS (Pol. 6.5). Both rely on the fact that we use
FCEFS tiebreaking when multiple jobs have the same rank. If we use LCFS tiebreaking instead, then
the two rank functions instead represent two different policies: LCFS (Pol. 6.6) and PLCFS (Pol. 6.7).

Policy 6.4. The Least Attained Service (LAS) policy always serves the job of least age. It is
a SOAP policy with rank function

rankpas(a) == a.
See Figure 6.1(a) for an illustration.

Policy 6.5. The First-Come, First-Served (FCFS) policy nonpreemptively serves jobs in
arrival order. It is a SOAP policy that is represented by any rank function rank such that
rank(0) > rank(a) for all a > 0. See Figure 6.2 for illustrations of two such rank functions.

We take a moment below to explain in more detail why the property rank(0) > rank(a)
results in FCFS, because we will see similar ideas in other rank functions later.

Suppose for now that rank(0) > rank(a) for all a > 0, as in Figure 6.2(a). We can think
of the rank(0) > rank(a) property as encoding nonpreemptiveness. This is because only
time multiple jobs are tied for minimal rank is immediately after a departure, when all
the jobs present have age 0. Once a job begins service, it outranks the jobs that remain
at age 0, as well as later arrivals which have initial age 0, so it is never preempted. FCFS
tiebreaking ensures that when choosing a job at age 0 to start serving, the scheduler starts
the one that arrived earliest, thus resulting in FCFS.

FCFS tiebreaking has another effect: the scheduler will not preempt the job in service
even if the rank function only satisfies the weaker property rank(0) > rank(a), as in
Figure 6.2(b). However, we will see in Policies 6.6 and 6.7 below that this weaker property
does not ensure nonpreemptiveness under LCFS tiebreaking.

Policy 6.6. The Last-Come, First-Served (LCFS) policy nonpreemptively serves jobs in
reverse arrival order. That is, after each departure, LCFS serves whichever job most recently

6.2 Previously Analyzed “Simple” SOAP Policies 77

arrived. It is a SOAP policy with LCES tiebreaking represented by any rank function rank
such that rank(0) > rank(a) for all a > 0, such as that the one shown in Figure 6.2(a).
As discussed above, such a rank function encodes the fact that the scheduling policy is
nonpreemptive, so LCFS tiebreaking results in LCFS.

Policy 6.7. The Preemptive Last-Come, First-Served (PLCFS) policy always serves the job
that most recently arrived. It is a SOAP policy with LCFS tiebreaking represented any
constant rank function, such as the one shown in Figure 6.2(b). This means the LCFS
tiebreaking rule is always in effect, as opposed to in Policy 6.6, when LCFS tiebreaking is
only relevant after departures.

6.2.2 Simple SOAP Policies with Multiple Classes of Jobs

The following example considers a system with multiple classes of jobs, each representing
a different priority level. Each job is labeled by its class. For simplicity of notation, we
assume classes are nonnegative numbers, so I. € R, where lower numbers denote better
priority.

Policy 6.8. The Nonpreemptive Priority (NP-Prio) and Preemptive Priority (P-Prio) policies
both prioritize jobs according to their priority class. Their eponymous difference is that
NP-Prio is nonpreemptive, while P-Prio will preempt the job in service if a new job with
better priority class arrives. They are SOAP policies with respective rank functions

ranknp-prio (£, @) := £1(a = 0),
rankp_prio(f, a) ={.

Due to FCFS tiebreaking, within each class, NP-Prio and P-Prio both serve jobs in FCFS
order.

The queueing literature traditionally considers systems with finitely many classes,
meaning I = {1,..., n} for some positive integer n, but the above examples of NP-Prio
and P-Prio work just as well with infinitely many classes.

6.2.3 Simple SOAP Policies that Use Job Size Information

The following examples consider a system where the scheduler knows each job’s size. Each
job is thus labeled with its size s, so . = R.,.

Policy 6.9. The Shortest Job First (SJF) and Preemptive Shortest Job First (PSFF) policies
both prioritize jobs according to their size, with smaller sizes having better priority. In fact,
SJF and PSJF are just NP-Prio and P-Prio, respectively, in the case where each job’s class is
its size. They are therefore SOAP policies with respective rank functions

rankgjr(s, a) == sl(a = 0),

rankpsje(s, a) = s.

78 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

Policy 6.10. The Shortest Remaining Processing Time (SRPT) policy always serves the job
of least remaining work. It is a SOAP policy with rank function

ranksgpr(s, a) == s — a.

See Figure 6.1(b) for an illustration. SRPT has the distinction of minimizing mean response
time in single-server systems [116].

6.3 Newly Analyzed “Complex” SOAP Policies

6.3.1 Complex SOAP Policies for Job Size Uncertainty

SRPT minimizes mean response time, but to implement SRPT, we need to know each job’s
size. What can we do instead if the scheduler does not know each job’s size? Under SRPT, a
job’s rank is its remaining work, so a natural idea is to try to estimate each job’s remaining
work, then use those estimates to schedule.

What does the scheduler know about each job? This is subject of Section 5.2.3, part of
which we briefly review here. The scheduler knows each job’s state (¢, a), which is the pair
of its label £ and age a. We also assume that we know the characteristics of the M/G arrival
process, and in particular the label-size distribution (L, S). From this, we can compute two
important types of distributions:

« the label-conditional size distribution of a label ¢, defined as S, = (S | L = ¢); and

« the state-conditional remaining work distribution of a state (¢, a), defined as

Sta=(Se—alSr>a)=(S—al|L=¢S5>a).

SERPT: A Natural but Suboptimal Idea

From the state-conditional remaining work distribution comes a natural scheduling idea:
instead of prioritizing by remaining work, which is unknown, prioritize by expected re-
maining work.

Policy 6.11. The Shortest Expected Remaining Processing Time (SERPT) policy always serves
the job with the least expected remaining work. It is a SOAP policy with rank function

rankgERpT({’, Cl) = E[St’,a]
:E[Sg—a|5[>a]
:E[S—alL:£,5[>a].

In the unlabeled case, this becomes
ranksgrpr(a) = E[S;] =E[S—a|§ > a],

and in the known-size case, where a job’s label is its size, SERPT reduces to SRPT.

6.3 Newly Analyzed “Complex” SOAP Policies 79

ranksgrpr(a) rankgittins (@)

97 9T

8 8 -

7

6

4 -
3

0 T T \—/\ a 0 T : \—/\ a

01 6 14 012 6 14
(a) Rank function of SERPT. (b) Rank function of Gittins.

Figure 6.3. Rank functions of two policies designed to deal with job size uncertainty: SERPT
(Pol. 6.11) and Gittins (Pol. 6.12) . We show both policies in the unlabeled case with job size
distribution S = “1, 6, or 14, each with probability 1/3”. Notice that both policies are nonmonotonic
for this job size distribution. Gittins minimizes mean response time in the M/G/1 with labels (Ch. 16).
In particular, Gittins improves upon SERPT by giving a job rank approaching 0 as its age approaches
1 and 6, two ages at which the job could potentially complete.

See Figure 6.3(a) for an example of SERPT’s rank function in the unlabeled case. In
particular, the example shows that SERPT’s rank function can be nonmonotonic, in contrast
to all of the policies in Section 6.2.

Given that SRPT is optimal for mean response time when job sizes are known to the
scheduler, we might wonder: is SERPT optimal when job sizes are unknown? Perhaps sur-
prisingly, the answer is no: there is room for improvement. To see where this improvement
might come from, consider the example from Figure 6.3, where all jobs have size 1, 6, or 14.
Suppose there are two jobs present in the system: job J has age 10, and job K has age 1 — ¢
for some small ¢ > 0.* SERPT treats these two jobs as follows (Fig. 6.3(a)).

« Job J (age 10) has passed ages 1 and 6, implying it is size 14, so its remaining work

is 4.

« Job K (age 1 — ¢) could still be any size, so its expected remaining work is 6 + ¢.

+ Seeing as J has lower expected remaining work than K, we should serve J.

But is serving J the right decision? Here is an alternative line of reasoning that suggests
otherwise.

+ Job J (age 10) has remaining work 4, as previously discussed.

+ Job K (age 1 — ¢) has a 1/3 chance of having only remaining work e.

« Seeing as K has a significant chance of being almost done while J definitely has

significant remaining work, we should serve K. Specifically, we should serve K at
least until it reaches age 1: the cost of taking ¢ time is very small, but we benefit

*1t turns out that having two jobs of these ages cannot actually occur under SERPT, but the example is
informative regardless.

80 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

greatly if K turns out to be size 1.

The second line of reasoning turns out to be correct: serving K is indeed better in this
example. In fact, even if we alter the example so that job K is either size 1, 300, or 400, it
remains correct to serve job K until it reaches age 1. The key observation is that thanks
to preemption, when we serve a job, we are only committing to serving it in the short
term. SERPT neglects this observation: a job’s remaining work is the amount of service it
takes to complete the job, but we might preempt the job before it completes, so expected
remaining work is not always the right quantity to focus on.

Gittins: Optimal Mean Response Time

The following scheduling policy, called Gittins, improves upon SERPT by taking into
account the above observation that we it can help to preempt jobs before they complete.

Policy 6.12. The Gittins policy for mean response time (Gittins) is the SOAP policy with
rank function

. E[min{S,,, A}]
rankaittins (£, a) = ff(; P[S iaA]
ta =

. E[min{S,, b} —a | S, > a
= inf
b>a P[S[Sb |S[>a]
) fE[min{S,b}—a|L:t’,5>a]
= 1n .
b>a P[SSb|L=¢S5 > al

In the unlabeled case, this becomes

. E[min{S,, A}]
rankgittins (@) = Ao CP[S, <Al
2 <

E[min{S,b} —a | S > a]
=in
b>a P[S<Db|S >a]

b

and in the known-size case, where a job’s label is its size s, Gittins reduces to SRPT:

. E[min{s — a, A}]
rankagittins (S, @) = ir;% P[s —a < A]

=s—a [by minimizing at A = s — a]

= rankSRpT(s, a). [by Pol. 6.10]

Gittins has the distinction of minimizing mean response time in the M/G/1 with labels
(Ch. 16). We can thus see Gittins as a way of optimally generalizing SRPT to scenarios
where the scheduler does not known each job’s size.

See Figure 6.3(b) for an example of Gittins’s rank function in the unlabeled case. Notice
that, like SERPT, Gittins is nonmonotonic in this example.

6.3 Newly Analyzed “Complex” SOAP Policies 81

The intuition behind Gittins is that the A in the infimum is an amount of time we
might “commit” to serving the job for. Equivalently, we can see this as committing to
serving the job until it reaches age b = a + A. Under this commitment, we serve the job for
E[min{S,,, A}] in expectation, and the job completes with probability P[S,;, < A]. We can
think of the ratio E[min{S;,, A}]/P[S;, < A] as being the average time-per-completion
ratio of the A service commitment. While SERPT only considers the time-per-completion
ratio for A = oo, Gittins considers the time-per-completion ratios of all A > 0, choosing
the minimum such ratio as a job’s rank. Considering all A > 0 is the right choice because
we can choose to preempt jobs at any time.

The version of Gittins defined above is actually a special case of a more general
definition, which we discuss in Chapter 14. In particular, one can construct versions of
Gittins that optimize objectives other than mean response time, such as mean weighted
response time or mean holding cost (§ 5.4.4).

How Does SERPT Compare to Gittins?

Comparing Policies 6.11 and 6.12, we see that the the Gittins policy is significantly more
complicated to define than SERPT.> Yet the rank functions for SERPT and Gittins shown
in Figure 6.3 look very similar. We therefore might wonder: what is Gittins’s complexity
buying us? Is SERPT’s performance much worse than Gittins?

The question of how well SERPT does compared to Gittins is one we could not answer
prior to SOAP, because the mean response time of neither policy was known. Armed with
the SOAP analysis (Chs. 7 and 8), we are able to compare SERPT to Gittins for any given
label-size distribution. We do this in Chapter 10 for many examples, and we find that
SERPT does indeed have mean response time close to that of Gittins.

However, the question of whether SERPT is nearly as good as Gittins for all label-size
distributions remains a challenge, even with the SOAP analysis. This is because SERPT and
Gittins are not really individual SOAP policies, but rather SOAP policy constructions. Specif-
ically, different label-size distributions yield different SERPT and Gittins rank functions, as
we can see from the appearance of Sy, the state-conditional remaining work distribution,
in Policies 6.11 and 6.12. We take a first step towards solving this difficult problem in
Chapter 11, showing that in the unlabeled case, a new variant of SERPT achieves mean
response time within a constant factor of Gittins’s for all job size distributions.

6.3.2 Complex SOAP Policies for Preemption Limitations

For the most part, the M/G/1 scheduling literature focuses on one of two extreme cases
with regards to preemption: it is either disallowed entirely or completely unrestricted.
However, there are a variety of ways that practical systems may lie between these two
extremes. We can use rank functions to model many of these scenarios as SOAP policies.

SWhether this translates into greater computational complexity remains an open problem, but with
known algorithms, computing SERPT is faster than computing Gittins [125, Appx. B].

82 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

rank; (¢, a) rankcpk-z (£, @)

A

0 > a 0+ : : : : o @
0 0 A 2A 3N 4A 5A

(a) Rank function of generic SOAP policy 7. (b) Rank function of Chk-z, with rank of x
shown for reference (dashed orange line).

Figure 6.4. Rank function of Chk-7z (Pol. 6.13) for some SOAP policy x, with checkpoint ages
A={0,A2A,...}.

Preemption Checkpoints

In some systems, jobs can be preempted, but not at any time. Imagine, for instance, a
computer program that has periodic checkpoints at which it saves its work. It could be that
to prevent loss of progress, we only allow preempting a job immediately after a checkpoint.
As another example, computer networks transmit packet flows that consist of multiple
packets of data. Most network hardware works at packet-level granularity, so while we
might preempt transmission of one packet flow to start transmitting another, we would
not preempt transmission in the middle of a packet. The following example shows how to
model this scenario using SOAP policies.

Policy 6.13. Let & be a SOAP policy, and let A € R be a set of ages, which we call
checkpoint ages. The Checkpointed m (Chk-r) policy is, roughly speaking, a version of =
that only preempts jobs at checkpoint ages. It is a SOAP policy with rank function

rankchk (£, a) := rank,(¢,a) 1(a € A).

As a concrete example, to model scheduling packet flows with packet size A, we would let
the checkpoint ages be A = {nA | n € N} = {0, A, 2A, .. .}. See Figure 6.4 for an illustrated
example with this set of checkpoint ages. Because each checkpoint causes jumps to and
from rank 0, even if the original policy 7 is monotonic, Chk-r is generally nonmonotonic.®

We note that Goerg [48] analyzes the mean response time of Chk-SRPT with checkpoint
ages A = {0, A, 2A, ...} for some A > 0. But analyzing the full response time distribution

®There are two corner cases where Chk-7 is monotonic. First, in the corner case where rank,(f,a) = 0
for all £ € IL and a € A, the rank function rankchk-, is constant, and so Chk-r is equivalent to FCFS. Second,
it may be that some monotonic rank function represents Chk-x, even if the rank function rankchk-, defined
here is nonmonotonic. For example, Chk-NP-Prio is equivalent to ordinary NP-Prio.

6.3 Newly Analyzed “Complex” SOAP Policies 83

has not been done in prior work, nor have any other policies of the form Chk-7 been
analyzed.

When designing a system where jobs have preemption checkpoints, an important
design question is: how frequent should checkpoints be? On one hand, more frequent
checkpoints allow for more frequent preemption, which allows for more flexibility when
scheduling. But on the other hand, it is usually the case that each checkpoint actually adds
some amount of overhead to a job’s size. For example, in networking, every packet has a
header containing metadata, so using smaller packet sizes means having more headers
and thus larger packet flows.

We use the SOAP analysis to answer the question of how frequent checkpoints should
be. In Chapter 9, we study many examples of checkpointed policies with a constant gap
between checkpoints, resulting in a rule of thumb for optimizing the tradeoff between
scheduling flexibility and avoiding overhead. One might wonder whether one could do
better than constant checkpoint gaps, such as by having the gaps grow for larger ages. We
study this question in Chapter 13, showing that if gaps between checkpoints grow too
quickly, then the checkpointed policy can have poor performance.

Limited Priority Levels

Some systems limit preemption in a more subtle way than age checkpoints: they have
limited priority levels (LPL). For instance, network switches often have a fixed number of
priority levels built into their hardware [96], and other computer systems have similar
constraints [54, 57, 86]. In terms of SOAP policies, LPL means that a rank function’s range
must be a finite set. This rules out using policies like LAS and SRPT, where a job’s rank
changes continuously with age. The following example shows how to model LPL systems
using SOAP policies.

Policy 6.14. Let 7 be a SOAP policy, and let R € R be a set of cutoff ranks. The Limited-
Priority-Level (LPL-r) policy is, roughly speaking, a version of & that has only |R| + 1
priority levels, where the ranks in R serve as cutoffs between the levels. It is a SOAP policy
with rank function

rankppr-z (£, @) := sup(({0} UR) N [0, rank, (¢, a)]).

That is, if R = {cy,...,cp_1} contains n — 1 cutoff ranks, then LPL-7 “rounds down” the
ranks 7 assigns to one of 0, cy, . .., cy,—1, S0 LPL-7 uses n priority levels. See Figure 6.5 for
an illustrated example with four priority levels.

When designing a scheduling policy for an LPL system, policies of the form LPL-7x are
a natural choice. For instance, if we wish to minimize mean response time and have access
to job size information, we might use LPL-SRPT, but we are immediately confronted with
a question: how should we choose the rank cutoffs? We use the SOAP analysis to answer
this question, as well as other design questions for LPL systems, in Chapter 9.

84 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

rank; (¢, a) rankppr (£, a)
C3 C3
Co Co
C1 C1
0 > a 0 — a
0 0
(a) Rank function of generic SOAP policy 7. (b) Rank function of LPL-z, with rank of =«

shown for reference (dashed orange line).

Figure 6.5. Rank function of LPL- (Pol. 6.14) for some SOAP policy 7, with four priority levels
separated by rank cutoffs R = {cy, ¢, c3}.

Only Preempting for Large Priority Differences

For our final examples of preemption limitations, we return to the class-based priority
setting of Section 6.2.2. For concreteness, suppose there are a finite number of classes
LL = {1,...,n}. In this setting, NP-Prio and P-Prio represent the two extremes of never
allowing preemption and always allowing preemption. But perhaps we want to allow
preemption only when the job in service is significantly less important than the job
preempting it. The following two policies show how to model such constraints using SOAP
policies.

Policy 6.15. The Preempt-Large-Difference Priority (Large-Diff) policy is a partially pre-
emptive version of class-based priority where once a job begins, it can only be preempted
by a job which is at least d priority classes better. Put another way, its rank decreases by d
once it begins service, so this is a SOAP policy with rank function

rankparge piff(f, @) = £ —d1(a > 0).

Policy 6.16. The Red-Preempts-Blue Priority (Red-Blue) policy is a partially preemptive
version of class-based priority. Jobs from classes 1,. .., m, which we call red classes, may
preempt jobs from classes m+1, . . ., n, which we call blue classes, but otherwise, preemption
is not allowed. This is a SOAP policy with rank function

t1(a=0) ifte{1,...,m—-1}.

rankgred-slue (£, @) =
Red-Blue (£, @) {g]l(a:O)+(m+1)]l(a>0) ifte{m+1,...,n}

The policies in Policies 6.15 and 6.16 are relatively simple as far as SOAP policies go.
Both are monotonic, and so they would be tractable to analyze with pre-SOAP techniques.

6.3 Newly Analyzed “Complex” SOAP Policies 85

rank; (¢, a) rank, ((i,f), a)

AN /T

0 0

(a) Rank function of generic SOAP policy 7. (b) Rank function of P-Prio-r.

Figure 6.6. Rank function of P-Prio-7 (Pol. 6.17) for some SOAP policy 7. We show the ranks for
classes i € {1,2,3}.

Nevertheless, the SOAP analysis is still valuable in this context, because it provides a
“one-size-fits-all” solution that works not just for these two policies, but also for many
variations on the same theme of allowing preemption only for large priority differences.

6.3.3 Complex SOAP Policies from Mixtures of Policies

Most previously analyzed SOAP policies are, roughly speaking, “one-idea” policies. For
instance, NP-Prio and P-Prio only care about each job’s priority class, while SJF, PSJF, and
SRPT only care about each job’s size. But what if we want to use both a job’s priority class
and size to make scheduling decisions? For example, perhaps we want to preemptively
prioritize by class like P-Prio, but we want to use SRPT within each class. We can model
this and similar policies as SOAP policies.

Policy 6.17. Consider a system where each job is labeled by one of n priority classes and
a label from set I/, so I. = {1,...,n} X I/, and let 7 be a SOAP policy with label set I.".
The Preemptive Priority Around r (P-Prio-r) policy is a variant of P-Prio that uses 7 within
each class. It is the SOAP policy with rank function

rank((i, £), a) = i + squish(rank, (¢, a)).

where squish is a strictly increasing function Ry — [0, 1), such as squish(r) = 1—exp(-r).
See Figure 6.6 for an illustration.

We note that Goerg and Pham [49] analyze the mean overall and per-class response
times of P-Prio-SRPT. But analyzing the full response time distributions has not been done
in prior work, nor have any other policies of the form P-Prio-7 been analyzed.

Below is one last example showcasing the flexibility of rank functions as a modeling
tool, featuring a mixture of FCFS and SRPT. It is also another example of modeling a

86 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

preemption limitation using SOAP (§ 6.3.2), because some jobs are preemptible while
others are not.

Policy 6.18. Consider a system with two classes of customers: humans and robots.

« Humans, unpredictable and easily offended, have unknown job sizes, are nonpre-
emptible, and insist on FCFS service relative to other humans. We label humans with
the symbol human.

+ Robots, precise and ruthlessly efficient, have known job sizes, are preemptible, and
insist on SRPT service relative to other robots. We label a robot of size s with the
symbolic expression robot(s).

One scheduling policy we could use in this system is the SOAP policy with rank function

rank(human, a) = cl(a = 0),

rank(robot(s),a) =s —a,

where ¢ > 0 is a constant. This policy mixes FCFS (among humans) with SRPT (among
robots), letting robots with size below ¢ have priority over humans that have not yet started
service.

6.4 What Policies Are Not SOAP?

We have seen the breadth of the class of SOAP policies throughout Sections 6.2 and 6.3.
Nevertheless, there are some types of scheduling policies that fall squarely outside the
SOAP class. This section describes four ways scheduling policies can fail to be SOAP,
giving examples of each:
+ (§ 6.4.1) The policy does not fit into the general paradigm of assigning each job a
priority based only on its own characteristics.
+ (§ 6.4.2) The policy assigns jobs priorities based on their own characteristics, but a
job’s priority can change while it is waiting in the queue.
+ (§ 6.4.3) The policy could be represented using a rank function, but it would require
assigning labels to jobs in a non-i.i.d. manner.
+ (§ 6.4.4) The policy would be a SOAP policy if not for the fact that it breaks ties in
an order other than FCFS or LCFS.
The lines between these aspects are admittedly blurry. For instance, we will cover the
Earliest Deadline First (EDF) policy as an example for both the second and third reason.

6.4.1 Priorities Not Determined Job-by-Job

SOAP policies are in some sense “local”: they assign each job its priority based only on its
own characteristics. But not all policies fit into this general paradigm. For instance, many
policies from the worst-case scheduling literature use the entire system state to make
scheduling decisions. These include recently developed scheduling policies for scheduling
with job size estimates under adversarial arrivals [10, 11].

6.4 What Policies Are Not SOAP? 87

One example of a scheduling policy from the queueing literature is the recently intro-
duced Nudge policy [53]. Nudge serves jobs in FCFS order by default, but it occasionally
swaps the order of adjacent jobs in the queue. Exactly when these swaps occur depends on
the history of past swaps, so the resulting prioritization of jobs is not determined locally
job-by-job. Nudge’s significance has to do with its response time tail P[T > t], as we
discuss further in Chapter 13.

6.4.2 Priorities Changing in the Queue

SOAP policies only change a job’s priority while it is in service, because a job’s label never
changes, and its age changes only while in service. But some policies do change a job’s
priority while it waits in the queue. Perhaps the simplest examples of this are Accumulating
Priority policies [38, 131]. Under these policies, a job’s priority gets better and better the
longer it waits in the queue.

Another example of a policy changing jobs’ priorities while they are in the queue is
the Earliest Deadline First (EDF) policy. EDF is used in settings where each job is assigned
a deadline when it arrives, and the scheduler always serves the job with the least time
until its deadline. We would like to say that under EDF, a job’s rank could be the amount
of time between now and its deadline, but this amount of time depends not on the job’s
age but rather the total time the job is in the system, so this strategy does not work for
representing EDF.

6.4.3 Labels Not Independently and Identically Distributed

Here is another attempt at representing EDF with a rank function: let a job’s rank be simply
its deadline, represented as a “wall clock” time. A job’s assigned deadline never changes, so
this avoids the issue discussed in Section 6.4.2 above. However, this rank function would
require each job’s label to be its deadline, or at least contain information from which the
deadline could be deduced. This is an issue because deadlines are not i.i.d. in general, as
jobs that arrive later in time tend to have later deadlines.

Another example of a scheduling policy that requires non-i.i.d. labels to represent using
a rank function is the Randomized Multi-Level Feedback (RMLF) policy [16, 17, 63]. RMLF
labels each job with a value in the interval I = [0, 1) and has rank function’

rankpmir(4, a) = plt+log; al . (6.1)

One could in principle use this rank function to schedule in the M/G/1 with labels, and
the resulting policy would be a SOAP policy. However, the random assignment of labels
is actually part of the RMLF policy, and typically different jobs have different label distri-
butions. This is partly because RMLF is designed for guaranteeing good mean response

"There are multiple variants of RMLF in prior work. This rank function is for the eRMLF variant introduced
by Bansal et al. [16].

88 Chapter 6 SOAP Policies: Describing Scheduling with Rank Functions

time under adversarial arrival processes (§ 5.1.3), a setting where careful randomization is
critical for good worst-case performance.

Even though we can represent RMLF using the above rank function, its lack of i.i.d.
labels means it is “just barely” not a SOAP policy. Is there any hope of using SOAP to analyze
it anyway? Scully and Harchol-Balter [121] give a partial answer to this by extending the
SOAP analysis to policies which specify a range of ranks, as opposed to a single rank,
for each job state. This approach works for RMLF because plugging in £ = 0 and £ = 1
give lower and upper bounds, respectively, in (6.1). The cost of using only rank function
bounds is that we obtain only response time bounds, as opposed to an exact analysis, but
the bounds are tight enough to characterize RMLF’s response time tail (Ch. 13).

6.4.4 Tiebreaking Not FCFS or LCFS

Perhaps the most important policy that is not SOAP is the Processor Sharing (PS) policy,
which always shares the server equally among all jobs in the system. This seems simple
enough to represent as a rank function: all jobs have the same rank. However, PS requires
a tiebreaking rule other than FCFS or LCFS. For example, with (continuously invoked)
random tiebreaking, we could represent PS using the rank function in Figure 6.2(b).

Another example of a policy that requires random tiebreaking is the Random Order of
Service (ROS) policy, a nonpreemptively that chooses a job uniformly at random to serve
after each completion. With random tiebreaking, we could represent ROS using the rank
function in Figure 6.2(a).

Chapter 7 presents the SOAP analysis assuming FCFS or LCFS tiebreaking. One might
hope to extend the analysis to random tiebreaking. However, given the fact that the prior
analyses of PS are significantly more complicated than prior analyses of SOAP policies [55],
extending SOAP to random tiebreaking is likely to require significant new insights.

CHAPTER 7

SOAP Analysis: One Response Time
Formula for All Rank Functions

Having introduced SOAP policies and rank functions in Chapter 6, we now move on to
presenting our main result about SOAP: a universal response time analysis that applies to
any SOAP policy in the M/G/1.

The significance of the SOAP analysis is two-fold: it unifies and generalizes prior M/G/1
response time analyses. Its unifying power is in formalizing the common ideas that occur
in many prior analyses, such as most of those in Harchol-Balter [55, Part VII]. In particular,
the SOAP analysis demonstrates that many prior analyses are all essentially the same
argument, but applied to different rank functions. And therein lies its generalizing power:
by analyzing a generic rank function, we wind up with a result that applies to all SOAP
policies, which go far beyond previously analyzed policies. In particular, SOAP provides
the first analysis for policies with nonmonotonic rank functions.

This section presents the SOAP analysis. As a warmup, we begin by analyzing P-Prio,
a simple SOAP policy which has been analyzed before (§ 7.1). This case is simple because
a job’s rank never changes under P-Prio, but it leaves us with a major question: how do
we deal with the fact that a job’s rank can change as a function of its age? The general
SOAP analysis boils down to answering this question. Some key definitions from the P-Prio
analysis generalize relatively straightforwardly to general SOAP policies (§ 7.2), but to
carry out the full analysis, we need two new ideas. Roughly speaking, the first idea helps
us handle rank increases (§ 7.3), and the second idea helps us handle rank decreases (§ 7.4).
The result is formulas for the mean and LST of response time under any SOAP policy
(Thm. 7.15).

There is one key part of the SOAP analysis that we defer to Chapter 8. We do so for
two reasons. First, it is the most technical part of the analysis, so deferring the details
streamlines our presentation. Second, it turns out that generalizing slightly beyond what
is necessary for this chapter’s analysis gives a result that is useful in other contexts, as we
will see in Part IIL

This chapter is based on material from Scully et al. [124].

7.1 Warmup with Constant Ranks: Analyzing P-Prio

Our goal is to determine Tp_pyio, the response time distribution of an M/G/1 using P-Prio.
Recall that P-Prio is the policy with rank function rankp.pi, (¢, a) = £, meaning each job
is labeled with its rank (Pol. 6.8). Our result will actually characterize the conditional
response time distribution Tp_pyio (¢, s) (§ 5.4.2), but Tp.pyj, can be fully determined from
L[Tp-prio (¢, s)] and the label-size distribution (L, S).

89

90 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

tagged job tagged job

arrives departs

other jobs tagged job | other jobs tagged job other jobs tagged job

in service in service | in service in service in service in service
—x > time

tagged job’s tagged job’s
waiting time TVt residence time T
tagged job’s

response time T

Figure 7.1. Response time is the sum of waiting time and residence time.

This section only discusses P-Prio, so to reduce notational clutter, we usually omit the
subscript P-Prio in the rest of this section.

We define many new concepts in this section. For now, we define them in a way that
works for P-Prio and prioritize intuition over formality. We defer the more general versions
of the definitions, which are more complicated, to Section 7.2.

7.1.1 Overall Analysis Strategy

To analyze P-Prio, we use the tagged job approach. We consider a generic “tagged” job
arriving to a steady-state system and analyze the tagged job’s response time. By PASTA
(§ 5.4.2), the tagged job’s response time is a random variable distributed according to T.
Slightly abusing notation (§ 5.6.2), we hereafter use T to denote both the overall response
time distribution as well as the random variable that is the tagged job’s response time.
We analyze the tagged job’s response time T by decomposing it into two parts:
- Waiting time, denoted T™, is the amount of time between the tagged job’s arrival
and its first instant in service.
« Residence time, denoted T™, is the amount of time between the tagged job’s first
instant in service and its departure.
We can thus write response time as

T = Twait + Tresd’ (7_1)

as illustrated in Figure 7.1.

Analyzing T amounts to analyzing each of TV and T™**¢, then determining how the
correlation between them. The first step of doing so is to condition on the tagged job’s
label-size pair. Suppose for the rest of this section that the tagged job has label ¢ and size s.
Conditioning on this, (7.1) becomes

T(t,s) = TV (¢, 5) + T™9(¢, 5), (7.2)

7.1 Warmup with Constant Ranks: Analyzing P-Prio 91

where T%(¢, s) and T™4(¢, s) denote conditional waiting and residence times, respec-
tively, which are defined analogously to conditional response time T(#,s) (§ 5.4.2).

It may seem that we have not made much progress with (7.2) compared to (7.1), but
there is an important difference: it turns out that TV (¢, s) and T***4(¢, s) are independent.
That is, all correlation between T%4' and T™¢ is due to the fact that the tagged job’s
label-size pair affects both quantities, so they are conditionally independent given the
label-size pair.! This conditional independence will become evident in the rest of this
section as we analyze each of waiting time (§ 7.1.2) and residence time (§ 7.1.3).

7.1.2 Waiting Time of P-Prio

Old Jobs and System Relevant Work

When the tagged job arrives, there may be other jobs already in the system. We call any
jobs present when the tagged job arrives old jobs, because they arrived prior to the tagged
job. Whether each old job is served before the tagged job depends on whether or not it
outranks the tagged job. That is, writing r := ¢ for the tagged job’s rank during its waiting
time,? we classify old jobs as follows:

« Old relevant jobs outrank the tagged job, meaning they have rank at most r. These
jobs are served before the tagged job begins service, so they contribute to its waiting
time.

« Old irrelevant jobs are outranked by the tagged job, meaning they have rank greater
than r. These jobs are not served until after the tagged job completes, so they
contribute to neither waiting time nor residence time.

To determine the tagged job’s waiting time, we need to know the total remaining work of
old relevant jobs.

Let the relevant system work, denoted W (<r), be the total remaining work of old relevant
jobs in the system when the tagged job arrives. We can think of relevant system work as
being the system work in an M/G/1 where we modify the arrival process to remove jobs
that would be irrelevant, replacing the label-size distribution (L, S) by (L, S1(L < r)). This
allows us to apply known results about M/G/1 system work to relevant system work. In
particular (§ 5.5.1),

2E[S?1(L < 1)]

B(W (=] = S —

(7.3)

where p(<r) = AE[ST(L < r)]. See Definition 7.3 for the full definition of relevant system
work.

For analyzing P-Prio specifically, we actually only need to condition on the tagged job’s label. But
conditioning on the tagged job’s size is necessary for the full SOAP analysis, so we do the same here.

“We introduce the notation r to emphasize that what matters here is the rank of the tagged job, which in
general might be a more complicated function of the job’s label and age.

92 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

New Jobs and Relevant Busy Periods

We have seen so far that old jobs contribute W (<r) to the tagged job’s waiting time. But
new jobs, those that arrive after the tagged job, can also contribute to waiting time. Whether
a new job is served before the tagged job depends on whether or not it outranks the tagged
job, so we classify new jobs as follows:

« New relevant jobs outrank the tagged job, meaning they have rank (strictly) less

than r.

« New irrelevant jobs are outranked by the tagged job, meaning they have rank at least

(and possibly equal to) r.
To determine the tagged job’s waiting time, we need to know the total size of new relevant
jobs that arrive during the waiting time. This is recursive: if a relevant new job arrives
during waiting time, it extends that waiting time, thus creating the possibility for more
new relevant jobs to arrive. The recursion suggests waiting time is a type of busy period
(§ 5.5.2).

Let a relevant busy period started by initial work v be the same as an ordinary a busy
period started by initial work v, except we only include relevant jobs. We can think of a
relevant busy period as a busy period in an M/G/1 where we modify the arrival process
to remove jobs which would be irrelevant, replacing the label-size distribution (L, S) by
(L,SI(L < r)). This allows us to apply known results about M/G/1 busy periods to relevant
busy periods. For example, writing B(<r, v) for the work of a relevant busy period started
by initial work v, we have (§ 5.5.2)

0

E[B(<r,0)] = m

(7.4)

where p(<r) = AE[S1(L < r)]. See Definition 7.6 for the full definition of relevant busy
periods.

Putting the Pieces Together

To review: when the tagged job arrives, it observes relevant system work due to old relevant
jobs, all of which outranks the tagged job. New relevant jobs continue to arrive, and these
also outrank the tagged job. These are exactly the jobs that contribute to the tagged job’s
waiting time. Therefore, the waiting time is a relevant busy period started by the relevant
system work:

ngitio({’, S) =st B(<r, W(S 7’)),

recalling that r := ¢ = rankp_pyio (¢, 0). Combining (7.3) and (7.4) yields the expectation:

| AE[S?N(L <)]
‘'wal = 2
E[TP—Prtio([’)] = (1-p(zr))(1 = p(<r))’

7.1 Warmup with Constant Ranks: Analyzing P-Prio 93

7.1.3 Residence Time of P-Prio

The first important fact about residence time is that, at least under P-Prio, the tagged job’s
rank is the same as it was during waiting time, namely r := £. We can therefore use the
same definition of “relevant” as we did for waiting time.

At the start of residence time, there are no relevant jobs, new or old, in the system.
However, new relevant jobs can still arrive, preempting the tagged job and delaying its
completion. This means that, much like waiting time, the tagged job’s residence time is a
relevant busy period, but this time started by the tagged job’s size s. Therefore,

Tpssd (6.5) = B(<r,s),

res S
E[T35e0(6:9)] =

—_— by (7.
oS [by (7.4)]

where r := £ = rankp.pyjo (£, a) for all ages a.

7.1.4 Response Time of P-Prio

Having analyzed the tagged job’s mean waiting and residence times, mean conditional
response time follows immediately:

E[Tp-prio (£,5)] = E[Tya (£,5)] + E[T358, (£,5)]
B AE[S?L(L < 1)] s
C(1-pr))1-p (<r)) - p(<r)’

To determine the distribution and not just the mean, we need to determine the dependence
between waiting time and residence time.

Fortunately, as alluded to in Section 7.1.1, it turns out that waiting time and residence
time are independent.® This is because when the tagged job enters service, there must be
no relevant jobs in the system. Otherwise, the tagged job would not have the best rank
and thus would not be starting service. This means we effectively start residence time with
a “clean slate”. Irrelevant jobs that were present during waiting time might still be present
during residence time, but these irrelevant jobs do not affect the tagged job’s response
time.

