
On Quadratically Constrained Quadratic Programs

and their Semidefinite Program Relaxations

Alex L. Wang

CMU-CS-22-116

June 15, 2022

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Fatma Kılınç-Karzan (Chair)

Samuel Burer (University of Iowa)

Pravesh Kothari

Ryan O’Donnell

Levent Tunçel (University of Waterloo)

Submitted in partial fulfillment of the requirements
for the Degree of Doctor of Philosophy

Copyright © 2022 Alex L. Wang

This research was sponsored in part by the National Science Foundation (CMMI 1454548) and the Office of Naval

Research (N00014-19-1-2321). The views and conclusions contained in this document are those of the author and

should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution,

the U.S. government or any other entity.

Keywords: quadratically constrained quadratic programs · semidefinite programs · quadratic

matrix programs · generalized trust-region subproblem · rank-one generated · simultaneous diago-

nalizability · first-order methods

For Mom, Dad, and Ben

Abstract

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization

problems. In a QCQP, we are asked to minimize a (possibly nonconvex) quadratic function

subject to a number of (possibly nonconvex) quadratic constraints. Quadratic matrix programs

(QMPs) are a related class of optimization problems where the quadratic objective and constraints

in the class of QCQPs are replaced by quadratic matrix functions. Both QCQPs and QMPs

are frequently encountered in practice and arise naturally in diverse areas of operations research,

computer science, and engineering. One may regard QMPs as QCQPs with additional structure.

Although QCQPs are NP-hard to solve in general, they admit a natural convex relaxation via the

standard (Shor) semidefinite program (SDP) relaxation.

The research in this thesis is guided by two fundamental questions related to the SDP relaxation

of a general QCQP: (1) What structures within a QCQP ensure that its SDP relaxation is accurate?

And, (2) What structures within a QCQP allow its SDP relaxation to be solved efficiently? These

two questions comprise the two parts of this thesis.

In contrast to prior work on SDP relaxations of QCQPs (which has focused largely on approx-
imation guarantees), Part 1 of this thesis asks when exactness occurs in the SDP relaxation of a

QCQP. In this direction, we develop a framework for understanding various forms of exactness:

(i) objective value exactness—the condition that the optimal value of the QCQP and the optimal

value of its SDP relaxation coincide, (ii) convex hull exactness—the condition that the convex hull

of the QCQP epigraph coincides with the (projected) SDP epigraph, and (iii) the rank-one gener-
ated (ROG) property—the condition that a particular conic subset of the positive semidefinite

cone related to a given QCQP is generated by its rank-one matrices. Our analysis for objective

value exactness and convex hull exactness stems from a geometric treatment of the projected SDP

relaxation and crucially considers how the objective function interacts with the constraints. The

ROG property complements these results by offering a sufficient condition for both objective

value exactness and convex hull exactness which is oblivious to the objective function.

Part 2 of this thesis seeks to develop new methods for solving large-scale QCQPs and their

SDP relaxations efficiently. In this direction, we develop new first-order methods (FOMs) for

solving the generalized trust-region subproblem (GTRS) and a broader class of SDPs with exactness

properties. Specifically, while the GTRS (the class of QCQPs with a single constraint) is known

to have an exact SDP relaxation, the large computational complexity of SDP-based algorithms

prevent them from being applied directly to the GTRS. We overcome this barrier by designing

FOMs for the GTRS that operate in the original space and possess accelerated linear convergence

rates. Perhaps surprisingly, we then show that similar algorithms can be extended to a wider class

of SDPs with structured low-rank solutions (e.g., the SDP relaxation of a QCQP or QMP with

exactness properties). These FOMs work in the space of the low-rank factorization of the matrix

variable and completely avoid storing full matrix variables. In this way, this thesis provides new

efficient FOMs for solving QCQPs and QMPs that can be applied whenever the SDP relaxation is

known to be exact. Additional work in Part 2 of this thesis studies various notions of simultaneous

diagonalizability of sets of quadratic forms. These new notions, specifically the almost SDC

and d-restricted SDC properties, seek to understand when a QCQP can be diagonalized after

arbitrarily small perturbations of the QCQP data or the introduction of additional variables. We

give complete characterizations of these properties in a few settings.

v

Acknowledgments

First and foremost, thank you Fatma for your energy and effort into making me a well-rounded

academic. You went above and beyond to show me the ropes of grad school and academia beyond

just the research. Thank you for introducing me to this fascinating area of research, for collaborating

with me on exciting projects, and for continuously challenging me to think of the impact of my

research. I could always count on you for sage advice on presentations, slides, talks, interviews, and

teaching and I know that I am better prepared for the next stage of my career because of the time

we spent together.

I have had the pleasure to work with and learn from a number of exceptional colleagues, pro-

fessors, and students. To my collaborators—Fatma, Rujun, Yunlei, C.J., Gary, Noel, Aravindan,

and Abhratanu: Thank you for being so eager to work and for cultivating a friendly collaborative

environment. Anupam: Thank you for being willing to chat about grad school and life whenever

I knocked on your door. I am grateful for your consistently level-headed advice and hope that I

can pay your kindness forward. To Deb: Thank you for all of the work that you put in behind the

scenes and your extreme professionalism. To my thesis committee—Fatma, Levent, Pravesh, Ryan,

and Sam: Thank you for your insightful comments and the wonderful conversations we have had.

I hope to continue to learn from you all.

To my roommates and office mates—Anson, Ellis, Jalani, Kevin, Mark—and all of my friends at

CMU and beyond: I cannot imagine surviving grad school without your company. Thank you for

all the coffee breaks, phone calls, hikes, trips, and dinners. I cherish these memories fondly.

Last, but most importantly, to my family: Thank you Mom, Dad, and Ben for all of your

warmth and love and for always being my biggest believers. Just as important as any of the lessons I

learned at CMU were the life lessons I learned from you. Without you, this thesis would never

have been possible. To Lucy: Thank you for your constant support, for your positivity and for

always believing in me. My days are invariably brighter for having you in them.

vii

Contents

Introduction 1

A preview of what is to come . 2

What’s new, what’s old? . 5

Notation . 6

I Solving QCQPs exactly 9

1 Objective value and convex hull exactness 11

1.1 Introduction . 11

1.2 A general framework . 16

1.3 Symmetries in QCQPs . 21

1.4 Convex hull results . 23

1.5 Exactness of the SDP relaxation . 36

1.6 Removing the polyhedrality assumption . 42

2 A geometric view of SDP exactness in QCQPs and its applications 45

2.1 Introduction . 45

2.2 Preliminaries . 50

2.3 Convex hull exactness . 54

2.4 Applications: Convex hull exactness . 59

2.5 Objective value exactness . 63

2.6 Applications: Objective value exactness . 68

3 Rank-one-generated cones 75

3.1 Introduction . 75

3.2 Properties of ROG cones . 81

3.3 Sufficient conditions . 89

3.4 Necessary conditions . 93

3.5 Applications of ROG cones . 101

II Solving QCQPs efficiently 113

4 The Generalized Trust Region Subproblem: solution complexity and

convex hull results 115

4.1 Introduction . 115

4.2 Convex hull characterization . 121

ix

Contents

4.3 Nonintersecting constraints . 130

4.4 Solving the convex reformulation in linear time 132

5 Implicit regularity in the generalized trust-region subproblem 149

5.1 Introduction . 149

5.2 Implicit Regularity in the GTRS . 153

5.3 Algorithms for the GTRS . 158

5.4 Numerical Experiments . 166

6 Accelerated first-order methods for a class of semidefinite programs 171

6.1 Introduction . 171

6.2 Strongly convex reformulations of k-exact SDPs 178

6.3 Algorithms for strongly convex QMMPs . 181

6.4 Solving k-exact SDPs via strongly convex QMMP algorithms 193

6.5 Numerical experiments . 198

7 Variants of simultaneous diagonalizability of quadratic forms 207

7.1 Introduction . 207

7.2 Preliminaries . 211

7.3 The ASDC property of symmetric pairs . 213

7.4 The ASDC property of nonsingular symmetric triples 222

7.5 Restricted SDC . 225

7.6 Obstructions to further generalization . 230

7.7 Applications to QCQPs . 233

Bibliography 245

Appendices 259

A Appendices for Chapter 1 . 259

B Appendices for Chapter 2 . 261

C Appendices for Chapter 3 . 268

D Appendices for Chapter 4 . 270

E Appendices for Chapter 5 . 277

F Appendices for Chapter 6 . 283

G Appendices for Chapter 7 . 286

x

List of Figures

1.1 The blue region (first row) is an example of the set Γ for some QCQP with two

constraints. Lemma 1 then states thatDSDP (the leftmost set on the second row)

is equal to the intersection of the sets {(x, t) ∈ Rn × R : q(γ, x) ≤ 2t} (the

remaining sets on the bottom row) over the extreme points γ of this blue region. 19

1.2 In each row above, we illustrate first the set

{
A(γ) ∈ S2 : γ ∈ R2

+
}

on the left

and the set Γ on the right. 24

1.3 The setsD (in orange) and conv(D) (in yellow) from Example 2 29

1.4 The set Γ with equality (orange) and inequality (yellow) constraints from Example 3 33

1.5 The sets conv(D) (in orange) andDSDP (in yellow) from Example 4 39

2.1 The setsS ,SSDP, Γ, and Γ◦
from Example 6 are shown in blue, green, orange, and

yellow respectively. By Lemma 10, (x, t) ∈ SSDP if and only if q(x)− 2te
obj
∈ Γ◦

. 53

3.1 A summary of Lemma 24 and Corollary 13 85

3.2 A summary of Lemma 29 and Corollary 14. 88

3.3 For n = 2, every point on the interior of Sn
+ has rank two and every point on

the boundary of Sn
+ has rank at most one. Condition (i) implies that T (M), is

either trivial or a ray in the boundary of Sn
+—this corresponds to the picture on

the left. Proposition 12 shows that when condition (i) is violated, T (M) is a ray

on the interior of Sn
+—this corresponds to the picture on the right. 96

3.4 The proof of Proposition 14 assumes that condition (i) in Theorem 17 does

not hold for {M1,M2} and constructs u1, u2, u3 ∈ Rn
such that the vectors

{(u⊺iM1ui, u
⊺
iM2ui)} ⊆ R2

are located as shown in the left figure. These

vectors certify that condition (i) in Theorem 17 does not hold for {M1,M2}.
Indeed, ifα1M1 +α2M2 ∈ Sn

+, then (α1, α2) must lie in the intersection of the

three halfspaces defined by the ui vectors (one such halfspace is shaded), whence

(α1, α2) = (0, 0). A key observation in the proof of Proposition 14 is that for all

x1, x2, x3 ∈ Rn
close enough tou1, u2, u3, the vectors{(x⊺iM1xi, x

⊺
iM2xi)} ⊆

R2
certify that condition (i) in Theorem 17 also does not hold for{(M1)W , (M2)W }

whereW = span({xi}). Again, the intersection of the corresponding halfspaces

is trivial. 98

4.1 The sets S (in orange) and S(γ−) ∩ S(γ+) (in yellow) from Example 16 127

xi

List of Figures

5.1 A comparison of the convex reformulations of the GTRS given in (5.4) and

Lemma 60. The first two figures depict an instance of the GTRS and its epigraph

(in blue). The third figure shows the epigraph of the convex reformulation of the

GTRS given in (5.4) (in red). The fourth figure shows the epigraph of a strongly

convex reformulation of the GTRS given by Lemma 60 (in red). 158

5.2 Comparison of algorithms for n = 103
. 169

5.3 Comparison of algorithms for n = 104
. 169

5.4 Comparison of algorithms for n = 105
. 170

6.1 CertSDP (Algorithm 10) produces a series of iterates γ(i) → γ∗
. For each γ(i)

,

CertSDP constructs a ball U (i)
around γ(i)

. Intuitively, we want to pick U (i)

to be the largest ball around γ(i)
for which we can solve the associated QMMP

efficiently, in hopes of enclosing γ∗
. We will thus choose U (i)

to satisfy certain

regularity estimates (see (6.11) and Lemma 75). At the minimum, we will ensure

A(γ) ⪰ µ̂/2 for all γ ∈ U (i)
. 194

6.2 Convergence plots comparing CertSDP, CSSDP, ProxSDP, and SCS for n− k =
103, 104, 105

. At each setting of n− k, we generate 10 instances of (6.12) and

plot the time and error of the solution returned by each algorithm. 202

6.3 Memory usage of different algorithms as a function of the size n − k. In this

chart, we plot 0.0 MB at 1.0 MB (see Remark 76 for a discussion on measuring

memory usage). 203

6.4 Comparison of convergence behavior between CertSDP (Algorithm 10) and

CSSDP. The first, second, and third rows show experiments with n− k = 103
,

104
, and 105

respectively. The right subplots give zoomed-in views of the primal

squared distance in CertSDP on the final call to Algorithm 9. 204

7.1 Comparison of SDPBB, SDCBB and eigBB for the case with k = 0. 240

7.2 Comparison of initial bound and time between SDP and SOCP relaxations for

instances of different dimensions. 241

7.3 Comparison of SDPBB, k-RSDCBB and eigBB for non-SDC instances. 243

xii

List of Tables

6.1 Experimental results for (n− k) = 103
(10 instances) with time limit 3× 103

seconds. 201

6.2 Experimental results for (n − k) = 104
(10 instances) with time limit 104

seconds. SCS was unable to complete a single iteration within the time limit and

utilized over 70GB of memory. 203

6.3 Experimental results for (n− k) = 105
(10 instances) with time limit 5× 104

seconds. SCS and ProxSDP are not tested as they both come to complete failure

due to memory allocation.
†
CSSDP failed due to numerical issues within the

eigenvalue computation on three instances. 203

7.1 Comparison of different SOCP-based BB methods for 1 < k < 5. In each row,

the solution method with the lowest solution time is highlighted. For instances

where all three methods time out (1800 seconds) before reaching optimality, the

solution method with the lowest objective value is highlighted. Two outliers are

highlighted in blue. 244

E.1 Average errors and solution times for n = 103
over 100 random instances for

each parameter combination. Note that errors are reported in units of 10−16
.

We call attention to the setting (N̄ , µ̄∗) = (105, 10−6). In this setting, the

fastest algorithm is BTH14. On the other hand, BTH14 also reports the highest error

of ≈ 10−7
. BTH14 is followed by AN19 which achieves slightly smaller error of

≈ 10−10
. While WLK21 is slightly slower than both of these algorithms it achieves

significantly smaller errors of≈ 10−16
. The results are similar for (N̄ , µ̄∗) =

(105, 10−4) as well. 283

E.2 Average errors and solution times for n = 104
over 100 random instances for

each parameter combination. Note that errors are reported in units of 10−16
. . 284

E.3 Average errors and solution times for n = 105
over 5 random instances for each

parameter combination. Note that errors are reported in units of 10−16
. 284

F.4 Preliminary experimental results for (n− k) = 103, 104, 105
(1 instance) with

time limit 3× 103, 104, 5× 104
seconds for a variant of SketchyCGAL. . . . 287

xiii

Introduction

Convex optimization has been influential in shaping data science and modern computing. This

subfield of optimization has found numerous applications in a variety of domains (e.g., machine

learning, statistics, signal processing, and engineering). Unfortunately, a growing number of

interesting problems encountered by data scientists, engineers, and the scientific community at

large are by nature highly nonconvex. Simultaneously, the convex optimization community has

begun to investigate more “high-powered” machinery (e.g., semidefinite programs or the sum-of-

squares hierarchy), much of which is at present considered impractical in large-scale applications.

This thesis attempts to address this divide by answering theoretical questions underpinning

the practical application of tools from convex optimization (specifically, semidefinite programs)

to interesting structured nonconvex problems (specifically, structured quadratically constrained

quadratic programs and quadratic matrix programs). The goal of this thesis is to understand when

certain nonconvex problems may be solved both accurately and efficiently, with a particular view

towards large-scale applications.

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of nonconvex

optimization problems that naturally arise in operations research, engineering, and computer

science; see [181] for additional applications of QCQPs. The ubiquity of this class of optimization

problems stems from its expressiveness: any {0, 1} integer program or polynomial optimization

problem may be recast as a QCQP (see [11, 25, 91] and references therein).

Quadratic matrix programs (QMPs) are a related class of optimization problems where the

quadratic objective function and constraints are replaced by quadratic matrix functions. This

class of problems finds additional applications in robust optimization, sphere-packing problems,

and statistics [17, 20]. The class of QCQPs and QMPs are in fact equivalent, i.e., we can write any

QCQP as a QMP and vice versa, however QCQPs derived from QMPs often possess additional

structure so that it will be useful to treat them as their own class.

It is well known that QCQPs (and, by extension, QMPs) are NP-hard to solve in general—indeed,

the NP-hard combinatorial problem max-cut can be readily recast as a QCQP. On the other

hand, the standard (Shor) semidefinite program (SDP) relaxation offers a natural tractable convex

relaxation for a general QCQP [161]. This convex relaxation is obtained by first reformulating the

QCQP in a lifted space with an additional rank constraint and then dropping the rank constraint.

In passing from the nonconvex QCQP to its convex SDP relaxation, there are two important

questions that must be addressed if SDPs are to be of practical importance in this setting:

Question 1. What structures within a QCQP ensure that its SDP relaxation is accurate?

Question 2. What structures within a QCQP allow its SDP relaxation to be solved efficiently?

These questions constitute the two parts of this thesis.

1

Introduction

A preview of what is to come

We now give an overview of the results and outline of this thesis. We will highlight only a small

subset of the background literature and discuss related work in more detail within the individual

chapters.

This thesis is predominantly interested in QCQPs and their SDP relaxations:

inf
x∈Rn

{
q

obj
(x) : qi(x) ≤ 0, ∀i ∈ [m]

}

≥ inf
Y ∈Sn+1


〈
M

obj
, Y
〉

:
⟨Mi, Y ⟩ ≤ 0, ∀i ∈ [m]

Y =
(
∗ ∗
∗ 1

)
⪰ 0

.
Here, for each i ∈ {obj} ∪ [m], we will write qi(x) = x⊺Aix+ 2b⊺i x+ ci for someAi ∈ Sn

,

bi ∈ Rn
, and ci ∈ R. Then, defining Mi :=

(
Ai bi

b⊺i ci

)
, we have that qi(x) =

〈
Mi,

(
xx⊺ x
x⊺ 1

)〉
so that the SDP relaxation is indeed a relaxation of the QCQP. We emphasize that any or all of

q
obj
, q1, . . . , qm may be nonconvex.

In a sense, all of the work in this thesis begins with the generalized trust-region subproblem

(GTRS). The GTRS is the special class of QCQPs with exactly one constraint:

inf
x∈Rn

{
q

obj
(x) : q1(x) ≤ 0

}
.

Furthermore, it is standard to assume
1

the existence of some γ̂ ≥ 0 such thatA
obj

+ γ̂A1 ≻ 0.

This unassuming problem is in fact quite intriguing from a theoretical perspective—the GTRS

is one of few problems that, despite its nonconvex presentation, can be solved both exactly and

efficiently even in large-scale settings via convex optimization tools.

We note some interesting properties related to exactness in the GTRS and how we extend them

to the broader class of QCQPs:

• (Chapters 1 and 2). The optimum value of the GTRS coincides with the optimal value of

its SDP relaxation. That is,

min
x∈Rn

{
q

obj
(x) : q1(x) ≤ 0

}
= min

Y ∈Sn+1


〈
M

obj
, Y
〉

:
⟨M1, Y ⟩ ≤ 0

Y =
(
∗ ∗
∗ 1

)
⪰ 0

,

1

This assumption is standard [2, 95, 180] and is equivalent to requiring that the dual of the SDP relaxation is strictly

feasible.

2

A preview of what is to come

where Mi =
(

Ai bi

b⊺i ci

)
for each i ∈ {obj, 1}. Furthermore, the epigraph of the GTRS

coincides with the epigraph of the (projected) SDP relaxation. That is

conv
({

(x, t) : q
obj

(x) ≤ t
q1(x) ≤ 0

})
=


(x, t) :

∃Y ∈ Sn+1 :〈
M

obj
, Y
〉
≤ t

⟨M1, Y ⟩ ≤ 0

Y =
(
∗ x
x⊺ 1

)
⪰ 0


.

In words, we say that objective value exactness and convex hull exactness hold for the GTRS.

Objective value exactness is interesting for straightforward reasons—it allows us to reduce

computing the optimum value of the nonconvex GTRS to solving an SDP. Convex hull

exactness is a natural sufficient condition for objective value exactness but is also interesting

in its own right. Specifically, such results are routinely used within state-of-the-art compu-

tational approaches for mixed integer linear and nonlinear programs [49, 171] to produce

good convex relaxations of more complicated problems.

These equivalences can (and perhaps should) be quite surprising at first. Indeed, both forms

of exactness break even in the presence of just two constraints.

A recent line of work investigates when these forms of exactness hold in the presence of more

constraints [37, 38, 87, 111, 112, 167]. We continue this line of work in Chapters 1 and 2

where we develop a framework for analyzing these forms of exactness, unifying a number

of previous results. As examples, we show that convex hull exactness holds for vectorized

reformulations of certain QMPs or other highly symmetric QCQPs, and that objective

value exactness holds for sign-definite QCQPs or random under-constrained QCQPs.

• (Chapter 3). One method of proving both objective value exactness and convex hull exactness

for the GTRS relies on the celebrated S-lemma [67]. The S-lemma can be interpreted as the

statement that the cone {
Y ∈ Sn

+ : ⟨M1, Y ⟩ ≤ 0
}

is rank-one generated for any M1 ∈ Sn
. That is, all extreme rays of the above cone are

generated by rank-one matrices. As before, the analogous statement does not necessarily

hold when we move from a single linear matrix inequality (LMI) to even just two. Related

work in this direction has proved bounds on the rank of extreme rays of cones defined by

LMIs [16, 69, 141], proved ROG results for variants of the trust-region subproblem [33, 37],

and given a complete characterization of ROG cones defined by linear matrix equality
(LME) constraints [29, 83].

In Chapter 3, we continue this line of work by investigating the ROG property of cones

defined by LMIs. We remark that the ROG property of cones defined by LMIs does not

follow from the analogous theory for LMEs. As one of our main results, we give a complete

characterization of the ROG property for cones defined by two LMIs. We additionally

3

Introduction

present some applications of the ROG property to QCQPs and optimization problems

involving ratios of quadratic functions.

The GTRS also possesses a number of useful properties that allow it to be solved efficiently

(without explicitly solving its SDP relaxation). We note some of these properties and how we

extend to them to the broader class of QCQPs:

• (Chapters 4 and 5). In Chapters 4 and 5, we develop two new algorithms for solving the

GTRS via FOMs. These methods are particularly suited to solving large-scale GTRS that

are sparse or well-structured instances (so that matrix-vector multiplications are cheap).

The first algorithm (Chapter 4) observes that both the optimizer and the optimum value

of the GTRS (where both the objective function and constraint are nonconvex) can be

recovered from the optimal solution to a convex quadratic-linear minimax problem:

min
x∈Rn

max
γ∈Γ

(
q

obj
(x) + γq1(x)

)
.

Here, Γ :=
{
γ ∈ R+ : A

obj
+ γA1 ⪰ 0

}
= [γ−, γ+] is a bounded interval. This refor-

mulation was previously noted in [94]. We then show how to apply Nesterov’s accelerated

gradient descent method for minimax functions [132] to the resulting minimax problem.

The FOM developed and analyzed in Chapter 4 is iterative and requires only a constant

number of matrix-vector multiplications per iteration. As such, its running time scales

linearly with the sparsity of the GTRS instance (i.e., the sparsity of the Hessians in q
obj

and

q1). This FOM has a sublinear convergence rate of Õ
(
ϵ−1/2

)
and improves upon previous

state-of-the-art [94, 95]. Our convergence rate also matches the convergence rate of the

Lanczos method for computing a minimum eigenvalue [103] or the accelerated gradient

descent method for smooth convex functions [132] (up to log-factors) .

Perhaps surprisingly, in Chapter 5 we show that it is almost always possible to improve

these algorithms to achieve linear convergence rates, i.e., convergence rates of the form

O(log(ϵ−1)). The key observation here is that for almost all GTRS instances [5], the

optimizer γ∗
of the dual problem:

max
γ∈Γ

inf
x∈Rn

(
q

obj
(x) + γq1(x)

)
satisfies A

obj
+ γ∗A1 ≻ 0. In particular, by picking a smaller interval γ∗ ∈ [γ̃−, γ̃+] ⊆{

γ ∈ R+ : A
obj

+ γA1 ≻ 0
}

, we may introduce strong convexity into the minimax prob-

lem. These ideas lead to a new FOM that requires onlyO
(
(µ∗)−1/2 log(ϵ−1)

)
iterations

to converge to an ϵ-optimal solution. Here µ∗ ≈ λmin
(
A

obj
+ γ∗A1

)
. These rates match

those of the Krylov subspace method for the trust-region subproblem [41] (up to log-

factors).

• (Chapter 6). In Chapter 6, we extend the algorithm in Chapter 5 to a more general class of

SDPs. This class of SDPs, which we refer to as rank-k exact QMP-like SDPs, is characterized

4

What’s new, what’s old?

by solutions with rank k, a priori knowledge of the restriction of the SDP solution to a k-

dimensional subspace, and standard regularity assumptions such as strict complementarity.

We show that similar to the GTRS setting, in the rank-k exact QMP-like SDP setting, it is

possible to construct a strongly convex minimax problem whose optimizer coincides with a

factorization of the SDP optimizer. We then develop FOMs for constructing the strongly

convex minimax problem and subsequently solving it. The overall FOM requires roughly

O
(
log
(
ϵ−1))

calls to a prox-map oracle, or, roughlyO
(
ϵ−1)

matrix-vector multiplications.

Furthermore, in contrast to standard methods for solving SDPs, which require O(n2)
storage to keep track of matrix iterates, our algorithm requires onlyO(nk) storage where

k is the rank of the true SDP solution. This builds upon a recent line of work on storage-

optimal FOMs for SDPs [60, 198] but significantly improves the convergence rate.

• (Chapter 7). Under a standard assumption, it is well-known that the GTRS is separable [21,

88]. That is, there exists an invertibleP ∈ Rn×n
such thatP ⊺A

obj
P andP ⊺A1P are both

diagonal. This property, the simultaneously diagonalizable via congruence (SDC) property,

is useful from a computational perspective as the SDP relaxation of a diagonal QCQP

(one where allAi matrices are diagonal) can be rewritten as a second-order cone program

(SOCP).

In Chapter 7, we investigate variants of simultaneous diagonalizability. These variants allow

us to extend the reach of the SDC property to QCQPs that are a priori not diagonalizable.

Specifically, the almost SDC property seeks to understand QCQPs that may be diagonalized

after arbitrarily small perturbations and the restricted SDC property seeks to understand

QCQPs that that admit diagonalizable lifted formulations obtained by introducing a small

number of additional variables. In this direction, we give complete characterization of these

properties in a few settings. Of particular interest, we show that any pair of symmetric

matrices may be diagonalized after arbitrarily small perturbations or with the introduction

of a single additional variable.

What’s new, what’s old?

The work in this thesis has appeared in various forms and is almost entirely verbatim from the

following articles.

Chapter 1:

A. L. Wang and F. Kılınç-Karzan. On convex hulls of epigraphs of QCQPs. In Integer
Programming and Combinatorial Optimization (IPCO 2020), pages 419–432, 2020

A. L. Wang and F. Kılınç-Karzan. On the tightness of SDP relaxations of QCQPs. Math.
Program., 193:33–73, 2022

5

Introduction

Chapter 2:

A. L. Wang and F. Kılınç-Karzan. A geometric view of SDP exactness in QCQPs and its

applications. arXiv preprint, 2011.07155, 2020

Chapter 3:

C.J. Argue, F. Kılınç-Karzan, and A. L. Wang. Necessary and sufficient conditions for rank-

one generated cones. Math. Oper. Res., 2022. Forthcoming, arXiv preprint, 2007.07433

F. Kılınç-Karzan and A. L. Wang. Exactness in SDP relaxations of QCQPs: Theory and

applications. Tut. in Oper. Res. 2021

J. Wang, W. Huang, R. Jiang, X. Li, and A. L. Wang. Solving stackelberg prediction

game with least squares loss via spherically constrained least squares reformulation. In

International Conference on Machine Learning, 2022. Forthcoming

Chapter 4:

A. L. Wang and F. Kılınç-Karzan. The generalized trust region subproblem: solution

complexity and convex hull results. Math. Program., 191:445–486, 2022

Chapter 5:

A. L. Wang, Y. Lu, and F. Kılınç-Karzan. Implicit regularity and linear convergence rates for

the generalized trust-region subproblem. arXiv preprint, 2112.13821, 2021

Chapter 6:

A. L. Wang and F. Kılınç-Karzan. Accelerated first-order methods for a class of semidefinite

programs. arXiv preprint, 2206.00224, 2022

Chapter 7:

A. L. Wang and R. Jiang. New notions of simultaneous diagonalizability of quadratic forms

with applications to QCQPs. arXiv preprint, 2101.12141, 2021

As much of the material has appeared previously, we explicitly indicate any new material in

framed boxes . . .

. . . like so.

Notation

For nonnegative integersm ≤ n, define [n] := {1, . . . , n} and [m,n] := {m,m+ 1, . . . , n}.
Let R+ denote the nonnegative reals and R++ the positive reals. For i ∈ [n], let ei ∈ Rn

denote

the ith standard basis vector. Let Sn−1 = {x ∈ Rn : ∥x∥ = 1} denote the n− 1 sphere. Let Sn

denote the set of real symmetricn×nmatrices andSn
+ (resp.Sn

++) the cone of positive semidefinite

6

Notation

(resp. positive definite) matrices. We writeA ⪰ 0 (resp.A ≻ 0) ifA is positive semidefinite (resp.

positive definite). Let λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of

A. GivenM ∈ Rm×n
, let range(M) and ker(M) denote the range and kernel ofM respectively.

Whenm = n, let tr(M) denote the trace ofM . Let 0n, In ∈ Sn
denote the n× n zero matrix

and identity matrix respectively; we will simply write 0 or I when the dimension is clear. We will

also let 0n ∈ Rn
denote the zero vector; whether 0 or 0n is a scalar, vector, or matrix will be clear

from context. For a ∈ Rn
, let Diag(a) denote the diagonal matrixA ∈ Sn

with diagonal entries

Ai,i = ai. We endow Sn
with the inner product ⟨A,B⟩ := tr(A⊺B). GivenW a subspace of

Rn
with dimension k, a surjective mapU : Rk →W andA ∈ Sn

, letAW denote the restriction

ofA toW , i.e.,AW = U⊺AU . When U is inconsequential, we will omit specifying it. We will

use Õ-notation to hide log log-factors. Given u ∈ W and v ∈ W⊥
, let u ⊕ v denote their

direct sum. For A ∈ Sn
and B ∈ Sm

, let A ⊕ B ∈ Sn+m
and A ⊗ B ∈ Snm

denote the

direct sum and Kronecker product of A and B respectively. For a subsetD of some Euclidean

space (e.g., Rn
or Sn

) letD◦
, int(D), rint(D), extr(D), cl(D), conv(D), clconv(D), cone(D),

clcone(D), span(D), aff(D), dim(D), aff dim(D) andD⊥
denote the polar, interior, relative

interior, extreme points, closure, convex hull, closed convex hull, conic hull, closed conic hull, linear

hull, affine hull, dimension, affine dimension, and orthogonal complement ofD, respectively.

7

Part I

What structures within a QCQP ensure

that its SDP relaxation is accurate?

9

1 Objective value and convex hull

exactness

This chapter is based on joint work [178, 181] with Fatma Kılınç-Karzan.

This chapter studies conditions under which the standard semidefinite program (SDP) relaxation

of a quadratically constrained quadratic program (QCQP) possesses exactness properties. We

begin by outlining a general framework for proving such sufficient conditions. Then, using this

framework, we show that the SDP relaxation possesses objective value exactness whenever the

quadratic eigenvalue multiplicity, a parameter capturing the amount of symmetry present in a

given problem, is large enough. We present similar sufficient conditions for convex hull exactness,
i.e., the condition that the projected epigraph of the SDP gives the convex hull of the epigraph

in the original QCQP. Our results also imply new sufficient conditions for the tightness (as well

as convex hull exactness) of a second order cone program (SOCP) relaxation of simultaneously

diagonalizable QCQPs.

1.1 Introduction

This chapter will write a general QCQP in the following form

Opt := inf
x∈RN

{
q0(x) : qi(x) ≤ 0, ∀i ∈ [mI]

qi(x) = 0, ∀i ∈ [mI + 1,mI +mE]

}
, (1.1)

where for every i ∈ [0,mI +mE], the function qi : RN → R is a (possibly nonconvex) quadratic

function. We will write qi(x) = x⊺Aix + 2b⊺i x + ci where Ai ∈ SN
, bi ∈ RN

, and ci ∈ R.

HeremI andmE are the number of inequality constraints and equality constraints respectively.

We will assume thatm := mI +mE ≥ 1.

There is a vast literature on approximation guarantees for the standard (Shor) SDP relaxation

[22, 121, 129, 161, 193], however, less is known about its exactness. Recently, a number of exciting

results in phase retrieval [40] and clustering [1, 122, 153] have shown that under various assump-

tions on the data (or on the parameters in a random data model), the QCQP formulation of the

corresponding problem has a tight SDP relaxation. See also [117] and references therein for more

examples of exactness results regarding SDP relaxations. In contrast to these results, which address

QCQPs arising from particular problems, Burer and Ye [38] very recently gave some appealing

deterministic sufficient conditions under which the standard SDP relaxation of general QCQPs

is tight. In this chapter, we continue this vein of research for general QCQPs initiated by Burer

and Ye [38]. More precisely, we will provide sufficient conditions under which the following two

types of results hold: 1) The convex hull of the epigraph of the QCQP is given by the projection

11

1 Objective value and convex hull exactness

of the epigraph of its SDP relaxation, 2) the optimal objective value of the QCQP is equal to the

optimal objective value of its SDP relaxation. We will refer to these two types of results as “convex

hull results” and “SDP tightness results.”

The convex hull results will necessarily require stronger assumptions than the SDP tightness

results, however they are also more broadly applicable because such convex hull results are typically

used as building blocks to derive strong convex relaxations for complex problems. In fact, the

convexification of commonly occurring substructures has been critical in advancing the state-

of-the-art computational approaches and software packages for mixed integer linear programs

and general nonlinear nonconvex programs [49, 171]. For computational purposes, conditions

guaranteeing simple convex hull descriptions are particularly favorable. As we will discuss later, a

number of our sufficient conditions will guarantee not only the desired convex hull results but

also that these convex hulls are given by a finite number of easily computable convex quadratic

constraints in the original space of variables.

1.1.1 Relatedwork

Convex hull results

Convex hull results are well-known for simple QCQPs such as the Trust Region Subproblem (TRS)

and the Generalized Trust Region Subproblem (GTRS). Recall that the TRS is a QCQP with a

single strictly convex inequality constraint and that the GTRS is a QCQP with a single (possibly

nonconvex) inequality constraint. A celebrated result due to Fradkov and Yakubovich [67] implies

that the SDP relaxation of the GTRS is tight. More recently, Ho-Nguyen and Kılınç-Karzan [87]

showed that the convex hull of the TRS epigraph is given exactly by the projection of the SDP

epigraph. Follow-up work by Wang and Kılınç-Karzan [180] showed that the (closed) convex hull

of the GTRS epigraph is also given exactly by the projection of the SDP epigraph. In both cases,

the projections of the SDP epigraphs can be described in the original space of variables with at

most two convex quadratic inequalities. As a result, the TRS and the GTRS can be solved without

explicitly running costly SDP-based algorithms; see [2, 94, 95] for other algorithmic ideas to solve

the TRS and GTRS.

A different line of research has focused on providing explicit descriptions for the convex hull of

the intersection of a single nonconvex quadratic region with convex sets (such as convex quadratic

regions, second-order cones (SOCs), or polytopes) or with another single nonconvex quadratic

region. For example, the convex hull of the intersection of a two-term disjunction, which is a

nonconvex quadratic constraint under mild assumptions, and the second-order cone (SOC) or its

cross sections has received much attention in mixed integer programming (see [35, 101, 196] and

references therein). Burer and Kılınç-Karzan [35] also studied the convex hull of the intersection

of a general nonconvex quadratic region with the SOC or its cross sections. Yıldıran [195] gave

an explicit description of the convex hull of the intersection of two strict quadratic inequalities

(note that the resulting set is open) under the mild regularity condition that there exists µ ∈ [0, 1]
such that (1− µ)A0 + µA1 ⪰ 0. Follow-up work by Modaresi and Vielma [123] gave sufficient

conditions guaranteeing a closed version of the same result. More recently, Santana and Dey [156]

gave an explicit description of the convex hull of the intersection of a nonconvex quadratic region

with a polytope; this convex hull was further shown to be second-order cone representable. In

contrast to these results, we will not limit the number of nonconvex quadratic constraints in our

12

1.1 Introduction

QCQPs. Additionally, the nonconvex sets that we study in this chapter will arise as epigraphs of

QCQPs. In particular, the epigraph variable will play a special role in our analysis. Therefore, we

view our developments as complementary to these results.

The convex hull question has also received attention for certain strengthened relaxations of

simple QCQPs [33, 34, 37, 167]. In this line of work, the standard SDP relaxation is strengthened

by additional inequalities derived using the Reformulation-Linearization Technique (RLT). Sturm

and Zhang [167] showed that the standard SDP relaxation strengthened with an additional SOC

constraint derived from RLT gives the convex hull of the epigraph of the TRS with one additional

linear inequality. Burer and Yang [37] extended this result to the case of an arbitrary number of

additional linear inequalities as long as the linear constraints do not intersect inside the trust region

domain. See [33] for a survey of some results in this area. Note that in this chapter, we restrict

our attention to the standard SDP relaxation of QCQPs. Nevertheless, establishing exactness

conditions for strengthened SDP relaxations of QCQPs is clearly of great interest and is a direction

for future research.

SDP tightness results

A number of SDP tightness results are known for variants of the TRS.

Jeyakumar and Li [92] showed that the standard SDP relaxation of the TRS with additional

linear inequalities is tight under a condition regarding the dimension of the minimum eigenvalue
1

ofA0. These results were extended in the same paper to handle multiple convex quadratic inequality

constraints with the same sufficiently rank-deficient quadratic form (see [92, Section 6]). Ho-

Nguyen and Kılınç-Karzan [87] presented a sufficient condition for tightness of the SDP relaxation

that is slightly more general than [92, Section 6] (see Ho-Nguyen and Kılınç-Karzan [87, Section

2.2] for a comparison of these conditions). A related line of work by Ye and Zhang [194] and Beck

and Eldar [18] gives sufficient conditions under which the TRS with one additional quadratic

inequality constraint admits a tight SDP relaxation. In contrast to this line of work, our results

will address the SDP tightness question in the context of more general QCQPs.

In terms of SDP tightness results, simultaneously diagonalizable QCQPs (SD-QCQPs) have

received separate attention [21, 93, 111, 112]. It is shown in [112, Theorem 2.1] that for SD-QCQPs,

the SDP relaxation is equivalent to a SOC program (SOCP) relaxation (see also Proposition 1). In

particular, the KKT-based sufficient conditions that have been presented for SOCP tightness in

[21, 111] also guarantee SDP tightness. We will present SDP tightness results (Theorems 3 and 4)

that generalize some of the conditions presented in this line of work. More specifically, our results

will not make use of simultaneous diagonalizability assumptions.

A series of articles beginning with Beck [17] and Beck et al. [20] has derived SDP tightness

results for quadratic matrix programs (QMPs). A QMP is an optimization problem of the form

inf
X∈Rn×k

tr(X⊺A0X) + 2 tr(B⊺
0X) + c0 :

tr(X⊺AiX) + 2 tr(B⊺
i X) + ci ≤ 0,
∀i ∈ [mI]

tr(X⊺AiX) + 2 tr(B⊺
i X) + ci = 0,

∀i ∈ [mI + 1,m]

,
1

More precisely, this is the minimum generalized eigenvalue of A0 with respect to the positive definite quadratic form

in the constraint.

13

1 Objective value and convex hull exactness

whereAi ∈ Sn
, Bi ∈ Rn×k

, and ci ∈ R, and arises often in robust least squares or as a result

of Burer-Monteiro reformulations for rank-constrained semidefinite programming [17, 36]. In

this research vein, Beck [17] showed that a carefully constructed SDP relaxation of QMP is tight

wheneverm ≤ k. Note that by replacing the matrix variableX ∈ Rn×k
by the vector variable

x ∈ Rnk
, we may reformulate any QMP as a QCQP of a very particular form. Working backwards,

if a QCQP can be reformulated as a QMP withm ≤ k, then we may apply the SDP relaxation

proposed in [17] to solve it exactly. We will discuss how such a condition compares with our

assumptions in Section 1.3.

In a recent intriguing paper, Burer and Ye [38] gave a sufficient condition guaranteeing that the

standard SDP relaxation of general QCQPs is tight. We emphasize that in contrast to prior work,

the condition proposed in [38] can be applied to general QCQPs. Then, motivated by recent results

on exactness guarantees for specific recovery problems with random data and sampling, Burer and

Ye [38] also examined a class of random QCQPs and established that if the number of constraints

m grows no faster than any fixed polynomial in the number of variablesN , then their sufficient

condition holds with probability approaching one. In particular, the SDP relaxation is tight with

probability approaching one. The SDP tightness results that we present (Theorems 3 and 4) will

generalize their deterministic sufficient condition [38, Theorem 1]. As such, their proofs directly

imply that our sufficient conditions also hold with probability approaching one in their random

data model.

Remark 1. In Chapter 2, we will see new exactness results for both random and semi-

random QCQPs (see Propositions 9 and 10). □

1.1.2 Overview and outline of chapter

In contrast to the literature, which has mainly focused on simple QCQPs or QCQPs under certain

structural assumptions, in this chapter, we will consider general QCQPs and develop sufficient

conditions for both the convex hull result and the SDP tightness result.

We first introduce the epigraph of the QCQP by writing

Opt = inf
(x,t)∈RN+1

{2t : (x, t) ∈ D},

whereD is the epigraph of the QCQP in (1.1), i.e.,

D :=

(x, t) ∈ RN × R :
q0(x) ≤ 2t
qi(x) ≤ 0, ∀i ∈ [mI]
qi(x) = 0, ∀i ∈ [mI + 1,m]

. (1.2)

As (x, t) 7→ 2t is linear, we may replace the (potentially nonconvex) epigraphD with its convex

hull conv(D). Then,

Opt = inf
(x,t)∈RN+1

{2t : (x, t) ∈ conv(D)}.

14

1.1 Introduction

A summary of our contributions, along with an outline of the chapter, is as follows:

i In Section 1.2, we introduce and study the standard SDP relaxation of QCQPs [161] along

with its optimal value Opt
SDP

and projected epigraphDSDP. We set up a framework for

deriving sufficient conditions for the “convex hull result,” conv(D) = DSDP, and the “SDP

tightness result,” Opt = Opt
SDP

. This framework is based on the Lagrangian function

(γ, x) 7→ q0(x) +
∑m

i=1 γiqi(x) and the eigenvalue structure of a dual object Γ ⊆ Rm
.

This object Γ, which consists of the convex Lagrange multipliers, has been extensively

studied in the literature (see [188, Chapter 13.4] and more recently [159]).

ii In Section 1.3, we define an integer parameter k, the quadratic eigenvalue multiplicity,

that captures the amount of symmetry in a given QCQP. We then give examples where the

quadratic eigenvalue multiplicity is large. Specifically, vectorized reformulations of quadratic

matrix programs [17] are such an example.

iii In Section 1.4, we use our framework to derive sufficient conditions for the convex hull

result: conv(D) = DSDP. Theorem 2 states that if Γ is polyhedral and k is sufficiently

large, then conv(D) = DSDP. This theorem actually follows as a consequence of The-

orem 1, which replaces the assumption on the quadratic eigenvalue multiplicity with a

weaker assumption regarding the dimension of zero eigenspaces related to the matrices

Ai. Furthermore, our results in this section establish that if Γ is polyhedral, thenDSDP is

SOC representable; see Remark 8. In particular, when the assumptions of Theorems 1 or 2

hold, we have that conv(D) = DSDP is SOC representable. In Section 1.4.1, we provide

several classes of problems that satisfy the assumptions of these theorems. In particular, we

recover a number of results regarding the TRS [87], the GTRS [180], and the solvability

of systems of quadratic equations [15]. In Section 1.4.2, we compare our assumption that

Γ is polyhedral with the assumption that the QCQP is an SD-QCQP and show that our

assumption is strictly more general. In Section 1.4.2, we prove that the SOCP relaxation

of SD-QCQPs considered by [21] and Locatelli [111, 112] is indeed equivalent to the SDP

relaxation. Consequently, this allows us to recover some of the results from [21, 111, 112] as

a consequence of our sufficient conditions (see Section 1.5.1). In Section 1.4.3, we conclude

by showing that the dependence we prove on the quadratic eigenvalue multiplicity k is

optimal (Propositions 2 and 3).

iv In Section 1.5, we use our framework to derive sufficient conditions for the SDP tightness

result: Opt = Opt
SDP

. Specifically, Theorems 3 and 4 give generalizations of the conditions

introduced by Locatelli [112] for SDP tightness in a variant of the TRS and Burer and Ye

[38] for SDP tightness in diagonal QCQPs.

v In Section 1.6, we discuss the assumption that the dual object Γ is polyhedral. In particular,

we show that it is possible to recover both a convex hull result (Theorem 7) and an SDP

tightness result (Theorem 8) when this assumption is dropped as long as the quadratic

eigenvalue multiplicity k is sufficiently large.

To the best of our knowledge, our results are the first to provide a unified explanation of many

of the exactness guarantees present in the literature. Moreover, our results also provide significant

15

1 Objective value and convex hull exactness

generalizations in a number of settings. We discuss the relevant comparisons in detail in the

corresponding sections as outlined above. Finally, our results present the first sufficient conditions

under which the convex hull of the epigraph of a general QCQP is SOC representable.

1.1.3 Additional notation

Let B(x̄, r) = {x ∈ Rn : ∥x− x̄∥ ≤ r} denote the n-ball with radius r and center x̄. For a

subspace of V of Rn
and x ∈ Rn

, let ΠV x denote the projection of x onto V .

1.2 A general framework

In this section, we introduce a general framework for analyzing the standard Shor SDP relaxation

of QCQPs. We will examine how both the objective value and the feasible domain change when

moving from a QCQP to its SDP relaxation.

We make an assumption that can be thought of as a primal feasibility and dual strict feasibility

assumption. This assumption (or a slightly stronger version of it) is standard and is routinely made

in the literature on QCQPs (see for example [17, 24, 194]).

Assumption 1. Assume the feasible region of (1.1) is nonempty and there exists γ∗ ∈ Rm
such

that γ∗
i ≥ 0 for all i ∈ [mI] andA0 +

∑m
i=1 γ

∗
i Ai ≻ 0. □

Remark 2. By the continuity of γ 7→ λmin(A0 +
∑m

i=1 γiAi), we may assume without loss of

generality that γ∗
i > 0 for all i ∈ [mI]. □

The standard SDP relaxation of (1.1) takes the following form

Opt
SDP

:= inf
x∈RN ,X∈SN


⟨Q0, Y ⟩ :

Y :=
(

1 x⊺

x X

)
⟨Qi, Y ⟩ ≤ 0, ∀i ∈ [mI]
⟨Qi, Y ⟩ = 0, ∀i ∈ [mI + 1,m]
Y ⪰ 0


. (1.3)

Here,Qi ∈ SN+1
is the matrixQi :=

(
ci b⊺i
bi Ai

)
. LetDSDP denote the epigraph of (1.3) projected

onto the (x, t) variables, i.e., define

DSDP
:=


(x, t) ∈ RN+1 :

∃X ∈ SN :

Y :=
(

1 x⊺

x X

)
⟨Q0, Y ⟩ ≤ 2t
⟨Qi, Y ⟩ ≤ 0, ∀i ∈ [mI]
⟨Qi, Y ⟩ = 0, ∀i ∈ [mI + 1,m]
Y ⪰ 0


. (1.4)

By takingX = xx⊺ in both (1.3) and (1.4), we see thatD ⊆ DSDP and Opt ≥ Opt
SDP

. Noting

thatDSDP is convex (it is the projection of a convex set), we further have that conv(D) ⊆ DSDP.

The framework that we set up in the remainder of this section allows us to reason about when

16

1.2 A general framework

equality occurs in both relations, i.e., when conv(D) = DSDP and/or Opt = Opt
SDP

. We will

refer to these two types of result as “convex hull results” and “SDP tightness results.”

1.2.1 Rewriting the SDP in terms of a dual object

For γ ∈ Rm
, define

A(γ) := A0 +
m∑

i=1
γiAi, b(γ) := b0 +

m∑
i=1

γibi, c(γ) := c0 +
m∑

i=1
γici,

q(γ, x) := q0(x) +
m∑

i=1
γiqi(x).

It is easy to verify that q(γ, x) = x⊺A(γ)x + 2b(γ)⊺x + c(γ). Our framework for analyzing

(1.3) is based on the dual object

Γ :=
{
γ ∈ Rm : A(γ) ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}
.

We begin by rewriting bothDSDP and Opt
SDP

to highlight the role played by Γ.

Lemma 1. Suppose Assumption 1 holds. Then

DSDP =
{

(x, t) : sup
γ∈Γ

q(γ, x) ≤ 2t
}

and Opt
SDP

= min
x∈RN

sup
γ∈Γ

q(γ, x).

We note that the second identity in Lemma 1 is well-known and was first recorded by Fujie and

Kojima [71].

Proof. The second identity follows immediately from the first identity, thus it suffices to prove

only the former.

Fix x̂ and consider the SDP

inf
X∈SN


⟨Q0, Y ⟩ :

Y :=
(

1 x̂⊺

x̂ X

)
⟨Qi, Y ⟩ ≤ 0, ∀i ∈ [mI]
⟨Qi, Y ⟩ = 0, ∀i ∈ [mI + 1,m]
Y ⪰ 0


. (1.5)

Comparing programs (1.4) and (1.5), we see that (x̂, t̂) ∈ DSDP if and only if the value 2t̂ is

achieved in (1.5). The dual SDP to (1.5) is given by

sup
γ∈Rm,t∈R,y∈RN

2t+ 2⟨y, x̂⟩ :

(
c(γ)− 2t b(γ)⊺ − y⊺
b(γ)− y A(γ)

)
⪰ 0

γi ≥ 0, ∀i ∈ [mI]

. (1.6)

17

1 Objective value and convex hull exactness

Note that the first constraint in the dual SDP can only be satisfied if A(γ) ⪰ 0. We may thus

rewrite

(1.6) = sup
γ∈Rm,t∈R,y∈RN

2t+ 2⟨y, x̂⟩ :

(
1
x

)⊺(
c(γ)− 2t b(γ)⊺ − y⊺
b(γ)− y A(γ)

)(
1
x

)
≥ 0, ∀x ∈ RN

γ ∈ Γ


= sup

γ∈Rm,t∈R,y∈RN

{
2t+ 2⟨y, x̂⟩ : q(γ, x)− 2⟨y, x⟩ ≥ 2t, ∀x ∈ RN

γ ∈ Γ

}
= sup

γ∈Γ,y∈RN

inf
x∈RN

q(γ, x) + 2⟨y, x̂− x⟩.

We first consider the case that the value of the dual SDP (1.6) is bounded. Assumption 1 and

Remark 2 imply that (1.6) is strictly feasible. Then by strong conic duality, the primal SDP (1.5)

achieves its optimal value and in particular must be feasible. Let γ∗
be such thatA(γ∗) ≻ 0 (this

exists by Assumption 1) and let y∗ = 0. Then,

lim
∥x∥→∞

q(γ∗, x) + 2⟨y∗, x̂− x⟩ = lim
∥x∥→∞

q(γ∗, x) =∞.

In other words,x 7→ q(γ∗, x)+2⟨y∗, x̂− x⟩ is coercive and we may apply the Minimax Theorem

[62, Chapter VI, Proposition 2.3] to get

(1.5) = (1.6) = min
x∈RN

sup
γ∈Γ,y∈RN

q(γ, x) + 2⟨y, x̂− x⟩ = sup
γ∈Γ

q(γ, x̂).

The last equation follows as for any x ̸= x̂, the supremum may take y arbitrarily large in the

direction of x̂− x. We conclude that if the value of the dual SDP (1.6) is bounded, then

(x̂, t̂) ∈ DSDP ⇐⇒ sup
γ∈Γ

q(γ, x̂) ≤ 2t̂.

Now suppose the value of the dual SDP (1.6) is unbounded. In this case (x̂, t̂) /∈ DSDP for any

value of t̂. It remains to observe that

sup
γ∈Γ

q(γ, x̂) ≥ sup
γ∈Γ,y∈RN

inf
x∈RN

q(γ, x) + 2⟨y, x̂− x⟩ =∞.

In particular, (x̂, t̂) does not satisfy supγ∈Γ q(γ, x̂) ≤ 2t̂ for any value of t̂. We conclude that if

the value of the dual SDP (1.6) is unbounded, then for all t̂,

(x̂, t̂) /∈ DSDP and sup
γ∈Γ

q(γ, x̂) ̸≤ 2t̂. ■

Remark 3. It is not hard to show
2

that the questions conv(D) ?= DSDP and Opt ?= Opt
SDP

are invariant under invertible affine transformations of the x-space. In particular, the sufficient

2

A short proof follows from Lemma 1.

18

1.2 A general framework

γ1

γ2

= ∩ ∩ ∩

Figure 1.1: The blue region (first row) is an example of the set Γ for some QCQP with two constraints.

Lemma 1 then states thatDSDP (the leftmost set on the second row) is equal to the intersection

of the sets {(x, t) ∈ Rn × R : q(γ, x) ≤ 2t} (the remaining sets on the bottom row) over the

extreme points γ of this blue region.

conditions that we will present in this chapter only need to hold after some invertible affine

transformation. In this sense, the SDP relaxation will “find” structure in a given QCQP even if it

is “hidden” by an affine transformation. □

1.2.2 The eigenvalue structure of Γ
We will make a technical assumption on Γ and q(γ, x) in the remainder of our framework.

Assumption 2. Assume that for all x̂ ∈ Rn
, if supγ∈Γ q(γ, x̂) is finite then its maximum value is

achieved in Γ. □

Remark 4. As γ 7→ q(γ, x̂) is linear in γ and Γ is closed, Assumption 2 holds for example

whenever Γ is polyhedral or bounded. □

Under Assumption 2, the following definition is well-defined.

Definition 1. Suppose Assumption 2 holds. For any x̂ ∈ RN
such that supγ∈Γ q(γ, x̂) is finite,

defineF(x̂) to be the face of Γ achieving supγ∈Γ q(γ, x̂), i.e.,

F(x̂) := arg max
γ∈Γ

q(γ, x). □

Definition 2. LetF be a face of Γ. We say thatF is a definite face if there exists γ ∈ F such that

A(γ) ≻ 0. Otherwise, we say thatF is a semidefinite face and let V(F) denote the shared zero

eigenspace ofF , i.e.,

V(F) :=
{
v ∈ RN : A(γ)v = 0, ∀γ ∈ F

}
. □

Note that under Definition 2, each face of Γ is either a definite face or a semidefinite face.

Specifically, a definite face is not also a semidefinite face.

The following lemma shows that V(F), which a priori may be the trivial subspace {0}, in fact

contains nonzero elements whenF is a semidefinite face.

19

1 Objective value and convex hull exactness

Lemma 2. LetF be a semidefinite face of Γ. Then V(F) ∩ SN−1 is nonempty.

Proof. Let γ̂ denote a vector in the relative interior ofF . By the assumption thatF is a semidefinite

face, there exists v ∈ SN−1
such that v⊺A(γ̂)v = 0. We claim that v ∈ V(F). As A(γ) ⪰ 0

for all γ ∈ F , it suffices to show that v⊺A(γ)v ≤ 0 for all γ ∈ F . Suppose v⊺A(γ′)v > 0 for

some γ′ ∈ F . Then, as γ̂ is in the relative interior of F , there exists ϵ > 0 small enough such

that γϵ := γ̂ + ϵ(γ̂ − γ′) ∈ F . Finally, by the linearity of γ 7→ v⊺A(γ)v in γ, we conclude that

v⊺A(γϵ)v < 0, a contradiction. ■

1.2.3 The framework

Our framework for analyzing the SDP relaxation consists of an “easy part” and a “hard part.”

The former only requires Assumptions 1 and 2 to hold while the latter may require additional

assumptions. We detail the “easy part” in the remainder of this section.

Begin by making the following observations.

Lemma 3. Suppose Assumptions 1 and 2 hold and let (x̂, t̂) ∈ DSDP. IfF(x̂) is a definite face of Γ,
then (x̂, t̂) ∈ D.

Proof. LetF := F(x̂). BecauseF is a definite face, there exists γ∗ ∈ F such that A(γ∗) ≻ 0.

We verify that (x̂, t̂) satisfies each of the constraints in (1.2).

1. By continuity, there exists ϵ > 0 such thatA((1+ϵ)γ∗) ≻ 0. We claim that (1+ϵ)γ∗ ∈ F .

Indeed,A(γ∗) andA((1 + ϵ)γ∗) are both positive definite, thus the constraintA(γ) ⪰ 0
is inactive at both γ∗

and (1 + ϵ)γ∗
. Furthermore, for all i ∈ [mI], the constraint γi ≥ 0

is active at γ∗
if and only if it is active at (1 + ϵ)γ∗

. We conclude that (1 + ϵ)γ∗ ∈ F and

in particular 0 ∈ aff(F). This implies

q0(x̂) = q(0, x̂) = q(γ∗, x̂) ≤ 2t̂.

2. Let i ∈ [mI]. By continuity there exists ϵ > 0 such that A(γ∗ + ϵei) ≻ 0. Thus,

γ∗ + ϵei ∈ Γ. In particular, since q(γ, x̂) is maximized onF in Γ, we have that

qi(x̂) = q(γ∗ + ϵei, x̂)− q(γ∗, x̂)
ϵ

≤ 0.

3. Let i ∈ [mI + 1,m]. By continuity, there exists ϵ > 0 such thatA(γ∗ ± ϵei) ≻ 0. Thus,

γ∗ ± ϵei ∈ Γ. In particular, since q(γ, x̂) is maximized onF in Γ, we have that

qi(x̂) = q(γ∗ + ϵei, x̂)− q(γ∗, x̂)
ϵ

≤ 0.

Repeating this calculation with−ϵ gives qi(x̂) ≥ 0. We deduce that qi(x̂) = 0. ■

Observation 1. Suppose Assumption 1 holds, and letF be a face of Γ. If aff dim(F) = m, thenF
is definite.

20

1.3 Symmetries in QCQPs

Together, Lemma 3 and Observation 1 give a sufficient condition for a point (x̂, t̂) ∈ DSDP

to belong to D, namely when aff dim(F(x̂)) = m. Concretely, we can use the quantity

aff dim(F(x̂)) to measure the progress of a convex decomposition algorithm.

Lemma 4. Suppose Assumptions 1 and 2 hold. Suppose furthermore that:

For every (x̂, t̂) ∈ DSDP with F(x̂) semidefinite, we can write (x̂, t̂) as a convex com-
bination of points (xα, tα) ∈ DSDP such that aff dim(F(xα)) > aff dim(F(x̂)). (1.7)

Then conv(D) = DSDP and Opt = Opt
SDP

.

Proof. Suppose for the sake of contradiction that conv(D) ̸= DSDP. Let

(x̂, t̂) ∈ arg max
DSDP\conv(D)

(aff dim(F(x̂))).

The point (x̂, t̂) is well-defined as aff dim(F(x̂)) is a nonnegative integer bounded above bym−1
(this follows from Lemma 3 and Observation 1). By Lemma 3, we must have thatF(x̂) is semidefi-

nite. By (1.7), there exist points (xα, tα) ∈ DSDP such that aff dim(F(xα)) > aff dim(F(x̂)).

Then by construction of (x̂, t̂) and the fact that aff dim(F(xα)) > aff dim(F(x̂)), we have

that (xα, tα) ∈ conv(D). We conclude that (x̂, t̂) ∈ conv({(xα, tα)}α) ⊆ conv(D), a contra-

diction. ■

Equivalently, when the assumptions of Lemma 4 hold, the following convex decomposition

procedure is guaranteed to terminate and succeed: Given (x̂, t̂) ∈ DSDP, if (x̂, t̂) ∈ D return

(x̂, t̂), else decompose (x̂, t̂) as a finite convex combination of points (xα, tα) ∈ DSDP with

aff dim(F(xα)) > aff dim(F(x̂)) and recursively compute convex decompositions of (xα, tα).

A similar proof gives the following sufficient condition in the context of the SDP tightness

result.

Lemma 5. Suppose Assumptions 1 and 2 hold. Suppose furthermore that:

For every optimal (x̂, t̂) ∈ DSDP withF(x̂) semidefinite, there exists a point (x′, t′) ∈
DSDP such that t′ ≤ t̂ and aff dim(F(x′)) > aff dim(F(x̂)).

(1.8)

Then Opt = Opt
SDP

.

The proof of this statement follows the proof of Lemma 4 almost exactly and is omitted.

The “hard part” of our framework for the convex hull result is to give sufficient conditions

for (1.7). We give examples of such conditions in Section 1.4. Similarly, the “hard part” of our

framework for the SDP tightness result is to give sufficient conditions for (1.8). We give examples

of such conditions in Section 1.5.

1.3 Symmetries in QCQPs

In this section, we examine a parameter k that captures the amount of symmetry present in a

QCQP of the form (1.1).

21

1 Objective value and convex hull exactness

Definition 3. The quadratic eigenvalue multiplicity of a QCQP of the form (1.1) is the largest

integer k such that for every i ∈ [0,m] there existsAi ∈ Sn
for whichAi = Ik ⊗Ai. □

The quadratic eigenvalue multiplicity k is always at least 1 as we can write each Ai as Ai =
I1 ⊗Ai. On the other hand, it is clear that k must be a divisor ofN . In particular, k is always well

defined.

For γ ∈ Rm
, we also defineA(γ) := A0 +

∑m
i=1 γiAi.

Example 1. Consider the following optimization problem

inf
x∈R4

{
−∥x∥22 : x2

1 − x2
2 + x2

3 − x2
4 − 1 ≤ 0

2x2
1 + x2

2 + 2x2
3 + x2

4 − 1 ≤ 0

}
.

The quadratic forms in this problem are

A0 = I2 ⊗
(

−1
−1

)
, A1 = I2 ⊗

(1
−1
)
, and A2 = I2 ⊗ (2

1).

Thus, this QCQP has quadratic eigenvalue multiplicity k ≥ 2. Recalling that k must be a divisor

ofN and noting thatA1 cannot be written asA1 = I4 ⊗A1 for anyA1 ∈ S1
, we conclude that

k = 2. □

Remark 5. Suppose we have access to some µ ∈ Rm
such thatA(µ) has distinct eigenvalues.

Then, by simply performing a spectral decomposition ofA(µ) and counting the multiplicities of

the eigenvalues, we can correctly output the value k. □

Remark 6. The quadratic eigenvalue multiplicity can be viewed as a particular group symmetry
in {A0, A1, . . . , Am}. Group symmetric SDPs have been studied in more generality with the

goal of reducing the size of large SDPs (and in turn their solve-times) [54, 72]. See also [53] for an

application of such ideas to solving large real-world instances of the quadratic assignment problem.

Specifically, the Wedderburn decomposition of the matrixC∗
-algebra generated by{A0, A1, . . . , Am}

plays a prominent role in the analysis of such symmetries. In this setting, our parameter k can be

compared to the “block multiplicity” of a basic algebra in the Wedderburn decomposition. This

decomposition can be computed efficiently given access to a generic element from the center of

the algebra (see [55, 73] and references therein). □

Recall that in Lemma 2, we showed that dim(V(F)) ≥ 1 wheneverF is a semidefinite face of

Γ. The following lemma will show that when the quadratic eigenvalue multiplicity is large, we

can in fact lower bound dim(V(F)) ≥ k. This is the main property of the quadratic eigenvalue

multiplicity that we will use in Sections 1.4 and 1.5.

Lemma 6. IfF is a semidefinite face of Γ, then dim(V(F)) ≥ k.

Proof. By Lemma 2, there exists v̂ ∈ V(F) ∩ SN−1
. We can write v̂ as the concatenation of

k-many n-dimensional vectors v1, . . . , vk ∈ Rn
. Then for γ ∈ F ,

0 = A(γ)v̂ =


A(γ)

A(γ)
. . .

A(γ)



v1
v2
...
vk

 =


A(γ)v1
A(γ)v2

...
A(γ)vk

.

22

1.4 Convex hull results

Hence,A(γ)vi = 0 for all i ∈ [k]. As v̂ ̸= 0, there exists some i ∈ [k] such that vi ̸= 0. Finally,

note that for all y ∈ Rk
,

A(γ)(y ⊗ vi) = (Ik ⊗A(γ))(y ⊗ vi) = y ⊗ (A(γ)vi) = 0.

In other words, Rk ⊗ vi ⊆ V(F) and thus dim(V(F)) ≥ k. ■

Remark 7. In quadratic matrix programming [17, 20], we are asked to optimize

inf
X∈Rn×k

tr(X⊺A0X) + 2 tr(B⊺
0X) + c0 :

tr(X⊺AiX) + 2 tr(B⊺
i X) + ci ≤ 0,
∀i ∈ [mI]

tr(X⊺AiX) + 2 tr(B⊺
i X) + ci = 0,

∀i ∈ [mI + 1,m]

,
(1.9)

whereAi ∈ Sn
,Bi ∈ Rn×k

and ci ∈ R for all i ∈ [0,m]. We can transform this program to an

equivalent QCQP in the vector variable x ∈ Rnk
by identifying

X =


x1 . . . x(k−1)n+1
...

. . .
...

xn . . . xkn

.
Then

tr(X⊺AiX) + 2 tr(B⊺
i X) + ci = x⊺(Ik ⊗Ai)x+ 2b⊺i x+ ci,

where, bi ∈ Rnk
has entries (bi)(t−1)n+s = (Bi)s,t. In particular, the vectorized reformulation

of (1.9) has quadratic eigenvalue value multiplicity k. □

1.4 Convex hull results

In this section, we present new sufficient conditions for the convex hull resultDSDP = conv(D).

We will first analyze the case where the geometry of Γ is particularly nice.

Assumption 3. Assume that Γ is polyhedral. □

We remark that although Assumption 3 is rather restrictive, it is general enough to cover the case

where the set of quadratic forms {Ai}i∈[0,m] is diagonal or simultaneously diagonalizable—a class

of QCQPs which has been studied extensively in the literature (see Section 1.4.2 for references). We

will present examples and non-examples of Assumption 3 in Sections 1.4.1 and 1.4.2 and discuss

the difficulties in removing this assumption in Section 1.4.3. Finally, we will recover weaker results

without this assumption in Section 1.6.

Note that Assumption 3 immediately implies Assumption 2 so that we may apply the framework

from Section 1.2.

Our main result in this section is the following theorem.

23

1 Objective value and convex hull exactness

A
obj

A1 A2
γ1

γ2

A
obj

A2
A1

γ1

γ2

A
obj

A1

A2

γ1

γ2

Figure 1.2: In each row above, we illustrate first the set

{
A(γ) ∈ S2 : γ ∈ R2

+
}

on the left and the set Γ
on the right.

Theorem 1. Suppose Assumptions 1 and 3 hold. Furthermore, suppose that for every semidefinite
faceF of Γ we have

dim(V(F)) ≥ aff dim({b(γ) : γ ∈ F}) + 1.

Then,

conv(D) = DSDP and Opt = Opt
SDP

.

As before, the second identity follows immediately from the first identity, thus it suffices to

prove only the former. The main effort in this section will be the proof of the following lemma.

Lemma 7. Suppose Assumptions 1 and 3 hold. Furthermore, suppose that for every semidefinite face
F of Γ we have

dim(V(F)) ≥ aff dim({b(γ) : γ ∈ F}) + 1.

Let (x̂, t̂) ∈ DSDP and letF = F(x̂). IfF is a semidefinite face of Γ, then (x̂, t̂) can be written as
a convex combination of points (xα, tα) ∈ DSDP such that aff dim(F(xα)) > aff dim(F(x̂)).

The proof of Theorem 1 follows at once from Lemma 7 and Lemma 4.

24

1.4 Convex hull results

Before proving Lemma 7, we introduce some new notation for handling the recessive directions

of Γ and prove a straightforward lemma about decomposing Γ. Let

Ă(γ) :=
m∑

i=1
γiAi, b̆(γ) :=

m∑
i=1

γibi, c̆(γ) :=
m∑

i=1
γici, q̆(γ, x) :=

m∑
i=1

γiqi(x).

Lemma 8. Suppose Assumption 3 holds. Then Γ can be written as

Γ = Γe + cone(Γr)

where both Γe and Γr are polytopes. Here, Γr may be the trivial set {0}. Furthermore, for x̂ ∈ RN

such that supγ∈Γ q(γ, x̂) is finite, we have

F(x̂) = Fe(x̂) + cone(Fr(x̂))

whereFe(x̂) is the face of Γe maximizing q(γ, x̂) andFr(x̂) is the face of Γe satisfying q̆(γ, x̂) = 0.

Proof. This follows immediately from the Minkowski-Weyl Theorem and noting that q̆(γr, x̂) ≤
0 for all γr ∈ Γr when supγ∈Γ q(γ, x̂) is finite. ■

Proof of Lemma 7. Without loss of generality, we may assume that supγ∈Γ q(γ, x̂) = 2t̂. Other-

wise, we can decrease t̂ and note thatD is closed upwards in the t-direction. In particular, we have

that q(γ, x̂) achieves the value 2t̂ onF .

We claim that the following system in variables v and s{
⟨b(γ), v⟩ = s, ∀γ ∈ F
v ∈ V(F), s ∈ R

has a nonzero solution. Indeed, we may replace the constraint ⟨b(γ), v⟩ = s, ∀γ ∈ F with at

most

aff dim({b(γ) : γ ∈ F}) + 1 ≤ dim(V(F))

homogeneous linear equalities in the variables v and s. The claim then follows by noting that the

equivalent system is an under-constrained homogeneous system of linear equalities and thus has a

nonzero solution (v, s). It is easy to verify that v ̸= 0, hence by scaling we may take v ∈ SN−1
.

In the remainder of the proof, let v ∈ V(F) ∩ SN−1
and s ∈ R denote a solution pair to the

above system.

Apply Lemma 8 to decompose Γ = Γe + cone(Γr) andF = Fe + cone(Fr).

We will modify (x̂, t̂) in the (v, s) direction. For α ∈ R, we define

(xα, tα) :=
(
x̂+ αv, t̂+ αs

)
.

25

1 Objective value and convex hull exactness

First, for any fixed γf ∈ F , we consider how q(γf , xα)− 2tα changes with α. We can expand

q(γf , xα)− 2tα =
(
q(γf , x̂)− 2t̂

)
+ 2α(x̂⊺A(γf)v + b(γf)⊺v − s) + α2v⊺A(γf)v

= q(γf , x̂)− 2t̂
= 0,

where the second line follows as A(γf)v = 0 (recall v ∈ V(F)) and b(γf)⊺v = s for all

γf ∈ F , and the third line follows as q(γf , x̂) = 2t̂ for all γf ∈ F . Now consider any γe ∈ Fe

and γr ∈ Fr. Note that γe and γe + γr both lie in F . Then by the above calculation, both

α 7→ q(γe, xα)− 2tα and α 7→ q(γe + γr, xα)− 2tα are identically zero. In particular, we also

have that α 7→ q̆(γr, xα) = q(γe + γr, xα)− q(γe, xα) = 0 is identically zero.

On the other hand, for γe ∈ Γe \ Fe, we can expand

q(γe, xα)− 2tα =
(
q(γe, x̂)− 2t̂

)
+ 2α(x̂⊺A(γe)v + b(γe)⊺v − s) + α2v⊺A(γe)v,

and note thatv⊺A(γe)v ≥ 0 holds becauseA(γe) is positive semidefinite. Hence, forγe ∈ Γe\Fe,

we have that α 7→ q(γe, xα)− 2tα is a (possibly non-strictly) convex quadratic function taking

the value q(γe, x̂) − 2t̂ < 0 at α = 0 (the strict inequality here follows from the fact that

γe ∈ Γe \ Fe).

Similarly, for γr ∈ Γr \ Fr, we can expand

q̆(γr, xα) = q̆(γr, x̂) + 2α
(
x̂⊺Ă(γr)v + b̆(γr)⊺v

)
+ α2v⊺Ă(γr)v.

Note that Ă(γ) ⪰ 0 for all γ ∈ Γr. Hence, for γr ∈ Γr \ Fr, we have that α 7→ q̆(γr, xα) is

a (possibly non-strictly) convex quadratic function taking the value q̆(γr, x̂) < 0 at α = 0 (the

strict inequality here follows from the fact that γr ∈ Γr \ Fr).

We have shown that the following finite set of univariate quadratic functions in α,

Q :=
(
{q(γe, xα)− 2tα : γe ∈ extr(Γe)} ∪ {q̆(γr, xα) : γr ∈ extr(Γr)}

)
\ {0},

consists of (possibly non-strictly) convex quadratic functions which are negative at α = 0. The

finiteness of this set follows from the assumption that Γ is polyhedral.

We claim that there exists a quadratic function inQ which is strictly convex: Note γ∗
from

Assumption 1 satisfies γ∗ ∈ Γ. Thus, we can decompose γ∗ = γe + αγr for γe ∈ Γe, γr ∈ Γr,

and α ≥ 0. Then,

0 < v⊺A(γ∗)v = [v⊺A(γe)v] + α
[
v⊺Ă(γr)v

]
.

Hence, one of the square-bracketed terms must be positive. The claim then follows by linearity in

γ of the functions γ 7→ v⊺A(γ)v and γ 7→ v⊺Ă(γ)v.

AsQ is a finite set by Assumption 3, there exists anα+ > 0 such that q(α+) ≤ 0 for all q ∈ Q
with at least one equality. Then because Γe = conv(extr(Γe)) and Γr = conv(extr(Γr)),

26

1.4 Convex hull results

we have q(γe, xα+) ≤ 2tα+ for all γe ∈ Γe and q̆(γr, xα+) ≤ 0 for all γr ∈ Γr. Thus,

(xα+ , tα+) ∈ DSDP.

It remains to show that aff dim(F(xα+)) > aff dim(F(x̂)). The discussion in the previous

paragraph implies that supγ∈Γ q(γ, xα+) ≤ 2tα+ . This value is achieved by γf ∈ F(x̂): Note

q(γf , xα+)− 2tα+ = q(γf , x̂)− 2t̂ = 0. In particular,F(x̂) ⊆ F(xα+). Thus, it suffices to

show that there exists γ+ ∈ F(xα+) \ F(x̂).

Suppose the quadratic function inQwith α+ as a root is of the form q(γ+, xα)− 2tα. Then

γ+ ∈ F(xα+) as q(γ+, xα+)− 2tα+ = 0. On the other hand, γ+ /∈ F(x̂) by the construction

ofQ.

Suppose the quadratic function inQ with α+ as a root is of the form q̆(γr, xα). Select any

γf ∈ F(x̂) and recall that q(γf , xα) − 2tα is identically zero as an expression in α. Define

γ+ = γf + γr. Then,

q(γ+, xα+)− 2tα+ =
(
q(γf , xα+)− 2tα+

)
+ q̆(γr, xα+) = 0

and hence γ+ ∈ F(xα+). On the other hand, q̆(γr, x̂) < 0 by the construction of Q. In

particular,

q(γ+, x̂)− 2t̂ =
(
q(γf , x̂)− 2t̂

)
+ q̆(γr, x̂) < 0

and thus γ+ /∈ F(x̂).

The existence of an α− < 0 satisfying the same properties is proved analogously. Then we may

write (x̂, t̂) as a convex combination of (xα+ , tα+) and (xα− , tα−). ■

The next theorem follows as a corollary to Theorem 1.

Theorem 2. Suppose Assumptions 1 and 3 hold. Furthermore, suppose that for every semidefinite
faceF of Γ we have

k ≥ aff dim({b(γ) : γ ∈ F}) + 1.

Then,

conv(D) = DSDP and Opt = Opt
SDP

.

Proof. This theorem follows from Lemma 6 and Theorem 1. ■

Remark 8. We remark that when Γ is polyhedral (Assumption 3), the setDSDP is actually SOC

representable: By Lemmas 1 and 8 we can write

DSDP =
{

(x, t) : sup
γ∈Γ

q(γ, x) ≤ 2t
}

=
{

(x, t) : q(γe, x) ≤ 2t, ∀γe ∈ extr(Γe)
q̆(γf , x) ≤ 0, ∀γf ∈ extr(Γr)

}
.

27

1 Objective value and convex hull exactness

In other words,DSDP is defined by finitely many convex quadratic inequalities. In particular, the

assumptions of Theorem 1 and 2 imply that conv(D) is SOC representable. □

1.4.1 Applications of Theorems 1 and 2

We now state some classes of problems where the assumptions of Theorems 1 and 2 hold.

The most basic setup we can cover via these theorems is the case of convex quadratic programs.

Corollary 1. Suppose Assumption 1 holds. IfA0 ≻ 0,mE = 0 andAi ⪰ 0 for all i ∈ [mI], then

conv(D) = DSDP and Opt = Opt
SDP

.

Proof. Assumption 3 holds in this case as

Γ =
{
γ ∈ Rm : A(γ) ⪰ 0

γ ≥ 0

}
= {γ ∈ Rm : γ ≥ 0}.

Furthermore, each face of Γ contains the origin. Thus noting that A(0) = A0 ≻ 0 is positive

definite, we conclude that Γ does not have any semidefinite face. This allows us to apply Theorem 2.

■

Remark 9. It is possible to apply a standard limit argument (see for example [38]) to handle

additionally the case whereA0 is only positive semidefinite. □

Next, we discuss a number of results on TRS and GTRS.

Corollary 2. Supposem = 1 and Assumption 1 holds. Then,

conv(D) = DSDP and Opt = Opt
SDP

.

Proof. The set Γ will either be a bounded interval [γ1, γ2], a semi-infinite interval [γ1,∞), or the

entire line (−∞,∞). In all three cases, Γ is polyhedral and Assumption 3 holds.

By Observation 1, any semidefinite face of Γ must have affine dimension at mostm− 1 = 0.

In particular aff dim({b(γ) : γ ∈ F}) = 0 and the assumption on the quadratic eigenvalue

multiplicity in Theorem 2 holds as k is always at least 1. ■

Corollary 2 in particular recovers the well-known results associated with the epigraph set of the

TRS
3

and the GTRS (see [87, Theorem 13] and [180, Theorems 1 and 2]).

Corollary 3. Suppose Assumptions 1 and 3 hold. If bi = 0 for all i ∈ [m], then

conv(D) = DSDP and Opt = Opt
SDP

.

3

Corollary 2 fails to fully recover [87, Theorem 13]. Indeed, [87, Theorem 13] also gives a description of the convex

hull of the epigraph of the TRS with an additional conic constraint under some assumptions. We do not consider

these additional conic constraints in our setup.

28

1.4 Convex hull results

Figure 1.3: The setsD (in orange) and conv(D) (in yellow) from Example 2

Proof. Note that b(γ) = b0 +
∑m

i=1 γibi = b0 for any γ ∈ Rm
. Thus, for any faceF of Γ, we

have

aff dim({b(γ) : γ ∈ F}) + 1 = aff dim({b0}) + 1 = 1.

In particular, the assumptions on the quadratic eigenvalue multiplicity in Theorem 2 holds as k is

always at least 1. ■

Example 2. Consider the following optimization problem

inf
x∈R2

{
x2

1 + x2
2 + 10x1 : x2

1 − x2
2 − 5 ≤ 0

−x2
1 + x2

2 − 50 ≤ 0

}
.

We check that the conditions of Corollary 3 hold. Assumption 1 holds asA(0) = A0 = I ≻ 0
and x = 0 is feasible. Next, Assumption 3 holds as

Γ =

γ ∈ R2 :
1 + γ1 − γ2 ≥ 0
1− γ1 + γ2 ≥ 0
γ ≥ 0

.
One can verify that

Γ = conv({(0, 0), (1, 0), (0, 1)}) + cone({1, 1}).

Finally, we note that b1 = b2 = 0. Hence, Corollary 3 and Remark 8 imply that

conv(D) = DSDP =

(x, t) :
x2

1 + x2
2 + 10x1 ≤ 2t

2x2
1 + 10x1 − 5 ≤ 2t

2x2
2 + 10x1 − 50 ≤ 2t

.
We plotD and conv(D) = DSDP in Figure 1.3. □

Remark 10 (Joint zero of a finite set of quadratic forms). Barvinok [15] shows that one can decide

in polynomial time (inN) whether a constant number,mE , of quadratic forms {Ai}i∈[mE] has

29

1 Objective value and convex hull exactness

a joint nontrivial zero. That is, whether the system x⊺Aix = 0 for i ∈ [mE] and x⊺x = 1 is

feasible. We can recast this as asking whether the following optimization problem

min
x

{
−x⊺x : x⊺x ≤ 1

x⊺Aix = 0,∀i ∈ [mE]

}

has objective value−1 or 0.

Thus, the feasibility problem studied in [15] reduces to a QCQP of the form we study in this

chapter. Note that Assumption 1 for a QCQP of this form holds, for example, by taking γ∗ = 2e1
so thatA(γ∗) = −I + 2I ≻ 0 and noting that x = 0 is a feasible solution to this QCQP. Then

when Γ is polyhedral (Assumption 3), Corollary 3 implies that the feasibility problem (in even a

variable number of quadratic forms) can be decided using a semidefinite programming approach.

Nevertheless, Assumption 3 may not necessarily hold, and thus Corollary 3 does not recover the

full result of [15]. □

Corollary 4. Suppose Assumption 1 holds and for every i ∈ [0,m], there exists αi such thatAi =
αiIN . Ifm ≤ N , then

conv(D) = DSDP and Opt = Opt
SDP

.

Proof. Assumption 3 holds in this case as

Γ :=
{
γ ∈ Rm : A(γ) ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}
=
{
γ ∈ Rm : α0 +

∑m
i=1 γiαi ≥ 0

γi ≥ 0, ∀i ∈ [mI]

}

is defined bymI + 1 linear inequalities.

As each Ai = αiIN , we have that the quadratic eigenvalue multiplicity satisfies k = N . By

Observation 1, any semidefinite face of Γ must have affine dimension at mostm− 1. In particular

aff dim({b(γ) : γ ∈ F}) + 1 ≤ m and the assumption on the quadratic eigenvalue multiplicity

in Theorem 2 holds as k = N ≥ m. The final inequalityN ≥ m holds by the assumptions of

the corollary. ■

Remark 11. Consider the problem of finding the distance between the origin 0 ∈ RN
and a piece

of “Swiss cheese”C ⊆ RN
. We will assume thatC is nonempty and defined as

C =

x ∈ RN :
∥x− yi∥ ≤ si, ∀i ∈ [m1]
∥x− zi∥ ≥ ti, ∀i ∈ [m2]
⟨x, bi⟩ ≥ ci, ∀i ∈ [m3]

,
where yi, zi, bi ∈ RN

and si, ti, ci ∈ R are arbitrary. In words,C is defined bym1-many “inside-

ball” constraints,m2-many “outside-ball” constraints, andm3-many linear inequalities. Note that

each of these constraints may be written as a quadratic inequality with a quadratic form I ,−I , or

0. In particular, Corollary 4 implies that ifm1 +m2 +m3 ≤ N , then the value

inf
x∈RN

{
∥x∥2 : x ∈ C

}

30

1.4 Convex hull results

may be computed using the standard SDP relaxation of the problem.

Bienstock and Michalka [26] give sufficient conditions under which a related problem

inf
x∈RN

{q0(x) : x ∈ C},

is polynomial-time solvable. Here, q0 : RN → R is an arbitrary quadratic function butm1 and

m2 are constant. Specifically, they devise an enumerative algorithm for problems of this form

and prove its correctness under different assumptions. In contrast, our work deals only with the

standard SDP relaxation and does not assume that the number of quadratic forms is constant.

Yang et al. [191] consider QCQPs with additional “hollow” type constraints. Formally, they

consider a QCQP with domain G := F \
⋃

α int(Eα) where F is a quadratically constrained

domain and {Eα} is a finite collection of non-intersecting ellipsoids completely contained within

F . They show that if the SDP relaxation for a QCQP over the domain F is exact, then the SDP

relaxation strengthened by additional linear constraints is exact for the same QCQP over the

domain G. In contrast, Corollary 4 makes no assumption on how the constraints defining G
intersect but deals only with linearly many (in the dimension) spherical constraints. □

1.4.2 SD-QCQPs and the polyhedrality assumption

A natural class of QCQPs where Assumption 3 is immediately satisfied is the class of simultaneously

diagonalizable QCQPs (SD-QCQPs) (see Definition 5 below). In this section, we first discuss

how the simultaneously diagonalizable (SD) assumption relates to the polyhedrality assumption.

Then, in Section 1.4.2, we show that under the SD assumption, the standard SDP relaxation is

in fact equivalent to the lifted SOCP relaxation (both in terms of optimal value and projected

epigraph). Consequently, our framework automatically generates sufficient conditions for SOCP-

based tightness and convex hull results. Such sufficient conditions have been studied in the literature

and we will compare our conditions with sufficient conditions proposed by Ben-Tal and den Hertog

[21] and Locatelli [112] in Section 1.5.1.

Recall the following definition.

Definition 4. A set of matrices {Ai}i∈[0,m] ⊆ SN
is said to be simultaneously diagonalizable

(SD) if there exists an invertible matrixU ∈ RN×N
such that the set

{
U⊺AiU

}
i∈[0,m] consists of

diagonal matrices. □

We note that this condition, sometimes referred to as simultaneously diagonalizable by congru-
ence, is weaker than the notion of being simultaneously diagonalizable by similarity which further

requires thatU be an orthonormal matrix.

Definition 5. A simultaneously diagonalizable QCQP (SD-QCQP) is a QCQP of the form (1.1)

where {Ai}i∈[0,m] is SD. □

Lemma 9. For any SD-QCQP, we have that Γ is polyhedral.

31

1 Objective value and convex hull exactness

Proof. Let U ∈ RN×N
be an invertible matrix such that U⊺AiU = Λi is diagonal for each

i ∈ [0,m]. Note thatA(γ) ⪰ 0 if and only ifU⊺A(γ)U ⪰ 0 if and only if Λ0 +
∑m

i=1 γiΛi ⪰ 0.

It is clear that

Γ =
{
γ ∈ Rm : Λ0 +

∑m
i=1 γiΛi ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}

is polyhedral. ■

The following example shows that changing a given constraint in a QCQP from an inequality

into an equality constraint can alter whether Γ is polyhedral or not. As a consequence, we will

deduce by Lemma 9 that Assumption 3 is strictly weaker than the simultaneous diagonalizability

assumption.

Example 3. Consider the matrices

A0 =

1 √
2 0

0
√

2

, A1 =

−1
1 1
1 −1

, A2 =

−1
1 −1
−1 −1

.
Note thatA(γ) ⪰ 0 if and only if each of its two blocks are positive semidefinite. Recall that a

2× 2 matrix is positive semidefinite if and only if both its trace and determinant are nonnegative.

Suppose first thatA1 andA2 correspond to equality constraints. Then

Γ =
{
γ ∈ R2 : 1− γ1 − γ2 ≥ 0

(
√

2 + (γ1 + γ2))(
√

2− (γ1 + γ2))− (γ1 − γ2)2 ≥ 0

}

=
{
γ ∈ R2 : γ1 + γ2 ≤ 1

2− (γ1 + γ2)2 − (γ1 − γ2)2 ≥ 0

}

=
{
γ ∈ R2 : γ1 + γ2 ≤ 1

γ2
1 + γ2

2 ≤ 1

}
.

is not polyhedral (see Figure 1.4 left). In particular by Lemma 9, we deduce that the set{A0, A1, A2}
is not simultaneously diagonalizable.

Now suppose thatA1 andA2 correspond to inequality constraints. Then

Γ =

γ ∈ R2 :
γ1 + γ2 ≤ 1
γ2

1 + γ2
2 ≤ 1

γ ≥ 0

 =
{
γ ∈ R2 : γ1 + γ2 ≤ 1

γ ≥ 0

}

is polyhedral (see Figure 1.4 right). Thus, we have constructed an example where the set{A0, A1, A2}
is not simultaneously diagonalizable but Γ is polyhedral. We deduce that Assumption 3 is strictly

weaker than the simultaneous diagonalizability assumption. □

Remark 12. Ramana [150] showed that deciding whether a given spectrahedron is polyhedral

is coNP-hard. In particular, it is coNP-hard to decide whether Assumption 3 holds in general.

32

1.4 Convex hull results

γ1

γ2

γ1

γ2

Figure 1.4: The set Γ with equality (orange) and inequality (yellow) constraints from Example 3

Nevertheless, it is possible to prove that this assumption holds for specific classes of interesting

QCQPs (for example see Corollaries 2 and 4). □

The equivalence of SDP and SOCP relaxations of SD-QCQPs

Given an SD-QCQP and the invertible matrixU , we may perform a change of variables to arrive at

a diagonal QCQP, i.e., a QCQP of the form (1.1) where eachAi is diagonal. In the remainder of

this section, we assume that we have already made this change of variables and are left with

inf
x∈RN

{
q0(x) : qi(x) ≤ 0, ∀i ∈ [mI]

qi(x) = 0, ∀i ∈ [mI + 1,m]

}
, (1.10)

where qi(x) =
〈
ai, x

2〉 + 2⟨bi, x⟩ + ci, ai ∈ RN
, bi ∈ RN

, and ci ∈ R for each i ∈ [0,m].
Here, x2 ∈ RN

denotes the vector with (x2)j = (xj)2
for all j ∈ [N].

Ben-Tal and den Hertog [21] and Locatelli [112] study the following SOCP relaxation

Opt
SOCP

:= inf
x∈RN , y∈RN


⟨a0, y⟩+ 2⟨b0, x⟩+ c0 :

⟨ai, y⟩+ 2⟨bi, x⟩+ ci ≤ 0,
∀i ∈ [mI]

⟨ai, y⟩+ 2⟨bi, x⟩+ ci = 0,
∀i ∈ [mI + 1,m]

yj ≥ x2
j , ∀j ∈ [N]


.

(1.11)

LetDSOCP denote the epigraph of (1.11) projected onto the (x, t) variables, i.e., define

DSOCP
:=


(x, t) ∈ RN+1 :

∃y ∈ RN :
⟨a0, y⟩+ 2⟨b0, x⟩+ c0 ≤ 2t
⟨ai, y⟩+ 2⟨bi, x⟩+ ci ≤ 0, ∀i ∈ [mI]
⟨ai, y⟩+ 2⟨bi, x⟩+ ci = 0, ∀i ∈ [mI + 1,m]
yj ≥ x2

j , ∀j ∈ [N]


. (1.12)

The following proposition states that the SDP and the SOCP relaxations are equivalent for both

the convex hull question and the tightness question. In particular, we may apply the sufficient

conditions of this chapter for either result directly to the SOCP relaxation as well.

33

1 Objective value and convex hull exactness

Proposition 1. For any SD-QCQP, we have

DSOCP = DSDP and Opt
SOCP

= Opt
SDP

.

The second identity in Proposition 1 was first recorded by Locatelli [112]. The first identity,

while straightforward, is to the best of our knowledge not present in the literature prior to our

work. The proof of this result is deferred to Appendix A.1.

Remark 13. Remark 8 implies that for any SD-QCQP satisfying Assumption 1, the setDSDP is

SOC representable in the original space. However, this representation may potentially involve

exponentially many quadratics—this follows as Γ may have exponentially many extreme points and

rays. Moreover, identifying these extreme points and rays may require non-trivial computational ef-

fort. In contrast, Proposition 1 implies thatDSDP = DSOCP is SOCP representable in a lifted space

(with onlyN new variables) using only linearly many convex quadratic constraints. Consequently,

theDSOCP representation is perhaps more interesting from a computational view. □

1.4.3 On the sharpness of Theorems 1 and 2

In this section we construct QCQPs that show that the assumptions made in Theorem 2 (and

hence in Theorem 1) cannot be weakened individually.

We first examine the quadratic eigenvalue multiplicity assumption in Theorems 1 and 2, and

show that both of these theorems break when the assumption on the lower bound on the value of

the quadratic eigenvalue multiplicity k,

k ≥ aff dim({b(γ) : γ ∈ F}) + 1

is relaxed to k ≥ aff dim({b(γ) : γ ∈ F}).

Proposition 2. For any positive integers n and k, there exists a QCQP inN := nk variables with
m := k + 1 constraints such that

• Assumptions 1 and 3 are satisfied,

• the quadratic eigenvalue multiplicity of the QCQP is k, and

• k satisfies

k ≥ aff dim({b(γ) : γ ∈ F})

for all semidefinite facesF of Γ, but

• Opt ̸= Opt
SDP

(and hence conv(D) ̸= DSDP).

Proof. Consider the following QCQP

min
x∈RN

{
−x2

1 − x2
n+1 − · · · − x2

(k−1)n+1 : ∥x∥
2 − 1 ≤ 0

x(j−1)n+1 = 0, ∀j ∈ [k]

}
. (1.13)

Here,A0 = Ik ⊗ (−e1e
⊺
1),A1 = I , andAi = 0 for all i ∈ [m].

34

1.4 Convex hull results

Assumption 1 holds becauseA1 = I ≻ 0 and x = 0 is feasible in (1.13). Moreover, Assump-

tion 3 holds because

Γ := {γ ∈ Rm : γ1 ≥ 0, A(γ) ⪰ 0} = {γ ∈ Rm : γ1 ≥ 1}.

We compute: aff dim({b(γ) : γ1 = 1}) = k.

By Lemma 1,

Opt
SDP

= min
x∈RN

sup
γ∈Γ

q(γ, x) ≤ sup
γ∈Γ

q(γ, 0) = −1.

On the other hand, it is clear from (1.13) that Opt = 0. ■

We next provide a construction that illustrates that Theorems 1 and 2 both break when Assump-

tion 3 is dropped.

Proposition 3. There exists a QCQP in n = 2 variables withm = 2 constraints such that

• Assumptions 1 and 2 are satisfied,

• the quadratic eigenvalue multiplicity of the QCQP is k = 1, and

• k satisfies

k ≥ aff dim({b(γ) : γ ∈ F}) + 1

for all semidefinite facesF of Γ, but

• Opt ̸= Opt
SDP

(and hence conv(D) ̸= DSDP).

Proof. Consider the following QCQP

min
x∈R2

{
∥x− e1∥2 : x2

1 − x2
2 + 2x1x2 = 0

x2
1 − x2

2 − 2x1x2 = 0

}
. (1.14)

Here

A0 =
(

1 0
0 1

)
, A1 =

(
1 1
1 −1

)
, A2 =

(
1 −1
−1 −1

)
.

Assumption 1 holds sinceA(0) = I ≻ 0 and x = 0 is feasible in (1.14).

We will describe Γ explicitly. For a 2 × 2 matrixA(γ), we have thatA(γ) ⪰ 0 if and only if

tr(A(γ)) ≥ 0 and det(A(γ)) ≥ 0. Note that tr(A(γ)) = tr(A0) ≥ 0 for all γ, thus

Γ =
{
γ ∈ R2 : (1 + γ1 + γ2)(1− γ1 − γ2)− (γ1 − γ2)2 ≥ 0

}
=
{
γ ∈ R2 : 1− 2∥γ∥2 ≥ 0

}
= B(0, 2−1/2).

35

1 Objective value and convex hull exactness

Then Assumption 2 holds as Γ is bounded.

It is clear that k ≥ 1. To see that k = 1, note thatA1 has eigenvalues 1 and−1. Furthermore,

as b1 = b2 = 0, we have that aff dim(
{
b(γ) : γ ∈ R2}) + 1 = 1. In particular, the same is true

for any semidefinite faceF of Γ.

