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ABSTRACT

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of optimization
problems. In a QCQP, we are asked to minimize a (possibly nonconvex) quadratic function
subject to a number of (possibly nonconvex) quadratic constraints. Quadratic matrix programs
(QMDPs) are a related class of optimization problems where the quadratic objective and constraints
in the class of QCQPs are replaced by quadratic matrix functions. Both QCQPs and QMPs
are frequently encountered in practice and arise naturally in diverse areas of operations research,
computer science, and engineering. One may regard QMPs as QCQPs with additional structure.
Although QCQPs are NP-hard to solve in general, they admit a natural convex relaxation via the
standard (Shor) semidefinite program (SDP) relaxation.

The research in this thesis is guided by two fundamental questions related to the SDP relaxation
of a general QCQP: (1) What structures within a QCQP ensure that its SDP relaxation is accurate?
And, (2) What structures within a QCQP allow its SDP relaxation to be solved efhiciently? These
two questions comprise the two parts of this thesis.

In contrast to prior work on SDP relaxations of QCQPs (which has focused largely on approx-
{mation guarantees), Part 1 of this thesis asks when exactness occurs in the SDP relaxation of a
QCQP. In this direction, we develop a framework for understanding various forms of exactness:
(i) objective value exactness—the condition that the optimal value of the QCQP and the optimal
value of its SDP relaxation coincide, (ii) convex hull exactness—the condition that the convex hull
of the QCQP epigraph coincides with the (projected) SDP epigraph, and (iii) the rank-one gener-
ated (ROG) property—the condition that a particular conic subset of the positive semidefinite
cone related to a given QCQP is generated by its rank-one matrices. Our analysis for objective
value exactness and convex hull exactness stems from a geometric treatment of the projected SDP
relaxation and crucially considers how the objective function interacts with the constraints. The
ROG property complements these results by offering a sufficient condition for both objective
value exactness and convex hull exactness which is oblivious to the objective function.

Part 2 of this thesis seeks to develop new methods for solving large-scale QCQPs and their
SDP relaxations efficiently. In this direction, we develop new first-order methods (FOM:s) for
solving the generalized trust-region subproblem (GTRS) and a broader class of SDPs with exactness
properties. Specifically, while the GTRS (the class of QCQPs with a single constraint) is known
to have an exact SDP relaxation, the large computational complexity of SDP-based algorithms
prevent them from being applied directly to the GTRS. We overcome this barrier by designing
FOMs for the GTRS that operate in the original space and possess accelerated linear convergence
rates. Perhaps surprisingly, we then show that similar algorithms can be extended to a wider class
of SDPs with structured low-rank solutions (e.g., the SDP relaxation of a QCQP or QMP with
exactness properties). These FOMs work in the space of the low-rank factorization of the matrix
variable and completely avoid storing full matrix variables. In this way, this thesis provides new
efficient FOM:s for solving QCQPs and QMPs that can be applied whenever the SDP relaxation is
known to be exact. Additional work in Part 2 of this thesis studies various notions of simultaneous
diagonalizability of sets of quadratic forms. These new notions, specifically the almost SDC
and d-restricted SDC properties, seck to understand when a QCQP can be diagonalized after
arbitrarily small perturbations of the QCQP data or the introduction of additional variables. We
give complete characterizations of these properties in a few settings.
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INTRODUCTION

Convex optimization has been influential in shaping data science and modern computing. This
subfield of optimization has found numerous applications in a variety of domains (e.g., machine
learning, statistics, signal processing, and engineering). Unfortunately, a growing number of
interesting problems encountered by data scientists, engineers, and the scientific community at
large are by nature highly nonconvex. Simultaneously, the convex optimization community has
begun to investigate more “high-powered” machinery (e.g., semidefinite programs or the sum-of-
squares hierarchy), much of which is at present considered impractical in large-scale applications.

This thesis attempts to address this divide by answering theoretical questions underpinning
the practical application of tools from convex optimization (specifically, semidefinite programs)
to interesting structured nonconvex problems (specifically, structured quadratically constrained
quadratic programs and quadratic matrix programs). The goal of this thesis is to understand when
certain nonconvex problems may be solved both accurately and efficiently, with a particular view
towards large-scale applications.

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of nonconvex
optimization problems that naturally arise in operations research, engineering, and computer
science; see [181] for additional applications of QCQPs. The ubiquity of this class of optimization
problems stems from its expressiveness: any {0, 1} integer program or polynomial optimization
problem may be recast as a QCQP (see [11, 25, 91] and references therein).

Quadratic matrix programs (QMPs) are a related class of optimization problems where the
quadratic objective function and constraints are replaced by quadratic matrix functions. This
class of problems finds additional applications in robust optimization, sphere-packing problems,
and statistics [17, 20]. The class of QCQPs and QMPs are in fact equivalent, i.e., we can write any
QCQP as a QMP and vice versa, however QCQPs derived from QMPs often possess additional
structure so that it will be useful to treat them as their own class.

Itis well known that QCQPs (and, by extension, QMPs) are NP-hard to solve in general—indeed,
the NP-hard combinatorial problem MAX-CUT can be readily recast as a QCQP. On the other
hand, the standard (Shor) semidefinite program (SDP) relaxation offers a natural tractable convex
relaxation for a general QCQP [161]. This convex relaxation is obtained by first reformulating the
QCQP in a lifted space with an additional rank constraint and then dropping the rank constraint.

In passing from the nonconvex QCQP to its convex SDP relaxation, there are two important
questions that must be addressed if SDPs are to be of practical importance in this setting:

Question 1. What structures within a QCQP ensure that its SDP relaxation is accurate?

Question 2. What structures within a QCQP allow its SDP relaxation to be solved efficiently?

These questions constitute the two parts of this thesis.
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A PREVIEW OF WHAT IS TO COME

We now give an overview of the results and outline of this thesis. We will highlight only a small
subset of the background literature and discuss related work in more detail within the individual
chapters.

This thesis is predominantly interested in QCQPs and their SDP relaxations:

xignﬂ{ﬂ{qobj(ar) D qi(x) <0, Vi e [m]}
(M;,Y) <0,

€ [m]
= (Mo, Y) Y:(i *) 0

1
-
1] =
Here, for each i € {obj} U [m], we will write ¢;(x) = 2TA;x + 2b]x + ¢; for some 4; € S",
bi € R", and ¢; € R. Then, defining M; = (Z‘{ ZZ ), we have that ¢;(z) = (M;, (%' 7))
so that the SDP relaxation is indeed a relaxation of the QCQP. We emphasize that any or all of
Qobjs q15 - - -5 gm May be nonconvex.

In a sense, all of the work in this thesis begins with the generalized trust-region subproblem
(GTRS). The GTRS is the special class of QCQPs with exactly one constraint:

inf { (x): z) < O}.
nf \gobj(@) + q1(2) <
Furthermore, it is standard to assume' the existence of some 4 > 0 such that Aobj + 4A; = 0.
This unassuming problem is in fact quite intriguing from a theoretical perspective—the GTRS
is one of few problems that, despite its nonconvex presentation, can be solved both exaczly and
efficiently even in large-scale settings via convex optimization tools.

We note some interesting properties related to exactness in the GTRS and how we extend them

to the broader class of QCQPs:

* (Chapters 1 and 2). The optimum value of the GTRS coincides with the optimal value of
its SDP relaxation. That s,

(M1,Y) <0
;rellikl}l{qObj<x): a(z) <0} = _min, (Mo V)t _ (: T) “o [

"This assumption is standard [2, 95, 180] and is equivalent to requiring that the dual of the SDP relaxation is strictly
feasible.
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where M; = (g‘? Z ) for each i € {obj, 1}. Furthermore, the epigraph of the GTRS
coincides with the epigraph of the (projected) SDP relaxation. That is

3y e SvtH

My, YY) <t
COHV({(:L‘,t) : qObj(g)U) =t }) =1 (z,1): §M1,1Y> Z 0

qi(x) <0
x T
= -
Y <:UT 1) =0

In words, we say that objective value exactness and convex hull exactness hold for the GTRS.
Objective value exactness is interesting for straightforward reasons—it allows us to reduce
computing the optimum value of the nonconvex GTRS to solving an SDP. Convex hull
exactness is a natural sufficient condition for objective value exactness but is also interesting
in its own right. Specifically, such results are routinely used within state-of-the-art compu-
tational approaches for mixed integer linear and nonlinear programs [49, 171] to produce
good convex relaxations of more complicated problems.

These equivalences can (and perhaps should) be quite surprising at first. Indeed, both forms
of exactness break even in the presence of just two constraints.

A recent line of work investigates when these forms of exactness hold in the presence of more
constraints [37, 38, 87, 111, 112, 167]. We continue this line of work in Chapters 1 and 2
where we develop a framework for analyzing these forms of exactness, unifying a number
of previous results. As examples, we show that convex hull exactness holds for vectorized
reformulations of certain QMPs or other highly symmetric QCQPs, and that objective
value exactness holds for sign-definite QCQPs or random under-constrained QCQDPs.

(Chapter 3). One method of proving both objective value exactness and convex hull exactness
for the GTRS relies on the celebrated S-lemma [67]. The S-lemma can be interpreted as the
statement that the cone

{Y S ST_:_ : <M1,Y> < 0}

is rank-one generated for any My € S™. That is, all extreme rays of the above cone are
generated by rank-one matrices. As before, the analogous statement does not necessarily
hold when we move from a single linear matrix inequality (LMI) to even just two. Related
work in this direction has proved bounds on the rank of extreme rays of cones defined by
LMIs [16, 69, 141], proved ROG results for variants of the trust-region subproblem [33, 37],
and given a complete characterization of ROG cones defined by linear matrix eguality
(LME) constraints [29, 83].

In Chapter 3, we continue this line of work by investigating the ROG property of cones
defined by LMIs. We remark that the ROG property of cones defined by LMIs does not
follow from the analogous theory for LMEs. As one of our main results, we give a complete
characterization of the ROG property for cones defined by two LMIs. We additionally
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present some applications of the ROG property to QCQPs and optimization problems
involving ratios of quadratic functions.

The GTRS also possesses a number of useful properties that allow it to be solved efficiently
(without explicitly solving its SDP relaxation). We note some of these properties and how we
extend to them to the broader class of QCQPs:

* (Chapters 4 and 5). In Chapters 4 and 5, we develop two new algorithms for solving the
GTRS via FOMs. These methods are particularly suited to solving large-scale GTRS that
are sparse or well-structured instances (so that matrix-vector multiplications are cheap).

The first algorithm (Chapter 4) observes that both the optimizer and the optimum value
of the GTRS (where both the objective function and constraint are nonconvex) can be
recovered from the optimal solution to a convex quadratic-linear minimax problem:

Inin max (a0i(@) +7a1 ().

Here, I' == {’y €ERy: Agpj+741 = 0} = [v—, 7+] is a bounded interval. This refor-
mulation was previously noted in [94]. We then show how to apply Nesterov’s accelerated
gradient descent method for minimax functions [132] to the resulting minimax problem.
The FOM developed and analyzed in Chapter 4 is iterative and requires only a constant
number of matrix-vector multiplications per iteration. As such, its running time scales
linearly with the sparsity of the GTRS instance (i.e., the sparsity of the Hessians in g,p; and

-1/ 2) and improves upon previous

¢1). This FOM has a sublinear convergence rate of O (6
state-of-the-art [94, 95]. Our convergence rate also matches the convergence rate of the
Lanczos method for computing a minimum eigenvalue [103] or the accelerated gradient

descent method for smooth convex functions [132] (up to log-factors) .

Perhaps surprisingly, in Chapter 5 we show that it is almost always possible to improve
these algorithms to achieve /inear convergence rates, i.c., convergence rates of the form
O(log(e71)). The key observation here is that for almost all GTRS instances [5], the
optimizer y* of the dual problem:

mage 0t (qo(2) + 701 ()

satisfies Aopj + 7" A1 = 0. In particular, by picking a smaller interval v* € [§_, 4] C
{'y € Ry Agpj + A1 - O}, we may introduce strong convexity into the minimax prob-
lem. These ideas lead to 2 new FOM that requires only O (( 1)1/ log (e )) iterations

to converge to an e-optimal solution. Here 11" = Apin (Aobj + 'Y*Al)- These rates match
those of the Krylov subspace method for the trust-region subproblem [41] (up to log-
factors).

* (Chapter 6). In Chapter 6, we extend the algorithm in Chapter 5 to a more general class of
SDPs. This class of SDPs, which we refer to as rank-k exact QMP-like SDPs, is characterized
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by solutions with rank &, 2 priori knowledge of the restriction of the SDP solution to a k-
dimensional subspace, and standard regularity assumptions such as strict complementarity.
We show that similar to the GTRS setting, in the rank-k exact QMP-like SDP setting, it is
possible to construct a strongly convex minimax problem whose optimizer coincides with a
factorization of the SDP optimizer. We then develop FOM:s for constructing the strongly
convex minimax problem and subsequently solving it. The overall FOM requires roughly
O(log(e™1)) calls to a prox-map oracle, or, roughly O (e ') matrix-vector multiplications.
Furthermore, in contrast to standard methods for solving SDPs, which require O(n?)
storage to keep track of matrix iterates, our algorithm requires only O(nk) storage where
k is the rank of the true SDP solution. This builds upon a recent line of work on storage-
optimal FOMs for SDPs [60, 198] but significantly improves the convergence rate.

* (Chapter 7). Under a standard assumption, it is well-known that the GTRS is separable [21,
88]. That is, there exists an invertible P € R"™*" such that PT Ay, P and PTA; P are both
diagonal. This property, the simultaneously diagonalizable via congruence (SDC) property,
is useful from a computational perspective as the SDP relaxation of a diagonal QCQP
(one where all A; matrices are diagonal) can be rewritten as a second-order cone program

(SOCP).

In Chapter 7, we investigate variants of simultaneous diagonalizability. These variants allow
us to extend the reach of the SDC property to QCQPs that are & priori not diagonalizable.
Specifically, the almost SDC property seeks to understand QCQPs that may be diagonalized
after arbitrarily small perturbations and the restricted SDC property seeks to understand
QCQPs that that admit diagonalizable lifted formulations obtained by introducing a small
number of additional variables. In this direction, we give complete characterization of these
properties in a few settings. Of particular interest, we show that any pair of symmetric
matrices may be diagonalized after arbitrarily small perturbations or with the introduction
of a single additional variable.

WHAT’S NEW, WHAT’S OLD?

The work in this thesis has appeared in various forms and is almost entirely verbatim from the
following articles.

Chapter 1:

A. L. Wang and F. Kiling-Karzan. On convex hulls of epigraphs of QCQPs. In Integer
Programming and Combinatorial Optimization (IPCO 2020), pages 419-432, 2020

A. L. Wang and F. Kiling-Karzan. On the tightness of SDP relaxations of QCQPs. Math.
Program.,193:33-73, 2022
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Chapter 2:

A. L. Wang and F. Kiling-Karzan. A geometric view of SDP exactness in QCQPs and its
applications. arXiv preprint, 2011.07155, 2020

Chapter 3:

C.J. Argue, F. Kiling-Karzan, and A. L. Wang. Necessary and sufficient conditions for rank-
one generated cones. Math. Oper. Res., 2022. Forthcoming, a»Xiv preprint, 2007.07433

F. Kiling-Karzan and A. L. Wang. Exactness in SDP relaxations of QCQPs: Theory and
applications. Tut. in Oper. Res. 2021

J. Wang, W. Huang, R. Jiang, X. Li, and A. L. Wang. Solving stackelberg prediction
game with least squares loss via spherically constrained least squares reformulation. In
International Conference on Machine Learning, 2022. Forthcoming

Chapter 4:

A. L. Wang and F. Kiling-Karzan. The generalized trust region subproblem: solution
complexity and convex hull results. Math. Program., 191:445-486, 2022

Chapter 5:

A. L. Wang, Y. Lu, and F. Kiling-Karzan. Implicit regularity and linear convergence rates for
the generalized trust-region subproblem. arXzv preprint, 2112.13821, 2021

Chapter 6:

A. L. Wang and F. Kiling-Karzan. Accelerated first-order methods for a class of semidefinite
programs. arXiv preprint, 2206.00224, 2022

Chapter 7:
A. L. Wangand R. Jiang. New notions of simultaneous diagonalizability of quadratic forms

with applications to QCQPs. arXiv preprint, 2101.12141, 2021

As much of the material has appeared previously, we explicitly indicate any new material in
framed boxes ...

... like so.

NOTATION

For nonnegative integers m < n, define [n] := {1,...,n}and [m,n] == {m,m+1,...,n}
Let Ry denote the nonnegative reals and R - the positive reals. For i € [n], lete; € R™ denote
the ith standard basis vector. Let S" ™1 = {z € R" : ||z|| = 1} denote the n — 1 sphere. Let S™
denote the set of real symmetric 12 X 1 matricesand S'} (resp. S'} | ) the cone of positive semidefinite



Notation

(resp. positive definite) matrices. We write A = 0 (resp. A >~ 0) if A is positive semidefinite (resp.
positive definite). Let Apin (A) and Apax (A) denote the minimum and maximum eigenvalues of
A. Given M € R™*™, letrange(M ) and ker(M ) denote the range and kernel of M respectively.
When m = n, let tr(M) denote the trace of M. Let 0,,, I,, € S™ denote the n X m zero matrix
and identity matrix respectively; we will simply write 0 or I when the dimension is clear. We will
also let 0,, € R™ denote the zero vector; whether 0 or 0,, is a scalar, vector, or matrix will be clear
from context. For a € R, let Diag(a) denote the diagonal matrix A € S™ with diagonal entries
A;; = a;. We endow S"™ with the inner product (A, B) := tr(ATB). Given W a subspace of
R"™ with dimension k, a surjective map U : RF — W and A € S”, let Ay denote the restriction
of Ato W, ie., Aw = UTAU. When U is inconsequential, we will omit specifying it. We will
use O-notation to hide log log-factors. Given w € W and v € W, let u & v denote their
direct sum. For A € S"and B € S™, let A® B € S and A ® B € S™ denote the
direct sum and Kronecker product of A and B respectively. For a subset D of some Euclidean
space (e.g., R™ or S”) let D°, int (D), rint(D), extr(D), cl(D), conv(D), clconv(D), cone(D),
clcone(D), span(D), aff (D), dim (D), aff dim (D) and D+ denote the polar, interior, relative
interior, extreme points, closure, convex hull, closed convex hull, conic hull, closed conic hull, linear
hull, affine hull, dimension, affine dimension, and orthogonal complement of D, respectively.
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WHAT STRUCTURES WITHIN A QCQP ENSURE
THAT ITS SDP RELAXATION IS ACCURATE?






1 OB_]ECTIVE VALUE AND CONVEX HULL
EXACTNESS

This chapter is based on joint work [178, 181] with Fatma Kiling-Karzan.

This chapter studies conditions under which the standard semidefinite program (SDP) relaxation
of a quadratically constrained quadratic program (QCQP) possesses exactness properties. We
begin by outlining a general framework for proving such sufficient conditions. Then, using this
framework, we show that the SDP relaxation possesses objective value exactness whenever the
quadratic eigenvalue multiplicity, a parameter capturing the amount of symmetry present in a
given problem, is large enough. We present similar sufficient conditions for convex hull exactness,
i.e., the condition that the projected epigraph of the SDP gives the convex hull of the epigraph
in the original QCQP. Our results also imply new sufficient conditions for the tightness (as well
as convex hull exactness) of a second order cone program (SOCP) relaxation of simultaneously

diagonalizable QCQPs.

1.1 INTRODUCTION

This chapter will write a general QCQP in the following form

Opt = miergN{QQ(x) : qz(x) z E [m] }, (1.1)

where forevery i € [0, mr +mpg], the function g; : RN — Risa (possibly nonconvex) quadratic
function. We will write ¢;(z) = 2TA;x + 2b]x + ¢; where 4; € SN b € RN, and ¢; € R.
Here mr and mg are the number of inequality constraints and equality constraints respectively.
We will assume thatm = m; +mpg > 1.

There is a vast literature on approximation guarantees for the standard (Shor) SDP relaxation
[22,121, 129,161, 193], however, less is known about its exactness. Recently, a number of exciting
results in phase retrieval [40] and clustering [1, 122, 153] have shown that under various assump-
tions on the data (or on the parameters in a random data model), the QCQP formulation of the
corresponding problem has a tight SDP relaxation. See also [117] and references therein for more
examples of exactness results regarding SDP relaxations. In contrast to these results, which address
QCQPs arising from particular problems, Burer and Ye [38] very recently gave some appealing
deterministic sufficient conditions under which the standard SDP relaxation of general QCQPs
is tight. In this chapter, we continue this vein of research for general QCQPs initiated by Burer
and Ye [38]. More precisely, we will provide sufficient conditions under which the following two

types of results hold: 1) The convex hull of the epigraph of the QCQP is given by the projection
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1 Objective value and convex hull exactness

of the epigraph of its SDP relaxation, 2) the optimal objective value of the QCQP is equal to the
optimal objective value of its SDP relaxation. We will refer to these two types of results as “convex
hull results” and “SDP tightness results.”

The convex hull results will necessarily require stronger assumptions than the SDP tightness
results, however they are also more broadly applicable because such convex hull results are typically
used as building blocks to derive strong convex relaxations for complex problems. In fact, the
convexification of commonly occurring substructures has been critical in advancing the state-
of-the-art computational approaches and software packages for mixed integer linear programs
and general nonlinear nonconvex programs [49, 171]. For computational purposes, conditions
guaranteeing simple convex hull descriptions are particularly favorable. As we will discuss later, a
number of our sufficient conditions will guarantee not only the desired convex hull results but
also that these convex hulls are given by a finite number of easily computable convex quadratic
constraints in the original space of variables.

1.1.1 RELATED WORK
CONVEX HULL RESULTS

Convex hull results are well-known for simple QCQPs such as the Trust Region Subproblem (TRS)
and the Generalized Trust Region Subproblem (GTRS). Recall that the TRS is a QCQP with a
single strictly convex inequality constraint and that the GTRS is a QCQP with a single (possibly
nonconvex) inequality constraint. A celebrated result due to Fradkov and Yakubovich [67] implies
that the SDP relaxation of the GTRS is tight. More recently, Ho-Nguyen and Kiling-Karzan [87]
showed that the convex hull of the TRS epigraph is given exactly by the projection of the SDP
epigraph. Follow-up work by Wang and Kiling-Karzan [180] showed that the (closed) convex hull
of the GTRS epigraph is also given exactly by the projection of the SDP epigraph. In both cases,
the projections of the SDP epigraphs can be described in the original space of variables with at
most two convex quadratic inequalities. As a result, the TRS and the GTRS can be solved without
explicitly running costly SDP-based algorithms; see [2, 94, 95] for other algorithmic ideas to solve
the TRS and GTRS.

A different line of research has focused on providing explicit descriptions for the convex hull of
the intersection of a single nonconvex quadratic region with convex sets (such as convex quadratic
regions, second-order cones (SOCs), or polytopes) or with another single nonconvex quadratic
region. For example, the convex hull of the intersection of a two-term disjunction, which is a
nonconvex quadratic constraint under mild assumptions, and the second-order cone (SOC) or its
cross sections has received much attention in mixed integer programming (see [35, 101, 196] and
references therein). Burer and Kiling-Karzan [35] also studied the convex hull of the intersection
of a general nonconvex quadratic region with the SOC or its cross sections. Yildiran [195] gave
an explicit description of the convex hull of the intersection of two strict quadratic inequalities
(note that the resulting set is open) under the mild regularity condition that there exists 1 € [0, 1]
such that (1 — 1) Ag + A1 > 0. Follow-up work by Modaresi and Vielma [123] gave sufficient
conditions guaranteeing a closed version of the same result. More recently, Santana and Dey [156]
gave an explicit description of the convex hull of the intersection of a nonconvex quadratic region
with a polytope; this convex hull was further shown to be second-order cone representable. In
contrast to these results, we will not limit the number of nonconvex quadratic constraints in our

12



1.1 Introduction

QCQPs. Additionally, the nonconvex sets that we study in this chapter will arise as epigraphs of
QCQPs. In particular, the epigraph variable will play a special role in our analysis. Therefore, we
view our developments as complementary to these results.

The convex hull question has also received attention for certain strengthened relaxations of
simple QCQPs [33, 34, 37, 167]. In this line of work, the standard SDP relaxation is strengthened
by additional inequalities derived using the Reformulation-Linearization Technique (RLT). Sturm
and Zhang [167] showed that the standard SDP relaxation strengthened with an additional SOC
constraint derived from RLT gives the convex hull of the epigraph of the TRS with one additional
linear inequality. Burer and Yang [37] extended this result to the case of an arbitrary number of
additional linear inequalities as long as the linear constraints do not intersect inside the trust region
domain. See [33] for a survey of some results in this area. Note that in this chapter, we restrict
our attention to the standard SDP relaxation of QCQPs. Nevertheless, establishing exactness
conditions for strengthened SDP relaxations of QCQPs is clearly of great interest and is a direction
for future research.

SDP TIGHTNESS RESULTS

A number of SDP tightness results are known for variants of the TRS.

Jeyakumar and Li [92] showed that the standard SDP relaxation of the TRS with additional
linear inequalities is tight under a condition regarding the dimension of the minimum eigenvalue'
of Ay. These results were extended in the same paper to handle multiple convex quadratic inequality
constraints with the same sufficiently rank-deficient quadratic form (see [92, Section 6]). Ho-
Nguyen and Kiling-Karzan [87] presented a sufficient condition for tightness of the SDP relaxation
that is slightly more general than [92, Section 6] (see Ho-Nguyen and Kiling-Karzan [87, Section
2.2] for a comparison of these conditions). A related line of work by Ye and Zhang [194] and Beck
and Eldar [18] gives sufficient conditions under which the TRS with one additional quadratic
inequality constraint admits a tight SDP relaxation. In contrast to this line of work, our results
will address the SDP tightness question in the context of more general QCQPs.

In terms of SDP tightness results, simultaneously diagonalizable QCQPs (SD-QCQPs) have
received separate attention [21, 93,111, 112]. Itis shown in [112, Theorem 2.1] that for SD-QCQPs,
the SDP relaxation is equivalent to a SOC program (SOCP) relaxation (see also Proposition 1). In
particular, the KKT-based sufficient conditions that have been presented for SOCP tightness in
[21, 111] also guarantee SDP tightness. We will present SDP tightness results (Theorems 3 and 4)
that generalize some of the conditions presented in this line of work. More specifically, our results
will not make use of simultaneous diagonalizability assumptions.

A series of articles beginning with Beck [17] and Beck et al. [20] has derived SDP tightness
results for quadratic matrix programs (QMPs). A QMP is an optimization problem of the form

tr(XTAX) 4+ 2tr(B] X) + ¢; <0,
: Vi € [m[]
T T .
Xé]ggxk tr(XTApX) 4+ 2tr(ByX) + co : r(XTAX) + 26e(BTX) + ¢ =0, (7
Vi € [m1+1,m]

"More precisely, this is the minimum generalized eigenvalue of Ao with respect to the positive definite quadratic form
in the constraint.

13



1 Objective value and convex hull exactness

where A; € S, B; € R™* and ¢; € R, and arises often in robust least squares or as a result
of Burer-Monteiro reformulations for rank-constrained semidefinite programming [17, 36]. In
this research vein, Beck [17] showed that a carefully constructed SDP relaxation of QMP is tight
whenever m < k. Note that by replacing the matrix variable X € R"™* k by the vector variable
x € R we may reformulate any QMP as a QCQP of a very particular form. Working backwards,
if a QCQP can be reformulated as a QMP with m < £, then we may apply the SDP relaxation
proposed in [17] to solve it exactly. We will discuss how such a condition compares with our
assumptions in Section 1.3.

In a recent intriguing paper, Burer and Ye [38] gave a sufficient condition guaranteeing that the
standard SDP relaxation of general QCQPs is tight. We emphasize that in contrast to prior work,
the condition proposed in [38] can be applied to general QCQPs. Then, motivated by recent results
on exactness guarantees for specific recovery problems with random data and sampling, Burer and
Ye [38] also examined a class of random QCQPs and established that if the number of constraints
m grows no faster than any fixed polynomial in the number of variables IV, then their sufficient
condition holds with probability approaching one. In particular, the SDP relaxation is tight with
probability approaching one. The SDP tightness results that we present (Theorems 3 and 4) will
generalize their deterministic sufficient condition [38, Theorem 1]. As such, their proofs directly
imply that our sufficient conditions also hold with probability approaching one in their random
data model.

Remark 1. In Chapter 2, we will see new exactness results for both random and semi-
random QCQPs (see Propositions 9 and 10). 0

1.1.2 OVERVIEW AND OUTLINE OF CHAPTER

In contrast to the literature, which has mainly focused on simple QCQPs or QCQPs under certain
structural assumptions, in this chapter, we will consider general QCQPs and develop sufficient
conditions for both the convex hull result and the SDP tightness result.

We first introduce the epigraph of the QCQP by writing

Opt =  inf 2t : (x,t) € Dy,
pr= inf (2 (n.8) € D)

where D is the epigraph of the QCQP in (1.1), i.e.,

qo(z) < 2t
D={(x,t) e RN xR: ¢x) <0, Vi€ [my] . (1.2)
gi(x) =0, Vi € [my + 1, m]

As (x,t) — 2t is linear, we may replace the (potentially nonconvex) epigraph D with its convex
hull conv (D). Then,

Opt =  inf 2t: (x,t) € D)}.
b= il (205 (5,0) € con(D)

14



1.1 Introduction

A summary of our contributions, along with an outline of the chapter, is as follows:

i In Section 1.2, we introduce and study the standard SDP relaxation of QCQPs [161] along
with its optimal value Optgpp and projected epigraph Dspp. We set up a framework for
deriving sufficient conditions for the “convex hull result,” conv(D) = Dspp, and the “SDP
tightness result,” Opt = Optgpp. This framework is based on the Lagrangian function
(7, @) = qo(z) + D1 7igi(x) and the eigenvalue structure of a dual object I' € R™.
This object I', which consists of the convex Lagrange multipliers, has been extensively
studied in the literature (see [188, Chapter 13.4] and more recently [159]).

ii In Section 1.3, we define an integer parameter k, the quadratic eigenvalue multiplicity,
that captures the amount of symmetry in a given QCQP. We then give examples where the
quadratic eigenvalue multiplicity is large. Specifically, vectorized reformulations of quadratic
matrix programs [17] are such an example.

iii In Section 1.4, we use our framework to derive sufficient conditions for the convex hull
result: conv(D) = Dspp. Theorem 2 states that if I is polyhedral and £ is sufficiently
large, then conv(D) = Dspp. This theorem actually follows as a consequence of The-
orem 1, which replaces the assumption on the quadratic eigenvalue multiplicity with a
weaker assumption regarding the dimension of zero eigenspaces related to the matrices
A;. Furthermore, our results in this section establish that if I' is polyhedral, then Dspp is
SOC representable; see Remark 8. In particular, when the assumptions of Theorems 1 or 2
hold, we have that conv(D) = Dspp is SOC representable. In Section 1.4.1, we provide
several classes of problems that satisfy the assumptions of these theorems. In particular, we
recover a number of results regarding the TRS [87], the GTRS [180], and the solvability
of systems of quadratic equations [15]. In Section 1.4.2, we compare our assumption that
I' is polyhedral with the assumption that the QCQP is an SD-QCQP and show that our
assumption is strictly more general. In Section 1.4.2, we prove that the SOCP relaxation
of SD-QCQPs considered by [21] and Locatelli [111, 112] is indeed equivalent to the SDP
relaxation. Consequently, this allows us to recover some of the results from [21, 111, 112] as
a consequence of our sufficient conditions (see Section 1.5.1). In Section 1.4.3, we conclude
by showing that the dependence we prove on the quadratic eigenvalue multiplicity £ is
optimal (Propositions 2 and 3).

iv In Section 1.5, we use our framework to derive sufficient conditions for the SDP tightness
result: Opt = Optgpp. Specifically, Theorems 3 and 4 give generalizations of the conditions
introduced by Locatelli [112] for SDP tightness in a variant of the TRS and Burer and Ye
[38] for SDP tightness in diagonal QCQPs.

v In Section 1.6, we discuss the assumption that the dual object I is polyhedral. In particular,
we show that it is possible to recover both a convex hull result (Theorem 7) and an SDP
tightness result (Theorem 8) when this assumption is dropped as long as the quadratic
eigenvalue multiplicity £ is sufficiently large.

To the best of our knowledge, our results are the first to provide a unified explanation of many
of the exactness guarantees present in the literature. Moreover, our results also provide significant
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1 Objective value and convex hull exactness

generalizations in a number of settings. We discuss the relevant comparisons in detail in the
corresponding sections as outlined above. Finally, our results present the first sufficient conditions

under which the convex hull of the epigraph of a general QCQP is SOC representable.

1.1.3 ADDITIONAL NOTATION

Let B(z,7) = {x € R": ||z — Z|| < r} denote the n-ball with radius r and center Z. For a
subspace of V' of R™ and € R", let Iy, denote the projection of x onto V.

1.2 A GENERAL FRAMEWORK

In this section, we introduce a general framework for analyzing the standard Shor SDP relaxation
of QCQPs. We will examine how both the objective value and the feasible domain change when
moving from a QCQP to its SDP relaxation.

We make an assumption that can be thought of as a primal feasibility and dual strict feasibility
assumption. This assumption (or a slightly stronger version of it) is standard and is routinely made
in the literature on QCQPs (see for example [17, 24, 194]).

Assumption 1. Assume the feasible region of (1.1) is nonempty and there exists v* € R™ such

thaty” > Oforalli € [my]and Ag + > 1%, 77 A; > 0. O
Remark 2. By the continuity of 7 = Amin (Ao + >_i% 7iAi), we may assume without loss of
generality that ) > O foralli € [my]. O

The standard SDP relaxation of (1.1) takes the following form

1 o7
Y= <x X)

Optgpp = xeRg{l)g o) (@0 Y) s (Q5,Y) <0, ¥i € [my] . (13)
(Qi,Y)=0,Yie [mr+1,m]
Y=0

Here, Q; € SN*1 is the matrix Q; == (ZZ Z; ) Let Dspp denote the epigraph of (1.3) projected

onto the (z, t) variables, i.e., define

IX e SN

1 2T
Y= (x X)

Dspp = (m,t) e RV*L. <Q07Y> < 2t . (1.4)
(Ql,Y> <0,V e [m[]
(Qi1,Y) =0, i € [my + 1,m]
Y >0

By taking X = x2T inboth (1.3) and (1.4), we see that D C Dspp and Opt > Optgpp. Noting
that Dspp is convex (it is the projection of a convex set), we further have that conv(D) C Dspp.
The framework that we set up in the remainder of this section allows us to reason about when
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equality occurs in both relations, i.e., when conv(D) = Dspp and/or Opt = Optgpp. We will
refer to these two types of result as “convex hull results” and “SDP tightness results.”

1.2.1 REWRITING THE SDP IN TERMS OF A DUAL OBJECT

For~v € R™, define

A() = Ao+ Y %A, b(y)=bo+ Y vibi, c(y) =co+ D vici,
=1 =1 =1
q(v, %) = qo(z) + Y _ 7igi().
=1

It is easy to verify that (v, ) = zTA(v)z + 2b(y)Tx + c(v). Our framework for analyzing
(1.3) is based on the dual object

_ m. A(y) =0
I‘._{veR C >0, Vi € [mi] }

We begin by rewriting both Dspp and Optgpp to highlight the role played by I'.

Lemma 1. Suppose Assumption 1 holds. Then

Dspp = 4 (x,t) : supq(y,r) <2t and Optgpp = min supq(7, ).
~er zeRN yer

We note that the second identity in Lemma 1 is well-known and was first recorded by Fujie and
Kojima [71].

Proof. The second identity follows immediately from the first identity, thus it suffices to prove
only the former.
Fix Z and consider the SDP

Jnf 4(Qo,Y): (Qi,Y) <0, Vi € [my] : (15)
) (Qi,Y) =0, Vi € [my +1,m]
Y =0

Comparing programs (1.4) and (1.5), we see that (#,%) € Dspp if and only if the value 2¢ is
achieved in (1.5). The dual SDP to (1.5) is given by

c(y) =2t b(y)T ~ yT) -

sup 2t + 2<y, SAU> : (b(')/) -y A(V) N : (L.6)
vER™ teR yeRN v >0, Vi € [my]
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1 Objective value and convex hull exactness

Note that the first constraint in the dual SDP can only be satisfied if A(7y) > 0. We may thus
rewrite

1\ (e(y) =2t b()T—yT\ (1
(1'6) = sup 2t + 2<y, §Q‘> : (.I) (b(fy) —y A(")/) ) (x> > 0, Vo € ]RN

YER™ tER,yeRN

yel
- Sup 2t + 2(y, &) : q(v,x) = 2(y,x) = 2t, Vo € R
~ER™ teR, yeRN vyel

= sup inf q(v,2)+2(y,& — ).
~ED yeRN TERN

We first consider the case that the value of the dual SDP (1.6) is bounded. Assumption 1 and
Remark 2 imply that (1.6) is strictly feasible. Then by strong conic duality, the primal SDP (1.5)
achieves its optimal value and in particular must be feasible. Let v* be such that A(7*) > 0 (this
exists by Assumption 1) and let y* = 0. Then,

lim ¢(v",2)+2(y", 2 —2) = lim q¢(y" z) = oc.
llz[|[—o0 llz[| o0

In other words, z — ¢(v*, z)+2(y*, & — x) is coercive and we may apply the Minimax Theorem
[62, Chapter VI, Proposition 2.3] to get

(15)=(L6) = min  sup q(7, %)+ 2(y, & — z) =supq(y,2).
TERY yer yeRN ver

The last equation follows as for any x # £, the supremum may take ¥ arbitrarily large in the
direction of & — x. We conclude that if the value of the dual SDP (1.6) is bounded, then

(537 f) € DSDP — Su?‘](’% JA;) < 2£
ve

Now suppose the value of the dual SDP (1.6) is unbounded. In this case (2, #) ¢ Dspp for any
value of £. It remains to observe that

supq(v,2) > sup  inf q(v,2) +2(y, & — z) = oo.
~er ~vyerl,yeRN zeRN

In particular, (£, ) does not satisty sup,er q(7,2) < 21 for any value of f. We conclude that if
the value of the dual SDP (1.6) is unbounded, then for all £,

(#,1) ¢ Dspp and  supq(y, ) £ 2t. [
vyel’

? ?
Remark 3. It is not hard to show? that the questions conv(D) = Dspp and Opt = Optgpp
are invariant under invertible affine transformations of the z-space. In particular, the sufficient

2 A short proof follows from Lemma 1.
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Figure 1.1: The blue region (first row) is an example of the set I' for some QCQP with two constraints.
Lemma 1 then states that Dspp (the leftmost set on the second row) is equal to the intersection
of thesets {(z,t) € R™ x R: ¢(v,x) < 2t} (the remaining sets on the bottom row) over the
extreme points <y of this blue region.

conditions that we will present in this chapter only need to hold after some invertible affine
transformation. In this sense, the SDP relaxation will “find” structure in a given QCQP even if it
is “hidden” by an affine transformation. OJ

1.2.2 THE EIGENVALUE STRUCTURE OF [

We will make a technical assumption on I" and ¢(y, ) in the remainder of our framework.

Assumption 2. Assume that for all # € R, if sup.,cp q(7, #) is finite then its maximum value is

achievedin T". O
Remark 4.Asy +— ¢(v,%) is linear in 7y and I is closed, Assumption 2 holds for example
whenever I is polyhedral or bounded. O

Under Assumption 2, the following definition is well-defined.

Definition 1. Suppose Assumption 2 holds. For any # € R” such that sup,er q(7, &) is finite,
define F(£) to be the face of I achieving sup, cp q(7, £), i.e.,

F(Z) == argmax q(v, x). O
~yel’
Definition 2. Let F be a face of I'. We say that F is a definite face it there exists v € F such that

A(7y) > 0. Otherwise, we say that F is a semidefinite face and let V(F) denote the shared zero
eigenspace of F, i.e.,

V(F) = {UERN: A(y)v =0, V'ye}'}, (]

Note that under Definition 2, each face of I is ezther a definite face or a semidefinite face.
Specifically, a definite face is not also a semidefinite face.
The following lemma shows that V(F), which 4 priori may be the trivial subspace {0}, in fact

contains nonzero elements when F is a semidefinite face.
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Lemma 2. Let F be a semidefinite face of T. Then V(F) N SN=Y is nonempry.

Proof. Let# denote a vector in the relative interior of . By the assumption that F is a semidefinite
face, there exists v € SV 1 such that vTA(4)v = 0. We claim thatv € V(F). As A(y) = 0
forally € F, it suffices to show that vTA()v < O forall y € F. Suppose vTA(7)v > 0 for
some ' € F. Then, as ¥ is in the relative interior of F, there exists € > 0 small enough such
thaty. := 4 + €(§ — /) € F. Finally, by the linearity of v — vT A(7y)v in 7, we conclude that
vTA(7e)v < 0, a contradiction. [

1.2.3 THE FRAMEWORK

Our framework for analyzing the SDP relaxation consists of an “easy part” and a “hard part.”
The former only requires Assumptions 1 and 2 to hold while the latter may require additional
assumptions. We detail the “easy part” in the remainder of this section.

Begin by making the following observations.

Lemma 3. Suppose Assumptions 1 and 2 hold and let (&,t) € Dspp. If F (&) is a definite face of T,
then (2,1) € D.

Proof. Let F := F(Z). Because F is a definite face, there exists 7* € F such that A(y*) > 0.
We verify that (2, ) satisfies each of the constraints in (1.2).

1. By continuity, there exists € > 0 such that A((1+¢€)v*) > 0. We claim that (1+€)7* € F.
Indeed, A(v*) and A((1 + €)v*) are both positive definite, thus the constraint A(y) > 0
is inactive at both v* and (1 + €)~*. Furthermore, for all i € [m;], the constrainty; > 0
is active at v* if and only if it is active at (1 + €)7*. We conclude that (1 + €)7* € F and
in particular 0 € aff (F). This implies

q(2) = q(0,2) = q(v*,2) < 21.

2. Leti € [my]. By continuity there exists € > 0 such that A(y* + ee;) > 0. Thus,
v* 4 €e; € I'. In particular, since ¢(7y, Z) is maximized on F in I, we have that

q(v* +eei, &) — q(v*, )
€

<0.

qi(%) =
3. Leti € [mg + 1, m]. By continuity, there exists € > 0 such that A(y* & €e;) > 0. Thus,

v* £ €e; € I'. In particular, since ¢(7y, Z) is maximized on F in I, we have that

q(v* +ee;, &) — q(v*, )
€

qi(2) = <0.
Repeating this calculation with —e gives ¢;(£) > 0. We deduce that ¢;(Z) = 0. |

Observation 1. Suppose Assumption 1 holds, and let F be a face of . If aff dim(F) = m, then F
is definite.
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1.3 Symmetries in QCQPs

Together, Lemma 3 and Observation 1 give a sufficient condition for a point (2, %) € Dspp
to belong to D, namely when aff dim(F(Z)) = m. Concretely, we can use the quantity
aff dim(F(Z)) to measure the progress of a convex decomposition algorithm.

Lemma 4. Suppose Assumptions 1 and 2 hold. Suppose furthermore that:

For every (2,t) € Dspp with F(2) semidefinite, we can write (2, 1) as a convex com-
bination of points (To,te) € Dspp such that aff dim(F(z,)) > aff dim(F(2)). (1.7)

Then conv(D) = Dspp and Opt = Optgpp.
Proof. Suppose for the sake of contradiction that conv(D) # Dspp. Let

(#,t) € argmax (aff dim(F(2))).
DSDP\COHV(D)

The point (#, ) is well-defined as aff dim(F(2)) is a nonnegative integer bounded above by m — 1
(this follows from Lemma 3 and Observation 1). By Lemma 3, we must have that F () is semidefi-
nite. By (1.7), there exist points (2, to) € Dspp such that aff dim(F(z)) > aff dim(F(2)).
Then by construction of (#,#) and the fact that aff dim(F(z,)) > aff dim(F (%)), we have
that (4, to) € conv(D). We conclude that (£,7) € conv({(za,ta)},) C conv(D), a contra-
diction. [

Equivalently, when the assumptions of Lemma 4 hold, the following convex decomposition
procedure is guaranteed to terminate and succeed: Given (#,%) € Dspp, if (,%) € D return
(#,1), else decompose (,%) as a finite convex combination of points (Ta,ta) € Dspp with
aff dim(F(zq)) > aff dim(F(2)) and recursively compute convex decompositions of (zq, ta ).

A similar proof gives the following sufficient condition in the context of the SDP tightness
result.

Lemma 5. Suppose Assumptions 1 and 2 hold. Suppose furthermore that:

Forevery optimal (&,1) € Dspp with F (%) semidefinite, there exists a point (z', ') €

Do such that t! < i and aff dim (F(2')) > aff dim (F(#)). (18)

be}’l Opt = OptSDP'

The proof of this statement follows the proof of Lemma 4 almost exactly and is omitted.

The “hard part” of our framework for the convex hull result is to give sufficient conditions
for (1.7). We give examples of such conditions in Section 1.4. Similarly, the “hard part” of our
framework for the SDP tightness result is to give sufficient conditions for (1.8). We give examples
of such conditions in Section 1.5.

1.3 SYMMETRIES IN QCQPs

In this section, we examine a parameter k that captures the amount of symmetry present in a

QCQP of the form (1.1).
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1 Objective value and convex hull exactness

Definition 3. The quadratic eigenvalue multiplicity of a QCQP of the form (1.1) is the largest
integer k such that for every i € [0, m] there exists A; € S™ for which A; = I, ® A;. O

The quadratic eigenvalue multiplicity £ is always at least 1 as we can write each A; as A; =
I1 ® A;. On the other hand, it is clear that & must be a divisor of V. In particular, k is always well
defined.

For vy € R™, we also define A(7y) = Ao + >i" 4 viAi.

Example 1. Consider the following optimization problem

inf _HxHQ 23 —a3+a3—27-1<0
zeR4 20 203423+ 22d+2f-1<0 |

The quadratic forms in this problem are
Ad=Le (), A=Le('.), ad Ad=Lo(%)

Thus, this QCQP has quadratic eigenvalue multiplicity & > 2. Recalling that & must be a divisor
of N and noting that A; cannot be written as Ay = Iy ® A; forany A € St we conclude that
k=2 O
Remark 5. Suppose we have access to some £t € R such that A(u) has distinct eigenvalues.
Then, by simply performing a spectral decomposition of A(y) and counting the multiplicities of
the eigenvalues, we can correctly output the value k. O

Remark 6. The quadratic eigenvalue multiplicity can be viewed as a particular group symmetry
in {Ap, A1, ..., Ap}. Group symmetric SDPs have been studied in more generality with the
goal of reducing the size of large SDPs (and in turn their solve-times) [54, 72]. See also [53] for an
application of such ideas to solving large real-world instances of the quadratic assignment problem.
Specifically, the Wedderburn decomposition of the matrix C*-algebra generated by { Ag, A1, ..., A}
plays a prominent role in the analysis of such symmetries. In this setting, our parameter & can be
compared to the “block multiplicity” of a basic algebra in the Wedderburn decomposition. This
decomposition can be computed efficiently given access to a generic element from the center of
the algebra (see [55, 73] and references therein). 0

Recall that in Lemma 2, we showed that dim(V(F)) > 1 whenever F is a semidefinite face of
I'. The following lemma will show that when the quadratic eigenvalue multiplicity is large, we
can in fact lower bound dim(V(F)) > k. This is the main property of the quadratic eigenvalue
multiplicity that we will use in Sections 1.4 and 1.5.

Lemma 6. If F is a semidefinite face of T', then dim(V(F)) > k.

Proof. By Lemma 2, there exists © € V(F) N SV 1. We can write 9 as the concatenation of

k-many n-dimensional vectors v, . . ., v, € R™. Then fory € F,
A() 1 A(y)vr
A7) v2 A(y)ve
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1.4 Convex hull results

Hence, A(y)v; = Oforalli € [k]. As ¥ # 0, there exists some ¢ € [k] such that v; # 0. Finally,
note that forall y € R¥,

Ay ®@vi) = Ik @ A(Y))(y @ vi) =y @ (A(y)vi) = 0.
In other words, R* ® v; C V(F) and thus dim(V(F)) > k. [ |
Remark 7. In quadratic matrix programming [17, 20], we are asked to optimize

tr(XTAX) + 26x(BIX) + ¢; < 0,
: Vi € [m[]
T T .
bl N ETAX) +26(BoX) + ot it 4 %) 4 240(BIX) 40 = 0, (7
Vi € [m[ +1, m]
(1.9)

where A; € S, B; € R"** and ¢; € Rforalli € [0, m]. We can transform this program to an
equivalent QCQP in the vector variable # € R™ by identifying

L1 oo T(k—1)n+1
x—|: - .

Then
tr(XTAX) 4+ 2tr(B] X) + ¢; = 2T (I, ® A;)z + 2blz + ¢,

where, b; € R™ has entries (bi)(t—l)n—l— s = (Bi)s,. In particular, the vectorized reformulation
of (1.9) has quadratic eigenvalue value multiplicity . g

1.4 CONVEX HULL RESULTS

In this section, we present new sufficient conditions for the convex hull result Dspp = conv(D).
We will first analyze the case where the geometry of I is particularly nice.

Assumption 3. Assume that I is polyhedral. O

We remark that although Assumption 3 is rather restrictive, it is general enough to cover the case
where the set of quadratic forms {A4; },¢ (g ,,,] is diagonal or simultaneously diagonalizable—a class
of QCQPs which has been studied extensively in the literature (see Section 1.4.2 for references). We
will present examples and non-examples of Assumption 3 in Sections 1.4.1 and 1.4.2 and discuss
the difficulties in removing this assumption in Section 1.4.3. Finally, we will recover weaker results
without this assumption in Section 1.6.

Note that Assumption 3 immediately implies Assumption 2 so that we may apply the framework
from Section 1.2.

Our main result in this section is the following theorem.
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1 Objective value and convex hull exactness

MA

7

Figure 1.2: In each row above, we illustrate first the set { A(y) € S? : v € R% } on the left and the set T
on the right.

Theorem 1. Suppose Assumptions 1 and 3 hold. Furthermore, suppose that for every semidefinite
face F of T we bave

dim(V(F)) > aff dim({b(y) : v € F}) + 1.
Then,
conv(D) = Dspp and  Opt = Optgpp -

As before, the second identity follows immediately from the first identity, thus it suffices to
prove only the former. The main effort in this section will be the proof of the following lemma.

Lemma 7. Suppose Assumptions 1 and 3 hold. Furthermore, suppose that for every semidefinite face
F of T we have

dim(V(F)) > aff dim({b(v) : v € F}) + 1.

Let (#,1) € Dspp and let F = F(2). If F is a semidefinite face of U, then (2, ) can be written as
a convex combination of points (To, to) € Dspp such that aff dim(F(z4)) > aff dim(F(2)).

The proof of Theorem 1 follows at once from Lemma 7 and Lemma 4.
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1.4 Convex hull results

Before proving Lemma 7, we introduce some new notation for handling the recessive directions
of I" and prove a straightforward lemma about decomposing I'. Let

A(y) ="7Ai, b(y) =D b, &) =D e, d(v.7) =Y via().
=1 =1 =1 =1

Lemma 8. Suppose Assumption 3 holds. Then 1" can be written as
I' =T, + cone(T';)

where both I'c and T, are polytopes. Here, I'y. may be the trivial set {0}. Furthermore, for & € RN
such that sup.,cr q(7, &) is finite, we have

F (&) = Fe(&) + cone(F, (%))

where Fe () is the face of I maximizing q(7y, &) and F;. (&) is the face of T satisfying (v, &) = 0.

Proof- This follows immediately from the Minkowski-Weyl Theorem and noting that §(7y,, ) <
0 forall . € I’y when sup,, ¢ (7, #) is finite. [

Proof of Lemma 7. Without loss of generality, we may assume that sup. <y ¢(7, #) = 2. Other-
wise, we can decrease £ and note that D is closed upwards in the t-direction. In particular, we have
that q(v, ) achieves the value 2f on F.

We claim that the following system in variables v and s

b(y),v) =s,Vy €F
veV(F),seR

has a nonzero solution. Indeed, we may replace the constraint (b(y),v) = s, ¥y € F with at
most

aff dim({6(y) : v € F}) +1 < dim(V(F))

homogeneous linear equalities in the variables v and s. The claim then follows by noting that the
equivalent system is an under-constrained homogeneous system of linear equalities and thus has a
nonzero solution (v, s). It is easy to verify that v # 0, hence by scaling we may take v € SV 1.
In the remainder of the proof; let v € V(F) N SY¥~1and s € R denote a solution pair to the
above system.

Apply Lemma 8 to decompose I' = I, + cone(I';) and F = F, + cone(F;).

We will modify (#, ) in the (v, s) direction. For a € R, we define

(Ta,ta) = (i‘ +av, t+ as).

25



1 Objective value and convex hull exactness

First, for any fixed 7 € F, we consider how q(7vf, o) — 2t changes with . We can expand

q(VfsTa) = 2ta = (Q(Vfa ) — 27?) +2a(2TA(vf)v + b(vp)To — ) + a®vT A(yp v

= Q('vajj) — 2
:0’

where the second line follows as A(y¢)v = 0 (recall v € V(F)) and b(yf)Tv = s for all
v¢ € F,and the third line follows as ¢(v¢, &) = 2t for all vt € F. Now consider any v, € F
and v, € F;. Note that v, and 7. + 7, both lie in F. Then by the above calculation, both
a = q(Ves Ta) — 2tg and @ — (Ve + Y, To) — 2t are identically zero. In particular, we also
have that & — ¢(Vr, o) = ¢(Ve + Vr, o) — ¢(Ye, o) = O is identically zero.

On the other hand, for v, € T'c \ Fe, we can expand
q(Yes To) — 2ty = (q(’ye, z) — Qf) + 20(2TA(7ye)v + b(7e) T — 8) + oz2vTA(’ye)v,

and note that vT A(ye)v > 0holdsbecause A (. ) is positive semidefinite. Hence, forye € I'e\ Fe,
we have that a — ¢(7e, o) — 21, is a (possibly non-strictly) convex quadratic function taking
the value q(7e,#) — 2 < Oat o = 0 (the strict inequality here follows from the fact that
Ye € Te \ Fe).

Similarly, for v, € T’y \ F;, we can expand
G Ta) = G, @) + 2027 A9 )0 + b(1)T0) + a%0T A(y, ).

Note that /vl("y) = Oforally € I',. Hence, for vy, € I'; \ Fy, we have that a — ¢(y,, 24 ) is
a (possibly non-strictly) convex quadratic function taking the value ¢(7,, £) < Oata = 0 (the
strict inequality here follows from the fact that vy, € T’y \ F;).