Independence of waiting and residence times allows us to characterize the response
time distribution of the tagged job in terms of relevant system work and relevant busy
periods:*

TP Prlo([5) =st B(<I’ W(<F)) + B(<F S)
=g B(<r, W(sr) +35). [by Cor. 5.6]

3More precisely, they are conditionally independent given the tagged job’s label-size pair. We say simply
“independent” because it is clear that we are considering a tagged job with a given label-size pair (¢, s). We
do the same throughout this chapter.

“Recall from our notation conventions that the terms in the following sum are independent (§ 5.6.2).

94 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

We can use this to characterize the LST (Def. 5.2) of Tp.pyio (£, s) in terms of the system
work and busy period LSTs under modified arrival processes. Because busy period LSTs are
characterized recursively (Prop. 5.5), the LST of Tp.pyio (£, s) also has a recursive component.

But like busy period LSTs, the recursion can be solved to obtain moments E[(Tp-prio (£, 5))" |
for all n € IN.

7.2 The Relevant System: What Delays the Tagged Job

Having warmed up by analyzing P-Prio in Section 7.1, we now turn to analyzing general
SOAP policies, where a job’s rank can change during service. Just like P-Prio, the basic idea
of our general SOAP analysis is to look at the system through the lens of what is relevant
to a tagged job. Informally, we call this lens the relevant system. Concepts like relevant jobs,
relevant system work, and relevant busy periods are all aspects of the relevant system.

7.2.1 Why Is Generalizing from P-Prio to All SOAP Policies Hard?

There are three main steps to generalizing the P-Prio analysis to all SOAP policies. The
first step is the topic of this section. The second and third, which we review very briefly
below, are treated in detail in Sections 7.3 and 7.4.

The first step is to generalize definitions of relevant system concepts. This is the topic
of this section: we define relevant jobs (§ 7.2.2), relevant work (§ 7.2.3), and relevant busy
periods (§ 7.2.4). The second and third steps of generalizing the P-Prio analysis have to do
with overcoming two obstacles:

+ (§ 7.3) The fact that the tagged job’s rank might increase makes it more complicated
to apply relevant system concepts. Specifically, we can no longer simply use the
tagged job’s rank when deciding what is relevant.

+ (§ 7.4) The fact that other jobs’ ranks might decrease makes it more complicated to
analyze the relevant system. Specifically, the steady-state relevant system work no
long.

In light of the first obstacle above, this section takes no strong position about exactly
which jobs should count as “relevant”. Instead, we define the relevant system in a way that
works for any subset of states Y C IL X R5(we deem relevant. We will generally take Y
to be the set of states whose rank is below some threshold, but the definitions work just as
well for any set Y, and we find some uses for this extra generality throughout the thesis
(Chs. 8, 12, and 16).

7.2.2 Relevant Jobs

Definition 7.1. Let Y C L. X Ry be a set of job states.
(a) A job is Y-relevant if its state is in Y. Otherwise, it is Y-irrelevant.
(b) A server is Y-relevant-busy if it is currently serving a Y-relevant job. Otherwise, it
is Y-relevant-idle.

7.2 The Relevant System: What Delays the Tagged Job 95

Definition 7.2. We use the shorthands below when discussing Y-relevant system concepts,
such as those defined in Definitions 7.1 and 7.3-7.6.
(a) When discussing a SOAP policy 7 that is clear from context, we write

<r:={(t,a) € L xRx¢ | rank,(¢,a) < r},
<r={(t,a) € L X Rx¢ | rank,(¢,a) <r}

to denote the sets of states with rank at most r and rank less than r, respectively.
(b) When discussing an unspecified set Y, or when Y is clear from context, we omit the
“Y-” prefix, writing just relevant or irrelevant.
« For example, throughout Section 7.1, a relevant job is one that is either old and
<r-relevant or new and <r-relevant.
(c) When we do specify the set Y, we often omit “relevant”.
« For example, a <r-idle server is one that is either idle or serving a job of rank
greater than r.
« We never similarly omit “irrelevant”.

7.2.3 Relevant Work

Definition 7.3. Let Y C L. X Ry be a set of job states.

(a) The Y-relevant remaining work (or remaining Y-work) of a job in state (¢, a), denoted
St.a(Y), is the amount of service the job requires to stop being a Y-job, which happens
when it either completes or its state exits Y. Formally, the job’s remaining Y-work
is the random variable

Sf,a (Y) :

min{st’,as At’,a (Y)}
(min{S; — a, Aro(Y)} | S¢ > a)
= (min{S — a, Aro(Y)} | L=¢35 > a).

where
Apo(Y):=inf{A > 0| (f,a+A) ¢ Y}

is the distance from the job’s age a to the earliest age at which the job would exit Y.
(b) The Y-relevant system work (or system Y-work), denoted W (YY), is the total remaining
Y-work of all jobs in the system:

N
W(Y) = Z S,a,(Y).
i=1

When we wish to specify or clarify the scheduling policy 7 whose system Y-work
we are discussing, we include it as a subscript, as in W,(Y).

(c) More generally, just as we use the term “work” in many ways in informal discussion,
we use the term Y-relevant work (or Y-work) to refer to any work that involves
serving a job while its state is in Y.

96 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

Some clarifying remarks about Y-work:

« Although a job’s state may enter and exit Y multiple times over the course of its
service, remaining Y-work measures only the service needed to complete or exit Y
for the first time. Visits to Y after this first exit do not contribute to the job’s remaining
Y-work.

« If the job is not a Y-job, meaning its state is not in Y, then its remaining Y-work is 0.

+ Unlike system work, system Y-work is not scheduling-invariant. As we will see
in Chapter 8, the steady-state distribution of system Y-work depends on, roughly
speaking, the degree to which the scheduling policy prioritizes Y-jobs. With that
said, in this chapter, it is usually clear what scheduling policy is being discussed,
in which case we write W(Y) without a subscript despite its dependence on the
scheduling policy.

How Relevant Work Enters the System

Definition 7.4. Let Y C IL. X R be a set of job states.
(a) A Y-job whose state has been in Y for its entire time in the system is called Y-fresh.
(b) The Y-relevant size of a job is its remaining Y-work at age 0. The label-size distribu-
tion (L, S) gives the system a Y-relevant size distribution

S(Y) :== min{S, Aro(Y)},

where A;,(Y) is as in Definition 7.3(a). We can think of S(Y) as the amount of
service a generic job receives while it is Y-fresh.
(c) The Y-fresh load of the system is

p(Y) = AE[S(Y)],
namely the average rate Y-work is added to the system due to new arrivals.

Definition 7.5. Let Y C IL X R be a set of job states.

(a) A jobis Y-recycled if it is currently Y-relevant but was Y-irrelevant at some point
in the past.

(b) The moment a job switches from Y-irrelevant to Y-relevant is called a Y-recycling
of the job. That is, Y-recyclings are when a job’s state enters Y from outside Y. We
write

(c) The Y-recycling rate, denoted Ay (Y), is the time-average rate at which Y-recyclings
occur:

Arey(Y) = AE[number of Y-recyclings of a generic job].

(d) The Y-recycling size distribution, denoted Sy (Y), is the distribution of remaining
Y-work of a job immediately after its Y-recycling.

(e) The Y-recycled load of the system, denoted p,c,(Y), is the average rate Y-work is
added to the system due to Y-recyclings:

Prcy (Y) = Arcy(Y) E[Srcy(Y)]-

7.3 Handling Rank Increases: The Pessimism Principle 97

Some clarifying remarks about Y-recyclings:

+ Because a job’s state only changes while it is in service (§ 5.2.3), a job’s Y-recycling
must occur while the job is in service.

A job may undergo zero, a finite number of, or even infinitely many Y-recyclings
over the course of its time in service, depending on Y and the label-size pair of the
job in question.

« Spending even an instant outside of Y can cause a Y-recycling. For example, consider
the Chk-x policy for scheduling with preemption checkpoints (Pol. 6.13). When a
job passes an isolated checkpoint age without being preempted, it still undergoes a
<0-recycling, even though its rank is greater than 0 for only an instant.

+ We generally assume that A, (Y) is finite for simplicity of exposition and notation,
but this is not essential for any of our results.

7.2.4 Relevant Busy Periods

Definition 7.6. Let Y C L xR be a set of job states. A Y-relevant busy period (or Y-busy
period) started by initial work v is, roughly speaking, a busy period where each new arrival
is “cut short” as soon as it stops being a Y-job, even if it has not yet left the system. More
formally, a Y-busy period consists of the following two entities:

(a) The Y-busy period’s work, denoted B(Y,v), is the sum of the initial work v and the
new work contributed by arrivals in the Y-busy period’s tree (see below). Each arrival
contributes its Y-size to new work.

(b) The Y-busy period’s tree is defined analogously to the tree of an ordinary busy
period (§ 5.5.2). The root vertex represents the initial work, and non-root vertices
represent arriving jobs, and we draw edges as follows:

« We draw an edge from the root vertex to all jobs that arrive while the initial
work is being served.

« We draw an edge from job K to job L if L arrives “during K’s Y-size”, meaning
while K is both in service and Y-fresh.

A clarifying remark about Y-busy periods: while new work consists entirely of Y-work,
we allow for the possibility that the initial work is not all Y-work. As an example of why
this is useful, consider the residence time of P-Prio (§ 7.1.3): it is a <r-busy period started
by the tagged job, which has rank exactly r and thus has <r-size 0.

7.3 Handling Rank Increases: The Pessimism Principle

This section and the next analyze the response time of an arbitrary SOAP policy 7 with rank
function rank,. We continue to use the tagged job approach introduced in Section 7.1.1,
analyzing the response time of a tagged job with label-size pair (¢, s) to obtain the condi-
tional response time distribution 7, (¢, s). We will occasionally consider specific policies as
illustrative examples.

98 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

It turns out that increases and decreases in the rank function each present their own
obstacle. This section focuses on handling rank increases, explaining the main obstacle
(§ 7.3.1) and how we overcome it (§ 7.3.2). The result is a characterization of response time
in terms of steady-state relevant system work (§ 7.3.3). However, rank decreases make
analyzing steady-state relevant system work complicated in its own right, so we defer this
last task to Section 7.4.

7.3.1 What Obstacles Do Rank Increases Create?

We illustrate the obstacles created by rank increases with perhaps the simplest example of
an increasing rank function. Let One-Jump be the policy with unlabeled rank function

rankonejump(a) = 1(a > b),

where b > 0 is a constant. Even though it does not use labels, One-Jump effectively divides
jobs into two types: “small”, meaning size at most b, and “large”, meaning size greater
than b. Jobs have rank 0 as long as the might be small, but once a job is known to be large,
its rank jumps up to 1.

It turns out that if the tagged job has small size s < b, then we can proceed nearly
identically to the analysis of P-Prio. This is because the tagged job’s rank is always 0, and
other jobs’ ranks never decrease. Combining the overall strategy we used for P-Prio (§ 7.1)
with the new relevant system definitions (§ 7.2), one can show that for all small sizes s < b,

T(\)Vr?;f]ump(s) =st B(<0, W(SO))’

d
T(ﬁr)(;lse—Jump (s) =st B(<0,s),

TOne—]ump(s) =st B(<0, W(<0) +5) =5t W(<0) +s.

We can make the last simplification because jobs never have rank less than 0, so B(<0,0) = v
for any initial work 0.

Suppose now that the tagged job has large size s > b. Until the tagged job reaches age b,
its rank is 0, as if it were small. It thus takes the tagged job W (<0) + b time to reach age b,
which covers its waiting time and an initial portion of its residence time. At age b, the
tagged job’s rank jumps up to 1. The rest of the tagged job’s residence time thus involves
serving the rest of the tagged job, which has remaining work s — b at age b, as well as any
new <1-jobs that arrive. This means the remaining portion of the tagged job’s residence
time is a <1-busy period, specifically B(<1, s — b). This gives response time

Tone Jump (5) =5t W(<0) + b+ B(<1,s — b).

However, as indicated by the “?”, this expression is not right. What went wrong?

SFor the One-Jump policy, W(<0) is also not too hard to analyze. We discuss this in Section 7.4.1.

7.3 Handling Rank Increases: The Pessimism Principle 99

The problem is that when the tagged job’s rank increases to 1 at age b, other jobs that
are already in the system may begin outranking the tagged job. We call these other jobs
“ghosts”. There are two types of ghosts:®

« Old jobs with rank 1.

« New jobs with rank 0 that arrive before the tagged job reaches age b.

Accounting for the extra delay due to ghosts creates multiple obstacles, including the
following:

« It is not clear how much relevant work ghosts contribute to residence time.

 Because ghosts include old jobs and new jobs that arrived during waiting time, ghosts

create a dependence between waiting time and residence time.
These present a significant difficulty even for One-Jump, let alone policies with more
complex rank functions. Rather than attack these obstacles head-on, we take a different
approach that avoids them entirely.

7.3.2 Key Insight: Use Worst Future Rank, Not Current Rank

Response Time of “Large” Jobs under the One-Jump Policy

We continue our example from Section 7.3.1, considering a “large” tagged job’s response
time under the One-Jump policy.

Let us consider carefully the amount of service each old job receives while the (large)
tagged job is in the system. Suppose an old job is in arbitrary state (¢’,a’) when the
tagged job arrives. How much service will this job receive before the tagged job completes?
Although the tagged job has rank 0 when it arrives, it will eventually have rank 1. Therefore,
the server will complete the old job’s remaining <1-work Sy ,/(<1) by the time the tagged
job leaves the system. This <1-work is split between waiting and residence time:

+ The old job’s remaining <0-work Sy ,(<0) is served during the tagged job’s waiting

time.

+ The rest of the old job’s remaining <1-work Sy ;/(<1) — S o/(<0) is served during

the tagged job’s residence time.”
This means that the total amount of service old jobs receive while the tagged job is in the
system is equal to the system <1-work W(<1).

We can go through essentially the same reasoning for new jobs. Even if a new job
arrives while the (large) tagged job has rank 0, because the tagged job will eventually have
rank 1, the new job will be served for time equal to its <1-size before the tagged job leaves.
This means that we can think of the tagged job’s response time as a <1-busy period started
by the system <1-work W(<1) plus the tagged job’s size s. Thus, for all large sizes s > b,

TOne—Jump(s) =st B(<1, W(<1) +5).

SRecall from Section 7.1.2 that old jobs are those that are present when the tagged job arrives, and new
jobs are those that arrive after the tagged job.

"In the expression Sy o (<1) — Sy (<0), both random variables refer to the same old job, so they are not
independent.

100 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

rank, (¢, a)
worst (s, a)
-................
N\
N
.........“
‘-....l
0 ‘ > a

0 s

Figure 7.2. Relationship between worst future rank (magenta dotted line) and the underlying rank
function (orange solid line) for a job with label-size pair (¢, s).

One important aspect of the above argument is the following. Suppose that instead of
following the rank function rankonpe-jump, the (large) tagged job instead had rank 1 for its
entire time in the system. Then we could reason exactly the same way: old <1-work and
new <1-work would have priority over the tagged job, resulting in the same response time
distribution B(<1, W(<1) + s). That is, for the purposes of figuring out the tagged job’s
response time, eventually having rank 1 is equivalent to currently having rank 1.

General Case: The Pessimism Principle

The lesson from the above example is this: when analyzing the tagged job’s response time,
at any given age, we should focus not on the tagged job’s current rank but its worst future
rank. For a tagged job of label-size pair (¢, s) under general SOAP policy 7, the worst future
rank at age q, illustrated in Figure 7.2, is

worst, (£, s, a) == “sup” rank, (¢, a).
a<b<s

We put quotes around “sup” because, as we will see later (Defs. 7.8 and 7.9), it turns out we
need to distinguish between the cases where the supremum is attained or not attained.

When the tagged job has age a, we can, for the purposes of analyzing its response time,
pretend that its rank is worst (¢, s, a) instead of rank, (¢, a). We call this observation the
Pessimism Principle, stated in full below. It essentially follows from the discussion so far.
For a more formal argument, see Scully et al. [124, Appx. D].

Proposition 7.7 (Pessimism Principle). Consider an M/G/1 under SOAP policy m, and
consider a tagged job with label-size pair (¢, s).
(a) Each other job contributes the following amount to the tagged job’s response time.
« Old job: its remaining < worst, (¢, s, 0)-work when the tagged job arrives.
« New job: its < worst (£, s, a)-size, where a is the age of the tagged job when the
new job arrives.

7.3 Handling Rank Increases: The Pessimism Principle 101

(b) The tagged job’s response time distribution is T, (¢, s) in both of the following scenarios:
« All jobs are assigned ranks by m as usual.
 The tagged job’s rank is modified so that at age a, its rank is worst, (¢, s, a). No
other jobs’ ranks are modified.

The Pessimism Principle is useful because it effectively removes rank increases, at least
for the tagged job, thus alleviating the obstacles discussed in Section 7.3.1.

To formalize the Pessimism Principle, we need to formally define the tagged job’s worst
future rank. As mentioned above, it turns out we need to be careful about whether the
worst future rank actually occurs. To see why, suppose there is an old job in the system
with rank r. If the tagged job ever enters a state of rank at least r, then the old job outranks
the tagged job at that point. But if the tagged job instead approaches rank r from below
without ever reaching it, then the old job never outranks the tagged job. In the latter case,
we say the tagged job has worst future rank “r—" instead of r. The following definitions
formalize this.

Definition 7.8.
(a) A limit rank is an expression of the form r— for some rank r > 0. A limit rank r— is
ordered “just below” rank r. That is, r’ < r— < r for any ranks r’ < r.

« We can easily extend SOAP scheduling to the case where jobs can be assigned
limit ranks.® We make use of this in the Pessimism Principle (Prop. 7.7), in
which the tagged job may be assigned a limit rank.

« The notation from Definition 7.2(a) can be used with limit ranks: both <r— and
<r— are equivalent to <r.

« Formally, we can define the set of ranks and limit ranks to be R>o X {—1,0}
ordered lexicographically, with (r, —1) corresponding to r— and (r,0) corre-
sponding to r.

(b) The rank maximum of a set of ranks R C R, denoted rank max R, is

sup R if supReR

rank max R =
{(supR)— if supR ¢ R.

That is, if r = sup R, then the rank maximum is r if the supremum is attained and r—
otherwise.

Definition 7.9. Let 7 be a SOAP policy, and consider a job with label-size pair (¢, s).
(a) The worst future rank of the job at age a, denoted worst, (¢, s, a), is
worst, (¢, s, a) := rank max rank, (¢, a).
a<b<s

That is, if the job has a maximum future rank r, then its worst future rank is r, but
if instead the job approaches but never attains a supremum future rank r, then its
worst future rank is r— (Def. 7.8). See Figure 7.2 for an illustration.

(b) The worst ever rank of the job is its worst future rank at age 0, namely worst, (¢, s, 0).

81t is a special case of using a set of ranks with a richer ordering than R (§ 6.1.3).

102 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

7.3.3 Using the Pessimism Principle to Compute Response Time

We hereafter consider a modified system, which we call the pessimism-adjusted system, in
which the tagged job’s rank is assigned rank worst, (¢, s, a) at each age a. We refer to the
system without this modification as the standard system.

By the Pessimism Principle (Prop. 7.7), the tagged job’s response time distribution is the
same in the pessimism-adjusted and standard systems, but working with the pessimism-
adjusted system is simpler. This is because even when rank function is nonmonotonic, the
tagged job’s worst future rank is decreasing as a function of age (Fig. 7.2). The Pessimism
Principle thus partially reduces the problem of analyzing nonmonotonic SOAP policies to
the simpler monotonic case, which has been well studied (§ 2.1.5).

We analyze the tagged job’s response time in the pessimism-adjusted system by splitting
it into waiting and residence times (§ 7.1.1). However, waiting and residence times in the
pessimism-adjusted system may not be the same as in the standard system. Specifically,
waiting time is longer, and residence time is shorter. This is because we effectively shift
delays due to “ghost” jobs (§ 7.3.1) from residence time to waiting time. Hereafter, the
notations TV and TV always refer to the pessimism-adjusted system.

Lemma 7.10. Consider an M/G/1 under SOAP policy r, and consider a tagged job with label-
size pair (£, s). The tagged job’s pessimism-adjusted waiting time T)"4(¢, s) and pessimism-
adjusted residence time T)"™ (¢, s) are independent.

Proof. Consider the moment the tagged job enters service, namely the boundary between
its waiting time and residence time. There may be some other jobs in the system at this
time. Call these end-of-waiting jobs. It suffices to show that the end-of-waiting jobs do not
affect the tagged job’s residence time.

Because the tagged job’s residence time starts with the tagged job being served, the
tagged job must outrank all end-of-waiting jobs at the start of its residence time. But the
tagged job’s worst future rank only decreases, so it continues outranking end-of-waiting
jobs for the remainder of its residence time. Moreover, under a SOAP policy, end-of-waiting
jobs have no impact on how any new jobs that arrive during residence time are scheduled.
This means end-of-waiting jobs do not affect the tagged job’s residence time. m]

Lemma 7.11. Consider an M/G/1 under SOAP policy r, and consider a tagged job with
label-size pair (£,s). The tagged job’s pessimism-adjusted waiting time is

T34 (¢,5) = B(<r, W(<r)),
where r := worst, (¢, s,0) is the tagged job’s worst ever rank.

Proof. By the Pessimism Principle (Prop. 7.7), the tagged job is delayed by the remaining
<r-work of old jobs it observes when it arrives, plus the <r-size of new jobs that arrive
during waiting time. This means that, analogous to our analysis of P-Prio (§ 7.1.2), waiting
time is a <r-busy period started by system <r-work.]

7.4 Handling Rank Decreases: Analyzing the Impact of Recycled Jobs 103

Lemma 7.12. Consider an M/G/1 under SOAP policy r, and consider a tagged job with
label-size pair (£,s). The tagged job’s pessimism-adjusted residence time is

(L, 5) =st/ B(<r(a),da),
0

where r(a) := worst, (¢, s, a) is the tagged job’s worst future rank at age a.

Proof. We begin by noting that the integral on the right-hand side can be formalized
as integration with respect to a random measure. However, the formality distracts from
the key ideas, so we instead reason informally. We can think of B(<r(a), da) as simply a
<r(a)-busy period started by an infinitesimal amount of work da. Consistent with our
notation conventions (§ 5.6.2), all of these <r(a)-busy periods are mutually independent.

To that end, consider the amount of time it takes the tagged job to go from being served
at age a to being served at age a + da for infinitesimal da. Call this amount of time the slice
at age a, or simply the slice. It suffices to show that the slice at age a is independent of past
slices and has distribution B(<r(a), da).

Under our assumption that rank functions are piecewise continuous (Asm. 6.3), we
may assume that the tagged job has worst future rank r(a) for the entirety of the slice at
age a. Because the tagged job is in service at the start of the slice, it outranks all other jobs
present. Reasoning as in the proof of Lemma 7.10, this means those other jobs do not affect
the slice at age a, so the slice is independent of past slices.

Recalling that the tagged job has worst future rank r(a) during the slice at age a, any
new jobs that arrive during it contribute their <r(a)-size to the slice. This means the slice
is at most a <r(a)-busy period started by initial work da. We say “at most” because it may
be that the tagged job reaches age a + da before the end of this <r(a)-busy period. But all
the new <r(a)-jobs in the busy period tree outrank the tagged job, so the tagged job is
only served when none of these <r(a)-jobs are left. This means the tagged job reaches age
a + da at the end of the <r(a)-busy period, as desired.]

7.4 Handling Rank Decreases: Analyzing the Impact
of Recycled Jobs

With Lemmas 7.10-7.12 in hand, only one task remains to determine a SOAP policy’s
response time: given a rank r, determine the steady-state distribution of the system
<r-work W (<r), which determines the tagged job’s waiting time (Lem. 7.11). For P-Prio, we
were able to reduce this task to analyzing the system work of an M/G/1 with a modified size
distribution. However, under general SOAP policies, the fact that jobs’ ranks can decrease
makes W (<r) harder to compute (§ 7.4.1). This section explains how we overcome this
obstacle (§ 7.4.2), yielding a formula for steady-state system <r-work (§ 7.4.3). We defer
some of the technical details to Chapter 8.

104 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

7.4.1 What Obstacles Do Rank Decreases Create?

We illustrate the obstacles created by rank decreases with a simple example. Recall the
One-Jump policy from Section 7.3.1, which has rank function

rankOne—Jump(a) =1(a 2 D),

where b > 0 is a constant. We compare One-jump to Two-Jump, the policy with rank
function

ranktywoJump (@) = 1(a € [b,c)),

where ¢ > b > 0 are constants. Even though it does not use labels, Two-Jump effectively
divides jobs into three types: “small”, meaning size in [0, b); “medium”, meaning size in
[, c); and “large”, meaning size in [c, c0).

Consider the waiting time of a small tagged job under One-Jump or Two-Jump. The
tagged job’s worst future rank is 0, and no jobs are <0-relevant, so by Lemma 7.11, the
waiting time in both cases is simply the system <0-work.

The steady-state system <0-work of One-Jump, namely Wone jump(<0), is simple to
characterize. Under One-Jump, a job is <0-relevant until it reaches age b and never
again thereafter. That is, all <0-relevant jobs are <0-fresh (Def. 7.4). We can thus view
WoneJump (£0) as the system work in an M/G/1 where we replace the size distribution S by
S(< 0) = min{S, b}. This means’

Geo(1-p(£0))
Wone jump(<0) =st . (ES(<0));.
i=0

In fact, we can reason similarly for any rank r and any increasing SOAP policy 7, obtaining

Geo(1-p(=r))
Wr(sr) =4t Z(SS(S r)i if 7 is increasing.
i=0

However, Wryo-jump (<0) stochastically dominates Wopnejump(<0) as long as some jobs
are larger than c. This is because large jobs, in addition to being <0-relevant before age b,
also become <0-relevant again after age c. These large <0-recycled jobs (Def. 7.5), meaning
jobs that become <0-relevant again after being <0-irrelevant, constitute a source of <0-work
that we do not have to worry about when computing Wone jump(<0), or more generally
when computing W, (<r) for increasing SOAP policies z. That is, <r-recycled jobs only
exist if the rank function at some point decreases as a function of age.

How do we quantify the impact <r-recycled jobs have on system <r-work? This question
appears difficult because it is not a priori clear when <r-recyclings occur. Recyclings are
generally not a Poisson process, so we cannot simply treat them as additional arrivals.

Recall from Section 5.6.2 that Geo(q) is a geometric distribution with parameter q supported at zero,
namely P[Geo(q) = n] = q(1 — ¢)"; and recall from Section 5.6.3 that the (§V); are i.i.d. drawings from EV,
the excess of distribution V. See also Appendix A for an index of notation.

7.4 Handling Rank Decreases: Analyzing the Impact of Recycled Jobs 105

7.4.2 Key Insight: Before Recyclings, No Relevant System Work

The main obstacle to analyzing system <r-work is that it is hard to characterize <r-recy-
clings as a stochastic process. Nevertheless, we still know something about when <r-recy-
clings occur, and fortunately, this turns out to be enough to determine W(<r).

Proposition 7.13. Consider an M/G/1 under SOAP policy r, and consider a rank r.

(a) Immediately before an <r-recycling occurs, the system <r-work is zero.
(b) No two <r-recyclings occur simultaneously.

Proof. Consider the instant before an <r-recycling. there must be an <r-irrelevant job in
service, namely the one that is about to be <r-recycled. This means there must be no
<r-jobs in the system, because any <r-job would outrank the <r-irrelevant job. Without
<r-jobs, system <r-work is zero, implying (a).

Can two jobs become <r-recycled at the same time? For this to happen, the server would
need to be sharing between two <r-irrelevant jobs in the instant before an <r-recycling.
As described in Algorithm 6.1, sharing occurs only when the rank function is increasing.
But a job’s rank needs to decrease for it to become <r-recycled, so only one <r-recycling
occurs at a time, implying (b).

There is one corner case glossed over in the argument for (b) that deserves spelling out.
Consider, for example, an unlabeled rank function with a downwards jump at age a, namely
rank,(a—) > rank(a+).1° If rank is increasing leading up to age a, then we might worry
that two jobs share the server as both approach up to age a, causing them to simultaneously
jump from rank,(a—) to rank,(a+). Fortunately, this is ruled out by our assumption that
rank functions are upper semi-continuous with respect to age (Asm. 6.3). Upper semi-
continuity ensures that at age a, both jobs have rank rank,(a) > rank,(a—) > rank,(a+).
Therefore, at age a, both jobs’ ranks are decreasing, so by Algorithm 6.1, their ranks jump
down one at a time, with FCFS tiebreaking controlling which goes first. We can argue
analogously in the presence of labels.]

7.4.3 Using Recycled Jobs to Compute Relevant Work

Proposition 7.13 tells us how much system <r-work there is immediately before <r-re-
cyclings. How does this help us understand steady-state system <r-work? Bridging this
gap is the topic of Chapter 8. Its main result, the Relevant Work Decomposition Law, gives
the LST of system <r-work in terms of the LST of system <r-work at the instants before
<r-recyclings. Proposition 7.13 characterizes the latter, implying the following result.

WOFor simplicity, we reason in terms of two jobs approaching the same age a in the unlabeled case, but the
argument easily generalizes to the general case of two jobs approaching downward jumps, possibly in two
different states.

106 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

Lemma 7.14. Consider an M/G/1 under SOAP policy m, and consider a rank r. The steady-
state system <r-work distribution is'!

—prCY(Sr)) 8Srcy(ﬁr),

Geo(1-p(=r))
(1 - p(=r)

W(sr) =g Z(SS(sr))i + Bernoulli
i=0
its LST is
1- P(S”) - Prcy(sr) + prcy(gr) L[Ssrcy(sr)] (0)

LIW(=n](0) = 1= p(=r) L[ES(=1)]1(0) ’

and its mean is
_ Prey(2r) E[ES(2r)] + prey (1) E[ESrey (<1)]

E|[W (=< = .
[W(<r)] P
Proof. As discussed above, this follows from the Relevant Work Decomposition Law
(Thm. 8.8(a)) and Proposition 7.13. O

7.5 SOAP Response Time Formulas

7.5.1 Main Result

Theorem 7.15. Consider an M/G/1 under SOAP policy m, and consider label-size pair (¢, s).
Let r(a) = worst(¢,s,a) and r := r(0).
(a) The conditional response time distribution is

TYait(¢,s)

Geo(1-p(=r)) p (<r)
. rc =
T (¢, s) =g B(< r, ;(85(9)),- + Bernoulh(m) SSrcy(sr))
N
+ / B(<r(a),da).
0
];;QS(i(f,\S)
(b) The LST of conditional response time is
LITF(£5)1(6)

1-p(sr) - prcy(sr) + prcy(sr) L[asrcy(ﬁr)] (n(<r,0))
1-p(sr) LIES(=r)](n(<r,0))

X exp(/o (9 + A1 = L[S(=n](n(<r(a), 9)))) da),

LI[Tx(¢£,9)](0) =

L[TE4(2,5)](0)

The notation below is defined in Section 5.6.2 and Definitions 7.4 and 7.5. See also Appendix A for an
index of notation.

7.5 SOAP Response Time Formulas 107

where n(Y, 0) is the principal solution of 2
n(Y,0) = 0+A(1- L[S(<nN](n(Y,0))).
(c) The mean conditional response time is

EIT;\T\HM([‘,HH EIT:“I((S)I

p(sr) E[ES(<r)] + prey(<r) E[ESrey (<1)] +/S 1 "
(1= p(<r)(1 = p(<r)) o 1-pl<r(@)

Proof. Combining Lemmas 7.10-7.12 and 7.14 yields (a). From this, (b) and (c) follow from
standard results for M/G/1 busy periods (Prop. 5.5 and Cor. 5.6), because we can view a
Y-busy period as an ordinary busy period in a modified M/G/1 with size distribution S(Y).

O

E[T:(¢5)] =

7.5.2 More Explicit Formulas for Relevant Size and Recycled Size

Theorem 7.15 is written in terms of the distributions of relevant size S(<r) and recycled
size Sy (<r). These distributions depend on just the label-size distribution (L, S) and the
rank function. That is, they can be determined without worrying about queueing at all.
With that said, it is still helpful to have a more explicit formula for these quantities. We
give a few such formulas below, with different formulas being useful in different contexts.

Throughout the following, let r be either a rank or a limit rank (Def. 7.8). This allows
us to focus on the non-strict case <r, as the strict case <r for ordinary ranks r is equivalent
to the non-strict case for a limit rank, namely <r—.

The first step to writing more explicit formulas for S(<r) and Scy(<r) is to write a more
explicit description of the set of relevant states <r, which we recall from Definition 7.2(a) is

<r:={(f,a) € L X Rxq | rank,(¢,a) < r}.
The following definition writes <r in terms of the ages at which the rank function crosses r.

Definition 7.16. Let ¢ € IL be a label, 7 be a SOAP policy, and r be a rank or limit rank.
(a) The ith <r-relevant interval (or 0th <r-interval) of label ¢, denoted A,;(<r), is the ith

interval of ages during which the rank of a job with label ¢ is at most r. For i = 0, we
define
beo(sr) =0,

ceo(sr) :=inf{c > 0 | rank(¢,¢c) > r},
Ayo(sr) = [bf,o(f"), Cf,o(ﬁr))-

12Specifically, when 0 > 0, there is a unique positive real solution, and taking the analytic continuation
covers other values of 6.

108 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

and for i > 1, we define!3
bei(sr) == inf{b > ¢;;_1(sr) | rank(¢£,b) < r},
cei(sr) =inf{c > by; | rank(¢,a) > r},
Ago(zr) = (beo(=r), cro(<r)).
If byi(<r) = cpi(sr) = co, then we define the ith <r-interval to be empty.
(b) The service in the ith <r-relevant interval, denoted d;;(<r, a), is the length of the
largest interval (b, a) such that a job with label ¢ has rank at most r for all ages in

(b, a):
dei(sr,a) =a- inf{b € [0,a] | (b,a) N Ay(<r) = (b, a)}.

For any age a, it can be that d;;(<r, a) > 0 for at most one value of i. We call this
value the service while <r-relevant:

de(sr,a) = max dei(sr,a).
>

Note that d;(<r, a) = 0 if rank,(¢,a) > r.

We can use Definition 7.16 to more explicitly define relevant size and recycled size.
The following lemma gives a nice formula for a common case that occurs when computing
mean response time (Thm. 7.15(c)) and higher moments of response time.

Lemma 7.17. Consider an M/G/1 under SOAP policy r, and r be a rank or limit rank. For
any differentiable f: R>o — R such that f(0) =0,

p(<r)E[f(ES(sr))] = AE /0) f(do(<r,a) P[S, > da],
p(sr) E[f(ES(sr))] + prey (sr)E[f (ESrey (s7))]

= /IE»‘/oof’(dL(sr, a))P[S. > a] da].
[Jo

In both cases, the expectation is taken over a random label L.

Proof. We prove the formula for p(<r) E[f(ES(=r))]. The other formula follows from a
very similar argument, with the main difference being that we consider not just <r-fresh
jobs but also <r-recycled jobs.

Our approach is to interpret p(<r) E[f(ES(<r))] as the expectation of a random vari-
able V. Imagine sampling a steady-state system. If the server is idle, we let V := f(0) = 0.
Otherwise, the job in service is in state (£, a). We want V to be f(a) if the job is <r-fresh and

31t is worth clarifying the distinction between the 0th and 1st <r-intervals. If age 0 has rank at most r,
then the 0th <r-interval is nonempty. If age 0 has rank greater than r, then the 0th <r-interval is empty, with
cro(<r) = 0. In this latter case, it is still possible for the 1st <r-interval to start at age 0, e.g. if there is a jump
discontinuity with rank,(¢,0) > r > rank, (¢, 0+).

7.5 SOAP Response Time Formulas 109

£(0) = 0 otherwise. Using Definition 7.16(b), one can easily show that V := f(d;o (=7, a))
accomplishes this.
We claim that

p(=r) E[f(ES(=r))] = E[V]. (7.5)

From (7.5), the desired formula follows from computing E[V], which, after applying ideas
from the following discussion, is a simple exercise in integration by parts. To show (7.5),
recall from Section 5.6.3 that we can think of the excess ES(<r) in the following way.
Imagine a renewal process where each cycle has length distributed as S(<r). If we sample
this process in steady-state, the time since the last cycle start is distributed as ES(<r). But
this is exactly the situation we see in defining V in the case where the system is busy with
an <r-fresh job, which happens with probability p(<r). O

We note that both Definition 7.16 and Lemma 7.17 can be generalized. Both could use
any set of job states Y C IL X Ry instead of one of the form <r, and, at the cost of some
additional notation, Lemma 7.17 can be altered to work for functions with f(0) # 0.

110 Chapter 7 SOAP Analysis: One Response Time Formula for All Rank Functions

CHAPTER 8

Work Decomposition Laws

The goal of this chapter is to analyze relevant system work (§ 7.2) in the M/G/1, M/G/k,
and other systems. We have two main motivations for doing so:

+ The SOAP analysis in Chapter 7 reduces the problem of analyzing a SOAP policy’s
response time to analyzing the system relevant work in an M/G/1 using that SOAP
policy.

« In Part III, we will introduce a technique that allows us to use relevant work to
analyze mean response time in systems beyond the M/G/1, including multiserver
systems like the M/G/k.

As such, in this chapter, we consider general M/G systems, meaning any queueing system
with M/G arrivals (§ 5.2.2). Our results apply not only to relevant system work, but also to
ordinary system work. To emphasize when we are discussing ordinary system work as
opposed to relevant system work, we call the former total system work.

This chapter’s results continue the tradition of work decomposition laws (§ 2.4.1) in the

sense that they all have the form

work in generic M/G system = work in an M/G/1 + some gap,

where the M/G/1 experiences the same arrival process as the generic M/G system. While
the M/G/1 terms is explicit in each case, we can only characterize the gap term implicitly.
Nevertheless, the gap can be tractable to bound for the M/G/k, which will serve us well in
Part III.