Next we compute Opt
SDP

. By our explicit description of Γ, for any fixed x̂we have

sup
γ∈Γ

q(γ, x̂) = q0(x) + max
γ∈B(0,1/

√
2)

〈
γ,

(
q1(x)
q2(x)

)〉

= q0(x) +
√

(q1(x)2 + q2(x)2)/2

= q0(x) + ∥x∥2.

Then, by Lemma 1

Opt
SDP

= min
x

sup
γ∈Γ

q(γ, x)

= min
x

(
∥x− e1∥2 + ∥x∥2

)
= 1/2.

On the other hand, it is clear from (1.14) that Opt = 1. ■

1.5 Exactness of the SDP relaxation

In this section, we use our framework to give new conditions under which Opt
SDP

= Opt.

Theorem 3. Suppose Assumptions 1 and 3 hold. If for every semidefinite faceF of Γ we have

0 /∈ ΠV(F){b(γ) : γ ∈ F},

then any optimizer (x∗, t∗) in arg min(x,t)∈DSDP

2t satisfies (x∗, t∗) ∈ D. In particular, Opt =
Opt

SDP
.

In other words, under the assumptions of Theorem 3, given any optimizer(
1 x⊺

x X

)

of (1.3), we can simply return x as an optimizer for (1.1).

Proof. Let

(x∗, t∗) ∈ arg min
(x,t)∈DSDP

2t.

LetF = F(x∗). We claim thatF will always be definite under the assumptions of this theorem.

In particular, we will be able to apply Lemma 3 to conclude that (x∗, t∗) ∈ D. To this end, we will

36

1.5 Exactness of the SDP relaxation

show thatF is definite by first assuming thatF is semidefinite and then deriving a contradiction

to the assumption that (x∗, t∗) ∈ arg min(x,t)∈DSDP

2t.
Assume for contradiction thatF is a semidefinite face of Γ. By Lemma 2, V(F) has a nonzero

element. For the sake of convenience, let P := ΠV(F){b(γ) : γ ∈ F}. Assumption 3 implies

thatP is a nonempty closed convex set. Indeed,P is an affine transformation ofF , which is a face

of the polyhedral set Γ, and is thus itself polyhedral.

Under our assumption, the compact set {0} and the nonempty closed convex setP are disjoint.

Thus, by the hyperplane separation theorem, there exists a nonzero vector v ∈ V(F) and ϵ > 0
such that v⊺b(γ) ≤ −ϵ for all γ ∈ F .

Apply Lemma 8 to decompose Γ = Γe + cone(Γr) andF = Fe + Fr.

We will modify (x∗, t∗) in the (v,−ϵ) direction. Define

(xα, tα) := (x∗ + αv, t∗ − αϵ),

where α > 0 will be chosen later.

First, consider how q(γ, xα)− 2tα changes with α for fixed γf ∈ F . We can expand

q(γf , xα)− 2tα = (q(γf , x
∗)− 2t∗) + 2α(x∗⊺A(γf)v + b(γf)⊺v + ϵ) + α2v⊺A(γf)v

≤ (q(γf , x
∗)− 2t∗)

= 0.

The second line follows asA(γf)v = 0 and b(γf)⊺v ≤ −ϵ for all γf ∈ F . The third line follows

as q(γf , x
∗) = 2t∗ for all γf ∈ F .

On the other hand, for γe ∈ Γe \ Fe, the function α 7→ q(γe, xα) − 2tα is a continuous

function taking the value q(γe, x
∗)− 2t∗ < 0 at α = 0 (the strict inequality follows from the

fact that γe ∈ Γe \ Fe).

Similarly, for γr ∈ Γr \ Fr, the function α 7→ q̆(γr, xα) is a continuous function taking the

value q̆(γr, x
∗) < 0 at α = 0 (the strict inequality follows from the fact that γr ∈ Γr \ Fr).

We have shown that the following finite set of continuous functions in α,

Q := {q(γe, xα)− 2tα : γe ∈ extr(Γe) \ Fe} ∪ {q̆(γr, xα) : γr ∈ extr(Γr) \ Fr},

consists of continuous functions which are negative at α = 0. The finiteness of this set follows

from the assumption that Γ is polyhedral.

Fix anα > 0 such that q(α) ≤ 0 for every q ∈ Q— this is possible by the finiteness ofQ and the

continuity of each q ∈ Q. Then because Γe = conv(extr(Γe)) and Γr = conv(extr(Γr)), we

have q(γe, xα) ≤ 2tα for all γe ∈ Γe and q̆(γr, xα) ≤ 0 for all γr ∈ Γr. Thus, (xα, tα) ∈ DSDP.

In particular, min(x,t)∈DSDP

2t ≤ 2tα < 2t∗, a contradiction. ■

The following theorem will follow from Theorem 3 by a perturbation argument.

Theorem 4. Suppose Assumptions 1 and 3 hold. If there exists a sequence (hj)j∈N in RN such that
limj→∞ hj = 0 and for every semidefinite faceF of Γ and j ∈ N we have

0 /∈ ΠV(F){b(γ) + hj : γ ∈ F},

37

1 Objective value and convex hull exactness

then Opt = Opt
SDP

.

Proof. Consider the following sequence of QCQPs indexed by j ∈ N:

Optj := min
x∈RN

{
q0(x) + 2h⊺jx : qi(x) ≤ 0, ∀i ∈ [mI]

qi(x) = 0, ∀i ∈ [mI + 1,m]

}
.

We will use the subscript j to denote all quantities corresponding to the perturbed QCQP. By

construction, each of the QCQPs in this sequence satisfies the assumptions of Theorem 3 and

thus Opt
SDP,j = Optj . For j ∈ N, let

(xj , tj) ∈ arg min
(x,t)∈Dj

2t.

Let x∗
be a subsequential limit of {xj}j∈N (this exists as we can bound the sequence {xj}j∈N

using Assumption 1). Noting that the feasible domain of the original QCQP is closed, we have

that x∗
, a subsequential limit of feasible points, is also feasible. Finally, by continuity of q0 and the

optimality of (xj , tj) ∈ Dj , we have that

q0(x∗) = lim
j→∞

q0(xj) = lim
j→∞

Optj = lim
j→∞

Opt
SDP,j = Opt

SDP
.

Here, the final equality holds by a simple boundedness argument and Assumption 1. ■

The following example shows that SDP tightness (for example via Theorem 4) may hold even

when the convex hull result does not.

Example 4. Consider the following QCQP

inf
x∈R2

{
x2

1 + x2
2 : x2

1 − x2
2 ≤ 0

2x2 ≤ 0

}
.

We verify that the conditions of Theorem 4 hold. It is clear that Assumption 1 holds:A(0) = I ≻ 0
and x = 0 is feasible. It is easy to verify that Γ = [0, 1] × R+, thus Assumption 3 also holds.

Finally, pick hj = e2/j for j ∈ N. Note that the only semidefinite face of Γ isF = {1} × R+
and that V(F) = span{e2}. In particular,

ΠV(F){b(γ) + hj : γ ∈ F} = {0} × [1/j,∞),

which does not contain 0. We deduce that Opt = Opt
SDP

.

Next, we claim that conv(D) ̸= DSDP. First note thatD is actually convex in this example.

D =

(x, t) :
x2

1 + x2
2 ≤ 2t

x2
1 − x2

2 ≤ 0
2x2 ≤ 0

 =

(x, t) :
x2

1 + x2
2 ≤ 2t

|x1| ≤ −x2
2x2 ≤ 0



38

1.5 Exactness of the SDP relaxation

Figure 1.5: The sets conv(D) (in orange) andDSDP (in yellow) from Example 4

Next by Lemma 1 and the description of Γ above, we have that

DSDP =

(x, t) :
x2

1 + x2
2 ≤ 2t

2x2
1 ≤ 2t

2x2 ≤ 0

.
Then we may check, for example, that

((1, 0), 1) ∈ DSDP but ((1, 0), 1) /∈ D = conv(D).

We conclude that Opt = Opt
SDP

but conv(D) ̸= DSDP. We plotD andDSDP in Figure 1.5. □

1.5.1 Comparisonwith related conditions in the literature

Several sufficient conditions for SDP tightness results have been examined in the literature. In this

section, we compare these conditions with our Theorems 3 and 4.

Locatelli [112] considers the SDP relaxation of a variant of the TRS,

inf
x∈RN

{
q0(x) : b⊺i x+ ci ≤ 0, ∀i ∈ [m− 1]

x⊺x− 1 ≤ 0

}
. (1.15)

We assume thatA0 = Diag(a0) without loss of generality. Indeed, ifA0 is not diagonal, we can

reformulate the problem in the eigenbasis ofA0. Furthermore, we will assume thatA0 has at least

one negative eigenvalue as otherwise (1.15) is already convex.

Let J ⊆ [N] be the set of coordinates corresponding to λmin(A0), i.e., define

J :=
{
j ∈ [N] : (a0)j = min

i∈[N]
(a0)i

}
,

and let VJ := span({ej : j ∈ J}).

Locatelli [112] derives a sufficient condition for SDP tightness by reasoning about the nonexis-

tence of certain KKT multipliers in the SOCP relaxation of (1.15). For the sake of completeness,

we restate this result in our language.

39

1 Objective value and convex hull exactness

Theorem 5 ([112, Theorem 3.1]). Consider the problem (1.15) and assume thatA0 has at least one
negative eigenvalue. Suppose the feasible region of (1.15) is strictly feasible. If there exists a sequence
(hj)j∈N in RN such that limj→∞ hj = 0 and for every j ∈ N we have

0 /∈ ΠVJ

{
b(γ) + hj : γ ∈ Rm

+
}
,

then Opt = Opt
SDP

.

Proposition 4. Suppose the assumptions of Theorem 5 hold, then the assumptions of Theorem 4 also
hold.

Proof. Consider a QCQP of the form (1.15) satisfying the assumptions of Theorem 5. We will verify

that the assumptions of Theorem 4 are also satisfied. Note the feasible region of (1.1) is nonempty.

Furthermore, by taking η ∈ R large enough, we can ensure thatA(ηem) = A0 + ηI ≻ 0. Thus,

Assumption 1 is satisfied. Assumption 3 is satisfied as well because

Γ =
{
γ ∈ Rm : A(γ) ⪰ 0

γ ≥ 0

}
=
{
γ ∈ Rm : γm ≥ −λmin(A0)

γ ≥ 0

}
(1.16)

is polyhedral.

Let F be a semidefinite face of Γ. By Lemma 2, A(γ) must have a zero eigenvalue for every

γ ∈ F . In particular, we can deduce from the description of Γ in (1.16) that

F =
{
γ ∈ Rm : γm = −λmin(A0)

γ ≥ 0

}
.

Therefore, V(F) = VJ . Then the assumption 0 /∈ ΠVJ

{
b(γ) + hj : γ ∈ Rm

+
}

for every j ∈ N
immediately implies that

0 /∈ ΠV(F){b(γ) + hj : γ ∈ F}

for every j ∈ N as Rm
+ ⊇ F . Hence, we conclude that the third condition in Theorem 4 also

holds. ■

Remark 14. Ho-Nguyen and Kılınç-Karzan [87] study a particular convex relaxation of the TRS

with additional conic constraints. For such problems, they suggest a particular assumption under

which their relaxation is tight; see [87, Theorem 2.4]. It was also shown in [87, Lemma 2.10]

that when the conic constraints are in a particular linear form, then their assumption is indeed an

equivalent form of Locatelli [112]’s assumption from Theorem 5. It is of interest to compare our

assumptions with the one from [87]. We note however that our Theorem 4 and the result due to

[87, Theorem 2.4] are incomparable. To see this, note that the former covers some optimization

problems with nonconvex quadratic constraints while the latter covers some optimization problems

with non-quadratic conic constraints. In addition, we note that the relaxation studied in Ho-

Nguyen and Kılınç-Karzan [87] is weaker than the SDP relaxation that we study here. □

40

1.5 Exactness of the SDP relaxation

Burer and Ye [38] consider the standard SDP relaxation of diagonal QCQPs
4

and show that

under an assumption on the input data {Ai}i∈[0,m] and {bi}i∈[0,m] that the SDP relaxation is

tight. For the sake of completeness, we first restate
5

[38, Theorem 1] as it relates to SDP tightness

in our language.

Theorem 6 ([38, Theorem 1]). Consider a diagonal QCQP with no equality constraints. Suppose
the feasible region of (1.1) is nonempty and there exists γ∗ ≥ 0 such that Ă(γ∗) ≻ 0. Suppose the
SDP relaxation (1.3) is strictly feasible. If for every j ∈ [N] the setγ ∈ Rm :

γ ≥ 0
A(γ) ⪰ 0
A(γ)j,j = 0
b(γ)j = 0


is empty, then any optimizer (x∗, t∗) in arg min(x,t)∈DSDP

2t satisfies (x∗, t∗) ∈ D.

Proposition 5. Suppose the assumptions of Theorem 6 hold, then the assumptions of Theorem 3 also
hold.

Proof. Consider a QCQP satisfying the assumptions of Theorem 6. We will verify that the assump-

tions of Theorem 3 are also satisfied. Note the feasible region of (1.1) is nonempty. Furthermore,

by taking η ∈ R large enough, we can ensureA(ηγ∗) = A0 + ηĂ(γ∗) ≻ 0. Thus, Assumption 1

is satisfied. Assumption 3 holds as all of the quadratic forms A0, . . . , Am are diagonal. The

condition on the input data in Theorem 6 is equivalent to requiring that

A(γ)j,j = 0 =⇒ b(γ)j ̸= 0

for all γ ∈ Γ and j ∈ [N]. Consider a semidefinite face F of Γ, and any γ ∈ F . As A(γ) is

diagonal, we deduce that

V(F) = span({ej : A(γ)j,j = 0}).

Then, the final assumption in Theorem 3, namely

0 /∈ ΠV(F){b(γ) : γ ∈ F},

holds immediately. ■

The following example shows that Theorem 3 is strictly more general than Theorem 6 even in

the case of diagonal QCQPs with strictly convex constraints.

4

Burer and Ye [38] address general QCQPs in their paper by first transforming them into diagonal QCQPs and then

applying the standard SDP relaxation. In particular, the standard Shor SDP relaxation is only analyzed in the context

of diagonal QCQPs.

5

The original statement of this theorem gives additional guarantees, which are weaker than SDP tightness, when the

conditions of Theorem 6 fail.

41

1 Objective value and convex hull exactness

Example 5. Consider the following QCQP

min
x∈R2

{
−∥x∥2 : ∥x− e1∥2 ≤ 1

∥x− e2∥2 ≤ 1

}
.

We first verify that the assumptions of Theorem 3 hold. It is clear that this problem satisfies

Assumption 1: the origin is feasible andA(e1 + e2) = I ≻ 0. Next, we compute Γ.

Γ =
{
γ ∈ R2

+ : A(γ) ⪰ 0
}

=
{
γ ∈ R2

+ : γ1 + γ2 ≥ 1
}
.

We conclude that Assumption 3 also holds. Furthermore, the only semidefinite face of Γ is

F =
{
γ ∈ R2

+ : γ1 + γ2 = 1
}

. For this semidefinite face, we have that V(F) is the entire space

R2
. Consequently,

ΠV(F){b(γ) : γ ∈ F} =
{
γ1e1 + γ2e2 : γ ∈ R2

+, γ1 + γ2 = 1
}

is the set of all convex combinations of e1 and e2. This set does not contain the origin and thus

the assumptions of Theorem 3 are satisfied.

On the other hand, by picking j = 1 in Theorem 6 and γ = e2, we have that γ ≥ 0,A(γ) ⪰ 0,

and A(γ)j,j = 0 but b(γ)j = (e2)1 = 0. We see that the assumptions of Theorem 6 are not

satisfied. □

1.6 Removing the polyhedrality assumption

One of the main assumptions we use in our proof of the convex hull results (Theorems 1 and 2)

and the SDP tightness results (Theorems 3 and 4) is that the set Γ is polyhedral (Assumption 3). In

this section we show that one can remove Assumption 3 in Theorem 2 when k is sufficiently large
6

.

The results in this section do not use the framework described in Section 1.2 and in particular do

not require the technical assumption (Assumption 2).

Theorem 7. Suppose Assumption 1 holds. If the quadratic eigenvalue multiplicity k satisfies k ≥
m+ 2, then conv(D) = DSDP.

Proof. Suppose (x̂, t̂) ∈ DSDP. Therefore,

2t̂ ≥ sup
γ∈Rm

{
q(γ, x̂) : A(γ) ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}

= sup
γ∈Rm

{
q(γ, x̂) : A(γ) ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}
.

6

Recall the example constructed in Proposition 3. This example shows that both the convex hull result and SDP

tightness result fail when Assumption 3 is dropped from Theorem 2. In particular, the SDP tightness and convex

hull results we recover in this section will require assumptions on k that are strictly stronger than in the polyhedral

case.

42

1.6 Removing the polyhedrality assumption

The second line follows asA(γ) ⪰ 0 if and only ifA(γ) ⪰ 0. Note that Assumption 1 allows

us to apply strong conic duality to the program on the second line. Furthermore, this dual SDP

achieves its optimal value, i.e., there existsZ ∈ Sn
such that (x̂, t̂, Z) satisfies

q0(x̂) + ⟨A0, Z⟩ ≤ 2t̂
qi(x̂) + ⟨Ai, Z⟩ ≤ 0, ∀i ∈ [mI]
qi(x̂) + ⟨Ai, Z⟩ = 0, ∀i ∈ [mI + 1,m]
Z ⪰ 0.

(1.17)

We will show by induction on rank(Z) that for any (x̂, t̂, Z) satisfying (1.17), we have (x̂, t̂) ∈
conv(D). The claim clearly holds when rank(Z) = 0.

Now suppose r := rank(Z) ≥ 1. Let (x̂, t̂, Z) satisfy (1.17). Write Z =
∑r

i=1 ziz
⊺
i where

each zi is nonzero. Fix z := z1.

We claim that the following system in y is feasible:
⟨A0x̂+ b0, y ⊗ z⟩ = 0
⟨Aix̂+ bi, y ⊗ z⟩ = 0, ∀i ∈ [m]
y ∈ Sk−1.

(1.18)

Indeed, the first two constraints impose at mostm+1 homogeneous linear equalities ink ≥ m+2
variables. In particular, there exists a nonzero solution y to the first two constraints. This y may

then be scaled to satisfy y ∈ Sk−1
.

Note then that for all i ∈ [0,m],

qi(x̂± y ⊗ z) = (x̂± y ⊗ z)⊺Ai(x̂± y ⊗ z) + 2b⊺i (x̂± y ⊗ z) + ci

= qi(x̂)± 2⟨Aix̂+ bi, y ⊗ z⟩+ ⟨Ai, zz
⊺⟩

= qi(x̂) + ⟨Ai, zz
⊺⟩.

Consequently, (x̂±y⊗z, t̂, Z−zz⊺) satisfies (1.17). Furthermore, we have rank(Z−zz⊺) =
r − 1. By induction, (x̂± y ⊗ z, t̂) ∈ conv(D). We conclude that (x̂, t̂) ∈ conv(D). ■

A similar proof leads to an SDP tightness result without Assumption 3.

Theorem 8. Suppose Assumption 1 holds. Define the hyperplaneH =
{

(x, t) ∈ RN+1 : 2t = Opt
SDP

}
.

If the quadratic eigenvalue multiplicity k satisfies k ≥ m+ 1, then conv(D ∩H) = DSDP ∩H .
In particular, Opt = Opt

SDP
.

The proof of this statement follows the proof of Theorem 7 almost exactly and is deferred to

Appendix A.2. For now, we will simply sketch how to modify the proof of Theorem 7 to get a

proof for Theorem 8: We will only consider points (x̂, t̂) ∈ DSDP ∩H . In this situation, it is easy

to show that the first two constraints in (1.18) are dependent and impose at mostm homogeneous

linear equalities. Thus we may carry out the procedure in the proof of Theorem 7 as long as

k ≥ m+ 1. At the end of the procedure, we will have decomposed (x̂, t̂) as a convex combination

of points (xα, t̂) ∈ D.

43

1 Objective value and convex hull exactness

Remark 15. Beck [17, Corollary 4.4] shows that under Assumption 1, the conclusion Opt =
Opt

SDP
holds even when k = m. Thus, recalling the definition ofH from Theorem 8, we can

summarize Theorems 7 and 8 and [17, Corollary 4.4] as follows. Under Assumption 1, we have:

Assumption Result Reference

k ≥ m+ 2 conv(D) = DSDP Theorem 7

k ≥ m+ 1 conv(D ∩H) = DSDP ∩H Theorem 8

k ≥ m D ∩H ̸= ∅ [17, Corollary 4.4]

We conjecture, but are unable to prove at the moment, that the values required of k for these three

results are sharp. □

Remark 16. We vastly generalize the framework of this chapter in Chapter 2 where we

replace the polyhedrality assumption with a facially exposed condition. We furthermore

improve Theorem 7 from k ≥ m+ 2 to k ≥ m.

In retrospect, the fact that k ≥ m should suffice for convex hull exactness seems obvious:

Intuitively, convex hull exactness asks whether objective value exactness holds for any choice

of the linear term in the objective b0. Thus, as objective value exactness holds [17, Corollary

4.4] for k ≥ m conditioned only on Assumption 1 (and irregardless of b0), it should follow

that convex hull exactness holds for k ≥ m. □

44

2 A geometric view of SDP exactness

in QCQPs and its applications

This chapter is based on joint work [179] with Fatma Kılınç-Karzan.

This chapter extends the work of Chapter 1 towards understanding objective value and convex

hull exactness and completely removes the polyhedrality assumption made in Chapter 1. In this

chapter, we view the cone of convex Lagrange multipliers

Γ :=
{

(γ
obj
, γ) ∈ R× Rm : γ

obj
A

obj
+
∑m

i=1 γiAi

γi ≥ 0, ∀i ∈ [mI]

}

as being the natural dual object to study. We then define the slice Γ1 := {γ ∈ Rm : (1, γ) ∈ Γ}.

Note that the definition of Γ in Chapter 1 coincides with the definition of Γ1 in the present chapter.

Our conditions for exactness are again based on geometric properties of Γ1 and its relatives Γ and Γ◦
.

These tools form the basis of our main message: questions of exactness can be treated systematically

whenever Γ1, Γ, or Γ◦
is well-understood. As further evidence of this message, we apply our tools

to address questions of exactness for a prototypical QCQP involving a binary on-off constraint,

quadratic matrix programs, the QCQP formulation of the partition problem, and random and

semi-random QCQPs.

2.1 Introduction

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of nonconvex
optimization problems of the form

Opt := inf
x∈Rn

{
q

obj
(x) : qi(x) ≤ 0, ∀i ∈ [mI]

qi(x) = 0, ∀i ∈ [mI + 1,m]

}
,

where q
obj
, q1, . . . , qm : Rn → R are each (possibly nonconvex) quadratic functions. For each

i ∈ [m], we will write qi(x) = x⊤Aix+2b⊤
i x+ci forAi ∈ Sn

, bi ∈ Rn
, and ci ∈ R. Similarly,

write q
obj

(x) = x⊤A
obj
x+ 2b⊤

obj
x+ c

obj
.

These optimization problems arise naturally in a variety of application areas (see [11, 22, 181]). In-

deed, one fundamental reason for the ubiquity of QCQPs is their expressiveness—any polynomial

optimization problem or {0, 1}-integer program may be reformulated as a QCQP.

45

2 A geometric view of SDP exactness in QCQPs and its applications

Although QCQPs are NP-hard in general, they admit a natural tractable convex relaxation

known as the standard semidefinite program (SDP) relaxation [161],

Opt
SDP

:= inf
x∈Rn


〈
A

obj
, X
〉

+ 2b⊤
obj
x+ c

obj
:
∃X ⪰ xx⊤ :
⟨Ai, X⟩+ 2b⊤

i x+ ci ≤ 0, ∀i ∈ [mI]
⟨Ai, X⟩+ 2b⊤

i x+ ci = 0, ∀i ∈ [mI + 1,m]

.
This relaxation is also referred to as the Shor SDP relaxation. In contrast to the vast literature on

the approximation quality of this relaxation [22, 121, 129, 193], the question of when exactness
occurs in this relaxation is much more limited and recent.

One interesting line of work has offered deterministic conditions under which the SDP relax-

ation of a general QCQP is exact for various definitions of exactness. In their celebrated paper,

Fradkov and Yakubovich [67] prove the S-lemma, which implies that the problem of minimizing

an arbitrary quadratic objective function over the unit ball (or any single quadratic constraint)

can be solved via SDP techniques. Specifically, the S-lemma implies that objective value exactness—
the condition that the optimal value of the QCQP and the optimal value of its SDP relaxation

coincide—holds for QCQPs with a single constraint; see also [180]. In contrast, Burer and Ye [38]

study diagonal QCQPs—those QCQPs for whichA
obj
, A1, . . . , Am are diagonal matrices—with

a general number of constraints and give sufficient conditions for objective value exactness. Wang

and Kılınç-Karzan [178, 181] continue this line of work by developing a general framework for deriv-

ing sufficient conditions for both objective value exactness and convex hull exactness—the condition

that the convex hull of the QCQP epigraph coincides with the (projected) SDP epigraph—for QC-

QPs where a specific dual set, Γ1, is polyhedral (see Section 2.2). Beyond being a natural sufficient

condition for objective value exactness, convex hull exactness has its own far-reaching applications

and motivation. Such results find use for example in deriving strong relaxations of certain critical

substructures in nonconvex problems. Specifically, the convexification of commonly occurring

substructures in complex nonconvex problems has been critical in advancing the state-of-the-art

computational approaches for general nonlinear nonconvex programs and mixed integer linear

programs [49, 171]. (See [7, 163, 181] and references therein for additional work in this direction.)

While the framework presented by Wang and Kılınç-Karzan [181] can at once cover and extend

many existing results on objective value and convex hull exactness [35, 38, 67, 87, 111, 123, 180, 195],

it is still quite limited. In particular, the assumption that Γ1 is polyhedral is rarely satisfied outside

of simultaneously diagonalizable QCQPs and precludes the results in [181] from being applicable

to a wider range of interesting QCQPs.

Additional work in this direction [48] studies objective value exactness from an algebraic point

of view. Specifically, Cifuentes et al. [48] consider QCQPs with fixed equality constraints and

study the semialgebraic region of objective functions for which objective value exactness holds. As

an example of their results, they give a formula for the degree of the algebraic boundary of this

region in the setting of Euclidean distance minimization problems.

A related line of work has explored sufficient conditions for the rank-one-generated (ROG)

property [7, 29, 33, 34, 83]. A conic subset of the positive semidefinite cone is said to be ROG

if it is the convex hull of its rank-one elements. This property can be thought of as the SDP–

QCQP analogue to the integrality property in the context of linear program relaxations of integer

linear programs [7] and can be shown to imply both convex hull exactness and objective value

46

2.1 Introduction

exactness. Research in this direction has established explicit descriptions of the ROG cones related

to quadratic programs over low-dimensional polytopes [34] and ellipsoids with missing caps [37].

Other work in this direction [29, 83] explores the ROG property from an algebro-geometric

perspective and establishes results related to the degree and representation of such sets. Importantly,

Blekherman et al. [29] completely characterized the ROG cones defined by linear matrix equalities.
More recently, Argue et al. [7] gave general sufficient conditions for this property and completely

characterized the ROG cones defined by at most two linear matrix inequalities.
See [100] for an overview and comparison of objective value exactness, convex hull exactness,

and the rank-one generated property.

SDP exactness has been studied in the context of quadratic matrix programs (QMPs) as well. A

QMP is an optimization problem over a matrix variableX ∈ Rr×k
, where the objective function

and constraints are each of the form

tr(X⊤AX) + 2 tr(B⊤X) + c

forA ∈ Sr
,B ∈ Rr×k

and c ∈ R, and can be thought of as a natural generalization to QCQPs.
1

This class of problems has been used to model robust least squares problems, the orthogonal

Procrustes problem [17], and sphere packing [20]. QMPs and their SDP relaxations were first

studied by Beck [17], Beck et al. [20] who showed that objective value exactness holds as long as

the number of constraints is small compared to k. Similarly, Wang and Kılınç-Karzan [181] show

that both objective value exactness and convex hull exactness hold for (vectorized reformulations

of) QMPs whenever the number of constraints is small enough and Γ1 is polyhedral.

Finally, a number of results have shown that various random QCQPs have exact SDP relaxations

with high probability. For example, such results have been proved for signal-recovery tasks such

as phase retrieval [40], sensor-network localization [157], max-likelihood angular synchroniza-

tion [10], and clustering [1, 122, 153]. In these settings, the goal is to recover some ground-truth

solution (the solution to some QCQP) via observations (constraints in a QCQP). These results

then show that once an application-specific signal-to-noise ratio is large enough (for example, given

enough observations/constraints), that the SDP relaxation is exact. In contrast, a second line of

work [38, 113] addresses random QCQPs which do not assume the existence of a ground-truth

solution. In this direction, it is shown that when the number of constraints is small enough that

the SDP relaxation has a rank-one optimal solution.

2.1.1 Overview and outline of the chapter

In this chapter, we generalize the framework first introduced in [178, 181] by eliminating its

reliance on the polyhedrality assumption. Specifically, we give a broad set of sufficient conditions

for both convex hull exactness and objective value exactness that are phrased in terms of the

cone of convex Lagrange multipliers Γ (or the closely related sets Γ1 and Γ◦
; see Section 2.2). In

particular, these sufficient conditions can be checked in a systematic manner whenever Γ, Γ1, or Γ◦

is sufficiently simple. Furthermore, we show that our sufficient conditions for convex hull exactness

1

In fact, these two problem classes are equivalent. Any QCQP is a QMP with k = 1. In the reverse direction, any

QMP in a variable X ∈ Rn×k
can be written as a QCQP in the variable obtained by stacking the columns of X on

top of each other. Note that in this second direction, the value k induces additional structure on the QCQP.

47

2 A geometric view of SDP exactness in QCQPs and its applications

are additionally necessary under a technical assumption (see Assumption 5). We complement our

theory with a number of explicit examples illustrating our tools on QCQPs from various settings,

including a basic QCQP originating from modeling big-M constraints, quadratic matrix programs,

the partition QCQP, and two random QCQP models.

Collectively, these results and examples offer evidence for the main message of this chapter that

questions of exactness can be treated systematically whenever the convex Lagrange multipliers are
well-understood.

A summary of our contributions, along with an outline of the remainder of the chapter, is as

follows:

1. In Section 2.2, we formally define our setup and assumptions and recall basics regarding

Lagrangian aggregation and the SDP relaxation of a QCQP. We then define and examine a

number of faces of the cone of convex Lagrange multipliers Γ and its polar cone Γ◦
that

play key roles in our analysis.

2. In Section 2.3, we present a sufficient condition for convex hull exactness that generalizes

[181, Theorem 1]. This sufficient condition (Theorem 9) is based on an analysis of the

“rounding directions” inside SSDP and is performed in the original space. Specifically, we

show that convex hull exactness holds as long as certain systems of equations (that depend

on Γ, Γ1, or Γ◦
) contain nontrivial solutions. In contrast to [181, Theorem 1], our suffi-

cient condition does not make any assumptions on the geometry of Γ or Γ1 and can be

used to cover additional interesting QCQPs (see Section 2.4). One of our main technical

contributions (Theorem 10) shows that our sufficient condition for convex hull exactness is

in fact also necessary under the assumption that Γ◦
is facially exposed (see Assumption 5

and its surrounding discussion). We end Section 2.3 by revisiting the polyhedral setting.

We derive necessary and sufficient conditions for convex hull exactness (Theorem 11) and

compare it to the sufficient condition presented in [181, Theorem 1]. To the best of our

knowledge, this is the first necessary and sufficient condition for convex hull exactness even

in the context of diagonal QCQPs (where Γ,Γ1 and Γ◦
are automatically polyhedral).

3. In Section 2.4, we present example applications of our general results from Section 2.3 to a

prototypical set containing big-M constraints, quadratic matrix programs, and the partition

problem. In all of these applications, the resulting Γ sets are non-polyhedral, and thus the

sufficient conditions from [181] that work under the polyhedrality assumption of Γ fail to

cover these applications.

In Section 2.4.1, we apply our framework to show that convex hull exactness holds for a

well-studied set involving convex quadratics, binary variables and big-M relations. This set

occurs as a substructure commonly studied in sparse regression applications. The convex

hull characterization of this set is well-known in the literature and is often shown as a

consequence of the perspective formulation trick due to Ceria and Soares [42] (see also

[61, 68, 79]).

In Section 2.4.2, we show that the SDP relaxation of a quadratic matrix program satisfies

convex hull exactness whenever the number of constraints is small (when compared to the

rank of the matrix variable). This strengthens separate results first presented in [181] and

48

2.1 Introduction

[17]; see Remark 24. In contrast to the ad hoc proof given in [181], the proof we present in

Section 2.4.2 follows the outline of our general framework.

In Section 2.4.3, we consider the QCQP formulation of the NP-hard partition problem and

its SDP relaxation. Using our framework, we give an explicit description of the optimal value

and epigraph of the SDP relaxation. Consequently, we recover a result due to Laurent and

Poljak [106] stating that deciding whether objective value exactness holds for the partition

QCQP is NP-hard. In contrast, we show that convex hull exactness never holds for the

partition QCQP (as long as there are at least two nonzero weights). This then implies that

deciding whether convex hull exactness holds for the partition QCQP is trivial.

4. In Section 2.5, we present a number of sufficient conditions for objective value exactness.

In fact, our sufficient conditions further imply optimizer exactness, i.e., that the optimizers

of the QCQP and its (projected) SDP relaxation coincide. Section 2.5.1 presents a general

sufficient condition (Theorem 12) for objective value exactness based on a primal analysis.

Similarly, Section 2.5.2 presents a general sufficient condition (Theorem 13) for objective

value exactness based on a dual analysis. These results recover known sufficient condi-

tions [38, 181] for objective value exactness and explain the roles played by polyhedrality in

prior settings. We additionally specialize these abstract conditions to derive more concrete

conditions (see Corollaries 9 to 12) for objective value exactness.

5. In Section 2.6, we present example applications of our general results from Section 2.5 to

two models of random QCQPs. The results in this section show that ideas from Section 2.5

can be applied even when Γ, Γ1, or Γ◦
is only known approximately. The models in this

section are inspired by recent work on objective value exactness [38, 113] where random

QCQPs have been used as a testing ground for understanding the strength or explanatory

power of various sufficient conditions. In Section 2.6.2, we consider a fully random model

of QCQPs and show that objective value exactness (in fact optimizer exactness) holds with

probability 1− o(1) in the regime wherem (the number of constraints) is fixed and n (the

number of variables) diverges to +∞. In Section 2.6.3, we consider a semi-random model

of QCQPs where, for each quadratic function, the quadratic terms are randomly generated

and the linear and constant terms can be chosen adversarially. In this setting, we show that a

perturbed notion of exactness holds again with probability 1− o(1) as n→ +∞.

2.1.2 Additional notation

For x, y ∈ R, let [x± y] := [x− y, x+ y], x+ := max(0, x) and x2
+ := (x+)2

. For δ ≥ 0 and

x ∈ Rn
, letBn(x, δ) := {y ∈ Rn : ∥x− y∥ ≤ δ}. Whenn is clear from context, we will simply

write 0 and B(x, δ). For M ∈ Sn
, let λmin(M) = λ1(M) ≤ · · · ≤ λn(M) = λmax(M)

denote the spectrum of M . Let K ⊆ E be a cone. Let K◦
denote the polar cone of K . The

notationF ⊴ K denotes thatF is a face ofK . By convention, faces of cones are always nonempty.

C∞
c (Rn) denotes the smooth functions with compact support on Rn

. Let∇ denote the gradient

operator. LetN(µ,Σ) denote the multivariate normal distribution with mean µ and covariance

Σ.

49

2 A geometric view of SDP exactness in QCQPs and its applications

2.2 Preliminaries

2.2.1 Setup

We will consider quadratically constrained quadratic programs (QCQPs) inRn
defined bym-many

quadratic constraints

Opt := inf
x∈Rn

{
q

obj
(x) : qi(x) ≤ 0, ∀i ∈ [mI]

qi(x) = 0, ∀i ∈ [mI + 1,m]

}
. (2.1)

Here,mI is the number of inequality constraints andmE := m−mI is the number of equality

constraints. For each i ∈ [m], we will write qi(x) = x⊤Aix + 2b⊤
i x + ci for some Ai ∈ Sn

,

bi ∈ Rn
, and ci ∈ R. Similarly, we will write q

obj
(x) = x⊤A

obj
x+ 2b⊤

obj
x+ c

obj
.

We will also consider the epigraph, S , of this QCQP, i.e.,

S :=

(x, t) ∈ Rn × R :
q

obj
(x) ≤ 2t

qi(x) ≤ 0, ∀i ∈ [mI]
qi(x) = 0, ∀i ∈ [mI + 1,m]

.

2.2.2 Aggregation and the (projected) SDP relaxation

It is well known in the QCQP literature [22, 71, 181] that the SDP relaxation of a QCQP is

equivalent (under a minor assumption) to the double-Lagrangian-dual. We will state this formally

in Lemma 10 but will first need to introduce notation related to Lagrangian aggregation.

Let q : Rn → R1+m
be indexed by {obj} ∪ [m] where q(x)

obj
= q

obj
(x) and q(x)i = qi(x)

for i ∈ [m]. Let e
obj
, e1, . . . , em denote the corresponding unit vectors in R1+m

. We will work

extensively with the aggregated quadratic functions

〈
(γ

obj
, γ), q(x)

〉
for (γ

obj
, γ) ∈ R1+m

. For

notational convenience, defineA(γ
obj
, γ) := γ

obj
A

obj
+
∑

i∈[m] γiAi. Similarly define b(γ
obj
, γ),

and c(γ
obj
, γ). We will at times work on the slice of R1+m

where the variable γ
obj

is taken to be

one. Let A[γ] := A(1, γ) and similarly define b[γ] and c[γ]. Set [γ, q(x)] := ⟨(1, γ), q(x)⟩.
Note that 〈

(γ
obj
, γ), q(x)

〉
= γ

obj
q

obj
(x) +

m∑
i=1

γiqi(x)

= x⊤A(γ
obj
, γ)x+ 2b(γ

obj
, γ)⊤x+ c(γ

obj
, γ), and

[γ, q(x)] = q
obj

(x) +
m∑

i=1
γiqi(x)

= x⊤A[γ]x+ 2b[γ]⊤x+ c[γ].

We recall and extend the following definition from [181].

50

2.2 Preliminaries

Definition 6. The cone of convex Lagrange multipliers for (2.1) is

Γ :=

(γ
obj
, γ) ∈ R× Rm :

A(γ
obj
, γ) ⪰ 0

γ
obj
≥ 0

γi ≥ 0, ∀i ∈ [mI]

.
The set of convex Lagrange multipliers for (2.1) is

Γ1 := {γ ∈ Rm : (1, γ) ∈ Γ} =
{
γ ∈ Rm : A[γ] ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}
. □

We will see soon (see Remark 19) that Γ1 can be thought of as the feasible domain of a partial

dual of the SDP relaxation of a QCQP (see (2.2)).

Note that given (γ
obj
, γ) ∈ Γ, the quadratic function x 7→

〈
(γ

obj
, γ), q(x)

〉
is convex. Simi-

larly, given γ ∈ Γ1, the quadratic function x 7→ [γ, q(x)] is convex.

We will make the following blanket assumption for the remainder of the chapter. This assumption

can be interpreted as a dual strict feasibility condition and is standard in the literature [17, 24, 38,

181, 194].

Assumption 4. There exists (γ∗
obj
, γ∗) ∈ Γ such thatA(γ∗

obj
, γ∗) ≻ 0. Equivalently, there exists

γ∗ ∈ Γ1 such thatA[γ∗] ≻ 0. □

Remark 17. Note that under Assumption 4, we have that Γ is the closed cone generated by its slice

at γ
obj

= 1, i.e., Γ = clcone({(1, γ) : γ ∈ Γ1}). (See discussion following [181, Assumption

2]) □

Recall that the (projected) SDP relaxation of S is given by

SSDP
:=

(x, t) ∈ Rn × R :

∃X ⪰ xx⊤ :〈
A

obj
, X
〉

+ 2b⊤
obj
x+ c

obj
≤ 2t

⟨Ai, X⟩+ 2b⊤
i x+ ci ≤ 0, ∀i ∈ [mI]

⟨Ai, X⟩+ 2b⊤
i x+ ci = 0, ∀i ∈ [mI + 1,m]

, (2.2)

and Opt
SDP

:= inf(x,t)∈SSDP

2t. By takingX = xx⊤
in (2.2), we see that Opt ≥ Opt

SDP
and

conv(S) ⊆ SSDP.

The following lemma states that under Assumption 4, we can rewrite SSDP in terms of Γ. This

lemma follows from a straightforward duality argument.

Lemma 10. Suppose Assumption 4 holds. Then

SSDP =
{

(x, t) ∈ Rn+1 : [γ, q(x)] ≤ 2t, ∀γ ∈ Γ1
}

=
{

(x, t) ∈ Rn+1 :
〈
(γ

obj
, γ), q(x)

〉
≤ 2γ

obj
t, ∀(γ

obj
, γ) ∈ Γ

}
=
{

(x, t) ∈ Rn : q(x)− 2te
obj
∈ Γ◦

}
.

Here, Γ◦ denotes the polar cone of Γ.

51

2 A geometric view of SDP exactness in QCQPs and its applications

Proof. Fix (x, t) ∈ Rn+1
. Note that

sup
γ∈Γ1

[γ, q(x)] = sup
γ∈Rm

{
[γ, q(x)] : A[γ] ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}

= inf
ξ∈Sn

qobj
(x) +

〈
A

obj
, ξ
〉

:
qi(x) + ⟨Ai, ξ⟩ ≤ 0, ∀i ∈ [mI]
qi(x) + ⟨Ai, ξ⟩ = 0, ∀i ∈ [mI + 1,m]
ξ ⪰ 0

,
where the second equation follows from the strong conic duality theorem and Assumption 4.

TakingX := xx⊤ + ξ, we deduce that the first equality in Lemma 10 holds.

Note that by Assumption 4, Γ = clcone{(1, γ) : γ ∈ Γ1)} so that [γ, q(x)] ≤ 2t for all

γ ∈ Γ1 if and only if

〈
(γ

obj
, γ), q(x)

〉
≤ 2γ

obj
t for all (γ

obj
, γ) ∈ Γ; this gives the second

equality. The third equality holds by definition of the polar cone. ■

Corollary 5. Suppose Assumption 4 holds. Then

Opt
SDP

= inf
x∈Rn

sup
γ∈Γ1

[γ, q(x)]. (2.3)

Corollary 6. Suppose Assumption 4 holds. Then, SSDP is closed.

Remark 18. In comparison with (2.2), the expressions for SSDP given in Lemma 10 make the roles

played by Γ, Γ1, and Γ◦
explicit. In particular, these expressions for SSDP lend themselves to a

clean analysis whenever the corresponding dual set Γ, Γ1, or Γ◦
is sufficiently simple. □

Remark 19. Phrased differently, one may minimize Opt
SDP

in the form (2.2) by minimizing over

x ∈ Rn
the value of an inner minimization problem over the matrix variablesX ⪰ xx⊤ ∈ Sn

.

WritingX = xx⊤ + ξ and taking the SDP dual in the ξ variable then results in the same saddle-

point structure Opt
SDP

= infx∈Rn supγ∈Γ1 [γ, q(x)] observed in Corollary 5. In other words,

Γ1 is the feasible domain to this partial dual of (2.2). □

Let us consider a concrete example to help materialize these definitions.

Example 6. Consider the following QCQP epigraph,

S :=

(x, t) ∈ R2 × R :
q

obj
(x) ≤ 2t

q1(x) ≤ 0
q2(x) ≤ 0

,

52

2.2 Preliminaries

S

SSDP

Γ

Γ◦

(x, t) (q
obj

(x)− t, q(x))

Figure 2.1: The sets S , SSDP, Γ, and Γ◦
from Example 6 are shown in blue, green, orange, and yellow

respectively. By Lemma 10, (x, t) ∈ SSDP if and only if q(x)− 2teobj ∈ Γ◦
.

where q
obj

(x) := 2x1x2−x2−1/4, q1(x) := x2
1−x2

2−x1 +x2−1, and q2(x) := x2
1 +x2

2−1.

Through a straightforward calculation, we obtain

Γ =
{

(γ
obj
, γ) ∈ R3 : γ2 ≥

√
γ2

obj
+ γ2

1
γ

obj
, γ1, γ2 ≥ 0

}
,

Γ◦ =
{

(γ
obj
, γ) ∈ R3 : −γ2 ≥

√
(γ

obj
)2
+ + (γ1)2

+

}
, and

SSDP =
{

(x, t) ∈ R2 : −q2(x) ≥
√

(q
obj

(x)− 2t)2
+ + q1(x)2

+

}
.

See Figure 2.1 for the plots of the sets corresponding to S , Γ, Γ◦
, and SSDP. □

2.2.3 Faces of Γ and Γ◦

In this section we define key faces of Γ and Γ◦
that will play important roles in our analysis. We will

additionally recall a number of elementary properties of convex cones and their faces specialized to

our setting. See [12, 13, 142] for a more in-depth treatment of general convex cones and their faces.

Recall the following definitions.

Definition 7. Given a face G ⊴ Γ◦
and (g

obj
, g) ∈ rint(G), the conjugate face of G is

G△ := Γ ∩ G⊥ = Γ ∩ (g
obj
, g)⊥.

Similarly, define the conjugate face ofF for a faceF ⊴ Γ. □

Definition 8. For a face G ⊴ Γ◦
, we say that G is exposed if there exists (γ

obj
, γ) ∈ Γ such that

G = Γ◦ ∩ (γ
obj
, γ)⊥

. □

We will additionally associate faces of Γ and Γ◦
to points (x, t) ∈ SSDP as follows.

Definition 9. Given (x, t) ∈ SSDP, let G(x, t) ⊴ Γ◦
denote the minimal face of Γ◦

containing

q(x)− 2te
obj

and defineF(x, t) := G(x, t)△
. □

The next fact follows from Definition 9.

Fact 1. Given (x, t) ∈ SSDP, we have that q(x) − 2te
obj
∈ rint(G(x, t)) and F(x, t) =

Γ ∩ (q(x)− 2te
obj

)⊥.

53

2 A geometric view of SDP exactness in QCQPs and its applications

2.3 Convex hull exactness

In this section, we present necessary and sufficient conditions for convex hull exactness, i.e., the

property that conv(S) = SSDP. These results form the basis of our assertion that exactness can be
treated systematically whenever Γ, Γ1, or Γ◦ is well-understood.

We begin by rephrasing convex hull exactness as a question regarding the existence of certain

“rounding directions.” The following result follows from basic convex analysis.

Lemma 11. Suppose Assumption 4 holds. Then, conv(S) = SSDP if and only if for every (x, t) ∈
SSDP \ S , there exists a nonzero (x′, t′) ∈ Rn+1 and α > 0 such that

[(x, t)± α(x′, t′)] ⊆ SSDP.

Proof. Note that SSDP is a closed convex set containing no lines. Also, one can easily check

that (0n, 1) is indeed a recessive direction of SSDP. Furthermore, (0n, 1) is the only recessive

direction of SSDP. To see this, let γ∗
be such thatA[γ∗] ≻ 0 (which exists by Assumption 4) and

consider any (x′, t′) where x′
is nonzero. Then, for any (x̃, t̃) ∈ SSDP and allα > 0 large enough,

2(t̃+αt′) < [γ∗, q(x̃+αx′)]. Therefore, we deduce by [152, Theorem 18.5], thatSSDP is the sum

of the convex hull of its extreme points and the direction (0n, 1). In particular conv(S) = SSDP

if and only if (x, t) is not extreme for every (x, t) ∈ SSDP \ S . By definition, (x, t) is not extreme

if and only if there exists (x′, t′) and α > 0 such that [(x, t)± α(x′, t′)] ⊆ SSDP. ■

We capture the relevant set in Lemma 11 in the following definition.

Definition 10. The subspace of rounding directions at (x, t) ∈ SSDP is

R(x, t) :=
{

(x′, t′) ∈ Rn+1 : ∃α > 0 s.t. [(x, t)± α(x′, t′)] ⊆ SSDP

}
.

This set is nontrivial if it contains a nonzero element. □

Note thatR(x, t) is in fact a subspace so that its name is justified. Indeed,R(x, t) is a convex

cone as SSDP is convex. Furthermore, it holds that−R(x, t) = R(x, t).

Remark 20. One may compare our rounding directions to other similar definitions from elemen-

tary convex analysis [85, Section 5.1]. Fix a point (x, t) ∈ SSDP and (x′, t′) ∈ Rn+1
. Recall that

(x′, t′) is a feasible direction if there exists α > 0 such that [(x, t), (x, t) + α(x′, t′)] ⊆ SSDP. In

particular, feasible directions are a unidirectional notion, whereas rounding directions are bidi-
rectional. Next, recall that (x′, t′) is a tangent direction if it is a limit of feasible directions. Again,

tangent directions are unidirectional. □

Remark 21. Suppose (x, t) ∈ SSDP and 2t > supγ∈Γ1 [γ, q(x)]. Then, by Lemma 10 there exists

α > 0 such that [(x, t)± α(0n, 1)] ⊆ SSDP. In particular, it suffices to verify the condition of

Lemma 11 for points (x, t) ∈ SSDP \ S for which 2t = supγ∈Γ1 [γ, q(x)]. □

2.3.1 Sufficient conditions for convex hull exactness

In this section we identify a particular subset of the rounding directions at (x, t) ∈ SSDP. This then

leads to a sufficient condition for convex hull exactness, i.e., the condition that conv(S) = SSDP.

54

2.3 Convex hull exactness

Definition 11. Given (x, t) ∈ SSDP, define

R′(x, t) :=
{

(x′, t′) ∈ Rn+1 : q(x+ αx′)− 2(t+ αt′)e
obj
∈ span(G(x, t)), ∀α ∈ R

}
.□

Lemma 12. Suppose Assumption 4 holds and (x, t) ∈ SSDP. Then,R′(x, t) ⊆ R(x, t).

Proof. Let (x, t) ∈ SSDP and (x′, t′) ∈ R′(x, t). Then, by continuity and the fact that q(x)−
2te

obj
∈ rint(G(x, t)), there exists α > 0 such that

q(x+ ϵx′)− 2(t+ ϵt′)e
obj
∈ G(x, t) ⊆ Γ◦

for all ϵ ∈ [±α]. By the third characterization of SSDP in Lemma 10, we have that [(x, t) ±
α(x′, t′)] ⊆ SSDP. ■

Lemmas 11 and 12 immediately imply the following sufficient condition for convex hull exactness.

Theorem 9. Suppose Assumption 4 holds and that for all (x, t) ∈ SSDP \ S , the setR′(x, t) is
nontrivial. Then, conv(S) = SSDP.

We will see applications of Theorem 9 in Section 2.4.

In Lemma 13 below, we will record an alternate description ofR′(x, t). We will require the

following observation.

Observation 2. Suppose Assumption 4 holds. Let (x, t) ∈ SSDP where 2t = supγ∈Γ1 [γ, q(x)].
Then, span(G(x, t)) ̸⊇ R× 0m. In particular, G(x, t)⊥ = span

(
G(x, t)⊥ ∩

{
γ

obj
= 1

})
.

Proof. Suppose span(G(x, t)) ⊇ R× 0m so that (0n, 1) ∈ R′(x, t). By Lemma 12, there exists

α > 0 such that (x, t− α) ∈ SSDP. This contradicts 2t = supγ∈Γ1 [γ, q(x)].
We deduce that span(G(x, t)) ̸⊇ R × 0m. Equivalently, G(x, t)⊥ ̸⊆ 0 × Rm

and there

exists (1, γ̄) ∈ G(x, t)⊥
. Then, for any (γ

obj
, γ) ∈ G(x, t)⊥

, we can write (γ
obj
, γ) as a linear

combination of

(γ
obj
, γ) + (1− γ

obj
)(1, γ) and (1, γ). ■

Lemma 13. Suppose Assumption 4 holds and let (x, t) ∈ SSDP. Then,

R′(x, t) =
{

(x′, t′) ∈ Rn+1 :
(x′)⊤A(γ

obj
, γ)x′ = 0, ∀(γ

obj
, γ) ∈ G(x, t)⊥〈

A(γ
obj
, γ)x+ b(γ

obj
, γ), x′

〉
− γ

obj
t′ = 0, ∀(γ

obj
, γ) ∈ G(x, t)⊥

}

If furthermore 2t = supγ∈Γ1 [γ, q(x)], then

R′(x, t) =
{

(x′, t′) ∈ Rn+1 : (x′)⊤A[γ]x′ = 0, ∀(1, γ) ∈ G(x, t)⊥

⟨A[γ]x+ b[γ], x′⟩ − t′ = 0, ∀(1, γ) ∈ G(x, t)⊥

}
.

55

2 A geometric view of SDP exactness in QCQPs and its applications

Proof. Note that (x′, t′) ∈ R′(x, t) if and only if for all (γ
obj
, γ) ∈ G(x, t)⊥

, we have that〈
(γ

obj
, γ), q(x+ αx′)− 2(t+ αt′)e

obj

〉
= α2(x′)⊤A(γ

obj
, γ)(x′) + 2α

(〈
A(γ

obj
, γ)x+ b(γ

obj
, γ), x′

〉
− t′

)
+
〈
(γ

obj
, γ), q(x)− 2te

obj

〉
is identically zero in α. This occurs if and only if for all (γ

obj
, γ) ∈ G(x, t)⊥

, we have

(x′)⊤A(γ
obj
, γ)x′ = 0, and〈

A(γ
obj
, γ)x+ b(γ

obj
, γ), x′

〉
− t′ = 0.

This proves the first assertion. The second assertion follows from the first and Observation 2. ■

2.3.2 Necessary conditions for convex hull exactness

In Section 2.3.1, we gave a sufficient condition for convex hull exactness by identifying a subset

of directionsR′(x, t) ⊆ R(x, t) and invoking Lemma 11. In this section, we show that under a

technical assumption (Assumption 5), we haveR′(x, t) = R(x, t). This then leads to a necessary

and sufficient condition for convex hull exactness under the technical assumption.

Assumption 5. Suppose Γ◦
is facially exposed, i.e., every face of Γ◦

is exposed. □

This assumption holds for any cone isomorphic to a slice of the nonnegative orthant, the second-

order cone, or the positive semidefinite cone. See [143] for a longer discussion of this assumption

and its connections to the nice cones. In general, all nice cones are facially exposed. Our analysis will

be based on the following property of exposed faces G ⊴ Γ◦
(see [13, Definition 2.A.9] and its

surrounding discussion):

Fact 2. A face G ⊴ Γ◦ is exposed if and only if G = (G△)△.

We are now ready to prove a partial converse to Lemma 12.

Lemma 14. Suppose Assumptions 4 and 5 hold and let (x, t) ∈ SSDP. ThenR′(x, t) = R(x, t).

Proof. Fix (x′, t′) ∈ R(x, t). AsR(x, t) is a convex cone, we may without loss of generality

assume that [(x, t)± (x′, t′)] ⊆ SSDP. Our goal is to show that (x′, t′) ∈ R′(x, t), i.e., that

q(x+ αx′)− 2(t+ αt′)e
obj
∈ span(G(x, t)), ∀α ∈ R.

As each coordinate of this vector is quadratic in α, it suffices to show instead that

q(x+ αx′)− 2(t+ αt′)e
obj
∈ G(x, t), ∀α ∈ [−1, 1].

56

2.3 Convex hull exactness

Let (f
obj
, f) ∈ rint(F(x, t)) so that by Assumption 5 and Fact 2, we may write G(x, t) =

Γ◦ ∩ (f
obj
, f)⊥

. As [(x, t) ± (x′, t′)] ⊆ SSDP, we immediately have that q(x + αx′) − 2(t +
αt′)e

obj
∈ Γ◦

for all α ∈ [−1, 1]. It remains to verify that the map

α 7→
〈
(f

obj
, f), q(x+ αx′)− 2(t+ αt′)e

obj

〉
evaluates to zero on α ∈ [−1, 1]. Again, as [(x, t)± (x′, t′)] ⊆ SSDP, this map is nonpositive for

all α ∈ [−1, 1]. Next, note that (f
obj
, f) ∈ F(x, t) = Γ ∩ (q(x) − 2te

obj
)⊥

so that this map

evaluates to zero atα = 0. Finally, (f
obj
, f) ∈ Γ implies that this map is also convex. We conclude

that this map is identically zero. ■

The following necessary and sufficient condition for convex hull exactness then follows from

Lemma 14.

Theorem 10. Suppose Assumptions 4 and 5 hold. Then, conv(S) = SSDP if and only if for all
(x, t) ∈ SSDP \ S , the setR′(x, t) is nontrivial.

To close this subsection, we give a compact description ofR′(x, t) under Assumption 5.

Proposition 6. Suppose Assumptions 4 and 5 hold. Let (x, t) ∈ SSDP where 2t = supγ∈Γ1 [γ, q(x)]
and let (1, f) ∈ rint(F(x, t)). Then,

R′(x, t) =
{

(x′, t′) ∈ Rn+1 : x′ ∈ ker(A[f])
⟨A[η]x+ b[η], x′⟩ − t′ = 0, ∀(1, η) ∈ G(x, t)⊥

}
.

Proof. Let (1, f) ∈ rint(F(x, t)). By Lemma 13, it suffices to show that x′ ∈ ker(A[f]) if and

only if

(x′)⊤A[γ]x′ = 0, ∀(1, γ) ∈ G(x, t)⊥.

The reverse direction holds immediately as (1, f) ∈ F(x, t) ⊆ G(x, t)⊥
andA[f] ⪰ 0.

To see the forward direction: Let x′ ∈ ker(A[f]) and set v
obj

= (x′)⊤A
obj
x′

. Similarly, set

vi = (x′)⊤Aix
′
. Then,〈
(v

obj
, v), (γ

obj
, γ)
〉

= (x′)⊤A(γ
obj
, γ)x′ ≥ 0, ∀(γ

obj
, γ) ∈ Γ.

Thus (−v
obj
,−v) ∈ Γ◦

. On the other hand,

〈
(v

obj
, v), (1, f)

〉
= (x′)⊤A[f]x′ = 0. We deduce

that (−v
obj
,−v) ∈ Γ◦ ∩ (1, f)⊥ = F(x, t)△ = G(x, t). In particular, (x′)⊤A(γ

obj
, γ)x′ =〈

(v
obj
, v), (γ

obj
, γ)
〉

= 0 for all (γ
obj
, γ) ∈ G(x, t)⊥

. ■

2.3.3 Revisiting the setting of polyhedral Γ
Wang and Kılınç-Karzan [181] give sufficient conditions for convex hull exactness under the as-

sumption that Γ1 is polyhedral.
2

This assumption holds, for example, when the set of quadratic

2

Equivalently (see Remark 17), under the assumption that Γ is polyhedral.

57

2 A geometric view of SDP exactness in QCQPs and its applications

forms

{
A

obj
, A1, . . . , Am

}
is simultaneously diagonalizable. Specializing Theorem 10 to this

setting, we prove the following necessary and sufficient counterpart to [181, Theorem 1].

Theorem 11. Suppose Assumption 4 holds and that Γ is polyhedral. Then, conv(S) = SSDP if and
only if {

(x′, t′) ∈ Rn+1 : x′ ∈ ker(A[f])
⟨b[γ], x′⟩ − t′ = 0, ∀(1, γ) ∈ F

}

is nontrivial for everyF ⊴ Γ which is exposed by some vector q(x)− 2te
obj

for (x, t) ∈ SSDP \ S .
Here, f is any vector such that (1, f) ∈ rint(F).

Proof. We begin by noting that when Γ is polyhedral, so too is Γ◦
so that Assumption 5 holds.

Next, we claim that for every faceG ⊴ Γ◦
we haveG⊥ = span(G△). By definition, span(G△) =

span(Γ∩G⊥) ⊆ G⊥
. On the other hand, as Γ and Γ◦

are polyhedral, we have that [169, Theorem

3]

dim(G) + dim(G△) = m.

Rearranging this equation, we have dim(G△) = m− dim(G) = dim(G⊥). We conclude that

G⊥ = span(G△).

Let (x, t) ∈ SSDP such that 2t = supγ∈Γ1 [γ, q(x)] and let (1, f) ∈ rint(F(x, t)). Then,

Observation 2 and Proposition 6 imply that

R′(x, t) =
{

(x′, t′) ∈ Rn+1 : x′ ∈ ker(A[f])
⟨A[γ]x+ b[γ], x′⟩ − t′ = 0, ∀(1, γ) ∈ G(x, t)⊥

}

=
{

(x′, t′) ∈ Rn+1 : x′ ∈ ker(A[f])
⟨A[γ]x+ b[γ], x′⟩ − t′ = 0, ∀(1, γ) ∈ F(x, t)

}

=
{

(x′, t′) ∈ Rn+1 : x′ ∈ ker(A[f])
⟨b[γ], x′⟩ − t′ = 0, ∀(1, γ) ∈ F(x, t)

}
.

Here, the second line follows because we have shown G⊥ = span(G△) holds for every face

G ⊴ Γ◦
and by definitionF(x, t) = G(x, t)△

. The third line follows from the fact that (1, f) ∈
rint(F(x, t)) implies ker(A[f]) ⊆ ker(A[γ]) for every (1, γ) ∈ F(x, t). The result then

follows from Theorem 10. ■

Remark 22. The main difference between Theorem 11 and [181, Theorem 1] is that Theorem 11

only considers certain (a fortiori semidefinite) faces of Γ whereas [181, Theorem 1] imposes a

constraint on every semidefinite face of Γ. This idea of restricting the analysis to certain faces of Γ
was previously investigated by [38, 113] who used it to provide sufficient conditions for objective

value exactness. □

58

2.4 Applications: Convex hull exactness

2.4 Applications: Convex hull exactness

In this section, we apply the results of Section 2.3 to a number of problems. These examples

provide further evidence towards the message that exactness can be treated systematically whenever
Γ, Γ1, or Γ◦ is well-understood.

2.4.1 Mixed binary programming

To begin, we apply our results to a well-studied prototypical set involving a convex quadratic

function, a binary variable and a big-M relation. The example in this subsection highlights the

systematic nature of our approach.

Consider the epigraph set

S =

(x, t) ∈ R2 × R :
q

obj
(x) := x2

2 ≤ 2t
q1(x) := x1(x1 − 1) = 0
q2(x) :=

√
2x2(x1 − 1) = 0

.
In words, x1 is a binary on-off variable, x2 is a continuous variable which is constrained to be off

whenever x1 is off, and t is the epigraph variable corresponding to x2
2. The normalization of q2(x)

is not important here and is made only for notational convenience in the calculations.

It is well-known that conv(S) is given by the perspective reformulation of S (see e.g., [68, 79]),

i.e.,

conv(S) =
{

(x, t) ∈ R2 × R : x2
2 − 2tx1 ≤ 0, 0 ≤ x1 ≤ 1

}
. (2.4)

We give an alternative proof of (2.4). We will show that conv(S) = SSDP, the projected SDP

relaxation, using Theorem 10. Then, using an explicit description of Γ◦
, we will give a description

of conv(S) = SSDP in the original space.

A simple computation shows that in this setting, we have

Γ =
{

(γ
obj
, γ) ∈ R3 : γ

obj
+ γ1 ≥

√
(γ

obj
− γ1)2 +

(√
2γ2

)2
}

and

Γ◦ =
{

(ℓ
obj
, ℓ) ∈ R3 : −ℓ

obj
− ℓ1 ≥

√
(ℓ

obj
− ℓ1)2 +

(√
2ℓ2
)2
}
.

In words, Γ and Γ◦
are both (rotated) second-order cones and Assumptions 4 and 5 hold.

It remains to show that for all (x, t) ∈ SSDP \ S , the setR′(x, t) is nontrivial. To this end,

let (x, t) ∈ SSDP \ S . Recall that Γ◦
has three types of faces: the two trivial faces (the apex and

the cone itself) and the one-dimensional proper faces. Thus, there are three cases to consider: (i)

G(x, t) = {0}, (ii) G(x, t) = Γ◦
, and (iii) G(x, t) is a one-dimensional face of Γ◦

.

59

2 A geometric view of SDP exactness in QCQPs and its applications

In case (i), q(x)−2te
obj

= 0 implying that (x, t) ∈ S , a contradiction. In case (ii), span(G(x, t)) =
R3

so thatR′(x, t) = R3
and is nontrivial. In the final case, a mechanical but slightly tedious

application of Proposition 6 (see Section B.1) gives

R′(x, t) =


 2t
−x2

0

,
−x2
x1
0

,
 t
−x2
x1

,
 x2(x1 − 1 + 2t)
−x2

1 + x1 − 2tx1 − 2t
2x2




⊥

. (2.5)

Finally, one may verify that (x, t) ∈ R′(x, t) is nonzero.

Remark 23. Here, the motivation for the final step of checking that (x, t) ∈ R′(x, t) is as follows:

One can show that in case (iii), the first three vectors in (2.5) span the 2-dimensional subspace

orthogonal to (x, t). In particular,R′(x, t) is nontrivial if and only if (x, t) ∈ R′(x, t).

□

We conclude that

conv(S) = SSDP ={
(x, t) ∈ R3 : −(q

obj
(x)− 2t)− q1(x) ≥

√
(q

obj
(x)− 2t− q1(x))2 + 2q2(x)2

}
.

This example highlights the systematic nature of the approach outlined in Theorem 10 for

proving convex hull exactness. In contrast to ad hoc proofs of convex hull exactness which may rely

on guessing and verifying a nonzero rounding direction, the system of equations definingR′(x, t)
gives a principled way of deducing a direction. While guessing such a rounding direction may

be possible in low-dimensional settings (for example, the setting of the current subsection), this

becomes more difficult in higher-dimensional settings where S and SSDP are difficult to visualize.

We illustrate this in the following subsection.

2.4.2 Quadratic matrix programs

Quadratic matrix programs (QMPs) [17, 181] are a generalization of QCQPs where the decision

variable x ∈ Rn
is replaced by a decision matrix X ∈ Rr×k

. These problems find a variety of

application and have been used to model robust least squares problems, the orthogonal Procrustes

problem [17], and certain sphere packing problems [20]. Formally, a QMP is an optimization

problem in the variableX ∈ Rr×k
, where the constraints and objective function are each of the

form

tr(X⊤AX) + 2 tr(B⊤X) + c

for some A ∈ Sr
,B ∈ Rr×k

, and c ∈ R.

Alternatively, letting x ∈ Rn
(resp. b ∈ Rn

) denote the vector formed by stacking the columns

ofX (resp.B) on top of each other, we can rewrite the above expression as

x⊤(Ik ⊗ A)x+ 2⟨b, x⟩+ c.

60

2.4 Applications: Convex hull exactness

We will choose to view QMPs as the special class of QCQPs where the quadratic formsA
obj
, A1, . . . , Am

are each of the form Ik ⊗ A for some A ∈ Sr
.

The following lemma establishes that if the number of constraints is small compared to k
(originally the width of the matrix variable), then convex hull exactness holds.

Proposition 7. Suppose Assumption 4 holds and that A
obj

= Ik ⊗ A
obj

, A1 = Ik ⊗ A1,
. . . , Am = Ik ⊗ Am for some A

obj
,A1, . . . ,Am ∈ Sr . Furthermore, suppose k ≥ m. Then,

R(x, t) is nontrivial for every (x, t) ∈ SSDP \ S . In particular, convex hull exactness holds, i.e.,
conv(S) = SSDP.

Proof. Fix (x, t) ∈ SSDP \ S . Based on Theorem 9 and Lemma 13, our goal is to prove that

R′(x, t) =
{

(x′, t′) ∈ Rn+1 :
x′⊤A(γ

obj
, γ)x′ = 0, ∀(γ

obj
, γ) ∈ G(x, t)⊥〈

A(γ
obj
, γ)x+ b(γ

obj
, γ), x′

〉
− γ

obj
t′ = 0, ∀(γ

obj
, γ) ∈ G(x, t)⊥

}
(2.6)

is nontrivial. We claim that it suffices to show how to construct a nonzero y ∈ Rr
such that

y⊤A(γ
obj
, γ)y = 0, ∀(γ

obj
, γ) ∈ G(x, t)⊥. (2.7)

To see that this suffices, note that for any w ∈ Rk
, the vector x′ := w ⊗ y satisfies the first

constraint in (2.6) since for (γ
obj
, γ) ∈ G(x, t)⊥

, we have

(w ⊗ y)⊤A(γ
obj
, γ)(w ⊗ y) = (w⊤w)(y⊤A(γ

obj
, γ)y) = 0.

Then, (w ⊗ y, t′) ∈ R′(x, t) if and only if〈
A(γ

obj
, γ)x+ b(γ

obj
, γ), w ⊗ y

〉
− γ

obj
t′ = 0, ∀(γ

obj
, γ) ∈ G(x, t)⊥.

This is a system of dim(G(x, t)⊥)-many homogeneous linear equations in the variables (w, t) ∈
Rk+1

. Note that as G(x, t) ∋ q(x) − 2te
obj

, which is nonzero by assumption, we have that

dim(G(x, t)⊥) ≤ m. As k + 1 > m by assumption, we deduce that this system has a nontrivial

solution. Thus, we conclude that (2.6) is nontrivial if there exists a nonzero y ∈ Rr
satisfying

(2.7).

It remains to construct y. By definition of SSDP, there exists Y ⪰ 0 such that
q

obj
(x) +

〈
A

obj
, Y
〉
≤ 2t,

qi(x) + ⟨Ai, Y ⟩ ≤ 0, ∀i ∈ [mI], and

qi(x) + ⟨Ai, Y ⟩ = 0, ∀i ∈ [mI + 1,m].
(2.8)

Without loss of generality, Y = (1
kIk)⊗ Y. As (x, t) /∈ S , we have that Y ∈ Sr

+ \ {0} and we

may pick a nonzero y ∈ Rr
such that yy⊤ ⪯ Y. For notational convenience, let ℓ

obj
:= y⊤A

obj
y

and ℓi := y⊤Aiy for i ∈ [m]. Note that for any (γ
obj
, γ) ∈ Γ, we haveA(γ

obj
, γ) ⪰ 0, or equiv-

alently A(γ
obj
, γ) ⪰ 0. Thus, yy⊤ ⪯ Y implies that

〈
(γ

obj
, γ), (ℓ

obj
, ℓ)
〉

= y⊤A(γ
obj
, γ)y ≤

61

2 A geometric view of SDP exactness in QCQPs and its applications

〈
A(γ

obj
, γ),Y

〉
. Also, from Y = (1

kIk)⊗Y and the relation between the matricesA
obj
, Ai and

A
obj
,Ai, we have

〈
A(γ

obj
, γ),Y

〉
=
〈
A(γ

obj
, γ), Y

〉
. We deduce that for (γ

obj
, γ) ∈ Γ,

〈(
γ

obj

γ

)
, q(x)− 2te

obj
+
(
ℓ

obj

ℓ

)〉
≤
〈(

γ
obj

γ

)
, q(x)− 2te

obj
+
(〈

A
obj
, Y
〉

(⟨Ai, Y ⟩)i

)〉
≤ 0,

where the last inequality follows from (2.8) and (γ
obj
, γ) ∈ Γ. This then shows that q

obj
(x) −

2te
obj

+ (ℓ
obj
, ℓ) ∈ Γ◦

. Moreover, because A(γ
obj
, γ) ⪰ 0, we have

0 ≥ −y⊤A(γ
obj
, γ)y =

〈(
γ

obj

γ

)
,

(
−ℓ

obj

−ℓ

)〉
,

which implies−(ℓ
obj
, ℓ) ∈ Γ◦

. We have shown that q
obj

(x)−2te
obj

+(ℓ
obj
, ℓ) and−(ℓ

obj
, ℓ) both

lie in Γ◦
. Then, as q

obj
(x) − 2te

obj
∈ rint(G(x, t)), we deduce that (ℓ

obj
, ℓ) ∈ span(G(x, t)).

In particular, y⊤A(γ
obj
, γ)y =

〈
(γ

obj
, γ), (ℓ

obj
, ℓ)
〉

= 0 for all (γ
obj
, γ) ∈ G(x, t)⊥

. ■

Remark 24. SDP exactness in the context of QMPs was previously studied by Beck [17], Beck et al.

[20], Wang and Kılınç-Karzan [181]. Specifically, Beck [17] shows that objective value exactness

holds whenever k ≥ m and Wang and Kılınç-Karzan [181] show that convex hull exactness holds

whenever k ≥ m + 2. Proposition 7 strengthens both of these results by showing that convex

hull exactness holds whenever k ≥ m. □

2.4.3 The partition problem

We next consider the partition QCQP and its SDP relaxation. Recall the partition QCQP: Given

a ∈ Rn
, we want to minimize

Opt := min
x∈Rn

{
(a⊤x)2 : x2

i = 1, ∀i ∈ [n]
}
.

Note that Opt = 0 if and only if the vector a can be partitioned into two sets of equal weight.

Thus, deciding whether Opt = 0 is NP-hard [99]. In this section, we will first give an explicit

description of SSDP under a minor assumption. This explicit SSDP description will then let us

conclude that conv(S) ̸= SSDP under the same minor assumption.

Assumption 6. a ∈ Rn
++ and n ≥ 2. □

Remark 25. Assumption 6 is essentially without loss of generality: It is straightforward to

derive a closed form description of SSDP when n = 1. Similarly, one can relate SSDP corre-

sponding to an arbitrary a ∈ Rn
with the set SSDP corresponding to some a′ ∈ Rn′

++ for

n′ := |{i ∈ [n] : ai ̸= 0}|. □

62

2.5 Objective value exactness

Proposition 8. Suppose Assumption 6 holds. Then,

Γ =
{

(γ
obj
, γ) ∈ R× Rn : γ

obj
aa⊤ + Diag(γ) ⪰ 0

γ
obj
≥ 0

}
, and

SSDP =

(x, t) ∈ [−1, 1]n × R : (a⊤x)2 + max
i∈[n]

ai

√
1− x2

i −
∑
j ̸=i

aj

√
1− x2

j

2

+

≤ 2t

.
See Section B.1 for a proof of this statement.

Recall from [106] that a vector a ∈ Rn
++ is said to be balanced if for all i ∈ [n], ai ≤

∑
j ̸=i aj .

The following result then follows as a corollary to Proposition 8. (See Section B.1.)

Corollary 7. Suppose Assumption 6 holds. Then, Opt
SDP

= 0 if and only if a is balanced.

As a consequence of Corollary 7 (and the NP-hardness of deciding whether Opt = 0 for the

partition QCQP), we see that it is NP-hard to decide whether objective value exactness holds for

the partition QCQP. This recovers a result due to Laurent and Poljak [106].

In contrast to the NP-hardness of checking objective value exactness for the partition QCQP, the

following corollary states that checking convex hull exactness for the partition QCQP is a trivial

task.

Corollary 8. Suppose Assumption 6 holds. Then, conv(S) ̸= SSDP.

The proof of Corollary 8 follows from the observation that conv(S) is polyhedral and that

SSDP is not polyhedral. See Section B.1 for details.

2.5 Objective value exactness

In this section, we present sufficient conditions for objective value exactness, i.e., the property that

Opt = Opt
SDP

. In fact, all of our sufficient conditions imply the stronger condition, which we

refer to as optimizer exactness, that the optimizers of the QCQP and its SDP relaxation coincide,

i.e.,

arg min
(x,t)∈SSDP

2t = arg min
(x,t)∈S

2t.

We begin by presenting sufficient conditions stemming from a primal analysis. These sufficient

conditions generalize [181, Theorem 3]. Our second set of sufficient conditions are based on a

dual analysis and require the additional assumption that the dual optimum is achieved. These

conditions imply further that the optimizers are unique.

2.5.1 Sufficient conditions based on a primal analysis

We begin by presenting a very general sufficient condition for optimizer exactness.

63

2 A geometric view of SDP exactness in QCQPs and its applications

Theorem 12. Suppose Assumption 4 holds. Furthermore, suppose that for all (x, t) ∈ SSDP \ S ,
there exists closed conesK1,K2 ⊆ R1+m and (x′, t′) ∈ Rn+1 satisfying

K1 ⊆ (q(x)− 2te
obj

)⊥

−K2 ∩ (q(x)− 2te
obj

)◦ = {0}
K1 +K2 ⊇ Γ
(x′)⊤A(γ

obj
, γ)x′ = 0, ∀(γ

obj
, γ) ∈ K1〈

A(γ
obj
, γ)x+ b(γ

obj
, γ), x′

〉
− γ

obj
t′ ≤ 0, ∀(γ

obj
, γ) ∈ K1

t′ < 0

. (2.9)

Then, optimizer exactness holds, i.e., arg min(x,t)∈SSDP

2t = arg min(x,t)∈S 2t.

Proof. Let (x, t) ∈ SSDP \ S . It suffices to show that (x, t) /∈ arg min(x,t)∈SSDP

2t. Let

K1,K2, x
′, t′ denote the quantities furnished by the assumption.

We claim that for all α > 0 small enough, (x+ αx′, t+ αt′) ∈ SSDP. Indeed, for all α > 0
small enough and (γ

obj
, γ) ∈ K1,〈

(γ
obj
, γ), q(x+ αx′)− 2(t+ αt′)e

obj

〉
= α2 (x′)⊤A(γ

obj
, γ)x′︸ ︷︷ ︸

=0

+2α
(〈
A(γ

obj
, γ)x+ b(γ

obj
, γ), x′

〉
− γ

obj
t′
)

︸ ︷︷ ︸
≤0

+
〈
(γ

obj
, γ), q(x)− 2te

obj

〉
︸ ︷︷ ︸

=0

≤ 0.

Next, set B := K2 ∩ S(1+m)−1
so that cone(B) = K2. By definition ofK2 and B, we have

−B ∩ (q(x)− 2te
obj

)◦ = ∅ so that the map

α 7→ max
(γ

obj
,γ)∈B

〈
(γ

obj
, γ), q(x+ αx′)− 2(t+ αt′)e

obj

〉
is negative at α = 0. Note also that this map is a continuous function of α. Then, by continuity,

this map is negative for some α > 0.

Finally, by linearity and the fact thatK1 +K2 ⊇ Γ, we deduce that (x+αx′, t+αt′) ∈ SSDP

for some α > 0. This shows (x, t) /∈ arg min(x,t)∈SSDP

2t. ■

We next recover more concrete sufficient conditions by pickingK1 andK2 appropriately. The

following corollary recovers the sufficient condition for objective value exactness (in the setting of

polyhedral Γ) presented in [181, Theorem 3].

64

2.5 Objective value exactness

Corollary 9. Suppose Assumption 4 holds and that Γ is polyhedral. Furthermore, suppose that for
all (x, t) ∈ SSDP \ S , there exists (x′, t′) ∈ Rn+1 satisfying

(x′)⊤A(γ
obj
, γ)x′ = 0, ∀(γ

obj
, γ) ∈ F(x, t)〈

b(γ
obj
, γ), x′

〉
− γ

obj
t′ ≤ 0, ∀(γ

obj
, γ) ∈ F(x, t)

t′ < 0
. (2.10)

Then, arg min(x,t)∈S 2t = arg min(x,t)∈SSDP

2t.

Proof. Let (x, t) ∈ SSDP \ S . Since Γ is polyhedral, we can write Γ := cone
{

(γ(i)
obj
, γ(i))

}
i∈[T]

for a finite set of generators. Take,

K1 = cone
{

(γ(i)
obj
, γ(i)) :

〈
(γ(i)

obj
, γ(i)), q(x)− 2te

obj

〉
= 0

}
= F(x, t)

and

K2 = cone
{

(γ(i)
obj
, γ(i)) :

〈
(γ(i)

obj
, γ(i)), q(x)− 2te

obj

〉
< 0

}
.

Note that K1 and K2 are polyhedral and thus closed. Moreover, the first three requirements

of (2.9) are satisfied for this choice of K1 and K2. Moreover, note that for every (γ
obj
, γ) ∈

F(x, t) ⊆ Γ we have A(γ
obj
, γ) ⪰ 0 and for any A ⪰ 0, x⊤Ax = 0 implies Ax = 0. Thus,

fromK1 = F(x, t), we deduce

〈
A(γ

obj
, γ)x, x′

〉
= 0 for every (γ

obj
, γ) ∈ K1 so that the last

three requirements of (2.9) coincide with (2.10). ■

The following corollary derives a sufficient condition for objective value exactness without the

assumption that Γ is polyhedral. In words, this assumption supposes that for any (x, t) ∈ SSDP\S ,

there exists a direction (x′, t′) ∈ Rn+1
such that q(x+ αx′)− 2(t+ αt′)e

obj
varies only along

the line containing q(x) − 2te
obj

. In particular, by picking α appropriately, we can achieve

q(x+ αx′)− 2(t+ αt′)e
obj

= 0.

Corollary 10. Suppose Assumption 4 holds. Furthermore, suppose that for all (x, t) ∈ SSDP \ S ,
there exists (x′, t′) ∈ Rn+1 satisfying

(x′)⊤A(γ
obj
, γ)x′ = 0, ∀(γ

obj
, γ) ∈ (q(x)− 2te

obj
)⊥〈

A(γ
obj
, γ)x+ b(γ

obj
, γ), x′

〉
− γ

obj
t′ = 0, ∀(γ

obj
, γ) ∈ (q(x)− 2te

obj
)⊥

t′ < 0
. (2.11)

Then, arg min(x,t)∈SSDP

2t = arg min(x,t)∈S 2t.

Proof. TakeK1 = (q(x)− 2te
obj

))⊥
andK2 = − cone(q(x)− 2te

obj
). Then,K1 andK2 are

both closed convex cones and we can easily observe that the first three requirements in (2.9) are

automatically satisfied for this choice ofK1 andK2. The last three requirements in (2.9) coincide

with (2.11). ■

65

2 A geometric view of SDP exactness in QCQPs and its applications

2.5.2 Sufficient conditions based on a dual analysis

Next, we give a sufficient condition for objective value exactness depending on a dual analysis. To

this end, we define the concave extended-real valued function d : Rm → R ∪ {−∞} by

d(γ) := inf
x∈Rn

[γ, q(x)].

Remark 26. Recall here that by Corollary 5, we can write Opt
SDP

in the saddle-point form

Opt
SDP

= infx∈Rn supγ∈Γ1 [γ, q(x)] given in (2.3). Whence, by coercivity [62, Proposition

VI.2.3] we can also write Opt
SDP

= supγ∈Γ1 d(γ). □

The following theorem states that if d(γ) is maximized at a point γ whereA[γ] ≻ 0 (e.g., on the

interior of Γ1), then optimizer exactness holds. This theorem can be interpreted as the observation

that if the dual to (2.2) in Sn+1
has a rank-n optimizer, then (2.2) has a unique rank-1 solution.

This is well-known and has been vastly explored in the literature. See [38] for one recent example.

We state it as a theorem not because it is new or difficult to prove but because of its importance in

deriving additional sufficient conditions (see Corollaries 11 and 12).

Theorem 13. Suppose Assumption 4 holds and that supγ∈Γ1 d(γ) is achieved at some γ∗ for which
A[γ∗] ≻ 0 (e.g., γ∗ ∈ int(Γ)). Then, arg min(x,t)∈S 2t = arg min(x,t)∈SSDP

2t. Furthermore,
the minimizers of these two optimization problems are unique.

Proof. It suffices to show that min(x,t)∈SSDP

2t has a unique solution (x∗, t∗) and that (x∗, t∗) ∈
S . Let (x∗, t∗) ∈ arg min(x,t)∈SSDP

2t so that x∗ ∈ arg minx supγ∈Γ1 [γ, q(x)] and 2t∗ =
supγ∈Γ1 [γ, q(x∗)]. By the Saddle Point Theorem applied to (2.3), we have

0n = ∇x[γ∗, q(x∗)] = 2(A[γ∗]x∗ + b[γ∗]).

AsA[γ∗] ≻ 0, we have x∗ = −A[γ∗]−1b[γ∗]. This proves uniqueness of (x∗, t∗).

Note that there existsα > 0 such that [γ∗, γ∗+αei] ⊆ Γ1 for all i ∈ [mI] and [γ∗±αei] ⊆ Γ1
for all i ∈ [mI + 1,m]. Then, by the Saddle Point Theorem we have

qi(x∗) = ∇γi [γ∗, q(x∗)] ≤ 0, ∀i ∈ [mI], and

qi(x∗) = ∇γi [γ∗, q(x∗)] = 0, ∀i ∈ [mI + 1,m].

We deduce that q
obj

(x∗) ≤ supγ∈Γ1 [γ, q(x∗)] = 2t∗. Hence, we conclude that (x∗, t∗) ∈
S . ■

Remark 27. Note that for any γ for which A[γ] ≻ 0, the dual function d(γ) is the sum of a

linear function c[γ] and a concave function−b[γ]⊤A[γ]−1b[γ], i.e.,

d(γ) = −b[γ]⊤A[γ]−1b[γ] + c[γ].

We will use this structure to derive more concrete sufficient conditions ensuring that d(γ) is

maximized at some point γ∗
for whichA[γ∗] ≻ 0. □

66

2.5 Objective value exactness

The following sufficient condition can be interpreted as requiring −b[γ]⊤A[γ]−1b[γ] (and

hence also d(γ)) to diverge to−∞ as γ approaches a point γ̂ ∈ Γ1 for whichA[γ̂] ̸≻ 0.

Corollary 11. Suppose Assumption 4 holds and that supγ∈Γ1 d(γ) is achieved. Furthermore, suppose
that for all γ ∈ Γ1, we have

A[γ] ̸≻ 0 =⇒ ∃v ∈ ker(A[γ]) s.t. ⟨v, b[γ] ̸= 0⟩.

Then, arg min(x,t)∈S 2t = arg min(x,t)∈SSDP

2t. Furthermore, the minimizers of these two opti-
mization problems are unique.

Proof. Letγ∗ ∈ arg maxγ∈Γ1 d(γ). By Theorem 13, it suffices to show thatA[γ∗] ≻ 0. Suppose

otherwise, so thatA[γ∗] ̸≻ 0. Then, the assumptions of the corollary furnish a v ∈ ker(A[γ∗])
such that ⟨v, b[γ∗]⟩ ̸= 0. Let (x∗, t∗) ∈ arg min(x,t)∈SSDP

2t. By the Saddle Point Theorem

applied to (2.3), we deduce

0 = ⟨v, 0n⟩ = ⟨v,∇x[γ∗, q(x∗)]⟩ = 2⟨v,A[γ∗]x∗ + b[γ∗]⟩ ≠ 0,

a contradiction. ■

Remark 28. Burer and Ye [38] study diagonal QCQPs and show [38, Theorem 1] that objective

value exactness holds whenever certain systems of equations are infeasible. Specifically, their

sufficient condition for diagonal QCQPs can be rewritten as the condition that for any i ∈ [n], the

system {γ ∈ Γ1, ei ∈ ker(A[γ]), b[γ]i = 0} is infeasible. Corollary 11 generalizes [38, Theorem

1] by considering general matricesAi as opposed to diagonal matrices considered in [38].

□

Alternatively, one may impose the slightly weaker condition that−b[γ]⊤A[γ]−1b[γ] gets “suf-

ficiently steep near points at whichA[γ] ̸≻ 0” compared to ∥(c1, . . . , cm)∥2.

Corollary 12. Suppose Assumption 4 holds and that supγ∈Γ1 d(γ) is achieved. Furthermore, suppose
that for all γ ∈ Γ1 such thatA[γ] ̸≻ 0, there exists δ ∈ Rm such that γδ := γ + δ ∈ int(Γ1) and
γ2δ := γ + 2δ ∈ int(Γ1) and

(
−b[γδ]⊤A[γδ]−1b[γδ]

)
−
(
−b[γ2δ]⊤A[γ2δ]−1b[γ2δ]

)
≤ −∥δ∥2

√√√√ m∑
i=1

c2
i .

Then, arg min(x,t)∈S 2t = arg min(x,t)∈SSDP

2t. Furthermore, the minimizers of these two opti-
mization problems are unique.

Proof. Let γ∗ ∈ arg maxγ∈Γ1 d(γ). We will construct an optimizer γ̃ ∈ arg maxγ∈Γ1 d(γ)
for whichA[γ̃] ≻ 0. The result will then follow from Theorem 13.

If A[γ∗] ≻ 0 then we may take γ̃ = γ∗
. Else, let δ be furnished by the assumption of the

corollary and note that δ ̸= 0. We will set γ̃ = γ∗
δ . Then, γ̃ ∈ int(Γ) and thus A[γ̃] ≻ 0. By

optimality of γ∗
, it suffices to show that d(γ∗) ≤ d(γ∗

δ). As d(γ) is concave and γ∗, γ∗
δ , γ

∗
2δ

67

2 A geometric view of SDP exactness in QCQPs and its applications

lie on a line, it suffices in turn to show that d(γ∗
δ) ≤ d(γ∗

2δ). Finally, as γ∗
δ and γ∗

2δ both lie in

int(Γ1), we may expand

d(γ∗
δ)− d(γ∗

2δ) =
(
−b[γ∗

δ]A[γ∗
δ]−1b[γ∗

δ] + c[γ∗
δ]
)
−
(
−b[γ∗

2δ]A[γ∗
2δ]−1b[γ∗

2δ] + c[γ∗
2δ]
)

≤ −∥δ∥2

√√√√ m∑
i=1

c2
i −

m∑
i=1

δici ≤ 0.

Applying Theorem 13 concludes the proof. ■

2.6 Applications: Objective value exactness

In this section, we apply the results of Section 2.5 to random and semi-random QCQPs. Again,

these examples offer further evidence that questions of exactness can be treated systematically when-
ever Γ, Γ1, or Γ◦ is well-understood. In fact, the results in this section show that the ideas of

Section 2.5 can be applied (at times with additive errors) even when the dual set Γ, Γ1, or Γ◦
is

not known exactly, but only approximately. The random and semi-random QCQPs considered in

this section are motivated by recent work [38, 113], which has treated random QCQPs as a testing

ground for understanding the strength or explanatory power of various sufficient conditions for

objective value exactness.

We will fixm, the number of quadratic constraints, and take n, the number of variables, to +∞
independently. We will abbreviate “with probability 1− o(1) as n→ +∞” as “asymptotically

almost surely” (a.a.s.).

The random and semi-random QCQPs we will consider in this section will involve data generated

according to the normalized Gaussian Orthogonal Ensemble (NGOE). We collect some basic facts

on the NGOE in the following section.

2.6.1 Preliminaries on the (normalized) Gaussian Orthogonal Ensemble

Here, we recall the normalized GOE and a few of its basic properties.

Definition 12. LetA ∈ Sn
be a random matrix where: each diagonal entryAi,i is i.i.d.N(0, 1/2n);

each superdiagonal entryAi,j is i.i.d.N(0, 1/4n); and each subdiagonal entryAi,j is defined by

symmetry. We will refer to this distribution as the normalized Gaussian Orthogonal Ensemble
(NGOE). We will write

A ∼ NGOE(n)

to denote the fact thatA is drawn according to this distribution. □

Remark 29. A different procedure for generating the same distribution is: sampleM ∈ Rn×n

with every entry i.i.d.N(0, 1/2n) and returnA = (M +M⊤)/2. □

The NGOE is a very well-understood distribution [170]. We will only need a few basic facts.

The first two facts state that the NGOE is invariant under various notions of rotation.

Fact 3. FixU ∈ Rn×n orthogonal and letA ∼ NGOE(n). Then,U⊤AU ∼ NGOE(n).

68

2.6 Applications: Objective value exactness

Fact 4. FixU ∈ Rk×k orthogonal and letA1, . . . , Ak
i.i.d.∼ NGOE(n). Define Ãi :=

∑k
j=1 Ui,jAj .

Then, Ã1, . . . , Ãk
i.i.d.∼ NGOE(n).

Define also the normalized semicircular measure

µnsc
:= 2

π

√
(1− x2)+.

The next fact states that the NGOE obeys the semicircle law.

Fact 5. For any ψ ∈ C∞
c (R) and ϵ > 0,

lim
n→∞

Pr
[∣∣∣∣∫ ψdµn −

∫
ψdµnsc

∣∣∣∣ > ϵ

]
= 0.

Here, µn is the random measure constructed by sampling A ∼ NGOE(n) and setting µn :=
1
n

∑n
j=1 δλj(A), where δλj(A) is the Dirac measure at λj(A).

Finally, we recall that the operator norm ofA ∼ NGOE(n) is≈ 1 asymptotically almost surely.

Fact 6. Fix ϵ > 0 and letA ∼ NGOE(n). Then,−λmin(A), λmax(A) ∈ [1± ϵ] a.a.s..

2.6.2 Exactness in the fully Gaussian setting

This subsection considers random Euclidean distance minimization problems of the form

inf
x∈Rn

{
∥x∥22 : qi(x) = 0, ∀i ∈ [m]

}
. (2.12)

In words, we are looking for minimum norm solutions to random quadratic systems.

We will sample each quadratic constraint qi(x) = x⊤Aix+ 2b⊤
i x+ ci independently where

Ai ∼ NGOE(n), bi ∼ N(0, In/n), and ci ∼ N(0, 1). Here, the normalization on theAis and

bis are chosen so that ∥Ai∥2 ≈ 1 and ∥bi∥2 ≈ 1.

Below, we will show that for any fixedm and n→∞, (2.12) has an exact SDP relaxation a.a.s..
Specifically, we will apply ideas from Corollary 11 to prove:

Proposition 9. LetA1 . . . , Am
i.i.d.∼ NGOE(n), b1, . . . , bm

i.i.d.∼ N(0, In/n) and c1, . . . , cm
i.i.d.∼

N(0, 1) be independent. Then, a.a.s., optimizer exactness holds in (2.12), i.e., arg min(x,t)∈S 2t =
arg min(x,t)∈SSDP

2t.

We will highlight the very simple geometric ideas underlying the proof of this result and defer

proofs of the more technical lemmas to Section B.2.

We will Proposition 9 using Theorem 13; specifically, we will show that d(γ) is maximized on

the interior of Γ1. As a first step, we observe that Γ1 contains the unit ball (shrunk by ϵ) a.a.s..
The following lemma follows from an ϵ-net argument, concavity of λmin(A[γ]) as a function of

γ, and Facts 5 and 6.

69

2 A geometric view of SDP exactness in QCQPs and its applications

Lemma 15. Fix r ≥ 0 and ϵ > 0. LetA1 . . . , Am
i.i.d.∼ NGOE(n). Then, a.a.s.,

λmin(A[γ]) ∈ [1− r ± ϵ], ∀γ ∈ rSm−1.

In particular, int(Γ1) ⊇ B(0, 1− ϵ) a.a.s..

Recall Remark 27 that for γ ∈ int(Γ1), we can write

d(γ) = −b[γ]⊤A[γ]−1b[γ] + c[γ].

The next lemma notes that the first term in d(γ), i.e.,−b[γ]⊤A[γ]−1b[γ], concentrates to a sphere
cap and follows from Fact 5.

Lemma 16. Fix r ∈ (0, 1) and ϵ > 0. LetA1 . . . , Am
i.i.d.∼ NGOE(n). Then, a.a.s.,

−b[γ]⊤A[γ]−1b[γ] ∈ [ϕ(r)± ϵ], ∀γ ∈ rSm−1,

where ϕ(r) := 2(
√

1− r2 − 1).

We are now ready to prove Proposition 9. The proof will observe that the gradient of−b[γ]⊤A[γ]−1b[γ]
gets “arbitrarily steep at the boundary of Γ1” so that any maximizer of d(γ) must lie in int(Γ1).

One may compare the proof of Proposition 9 to Corollary 12.

Proof of Proposition 9. For convenience, let c ∈ Rm
denote the vector with ith coordinate ci.