We have shown that the following finite set of univariate quadratic functions in «,

Q = ({q(’ye, xa) — 2ty Ye € eXtr(Fe)} U {d(’}/ra xa) Y € eXtr(FT’)}> \ {0}7

consists of (possibly non-strictly) convex quadratic functions which are negative at &« = 0. The
finiteness of this set follows from the assumption that I is polyhedral.

We claim that there exists a quadratic function in Q which is strictly convex: Note v* from
Assumption 1 satisfies 7* € I'. Thus, we can decompose v* = 7. + ay, fory, € I'e, v, € Ty,
and « > 0. Then,

0 < vTA(Y")v = [vTA(ye)v] + Oé[’UTA(’}/T)U}.

Hence, one of the square-bracketed terms must be positive. The claim then follows by linearity in
~y of the functions ¥ — vTA(y)v and 7y — vT A(7y)v.

As Q is a finite set by Assumption 3, there exists an a4 > 0 such that (o) < Oforallg € Q
with at least one equality. Then because I'c = conv(extr(I'c)) and I, = conv(extr(I’;)),
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1.4 Convex hull results

we have ¢(Ve, Ta,) < 2to, forally. € T'cand §(vp,Ta,) < Oforally, € I'y. Thus,
(Tay,ta,) € Dspp.

It remains to show that aff dim(F(z,,)) > aff dim(F(Z)). The discussion in the previous
paragraph implies that Sup, e (7, Tay ) < 2tq, . This value is achieved by v € F(): Note
q(vfs ) — 2ta, = q(vs, &) — 2¢ = 0. In particular, F(£) C F(z,, ). Thus, it suffices to
show that there exists 74 € F(zq, ) \ F(2).

Suppose the quadratic function in Q with a4 as a root is of the form ¢(v4, o) — 2t4. Then
Y+ € F(2a,)as q(V4, Ta, ) — 2ta, = 0. On the other hand, 74 ¢ F(Z) by the construction
of O.

Suppose the quadratic function in Q with a1 as a root is of the form ¢(7,, o). Select any
v € F(Z) and recall that ¢(y¢, z) — 2t is identically zero as an expression in «.. Define
Y+ = ¥ + Vr- Then,

q<7+7xa+> - 2toz+ = (q(7f7 xa+) - 2ta+) + é(’}’hmour) =0

and hence 74 € F (x4, ). On the other hand, §(7,, &) < 0 by the construction of Q. In
particular,

q(vs,2) — 20 = (q(’Yf, ) — 2f) +q(v,2) <0

and thus vy ¢ F(Z).

The existence of an v < 0 satisfying the same properties is proved analogously. Then we may
write (2, ) as a convex combination of (Zq, , ta, ) and (Ta_,ta_). [

The next theorem follows as a corollary to Theorem 1.

Theorem 2. Suppose Assumptions 1 and 3 hold. Furthermore, suppose that for every semidefinite
Jace F of T we have

k> aff dim({b(y): v € F}) + 1.
Then,
conv(D) = Dspp and Opt = Optgpp -

Proof. This theorem follows from Lemma 6 and Theorem 1. [ |

Remark 8. We remark that when I' is polyhedral (Assumption 3), the set Dspp is actually SOC
representable: By Lemmas 1 and 8 we can write

Dspp = {(m,t) ssupq(y,z) < Qt}
yel’

= (2,1): q(Ve, ) < 2t, Ve € extr(Te)
- T (g, x) <0, Yy € extr(ly) [
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1 Objective value and convex hull exactness

In other words, Dspp is defined by finitely many convex quadratic inequalities. In particular, the
assumptions of Theorem 1 and 2 imply that conv (D) is SOC representable. O

1.4.1 APPLICATIONS OF THEOREMS 1 AND 2

We now state some classes of problems where the assumptions of Theorems 1 and 2 hold.

The most basic setup we can cover via these theorems is the case of convex quadratic programs.
Corollary 1. Suppose Assumption 1 holds. If Ag = 0, mp = 0and A; = 0 forall i € [my), then
conv(D) = Dspp  and  Opt = Optgpp -

Proof. Assumption 3 holds in this case as

_ m. A =0 | _ m
F—{'yER >0 }—{yGR 1y >0}

Furthermore, each face of I' contains the origin. Thus noting that A(0) = Ag > 0 is positive
definite, we conclude that I" does not have any semidefinite face. This allows us to apply Theorem 2.

Remark 9. It is possible to apply a standard limit argument (see for example [38]) to handle
additionally the case where Ay is only positive semidefinite. ]

Next, we discuss a number of results on TRS and GTRS.

Corollary 2. Suppose m = 1 and Assumption 1 holds. Then,
conv(D) = Dspp  and  Opt = Optgpp .

Proof. The set I" will either be a bounded interval [y1, 2], a semi-infinite interval [y;, 00), or the
entire line (—00, 00). In all three cases, I is polyhedral and Assumption 3 holds.

By Observation 1, any semidefinite face of I" must have affine dimension at mostm — 1 = 0.
In particular aff dim({b(7) : v € F}) = 0 and the assumption on the quadratic eigenvalue
multiplicity in Theorem 2 holds as k is always at least 1. [

Corollary 2 in particular recovers the well-known results associated with the epigraph set of the
TRS? and the GTRS (see [87, Theorem 13] and [180, Theorems 1 and 2]).

Corollary 3. Suppose Assumptions 1 and 3 hold. Ifb; = 0 forall i € [m), then

conv(D) = Dspp  and Opt = Optgpp -

3Corollary 2 fails to fully recover [87, Theorem 13]. Indeed, [87, Theorem 13] also gives a description of the convex
hull of the epigraph of the TRS with an additional conic constraint under some assumptions. We do not consider
these additional conic constraints in our setup.
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1.4 Convex hull results

Figure 1.3: The sets D (in orange) and conv(D) (in yellow) from Example 2

Proof. Note that b(y) = by + > ;% vib; = by forany v € R™. Thus, for any face F of I, we

have
aff dim({b(vy) : v € F}) +1 =aff dim({bo}) + 1 = 1.

In particular, the assumptions on the quadratic eigenvalue multiplicity in Theorem 2 holds as & is
always at least 1. n

Example 2. Consider the following optimization problem

in 2{37% + 23 + 1027 :

23— 23 -5<0
z€eR ’

—z¥ +23-50<0

We check that the conditions of Corollary 3 hold. Assumption 1 holdsas A(0) = Ag =1 > 0
and x = 0 is feasible. Next, Assumption 3 holds as

I+7—722=20
F=¢yeR*: 1-y+722>0
v>0

One can verify that
T = conv({(0,0), (1,0), (0, 1)}) + cone({1, 1}).
Finally, we note that by = by = 0. Hence, Corollary 3 and Remark 8 imply that

22 + 2% + 107 < 2t
conv(D) = Dspp = { (w,t) : 222 + 1021 — 5 < 2t
272 4+ 1027 — 50 < 2t

We plot D and conv(D) = Dspp in Figure 1.3. O

Remark 10 (Joint zero of a finite set of quadratic forms). Barvinok [15] shows that one can decide
in polynomial time (in N') whether a constant number, m g, of quadratic forms { A; }

] has

ie[mE
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1 Objective value and convex hull exactness

a joint nontrivial zero. That is, whether the system 2TA;x = Ofori € [mg]and 2Tx = 1is
feasible. We can recast this as asking whether the following optimization problem

min{ —zTx : vle <1
x ©2TAjx =0,Vi € [mg]

has objective value —1 or 0.

Thus, the feasibility problem studied in [15] reduces to a QCQP of the form we study in this
chapter. Note that Assumption 1 for a QCQP of this form holds, for example, by taking v* = 2e;
so that A(y*) = —1 + 2/ > 0 and noting that = 0 is a feasible solution to this QCQP. Then
when I' is polyhedral (Assumption 3), Corollary 3 implies that the feasibility problem (in even a
variable number of quadratic forms) can be decided using a semidefinite programming approach.
Nevertheless, Assumption 3 may not necessarily hold, and thus Corollary 3 does not recover the

full resule of [15]. O

Corollary 4. Suppose Assumption 1 bolds and for every i € [0, ml], there exists cv; such that A; =
ailn. Ifm < N, then

conv(D) = Dspp  and Opt = Optgpp -

Proof. Assumption 3 holds in this case as

- m . A(y) =0 B m . o+ Dt via; >0
F"{’VGR ' %-zo,we[wm}‘{7”\‘i t > 0, Vi € [my)

is defined by m + 1 linear inequalities.

Aseach A; = oI, we have that the quadratic eigenvalue multiplicity satisfies k. = N. By
Observation 1, any semidefinite face of I" must have affine dimension at most m — 1. In particular
aff dim({b(v) : v € F})+1 < m and the assumption on the quadratic eigenvalue multiplicity
in Theorem 2 holds as kK = N > m. The final inequality N' > m holds by the assumptions of
the corollary. [

Remark 11. Consider the problem of finding the distance between the origin 0 € RV and a piece
of “Swiss cheese” C' C RYV. We will assume that C' is nonempty and defined as

|z — yill < si, Vi € [ma]
C={zecRN: |z—z|>t,Viec[m) ¢,
<{L‘,bi> >, Vi € [mg]

where v, z;, by € RN and s, t;, ¢; € R are arbitrary. In words, C'is defined by m-many “inside-
ball” constraints, m2-many “outside-ball” constraints, and 73-many linear inequalities. Note that

each of these constraints may be written as a quadratic inequality with a quadratic form I, —1I, or
0. In particular, Corollary 4 implies that if m1 + ma + mg < N, then the value

xiergN{HxH?: zeCy
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1.4 Convex hull results

may be computed using the standard SDP relaxation of the problem.

Bienstock and Michalka [26] give sufficient conditions under which a related problem
inf cx e Ch
Jinf {o(x) : @ € O}

is polynomial-time solvable. Here, go : R — R is an arbitrary quadratic function but m; and
my are constant. Specifically, they devise an enumerative algorithm for problems of this form
and prove its correctness under different assumptions. In contrast, our work deals only with the
standard SDP relaxation and does not assume that the number of quadratic forms is constant.

Yang et al. [191] consider QCQPs with additional “hollow” type constraints. Formally, they
consider a QCQP with domain G := F'\ |J,, int(E,) where F is a quadratically constrained
domain and {E,, } is a finite collection of non-intersecting ellipsoids completely contained within
F'. They show that if the SDP relaxation for a QCQP over the domain F' is exact, then the SDP
relaxation strengthened by additional linear constraints is exact for the same QCQP over the
domain G. In contrast, Corollary 4 makes no assumption on how the constraints defining G
intersect but deals only with linearly many (in the dimension) spherical constraints. O

1.4.2 SD-QCQPSs AND THE POLYHEDRALITY ASSUMPTION

A natural class of QCQPs where Assumption 3 is immediately satisfied is the class of simultaneously
diagonalizable QCQPs (SD-QCQPs) (see Definition 5 below). In this section, we first discuss
how the simultaneously diagonalizable (SD) assumption relates to the polyhedrality assumption.
Then, in Section 1.4.2, we show that under the SD assumption, the standard SDP relaxation is
in fact equivalent to the lifted SOCP relaxation (both in terms of optimal value and projected
epigraph). Consequently, our framework automatically generates sufficient conditions for SOCP-
based tightness and convex hull results. Such sufficient conditions have been studied in the literature
and we will compare our conditions with sufficient conditions proposed by Ben-Tal and den Hertog
[21] and Locatelli [112] in Section 1.5.1.

Recall the following definition.

Definition 4. A set of matrices {Ai};c0 ) € S¥ is said to be simultaneously diagonalizable
(SD) if there exists an invertible matrix U € RY*¥ such that the set {UTA;U}

diagonal matrices.

1€[0,m] CODSISES of

We note that this condition, sometimes referred to as simultaneously diagonalizable &y congru-
ence, is weaker than the notion of being simultaneously diagonalizable &y simzlarity which further
requires that U be an orthonormal matrix.

Definition 5. A simultancously diagonalizable QCQP (SD-QCQP) is a QCQP of the form (1.1)
where {A;} ;¢ (0 ) I8 SD. O

Lemma 9. For any SD-QCQP, we have that I is polybedral.
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1 Objective value and convex hull exactness

Proof. Let U € RN*N be an invertible matrix such that UTA;U = A; is diagonal for each
i € [0, m]. Note that A(y) = Oifand onlyif UTA(y)U > Oifand onlyif Ao+ i~ v;A; = 0.
It is clear that

m . .

v >0, Vi € [my]

is polyhedral. u

The following example shows that changing a given constraint in a QCQP from an inequality
into an equality constraint can alter whether I" is polyhedral or not. As a consequence, we will
deduce by Lemma 9 that Assumption 3 is strictly weaker than the simultaneous diagonalizability
assumption.

Example 3. Consider the matrices

1 -1 -1
Ay = V20|, A= 1 1], Ay= 1 -1
0 V2 1 -1 -1 -1

Note that A(vy) > 0if and only if each of its two blocks are positive semidefinite. Recall that a
2 X 2 matrix is positive semidefinite if and only if both its trace and determinant are nonnegative.
Suppose first that A; and As correspond to equality constraints. Then

- S l=m =220

F—{%Rg- (\/§+(71+72))(\/§(v1+72))(7172)220}
_ . mtesl
—{VERQ' 2—(71+’Y2)2—(’Yl—72)220}

+72 <1
= cR?: m .
{’Y M+as <1

is not polyhedral (see Figure 1.4 left). In particular by Lemma 9, we deduce that the set { Ag, A1, A2}
is not simultaneously diagonalizable.

Now suppose that A1 and A correspond to inequality constraints. Then

Y1+7 <1
<
I=<{~eR?: V+3<l = v ER?: 7+ <1
=0 720

is polyhedral (see Figure 1.4 right). Thus, we have constructed an example where the set { Ag, A1, A2}
is not simultaneously diagonalizable but I' is polyhedral. We deduce that Assumption 3 is strictly
weaker than the simultaneous diagonalizability assumption. O

Remark 12. Ramana [150] showed that deciding whether a given spectrahedron is polyhedral
is coNP-hard. In particular, it is coNP-hard to decide whether Assumption 3 holds in general.
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1.4 Convex hull results

V2 V2

CIN .
@

Figure 1.4: The set I" with equality (orange) and inequality (yellow) constraints from Example 3

Nevertheless, it is possible to prove that this assumption holds for specific classes of interesting
QCQPs (for example see Corollaries 2 and 4). 0

THE EQUIVALENCE OF SDP AND SOCP RELAXATIONS OF SD-QCQPs

Given an SD-QCQP and the invertible matrix U, we may perform a change of variables to arrive at
a diagonal QCQP, i.e., a QCQP of the form (1.1) where each A; is diagonal. In the remainder of

this section, we assume that we have already made this change of variables and are left with

. - gi(x) <0, Vi € [my]
xlgr}%fj\{{(]o(ﬁ?) ’ qz(aj) 0, Vi € [m[ +1, m} }7 (1.10)

IIA

where ¢;(x) = (a;, x2> + 2(bi, ) 4+ ciya; € RN, b; € R, and ¢; € R foreachi € [0,m].
Here, 22 € R denotes the vector with (22); = (z;)? forall j € [N].
Ben-Tal and den Hertog [21] and Locatelli [112] study the following SOCP relaxation

(ai, y) +2(bi, z) +¢; <0,
Vi € [my]
Optsocp = inf {ag,y) + 2(bo,x) +co: (ai,y) +2(b;,x) + ¢; =0,
sERY, yeRY Vi € [my + 1,m]
yj > x?, Vj € [N]

(L11)
Let Dsocp denote the epigraph of (1.11) projected onto the (x, t) variables, i.c., define
Jy e RY :
(a0, y) + 2(bo, =) + co < 2t
Dsocp = 4 (,t) € RN T+ (as, ) + 2(bi, ) + ¢; <0, Vi € [my] - (112)
<aiay> + 2<b27x> + ¢ = 07 Vi € [ml + 17m]

yj > x?, Vj € [N]

The following proposition states that the SDP and the SOCP relaxations are equivalent for both
the convex hull question and the tightness question. In particular, we may apply the sufficient
conditions of this chapter for either result directly to the SOCP relaxation as well.
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1 Objective value and convex hull exactness

Proposition 1. For any SD-QCQP, we have

Dsocp = Dspp  and  Optsocp = Optspp -

The second identity in Proposition 1 was first recorded by Locatelli [112]. The first identity,
while straightforward, is to the best of our knowledge not present in the literature prior to our
work. The proof of this result is deferred to Appendix A.1.

Remark 13. Remark 8 implies that for any SD-QCQP satisfying Assumption 1, the set Dspp is
SOC representable in the original space. However, this representation may potentially involve
exponentially many quadratics—this follows as I" may have exponentially many extreme points and
rays. Moreover, identifying these extreme points and rays may require non-trivial computational ef-
fort. In contrast, Proposition 1 implies that Dspp = Dsocp is SOCP representable in a lifted space
(with only N new variables) using only linearly many convex quadratic constraints. Consequently,
the Dsocp representation is perhaps more interesting from a computational view. O]

1.4.3 ON THE SHARPNESS OF THEOREMS 1 AND 2

In this section we construct QCQPs that show that the assumptions made in Theorem 2 (and
hence in Theorem 1) cannot be weakened individually.

We first examine the quadratic eigenvalue multiplicity assumption in Theorems 1 and 2, and
show that both of these theorems break when the assumption on the lower bound on the value of
the quadratic eigenvalue multiplicity &,

k> affdim({b(y): ye€ F})+1

is relaxed to k > aff dim({b(~) : v € F}).

Proposition 2. For any positive integers n and k, there exists a QCQP in N = nk variables with
m = k + 1 constraints such that

* Assumptions 1 and 3 are satisfied,
* the quadratic eigenvalue multiplicity of the QCQPis k, and
o k satisfies
k> aff dim({b(7) : v € F})
for all semidefinite faces F of T', but

* Opt # Optgpp (and hence conv(D) # Dspp).
Proof. Consider the following QCQP

. 2 2 2 ||37”2 -1<0
min § —xy — Ty =~ T 1)t . . 1.13
xeRN{ bt (B=Dm L 2 1ynsr = 0, V5 € [K] (1)

Here, Ag = I;; ® (—eje]), Ay = I,and A; = Oforalli € [m].

34



1.4 Convex hull results

Assumption 1 holds because A1 = I > 0and z = 0 is feasible in (1.13). Moreover, Assump-
tion 3 holds because

D={yeR": v >0, A7) =0} ={yeR™: 1 >1}.

We compute: aff dim({b() : v1 = 1}) = k.

By Lemma 1,
Optgpp = min supq(y,z) <supq(y,0) = —1.
z€RN yeT ~yer
On the other hand, it is clear from (1.13) that Opt = 0. |

We next provide a construction that illustrates that Theorems 1 and 2 both break when Assump-
tion 3 is dropped.

Proposition 3. There existsa QCQPinn = 2 variables with m = 2 constraints such that
o Assumptions 1 and 2 are satisfied,
* the quadratic eigenvalue multiplicity of the QCQPis k = 1, and
o k satisfies
k> aff dim({b(y): vy € F}) +1
for all semidefinite faces F of T, but
* Opt # Optgpp (and hence conv(D) # Dspp).

Proof. Consider the following QCQP

2 2
. 9  x]— x5+ 2x122 =0
- : : 1.14
genRrg{Hx el 22— 22 — 23139 = 0 (1.14)

10 11 1 -1
wef) () (0 0)

Assumption 1 holds since A(0) = I > 0and z = 0 s feasible in (1.14).
We will describe I" explicitly. Fora 2 x 2 matrix A(7y), we have that A(y) > 0if and only if
tr(A(y)) > 0and det(A(y)) > 0. Note that tr(A(y)) = tr(Ag) > 0 for all , thus

Here

F:{’yGRQ: 1+ +72)(1—71—72)—(’Yl—’72)220}
={veR?: 1-2)|* >0}
=B(0,27'/?).
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1 Objective value and convex hull exactness

Then Assumption 2 holds as I is bounded.

Itis clear that k& > 1. To see that k = 1, note that A has eigenvalues 1 and —1. Furthermore,
as by = by = 0, we have that aff dim({b(7y) : v € R?}) + 1 = 1. In particular, the same is true
for any semidefinite face F of T".

Next we compute Optgpp. By our explicit description of I, for any fixed & we have

. q1(x)
su ,Z) =qolr) + max )
veng ) = wl@) veB(O,l/\/i)<7 <Q2($)>>

= 0o(2) + /(@1(2)? + 2()?) /2

2
= qo(x) + [l
Then, by Lemma 1
Optspp = minsup g(7, )
~yel
o 2 2
= min(||z - e1|* + %)
=1/2.
On the other hand, it is clear from (1.14) that Opt = 1. |

1.5 EXACTNESS OF THE SDP RELAXATION

In this section, we use our framework to give new conditions under which Optgpp = Opt.

Theorem 3. Suppose Assumptions 1 and 3 hold. If for every semidefinite face F of I we have
0 ¢ yz){b(v) : v € F},

then any optimizer (2, %) in arg min , pyepy,, 2t satisfies (x*,t*) € D. In particular, Opt =
Optspp.

In other words, under the assumptions of Theorem 3, given any optimizer

1 aT
x X
of (1.3), we can simply return x as an optimizer for (1.1).

Proof. Let

(z*,t*) € argmin 2t.
(ﬁ,t)EDSDp

Let F = F(z*). We claim that F will always be definite under the assumptions of this theorem.
In particular, we will be able to apply Lemma 3 to conclude that (2, t*) € D. To this end, we will
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1.5 Exactness of the SDP relaxation

show that F is definite by first assuming that F is semidefinite and then deriving a contradiction
to the assumption that (z*, t*) € argmin, ycpyp, 2t

Assume for contradiction that F is a semidefinite face of I". By Lemma 2, V(F) has a nonzero
element. For the sake of convenience, let P := Il 5){b(7) : v € F}. Assumption 3 implies
that P is a nonempty closed convex set. Indeed, P is an affine transformation of F, which is a face
of the polyhedral set I', and is thus itself polyhedral.

Under our assumption, the compact set {0} and the nonempty closed convex set P are disjoint.
Thus, by the hyperplane separation theorem, there exists a nonzero vector v € V(F)and e > 0
such that vTb(y) < —eforally € F.

Apply Lemma 8 to decompose I' = I'¢ + cone(I';) and F = F + F;.

We will modify (z*,¢*) in the (v, —€) direction. Define

(Ta,ta) = (" + av, t* — ae),

where o > 0 will be chosen later.
First, consider how ¢(v, £o) — 2t, changes with « for fixed ¢ € F. We can expand

q(vf, xa) — 2ta = (q(vp, ") — 2t%) + 20(x*TA(yf)v + b(vf)Tv 4+ €) + aszA(fyf)v

(a(vp,z%) = 2t7)
0.

IN

The second line follows as A(y¢)v = 0and b(~yf)Tv < —eforall v¢ € F. The third line follows
asq(yf,x*) = 2t* forall vy € F.

On the other hand, for v, € T'¢ \ Fe, the function & — q(7e, To) — 2t,, is a continuous
function taking the value g(e, 2*) — 2t* < 0 at o = 0 (the strict inequality follows from the
fact thaty, € T'c \ Fe).

Similarly, for v, € I, \ F,., the function & — ¢(7y,, ) is a continuous function taking the
value ¢(,, *) < 0at o = 0 (the strict inequality follows from the fact that v, € I'; \ F;.).

We have shown that the following finite set of continuous functions in a,

Q ={q(Ve,Ta) — 2to : Ve € extr(Te) \ Fe} U{q(vr, xa) @ v € extr(T)) \ Fr )y

consists of continuous functions which are negative at o« = 0. The finiteness of this set follows
from the assumption that I is polyhedral.

Fixan o > Osuchthatg(a) < Oforeveryq € Q — thisis possible by the finiteness of Q and the
continuity of each ¢ € Q. Then because I'c = conv(extr(I'c)) and I, = conv(extr(I';)), we
have ¢(e, xo) < 2tq forallye € T'eand ¢(7y, xo) < Oforally, € I',.. Thus, (x4, ta) € Dspp.
In particular, min, ¢)epqy, 2t < 2t, < 2t*, a contradiction. |

The following theorem will follow from Theorem 3 by a perturbation argument.

Theorem 4. Suppose Assumptions 1 and 3 hold. If there exists a sequence (hj) jen in RY such that
lim; o0 hj = 0 and for every semidefinite face F of I and j € N we have

0 ¢ Tly(r){b(y) + hj : v € F},

37



1 Objective value and convex hull exactness
then Opt = OptSDP'

Proof. Consider the following sequence of QCQPs indexed by j € N:

o 1 qi(z) <0, Vi€ [my]
Ot '—;élﬂé%{%(m)”hj””' () = 0. Vi € [my + Lm] [

We will use the subscript j to denote all quantities corresponding to the perturbed QCQP. By
construction, each of the QCQPs in this sequence satisfies the assumptions of Theorem 3 and
thus Optgpp ; = Opt;. For j € N, let

(x,t;) € arg min 2t.
(z,1)€D;

Let 2* be a subsequential limit of {z;} ;.\ (this exists as we can bound the sequence {z;} ;.
using Assumption 1). Noting that the feasible domain of the original QCQP is closed, we have
that z*, a subsequential limit of feasible points, is also feasible. Finally, by continuity of gg and the
optimality of (x,t;) € Dj, we have that

qo(z*) = jlggo qo(zj) = Jlggo Opt; = jlggo Optgpp,j = Optspp -

Here, the final equality holds by a simple boundedness argument and Assumption 1. n

The following example shows that SDP tightness (for example via Theorem 4) may hold even
when the convex hull result does not.

Example 4. Consider the following QCQP

2 2
2, 2. r7—253<0
inf {z x5 .
xek{ﬁ 1 21, <0

We verify that the conditions of Theorem 4 hold. Itis clear that Assumption 1 holds: A(0) = I > 0
and z = 0 is feasible. It is easy to verify that I" = [0, 1] x R, thus Assumption 3 also holds.
Finally, pick h; = ea/j for j € N. Note that the only semidefinite face of I"is F = {1} x R4
and that V(F) = span{ez }. In particular,

Iy {b(y) + Ry - v € F} = {0} x [1/5,00),

which does not contain 0. We deduce that Opt = Optgpp.

Next, we claim that conv(D) # Dspp. First note that D is actually convex in this example.

x%+x2<2t 2+ a3 <2t
D= (iC,t): 1‘% —1’2 <0 = (iC,t)I |ZL'1| < —x2
2:172§0 2x2§0
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1.5 Exactness of the SDP relaxation

X1 _—
_—
~05 " -0.
/// x2
_—
_—
-1.0

) 0.0

Figure 1.5: The sets conv(D) (in orange) and Dspp (in yellow) from Example 4

Next by Lemma 1 and the description of " above, we have that

3+ 23 <2t
DSDP = (.%‘,t) . 2{[}2 <2t

2562 < 0
Then we may check, for example, that
((1,0), 1) € Dspp but ((1,0), 1) ¢ D= COIlV(D).

We conclude that Opt = Optgpp but conv(D) # Dspp. We plot D and Dspp in Figure 1.5. O

1.5.1 COMPARISON WITH RELATED CONDITIONS IN THE LITERATURE

Several sufficient conditions for SDP tightness results have been examined in the literature. In this
section, we compare these conditions with our Theorems 3 and 4.
Locatelli [112] considers the SDP relaxation of a variant of the TRS,

. Cblr 4+ <0,Vie[m—1]
xérgN{qO(x) L e 1<0 . (1.15)

We assume that Ag = Diag(ag) without loss of generality. Indeed, if Ay is not diagonal, we can
reformulate the problem in the eigenbasis of Ag. Furthermore, we will assume that Ag has at least
one negative eigenvalue as otherwise (1.15) is already convex.

Let J C [N] be the set of coordinates corresponding to Amin (Ap), i.c., define

J=4qj€|N]: ; = mi i (>
{.7 [N]: (a0); = min (ao)z}
andlet V; :=span({e; : j € J}).
Locatelli [112] derives a sufficient condition for SDP tightness by reasoning about the nonexis-
tence of certain KK'T multipliers in the SOCP relaxation of (1.15). For the sake of completeness,
we restate this result in our language.
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1 Objective value and convex hull exactness

Theorem 5 ([112, Theorem 3.1]). Consider the problem (1.15) and assume that Aq bas at least one
negative eigenvalue. Suppose the feasible region of (1.15) is strictly feasible. If there exists a sequence
(hj)jen in RN such that lim;_o0 hj = 0 and forevery j € N we have

0 Qé HVJ{I)(’)/) + hj S RT},

Proposition 4. Suppose the assumptions of Theorem 5 hold, then the assumptions of Theorem 4 also
hold.

Proof. Considera QCQP of the form (1.15) satisfying the assumptions of Theorem 5. We will verify
that the assumptions of Theorem 4 are also satisfied. Note the feasible region of (1.1) is nonempty.
Furthermore, by taking 77 € R large enough, we can ensure that A(ne,,) = Ag +nl > 0. Thus,
Assumption 1 is satisfied. Assumption 3 is satisfied as well because

_ m . A(/y)to _ m . ’sz_)\min(AO)
F—{fyeR 0 }—{'yeR IS (1.16)

is polyhedral.

Let F be a semidefinite face of I'. By Lemma 2, A(y) must have a zero eigenvalue for every
v € F.In particular, we can deduce from the description of I in (1.16) that

o m . 'Ym:_)\min(AO)
f—{’yeR b >0 .

Therefore, V(F) = V. Then the assumption 0 ¢ IIy,, {b(y) + h;j : v € R} forevery j € N

immediately implies that

0 ¢ Iy {b(7y) + h; : v € F}

forevery j € NasR" O F. Hence, we conclude that the third condition in Theorem 4 also
holds. [ |

Remark 14. Ho-Nguyen and Kiling-Karzan [87] study a particular convex relaxation of the TRS
with additional conic constraints. For such problems, they suggest a particular assumption under
which their relaxation is tight; see [87, Theorem 2.4]. It was also shown in [87, Lemma 2.10]
that when the conic constraints are in a particular linear form, then their assumption is indeed an
equivalent form of Locatelli [112]’s assumption from Theorem 5. It is of interest to compare our
assumptions with the one from [87]. We note however that our Theorem 4 and the result due to
[87, Theorem 2.4] are incomparable. To see this, note that the former covers some optimization
problems with nonconvex quadratic constraints while the latter covers some optimization problems
with non-quadratic conic constraints. In addition, we note that the relaxation studied in Ho-
Nguyen and Kiling-Karzan [87] is weaker than the SDP relaxation that we study here. O
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1.5 Exactness of the SDP relaxation

Burer and Ye [38] consider the standard SDP relaxation of diagonal QCQPs* and show that
under an assumption on the input data {A;};c (g .,y and {bi};¢g ) that the SDP relaxation is
tight. For the sake of completeness, we first restate’ [38, Theorem 1] as it relates to SDP tightness
in our language.

Theorem 6 ([38, Theorem 1]). Consider a diagonal QCQP with no equality constraints. Suppose
the feasible region of (1.1) is nonempty and there exists v* > 0 such thar A(v*) > 0. Suppose the
SDP relaxation (1.3) is strictly feasible. If for every j € [N| the set

yerm: A=

is empty, then any optimizer (2™, 1*) in arg Min, 4 cpy,, 2 satisfies (x*,1*) € D.

Proposition 5. Suppose the assumptions of Theorem 6 hold, then the assumptions of Theorem 3 also
hold.

Proof. Consider a QCQP satistying the assumptions of Theorem 6. We will verify that the assump-
tions of Theorem 3 are also satisfied. Note the feasible region of (1.1) is nonempty. Furthermore,
by taking 7 € R large enough, we can ensure A(ny*) = Ag + nA(v*) = 0. Thus, Assumption 1
is satisfied. Assumption 3 holds as all of the quadratic forms Ao, ..., Ay, are diagonal. The
condition on the input data in Theorem 6 is equivalent to requiring that

A()j; =0 = b(v); #0

forally € T'and j € [N]. Consider a semidefinite face F of I', and any v € F. As A(7) is
diagonal, we deduce that

V(F) = span({e; : A(7);; = 0}).

Then, the final assumption in Theorem 3, namely

0 ¢ Tly(m){b(7) : v € F},

holds immediately. n

The following example shows that Theorem 3 is strictly more general than Theorem 6 even in
the case of diagonal QCQPs with strictly convex constraints.

“Burer and Ye [38] address general QCQPs in their paper by first transforming them into diagonal QCQPs and then
applying the standard SDP relaxation. In particular, the standard Shor SDP relaxation is only analyzed in the context
of diagonal QCQPs.

>The original statement of this theorem gives additional guarantees, which are weaker than SDP tightness, when the
conditions of Theorem 6 fail.
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1 Objective value and convex hull exactness

Example 5. Consider the following QCQP

: 2. llz—ef®<1
min< —||z||“ : .

z€R? lz —ea]* <1

We first verify that the assumptions of Theorem 3 hold. It is clear that this problem satisfies
Assumption 1: the origin is feasible and A(e; + e2) = I > 0. Next, we compute I".

F:{veRi:A(V)EO}:{VER1:71+7221}.

We conclude that Assumption 3 also holds. Furthermore, the only semidefinite face of I is
F={ye Ri : 71 + 2 = 1}. For this semidefinite face, we have that V(F) is the entire space
R2. Consequently,

Hyp{b(y): v € F} = {7161 +yer: YyERL, i+ = 1}

is the set of all convex combinations of e and ez. This set does not contain the origin and thus
the assumptions of Theorem 3 are satisfied.

On the other hand, by picking j = 1 in Theorem 6 and 7 = e3, we have thaty > 0, A(v) = 0,
and A(7);j; = Obutb(y); = (e2)1 = 0. We see that the assumptions of Theorem 6 are not
satisfied. O

1.6 REMOVING THE POLYHEDRALITY ASSUMPTION

One of the main assumptions we use in our proof of the convex hull results (Theorems 1 and 2)
and the SDP tightness results (Theorems 3 and 4) is that the set I is polyhedral (Assumption 3). In
this section we show that one can remove Assumption 3 in Theorem 2 when k is sufficiently large®.
The results in this section do not use the framework described in Section 1.2 and in particular do
not require the technical assumption (Assumption 2).

Theorem 7. Suppose Assumption 1 holds. If the quadratic eigenvalue multiplicity k satisfies k >
m + 2, then conv(D) = Dspp.

Proof. Suppose (£,) € Dspp. Therefore,

; 5. A =0
2t > ,X) )
- fgﬁ@{qw 2 vi >0, Vi € [mg]

= sup {Q(%iﬁ) A0 =0 }

~vER™ v >0, Vi € [m[]

®Recall the example constructed in Proposition 3. This example shows that both the convex hull result and SDP
tightness result fail when Assumption 3 is dropped from Theorem 2. In particular, the SDP tightness and convex
hull results we recover in this section will require assumptions on k that are strictly stronger than in the polyhedral
case.
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1.6 Removing the polybedrality assumption

The second line follows as A(y) > 0 if and only if A(y) > 0. Note that Assumption 1 allows
us to apply strong conic duality to the program on the second line. Furthermore, this dual SDP
achieves its optimal value, i.e., there exists Z € S™ such that (2, 7, Z) satisfies

2>

qo(2) + (Ao, Z) < 2t

(%) + (A, Z) <0, Vi € [my] (1.17)
qi(2) + (A;, Z) =0, Vi € [my + 1,m]

Z = 0.

We will show by induction on rank(Z) that for any (%, £, Z) satisfying (1.17), we have (2, %) €
conv(D). The claim clearly holds when rank(Z) = 0.

Now suppose r = rank(Z) > 1. Let (£, %, Z) satisfy (1.17). Write Z = 3_1_; ;2] where
each z; is nonzero. Fix 2 := 2.

We claim that the following system in y is feasible:

<Aofi’+b0,y®2> =0
(Ai + b,y ® z) =0, Vi € [m] (1.18)
y € Sk,

Indeed, the first two constraints impose at most 71+ 1 homogeneous linear equalities in £ > m +2
variables. In particular, there exists a nonzero solution y to the first two constraints. This y may
then be scaled to satisty y € SF~1.

Note then that foralli € [0, m],

GE+y®2) = ([@+y®)TAE£y®2) +2[(E+y®2) + o
= qi(2) £ 2(AiZ + by, y ® 2) + (A, 227)
= qi(®) + (A, 22T).

Consequently, (2 +y® z,, Z — 227) satisfies (1.17). Furthermore, we have rank(Z — 22T) =
r — 1. By induction, (£ + y ® z,) € conv(D). We conclude that (#,#) € conv(D). [

A similar proof leads to an SDP tightness result without Assumption 3.

Theorem 8. Suppose Assumption 1 bolds. Define the byperplane H = {(m, t) e RV+L: 2t = Optst}.

If the quadratic eigenvalue multiplicity k satisfies k > m + 1, then conv(D N H) = Dspp N H.
In particular, Opt = Optgpp.

The proof of this statement follows the proof of Theorem 7 almost exactly and is deferred to
Appendix A.2. For now, we will simply sketch how to modify the proof of Theorem 7 to get a
proof for Theorem 8: We will only consider points (Z, t) € Dspp N H. In this situation, it is easy
to show that the first two constraints in (1.18) are dependent and impose at most m homogeneous
linear equalities. Thus we may carry out the procedure in the proof of Theorem 7 as long as
k > m + 1. At the end of the procedure, we will have decomposed (2, ) as a convex combination
of points (z,%) € D.
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1 Objective value and convex hull exactness

Remark 15. Beck [17, Corollary 4.4] shows that under Assumption 1, the conclusion Opt =
Optgpp holds even when & = m. Thus, recalling the definition of H from Theorem 8, we can
summarize Theorems 7 and 8 and [17, Corollary 4.4] as follows. Under Assumption 1, we have:

Assumption  Result Reference
kE>m+2 conv(D) = Dspp Theorem 7
k>m+1 COHV(D N H) =Dspp N H Theorem 8
k>m DNH#*Y [17, Corollary 4.4]

We conjecture, but are unable to prove at the moment, that the values required of k for these three
results are sharp. O]

Remark 16. We vastly generalize the framework of this chapter in Chapter 2 where we
replace the polyhedrality assumption with a facially exposed condition. We furthermore
improve Theorem 7 fromk > m + 2to k > m.

In retrospect, the fact that & > m should suffice for convex hull exactness seems obvious:
Intuitively, convex hull exactness asks whether objective value exactness holds for any choice
of the linear term in the objective by. Thus, as objective value exactness holds [17, Corollary
4.4] for k > m conditioned only on Assumption 1 (and irregardless of by), it should follow
that convex hull exactness holds for &k > m. O
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2 A GEOMETRIC VIEW OF SDP EXACTNESS
IN QCQPS AND ITS APPLICATIONS

This chapter is based on joint work [179] with Fatma Kiling-Karzan.

This chapter extends the work of Chapter 1 towards understanding objective value and convex
hull exactness and completely removes the polyhedrality assumption made in Chapter 1. In this
chapter, we view the cone of convex Lagrange multipliers

’yob'Aob' + anl ’VZAZ
= ; RxR™: J7rob) et
{(Vob)a ’Y) € X ¥ > O, Vi € [mI]

as being the natural dual object to study. We then define theslice I'y := {y € R™ : (1,7) € I'}.
Note that the definition of I" in Chapter 1 coincides with the definition of I'; in the present chapter.
Our conditions for exactness are again based on geometric properties of I'y and its relatives I'and I'°.
These tools form the basis of our main message: questions of exactness can be treated systematically
whenever I'y, I', or I'® is well-understood. As further evidence of this message, we apply our tools
to address questions of exactness for a prototypical QCQP involving a binary on-off constraint,
quadratic matrix programs, the QCQP formulation of the partition problem, and random and
semi-random QCQPs.

2.1 INTRODUCTION

Quadratically constrained quadratic programs (QCQPs) are a fundamental class of nonconvex
optimization problems of the form

. gi(x) <0, Vi € [mj]
Opt := inf < gopi(x) : ) ,
P xlenR"{q b (@) gi(zr) =0, Vi € [my+ 1,m)|
where qopj; G1, - - - s @m : R™ — R are each (possibly nonconvex) quadratic functions. For each
i € [m], wewillwrite ¢;(z) = o T Ajx +2b] x+c; for A; € S",b; € R, and ¢; € R. Similarly,
write gobj () = xTAObjx + Qb;jz: + Cobj-
These optimization problems arise naturally in a variety of application areas (see [11, 22, 181]). In-

deed, one fundamental reason for the ubiquity of QCQPs is their expressiveness—any polynomial
optimization problem or {0, 1}-integer program may be reformulated as a QCQP.
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2 A geometric view of SDP exactness in QCQPs and its applications

Although QCQPs are NP-hard in general, they admit a natural tractable convex relaxation
known as the standard semidefinite program (SDP) relaxation [161],

AX =z
Optspp = inf <Aobj7 X> + by + b (Aiy X) +2b] 2+ ¢; 0, Vi € [my]
’ <AiaX>+2b;—I+ci:0,Vi€[m[—i—l,m]

This relaxation is also referred to as the Shor SDP relaxation. In contrast to the vast literature on
the approximation quality of this relaxation [22, 121,129, 193], the question of when exactness
occurs in this relaxation is much more limited and recent.

One interesting line of work has offered deterministic conditions under which the SDP relax-
ation of a general QCQP is exact for various definitions of exactness. In their celebrated paper,
Fradkov and Yakubovich [67] prove the S-lemma, which implies that the problem of minimizing
an arbitrary quadratic objective function over the unit ball (or any single quadratic constraint)
can be solved via SDP techniques. Specifically, the S-lemma implies that objective value exactness—
the condition that the optimal value of the QCQP and the optimal value of its SDP relaxation
coincide—holds for QCQPs with a single constraing; see also [180]. In contrast, Burer and Ye [38]
study diagonal QCQPs—those QCQPs for which A, A1, . . ., Ay, are diagonal matrices—with
a general number of constraints and give sufficient conditions for objective value exactness. Wang
and Kiling-Karzan [178, 181] continue this line of work by developing a general framework for deriv-
ing sufhicient conditions for both objective value exactness and convex hull exactness—the condition
that the convex hull of the QCQP epigraph coincides with the (projected) SDP epigraph—for QC-
QPs where a specific dual set, I'1, is polyhedral (see Section 2.2). Beyond being a natural sufficient
condition for objective value exactness, convex hull exactness has its own far-reaching applications
and motivation. Such results find use for example in deriving strong relaxations of certain critical
substructures in nonconvex problems. Specifically, the convexification of commonly occurring
substructures in complex nonconvex problems has been critical in advancing the state-of-the-art
computational approaches for general nonlinear nonconvex programs and mixed integer linear
programs [49, 171]. (See [7, 163, 181] and references therein for additional work in this direction.)

While the framework presented by Wang and Kiling-Karzan [181] can at once cover and extend
many existing results on objective value and convex hull exactness [35, 38, 67, 87, 111,123,180, 195],
it is still quite limited. In particular, the assumption that I'y is polyhedral is rarely satisfied outside
of simultaneously diagonalizable QCQPs and precludes the results in [181] from being applicable
to a wider range of interesting QCQDPs.

Additional work in this direction [48] studies objective value exactness from an algebraic point
of view. Specifically, Cifuentes et al. [48] consider QCQPs with fixed equality constraints and
study the semialgebraic region of objective functions for which objective value exactness holds. As
an example of their results, they give a formula for the degree of the algebraic boundary of this
region in the setting of Euclidean distance minimization problems.

A related line of work has explored sufficient conditions for the rank-one-generated (ROG)
property [7, 29, 33, 34, 83]. A conic subset of the positive semidefinite cone is said to be ROG
if it is the convex hull of its rank-one elements. This property can be thought of as the SDP-
QCQP analogue to the integrality property in the context of linear program relaxations of integer
linear programs [7] and can be shown to imply both convex hull exactness and objective value
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exactness. Research in this direction has established explicit descriptions of the ROG cones related
to quadratic programs over low-dimensional polytopes [34] and ellipsoids with missing caps [37].
Other work in this direction [29, 83] explores the ROG property from an algebro-geometric
perspective and establishes results related to the degree and representation of such sets. Importantly,
Blekherman et al. [29] completely characterized the ROG cones defined by linear matrix equalities.
More recently, Argue et al. [7] gave general sufficient conditions for this property and completely
characterized the ROG cones defined by at most two linear matrix inequalities.

See [100] for an overview and comparison of objective value exactness, convex hull exactness,
and the rank-one generated property.

SDP exactness has been studied in the context of quadratic matrix programs (QMPs) as well. A
QMP is an optimization problem over a matrix variable X € R"*¥, where the objective function
and constraints are each of the form

tr(XTAX) +2tr(B'X) + ¢

for A€ S", B € R™*and ¢ € R, and can be thought of as a natural generalization to QCQPs.!
This class of problems has been used to model robust least squares problems, the orthogonal
Procrustes problem [17], and sphere packing [20]. QMPs and their SDP relaxations were first
studied by Beck [17], Beck et al. [20] who showed that objective value exactness holds as long as
the number of constraints is small compared to k. Similarly, Wang and Kiling-Karzan [181] show
that both objective value exactness and convex hull exactness hold for (vectorized reformulations
of) QMPs whenever the number of constraints is small enough and I'; is polyhedral.

Finally, a number of results have shown that various random QCQPs have exact SDP relaxations
with high probability. For example, such results have been proved for signal-recovery tasks such
as phase retrieval [40], sensor-network localization [157], max-likelihood angular synchroniza-
tion [10], and clustering [1, 122, 153]. In these settings, the goal is to recover some ground-truth
solution (the solution to some QCQP) via observations (constraints in a QCQP). These results
then show that once an application-specific signal-to-noise ratio is large enough (for example, given
enough observations/constraints), that the SDP relaxation is exact. In contrast, a second line of
work [38, 113] addresses random QCQPs which do not assume the existence of a ground-truth
solution. In this direction, it is shown that when the number of constraints is small enough that
the SDP relaxation has a rank-one optimal solution.

2.1.1 OVERVIEW AND OUTLINE OF THE CHAPTER

In this chapter, we generalize the framework first introduced in [178, 181] by eliminating its
reliance on the polyhedrality assumption. Specifically, we give a broad set of sufficient conditions
for both convex hull exactness and objective value exactness that are phrased in terms of the
cone of convex Lagrange multipliers I" (or the closely related sets I'y and I'°; see Section 2.2). In
particular, these sufficient conditions can be checked in a systematic manner whenever I', I'y, or I'°
is sufficiently simple. Furthermore, we show that our sufficient conditions for convex hull exactness

'In fact, these two problem classes are equivalent. Any QCQP is a QMP with k = 1. In the reverse direction, any
QMP in a variable X € R™** can be written as a QCQP in the variable obtained by stacking the columns of X on
top of each other. Note that in this second direction, the value k induces additional structure on the QCQP.
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2 A geometric view of SDP exactness in QCQPs and its applications

are additionally necessary under a technical assumption (see Assumption 5). We complement our

theory with a number of explicit examples illustrating our tools on QCQPs from various settings,
including a basic QCQP originating from modeling big-M constraints, quadratic matrix programs,
the partition QCQP, and two random QCQP models.

Collectively, these results and examples offer evidence for the main message of this chapter that

questions of exactness can be treated systematically whenever the convex Lagrange multipliers are
well-understood.

A summary of our contributions, along with an outline of the remainder of the chapter, is as

follows:
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1. In Section 2.2, we formally define our setup and assumptions and recall basics regarding

Lagrangian aggregation and the SDP relaxation of a QCQP. We then define and examine a
number of faces of the cone of convex Lagrange multipliers I" and its polar cone I'° that
play key roles in our analysis.

. In Section 2.3, we present a sufficient condition for convex hull exactness that generalizes

[181, Theorem 1]. This sufficient condition (Theorem 9) is based on an analysis of the
“rounding directions” inside Sspp and is performed in the original space. Specifically, we
show that convex hull exactness holds as long as certain systems of equations (that depend
on I, I', or I'°) contain nontrivial solutions. In contrast to [181, Theorem 1], our suffi-
cient condition does not make any assumptions on the geometry of I' or I'y and can be
used to cover additional interesting QCQPs (see Section 2.4). One of our main technical
contributions (Theorem 10) shows that our sufficient condition for convex hull exactness is
in fact also necessary under the assumption that I'® is facially exposed (see Assumption 5
and its surrounding discussion). We end Section 2.3 by revisiting the polyhedral setting.
We derive necessary and sufficient conditions for convex hull exactness (Theorem 11) and
compare it to the sufficient condition presented in [181, Theorem 1]. To the best of our
knowledge, this is the first necessary and sufficient condition for convex hull exactness even
in the context of diagonal QCQPs (where I', I'1 and I'® are automatically polyhedral).

. In Section 2.4, we present example applications of our general results from Section 2.3 to a

prototypical set containing big-M constraints, quadratic matrix programs, and the partition
problem. In all of these applications, the resulting I sets are non-polyhedral, and thus the
sufficient conditions from [181] that work under the polyhedrality assumption of T fail to
cover these applications.

In Section 2.4.1, we apply our framework to show that convex hull exactness holds for a
well-studied set involving convex quadratics, binary variables and big-M relations. This set
occurs as a substructure commonly studied in sparse regression applications. The convex
hull characterization of this set is well-known in the literature and is often shown as a
consequence of the perspective formulation trick due to Ceria and Soares [42] (see also
[61, 68, 79]).

In Section 2.4.2, we show that the SDP relaxation of a quadratic matrix program satisfies
convex hull exactness whenever the number of constraints is small (when compared to the
rank of the matrix variable). This strengthens separate results first presented in [181] and
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[17]; see Remark 24. In contrast to the ad hoc proof given in [181], the proof we present in
Section 2.4.2 follows the outline of our general framework.

In Section 2.4.3, we consider the QCQP formulation of the NP-hard partition problem and
its SDP relaxation. Using our framework, we give an explicit description of the optimal value
and epigraph of the SDP relaxation. Consequently, we recover a result due to Laurent and
Poljak [106] stating that deciding whether objective value exactness holds for the partition
QCQP is NP-hard. In contrast, we show that convex hull exactness never holds for the
partition QCQP (as long as there are at least two nonzero weights). This then implies that
deciding whether convex hull exactness holds for the partition QCQP is trivial.

4. In Section 2.5, we present a number of sufficient conditions for objective value exactness.
In fact, our sufficient conditions further imply optimizer exactness, i.e., that the optimizers
of the QCQP and its (projected) SDP relaxation coincide. Section 2.5.1 presents a general
sufficient condition (Theorem 12) for objective value exactness based on a primal analysis.
Similarly, Section 2.5.2 presents a general sufficient condition (Theorem 13) for objective
value exactness based on a dual analysis. These results recover known sufficient condi-
tions [38, 181] for objective value exactness and explain the roles played by polyhedrality in
prior settings. We additionally specialize these abstract conditions to derive more concrete
conditions (see Corollaries 9 to 12) for objective value exactness.

S. In Section 2.6, we present example applications of our general results from Section 2.5 to
two models of random QCQPs. The results in this section show that ideas from Section 2.5
can be applied even when I', I'1, or I'° is only known approximately. The models in this
section are inspired by recent work on objective value exactness [38, 113] where random
QCQPs have been used as a testing ground for understanding the strength or explanatory
power of various sufficient conditions. In Section 2.6.2, we consider a fully random model
of QCQPs and show that objective value exactness (in fact optimizer exactness) holds with
probability 1 — o(1) in the regime where m (the number of constraints) is fixed and n (the
number of variables) diverges to +o00. In Section 2.6.3, we consider a semi-random model
of QCQPs where, for each quadratic function, the quadratic terms are randomly generated
and the linear and constant terms can be chosen adversarially. In this setting, we show that a
perturbed notion of exactness holds again with probability 1 — o(1) asn — +o0.

2.1.2 ADDITIONAL NOTATION

Forz,y € R let[zx +y] = [z —y,z +y|, z; = max(0,z) and 2% := (24 )% Ford > Oand
z € R"let By(x,0) == {y € R" : ||z — y|| < J}. Whenn s clear from context, we will simply
write 0 and B(x,d). For M € S", let Amin(M) = M (M) < -+ < A\p(M) = Apax(M)
denote the spectrum of M. Let K C [E be a cone. Let K° denote the polar cone of K. The
notation /' < K denotes that /' is a face of K. By convention, faces of cones are always nonempty.
C2°(R™) denotes the smooth functions with compact support on R™. Let V denote the gradient
operator. Let N (u, 2) denote the multivariate normal distribution with mean y and covariance

2.
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2 A geometric view of SDP exactness in QCQPs and its applications

2.2 PRELIMINARIES

2.2.1 SETUP

We will consider quadratically constrained quadratic programs (QCQPs) in R™ defined by m-many
quadratic constraints

: gi(xz) <0, Vi € [mg]

t = inf i(z) . . 21
Op xlean{qObJ(x) g 0, Vi e [mr+1,m] @D
Here, m is the number of inequality constraints and mg = m — my is the number of equality
constraints. For each i € [m], we will write ¢;(z) = 2" A;z + 2b z + ¢; for some A; € S,
b; € R", and ¢; € R. Similarly, we will write qobj(ac) = $TAobjl’ + Qbij:r: + Cobj-

We will also consider the epigraph, S, of this QCQP, i.e.,

Gobj(z) < 2t
S =1 (z,t) eR"xR: g(x) S € [my]
qi(x) = € [mys +1,m]

2.2.2 AGGREGATION AND THE (PROJECTED) SDP RELAXATION

It is well known in the QCQP literature [22, 71, 181] that the SDP relaxation of a QCQP is
equivalent (under a minor assumption) to the double-Lagrangian-dual. We will state this formally
in Lemma 10 but will first need to introduce notation related to Lagrangian aggregation.

Letq : R™ — R be indexed by {obj} U [m] where ()obj = qobj() and q(z); = ¢;()
fori € [m]. Let eqp, €1, - - - , €m denote the corresponding unit vectors in RF™, We will work
extensively with the aggregated quadratic functions <(%ij v), q($)> for (Yobj, ) € R*™ For

notational convenience, define A(Vobj, ) = YobjAobj + 2 ic[m] 7iA;. Similarly define b(7obj, 7),

and c(’yobj, 7). We will at times work on the slice of R+ where the variable Yobj is taken to be
one. Let A[v] := A(1,~) and similarly define b[y] and ¢[7]. Set [y, ¢(z)] = ((1,7),q(z)).
Note that

<<70ij 7)7 Q(JJ)> = 70ijObj(m) + Z PYZQ’L(x)
=1
= xTA(fYObp ).T + 2b(/70bj7 ’Y)Tx + C(/yoij 7)7 and
[, ¢(%)] = qovj(x) + Z%qz
=z Alylz + Zb[v] z + ).