We begin by characterizing total system work (§ 8.1). In addition to serving as a nice
warmup, the results are of interest in their own right, as they provide a step towards
characterizing the mean response time of FCFS in the M/G/k (§ 8.2). We then characterize
relevant system work, which is slightly more complicated because we have to account for
recyclings (§ 8.3).

This chapter is based on material from Scully et al. [118], though the results here are
significantly more general.

8.1 Total Work Decomposition

8.1.1 Rate Conservation Law for Total System Work under M/G
Arrivals

System work W goes up and down over time.
» Work increases according to the M/G arrival process.

111

112 Chapter 8 Work Decomposition Laws

« Work decreases according to the service rate of the system, namely the sum of the
rates at which each jobs’ remaining work is decreasing. We denote the system’s
service rate by J.

As long as the system is stable and has a steady-state distribution (§ 5.6.1), the average
rate at which system work increases should equal the average rate at which it decreases.
The average increase rate is AE[S] = p, so this tells us

E[J] = p. (8.1)

This, of course, is a standard result in queueing which can be derived using Little’s law [84].

The key idea of this chapter is that we can apply the above reasoning not just to system
work W, but also to any function of W. This is an instance of the Rate Conservation from
Palm calculus [95], which is a general statement of the principle that increases balance
decreases in steady-state stochastic processes. Applied to system work under M/G arrivals,
the Rate Conservation Law yields the following.

Proposition 8.1. Let f : R>g — Ry be differentiable. In any steady-state system with M/G
arrivals,

E[Jf'(W)] = AE[f(W +5) - f(W)],
where the job size S on the right-hand side is independent of the system work W.!

Proof. The left-hand side is the average rate at which f(W) decreases, and by PASTA
(§ 5.4.2), the right-hand side is the average rate at which f(W) increases. The Rate Conser-
vation Law [95, Theorem 2.1] states that these are equal. O

8.1.2 Mean Total Work Decomposition

By applying Proposition 8.1 applied to a quadratic function, we obtain a formula for the
mean amount of work in any system with M/G arrivals.

Theorem 8.2 (Mean Total Work Decomposition). Consider an M/G system. The mean
system work is

AE[S?] +E[(1 -))W]
1-p

E[W] = E[Wmin] + E[Wgap] =

5

where E[Whin | is the mean system work in an M/G/1 under a work-conserving scheduling
policy, namely
FE[S°] _ pE[&S]

1-p 1-p°’

E[Wmin] =

ISpecifically, in the expectation on the right-hand side, W represents the system work immediately prior
to a job’s arrival, and S represents the new arrival’s size. The arriving job cannot affect the system prior to
its arrival, so S and W are independent.

8.1 Total Work Decomposition 113

and Wgyp is a random variable with mean?

E[Wyap] = E[W] — E[Wyn] = L= DW]

l-p
Proof. We apply Proposition 8.1 with f(w) = %wz, so f’(w) = w. This yields

E[JW] = AE[3(W + 5)* — 1w?]
= 4E[S?] + AE[SW].

Because S and W are independent above (Prop. 8.1), we have AE[SW] = pE[W]. The result
follows from adding E[W] to both sides and rearranging terms. m]

Interpreting Work Decomposition

To understand Theorem 8.2, let us first consider an M/G/1 that is not work-conserving but
still stable. We can interpret 1 — J as an indicator of whether the server is idle. We have
E[1—-]J] = 1- p by (8.1), which leads to the following interpretation of the mean work gap:

E[W] — E[Wpin] = E[W | the server is idle]. (8.2)

More generally,

More generally, consider a system with maximum service rate 1 but that does not
always fully use this maximum service rate. One example is the M/G/k with servers of
service rate 1/k (§ 5.2.4). We can now view 1—J as the “idleness” of the system, meaning the
fraction of the service rate that remains unused. We end up with an interpretation similar
to (8.2), but instead of conditioning on the server being idle, we take an “idleness-weighted”
sample of the work. One way to formalize this is to condition on a coin flip with probability
determined by the system’s idleness:

E[W] — E[Whin] = E[W | Bernoulli(1 - J) = 1]. (8.3)

Both of the above interpretations of Theorem 8.2 assume a maximum service rate of 1.
While the result still holds for systems with greater maximum service rate, it may be harder
to characterize the E[(1 — J)W] term in such cases.

8.1.3 Distributional Total Work Decomposition

We can characterize the distribution of system work in much the same way as its mean.
The key is to apply Proposition 8.1 with an exponential function, as opposed to a quadratic
function. This yields the LST of system work, which happens to factor nicely.

2We define the random variable Weap in Theorem 8.3.

114 Chapter 8 Work Decomposition Laws

Theorem 8.3 (Distributional Total Work Decomposition). Consider an M/G system. Let
Whin be the system work in an M/G/1 under a work conserving scheduling policy.
(a) The system work can be written as an independent sum®

W =g Whin + Wgap,
where Win is the system work in a work-conserving M/G/1, namely

Geo(1-p)
Whin =st Z(Ss)i,
i=1
and Wgyp is a random variable with LST given in (b) below. If the system’s maximum
service rate is 1, we may interpret Wyap, as “idleness-weighted” system work, namely
Weap =st (W | Bernoulli(1 - J) = 1).
(b) Consider an M/G system. The system work LST is

E[(1-]) exp(-6W)]
1-pL[ES](O)
where Win is the system work in a work-conserving M/G/1, which has LST

LIW](0) = L[Wnin] (0) L[Wgap] (0) =

___1-p
LlWain]) = Tt

and Wyyp, is the random variable with LST

E[(1—J) exp(-6W)]
L[Weap] (6) := — .
-p
Proof. We prove (b), from which standard results for LSTs yield (a). We apply Proposition 8.1
with f(w) = exp(—0w), so f'(w) = —0 exp(—0w). This yields
—0E[] exp(—0W)] = AE[exp(—0(W + S)) — exp(—0W)]

= —AE[exp(-0W) (1 - exp(-65))].

Because S and W are independent above (Prop. 8.1), we have
E[exp(-0W) (1 — exp(—0S))]| = E[exp(—0W)] E[1 — exp(—6S)]
= L[W](0) (1 - L[S1(6)).
After adding L[W](0) = E[exp(—60W)] and using the fact that
A1 - L[S1(9))
0
rearranging terms yields the desired formula for £L[W](0). O

= pL[ES](0), [by Prop. 5.3]

The definition we give for W,y is in terms of an expression that itself involves the system work.
Nevertheless, the two terms on the right-hand side are independent random variables. One way to think
about this is that W on the left-hand side and Wy, on the right-hand side are each defined using independent
copies of the system, and Wy, is defined using an M/G/1 that is independent of both copies.

8.2 Why Work Decomposition Is Useful for the M/G/k 115

8.2 Why Work Decomposition Is Useful for the M/G/k

8.2.1 Mean Response Time of FCFS in terms of System Work

There is no simple expression known for mean response time E[Tpcps.x| of an M/G/k under
FCFS-k, namely the k-server version of FCFS. But Goldberg4 has observed that we can
write E[Trcps.k] in terms of E[Wicrs.t], the mean system work under FCFS-k:°

E[time in queue] E[time in service]

— KE[ES] + kE[S]. (8.4)

E[Wecrs-«]
E[Trcrsk] = —

To see why this holds, first note that E[Wrcrps | — kpE[ES] is the mean total size of jobs in
the queue. All of these jobs have not yet begun service, implying they have expected size
E[S], so dividing by E[S] gives the mean number of jobs in the queue. Applying Little’s
law [84] then yields the mean time jobs spend in the queue. Mean time in service is simply
mean job size E[S] over the service rate 1/k.

Combining Theorem 8.2 and (8.4) reduces the problem of analyzing FCFS-k’s mean
response time to the problem of analyzing E[(1 — Jrcrs-k) Wrcrs-k |- As an example of how
we might do this, we show below how we can sometimes bound the analogue of this term
in an M/G/k under any non-idling scheduling policy -k, of which FCFS-k is an example.

8.2.2 Bounding System Work with Work Decomposition

Consider an M/G/k with a non-idling scheduling policy z-k, meaning -k never leaves
servers idle while there are jobs in the queue. We can apply (8.3) to this system. While
E[W,k | Bernoulli(1—J,) = 1] is hard to characterize exactly, we can make an observation
about it: whenever Bernoulli(1 — J,) = 1, there must be at least one idle server, in which
case there are at most k — 1 jobs in the system. This means the mean work gap can be
bounded, roughly speaking, as

E[W,&] — E[Whin]| < E[“remaining work of k — 1 jobs”].
For some size distributions, such as exponential distributions, we can uniformly bound the
expected remaining work of a job by some constant sy,,x no matter what state the job is in.

In these situations, we can formalize the above bound, obtaining

E[Wyk] = E[Whin] £ (k = 1)Smax- (8.5)

*Personal communication with David A. Goldberg, April 2022. The argument below is due to him.
>Unlike in the work-conserving M/G/1, in the M/G/k, the steady-state system work depends on the
scheduling policy, even among non-idling scheduling policies.

116 Chapter 8 Work Decomposition Laws

8.2.3 Looking Ahead to Relevant Work Decomposition

Equation (8.5) is only useful if there is a uniform bound sy, on a job’s expected remaining
work, which is only the case for some size distributions. However, as we will see in
Section 8.3.2, we can derive an analogue of (8.5) for relevant system work which demans a
uniform bound on relevant remaining work. For some sets of relevant states Y, it may be
that a job’s expected remaining Y-work is easy to bound. For example, consider <r-work
under SRPT’s rank function. Any job’s remaining <r-work is at most r, because jobs with
greater remaining work have rank greater than r and are thus <r-irrelevant.

Of course, under policies other than FCEFS, it is less clear how to relate total or relevant
system work to response time. Part Il introduces a new technique that does exactly this
(Ch. 15), allowing us to analyze SRPT and Gittins in the M/G/k (Ch. 17).

8.3 Relevant Work Decomposition

8.3.1 Rate Conservation Law for Relevant System Work under
M/G Arrivals

Analogous to J, we write J(Y) for the Y-relevant service rate of the system, namely the
total rate at which system Y-work is decreasing, or equivalently the total service rate of
all Y-jobs in the system.

We write E,., (Y)[V] for the expectation of random variable V, which may be a function
of the system state, sampled at the instants immediately before Y-recyclings.® Inside such
an expectation, S;.y (Y) represents the recycled size of the job undergoing Y-recycling.

Proposition 8.4. Let Y C ILXRx(be a set of job states and f : R>o — R be differentiable.
In any steady-state system with M/G arrivals,

E[J(Y) f/(W(Y))] = AE[f(W(Y) +S(Y)) - F(W(Y))]
+ Arcy(Y) Ercy(Y) [f(W(Y) + Srcy(Y)) - f(W(Y))],

where the job Y-size S(Y) on the right-hand side is independent of the system Y-work W (Y).

Proof. The left-hand side is the average rate at which f(W(Y)) decreases. By PASTA
(§ 5.4.2), the first term on the right-hand side is the average rate at which f(W(Y))
increases. The second term on the right-hand side is the average rate at which f(W(Y))
increases due to Y-recyclings. The Rate Conservation Law [95, Theorem 2.1] states that
the average decrease rate equals the sum of these average increase rates.]

8If multiple recyclings occur simultaneously, we assume they happen in some order at the same moment
in time. The state immediately after the first recycling is the state immediately before the second, the state
immediately after the second is the state immediately before the third, and so on.

’In contrast, the Y-recycled size Sy (Y) is not necessarily independent of the system Y-work W(Y)
when sampled immediately before the Y-recycling.

8.3 Relevant Work Decomposition 117

Corollary 8.5. Let Y C IL X R be a set of job states. In any steady-state system with M/G
arrivals,

E[J(Y)] = p(Y) + prey (Y).

Proof. We apply Proposition 8.4 with f(w) = w, then simplify the right-hand side using
Definitions 7.4(c) and 7.5(e). O

8.3.2 Mean Relevant Work Decomposition

Definition 8.6. Let Y C IL. X R be a set of job states.
(a) An M/G/1 scheduling policy is Y-relevant-prioritizing (or Y-prioritizing) if
« it always serves a Y-job if there is one in the system, and
« it never causes simultaneous Y-recyclings.
For example, a SOAP policy is <r-prioritizing for all ranks r (Prop. 7.13).

(b) The minimal M/G/1 Y-relevant system work (or minimal M/G/1 Y-work), denoted
Whin(Y), is the system Y-work in a steady-state M/G/1 under any Y-prioritizing
scheduling policy. That this quantity does not depend on the particular Y-prioritizing
scheduling policy chosen follows from Theorem 8.8, which we prove later in this
section.

Theorem 8.7 (Mean Relevant Work Decomposition). Let Y C IL X Ry be a set of job
states.
(a) The mean minimal M/G/1 Y-work is

ACE[S(Y)?] + 24 E[S,y (V)]
B[Winin(V)] = .
_ P(Y)E[ES(Y)] + prey(Y) E[ESrey (V)]
- 1-p(Y)
(b) Consider an M/G system. The mean system Y-work is
E[(l -](Y)) W(Y)] + Arcy(Y) Ercy (Y) [Srcy(Y) W(Y)]
1-p(Y) '

E[W(Y)] = E[Wmin(Y)] +

Proof. Throughout, we omit “(Y)” to reduce clutter.
We apply Proposition 8.4 with f(w) = 1w? so f’(w) = w. This yields

E[JW] =)LE[%(W+S)2 - %Wz] +ArcyErCy[%(W +Srcy)2 - %Wz]

AI‘C
= 4E[S%] + ZXE[S%,] + AE[SW] + Arey Erey [Srey W1,

Because S and W are independent above (Prop. 8.4), we have AE[SW] = pE[W]. Adding
E[W] to both sides and rearranging terms, we obtain

Arey
B[] = SE[S?] + FE[S2,] + E[(1 = W] + AreyErey [Seey W] |

1-p

118 Chapter 8 Work Decomposition Laws

The result follows from observing the following facts about an M/G/1 under a relevant-
prioritizing scheduling policy.
+ Because the policy always prioritizes relevant jobs if any are present, we have

E[(1-J)W] = E[1(W = 0) W] = o.

« Because the policy never recycles an irrelevant job if a relevant job is present, W = 0
immediately prior to recyclings, so Ecy[Siey W] = 0.]

8.3.3 Distributional Relevant Work Decomposition

Theorem 8.8 (Distributional Relevant Work Decomposition). Let Y € IL X R be a set of
job states.
(a) The minimal M/G/1 Y-work distribution is

Geo(1-p(Y)) P y(Y)
Whnin (Y) = (ES(Y)); + Bernoulli(rc—) ESrey(Y),
t ; 1-p(Y) Y
and its LST is
LW (1)1(0) = 220D = Prey O0) + prey(V) L1ESrey (V)](0)

1-p(Y) LIS(Y)](0)
(b) Consider an M/G system. The system Y-work can be written as an independent sum
W(Y) =st Wmin(Y) + Wgap (Y))
where Wyap, (Y) is a random variable with LST

E[(1-J(Y)) exp(-0W(Y))]
+ Prey (V) Brey (V)| 5T~ exp(—OW (V) |
1- P(Y) — Prcy (Y) + Prey (Y)£[85rcy(Y)] (0)

Proof. We apply Proposition 8.4 with f(w) = exp(—6w), incorporating recyclings as in
the proof of Theorem 8.7. We then compute similarly to the proof of Theorem 8.3. The
result follows from the fact that in an M/G/1 under a Y-prioritizing scheduling policy, we
have L[Wyap(Y)](0) = 1, and thus W, (Y) =4 0, by reasoning similar to the end of the
proof of Theorem 8.7. O

L[Wgap (Y)](0) =

8.3.4 A Useful Corollary: Relevant-Prioritizing Policies Minimize
Relevant Work
Corollary 8.9. Let Y C IL X Ry be a set of job states. In the M/G/1, system Y-work is

stochastically minimized, and thus its mean is minimized, by any Y-prioritizing scheduling
policy. That is, letting & be a Y-prioritizing policy and n’ be another policy,

Whnin =st WH(Y) <st Wy (Y)

8.3 Relevant Work Decomposition 119

In particular, for any SOAP policy r, any other policy n’, and any rank r,

W, (rank, < r) <g¢ Wy (rank, <r),
W, (rank, < r) <¢ Wy (rank, < r),

where “rank, < r”is “<r” with 7r’s rank function, and similarly with < in place of <.3

Proof. The result for a general set of states Y follows immediately from Theorem 8.8 and
a fact used in its proof, namely that Wy,,(Y) = 0 under any Y-prioritizing scheduling
policy. The SOAP policy result then follows from the fact that any SOAP policy r is
(rank, < r)-prioritizing and (rank, < r)-prioritizing. m]

8We write “rank, < r” as opposed to simply “<r” to emphasize that it is 7’s rank function being used on
both sides of the inequality. We formally define this notation in Chapter 15 (Def. 15.1).

120 Chapter 8 Work Decomposition Laws

CHAPTER 9

Practical Preemption Limitations

When it comes to job preemption, most queueing theory literature studies one of two
extreme cases: either preemption is completely unrestricted and incurs no overhead,’
or preemption is entirely disallowed. However, many practical systems lie somewhere
between these two extremes. This chapter numerically applies the SOAP analysis from
Chapter 7 to two case studies with intermediate limitations on preemption.

+ (§ 9.1) We study scheduling in settings where the scheduler can only use a limited
number of priority levels. Jobs in the same priority level cannot preempt each other,
so having limited priority levels restricts preemption.

+ (§ 9.1) We study scheduling in settings where jobs can only be preempted at certain
checkpoints. We assume that each checkpoint incurs some overhead. This creates a
tricky tradeoff: more frequent checkpoints allow for more flexibility in preempting
jobs, but at the cost of additional load due to overhead.

This chapter is based on material from Scully and Harchol-Balter [123].

9.1 Limited Priority Levels

Many practical computer systems permit only a small finite number of priority levels. For
example, network switches have a small number of priority levels, typically at most 8, built
into their hardware [96]. Similarly, the Linux kernel packet scheduler has a configurable
number of priority levels, with a default of 3 [57]. We call this the Limited-Priority-Level
(LPL) setting.

When using a SOAP policy (Ch. 6), a priority level corresponds to a rank. Unfortunately,
many SOAP policies assume a continuum of ranks. For example, under SRPT (Pol. 6.10),
a job’s rank is its remaining work, for which there are infinitely many possible values.
System designers who would like to implement policies like SRPT in LPL settings are
thus confronted with the challenge of approximating their policy using a finite number of
possible ranks. LAS (Pol. 6.4), SERPT (Pol. 6.11), Gittins (Pol. 6.12), and other SOAP policies
suffer from the same problem.

Given an “ideal” SOAP policy, such as SRPT, a common approach to scheduling in
the LPL setting is to categorize jobs into levels based on their rank under the ideal policy
[54, 57, 86, 96]. However, it is not clear how best to do this. Continuing with the SRPT
example, if one has only two priority levels, we can assign rank 1 to jobs smaller than a size
cutoff ¢ and rank 2 to jobs larger than c, but this begs the question: how do we choose c?

1A notable case of queueing theory accounting for some kind of switching overhead is the literature on
polling systems, for which Boon et al. [19] and Borst and Boxma [21] provide recent surveys. However, the
type of switching overhead is different than preemption overhead

121

122 Chapter 9 Practical Preemption Limitations

rank; (¢, a) rankppr (£, a)
C3 3
Co 2
C1 1 4
0 > a 0 — a
0 0
(a) Rank function of generic SOAP policy 7. (b) Rank function of LPL-z, with rank of =«

shown for reference (dashed orange line).

Figure 9.1. Given a SOAP policy & and a set of rank cutoffs {cy, ¢z, 3}, we construct LPL-1x, a policy
that uses only four ranks, and can thus be implemented with just four priority levels.

In this section, we give guidelines for designing scheduling policies in LPL settings.
We tackle the following system design questions:

« How many priority levels do we need to rival the performance of ideal policies?
+ How should we choose the rank cutoffs between levels?
« Which ideal policy works best when adapted to the LPL setting?

We spend most of this section addressing the above questions in LPL settings with known
job sizes (§ 9.1.2) and unknown job sizes (§ 9.1.3). But before diving in, we briefly review
how one adapts scheduling policies to the LPL setting in general (§ 9.1.1).

9.1.1 Adapting SOAP Policies to the LPL Setting

Policy 6.14 gives a general way of constructing an LPL policy from a generic SOAP policy 7
and set of rank thresholds R. The resulting policy is called LPL-7. Below, we briefly review
the construction from Policy 6.14, which is also illustrated in Figure 9.1.

Consider a SOAP policy & which uses a continuum of priority levels. We create LPL-7
by restricting 7’s rank function to one of finitely many values in the following way. Suppose
our system allows n priority levels. We choose a number of rank cutoffs c1, ¢z, .. ., cy-1,
defining ¢y = 0 and ¢, = oo as edge cases. Whenever 7 would assign a job a rank between

9.1 Limited Priority Levels 123

Table 9.1. Highly variable job size distributions.

NAME DEeNsITY FUNCTION COEFFICIENT OF VARIATION
Bounded Pareto fs(x) =~ 1/x% for 1 < x < 100000 C: ~ 753
Weibull fs(x) = x3*exp(—x/*) /4 forx >0 CZ=69

ci—1 and ¢;, LPL-r assigns the job rank c;. That is,?

0 if rank, (¢, a) € [0,c1)
1 if rank; (¢, a) € [c1,¢2)
rankppr- (£, a) := {:
n—2 if rank;(¢,a) € [ch-2,cn-1)
n—1 if rank,;(¢, a) € [cp-1,).

Figure 9.1 illustrates this rank function. Note that its range includes only n ranks, meaning
it can be implemented in a system that has only n priroity levels.

9.1.2 LPL Scheduling with Known Job Sizes: LPL-SRPT

We now address the question of how to minimize mean response time in the LPL setting
when job sizes are known to the scheduler. Inspired by SRPT’s optimality, we investigate
LPL-SRPT. We can think of LPL-SRPT as assigning rank i to jobs with remaining work
between cutofls ¢;_; and c;.

Figure 9.2 compares LPL-SRPT to SRPT as a function of the number of priority levels
for two different job size distributions, which are described in Table 9.1. For brevity, we
show only moderate load p = 0.8, but the trends are virtually identical at other loads.
Optimizing LPL-SRPT’s mean response time amounts to tuning the cutoffs ¢y, ¢, . .., cp-1.
We consider two strategies for tuning the cutoffs:

« Heuristic cutoffs: we set the rank cutoffs to split load evenly between the ranks, a
simple heuristic which has been used in practice [57, 96]. More formally, this means
equalizing E[S1(S € [cjcit1))] fori € {0,...,n — 1}. The resulting cutoffs thus
depend on the size distribution S but not on the load p.

« Optimal cutoffs: we numerically optimize the rank cutoffs to yield minimal mean
response time. The resulting cutoffs depend on both the job size distribution S and
the load p.

The job size distributions in Table 9.1 are both high-variance job size distributions.
We expect our conclusions generalize to other high-variance job size distributions. The
low-variance case turns out to be less interesting, because FCFS, which use only a single
priority level, already offers reasonable performance.

ZPolicy 6.14 uses c; instead of i in its definition of rank,, but this does not affect the scheduling policy,
because only the relative ordering of ranks matters.

124 Chapter 9 Practical Preemption Limitations

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/E[:FSRPT] E[T]/E[;TSRPT]

o Ll

I
S

S
V' n
LR DS
NI
I:IFJ:,_
! ©

~5
é}@
~&
N

AI:I L
Se
Yels [

N ~% ~% N
~N ~N ~N ~N
N ') N N

[LPL-SRPT, heuristic cutoffs [[] LPL-SRPT, optimal cutoffs

Figure 9.2. Mean response time of LPL-SRPT as a function of number of levels. Heuristic cutoffs
are chosen so an equal load of jobs has size between each pair of thresholds. Optimal cutoffs are
numerically optimized to minimizes mean response time.

How Many Priority Levels Do We Need?

We see that roughly 6 priority levels is enough to approach the mean response time of SRPT,
the optimal ideal policy in the size-aware setting. Even with the heuristic cutoffs, 6 levels
gives mean response time within 21% of SRPT’s at the moderate load p = 0.8. This supports
the empirical findings of LPL system designers: Harchol-Balter et al. [57] use 6 levels, and
Montazeri et al. [96] use up to 7 levels.

With this said, we note that using just 2 priority levels is still an order-of-magnitude
improvement over FCFS. This is because FCFS has very poor mean response time for the
high-variance job size distributions, because small and medium jobs can get stuck behind
very long jobs [55].

How Should We Choose Rank Cutoffs?

We see that the load-balancing heuristic cutoffs serve as a good rule of thumb. In additional
numerical experiments, omitted for brevity, we tried several other simple heuristics, such
as evenly splitting the number of arrivals in each bucket or using a geometric sequence
for the rank cutoffs c¢;. None of these alternatives performed well as consistently as the
load-balancing heuristic used in Figure 9.2.

Additional examples at other loads, omitted for brevity, show that the gap between
the heuristic and optimal cutoffs becomes more important under higher load, especially
for small numbers of priority levels. However, using optimal cutoffs presents a practical
difficulty: the optimal cutoffs depend on the load p. Fortunately, if we optimize the cutoffs
for p = 0.8, additional numerical experiments, omitted for brevity, show that we achieve

9.1 Limited Priority Levels 125

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8

E[T]/ELTSRPT] E[T]/ELTSRPT]

e}
6rgs

$

o

[LPL-SRPT, heuristic cutoffs [l LPL-PSJF, heuristic cutoffs
[[] LPL-SRPT, optimal cutoffs [l LPL-PSJF, optimal cutoffs

Figure 9.3. Mean response time of LPL-PSJF as a function of number of levels. Note that whether
cutoffs are heuristic or optimized, LPL-PSJF outperforms LPL-SRPT. This is surprising given that
(ideal) SRPT minimizes mean response time and thus outperforms (ideal) PSJF.

near-optimal performance for all but the highest loads.

Which ldeal Policy Should We Start With?

We began this section by focusing on LPL-SRPT. However, even though SRPT is the optimal
policy with infinite priority levels, LPL-SRPT turns out not to be the best policy in the LPL
setting.

Recall that SRPT assigns ranks using remaining work Policy 6.10. This means that
LPL-SRPT “upgrades” jobs to the next priority level when they become small enough.
Unfortunately, because of the limited number of priority levels, this can cause smaller
(new) jobs to have to wait behind larger (recently upgraded) jobs. Fortunately, it turns
out that a simple alteration to LPL-SRPT can avoid this issue: never change a job’s rank.
This results in a policy we call LPL-PSJF.> The name comes from the Preemptive Shortest
Job First (PSJF) policy (Pol. 6.9), in which a job’s rank is its original size, as opposed to
its remaining work. Figure 9.3 shows that, counter to intuition, LPL-PSJF outperforms
LPL-SRPT.

It is also possible to improve upon LPL-PSJF. However, LPL-PSJF is already an appealing
choice for practice [96], so we leave exploring this to future work.

30ne can view LPL-PSJF as a version of the P-Prio policy (Pol. 6.8).

126 Chapter 9 Practical Preemption Limitations

BOUNDED PARETO, p = 0.8 WEIBULL, p = 0.8
E[TI/E[Tras] E[T]/E[Tvras]
‘/;'\ e} f‘a{g

&
o

| 265

~

SN

'3?30:’«\
SEEEACRICER

.Q L e

~
G

5 ~5
~N ~N
N N

[LPL-LAS, heuristic cutoffs [[] LPL-LAS, optimal cutoffs

Figure 9.4. Mean response time of LPL-LAS as a function of number of levels. As in Figure 9.2,
heuristic cutoffs equalize load of jobs with sizes between each pair of thresholds, and optimal
cutoffs numerically optimize to minimize mean response time.

9.1.3 LPL Scheduling with Unknown Job Sizes

We now turn to LPL settings with unknown job sizes. For low-variance job size distributions,
FCEFS already performs well (§ 5.5.1), so we once again focus on the high-variance job size
distributions from Table 9.1. For these distributions, LAS has either optimal or near-optimal
mean response time, so LPL-LAS is a promising policy for the LPL setting. We can think
of LPL-LAS as assigning rank i to a job with age between cutoffs ¢;_; and c;.

Figure 9.4 compares LPL-LAS to LAS as a function of the number of priority levels for
two different job size distributions, which are described in Table 9.1. We consider the same
two strategies for tuning the cutoffs as in Section 9.1.2: load-balancing heuristic cutoffs and
numerically-solved optimal cutoffs.

How Many Priority Levels Do We Need?

We reach a conclusion similar to the setting of known job sizes: roughly 5 priority levels is
enough to approach the mean response time of LAS, which is optimal or near-optimal for
the job size distributions in Table 9.1. Even with the heuristic cutoffs, 5 levels gives mean
response time within 23% of LAS’s at the moderate load p = 0.8.

With this said, as with known job sizes, using just 2 priority levels is still an order-of-
magnitude improvement over using FCFS.

9.1 Limited Priority Levels 127

How Should We Choose Rank Cutoffs?

We see again that load-balancing heuristic cutoffs serve as a good rule of thumb, as in the
known-size setting. In particular, this heuristic outperformed the other simple heuristics
we tried. Using optimal cutoffs again becomes more important at higher load.

Which Ideal Policy Should We Start With?

We have not found an LPL policy that significantly improves upon LPL-LAS when job sizes
are unknown, at least for the job size distributions in Table 9.1. This is not too surprising:
both job size distributions have “mostly” decreasing hazard rate,*

9.1.4 Summary of LPL Scheduling: 5 or 6 Levels with
Load-Balancing Cutoffs Is Good Enough

We have seen that when job sizes are highly variable (Tab. 9.1), one can obtain good mean
response time in the LPL setting with 5 or 6 priority levels, using LPL-SRPT or LPL-PSJF
with known sizes and LPL-LAS with unknown sizes. Even just 2 priority levels gives an
order-of-magnitude improvement over FCFS. A simple load-balancing heuristic suffices for
choosing the rank cutoffs between priority levels, though it is possible to improve upon
this already-good heuristic.

Can We Theoretically Support Our LPL Scheduling Conclusions?

While we do not have any direct theoretical analysis of the LPL setting, we prove theorems
elsewhere in this thesis that support some of the same themes we see in this chapter,
particularly with regards to choosing LAS and PSJF as underlying ideal policies. Specifically,
both of these policies have the property that a job’s rank never improves (i.e. never
decreases), an idea which we see in two theoretical chapters later on.

« In Chapter 11, we propose a policy for unknown job sizes in which a job’s rank
never improves, and we show its mean response time is always within a factor of 5
of optimal.

« In Chapter 12, we study scheduling using noisily estimated job sizes instead of exact
job sizes. One can naively adapt both SRPT and PSJF to this setting by using the
same rank function, but plugging in the noisy estimates in place of the true sizes.
While the noisy version of SRPT can perform poorly with even a small amount of
noise, the noisy version of PSJF is much more robust.

*The Weibull distribution has decreasing hazard rate. The Bounded Pareto distribution has decreasing
hazard rate up to some age threshold, but jobs that reach this threshold are very rare.

128 Chapter 9 Practical Preemption Limitations

9.2 Preemption Checkpoints

Queueing theorists, very much including the author, often assume that jobs may be freely
preempted, but this is far from the case in practical computer systems. Programs can
have temporary state at all levels of the memory hierarchy, from registers to RAM. For
cloud-based jobs, even the disk may be temporary state. Before preempting a job, we must
either save or discard its state.

Checkpointing is one solution used to combat lost state. Every job occasionally saves
its transient state, and we allow preemptions only immediately after saving. We refer
to ages when a job saves its work as checkpoints. Because saving work takes time, each
checkpoint adds to a job’s size.

A very similar situation occurs when scheduling packet flows in networks, e.g. at a
network switch. In this setting, each packet flow is a job, and serving a job corresponds to
sending its packets. Packets are indivisible, and each packet incurs overhead in the form of
its header. We can think of packet boundaries as analogous to checkpoints.

When scheduling in a system with checkpointing, the key question is: how much service
should occur between checkpoints? Or, in the context of packet flows: how large should
packets be? Answering this question requires balancing a delicate tradeoff.

« On one hand, less service between checkpoints allows for quicker preemptions. This
decreases mean response time because small jobs are less likely to get stuck during
long uninterruptible periods between checkpoints.

+ On the other hand, checkpointing takes time, so the less service between checkpoints
add more to the system load. This in turn can increase mean response time or even
cause instability.

We give a rule of thumb for balancing this tradeoff. After discussing in more detail how
we model checkpoints (§ 9.2.1), we determine how frequently checkpoints should occur
to minimize mean response time (§ 9.2.2). Throughout, we focus on the case of unknown
job sizes. In additional numerical experiments, omitted for brevity, we have observed the
same results in the setting with known job sizes.

9.2.1 Jobs with Preemption Checkpoints

We consider a system where jobs cannot be preempted unless their work is saved. Jobs
save their work at specific ages called checkpoints. Upon reaching a checkpoint, a job takes
a deterministic amount of overhead time y to save its work, after which the job may be
preempted.

For simplicity, we study the case where checkpoint ages are distributed evenly with
service quantum . That is, checkpoints occur at ages 0,9, 26, Our main task is to
optimize the service quantum & given the job size distribution S, load p, and overhead y.

Overhead time does not represent real progress towards completing the job. To model
this, we consider a system with an overhead-altered job size distribution. Given original

9.2 Preemption Checkpoints 129

rankpas(a) rankchk-ras(a)
0 > a 0 : : P a
0 0 o+y 2(0+y) 3(6+y)
(a) Rank function of LAS. (b) Rank function of Chk-LAS, with rank of

LAS shown for reference (dashed orange line).

Figure 9.5. Using LAS (Pol. 6.4) but preempting only at age checkpoints yields Chk-LAS (Pol. 6.4).
In our setting, there is a gap of § + y between checkpoints: after a service quantum J, an overhead
y occurs, and only after that can the job be preempted.

size distribution S, we define the overhead-altered distribution by

S

> ©.1)

5::S+y A

For consistency with our definitions of other SOAP policies, we define scheduling poli-
cies in terms of overhead-altered ages, too. In particular, after accounting for overheads,
checkpoints actually occur ate ages 0,5 +y,2(d + y),

A job can only be preempted at checkpoint ages. Given a scheduling policy, we can
express this constraint by modifying the scheduling policy’s rank function. Specifically, we
leave the rank function as-is for checkpoint ages, but for intermediate ages, we set the rank
to a low value. This gives a job between checkpoints priority over jobs at checkpoints. We
can in principle do this to any SOAP policy 7, resulting in a policy we call Chk-7 (Pol. 6.13).
In this section, we focus specifically on Chk-LAS, which is illustrated in Figure 9.5.°

9.2.2 Choosing the Right Service Quantum

We focus on a setting with unknown job sizes and high-variance job size distributions,
specifically those from Table 9.1.% For these job size distributions, LAS has near-optimal
mean response time, so we schedule using Chk-LAS (Fig. 9.5).

SIf we were adapting a generic SOAP policy 7, we would want to account for the fact that a job’s age
includes overheads, but this consideration is not important for LAS. Specifically, if a job’s age with overheads
is a, then without overheads, the job has received service for a — L(S%yj time, resulting in rank function
rank(¢, a) = rank,(f,a — yI_(S%yJ) 1(a/(5+y) € N).

®To make the analysis numerically tractable, we actually truncate the distributions at size 5000 and
discretize them into increments of size 0.125. The trends we observe are not sensitive to these values.

130 Chapter 9 Practical Preemption Limitations

BoOUNDED PARETO, v = 0.1E[S], p = 0.8 WEIBULL, vy = 0.1E[S], p = 0.8
E[T]/E[TLas] E[T]/E[TLas]

5 5t

4t 4t

3t 3t

2t 2

1 . . . O/E[S] 1 O/E[S]
0 5 10 15 0 5 10

Figure 9.6. Mean response time of Chk-LAS as a function of the normalized service quantum §/E[S]
for a system with large checkpoint overhead, namely y = 0.1 E[S]. We use LAS in a system without
checkpoints or overhead as a baseline for comparison. We consider Bounded Pareto and Weibull
job size distributions (Tab. 9.1) and load p = 0.8. As we decrease §, mean response time decreases
approximately linearly until a critical value “left wall” value of §, at which point the system becomes
unstable and mean response time approaches infinity. The vertical lines show a conservative
estimate, given by (9.2), of where the left wall is.

We show in Figure 9.6 how mean response time varies as a function of the service
quantum J. The figure shows the case of relatively large overhead y = 0.1 E[S] at load
p = 0.8. As we will show later, the trends are similar for small overhead and other loads
(Fig. 9.7).

For large enough &, Figure 9.6 shows that mean response time is a roughly linear
function of § on at least a portion of the domain, where smaller § is better. However, there
is a vertical asymptote as § approaches a small value, which we call the “left wall”. This
leaves us in a precarious situation: smaller values of § generally yield lower mean response
time, but if § becomes too small, mean response time suddenly becomes infinite. In the
remainder of this section, we explain how to choose a value of § that is small enough but
not too small.

Ensuring Stability with a Safe Service Quantum

As a first step towards optimizing §, we must figure out the value st wan at which the left
wall asymptote occurs. The asymptote at the left wall is caused by checkpoints becoming
so frequent that the overheads make the system unstable, which sends mean response
time to infinity.

It turns out that Jdjeft wan has a complicated formula, but there is a simpler formula that

bounds it. Let
RS

T (9.2)

safe —

Plugging § = dsafe into (9.1) and computing the overhead-altered load p = AE[S], we see

9.2 Preemption Checkpoints 131

that § = Jdgfe ensures p < 1 and thus stability. This holds not just for this example but
under any scheduling policy and any job size distribution.