Fix δ > 0 and letM > 0 such that Prc[∥c∥2 ≤M] ≥ 1 − δ/2. Let 0 < r1 < r2 < 1 and

ϵ ∈ (0, 1− r2) such that

ϕ(r1)− ϕ(r2)− 2ϵ
r2 − r1

≥M.

In the remainder of the proof, we will condition on the events that ∥c∥2 ≤M ,

λmin(A[γ]) ≥ 1− r2 − ϵ, ∀γ ∈ r2Sm−1,

−b[γ]⊤A[γ]−1b[γ] ≥ ϕ(r1)− ϵ, ∀γ ∈ r1Sm−1, and

−b[γ]⊤A[γ]−1b[γ] ≤ ϕ(r2) + ϵ, ∀γ ∈ r2Sm−1.

By Lemmas 15 and 16, this holds with probability 1− δ for all n large enough.

Let γ ∈ Γ1 \ B(0, r2) and let γ(1)
, γ(2)

denote the projections of γ onto B(0, r1) and

B(0, r2) respectively. We claim that d(γ(2)) ≥ d(γ). By concavity of d(γ), it suffices to show

that d(γ(1)) ≥ d(γ(2)). We compute,

d(γ(1)) = −b
[
γ(1)

]
A
[
γ(1)

]−1
b
[
γ(1)

]
+
〈
c, γ(1)

〉
≥ d(γ(2)) + (ϕ(r1)− ϵ)− (ϕ(r2) + ϵ) +

〈
c, γ(1) − γ(2)

〉
≥ d(γ(2)) + (ϕ(r1)− ϕ(r2)− 2ϵ)−M(r(2) − r(1))
≥ d(γ(2)).

70

2.6 Applications: Objective value exactness

We conclude that d(γ) is maximized on the interior of Γ1. ■

2.6.3 Almost exactness in a semi-random setting

This section considers semi-random QCQPs of the form

inf
x∈Rn

{
q

obj
(x) : qi(x) = 0, ∀i ∈ [m]

∥x∥22 ≤ 1

}
. (2.13)

For notational convenience, define qm+1(x) := ∥x∥22 − 1.

We will consider the following semi-random model: First,A
obj
, A1, . . . , Am are independently

sampled from NGOE(n). Then, b
obj
, b1, . . . , bm and c

obj
, c1, . . . , cm are chosen arbitrarily (pos-

sibly adversarially depending on theAis).

Below, we will show that for any fixed m, (2.13) has an “almost” exact SDP relaxation a.a.s..
Specifically, we will apply ideas from Corollary 10 to prove:

Proposition 10. Fix ϵ > 0 and let Let A
obj
, . . . , Am

i.i.d.∼ NGOE(n). Then, a.a.s., for all
b

obj
, . . . , bm ∈ Rn and c

obj
, . . . , cm, we have

Opt ≥ Opt
SDP
≥ inf

x∈Rn

{
q

obj
(x)− ϵ : qi(x) ∈ [±ϵ], ∀i ∈ [m]

∥x∥22 ≤ 1

}
.

In a slight departure from previous notation, we will write our dual vector as (γ
obj
, γ, γm+1) ∈

R1+m+1
where γm+1 ∈ R corresponds to the constraint ∥x∥22 ≤ 1. As in Section 2.6.2, we will

emphasize the main ideas in the proof of Proposition 10 and leave the proofs of more technical

lemmas to Section B.2.

The following lemma says that in this random model, Γ will again converge to the second-order

cone. This lemma follows from Lemma 15.

Lemma 17. Fix r ≥ 0 and ϵ > 0. LetA
obj
, A1 . . . , Am

i.i.d.∼ NGOE(n). Then, a.a.s.,

λmin(A(γ
obj
, γ, 1)) ∈ [1− r ± ϵ], ∀(γ

obj
, γ) ∈ rSm.

In particular, a.a.s.,{
(γ

obj
, γ, γm+1) :

∥∥∥(γobj
, γ)
∥∥∥

2
≤ (1− ϵ)γm+1

}
⊆ Γ

⊆
{

(γ
obj
, γ, γm+1) :

∥∥∥(γobj
, γ)
∥∥∥

2
≤ (1 + ϵ)γm+1

}
.

The following lemma says that a version of Corollary 10 with errors holds in this setting. This

lemma follows from an ϵ-net argument along with Fact 5.

Lemma 18. Fix ϵ > 0 and N ∈ N. Then, a.a.s., for every (γ
obj
, γ) ∈ Sm, there exists an

N -dimensional vector spaceW ⊆ Rn such that

w⊤A(γ
obj
, γ, 1)w ∈ [±ϵ]∥w∥22, ∀w ∈W.

71

2 A geometric view of SDP exactness in QCQPs and its applications

With Lemmas 17 and 18, we may now prove Proposition 10.

Proof of Proposition 10. Without loss of generality, we assume ϵ ∈ (0, 1/2) and b
obj
, b1, . . . , bm,

c
obj
, c1, . . . , cm are picked so that the SDP relaxation is feasible, i.e.,

∞ > inf
x∈Rn

sup
(γ,γm+1)∈Γ1

[(γ, γm+1), q(x)]. (2.14)

Let x∗
denote an optimizer of (2.14) with value 2t∗. Consider the vector q(x∗) − 2t∗e

obj
∈

R1+m+1
. Without loss of generality, we may assume that q(x∗)− 2t∗e

obj
is both nonzero and on

the boundary of Γ◦
. By Lemma 17 and the assumption that q(x∗)− 2t∗e

obj
∈ bd(Γ◦), we have

τ :=

√√√√(q
obj

(x∗)− 2t∗)2 +
m∑

i=1
qi(x∗)2 ∈ [1± ϵ]qm+1(x∗).

Next, as q(x∗)− 2t∗e
obj

is nonzero, we have that 0 < qm+1(x∗) = 1− ∥x∗∥2, i.e., ∥x∗∥2 < 1.

Hence, by definition of τ , we have |τ | ≤ 1 + ϵ.

Set (f
obj
, f, fm+1) :=

(
q

obj
(x∗)−2t∗

τ , q1(x∗)
τ , . . . , qm(x∗)

τ , 1
)

so that

∥∥∥(fobj
, f)
∥∥∥

2
= 1.

Note that by Lemma 18, there exists a subspaceW of dimensionm+ 3 such that

w⊤A(f
obj
, f, fm+1)w ∈ [±ϵ]∥w∥22, ∀w ∈W.

By a dimension counting argument, there exists a unitw ∈W satisfying〈
A(γ

obj
, γ, γm+1)x∗ + b(γ

obj
, γ, γm+1), w

〉
= 0, ∀(γ

obj
, γ, γm+1) ∈ R1+m+1. (2.15)

Then, for this vectorw we have
w⊤A(f

obj
, f, 1)w ∈ [±ϵ],

w⊤A(0, 0m, 1)w = 1, and

w⊤A(γ
obj
, γ, 1)w ≥ 0, ∀(γ

obj
, γ) ∈ (1− ϵ)Sm.

(2.16)

Here, the first two relations follow from ∥w∥22 = 1. The third relation follows from Lemma 17,

which implies thatA(γ
obj
, γ, 1) ⪰ 0 for all (γ

obj
, γ) ∈ (1− ϵ)Sm

.

Set v
obj

:= w⊤A
obj
w and v ∈ Rm

where vi := w⊤Aiw for i ∈ [m]. Note that by (2.15), we

have

q(x∗ + αw)− 2t∗e
obj

=
(
q(x∗)− 2t∗e

obj

)
+ α2(v

obj
, v, 1).

Then, by the first two lines of (2.16),

〈
(v

obj
, v), (f

obj
, f)
〉

= f
obj
w⊤A

obj
w +

m∑
i=1

fiw
⊤Aiw

= w⊤A(f
obj
, f, 1)w − w⊤w ∈ [−1± ϵ].

72

2.6 Applications: Objective value exactness

Next, by the third line of (2.16), we have

∥∥∥(vobj
, v)
∥∥∥

2
≤ 1/(1− ϵ). Set (δ

obj
, δ) := (v

obj
, v) +

(f
obj
, f). We will argue that (δ

obj
, δ) is small by bounding its components along (f

obj
, f) and

orthogonal to (f
obj
, f),

∥∥∥(δobj
, δ)
∥∥∥2
≤ ϵ2 +

(1
(1− ϵ)2 − (1− ϵ)2

)
= O(ϵ).

Finally, set x̃ = x∗ + αw where α =
√

1− ∥x∗∥2 and note that

q(x̃)− 2t∗e
obj

= q(x∗)− 2t∗e
obj

+ (1− ∥x∗∥22)
(
v

obj
, v, 1

)
= q(x∗)− 2t∗e

obj
+ (1− ∥x∗∥22)em+1 + τ(v

obj
, v, 0)

+ (1− ∥x∗∥22 − τ)(v
obj
, v, 0)

= q(x∗)− 2t∗e
obj
− (τf

obj
, τf, ∥x∗∥22 − 1)

+ τ(δ
obj
, δ, 0) + (1− ∥x∗∥22 − τ)(v

obj
, v, 0)

= τ(δ
obj
, δ, 0) + (1− ∥x∗∥22 − τ)(v

obj
, v, 0).

The conclusion then follows from the bounds |τ | ≤ (1+ϵ),

∥∥∥(δobj
, δ)
∥∥∥

2
= O(

√
ϵ),

∣∣∣1− ∥x∗∥22 − τ
∣∣∣ ≤

ϵ and

∥∥∥(vobj
, v)
∥∥∥

2
≤ 1/(1− ϵ). ■

73

3 Rank-one-generated cones

This chapter is based on joint work [7] with C.J. Argue and Fatma Kılınç-Karzan, [100] with Fatma
Kılınç-Karzan.

A closed convex conic subset S of the positive semidefinite (PSD) cone is rank-one generated

(ROG) if all of its extreme rays are generated by rank-one matrices. The ROG property of S is

closely related to the exactness of SDP relaxations of nonconvex quadratically constrained quadratic

programs (QCQPs) related to S . In this chapter, we consider the case where S is obtained as

the intersection of the PSD cone with finitely many homogeneous linear matrix inequalities and

conic constraints and identify sufficient conditions that guarantee that S is ROG. In the case of

two linear matrix inequalities, we also establish the necessity of our sufficient conditions. This

extends one of the few settings from the literature—the case of one linear matrix inequality and

the S-lemma—where an explicit characterization for the ROG property exists. We additionally

show how to apply ROG results to derive exactness properties of QCQPs as well as optimization

problems involving ratios of quadratic functions.

3.1 Introduction

Let Sn
denote the real vector space of n× n real symmetric matrices and Sn

+ the cone of positive

semidefinite matrices. We will say that a closed convex cone S ⊆ Sn
+ is rank-one generated (ROG)

1

if

S = conv(S ∩ {xx⊺ : x ∈ Rn}),

where conv(·) is the convex hull operation. In words, a closed convex cone S is ROG if and only

if it is equal to the convex hull of its rank-one matrices.

In most applications, the cone S ⊆ Sn
+ will be represented as the intersection of Sn

+ with a

(possibly infinite) system of linear matrix inequalities (LMIs). Specifically, we will consider cones

of the form

S(M) :=
{
X ∈ Sn

+ : ⟨M,X⟩ ≥ 0, ∀M ∈M
}
,

whereM⊆ Sn
. Note also that any closed convex cone S ⊆ Sn

+ can be expressed in this form. An

obvious question then is: What does the ROG property of S(M) correspond to in terms ofM,

its defining LMIs?

1

We will see in Lemma 19 that the definitions of ROG cones given in the first sentence of the abstract and the second

sentence of the main body are equivalent. For the purposes of our developments, we will begin with the definition

given in the main body.

75

3 Rank-one-generated cones

While our main focus will be on closed convex cones, our results also have implications in the

more general setting of arbitrary closed convex sets S ⊆ Sn
+ and their defining LMIs.

3.1.1 Motivation

The ROG property is important in studying semidefinite program (SDP) relaxations of quadrati-

cally constrained quadratic programs (QCQPs).

QCQPs are a fundamental class of optimization problems that arise naturally in many areas.

Indeed, many problems including binary integer linear programs, max-cut, max-clique, certain

robust optimization problems and polynomial optimization problems can be readily recast as

QCQPs (see [11, 25, 91] and references therein).

It is well known that any QCQP can be reformulated as an SDP in a lifted space with an

additional nonconvex rank constraint. Dropping this rank constraint leads to the standard SDP

relaxation [161]. A general QCQP and its SDP relaxation are given by

inf
y∈Rn−1

{q0(y) : qi(y) ≥ 0, ∀i ∈ [m]} = inf
x∈Rn

{
x⊺M0x : x⊺Mix ≥ 0, ∀i ∈ [m]

x2
1 = 1

}

≥ inf
X∈Sn

+

{
⟨M0, X⟩ : ⟨Mi, X⟩ ≥ 0, ∀i ∈ [m]

X1,1 = 1

}
.

(3.1)

Here, [m] := {1, . . . ,m}, the functions qi are quadratic functions of the form qi(y) = y⊺Aiy+
2b⊺i y + ci, the vector x should be thought of as (1

y), and the matricesMi are defined asMi :=(
ci b⊺i
bi Ai

)
.

In general, it is NP-hard to determine whether the SDP relaxation of a given QCQP is exact, i.e.,

when equality holds in (3.1) (see [106]). Nevertheless, sufficient conditions that ensure equality

in (3.1) are of great interest, and thus establishing such conditions has attracted a lot of attention

in the literature.

Geometrically, SDP exactness occurs if and only if there exist rank-one matrices in the feasible

domain of the SDP approaching its optimum value. The ROG property is a similar but stronger

notion of exactness. Specifically, if the cone

S({M1, . . . ,Mm}) =
{
X ∈ Sn

+ : ⟨Mi, X⟩ ≥ 0, ∀i ∈ [m]
}

(3.2)

is ROG, then there exist rank-one matrices in the right hand side of (3.1) approaching its optimum

value for every choice ofM0 such that the right hand side of (3.1) is finite. In other words, if the

cone in (3.2) is ROG, then equality holds in (3.1) for every choice of objective function such that

the SDP value is finite. In the case of homogeneous QCQPs, i.e., where all bi = 0 and ci = 0
for i = 0, 1, . . . ,m, then (3.2) is ROG if and only if the underlying SDP relaxation is exact for

every choice of objective function. See Section 3.5.1 for a more detailed discussion of how equality

holding in (3.1) relates to the ROG property of S({M1, . . . ,Mm}).

The ROG property is a natural strengthening of SDP exactness. Consider, for example, the

problem of minimizing an arbitrary quadratic function over an ellipsoid. The celebrated S-lemma

76

3.1 Introduction

[190] guarantees that the SDP relaxation of this problem is exact regardless of the choice of objective

function. One way of reinterpreting this statement is as the fact that

S({M1}) =
{
X ∈ Sn

+ : ⟨M1, X⟩ ≥ 0
}

is ROG whenM1 corresponds to an ellipsoid constraint.
2

From a different perspective, the ROG

property of spectrahedra can be thought of as an analogue of the integrality property of polyhedra

for linear programming relaxations of integer programs. While there are well-known sufficient

conditions such as total unimodularity or total dual integrality for the integrality property of

polyhedra (see [52] for recent developments and earlier references), the research on sufficient

conditions for the ROG property of spectrahedra is much more recent and limited.

The ROG property is also relevant in the context of sum-of-squares (SOS) programming. Con-

sider a real homogeneous quadratic varietyV := {x ∈ Rn : x⊺Mix = 0, ∀i ∈ [m]}. LetPV de-

note the set of nonnegative quadratic forms onV , i.e.,PV := {M ∈ Sn : x⊺Mx ≥ 0, ∀x ∈ V }.

Let ΣV denote the set of quadratic forms that are “immediately nonnegative” on V , i.e., ΣV :=
Sn

+ + span{Mi : i ∈ [m]}, where span(·) is the span (linear hull) of the given elements.

It is clear that ΣV ⊆ PV . A direct calculation shows that the dual cones of PV and ΣV are

given by

P∗
V = conv{xx⊺ : ⟨Mi, xx

⊺⟩ = 0, ∀i ∈ [m]} and

Σ∗
V =

{
X ∈ Sn

+ : ⟨Mi, X⟩ = 0, ∀i ∈ [m]
}
,

respectively. Therefore, ΣV = PV if and only if Σ∗
V = P∗

V , which holds if and only if Σ∗
V

is rank-one generated. In other words, every nonnegative quadratic form on V is “immediately

nonnegative” if and only if Σ∗
V is ROG. See [29, Section 6] for further connections and applications

of the ROG property in the context of real algebraic geometry and statistics.

3.1.2 Related literature

Bounds on the rank of extreme points of general spectrahedra. A rich line of

research has proved optimal worst-case bounds on the rank of extreme points of a spectrahedron

(an affine slice of the PSD cone) in terms of the number of its defining linear matrix equalities

(LMEs) [14, 69, 141]; see also [16, Chapter II.13]. It is known that givenm LMEs, if there exists a

positive semidefinite (PSD) solution to the LMEs, then there also exists a PSD solution with rank

at most r for any integral r such that

m <

(
r + 2

2

)
.

From this, we may deduce
3

that any spectrahedron defined bym LMEs has only extreme points of

rank at most r for any integral r satisfyingm+ 1 <
(r+2

2
)

. In particular, taking r = 1, this bound

2

Along with the observation that the SDP relaxation of this problem is always bounded.

3

After taking into account an additional LME due to the objective function and applying Strasziewicz Theorem (see

[152, Theorem 18.6]).

77

3 Rank-one-generated cones

implies that any spectrahedron defined by a single LME is ROG. Unfortunately, this bound does

not shed much light onto (even the existence of) ROG spectrahedra in the case where m > 1.

Although this bound is tight in general, it does not exploit potential structure in the defining

LMEs. In other words, it is possible to achieve stronger bounds on the rank of extreme points of

spectrahedra with additional structure. Our work complements this line of research by examining

properties of systems of LMEs and LMIs that guarantee the ROG property beyond the case of

m = 1.

SDP exactness. The question of when equality holds in (3.1) has attracted significant interest.

Within this line of research, a number of papers study the classical trust region subproblem (TRS)—

the problem of minimizing a nonconvex quadratic function over an ellipsoid—and its variants,

and identify cases under which an exact SDP reformulation is possible. This line of work can be

traced back to Yakubovich’s S-procedure [67, 190] (also known as the S-lemma) and the work of

Sturm and Zhang [167]. We refer the interested readers to the excellent survey by Burer [33] and

references therein.

It is worth noting that although the results in [33] are stated in terms of the exactness of

(strengthened) SDP relaxations, the underlying arguments in fact establish the ROG property for

the corresponding SDP feasible domains. For example, the domain of the SDP relaxation associated

with the classical TRS is the intersection of Sn
+ with a single LMI, which is well known to be ROG

via S-lemma. In the other variants of TRS examined in [33], the domain of the associated exact

SDP reformulation involves at least one problem specific conic constraint (in fact a second-order

cone constraint), and consequently is described by an infinite family of well-structured LMIs.

These lines of work can be thought of as addressing the special case where there are only a few

(usually one or two) nonconvex quadratic functions in the QCQP on the left of (3.1). In contrast,

Burer and Ye [38] and Wang and Kılınç-Karzan [181] recently introduced more general sufficient

conditions for SDP exactness which do not make explicit assumptions on the number of nonconvex

quadratic functions. As an example, it can be shown that SDP exactness holds whenever a natural

symmetry parameter of the QCQP is large enough and the set of convex Lagrange (dual) multipliers

is polyhedral [181]. See also [179] for sufficient conditions that make weaker assumptions on the

geometry of the set of convex Lagrange multipliers. Some of these sufficient conditions for SDP

exactness [179, 181] have also been shown to guarantee that the (projection of the) epigraph

of the SDP relaxation coincides exactly with the convex hull of the epigraph of the QCQP. In

particular, the convex hulls of epigraphs of “highly-symmetric” QCQPs with favorable geometry

are semidefinite-representable. Results in this line of work generally depend heavily on how the

objective function interacts with the constraints. Our work complements this line of research by

establishing conditions for SDP exactness which are oblivious to the objective function.

Algebro-geometric properties of ROG spectrahedra. The ROG property has also

been studied from a more algebro-geometric perspective [29, 83].

Hildebrand [83] studies algebraic properties of ROG cones obtained by adding homogeneous

LMEs toSn
+, and proves important facts about their representations. The study begins by exploring

the minimal defining polynomials and facial structure of ROG cones. These properties are then

used to build the main contribution of [83]: The geometry of an ROG cone determines its

representation as a linear section of a PSD cone (of any dimension) uniquely up to an isomorphism

78

3.1 Introduction

on the underlying vector space. Additional results in this paper include a complete classification of

ROG cones of degree
4

at most four as well as a number of operations on ROG cones (the direct

product, full extension, and intertwining operations) that preserve the ROG property.

Blekherman et al. [29] study the ROG property of the cones Σ∗
V (see Section 3.1.1) using

techniques from real algebraic geometry and establish a connection between the geometry of

Σ∗
V and the property N2,p of the defining ideal of V .

5
Specifically, one of the main results in

[29] is that, for general real projective varieties V , if Σ∗
V has an extreme ray of rank p > 1 then

V does not satisfy the property N2,p. This result is then strengthened in [29, Theorem 20] to

show that a spectrahedral cone S defined by LMEs is ROG if and only if S = Σ∗
V for a non-

degenerate, reduced, 2-regular, totally real scheme V . Finally, [29] also examines consequences

of this connection to problems from real algebraic geometry, convex geometry, statistics, and real

analysis, such as the positive semidefinite matrix completion problem.

In contrast to [29, 83], our results deal with possibly infinitely many LMIs. The ROG property

of such sets is not obvious and does not follow immediately from the ROG property of spectrahe-

dral cones defined by LMEs. Indeed, we will see that both replacing equalities with inequalities

(Remark 39) and lifting inequalities to equalities (Example 9) can destroy the ROG property of a

spectrahedral cone. In addition, our more general setup allows us to handle additional interesting

spectrahedral cones that have conic constraints, for example those arising from variants of the TRS.

We also discuss implications of the ROG property in terms of the exactness of SDP relaxations

of QCQPs and explicit convex hull characterizations of sets defined by quadratic inequality con-

straints. Finally, all of the proofs in this chapter follow from elementary linear algebra and convex

analysis. In particular, we hope that our results and their proofs shed light on the ROG property

for readers less familiar with algebraic geometry.

ROGspectrahedraarisingfromPSDmatrixcompletion. The ROG property has also

been studied for spectrahedra arising in the matrix completion literature. PSD matrix completion

arises in a number of areas—for example in statistics, this problem is related to maximum likelihood

estimation in Gaussian graphical models [56]. LetE denote the edge set of an undirected graph on

n vertices that contains all self-loops. LetK ⊆ Sn
denote the projection of Sn

+ onto the indices in

E. Then, a matrix Y that is specified only onE has a PSD completion if and only if it lies in the

coneK . A short calculation shows that

K =
{
Y ∈ Sn : Yi,j = 0, ∀(i, j) /∈ E

⟨X,Y ⟩ ≥ 0, ∀X ∈ S

}
, where

S =
{
X ∈ Sn

+ : Xi,j = 0, ∀(i, j) /∈ E
}
.

Consequently, the condition that every fully specified submatrix of Y is positive semidefinite is

necessary and sufficient for Y to have a PSD completion if and only S is ROG. It is well-known

that S is ROG if and only ifE is the edge set of a chordal graph
6

on n vertices [3, 78, 145].

4

This is the degree of the minimal defining polynomial. This quantity is shown to be equivalent to the maximum

rank over matrices in the ROG cone.

5

A real projective variety V satisfies property N2,p for an integer p ≥ 1 if the jth syzygy module of the homogeneous

ideal of V is generated in degree at most j + 2 for all j < p.

6

A graph is chordal if every minimal cycle in the graph has at most 3 edges.

79

3 Rank-one-generated cones

3.1.3 Overview and outline of the chapter

In this chapter, we study necessary and/or sufficient conditions under which the intersection of

the positive semidefinite cone with a set of homogeneous LMIs is an ROG cone. A summary of

our contributions, along with an outline of the chapter, is as follows:

i In Section 3.2, we introduce our main terminology and basic tools. Specifically, we show

how the ROG property behaves when we switch from linear matrix inequalities (LMIs)

to linear matrix equalities (LMEs) and how the ROG property for LMEs is characterized

by the existence of solutions of quadratic systems. In Section 3.2.5, using our basic tools,

we recover the well-known fact that a set defined by a single LMI/LME is ROG, i.e., the

S-lemma, and discuss a few implications for a simple sufficient condition in the case of two

LMIs/LMEs.

ii In Section 3.3, we establish a number of new sufficient conditions for the ROG property.

As an example, we show that S is ROG when S =
{
X ∈ Sn

+ : Xc ∈ K
}

for a fixed

vector c and an arbitrary closed convex cone K . We also provide a number of examples

to demonstrate that even simple extensions of our sufficient conditions are not possible.

We conclude this section by recovering the well-known result that the SDP relaxation

strengthened with a second-order cone reformulation-linearization technique (SOC-RLT)

inequality is exact for the variant of the TRS with a single linear inequality constraint.

iii A well-known consequence of the S-lemma is that the set S(M) is ROG wheneverM =
{M} is a single LMI; see e.g., Ye and Zhang [194, Lemma 2.2]. In Section 3.4, we give a

complete characterization of ROG cones defined by two LMIs. One of our main results

states a necessary and sufficient condition on the matricesM1 andM2 which ensures that

the set S is ROG. In particular, we establish in Theorem 16 that such a set is ROG if and

only if the LMIs defined byM1 andM2 either “only interact” on a single face of Sn
+ where

they induce the same inequality constraint or bothM1 andM2 have a specific indefinite

rank-two structure. We conclude that in the case ofm = 2, there exist simple certificates of

the ROG property.

iv In Section 3.5, we give a few applications of ROG cones. In particular, we show how results

on the ROG property of convex cones can be translated into inhomogeneous SDP exactness

results and SDP-based convex hull descriptions of quadratically constrained sets. We then

apply our ROG-based sufficient condition for exactness of the SDP relaxation to a simple

set involving binary and continuous variables linked through a complementarity constraint.

This gives a new method for deriving the well-known perspective reformulation for the

convex hull of this set. We additionally present a number of examples that highlight how our

ROG-based sufficient conditions for the SDP exactness and convex hull descriptions differ

from other SDP exactness conditions in the literature. We close this chapter by showing

how to combine our ROG results with a “re-homogenization” trick to minimize ratios of

quadratic functions over ROG domains. We give applications to the regularized total least

squares problem and a Stackelberg prediction game with a least squares loss function. The

results in this section are self-contained and serve as additional motivation for the main

study.

80

3.2 Properties of ROG cones

We will compare our results with the literature in further detail in the sections as outlined above.

3.1.4 Additional notation

For M ∈ Rn×n
, let Sym(M) := (M + M⊺)/2 ∈ Sn

. For a cone K in a Euclidean space

E , let extr(K) denote its extreme rays and define K∗ := {y ∈ E : ⟨x, y⟩ ≥ 0, ∀x ∈ K} to

be the dual cone of K . Given a subspace W ⊆ Rn
and x ∈ Rn

, let xW ∈ W denote the

projection of x onto W . For x ∈ W and y ∈ W⊥
, let x ⊕ y denote their direct sum. For

X ∈ SW
and Y ∈ SW ⊥

, letX ⊕ Y denote their direct sum, i.e., the unique matrix in Sn
such

that (x⊕ y)⊺(X ⊕ Y)(x⊕ y) = x⊺Xx+ y⊺Y y for all x ∈W and y ∈W⊥
.

3.2 Properties of ROG cones

3.2.1 Definitions

GivenM⊆ Sn
, define

S(M) :=
{
X ∈ Sn

+ : ⟨M,X⟩ ≥ 0, ∀M ∈M
}
.

Note that S(M) is a closed convex cone. We are interested in the following property of such sets.

Definition 13. A closed convex cone S ⊆ Sn
+ is rank-one generated (ROG) if

S = conv(S ∩ {xx⊺ : x ∈ Rn}). □

Remark 30. Note that whenS ⊆ Sn
+ is a closed convex cone, we have conv(S∩{xx⊺ : x ∈ Rn}) =

clconv(S ∩ {xx⊺ : x ∈ Rn}). □

We will make extensive use of the following definitions and basic facts.

Definition 14. ForX ∈ Sn
nonzero, the ray spanned byX is

R+X := {αX : α ≥ 0}.

Let S ⊆ Sn
+ be a closed convex cone and suppose X ∈ S is nonzero. We say that R+X is an

extreme ray ofS if for anyY,Z ∈ S such thatX = (Y +Z)/2, we must haveY,Z ∈ R+X . □

Fact 7. LetX ∈ Sn
+. Then, x ∈ range(X) if and only if there exists ϵ > 0 such thatX− ϵxx⊺ ∈

Sn
+.

Fact 8. Let S ⊆ Sn
+ be a closed convex cone. Then, forX ̸= 0, R+X is an extreme ray of S if and

only if for every Y ,

[X − Y,X + Y] ⊆ S =⇒ ∃α ∈ R such that Y = αX.

The following fact follows immediately from Facts 7 and 8.

Fact 9. LetS ⊆ Sn
+ be a closed convex cone. IfX ∈ S has rank(X) = 1, then R+X is an extreme

ray of S .

81

3 Rank-one-generated cones

Lemma 19. Let S ⊆ Sn
+ be a closed convex cone. Then, S is ROG if and only if for each extreme

ray R+X of S we have rank(X) = 1.

Proof. (⇐) Note that as S is a subset of Sn
+, it must be pointed. Then, as a closed convex pointed

cone is the convex hull of its extreme rays, we have that S = conv(S ∩ {xx⊺ : x ∈ Rn}).

(⇒) Let R+X denote an extreme ray of S . As S is ROG, we may by assumption writeX =∑k
i=1 xix

⊺
i where xix

⊺
i ∈ S for every i ∈ [k]. Then, as R+X is an extreme ray of S , we must

have xix
⊺
i ∈ R+X for every i ∈ [k]. Thus, we deduce thatX is rank-one. ■

The following fact allows us to decompose positive semidefinite matrices which are identically

zero on a given subspace.

Lemma 20. LetX ∈ Sn
+. SupposeW ⊆ Rn is a subspace on whichXW = 0. Then, we can write

X = 0W ⊕XW ⊥ .

Proof. By performing an orthonormal change of variables, we may assume without loss of general-

ity thatW corresponds to the first k coordinates of Rn
andW⊥

corresponds to the last n − k
coordinates of Rn

. We can then writeX as a block matrix

X =
(
XW Y
Y ⊺ XW ⊥

)
.

Then, asX ∈ Sn
+ andXW = 0, we deduce that Y = 0. In particular,X = 0W ⊕XW ⊥ . ■

3.2.2 Relating LMIs to LMEs

Given a setM⊆ Sn
, we will quickly switch from studying S(M) to sets defined by LMEs, i.e.,

sets of the form

T (M) :=
{
X ∈ Sn

+ : ⟨M,X⟩ = 0, ∀M ∈M
}
.

Sets of the form T (M) are simpler to analyze than sets of the form S(M).

Remark 31. It is clear that given anyM⊆ Sn
, we haveS(M) = S(clcone(M)) and T (M) =

T (span(M)). In particular, we may without loss of generality assume thatM is finite when

analyzing sets of the form T (M)—simply replaceM with a finite basis of span(M). On the

other hand, clcone(M) is not necessarily finitely generated. □

We now present a series of lemmas relating S(M) and T (M) and their facial structures in

terms of the ROG property. These results are particularly instrumental when we analyze the

spectrahedral sets defined by finitely many LMIs/LMEs.

Lemma 21. For any setM⊆ Sn, the following are equivalent:

1. S(M) is ROG.

2. Every face of S(M) is ROG.

3. S(M) ∩ T (M′) is ROG for everyM′ ⊆M.

82

3.2 Properties of ROG cones

Proof. (1.⇒ 2.) Note that every extreme ray of a face of S(M) is also an extreme ray of S(M).

(2. ⇒ 3.) First, supposeM′ = ∅. Then, T (M′) = Sn
+ and thus S(M) ∩ T (M′) =

S(M). Since S(M) is a face of itself, by part 2. we deduce it is ROG. Now consider any ∅ ̸=
M′ ⊆ M. Note that T (M′) only depends on the linear span ofM′

, thus without loss of

generality we may assume thatM′
is a basis of span(M′). Take Y to be the average ofM′

,

i.e., Y = 1
|M′|

∑
M∈M′ M . Note that Y ∈ cone(M′) so that Y ∈ S(M)∗

. We claim that

S(M) ∩ T (M′) = S(M) ∩ Y ⊥
. Indeed, for allX ∈ S(M), we have that ⟨Y,X⟩ = 0 if and

only if ⟨Y,M⟩ = 0 for allM ∈M′
if and only ifX ∈ T (M′). We deduce thatS(M)∩T (M′)

is a face of S(M), and thus it is ROG.

(3.⇒ 1.) TakeM′ = ∅. ■

We have the following immediate corollary of Lemma 21.

Corollary 13. For any setM⊆ Sn, if S(M) is ROG then T (M) is ROG.

Proof. TakeM′ =M in Lemma 21. ■

Informally, an extreme ray of S(M) should also be an extreme ray of S(M′) forM′ ⊆M as

long asM′
contains the “relevant” inequalities inM. The following technical lemma makes this

notion precise.

Lemma 22. LetM⊆ Sn and let R+X be an extreme ray of S(M). LetM′ ⊆M contain all of
the constraints that are tight atX , i.e., {M ∈M : ⟨M,X⟩ = 0} ⊆ M′. IfM\M′ is compact,
then R+X is an extreme ray of S(M′). If additionallyM′ = {M ∈M : ⟨M,X⟩ = 0}, then
R+X is an extreme ray of T (M′).

Proof. SupposeY ∈ Sn
is such that [X−Y,X+Y] ⊆ S(M′). By compactness ofM\M′

, we

have that ⟨M,X⟩ achieves a positive minimum value onM\M′
. Furthermore, by compactness,

⟨M,Y ⟩ is bounded onM \M′
. In particular, there exists ϵ > 0 small enough guaranteeing

that ⟨M,X ± ϵY ⟩ > 0 for allM ∈M \M′
. This together with [X − Y,X + Y] ⊆ S(M′)

implies that [X−ϵY,X+ϵY] ⊆ S(M). Thus, asR+X is an extreme ray ofS(M) we conclude

that Y = αX for some α ∈ R. This then implies that R+X is extreme in S(M′).

The second statement follows by replacing S(M′) with T (M′) in the argument above. ■

Lemma 22 allows us to strengthen Lemma 21 in a few ways.

Lemma 23. LetM ⊆ Sn be compact. Then, S(M) is ROG if and only if S(M) ∩ T (M′) is
ROG for every ∅ ̸=M′ ⊆M.

Proof. (⇒) This direction follows Lemma 21.

(⇐) Let R+X be an extreme ray of S(M) and defineM′ := {M ∈M : ⟨M,X⟩ = 0}.
First supposeM′ ̸= ∅. AsR+X is also an extreme ray ofS(M)∩T (M′), which by assumption

is ROG, we have that rank(X) = 1. Now supposeM′ = ∅. By Lemma 22 and the assumption

thatM is compact, we deduce that R+X is an extreme ray of T (∅) = Sn
+. We conclude that

rank(X) = 1. ■

83

3 Rank-one-generated cones

We note that given Lemma 23, it may be tempting to try to strengthen the third condition

in Lemma 21 to the condition that S(M) ∩ T (M′) is ROG for every ∅ ̸= M′ ⊆ M. The

following example shows that this is not possible without making the compactness assumption of

Lemma 23.

Example 7. Suppose n = 2 andM =
⋃

i∈[4]Mi, where

M1 =
{(

1
−1 + ϵ

)
: ϵ > 0

}
, M2 =

{(
−1

1 + ϵ

)
: ϵ > 0

}
,

M3 =
{(

0 1
1 ϵ

)
: ϵ > 0

}
, M4 =

{(
0 −1
−1 ϵ

)
: ϵ > 0

}
.

Noting that S(M) is unchanged upon taking the closure ofM and that for all i ∈ [4] and the

constraints ⟨Mϵ, X⟩ ≥ 0 forMϵ ∈Mi get only more restrictive as ϵ→ 0, we deduce

S(M) = S
({(

1
−1

)
,

(
−1

1

)
,

(
0 1
1 0

)
,

(
0 −1
−1 0

)})
= R+I.

We conclude S(M) = R+I is not ROG. On the other hand, for any ∅ ̸=M′ ⊆M, we have

S(M) ∩ T (M′) = {0} (because ⟨M, I⟩ ≠ 0 for anyM ∈M) and is ROG. □

Lemma 24. LetM⊆ Sn be finite. If T (M′) is ROG for everyM′ ⊆M, then S(M) is ROG.

Proof. Let R+X be an extreme ray of S(M). DefineM′ := {M ∈M : ⟨M,X⟩ = 0}. By

Lemma 22 and the fact that any finite set is compact, we deduce that R+X is an extreme ray of

T (M′). We conclude that rank(X) = 1. ■

The following lemma shows that the ROG property of T (M) is equivalent to the ROG

property of T (M) whereM is the restriction ofM onto the joint range of the matricesM ∈M.

Lemma 25. Let W := span(
⋃

M∈M range(M)). For M ∈ M, let M = MW denote the
restriction ofM toW . LetM =

{
M : M ∈M

}
. Then, T (M) is ROG if and only if T (M) is

ROG.

Proof. (⇒) Note thatT (M) is isomorphic toT (M)⊕0W ⊥ via the rank-preserving mapXW 7→
XW ⊕ 0W ⊥ . We claim that T (M)⊕ 0W ⊥ is a face of T (M). Indeed, we can write

T (M)⊕ 0W ⊥ = T (M) ∩
{
X ∈ Sn

+ : ⟨0W ⊕ IW ⊥ , X⟩ = 0
}

and note that 0W ⊕ IW ⊥ ∈ Sn
+. Then, T (M)⊕ 0W ⊥ is ROG by Lemma 21. We conclude that

T (M) is ROG.

(⇐) LetR+(X) be an extreme ray ofT (M) and setX := XW . We will show that rank(X) =
1 by considering two cases. First, suppose X = 0, then range(X) ⊆ W⊥

. We deduce that

as X ̸= 0, there exists a nonzero vector y ∈ range(X) ⊆ W⊥
. Note that ⟨M,yy⊺⟩ =

⟨MW , (yy⊺)W ⟩ = 0. Furthermore, X ± ϵyy⊺ ∈ Sn
+ for all small enough ϵ > 0. By the

84

3.2 Properties of ROG cones

M is finite and ∀M′ ⊆M, T (M′) ROG S(M) ROG T (M) ROG

Figure 3.1: A summary of Lemma 24 and Corollary 13

assumption that R+(X) is an extreme ray, we then conclude thatX is a scalar multiple of yy⊺

and is rank-one.

Next, supposeX ̸= 0. As ⟨M,X⟩ =
〈
M,X

〉
for everyM ∈M, we have thatX ∈ T (M).

By the assumption that T (M) is ROG, we may write X =
∑k

i=1 yiy
⊺
i where yiy

⊺
i ∈ T (M)

are each nonzero. Fix y := y1 and define z such that y = Xz. This is possible as y ∈ range(X).

Finally, define

y := X(z ⊕ 0W ⊥).

We claim thatX ± ϵyy⊺ ∈ T (M) for all ϵ > 0 small enough. Indeed, as y ∈ range(X) we have

thatX ± ϵyy⊺ ∈ Sn
+ for all ϵ > 0 small enough. Furthermore, for allM ∈Mwe have

⟨M,yy⊺⟩ =
〈
M,yy⊺

〉
= 0,

where the second equality follows from the fact that y ∈ T (M). Additionally note that y is

nonzero and yW = y so that y is nonzero. We deduce that X ± ϵyy⊺ ∈ T (M) for all ϵ > 0
small enough. By the assumption that R+(X) is an extreme ray, we then conclude that X is a

scalar multiple of yy⊺ and is rank-one. ■

Remark 32. The characterizations given in Lemmas 21 to 25 and Corollary 13 are based on the

facial structure of the sets S(M) and T (M) and in a sense are analogous to characterizations of

integral polyhedra. □

Remark 33. The ROG property is not preserved under trivial liftings. WhenM = {M1, . . . ,Mk}
is finite, one may attempt to replace all of the inequalities definingS(M) with equalities by adding

new slack variables. Specifically, for i ∈ [k], letM i ∈ Sn+k
be the following block matrix

M i :=
(
Mi

eie
⊺
i

)

and letM :=
{
M1, . . . ,Mk

}
. It is straightforward to show that the ROG property is preserved

under the projection of Sn+k
onto Sn

. Thus, if T
(
M
)

is ROG, then S(M) is also ROG.

Unfortunately the reverse implication is not true in general. We will give a counterexample in

Section 3.4.4 (see Example 9). □

85

3 Rank-one-generated cones

3.2.3 Simple operations preserving ROG property

We now present a few lemmas that are useful in reasoning about extreme rays of S(M). The

following lemma states that an extreme ray R+X “only cares about” constraints “in the range of

X .”

Lemma 26. LetM⊆ Sn and let R+X be an extreme ray of S(M). LetW := range(X) and
letMW := {MW : M ∈M}. Then R+(XW) is an extreme ray of S(MW). In particular, if
S(MW) is ROG, then rank(X) = rank(XW) = 1.

Proof. Suppose YW ∈ SW
is such that [XW − YW , XW + YW] ⊆ S(MW). Let Y =

0W ⊥⊕YW . Then,X+Y = 0W ⊥⊕(XW +YW), and for anyM ∈Mwe have ⟨M,X + Y ⟩ =
⟨MW , XW + YW ⟩ ≥ 0. We deduce thatX + Y ∈ S(M). SimilarlyX − Y ∈ S(M) whence

[X − Y,X + Y] ⊆ S(M). As R+X is extreme in S(M), we deduce that Y = αX for some

α ∈ R. Consequently, YW = αXW for some α ∈ R and R+(XW) is extreme in S(MW). ■

The following lemma addresses the case whenM can be partitioned into “non-interacting” sets

of constraints.

Lemma 27. LetM⊆ Sn be a finite union of compact setsM =
⋃k

i=1Mi. Further, suppose that
for all nonzeroX ∈ Sn

+ and i ∈ [k], if ⟨Mi, X⟩ = 0 for someMi ∈ Mi, then ⟨M,X⟩ > 0 for
allM ∈M \Mi. Then, S(M) is ROG if and only if S(Mi) is ROG for all i ∈ [k].

Proof. (⇒) Fix i ∈ [k] and let R+X be an extreme ray of S(Mi). If ⟨Mi, X⟩ > 0 for all

Mi ∈Mi, then Lemma 22 implies thatR+X is an extreme ray of Sn
+ and so rank(X) = 1. Now

suppose ⟨Mi, X⟩ = 0 for someMi ∈Mi. By assumption, ⟨M,X⟩ > 0 for allM ∈M \Mi

so that X ∈ S(M). As S(M) ⊆ S(Mi), we have that R+X must also be an extreme ray of

S(M). We deduce that rank(X) = 1.

(⇐) Let R+X be an extreme ray of S(M). DefineM′ := {M ∈M : ⟨M,X⟩ = 0}. If

M′ = ∅ then Lemma 22 implies thatR+X is an extreme ray of T (∅) = Sn
+ and so rank(X) =

1.

Now supposeM′
is nonempty. Then, by assumption,M′ ⊆Mi for some i. By Lemma 22

and the assumption thatM\Mi is compact, we deduce that R+X is an extreme ray of S(Mi).

We conclude that rank(X) = 1. ■

Finally, the following lemma states that an arbitrary intersection of ROG cones is ROG if and

only if no new extreme rays are introduced.

Lemma 28. LetM⊆ Sn be a unionM =
⋃

α∈AMα. Suppose that S(Mα) is ROG for every
α ∈ A. Then, S(M) is ROG if and only if

extr(S(M)) ⊆
⋂

α∈A

extr(S(Mα)).

Proof. (⇐) Let R+X be an extreme ray of S(M). Then, by assumption, R+X is an extreme ray

of S(Mα) for each α ∈ A. By recalling that each S(Mα) is ROG, we deduce rank(X) = 1.

(⇒) Let R+X be an extreme ray of S(M). Then, by the assumption that S(M) is ROG, we

have rank(X) = 1. Next, note thatX ∈ S(M) =
⋂

α∈A S(Mα), whenceX ∈ S(Mα) for

86

3.2 Properties of ROG cones

all α ∈ A. Then as rank(X) = 1, we deduce that R+X is extreme in S(Mα) for all α ∈ A by

Fact 9. ■

3.2.4 The ROG property and solutions of quadratic systems

We next examine the ROG property of a set and its connection to the existence of nonzero solutions

of underlying quadratic systems of inequalities and/or equations.

Definition 15. GivenM⊆ Sn
andX ∈ S(M), we define

E(X,M) := {x ∈ Rn : |x⊺Mx| ≤ ⟨M,X⟩, ∀M ∈M}. □

Lemma 29. S(M) is ROG if and only if for every nonzero X ∈ S(M) we have range(X) ∩
E(X,M) ̸= {0}.

Proof. (⇒) Suppose X ∈ S(M) is nonzero. Because S(M) is ROG, we can write X =∑k
i=1 xix

⊺
i using nonzero matrices xix

⊺
i ∈ S(M). AsX is a nonzero matrix, we have k ≥ 1 and

thus x̄ := x1 exists. Then, for everyM ∈ M and i ∈ [k], we have x⊺iMxi ≥ 0. In particular,

0 ≤ x̄⊺Mx̄ ≤
∑k

i=1 x
⊺
iMxi = ⟨M,X⟩. Furthermore, x̄ ∈ range(X). We conclude that

range(X) ∩ E(X,M) contains the nonzero element x̄.

(⇐) Let R+X be an extreme ray of S(M). By assumption, there exists a nonzero x ∈
range(X) such that

|x⊺Mx| ≤ ⟨M,X⟩, ∀M ∈M.

By picking ϵ > 0 small enough, we can simultaneously ensure thatX ± ϵxx⊺ ∈ Sn
+ and that

⟨M,X ± ϵxx⊺⟩ ≥ (1− ϵ)⟨M,X⟩ ≥ 0, ∀M ∈M.

Hence, we conclude that the interval [X − ϵxx⊺, X + ϵxx⊺] is contained in S(M). In particular,

because R+X is an extreme ray ofS(M), we deduce that ϵxx⊺ is a scalar multiple ofX and hence

rank(X) = 1. ■

When studying T (M), we can replace the set E(X,M) in Lemma 29 with a simpler set

corresponding to solutions to a homogeneous system of quadratic equations.
7

Definition 16. GivenM⊆ Sn
, we define

N (M) := {x ∈ Rn : x⊺Mx = 0, ∀M ∈M}. □

Remark 34. Note that for everyM⊆ Sn
and everyX ∈ S(M), we haveN (M) ⊆ E(X,M).

□

Corollary 14. T (M) is ROG if and only if for every nonzeroX ∈ T (M) we have range(X) ∩
N (M) ̸= {0}.

Proof. Note that S(−M∪M) = T (M) and apply Lemma 29. ■
7

Readers familiar with algebraic geometry will recognize this as the variety defined by M.

87

3 Rank-one-generated cones

S(M) ROG ∀X ∈ S(M) \ {0}, range(X) ∩ E(X,M) ̸= {0}

T (M) ROG ∀X ∈ T (M) \ {0}, range(X) ∩N (M) ̸= {0}

Figure 3.2: A summary of Lemma 29 and Corollary 14.

Remark 35. When applying Lemma 29, it suffices to check the right hand side only for matrices

X with rank at least two. Indeed ifX = xx⊺, then x ∈ range(X)∩E(X,M). The same is true

for Corollary 14. □

3.2.5 KnownROG sets

In order to familiarize the reader with our notation and setup, we now recover three known results

in our language. We begin with a result due to Sturm and Zhang [167] regarding spectrahedral

cones defined by a single LMI.

Lemma 30. Consider anyM ∈ Sn, and letM = {M}. Then S(M) is ROG.

Proof. By Lemma 23, S(M) is ROG if and only if T (M) is ROG. We will show that T (M) is

ROG by appealing to Corollary 14.

LetX ∈ T (M) have rank at least two. Begin by performing a spectral decompositionX =∑r
i=1 λixix

⊺
i , where r = rank(X) ≥ 2, the xi are orthonormal eigenvectors ofX , and λi > 0

for all i ∈ [r].
If one of the eigenvectors xi is inN (M), then range(X) ∩N (M) contains xi and is clearly

nontrivial.

Else, there exist distinct eigenvectors, without loss of generalityx1 andx2, such that ⟨M,x1x
⊺
1⟩ >

0 > ⟨M,x2x
⊺
2⟩. By continuity, there exists x ∈ [x1, x2] such that ⟨M,xx⊺⟩ = 0. Note that x is

nonzero as 0 /∈ [x1, x2] (this follows asx1 andx2 are orthonormal). Furthermore,x ∈ range(X).

This concludes the proof as we have constructed a nonzero x ∈ range(X) ∩N (M). ■

Based on Lemmas 24 and 30 and Corollary 13, we have the following characterization of ROG

sets defined by two inequalities.

Corollary 15. Suppose |M| = 2, then S(M) is ROG if and only if T (M) is ROG.

The characterization given in Corollary 15 for the case of |M| = 2 is, at the moment, unsatis-

factory as we have yet to analyze when T (M) is itself ROG. Our developments in the remainder

of this chapter will make this implicit characterization much more explicit (see Section 3.4).

Next, we recover a result related to the S-lemma [67] and a convexity theorem due to Dines [59].

Lemma 31. LetM = {M1,M2} and suppose there exists (α1, α2) ̸= (0, 0) such that α1M1 +
α2M2 ∈ Sn

+. Then, S(M) is ROG.

88

3.3 Sufficient conditions

Proof. By Corollary 15, it suffices to show that T (M) is ROG. Recall also that T (M) depends

only on span(M) (see Remark 31), thus we may without loss of generality supposeM1 ∈ Sn
+.

Let W := range(M1). We claim that XW = 0 for all X ∈ T (M). Indeed, suppose

X ∈ T (M) so that ⟨M1, X⟩ = 0. Noting that bothM1, X ∈ Sn
+, we deduce thatM1X = 0

so thatXW = 0. Then, applying Lemma 20 allows us to writeX = 0W ⊕XW ⊥ .

LetM2 := (M2)W ⊥ . Then,

T (M) =
{

0W ⊕XW ⊥ :
〈
M2, XW ⊥

〉
= 0

XW ⊥ ∈ SW ⊥
+

}
= 0W ⊕ T (M2). (3.3)

By Lemma 30 and Corollary 13, T (M2) is ROG. Then as T (M) is isomorphic to T (M2) via

the rank-preserving map 0W ⊕XW ⊥ 7→ XW ⊥ , we conclude that T (M) is ROG. ■

Remark 36. The condition that there exists (α1, α2) ̸= (0, 0) such that α1M1 + α2M2 ∈ Sn
+

has a simple geometric interpretation. Specifically, this condition guarantees that the two LMEs

defining T ({M1,M2}) only interact with each other on a single (possibly trivial) face of the

positive semidefinite cone. Furthermore, on this face, the two LMEs impose the same (possibly

trivial) constraint. □

3.3 Sufficient conditions

The following observation generalizes the key step in Lemma 31.

Observation 3. LetM ⊆ Sn. Suppose there exists a nonzero M ∈ span(M) ∩ Sn
+. Let

W := range(M) and defineMW ⊥ := {MW ⊥ : M ∈M}. Then,

T (M) = 0W ⊕ T (MW ⊥).

In particular, T (M) is isomorphic to T (MW ⊥) via the rank-preserving map 0W ⊕ Y 7→ Y and
T (M) is ROG if and only if T (MW ⊥) is ROG.

Remark 37. Observation 3 simply notes that T (M) is a subset of the face 0W ⊕ SW ⊥
+ of the

positive semidefinite cone and then applies Lemma 20. This idea is linked to facial reduction [30,

110, 144], a technique which has been used previously in the literature to simplify semidefinite

programs and more general conic programs. □

Applying Observation 3 repeatedly gives the following generalization of Lemma 31 as a sufficient

condition for the ROG property.

Proposition 11. LetM = {M1, . . . ,Mk} for some k ≥ 2. Suppose for all distinct indices
i, j ∈ [k], there exists (α, β) ̸= (0, 0) such that αMi + βMj is positive semidefinite. Then, S(M)
is ROG.

Proof. By Lemmas 24 and 30, it suffices to show that T (M′) is ROG for everyM′ ⊆Mwith

size at least two.

89

3 Rank-one-generated cones

LetM′ ⊆M. Consider repeatedly applying Observation 3 to get a chain of subspacesW1 ⊂
W2 ⊂ · · · ⊂W such that

T (M′) = 0W1 ⊕ T (M′
W ⊥

1
) = 0W2 ⊕ T (M′

W ⊥
2

) = · · · = 0W ⊕ T (M′
W ⊥).

We will repeat this process until span(M′
W ⊥) ∩ SW ⊥

+ = {0}. This process necessarily ter-

minates as the subspaces Wi strictly increase in dimension. Let M i := (Mi)W ⊥ andM′ :={
M i : Mi ∈M′

}
.

We claim that dim(span(M′)) ≤ 1. Suppose otherwise and letMi,Mj ∈M′
such thatM i

andM j are independent. By assumption, there exists (α, β) ̸= (0, 0) such that αMi + βMj is

positive semidefinite. Then,

αM i + βM j = (αMi + βMj)W ⊥

is positive semidefinite. Furthermore, this linear combination is nonzero by independence ofM i

andM j . This contradicts the assumption that span(M′) ∩ SW ⊥
+ = {0}.

Note that T (M′) is isomorphic to T (M′) via the rank-preserving map 0W ⊕XW ⊥ 7→ XW ⊥ .

Furthermore, by Remark 31 and Lemma 30, we have that T (M′) is ROG. We conclude that

T (M) is ROG. ■

Intuitively, the conditions in this proposition have a similar geometric interpretation to the

conditions in Lemma 31 (see Remark 36). Specifically, the proof shows that for anyM′ ⊆ M
of size at least two, there exists a subspace W ⊆ Rn

such that T (M′) is contained in the face

0W ⊕ SW ⊥
+ of the positive semidefinite cone. Furthermore, on this face, the LMEs inM′

all

impose the same constraint.

Next, we present a new sufficient condition for the ROG property suggested by Lemma 29

and Remark 34.

Theorem 14. SupposeM = {Sym(ab⊺) : b ∈ B} for some a ∈ Rn and B ⊆ Rn. Then, for
every positive semidefiniteX of rank at least two, we have range(X)∩N (M) ̸= {0}. In particular,
S(M) is ROG.

Proof. For any v ∈ a⊥
, we have v⊺ Sym(ab⊺)v = v⊺ab⊺v = 0. We deduce that a⊥ ⊆ N (M),

i.e.,N (M) contains a vector space of codimension one.

LetX be a positive semidefinite matrix with rank at least two. As dim(range(X)) = rank(X),

we see that range(X)∩N (M) must contain a vector space of dimension at least one. In particular,

range(X) ∩ E(X,M) ⊇ range(X) ∩N (M) and is nonempty. Lemma 29 then implies that

S(M) is ROG. ■

We list two immediate corollaries of Theorem 14.

Corollary 16. Let K ⊆ Rn be any closed convex cone and consider an arbitrary vector c ∈ Rn.
Then, the set

{
X ∈ Sn

+ : Xc ∈ K
}

is ROG.

Proof. DefineM := {Sym(cb⊺) : b ∈ K∗}whereK∗
is the dual cone ofK . Then

{
X ∈ Sn

+ : Xc ∈ K
}

=
S(M), whence Theorem 14 implies the result. ■

90

3.3 Sufficient conditions

Corollary 17. Let a, b, c ∈ Rn. Then the set
{
X ∈ Sn

+ : a⊺Xc ≥ 0, b⊺Xc ≥ 0
}

is ROG.

By applying Lemma 24 once more, we next give a sufficient condition which is not covered by

Theorem 14.

Theorem 15. Let a, b, c ∈ Rn. Then the set
{
X ∈ Sn

+ : a⊺Xb ≥ 0, b⊺Xc ≥ 0, a⊺Xc ≥ 0
}

is
ROG.

Proof. LetM = {Sym(ab⊺),Sym(ac⊺),Sym(bc⊺)}. By Lemma 24 and Corollary 17, it suffices

to show that T (M) is ROG.

We will show that T (M) is ROG by appealing to Corollary 14. LetX ∈ T (M) have rank at

least two.

Note thatN (Sym(ab⊺)) = a⊥ ∪ b⊥
. Hence,

N (M) =
(
a⊥ ∪ b⊥

)
∩
(
a⊥ ∪ c⊥

)
∩
(
b⊥ ∪ c⊥

)
= {a, b}⊥ ∪ {a, c}⊥ ∪ {b, c}⊥.

If Xa = Xb = Xc = 0, then range(X) ⊆ {a, b, c}⊥ and thus range(X) ∩ N (M) =
range(X) is clearly nontrivial. Else, without loss of generality suppose y = Xa ̸= 0. Because

X ∈ T (M), we have b⊺y = c⊺y = 0, and thus y ∈ N (M). Noting that y ̸= 0 and

y ∈ range(X), we have concluded 0 ̸= y ∈ range(X) ∩N (M) as desired. ■

Remark 38. By picking n = 3 and {a, b, c} = {e1, e2, e3} in Theorem 15, we recover the

well-known fact that the set of doubly nonnegative matrices (i.e., the set of matrices which are

both entry-wise nonnegative and positive semidefinite) in S3
is ROG. In particular, this states that

X ∈ S3
is doubly nonnegative if and only if it can be written asX =

∑
i xix

⊺
i where xi ∈ R3

are each entry-wise nonnegative. In other words, the set of doubly nonnegative matrices and the

set of completely positive matrices in S3
coincide. □

Remark 39. A graphG = (V,E) is chordal if every minimal cycle has at most 3 edges. It is well-

known that the set of positive semidefinite matrices with a fixed chordal support is ROG [3, 78, 145].

Specifically, ifG = ([n], E) is a chordal graph containing all self-loops, then{
X ∈ Sn

+ : Xi,j = 0, ∀(i, j) /∈ E
}

(3.4)

is ROG.

Unfortunately, the set in (3.4) does not necessarily remain ROG when the equality constraints

are replaced with inequality constraints. Using our toolset, we illustrate this point below with an

example. From this point of view, Theorem 15 and Remark 38 highlight a special chordal graph

for which the inequality version of the set is also ROG.

Consider the path graph on four vertices with all self-loops. We will show that the following set

is not ROG:

S =

X ∈ S4
+ :

X1,2 ≥ 0
X2,3 ≥ 0
X3,4 ≥ 0

.

91

3 Rank-one-generated cones

We will apply Lemma 29 to show thatS is not ROG. LetM = {Sym(e1e
⊺
2), Sym(e2e

⊺
3), Sym(e3e

⊺
4)}

so that S = S(M). Let x = (1, 0, 1, 1)⊺ and y = (0, 1, 1, −1)⊺. Note that the following

rank-two matrix

X := xx⊺ + yy⊺ =


1 0 1 1
0 1 1 −1
1 1 2 0
1 −1 0 2


satisfiesX ∈ S . We compute

range(X) ∩ E(X,M) = span{x, y} ∩

z ∈ R4 :
z1z2 = 0
|z2z3| ≤ 1
z3z4 = 0

.
Let z ∈ range(X) ∩ E(X,M). Then, writing z = αx + βy = (α, β, α + β, α − β)⊺,

we deduce that 0 = z1z2 = αβ and 0 = z3z4 = α2 − β2
so that α = β = 0. Thus,

range(X) ∩ E(X,M) = {0}. □

Finally, we show how our results can be used to recover a result due to Sturm and Zhang [167];

see also [33, Section 6.1]. Let Łn ⊆ Rn
denote the second order cone (SOC)

Łn :=
{
x = (y, t) ∈ Rn−1 × R : ∥y∥2 ≤ t

}
.

DefiningL := Diag(−1, . . . ,−1, 1) ∈ Sn
, we can write Łn = {x ∈ Rn : x⊺Lx ≥ 0, xn ≥ 0}.

Lemma 32. Let c ∈ Rn and define

S :=
{
X ∈ Sn

+ : Xc ∈ Łn

⟨L,X⟩ ≥ 0

}
.

Then, S is ROG.

Proof. We begin by rewriting S so that we may apply Lemma 22. Let B denote a compact base of

Łn = (Łn)∗
. Then,

S = S({L} ∪ {Sym(cb⊺) : b ∈ B}).

For the sake of contradiction suppose there exists an extreme rayR+X ofS with rank(X) ≥ 2.

If ⟨L,X⟩ > 0 thenR+X is an extreme ray ofS({Sym(cb⊺) : b ∈ B}) =
{
X ∈ Sn

+ : Xc ∈ Łn
}

,

contradicting Corollary 16. If Xc ∈ int(Łn) then R+X is an extreme ray of S({L}) ={
X ∈ Sn

+ : ⟨X,L⟩ ≥ 0
}

, contradicting Lemma 30. Finally, suppose Xc = 0 and let W =
range(X) ⊆ c⊥

. Note that XW and X have the same rank and Sym(cb⊺)W = 0 for all

b ∈ B. Then, by Lemma 26, we have that R+(XW) is an extreme ray of S({LW }), contradicting

Lemma 30.

In the remainder of the proof, we will assume that ⟨L,X⟩ = 0 and y := Xc is a nonzero

element in bd(Łn), i.e., y⊺Ly = 0.

92

3.4 Necessary conditions

Then, for all ϵ > 0 small enough, we have X ± ϵyy⊺ ⪰ 0, ⟨L,X ± ϵyy⊺⟩ = ⟨L,X⟩ = 0,

and (X ± ϵyy⊺)c = (1± ϵy⊺c)y ∈ Łn
. This contradicts the assumption that R+X is extreme.

Thus, all extreme rays R+X of S have rank(X) ≤ 1. ■

3.4 Necessary conditions

In this section, we give a complete characterization of ROG cones defined by two LMIs.

Theorem 16. LetM = {M1,M2}. Then, S(M) is ROG if and only if one of the following holds:

i there exists (α1, α2) ̸= (0, 0) such that α1M1 + α2M2 ∈ Sn
+, or

ii there exists a, b, c ∈ Rn such thatM1 = Sym(ac⊺) andM2 = Sym(bc⊺).

Note that the if direction of Theorem 16 is a direct consequence of the sufficient conditions

identified in Proposition 11 and Corollary 17. Furthermore, recall from Corollary 15 that when

|M| = 2, the set S(M) is ROG if and only if T (M) is ROG. Thus, Theorem 16 follows as a

corollary to the following necessary condition.

Theorem 17. LetM = {M1,M2}. If T (M) is ROG, then one of the following holds:

i there exists (α1, α2) ̸= (0, 0) such that α1M1 + α2M2 ∈ Sn
+, or

ii there exists a, b, c ∈ Rn such thatM1 = Sym(ac⊺) andM2 = Sym(bc⊺).

Remark 40. The conic Gordan–Stiemke Theorem (see Equation 2.3 in [166] and its surrounding

comments) implies that for any subspaceW ⊆ Sn
,

W ∩ Sn
+ = {0} ⇐⇒ W⊥ ∩ Sn

++ ̸= ∅.

In particular, applying the conic Gordan–Stiemke Theorem in the context of Theorem 17 we

deduce that ifM1,M2 are linearly independent, then condition (i) in Theorem 17 fails if and only

if T ({M1,M2}) contains a positive definite matrix. □

Conditions (i) and (ii) in Theorems 16 and 17 have simple geometric interpretations. See

Remark 36 for a geometric interpretation of (i). We describe an interpretation of condition (ii) in

Theorem 17, i.e., in the case of two LMEs. Condition (ii) covers the important case when the two

LMEs interact in a nontrivial manner inside Sn
+. Suppose for the sake of presentation that a = e1,

b = e2, c = en. Then, Corollary 17 implies that

T (M) = conv({xx⊺ : x1xn = 0, x2xn = 0})
= conv(conv{xx⊺ : x1 = x2 = 0} ∪ conv{xx⊺ : xn = 0})

= conv
(
(02 ⊕ Sn−2

+) ∪ (Sn−1
+ ⊕ 01)

)
.

In other words, condition (ii) covers the case where T (M) is the convex hull of the union of two

faces of the positive semidefinite cone with a particular intersection structure. Theorem 17 states

that these are the only ways for T (M) to be ROG when |M| = 2.

93

3 Rank-one-generated cones

The proof of Theorem 17 is nontrivial and will be the focus of the remainder of the section.

Before completing this proof, let us first work out in detail a prototypical example. This example

will highlight a number of the steps of our proof.

Example 8. SupposeM = {M1,M2}whereM1 = Diag(1,−1, 0) andM2 = Diag(0, 1,−1)
so that

T (M) =
{
X ∈ S3

+ : X1,1 = X2,2 = X3,3
}
.

We first verify that neither condition (i) nor (ii) from Theorem 17 hold. Indeed,α1M1 +α2M2 =
Diag(α1, α2−α1,−α2) is positive semidefinite if and only if (α1, α2) = (0, 0) so that condition

(i) is violated. Next, note that 2M1 +M2 = Diag(2,−1, 1) has rank three so that condition (ii)

is also violated. We next demonstrate that T (M) is not ROG.

Letw :=
(
1, 1,
√

2
)⊺

. We claim there exists a vector z such that

(
z⊺M1z
z⊺M2z

)
= −

(
w⊺M1w
w⊺M2w

)
.

Indeed for this example, z = (−1, 1, 0)⊺ is such a vector. It is clear that w and z are linearly

independent so thatX := ww⊺ + zz⊺ is a rank-two matrix contained in T (M). By Corollary 14,

it suffices to show that range(X) ∩ N (M) = {0}. We will write a generic element from

range(X) as

(
α− β, α+ β,

√
2α
)⊺

. Then

range(X) ∩N (M) =


α− βα+ β√

2α

 : (α− β)2 = (α+ β)2 = 2α2

.
The first equality impliesαβ = 0. The second equality then implies thatα = β = 0. We conclude

range(X) ∩N (M) = {0} and that T (M) is not ROG. □

We now begin on the proof of Theorem 17. We first make a simplifying assumption that holds

without loss of generality.

Lemma 33. Let W := span(
⋃

M∈M range(M)). For M ∈ M, let M = MW denote the
restriction ofM toW . LetM =

{
M : M ∈M

}
. Then, T (M) is ROG if and only T (M) is

ROG. Furthermore, ifM = {M1,M2} andM =
{
M1,M2

}
, then each of conditions (i) and

(ii) in Theorem 17 hold forM if and only if they hold forM.

Proof. The first part of this statement follows immediately from Lemma 25. The last statement of

the lemma follows from definition ofW . ■

We will henceforth assume thatM spans Rn
in the following sense.

Assumption 7. Assume that span(
⋃

M∈M range(M)) = Rn
. □

94

3.4 Necessary conditions

Proof of Theorem 17. By Lemma 33, we may without loss of generality assume that Assumption 7

holds. We will split the proof of Theorem 17 into a number of cases depending on the dimension

n.

• The case n = 1 holds vacuously as we can set (α1, α2) to either (1, 0) or (−1, 0) to satisfy

(i).

• For n = 2, we will suppose condition (i) is not satisfied and explicitly construct an extreme

ray of T (M) with rank two. The construction crucially uses the geometry of R2
(and S2

).

See Proposition 12.

• For n = 3, we will suppose that neither conditions (i) nor (ii) are satisfied and explicitly

construct extreme rays ofT (M) with rank two. The construction is based on understanding

what the correspondingN (M) set looks like. This construction crucially use the geometry

of R3
. See Proposition 13.

• Finally, we will show how to reduce the case of n ≥ 4 to the case of n = 3. Specifically,

supposing that T (M) is a ROG cone, with n ≥ 4, violating (i), we will constructM such

that T (M) is a ROG cone, with n = 3, violating both (i) and (ii). See Proposition 14. ■

Remark 41. Suppose Assumption 7 holds. In this case, condition (ii) necessarily fails ifn ≥ 4. On

the other hand if n ≤ 2 and condition (ii) holds, then in fact condition (i) also holds. In particular,

condition (i) itself completely characterizes the ROG property of a cone defined by two LMIs

whenever n ̸= 3.

Expanding Assumption 7, we have that condition (i) completely characterizes the ROG property

of a cone defined by two LMIs whenever dim(span(range(M1) ∪ range(M2))) ̸= 3. □

Remark 42. Both directions of Theorems 16 and 17 admit small certificates.

• Suppose S(M) is ROG. Then Theorem 16 implies that there exists either aggregation

weights (α1, α2) ̸= (0, 0) for which α1M1 + α2M2 ∈ Sn
+ or vectors a, b, c ∈ Rn

for

whichM1 = Sym(ac⊺) andM2 = Sym(bc⊺).

• Suppose S(M) is not ROG. Then by Theorem 16, it suffices to certify that neither condi-

tions (i) nor (ii) hold. As S(M) is not ROG, we may assume thatM1 andM2 are linearly

independent. Then, the Gordan–Stiemke Theorem (see Remark 40) implies that condition

(i) fails if and only if there exists a positive definite matrix X in T (M). In other words,

we can certify that condition (i) fails by presenting a positive definite matrix in T (M). If

either rank(M1) ≥ 3 or rank(M2) ≥ 3, then the spectral decomposition of the corre-

spondingMi certifies that condition (ii) does not hold. Else,M1 andM2 are both indefinite

rank-two matrices and we can writeM1 = η1 Sym(ab⊺) andM2 = η2 Sym(cd⊺) where

ηi ∈ R, a, b, c, d ∈ Sn−1
. This decomposition is unique up to renaming a and b or c and

d. Then condition (ii) does not hold if and only if a, b, c, d are distinct. In particular, this

decomposition certifies that condition (ii) does not hold. □

In the proof of Theorem 17, we will make use of the following theorem related to the convexity

of the joint image of two quadratic maps.

95

3 Rank-one-generated cones

T (M)

T (M)

Figure 3.3: For n = 2, every point on the interior of Sn
+ has rank two and every point on the boundary

of Sn
+ has rank at most one. Condition (i) implies that T (M), is either trivial or a ray in the

boundary of Sn
+—this corresponds to the picture on the left. Proposition 12 shows that when

condition (i) is violated, T (M) is a ray on the interior of Sn
+—this corresponds to the picture

on the right.

Theorem 18 (Dines [59]). LetM1,M2 ∈ Sn and suppose that for all (α1, α2) ̸= (0, 0), we have
α1M1 + α2M2 /∈ Sn

+. Then,{(
x⊺M1x
x⊺M2x

)
∈ R2 : x ∈ Rn

}
= R2,

i.e., for every y ∈ R2, there exists an x ∈ Rn such that x⊺M1x = y1 and x⊺M2x = y2.

3.4.1 Dimension n = 2
We now prove Theorem 17 for the case n = 2.

Proposition 12. LetM = {M1,M2}. Suppose Assumption 7 holds and n = 2. If T (M) is
ROG then there exists (α1, α2) ̸= (0, 0) such that α1M1 + α2M2 ∈ Sn

+.

Proof. Suppose for all (α1, α2) ̸= (0, 0), the linear combination α1M1 + α2M2 is not positive

semidefinite. In particular,M1 andM2 are linearly independent in S2
. Then, by Gordan–Stiemke

Theorem (see Remark 40), we deduce the existence of a positive definite matrixX ∈ T (M).

Finally, as S2
has dimension three, the space orthogonal to bothM1 andM2 has dimension one,

so that in fact T (M) = R+(X). We conclude that R+(X) is an extreme ray with rank(X) =
2. ■

3.4.2 Dimension n = 3
We will make use of the following lemma from Hildebrand [83, Lemma 3.13]. The lemma states

that the Carathéodory number of an elementX of T (M) is equal to rank(X) when T (M) is

ROG.

Lemma 34 ([83, Lemma 3.13]). Suppose T (M) is ROG. For every X ∈ T (M), we can write
X =

∑r
i=1 xix

⊺
i where xi ∈ N (M) for all i ∈ [r] and r = rank(X).

96

3.4 Necessary conditions

The next lemma states that when neither conditions (i) nor (ii) hold, the setN (M) is extremely

sparse in R3
.

Lemma 35. LetM = {M1,M2}. Suppose Assumption 7 holds and n = 3. If neither conditions
(i) nor (ii) of Theorem 17 hold, thenN (M) is the union of at most four one-dimensional subspaces of
R3.

Readers familiar with algebraic geometry will recognize this as a consequence of Bézout’s theo-

rem.
8

For completeness, we provide an elementary proof of this lemma using only linear algebraic

tools in Section C.1.

We are now ready to prove Theorem 17 for the case of n = 3. We will assume that neither

conditions (i) nor (ii) hold and use Lemma 35 and Theorem 18 to construct a rank-two matrix

contained in T (M). We will then apply Lemma 34 to derive a contradiction.

Proposition 13. LetM = {M1,M2}. Suppose Assumption 7 holds and n = 3. If T (M) is
ROG, then one of conditions (i) or (ii) of Theorem 17 must hold.

Proof. Suppose T (M) is ROG but neither conditions (i) nor (ii) hold. Consider the subset of

R3
given by

R :=
⋃

x,y∈N (M)
span({x, y}).

By Lemma 35, we have thatR is the union of a finite number of planes and lines in R3
, and thus

there existsw /∈ R. By Theorem 18, we can pick z such that(
z⊺M1z
z⊺M2z

)
= −

(
w⊺M1w
w⊺M2w

)
.

Asw /∈ R, we deduce at least one ofw⊺M1w andw⊺M2w is nonzero. Then, it is clear thatw and

z are linearly independent, and thusX := ww⊺ + zz⊺ is a rank-two matrix contained in T (M).

As T (M) is ROG, we can apply Lemma 34. In particular, we can writeX = xx⊺ + yy⊺ for

some x, y ∈ N (M). Then,w ∈ range(X) = span(x, y) ⊆ R. This contradicts our choice of

w /∈ R. ■

3.4.3 Dimensions n ≥ 4

We will now reduce the case of n ≥ 4 to n = 3. The proof will show that ifM violates condition

(i) then there exists a three-dimensional subspace W for which the restriction ofM to W fails

both conditions (i) and (ii).

We begin by showing that there exists a linear combination ofM1 andM2 with rank at least

three.

8

Assuming that neither conditions (i) nor (ii) hold, the plane curves defined by M1 and M2 cannot share a common

component. Then Bézout’s theorem implies that N (M) consists of at most four lines (or equivalently, four points

in projective space).

97

3 Rank-one-generated cones

(
u⊺

1M1u1
u⊺

1M2u1

)
(

u⊺
2M1u2

u⊺
2M2u2

)

(
u⊺

3M1u3
u⊺

3M2u3

)

(
x⊺

1M1x1
x⊺

1M2x1

)

(
x⊺

2M1x2
x⊺

2M2x2

)

(
x⊺

3M1x3
x⊺

3M2x3

)

Figure 3.4: The proof of Proposition 14 assumes that condition (i) in Theorem 17 does not hold for

{M1,M2} and constructs u1, u2, u3 ∈ Rn
such that the vectors {(u⊺i M1ui, u

⊺
i M2ui)} ⊆

R2
are located as shown in the left figure. These vectors certify that condition (i) in Theo-

rem 17 does not hold for {M1,M2}. Indeed, if α1M1 + α2M2 ∈ Sn
+, then (α1, α2) must

lie in the intersection of the three halfspaces defined by the ui vectors (one such halfspace is

shaded), whence (α1, α2) = (0, 0). A key observation in the proof of Proposition 14 is that for

all x1, x2, x3 ∈ Rn
close enough to u1, u2, u3, the vectors {(x⊺i M1xi, x

⊺
i M2xi)} ⊆ R2

certify that condition (i) in Theorem 17 also does not hold for {(M1)W , (M2)W } where

W = span({xi}). Again, the intersection of the corresponding halfspaces is trivial.

Lemma 36. LetM = {M1,M2}. Suppose Assumption 7 holds and n ≥ 4. If condition (i) in
Theorem 17 does not hold, then there exists (α1, α2) such that rank(α1M1 + α2M2) ≥ 3.

Proof. Suppose rank(α1M1 +α2M2) ≤ 2 for all (α1, α2). Because condition (i) does not hold,

we conclude that for all (α1, α2) ̸= (0, 0), the linear combinationα1M1 +α2M2 has exactly one

positive and one negative eigenvalue. Then, we can writeM1 = Sym(ab⊺) andM2 = Sym(cd⊺).

By Assumption 7, we have that a, b, c, d are linearly independent. By independence, there exists

an x such that x⊺b = 1 and x⊺a = x⊺c = x⊺d = 0; we deduce that (M1 + M2)x = a ∈
range(M1 + M2). Similarly, b, c, d ∈ range(M1 + M2). Then rank(M1 + M2) = 4, a

contradiction. ■

We are now ready to prove Theorem 17 for the case of n ≥ 4.

Proposition 14. LetM = {M1,M2}. Suppose Assumption 7 holds and n ≥ 4. If T (M) is
ROG, then there exists (α1, α2) ̸= (0, 0) such that α1M1 + α2M2 ∈ Sn

+.

Proof. Suppose for the sake of contradiction that T (M) is ROG but condition (i) in Theorem 17

does not hold.

Let θ1 := 0, θ2 := 2π/3 and θ3 := 4π/3. Then, using Theorem 18 we can find three vectors

u1, u2, u3 ∈ Rn
satisfying(

u⊺iM1ui

u⊺iM2ui

)
=
(

cos(θi)
sin(θi)

)
∀i ∈ [3]. (3.5)

98

3.4 Necessary conditions

Note that u1, u2, u3 certify that condition (i) does not hold forM (see also Figure 3.4):

{(α1, α2) : α1M1 + α2M2 ⪰ 0} ⊆ {(α1, α2) : u⊺i (α1M1 + α2M2)ui ≥ 0, ∀i ∈ [3]}

=
{

(α1, α2) :
〈(

α1
α2

)
,

(
u⊺iM1ui

u⊺iM2ui

)〉
≥ 0, ∀i ∈ [3]

}
= {(0, 0)}.

Next, by Lemma 36, there existsMβ := β1M1+β2M2 with rank at least three. Let v1, v2, v3 ∈
Rn

be orthonormal eigenvectors ofMβ corresponding to nonzero eigenvalues. Note that v1, v2, v3
certify that condition (ii) does not hold forM:

det


v

⊺
1
v⊺2
v⊺3

Mβ

(
v1 v2 v3

) ̸= 0 =⇒ rank(Mβ) ≥ 3.

We will use the vectors {ui} and {vi} to construct a three-dimensional subspace W ⊆ Rn

and show that the certificates of neither conditions (i) nor (ii) holding inM can be used to find

certificates of neither conditions (i) nor (ii) holding in {(M1)W , (M2)W }.

Letµ ∈ (0, 1] to be fixed later. Definexi := (1−µ)ui +µvi and setW := span{x1, x2, x3}.

LetM i := (Mi)W and setM :=
{
M1,M2

}
. Similarly defineMβ .

We first show thatW is a three-dimensional subspace for all µ > 0 small enough. It is clear that

dim(W) ≤ 3. To see that dim(W) ≥ 3 for all µ > 0 small enough, consider the determinant of

the orthogonal projections of the xi vectors onto span{v1, v2, v3},

det


v

⊺
1
v⊺2
v⊺3

(x1 x2 x3
) = det

v
⊺
1x1 v⊺1x2 v⊺1x3
v⊺2x1 v⊺2x2 v⊺2x3
v⊺3x1 v⊺3x2 v⊺3x3

.
Recalling that the xis are each linear inµ, we deduce that this determinant is a degree-3 polynomial

in µwhich is not identically zero (taking µ = 1 gives the determinant of the identity matrix), and

thus {xi} are linearly independent for all µ > 0 small enough.

Next, we show that condition (i) does not hold forM for all µ > 0 small enough. Note that{
(α1, α2) : α1M1 + α2M2 ⪰ 0

}
⊆ {(α1, α2) : x⊺i (α1M1 + α2M2)xi ≥ 0, ∀i ∈ [3]}

=
{

(α1, α2) :
〈(

α1
α2

)
,

(
x⊺iM1xi

x⊺iM2xi

)〉
≥ 0, ∀i ∈ [3]

}
,

where the first relation follows from the definition ofM i and noting that xi ∈W . By continuity

of the quadratic forms x⊺iM1xi and x⊺iM2xi in the variable µ, and the choice of the ui in Equa-

tion (3.5), the set on the second line above is the trivial set {0} for all µ > 0 small enough. Thus,

M does not satisfy condition (i) for all µ > 0 small enough.

99

3 Rank-one-generated cones

Next, we will show thatMβ has rank three for allµ > 0 small enough. Note thatMβ is singular

if and only if det(Mβ) = 0. Picking the basis {x1, x2, x3} ofW , we have that det(Mβ) = 0 if

and only if

det


x

⊺
1
x⊺2
x⊺3

Mβ

(
x1 x2 x3

) = det

x
⊺
1Mβx1 x⊺1Mβx2 x⊺1Mβx3
x⊺2Mβx1 x⊺2Mβx2 x⊺2Mβx3
x⊺3Mβx1 x⊺3Mβx2 x⊺3Mβx2

 = 0.

This is a degree-6 polynomial in µ (recall that xis are linear in µ) that is not identically zero: for

µ = 1, this determinant evaluates to the product of three nonzero eigenvalues ofMβ . Then, for

all µ > 0 small enough, this polynomial is nonzero and hence rank(Mβ) = 3. Thus, we deduce

thatM does not satisfy condition (ii) for all µ > 0 small enough.

We now fix µ such thatM does not satisfy either condition (i) or (ii). Note that this also fixes

W .

To complete the proof we will show that T (M) is ROG. This will contradict Proposition 13.

Note that

T (M)⊕ 0W ⊥ = T (M) ∩
{
X ∈ Sn

+ : ⟨0W ⊕ IW ⊥ , X⟩ = 0
}
,

which is a face of T (M). Then, as T (M) is ROG, Lemma 21 implies that T (M) ⊕ 0W ⊥

is ROG. Next, note that T (M) ⊕ 0W ⊥ is isomorphic to T (M) via the rank-preserving map

XW ⊕ 0W ⊥ 7→ XW . We conclude that T (M) is ROG. ■

Proposition 14, together with Propositions 12 and 13, concludes the proof of Theorem 17.

3.4.4 Lifting LMIs into LMEs

In this section, we will show that a simple lifting of an LMI set S into an LME set T in a larger

dimension may not preserve the ROG property.

Example 9. Consider the set

S :=
{
X ∈ S3

+ : X1,2 = 0
X1,3 ≥ 0

}
.

This set is ROG by Theorem 16 and Lemma 21. We can replace the LMIs defining S with LMEs

in a lifted space as follows: Let Π : S4 → S3
denote the projection of a 4 × 4 matrix onto its

top-left 3× 3 principal submatrix. Then,

S = Π
({

X ∈ S4 : X1,2 = 0
X1,3 −X4,4 = 0

})
= Π

(
T (
{
M ′

1,M
′
2
}
)
)
,

100

3.5 Applications of ROG cones

where

M ′
1 :=


0 1/2 0 0

1/2 0 0 0
0 0 0 0
0 0 0 0

 and M ′
2 :=


0 0 1/2 0
0 0 0 0

1/2 0 0 0
0 0 0 −1

.

DefineM′ := {M ′
1,M

′
2}. By Theorem 16, we see that T (M′) is not ROG. We conclude that

the obvious lifting of LMIs into LMEs can take ROG sets S(M) to non-ROG sets T (M′) (even

when there is only a single inequality to lift). □

3.5 Applications of ROG cones

3.5.1 Exactness of SDP relaxations of QCQPs

In this subsection, we relate the ROG property of a cone S to exactness results for both homoge-

neous and inhomogeneous QCQPs and their relaxations.

The following lemma states that a cone S ⊆ Sn
+ is ROG if and only if the SDP relaxation of

the corresponding homogeneous QCQP is exact for all choices of objective function.

Lemma 37. LetM⊆ Sn. Then S(M) is ROG if and only if for everyM0 ∈ Sn,

inf
X∈S(M)

⟨M0, X⟩ = inf
x∈Rn
{⟨M0, xx

⊺⟩ : xx⊺ ∈ S(M)}. (3.6)

Proof. By Definition 13,S(M) is ROG if and only ifS(M) = conv(S(M) ∩ {xx⊺ : x ∈ Rn}).

Moreover, both S(M) and conv(S(M) ∩ {xx⊺ : x ∈ Rn}) are closed convex cones so that

they are equal if and only if their dual cones are equal. Note that

M0 ∈ S(M)∗ ⇐⇒ inf
X∈S(M)

⟨M0, X⟩ = 0.

Similarly,

M0 ∈ (conv(S(M) ∩ {xx⊺ : x ∈ Rn}))∗ ⇐⇒ inf
x∈Rn
{⟨M0, xx

⊺⟩ : xx⊺ ∈ S(M)} = 0.

Noting that both sides of (3.6) can only take the values 0 or−∞ completes the proof. ■

Next, we consider a general QCQP and its SDP relaxation. Recall that in the general form

given in (3.1), a QCQP and its SDP relaxation both contain exactly one inhomogeneous equality

constraint. The following lemma relates the ROG property of a cone to SDP exactness results for

its affine slices. This will allow us to apply our main results on spectrahedral cones to spectrahedra

arising as the feasible domain of the SDP relaxations in (3.1).

101

3 Rank-one-generated cones

Lemma 38. LetM⊆ Sn andB ∈ Sn. If S(M) is ROG, then

inf
x∈Rn

{
x⊺M0x : x⊺Mx ≥ 0, ∀M ∈M

x⊺Bx = 1

}
= inf

X∈Sn

⟨M0, X⟩ :
⟨M,X⟩ ≥ 0, ∀M ∈M
⟨B,X⟩ = 1
X ⪰ 0


for allM0 ∈ Sn for which the optimum SDP objective value is bounded from below. In particular,
this equality holds whenever the SDP feasible domain is bounded.

Proof. Let S := S(M).

(≥) This direction is immediate as the SDP gives a relaxation of the QCQP.

(≤) We may assume without loss of generality that the SDP is feasible. Let X be a feasible

SDP solution. As X ∈ S and S is an ROG cone, there exist x1, . . . , xr ∈ Rn
such that

xix
⊺
i ∈ S for all i ∈ [r] and X =

∑r
i=1 xix

⊺
i . That is, we have x⊺iMxi ≥ 0 for all M ∈ M

and i ∈ [r]. Without loss of generality, x⊺iBxi is non-increasing in i and there exists some

k ∈ [r] such that x⊺1Bx1, . . . , x
⊺
kBxk are positive scalars summing to one. Indeed, if this were

to fail, we could first rearrange the indices in [r] to get x⊺iBxi in non-increasing order and then

subdivide the first term xkx
⊺
k for which

∑k
i=1 x

⊺
iBxi ≥ 1 into two terms (

√
αxk)(

√
αxk)⊺ +(√

1− αxk

)(√
1− αxk

)⊺
(naturally, also increasing r to r + 1) so that the first k-many values

of x⊺iBxi are positive and sum to one. From here on we assume that such a transformation has

been done (if needed), and r reflects the final number of summands in this decomposition ofX .

We may then write

X = X̂ + X̃ :=
(

k∑
i=1

xix
⊺
i

)
+

 r∑
i=k+1

xix
⊺
i

.
Note that

〈
B, X̃

〉
= ⟨B,X⟩−

〈
B, X̂

〉
= 1− 1 = 0. Moreover, because the optimum SDP

objective value is bounded from below, we must have

〈
M0, X̃

〉
≥ 0.

For i ∈ [k], define µi := x⊺iBxi > 0 and x̂i := xi/
√
µi. Then, x̂⊺iBx̂i = 1 and x̂⊺iMx̂i ≥ 0

for allM ∈M and i ∈ [k]. Finally, note that 1 =
∑k

i=1 x
⊺
iBxi =

∑k
i=1 µi. Using these facts,

we deduce

⟨M0, X⟩ ≥
〈
M0, X̂

〉
=

k∑
i=1

x⊺iM0xi =
k∑

i=1
µix̂

⊺
iM0x̂i

≥ min
i∈[k]

x̂⊺iM0x̂i ≥ inf
x∈Rn

{
x⊺M0x : x⊺Mx ≥ 0, ∀M ∈M

x⊺Bx = 1

}
.

The desired result follows by taking the infimum of this inequality over feasible solutionsX to the

SDP. ■

Remark 43. Lemma 38 extends [83, Lemma 1.2], which shows that the same statement holds

in the case of finitely many LMEs. The proof we present is new and immediately shows how to

construct a QCQP feasible solution achieving the SDP value (or a sequence approaching the SDP

value). □

102

3.5 Applications of ROG cones

Example 10. The reverse implication in Lemma 38 is not true in general. In particular, consider

the following example. Let

S =


α β

β

 : α, β ≥ 0

 ⊆ S3
+,

and setB = e1e
⊺
1. Note that S has a rank-two extreme ray and thus is not ROG. LetM0 ∈ S3

. A

short calculation shows that the SDP relaxation of the QCQP defined byM0 andM associated

with S satisfies

inf
X∈S3

{
⟨M0, X⟩ : X ∈ S

X1,1 = 1

}
=
{

(M0)1,1 if (M0)2,2 + (M0)3,3 ≥ 0,
−∞ else.

In particular, ifM0 ∈ S3
is such that the optimum value of the SDP relaxation is bounded below,

then the SDP relaxation takes the value (M0)1,1. On the other hand, e1e
⊺
1 ∈ S is a rank-one

matrix achieving the same objective value. We deduce that

inf
x∈R3

{
x⊺M0x : xx⊺ ∈ S

(xx⊺)1,1 = 1

}
= inf

X∈S3

{
⟨M0, X⟩ : X ∈ S

X1,1 = 1

}

for allM0 ∈ S3
for which the right hand side is bounded below. □

Lemma 38 implies that equality holds in (3.1) whenever S({M1, . . . ,Mm}) is ROG and the

SDP optimum value is bounded from below. It may be natural to ask whether the boundedness

assumption can be dropped in the case where B is specialized to B = e1e
⊺
1. Indeed, this is the

only case we need when analyzing (3.1). The following example shows that this is not possible.

Example 11. Let n = 2 andM = {Sym(e1e
⊺
2),−Sym(e1e

⊺
2)} so that

S(M) =
{(

x2
1 0

0 x2
2

)
: x ∈ R2

}
= conv

({(
x1
0

)(
x1
0

)⊺

: x1 ∈ R
}
∪
{(

0
x2

)(
0
x2

)⊺

: x2 ∈ R
})

.

The representation on the right shows that S(M) is ROG. On the other hand, takingB = e1e
⊺
1

andM0 = −e2e
⊺
2, we have

inf
x∈R2

{
x⊺M0x : xx⊺ ∈ S(M)

x⊺Bx = 1

}
= inf

x∈R2

{
−x2

2 : x1x2 = 0
x2

1 = 1

}
= 0,

which is not equal to

inf
X∈S2

{
⟨M0, X⟩ : X ∈ S(M)

⟨B,X⟩ = 1

}
= inf

x∈R2

{
−x2

2 : x2
1 = 1

}
= −∞. □

In a sense, Example 11 exhibits a particular worst-case behavior. Specifically, adding an arbitrary

inhomogeneous constraint to a ROG cone produces a set that is rank-two generated.

103

3 Rank-one-generated cones

Lemma 39. LetM⊆ Sn. If S(M) is ROG, then for allB ∈ Sn,

conv


X ∈ Sn :

⟨M,X⟩ ≥ 0, ∀M ∈M
⟨B,X⟩ = 1
X ⪰ 0
rank(X) ≤ 2


 =

X ∈ Sn :
⟨M,X⟩ ≥ 0, ∀M ∈M
⟨B,X⟩ = 1
X ⪰ 0

.
In particular, when S(M) is ROG, for anyM0 ∈ Sn, there exists a sequence of rank-two solutions
approaching the SDP optimum value in (3.1).

Proof. LetL denote the inner set on the left hand side so that the left hand side is conv(L) and

letR denote the right hand set.

(⊆) This follows upon noting thatL ⊆ R andR is convex.

(⊇) LetX ∈ R. AsR ⊆ S(M), we may decomposeX =
∑r

i=1 xix
⊺
i where xix

⊺
i ∈ S(M)

for all i ∈ [r]. We may assume that r = rank(X) by Lemma 34. Let βi := ⟨B, xix
⊺
i ⟩.

If βi > 0 for all i ∈ [r], then we are done. Else, without loss of generality β1 > 0 ≥ β2.

Consider the value of µ := α1β1 + α2β2 as (α1, α2) moves continuously on the line segments

(1, 0) → (1, 1) → (0, 1). Noting that β1 > 0 and β2 ≤ 0, we may fix (α1, α2) on this path

such that µ ∈ (0, 1). Then, we can decompose

X = µ

(
α1x1x

⊺
1 + α2x2x

⊺
2

µ

)
+ (1− µ)

(
X − α1x1x

⊺
1 − α2x2x

⊺
2

1− µ

)
=: µXℓ + (1− µ)Xr.

We have writtenX as a convex combination of two matricesXℓ andXr. It can be verified easily

thatXℓ ∈ L andXr ∈ R. As at least one of α1 or α2 takes the value 1, the elementXr has rank

strictly less than r. Iterating this procedure completes the proof. ■

Remark 44. A result similar to Lemma 39 in the case of a single homogeneous constraint is presented

in [33, Lemma 5]. Specifically, it is shown that for an arbitrary closed convex cone S , the extreme

rays of the set obtained by intersecting S with a hyperplane through the origin can be written as

convex combinations of at most two extreme rays of S . □

3.5.2 Convex hulls of bounded quadratically constrained sets

Consider a set

Y :=
{
y ∈ Rn−1 : qi(y) ≥ 0, ∀i ∈ [m]

}
,

where qis are quadratic functions of the form qi(y) = y⊺Aiy + 2b⊺i y + ci. LetMi :=
(

ci b⊺i
bi Ai

)
andM := {M1, . . . ,Mm}.

We begin by proving a technical lemma that will be useful in the remainder of this section. This

lemma states that under a definiteness assumption, the setY , its projected SDP relaxation, and its

SDP relaxation are each compact.

104

3.5 Applications of ROG cones

Lemma 40. Suppose there exists λ∗ ∈ Rm
+ such that

∑m
i=1 λ

∗Ai is negative definite. Then, the
following three sets are each compact:{

y ∈ Rn−1 : y⊺Aiy + 2⟨bi, y⟩+ ci ≥ 0, ∀i ∈ [m]
}
,{

y ∈ Rn−1 : ∃Y ⪰ yy
⊺ :

⟨Ai, Y ⟩+ 2⟨bi, y⟩+ ci ≥ 0, ∀i ∈ [m]

}
, and{

X ∈ Sn
+ : ⟨Mi, X⟩ ≥ 0, ∀i ∈ [m]

⟨e1e
⊺
1, X⟩ = 1

}
.

Proof. For convenience, let Y , Y ′
, Y ′′

denote the three sets in the lemma statement. LetA∗ :=∑m
i=1 λ

∗
iAi. Similarly define b∗

and c∗
. Note in particular thatA∗

is negative definite.

To see thatY ′′
is compact, note that ifX ∈ Y ′′

, then for all µ ∈ R we have〈(
c∗ − µ (b∗)⊺
b∗ A∗

)
, X

〉
≥ −µ.

By picking µ large enough, we can ensure that the matrix on the left hand side of this inequality is

negative definite. We conclude thatY ′′
is bounded, whence compact.

Note that theY ′
is the image of the compact set Y ′′

under the continuous map

(
1 y⊺

y Y

)
7→ y

so thatY ′
is compact.

Finally, note thatY ⊆ Y ′
so thatY is bounded. AsY is closed, it is also compact. ■

The following lemma gives an explicit description of conv(Y) under the assumption thatS(M)
is ROG andY satisfies the above definiteness assumption.