We recall and extend the following definition from [181].
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Definition 6. The cone of convex Lagrange multipliers for (2.1) is

A(Yobj,7) = 0
I'= (70bj77) ERXR™: Yobj >0
Yi > 0, Vi € [m[]

The set of convex Lagrange multipliers for (2.1) is

. m . _ m. Al =0
rh={yeRr .(1,7)€F}—{7€R >0, Vi € [my] } O

We will see soon (see Remark 19) that I'y can be thought of as the feasible domain of a partial
dual of the SDP relaxation of a QCQP (see (2.2)).

Note that given (7,b,7) € I, the quadratic function x <(%bj7 v), q(x)> is convex. Simi-
larly, given v € T'y, the quadratic function  +— [7, ¢(z)] is convex.

We will make the following blanket assumption for the remainder of the chapter. This assumption
can be interpreted as a dual strict feasibility condition and is standard in the literature [17, 24, 38,
181, 194].

Assumption 4. There exists (’y;bj, ~v*) € I"such that A(’y;bj, v*) > 0. Equivalently, there exists
~* € I'y such that A[y*] > 0. O
Remark 17. Note that under Assumption 4, we have that I is the closed cone generated by its slice

at Yobj = 1,ie, ' = clecone({(1,7) : v € I'1}). (See discussion following [181, Assumption
2]) g

Recall that the (projected) SDP relaxation of S is given by

X = xx'
<A0bj, X> + 2bJ T + Coby < 2t
<AZ,X> + 2b;£ +¢ <0,Vi e [m]]

(Ai, X) +2b]z+¢; =0, Vi € [my +1,m)]

Sspp = ¢ (z,t) e R" x R: , (2.2)

and Optgpp = inf(, ¢)esep, 2¢- By taking X' = xx | in (2.2), we see that Opt > Optgpp and
conv(S) C Sspp.

The following lemma states that under Assumption 4, we can rewrite Sspp in terms of I'. This
lemma follows from a straightforward duality argument.

Lemma 10. Suppose Assumption 4 holds. Then
Ssop = {(2,1) € R [y,q(x)] < 21, Wy € Tt}

= {(@t) e R ((vabjs 1), a(2) ) < 270nts V(ob,7) € T
= {(@.t) e R": g(x) — 2teqy € T°}.

Here, I'° denotes the polar cone of T.
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Proof. Fix (x,t) € R""!. Note that

_ AR =0
5;;31[7@(:6)} = ﬁ{%{[%q(x)} f >0, Vi € [m] }
QZ(«T) + <A27§> <0,Vie [mf]
= inf QObj(x) + <Aobja§> : ql(x) + <Ala€> =0,Vie [mf + 1>m] )
ses £ 0

where the second equation follows from the strong conic duality theorem and Assumption 4.
Taking X := x| + &, we deduce that the first equality in Lemma 10 holds.

Note that by Assumption 4, I' = clcone{(1,v) : v € I'1)} so that [, ¢(z)] < 2t forall
v € I'y if and only if <(fyobj, v), q(x)> < 20bit for all (yobj, ) € T this gives the second
equality. The third equality holds by definition of the polar cone. n

Corollary 5. Suppose Assumption 4 holds. Then

Optspp = inf sup[y,q(z)]. (23)
PISIN 'YGFI

Corollary 6. Suppose Assumption 4 holds. Then, Sspp s closed.

Remark 18. In comparison with (2.2), the expressions for Sspp given in Lemma 10 make the roles
played by I, I'1, and I'® explicit. In particular, these expressions for Sspp lend themselves to a
clean analysis whenever the corresponding dual set I', I'1, or I'° is sufficiently simple. O

Remark 19. Phrased differently, one may minimize Optgpp in the form (2.2) by minimizing over
x € R" the value of an inner minimization problem over the matrix variables X > xx' €S
Writing X' = zz' + €and taking the SDP dual in the § variable then results in the same saddle-
point structure Optgpp = infegrn SUp,cr, [, ¢()] observed in Corollary 5. In other words,
'y is the feasible domain to this partial dual of (2.2). O

Let us consider a concrete example to help materialize these definitions.
Example 6. Consider the following QCQP epigraph,

) < 2t

QObj('r
()
)

S={(r,t) ER*xR: ¢
a(x

<0
<0
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Figure 2.1: The sets S, Sspp, I', and I'° from Example 6 are shown in blue, green, orange, and yellow
respectively. By Lemma 10, (x, ) € Sspp if and only if g(z) — 2teqp; € T'°.

where gobj() = 22102 — 22 —1/4, q1(2) == 2 —23—x1+a2—Land go(z) = 2 +a35—1.

Through a straightforward calculation, we obtain
> A+
I'= {(’Yobj”Y) er?: 2= o T },
“Yobjs V1572 >0

I = {(%bm) ER?: —yp > \/(ob)2 + (vl)i}, and

Sspp = {(m,t) ER?: —qu(2) = y[lawy(@) — 2002 + ql(x)i}.

See Figure 2.1 for the plots of the sets corresponding to S, I', I'?, and Sspp. ]

2.2.3 FACEsorI' anD I™®

In this section we define key faces of I" and I'° that will play important roles in our analysis. We will

additionally recall a number of elementary properties of convex cones and their faces specialized to

our setting. See [12, 13, 142] for a more in-depth treatment of general convex cones and their faces.
Recall the following definitions.

Definition 7. Given a face G < T'° and (gobj, ) € 1int(G), the conjugate face of G is

G2 =T NG =T N (gob 9)™-

Similarly, define the conjugate face of F tor a tace F¥ < T'. O
Definition 8. For a face G < I'°, we say that G is exposed if there exists (’Yobj, ) € T such that
Gg=1°n (FYobj)p)/)J_' U

We will additionally associate faces of I and I'° to points (z, t) € Sspp as follows.

Definition 9. Given (x,t) € Sspp, let G(x,t) < I'° denote the minimal face of I'° containing
q(w) — 2teqp and define F(z,t) = G(z, ). O

The next fact follows from Definition 9.

Fact 1. Given (z,t) € Sspp, we have that q(x) — 2teq € rint(G(x,t)) and F(v,t) =
rn(q(z) — 2teobj)J-.
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2.3 CONVEX HULL EXACTNESS

In this section, we present necessary and sufficient conditions for convex hull exactness, i.e., the
property that conv(S) = Sspp. These results form the basis of our assertion that exactness can be
treated systematically whenever I, I'v, or I'° is well-understood.

We begin by rephrasing convex hull exactness as a question regarding the existence of certain
“rounding directions.” The following result follows from basic convex analysis.

Lemma 11. Suppose Assumption 4 holds. Then, conv(S) = Sspp if and only if for every (x,t) €
Sspp \ S, there exists a nonzero (2, t') € R and oo > 0 such that

[(:Ea t) + O‘(m/> t/)] C SSDP-

Proof. Note that Sspp is a closed convex set containing no lines. Also, one can easily check
that (0, 1) is indeed a recessive direction of Sspp. Furthermore, (0,,, 1) is the only recessive
direction of Sspp. To see this, let 7* be such that A[y*] > 0 (which exists by Assumption 4) and
consider any (2, ¢') where z’ is nonzero. Then, for any (%, %) € Sspp and all @ > 0 large enough,
2(t+at’) < [v*, ¢(Z+aa’)]. Therefore, we deduce by [152, Theorem 18.5], that Sspp is the sum
of the convex hull of its extreme points and the direction (0, 1). In particular conv(S) = Sspp
if and only if (, t) is not extreme for every (z,t) € Sspp \ S. By definition, (z, t) is not extreme
if and only if there exists (', ¢') and o > 0 such that [(x,t) + a2, ¢')] C Sspp. [ ]

We capture the relevant set in Lemma 11 in the following definition.

Definition 10. The subspace of rounding directions at (x,t) € Sspp is
R(z,t) = {(;U’,t’) e R Ja > Os.e. [(x,8) + a2/, )] C SSDP}.

This set is nontrivial if it contains a nonzero element. O

Note that R(z, t) is in fact a subspace so that its name is justified. Indeed, R(x, t) is a convex
cone as Sspp is convex. Furthermore, it holds that =R (z, t) = R(x, t).

Remark 20. One may compare our rounding directions to other similar definitions from elemen-
tary convex analysis [85, Section 5.1]. Fix a point (z,t) € Sspp and (', ') € R™"!. Recall that
(«,t') is a feasible direction if there exists o > 0 such that [(z, t), (z,t) + a(2’,t")] C Sspp. In
particular, feasible directions are a unidirectional notion, whereas rounding directions are bzdi-
rectional. Next, recall that (2, t') is a tangent direction if it is a limit of feasible directions. Again,
tangent directions are unidirectional. O

Remark 21. Suppose (7, t) € Sspp and 2t > sup, ¢, [, ¢(x)]. Then, by Lemma 10 there exists
a > Osuch that [(z,t) £ a(0,, 1)] € Sspp. In particular, it suffices to verify the condition of
Lemma 11 for points (z,t) € Sspp \ S for which 2¢ = sup, cr, [, ¢(2)]. O

2.3.1 SUFFICIENT CONDITIONS FOR CONVEX HULL EXACTNESS

In this section we identify a particular subset of the rounding directions at (x, t) € Sspp. This then
leads to a sufficient condition for convex hull exactness, i.e., the condition that conv(S) = Sspp.
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Definition 11. Given (z,t) € Sspp, define
R/ (x,t) = {(x',t') eR™!: g(z + aa’) — 2(t + at’)eq; € span(G(z,t)), Va € R}.D
Lemma 12. Suppose Assumption 4 holds and (x,t) € Sspp. Then, R'(z,t) C R(x,t).

Proof. Let (x,t) € Sspp and (2/,t") € R'(x,t). Then, by continuity and the fact that ¢(z) —
2teqy; € rint(G(w, 1)), there exists a > 0 such that

q(z +ex’) — 2(t + et’)eq; € G(x,t) CT°
forall e € [+a]. By the third characterization of Sspp in Lemma 10, we have that [(z,t) £

Oé(l‘/, t,)] Q SSDP- |

Lemmas 11 and 12 immediately imply the following sufficient condition for convex hull exactness.

Theorem 9. Suppose Assumption 4 holds and that for all (x,t) € Sspp \ S, the set R'(x,t) is
nontrivial. Then, conv(S) = Sspp.

We will see applications of Theorem 9 in Section 2.4.
In Lemma 13 below, we will record an alternate description of R/(z, t). We will require the
following observation.

Observation 2. Suppose Assumption 4 bolds. Let (x,t) € Sspp where 2t = sup.,cp, [, q(z)]-
Then, span(G(x,t)) 2 R x Op,. In particular, G(x, )+ = span(g(x, N {'yobj = 1})

Proof. Suppose span(G(x,t)) 2 R x O, so that (0,,1) € R/(x,t). By Lemma 12, there exists
a > O such that (z,t — a) € Sspp. This contradicts 2t = sup.¢r, [7, ¢(7)].

We deduce that span(G(z,t)) 2 R x 0y,. Equivalently, G(z,t) € 0 x R™ and there
exists (1,7) € G(x,t)". Then, for any (Yobj, 7) € G(w, )", we can write (Yopj, ) as a linear
combination of

(Yobjy V) + (1 = 7epj) (1,y)  and  (1,7). u
Lemma 13. Suppose Assumption 4 holds and let (x,t) € Sspp. Then,

(") T A(Yobjs ¥)2" = 0, ¥V(Yobj,7) € G(, )+

R (z,t) =1 (o, ) e R*H1 .
( ) {( ) <A(70bj7 7)56 + b(’Yobja 7)7 xl> - Wobjt/ = 07 v(P)/obja ’Y) € g(.’lf, t)J_

If furthermore 2t = sup.er, [v, q()), then

/ — (¥ n+1 . (Z'I)TA['V]‘T, =0, V(L’Y) € g(SUat)L
Ri(.t) = {( ) ERM b’y — ¢ = 0, V(1) € Gz, 1) }
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2 A geometric view of SDP exactness in QCQPs and its applications

Proof. Note that (2',t) € R'(x,t) if and only if for all (yobj,7) € G(x, t)*+, we have that

(o), (@ + aa') = 2(t + at')eory)
= a®(2/) " Ay 7) (@) + 20 (Al 1) + b(orys 7). 2" ) =)
+ (o), 0(x) — 2tece;)
is identically zero in . This occurs if and only if for all (Yep;, ¥) € G(a, t)L, we have
(') " A(Yobj;7)2’ =0, and
<A(%b,-, V)2 + b(Yobjs 7) ﬂf’> —t' =0.

This proves the first assertion. The second assertion follows from the first and Observation 2. W

2.3.2 NECESSARY CONDITIONS FOR CONVEX HULL EXACTNESS

In Section 2.3.1, we gave a sufficient condition for convex hull exactness by identifying a subset
of directions R/(x,t) C R(z,t) and invoking Lemma 11. In this section, we show that under a
technical assumption (Assumption S), we have R'(x,t) = R(x, t). This then leads to a necessary
and sufficient condition for convex hull exactness under the technical assumption.

Assumption 5. Suppose I'° is facially exposed, i.e., every face of I'° is exposed. O

This assumption holds for any cone isomorphic to a slice of the nonnegative orthant, the second-
order cone, or the positive semidefinite cone. See [143] for a longer discussion of this assumption
and its connections to the nice cones. In general, all nice cones are facially exposed. Our analysis will
be based on the following property of exposed faces G < I'® (see [13, Definition 2.A.9] and its
surrounding discussion):

Fact 2. A face G I 1°° is exposed if and only if G = (QA)A.
We are now ready to prove a partial converse to Lemma 12.
Lemma 14. Suppose Assumptions 4 and 5 hold and let (x,t) € Sspp. Then R'(z,t) = R(x,1).

Proof. Fix (2/,t') € R(z,t). As R(x,t) is a convex cone, we may without loss of generality
assume that [(x, t) £ (2/, )] C Sspp. Our goal is to show that (2/, ') € R/(x, ), i.e., that

q(z + ax') — 2(t + ot )eqy; € span(G(z,t)), Ya € R.
As each coordinate of this vector is quadratic in ¢, it suffices to show instead that

q(z + o) — 2(t + ot )eqp; € G(x, ), Yo € [-1,1].
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2.3 Convex hull exactness

Let (fonj; f) € rmt( (x,t)) so that by Assumption 5 and Fact 2, we may write G(z,t) =
L0 (fobjs )t As[(z,t) £ (2/,1)] C Sspp, we immediately have that ¢(z + ax’) — 2(t +
1

at’)eqy € T foralla € [—1,1]. It remains to verify that the map

- (o e+ o) 2 o)

evaluates to zero on o € [—1, 1]. Again, as [(x, t) £ (2/,t")] C Sspp, this map is nonpositive for
alla € [~1,1]. Next, note that (fopy, f) € F(z,t) =N (q(x) — 2t€obj)L so that this map
evaluates to zero at & = 0. Finally, (fonj, f) € I implies that this map is also convex. We conclude
that this map is identically zero. [

The following necessary and sufficient condition for convex hull exactness then follows from
Lemma 14.

Theorem 10. Suppose Assumptions 4 and 5 hold. Then, conv(S) = Sspp if and only if for all
(x,t) € Sspp \ S, the set R (x,t) is nontrivial.

To close this subsection, we give a compact description of R'(z, t) under Assumption 5.

Proposition 6. Suppose Assumptions4and 5 hold. Let (x,t) € Sspp where2t = sup,ep, [, q(z)]
and let (1, f) € rint(F(x,t)). Then,

/ _ ) n+l . x’Eker(A[f])
Rilmi) = {W)ER " (Al + bl ety — = 0, ¥(1,m) € a1y }

Proof. Let (1, f) € rint(F(z,t)). By Lemma 13, it suffices to show that z’ € ker(A[f]) if and
only if

(a:’)TA[’y]m' =0,V(1,v) € Q(x,t)J‘.

The reverse direction holds immediately as (1, f) € F(z,t) C G(z,
To see the forward direction: Let 2" € ker(A[f]) and set vop; =
v; = (2')T A;2’. Then,

)t and A[f }
)T ob;x Slmllarly, set

t
(
<(Uobj> 1}), (70bj7 ’7)> = ('T/)TA(’Yoij’y)x/ >0, v(’}/obb ’7) el

Thus (—vebj, —v) € I'°. On the other hand, <(vobj,v), (1,f)> = (") TA[f]2" = 0. We deduce
that (—vepj, —v) € I'° N (1, )t = F(z,t)® = G(x,t). In particular, (x’)TA(%bj,’y)x’ =
<(Uob ) (70b]7 )> = Oforall (70bj77) S g(x,t)l, u

2.3.3 REVISITING THE SETTING OF POLYHEDRAL [

Wang and Kiling-Karzan [181] give sufficient conditions for convex hull exactness under the as-
sumption that I'y is polyhedral.” This assumption holds, for example, when the set of quadratic

*Equivalently (see Remark 17), under the assumption that I is polyhedral.
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2 A geometric view of SDP exactness in QCQPs and its applications

forms {Aobj, A, ... ,Am} is simultaneously diagonalizable. Specializing Theorem 10 to this

setting, we prove the following necessary and sufficient counterpart to [181, Theorem 1].

Theorem 11. Suppose Assumption 4 bolds and that T is polybedral. Then, conv(S) = Sspp if and
only if

1oy n+l . ' € ker(A[f])
{(x’t)€R+ ' <b[7],x’>—t’:O,V(1,fy)e]-"}

is nontrivial for every F T which is exposed by some vector q(x) — 2teqy for (z,t) € Sspp \ S.
Here, f is any vector such that (1, f) € rint(F).

Proof. We begin by noting that when I' is polyhedral, so too is I'® so that Assumption 5 holds.
Next, we claim that for every face G < I'® we have G L = span(G A). By definition, span(G A) =
span(I'NG L) C G1. On the other hand, as T and T'° are polyhedral, we have that [169, Theorem
3]

dim(G) + dim(G*) = m.

Rearranging this equation, we have dim(G#) = m — dim(G) = dim(G1). We conclude that
Gt = span(G®).

Let (z,t) € Sspp such that 2t = sup,cp, [v,¢(z)] and let (1, f) € rint(F(x,t)). Then,
Observation 2 and Proposition 6 imply that

oy gt € ker(Alf])
R = {0 ew s TEROLL v camar |

_ Iy n+l . r' e ker(A[f])
_{(l‘,t)ER +1. <A['y]x+b[’y],x/)—t/:0, Y(1,~) € F(z,t) }

o Iy n+1 . $/€ker(A[f])
_{(x’t)ER o (o], 2") —t' =0, ¥(1,7) € F(z,1) }

Here, the second line follows because we have shown G+ = Span(QA) holds for every face
G < T° and by definition F (z,t) = G(x,t)*. The third line follows from the fact that (1, f) €
rint(F(z,t)) implies ker(A[f]) C ker(A[y]) for every (1,7) € F(x,t). The result then
follows from Theorem 10. |

Remark 22. The main difference between Theorem 11 and [181, Theorem 1] is that Theorem 11
only considers certain (« fortiori semidefinite) faces of I' whereas [181, Theorem 1] imposes a
constraint on every semidefinite face of I'. This idea of restricting the analysis to certain faces of I'
was previously investigated by [38, 113] who used it to provide sufficient conditions for objective
value exactness. O
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2.4 Applications: Convex hull exactness

2.4 ArrLICATIONS: CONVEX HULL EXACTNESS

In this section, we apply the results of Section 2.3 to a number of problems. These examples
provide further evidence towards the message that exactness can be treated systematically whenever
I, Ty, or I'° is well-understood.

2.4.1 MIXED BINARY PROGRAMMING

To begin, we apply our results to a well-studied prototypical set involving a convex quadratic
function, a binary variable and a big-M relation. The example in this subsection highlights the
systematic nature of our approach.

Consider the epigraph set

Qobj() = w3 < 2t
(x) =x1(x1—1)=0
):

S={(r,t) ER*XxR: ¢
q2(z) = 2x3(x1 —1) =0

In words, 21 is a binary on-off variable, x7 is a continuous variable which is constrained to be oft
whenever x1 is off, and ¢ is the epigraph variable corresponding to 3. The normalization of g2 ()
is not important here and is made only for notational convenience in the calculations.

It is well-known that conv(S) is given by the perspective reformulation of S (see e.g., [68, 79]),

ie.,

conv(S) = {(a:,t) ER?xR: x% — 211 <0,0< 21 < 1}. (2.4)

We give an alternative proof of (2.4). We will show that conv(S) = Sspp, the projected SDP
relaxation, using Theorem 10. Then, using an explicit description of I'°, we will give a description
of conv(S) = Sspp in the original space.

A simple computation shows that in this setting, we have

2
I'= {(70bj77) eR®: Yobj + 71 2 \/(’Yobj — )%+ (\/5’}’2) } and

2
I° = {(éobj,E) € RS : _gobj -l > \/(gobj — £1)2 + (\/iﬁg) }

In words, I" and I'° are both (rotated) second-order cones and Assumptions 4 and 5 hold.

It remains to show that for all (z,t) € Sspp \ S, the set R'(x, t) is nontrivial. To this end,
let (z,t) € Sspp \ S. Recall that I'® has three types of faces: the two trivial faces (the apex and

the cone itself) and the one-dimensional proper faces. Thus, there are three cases to consider: (i)
G(x,t) = {0}, (ii) G(z,t) = I'°, and (iii) G(, t) is a one-dimensional face of I"°.
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2 A geometric view of SDP exactness in QCQPs and its applications

In case (i), () —2teqp) = Oimplying that (2, ) € S,acontradiction. In case i), span(G(w, t)) =
R3 so that R/(x,t) = R3 and is nontrivial. In the final case, a mechanical but slightly tedious
application of Proposition 6 (see Section B.1) gives

1
2t —X2 t $2(l’1 -1+ 2t)
R/ (x,t) = —zo |, | =1 |, | —22 |, | —2} + 21 — 2ty — 2t . (2.5)
0 0 T 2332

Finally, one may verify that (z,t) € R'(x,t) is nonzero.

Remark 23. Here, the motivation for the final step of checking that (x,t) € R'(z, ) is as follows:
One can show that in case (iii), the first three vectors in (2.5) span the 2-dimensional subspace
orthogonal to (z, t). In particular, R'(z, t) is nontrivial if and only if (x,t) € R'(z,t).

U

We conclude that

CODV(S) = SSDp =

{@D R ~(qui(@) = 2t) = q1(@) > \/(qani(2) — 2t — @1 (2))? + 245()2].

This example highlights the systematic nature of the approach outlined in Theorem 10 for
proving convex hull exactness. In contrast to ad hoc proofs of convex hull exactness which may rely
on guessing and verifying a nonzero rounding direction, the system of equations defining R/ (x, t)
gives a principled way of deducing a direction. While guessing such a rounding direction may
be possible in low-dimensional settings (for example, the setting of the current subsection), this
becomes more difficult in higher-dimensional settings where S and Sspp are difficult to visualize.
We illustrate this in the following subsection.

2.4.2 QUADRATIC MATRIX PROGRAMS

Quadratic matrix programs (QMPs) [17, 181] are a generalization of QCQPs where the decision
variable z € R" is replaced by a decision matrix X € R"** . These problems find a variety of
application and have been used to model robust least squares problems, the orthogonal Procrustes
problem [17], and certain sphere packing problems [20]. Formally, a QMP is an optimization
problem in the variable X € R"** where the constraints and objective function are each of the
form

tr(X TAX) +2tr(B' X) + ¢

forsome A € S", B € R"™** and ¢ € R.

Alternatively, letting z € R" (resp. b € R™) denote the vector formed by stacking the columns
of X (resp. B) on top of each other, we can rewrite the above expression as

" (I ® Az + 2(b, ) + c.
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2.4 Applications: Convex hull exactness

We will choose to view QMPs as the special class of QCQPs where the quadratic forms Ay, A1, - - ., A
are each of the form I}, ® A for some A € S".

The following lemma establishes that if the number of constraints is small compared to k&
(originally the width of the matrix variable), then convex hull exactness holds.

Proposition 7. Suppose Assumption 4 holds and that Ayyy = I @ Ay, A1 = I @ Aq,
ooy A = Iy @ Ay for some Mgy, Av, ... Ay € S Furthermore, suppose k > m. Then,
R(x,t) is nontrivial for every (x,t) € Sspp \ S. In particular, convex bull exactness bolds, i.e.,
COHV(S) = SSDP~

Proof. Fix (x,t) € Sspp \ S. Based on Theorem 9 and Lemma 13, our goal is to prove that

xlTA(/yObj)rY)x/ = 07 V(%bjﬁ) € g(ﬂgat)L
(AGrabjs 1)+ b(Yotjs 1) ') = Yapit’ = 0, (Yo, 7) € G, 1)
(2.6)

R (z,t) = {(a;',t’) e R

is nontrivial. We claim that it suffices to show how to construct a nonzero y € R” such that

YT A(Yobj MY = 0, Y(Yabj7) € Gla, )™ (2.7)
To see that this suffices, note that for any w € R, the vector 2/ = w ® 1 satisfies the first
constraint in (2.6) since for (Yobj, ) € G(z, t)+, we have

(w@y) T A(Yobj; ) (w @ y) = (w'w)(y " A(vobj, 7)y) = 0.

Then, (w ® y,t') € R'(x,t) ifand only if
<A(70bj7 ’}/)l‘ + b(ryobja ’Y)a w & y> - ’Yobjt, =0, V(’Yobj, 7) € g(l‘, t)l

This is a system of dim(G (, t)*)-many homogeneous linear equations in the variables (w, t) €
R*+1. Note that as G(x,t) > q(z) — 2te ), which is nonzero by assumption, we have that
dim(G(z,t)*) < m. Ask + 1 > m by assumption, we deduce that this system has a nontrivial
solution. Thus, we conclude that (2.6) is nontrivial if there exists a nonzero y € R" satistying
(2.7).

It remains to construct y. By definition of Sspp, there exists Y = 0 such that

qobj(aj) + <Aobj)Y> < 2t7
gi(z) + (4;,Y) <0, Vi € [myg], and (2.8)
qi(x) + (A, Y)=0,Vi € [m;+1,m].

Without loss of generality, Y = (%Ik) @Y. As (x,t) ¢ S,wehavethat Y € S7, \ {0} and we
may pick a nonzero y € R" such that yy ' = Y. For notational convenience, let Lobj = yTAobjy

+
_|_

and ¢; ==y ' Ayy fori € [m]. Note that for any (Yobjs ¥) € T', we have A(7opj, 7) = 0, or equiv-
alently A (v, ) = 0. Thus, yy ™ =Y implics that ( (b5, 7); (Cojs ) = 7 Aty My <

61



2 A geometric view of SDP exactness in QCQPs and its applications

<A(’yobj, v), Y>. Also, fromY = (%I k) @ Y and the relation between the matrices Ao, A; and
A, Aj, we have <A(’yobj, ), Y> = <A(’yobj, v), Y>. We deduce that for (Yopy,7) € T,

() () = ( () o2 (1)) =0

where the last inequality follows from (2.8) and (7Yobj, 7) € I'. This then shows that gopj(z) —
2teghj + (Lobj, £) € I'°. Moreover, because A(Yobj, v) = 0, we have

obj _Eo i
0>~y A(yob, 1)y = <<7Vbj>, < _;’) >

which implies —(£qpj, £) € I'°. We have shown that gopi () —2teqp; + (£obj; £) and —(Lopj, £) both
lie in I'°. Then, as gop;(7) — 2teqp € rint(G(x,t)), we deduce that ({opj, £) € span(G(z,t)).

In particular, y T A(Yob, 1)y = ( (Gabjs 1) (lapys £) ) = O forall (34, 7) € G, ). W

Remark 24. SDP exactness in the context of QMPs was previously studied by Beck [17], Beck et al.
[20], Wang and Kiling-Karzan [181]. Specifically, Beck [17] shows that objective value exactness
holds whenever & > m and Wang and Kiling-Karzan [181] show that convex hull exactness holds
whenever k > m + 2. Proposition 7 strengthens both of these results by showing that convex
hull exactness holds whenever k > m. O

2.4.3 THE PARTITION PROBLEM

We next consider the partition QCQP and its SDP relaxation. Recall the partition QCQP: Given
a € R", we want to minimize
I T N2, .2 _ -
Opt == xrgﬁ@r}z{(a x)*xi=1,Vie [n]}
Note that Opt = 0 if and only if the vector a can be partitioned into two sets of equal weight.
Thus, deciding whether Opt = 0 is NP-hard [99]. In this section, we will first give an explicit

description of Sspp under a minor assumption. This explicit Sspp description will then let us
conclude that conv(S) # Sspp under the same minor assumption.

Assumption 6.a € R} | andn > 2. O

Remark 25. Assumption 6 is essentially without loss of generality: It is straightforward to
derive a closed form description of Sspp when n = 1. Similarly, one can relate Sspp corre-
. . n oo . / n'!
sponding to an arbitrary a € R" with the set Sspp corresponding to some a’ € R’} for

n' = {i € [n]: a; # 0} O
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2.5 Objective value exactness
Proposition 8. Suppose Assumption 6 holds. Then,

I'= {(%bj,'v) €RxR":

2
S = ,t € *1,171 R: Tr)? i 1— 2 _ /1 = 2 < 9t
sop =4 (@.0) € [-1,1)" x R: (a'a) +rir€1%<aﬁ zﬁ) <

JF +

aa i
Yobjaa ' + Diag(y) =0 - and
Vobj Z 0

See Section B.1 for a proof of this statement.
Recall from [106] that a vector a € R} | is said to be balanced if foralli € [n], a; < 37,4, a;.
The following result then follows as a corollary to Proposition 8. (See Section B.1.)

Corollary 7. Suppose Assumption 6 holds. Then, Optspp = 0 if and only if a is balanced.

As a consequence of Corollary 7 (and the NP-hardness of deciding whether Opt = 0 for the
partition QCQP), we see that it is NP-hard to decide whether objective value exactness holds for
the partition QCQP. This recovers a result due to Laurent and Poljak [106].

In contrast to the NP-hardness of checking objective value exactness for the partition QCQP, the
following corollary states that checking convex hull exactness tor the partition QCQP is a trivial
task.

Corollary 8. Suppose Assumption 6 holds. Then, conv(S) # Sspp.

The proof of Corollary 8 follows from the observation that conv(S) is polyhedral and that
Sspp is not polyhedral. See Section B.1 for details.

2.5 OBJECTIVE VALUE EXACTNESS

In this section, we present sufficient conditions for objective value exactness, i.e., the property that
Opt = Optgpp. In fact, all of our sufficient conditions imply the stronger condition, which we
refer to as optimizer exactness, that the optimizers of the QCQP and its SDP relaxation coincide,
ie.,

arg min 2t = arg min 2t¢.
(x,t)ESst (.Z‘,t)ES

We begin by presenting sufficient conditions stemming from a primal analysis. These sufficient
conditions generalize [181, Theorem 3]. Our second set of sufficient conditions are based on a
dual analysis and require the additional assumption that the dual optimum is achieved. These
conditions imply further that the optimizers are unique.

2.5.1 SUFFICIENT CONDITIONS BASED ON A PRIMAL ANALYSIS

We begin by presenting a very general sufficient condition for optimizer exactness.
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2 A geometric view of SDP exactness in QCQPs and its applications

Theorem 12. Suppose Assumption 4 holds. Furthermore, suppose that for all (x,t) € Sspp \ S,
there exists closed cones K1, Ko C RY™™ and (2',t') € R satisfying

K1 C (q(x) — 2teq) ™

—Ks N (q(z) — 2teq;)° = {0}

Ki+Ky;DOT

(") T A(Yabjs Y)2" = 0, ¥(Yebj, ) € K1

<A(%bj, Y)® + b(Yobj> V)5 fv’> = Yobjt' < 0, V(7objs 7) € K1
<0

(2.9)

Then, optimizer exactness holds, i.e., arg min(%t) eSqpp 2t = arg min(xyt) cs 2t.

Proof. Let (z,t) € Sspp \ S. It suffices to show that (z,7) ¢ argmin(, es,,, 2. Let
K, Ky, 2',t' denote the quantities furnished by the assumption.

We claim that for all @ > 0 small enough, (z + az’,t + at’) € Sspp. Indeed, forallaw > 0
small enough and (Yobj,7) € K1,
((abjs 7)s 4l + aa') = 2(t + at' ey )

= a? (2/) T A(orj, 1)’ +20 ((Alrom 1) + Yoty 1) ) = Yotst)
=0 <0
+ <(’70bj7 r}/)a q(CU) - 2teobj>

=0

<0.

Next, set B := Ko N SA+mM)~=1 5 that cone(B) = Kj. By definition of K3 and BB, we have
=B N (q(w) — 2teqy)® = @ so that the map

a —  max ), q(x + ax’) = 2(t + at)egy
("/obi,’y)63<(70bJ ’Y) Q( ) ( ) 0b)>

is negative at &« = 0. Note also that this map is a continuous function of . Then, by continuity,
this map is negative for some v > 0.

Finally, by linearity and the fact that K + K3 D T', we deduce that (z + ax’, t + at’) € Sspp
for some a > 0. This shows (z,t) ¢ argmin, ;cs, 2t- [ |

We next recover more concrete sufficient conditions by picking K1 and K appropriately. The
following corollary recovers the sufficient condition for objective value exactness (in the setting of

polyhedral I') presented in [181, Theorem 3].
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Corollary 9. Suppose Assumption 4 holds and that T is polybedral. Furthermore, suppose that for
all (z,t) € Sspp \ S, there exists (2, t') € R satisfying

(") T A(Yopj, 7)2" = 0, V(Yopj, ) € F(x,t)
<b<70bj77)7x/> — Yobit" < 0, Y(Vobjs 7) € Flz,t) . (2.10)
t'<0

Then, arg min , e s 2t = argming, yes, 2t

Proof. Let (x,t) € Sspp \ S. Since I is polyhedral, we can write I" := cone{ (’Y(Eg, Y (i))} (7]

for a finite set of generators. Take,
Ky = Cone{(%()é)jﬁ(i)) E <(7§§377(Z))7Q(x) - 2teobj> = O} = .F($,t)
and
KQ = Cone{(ry(gé)jvfy(i)) : <(7(()i))]>’7(”)7 Q(CL') - 2teobj> < 0}

Note that K1 and K> are polyhedral and thus closed. Moreover, the first three requirements
of (2.9) are satisfied for this choice of K and K»>. Moreover, note that for every (’yobj, v) €
F(x,t) € T we have A(vopj,7) = Oand forany A = 0,z Az = 0 implies Az = 0. Thus,
from K = F(x,t), we deduce <A(%bj, Y, $’> = 0 for every (7obj, ¥) € K1 so that the last
three requirements of (2.9) coincide with (2.10). |

The following corollary derives a sufficient condition for objective value exactness without the
assumption that I' is polyhedral. In words, this assumption supposes that forany (z, t) € Sspp\S,
there exists a direction (z/,#') € R"! such that ¢(z + aa’) — 2(t + at’)ep; varies only along
the line containing q(x) — 2teyp;. In particular, by picking o appropriately, we can achieve
q(z + ax’) = 2(t + at’)eq; = 0.

Corollary 10. Suppose Assumption 4 holds. Furthermore, suppose that for all (z,t) € Sspp \ S,
there exists (2, t') € R satisfying

(") T A(Yobj, 1) 7" = 0, V(Yobj, ) € (q(x) — 2teqy) "
(A 1) + b 1), ') = bt = 0, Y9 7) € (g() — 2te)t . (211)
t'<0

Tbé’}’l, arg min(x,t)essm 2t = arg min(Lt)eS 2t.

Proof. Take K1 = (q(x) — 21560bj))L and Ky = — cone(q(x) — 2teqy;). Then, K7 and K are
both closed convex cones and we can easily observe that the first three requirements in (2.9) are
automatically satisfied for this choice of K1 and K. The last three requirements in (2.9) coincide
with (2.11). [
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2.5.2 SUFFICIENT CONDITIONS BASED ON A DUAL ANALYSIS

Next, we give a sufficient condition for objective value exactness depending on a dual analysis. To
this end, we define the concave extended-real valued functiond : R™ — R U {—o0} by

d(v) = mnf [v,q(z)]-

Remark 26. Recall here that by Corollary 5, we can write Optgpp in the saddle-point form
Optgpp = infiern sup.er, [, q(z)] given in (2.3). Whence, by coercivity [62, Proposition
V1.2.3] we can also write Optgpp = sup.cp, d(7). O

The following theorem states thatif d(+y) is maximized ata point y where A[y] > 0(e.g., on the
interior of I'1), then optimizer exactness holds. This theorem can be interpreted as the observation
that if the dual to (2.2) in S"™! has a rank-n optimizer, then (2.2) has a unique rank-1 solution.
This is well-known and has been vastly explored in the literature. See [38] for one recent example.
We state it as a theorem not because it is new or difficult to prove but because of its importance in
deriving additional sufficient conditions (see Corollaries 11 and 12).

Theorem 13. Suppose Assumption 4 holds and that sup.,cp, d(7) is achicved at some ™ for which
Aly*] = 0(eg, v* € int(D)). Then, argmin , yyes 2t = argming, y)csp, 2t Furthermore,
the minimaizers of these two optimization problems are unique.

Proof. Ttsuffices to show that min, )¢ s,,, 2t has a unique solution (x*,¢*) and that (z*, ") €
S. Let (z%,t%) € argmin, yes,,, 2t so that 2 € argmin, sup,cr, [v,¢(z)] and 2" =
SUp,er, [, ¢(*)]. By the Saddle Point Theorem applied to (2.3), we have

On = V7", q(27)] = 2(A[y"]2" + b[y7])-

As A[y*] = 0, we have z* = — A[y*]~1b[y*]. This proves uniqueness of (z*,t*).
Note that there exists &« > Osuch that [y*, v*+ae;] C Ty foralli € [my]and [y*+tae;] C T
foralli € [my + 1, m]. Then, by the Saddle Point Theorem we have

Gi(x") = Vo [v", q(z%)] <0, Vi € [my], and
(") = Vo [v" q(@™)] = 0, Vi € [my +1,m].

We deduce that gopj(7*) < sup.er, [v,q(z*)] = 2t*. Hence, we conclude that (z*,t*) €
S. [ ]

Remark 27. Note that for any 7 for which A[y] > 0, the dual function d(7) is the sum of a
linear function c[y] and a concave function —b[y] " A[y]~1b[7], i.c.,

d(v) = =b[y] " A[y] B[] + c[]-

We will use this structure to derive more concrete sufficient conditions ensuring that d(vy) is
maximized at some point v* for which A[v*] > 0. O
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The following sufficient condition can be interpreted as requiring —b[y] " A[y]~1b[v] (and
hence also d(+y)) to diverge to —o0 as 7y approaches a point 4 € I'y for which A[4] # 0.

Corollary 11. Suppose Assumption 4 holds and that sup.cp, d() is achieved. Furthermore, suppose
that for all v € T'1, we have

AVl #0 = Jv € ker(A]v]) s.t. (v,b]y] # 0).

Then, argmin, ;e s 2t = argming s, 2t. Furthermore, the minimizers of these two opti-
mization problems are unique.

Proof. Lety* € argmax,cr, d(7). By Theorem 13, itsuffices to show that A[y*] = 0. Suppose
otherwise, so that A[y*] % 0. Then, the assumptions of the corollary furnisha v € ker(A[vy*])
such that (v, b[y*]) # 0. Let (z*,1*) € argmin, ;yes,,, 2. By the Saddle Point Theorem
applied to (2.3), we deduce

0= (v,0n) = (v, Va[7", q(«")]) = 2(v, A[y"]z" + b[y"]) # 0,

a contradiction. [ |

Remark 28. Burer and Ye [38] study diagonal QCQPs and show [38, Theorem 1] that objective
value exactness holds whenever certain systems of equations are infeasible. Specifically, their
sufficient condition for diagonal QCQPs can be rewritten as the condition that for any ¢ € [n], the
system {y € I'1, e; € ker(A[y]), b[y]; = 0} is infeasible. Corollary 11 generalizes [38, Theorem
1] by considering general matrices A; as opposed to diagonal matrices considered in [38].

0

Alternatively, one may impose the slightly weaker condition that —b[y] " A[y] ~1b[7] gets “suf-
ficiently steep near points at which A[y] # 0” compared to ||(c1, - . . , &m) ]| -

Corollary 12. Suppose Assumption 4 holds and tharsup.,cp, d(7) is achieved. Furthermore, suppose
that for all v € T'1 such that Alry] W 0, there exists 6 € R™ such thatvs ==~ + 6 € int(I'y) and
o5 =y + 20 € int(['y) and

(b1 T Al 5006T) — (~bras] T Alaol blras]) < —l16110y| S 2
=1

Then, argmin, ;ycs 2t = argming, s, 2t. Furthermore, the minimizers of these two opti-
mization problems are unique.

Proof. Lety* € argmax,cr, d(7). We will construct an optimizer ¥ € arg max.cp, d(v)
for which A[] > 0. The result will then follow from Theorem 13.

If A[y*] > 0 then we may take ¥ = 7*. Else, let 0 be furnished by the assumption of the
corollary and note that § # 0. We will set 4 = 7. Then, 4 € int(I") and thus A[y] > 0. By
optimality of 7*, it suffices to show that d(v*) < d(v5). As d(y) is concave and v*, 75, V35
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2 A geometric view of SDP exactness in QCQPs and its applications

lie on a line, it suffices in turn to show that d(v;) < d(735). Finally, as 75 and ;5 both lie in
int(I';), we may expand

d(73) — d(r3s) = (—bl31 A1 bls] + el3]) — (—blasslAlyss) ' blvssl + clrds))

S —||($H2 ZC? - Z(Slcl S 0.
i=1 i=1
Applying Theorem 13 concludes the proof. [ |

2.6 ArrLICATIONS: OBJECTIVE VALUE EXACTNESS

In this section, we apply the results of Section 2.5 to random and semi-random QCQPs. Again,
these examples offer further evidence that guestions of exactness can be treated systematically when-
ever I, T'1, or I'° is well-understood. In fact, the results in this section show that the ideas of
Section 2.5 can be applied (at times with additive errors) even when the dual set I', I'y, or I'® is
not known exactly, but only approximately. The random and semi-random QCQPs considered in
this section are motivated by recent work [38, 113], which has treated random QCQPs as a testing
ground for understanding the strength or explanatory power of various sufficient conditions for
objective value exactness.

We will fix 1, the number of quadratic constraints, and take n, the number of variables, to 4-00
independently. We will abbreviate “with probability 1 — o(1) asn — +00” as “asymptotically
almost surely” (4.4.s.).

The random and semi-random QCQPs we will consider in this section will involve data generated
according to the normalized Gaussian Orthogonal Ensemble (NGOE). We collect some basic facts
on the NGOE in the following section.

2.6.1 PRELIMINARIES ON THE (NORMALIZED) GAUSSIAN ORTHOGONAL ENSEMBLE

Here, we recall the normalized GOE and a few of its basic properties.

Definition12. Let A € S™ bearandom matrix where: each diagonal entry A; ;isi.id. N (0,1/2n);
each superdiagonal entry A; ; isi.i.d. N(0,1/4n); and each subdiagonal entry A, ; is defined by
symmetry. We will refer to this distribution as the normalized Gaussian Orthogonal Ensemble
(NGOE). We will write

A ~ NGOE(n)

to denote the fact that A is drawn according to this distribution. OJ

Remark 29. A different procedure for generating the same distribution is: sample M € R™*"
with every entry i.id. N(0,1/2n) and return A = (M + M ) /2. O

The NGOE is a very well-understood distribution [170]. We will only need a few basic facts.
The first two facts state that the NGOE is invariant under various notions of rotation.

Fact 3. FixU € R™ " orthogonal and let A ~ NGOE(n). Then, UT AU ~ NGOE(n).

68



2.6 Applications: Objective value exactness

Fact4. FixU € RkaortbogonalﬂndletAl, vy Ag g NGOE(n). Deﬁnefli = §:1 Ui jA;.

Then, A1, . .., A, "% NGOE(n).

Define also the normalized semicircular measure

2
nsc “— 1—a?)y.
K ﬂ\/( %)+

The next fact states that the NGOE obeys the semicircle law.

FactS. Forany € C°(R) and e > 0,

[ i~ [ v

Here, iy, is the random measure constructed by sampling A ~ NGOE(n) and setting i, =
% D=1 0x;(A) where 0y, (ay is the Dirac measure at \j(A).

lim Pr [
n—oo

>e}:0.

Finally, we recall that the operator norm of A ~ NGOE(n) is &~ 1 asymptotically almost surely.

Fact 6. Fixe > 0andlet A ~ NGOE(n). Then, —Amin(A), Amax(A) € [1 £ €] a.a.5.

2.6.2 EXACTNESS IN THE FULLY (GAUSSIAN SETTING

This subsection considers random Euclidean distance minimization problems of the form

. 2. o .
zlean”{HxHQ s qi(z) =0, Vi€ [m]} (2.12)
In words, we are looking for minimum norm solutions to random quadratic systems.

We will sample each quadratic constraint ¢;(x) = xT A + Qb;ra: + ¢; independently where
A; ~ NGOE(n), b; ~ N(0,1,/n),and ¢; ~ N(0, 1). Here, the normalization on the A;s and
b;s are chosen so that || 4;||, &~ 1 and ||b;]|, =~ 1.

Below, we will show that for any fixed m and n — 00, (2.12) has an exact SDP relaxation z.4.s..
Specifically, we will apply ideas from Corollary 11 to prove:
Proposition 9. Let Aj ..., Ay " NGOE(n), by, . .., by 2 N(0, I /n)andcy, . .., cm
N(0, 1) be independent. Then, a.a.s., optimizer exactness holds in (2.12), i.e, arg min g, pycs 2t =

argmin, y)esqp, 2t.

B

2 .

We will highlight the very simple geometric ideas underlying the proof of this result and defer
proofs of the more technical lemmas to Section B.2.

We will Proposition 9 using Theorem 13; specifically, we will show that d(+y) is maximized on
the interior of I'y. As a first step, we observe that I'; contains the unit ball (shrunk by €) 4.4.s..
The following lemma follows from an e-net argument, concavity of Amin (A[7]) as a function of
v, and Facts 5 and 6.
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2 A geometric view of SDP exactness in QCQPs and its applications

Lemmals. Fixr > Qande > 0. Let A1 ..., Ay, L NGOE(n). Then, a.a.s.,
Amin(A[7]) € [1 —r*¢€], Vy € r§m1.

In particular, int(I'1) 2 B(0,1 — €) a.a.s.

Recall Remark 27 that for v € int(I'1 ), we can write

d(v) = —b[y] " A[y] B[] + ¢[y]-

The next lemma notes that the first term in d (), i.e., —b[y] " A[y] ~1b[7], concentrates to a sphere
cap and follows from Fact 5.

iid.

Lemma16. Fixr € (0,1)ande > 0. Let Ay ..., Ay, "~ NGOE(n). Then, a.a.s.,

—b[y]"A[y] '] € [8(r) £ €], ¥y € 18T,

where d(r) = 2(v/1 —12 —1).

We are now ready to prove Proposition 9. The proof will observe that the gradient of —b[y] T A[y] ~1b[]
gets “arbitrarily steep at the boundary of 'y ” so that any maximizer of d(y) must lie in int(I';).
One may compare the proof of Proposition 9 to Corollary 12.

Proof of Proposition 9. For convenience, let ¢ € R™ denote the vector with ith coordinate ¢;.
Fix 6 > Oandlet M > O such that Pr.[||c[|, < M] >1—6§/2. Let0 < r; <73 < land
e € (0,1 — 79) such that

¢(r1) — ¢(ra) — 2€

ro — 1

> M.

In the remainder of the proof, we will condition on the events that ||c||, < M,
1—rog—e VyeryS™ 1

> (7‘1) — ¢, VyerS™ !, and

] < gb(Tz) + €, \V/’)/ (S T’Qsm 1

Amin(A[Y]) =
—b[7]" Ay~ e
—b()" Al by
By Lemmas 15 and 16, this holds with probability 1 — § for all n large enough.
Lety € Ty \ B(0,72) and let (1), (2 denote the projections of v onto B(0,7;) and

B(0, 9) respectively. We claim that d(y(?)) > d(v). By concavity of d(7), it suffices to show
that d(y(M) > d(7?). We compute,
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2.6 Applications: Objective value exactness

We conclude that d(+y) is maximized on the interior of T';. [

2.6.3 ALMOST EXACTNESS IN A SEMI-RANDOM SETTING

This section considers semi-random QCQPs of the form

. Qz(m) =0,Vie [m]
£ qopi(z) : . 213
FIR (O o b )
For notational convenience, define g, +1(2) = ||z||5 — 1.
We will consider the following semi-random model: First, Aopj, A1, - - . ; A are independently

sampled from NGOE(n). Then, bob, b1, - - - , b and cobj, €1, - - - ; ¢y are chosen arbitrarily (pos-
sibly adversarially depending on the A;s).

Below, we will show that for any fixed m, (2.13) has an “almost” exact SDP relaxation a.4.s..
Specifically, we will apply ideas from Corollary 10 to prove:
Proposition 10. Fixe > 0and let Let Agj, - - -, Am “td NGOE(n). Then, a.a.s., for all
bobjs - - - bm € R™ and copy - - . , Cm, we have

2
lzllz <1

Opt > Optspp > %nﬁn{qObj(x) —E€: ailz) € x|, Vi € [ }

In aslight departure from previous notation, we will write our dual vector as (’Yobj, Yy Ym+1) €

R+ where 11 € R corresponds to the constraint ||z]|3 < 1. As in Section 2.6.2, we will

emphasize the main ideas in the proof of Proposition 10 and leave the proofs of more technical
lemmas to Section B.2.

The following lemma says that in this random model, I will again converge to the second-order
cone. This lemma follows from Lemma 15.

Lemma 17. Fixr > Oand ¢ > 0. Let Agyjy Ar - .., Ay, & NGOE(n). Then, a.a.5,

)\min(A(Wobjy Y, 1)) € [1 —r= E]a v(r)/obja 7) ersS™.

In particular, a.a.s.,

{(’Yobja%’YmH) : H(%bjﬁ)HZ <(1- 6)7m+1} cr
< {('70bja'7a7m+1) : H('Vobj,'V)H2 <(1+ 6)'7m+1}-

The following lemma says that a version of Corollary 10 with errors holds in this setting. This
lemma follows from an e-net argument along with Fact 5.

Lemma 18. Fixe > 0and N € N. Then, a.a.s., for every (’yobj,’y) € S™, there exists an
N-dimensional vector space W C R™ such that

wTA(fYObjf% 1)w € [ie]Hnga Yw e W.
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2 A geometric view of SDP exactness in QCQPs and its applications

With Lemmas 17 and 18, we may now prove Proposition 10.

Proof of Proposition 10. Without loss of generality, we assume € € (0,1/2) and by, b1, - - -, b,
Cobjy C15 - - - » Cn are picked so that the SDP relaxation is feasible, i.e.,

o> inf  sup  [(1ms1), a(o)] (214)
ZER™ (5 ymt1)€T1

Let z* denote an optimizer of (2.14) with value 2¢*. Consider the vector ¢(z*) — 2t*eqy; €
R+ Without loss of generality, we may assume that g(z*) — 2t* e, is both nonzero and on
the boundary of T'°. By Lemma 17 and the assumption that g(x*) — 2t*e.p; € bd(I'°), we have

T = \l (qobj(*) — 2t%)% + f:%‘(x*)Q € [1 £ €lgmy1(z™).
i=1

Next, as q(2*) — 2t* ey, is nonzero, we have that 0 < g1 (2%) = 1 — [|2*]%, ie., [|2*]* < 1.
Hence, by definition of 7, we have |7| < 1 + €.

obi ) _ot* * o (T*
Set (fu £ frnsn) i= (P20 ) 9l 4) o dhae | (fy, )], = 1
Note that by Lemma 18, there exists a subspace W of dimension m + 3 such that

W' A(fobjs [ frna1)w € [e]|[w]3, Y € W.

By a dimension counting argument, there exists a unitw € W satistying

<A(70bj7 Y, ’7m+1)1'* + b(’YObja Y, ’Yerl)a U]> — 07 V(%ij v, ’Ym+1) S R1+m+1’ (215)
Then, for this vector w we have

wTA(fobj7 f7 ]-)w € [i€]7
w' A(0,0,,, 1)w = 1, and (2.16)
wTA(’Yobj>’77 1)w > 07 v(vobj/}/) € (1 - e)sm'

Here, the first two relations follow from |Jw]||5 = 1. The third relation follows from Lemma 17,
which implies that A(vobj, 7, 1) = 0 forall (7obj,7) € (1 —€)S™.

Set Vobj = wTAobjw and v € R™ where v; == w ' A;w fori € [m]. Note that by (2.15), we
have

q(z* + aw) — 2t*eqy = (q(:c*) - 2t*eobj) + OéZ(UObj,’U, 1).

Then, by the first two lines of (2.16),

<(vobj7 v), (fobja f)> = fobijAobjw + Z finAz-w

i=1
= wTA(fObja fa 1)?11 - wTw S [_1 + 6].
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Next, by the third line of (2.16), we have H(Uobja U)Hz < 1/(1 —€). Set (dopj, 0) =

(vobja U) +

(fobjs f)- We will argue that (J4pj, 6) is small by bounding its components along ( fobj, f) and

orthogonal to ( fobj, f),

H(5obj,5)H2 < e <(1 _1 o7~ (1- 6)2) = O(e).

Finally, set Z = 2* + aw where o = /1 — ||z*||* and note that

a(&) — 2t eqn = q(”) = 2t e + (1 = 12" 3) (vapjs v, 1)
= q(a") = 20 eary + (1= [[27][)em1 + 7(vot, v, 0)
+ (1= [l2*[15 = 7) (v, v, 0)
= q(a™) = 2" eqry — (7 foy, 7. 7[5~ 1)
+7(8atys 8,0) + (1 = [[2”]|5 = 7) (v, v, 0)
= (B, 8,0) + (1 = "3 = ) (vop;, v, 0).

(305:9)], = O(Ve),

The conclusion then follows from the bounds | 7| < (1+e€),

eand H(UObj’U)HQ <1/(1—c¢).

2
13 - 7| <
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3 RANK-ONE-GENERATED CONES

This chapter is based on joint work [7] with C.J. Argue and Fatma Kiling-Karzan, [100] with Fatma
Kiling-Karzan.

A closed convex conic subset S of the positive semidefinite (PSD) cone is rank-one generated
(ROG) if all of its extreme rays are generated by rank-one matrices. The ROG property of S is
closely related to the exactness of SDP relaxations of nonconvex quadratically constrained quadratic
programs (QCQPs) related to S. In this chapter, we consider the case where S is obtained as
the intersection of the PSD cone with finitely many homogeneous linear matrix inequalities and
conic constraints and identify sufficient conditions that guarantee that S is ROG. In the case of
two linear matrix inequalities, we also establish the necessity of our sufficient conditions. This
extends one of the few settings from the literature—the case of one linear matrix inequality and
the S-lemma—where an explicit characterization for the ROG property exists. We additionally
show how to apply ROG results to derive exactness properties of QCQPs as well as optimization
problems involving ratios of quadratic functions.