Optimizing the Service Quantum

We want to choose a service quantum ¢ that is not just stable but also optimizes mean
response time. We see from Figure 9.6 that the optimal value of § is slightly larger than
dsafe, but it is not clear how much larger is optimal. Through a number of examples, we
have found the following rule of thumb to give near-optimal performance in the typical
case when the overhead y is at most the mean job size E[S]:

Srule of thumb = L L[S] (93)
L=p P
Figure 9.7 show that this rule-of-thumb service quantum yields near-optimal performance
for a range of loads p and overheads y.

The intuition behind (9.3) is as follows. We see in Figure 9.7 that mean response time
has a “bathtub” shape when plotted as a function of § on a log scale. Each bathtub is
approximately symmetrical near its minimum. This suggests that if we can find the values
of § corresponding to the “walls” of the bathtub, then their geometric mean would be a
good rule of thumb. This is exactly the approach we take.

o Left wall: we use Jg,fe as an approximation for the left wall.

« Right wall: through additional numerical experiments, omitted for brevity, we have

found that the formula E[S]/(p?(1 — p)) is a good approximation for the right wall.
Our search for a good approximation was guided by the observation that the right
wall is virtually unaffected by the overhead y, as we see by comparing Figure 9.7. This
makes sense: when the service quantum § is large, there are very few preemptions,
so the overhead y has little impact of mean response time.

9.2.3 Summary: Rule-Of-Thumb Formula

When scheduling in systems with checkpointing, there is a tradeoff between making check-
points less frequent, which avoids checkpoint-associated overhead, and more frequent,
which enables smarter scheduling. In (9.3), we propose a rule-of-thumb formula that yields
a near-optimal service quantum. Although we focus throughout on unknown job sizes, we
have observed that this rule of thumb also works well when using Chk-SRPT with known
job sizes.

What About Non-Constant Service Quanta?

One can use SOAP to analyze checkpointing with different amounts of service between
each pair of checkpoints. In fact, Policy 6.13 is written in a general way that allows for this

’One could replace y by max{y, E[S] in (9.3) to obtain a formula that works even with y > E[S].

132 Chapter 9 Practical Preemption Limitations

BOUNDED PARETO, v = 0.1 E[S]

WEIBULL, y = 0.1E[S]

E[T]/E[Tvas] E[T)/E[Tias]
5F 1 I 5k 1
1 I 1
I I ||
4f d A 4f 1
I I
1 1
3f \ 3f \
\ \
\ \
23 \ 2F
1 ' O/E[S] 1
0.01 0.10 10° 10! 102 0.01
p=05 ————— p =038 =romreeees p=0.95
(a) Large checkpoint overhead, namely y = 0.1E[S].
BOUNDED PARETO, y = 0.01 E[S] WEIBULL, ¥ = 0.01 E[S]
E[T]/E[TvLas] E[T]/E[Tias]
i i . :
1 L F 1 1:
1 1 1
4+ 1 I' 4+ 1 i :
| . 1 1
I 1 I
sh\ A st)
1 \
\ \
2F 2F
| ‘ e JOELS] 1 ‘ e ‘ O/ELS]
0.01 0.10 10° 10! 102 0.01 0.10 10° 10! 102
p=05 ——==—= p=08 =rremmeees p =095

(b) Small checkpoint overhead, namely y = 0.01 E[S].

Figure 9.7. Mean response time of Chk-LAS as a function of the normalized service quantum § /E[S]
(log scale) for two systems with different checkpoint overheads. We consider Bounded Pareto and

Weibull job size distributions (Tab. 9.1) for several values of load p. We highlight the rule-of-thumb
value of § given by (9.3).

9.2 Preemption Checkpoints 133

possibility, and exploring this is a possible direction for future work. With that said, there
are two reasons we focus on the case of constant service quanta.

« The first reason is practical: having a constant service quantum, or perhaps a small
number of different possible service quanta, is likely the most feasible option in
many systems. One example is scheduling packet flows in networks, where packet
sizes are generally standardized.

+ The second reason is theoretical: in Chapter 13, we show that if the service quanta
grow to large as a job’s age increases, it can cause poor tail of response time for
heavy-tailed job size distributions.

134 Chapter 9 Practical Preemption Limitations

CHAPTER 10

Gittins vs. Simpler Substitutes

The Gittins policy (Pol. 6.12) minimizes mean response time in the M/G/1 [44]. However,
the practicality of actually implementing Gittins is often questioned.

Why might Gittins be impractical? Let us first recall how Gittins is defined. In the
unlabeled case, meaning when the scheduler knows no information about any specific
job’s size (§ 5.2.3), Gittins has rank function

_ . ~E[min{S,b} —a|S > d]
rankgittins (@) = iilf; P[S<b[S>al
Notice that Gittins’s rank function involves solving an optimization problem at every age a,
where the optimization depends on the job size distribution S.

This brings us to our first reason Gittins may be impractical: solving the optimization
problem in (10.1) can be difficult. While it is known to be solvable in polynomial time for
discrete size distributions [24], to the best of our knowledge, it is an open question whether
Gittins’s rank function can be computed efficiently for continuous size distributions.

A second reason Gittins may be impractical is its dependence on the size distribution S.
In fact, when jobs have informative labels, then Gittins depends on the entire joint label-size
distribution (L, S). But this joint distribution may not always be known exactly in practice.
For example, suppose jobs are labeled with noisy size estimates. Even if we have a good
idea of what the size distribution is, we may not know have enough data to build a precise
model of the noise.

In light of these obstacles, the goal of this chapter is to determine whether simpler
policies than Gittins can serve as a reasonable substitute, achieving near-optimal mean
response time. We study three different settings:

+ (§ 10.1) Unlabeled: The scheduler knows no specific information about any particular

job, and in particular does not know job sizes.

+ (§ 10.2) Class-labeled: Jobs come from one of a small number of classes, and each job

is labeled with a class.

+ (§10.3) Estimate-labeled: We have some way of estimating a job’s size when it arrives,

and each job is labeled with its estimate.
In each setting, we take a computational approach, numerically applying the SOAP analysis
(Ch. 7) to a variety of examples. Our findings inspire theoretical investigations that appear
in Chapters 11 and 12.

Finally, we note that another reason Gittins may be impractical to implement is that
it is a preemptive policy. Practical systems can have a variety of preemption limitations,
making it impossible to implement the theoretically ideal Gittins. We study this issue in
Chapter 9.

Section 10.1 is based on material from Scully and Harchol-Balter [123], but Section 10.3
is new material.

(10.1)

135

136 Chapter 10 Gittins vs. Simpler Substitutes

P[S =] P[S=s]
0.04 0.04
0.03 1 0.03
0.02 0.02
0.01F 0.01F
e S L\ N e, .
s s
10 15 10 15
All Jobs Application A ===sreeee- Application C
————— Application B Application D

Figure 10.1. Example job size distribution S. For each possible size s, we show the probability that
an arriving job’s size is s. We can imagine that this size distribution arises from serving jobs from
four different applications, each of which has an approximately Gaussian size distribution. For
simplicity, in this example, the possible sizes are discretized in increments of 1/16.

10.1 Unknown Sizes: Use SERPT

10.1.1 Imitating Gittins’s Rank Function

Looking at (10.1), we see that the Gittins rank function trades off between two ideas. The
first is that we want to favor jobs which have small expected remaining work, which is
captured by the numerator of. The second is that we want to favor jobs that are likely to
complete soon, which is captured by the denominator. Figure 10.1 shows an example of a
job size distribution, and Figure 10.2(a) shows what the Gittins rank function looks like for
it in the unlabeled case.

How might we simplify Gittins? One idea is to worry just about a job’s expected
remaining work, without worrying about the probability it will complete soon. After all, if
a job will likely complete soon, that affects its expected remaining work. The policy that
always serves the job of least expected remaining work to schedule is SERPT (Pol. 6.11):

ranksgrpr(a) = E[S—a | S > a].

Put another way, ranksgrpr is like rankgittins, but instead of optimizing the parameter b
that appears in rankgittins, We simply set b = oco.

We show an example of SERPT’s rank function in Figure 10.2(b). Comparing it to
Gittins’s rank function for the same distribution in Figure 10.2(a), we see that the Gittins
and SERPT rank functions are rather similar. Both, roughly speaking, have two “hills”, and
the rank functions are exactly the same after the second “hill”.!

IThis is not a coincidence but rather an instance of a more general result [3, Lem. 8].

10.1 Unknown Sizes: Use SERPT 137

rankgittins (@) ranksgrpr(a)
6 6
4 4
2 2
0 I ‘ — a 0 I ‘ — a
0 5 10 15 0 5 10 15
(a) Rank function of Gittins. (b) Rank function of SERPT.

Figure 10.2. Rank functions of (a) Gittins and (b) SERPT in the unlabeled case for the job size
distribution shown in Figure 10.1. Similarly to the distribution, both rank functions are discretized
in age increments of 1/16.

10.1.2 How Does SERPT Compare to Gittins?

Given that SERPT’s rank function seems so similar to Gittins’s, it is natural to ask: does
SERPT also perform similarly to Gittins? This is certainly true for the job size distribution
from Figure 10.1. We show in Figure 10.3 the mean response times of several policies
for this distribution. We observe that SERPT is nearly optimal, with mean response time
within 3% of Gittins’s at all loads. Other common policies that work with unknown job
sizes, such as FCFS (Pol. 6.5) and LAS (Pol. 6.4), have much worse performance relative to
Gittins. It thus seems that SERPT has near-optimal mean response time.

Are These Observations Robust to Parameter Changes?

One might worry that our observations are specific to the size distribution from Figure 10.1.
To test whether SERPT is near-optimal under broader conditions, we repeated this section’s
analysis for 100 different randomly generated scenarios with the goal of finding the worst
case scenario for SERPT. Each scenario is similar to Figure 10.1 in that the overall job size
distribution is a mixture of jobs from four applications, each with a discretized Gaussian
distribution, but we randomly generated the parameters of each Gaussian.

Figure 10.4 summarizes the results by showing the worst observed mean response time
ratio between several policies and Gittins across all 100 scenarios. We focus on high load
p = 0.95 to emphasize the differences between the scheduling policies.? To clarify what
Figure 10.4 represents, consider the SERPT bar, which has value 1.072. This means that for
the size-oblivious setting at load p = 0.95, across all 100 generated scenarios, the maximum
ratio E[Tsgrpr] /E| TGittins] Was 1.072. The bars for FCFS and LAS are computed similarly.

“We actually computed the ratio at all loads, but Figure 10.4 shows only p = 0.95 for simplicity. Accounting
for other loads increased SERPT’s worst observed mean response time ratio increases by no more than 0.01.

138 Chapter 10 Gittins vs. Simpler Substitutes

E[T] E[T]/E[Taittins]
100] . ¥ /
2.2 /
80 20f
60 1.8}
1.6F
40 [
1.4F
20 1.2k
0 10' r r r x) o
0.5 0.5 0.6 0.7 0.8 0.9 1.0
FCFS SERPT FCFS SERPT
————— LAS ——— Gittins ————— [AS
.......... SRPT

Figure 10.3. Mean response times of several scheduling policies for the job size distribution from
Figure 10.1. We show both mean response times (left) and the mean response time ratios relative to
Gittins (right), which minimizes mean response time when job sizes are unknown. SERPT performs
nearly as well as Gittins, and in particular much better than either FCFS or LAS. We show SRPT as
a point of comparison, even though it uses job size information.

E[T]/E[TGitﬁns]

6.542

FCFS LAS SERPT

Figure 10.4. Worst observed mean response time ratios relative to Gittins at load p = 0.95. Each
bar is the maximum ratio out of 100 randomly generated scenarios, each of which is a variation
of Figure 10.1 with different parameters. Specifically, the job size distribution is a mixture of four
applications’ distributions, each of which is a Gaussian with uniformly distributed mean and
standard deviation, discretized and restricted to the interval [0, 16]. We ensure that in each scenario,
one application’s mean is in each of the intervals [0, 4], [4, 8], [8,12], and [12, 16].

10.2 Multiclass Systems: Again, Use SERPT 139

10.1.3 Can We Theoretically Bound SERPT’s Performance?

One might hope to use the SOAP analysis (Ch. 7) to give a theoretical bound on SERPT’s
mean response time that holds for all job size distributions, not just those we have tested.
We have not yet been able to prove such a result for SERPT. However, there is hope that
such a bound may be provable, because we prove such a bound in Chapter 11 not for
SERPT, but for a simple modification of it we call monotonic SERPT (M-SERPT). We show
in Chapter 11 that M-SERPT’s mean response time ratio compared to Gittins is at most 5
for all job size distributions at all loads: E[Ty-seret]/E[TGittins| < 5-

We conjecture that a similar result holds for (unmodified) SERPT. The worst-case
scenario we have found so far is a particular pathological job size distribution which is
unlikely to occur in practice (Ch. 11). Even in this worst-case scenario, SERPT’s mean
response time ratio compared to Gittins is only 2, whereas FCFS and LAS both have
unbounded mean response time ratio compared to Gittins.

10.2 Multiclass Systems: Again, Use SERPT

We have seen in Section 10.2 that when job sizes are unknown, SERPT can serve as a
simple substitute for Gittins that performs nearly as well. But it is often the case that we
have some amount of information about jobs’ sizes. Can we use simpler substitutes for
Gittins in these cases? The rest of this chapter studies this question. This section considers
a multiclass setting, where jobs come from one of two classes and are labeled with their
class, which indirectly gives us some information about the job’s size. Section 10.3 below
considers the case where each job’s size is noisily estimated. This can be thought of as a
limiting case of the multiclass setting considered here, with each size estimate constitutes
a class of jobs, but the specifics are different enough that we give it is own section.

We can use both Gittins and SERPT in multiclass settings. The only difference is
that instead of using the overall size distribution S to compute a job’s rank, we use the
appropriate label-conditional size distribution S, (Pols. 6.11 and 6.12), where a job’s label is
its class. After describing the specific multiclass scenarios we study (§ 10.2.1), we ask two
questions:

+ (§ 10.2.2) How does SERPT compare to Gittins in the multiclass setting?

+ (§10.2.3) Can a policy even simpler than SERPT still be near-optimal in the multiclass

setting?

10.2.1 Three Multiclass Systems

To compare different multiclass scheduling policies, we consider the following running
example. Consider a system with jobs as illustrated in Figure 10.1. Jobs from four applica-
tions, which we call A, B, C, and D. If we have one job from each application, it is likely
that their size ordering from smallest to largestis A < B < C < D.

140 Chapter 10 Gittins vs. Simpler Substitutes

SYSTEM 1122 SYSTEM 1212 SYSTEM 1221
E[T]/E[Taittins] E[TI/E[Taittins] E[T]/E[Taittins
2.0 2.0F
1.8 1.8F
1.6 1.6F
14 14F
1.2 1.2F

1.0 lp 1.0 L L L L lp 1.0 1 1 1 1 lp
05 06 07 08 09 1.0 05 06 07 08 09 1.0 05 06 07 08 09 1.0

P-Prio SERPT

Figure 10.5. Mean response time ratios relative to Gittins for each of SERPT and P-Prio (§ 10.2.3).
We consider each of the multiclass systems described in Section 10.2.1. We see that SERPT is
consistently near-optimal in all three systems. However, P-Prio is less consistent. It performs well
in System 1122, where class 1 jobs are consistently smaller than class 2 jobs. But in System 1221,
where class 1 jobs “sandwich” class 2 jobs, P-Prio performs poorly. System 1212 is between these
extremes.

In the rest of this section, we consider three ways of splitting the four applications into
two classes.

« System 1122: class 1is A and B, and class 2 is C and D.

o System 1212: class 1is A and C, and class 2 is B and D.

« System 1221: class 1is A and D, and class 2 is B and C.
For example, in System 1212, the scheduler knows that a class 2 job comes from application
B or D.

10.2.2 Comparing Gittins and SERPT in the Class-Labeled Setting

Figure 10.5 compares the mean response times of Gittins and SERPT in all three multiclass
systems described in Section 10.2.1. We see that SERPT is a good substitute for Gittins, as
it maintains mean response time within 12% of Gittins’s throughout.

That SERPT is near-optimal in this setting is unsurprising if we compare its rank
function to that of Gittins. As in the size-oblivious setting, the two rank functions are
rather similar. Figure 10.6 demonstrates this for System 1221. Both policies initially assign
class 1 jobs low rank, because most class 1 jobs in System 1221 are from application A.
However, once a class 1 job has run for long enough, it becomes most likely that it is from
application D, meaning it is likely to be large, so both policies’ rank functions increase
accordingly.

10.2.3 Even Simpler than SERPT: P-Prio

Perhaps the simplest scheduling policy that uses class information is the Preemptive Priority
(P-Prio) policy (Pol. 6.8). Given an ordering of the classes from best to worst priority, P-Prio

10.2 Multiclass Systems: Again, Use SERPT 141

rankgittins (£, @) ranksgrpr (¢, a) rankp_prio (£, @)

A A A

rankof class =1 = ssezesesssm rank of class £ = 2

Figure 10.6. Comparison of the rank functions of Gittins, SERPT, and P-Prio (§ 10.2.3) in Sys-
tem 1221 (§ 10.2.1), in which class 1 jobs come from application A or D, and class 2 jobs come from
application B or C (Fig. 10.1).

always serves the job in the best possible priority class, serving jobs within each class
in FCFS order. One can make P-Prio favor short jobs by ordering the classes in order of
expected size.

Can we use P-Prio as a Gittins substitute? To answer this question, we compare P-Prio
to SERPT and Gittins in the three multiclass systems described in Section 10.2.1. In all
cases, P-Prio prioritizes class 1 over class 2, as class 1 jobs have lower expected size.

Section 10.2.1 shows that P-Prio sometimes performs comparably to SERPT and Gittins,
but sometimes SERPT and Gittins are clearly superior. We discuss each of the three systems
in more detail below. In additional numerical experiments, we also evaluated NP-Prio
(Pol. 6.8), the nonpreemptive cousin of P-Prio. But it turns out P-Prio outperforms NP-Prio
in all three systems at all loads, so we omit the NP-Prio results for brevity.

System 1122: P-Prio Is Nearly Optimal

In System 1122, all three of P-Prio, SERPT, and Gittins have very similar mean response
time. This makes sense because in this system, the scheduler knows a class 1 job is smaller
than a class 2 job with high probability, so strictly prioritizing class 1 jobs is an excellent
heuristic.

System 1212: P-Prio Is Okay

In System 1212, P-Prio has worse mean response time than SERPT and Gittins, but only
by 10-15%. This makes sense because in this system, the scheduler knows a class 1 job is
more likely than not to be smaller than a class 2 job. However, exceptions occur frequently
enough that strictly prioritizing class 1 jobs is not as effective as in System 1122.

142 Chapter 10 Gittins vs. Simpler Substitutes

E[TI/E[Taittins]
1.8+

1.799

161
1.476

14

1.2}
1.121

1.091 1.078
d I

P-Prio SERPT

[System 1122 [System 1212 [l System 1221

Figure 10.7. Worst observed mean response time ratios relative to Gittins at load p = 0.95. Each
bar represents the maximum ratio out of 100 randomly generated scenarios, each of which is a
variation of Figure 10.1 with different parameters. See Figure 10.4 for details of how we generate
the parameters. We label the applications in order of increasing mean as A, B, C, and D, from which
we define Systems 1122, 1212, and 1221, as described in Section 10.2.

System 1221: P-Prio Is Poor

In System 1221, SERPT and Gittins significantly outperform P-Prio. In fact, using P-Prio
turns out to be even worse than using the size-oblivious version of SERPT or Gittins. This
makes sense because in this system, given a class 1 job and a class 2 job, it is not clear to
the scheduler which is larger. P-Prio prioritizes class 1 over class 2 because class 1 jobs are
smaller on average. However, once a class 1 job reaches a large enough age, its remaining
work is likely to be large. As shown in Figure 10.6, SERPT and Gittins deal with this by
updating a class 1 job’s rank during service, but P-Prio is limited by its static priorities.

Are These Observations Robust to Parameter Changes?

As in Section 10.1.2, we want to check that these trends are not too sensitive to the exact
parameters of Figure 10.1. We therefore again repeat our analysis with 100 randomly
generated variations of the same setup. And once again, as we show in Figure 10.7, our
conclusions appear to be robust to changes in the parameters.

10.2.4 Summary: Stick to SERPT

We have seen that SERPT consistently achieves mean response time close to that of Gittins,
despite having a significantly simpler rank function. We therefore recommend SERPT
as a substitute for Gittins for most situations. In some specific cases, an even simpler
policy such as P-Prio may suffice, but there are plenty of cases where Gittins and SERPT
outperform these even simpler heuristics.

10.3 Size Estimates: Use PSJF-E for Low Noise, Ignore Estimates for High Noise 143

10.3 Size Estimates: Use PSJF-E for Low Noise, Ignore
Estimates for High Noise

We now consider a setting in which the scheduler, rather than being given each job’s exact
size, is given a noisy estimate of the job’s size. Specifically, letting o > 0 be a noise level,
we suppose that a job of size s is labeled by an estimate

(L|S =s):=sexp(Normal(0,0)).

That is, we assume unbiased log-normal multiplicative noise that is independent of the job
size.

Throughout this section, we consider job size distributions S that are Weibull with
varying shape parameter k. This family of size distributions and noise models has com-
monly been used to study scheduling with size estimates in the literature (§ 2.4.2). What
distinguishes our work from these past works is that, thanks to the SOAP analysis, we can
evaluate SERPT and Gittins in addition to simpler heuristics.

One can define SERPT and Gittins for any label-size distribution (L, S) (Pols. 6.11
and 6.12), including the noisy size estimate model described above. It is natural to ask
whether SERPT is again a good substitute for Gittins. Numerical experiments, which we
omit for brevity, confirm that the answer is again yes.

However, both SERPT and Gittins require knowledge of the exact label-size distribu-
tion (L, S), namely an exact description of the noise model. However, in practice, we may
not know the exact noise model. Can we achieve near-optimal mean response time using
size estimates, but without relying on the specifics of the noise model?

10.3.1 Simple Heuristics for Scheduling with Size Estimates

When we know job sizes exactly, SRPT minimizes mean response time, and PSJF is often
nearly as good [55]. One would expect that, at least for low noise o, naive analogues SRPT
and PSJF to work with noisy size estimates would yield good performance. We formally
define these analogues below.

Policy 10.1. The SRPT with Estimates (SRPT-E) policy is the policy one obtains by plugging
possibly noisy size estimates into SRPT’s rank function (Pol. 6.10):*

ranksgpr-g (£, a) = (£ —a)™.

Policy 10.2. The PSJF with Estimates (PSTF-E) policy is the policy one obtains by plugging
possibly noisy size estimates into PSJF’s rank function (Pol. 6.9):

rankPSJF_E({’, a) ={.

That is, PSJF-E is simply P-Prio (Pol. 6.8) where a job’s class is its size estimate.

3We take the positive part because Definition 6.1 defines ranks to be nonnegative. This choice is not
essential, but it makes for simpler notation, especially in Chapter 6.

144 Chapter 10 Gittins vs. Simpler Substitutes

One advantage of SRPT-E and PSJF-E is that they do not depend on the noise model,
or even on the job size distribution. However, we cannot expect good performance from
them when noise is very high. In particular, in the 0 — oo limit, the size estimates become
useless. In this case, the best performance we can hope for is that of Gittins in the unlabeled
case, namely unknown job sizes. To prevent confusion, we call this Unlabeled Gittins, to
distinguish it from the size-estimate-aware version of Gittins. For the Weibull distributions
we consider, Unlabeled Gittins takes a particularly simple form: it is LAS for k < 1, and it
is FCFS for k > 1.

10.3.2 Evaluating SRPT-E, PSJF-E, and Unlabeled Gittins

Figure 10.8 compares the mean response times of SRPT-E, PSJF-E, and Unlabeled Gittins to
size-estimate-aware Gittins, with SRPT’s performance as a baseline. For brevity, we show
only representative noise levels ¢ € {0.5,1.0,1.5} and shape parameters k € {0.25,1.0},
but the discussion below is supported by additional numerical experiments with other
values of ¢ and k, which we omit for brevity.

What Performance Is Achievable for a Given Noise Level?

Gittins (with access to size estimates) represents the minimum possible mean response time
we can hope to achieve. When o = 0, meaning job sizes are exactly known, Gittins reduces
to SRPT. As o increases, Gittins’s mean response time increases, but never exceeding that
of Unlabeled Gittins. In the examples we have observed, including those in Figure 10.8,
Gittins’s mean response time is very close to that of Unlabeled Gittins when ¢ ~ 1. That
means when o = 1, the size estimates are effectively useless, because ignoring them, as
Unlabeled Gittins does, does not hurt performance.

How Close to Optimal Are SRPT-E and PSJF-E?

We see in Figure 10.8 that for shape k = 1, SRPT-E has near-optimal performance for a
range of noise levels. But for shape k = 0.25, SRPT-E performs poorly, even at low noise.
We can explain why this is using the SOAP analysis, specifically the mean response time
formula (Thm. 7.15(c)). Because the estimation noise is multiplicative, there is a positive
probability that a job spends a constant fraction of its service time at rank 0. Using the
SOAP analysis (Thm. 7.15(c)), one can show that this means there is a constant c¢,, which
depends on ¢ but not on the size distribution S, such that

E[Tsrere] > copE[S?]

for all loads p and size distributions S. We formalize a version of this statement in Chapter 12.

The takeaway is that for high-variance job size distributions, SRPT-E is a bad choice.
The story is much better for PSJF-E. Like SRPT-E, it is near-optimal for shape k = 1.

But unlike SRPT-E, it is also near-optimal for k = 0.25, at least for low-to-medium noise

10.3 Size Estimates: Use PSJF-E for Low Noise, Ignore Estimates for High Noise 145

k=10.250=05

k=10.250=1.0 k=0.250=15

E[T]/E[Tsppr] E[T1/E[Tsgpr] E[T]/E[Tsgpr]
3.0 3.0 3.0
2.5) 2.5 2.5
2.0 J 2.0 2.0
R
1.5 PRie 1.5 1.5
_______ -7~
1.0 === . ' p 1.0 : . . ' p 1.0
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
Gittins SRPT-E
PSJF-E =~ =-=-=-- Unlabeled Gittins

(a) High-variance job size distribution, namely Weibull with small shape parameter k = 0.25. Even
under low noise, SRPT-E performs poorly. PSJF-E is near-optimal for low noise, and Unlabeled
Gittins (which in this case is simply LAS) is near-optimal for high noise. The switch between “low”
and “high” noise happens at o ~ 1.0.

k=1.0,0 =0.5 k=1.0,0=1.0 k=1.0,0=1.5
E[T)/E[Tsgpr] E[T)/E[Tsgpr] E[T)/E[Tsgpr]
3.0 ',-' 3.0 i 3.0 ',-' |
2.5 ! 2.5 ! 2.5 i
/ / y /
2.0 s 2.0 / 2.0 7
R / R 7
1.5 T 1.5 e 1.5 il
1.0 bememis e R === D N L === L g
00 02 04 06 0.8 1.0 00 02 04 06 0.8 1.0 00 02 04 06 0.8 1.0
—— Gittins SRPT-E
PSJF-E = =-=-=-- Unlabeled Gittins

(b) Low-variance job size distribution, namely Weibull with small shape parameter k = 1.0 (i.e.
exponential). Here the story is less interesting than the high-variance case: SRPT-E and PSJF-E are
both near-optimal for a large range of noise levels o.

Figure 10.8. Mean response time ratios relative to SRPT (without noise) for several noise levels o.
The job size distribution is a (discretized) Weibull distribution with shape parameter k. We consider
both (a) high-variance k = 0.25 and (b) low-variance k = 1.0. To clarify, (ordinary) Gittins uses the
size estimates, while Unlabeled Gittins ignores the size estimates.

146 Chapter 10 Gittins vs. Simpler Substitutes

o < 1. This is good news, because as discussed above, this is exactly the range of noise
levels for which we have something to gain from using size estimates. The takeaway is
that when noise is low enough, we can use the very simple PSJF-E, and when noise is high
enough, we can simply ignore the estimates and use Unlabeled Gittins.

10.3.3 Can We Theoretically Bound PSJF-E’s Performance?

One might hope to use the SOAP analysis (Ch. 7) to give a theoretical bound on PSJF-E’s
mean response time that holds for a large class of label-size distributions (L, S) that goes
beyond what we have tested here. We address this question in Chapter 12. Specifically, the
result we show for PSJF-E is that if the noise is multiplicatively bounded above and below
by constants, meaning L € [fS, aS| with probability 1, then PSJF-E’s mean response time is
within a constant factor of PSJF’s when given exact size information: E[Tpgjr-g] < %E [Tpsr].
Whether a similar bound holds for unbounded multiplicative noise, such as the log-normal
model considered in this section, remains an open question.

CHAPTER 11

Monotonic SERPT (M-SERPT)

We have seen through several numerical examples in Chapter 10 that in the M/G/1, SERPT
has near-optimal mean response time, namely close to that of Gittins, in a wide variety of
situations. This raises the question: can we prove that SERPT satisfies a mean response time
guarantee? This would be a useful result because SERPT’s rank function is substantially
simpler than Gittins’s (Pols. 6.11 and 6.12). Unfortunately, comparing SERPT to Gittins for
all job size distributions is difficult, even with the SOAP analysis (§ 11.1). We have not yet
been able to prove a mean response time guarantee for SERPT.

What we have been able prove is a guarantee for a new variant of SERPT, which we
call Monotonic SERPT (M-SERPT). Specifically, we show that for an M/G/1 with unknown
job sizes (i.e. the unlabeled case), M-SERPT is a 5-approximation for minimizing mean
response time, meaning its mean response time is a most 5 times that of Gittins (§ 11.2).
This is the first result showing a constant approximation ratio for any scheduling policy
other than Gittins itself.!

We suspect that these results are not the end of the story for SERPT and M-SERPT. We
have observed in numerical experiments similar to those in Chapter 10, omitted for brevity,
that M-SERPT generally has mean response time similar to SERPT, with each sometimes
outperforming the other. Moreover, both policies generally perform much better than 5
times Gittins’s mean response time. We therefore conjecture that both policies are actually
2-approximations for mean response time, and we provide a lower bound showing such a
result would be tight (§ 11.3).

This chapter is a summary of Scully et al. [125], to which we refer the reader for proofs.

11.1 Problem: Bounding SERPT’s Mean Response
Time

Our goal is to compare E[Tsgrpr] to E[Taittins |- Specifically, we conjecture that the ratio
E[Tserer]/E[TGittins| is bounded by a constant for all job size distributions and loads. In
principle, the SOAP analysis gives a formula for the mean response time under any SOAP
policy (Thm. 7.15(c)). Why is bounding E[Tsgrpt] /E[Taittins| still challenging?

The short answer is that while the SOAP analysis gives us a way to compute E[Tsgrpr]
and E[TGitins] for any particular size distribution and load, it does not immediately yield a
bound that holds for all size distributions and loads. Moreover, SERPT and Gittins have rank
functions that change depending on the job size distribution, which further complicates

'We show another approximation ratio result in Chapter 16. But that result is for policies whose rank
functions are close to Gittins’s, whereas M-SERPT’s rank function can have significant differences from
Gittins’s.

147

148 Chapter 11 Monotonic SERPT (M-SERPT)

matters (§ 11.1.1). To work around this, we introduce M-SERPT, a variant of SERPT that
ends up having a slightly simpler mean response time formula (§ 11.1.2). As evidenced by
the existence of this chapter, this slight simplification makes all the difference.

11.1.1 Why Comparing SERPT and Gittins Is Hard

Examining the mean response time formula as given by combining Theorem 7.15(c)
and Lemma 7.17, we see that the mean response time of an M/G/1 using SOAP policy =z
depends on two things:?

« The arrival process, specifically via the arrival rate A and the size distribution’s tail
P[S > t].

« The rank function rank, of the SOAP policy r, specifically via the worst future
rank function (Def. 7.9) and <r-intervals (Def. 7.16(a)). Recall that an <r-interval is a
maximal interval of ages a during which rank,(a) < r.

While the E[T] formula depends on both the arrival process and the rank function, the
dependence on the rank function is much more complicated. For instance, if the job size
distribution has support on a finite set, then for a fixed rank function, E[T] is a rational
function of A and the probabilities of each of the finitely many possible sizes. A similar
statement holds for general size distributions, though with a continuous analogue of a
rational function.

What makes SERPT and Gittins difficult to analyze for all size distributions is that their
rank functions depend on the size distributions. That is, to be precise, SERPT and Gittins
are not really individual SOAP policies but rather SOAP policy constructions: given a size
distribution, they yield a rank function tuned to that distribution.

11.1.2 M-SERPT Simplifies the Story

We have seen that comparing SERPT to Gittins for all job size distributions is difficult
because both policies’ rank functions depend on the size distribution. To overcome this
obstacle, we define a new policy that, while still having a rank function that depends on
the job size distribution,

Policy 11.1. The Monotonic SERPT (M-SERPT) policy is the SOAP policy with rank function

rankyisgrpr(a) := max ranksgrpr(b) = max E[S—b | S > b].
0<b<a 0<b<a
As suggested by its name, M-SERPT is indeed monotonic, as a job’s rank only increases
with age.

One could easily generalize Policy 11.1 to define M-SERPT in the labeled case, or more
generally to define a monotonic version of any SOAP policy, but our focus here is on
M-SERPT in the unlabeled case.

2The discussion below focuses on the unlabeled case, as does the rest of this chapter.

11.2 Main Result: M-SERPT Is a 5-Approximation for Mean Response Time 149

Why is there hope of comparing M-SERPT to Gittins? After all, SERPT and M-SERPT
depend on the size distribution S in similar ways. What makes M-SERPT simpler? The key
is M-SERPT’s eponymous monotonicity, which simplifies the way its mean response time
depends on the rank function in two important ways:

« For any size s, the worst future rank of a job of size s is the same at all ages. Specifically,

for all s > a > 0, we have?

worstysgrpT (S, @) = rankysgrpr(S).

« Because a job’s rank never decreases, jobs are never recycled (Def. 7.5). This means
that for any rank r, there is at most one <r-interval, which always begins at age 0
and ends at the earliest age with rank greater than r.
Of course, these properties of M-SERPT do not immediately solve the problem of bounding
its mean response time relative to Gittins, but they represent a helpful first step.

11.2 Main Result: M-SERPT Is a 5-Approximation for
Mean Response Time

Theorem 11.2. Consider an M/G/1 with any job size distribution and load p in the unlabeled
case. The mean response time ratio between M-SERPT and Gittins is bounded by*

4
— L if0<p<0.9587
1+yI=p g
1

ElTwserer]) 140, if 0.9587 < p < 0.9898

E[TGittins] ~ | P 1-p

4
1+ ——
1+41-p

In particular, the ratio is at most 5, so M-SERPT is a 5-approximation for the problem of
minimizing mean response time with unknown job sizes.

if 0.9898 < p < 1.

See Scully et al. [125, Thm. 5.1] for the proof of Theorem 11.2. The rest of this section
discusses two corollaries of Theorem 11.2, each of which resolves an open problem in
queueing theory:.

11.2.1 LAS for Increasing Mean Residual Lifetime

Job size distributions S where the expected remaining size of a job E[S —a | S > a] is
(strictly) increasing as a function of age a are said to have the (strictly) Increasing Mean

3For simplicity of exposition, we neglect details to do with limit ranks (Def. 7.8) throughout this chapter.
“The numbers 0.9587 and 0.9898 are approximations accurate to four decimal places.

150 Chapter 11 Monotonic SERPT (M-SERPT)

Residual Lifetime (IMRL) property. For strictly IMRL size distributions, SERPT and M-SERPT
both reduce to a simple, familiar policy: LAS (Pol. 6.4).

LAS was thought for some time to minimize mean response time for IMRL size distri-
butions [111], though it turned out there was an error in the proof [2]. Nevertheless, it has
been observed that LAS generally performs well for IMRL size distributions, leaving open
the question: can we prove a response time guarantee on LAS for IMRL size distributions?
Thus far, it has only been shown that LAS outperforms PS (§ 5.3.1) in this case.

Theorem 11.2 resolves a significant special case of this question, namely the perfor-
mance of LAS for strictly IMRL size distributions. This is because M-SERPT reduces to
LAS in this case.

Corollary 11.3. Consider an M/G/1 with any strictly IMRL job size distribution and any
load in the unlabeled case. LAS is a 5-approximation for minimizing mean response time.

11.2.2 Performance Achievable by MLPS Policies

Aside from SOAP, there are few M/G/1 analyses that apply to an entire classes of policies.
One of these is the analysis of the Multi-Level Processor Sharing (MLPS) policy class [74].
MLPS policies are specified by a list of threshold ages ay, as, . . ., with ay = 0, where interval
[ai, ai41) is called the ith level. Roughly speaking, an MLPS policy prioritizes jobs by the
level, with lower levels having priority, and uses one of FCFS, LAS, or PS used within each
level.

An MLPS policy is parameterized by the threshold ages a; and the choice of which
policy to use within each level. While there has been significant work on MLPS policies
[1, 4, 9], a question remains open: how should one optimize the parameters of an MLPS
policy to minimize mean response time? This is an important question because in some
applications, implementing MLPS policies may be simpler than implementing general
SOAP policies like Gittins.

Theorem 11.2 takes a significant step towards resolving this question, because it turns
out M-SERPT is an MLPS policy: age intervals where M-SERPT’s rank is strictly increasing
are levels that use LAS, and age intervals where M-SERPT’s rank is constant are levels that
use FCFS. This means that MLPS policies can achieve within a constant factor of optimal
mean resposne time.

Corollary 11.4. Consider an M/G/1 with any job size distribution in the unlabeled case.
There exists an MLPS policy which for all loads is a 5-approximation for minimizing mean
response time.

11.3 Approximation Ratio Lower Bounds for SERPT
and M-SERPT

We have shown that M-SERPT is a 5-approximation for minimizing mean response time. Is
this bound tight? That is, is there a size distribution such that E[Tyi-sgrer|/E[TGittins] = 5,

11.3 Approximation Ratio Lower Bounds for SERPT and M-SERPT 151

or at least a sequence of distributions such that E[Tyisgrpr]/E|[TGittins] approaches 5?7 Or
is the true approximation ratio lower?