Proposition 15. Suppose there exists λ∗ ∈ Rm
+ such that

∑m
i=1 λ

∗
iAi is negative definite. If S(M)

is ROG, then conv(Y) is a semidefinite-representable set given by

conv(Y) =
{
y ∈ Rn−1 : ∃Y ⪰ yy

⊺ :
⟨Ai, Y ⟩+ 2⟨bi, y⟩+ ci ≥ 0, ∀i ∈ [m]

}
. (3.7)

Proof. As the assumptions of Lemma 40 hold, we have that both sides of (3.7) are compact.

Therefore, it suffices to verify that the support function ofY and the support function of the set

on the right hand side of (3.7) are equal.

Let b0 ∈ Rn−1
. Then,

inf
y∈Y
⟨b0, y⟩ = 1

2 inf
x∈Rn

{
x⊺
(

0 b⊺0
b0 0n−1

)
x : x⊺Mix ≥ 0, ∀i ∈ [m]

x⊺(e1e
⊺
1)x = 1

}

= 1
2 inf

X∈Sn


〈(

0 b⊺0
b0 0n−1

)
, X

〉
:
⟨Mi, X⟩ ≥ 0, ∀i ∈ [m]
⟨e1e

⊺
1, X⟩ = 1

X ⪰ 0


= inf

y∈Rn−1

{
⟨b0, y⟩ : ∃Y ⪰ yy

⊺ :
⟨Ai, Y ⟩+ 2⟨bi, y⟩+ ci ≥ 0, ∀i ∈ [m]

}
.

105

3 Rank-one-generated cones

Here, the first equality follows by writing x = (1, y), the second equality follows by Lemma 38,

and the third equality follows by writingX =
(

1 y⊺

y Y

)
. ■

We next turn our attention to the closed convex hull of epigraph sets. Let q0 be a quadratic

function of the form q0(y) = y⊺A0y + 2b⊺0y + c0 and defineM0 :=
(

c0 b⊺0
b0 A0

)
.

Proposition 16. Suppose there exists λ∗ ∈ Rm
+ such thatA0 −

∑m
i=1 λ

∗
iAi is positive definite. If

S(M) is ROG, then the closed convex hull of

epi :=
{

(y, t) ∈ Rn−1 × R : q0(y) ≤ t
y ∈ Y

}

is a semidefinite-representable set given by

clconv(epi) =

(y, t) ∈ Rn−1 × R :
∃Y ⪰ yy⊺ :
⟨A0, Y ⟩+ 2⟨b0, y⟩+ c0 ≤ t
⟨Ai, Y ⟩+ 2⟨bi, y⟩+ ci ≥ 0, ∀i ∈ [m]

.
Proof. LetR denote the set on the right.

(⊆) By taking Y = yy⊺, we have that epi ⊆ R. It suffices to show thatR is both convex and

closed. AsR is the projection of the SDP relaxation (a convex set) of epi, it is itself convex. Next,

consider a sequence (y(i), t(i)) ∈ R converging to (y, t). Let Y (i)
denote a sequence of matrices

certifying (y(i), t(i)) ∈ R. As there exists a λ∗ ∈ Rm
+ such that A0 −

∑m
i=1 λ

∗
iAi is positive

definite, the sequence Y (i)
is bounded and hence has a convergent subsequence with limit Y . By

continuity, we deduce that (y, t) ∈ R and henceR is closed.

(⊇) Suppose (y, t) /∈ clconv(epi). We will show that (y, t) /∈ R.

First, we claim that q0(y) is bounded below onY . LetA∗ := A0 −
∑m

i=1 λ
∗
iAi and similarly

define b∗
and c∗

. Then, for all y ∈ Y , we have

q0(y) ≥ q0(y)−
m∑

i=1
λ∗

i qi(y) = y⊺A∗y + 2⟨b∗, y⟩+ c∗ ≥ −(b∗)⊺(A∗)−1b∗ + c∗.

We deduce that q0(y) is bounded below onY .

By the strict hyperplane separation theorem, there exists (µ, ν) ̸= (0, 0) ∈ Rn−1 × R such

that

⟨µ, y⟩+ νt < inf
(y′,t′)∈clconv(epi)

〈
µ, y′〉+ νt′ = inf

(y′,t′)∈epi

〈
µ, y′〉+ νt′. (3.8)

We claim that we may assume ν > 0 without loss of generality. First, supposeY = ∅. In this case,

epi = ∅ and any arbitrary (µ, ν) ̸= (0, 0) satisfies (3.8). On the other hand, if Y is nonempty

then en is a recessive direction for epi. In particular, as the objective value of the program on the

right is finite (by the bound on the left), we deduce that ν ≥ 0. Finally, as q0(y) is bounded below

onY , we may increase ν by some positive amount without affecting (3.8).

106

3.5 Applications of ROG cones

Then,

⟨µ, y⟩+ νt < min
y′

{〈
µ, y′〉+ νq0(y′) : y′ ∈ Y

}
= min

y′,Y ′

{〈
µ, y′〉+ ν(

〈
A0, Y

′〉+ 2
〈
b0, y

′〉+ c0) : Y ′ ⪰ y′y′⊺

⟨Ai, Y
′⟩+ 2⟨bi, y

′⟩+ ci ≥ 0, ∀i ∈ [m]

}

≤ min
Y

{
⟨µ, y⟩+ ν(⟨A0, Y ⟩+ 2⟨b0, y⟩+ c0) : Y ⪰ yy⊺

⟨Ai, Y ⟩+ 2⟨bi, y⟩+ ci ≥ 0, ∀i ∈ [m]

}
.

Here, the first line follows by substituting the optimal value of t′ in (3.8), the second line follows

from Lemma 38 (which we can apply as S(M) is ROG and the SDP on the second line has finite

objective value), and the third line follows by selecting y′ = y.

Subtracting ⟨µ, y⟩ from both sides and dividing by ν > 0 leads to the desired conclusion that

(y, t) /∈ R and completes the proof. ■

Applying a perturbation argument to Proposition 16 allows us to additionally relax the assump-

tion thatA0 −
∑m

i=1 λ
∗
iAi is positive definite.

Corollary 18. Suppose there exists λ∗ ∈ Rm
+ such thatA0 −

∑m
i=1 λ

∗
iAi is positive semidefinite. If

S(M) is ROG, then the closed convex hull of

epi :=
{

(y, t) ∈ Rn−1 × R : q0(y) ≤ t
y ∈ Y

}

is the closure of a semidefinite-representable set:

clconv(epi) = cl


(y, t) ∈ Rn−1 × R :

∃Y ⪰ yy⊺ :
⟨A0, Y ⟩+ 2⟨b0, y⟩+ c0 ≤ t
⟨Ai, Y ⟩+ 2⟨bi, y⟩+ ci ≥ 0, ∀i ∈ [m]


.

Proof. LetRdenote the set inside the right hand side so that the desired conclusion is clconv(epi) =
R.

(⊆) This direction follows simply from observing that epi ⊆ R and thatR is convex.

(⊇) Let (ŷ, t̂) ∈ R and let Ŷ be a matrix certifying (ŷ, t̂) ∈ R. It suffices to show that

(ŷ, t̂ + ϵ) ∈ clconv(epi) for all ϵ > 0. Let A′
0 := A0 + δI where we have set δ := ϵ/ tr(Ŷ).

Define q′
0(y) := q0(y) + δ∥y∥2 = y⊺A′

0y + 2⟨b0, y⟩+ c0. Note that by construction,〈
A′

0, Ŷ
〉

+ 2⟨b0, ŷ⟩+ c0 =
(〈
A0, Ŷ

〉
+ 2⟨b0, ŷ⟩+ c0

)
+ ϵ ≤ t̂+ ϵ

so that

(ŷ, t̂+ ϵ) ∈

(y, t) ∈ Rn−1 × R :
∃Y ⪰ yy⊺ :
⟨A′

0, Y ⟩+ 2⟨b0, y⟩+ c0 ≤ t
⟨Ai, Y ⟩+ 2⟨bi, y⟩+ ci ≥ 0, ∀i ∈ [m]

.

107

3 Rank-one-generated cones

Next, asS(M) is ROG andA′
0−

∑m
i=1 λ

∗
iAi = (A0 −

∑m
i=1 λ

∗
iAi)+ δI is positive definite,

we may apply Proposition 16 with q′
0(y) to deduce that

(ŷ, t̂+ ϵ) ∈ clconv
({

(y, t) : q′
0(y) ≤ t
y ∈ Y

})
⊆ clconv(epi).

Here, the second containment follows by noting that q0(y) ≤ q′
0(y) for all y. ■

The following example shows how to recover [180, Theorem 4] as an immediate corollary of

Lemma 30 and Corollary 18.

Example 12. Consider a setY defined by a single quadratic inequality constraint

Y =
{
y ∈ Rn−1 : q1(y) ≥ 0

}
.

The associated coneS({M1}) is ROG by Lemma 30. Next, suppose q0(x) is a quadratic objective

function for which there exists λ ≥ 0 such thatA0 − λA1 ⪰ 0. Then, Corollary 18 implies that

clconv
({

(y, t) ∈ Rn−1 × R : q0(y) ≤ t
q1(y) ≥ 0

})

= cl


(y, t) ∈ Rn−1 × R :

∃Y ⪰ yy⊺ :
⟨A0, Y ⟩+ 2⟨b0, y⟩+ c0 ≤ t
⟨A1, Y ⟩+ 2⟨b1, y⟩+ c1 ≥ 0


. □

We next examine a classical example related to the “perspective reformulation/relaxation” trick [42,

68, 79] and demonstrate how this convex hull result can be recovered using our ROG toolsets.

The nonconvex set in this example will involve both binary and continuous variables and comple-

mentarity constraints.

Example 13. Consider the quadratically constrained set

Y =
{
y ∈ R2 : (1− y1)y1 = 0

(1− y1)y2 = 0

}
.

In words, y1 is constrained to be a binary variable, y2 is allowed to be arbitrary when y1 = 1 is

“on” and forced to be zero when y1 = 0 is “off.”

LettingM1 := Sym((e3 − e1)e⊺1) andM2 := Sym((e3 − e1)e⊺2), we have that

Y =

y ∈ R2 :

(
y
1

)⊺

M1

(
y
1

)
= 0(

y
1

)⊺

M2

(
y
1

)
= 0

.

LetM = {M1,M2} and note that T (M) is ROG by Corollary 17.

108

3.5 Applications of ROG cones

Next, we rewriteY using inequality constraints so that we may apply Proposition 16. Letting

q1(y) = (1− y1)y1, q2(y) = −(1− y1)y1, q3(y) = (1− y1)y2, and q4(y) = −(1− y1)y2,

we may write

Y =
{
y ∈ R2 : qi(y) ≤ 0, ∀i ∈ [4]

}
.

Note that A1 = −e1e
⊺
1, A2 = e1e

⊺
1, A3 = −Sym(e1e

⊺
2), and A4 = Sym(e1e

⊺
2). Setting

q0(y) = y2
2 , we have thatA0 = e2e

⊺
2. Then, asA0 +A2 ≻ 0, we deduce that the assumptions

of Proposition 16 hold. Applying Proposition 16 then gives

clconv

(y, t) ∈ R2 × R :
y2

2 ≤ t
(1− y1)y1 = 0
(1− y1)y2 = 0


=

(y, t) ∈ R2 × R :

∃Y ⪰ yy⊺
Y2,2 ≤ t
y1 − Y1,1 = 0
y2 − Y1,2 = 0


=
{

(y, t) ∈ R2 × R :
(
y1 y2
y2 t

)
⪰ yy⊺

}

=

(y, t) ∈ R2 × R :
y1 ≥ y2

1
t ≥ y2

2
(y1 − y2

1)(t− y2
2) ≥ (y2 − y1y2)2

.
Note that the first constraint in the last formulation implies that y1 ∈ [0, 1]. By expanding and

rearranging, we can write the last constraint as

0 ≤ (y1 − y2
1)(t− y2

2)− (y2 − y1y2)2 = y1t+ y1y
2
2 − y2

1t− y2
2 = (y1t− y2

2)(1− y1).

When y1 ∈ [0, 1), this constraint is equivalent to y1t− y2
2 ≥ 0. On the other hand when y1 = 1,

the constraint y1t− y2
2 ≥ 0 is redundant. Hence, we deduce that

clconv

(y, t) ∈ R2 × R :
y2

2 ≤ t
(1− y1)y1 = 0
(1− y1)y2 = 0

 =
{

(y, t) ∈ R2 × R : y1 ∈ [0, 1]
y1t ≥ y2

2

}
.

This gives the well-known perspective formulation of clconv(Y). □

Remark 45. There are few known sufficient conditions guaranteeing that the convex hull of

the epigraph of a QCQP is given by its SDP relaxation. The conditions presented by Wang and

Kılınç-Karzan [181, Theorems 1 and 7] are among the most general in this direction. We claim that

both [181, Theorems 1 and 7] are incomparable with Proposition 16. Note that [181, Theorem 1]

109

3 Rank-one-generated cones

cannot be applied directly to Example 13: the set of convex Lagrange multipliers (see [181, Section

2.1]) for this example is

Γ :=
{
γ ∈ R2 :

(
0

1

)
+ γ1

(
−1

0

)
+ γ2

(
0 −1/2
−1/2 0

)
⪰ 0

}
=
{
γ ∈ R2 : γ1 ≤ 0, |γ2| ≤

√
−γ1

}
,

which is not polyhedral. On the other hand, [181, Theorem 1] can be applied to QCQPs where

theAis satisfy a “symmetry” condition. The following QCQP is such an example. Consider

inf
y∈R4

∥y∥
2 :

y⊺
(

1
1

−1
−1

)
y + 1 ≥ 0

y⊺
(

−2
−2

1
1

)
y + 1 ≥ 0

.

The corresponding setM for this example isM = {Diag(1, 1,−1,−1, 1),Diag(−2,−2, 1, 1, 1)}.

Theorem 16 implies that S(M) is not ROG and thus Proposition 16 cannot be applied to this ex-

ample. We conclude that [181, Theorem 1] and Proposition 16 are incomparable. Similar examples

can be constructed to show that [181, Theorem 7] and Proposition 16 are incomparable. □

3.5.3 Minimizing ratios of quadratic functions over ROG domains

In this section, we show how a “re-homegenization” trick can be combined with our toolset

(specifically Lemma 38) to minimize the ratio of two quadratic functions over a ROG domain.

LetM
obj
, B ∈ Sn

and letM⊆ Sn
. We will consider the following optimization problem:

inf
z̃∈Rn

 z̃⊺M
obj

z̃

z̃⊺Bz̃ :
z̃z̃⊺ ∈ S(M)
z̃⊺Bz̃ > 0
z̃2

1 = 1

. (3.9)

Remark 46. The variant of (3.9) where the constraint z̃⊺Bz̃ > 0 is replaced with z̃⊺Bz̃ ̸= 0 can

be decomposed as two instances of (3.9) based on the sign of z̃⊺Bz̃ (and negating bothM
obj

and

B on the portion of the domain where z̃⊺Bz̃ is negative). □

We derive an SDP relaxation to (3.9) as follows:

inf
z̃∈Rn

 z̃⊺M
obj

z̃

z̃⊺Bz̃ :
z̃z̃⊺ ∈ S(M)
z̃⊺Bz̃ > 0
z̃2

1 = 1

 = inf
z∈Rn

z⊺Mobj
z :

zz⊺ ∈ S(M)
z⊺Bz = 1
z2

1 > 0

 (3.10)

≥ inf
z∈Rn

{
z⊺M

obj
z : zz⊺ ∈ S(M)

z⊺Bz = 1

}
(3.11)

≥ inf
Z∈Sn

{〈
M

obj
, Z
〉

: Z ∈ S(M)
⟨B,Z⟩ = 1

}
. (3.12)

110

3.5 Applications of ROG cones

Lemma 38 implies that the inequality between (3.11) and (3.12) holds with equality whenever

S(M) is ROG and (3.12) is bounded below. This boundedness holds under relatively minor

assumptions. Similarly, a variety of different assumptions may be used to guarantee that the in-

equality relation between (3.10) and (3.11) holds with equality. The following lemma demonstrates

one such pair of sufficient conditions.

Lemma 41. Let M
obj
, B ∈ Sn andM ⊆ Sn. Suppose S(M) is ROG, there exists M∗ ∈

clcone(M) and λ ∈ R such thatM
obj

+M∗ + λB ⪰ 0, and

cl
{
z ∈ Rn : zz⊺ ∈ S(M)

z2
1 > 0

}
= {z ∈ Rn : zz⊺ ∈ S(M)}. (3.13)

Then, equality holds throughout (3.10) to (3.12).

Example 14 (Regularized total least squares). The total least squares problem (TLS) adapts least

squares regression to the setting where both the independent and dependent variables may be

corrupted by noise [76]. A variant of the TLS, known as the regularized total least squares problem

(RTLS), introduces an additional regularization constraint that protects against poorly behaved

solutions which arise when the data matrix has small singular values. This regularization is well

studied from both theoretical and practical points of view (see [19, 189] and references therein).

By eliminating variables, the RTLS can be rewritten as minimizing the ratio of a nonnegative

quadratic function and a positive quadratic function over a nonempty ellipsoid (see for example

[76]). In particular, the RTLS can be written in the form of (3.9) where M
obj
, B ∈ Sn

+ and

|M| = 1. It is then straightforward to verify that the assumptions of (41) are satisfied so that the

RTLS admits an exact SDP relaxation in the sense of objective value exactness. □

Example 15 (Stackelberg prediction game with least-squares loss). In [186], we show that a

Stackelberg prediction game with a least-squares loss function (SPG-LS) can be written

in the form of (3.9). This game is played between a learner (us) and a number of data

providers, who each come from some fixed but unknown distribution. We assume we have

access to m-many tuples {(xi, yi, zi)}mi=1 from this distribution where xi ∈ Rn
is the

feature vector of the ith data provider, yi ∈ R is the label that we would like to assign to

the ith data provider and zi is the label that the ith data provider would like us to assign to

it. Our goal is then to perform least-squares regression where the data provider has some

penalty (controlled by γ > 0) for “lying” or “altering” their data:

min
w∈Rn

{
m∑

i=1
(w⊺x∗

i (w)− yi)2 : x∗
i (w) ∈ arg min

x̃∈Rn
(w⊺x̃− zi)2 + γ∥x̃− xi∥2

}
.

Here, the inner minimization problem says that the ith data provider (with full knowledge

ofw) choosesx∗
i (w) ∈ Rn

to minimize its own loss function. LettingX ∈ Rm×n
denote

111

3 Rank-one-generated cones

the matrix with ith row x⊺i , and y, z ∈ Rm
the vectors with ith entry yi and zi, we may

rewrite this problem more compactly as

min
w∈Rn

{
∥X∗(w)w − y∥2 : X∗(w) ∈ arg min

X̃∈Rm×n

(∥∥∥X̃w − z∥∥∥2
+ γ

∥∥∥X̃ −X∥∥∥2

F

)}
.

Then, applying the Sherman-Morrison formula to solve forX∗(w) and introducing a new

variable α = w⊺w
γ , we get

min
w∈Rn

∥∥∥∥∥Xw + 1
γ zw

⊺w

1 + 1
γw

⊺w
− y

∥∥∥∥∥
2

= min
w∈Rn, α∈R

{∥∥∥∥Xw + αz

1 + α
− y

∥∥∥∥2
: α = w⊺w

γ

}

= min
w∈Rn, α∈R

{
∥Xw + αz − (1 + α)y∥2

(1 + α)2 : α = w⊺w

γ

}
.

Thus, we may solve the SPG-LS by solving its SDP relaxation (see Lemma 41). In [186],

we go a step further and note that we may apply algorithms for the GTRS to the SPG-LS.

Numerical results show that this method for solving the SPG-LS is orders of magnitudes

faster than previous state-of-the-art algorithms from [28, 185] for the SPG-LS. □

112

Part II

What structures within a QCQP allow

its SDP relaxation to be solved

efficiently?

113

4 The Generalized Trust Region

Subproblem: solution complexity

and convex hull results

This chapter is based on joint work [180] with Fatma Kılınç-Karzan.

We consider the Generalized Trust Region Subproblem (GTRS) of minimizing a nonconvex

quadratic objective over a nonconvex quadratic constraint. The epigraph representation of this

problem recasts the GTRS as minimizing a linear objective subject to two nonconvex quadratic

constraints. Our first main contribution is structural: we give an explicit description of the convex

hull of this nonconvex set in terms of the generalized eigenvalues of an associated matrix pencil. This

result may be of interest in building relaxations for nonconvex quadratic programs. Moreover, this

result allows us to reformulate the GTRS as the minimization of two convex quadratic functions

in the original space. Our next set of contributions is algorithmic: we present a first-order method

for solving the GTRS up to an ϵ additive error based on this reformulation in ≈ O
(
ϵ−1/2

)
iterations. We carefully handle numerical issues that arise from inexact generalized eigenvalue

and eigenvector computations and establish explicit running time guarantees for these algorithms.

Notably, our algorithms run in linear (in the size of the input) time. Furthermore, our algorithm

for computing an ϵ-optimal solution has a slightly-improved running time dependence on ϵ over

the state-of-the-art algorithm. Our analysis shows that the dominant cost in solving the GTRS

lies in solving a generalized eigenvalue problem—establishing a natural connection between these

problems. Finally, generalizations of our convex hull results allow us to apply our algorithms and

their theoretical guarantees directly to equality-, interval-, and hollow-constrained variants of the

GTRS. This gives the first linear-time algorithm in the literature for these variants of the GTRS.

4.1 Introduction

In this chapter, we study the Generalized Trust-Region Subproblem (GTRS), which is defined as

Opt := inf
x∈Rn
{q0(x) : q1(x) ≤ 0}, (4.1)

where q0 : Rn → R and q1 : Rn → R are general quadratic functions of the form qi(x) =
x⊺Aix + 2b⊺i x + ci. Here, Ai ∈ Rn×n

are symmetric matrices, bi ∈ Rn
and ci ∈ R. We are

interested, in particular, in the case where q0 and q1 are both nonconvex, i.e.,Ai has at least one

negative eigenvalue for both i = 0, 1.

115

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Problem (4.1), introduced and studied by Moré [124], Stern and Wolkowicz [165], generalizes

the classical Trust-Region Subproblem (TRS) [50] in which one is asked to optimize a nonconvex

quadratic objective over a Euclidean ball. The TRS is an essential ingredient of trust-region methods

that are commonly used to solve continuous nonconvex optimization problems [50, 135, 148] and

also arises in applications such as robust optimization [21, 87]. On the other hand, the GTRS has

applications in nonconvex quadratic integer programs, signal processing, and compressed sensing;

see [2, 32, 95] and references therein for more applications.

Although the TRS, as stated, is nonlinear and nonconvex, it is well-known that its semidefinite

programming (SDP) relaxation is exact. Consequently, the TRS and a number of its variants can

be solved in polynomial time via SDP-based techniques [66, 151] or using specialized nonlinear

algorithms [77, 125]. In fact, custom iterative methods with linear (in the size of the input) running

times have been shown in a few works. Hazan and Koren [82] proposed an algorithm to solve the

TRS (as well as the GTRS whenA1 is positive definite) based on repeated approximate eigenvector

computations. This algorithm runs in time

Õ

(
N
√
κHK√
ϵ

log
(
n

p

)
log
(
κHK

ϵ

))
, (4.2)

whereN is the number of nonzero entries in the matricesA0 andA1, ϵ is the additive error, n is

the dimension of the problem, p is the failure probability, and κHK is a condition number. This

was the first algorithm in the literature shown to achieve a linear time complexity. Here, and in the

remainder of the chapter, the term “linear” is used to describe running times that scale at most

linearly withN but may depend arbitrarily on its other parameters. Afterwards, Ho-Nguyen and

Kılınç-Karzan [87] presented another linear-time algorithm for the TRS with a slightly better

overall complexity, eliminating the log(κHK/ϵ) term. Their approach reformulates the TRS as

minimizing a convex quadratic objective over the Euclidean ball, and solving the resulting smooth

convex optimization problem via Nesterov’s accelerated gradient descent method. In contrast to

[82], this convex reformulation approach requires only a single minimum eigenvalue computation.

Wang and Xia [184] also suggested using Nesterov’s algorithm in the case of the interval-constrained

TRS.

The GTRS shares a number of nice properties of the TRS. For example, by the S-lemma, it is well-

known that the GTRS also admits an exact SDP reformulation under the Slater condition [67, 146].

Thus, while quadratically-constrained quadratic programming is NP-hard in general, there are

polynomial-time SDP-based algorithms for solving the GTRS. Nevertheless, the relatively large

computational complexity of SDP-based algorithms prevents them from being applied as a black

box to solve large-scale instances of the GTRS. A variety of custom approaches have been developed

to solve the GTRS; for earlier work on this domain see [65, 124, 165] and references therein.

One line of work has developed algorithms for solving the GTRS when the matricesA0 andA1
are simultaneously diagonalizable (SD) (see Jiang and Li [93] and references therein for background

on the SD condition). Under the SD condition, along with certain restrictions on the quadratics

q0 and q1, Ben-Tal and Teboulle [24] provide a reformulation of the interval-constrained GTRS

as a convex minimization problem with linear constraints. More recently, Ben-Tal and den Hertog

[21] show that there is a second order cone programming (SOCP) reformulation of the GTRS

in a lifted space under the SD condition. Subsequent work by Locatelli [111] extends Ben-Tal

116

4.1 Introduction

and den Hertog [21] by illustrating some additional settings in which the SOCP reformulation is

tight. Under the SD condition, Fallahi et al. [64] exploit the separable structure of the problem

and, using Lagrangian duality, they suggest a solution procedure based on solving a univariate

convex minimization problem. Salahi and Taati [155] derive an algorithm for solving the interval-

constrained GTRS by exploiting the structure of the dual problem under the SD condition. By

applying a simultaneous block diagonalization approach, Jiang et al. [96] generalize Ben-Tal and den

Hertog [21] and provide an SOCP reformulation for the GTRS in a lifted space when the problem

has a finite optimal value. Their methods apply even when q0 and q1 do not satisfy the SD condition.

They further derive a closed-form solution when the SD condition fails and examine the case of

interval- or equality-constrained GTRS. In this line of work, it is often assumed implicitly thatA0
andA1 are already diagonal or that a simultaneously-diagonalizing basis can be computed. The only

method that we know of for computing such a basis relies on exact matrix eigen-decomposition.

Thus, although experiments have been presented [96, 155] suggesting that such algorithms (where

exact procedures are replaced by numerical ones) may perform well, theoretical guarantees have

yet to be established. Furthermore, the large cost of matrix eigen-decomposition prevents the

application of these algorithms to large-scale instances of the GTRS.

A second line of work has explored the connections between the GTRS and generalized eigen-

values of the matrix pencilA0 + γA1. These works all assume a regularity condition about the

matrix pencil: there exists a γ ≥ 0 such that A0 + γA1 is either positive definite or positive

semidefinite.
1

Pong and Wolkowicz [148] study the optimality structure of the GTRS and pro-

pose a generalized-eigenvalue-based algorithm which exploits this structure. Unfortunately, an

explicit running time is not presented in [148]. Adachi and Nakatsukasa [2] present another

generalized-eigenvalue-based algorithm motivated by similar observations. The dominant costs

present in this algorithm come from computing a pair of generalized eigenvalues and solving a linear

system. Ignoring issues of exact computations, the runtime of this algorithm isO(n3). Jiang and

Li [94] show how to reformulate the GTRS as a convex quadratic program in terms of generalized

eigenvalues. They establish that a saddle-point-based first-order algorithm can be used to solve the

reformulation within an ϵ additive error inO(1/ϵ) time. In this line of work, it is often assumed

that the generalized eigenvalues are given or can be computed exactly. In particular, theoretical

guarantees have not yet been given regarding how these algorithms perform when only approximate

generalized eigenvalue computations are available. This is of interest as, in practice, we cannot

hope to numerically compute generalized eigenvalues exactly; see also the discussion in Section

4.1 in [95]. We would like to remark that numerical experiments in these papers [2, 94, 148] have

suggested that algorithms motivated by these ideas may perform well even using only approximate

generalized eigenvalue computations.

The very recent work of Jiang and Li [95] presents an algorithm for solving the GTRS up to an ϵ
additive error in the objective with high probability under the regularity condition. This algorithm

relies on machinery developed by [82] for solving the TRS and differs from previous algorithms in

1

In fact, this assumption can be made without loss of generality; see Remark 49.

117

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

that it does not assume the ability to compute a simultaneously-diagonalizing basis or generalized

eigenvalues. The running time of this algorithm is

Õ

 Nϕ3√
ϵ ξ5

JL

log
(
n

p

)
log
(

ϕ

ϵ ξJL

)2
, (4.3)

whereN is the number of nonzero entries inA0 andA1, ϵ is the additive error, n is the dimension,

p is the failure probability, and (ϕ, ξJL) are a pair of parameters measuring the regularity of the

GTRS. In particular, this algorithm is able to take advantage of sparsity in the description of the

quadratic functions. To our knowledge, this is the first provably linear-time algorithm for the

GTRS to be presented in the literature.

In this chapter, we derive a new algorithm for the GTRS based on a convex quadratic refor-

mulation in the original space. This algorithm can also be applied to variants of the GTRS with

interval, equality, or hollow constraints. The basic idea in our approach relies on the fact that

we can provide exact (closed) convex hull characterizations of the epigraph of the GTRS. We

summarize our results below and provide an outline of the chapter.

i) We rewrite the GTRS with a linear objective

Opt = inf
(x,t)
{t : (x, t) ∈ S}, (4.4)

where the set S is defined as

S :=
{

(x, t) ∈ Rn+1 : q0(x) ≤ t
q1(x) ≤ 0

}
. (4.5)

As the objective in (4.4) is linear, we can take either the convex hull or closed convex hull of

the feasible domain. Then,

Opt = inf
x,t
{t : (x, t) ∈ conv(S)} = inf

x,t
{t : (x, t) ∈ conv(S)}.

In Section 4.2, we give an explicit description of the set conv(S) (respectively, clconv(S)).

Specifically, we show that when the respective assumptions are satisfied, conv(S) and

clconv(S) can both be described in terms of two convex quadratic functions determined

by the generalized eigenvalue structure of the matrix pencilA0 + γA1. We note that these

convex hull results may be of independent interest in building relaxations and/or algorithms

for nonconvex quadratic programs with or without integer variables.

Remark 47. These convex hull results are stated in strictly more general terms in

Chapters 1 and 2. □

As an immediate consequence of these (closed) convex hull results, we can reformulate

the GTRS as the minimization of the maximum of two convex quadratics. This convex

reformulation was previously discovered by Jiang and Li [94] by considering the Lagrangian

118

4.1 Introduction

dual and proving a zero duality gap. Our approach shows that the reformulation is tight

for a very intuitive reason — the convex hull of the epigraph is exactly characterized by the

convex quadratics used in the reformulation.

ii) The proofs in Section 4.2 actually imply stronger convex hull results: under the same

assumptions, the (closed) convex hull of S is generated by points in S where the constraint

q1(x) ≤ 0 is tight. This observation immediately leads to interesting consequences, which

we detail in Section 4.3. Specifically, we extend our (closed) convex hull results to handle

epigraph sets that arise when additional nonintersecting constraints are imposed on the

GTRS. This will allow us to extend our algorithms to variants of the GTRS present in the

literature [21, 24, 87, 94, 96, 124, 148, 155, 165, 191]. Specifically, this generalization allows

us to handle interval-, equality-, and hollow-constrained GTRS.

iii) In Section 4.4, we give a careful analysis of the numerical issues that come up for an al-

gorithm based on the above ideas. At a high level, we show that by approximating the

generalized eigenvalues sufficiently well, the perturbed convex reformulation is within a

small additive error of the true convex reformulation. Then, by leveraging the concavity of

the functionλmin(A0 +γA1), in the variable γ, we show how to approximate the necessary

generalized eigenvalues efficiently. We believe this subroutine and the theoretical guarantees

we present for it may also be of independent interest in other contexts. Next, we utilize an

algorithm proposed by Nesterov [132, Section 2.3.3] for solving general minimax problems

with smooth components to solve our convex reformulation with a convergence rate of

Õ(1/
√
ϵ). This contrasts the approach taken by Jiang and Li [94] that analyzes a saddle-

point-based first-order algorithm and results in a convergence rate ofO(1/ϵ). In order to

apply the algorithm proposed by Nesterov, we establish that the gradient mapping step can

be computed efficiently in our context. Finally, relying on our convex hull characterization,

we show how to recover an approximate solution of the GTRS using only approximate

eigenvectors.

We present two algorithms (Algorithms 1 and 4). The former finds an ϵ-optimal value

and the latter finds an ϵ-optimal feasible solution. In other words, the former returns a

scalar in [Opt,Opt +ϵ] and the latter returns a vector x in the feasible region with q0(x) ∈
[Opt,Opt +ϵ]. Their running times are

Õ

(
Nκ3/2√ζ√

ϵ
log
(
n

p

)
log
(
κ

ϵ

))
, Õ

(
Nκ2√ζ√

ϵ
log
(
n

p

)
log
(
κ

ϵ

))
, (4.6)

respectively. Here, ξ, ζ , and κ are regularity parameters of the matrix pencil A0 + γA1
(see Definition 17). Comparing (4.6) and (4.2), we see that our running times match

the dependences on N , n, ϵ, and p from the algorithm for the TRS presented by Hazan

and Koren [82]. Comparing (4.6) (specifically the running time for finding an ϵ-optimal

solution) and (4.3), we see that our running time matches the linear dependence onN and

improves the dependence on ϵ by a logarithmic factor from the running time presented by

Jiang and Li [95]. The dependences on the regularity parameters in the two running times

are incomparable (see Remark 56) but there exist examples where our running time gives a

119

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

polynomial-order improvement upon the running time presented by Jiang and Li [95] (see

Remark 60).

In comparison to the approach taken by Jiang and Li [95], we believe our approach is

conceptually simpler and more straightforward to implement. In particular our approach

directly solves the GTRS in the primal space as opposed to solving a feasibility version of

the dual problem. Moreover, our analysis highlights the connection between the GTRS

and generalized eigenvalue problems, and in fact demonstrates that the dominant cost in

solving the GTRS is the cost of solving a generalized eigenvalue problem.

In our running times (4.6), the large dependence on the regularity parameters arises from

the error that is introduced as a result of inexact generalized eigenvalue and eigenvector

computations. We illustrate that our algorithms can be substantially sped up if we have

access to exact generalized eigenvalue and eigenvector methods. In particular, we show that

whenA0 andA1 are diagonal, we can compute an ϵ-optimal solution to the GTRS in time

O

(
Nκ
√
ζ√

ϵ

)
.

As mentioned previously, the generalizations of our convex hull results allow us to apply our

algorithms to variants of the GTRS. In particular, our algorithms can be applied without

change to interval-, equality-, or hollow-constrained GTRS.

Remark 48. In Chapter 5, we will see a second faster algorithm for the GTRS that works

under a stronger assumption. □

Our study of the convex hull of the epigraph of GTRS is inspired by convex hull results in

related contexts. The recent work of Ho-Nguyen and Kılınç-Karzan [87] gives a characterization

on the convex hull of the epigraph of the TRS. In particular, under the assumption that A1 is

positive definite, Ho-Nguyen and Kılınç-Karzan [87, Theorem 3.5] give the explicit closed convex

hull characterization of the set S . In this respect, one can view our developments on the (closed)

convex hull of S when neitherA0 norA1 is positive semidefinite as complementary to the results

of Ho-Nguyen and Kılınç-Karzan [87, Section 3]. Notably, in contrast to [87, Section 3], we

have to handle a number of issues that arise due to the recessive directions of the nonconvex

domain. The papers by Modaresi and Vielma [123], Yıldıran [195] are also closely related to our

convex hull results. Yıldıran [195] studies the convex hull of the intersection of two strict quadratic

inequalities (note that the resulting set is open) under the milder regularity condition that there

exists γ ≥ 0 such thatA0 + γA1 is positive semidefinite, and Modaresi and Vielma [123] analyze

conditions under which one can safely take the closure of the sets in Yıldıran [195] and still obtain

the desired closed convex hull results. In contrast, our analysis leverages the additional structure

present in an epigraph set to give a more direct proof of the convex hull result. Furthermore, as our

analysis is constructive (given x ∈ conv(S), we show how to find two points x1, x2 ∈ S such

that x ∈ [x1, x2]), it immediately suggests a rounding procedure (given a solution to the convex

reformulation, we show how to find a solution to the original GTRS). This contrasts the analysis in

Yıldıran [195], where such a rounding procedure is not obvious. Moreover, our analysis provides a

120

4.2 Convex hull characterization

more refined result that easily extends to variants of the GTRS with non-intersecting constraints.

Finally, we would like to mention related work on convex hulls of sets defined by second-order

cones (SOCs). Burer and Kılınç-Karzan [35] study the convex hull of the intersection of a convex

and nonconvex quadratic or the intersection of an SOC with a nonconvex quadratic. Similarly, the

convex hull of the a two-term disjunction applied to an SOC or its cross section has received much

attention (see [35, 101] and references therein). As our focus has been on the case where neither

A0 norA1 is positive semidefinite, we view our developments as complementary to these results.

4.1.1 Additional notation

GivenA ∈ Sn
, let λmax(A) denote the maximum eigenvalue ofA. Let ∥A∥ denote the spectral

norm ofA. For x ∈ Rn
and r ≥ 0, let B(x, r) be the closed ball of radius r centered at x, i.e.,

B(x, r) = {y ∈ Rn : ∥x− y∥ ≤ r}.

4.2 Convex hull characterization

In this section we discuss our (closed) convex hull results. We will aggregate the objective function

q0 with the constraint q1 using a nonnegative aggregation weight to derive relaxations of the set S .

We then show that under a mild assumption the (closed) convex hull of S can be described by two

convex quadratic functions obtained from this aggregation technique.

Let q : R× Rn → R be defined as

q(γ, x) := q0(x) + γq1(x).

Let A : R → Rn×n
be defined as A(γ) := A0 + γA1. Similarly define b(γ) and c(γ). In

particular, q(γ, x) = x⊺A(γ)x + 2b(γ)⊺x + c(γ). We stress that while q(0, x) = q0(x), we

have q(1, x) = q0(x) + q1(x) which is not equal to q1(x) in general.

Note that q(γ, x) is linear in its first argument and quadratic in its second argument. This

structure plays a large role in our analysis.

In order to derive valid relaxations to S based on aggregation, we will consider only nonnegative

γ in the remainder of the chapter. For γ ≥ 0, define

S(γ) :=
{

(x, t) ∈ Rn+1 : q(γ, x) ≤ t
}
.

Note that S ⊆ S(γ) holds for all γ ≥ 0. Furthermore, it is clear that q0(x) ≤ t and q1(x) ≤ 0 if

and only if q(γ, x) ≤ t for all γ ≥ 0. Thus, we can rewrite S as

S :=
{

(x, t) ∈ Rn+1 : q0(x) ≤ t
q1(x) ≤ 0

}
=
⋂

γ≥0
S(γ).

Note that the set S(γ) is convex if and only ifA(γ) ⪰ 0. We will define Γ to be these γ values,

i.e.,

Γ := {γ ∈ R+ : A(γ) ⪰ 0}.

121

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Note that Γ is a closed (possibly empty) interval. When this interval is nonempty, we will write

it as Γ = [γ−, γ+].
We use the following two assumptions in our convex hull characterizations:

Assumption 8. The matricesA0 andA1 both have negative eigenvalues and there exists a γ∗ ≥ 0
such thatA(γ∗) ≻ 0. □

Assumption 9. The matricesA0 andA1 both have negative eigenvalues and there exists a γ∗ ≥ 0
such thatA(γ∗) ⪰ 0. □

Remark 49. We claim that the case whereA0 andA1 both have negative eigenvalues but do not

satisfy either of the above assumptions is not interesting. In particular if A0 and A1 both have

negative eigenvalues andA(γ) ̸⪰ 0 for all γ ≥ 0, then it is easy to show (apply the S-lemma then

note thatA0 has a negative eigenvalue) that conv(S) = Rn+1
. Consequently, the optimal value

of the GTRS is always−∞ in this case.

The assumption that there exists a γ∗ ≥ 0 such that A(γ∗) ⪰ 0 is made in most of the

present literature on the GTRS [2, 21, 93–95, 148, 155] and convex hulls of the intersection of

two quadratics [123, 195] either implicitly (for example, by assuming that an optimizer exists or

that the optimal value is finite) or explicitly.

It is well-known that Assumption 8 implies thatA0 andA1 are simultaneously diagonalizable.

Even so, we will refrain from assuming that our matrices are diagonal and opt to work on a general

basis. We choose to do this as the proofs of our convex hull results will serve as the basis for our

algorithms, which do not have access to a simultaneously-diagonalizing basis. □

Remark 50. Assumptions 8 and 9 each imply that Γ is nonempty and, consequently, that γ− and

γ+ exist. In addition, asA(γ−) andA(γ+) are both on the boundary of the positive semidefinite

cone, they both have zero as an eigenvalue.

Under Assumption 8, the existence of some γ∗ ≥ 0 such that A(γ∗) ≻ 0 implies that

γ− < γ∗ < γ+ and hence γ− and γ+ are distinct. Furthermore, as γ∗ ∈ (γ−, γ+), we have

d⊺A(γ−)d = d⊺A(γ+)d = 0 if and only if d = 0.

In contrast, under Assumption 9, it is possible to have γ− = γ∗ = γ+ and Γ = {γ∗}. □

Finally, define S to be the subset of S where the constraint q1(x) ≤ 0 is tight.

S :=
{

(x, t) ∈ Rn+1 : q0(x) ≤ t
q1(x) = 0

}
.

When either Assumption 8 or 9 holds,A1 has both positive and negative eigenvalues so that S is

nonempty.

We now state our (closed) convex hull results:

Theorem 19. Under Assumption 8, we have

conv(S) = conv(S) = S(γ−) ∩ S(γ+).

In particular,

min
x∈Rn
{q0(x) : q1(x) ≤ 0} = min

x∈Rn
max{q(γ−, x), q(γ+, x)}.

122

4.2 Convex hull characterization

Theorem 20. Under Assumption 9, we have

clconv(S) = clconv(S) = S(γ−) ∩ S(γ+).

In particular,

inf
x∈Rn
{q0(x) : q1(x) ≤ 0} = inf

x∈Rn
max{q(γ−, x), q(γ+, x)}.

Remark 51. The convex reformulation given in the second part of Theorem 20 was first proved

by Jiang and Li [94] using a different argument without relying on the convex hull structure of the

underlying sets. In contrast, the first part of Theorem 20 establishes a fundamental convex hull

result highlighting the crux of why such a convex reformulation is possible. □

We present the proof of Theorem 19 in Section 4.2.1. The proof of Theorem 20 is presented in

Section 4.2.2 and relies on Theorem 19.

4.2.1 Proof of Theorem 19

Lemma 42. The set S(γ) is convex and closed for all γ ∈ Γ.

Proof. Let γ ∈ Γ and recall the definition of S(γ).

S(γ) :=
{

(x, t) ∈ Rn+1 : q(γ, x) ≤ t
}

=
{

(x, t) ∈ Rn+1 : x⊺A(γ)x+ 2b(γ)⊺x+ c(γ) ≤ t
}

By the definition of Γ, we haveA(γ) ⪰ 0. Thus, the constraint defining S(γ) is convex in (x, t),

and we conclude that S(γ) is convex. Closedness of S(γ) follows by noting that it is the preimage

of (−∞, 0] under a continuous map. ■

Lemma 43. Suppose Γ is nonempty and write Γ = [γ−, γ+]. Then, conv(S) ⊆ S(γ−) ∩ S(γ+).

Proof. Note that S =
⋂

γ≥0 S(γ) ⊆ S(γ−) ∩ S(γ+). The result then follows by taking the

convex hull of each side and noting that both S(γ−) and S(γ+) are convex by Lemma 42. ■

The bulk of the work in proving Theorem 19 lies in the following result.

Lemma 44. Under Assumption 8, we have S(γ−) ∩ S(γ+) ⊆ conv(S).

Proof. Let (x̂, t̂) ∈ S(γ−) ∩ S(γ+). We will show that (x̂, t̂) ∈ conv(S). We split the analysis

into three cases: (i) q1(x̂) = 0, (ii) q1(x̂) > 0, and (iii) q1(x̂) < 0.

i If q1(x̂) = 0, then q0(x̂) = q0(x̂) + γ−q1(x̂) = q(γ−, x̂). As (x̂, t̂) ∈ S(γ−) by

assumption, we deduce that q(γ−, x̂) ≤ t̂. Combining these inequalities, we have that

q0(x̂) = q(γ−, x̂) ≤ t̂ and that (x̂, t̂) ∈ S.

ii Now suppose q1(x̂) > 0. Let d ̸= 0 such that d⊺A(γ+)d = 0 (such a vector d exists as

A(γ+) has zero as an eigenvalue; see Remark 50) and definee := 2(x̂⊺A(γ+)d+ b(γ+)⊺d).

We modify (x̂, t̂) along the direction (d, e): For α ∈ R, let (x̂α, t̂α) := (x̂+ αd, t̂+ αe).

123

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

We will show that there exist α1 < 0 < α2 such that (x̂αi , t̂αi) ∈ S for i = 1, 2, whence

(x̂, t̂) ∈ conv(S).

We study the behavior of the expressions q(γ−, x̂α)− t̂α and q(γ+, x̂α)− t̂α as functions

of α. A short calculation shows that for any α ∈ R, we have

q(γ+, x̂α)− t̂α
=
(
q(γ+, x̂)− t̂

)
+ 2α(x̂⊺A(γ+)d+ b(γ+)⊺d− e/2) + α2d⊺A(γ+)d

= q(γ+, x̂)− t̂, (4.7)

where the last equation follows from the definition of e. Thus, q(γ+, x̂α)− t̂α is constant

in α. Next, we compute

q(γ−, x̂α)− t̂α
=
(
q(γ−, x̂)− t̂

)
+ 2α(x̂⊺A(γ−)d+ b(γ−)⊺d− e/2) + α2d⊺A(γ−)d.

As d ̸= 0 and d⊺A(γ+)d = 0, we deduce that d⊺A(γ−)d ̸= 0 (see Remark 50). Then, as

A(γ−) ⪰ 0, we have that d⊺A(γ−)d > 0. Hence, q(γ−, x̂α)− t̂α is strongly convex in α.

Note that

q(γ−, x̂) = q0(x̂) + γ−q1(x̂) < q0(x̂) + γ+q1(x̂) = q(γ+, x̂),

where the inequality follows from the fact that γ− < γ+ and q1(x̂) > 0. Therefore,

q(γ−, x̂)− t̂ < q(γ+, x̂)− t̂. Thus, there are valuesα1 < 0 < α2 such that q(γ−, x̂αi)−
t̂αi = q(γ+, x̂αi)− t̂αi for i = 1, 2.

It remains to show that (x̂αi , t̂αi) ∈ S for i = 1, 2. This follows immediately because for

i = 1, 2, we have

q1(x̂αi) = 1
γ+ − γ−

(q(γ+, x̂αi)− q(γ−, x̂αi)) = 0.

Then, applying (4.7) and recalling that q(γ+, x̂) ≤ t̂, we have

q0(x̂αi) = q(γ+, x̂αi)− γ+q1(x̂αi) = q(γ+, x̂αi) ≤ t̂αi .

iii The final case is symmetric to case (ii), thus we will only sketch its proof.

Supposeq1(x̂) < 0. Letd ̸= 0 such thatd⊺A(γ−)d = 0 and definee := 2(x̂⊺A(γ−)d+ b(γ−)⊺d).

For α ∈ R, let (x̂α, t̂α) := (x̂+ αd, t̂+ αe).

124

4.2 Convex hull characterization

A short calculation shows that for any α ∈ R, we have

q(γ−, x̂α)− t̂α
=
(
q(γ−, x̂)− t̂

)
+ 2α(x̂⊺A(γ−)d+ b(γ−)⊺d− e/2) + α2d⊺A(γ−)d

= q(γ−, x̂)− t̂.

Similarly, for any α ∈ R,

q(γ+, x̂α)− t̂α
=
(
q(γ+, x̂)− t̂

)
+ 2α(x̂⊺A(γ+)d+ b(γ+)⊺d− e/2) + α2d⊺A(γ+)d.

As d⊺A(γ−)d = 0 and d ̸= 0, Assumption 8 implies that d⊺A(γ+)d > 0. We see that

q(γ+, x̂α)−t̂α is strongly convex inα. As q1(x̂) < 0, we have q(γ+, x̂)−t̂ < q(γ−, x̂)−t̂.
Thus, there are values α1 < 0 < α2 such that q(γ+, x̂αi)− t̂αi = q(γ−, x̂αi)− t̂αi for

i = 1, 2.

Noting that γ− ̸= γ+ and q(γ−, x̂αi) = q(γ+, x̂αi), we conclude that q0(x̂αi) =
q(γi, x̂αi) ≤ t̂αi and q1(x̂αi) = 0. Thus, (x̂αi , t̂αi) ∈ S for i = 1, 2. We conclude

(x̂, t̂) ∈ conv(S). ■

Remark 52. The proof of Lemma 44 suggests a simple rounding scheme from the convex relaxation

to the original nonconvex problem: given x̂ ∈ Rn
, let d be an eigenvector of eigenvalue zero for

eitherA(γ±) (depending on the sign of q1(x̂)) and moveα ≥ 0 units in the direction of either±d
(depending on the sign of e defined in the proof) until q1(x̂± αd) = 0. This rounding scheme

guarantees that q0(x̂± αd) ≤ max{q(γ−, x̂), q(γ+, x̂)}. □

We are now ready to prove Theorem 19.

Proof of Theorem 19. Lemmas 43 and 44 together imply

S(γ−) ∩ S(γ+) ⊆ conv(S) ⊆ conv(S) ⊆ S(γ−) ∩ S(γ+).

Hence, we deduce that equality holds throughout the chain of inclusions.

In particular, the GTRS (4.4) can be rewritten

inf
(x,t)∈Rn+1

{t : (x, t) ∈ S} = inf
(x,t)∈Rn+1

{t : (x, t) ∈ conv(S)}

= inf
(x,t)∈Rn+1

{t : (x, t) ∈ S(γ−) ∩ S(γ+)}

= inf
(x,t)∈Rn+1

{
t : q(γ−, x) ≤ t

q(γ+, x) ≤ t

}
= inf

x∈Rn
max{q(γ−, x), q(γ+, x)}.

It remains to prove that the minimum is achieved in each of the formulations of the GTRS above.

It suffices to show that the minimum is achieved in the last formulation. Note q(γ−, x) and

125

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

q(γ+, x) are both continuous functions of x, hence max{q(γ−, x), q(γ+, x)} is continuous.

Next, taking u := max{c(γ−), c(γ+)}we have that u is an upper bound on the optimal value.

Moreover, because γ∗ ∈ (γ−, γ+), we can lower bound max{q(γ−, x), q(γ+, x)}, by q(γ∗, x).

Consequently, it suffices to replace the feasible domain Rn
in the last formulation with the set

{x ∈ Rn : q(γ∗, x) ≤ u}.

This set is bounded as A(γ∗) ≻ 0 and it is closed as it is the inverse image of (−∞, u] under a

continuous map. Recalling that a continuous function on a compact set achieves its minimum

concludes the proof. ■

We next provide a numerical example illustrating Theorem 19.

Example 16. Define the homogeneous quadratic functions qi(x) := x⊺Aix for i = 0, 1, where

A0 :=
(

1 2
2 1

)
, A1 :=

(
0 −1
−1 0

)
.

As det(A0) = −3 and det(A1) = −1, the matrices A0 and A1 must both have negative

eigenvalues. Furthermore,

A(2) = A0 + 2A1 = I ≻ 0.

Thus, Assumption 8 is satisfied.

We now compute γ− and γ+. Note that as A(γ) is a 2 × 2 matrix, A(γ) ⪰ 0 if and only

if tr(A(γ)) ≥ 0 and det(A(γ)) ≥ 0. Note that tr(A(γ)) = 2 ≥ 0 is satisfied for all γ. We

compute

det(A(γ)) = 1− (2− γ)2.

This quantity is nonnegative if and only if |2− γ| ≤ 1. Thus γ− = 1 and γ+ = 3. Theorem 19

then implies

conv
({

(x, t) ∈ R3 : x2
1 + 4x1x2 + x2

2 ≤ t
−2x1x2 ≤ 0

})
=
{

(x, t) ∈ R3 : (x1 + x2)2 ≤ t
(x1 − x2)2 ≤ t

}
.

We plot the corresponding sets S and S(γ−) ∩ S(γ+) in Figure 4.1. □

4.2.2 Proof of Theorem 20

Next, we prove Theorem 20 using a limiting argument and reducing it to Theorem 19.

Lemma 45. Suppose Γ is nonempty and write Γ = [γ−, γ+]. Then, clconv(S) ⊆ S(γ−)∩S(γ+).

Proof. Note that S =
⋂

γ≥0 S(γ) ⊆ S(γ−) ∩ S(γ+). Containment then follows by taking the

closed convex hull of both sides and noting that both S(γ−) and S(γ+) are closed and convex by

Lemma 42. ■

126

4.2 Convex hull characterization

Figure 4.1: The sets S (in orange) and S(γ−) ∩ S(γ+) (in yellow) from Example 16

Lemma 46. Under Assumption 9, we have that S(γ−) ∩ S(γ+) ⊆ clconv(S).

Proof. Let (x̂, t̂) ∈ S(γ−) ∩ S(γ+). It suffices to show that (x̂, t̂+ ϵ) ∈ conv(S) for all ϵ > 0.

We will perturbA0 slightly to create a new GTRS instance. Let δ > 0 to be picked later. Define

A′
0 = A0 + δIn and let all remaining data be unchanged, i.e.,

q′
0(x) := x⊺A′

0x+ 2b′⊺
0 x+ c′

0 := x⊺(A0 + δIn)x+ 2b⊺0x+ c0

q′
1(x) := x⊺A′

1x+ 2b′⊺
1 x+ c′

1 := x⊺A1x+ 2b⊺1x+ c1.

We will denote all quantities related to the perturbed system with an apostrophe.

We claim that it suffices to show that there exists a δ > 0 small enough such that the GTRS

defined by q′
0 and q′

1 satisfies Assumption 8 and (x̂, t̂+ ϵ) ∈ S ′(γ′
−) ∩ S ′(γ′

+) . Indeed, suppose

this is the case. Note that for any x ∈ Rn
, we have q1(x) = q′

1(x) and q0(x) ≤ q′
0(x). Hence,

S′ ⊆ S and conv(S′) ⊆ conv(S). Then applying Theorem 19 gives (x̂, t̂ + ϵ) ∈ S ′(γ′
−) ∩

S ′(γ′
+) = conv(S′) ⊆ conv(S) as desired.

We pick δ > 0 small enough such that

λmin(A′
0) < 0, δ∥x̂∥2 ≤ ϵ

2 ,
∣∣γ′

+ − γ+
∣∣|q1(x̂)| ≤ ϵ

2 ,
∣∣γ′

− − γ−
∣∣|q1(x̂)| ≤ ϵ

2 .

This is possible as the expression on the left of each inequality is continuous in δ and is strictly

satisfied if δ = 0. Then, noting thatA′(γ∗) = A(γ∗)+ δIn ≻ 0, we have that the GTRS defined

by q′
0 and q′

1 satisfies Assumption 8.

It remains to show that q′(γ′
+, x̂) ≤ (t̂+ ϵ) and q′(γ′

−, x̂) ≤ (t̂+ ϵ). We compute

q′(γ′
+, x̂)− (t̂+ ϵ) = q′(γ+, x̂)− (t̂+ ϵ) + (γ′

+ − γ+)q1(x̂)
≤ q(γ+, x̂) + δ∥x̂∥2 − (t̂+ ϵ) +

∣∣γ′
+ − γ+

∣∣|q1(x̂)|
≤ q(γ+, x̂)− t̂
≤ 0.

127

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

The first inequality follows by noting q′(γ, x) = q(γ, x) + δ∥x∥2, the second inequality follows

from our assumptions on δ, and the third line follows from the assumption that (x̂, t̂) ∈ S(γ+).

A similar calculation shows q′(γ′
−, x̂) ≤ (t+ ϵ). This concludes the proof. ■

We are now ready to prove Theorem 20.

Proof of Theorem 20. Lemmas 45 and 46 together imply

S(γ−) ∩ S(γ+) ⊆ clconv(S) ⊆ clconv(S) ⊆ S(γ−) ∩ S(γ+).

Hence, we deduce that equality holds throughout the chain of inclusions.

In particular, the GTRS (4.4) can be rewritten

inf
(x,t)∈Rn+1

{t : (x, t) ∈ S} = inf
(x,t)∈Rn+1

{t : (x, t) ∈ clconv(S)}

= inf
(x,t)∈Rn+1

{t : (x, t) ∈ S(γ−) ∩ S(γ+)}

= inf
(x,t)∈Rn+1

{
t : q(γ−, x) ≤ t

q(γ+, x) ≤ t

}
= inf

x∈Rn
max{q(γ−, x), q(γ+, x)}. ■

4.2.3 Removing the nonconvex assumptions

As part of our Assumptions 8 and 9, we assume thatA0 andA1 both have negative eigenvalues,

i.e., that both q0 and q1 are nonconvex. These assumptions are made for ease of presentation

and to highlight the novel contributions of this work. Indeed, the proofs of Theorems 19 and 20

can be modified to additionally cover all four cases of convex/nonconvex objective and constraint

functions. We remark that the resulting theorem statement for the case of a nonconvex objective

function and a strongly convex constraint function coincides with that of Ho-Nguyen and Kılınç-

Karzan [87].

In this section we record more general versions Theorems 19 and 20. Their proofs are completely

analogous to the original proofs and are deferred to Appendix D.1.

Theorem 21. Suppose there exists γ∗ ≥ 0 such that A(γ∗) ≻ 0. Consider the closed nonempty
interval Γ := {γ ∈ R+ : A(γ) ⪰ 0}. Let γ− denote its leftmost endpoint.

• If Γ is bounded above, let γ+ denote its rightmost endpoint. Then,

conv(S) = S(γ−) ∩ S(γ+).

In particular, we have minx∈Rn{q0(x) : q1(x) ≤ 0} = minx∈Rn max{q(γ−, x), q(γ+, x)}.

• If Γ is not bounded above, then q1(x) is convex and

conv(S) = S(γ−) ∩
{

(x, t) ∈ Rn+1 : q1(x) ≤ 0
}
.

In particular, we have minx∈Rn{q0(x) : q1(x) ≤ 0} = minx∈Rn{q(γ−, x) : q1(x) ≤ 0}.

128

4.2 Convex hull characterization

Theorem 22. Suppose there exists γ∗ ≥ 0 such that A(γ∗) ⪰ 0. Consider the closed nonempty
interval Γ := {γ ∈ R+ : A(γ) ⪰ 0}. Let γ− denote its leftmost endpoint.

• If Γ is bounded above, let γ+ denote its rightmost endpoint. Then,

conv(S) = S(γ−) ∩ S(γ+).

In particular, infx∈Rn{q0(x) : q1(x) ≤ 0} = infx∈Rn max{q(γ−, x), q(γ+, x)}.

• If Γ is not bounded above, then q1(x) is convex and

conv(S) = S(γ−) ∩
{

(x, t) ∈ Rn+1 : q1(x) ≤ 0
}
.

In particular, infx∈Rn{q0(x) : q1(x) ≤ 0} = infx∈Rn{q(γ−, x) : q1(x) ≤ 0}.

These results admit further nontrivial generalizations involving multiple quadratics; we refer

the interested readers to our follow up work [181].

Remark 53. Yıldıran [195] proves a convex hull result for a set defined by two strict quadratic

constraints. Modaresi and Vielma [123] then show that given a particular topological assumption,

that the appropriate closed versions of Yıldıran [195]’s results also hold. We discuss these results

in the context of the convex hull results we have presented thus far. Given q0 and q1 we will

consider the quadratic functions q0(x)− t and q1(x) in the variables (x, t). As [195] works with

homogeneous quadratics, we introduce an extra variable to get homogeneous quadratic forms.

Define

Q0 :=

A0 0 b0
0⊺ 0 −1/2
b⊺0 −1/2 c0

, Q1 :=

A1 0 b1
0⊺ 0 0
b⊺1 0 c1

, Q(γ) :=

A(γ) 0 b(γ)
0⊺ 0 −1/2
b(γ)⊺ −1/2 c(γ)

.
Yıldıran [195] uses the aggregation weights γ where Q(γ) has exactly one negative eigenvalue.

Note that for all γ ≥ 0, the lower right 2× 2 block ofQ(γ) is invertible. Thus, we may take the

Schur complement of this block inQ(γ):

Q(γ)/
(

0 −1/2
−1/2 c(γ)

)
= A(γ)−

(
0 b(γ)

)(0 −1/2
−1/2 c(γ)

)−1(
0⊺
b(γ)⊺

)
= A(γ).

Recall that Schur complements preserve inertia. In other words,Q(γ) andA(γ)
0 −1/2
−1/2 c(γ).



129

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

have the same number of negative eigenvalues. Noting that the lower right 2× 2 block has exactly

one negative eigenvalue, we conclude thatQ(γ) has exactly one negative eigenvalue if and only if

A(γ) ⪰ 0. The result presented by Yıldıran [195] then implies

conv
({

(x, t) : q0(x) < t
q1(x) < 0

})
= {(x, t) : q(γ−, x) < t} ∩ {(x, t) : q(γ+, x) < t}

when γ+ exists and

conv
({

(x, t) : q0(x) < t
q1(x) < 0

})
= {(x, t) : q(γ−, x) < t} ∩ {(x, t) : q1(x) < 0}

otherwise.

One can then verify the topological assumption of Modaresi and Vielma [123], namely that

S ⊆ int(S) the closure of the interior of S . Thus, combining these two results gives an alternate

proof of Theorems 21 and 22.

We believe our analysis is simpler and more direct. In particular, our analysis takes advantage

of the epigraph structure present in our sets and immediately implies a rounding procedure via

Lemma 44. In addition, our results are more refined when Assumption 8 or 9 hold as we can

also characterize the (closed) convex hull of the set S and show that it is equal to that of S . This

particular distinction between S and S has a number of interesting implications in equality-,

interval-, or hollow-constrained GTRS, and we discuss these results in the following section. □

4.3 Nonintersecting constraints

There have been a number of works considering interval-, equality-, or hollow-constrained variants

of the GTRS [21, 24, 94, 96, 124, 148, 155, 165, 191] (see [87, Section 3.3] and references therein for

extensions of the TRS and their applications). In this section, we extend our (closed) convex hull

results in the presence of a general nonintersecting constraint. This allows us to handle multiple

variants of the GTRS simultaneously.

Specifically, we will impose an additional requirement x ∈ Ω. The new form of the GTRS will

be

inf
x∈Rn

{
q0(x) : q1(x) ≤ 0

x ∈ Ω

}
= inf

(x,t)∈Rn+1

t :
q0(x) ≤ t
q1(x) ≤ 0
x ∈ Ω

.
Let SΩ denote the set of feasible points (x, t), i.e.,

SΩ :=

(x, t) ∈ Rn+1 :
q0(x) ≤ t
q1(x) ≤ 0
x ∈ Ω

.
We will assume that Ω ⊆ Rn

satisfies the following nonintersecting condition.

Assumption 10. The set Ω ⊆ Rn
satisfies {x ∈ Rn : q1(x) = 0} ⊆ Ω. □

130

4.3 Nonintersecting constraints

The following two corollaries to Theorems 19 and 20 follow immediately by noting that S ⊆
SΩ ⊆ S holds under Assumption 10.

Corollary 19. Suppose Assumptions 8 and 10 hold. Then,

conv(SΩ) = S(γ−) ∩ S(γ+).

Proof. Under Assumptions 8 and 10, we get the following chain of inclusions

conv(SΩ) ⊆ conv(S) = conv(S) ⊆ conv(SΩ),

where the first subset relation follows SΩ ⊆ S (by definition of the set SΩ), the equality relation

follows from Theorem 19, and the last subset relation follows from S ⊆ SΩ (by Assumption 10).

We conclude that conv(SΩ) = conv(S). By Theorem 19, we know that conv(S) = S(γ−) ∩
S(γ+). ■

Corollary 20. Suppose Assumptions 9 and 10 hold. Then,

conv(SΩ) = S(γ−) ∩ S(γ+).

Proof. Applying Assumptions 9 and 10 and Theorem 20, we get the following chain of inclusions

conv(SΩ) ⊆ conv(S) = conv(S) ⊆ conv(SΩ).

We conclude that conv(SΩ) = conv(S). By Theorem 20, we know that conv(S) = S(γ−) ∩
S(γ+). ■

Remark 54. These two corollaries show that nonintersecting constraints in the GTRS may be

ignored. Consider for example the interval-constrained GTRS. Define

Ω := {x ∈ Rn : q1(x) ≥ −1}.

Then, clearly Assumption 10 is satisfied. Under Assumption 9, we have

inf
x∈Rn
{q0(x) : −1 ≤ q1(x) ≤ 0} = inf

(x,t)∈Rn+1
{t : (x, t) ∈ SΩ}

= inf
(x,t)∈Rn+1

{t : (x, t) ∈ conv(SΩ)}

= inf
(x,t)∈Rn+1

{t : (x, t) ∈ S(γ−) ∩ S(γ+)}

= inf
x∈Rn

max{q(γ−, x), q(γ+, x)}.

Thus, the value of the interval-constrained GTRS is the same as the GTRS under Assumption 9.

Similarly, the Ω sets arising from equality- or hollow-constrained GTRS also satisfy Assumption 10.

Hence, under Assumption 9, the additional constraints in these variants of the GTRS can also be

dropped. □

131

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

4.4 Solving the convex reformulation in linear time

In this section we present algorithms, inspired by Theorem 19, for approximately solving the

GTRS. Note that Theorem 19 gives a tight convex reformulation of the GTRS: under Assumption

8,

Opt := min
x∈Rn
{q0(x) : q1(x) ≤ 0} = min

x∈Rn
max{q(γ−, x), q(γ+, x)}.

Then given a solution to the convex reformulation on the right, Lemma 44 gives a rounding scheme

to recover a solution to the original GTRS on the left.

In order to establish an explicit running time of an algorithm based on the above idea, we must

carefully handle a number of numerical issues. In practice, we cannot expect to compute γ± exactly.

Instead, we will show how to compute estimates γ̃± of γ± up to some accuracy δ. We will take

care to pick γ̃± satisfying the relation [γ̃−, γ̃+] ⊆ [γ−, γ+] so that the quadratic forms defined by

A(γ̃−) andA(γ̃+) are convex. Based on the estimates γ̃±, we will then formulate and solve the

convex optimization problem

Õpt := min
x∈Rn

max{q(γ̃−, x), q(γ̃+, x)}.

Finally, given an (approximate) solution to the convex problem Õpt, Lemma 44 tells us how to

construct a solution to the original nonconvex GTRS using specific eigenvectors. Again, we will

need to handle numerical issues that arise from not being able to compute these eigenvectors

exactly.

Throughout this section, we will work under the following assumption.

Assumption 11.

• There exists some γ∗ ≥ 0 such thatA(γ∗) ≻ 0,

• ∥A0∥, ∥A1∥, ∥b0∥, ∥b1∥, |c1| ≤ 1. □

Remark 55. Note that the first part of Assumption 11 is simply Assumption 8. We make this

assumption so that we may use the convex reformulation guaranteed by Theorem 19. Assumption 8

is commonly used in GTRS algorithms; see e.g., Jiang and Li [95, Assumption 2.3] and the

discussion following it. The second part of Assumption 11 can be achieved for an arbitrary pair q0
and q1 by simply scaling each quadratic by a positive scalar. Note that any optimal (respectively

feasible) solution remains optimal (respectively feasible) when q0 (respectively q1) is scaled by a

positive scalar. □

We will analyze the running time of our algorithm in terms ofN , the number of nonzero entries

inA0 andA1, ϵ, the additive error, p, the failure probability, and n, the dimension. In addition,

the running time of our algorithm depends on certain regularity parameters of the pair q0 and q1
defined below.

Definition 17. Let q0, q1 satisfy Assumption 11. Define

ζ∗ := max{1, γ+}, and ξ∗ := min
{

1,max
γ≥0

λmin(A(γ))
}
.

132

4.4 Solving the convex reformulation in linear time

We say that q0 and q1 are (ξ, ζ) regular if 0 < ξ ≤ ξ∗
and ζ ≥ ζ∗

. Define κ∗ = ζ∗/ξ∗
. When

(ξ, ζ) are clear from context we will write κ := ζ/ξ. □

In our analysis, we will frequently use the inequalities κ, ζ, ξ−1 ≥ 1, which for example imply

κ2 ≥ κ and 1 + κ ≤ 2κ, and the inequalities γ− ≤ γ+ ≤ ζ , which for example under

Assumption 11 imply ∥A(γ+)∥ ≤ 1 + ζ ≤ 2ζ .

Remark 56. Jiang and Li [95] present a different linear-time algorithm for solving the GTRS. In

their paper, they assume they are given a regularity parameter ξJL as input. This parameter must

satisfy ξJL ≤ ξ∗
JL

where

ξ∗
JL

:= min
{

1,−λmin(A1), max
µ∈(0,1]

λmin(µA0 + (1− µ)A1)
}
.

We now discuss how our regularity parameters, ξ∗
us

, ζ∗
, and κ∗ := ζ∗

ξ∗
us

relate to ξ∗
JL

. For simplicity,

we will assume

ξ∗
us

= max
γ≥0
{λmin(A(γ))}, ζ∗ = γ+,

ξ∗
JL

= min
{
−λmin(A1), max

µ∈(0,1]
λmin(µA0 + (1− µ)A1)

}
.

We claim ζ∗ ≤ (−λmin(A1))−1
. Indeed, letxbe a unit eigenvector corresponding toλmin(A1).

Then, for any γ > (−λmin(A1))−1
, we have

x⊺A(γ)x = x⊺A0x+ γx⊺A1x ≤ 1 + γλmin(A1) < 0.

The role played by the bound γ+ ≤ ζ in our analysis is similar to the role of the bound ξJL ≤
−λmin(A1) in the analysis presented by Jiang and Li [95].

We claim that

1
2κ∗ ≤ max

µ∈(0,1]
λmin(µA0 + (1− µ)A1) ≤ ξ∗

us
,

and that the lower bound is sharp. Indeed, by performing the transformation µ = 1
1+γ , we can

rewrite

max
µ∈(0,1]

λmin(µA0 + (1− µ)A1) = max
γ≥0

1
1 + γ

λmin(A(γ)),

which we can clearly bound above by ξ∗
us

. On the other hand, noting that any optimizer, γ, of the

above problem must lie in [0, γ+] = [0, ζ∗], we can lower bound

max
γ≥0

1
1 + γ

λmin(A(γ)) ≥ 1
1 + ζ∗ max

γ≥0
λmin(A(γ)) = ξ∗

us

1 + ζ∗ ≥
1

2κ∗ .

133

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

We now construct a simple example for which the lower bound, ξ∗
JL
≥ 1

2κ∗ , is sharp. Let α > 0
and define

A0 = Diag(1, 1,−1), A1 = Diag
(
1,−(1 + α)−1, 1

)
.

It is simple to see that ∥A0∥ = ∥A1∥ = 1, ξ∗
us

= α
2+α and ζ∗ = 1 + α. In particular, κ∗ =

2+3α+α2

α . On the other hand, we can compute

ξ∗
JL

= max
µ∈(0,1]

min{µ− (1− µ)α, µ(−1 + 2α) + (1− µ)α} = α

4 + 3α.

Then, letting α→ 0, we have κ∗ = 2+o(1)
α and ξ∗

JL
= α

4+o(1) .

In view of the (closed) convex hull results presented in Theorems 19 and 20, we believe that

the right notion of regularity should depend on the parameterizationA0 + γA1 as opposed to

µA0 + (1− µ)A1. We compare the running time of the algorithm presented by Jiang and Li [95]

and the running time of our algorithms in Remark 60. □

We will assume that we have access to these regularity parameters within our algorithms.

Assumption 12. Assume we have algorithmic access to a pair (ξ, ζ) such that q0 and q1 are (ξ, ζ)-

regular and a γ̂ satisfying λmin(A(γ̂)) ≥ ξ. □

Remark 57. Assumption 12 is quite reasonable. Indeed, there are simple and efficient binary

search schemes to find constant factor approximations of ξ∗
and ζ∗

and a corresponding γ̂. We

detail one such algorithm in Appendix D.2. We remark that a similar assumption is made by Jiang

and Li [95]: they assume they are given access to ξJL and present an algorithm for computing a

corresponding µ̂ (see Remark 56). Another algorithm for finding γ̂ is presented by Guo et al. [80]

in the language of matrix pencil definiteness. □

We now fix the accuracy
2

to which we will compute our estimates γ̃±. Define

δ := ϵ

72κ2 . (4.8)

The framework for our approach is shown in Algorithm 1.

Algorithm 1 ApproxConvex(q0, q1, ξ, ζ, γ̂, ϵ, p)
Given q0 and q1 satisfying Assumption 11, (ξ, ζ) and γ̂ satisfying Assumption 12, error parameter

0 < ϵ ≤ κ2ξ, and failure probability p > 0
1. Pick δ as in (4.8).

2. Find γ̃− and γ̃+ such that

γ̃− ∈ [γ−, γ− + δ], γ̃+ ∈ [γ+ − δ, γ+], λmin(A(γ̃±)) ≤ δ/κ, (4.9)

with failure probability of at most p.

3. Define Õpt := minx∈Rn max{q(γ̃−, x), q(γ̃+, x)}. Solve Õpt up to accuracy ϵ/2.

4. Output γ̃−, γ̃+, and the approximate optimizer x̃.

2

Our definition of accuracy is presented in (4.9).

134

4.4 Solving the convex reformulation in linear time

Note that by Definition 17, we have κ2ξ = ζ2/ξ ≥ 1. Thus the requirement 0 < ϵ ≤ κ2ξ in

Algorithm 1 is not a practical issue: given ϵ > κ2ξ, we can simply run our algorithm with ϵ′ = 1
and return a solution with a better error guarantee.

This section is structured as follows. In Section 4.4.1, we prove that when δ is picked according

to (4.8), Õpt is within ϵ/2 of Opt. In Section 4.4.2 we show how to compute γ̃− and γ̃+ to

satisfy (4.9). Then in Section 4.4.3, we present an algorithm due to Nesterov [132] and show that

it can be used to efficiently solve for Õpt up to accuracy ϵ/2. At the end of Section 4.4.3, we

present Theorem 24, which collects the results of the previous subsections and formally analyzes

the runtime of Algorithm 1. In Section 4.4.4, we give a rounding scheme for finding a solution to

the original GTRS (4.1) given a solution to the convex reformulation. Finally, in Section 4.4.5, we

show that the running times of our algorithms can be significantly improved in situations where it

is easy to compute γ± and zero eigenvectors ofA(γ±).

4.4.1 Perturbation analysis of the convex reformulation

In this subsection, we show that the perturbed convex reformulation, Õpt, approximates the true

convex reformulation, Opt, up to an additive error of ϵ/2 when δ is picked as in (4.8). We will

assume that step 2 of Algorithm 1 is successful, i.e., we have γ̃± satisfying (4.9).

Recall the definition of δ in (4.8). As we require ϵ ≤ κ2ξ, we will have

δ := ϵ

72κ2 ≤
ξ

72 < ξ.

It is easy to see thatλmin(A(γ)) is a 1-Lipschitz function inγ. Then recalling thatλmin(A(γ±)) =
0 and λmin(A(γ̂)) ≥ ξ, we deduce the containment γ̂ ∈ (γ− + δ, γ+ − δ). This, along with

(4.9), implies

γ̂ ∈ (γ̃−, γ̃+) ⊆ [γ−, γ+], γ̃− ∈ [γ−, γ− + δ], γ̃+ ∈ [γ+ − δ, γ+]. (4.10)

Recall the perturbed reformulation

Õpt := min
x∈Rn

max{q(γ̃−, x), q(γ̃+, x)}.

For notational convenience, letf(x) := max{q(γ−, x), q(γ+, x)} and let f̃(x) := max{q(γ̃−, x), q(γ̃+, x)}.

Let x∗
and x̃∗

denote optimizers of Opt and Õpt respectively.

Lemma 47. For any fixed x ∈ Rn, we have f̃(x) ≤ f(x). In particular, Õpt ≤ Opt.

Proof. Note that q(γ, x) is a linear function in γ. Hence, for any fixed x ∈ Rn
, the containment

[γ̃−, γ̃+] ⊆ [γ−, γ+] implies f̃(x) ≤ f(x). We deduce

Õpt ≤ f̃(x∗) ≤ f(x∗) = Opt . ■

To show Õpt ≥ Opt−ϵ/2, we will show that x∗
and x̃∗

lie in a ball of bounded radius and

that f̃ approximates f uniformly on this ball.

135

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Lemma 48. Let x∗ and x̃∗ be optimizers of Opt and Õpt respectively. Then x∗, x̃∗ ∈ B(0, 5κ).

Proof. By picking the feasible solution 0 ∈ Rn
and Lemma 47, we have a trivial upper bound on

Õpt and Opt:

Õpt ≤ Opt ≤ max{q(γ−, 0), q(γ+, 0)} = max{c(γ−), c(γ+)}. (4.11)

By the first part of (4.10), we have

f(x) ≥ f̃(x) ≥ q(γ̂, x) ≥ ξ∥x∥2 + 2b(γ̂)⊺x+ c(γ̂),

where the last inequality follows from the assumption that λmin(A(γ̂)) ≥ ξ. Then,

x∗, x̃∗ ∈
{
x ∈ Rn : ξ∥x∥2 + 2b(γ̂)⊺x+ c(γ̂) ≤ max{c(γ−), c(γ+)}

}
⊆
{
x ∈ Rn : ξ∥x∥2 + 2b(γ̂)⊺x ≤ ζ

}
.

The last relation holds since max{c(γ−)− c(γ̂), c(γ+)− c(γ̂)} = max{(γ− − γ̂)c1, (γ+ −
γ̂)c1} ≤ |c1|γ+ ≤ ζ . Then, by completing the square

x∗, x̃∗ ∈ B
(
−b(γ̂)ξ−1,

√
∥b(γ̂)∥2ξ−2 + κ

)
⊆ B

(
0, 2∥b(γ̂)∥ξ−1 +

√
κ
)

⊆ B
(
0, 4κ+

√
κ
)

⊆ B(0, 5κ),

where in the third line, we used Assumption 11 and the bound ∥b(γ̂)∥ ≤ ∥b0∥ + γ+∥b1∥ ≤
2ζ . ■

Lemma 49. If ∥x̂∥ ≤ 5κ, then f̃(x̂) ≥ f(x̂)− ϵ/2. In particular, Õpt ≥ Opt−ϵ/2,

Proof. Recall that δ := ϵ
72κ2 . Let x̂ ∈ Rn

such that ∥x̂∥ ≤ 5κ. We compute

f̃(x̂) = max{q(γ̃−, x̂), q(γ̃+, x̂)}
≥ max{q(γ−, x̂), q(γ+, x̂)} − δ|q1(x̂)|

≥ f(x̂)− δ
(
∥x̂∥2 + 2∥x̂∥+ 1

)
≥ f(x̂)− δ(6κ)2

= f(x̂)− ϵ/2,

where the first inequality follows from (4.10), the second inequality follows from Assumption 11,

and the third inequality follows from the bound ∥x̂∥ ≤ 5κ. ■

136

4.4 Solving the convex reformulation in linear time

4.4.2 Approximating γ− and γ+

In this subsection, we show how to approximate γ− and γ+ and provide an explicit running

time analysis of this procedure. Our developments rely on the fact that λmin(A(γ)) is a concave

function in γ and that γ− and γ+ are the unique zeros of this function.

Lemma 50. λmin(A(γ)) is a concave function in γ.

Proof. By Courant-Fischer Theorem, λmin(A(γ)) = min∥x∥=1 x
⊺A(γ)x. Note that for any

fixed x ∈ Rn
, the expression x⊺A(γ)x is linear in γ. Then, the result follows upon recalling that

the minimum of concave (in our case linear) functions is concave. ■

Let us also state a simple property of the function λmin(A(γ)).

Lemma 51.

i Suppose γ ≤ γ̂, then |γ − γ−| ≤ κ|λmin(A(γ))|.

ii Suppose γ ≥ γ̂, then |γ − γ+| ≤ κ|λmin(A(γ))|.

Proof. We only prove the first statement as the second statement follows similarly. Let γ ≤ γ̂.

From the concavity of λmin(A(γ)), we have

|λmin(A(γ))| ≥ |γ − γ−|
λmin(A(γ̂))
γ̂ − γ−

≥ |γ − γ−|
ξ

ζ
,

where in the second inequality we used the definition of ξ in Definition 17 and the bound γ̂−γ− ≤
γ+ ≤ ζ . Noting ζ/ξ = κ and rearranging terms completes the proof. ■

We will use the Lanczos method for approximating the most negative eigenvalue (and a corre-

sponding eigenvector) of a sparse matrix. This algorithm, along with Lemma 51, will allow us to

binary search over the range [0, ζ] for the zeros of the function λmin(A(γ)).

Lemma 52 ([103]). There exists an algorithm, ApproxEig(A, ρ, η, peig), which given a symmetric
matrix A ∈ Rn×n, ρ such that ∥A∥ ≤ ρ, and parameters η, peig > 0, will, with probability at
least 1− peig, return a unit vector x ∈ Rn such that x⊺Ax ≤ λmin(A) + η. This algorithm runs
in time

O

(
N
√
ρ

√
η

log
(
n

peig

))
,

whereN is the number of nonzero entries inA.

Consider ApproxGammaPlus (Algorithm 2) for computing γ̃+ up to accuracy δ. A similar

algorithm can be used to compute γ̃− up to accuracy δ and is omitted.

Lemma 53. Given q0, q1 satisfying Assumption 11, (ξ, ζ) and γ̂ satisfying Assumption 12, δ > 0,
and pγ̃+ , ApproxGammaPlus (Algorithm 2) outputs γ̃+ satisfying

γ̃+ ∈ [γ+ − δ, γ+], λmin(A(γ̃+)) ≤ δ/κ

137

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Algorithm 2 ApproxGammaPlus(q0, q1, ξ, ζ, γ̂, δ, pγ̃+)
Given q0 and q1 satisfying Assumption 11, (ξ, ζ) and γ̂ satisfying Assumption 12, error parameter

δ > 0, and failure probability pγ̃+
1. Let s0 = γ̂, t0 = ζ

2. Let T =
⌈
log
(

ζκ
δ

)⌉
+ 2

3. For k = 0, . . . , T − 1
a) Let γ = (sk + tk)/2
b) Let x = ApproxEig(A(γ), 2ζ, δ

4κ ,
pγ̃

T)
c) If x⊺A(γ)x < δ

4κ , set sk+1 = sk and tk+1 = γ

d) Else if x⊺A(γ)x > δ
κ , set sk+1 = γ and tk+1 = tk

e) Else, stop and output γ̃

with probability 1− pγ̃+ . This algorithm runs in time

Õ

(
N
√
κζ√
δ

log
(
n

pγ̃+

)
log
(
κ

δ

))
.

Proof. We condition on the event that ApproxEig succeeds every time it is called. By the union

bound, this happens with probability at least 1− pγ̃+ .

Suppose the algorithm outputs at step 3.(e). Let γ be the value of γ on the round in which the

algorithm stops, and x the vector returned by ApproxEig in the corresponding iteration. Then,

the stopping rule guarantees x⊺A(γ)x ∈ [δ/4κ, δ/κ]. As we have conditioned on ApproxEig

succeeding, we deduce

x⊺A(γ)x− δ

4κ ≤ λmin(A(γ)) ≤ x⊺A(γ)x.

In particular, λmin(A(γ)) ∈ [0, δ/κ] and γ ≤ γ+. Applying Lemma 51 gives

|γ − γ+| ≤ κ|λmin(A(γ))| ≤ δ.

We conclude γ+ − δ ≤ γ ≤ γ+.

We now show that this algorithm outputs within T rounds. Let

P := {γ : γ ≥ γ̂, λmin(A(γ)) ∈ [δ/4κ, 3δ/4κ]}.

Recalling that λmin(A(γ)) is 1-Lipschitz in γ, we deduce that |P | ≥ δ/2κ. Note also that

λmin(A(γ̂)) ≥ ξ ≥ δ ≥ 3δ/4κ thus P is a connected interval.

Suppose for the sake of contradiction that the algorithm fails to output in each of the T rounds.

Note that P ⊆ [s0, t0]. We will show by induction that P ⊆ [sk, tk] for every k ∈ {1, . . . , T}.
Let k ∈ {0, . . . , T − 1}. By assumption, the algorithm fails to output in round k. This can

happen in two ways: If x⊺A(γ)x < δ/4κ, then x certifies that γ /∈ P and P ⊆ [sk, γ].
If x⊺A(γ)x > δ/κ, then as we have conditioned on ApproxEig succeeding, λmin(A(γ)) ≥
δ/κ− δ/4κ and P ⊆ [γ, tk]. In either case, we have that P ⊆ [sk+1, tk+1].

138

4.4 Solving the convex reformulation in linear time

We conclude that P , an interval of length at least δ/2κ, is contained in [sT , tT], an interval of

length

tT − sT ≤
ζ

2T
≤ δ/4κ,

a contradiction. Thus, the algorithm outputs within T rounds.

The running time of this algorithm follows from Lemma 52. ■

Remark 58. Similar algorithms for approximating γ± given γ̂ have been proposed in the litera-

ture [2, 94, 124, 148]. However to our knowledge, this is the first analysis to establish an explicit

convergence rate; see the discussion after Remark 2.11 in [94] on this issue. □

4.4.3 Minimizing the maximum of two quadratic functions

In this subsection, we will assume that Algorithm 1 has successfully found γ̃± satisfying (4.9) and

show how to approximately solve

min
x∈Rn

max{q(γ̃−, x), q(γ̃+, x)}.

For the sake of readability, we will use the following notation in this subsection.

f̃0(x) := q(γ̃−, x) and f̃1(x) := q(γ̃+, x) (4.12)

In particular we have f̃(x) = max
{
f̃0(x), f̃1(x)

}
.

Our analysis is based on Nesterov [132, Section 2.3.3], which proposes a high level algorithm

for minimizing general minimax problems with smooth components. We state this algorithm

(Algorithm 3) and its corresponding convergence rate in our context.

Algorithm 3 Constant Step Scheme II for Smooth Minimax Problems [132, Algorithm 2.3.12]

Given continuously differentiable convex, 2L-smooth functions f̃0, f̃1
1. Let x0 = y0 = 0 and α0 = 1/2
2. For k = 0, 1, . . .

a) Compute f̃i(yk) and∇f̃i(yk) for i = 0, 1
b) Compute

xk+1 = arg min
x

max
i=0,1

(
f̃i(yk) +

〈
∇f̃i(yk), x− yk

〉
+ L∥x− yk∥2

)
αk+1 =

√
α4

k + 4α2
k − α2

k

2

βk = αk(1− αk)
α2

k + αk+1

yk+1 = xk+1 + βk(xk+1 − xk)

139

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Theorem 23 ([132, Theorem 2.3.5]). Let f̃0, f̃1 be 2L-smooth3 differentiable convex functions such
that f̃ is bounded below. Let x̃∗ be an optimizer of f̃ . Then the iterates xk produced by Algorithm 3
satisfy

f̃(xk)− f̃(x̃∗) ≤ 8
(k + 1)2

(
f̃(0)− f̃(x̃∗) + L

2 ∥x̃
∗∥2
)
.

Lemma 54. Let x ∈ Rn. Then for i = 0, 1, we have

|qi(0)− qi(x)| ≤ ∥x∥2 + 2∥x∥.

Proof. For i = 0, 1, we have

|qi(0)− qi(x)| = |qi(x)− ci| ≤ ∥Ai∥∥x∥2 + 2∥bi∥∥x∥ ≤ ∥x∥2 + 2∥x∥.

where the second inequality follows from Assumption 11. ■

Corollary 21. Let f̃0 and f̃1 be the functions defined in (4.12). Let x̃∗ be an optimizer of f̃ . Then
the iterates xk produced by Algorithm 3 satisfy

f̃(xk)− f̃(x̃∗) ≤ 760
(k + 1)2κ

2ζ.

In particular, after k = O
(
κ
√
ζ/ϵ
)

iterations, the solution xk satisfies f̃(xk)− f̃(x̃∗) ≤ ϵ/2.

Proof. We have that f̃0 and f̃1 are both 2(2ζ)-smooth by Assumption 11 and Definition 17.

Moreover, f̃(x) ≥ q(γ̂, x) is bounded below. Thus, we may apply Theorem 23.

We bound the initial primal gap as follows:

f̃(0)− f̃(x̃∗) = max
{
f̃0(0), f̃1(0)

}
−max

{
f̃0(x̃∗), f̃1(x̃∗)

}
≤ max

{
f̃0(0)− f̃0(x̃∗), f̃1(0)− f̃1(x̃∗)

}
= q0(0)− q0(x̃∗) + max{γ̃−(q1(0)− q1(x̃∗)), γ̃+(q1(0)− q1(x̃∗))}
≤ |q0(0)− q0(x̃∗)|+ ζ|q1(0)− q1(x̃∗)|

≤ (1 + ζ)
(
25κ2 + 10κ

)
≤ 70κ2ζ,

where the third line follows from definition (see (4.12)), the fourth line follows from the ordering

γ̃− ≤ γ̃+ ≤ ζ , the fifth line follows from Lemmas 48 and 54, and the last line follows from the

trivial bounds κ ≥ 1 and ζ ≥ 1.

Using Lemma 48 again, we also have
L
2 ∥x̃

∗∥2 = 2ζ
2 ∥x̃

∗∥2 ≤ 25κ2ζ . The result follows by

combining these bounds. ■

3

Recall that a convex quadratic function x⊺Ax + 2b⊺x + c is 2L-smooth if and only if A ⪯ LI .

140

4.4 Solving the convex reformulation in linear time

It remains to analyze the runtime of each iteration. Aside from computation of xk+1, it is clear

that the quantities in each iteration can be computed in O(N) time. Below, we derive a closed

form expression for xk+1 where each of the quantities can be computed inO(N) time.

Lemma 55. For any y ∈ Rn, the quantity

arg min
x

max
i=0,1

(
f̃i(y) +

〈
∇f̃i(y), x− y

〉
+ L∥x− y∥2

)
can be computed inO(N) time.

Proof. Fix y ∈ Rn
. We begin by recentering the quadratic functions in the objective.

max
i=0,1

(
f̃i(y) +

〈
∇f̃i(y), x− y

〉
+ L∥x− y∥2

)
= max

i=0,1

L∥∥∥∥∥x−
[
y − 1

L

∇f̃i(y)
2

]∥∥∥∥∥
2

+

f̃i(y)− 1
L

∥∥∥∥∥∇f̃i(y)
2

∥∥∥∥∥
2


=: max
i=0,1

(
L∥x− zi∥2 + hi

)
Here, zi and hi are defined to be the square-bracketed terms from the preceding line. It is clear

that the minimizing xmust belong to the line segment [z0, z1]. We will parameterize x = z0 +
α(z1 − z0) where α ∈ [0, 1].

min
x

max
i=0,1

(
L∥x− zi∥2 + hi

)
= min

α∈[0,1]
max

{
α2L∥z0 − z1∥2 + h0, (1− α)2L∥z0 − z1∥2 + h1

}
.

We solve forα by setting the two terms inside the maximum equal. A simple calculation yields that

the two quadratics are equal when

ᾱ := 1
2 −

h0 − h1

2L∥z0 − z1∥2
.

If ᾱ is between [0, 1], letα∗ = ᾱ. Else letα∗ = 0 (respectivelyα∗ = 1) when ᾱ < 0 (respectively

ᾱ > 1).

Then,

arg min
x

max
i=0,1

(
f̃i(y) +

〈
∇f̃i(y), x− y

〉
+ L∥x− y∥2

)
= z0 + α∗(z1 − z0).

Each of the quantities on the right hand side (namelyα∗
, zi) can be computed inO(N) time. ■

Combining Corollary 21 and Lemma 55 gives the following corollary.

141

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Corollary 22. Let f̃0, f̃1 be the functions defined in (4.12). There exists an algorithm which outputs
x̃ satisfying f̃(x̃) ≤ Õpt + ϵ/2 running in time

O

(
N κ
√
ζ√

ϵ

)
.

Remark 59. Jiang and Li [94] present a saddle-point-based first-oder algorithm for approximating

Õpt. By instantiating their algorithm with the initial iterate x0 = 0 and applying our Lemma 48

to bound ∥x0 − x̃∗∥2, we have that [94, Algorithm 1] produces an ϵ/2-optimal solution to the

convex reformulation in time

O

(
Nκ2ζ

ϵ

)
.

Therefore, the dependences on ϵ, κ, and ζ of this algorithm are worse than that of the algorithm

described in Corollary 22. Note that [94] does not present an analysis of the complexity of finding

the approximate generalized eigenvalue γ̃± (needed to construct Õpt) or how Õpt relates to

Opt. □

By combining Lemmas 47, 49, and 53 and Corollary 22, we arrive at the following main theorem

on the overall computational complexity of our approach.

Theorem 24. Given q0, q1 satisfying Assumption 11, (ξ, ζ) and γ̂ satisfying Assumption 12, error
parameter 0 < ϵ ≤ κ2ξ, and failure probability p > 0, ApproxConvex (Algorithm 1) outputs γ̃−,
γ̃+ and x̃ ∈ Rn such that

Opt ≤ max{q(γ̃−, x̃), q(γ̃+, x̃)} ≤ Õpt + ϵ/2 ≤ Opt +ϵ

with probability 1− p. This algorithm runs in time

Õ

(
Nκ3/2√ζ√

ϵ
log
(
n

p

)
log
(
κ

ϵ

))
.

4.4.4 Finding an approximate optimizer of the GTRS

Let x̃ ∈ Rn
be the approximate optimizer output by Algorithm 1. In this subsection, we show

how to use x̃ to construct an x̄ approximately minimizing the original GTRS (4.1). Our algorithm

will follow the proof of Theorem 19 (in particular Lemma 44).

We present our algorithm, ApproxGTRS, as Algorithm 4. ApproxGTRS will use ApproxCon-

vex as a subroutine. Given an additive error ϵ
round

, ApproxGTRS will call ApproxConvex with

additive error ϵconvex. We will write these parameters as ϵr and ϵc for short.

Note that by Definition 17, we have κ3ξ ≥ 1. Thus, as before, the requirement 0 < ϵr ≤ κ3ξ
in Algorithm 4 is not a practical issue: given ϵr > κ3ξ, we can simply run our algorithm with

ϵ′r = κ3/ξ and return a solution with a better error guarantee.

142

4.4 Solving the convex reformulation in linear time

Algorithm 4 ApproxGTRS(q0, q1, ξ, ζ, γ̂, ϵr, pr)
Given q0 and q1 satisfying Assumption 11, (ξ, ζ) and γ̂ satisfying Assumption 12, error parameter

0 < ϵr ≤ κ3ξ, and failure probability pr > 0
1. Define ϵc := ϵr/(28κ)
2. Let γ̃−, γ̃+ and x̃ be the output of ApproxConvex(q0, q1, ξ, ζ, γ̂, ϵc, pr/2)
3. If q1(x̃) = 0 then return x̄ = x̃
4. Else if q1(x̃) > 0

a) Let d := ApproxEig(A(γ̃+), 2ζ, δ/κ, pr/2)
b) Let e := 2(x̃⊺A(γ̃+)d+ b(γ̃+)⊺d)
c) If necessary, take d← −d and e← −e to ensure that e ≤ 0
d) Let α ≥ 0 be the nonnegative solution to

q(γ̃−, x̃+ αd) = q(γ̃+, x̃+ αd)

e) Return x̄ = x̃+ αd
5. Else carry out the computation in step 4 where the roles of γ̃− and γ̃+ are interchanged

The next lemma bounds ∥x̃∥. Its proof follows the proof of Lemma 48 with minor adjustments

(in particular, the upper bound of (4.11) is replaced with f̃(x̃) ≤ max{c(γ−), c(γ+)} + ϵ/2;

see Corollary 22) and is omitted.