3.1 INTRODUCTION

Let S™ denote the real vector space of n X n real symmetric matrices and S’} the cone of positive
semidefinite matrices. We will say that a closed convex cone S C S} is rank-one generated (ROG)"

if
S =conv(SN{zzT: x € R"}),

where conv(+) is the convex hull operation. In words, a closed convex cone S is ROG if and only
if it is equal to the convex hull of its rank-one matrices.

In most applications, the cone S C S'} will be represented as the intersection of S} with a
(possibly infinite) system of linear matrix inequalities (LMIs). Specifically, we will consider cones
of the form

S(M) = {X €S : (M,X)>0,YM € M},

where M C S". Note also that any closed convex cone S C S’} can be expressed in this form. An
obvious question then is: What does the ROG property of S(M) correspond to in terms of M,
its defining LMIs?

'\We will see in Lemma 19 that the definitions of ROG cones given in the first sentence of the abstract and the second
sentence of the main body are equivalent. For the purposes of our developments, we will begin with the definition
given in the main body.
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3 Rank-one-generated cones

While our main focus will be on closed convex cones, our results also have implications in the
more general setting of arbitrary closed convex sets S C S} and their defining LMI.

3.1.1 MOTIVATION

The ROG property is important in studying semidefinite program (SDP) relaxations of quadrati-
cally constrained quadratic programs (QCQPs).

QCQPs are a fundamental class of optimization problems that arise naturally in many areas.
Indeed, many problems including binary integer linear programs, max-cut, max-clique, certain
robust optimization problems and polynomial optimization problems can be readily recast as
QCQPs (see [11, 25, 91] and references therein).

It is well known that any QCQP can be reformulated as an SDP in a lifted space with an
additional nonconvex rank constraint. Dropping this rank constraint leads to the standard SDP
relaxation [161]. A general QCQP and its SDP relaxation are given by

TM.r > ;
inf {qo(y): ¢i(y) >0, Vi€ [m]} = ienﬂgn{xTMox o Mz >0, Vi € [m] }

yeRn-1 i=1
> inf 4 (Mp, X) : (M;, X) >0, Vi€ [m] .
Xesn Xip=1
(3.1)
Here, [m] :== {1, ..., m}, the functions g; are quadratic functions of the form ¢;(y) = yT A;y +

2bZTy + ¢;, the vector 2 should be thought of as ( ; ), and the matrices M; are defined as M; :=

. pT
(i)

In general, it is NP-hard to determine whether the SDP relaxation of a given QCQP is exact, i.c.,
when equality holds in (3.1) (see [106]). Nevertheless, sufficient conditions that ensure equality
in (3.1) are of great interest, and thus establishing such conditions has attracted a lot of attention
in the literature.

Geometrically, SDP exactness occurs if and only if there exist rank-one matrices in the feasible
domain of the SDP approaching its optimum value. The ROG property is a similar but stronger
notion of exactness. Specifically, if the cone

SHM, ..., My}) = {X €S : (M, X)>0,Vie [m } (3.2)

is ROG, then there exist rank-one matrices in the right hand side of (3.1) approaching its optimum
value for every choice of My such that the right hand side of (3.1) is finite. In other words, if the
cone in (3.2) is ROG, then equality holds in (3.1) for every choice of objective function such that
the SDP value is finite. In the case of homogeneous QCQPs, i.e., where all b; = Oand ¢; = 0
fori =0,1,...,m, then(3.2) is ROG if and only if the underlying SDP relaxation is exact for
every choice of objective function. See Section 3.5.1 for a more detailed discussion of how equality
holding in (3.1) relates to the ROG property of S({ M1, ..., M, }).

The ROG property is a natural strengthening of SDP exactness. Consider, for example, the
problem of minimizing an arbitrary quadratic function over an ellipsoid. The celebrated S-lemma
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[190] guarantees that the SDP relaxation of this problem is exact regardless of the choice of objective
function. One way of reinterpreting this statement is as the fact that

S({Mi}) ={X est: (M, X)>0 }

is ROG when M corresponds to an ellipsoid constraint.” From a different perspective, the ROG
property of spectrahedra can be thought of as an analogue of the integrality property of polyhedra
for linear programming relaxations of integer programs. While there are well-known sufficient
conditions such as total unimodularity or total dual integrality for the integrality property of
polyhedra (see [52] for recent developments and earlier references), the research on sufhicient
conditions for the ROG property of spectrahedra is much more recent and limited.

The ROG property is also relevant in the context of sum-of-squares (SOS) programming. Con-
sider a real homogeneous quadratic variety V := {& € R" : 2TM;x = 0, Vi € [m]}. Let Py de-
note the set of nonnegative quadratic formson V, ie., Py = {M € §" : 2TMxz >0, Vx € V}.
Let Xy denote the set of quadratic forms that are “immediately nonnegative” on V, i.e., ¥y :=
S + span{M; : i € [m]}, where span(-) is the span (linear hull) of the given elements.

Itis clear that Xy C Py . A direct calculation shows that the dual cones of Py and Xy are
given by

Py = conv{zz’ : (M;,zxT) =0, Vi € [m]} and
L= (X eS": (M;,X) =0, Vie [m]},

respectively. Therefore, ¥y = Py if and only if ¥j, = Py, which holds if and only if 33,
is rank-one generated. In other words, every nonnegative quadratic form on V' is “immediately
nonnegative” if and only if 337, is ROG. See [29, Section 6] for further connections and applications
of the ROG property in the context of real algebraic geometry and statistics.

3.1.2 RELATED LITERATURE

BOUNDS ON THE RANK OF EXTREME POINTS OF GENERAL SPECTRAHEDRA. A rich line of
research has proved optimal worst-case bounds on the rank of extreme points of a spectrahedron
(an affine slice of the PSD cone) in terms of the number of its defining linear matrix equalities
(LMEs) [14, 69, 141]; see also [16, Chapter I1.13]. It is known that given m LMEs, if there exists a
positive semidefinite (PSD) solution to the LMEs, then there also exists a PSD solution with rank
at most 7 for any integral r such that
r+2
< 9 .

From this, we may deduce’ that any spectrahedron defined by 7m LMEs has only extreme points of

rank at most 1 for any integral r satisfying m + 1 < (T;Q). In particular, taking 7 = 1, this bound

2Along with the observation that the SDP relaxation of this problem is always bounded.
3 After taking into account an additional LME due to the objective function and applying Strasziewicz Theorem (see
[152, Theorem 18.6]).
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implies that any spectrahedron defined by a single LME is ROG. Unfortunately, this bound does
not shed much light onto (even the existence of) ROG spectrahedra in the case where m > 1.
Although this bound is tight in general, it does not exploit potential structure in the defining
LMEs. In other words, it is possible to achieve stronger bounds on the rank of extreme points of
spectrahedra with additional structure. Our work complements this line of research by examining
properties of systems of LMEs and LMIs that guarantee the ROG property beyond the case of
m = 1.

SDP ExacTNESs.  The question of when equality holds in (3.1) has attracted significant interest.
Within this line of research, a number of papers study the classical trust region subproblem (TRS)—
the problem of minimizing a nonconvex quadratic function over an ellipsoid—and its variants,
and identify cases under which an exact SDP reformulation is possible. This line of work can be
traced back to Yakubovich’s S-procedure [67, 190] (also known as the S-lemma) and the work of
Sturm and Zhang [167]. We refer the interested readers to the excellent survey by Burer [33] and
references therein.

It is worth noting that although the results in [33] are stated in terms of the exactness of
(strengthened) SDP relaxations, the underlying arguments in fact establish the ROG property for
the corresponding SDP feasible domains. For example, the domain of the SDP relaxation associated
with the classical TRS is the intersection of S’} with a single LMI, which is well known to be ROG
via S-lemma. In the other variants of TRS examined in [33], the domain of the associated exact
SDP reformulation involves at least one problem specific conic constraint (in fact a second-order
cone constraint), and consequently is described by an infinite family of well-structured LMIs.

These lines of work can be thought of as addressing the special case where there are only a few
(usually one or two) nonconvex quadratic functions in the QCQP on the left of (3.1). In contrast,
Burer and Ye [38] and Wang and Kiling-Karzan [181] recently introduced more general sufficient
conditions for SDP exactness which do not make explicit assumptions on the number of nonconvex
quadratic functions. As an example, it can be shown that SDP exactness holds whenever a natural
symmetry parameter of the QCQP is large enough and the set of convex Lagrange (dual) multipliers
is polyhedral [181]. See also [179] for sufficient conditions that make weaker assumptions on the
geometry of the set of convex Lagrange multipliers. Some of these sufficient conditions for SDP
exactness [179, 181] have also been shown to guarantee that the (projection of the) epigraph
of the SDP relaxation coincides exactly with the convex hull of the epigraph of the QCQP. In
particular, the convex hulls of epigraphs of “highly-symmetric” QCQPs with favorable geometry
are semidefinite-representable. Results in this line of work generally depend heavily on how the
objective function interacts with the constraints. Our work complements this line of research by
establishing conditions for SDP exactness which are oblivious to the objective function.

ALGEBRO-GEOMETRIC PROPERTIES OF ROG sPECTRAHEDRA. The ROG property has also
been studied from a more algebro-geometric perspective [29, 83].

Hildebrand [83] studies algebraic properties of ROG cones obtained by adding homogeneous
LMEstoS'!, and proves important facts about their representations. The study begins by exploring
the minimal defining polynomials and facial structure of ROG cones. These properties are then
used to build the main contribution of [83]: The geometry of an ROG cone determines its
representation as a linear section of a PSD cone (of any dimension) uniquely up to an isomorphism
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on the underlying vector space. Additional results in this paper include a complete classification of
ROG cones of degree” at most four as well as a number of operations on ROG cones (the direct
product, full extension, and intertwining operations) that preserve the ROG property.

Blekherman et al. [29] study the ROG property of the cones Xj; (see Section 3.1.1) using
techniques from real algebraic geometry and establish a connection between the geometry of
3%, and the property Na , of the defining ideal of V.” Specifically, one of the main results in
[29] is that, for general real projective varieties V, if £, has an extreme ray of rank p > 1 then
V' does not satisty the property No ;. This result is then strengthened in [29, Theorem 20] to
show that a spectrahedral cone S defined by LMEs is ROG if and only if S = X, for a non-
degenerate, reduced, 2-regular, totally real scheme V. Finally, [29] also examines consequences
of this connection to problems from real algebraic geometry, convex geometry, statistics, and real
analysis, such as the positive semidefinite matrix completion problem.

In contrast to [29, 83], our results deal with possibly infinitely many LMIs. The ROG property
of such sets is not obvious and does not follow immediately from the ROG property of spectrahe-
dral cones defined by LMEs. Indeed, we will see that both replacing equalities with inequalities
(Remark 39) and lifting inequalities to equalities (Example 9) can destroy the ROG property of a
spectrahedral cone. In addition, our more general setup allows us to handle additional interesting
spectrahedral cones that have conic constraints, for example those arising from variants of the TRS.
We also discuss implications of the ROG property in terms of the exactness of SDP relaxations
of QCQPs and explicit convex hull characterizations of sets defined by quadratic inequality con-
straints. Finally, all of the proofs in this chapter follow from elementary linear algebra and convex
analysis. In particular, we hope that our results and their proofs shed light on the ROG property
for readers less familiar with algebraic geometry.

ROG SPECTRAHEDRA ARISING FROM PSD MATRIX COMPLETION.  The ROG property has also
been studied for spectrahedra arising in the matrix completion literature. PSD matrix completion
arises in a number of areas—for example in statistics, this problem is related to maximum likelihood
estimation in Gaussian graphical models [56]. Let E denote the edge set of an undirected graph on
n vertices that contains all self-loops. Let K' C S™ denote the projection of S'} onto the indices in
E. Then, a matrix Y that is specified only on E has a PSD completion if and only if it lies in the
cone K. A short calculation shows that

Y,;i=0,V(i,j) ¢ E
_ n . 1,7 9 9
K-{YGS. (X, V) >0,YX €S [’ where
S = {X S SZ’_ : Xi,j =0, V(Z,j) ¢ E}
Consequently, the condition that every fully specified submatrix of Y is positive semidefinite is

necessary and sufficient for Y to have a PSD completion if and only S is ROG. It is well-known
that S is ROG if and only if E is the edge set of a chordal graph® on n vertices [3, 78, 145].

*This is the degree of the minimal defining polynomial. This quantity is shown to be equivalent to the maximum
rank over matrices in the ROG cone.

5 A real projective variety V satisfies property Nz, for an integer p > 1 if the jith syzygy module of the homogeneous
ideal of V' is generated in degree at most j + 2 forall j < p.

°A graph is chordal if every minimal cycle in the graph has at most 3 edges.
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3 Rank-one-generated cones

3.1.3 OVERVIEW AND OUTLINE OF THE CHAPTER

In this chapter, we study necessary and/or sufficient conditions under which the intersection of
the positive semidefinite cone with a set of homogeneous LMIs is an ROG cone. A summary of
our contributions, along with an outline of the chapter, is as follows:
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i In Section 3.2, we introduce our main terminology and basic tools. Specifically, we show
how the ROG property behaves when we switch from linear matrix inequalities (LMIs)
to linear matrix equalities (LMEs) and how the ROG property for LMEs is characterized
by the existence of solutions of quadratic systems. In Section 3.2.5, using our basic tools,
we recover the well-known fact that a set defined by a single LMI/LME is ROG, i.e., the
S-lemma, and discuss a few implications for a simple sufficient condition in the case of two
LMIs/LMEs.

ii In Section 3.3, we establish a number of new sufficient conditions for the ROG property.

As an example, we show that § is ROG when § = {X € §" : Xc € K} for a fixed
vector ¢ and an arbitrary closed convex cone K. We also provide a number of examples
to demonstrate that even simple extensions of our sufficient conditions are not possible.
We conclude this section by recovering the well-known result that the SDP relaxation
strengthened with a second-order cone reformulation-linearization technique (SOC-RLT)
inequality is exact for the variant of the TRS with a single linear inequality constraint.

iii A well-known consequence of the S-lemma is that the set S(M) is ROG whenever M =

{M} is a single LMI; see e.g., Ye and Zhang [194, Lemma 2.2]. In Section 3.4, we give a
complete characterization of ROG cones defined by two LMIs. One of our main results
states a necessary and sufficient condition on the matrices M7 and My which ensures that
the set S is ROG. In particular, we establish in Theorem 16 that such a set is ROG if and
only if the LMIs defined by M1 and M5 either “only interact” on a single face of S’} where
they induce the same inequality constraint or both M and M5 have a specific indefinite
rank-two structure. We conclude that in the case of m = 2, there exist simple certificates of

the ROG property.

iv In Section 3.5, we give a few applications of ROG cones. In particular, we show how results

on the ROG property of convex cones can be translated into inhomogeneous SDP exactness
results and SDP-based convex hull descriptions of quadratically constrained sets. We then
apply our ROG-based sufficient condition for exactness of the SDP relaxation to a simple
set involving binary and continuous variables linked through a complementarity constraint.
This gives a new method for deriving the well-known perspective reformulation for the
convex hull of this set. We additionally present a number of examples that highlight how our
ROG-based sufficient conditions for the SDP exactness and convex hull descriptions difter
from other SDP exactness conditions in the literature. We close this chapter by showing
how to combine our ROG results with a “re-homogenization” trick to minimize ratios of
quadratic functions over ROG domains. We give applications to the regularized total least
squares problem and a Stackelberg prediction game with a least squares loss function. The
results in this section are self-contained and serve as additional motivation for the main
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3.2 Properties of ROG cones

We will compare our results with the literature in further detail in the sections as outlined above.

3.1.4 ADDITIONAL NOTATION

For M € R™ ", let Sym(M) = (M + MT)/2 € S". For a cone K in a Euclidean space
&, let extr(K) denote its extreme rays and define K* = {y € E: (x,y) >0, Vz € K} to
be the dual cone of K. Given a subspace W C R"™and x € R", let z1y € W denote the
projection of  onto W. Forz € Wandy € W+, let & & y denote their direct sum. For
X eS"andY € SWL, let X @ Y denote their direct sum, i.e., the unique matrix in S" such
that(z @ )T (X @Y)(z @ y) =2TXx +y Yyforallz € Wandy € W,

3.2 PrROPERTIES OF ROG CONES

3.2.1 DEFINITIONS
Given M C S", define
SM) ={X ¢ St (M, X)>0,YVM € M}.

Note that S(M) is a closed convex cone. We are interested in the following property of such sets.

Definition 13. A closed convex cone S C S} is rank-one generated (ROG) if
S =conv(SN{zzT: x € R"}). O

Remark 30. Note thatwhen S C S} isa closed convex cone, we have conv(SN{zzT : € R"})
cleconv(S N {zaT: z € R"}). O

We will make extensive use of the following definitions and basic facts.

Definition 14. For X € S™ nonzero, the ray spanned by X is
Ry X :={aX: a>0}.

Let S C S be a closed convex cone and suppose X € S is nonzero. We say that R, X is an
extremeray of Sifforany Y, Z € Ssuchthat X = (Y +7)/2, wemusthaveY, Z ¢ Ry X. O

Fact7. Let X € S Then, v € range(X) if and only if there exists € > 0 such that X — exxT €
S

Fact 8. Let S C S} be a closed convex cone. Then, for X # 0, R X is an extreme ray of S if and
only if for every Y,

(X -Y,X+Y]CS = JacRsuchthatY = aX.
The following fact follows immediately from Facts 7 and 8.

Fact 9. Let S C S be a closed convex cone. If X € S hasrank(X) = 1, then Ry X is an extreme
ray of S.
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3 Rank-one-generated cones

Lemma 19. Let S C S be a closed convex cone. Then, S is ROG if and only if for each extreme
ray R4 X of S we haverank(X) = 1.

Proof. (<) Note that as S is a subset of S7!, it must be pointed. Then, as a closed convex pointed
cone is the convex hull of its extreme rays, we have that S = conv(S N {zzT : = € R"}).

(=) Let R4 X denote an extreme ray of S. As S is ROG, we may by assumption write X =
SF | wix] where z;z] € S forevery i € [k]. Then, as Ry X is an extreme ray of S, we must
have z;x] € Ry X foreveryi € [k]. Thus, we deduce that X is rank-one. [

The following fact allows us to decompose positive semidefinite matrices which are identically
zero on a given subspace.

Lemma 20. Let X € S}, Suppose W C R"™ is a subspace on which Xy = 0. Then, we can write

Proof. By performing an orthonormal change of variables, we may assume without loss of general-
ity that W corresponds to the first k coordinates of R and W+ corresponds to the last n — k
coordinates of R™. We can then write X as a block matrix

[ Xw Y
X B ( YT ij_> ’
Then,as X € S} and Xy = 0, we deduce that Y = 0. In particular, X = O @ Xy, W

3.2.2 RerLaTiNng LMIs To LMEs

Given aset M C S, we will quickly switch from studying S(M) to sets defined by LMEs, i.e.,
sets of the form

TM) == {X €S?: (M,X)=0,YM € M}.

Sets of the form 7 (M) are simpler to analyze than sets of the form S(M).

Remark 31. It s clear that given any M C S", we have S(M) = S(clcone(M)) and T (M) =
T (span(M)). In particular, we may without loss of generality assume that M is finite when
analyzing sets of the form 7 (M)—simply replace M with a finite basis of span(M). On the
other hand, clcone(M) is not necessarily finitely generated. O

We now present a series of lemmas relating S(M) and 7 (M) and their facial structures in
terms of the ROG property. These results are particularly instrumental when we analyze the
spectrahedral sets defined by finitely many LMIs/LME:s.

Lemma 21. For any set Ml C S", the following are equivalent:
1. (M) isROG.
2. Every face of S(M) is ROG.

3. SM)NT (M) is ROG for every M' C M.
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3.2 Properties of ROG cones

Proof. (1. = 2.) Note that every extreme ray of a face of S(M) is also an extreme ray of S(M).

(2. = 3.) First, suppose M" = &. Then, T(M') = S% and thus S(M) N T(M') =
S(M). Since S(M) is a face of itself, by part 2. we deduce it is ROG. Now consider any & #
M’ C M. Note that T (M) only depends on the linear span of M’, thus without loss of
generality we may assume that M’ is a basis of span(M’). Take Y to be the average of M/,
ie,Y = Wl’\ > mresmr M. Note that Y € cone(M’) so that Y € S(M)*. We claim that
SM)NT(M') =S(M)NY". Indeed, forall X € S(M), we have that (Y, X) = 0ifand
onlyif (Y, M) = Oforall M € M'ifandonlyif X € T (M'). We deduce that S(M)NT (M)
is a face of S(M), and thus it is ROG.

(3. = 1.) Take M’ = . [ |

We have the following immediate corollary of Lemma 21.
Corollary 13. For any set M C S", if S(M) is ROG then T (M) is ROG.

Proof. Take M’ = M in Lemma 21. [ |

Informally, an extreme ray of S(M) should also be an extreme ray of S(M’) for M’ C M as
long as M’ contains the “relevant” inequalities in M. The following technical lemma makes this
notion precise.

Lemma 22. Let M C S" and let Ry X be an extreme ray of S(M). Let M C M contain all of
the constraints that are tight at X, i.e, {M € M : (M, X) = 0} C M. If M\ M is compact,
then Ry X is an extreme ray of S(M'). If additionally M' = {M € M : (M, X) = 0}, then
R X isan extreme ray of T (M').

Proof. Suppose Y € S™issuch that[X —Y, X +Y] C S(M’). By compactness of M \ M/, we
have that (M, X') achieves a positive minimum value on M \ M’. Furthermore, by compactness,
(M,Y) is bounded on M \ M. In particular, there exists € > 0 small enough guaranteeing
that (M, X £ €Y) > Oforall M € M\ M’. This together with [X — Y, X + Y] C S(M’)
implies that [X — €Y, X 4+€Y] C S(M). Thus, as Ry X is an extreme ray of S(M) we conclude
that Y = aX for some o € R. This then implies that R X is extreme in S(M).

The second statement follows by replacing S(M’) with 7 (M) in the argument above. W

Lemma 22 allows us to strengthen Lemma 21 in a few ways.

Lemma 23. Let M C S™ be compact. Then, S(M) is ROG if and only if S(M) N T (M) is
ROG for every @ # M' C M.

Proof. (=) This direction follows Lemma 21.

(<) Let R4 X be an extreme ray of S(M) and define M’ := {M € M : (M, X) = 0}.
First suppose M’ # @. As R X is also an extreme ray of S(M) 0T (M), which by assumption
is ROG, we have that rank(X') = 1. Now suppose M’ = &. By Lemma 22 and the assumption
that M is compact, we deduce that R X is an extreme ray of 7 (@) = S'}. We conclude that
rank(X) = 1. [
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3 Rank-one-generated cones

We note that given Lemma 23, it may be tempting to try to strengthen the third condition
in Lemma 21 to the condition that S(M) N T (M) is ROG for every & # M’ C M. The
following example shows that this is not possible without making the compactness assumption of
Lemma 23.

Example 7. Suppose n = 2and M = ;¢ [y M, where

O o (S
0 (L

Noting that S(M) is unchanged upon taking the closure of M and that for all i € [4] and the
constraints (M., X) > 0 for M, € M, get only more restrictive as € — 0, we deduce

cwnsl{( )0 I )

We conclude S(M) = R, I is not ROG. On the other hand, for any & # M’ C M, we have
SM)NT (M) = {0} (because (M, I) # 0 forany M € M)andis ROG. O

Lemma 24. Let M C S" be finite. If T (M) is ROG for every M’ C M, then S(M) is ROG.

Proof: Let R{ X be an extreme ray of S(M). Define M’ := {M € M : (M, X) = 0}. By
Lemma 22 and the fact that any finite set is compact, we deduce that R} X is an extreme ray of

T (M'). We conclude that rank(X) = 1. [

The following lemma shows that the ROG property of 7 (M) is equivalent to the ROG
property of T (M) where M is the restriction of M onto the joint range of the matrices M' € M.

Lemma 25. Let W = span(Uy e range(M)). For M € M, let M = My denote the
restriction of M to W. Let M = {H : M e M} Then, T (M) is ROG if and only if T (M) is
ROG.

Proof. (=) Note that T (M) isisomorphic to 7 (M) &0y, 1 via the rank-preserving map Xy —
Xy @ Oy L. We claim that 7 (M) @ Oy is a face of T (M ). Indeed, we can write

TM) &0y =TM)N{X €St : (0w & Iy, X) =0}

and note that Oy & Iy € S™. Then, T (M) @ Oyy1 is ROG by Lemma 21. We conclude that
T (M) isROG.

(<) Let R4 (X ) bean extreme ray of 7 (M) and set X := Xyy. We will show thatrank(X) =
1 by considering two cases. First, suppose X = 0, then range(X) C W-. We deduce that
as X # 0, there exists a nonzero vector y € range(X) C W+. Note that (M, yyT) =

(Mw, (yy")w) = 0. Furthermore, X £ eyy™ € S’} for all small enough ¢ > 0. By the
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3.2 Properties of ROG cones

M s finite and VM’ € M, T(M')ROG | == | S(M) ROG | == | T (M) ROG

Figure 3.1: A summary of Lemma 24 and Corollary 13

assumption that R (X)) is an extreme ray, we then conclude that X is a scalar multiple of yyT
and is rank-one.
Next, suppose X # 0. As (M, X) = <M, Y> for every M € M, we have that X € T (M).

By the assumption that 7 (M) is ROG, we may write X = >, 7,57 where 7,5 € T(M)
are each nonzero. Fix 7 := ¥, and define Z such that 7 = Xz. This is possible as J € range(X).
Finally, define

We claim that X &+ eyyT € T (M) forall € > 0 small enough. Indeed, as y € range(X') we have
that X & eyyT € S'} forall € > 0 small enough. Furthermore, for all M € M we have

(M,yy") = (M,57") = 0,

where the second equality follows from the fact thaty € T (M). Additionally note that 7 is
nonzero and Yy = ¥ so that y is nonzero. We deduce that X + eyy™ € T (M) foralle > 0
small enough. By the assumption that R4 (X)) is an extreme ray, we then conclude that X isa
scalar multiple of yyT and is rank-one. |

Remark 32. The characterizations given in Lemmas 21 to 25 and Corollary 13 are based on the
facial structure of the sets S(M) and T (M) and in a sense are analogous to characterizations of

integral polyhedra. O

Remark 33. The ROG property is not preserved under trivial liftings. When M = {Mj, ..., M}}
is finite, one may attempt to replace all of the inequalities defining S (M) with equalities by adding
new slack variables. Specifically, for i € [k], let M; € S"*¥ be the following block matrix

and let M := {Ml, ..., My } It is straightforward to show that the ROG property is preserved
under the projection of S"** onto S". Thus, if T(ﬂ) is ROG, then §(M) is also ROG.

Unfortunately the reverse implication is not true in general. We will give a counterexample in
Section 3.4.4 (see Example 9). O
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3.2.3 SIMPLE OPERATIONS PRESERVING ROG PROPERTY

We now present a few lemmas that are useful in reasoning about extreme rays of S(M). The

following lemma states that an extreme ray Ry X “only cares about” constraints “in the range of
X.JJ

Lemma 26. Let M C S™ and let R X be an extreme ray of S(M). Let W := range(X ) and
let My = {Myw : M € M}. Then Ry (Xw) is an extreme ray of S(Myy ). In particular, if
S(Myw) is ROG, then rank(X ) = rank(Xy ) = 1.

Proof. Suppose Yy € SW is such that [Xy — Yy, Xw + Y] € S(My). Let Y =
Ow 1 @Yw. Then, X +Y = Oy & (Xw+Yw),and forany M € M wehave (M, X +Y) =
(Mw, Xw + Yw) > 0. We deduce that X + Y € S(M). Similarly X — Y € S(M) whence
(X -Y, X +Y] CSM). AsR; X is extreme in S(M), we deduce that Y = a X for some
a € R. Consequently, Yiir = aXyy for some o € R and Ry (Xyy) is extreme in S(Myy). W

The following lemma addresses the case when M can be partitioned into “non-interacting” sets
of constraints.

Lemma 27. Let M C S" be a finite union of compact sets M = Ule M. Further, suppose that
Sforall nonzero X € S} and i € [k, if (M;, X') = 0 for some M; € M, then (M, X) > 0 for
all M € M\ M;. Then, S(M) is ROG if and only if S(M;) is ROG for all i € [k].

Proof. (=) Fixi € [k] and let Ry X be an extreme ray of S(M;). If (M;, X) > 0 for all
M; € M;, then Lemma 22 implies that R X isan extreme ray of S} and so rank(X') = 1. Now
suppose (M;, X) = 0 for some M; € M,. By assumption, (M, X) > Oforall M € M\ M;
so that X € S(M). As S(M) C S(M;), we have that Ry X must also be an extreme ray of
S(M). We deduce that rank(X) = 1.

(<) Let R4 X be an extreme ray of S(M). Define M’ := {M € M : (M, X) =0}. If
M'" = & then Lemma 22 implies that R X is an extreme ray of 7 (&) = S7 and sorank(X) =
1.

Now suppose M’ is nonempty. Then, by assumption, M’ C M; for some i. By Lemma 22
and the assumption that M \ M; is compact, we deduce that R X is an extreme ray of S(M;).
We conclude that rank(X) = 1. [

Finally, the following lemma states that an arbitrary intersection of ROG cones is ROG if and
only if no new extreme rays are introduced.

Lemma 28. Let M C S" be a union M = J e g Ma. Suppose that S(M,) is ROG for every
a € A. Then, S(M) is ROG if and only if

extr(S(M)) C ﬂ extr(S(My)).

Proof. (<) Let Ry X be an extreme ray of S(M). Then, by assumption, R X is an extreme ray

of S(M,) for each o € A. By recalling that each S(M,,) is ROG, we deduce rank (X)) = 1.
(=) Let R X be an extreme ray of S(M). Then, by the assumption that S(M) is ROG, we

have rank(X) = 1. Next, note that X € S(M) = ,e4 S(Ma), whence X € S(M,,) for

86



3.2 Properties of ROG cones

alla € A. Then asrank(X) = 1, we deduce that Ry X is extreme in S(M,,) foralla € A by
Fact 9. |

3.2.4 THE ROG PROPERTY AND SOLUTIONS OF QUADRATIC SYSTEMS

We next examine the ROG property of a set and its connection to the existence of nonzero solutions
of underlying quadratic systems of inequalities and/or equations.

Definition 15. Given M C S" and X € S(M), we define
EX M) ={zeR": |[2TMz| < (M, X), VM € M}. O

Lemma 29. S(M) s ROG if and only if for every nonzero X € S(M) we have range(X) N
E(X, M) # {0}

Proof. (=) Suppose X € S(M) is nonzero. Because S(M) is ROG, we can write X =

Y oiet :U,J:ZT using nonzero matrices I‘ZZEZT € §S(M). As X is a nonzero matrix, we have £ > 1 and

thus Z := 1 exists. Then, for every M € M and ¢ € [k], we have CcZTMxZ > 0. In particular,
0 <3™Mz < YF, 2TMax; = (M, X). Furthermore, 7 € range(X). We conclude that
range(X) N €(X, M) contains the nonzero element .

(<) Let R4 X be an extreme ray of S(M). By assumption, there exists a nonzero €
range(X) such that

|eTMz| < (M,X), VM € M.
By picking € > 0 small enough, we can simultaneously ensure that X & ex2T € S’} and that
(M, X £exax™) > (1—¢)(M,X)>0,VM € M.

Hence, we conclude that the interval [X — exzzT, X + exaT] is contained in S(M). In particular,
because Ry X is an extreme ray of S(M), we deduce that ez is a scalar multiple of X and hence
rank(X) = 1. [

When studying 7 (M), we can replace the set £(X, M) in Lemma 29 with a simpler set
corresponding to solutions to a homogeneous system of quadratic equations.”

Definition 16. Given M C S™, we define
NM)={xzeR": 2TMz=0,YM € M}. O

Remark 34. Note that for every M C S" and every X € S(M), we have N'(M) C E(X, M).
g

Corollary 14. T (M) is ROG if and only if for every nonzero X € T (M) we have range(X) N
N (M) # {0}.

Proof. Note that S(—M U M) = T (M) and apply Lemma 29. [ |

"Readers familiar with algebraic geometry will recognize this as the variety defined by M.
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— | VX € S(M) \ {0}, range(X) N E(X, M) # {0} |

T(M)ROG | «— VX € T(M)\ {0}, range(X) NN’ (M) # {0}

Figure 3.2: A summary of Lemma 29 and Corollary 14.

Remark 35. When applying Lemma 29, it suffices to check the right hand side only for matrices
X with rank at least two. Indeed if X = zT, then z € range(X) NE(X, M). The same is true
for Corollary 14. 0

3.2.5 KnowN ROG sETS

In order to familiarize the reader with our notation and setup, we now recover three known results
in our language. We begin with a result due to Sturm and Zhang [167] regarding spectrahedral
cones defined by a single LMI.

Lemma 30. Consider any M € S", and let M = {M}. Then S(M) is ROG.

Proof. By Lemma 23, S(M) is ROG if and only if 7 (M) is ROG. We will show that 7 (M) is
ROG by appealing to Corollary 14.

Let X € T (M) have rank at least two. Begin by performing a spectral decomposition X =
Sy Nizix], where r = rank(X') > 2, the z; are orthonormal eigenvectors of X, and \; > 0
foralli € [r].

If one of the eigenvectors x; is in A/ (M), then range(X') N N (M) contains z; and is clearly
nontrivial.

Else, there exist distinct eigenvectors, without loss of generality 1 and 2, such that (M, xle >
0 > (M, zox]). By continuity, there exists © € [z1, 2] such that (M, zzT) = 0. Note that z is
nonzeroas 0 ¢ [z1, x2] (this follows as 1 and 22 are orthonormal). Furthermore, 2 € range(X).
This concludes the proof as we have constructed a nonzero z € range(X) NN (M). [

Based on Lemmas 24 and 30 and Corollary 13, we have the following characterization of ROG
sets defined by two inequalities.

Corollary 15. Suppose |M| = 2, then S(M) is ROG if and only if T (M) is ROG.

The characterization given in Corollary 15 for the case of |M| = 2 is, at the moment, unsatis-
factory as we have yet to analyze when 7 (M) is itself ROG. Our developments in the remainder
of this chapter will make this implicit characterization much more explicit (see Section 3.4).

Next, we recover a result related to the S-lemma [67] and a convexity theorem due to Dines [59].

Lemma 31. Let M = { My, M} and suppose there exists (a1, op) # (0,0) such that oy My +
agM; € ST Then, S(M) is ROG.
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Proof. By Corollary 15, it suffices to show that 7 (M) is ROG. Recall also that 7 (M) depends
only on span(M) (see Remark 31), thus we may without loss of generality suppose M7 € S'}..
Let W := range(M;). We claim that Xy = 0 forall X € T(M). Indeed, suppose
X € T(M) so that (M7, X) = 0. Noting that both My, X € S}, we deduce that M; X =0
so that Xy = 0. Then, applying Lemma 20 allows us to write X = Oy @& Xy,
Let MQ = (MQ)WL . Then,

<M2,XWL> =0

T(M)=<0w ® Xy :
( ) {W WL XWJ_ESYJ_

} = 0w & T (My). (3:3)

By Lemma 30 and Corollary 13, 7 (M3) is ROG. Then as T (M) is isomorphic to 7 (M3) via
the rank-preserving map Oy @ Xy — Xyy1, we conclude that 7 (M) is ROG. [

Remark 36. The condition that there exists (a1, ) # (0, 0) such that oy My + aa Mo € ST}
has a simple geometric interpretation. Specifically, this condition guarantees that the two LMEs
defining 7 ({ M1, Ma}) only interact with each other on a single (possibly trivial) face of the
positive semidefinite cone. Furthermore, on this face, the two LMEs impose the same (possibly
trivial) constraint. O

3.3 SUFFICIENT CONDITIONS
The following observation generalizes the key step in Lemma 31.

Observation 3. Let M C S". Suppose there exists a nongero M € span(M) N ST, Ler
W = range(M) and define My, = { My, : M € M}. Then,

T(M) =0 ®T (My).

In particular, T (M) is isomorphic to T (Myy, 1) via the rank-preserving map Oy ® Y — Y and
T (M) is ROG if and only if T (Myy, 1) is ROG.

Remark 37. Observation 3 simply notes that 7 (M) is a subset of the face Oy @ SE/L of the
positive semidefinite cone and then applies Lemma 20. This idea is linked to facial reduction [30,
110, 144], a technique which has been used previously in the literature to simplify semidefinite
programs and more general conic programs. O

Applying Observation 3 repeatedly gives the following generalization of Lemma 31 as a sufficient
condition for the ROG property.

Proposition 11. Ler M = {My, ..., My} for some k > 2. Suppose for all distinct indices
i,j € [k], there exists (v, B) # (0, 0) such that aM; + BM; is positive semidefinite. Then, S(M)
is ROG.

Proof. By Lemmas 24 and 30, it suffices to show that 7 (M) is ROG for every M’ C M with

size at least two.
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3 Rank-one-generated cones

Let M" C M. Consider repeatedly applying Observation 3 to get a chain of subspaces W7 C
Wy C - -+ C W such that

T(M') = 0w, @ T(M;V%) = 0w, @ T(M;V;) = =0 ®T (ML)
We will repeat this process until span(M,,,) N S_,VYL = {0}. This process necessarily ter-
minates as the subspaces W strictly increase in dimension. Let M; = (M;)y,. and M’ ==
{Hz M, € M/}

We claim that dim (span(M’)) < 1. Suppose otherwise and let M;, M; € M’ such that M
and M ; are independent. By assumption, there exists (v, 8) # (0,0) such that aM; + BM; is

positive semidefinite. Then,
aM; + ﬂﬁj = (aM; + BMj)WJ—

is positive semidefinite. Furthermore, this linear combination is nonzero by independence of M
and M ;. This contradicts the assumption that span(M’) N S?L = {0}.

Note that 7 (M) isisomorphic to 7 (M) via the rank-preserving map Oy & Xy — Xypri.
Furthermore, by Remark 31 and Lemma 30, we have that 7 (M’) is ROG. We conclude that
T(M) is ROG. n

Intuitively, the conditions in this proposition have a similar geometric interpretation to the
conditions in Lemma 31 (see Remark 36). Specifically, the proof shows that for any M’ C M
of size at least two, there exists a subspace W C R" such that 7 (M) is contained in the face
Ow & S_iVYL of the positive semidefinite cone. Furthermore, on this face, the LMEs in M’ all
impose the same constraint.

Next, we present a new sufficient condition for the ROG property suggested by Lemma 29
and Remark 34.

Theorem 14. Suppose M = {Sym(abT) : b € B} forsomea € R™ and B C R™. Then, for
every positive semidefinite X of rank at least two, we haverange(X ) NN (M) # {0}. In particular,
S(M) is ROG.

Proof. Forany v € at, we have vT Sym(abT)v = vTabTv = 0. We deduce that a* C N (M),
i.e., V(M) contains a vector space of codimension one.

Let X bea positive semidefinite matrix with rank at least two. As dim(range(X)) = rank(X),
we see that range (X ) NN (M) must contain a vector space of dimension at least one. In particular,
range(X) N E(X, M) D range(X) NN (M) and is nonempty. Lemma 29 then implies that
S(M) is ROG. m

We list two immediate corollaries of Theorem 14.

Corollary 16. Let K C R™ be any closed convex cone and consider an arbitrary vector c € R™.
Then, the set {X eSht: Xce K} is ROG.

Proof. Define M := {Sym(cbT) : b € K*} where K*isthedualconeof K. Then {X € S : Xce K} =
S(M), whence Theorem 14 implies the result. |
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3.3 Sufficient conditions

Corollary 17. Leta,b,c € R™. Thentheset {X € St : aTXc¢ >0, bTXc > 0} i5s ROG.

By applying Lemma 24 once more, we next give a sufficient condition which is not covered by
Theorem 14.

Theorem 15. Let a,b,c € R™. Then theset {X € S} : aTXb >0, bTXc >0, a’Xc >0} is
ROG.

Proof: Let M = {Sym(abT), Sym(acT), Sym(bcT)}. By Lemma 24 and Corollary 17, it suffices
to show that 7 (M) is ROG.

We will show that 7 (M) is ROG by appealing to Corollary 14. Let X € 7 (M) have rank at
least two.

Note that N'(Sym(abT)) = a* U b*. Hence,

NM) = (aJ‘ U bL) N (aJ‘ U cJ‘) N (bJ‘ U cL> = {a,b}" U{a,c} U {b, e}

If Xa = Xb = Xc = 0, then range(X) C {a,b,c}™ and thus range(X) N N (M) =
range(X) is clearly nontrivial. Else, without loss of generality suppose y = Xa # 0. Because
X € T(M), wehave bTy = ¢Ty = 0, and thusy € N(M). Noting that y # 0 and
y € range(X), we have concluded 0 # y € range(X) NN (M) as desired. [

Remark 38. By picking n = 3 and {a,b,c} = {e1,e2,e3} in Theorem 15, we recover the
well-known fact that the set of doubly nonnegative matrices (i.e., the set of matrices which are
both entry-wise nonnegative and positive semidefinite) in S? is ROG. In particular, this states that
X € S? is doubly nonnegative if and only if it can be written as X = Y, ;2] where z; € R?
are each entry-wise nonnegative. In other words, the set of doubly nonnegative matrices and the
set of completely positive matrices in S coincide. O

Remark 39. A graph G = (V, E) is chordal if every minimal cycle has at most 3 edges. It is well-
known that the set of positive semidefinite matrices with a fixed chordal supportis ROG [3,78,145].
Specifically, if G = ([n], E) is a chordal graph containing all self-loops, then

{X S Sﬁ : Xi’j =0, V(Z,j) ¢ E} (3.4)

isROG.

Unfortunately, the set in (3.4) does not necessarily remain ROG when the equality constraints
are replaced with inequality constraints. Using our toolset, we illustrate this point below with an
example. From this point of view, Theorem 15 and Remark 38 highlight a special chordal graph
for which the inequality version of the set is also ROG.

Consider the path graph on four vertices with all self-loops. We will show that the following set
is not ROG:

X122>0
S = XGSﬁ_: X2’320
X34 20
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3 Rank-one-generated cones

We will apply Lemma 29 to show that S isnot ROG. Let M = {Sym(ejel), Sym(ezel), Sym(ese])}
sothat S = S(M). Letz = (1,0, 1, 1)Tand y = (0, 1, 1, —1)T. Note that the following

rank-two matrix

1 0 1 1
0O 1 1 -1
— T T—
X =zxT +yy 1 1 2 0
1 -1 0 2
satisfies X € S. We compute
Z1%9 = 0
range(X) NE(X, M) =span{z,y} N{z e R : |22 <1

2324 = 0

Let z € range(X) N E(X, M). Then, writing z = azx + By = (a, B, a + B, a — B)T,
we deduce that 0 = 2129 = afand 0 = 2324 = a® — B%sothatae = B = 0. Thus,
range(X) N E(X, M) = {0}. O

Finally, we show how our results can be used to recover a result due to Sturm and Zhang [167];
see also [33, Section 6.1]. Let £, C R" denote the second order cone (SOC)

£ = {o= (1) R XR: [yl <t
Defining L := Diag(—1,...,—1,1) € S",wecanwrite." = {x € R" : 7Lz > 0, x,, > 0}.

Lemma 32. Let ¢ € R" and define
. n . Xcelb”
S.—{X€S+. (L,X>20}'

Then, S is ROG.

Proof. We begin by rewriting S so that we may apply Lemma 22. Let B denote a compact base of
b = (£™)*. Then,

S=S{L}U{Sym(cb"): b€ B}).

For the sake of contradiction suppose there exists an extreme ray Ry X of S with rank(X) > 2.
If(L, X) > Othen Ry X isanextremeray of S({Sym(cbT) : b € B}) = {X € S : Xc e L"},
contradicting Corollary 16. If X¢ € int(L") then R X is an extreme ray of S({L}) =
{X €S% : (X,L) > 0}, contradicting Lemma 30. Finally, suppose X¢ = 0 and let W =
range(X) C ct. Note that Xy and X have the same rank and Sym(cbT)y = 0 for all
b € B. Then, by Lemma 26, we have that R (Xyy ) is an extreme ray of S({ Ly }), contradicting
Lemma 30.

In the remainder of the proof, we will assume that (L, X) = 0 and y := Xc is a nonzero
elementin bd(L™), ie.,yTLy = 0.
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Then, for all € > 0 small enough, we have X + eyy™ = 0, (L, X +eyyT) = (L, X) = 0,
and (X £ eyyT)c = (1 £ eyTc)y € L™ This contradicts the assumption that R} X is extreme.
Thus, all extreme rays R X of S have rank(X) < 1. [ |

3.4 NECESSARY CONDITIONS
In this section, we give a complete characterization of ROG cones defined by two LMIs.

Theorem 16. Let M = { My, Ma}. Then, S(M) is ROG if and only if one of the following holds:
i there exists (a1, ) # (0, 0) such that ooy My + g Mo € ST}, or
i1 there exists a, b, ¢ € R" such that M, = Sym(acT) and Ms = Sym(bcT).

Note that the 7f direction of Theorem 16 is a direct consequence of the sufficient conditions
identified in Proposition 11 and Corollary 17. Furthermore, recall from Corollary 15 that when
|IM| = 2, the set S(M) is ROG if and only if T (M) is ROG. Thus, Theorem 16 follows as a

corollary to the following necessary condition.

Theorem 17. Let M = { My, Ma}. If T (M) is ROG, then one of the following holds:
i there exists (a1, ) # (0, 0) such that ooy My + g Mo € ST}, or
i1 there exists a, b, ¢ € R" such that M, = Sym(acT) and Ms = Sym(bcT).

Remark 40. The conic Gordan-Stiemke Theorem (see Equation 2.3 in [166] and its surrounding
comments) implies that for any subspace W C §",

WNSt ={0} < W-nst, #a.

In particular, applying the conic Gordan-Stiemke Theorem in the context of Theorem 17 we
deduce that if M7y, My are linearly independent, then condition (i) in Theorem 17 fails if and only
if T({Mi, Ms}) contains a positive definite matrix. O

Conditions (i) and (ii) in Theorems 16 and 17 have simple geometric interpretations. See
Remark 36 for a geometric interpretation of (i). We describe an interpretation of condition (ii) in
Theorem 17, i.e., in the case of two LMEs. Condition (ii) covers the important case when the two
LMEs interact in a nontrivial manner inside S} . Suppose for the sake of presentation that a = ey,
b = e3, ¢ = ey. Then, Corollary 17 implies that

T (M) = conv({zz" : 12, =0, T27,, = 0})
= conv(conv{zzT : x; = 9 = 0} Uconv{zzT : x,, = 0})
= conv((()g oSTHUET e 01)).
In other words, condition (ii) covers the case where T (M) is the convex hull of the union of two

faces of the positive semidefinite cone with a particular intersection structure. Theorem 17 states

that these are the only ways for 7 (M) to be ROG when | M| = 2.
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3 Rank-one-generated cones

The proof of Theorem 17 is nontrivial and will be the focus of the remainder of the section.
Before completing this proof, let us first work out in detail a prototypical example. This example
will highlight a number of the steps of our proof.

Example 8. Suppose M = {M;, My} where M = Diag(1, —1,0)and My = Diag(0,1, —1)
so that

T(M) = {X S S:i : Xl,l = X272 = X373}.

We first verify that neither condition (i) nor (ii) from Theorem 17 hold. Indeed, oty M1 + ao Mo =
Diag(a, g —aq, —ag) is positive semidefinite if and only if (v, avg) = (0, 0) so that condition
(i) is violated. Next, note that 2M; + My = Diag(2, —1, 1) has rank three so that condition (ii)
is also violated. We next demonstrate that 7 (M) is not ROG.

Letw = (1, 1, \/i) T, We claim there exists a vector 2 such that

2TMyz) _ wT Myw
2TMsz)  \wTMsw]’
Indeed for this example, z = (—1,1,0)7 is such a vector. It is clear that w and z are linearly

independent so that X := wwT + 227 is a rank-two matrix contained in 7 (M ). By Corollary 14,
it suffices to show that range(X) N N (M) = {0}. We will write a generic element from

range(X) as (a - B,a+ 8, ﬂa)T. Then

a—p
range(X)NNM) =L [a+8|: (a—pB)?=(a+B)?=2a>
V2a

The first equality implies a3 = 0. The second equality then implies thataw = 8 = 0. We conclude
range(X ) NN (M) = {0} and that 7 (M) is not ROG. O

We now begin on the proof of Theorem 17. We first make a simplifying assumption that holds
without loss of generality.

Lemma 33. Let W = span(Uy e range(M)). For M € M, let M = My denote the
restriction of M to W. Let M = {M : M e /\/l} Then, T (M) is ROG if and only T (M) is
ROG. Furthermore, if M = { M, My} and M = {Ml, Mo }, then each of conditions (i) and
(12) in Theorem 17 hold for M if and only if they hold for M.

Proof. The first part of this statement follows immediately from Lemma 25. The last statement of
the lemma follows from definition of W. [ |

We will henceforth assume that M spans R™ in the following sense.

Assumption 7. Assume that span(|J,,c o range(M)) = R™. O
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Proof of Theorem 17. By Lemma 33, we may without loss of generality assume that Assumption 7
holds. We will split the proof of Theorem 17 into a number of cases depending on the dimension
n.

* The case n = 1 holds vacuously as we can set (a1, ) to either (1,0) or (—1,0) to satisfy
().

* Forn = 2, we will suppose condition (i) is not satisfied and explicitly construct an extreme
ray of 7 (M) with rank two. The construction crucially uses the geometry of R? (and S?).
See Proposition 12.

* Forn = 3, we will suppose that neither conditions (i) nor (ii) are satisfied and explicitly
construct extreme rays of 7 (M) with rank two. The construction is based on understanding
what the corresponding V(M) set looks like. This construction crucially use the geometry
of R3. See Proposition 13.

* Finally, we will show how to reduce the case of n > 4 to the case of n = 3. Specifically,
supposing that 7 (M) is a ROG cone, with n > 4, violating (i), we will construct M such
that 7 (M) is a ROG cone, with n = 3, violating both (i) and (ii). See Proposition 14. M

Remark 41. Suppose Assumption 7 holds. In this case, condition (ii) necessarily fails if n > 4. On
the other hand if n < 2 and condition (ii) holds, then in fact condition (i) also holds. In particular,
condition (i) itself completely characterizes the ROG property of a cone defined by two LMIs
whenever n # 3.

Expanding Assumption 7, we have that condition (i) completely characterizes the ROG property
of a cone defined by two LMIs whenever dim(span(range(M;) U range(Mz))) # 3. O

Remark 42. Both directions of Theorems 16 and 17 admit small certificates.

* Suppose S(M) is ROG. Then Theorem 16 implies that there exists either aggregation
weights (a1, a2) # (0,0) for which iy My + ap My € S} or vectors a, b, ¢ € R" for
which M; = Sym(acT) and My = Sym(bcT).

* Suppose S(M) is not ROG. Then by Theorem 16, it suffices to certify that neither condi-
tions (i) nor (i) hold. As S(M) is not ROG, we may assume that M7 and My are linearly
independent. Then, the Gordan—Stiemke Theorem (see Remark 40) implies that condition
(i) fails if and only if there exists a positive definite matrix X in 7 (M). In other words,
we can certify that condition (i) fails by presenting a positive definite matrix in 7 (M). If
either rank(M;) > 3 or rank(Msz) > 3, then the spectral decomposition of the corre-
sponding M; certifies that condition (ii) does not hold. Else, M7 and M5 are both indefinite
rank-two matrices and we can write My = 11 Sym(abT) and My = 1o Sym(cdT) where
ni € R,a,b,c,d € S*1. This decomposition is unique up to renaming a and b or ¢ and
d. Then condition (ii) does not hold if and only if a, b, ¢, d are distinct. In particular, this
decomposition certifies that condition (ii) does not hold. O

In the proof of Theorem 17, we will make use of the following theorem related to the convexity
of the joint image of two quadratic maps.
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3 Rank-one-generated cones

T(M)

Figure 3.3: For n = 2, every point on the interior of S’} has rank two and every point on the boundary
of S} has rank at most one. Condition (i) implies that 7 (M), is either trivial or a ray in the
boundary of S”t —this corresponds to the picture on the left. Proposition 12 shows that when
condition (i) is violated, 7 (M) is a ray on the interior of S! —this corresponds to the picture
on the right.

Theorem 18 (Dines [59]). Let My, My € S™ and suppose that for all (o, o) # (0,0), we have
a1 M7 + as My §7_f Sﬁ Then,

xTMix 2. nl _ w2
{(xTMﬂ)eR cx e€R }_R,

L.e., foreveryy € R?, there exists an © € R™ such that xT Myx = y1 and xT Moz = ys.

3.4.1 DIMENSIONT. = 2

We now prove Theorem 17 for the case n = 2.

Proposition 12. Ler M = { My, Ms}. Suppose Assumption 7 bolds and n = 2. If T (M) is
ROG then there exists (o1, ag) # (0, 0) such that oy My + ag Mo € ST

Proof. Suppose for all (a1, ag) # (0,0), the linear combination ay My + cia My is not positive
semidefinite. In particular, M7 and M5 are linearly independent in S?. Then, by Gordan-Stiemke
Theorem (see Remark 40), we deduce the existence of a positive definite matrix X € T (M).
Finally, as S? has dimension three, the space orthogonal to both M7 and My has dimension one,
so thatin fact 7 (M) = R4 (X). We conclude that Ry (X) is an extreme ray with rank(X') =
2. [ |

3.4.2 DIMENSIONT = 3

We will make use of the following lemma from Hildebrand [83, Lemma 3.13]. The lemma states
that the Carathéodory number of an element X of 7 (M) is equal to rank (X') when 7 (M) is
ROG.

Lemma 34 ([83, Lemma 3.13]). Suppose T (M) is ROG. For every X € T (M), we can write
X =37 xix] wherex; € N (M) foralli € [r] and r = rank(X).
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The next lemma states that when neither conditions (i) nor (ii) hold, the set N'(M) is extremely
sparse in R®.

Lemma 35. Let M = { M, Ma}. Suppose Assumption 7 holds and n = 3. If neither conditions
(i) nor (iz) of Theorem 17 hold, then N' (M) is the union of at most four one-dimensional subspaces of
R3,

Readers familiar with algebraic geometry will recognize this as a consequence of Bézout’s theo-
rem.® For completeness, we provide an elementary proof of this lemma using only linear algebraic
tools in Section C.1.