We conjecture that M-SERPT is actually a 2-approximation for mean response time,
and we conjecture the same for SERPT. This is based on exploring the performance
of SERPT and M-SERPT on a wide range of numerical examples, including the use of
numerical optimization to find the worst-case ratio relative to Gittins within a class of size
distributions. Throughout all this exploration, the maximum ratios E[Tsgrpr]|/E[Taittins |
and E[Tyisgrer] /E|[Taittins] I have observed are no more than 2. We describe the scenario
that achieves this below. It implies that SERPT and M-SERPT both have approximation
ratio at least 2.

The worst mean response time ratios I have observed come from distributions of the
form

1-6 wp.1-6
S=41 w.p. S — &
S'+1 wp. 5,

where § ~ 0 is a small positive number. One can compute using the SOAP analysis [125,

§ 7] that at high load p = 1,

E[Tserer] _ E[Tmserer] _ 26° +28(1 - p) + (1 - p)?
E[TGittins] ~ E[TGittins] F+3(1-p)+(1-p)?

If we set § = (1 — p)?/, the right-hand side approaches 2 in the p — 1 limit.

Curiously, for any fixed value of § in the example above, the right-hand side approaches
1 in the heavy-traffic p — 1 limit. This leaves open the possibility that SERPT and
M-SERPT could be heavy-traffic optimal for mean response time. However, the example
does show that even if lim,_,; E[Tsgrpr]/E[TGittins] = 1 (or similarly for M-SERPT) for any
size distribution, the convergence cannot be uniform in the size distribution.

152 Chapter 11 Monotonic SERPT (M-SERPT)

CHAPTER 12

Adapting SRPT to Noisy Job Size
Estimates

This chapter studies the problem of scheduling in an M/G/1 where job sizes are uncertain,
but we learn an estimate for each job’s size when it arrives. Scheduling in this setting
has been the subject of several simulation and numerical studies, including our own in
Chapter 10, but there are no strong theoretical bounds on scheduling with size estimates
in the M/G/1 (§ 2.4.2).

When scheduling with size estimates, a natural idea is to naively use the rank function
of SRPT or PSJF to schedule, but plugging the estimated size into the rank function instead
of the true size. This results in policies we call SRPT with Estimates (SRPT-E) and PSJF with
Estimates (PSJF-E), respectively (Pols. 10.1 and 10.2).

Do SRPT-E and PSJF-E have good mean response time? We have seen in Chapter 10
that while PSJF-E seems to perform nearly optimally under low-to-moderate noise, SRPT-E
can perform poorly even under low noise (§ 12.1). This prompts two questions:

« Can we prove a mean response time bound for PSJF-E that explains its robustness to

noise?

« Is there a variant of SRPT other than SRPT-E that is as robust to noise as PSJF-E?
This chapter provides positive answers to both of these questions (§ 12.2). In particular,
we introduce a new variant of SRPT, which we call SRPT with Bounce (SRPT-B), whose
performance matches SRPT’s when noise is zero but gracefully degrades as noise increases.
We also show that PSJF-E has a similar relationship with PSJF (§ 12.3).

We have already mentioned five scheduling policies in this introduction, and a sixth
policy plays a crucial role in our analysis. To aid the reader in keeping track of the main
policies discussed in this chapter, Figure 12.1 illustrates all of their rank functions.

This chapter is a summary of Scully et al. [120], to which we refer the reader for proofs.

12.1 Problem: SRPT-E Can Perform Poorly Even
under Low Noise

We have seen in Chapter 10 that SRPT-E can have poor mean response time, even when
size estimate noise is relatively low. After introducing the noise model we consider in
this chapter (§ 12.1.1), we show that SRPT-E can have very performance for arbitrarily
low noise levels (§ 12.1.2). This motivates us to come up with criteria we might want a
policy for size estimates to satisfy (§ 12.1.3). We use the resulting criteria as benchmarks
for evaluating policies in the remainder of the chapter.

153

154 Chapter 12 Adapting SRPT to Noisy Job Size Estimates

ranksgpr(s, a) :=s—a rankpsrg(s, a) == s
S S A——
0 [) a 0 T) a
0 s 0 S
(a) SRPT. (b) PSJF.
ranksrpre(2, @) == (z — a)* rankpsjr-g(2, @) =z
z z
0 i > a 0 > a
0 z 0
(¢) SRPT with Estimates (SRPT-E). (d) PSJF with Estimates (PSJF-E).
ranksrpr-B (2, @) = min{|z — a, z} ranksrpr-se((S, 2), @) == 2(s — a)
Z 7 Z -
0 T T > a 0 i > a
0 z 2z 0 S
(e) SRPT with Bounce (SRPT-B). (f) SRPT with Scaling Estimates (SRPT-SE).

Figure 12.1. Rank functions of policies discussed in this chapter. Throughout, s denotes a job’s
true size, and z denotes a job’s estimated size.

12.1 Problem: SRPT-E Can Perform Poorly Even under Low Noise 155

12.1.1 The Bounded Noise Model

We study a model we call (a, f)-bounded size estimate noise, or simply bounded noise.
Here « > f > 0 are constants measuring maximum possible estimation error. In this
model, a job’s true size and estimated size are drawn i.i.d. from a joint truth-estimate
distribution (S, Z), where S denotes true size as usual, and Z denotes estimated size. A job’s
true and estimated sizes are guaranteed obey!

BS < Z < as. (12.1)

Aside from (12.1), we make no additional assumptions on the truth-estimate distribution.
Note that we do not require « > 1 or § < 1.

The bounded noise model serves as a good starting point for theoretical analysis, but
it is admittedly not always realistic. Studying models with unbounded noise, such as the
log-normal noise model used in Chapter 10, is a potential direction for future research.

How Size Estimates Relate to Labels

For the purposes of formally specifying a label-size distribution and defining SOAP policies,
we label jobs with either their true size, estimated size, or possibly both, depending on the
policy in question. Of course, if only job size estimates are known, we can only implement
policies where a job’s label is its estimated size, such as SRPT-E. But policies that use a
job’s true size still play an important role in our analysis (§ 12.2.1).

12.1.2 Lower Bound for SRPT-E in the Bounded Noise Model

Theorem 12.1. Consider an M/G/1 with (a, f)-bounded size estimate noise, and suppose
B < 1. For every job size distribution S, there exists a truth-estimate distribution (S, Z),
namely Z = S, such that the mean response time of SRPT-E is at least

E[Tsrere] > (1 - f)°pE[ES] +E[S] = (1 - B)*4E[S?] +E[S].

The key observation behind Theorem 12.1 is that under SRPT-E, a job can have rank 0,
and thus be nonpreemptible, for a 1 — f fraction of its time in service. From this observation,
the result follows quickly from the SOAP analysis (Thm. 7.15(c)) [120, Thm. 6.1].

Theorem 12.1 implies that SRPT-E’s mean response time is sensitive to the variance
of the job size distribution. This means that SRPT-E’s mean response time is not even
necessarily finite. In contrast, SRPT’s mean response time is always finite, and it can be
bounded by expressions that depend on only the mean of the job size distribution [146].

IThe intended mnemonic is that « stands for “above”, and 8 stands for “below”.

156 Chapter 12 Adapting SRPT to Noisy Job Size Estimates

12.1.3 What Does Good Performance Look Like under Bounded
Noise?

We have seen that SRPT-E can perform poorly for even arbitrarily small noise, namely
for a and p arbitrarily close to 1. We would like to find a policy with better performance,
but this prompts a question: what does good performance look like in the bounded noise
model?

One possibility is to compare to the Gittins policy (Pol. 6.12). Gittins uses the truth-
estimate distribution (S, Z) to design a rank function that minimizes mean response time
for that specific truth-estimate distribution. We might look at the approximation ratio of a
policy 7 relative to Gittins, namely an upper bound on E[T,]/E[Tgittins|. However, there
are two concerns that make this approach unappealing.

« The fact that Gittins’s rank function depends on the truth-estimate distribution makes

it difficult to use the SOAP analysis to prove theorems about its mean response time
(§ 11.1).

« In practice, we may not have a very clear idea of what the truth-estimate distribu-
tion actually is. Without knowing the exact distribution (S, Z), we cannot actually
implement Gittins, so it is not clear that Gittins is a reasonable benchmark.

Instead of comparing to Gittins, we take inspiration from the growing literature on
algorithms with predictions [10, 11, 92, 110] and compare to SRPT, the policy that would
minimize mean response time if size estimates were perfect. The key idea is that rather
than looking for constant bounds on the approximation ratio relative to SRPT, namely
E[T,]/E[Tsrpr], we look for bounds that depend on the noise level, which in our case
means depending on « and f.

Definition 12.2. Consider any scheduling policy 7 in an M/G/1 with («, f)-bounded
size estimate noise. Suppose there exists a function f such that foralla > g > 0, 7’s
approximation ratio relative to SRPT is bounded by

E[T;]
ElTaer] =7 (%P

We say that 7 is

(a) c-consistent if limsup, 5_,; f(a, f) =c,

(b) c-graceful if f(a, p) < c% foralla > > 0, and

(c) c-robustif f(a,f) < cforalla > f > 0.
Note that c-robustness implies c-gracefulness, which in turn implies c-consistency. We
sometimes omit the “c-” prefix.

We can define the same concepts relative to n’ for another policy 7’ taking SRPT’s

place, but we compare to SRPT by default.

Ideally, we would like to find a policy that is c-consistent, g-graceful, and r-robust for
some small constants ¢ < g < r. Even better would be if the policy works with no tuning,

12.2 Main Result: Adding a “Bounce” to SRPT Ensures Graceful Degradation 157

meaning that, unlike Gittins, it works the same way for any truth-estimate distribution
and any values of « and S.

We have seen in Theorem 12.1 that SRPT-E does not satisfy any of the above desiderata,
not even consistency. It also turns out that constant-factor robustness is unachievable [120,
Appx. B]. Fortunately, we are able to achieve all the other criteria, namely with PSJF-E and
SRPT-B.

12.2 Main Result: Adding a “Bounce” to SRPT Ensures
Graceful Degradation

Our main result concerns the SRPT-B policy, defined formally below.

Policy 12.3. The SRPT with Bounce (SRPT-B) policy is the SOAP policy with rank function
ranksgpr-g(2, @) = min{|z — al, z}.

See Figure 12.1(e) for an illustration.

Theorem 12.4. Consider an M/G/1 with (a, f)-bounded size estimate noise. The approxima-
tion ratio of SRPT-B is bounded by

E[Tsrer8] _ @
E[Tsrpr] — B
3.

IA

+ (%a]l(ﬂ <1+ 1) min{l,max{l — l % — 1}}

5

IA

I K

so SRPT-B is 1-consistent and 3.5-graceful.

We give a high-level sketch of the proof of Theorem 12.4 later in this section (§§ 12.2.1-
12.2.3). See [120, Thm. 8.1] for the full proof.

There are a few essential characteristics of SRPT-B’s rank function that are essential
for Theorem 12.4, but there are other characteristics that could likely be altered without
affecting consistency and gracefulness. Consider SRPT-B’s rank function for a job with
estimated size z.

+ The rank being z — a prior to the bounce helps achieve 1-consistency, because it
ensures agreement with SRPT when a = = 1. However, it is likely that the rank
need not be precisely z — a prior to the bounce, provided it still approaches SRPT’s
rank as a and f approach 1.

« The bounce is necessary to avoid jobs being nonpreemptible for a fraction of their
service time, which is the issue SRPT-E has. However, it is likely that the bounce
could occur at an age other than z, provided the bounce location approaches the
true size as a and approach 1.

158 Chapter 12 Adapting SRPT to Noisy Job Size Estimates

« The rank function having finite upward slope after the bounce is necessary to ensure
1-consistency. Otherwise, jobs with slightly underestimated sizes could be preempted
at age z when they are close to completing. However, it is likely that we could use a
slope other than 1.

« Limiting the bounce to stay below the initial rank z is important for gracefulness.
Otherwise, jobs become likely to be preempted at age 2z, when the job reaches ranks
worse than any it had previously.? However, it is likely that we could instead limit
the bounce to yz for some constant y € (0, 1).

12.2.1 Main ldea: Use SRPT-SE as an Intermediate

We might think to prove Theorem 12.4 by applying the SOAP analysis to each of SRPT-B
and SRPT and comparing the resulting mean response time formulas. This may in principle
be possible, but the rank functions of SRPT-B and SRPT are different enough that a direct
comparison is difficult. We have found it simpler to take a different approach: we compare
both SRPT-B and SRPT to a policy whose rank function shares some characteristics with
each.

Policy 12.5. The SRPT with Scaling Estimates (SRPT-SE) policy is the SOAP policy with
rank function

z
I’ankSRpT_B((S, Z)s a) = ;(S - a)'

See Figure 12.1(e) for an illustration. Note that SRPT-SE uses both a job’s true size s and
estimated size z, so it cannot be implemented using size estimates alone.

SRPT-SE is a useful intermediate because it has some properties in common with
SRPT-B and others in common with SRPT.
« SRPT-SE is similar to SRPT-B in that both initially assign a job rank equal to its esti-
mated size, and both never increase the job’s rank beyond this initial rank (Figs. 12.1(e)
and 12.1(f)).
« SRPT-SE is similar to SRPT in that both assign jobs rank proportional to their
remaining work (Figs. 12.1(a) and 12.1(f)).
The rest of the proof thus proceeds in two steps: compare SRPT-B to SRPT-SE (§ 12.2.2),
then compare SRPT-SE to SRPT (§ 12.2.2).

12.2.2 Comparing SRPT-B to SRPT-SE: Use SOAP

We compare SRPT-B to SRPT-SE using the SOAP analysis. This involves separate compu-
tations for each of waiting time and residence time (§ 7.1.1).

Lemma 12.6. Consider an M/G/1 with (a, f)-bounded size estimate noise.

2This is an instance of the Pessimism Principle (Prop. 7.7): without limiting the bounce, a job with S > 2Z
has a greater worst ever rank than one with § < 2Z.

12.3 PSJF Has Natural Graceful Degradation 159

(a) The mean waiting time of SRPT-B is bounded above by

1
1-p

i wai 3 1
E[Tpprs] < ElTgrprse] + 50‘(1 - ﬁ)+(/—) log)E[S]-

(b) The mean residence time of SRPT-B is bounded above by

11 1 1
E[Td] < E[Tid] +min{1, max{l oo 1}}(—log)E[S].
SRPT-B SRPT-SE @ B 581,
The quantity (% log ﬁ)E[S] shows up in both bounds. A result of Wierman et al. [146,
Thm. 5.8] implies that this is less than E[Tsgpt].

12.2.3 Comparing SRPT-SE to SRPT: Use WINE

To compare SRPT-SE to SRPT, we actually need to peek ahead into Part III. One of the
main results in Part Il concerns what we call («, f)-approximate Gittins policies (Def. 16.3),
which are policies whose rank functions are within a constant factor of Gittins’s rank
function. Specifically, we show that such a policy is a %—approximation for mean response
time relative to Gittins (Thm. 16.5). This result is exactly what we need to compare SRPT-SE
to SRPT, because SRPT-SE’s rank function is always within a constant factor of SRPT’s,
and SRPT can be seen as a special case of Gittins (Pol. 6.12).

Lemma 12.7. Consider an M/G/1 with (a,)-bounded size estimate noise. The approximation
ratio of SRPT-SE is bounded by

E[Tsrer-se] _ @

E[Tsrer] ~ B

Proof. Under (a, f)-bounded size estimate noise, if SRPT would assign a job rank r,

SRPT-SE would assign the job a rank in [fr, ar]. This makes SRPT-SE an («, f§)-approximate

Gittins policies, so the result follows from Theorem 16.5. O

12.3 PSJF Has Natural Graceful Degradation

We have seen in Section 12.2 that with the right tweak, SRPT can be turned into SRPT-B, a
policy that is consistent and graceful. But we saw in Chapter 10 that the natural analogue
of PSJF for estimated sizes, namely PSJF-E, has near-optimal mean response time. Can we
show that PSJF-E is consistent and graceful like SRPT-B? The following result answers
this affirmatively.

Theorem 12.8. Consider an M/G/1 with («, f)-bounded size estimate noise. The approxima-
tion ratio of PSJF-E relative to PSJF is bounded by

E[Tpsjr-£] L@
E[Tosp] ~ f

This implies PSJF-E is

160 Chapter 12 Adapting SRPT to Noisy Job Size Estimates

(a) 1-consistent and 1-graceful relative to PSTF, and
(b) 1.5-consistent and 1.5-graceful relative to SRPT.

The comparison to SRPT follows from the comparison to PSJF and a result of Wierman
et al. [146, Thm.].See Scully et al. [120, Thm. 9.1] for the rest of the proof of Theorem 12.8.
While the analysis of PSJF-E is quite different from the analysis of SRPT-B, it also involves
a cocktail of SOAP and WINE.

CHAPTER 13

Response Time Tail of SOAP Policies

The last several chapters have all focused on the metric of mean response time E[T]. But
this is far from the only metric a system designer might hope to optimize. For example, it
may be important to ensure that jobs do not have especially long response times. The most
relevant metric for this situation is the response time tail P[T > t], which is the subject of
this chapter.

In the interest of theoretical tractability, we focus on the asymptotic tail, meaning we
characterize the behavior of P[T > ¢] in the t — oo limit. The asymptotic tails of a handful
of scheduling policies have been analyzed in the past (§ 2.1.3), and there has also been work
on deriving general conditions under which a scheduling policy has certain asymptotic
tail characteristics [101, 149]. However, we lack simple conditions for determining the tail
asymptotics of a scheduling policy.

This chapter studies the tail asymptotics of SOAP policies. Focusing on SOAP policies
prompts the following question: can we easily determine a policy’s tail asymptotics from
its rank function (§ 13.1)? We obtain results that take promising first steps in this direction:
we give conditions under which a SOAP policy is asymptotically tail-optimal, meaning
P[T > t] decays in some sense as quickly as possible in the t — oo limit (§ 13.2). We apply
our results to answer two questions:

+ (§ 13.3) Can we simultaneously achieve optimal or near-optimal mean response time
and asymptotic tail optimality? In particular, when is Gittins (Pol. 6.12), the optimal
policy for mean response time, also asymptotically tail-optimal?

+ (§ 13.4) When scheduling with preemption checkpoints (Pol. 6.13), how frequent do
checkpoints need to be to ensure asymptotic tail optimality?

We consider both heavy-tailed and light-tailed job size distributions throughout.

All of our results focus on an M/G/1 in the unlabeled case. All SOAP policies mentioned
in this chapter should be understood as having rank functions that depend only on age.

This chapter is a summary of Scully et al. [127] and Scully and van Kreveld [126], to
which we refer the reader for proofs.

13.1 Problem: Analyzing the Asymptotic Response
Time Tail

Our goal is to characterize the asymptotic response time tail of a SOAP policy in terms
of its rank function. The step we take towards this goal is giving conditions on a policy’s
rank function that imply asymptotic tail optimality. Before we can state our results in
Section 13.2, we need to define what asymptotic tail optimality means. We do this below
for heavy-tailed (§ 13.1.1) and light-tailed (§ 13.1.2) job size distributions.

161

162 Chapter 13 Response Time Tail of SOAP Policies

13.1.1 Definitions for Heavy-Tailed Size Distributions

We begin by defining the class of heavy-tailed job size distributions we consider. We
emphasize that these are not the only distributions that are generally referred to as “heavy-
tailed”, but we still call them simply “heavy-tailed” to reduce clutter.

Definition 13.1. We call a job size distribution S heavy-tailed if

lim inf lim inf P[S > (1+¢)a] =
el s—o P[S > s]

and there exist f > a > 1 such that for sufficiently large t > s,!

_/3 -
of(f) ") < B> _o((E)).
s P[S > s] s
Definition 13.2. A scheduling policy 7 is asymptotically tail-optimal for heavy-tailed job

sizes (or simply tail-optimal) if for all heavy-tailed size distributions S and loads p, its
M/G/1 response time distribution T}, satisfies

. P[T,; > t]
lim =

5o P[S > (1- p)i]

Roughly speaking, for a policy 7z to be tail-optimal for heavy-tailed sizes, it needs to
ensure that very large jobs have response time roughly proportional to their size [149].
Some examples of policies that are tail-optimal for heavy-tailed sizes are LAS, SRPT, and
PS [101].

13.1.2 Definitions for Light-Tailed Size Distributions

Definition 13.3. The decay rate of a random variable V, denoted d(V), is

d(V) = lim _IOLM.
t—o00 t

That is, if the decay rate d(V) is finite, then P[V > t] = exp(—d(V)t + o(t)). Roughly

speaking, higher decay rates correspond to lighter tails.

The class of light-tailed distributions we consider are a subclass of those with positive
decay rate.

!We formally define the multivariable O(-) and Q(-) notations as follows. Suppose x1, .. ., Xp are non-
negative variables. The notation O(f(xy,...,x,)) stands for an unspecified expression g(xi,...,x,) > 0
for which there exist constants C,yo,...,y, = 0 such that for all xy > y;,...,x, > y,, we have

g(x1, ..., xn) < Cf(xy,..., xn). The Q(-) notation is the same but with the inequality reversed.

13.2 Main Results: Conditions on a Rank Function that Ensure Tail Optimality 163

Definition 13.4. Given a job size distribution S, let
0" :=inf{6 € R | L[S](0) < oo}.

We call S light-tailed if either of the following holds:
o 0" = —o00, or
« —00 < 0" < 0and limgjg- L[S](0) = 0.

In either case, one can show 0* = —d(S) [90, 97, 98].

Definition 13.5. We classify scheduling policies 7 as follows based on their M/G/1 re-
sponse time distribution T.
(a) A policy 7 is log-tail-optimal for light-tailed job sizes (or simply tail-optimal) if it
maximizes d(T;) among all scheduling policies.
(b) A policy r is log-tail-pessimal for light-tailed job sizes (or simply tail-pessimal) if it
minimizes d(T,;) among all scheduling policies.
(c) Apolicy « is log-tail-intermediate for light-tailed job sizes (or simply tail-intermediate)
if it is neither tail-optimal nor tail-pessimal.

It is known that FCFS is tail-optimal in the light-tailed case [23, 133]. In contrast, policies
like LAS, SRPT, and PS that are tail-optimal in the heavy-tailed case are tail-pessimal in
the light-tailed case [149].

13.2 Main Results: Conditions on a Rank Function
that Ensure Tail Optimality

13.2.1 Results for Heavy-Tailed Size Distributions

We define two conditions on a rank function that suffice for tail optimality in the heavy-
tailed case. The first condition is a simpler special case of the second. Both conditions give
a “asymptotic sketch” of the rank function of a SOAP policy 7 in terms of a small number
of parameters.

Condition 13.6. There exist § > y > 0 such that the rank function of SOAP policy x
obeys
0(a") < rank,(a) < 0(a°).

Condition 13.7. There exist {, ¢ € [0,00) and y € [max{1, { + £}, oo] such that the rank
function of SOAP policy 7 obeys the following properties for any size s and interval of
ages (b, c) where rank,(a) < worst,(s) for all a € (b, c):

(@) ¢ < O(s*);and

(b) if b > s, then c — b < O(bSs?).

2Recall from Definition 7.9 that worst,(s) is the worst ever rank attained by a job of size s.

164 Chapter 13 Response Time Tail of SOAP Policies

Our main result for the heavy-tailed case specifies ranges of the parameters such that
Conditions 13.6 and 13.7 imply tail-optimality. The ranges depend on the tail exponents «
and f of the job size distribution (Def. 13.1).

Theorem 13.8. Consider an M/G/1 with heavy-tailed size distribution in the unlabeled case.
(a) A SOAP policy r is tail-optimal if it satisfies Condition 13.6 with

a-—1

p

(b) A SOAP policy 7 is tail-optimal if it satisfies Condition 13.7 with

(1-9" _a-1

p

See Scully et al. [127, Thm. 3.1] for the proof of Theorem 13.8(a), and see Scully and
van Kreveld [126, Thm. 4.4] for the proof of Theorem 13.8(b).

<

<1
=

(+(E-1)" -

13.2.2 Result for Light-Tailed Size Distributions

In the light-tailed case, the response time tail asymptotics of a SOAP policy (in the unlabeled
case) turn out to be determined by a single quantity: the age at which a job attains the
maximum possible rank, and how that compares to the maximum possible job size.

Definition 13.9. The maximum job size for size distribution S, denoted spay, is
Smax = inf{s > 0 | P[S > s] = 0}.
Note that sy, = oo for many size distributions.

Definition 13.10. The worst age under SOAP policy 7, denoted a}, is the least age at
which the rank function has a global maximum:

a, :=inf{a > 0 | rank,(a) > rank,(b) for all b > 0}.
If the rank function has no global maximum, we let a;, := syax.
Theorem 13.11. Consider an M/G/1 with light-tailed size distribution in the unlabeled case.
(a) A SOAP policy r is tail-optimal if and only if a;, = 0.
(b) A SOAP policy r is tail-intermediate if and only if 0 < a}, < Spax-
(c) A SOAP policy r is tail-pessimal if and only if a, = Smax-

See Scully and van Kreveld [126, Thm. 4.7] for the proof of Theorem 13.11.

13.3 Simultaneously Optimizing the Mean and Tail of Response Time 165

Improving the Leading Constant

Note that any policy 7 with a; = 0 must actually be FCFS, meaning FCFS is the only tail-
optimal SOAP policy in the unlabeled case. In fact, it is likely that the proof of Theorem 13.11
can be generalized beyond the unlabeled case. However, even though FCFS is tail-optimal,
Grosof et al. [53] show that its response time tail can be asymptotically improved by a
constant factor. The policy they use to do so, called Nudge, is not a SOAP policy. This
suggests that in the light-tailed case, SOAP policies cannot provide the best possible leading
constant for the asymptotic response time tail.

13.3 Simultaneously Optimizing the Mean and Tail of
Response Time

When scheduling with unknown job sizes, Gittins is known to minimize mean response
time [44]. Therefore, simultaneously optimizing the mean and asymptotic tail of response
time essentially boils down to determining when Gittins is tail-optimal.

The results of Section 13.2 are a big step towards answering this question, but they fall
slightly short of fully answering it. This is because they apply to specific rank functions,
whereas Gittins’s rank function varies depending on the size distribution. However, they
do substantially reduce the problem: to determine whether Gittins is tail optimal, we just
need to determine for which size distributions its rank function satisfies certain conditions.

By applying Theorems 13.8 and 13.11 and carefully analyzing Gittins’s rank function,
we show the following results:

+ (§ 13.3.1) In the heavy-tailed case, Gittins is always tail-optimal.

+ (§ 13.3.2) In the light-tailed case, Gittins can be any of tail-optimal, tail-intermediate,
or tail-pessimal. However, if Gittins is tail-pessimal, we can often slightly adjust
Gittins’s rank function to obtain a new SOAP policy that is tail-intermediate while
still having near-optimal mean response time.

Many of these results also apply to SERPT and M-SERPT (Pols. 11.1 and 6.11), two simpler
policies which also have good mean response time.

13.3.1 Gittins in the Heavy-Tailed Case
In the heavy-tailed case, both SERPT and M-SERPT satisfy the simple Condition 13.6.

Theorem 13.12. Consider an M/G/1 with heavy-tailed size distribution in the unlabeled
case. SERPT and M-SERPT both satisfy Condition 13.6 withy = § = 1, so both are tail-optimal.

See Scully et al. [127, Cor. 3.6] for the proof of Theorem 13.12.

It turns out that Gittins does not satisfy Condition 13.6 for general heavy-tailed size
distributions. This is because Gittins’s rank function can drop to near 0 at large ages,
which SERPT’s and M-SERPT’s do not do in the heavy-tailed case. Fortunately, Gittins does

166 Chapter 13 Response Time Tail of SOAP Policies

satisfy the somewhat more complicated Condition 13.7. Roughly speaking, even though
its rank function can drop to near 0, it never does so for too long, meaning jobs at high
ages do not delay jobs at low ages for too long.

Theorem 13.13. Consider an M/G/1 with heavy-tailed size distribution in the unlabeled
case. Gittins satisfies Condition 13.7 with { =0, ¢ =1, and y = oo, so it is tail-optimal.

See Scully and van Kreveld [126, Thm. 4.5] for the proof of Theorem 13.13.

13.3.2 Gittins in the Light-Tailed Case

In the light-tailed case, Theorem 13.11 tells us that asymptotic tail performance is deter-
mined by the worst age (Def. 13.10). One common way of classifying size distributions has
to do with the worst age of SERPT.

Definition 13.14.
(a) We say asize distribution S is New Better than Used in Expectation (NBUE)if agpppr = 0,
meaning a job’s expected remaining work is maximized at age 0. That is, for all
a € [0, smax),
E[S] > E[S,] =E[S—a|S > a].
(b) We say a size distribution S is Eventually New Better than Used in Expectation (ENBUE)
if S, :=(S—a|S > a) is NBUE for some age a > 0, or equivalently agzppr < Smax-

Whether the size distribution is NBUE, ENBUE but not NBUE, or not ENBUE immedi-
ately characterizes the asymptotic tail performance of SERPT. It also does so for M-SERPT,
which clearly has the same worst age as SERPT (Pol. 11.1). Less obviously, results of Aalto
et al. [3, 4] imply that Gittins also has the same worst age as SERPT, so it has the same
asymptotic tail performance.

Theorem 13.15. Consider an M/G/1 with light-tailed size distribution S in the unlabeled
case.

(a) Gittins, SERPT, and M-SERPT are tail-optimal if S is NBUE.

(b) Gittins, SERPT, and M-SERPT are tail-intermediate if S is ENBUE but not NBUE.

(c) Gittins, SERPT, and M-SERPT are tail-pessimal if S is not ENBUE.

See Scully and van Kreveld [126, Thm. 4.10] for a proof of the Gittins case of Theo-
rem 13.15. The SERPT and M-SERPT cases follow from the above discussion.

13.4 Ensuring Tail Optimality when Scheduling with
Preemption Checkpoints

One can see from either prior work [101] or Theorem 13.8 that LAS is tail-optimal in the
heavy-tailed case. However, LAS assumes that we can preempt jobs whenever we like,

13.4 Ensuring Tail Optimality when Scheduling with Preemption Checkpoints 167

which is not possible in some systems. For example, in Chapter 9 we considered scheduling
with preemption checkpoints, where jobs are only preemptible at certain checkpoint ages.
Can LAS still be tail-optimal in the presence of preemption checkpoints? If so, how often
do checkpoints need to occur to maintain tail optimality? For the heavy-tailed case, we
can answer the above questions using Theorem 13.8.

To model preemption checkpoints using rank functions, one sets the rank to 0 at
all non-checkpoint ages. This transforms LAS into a policy we call Checkpointed LAS
(Chk-LAS) (Pol. 6.13), whose asymptotic tail performance we characterize below.

Theorem 13.16. Consider an M/G/1 with heavy-tailed size distribution in the unlabeled

case, and consider the Chk-LAS policy with checkpoint ages 0,ay, az, If apt1 = O(ai),

then Chk-LAS is tail-optimal if
a—1

§Sﬁ

In particular, for constant or uniformly bounded checkpoint gaps, we have { = 0, so Chk-LAS
is always tail-optimal.

Proof. One can check that Chk-LAS satisfies Condition 13.7 with & = 0, y = oo, and the
given value of , so the result follows from Theorem 13.8(b).]

168 Chapter 13 Response Time Tail of SOAP Policies

PArT III

WINE

169

CHAPTER 14

The Markov-Process Job Model

There is a great deal of work in queueing theory on scheduling under uncertainty. Much of
this work is on the Gittins policy, which optimizes mean response time and similar metrics
for a variety of stochastic uncertainty models. However, as discussed in Section 2.2, this
prior work on Gittins is fragmented, with different uncertainty models being considered
one-by-one.

The aim of this chapter is to present a very flexible job model that can model many
types of uncertainty, and in particular the types of stochastic uncertainty for which we
might hope to define a version of Gittins. We call our model the Markov-process job model
(§ 14.1). The basic idea is that each job is a continuous-time Markov process whose state
evolves during service. By varying the state space and dynamics of the Markov process,
we obtain different types of uncertainty.

In addition to modeling different types of uncertainty, we will see that Markov-process
jobs also allow us to model different types of preemption constraints and holding cost
metrics. For example, by carefully choosing the holding cost function, we can model the
problem of minimizing mean slowdown with unknown or partially known job sizes (§ 14.2),
a problem previously solved only under certain restrictive technical assumptions [122, 136].

We conclude the chapter by defining a general version of Gittins for Markov-process
jobs (§ 14.3). This new version of Gittins subsumes most, if not all, other versions of Gittins
introduced in the M/G/1 scheduling literature.

This chapter is based on material from Scully and Harchol-Balter [122].

14.1 Markov-Process Jobs

We model jobs as absorbing continuous-time strong Markov processes. The state of a job
encodes all information that the scheduler knows about the job. Without loss of generality,
we assume all jobs share a common state space X and follow the same stochastic Markovian
dynamics. However, the realization of the dynamics may be different for each job. In
particular, the initial state of each job is drawn from a distribution Xj,eyw, so different jobs
may start in different states.

While a job is in service, its state stochastically advances according to the Markovian
dynamics. This evolution is independent of the arrival process and the evolution of other
jobs. The rate of evolution is scaled by the job’s service rate, so the states of two jobs
sharing the server equally will each evolve half as quickly as either being served alone. A
job’s state does not change while waiting in the queue.

In addition to the main job state space X, there is one additional final state, denoted xgope.
When a job enters state xqone, it completes and exits the system. One can think of a size S

171

172 Chapter 14 The Markov-Process Job Model

as the stochastic amount of time it takes for a job to go from its initial state, which is drawn
from Xew, to the final state xgon. Because we assume E[S] < oo, every job eventually
reaches xg4one With probability 1. For ease of notation, we follow the convention that
Xdone ¢ X.

14.1.1 Preemptible and Nonpreemptible States

Every job state is either preemptible or nonpreemptible. The job in service can only be
preempted if it is in a preemptible state. We write XF for the set of preemptible states and
XM = X\ X" for the set of nonpreemptible states. Naturally, we assume the scheduler
knows which states are preemptible.

We assume all jobs start in a preemptible state, meaning Xpew € X with probability 1.
This means that all jobs in the queue are in preemptible states, and only the job in service
can be in a nonpreemptible state.

We assume preemption occurs with no cost or delay. Because a job’s state only changes
during service, our model is preempt-resume, meaning that preemption does not cause
loss of work.

During service, a job alternates between preemptible and nonpreemptible. We call an
amount of service during which a job is nonpreemptible a nonpreemptible segment. We
assume that the length distribution of a job’s nonpreemptible segments has finite variance,’
because otherwise, the mean holding cost is infinite [55, § 31.4].

14.1.2 System State and Scheduling

The state of the system can be described by a list (xy, . .., x,), where n is the number of jobs
in the system, and x; € X is the state of the ith job. We denote the equilibrium distribution
of the system state as (Xj, ..., Xxn), where N is the equilibrium distribution of the number
of jobs.

We can still use rank functions to represent scheduling policies in much the same way
as explained in Chapter 6. The main difference is that the domain of a rank function is the

set of preemptible states:
rank : X¥ — Rs,.

A rank function represents the scheduling policy that
« prioritizes jobs in nonpreemptible states over those in preemptible states, and
« prioritizes among jobs in preemptible states in rank order, where lower rank is
better.?
It may be that a job is served at a rate less than the full service capacity of 1. This could
be because of multiple jobs sharing a single server (§ 5.3.2) or because of our convention

! Adapting the notation of Chapters 7 and 8 to Markov-process jobs, we can write this more formally as
Erey (XM (Srcy (XNP))Z] < 0o.

Unlike the SOAP-based results in Part II, the WINE-based results in Part III do not rely on any particular
tiebreaking rule.

14.1 Markov-Process Jobs 173

that the multiserver M/G/k has servers of speed 1/k (§ 5.2.4). In either case, while a job
is being served at rate u, its state evolves at rate u, analogous to a job’s age increasing at
rate u in label-age job model of Chapter 5.

14.1.3 Holding Costs

The main metric we study in the Markov-process job model is mean holding cost. A job’s
holding cost is a cost we pay for each unit of time it is not complete. We allow a job’s
holding cost to depend on its state, so it may change during service. A job’s holding cost is
thus determined by a function

h:X — Ryy.

For ease of notation, we also define h(xgone) = 0. We assume that holding costs are
deterministic, positive, and known to the scheduler. We can think of holding costs as
having dimensions COST RATE := COST/TIME.

The system holding cost, or simply “holding cost” when unambiguous, is the total
holding cost of jobs in the system, namely

N
H:= Z h(X;).
i=1

We also define the preemptible and nonpreemptible system holding costs, which only count
jobs in preemptible or nonpreemptible states:

N
HY = Z h(X) 1(X; € XP),
i=1

N
o= Z h(X) 1(X: € XN,
i=1

Our objective is generally to schedule to minimize mean system holding cost E[H]. It
turns out that for the systems we consider, the mean nonpreemptible holding cost E[H" |
is independent of the scheduling policy (Ch. 16), in which case this reduces to minimizing
the mean preemptible holding cost E[H'].

14.1.4 What Does the Scheduler Know?

The scheduler also knows, at every moment in time, the current state of all jobs in the
system. This assumption is natural because the intuition of our model is that a job’s state
encodes everything the scheduler knows about the job.

We assume the scheduler knows a description of the job model: the state space X, the
subset of preemptible states X¥ C X, and the Markovian dynamics that govern how a job’s
state evolves. This assumption is necessary for the Gittins policy, as the policy’s definition
depends on the job model.

174 Chapter 14 The Markov-Process Job Model

We assume that the scheduler knows the holding cost h(x) of each state x € X.
However, it is often possible to transform some problems with unknown holding costs
into problems with known holding costs. We discuss how to do this in Section 14.2.1. A
notable example is minimizing mean slowdown when sizes are unknown to the scheduler
(Ex. 14.3).