Lemma 56. Let x̃ ∈ Rn satisfy f̃(x̃) ≤ Õpt + ϵ/2. Then x̃ ∈ B(0, 6κ).

We are now ready to prove a formal guarantee on Algorithm 4.

Theorem 25. Given q0, q1 satisfying Assumption 11, (ξ, ζ) and γ̂ satisfying Assumption 12, error
parameter 0 < ϵr ≤ κ3ξ, and failure probability pr , ApproxGTRS (Algorithm 4) outputs x̄ such
that

q0(x̄) ≤ Opt +ϵr
q1(x̄) = 0

with probability 1− pr . This algorithm runs in time

Õ

(
Nκ2√ζ
√
ϵr

log
(
n

pr

)
log
(
κ

ϵr

))
.

Proof. We condition on the event that Algorithm 1 succeeds and the ApproxEig call in step 4.(a) or

5.(a) succeeds. By the union bound, this happens with probability at least 1− pr. As in Lemma 44,

we will split the analysis into three cases: (i) q1(x̃) = 0, (ii) q1(x̃) > 0, and (iii) q1(x̃) < 0.

i If q1(x̃) = 0 then q0(x̃) = f̃(x̃) ≤ Õpt + ϵc/2 ≤ Opt +ϵc ≤ Opt +ϵr.

ii Now suppose q1(x̃) > 0, i.e., we are in step 4 of Algorithm 4. We will need an upper bound

on the value of α found in step 4.(d).

143

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Let t := q(γ̃+, x̃). Recall that λmin(A(γ̃+)) ∈ [0, δ/κ] (see Lemma 53). Then, as we have

conditioned on the ApproxEig call in step 4.(a) succeeding, we have

q(γ̃+, x̃+ αd)− (t+ αe) = (q(γ̃+, x̃)− t) + α2d⊺A(γ̃+)d
≤ α2(2δ/κ).

(4.13)

Next, we give a lower bound on q(γ̃−, x̃+αd)−(t+αe) using the estimated⊺A(γ̃−)d ≥ ξ,

and routine estimates on ∥A(γ)∥ and ∥b(γ)∥:

q(γ̃−, x̃+ αd)− (t+ αe)
= (q(γ̃−, x̃)− t) + 2α(x̃⊺A(γ̃−)d+ b(γ̃−)⊺d− e/2) + α2d⊺A(γ̃−)d
≥ −|γ̃+ − γ̃−||q1(x̃)|
− 2α(∥x̃∥∥A(γ̃−)∥+ ∥b(γ̃−)∥+ ∥x̃∥∥A(γ̃+)∥+ ∥b(γ̃+)∥)
+ α2ξ

≥ −49κ2ζ − 2α(14κζ) + α2ξ,

where the last inequality follows from the bounds |γ̃+ − γ̃−| ≤ γ+ ≤ ζ (Definition 17),

∥x̃∥ ≤ 6κ (Lemma 56), and Lemma 54.

We may combine our upper and lower bounds to deduce that for any α ∈ R,

q(γ̃−, x̃+ αd)− q(γ̃+, x̃+ αd) ≥ α2(ξ − 2δ/κ)− 2α(14κζ)− 49κ2ζ

≥ α2
(35

36ξ
)
− 2α(14κζ)− 49κ2ζ,

where the last relation follows from the definition of δ in (4.8), the definition of ϵc and

the assumption on ϵr, we have ϵc ≤ κ2ξ, and the bound κ ≥ 1. In particular, because

the quadratic function on the left is negative at α = 0 and is lower bounded by a strongly

convex quadratic function, there must exist both positive and negative choices of α for

which the left hand side takes the value zero. This justifies step 4.(d) of the algorithm.

We now fix α to be the positive solution to q(γ̃−, x̃+ αd) = q(γ̃+, x̃+ αd) so that

0 ≥ α2
(35

36ξ
)
− 2α(14κζ)− 49κ2ζ.

We get an upper bound on α by the quadratic formula

α ≤
14κζ +

√
(14κζ)2 + 49·35

36 κ2ζξ
35
36ξ

≤ 31κ2.

144

4.4 Solving the convex reformulation in linear time

Then, by defining x̄ := x̃+αd, we have q(γ̃−, x̄) = q(γ̃+, x̄). Note that the containment

γ̂ ∈ (γ̃−, γ̃+) from (4.10) implies γ̃− ̸= γ̃+. Then we deduce q1(x̄) = 0. Moreover, our

upper bound (4.13) gives

q0(x̄) = q(γ̃+, x̄)
≤ t+ αe+ α2(2δ/κ).

Then recalling that t := q(γ̃+, x̃) ≤ Õpt + ϵc/2 ≤ Opt +ϵc and that we picked e ≤ 0,

we bound

q0(x̄) ≤ Opt +ϵc + (31κ2)2(2δ/κ)
≤ Opt +ϵc + 27κϵc
≤ Opt +28κϵc
= Opt +ϵr.

iii The final case is symmetric to case (ii) and is omitted.

The running time of this algorithm follows from Lemma 52 and Theorem 24. ■

Remark 60. Let us now compare the running time of our algorithms to the running time of the

algorithm presented by Jiang and Li [95]. This algorithm takes as input a pair q0, q1 satisfying

an assumption similar to our Assumption 11 and a regularity parameter ξJL. See Remark 56 for

a discussion of how the parameter ξJL relates to our regularity parameters (ξus, ζ). Then given

ϵ > 0 and p > 0, this algorithm returns an ϵ-optimal feasible solution with probability at least

1− p. The running time of this algorithm is

Õ

 Nϕ3√
ϵ ξ5

JL

log
(
n

p

)
log
(

ϕ

ϵ ξJL

),
where ϕ is a computable regularity parameter.

Recall that in Remark 56, we constructed simple examples where ξJL ≈ 1/2κ and ζ ≈ 1. One

can check that the regularity parameter ϕ is a constant on these examples. In particular, the analysis

presented in Jiang and Li [95] implies a running time of

Õ

(
Nκ5/2
√
ϵ

log
(
n

p

)
log
(
κ

ϵ

))

on these instances. We contrast this with the running times

Õ

(
Nκ3/2
√
ϵ

log
(
n

p

)
log
(
κ

ϵ

))
, Õ

(
Nκ2
√
ϵ

log
(
n

p

)
log
(
κ

ϵ

))

of our Algorithms 1 and 4 for finding an ϵ-optimal value, and an ϵ-optimal feasible solution

respectively on these instances. □

145

4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Remark 61. Algorithms 1 and 4 were designed and analyzed with worst-case guarantees in mind.

Consequently, we have not been particularly careful about bounding the constants in our analysis

(for example the bounds κ, ζ, ξ−1 ≤ 1 are routinely used). As such, there may be variants of

our algorithms that achieve the same worst-case guarantees with significantly faster numerical

performance. Similarly, the algorithm presented by Jiang and Li [95] is analyzed with worst-case

guarantees in mind. They also remark that the the numerical performance of their algorithm may

improve “with suitable modifications” (see Jiang and Li [95, Remark 4.2]).

We leave such implementation questions and a thorough comparison of the numerical perfor-

mance of the algorithms present in the literature for future work. □

4.4.5 Further remarks

The algorithms given in the prior subsections can be sped up substantially if we know how to

compute γ± and the corresponding zero eigenvectors exactly. As an example, we consider the

special case whereA0 andA1 are diagonal matrices.

Lemma 57. There exists an algorithm which given q0, q1 satisfying Assumption 11 withA0 andA1
diagonal, returns γ±, (ξ∗, ζ∗) and γ∗ such that λmin(A(γ∗)) = ξ∗ in timeO(n).

Proof. Let a0, a1 ∈ Rn
be the diagonal entries ofA0 andA1 respectively. Note that

λmin(A(γ)) = min
i∈[n]
{a0,i + γa1,i}.

Thus, γ± and ζ∗
can clearly be computed inO(n) time. Note that

ξ∗ = max
γ,ξ

{
ξ : ∀i ∈ [n], a0,i + γa1,i ≥ ξ

ξ ≥ 0

}
.

Hence, ξ∗
and γ∗

are, respectively, the optimal value and solution to a two-variable linear program

withn constraints. Applying the algorithm by Megiddo [120] for two-variable linear programming

allows us to solve for ξ∗
and γ∗

inO(n) time. ■

Corollary 23. There exists an algorithm which given q0, q1 satisfying Assumption 11 withA0 and
A1 diagonal and error parameter ϵ > 0, outputs x̄ ∈ Rn such that

q0(x̄) ≤ Opt +ϵ
q1(x̄) = 0.

This algorithm runs in time

O

(
nκ∗√ζ∗
√
ϵ

)
.

146

4.4 Solving the convex reformulation in linear time

Proof. When A0 and A1 are diagonal we have N ≤ 2n. By Lemma 57, we can compute all of

the quantities needed for the exact convex reformulation inO(n) time. Algorithm 3 can then be

applied to the exact convex reformulation to find x̃ ∈ Rn
with

max{q(γ−, x̃), q(γ+, x̃)} ≤ Opt +ϵ.

We can further carry out the modification procedure of Lemma 44 exactly inO(n) time.

The running time of this algorithm follows from Corollary 22. ■

147

5 Implicit regularity in the

generalized trust-region

subproblem

This chapter is based on joint work [183] with Yunlei Lu and Fatma Kılınç-Karzan.

In this chapter we develop efficient first-order algorithms for the generalized trust-region sub-
problem (GTRS), which has applications in signal processing, compressed sensing, and engineering.

Although the GTRS, as stated, is nonlinear and nonconvex, it is well-known that objective value

exactness holds for its SDP relaxation under a Slater condition. While polynomial-time SDP-based

algorithms exist for the GTRS, their relatively large computational complexity has motivated and

spurred the development of custom approaches for solving the GTRS. In particular, recent work

in this direction has developed first-order methods for the GTRS whose running times are linear

in the sparsity (the number of nonzero entries) of the input data. In contrast to these algorithms,

in this chapter we develop algorithms for computing ϵ-approximate solutions to the GTRS whose

running times are linear in both the input sparsity and the precision log(1/ϵ) whenever a regularity

parameter is positive. We complement our theoretical guarantees with numerical experiments

comparing our approach against algorithms from the literature. Our numerical experiments high-

light that our new algorithms significantly outperform prior state-of-the-art algorithms on sparse

large-scale instances.

5.1 Introduction

In this chapter we develop efficient first-order algorithms for the generalized trust-region subproblem
(GTRS). Recall the GTRS,

Opt := inf
x∈Rn
{q0(x) : q1(x) ≤ 0},

where q0(x) and q1(x) are quadratic functions inx ∈ Rn
. We will assume that for each i ∈ {0, 1},

the quadratic function qi(x) is given by qi(x) = x⊺Aix+ 2b⊺i x+ ci forAi ∈ Sn
, bi ∈ Rn

and

ci ∈ R.

This problem generalizes the classical trust-region subproblem (TRS) where the general quadratic

constraint q1(x) ≤ 0 is replaced with the unit ball constraint ∥x∥2 ≤ 1. The TRS finds appli-

cations, for example, in robust optimization [21, 87] and combinatorial optimization [98, 140].

The TRS is additionally foundational in the area of nonlinear programming. Indeed, iterative

algorithms based on the TRS (known sometimes as trust-region methods) [50] are among the

most empirically successful techniques for general nonlinear programs.

149

5 Implicit regularity in the generalized trust-region subproblem

Generalizing the TRS, the GTRS has applications in signal processing, compressed sensing,

and engineering (see [180] and references therein). The problem of minimizing a quartic of

the form q(x, p(x)), where q : Rn+1 → R and p : Rn → R are both quadratic, can be

cast in the equality-constrained variant of the GTRS. This approach has been used to address

source localization [86] as well as the double-well potential functions [65]. More broadly, iterative

ADMM-based algorithms for general QCQPs using the GTRS as a subprocedure have shown

exceptional numerical performance [90] and outperform previous state-of-the-art approaches on a

number of real world problems (e.g., multicast beamforming and phase retrieval). This application

of the GTRS as a subprocedure within an iterative solver parallels the use of the TRS within

trust-region methods.

Although the GTRS, as stated, is nonlinear and nonconvex, it is well-known that objective

value exactness holds for its SDP relaxation under a Slater condition [67, 146]. Thus, unlike

general QCQPs which are NP-hard, the GTRS can be solved in polynomial time via SDP-based

algorithms. Nevertheless, the relatively large computational complexity of SDP-based approaches

has motivated and spurred the development of alternative custom approaches for solving the

GTRS. We restrict our discussion below to recent trends in GTRS algorithms and discuss earlier
work [124, 125, 165] where appropriate in the main body.

One line of proposed algorithms for the GTRS assumes simultaneous diagonalizability (SD)

of A0 and A1. It is well-known that SD holds under minor conditions—for example, if there

exists a positive definite matrix in span{A0, A1} (see [177] for additional variants of this result).

Ben-Tal and Teboulle [24] exploit the SD condition to provide a reformulation of the interval-

constrained GTRS as a convex minimization problem with linear constraints. More recently, under

the SD condition, Ben-Tal and den Hertog [21] provide a second-order cone program (SOCP)

reformulation of the GTRS in a lifted space. This SOCP reformulation was generalized beyond

the GTRS in [111]. Under the SD condition, a number of papers [64, 154] exploit the resulting

problem structure of the primal or the dual formulation to derive solution procedures for the

GTRS and interval-constrained GTRS. Generalizing [21], Jiang et al. [96] provide an SOCP

reformulation for the GTRS in a lifted space whenever the problem has a finite optimal value even

when the SD condition fails. Unfortunately, the algorithms in this line often assume implicitly

thatA0 andA1 are already diagonal or that a simultaneously-diagonalizing basis can be computed.

In practice, however, computing such a basis requires a full eigen-decomposition and can be

prohibitively expensive for large-scale instances.

A second line of research on the GTRS explores the connection between the GTRS and general-

ized eigenvalues of the matrix pencilA0 + γA1. Pong and Wolkowicz [148] propose a generalized-

eigenvalue-based algorithm which exploits the structure of optimal GTRS solutions, albeit without

an explicit running time analysis. Adachi and Nakatsukasa [2] present another approach for solv-

ing the GTRS based on computing the minimum generalized eigenvalue (and corresponding

eigenvector) of an associated indefinite (2n+ 1)× (2n+ 1) matrix pencil. Unfortunately, this

approach suffers from the significant cost of computing a minimum generalized eigenvalue of

an indefinite matrix pencil. Empirically, the complexity of this approach scales as O(n2) even

for sparse instances of the GTRS with O(n) nonzero entries in A0 and A1 (see [2, Section 4]).

Jiang and Li [94] reformulate the GTRS as the problem of minimizing the maximum of two

convex quadratic functions in the original space. This reformulation is constructed from a pair

of generalized eigenvalues related to the matrix pencil A0 + γA1. They then suggest a saddle-

150

5.1 Introduction

point-based first-order algorithm to solve this reformulation within an ϵ additive error inO(1/ϵ)
time. These approaches are based on the assumption that the generalized eigenvalues are given or

can be computed exactly, and offer no theoretical guarantees when only approximate generalized

eigenvalue computations are available (as is the case in practice; see also the discussion in Section 4.1

in [95]). Despite this, the numerical experiments in [2, 94, 148] suggest that algorithms motivated

by these ideas perform well even using only approximate generalized eigenvalue computations.

In contrast to these papers, recent work [95, 180] offers provably linear-time (in terms of the

number of nonzero entries in the input data) algorithms for the GTRS using only approximate

eigenvalue procedures. Jiang and Li [95] extend ideas developed in [82] for solving the TRS

to derive an algorithm for solving the GTRS up to an ϵ additive error with high probability.

This approach differs from the earlier literature in that it does not rely on the computation of

a simultaneously-diagonalizing basis or exact generalized eigenvalues. The complexity of this

approach is

Õ

(
N√
ϵ

log
(
n

p

)
log
(1
ϵ

)2
)
,

whereN is the number of nonzero entries inA0 andA1, ϵ is the additive error, and p is the failure

probability. Here, we have elided quantities related to the condition number of the GTRS. Wang

and Kılınç-Karzan [180] reexamine the convex quadratic reformulation idea of [94] and show

formally that by approximating the generalized eigenvalues sufficiently well, the perturbed convex

reformulation is within a small additive error of the true convex reformulation. Moreover, they

establish that the resulting convex reformulation can be solved via Nesterov’s accelerated gradient

descent method [132, Section 2.3.3] for smooth minimax problems to achieve an overall run time

guarantee of

Õ

(
N√
ϵ

log
(
n

p

)
log
(1
ϵ

))
.

A parallel line of work [41, 66, 77, 82, 87, 125] has developed custom first-order methods for

the trust-region subproblem. Most relatedly, Carmon and Duchi [41] recently showed that a

Krylov-based first-order method can achieve a convergence rate for the TRS that is linear in both

N and the precision log(1/ϵ) whenever a regularity parameter, µ∗
, is positive. This contrasts with

previous algorithms for the TRS whose guarantees scaled as≈ 1/
√
ϵ.

In this chapter, we introduce and analyze a new algorithm for computing an ϵ-approximate

solution to the GTRS whose running time is linear in bothN and the precision log(1/ϵ) whenever

µ∗
is positive. To be concrete, an ϵ-approximate solution is defined below.

Definition 18. We say x ∈ Rn
is an ϵ-approximate solution to (5.1) if

q0(x) ≤ Opt +ϵ and q1(x) ≤ ϵ. □

Despite similar convergence guarantees, our approach for solving the GTRS does not share

many algorithmic similarities with the approach of Carmon and Duchi [41] for the TRS.

151

5 Implicit regularity in the generalized trust-region subproblem

5.1.1 Overview and outline of this chapter

A summary of our contributions, along with an outline of the remainder of the chapter, is as

follows:

• In Section 5.2, we recall definitions and results related to the Lagrangian dual of the GTRS

and define our notion of regularity. Specifically, we recall definitions and results in the

literature [2, 65, 124, 125] regarding the dual function d(γ) and its derivative ν(γ). We

then define a regularity parameter µ∗
, which will play the role of strong convexity in our

algorithms. We close with a key lemma (Lemma 60) that underpins the algorithms developed

in this chapter. Intuitively, Lemma 60 says that whenµ∗
is positive, the unique optimizer of

the GTRS is stable—an Ω(µ∗)-strongly convex reformulation of the GTRS, whose unique

optimizer coincides with the GTRS optimizer, can be built using inexact estimates of the

dual optimizer γ∗
.

• In Section 5.3, we describe and analyze an approach for computing an ϵ-approximate

optimizer of a nonconvex-nonconvex GTRS instance based on Lemma 60. Our approach

consists of two algorithms, ConstructReform and SolveRegular. The first algorithm uses

inexact estimates of ν(γ) to binary search for an inexact estimate of γ∗
. ConstructReform

will either return an exact Ω(µ∗)-strongly convex reformulation of the GTRS or an ϵ-
approximate optimizer of the GTRS. In the former case, we may then apply SolveRegular

to compute an ϵ-approximate optimizer. In the latter case, ConstructReform will additionally

attempt to certify thatµ∗ = O(ϵ) so that building an Ω(µ∗)-strongly convex reformulation

may be undesirable. Together, these two algorithms achieve the following linear convergence

rate (i.e., scaling as log(1/ϵ)) for the GTRS:

Õ

(
N√
ϕ

log
(1
ϕ

)
log
(
n

p

)
log
(1
ϵ

))
.

Here,N is the number of nonzero entries inA0 andA1 combined, ϕ can be thought of as

≈ max(µ∗, ϵ) (see Section 5.3 for a formal definition), p is the failure probability, and the

Õ-notation hides log log-factors. This contrasts with previous algorithms [95, 180] that

are described as “linear-time”, referring to the fact that their running times scale linearly in

onlyN . We close this section by examining in further detail the case where ConstructReform

returns an ϵ-approximate optimizer but fails to certify that µ∗ = O(ϵ). Specifically, we

show that this edge case can only happen if ν(γ) is “extremely flat,” which in turn can only

happen if a certain coherence parameter is small.

• In Section 5.4, we present numerical experiments comparing the algorithms of Section 5.3

to other algorithms proposed in the recent literature [2, 21, 94]. Our numerical experiments

corroborate our theoretical understanding of the situation—the algorithms in this chap-

ter significantly outperform prior state-of-the-art algorithms on sparse large-scale GTRS

instances.

152

5.2 Implicit Regularity in the GTRS

5.1.2 Additional notation

For x ∈ R and y ≥ 0 let [±y] := [−y,+y] and [x± y] := [x− y, x+ y]. For γ ∈ R+, define

A(γ) := A0 + γA1, b(γ) := b0 + γb1, and c(γ) := c0 + γc1. Let q(γ, x) := q0(x) + γq1(x).

ForA ∈ Sn
, let ∥A∥ be its spectral norm. For b ∈ Rn

, let ∥b∥ be its Euclidean norm.

5.2 Implicit Regularity in the GTRS

Recall that the GTRS is the problem of minimizing a quadratic objective function subject to a

single quadratic constraint, i.e.,

Opt := inf
x∈Rn
{q0(x) : q1(x) ≤ 0}, (5.1)

where for each i ∈ {0, 1}, we have qi(x) = x⊺Aix + 2b⊺i x + ci for some Ai ∈ Sn
, bi ∈ Rn

,

and ci ∈ R.

We will make the following blanket assumption, which is both natural and common in the

literature on the GTRS [2, 93, 95, 180]. This assumption can be thought of as primal and dual

strict feasibility assumptions or a Slater assumption.

Assumption 13. There exists x̄ ∈ Rn
such that q1(x̄) < 0 and there exists γ̄ ≥ 0 such that

A(γ̄) ≻ 0. □

Remark 62. Note, for example, that Assumption 13 holds in the classical TRS setting where

q1(x) = x⊺x− 1. Indeed, q1(0) < 0 andA(γ) = A0 + γI ≻ 0 for all γ large enough. □

The results and definitions will assume only Assumption 13. In particular, they can be applied

to both the classical TRS setting as well as the nonconvex-nonconvex GTRS setting of Section 5.3.

Let Γ := {γ ∈ R+ : A(γ) ⪰ 0}. This is a closed interval as the positive semidefinite cone is

closed. If Γ is bounded, let [γ−, γ+] denote its left and right endpoints. Else, let γ− denote its

left endpoint and define γ+ := +∞. Note that for any γ ∈ Γ, q(γ, x) is a convex function of x.

Furthermore, by the existence of γ̄ ≥ 0 such thatA(γ̄) ≻ 0, we have that 0 ≤ γ− < γ+.

Definition 19. Let d : R+ → {−∞} ∪ R denote the extended-real-valued function defined by

d(γ) := inf
x∈Rn

q(γ, x). □

We make the following observations on d(γ).

Observation 4. Suppose Assumption 13 holds. Then,

• The function d(γ) is concave as it is the infimum of affine functions of γ.

• The function d(γ) is continuous on int(Γ). Furthermore, limγ↘γ− d(γ) = d(γ−) and, if
γ+ is finite, then limγ↗γ+ d(γ) = d(γ+).

• For γ ∈ R+ \ Γ, the function q(γ, x) is nonconvex in x so that d(γ) = −∞.

• As q1(x̄) < 0, we have d(γ) ≤ q(γ, x̄)→ −∞ as γ →∞.

153

5 Implicit regularity in the generalized trust-region subproblem

We comment on the connection between d(γ), the SDP relaxation of (5.1), and the Lagrangian

dual of (5.1). One consequence of the S-lemma [67] is that the GTRS has an exact SDP relaxation.

Furthermore, it is well-known that the SDP relaxation of a general quadratically constrained

quadratic program is equivalent to its Lagrangian dual [22]. We will write this fact in our setting

as the following identity (which holds under Assumption 13),

Opt = inf
x∈Rn

sup
γ∈Γ

q(γ, x). (5.2)

We provide a short self-contained proof of this fact in Section E.3. Next, by coercivity [62, Propo-

sition VI.2.3] we have that

Opt = sup
γ∈Γ

inf
x∈Rn

q(γ, x) = sup
γ∈Γ

d(γ) = sup
γ∈R+

d(γ). (5.3)

In words, (5.2) shows that the GTRS can be written as a convex minimization problem. Specifi-

cally, we can write Opt in one of the two following ways, corresponding respectively to the cases

γ+ <∞ and γ+ =∞:

Opt = inf
x∈Rn

max(q(γ−, x), q(γ+, x)) or Opt = inf
x∈Rn
{q(γ−, x) : q1(x) ≤ 0}. (5.4)

Note in the latter case thatA1 ⪰ 0 so that q1(x) ≤ 0 is a convex constraint. Similarly, (5.3) shows

that the GTRS can be written as a concave maximization problem.

Remark 63. The reformulation of the GTRS given in (5.4) immediately suggests an algorithm

for approximating Opt: Compute γ− (and if necessary γ+) up to some accuracy and solve the

resulting convex reformulation. Convergence guarantees along with rigorous error analyses for

such an algorithm were previously explored by Wang and Kılınç-Karzan [180]. One drawback

to this approach is that the convex functions q(γ−, x) and q(γ+, x) are, by construction, not
both strongly convex unless A0, A1 ≻ 0. Thus, in view of oracle lower bounds for first-order-

methods [132, Chapter 2.1.2], one should not expect to achieve linear convergence rates via

this approach. Similarly, the reformulation of the GTRS given in (5.3) immediately suggests an

algorithm for approximating Opt: apply a root-finding algorithm or binary search to find γ∗
. This

approach dates back to Moré and Sorenson [125] for the TRS and Moré [124] for the GTRS (see

also [2, 65]). Unfortunately, theoretical convergence rates have not been established for algorithms

of this form. □

We will combine both ideas above to construct strongly convex reformulations for instances of

(5.1) possessing regularity. Our notion of regularity will correspond to properties of d(γ) and its

optimizers. We will need the following notation.

Definition 20. For γ ∈ int(Γ), define

x(γ) := −A(γ)−1b(γ), ν(γ) := q1(x(γ)), and µ(γ) := λmin(A(γ)). □

The functions d(γ),x(γ), and ν(γ) have been studied previously in the literature on algorithms

for the TRS and the GTRS [2, 65, 124, 125]. In contrast to previous algorithms in this line of

work, which propose methods for computing γ∗
to high accuracy, the algorithms we present in

154

5.2 Implicit Regularity in the GTRS

this chapter will work with relatively inaccurate estimates of γ∗
. Specifically, our algorithms are

inspired by a key lemma, namely Lemma 60, which says that if (5.1) has positive regularity, then

the optimal solution to (5.1) is stable to inaccurate estimates of γ∗
. We begin by deriving some

properties of d(γ) and its derivatives on int(Γ).

Lemma 58. Suppose Assumption 13 holds. If γ ∈ int(Γ), then

d(γ) = q(γ, x(γ)) and d
dγ d(γ) = ν(γ).

Proof. Forγ ∈ int(Γ), we haveA(γ) ≻ 0 and thus q(γ, x) is a strongly convex quadratic function

in x. One may check that∇xq(γ, x) = 2(A(γ)x+ b(γ)), and thus d(γ) = q(γ, x(γ)).

Next, from d(γ) = q(γ, x(γ)) and x(γ) = −A(γ)−1b(γ), we deduce

d
dγ d(γ) = d

dγ

(
−b(γ)⊺A(γ)−1b(γ) + c(γ)

)
= b(γ)⊺A(γ)−1A1A(γ)−1b(γ)− 2b⊺1A(γ)−1b(γ) + c1

= q1(x(γ)). ■

Lemma 59. Suppose Assumption 13 holds. Let γ̂ ∈ int(Γ), P := A(γ̂)−1/2, and ∆ :=
(A0P

2b1 −A1P
2b0). Then, for γ ∈ int(Γ),

d
dγ ν(γ) = −2(A1x(γ) + b1)⊺A(γ)−1(A1x(γ) + b1)

= −2∆⊺
(
A(γ)P 2A(γ)P 2A(γ)

)−1
∆.

Proof. Starting from ν(γ) = q1(x(γ)), we compute

d
dγ ν(γ) =

〈
∇xq1(x) |x=x(γ),∇γx(γ)

〉
= −2

〈
A1x(γ) + b1, A(γ)−1(A1x(γ) + b1)

〉
= −2(A1x(γ) + b1)⊺A(γ)−1(A1x(γ) + b1).

Note also that

A1x(γ) + b1 = A(γ)A(γ)−1b1 −A1A(γ)−1b(γ)

=
(
A0A(γ)−1b1 + γA1A(γ)−1b1

)
−
(
A1A(γ)−1b0 + γA1A(γ)−1b1

)
= A0A(γ)−1b1 −A1A(γ)−1b0.

Next, suppose γ̂ ∈ int(Γ) and let P := A(γ̂)−1/2
. Then, PA0P and PA1P commute.

Indeed, PA0P + γ̂PA1P = PA(γ̂)P = I . Then,

A0A(γ)−1b1 = P−1PA0P (PA(γ)P)−1Pb1

= P−1(PA(γ)P)−1PA0P
2b1

= (A(γ)P 2)−1A0P
2b1.

155

5 Implicit regularity in the generalized trust-region subproblem

Similarly,A1A(γ)−1b0 = (A(γ)P 2)−1A1P
2b0. We deduce

d
dγ ν(γ) = −2

(
A0P

2b1 −A1P
2b0
)⊺(

A(γ)P 2A(γ)P 2A(γ)
)−1(

A0P
2b1 −A1P

2b0
)
.■

Corollary 24. Suppose Assumption 13 holds. Then, ν(γ) is either a strictly decreasing or constant
function of γ.

Proof. Fix γ̂ ∈ int(Γ). By Lemma 59, ν(γ) is strictly decreasing ifA0A(γ̂)−1b1−A1A(γ̂)−1b0
is nonzero. Else, ν(γ) is constant. ■

Corollary 25. Suppose Assumption 13 holds. Then, arg maxγ∈R+ d(γ) is either a unique point or
is all of Γ. In the latter case, we furthermore have that Γ is compact.

Proof. Note that by Assumption 13, supγ∈R+ d(γ) is achieved. Indeed, as noted in Observation 4,

d(γ)→ −∞ as γ →∞. Thus, arg maxγ∈R+ d(γ) is nonempty.

We will suppose that arg maxγ∈R+ d(γ) contains at least two points, γ(1) < γ(2)
, and show

that d(γ) is constant on Γ. Note, by concavity of d(γ) and Lemma 58, we have that ν(γ) = 0 for

all γ ∈ (γ(1), γ(2)). By Assumption 13 and Corollary 24, ν(γ) = 0 on all of int(Γ) so that d(γ)
is constant on int(Γ). By the limit behavior of d(γ) at γ− and γ+ (see Observation 4), d(γ) is

then constant on all of Γ. This then implies that Γ is compact as again by Observation 4, we have

d(γ)→ −∞ as γ →∞. ■

We now define our notion of regularity for the GTRS.

Definition 21. If supγ∈R+ d(γ) has a unique maximizer, then set γ∗
to be the unique maximizer.

Otherwise, arg maxγ∈R+ d(γ) = Γ and let γ∗ ∈ arg maxγ∈Γ µ(γ). Let µ∗ := µ(γ∗). We will

say that the GTRS (5.1) has regularity µ∗
. □

Remark 64. One may think of this notion of regularity as requiring strict complementarity
between the desired rank-one solution of the SDP relaxation of the GTRS and its dual:

Writing out the SDP relaxation of the GTRS in full gives

inf
Y ∈Sn+1


〈
M

obj
, Y
〉

:
⟨M1, Y ⟩ ≤ 0

Y =
(
∗ ∗
∗ 1

)
⪰ 0


≥ sup

γ∈Rm, t∈R

{
t :

(
A(γ) b(γ)
b(γ)⊺ c(γ)− t

)
⪰ 0

}
.

Strict complementarity asks that the primal SDP have a solution Y ∗
of rank k and the dual

SDP have solution γ∗, t∗ satisfying rank
((

A(γ∗) b(γ∗)
b(γ∗)⊺ c(γ∗)−t∗

))
= n + 1 − k. One may

show that this holds with k = 1 if and only ifA(γ∗) ≻ 0 for some maximizer of (γ) (see

Lemma 73). □

Corollary 25 ensures that arg maxγ∈R+ d(γ) and µ∗
in Definition 21 are well-defined. Note

that, technically, γ∗
is not well-defined if arg maxγ∈R+ d(γ) = Γ and µ(γ) has more than one

156

5.2 Implicit Regularity in the GTRS

maximizer. This is inconsequential and we may work with an arbitrary γ ∈ arg maxγ∈Γ µ(γ).

For concreteness, one may take γ∗
to be the minimum maximizer of µ(γ) in this case.

Remark 65. We make a few observations on our definition of regularity and compare it to the

so-called “easy” and “hard” cases of the trust-region subproblem (TRS). Recall that the TRS is the

special case of the GTRS (5.1) where q1(x) = x⊺x−1, i.e., the constraint q1(x) ≤ 0 corresponds

to the unit ball constraint ∥x∥2 ≤ 1. We will assume that A0 ̸⪰ 0. Let V ⊆ Rn
denote the

eigenspace corresponding to λmin(A0). The “easy” and “hard” cases of the TRS correspond to

the cases ΠV (b0) ̸= 0 and ΠV (b0) = 0 respectively. Here, ΠV is the projection onto V .

In the “easy” case, it is possible to show that limγ↘−λmin(A0) d(γ) = −∞ so that γ∗ >
−λmin(A0) and µ∗ > 0. On the other hand, it is possible for µ∗ > 0 even in the “hard” case. For

example, taking n = 2 and

A0 =
(

1
−1

)
, b0 =

(
3
0

)
, c0 = 0,

we have Γ = [1,+∞) and d(γ) = −9(1 + γ)−1 − γ on int(Γ). A simple computation then

shows γ∗ = 2 and µ∗ = 1. We conclude that µ∗ = 0 implies the “hard case” but not necessarily

vice versa. □

We are now ready to present and prove our key lemma.

Lemma 60. Suppose Assumption 13 holds, µ∗ > 0 and the interval [γ(1), γ(2)] ⊆ R+ contains γ∗.
Then, ν(γ∗) = 0 and x(γ∗) is the unique optimizer of both (5.1) and

inf
x∈Rn

max
(
q(γ(1), x), q(γ(2), x)

)
. (5.5)

In particular, taking [γ(1), γ(2)] ⊆ int(Γ), we have that x(γ∗) is the unique optimizer to the
strongly convex problem (5.5).

Proof. We show that x(γ∗) is the unique minimizer of (5.5). Note that for all x ∈ Rn
, we have

max
(
q(γ(1), x), q(γ(2), x)

)
≥ q(γ∗, x) ≥ inf

x∈Rn
q(γ∗, x) = d(γ∗),

where the first inequality follows from the facts that γ∗ ∈ [γ(1), γ(2)] and q(γ, x) is an affine

function of γ. On the other hand, as γ∗ ∈ int(Γ) is a maximizer of the concave function d(γ),

which is differentiable at γ∗
(see Observation 4, Definition 17, and Lemma 58), we have that

0 = d
dγ d(γ)|γ=γ∗ = ν(γ∗) = q1(x(γ∗)) where the second equation follows from Lemma 58.

Then, q1(x(γ∗)) = 0 implies that q(γ, x(γ∗)) = q0(x(γ∗)) for any γ. Hence, we deduce that

max
(
q(γ(1), x(γ∗)), q(γ(2), x(γ∗))

)
= q(γ∗, x(γ∗)) = d(γ∗)

so thatx(γ∗) is a minimizer of (5.5). Uniqueness ofx(γ∗) then follows from the fact that q(γ∗, x)
is a strongly convex function ofx and it lower bounds the objective function max

(
q(γ(1), x), q(γ(2), x)

)
of (5.5).

157

5 Implicit regularity in the generalized trust-region subproblem

Figure 5.1: A comparison of the convex reformulations of the GTRS given in (5.4) and Lemma 60. The first

two figures depict an instance of the GTRS and its epigraph (in blue). The third figure shows

the epigraph of the convex reformulation of the GTRS given in (5.4) (in red). The fourth figure

shows the epigraph of a strongly convex reformulation of the GTRS given by Lemma 60 (in red).

The proof that x(γ∗) is the unique optimizer of (5.1) follows verbatim using the lower bound:

q0(x) ≥ q(γ∗, x) for all x ∈ Rn
such that q1(x) ≤ 0. ■

5.3 Algorithms for the GTRS

We now turn to the GTRS and present an approach for computing Opt that exploits regularity in

(5.1). Our approach will consist of two parts: constructing a convex reformulation of (5.1) and

solving the convex reformulation. In conjunction, these two pieces will allow us to achieve linear
convergence rates for (5.1) whenever µ∗ > 0.

Similar to other recent papers on the GTRS [95, 180], we will assume that we are given as input

the problem data (A0, A1, b0, b1, c0, c1), regularity parameters (ξ, ζ, γ̂), and error and failure

parameters (ϵ, p). We will make the following assumption on our input data.

Assumption 14. Suppose that for both i ∈ {0, 1}, Ai has at least one negative eigenvalue,

∥Ai∥, ∥bi∥, |ci| ≤ 1. Let N denote the number of nonzero entries in A0 and A1 combined

and assume N ≥ n. Furthermore, suppose γ+ ≤ ζ , A(γ̂) ⪰ ξI , 0 < ξ ≤ 1 ≤ ζ , and

ϵ, p ∈ (0, 1). □

These assumptions are relatively minor. Indeed,N ≥ nwithout loss of generality. Furthermore,

if any of the norms ∥Ai∥, ∥bi∥, |ci| are larger than 1, we may scale the entire function qi(x) until

Assumption 14 holds.

Remark 66. The regularity parameters ξ and ζ will appear in our error and running time bounds.

We make no attempt to optimize constants in these bounds and will routinely apply the following

bounds (following from Assumption 14) for γ ∈ Γ: ∥A(γ)∥, ∥b(γ)∥, |c(γ)| ≤ 1 + ζ ≤ 2ζ □

Our first algorithm, ConstructReform (Algorithm 5), will attempt to construct a convex refor-

mulation of (5.1) with strong convexity on the order of min(µ∗, ξ). Note, however, that it may

be undesirable to compute this reformulation if min(µ∗, ξ) ≲ ϵ. In view of this, we define

ϕ := max
(
min(µ∗, ξ), ϵξ4/ζ4

)
.

To understand this quantity, note that [ϵξ4/ζ4, ξ] is an interval and thatϕ is the closest point toµ∗

in this interval. Then, ConstructReform, will either output an exact strongly convex reformulation

158

5.3 Algorithms for the GTRS

of (5.1) with strong convexity on the orderϕ or an ϵ-approximate optimizer. In the former case, we

will then apply our second algorithm, SolveRegular (Algorithm 8), to compute an ϵ-approximate

optimizer.

Remark 67. ConstructReform only needs to successfully output an exact strongly convex reformu-

lation once on any given instance. Specifically, imagine attempting to solve a single instance of the

GTRS twice–once at low accuracy then a second time at a higher accuracy. If ConstructReform

successfully outputs a strongly convex reformulation on the first run, then on the second run, we

may skip ConstructReform and simply begin with SolveRegular with the new value of ϵ > 0. □

Section E.2 contains useful algorithms and guarantees from the literature that we will use as

building blocks in ConstructReform and SolveRegular. Specifically, Section E.2 recalls the running

time of the conjugate gradient algorithm for minimizing a quadratic function (Lemma 97), the

running time of the Lanczos method for finding a minimum eigenvalue (Lemma 96), and the

running time of Nesterov’s accelerated gradient descent method for minimax problems applied to

the maximum of two quadratic functions (Lemma 98). We additionally present ApproxGammaLeft,

a minor modification of [180, Algorithm 2] for finding an aggregation weight γ ≤ γ̂ such that

µ(γ) falls in a specified range, and ApproxNu, a restatement of the conjugate gradient guarantee

for the purpose of approximating ν(γ). We state the guarantees of ApproxGammaLeft and ApproxNu

below and leave their proofs to Section E.2.

Lemma 61. Suppose Assumption 14 holds, µ ∈ (0, ξ) and p ∈ (0, 1). Then, with probability at
least 1− p, ApproxGammaLeft(µ, p) (Algorithm 17) returns (γ, v) such that γ ≤ γ̂ and v is a unit
vector satisfying µ/2 ≤ µ(γ) ≤ v⊺A(γ)v ≤ µ in time

Õ

(
N
√

ζ√
µ log

(
n
p

)
log
(

ζ
µ

))
.

Lemma 62. Suppose Assumption 14 holds, µ ∈ (0, ξ], δ ∈ (0, 1), and A(γ) ⪰ µI . Then
ApproxNu(µ, δ, γ) (Algorithm 18) returns (x̃, ν̃) such that ∥x̃− x(γ)∥ ≤ µδ/10ζ , and ν̃ =
q1(x̃) ∈ [ν(γ)± δ] in time

O

(
N
√

ζ√
µ log

(
ζ

µδ

))
.

5.3.1 Constructing a strongly convex reformulation

We present and analyze ConstructReform (Algorithm 5). For the sake of presentation, we break

ConstructReform into the following parts.

We will say that ConstructReform (similarly, CRLeft, CRMid, and CRRight) succeeds if it either

outputs:

• "regular", γ(1)
, γ(2)

, µ̃ such that γ∗ ∈ [γ(1), γ(2)] and µ(γ(i)) ≥ µ̃ ≥ min(µ∗, ξ)/8,

• "maybe regular", x such that x is an ϵ-approximate optimizer, or

• "not regular", x such that x is an ϵ-approximate optimizer.

The remainder of this subsection proves the following guarantee.

159

5 Implicit regularity in the generalized trust-region subproblem

Algorithm 5 ConstructReform

Given (A0, A1, b0, b1, c0, c1), (ξ, ζ, γ̂) and ϵ, p ∈ (0, 1) satisfying Assumption 14

1. Set γ0 = γ̂, µ0 = ξ
2. Set (x0, ν0) = ApproxNu(µ0, ϵ/(4ζ), γ0)
3. If ν0 + ϵ/(4ζ) < 0, run CRLeft (Algorithm 6)

4. Else if ν0 − ϵ/(4ζ) > 0, run CRRight

5. Else, run CRMid (Algorithm 7)

Proposition 17. Suppose Assumption 14 holds. With probability at least 1− p, ConstructReform
(Algorithm 5) succeeds and runs in time

Õ

(
N
√
ζ√
ϕ

log
(1
ϕ

)
log
(
n

p

)
log
(
ζ

ϵξ

))
.

Proposition 17 will follow as an immediate corollary to the corresponding guarantees for CRLeft,

CRRight, and CRMid. The steps and analysis of CRRight are analogous to that of CRLeft and are

omitted.

Our algorithms will attempt to binary search for γ∗
using the sign of ν(γ). Unfortunately, as

we can only approximate ν(γ) up to some accuracy, we will need to argue how to handle situations

where our approximation of ν(γ) is close to zero.

Lemma 63. Suppose Assumption 14 holds, µ ∈ (0, ξ], ϵ ∈ (0, 1), andA(γ) ⪰ µI . Let (x̃, ν̃) =
ApproxNu(µ, ϵ/(4ζ), γ). If ν̃ ∈ [±ϵ/(4ζ)], then x̃ is an ϵ-approximate optimizer of (5.1).

Proof. By Lemma 62, we have that q1(x(γ)) = ν(γ) ∈ [ν̃ ± ϵ/(4ζ)] ⊆ [±ϵ/(2ζ)] where the

last containment follows from ν̃ ∈ [±ϵ/(4ζ)] in the premise of the lemma. Also, note that

q0(x(γ)) = q(γ, x(γ))− γν(γ) ≤ Opt +ϵ/2.

Here, the inequality follows from the bounds ν(γ) ∈ [±ϵ/(2ζ)], γ ≤ γ+ ≤ ζ (as A(γ) ⪰ 0
we have γ ∈ Γ and Assumption 14 ensures γ+ ≤ ζ), and q(γ, x(γ)) = d(γ) ≤ Opt. Thus, we

deduce that x(γ) is an ϵ/2-approximate optimizer.

Next, by Lemma 62, we have∥x(γ)− x̃∥ ≤ ϵµ/(40ζ2). Note that∥x(γ)∥ =
∥∥−A(γ)−1b(γ)

∥∥ ≤∥∥A(γ)−1∥∥∥b(γ)∥ ≤ 2ζ/µwhere the last inequality follows fromA(γ) ⪰ µI and ∥b(γ)∥ ≤ 2ζ
(implied by Remark 66). Considering Assumption 14 and applying Lemma 94 with the bounds

∥x(γ)∥ ≤ 2ζ/µ and ∥x(γ)− x̃∥ ≤ ϵµ/(40ζ2), we arrive at

q0(x̃) ≤ q0(x(γ)) + 5ϵ µ

40ζ2
2ζ
µ
≤ Opt + ϵ

2 + ϵ

4ζ ≤ Opt +ϵ

q1(x̃) ≤ q1(x(γ)) + 5ϵ µ

40ζ2
2ζ
µ
≤ ϵ

2 + ϵ

4ζ ≤ ϵ. ■

Remark 68. In contrast to the TRS setting, where it is possible to show that ν(γ) “grows quickly”

around γ∗
, in the GTRS setting, ν(γ) may be “arbitrarily flat”. In particular, it may not be possible

to determine the sign of ν(γ) given only an inaccurate estimate. Correspondingly, ConstructRe-

form may fail to differentiate between "regular" and "not regular" instances and return "maybe

160

5.3 Algorithms for the GTRS

regular". In view of Remark 67, we will think of "maybe regular" outputs as being less desirable

than "regular" outputs. We will explore this issue in further detail in Section 5.3.4 and show

that ConstructReform does not output "maybe regular" as long as the GTRS instance satisfies a

coherence condition. □

Analysis of CRLeft

Algorithm 5 calls CRLeft if ν0 + ϵ/4ζ < 0. Note that in this case, from Lemma 62 we have

ν(γ̂) = ν(γ0) ∈ [ν0 ± ϵ/(4ζ)] which implies ν(γ̂) < 0.

Algorithm 6 CRLeft

1. Let T :=
⌈
log
(

3200ζ4

ϵξ3

)⌉
. For t = 1, . . . , T ,

a) Set µt = 2−tξ
b) Set (γt, vt) = ApproxGammaLeft(µt, p/T)
c) Set (xt, νt) = ApproxNu(µt/2, ϵ/(4ζ), γt)
d) If νt − ϵ/(4ζ) > 0, return "regular", γt, γ̂, µt/4
e) Else if νt ∈ [−ϵ/(4ζ), ϵ/(4ζ)]

i. Set γ′ := γt − µt/4
ii. Set (x′, ν′) = ApproxNu(µt/4, ϵ/(4ζ), γ′)

iii. If ν′ − ϵ/(4ζ) > 0, return "regular", γ′
, γ̂, µt/4

iv. Else, return "maybe regular", xt

2. If necessary, negatevT so that ⟨vT , A(γT)xT + b(γT)⟩ ≤ 0. Letα > 0 such that q1(xT +αvT) =
0, return "not regular", xT + αvT .

Proposition 18. Suppose Assumption 14 holds. With probability at least 1−p, CRLeft (Algorithm 6)
succeeds and runs in time

Õ

(
N
√

ζ√
ϕ

log
(

1
ϕ

)
log
(

n
p

)
log
(

ζ
ϵξ

))
.

Proof. We condition on step 1.(b) of CRLeft succeeding in every iteration. This happens with

probability at least 1− p.

We begin with the running time. Note that by Lemmas 61 and 62 and µt = 2−tξ (from step

1.(a)), iteration t of line 1 runs in time

Õ

(
N
√

ζ√
µt

log
(

n
p

)
log
(

ζ
ϵξ

))
.

It suffices then to show that µt = Ω(ϕ) in every iteration before CRLeft outputs. Noting that

µt ≥ µT = Ω(ϵξ4/ζ4), we may instead show that µt = Ω(min(µ∗, ξ)) in the iteration at which

CRLeft outputs.

It remains to show that the output of CRLeft satisfies the success criteria and that µt =
Ω(min(µ∗, ξ)) for the iteration t at which CRLeft outputs. We split the remainder of the proof

into three parts depending on which line CRLeft returns on.

161

5 Implicit regularity in the generalized trust-region subproblem

Case 1: CRLeft terminates on either line 1.(d) or 1.(e).iii in iteration t Let γ̃ := γt in

the first case and γ̃ := γ′
in the second. As CRLeft did not terminate at time t− 1, we have that

ν(γt−1) < 0. Indeed, if ν(γt−1) ≥ 0, then νt−1 ≥ −ϵ/4ζ by Lemma 62. Then, ν(γ̃) > 0 >
ν(γt−1). We deduce by the fact that d(γ) is concave and Lemma 58 that γ∗ ∈ [γ̃, γt−1] ⊆ [γ̃, γ̂].
By construction in line 1.(b), we have that µ(γ̃) ≥ µt/4.

It remains to show that µt ≥ min(µ∗, ξ)/2. This holds if t = 1, as then µ1 = ξ/2 by line

1.(a). On the other hand, if t > 1, then µ(γ) is an increasing function on the interval (−∞, γt−1].
Indeed, this follows as γt−1 ≤ γ̂, µ(γt−1) ≤ ξ/2 < µ(γ̂), and µ(γ) = λmin(A0 + γA1) is a

concave function of γ. Then, from γ∗ ∈ [γ̃, γt−1], we deduce that

µ∗ = µ(γ∗) ≤ µ(γt−1) ≤ µt−1 = 2µt,

where the last inequality follows from line 1.(b).

Case 2: CRLeft terminates on line 1.(e).iv in iteration t In this case, we have that

(xt, νt) = ApproxNu(µt/2, ϵ/(4ζ), γt) satisfies νt ∈ [±ϵ/(4ζ)]. By Lemma 63, we have that

xt is an ϵ-approximate optimizer. It remains to note that the second paragraph of Case 1 holds in

this case verbatim so that µt ≥ min(µ∗, ξ)/2.

Case 3: CRLeft terminates on line 2 Note that q1(xT) = νT < 0 holds by line 1.(c),

Lemma 62, and the fact that CRLeft did not terminate in a prior line. Furthermore,

v⊺TA1vT = v⊺T

(
A(γ̂)−A(γT)

γ̂ − γT

)
vT ≥

ξ − µT

ζ
≥ ξ

2ζ > 0,

where the first inequality follows from ζ ≥ γ̂ (by Assumption 14), v⊺TA(γT)vT ≤ µT (by line

1.(b) and Lemma 61) and v⊺TA(γ̂)vT = v⊺TA0vT + γ̂ ≥ ξ (by Assumption 14 and γ̂ ≥ 0), and

the second inequality follows from µT = 2−T ξ by line 1(a). This then implies that α in line 2 is

well-defined. Thus, by construction in line 2, q1(xT + αvT) = 0. Our goal is to show that

q0(xT + αvT) = q(γT , xT + αvT) ≤ q(γT , xT) + α2µT ≤ Opt +ϵ.

The following sequence of inequalities allows us to bound ∥x(γT)∥:

ξ∥x(γT)∥2 − 4ζ∥x(γT)∥ − 2ζ ≤ q(γ̂, x(γT)) ≤ q(γT , x(γT)) ≤ Opt .

Here, the first inequality follows from A(γ̂) ⪰ ξI , ∥b(γ̂)∥ ≤ 2ζ and |c(γ̂)| ≤ 2ζ , the second

inequality follows as 0 ≥ ν(γT) = q1(x(γT)) (by line 1.(c), Lemma 62 and the fact that CRLeft ter-

minates on line 2) and γ̂ ≥ γT , the third inequality follows as q(γT , x(γT)) = d(γT) ≤ Opt (by

Lemma 58). Then, taking x = 0 in the expression Opt = infx supγ∈Γ q(γ, x) gives Opt ≤ 2ζ .

Applying Lemma 95 to ξ∥x(γT)∥2− 4ζ∥x(γT)∥− 4ζ ≤ 0 gives ∥x(γT)∥ ≤ (2
√

2 + 2)ζ/ξ ≤
5ζ/ξ, and by Assumption 14 and line 1.(c) we have∥A1xT + b1∥ ≤ ∥A1∥(∥x(γT)∥+ ∥xT − x(γT)∥)+
∥b1∥ ≤ (5ζ/ξ + 1) + 1 ≤ 7ζ/ξ.

162

5.3 Algorithms for the GTRS

Next, we may bound

q(γT , xT) ≤ q(γT , x(γT)) + ∥A(γT)∥∥x(γT)− xT ∥2

≤ Opt +(2ζ)
(
µT ϵ

80ζ2

)2
≤ Opt +ϵ/2.

Similarly, ν(γT) ≥ ν(γ̂) = q1(x(γ̂)) ≥ −∥x(γ̂)∥2 − 2∥x(γ̂)∥ − 1 ≥ −(3ζ/ξ)2
, where

the first inequality follows from Corollary 24 and the last from the bound ∥x(γ̂)∥ ≤ 2ζ/ξ. We

deduce that 0 ≥ q1(xT) ≥ ν(γT)− ϵ/(4ζ) ≥ −10ζ2/ξ2
. By line 2 and applying Lemma 95,

we have that α ≤ 40ζ2/ξ2
.

We conclude that α2µT ≤ α2 ϵξ4

3200ζ4 ≤ ϵ
2 so that q0(xT + αvT) = q(γT , xT + αvT) ≤

q(γT , xT) + α2µT ≤ Opt +ϵ, where the equation follows from the definition of α in line 2.

It remains to note that as ν(γT) < 0, Corollary 24 implies γ∗ ≤ γT and µ∗ = µ(γ∗) ≤
µ(γT) ≤ µT . ■

Analysis of CRMid

Algorithm 5 calls CRMid ifν0 ∈ [−ϵ/(4ζ), ϵ/(4ζ)]. Note that in this case, we may deduce |ν(γ̂)| =
|ν(γ0)| ≤ ϵ/(2ζ).

Algorithm 7 CRMid

1. Let γ′ := γ0 − ξ/2 and γ′′ := γ0 + ξ/2
2. Set (x′, ν′) = ApproxNu(γ′, ϵ/(4ζ))
3. Set (x′′, ν′′) = ApproxNu(γ′′, ϵ/(4ζ))
4. If ν′ − ϵ/(4ζ) > 0 > ν′′ + ϵ/(4ζ), return "regular", γ′

, γ′′
, ξ/2

5. Else if ν′ − ϵ/(4ζ) ≤ 0, return "maybe regular", x0
6. Else, return "maybe regular", x0

Proposition 19. Suppose Assumption 14 holds. Then, CRMid (Algorithm 7) succeeds and runs in
time

O

(
N
√

ζ√
ξ

log
(

ζ
ϵξ

))
.

Proof. Suppose CRMid returns on line 4. Then, by Lemma 62 and lines 2 and 3 we have ν(γ′) >
0 > ν(γ′′). We deduce by the fact that d(γ) is concave and Lemma 58, that γ∗ ∈ [γ′, γ′′].
Furthermore, µ(γ̂ ± ξ/2) ≥ µ(γ̂)− ξ/2 ≥ ξ/2 as µ is 1-Lipschitz and µ(γ̂) ≥ ξ.

If, CRMid returns on lines 5 or 6, then (x0, ν0) = ApproxNu(µ0, ϵ/(4ζ), γ0) satisfies ν0 ∈
[±ϵ/(4ζ)]. By Lemma 63, we have that x0 is an ϵ-approximate optimizer.

The running time of CRMid follows from Lemma 97. ■

163

5 Implicit regularity in the generalized trust-region subproblem

Algorithm 8 SolveRegular

Given γ(1), γ(2), µ̃ such that γ∗ ∈ [γ(1), γ(2)] and mini∈[2]
{
µ(γ(i))

}
≥ µ̃ > 0

1. Apply Nesterov’s accelerated minimax scheme for strongly convex smooth quadratic functions to

compute a µ̃(ϵµ̃/10ζ)2
-optimal solution x̄ to

min
x∈Rn

max
(
q(γ(1), x), q(γ(2), x)

)
2. Return x̄

5.3.2 Solving the convex reformulation

Proposition 20. Suppose Assumption 14 holds and µ̃ ∈ (0, ξ]. Then, SolveRegular (Algorithm 8)
computes an ϵ-approximate solution to (5.1) in time

O

(
N
√

ζ√
µ̃

log
(

ζ
ϵµ̃

))
.

Proof. For notational simplicity, let qmax(x) := max
(
q(γ(1), x), q(γ(2), x)

)
. Letx∗ := x(γ∗).

Recall that q0(x∗) = Opt, q1(x∗) = 0, and qmax(x∗) = Opt. Then, by definition of µ∗
in

Definition 21 and strong convexity of q(γ∗, x), we have

µ̃∥x∗ − x̄∥2 ≤ µ∗∥x∗ − x̄∥2 ≤ q(γ∗, x̄)− q(γ∗, x∗) = q(γ∗, x̄)−Opt

≤ qmax(x̄)−Opt ≤ µ̃
(
ϵµ̃

10ζ

)2
.

Rearranging, we may bound∥x∗ − x̄∥ ≤ ϵµ̃
10ζ . Furthermore,∥x∗∥ = ∥x(γ∗)∥ =

∥∥−A(γ∗)−1b(γ∗)
∥∥

so that ∥x∗∥ ≤ 2ζ/µ̃ holds by Assumption 14.

Then, as ϵµ̃/(10ζ) ≤ 1 and 2ζ/µ̃ ≥ 1 (by definition of µ̃ and Assumption 14), we can apply

Lemma 94 to get

q0(x̄) ≤ q0(x∗) + 5ϵ µ̃10ζ
2ζ
µ̃

= Opt +ϵ

q1(x̄) ≤ q1(x∗) + 5ϵ µ̃10ζ
2ζ
µ̃

= ϵ.

The running time follows from Lemma 98. ■

5.3.3 Putting the pieces together

The following theorem states the guarantee for applying ConstructReform (Algorithm 5) and

SolveRegular (Algorithm 8). This guarantee follows as a corollary to Propositions 18 to 20

164

5.3 Algorithms for the GTRS

Theorem 26. Suppose Assumption 14 holds. Then with probability 1− p, the procedure outlined
above returns an ϵ-approximate solution to (5.1) in time

Õ

(
N√

ϕ
log
(

1
ϕ

)
log
(

n
p

)
log
(

ζ
ϵξ

))
.

5.3.4 Revisiting "maybe regular" outputs

We revisit ConstructReform (Algorithm 5) and show that ConstructReform does not output "maybe

regular" on a successful run as long as a coherence condition is satisfied.

The following example shows that in the GTRS setting, ν(γ) may grow arbitrarily slowly near

γ∗
.

Example 17. Let n = 2 and ϵ ∈ (0, 1/4) and set

A0 =
(

1
−1/2

)
, A1 =

(
−1

1

)
, b0 = ϵ · e1, b1 = 0, c0 = 0, c1 = 16ϵ2.

Note that Γ = [1/2, 1] and A(3/4) = I/4 so that Assumption 14 holds with ξ = 1/4 and

ζ = 1. Then, we have

x(γ) = − ϵ

1− γ e1, ν(γ) = ϵ2
(

16− 1
(1− γ)2

)
, ∀γ ∈ (1/2, 1).

Taking ϵ→ 0, we have that
d

dγ ν(γ) may be arbitrarily close to zero around γ∗ = 3/4. We deduce

that Assumption 14 alone is not enough to upper bound
d

dγ ν(γ) over int(Γ). □

Lemma 64. Suppose Assumption 14 holds and that

δ :=
∥∥∥A0A(γ̂)−1b1 −A1A(γ̂)−1b0

∥∥∥ > 0.

Then, d
dγ ν(γ) ≤ −δ2ξ2/(4ζ3) for any γ ∈ int(Γ). In particular, |ν(γ)| ≤ ϵ/(2ζ) for an

interval of length at most 4ϵζ2/(δ2ξ2).

Proof. For convenience, letP := A(γ̂)−1/2
and ∆ := A0P

2b1 −A1P
2b0 so that δ = ∥∆∥. By

Lemma 59,

d

dγ
ν(γ) = −2∆⊺(A(γ)P 2A(γ)P 2A(γ))−1∆.

Assumption 14 implies A(γ̂) ⪰ ξI , and so P 2 ⪯ (1/ξ)I . Moreover, by Remark 66 we have

A(γ) ≤ 2ζI ∀γ ∈ int(Γ) and henceA(γ)P 2A(γ)P 2A(γ) ⪯ 8ζ3ξ−2I . We conclude,

d

dγ
ν(γ) ≤ −δ

2ξ2

4ζ3 .

The final assertion follows as
ϵ
ζ ·

4ζ3

δ2ξ2 = 4ϵζ2

δ2ξ2 . ■

165

5 Implicit regularity in the generalized trust-region subproblem

Remark 69. As in the proof of Proposition 18, we will assume that Line 1.(b) of CRLeft (Algo-

rithm 6) succeeds in every iteration. Suppose that CRLeft outputs "maybe regular" on iteration

t. Recall that in this case we have ν(γt), ν(γ′) ∈ [±ϵ/2ζ] and µt ≥ µ∗/2. By construction,

γ′ = γt − µt/4. By Lemma 64 we deduce that the coherence parameter δ is bounded by

δ ≤ 2
√

2ζ
ξ

√
ϵ

µ∗ .

Momentarily treating ξ, ζ as constant, we deduce that CRLeft can only output "maybe regular"

if the coherence parameter is sufficiently small, i.e., δ = O(
√
ϵ/µ∗) (assuming that line 1.(b)

succeeds in every iteration). □

5.4 Numerical Experiments

In this section, we study the numerical performance of our approach (Section 5.3) for solving

the GTRS. We compare our proposed approach with other algorithms [2, 21, 94, 180] suggested

in the literature. In the following, we will refer to our algorithm as WLK21 and the algorithms

in [2, 21, 94, 180] as AN19, BTH14, JL19, and WK20 respectively. Recall that WK20 [180] builds a

convex reformulation of the GTRS (see Remark 63) and applies Nesterov’s accelerated gradient

descent method. JL19 [94] builds the same convex reformulation and applies a saddle-point-based

first-order algorithm to solve it. AN19 [2] computes the minimum generalized eigenvalue (and

an associated eigenvector) of an indefinite (2n + 1) × (2n + 1) matrix pencil and recovers γ∗

and x∗
from these quantities. BTH14 [21] notes that the SDP relaxation of (5.1) (which is known

to be exact) can be reformulated as a second-order cone program (SOCP) after computing an

appropriate diagonalizing basis. The corresponding SOCP reformulation can then be solved via

interior-point method solvers such as MOSEK.

In our experiments, we have implemented slight modifications to WK20, WLK21, JL19, and AN19.

First, we have replaced the eigenvalue calls within WK20 and WLK21 with generalized eigenvalue calls.

Indeed, in both algorithms a series of eigenvalue calls are used to simulate a single generalized

eigenvalue call. While the theoretical analysis using eigenvalue calls is simpler, the practical running

time using generalized eigenvalue calls is faster due to the availability of efficient generalized eigen-

value solvers. Second, in view of practical applications where ϵ-feasibility may be unacceptable or

undesirable, we also implement a “rounding” step at the ends of WLK21, WK20, and JL19 to ensure

feasibility, i.e., q1(x̃) ≤ 0. As suggested in [2], AN19 implements a Newton refinement process

to ensure q1(x̃) ≤ 0. The feasibility in BTH14 depends on MOSEK and is often slightly violated.

Further implementation details are described in Section 5.4.1.

All experiments were performed in MATLAB R2021a and MOSEK 9.3.6 on a machine with

an AMD Opteron 4184 processor and 70GB of RAM. Our MATLAB code is available at:

https://github.com/alexlihengwang/linear-time-gtrs

5.4.1 Implementation

We discuss some implementation details.

166

https://github.com/alexlihengwang/linear-time-gtrs

5.4 Numerical Experiments

Eigenvalue solvers We replace ApproxGammaLeft (Algorithm 17) of CRLeft (Algorithm 6)

using a generalized eigenvalue solver as follows. Recall that ApproxGammaLeft finds γt ≤ γ̂ and unit

vector vt ∈ Rn
such that µt/2 ≤ µ(γt) ≤ v⊺tA(γt)vt ≤ µt. We can achieve the same guarantee

using a generalized eigenvalue solver: Approximate the minimum generalized eigenvalue λt of

−A1vt = λt(A(γ̂)− 3µt

4 I)vt to some tolerance ϵ and set γt = γ̂ + 1
λt

. Then, as long as ϵ > 0
is small enough, we can show that γt, vt satisfy the same guarantees as ApproxGammaLeft. Detailed

proofs can be found in Section E.4. In our implementations, we use the generalized eigenvalue

solver eigifp [75] for WLK21, WK20 and JL19. In contrast, as AN19 requires the minimum eigenvalue

to an indefinite matrix pencil, we use the generalized eigenvalue solver eigs for AN19.

Rounding At the end of WLK21, WK20 and JL19, we implement the following rounding procedure.

Given the output x̄ of one of these algorithms, we will construct x̃ := x̄+ δ where δ = αv. The

direction v is picked so that x⊺A1x is either positive or negative depending on the sign of q1(x̄).

Then, we pick α by solving the quadratic equation q1(x̄+ αv) = 0. For WK20 and JL19, we may

set v to be an approximate eigenvector of γ− or γ+ as we have already computed these quantities

while constructing the convex reformulation. For WLK21, we compute an (inaccurate) eigenvalue

corresponding to either λmin(A1) or λmax(A1).

5.4.2 Random instances

We evaluate the numerical performance of the different algorithms on random instances with

dimension n, number of nonzero entries N ≈ N̄ , regularity µ∗ ≈ µ̄∗
, and ξ = 0.1. Our

random generation process is similar to that of [2] and allows us to generate instances with known

optimizers.

First, sample a sparse symmetric matrix Â using the MATLAB command sprandsym(n,N/(n*n)).

This matrix is then scaled so that 0 ≺ ξI ⪯ Â ⪯ (1 + ξ)I . We will defineA0,A1, and γ̂ in such

a way thatA(γ̂) = Â. GenerateA0 using the same function call and scale it so that ∥A0∥ = 1.

We then set γ̂ := λmax(Â−A0) andA1 := (Â−A0)/γ̂. Note that ∥A1∥ = 1. We sample b0
and b1 uniformly from the unit sphere.

We have the option to choose γ∗
to lie to either the left or right of γ̂. In the former case, we set

γ∗ := γ̂ + 1/λmin(−A1, A(γ̂)− µ̄I). In the latter, we set γ∗ := γ̂ − 1/λmin(A1, A(γ̂)− µ̄I).

Here, the notation λmin(X,Y) denotes the minimum generalized eigenvalue ofX with respect

to Y . To ensure that γ∗
is indeed the dual optimizer, we set c0 = 0 and c1 such that ν(γ∗) = 0.

The exact optimizer is then given by x∗ := −A(γ∗)−1b(γ∗). Finally, we normalize b0, b1, c1 and

x∗
to ensure Assumption 14.

To summarize, the output of this method is a random GTRS instance satisfying Assumption 14

withN ≈ N̄ , µ∗ ≈ µ̄∗
and known Opt and x∗

(up to machine precision).

5.4.3 Experimental setup

The numerical experiments were performed with n ∈
{
103, 104, 105}

, N̄ ∈ {10n, 100n} and

µ̄∗ ∈
{
10−2, 10−4, 10−6}

. We generated 100 random instances for n = 103
and 104

and five

random instances for n = 105
due to large running times. BTH14 was only reported for n = 103

as for n ≥ 104
it was unable to return a solution within five times the average running time of

167

5 Implicit regularity in the generalized trust-region subproblem

WLK21 or WK20. The dominant cost in BTH14 for (5.1) is in computing the diagonalizing basis, which

requires computing a full set of generalized eigenvalues and is unlikely to scale favorably with n
andN . AN19 was not reported for n = 105

because of numerical issues and large running times

associated with eigs applied to the indefinite generalized eigenvalue problem.

For each algorithm and each random instance, we record the error,

Error = q0(x̃)−Opt,

of the output. For the three “convex-reformulation and gradient-descent” algorithms WLK21, WK20,

and JL19, we additionally record the error within the corresponding convex reformulations, i.e.,

ErrorCR = max
(
q(γ(1), x̄), q(γ(2), x̄)

)
−Opt, for WLK21, and

ErrorCR = max(q(γ−, x̄), q(γ+, x̄))−Opt, for WK20 and JL19.

See (5.2) and Proposition 17 for definitions of γ−, γ+, γ(1)
and γ(2)

. Here, x̄ is an iterate within

the gradient descent method for the corresponding convex reformulation and x̃ is a “rounded”

solution satisfying q1(x̃) ≤ 0.

5.4.4 Results

Our numerical results are illustrated in Figures 5.2 to 5.4 which display ErrorCR for WLK21, WK20,

and JL19 and Error for AN19 and BTH14 over time (in seconds) for each n ∈
{
103, 104, 105}

,

respectively. Tables containing detailed statistics are given in Section E.5.

Remark 70. We decide to plot ErrorCR for WLK21, WK20, and JL19 as that is the error that the

respective algorithms are designed to drive to zero. We observe empirically (see Section E.5)

that ErrorCR and Error track quite closely for WLK21. □

We make a number of observations:

• The lines plotted in Figures 5.2 to 5.4 begin after time zero. For WLK21, WK20, and JL19 this

gap corresponds to the time required to construct the corresponding convex reformulations

of (5.1). For AN19, this corresponds to the time required to compute x(γ̂) exactly, which is

required to set up the appropriate (2n+ 1)× (2n+ 1) generalized eigenvalue problem [2].

For BTH14, this gap corresponds to the time required to compute a diagonalizing basis of

(5.1).

• WLK21 constructs its reformulation faster than WK20 and JL19when µ̄∗ = 10−2
. The situation

is reversed for µ̄∗ ∈
{
10−4, 10−6}

. Nevertheless, WLK21 outperforms both WK20 and JL19

due to its significantly improved performance in solving the resulting convex reformulation.

See Section E.5.

• As expected from Theorem 26, WLK21 exhibits a linear convergence rate in terms of ϵ. This

is most apparent in the plots corresponding to µ̄∗ = 10−2
and µ̄∗ = 10−4

.

168

5.4 Numerical Experiments

0.0 0.2 0.4 0.6 0.8 1.0
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−2, N̄ = 104

0.0 0.5 1.0 1.5 2.0
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−4, N̄ = 104

0 1 2 3
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−6, N̄ = 104

0 2 4 6 8 10
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−2, N̄ = 105

0 5 10 15 20
time (s)

10−14

10−10

10−6

10−2

er
ro

r
µ̄∗ = 10−4, N̄ = 105

0 10 20 30
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−6, N̄ = 105

WLK21 WK20 AN19 JL19 BTH14

Figure 5.2: Comparison of algorithms for n = 103
.

0 5 10 15 20
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−2, N̄ = 105

0 10 20 30 40
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−4, N̄ = 105

0 20 40 60
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−6, N̄ = 105

0 50 100 150 200
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−2, N̄ = 106

0 100 200 300 400
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−4, N̄ = 106

0 200 400 600
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−6, N̄ = 106

WLK21 WK20 AN19 JL19

Figure 5.3: Comparison of algorithms for n = 104
.

169

5 Implicit regularity in the generalized trust-region subproblem

0 100 200 300
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−2, N̄ = 106

0 200 400 600
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−4, N̄ = 106

0 200 400 600 800
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−6, N̄ = 106

0 1000 2000 3000
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−2, N̄ = 107

0 2000 4000 6000
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−4, N̄ = 107

0 2000 4000 6000 8000
time (s)

10−14

10−10

10−6

10−2

er
ro

r

µ̄∗ = 10−6, N̄ = 107

WLK21 WK20 JL19

Figure 5.4: Comparison of algorithms for n = 105
.

• Although the convergence guarantees established for WK20 [180] and JL19 [94] do not depend

on µ∗
, our results show empirically that these algorithms in fact perform better when µ∗

is

large. The degree to which the running times of these algorithms vary with µ∗
is less than

that of WLK21.

• The convergence rates of AN19 and BTH14 do not vary significantly with eitherN or µ∗
, but

they exhibit heavy dependence on n. Specifically, the convergence rate of AN19 empirically

varies in n as≈ n2
. This is consistent with the results reported in [2]. Similarly, due to

the complete eigenbasis computation embedded in BTH14, we expect BTH14 to vary in n as

≈ n3
. Thus, as can be seen in Figures 5.2 to 5.4, although AN19 outperforms WLK21 and WK20

for (n, N̄ , µ̄∗) = (103, 105, 10−6), AN19 and BTH14 become impractical for n = 104
and

n = 105
.

• The saddle-point based first-order algorithm employed in JL19 is unable to decrease the

error below≈ 10−4
for µ̄∗ = 10−4

and µ̄∗ = 10−6
.

170

6 Accelerated first-order methods

for a class of semidefinite programs

This chapter is based on joint work [182] with Fatma Kılınç-Karzan.

This chapter introduces a new storage-optimal first-order method (FOM), CertSDP, for solving

a special class of semidefinite programs (SDPs) to high accuracy. The class of SDPs that we

consider, the exact QMP-like SDPs, is characterized by low-rank solutions, a priori knowledge

of the restriction of the SDP solution to a small subspace, and standard regularity assumptions

such as strict complementarity. This class is inspired by structural assumptions that hold for

exact SDP relaxations of quadratically constrained quadratic programs (QCQPs) and quadratic

matrix programs (QMPs). Crucially, we show how to use a certificate of strict complementarity to

construct a low-dimensional strongly convex minimax problem whose optimizer coincides with a

factorization of the SDP optimizer. From an algorithmic standpoint, we show how to construct

the necessary certificate and how to solve the minimax problem efficiently. We accompany our

theoretical results with preliminary numerical experiments suggesting that CertSDP significantly

outperforms current state-of-the-art methods on large sparse exact QMP-like SDPs.

6.1 Introduction

Semidefinite programs (SDPs) are among the most powerful tools that optimizers have for tackling

both convex and nonconvex problems. In the former direction, SDPs are routinely used to model

convex optimization problems that arise in a variety of applications such as robust optimization,

engineering, and robotics [22, 174]. In the latter direction, many results over the last thirty years

have shown that SDPs perform provably well as convex relaxations of certain nonconvex optimiza-

tion problems; see [22, 40, 74, 149] and references therein. As examples, exciting results in phase

retrieval [40] and clustering [1, 122, 153] show that these nonconvex problems have exact SDP

relaxations with high probability under certain random models. More abstractly, a line of recent

work [7, 17, 20, 35, 37, 38, 92, 100, 113, 167, 179, 181] has investigated general conditions under

which exactness holds between nonconvex quadratically constrained quadratic programs (QCQPs)

or quadratic matrix programs (QMPs) and their standard SDP relaxations.

Despite the expressiveness and strong theoretical guarantees of SDPs, they have seen limited

application in practice and have a reputation of being “prohibitively expensive,” especially for large-

scale applications. Indeed, standard methods for solving SDPs, such as the interior point methods

(IPMs) [4, 133], scale poorly with problem dimension due to both their expensive iterations and

also significant memory needs. See [198, Section 8.1] for a more thorough discussion.

171

6 Accelerated first-order methods for a class of semidefinite programs

In this chapter, we show how to derive highly efficient (in iteration complexity, per-iteration-cost,

and memory usage) first-order methods (FOMs) for solving general SDPs that admit a desirable

exactness property. Our developments are inspired by recent results on linearly convergent FOMs for

the trust-region subproblem (TRS) and the generalized trust-region subproblem (GTRS) [41, 183]

that operate in the original problem space. We briefly discuss these problems now to motivate our

assumptions and our problem class. We will discuss this literature in further detail in Section 6.1.3.

The TRS [125] seeks to minimize a general quadratic objective over the unit ball. The GTRS [124]

then replaces the unit ball constraint with a general quadratic equality or inequality constraint:

inf
x∈Rn−1

{
q

obj
(x) : q1(x) = 0

}
(presented as an equality constraint). Here, both q

obj
and q1 may be nonconvex, but it is standard

to assume that there exists γ̂ ∈ R such that q
obj

+ γ̂q1 is a strongly convex quadratic function.

Under this assumption, the S-lemma [67] guarantees that the GTRS has an exact SDP relaxation

in the following sense: LetM
obj
, M1 be symmetric matrices such that q

obj
(x) = (x

1)⊺M
obj

(x
1)

and q1(x) = (x
1)⊺M1(x

1). Then, equality holds between the GTRS, its SDP relaxation, and the

dual of the SDP relaxation:

min
x∈Rn−1

{
q

obj
(x) : q1(x) = 0

}

= min
Y ∈Sn


〈
M

obj
, Y
〉

:
⟨M1, Y ⟩ = 0

Y =
(
∗ ∗
∗ 1

)
⪰ 0


= sup

γ∈R, t∈R

{
t : M

obj
+ γM1 − t

(
0n−1

1

)
⪰ 0

}
.

Here, Sn
is the vector space of n× n symmetric matrices, the inner product ⟨M,Y ⟩ is defined as

⟨M,Y ⟩ := tr(M⊺Y) and Y ⪰ 0 indicates that Y is positive semidefinite (PSD).

In particular, the SDP relaxation of the GTRS has an optimal solution Y ∗
with rank one.

Furthermore, we know the value of (Y ∗)n,n = 1 before we even solve the SDP relaxation. We will

think of this as a priori knowledge of the restriction of Y ∗
to a subspace of dimension rank(Y ∗).

Despite the fact that the SDP relaxation solves the GTRS exactly, the large computational

cost of solving SDPs has spurred an extensive line of work developing new algorithms for the

GTRS (that avoid explicitly solving large SDPs). Most relatedly, Wang et al. [183] (Chapter 5)

assume that the dual SDP is solvable and that there exists an optimal dual solution (γ∗, t∗) such

thatM
obj

+ γ∗M1 − t∗
(

0n−1
1

)
has rank n− 1. This assumption holds generically for GTRS

problems conditioned on strict feasibility of the dual SDP and can be phrased as assuming strict

complementarity [5] between the dual SDP and the desired rank-one solution Y ∗
. Wang et al.

[183] then showed that it is possible to construct a strongly convex reformulation of the GTRS in

the original space using a sufficiently accurate estimate of γ∗
.

In our study, we will examine general SDPs satisfying similar structural assumptions and design

an efficient storage-optimal FOM to solve them. In this respect, our approach also extends a recent

172

6.1 Introduction

line of work [60, 70, 160, 198] towards developing storage-optimal FOMs for SDPs possessing

low-rank solutions. We discuss storage optimality in SDP algorithms in Section 6.1.3.

6.1.1 Problem setup and assumptions

Consider an SDP in standard form and its dual:

inf
Y ∈Sn

{〈
M

obj
, Y
〉

: ⟨Mi, Y ⟩+ di = 0, ∀i ∈ [m]
Y ⪰ 0

}
(SDP)

≥ sup
γ∈Rm

{
d⊺γ : M

obj
+
∑m

i=1 γiMi ⪰ 0
}
.

For notational convenience, we let d
obj

:= 0 and define M(γ) := M
obj

+
∑m

i=1 γiMi and

d(γ) := d
obj

+
∑m

i=1 γidi.

In this chapter, inspired by the structural properties of the GTRS that make it amenable to highly

efficient FOMs, we will work under two major assumptions. First, we will assume (Assumption 15)

that the primal and dual SDPs are both solvable, strong duality holds, and there exist primal and dual

optimal solutions Y ∗ ∈ Sn
and γ∗ ∈ Rm

such that rank(Y ∗) = k and rank(M(γ∗)) = n−k.

The assumption that rank(Y ∗) + rank(M(γ∗)) = n is referred to as strict complementarity and

is known to hold generically conditioned on primal and dual attainability [5].

Second, we will assume (Assumption 16) that the optimal primal solution Y ∗
is known a priori

on some k-dimensional subspaceW⊥
, on which it is positive definite. This assumption is inspired

by QCQP and QMP applications [17, 161, 181]: Recall that the standard SDP relaxation [161] of

an equality-constrained QCQP (in the variable x ∈ Rn−1
) is given by

inf
x∈Rn−1

{(
x
1

)⊺

M
obj

(
x
1

)
:
(
x
1

)⊺

Mi

(
x
1

)
= 0, ∀i ∈ [m]

}

≥ inf
Y ∈Sn


〈
M

obj
, Y
〉

:
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =
(
∗ ∗
∗ 1

)
⪰ 0

.
Thus, the optimal solution (in fact, any feasible solution) to the SDP will have a 1 in the bottom-

right corner. TakingW to be the subspace corresponding to the first (n− 1)-coordinates of Rn
,

we have that the restriction of Y ∗
toW⊥

is known a priori and is positive definite. Similarly, the

standard SDP relaxation [17] of an equality-constrained QMP (in the variableX ∈ R(n−k)×k
) is

given by

inf
X∈R(n−k)×k

{
tr
((

X
Ik

)⊺

M
obj

(
X
Ik

))
: tr

((
X
Ik

)⊺

Mi

(
X
Ik

))
= 0, ∀i ∈ [m]

}

≥ inf
Y ∈Sn


〈
M

obj
, Y
〉

:
⟨Mi, Y ⟩ = 0, ∀i ∈ [m]

Y =
(
∗ ∗
∗ Ik

)
⪰ 0

.

173

6 Accelerated first-order methods for a class of semidefinite programs

TakingW to be the subspace corresponding to the first (n− k) coordinates of Rn
, we have that

the restriction of Y ∗
toW⊥

is known a priori and positive definite.

We will refer to SDPs where Assumptions 15 and 16 hold as rank-k exact QMP-like SDPs or

k-exact SDPs for short.

6.1.2 Overview and outline of the chapter

In this chapter, we develop a new FOM for rank-k exact QMP-like SDPs. This FOM enjoys low

iteration complexity, simple iterative subprocedures, storage optimality, and strong numerical

performance. A summary of our contributions, along with an outline of the remainder of this

chapter, is as follows. For the sake of presentation, we will assume thatW corresponds to the first

n− k coordinates of Rn
in the following outline.

• We close this section by discussing thematically related work in storage-optimal or storage-

efficient FOMs for solving SDPs and FOMs for solving the GTRS. We then discuss some

work on acceleration within FOMs with inexact prox oracles and FOMs for saddle-point

problems as these are related to our techniques.

• In Section 6.2, we show how to reformulate a k-exact SDP as a strongly convex quadratic

matrix minimax problem (QMMP) using a certificate of strict complementarity (see Def-

inition 23). There are two key ideas here: First, in the setting of k-exact SDPs, we may

parameterize the rank-k matrices in Sn
+ which agree with the restriction of Y ∗

toW⊥
as

Y (X) :=
(

XX⊺ X(Z∗)1/2

(Z∗)1/2X⊺ Z∗

)
,

whereZ∗ ≻ 0 is the known restriction ofY ∗
toW⊥

andX ∈ R(n−k)×k
is unknown. The

task of recoveringY ∗
then reduces to the task of recoveringX∗

. We replace the variableY ∈
Sn

+ with the parameterization Y (X) in the primal SDP to derive a nonconvex QMP in the

variableX whose optimizer isX∗
. This first step can be compared to the Burer–Monteiro

reformulation (see Remark 72). The second key idea then shows that this nonconvex QMP

can be further reformulated into a strongly convex QMMP (QMMPU) given a certificate

of strict complementarity U ⊆ Rm
. Theorem 27 verifies that the minimax problem

min
X∈R(n−k)×k

max
γ∈U

(
⟨M(γ), Y (X)⟩+ d(γ)

)
(6.1)

hasX∗
as its unique optimizer and Opt

(SDP)
as its optimal value.

• In Section 6.3, we derive a two-level accelerated FOM for solving strongly convex QMMPs

of the form (6.1). Due to the minimax structure of (6.1), we focus on Nesterov’s optimal

method for strongly convex minimax problems [132, Algorithm 2.3.13]. This algorithm

relies on a prox-map (see Definition 24) computation in each iteration, and its analysis

assumes that prox-map is given by an explicit expression or can be computed exactly. In

our setting, the prox-map will not admit a closed-form expression in general. Instead, we

will treat the prox-map as an optimization problem in its own right and solve it via an

174

6.1 Introduction

inner FOM. Therefore, we suggest CautiousAGD (Algorithm 9), a new variant of [132,

Algorithm 2.3.13] that handles inexact computations in the prox-map procedure. We extend

the original estimating sequences analysis of [132, Algorithm 2.3.13] to prove bounds on

the accuracy required in each individual prox-map computation to recover an accelerated

linear convergence rate in terms of outer iterations (see Theorem 29). In our case, the

prox-map can be computed efficiently using an inner loop via the strongly convex excessive

gap technique [132, Chapter 6.2]. In all, CautiousAGD computes an ϵ-optimal solution of

a QMMP afterO
(
log
(
ϵ−1))

outer iterations andO
(
ϵ−1/2

)
total inner iterations.

• In Section 6.4, we show how to combine any method for producing iterates γ(i) → γ∗

with CautiousAGD to construct a certificate of strict complementarity. Combined with

Algorithm 9, this completes the description of our new FOM, CertSDP (Algorithm 10),

for rank-k exact QMP-like SDPs. Informally, we show that CertSDP returns an ϵ-optimal

solution to the underlying SDP after performing a fixed (i.e., independent of ϵ) number of

iterations ofγ(i) → γ∗
plus eitherO

(
log
(
ϵ−1))

outer iterations orO
(
ϵ−1)

inner iterations

in CautiousAGD. See Theorem 32 for a formal statement.

• In Section 6.5, we present numerical experiments comparing an implementation of CertSDP

with similar algorithms from the literature [60, 136, 164, 198], on random sparse k-exact

SDP instances with n ≈ 103
, 104

, and 105
. Our code outperforms previous state of the art

and is the only algorithm among those we tested that was able to solve our largest instances

to high accuracy.

6.1.3 Relatedwork

Storage-optimal/efficient FOMs. A growing body of literature, itself containing multiple

research strands, has explored FOMs for SDPs [9, 23, 51, 60, 70, 104, 115, 118, 136, 160, 164, 192,

197, 198]. Below, we recount some recent developments in this direction with a particular view

towards storage-efficient or storage-optimal FOMs for SDPs admitting low-rank solutions. Storage-

optimality alludes to the fact that a rank-k PSD matrix Y ∈ Sn
+ can be represented as the outer

product of an n × k factor matrix with itself, i.e., Y = XX⊺
for some X ∈ Rn×k

, so that a

primal iterate with rank k can be implicitly stored using onlyO(nk) memory. Similarly, a dual

iterate may be stored using onlyO(m) memory. Then, a storage-optimal FOM is allowed to use

onlyO(m+ nk) storage where k is the rank of the true primal SDP solution.

Low-storage and storage-optimal FOMs are particularly attractive for SDPs whereM
obj
, M1, . . . , Mm

are either structured or sparse, so that it is possible to not only store the instance efficiently, but

also to compute matrix-vector products efficiently [60]. The algorithm that we develop in this

chapter follows this pattern and similarly interacts withM
obj
, M1, . . . , Mm via only matrix-vector

products.

One paradigm towards developing storage-optimal FOMs leverages duality to construct surro-

gate primal SDPs that can be solved with optimal storage. In this paradigm, the variable Y ∈ Sn
+

is compressed, i.e., replaced withUY U⊺
for some matrixU ∈ Rn×k

and Y ∈ Sk
+. Ding et al. [60]

give rigorous guarantees for such a method assuming strict complementarity. Specifically, they

show that ifU ∈ Rn×k
corresponds to a minimum eigenspace of an approximate dual solution,

175

6 Accelerated first-order methods for a class of semidefinite programs

then the optimal solution Y of the compressed SDP (in penalty form) is a good approximation

of the true primal solution. Then, combining their bounds with existing FOMs for solving the

dual SDP approximately, Ding et al. [60] show that

∥∥∥UY U⊺ − Y ∗
∥∥∥

F
≤ ϵ afterO

(
ϵ−2)

-many

minimum eigenvector computations. It is unclear how this convergence guarantee changes when

only approximate eigenvector computations (which are the only practical option) are allowed.

Friedlander and Macêdo [70] explore a similar idea for trace-minimization SDPs (i.e., SDPs where

M
obj

= I) from the viewpoint of gauge duality. Specifically, they show that if U corresponds

to a minimum eigenspace associated with the true solution to the gauge dual, then the optimal

solution of the compressed SDP exactly recovers the true primal SDP solution. Unfortunately,

they do not analyze the accuracy of the recovered primal solution when the gauge dual is solved

only approximately, which is the case in practice.

A second paradigm towards developing storage efficient/optimal FOMs works simultaneously

in both the primal and dual spaces by employing linear sketches. Yurtsever et al. [198] apply the

Nyström sketch to the conditional gradient–augmented Lagrangian (CGAL) technique [197]

to derive SketchyCGAL. They show that it is possible to reconstruct a (1 + ζ)-optimal rank-k
approximation of an ϵ-optimal solution to the primal SDP

1
by tracking only the dual iterates as

well as aO(nk/ζ)-sized sketch of the primal iterates. When the true solution is unique and has

rank-k, it is appropriate to take ζ = O(1) so that the total storage isO(m+ nk). Furthermore,

Yurtsever et al. [198] bound the required accuracy in the approximate eigenvector computations

within SketchyCGAL. In all, they show that it is possible to implement their algorithm inO
(
ϵ−2)

iterations where each iteration involves computing an eigenvector via Õ
(
ϵ−1/2

)
matrix-vector

products. In follow-up work, Shinde et al. [160] combine the algorithmic architecture of Sketchy-

CGAL with the additional observation that in specific applications (e.g., max-cut), the goal is

simply to sample from a Gaussian distribution with variance given by an approximate solution Yϵ

to the SDP. Under this alternate goal, it is possible to further reduce the storage requirements to

O(n+m).

One may compare these storage-optimal FOMs for SDPs with the Burer–Monteiro method [36].

In the Burer–Monteiro method, the convex SDP in the variable Y ∈ Sn
+ is explicitly replaced with

an outer product term involving an n× k′
factor matrix where k′ ≥ k. The resulting nonconvex

problem is then tackled via local optimization methods. While results [31, 46, 47] have shown that

non-global local minima cannot exist when k′ = Ω(
√
m) (so that local optimization methods are

certifiably correct), more recent work [176] has shown that such spurious local minima can in fact

exist even if k = 1 and k′ = Θ(
√
m). In other words, the Burer–Monteiro approach provably

cannot achieve storage-optimality.

FOMs for the GTRS. The algorithms developed in the current chapter are inspired by recent

developments in FOMs for the TRS and the GTRS. There has been extensive work [41, 82, 87,

94, 124, 148, 165, 180, 183] towards developing customized algorithms for the TRS and GTRS

that circumvent solving large SDPs; see Chapter 5 and references therein for a more thorough

1

In [198], a rank-k matrix Ỹ ∈ Sn
+ is a (1 + ζ)-optimal rank-k approximation of an ϵ-optimal solution Yϵ ∈ Sn

+ if∥∥Yϵ − Ỹ
∥∥

∗
≤ (1 + ζ)∥Yϵ − [Yϵ]k∥∗ where ∥·∥∗ is the nuclear norm and [Yϵ]k is the best rank-k approximation

of Yϵ.

176

6.1 Introduction

account of algorithmic ideas for solving large-scale GTRS instances. We highlight only the two

most relevant results from this area.

Carmon and Duchi [41] consider iterative methods that produce Krylov subspace solutions

to the TRS, i.e., solutions to the TRS restricted to a Krylov subspace generated by the objective

function. They show that these solutions converge to the true TRS solution linearly as long as the

linear term in q
obj

is not orthogonal to the minimum eigenspace of the Hessian in q
obj

. One may

interpret this condition as requiring strict complementarity between the SDP relaxation of the

TRS and its dual.

More recently, Wang et al. [183] make a connection between the GTRS and optimal FOMs for

strongly convex minimax problems [132]. In the language of the current chapter, Wang et al. [183]

assume strict complementarity between the SDP relaxation of the GTRS and its dual, and show

how to construct a strongly convex reformulation of the GTRS using low-accuracy eigenvalue

computations. More concretely, they show how to construct γ̃− and γ̃+ such that the minimax

problem

min
x∈Rn

max
γ∈[γ̃−,γ̃+]

(
q

obj
(x) + γ · q1(x)

)
is strongly convex and has as its unique optimizer the optimizer of the underlying GTRS. The

resulting strongly convex minimax problem is then solved via [132, Algorithm 2.3.13] to achieve

a linear convergence rate. One may compare the strongly convex reformulation of the GTRS in

[183] with the more natural Lagrangian reformulation (through S-lemma):

min
x∈Rn

sup
γ∈Γ

(
q

obj
(x) + γ · q1(x)

)

where Γ =
{
γ ∈ R+ : q

obj
+ γq1 is convex

}
. Specialized FOMs have also been developed for

the GTRS using this Lagrangian reformulation [180]. Unfortunately, since the Lagrangian refor-

mulation may not be strongly convex in general, the resulting algorithms can only achieve sublinear

(in terms of ϵ) convergence rates—specifically, rates of the formO
(
ϵ−1/2

)
as opposed to rates of

the formO
(
log(ϵ−1)

)
.

Accelerated FOMs for non-smooth problems via saddle-point problems. One

may treat the QMMP reformulation (6.1) of the SDP as a saddle-point problem in the variables

(X, γ) ∈ R(n−k)×k × Rm
as opposed to a non-smooth problem in justX ∈ R(n−k)×k

. There

is a vast body of work developing accelerated FOMs for non-smooth problems that leverages

saddle-point structure [97, 128, 132, 139]. Both Nesterov [131] and Nemirovski [128] achieve an

accelerated convergence rate ofO(ϵ−1) for general convex–concave saddle point problems (see

also [172]). This rate can be further improved for the special case of strongly convex–concave

saddle-point problems [43, 97, 130]: Nesterov’s excessive gap technique [130, 132] achieves an

O(ϵ−1/2) convergence for strongly convex–concave saddle-point problems where the coupling

term is linear. This is generalized in [43] to allow nonlinear proximal operators. Hamedani and

Aybat [81], Juditsky and Nemirovski [97] generalize this convergence rate to the setting where the

gradient of the coupling term is only assumed to be Lipschitz. These rates match the known [138]

177

6 Accelerated first-order methods for a class of semidefinite programs

lower bound ofO(ϵ−1/2) for any FOM on the general class of strongly convex-concave saddle-

point problems. Note that the assumption that the gradient of the coupling term is Lipschitz does

not hold for our setting. Indeed, the saddle point function we are interested in, ⟨M(γ), Y (X)⟩,
is jointly cubic in the variables (X, γ) (so that the gradients vary quadratically). Nonetheless, we

will show that it is possible achieve the optimalO(ϵ−1/2) iteration complexity in our setting.

AcceleratedFOMswith inexactfirst-order information. A related line of work [57,

58] has analyzed the convergence rate of (accelerated) FOMs in the presence of inexact first-order

information. Devolder et al. [58] analyzes FOMs for smooth convex functions. In [57], the same

authors extend these results to FOMs for smooth and strongly convex functions. Our algorithm

(Algorithm 9) continues this line of work by considering an inexact prox-map for strongly convex

max-type functions.

6.1.4 Additional notation

GivenX ∈ Rn×m
, let ∥X∥F denote the Frobenius norm ofX . GivenX ∈ Sn

, let ∥X∥2 denote

the spectral norm ofX . LetW be a subspace of Rn
. Abusing notation, we write SW

to denote the

vector space of self-adjoint operators onW and RW,W ⊥
for the vector space of linear maps from

W⊥
to W . Given M ∈ Sn

let MW ∈ SW
, M

W,W ⊥ ∈ RW,W ⊥
, and M

W ⊥ ∈ SW ⊥
denote

the restrictions of M to the corresponding subspaces. Given x ∈ Rn
and r ≥ 0, let B(x, r)

denote the closed ℓ2-ball centered at x with radius r. Given a function in multiple arguments

f(x1, . . . , xm), we write ∇kf(x1, . . . , xm) to denote the gradient of f in the kth argument

evaluated at x1, . . . , xm.