We are now ready to prove Theorem 17 for the case of n = 3. We will assume that neither
conditions (i) nor (ii) hold and use Lemma 35 and Theorem 18 to construct a rank-two matrix
contained in 7 (M). We will then apply Lemma 34 to derive a contradiction.

Proposition 13. Let M = { My, Ma}. Suppose Assumption 7 bolds and n = 3. If T (M) is
ROG, then one of conditions (i) or (i) of Theorem 17 must hold.

Proof. Suppose T (M) is ROG but neither conditions (i) nor (ii) hold. Consider the subset of
R3 given by

R = U span({z, y}).

z,yeN (M)

By Lemma 35, we have that R is the union of a finite number of planes and lines in R3, and thus
there exists w ¢ R. By Theorem 18, we can pick z such that

2TMyz\ _ (wTMyw
2TMsez)  \wiMsyw)’
Asw ¢ R, we deduce at least one of wT Mjw and wT Maw is nonzero. Then, it is clear that w and
z are linearly independent, and thus X := wwT + 22T is a rank-two matrix contained in 7 (M).
As T (M) is ROG, we can apply Lemma 34. In particular, we can write X = zxT 4 yyT for

some z,y € N'(M). Then, w € range(X) = span(z,y) C R. This contradicts our choice of
w ¢ R. [

3.4.3 DIMENSIONS n > 4

We will now reduce the case of n > 4 to n = 3. The proof will show that if M violates condition
(i) then there exists a three-dimensional subspace W for which the restriction of M to W fails
both conditions (i) and (ii).

We begin by showing that there exists a linear combination of M7 and M with rank at least
three.

¥ Assuming that neither conditions (i) nor (i) hold, the plane curves defined by M7 and Mz cannot share a common
component. Then Bézout’s theorem implies that AV (M) consists of at most four lines (or equivalently, four points
in projective space).

97
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(15M112>

T

zo, Moz

u;M1u2 2 242
ud Maug

l‘IMl:ltl

ul Myu
( L l) (xIM2$1)

u] Mauy

T
u§M1U3 (I$M1x3)
ugMgug :L‘SJMQ‘T3

Figure 3.4: The proof of Proposition 14 assumes that condition (i) in Theorem 17 does not hold for
{M;, M3} and constructs uy, uz, us € R™ such that the vectors { (u] My u;, u] Mou;)} C
[R? are located as shown in the left figure. These vectors certify that condition (i) in Theo-
rem 17 does not hold for { M1, Ms}. Indeed, if a; My + ao My € S, then (o, orp) must
lie in the intersection of the three halfspaces defined by the w; vectors (one such halfspace is
shaded), whence (a1, a2) = (0, 0). A key observation in the proof of Proposition 14 is that for
all 21, 22,23 € R" close enough to u1, ug, us, the vectors { (] Myz;, 2] Mox;)} C R?
certify that condition (i) in Theorem 17 also does not hold for {(M)w, (M2)w } where
W = span({z;}). Again, the intersection of the corresponding halfspaces is trivial.

Lemma 36. Let M = { My, Ma}. Suppose Assumption 7 bolds and n > 4. If condition (i) in
Theorem 17 does not hold, then there exists (o, g ) such that rank (o M + agMs) > 3.

Proof. Suppose rank(cvy My + ap M) < 2forall (a1, a2). Because condition (i) does not hold,
we conclude that forall (a1, ag) # (0, 0), the linear combination avy M7 + ca M has exactly one
positive and one negative eigenvalue. Then, we can write M1 = Sym(abT) and My = Sym(cdT).
By Assumption 7, we have that a, b, ¢, d are linearly independent. By independence, there exists
an x such that 270 = 1l and 2Ta = 2T¢ = 27d = 0; we deduce that (M} + Ma)z = a €
range(M; + Ma). Similarly, b, ¢, d € range(M; + Msz). Then rank(M; + M) = 4,a
contradiction. |

We are now ready to prove Theorem 17 for the case of n > 4.

Proposition 14. Let M = { My, My}. Suppose Assumption 7 holds and n > 4. If T (M) is
ROG, then there exists (o1, a2) # (0, 0) such that ay My + aa My € ST

Proof. Suppose for the sake of contradiction that 7 (M) is ROG but condition (i) in Theorem 17
does not hold.

Let6; := 0,02 = 27/3 and 65 := 47/3. Then, using Theorem 18 we can find three vectors
ur, u2, u3z € R satisfying

() = (i) e -
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Note that w1, u2, u3 certify that condition (i) does not hold for M (see also Figure 3.4):

{(041,042) : Oqu + a2M2 >_‘ 0} g {(041,042) : uZ-T(alMl + OZQMQ)’U,Z‘ Z 0, Vi € [3]}
- {(al,ozz) : <<Z;) (ZI%;Z» >0,Vie [3]} = {(0,0)}.

Next, by Lemma 36, there exists Mg = (31 M1 + 32 M2 with rank atleast three. Let v1, v2, v3 €
R™ be orthonormal eigenvectors of Mg corresponding to nonzero eigenvalues. Note that vy, vo, v3
certify that condition (ii) does not hold for M:

det| | vJ Mg(vl V9 v3> #0 = rank(Mpz) > 3.

We will use the vectors {u; } and {v;} to construct a three-dimensional subspace W C R"
and show that the certificates of neither conditions (i) nor (ii) holding in M can be used to find
certificates of neither conditions (i) nor (ii) holding in { (M1 )w, (M2)w }

Let o € (0, 1] to be fixed later. Define z; == (1 — p)u; + pv; and set W= span{x1, xo, x3}.
Let M; := (M;)w and set M = {Ml,ﬁg}. Similarly define M g.

We first show that W is a three-dimensional subspace for all 1¢ > 0 small enough. It is clear that
dim(W') < 3. To see that dim(W') > 3 forall x > 0 small enough, consider the determinant of
the orthogonal projections of the z; vectors onto span{vy, v2, v3},

UI U.lrﬂfl UI:L‘Q ’U.lr.’Eg
det| [ o] (xl Ty :L'3) =det| vz vlze vlxs
vl vlzy vlxg vlzs

Recalling that the 2;s are each linear in y1, we deduce that this determinant is a degree-3 polynomial
in p which is not identically zero (taking y = 1 gives the determinant of the identity matrix), and
thus {z; } are linearly independent for all ;¢ > 0 small enough.

Next, we show that condition (i) does not hold for M for all > 0 small enough. Note that

{(041,042) : alﬁl + OJQMQ t 0} g {(061,(12) : Qf;r(alMl + CVQMQ)Z'Z' Z 0, Vi S [3]}

= {(a1,a2) : <<Z;>, (?Tr%;§2>> >0, Vie [3]},

where the first relation follows from the definition of M; and noting that z; € W. By continuity
of the quadratic forms :EZTM 12; and xlT Mpsz; in the variable p, and the choice of the u; in Equa-
tion (3.5), the set on the second line above is the trivial set {0} for all z& > 0 small enough. Thus,
M does not satisfy condition (i) for all x> 0 small enough.

929



3 Rank-one-generated cones

Next, we will show that M g has rank three for all z1 > 0 small enough. Note that M g is singular
if and only if det (M g) = 0. Picking the basis {1, z2, 23} of W, we have that det(Mg) = 0if
and only if

z]Mpxy x]Mpgxy x]Mgaxs

det x% Mg (951 To :cg) = det x;MBxl JJ;MBJJQ :L“;Mlgajg =0.
ziMpx, xiMpgxy xIMpaxy

This is a degree-6 polynomial in g (recall that ;s are linear in 1) that is not identically zero: for
p = 1, this determinant evaluates to the product of three nonzero eigenvalues of Mg. Then, for

all ;1 > 0 small enough, this polynomial is nonzero and hence rank(M ) = 3. Thus, we deduce
that M does not satisfy condition (ii) for all z > 0 small enough.

We now fix  such that M does not satisfy either condition (i) or (ii). Note that this also fixes
w.

To complete the proof we will show that 7 (M) is ROG. This will contradict Proposition 13.
Note that

which is a face of 7(M). Then, as 7 (M) is ROG, Lemma 21 implies that 7 (M) & Oy1
is ROG. Next, note that 7 (M) @ Oy 1 is isomorphic to 7 (M) via the rank-preserving map
Xw & Oy — Xy We conclude that 7 (M) is ROG. [

Proposition 14, together with Propositions 12 and 13, concludes the proof of Theorem 17.

3.4.4 LirriNng LMIs iNTo LMEs

In this section, we will show that a simple lifting of an LMI set S into an LME set T in a larger
dimension may not preserve the ROG property.

Example 9. Consider the set

X12=0
— 3. 172
5._{X€S+. X1,3>0}'

This set is ROG by Theorem 16 and Lemma 21. We can replace the LMIs defining S with LMEs
in a lifted space as follows: Let IT : S* — S3 denote the projection of a 4 x 4 matrix onto its
top-left 3 x 3 principal submatrix. Then,

= 4. X12=0 _ L
S_H<{X€S X3 —X44=0 }) = TI(T ({ M7, M3})),
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3.5 Applications of ROG cones

where
0 1/2 0 0 0 0 1/2 0
, 12 0 000 , o 0o o o
Mi=1% 0 0o and M= 0 00 0
0 0 00 0 0 0 -1

Define M" := {Mj, M}}. By Theorem 16, we see that 7 (M) is not ROG. We conclude that
the obvious lifting of LMIs into LMEs can take ROG sets S(M) to non-ROG sets 7 (M) (even
when there is only a single inequality to lift). O

3.5 AprrPLICATIONS OF ROG CONES

3.5.1 EXACTNESS OF SDP RELAXATIONS OF QCQPs

In this subsection, we relate the ROG property of a cone S to exactness results for both homoge-
neous and inhomogeneous QCQPs and their relaxations.

The following lemma states thata cone S C S”} is ROG if and only if the SDP relaxation of
the corresponding homogeneous QCQP is exact for all choices of objective function.

Lemma 37. Lert M C S™ Then S(M) is ROG if and only if for every My € S™,

inf (My, X) = inf {{M, N:zaT eS8 . 3.6
Xelg(M)< 0, X) Elean“ 0,2xT) 1 TT (M)} (3.6)
Proof. By Definition13,S(M)isROGifand onlyif S(M) = conv(S(M) N {zzT : z € R"}).
Moreover, both §(M) and conv(S(M) N {zzT : x € R™}) are closed convex cones so that
they are equal if and only if their dual cones are equal. Note that

My € S(M)* < inf (My,X)=0.
XeSM)

Similarly,

My € (conv(S(M) N{zzT: z € R"}))" — mieann{<MO7$$T> caxT e SIM)}=0.

Noting that both sides of (3.6) can only take the values 0 or —oo completes the proof. |

Next, we consider a general QCQP and its SDP relaxation. Recall that in the general form
given in (3.1), a QCQP and its SDP relaxation both contain exactly one inhomogeneous equality
constraint. The following lemma relates the ROG property of a cone to SDP exactness results for
its affine slices. This will allow us to apply our main results on spectrahedral cones to spectrahedra
arising as the feasible domain of the SDP relaxations in (3.1).
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3 Rank-one-generated cones

Lemma 38. Let M C S" and B € S™. If S(M) is ROG, then

(M, X) >0,YM e M
T >

inf daTMow: LMw 2 OVMEM_ e L, x) s (B, X) =1

TER" zTBxr =1 Xesn X0

forall Mo € S™ for which the optimum SDP objective value is bounded from below. In particular,
this equality holds whenever the SDP feasible domain is bounded.

Proof. LetS := S(M).

(>) This direction is immediate as the SDP gives a relaxation of the QCQP.

(<) We may assume without loss of generality that the SDP is feasible. Let X be a feasible
SDP solution. As X € S and S is an ROG cone, there exist x1,...,x, € R" such that
zix] € Sforalli € [rJand X = YI_; wx]. Thatis, we have 2] Mx; > O forall M € M
and ¢ € [r]. Without loss of generality, ] Bx; is non-increasing in i and there exists some
k € [r] such that 2] By, . . ., 2] By, are positive scalars summing to one. Indeed, if this were
to fail, we could first rearrange the indices in [r] to get 2] Bz; in non-increasing order and then
subdivide the first term 2], for which Y% | 2T Bx; > 1 into two terms (v/axy,) (v/axy)T +
(V1 —axg) (V1 - ozxk)T (naturally, also increasing 7 to 7 + 1) so that the first k-many values
of 2] Bu; are positive and sum to one. From here on we assume that such a transformation has
been done (if needed), and 7 reflects the final number of summands in this decomposition of X.

We may then write

k r
X=X+X:= <szx2>—l— Z ziz] |.
i=1 i=k+1
Note that <B, f(> =(B,X)— <B, X> = 1—1 = 0. Moreover, because the optimum SDP

objective value is bounded from below, we must have <M 0, X > > 0.
Fort € [k‘], define Wi = l‘;rBJ}Z > 0and Z; := a:z/\//TZ Then, QAZ;I-B.@Z = 1land QAZ;I-M@'Z >0
forall M € Mand i € [k]. Finally, note that 1 = Y-8 | 2T Ba; = Y-8 p;. Using these facts,

we deduce

k k
(Mo, X) > (Mo, X ) = >~ al Mowi = Y jie] Mo
=1

i=1
AT A~ - 2TMxz >0,YM € M
2 ?elbﬁ % Mods 2 a:lean"{xTMOx " 2TBx =1 ’

The desired result follows by taking the infimum of this inequality over feasible solutions X to the
SDP. [ |

Remark 43. Lemma 38 extends [83, Lemma 1.2], which shows that the same statement holds
in the case of finitely many LMEs. The proof we present is new and immediately shows how to
construct a QCQP feasible solution achieving the SDP value (or a sequence approaching the SDP
value). O
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3.5 Applications of ROG cones

Example 10. The reverse implication in Lemma 38 is not true in general. In particular, consider
the following example. Let

S= B Co,f>0p CS3,
I

and set B = eje]. Note that S has a rank-two extreme ray and thus is not ROG. Let M € S3. A
short calculation shows that the SDP relaxation of the QCQP defined by My and M associated
with S satisfies

M, if (M M, >0
ot (o). £E8 | {00000 s+ (o >,
Xes3 X11=1 —00 else.
In particular, if My € S? is such that the optimum value of the SDP relaxation is bounded below,
then the SDP relaxation takes the value (Mj)1,1. On the other hand, e;e] € S is a rank-one
matrix achieving the same objective value. We deduce that

. T o xxTeS _ - XeSs
:clenﬂgiﬂ{x Moz (z2T)11 =1 )%Ielgd (Mo, X) : Xin=1
for all My € S3 for which the right hand side is bounded below. O

Lemma 38 implies that equality holds in (3.1) whenever S({ M, . .., My, }) is ROG and the
SDP optimum value is bounded from below. It may be natural to ask whether the boundedness
assumption can be dropped in the case where B is specialized to B = e; e{. Indeed, this is the
only case we need when analyzing (3.1). The following example shows that this is not possible.

Example 11. Let n = 2 and M = {Sym(e;el), — Sym(ejed)} so that

o= {(§ 2) v -om({)3) o) ()

The representation on the right shows that S(M) is ROG. On the other hand, taking B = eje]
and My = —62612-, we have

. T . l‘l‘TGS(M) _ 2. 122 =0 _
Ilélﬂ%{l‘ Moy - By — 1 xlenﬂé x5 x% 4 0,

which is not equal to

:inf{—wg: x%zl}:—oo. O

<B7X>:1 z€ER?2

inf {<MO,X>: X € S(M) }
XeS?

In a sense, Example 11 exhibits a particular worst-case behavior. Specifically, adding an arbitrary
inhomogeneous constraint to a ROG cone produces a set that is rank-two generated.
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3 Rank-one-generated cones

Lemma 39. Ler M C S™ IfS(M) is ROG, then for all B € S",

(M, X) > 0, VM € M (M, X) >0, VM € M

conv|{ X eS": gf’:?:l —{XeS": (B, X)=1
- -
rank(X) <2 Xz0

In particular, when S(M) is ROG, for any Mo € S", there exists a sequence of rank-two solutions
approaching the SDP optimum value in (3.1).

Proof. Let L denote the inner set on the left hand side so that the left hand side is conv (L) and
let R denote the right hand set.

(€) This follows upon noting that £ C R and R is convex.

(D) Let X € R. AsR C S(M), we may decompose X = I, z;x] where ;2] € S(M)
foralli € [r]. We may assume that 7 = rank(X) by Lemma 34. Let §8; := (B, z;x]).

If B; > Oforalli € [r], then we are done. Else, without loss of generality 51 > 0 > fs.
Consider the value of f1 := a1 51 + @232 as (1, cg) moves continuously on the line segments
(1,0) — (1,1) — (0,1). Noting that 1 > 0and 2 < 0, we may fix (a1, a2) on this path
such that € (0,1). Then, we can decompose

T T T T
a1T1x] + aexex X —oqzix] — aoxox
X=u< : 2>+(1—u)< ! 2) = pXo+ (1 - )X,

Jz 1—p

We have written X as a convex combination of two matrices X, and X.. It can be verified easily
that X, € £ and X, € R. As at least one of v or avg takes the value 1, the element X, has rank
strictly less than 7. Iterating this procedure completes the proof. [ |

Remark 44. A resultsimilar to Lemma 39 in the case of a single homogeneous constraint is presented
in [33, Lemma S]. Specifically, it is shown that for an arbitrary closed convex cone S, the extreme
rays of the set obtained by intersecting S with a hyperplane through the origin can be written as
convex combinations of at most two extreme rays of S. O

3.5.2 CONVEX HULLS OF BOUNDED QUADRATICALLY CONSTRAINED SETS

Consider a set
V= {y eR" 1 gi(y) > 0,Vi€ [m]}’

where ¢;s are quadratic functions of the form ¢;(y) = yTA;y + 2b]y + ¢;. Let M; == (Z: Z{_ )
and M = {M, ..., M,}.

We begin by proving a technical lemma that will be useful in the remainder of this section. This
lemma states that under a definiteness assumption, the set ), its projected SDP relaxation, and its
SDP relaxation are each compact.
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3.5 Applications of ROG cones

Lemma 40. Suppose there exists \* € R such that Y ;" | \* A; is negative definite. Then, the
Sfollowing three sets are each compact:

{y eR" 1 yTAy+ 2(b;,y) + ¢; > 0, Vi € [m] },

n—1 . Y i ny :
{yER . <AlaY>+2<blay>+Cl 207 Vi € [m] 7dnd

n . (M;, X) >0, VYie [m]

Proof. For convenience, let )/, V' V" denote the three sets in the lemma statement. Let A* :=
it AFA;. Similarly define b* and ¢*. Note in particular that A* is negative definite.
To see that V" is compact, note thatif X € )", then for all 4 € R we have

- ()T
(50 )

By picking p large enough, we can ensure that the matrix on the left hand side of this inequality is
negative definite. We conclude that V" is bounded, whence compact.

Note that the )’ is the image of the compact set )" under the continuous map ( 11/ v ) =y
so that )’ is compact.

Finally, note that Y C Y’ so that Y is bounded. As Y is closed, it is also compact. [ |

The following lemma gives an explicit description of conv()’) under the assumption that S (M)
is ROG and Y satisfies the above definiteness assumption.

Proposition 15. Suppose there exists \* € R such that 3 ;" | X A; is negative definite. If S(M)
is ROG, then conv()) is a semidefinite-representable set given by

_ n—1 . Y i ny :
conv()) = {y eR ALY 420y + e > 0, Vi € [m] } (3.7)

Proof. As the assumptions of Lemma 40 hold, we have that both sides of (3.7) are compact.
Therefore, it suffices to verify that the support function of ) and the support function of the set
on the right hand side of (3.7) are equal.

Letbg € R™ 1. Then,

1 M- .
in (bo,y) = = in {ﬁ(o bo )x: aTMx > 0, Vi € [m] }

yeY 2 zeRn bo Op—1 zT(ere])z =1
. 0 B (M;, X) >0, Vi € [m]
=3 inf _— X ) (ere], X) =1
Xe 0 n—1 X =0

. Y =gyt
_yéﬁélf—l{wo’w‘ (A1, Y) + 2(bs, ) + ¢ > 0, Vi € [m] }
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3 Rank-one-generated cones

Here, the first equality follows by writing 2 = (1, y), the second equality follows by Lemma 38,
and the third equality follows by writing X = ( ; %’; ) . n

We next turn our attention to the closed convex hull of epigraph sets. Let g be a quadratic
function of the form qo(y) = yT Aoy + 2b)y + co and define M = (ZE i’é) )
Proposition 16. Suppose there exists \* € R} such that Ay — Y 1" X} A; is positive definite. If
S(M) is ROG, then the closed convex bull of

s n—1 . QO(Z/) St
epl.—{(y,t)ER xR: yey }

is a semidefinite-representable set given by

Y = yyT:
cleconv(epi) = { (y,t) e R x R: (Ao, Y) 4+ 2(bg,y) +co <t
(A3, Y) 4+ 2(bs, y) +¢; > 0, Vi € [m]

Proof. Let R denote the set on the right.

(C) By taking Y = yyT, we have thatepi C R. It suffices to show that R is both convex and
closed. As R is the projection of the SDP relaxation (a convex set) of epi, it is itself convex. Next,
consider a sequence (y*, 1) € R converging to (y,t). Let Y¥) denote a sequence of matrices
certifying (y(?, (")) € R. As there exists a \* € R such that Ag — Y711 A\f A; is positive
definite, the sequence Y () is bounded and hence has a convergent subsequence with limit Y. By
continuity, we deduce that (y,¢) € R and hence R is closed.

(D) Suppose (y,t) ¢ clconv(epi). We will show that (y,t) ¢ R.

First, we claim that go(y) is bounded below on V. Let A* :== Ay — 1" AFA; and similarly
define b* and c*. Then, forall y € ), we have

do(y) > qo(y) = Y Nai(y) = yT A%y + 200", y) + ¢ > —(0")T(A") 710" + .
i=1

We deduce that go(y) is bounded below on ).

By the strict hyperplane separation theorem, there exists (11, ) # (0,0) € R"~1 x R such
that

. / ! . / /
<M’ y> < (y’,t’)egg)nv(epi)<u7 4 > trt= (y’,}f’%fe‘epi<'u’ 4 > vt (38)
We claim that we may assume > 0 without loss of generality. First, suppose ) = . In this case,
epi = @ and any arbitrary (u, ) # (0, 0) satisfies (3.8). On the other hand, if ) is nonempty
then e,, is a recessive direction for epi. In particular, as the objective value of the program on the
right is finite (by the bound on the left), we deduce that v > 0. Finally, as go () is bounded below
on ), we may increase v by some positive amount without affecting (3.8).
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3.5 Applications of ROG cones

Then,

(s y) +vt < H;/i,n{<u,y’> +rg(y):y €V}

= mind (1) + (o, V') + 2000,07) o) - L =Y
gy | Y 0; 0: Y )TN A YTy 4 20bs, o) + ¢ > 0, Vi € [m]
Y = yyT
< .
mY {<M7y> + V(<A07Y> + 2<b0ay> + CO) . <Ai7Y> + 2<bi,y> +¢>0,Vi€ [m] }

Here, the first line follows by substituting the optimal value of ¢’ in (3.8), the second line follows
from Lemma 38 (which we can apply as S(M) is ROG and the SDP on the second line has finite
objective value), and the third line follows by selecting v/ = .

Subtracting (/, y) from both sides and dividing by v > 0 leads to the desired conclusion that
(y,t) ¢ R and completes the proof. [

Applying a perturbation argument to Proposition 16 allows us to additionally relax the assump-

tion that Ag — Y 7%, AF A, is positive definite.

Corollary 18. Suppose there exists \* € R such that Ag — > ;1 N; A; is positive semidefinite. If
S(M) is ROG, then the closed convex bull of

epi == {(y,t)ER"_lxR: (E;} }

is the closure of a semidefinite-representable set:

Y =yyT:
cleconv(epi) = cl| { (y,t) e R L x R: (A, Y) +2(bg,y) +co <t
(Ai, V) + 2(bi,y) + ¢ > 0, Vi € [m]

Proof. Let R denote the setinside the right hand side so that the desired conclusion is clconv (epi) =
R.

(€) This direction follows simply from observing that epi C R and that R is convex.

(D) Let (§,7) € R and let Y be a matrix certifying (,7) € R. It suffices to show that
(9, + ¢€) € clconv(epi) forall € > 0. Let A}y := Ag + 61 where we have set § := ¢/ tr(Y).
Define ¢}y (y) = qo(y) + 8||y||* = yTAby + 2<b0, y) + ¢o. Note that by construction,

< Y>+2<b0, )+c0_(<A0,}7>+2<b0, >+c0)+e§£+e

so that

Y = yyT:
(g, 4+€) €l (y,t) eERVIXR: (A),Y) + 2(bo,y) + o < t
(A, Y) +2(bi,y) + ¢ 2 0, Vi € [m]
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3 Rank-one-generated cones

Next, as S(M) isROG and A — D17 AFA; = (Ao — 31 AFA;) + 61 is positive definite,
we may apply Proposition 16 with ¢((y) to deduce that

(@vf"i‘ €) € Clconv({(yjt) : qo(y) <t })

C clconv(epi).

Here, the second containment follows by noting that go(y) < ¢ (y) forall y. [

The following example shows how to recover [180, Theorem 4] as an immediate corollary of
Lemma 30 and Corollary 18.

Example 12. Consider a set ) defined by a single quadratic inequality constraint

Y= {y eR" M qiy) > 0}-

The associated cone S({ M7 }) is ROG by Lemma 30. Next, suppose o () is a quadratic objective
function for which there exists A > 0 such that Ag — AA; > 0. Then, Corollary 18 implies that

N () <1
deom({(y,t) ERIXR: NS }>

Y = yyT -
=cl|{(y,t) eR" I xR: (A, Y) +2(bo,y) +co <t . O
(A1,Y) +2(b1,y) +c1 >0

We next examine a classical example related to the “perspective reformulation/relaxation” trick [42,
68, 79] and demonstrate how this convex hull result can be recovered using our ROG toolsets.
The nonconvex set in this example will involve both binary and continuous variables and comple-
mentarity constraints.

Example 13. Consider the quadratically constrained set

_ . L=y =0
y—{yeRz. (1_2)‘;:0}.

In words, y1 is constrained to be a binary variable, y» is allowed to be arbitrary when 1 = 11is
“on” and forced to be zero when y; = 0is “off.”
Letting M1 == Sym((e3 — e1)e]) and My := Sym((e3 — e1)el), we have that

oL g (8 ()=
() (2] -0

Let M = {M;, M3} and note that 7 (M) is ROG by Corollary 17.
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Next, we rewrite ) using inequality constraints so that we may apply Proposition 16. Letting

a) =0 —=-y)y, ) =—1—-y1)y,3(y) = (1 —y1)y2, and qu(y) = —(1 — y1)yo,
we maywrite

y:{yGRQ: qi(y) <0, Vi e [4] }
Note that Ay = —eje], Ay = e1e], A3 = —Sym(erel), and Ay = Sym(ejel). Setting

qo(y) = y3, we have that Ay = ese]. Then, as Ag + Az = 0, we deduce that the assumptions
of Proposition 16 hold. Applying Proposition 16 then gives

ys <t
cleonvy (y,t) ERZxR: (1 —y)y1 =0
(1=y1)y2=0
Y = yyT
Yoo <t
={(y,t) eR?xR: °*
®.1) y1— Y11 =0
y2 —Y12=0
Z{(y,t)€R2><R: (yl yz)tyzﬂ}
yo ot
y1 >y

= (y,t) ER*xR: t>y3
(y1 —yi)(t — u3) > (y2 — y1y2)?

Note that the first constraint in the last formulation implies that y; € [0, 1]. By expanding and
rearranging, we can write the last constraint as

0< (1 —yD)(t —v3) — (y2 — 1y2)> = yit + y1v3 — vt — v3 = (it — ¥3)(1 — ).

When y; € [0, 1), this constraint is equivalent to y1 ¢ — y% > 0. On the other hand wheny; = 1,
the constraint 11 — y% > 0 is redundant. Hence, we deduce that

vz <1 y1 € [0,1]
cleconv{ (y,t) ERZxR: (1 —y1)y1 =0 :{(y,t)ER2xR: 1t> 'y }
(1-y1)y2=0 it =43
This gives the well-known perspective formulation of clconv()). O

Remark 45. There are few known sufficient conditions guaranteeing that the convex hull of
the epigraph of a QCQP is given by its SDP relaxation. The conditions presented by Wang and
Kiling-Karzan [181, Theorems 1 and 7] are among the most general in this direction. We claim that
both [181, Theorems 1 and 7] are incomparable with Proposition 16. Note that [181, Theorem 1]
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3 Rank-one-generated cones

cannot be applied directly to Example 13: the set of convex Lagrange multipliers (see [181, Section
2.1]) for this example is

P (o) e ) )
:{'yERZ: 71 <0, |72l S\/T’Yl}

which is not polyhedral. On the other hand, [181, Theorem 1] can be applied to QCQPs where
the A;s satisfy a “symmetry” condition. The following QCQP is such an example. Consider

1
yi ' Jy+1>0
2 -1
: -2

yT| o 2 Jy+120

1
The corresponding set M for thisexampleis M = {Diag(1,1, -1, -1, 1), Diag(—2,—-2,1,1,1)}.
Theorem 16 implies that S(M) is not ROG and thus Proposition 16 cannot be applied to this ex-
ample. We conclude that [181, Theorem 1] and Proposition 16 are incomparable. Similar examples
can be constructed to show that [181, Theorem 7] and Proposition 16 are incomparable. O

3.5.3 MINIMIZING RATIOS OF QUADRATIC FUNCTIONS OVER ROG DOMAINS

In this section, we show how a “re-homegenization” trick can be combined with our toolset
(specifically Lemma 38) to minimize the ratio of two quadratic functions over a ROG domain.
Let Mj, B € S™ and let M C S™. We will consider the following optimization problem:

55T
: 5T My% = ?S(M>
inf § g5 ZTBZ>0 . (3.9)
zZeR 2% -1

Remark 46. The variant of (3.9) where the constraint ZTBZ > 0 is replaced with ZTBZ # 0 can
be decomposed as two instances of (3.9) based on the sign of 2T BZ (and negating both M and
B on the portion of the domain where 2T BZ is negative). 0

We derive an SDP relaxation to (3.9) as follows:

s EE S(M) 22T € S(M)
~iI%an =5 Z'BZ>0 = iann 2TMypjz : 2TBz =1 (3.10)
= #2=1 = 2 >0
zzT € S(M)
> T
zlenﬂlf"{z Mz By — } (3.11)
ZeSM)
> ,
_£${@LWZ> <azy_1} (3.12)
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3.5 Applications of ROG cones

Lemma 38 implies that the inequality between (3.11) and (3.12) holds with equality whenever
S(M) is ROG and (3.12) is bounded below. This boundedness holds under relatively minor
assumptions. Similarly, a variety of different assumptions may be used to guarantee that the in-
equality relation between (3.10) and (3.11) holds with equality. The following lemma demonstrates
one such pair of sufficient conditions.

Lemma 41. Let My, B € S" and M C S". Suppose S (M) is ROG, there exists M* €
clcone(M) and A € R such that My,; + M* + AB = 0, and

zzT € S(M)

n ..
cl{zER : z%>0

} ={zeR": 22T € S(M)}. (3.13)

Then, equality holds throughout (3.10) to (3.12).

Example 14 (Regularized total least squares). The total least squares problem (TLS) adapts least
squares regression to the setting where both the independent and dependent variables may be
corrupted by noise [76]. A variant of the TLS, known as the regularized total least squares problem
(RTLS), introduces an additional regularization constraint that protects against poorly behaved
solutions which arise when the data matrix has small singular values. This regularization is well
studied from both theoretical and practical points of view (see [19, 189] and references therein).

By eliminating variables, the RTLS can be rewritten as minimizing the ratio of a nonnegative
quadratic function and a positive quadratic function over a nonempty ellipsoid (see for example
[76]). In particular, the RTLS can be written in the form of (3.9) where M, B € S’} and
| M| = 1. Itis then straightforward to verify that the assumptions of (41) are satisfied so that the
RTLS admits an exact SDP relaxation in the sense of objective value exactness. 0

Example 15 (Stackelberg prediction game with least-squares loss). In [186], we show thata
Stackelberg prediction game with a least-squares loss function (SPG-LS) can be written
in the form of (3.9). This game is played between a learner (us) and a number of data
providers, who each come from some fixed but unknown distribution. We assume we have
access to m-many tuples {(z;, y;, ;) };~, from this distribution where z; € R™ is the
feature vector of the ith data provider, y; € R is the label that we would like to assign to
the 7th data provider and 2; is the label that the ¢th data provider would like us to assign to
it. Our goal is then to perform least-squares regression where the data provider has some
penalty (controlled by v > 0) for “lying” or “altering” their data:

m
min Z(wT:cf(w) —y)?: zf(w) € argmin(wTE — 2)? +4||E — z;||* ).
weR™ i=1 zeR®

Here, the inner minimization problem says that the 7th data provider (with full knowledge
of w) chooses x (w) € R™ to minimize its own loss function. Letting X € R™*" denote
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3 Rank-one-generated cones

the matrix with ith row 2], and y, 2 € R™ the vectors with ith entry y; and z;, we may

rewrite this problem more compactly as
x-x|
B HF)'

Then, applying the Sherman-Morrison formula to solve for X*(w) and introducing a new

. T
variable o« = wv—w, we get

min {HX*(w)w —yl?: X*(w) e argmin(

~ 2
Xw—4’+7
weR™ K eRrmxn

2
| Xw + %szw
min || —————
1+ ;wTw

weER™ y

. ‘ Xw+ az 2 wTw
= min _ To=
wER™, a€R 1+« y

) { | Xw+ az— 1+ o)yl wTw}
= min fa=— ).

weR™, acR (14 «)? Ty

-y

Thus, we may solve the SPG-LS by solving its SDP relaxation (see Lemma 41). In [186],
we go a step further and note that we may apply algorithms for the GTRS to the SPG-LS.
Numerical results show that this method for solving the SPG-LS is orders of magnitudes
faster than previous state-of-the-art algorithms from [28, 185] for the SPG-LS. g
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ParT II

WHAT STRUCTURES WITHIN A QCQP ALLOW
ITS SDP RELAXATION TO BE SOLVED
EFFICIENTLY?
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4 THE GENERALIZED TRUST REGION
SUBPROBLEM: SOLUTION COMPLEXITY
AND CONVEX HULL RESULTS

This chapter is based on joint work [180] with Fatma Kiling-Karzan.

We consider the Generalized Trust Region Subproblem (GTRS) of minimizing a nonconvex
quadratic objective over a nonconvex quadratic constraint. The epigraph representation of this
problem recasts the GTRS as minimizing a linear objective subject to two nonconvex quadratic
constraints. Our first main contribution is structural: we give an explicit description of the convex
hull of this nonconvex set in terms of the generalized eigenvalues of an associated matrix pencil. This
result may be of interest in building relaxations for nonconvex quadratic programs. Moreover, this
result allows us to reformulate the GTRS as the minimization of two convex quadratic functions
in the original space. Our next set of contributions is algorithmic: we present a first-order method
for solving the GTRS up to an € additive error based on this reformulation in =~ O (671/ 2)
iterations. We carefully handle numerical issues that arise from inexact generalized eigenvalue
and eigenvector computations and establish explicit running time guarantees for these algorithms.
Notably, our algorithms run in linear (in the size of the input) time. Furthermore, our algorithm
for computing an e-optimal solution has a slightly-improved running time dependence on € over
the state-of-the-art algorithm. Our analysis shows that the dominant cost in solving the GTRS
lies in solving a generalized eigenvalue problem—establishing a natural connection between these
problems. Finally, generalizations of our convex hull results allow us to apply our algorithms and
their theoretical guarantees directly to equality-, interval-, and hollow-constrained variants of the
GTRS. This gives the first linear-time algorithm in the literature for these variants of the GTRS.

4.1 INTRODUCTION
In this chapter, we study the Generalized Trust-Region Subproblem (GTRS), which is defined as
Opt == inf {qo(z) : qi(x) <0}, (4.1)
T€R”™
where ¢p : R" — Rand ¢; : R™ — R are general quadratic functions of the form ¢;(z) =
xTA;x + 2sz1‘ + ¢;. Here, A; € R™ " are symmetric matrices, b; € R™ and ¢; € R. We are

interested, in particular, in the case where gg and ¢ are both nonconvex, i.e., A; has at least one
negative eigenvalue for both 7 = 0, 1.
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Problem (4.1), introduced and studied by Moré [124], Stern and Wolkowicz [165], generalizes
the classical Trust-Region Subproblem (TRS) [50] in which one is asked to optimize a nonconvex
quadratic objective over a Euclidean ball. The TRS is an essential ingredient of trust-region methods
that are commonly used to solve continuous nonconvex optimization problems [50, 135, 148] and
also arises in applications such as robust optimization [21, 87]. On the other hand, the GTRS has
applications in nonconvex quadratic integer programs, signal processing, and compressed sensing;
see [2, 32, 95] and references therein for more applications.

Although the TRS, as stated, is nonlinear and nonconvex, it is well-known that its semidefinite
programming (SDP) relaxation is exact. Consequently, the TRS and a number of its variants can
be solved in polynomial time via SDP-based techniques [66, 151] or using specialized nonlinear
algorithms [77,125]. In fact, custom iterative methods with linear (in the size of the input) running
times have been shown in a few works. Hazan and Koren [82] proposed an algorithm to solve the
TRS (as well as the GTRS when Aj is positive definite) based on repeated approximate eigenvector
computations. This algorithm runs in time

o545 () ()

where N is the number of nonzero entries in the matrices Ag and A1, € is the additive error, n is
the dimension of the problem, p is the failure probability, and ki is a condition number. This
was the first algorithm in the literature shown to achieve a linear time complexity. Here, and in the
remainder of the chapter, the term “linear” is used to describe running times that scale at most
linearly with N but may depend arbitrarily on its other parameters. Afterwards, Ho-Nguyen and
Kiling-Karzan [87] presented another linear-time algorithm for the TRS with a slightly better
overall complexity, eliminating the log (ki /€) term. Their approach reformulates the TRS as
minimizing a convex quadratic objective over the Euclidean ball, and solving the resulting smooth
convex optimization problem via Nesterov’s accelerated gradient descent method. In contrast to
[82], this convex reformulation approach requires only a single minimum eigenvalue computation.
Wang and Xia [184] also suggested using Nesterov’s algorithm in the case of the interval-constrained

TRS.

The GTRS shares a number of nice properties of the TRS. For example, by the S-lemma, it is well-
known that the GTRS also admits an exact SDP reformulation under the Slater condition [67, 146].
Thus, while quadratically-constrained quadratic programming is NP-hard in general, there are
polynomial-time SDP-based algorithms for solving the GTRS. Nevertheless, the relatively large
computational complexity of SDP-based algorithms prevents them from being applied as a black
box to solve large-scale instances of the GTRS. A variety of custom approaches have been developed
to solve the GTRS; for earlier work on this domain see [65, 124, 165] and references therein.

One line of work has developed algorithms for solving the GTRS when the matrices Ag and A
are simultaneously diagonalizable (SD) (see Jiang and Li [93] and references therein for background
on the SD condition). Under the SD condition, along with certain restrictions on the quadratics
go and g1, Ben-Tal and Teboulle [24] provide a reformulation of the interval-constrained GTRS
as a convex minimization problem with linear constraints. More recently, Ben-Tal and den Hertog
[21] show that there is a second order cone programming (SOCP) reformulation of the GTRS
in a lifted space under the SD condition. Subsequent work by Locatelli [111] extends Ben-Tal
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4.1 Introduction

and den Hertog [21] by illustrating some additional settings in which the SOCP reformulation is
tight. Under the SD condition, Fallahi et al. [64] exploit the separable structure of the problem
and, using Lagrangian duality, they suggest a solution procedure based on solving a univariate
convex minimization problem. Salahi and Taati [155] derive an algorithm for solving the interval-
constrained GTRS by exploiting the structure of the dual problem under the SD condition. By
applying a simultaneous block diagonalization approach, Jiang etal. [96] generalize Ben-Tal and den
Hertog [21] and provide an SOCP reformulation for the GTRS in a lifted space when the problem
has a finite optimal value. Their methods apply even when go and g1 do #ot satisfy the SD condition.
They further derive a closed-form solution when the SD condition fails and examine the case of
interval- or equality-constrained GTRS. In this line of work, it is often assumed implicitly that Ay
and A are already diagonal or thata simultaneously-diagonalizing basis can be computed. The only
method that we know of for computing such a basis relies on exact matrix eigen-decomposition.
Thus, although experiments have been presented [96, 155] suggesting that such algorithms (where
exact procedures are replaced by numerical ones) may perform well, theoretical guarantees have
yet to be established. Furthermore, the large cost of matrix eigen-decomposition prevents the
application of these algorithms to large-scale instances of the GTRS.

A second line of work has explored the connections between the GTRS and generalized eigen-
values of the matrix pencil Ag + 7 A1. These works all assume a regularity condition about the
matrix pencil: there exists ay > 0 such that Ay + yA; is either positive definite or positive
semidefinite.! Pong and Wolkowicz [148] study the optimality structure of the GTRS and pro-
pose a generalized-eigenvalue-based algorithm which exploits this structure. Unfortunately, an
explicit running time is not presented in [148]. Adachi and Nakatsukasa [2] present another
generalized-eigenvalue-based algorithm motivated by similar observations. The dominant costs
present in this algorithm come from computing a pair of generalized eigenvalues and solving a linear
system. Ignoring issues of exact computations, the runtime of this algorithm is O(n?). Jiang and
Li [94] show how to reformulate the GTRS as a convex quadratic program in terms of generalized
eigenvalues. They establish that a saddle-point-based first-order algorithm can be used to solve the
reformulation within an € additive error in O(1/€) time. In this line of work, it is often assumed
that the generalized eigenvalues are given or can be computed exactly. In particular, theoretical
guarantees have not yet been given regarding how these algorithms perform when only approximate
generalized eigenvalue computations are available. This is of interest as, in practice, we cannot
hope to numerically compute generalized eigenvalues exactly; see also the discussion in Section
4.1in [95]. We would like to remark that numerical experiments in these papers [2, 94, 148] have
suggested that algorithms motivated by these ideas may perform well even using only approximate
generalized eigenvalue computations.

The very recent work of Jiang and Li [95] presents an algorithm for solving the GTRS up toan €
additive error in the objective with high probability under the regularity condition. This algorithm
relies on machinery developed by [82] for solving the TRS and differs from previous algorithms in

n fact, this assumption can be made without loss of generality; see Remark 49.
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

that it does not assume the ability to compute a simultaneously-diagonalizing basis or generalized
eigenvalues. The running time of this algorithm is

[ N¢*  n 6\
O( - log(p) log(eéﬁ) ), (4.3)

where IV is the number of nonzero entries in Ag and A1, € is the additive error, n is the dimension,

p is the failure probability, and (¢, &1.) are a pair of parameters measuring the regularity of the
GTRS. In particular, this algorithm is able to take advantage of sparsity in the description of the
quadratic functions. To our knowledge, this is the first provably linear-time algorithm for the
GTRS to be presented in the literature.

In this chapter, we derive a new algorithm for the GTRS based on a convex quadratic refor-
mulation in the original space. This algorithm can also be applied to variants of the GTRS with
interval, equality, or hollow constraints. The basic idea in our approach relies on the fact that
we can provide exact (closed) convex hull characterizations of the epigraph of the GTRS. We
summarize our results below and provide an outline of the chapter.

i) We rewrite the GTRS with a linear objective

Opt = (intf){t i (z,t) € S}, (4.4)
where the set S is defined as

S = {(a:,t) e R . q0(2)

t

As the objective in (4.4) is linear, we can take either the convex hull or closed convex hull of
the feasible domain. Then,

IAIA

Opt = igf{t : (z,t) € conv(S)} = icgtf{t : (z,t) € conv(S)}.

In Section 4.2, we give an explicit description of the set conv(S) (respectively, clconv(S)).
Specifically, we show that when the respective assumptions are satisfied, conv(S) and
clconv(S) can both be described in terms of two convex quadratic functions determined
by the generalized eigenvalue structure of the matrix pencil Ag + yA;. We note that these
convex hull results may be of independent interest in building relaxations and/or algorithms
for nonconvex quadratic programs with or without integer variables.

Remark 47. These convex hull results are stated in strictly more general terms in
Chapters 1 and 2. O

As an immediate consequence of these (closed) convex hull results, we can reformulate
the GTRS as the minimization of the maximum of two convex quadratics. This convex
reformulation was previously discovered by Jiang and Li [94] by considering the Lagrangian
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iii)

4.1 Introduction

dual and proving a zero duality gap. Our approach shows that the reformulation is tight
for a very intuitive reason — the convex hull of the epigraph is exactly characterized by the
convex quadratics used in the reformulation.

The proofs in Section 4.2 actually imply stronger convex hull results: under the same
assumptions, the (closed) convex hull of S is generated by points in S where the constraint
¢1(x) < Ois tight. This observation immediately leads to interesting consequences, which
we detail in Section 4.3. Specifically, we extend our (closed) convex hull results to handle
epigraph sets that arise when additional nonintersecting constraints are imposed on the
GTRS. This will allow us to extend our algorithms to variants of the GTRS present in the
literature [21, 24, 87, 94, 96,124, 148, 155, 165, 191]. Specifically, this generalization allows
us to handle interval-, equality-, and hollow-constrained GTRS.

In Section 4.4, we give a careful analysis of the numerical issues that come up for an al-
gorithm based on the above ideas. At a high level, we show that by approximating the
generalized eigenvalues sufficiently well, the perturbed convex reformulation is within a
small additive error of the true convex reformulation. Then, by leveraging the concavity of
the function Amin (Ao +yA1), in the variable y, we show how to approximate the necessary
generalized eigenvalues efficiently. We believe this subroutine and the theoretical guarantees
we present for it may also be of independent interest in other contexts. Next, we utilize an
algorithm proposed by Nesterov [132, Section 2.3.3] for solving general minimax problems
with smooth components to solve our convex reformulation with a convergence rate of
O(1/+/€). This contrasts the approach taken by Jiang and Li [94] that analyzes a saddle-
point-based first-order algorithm and results in a convergence rate of O(1/¢). In order to
apply the algorithm proposed by Nesterov, we establish that the gradient mapping step can
be computed efficiently in our context. Finally, relying on our convex hull characterization,
we show how to recover an approximate solution of the GTRS using only approximate
eigenvectors.

We present two algorithms (Algorithms 1 and 4). The former finds an e-optimal value
and the latter finds an e-optimal feasible solution. In other words, the former returns a
scalar in [Opt, Opt +¢€] and the latter returns a vector z in the feasible region with go(x) €
[Opt, Opt +€]. Their running times are

O(ng(ﬁ) log</:>>, O(Nlj;\/z log(Z) log</:>>, (4.6)

respectively. Here, &, ¢, and & are regularity parameters of the matrix pencil Ay + vA;

(see Definition 17). Comparing (4.6) and (4.2), we see that our running times match
the dependences on N, n, €, and p from the algorithm for the TRS presented by Hazan
and Koren [82]. Comparing (4.6) (specifically the running time for finding an e-optimal
solution) and (4.3), we see that our running time matches the linear dependence on N and
improves the dependence on € by a logarithmic factor from the running time presented by
Jiang and Li [95]. The dependences on the regularity parameters in the two running times
are incomparable (see Remark 56) but there exist examples where our running time gives a
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

polynomial-order improvement upon the running time presented by Jiang and Li [95] (see
Remark 60).

In comparison to the approach taken by Jiang and Li [95], we believe our approach is
conceptually simpler and more straightforward to implement. In particular our approach
directly solves the GTRS in the primal space as opposed to solving a feasibility version of
the dual problem. Moreover, our analysis highlights the connection between the GTRS
and generalized eigenvalue problems, and in fact demonstrates that the dominant cost in
solving the GTRS is the cost of solving a generalized eigenvalue problem.

In our running times (4.6), the large dependence on the regularity parameters arises from
the error that is introduced as a result of inexact generalized eigenvalue and eigenvector
computations. We illustrate that our algorithms can be substantially sped up if we have
access to exact generalized eigenvalue and eigenvector methods. In particular, we show that
when A and Ay are diagonal, we can compute an e-optimal solution to the GTRS in time

Nrn/C
o( s )

As mentioned previously, the generalizations of our convex hull results allow us to apply our
algorithms to variants of the GTRS. In particular, our algorithms can be applied without
change to interval-, equality-, or hollow-constrained GTRS.

Remark 48. In Chapter 5, we will see a second faster algorithm for the GTRS that works
under a stronger assumption. ]

Our study of the convex hull of the epigraph of GTRS is inspired by convex hull results in
related contexts. The recent work of Ho-Nguyen and Kiling-Karzan [87] gives a characterization
on the convex hull of the epigraph of the TRS. In particular, under the assumption that A; is
positive definite, Ho-Nguyen and Kiling-Karzan [87, Theorem 3.5] give the explicit closed convex
hull characterization of the set S. In this respect, one can view our developments on the (closed)
convex hull of § when neither Ag nor A; is positive semidefinite as complementary to the results
of Ho-Nguyen and Kiling-Karzan [87, Section 3]. Notably, in contrast to [87, Section 3], we
have to handle a number of issues that arise due to the recessive directions of the nonconvex
domain. The papers by Modaresi and Vielma [123], Yildiran [195] are also closely related to our
convex hull results. Yildiran [195] studies the convex hull of the intersection of two strict quadratic
inequalities (note that the resulting set is open) under the milder regularity condition that there
exists 7 > 0 such that Ay + yA; is positive semidefinite, and Modaresi and Vielma [123] analyze
conditions under which one can safely take the closure of the sets in Yildiran [195] and still obtain
the desired closed convex hull results. In contrast, our analysis leverages the additional structure
present in an epigraph set to give a more direct proof of the convex hull result. Furthermore, as our
analysis is constructive (given £ € conv(S), we show how to find two points 1, 2 € S such
thatx € [x1, x2]), it immediately suggests a rounding procedure (given a solution to the convex
reformulation, we show how to find a solution to the original GTRS). This contrasts the analysis in
Yildiran [195], where such a rounding procedure is not obvious. Moreover, our analysis provides a
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more refined result that easily extends to variants of the GTRS with non-intersecting constraints.
Finally, we would like to mention related work on convex hulls of sets defined by second-order
cones (SOCs). Burer and Kiling-Karzan [35] study the convex hull of the intersection of a convex
and nonconvex quadratic or the intersection of an SOC with a nonconvex quadratic. Similarly, the
convex hull of the a two-term disjunction applied to an SOC or its cross section has received much
attention (see [35, 101] and references therein). As our focus has been on the case where neither
Ap nor Ay is positive semidefinite, we view our developments as complementary to these results.

4.1.1 ADDITIONAL NOTATION

Given A € S", let Amax(A) denote the maximum eigenvalue of A. Let || A|| denote the spectral
norm of A. Forx € R™ and r > 0, let B(x, r) be the closed ball of radius r centered at z, i.e.,
B(z,r) ={y e R": [z —yl| <r}.

4.2 CONVEX HULL CHARACTERIZATION

In this section we discuss our (closed) convex hull results. We will aggregate the objective function
o with the constraint 1 using a nonnegative aggregation weight to derive relaxations of the set S.
We then show that under a mild assumption the (closed) convex hull of S can be described by two
convex quadratic functions obtained from this aggregation technique.

Letq : R x R™ — R be defined as

q(v, ) = qo(x) +vq1(z).

Let A : R — R™ " be defined as A(7y) = Ao + vA;. Similarly define b(y) and ¢(). In
particular, (v, z) = 2TA(y)x + 2b(y)Tz + (7). We stress that while ¢(0,z) = go(x), we
have ¢(1, ) = qo(x) + q1(z) which is not equal to ¢; () in general.

Note that ¢(y, ) is linear in its first argument and quadratic in its second argument. This
structure plays a large role in our analysis.

In order to derive valid relaxations to S based on aggregation, we will consider only nonnegative
7y in the remainder of the chapter. For v > 0, define

S(vy) = {(x,t) e R g(v,2) < t}.

Note that S C S(y) holds for all ¥ > 0. Furthermore, it is clear that go(x) < tand g1 (z) < 0if
and only if ¢(7y,x) < tforally > 0. Thus, we can rewrite S as

S = {(x,t) e R™ QO(“””; o } =N sk

q1 (SU 430

Note that the set S(7y) is convex if and only if A(7y) > 0. We will define I to be these 7 values,
ie.,

I''={yeRy: A(y) = 0}.
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Note that I' is a closed (possibly empty) interval. When this interval is nonempty, we will write

itasI' = [y—, 74].
We use the following two assumptions in our convex hull characterizations:

Assumption 8. The matrices Ag and A; both have negative eigenvalues and there existsa y* > 0

such that A(y*) > 0. O
Assumption 9. The matrices Ag and A; both have negative eigenvalues and there existsa y* > 0
such that A(y*) > 0. O

Remark 49. We claim that the case where Ag and A; both have negative eigenvalues but do not
satisfy either of the above assumptions is not interesting. In particular if Ag and A both have
negative eigenvalues and A(7) ¥ 0forally > 0, then it is easy to show (apply the S-lemma then
note that Ay has a negative eigenvalue) that conv(S) = R™ L. Consequently, the optimal value
of the GTRS is always —oo in this case.

The assumption that there exists a v* > 0 such that A(y*) > 0 is made in most of the
present literature on the GTRS [2, 21, 93-95, 148, 155] and convex hulls of the intersection of
two quadratics [123, 195] either implicitly (for example, by assuming that an optimizer exists or
that the optimal value is finite) or explicitly.

It is well-known that Assumption 8 implies that A and A; are simultaneously diagonalizable.
Even so, we will refrain from assuming that our matrices are diagonal and opt to work on a general
basis. We choose to do this as the proofs of our convex hull results will serve as the basis for our
algorithms, which do not have access to a simultaneously-diagonalizing basis. ]

Remark 50. Assumptions 8 and 9 each imply that I' is nonempty and, consequently, that y_ and
74+ exist. In addition, as A(y—) and A(~y, ) are both on the boundary of the positive semidefinite
cone, they both have zero as an eigenvalue.

Under Assumption 8, the existence of some v* > 0 such that A(y*) > 0 implies that
V- < 4" < 74 and hence y_ and 74 are distinct. Furthermore, as v* € (y—, 74 ), we have
dTA(y-)d = dTA(y+)d = Oifand only if d = 0.