14.1.5 Technical Foundations

We have thus far avoided discussing technical measurability conditions that the job model
must satisfy. For example, if the job Markov process has uncountable state space X, one
should make some topological assumptions on X, XP, and XM a5 well as some continuity
assumptions on holding costs. As another example, when discussing sets of states Y C X,
we should always restrict our attention to measurable subsets.

As discussed in Section 5.6.5, we consider measure theoretic technicalities outside the
scope of this thesis. Below, we briefly describe what would be necessary to rigorize the
foundations. See Scully et al. [118, Appendix D] for additional discussion.

Our results in Part III are predicated on being able to apply basic optimal stopping
theory to solve a single-job optimal stopping problem called the Gittins game (Ch. 15).
Optimal stopping of general Markov processes is a broad field, and the theory has been
developed under many different types of assumptions [106, 129]. Rather than choosing a
specific set of assumptions under which the optimal stopping theory for the Gittins game
can be developed, we treat our results on Gittins as reductions, applying to any job model
for which some intuitive but technical properties of the Gittins game can be verified.

14.2 Examples of Markov-Process Jobs and Holding
Costs

Example 14.1. To model known sizes, let a job’s state be its remaining size. The state
space is X = R, the initial state distribution Xy is the size distribution S, and the final
state is x4one = 0. During service, a job’s state decreases at rate 1.

Example 14.2. To model unknown sizes, let a job’s state be its age, meaning the amount
of time it has been served so far. The state space is X = Ry, all jobs start in initial state
Xnew = 0, and the final state x40y, is an isolated point. During service, a job’s state increases
at rate 1, but it also has a chance to jump to xgone. The jump probability depends on the
size distribution S: the probability a job jumps while being served from state x to state
y>xisP[S<y|S>x].

14.2.1 Mean Slowdown and Unknown Holding Costs

Recall from Section 14.1.3 that we assume that the holding cost of every job state is known
to the scheduler. However, some scheduling problems involve unknown holding costs.

14.3 The Gittins Policy with Markov-Process Jobs 175

An important example is minimizing mean slowdown, in which a job’s holding cost is
the reciprocal of its service time. Unless all service times are known to the scheduler, this
involves unknown holding costs.

Fortunately, we can transform many problems with unknown holding costs into prob-
lems with known holding costs. Suppose a job’s current unknown holding cost depends
only on its current and future states. Then for all job states x € X, let

h(x) = E[unknown holding cost of a job in state x | job reached state x|, (14.1)

where the expectation is taken over a random realization of a job’s path through the state
space. The mean holding cost of nonclairvoyant policies is unaffected by this transforma-
tion.

Example 14.3. Consider the system from Example 14.2. It has unknown service times, and
a job’s state x is its age. Suppose all states are preemptible. To minimize mean slowdown,
we give a job with service time s holding cost s™1. This turns (14.1) into

h(x) =E[S7}| S > x].
More generally, if the holding cost of a job of size s is h(s), then (14.1) becomes
h(x) =E[h(S) | S > x].

One can generalize Example 14.3 to any scenario where a job’s holding cost depends on
only its current and future states, namely by taking an expectation over the future states.

14.3 The Gittins Policy with Markov-Process Jobs

14.3.1 Gittins Rank Ingredients: Relevant Work, Holding Cost
Change

All of the relevant system definitions in Section 7.2 apply virtually verbatim to the Markov-
process job model. The only difference is that instead of states being label-size pairs, states
inhabit a general space X, implying the following changes:

« We consider sets of general states Y C X instead of sets of label-size pairs I X Rx.

« We consider general states x € X instead of label-size pairs (¢, a) € I X R,.
We can similarly generalize Relevant Work Decomposition and its associated definitions
from Section 8.3.

The relevant system definition that is most important for defining Gittins is a job’s
relevant remaining work (Def. 7.3). We denote by S, (Y) the remaining Y-work of a job in
state x.

176 Chapter 14 The Markov-Process Job Model

Definition 14.4. Let Y C X be a set of job states and x € X be a job state. The Y-exit
state of x, denoted Z,(Y), is the random state of a job when it first exits Y, given that it
starts in state x.> In particular, if the job completes before exiting Y, then Z,(Y) = Xgone.

14.3.2 The Gittins Rank Function

Policy 14.5. The Gittins policy is the policy represented by the rank function rankgittins : XX — R
defined by

e EIS(Y)
vox h(x) — E[h(Zx(Y))]

rankgittins (X) =

where the infimum is taken over all sets of states Y such that X' € Y C X and the
denominator is nonzero.

Because nonpreemptible states have priority over preemptible states, we only need to
define the rank function for preemptible states. But for convenience of notation, we let
rankgittins () = 0 for x € XNP.

A job’s rank under Gittins has dimensions TIME/COST RATE = TIME?/cosT. Intuitively,
we can think of a state’s Gittins rank as a measure of how long on average it takes to
decrease the holding cost of a job starting at that state. We can think of the special case
where we aim to minimize mean number in system as being the case of dimensionless
holding costs, meaning cosT RATE = 1. A job’s rank then has dimensions TIME, which
should feel familiar from (Part II)’s presentation of Gittins (Pol. 6.12).

14.3.3 Examples of the Gittins Rank Function

Example 14.6. Consider scheduling jobs with known sizes, as in Example 14.1, to minimize
mean response time. As discussed in Policy 6.12, Gittins reduces to SRPT in this case,
meaning a job with remaining work x has rank

rankgittins (X) = x.

More generally, suppose that a job’s state consists of its remaining work w and a constant
holding cost c. That is, we have h(w, ¢) = c. In this case, Gittins reduces to Weighted SRPT,
which has rank function

w
rankgittins (W, ¢) = .

That is, jobs with less remaining work and greater holding cost are prioritized. One can
view this as an instance of the cyu rule (Ex. 14.8).

%It may be that Z,(Y) € Y with positive probability, such as if the job Markov process has continuous
trajectories and Y is a closed set.

14.3 The Gittins Policy with Markov-Process Jobs 177

Example 14.7. Consider scheduling jobs with unknown sizes, as in Example 14.2, to
minimize mean slowdown, as in Example 14.3. A job’s state x is its age, and a job’s holding
cost at age x is h(x) = E[S™! | S > x], so the Gittins rank function is

" () = i fE[min{S,y}—xlS>x]
rankgittins (X) = in .
Gitt y>x E[STHI(S<y)|S>x]

Example 14.8. The celebrated cp rule [28], where we prioritize jobs in order of increasing
holding cost times expected size, can be viewed as a special case of Gittins. The cy rule is
known to minimize mean holding cost in two cases: preemptive multiclass systems with
exponential job size distributions for each class, and nonpreemptive multiclass systems
with general job size distributions for each class, where in both cases a job’s holding cost
depends on its class and does not change during service. Both of these systems can be
modeled using the Markov-process job model. Moreover, we can model combinations of
them. Our Gittins optimality result (Ch. 16) thus generalizes the cu rule’s optimality to
systems where each class can be either preemptible with exponential size distribution, or
nonpreemptible with general size distribution. One can even mix in jobs with known sizes,
as in Example 14.6.

178 Chapter 14 The Markov-Process Job Model

CHAPTER 15

WINE: Relating Gittins-Flavored
Relevant Work to Holding Cost

This chapter introduces a new queueing identity, called WINE: Work Integral Number
Equality, that gives a new way of characterizing the number-in-system N, or more generally
system holding cost H, in essentially any queueing system. In combination with Little’s
law [84], WINE gives a new way to analyze a system’s mean (weighted) response time.

The primary motivation for WINE is to be able to analyze policies like SRPT and Gittins
in multiserver systems, such as the M/G/k. As discussed in Chapter 4, the SOAP analysis
strategy that is successful for the M/G/1 does not generally work in the M/G/k. Because
WINE applies even in multiserver systems, it opens up a new avenue for analyzing SRPT
and Gittins in multiserver systems. We carry out such analyses in Chapter 17.

With that said, WINE is also useful in the simpler setting of single-server scheduling.
One specific application has to do with proving Gittins’s optimality. In Chapter 14, we
introduced a highly general job model and defined a generalization of the Gittins policy
for it. In light of prior work on the Gittins policy [44], it is a foregone conclusion that our
new generalization of it minimizes mean holding cost in the M/G/1. However, proving this
rigorously for such a general job model is challenging, as evidenced by the fact that the
numerous prior proofs of Gittins’s optimality [18, 28, 29, 43, 76, 79, 116, 128, 128, 136, 141]
consider only special cases and require restrictive technical assumptions.

WINE turns out to be the missing ingredient for proving Gittins’s optimality in the
M/G/1. WINE reduces proving Gittins’s optimality to a relatively simple question about
relevant work, thus dodging the technical obstacles that prior proofs had to contend with.
More generally, as we show in Chapter 16, WINE allows us to easily show that approximate
Gittins policies are approximately optimal, where here “approximate” means within a
constant multiplicative factor.

We begin the chapter by presenting the simplest version of WINE, which we call
“SRPT-flavored” due to its connection to SRPT’s rank function (§ 15.1). Just as Gittins can
be viewed as a generalization of SRPT, the full version of WINE, which we call “Gittins-
flavored”, generalizes SRPT-flavored WINE. Proving Gittins-flavored WINE amounts to
proving properties of the Gittins rank function, which is significantly more complicated
than the SRPT rank function. To do so, we present an alternative definition for the Gittins
rank function based on an optimization problem called the Gittins game (§ 15.2), from
which Gittins-flavored wine follows relatively easily (§ 15.3).

This chapter is based on material from Scully and Harchol-Balter [122], though the
name “WINE” is new as of this thesis.

179

180 Chapter 15 WINE: Relating Gittins-Flavored Relevant Work to Holding Cost

15.1 SRPT-Flavored WINE

As a warmup to proving the full “Gittins-flavored” version WINE, this section proves a
special case called “SRPT-flavored” WINE. We note that this special case was independently
derived by Banerjee et al. [12] (§ 2.2.3).

Throughout this section, we work with perhaps the simplest possible Markov-process
job model: a job’s state is its remaining work, and jobs have constant holding cost h(x) = 1.
In this setting, Gittins reduces to SRPT (Pol. 6.12), which has rank function rankgsgpr(x) = x:
a job’s rank is its remaining work.

15.1.1 Clearer Notation for Relevant Work

SRPT-flavored WINE is defined using relevant work, where the set of “relevant” states
are those whose rank under SRPT is at most some threshold r. In Chapter 7, we denoted
this set of states by simply “<r”, which is unambiguous as long as only one scheduling
policy is being discussed. However, it turns out that SRPT-flavored WINE holds under
any scheduling policy, not just SRPT. As such, we introduce some more verbose but less
ambiguous notation for specifying relevant state sets.

Definition 15.1. Let func: X — Ry be a function on states, typically a rank function of
some policy, and ¢ > 0 be a constant. The notation (func < c¢) denotes the set

(func < ¢) == {x € X | func(x) < c}.

Some notes about this definition:
« We drop the parentheses when the grouping is unambiguous, as in W (func < ¢).
« We define other function inequality notation similarly, such as (func; < ¢ < funcy).
+ To prevent ambiguity between functions and constants, we always use sans-serif
font to denote functions in the context of this notation.
« In informal discussion, we use the phrase n-flavored relevant as a synonym for
(rank,; < r)-relevant or (rank, < r)-relevant, as in “Gittins-flavored relevant

remaining work”.

15.1.2 Proof of SRPT-Flavored WINE

Recall that WINE stands for Work Integral Number Equality. For SRPT-flavored WINE,
this means we somehow integrate SRPT-flavored relevant system work and obtain the
number-in-system. How can we count the number of jobs via relevant work? The key step
is to “count” a single job via its relevant remaining work.

Proposition 15.2. For any amount of remaining work x > 0,

- /°° Sy(ranksgpr < 1) dr.
0

r

15.1 SRPT-Flavored WINE 181

Se(ranksgpr < 7) =x1(x <r) W (ranksgpr < 1)
ﬁ.
area 1 E total area
E N=4
: L]
areal =
X g O
1 area 1 .
area 1
area 1]
0 o > 1/r 0 ‘ ‘ ‘ o— 1/r
0 1/x 0 1/x1 1/x3 1/x3 1/x4
(a) Integrating remaining (ranksgpr < r)-work (b) Integrating system (ranksgpr < r)-work

of single job of remaining work x (Prop. 15.2). with N = 4 jobs present (Thm. 15.3).

Figure 15.1. Geometry of SRPT-flavored WINE. Plots (a) and (b) both put 1/r on the horizontal
axis because 1/r? dr = d(1/r). We see in (a) that a single job’s relevant remaining work integrates
to 1, which means that relevant system work integrates to the number-in-system N in (b).

Proof. If x < r, then the job has rank at most r for the rest of its service, so its relevant
remaining work is x. If instead x > r, then the job is irrelevant, so its relevant remaining
work is 0. This means

Sx(ranksgpr < 1) =x1(x < 1),

from which the result follows. Figure 15.1(a) geometrically interprets this integral.]

From the single-job relevant work integral above, the multi-job relevant work integral
below follows easily.

Theorem 15.3 (SRPT-Flavored WINE). In any queueing system using any scheduling pol-
icy 7, the number-in-system can be expressed as an integral of SRPT-flavored relevant work:

W, k <
N, = x(ran SZRPT r) dr
0 r

In particular, provided the steady-state expectations are well defined,

0 r

Proof. We omit the subscript 7 throughout. Relevant system work is the sum of each job’s

182 Chapter 15 WINE: Relating Gittins-Flavored Relevant Work to Holding Cost

relevant remaining work, so!

e W(rankSRpT < 7’) Zl 1SX (rankSRPT < r)
0 r2 r2
_ Z/ Sx; (rankSRPT < ”)
=N. [by Prop. 15.2]

Figure 15.1(b) geometrically interprets this integral. The expected value version follows
from Tonelli’s theorem. O

Scope of SRPT-Flavored WINE’s Validity

The statement of SRPT-flavored WINE (Thm. 15.3) mentions “any” queueing system and
“any” scheduling policy. The suspicious reader will be excused for asking: what is the
precise scope of “any”?

The best way to understand WINE is to observe that it is not really about queueing at all.
Instead, WINE is a statement that holds for any list of numbers: if we have a list of n positive
reals (xi,...,x,) and define w(r) := 21, x;1(x; < r), then we have /Ooo w(r)/r*dr =n.In
this sense, WINE really does hold for any queueing system using any scheduling policy,
provided that some notion of remaining work can be defined.

We can even use SRPT-flavored WINE in systems where the scheduler does not know
job sizes. The scheduler might not know the current value of W (rankgsgpr < r). But from
the perspective of analysis, we may be able to compute, say, its expectation, in which case
WINE yields the mean number-in-system E[N].

15.1.3 Why Is WINE Useful?

By now, it should be clear that SRPT-flavored WINE (Thm. 15.3) is a strangely simple fact
to form the foundation of half a thesis, with Figure 15.1(b) telling essentially the entire
story. How can an identity as simple as SRPT-flavored WINE be useful?

The key to WINE’s usefulness is that relevant system work can be much simpler than
number-in-system. In particular, Relevant Work Decomposition Theorem 8.7 gives a formula
for relevant system work, which is useful in both the M/G/1 and M/G/k.

In the M/G/1, WINE and Relevant Work Decomposition give a very brief proof that
SRPT minimizes mean response time.

« Because SRPT is (ranksgpr < r)-prioritizing for all » > 0, by Corollary 8.9, SRPT

minimizes mean system (ranksgpr < r)-work in the M/G/1 for all r > 0.
o Therefore, by SRPT-flavored WINE (Thm. 15.3) and Little’s law [84], SRPT minimizes
mean response time in the M/G/1.

IRecall from Section 14.1.2 that X; is the state of the ith job in the system.

15.2 The Gittins Game 183

SRPT’s optimality in the M/G/1 is, of course, a well known result [116]. But essentially
the same argument with Gittins-flavored WINE proves Gittins’s optimality in the M/G/1,
which is a novel result in a setting as general as the Markov-process job model (Ch. 16).

In the M/G/k, WINE and Relevant Work Decomposition are again a potent combination:
Relevant Work Decomposition relates SRPT- or Gittins-flavored relevant work in the M/G/k
to that in the M/G/1, and WINE turns this into a relationship between SRPT’s or Gittins’s
mean response time in the M/G/k to that in the M/G/1. Relevant Work Decomposition
introduces a term that is intractable to analyze exactly, but we are able to bound it well
enough to give meaningful bounds on mean response time (Ch. 17).

15.2 The Gittins Game

Having gotten a taste of WINE’s utility in Section 15.1.3, we would like to generalize
SRPT-flavored WINE, which is useful for analyzing SRPT, to Gittins-flavored WINE, which
is useful for analyzing Gittins. The main difficulty in doing so is that Gittins’s rank func-
tion is defined in terms of a potentially difficult optimization problem (§ 14.3). The goal
of this section is therefore to better understand Gittins’s rank function. From our new
understanding, Gittins-flavored WINE quickly follows (§ 15.3).

Our tool for understanding Gittins’s rank function is an optimization problem that
we call the Gittins game (§ 15.2.1). The Gittins game can be seen as an alternative way of
defining the Gittins rank function [35, 44, 140]. Most importantly for our purposes, the
Gittins game exposes a new connection between the Gittins rank function and Gittins-
flavored relevant work (§ 15.2.2).

For this section, we return to the general setting of the Markov-process job model
(Ch. 14), with a general state space X, general Markovian dynamics, and a general holding
cost function h : X — R..

15.2.1 Defining the Gittins Game

The Gittins game is an optimization problem? concerning serving a single job. It has two
parameters:
« the initial state x € X of the job, which is usually a preemptible state; and
« a penalty r > 0, which has dimensions TIME?/cOST.
The goal of the game is to end the game in as little time as possible in expectation. There
are two possible actions:
« By default, we serve the job. During service, the job’s state changes according to its
usual Markovian dynamics. If the job completes by entering state xgone, then the
game ends immediately.

2The optimization problem has a single decision maker, so the Gittins game is not a game in the game-
theoretic sense. Caught in conflict between being completely correct and alliterating, alas, alliteration allured
this thesaurus-attached author.

184 Chapter 15 WINE: Relating Gittins-Flavored Relevant Work to Holding Cost

« If the job’s current state is preemptible, then we may choose to give up. If we decide
to give up when the job is in some state z, then we immediately stop serving the job,
but the game ends anyway after a delay of rh(z) additional time.

That is, the Gittins game involves serving the job until it either completes or we decide to
give up, with the penalty r determining how bad giving up is.

Because the job’s state evolution is Markovian, the Gittins game is a Markovian optimal
stopping problem. This means there is an optimal policy of the following form: for some
give-up set 7. C X¥, we give up when the job’s state first enters Z. Moreover, this set need
not depend on the starting state. We use this observation to formally define the Gittins
game. To match our existing notation, we phrase the definition in terms of the service set
Y = X\ Z instead of the give-up set Z, but the idea is the same.

Definition 15.4. The Gittins game is an optimization problem. The parameters are a
starting state x € X and penalty r > 0, and the control is a service set Y 2 XF,
(a) The disutility of service set Y for state x and penalty r is®

game (7, Y) = E[Sc(Y)] + rE[h(Z,(Y))].

The objective of the Gittins game is to choose Y to minimize game (r,Y).
(b) The minimal disutility for state x and penalty r is

game,(r) = YigrgNP game, (1, Y).

(c) The optimal service set for penalty r is*

Y*(r) =X U {y e X | game, (r) <rh(y)}.

Some notes about this definition:
« When we discuss a penalty r, it is understood that r > 0.
« When we discuss a service set Y, it is understood that X 2 Y 2 X.

As suggested by its name, for any state x and penalty r, the optimal service set does
indeed solve the Gittins game:

game, (r) = game,(r, Y*(r)). (15.1)

Intuitively, (15.1) is almost trivial, because Definition 15.4(c) defines Y*(r) to be exactly the
set of states for which giving up is either disallowed or strictly suboptimal. To formalize
(15.1), and moreover to formalize the Definition 15.4, one needs the job Markov process to
satisfy some reasonable topological conditions, so we implicitly assume these (§ 14.1.5).

3See Section 14.3.1 for the definitions of S, (Y) and Z,(Y).
*There may actually be multiple service sets that are all optimal, but for simplicity of language, we still
refer to this one as “the” optimal service set.

15.2 The Gittins Game 185

Bounding Minimal Disutility

Lemma 15.5. Forallx e XX andr > 0,°
E[Sy(Y*(r))] < game, (r) < min{rh(x), E[S,]}.

Proof. Definition 15.4 and (15.1) implies S, (Y*(r)) < game,(r, Y*(r)) = game,(r), which
is the lower bound. The upper bound follows from, roughly speaking, giving up as early
or late as possible in the Gittins game.
« Giving as early as possible means giving up immediately, which is possible because
x is preemptible. It takes time rh(x) to give up from x, so game (r) < rh(x).
« Giving up as late as possible means never giving up. It takes expected time E[S] to
complete the job from x, so game_(r) < E[S,]. O

15.2.2 Relating the Gittins Game to Relevant Work

To relate the Gittins game to Gittins-flavored relevant work, we first need to relate the
Gittins game to the Gittins rank function.

Lemma 15.6.
(a) Forallr > 0,

Y*(r) = (rankgittins < 7) = {x € X | rankgittins(x) < r}.
(b) Forall x € XF,

rankgittins (x) = sup{r > 0 | x € Y*(r)} = sup{r > 0 | game (r) < rh(x)}
=inf{r >0 |x ¢ Y"(r)} =inf{r > 0| game,(r) = rh(x)}.

Proof. By Definition 15.4(c), it suffices to show that for all x € XPandr >0,
rankgiwins(x) < r if and only if game (r) < rh(x).

But by Policy 14.5 and Definition 15.4, both of these are equivalent to the existence of a
service set Y 2 X™ such that

E[Sx(Y)] < r(h(x) = E[A(Z:(Y))]). O

Lemma 15.7. For all x € XY, the minimal disutility game, : R>o — Ry is continuous,
concave, and almost everywhere differentiable with

< game, (1) = E[h(Zu(ranksiuims <)]

>The result generalizes to all x € X if we replace h(x) with E[h(Z,(X"?))], but we do not need this
generality.

186 Chapter 15 WINE: Relating Gittins-Flavored Relevant Work to Holding Cost

Proof. For any service set Y, Definition 15.4(a) tells us the disutility of service set Y is
linear in the penalty r. Because a minimum of linear functions is concave, Definition 15.4(b)
implies game, is concave. Concavity implies continuity for r > 0, and Lemma 15.5 implies
continuity at »r = 0. Concavity also implies differentiability almost everywhere, and an
envelope theorem [88] gives the derivative where it exists:

d aoay d -
P game (r; Y (r)) = I game (r; Y™ (r)) [by (15.1)]

[by Milgrom and Segal [88, Theorem 1]]

d ;
- 5 gamex(rsY (q)) .

=E[h(Z:(Y*(q)))] ’q:r [by Def. 15.4(a)]

[h(Zx(rankGittins < r))] . [by Thm. 15.6(a)] O

15.3 Gittins-Flavored WINE

15.3.1 Relevant Work of Preemptible Jobs
Definition 15.8. Let Y C X. The Y-relevant work of preemptible jobs is

N
wr(Y) = Z Sx.(Y) 1(X; € XP).

i=1

Similarly, the Y-relevant work of nonpreemptible jobs is

N
WP (Y) = Z Sx. (Y) 1(X; € XNP),

i=1

15.3.2 Proof of Gittins-Flavored WINE

Proposition 15.9. For all x € X",

h(x) — /Do E[Sx(rank(;ittins < r)] dr.
0 r
Proof. By Lemma 15.7,
d game (r) 7 % game, (r) —game,(r) —E[Sc(rankgitins < 7)]
dr r B r B r ’

so the integral is

® E[Sx(rankGittins < r)] . gamex(r) . gamex(r)
2 dr =lim ———= — lim ————,
0 r r—0 r r—oo r

15.3 Gittins-Flavored WINE 187

The r — oo limit is 0 by Lemma 15.5, and the » — 0 limit is h(x) by Theorem 15.6(b) and
the fact that ranks of preemptible states are positive (Pol. 14.5). m]

Theorem 15.10 (Gittins-Flavored WINE). In any queueing system using a nonclairvoyant
scheduling policy r, meaning one that does not depend on the future states of any jobs, the
preemptible holding cost can be expressed as an integral of expected Gittins-flavored relevant
work:®

HE =

T

dr.

/oo E[W? (rankittins < 7) | X1, - - ., XN]
0

r

In particular, provided the steady-state expectations are well defined,

E[HE] _ /Do E[Wyf(ranszittins < r)] dr.
0 r

Proof. We omit the subscript 7 throughout. Gittins-flavored relevant system work is the
sum of each job’s relevant remaining work, so

dr

/oo E[WP (rankgittins < 7) | X1, - - -, XN]
0 r

_ /00 E[2X, Sx, (rankgitins < 1) 1(X; € XP) | X1,..., Xy] dr
0 r?
N
< E[Sx, Kaittins < X1y X
— ZH(XI c XP)/ [X,(ran Gittins _ 7’) | 1 N] dr
i=1 r
al P SX (rankGlttms < 7’) | X]
= Z 1(X; e XY) / > dr [by nonclairvoyance]
r
i=1
N
= Z 1(X; € Xp)h(x) [by Prop. 15.9]
i=1
= H". [by Def. 15.8]
The expected value version follows from Tonelli’s theorem.]

There is one subtle difference between Theorems 15.3 and 15.10: the former uses a
non-strict inequality, while the latter uses a strict inequality. One can easily verify that
Theorem 15.3 still holds if we instead use a strict inequality. One can also show that
Theorem 15.3 still holds if we instead use a non-strict inequality, though this takes some
more effort.

Recall from Section 14.1.2 that X; is the state of the ith job in the system. In particular,
E[W (rankgitins < 1) | X1, ..., Xn] takes expectation only over the future evolution of each job, because we
condition on the entire system state.

188 Chapter 15 WINE: Relating Gittins-Flavored Relevant Work to Holding Cost

CHAPTER 16
(Approximate) Gittins’s (Approximate)
Optimality in the M/G/1

The goal of this chapter is to prove that the Gittins policy minimizes mean holding cost in
the M/G/1 under essentially any Markov-process job model (Ch. 14). In light of substantial
prior work on Gittins [18, 28, 29, 43, 76, 79, 116, 128, 128, 136, 141], this result is not
surprising. However, technical obstacles have a general result difficult to prove in the
past. See Scully and Harchol-Balter [122] for a detailed review of prior proofs and their
limitations.

Combining WINE (Ch. 15) and Relevant Work Decomposition (Ch. 8) makes proving
Gittins’s optimality easy, overcoming these past technical limitations (§ 16.1). In fact, we
can prove something even stronger: if a policy assigns ranks within a constant factor of
Gittins’s, then it is in some sense within a constant factor of optimal (§ 16.2).

Section 16.1 is based on material from Scully and Harchol-Balter [122], but Section 16.2
is new material.

16.1 Optimality of Gittins

This section proves the following result.

Theorem 16.1. Consider an M/G/1 under any Markov-process job model with any holding
cost function. The Gittins policy minimizes mean preemptible holding cost E[H']| and mean
system holding cost E[H| among all nonclairvoyant scheduling policies.

In the case where all states are preemptible, Theorem 16.1 follows almost immediately
from WINE (Thm. 15.10), which relates holding cost to Gittins-flavored relevant work, and
Corollary 8.9, which implies that Gittins itself minimizes Gittins-flavored relevant work.
However, this is not the complete story when some states are nonpreemptible, because
WINE (Thm. 15.10) accounts only for jobs in preemptible states. Fortunately, it turns out
that both the holding cost and relevant work caused by jobs in nonpreemptible states is
the same across all scheduling policies.

Lemma 16.2. Consider an M/G/1 under any Markov-process job model with any holding
cost function.
(a) The mean nonpreemptible holding cost E[H\'] is the same under all scheduling policies.
(b) Let Y C X be a set of states. The mean nonpreemptible relevant work E{fWNF (Y)] is
the same under all scheduling policies.
In both cases, we restrict attention to scheduling policies that are work-conserving, or more
generally those that do not destabilize the system.

189

190 Chapter 16 (Approximate) Gittins’s (Approximate) Optimality in the M/G/1

Proof. We first observe that (b) is a special case of (a): simply let the holding cost of a non-
preemptible state x be its expected relevant remaining work, namely h(x) := E[S,(Y)].!
It thus suffices to prove (a). The important observation is that there is that if a job is
in a nonpreemptible state, it must be in service, because all jobs start in a preemptible
state (§ 14.1.1). Because the system is stable, a job is in service with probability p, and
conditional on a job being in service, its steady-state distribution X.q is the same under
any scheduling policy.? We therefore have E[H'] = E[h(Xeq) 1(Xeq € XNP)] under any
scheduling policy. m]

Now that we know that scheduling does not impact how nonpreemptible states con-
tribute to holding cost or relevant work, we are ready to prove Gittins’s optimality using
WINE.

Proof of Theorem 16.1. Let & be any nonclairvoyant scheduling policy. In light of Theo-

rem 16.2(a), it suffices to prove E[Hgittins] < E[H?]. We compute®
© E[WE (rankgittins < ¥
E[Hgittins] :/ [G1tt1ns(5 [tine)] dr [by Thm. 15.10]
r
[E[Woittins (rankaittins <)] = E[WS;,(rankaittins < 7)]
= > ’
0
< /00 E[Wn(rankGittins < r)] - E[W}z\lp(rankGittins < r)] dr
= 2
0 o p r [by Cor. 8.9 and Thm. 16.2(b)]
_ E[Wn (rankGittins < r)] dr
= /. -
= E[HE] [by Thm. 15.10] O

16.2 Approximate Optimality of Approximate Gittins

16.2.1 Approximate WINE

Definition 16.3. A scheduling policy is a (f, a)-Gittins policy for « > p > 0 if it is
represented by a rank function rank that satisfies

P rankaittins(x) < rank(x) < & rankgitins(x).

IThis works for the same reason that we can reduce some unknown holding cost problems to known
holding cost problems by looking at conditional expected holding cost (§ 14.2.1). Specifically, we would like
to set “h(x) := Sx(Y)”, but we require holding costs to be deterministic, so we take an expectation over the
job’s remaining Y-work.

2One can view X.q as the stationary distribution of the Markov process that “loops” serving jobs forever.
This is the same as the job Markov process, except if the job’s state would become Xgone, we instead “restart”
the job by having it jump to a state distributed as Xjey-

$We implicitly assume here that E[WNF (rankgiuins < 7)] is finite. It is possible to show that if it were
infinite, then by our assumption that all states have positive holding cost (§ 14.1.3), all policies, including
Gittins, would have infinite mean holding cost.

16.2 Approximate Optimality of Approximate Gittins 191

We also call such a policy a y-Gittins policy for y = a/f, because scaling all ranks by the
same factor does not affect the scheduling policy. We typically denote a y-approximate
Gittins policies by y-G.

Theorem 16.4 (Approximate WINE). Let @ > > 0 and y = a/p. Consider any (f, a)-ap-
proximately Gittins policy y-G. In any queueing system using a nonclairvoyant scheduling
policy, the preemptible holding cost can be bounded using an integral of expected y-G-flavored
relevant work:

) dr < 7
In particular, provided the steady-state expectations are well defined,
P 00 P P
E[H,] < / E[W} (rank,.g < 7)] dr < E[Hﬂ].

Proof. We omit the subscript 7 throughout. By Definition 16.3, for all r > 0,

mt B /°° E[W} (rank,.g <7) | Xi,...,XN] ot
a Jo

(rankGittins < r/a) c (ranky—G < 7‘) c (rankGittins < r/ﬁ)’
so Definition 7.3 implies that in any system state,
WP(rankGittins <rla) < WP(ranky_G <r)< WP(rankGittins <r/p). (16.1)

The lower and upper bounds then follow from two very similar computations, so we show
just the lower bound computation:

© E[WP(ranky_G <r)|Xy,...,XN]
/o = dr
* E[WF (rankgittins < X1, X
2/ [(rankgittins zr/a) | X Nl dr [by (16.1)]
0 r
1 [~ E[WP(rankgitins < q) | X1, ..., X
— _/ [(ran Gittins ; CI) | 1 N] dq [by letting q = r/a]
a Jo q
HP
= —. [by Thm. 15.10]
o
The expected value version follows from Tonelli’s theorem.]

16.2.2 Using Approximate WINE to Prove Approximate
Optimality

Theorem 16.5. Consider an M/G/1 under any fully preemptible Markov-process job model,
meaning X = XF, with any holding cost function. Any y-Gittins policy y-G has mean
preemptible holding cost within a factor of y of optimal:

P p
E[H, g] < YE[Hgiins]-

192 Chapter 16 (Approximate) Gittins’s (Approximate) Optimality in the M/G/1

Proof. The result follows from Approximate WINE (Thm. 16.4) and the fact that y-G
minimizes y-G-flavored relevant work (Cor. 8.9). Specifically, letting « > > 0 be such
that y-G is (f, @)-approximately Gittins (i.e. y = a/f), we compute*

. 0 E[W;G(ranky_c <r)]
E[H ;] <« dr [by Thm. 16.4]
4 0 r
o E[WE . (rank,.g <r
< 0(/ [Glttms(5 !)] dr [by Cor. 8.9 and Thm. 16.2(b)]
0 r
< %E[H)I:—G] = YE[H)/—G]- [by Thm. 16.4] O

*The step where we apply Corollary 8.9 and Theorem 16.2(b) uses the same trick as the proof of Theo-
rem 16.1

CHAPTER 17

Response Time of Gittins in the M/G/k

This chapter bounds the mean response time of the Gittins policy in the M/G/k, namely
Gittins-k. We consider an arbitrary fully preemptible Markov-process job model with constant
holding cost (Ch. 14). That is, every state is preemptible, meaning X¥ = X and has the
holding cost, which we arbitrarily set to h(x) = 1. The state space and dynamics are
unrestricted, so our results apply to settings with known job sizes (in which Gittins-k
reduces to SRPT-k), unknown job sizes, and a wide range of scenarios with partial job size
information.

17.1 Main Result: Mean Response Time Bound for
Gittins-k

We follow our usual convention that each of the k servers in the M/G/k has speed 1/k,
giving the system maximum service rate 1 (§ 5.2.4). Under this convention, we prove the
following result.

Theorem 17.1. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. The mean response time of Gittins-k is bounded by

~3.7746
E 1
+ 1)(k— nEB e 1
p 1-p

E[TGittinsk] < E[TGittins-1] + (3
8log 3

2

Proof. The result follows from Propositions 17.3, 17.6, and 17.9, which appear later in this
section. O

The bound in Theorem 17.1 implies that for (roughly speaking) finite-variance job size
distributions, Gittins-k has the best possible mean response time in the heavy-traffic limit,
because in that setting, the E[Tgjttins-1] term dominates.

Corollary 17.2. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. If E[S?(log S)*] < oo, then

1i E [TGittins—k]
m —-—--

=1,
p—1 E[Txittins-1]

and thus Gittins-k is optimal for mean response time in the heavy-traffic limit.

193

194 Chapter 17 Response Time of Gittins in the M/G/k

Proof. The limit of mean response time ratios follows from Theorem 17.1 and prior results
on the heavy-traffic scaling of mean response time under SRPT-1, which is a lower bound
on the scaling of Gittins-1. Specifically, Scully et al. [118, Appx. B.2] show using results
from Lin et al. [83] that when E[S?(log S)*] < oo,

E[Tsppry] > o|log —

. w|lo .
SRPT-1 g 1-p

That the limit of mean response time ratios implies heavy-traffic optimality follows
from the fact that Gittins-1 minimizes mean response time in the M/G/1 (Thm. 16.1).
Specifically our convention of scaling M/G/k server speeds to 1/k each, one can view the

M/G/k as a restricted version of the M/G/1, so the best possible mean response time in the
M/G/k is at least that of Gittins-1 in the M/G/1.]

17.1.1 Comparison with Previous Publication

This chapter is based on work published in Scully et al. [118]. However, the bound in
Theorem 17.1 differs slightly from the main result of Scully et al. [118, Thm. 1.1 and 1.2].
The version in Theorem 17.1 has a major advantage over the prior work: the bound on the
gap E[TGittins-k] — E[Taittins-1] 1S insensitive to the job size distribution beyond its mean. In
contrast, the bound shown by Scully et al. [118] depends on higher moments of the job
size distribution. In particular, they require E[S*] < oo for some o > 1, and their bound
has a ﬁ log E[S*] term, meaning it diverges as a — 1.

With that said, the bound shown by Scully et al. [118] does have the advantage that it
may be tighter for some size distributions. In particular, it implies that for size distributions S
with E[S*] < oo for all @ > 1, the mean response time gap between Gittins-k and Gittins-1

grows as (k — 1) o(log ﬁ) We leave the question of tightening the bound to future work.

17.2 Proof: Combining WINE and Relevant Work
Decomposition

We illustrate our approach in Figure 17.1. The main idea is to use Relevant Work Decom-
position (Ch. 8) to compare the mean relevant system work of Gittins-k to that of Gittins-1.
WINE (Ch. 15) and Little’s law [84] combine to convert this into a comparison of mean
response time, yielding an expression for E[Tgittins-k | — E[TGittins-1]-

In Figure 17.1, and more generally in the rest of this section, we write <r as shorthand
for (rankgitins < r) throughout, as the only rank function under consideration is that of
Gittins. When we omit the subscript on a quantity, we are referring by default to that
quantity in the M/G/k under Gittins-k.