6.2 Strongly convex reformulations of k-exact SDPs

In this section, we describe how to construct a strongly convex reformulation of a rank-k exact
QMP-like SDP using a certificate of strict complementarity (see Definitions 22 and 23). The

following sections will expand on these ideas and show how these properties can be exploited to

achieve algorithmic efficiency.

6.2.1 Definitions and problem setup

We make the following two assumptions on (SDP).

Assumption 15. Assume in (SDP) that the primal and dual problems are both solvable, strong

duality holds, and there exist primal and dual optimal solutions Y ∗ ∈ Sn
and γ∗ ∈ Rm

such that

rank(Y ∗) = k and rank(M(γ∗)) = n− k. □

We fix Y ∗
and γ∗

to be solutions to (SDP) satisfying rank(Y ∗) = k and rank(M(γ∗)) =
n− k.

Assumption 16. Let W ⊆ Rn
be a k-dimensional subspace such that the restriction of Y ∗

to

W⊥
is known and positive definite. □

Definition 22. We say that an instance of (SDP) is a rank-k exact QMP-like SDP or a k-exact
SDP for short if both Assumptions 15 and 16 hold. □

178

6.2 Strongly convex reformulations of k-exact SDPs

Definition 23. We say that a compact subset U ⊆ Rm certifies strict complementarity if γ∗ ∈ U
and, for all γ ∈ U , it holds thatM(γ)W ≻ 0. □

Remark 71. Suppose we are given a certificate of strict complementarity U , i.e., γ∗ ∈ U and

M(γ)W ≻ 0 for all γ ∈ U . We immediately deduce that rank(M(γ∗)) ≥ rank(M(γ∗)W) =
n− k. On the other hand, rank(Y ∗) ≥ rank(Y ∗

W ⊥) = k. This is the sense in which U certifies
strict complementarity. □

6.2.2 Identifying Sn
with quadratic matrix functions

Suppose (SDP) is ak-exact SDP and thatU certifies strict complementarity. For ease of presentation,

we will assume in this subsection thatW is the (n− k)-dimensional subspace corresponding to

the first n− k coordinates of Rn
. This is without loss of generality and our results extend in the

natural way to the setting whereW is general.

Our strongly convex reformulation of (SDP) will regard theMi ∈ Sn
as inducing quadratic

matrix functions on the space RW ×W ⊥ ≃ R(n−k)×k
. We begin by writing each Mi, for i ∈

{obj} ∪ [m], as a block matrix

Mi =
(
Ai/2 B̃i/2
B̃⊺

i /2 Ci

)
,

whereAi ∈ Sn−k
, B̃i ∈ R(n−k)×n

andCi ∈ Sk
.

We will partition Y ∗
as a block matrix with compatible block structure: DefineZ∗ := Y ∗

W ⊥

andX∗ := Y ∗
W,W ⊥(Z∗)−1/2

. Note here thatZ∗
is known a priori due to Assumption 16. Next,

by the assumption that rank(Y ∗) = k (Assumption 15), we have that

Y ∗ =
(

X∗X∗⊺ X∗(Z∗)1/2

(Z∗)1/2(X∗)⊺ Z∗

)
.

Finally, givenX ∈ R(n−k)×k
, define

Y (X) :=
(

XX⊺ X(Z∗)1/2

(Z∗)1/2X⊺ Z∗

)

and note that Y (X∗) = Y ∗
.

One of our key ideas in building a strongly convex reformulation of (SDP) is that Y (X) is a

matrix whose entries are quadratic inX . We can thus identify eachMi with a quadratic matrix

function. For each i ∈ {obj} ∪ [m], define

qi(X) := ⟨Mi, Y (X)⟩+ di = tr(X⊺AiX)
2 +

〈
B̃i(Z∗)1/2, X

〉
+ ⟨Ci, Z

∗⟩+ di

= tr(X⊺AiX)
2 + ⟨Bi, X⟩+ ci,

179

6 Accelerated first-order methods for a class of semidefinite programs

where we letBi := B̃i(Z∗)1/2
and ci := ⟨Ci, Z

∗⟩+ di. Finally, given γ ∈ Rm
, defineA(γ) :=

A
obj

+
∑m

i=1 γiAi. We defineB(γ), B̃(γ), c(γ), d(γ), and q(γ,X) analogously.

Remark 72. One may compare our parameterization of rank-k matrices in Sn
+ with the Burer-

Monteiro approach [36]. In the Burer-Monteiro approach, one replaces the matrix variable Y ∈
Sn

+ with a rank-k matrix variable parameterized by

Y =
(
X
X ′

)(
X
X ′

)⊺

whereX ∈ R(n−k)×k
andX ′ ∈ Rk×k

. This transformation replaces theO(n2)-dimensional vari-

able Y ∈ Sn
+ with the nk-dimensional variable (X;X ′) ∈ Rn×k

. Unfortunately, this approach

also transforms the SDP from a convex problem into a nonconvex problem. Our parameterization

will allow us to remedy this nonconvexity. As we will see in the next subsection, whenZ∗
is known

(so that we may fixX ′
) a priori, we may further reformulate the remaining nonconvex problem in

X ∈ R(n−k)×k
into a strongly convex problem. □

6.2.3 A strongly convex reformulation of (SDP)

The following theorem states that if U certifies strict complementarity, thenX∗
is the unique min-

imizer of a strongly convex quadratic matrix minimax problem (QMMP) that can be constructed

from U .

Theorem 27. Suppose (SDP) is a rank-k exact QMP-like SDP and that U certifies strict comple-
mentarity. Then,X∗ is the unique minimizer of the strongly convex QMMP

min
X∈RW ×W ⊥

max
γ∈U

q(γ,X). (QMMPU)

Furthermore,X∗ = −A(γ∗)−1B(γ∗) and Opt
(QMMPU)

= Opt
(SDP)

.

Proof. Without loss of generality, we work in the basis where W is the first n − k coordinates

of Rn
. Note that the assumption that U certifies strict complementarity implies thatA(γ∗) =

M(γ∗)W ≻ 0.

We begin by verifying thatX∗ = −A(γ∗)−1B(γ∗). By complementary slackness, we have

0 = ⟨M(γ∗), Y (X∗)⟩

= tr
((

X∗

(Z∗)1/2

)⊺(
A(γ∗)/2 B̃(γ∗)/2
B̃(γ∗)⊺/2 C(γ∗)

)(
X∗

(Z∗)1/2

))

= tr
((
X∗ +A(γ∗)−1B(γ∗)

)⊺
A(γ∗)

(
X∗ +A(γ∗)−1B(γ∗)

)
2

)

+
[
⟨C(γ∗), Z∗⟩ − tr

(
B(γ∗)⊺A(γ∗)−1B(γ∗)

2

)]
.

Here, the second line follows by the definitions ofM(γ∗) and Y (X∗), and the third line follows

from the definitionB(γ) := B̃(γ)(Z∗)1/2
. We claim that the square-bracketed term on the final

180

6.3 Algorithms for strongly convex QMMPs

line is zero: By the assumption that rank(M(γ∗)) = n− k and the fact thatA(γ∗) ≻ 0, we have

thatC(γ∗) = B̃(γ∗)⊺A(γ∗)−1B̃(γ∗)
2 . Pre- and post-multiplyingC(γ∗) by (Z∗)1/2

and taking the

trace of this identity gives

⟨C(γ∗), Z∗⟩ = tr
(

(Z∗)1/2B̃(γ∗)⊺A(γ∗)−1B̃(γ∗)(Z∗)1/2

2

)
= tr

(
B(γ∗)⊺A(γ∗)−1B(γ∗)

2

)
.

Thus, we have that

0 = tr
((
X∗ +A(γ∗)−1B(γ∗)

)⊺
A(γ∗)

(
X∗ +A(γ∗)−1B(γ∗)

))
,

so thatX∗ = −A(γ∗)−1B(γ∗) by the positive definiteness ofA(γ∗).

Next, note that by the feasibility of Y ∗
, we have qi(X∗) = ⟨Mi, Y

∗⟩+ di = 0 for all i ∈ [m].
Similarly, by the optimality of Y ∗

, we have q
obj

(X∗) =
〈
M

obj
, Y ∗

〉
= Opt

(SDP)
. In particular,

maxγ∈U q(γ,X∗) = q(γ∗, X∗) = Opt
(SDP)

. On the other hand, for anyX ∈ RW ×W ⊥
,

max
γ∈U

q(γ,X) ≥ q(γ∗, X) = Opt
(SDP)

+ tr
((X −X∗)⊺A(γ∗)(X −X∗)

2

)
.

AsA(γ∗) ≻ 0, we conclude thatX∗
is the unique minimizer of (QMMPU) with optimal value

Opt
(QMMPU)

= Opt
(SDP)

.

Finally, strong convexity of (QMMPU) follows from compactness of U and the assumption

that U certifies strict complementarity (so thatA(γ) = M(γ)W is positive definite over U). ■

Remark 73. One may compare (QMMPU) with the more natural Lagrangian formulation of

(SDP), which results in a QMMP in the same space:

min
X∈RW ×W ⊥

sup
γ∈Rm: A(γ)⪰0

q(γ,X). (6.2)

Indeed, it is possible to show that X∗
is also the unique minimizer of (6.2). Nevertheless, the

formulation (6.2), in contrast to (QMMPU), has two major downsides: First, it may be the case

that supγ∈Rm: A(γ)⪰0 q(γ,X) is a convex function inX that is not strongly convex. Second, the

domain of the supremum, {γ ∈ Rm : A(γ) ⪰ 0}, is itself a spectrahedron so that even evaluating
supγ∈Rm: A(γ)⪰0 q(γ,X) (that is, evaluating zeroth-order information in theX variable) requires

solving an SDP. In contrast, (QMMPU) is strongly convex by construction. Furthermore, we may

pick U to have efficient projection and linear maximization oracles (e.g., by taking U to be an

ℓ2 ball). From this viewpoint, (QMMPU) will be much more amenable than (6.2) to first-order

methods. □

6.3 Algorithms for strongly convex QMMPs

In this section, we describe and analyze an accelerated first-order method (FOM) for solving strongly

convex QMMPs. While we will apply this algorithm to problems arising from the application of

Theorem 27, the algorithms from this section can handle general strongly convex QMMPs.

181

6 Accelerated first-order methods for a class of semidefinite programs

We state explicitly the setup and assumptions of this section. Letq
obj
, q1, . . . , qm : R(n−k)×k →

R be quadratic matrix functions of the form

qi(X) = tr(X⊺AiX)
2 + ⟨Bi, X⟩+ ci.

Given γ ∈ Rm
, letA(γ) := A

obj
+
∑m

i=1 γiAi. DefineB(γ), c(γ), q(γ,X) analogously.

Let U ⊆ Rm
be a compact convex set with exact projection and linear maximization oracles.

Our goal is to find an ϵ-optimal solution to

min
X∈R(n−k)×k

max
γ∈U

q(γ,X). (QMMP)

That is, our goal is to find some X̃ ∈ R(n−k)×k
satisfying maxγ∈U q(γ, X̃) ≤ Opt

(QMMP)
+ϵ.

For notational convenience, we will define

Q(X) := max
γ∈U

q(γ,X).

While we will treat U as fixed in this section, in future sections, we will explicitly call attention to

the dependence of the functionQ on the set U and writeQU instead.

We present a FOM for (QMMP) under two assumptions. The first assumption (Assumption 17)

requires uniform strong convexity and smoothness of q(γ,X) over U .

Assumption 17. We will assume algorithmic access to parameters 0 < µ ≤ L such that µI ⪯
A(γ) ⪯ LI for all γ ∈ U . □

When Assumption 17 holds, we define the condition number of (QMMP) as κ := L/µ. We

will state our second assumption (which bounds the norms of various quantities) when needed in

Section 6.3.3.

Our FOM will closely follow Nesterov’s accelerated gradient descent scheme for strongly convex

minimax functions [132, Algorithm 2.3.13] (henceforth AGD-MM) with one major difference.

In contrast to the presentation in [132] and its application in [180], the necessary prox-map (see

Definition 24 below) in the QMMP setting cannot be computed explicitly or exactly.

We break our FOM for strongly convex QMMPs into two levels, presented as the first two

subsections in this section. In Section 6.3.1, we give a convergence analysis for a modified version of

AGD-MM using an inexact prox-map oracle. In particular, we will bound the necessary accuracy

of the prox-map to recover accelerated convergence rates. In Section 6.3.2, we show how to

implement the approximate prox-map oracle efficiently for each iteration using the strongly convex

excessive gap technique [132, Algorithm 6.2.37]. Finally, in Section 6.3.3, we state an assumption

(Assumption 18) that allows us to bound the iteration cost of the prox-map oracle uniformly across

iterations. Taken together with the results from the previous subsections, this will give a rigorous

guarantee for the overall FOM.

182

6.3 Algorithms for strongly convex QMMPs

6.3.1 An FOM for strongly convex QMMPs using an inexact prox-map

oracle

This subsection generalizes AGD-MM by allowing inexact prox-map computations. We first recall

the definition of the prox-map and the fundamental relation (6.3) that is used in the convergence

rate analysis of AGD-MM. Next, we show how to recover a similar inequality (6.5) when the prox-

map is computed only approximately. Finally, we show how to modify the step-sizes in AGD-MM

to prevent error accumulation that may otherwise build up from inexact prox-map computations.

These step-sizes allow us to recover the accelerated linear convergence rates of AGD-MM even

with inexact prox-map computations.

The prox-map

AGD-MM requires computing the prox-mapXL(Ξ) (defined in Definition 24) exactly in every

iteration (adapted from [132, Definition 2.3.2]).

Definition 24. Let Ξ ∈ R(n−k)×k
. Define

Q(Ξ;X) := max
γ∈U

(q(γ,Ξ) + ⟨∇2 q(γ,Ξ), X − Ξ⟩)

QL(Ξ;X) := Q(Ξ;X) + L

2 ∥X − Ξ∥2F
Q∗

L(Ξ) := min
X∈R(n−k)×k

QL(Ξ;X)

XL(Ξ) := arg min
X∈R(n−k)×k

QL(Ξ;X)

gL(Ξ) := L(Ξ−XL(Ξ)).

Here, ∇2 q(γ,Ξ) is the gradient of q(γ,X) in X at Ξ and is an affine function of γ (more

explicitly,∇2 q(γ,Ξ) = A(γ)Ξ +B(γ)). Note that the functionQ(Ξ;X) simply replaces the

inside function q(γ,X) in the definition ofQ(X) with its linearization around Ξ. The quantities

XL and gL are the prox-map and the grad-map. □

Recall also the main property of the prox-map and grad-map that is used in the analysis of the

convergence rate of AGD-MM as given in the following lemma (adapted from [132, Theorem

2.3.2]).

Lemma 65. Let Ξ ∈ R(n−k)×k . Then, for allX ∈ R(n−k)×k ,

Q(X) ≥ Q(XL(Ξ)) + 1
2L∥gL(Ξ)∥2F + ⟨gL(Ξ), X − Ξ⟩+ µ

2 ∥X − Ξ∥2F . (6.3)

An approximate prox-map inequality

In the setting of general QMMPs, it is not possible to compute the prox-map exactly. Instead, we

will apply an inner FOM to solve the prox-mapXL(Ξ) to some prescribed accuracy. This necessi-

tates an analysis of (a variant of) AGD-MM that works with inexact prox-map computations. To

this end, we show how to recover a version of (6.3) whereXL(Ξ) is computed only approximately.

183

6 Accelerated first-order methods for a class of semidefinite programs

Define

µ̃ := µ/2, L̃ := L− µ/2, and κ̃ := L̃/µ̃. (6.4)

We will need the following geometric fact.

Lemma 66. Let X̃, XL ∈ R(n−k)×k be such that
∥∥∥X̃ −XL

∥∥∥
F
≤ δ. Then, for all X ∈

R(n−k)×k ,

L

2 ∥X −XL∥2F ≥
L̃

2

∥∥∥X − X̃∥∥∥2

F
− Lδ2

2 (2κ− 1).

Proof of Lemma 66. Let ∆ := X̃ −XL. Then,

L

2 ∥X −XL∥2F = L

2

∥∥∥X − X̃ + ∆
∥∥∥2

F

= L̃

2

∥∥∥X − X̃∥∥∥2

F
+ µ̃

2

∥∥∥X − X̃∥∥∥2

F
+ L

〈
X − X̃,∆

〉
+ L

2 ∥∆∥
2
F ,

where the second equality follows from expanding the square and the fact that L = L̃ + µ̃.

Moreover,

0 ≤ L

2

∥∥∥∥∥
√
µ̃

L
(X − X̃) +

√
L

µ̃
∆
∥∥∥∥∥

2

F

= µ̃

2

∥∥∥X − X̃∥∥∥2

F
+ L

〈
X − X̃,∆

〉
+ Lκ∥∆∥2F .

Combining these two inequalities gives

L

2 ∥X −XL∥2F ≥
L̃

2

∥∥∥X − X̃∥∥∥2

F
− Lδ2

2 (2κ− 1). ■

We may now derive a variant of (6.3) which only uses an approximate prox-map.

Theorem 28. Let Ξ ∈ R(n−k)×k . Suppose X̃ satisfies

QL(Ξ; X̃) ≤ Q∗
L(Ξ) + ϵ.

Set g̃ := L̃(Ξ− X̃). Then, for allX ∈ R(n−k)×k ,

Q(X) ≥ Q(X̃) + 1
2L̃
∥g̃∥2F + ⟨g̃, X − Ξ⟩+ µ̃

2 ∥X − Ξ∥2F − 2κϵ. (6.5)

Proof. AsQL(Ξ;X) isL-strongly convex, from the premise of the lemma we have

∥∥∥X̃ −XL(Ξ)
∥∥∥

F
≤√

2ϵ/L.

184

6.3 Algorithms for strongly convex QMMPs

We bound

Q(X) ≥ Q(Ξ;X) + µ

2 ∥X − Ξ∥2F

= QL(Ξ;X)− L̃

2 ∥X − Ξ∥2F + µ̃

2 ∥X − Ξ∥2F

≥ Q∗
L(Ξ) + L

2 ∥X −XL(Ξ)∥2F −
L̃

2 ∥X − Ξ∥2F + µ̃

2 ∥X − Ξ∥2F

≥ Q(X̃) + L̃

2

∥∥∥X − X̃∥∥∥2

F
− L̃

2 ∥X − Ξ∥2F + µ̃

2 ∥X − Ξ∥2F − 2κϵ

= Q(X̃) + L̃

2

(
2
〈
X − Ξ,Ξ− X̃

〉
+
∥∥∥Ξ− X̃∥∥∥2

F

)
+ µ̃

2 ∥X − Ξ∥2F − 2κϵ

= Q(X̃) + ⟨g̃, X − Ξ⟩+ 1
2L̃
∥g̃∥2F + µ̃

2 ∥X − Ξ∥2F − 2κϵ.

Here, the first inequality follows from µ-strong convexity ofQ, the first equation follows from

the definitions ofQL(Ξ;X), L̃ and µ̃, the second inequality follows from optimality ofXL(Ξ),

the third inequality follows from Lemma 66 applied with δ =
√

2ϵ/L and theL-smoothness of

q(γ,X) for each γ ∈ U , and the last two equations follow from expanding the squares and the

definition of g̃. ■

Estimating sequences

We now modify the estimating sequences analysis of AGD-MM to use (6.5) instead of (6.3): Fix

X0 ∈ R(n−k)×k
and let {ϵt} ⊆ R++ and {Ξt} ⊆ R(n−k)×k

to be fixed later. Define

ϕ0(X) := Q(X0) + µ̃

2 ∥X −X0∥2F .

For t ≥ 0, letXt+1 be an ϵ-approximate prox-map, i.e.,Xt+1 satisfies

QL(Ξt;Xt+1) ≤ Q∗
L(Ξt) + ϵt,

and set g̃t := L̃(Ξt −Xt+1). Let α := κ̃−1/2
and recursively define

ϕt+1(X) := (1− α)ϕt(X)

+ α

(
Q(Xt+1) + 1

2L̃
∥g̃t∥2F + ⟨g̃t, X − Ξt⟩+ µ̃

2 ∥X − Ξt∥2F
)
.

The following lemma shows how ϕt(X) evolves. Its proof follows verbatim from the standard

proof [132, Lemma 2.3.3] and is deferred to Section F.1. Indeed, the standard proof makes no

assumption on how Ξt andXt are related.

Lemma 67. For all t ≥ 0, ϕt(X) is a quadratic matrix function inX of the form

ϕt(X) = ϕ∗
t + µ̃

2 ∥X − Vt∥2F . (6.6)

185

6 Accelerated first-order methods for a class of semidefinite programs

The sequences {ϕ∗
t }, {Vt} are given by V0 = X0, ϕ∗

0 = Q(X0) and the recurrences

Vt+1 = (1− α)Vt + α

(
Ξt −

1
µ̃
g̃t

)
, and

ϕ∗
t+1 = (1− α)ϕ∗

t + α

(
Q(Xt+1) + 1

2L̃
∥g̃t∥2F

)
− α2

2µ̃∥g̃t∥2F

+ α(1− α)
(
µ̃

2 ∥Ξt − Vt∥2F + ⟨g̃t, Vt − Ξt⟩
)
.

For all t ≥ 0, we will henceforth set

Ξt := Xt + αVt

1 + α
.

The following lemma shows that Ξt+1 can be written as an extragradient step fromXt towards

Xt+1. Its proof follows verbatim from the standard proof [132, Page 92] and is deferred to

Section F.1. Indeed, the standard proof only needs the relation Xt+1 = Ξt − g̃t/L̃, which

continues to hold in our setting by construction.

Lemma 68. It holds that Ξ0 = X0 and Ξt+1 = Xt+1 + 1−α
1+α(Xt+1 −Xt) for all t ≥ 0.

The following two lemmas bound the two types of errors that result from inexact prox-map

computations. DefineE
(1)
0 := 0,E

(2)
0 := 0, and for all t ≥ 0 inductively set

E
(1)
t+1 := (1− α)E(1)

t + (1− α)ϵt and E
(2)
t+1 := (1− α)E(2)

t + αϵt.

Let Et := E
(1)
t + E

(2)
t be the sum of the two types of errors. Equivalently, let Et := 0 and

inductively setEt+1 = (1− α)Et + ϵt for all t ≥ 0.

Lemma 69. It holds thatQ(Xt) ≤ ϕ∗
t + 2κE(1)

t for all t ≥ 0.

Proof. It is clear that Q(X0) ≤ ϕ∗
0. Thus, consider Xt+1 with t ≥ 0. By induction and

Lemma 67,

ϕ∗
t+1 ≥ (1− α)Q(Xt) + αQ(Xt+1) +

(
α

2L̃
− α2

2µ̃

)
∥g̃t∥2F

+ α(1− α)⟨g̃t, Vt − Ξt⟩ − (1− α)
(
2κE(1)

t

)
.

AsXt+1 satisfiesQL(Ξt;Xt+1) ≤ Q∗(Ξt) + ϵt, we deduce (see Theorem 28) that

Q(Xt) ≥ Q(Xt+1) + 1
2L̃
∥g̃t∥2F + ⟨g̃t, Xt − Ξt⟩+ µ̃

2 ∥Xt − Ξt∥2F − 2κϵt.

186

6.3 Algorithms for strongly convex QMMPs

These two inequalities together lead to

ϕ∗
t+1 ≥ Q(Xt+1)− 2κ(1− α)(E(1)

t + ϵt)

+
(
α

2L̃
− α2

2µ̃ + 1− α
2L̃

)
∥g̃t∥2F + (1− α)⟨g̃t, α(Vt − Ξt) + (Xt − Ξt)⟩.

It is straightforward to show that the two quantities on the final line are identically zero using the

relations α2 = µ̃/L̃ and Ξt = Xt+αVt
1+α (see Lemma 68). ■

Lemma 70. For all t ≥ 0, it holds that

ϕt(X) ≤ (1− (1− α)t)Q(X) + (1− α)tϕ0(X) + 2κE(2)
t , ∀X ∈ R(n−k)×k.

Proof. The statement holds holds for t = 0. Thus, consider ϕt+1 for t ≥ 0. By definition

ϕt+1(X) = (1− α)ϕt(X) + α

(
Q(Xt+1) + 1

2L̃
∥g̃t∥2F + ⟨g̃t, X − Ξt⟩+ µ̃

2 ∥X − Ξt∥2F
)
.

AsXt+1 satisfiesQL(Ξt;Xt+1) ≤ Q∗(Ξt) + ϵt, we deduce (see Theorem 28) that

Q(X) ≥ Q(Xt+1) + 1
2L̃
∥g̃t∥2F + ⟨g̃t, X − Ξt⟩+ µ̃

2 ∥X − Ξt∥2F − 2κϵ.

Then, these inequalities combined with the inductive hypothesis give

ϕt+1(X) ≤ (1− α)ϕt(X) + αQ(X) + 2καϵt
= (1− (1− α)t+1)Q(X) + (1− α)(ϕt(X)− (1− (1− α)t)Q(X)) + 2καϵt
≤ (1− (1− α)t+1)Q(X) + (1− α)t+1ϕ0(X) + 2κ

(
(1− α)E(2)

t + αϵt
)
. ■

Combining Lemmas 69 and 70, we get a bound on the total error due to inexact prox-maps as a

function of the accuracy of each individual prox-map.

Corollary 26. For all t ≥ 0, it holds that

Q(Xt)−Opt
(QMMP)

≤ (1− α)t
[
2
(
Q(X0)−Opt

(QMMP)

)]
+ 2κEt.

Proof. Let X∗
U denote the optimizer of (QMMP) so that Q(X∗

U) = Opt
(QMMP)

. Then, Lem-

mas 69 and 70 give

Q(Xt)−Opt
(QMMP)

≤ ϕ∗
t + 2κE(1)

t −Q(X∗
U)

≤ ϕt(X∗
U) + 2κE(1)

t −Q(X∗
U)

≤ (1− (1− α)t)Q(X∗
U) + (1− α)tϕ0(X∗

U) + 2κEt −Q(X∗
U)

= (1− α)t
(
ϕ0(X∗

U)−Opt
(QMMP)

)
+ 2κEt.

187

6 Accelerated first-order methods for a class of semidefinite programs

Note also that by the definition of ϕ0(·) and the µ-strong convexity ofQ, we have

ϕ0(X∗
U)−Opt

(QMMP)
= Q(X0)−Opt

(QMMP)
+ µ̃

2 ∥X
∗
U −X0∥2F ≤ 2

(
Q(X0)−Opt

(QMMP)

)
.

Combining the two inequalities completes the proof. ■

We are now ready to present CautiousAGD (Algorithm 9) and its guarantee.

Algorithm 9 CautiousAGD

Given q(γ,X) and U satisfying Assumption 17;X0 ∈ R(n−k)×k
, and a bound gap0 ∈ R such

thatQ(X0)−Opt
(QMMP)

≤ gap0
1. Set µ̃, L̃, κ̃ as in (6.4) and α := κ̃−1/2

. Set Ξ0 := X0.

2. For t ≥ 0
a) Compute an inexact prox-mapXt+1 satisfying

QL(Ξt;Xt+1) ≤ Q∗
L(Ξt) + ϵt, where ϵt =

{
gap0

κ

(
1− α

2
)
, if t = 0, and

gap0
κ

(
1− α

2
)t α

2 , else.

(6.7)

b) Set Ξt+1 := Xt+1 + 1−α
1+α (Xt+1 −Xt)

Theorem 29. Let q(γ,X) and U satisfy Assumption 17. Let gap0 be a known upper bound on
Q(X0)−Opt

(QMMP)
and letXt denote the iterates produced by Algorithm 9 with starting point

X0. Then, for all t ≥ 1, the iterateXt satisfies

Q(Xt)−Opt
(QMMP)

≤
(

1− α

2

)t(
4 · gap0

)
.

In particular,Q(XT)−Opt
(QMMP)

≤ ϵ after at most

T = O

(√
κ log

(
gap0
ϵ

))
iterations. The t-th iteration of Algorithm 9 requires computing a prox-mapXt+1 satisfying (6.7).

Proof. We first claim thatEt = (gap0/κ)(1− α/2)t
for all t ≥ 1. Indeed, this claim holds for

t = 1 asE1 = ϵ0 = (gap0/κ)(1− α/2) by construction (see (6.7)). Then, by induction

Et+1 = (1− α)Et + ϵt = (1− α)
gap0
κ

(
1− α

2

)t

+
gap0
κ

(
1− α

2

)tα

2 =
gap0
κ

(
1− α

2

)t+1
.

Then, the bound onQ(Xt)−Opt
(QMMP)

follows from Corollary 26 and the starting condition

Q(X0)−Opt
(QMMP)

≤ gap0. ■

188

6.3 Algorithms for strongly convex QMMPs

Remark 74. We refer to Algorithm 9 as CautiousAGD to allude to the fact that Algorithm 9 is

simply AGD-MM with inexact prox-maps and smaller extra-gradient steps. Specifically, AGD-MM

sets

Ξt+1 = Xt+1 +
(

1− κ−1/2

1 + κ−1/2

)
(Xt+1 −Xt)

whereas CautiousAGD sets

Ξt+1 = Xt+1 +
(

1− κ̃−1/2

1 + κ̃−1/2

)
(Xt+1 −Xt).

Note that κ ≤ κ̃ ≤ 2κ. □

6.3.2 Approximating the prox-map

Recall that the prox-mapXL(Ξ) is the minimizer ofQL(Ξ;X):

min
X∈R(n−k)×

QL(Ξ;X) = min
X∈R(n−k)×k

max
γ∈U

(
L

2 ∥X − Ξ∥2F + ⟨∇2 q(γ,Ξ), X − Ξ⟩+ q(γ,Ξ)
)
.

There are a number of ways to solve forXL(Ξ). For example, whenm is small, one may apply an

interior point method to solve for γ in the dual problem:

max
γ∈U

[
min

X∈R(n−k)×k

(
L

2 ∥X − Ξ∥2F + ⟨∇2 q(γ,Ξ), X − Ξ⟩+ q(γ,Ξ)
)]

= max
γ∈U

(
− 1

2L∥∇2 q(γ,Ξ)∥2F + q(γ,Ξ)
)
. (6.8)

Note here that strong duality holds as the term inside the parenthesis is linear in γ and convex

quadratic inX and U is a compact convex set so we can apply Sion’s Minimax Theorem [162]. An

approximate primal solution X̃ can then be reconstructed from an approximate solution γ̃ of the

dual problem by setting X̃ = Ξ− ∇2 q(γ̃,Ξ)
L .

Sticking with FOMs, one may apply the strongly convex excessive gap technique [132, Chapter

6.2] to compute the prox-mapXL(Ξ) as well. We will rewriteQL(Ξ;X) in a form that is more

natural for applying the excessive gap technique [132, Algorithm 6.2.37]. Note that∇2 q(γ,Ξ) =
A(γ)Ξ + B(γ). Thus, defining the matrix G

obj
:= A

obj
Ξ + B

obj
and the linear operator

G : γ 7→
∑m

i=1 γi(AiΞ +Bi), we have∇2 q(γ,Ξ) = A(γ)Ξ + B(γ) = G
obj

+ Gγ. Hence,

we arrive at

QL(Ξ;X) = L

2 ∥X − Ξ∥2F +
〈
G

obj
, X − Ξ

〉
+ max

γ∈U
{⟨Gγ,X⟩+ (q(γ,Ξ)− ⟨Gγ,Ξ⟩)}.

(6.9)

The inner saddle-point function is strongly convex inX and linear in γ so that we may approximate

the prox-map by approximately solving a strongly convex–concave saddle point problem. Thus,

applying [132, Theorem 6.2.4] toQL(Ξ;X) in the form (6.9) gives the following result.

189

6 Accelerated first-order methods for a class of semidefinite programs

Theorem 30. Initialize [132, Theorem 6.2.4] with initial iterate γ0 ∈ U . Let (γ̃, X̃) denote the
output of [132, Algorithm 6.2.37] after

O

(
maxγ∈Sm−1∥Gγ∥F ·maxγ∈U∥γ − γ0∥2√

Lϵ

)

iterations. Here, each iteration may require two exact projections onto U . Then,

QL(Ξ; X̃)−Q∗
L(Ξ) ≤ QL(Ξ; X̃)−

(
q(γ̄k,Ξ)− ∥∇2 q(γ̄k,Ξ)∥2F

2L

)
≤ ϵ. (6.10)

Remark 75. For simplicity, in our numerical implementation of CertSDP, we opt to run the

accelerated gradient descent method for simple sets [132, Algorithm 2.2.63] on the dual problem

(6.8). □

6.3.3 Putting the pieces together

We conclude this section by showing how to combine Theorems 29 and 30 to get a guarantee on

the total iteration count (including iterations within the inexact prox-map calls). To this end, we

will need an additional assumption on the norms of various quantities.

Assumption 18. Suppose Algorithm 9 starts atX0 = 0(n−k)×k. SupposeR > 0 satisfies

∥∇2 q(γ̃, X0)∥F
L

= ∥B(γ̃)∥F
L

≤ R

where γ̃ ∈ arg maxγ∈U q(γ,X0). Let D denote the diameter of U ; this is the natural scale

parameter for the dual iterates. We will see soon thatR is a natural scale parameter for the primal

iteratesXt, Ξt ∈ R(n−k)×k
. SupposeH ≥ 1 bounds

D∥
∑m

i=1 γiAi∥2
µ

, and

D∥
∑m

i=1 γiBi∥F
µκR

for all γ ∈ Sm−1
. We will assume algorithmic access toD,H , andR. □

Lemma 71. Under Assumption 18, it holds thatQ(X0)−Opt
(QMMP)

≤ µκ2R2

2 . In particular,
we may take gap0 = µκ2R2

2 in Algorithm 9. Then, for every t ≥ 0, the iterate Ξt computed by
Algorithm 9 satisfies

∥Ξt∥F ≤ 10κR.

190

6.3 Algorithms for strongly convex QMMPs

Proof. Let γ̃ ∈ arg maxγ∈U q(γ,X0). By µ-strong convexity ofQ(X), we have that

Q(X) ≥ q(γ̃, X)

≥ q(γ̃, X0) + ⟨∇2 q(γ̃, X0), X −X0⟩+ µ

2 ∥X −X0∥2F

= Q(X0)− 1
2µ∥∇2 q(γ̃, X0)∥2F + µ

2

∥∥∥∥X −X0 + ∇2 q(γ̃, X0)
µ

∥∥∥∥2

F

.

In particular, takingX = arg minX∈R(n−k)×k Q(X) gives

Q(X0)−Opt
(QMMP)

≤ ∥∇2 q(γ̃, X0)∥2F
2µ ≤ µκ2R2

2 ,

where the last inequality follows from Assumption 18. This proves the first claim. Next, by

Theorem 29, we have that for all t ≥ 0, thatQ(Xt)−Q(X0) ≤ Q(Xt)−Opt
(QMMP)

≤ 2µκ2R2

and hence

µ

2

∥∥∥∥Xt −X0 + ∇2 q(γ̃, X0)
µ

∥∥∥∥2

F

≤ Q(Xt)−Q(X0) + ∥∇2 q(γ̃, X0)∥2F
2µ ≤ 5µκ2R2

2 .

Using the assumptionX0 = 0(n−k)×k in Assumption 18 and applying triangle inequality together

with the bound ∥∇2 q(γ̃, X0)∥2F ≤ µ2κ2R2
derived from Assumption 18, we deduce that for all

t ≥ 0,

∥Xt∥F ≤
(
1 +
√

5
)
κR.

Then, as Ξt+1 = Xt+1 + 1−α
1+α(Xt+1 −Xt), we have

∥Ξt+1∥F ≤ 3
(
1 +
√

5
)
κR ≤ 10κR. ■

With this bound on ∥Ξt∥F we are now able to bound the operator norm maxγ∈Sm−1∥Gγ∥F
in Theorem 30.

Lemma 72. Suppose Assumption 18 holds and we set gap0 = µκ2R2

2 in Algorithm 9. Then, for
every iterate t ≥ 0, we have

max
γ∈Sm−1

∥Gγ∥F ≤ 11µκHR
D

.

191

6 Accelerated first-order methods for a class of semidefinite programs

Proof. Recall that by definition, the linear operator G maps γ to

∑m
i=1 γi(AiΞt +Bi). Thus, for

any γ ∈ Sm−1
,

∥Gγ∥F =
∥∥∥∥∥

m∑
i=1

γi(AiΞt +Bi)
∥∥∥∥∥

F

≤
∥∥∥∥∥

m∑
i=1

γiAi

∥∥∥∥∥
2
∥Ξt∥F +

∥∥∥∥∥
m∑

i=1
γiBi

∥∥∥∥∥
F

≤ 11µκHR
D

. ■

The following theorem gives the iteration complexity of Algorithm 9 instantiated with the

excessive gap technique to compute the prox-map. It follows as a corollary to Theorems 29 and 30

and Lemma 72.

Theorem 31. Let q(γ,X) and U satisfy Assumptions 17 and 18. Suppose gap0 is set to µκ2R2

2 in
Algorithm 9. LetXt denote the iterates produced by Algorithm 9 with starting pointX0 = 0(n−k)×k .
Then, for all t ≥ 1, the iterateXt satisfies

Q(Xt)−Opt
(QMMP)

≤
(

1− α

2

)t(
2µκ2R2

)
.

In particular,Q(XT)−Opt
(QMMP)

≤ ϵ after at most

T = O

(
√
κ log

(
µκ2R2

ϵ

))

outer iterations of Algorithm 9. The iterateXT is computed after a total (including iterations within
the inexact prox-map computations) ofO

(
κ5/4HR

√
L√

ϵ

)
iterations.

Proof. We will take T to be the first positive integer such that(
1− α

2

)T(
2µκ2R2

)
≤ ϵ.

Clearly, T = O
(√
κ log

(
κLR2/ϵ

))
. Next, if T > 1, then by the maximality of T we have(

1− α

2

)T

≥
(

1− α

2

)(
ϵ

2µκ2R2

)
≥ ϵ

4µκ2R2 .

From (6.7) and gap0 = µκ2R2

2 , we deduce that ϵt ≥ µκR2

2
(
1− α

2
)t α

2 . By Lemma 72 and

Assumption 18, we may bound

max
γ∈Sm−1

∥Gγ∥F ·max
γ∈U
∥γ − γ0∥2 ≤ 11µκHR.

192

6.4 Solving k-exact SDPs via strongly convex QMMP algorithms

Thus,Xt can be computed in

O

(
µκHR√
Lϵt

)
= O

(
κ1/4H(1− α/2)−t/2

)
iterations. Summing over the first T outer iterations and observing our lower bound on

(
1− α

2
)T

,

we have that

T∑
t=0

(
1− α

2

)−t/2
≤ O

(1− α
2
)−T/2

α

 = O

(
κR
√
L√
ϵ

)
. ■

6.4 Solving k-exact SDPs via strongly convex QMMP

algorithms

In this section, we show how to combine Theorems 27 and 31 to develop first-order methods

for approximately solving rank-k exact QMP-like SDPs. We will use the following notion of an

approximate solution to (SDP).

Definition 25. We will say that Ỹ ∈ Sn
is ϵ-optimal and δ-feasible for (SDP) if

〈
M

obj
, Ỹ
〉
≤ Opt

(SDP)
+ϵ,

(
m∑

i=1

(〈
Mi, Ỹ

〉
+ di

)2
)1/2

≤ δ,

and Ỹ ⪰ 0. □

The final piece towards this goal is developing algorithms for constructing a certificate of strict

complementarity U .

By Definition 23, the properties we need to ensure for U are that γ∗ ∈ U andA(γ) ≻ 0 for all

γ ∈ U . We will construct U by taking it to be an ℓ2-ball centered at a sufficiently accurate estimate

γ̃ of γ∗
.

We begin by verifying thatA(γ∗) ≻ 0.

Lemma 73. SupposeM∗, Y ∗ ∈ Sn
+ have rank n− k and k respectively and that ⟨M∗, Y ∗⟩ = 0.

LetW be an (n− k)-dimensional subspace. Then,M∗
W ≻ 0 if and only if Y ∗

W ⊥ ≻ 0.

Proof. It suffices to prove the forward direction as we may interchange the roles of Y ∗
andM∗

.

We prove the contrapositive. Suppose Y ∗
W ⊥ ̸≻ 0 so that ker(Y ∗

W ⊥) is nontrivial. As Y ∗ ⪰ 0,

we have that in fact ker(Y ∗) ∩W⊥
is nontrivial. Then, range(Y ∗) is a k-dimensional subspace

contained in (ker(Y ∗) ∩W⊥)⊥
. Similarly,W is an (n− k)-dimensional subspace contained in

(ker(Y ∗) ∩W⊥)⊥
. Then, as (ker(Y ∗) ∩W⊥)⊥

has dimension at most n− 1, we deduce that

range(Y ∗) ∩W is nontrivial and ⟨Y ∗,M∗⟩ > 0, a contradiction. ■

Clearly then, for all γ̃ close enough to γ∗
, we have thatA(γ̃) ≻ 0 and there exists some r > 0

such that Ũ := B(γ̃, r) satisfies A(γ) ≻ 0 for all γ ∈ Ũ . We consider one setting for r below.

It remains to ask, does the condition that γ∗ ∈ Ũ hold? Below, we show that this condition

193

6 Accelerated first-order methods for a class of semidefinite programs

{
γ ∈ Rm : A(γ) ⪰ µ̂

2 I
}γ∗

γ(1)

γ(2) γ(3)
γ(4)

U (3) U (4)

Figure 6.1: CertSDP (Algorithm 10) produces a series of iterates γ(i) → γ∗
. For each γ(i)

, CertSDP

constructs a ball U (i)
around γ(i)

. Intuitively, we want to pick U (i)
to be the largest ball around

γ(i)
for which we can solve the associated QMMP efficiently, in hopes of enclosing γ∗

. We

will thus choose U (i)
to satisfy certain regularity estimates (see (6.11) and Lemma 75). At the

minimum, we will ensureA(γ) ⪰ µ̂/2 for all γ ∈ U (i)
.

indeed holds when γ̃ is a sufficiently accurate estimate of γ∗
and that we can effectively check this

condition using CautiousAGD.

Assumption 19. Suppose we have algorithmic access to

• parameters 0 < µ̂ ≤ L̂ such that µ̂I ⪯ A(γ∗) ⪯ L̂I ,

• parameters R̂p, R̂d > 0 such that ∥X∗∥F ≤ R̂p and ∥γ∗∥2 ≤ R̂d, and

• a parameter ρ̂ > 0 upper bounding

µ̂

R̂d

,

∥∥∥∥∥
m∑

i=1
γiAi

∥∥∥∥∥
2
, and

∥
∑m

i=1 γiBi∥F
R̂p

∀γ ∈ Sm−1.

For notational simplicity, we will additionally assume R̂d ≥ 1. This is not strictly necessary and

simply allows us to writeO(R̂d) in place ofO(1 + R̂d). □

Note from the identity X∗ = −A(γ∗)−1B(γ∗) that ∥B(γ∗)∥F ≤ L̂R̂p. Now, suppose

γ(1), γ(2), . . . is a sequence converging to γ∗
(such a sequence can be constructed via subgradient

methods [108]; see also [60, Section 6.2.2]). Given γ(i)
, define

r(i) := min

 µ̂

2ρ̂ , 2R̂d −
∥∥∥γ(i)

∥∥∥
2
,
λmin

(
A
(
γ(i)

))
− µ̂/2

ρ̂
,

2L̂− λmax
(
A
(
γ(i)

))
ρ̂

,
2L̂R̂p −

∥∥∥B(γ(i)
)∥∥∥

F

ρ̂R̂p

. (6.11)

If r(i)
is positive, define U (i) := B(γ(i), r(i)).

We present three lemmas below. The first lemma states that r(i)
is positive and γ∗ ∈ U (i)

for

all γ(i)
sufficiently close to γ∗

. The second lemma establishes parameters for which the regularity

conditions of Assumption 18 hold for q(γ,X) along with U (i)
. Finally, the third lemma shows

that for each U (i)
, an approximate solution of the corresponding strongly convex QMMP (which

194

6.4 Solving k-exact SDPs via strongly convex QMMP algorithms

can be computed using Algorithm 9) can be used to either produce an approximate optimizer of

the underlying SDP or declare γ∗ /∈ U (i)
.

Lemma 74. Suppose Assumption 19 holds. Then, r(i) is positive and γ∗ ∈ U (i) if∥∥∥γ(i) − γ∗
∥∥∥

2
≤ µ̂

4ρ̂ .

Proof. Let r :=
∥∥∥γ(i) − γ∗

∥∥∥
2

. Using Assumption 19, we may bound the individual terms within

the definition of r(i)
as

2R̂d −
∥∥∥γ(i)

∥∥∥
2
≥ R̂d − r ≥

µ̂

ρ̂
− r,

λmin
(
A
(
γ(i)

))
− µ̂/2

ρ̂
≥ µ̂/2− ρ̂r

ρ̂
= µ̂

2ρ̂ − r,

2L̂− λmax
(
A
(
γ(i)

))
ρ̂

≥ L̂− ρ̂r
ρ̂

= L̂

ρ̂
− r, and

2L̂R̂p −
∥∥∥B(γ(i)

)∥∥∥
F

ρ̂R̂p

≥ L̂− ρ̂r
ρ̂

= L̂

ρ̂
− r.

Thus, r(i) ≥ min
(

µ̂
2ρ̂ ,

µ̂
2ρ̂ − r

)
= µ̂

2ρ̂ − r. Then, when r ≤ µ̂
4ρ̂ , we have r(i) > 0 and

furthermore, r(i) ≥ r =
∥∥∥γ(i) − γ∗

∥∥∥
2

. ■

Lemma 75. Suppose Assumption 19 holds and r(i) is positive. Then, q(γ,X) and U (i) satisfy
Assumption 18 with µ = µ̂

2 ,L = 2L̂,R = R̂p,D = 2r(i), andH = 2.

Proof. Begin by noting that for all γ ∈ U (i)
,

µ̂

2 I ⪯ A
(
γ(i)

)
− r(i)ρ̂I ⪯ A(γ) ⪯ A

(
γ(i)

)
+ r(i)ρ̂I ⪯ 2L̂I.

Let γ̃ ∈ arg maxγ∈U(i) q(γ, 0(n−k)×k). Then,

∥B(γ̃)∥F ≤
∥∥∥B(γ(i)

)∥∥∥
F

+ ρ̂r(i)R̂p ≤ 2L̂R̂p = LR.

Next, for γ ∈ Sm−1

D∥
∑m

i=1 γiAi∥2
µ

≤ 4r(i)ρ̂

µ̂
≤ 2

D∥
∑m

i=1 γiBi∥F
LR

≤ r(i)ρ̂

L̂
≤ 1/2. ■

195

6 Accelerated first-order methods for a class of semidefinite programs

Lemma 76. Suppose Assumption 19 holds, r(i) is positive, and 0 < ϵ ≤ 9ρ̂R̂dR̂
2
p. Set δ :=

µ̂ϵ2

(9ρ̂R̂dR̂p)2 and η := 4ϵ
9R̂d

. Suppose X̃ ∈ R(n−k)×k satisfies

QU(i)

(
X̃
)
≤ min

X∈R(n−k)×k
QU(i)(X) + δ.

Then,

• If γ∗ ∈ U (i), then Y (X̃) is η-feasible.

• If Y (X̃) is η-feasible, then Y (X̃) is ϵ-optimal and ϵ-feasible.

Proof. Suppose γ∗ ∈ U (i)
and define ∆ := X̃ −X∗

. By strong convexity and Theorem 27, we

have that
µ̂
2∥∆∥

2
F ≤ δ. Next, recalling that qi(X∗) = 0 for all i ∈ [m], we deduce

(
m∑

i=1

(〈
Mi, Y (X̃)

〉
+ di

)2
)1/2

=
(

m∑
i=1

qi(X̃)2
)1/2

= max
∥γ∥2=1

m∑
i=1

γi

(tr(∆⊺Ai∆)
2 + ⟨AiX

∗ +Bi,∆⟩
)

≤ ρ̂
(
δ

µ̂

)
+
√

8ρ̂R̂p

√
δ

µ̂

≤ 4ρ̂R̂p√
µ̂

√
δ = η.

Here, the first inequality follows from ∥∆∥2F ≤
2δ
µ̂ and Assumption 19, and the last inequality

follows as δ = µ̂ϵ2

(9ρ̂R̂dR̂p)2 ≤ µ̂R̂2
p since 0 < ϵ ≤ 9ρ̂R̂dR̂

2
p.

Now, suppose Y (X̃) is η-feasible. Note that η ≤ ϵ (as R̂d ≥ 1) and thus Y (X̃) is immediately

ϵ-feasible. Let γ̃ ∈ arg maxγ∈U(i) q(γ, X̃) so thatQU(i)(X̃) = q(γ̃, X̃). Then,

〈
M

obj
, Y (X̃)

〉
= q

obj
(X̃) = q(γ̃, X̃)−

m∑
i=1

γ̃iqi(X̃)

≤ QU(i)(X̃) + ∥γ̃∥2η

≤
(

min
X∈R(n−k)×k

QU(i)(X) + δ

)
+ 2R̂dη

≤ Opt
(SDP)

+
(
δ + 2R̂dη

)
,

where the first inequality follows from the η-feasibility of Y (X̃), the second inequality from the

premise of the lemma on X̃ and the fact that ∥γ̃∥2 ≤
∥∥∥γ̃ − γ(i)

∥∥∥
2

+
∥∥∥γ(i)

∥∥∥
2
≤ 2R̂d (this holds

196

6.4 Solving k-exact SDPs via strongly convex QMMP algorithms

because γ̃ ∈ U (i)
, U (i)

is the ℓ2-ball of radius r(i)
centered at γ(i)

, and by definition of r(i)
we

have r(i) ≤ 2R̂d −
∥∥∥γ(i)

∥∥∥
2

). We may then use the definitions of δ and η to bound

δ + 2R̂dη = µ̂ϵ2(
9ρ̂R̂dR̂p

)2 + 8ϵ
9 ≤

µ̂ϵ

9ρ̂R̂d

+ 8ϵ
9 ≤ ϵ.

Here, the first inequality follows from the upper bound on ϵ and the second inequality follows

from
µ̂

R̂d
≤ ρ̂ (Assumption 19). This then shows that Y (X̃) is ϵ-optimal. ■

We are now ready to present our full algorithm for computing approximate solutions to (SDP).

CertSDP (Algorithm 10) assumes access to a sequence γ(i) → γ∗
and applies a guess-and-double

scheme to guess when

∥∥∥γ(i) − γ∗
∥∥∥

2
is sufficiently small. It then applies Algorithm 9 to either

compute an ϵ-optimal ϵ-feasible solution Y (X̃) or to declare that γ∗ /∈ U (i)
.

Algorithm 10 CertSDP

Given a rank-k exact QMP-like SDP satisfying Assumption 19, a sequence γ(1), γ(2), · · · → γ∗
,

and 0 < ϵ ≤ 9ρ̂R̂dR̂
2
p

1. Set δ and η as in Lemma 76

2. For each i = 20, 21, 22, . . .
• If r(i) > 0

a) Let U (i) := B
(
γ(i), r(i))

and compute X̃ satisfying

QU(i)(X̃) ≤ min
X∈R(n−k)×k

QU(i)(X) + δ

using Algorithm 9

b) If Y (X̃) is η-feasible, output Y (X̃)

The next theorem gives rigorous guarantees on CertSDP and follows from Lemmas 74 to 76

and Theorem 31.

Theorem 32. Suppose (SDP) is a rank-k exact QMP-like SDP satisfying Assumption 19,γ(1), γ(2), · · · →
γ∗ and 0 < ϵ ≤ 9ρ̂R̂dR̂

2
p. Let T be such that

∥∥∥γ(t) − γ∗
∥∥∥

2
≤ µ̂

4ρ̂ for all t ≥ T . Then, CertSDP
(Algorithm 10) accesses at most 2T iterates of the sequence γ(i) and outputs an ϵ-optimal and ϵ-feasible
solution in

O

(
√
κ̂ log

(
κ̂ρ̂R̂pR̂d

ϵ

)
· log(T)

)
prox-map calls, and

O

(
κ̂7/4ρ̂R̂2

pR̂d

ϵ
· log(T)

)
iterations within all prox-map calls.

197

6 Accelerated first-order methods for a class of semidefinite programs

6.5 Numerical experiments

In this section, we investigate the numerical performance of our new FOM, CertSDP, on rank-k
exact QMP-like SDPs that are both large and sparse. Specifically, we consider random instances of

distance-minimization QMPs and their primal and dual SDP relaxations of the form

inf
X∈R(n−k)×k

{
∥X∥2F

2 : tr
(

X⊺AiX
2

)
+ ⟨Bi, X⟩+ ci = 0, ∀i ∈ [m]

}
(6.12)

≥ inf
Y ∈Sn


〈(

In−k/2
0k

)
, Y

〉
:

〈(
Ai/2 Bi/2
B⊺

i /2
ci
k Ik

)
, Y

〉
= 0, ∀i ∈ [m]

Y =
(
∗ ∗
∗ Ik

)
⪰ 0


≥ sup

γ∈Rm, T ∈Sk

{
tr(T) :

(
A(γ)/2 B(γ)/2
B(γ)⊺/2 c(γ)

k Ik − T

)
⪰ 0

}
.

In our instance generation procedure, we ensure that equality holds throughout this chain of

inequalities.

We will compare the performance of CertSDP on instances of (6.12) to that of several first-

order methods from the literature: the complementary slackness SDP algorithm (CSSDP) [60],

ProxSDP [164], and the splitting cone solver (SCS) [136]. We discuss these algorithms and relevant

implementation details in Section 6.5.1 and the instance generation procedure in Section 6.5.2

before presenting the numerical results in Section 6.5.3.

All algorithms and experiments are implemented in Julia and run on a machine with an AMD

Opteron 4184 processor with 12 CPUs and 70GB of RAM. Our code is publicly available at:

https://github.com/alexlihengwang/CertSDP

We additionally implement a variant of SketchyCGAL [198] adapted to our setting (see Sec-

tion 6.5.1). We choose to leave this algorithm off of our large-format experiments as its performance

was very similar to that of CSSDP in preliminary experimentation (see Section F.2).

6.5.1 Implementation details

CertSDP. We implemented CertSDP (Algorithm 10) as presented in this chapter except a few

modifications. In addition to simplifying the overall algorithm, these modifications enable CertSDP

to be run without knowledge of the parameters µ̂ and L̂. While the convergence guarantees of

Theorem 32 may no longer hold, we find empirically that CertSDP continues to perform very

effectively with these modifications.

• We instantiate CertSDP with Accelegrad [108] as the iterative method for producing iterates

γ(i)
. As in [60], we apply Accelegrad to the penalized dual problem

max
γ∈Rm, T ∈Sk

tr(T) + penalty ·min
(

0, λmin

(
A(γ)/2 B(γ)/2
B(γ)⊺/2 c(γ)

k Ik − T

))

198

https://github.com/alexlihengwang/CertSDP

6.5 Numerical experiments

for some large value for the penalty parameter. It can be shown that the optimal value and

optimizers of this penalized dual problem coincide with that of the dual SDP whenever the

penalty parameter is larger than tr(Y ∗); see [60]. In our experiments, we set the penalty

parameter to be 20 · tr(Y ∗).

• In practice, it is extremely cheap to solve (QMMPU) even to high accuracy. Thus, we replace

the guess-and-double scheme in Algorithm 10 with a linear schedule, i.e., we solve (QMMPU)

once every≈ 250 iterations. Additionally, we replace the excessive gap technique used in

Theorem 31 with accelerated gradient descent (see Remark 75).

• We set

r(i) = 1
ρ̂
· λmax(A(γ(i)))λmin(A(γ(i)))
λmax(A(γ(i))) + λmin(A(γ(i)))

if A(γ(i))) ≻ 0, and r(i) = 0 else. Equivalently, U (i) := B(γ(i), r(i)) is the largest ball

centered at γ(i)
for which the condition number of A(γ) for any γ ∈ B(γ(i), r(i)) is

guaranteed to be at most twice the condition number ofA(γ(i)). Note that it still holds

that A(γ) ≻ 0 for all γ ∈ U (i)
(as long as r(i)

is positive) and that γ∗ ∈ U (i)
for all γ(i)

close enough to γ∗
.

• In CautiousAGD (Algorithm 9), we terminate early if maxi∈[m]|qi(Xt)| does not decrease

to zero geometrically. Indeed, this can only happen if γ∗ /∈ U (i)
.

• Theorem 30 gives an a priori guarantee on the number of inner iterations required for

solving each prox-map. Instead of using this number of iterations, in our code, we will

monitor the saddle point gap, i.e., the second term in (6.10), and break as soon as the saddle

point gap is small enough.

• We warm-start the iterateX in CautiousAGD using the last iterate of the previous run of

CautiousAGD and warm-start γ in the prox-map computation using the last iterate of the

previous run of the prox-map computation.

• Unless the time limit is met first, the overall algorithm is terminated once CautiousAGD

produces a

(
10−13)

-optimal solution of (QMMPU) that satisfies maxi∈[m]|qi(Xt)| ≤
10−13

.

CSSDP. The complementary slackness SDP algorithm (CSSDP) [60] similarly constructs a

sequence of iterates γ(i) → γ∗
and occasionally solves a compressed k-dimensional SDP [60, Min-

FeasSDP] in the vector space corresponding to thek-many minimum eigenvalues of the slack matrix

M(γ(i)). As in our implementation of CertSDP, we instantiate CSSDP with Accelegrad [108] as

the iterative method for producing iterates γ(i)
and solve the compressed SDP once every≈ 250

iterations. The compressed SDPs are solved using SCS solver with all error parameters set to 10−13
.

Since CSSDP needs to solve the compressed SDP frequently, we make sure to instantiate the

optimization problem just once in order to amortize the cost of allocating the k × k symmetric

matrix variable.

199

6 Accelerated first-order methods for a class of semidefinite programs

SketchyCGAL. Yurtsever et al. [198] observe that one may track any linear image of the primal

matrix iterates (as opposed to the matrix iterate itself) in the CGAL [197] algorithm. Combining

this observation with the Nyström sketch gives SketchyCGAL. In our code, we implement a

variant of this idea, where we replace the Nyström sketch with the linear map sending a matrix in

Sn
to its top-right (n−k)×k submatrix. We omit this algorithm in our large-format experiments

as its performance was very similar to that of CSSDP in preliminary experiments (see Section F.2).

ProxSDP and SCS. ProxSDP [164] and the splitting cone solver (SCS) [136] are first-order

methods that can be used to tackle large-scale SDPs. ProxSDP combines the primal-dual hybrid

gradient method with an approximate projection operation that allows it to replace a full eigende-

composition with a partial one whenever the rank of the true SDP solution is small. SCS employs

a first-order method to tackle the homogeneous self-dual embedding but does not explicitly take

advantage of possible low rank solutions.

In our experiments, we pass the SDP relaxations of our QMPs to the corresponding Julia

interfaces ProxSDP.jl and SCS.jl with all error parameters set to 10−13
. In contrast to CertSDP

and CSSDP, which achieve storage optimality, ProxSDP and SCS both store matrix iterates and

thus require substantially more memory.

6.5.2 Random instance generation

We generate random sparse instances of distance-minimization QMPs (6.12) as follows: Let

(n, k,m, µ∗, nnz) be input parameters. Here, (n, k,m) control the size of (6.12), µ∗
is the desired

value of λmin(A(γ∗)) and nnz approximately controls the number of nonzero entries in each

A1, . . . , Am.

• LetA1, . . . , Am ∈ Sn−k
be sparse symmetric matrices each with≈ nnz nonzero entries

that are i.i.d. normal. We scaleA1, . . . , Am such that ∥Ai∥2 = 1 for all i ∈ [m].

• Let B1, . . . , Bm ∈ R(n−k)×k
be matrices where all entries are i.i.d. normal. We scale

B1, . . . , Bm such that ∥Bi∥F = 1 for all i ∈ [m].

• Pick a direction γ̂ uniformly from the surface of the sphere Sm−1
, then set γ∗ := rγ̂ where

r > 0 solvesλmin(A(γ∗)) = 1+rλmin(
∑m

i=1 γ̂iAi) = µ∗
. LetX∗ := −A(γ∗)−1B(γ∗).

• Finally, for each i ∈ [m], set ci such that tr
(

X∗⊺AiX
∗

2

)
+ ⟨Bi, X

∗⟩+ ci = 0.

Exactness is guaranteed to hold throughout (6.12) as (γ∗, T ∗), where

T ∗ := c(γ∗)
k

Ik −
B(γ∗)⊺A(γ∗)−1B(γ∗)

2 ,

achieves the value
∥X∗∥2

F
2 in the third line of (6.12) (see Section F.1).

6.5.3 Numerical results

To investigate the scalability of CertSDP in terms of n, we fix k = 10, m = 10, µ∗ = 0.1
and nnz = n. Note that in this regime, the Ai matrices are each individually very sparse with

200

https://github.com/mariohsouto/ProxSDP.jl
https://github.com/jump-dev/SCS.jl

6.5 Numerical experiments

approximately one nonzero entry per row or column. We then vary n such that the height of the

matrix variable X ∈ R(n−k)×k
, i.e., n − k, takes the values 103, 104, 105

. For each value of

n− k, we generate 10 random instances of (6.12) according to Section 6.5.2 and measure the time,

error, and memory consumption of the tested algorithms.

Remark 76. We measure the memory consumption of each algorithm by monitoring the virtual

memory size (vsz) of the process throughout the run of the algorithm and report the difference

between the maximum value and the starting value. This is the same measurement that is performed

in [198]. We caution that this number should only be treated as a very rough estimate of the storage

requirements. Indeed, virtual memory need not be allocated at all for small enough programs (so

that some algorithms register as using no memory at all for small enough values of n − k) and

furthermore, when it is allocated, it is not always fully used. Experimentally, we found that on

our machine, storage of up to≈ 1.0 MB was often measured as not using any memory at all. We

report such measurements as 0.0 MB in our tables (Tables 6.1 to 6.3) and as 1.0 MB in our log-scale

plot Figure 6.3. □

We ran each algorithm with time limits of 3× 103
, 104

, and 5× 104
seconds for n− k = 103

,

104
, 105

respectively. SCS is not tested for n − k = 104
as it was unable to complete a single

iteration within the time limits and utilized over 70GB of memory. Similarly, ProxSDP and SCS

were not tested for n − k = 105
as both came to complete failures due to excessive memory

allocation.

Detailed numerical results are reported in Tables 6.1 to 6.3 for n − k = 103
, 104

, and 105

respectively. Additional plots show the time and accuracy of each algorithm (Figure 6.2), the

average memory usage of each algorithm (Figure 6.3), and the convergence behavior of CertSDP

versus CSSDP on a single instance of each size (Figure 6.4). The plots on the left of Figure 6.4

show the primal squared distance ∥X −X∗∥2F and the dual suboptimality

Opt
(6.12)
−
(

tr(T) + penalty ·min
(

0, λmin

(
A(γ)/2 B(γ)/2
B(γ)⊺/2 c(γ)

k Ik − T

)))

for the iterates produced by CertSDP and CSSDP as a function of time. The plots on the right of

Figure 6.4 show the primal squared distance for the iterates produced by CertSDP within the final

call to CautiousAGD.

Algorithm time (s) std. ∥X −X∗∥2F std. memory (MB) std.

CertSDP 1.3× 103 7.6× 102 1.9× 10−22 4.2× 10−23 0.0 0.0
CSSDP 3.0× 103 5.8× 10−1 7.3× 10−2 3.4× 10−2 0.0 0.0
ProxSDP 2.1× 102 1.1× 101 1.2× 10−19 3.2× 10−19 4.8× 101 1.9× 101

SCS 3.1× 103 2.5× 101 5.1× 10−5 9.5× 10−5 5.3× 102 4.3× 101

Table 6.1: Experimental results for (n− k) = 103
(10 instances) with time limit 3× 103

seconds.

We make a few observations:

201

6 Accelerated first-order methods for a class of semidefinite programs

1 2 3

10−20

10−10

100

time (103 s)

pr
im

al
sq

.
er

ro
r

n− k = 103

5 10

10−20

10−10

100

time (103 s)

pr
im

al
sq

.
er

ro
r

n− k = 104

49 50

10−20

10−10

100

time (103 s)

pr
im

al
sq

.
er

ro
r

n− k = 105

CertSDP CSSDP ProxSDP SCS

Figure 6.2: Convergence plots comparing CertSDP, CSSDP, ProxSDP, and SCS forn−k = 103, 104, 105
.

At each setting of n− k, we generate 10 instances of (6.12) and plot the time and error of the

solution returned by each algorithm.

202

6.5 Numerical experiments

Algorithm time (s) std. ∥X −X∗∥2F std. memory (MB) std.

CertSDP 4.5× 103 7.0× 102 1.9× 10−22 5.2× 10−23 8.5 1.2× 101

CSSDP 1.0× 104 6.6× 10−1 2.7 9.4× 10−1 6.2 1.5× 101

ProxSDP 1.2× 104 1.1× 102 2.9 9.9× 10−1 1.9× 104 1.2× 102

Table 6.2: Experimental results for (n − k) = 104
(10 instances) with time limit 104

seconds. SCS was

unable to complete a single iteration within the time limit and utilized over 70GB of memory.

Algorithm time (s) std. ∥X −X∗∥2F std. memory (MB) std.

CertSDP 5.0× 104 6.2× 102 2.5× 10−2 6.5× 10−2 2.3× 102 2.0× 102

CSSDP
† 5.0× 104 4.7 2.8 5.1× 10−1 2.0× 102 2.5× 102

Table 6.3: Experimental results for (n − k) = 105
(10 instances) with time limit 5 × 104

seconds. SCS

and ProxSDP are not tested as they both come to complete failure due to memory allocation.

†
CSSDP failed due to numerical issues within the eigenvalue computation on three instances.

1e3 1e4 1e5
100

103

size: n− k

m
em

or
y

us
ag

e
(M

B
)

CertSDP CSSDP ProxSDP SCS

Figure 6.3: Memory usage of different algorithms as a function of the size n− k. In this chart, we plot 0.0
MB at 1.0 MB (see Remark 76 for a discussion on measuring memory usage).

203

6 Accelerated first-order methods for a class of semidefinite programs

0.0 0.5 1.0 1.5 2.0 2.5

10−20

10−15

10−10

10−5

100

time (103 s)

er
ro

r

2.060 2.062

10−20

10−10

time (103 s)

er
ro

r
0 1 2 3 4 5 6

10−20

10−15

10−10

10−5

100

time (103 s)

er
ro

r

4.59 4.62

10−20

10−10

time (103 s)
er

ro
r

0 10 20 30 40

10−3

100

time (103 s)

er
ro

r

47.900 47.925

10−4.0

10−3.5

10−3.0

time (103 s)

er
ro

r

CertSDP primal sq. dist. CSSDP primal sq. dist.
CertSDP dual subopt. CSSDP dual subopt.

Figure 6.4: Comparison of convergence behavior between CertSDP (Algorithm 10) and CSSDP. The first,

second, and third rows show experiments with n− k = 103
, 104

, and 105
respectively. The

right subplots give zoomed-in views of the primal squared distance in CertSDP on the final call

to Algorithm 9.

204

6.5 Numerical experiments

• For n − k = 103
(see Table 6.1), both CertSDP and ProxSDP were able to achieve high

accuracy within the time limit, while CSSDP and SCS could not. ProxSDP was faster than

CertSDP while CertSDP used significantly less memory.

• For n− k = 104
(see Table 6.2), CertSDP was the only algorithm that was able to achieve

high accuracy within the time limit. The measured memory usage of CertSDP and CSSDP

both had high variance, however it is clear that these algorithms use much less memory than

ProxSDP and SCS. As previously mentioned, SCS used over 70GB of memory at this size.

• For n− k = 105
(see Table 6.3), CertSDP and CSSDP were the only algorithms that could

be run without memory allocation errors. While neither algorithm was able to achieve

the desired accuracy within the time limit, CertSDP (average primal squared distance of

2.5× 10−2
) significantly outperformed CSSDP (average primal squared distance of 2.8).

• The dual suboptimality for CertSDP and CSSDP behave identically. This is expected as we

employ Accelegrad to generate both sequences.

• The primal squared distance and the dual suboptimality for CSSDP track quite closely. This

is expected from [60, Theorem 4.1, Table 3], which bounds the primal squared distance by

a constant factor of the dual suboptimality for CSSDP.

• The convergence behavior of CautiousAGD depends on whether U (i)
in CertSDP is a

certificate of strict complementarity.

When U (i)
is not a certificate of strict complementarity, CautiousAGD behaves as in the

bottom-right plot of Figure 6.4: It briefly converges linearly before plateauing. This makes

sense as the iterates in CautiousAGD should converge linearly to arg minX QU(i)(X) ̸=
X∗

.

When U (i)
is a certificate of strict complementarity, the iterates of CautiousAGD converge

linearly toX∗
(see the top-right and middle-right plots of Figure 6.4).

205

7 Variants of simultaneous

diagonalizability of quadratic

forms

This chapter is based on joint work [177] with Rujun Jiang.

A set of quadratic forms is simultaneously diagonalizable via congruence (SDC) if there exists a

basis under which each of the quadratic forms is diagonal. This property appears naturally when

analyzing quadratically constrained quadratic programs (QCQPs) and has important implications

in globally solving such problems using branch-and-bound methods. This chapter extends the

reach of the SDC property by studying two new weaker notions of simultaneous diagonalizability.

Specifically, we say that a set of quadratic forms is almost SDC (ASDC) if it is the limit of SDC sets

and d-restricted SDC (d-RSDC) if it is the restriction of an SDC set in up to d-many additional

dimensions. In the context of QCQPs, these properties correspond to problems that may be

diagonalized after arbitrarily small perturbations or after the introduction of d additional variables.

Our main contributions are complete characterizations of the ASDC pairs and nonsingular triples

of symmetric matrices, as well as a sufficient condition for the 1-RSDC property for pairs of

symmetric matrices. Surprisingly, we show that every singular symmetric pair is ASDC and that

almost every symmetric pair is 1-RSDC. We accompany our theoretical results with preliminary

numerical experiments applying these constructions to solve QCQPs within branch-and-bound

schemes.

7.1 Introduction

This chapter investigates two new notions of simultaneous diagonalizability of quadratic forms

and their applications in solving quadratically constrained quadratic programs (QCQPs).

Let Sn
denote the real vector space of n× n symmetric matrices.

1
Recall that a set of matrices

A ⊆ Sn
is said to be simultaneously diagonalizable via congruence (SDC) if there exists an invertible

P ∈ Rn×n
such that P ⊺AP is diagonal for everyA ∈ A. This property has attracted significant

interest in the optimization community in recent years in the context of solving subclasses of

QCQPs and their relaxations [93, 107, 116, 134, 181, 199, 200]. Specifically, the SDC property

corresponds to the ability to rewrite a given QCQP as a diagonal QCQP (see Section 7.1.1 below).

The SDC property also finds applications in areas such as signal processing, multivariate statistics,

medical imaging analysis, and genetics; see [39, 175] and references therein.

1

While all of our results hold with only minor modifications over both Cn
and Hermitian matrices and Rn

and

symmetric matrices, we will simplify our presentation in the main body by discussing only the real setting; see

Section G.3 for a discussion of our results in the complex setting.

207

7 Variants of simultaneous diagonalizability of quadratic forms

In this chapter, we take a step towards increasing the practical importance of the SDC property

in the context of globally solving QCQPs by investigating two weaker notions of simultaneous

diagonalizability. These weaker notions formalize methods for diagonalizing classes of a priori
non-diagonalizable QCQPs.

7.1.1 Motivation

A general QCQP can be written as

Opt := inf
x∈Rn

{
x⊺A1x+ 2b⊺1x+ c1 : x⊺Aix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]

x ∈ L

}
, (7.1)

where for every i ∈ [m], we haveAi ∈ Sn
, bi ∈ Rn

, ci ∈ R, and �i ∈ {≤,=}; andL ⊆ Rn
is

a polyhedron. In words, the objective is to minimize a quadratic function subject to quadratic

(in)equality constraints and linear (in)equality constraints. QCQPs are highly expressive and

capture numerous hard problems of both applied and theoretical interest; see [11, 161, 181] and

references therein. In fact, this class of problems is NP-hard even ifL = [−1, 1]n and there are no

quadratic constraints (e.g., via max-cut).

We will refer to a QCQP in which the set of symmetric matricesA = {A1, . . . , Am} is SDC

as a diagonalizable QCQP. By definition, a diagonalizable QCQP can be rewritten as a diagonal
QCQP (one in whichA is a set of diagonal matrices) upon a linear change of variables. Indeed,

letting y = P−1x andDi = P ⊺AiP gives

inf
y∈Rn

{
y⊺D1y + 2(P ⊺b1)⊺y + c1 : y⊺Diy + 2(P ⊺bi)⊺y + ci �i 0, ∀i ∈ [2,m]

y ∈ P−1L

}
.

While diagonal QCQPs are still NP-hard in general, they benefit from a number of advantages

over more general QCQPs:

• It is well known that the standard Shor semidefinite program (SDP) relaxation of a diagonal

QCQP is equivalent to a second-order cone program (SOCP) [181]. Consequently, the SDP

relaxation can be solved substantially faster for diagonal QCQPs than for general QCQPs.

Similar ideas have be used to build cheap but strong convex relaxations within branch and

bound (BB) frameworks for nonconvex QCQPs [199, 200].

As we will see in Section 7.7, when P is well-conditioned, the computational savings of

replacing an SDP with an SOCP within every node of a BB tree can outweigh the computa-

tional costs of preprocessing a diagonalizable QCQP into a diagonal QCQP.

• Additionally, qualitative properties of the standard SDP relaxation are often easier to analyze

in the context of diagonal QCQPs. For example, a long line of work has investigated when

the SDP relaxations of certain diagonal QCQPs are exact (for various definitions of exact)

and have given sufficient conditions for these properties [21, 24, 38, 87, 89, 92, 93, 112, 180].

Often, such arguments rely on conditions (such as convexity
2

or polyhedrality) of the

quadratic image [147] or the set of convex Lagrange multipliers [181]. In this context, the

2

The convexity of the quadratic image is sometimes referred to as “hidden convexity.”

208

7.1 Introduction

SDC property ensures that both of these sets are polyhedral. While such conditions have

been generalized beyond only diagonal or diagonalizable QCQPs, the sufficient conditions

often become much more difficult to verify [179, 181].

As we will see in Section 7.7, the SDP relaxation of a diagonal QCQP with bound constraints

(as are encountered within BB schemes) admits low-rank solutions. Heuristically, this

suggests that the corresponding SDP relaxations should be strong. We verify this intuition

with numerical experiments.

7.1.2 Main contributions and outline

In this chapter, we define and analyze the almost SDC (ASDC) and d-restricted SDC (d-RSDC)

properties; see Sections 7.2 and 7.5 for precise definitions. Informally,A ⊆ Sn
is ASDC if it is

the limit of SDC sets and d-RSDC if it is the restriction of an SDC set in Sn+d
to Sn

. In the

context of QCQPs, if the setA = {A1, . . . , Am} is ASDC, then the QCQP can be diagonalized

after arbitrarily small perturbations to theAi matrices. In a similar vein, ifA is d-RSDC, then the

QCQP can be diagonalized after the introduction of d additional “dummy” variables.

A summary of our contributions, along with an outline of the chapter, follows:

• We conclude this section in Section 7.1.3 by reviewing related work on BB methods for

QCQPs, the SDC property, and the almost simultaneously diagonalizable via similarity

property.

• In Section 7.2, we formally define the SDC and ASDC properties and review known

characterizations of the SDC property. We additionally highlight a number of behaviors of

the SDC property which will later contrast with those of the ASDC property.

• In Section 7.3, we give a complete characterization of the ASDC property for pairs of

symmetric matrices. In particular, Theorem 34 states that every singular
3

pair {A,B} ⊆ Sn

is ASDC. The proof of this statement relies on the canonical form for pairs of symmetric

matrices [173] under congruence transformations and the invertibility of a certain matrix

related to the eigenvalues of an “arrowhead” matrix.

• In Section 7.4, we give a complete characterization of the ASDC property for nonsingular
triples of symmetric matrices. Our proof and constructions rely on facts about block matrices

with Toeplitz upper triangular blocks. We review the relevant properties of such matrices in

Section G.2.

• In Section 7.5, we formally define the d-RSDC property and highlight its relation to the

ASDC property. We then show in Theorem 36 that the 1-RSDC property holds for almost

every pair of symmetric matrices. We also give a construction for the d-RSDC property for

d ≥ 1 and almost every pair of symmetric matrices. This second construction makes use of

additional degrees of freedom and empirically leads to improved performance in the context

of globally solving QCQPs (see Section 7.7).

3

See Definition 28.

209

7 Variants of simultaneous diagonalizability of quadratic forms

• In Section 7.6, we construct obstructions to a priori plausible generalizations of our devel-

opments in Sections 7.3 to 7.5. Section 7.6.1 shows that, in contrast to Theorem 34, there

exist singular triples of symmetric matrices which are not ASDC. The same construction can

be interpreted as a triple of symmetric matrices which is not d-RSDC for any d < ⌊n/2⌋;
this contrasts with Theorem 36. Next, Section 7.6.2 shows that a natural generalization

of our characterizations of the ASDC property for pairs and triples of symmetric matrices

cannot hold for generalm-tuples; specifically this natural generalization fails form ≥ 7.

• In Section 7.7, we revisit one of the key motivations for studying the ASDC and d-RSDC

properties—solving QCQPs more efficiently. In this context, we begin by deriving a number

of theoretical results that give heuristic reasons why one would expect SOCP-based BB

methods for diagonal QCQPs to outperform SDP-based BB methods for more general

QCQPs. We then present a number of preliminary numerical experiments that corroborate

this intuition.

Remark 77. In the main body of this chapter, we will state and prove our results for only the real

symmetric setting. Nevertheless, our results and proofs extend almost verbatim to the Hermitian

setting by replacing the canonical form of a pair of real symmetric matrices (Proposition 23) by

the canonical form for a pair of Hermitian matrices (see [105, Theorem 6.1]). As no new ideas or

insights are required for handling the Hermitian setting, we defer formally stating our results in the

Hermitian setting and discussing the necessary modifications to our proofs to Section G.3. □

7.1.3 Relatedwork

Branch-and-boundmethods forQCQPs Most existing works for globally solving QCQPs

are based on spatial BB methods. Audet et al. [8] developed an LP-based branch and cut method for

QCQPs using the reformulation-linearization technique (RLT) [158]. Linderoth [109] proposed

a triangle-based BB algorithm for solving nonconvex QCQPs, where two-dimensional triangles

and rectangles are used to partition the feasible region. Recently, Zhou et al. [200] proposed a

BB algorithm for QCQPs with nonconvex objective functions and convex quadratic constraints,

based on the SDC property between the objective function and a specific aggregation of the convex

quadratic constraints under a positive definiteness assumption. Luo et al. [116] propose a BB

algorithm based on the SDC property of two positive semidefinite matrices for solving a nonconvex

QCQP arising from optimal portfolio deleveraging problems. Please refer to [27, 44, 45, 63, 114]

for other recent developments in globally solving nonconvex QCQPs.

The SDC property for sets of quadratic forms and SDC algorithms. The SDC

property for a pair of symmetric matrices (more generally, Hermitian matrices) is well-understood

and follows from results due to Weierstrass [187] and Kronecker (see [102]). We review these

results in Section 7.2 (see also Proposition 23). More recently, there has been much interest in

the optimization literature towards understanding the SDC property for general m-tuples of

quadratic forms [93, 107, 134]. In fact, the search for “sensible and “palpable” conditions” for this

property appeared as an open question on a short list of 14 open questions in nonlinear analysis and

optimization [84]. In the real symmetric setting, Jiang and Li [93] gave a complete characterization

of this property under a semidefiniteness assumption. This result was then improved upon by

210

7.2 Preliminaries

Nguyen et al. [134] who removed the semidefiniteness assumption. Le and Nguyen [107] addi-

tionally extend these characterizations to the case of Hermitian matrices. Bustamante et al. [39]

gave a complete characterization of the simultaneous diagonalizability of anm-tuple of symmetric
complex matrices under

⊺
-congruence.

4

We remark that this line of work is “algorithmic” and gives numerical procedures for deciding if

a given set of quadratic forms is SDC. See [107] and references therein.

The almost SDS property. An analogous theory for the almost simultaneous diagonal-

izability of linear operators has been studied in the literature. In this setting, the congruence

transformation is naturally replaced by a similarity transformation
5

and the SDC property is

replaced by simultaneous diagonalizability via similarity (SDS). A widely cited theorem due to

Motzkin and Taussky [127] shows that every pair of commuting linear operators, i.e., a pair of matri-

ces in Cn×n
, is almost SDS. This line of investigation was more recently picked up by O’meara and

Vinsonhaler [137] who showed that triples of commuting linear operators are almost SDS under a

regularity assumption on the dimensions of eigenspaces associated with the linear operators.

7.1.4 Additional notation

Let N = {1, 2, . . . } and N0 = {0, 1, . . . }. For m,n ∈ N0, let [m,n] = {m,m+ 1, . . . , n}
and [n] = {1, . . . , n}. By convention, if m ≥ n + 1 (respectively, n ≤ 0), then [m,n] = ∅
(respectively, [n] = ∅). Givenx ∈ Rn

, let supp(x) := {i ∈ [n] : xi ̸= 0} denote the support of

x. Let |I|be the cardinality of a set I . Forα1, . . . , αk ∈ R, let Diag(α1, . . . , αk) ∈ Rk×k
denote

the diagonal matrix with ith entry αi. For A1, . . . , Ak square matrices, let Diag(A1, . . . , Ak)
denote the block diagonal matrix with ith block Ai. Given A ∈ Rn×n

and B ∈ Rm×m
, let

A⊕B ∈ R(n+m)×(n+m)
andA⊗B ∈ Rnm×nm

denote the direct sum and Kronecker product

ofA andB respectively. GivenA,B ∈ Rn×n
, let [A,B] := AB −BA denote the commutator

of A and B. For A ∈ Rn×n
, let ∥A∥ denote the spectral norm of A. Given α ∈ C, let Re(α),

Im(α), and α∗
denote the real and imaginary parts and complex conjugate of α respectively. For

A ∈ Cn×n
, letA∗

denote the conjugate transpose ofA. We will denote the imaginary unit by the

symbol i in order to distinguish it from the variable i, which will often be used as an index.

7.2 Preliminaries

In this section, we define our main objects of study and recall some useful results from the literature.

Definition 26. A setA ⊆ Sn
is simultaneously diagonalizable via congruence (SDC) if there exists

an invertible P ∈ Rn×n
such that P ⊺AP is diagonal for allA ∈ A. □

Remark 78. The SDC property is the natural notion for simultaneous diagonalization in the

context of quadratic forms. Indeed, supposeA ⊆ Sn
is SDC and let P denote the corresponding

invertible matrix. Then, performing the change of variables y = P−1x, we have that x⊺Ax =
y⊺(P ⊺AP)y is separable in y for everyA ∈ A. □

4

We emphasize that Bustamante et al. [39] consider complex symmetric matrices and adopt
⊺

-congruence as their

notion of congruence.

5

Recall that two matrices A, B ∈ Cn×n
are similar if there exists an invertible P ∈ Cn×n

such that A = P −1BP .

211

7 Variants of simultaneous diagonalizability of quadratic forms

Observation 5. The SDC property is closed under taking spans and subsets. In particular,A ⊆ Sn

is SDC if and only if {A1, . . . , Am} is SDC for some basis {A1, . . . , Am} of span(A).

We begin by studying the following relaxation of the SDC property.

Definition 27. A setA ⊆ Sn
is almost simultaneously diagonalizable via congruence (ASDC) if

there exist sequencesAi → A for everyA ∈ A such that for every i ∈ N, the set {Ai : A ∈ A}
is SDC. □

Observation 6. The ASDC property is closed under taking spans and subsets. In particular,A ⊆ Sn

is ASDC if and only if {A1, . . . , Am} is ASDC for some basis {A1, . . . , Am} of span(A).

When |A| is finite, we will use the following equivalent definition of ASDC.

Observation 7. A finite set {A1, . . . , Am} ⊆ Sn is ASDC if and only if for all ϵ > 0, there exist
Ã1, . . . , Ãm ∈ Sn such that

• for all i ∈ [m], the spectral norm
∥∥∥Ai − Ãi

∥∥∥ ≤ ϵ, and

•

{
Ã1, . . . , Ãm

}
is SDC.

We will additionally need the following two definitions.

Definition 28. A setA ⊆ Sn
is nonsingular if there exists a nonsingularA ∈ span(A). Else, it is

singular. □

Definition 29. Given a setA ⊆ Sn
, we will say that S ∈ A is a max-rank element of span(A) if

rank(S) = maxA∈A rank(A). □

7.2.1 Characterization of SDC

A number of necessary and/or sufficient conditions for the SDC property have been given in

the literature [39, 88, 105]. For our purposes, we will need the following two results. The first

result gives a characterization of the SDC property for nonsingular sets of symmetric matrices

and is well-known (see [88, Theorem 4.5.17]). The second result, due to Bustamante et al. [39],

gives a characterization of the SDC property for singular sets of symmetric matrices by reducing

to the nonsingular case. For completeness, we provide a short proof for each of these results in

Section G.1.

Proposition 21. LetA ⊆ Sn and suppose S ∈ span(A) is nonsingular. Then,A is SDC if and
only if S−1A is a commuting set of diagonalizable matrices with real eigenvalues.

Proposition 22. LetA ⊆ Sn and supposeS ∈ span(A) is a max-rank element of span(A). Then,
A is SDC if and only if range(A) ⊆ range(S) for everyA ∈ A and

{
A|range(S) : A ∈ A

}
is

SDC.

We close this section with two lemmas highlighting consequences of the SDC property which

we will compare and contrast with consequences of the ASDC property.

212

7.3 The ASDC property of symmetric pairs

Lemma 77. LetA ⊆ Sn and suppose S ∈ span(A) is positive definite. Then,A is SDC if and
only if S−1/2AS−1/2 is a commuting set.

Proof. This follows as an immediate corollary to Proposition 21 and the fact that S−1A has the

same eigenvalues as the symmetric matrix S−1/2AS−1/2
. ■

In particular, when span(A) contains a positive definite matrix, the SDC and ASDC properties

can be shown to be equivalent.

Corollary 27. LetA ⊆ Sn and suppose S ∈ span(A) is positive definite. Then,A is SDC if and
only ifA is ASDC.

Despite Corollary 27, we will see soon that the ASDC property is qualitatively quite different to

the SDC property in a number of settings (in particular, for singular pairs of symmetric matrices;

see Theorem 34). Specifically, we will contrast the following consequence of the SDC property.

Lemma 78 ([107, Lemma 9]). LetA ⊆ Sn and suppose there exists a common block decomposition

A =
(
Ā

0d

)

for allA ∈ A. ThenA is SDC if and only if
{
Ā : A ∈ A

}
⊆ Sn−d is SDC.

7.3 The ASDC property of symmetric pairs

In this section, we will give a complete characterization of the ASDC property for pairs of symmetric

matrices (henceforth, symmetric pairs). We will switch the notation above and label our matrices

A = {A,B}. Our analysis will proceed in two cases: when {A,B} is nonsingular and singular

respectively.

7.3.1 A canonical form for symmetric pairs

In this section and the next, we will make regular use of the canonical form for symmetric pairs

[105, 173].

We will need to define the following special matrices. For n ≥ 2, let Fn, Gn, Hn ∈ Sn
denote

the matrices of the form

Fn =
(

1
...

1

)
, Gn =

(0
... 1

0 ...
0 1

)
, and Hn =

(1 0
... 0

1 ...
0

)
.

Set F1 = (1) andG1 = H1 = (0).

The following proposition is adapted
6

from [105, Theorem 9.1].

6

The original statement of [105, Theorem 9.1] contains one additional type of block: those corresponding to the

eigenvalues at infinity. These blocks do not exist in our setting by the assumption that A is a max-rank element of

span({A, B}).

213

7 Variants of simultaneous diagonalizability of quadratic forms

Proposition 23. LetA,B ∈ Sn and supposeA is a max-rank element of span({A,B}). Then,
there exists an invertible P ∈ Rn×n such that P ⊺AP = Diag(S1, . . . , Sm) and P ⊺BP =
Diag(T1, . . . , Tm) are block diagonal matrices with compatible block structure. Here,m = m1 +
m2 + m3 + m4 corresponds to four different types of blocks where each mi ∈ N0 may be zero.
Additionally,m4 ∈ {0, 1}.

The firstm1-many blocks of P ⊺AP and P ⊺BP have the form

Si = σiFni , Ti = σi(λiFni +Gni),

where ni ∈ N, σi ∈ {±1}, and λi ∈ R. The nextm2-many blocks of P ⊺AP and P ⊺BP have the
form

Si =
(

Fni
Fni

)
, Ti = Fni ⊗

(
Im(λi) Re(λi)
Re(λi) − Im(λi)

)
+Gni ⊗ F2, (7.2)

where ni ∈ N and λi ∈ C \ R. The nextm3-many blocks of P ⊺AP and P ⊺BP have the form

Si =
(

Fni
0

Fni

)
, Ti = G2ni+1,

whereni ∈ N. Ifm4 = 1, then the last block ofP ⊺AP andP ⊺BP has the formSm = Tm = 0nm

for some nm ∈ N.

We will repeatedly encounter real matrices that represent complex numbers, e.g., the blocks

S−1
i Ti for i corresponding tom2 in the canonical form. We recall some useful facts: LetJ ∈ C2×2

be the unitary matrix

J :=
(i√

2
−i√

2
1√
2

1√
2

)
∈ C2×2.

Then, a matrix of the form

(
Im(λi) Re(λi)
Re(λi) − Im(λi)

)
has the same eigenvalues as

J∗
(

Re(λi) − Im(λi)
Im(λi) Re(λi)

)
J =

(
λi

λ∗
i

)
.

7.3.2 The nonsingular case

In this section, we will show that ifA is invertible, then {A,B} is ASDC if and only ifA−1B has

real eigenvalues. We begin by examining two examples that are representative of the situation when

A is invertible. Note in this case, thatm3 = m4 = 0 in the canonical form (Proposition 23).

Example 18. Let λ ∈ R and consider

A =
(

1
1

)
= F2, B =

(
0 λ
λ 1

)
= λF2 +G2.

214

7.3 The ASDC property of symmetric pairs

Noting thatA−1B is not diagonalizable, we conclude via Proposition 21 that {A,B} is not SDC.

On the other hand, let ϵ > 0 and define

B̃ =
(
ϵ λ
λ 1

)
.

Now,A−1B̃ has eigenvalues λ±
√
ϵ, whence by Proposition 21

{
A, B̃

}
is SDC. □

Example 19. Let λ ∈ C \ R and consider

A = F2 =
(

1
1

)
, B =

(
Im(λ) Re(λ)
Re(λ) − Im(λ)

)
.

Noting thatA−1B has non-real eigenvalues, we conclude via Proposition 21 (and the fact that

eigenvalues vary continuously) that {A,B} is not ASDC. □

The following technical lemma will be useful in proving the main result of this section and shows

that it is possible to perturbB to ensure thatA−1B has simple eigenvalues while maintaining its

number of real/complex eigenvalues.

Lemma 79. Let {A,B} ⊆ Sn and supposeA is invertible. For all ϵ > 0, there exists B̃ such that

•

∥∥∥B − B̃∥∥∥ ≤ ϵ,
• A−1B̃ has simple eigenvalues (whenceA−1B̃ is diagonalizable), and

• A−1B̃ andA−1B have the same number of real eigenvalues counted with multiplicity.

Proof. Without loss of generality, we may assume that A = Diag(S1, . . . , Sm) and B =
Diag(T1, . . . , Tm) are in canonical form (Proposition 23). Note that asA is invertible, we will have

m3 = m4 = 0. For notational convenience, letr = m1 and letσ1, . . . , σr, n1 . . . , nm, λ1, . . . , λm

denote the quantities furnished by Proposition 23. We will give a probabilistic construction (sum-

marized in Algorithm 11) for B̃ that satisfies all three conditions with probability one.

Let δ = ϵ
2 and pick a random η uniformly from [−δ, δ]m. Define the blocks T̃i as

T̃i := Ti + σi(ηiFni + δHni), ∀i ∈ [r],
T̃i := Ti + (ηiFni + δHni)⊗ F2, ∀i ∈ [r + 1,m], (7.3)

and set B̃ := Diag(T̃1, . . . , T̃m). Then, A−1B̃ = Diag(S−1
1 T̃1, . . . , S

−1
k T̃k) is again a block

diagonal matrix. Note that for i ∈ [r], the block

S−1
i T̃i = (λi + ηi)Ini + FniGni + δFniHni

is a Toeplitz tridiagonal matrix. Next, for i ∈ [r + 1,m], the block S−1
i T̃i has the form

S−1
i T̃i = Ini ⊗

(
Re(λi) − Im(λi)
Im(λi) Re(λi)

)
+ (ηiIni + FniGni + δFniHni)⊗ I2. (7.4)

215

7 Variants of simultaneous diagonalizability of quadratic forms

Algorithm 11 Construction for simple eigenvalues

GivenA′, B′ ∈ Sn
such thatA′

is invertible and ϵ′ > 0
1. Compute the canonical form [105] for {A′, B′}, i.e.,

P ⊺A′P = A = Diag(S1, . . . , Sm), and

P ⊺B′P = B = Diag(T1, . . . , Tm).

2. Set ϵ = ϵ′/
∥∥P−1

∥∥2
and δ = ϵ

2
3. Pick η uniformly at random from [−δ, δ]m
4. Return

{
A′, P−⊺B̃P−1}

where B̃ := Diag(T̃1, . . . , T̃m) and T̃i are defined in (7.3)

Note that S−1
i T̃i has the same eigenvalues as

(Ini ⊗ J)−1S−1
i T̃i(Ini ⊗ J)

= Ini ⊗
(
λi

λ∗
i

)
+ (ηiIni + FniGni + δFniHni)⊗ I2.

This is, up to a simultaneous permutation of rows and columns, a direct sum of two Toeplitz

tridiagonal matrices.

Using the closed form expression for eigenvalues of Toeplitz tridiagonal matrices [88], we have

thatA−1B̃ has eigenvalues

r⋃
i=1

{
λi + ηi + 2

√
δ cos

(
πj

ni + 1

)
: j ∈ [ni]

}

∪
m⋃

i=r+1

{
λ+ ηi + 2

√
δ cos

(
πj

ni + 1

)
: j ∈ [ni], λ ∈ {λi, λ

∗
i }
}
.

Note that the quantity ηi + 2
√
δ cos

(
πj

ni+1

)
is real so that A−1B and A−1B̃ have the same

number of real eigenvalues counted with multiplicity. Furthermore, as η ∈ [−δ, δ]m was picked

uniformly at random, we have thatA−1B̃ has only simple eigenvalues with probability one.

Finally,

∥∥∥B − B̃∥∥∥ =
∥∥∥Diag(T1 − T̃1, . . . , Tm − T̃m)

∥∥∥ = maxi

∥∥∥Ti − T̃i

∥∥∥ ≤ ϵ. ■

The following theorem follows as a simple corollary to our developments thus far.

Theorem 33. LetA,B ∈ Sn and supposeA is invertible. Then, {A,B} is ASDC if and only if
A−1B has real eigenvalues.

Proof. (⇒) This direction holds trivially by continuity of eigenvalues and the assumption thatA
is invertible.