In contrast, under Assumption 9, it is possible to have y_ = v* = v4 and I’ = {7*}. O

Finally, define & to be the subset of S where the constraint ¢; () < 0is tight.
S ={(z,t)€ R . qo(z) <t
: , : “o (-

When either Assumption 8 or 9 holds, A1 has both positive and negative eigenvalues so that & is
nonempty.
We now state our (closed) convex hull results:

Theorem 19. Under Assumption 8, we have
conv(S) = conv(6) = S(v-) NS(v+).
In particular,

min{go(z) : qu(z) < 0} = min max{q(y-,2), ¢(7+, )}-
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Theorem 20. Under Assumption 9, we have
cleconv(S) = cleonv(G) = S(y-) N S(y4)-
In particular,

Jnf {go(x) + qu(z) <0} = inf max{q(y-,2),q(v+,2)}-

Remark 51. The convex reformulation given in the second part of Theorem 20 was first proved
by Jiang and Li [94] using a different argument without relying on the convex hull structure of the
underlying sets. In contrast, the first part of Theorem 20 establishes a fundamental convex hull
result highlighting the crux of why such a convex reformulation is possible. O

We present the proof of Theorem 19 in Section 4.2.1. The proof of Theorem 20 is presented in
Section 4.2.2 and relies on Theorem 19.

4.2.1 PROOF OF THEOREM 19

Lemma 42. The set S(7y) is convex and closed for all v € T..

Proof. Let~y € I' and recall the definition of S(7y).

8(7) = {(z,t) e R g(y,2) <t}
= {(&.1) € R™ 2 aTA()z + 26(1)Tz +c(y) < 1}
By the definition of I', we have A(y) > 0. Thus, the constraint defining S() is convex in (x, t),

and we conclude that S(7) is convex. Closedness of S(y) follows by noting that it is the preimage
of (—00, 0] under a continuous map. [ |

Lemma 43. Suppose I' is nonempty and write I = [y_,~y1]. Then, conv(S) C S(v—) NS(v4).

Proof. Note that S = (1,59 S(7) € S(7-) N S(74). The result then follows by taking the
convex hull of each side and noting that both S(7—) and S(74) are convex by Lemma 42. W

The bulk of the work in proving Theorem 19 lies in the following result.
Lemma 44. Under Assumption 8, we have S(y—) N S(v4) C conv(S).

Proof. Let (Z, f) 6 Sky-)n S(’Y+) We will show that (,7) € conv(&). We split the analysis
into three cases: (i) ¢1(Z) = 0, (ii) ¢1 () > 0, and (iii) ¢1 (&) < 0.

i Ifqi(2) = 0, then qo(2) = qo(2) +v-q1(2) = q(y-,2). As (2,8) € S(v-) by
assumption, we deduce that ¢(y—_,%) < f. Combining these inequalities, we have that
qo(%) = q(y—, %) < tand that (#,7) € &.

ii Now suppose g1(Z) > 0. Let d # 0 such that dTA(y4)d = 0 (such a vector d exists as
A(74) haszero as an eigenvalue; see Remark 50) and define e := 2 (a:TA(’y+ )d + b(’y+)Td).
We modify (&, ) along the direction (d, €): For a € R, let (&4, 1) = (& + ad, t + ae).
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

We will show that there exist ; < 0 < a2 such that (Z,, tAal) € Gfori = 1,2, whence
(&,1) € conv(®).

We study the behavior of the expressions ¢(7—, £4) — toand q(7y, #4) — o as functions
of . A short calculation shows that for any o € IR, we have

(V4 Za) — ta

=q(r4,8) —1, (+7)

where the last equation follows from the definition of e. Thus, ¢(74, £4) — tq is constant
in a.. Next, we compute

Q(’Y—7 fi’a) - foz
= (g(y-,2) = 1) +20(3TA(y-)d + b(y-)Td — ¢/2) + a?dTA(y-)d.
Asd # 0and dTA(v4)d = 0, we deduce that dTA(y_)d # 0 (see Remark 50). Then, as
A(y-) = 0, we have that dTA(y_)d > 0. Hence, q(7_, #4) — tq is strongly convex in av.

Note that

q(7—, %) = q(2) + 7-q1(2) < q(2) +7+q1(2) = q(7+, 2),

where the inequality follows from the fact that y— < 4 and ¢1(Z) > 0. Therefore,
q(y-, ) —i< q(v4, &) — t. Thus, there are values v < 0 < g such that (V= Fa;) —
ta; = q(V4+%a;) — o, fori =1,2.

It remains to show that (£,,a,;) € & fori = 1, 2. This follows immediately because for
i = 1,2, we have

1

= ——(q(V:Za;) —q(7—,2o,;)) = 0.
a0 ) — a0 )

q (SAU oy )
Then, applying (4.7) and recalling that (7., &) < %, we have

qo(‘%ai) = Q('7+a jai) - ’y+q1(i‘ai) = Q(’Wr’ ‘%Oéi) < fai'

iii The final case is symmetric to case (ii), thus we will only sketch its proof.

Supposeq1(Z) < 0. Letd # OsuchthatdT A(y-)d = Oanddefinee := 2(2TA(y-)d + b(y-)Td).
Fora € R, let (Za,10) = (& + ad, t + ae).
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4.2 Convex bull characterization

A short calculation shows that for any o € R, we have
)+ 20(3TA(y-)d + b(y-)Td — ¢/2) + a*dT A(y-)d

Similarly, for any @ € R,

~

Q(’Y-‘r? -%a) - ta
= (a(v4,2) — 1) +20(TA(y4)d + b(y4)Td — ¢/2) + a*dTA(y;)d.

AsdTA(~y )d = 0and d # 0, Assumption 8 implies that dTA(y4)d > 0. We see that
q(7V+, %a) — Lo is strongly convexin av. As g1 (#) < 0, we have q(%r, 2)—t < q(y_,2)—t.
Thus, there are values a; < 0 < ag such that ¢(74, £a;) — ta; = ¢(V—, Tay;) — Lo, for
i=1,2.

Noting that v_ # vy and ¢(v—,Z4;) = q(V+,Za,), we conclude that go(Zo,) =
q(ViyZa;) < ta, and q1(#4,) = 0. Thus, (:ﬁai,fai) € G fori = 1,2. We conclude
(2,1) € conv(&). [

Remark 52. The proof of Lemma 44 suggests a simple rounding scheme from the convex relaxation
to the original nonconvex problem: given & € R™, let d be an eigenvector of eigenvalue zero for
either A(74 ) (depending on the sign of ¢1(£)) and move & > 0 units in the direction of either £d
(depending on the sign of e defined in the proof) until ¢ (Z + ad) = 0. This rounding scheme
guarantees that o (Z + ad) < max{q(y-,2),q(v+,2)}. O

We are now ready to prove Theorem 19.

Proof of Theorem 19. Lemmas 43 and 44 together imply
S(v-) NS(1+) € conv(6) € conv(S) € S(v-) NS(7+)-

Hence, we deduce that equality holds throughout the chain of inclusions.
In particular, the GTRS (4.4) can be rewritten

(mtlgnfgm {t: (z,t) e S} = (o 1é1]1f§n+ {t: (z,t) € conv(S)}

= inf {t: (z,t) € S(y-) NS(v4)}

(z,t)eRF1
. q(y—,x) <t
= f t:
@,t;élw{ a(yy,m) <t
)}

= inf _
Jnf max{q(y-,2),q(v+,

It remains to prove that the minimum is achieved in each of the formulations of the GTRS above.
It suffices to show that the minimum is achieved in the last formulation. Note ¢(vy_, z) and
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

q(7Y4, x) are both continuous functions of x, hence max{q(y_, z), g(y+, )} is continuous.
Next, taking v := max{c(y-), ¢(7+)} we have that w is an upper bound on the optimal value.
Moreover, because v* € (y—, v+ ), we can lower bound max{q(vy_, x), ¢(v+, z)}, by ¢(v*, ).
Consequently, it suffices to replace the feasible domain R"™ in the last formulation with the set

{fz eR": q(v",x) <u}.

This set is bounded as A(y*) > 0 and it is closed as it is the inverse image of (—o0, u] under a
continuous map. Recalling that a continuous function on a compact set achieves its minimum
concludes the proof. [ |

We next provide a numerical example illustrating Theorem 19.

Example 16. Define the homogeneous quadratic functions ¢;(x) = 2T A;z fori = 0, 1, where

1 2 0 -1
w03 e ()

As det(Ap) = —3 and det(A;) = —1, the matrices Ag and A; must both have negative

eigenvalues. Furthermore,
A(2) =Ap+2A,=1>0.

Thus, Assumption 8 is satisfied.
We now compute y— and 4. Note that as A(7) is a2 x 2 matrix, A(y) > 0if and only
if tr(A(y)) > 0and det(A(y)) > 0. Note that tr(A(v)) = 2 > 0 is satisfied for all 7. We

compute

det(A(7)) =1 (2-7)%

This quantity is nonnegative if and only if |2 — 7| < 1. Thusy— = 1 and 4 = 3. Theorem 19
then implies

2 2 2
3 xi+4dzza+a5 <t _ 3 (x1+2)° <
conv({(x,t) eR’: w1 < 0 =< (z,t) e R”: 2 <

We plot the corresponding sets S and S(y—) N S(74) in Figure 4.1. O

4.2.2 PROOF OF THEOREM 20
Next, we prove Theorem 20 using a limiting argument and reducing it to Theorem 19.
Lemma 45. Supposel is nonempty and writeI' = [y_, y4]. Then, clconv(S) C S(v-)NS(v4).

Proof. Note that S = (,5¢S(7) € S(7-) N S(74+). Containment then follows by taking the
closed convex hull of both sides and noting that both S(_) and S(74.) are closed and convex by
Lemma 42. |
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4.2 Convex bull characterization

Figure 4.1: The sets S (in orange) and S(v—) N S(74 ) (in yellow) from Example 16

Lemma 46. Under Assumption 9, we have that S(y—) N S(v4) C clconv(S).

Proof. Let (#,1) € S(7-) N S(74). It suffices to show that (2,7 + €) € conv(&) forall € > 0.
We will perturb A slightly to create a new GTRS instance. Let & > 0 to be picked later. Define
Ay = Ag + 1, and let all remaining data be unchanged, ie.,

/

qo(w) = 2T Apz + 2b) x + ¢y == 2T (Ag + 61,)x + 2b]z + co
qi(z) = 2T Az + 202 + ¢) == 2T Az + 2b]2 + ¢1.

We will denote all quantities related to the perturbed system with an apostrophe.

We claim that it suffices to show that there exists a & > 0 small enough such that the GTRS
defined by ¢, and ¢} satisfies Assumption 8 and (2,1 + €) € S'(v) N S’(7,.) . Indeed, suppose
this is the case. Note that for any € R", we have ¢ () = ¢} () and go(z) < ¢((z). Hence,
&' C & and conv(&’) C conv(&). Then applying Theorem 19 gives (&, + €) € S'(v) N
S'(7y) = conv(&') C conv(S) as desired.

We pick 6 > 0 small enough such that

Amin(45) <0, d)|2]* <

N

A € 2,
v M= rlla@l <, W =r-lla@)] <

N ™

This is possible as the expression on the left of each inequality is continuous in ¢ and is strictly
satisfied if § = 0. Then, noting that A’(y*) = A(y*) 4+ 01, > 0, we have that the GTRS defined
by gq( and ¢} satisfies Assumption 8.

It remains to show that ¢/ (v, 2) < (f + €) and ¢' (7", &) < (£ + €). We compute

d(e,8)—(E+e)=d(4,2) — (E+e) + (VL —74)a ()
< q(vs+,2) + 8|21 — (E+ €) + |4 — v+l (2)]
< Q(V—Hi‘) —i
<.
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

The first inequality follows by noting ¢’ (7, z) = q(v,z) + 8||x/|?, the second inequality follows
from our assumptions on &, and the third line follows from the assumption that (%, %) € S(v4).
A similar calculation shows ¢/ (7", ) < (¢ + €). This concludes the proof. [ ]

We are now ready to prove Theorem 20.
Proof of Theorem 20. Lemmas 45 and 46 together imply
S(y=)NS(v4) C cleonv(S) C cleonv(S) € S(v—) NS(v4).

Hence, we deduce that equality holds throughout the chain of inclusions.
In particular, the GTRS (4.4) can be rewritten

inf {t: (z,t)eS}t= inf {t: (z,t) € clconv(S)}

ek (x,t)ERNH1
= ot (s @) €S0 NS0}

) <t
= inf t: a(r-,@) <
(m)lgR"H{ diw) <t }
)

= inf max{q(y-,),q(y4,z)}. L
xER™

4.2.3 REMOVING THE NONCONVEX ASSUMPTIONS

As part of our Assumptions 8 and 9, we assume that Ay and A; both have negative eigenvalues,
i.e., that both gp and g are nonconvex. These assumptions are made for ease of presentation
and to highlight the novel contributions of this work. Indeed, the proofs of Theorems 19 and 20
can be modified to additionally cover all four cases of convex/nonconvex objective and constraint
functions. We remark that the resulting theorem statement for the case of a nonconvex objective
function and a strongly convex constraint function coincides with that of Ho-Nguyen and Kiling-
Karzan [87].

In this section we record more general versions Theorems 19 and 20. Their proofs are completely
analogous to the original proofs and are deferred to Appendix D.1.

Theorem 21. Suppose there exists v* > 0 such that A(~*) > 0. Consider the closed nonempty
interval T .= {y € Ry : A(y) = 0}. Lery— denote its leftmost endpoint.

o IfT is bounded above, let y denote its rightmost endpoint. Then,
conv(S) = S(7-) N S(v+).

In particular, we havemingegrn{qo(z) : ¢1(z) < 0} = mingern max{q(y—, ), ¢(v4, )}

o IfT is not bounded above, then q1 (x) is convex and
conv(8) = 8(v-) N {(x,t) e R : qu(w) <0}.

In particular, we havemingern{qo(z) : ¢1(z) < 0} = mingern{q(7—, ) : q1(z) < 0}.
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4.2 Convex bull characterization

Theorem 22. Suppose there exists v* > 0 such thatr A(v*) = 0. Consider the closed nonempty
interval I := {y € Ry : A(y) = 0}. Lery— denote its leftmost endpoint.

* IfT is bounded above, let v denote its rightmost endpoint. Then,
o (S) = S(v) N S(14).

In particular, inf zepn {qo(x) : q1(x) < 0} = infyern max{q(y-, ), ¢(v+,2)}

* IfT is not bounded above, then qi(x) is convex and
onv(S) = S(v-) N {(w,1) e R™+ qu(w) <0}

In particular, inf zern {qo(x) : q1(x) < 0} = infyern{q(y—,2) : q1(z) < 0}.

These results admit further nontrivial generalizations involving multiple quadratics; we refer
the interested readers to our follow up work [181].

Remark 53. Yildiran [195] proves a convex hull result for a set defined by two strict quadratic
constraints. Modaresi and Vielma [123] then show that given a particular topological assumption,
that the appropriate closed versions of Yildiran [195]’s results also hold. We discuss these results
in the context of the convex hull results we have presented thus far. Given gg and g1 we will
consider the quadratic functions go(«) — ¢ and g1 () in the variables (z, t). As [195] works with
homogeneous quadratics, we introduce an extra variable to get homogeneous quadratic forms.
Define

Ag 0 bo Ay 0 by Alv) 0 b(7)
Q=0m 0o —1/2|, @q=|0m 0 0|, Qu=| 0" 0 —1/2
b -1/2 bp 0 b(y)T —1/2 ¢(v)

Yildiran [195] uses the aggregation weights «y where Q(7y) has exactly one negative eigenvalue.
Note that for all ¥ > 0, the lower right 2 X 2 block of Q)(7y) is invertible. Thus, we may take the
Schur complement of this block in Q():

-1
@<v>/<_f/2 ;(14)2>=A(7)—(0 b)) (_f/2 ‘(17/)2) (b(?y)T)zAm.

Recall that Schur complements preserve inertia. In other words, () and
A()
0o -1/2

—-1/2  ¢c(y).
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

have the same number of negative eigenvalues. Noting that the lower right 2 x 2 block has exactly
one negative eigenvalue, we conclude that () has exactly one negative eigenvalue if and only if
A(7) = 0. The result presented by Yildiran [195] then implies

COHV({(:U,t) : Z?Eg 26 }) ={(z,t) : q(v=,z) <t} n{(z,t): ¢(v4,2z) <t}

when 7, exists and

COHV({(x,t): Q(@) <1 }) — (@) : gl 2) < N {(2,0) : qu(z) < 0}

q1(z) <0

otherwise.

One can then verify the topological assumption of Modaresi and Vielma [123], namely that
S C int(S) the closure of the interior of S. Thus, combining these two results gives an alternate
proof of Theorems 21 and 22.

We believe our analysis is simpler and more direct. In particular, our analysis takes advantage

of the epigraph structure present in our sets and immediately implies a rounding procedure via
Lemma 44. In addition, our results are more refined when Assumption 8 or 9 hold as we can
also characterize the (closed) convex hull of the set & and show that it is equal to that of S. This
particular distinction between & and S has a number of interesting implications in equality-,
interval-, or hollow-constrained GTRS, and we discuss these results in the following section. [

4.3 NONINTERSECTING CONSTRAINTS

There have been a number of works considering interval-, equality-, or hollow-constrained variants
of the GTRS [21, 24, 94, 96,124, 148,155,165,191] (see [87, Section 3.3] and references therein for
extensions of the TRS and their applications). In this section, we extend our (closed) convex hull
results in the presence of a general nonintersecting constraint. This allows us to handle multiple
variants of the GTRS simultaneously.

Specifically, we will impose an additional requirement € 2. The new form of the GTRS will
be

qo(z) <t
<
iann{qO(a:) : gl(ele_ 0 } = inf LA qi(z) <0
z€ (z,t)ER e
Let S denote the set of feasible points (z, t), i.e.,
qo(x) <t
So = (z,t) e R"™: gi(x) <0

We will assume that £ C R" satisfies the following nonintersecting condition.
Assumption 10. The set 2 C R” satisfies {z € R" : ¢1(z) =0} C Q. O
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4.3 Nonintersecting constraints

The following two corollaries to Theorems 19 and 20 follow immediately by noting that & C
Sq C S holds under Assumption 10.

Corollary 19. Suppose Assumptions 8 and 10 hold. Then,
conv(Sp) = 8(7-) NS(74)-
Proof. Under Assumptions 8 and 10, we get the following chain of inclusions
conv(Sq) C conv(S) = conv(G) C conv(Sq),

where the first subset relation follows S C S (by definition of the set Sq), the equality relation
follows from Theorem 19, and the last subset relation follows from & C Sq (by Assumption 10).
We conclude that conv(Sq) = conv(S). By Theorem 19, we know that conv(S) = S(y-) N

S(v+)- u

Corollary 20. Suppose Assumptions 9 and 10 hold. Then,
conv(Sa) = S(7-) NS(v+)-
Proof. Applying Assumptions 9 and 10 and Theorem 20, we get the following chain of inclusions
conv(Sq) C conv(S) = conv(S) C conv(Sq).

We conclude that conv(Sg) = conv(S). By Theorem 20, we know thatconv(S) = S(v-) N
S(v4)- u

Remark 54. These two corollaries show that nonintersecting constraints in the GTRS may be
ignored. Consider for example the interval-constrained GTRS. Define

Q={zeR": ¢(x) > —1}.

Then, clearly Assumption 10 is satisfied. Under Assumption 9, we have

xienﬂgn{%(x) -1 < Q1(5L') < 0} = (x7t)i£]1£n+1{t : (x’t) c SQ}
B (x,t)igugnﬂ{t : (z,t) € conv(Sq) }
- (xyt)igﬂgnﬂ{t D (2, t) € S(y=)NS(y4)}
= inf max{q(y-.2), (4. 2)}.

Thus, the value of the interval-constrained GTRS is the same as the GTRS under Assumption 9.
Similarly, the €2 sets arising from equality- or hollow-constrained GTRS also satisfy Assumption 10.
Hence, under Assumption 9, the additional constraints in these variants of the GTRS can also be

dropped. O

131
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4.4 SOLVING THE CONVEX REFORMULATION IN LINEAR TIME

In this section we present algorithms, inspired by Theorem 19, for approximately solving the
GTRS. Note that Theorem 19 gives a tight convex reformulation of the GTRS: under Assumption
8,

Opt := min {go(z) : qu(2) < 0} = min max{g(y-,2), ¢(7+ )}

Then given a solution to the convex reformulation on the right, Lemma 44 gives a rounding scheme
to recover a solution to the original GTRS on the left.

In order to establish an explicit running time of an algorithm based on the above idea, we must
carefully handle a number of numerical issues. In practice, we cannot expect to compute Y+ exactly.
Instead, we will show how to compute estimates 7+ of 4 up to some accuracy 6. We will take
care to pick ¥ satisfying the relation [§_, 5] C [y, 4] so that the quadratic forms defined by
A(4-) and A(74) are convex. Based on the estimates 7., we will then formulate and solve the
convex optimization problem

Opt = min maX{g(ﬁ/—v .CL'), Q(ﬁ/-lﬂ :E)}
zeR™

Finally, given an (approximate) solution to the convex problem CTth, Lemma 44 tells us how to
construct a solution to the original nonconvex GTRS using specific eigenvectors. Again, we will
need to handle numerical issues that arise from not being able to compute these eigenvectors
exactly.

Throughout this section, we will work under the following assumption.

Assumption 11.
* There exists some v* > 0 such that A(y*) > 0,
* [l Aoll; [[ALll; ool [[oal], [er| < 1. 0

Remark 55. Note that the first part of Assumption 11 is simply Assumption 8. We make this
assumption so that we may use the convex reformulation guaranteed by Theorem 19. Assumption 8
is commonly used in GTRS algorithms; see e.g., Jiang and Li [95, Assumption 2.3] and the
discussion following it. The second part of Assumption 11 can be achieved for an arbitrary pair go
and g1 by simply scaling each quadratic by a positive scalar. Note that any optimal (respectively
feasible) solution remains optimal (respectively feasible) when g (respectively g1) is scaled by a
positive scalar. O

We will analyze the running time of our algorithm in terms of N, the number of nonzero entries
in Ag and Aj, €, the additive error, p, the failure probability, and n, the dimension. In addition,
the running time of our algorithm depends on certain regularity parameters of the pair go and g1

defined below.
Definition 17. Let qo, ¢1 satisty Assumption 11. Define

(" =max{l,7;}, and £ = min{l,m%()\min(A(’y))}-
Y=
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4.4 Solving the convex reformulation in linear time

We say that gp and ¢y are (§, ) regularif 0 < £ < " and ¢ > (*. Define £* = (*/£*. When
(&, () are clear from context we will write k = (/&. O

In our analysis, we will frequently use the inequalities &, ¢, § —1 > 1, which for example imply
k2 > kand 1 + k < 2k, and the inequalities = < 4 < (, which for example under
Assumption 11 imply || A(y4)|| < 1+ ¢ < 2¢.

Remark 56. Jiang and Li [95] present a different linear-time algorithm for solving the GTRS. In
their paper, they assume they are given a regularity parameter &1, as input. This parameter must
satisfy §jr < &, where

§J*L = min{l7 —Amin(A1), max Apin(pdo + (1 — ,u)Al)}.
ne(0,1]

.
We now discuss how our regularity parameters, £, (¥, and k* := gTi relate to &y . For simplicity,

we will assume

s = glgg{kmin(A(’v))}, ¢ =,

&L= min{—/\mm(Al), max_ Amin(uAdo + (1 — ,u)Al)}.
ne(0,1]

We claim ¢* < (—Amin(A1)) !, Indeed, let  be a unit eigenvector corresponding to Apin (A1).
Then, for any v > (—Amin(A1)) ™1, we have
2TA(y)x = 2T Aoz + yaT A1z < 1+ yAmin(A1) < 0.

The role played by the bound vy < ( in our analysis is similar to the role of the bound &, <
—Amin (A1) in the analysis presented by Jiang and Li [95].

We claim that

< ~ - <&
o = #Iél(%ﬁ] )\mln(/«LAO + (1 /L)Al) = gus?

and that the lower bound is sharp. Indeed, by performing the transformation p1 = ﬁ, we can

rewrite

1
s min (@t Ao + (1 — ) Ay) i

Amin(A(7)),

which we can clearly bound above by £. On the other hand, noting that any optimizer, 7, of the
above problem must lie in [0, 4] = [0, {*], we can lower bound

1 1 * 1
- . > . — us > B
1338( 1 +7)\m1n(A(7)) =1+ C* Iglgé( /\mln(A('y)) 1+ C* = 9R*
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

We now construct a simple example for which the lower bound, &, > 7o, is sharp. Let e > 0

and define "

Ay = Diag(1,1, 1), Alzszg(L—{1+¢m—R1)

It is simple to see that [ Ao|| = [[A:1]| = 1, &5 = 555 and (" = 1 + «. In particular, k* =
W. On the other hand, we can compute
o
L= in{pu — (1 —p)a, p(—1+2a) + (1 - = .
6 = max minfiu— (1 - wa p(-1+ 20) + (1= e} = -0

Then, letting o — 0, we have K* = 2+Z(1) and & = ﬁil)'

In view of the (closed) convex hull results presented in Theorems 19 and 20, we believe that
the right notion of regularity should depend on the parameterization Ag + A1 as opposed to
(Ao + (1 — p1) Ay. We compare the running time of the algorithm presented by Jiang and Li [95]

and the running time of our algorithms in Remark 60. O
We will assume that we have access to these regularity parameters within our algorithms.

Assumption 12. Assume we have algorithmic access to a pair (, ¢) such that gg and ¢y are (€, {)-
regular and a ¥ satisfying Amin (A(%)) > &. O
Remark 57. Assumption 12 is quite reasonable. Indeed, there are simple and efficient binary
search schemes to find constant factor approximations of {* and (* and a corresponding 4. We
detail one such algorithm in Appendix D.2. We remark that a similar assumption is made by Jiang
and Li [95]: they assume they are given access to &1, and present an algorithm for computing a
corresponding fi (see Remark 56). Another algorithm for finding 4 is presented by Guo et al. [80]
in the language of matrix pencil definiteness. 0

We now fix the accuracy” to which we will compute our estimates 4. Define

L €
T72K2

(4.8)

The framework for our approach is shown in Algorithm 1.

Algorithm 1 ApproxConvex(qo, q1,&, ¢, 7, €,p)

Given qg and ¢; satisfying Assumption 11, (£, ¢) and 4 satisfying Assumption 12, error parameter
0 < € < k2¢, and failure probability p > 0

1. Pick § asin (4.8).

2. Find 4_ and 7 such that

:Y— € [7—77— + 6]7 :y-l‘ € [’}/-‘r - 6a ’Y-‘r]a AIIliIl(Iq(’?i)) < 6/’%3 (49)

with failure probability of at most p.

3. Define Opt := mingcr» max{q(y—, ), ¢(5+,)}. Solve C/)f)jc up to accuracy €/2.
4. Output_, ¥4, and the approximate optimizer Z.

*Our definition of accuracy is presented in (4.9).
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Note that by Definition 17, we have k26 = (2 /£ > 1. Thus the requirement 0 < € < x2¢ in
Algorithm 1 is not a practical issue: given € > k2&, we can simply run our algorithm with €’ = 1
and return a solution with a better error guarantee.

This section is structured as follows. In Section 4.4.1, we prove that when 4 is picked according
to (4.8), Opt is within €/2 of Opt. In Section 4.4.2 we show how to compute §_ and 44 to
satisfy (4.9). Then in Section 4.4.3, we present an algorithm due to Nesterov [132] and show that
it can be used to efficiently solve for Opt up to accuracy €/2. At the end of Section 4.4.3, we
present Theorem 24, which collects the results of the previous subsections and formally analyzes
the runtime of Algorithm 1. In Section 4.4.4, we give a rounding scheme for finding a solution to
the original GTRS (4.1) given a solution to the convex reformulation. Finally, in Section 4.4.5, we
show that the running times of our algorithms can be significantly improved in situations where it
is easy to compute v+ and zero eigenvectors of A(y).

4.4.1 PERTURBATION ANALYSIS OF THE CONVEX REFORMULATION

In this subsection, we show that the perturbed convex reformulation, Cf)\th, approximates the true
convex reformulation, Opt, up to an additive error of €/2 when 0 is picked as in (4.8). We will
assume that step 2 of Algorithm 1 is successful, i.e., we have 74 satisfying (4.9).

Recall the definition of § in (4.8). As we require € < rx2€, we will have

e<§

T2 ST <&

Itis easy to see that Amin (A(7)) isa 1-Lipschitz function in 7. Then recalling that Amin (A(74+)) =
0 and Amin(A(%)) > &, we deduce the containment 4 € (y— + 0,v4 — 6). This, along with
(4.9), implies

e (@-3+) S+l A-€lv—r-+90, A+ €y — 0] (410)
Recall the perturbed reformulation

Opt = min maX{g(ﬁ/—a Jf), q(:y—i-a l‘)}
z€eR™

For notational convenience, let f () := max{q(v—, z), ¢(7+, )} andlet f(z) = max{q(3_, z),q(34, z)}.
Let * and * denote optimizers of Opt and Opt respectively.

Lemma 47. For any fixed x € R", we bhave f(z) < f(z). In particular, Opt < Opt.

Proof. Note that q(7, ) is a linear function in «y. Hence, for any fixed z € R", the containment
i 34] € [y ) implies f(2) < f(z). We deduce

Opt < f(z*) < f(z*) = Opt. n

To show (3\1;t > Opt —€/2, we will show that 2* and Z* lie in a ball of bounded radius and
that f approximates f uniformly on this ball.
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results
Lemma 48. Let x* and T* be optimizers of Opt and (/)\pi respectively. Then x*,T* € B(0,5k).
Proof. By picking the feasible solution 0 € R™ and Lemma 47, we have a trivial upper bound on
Opt and Opt:

Opt < Opt < max{q(y-,0),q(v+,0)} = max{c(y-), c(y+)}. (4.11)
By the first part of (4.10), we have

f(2) > f(2) 2 4(3,2) = €llz]* + 26(3) T + e(9),
where the last inequality follows from the assumption that Amin (A(5)) > €. Then,
2,8 € {z € R 1 gllz]® + 2b(9)Tx + (4) < max{e(y-), e(11)}}
C {z e R : glafl?+26(3)7a < ¢}

The last relation holds since max{c(y-) — ¢(¥), c(v+) — ¢(§)} = max{(y—- — F)e1, (74 —
A)er} < lei|y+ < ¢ Then, by completing the square

o5 eB(—b( )18 P2 + )

(o 2b(A) €7 + Vr)
B(0,4k + V/k)
B(0,5x),

where in the third line, we used Assumption 11 and the bound ||b(9)|| < ||bo| + 74 1/b1]] <
2. -

Lemma 49. If||#| < 5k, then f(2) > f(2) — €/2. In particular, Opt > Opt —¢/2,

Proof. Recall that 0 := =5 . Let & € R" such that || 2| < 5x. We compute

f(fc) = max{q(-,2),q(3+,2)}
> max{q(v—, %), q(v+, %)} — d|q1 ()]
> f(@) - o(ll2l1 + 2|12 + 1)

> f(&) - 6(6k)*

= f(i.) - 6/27
where the first inequality follows from (4.10), the second inequality follows from Assumption 11,
and the third inequality follows from the bound ||Z|| < 5k. [ |
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4.4 Solving the convex reformulation in linear time

4.4.2 APPROXIMATING 7y_ AND 7Y,

In this subsection, we show how to approximate y— and 74 and provide an explicit running
time analysis of this procedure. Our developments rely on the fact that Apin (A(7)) is a concave
function in v and that y_ and 4 are the unique zeros of this function.

Lemma 50. \yin(A(7)) is a concave function in .

Proof. By Courant-Fischer Theorem, Amin(A(7)) = min| = 2T A(v)x. Note that for any
fixed z € R", the expression T A(y)x is linear in «y. Then, the result follows upon recalling that
the minimum of concave (in our case linear) functions is concave. |

Let us also state a simple property of the function Amin (A(7)).
Lemma 51.
£ Supposery < 4, then |y — 7| < K[ Amin (A())]-
it Supposey = 4, then |y — Y1 < K[ Amin (A(7))]-

Proof. We only prove the first statement as the second statement follows similarly. Let v < 4.
From the concavity of Amin (A(7)), we have

)\mln(A(fAY)) 5
Amin (4 = -V | = —v_|=,
[Amin (A7) = [v — -] PR > |y ’HC

where in the second inequality we used the definition of £ in Definition 17 and the bound 4 —y_ <
7+ < (. Noting (/¢ = k and rearranging terms completes the proof. |

We will use the Lanczos method for approximating the most negative eigenvalue (and a corre-
sponding eigenvector) of a sparse matrix. This algorithm, along with Lemma 51, will allow us to
binary search over the range [0, ¢] for the zeros of the function Amin (A(7)).

Lemma 52 ([103]). There exists an algorithm, ApproxEig(A, p,n, Peig), which given a symmetric
matrix A € R™", p such that ||A|| < p, and parameters ), Peig > 0, will, with probability at
least 1 — Do, return a unit vector x € R™ such that x7Ax < Amin(A) + 0. This algorithm runs

in time
N
o 2P 100 ™)),
\/ﬁ pag

where N is the number of nonzero entries in A.

Consider ApproxGammaPlus (Algorithm 2) for computing ¥+ up to accuracy 6. A similar
algorithm can be used to compute 4_ up to accuracy ¢ and is omitted.

Lemma 53. Given qo, q1 satisfying Assumption 11, (&,¢) and ¥ satisfying Assumption 12, 6 > 0,
and p5. , ApproxGammaPlus (Algorithm 2) outputs 7 satisfying

e €l =6 1l Amn(A(34)) <9/k
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Algorithm 2 ApproxGammaPlus(qo, 1, &, ¢, %, 9, p5, )

Given qg and ¢; satisfying Assumption 11, (&, ¢) and 4 satisfying Assumption 12, error parameter
0 > 0, and failure probability p5.
1. Letsg = ’S’,to = C
2 LeeT = [log(%)] +2
3. Fork=0,...,T—1
a) Lety = (sg +tx)/2
b) Letx = ApproxEig(A(7), 2¢, %, p%)
c) fzTA(v)x < %, set Sp+1 = Sk and tpp1 =y
d) ElseifaTA(y)z > %, set Sp+1 = Yand tgy1 = ti
e) Else, stop and output 4

with probability 1 — p5. . This algorithm runs in time

O(N\\;(;?C log <p:+) log(g))

Proof. We condition on the event that ApproxEig succeeds every time it is called. By the union
bound, this happens with probability at least 1 — p5, .

Suppose the algorithm outputs at step 3.(e). Let 7 be the value of 7y on the round in which the
algorithm stops, and z the vector returned by ApproxEig in the corresponding iteration. Then,
the stopping rule guarantees T A(y)x € [§/4k,d/k|. As we have conditioned on ApproxEig
succeeding, we deduce

0

eTA(Y)2 = = < Amin(A(7)) < 2TA(y)2.

In particular, Ain (A(7)) € [0,0/k] and v < 4. Applying Lemma 51 gives
Y = 4] < A Amin(A())] < 6.

We conclude vy — § < v < 4.

We now show that this algorithm outputs within 7" rounds. Let
P={y: 724, Ain(A(7)) € [0/45,30/4k]}.

Recalling that Ayin(A(7y)) is 1-Lipschitz in 7y, we deduce that [P| > ¢/2k. Note also that
Amin(A(%)) > &€ > § > 36 /4k thus P is a connected interval.

Suppose for the sake of contradiction that the algorithm fails to output in each of the 7" rounds.
Note that P C [sq, tg]. We will show by induction that P C [sy, ti] forevery k € {1,...,T}.
Letk € {0,...,T — 1}. By assumption, the algorithm fails to output in round k. This can
happen in two ways: If 2TA(y)xr < §/4k, then x certifies that 7 ¢ P and P C [sg,7].
If zTA(y)x > §/k, then as we have conditioned on ApproxEig succeeding, Amin(A(7)) >
0/k —0/4k and P C [y, ty]. In either case, we have that P C [sg1, tk41].

138



4.4 Solving the convex reformulation in linear time

We conclude that P, an interval of length at least § /2, is contained in [s7, t7], an interval of
length

L‘T—STS 2% §5/4/€,

a contradiction. Thus, the algorithm outputs within 7" rounds.
The running time of this algorithm follows from Lemma 52. [

Remark 58. Similar algorithms for approximating 4 given % have been proposed in the litera-
ture [2, 94, 124, 148]. However to our knowledge, this is the first analysis to establish an explicit
convergence rate; see the discussion after Remark 2.11 in [94] on this issue. g

4.4.3 MINIMIZING THE MAXIMUM OF TWO QUADRATIC FUNCTIONS

In this subsection, we will assume that Algorithm 1 has successfully found 4+ satistying (4.9) and
show how to approximately solve

min max{q(y—,z),q(3+,x)}.
reR™

For the sake of readability, we will use the following notation in this subsection.

Jo(@) =q(3-,2) and fi(z) = q(34,2) (4.12)

In particular we have f(z) = max{fo(x), fi(z) }

Our analysis is based on Nesterov [132, Section 2.3.3], which proposes a high level algorithm
for minimizing general minimax problems with smooth components. We state this algorithm
(Algorithm 3) and its corresponding convergence rate in our context.

Algorithm 3 Constant Step Scheme II for Smooth Minimax Problems [132, Algorithm 2.3.12]

Given continuously differentiable convex, 2 L-smooth functions fy, fi
1. LCtZL’O = Yo = Oandao = 1/2
2. Fork=0,1,...
a) Compute fi(yx) and V fi(yy) fori = 0,1
b) Compute

Ti1 = Argmin max (ﬁ(yk) +(Vfilyr),x —yi) + L]z — kaz)

1 2 2
Vo + 4o — o

Qp+1 = B
o Ozk(l - Oék)
Bk - "5
ap + Q41

Y1 = Tht1 + Pr(Trr1 — k)
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Theorem 23 ([132, Theorem 2.3.5]). Let fo, f1 bt‘?L-xmooth} differentiable convex functions such
that f is bounded below. Let * be an optimizer of f. Then the iterates xy, produced by Algorithm 3

satisfy

SN—
[\
N
Khl
—
[a=)
S~—
|
\ﬁl

@) + 5 15°).
Lemma 54. Let x € R™. Then fori = 0, 1, we have
14:(0) — qi()| < ||=]* + 2|
Proof. Fori = 0,1, we have
14:(0) = gi(@)] = lai(x) — ei| < | Allll=]* + 2[balll|z]| < [|=]* + 2]} ]

where the second inequality follows from Assumption 11. [

Corollary 21. Let fo and fi be the functions defined in (4.12). Let T* be an optimizer of f. Then
the iterates xy, produced by Algorithm 3 satisfy

. 760
flak) — f(37) < 1)

5 K2C.
In particular, after k = O(m/(/e) iterations, the solution xy, satisfies f(xy) — f(7*) < €/2.

Proof. We have that fo and f; are both 2(2¢)-smooth by Assumption 11 and Definition 17.

Moreover, f(x) > (¥, ) is bounded below. Thus, we may apply Theorem 23.
We bound the initial primal gap as follows:

£(0) = F(3*) = max{ fo(0), f1(0) } — max{fo(#"), f1(3")}
< maX{fo(O) — fo(@), f1(0) - fl(f*)}
= q0(0) = qo(Z") + max{7—(q1(0) — q1(Z)), 4 (q1(0) — @1 (Z))}
< [90(0) = qo(&")| + ¢lq1(0) — 1 (&%)
< (14 ¢) (2587 + 10%)
< T0K°C,
where the third line follows from definition (see (4.12)), the fourth line follows from the ordering

J- < A4 < (, the fifth line follows from Lemmas 48 and 54, and the last line follows from the
trivial bounds k > 1and ¢ > 1.

Using Lemma 48 again, we also have %Hi’* 12 = % |2*]|* < 25K2¢. The result follows by
combining these bounds. u

3Recall that a convex quadratic function 2T Az 4 2bTx 4 cis 2L-smooth if and only if A < LI.
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4.4 Solving the convex reformulation in linear time

It remains to analyze the runtime of each iteration. Aside from computation of zj 1, it is clear
that the quantities in each iteration can be computed in O(N) time. Below, we derive a closed
form expression for 11 where each of the quantities can be computed in O(N) time.

Lemma 55. Foranyy € R", the quantity
: ; 7 _ o2
arg min ggﬁ(fz(y) + (Vi) =z —y) + Lllz - y[*)

can be computed in O(N) time.

Proof. Fixy € R™. We begin by recentering the quadratic functions in the objective.

)

Here, 2; and h; are defined to be the square-bracketed terms from the preceding line. It is clear
that the minimizing = must belong to the line segment [z, z1]. We will parameterize z = 2o +
a(z1 — zp) where v € [0, 1].

gggﬁ(ﬁ-(y) +(Viiy),x —y) + Lllz - y[*)
s 2 ~
:ggﬁ(L ey 1) [ﬁ,(y) kit

L 2 L 2
. . 2 .
= ggﬁ(LHx—zZH —}—hl)

min maX(LH:L’ —zi|* + hi>
z =01

= min max{azLHzo — 21|+ ho, (1 — a)?L|jz0 — z1* + hl}.
a€l0,1]

We solve for cv by setting the two terms inside the maximum equal. A simple calculation yields that

the two quadratics are equal when

1 ho — hy

2 2L|z — 21|

If avis between [0, 1], let & = @. Else let o = 0 (respectively a* = 1) when & < 0 (respectively
a > 1).
Then,

arg min max (fi(y) + (V)2 —y) + Lz —ylI*) = 20 + 0" (21 = 20).
x =V,

Each of the quantities on the right hand side (namely a*, 2;) can be computed in O(N) time. W

Combining Corollary 21 and Lemma 55 gives the following corollary.
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4 The Generalized Trust Region Subproblem: solution complexity and convex hull results

Corollary 22. Let fo, f1 be the  functions defined in (4.12). There exists an algorithm which outputs
i satisfying f () < Opt + €/2 running in time

o[¥5).

/e

Remark 59. Jiang and Li [94] present a saddle-point-based first-oder algorithm for approximating
Opt. By instantiating their algorithm with the initial iterate 29 = 0 and applying our Lemma 48
to bound ||zg — &*||?, we have that [94, Algorithm 1] produces an €/2-optimal solution to the

convex reformulation in time
Nk
O .
€

Therefore, the dependences on ¢, k, and ( of this algorithm are worse than that of the algorithm

described in Corollary 22. Note that [94] does not present an analy51s of the complex1ty of finding
the approximate generalized eigenvalue 7+ (needed to construct Opt) or how Opt relates to
Opt. O

By combining Lemmas 47, 49, and 53 and Corollary 22, we arrive at the following main theorem
on the overall computational complexity of our approach.

Theorem 24. Given qo, q1 satisfying Assumption 11, (§, ) and 7 satisfying Assumption 12, error
parameter 0 < € < K&, and failure probability p > 0, ApproxConvex (Algorithm 1) outputs 5_,
Yy and & € R" such that

Opt < max{q(3—,7),q(7+,7)} < Opt + ¢/2 < Opt +e

with probability 1 — p. This algorithm runs in time
- [ Ng3/2
o Neve 10g(n) log(Kv) |
NG P €

4.4.4 FINDING AN APPROXIMATE OPTIMIZER OF THE GTRS

Let & € R" be the approximate optimizer output by Algorithm 1. In this subsection, we show
how to use & to construct an T approximately minimizing the original GTRS (4.1). Our algorithm
will follow the proof of Theorem 19 (in particular Lemma 44).

We present our algorithm, ApproxGTRS, as Algorithm 4. ApproxGTRS will use ApproxCon-
vex as a subroutine. Given an additive error €,oynd, ApproxGTRS will call ApproxConvex with
additive error €convex. We will write these parameters as €, and €. for short.

Note that by Definition 17, we have k3¢ > 1. Thus, as before, the requirement 0 < €, < K3E
in Algorithm 4 is not a practical issue: given €, > K3E, we can simply run our algorithm with
e/ = k3 /¢ and return a solution with a better error guarantee.

142



4.4 Solving the convex reformulation in linear time

Algorithm 4 ApproxGTRS(qo, ¢1,&,¢, %, €7, Dr)

Given qg and ¢; satisfying Assumption 11, (£, {) and 4 satisfying Assumption 12, error parameter
0 < e < k3¢, and failure probability p, > 0
. Define e, :=€,/(28k)
. Let#_, 4+ and Z be the output of ApproxConvex(qo, q1,&,¢, ¥, €, Pr/2)
. Ifq1(Z) = OthenreturnZ = &
. Elseifq1 (%) >0
a) Letd := ApproxEig(A(74+),2(, /K, pr/2)
b) Lete = 2(ZTA(F4)d + b(74)Td)
c) If necessary, take d <~ —d and e <= —e to ensure thate < 0
d) Leta > 0 be the nonnegative solution to

W N =

Q(:Y—V% + Oéd) = Q(;y+a T+ Oéd)

e) Returnz =% + ad
5. Else carry out the computation in step 4 where the roles of ¥_ and 7 are interchanged

The next lemma bounds || Z||. Its proof follows the proof of Lemma 48 with minor adjustments
(in particular, the upper bound of (4.11) is replaced with f(Z) < max{c(y_),c(y+)} + €/2;
see Corollary 22) and is omitted.

Lemma 56. Ler & € R™ satisfy (%) < Opt + ¢/2. Then & € B(0, 6k).
We are now ready to prove a formal guarantee on Algorithm 4.

Theorem 25. Given qo, q1 satisfying Assumption 11, (€, Q) and 4 satisfying Assumption 12, error
parameter 0 < €, < k3¢, and failure probability py, ApproxGTRS (Algorithm 4) outputs T such
that

qo(i) S Opt +€p
=0

q1(z)

with probability 1 — p,.. This algorithm runs in time

o* () s 1)

Proof. We condition on the event that Algorithm 1 succeeds and the ApproxEig call in step 4.(a) or
5.(a) succeeds. By the union bound, this happens with probability atleast 1 — p;.. Asin Lemma 44,
we will split the analysis into three cases: (i) ¢1(Z) = 0, (ii) ¢1(Z) > 0, and (iii) ¢1 (Z) < 0.

K

i If q1(Z) = 0 then qo(Z) = f(Z) < (35‘5 + €./2 < Opt +e. < Opt +e,.

ii Now suppose g1(Z) > 0, i.e., we are in step 4 of Algorithm 4. We will need an upper bound
on the value of a found in step 4.(d).
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Lett := q(J+, Z). Recall that Apin (A(5+)) € [0,0/K] (see Lemma 53). Then, as we have
conditioned on the ApproxEig call in step 4.(a) succeeding, we have

(34, & + ad) — (t + ae) = (q(7+,7) — t) + *dTA(74)d

< a?(26/k). (413)

Next, we give alower bound on ¢(7—, +ad) — (t+ae) using the estimate dTA(5_)d > &,
and routine estimates on || A(7y)|| and ||b(7)]|:

g, + ad) — (t + ae)
= (¢(-, %) — ) + 20(FTA(F-)d + b(3-)Td — ¢/2) + *dTA(5-)d
> =7+ —A-lla (2)]
= 2a([|Z([[[ A=)+ 1o+ NZ[AG+ + 10T+
+ azf
> —49k2¢ — 20(14KC) + %€,

where the last inequality follows from the bounds |3+ — 7| < 74 < ¢ (Definition 17),
|Z]| < 6k (Lemma 56), and Lemma 54.

We may combine our upper and lower bounds to deduce that for any o € R,
4(3-, & + ad) — q(34, % + ad) > a®(€ = 26/k) — 2a(14K() — 495°C

> o? <::’)25> — 20(14kC) — 49K%¢C,

where the last relation follows from the definition of § in (4.8), the definition of €. and
the assumption on €,, we have €, < k2, and the bound k > 1. In particular, because
the quadratic function on the left is negative at o« = 0 and is lower bounded by a strongly
convex quadratic function, there must exist both positive and negative choices of « for
which the left hand side takes the value zero. This justifies step 4.(d) of the algorithm.

We now fix « to be the positive solution to ¢(7—, Z + ad) = ¢(74+, & + ad) so that

0> 042(?)25) — 2a(14KC) — 4962¢.

We get an upper bound on « by the quadratic formula

14KC + 1/ (14KC)2 + 223542
U+ PSP e
36
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4.4 Solving the convex reformulation in linear time

Then, by defining Z := & + ad, we have ¢(5—, Z) = ¢(74+, ). Note that the containment
¥ € (-, 7+) from (4.10) implies 7 # 4. Then we deduce g1 (z) = 0. Moreover, our
upper bound (4.13) gives

00 (%) = q(54,7)
<t+ae+a*(20/k).

Then recalling that ¢t := ¢(34,%) < ()Api; + €./2 < Opt +€. and that we picked e < 0,
we bound

qo(T) < Opt +e. + (3162)%(20 /)
< Opt +e. + 27ke
< Opt +28ke,
= Opt +e,.

iii The final case is symmetric to case (ii) and is omitted.

The running time of this algorithm follows from Lemma 52 and Theorem 24. [ |

Remark 60. Let us now compare the running time of our algorithms to the running time of the
algorithm presented by Jiang and Li [95]. This algorithm takes as input a pair qo, ¢1 satistying
an assumption similar to our Assumption 11 and a regularity parameter &jr.. See Remark 56 for
a discussion of how the parameter &, relates to our regularity parameters (&, ¢). Then given
€ > Oand p > 0, this algorithm returns an e-optimal feasible solution with probability at least
1 — p. The running time of this algorithm is

[ N3
O ¢ log(n> log ¢ ,
NG p €&
where ¢ is a computable regularity parameter.

Recall that in Remark 56, we constructed simple examples where {51 &~ 1/2x and { ~ 1. One
can check that the regularity parameter ¢ is a constant on these examples. In particular, the analysis

presented in Jiang and Li [95] implies a running time of

o () ()

on these instances. We contrast this with the running times

o)) o) ()

of our Algorithms 1 and 4 for finding an e-optimal value, and an e-optimal feasible solution

respectively on these instances. O
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Remark 61. Algorithms 1 and 4 were designed and analyzed with worst-case guarantees in mind.
Consequently, we have not been particularly careful about bounding the constants in our analysis
(for example the bounds #, ¢, £ =1 < 1 are routinely used). As such, there may be variants of
our algorithms that achieve the same worst-case guarantees with significantly faster numerical
performance. Similarly, the algorithm presented by Jiang and Li [95] is analyzed with worst-case
guarantees in mind. They also remark that the the numerical performance of their algorithm may
improve “with suitable modifications” (see Jiang and Li [95, Remark 4.2]).

We leave such implementation questions and a thorough comparison of the numerical perfor-
mance of the algorithms present in the literature for future work. O

4.4.5 FURTHER REMARKS

The algorithms given in the prior subsections can be sped up substantially if we know how to
compute v+ and the corresponding zero eigenvectors exactly. As an example, we consider the
special case where Ag and Ay are diagonal matrices.

Lemma 57. There exists an algorithm which given qo, q1 satisfying Assumption 11 with Ay and Ay
diagonal, returns v+, (§*, (%) and v* such that Ayin(A(Y*)) = & in time O(n).

Proof. Let ag, a1 € R™ be the diagonal entries of A and Aj respectively. Note that
Amin(A(7)) = @gq{ao,i + ya1:}.
Thus, v+ and (* can clearly be computed in O(n) time. Note that

&= maX{ _ Vie[n], ap; +yar; > € }

Hence, {* and v* are, respectively, the optimal value and solution to a two-variable linear program
with n constraints. Applying the algorithm by Megiddo [120] for two-variable linear programming
allows us to solve for &* and v* in O(n) time. [

Corollary 23. There exists an algorithm which given qo, q1 satisfying Assumption 11 with Ag and
A1 diagonal and ervor parameter € > 0, outputs & € R"™ such that

qo(z) < Opt +e
ql(J_J) =0.

This algorithm runs in time

nk*\/C*
o<ﬁ )
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4.4 Solving the convex reformulation in linear time

Proof. When Ag and A; are diagonal we have N < 2n. By Lemma 57, we can compute all of
the quantities needed for the exact convex reformulation in O(n) time. Algorithm 3 can then be
applied to the exact convex reformulation to find & € R" with

max{q(v-, %), q(v+,%)} < Opt +e.

We can further carry out the modification procedure of Lemma 44 exactly in O(n) time.
The running time of this algorithm follows from Corollary 22. |
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S IMPLICIT REGULARITY IN THE
GENERALIZED TRUST-REGION
SUBPROBLEM

This chapter is based on joint work [183] with Yunlei Lu and Fatma Kiling-Karzan.

In this chapter we develop efficient first-order algorithms for the generalized trust-region sub-
problem (GTRS), which has applications in signal processing, compressed sensing, and engineering.
Although the GTRS, as stated, is nonlinear and nonconvex, it is well-known that objective value
exactness holds for its SDP relaxation under a Slater condition. While polynomial-time SDP-based
algorithms exist for the GTRS, their relatively large computational complexity has motivated and
spurred the development of custom approaches for solving the GTRS. In particular, recent work
in this direction has developed first-order methods for the GTRS whose running times are linear
in the sparsity (the number of nonzero entries) of the input data. In contrast to these algorithms,
in this chapter we develop algorithms for computing e-approximate solutions to the GTRS whose
running times are linear in both the input sparsity and the precision log(1/€) whenever a regularity
parameter is positive. We complement our theoretical guarantees with numerical experiments
comparing our approach against algorithms from the literature. Our numerical experiments high-
light that our new algorithms significantly outperform prior state-of-the-art algorithms on sparse
large-scale instances.

5.1 INTRODUCTION

In this chapter we develop efficient first-order algorithms for the generalized trust-region subproblem

(GTRS). Recall the GTRS,
Opt := inf {qo(2) : q1(w) < 0},

where go () and g1 () are quadratic functionsinz € R"™. We will assume thatforeachi € {0,1},
the quadratic function ¢; () is given by ¢;(x) = T A;x + 2b]x + ¢; for A; € S™, b; € R™ and
¢ € R.

This problem generalizes the classical t7ust-region subproblem (TRS) where the general quadratic
constraint q; () < 0 is replaced with the unit ball constraint |||*> < 1. The TRS finds appli-
cations, for example, in robust optimization [21, 87] and combinatorial optimization [98, 140].
The TRS is additionally foundational in the area of nonlinear programming. Indeed, iterative
algorithms based on the TRS (known sometimes as trust-region methods) [50] are among the
most empirically successful techniques for general nonlinear programs.
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5 Implicit regularity in the generalized trust-region subproblem

Generalizing the TRS, the GTRS has applications in signal processing, compressed sensing,
and engineering (see [180] and references therein). The problem of minimizing a quartic of
the form g(z,p(x)), where ¢ : R""1 — Randp : R® — R are both quadratic, can be
cast in the equality-constrained variant of the GTRS. This approach has been used to address
source localization [86] as well as the double-well potential functions [65]. More broadly, iterative
ADMM-based algorithms for general QCQPs using the GTRS as a subprocedure have shown
exceptional numerical performance [90] and outperform previous state-of-the-art approaches on a
number of real world problems (e.g., multicast beamforming and phase retrieval). This application
of the GTRS as a subprocedure within an iterative solver parallels the use of the TRS within
trust-region methods.