Proposition 17.3. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. The mean response time gap between Gittins-k and an M/G/1

17.2 Proof: Combining WINE and Relevant Work Decomposition 195

il g >[I

M/G/k M/G/1
(server speed 1/k) (server speed 1)
Goal
e » ElTGittins-1]
Little’s lawI ILittle’s law
E[NGittins-«] E[NGittins-1]

WIN EI IWIN E

E[Wittins-k (<7)] < > E[Waittins-1(<7)]

Relevant Work Decomposition

Figure 17.1. Our strategy for analyzing the mean response time of Gittins-k, of which SRPT-k is a
special case, in the M/G/k. We use WINE to relate mean response time to relevant work, then use
Relevant Work Decomposition to bound relevant work in the M/G/k.

using Gittins-1 is

E[TGittins-k| — E[TGittins-1]
1 /°° E[(1 = J(<r)) W(<r)] + Arey(<7) Epey (<7)[Srey (<r) W(<r)]
0 r2(1-p(<r))

A
where quantities on the right-hand side refer to Gittins-k.

dr,

Proof. The result is immediate from combining Theorems 8.7(b) and 15.10 then applying
Little’s law [84], namely E[N] = AE[T]. O

One can actually generalize Proposition 17.3 beyond the Gittins-k. The proof only
assumes that we are comparing a system with M/G arrivals, of which an M/G/k using
Gittins-k is a special case, to an M/G/1 using Gittins-1. Nevertheless, we hereafter work
exclusively with Gittins-k, and thus usually omit the subscript.

The main remaining challenge is that the right-hand side of Proposition 17.3 is in-
tractable to analyze exactly. Bounding this expression is the main technical accomplishment
of this chapter. The expression can be separated into two terms.

« (§ 17.2.1) Relevant idleness: the term containing E[(1 — J(<r)) W(<r)] measures

<r-work while the system has <r-idle servers.

!See Section 8.3 for the definitions of J(<r), Ay(<r), and Eyey (<r)[-]. More generally, see Appendix A
for an index of notation.

196 Chapter 17 Response Time of Gittins in the M/G/k

+ (§ 17.2.2) Recycling: the term containing Arcy (<7) Erey (<7)[Srey (<r) W(<r)] measures
<r-work at the moments immediately after <r-recyclings occur.

17.2.1 Bounding the Relevant Idleness Term

Lemma 17.4. Consider an M/G/k with any fully preemptible Markov-process job model with
constant holding cost. Under Gittins-k,

®E[(1-J (<) W(<r)] L 1\
/; r2(1-p(<r)) dr < (k 1)né%f>1n(1—p) '

Proof. At a high level, our approach is as follows. In the M/G/k, 1 — J(<r) is the fraction
of servers that are <r-idle. Because Gittins-k prioritizes <r-jobs, whenever 1 — J(<r) > 0,
there are at most k — 1 <r-jobs in the system, or else all servers would be <r-busy. Roughly
speaking, we would like to use WINE inside the expectation, because the W (<r) represents
the <r-work of at most k — 1 jobs. However, it is not so straightforward to do this because
of the other factors which depend on r.

Observe that the sets (Def. 7.2(a))

<r = {x € X | rankgitins(x) < 1},
<r = {x € X | rankgitins (x) < 1}

are monotonic, namely growing, as functions of . This means <r-fresh load p(<r) (Def. 7.4(c))
is increasing in r, with p(<0) = 0 and p(<o0) = p. Our idea is to break the integral into
n > 1 “chunks” with boundaries at

O=ro<r <...<rp-1 <rp=o00,
Using the monotonicity of <r, we obtain

[H)) ; R CS LA
0 T

T L D VY)

- /’m E[(1 - J(srpmo1)) W(<r)]
r2(1—p(<rm))

dr.

<

i=1

3 1 1/n
Y= =) -

It suffices to show that each of the n chunks, namely each term in the sum, is at most (k—1)y.

Let

To facilitate doing so, we choose the values of ry, ..., r,—1 such that forall m € {1,.. ., n}?
1—p(sr,—

1=pGrmy) (17.1)
1- P(< 'm)

2The numerator uses <r,,_; instead of <r,,_; to account for the fact that p(<r) may have discontinuities.
One can show that <r,,_; is equivalent to the right limit < (r,,—1+).

17.2 Proof: Combining WINE and Relevant Work Decomposition 197

which is possible by the definition of y and monotonicity of p(<r).

In the M/G/k, 1 — J(<r) is the fraction of servers that are <r-idle. If this is nonzero,
then because Gittins-k prioritizes <r-jobs, there can be at most k — 1 <r-jobs. Therefore,
without loss of generality, we can index jobs such that whenever 1 — J(<r) > 0, all <r-jobs
are among jobs 1,. ..,k — 1. This means, by Tonelli’s theorem,

mE[(1- (=) W(=D] . & [E[(1 = J(57mm1)) Sx (<1)]
[;l 7201 = p(<rm) ‘”‘Z;[ﬁ Pa-plrm)

LGy [Sx(<r) ol
1- P(< rm) Tm-1 ré

i=1

It suffices to show each term of the sum is at most y. Because Gittins-k is nonclairvoyant,
the distribution of Sx,(<r) depends only on X, so

L= J(erm) [Sx(<r)
E[l—penn T dﬁ

_ E[l = J(srm-1) [E[Sx,(<r) | Xi] dr]

1 - p(<rm) Ym-1 rz
1—J(=srm-

= E[M] [by Prop. 15.9 and h(x) = 1]

1= p(<rm)

1- p(<rm—1) - prcy(<rm—1)
= [by Cor. 8.5]
1= p(<rm)

<vy. [by (17.1) and prey(<r) > 0] O

Lemma 17.5. Consider an M/G/k with any fully preemptible Markov-process job model with
constant holding cost. Under Gittins-k,

/°° E[(1 - J(<r)) W(<r)]
0 r}(1-p(<r))

Proof. Let A and B be two random servers, each independently and uniformly sampled
(with replacement) from the k servers in the M/G/k. Let X4 and Xp be the states of jobs at
servers A and B, respectively, setting the state to xqone if the server is idle. By reasoning
about (1— J(<r)) W(<r) similarly to the proof of Lemma 17.5, we can write its expectation
in terms of X4 and Xp:

dr < (k—1)-2—.
1-p

E[(1 - J(<r)) W(<r)] = kE[Sx, (<r) 1 (rankgittins(XB) = 7)].
For any state x, we have

Sx(<r)]l(rankGittins(x) 2 7‘) =0,

198 Chapter 17 Response Time of Gittins in the M/G/k

which means

E[(1 - J(<r)) W(<r)] = kE[Sx, (<r) 1(rankgittins(Xp) > 1, A # B)]
= (k — 1)E[Sx, (<r) 1(rankgittins(Xp) = 1) | A # B]
< (k—1)E[Sx,(<r) | A # B]
= (k- 1)E[Sx,(<r)]
= (k = 1) pE[Sx, (<r) | Xa # Xdone]-

Because Gittins-k is nonclairvoyant, the distribution of Sx,(<r) depends only on Xjy.
Bounding p(<r) < p and applying the single-job version of WINE (Prop. 15.9) yields the
desired result. m]

Proposition 17.6. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. Under Gittins-k,

/m A= JE) WED] g, o 9 (5~ 1) 1og —
s 3 .
: 2

1-p

(1 - p(<r)) 8 log

Proof. After combining the bounds from Lemmas 17.4 and 17.5 by taking their minimum,
all that remains is to find a multiple of log ﬁ that upper bounds this minimum. One can
easily verify that

9 1
p€[0,083 = P_ < lo ,

1-p = 8log3 g1—p
[-G
peli-{g]-1-15
9 27

(1)1/ n 9 1
n < log .
The union of the load intervals above is [0, 1), so the desired bound holds at all loads. O

1-p) "~ 8log2 “1-p

17.2.2 Bounding the Recycling Term

Lemma 17.7. Consider an M/G/k with any fully preemptible Markov-process job model with
constant holding cost. Under Gittins-k,

Arey (<) Erey (<7)[Srey (<7) W(<r)] < (k = 1)1 prey(<r).

Proof. In the instant before an <r-recycling (Def. 7.5) occurs, the job undergoing <r-re-
cycling is <r-irrelevant but in service, so at least one server is <r-idle. Because Gittins-k
prioritizes <r-jobs, it must be that at immediately before the <r-recycling, there are at most
k — 1 <r-jobs. Without loss of generality, we can index jobs such that those <r-jobs are
among jobs 1,...,k — 1. This lets us write

=~

-1
Arcy(<r) Ercy(< r)[Srcy(< r)W(<r)] = /lrcy(<r) Ercy(<r)[srcy(<r) Sx; (<r)].

1

I
—

17.2 Proof: Combining WINE and Relevant Work Decomposition 199

Because Gittins-k is nonclairvoyant, the distribution of Sx,(<r) depends only on X;. Using
this, we obtain

Arcy (<r) Ercy(< r)[srcy(< r) Sx; (<r)]
= Arcy(< r) Ercy(< r) [Srcy(< r) E[SXi (< r) | Xl]]
S r/ll‘cy(< r) Ercy(< r) [Srcy (< r)] [b\ Lem.]5.5]
= I'Prey(<r). [by Def. 7.5] O

Lemma 17.8. Consider an M/G/k with any fully preemptible Markov-process job model with
constant holding cost. For all r > 0,3

prey(<r) < ArE[h(Zx,, (<r))],
p(<r) + prey(<r) < AE[gamey (<r)] := AE[Sx,,, (<r)] + ArE[h(Zx,,, (<7))].

Proof. By Definition 7.4(c), it suffices to prove the second inequality. Our approach is to
bound the expected amount of service a job receives while it is <r-fresh or <r-recycled.
Specifically, by Corollary 8.5 and Little’s law [84], it suffices to show that while serving
a job to completion starting at any initial state x, the expected amount of service during
which the job is <r-relevant is at most game (<r).

The key idea is to consider the following “bank account” variant of the Gittins game.
We start the game with a bank account storing value u. Whenever the job is irrelevant, we
may spend the bank account value at rate 1 to serve the job without incurring the usual
cost. We cannot spend from the bank account while the job is relevant. If we stop serving
the job before it completes, we still pay the penalty r, and any leftover value in the bank
account is worthless.

Let game, (r; u) be the minimal disutility in the bank account Gittins game starting with
value u in the bank account. We have game (r;u) = game,(r), and clearly game, (r;u)
is (weakly) decreasing in u, because we can always choose not to spend from the bank
account. It thus suffices to show that

game (r;00) := lim game, (r;u)
u—>o0

is the expected amount of service during which the job is <r-relevant as it is served from
initial state x to completion. When u = oo, we will never give up on the job while it is
<r-irrelevant. It thus suffices to show that when u = oo, it is always optimal to serve the
job whenever it is <r-relevant.*

Theorem 15.6(a) implies that when u = 0, namely in the ordinary Gittins game, it is
optimal to serve the job while it is <r-relevant. But increasing u only makes serving the

Recall from Section 14.1 that X, is the random state of a new job, and recall from Definition 14.4
that Z,(Y) is the random state a job starting in state x is in when it first leaves set of states Y. In our
constant-holding cost setting, where h(x) = 1 for all x € X but A(xdone) = 0, we can think of E[h(Zx,_ (<7))]
as the probability a job completes before it reaches or exceeds rank r.

“Here we are somewhat informal in that we reason about u = oo directly. Strictly speaking, we should
show that the probability we give up approaches zero as u — oo, but this is not hard to do.

200 Chapter 17 Response Time of Gittins in the M/G/k

job more appealing, so serving the job while it is <r-relevant is optimal for any value of u,
as desired. o

Proposition 17.9. Consider an M/G/k with any fully preemptible Markov-process job model
with constant holding cost. Under Gittins-k,

/Oo Arcy(<r) Ercy(<r)[5rcy(<r) W(<r)]
0 r’(1-p(<r))

1
S(k—l)logl_

Proof. We compute

/Oo Arcy(< 7’) Ercy(<r)[srcy(<r) W(<r)]
0 r’(1 = p(<r))

E[h(Z
<(k-1) / LA Xne‘(:(r)r))] dr [by Lems. 17.7 and 17.8]
E[h(Z
<(k-1) / = AE(g);n;:(f;r))(]r)] dr [by Lem. 17.8 and prcy(<r) > 0]

= (k—1)log 1 [by Lem. 15.7] O

PART IV

Conclusion

201

CHAPTER 18

Conclusion

We have presented two new queueing-theoretic tools, SOAP (Part II) and WINE (Part III),
and applied them to solve numerous problems in scheduling theory (§ 18.1). We end the
thesis by discussing potential avenues for future work (§ 18.2).

18.1 Open Problems Solved

18.1.1 First Response Time Analysis for Many Policies in the
M/G/1

The core problem SOAP solves is analyzing the response time distribution of an M/G/1
under any policy from a broad policy class. The class, which we call SOAP policies, consists,
roughly speaking, of policies where a job’s priority depends on its age, namely how long
the job has been served so far (Ch. 6). We give a universal analysis of all SOAP policies,
deriving formulas for the mean and LST of response time in an M/G/1 (Ch. 7).

There are infinitely many SOAP policies, the vast majority of them have never been
analyzed before, so SOAP gives the first analysis of such policies. This includes, with
a single exception [48], all policies where a job’s priority varies nonmonotonically as a
function of age. Some specific examples of nonmonotonic policies are the following:

« (Pol. 6.11) SERPT, a policy that aims to achieve low mean response time when job
sizes are uncertain.

« (Pol. 6.12) Gittins, the policy that minimizes mean response time when job sizes are
uncertain. Despite being known to minimize mean response time, the actual mean
response time achieved by Gittins was previously unknown.

« (Pol. 6.13) Policies where jobs can only be preempted at certain age checkpoints.

18.1.2 First Comparison of (Monotonic) SERPT and Gittins

While Gittins is known to minimize mean response time, SERPT is a much simpler policy.
It is thus natural to wonder whether SERPT’s mean response time is close enough to
Gittins’s to be able to serve as a substitute. This appears to be the case in several numerical
applications of SOAP (Ch. 10). While we do not manage to prove a formal response time
guarantee for SERPT itself, we propose a new variant of SERPT, called Monotonic SERPT
(M-SERPT), which we prove has mean response time within a factor of 5 of Gittins’s (Ch. 11).

203

204 Chapter 18 Conclusion

Consequences of M-SERPT Bounds for LAS and the MLPS Class

It turns out that M-SERPT is a member of the MLPS class of policies [74], so our result for
M-SERPT implies that MLPS policies can achieve within a constant factor of the optimal
mean response time.

For some size distributions, namely those with strictly increasing mean residual life-
time, M-SERPT reduces to LAS, so LAS is within a constant factor of optimal for such
distributions.

18.1.3 First Asymptotic Tail Analysis for Many Policies in the
M/G/1

While SOAP gives us formulas for the mean and LST of response time, it is non trivial
to extract results about the response time tail P[T > t] from the LST. We take a step in
this direction by giving conditions under which a SOAP policy’s response time tail is
asymptotically optimal, meaning it decays as fast as possible as t — oo (Ch. 13). Our results
cover both heavy-tailed and light-tailed job size distributions.

Consequences for Gittins’s Asymptotic Response Time Tail

We use the above result to investigate the asymptotic response time tail of Gittins. While
Gittins is known to have optimal mean response time, nothing was previously known
about its response time tail. We show that for heavy-tailed job size distributions, Gittins is
(asymptotically) tail-optimal, but that for light-tailed job size distributions, Gittins can be
anywhere between tail-optimal and tail-pessimal (Ch. 13). Fortunately, we also show that
in cases where Gittins is tail-pessimal, we can slightly adjust Gittins to obtain a policy that
has near-optimal mean response time and avoids tail-pessimality.

18.1.4 First Policies with Provable Robustness to Size Estimation
Error

We consider the problem of scheduling to minimzie mean response time when given
noisy size estimates. We begin studying this problem by numerically applying SOAP
(Ch. 10). We observe that naively translating SRPT (Pol. 6.10) to this setting results in poor
performance, even though the seemingly similar PSJF policy (Pol. 6.9) is much more robust
to size estimation noise. Guided by these numerical results, we again use SOAP, this time
theoretically, to prove that PSJF does indeed satisfy some formal robustness properties
(Ch. 12). We also show how to modify SRPT to make it similarly robust.

18.1.5 First Response Time Bounds for Two Policies in the M/G/k

Very few scheduling policies have been analyzed in the M/G/k. Even SRPT, which was
analyzed in the M/G/1 decades ago [117], has not been analyzed in the M/G/k. We obtain

18.2 Future Work 205

the first mean response time bounds on SRPT in the M/G/k (Ch. 17). Our bounds are
tight enough to imply that when the job size distribution has (roughly speaking) finite
variance, SRPT is optimal for mean response time in heavy traffic. We also show analogous
results for Gittins. We prove the bounds by combining WINE (Ch. 15) with Relevant Work
Decomposition (Ch. 8).

18.1.6 New Generalization and Variants of the Gittins Policy

Several versions of the Gittins policy exist in the queueing literature (§ 2.2), with each
version defined for a specific model of job size uncertainty. We present a new highly
general job model that includes many other models of job size uncertainty as special cases,
resulting in a highly general version of Gittins that subsumes most previous versions
(Ch. 14). We use WINE to prove that this new general version of Gittins is indeed optimal
for mean response time, or more generally for mean holding cost (Ch. 16).

In addition to studying Gittins itself, we also study policies that assign priorities in
approximately the same way as Gittins. We show that such policies have approximately
optimal performance (Ch. 16).

18.2 Future Work

18.2.1 Next Steps

Multiserver Systems Beyond the M/G/k

We prove our mean response time bounds for SRPT and Gittins in the M/G/k (Ch. 17) by
combining WINE (Ch. 15) and Relevant Work Decomposition (Ch. 8). However, WINE holds
in any queueing system, and Relevant Work Decomposition holds in any system with M/G
arrivals. It thus seems likely that we can use a similar technique to analyze other multiserver
systems, particularly if their scheduling policy is an appropriate analogue of SRPT or Gittins.
An example might be scheduling in input-queued switches [37, 59, 60, 85, 132] that use
SRPT or Gittins instead of FCFS within each of its queues. Of course, determining exactly
what constitutes an “appropriate analogue” of SRPT or Gittins may well be challenging.

Heavy-Traffic Analysis

SOAP gives an exact M/G/1 mean response time formula (Ch. 7), so it should in principle
be possible to determine how mean response time scales in the heavy-traffic limit, namely
as p — 1. We have already analyzed Gittins, SERPT, and M-SERPT in the unlabeled case
this way [119], and it may be possible to extend the technique to other SOAP policies. For
a heavy-traffic analysis of Gittins in the Markov-process job model, WINE (Ch. 15) may
provide an easier path than SOAP.

206 Chapter 18 Conclusion

Fairness

The analyses of SRPT and other policies enables work studying their fairness properties,
namely whether they (roughly speaking) give adequate attention to jobs of all sizes [15, 143—
145]. With the SOAP analysis in hand, can we do the same for all SOAP policies? In addition
to considering fairness based on size, it may also be important to consider fairness based
on label.

Batch-Poisson Arrival Processes

This thesis studies the M/G/1 and M/G/k, both of which have Poisson arrivals. However, we
believe that most or all of our results can be generalized to batch-Poisson arrivals without
too much trouble.

Unifying Work Decomposition Law

The work decomposition laws we show (Ch. 8) are similar to, but not quite the same as,
similar work decomposition laws from the literature (§ 2.4.1). Can we find a single work
decomposition law that has all the others as special cases?

Provable Robustness under Unbounded Size Estimation Error

Our results on proving robustness to noisy job size estimates (Ch. 12) assume that multi-
plicative estimation error is bounded. Can we generalize the robustness results to cases
where the multiplicative estimation error is unbounded, such as log-normal noise models?

18.2.2 Long-Term Directions

Scheduling in Network Switches

SOAP can analyze scheduling policies that have access to only a limited number of priority
levels, and it can also analyze scheduling policies where a job can only be preempted at
certain checkpoint ages (Ch. 9). These are two preemption limitations that show up when
scheduling packet flows in network switches [96]: the switch has a limited number of
priority levels built into its hardware, and packet flows consist of packets that we would
prefer not to preempt. Does SOAP in the M/G/1 provide an accurate enough model to tune
real-world scheduling policies for network switch scheduling? If not, what other essential
features of network switch scheduling can we integrate into our model?

Modeling Dynamic Preemption Overhead

We study scheduling with preemption limited to checkpoint ages in a setting where
each checkpoint incurs an overhead (Ch. 9). However, we assume that the overhead is
incurred even if the job is not preempted. This is the right model for some systems, such

18.2 Future Work 207

as scheduling packet flows, because each packet carries a header. But other systems do
not incur significant scheduling overhead until a job is actually preempted. Can we apply
ideas similar to SOAP to analyze scheduling with dynamic preemption overhead?

Scheduling with Under-Specified Uncertainty Model

We consider scheduling with unknown job sizes throughout this thesis (Chs. 11 and 13).
However, we always assume knowledge of the job size distribution. But in practice, we may
only approximately know the job size distribution, or we may have to infer it from data.
How should we schedule when even the size distribution itself is uncertain, in addition
to the uncertainty of individual jobs’ sizes? One idea is to try to design a distributionally
robust version of Gittins.

208 Chapter 18 Conclusion

Appendix

APPENDIX A

Index of Notation

A.1 General

NOTATION DESCRIPTION REFERENCES
N natural numbers, i.e. {0,1,2,...}

S positive integers, i.e. {1,2,...}

R real numbers

Ry nonnegative reals, i.e. [0,)

R.o positive reals, i.e. (0, o)

P[] probability

E[] expectation

= defined to be equal to

f(x-) left limit of f at x, i.e. limypy f(y) §5.6.6
f(x+) right limit of f at x, i.e. limy, f(y) § 5.6.6
(x)* positive part of x, i.e. max{x, 0} §5.6.6

A.2 Distributions

NoTATION DESCRIPTION REFERENCES
Bernoulli(p) Bernoulli distribution §5.6.2
Geo(p) geometric distribution with support at 0 §5.6.2

&V excess distribution of V Def. 5.1
(&EV); ith of many i.i.d. samples from &V Def. 5.1
L[V](0) Laplace-Stieltjes transform (LST) of V Def. 5.1

=t equality in distribution §5.6.2

<st stochastic ordering §5.6.2

We typically abuse notation by not distinguishing between random variables and their distributions (§ 5.6.2).

A.3 M/G Arrivals

NOTATION DESCRIPTION REFERENCES
A job arrival rate §5.2.2
S job size distribution §5.2.2

Continued on next page

211

212

Appendix A Index of Notation

Continued from previous page

NOTATION DESCRIPTION REFERENCES
p load §5.2.2
L set of possible labels §5.2.2
L job label distribution §5.2.2
(L,S) label-size pair distribution §5.2.2
Se label-conditional size distribution §5.2.3
Sta state-conditional remaining work distribution §5.2.3
(Li, Ay) state, i.e. label-age pair, of ith job in the system §5.6.1

A.4 Queueing Metrics

NOTATION DESCRIPTION REFERENCES
T response time §54

T(¢t,s) label-size conditional response time §54

N number of jobs in system §543

w system work, i.e. total remaining work of all jobs in the system §5.5.1

B busy period §5.5.2

B(v) busy period started by initial work v §5.5.2

J rate at which system is serving jobs §8.1.1

h(x) holding cost of a job in state x §14.1.3

H system holding cost, i.e. total holding cost of all jobs in the § 14.1.3

system

We often specify the scheduling policy 7 in a subscript, as in T,.

A.5 Scheduling Policies

NOTATION

DESCRIPTION REFERENCES

T
m-k
FCFS
LCFES
ROS
PLCFS
PS

LAS
NP-Prio
P-Prio

variable denoting a scheduling policy

k-server version of policy 7 §6.1.5
First-Come, First-Served (a.k.a. first-in, first-out) § 5.3.1 and Pol. 6.5
Last-Come, First-Served (a.k.a. last-in, first-out) § 5.3.1 and Pol. 6.6
Random Order of Service §5.3.1
Last-Come, First-Served (a.k.a. last-in, first-out) § 5.3.1 and Pol. 6.7
Processor Sharing §5.3.1
Least Attained Service (a.k.a. foreground-background) § 5.3.1 and Pol. 6.4
Nonpreemptive Priority § 5.3.1 and Pol. 6.8
Preemptive Priority § 5.3.1 and Pol. 6.8

Continued on next page

A.7 Relevant Work and Related Concepts

213

Continued from previous page

NoTATION

DESCRIPTION

REFERENCES

SJF

Shortest Job First

§ 5.3.1 and Pol. 6.9

PSJF Preemptive Shortest Job First § 5.3.1 and Pol. 6.9

SRPT Shortest Remaining Processing Time § 5.3.1 and Pol. 6.10

SERPT Shortest Expected Remaining Processing Time Pol. 6.11

M-SERPT Monotonic SERPT Pol. 11.1

Gittins the Gittins policy (a.k.a. the Gittins index policy) Pols. 14.5 and 6.12

Chk-r Checkpointed = Pol. 6.13

LPL-7 Limited-Priority-Level 7 Pol. 6.14

PSJF-E PSJF with Estimates Pol. 10.2

SRPT-E SRPT with Estimates Pol. 10.1

SRPT-B SRPT with Bounce Pol. 12.3

SRPT-SE SRPT with Scaling Estimates Pol. 12,5

A.6 SOAP and Rank Functions

NOTATION DEscrIPTION REFERENCES

rank, (¢, a) rank of a job with label £ and age a under x Def. 6.1

worst,(¢£,s,a) worst future rank of a job with label ¢, size s, and age a Def. 7.9
under 7

worst, (£, s) worst ever rank of a job with label ¢ and size s under = Def. 7.9

Tait waiting time, i.e. time between arrival and first service §7.1.1

TVat(¢, 5) label-size conditional waiting time §7.1.1

Tresd residence time, i.e. time between first service and departure § 7.1.1

Tresd(¢, 5) label-size conditional residence time §7.1.1

In the SOAP analysis, we use T and T***¢ to denote pessimism-adjusted waiting and residence times

(§ 7.3.3).

A.7 Relevant Work and Related Concepts

NOTATION DESCRIPTION REFERENCES
Y variable denoting a set of “relevant” job states

<r,<r sets of states with rank at most or strictly less than r Def. 7.2(a)
(rank, < r) alternative notation for <r that makes the policy 7 explicit = Def. 15.1

S (Y) Y-relevant remaining work of a job in state x Def. 7.3
W(Y) Y-relevant system work Def. 7.3
S(Y) Y-relevant size of a generic job Def. 7.4

Continued on next page

214

Appendix A Index of Notation

Continued from previous page

NOTATION DESCRIPTION REFERENCES
p(Y) Y-fresh load, i.e. AE[S(Y)] Def. 7.4
Arey (YY) average rate of Y-recyclings Def. 7.5
Seey (Y) Y-relevant remaining work of a job immediately after its Def. 7.5
Y-recycling
Prey(Y) Y-recycled load, i.e. Ayey (Y) E[Syey (Y)] Def. 7.5
B(Y,0) Y-relevant busy period started by initial work v Def. 7.6
J(Y) rate at which Y-relevant jobs are being served §8.3.1
Ery(Y)[-] expectation sampled immediately after a Y-recycling §8.3.1
Winin (Y) minimum possible steady-state Y-relevant system work in Def. 8.6
an M/G/1 under any policy
Zx(Y) Y-exit state of x, i.e. the random state of a job when it first Def. 14.4

exits Y, given that it starts at x

We use a number of shorthands when discussing the above concepts (Defs. 15.1 and 7.2). While we formally
define each of the above for just one of the label-age job model (Ch. 5) or the Markov-process job model
(Ch. 14), all of the definitions can be easily adapted to either model.

Bibliography

(1]

Samuli Aalto and Urtzi Ayesta. 2006. Mean Delay Analysis of Multi Level Processor Shar-
ing Disciplines. In Proceedings of IEEE INFOCOM 2006. 25nd Annual joint Conference
of the IEEE Computer and Communications Societies. IEEE, Barcelona, Spain, 11 pages.
doi:10.1109/INFOCOM. 2006 . 262.

Samuli Aalto and Urtzi Ayesta. 2006. On the Nonoptimality of the Foreground-Background
Discipline for IMRL Service Times. Journal of Applied Probability 43, 2 (June 2006), 523-534.
doi:10.1239/jap/1152413739.

Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. 2009. On the Gittins Index in the M/G/1
Queue. Queueing Systems 63, 1-4 (Dec. 2009), 437-458. doi:10.1007/s11134-009-9141-x.

Samuli Aalto, Urtzi Ayesta, and Rhonda Righter. 2011. Properties of the Gittins Index with
Application to Optimal Scheduling. Probability in the Engineering and Informational Sciences
25, 3 (July 2011), 269-288. d0i:10.1017/50269964811000015.

Maryam Akbari-Moghaddam and Douglas G. Down. 2021. SEH: Size Estimate Hedging
for Single-Server Queues. In Quantitative Evaluation of Systems (QEST 2021), Alessandro
Abate and Andrea Marin (Eds.). Springer, Cham, Switzerland, 168-185. arXiv:2101.00007.
doi:10.1007/978-3-030-85172-9_9.

Elene Anton, Urtzi Ayesta, Matthieu Jonckheere, and Ina Maria Verloop. 2021. A Survey
of Stability Results for Redundancy Systems. In Modern Trends in Controlled Stochastic
Processes: Theory and Applications, V.IIL, Alexey B. Piunovskiy and Yi Zhang (Eds.). Number 41
in Emergence, Complexity and Computation. Springer, Cham, Switzerland, 266-283. doi:
10.1007/978-3-030-76928-4.

Elene Anton, Rhonda Righter, and Ina Maria Verloop. 2022. Efficient Scheduling in Redun-
dancy Systems with General Service Times. arXiv:2206.10164.

Guillaume Aupy, Anne Benoit, Henri Casanova, and Yves Robert. 2016. Checkpointing
Strategies for Scheduling Computational Workflows. International Journal of Networking and
Computing 6, 1 (2016), 2—-26. doi:10.15803/ijnc.6.1_2.

Konstantin Avrachenkov, Patrick Brown, and Natalia Osipova. 2009. Optimal Choice of
Threshold in Two Level Processor Sharing. Annals of Operations Research 170, 1 (Sept. 2009),
21-39. doi:10.1007/s10479-008-0430-2.

Yossi Azar, Stefano Leonardi, and Noam Touitou. 2021. Flow Time Scheduling with Uncertain
Processing Time. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2021). ACM, Rome, Italy, 1070-1080. doi:10.1145/3406325.3451023.

Yossi Azar, Stefano Leonardi, and Noam Touitou. 2022. Distortion-Oblivious Algorithms for
Minimizing Flow Time. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2022). ACM, Alexandria, VA, 252-274. doi:10.1137/1.9781611977073.13.

Sayan Banerjee, Amarjit Budhiraja, and Amber L. Puha. 2021. Heavy Traffic Scaling Lim-
its for Shortest Remaining Processing Time Queues with Heavy Tailed Processing Time
Distributions. arXiv:2003.03655.

215

https://doi.org/10.1109/INFOCOM.2006.262
https://doi.org/10.1239/jap/1152413739
https://doi.org/10.1007/s11134-009-9141-x
https://doi.org/10.1017/S0269964811000015
https://arxiv.org/abs/2101.00007
https://doi.org/10.1007/978-3-030-85172-9_9
https://doi.org/10.1007/978-3-030-76928-4
https://doi.org/10.1007/978-3-030-76928-4
https://arxiv.org/abs/2206.10164
https://doi.org/10.15803/ijnc.6.1_2
https://doi.org/10.1007/s10479-008-0430-2
https://doi.org/10.1145/3406325.3451023
https://doi.org/10.1137/1.9781611977073.13
https://arxiv.org/abs/2003.03655

216

Bibliography

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

[23]

[24]

Nikhil Bansal. 2005. On the Average Sojourn Time under M/M/1/SRPT. Operations Research
Letters 33, 2 (March 2005), 195-200. doi:10.1016/j.0rl.2004.04.006.

Nikhil Bansal and David Gamarnik. 2006. Handling Load with Less Stress. Queueing Systems
54, 1 (Sept. 2006), 45-54. doi:10.1007/s11134-006-8218~z.

Nikhil Bansal and Mor Harchol-Balter. 2001. Analysis of SRPT Scheduling: Investigating
Unfairness. ACM SIGMETRICS Performance Evaluation Review 29, 1 (June 2001), 279-290.
doi:10.1145/384268.378792.

Nikhil Bansal, Bart Kamphorst, and Bert Zwart. 2018. Achievable Performance of Blind
Policies in Heavy Traffic. Mathematics of Operations Research 43, 3 (Aug. 2018), 949-964.
doi:10.1287/moor.2017.0890.

Luca Becchetti and Stefano Leonardi. 2004. Nonclairvoyant Scheduling to Minimize the
Total Flow Time on Single and Parallel Machines. 7. ACM 51, 4 (July 2004), 517-539. doi:
10.1145/1008731.1008732.

Dimitris Bertsimas. 1995. The Achievable Region Method in the Optimal Control of Queueing
Systems; Formulations, Bounds and Policies. Queueing Systems 21, 3 (Sept. 1995), 337-389.
doi:10.1007/BF@1149167.

Marko A. A. Boon, Rob D. van der Mei, and Erik M. M. Winands. 2011. Applications of Polling
Systems. Surveys in Operations Research and Management Science 16, 2 (July 2011), 67-82.
doi:10.1016/j.sorms.2011.01.001.

Aleksandr A. Borovkov. 1970. Factorization Identities and Properties of the Distribution of
the Supremum of Sequential Sums. Theory of Probability and Its Applications 15, 3 (Jan. 1970),
359-402. doi:10.1137/1115046.

Sem C. Borst and Onno J. Boxma. 2018. Polling: Past, Present, and Perspective. TOP 26, 3
(Oct. 2018), 335-369. do0i:10.1007/s11750-018-0484-5.

Onno J. Boxma and Wim P. Groenendijk. 1987. Pseudo-Conservation Laws in Cyclic-Service
Systems. Journal of Applied Probability 24, 4 (1987), 949-964. doi:10.2307/3214218.

Onno J. Boxma and Bert Zwart. 2007. Tails in Scheduling. ACM SIGMETRICS Performance
Evaluation Review 34, 4 (March 2007), 13-20. doi:10.1145/1243401.1243406.

Jhelum Chakravorty and Aditya Mahajan. 2014. Multi-Armed Bandits, Gittins Index, and Its
Calculation. In Methods and Applications of Statistics in Clinical Trials, N. Balakrishnan (Ed.).
Wiley, Hoboken, NJ, 416-435. doi:10.1002/9781118596333.ch24.

[25] Jacob W. Cohen. 1973. Some Results on Regular Variation for Distributions in Queue-

ing and Fluctuation Theory. Journal of Applied Probability 10, 2 (June 1973), 343-353.
doi:10.2307/3212351.

[26] Jacob W. Cohen. 1982. The Single Server Queue (second ed.). Number 8 in North-Holland

[27]

(28]

Series in Applied Mathematics and Mechanics. North-Holland, Amsterdam, The Netherlands.

Richard W. Conway, William L. Maxwell, and Louis W. Miller. 1967. Theory of Scheduling.
Addison-Wesley, Reading, MA.

David R. Cox and Walter L. Smith. 1961. Queues. Methuen, London, UK.

https://doi.org/10.1016/j.orl.2004.04.006
https://doi.org/10.1007/s11134-006-8218-z
https://doi.org/10.1145/384268.378792
https://doi.org/10.1287/moor.2017.0890
https://doi.org/10.1145/1008731.1008732
https://doi.org/10.1145/1008731.1008732
https://doi.org/10.1007/BF01149167
https://doi.org/10.1016/j.sorms.2011.01.001
https://doi.org/10.1137/1115046
https://doi.org/10.1007/s11750-018-0484-5
https://doi.org/10.2307/3214218
https://doi.org/10.1145/1243401.1243406
https://doi.org/10.1002/9781118596333.ch24
https://doi.org/10.2307/3212351

Bibliography 217

[29]

Marcus Dacre, Kevin D. Glazebrook, and José Niflo-Mora. 1999. The Achievable Region
Approach to the Optimal Control of Stochastic Systems. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 61, 4 (1999), 747-791.

Matteo Dell’Amico. 2019. Scheduling with Inexact Job Sizes: The Merits of Shortest Processing
Time First. arXiv:1907.04824.

Matteo Dell’Amico, Damiano Carra, and Pietro Michiardi. 2016. PSBS: Practical Size-Based
Scheduling. IEEE Trans. Comput. 65, 7 (July 2016), 2199-2212. doi:10.1109/TC.2015.2468225.

Matteo Dell’Amico, Damiano Carra, Mario Pastorelli, and Pietro Michiardi. 2014. Revisiting
Size-Based Scheduling with Estimated Job Sizes. In 22nd IEEE International Symposium on
Modelling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS
2014). IEEE, Paris, France, 411-420. doi:10.1109/MASCOTS.2014.57.

Tadashi Dohi, Naoto Kaio, and Shunji Osaki. 2000. The Optimal Age-Dependent Checkpoint
Strategy for a Stochastic System Subject to General Failure Mode. J. Math. Anal. Appl. 249, 1
(Sept. 2000), 80—94. doi:10.1006/jmaa.2000.6939.

[34] Jing Dong and Rouba Ibrahim. 2021. SRPT Scheduling Discipline in Many-Server Queues

[35]

[36]

[37]

[39]

[40]

with Impatient Customers. Management Science 67, 12 (Dec. 2021), 7708-7718. doi:
10.1287/mnsc.2021.4110.

Ioana Dumitriu, Prasad Tetali, and Peter Winkler. 2003. On Playing Golf with Two Balls. SIAM
Journal on Discrete Mathematics 16, 4 (Jan. 2003), 604-615. doi:10.1137/50895480102408341.

Seyed Emadi, Rouba Ibrahim, and Saravanan Kesavan. 2019. Can “Very Noisy” Information
Go a Long Way? An Exploratory Analysis of Personalized Scheduling in Service Systems.
Working paper (Jan. 2019), 40 pages.