(⇐) Let ϵ > 0. Then, applying Lemma 79 to {A,B}, we get B̃ such that

∥∥∥B − B̃∥∥∥ ≤ ϵ

andA−1B̃ is a matrix with real simple eigenvalues. We deduce by Proposition 21 that

{
A, B̃

}
is

SDC. ■

216

7.3 The ASDC property of symmetric pairs

Corollary 28. LetA = {A1, . . . , Am} in (7.1) and suppose span(A) = span{A,B} where
A is invertible. Furthermore, supposeA−1B has real eigenvalues. Then for any ϵ > 0, there exist∥∥∥Ãi −Ai

∥∥∥ ≤ ϵ such that

inf
x∈Rn

{
x⊺Ã1x+ 2b⊺1x+ c1 : x⊺Ãix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]

x ∈ L

}
(7.5)

is a diagonalizable QCQP. The matrices Ãi and the invertible matrix P diagonalizing (7.5) can be
computed via Algorithm 11.

7.3.3 The singular case

In the remainder of this section, we investigate the ASDC property when {A,B} is singular. We

will show, surprisingly, that every singular symmetric pair is ASDC. We begin with an example and

some intuition.

Example 20. In contrast to the SDC property (cf. Lemma 78), the ASDC property of a pair

{A,B} in the singular case does not reduce to the ASDC property of

{
Ā, B̄

}
, where Ā and B̄

are the restrictions ofA andB to the joint range ofA andB. For example, let

A =
(1

1
0

)
, B =

(1
−1

0

)
,

and let Ā and B̄ denote the respective 2× 2 leading principal submatrices.

By Theorem 33,

{
Ā, B̄

}
is not ASDC (and in particular not SDC). On the other hand, we

claim that {A,B} is ASDC: For ϵ > 0, consider the matrices

Ã =
(1

1
ϵ

)
, B̃ =

(
1

√
ϵ

−1
√

ϵ√
ϵ

√
ϵ 0

)
.

A straightforward computation shows that Ã−1B̃ has simple eigenvalues {−1, 0, 1} whence{
Ã, B̃

}
is SDC.

The fact that

{
Ā, B̄

}
is not SDC is equivalent to the statement: there does not exist a basis

{p1, p2} ∈ R2
such that the quadratic forms x⊺Āx and x⊺B̄x can be expressed as

x⊺Āx = α1(p⊺1x)2 + α2(p⊺2x)2
, and

x⊺B̄x = β1(p⊺1x)2 + β2(p⊺2x)2
,

for some αi, βi ∈ R. On the other hand, the fact that

{
Ã, B̃

}
is SDC shows that there exists a

spanning set {p1, p2, p3} ⊆ R2
and αi, βi ∈ R such that

x⊺Āx = α1(p⊺1x)2 + α2(p⊺2x)2 + α3(p⊺3x)2
, and

x⊺B̄x = β1(p⊺1x)2 + β2(p⊺2x)2 + β3(p⊺3x)2
.

217

7 Variants of simultaneous diagonalizability of quadratic forms

Intuitively, the ASDC property asks whether a set of quadratic forms can be (almost) diagonalized

using n (the ambient dimension)-many linear forms whereas the SDC property may be forced to

use a smaller number of linear forms. □

Theorem 34. Let {A,B} ⊆ Sn. If {A,B} is singular, then it is ASDC.

Proof. We make simplifying assumptions: Without loss of generality, we may assume thatA is a

max-rank element of span({A,B}) andA = Diag(S1, . . . , Sm) andB = Diag(T1, . . . , Tm)
are in canonical form (Proposition 23). We may assume m1 = 0 (else consider the submatrix

of A,B corresponding to the remaining blocks). As A is singular, we have m3 + m4 ≥ 1. In

fact, we may assumem3 +m4 = 1 (else, perturb the submatrix ofA corresponding to the first

m − 1 blocks so that A is nonsingular on those blocks). Similarly, if m4 = 1, we may assume

that nm = 1. Finally, assume Diag(S−1
1 T1, . . . , S

−1
m−1Tm−1) has simple eigenvalues (else apply

Algorithm 11 to the firstm− 1 blocks). For notational convenience, letm2 = k.

After the above simplifying assumptions, there are three cases left to consider: wherem ≥ 2
andm4 = 1, wherem ≥ 2 andm3 = 1, and wherem = 1. In the first two cases,A,B have the

form

A =


1

1
. . .

1
1

Sm

, B =


Im(λ1) Re(λ1)
Re(λ1) − Im(λ1)

. . .
Im(λk) Re(λk)
Re(λk) − Im(λk)

Tm


(7.6)

where λ1, λ
∗
1, . . . , λk, λ

∗
k ∈ C \ R are distinct.

Case 1. In case 1, Sm = Tm = 01. Set

Ãδ =


1

1
. . .

1
1

δ

, B̃δ =



Im(λ1) Re(λ1)
Re(λ1) − Im(λ1)

√
δ Re(α1)√
δ Im(α1)

. . .
...

Im(λk) Re(λk)
Re(λk) − Im(λk)

√
δ Re(αk)√
δ Im(αk)√

δ Re(α1)
√

δ Im(α1) · · · √
δ Re(αk)

√
δ Im(αk) δz


(7.7)

218

7.3 The ASDC property of symmetric pairs

for some α ∈ Ck
, z ∈ R, and δ > 0 to be chosen later. The eigenvalues of Ã−1

δ B̃δ are equal to

the eigenvalues of


J

. . .

J
1√
δ


−1

Ã−1
δ B̃δ


J

. . .

J
1√
δ



=



λ1
λ∗

1

α∗
1/

√
2

α1/
√

2
. . .

...
λk

λ∗
k

α∗
k/

√
2

αk/
√

2
−α∗

1i∗/
√

2 −α1i/
√

2 · · · −α∗
ki∗/

√
2 −αki/

√
2 z

.

The characteristic polynomial (in ξ) of this latter matrix is

(z − ξ)
k∏

i=1
(λi − ξ)(λ∗

i − ξ) +
k∑

i=1

(
Im
(
α2

i

)
ξ − Im

(
α2

iλi

))∏
j ̸=i

(λj − ξ)(λ∗
j − ξ) (7.8)

and is independent of δ > 0. As λi are all non-real, given any x, y ∈ Rk
, it is possible to construct

α ∈ Ck
such that

Im(α2
i) = yi and − Im(α2

iλi) = xi, ∀i ∈ [k]. (7.9)

Setting α in this manner reduces the characteristic polynomial to

(z − ξ)
k∏

i=1
(λi − ξ)(λ∗

i − ξ) +
k∑

i=1
(xi + yiξ)

∏
j ̸=i

(λj − ξ)(λ∗
j − ξ). (7.10)

It suffices to show that there exist x, y ∈ Rk
and z ∈ R such that the roots of (7.10) are all real, as

we may take δ > 0 to zero independently of our choice of x, y, z.

Define the following polynomials.

fi(ξ) :=
∏
j ̸=i

(λj − ξ)(λ∗
j − ξ), gi(ξ) := ξfi(ξ), ∀i ∈ [k], and

h(ξ) :=
k∏

i=1
(λi − ξ)(λ∗

i − ξ).

219

7 Variants of simultaneous diagonalizability of quadratic forms

As {λ1, λ
∗
1, . . . , λk, λ

∗
k} are distinct values in C \ R, we have that {f1, g1, . . . , fk, gk, h} are a

basis for the degree-2k polynomials in ξ. Now pick 2k + 1 distinct values ξ1, . . . , ξ2k+1 ∈ R.

Note that {ξ1, . . . , ξ2k+1} are the roots to (7.10) if and only if x, y ∈ Rn
and z ∈ R satisfy

(
f1(ξ1) g1(ξ1) ··· fk(ξ1) gk(ξ1)

...
...

...
...

...
f1(ξ2k+1) g1(ξ2k+1) ··· fk(ξ2k+1) gk(ξ2k+1)

h(ξ1)
...

h(ξ2k+1)

)
x1
y1
...

xk
yk
z

 =
(

ξ1h(ξ1)
...

ξ2k+1h(ξ2k+1)

)
. (7.11)

Note that the matrix on the left is invertible (as {f1, g1, . . . , fk, gk, h} is independent and the

ξi are distinct) and real (as the ξi are real). Consequently, the matrix on the left has a real inverse.

Note also that the vector on the right is real. We deduce that there exist x, y ∈ Rk
(and thus

α ∈ Ck
) and z ∈ R such that the eigenvalues of Ã−1

δ B̃δ are real and simple.

Case 2. In case 2, Sm =
(

Fnm
0

Fnm

)
and Tm = G2nm+1. Set

Ãδ =



1
1

. . .
1

1
Fnm

δ

Fnm


, and

B̃δ =



Im(λ1) Re(λ1)
Re(λ1) − Im(λ1)

√
δ Re(α1)√
δ Im(α1)

. . .
...

Im(λk) Re(λk)
Re(λk) − Im(λk)

√
δ Re(αk)√
δ Im(αk)

Gnm√
δ Re(α1)

√
δ Im(α1) · · · √

δ Re(αk)
√

δ Im(αk) δz e∗
1

Gnm e1


(7.12)

220

7.3 The ASDC property of symmetric pairs

for some α ∈ Ck
, z ∈ R, and δ > 0 to be chosen later. The eigenvalues of Ã−1

δ B̃δ are equal to

the eigenvalues of

J
. . .

J
Inm /

√
δ

1/
√

δ √
δInm



−1

Ã−1
δ B̃δ



J
. . .

J
Inm /

√
δ

1/
√

δ √
δInm



=



λ1
λ∗

1

α∗
1/

√
2

α1/
√

2
. . .

...
λk

λ∗
k

α∗
k/

√
2

αk/
√

2
FnmGnm enm

−(α1i)∗/
√

2 −α1i/
√

2 · · · −(αki)∗/
√

2 −αki/
√

2 z e⊺1
FnmGnm


.

The characteristic polynomial (in ξ) of this latter matrix is

ξ2nm

(
(z − ξ)

k∏
i=1

(λi − ξ)(λ∗
i − ξ)

+
k∑

i=1

(
Im(α2

i)ξ − Im(α2
iλi)

)∏
j ̸=i

(λj − ξ)(λ∗
j − ξ)

)
(7.13)

and is independent of δ > 0. As in Case 1 (cf. (7.8)), we may pick α ∈ Ck
and z ∈ R such that

Ã−1
δ B̃δ has real (but no longer necessarily simple) eigenvalues. Finally, applying Theorem 33, we

deduce that for all δ > 0,

{
Ãδ, B̃δ

}
is ASDC. We conclude that {A,B} is ASDC.

Case 3. In the final case, we have thatm = m3 +m4 = 1. Ifm4 = 1 (so thatA = B = 0), it

is clear that {A,B} is actually SDC. Finally, supposem3 = 1 so that

A =
(

Fnm
0

Fnm

)
, B = G2nm+1.

Then for δ ̸= 0, set

Ãδ =
(

Fnm
δ

Fnm

)
.

Note that Ã−1B is upper triangular with all diagonal entries equal to zero. Then applying Theo-

rem 33, we deduce that for all δ ̸= 0,

{
Ãδ, B

}
is ASDC. We conclude that {A,B} is ASDC. ■

221

7 Variants of simultaneous diagonalizability of quadratic forms

Corollary 29. LetA = {A1, . . . , Am} in (7.1) and suppose span(A) = span{A,B} is singular.
Then for any ϵ > 0, there exist

∥∥∥Ãi −Ai

∥∥∥ ≤ ϵ such that

inf
x∈Rn

{
x⊺Ã1x+ 2b⊺1x+ c1 : x⊺Ãix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]

x ∈ L

}
(7.14)

is a diagonalizable QCQP. The matrices Ãi and an invertible matrix P diagonalizing (7.14) can
be computed via the construction in Theorem 34.

7.4 The ASDC property of nonsingular symmetric triples

In this section, we will prove the following characterization of the ASDC property for nonsingular

triples of symmetric matrices (henceforth, symmetric triples).

Theorem 35. Let {A,B,C} ⊆ Sn and supposeA is invertible. Then, {A,B,C} is ASDC if and
only if

{
A−1B,A−1C

}
are a pair of commuting matrices with real eigenvalues.

As always, the forward direction follows trivially from Proposition 21 and continuity. For the

reverse direction, we will extend an inductive argument due to Motzkin and Taussky [127] to

show that we may repeatedly perturb either A−1B orA−1C to increase the number of simple

eigenvalues. In contrast to the original argument in [127], which establishes that any commuting

pair {S, T} ⊆ Cn×n
is almost simultaneously diagonalizable via similarity (and thus only needs

to inductively maintain commutativity ofS and T), for our proof we will further need to maintain

thatA,B,C are symmetric matrices and thatA−1B andA−1C have real eigenvalues.

Our proof will require two technical facts about block matrices consisting of upper triangular

Toeplitz blocks. We present these facts below and defer their proofs to Section G.2.

Definition 30. T ∈ Rni×nj
is an upper triangular Toeplitz matrix if T is of the form

T =

0ni×(nj−ni)

t(1) t(2) ··· t(ni)

t(1) ...
...

... t(2)

t(1)

 or T =


t(1) t(2) ··· t(ni)

t(1) ...
...

... t(2)

t(1)

0(ni−nj)×nj


if ni ≤ nj and nj ≤ ni respectively. □

Definition 31. Let (n1, . . . , nk) such that

∑
i ni = n. Let T(n1, . . . , nk) ⊆ Rn×n

denote the

linear subspace of matrices T such that each block Ti,j (when the rows and columns of T are

partitioned according to (n1, . . . , nk)) is an upper triangular Toeplitz matrix. When the partition

(n1, . . . , nk) is clear from context, we will simply write T. □

The following fact characterizes the set of matrices which commute with a nilpotent Jordan

chain (see for example [168, Theorem 6]).

Lemma 80. Let (n1, . . . , nk) such that
∑

i ni = n. LetJ ∈ Rn×n be a block diagonal matrix
with diagonal block Ji,i = FniGni , i.e., a nilpotent Jordan block of size ni. Then, T ∈ Rn×n

commutes withJ if and only if T ∈ T.

222

7.4 The ASDC property of nonsingular symmetric triples

Definition 32. Let (n1, . . . , nk) such that

∑
i ni = n. Define the linear map Π(n1,...,nk) :

T(n1, . . . , nk)→ Rk×k
by

(Π(n1,...,nk)(T))i,j =
{
T

(1)
i,j if ni = nj ,

0 else.

When the partition (n1, . . . , nk) is clear from context, we will simply write Π. □

The following fact follows from the observation that the characteristic polynomial of a matrix

T ∈ T depends on only a few of its entries (see Lemma 103).

Lemma 81. Let (n1, . . . , nk) such that
∑

i ni = n. Then, for anyT ∈ T, the matricesT ∈ Rn×n

and Π(T) ∈ Rk×k have the same eigenvalues.

We are now ready to prove Theorem 35.

Proof of Theorem 35. It suffices to show that if

{
A−1B,A−1C

}
are a pair of commuting matrices

with real eigenvalues, then {A,B,C} is ASDC. Note that any set {A,B,C} ⊆ S1
is SDC. Thus,

we may assume that n ≥ 2 and that the statement is true inductively for all smaller n.

We make the following simplifying assumptions: Without loss of generality, we may assume that

either A−1B has multiple eigenvalues or that A−1B and A−1C are both nilpotent. Indeed, if

A−1B andA−1C both have a single eigenvalue, then we may consider the basis{A,B + λBA,C + λCA}
for span{A,B,C}whereA−1(B+λBA) = A−1B+λBI andA−1(C +λCA) = A−1C +
λCI are both nilpotent. We will work in the basis for Rn

furnished by Proposition 23 so that

A−1B is in Jordan canonical form (note thatm2 = m3 = m4 = 0 by the assumptions thatA is

invertible andA−1B has real eigenvalues) and assume that the blocks ofA−1B are ordered first

according to increasing eigenvalue then increasing block sizes.

We will break our proof into four cases: First, we will consider where A−1B has multiple

eigenvalues. The remaining three cases will consider when the Jordan block structure ofA−1B
has: multiple block sizes, multiple blocks of the same size, and a single block.

Case 1. Suppose A−1B has ℓ-many distinct eigenvalues. Write C as an ℓ × ℓ block matrix

according to the partition induced by the eigenvalues of A−1B. Then, as A−1C and A−1B
commute, we have that A−1C (perforce C) is block diagonal. Thus, according to the block

structure induced by the eigenvalues ofA−1B, the matricesA,B,C are jointly block diagonal,

with each diagonal block satisfying the conditions of the inductive hypothesis. We conclude that

{A,B,C} is ASDC.

Case 2. SupposeA−1B andA−1C are nilpotent and thatA−1B has distinct block sizes. For

concreteness, supposeA−1B has k blocks of size η = n1 = · · · = nk < nk+1 ≤ · · · ≤ nm. By

Proposition 23,

A = Diag(σ1Fη, . . . , σkFη, σk+1Fnk+1 , . . . , σmFnm)

223

7 Variants of simultaneous diagonalizability of quadratic forms

for some σi ∈ {±1}. Set

C̃ = C + δDiag(σ1Fη, . . . , σkFη, 0nk+1 , . . . , 0nm). (7.15)

Applying Lemma 80, we have thatA−1C̃ commutes withA−1B and that C̃ ∈ Sn
. Let Π denote

the linear map furnished by Lemma 81. As ni ̸= nj for all i ≤ k and j ≥ k + 1, we have that

Π(A−1C) can be written as a block diagonal matrix

Π(A−1C) =
(

Π(A−1C)1,1
Π(A−1C)2,2

)
with blocks of size k × k and (m − k) × (m − k) respectively. As Π preserves eigenvalues for

inputs in T, we have that Π(A−1C)1,1 and Π(A−1C)2,2 are both nilpotent. Then, asA−1C̃ has

the same eigenvalues as

Π(A−1C̃) =
(

Π(A−1C)1,1+δIk

Π(A−1C)2,2

)
,

we deduce thatA−1C̃ has eigenvalues {0, δ}. We have reduced to case (1) whence

{
A,B, C̃

}
is

ASDC. We conclude that {A,B,C} is ASDC.

Case 3. SupposeA−1B andA−1C are nilpotent and thatA−1B has Jordan blocks all of the

same dimension. For concreteness, supposeA−1B hasm ≥ 2 Jordan blocks of dimension η. In

this case Proposition 23 states that

A = Diag(σ1, . . . , σm)⊗ Fη and B = Diag(σ1, . . . , σm)⊗Gη

where σi ∈ {±1}. WriteC as am×m block matrix with blocksCi,j ∈ Rη×η
. By Lemma 80,

A−1C ∈ T and we may write

Ci,j = Fη

(
γ

(1)
i,j Iη +

η∑
ℓ=2

γ
(ℓ)
i,j (FηGη)ℓ−1

)
.

Let Π denote the linear map furnished by Lemma 81. Let

Ā = Diag(σ1, . . . , σm) and C̄ =
(
γ

(1)
i,j

)
. (7.16)

Note that asC ∈ Sn
, we have γ

(1)
i,j = γ

(1)
j,i , whence Ā, C̄ ∈ Sm

. As Π preserves the eigenvalues

for inputs in T and Ā−1C̄ = Π(A−1C), we deduce that Ā−1C̄ has real eigenvalues (in fact, the

single eigenvalue 0). Then applying Lemma 79, there exists C̄ ′ ∈ Sm
such that

∥∥∥C̄ − C̄ ′
∥∥∥ ≤ δ

and Ā−1C̄ ′
hasm-many distinct real eigenvalues. Finally, set

C̃ = C + (C̄ ′ − C̄)⊗ Fη.

224

7.5 Restricted SDC

Then Lemma 80 implies thatA−1B andA−1C̃ commute. Furthermore, by construction,A−1C̃
has upper triangular Toeplitz blocks so that its eigenvalues are the same as the eigenvalues of

Π(A−1C̃) = Ā−1C̄ ′
. We have reduced to case (1) and

{
A,B, C̃

}
is ASDC. We conclude that

{A,B,C} is also ASDC.

Case 4. SupposeA−1B andA−1C are nilpotent and thatA−1B is a single Jordan block. Then,

by Proposition 23,A = σFn andB = σGn for some σ ∈ {±1}. Furthermore, by Lemma 80

and the assumption thatA−1C is nilpotent, we may write

C = σFn

(
n∑

i=2
ci(FnGn)i−1

)

for some c2, . . . , cn ∈ R.

If n = 2, thenC = c2σG2. We may set

B̃ = σ(G2 + δH2) and C̃ = c2σ(G2 + δH2). (7.17)

Then,

{
A−1B̃, A−1C̃

}
are a pair of commuting matrices with real simple eigenvalues.

If n ≥ 3, set

B̃ = B + δσ(e1e
⊺
n + ene

⊺
1) and C̃ = C + σ(enγ

⊺ + γe⊺n) (7.18)

whereγ ∈ Rn
is defined recursively asγn = γn−1 = 0 andγi = δ(ci+1+γi+1) for i ∈ [n−2]. A

straightforward calculation shows thatA−1B̃ andA−1C̃ commute and both have real eigenvalues.

Finally, as A−1B̃ has distinct eigenvalues {0, δ}, we have reduced to case (1) and

{
A, B̃, C̃

}
is

ASDC. We conclude that {A,B,C} is also ASDC. ■

Corollary 30. LetA = {A1, . . . , Am} in (7.1) and suppose span(A) = span{A,B,C} where
A is invertible. Furthermore, supposeA−1B andA−1C commute and have real eigenvalues. Then,
for any ϵ > 0, there exist

∥∥∥Ãi −Ai

∥∥∥ ≤ ϵ such that

inf
x∈Rn

{
x⊺Ã1x+ 2b⊺1x+ c1 : x⊺Ãix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]

x ∈ L

}
(7.19)

is a diagonalizable QCQP. The matrices Ãi and an invertible matrix P diagonalizing (7.19) can
be computed via the construction in Theorem 35.

7.5 Restricted SDC

In this section, we investigate a second new notion of simultaneous diagonalizability called restricted
SDC. We will see soon that we have in fact already seen this property before in Section 7.3.

225

7 Variants of simultaneous diagonalizability of quadratic forms

Definition 33. LetA ⊆ Sn
and d ∈ N. We will say thatA is d-restricted SDC (d-RSDC) if there

exist matrices Ā ∈ Sn+d
containingA as its top-left n× n principal submatrix for everyA ∈ A

such that

{
Ā : A ∈ A

}
is SDC. □

We record some simple consequences of the d-RSDC property that follow from Observation 5

and Lemma 78.

Observation 8. LetA ⊆ Sn and d ∈ N.

• A is d-RSDC if and only if {A1, . . . , Am} is d-RSDC for some basis {A1, . . . , Am} of
span(A).

• IfA is d-RSDC, thenA is d′-RSDC for all d′ ≥ d.

The following lemma explains the connection between the d-RSDC property and the ASDC

property.

Lemma 82. LetA1, . . . , Am ∈ Sn and let d ∈ N. IfA = {A1, . . . , Am} is d-RSDC, then

A⊕ 0d :=
{(

Ai

0d

)
: i ∈ [m]

}

is ASDC. On the other hand, ifA⊕ 0d is ASDC, then for all ϵ > 0, there exist Ã1, . . . , Ãm ∈ Sn

such that

• for all i ∈ [m], the spectral norm
∥∥∥Ai − Ãi

∥∥∥ ≤ ϵ, and

•

{
Ã1, . . . , Ãm

}
is d-RSDC.

Proof. First, suppose {A1, . . . , Am} is d-RSDC and let

{
Ã1, . . . , Ãm

}
⊆ Sn+d

denote the

matrices furnished by d-RSDC. Next, let ϵ > 0 and set

P =
(
In √

ϵId

)
.

Clearly, P is invertible so that

{
P ⊺ÃiP : i ∈ [m]

}
is also SDC. Then, note that

P ⊺ÃiP = P ⊺

(
Ai (Ãi)1,2

(Ãi)∗
1,2 (Ãi)2,2

)
P =

(
Ai

√
ϵ(Ãi)1,2√

ϵ(Ãi)∗
1,2 ϵ(Ãi)2,2

)

so thatA⊕ 0d is ASDC.

Next, supposeA⊕0d is ASDC and let ϵ > 0. Then, there exist Ā1, . . . , Ām ∈ Sn+d
such that∥∥∥Āi −Ai ⊕ 0d

∥∥∥ ≤ ϵ and

{
Ā1, . . . , Ām

}
is SDC. Finally, note that

∥∥∥A1 − (Ā1)1,1
∥∥∥ ≤ ϵ. ■

Remark 79. While the restriction of an SDC set does not necessarily result in an SDC set, there is a

setting arising naturally when analyzing QCQPs in which the restriction of an SDC set is again SDC.

226

7.5 Restricted SDC

Algorithm 12 1-RSDC construction

GivenA, B ∈ Sn
such thatA is invertible andA−1B has simple eigenvalues

1. Let P ∈ Rn×n
denote the invertible matrix guaranteed by [173]; this can be computed using

an eigenvalue decomposition of A−1B. Then P ⊺AP = Diag(σ1, . . . , σr, F2, . . . , F2) and

P ⊺BP = Diag(σ1µ1, . . . , σrµr, T1, . . . , Tk). Here, σ1, . . . , σr ∈ {±1}, µ1, . . . , µr ∈ R
and for i ∈ [k], the matrix Ti has the form

Ti =
(

Im(λi) Re(λi)
Re(λi) − Im(λi)

)
for some λi ∈ C \ R.

2. Choose an arbitrary set of 2k + 1 distinct points ξ1, . . . , ξ2k+1 ∈ R
3. Solve for x, y ∈ Rk

and z ∈ R in the linear system (7.11)

4. Let α ∈ Ck
solve (7.9) and define γ ∈ Rr+2k

as

γ =
(
01×k Re(α1) Im(α1) . . . Re(αk) Im(αk)

)⊺
.

5. Return

Ã =
(
A

1

)
, B̃ =

(
B P−⊺γ

γ⊺P−1 z

)
.

Specifically, letQ1, . . . , Qm ∈ Sn+1
whereQi hasAi as its top-left n× n principal submatrix.

Furthermore suppose that there exists a positive definite matrix in span({A1, . . . , Am}). Then, if{
Q1, . . . , Qm, en+1e

⊺
n+1

}
is SDC, so is {A1, . . . , Am}. In words, if the homogenized quadratic

forms in a QCQP, along with en+1e
⊺
n+1, are SDC, then so are the original quadratic forms (under

a standard “definiteness” assumption). See Section G.4 for details. □

7.5.1 1-restricted SDC

We record a recasting of Theorem 34 in terms of these new definitions.

Theorem 36. LetA,B ∈ Sn. Then for every ϵ > 0, there exist Ã, B̃ ∈ Sn such that
∥∥∥A− Ã∥∥∥, ∥∥∥B − B̃∥∥∥ ≤

ϵ and
{
Ã, B̃

}
is 1-RSDC. Furthermore, ifA is invertible andA−1B has simple eigenvalues, then

{A,B} is itself 1-RSDC.

Proof. The first claim follows from Theorem 34 and Lemma 82 applied to {A,B} ⊕ 01. The

second claim follows from the additional observation that ifA is invertible andA−1B has simple

eigenvalues, then the construction of Theorem 34 follows case 1 and does not perturb eitherA or

B (see also Algorithm 12). ■

227

7 Variants of simultaneous diagonalizability of quadratic forms

Corollary 31. LetA = {A1, . . . , Am} in (7.1) and suppose span(A) = {A,B}. Then, for any
ϵ > 0, there exist Āi ∈ Sn+1 such that

∥∥∥(Āi)1,1 −Ai

∥∥∥ ≤ ϵ and

inf
x∈Rn,w


(
x
w

)⊺

Ā1

(
x
w

)
+ 2b⊺1x+ c1 :

(
x
w

)⊺

Āi

(
x
w

)
+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]

x ∈ L
w = 0


(7.20)

is a diagonalizable QCQP. IfA is invertible andA−1B has simple eigenvalues, then (Āi)1,1 can be
taken to be equal toAi. The matrices Āi and an invertible matrix P diagonalizing (7.19) can be
computed via Algorithms 11 and 12.

7.5.2 d-restricted SDC

Let {A,B} ⊆ Sn
such thatA is invertible andA−1B has simple eigenvalues. By Observation 8

and Theorem 36, we have that {A,B} is d-RSDC for any d ≥ 1. In this section, we record an

alternate construction showing that {A,B} is d-RSDC for d ≥ 1. This alternate construction

applies Algorithm 12 on smaller blocks of the canonical form and has empirically better numerical

performance in QCQP applications (see Section 7.7.2).

Theorem 37. LetA,B ∈ Sn such thatA is invertible andA−1B has simple eigenvalues. Then,
{A,B} is d-RSDC for any d ≥ 1.

Proof. Without loss of generality, we may assume thatA,B are in canonical form (Proposition 23)

andm1 = 0 (else consider the submatrix ofA,B corresponding to the remaining blocks).

Partition [m] into d-many contiguous subintervals. Write A and B as diagonal block matri-

ces of diagonal block matrices according to the partition of [m]. In other words, write A =
Diag(A1, . . . , Ad) and B = Diag(B1, . . . , Bd) where each Ai is a diagonal block matrix of

F2-matrices and eachBi is a diagonal block matrix with matrices of the form

(
Im(λ) Re(λ)
Re(λ) − Im(λ)

)
for

λ ∈ C \ R. Set

Ã =



A1
. . .

Ad

1
. . .

1


and B̃ =



B1 x1
. . .

. . .

Bd xd

x⊺1 z1
. . .

. . .

x⊺d zd


(7.21)

228

7.5 Restricted SDC

Algorithm 13 d-RSDC construction

GivenA, B ∈ Sn
such thatA is invertible andA−1B has simple eigenvalues

1. Let P ∈ Rn×n
denote the invertible matrix guaranteed by [173]; this can be computed using

an eigenvalue decomposition of A−1B. Then P ⊺AP = Diag(σ1, . . . , σr, F2, . . . , F2) and

P ⊺BP = Diag(σ1µ1, . . . , σrµr, T1, . . . , Tk). Here, σ1, . . . , σr ∈ {±1}, µ1, . . . , µr ∈ R
and for i ∈ [k], the matrix Ti has the form

Ti =
(

Im(λi) Re(λi)
Re(λi) − Im(λi)

)
for some λi ∈ C \ R.

2. Partition [k] = κ1 ∪ . . . κd into contiguous subintervals where κi = [starti, endi]
3. For each i ∈ [d], apply Algorithm 12 to get xi ∈ R|κi|

and zi ∈ R such that F2
...

F2

1

 and

 Tstarti
...

Tendi

xi

x⊺i zi


are SDC

4. LetQ := P ⊕ I1 and return

Q−⊺ÃQ−1
and Q−⊺B̃Q−1

where Ã and B̃ are defined in (7.21).

for z1, . . . , zd ∈ R and vectorsx1, . . . , xd of the appropriate dimensions to be chosen later. After

a simultaneous permutation of the coordinates, we can write Ã and B̃ as diagonal block matrices

with blocks of the form (
Ai

1

)
and

(
Bi xi

x⊺i zi

)
.

By Theorem 36 (summarized in Algorithm 12) and the assumption thatA−1B has simple eigen-

values, we may, for each i ∈ [d], pick xi ∈ Rn
and zi ∈ R such that the pair of matrices above is

SDC. It remains to note that the diagonal block concatenation of SDC matrices is SDC. ■

Corollary 32. LetA = {A1, . . . , Am} in (7.1) and suppose span(A) = {A,B}. Then, for any
ϵ > 0, there exist Āi ∈ Sn+d such that

∥∥∥(Āi)1,1 −Ai

∥∥∥ ≤ ϵ and

inf
x∈Rn,w∈Rd


(
x
w

)⊺

Ā1

(
x
w

)
+ 2b⊺1x+ c1 :

(
x
w

)⊺

Āi

(
x
w

)
+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]

x ∈ L
w = 0


(7.22)

229

7 Variants of simultaneous diagonalizability of quadratic forms

is a diagonalizable QCQP. IfA is invertible andA−1B has simple eigenvalues, then (Āi)1,1 can be
taken to be equal toAi. The matrices Āi and an invertible matrix P diagonalizing (7.19) can be
computed via Algorithms 11 and 13.

7.6 Obstructions to further generalization

In this section, we record explicit counterexamples to a priori plausible extensions to Theorems 33

to 35.

7.6.1 Singular symmetric triples

In Theorem 34, we showed that any singular symmetric pair is ASDC. A natural question to ask is

whether any singular set of symmetric matrices (regardless of the dimension of its span) is ASDC.

The following theorem presents an obstruction to generalizations in this direction. Specifically,

in contrast to Theorem 34 (where it was shown that singularity implies ASDC in the context of

symmetric pairs), Theorem 38 below shows that even symmetric triples with “large amounts” of

singularity can fail to be ASDC.

Theorem 38. Let {A = In, B,C} ⊆ Sn. Then, if d < rank([B,C])/2, the set{(
A

0d

)
,

(
B

0d

)
,

(
C

0d

)}

is not ASDC.

Proof. Suppose for the sake of contradiction that this set is ASDC. Let ϵ ∈ (0, 1/2) and let{
Ã, B̃, C̃

}
⊆ Sn+d

denote an SDC set furnished by the ASDC assumption. Without loss of

generality, Ã has rank n+ d. Write

Ã =
(
Ã1,1 Ã1,2
Ã⊺

1,2 Ã2,2

)
.

Similarly decompose B̃ and C̃ . As ϵ ∈ (0, 1/2), we have that Ã1,1 is invertible. Let

P =
(
Ã

−1/2
1,1 −Ã−1

1,1Ã1,2
0 Id

)
.

Then as P is invertible,

{
P ⊺ÃP, P ⊺B̃P, P ⊺C̃P

}
is again SDC. Note that P ⊺ÃP has the form

P ⊺ÃP =
(
In

Ã2,2 − Ã⊺
1,2Ã

−1
1,1Ã1,2

)
.

230

7.6 Obstructions to further generalization

Furthermore,∥∥∥P ⊺B̃P −B
∥∥∥

=
∥∥∥(P − In+d)⊺B̃(P − In+d) + B̃(P − In+d) + (P − In+d)⊺B̃ + (B̃ −B)

∥∥∥
≤
∥∥∥B̃∥∥∥∥P − In+d∥2 + 2

∥∥∥B̃∥∥∥∥P − In+d∥+ ϵ.

We claim that ∥P − In+d∥ can be bounded in terms of ϵ:

∥P − In+d∥ ≤
∥∥∥Ã−1/2

1,1 − I
∥∥∥+

∥∥∥Ã−1
1,1

∥∥∥∥∥∥Ã1,2
∥∥∥

≤ max
{ 1√

1− ϵ
− 1, 1− 1√

1 + ϵ

}
+ ϵ

1− ϵ

≤ 2ϵ
1− ϵ .

Here, we have used the fact that

∥∥∥Ã−A⊕ 0d

∥∥∥ ≤ ϵ, so that

∥∥∥Ã1,1 − In

∥∥∥ ≤ ϵ and

∥∥∥Ã1,2
∥∥∥ ≤ ϵ.

Consequently, as we may also bound

∥∥∥B̃∥∥∥ ≤ ∥B∥ + ϵ, we deduce that for any δ > 0, we can

pick ϵ ∈ (0, 1/2) small enough such that

∥∥∥P ⊺B̃P −B
∥∥∥ ≤ δ. An identical calculation holds for∥∥∥P ⊺C̃P − C

∥∥∥. We conclude that for all δ > 0, there exist Ā, B̄, C̄ of the form

Ā =
(
In

Ā2,2

)
, B̄ =

(
B̄1,1 B̄1,2
B̄⊺

1,2 B̄2,2

)
, C̄ =

(
C̄1,1 C̄1,2
C̄⊺

1,2 C̄2,2

)

such that

{
Ā, B̄, C̄

}
is SDC,

∥∥∥A− Ā∥∥∥, ∥∥∥B − B̄∥∥∥, ∥∥∥C − C̄∥∥∥ ≤ δ, and Ā2,2 is invertible. Then

by Proposition 21, the top-left block of the commutator [Ā−1B̄, Ā−1C̄] is equal to 0n. Expanding

this top-left block, we deduce

[B̄1,1, C̄1,1] = C̄1,2Ā
−1
2,2B̄

⊺
1,2 − B̄1,2Ā

−1
2,2C̄

⊺
1,2. (7.23)

Finally, by lower semi-continuity of rank, we have rank([B̄1,1, C̄1,1]) ≥ rank([B,C]) for all

δ > 0 small enough. This is a contradiction as the expression on the right of (7.23) has rank at

most 2d < rank([B,C]). ■

This same construction can be viewed as an obstruction to generalizations of Theorem 36 to

symmetric triples with constant d.

Corollary 33. Let {A = In, B,C} ⊆ Sn. ThenA−1B andA−1C are both diagonalizable with
real eigenvalues and {A,B,C} is not d-RSDC for any d < rank([B,C])/2.

231

7 Variants of simultaneous diagonalizability of quadratic forms

Remark 80. Note that for all n ∈ N, there existB, C ∈ S2n
such that rank([B,C]) = 2n. For

example, set

B =
(
In

−In

)
, C =

(
In

In

)
.

Then, {A = I2n, B,C} ⊆ S2n
is a nonsingular symmetric triple such that A−1B and A−1C

are both diagonalizable. On the other hand, Corollary 33 and Theorem 38 imply that{(
A

0n−1

)
,

(
B

0n−1

)
,

(
C

0n−1

)}

is not ASDC and {A,B,C} is not (n− 1)-RSDC. □

7.6.2 Nonsingular septuples

We may reinterpret Theorems 33 and 35 as saying that if A satisfies dim(span(A)) ≤ 3 and

contains an invertible matrixS, thenA is ASDC if and only ifS−1A consists of a set of commuting

matrices with real eigenvalues. A natural question to ask is whether the same statement holds

without any assumption on the dimension of the span of A. Theorem 39 below presents an

obstruction to generalizations in this direction. Specifically, Theorem 39 constructs a non-ASDC

setA = {A1, . . . , A7} ⊆ S6
whereA1 is invertible andA−1

1 A consists of a set of commuting

matrices with real eigenvalues.

The following lemma adapts a technique introduced by O’meara and Vinsonhaler [137] for

studying the almost simultaneously diagonalizable via similarity property of subsets of Cn×n
.

Lemma 83. Let A = {A1, . . . , Am} ⊆ Sn where A1 ∈ A is invertible. If A is SDC, then
dim(R[A−1

1 A]) ≤ n. Here, R[A−1
1 A] is the real algebra generated byA−1

1 A.

Proof. Let P denote the invertible matrix furnished by SDC and suppose P ⊺AiP = Di. Then,

dim
(
R
[
A−1

1 A
])

= dim
(
R
[{
D−1

1 Di : i ∈ [m]
}])
≤ n. ■

The following corollary then follows by lower semi-continuity.

Corollary 34. LetA = {A1, . . . , Am} ⊆ Sn whereA1 ∈ A is invertible. IfA is ASDC, then
dim(R[A−1

1 A]) ≤ n. Here, R[A−1
1 A] is the real algebra generated byA−1

1 A.

Theorem 39. There exists a setA = {A1, . . . , A7} ⊆ S6 such thatA1 is invertible,A−1
1 A is a

set of commuting matrices with real eigenvalues, andA is not ASDC.

Remark 81. The analogous example in the complex setting states that there exists a set A =
{A1, . . . , A5} ⊆ H4

such thatA1 is invertible,A−1
1 A is a set of commuting matrices with real

eigenvalues, andA is not ASDC. See Section G.3. □

232

7.7 Applications to QCQPs

Proof. Set

A1 =

 1
1

1
1

1
1

, A2 =

 0
0

0
1

0
0

, A3 =

 0
0

0
1

1
0

,
A4 =

 0
0

0
1

0
1

, A5 =

 0
0

0
0

1
0

,
A6 =

 0
0

0
0

1
1

, A7 =

 0
0

0
0

0
1

.
Note thatA1 is invertible. It is not hard to verify thatA−1

1 A forms a set of commuting matrices

with real eigenvalues. On the other hand, note that

R[A−1
1 A] =




a d f g
a c e f

a b c d
a

a
a

 : a, b, c, d, e, f, g ∈ R


so that dim(R[A−1

1 A]) = 7 > 6 = n. We deduce from Corollary 34 thatA is not ASDC. ■

7.7 Applications to QCQPs

In this section, we suggest several applications of diagonalization to optimizing QCQPs. We begin

by proving properties regarding the SDP and SOCP relaxations of diagonal QCQPs with bound

constraints. Note that QCQPs with bound constraints are the main problems of interest within

spatial branch and bound (BB) schemes for QCQPs. These results give heuristic reasons why one

might expect the SOCP relaxation to give strong yet efficiently computable lower bounds within

BB schemes. These results serve as additional motivation for the ASDC and d-RSDC properties.

We then examine these assertions numerically with preliminary computational experiments.

7.7.1 The SOCP relaxation of a diagonal QCQPwith bound constraints

Consider solving a QCQP over Rn
of the form (7.1) within a BB scheme. At each node of the BB

tree, we encounter the original QCQP with additional bound constraints,

inf
x∈Rn

x⊺A1x+ 2b⊺1x+ c1 :
x⊺Aix+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]
x ∈ L
x ∈ [ℓ, u]

, (7.24)

and desire to construct and solve strong convex relaxations of (7.24).

One powerful method for constructing such convex relaxations combines the reformulation-

linearization technique with semidefinite programming [6]. We begin by linearizing (7.24) using

the variable Y = xx⊺. Specifically, replace x⊺Aix with ⟨Ai, Y ⟩ and include the constraint

233

7 Variants of simultaneous diagonalizability of quadratic forms

Y = xx⊺. Then, relax the pair of constraints x ∈ [ℓ, u] and Y = xx⊺ to the constraint that

(x, Y) belong to the set

SSDP
:=

(x, Y) ∈ Rn × Sn :

Yi,j ≥ ℓjxi + ℓixj − ℓjℓj , ∀i, j
Yi,j ≤ ujxi + ℓixj − ujℓi, ∀i, j
Yi,j ≥ ujxi + uixj − uiuj , ∀i, j
Y ⪰ xx⊺

.
The SDP+RLT relaxation then reads

inf
x∈Rn,Y ∈Sn

⟨A1, Y ⟩+ 2b⊺1x+ c1 :
⟨Ai, Y ⟩+ 2b⊺i x+ ci �i 0, ∀i ∈ [2,m]
x ∈ L
(x, Y) ∈ SSDP

. (7.25)

Note that for diagonal QCQPs (i.e., the setting whereA1, . . . , Am are diagonal) that ⟨Ai, Y ⟩ =
diag(Ai)⊺ diag(Y) so that the SDP+RLT relaxation does not depend on the off-diagonal entries

of Y . In particular, we may replace the variable Y ∈ Sn
with a variable y ∈ Rn

representing

its diagonal entries. Naturally, we then replace the term the term ⟨Ai, Y ⟩ and the constraint

(x, Y) ∈ SSDP with the term diag(Ai)⊺y and the constraint

(x, y) ∈ SSOCP
:= {(x,diag(Y)) : (x, Y) ∈ SSDP}.

The following lemma shows that SSOCP is SOC-representable so that the resulting relaxation is in

fact an SOCP. Thus, the SDP+RLT relaxation of a QCQP with bound constraints can be solved

substantially faster whenA1, . . . , Am are diagonal.

In the remainder of this section, let ◦ denote the elementwise product between two vectors.

Lemma 84. The following identities hold

SSOCP
:= {(x, diag(Y)) : (x, Y) ∈ SSDP}

=
{

(x, y) ∈ Rn × Rn : x ◦ x ≤ y ≤ (u+ ℓ) ◦ x− u ◦ ℓ
}

= conv
{

(x, y) ∈ Rn × Rn : x ∈ [ℓ, u]
x ◦ x = y

}
.

In particular, SSOCP is SOC-representable.

Proof. For notational convenience, letS1, S2, S3 denote the three sets on the right in order. Note

SSOCP = S1 by definition. We will show S1 ⊆ S2 = S3 ⊆ S1.

The containment S1 ⊆ S2 follows by definition: Given (x, Y) ∈ SSDP, we have that

diag(Y) ≥ x ◦ x by the SDP constraint and diag(Y) ≤ (u + ℓ) ◦ x − u ◦ ℓ by the RLT

constraints.

The identity S2 = S3 follows the well-known (and easy to verify) fact that in one-dimension{
(xi, yi) ∈ R2 : yi ≥ x2

i

yi ≤ (ui + ℓi)xi − uiℓi

}
= conv

{
(xi, yi) ∈ R2 : xi ∈ [ℓi, ui]

x2
i = yi

}

234

7.7 Applications to QCQPs

and the fact that direct products commute with convex hulls.

Finally, suppose (x, y) ∈ Rn × Rn
satisfies x ∈ [ℓ, u] and y = x ◦ x. Set Y = xx⊺ so that

diag(Y) = y. It is straightforward to show that (x, Y) ∈ SSDP so that (x, y) ∈ S1. Then as S1
is convex, we have that S3 ⊆ S1. ■

The following corollary shows how to construct optimizers of (7.25) with bounded rank when

A1, . . . , Am are diagonal. The bound depends only on m and the complexity of L ∩ [ℓ, u].
This gives a heuristic reason why one would expect the SDP+RLT relaxation (and hence the

SOCP+RLT relaxation) of a diagonal QCQP with bound constraints to be stronger than that of a

general QCQP with bound constraints, especially whenm is small andL is simple.

Lemma 85. SupposeA1, . . . , Am are diagonal and thatL∩[ℓ, u] can be expressed as the intersection
of [ℓ, u] with k additional linear (in)equality constraints. If (7.25) has a solution, then it has a
solution (x∗, Y ∗) such that

rank
(
Y ∗ x∗

x∗⊺ 1

)
≤ m+ k.

Proof. By assumption there exists an affine functionL : Rn → Rk
such that

[ℓ, u] ∩ L = [ℓ, u] ∩ {x ∈ Rn : L(x)i �i 0, ∀i ∈ [k]}

where �i ∈ {≤,=}. DefineQ : Rn × Rn → Rm
by

Q(x, y)i = ⟨diag(Ai), y⟩+ 2b⊺i x+ ci, ∀i ∈ [m]

and let Q̃ : Rn × Rn → Rm+k
denote the affine function mapping (x, y) 7→ (Q(x, y), L(x)).

Let (x∗, Y ∗) denote an optimizer of (7.25) and set y∗ = diag(Y ∗). By Lemma 84, there

exist points x(i) ∈ [ℓ, u] and convex combination weights αi > 0 such that (x∗, y∗) =∑
i αi(x(i), x(i) ◦ x(i)). Then, by linearity, we have Q̃(x∗, y∗) =

∑
i αiQ̃(x(i), x(i) ◦ x(i)).

We claim that

{
Q̃(x(i), x(i) ◦ x(i))

}
i

span an affine subspace of dimension< m+ k. Indeed,

supposing otherwise, Q̃(x∗, y∗) is in the interior of conv
{
Q̃(x(i), x(i) ◦ x(i))

}
i
. Thus, there

exists (x′, y′) ∈ SSOCP achieving Q̃(x′, y′) = Q̃(x∗, y∗)− ϵe1 for some ϵ > 0. This contradicts

optimality of (x∗, Y ∗).

Applying Carathéodory’s Theorem, (x∗, y∗) is a convex combination of at mostm+ k points

from

{
(x(i), x(i) ◦ x(i))

}
, say (x∗, y∗) =

∑m+k
i=1 αi(x(i), x(i) ◦ x(i)). Then,

m+k∑
i=1

αi

(
x(i)x(i)⊺ x(i)

x(i)⊺ 1

)

is an optimal solution to (7.25) with rank≤ m+ k. ■

235

7 Variants of simultaneous diagonalizability of quadratic forms

7.7.2 Numerical results

In this subsection, we present preliminary numerical results on diagonalization and the d-RSDC

property in solving QCQP problems with one quadratic constraint and additional linear con-

straints. Problems in this form have received recent interest, for example in the area of optimal

portfolio deleveraging [116]. Furthermore, this restricted class of QCQPs is still NP-hard in

general—as mentioned in the introduction, even the problem of minimizing a general quadratic

function over the hypercube is NP-hard.

We will consider random instances of the following problem

min
x∈Rn

{
x⊺A1x : x⊺A2x+ 2b⊺2x ≤ 1

x ∈ L

}
(7.26)

whereA1, A2 ∈ Sn
, b2 ∈ Rn

, andL ⊆ Rn
is a polytope.

Randommodel. We will consider a family of distributions over instances of (7.26) parameter-

ized byn ∈ N and k ∈ N0. Here, kwill parameterize the number of (pairs of) complex eigenvalues

ofA−1
1 A2. Specifically, given (n, k) such that 2k ≤ n:

1. Let r = n− 2k.

2. Generate a random orthogonal matrix V by takingM to be a random n× nmatrix with

entries i.i.d. N(0, 1) and then taking V to be a matrix of left singular vectors of M . Let

σ1, . . . , σr be i.i.d. Rademacher random variables. Letµ1, . . . , µr be i.i.d.N(0, 1) random

variables. Let x1, . . . , xk, y1, . . . , yk be i.i.d.N(0, 1) random variables. Then, set

A1 = V ⊺ Diag(σ1, . . . , σr, F2, . . . , F2)V
A2 = V ⊺ Diag(σ1µ1, . . . , σrµr, T1, . . . , Tk)V.

Here, Ti ∈ S2
is the random matrix

(xi yi
yi −xi

)
.

3. Let the entries of b2 be i.i.d.N(0, 1) random variables, andL =
(

I
−I

)
N , where the entries

of N ∈ Rn×n
are i.i.d. N(0, 1) random variables. This ensures that the set L := {x :

Lx ≤ 1} is bounded almost surely.

Note that Theorem 36 (respectively, Theorem 37) implies that {A1, A2} is almost surely 1-RSDC

(respectively, k-RSDC) in this random model.

Branchandboundmethods. We use BB methods to solve different reformulations of (7.26)

with and without diagonalization.

236

7.7 Applications to QCQPs

We implement two classes of BB methods. The first class, the SDP-based BB method, uses a

simplified SDP+RLT relaxation for computing a lower bound at each node. Specifically, we lower

bound the value of (7.26) with the additional box constraint x ∈ [ℓ, u] by

min
x∈Rn, Y ∈Sn


⟨A1, Y ⟩ :

⟨Ai, Y ⟩+ 2b⊺2x− 1 ≤ 0
x ∈ L
x ∈ [ℓ, u]
diag(Y) ≤ (u+ ℓ) ◦ x− u ◦ ℓ
Y ⪰ xx⊺


. (7.27)

At the root node, we set [ℓ, u] to be coordinate-wise lower and upper bounds on L. Note that

in contrast to the full SDP+RLT relaxation (see (7.25)), we only impose RLT constraints on the

diagonal entries of Y to strike a balance between bound quality and computational cost. This

method then applies a spatial BB rule for each coordinate xi and updates the values of [ℓ, u].
The second class, the SOCP-based BB methods, first diagonalize (7.26) before applying a BB

scheme. The method of diagonalization differs across the different SOCP-based BB methods but

the BB part is the same. Suppose we have already diagonalized (7.26) so thatAi is a diagonal matrix

for each i = 1, 2. Write Ai = Diag(a+
i) + Diag(a−

i), where a+
i , a

−
i ∈ Rn

are nonnegative

and nonpositive respectively. Let I = supp(a−
1) ∪ supp(a−

2). The SOCP-based BB method

uses the SOCP+RLT relaxation for computing a lower bound at each node. Specifically we lower

bound the value of (7.26) (assuming that theAis are diagonal) with the additional box constraint

x ∈ [ℓ, u] by

min
x∈Rn, y∈R|I|

x
⊺ Diag(a+

1)x+ (a−
1)⊺y :

x⊺ Diag(a+
2)x+ (a−

2)⊺y + 2b⊺2x− 1 ≤ 0
x ∈ L
x ∈ [ℓ, u]
x2

ji
≤ yi ≤ (uji + ℓji)xji − ujiℓji , ∀ji ∈ I

.
(7.28)

Again, at the root node, we set [ℓ, u] to be coordinate-wise lower and upper bounds onL. This

method then applies a spatial BB rule for each coordinate xji such that ji ∈ I and updates [ℓ, u].
In both methods, we use a successive convex approximation [119], which linearizes nonconvex

terms in the quadratic objective and constraint, to attempt to construct feasible solutions and good

upper bounds.

In more detail, we implemented the following five BB methods for solving instances of (7.26).

• SDPBB solves (7.26) directly using the SDP-based BB method.

• SDCBB is a solution method which can only be applied when {A1, A2} is already SDC. In

this case (letting P denote the corresponding invertible matrix), SDCBB reformulates (7.26)

as

min
x∈Rn

{
x⊺(P ⊺A1P)x : x⊺(P ⊺A2P)x+ 2(P ⊺b2)⊺x ≤ 1

LPx ≤ 1,

}
(7.29)

and solves this reformulation using the SOCP-based BB method.

237

7 Variants of simultaneous diagonalizability of quadratic forms

• 1-RSDCBB applies Algorithm 12 to construct an SDC pair

{
Ã1, Ã2

}
∈ Sn+1

whose top-left

n× n principal submatrices areA1 andA2, respectively. Let P ∈ R(n+1)×(n+1)
denote

the invertible matrix furnished by the SDC property of

{
Ã1, Ã2

}
. Also, set b̃2 = (b⊺2, 0)⊺

and L̃ = (L, 0m,1). Then, 1-RSDCBB reformulates (7.26) as

inf
w∈Rn+1

w⊺(P ⊺Ã1P)w :
w⊺(P ⊺Ã2P)w + 2(P ⊺b̃2)⊺w ≤ 1
(L̃P)w ≤ 1
(Pw)n+1 = 0

 (7.30)

and solves this reformulation using the SOCP-based BB method. Note that for this refor-

mulation,L is the set ofw ∈ Rn+1
satisfying both the linear inequality and linear equality

constraints.

• k-RSDCBB applies Algorithm 13 with d = k to construct an SDC pair

{
Ã1, Ã2

}
∈

Sn+k
whose top-left n × n principal submatrices are A1 and A2, respectively. Let P ∈

R(n+k)×(n+k)
denote the invertible matrix furnished by the SDC property of

{
Ã1, Ã2

}
.

Also, set b̃1 = (b⊺1, 0k,1)⊺ and L̃ = (L, 0m,k). Then, k-RSDCBB reformulates (7.26) as

inf
w∈Rn+1

w⊺(P ⊺Ã1P)w :
w⊺(P ⊺Ã2P)w + 2(P ⊺b̃2)⊺w ≤ 1
(L̃P)w ≤ 1
(Pw)n+1 = (Pw)n+2 = · · · = (Pw)n+k = 0


(7.31)

and solves this reformulation using the SOCP-based BB method. Note that for this refor-

mulation,L is the set ofw ∈ Rn+k
satisfying both the linear inequality and linear equality

constraints.

• eigBB first performs an eigenvalue decomposition onA1 to writeD1 = P ⊺
1A1P1, where

D1 is a diagonal matrix. Then, it performs a second eigenvalue decomposition to write

D2 = P ⊺
2 (P ⊺

1A2P1)P2, whereD2 is a diagonal matrix. Finally, eigBB reformulates (7.26)

as

inf
y,z∈Rn

y⊺D1y :
z⊺D2z + 2(P ⊺

1 b2)⊺y + c2 ≤ 1
(LP1)y ≤ 1
y = P2z

 (7.32)

and solves this reformulation using the SOCP-based BB method. Note that for this refor-

mulation,L is the set of (y, z) ∈ Rn × Rn
satisfying both the linear inequality and linear

equality constraints.

All experiments are implemented using MATLAB R2021a on a PC running Windows 10

Intel(R) Core(TM) i9-10900KF CPU (3.70GHz) and 64GB RAM. All the SDP and SOCP

problems in the BB methods are solved by the commercial solver MOSEK [126] through its Matlab

interface.

238

7.7 Applications to QCQPs

Remark 82. SDCBB, 1-RSDCBB, k-RSDCBB, and eigBB can be thought of as different reformulations

within a parameterized family of reformulations of (7.26). Specifically, these four algorithms

reformulate (7.26) as diagonal QCQPs with n, n+ 1, n+ k, and 2n variables respectively. □

Experiment setup. We tested the solution methods on random instances for various settings

of (n, k). For k = 0, i.e., the case where A1 and A2 are guaranteed to be SDC, we compared

SDPBB, SDCBB, and eigBB. For k > 0, we compared SDPBB, 1-RSDCBB, k-RSDCBB, and eigBB. For each

(n, k), we generated 5 random problems and used the command boxplot in MATLAB to present

the statistics. Each procedure was terminated when the CPU time reached 1800 seconds or when

the relative gap (between the objective value of the current solution and the best lower bound) fell

below the default tolerance threshold, 10−4
. In all of our figures and tables, we set

Gap = v
best
− v0

|v
best
|
× 100,

where v0 is the initial lower bound computed from the corresponding convex relaxation, and v
best

is the best upper bound computed within the BB method.

Comparison for the SDC case. We first test instances where {A1, A2} is SDC, i.e., k = 0,

for n = 10, 20, 30, 40, 50. The results on CPU time, relative gap, and number of explored

nodes in the search tree are reported in Figure 7.1. Figure 7.1 shows us that SDCBB performs the

best in general, i.e., SDCBB achieves the lowest relative gap and smallest CPU time across all tested

values of n. Both of the SOCP-based methods are much more efficient than SDPBB. In fact, SDPBB

fails to solve any of the instances to relative gap 10−4
when n > 20 and fails on four of the five

instances withn = 20. Moreover, forn = 10, we observe that the SDP-based BB method explores

more nodes than either of the SOCP-based BB methods, even though the SDP lower bounds are

computationally more expensive than the SOCP lower bounds. Indeed, we will see soon that the

SOCP relaxation experimentally yields tighter lower bounds (resulting in fewer search tree nodes)

than the SDP relaxation. We also observe that eigBB is comparable to but slightly less efficient than

SDCBB. Specifically, we note that SDCBB and eigBB explore similar numbers of nodes but that SDCBB

does so in comparable or less time.

To further understand the performance between the SDP-based and SOCP-based BB methods,

we compare initial bound quality and CPU time for SDPBB, SDCBB and eigBB in the case k = 0. For

Figure 7.2 only, define

Gap = vSDCBB − v0
|vSDCBB|

× 100,

where v0 is the initial lower bound computed by SDPBB, SDCBB or eigBB and vSDCBB is the best upper

bound computed by SDCBB after 1800 seconds. Figure 7.2 shows that both SOCP relaxations are

faster to compute than the SDP relaxation, as expected. More interestingly, both SOCP relaxations

provide a better initial lower bound as can be seen by the fact that the gap is significantly smaller for

the SOCP relaxations than it is for the SDP relaxation. See Section 7.7.1 for heuristic explanations

why we would expect this to hold. Both observations in Figure 7.2 suggest that diagonalization

can be used within branch and bound schemes to solve QCQPs more efficiently.

239

7 Variants of simultaneous diagonalizability of quadratic forms

10 20 30 40 50

Dimension

10
-2

10
0

10
2

10
4

G
a

p
SDPBB

SDCBB

eigBB

10 20 30 40 50

Dimension

10
2

10
3

10
4

10
5

N
u

m
b

e
r

o
f

n
o

d
e

s

SDPBB

SDCBB

eigBB

10 20 30 40 50

Dimension

10
0

10
1

10
2

10
3

T
im

e

SDPBB

SDCBB

eigBB

Figure 7.1: Comparison of SDPBB, SDCBB and eigBB for the case with k = 0.

240

7.7 Applications to QCQPs

20 40 60 80 100 120 140 160 180 200

Dimension

10
2

10
3

10
4

10
5

10
6

G
a
p

SDPBB

SDCBB

eigBB

20 40 60 80 100 120 140 160 180 200

Dimension

10
-2

10
-1

10
0

T
im

e

SDPBB

SDCBB

eigBB

Figure 7.2: Comparison of initial bound and time between SDP and SOCP relaxations for instances of

different dimensions.

241

7 Variants of simultaneous diagonalizability of quadratic forms

Comparing SDCBB and eigBB in Figure 7.2, we see that eigBB generally produces tighter lower

bounds but SDCBB needs less computation time to solve its relaxation. This parallels the observation

in Figure 7.1 that SDCBB is capable of exploring more nodes than eigBB in similar amounts of time.

We believe that SDCBB solves its relaxation faster simply because its diagonal reformulation is smaller.

Indeed, SDCBB solves an SOCP (7.29) with

(
n+

∣∣∣supp(a−
1) ∪ supp(a−

2)
∣∣∣)-many variables while

eigBB solves an SOCP (7.32) with roughly twice as many variables:

(
2n+

∣∣∣supp(a−
1)
∣∣∣+ ∣∣∣supp(a−

2)
∣∣∣)-

many variables.

Comparison for the non-SDC case. We now consider the case where {A1, A2} is not

SDC, i.e., k > 0. We tested SDPBB, 1-RSDCBB, k-RSDCBB and eigBB for n = 10, 20, 30 and k =
1, 1+ n

10 , 1+ 2n
10 , 1+ 3n

10 , 1+ 4n
10 . The results on CPU time, relative gap, and number of explored

nodes in the search tree for SDPBB, k-RSDCBB and eigBB are reported in Figure 7.3. Figure 7.3 indicates

that both k-RSDCBB and eigBB largely outperform SDPBB. Indeed, SDPBB cannot solve most instances

in the time limit, evidenced from the left plot in Figure 7.3, while k-RSDCBB and eigBB can solve

more instances and have lower relative gaps for unsolved instances in the time limit. In general,

k-RSDCBB and eigBB are comparable and do not dominate each other.

It remains to comment on the numerical performance of 1-RSDCBB. Experimentally, we observed

that the 1-RSDC construction (Algorithm 12) yields very large condition numbers for the P
matrices in (7.30) (e.g., larger than 1e6). This leads to inaccurate solutions or numerical failures

in MOSEK when solving the SOCP+RLT relaxation, especially for k ≥ 5. Note also that 1-

RSDCBB coincides with k-RSDCBB for k = 1. Thus, we compare the three SOCP-based BB methods,

1-RSDCBB, k-RSDCBB, and eigBB, for values of 1 < k < 5 in Table 7.1.

One may observe that, for n = 10, 1-RSDCBB seems to perform worse (compared to 1-RSDCBB

and eigBB) as k increases. This trend can be explained by observing that the condition numbers of

the P matrices for (7.30) are likely to “blow up” as k increases (see the two rightmost columns of

Table 7.1). In particular, we observed that the lower and upper bounds that we computed for the

decision variables (i.e., the values of ℓ and u at the root node) in k-RSDCBB and eigBB were relatively

small intervals, while the corresponding bounds for those in 1-RSDCBB were often much larger (e.g.,

on the order of 1000 times larger for k = 3). Comparing the rightmost two columns of Table 7.1,

we see that the condition numbers of the invertible matrices P that we construct are often much

smaller for k-RSDCBB than for 1-RSDCBB, especially as k gets larger. We believe this explains why

k-RSDCBB generally outperforms 1-RSDCBB for larger values of the parameter k. Finally, we observe

that for the last instances in (10,4) and (30,4), 1-RSDCBB returned solutions without reaching the

prescribed gap or CPU times. We believe that this was caused in both instances by numerical

inaccuracies within the interior point solves in MOSEK due to the large condition numbers, i.e.,

2.73e6 and 1.15e5. For k ≥ 5, the condition number of 1-RSDCBB is even worse and 1-RSDCBB fails

for almost all instances (not reported here).

242

7.7 Applications to QCQPs

(10,1) (10,2) (10,3) (10,4) (10,5) (20,1) (20,3) (20,5) (20,7) (20,9) (30,1) (30,4) (30,7) (30,10) (30,13)

Dimension

10
-4

10
-2

10
0

10
2

10
4

G
a
p

SDPBB

k-RSDCBB

eigBB

(10,1) (10,2) (10,3) (10,4) (10,5) (20,1) (20,3) (20,5) (20,7) (20,9) (30,1) (30,4) (30,7) (30,10) (30,13)

Dimension

10
1

10
2

10
3

10
4

10
5

N
o

d
e

SDPBB

k-RSDCBB

eigBB

(10,1) (10,2) (10,3) (10,4) (10,5) (20,1) (20,3) (20,5) (20,7) (20,9) (30,1) (30,4) (30,7) (30,10) (30,13)

Dimension

10
-1

10
0

10
1

10
2

10
3

T
im

e

SDPBB

k-RSDCBB

eigBB

Figure 7.3: Comparison of SDPBB, k-RSDCBB and eigBB for non-SDC instances.

243

7 Variants of simultaneous diagonalizability of quadratic forms

(n, k) 1-RSDCBB k-RSDCBB eigBB cond num

time node gap (%) time node gap (%) time node gap (%) 1-RSDC 2-RSDC

(10,2) 5.73 2830 0.00 9.68 4582 0.00 3.02 1335 0.01 5.14e+01 3.79e+00

(10,2) 27.87 11462 0.00 42.68 17944 0.00 35.49 13335 0.00 2.78e+01 5.09e+00

(10,2) 30.82 13764 0.00 6.52 2995 0.00 11.11 4234 0.00 4.70e+02 4.54e+00

(10,2) 2.55 972 0.00 0.77 331 0.00 0.79 299 0.00 4.22e+02 2.25e+00

(10,2) 15.84 4423 0.00 10.23 4045 0.01 4.27 1521 0.01 1.59e+02 2.37e+00

(10,3) 2.71 1264 0.01 0.45 203 0.01 0.57 264 0.01 2.29e+02 2.72e+00

(10,3) 16.67 6848 0.00 13.15 5899 0.00 14.04 5295 0.00 1.89e+02 4.87e+00

(10,3) 19.55 8176 0.01 40.75 17257 0.01 10.04 4056 0.00 5.36e+01 3.42e+00

(10,3) 1.91 789 0.00 0.08 29 0.01 0.06 19 0.00 1.68e+03 2.24e+00

(10,3) 54.33 20000 0.01 2.36 1080 0.01 1.06 402 0.01 2.28e+03 1.44e+01

(10,4) 259.95 69602 0.01 11.95 5289 0.01 1.97 879 0.01 4.37e+03 3.31e+00

(10,4) 1800.05 147765 23.56 7.93 3746 0.00 3.13 1414 0.00 1.17e+04 8.04e+00

(10,4) 46.22 19976 0.01 74.85 32075 0.01 16.55 7295 0.01 3.63e+02 7.57e+01

(10,4) 1800.08 130796 158.72 5.81 2381 0.01 4.61 1858 0.00 2.10e+04 6.55e+00

(10,4) 77.54 16565 1.61 50.20 15150 0.01 3.71 1427 0.01 2.73e+06 2.49e+01

(20,3) 1800.07 120343 169.36 193.58 36815 0.01 126.92 25152 0.01 3.64e+05 3.20e+01

(20,3) 1800.05 107481 216.00 1800.05 150828 22.65 1800.04 156611 8.94 8.99e+03 1.44e+01

(20,3) 1800.05 162012 49.30 790.61 166079 0.00 1800.05 156891 13.02 2.35e+02 9.71e+00

(20,3) 1800.07 115944 331.43 1800.07 156808 20.78 1800.07 133551 106.07 1.06e+03 3.76e+00

(20,3) 6.74 1866 0.01 2.32 643 0.01 3.02 650 0.01 6.00e+02 1.01e+01

(30,4) 1800.08 102100 100.73 1800.08 116527 25.97 1800.07 103676 42.39 2.85e+03 5.81e+00

(30,4) 1800.06 117590 205.94 1800.05 138837 34.78 1800.07 113383 44.58 1.26e+04 6.50e+00

(30,4) 1800.07 95644 838.24 1800.04 145488 6.80 1345.35 136907 0.01 2.27e+05 1.41e+01

(30,4) 1800.03 110507 1463.26 1800.08 99003 130.64 1800.08 101895 75.89 2.57e+05 6.43e+00

(30,4) 66.06 5380 0.02 2.05 291 0.01 3.19 241 0.01 1.15e+05 1.04e+01

Table 7.1: Comparison of different SOCP-based BB methods for 1 < k < 5. In each row, the solution

method with the lowest solution time is highlighted. For instances where all three methods time

out (1800 seconds) before reaching optimality, the solution method with the lowest objective

value is highlighted. Two outliers are highlighted in blue.

244

Bibliography

[1] E. Abbe, A. S. Bandeira, and G. Hall. Exact recovery in the stochastic block model. IEEE
Trans. Inform. Theory, 62(1):471–487, 2015.

[2] S. Adachi and Y. Nakatsukasa. Eigenvalue-based algorithm and analysis for nonconvex

QCQP with one constraint. Math. Program., 173:79–116, 2019.

[3] J. Agler, W. Helton, S. McCullough, and L. Rodman. Positive semidefinite matrices with a

given sparsity pattern. Linear Algebra Appl., 107:101–149, 1988.

[4] F. Alizadeh. Interior point methods in semidefinite programming with applications to

combinatorial optimization. SIAM J. Optim., 5(1):13–51, 1995.

[5] F. Alizadeh, J. A. Haeberly, and M. L. Overton. Complementarity and nondegeneracy in

semidefinite programming. Math. Program., 77:111–128, 1997.

[6] K. M. Anstreicher. Semidefinite programming versus the reformulation-linearization

technique for nonconvex quadratically constrained quadratic programming. J. Global
Optim., 43(2):471–484, 2009.

[7] C.J. Argue, F. Kılınç-Karzan, and A. L. Wang. Necessary and sufficient conditions for rank-

one generated cones. Math. Oper. Res., 2022. Forthcoming, arXiv preprint, 2007.07433.

[8] C. Audet, P. Hansen, B. Jaumard, and G. Savard. A branch and cut algorithm for nonconvex

quadratically constrained quadratic programming. Math. Program., 87(1):131–152, 2000.

[9] M. Baes, M. Burgisser, and A. Nemirovski. A randomized mirror-prox method for solving

structured large-scale matrix saddle-point problems. SIAM J. Optim., 23(2):934–962,

2013.

[10] A. S. Bandeira, N. Boumal, and A. Singer. Tightness of the maximum likelihood semidefi-

nite relaxation for angular synchronization. Math. Program., 163:145–167, 2017.

[11] X. Bao, N. V. Sahinidis, and M. Tawarmalani. Semidefinite relaxations for quadratically

constrained quadratic programming: A review and comparisons. Math. Program., 129:

129, 2011.

[12] G. P. Barker. Faces and duality in convex cones. Linear Multilinear Algebra, 6(3):161–169,

1978.

[13] G. P. Barker. Theory of cones. Linear Algebra Appl., 39:263–291, 1981.

245

Bibliography

[14] G. P. Barker and D. Carlson. Cones of diagonally dominant matrices. Pacific J. Math., 57:

15–32, 1975.

[15] A. Barvinok. Feasibility testing for systems of real quadratic equations. Discrete Comput.
Geom., 10:1–13, 1993.

[16] A. Barvinok. A Course in Convexity, volume 54 of Graduate Studies in Mathematics. 2002.

[17] A. Beck. Quadratic matrix programming. SIAM J. Optim., 17(4):1224–1238, 2007.

[18] A. Beck and Y. C. Eldar. Strong duality in nonconvex quadratic optimization with two

quadratic constraints. SIAM J. Optim., 17(3):844–860, 2006.

[19] A. Beck and M. Teboulle. A convex optimization approach for minimizing the ratio of

indefinite quadratic functions over an ellipsoid. Math. Program., 118:13–35, 2009.

[20] A. Beck, Y. Drori, and M. Teboulle. A new semidefinite programming relaxation scheme

for a class of quadratic matrix problems. Oper. Res. Lett., 40(4):298–302, 2012.

[21] A. Ben-Tal and D. den Hertog. Hidden conic quadratic representation of some nonconvex

quadratic optimization problems. Math. Program., 143:1–29, 2014.

[22] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization, volume 2 of

MPS-SIAM Ser. Optim. 2001.

[23] A. Ben-Tal and A. Nemirovski. Solving large scale polynomial convex problems on

ℓ1/nuclear norm balls by randomized first-order algorithms. CoRR, 2012.

[24] A. Ben-Tal and M. Teboulle. Hidden convexity in some nonconvex quadratically con-

strained quadratic programming. Math. Program., 72:51–63, 1996.

[25] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization, volume 28 of Princeton
Ser. Appl. Math. 2009.

[26] D. Bienstock and A. Michalka. Polynomial solvability of variants of the Trust-Region

Subproblem. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 380–390, 2014.

[27] A. Billionnet, S. Elloumi, and A. Lambert. Exact quadratic convex reformulations of

mixed-integer quadratically constrained problems. Math. Program., 158(1):235–266, 2016.

[28] N. Bishop, L. Tran-Thanh, G. Long, and E. Gerding. Optimal learning from verified

training data. Advances in Neural Information Processing Systems, 33:9520–9529, 2020.

[29] G. Blekherman, R. Sinn, and M. Velasco. Do sums of squares dream of free resolutions?

SIAM J. Appl. Algebra Geom., 1:175–199, 2017.

[30] J. Borwein and H. Wolkowicz. Regularizing the abstract convex program. J. Math. Anal.
Appl., 83(2):495–530, 1981.

246

Bibliography

[31] N. Boumal, V. Voroninski, and A. Bandeira. The non-convex Burer–Monteiro approach

works on smooth semidefinite programs. volume 29, 2016.

[32] C. Buchheim, M. De Santis, L. Palagi, and M. Piacentini. An exact algorithm for nonconvex

quadratic integer minimization using ellipsoidal relaxations. SIAM J. Optim., 23(3):1867–

1889, 2013.

[33] S. Burer. A gentle, geometric introduction to copositive optimization. Math. Program.,
151:89–116, 2015.

[34] S. Burer and K. M. Anstreicher. Second-order-cone constraints for Extended Trust-Region

Subproblems. SIAM J. Optim., 23(1):432–451, 2013.

[35] S. Burer and F. Kılınç-Karzan. How to convexify the intersection of a second order cone

and a nonconvex quadratic. Math. Program., 162:393–429, 2017.

[36] S. Burer and R. D.C. Monteiro. A nonlinear programming algorithm for solving semidefi-

nite programs via low-rank factorization. Math. Program., 95:329–357, 2003.

[37] S. Burer and B. Yang. The trust region subproblem with non-intersecting linear constraints.

Math. Program., 149:253–264, 2014.

[38] S. Burer and Y. Ye. Exact semidefinite formulations for a class of (random and non-random)

nonconvex quadratic programs. Math. Program., 181:1–17, 2019.

[39] M. D. Bustamante, P. Mellon, and M. V. Velasco. Solving the problem of simultaneous

diagonalization of complex symmetric matrices via congruence. SIAM J. Matrix Anal.
Appl., 41(4):1616–1629, 2020.

[40] E. J. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski. Phase retrieval via matrix

completion. SIAM Rev., 57(2):225–251, 2015.

[41] Y. Carmon and J. C. Duchi. Analysis of Krylov subspace solutions of regularized noncon-

vex quadratic problems. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pages 10728–10738, 2018.

[42] S. Ceria and J. Soares. Convex programming for disjunctive convex optimization. Math.
Program., 86:595–614, 1999.

[43] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–dual

algorithm. Math. Program., 159:253–287, 2016.

[44] C. Chen, A. Atamtürk, and S. S. Oren. A spatial branch-and-cut method for nonconvex

qcqp with bounded complex variables. Math. Program., 165(2):549–577, 2017.

[45] J. Chen and S. Burer. Globally solving nonconvex quadratic programming problems via

completely positive programming. Math. Prog. Comput., 4(1):33–52, 2012.

[46] D. Cifuentes. On the Burer–Monteiro method for general semidefinite programs. Opt.
Lett., 15(6):2299–2309, 2021.

247

Bibliography

[47] D. Cifuentes and A. Moitra. Polynomial time guarantees for the Burer-Monteiro method.

arXiv preprint, 1912.01745, 2019.

[48] D. Cifuentes, C. Harris, and B. Sturmfels. The geometry of SDP-exactness in quadratic

optimization. Math. Program., 182:399–428, 2020.

[49] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer Programming, volume 271 of Grad.
Texts in Math. 2014.

[50] A. R. Conn, N. I. Gould, and P. L. Toint. Trust Region Methods, volume 1 of MPS-SIAM
Ser. Optim. 2000.

[51] A. d’Aspremont and N. El Karoui. A stochastic smoothing algorithm for semidefinite

programming. SIAM J. Optim., 24(3):1138–1177, 2014.

[52] M. K. de Carli Silva and L. Tunçel. A notion of Total Dual Integrality for convex, semidefi-

nite, and extended formulations. SIAM J. Discrete Math., 34(1):470–496, 2020.

[53] E. de Klerk and R. Sotirov. Exploiting group symmetry in semidefinite programming

relaxations of the quadratic assignment problem. Math. Program., 122:225–246, 2010.

[54] E. de Klerk, D. V. Pasechnik, and A. Schrijver. Reduction of symmetric semidefinite

programs using the regular ∗-representation. Math. Program., 109:613–624, 2007.

[55] E. de Klerk, C. Dobre, and D. V. Pasechnik. Numerical block diagonalization of matrix

*-algebras with application to semidefinite programming. Math. Program., 129:91–111,

2011.

[56] A. P. Dempster. Covariance selection. Biometrics, 28:157–175, 1972.

[57] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods with inexact oracle: the

strongly convex case. Technical Report 2013016, 2013.

[58] O. Devolder, F. Glineur, and Y. Nesterov. First-order methods of smooth convex optimiza-

tion with inexact oracle. Math. Program., 146(1):37–75, 2014.

[59] L. L. Dines. On the mapping of quadratic forms. Bull. Amer. Math. Soc., 47(6):494–498,

1941.

[60] L. Ding, A. Yurtsever, V. Cevher, J. A. Tropp, and M. Udell. An optimal-storage approach

to semidefinite programming using approximate complementarity. SIAM J. Optim., 31(4):

2695–2725, 2021.

[61] H. Dong and J. Linderoth. On valid inequalities for quadratic programming with con-

tinuous variables and binary indicators. In Integer Programming and Combinatorial
Optimization (IPCO 2013), pages 169–180, 2013.

[62] I. Ekeland and R. Temam. Convex analysis and variational problems, volume 28 of Classics
Appl. Math. 1999.

248

Bibliography

[63] A. Eltved and S. Burer. Strengthened sdp relaxation for an extended trust region subproblem

with an application to optimal power flow. Math. Program., pages 1–26, 2022.

[64] S. Fallahi, M. Salahi, and T. Terlaky. Minimizing an indefinite quadratic function subject

to a single indefinite quadratic constraint. Optimization, 67(1):55–65, 2018.

[65] J.M. Feng, G.X. Xuan, R.L. Sheu, and Y. Xia. Duality and solutions for quadratic pro-

gramming over single non-homogeneous quadratic constraint. J. Global Optim., 54(2):

275–293, 2012.

[66] C. Fortin and H. Wolkowicz. The Trust Region Subproblem and semidefinite program-

ming. Optim. Methods Softw., 19(1):41–67, 2004.

[67] A. L. Fradkov and V. A. Yakubovich. The S-procedure and duality relations in nonconvex

problems of quadratic programming. Vestnik Leningrad Univ. Math., 6:101–109, 1979.

[68] A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0–1 mixed integer

programs. Math. Program., 106:225–236, 2006.

[69] S. Friedland and R. Loewy. Subspaces of symmetric matrices containing matrices with a

multiple first eigenvalue. Pacific J. Math., 62(2):389–399, 1976.

[70] M. P. Friedlander and I. Macêdo. Low-rank spectral optimization via gauge duality. SIAM
Journal on Scientific Computing, 38(3):A1616–A1638, 2016.

[71] T. Fujie and M. Kojima. Semidefinite programming relaxation for nonconvex quadratic

programs. J. Global Optim., 10(4):367–380, 1997.

[72] K. Gatermann and P. A. Parrilo. Symmetry groups, semidefinite programs, and sums of

squares. J. Pure Appl. Algebra, 192(1-3):95–128, 2004.

[73] D. Gijswijt. Matrix algebras and semidefinite programming techniques for codes. arXiv
preprint, 1007.0906, 2010.

[74] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–1145,

1995.

[75] G. H. Golub and Q. Ye. An inverse free preconditioned krylov subspace method for

symmetric generalized eigenvalue problems. SIAM J. Sci. Comput., 24(1):312–334, 2002.

[76] G. H. Golub, P. C. Hansen, and D. P. O’Leary. Tikhonov regularization and total least

squares. SIAM J. Matrix Anal. Appl., 21(1):185–194, 1999.

[77] N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint. Solving the Trust-Region Subproblem

using the Lanczos method. SIAM J. Optim., 9(2):504–525, 1999.

[78] R. Grone, C. R. Johnson, E. M. Sá, and H. Wolkowicz. Positive definite completions of

partial Hermitian matrices. Linear Algebra Appl., 58:109–124, 1984.

249

Bibliography

[79] O. Günlük and J. Linderoth. Perspective reformulations of mixed integer nonlinear pro-

grams with indicator variables. Math. Program., 124:183–205, 2010.

[80] C. Guo, N. J. Higham, and F. Tisseur. An improved arc algorithm for detecting definite

Hermitian pairs. SIAM J. Matrix Anal. Appl., 31(3):1131–1151, 2010.

[81] E. Y. Hamedani and N. C. Aybat. A primal-dual algorithm with line search for general

convex-concave saddle point problems. SIAM J. Optim., 31(2):1299–1329, 2021.

[82] E. Hazan and T. Koren. A linear-time algorithm for trust region problems. Math. Program.,
158:363–381, 2016.

[83] R. Hildebrand. Spectrahedral cones generated by rank 1 matrices. J. Global Optim., 64:

349–397, 2016.

[84] J. Hiriart-Urruty. Potpourri of conjectures and open questions in nonlinear analysis and

optimization. SIAM Rev., 49(2):255–273, 2007.

[85] J. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis, volume 1 of

Grundlehren Text Editions. 2004.

[86] H. Hmam. Quadratic optimisation with one quadratic equality constraint. Technical

report, Defence Science and Technology Organisation Edinburgh (Australia) Electronic

Warfare and Radar Division, 2010.

[87] N. Ho-Nguyen and F. Kılınç-Karzan. A second-order cone based approach for solving the

Trust Region Subproblem and its variants. SIAM J. Optim., 27(3):1485–1512, 2017.

[88] R. A. Horn and C. R. Johnson. Matrix analysis. 2012.

[89] Y. Hsia and R. Sheu. Trust region subproblem with a fixed number of additional linear

inequality constraints has polynomial complexity. arXiv preprint, (1312.1398), 2013.

[90] K. Huang and N. D. Sidiropoulos. Consensus-ADMM for general quadratically con-

strained quadratic programming. IEEE Trans. Signal Process., 64(20):5297–5310, 2016.

[91] E. Phan huy Hao. Quadratically constrained quadratic programming: Some applications

and a method for solution. Z. Oper. Res., 26:105–119, 1982.

[92] V. Jeyakumar and G. Y. Li. Trust-region problems with linear inequality constraints: Exact

SDP relaxation, global optimality and robust optimization. Math. Program., 147:171–206,

2014.

[93] R. Jiang and D. Li. Simultaneous diagonalization of matrices and its applications in

quadratically constrained quadratic programming. SIAM J. Optim., 26(3):1649–1668,

2016.

[94] R. Jiang and D. Li. Novel reformulations and efficient algorithms for the Generalized Trust

Region Subproblem. SIAM J. Optim., 29(2):1603–1633, 2019.

250

Bibliography

[95] R. Jiang and D. Li. A linear-time algorithm for generalized trust region problems. SIAM J.
Optim., 30(1):915–932, 2020.

[96] R. Jiang, D. Li, and B. Wu. SOCP reformulation for the Generalized Trust Region Sub-

problem via a canonical form of two symmetric matrices. Math. Program., 169:531–563,

2018.

[97] A. Juditsky and A. Nemirovski. First order methods for nonsmooth convex large-scale

optimization, ii: utilizing problems structure. Optimization for Machine Learning, 30(9):

149–183, 2011.

[98] N. Karmarkar, M. G. Resende, and K. G. Ramakrishnan. An interior point algorithm to

solve computationally difficult set covering problems. Math. Program., 52:597–618, 1991.

[99] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103, 1972.

[100] F. Kılınç-Karzan and A. L. Wang. Exactness in SDP relaxations of QCQPs: Theory and

applications. Tut. in Oper. Res. 2021.

[101] F. Kılınç-Karzan and S. Yıldız. Two-term disjunctions on the Second-Order Cone. Math.
Program., 154:463–491, 2015.

[102] L. Kronecker. Collected works. 1968.

[103] J. Kuczynski and H. Wozniakowski. Estimating the largest eigenvalue by the power and

Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl., 13(4):1094–1122,

1992.

[104] G. Lan, Z. Lu, and R. D.C. Monteiro. Primal-dual first-order methods witho(1/ϵ) iteration-

complexity for cone programming. Math. Program., 126:1–29, 2011.

[105] P. Lancaster and L. Rodman. Canonical forms for Hermitian matrix pairs under strict

equivalence and congruence. SIAM Rev., 47(3):407–443, 2005.

[106] M. Laurent and S. Poljak. On a positive semidefinite relaxation of the cut polytope. Linear
Algebra Appl., 223-224:439–461, 1995.

[107] T. H. Le and T. N. Nguyen. Simultaneous diagonalization via congruence of hermitian ma-

trices: some equivalent conditions and a numerical solution. arXiv preprint, (2007.14034),

2020.

[108] K. Y. Levy, A. Yurtsever, and V. Cevher. Online adaptive methods, universality and acceler-

ation. In Advances in Neural Information Processing Systems, 2018.

[109] J. Linderoth. A simplicial branch-and-bound algorithm for solving quadratically con-

strained quadratic programs. Math. Program., 103(2):251–282, 2005.

[110] M. Liu and G. Pataki. Exact duals and short certificates of infeasibility and weak infeasibility

in conic linear programming. Math. Program., 167:435–480, 2018.

251

Bibliography

[111] M. Locatelli. Some results for quadratic problems with one or two quadratic constraints.

Oper. Res. Lett., 43(2):126–131, 2015.

[112] M. Locatelli. Exactness conditions for an SDP relaxation of the extended trust region

problem. Oper. Res. Lett., 10(6):1141–1151, 2016.

[113] M. Locatelli. KKT-based primal-dual exactness conditions for the Shor relaxation. arXiv
preprint, 2011.05033, 2020.

[114] C. Lu, Z. Deng, and Q. Jin. An eigenvalue decomposition based branch-and-bound algo-

rithm for nonconvex quadratic programming problems with convex quadratic constraints.

J. Global Optim., 67(3):475–493, 2017.

[115] Z. Lu, A. Nemirovski, and R. D.C. Monteiro. Large-scale semidefinite programming via a

saddle point mirror-prox algorithm. Math. Program., 109:211–237, 2007.

[116] H. Luo, Y. Chen, X. Zhang, and D. Li. Effective algorithms for optimal portfolio deleverag-

ing problem with cross impact. arXiv preprint, (2012.07368), 2020.

[117] Z. Luo, W. Ma, A. M. So, Y. Ye, and S. Zhang. Semidefinite relaxation of quadratic opti-

mization problems. IEEE Signal Process. Mag., 27(3):20–34, 2010.

[118] A. Majumdar, G. Hall, and A. A. Ahmadi. Recent scalability improvements for semidefinite

programming with applications in machine learning, control, and robotics. Annual Review
of Control, Robotics, and Autonomous Systems, 3:331–360, 2020.

[119] B. R. Marks and G. P. Wright. A general inner approximation algorithm for nonconvex

mathematical programs. Oper. Res., 26(4):681–683, 1978.

[120] N. Megiddo. Linear-time algorithms for linear programming in rˆ3 and related problems.

SIAM journal on computing, 12(4):759–776, 1983.

[121] A. Megretski. Relaxations of quadratic programs in operator theory and system analysis. In

Systems, Approximation, Singular Integral Operators, and Related Topics, pages 365–392,

2001.

[122] D. G. Mixon, S. Villar, and R. Ward. Clustering subgaussian mixtures by semidefinite

programming. arXiv preprint, 1602.06612, 2016.

[123] S. Modaresi and J. P. Vielma. Convex hull of two quadratic or a conic quadratic and a

quadratic inequality. Math. Program., 164:383–409, 2017.

[124] J. J. Moré. Generalizations of the trust region problem. Optim. Methods Softw., 2(3-4):

189–209, 1993.

[125] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. on Sci. and Stat.
Comput., 4(3):553–572, 1983.

[126] MOSEK ApS. The MOSEK optimization toolbox for MATLAB manual. Version 9.10.,
2021. URL http://docs.mosek.com/9.0/toolbox/index.html.

252

http://docs.mosek.com/9.0/toolbox/index.html

Bibliography

[127] T. S. Motzkin and O. Taussky. Pairs of matrices with property L. II. Trans. Amer. Math.
Soc., 80(2):387–401, 1955.

[128] A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequalities

with lipschitz continuous monotone operators and smooth convex-concave saddle point

problems. SIAM J. Optim., 15(1):229–251, 2004.

[129] Y. Nesterov. Quality of semidefinite relaxation for nonconvex quadratic optimization.

Technical Report 1997019, Université Catholique de Louvain, Center for Operations

Research and Econometrics(CORE), 1997.

[130] Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM J. Optim.,
16(1):235–249, 2005.

[131] Y. Nesterov. Smooth minimization of non-smooth functions. Math. Program., 103:

127–152, 2005.

[132] Y. Nesterov. Lectures on convex optimization. Number 137 in Springer Optim. and its Appl.

2 edition, 2018.

[133] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

[134] T. Nguyen, V. Nguyen, T. Le, and R. Sheu. On simultaneous diagonalization via congruence

of real symmetric matrices. arXiv preprint, (2004.06360), 2020.

[135] J. Nocedal and S. Wright. Numerical optimization. Springer Series in Operations Research

and Financial Engineering. 2 edition, 2006.

[136] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting

and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,
169(3):1042–1068, 2016.

[137] K. O’meara and C. Vinsonhaler. On approximately simultaneously diagonalizable matrices.

Linear Algebra Appl., 412:39–74, 2006.

[138] Y. Ouyang and Y. Xu. Lower complexity bounds of first-order methods for convex-concave

bilinear saddle-point problems. Math. Program., 185:1–35, 2021.

[139] B. Palaniappan and F. Bach. Stochastic variance reduction methods for saddle-point

problems. volume 29, 2016.

[140] P. M. Pardalos, Y. Ye, and CG Han. Algorithms for the solution of quadratic knapsack

problems. Linear Algebra Appl., 152:69–91, 1991.

[141] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity

of optimal eigenvalues. Math. Oper. Res., 23(2):339–358, 1998.

[142] G. Pataki. The geometry of semidefinite programming. In Handbook of semidefinite
programming, pages 29–65. 2000.

253

Bibliography

[143] G. Pataki. On the connection of facially exposed and nice cones. J. Math. Anal. Appl., 400

(1):211–221, 2013.

[144] G. Pataki. Strong duality in conic linear programming: facial reduction and extended

duals. In Computational and analytical mathematics, volume 50 of Springer Proceedings
in Mathematics & Statistics, pages 613–634, 2013.

[145] V. I. Paulsen, S. C. Power, and R. R. Smith. Schur products and matrix completions. J.
Funct. Anal., 85(1):151–178, 1989.

[146] I. Pólik and T. Terlaky. A survey of the S-lemma. SIAM Rev., 49(3):371–418, 2007.

[147] B. T. Polyak. Convexity of quadratic transformations and its use in control and optimization.

J. Optim. Theory Appl., 99(3):553–583, 1998.

[148] T. K. Pong and H. Wolkowicz. The generalized trust region subproblem. Comput. Optim.
Appl., 58(2):273–322, 2014.

[149] P. Raghavendra. Optimal algorithms and inapproximability results for every CSP? In

Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 245–254,

2008.

[150] M. V. Ramana. Polyhedra, spectrahedra, and semidefinite programming. In Topics in
semidefinite and interior-point methods, volume 18 of Fields Inst. Commun., pages 27–38,

1997.

[151] F. Rendl and H. Wolkowicz. A semidefinite framework for trust region subproblems with

applications to large scale minimization. Math. Program., 77:273–299, 1997.

[152] R. T. Rockafellar. Convex Analysis. Number 28 in Princeton Mathematical Series. 1970.

[153] N. Rujeerapaiboon, K. Schindler, D. Kuhn, and W. Wiesemann. Size matters: Cardinality-

constrained clustering and outlier detection via conic optimization. SIAM J. Optim., 29

(2):1211–1239, 2019.

[154] M. Salahi and S. Fallahi. Trust region subproblem with an additional linear inequality

constraint. Optim. Lett., 10(4):821–832, 2016.

[155] M. Salahi and A. Taati. An efficient algorithm for solving the generalized trust region

subproblem. Computational and Applied Mathematics, 37(1):395–413, 2018.

[156] A. Santana and S. S. Dey. The convex hull of a quadratic constraint over a polytope. SIAM
J. Optim., 30(4):2983–2997, 2020.

[157] D. Shamsi, N. Taheri, Z. Zhu, and Y. Ye. Conditions for correct sensor network localization

using sdp relaxation. In Discrete geometry and optimization, volume 69 of Fields Inst.
Commun., pages 279–301, 2013.

[158] H. D. Sherali and W. P. Adams. A reformulation-linearization technique for solving discrete
and continuous nonconvex problems, volume 31 of Nonconvex Optim. Appl. 2013.

254

Bibliography

[159] J. L. Sheriff. The convexity of quadratic maps and the controllability of coupled systems. PhD

thesis, Harvard University, 2013.

[160] N. Shinde, V. Narayanan, and J. Saunderson. Memory-efficient structured convex opti-

mization via extreme point sampling. SIAM Journal on Mathematics of Data Science, 3(3):

787–814, 2021.

[161] N. Z. Shor. Dual quadratic estimates in polynomial and boolean programming. Ann. Oper.
Res., 25:163–168, 1990.

[162] M. Sion. On general minimax theorems. Pacific J. Math., 8(1):171–176, 1958.

[163] S. Sojoudi and J. Lavaei. Exactness of semidefinite relaxations for nonlinear optimization

problems with underlying graph structure. SIAM J. Optim., 24(4):1746–1778, 2014.

[164] M. Souto, J. D. Garcia, and Á. Veiga. Exploiting low-rank structure in semidefinite pro-

gramming by approximate operator splitting. Optimization, pages 1–28, 2020.

[165] R. J. Stern and H. Wolkowicz. Indefinite trust region subproblems and nonsymmetric

eigenvalue perturbations. SIAM J. Optim., 5(2):286–313, 1995.

[166] J. F. Sturm. Error bounds for linear matrix inequalities. SIAM J. Optim., 10(4):1228–1248,

2000.

[167] J. F. Sturm and S. Zhang. On cones of nonnegative quadratic functions. Math. Oper. Res.,
28(2):246–267, 2003.

[168] D. A. Suprunenko and R. I. Tyshkevich. Commutative matrices. 1968.

[169] B. S. Tam. A note on polyhedral cones. J. Aust. Math. Soc., 22(4):456–461, 1976.

[170] T. Tao. Topics in random matrix theory, volume 132 of Grad. Stud. Math. 2012.

[171] M. Tawarmalani and N. Sahinidis. Convexification and global optimization in continuous
and mixed-integer nonlinear programming: Theory, algorithms, software, and applications,
volume 65 of Nonconvex Optim. Appl. 2002.

[172] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization,

2008.

[173] F. Uhlig. A canonical form for a pair of real symmetric matrices that generate a nonsingular

pencil. Linear Algebra Appl., 14(3):189–209, 1976.

[174] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Rev., 38(1):49–95, 1996.

[175] R. Vollgraf and K. Obermayer. Quadratic optimization for simultaneous matrix diagonal-

ization. IEEE Trans. Signal Process., 54(9):3270–3278, 2006.

[176] I. Waldspurger and A. Waters. Rank optimality for the Burer–Monteiro factorization.

SIAM J. Optim., 30(3):2577–2602, 2020.

255

Bibliography

[177] A. L. Wang and R. Jiang. New notions of simultaneous diagonalizability of quadratic

forms with applications to QCQPs. arXiv preprint, 2101.12141, 2021.

[178] A. L. Wang and F. Kılınç-Karzan. On convex hulls of epigraphs of QCQPs. In Integer
Programming and Combinatorial Optimization (IPCO 2020), pages 419–432, 2020.