Although the GTRS, as stated, is nonlinear and nonconvex, it is well-known that objective
value exactness holds for its SDP relaxation under a Slater condition [67, 146]. Thus, unlike
general QCQPs which are NP-hard, the GTRS can be solved in polynomial time via SDP-based
algorithms. Nevertheless, the relatively large computational complexity of SDP-based approaches
has motivated and spurred the development of alternative custom approaches for solving the
GTRS. We restrict our discussion below to recent trends in GTRS algorithms and discuss earlier
work [124,125, 165] where appropriate in the main body.

One line of proposed algorithms for the GTRS assumes simultaneous diagonalizability (SD)
of Ap and Aj;. It is well-known that SD holds under minor conditions—for example, if there
exists a positive definite matrix in span{ Ay, A } (see [177] for additional variants of this result).
Ben-Tal and Teboulle [24] exploit the SD condition to provide a reformulation of the interval-
constrained GTRS as a convex minimization problem with linear constraints. More recently, under
the SD condition, Ben-Tal and den Hertog [21] provide a second-order cone program (SOCP)
reformulation of the GTRS in a lifted space. This SOCP reformulation was generalized beyond
the GTRS in [111]. Under the SD condition, a number of papers [64, 154] exploit the resulting
problem structure of the primal or the dual formulation to derive solution procedures for the
GTRS and interval-constrained GTRS. Generalizing [21], Jiang et al. [96] provide an SOCP
reformulation for the GTRS in a lifted space whenever the problem has a finite optimal value even
when the SD condition fails. Unfortunately, the algorithms in this line often assume implicitly
that Ap and A; are already diagonal or that a simultaneously-diagonalizing basis can be computed.
In practice, however, computing such a basis requires a full eigen-decomposition and can be
prohibitively expensive for large-scale instances.

A second line of research on the GTRS explores the connection between the GTRS and general-
ized eigenvalues of the matrix pencil Ag + vA;. Pong and Wolkowicz [148] propose a generalized-
eigenvalue-based algorithm which exploits the structure of optimal GTRS solutions, albeit without
an explicit running time analysis. Adachi and Nakatsukasa [2] present another approach for solv-
ing the GTRS based on computing the minimum generalized eigenvalue (and corresponding
eigenvector) of an associated zndefinite (2n + 1) x (2n + 1) matrix pencil. Unfortunately, this
approach suffers from the significant cost of computing a minimum generalized eigenvalue of
an indefinite matrix pencil. Empirically, the complexity of this approach scales as O(n?) even
for sparse instances of the GTRS with O(n) nonzero entries in Ag and A; (see [2, Section 4]).
Jiang and Li [94] reformulate the GTRS as the problem of minimizing the maximum of two
convex quadratic functions in the original space. This reformulation is constructed from a pair
of generalized eigenvalues related to the matrix pencil Ay + yA;. They then suggest a saddle-
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S.1 Introduction

point-based first-order algorithm to solve this reformulation within an € additive error in O(1/¢)
time. These approaches are based on the assumption that the generalized eigenvalues are given or
can be computed exactly, and offer no theoretical guarantees when only approximate generalized
eigenvalue computations are available (as is the case in practice; see also the discussion in Section 4.1
in [95]). Despite this, the numerical experiments in [2, 94, 148] suggest that algorithms motivated
by these ideas perform well even using only approximate generalized eigenvalue computations.

In contrast to these papers, recent work [95, 180] offers provably linear-time (in terms of the
number of nonzero entries in the input data) algorithms for the GTRS using only approximate
eigenvalue procedures. Jiang and Li [95] extend ideas developed in [82] for solving the TRS
to derive an algorithm for solving the GTRS up to an € additive error with high probability.
This approach differs from the earlier literature in that it does not rely on the computation of
a simultaneously-diagonalizing basis or exact generalized eigenvalues. The complexity of this

- ([ N n 1\?
O| —=log| — | log| - ,
(el ()
where N is the number of nonzero entries in Ag and Ay, € is the additive error, and p is the failure
probability. Here, we have elided quantities related to the condition number of the GTRS. Wang
and Kilin¢g-Karzan [180] reexamine the convex quadratic reformulation idea of [94] and show

formally that by approximating the generalized eigenvalues sufficiently well, the perturbed convex
reformulation is within a small additive error of the true convex reformulation. Moreover, they

approach is

establish that the resulting convex reformulation can be solved via Nesterov’s accelerated gradient
descent method [132, Section 2.3.3] for smooth minimax problems to achieve an overall run time

o))

A parallel line of work [41, 66,77, 82, 87,125] has developed custom first-order methods for
the trust-region subproblem. Most relatedly, Carmon and Duchi [41] recently showed that a
Krylov-based first-order method can achieve a convergence rate for the TRS that is linear in both
N and the precision log(1/€) whenever a regularity parameter, p*, is positive. This contrasts with
previous algorithms for the TRS whose guarantees scaled as =~ 1/+/e.

guarantee of

In this chapter, we introduce and analyze a zew algorithm for computing an e-approximate
solution to the GTRS whose running time is linear in both IV and the precision log(1/€) whenever
" is positive. To be concrete, an e-approximate solution is defined below.

Definition 18. We say x € R" is an e-approximate solution to (5.1) if

qgo(x) < Opt+e and ¢ (z) <e. O

Despite similar convergence guarantees, our approach for solving the GTRS does not share
many algorithmic similarities with the approach of Carmon and Duchi [41] for the TRS.
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5 Implicit regularity in the generalized trust-region subproblem

S5.1.1 OVERVIEW AND OUTLINE OF THIS CHAPTER

A summary of our contributions, along with an outline of the remainder of the chapter, is as

follows:
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* In Section 5.2, we recall definitions and results related to the Lagrangian dual of the GTRS

and define our notion of regularity. Specifically, we recall definitions and results in the
literature [2, 65, 124, 125] regarding the dual function d(+y) and its derivative (7). We
then define a regularity parameter p*, which will play the role of strong convexity in our
algorithms. We close with a key lemma (Lemma 60) that underpins the algorithms developed
in this chapter. Intuitively, Lemma 60 says that when p* is positive, the unique optimizer of
the GTRS is stable—an Q(41*)-strongly convex reformulation of the GTRS, whose unique
optimizer coincides with the GTRS optimizer, can be built using 7zexact estimates of the
dual optimizer v*.

In Section 5.3, we describe and analyze an approach for computing an e-approximate
optimizer of a nonconvex-nonconvex GTRS instance based on Lemma 60. Our approach
consists of two algorithms, ConstructReform and SolveRegular. The first algorithm uses
inexact estimates of /() to binary search for an inexact estimate of 7. constructReform
will either return an exacr Q(p*)-strongly convex reformulation of the GTRS or an e-
approximate optimizer of the GTRS. In the former case, we may then apply solveregular
to compute an e-approximate optimizer. In the latter case, Constructreform will additionally
attempt to certify that ;1* = O(€) so that building an Q(p*)-strongly convex reformulation
may be undesirable. Together, these two algorithms achieve the following linear convergence
rate (i.e., scaling as log(1/¢)) for the GTRS:
~( N 1 n 1
o(ox(5) () e 2))

Here, N is the number of nonzero entries in Ag and A; combined, ¢ can be thought of as
~ max(p*, €) (see Section 5.3 for a formal definition), p is the failure probability, and the
O-notation hides log log-factors. This contrasts with previous algorithms [95, 180] that
are described as “linear-time”, referring to the fact that their running times scale linearly in
only N. We close this section by examining in further detail the case where constructreform
returns an é-approximate optimizer but fails to certify that u* = O(e). Specifically, we
show that this edge case can only happen if v/(7y) is “extremely flat,” which in turn can only
happen if a certain coberence parameter is small.

In Section 5.4, we present numerical experiments comparing the algorithms of Section 5.3
to other algorithms proposed in the recent literature [2, 21, 94]. Our numerical experiments
corroborate our theoretical understanding of the situation—the algorithms in this chap-
ter significantly outperform prior state-of-the-art algorithms on sparse large-scale GTRS
instances.



5.2 Implicit Regularity in the GTRS

5.1.2 ADDITIONAL NOTATION

Forx € Randy > Olet [£y] = [y, +y|and [z £ y] == [v — y,x + y]. Fory € R, define
A(y) = Ao + 7 A1 b(7) = bo + b1, and () = co +7er. Lee g (7, ) = qo(2) + v (2)-
For A € S", let || A|| be its spectral norm. For b € R, let ||b|| be its Euclidean norm.

5.2 ImrriCcIT REGULARITY IN THE GTRS

Recall that the GTRS is the problem of minimizing a quadratic objective function subject to a
single quadratic constraint, i.e.,

Opt := inf {go(x) : qu(w) <O}, (5.1)

where for each i € {0, 1}, we have ¢;(z) = 2TA;x + 2b]x + ¢; for some A; € S", b; € R",
and ¢; € R.

We will make the following blanket assumption, which is both natural and common in the
literature on the GTRS [2, 93, 95, 180]. This assumption can be thought of as primal and dual
strict feasibility assumptions or a Slater assumption.

Assumption 13. There exists T € R" such that ¢;(Z) < 0 and there exists ¥ > 0 such that
A7) = 0. O

Remark 62. Note, for example, that Assumption 13 holds in the classical TRS setting where
q1(x) = 2Tz — 1. Indeed, ¢1(0) < 0and A(y) = Ao + 71 > 0 for all y large enough. O

The results and definitions will assume only Assumption 13. In particular, they can be applied
to both the classical TRS setting as well as the nonconvex-nonconvex GTRS setting of Section 5.3.

LetI' := {y € Ry : A(y) = 0}. Thisis a closed interval as the positive semidefinite cone is
closed. If I' is bounded, let [y_, 74 denote its left and right endpoints. Else, let y_ denote its
left endpoint and define 4 = +00. Note that for any v € I, ¢(7, ) is a convex function of z.
Furthermore, by the existence of 4 > 0 such that A(¥) > 0, we have that 0 < v_ < 4.

Definition 19. Letd : Ry — {—00} U R denote the extended-real-valued function defined by

d(v) = inf q(v,2). O

We make the following observations on d (7).
Observation 4. Suppose Assumption 13 holds. Then,
s The function d(y) is concave as it is the infimum of affine functions of .

o The function d(7y) is continuous on int(I'). Furthermore, lim~ _ d(y) = d(v-) and, if
Y 18 finite, then lim,, .y, d(7y) = d(v4).

» Fory € Ry \ T, the function q(7y, x) is nonconvex in x so that d(y) = —oo.

* Asq1(Z) < 0, we haved(y) < q(v,%) = —o0asy — .
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5 Implicit regularity in the generalized trust-region subproblem

We comment on the connection between d(7y), the SDP relaxation of (5.1), and the Lagrangian
dual of (5.1). One consequence of the S-lemma [67] is that the GTRS has an exact SDP relaxation.
Furthermore, it is well-known that the SDP relaxation of a general quadratically constrained
quadratic program is equivalent to its Lagrangian dual [22]. We will write this fact in our setting
as the following identity (which holds under Assumption 13),

Opt = inf supgq(y,x). (5.2)

We provide a short self-contained proof of this fact in Section E.3. Next, by coercivity [62, Propo-
sition VI.2.3] we have that

Opt = sup inf ¢(v,z) =supd(y) = sup d(v). (5.3)
el z€R™ ~el ~vER 4

In words, (5.2) shows that the GTRS can be written as a convex minimization problem. Specifi-
cally, we can write Opt in one of the two following ways, corresponding respectively to the cases
Y4 < ooandyy = oc:

Opt = wiGann maX(Q(’Y—7£U)7Q(’Y+,x)) or Opt= yCiEann{q('y_,;)3) . Q1($) < 0}. (5.4)

Note in the latter case that A; > 0o that ¢1(2) < 0is a convex constraint. Similarly, (5.3) shows
that the GTRS can be written as a concave maximization problem.

Remark 63. The reformulation of the GTRS given in (5.4) immediately suggests an algorithm
for approximating Opt: Compute v_ (and if necessary v.) up to some accuracy and solve the
resulting convex reformulation. Convergence guarantees along with rigorous error analyses for
such an algorithm were previously explored by Wang and Kiling-Karzan [180]. One drawback
to this approach is that the convex functions ¢(y—, ) and ¢(7y4, z) are, by construction, zor
both strongly convex unless Ag, A1 > 0. Thus, in view of oracle lower bounds for first-order-
methods [132, Chapter 2.1.2], one should not expect to achieve linear convergence rates via
this approach. Similarly, the reformulation of the GTRS given in (5.3) immediately suggests an
algorithm for approximating Opt: apply a root-finding algorithm or binary search to find v*. This
approach dates back to Moré and Sorenson [125] for the TRS and Moré [124] for the GTRS (see
also [2, 65]). Unfortunately, theoretical convergence rates have not been established for algorithms
of this form. O

We will combine both ideas above to construct strongly convex reformulations for instances of
(5.1) possessing regularity. Our notion of regularity will correspond to properties of d(y) and its
optimizers. We will need the following notation.

Definition 20. For y € int(I"), define
z(y) = —A)7(), v(y) = a@®), and w(r) = Aan(A(y). O

The functionsd(7y), z(7y), and v(-y) have been studied previously in the literature on algorithms
for the TRS and the GTRS [2, 65, 124, 125]. In contrast to previous algorithms in this line of
work, which propose methods for computing v* to high accuracy, the algorithms we present in
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5.2 Implicit Regularity in the GTRS

this chapter will work with relatively inaccurate estimates of *. Specifically, our algorithms are
inspired by a key lemma, namely Lemma 60, which says that if (5.1) has positive regularity, then
the optimal solution to (5.1) is stable to inaccurate estimates of *. We begin by deriving some
properties of d(+y) and its derivatives on int(I").

Lemma 58. Suppose Assumption 13 holds. If v € int(I"), then

d(y) = q(v,2(7)) and Fd(y) =v(y).

Proof. For~y € int(I'), wehave A(y) > Oandthusg(~, ) isastrongly convex quadratic function
in 2. One may check that V;q(v, ) = 2(A(y)x + b(7)), and thus d () = q(7, z(7)).
Next, from d(7) = q(v, 2(7)) and 2(y) = —A(7)~'b(7), we deduce

Lemma 59. Suppose Assumption 13 holds. Let 4 € int(T), P = A(§)~Y2 and A =
(AgP%by — A1 P2by). Then, for~y € int(T),

Ev(7) = =2(Aiz(y) + b)TA(y) " (Arz(7) + b1)
= 2AT(A()PPAM)PPAG)) A,

Proof. Starting from v(7) = q1(x(7)), we compute

Hv(3) = (Va1 () lama(yy Vo2(7) )
= —2(Aiz(y) + b1, A (diz(y) + b))
= —2(Aiz(7) + b)) TA(y) " (Arz(y) + by).
Note also that
Az (y) + b1 = A(Y)A(y) b — A1 A(y) " 'b(y)
= (A0A() b+ 7 ALAR) 01) = (A1A() Mo + v ALAR) )
= AgA(y)tby — AL A7) L.

Next, suppose 4 € int(T) and let P := A(%)~'/2. Then, PAyP and PA; P commute.
Indeed, PAgP +4PA; P = PA(3)P = I. Then,

AgA(y)"1by = PTLPAGP(PA(v)P) ' Piy
“YPA(y)P)" PAyP?b,
= (A(7)P?*) " AgP?b1.
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5 Implicit regularity in the generalized trust-region subproblem

Similarly, A1 A(v)"tby = (A(v)P?)~1 A1 P?by. We deduce
d 2 2, \T 2 2 -1 2 2
Lv(y) = =2( APy — A1P?) (A())P2A(7)PPA(Y)) (AoP?by — A1 Ph)). B

Corollary 24. Suppose Assumption 13 holds. Then, v(7y) is either a strictly decreasing or constant

function of .
Proof. Fix#4 € int(I"). By Lemma 59, v(y) is strictly decreasing if A9 A(%) by — A1 A(R) b
is nonzero. Else, v(7y) is constant. [

Corollary 25. Suppose Assumption 13 holds. Then, arg max. cg, d(7) is cither a unigue point or
is all of T. In the latter case, we furthermore have that I is compact.

Proof. Note thatby Assumption 13, sup,cg, d(7)is achieved. Indeed, as noted in Observation 4,
d(y) — —ooasy — oo. Thus, argmax, cg, d(7) is nonempty.

We will suppose that arg max,cg, d(v) contains at least two points, Y1) < 4, and show
that d(+y) is constant on I'. Note, by concavity of d(+) and Lemma 58, we have that v(y) = 0 for
ally € (v, 4(?)). By Assumption 13 and Corollary 24, v/(y) = 0 on all of int(T") so that d ()
is constant on int(I"). By the limit behavior of d(7y) at 7— and 7y (see Observation 4), d(7) is
then constant on all of I". This then implies that I" is compact as again by Observation 4, we have
d(y) > —o0asy — 0. [

We now define our notion of regularity for the GTRS.

Definition 21. If sup, ¢, d(7) has a unique maximizer, then set 7* to be the unique maximizer.
Otherwise, arg max,cp, d(y) = I'andlety* € argmax cp p(7). Let p* := p(v*). We will
say that the GTRS (5.1) has regularity p*. O

Remark 64. One may think of this notion of regularity as requiring strict complementarity
between the desired rank-one solution of the SDP relaxation of the GTRS and its dual:
Writing out the SDP relaxation of the GTRS in full gives

<M1,Y> <0
YEHS17{:+1 <M°bj’Y>: Yy = (: I) =0

. (A()  b(y)
- Veﬁﬁﬂeﬂ@{t ' (bw (y) - t) =0 }

Strict complementarity asks that the primal SDP have a solution Y* of rank k and the dual

SDP have solution v*, ¢* satisfying rank(( I;%gl;l C(:(])*_)t* )) =n+ 1 — k. One may

show that this holds with & = 1 if and only if A(7*) > 0 for some maximizer of () (see
Lemma 73). O

Corollary 25 ensures that arg max, ¢, d(v) and p* in Definition 21 are well-defined. Note
that, technically, v* is 7oz well-defined if arg max,cg, d(v) = I and ji(7y) has more than one
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5.2 Implicit Regularity in the GTRS

maximizer. This is inconsequential and we may work with an arbitrary v € argmax. cp u().
For concreteness, one may take 7* to be the minimum maximizer of j¢(y) in this case.

Remark 65. We make a few observations on our definition of regularity and compare it to the
so-called “easy” and “hard” cases of the trust-region subproblem (TRS). Recall that the TRS is the
special case of the GTRS (5.1) where ¢1 () = zTx — 1, i.e., the constraint ¢1 () < 0 corresponds
to the unit ball constraint ||z]|* < 1. We will assume that Ag % 0. Let V' C R” denote the
eigenspace corresponding to Amin(Ao). The “easy” and “hard” cases of the TRS correspond to
the cases Iy (by) # 0and Iy (bg) = O respectively. Here, ITy is the projection onto V.

In the “easy” case, it is possible to show that lim\ 5 . (4,)d(7) = —0oc so thaty* >
—Amin(Ap) and 11* > 0. On the other hand, it is possible for ;¢* > 0 even in the “hard” case. For
example, takingn = 2 and

1 3
A(]: ( _1>7 b(]: <0>7 60207

we have I' = [1, +00) and d(y) = —9(1 +7) ! — v on int(T). A simple computation then
shows v* = 2 and i* = 1. We conclude that * = 0 implies the “hard case” but not necessarily
vice versa. O

We are now ready to present and prove our key lemma.

Lemma 60. Suppose Assumption 13 holds, p* > 0 and the interval [fy(l) 7 7(2)] C Ry contains v*.
Then, v(v*) = 0 and x(v*) is the unique optimizer of both (5.1) and

; 1) (2)
xlenﬂgnmaX(q('V ,2),q( ,ﬂf))- (5.5)

In particular, taking (YY), v C int(T), we have that x(~y*) is the unique optimizer to the
strongly convex problem (5.5).

Proof. We show that 2(v*) is the unique minimizer of (5.5). Note that for all z € R”, we have
max(q(y",2),a(1*,2)) = 477, 2) = inf ¢(v",2) = d(7),

where the first inequality follows from the facts that v* € (Y, 4] and q(v, z) is an affine
function of 7. On the other hand, as v* € int(I") is a maximizer of the concave function d(7),
which is differentiable at v* (see Observation 4, Definition 17, and Lemma 58), we have that
0= %d(v) ly=v = v(7*) = q1(x(7*)) where the second equation follows from Lemma 58.
Then, g1 (z(7*)) = 0 implies that g(7, (7)) = qo(x(y*)) for any . Hence, we deduce that

max(q(v,2(v)), a4, 2(")) = a(v", 2(v*)) = d(7")

so that (") is a minimizer of (5.5). Uniqueness of z(7*) then follows from the fact that ¢(v*, x)

isastrongly convex function of z and it lower bounds the objective function max (q(*y(l) .z),q(v?, a:))

of (5.5).
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5 Implicit regularity in the generalized trust-region subproblem

Figure 5.1: A comparison of the convex reformulations of the GTRS given in (5.4) and Lemma 60. The first
two figures depict an instance of the GTRS and its epigraph (in blue). The third figure shows
the epigraph of the convex reformulation of the GTRS given in (5.4) (in red). The fourth figure
shows the epigraph of a strongly convex reformulation of the GTRS given by Lemma 60 (in red).

The proof that z(*) is the unique optimizer of (5.1) follows verbatim using the lower bound:
qo(z) > q(v*, z) forall z € R™ such that ¢; () < 0. [

5.3 ALGORITHMS FOR THE GTRS

We now turn to the GTRS and present an approach for computing Opt that exploits regularity in
(5.1). Our approach will consist of two parts: constructing a convex reformulation of (5.1) and
solving the convex reformulation. In conjunction, these two pieces will allow us to achieve /znear
convergence rates for (5.1) whenever p1* > 0.

Similar to other recent papers on the GTRS [95, 180], we will assume that we are given as input
the problem data (Ao, A1, bo, b1, co, ¢1), regularity parameters (&, ¢, %), and error and failure
parameters (€, p). We will make the following assumption on our input data.

Assumption 14. Suppose that for both i € {0,1}, A; has at least one negative eigenvalue,
Il Aill, |6i]l, |ei] < 1. Let N denote the number of nonzero entries in Ag and A; combined
and assume N > n. Furthermore, suppose v+ < (, A(§) = £1,0 < £ <1 < (,and
e,p € (0,1). O

These assumptions are relatively minor. Indeed, N' > n without loss of generality. Furthermore,
if any of the norms || A;]|, ||bi||, |c;| are larger than 1, we may scale the entire function ¢; () until
Assumption 14 holds.

Remark 66. The regularity parameters § and ¢ will appear in our error and running time bounds.
We make no attempt to optimize constants in these bounds and will routinely apply the following
bounds (following from Assumption 14) for v € I': || A(y)|[, [[b(y)]],]e(7y)] <1+ ¢ <2¢ O

Our first algorithm, constructReform (Algorithm S), will attempt to construct a convex refor-
mulation of (5.1) with strong convexity on the order of min(u*, £). Note, however, that it may
be undesirable to compute this reformulation if min(p*, £) < €. In view of this, we define

¢ = max(min(,u*,f), 654/C4).

To understand this quantity, note that [e€*/(%, €] is an interval and that ¢ is the closest point to z1*
in this interval. Then, constructreform, will either output an exact strongly convex reformulation
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5.3 Algorithms for the GTRS

of (5.1) with strong convexity on the order ¢ or an e-approximate optimizer. In the former case, we
will then apply our second algorithm, solveregutlar (Algorithm 8), to compute an e-approximate
optimizer.

Remark 67. constructReform only needs to successfully output an exact strongly convex reformu-
lation once on any given instance. Specifically, imagine attempting to solve a single instance of the
GTRS twice—once at low accuracy then a second time at a higher accuracy. If constructReform
successfully outputs a strongly convex reformulation on the first run, then on the second run, we
may skip ConstructReform and simply begin with solveregular with the new value of € > 0. [J

Section E.2 contains useful algorithms and guarantees from the literature that we will use as
building blocks in constructReform and solveRegular. Specifically, Section E.2 recalls the running
time of the conjugate gradient algorithm for minimizing a quadratic function (Lemma 97), the
running time of the Lanczos method for finding a minimum eigenvalue (Lemma 96), and the
running time of Nesterov’s accelerated gradient descent method for minimax problems applied to
the maximum of two quadratic functions (Lemma 98). We additionally present ApproxGammaLeft,
a minor modification of [180, Algorithm 2] for finding an aggregation weight v < 4 such that
() falls in a specified range, and Approxnu, a restatement of the conjugate gradient guarantee
for the purpose of approximating /(). We state the guarantees of ApproxGammaLeft and ApproxNu
below and leave their proofs to Section E.2.

Lemma 61. Suppose Assumption 14 bolds, p € (0,§) and p € (0, 1). Then, with probability at
least 1 — p, ApproxGammaLeft(fu, p) (Algorithm 17) returns (7, v) such that v < 4 and v is a unit
vector satisfying (/2 < p(y) < vTA(y)v < pin time

o2 3)(5))

Lemma 62. Suppose Assumption 14 holds, p € (0,¢], 0 € (0,1), and A(y) = pl. Then
Approxnu(fs, 8,y) (Algorithm 18) returns (&, ) such that | — x(y)|| < pd/10¢, and v =

q1(Z) € [v(7y) £ 0] in time
o e 35))

5.3.1 CONSTRUCTING A STRONGLY CONVEX REFORMULATION

We present and analyze constructReform (Algorithm 5). For the sake of presentation, we break
ConstructReform into the following parts.
We will say that constructReform (similarly, cRLeft, CRMid, and CRRight) succeeds if it either
outputs:
o vregutar', YD, 7@ i such thatv* € [y(D, 7@ and pu(7?) > fi > min(p*, €)/8,
* "maybe regular", ¥ such that x is an e-approximate optimizer, or
* "not regular", T such that x is an e-approximate optimizer.
The remainder of this subsection proves the following guarantee.

159



5 Implicit regularity in the generalized trust-region subproblem

Algorithm 5 constructReform

Given (Ao, A1, bo, b1, co,c1), (§,¢,7) and €, p € (0, 1) satisfying Assumption 14
L Setyo =%, 10 =§

Set (xo, l/()) = ApproxNu(Mo, 6/(4C), ’}/0)

If vy + ¢/(4¢) < 0, run crLeft (Algorithm 6)

Elseif vy — €/(4¢) > 0, run cRRight

Else, run crMid (Algorithm 7)

DAL I

Proposition 17. Suppose Assumption 14 holds. With probability at least 1 — p, constructReform
(Algorithm 5) succeeds and runs in time

oS wn(2) () ()

Proposition 17 will follow as an immediate corollary to the corresponding guarantees for cRLeft,
CRRight, and crRMid. The steps and analysis of cRRight are analogous to that of crLeft and are
omitted.

Our algorithms will attempt to binary search for v* using the sign of v/(vy). Unfortunately, as
we can only approximate /() up to some accuracy, we will need to argue how to handle situations

where our approximation of () is close to zero.

Lemma 63. Suppose Assumption 14 bolds, i € (0,€], € € (0,1), and A(y) = pl. Let (Z,0) =
ApproxNu(fu, €/(4C), ). If U € [Le/(4Q)], then & is an e-approximate optimizer of (5.1).

Proof. By Lemma 62, we have that ¢ (z(7)) = v(7) € [7 £ €/(4¢)] C [£e/(2¢)] where the
last containment follows from 7 € [£¢/(4()] in the premise of the lemma. Also, note that

qo(z(7)) = q(v,z(7)) — yv(v) < Opt +¢/2.

Here, the inequality follows from the bounds v/(7y) € [+e/(2¢)],
we have v € T" and Assumption 14 ensures 74 < (), and g(y, z(7)
deduce that z(7y) is an € /2-approximate optimizer.

Next, by Lemma 62, we have || () — Z|| < eu/(40¢?). Notethat ||z (7)|| = || A(v) 'b(v)| <
I A(Y)H[1o(7)]| < 2¢/ 1 where the last inequality follows from A(v) = ul and ||b(y)]| < 2¢
(implied by Remark 66). Considering Assumption 14 and applying Lemma 94 with the bounds
(1)l < 2¢/pand () — 31| < e1/(40%), we arrive at

V< S ClasA(y) = 0
) = d(v) < Opt. Thus, we

q0(%) < qo(z(v)) + Se 4522C Opt+; +E < Opt +e
0(8) < aan) + Seqpg oy < 5+ 1 < C

Remark 68. In contrast to the TRS setting, where it is possible to show that /() “grows quickly”
around 7*, in the GTRS setting, v/(7y) may be “arbitrarily flat”. In particular, it may not be possible
to determine the sign of /() given only an inaccurate estimate. Correspondingly, Constructre-
form may fail to differentiate between "regular” and "not regular" instances and return "maybe
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5.3 Algorithms for the GTRS

regular". In view of Remark 67, we will think of "maybe regular" outputs as being less desirable
than "regular" outputs. We will explore this issue in further detail in Section 5.3.4 and show
that constructReform does not output "maybe regular" as long as the GTRS instance satisfies a
coberence condition. ]

ANALYSIS OF CRLeft

Algorithm 5 calls creeft if 1y + €/4¢ < 0. Note that in this case, from Lemma 62 we have
v(4) = v(v) € [vo £ €/(4¢)] which implies (%) < 0.

Algorithm 6 crLeft

1. LetT = [log(wiofl)—‘ .Fort=1,...,T,
a) Setp; = 27
b) Set ('7t7 ’Ut) = ApproxGammaLeft(,ut,p/T)
C) Set ($t7 Vt) = ApproxNu(Mt/Q, 6/(4C>, ’yt)
d) Ifvy —€e/(4€) > 0, return "regular", ¢, 4, fit/4
e) Elseifvy € [—€¢/(4C), €/(4C)]
i Sety =y — /4
ii. Set(a’,v") = approxnu(ps/4,€/(4¢), ")
iii. Ifv' —e€/(4¢) > 0, return "regutar",v’, 9, it /4
iv. Else, return "maybe regular", ;
2. Ifnecessary, negate vy so that (vp, A(yr)zr + b(yr)) < 0.Leta > Osuchthatgy (zr+avr) =
0, return "not regular", 7 + QUT.

Proposition 18. Suppose Assumption 14 holds. With probability at least 1 — p, crLeft (Algorithm 6)

succeeds and runs in time
o b2 ()

Proof. We condition on step 1.(b) of crLeft succeeding in every iteration. This happens with
probability at least 1 — p.

We begin with the running time. Note that by Lemmas 61 and 62 and p1; = 27 (from step
1.(a)), iteration ¢ of line 1 runs in time

o5 () x(5))

It suffices then to show that p; = €2(¢) in every iteration before crRLeft outputs. Noting that
pe > pr = Q(e€?/¢*), we may instead show that 1y = Q(min(u*, £)) in the iteration at which
CRLeft outputs.

It remains to show that the output of cRrLeft satisfies the success criteria and that p; =
Q(min(p*, €)) for the iteration ¢ at which crLeft outputs. We split the remainder of the proof
into three parts depending on which line crLeft returns on.
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5 Implicit regularity in the generalized trust-region subproblem

CASE 1: CRLeft TERMINATES ON EITHER LINE 1.(D) OR 1.(E).IIl IN ITERATION ¢ Let? := " in
the first case and 7 := 7' in the second. As crRLeft did not terminate at time ¢ — 1, we have that
v(vt—1) < 0.Indeed, if v(7¢—1) > 0, then 141 > —€/4( by Lemma 62. Then, v(¥) > 0 >
v(7¢—1). We deduce by the fact that d() is concave and Lemma 58 that v* € [, v—1] C [¥,4].
By construction in line 1.(b), we have that p(3) > /4.

It remains to show that gy > min(p*, €)/2. This holdsif ¢ = 1, as then p1 = £/2 by line
1.(a). On the other hand, if t > 1, then () is an increasing function on the interval (—o0, y;—1].
Indeed, this follows as v;—1 < 4, pu(ye—1) < &/2 < (%), and p(y) = Amin(Ao + vA1) isa
concave function of 7. Then, from v* € [¥, y4—1], we deduce that

pr=p(r") < ply-1) < pe-1 = 24,

where the last inequality follows from line 1.(b).

CASE 2: CRLeft TERMINATES ON LINE 1.(E).IV IN ITERATION ¢ In this case, we have that
(2, v¢) = mpproxNu(pey/2,€/(4C), ) satisfies vy € [f€/(4¢)]. By Lemma 63, we have that
x¢ is an e-approximate optimizer. It remains to note that the second paragraph of Case 1 holds in
this case verbatim so that y > min(u*, §)/2.

CASE 3: CRLeft TERMINATES ON LINE 2 Note that ¢;(z7) = v < 0 holds by line 1.(c),
Lemma 62, and the fact that crRLeft did not terminate in a prior line. Furthermore,

RGN ST S
-7 ¢ 2¢

where the first inequality follows from ¢ > 4 (by Assumption 14), v A(yr)vr < pp (by line

1.(b) and Lemma 61) and vL. A(%)vr = vl Agur + 4 > & (by Assumption 14 and 4 > 0), and

the second inequality follows from pg = 277¢ by line 1(a). This then implies that o in line 2 is

well-defined. Thus, by construction in line 2, ¢ (7 4+ cwvr) = 0. Our goal is to show that

v Ao = U;(

qo(zr + avr) = q(yr, v + avr) < g(yr, or) + o’ < Opt +e.
The following sequence of inequalities allows us to bound || (y7)]|:

Ellz(vr)|I? = 4Nz (vr) |l — 2¢ < (%, z(yr)) < a(yr, z(yr)) < Opt.

Here, the first inequality follows from A(%) = &1, [|[b(9)|| < 2¢ and |c(¥)] < 2¢, the second
inequality followsas 0 > v(yr) = q1(z(7r)) (byline1.(c), Lemma 62 and the fact that cRLeft ter-
minates on line 2) and 4 > -y, the third inequality follows as ¢ (7, (y7)) = d(yr) < Opt (by
Lemma 58). Then, taking 2 = 0 in the expression Opt = inf, sup.cp q(, ) gives Opt < 2¢.
Applying Lemma 95 to &[|z(yr)||* — 4¢[[x(yr)|| — 4¢ < Ogives | (vr)|| < (2v2+2)¢/¢ <

5¢ /€&, and by Assumption 14 and line 1.(c) we have || A1z + b1|| < ||A1[|(lz(y2)|| + |z — (7)) +
[[ba]l < (5¢/€ +1) +1 < 7¢/¢€.
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5.3 Algorithms for the GTRS

Next, we may bound

a(vr,27) < q(vr, 2(v7)) + 1A(vD) |2 (vr) — 27|

2
< Opt +(2g)<§g€§) < Opt +¢/2.

Similarly, v(77) > 1(3) = qu(@(3)) > — 3?2 (@) 1 > —(3¢/€)? where
the first inequality follows from Corollary 24 and the last from the bound ||z (%)|| < 2{/&. We
deduce that 0 > q1(z7) > v(yr) — €/(4¢) > —10¢?/£2. By line 2 and applying Lemma 95,
we have that o < 40¢%/€2.

We conclude that oz2,uT < 042% < § so that qo(xr + avr) = q(yr,zr + avy) <
q(yr, 1) + o ur < Opt +¢, where the equation follows from the definition of « in line 2.

It remains to note that as v(y7) < 0, Corollary 24 implies v* < 7 and p* = p(v*)

<
p(vr) < pr |

ANALYSIS OF CRMid

Algorithm S callscrmidif vy € [—€/(4C€), €/(4()]. Note thatin this case, we may deduce |v(§)| =
v(70)| < €/(2¢).

Algorithm 7 crmid

Lety" =0 — §/2andy" =0 + §/2

Set (z',v") = Approxnu(’, €/(4())

Set (2", ") = approxnu(y”, €/(4())

Ifv —e/(4¢) > 0 > V" + €/(4C), return "regutar", 7/, 7", £ /2
Elseif v/ — 6/(4<) < 0, return "maybe regular", Zg

EISC, return "maybe regular", X

A i N

Proposition 19. Suppose Assumption 14 holds. Then, crmid (Algorithm 7) succeeds and runs in

time
o(Nf 1og(g£)).

Proof. Suppose cRMid returns on line 4. Then, by Lemma 62 and lines 2 and 3 we have v(v') >
0 > v(y"). We deduce by the fact that d(7y) is concave and Lemma 58, that v* € [7/,~"].
Furthermore, (5 ££/2) > (%) — /2 > £/2 as pis 1-Lipschitz and pu(§) > €.

If, crRMid returns on lines 5 or 6, then (zg,19) = Approxnu(iig, €/(4C), o) satisfies vy €
[+€/(4¢)]. By Lemma 63, we have that x is an e-approximate optimizer.

The running time of crMid follows from Lemma 97. [ |
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5 Implicit regularity in the generalized trust-region subproblem

Algorithm 8 solveregular

Given vV, )| fi such that v* € [y(D), 4(?] and min,e(y) {/L('y(i))} >n>0
1. Apply Nesterov’s accelerated minimax scheme for strongly convex smooth quadratic functions to
compute a ﬂ(eﬂ/lOC)Q-optimal solution Z to

m]iRn max (q(v(l), x), q('y(2), w))
rzEeR™

2. Return

5.3.2 SOLVING THE CONVEX REFORMULATION

Proposition 20. Suppose Assumption 14 holds and fi € (0,&]. Then, solveregular (Algorithm 8)
computes an e-approximate solution to (5.1) in time

o "% s(5))

Proof. For notational simplicity, let gmax () = max (q('y(l), x), q(7(2),x)). Letz* := z(v%).
Recall that go(z*) = Opt, ¢1(z*) = 0, and gmax(2z*) = Opt. Then, by definition of 1* in
Definition 21 and strong convexity of ¢(*, =), we have

fllz* — 7| < ptlla* - 7|* < q(v,7) — q(v%,2*) = q(v*, &) — Opt

< max(T) — Opt < <1€§C>2'

Rearranging, we may bound ||z* — Z|| < 104 . Furthermore, [|z*|| = ||z(v*)|| = [|—A( b(v")||
so that ||2*|| < 2¢/f1 holds by Assumption 14.

Then, as €/1/(10¢) < 1and 2¢/fi > 1 (by definition of /i and Assumption 14), we can apply
Lemma 94 to get

f2€

T) < He— = t
q0(Z) < qo(z™) + 610( > = Opt +e
_ o 2¢
< + He——= .
@ (z) < qu(x™) + 10¢ fa =¢
The running time follows from Lemma 98. [ |

5.3.3 PUTTING THE PIECES TOGETHER

The following theorem states the guarantee for applying ConstructReform (Algorithm 5) and
SolveRegular (Algorithm 8). This guarantee follows as a corollary to Propositions 18 to 20
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5.3 Algorithms for the GTRS

Theorem 26. Suppose Assumption 14 holds. Then with probability 1 — p, the procedure outlined
above returns an e-approximate solution to (5.1) in time

0 5 os(2) s(2) (5)

5.3.4 REVISITING "maybe regular" OUTPUTS

We revisit ConstructReform (Algorithm 5) and show that constructreform does not output "maybe
regular" on a successful run as long as a coherence condition is satisfied.
The following example shows that in the GTRS setting, v/(y) may grow arbitrarily slowly near
*

7.
Example 17. Letn = 2and € € (0,1/4) and set

1 —1
= ( —&/2>’ he ( 1)’ bo=c-er, bi=0 =0, c =16

Note thatI' = [1/2,1] and A(3/4) = I/4 so that Assumption 14 holds with { = 1/4 and
¢ = 1. Then, we have

€ 1
x(y)=— €1, 1/('7):62<16—(1_7)2>,V'y€(1/2,1).

I—7

Taking € — 0, we have that %I/(")/) may be arbitrarily close to zero around v* = 3/4. We deduce
that Assumption 14 alone is not enough to upper bound %V(’y) over int(T"). O

Lemma 64. Suppose Assumption 14 holds and that
0= (Ao A(5) o1 — A1A(E) b > 0,

Then, %1/(7) < =022 /(4C3) for any v € int(D). In particular, |v(7y)| < €/(2C) for an
interval of length at most 4¢? | (6%€?).

Proof. For convenience, let P := A(5)""/?and A = AgP?b; — A1 P%bgso that § = ||A|. By

Lemma 59,

d

EV(V) = —2AT(A(7)P2PA(7)P?A()) A

Assumption 14 implies A(%) = &I, and so P? < (1/£)I. Moreover, by Remark 66 we have
A(y) < 2¢I Yy € int(T") and hence A(y)P2A(v)P?A(v) = 8¢3¢~21. We conclude,

d 5252
= <>
d’}/y(,)/) — 4C3
The final assertion follows as E . 7(;12%32 = 7?522 u
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5 Implicit regularity in the generalized trust-region subproblem

Remark 69. As in the proof of Proposition 18, we will assume that Line 1.(b) of crLeft (Algo-
rithm 6) succeeds in every iteration. Suppose that CRLeft outputs "maybe regular" on iteration
t. Recall that in this case we have v(vy;), v(7') € [£€/2(] and iy > p* /2. By construction,
7" = — pt/4. By Lemma 64 we deduce that the coherence parameter 0 is bounded by

5< 2VX [€
N

Momentarily treating &, ¢ as constant, we deduce that cRLeft can only output "maybe regular"
if the coherence parameter is sufficiently small, i.e., 6 = O(y/€/p*) (assuming that line 1.(b)

succeeds in every iteration). O

S.4 NUMERICAL EXPERIMENTS

In this section, we study the numerical performance of our approach (Section 5.3) for solving
the GTRS. We compare our proposed approach with other algorithms [2, 21, 94, 180] suggested
in the literature. In the following, we will refer to our algorithm as wik21 and the algorithms
in [2, 21, 94, 180] as AN19, BTH14, JL19, and wk2o respectively. Recall that wk2e [180] builds a
convex reformulation of the GTRS (see Remark 63) and applies Nesterov’s accelerated gradient
descent method. 3L19 [94] builds the same convex reformulation and applies a saddle-point-based
first-order algorithm to solve it. AN19 [2] computes the minimum generalized eigenvalue (and
an associated eigenvector) of an indefinite (2n + 1) x (2n + 1) matrix pencil and recovers 7*
and x* from these quantities. BTH14 [21] notes that the SDP relaxation of (5.1) (which is known
to be exact) can be reformulated as a second-order cone program (SOCP) after computing an
appropriate diagonalizing basis. The corresponding SOCP reformulation can then be solved via
interior-point method solvers such as MOSEK.

In our experiments, we have implemented slight modifications to wk2e, WLk21, 3L19, and AN19.
First, we have replaced the eigenvalue calls within wk2e and wiLk21 with generalized eigenvalue calls.
Indeed, in both algorithms a series of eigenvalue calls are used to simulate a single generalized
eigenvalue call. While the theoretical analysis using eigenvalue calls is simpler, the practical running
time using generalized eigenvalue calls is faster due to the availability of efficient generalized eigen-
value solvers. Second, in view of practical applications where e-feasibility may be unacceptable or
undesirable, we also implement a “rounding” step at the ends of wLk21, wk2e, and 3L19 to ensure
feasibility, i.e., g1 (Z) < 0. As suggested in [2], AN19 implements a Newton refinement process
to ensure g1 (Z) < 0. The feasibility in BTH14 depends on MOSEK and is often slightly violated.
Further implementation details are described in Section 5.4.1.

All experiments were performed in MATLAB R2021a and MOSEK 9.3.6 on a machine with
an AMD Opteron 4184 processor and 70GB of RAM. Our MATLAB code is available at:

https://github.com/alexlihengwang/linear-time-gtrs

5.4.1 IMPLEMENTATION

We discuss some implementation details.
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5.4 Numerical Experiments

EIGENVALUE SOLVERS  We replace ApproxGammaLeft (Algorithm 17) of crLeft (Algorithm 6)
using a generalized eigenvalue solver as follows. Recall that ApproxGammaLeft finds 7; < 4 and unit
vector vy € R™ such that y1; /2 < p(ye) < vf A(7)ve < pr. We can achieve the same guarantee
using a generalized eigenvalue solver: Approximate the minimum generalized eigenvalue A\; of
—Ajve = M(A(R) — %I)vt to some tolerance € and set y; = 4 + )\% Then, aslongase > 0
is small enough, we can show that 7y, v; satisfy the same guarantees as ApproxGammaLeft. Detailed
proofs can be found in Section E.4. In our implementations, we use the generalized eigenvalue
solver eigifp [75] for wLk21, wk2e and JL19. In contrast, as AN19 requires the minimum eigenvalue
to an indefinite matrix pencil, we use the generalized eigenvalue solver eigs for An19.

RoUNDING  Attheend of wLk21,wk2e and JL19, we implement the following rounding procedure.
Given the output Z of one of these algorithms, we will construct & := Z + d where 6 = aw. The
direction v is picked so that 2T Az is either positive or negative depending on the sign of ¢ (Z).
Then, we pick av by solving the quadratic equation ¢; (Z + av) = 0. For wk2e and 3L19, we may
set v to be an approximate eigenvector of y_ or 74 as we have already computed these quantities
while constructing the convex reformulation. For wLk21, we compute an (inaccurate) eigenvalue

corresponding to either Amin (A1) or Amax(A1).

5.4.2 RANDOM INSTANCES

We evaluate the numerical performance of the different algorithms on random instances with
dimension n, number of nonzero entries N ~ N, regularity p* ~ p*,and { = 0.1. Our
random generation process is similar to that of [2] and allows us to generate instances with known
optimizers.

First, sample a sparse symmetric matrix A using the MATLAB command sprandsym(n,N/ (nxn)).
This matrix is then scaled so that 0 < £1 < A= (1 + &)1. We will define Ag, A1, and 4 in such
away that A(5) = A. Generate Ay using the same function call and scale it so that || Ag|| = 1.
We then set 4 == Amax(A — Ag) and Ay == (A — Ag) /4. Note that || A;|| = 1. We sample by
and by uniformly from the unit sphere.

We have the option to choose v* to lie to either the left or right of 4. In the former case, we set
v =441/ Amin(—A1, A(§) — ii1). In the latter, we set v* := 4 — 1/ Apmin (A1, A(§) — ).
Here, the notation Apin (X, Y") denotes the minimum generalized eigenvalue of X with respect
to Y. To ensure that v* is indeed the dual optimizer, we set cp = 0 and ¢; such that v(y*) = 0.
The exact optimizer is then given by z* :== — A(v*)~1b(7*). Finally, we normalize by, b1, ¢1 and
x* to ensure Assumption 14.

To summarize, the output of this method is a random GTRS instance satisfying Assumption 14
with N ~ N, u* ~ ji* and known Opt and z* (up to machine precision).

5.4.3 EXPERIMENTAL SETUP

The numerical experiments were performed with n € {103, 104,109 } N e {10m,100n} and
e {10_2, 1074, 10_6}. We generated 100 random instances for n = 103 and 10* and five

random instances for n. = 10° due to large running times. BTH14 was only reported for n = 103
as for n > 10% it was unable to return a solution within five times the average running time of
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5 Implicit regularity in the generalized trust-region subproblem

wLK21 or wk2e. The dominant cost in BTH14 for (5.1) is in computing the diagonalizing basis, which
requires computing a full set of generalized eigenvalues and is unlikely to scale favorably with n
and NN. AN19 was not reported for n = 10° because of numerical issues and large running times
associated with eigs applied to the 7ndefinite generalized eigenvalue problem.

For each algorithm and each random instance, we record the error,

Error = qo(i) — Opt,

of the output. For the three “convex-reformulation and gradient-descent” algorithms wLk21, wk2o,
and JL19, we additionally record the error within the corresponding convex reformulations, i.e.,
ErrorCR = max (q(v(l), z), q(7(2), i)) — Opt, forwikzi, and
ErrorcR = max(q(v—, Z),q(7+, %)) — Opt, forwk2e and 3L19.
See (5.2) and Proposition 17 for definitions of y_, 74, 71 and 4(?). Here, Z is an iterate within

the gradient descent method for the corresponding convex reformulation and & is a “rounded”
solution satisfying ¢1 (%) < 0.

5.4.4 REsSuULTS

Our numerical results are illustrated in Figures 5.2 to 5.4 which display Errorcr for wLk21, wk2e,
and JL19 and Error for AN19 and BTH14 over time (in seconds) for each n € {103, 104, 105},
respectively. Tables containing detailed statistics are given in Section E.5.

Remark 70. We decide to plot Errorcr for wLk21, wk2e, and JL19 as that is the error that the
respective algorithms are designed to drive to zero. We observe empirically (see Section E.5)
that Errorcr and Error track quite closely for wiLk21. (|

‘We make a number of observations:

* The lines plotted in Figures 5.2 to 5.4 begin after time zero. For wLk21, wk2e, and JL19 this
gap corresponds to the time required to construct the corresponding convex reformulations
of (5.1). For ANz, this corresponds to the time required to compute (%) exactly, which is
required to set up the appropriate (21 + 1) X (2n + 1) generalized eigenvalue problem [2].
For BTH14, this gap corresponds to the time required to compute a diagonalizing basis of

(5.1).

* WLK21 constructs its reformulation faster than wk2e and 3L19 when i* = 1072, The ssituation
is reversed for i* € {107%,107%}. Nevertheless, wLk21 outperforms both wk20 and 3L19
due to its significantly improved performance in solving the resulting convex reformulation.
See Section E.5.

* As expected from Theorem 26, wLk21 exhibits a /znear convergence rate in terms of €. This
is most apparent in the plots corresponding to fi* = 1072 and ji* = 10~%.
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Figure S.4: Comparison of algorithms for n = 10°.

* Although the convergence guarantees established for wk2e [180] and 3119 [94] do not depend
on (¥, our results show empirically that these algorithms in fact perform better when p* is
large. The degree to which the running times of these algorithms vary with ;* is less than
that of wLk21.

* The convergence rates of AN19 and BTH14 do not vary significantly with either NV or u™*, but
they exhibit heavy dependence on n. Specifically, the convergence rate of AN19 empirically
varies in 1 as &~ n?. This is consistent with the results reported in [2]. Similarly, due to
the complete eigenbasis computation embedded in BTH14, we expect BTH14 to vary in 1 as
~ n3. Thus, as can be seen in Figures 5.2 to 5.4, although An19 outperforms wik21 and wk2o0
for (n, N, ii*) = (103,10, 1079), an19 and BTH14 become impractical for n = 10% and
n =10°.

* The saddle-point based first-order algorithm employed in 3L19 is unable to decrease the
error below ~ 10™* for i* = 10~*and ji* = 1076,
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6 ACCELERATED FIRST-ORDER METHODS
FOR A CLASS OF SEMIDEFINITE PROGRAMS

This chapter is based on joint work [182] with Fatma Kiling-Karzan.

This chapter introduces a new storage-optimal first-order method (FOM), CertSDDP, for solving
a special class of semidefinite programs (SDPs) to high accuracy. The class of SDPs that we
consider, the exact QMP-like SDPs, is characterized by low-rank solutions, 2 priori knowledge
of the restriction of the SDP solution to a small subspace, and standard regularity assumptions
such as strict complementarity. This class is inspired by structural assumptions that hold for
exact SDP relaxations of quadratically constrained quadratic programs (QCQPs) and quadratic
matrix programs (QMPs). Crucially, we show how to use a certificate of strict complementarity to
construct a low-dimensional strongly convex minimax problem whose optimizer coincides with a
factorization of the SDP optimizer. From an algorithmic standpoint, we show how to construct
the necessary certificate and how to solve the minimax problem efficiently. We accompany our
theoretical results with preliminary numerical experiments suggesting that CertSDP significantly
outperforms current state-of-the-art methods on large sparse exact QMP-like SDDPs.

6.1 INTRODUCTION

Semidefinite programs (SDPs) are among the most powerful tools that optimizers have for tackling
both convex and nonconvex problems. In the former direction, SDPs are routinely used to model
convex optimization problems that arise in a variety of applications such as robust optimization,
engineering, and robotics [22, 174]. In the latter direction, many results over the last thirty years
have shown that SDPs perform provably well as convex relaxations of certain nonconvex optimiza-
tion problems; see [22, 40, 74, 149] and references therein. As examples, exciting results in phase
retrieval [40] and clustering [1, 122, 153] show that these nonconvex problems have exact SDP
relaxations with high probability under certain random models. More abstractly, a line of recent
work [7,17, 20, 35,37, 38, 92,100, 113,167, 179, 181] has investigated general conditions under
which exactness holds between nonconvex quadratically constrained quadratic programs (QCQPs)
or quadratic matrix programs (QMPs) and their standard SDP relaxations.

Despite the expressiveness and strong theoretical guarantees of SDPs, they have seen limited
application in practice and have a reputation of being “prohibitively expensive,” especially for large-
scale applications. Indeed, standard methods for solving SDPs, such as the interior point methods
(IPMs) [4, 133], scale poorly with problem dimension due to both their expensive iterations and
also significant memory needs. See [198, Section 8.1] for a more thorough discussion.
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6 Accelerated first-order methods for a class of semidefinite programs

In this chapter, we show how to derive highly efficient (in iteration complexity, per-iteration-cost,
and memory usage) first-order methods (FOMs) for solving general SDPs that admit a desirable
exactness property. Our developments are inspired by recent results on linearly convergent FOMs for
the trust-region subproblem (TRS) and the generalized trust-region subproblem (GTRS) [41, 183]
that operate in the original problem space. We briefly discuss these problems now to motivate our
assumptions and our problem class. We will discuss this literature in further detail in Section 6.1.3.

The TRS [125] seeks to minimize a general quadratic objective over the unitball. The GTRS [124]
then replaces the unit ball constraint with a general quadratic equality or inequality constraint:

Juf {qob,- () : q(z) = 0}
(presented as an equality constraint). Here, both g,p,; and g1 may be nonconvex, but it is standard
to assume that there exists 4 € R such that qopj + g1 is a strongly convex quadratic function.
Under this assumption, the S-lemma [67] guarantees that the GTRS has an exact SDP relaxation
in the following sense: Let My, M1 be symmetric matrices such that gopi(x) = ()" Mobi(7)
and g1 (z) = ()"Mi (7). Then, equality holds between the GTRS, its SDP relaxation, and the
dual of the SDP relaxation:

xé%iﬂn_l{%bj(x) L (@) = 0}
(My,Y) =

0
“p M)y (1) s

= sup {t: Mo + vM —t(on_l 1) > 0}.
YER, teR

Here, S™ is the vector space of . X n symmetric matrices, the inner product (M, Y") is defined as
(M,Y) =tr(M7Y)and Y > 0 indicates that Y is positive semidefinite (PSD).