Atilla Eryilmaz and R. Srikant. 2012. Asymptotically Tight Steady-State Queue Length
Bounds Implied by Drift Conditions. Queueing Systems 72, 3 (Dec. 2012), 311-359. doi:
10.1007/s11134-012-9305-y.

Val Andrei Fajardo and Steve Drekic. 2017. Waiting Time Distributions in the Preemptive
Accumulating Priority Queue. Methodology and Computing in Applied Probability 19, 1 (March
2017), 255-284. d0i:10.1007/s11009-015-9476-1.

S. W. Fuhrmann. 1984. A Note on the M/G/1 Queue with Server Vacations. Operations Research
32, 6 (1984), 1368—1373.

S. W. Fuhrmann and Robert B. Cooper. 1985. Stochastic Decompositions in the M/G/1
Queue with Generalized Vacations. Operations Research 33, 5 (Oct. 1985), 1117-1129. doi:
10.1287/opre.33.5.1117.

Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf, and Benny Van Houdt. 2017. A
Better Model for Job Redundancy: Decoupling Server Slowdown and Job Size. IEEE/ACM
Transactions on Networking 25, 6 (Dec. 2017), 3353-3367. doi:10.1109/TNET.2017.2744607.

Kristen Gardner, Mor Harchol-Balter, Alan Scheller-Wolf, Mark Velednitsky, and Samuel
Zbarsky. 2017. Redundancy-d: The Power of d Choices for Redundancy. Operations Research
65, 4 (Aug. 2017), 1078-1094. doi:10.1287/opre.2016.1582.

https://arxiv.org/abs/1907.04824
https://doi.org/10.1109/TC.2015.2468225
https://doi.org/10.1109/MASCOTS.2014.57
https://doi.org/10.1006/jmaa.2000.6939
https://doi.org/10.1287/mnsc.2021.4110
https://doi.org/10.1287/mnsc.2021.4110
https://doi.org/10.1137/S0895480102408341
https://doi.org/10.1007/s11134-012-9305-y
https://doi.org/10.1007/s11134-012-9305-y
https://doi.org/10.1007/s11009-015-9476-1
https://doi.org/10.1287/opre.33.5.1117
https://doi.org/10.1287/opre.33.5.1117
https://doi.org/10.1109/TNET.2017.2744607
https://doi.org/10.1287/opre.2016.1582

218

Bibliography

[43]
[44]

[45]

(48]

[49]

[50]

[51]

[53]

John C. Gittins. 1989. Multi-Armed Bandit Allocation Indices (first ed.). Wiley, Chichester, UK.

John C. Gittins, Kevin D. Glazebrook, and Richard Weber. 2011. Multi-Armed Bandit Allocation
Indices (second ed.). Wiley, Chichester, UK.

John C. Gittins and David M. Jones. 1974. A Dynamic Allocation Index for the Sequential
Design of Experiments. In Progress in Statistics, Joseph M. Gani, Karoly Sarkadi, and Istvan
Vincze (Eds.). Number 9 in Colloquia Mathematica Societatis Janos Bolyai. North-Holland,
Amsterdam, The Netherlands, 241-266.

Kevin D. Glazebrook. 2003. An Analysis of Klimov’s Problem with Parallel Servers. Mathe-
matical Methods of Operations Research 58, 1 (Sept. 2003), 1-28. doi:10.1007/s001860300278.

Kevin D. Glazebrook and José Nifio-Mora. 2001. Parallel Scheduling of Multiclass M/M/m
Queues: Approximate and Heavy-Traffic Optimization of Achievable Performance. Operations
Research 49, 4 (Aug. 2001), 609-623. doi:10.1287/opre.49.4.609.11225.

Carmelita Goerg. 1990. Further Results on a New Combined Strategy Based on the
SRPT-principle. IEEE Transactions on Communications 38, 5 (May 1990), 568-570. doi:
10.1109/26.54967.

Carmelita Goerg and Xuan Huy Pham. 1985. Improving Mean Delay in Data Communication
Networks by New Combined Strategies Based on the SRPT-principle. In Teletraffic Issues in
an Advanced Information Society: Proceedings of the Eleventh International Teletraffic Congress
(ITC 11), Vol. 5. North-Holland, Kyoto, Japan, 931-937.

Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2018. SRPT for Multiserver Sys-
tems. Performance Evaluation 127-128 (Nov. 2018), 154-175. arXiv:1805.07686. doi:
10.1016/j.peva.2018.10.001.

Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. Load Balancing Guardrails: Keeping
Your Heavy Traffic on the Road to Low Response Times. Proceedings of the ACM on Mea-
surement and Analysis of Computing Systems 3, 2 (June 2019), 42:1-42:31. arXiv:1905.03439.
doi:10.1145/3341617.3326157.

Isaac Grosof, Ziv Scully, and Mor Harchol-Balter. 2019. SRPT for Multiserver Sys-
tems. ACM SIGMETRICS Performance Evaluation Review 46, 2 (Jan. 2019), 9-11. doi:
10.1145/3305218.3305223.

Isaac Grosof, Kunhe Yang, Ziv Scully, and Mor Harchol-Balter. 2021. Nudge: Stochastically
Improving upon FCFS. Proceedings of the ACM on Measurement and Analysis of Computing
Systems 5, 2 (June 2021), 21:1-21:29. doi:10.1145/3460088.

[54] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon, Qian Junjie,

[55]

[56]

Honggiang Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU Cluster Manager for Distributed
Deep Learning. In Proceedings of the 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 2019). USENIX, Boston, MA, 486-500.

Mor Harchol-Balter. 2013. Performance Modeling and Design of Computer Systems: Queueing
Theory in Action. Cambridge University Press, Cambridge, UK.

Mor Harchol-Balter, Takayuki Osogami, Alan Scheller-Wolf, and Adam Wierman. 2005.
Multi-Server Queueing Systems with Multiple Priority Classes. Queueing Systems 51, 3 (Dec.
2005), 331-360. d0i:10.1007/s11134-005-2898-7.

https://doi.org/10.1007/s001860300278
https://doi.org/10.1287/opre.49.4.609.11225
https://doi.org/10.1109/26.54967
https://doi.org/10.1109/26.54967
https://arxiv.org/abs/1805.07686
https://doi.org/10.1016/j.peva.2018.10.001
https://doi.org/10.1016/j.peva.2018.10.001
https://arxiv.org/abs/1905.03439
https://doi.org/10.1145/3341617.3326157
https://doi.org/10.1145/3305218.3305223
https://doi.org/10.1145/3305218.3305223
https://doi.org/10.1145/3460088
https://doi.org/10.1007/s11134-005-2898-7

Bibliography 219

[57]

[61]

[62]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh Agrawal. 2003. Size-Based
Scheduling to Improve Web Performance. ACM Transactions on Computer Systems 21, 2 (May
2003), 207-233. d0i:10.1145/762483.762486.

Yige Hong and Weina Wang. 2022. Sharp Waiting-Time Bounds for Multiserver Jobs.
arXiv:2109.05343.

Daniela Hurtado-Lange and Siva Theja Maguluri. 2020. Transform Methods for Heavy-Traffic
Analysis. Stochastic Systems 10, 4 (Dec. 2020), 275-309. doi:10.1287/stsy.2019.0056.

Daniela Hurtado-Lange, Sushil Mahavir Varma, and Siva Theja Maguluri. 2022. Logarithmic
Heavy Traffic Error Bounds in Generalized Switch and Load Balancing Systems. Journal of
Applied Probability (June 2022), 18. doi:10.1017/jpr.2021.82.

Esa Hyytia, Samuli Aalto, and Aleksi Penttinen. 2012. Minimizing Slowdown in Heteroge-
neous Size-Aware Dispatching Systems. ACM SIGMETRICS Performance Evaluation Review
40, 1 (June 2012), 29-40. doi:10.1145/2318857.2254763.

Esa Hyytid, Aleksi Penttinen, and Samuli Aalto. 2012. Size- and State-Aware Dispatching
Problem with Queue-Specific Job Sizes. European Journal of Operational Research 217, 2
(March 2012), 357-370. doi:10.1016/j.ejor.2011.09.029.

Bala Kalyanasundaram and Kirk R. Pruhs. 2003. Minimizing Flow Time Nonclairvoyantly. J.
ACM 50, 4 (July 2003), 551-567. doi:10.1145/792538.792545.

Bart Kamphorst and Bert Zwart. 2020. Heavy-Traffic Analysis of Sojourn Time under the
Foreground-Background Scheduling Policy. Stochastic Systems 10, 1 (March 2020), 1-28.
doi:10.1287/stsy.2019.0036.

Frank P. Kelly. 1976. The Departure Process from a Queueing System. Mathemati-
cal Proceedings of the Cambridge Philosophical Society 80, 2 (Sept. 1976), 283-285. doi:
10.1017/50305004100052919.

Frank P. Kelly. 2011. Reversibility and Stochastic Networks (revised ed.). Cambridge University
Press, Cambridge, UK.

David G. Kendall. 1953. Stochastic Processes Occurring in the Theory of Queues and Their
Analysis by the Method of the Imbedded Markov Chain. Annals of Mathematical Statistics 24,
3 (1953), 338-354.

Harry Kesten and Johannes Th. Runnenburg. 1957. Priority in Waiting Line Problems. I.
Indagationes Mathematicae 60 (1957), 312-324. doi:10.1016/51385-7258(57)50042-5.

Harry Kesten and Johannes Th. Runnenburg. 1957. Priority in Waiting Line Problems. II.
Indagationes Mathematicae 60 (1957), 325-336. d0i:10.1016/51385-7258(57)50043-7.

Aleksandr Khintchine. 1932. Mathematische Theorie der stationiren Reihe [Mathematical
theory of a stationary queue]. Matematicheskii Sbornik 39, 4 (1932), 73-84.

Toshikazu Kimura. 1983. Diffusion Approximation for an M/G/m Queue. Operations Research
31, 2 (April 1983), 304-321. doi:10.1287/opre.31.2.304.

John F. C. Kingman. 1962. On Queues in Which Customers Are Served in Random Order.
Mathematical Proceedings of the Cambridge Philosophical Society 58, 1 (Jan. 1962), 79-91.
doi:10.1017/50305004100036239.

https://doi.org/10.1145/762483.762486
https://arxiv.org/abs/2109.05343
https://doi.org/10.1287/stsy.2019.0056
https://doi.org/10.1017/jpr.2021.82
https://doi.org/10.1145/2318857.2254763
https://doi.org/10.1016/j.ejor.2011.09.029
https://doi.org/10.1145/792538.792545
https://doi.org/10.1287/stsy.2019.0036
https://doi.org/10.1017/S0305004100052919
https://doi.org/10.1017/S0305004100052919
https://doi.org/10.1016/S1385-7258(57)50042-5
https://doi.org/10.1016/S1385-7258(57)50043-7
https://doi.org/10.1287/opre.31.2.304
https://doi.org/10.1017/S0305004100036239

220

Bibliography

(73]

[74]

[75]

[76]

[77]

(78]

[79]

John F. C. Kingman. 2009. The First Erlang Century—and the Next. Queueing Systems 63, 1
(Nov. 2009), 3. doi:10.1007/s11134-009-9147-4.

Leonard Kleinrock. 1976. Queueing Systems, Volume 2: Computer Applications. Wiley, New
York, NY.

Leonard Kleinrock and Richard R. Muntz. 1972. Processor Sharing Queueing Models of
Mixed Scheduling Disciplines for Time Shared System. . ACM 19, 3 (July 1972), 464-482.
doi:10.1145/321707.321717.

Gennadi P. Klimov. 1974. Time-Sharing Service Systems. . Theory of Probability & Its Appli-
cations 19, 3 (1974), 532-551. doi:10.1137/1119060.

Julian Kollerstrom. 1974. Heavy Traffic Theory for Queues with Several Servers. L. Journal of
Applied Probability 11, 3 (Sept. 1974), 544-552. doi:10.2307/3212698.

Julian Kollerstrom. 1979. Heavy Traffic Theory for Queues with Several Servers. II. Journal
of Applied Probability 16, 2 (June 1979), 393-401. doi:10.2307/3212906.

Tze Leung Lai and Zhiliang Ying. 1988. Open Bandit Processes and Optimal Schedul-
ing of Queueing Networks. Advances in Applied Probability 20, 2 (1988), 447-472. doi:
10.2307/1427399.

[80] Jan Karel Lenstra and David B. Shmoys. 2020. Elements of Scheduling. arXiv:2001.06005.

Stefano Leonardi and Danny Raz. 2007. Approximating Total Flow Time on Parallel Machines.
J. Comput. System Sci. 73, 6 (Sept. 2007), 875-891. doi:10.1016/]. jcss.2006.10.018.

Yuan Li and David A. Goldberg. 2017. Simple and Explicit Bounds for Multi-Server Queues
with Universal 1/(1 — p) Scaling. arXiv:1706.04628.

Minghong Lin, Adam Wierman, and Bert Zwart. 2011. Heavy-Traffic Analysis of Mean
Response Time under Shortest Remaining Processing Time. Performance Evaluation 68, 10
(Oct. 2011), 955-966. d0i:10.1016/j.peva.2011.06.001.

(84] John D. C. Little. 2011. Little’s Law as Viewed on Its 50th Anniversary. Operations Research

(85]

[86]

(87]

(88]

(89]

59, 3 (June 2011), 536—-549. doi:10.1287/opre.1110.0940.

Siva Theja Maguluri and R. Srikant. 2016. Heavy Traffic Queue Length Behavior in a
Switch under the MaxWeight Algorithm. Stochastic Systems 6, 1 (June 2016), 211-250.
doi:10.1287/15-SSY193.

Andrea Marin, Sabina Rossi, and Carlo Zen. 2020. Size-Based Scheduling for TCP Flows:
Implementation and Performance Evaluation. Computer Networks 183 (Dec. 2020), 107574:1-
107574:15. doi:10.1016/j.comnet.2020.107574.

Nicole Megow and Tjark Vredeveld. 2014. A Tight 2-Approximation for Preemptive Stochas-
tic Scheduling. Mathematics of Operations Research 39, 4 (Nov. 2014), 1297-1310. doi:
10.1287/moor.2014.0653.

Paul Milgrom and Ilya Segal. 2002. Envelope Theorems for Arbitrary Choice Sets. Economet-
rica 70, 2 (March 2002), 583-601. doi:10.1111/1468-0262.00296.

Rupert G. Miller, Jr. 1960. Priority Queues. Annals of Mathematical Statistics 31, 1 (March
1960), 86—103. doi:10.1214/aoms/1177705990.

https://doi.org/10.1007/s11134-009-9147-4
https://doi.org/10.1145/321707.321717
https://doi.org/10.1137/1119060
https://doi.org/10.2307/3212698
https://doi.org/10.2307/3212906
https://doi.org/10.2307/1427399
https://doi.org/10.2307/1427399
https://arxiv.org/abs/2001.06005
https://doi.org/10.1016/j.jcss.2006.10.018
https://arxiv.org/abs/1706.04628
https://doi.org/10.1016/j.peva.2011.06.001
https://doi.org/10.1287/opre.1110.0940
https://doi.org/10.1287/15-SSY193
https://doi.org/10.1016/j.comnet.2020.107574
https://doi.org/10.1287/moor.2014.0653
https://doi.org/10.1287/moor.2014.0653
https://doi.org/10.1111/1468-0262.00296
https://doi.org/10.1214/aoms/1177705990

Bibliography 221

[90]

[91]

[92]

[93]

[94]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

Ante Mimica. 2016. Exponential Decay of Measures and Tauberian Theorems. J. Math. Anal.
Appl. 440, 1 (Aug. 2016), 266—285. doi:10.1016/j. jmaa.2016.03.042.

Isi Mitrani and Peter J. B. King. 1981. Multiprocessor Systems with Preemptive Priorities.
Performance Evaluation 1, 2 (May 1981), 118—125. doi:10.1016/0166-5316(81)90014-6.

Michael Mitzenmacher. 2020. Scheduling with Predictions and the Price of Misprediction. In
11th Innovations in Theoretical Computer Science Conference (ITCS 2020) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 151), Thomas Vidick (Ed.). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Seattle, WA, 14:1-14:18. doi:10.4230/LIPICS.ITCS.2020.14.

Michael Mitzenmacher and Matteo Dell’Amico. 2020. The Supermarket Model with Known
and Predicted Service Times. arXiv:1905.12155.

Masakiyo Miyazawa. 1994. Decomposition Formulas for Single Server Queues with Vacations
: A Unified Approach by the Rate Conservation Law. Communications in Statistics. Stochastic
Models 10, 2 (Jan. 1994), 389-413. doi:10.1080/15326349408807301.

Masakiyo Miyazawa. 1994. Rate Conservation Laws: A Survey. Queueing Systems 15, 1 (March
1994), 1-58. doi:10.1007/BF@1189231.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018. Homa: A
Receiver-Driven Low-Latency Transport Protocol Using Network Priorities. In Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data Communication (SSIGCOMM
2018). ACM, Budapest, Hungary, 221-235. doi:10.1145/3230543.3230564.

Kenji Nakagawa. 2005. Tail Probability of Random Variable and Laplace Transform. Applicable
Analysis 84, 5 (May 2005), 499-522. doi:10.1080/00036810410001724436.

Kenji Nakagawa. 2007. Application of Tauberian Theorem to the Exponential Decay of the
Tail Probability of a Random Variable. IEEE Transactions on Information Theory 53, 9 (Sept.
2007), 3239-3249. doi:10.1109/TIT.2007.903114.

Victor F. Nicola and J. M. van Spanje. 1990. Comparative Analysis of Different Models of
Checkpointing and Recovery. IEEE Transactions on Software Engineering 16, 8 (Aug. 1990),
807-821. doi:10.1109/32.57620.

Rudesindo Nufiez-Queija. 2001. Note on the GI/GI/1 Queue with LCFS-PR Observed at
Arbitrary Times. Probability in the Engineering and Informational Sciences 15, 2 (April 2001),
179-187. doi:10.1017/50269964801152034.

Rudesindo Nuifiez-Queija. 2002. Queues with Equally Heavy Sojourn Time and Service
Requirement Distributions. Annals of Operations Research 113, 1/4 (July 2002), 101-117.
doi:10.1023/A:1020905810996.

Misja Nuyens and Adam Wierman. 2008. The Foreground-Background Queue: A Survey.
Performance Evaluation 65, 3-4 (March 2008), 286—-307. doi:10.1016/j.peva.2007.06.028.

Misja Nuyens, Adam Wierman, and Bert Zwart. 2008. Preventing Large Sojourn
Times Using SMART Scheduling. Operations Research 56, 1 (Feb. 2008), 88-101. doi:
10.1287/0pre.1070.0504.

Misja Nuyens and Bert Zwart. 2006. A Large-Deviations Analysis of the GI/GI/1 SRPT Queue.
Queueing Systems 54, 2 (Oct. 2006), 85-97. doi:10.1007/s11134-006-8767-1.

https://doi.org/10.1016/j.jmaa.2016.03.042
https://doi.org/10.1016/0166-5316(81)90014-6
https://doi.org/10.4230/LIPICS.ITCS.2020.14
https://arxiv.org/abs/1905.12155
https://doi.org/10.1080/15326349408807301
https://doi.org/10.1007/BF01189231
https://doi.org/10.1145/3230543.3230564
https://doi.org/10.1080/00036810410001724436
https://doi.org/10.1109/TIT.2007.903114
https://doi.org/10.1109/32.57620
https://doi.org/10.1017/S0269964801152034
https://doi.org/10.1023/A:1020905810996
https://doi.org/10.1016/j.peva.2007.06.028
https://doi.org/10.1287/opre.1070.0504
https://doi.org/10.1287/opre.1070.0504
https://doi.org/10.1007/s11134-006-8767-1

222

Bibliography

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]
[113]

[114]

[115]

[116]

[117]

[118]

[119]

Natalia Osipova, Urtzi Ayesta, and Konstantin Avrachenkov. 2009. Optimal Policy for Multi-
Class Scheduling in a Single Server Queue. In 21st International Teletraffic Congress (ITC 21).
IEEE, Paris, France, 1-8.

Goran Peskir and Albert N. Shiryaev. 2006. Optimal Stopping and Free-Boundary Problems.
Birkh&user Verlag, Basel. doi:10.1007/978-3-7643-7390-0.

Michael Pinedo. 2016. Scheduling: Theory, Algorithms, and Systems (fifth ed.). Springer, Cham,
Switzerland.

Felix Pollaczek. 1930. Uber eine Aufgabe der Wahrscheinlichkeitstheorie. II [On a prob-
lem in probability theory. II]. Mathematische Zeitschrift 32, 1 (Dec. 1930), 729-750. doi:
10.1007/BFQ1194663.

Felix Pollaczek. 1930. Uber eine Aufgabe der Wahrscheinlichkeitstheorie. I [On a prob-
lem in probability theory. I]. Mathematische Zeitschrift 32, 1 (Dec. 1930), 64-100. doi:
10.1007/BF01194620.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. 2018. Improving Online Algorithms via
ML Predictions. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems (NeurIPS 2018), S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett (Eds.), Vol. 31. Curran Associates, Inc., Montréal, Canada, 9684-9693.

Rhonda Righter, J. George Shanthikumar, and Genji Yamazaki. 1990. On Extremal Service
Disciplines in Single-Stage Queueing Systems. Journal of Applied Probability 27, 2 (June 1990),
409-416. doi:10.2307/3214660.

Sheldon M. Ross. 1996. Stochastic Processes (second ed.). Wiley, New York.

Alan Scheller-Wolf. 2003. Necessary and Sufficient Conditions for Delay Moments in FIFO
Multiserver Queues with an Application Comparing s Slow Servers with One Fast One.
Operations Research 51, 5 (Oct. 2003), 748-758. doi:10.1287/opre.51.5.748.16759.

Alan Scheller-Wolf and Rein Vesilo. 2006. Structural Interpretation and Derivation of Neces-
sary and Sufficient Conditions for Delay Moments in FIFO Multiserver Queues. Queueing
Systems 54, 3 (Nov. 2006), 221-232. d0i:10.1007/s11134-006-0068-1.

Linus E. Schrage. 1967. The Queue M/G/1 with Feedback to Lower Priority Queues. Manage-
ment Science 13, 7 (March 1967), 466—474. doi:10.1287/mnsc.13.7.466.

Linus E. Schrage. 1968. A Proof of the Optimality of the Shortest Remaining Processing Time
Discipline. Operations Research 16, 3 (June 1968), 687-690. doi:10.1287/opre.16.3.687.

Linus E. Schrage and Louis W. Miller. 1966. The Queue M/G/1 with the Shortest Re-
maining Processing Time Discipline. Operations Research 14, 4 (Aug. 1966), 670-684. doi:
10.1287/opre.14.4.670.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2020. The Gittins Policy Is Nearly Optimal
in the M/G/k under Extremely General Conditions. Proceedings of the ACM on Measurement
and Analysis of Computing Systems 4, 3 (Nov. 2020), 43:1-43:29. doi:10.1145/3428328.

Ziv Scully, Isaac Grosof, and Mor Harchol-Balter. 2021. Optimal Multiserver Scheduling
with Unknown Job Sizes in Heavy Traffic. Performance Evaluation 145 (Jan. 2021), 102150:1—
102150:31. arXiv:2003.13232. doi:10.1016/j.peva. 2020.102150.

https://doi.org/10.1007/978-3-7643-7390-0
https://doi.org/10.1007/BF01194663
https://doi.org/10.1007/BF01194663
https://doi.org/10.1007/BF01194620
https://doi.org/10.1007/BF01194620
https://doi.org/10.2307/3214660
https://doi.org/10.1287/opre.51.5.748.16759
https://doi.org/10.1007/s11134-006-0068-1
https://doi.org/10.1287/mnsc.13.7.466
https://doi.org/10.1287/opre.16.3.687
https://doi.org/10.1287/opre.14.4.670
https://doi.org/10.1287/opre.14.4.670
https://doi.org/10.1145/3428328
https://arxiv.org/abs/2003.13232
https://doi.org/10.1016/j.peva.2020.102150

Bibliography 223

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

Ziv Scully, Isaac Grosof, and Michael Mitzenmacher. 2022. Uniform Bounds for Schedul-
ing with Job Size Estimates. In 13th Innovations in Theoretical Computer Science Con-
ference (ITCS 2022) (Leibniz International Proceedings in Informatics (LIPIcs)). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Berkeley, CA, 41:1-41:30. arXiv:2110.00633.
doi:10.4230/LIPIcs.ITCS.2022.41.

Ziv Scully and Mor Harchol-Balter. 2018. SOAP Bubbles: Robust Scheduling under Adversarial
Noise. In 56th Annual Allerton Conference on Communication, Control, and Computing. IEEE,
Monticello, IL, 144-154. doi:10.1109/ALLERTON. 2018.8635963.

Ziv Scully and Mor Harchol-Balter. 2021. The Gittins Policy in the M/G/1 Queue. In 19th Inter-
national Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt 2021). IFIP, Philadelphia, PA, 248-255. doi:10.23919/Wi0pt52861.2021.9589051.

Ziv Scully and Mor Harchol-Balter. 2021. How to Schedule Near-Optimally under Real-World
Constraints. arXiv:2110.11579.

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2018. SOAP: One Clean Analysis of
All Age-Based Scheduling Policies. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2, 1 (April 2018), 16:1-16:30. arXiv:1712.00790. doi:10.1145/3179419.

Ziv Scully, Mor Harchol-Balter, and Alan Scheller-Wolf. 2020. Simple Near-Optimal Schedul-
ing for the M/G/1. Proceedings of the ACM on Measurement and Analysis of Computing Systems
4,1 (May 2020), 11:1-11:29. arXiv:1907.10792. doi:10.1145/3379477.

Ziv Scully and Lucas van Kreveld. 2021. When Does the Gittins Policy Have Asymptotically
Optimal Response Time Tail? arXiv:2110.06326.

Ziv Scully, Lucas van Kreveld, Onno J. Boxma, Jan-Pieter Dorsman, and Adam Wierman.
2020. Characterizing Policies with Optimal Response Time Tails under Heavy-Tailed Job
Sizes. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 2 (June
2020), 30:1-30:33. doi:10.1145/3392148.

Kenneth C. Sevcik. 1971. The Use of Service Time Distributions in Scheduling. Ph.D. Disserta-
tion. University of Chicago, Chicago, IL. doi:10.2172/4710384.

Albert N. Shiryaev. 2008. Optimal Stopping Rules (second ed.). Number 8 in Applications of
Mathematics. Springer, Berlin, Germany.

Andrei Sleptchenko, Aart van Harten, and Matthieu van der Heijden. 2005. An Exact Solution
for the State Probabilities of the Multi-Class, Multi-Server Queue with Preemptive Priorities.
Queueing Systems 50, 1 (May 2005), 81-107. doi:10.1007/s11134-005-0359-y.

David A. Stanford, Peter Taylor, and Ilze Ziedins. 2014. Waiting Time Distributions
in the Accumulating Priority Queue. Queueing Systems 77, 3 (July 2014), 297-330. doi:
10.1007/s11134-013-9382-6.

Alexander L. Stolyar. 2004. Maxweight Scheduling in a Generalized Switch: State Space
Collapse and Workload Minimization in Heavy Traffic. Annals of Applied Probability 14, 1
(2004), 1-53.

Alexander L. Stolyar and Kavita Ramanan. 2001. Largest Weighted Delay First Scheduling:
Large Deviations and Optimality. Annals of Applied Probability 11, 1 (2001), 1-48.

https://arxiv.org/abs/2110.00633
https://doi.org/10.4230/LIPIcs.ITCS.2022.41
https://doi.org/10.1109/ALLERTON.2018.8635963
https://doi.org/10.23919/WiOpt52861.2021.9589051
https://arxiv.org/abs/2110.11579
https://arxiv.org/abs/1712.00790
https://doi.org/10.1145/3179419
https://arxiv.org/abs/1907.10792
https://doi.org/10.1145/3379477
https://arxiv.org/abs/2110.06326
https://doi.org/10.1145/3392148
https://doi.org/10.2172/4710384
https://doi.org/10.1007/s11134-005-0359-y
https://doi.org/10.1007/s11134-013-9382-6
https://doi.org/10.1007/s11134-013-9382-6

224

Bibliography

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

Lajos Takacs. 1963. Delay Distributions for One Line with Poisson Input, General Holding
Times, and Various Orders of Service. Bell System Technical Journal 42, 2 (March 1963),
487-503. doi:10.1002/5.1538-7305.1963.th00509. x.

Lajos Takacs. 1964. Priority Queues. Operations Research 12, 1 (Feb. 1964), 63-74. doi:
10.1287/opre.12.1.63.

G. von Olivier. 1972. Kostenminimale Prioritiaten in Wartesystemen vom Typ M/G/1 [Cost-
minimum priorities in queueing systems of type M/G/1]. Elektronische Rechenanlagen 14, 6
(Dec. 1972), 262-271. doi:10.1524/itit.1972.14.16.262.

Weina Wang, Mor Harchol-Balter, Haotian Jiang, Alan Scheller-Wolf, and R. Srikant. 2019.
Delay Asymptotics and Bounds for Multitask Parallel Jobs. Queueing Systems 91, 3 (April
2019), 207-239. doi:10.1007/s11134-018-09597-5.

Ward Whitt. 2000. The Impact of a Heavy-Tailed Service-Time Distribution upon the
M/Gl/s Waiting-Time Distribution. Queueing Systems 36, 1 (Nov. 2000), 71-87. doi:
10.1023/A:1019143505968.

Ward Whitt. 2004. A Diffusion Approximation for the G/GI/n/m Queue. Operations Research
52, 6 (2004), 922-941.

Peter Whittle. 1980. Multi-Armed Bandits and the Gittins Index. Journal of the Royal Statistical
Society: Series B (Methodological) 42, 2 (1980), 143-149.

Peter Whittle. 2005. Tax Problems in the Undiscounted Case. Journal of Applied Probability
42, 3 (Sept. 2005), 754-765. doi:10.1239/jap/1127322025.

Adam Wierman. 2007. Fairness and Classifications. ACM SIGMETRICS Performance Evaluation
Review 34, 4 (March 2007), 4-12. doi:10.1145/1243401.1243405.

Adam Wierman. 2007. Scheduling for Today’s Computer Systems: Bridging Theory and Practice.
Ph.D. Dissertation. Carnegie Mellon University, Pittsburgh, PA.

Adam Wierman and Mor Harchol-Balter. 2003. Classifying Scheduling Policies with Respect
to Unfairness in an M/GI/1. ACM SIGMETRICS Performance Evaluation Review 31, 1 (June
2003), 238-249. doi:10.1145/885651.781057.

Adam Wierman and Mor Harchol-Balter. 2005. Classifying Scheduling Policies with Respect
to Higher Moments of Conditional Response Time. ACM SIGMETRICS Performance Evaluation
Review 33, 1 (June 2005), 229-240. doi:10.1145/1071690.1064238.

Adam Wierman, Mor Harchol-Balter, and Takayuki Osogami. 2005. Nearly Insensitive Bounds
on SMART Scheduling. ACM SIGMETRICS Performance Evaluation Review 33, 1 (June 2005),
205-216. doi:10.1145/1071690.1064236.

Adam Wierman and Misja Nuyens. 2008. Scheduling despite Inexact Job-Size Informa-
tion. ACM SIGMETRICS Performance Evaluation Review 36, 1 (June 2008), 25-36. doi:
10.1145/1384529.1375461.

Adam Wierman, Erik M. M. Winands, and Onno J. Boxma. 2007. Scheduling in Polling Systems.
Performance Evaluation 64, 9-12 (Oct. 2007), 1009-1028. doi:10.1016/j.peva.2007.06.015.

https://doi.org/10.1002/j.1538-7305.1963.tb00509.x
https://doi.org/10.1287/opre.12.1.63
https://doi.org/10.1287/opre.12.1.63
https://doi.org/10.1524/itit.1972.14.16.262
https://doi.org/10.1007/s11134-018-09597-5
https://doi.org/10.1023/A:1019143505968
https://doi.org/10.1023/A:1019143505968
https://doi.org/10.1239/jap/1127322025
https://doi.org/10.1145/1243401.1243405
https://doi.org/10.1145/885651.781057
https://doi.org/10.1145/1071690.1064238
https://doi.org/10.1145/1071690.1064236
https://doi.org/10.1145/1384529.1375461
https://doi.org/10.1145/1384529.1375461
https://doi.org/10.1016/j.peva.2007.06.015

Bibliography 225

[149] Adam Wierman and Bert Zwart. 2012. Is Tail-Optimal Scheduling Possible? Operations
Research 60, 5 (Oct. 2012), 1249-1257. doi:10.1287/opre.1120.1086.

[150] Ronald W. Wolff. 1982. Poisson Arrivals See Time Averages. Operations Research 30, 2 (1982),
223-231.

[151] Qiaomin Xie and Yi Lu. 2015. Priority Algorithm for Near-Data Scheduling: Throughput and
Heavy-Traffic Optimality. In 2015 IEEE Conference on Computer Communications (INFOCOM
2015). IEEE, Kowloon, Hong Kong, 963-972. doi:10.1109/INFOCOM. 2015.7218468.

[152] David D. Yao. 1985. Refining the Diffusion Approximation for the M/G/m Queue. Operations
Research 33, 6 (Dec. 1985), 1266—1277. doi:10.1287/opre.33.6.1266.

[153] Sergey F. Yashkov. 1987. Processor-Sharing Queues: Some Progress in Analysis. Queueing
Systems 2, 1 (March 1987), 1-17. doi:10.1007/BF@1182931.

[154] Sergey F. Yashkov and A. S. Yashkova. 2007. Processor Sharing: A Survey of the Math-
ematical Theory. Automation and Remote Control 68, 9 (Sept. 2007), 1662-1731. doi:
10.1134/S0005117907090202.

https://doi.org/10.1287/opre.1120.1086
https://doi.org/10.1109/INFOCOM.2015.7218468
https://doi.org/10.1287/opre.33.6.1266
https://doi.org/10.1007/BF01182931
https://doi.org/10.1134/S0005117907090202
https://doi.org/10.1134/S0005117907090202

	Acknowledgments
	Abstract
	Contents
	List of Figures
	I Introduction
	Introduction
	What Is Scheduling Theory?
	Where Existing Scheduling Theory Falls Short
	Two New Theoretical Tools: SOAP and WINE
	Organization of This Thesis

	Prior Work
	Scheduling in the 1
	The Gittins Policy in Queues
	Scheduling in Multiserver Systems
	Other Related Work
	Publications Covered in This Thesis

	SOAP Overview
	Problem: Can Analyze Only a Small Set of Scheduling Policies
	Key Idea: Unifying Language for Policies Enables a Universal Analysis
	Impact: Broad Class of Policies Analyzed for the First Time in the 1

	WINE Overview
	Problem: Analyzing and Optimizing Scheduling in Multiserver Systems
	Key Idea: Relate Response Time to Work, a Much Simpler Quantity
	Impact: Near-Optimal Mean Response Time in the k, and More

	II SOAP
	Core Modeling Assumptions and Queueing Theory Background
	What Is a Queueing System?
	Primary Model: The 1 with Labels
	Scheduling
	Queueing Metrics
	1 Crash Course
	Additional Preliminaries

	SOAP Policies: Describing Scheduling with Rank Functions
	What Is a SOAP Policy?
	Previously Analyzed ``Simple'' SOAP Policies
	Newly Analyzed ``Complex'' SOAP Policies
	What Policies Are Not SOAP?

	SOAP Analysis: One Response Time Formula for All Rank Functions
	Warmup with Constant Ranks: Analyzing
	The Relevant System: What Delays the Tagged Job
	Handling Rank Increases: The Pessimism Principle
	Handling Rank Decreases: Analyzing the Impact of Recycled Jobs
	SOAP Response Time Formulas

	Work Decomposition Laws
	Total Work Decomposition
	Why Work Decomposition Is Useful for the k
	Relevant Work Decomposition

	Practical Preemption Limitations
	Limited Priority Levels
	Preemption Checkpoints

	Gittins vs. Simpler Substitutes
	Unknown Sizes: Use SERPT
	Multiclass Systems: Again, Use SERPT
	Size Estimates: Use for Low Noise, Ignore Estimates for High Noise

	Monotonic SERPT (M/SERPT)
	Problem: Bounding 's Mean Response Time
	Main Result: Is a 5/Approximation for Mean Response Time
	Approximation Ratio Lower Bounds for and

	Adapting SRPT to Noisy Job Size Estimates
	Problem: Can Perform Poorly Even under Low Noise
	Main Result: Adding a ``Bounce'' to SRPT Ensures Graceful Degradation
	 Has Natural Graceful Degradation

	Response Time Tail of SOAP Policies
	Problem: Analyzing the Asymptotic Response Time Tail
	Main Results: Conditions on a Rank Function that Ensure Tail Optimality
	Simultaneously Optimizing the Mean and Tail of Response Time
	Ensuring Tail Optimality when Scheduling with Preemption Checkpoints

	III WINE
	The Markov-Process Job Model
	Markov-Process Jobs
	Examples of Markov-Process Jobs and Holding Costs
	The Gittins Policy with Markov-Process Jobs

	WINE: Relating Gittins-Flavored Relevant Work to Holding Cost
	SRPT-Flavored WINE
	The Gittins Game
	Gittins-Flavored WINE

	(Approximate) Gittins's (Approximate) Optimality in the 1
	Optimality of Gittins
	Approximate Optimality of Approximate Gittins

	Response Time of Gittins in the k
	Main Result: Mean Response Time Bound for [k]
	Proof: Combining WINE and Relevant Work Decomposition

	IV Conclusion
	Conclusion
	Open Problems Solved
	Future Work

	Appendix
	Index of Notation
	General
	Distributions
	 Arrivals
	Queueing Metrics
	Scheduling Policies
	SOAP and Rank Functions
	Relevant Work and Related Concepts

	Bibliography