[179] A. L. Wang and F. Kılınç-Karzan. A geometric view of SDP exactness in QCQPs and its

applications. arXiv preprint, 2011.07155, 2020.

[180] A. L. Wang and F. Kılınç-Karzan. The generalized trust region subproblem: solution

complexity and convex hull results. Math. Program., 191:445–486, 2022.

[181] A. L. Wang and F. Kılınç-Karzan. On the tightness of SDP relaxations of QCQPs. Math.
Program., 193:33–73, 2022.

[182] A. L. Wang and F. Kılınç-Karzan. Accelerated first-order methods for a class of semidefinite

programs. arXiv preprint, 2206.00224, 2022.

[183] A. L. Wang, Y. Lu, and F. Kılınç-Karzan. Implicit regularity and linear convergence rates

for the generalized trust-region subproblem. arXiv preprint, 2112.13821, 2021.

[184] J. Wang and Y. Xia. A linear-time algorithm for the Trust Region Subproblem based on

hidden convexity. Optim. Lett., 11(8):1639–1646, 2017.

[185] J. Wang, H. Chen, R. Jiang, X. Li, and Z. Li. Fast algorithms for stackelberg prediction

game with least squares loss. In International Conference on Machine Learning, pages

10708–10716, 2021.

[186] J. Wang, W. Huang, R. Jiang, X. Li, and A. L. Wang. Solving stackelberg prediction

game with least squares loss via spherically constrained least squares reformulation. In

International Conference on Machine Learning, 2022. Forthcoming.

[187] K. Weierstrass. Zur Theorie der quadratischen und bilinearen Formen. Monatsber. Akad.
Wiss., Berlin, pages 310–338, 1868.

[188] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of semidefinite programming:
Theory, algorithms, and applications, volume 27 of Internat. Ser. Oper. Res. Management
Sci. 2012.

[189] Y. Xia. On minimizing the ratio of quadratic functions over an ellipsoid. Optimization, 64

(5):1097–1106, 2015.

[190] V. A. Yakubovich. S-procedure in nolinear control theory. Vestnik Leningrad Univ. Math.,
pages 73–93, 1971.

[191] B. Yang, K. Anstreicher, and S. Burer. Quadratic programs with hollows. Math. Program.,
170:541–553, 2018.

256

Bibliography

[192] H. Yang, L. Liang, L. Carlone, and K. Toh. An inexact projected gradient method with

rounding and lifting by nonlinear programming for solving rank-one semidefinite relaxation

of polynomial optimization. arXiv preprint, 2105.14033, 2021.

[193] Y. Ye. Approximating quadratic programming with bound and quadratic constraints.

Math. Program., 84:219–226, 1999.

[194] Y. Ye and S. Zhang. New results on quadratic minimization. SIAM J. Optim., 14(1):

245–267, 2003.

[195] U. Yıldıran. Convex hull of two quadratic constraints is an LMI set. IMA J. Math. Control
Inform., 26(4):417–450, 2009.

[196] S. Yıldız and G. Cornuéjols. Disjunctive cuts for cross-sections of the Second-Order Cone.

Oper. Res. Lett., 43(4):432—-437, 2015.

[197] A. Yurtsever, O. Fercoq, and V. Cevher. A conditional-gradient-based augmented La-

grangian framework. In International Conference on Machine Learning, pages 7272–7281,

2019.

[198] A. Yurtsever, J. A. Tropp, O. Fercoq, M. Udell, and V. Cevher. Scalable semidefinite

programming. SIAM Journal on Mathematics of Data Science, 3(1):171–200, 2021.

[199] J. Zhou and Z. Xu. A simultaneous diagonalization based SOCP relaxation for convex

quadratic programs with linear complementarity constraints. Optim. Lett., 13(7):1615–

1630, 2019.

[200] J. Zhou, S. Chen, S. Yu, and Y. Tian. A simultaneous diagonalization-based quadratic convex

reformulation for nonconvex quadratically constrained quadratic program. Optimization,

pages 1–17, 2020.

257

A Appendices for Chapter 1

A.1 Proof of Proposition 1

Proposition 1. For any SD-QCQP, we have

DSOCP = DSDP and Opt
SOCP

= Opt
SDP

.

Proof. The second identity follows immediately from the first identity, thus it suffices to prove

only the former.

Let (x, t) ∈ DSDP. By definition, there existsX ∈ SN
such that the following system is satisfied

Y :=
(

1 x⊺

x X

)
⟨Q0, Y ⟩ ≤ 2t
⟨Qi, Y ⟩ ≤ 0, ∀i ∈ [mI]
⟨Qi, Y ⟩ = 0, ∀i ∈ [mI + 1,m]
Y ⪰ 0.

Taking a Schur complement of 1 in the matrix Y , we see thatX ⪰ xx⊺. In particular, we have

that Xj,j ≥ x2
j for all j ∈ [N]. Define the vector y by yj = Xj,j ≥ x2

j . Then, noting that

⟨Diag(ai), X⟩ = ⟨ai, y⟩ for all i ∈ [0,m], we conclude that (x, t) ∈ DSOCP.

Let (x, t) ∈ DSOCP. By definition, there exists y ∈ RN
such that the following system is

satisfied 
⟨a0, y⟩+ 2⟨b0, x⟩+ c0 ≤ 2t
⟨ai, y⟩+ 2⟨bi, x⟩+ ci ≤ 0, ∀i ∈ [mI]
⟨ai, y⟩+ 2⟨bi, x⟩+ ci = 0, ∀i ∈ [mI + 1,m]
yj ≥ x2

j , ∀j ∈ [N].

Define X ∈ SN
such that Xj,j = yj for all j ∈ [N] and Xj,k = xjxk for j ̸= k. From the

definition ofDSOCP, the relation yj ≥ x2
j holds for all j ∈ [N], therefore(

1 x⊺

x X

)
⪰
(

1 x⊺

x xx⊺

)
⪰ 0.

Finally, noting that ⟨Diag(ai), X⟩ = ⟨ai, y⟩ for all i ∈ [0,m], we conclude that (x, t) ∈
DSDP. ■

A.2 Proof of Theorem 8

Theorem 8. Suppose Assumption 1 holds. Define the hyperplaneH =
{

(x, t) ∈ RN+1 : 2t = Opt
SDP

}
.

If the quadratic eigenvalue multiplicity k satisfies k ≥ m+ 1, then conv(D ∩H) = DSDP ∩H .
In particular, Opt = Opt

SDP
.

259

Appendices

Proof. Suppose (x̂, t̂) ∈ DSDP ∩H . Then by Lemma 1 and optimality of t̂, we have that 2t̂ =
supγ∈Γ q(γ, x̂), i.e.,

2t̂ = sup
γ∈Rm

{
q(γ, x̂) : A(γ) ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}

= sup
γ∈Rm

{
q(γ, x̂) : A(γ) ⪰ 0

γi ≥ 0, ∀i ∈ [mI]

}
.

The second line follows as A(γ) ⪰ 0 if and only ifA(γ) ⪰ 0. Note that Assumption 1 allows

us to apply strong conic duality to the program on the second line. Furthermore, this dual SDP

achieves its optimal value, i.e., there existsZ ∈ Sn
such that (x̂, t̂, Z) satisfies

q0(x̂) + ⟨A0, Z⟩ = 2t̂
qi(x̂) + ⟨Ai, Z⟩ ≤ 0, ∀i ∈ [mI]
qi(x̂) + ⟨Ai, Z⟩ = 0, ∀i ∈ [mI + 1,m]
Z ⪰ 0.

(1)

We will show by induction on rank(Z) that for any (x̂, t̂, Z) satisfying (1), we have (x̂, t̂) ∈
conv(D ∩H). The claim clearly holds when rank(Z) = 0.

Now suppose r := rank(Z) ≥ 1. Let (x̂, t̂, Z) satisfy (1). WriteZ =
∑r

i=1 ziz
⊺
i where each

zi is nonzero. Fix z := z1.

We claim that the following system in y is feasible:{
⟨Aix̂+ bi, y ⊗ z⟩ = 0, ∀i ∈ [m]
y ∈ Sk−1.

(2)

Indeed, the linear constraints impose at most m homogeneous linear equalities in k ≥ m + 1
variables. In particular, there exists a nonzero solution y to the linear constraints. This y may then

be scaled to satisfy y ∈ Sk−1
.

Note then that for all i ∈ [m],

qi(x̂± y ⊗ z) + ⟨Ai, Z − zz⊺⟩ = (x̂± y ⊗ z)⊺Ai(x̂± y ⊗ z) + 2b⊺i (x̂± y ⊗ z) + ci + ⟨Ai, Z − zz⊺⟩
= qi(x̂)± 2⟨Aix̂+ bi, y ⊗ z⟩+ ⟨Ai, Z⟩
= qi(x̂) + ⟨Ai, Z⟩.

Consequently, (x̂ ± y ⊗ z, t̂, Z − zz⊺) satisfies all of the constraints in (1) except possibly the

first. We now verify that the first constraint is also satisfied: From

q0(x̂± y ⊗ z) + ⟨A0, Z − zz⊺⟩ = q0(x̂)± 2⟨A0x̂+ b0, y ⊗ z⟩+ ⟨A0, zz
⊺⟩+ ⟨A0, Z − zz⊺⟩

= q0(x̂) + ⟨A0, Z⟩ ± 2⟨A0x̂+ b0, y ⊗ z⟩
= 2t̂± 2⟨A0x̂+ b0, y ⊗ z⟩,

260

B Appendices for Chapter 2

we deduce that (x̂ ± y ⊗ z, 2t̂ ± 2⟨A0x̂+ b0, y ⊗ z⟩) ∈ DSDP. Then, by minimality of t̂ in

DSDP, we infer that ⟨A0x̂+ b0, y ⊗ z⟩ = 0.

We deduce that (x̂± y⊗ z, t̂, Z − zz⊺) satisfies (1). Furthermore, we have rank(Z − zz⊺) =
r−1. By induction, (x̂±y⊗z, t̂) ∈ conv(D∩H). We conclude that (x̂, t̂) ∈ conv(D∩H). ■

B Appendices for Chapter 2

B.1 Deferred proofs from Section 2.4

Deferred proofs from Section 2.4.1

We compute

Γ =
{

(γ
obj
, γ1, γ2) ∈ R+ × R2 :

(
γ1 γ2/

√
2

γ2/
√

2 γ
obj

)
⪰ 0

}

=
{

(γ
obj
, γ1, γ2) ∈ R3 : γ

obj
+ γ1 ≥ 0

2γ
obj
γ1 ≥ γ2

2

}

=
{

(γ
obj
, γ1, γ2) ∈ R3 : γ

obj
+ γ1 ≥

√
(γ

obj
− γ1)2 + (

√
2γ2)2

}
.

The expression for Γ◦
follows from Γ.

Proof of (2.5). Let (x, t) ∈ SSDP \ S such that G(x, t) is a one-dimensional face of Γ◦
. For

notational convenience, let ℓ
obj

= q
obj

(x)−2t, ℓ1 = q1(x) and ℓ2 = q2(x). Note thatG(x, t) =
R+(ℓ

obj
, ℓ1, ℓ2) so that F(x, t) = R+(−ℓ1,−ℓobj

, ℓ2). Furthermore, by the assumption that

(ℓ
obj
, ℓ1, ℓ2) is nonzero and on the boundary of Γ◦

, we have

G(x, t)⊥ = span


 −ℓ1−ℓ

obj

ℓ2

,
 ℓ2
−ℓ2

ℓ1 − ℓobj


.

We deduce that

R′(x, t) =


 −ℓobj

ℓ2/
√

2
0

,
ℓ2/

√
2

−ℓ1
0

, (3)

−ℓobj
(2x1 − 1) + ℓ2(

√
2x2)

−ℓ1(2x2) +
√

2ℓ2(x1 − 1)
2ℓ1

,
−ℓ2(2x1 − 1) + (ℓ1 − ℓobj

)(
√

2x2)
ℓ2(2x2) +

√
2(ℓ1 − ℓobj

)(x1 − 1)
−2ℓ2




⊥

.

(4)

Here, the first two vectors span span(A(f
obj
, f)). The second two vectors correspond to the

constraints

〈
A(γ

obj
, γ)x, x′

〉
− γ

obj
t′ = 0 for (γ

obj
, γ) ∈ G(x, t)⊥

.

261

Appendices

Below, we will simplify this expression. By the assumption that (ℓ
obj
, ℓ1, ℓ2) is nonzero and on

the boundary of Γ◦
, we have

−ℓ
obj
− ℓ1 =

√
(ℓ

obj
− ℓ1)2 + (

√
2ℓ2)2

where the term within the radical is nonzero. Expanding, we deduce that{
ℓ

obj
+ ℓ1 < 0

ℓ22 − 2ℓ
obj
ℓ1 = 0

=
{
x2

2 − 2t+ x1(x1 − 1) < 0
(x2

2 − 2tx1)(x1 − 1) = 0
.

Note that (0, 1, 0) ∈ Γ so that x1 ∈ [0, 1]. If x1 = 1, then ℓ
obj

< 0, ℓ1 = 0 and ℓ2 = 0 so

that (x1, x2, t) ∈ S , a contradiction. We deduce 1 − x1 > 0 and x2
2 − 2tx1 = 0 and that

(ℓ
obj
, ℓ1, ℓ2) = (x1 − 1)(2t, x1,

√
2x2). Plugging this into (3) gives

R′(x, t) =


−2t
x2
0

,
 x2
−x1

0

,
 t
−x2
x1

,
 x2(x1 − 1 + 2t)
−x2

1 + x1 − 2tx1 − 2t
2x2




⊥

. ■

Deferred proofs from Section 2.4.3

We will prove Proposition 8 in the following series of lemmas. Note that the first identity of

Proposition 8 follows from definition. To prove the second identity of Proposition 8, we will

partition Γ1 into n+ 1 pieces depending on the sign pattern of γ ∈ Γ1.

Note that γ ∈ Γ1 if and only if aa⊤ + Diag(γ) ⪰ 0. In particular, γ ∈ Γ1 if γ is nonnegative.

On the other hand, by the Eigenvalue Interlacing Theorem, γ /∈ Γ1 if it has at least two negative

coordinates. It remains to understandNi := Γ1 ∩ {γ ∈ Rn : γi < 0, γi ≥ 0, ∀j ̸= i}. The

next lemma follows from a straightforward application of the Schur Complement Lemma and the

Sherman–Morrison Formula.

Lemma 86. Suppose Assumption 6 holds. Then, for any i ∈ [n],

Ni =

γ ∈ Rn :
0 > γi ≥

−a2
i

1+
∑

j ̸=i
a2

j /γj

γj > 0, ∀j ̸= i

.
Proof. Without loss of generality we assume i = n. For convenience, let γ̄ and ā denote the first

n − 1 entries of γ and a respectively. By Assumption 6, we have that γj > 0 for all j < n (as

otherwise the 2×2 minor of aa⊤ + Diag(γ) corresponding to (j, n) is not positive semidefinite).

The Schur Complement Lemma and the Sherman–Morrison Formula then imply that γ ∈ Nn if

and only if γn < 0, γ̄ > 0 and

γn + a2
n ≥ a2

nā
⊤(āā⊤ + Diag(γ̄))−1ā

= a2
nā

⊤
(
Diag(γ̄)−1 − Diag(γ̄)−1āā⊤ Diag(γ̄)−1

1+ā⊤ Diag(γ̄)−1ā

)
ā

= a2
n

ā⊤ Diag(γ̄)−1ā
1+ā⊤ Diag(γ̄)−1ā

.

262

B Appendices for Chapter 2

Rearranging terms completes the proof. ■

Then decomposing Γ1 = Rn
+ ∪

⋃
i∈[n]Ni, we get

SSDP =
{

(x, t) ∈ Rn : 2t ≥ maxi∈[n] supγ∈Ni
[γ, q(x)]

x ∈ [±1]n

}

It remains to prove the following lemma.

Lemma 87. Suppose Assumption 6 holds and let i ∈ [n]. For any x ∈ [±1]n, we have

sup
γ∈Ni

[γ, q(x)] = (a⊤x)2 +

ai

√
1− x2

i −
∑
j ̸=i

aj

√
1− x2

j

2

+

. (5)

We will need the following two useful facts.

Lemma 88. Let ξ ∈ Rk
− and α > 0, then

sup
ζ∈Rk

++

{
k∑

i=1

ξi

ζ2
i

:
k∑

i=1
ζ2

i = α

}
= − 1

α

(
k∑

i=1

√
−ξi

)2

. (6)

Proof. Without loss of generality, we may assume ξ ∈ Rk
−−. Then by Cauchy-Schwarz, we have

−
∑k

i=1 ξi/ζ
2
i = − 1

α

(∑k
i=1 ξi/ζ

2
i

)(∑k
i=1 ζ

2
i

)
≥ 1

α

(∑k
i=1
√
−ξi

)2
. Furthermore, equality

holds when ζ2
i ∝
√
ξi. ■

Lemma 89. Let α, β ≥ 0, then

sup
x>0

(
α

1 + x
− β

x

)
=
(√

α−
√
β
)2

+
.

Proof. Let f(x) := α(1 + x)−1 − βx−1
. Note that

d
dxf(x) = −α(1 + x)−2 + βx−2

. There

are three cases to consider. If β = 0, then f(x) = α(1 + x)−1
and supx>0 α(1 + x)−1 = α.

Next, suppose 0 ≤ α ≤ β, then
d

dxf(x) = −α(1 +x)−2 +βx−2 ≥ β(x−2− (1 +x)−2) ≥ 0
so that supx>0 f(x) = limx→∞ f(x) = 0. Finally, suppose 0 < β < α. Note that f ′(x) > 0
for all x small enough. Similarly, f ′(x) < 0 for all x large enough. We deduce that supx>0 f(x)
is achieved. Computing the first-order-necessary conditions, we see that f(x) is maximized at√

β
√

α−
√

β
with value

(√
α−
√
β
)2

. ■

263

Appendices

Proof of Lemma 87. Without loss of generality, i = n. Let b ∈ Rn
− where bj = x2

j − 1. Let γ̄
denote the first n− 1 entries of γ. Then,

sup
γ∈Nn

[γ, q(x)]− q
obj

(x) = sup
γ∈Nn

⟨γ, b⟩ = sup
γ̄∈Rn−1

++

n−1∑
i=1

γibi −
a2

nbn

1 +
∑n−1

i=1 a
2
i /γi

= sup
α>0

− a2
nbn

1 + α
+ sup

ζ∈Rn−1
++

{
n−1∑
i=1

a2
i bi

ζi
:

n−1∑
i=1

ζi = α

}
= sup

α>0

(an

√
−bn

)2
1 + α

− 1
α

(
n−1∑
i=1

ai

√
−bi

)2
=
(
an

√
−bn −

n−1∑
i=1

ai

√
−bi

)2

+
.

Here, the second line follows from a change of variables of ζi := a2
i /γi and α :=

∑n−1
i=1 ζi. The

third line follows from Lemma 88 and the fourth line follows from Lemma 89. ■

Proof of Corollary 7. Let γ ∈ Γ1 and x ∈ Rn
. By convexity of [γ, q(x)] in x and the fact that

q(x) = q(−x), we deduce that [γ, q(0)] ≤ [γ, q(x)]. We deduce that Opt
SDP

= infx supγ∈Γ1 [γ, q(x)] =
supγ∈Γ1 [γ, q(0)]. By Proposition 8, we conclude that

Opt
SDP

= max
i∈[n]

ai −
∑
j ̸=i

aj

2

+

. ■

Proof of Corollary 8. Pick an open setU ⊆ [±1]n such that

a1(1− x2
1) >

∑
j>1

aj(1− x2
j), ∀x ∈ U.

Then by Proposition 8, for any x ∈ U , we have (x, t) ∈ SSDP if and only if

2t ≥ f(x) := (a⊤x)2 +

a1

√
1− x2

1 −
∑
j>1

aj

√
1− x2

j

2

.

Note that f(x) is smooth onU and nonlinear (for example note
∂2f(x)

∂x2 ̸= 0). We conclude that

SSDP ̸= conv(S) as conv(S) is polyhedral. ■

264

B Appendices for Chapter 2

B.2 Deferred proofs from Section 2.6

Useful lemmas

We first recall that under some minor conditions, pointwise convergence implies uniform conver-

gence for convex functions. We extend this statement to show that pointwise a.a.s. convergence

implies a.a.s. uniform convergence.

Lemma 90. Let Ω ⊆ Rn be an open set and let f : Ω → R be a convex function. Suppose
g1, g2, . . . : Ω→ R is a sequence of random convex functions such that for all x ∈ Ω and ϵ > 0,
we have that a.a.s.,

|gi(x)− f(x)| ≤ ϵ.

Then, for any compactC ⊆ Ω and ϵ > 0, we have that a.a.s.,

|gi(x)− f(x)| ≤ ϵ, ∀x ∈ C.

Proof. Fix C ⊆ Ω compact. Without loss of generality, we will assume that ϵ > 0 satisfies

C +B(0, 3ϵ) ⊆ Ω and that f is 1-Lipschitz onC +B(0, 3ϵ).

Fix a finite net N ⊆ C + B(0, 3ϵ) such that for all x ∈ C + B(0, 2ϵ), we have x ∈
conv(N ∩B(x, ϵ)). By our assumption and the fact thatN is finite, we have that a.a.s., |f(x)− gi(x)| ≤
ϵ for all x ∈ N . We condition on this event in the remainder of the proof.

For any x ∈ C , let x =
∑

j λjxj denote the convex decomposition guaranteed by x ∈
conv(N ∩B(x, ϵ)). Then,

gi(x) ≤
∑

j

λjgi(xj) ≤
∑

j

λj(f(xj) + ϵ) ≤ f(x) + 2ϵ.

Here, the last inequality follows from f(xj) ≤ f(x) + ∥x− xj∥2 ≤ f(x) + ϵ.

Let x ∈ C and x′ ∈ N ∩ B(x, ϵ). Note that y := x′ + (x′ − x) ∈ C + B(0, 2ϵ). By

construction, there exists y′ ∈ N ∩B(y, ϵ) such that gi(y′) ≥ gi(y). Finally,

f(x) + 4ϵ ≥ f(y′) + ϵ ≥ gi(y′) ≥ gi(y) ≥ 2gi(x′)− gi(x) ≥ 2(f(x′)− ϵ)− gi(x) ≥ 2f(x)− gi(x)− 4ϵ.

Therefore, by rearranging and combining, we deduce that a.a.s., |gi(x)− f(x)| ≤ 8ϵ, ∀x ∈
C . ■

Lemma 91. Let r ∈ [−1, 1], then

−
∫ 1

σ=−1

r2

1 + rσ
dµnsc(σ) = 2(

√
1− r2 − 1) = ϕ(r).

265

Appendices

Proof. We begin by expanding the definition of µnsc and substituting σ = − cos θ:

−
∫ 1

σ=−1

r2

1 + rσ
dµnsc(σ) = − 2

π

∫ 1

σ=−1

r2√1− σ2

1 + rσ
dσ

= − 2
π

∫ π

θ=0

r2 sin2 θ

1− r cos θ dθ

= − 2
π

∫ π

θ=0

r2 − r2 cos2 θ

1− r cos θ dθ

= − 2
π

∫ π

θ=0

r2 − 1
1− r cos θ dθ −

2
π

∫ π

θ=0
(1 + r cos θ) dθ

= 2(1− r2)
π

(∫ π

θ=0

1
1− r cos θ dθ

)
− 2. (7)

We now focus on the bracketed integral. Perform the change of variables θ = 2η to get∫ π

θ=0

1
1− r cos θ dθ = 2

∫ π/2

η=0

1
1− r cos(2η) dη. (8)

Recalling the identities cos(2η) = 2 cos2(η) − 1 and cos−2 η = sec2 η = tan2 η + 1 =
d

dη tan(η), we then have

1
1− r cos(2η) = 1

1 + r − 2r cos2 η
=

d
dη tan η

(1 + r) tan2 η + (1− r)
.

Performing one last change of variables t = tan η gives

2
∫ π/2

η=0

1
1− r cos(2η) dη = 2

∫ π/2

η=0

d
dη tan η

(1 + r) tan2 η + (1− r)
dη

= 2
∫ ∞

t=0

1
(1 + r)t2 + (1− r) dt

= 2
arctan

(
t
√

1+r
1−r

)
√

1− r2

∣∣∣∣∣∣
∞

t=0

= π√
1− r2

. (9)

Combining (7), (8), and (9) gives the desired identity. ■

266

B Appendices for Chapter 2

Deferred proofs from Section 2.6.2

Proof of Lemma 15. Let Ω = Rm
and set f(γ) := 1 − ∥γ∥2. Note that f and λmin(A[γ]) are

both concave functions on Ω. We have λmin(A[0]) = 1 = f(0). Furthermore, for any nonzero

γ ∈ Rm
and ϵ > 0,

λmin(A[γ]) = 1 + ∥γ∥2λmin

(
m∑

i=1

γi

∥γ∥2
Ai

)
∈ 1 + ∥γ∥2[−1± ϵ] = [f(γ)± ∥γ∥2ϵ], a.a.s..

Here, the inclusion holds by Facts 4 and 6. TakingC = rSm−1
and applying Lemma 90. ■

Proof of Lemma 16. Fixr ∈ (0, 1). Without loss of generality, r+2ϵ < 1. Set Ω := {γ ∈ Rm : ∥γ∥2 < r + 2ϵ}.

Let γ̂ ∈ Ω. Note that we may generateA[γ̂] and b[γ̂] via the following equivalent process: Sample

Ā ∼ NGOE(n) and b̄ ∼ N(0, In/n) independently and set A[γ̂] := I + rĀ and b[γ̂] := rb̄.

With this notation, −b[γ̂]A[γ̂]−1b[γ̂] = −r2b̄⊤(I + rĀ)−1b̄. Let Ā =
∑n

i=1 σiviv
⊤
i be

the eigenvalue decomposition of Ā and let µĀ denote its Empirical Spectral Distribution. By

Lemma 91, we have

1
r2

∣∣∣−b[γ̂]⊤A[γ̂]−1b[γ̂]− ϕ(r)
∣∣∣

= 1
r2

∣∣∣∣∣−b[γ̂]⊤A[γ̂]−1b[γ̂] +
∫ 1

σ=−1

r2

1 + rσ
dµnsc

∣∣∣∣∣
=
∣∣∣∣b̄⊤(I + rĀ)−1b̄−

∫ 1

σ=−1

1
1 + rσ

dµnsc

∣∣∣∣
≤

∣∣∣∣∣∣∣
n∑

i=1

(
v⊤

i b̄
)2
− 1/n

1 + rσi

∣∣∣∣∣∣∣+
∣∣∣∣∫ 1

1 + rσ
dµĀ(σ)−

∫ 1
1 + rσ

dµnsc(σ)
∣∣∣∣,

where the last inequality follows from the identity (I + rĀ)−1 =
∑n

i=1
1

1+rσi
viv

⊤
i and Cauchy-

Schwartz inequality. Note that by Fact 6, for all i ∈ [n] we have that 1 + rσi ≥ 1− r − rϵ ≥
1− r − ϵ > ϵ a.a.s.. We will compute the mean and variance of the first term conditioned on this

event. By independence of b̄ and Ā,

Ē
b

 n∑
i=1

(
v⊤

i b̄
)2
− 1/n

1 + rσi

∣∣∣∣∣∣∣ 1 + rσi ≥ ϵ, ∀i

 =
n∑

i=1

(1
1 + rσi

)
Ē
b

[(
v⊤

i b̄
)2
− 1
n

∣∣∣∣ 1 + rσi ≥ ϵ, ∀i
]

= 0, and

Ē
b


 n∑

i=1

(
v⊤

i b̄
)2
− 1/n

1 + rσi


2
∣∣∣∣∣∣∣∣ 1 + rσi ≥ ϵ, ∀i

 ≤ (1
ϵ

)
Ē
b

(n∑
i=1

(
v⊤

i b̄
)2
− 1/n

)2
∣∣∣∣∣∣ 1 + rσi ≥ ϵ, ∀i

 = 2
ϵn
.

In particular, the first term can be bounded by ϵ/(2r2) a.a.s..

267

Appendices

For the second term, define theC∞
c function

ψ(x) :=


1

1+rx , if |x| ≤ 1 + δ

0, if |x| ≥ 1 + 2δ
C∞

c , else.

By Fact 6, we have that a.a.s.
∫ 1

1+rσdµĀ(σ) =
∫
ψ(σ)dµĀ(σ). Applying Fact 5, we conclude

that the second term can be bounded by ϵ/(2r2) a.a.s..
Combining the two bounds shows that for anyγ ∈ Ω and ϵ > 0,

∣∣∣−b[γ]⊤A[γ]−1b[γ]− ϕ(γ)
∣∣∣ ≤

ϵ a.a.s.. Applying Lemma 90 withC = rSm−1
concludes the proof. ■

Deferred proofs from Section 2.6.3

Lemma 92. Fix ϵ > 0 andN ∈ N. LetA ∼ NGOE(n). Then, a.a.s. there exists aN -dimensional
vector spaceW ⊆ Rn such that

w⊤Aw ∈ [1± ϵ]∥w∥2, ∀w ∈W.

Proof. Let ψ denote aC∞
c function from R to [0, 1] that takes the value one on [1 ± ϵ/2] and

the value zero outside of [1± ϵ]. Note that θ :=
∫
ψdµnsc is some positive constant independent

of n. LetW denote the vector space corresponding to the eigenvalues ofA in the range [1± ϵ].
Clearlyw⊤Aw ∈ [1± ϵ]∥w∥22 for allw ∈W . It remains to note that by Fact 5, we have a.a.s.

dim(W)
n

= |{i ∈ [n] : λi(A) ∈ [1± ϵ]}|
n

≥
∫
ψdµĀ ≥

∫
ψdµnsc − θ/2 = θ/2

so that dim(W) ≥ N a.a.s.. ■

Proof of Lemma 18. LetN denote a finite ϵ-net on Sm ⊆ R1+m
. By Lemma 92, a.a.s., for every

(γ
obj
, γ) ∈ N , there exists anN dimensional subspaceW such that

w⊤A(γ
obj
, γ, 1)w ∈ [±ϵ]∥w∥2, ∀w ∈W.

Furthermore, by Lemma 15, we have that a.a.s.
∥∥∥A(γ

obj
, γ, 0)

∥∥∥
2
∈
∥∥∥(γobj

, γ)
∥∥∥[1 ± ϵ] for all

(γ
obj
, γ) ∈ Rm

. We condition on these two events.

Now, let (γ
obj
, γ) ∈ Sm

and let (γ′
obj
, γ′) ∈ N ∩ B((γ

obj
, γ), ϵ). Let W denote the N -

dimensional subspace guaranteed for (γ′
obj
, γ′). Then for allw ∈W ,

w⊤A(γ
obj
, γ, 1)w = w⊤A(γ′

obj
, γ′, 1)w + w⊤A(γ

obj
− γ′

obj
, γ − γ′)w ∈ [±3ϵ]∥w∥2.■

C Appendices for Chapter 3

C.1 Proof of Lemma 35

For completeness we restate Lemma 35.

268

C Appendices for Chapter 3

Lemma 35. LetM = {M1,M2}. Suppose Assumption 7 holds and n = 3. If neither conditions
(i) nor (ii) of Theorem 17 hold, thenN (M) is the union of at most four one-dimensional subspaces of
R3.

Proof. As α1M1 + α2M2 /∈ S3
+ for any (α1, α2) ̸= (0, 0), we have thatM1 andM2 must each

have rank either two or three. We will break the proof into two cases.

Suppose first that rank(M1) = rank(M2) = 2. AsM1,M2 /∈ S3
+, eachMi has exactly one

positive and one negative eigenvalue. We can then writeM1 = Sym(ab⊺) andM2 = Sym(cd⊺).

Then

N (M) = {x : x⊺(ab⊺)x = x⊺(cd⊺)x = 0}
= (a⊥ ∪ b⊥) ∩ (c⊥ ∪ d⊥)
= (a⊥ ∩ c⊥) ∪ (a⊥ ∩ d⊥) ∪ (b⊥ ∩ c⊥) ∪ (b⊥ ∩ d⊥).

As condition (ii) does not hold, each of the four spaces on the final line have dimension one. Thus

N (M) is the union of at most four distinct lines.

Next suppose without loss of generality that rank(M1) = 3. AsM1 /∈ S3
+, we may assume

that it has two positive eigenvalues and one negative eigenvalue. Performing a change of basis, it

suffices to consider when

M1 =

1
1
−1

 and M2 =

a b c
b d e
c e f

.
We will consider the intersectionN (M) ∩

{
x ∈ R3 : x3 = 1

}
. Note that if x ∈ N (M) has

x3 coordinate equal to zero, then x = 0. Thus, the number of distinct lines inN (M) is equal to

the number of distinct points in

P :=
{

(x1, x2) ∈ R2 : x2
1 + x2

2 − 1 = 0(
ax2

1 + dx2
2 + 2cx1 + f

)
+ x2(2bx1 + 2e) = 0

}
.

Suppose thatN (M) contains at least five lines so thatP contains at least five points. Without loss

of generality, we may assume that the x1 coordinates of these five points are distinct (else, perform

an orthonormal change of basis on the first two dimensions). Let the x1 coordinates of these five

points be ξ1, ξ2, . . . , ξ5. For each ξi, by the first constraint in the definition ofP , we have that the

corresponding x2 coordinate must be either

√
1− ξ2

i or−
√

1− ξ2
i . Hence,[(

aξ2 + d(1− ξ2) + 2cξ + f
)

+
√

1− ξ2(2bξ + 2e)
][(

aξ2 + d(1− ξ2) + 2cξ + f
)
−
√

1− ξ2(2bξ + 2e)
]

=
[
(a− d)2 + 4b2

]
ξ4 + [4(a− d)c+ 8be]ξ3 +

[
2(a− d)(d+ f) + 4c2 + 4e2 − 4b2

]
ξ2+

[4c(d+ f)− 8be]ξ +
[
(d+ f)2 − 4e2

]
is a degree-4 polynomial in ξ which is zero on five distinct points ξ1, . . . , ξ5. We conclude that this

polynomial is identically zero. The coefficient of ξ4
implies that a = d and b = 0. The coefficient

269

Appendices

of ξ2
implies that c = e = 0. The constant term implies that f = −d. We conclude thatM2 has

the form

M2 =

a a
−a

.
This contradicts the assumption that there does not exist an (α1, α2) ̸= (0, 0) such that α1M1 +
α2M2 ∈ Sn

+. ■

D Appendices for Chapter 4

D.1 Proofs of Theorems 21 and 22

In this appendix, we outline how to modify the proofs of Theorems 19 and 20 to prove Theo-

rems 21 and 22.

Theorem 21. Suppose there exists γ∗ ≥ 0 such that A(γ∗) ≻ 0. Consider the closed nonempty
interval Γ := {γ ∈ R+ : A(γ) ⪰ 0}. Let γ− denote its leftmost endpoint.

• If Γ is bounded above, let γ+ denote its rightmost endpoint. Then,

conv(S) = S(γ−) ∩ S(γ+).

In particular, we have minx∈Rn{q0(x) : q1(x) ≤ 0} = minx∈Rn max{q(γ−, x), q(γ+, x)}.

• If Γ is not bounded above, then q1(x) is convex and

conv(S) = S(γ−) ∩
{

(x, t) ∈ Rn+1 : q1(x) ≤ 0
}
.

In particular, we have minx∈Rn{q0(x) : q1(x) ≤ 0} = minx∈Rn{q(γ−, x) : q1(x) ≤ 0}.

Proof. The “⊆” inclusions follow from a trivial modification of Lemma 43. It suffices to prove

the “⊇” inclusions. The case whereA0 andA1 are both nonconvex is covered by Theorem 19. We

consider the four remaining cases:

• SupposeA0 andA1 are both convex. In this case, Γ = [0,∞) and it suffices to show that

conv(S) = {(x, t) : q0(x) ≤ t, q1(x) ≤ 0} = S . This holds as S is convex.

• Suppose A0 is nonconvex and A1 is convex. In this case, Γ = [γ−,∞) is unbounded

above. Furthermore, γ− is positive andA(γ−) has a zero eigenvalue. Suppose (x̂, t̂) satisfies

q(γ−, x̂) ≤ t̂ and q1(x̂) ≤ 0. If q1(x̂) = 0, then we also have q0(x̂) = q(γ−, x̂) ≤ t̂,
whence (x̂, t̂) ∈ S . On the other hand, if q1(x̂) < 0, we may apply the argument in case

(iii) in the proof of Lemma 44 verbatim (after replacing all occurrences of γ+ by γ∗
) to

conclude that (x̂, t̂) ∈ conv(S).

• Suppose A0 is convex and A1 is nonconvex. In this case, Γ = [0, γ+] is bounded above

and γ− is defined to be γ− = 0. Furthermore, A(γ+) has a zero eigenvalue. Suppose

270

D Appendices for Chapter 4

(x̂, t̂) ∈ S(γ−)∩ S(γ+). If q1(x̂) ≤ 0, then we also have q0(x̂) = q(γ−, x̂) ≤ t̂, whence

(x̂, t̂) ∈ S . On the other hand, if q1(x̂) > 0, we may apply the argument in case (ii) in the

proof of Lemma 44 verbatim to conclude that (x̂, t̂) ∈ conv(S). ■

We will prove Theorem 22 using a limiting argument and reducing it to Theorem 21. The proof

follows that of Lemma 46 almost verbatim.

Theorem 22. Suppose there exists γ∗ ≥ 0 such that A(γ∗) ⪰ 0. Consider the closed nonempty
interval Γ := {γ ∈ R+ : A(γ) ⪰ 0}. Let γ− denote its leftmost endpoint.

• If Γ is bounded above, let γ+ denote its rightmost endpoint. Then,

conv(S) = S(γ−) ∩ S(γ+).

In particular, infx∈Rn{q0(x) : q1(x) ≤ 0} = infx∈Rn max{q(γ−, x), q(γ+, x)}.

• If Γ is not bounded above, then q1(x) is convex and

conv(S) = S(γ−) ∩
{

(x, t) ∈ Rn+1 : q1(x) ≤ 0
}
.

In particular, infx∈Rn{q0(x) : q1(x) ≤ 0} = infx∈Rn{q(γ−, x) : q1(x) ≤ 0}.

Proof. The “⊆” inclusions follow from a trivial modification of Lemma 45. It suffices to prove

the “⊇” inclusions.

Denote the set on the right hand side byR, i.e.,R := S(γ−)∩S(γ+) when Γ is bounded and

R := S(γ−) ∩ {(x, t) : q1(x) ≤ 0}when Γ is unbounded.

Let (x̂, t̂) ∈ R. It suffices to show that (x̂, t̂+ ϵ) ∈ conv(S) for all ϵ > 0.

We will perturb A0 slightly to create a new instance of the problem. Let δ > 0 to be picked

later. DefineA′
0 = A0 + δIn and let all remaining data be unchanged, i.e.,

q′
0(x) := x⊺A′

0x+ 2b′⊺
0 x+ c′

0 := x⊺(A0 + δIn)x+ 2b⊺0x+ c0

q′
1(x) := x⊺A′

1x+ 2b′⊺
1 x+ c′

1 := x⊺A1x+ 2b⊺1x+ c1.

We will denote all quantities related to the perturbed system with an apostrophe.

We claim it suffices to show that there exists δ > 0 small enough such that (x̂, t̂ + ϵ) ∈ R′
.

Indeed, suppose this is the case. Note that for any x ∈ Rn
, we have q1(x) = q′

1(x) and q0(x) ≤
q′

0(x). Hence, conv(S ′) ⊆ conv(S). Then, noting thatA′(γ∗) = A(γ∗) + δIn ≻ 0, we may

apply Theorem 21 to the perturbed system to get (x̂, t̂ + ϵ) ∈ R′ = conv(S ′) ⊆ conv(S) as

desired.

First note thatA1 = A′
1 so that Γ is bounded if and only if Γ′

is bounded. We will then pick

δ > 0 small enough such that

δ∥x̂∥2 ≤ ϵ

2 ,
∣∣γ′

− − γ−
∣∣|q1(x̂)| ≤ ϵ

2 ,
∣∣γ′

+ − γ+
∣∣|q1(x̂)| ≤ ϵ

2 ,

where the last condition is only required when γ+ and γ′
+ both exist. This is possible as the

expression on the left of each inequality is continuous in δ and is strictly satisfied when δ = 0.

271

Appendices

The following computation shows that q′(γ′
−, x̂) ≤ t̂+ ϵ.

q′(γ′
−, x̂)− (t̂+ ϵ) = q′(γ−, x̂)− (t̂+ ϵ) + (γ′

− − γ−)q1(x̂)
≤ q(γ−, x̂) + δ∥x̂∥2 − (t̂+ ϵ) +

∣∣γ′
− − γ−

∣∣|q1(x̂)|
≤ q(γ−, x̂)− t̂
≤ 0

The first inequality follows by noting q′(γ, x) = q(γ, x) + δ∥x∥2, the second inequality follows

from our assumptions on δ, and the third inequality follows from the assumption that (x̂, t̂) ∈
S(γ−). Thus (x̂, t̂+ ϵ) ∈ S ′(γ′

−). When Γ is bounded (or equivalently, when γ′
+ and γ+ exist),

a similar calculation shows that q′(γ′
+, x̂) − (t̂ + ϵ) ≤ 0 so that (x̂, t̂ + ϵ) ∈ S ′(γ′

+). Finally,

when Γ is unbounded we have q′
1(x̂) = q1(x̂) ≤ 0 so that (x̂, t̂ + ϵ) ∈ {(x, t) : q′

1(x) ≤ 0}.
Thus, (x̂, t̂+ ϵ) is inR′

, concluding the proof. ■

D.2 Estimation of the regularity parameters

In Section 4.4 we gave algorithms to solve the GTRS assuming that we had access to (ξ, ζ) and γ̂
satisfying Assumption 12. In this appendix, we show how to compute these quantities.

Let q0, q1 satisfy Assumption 11. Recall the definitions

ξ∗ := min
{

1,max
γ≥0

λmin(A(γ))
}
, ζ∗ := max{1, γ+}.

We will find (ξ, ζ) satisfying

ξ∗/4 ≤ ξ ≤ ξ∗, ζ∗ ≤ ζ ≤ 4ζ∗

and a γ̂ such that λmin(A(γ̂)) ≥ ξ.

We will accomplish this in two stages. We begin by estimating ξ∗
using only an upper bound ζ̄

of ζ∗
. Then using our estimate ξ we will compute ζ .

Computing ξ and γ̂

We start with the following guarantee for the algorithm TestXi (Algorithm 14).

Lemma 93. Given q0, q1 satisfying Assumption 11, an arbitrary 0 < ξ ≤ 1, an upper bound
ζ̄ ≥ ζ∗, and a failure probability pξ > 0, TestXi (Algorithm 14) will output

γ̂ such that λmin(A(γ̂)) ≥ ξ/2 if ξ ≤ ξ∗

γ̂ such that λmin(A(γ̂)) ≥ ξ/2 or “Fail” if ξ∗ < ξ ≤ 2ξ∗

“Fail” if 2ξ∗ < ξ

272

D Appendices for Chapter 4

Algorithm 14 TestXi(q0, q1, ξ, ζ̄, pξ)
Given q0, q1 satisfying Assumption 11, a guess ξ, an upper bound ζ̄ ≥ ζ∗

, and a failure probability

pξ > 0
1. Let s0 = 0 and t0 = ζ̄
2. Let T = ⌈log κ⌉+ 2 where κ = ζ̄/ξ
3. For k = 0, . . . , T − 1

a) Let x = ApproxEig(A(sk), 2ζ̄, ξ/4, pξ

3T). If x⊺A(sk)x ≥ 3ξ/4, then return γ̂ = sk.

b) Let x = ApproxEig(A(tk), 2ζ̄, ξ/4, pξ

3T). If x⊺A(tk)x ≥ 3ξ/4, then return γ̂ = tk.

c) Let γ̄ = (sk + tk)/2
d) Let x = ApproxEig(A(γ̄), 2ζ̄, ξ/4, pξ

3T). If x⊺A(γ̄)x ≥ 3ξ/4, then return γ̂ = γ̄.

e) If x⊺A1x ≥ 0, let sk+1 = γ̄ and tk+1 = tk. Else, let sk+1 = sk and tk+1 = γ̄.

4. Return “Fail”

with probability 1− pξ . This algorithm runs in time

Õ

N
√
ζ̄

ξ
log
(
n

pξ

)
log
(
ζ̄

ξ

).
Proof. We condition on the event that ApproxEig succeeds every time it is called. By the union

bound, this happens with probability at least 1− pξ .

As we have conditioned on ApproxEig succeeding, any γ̂ which is output by TestXi will satisfy

λmin(A(γ̂)) ≥ 3ξ/4− ξ/4 = ξ/2.

It is clear that TestXi will output “Fail” if ξ > 2ξ∗
as there does not exist any γ̂ such that

λmin(A(γ̂)) ≥ ξ∗
. It remains to show that, given ξ ≤ ξ∗

, TestXi will output some γ̂.

For the sake of contradiction, assume that the algorithm fails to output in each of the T rounds.

Let P := {γ : λmin(A(γ)) ≥ 3ξ∗/4}. Recall that λmin(A(γ)) is 1-Lipschitz in γ. As there

exists some γ such that λmin(A(γ)) ≥ ξ∗
(see Definition 17), we conclude thatP is an interval of

length at least ξ∗/2.

Note that P ⊆ [s0, t0]. We will inductively show that P ⊆ [sk, tk] for each k ∈ {1, . . . , T}.
Let k ∈ {0, . . . , T − 1} and let sk, γ̄, tk be defined as in the algorithm and let x be the unit

vector found in step 3.(d). We claim that x⊺A1x ̸= 0. Indeed suppose x⊺A1x = 0, then

x⊺A(γ)x = x⊺A(γ̄)x ≤ 3ξ/4 for all γ. This contradicts the assumption that there exists some

γ such that λmin(A(γ)) ≥ ξ. Now suppose γ ∈ P , then

3ξ∗

4 ≤ x⊺A(γ)x = x⊺A(γ̄)x+ (γ − γ̄)x⊺A1x ≤
3ξ∗

4 + (γ − γ̄)x⊺A1x,

where the first inequality follows from γ ∈ P , and the last one from the fact that the algorithm

did not output in iteration k (and thus the if statement in step 3.(d) did not hold). Thus, if

x⊺A1x > 0, then we have the implication γ ∈ P =⇒ γ ≥ γ̄. Similarly, if x⊺A1x < 0, then

we have the implication γ ∈ P =⇒ γ ≤ γ̄. Then by induction, we have P ⊆ [sk+1, tk+1].

273

Appendices

We conclude that P , an interval of length at least ξ∗/2, is contained in [sT , tT] an interval of

length

tT − sT = t0 − s0
2T

≤ ξ/4.

Noting that ξ ≤ ξ∗
gives us the desired contradiction.

The running time of this algorithm follows from Lemma 52. ■

Given a lower bound ξ ≤ ξ∗
, Lemma 93 guarantees that TestXi will find a γ̂ satisfying

λmin(A(γ̂)) ≥ ξ/2 with high probability. In order to make use of this lemma without a lower

bound on ξ∗
, we will simply repeatedly call TestXi with decreasing guesses for ξ. Consider Algo-

rithm 15.

Algorithm 15 ApproxXi(q0, q1, ζ̄, p)
Given q0, q1 satisfying Assumption 11, an upper bound ζ̄ ≥ ζ∗

, and failure probability p > 0
1. For k = 1, 2, . . .

a) Run TestXi(q0, q1, 2−(k−1), ζ̄, 2−kp).

b) If TestXi outputs “Fail” then continue.

c) Else, let γ̂ be the output of TestXi and let ξ = 2−k
; return ξ and γ̂.

Theorem 40. Given q0, q1 satisfying Assumption 11, an upper bound ζ̄ ≥ ζ∗, and a failure
probability p > 0, ApproxXi (Algorithm 15) will output ξ and γ̂ such that

ξ∗/4 ≤ ξ ≤ ξ∗, λmin(A(γ̂)) ≥ ξ

and run in time

Õ

N
√
ζ̄

ξ∗ log
(
n

p

)
log
(
ζ̄
)

log
(1
ξ∗

)3


with probability 1− p.

Proof. We condition on the event that TestXi succeeds every time it is called. By the union bound,

this happens with probability at least 1− p.

Let k∗ ∈ {1, 2, . . . } be such that ξ∗/2 ≤ 2−k∗
< ξ∗

. Then, as we have conditioned on TestXi

succeeding, Lemma 93 guarantees that TestXi(q0, q1, 2−k, ζ̄, 2−(k+1)p) outputs
γ̂ such that λmin(A(γ̂)) ≥ 2−k

if 2−k ≤ ξ∗/2
γ̂ such that λmin(A(γ̂)) ≥ 2−k

or “Fail” if ξ∗/2 < 2−k ≤ ξ∗

“Fail” if ξ∗ < 2−k.

274

D Appendices for Chapter 4

Thus, TestXi will output “Fail” for every k < k∗
and will output γ̂ either on round k∗

or k∗ + 1.

We can then bound

λmin(A(γ̂)) ≥ 2−(k∗+1) ≥ ξ∗

4 .

We bound the run time of the algorithm as follows.

k∗+1∑
k=1

Õ

N
√

ζ̄

2−(k−1) log
(

n

2−kp

)
log
(

ζ̄

2−(k−1)

)
= Õ

k∗3N

√
ζ̄

2−k∗ log
(
n

p

)
log
(
ζ̄
)

= Õ

N
√
ζ̄

ξ∗ log
(
n

p

)
log
(
ζ̄
)

log
(1
ξ∗

)3
. ■

Computing ζ

Recall the guarantee of the algorithm ApproxGammaPlus.

Lemma 53. Given q0, q1 satisfying Assumption 11, (ξ, ζ) and γ̂ satisfying Assumption 12, δ > 0,
and pγ̃+ , ApproxGammaPlus (Algorithm 2) outputs γ̃+ satisfying

γ̃+ ∈ [γ+ − δ, γ+], λmin(A(γ̃+)) ≤ δ/κ

with probability 1− pγ̃+ . This algorithm runs in time

Õ

(
N
√
κζ√
δ

log
(
n

pγ̃+

)
log
(
κ

δ

))
.

We will repeatedly call ApproxGammaPlus with different choices of δ. Consider the algorithm

ApproxZeta.

Algorithm 16 ApproxZeta(q0, q1, ξ, ζ̄, γ̂, p)
Given q0, q1 satisfying Assumption 11, (ξ, ζ̄) and γ̂ satisfying Assumption 12, and failure proba-

bility p > 0
1. For k = 1, 2, . . .

a) Let ζ̂k be the output of ApproxGammaPlus(q0, q1, ξ, 2−(k−1)ζ̄, γ̂, 2−(k+1)ζ̄, 2−kp)
b) If ζ̂k ≤ 2−(k+1)ζ̄ then continue

c) Else set ζ := 2−(k−1)ζ̄ ; return ζ

Theorem 41. Given q0, q1 satisfying Assumption 11, (ξ, ζ̄) and γ̂ satisfying Assumption 12, and
failure probability p > 0, ApproxZeta (Algorithm 16) will output ζ such that

ζ∗ ≤ ζ ≤ 4ζ∗

275

Appendices

and run in time

Õ

N√ζ∗
√
ξ

log
(
n

p

)
log
(1
ξ

)
log
(
ζ̄

ζ∗

)2


with probability 1− p.

Proof. We condition on the event that ApproxGammaPlus succeeds every time it is called. By the

union bound, this happens with probability at least 1− p.

We first check that the assumptions of Lemma 53 hold. Fork = 1, we have 2−(k−1)ζ̄ = ζ̄ ≥ ζ∗
.

Then by induction, and conditioning on ApproxGammaPlus succeeding, Lemma 53 guarantees

ζ∗ ≤ ζ̂k + 2−(k+1)ζ̄.

If ApproxZeta fails to terminate in round k, then 1.(b) ensures ζ̂k ≤ 2−(k+1)ζ̄ . This in turn

implies that ζ∗ ≤ 2−((k+1)−1)ζ̄ and, by induction, the assumptions of Lemma 53 hold in every

round that ApproxGammaPlus is called.

Let k be the round in which the algorithm terminates. If k = 1, then the guarantee of Lemma

53 implies ζ∗ ≥ ζ̂1, whence

ζ̄ ≥ ζ∗ ≥ ζ̂1 >
1
4 ζ̄.

Thus, we may assume k ≥ 2. The condition of step 1.(b) then guarantees the two inequalities

ζ̂k−1 ≤ 2−kζ̄, and ζ̂k > 2−(k+1)ζ̄. (10)

Then, we have

ζ∗ ≥ ζ̂k > 2−(k+1)ζ̄ = 1
4
(
2−kζ̄ + 2−kζ̄

)
≥ 1

4
(
ζ̂k−1 + 2−((k−1)+1)ζ̄

)
≥ ζ∗/4

where the first and fifth relations follow from Lemma 53 and the second and fourth relations

follow from (10) above.

It remains to bound the run time of ApproxZeta. Let k∗ ∈ {1, 2, . . . } be such that ζ∗ ≤
2−(k∗−1)ζ̄ < 2ζ∗

. We show that ApproxZeta terminates within k∗
rounds. Suppose ApproxZeta

reaches the k∗
th round. Then, we have

ζ̂k∗ ≥ ζ∗ − 2−(k∗+1)ζ̄ > 2−k∗
ζ̄ − 2−(k∗+1)ζ̄ = 2−(k∗+1)ζ̄,

276

E Appendices for Chapter 5

where we used Lemma 53 in the first relation, and the definition of k∗
in the second relation.

Therefore, ApproxZeta terminates in round k∗
at the latest and we can bound the run time of this

algorithm as

k∗∑
k=1

Õ

 2−(k−1)Nζ̄√
2−(k+1)ξζ̄

log
(

n

2−kp

)
log
(

2−(k−1)ζ̄

2−(k+1)ξζ̄

)
= Õ

k∗2N
√

2−k∗ ζ̄
√
ξ

log
(
n

p

)
log
(1
ξ

)
= Õ

N√ζ∗
√
ξ

log
(
n

p

)
log
(1
ξ

)
log
(
ζ̄

ζ∗

)2
. ■

E Appendices for Chapter 5

E.1 Useful lemmas regarding quadratic functions

The following two basic bounds will be useful in our error analysis.

Lemma 94. Let q(x) = x⊺Ax + 2b⊺x + c for A ∈ Sn, b ∈ Rn, and c ∈ R. Then, for all
x, y ∈ Rn, |q(x)− q(y)| ≤ ∥A∥∥y − x∥2 + 2(∥A∥∥x∥+ ∥b∥)∥y − x∥. In particular, if
∥A∥, ∥b∥ ≤ 1, ∥x∥ ≤ ρ and ∥x− y∥ ≤ δ for some δ ≤ 1 ≤ ρ, then |q(x)− q(y)| ≤ 5δρ.

Proof. Writing y = (y − x) + x and expanding the formula for q(y), we obtain

q(y) = (y − x)⊺A(y − x) + 2x⊺A(y − x) + x⊺Ax+ 2b⊺(y − x) + 2b⊺x+ c

= q(x) + ((y − x)⊺A(y − x) + 2⟨Ax+ b, y − x⟩). ■

Lemma 95. Let α, β, γ ∈ R where α ̸= 0 and γ/α ≤ 0. Then the roots of αz2 + 2βz + γ = 0
satisfy |z| ≤ 2

∣∣∣βα ∣∣∣+√
−γ
α .

Proof. Let {z−, z+} denote the roots (possibly with multiplicity). We bound

{z−, z+} =
{
−β

α ±
√(

β
α

)2
− γ

α

}

⊆
[
−β

α −
(∣∣∣βα ∣∣∣+√

−γ
α

)
, −β

α +
(∣∣∣βα ∣∣∣+√

−γ
α

)]
⊆
[
−
(

2
∣∣∣βα ∣∣∣+√

−γ
α

)
,

(
2
∣∣∣βα ∣∣∣+√

−γ
α

)]
. ■

E.2 Useful procedures

This appendix contains running time guarantees for well-known algorithms that we will utilize as

building blocks in Algorithm 5.

277

Appendices

The Lanczos method

The following lemma characterizes the running time for approximating the minimum eigenvalue

of a symmetric matrix.

Lemma 96 ([103]). There exists an algorithm, ApproxEig(A, ρ, δ, p), which given a symmetric
matrix A ∈ Sn, ρ such that ∥A∥2 ≤ ρ, and parameters δ, p > 0, will, with probability at least
1− p, return a unit vector x ∈ Rn such that x⊺Ax ≤ λmin(A) + δ. This algorithm runs in time

O
(

N
√

ρ√
δ

log
(

n
p

))
,

whereN is the number of nonzero entries inA.

ApproxGamma

The following algorithm extends [180, Algorithm 2] to find a γ ≤ γ̂ such that µ(γ) falls in a

prescribed range. An analogous algorithm can be used to find a γ ≥ γ̂ such that µ(γ) falls in a

prescribed range.

Algorithm 17 ApproxGammaLeft

Given (A0, A1), (ξ, ζ, γ̂), p ∈ (0, 1), and µ ∈ (0, ξ)
1. Set ℓ1 = 0, r1 = γ̂

2. For t = 1, . . . , T =
⌈
log
(

5ζ
µ

)⌉
a) γt = (ℓt + rt)/2
b) Let xt = ApproxEig(A(γt), 2ζ, µ/8, p/T) and µ̂t = x⊺tA(γt)xt

c) If µ̂t > µ, set ℓt+1 = ℓt, rt+1 = γt

d) Else if µ̂t <
5
8µ, set ℓt+1 = γt, rt+1 = rt

e) Else, output γt, xt

Lemma 61. Suppose Assumption 14 holds, µ ∈ (0, ξ) and p ∈ (0, 1). Then, with probability at
least 1− p, ApproxGammaLeft(µ, p) (Algorithm 17) returns (γ, v) such that γ ≤ γ̂ and v is a unit
vector satisfying µ/2 ≤ µ(γ) ≤ v⊺A(γ)v ≤ µ in time

Õ

(
N
√

ζ√
µ log

(
n
p

)
log
(

ζ
µ

))
.

Proof. We condition on ApproxEig succeeding in each call. This happens with probability at least

1− p.

Suppose ApproxGammaLeft outputs on iteration t. On this iteration, we have µ(γt) ≥ µ̂t −
µ/8 ≥ µ/2. Similarly note x⊺A(γt)x = µ̂t ≤ µ.

Next, we show that ApproxGammaLeft is guaranteed to output within T iterations. Suppose

otherwise and consider the interval

I :=
{
γ ∈ R+ :

γ ≤ γ̂
µ(γ) ∈

[
5
8µ,

7
8µ
] }.

278

E Appendices for Chapter 5

Note that if γt ∈ I for some t then ApproxGammaLeft will output at step t. Indeed, at iteration

t, we will have µ̂t ∈
[
µ(γt), µ(γt) + µ

8
]
⊆
[

5
8µ, µ

]
. In particular, we deduce that γt /∈ I for

any t = 1, . . . , T . Next, by construction, the interval [ℓt, rt] contains I for every t. On the other

hand, |[ℓT , rT]| ≤ 2−T ζ < µ
4 ≤ |I|, a contradiction.

It remains to bound the running time of ApproxGammaLeft. By Lemma 96, each iteration of step

2.(b) runs in time

Õ

(
N
√

ζ√
µ log

(
n
p

))
.

Finally, note that the number of iterations of step 2 is bounded by T = O
(
log
(

ζ
µ

))
. ■

Conjugate gradient

The following lemma characterizes the running time for approximately minimizing a strongly

convex quadratic function using the conjugate gradient algorithm.

Lemma 97. There exists an algorithm, ConjGrad(A, b, ρ, µ, δ), which given symmetric matrix
A ∈ Sn with µI ⪯ A ⪯ ρI and b ∈ Rn, returns x ∈ Rn such that

∥∥x+A−1b
∥∥ ≤ δ. This

algorithm runs in time

O
(

N
√

ρ√
µ log

(
∥b∥
µδ

))
.

ApproxNu

The following algorithm uses the conjugate gradient algorithm to approximate ν(γ) for a given

value of γ.

Algorithm 18 ApproxNu

Given (A0, A1, b0, b1, c0, c1), (ξ, ζ, γ̂) satisfying Assumption 14, γ, µ such that µ ∈ (0, 1) and

A(γ) ⪰ µI , and δ > 0
• Apply the conjugate gradient method to find x̃ such that ∥x̃− x(γ)∥ ≤ µδ

10ζ

• Return x̃, q1(x̃)

Lemma 62. Suppose Assumption 14 holds, µ ∈ (0, ξ], δ ∈ (0, 1), and A(γ) ⪰ µI . Then
ApproxNu(µ, δ, γ) (Algorithm 18) returns (x̃, ν̃) such that ∥x̃− x(γ)∥ ≤ µδ/10ζ , and ν̃ =
q1(x̃) ∈ [ν(γ)± δ] in time

O

(
N
√

ζ√
µ log

(
ζ

µδ

))
.

Proof. The running time follows from Lemma 97. Note that Assumption 14 andA(γ) ⪰ µI to-

gether imply ∥x(γ)∥ ≤ 2ζ
µ . Then, from the definition of ν(γ) and x(γ) and applying Lemma 94,

we arrive at

|q1(x̂)− ν(γ)| ≤ 5
(

2ζ
µ

)(
µδ
10ζ

)
≤ δ. ■

279

Appendices

Nesterov’s accelerated minimax scheme

The following lemma characterizes the running time for finding an approximate optimizer of the

maximum of two strongly convex smooth quadratic functions.

Lemma 98. There exists an algorithm, AccMinimax, which givenA(1), A(2) ∈ Sn, b(1), b(2) ∈
Rn, c(1), c(2) ∈ R, and (µ, ρ, δ) > 0 satisfying µI ⪯ A(i) ⪯ ρI and

∥∥∥b(i)
∥∥∥ ≤ ρ, will return x̄

such that

max
i

x̄⊺A(i)x̄+ 2b(i)⊺x̄+ ci ≤
(

min
x∈Rn

max
i

x⊺A(i)x+ 2b(i)⊺x+ ci

)
+ δ,

in time

O
(

N
√

ρ√
µ log

(
ρ

δµ

))
.

Proof. For notational convenience, define q(i)(x) := x⊺A(i)x + 2b(i)⊺x + c(i)
and f(x) :=

maxi q
(i)(x). We may take x0 = 0 in [132, Algorithm 2.3.12] and bound

f(0)−min
x
f(x) ≤ f(0)−max

i
min

x
q(i)(x)

≤ max
i

(
q(i)(0)−min

x
q(i)(x)

)
= max

i
b(i)⊺

(
A(i)

)−1
b(i)

≤ ρ2

µ .

The running time then follows from [132, Theorem 2.3.5] and [180, Lemma 14]. ■

E.3 Deferred proofs from Section 5.2

Lemma 99. Suppose Assumption 13 holds. Then

Opt = inf
x∈Rn

sup
γ∈Γ

q(γ, x).

Proof. (≥) Letx ∈ Rn
such thatq1(x) ≤ 0. Then, as Γ ⊆ R+, we haveq0(x) ≥ supγ∈Γ q(γ, x).

Taking the infimum in x concludes this direction.

(≤) Let x ∈ Rn
. We split into three cases depending on the sign of q1(x).

If q1(x) = 0, then Opt ≤ q0(x) = supγ∈Γ q(γ, x).

Next, suppose q1(x) < 0 so that supγ∈Γ q(γ, x) = q(γ−, x). If γ− = 0, then again Opt ≤
q0(x) = supγ∈Γ q(γ, x). On the other hand, if γ− > 0, then A(γ−) is positive semidefinite

but not positive definite and there exists nonzero v ∈ ker(A(γ−)). Without loss of generality,

⟨v, b(γ−)⟩ ≤ 0. Letα > 0 such that q1(x+αv) = 0 (this exists as v⊺A1v = v⊺ A(γ̄)−A(γ−)
γ̄−γ−

v >

0). We deduce Opt ≤ q0(x+ αv) = q(γ−, x+ αv) ≤ q(γ−, x) = supγ∈Γ q(γ, x).

Finally, suppose q1(x) > 0. If Γ is unbounded, then supγ∈Γ q(γ, x) = +∞ and Opt ≤
supγ∈Γ q(γ, x). Else, we have thatA(γ+) is positive semidefinite but not positive definite and

280

E Appendices for Chapter 5

there exists nonzero v ∈ ker(A(γ+)). An argument identical to the one in the previous paragraph

shows Opt ≤ supγ∈Γ q(γ, x).

Taking the infimum over all x ∈ Rn
completes the proof. ■

E.4 Deferred proofs from Section 5.4.1

In this appendix, we motivate a generalized-eigenvalue-based replacement for ApproxGammaLeft

(Algorithm 17) of CRLeft (Algorithm 6). Given µ ∈ (0, ξ), our goal is to compute γ ≤ γ̂ and

v such that µ/2 ≤ µ(γ) ≤ v⊺A(γ)v ≤ µ. We will do so by approximating the minimum

eigenvalue λ̃ (and a corresponding eigenvector) for

−A1v = λ
(
A(γ̂)− 3µ

4 I
)
v (11)

and setting γ̃ := γ̂ + 1
λ̃

. Note that defining γ := γ̂ + 1
λ , where λ is the true minimum eigenvalue

to (11), gives

µ(γ) = λmin
(
A(γ̂)− 3µ

4 I + 1
λA1

)
+ 3µ/4 = 3µ/4.

In the following, we abbreviate Â := A(γ̂)− 3µ
4 I . As in Lemma 61, we will assume Assumption 14

throughout this appendix. We will take λ̃, ṽ to be the output of eigifp on the input (−A1, Â, δ)
where δ > 0 will be fixed later.

Recall [75] that λ̃, ṽ satisfies

(−A1 +B)ṽ = λ̃(Â+ C)ṽ (12)

for some ∥B∥ ≤ δ∥A1∥ and ∥C∥ ≤ δ
∥∥∥Â∥∥∥. We will assume that λ̃ is in fact the minimum

eigenvalue of (12).

Lemma 100. Suppose
∣∣∣λ− λ̃∣∣∣ ≤ µ/5ζ2, then µ(γ̃) ≥ µ/2.

Proof. As µ(γ̃) is 1-Lipschitz, it suffices to show that |γ̃ − γ| ≤ µ/4. Note that
1
λ = γ − γ̂ so

that |λ| ≥ 1/ζ . We deduce that

∣∣∣λ̃∣∣∣ ≥ |λ| − ∣∣∣λ− λ̃∣∣∣. Combining,

|γ̃ − γ| =

∣∣∣λ− λ̃∣∣∣
|λ|
∣∣∣λ̃∣∣∣ ≤

µ
5ζ2(

1
ζ

)(
1
ζ −

µ
5ζ2

) ≤ µ/4. ■

Lemma 101. Suppose λ̃ is a minimum eigenvalue of (12) and 2δζ ≤ ξ/8. Then,∣∣∣λ− λ̃∣∣∣ ≤ δ 72ζ
ξ2 .

Proof. Note that

λ = max
{
λ : −A1 − λÂ ⪰ 0

}
, and λ̃ = max

{
λ̃ : (−A1 +B)− λ̃(Â+ C) ⪰ 0

}
.

281

Appendices

We compute

−A1 − (λ̃− α)Â = (−A1 +B)− λ̃(Â+ C)−B + λ̃C + αÂ

⪰ −δ(1 + 2ζ|λ̃|) + αÂ.

We may thus deduce that−A1 − (λ̃− α)Â ⪰ 0 whenever α ≥ δ 4(1+2ζ|λ̃|)
ξ . Hence,

λ̃− λ ≤ δ4(1 + 2ζ|λ̃|)
ξ

.

Similarly,

(−A1 +B)− (λ− α)(Â+ C) = −A1 − λÂ+B − λC + α(Â+ C)
⪰ −δ(1 + 2ζ|λ|) + α(Â+ C).

We may thus deduce that (−A1 +B)− (λ−α)(Â+C) ⪰ 0 wheneverα ≥ δ 8(1+2ζ|λ|)
ξ . Hence,

λ̃− λ ≥ −δ8(1 + 2ζ|λ|)
ξ

.

Finally, we may estimate

∣∣∣ 1
λ

∣∣∣ ≥ ξ
4 and

∣∣∣ 1
λ̃

∣∣∣ ≥ 2ξ
17 . We conclude

−δ8(1 + 8ζ/ξ)
ξ

≤ λ̃− λ ≤ δ4(1 + 17ζ/ξ)
ξ

. ■

Proposition 24. Let δ = µξ2

360ζ3 and suppose λ̃ is the minimum eigenvalue of (12). Then,

µ/2 ≤ µ(γ̃) ≤ ṽ⊺A(γ̃)ṽ ≤ µ.

Proof. The first inequality follows from Lemmas 100 and 101. The second inequality follows from

the definition of µ. The third inequality follows as

ṽ⊺A(γ̃)ṽ = ṽ⊺
(
Â+ 1

λ̃
A1
)
ṽ + 3µ/4

= ṽ⊺
(
(Â+ C) + 1

λ̃
(A1 −B)− C + 1

λ̃
B
)
ṽ + 3µ/4

≤ ∥C∥+ 1
|λ̃|∥B∥+ 3µ/4

≤ 4δζ + 3µ/4.

Here, the first inequality holds as (−A1 +B)ṽ = λ̃(Â+ C)ṽ. The second inequality follows as

∥C∥ ≤ 2δζ and

∣∣∣λ̃∣∣∣ ≥ |λ| − ∣∣∣λ− λ̃∣∣∣ ≥ 1/2ζ . ■

282

F Appendices for Chapter 6

N̄ = 104 N̄ = 105

Time Time

µ̄∗
Alg. Error ErrorCR Time Ref. Solve Error ErrorCR Time Ref. Solve

WLK21 4.8 6.1 0.1 0.05 0.05 5.1 5.4 0.8 0.3 0.4

WK20 5.7 6.7 0.5 0.1 0.3 4.8 5.3 4.4 0.5 3.8

1e-2 JL19 1.5e+03 1.8e+06 0.7 0.1 0.6 5.1e+01 2.1e+06 8.2 0.6 7.6

AN19 6.7e+02 - 1.5 - - 6.4e+02 - 2.2 - -

BTH14 4.2e+08 - 1.1 - - 7.5e+08 - 1.5 - -

WLK21 6.7 7.2 0.4 0.2 0.2 8.5 8.4 2.9 1.0 1.8

WK20 8.1 7.1 0.7 0.1 0.6 7.0 7.1 7.0 0.6 6.4

1e-4 JL19 2.3e+09 4.1e+12 3.0 0.1 2.8 1.0e+09 3.6e+12 49.9 0.6 49.3

AN19 4.9 - 1.6 - - 5.0 - 2.4 - -

BTH14 4.0e+08 - 1.2 - - 4.4e+08 - 1.7 - -

WLK21 6.5 6.1 0.8 0.3 0.5 8.3 8.2 6.3 1.8 4.4

WK20 6.4 6.4 1.6 0.1 1.5 7.6 8.2 15.5 0.5 15.0

1e-6 JL19 7.9e+04 7.5e+10 3.1 0.1 3.0 8.4e+04 7.1e+10 40.4 0.5 39.9

AN19 1.4e+06 - 1.7 - - 1.3e+06 - 2.4 - -

BTH14 1.3e+09 - 1.4 - - 1.0e+09 - 1.7 - -

Table E.1: Average errors and solution times for n = 103
over 100 random instances for each parameter

combination. Note that errors are reported in units of 10−16
. We call attention to the setting

(N̄ , µ̄∗) = (105, 10−6). In this setting, the fastest algorithm is BTH14. On the other hand,

BTH14 also reports the highest error of≈ 10−7
. BTH14 is followed by AN19 which achieves slightly

smaller error of≈ 10−10
. While WLK21 is slightly slower than both of these algorithms it achieves

significantly smaller errors of≈ 10−16
. The results are similar for (N̄ , µ̄∗) = (105, 10−4) as

well.

E.5 Numerical Experiment Tables

We provide additional statistics for the numerical results plotted in Figures 5.2 to 5.4 for n =
103, 104, 105

, respectively. In Tables E.1 and E.2, we present the averages for n = 103, 104

respectively over 100 random instances each, and in Table E.3 the averages for n = 105
are given

over 5 random instances. In these tables, Error and ErrorCR correspond to the error of q0(x̃) and

the error of x̄within the convex reformulation respectively as defined in Section 5.4.3. For WLK21,

WK20 and JL19, we also report time for constructing the convex reformulation and solving the

reformulation as Ref. and Solve. For each parameter combination, we highlight the algorithm

with the smallest running time.

F Appendices for Chapter 6

F.1 Deferred proofs

The following proof is adapted from [132].

Proof of Lemma 67. It is evident thatϕt(X) are quadratic matrix functions of the form (6.6) with

V0 = X0 and ϕ∗
0 = Q(X0). The remainder of the proof verifies the recurrences on Vt+1 and

283

Appendices

N̄ = 104 N̄ = 105

Time Time

µ̄∗
Alg. Error ErrorCR Time Ref. Solve Error ErrorCR Time Ref. Solve

WLK21 4.9 6.4 1.8 0.8 0.9 4.7 5.4 11.1 4.8 4.8

WK20 4.9 5.7 9.8 1.6 8.1 5.3 6.0 67.5 10.5 56.8

1e-2 JL19 1.4e+02 1.7e+06 15.3 1.6 13.6 6.3e+02 1.8e+06 93.8 10.7 82.8

AN19 6.8e+02 - 184.1 - - 1.2e+03 - 324.5 - -

WLK21 1.5e+01 1.6e+01 6.6 2.6 3.7 4.1e+01 4.2e+01 57.0 24.0 30.3

WK20 1.0e+01 1.1e+01 16.6 1.5 15.1 2.9e+01 3.0e+01 207.0 11.0 195.8

1e-4 JL19 6.7e+09 4.2e+12 57.9 1.5 56.4 2.1e+10 3.1e+12 393.1 11.3 381.6

AN19 4.3 - 205.7 - - 4.5 - 476.4 - -

WLK21 9.1e+01 9.2e+01 15.1 5.1 9.8 2.7e+01 2.8e+01 130.7 49.1 79.0

WK20 6.1e+01 6.1e+01 33.0 1.5 31.5 3.1e+01 3.1e+01 264.0 10.6 253.2

1e-6 JL19 2.5e+09 7.8e+10 59.7 1.5 58.1 1.6e+08 7.1e+10 402.7 11.0 391.4

AN19 8.0e+06 - 206.6 - - 4.4e+06 - 475.5 - -

Table E.2: Average errors and solution times for n = 104
over 100 random instances for each parameter

combination. Note that errors are reported in units of 10−16
.

N̄ = 104 N̄ = 105

Time Time

µ̄∗
Alg. Error ErrorCR Time Ref. Solve Error ErrorCR Time Ref. Solve

WLK21 3.3 9.9 30.1 12.6 13.6 5.3 2.7 229.2 100.8 101.7

1e-2 WK20 4.7 7.8 162.9 24.7 137.0 3.1 4.9 1748.4 527.9 1216.3

JL19 4.9 1.4e+06 287.3 27.4 259.1 1.6e+02 2.3e+06 1930.7 419.0 1507.5

WLK21 1.5e+01 1.6e+01 141.6 65.1 70.8 9.5e+01 9.5e+01 1586.3 767.0 728.5

1e-4 WK20 1.6e+01 1.6e+01 334.3 25.7 307.9 1.4e+02 1.4e+02 10622.9 437.7 10180.8

JL19 2.5e+09 4.3e+12 1044.3 26.8 1016.5 9.2e+10 8.7e+11 11526.9 514.5 11007.9

WLK21 2.2e+01 2.0e+01 294.2 97.8 190.0 6.2e+01 6.4e+01 3361.1 1569.5 1701.7

1e-6 WK20 1.5e+01 1.6e+01 612.3 25.7 585.6 1.4e+02 1.4e+02 7781.5 367.8 7409.8

JL19 7.6e+04 8.5e+10 1081.4 19.5 1061.2 2.1e+06 7.5e+10 10960.0 355.3 10600.8

Table E.3: Average errors and solution times for n = 105
over 5 random instances for each parameter

combination. Note that errors are reported in units of 10−16
.

284

F Appendices for Chapter 6

ϕ∗
t+1. We suppose that the stated form holds for some t, and we will show that it will hold for t+ 1

as well. We compute

1
µ̃
∇ϕt+1(X) = (1− α)(X − Vt) + α

(
X −

(
Ξt −

1
µ̃
g̃t

))
.

We deduce that Vt+1 = (1 − α)Vt + α
(
Ξt − 1

µ̃ g̃t

)
. Noting that ϕ∗

t+1 = ϕt+1(Vt+1), and

applying the recursive definition of ϕt+1(X) gives us

ϕ∗
t+1 = (1− α)

(
ϕ∗

t + µ̃

2 ∥Vt+1 − Vt∥2F
)

+ α

(
Q(Xt+1) + 1

2L̃
∥g̃t∥2F + ⟨g̃t, Vt+1 − Ξt⟩+ µ̃

2 ∥Vt+1 − Ξt∥2F
)

= (1− α)ϕ∗
t + α

(
Q(Xt+1) + 1

2L̃
∥g̃t∥2F

)
+ (1− α) µ̃2 ∥Vt+1 − Vt∥2F + αµ̃

2

∥∥∥Vt+1 − (Ξt − 1
µ̃ g̃t)

∥∥∥2

F
− α

2µ̃∥g̃t∥2F

= (1− α)ϕ∗
t + α

(
Q(Xt+1) + 1

2L̃
∥g̃t∥2F

)
+ µ̃(1− α)α2

2

∥∥∥Vt − (Ξt − 1
µ̃ g̃t)

∥∥∥2

F
+ µ̃α(1− α)2

2

∥∥∥Vt − (Ξt − 1
µ̃ g̃t)

∥∥∥2

F
− α

2µ̃∥g̃t∥2F

= (1− α)ϕ∗
t + α

(
Q(Xt+1) + 1

2L̃
∥g̃t∥2F

)
+ α(1− α)

(
µ̃

2 ∥Ξt − Vt∥2F + ⟨g̃t, Vt − Ξt⟩
)
− α2

2µ̃∥g̃t∥2F ,

where the third equation follows from substituting the expression for Vt+1, and the last one from

regrouping the terms. ■

The following proof is adapted from [132, Page 92].

Proof of Lemma 68. Note that

Ξt = Xt + αVt

1 + α

Xt+1 = Ξt −
g̃t

L̃

Vt+1 = (1− α)Vt + α

(
Ξt −

1
µ̃
g̃t

)
.

285

Appendices

Therefore,

Vt+1 = (1− α)(1 + α)Ξt −Xt

α
+ α

(
Ξt −

1
µ̃
g̃t

)
= Xt + 1

α

(
Ξt −Xt −

1
L̃
g̃t

)
= Xt + 1

α
(Xt+1 −Xt).

Then,

Ξt+1 = Xt+1 + α

1 + α
(Vt+1 −Xt+1)

= Xt+1 + 1− α
1 + α

(Xt+1 −Xt). ■

Lemma 102. Consider an instance of (6.12) generated by the random procedure in Section 6.5.2.
Then equality holds throughout (6.12).

Proof. It suffices to show that γ∗
and T ∗

are feasible and achieve value ∥X∗∥2F in the dual SDP

(i.e., the third line of (6.12)).

Note that by Schur Complement Theorem,(
A(γ∗)/2 B(γ∗)/2
B(γ∗)⊺/2 c(γ∗)

k Ik − T ∗

)
∼
(
In−k

c(γ∗)
k Ik − T ∗ − B(γ∗)⊺A(γ∗)−1B(γ∗)

2

)
=
(
In−k

0k

)
.

Here,∼ indicates matrix similarity. Thus γ∗
and T ∗

are feasible in the dual SDP.

Next,

tr(T ∗) = tr
(
c(γ∗)
k

Ik −
B(γ∗)⊺A(γ∗)−1B(γ∗)

2

)

= tr((X∗)⊺A(γ∗)X∗)
2 + ⟨B(γ∗), X∗⟩+ c(γ∗)

= ∥X
∗∥2F
2 +

m∑
i=1

γ∗
i

(
tr
((X∗)⊺AiX

∗

2

)
+ ⟨Bi, X

∗⟩+ ci

)
= ∥X

∗∥2F
2 . ■

F.2 Additional numerical results

Table F.4 displays numerical results for a variant of SketchyCGAL (see Section 6.5.1 for implemen-

tation details) on one random instance of (6.12) for each of n− k = 103
, 104

, and 105
.

G Appendices for Chapter 7

G.1 Proof of Propositions 21 and 22

Proposition 21. LetA ⊆ Sn and suppose S ∈ span(A) is nonsingular. Then,A is SDC if and
only if S−1A is a commuting set of diagonalizable matrices with real eigenvalues.

286

G Appendices for Chapter 7

n− k time (s) ∥X −X∗∥2F memory (MB)

103 3.0× 103 2.1 2.2× 101

104 1.0× 104 2.5 6.0× 101

105 5.6× 104 3.0 2.9× 102

Table F.4: Preliminary experimental results for (n − k) = 103, 104, 105
(1 instance) with time limit

3× 103, 104, 5× 104
seconds for a variant of SketchyCGAL.

Proof. (⇒) Let P ∈ Rn×n
furnished by SDC. ForA ∈ A, note that

P−1S−1AP = (P ⊺SP)−1(P ⊺AP).

Then, as P ⊺SP and P ⊺AP are both diagonal matrices with real entries, we deduce that S−1A is

diagonalizable with real eigenvalues. The fact that S−1A is a set of commuting matrices follows

similarly.

(⇐) Recall that a commuting set of diagonalizable matrices can be simultaneously diagonalized

via a similarity transformation, i.e., there exists an invertible P ∈ Rn×n
such that P−1S−1AP is

diagonal for eachA ∈ A [88]. The diagonal entries of P−1S−1AP are furthermore real by the

assumption that S−1A has a real spectrum. For eachA ∈ A, define

Ā := P ⊺AP, DA := P−1S−1AP.

Next, note that the identity P−1S−1AP = (P ⊺SP)−1(P ⊺AP) can be expressed as DA =
S̄−1Ā. Or, equivalently, S̄DA = Ā for allA ∈ A. For i, j ∈ [n], we have the identity

S̄i,j(DA)j,j = Āi,j = Āj,i = S̄j,i(DA)i,i = S̄i,j(DA)i,i.

Here, we have used that S̄ and Ā are symmetric and DA is real diagonal. In particular, if there

exists some A ∈ A such that (DA)i,i ̸= (DA)j,j , then S̄i,j = Āi,j = 0. Furthermore, by the

relation S̄DB = B̄, we also have that B̄i,j = 0 for all otherB ∈ A.

We conclude that by permuting the columns of P if necessary (so that [n] is grouped according

to the equivalence relation: i ∼ j if and only if (DA)i,i = (DA)j,j for allA ∈ A), we can write

S̄ as a block diagonal matrix S̄ = Diag(S(1), . . . , S(k)). Furthermore, for everyA ∈ A, there

exists λ1, . . . , λk ∈ R such that Ā = Diag(λ1S
(1), . . . , λkS

(k)). It remains to note that each

block S(i)
can be diagonalized separately. ■

Proposition 22. LetA ⊆ Sn and supposeS ∈ span(A) is a max-rank element of span(A). Then,
A is SDC if and only if range(A) ⊆ range(S) for everyA ∈ A and

{
A|range(S) : A ∈ A

}
is

SDC.

Proof. It suffices to show that ifA is SDC then range(A) ⊆ range(S) for everyA ∈ A as then

applying Lemma 78 completes the proof.

Let r = rank(S). Let P ∈ Rn×n
furnished by SDC. Note that by permuting the columns of

P if necessary, we may assume that P ⊺SP is a diagonal matrix with support contained in its first

287

Appendices

r-many diagonal entries. As S is a max-rank element of span(A), we similarly have that for every

A ∈ A, the matrix P ⊺AP is a diagonal matrix with support contained in its first r-many diagonal

entries. ForA ∈ A, write P ⊺AP = Diag(Ā, 0(n−r)×(n−r)) where Ā is a diagonal r × r matrix.

Then,

range(A) = range(P−⊺P ⊺APP−1) ⊆ span{q1, . . . , qr}.

Here, qi ∈ Rn
is the ith column of P−⊺

. On the other hand, as S̄ has full rank, range(S) =
span{q1, . . . , qr}. ■

G.2 Facts about matrices with upper triangular Toeplitz blocks

Lemma 103. Let (n1, . . . , nk) with
∑

i ni = n. Suppose T ∈ T. Then, the characteristic polyno-
mial of T depends only on the entries

{
t
(1)
i,j : ni = nj

}
.

Proof. In this proof, we will use a, b ∈ [n] to index entries in T (specifically, Ta,b ∈ R is a scalar,

not a matrix block). For each a ∈ [n], let ia ∈ [k] denote the block containing a, and let ℓa ∈ [nk]
denote the position of awithin block ia. By the assumption that T ∈ T, we have

Ta,b ̸= 0 =⇒ min{nia , nib
} − nia + (ℓa − ℓb) ≥ 0.

Now, for each a ∈ [n], assign the weight wa := ℓa − nia
2 . Note that by construction, if

Ta,b ̸= 0, then

wa − wb = nib

2 −
nia

2 + (ℓa − ℓb) ≥ 0.

Furthermore, note that if Ta,b ̸= 0 andwa − wb = 0, then nia = nib
and ℓa = ℓb.

Next, consider a permutation σ ∈ Sn such that

∏n
a=1 Ta,σ(a) ̸= 0. Note that

n∑
a=1

wa − wσ(a) =
n∑

a=1
wa −

n∑
a=1

wσ(a) = 0.

Then, by the above paragraph, we conclude that σ satisfies nia = niσ(a) and ℓa = ℓσ(a) for all

a ∈ [n].
Returning to the previous notation, the characteristic polynomial of T depends only on the

entries

{
t
(1)
i,j : ni = nj

}
. ■

Lemma 81. Let (n1, . . . , nk) such that
∑

i ni = n. Then, for anyT ∈ T, the matricesT ∈ Rn×n

and Π(T) ∈ Rk×k have the same eigenvalues.

Proof. Without loss of generality, suppose n1 ≤ · · · ≤ nk and let T ∈ T. By Lemma 103, T has

the same eigenvalues as the matrix T̂ ∈ T with entries

T̂
(ℓ)
i,j =

{
T

(ℓ)
i,j if ni = nj , ℓ = 1,

0 else.

288

G Appendices for Chapter 7

Now, suppose that there are m distinct block sizes s1, . . . , sm. Partitioning both Π(T) and T̂
according to s1, . . . , sm, we have that

Π(T) = Diag(T̃1, . . . , T̃m) and T̄ = Diag(T̃1 ⊗ Is1 , . . . , T̃m ⊗ Ism).

We conclude that Π(T) and T̄ have the same eigenvalues. ■

G.3 Details for theHermitian case

Let Hn
denote the real vector space of n× nHermitian matrices. For v ∈ Cn

andA ∈ Cn×n
let

v∗
andA∗

denote the conjugate transpose of v andA respectively.

Definitions and theorem statements

Almost all of our results extend verbatim to the Hermitian setting. For brevity, we only state our

more interesting definitions and results as adapted to this setting.

Definition 34. A setA ⊆ Hn
is simultaneously diagonalizable via congruence (SDC) if there

exists an invertible P ∈ Cn×n
such that P ∗AP is diagonal for allA ∈ A. □

Definition 35. A setA ⊆ Hn
is almost simultaneously diagonalizable via congruence (ASDC) if

there exist sequencesAi → A for everyA ∈ A such that for every i ∈ N, the set {Ai : A ∈ A}
is SDC. □

Definition 36. A setA ⊆ Hn
is nonsingular if there exists a nonsingularA ∈ span(A). Else, it

is singular. □

Definition 37. Given a setA ⊆ Hn
, we will say that S ∈ A is a max-rank element of span(A) if

rank(S) = maxA∈A rank(A). □

Theorem 42. LetA,B ∈ Hn and supposeA is invertible. Then, {A,B} is ASDC if and only if
A−1B has real eigenvalues.

Theorem 43. Let {A,B} ⊆ Hn. If {A,B} is singular, then it is ASDC.

Theorem 44. Let {A,B,C} ⊆ Hn and suppose A is invertible. Then, {A,B,C} is ASDC if
and only if

{
A−1B,A−1C

}
are a pair of commuting matrices with real eigenvalues.

Definition 38. LetA ⊆ Hn
and d ∈ N. We will say thatA is d-restricted SDC (d-RSDC) if there

exist matrices Ā ∈ Hn+d
containingA as its top-left n× n principal submatrix for everyA ∈ A

such that

{
Ā : A ∈ A

}
is SDC. □

Theorem 45. Let A,B ∈ Hn. Then for every ϵ > 0, there exist Ã, B̃ ∈ Hn such that∥∥∥A− Ã∥∥∥, ∥∥∥B − B̃∥∥∥ ≤ ϵ and
{
Ã, B̃

}
is 1-RSDC. Furthermore, ifA is invertible andA−1B has

simple eigenvalues, then {A,B} is itself 1-RSDC.

Theorem 46. Let {A = In, B, C} ⊆ Hn. Then, if d < rank([B,C])/2, the set{(
A

0d

)
,

(
B

0d

)
,

(
C

0d

)}

289

Appendices

is not ASDC.

Theorem 47. There exists a setA = {A1, . . . , A5} ⊆ H4 such thatA1 is invertible,A−1
1 A is a

set of commuting matrices with real eigenvalues, andA is not ASDC.

In the Hermitian setting, the statement in Theorem 39 should be changed to: “There exists a

setA = {A1, . . . , A5} ⊆ H4
such thatA1 is invertible,A−1

1 A is a set of commuting matrices

with real eigenvalues andA is not ASDC.” The proof is unchanged after setting

A1 =
(1

1
1

1

)
, A2 =

(0
0

1
0

)
, A3 =

(0
0

0 1
1 0

)
,

A4 =
(0

0
0 i

−i 0

)
, A5 =

(0
0

0
1

)
.

Necessary modifications

Next, we discuss technical changes that need to be made to adapt our proofs from the real symmetric

setting to the Hermitian setting. For brevity, we only list changes beyond the trivial changes, e.g.,

replacing Sn
by Hn

, Rn×n
by Cn×n

, and
⊺

by
∗

.

• In the Hermitian version of Proposition 23, them2-many blocks corresponding to non-real

eigenvalues (previously (7.2)) will have the form

Si = F2ni , Ti = Fni ⊗
(

λ∗
i

λi

)
+Gni ⊗ F2

where ni ∈ N and λi ∈ C \ R. See [105, Theorem 9.2] for further details.

• In the proof of Lemma 79, note that for all i ∈ [r + 1,m], the block

S−1
i T̃i = Ini ⊗

(
λi

λ∗
i

)
+ (ηiIni + FniGni + δFniHni)⊗ I2.

The remainder of the proof is unchanged.

• In the proof of Theorem 34, we will work in the basis furnished by the Hermitian version

of Proposition 23 for C2k
. That is, we may assume in the first two cases that A and B

(previously (7.6)) have the form

A =


1

1
. . .

1
1

Sm

, B =


λ∗

1
λ1

. . .
λ∗

k
λk

Tm

.

290

G Appendices for Chapter 7

We will set Ãδ as in the Hermitian case for both Cases 1 and 2. We will set B̃δ to be

B̃δ =



λ∗
1

λ1

α1
√

−δi/2(
α1
√

−δi/2
)∗

. . .
...

λ∗
k

λk

αk

√
−δi/2(

αk

√
−δi/2

)∗(
α1

√
−δi
2

)∗

α1

√
−δi
2 . . .

(
αk

√
−δi
2

)∗

αk

√
−δi
2 δz


and

B̃δ =



λ∗
1

λ1

α1
√

−δi/2(
α1
√

−δi/2
)∗

. . .
...

λ∗
k

λk

αk

√
−δi/2(

αk

√
−δi/2

)∗

Gnm(
α1

√
−δi
2

)∗

α1

√
−δi
2 · · ·

(
αk

√
−δi
2

)∗

αk

√
−δi
2 δz e⊺1

Gnm e1


for Cases 1 and 2, respectively. Here, α ∈ Ck

, z ∈ R, and δ > 0. The characteristic

polynomials of Ã−1
δ B̃δ are given by (7.8) and (7.13) in Cases 1 and 2 respectively. The

remainder of the proof remains unchanged.

G.4 An example where the SDC property is preserved under restriction

In this section, we give an example of a setting in which the restriction of an SDC set to one of its

principal submatrices results in another SDC set. This setting arises for example in QCQPs [93].

Proposition 25. Let A1, . . . , Am ∈ Sn such that span({A1, . . . , Am}) contains a positive
definite matrix. Let b1, . . . , bm ∈ Rn and c1, . . . , cm ∈ R, and define

Qi =
(
Ai bi

b⊺i ci

)
∈ Sn+1.

If
{
Q1, . . . , Qm, en+1e

⊺
n+1

}
is SDC, then so is {A1, . . . , Am}.

Proof. Without loss of generality, letA1 ≻ 0. Note that for all λ ∈ R large enough, the matrix

Sλ := Q1 + λen+1e
⊺
n+1 ≻ 0. By the inverse formula for a block matrix [88], we have that for all

λ large enough,

S−1
λ =

A−1
1 + A−1

1 b1b⊺1A−1
1

λ+(c1−b⊺1A1b1)
−A−1

1 b1
λ+(c1−b1A−1

1 b1)
−b⊺1A−1

1
λ+(c1−b1A−1

1 b1)
1

λ+(c1−b1A−1
1 b1)

.

291

Appendices

In particular,

lim
λ→∞

S−1
λ =

(
A−1

1
0

)
.

On the other hand, by Lemma 77, we have that for all i, j ∈ [m],

0 =
[
S−1

λ Qi, S
−1
λ Qj

]
.

Finally, by continuity we have that

0 = lim
λ→∞

[
S−1

λ Qi, S
−1
λ Qj

]
=
([
A−1

1 Ai, A
−1
1 Aj

]
0

)
.

We conclude thatA−1
1 {A1, . . . , Am} commute, whence by Lemma 77 this set is SDC. ■

292

	Introduction
	A preview of what is to come
	What's new, what's old?
	Notation

	Solving QCQPs exactly
	Objective value and convex hull exactness
	Introduction
	A general framework
	Symmetries in QCQPs
	Convex hull results
	Exactness of the SDP relaxation
	Removing the polyhedrality assumption

	A geometric view of SDP exactness in QCQPs and its applications
	Introduction
	Preliminaries
	Convex hull exactness
	Applications: Convex hull exactness
	Objective value exactness
	Applications: Objective value exactness

	Rank-one-generated cones
	Introduction
	Properties of ROG cones
	Sufficient conditions
	Necessary conditions
	Applications of ROG cones

	Solving QCQPs efficiently
	The Generalized Trust Region Subproblem: solution complexity and convex hull results
	Introduction
	Convex hull characterization
	Nonintersecting constraints
	Solving the convex reformulation in linear time

	Implicit regularity in the generalized trust-region subproblem
	Introduction
	Implicit Regularity in the GTRS
	Algorithms for the GTRS
	Numerical Experiments

	Accelerated first-order methods for a class of semidefinite programs
	Introduction
	Strongly convex reformulations of k-exact SDPs
	Algorithms for strongly convex QMMPs
	Solving k-exact SDPs via strongly convex QMMP algorithms
	Numerical experiments

	Variants of simultaneous diagonalizability of quadratic forms
	Introduction
	Preliminaries
	The ASDC property of symmetric pairs
	The ASDC property of nonsingular symmetric triples
	Restricted SDC
	Obstructions to further generalization
	Applications to QCQPs

	Bibliography
	Appendices
	Appendices for Chapter 1
	Appendices for Chapter 2
	Appendices for Chapter 3
	Appendices for Chapter 4
	Appendices for Chapter 5
	Appendices for Chapter 6
	Appendices for Chapter 7