In particular, the SDP relaxation of the GTRS has an optimal solution Y* with rank one.
Furthermore, we know the value of (Y*),, ,, = 1 before we even solve the SDP relaxation. We will
think of this as 2 priori knowledge of the restriction of Y* to a subspace of dimension rank (Y ™).

Despite the fact that the SDP relaxation solves the GTRS exactly, the large computational
cost of solving SDPs has spurred an extensive line of work developing new algorithms for the
GTRS (that avoid explicitly solving large SDPs). Most relatedly, Wang et al. [183] (Chapter 5)
assume that the dual SDP is solvable and that there exists an optimal dual solution (v*,t*) such
that Moy + 7" My — t* ( On-1 1 ) has rank n — 1. This assumption holds generically for GTRS
problems conditioned on strict feasibility of the dual SDP and can be phrased as assuming strict
complementarity [5] between the dual SDP and the desired rank-one solution Y*. Wang et al.
[183] then showed that it is possible to construct a strongly convex reformulation of the GTRS in
the original space using a sufficiently accurate estimate of y*.

In our study, we will examine general SDPs satisfying similar structural assumptions and design
an efhicient storage-optimal FOM to solve them. In this respect, our approach also extends a recent
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6.1 Introduction

line of work [60, 70, 160, 198] towards developing storage-optimal FOMs for SDPs possessing
low-rank solutions. We discuss storage optimality in SDP algorithms in Section 6.1.3.

6.1.1 PROBLEM SETUP AND ASSUMPTIONS

Consider an SDP in standard form and its dual:

. (ML Y) +d; =0, Vi € [m]
ylélgfn{<Mobi’ Y> Y =0 (SDP)

> sup {dey D Mo+ 32 viM; = 0 }
yER™

For notational convenience, we let doy; = 0 and define M (7y) = My + > viM; and
d(7y) = dobj + 2272 Yid.

In this chapter, inspired by the structural properties of the GTRS that make it amenable to highly
efficient FOMs, we will work under two major assumptions. First, we will assume (Assumption 15)
that the primal and dual SDPs are both solvable, strong duality holds, and there exist primal and dual
optimal solutions Y* € S"™ and v* € R" such thatrank(Y™) = kandrank(M (v*)) = n—k.
The assumption that rank(Y™*) + rank (M (v*)) = n is referred to as strict complementarity and
is known to hold generically conditioned on primal and dual attainability [5].

Second, we will assume (Assumption 16) that the optimal primal solution Y™ is known 4 prior:
on some k-dimensional subspace W+, on which it is positive definite. This assumption is inspired
by QCQP and QMP applications [17, 161, 181]: Recall that the standard SDP relaxation [161] of
an equality-constrained QCQP (in the variable z € R™ 1) is given by

s ) ()

(M;,Y) =0, Vi € [m]

# M)y ()

Thus, the optimal solution (in fact, any feasible solution) to the SDP will have a 1 in the bottom-
right corner. Taking IV to be the subspace corresponding to the first (n — 1)-coordinates of R,
we have that the restriction of Y* to W is known a prior: and is positive definite. Similarly, the
standard SDP relaxation [17] of an equality-constrained QMP (in the variable X & R(=k)xk) i
given by

) o) 5(2) e

(M;,Y) =0, Vi € [m]

> ; :
2 Jof, (Maty ) Y = (: ;) )
k
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6 Accelerated first-order methods for a class of semidefinite programs

Taking W to be the subspace corresponding to the first (n — k) coordinates of R™, we have that
the restriction of Y* to W+ is known a priori and positive definite.

We will refer to SDPs where Assumptions 15 and 16 hold as rank-k exact QMP-like SDPs or
k-exact SDPs for short.

6.1.2 OVERVIEW AND OUTLINE OF THE CHAPTER

In this chapter, we develop a new FOM for rank-k exact QMP-like SDPs. This FOM enjoys low
iteration complexity, simple iterative subprocedures, storage optimality, and strong numerical

performance. A summary of our contributions, along with an outline of the remainder of this

chapter, is as follows. For the sake of presentation, we will assume that W corresponds to the first

n — k coordinates of R" in the following outline.

174

* We close this section by discussing thematically related work in storage-optimal or storage-

efficient FOMs for solving SDPs and FOM:s for solving the GTRS. We then discuss some
work on acceleration within FOMs with inexact prox oracles and FOM:s for saddle-point
problems as these are related to our techniques.

In Section 6.2, we show how to reformulate a k-exact SDP as a strongly convex quadratic
matrix minimax problem (QMMP) using a certificate of strict complementarity (see Def-
inition 23). There are two key ideas here: First, in the setting of k-exact SDPs, we may
parameterize the rank-k matrices in S} which agree with the restriction of Y to W as

XXT X (Z*)1/2
Y(X) = ((Z*)1/2XT (Z*) )7

where Z* > 0is the known restriction of Y* to W+ and X € R("~%)*k jsunknown. The
task of recovering Y* then reduces to the task of recovering X ™. We replace the variable Y €
S with the parameterization Y (X)) in the primal SDP to derive a nonconvex QMP in the
variable X whose optimizer is X *. This first step can be compared to the Burer—Monteiro
reformulation (see Remark 72). The second key idea then shows that this nonconvex QMP
can be further reformulated into a strongly convex QMMP (QMMP, ) given a certificate
of strict complementarity &/ C R™. Theorem 27 verifies that the minimax problem

minma (M), (0) + d(2)) (1)

has X as its unique optimizer and Optsppp) as its optimal value.

In Section 6.3, we derive a two-level accelerated FOM for solving strongly convex QMMPs
of the form (6.1). Due to the minimax structure of (6.1), we focus on Nesterov’s optimal
method for strongly convex minimax problems [132, Algorithm 2.3.13]. This algorithm
relies on a prox-map (see Definition 24) computation in each iteration, and its analysis
assumes that prox-map is given by an explicit expression or can be computed exactly. In
our setting, the prox-map will not admit a closed-form expression in general. Instead, we
will treat the prox-map as an optimization problem in its own right and solve it via an
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inner FOM. Therefore, we suggest CautiousAGD (Algorithm 9), a new variant of [132,
Algorithm 2.3.13] that handles inexact computations in the prox-map procedure. We extend
the original estimating sequences analysis of [132, Algorithm 2.3.13] to prove bounds on
the accuracy required in each individual prox-map computation to recover an accelerated
linear convergence rate in terms of outer iterations (see Theorem 29). In our case, the
prox-map can be computed efficiently using an inner loop via the strongly convex excessive
gap technique [132, Chapter 6.2]. In all, CautiousAGD computes an e-optimal solution of

a QMMP after O (log(e 1)) outer iterations and O (6*1/ 2) total inner iterations.

* In Section 6.4, we show how to combine any method for producing iterates y(*) — ~*
with CautiousAGD to construct a certificate of strict complementarity. Combined with
Algorithm 9, this completes the description of our new FOM, CertSDP (Algorithm 10),
for rank-k exact QMP-like SDPs. Informally, we show that CertSDP returns an e-optimal
solution to the underlying SDP after performing a fixed (i.e., independent of €) number of
iterations of 7(¥) — ~* pluseither O (log(e™1)) outer iterations or O (€~ 1) inner iterations
in CautiousAGD. See Theorem 32 for a formal statement.

* InSection 6.5, we present numerical experiments comparing an implementation of CertSDP
with similar algorithms from the literature [60, 136, 164, 198], on random sparse k-exact
SDP instances with n =~ 103, 10%, and 10°. Our code outperforms previous state of the art
and is the only algorithm among those we tested that was able to solve our largest instances
to high accuracy.

6.1.3 RELATED WORK

STORAGE-OPTIMAL/EFFICIENT FOMs. A growing body of literature, itself containing multiple
research strands, has explored FOMs for SDPs [9, 23, 51, 60, 70, 104, 115, 118, 136, 160, 164, 192,
197,198]. Below, we recount some recent developments in this direction with a particular view
towards storage-efficient or storage-optimal FOMs for SDPs admitting low-rank solutions. Storage-
optimality alludes to the fact that a rank-k PSD matrix Y € S’} can be represented as the outer
product of an n X k factor matrix with itself, i.e., Y = X XT for some X € Rk 5o that a
primal iterate with rank & can be implicitly stored using only O(nk) memory. Similarly, a dual
iterate may be stored using only O(m) memory. Then, a storage-optimal FOM is allowed to use
only O(m + nk) storage where k is the rank of the #7#e primal SDP solution.

Low-storage and storage-optimal FOMs are particularly attractive for SDPs where My, My, . . .
are either structured or sparse, so that it is possible to not only store the instance efficiently, but
also to compute matrix-vector products efficiently [60]. The algorithm that we develop in this
chapter follows this pattern and similarly interacts with My, M, . .., My, viaonly matrix-vector
products.

One paradigm towards developing storage-optimal FOMs leverages duality to construct surro-
gate primal SDPs that can be solved with optimal storage. In this paradigm, the variable Y € S
is compressed, i.e., replaced with UY UT for some matrix U € R™FandY € Si. Ding et al. [60]
give rigorous guarantees for such a method assuming strict complementarity. Specifically, they
show thatif U € R"*F corresponds to a minimum eigenspace of an approximate dual solution,
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6 Accelerated first-order methods for a class of semidefinite programs

then the optimal solution Y of the compressed SDP (in penalty form) is a good approximation
of the true primal solution. Then, combining their bounds with existing FOM:s for solving the

dual SDP approximately, Ding et al. [60] show that HU?U T-Y*

minimum eigenvector computations. It is unclear how this convergence guarantee changes when

- < eafter O(¢~2)-many

only approximate eigenvector computations (which are the only practical option) are allowed.
Friedlander and Macédo [70] explore a similar idea for trace-minimization SDPs (i.e., SDPs where
My = I) from the viewpoint of gauge duality. Specifically, they show that if U corresponds
to a minimum eigenspace associated with the true solution to the gauge dual, then the optimal
solution of the compressed SDP exactly recovers the true primal SDP solution. Unfortunately,
they do not analyze the accuracy of the recovered primal solution when the gauge dual is solved
only approximately, which is the case in practice.

A second paradigm towards developing storage efficient/optimal FOMs works simultaneously
in both the primal and dual spaces by employing linear sketches. Yurtsever et al. [198] apply the
Nystrom sketch to the conditional gradient—augmented Lagrangian (CGAL) technique [197]
to derive SketchyCGAL. They show that it is possible to reconstruct a (1 + ¢)-optimal rank-k
approximation of an e-optimal solution to the primal SDP' by tracking only the dual iterates as
well as a O(nk/()-sized sketch of the primal iterates. When the true solution is unique and has
rank-k, it is appropriate to take ¢ = O(1) so that the total storage is O(m + nk). Furthermore,
Yurtsever et al. [198] bound the required accuracy in the approximate eigenvector computations
within SketchyCGAL. In all, they show that it is possible to implement their algorithm in O (e ~2)

-1/2

iterations where each iteration involves computing an eigenvector via O (6 ) matrix-vector

products. In follow-up work, Shinde et al. [160] combine the algorithmic architecture of Sketchy-
CGAL with the additional observation that in specific applications (e.g., max-cut), the goal is
simply to sample from a Gaussian distribution with variance given by an approximate solution Y,
to the SDP. Under this alternate goal, it is possible to further reduce the storage requirements to
O(n +m).

One may compare these storage-optimal FOMs for SDPs with the Burer—Monteiro method [36].
In the Burer—Monteiro method, the convex SDP in the variable Y € S} is explicitly replaced with
an outer product term involving an 1 X k' factor matrix where &/ > k. The resulting nonconvex
problem is then tackled via local optimization methods. While results [31, 46, 47] have shown that
non-global local minima cannot exist when & = Q(/m) (so that local optimization methods are
certifiably correct), more recent work [176] has shown that such spurious local minima can in fact
existeven if k = 1 and ¥’ = ©(y/m). In other words, the Burer—Monteiro approach provably
cannot achieve storage-optimality.

FOMs ror THE GTRS.  The algorithms developed in the current chapter are inspired by recent
developments in FOMs for the TRS and the GTRS. There has been extensive work [41, 82, 87,
94,124, 148,165, 180, 183] towards developing customized algorithms for the TRS and GTRS
that circumvent solving large SDPs; see Chapter 5 and references therein for a more thorough

In [198], a rank-k matrix Y € S isa (1 + ¢)-optimal rank-k approximation of an e-optimal solution Y € ST if
‘ Y. — YH* < (1+Q)||Ye — [Yex|l, where]|-]|, is the nuclear norm and [Ye]y is the best rank-k approximation

of Ye.
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account of algorithmic ideas for solving large-scale GTRS instances. We highlight only the two
most relevant results from this area.

Carmon and Duchi [41] consider iterative methods that produce Krylov subspace solutions
to the TRS, i.e., solutions to the TRS restricted to a Krylov subspace generated by the objective
function. They show that these solutions converge to the true TRS solution /inearly as long as the
linear term in g,y is not orthogonal to the minimum eigenspace of the Hessian in g,p,j. One may
interpret this condition as requiring strict complementarity between the SDP relaxation of the
TRS and its dual.

More recently, Wang et al. [183] make a connection between the GTRS and optimal FOMs for
strongly convex minimax problems [132]. In the language of the current chapter, Wang et al. [183]
assume strict complementarity between the SDP relaxation of the GTRS and its dual, and show
how to construct a strongly convex reformulation of the GTRS using low-accuracy eigenvalue
computations. More concretely, they show how to construct 4_ and 4 such that the minimax

problem

min max (gui(x) +7 -0 (@)
is strongly convex and has as its unique optimizer the optimizer of the underlying GTRS. The
resulting strongly convex minimax problem is then solved via [132, Algorithm 2.3.13] to achieve
a linear convergence rate. One may compare the strongly convex reformulation of the GTRS in
[183] with the more natural Lagrangian reformulation (through S-lemma):

mip sup(aus(@) + 7+ 0(2))

where I' = {’y E Ryt qobj +yq1 s convex}. Specialized FOMs have also been developed for
the GTRS using this Lagrangian reformulation [180]. Unfortunately, since the Lagrangian refor-
mulation may not be strongly convex in general, the resulting algorithms can only achieve sublinear

(in terms of €) convergence rates—specifically, rates of the form O (6_1/ 2) as opposed to rates of

the form O (log(e™1)).

AccCELERATED FOMS FOR NON-SMOOTH PROBLEMS VIA SADDLE-POINT PROBLEMS. One
may treat the QMMP reformulation (6.1) of the SDP as a saddle-point problem in the variables
(X,7) € RO=F)XE 5 R™ a5 opposed to a non-smooth problem in just X € Rk There
is a vast body of work developing accelerated FOMs for non-smooth problems that leverages
saddle-point structure [97, 128, 132, 139]. Both Nesterov [131] and Nemirovski [128] achieve an
accelerated convergence rate of O (e~ !) for general convex—concave saddle point problems (see
also [172]). This rate can be further improved for the special case of strongly convex—concave
saddle-point problems [43, 97, 130]: Nesterov’s excessive gap technique [130, 132] achieves an
O(e~1/?) convergence for strongly convex—concave saddle-point problems where the coupling
term is linear. This is generalized in [43] to allow nonlinear proximal operators. Hamedani and
Aybat [81], Juditsky and Nemirovski [97] generalize this convergence rate to the setting where the
gradient of the coupling term is only assumed to be Lipschitz. These rates match the known [138]
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6 Accelerated first-order methods for a class of semidefinite programs

lower bound of O(¢~1/2) for any FOM on the general class of strongly convex-concave saddle-
point problems. Note that the assumption that the gradient of the coupling term is Lipschitz does
not hold for our setting. Indeed, the saddle point function we are interested in, (M (), Y (X)),
is jointly cubic in the variables (X, y) (so that the gradients vary quadratically). Nonetheless, we
will show that it is possible achieve the optimal O(¢~1/2) iteration complexity in our setting.

AcCELERATED FOMS WITH INEXACT FIRST-ORDER INFORMATION. A related line of work [57,
58] has analyzed the convergence rate of (accelerated) FOM:s in the presence of inexact first-order
information. Devolder et al. [58] analyzes FOM:s for smooth convex functions. In [57], the same
authors extend these results to FOMs for smooth and strongly convex functions. Our algorithm
(Algorithm 9) continues this line of work by considering an inexact prox-map for strongly convex
max-type functions.

6.1.4 ADDITIONAL NOTATION

Given X € R™ ™, let || X|| ;» denote the Frobenius norm of X. Given X € S", let || X||,, denote
the spectral norm of X. Let W be a subspace of R". Abusing notation, we write SW to denote the
vector space of self-adjoint operators on W and RWW™ for the vector space of linear maps from
W to W. Given M € S™ let My, € SW. M, wi € RW’WL, and My, € S"™ denote
the restrictions of M to the corresponding subspétces. Givenx € R"andr > 0, let B(z, 1)
denote the closed £a-ball centered at x with radius r. Given a function in multiple arguments
f(z1,...,2m), we write Vi f(z1,...,2p) to denote the gradient of f in the kth argument
evaluated at z1, ..., Tym.

6.2 STRONGLY CONVEX REFORMULATIONS OF k-ExAcCT SDPs

In this section, we describe how to construct a strongly convex reformulation of a rank-k exact
QM P-like SDP using a certificate of strict complementarity (see Definitions 22 and 23). The
following sections will expand on these ideas and show how these properties can be exploited to
achieve algorithmic efficiency.

6.2.1 DEFINITIONS AND PROBLEM SETUP

We make the following two assumptions on (SDP).

Assumption 15. Assume in (SDP) that the primal and dual problems are both solvable, strong
duality holds, and there exist primal and dual optimal solutions Y* € S™ and v* € R"™ such that
rank(Y™*) = kand rank(M (v*)) = n — k. O

We fix Y* and 7* to be solutions to (SDP) satisfying rank(Y™) = k and rank(M (7*)) =
n — k.

Assumption 16. Let W C R" be a k-dimensional subspace such that the restriction of Y* to

W is known and positive definite. U
Definition 22. We say that an instance of (SDP) is a rank-k exact QMP-like SDP or a k-exact
SDP for short if both Assumptions 15 and 16 hold. O
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Definition 23. We say that a compact subsetif C R™ certifies strict complementarity if v* € U
and, for all v € U, itholds that M (7y)y, > 0. O

Remark 71. Suppose we are given a certificate of strict complementarity U/, i.e., v* € U and
M (%), >~ Oforally € U. We immediately deduce that rank (M (7*)) > rank(M (v*)y,) =
n — k. On the other hand, rank(Y™*) > rank(Y{j,, ) = k. This is the sense in which U certifies
strict complementarity. O

6.2.2 IDENTIFYING S" WITH QUADRATIC MATRIX FUNCTIONS

Suppose (SDP) is a k-exact SDP and that/ certifies strict complementarity. For ease of presentation,
we will assume in this subsection that W is the (n — k)-dimensional subspace corresponding to
the first n — k coordinates of R™. This is without loss of generality and our results extend in the
natural way to the setting where W is general.

Our strongly convex reformulation of (SDP) will regard the M; € S™ as inducing guadratic
matrix functions on the space RWXW= ~ R(=F)xk e begin by writing each M;, for i €
{obj} U [m], as a block matrix

(A2 B2
= (305 7).

where A; € S"7F, B; € RM=F)xn and C; € Sk,

We will partition Y™ as a block matrix with compatible block structure: Define Z* := YVT/ N
and X* = YV;,WL
by the assumption that rank(Y ™) = k (Assumption 15), we have that

— XOFXFT X*(z*)1/2
- (Z*)1/2(X*)T Vi .

(Z*)~1/2. Note here that Z* is known 4 priori due to Assumption 16. Next,

Finally, given X € RO=F)*k define

XXT X (Z*)1/2
Y(X) = ((Z*)l/QXT (Z*) >

and note that Y/ (X™*) = Y™,

One of our key ideas in building a strongly convex reformulation of (SDP) is that Y (X') is a
matrix whose entries are guadratic in X. We can thus identify each M; with a quadratic matrix
function. For each i € {obj} U [m], define

. tI‘(X TA,‘X )

qi(X) = (M, Y (X)) +di = —===2 + (By(2")*, X)) +(Ci, 27) + d;

tr(XTAX)

7 -|—<BZ',X>‘|‘Ci,
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where we let B; = BZ-(Z*)l/2 and ¢; := (Cj, Z*) + d;. Finally, given v € R™, define A(y) =

Agbj + 2% viAi. We define B(7y), B(7), c(7v), d(7),and g(7, X) analogously.

Remark 72. One may compare our parameterization of rank-k matrices in 8"} with the Burer-
Monteiro approach [36]. In the Burer-Monteiro approach, one replaces the matrix variable Y €
S" with a rank-k matrix variable parameterized by

()

where X € R("F)*k 3nd X € R¥**, This transformation replaces the O (n?)-dimensional vari-
able Y € S with the nk-dimensional variable (X; X”) € R™**. Unfortunately, this approach
also transforms the SDP from a convex problem into a zonconvex problem. Our parameterization
will allow us to remedy this nonconvexity. As we will see in the next subsection, when Z* is known
(so that we may fix X') 4 priori, we may further reformulate the remaining zonconvex problem in
X € Rv=F)xk jneq a strongly convex problem. O

6.2.3 A STRONGLY CONVEX REFORMULATION OF (SDP)

The following theorem states that if I/ certifies strict complementarity, then X * is the unique min-
imizer of a strongly convex guadratic matrix minimax problem (QMMP) that can be constructed

fromU.

Theorem 27. Suppose (SDP) is a rank-k exact QMP-like SDP and that U certifies strict comple-
mentarity. Then, X is the unique minimizer of the strongly convex QMMP

i X). MMP
R max g(y, X) (QMMP;))

Furthermore, X* = —A(v*) "1 B(v*) and OptQuinvr,) = OPt(spr).

Proof. Without loss of generality, we work in the basis where W is the first n — £ coordinates
of R™. Note that the assumption that ¢ certifies strict complementarity implies that A(v*) =
M)y > 0.

We begin by verifying that X* = — A(y*) ! B(v*). By complementary slackness, we have

0= (M(y"),Y(X7))

X )T<g&<v*>/2 Bw)/z)( X ))
(z9V2) \B(y)1/2 Cty) ) \(29)V?

_ tr((X* + AN B(y)TAY) (X + A(v*)‘lB(v*))>
+

2
B(V*)TA(’Y*)_lB(’Y*)N
: .

(C(v),Z27) —tr<

Here, the second line follows by the definitions of M (7*) and Y (X™), and the third line follows
from the definition B(7) := B(v)(Z*)'/2. We claim that the square-bracketed term on the final
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6.3 Algorithms for strongly convex QMM Ps

line is zero: By the assumption that rank (M (")) = n — k and the fact that A(y*) - 0, we have
that C(v*) = B(v*)TA(W;)ilB(W*) . Pre- and post-multiplying C'(v*) by (Z*)'/? and taking the

trace of this identity gives

H(@ﬂWBWﬂmmﬂ”BWﬂ@ﬂW>
2

(C(v), 2%) = =

<B(’Y*)TA(V*)_IB(V*)>
: .

Thus, we have that
0=tr((X*+ A(y) ' B(Y)) AGY) (X + A()TIB()),

so that X* = —A(y*) "1 B(v*) by the positive definiteness of A(7*).
Next, note that by the feasibility of Y*, we have ¢;(X*) = (M;,Y™) + d; = Oforalli € [m].
Similarly, by the optimality of Y™*, we have qopj (X ™) = <]\40bj7 Y*> = Optspp). In particular,

max~ey ¢(7, X*) = q(7*, X*) = Opt(spp)- On the other hand, for any X € RWXW=

X XA )

maxq(’y, X) 2 q(’y*a X) == Opt(SDP) —l—tr( 9

yeu

As A(7*) > 0, we conclude that X* is the unique minimizer of (QMMP, ) with optimal value
OptQuwmr,,) = OPt(spp)-

Finally, strong convexity of (QMMP, ) follows from compactness of If and the assumption
that U certifies strict complementarity (so that A(y) = M (7y)yy is positive definite over /). W

Remark 73. One may compare (QMMP, ;) with the more natural Lagrangian formulation of
(SDP), which results in a QMMP in the same space:

min N sup q(v, X). (6.2)
XeRWXW= ~eR™: A(v)>0

Indeed, it is possible to show that X* is also the unique minimizer of (6.2). Nevertheless, the
formulation (6.2), in contrast to (QMMP, ), has two major downsides: First, it may be the case
that SUpcrm. ()0 ¢(7; X) is a convex function in X that is not strongly convex. Second, the
domain of the supremum, {y € R™ : A(y) > 0}, isitselfa spectrahedron so that even ecvaluating
SUP~erm: A(y)=0 4(7; X) (thatis, evaluating zeroth-order information in the X variable) requires
solving an SDP. In contrast, (QMMP, ) is strongly convex by construction. Furthermore, we may
pick U to have efficient projection and linear maximization oracles (e.g., by taking I/ to be an
{3 ball). From this viewpoint, (QMMP, ) will be much more amenable than (6.2) to first-order
methods. O

6.3 ALGORITHMS FOR STRONGLY CONVEX QMMPs

In this section, we describe and analyze an accelerated first-order method (FOM) for solving strongly
convex QMMPs. While we will apply this algorithm to problems arising from the application of
Theorem 27, the algorithms from this section can handle general strongly convex QMMPs.
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6 Accelerated first-order methods for a class of semidefinite programs

We state explicitly the setup and assumptions of this section. Let gopj; g1, - - - @m Rk %k _,
R be quadratic matrix functions of the form
_tr(XTAX)

Giveny € R™, let A(7) = Aoy + D211 ViAi. Define B(y), c(7), q(v, X ) analogously.

Letd C R™ be a compact convex set with exact projection and linear maximization oracles.
Our goal is to find an e-optimal solution to

i X). MMP
conin | maxq(y, X) (QMMP)

n—k)xk

That is, our goal is to find some X € R( satisfying max, ey g, X) < Optoump) te.

For notational convenience, we will define

X) =ma X).
Q(X) max q(v, X)
While we will treat I/ as fixed in this section, in future sections, we will explicitly call attention to
the dependence of the function () on the set U and write 0y instead.

We present a FOM for (QMMP) under two assumptions. The first assumption (Assumption 17)
requires uniform strong convexity and smoothness of (7, X) over U.

Assumption 17. We will assume algorithmic access to parameters 0 < g < L such that pf =
A(v) = LI forally € U. O

When Assumption 17 holds, we define the condition number of (QMMP) as k := L/ . We
will state our second assumption (which bounds the norms of various quantities) when needed in
Section 6.3.3.

Our FOM will closely follow Nesterov’s accelerated gradient descent scheme for strongly convex
minimax functions [132, Algorithm 2.3.13] (henceforth AGD-MM) with one major difference.
In contrast to the presentation in [132] and its application in [180], the necessary prox-map (see
Definition 24 below) in the QMMP setting cannot be computed explicitly or exactly.

We break our FOM for strongly convex QMMPs into two levels, presented as the first two
subsections in this section. In Section 6.3.1, we give a convergence analysis for a modified version of
AGD-MM using an znexact prox-map oracle. In particular, we will bound the necessary accuracy
of the prox-map to recover accelerated convergence rates. In Section 6.3.2, we show how to
implement the approximate prox-map oracle efficiently for each iteration using the strongly convex
excessive gap technique [132, Algorithm 6.2.37]. Finally, in Section 6.3.3, we state an assumption
(Assumption 18) that allows us to bound the iteration cost of the prox-map oracle uniformly across
iterations. Taken together with the results from the previous subsections, this will give a rigorous
guarantee for the overall FOM.
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6.3 Algorithms for strongly convex QMM Ps

6.3.1 ANFOM FOR STRONGLY CONVEX QMMPSs USING AN INEXACT PROX-MAP
ORACLE

This subsection generalizes AGD-MM by allowing 7nexact prox-map computations. We first recall
the definition of the prox-map and the fundamental relation (6.3) that is used in the convergence
rate analysis of AGD-MM. Next, we show how to recover a similar inequality (6.5) when the prox-
map is computed only approximately. Finally, we show how to modify the step-sizes in AGD-MM
to prevent error accumulation that may otherwise build up from inexact prox-map computations.
These step-sizes allow us to recover the accelerated linear convergence rates of AGD-MM even
with inexact prox-map computations.

THE PROX-MAP

AGD-MM requires computing the prox-map Xr,(Z) (defined in Definition 24) exactly in every
iteration (adapted from [132, Definition 2.3.2]).

Definition 24. Let = € R(""¥) Xk Define

Q(E;X) = glgg(qm =) +(Vaq(7,5), X - E))
— - L —12
QL(E X) = Q(EX) + S X —ElF
Q1(2)= min Qr(5;X)
XeR(n—k)xk
Xr(E) = argmin Qr(E;X)
XcR(n—k)xk

91(8) = L(E - X1(5)).

Here, V2 q(7, E) is the gradient of ¢(, X) in X at Z and is an affine function of v (more
explicitly, V2 q(v, Z) = A(v)Z + B(7)). Note that the function Q(Z; X') simply replaces the
inside function ¢(7y, X)) in the definition of Q (X) with its /inearization around Z. The quantities
X1, and g, are the prox-map and the grad-map. O

Recall also the main property of the prox-map and grad-map that is used in the analysis of the
convergence rate of AGD-MM as given in the following lemma (adapted from [132, Theorem
2.3.2)).

Lemma 65. Let = € R(—K)xk, Then, forall X € R(n—k)xk
- 1 - - -, M -
Q(X) > Q(XL(E)) + ﬁHgL(:)H% +{or(5), X = 5) + JlIX - =7 (6.3)

AN APPROXIMATE PROX-MAP INEQUALITY

In the setting of general QMMPs, it is not possible to compute the prox-map exactly. Instead, we
will apply an inner FOM to solve the prox-map X,(Z) to some prescribed accuracy. This necessi-
tates an analysis of (a variant of) AGD-MM that works with inexact prox-map computations. To

—_
T

this end, we show how to recover a version of (6.3) where X,(E) is computed only approximately.
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6 Accelerated first-order methods for a class of semidefinite programs

Define
o= /2, L=L-p/2, and &:=L/f.

We will need the following geometric fact.

Lemma 66. Let X, X € RM=K)>¥E e such that HX — XLHF < 0. Then, forall X €

R(n—k)xk

L 9 Lé&?

FIX = Xullf > HX x| - =-ea-).
Proof of Lemma 66. Let A = X — X. Then,

gHX _ Xk = g”.x X+ AH?

5

where the second equality follows from expanding the square and the fact that L =

Moreover,

2
L\ /& L [i
<7 Z(x-X All =
0 LX)y 7a) =5

Combining these two inequalities gives

Lix =g = L - x| - 2o,

We may now derive a variant of (6.3) which only uses an approximate prox-map.

Theorem 28. Let = € R(n—Fk)xk, Suppo&ej( satisfies
QL(E; X) <Q1(E) +

Set§ = L(E — X). Then, forall X € R(n—k) xk

AT . = 4 P =
QX) 2 Q(X) + o=l + (3, X = 5) + SIX — El[f — 2ne.

Proof. AsQr(Z; X)is L-strongly convex, from the premise of the lemma we have HX - X1(B)

2¢/L.
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L X[ B - X n(x - %a) + Ejale,

Pl = x|+ £(x — % A) + LafA2.

(6.5)
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We bound
X)>Q(EX) + E|x —=)?
Q(X) > QE:X) + Xx — =}
_ =X éX =12 EX =2
= QuE X) — HIX =+ Ex =)
em L - L _2 | B _
> Q4E) + 21X ~ X @)%~ PIX ~ S+ Ex =2
oL o2 L —2 | H -2
> Q) + 5 | X - X[, - 51X —ZlF + SIX — Z)% - 2xe
L

)+2<2<X—E,E—X>+

»

=Q(

N

= —XHF> + X -2 - 2ne
—O(X i X —= 1a2 EX_:Q_Q

= QUR) 4 (3. X )+ gl + X - = 2ne

Here, the first inequality follows from pi-strong convexity of (), the first equation follows from
the definitions of Q1. (Z; X), L and i, the second inequality follows from optimality of X, (),
the third inequality follows from Lemma 66 applied with § = \/2¢/L and the L-smoothness of
q(y, X)) for each v € U, and the last two equations follow from expanding the squares and the
definition of g. |

ESTIMATING SEQUENCES

We now modify the estimating sequences analysis of AGD-MM to use (6.5) instead of (6.3): Fix
Xo € RO=F*kandlet {e;} € Ry and {5} € R %)%k t6 be fixed later. Define

Bo(X) 1= Q(Xo) + 51X = Xo3.
Fort > 0, let X; {1 be an e-approximate prox-map, i.c., X4 1 satisfies
Qr(E Xi1) < QL(E) + &,
and set §; == f)(Et — X¢41). Leta = 71/2 and recursively define
Pr+1(X) = (1 — a)d(X)

L= - L -
+a(QUe) + 52 gl + (31X - Z0) + FIX ~ Sl ).

The following lemma shows how ¢ (X') evolves. Its proof follows verbatim from the standard
proof [132, Lemma 2.3.3] and is deferred to Section F.1. Indeed, the standard proof makes no
assumption on how Z; and X are related.

Lemma 67. Forallt > 0, ¢4(X) is a quadratic matrix function in X of the form

Bu(X) = g5 + LIX — Vil (66)
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6 Accelerated first-order methods for a class of semidefinite programs

The sequences { ¢} }, {V;} are given by Vo = Xo, ¢ty = Q(Xo) and the recurrences
1
Vigr = (1 —a)Vi + a<Et - ﬂ§t>7 and
* * 1 ~ 112 062 ~ 112
Grp1 = (1 — )¢y + a| Q(Xq1) + i”gtHF - ﬁ”gt”F
+a-a)(BIE - vilE + @ vi-2)).

Forall ¢ > 0, we will henceforth set

= . X+ aV;

The following lemma shows that Z; 1 can be written as an extragradient step from X; towards
Xi41. Its proof follows verbatim from the standard proof [132, Page 92] and is deferred to
Section F.1. Indeed, the standard proof only needs the relation X1 = = — G¢/ L, which
continues to hold in our setting by construction.

Lemma 68. [t holds that =g = X and Z4 11 = Xpy1 + %(Xﬂrl — Xy) forallt > 0.

The following two lemmas bound the two types of errors that result from inexact prox-map

computations. Define E(()l) =0, E(()Q) := 0, and for all £ > 0 inductively set

Eﬁ)l =(1- a)Et(l) +(1—a)g and Et(i)l =(1- a)Et(z) + ey

Let B = Eﬁl) + Et(2) be the sum of the two types of errors. Equivalently, let ; := 0 and
inductively set Ey1 = (1 — a) B} + ¢ forall ¢ > 0.

Lemma 69. It holds that Q(X;) < ¢F + 26E\) forall t > 0.

Proof. Tt is clear that Q(Xo) < ¢§. Thus, consider X; 11 witht > 0. By induction and
Lemma 67,

2L
+a(l = a)(g, Vi — ) — (1 — o) (26B").

2
i1 > (1— )Q(Xy) + aQ(Xep1) + (‘“ - g‘ﬂ) 13:]%

As Xy 41 satisfies Qr(Z¢; Xir1) < Q*(Z¢) + €1, we deduce (see Theorem 28) that

1. . — [i —
Q(Xt) > Q(Xig1) + i”%”% + (Gt Xe — Z¢) + gHXt — Zyl[3 — 2k
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These two inequalities together lead to

$iv1 > Q(Xep1) — 26(1 — @) (B + )

o a? l1—« 9
+{ o= = o=+ = | 1GllF + (1= a) (G, (Vi = Eo) + (X; — E0)).
<2L 2N 2L HgtHF ( a)<gt a( t t) ( t t)>

It is straightforward to show that the two quantities on the final line are identically zero using the
relations o = fi/L and Z; = % (see Lemma 68). [

Lemma 70. Forallt > 0, it holds that
ou(X) < (1= (1= a))QUX) + (1 - )'go(X) + 26 B, ¥X € ROk,

Proof. The statement holds holds for ¢ = 0. Thus, consider ¢; 1 for ¢ > 0. By definition
L - - A -
Bu1(X) = (1= @) (X) + a(QXerr) + 5=l + (00 X — 20+ B1X —ZiJR).
As X 11 satisfies Q1 (Z¢; Xi+1) < Q*(E¢) + €4, we deduce (see Theorem 28) that
Q) > QUXus) + o=l + G X — =) + 51X ~ 543
z t+1)+ﬁ|‘gt“F+<gta —~t>+§|| — Bl — 2ke.

Then, these inequalities combined with the inductive hypothesis give

Pr41(X) < (1 — )¢y (X) + aQ(X) + 2kae
(X) + (1 = a)(@e(X) = (1 = (1 — )" )Q(X)) + 2k
(X)+(1- )T o0(X) +26((1 - ) B + ae).  ®
Combining Lemmas 69 and 70, we get a bound on the total error due to inexact prox-maps as a

function of the accuracy of each individual prox-map.

Corollary 26. Forallt > 0, it holds that

Q(Xt) — Opt(QMMI’) S (1 — Oé)t {2 (Q(XO) — Opt(QMMP))} + QHEt.

Proof. Let X7; denote the optimizer of (QMMP) so that Q(X7;) = Optquinip)- Then, Lem-
mas 69 and 70 give
Q(Xt) = Optiquunen) < 07 + 2B = Q(X;)
< ¢u(X3)) + 2BV - Q(X7)
< (1= (1-)HQ(XF) + (1 — a)'¢o(Xyy) + 26E: — Q(X))
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6 Accelerated first-order methods for a class of semidefinite programs

Note also that by the definition of ¢ () and the ji-strong convexity of (), we have

* fi
Po(X7y) — Optiqunvry = Q(Xo) — OpPtQuimp) +§ 17 — Xoll 7 < 2 (Q(XO) - Opt(QMMP)) :
Combining the two inequalities completes the proof. [

We are now ready to present CautiousAGD (Algorithm 9) and its guarantee.

Algorithm 9 CautiousAGD

Given ¢(7y, X) and U satisfying Assumption 17; X € R("~%)*k ‘and a bound gap, € Rsuch
that Q(Xo) — Optonmr) < gapg
1. Setfi, L, R asin (6.4)and o := &~ 1/2. Set 5 = X,.
2. Fort >0
a) Compute an inexact prox-map X1 satisfying

) ift =0, and

(673
5, else.

Qr(E; Xiv1) <QL(Et) + €, where ¢ = {ga';’o
(6.7)

b) SetZiy1 = Xy + 172 (X1 — Xo)

Theorem 29. Let q(vy, X) and U satisfy Assumption 17. Let gap, be a known upper bound on
Q(Xo) — Optiquinp) and let X denote the iterates produced by Algorithm 9 with starting point
Xo. Then, forallt > 1, the iterate X, satisfies

t
a
Q(Xt) — Optiqmmp) < (1 - 2) (4 - gapy)-

In particular, Q(X1) — Optqump) < € after at most

)

iterations. The t-th iteration of Algorithm 9 requires computing a prox-map X1 satisfying (6.7).

Proof. We first claim that E; = (gap,/x)(1 — o/2)" for all ¢ > 1. Indeed, this claim holds for
t =1las E1 = ¢o = (gap,/r)(1 — a/2) by construction (see (6.7)). Then, by induction

t t t+1
— (1 — (1o ¥\ [ 8Po(q ) _8Po(y_ @
Eii=(1-a0)Ei+e¢=(1-a) . (1 2) + (1 2) 5 " (1 2) .

Then, the bound on Q(X¢) — Optquip) follows from Corollary 26 and the starting condition
Q(Xo) — Opt(QMMP) < gapy- n
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Remark 74. We refer to Algorithm 9 as CautiousAGD to allude to the fact that Algorithm 9 is
simply AGD-MM with inexact prox-maps and smaller extra-gradient steps. Specifically, AGD-MM
sets

1— k12

W) (K = Xe)

Ety1 = X1 + (

whereas CautiousAGD sets

Note that k < & < 2k. O
6.3.2 APPROXIMATING THE PROX-MAP

Recall that the prox-map X, (=) is the minimizer of Qr,(Z; X ):

XeR(n—k)x XeR(n—k)xk «/GZ,{

. - : L - - - -
min, QuEX)= _min max(7|X ~ S} + (V2gr.2).X -5 +40.9))

There are a number of ways to solve for X,(Z). For example, when m is small, one may apply an
interior point method to solve for 7y in the dual problem:

: L - - - -
max| min (FIX -} + (V20012 X - 2) 4 4(,9) )|

= X€R<”7k)><k
1 2
_ — V2 q(1,E =) ). 6.8
T?if( 2LH 2q(7, )| = +q(v, )) (6.8)

Note here that strong duality holds as the term inside the parenthesis is linear in v and convex
quadratic in X and U is a compact convex set so we can apply Sion’s Minimax Theorem [162]. An
approximate primal solution X can then be reconstructed from an approximate solution 7 of the
dual problem by setting X==2- %.

Sticking with FOMs, one may apply the strongly convex excessive gap technique [132, Chapter
6.2] to compute the prox-map X1,(Z) as well. We will rewrite Q1,(Z; X) in a form that is more
natural for applying the excessive gap technique [132, Algorithm 6.2.37]. Note that V3 ¢(, ) =
A(7)Z + B(7). Thus, defining the matrix Gopj = Aob= + Bopj and the linear operator
Gy = 2 vi(AE + By), wehave Vaq(7,Z) = A(7)E + B(v) = Gobj + G7. Hence,

we arrive at
- L - - = =
Qu(E:X) = SIIX — E|f + (Cay, X — E) + max{(G7, X) + (a(1.) — (67.2))}.
yeU
(6.9)

The inner saddle-point function is strongly convex in X and linear in 7y so that we may approximate
the prox-map by approximately solving a strongly convex—concave saddle point problem. Thus,
applying [132, Theorem 6.2.4] to Q1,(Z; X) in the form (6.9) gives the following result.
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6 Accelerated first-order methods for a class of semidefinite programs

Theorem 30. Initialize [132, Theorem 6.2.4] with initial iterate vy € U. Let (7, X ) denote the
output of [132, Algorithm 6.2.37] after

VLe

iterations. Here, each iteration may require two exact projections onto U. Then,

o (max,ygsml 1G - - max, ||y — 70|2>

o BN (S N S V2 q(Fx, E) |7
QL(E;X)-QLE) <QLEX) - | ¢(Ww, E) — s ) =€ (6.10)

Remark 75. For simplicity, in our numerical implementation of CertSDP, we opt to run the
accelerated gradient descent method for simple sets [132, Algorithm 2.2.63] on the dual problem
(6.8). O

6.3.3 PUTTING THE PIECES TOGETHER

We conclude this section by showing how to combine Theorems 29 and 30 to get a guarantee on
the total iteration count (including iterations within the inexact prox-map calls). To this end, we
will need an additional assumption on the norms of various quantities.

Assumption 18. Suppose Algorithm 9 starts at Xo = 0, ) xx- Suppose R > 0 satisfies

IV24(3, Xo)llp _ IB&)
L L

where ¥ € argmax., ¢, q(7, Xo). Let D denote the diameter of U; this is the natural scale
parameter for the dual iterates. We will see soon that R is a natural scale parameter for the primal
iterates X;, =; € R(n—Fk)xk, Suppose H > 1 bounds

DIYiZy widilly o DI viBillp
0 ’ pkR

forally € S~ 1. We will assume algorithmic access to D, H, and R. O

Lemma 71. Under Assumption 18, it holds that Q(Xo) — Opt(qup) < & ”;RQ‘ In particular,

we may take gap, = £ ”;RQ in Algorithm 9. Then, for everyt > 0, the iterate =y computed by

Algorithm 9 satisfies

IZ:]l < 10KR.
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Proof. Let?y € argmax. ¢, q(7, Xo). By pu-strong convexity of Q(X ), we have that

Q(X) > q(%, X)
> (3, X0) + (V2 (3, X0), X = Xo) + £|1X = Xol}
1 . V2 q(%, Xo) ||”
— QX0 - V20 X + 5 | - 0+ LR
F

In particular, taking X = arg min y cpn—x)xx Q(X) gives

V2 9(, Xo)l[7 _ pn’R?
Q(XO) - Opt(QMMp) < 2# E < 2 )

where the last inequality follows from Assumption 18. This proves the first claim. Next, by
Theorem 29, we have that forallt > 0, that Q(X:) —Q(Xo) < Q(X¢) —Optqump) < 2uk?R?
and hence

2 V296, Xo)l[}: _ 5B

S QX — QU + ;

Vo q(7, X
’u’HXt — Xo + 2(](’)’ 0)
2 jz

Using the assumption Xo = 0(,,_1)xx in Assumption 18 and applying triangle inequality together
with the bound || V2 q(%, Xo) ||§7 < u?Kk%R? derived from Assumption 18, we deduce that for all
t>0,

| Xl < (14 V5)sE.

—_ 1—
Then,as 2441 = X411 + H_—g(XtH — X), we have

IZ1llp < 3(1+ V5) KR < 105R, n

With this bound on ||Z¢ | ;» we are now able to bound the operator norm max., cgm-1[|G7y|| g
in Theorem 30.

Lemma 72. Suppose Assumption 18 holds and we set gap, = B “;Rz in Algorithm 9. Then, for
every itevatet > 0, we have

ukHR
max <11 .
max 6] < 155
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Proof. Recall that by definition, the linear operator G maps 7y to > ;1 7; (A;=¢ + B;). Thus, for
any y € S™1,

m
16y = (D 7i(AEe + By)
=1 F
m m
<D viAi| 1B g + (DB
=1 2 i=1 F
ukHR
<11 . [ |
- D

The following theorem gives the iteration complexity of Algorithm 9 instantiated with the
excessive gap technique to compute the prox-map. It follows as a corollary to Theorems 29 and 30
and Lemma 72.

Theorem 31. Let q(7y, X) and U satisfy Assumptions 17 and 18. Suppose gap, is set to & ”;RQ in
Algorithm 9. Let Xy denote the iterates produced by Algorithm 9 with starting point Xo = 0, _g)x -
Then, for all t > 1, the iterate Xy satisfies

t
«

In particular, Q(X1) — Optiqump) < € after at most

o)

outer iterations of Algorithm 9. The iterate X is computed after a total (including iterations within

. . KS/*HRVL
the inexact prox-map computations) of O (T

) iterations.

Proof. We will take T to be the first positive integer such that

<1 — 3>T(2/m2R2) <e.

Clearly, T' = O (\/E 10g(/€LR2/6) ) Next, if 7' > 1, then by the maximality of 7" we have

(1-5) = (1 5) (i) = 5t
2) ~ 2 )\ 2uK2R2) — 4ux2R2’

From (6.7) and gap, = “”ZRQ, we deduce that ¢, > “”2R2 (1- %)t% By Lemma 72 and

Assumption 18, we may bound

max - maxl||y — <1luxHR.
yesm*IHgVHF el 7 =0lly < 11p
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Thus, X can be computed in

o(“j%) = O(/ﬁl/A‘H(l — a/2)_t/2>

. . . . . . T
iterations. Summing over the first 7" outer iterations and observing our lower bound on (1 — %) s

i(l—j)t/QSO(W>:O<%>’ "

6.4 SOLVING k-EXACT SDPs viA STRONGLY CONVEX QMMP
ALGORITHMS

we have that

In this section, we show how to combine Theorems 27 and 31 to develop first-order methods
for approximately solving rank-k exact QMP-like SDPs. We will use the following notion of an
approximate solution to (SDP).

Definition 25. We will say that Y € S"is e-optimal and d-feasible tor (SDP) it

m

1/2
<Mobja f/> < Opt(spp) +e, (Z(<Mi7}~/> + d¢)2> <9,

i=1

andY = 0. O

The final piece towards this goal is developing algorithms for constructing a certificate of strict
complementarity .

By Definition 23, the properties we need to ensure for I/ are that v* € U and A(7y) > 0 for all
v € U. We will construct U by taking it to be an £2-ball centered at a sufficiently accurate estimate
7 of y*.

We begin by verifying that A(v*) > 0.

Lemma 73. Suppose M*, Y* € ST have rank n — k and k respectively and that (M*,Y*) = 0.
Let W be an (n — k)-dimensional subspace. Then, My, = 0 ifand only if Y3, = 0.

Proof. It suffices to prove the forward direction as we may interchange the roles of Y* and M™.
We prove the contrapositive. Suppose Yy, 1 # 0 so that ker(Y];, | ) is nontrivial. As Y™ = 0,
we have that in fact ker(Y*) N W is nontrivial. Then, range(Y *) is a k-dimensional subspace
contained in (ker(Y*) N W)L, Similarly, W is an (n — k)-dimensional subspace contained in
(ker(Y*) N W)L, Then, as (ker(Y*) N W)+ has dimension at most 7 — 1, we deduce that
range(Y™) N W is nontrivial and (Y*, M*) > 0, a contradiction. |

Clearly then, for all 4 close enough to *, we have that A(%) > 0 and there exists some 7 > 0

such that f = B(7, r) satisfies A(y) > 0 forall 7€ U. We consider one setting for 7 below.
It remains to ask, does the condition that v* € U hold? Below, we show that this condition
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6 Accelerated first-order methods for a class of semidefinite programs

{’yE]Rm: A(v) = %I}

Figure 6.1: CertSDP (Algorithm 10) produces a series of iterates (" — ~4*. For each v(), CertSDP
constructs a ball /) around v(¥). Intuitively, we want to pick U () to be the largest ball around
7 for which we can solve the associated QMMP efficiently, in hopes of enclosing v*. We
will thus choose U to satisfy certain regularity estimates (see (6.11) and Lemma 75). At the
minimum, we will ensure A(v) = /2 forally € U@,

indeed holds when 7 is a sufhiciently accurate estimate of v* and that we can effectively check this
condition using CautiousAGD.

Assumption 19. Suppose we have algorithmic access to
* parameters 0 < /i < L such that i < A(y*) < LI,
« parameters R,, Ry > 0 such that | X*|» < R,and ||7*|, < Ry, and

* aparameter p > 0 upper bounding

~ m m B
fL , Z’YZAZ , and HEl—l:YZ l||F v,y c Sm—l.
Rq i=1 2 Ry

For notational simplicity, we will additionally assume I:Zd > 1. This is not strictly necessary and
simply allows us to write O(R,) in place of O(1 + Ry). O

Note from the identity X* = —A(y*) "' B(y*) that || B(y*)||z < LR,. Now, suppose
A A2 isa sequence converging to ™ (such a sequence can be constructed via subgradient
methods [108]; see also [60, Section 6.2.2]). Given (%), define

(40 -

2)

R

(¥ = min (2[;, 2R, — H'y(i)

If () is positive, define U?) == B(y), r®)),

We present three lemmas below. The first lemma states that (@) s positive and v* € U () for
all %) sufficiently close to 4*. The second lemma establishes parameters for which the regularity
conditions of Assumption 18 hold for ¢(7, X ) along with 2(*). Finally, the third lemma shows
that for each (%), an approximate solution of the corresponding strongly convex QMMP (which
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6.4 Solving k-exact SDPs via strongly convex QMMP algorithms

can be computed using Algorithm 9) can be used to either produce an approximate optimizer of
the underlying SDP or declare v* ¢ U®.

Lemma 74. Suppose Assumption 19 holds. Then, r%) is positive and v* € U if

A

n
= 4p

4 -

Proof. Letr := ny(i) _

the definition of (¥ as

~y* . Using Assumption 19, we may bound the individual terms within

Thus, 7 > mln(Qp 2% — 7‘) = 2% — 7. Then, when r < 4%, we have 7() > 0 and
|

furthermore, r(@ > r = Hry(i) —

*

5

Lemma 75. Suppose Ax;umptzon 19 holds and v®) is positive. Then, q(v, X) and UD satisfy
Assumption 18 with . = §, L = 2L, R = Rp, D =2r"% and H = 2.

Proof. Begin by noting that for all v € U (i),
gl < A(yD) = D51 2 A(y) < A(yD) + 1 Dp1 < 2L1.
Lety € argmax. <) (7, 0(n—k)x)- Then,

1B < [B(GD)||, +orOR, < 2LR, = LR

Next, fory € S™~1

DI viilly _ 4r9p

— <2
v 2
DHZ 2178 HF i)PA
< —— < 1/2. [ |
LR L — /
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6 Accelerated first-order methods for a class of semidefinite programs

Lemma 76. Suppose Axmmptz'on 19 holds, r@ s positive, and 0 < € < 9ﬁRd]%§. Set § =

fre? _ (n—k)xk . .-
(O0taty)” andn = SnpposeX eR satisfies
QL{( ) ( ) Xe[él(lnlnk)xk Qu(i) (X) + (5
Then,

o Ify* € U, then Y (X)) is )-feasible.
o IfY (X) is n-feasible, then Y (X ) is e-optimal and e-feasible.

Proof. Supposey* € U () and define A := X — X*. By strong convexity and Theorem 27, we
have that £||A |3 < 8. Next, recalling that ¢;(X*) = 0 foralli € [m)], we deduce

o\ 12 m 1/2
(Z«MZ,Y ) +di) ) = (Zqi(fc)z)
= i=1
= max i%<tr(AT2AﬁA) + (A, X"+ BZ-,A>>

”’7”2:1 i:1

1) N 1)
< p<) +VEphy |2
i i

<8 5,

Vi
Here, the first inequality follows from ||A||§7 < 2—6 and Assumption 19, and the last inequality
follows as 6 = m < ,uR since 0 < e < 9deR2

Now, suppose Y (X ) is n-feasible. Note that ) < ¢ (as Rd > 1)and thus Y (X X) is immediately
e-feasible. Let 7 € arg max ) (7, X) so that Qi) (X) = (7, X). Then,

<Mobj7 Y(X)> = qObJ(X Z Fiqi(X

< Quo (X )+ H’YHzn

< . x } zé
a (Xeégmk)kuu()( )+ >+ »

< Optspr) + (0 + 2Ran),

where the first inequality follows from the n-feasibility of Y (X ) the second 1nequahty from the

premise of the lemma on X and the fact that |||, < H7 @ ) < 2Ry (this holds
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6.4 Solving k-exact SDPs via strongly convex QMMP algorithms

because ¥ € UD, U is the fo-ball of radius () centered at ’y(i), and by definition of 1@ we
have () < 2R, — H’y(i)

2). We may then use the definitions of § and 1) to bound

. f1e2 8 7 8
§+2Rm=—"1" 2+§€§ He 96_
(9pRal,) 9pRa

Here, the first inequality follows from the upper bound on € and the second inequality follows

from RL < p (Assumption 19). This then shows that Y (X) is e-optimal. |
d

We are now ready to present our full algorithm for computing approximate solutions to (SDP).
CertSDP (Algorithm 10) assumes access to a sequence 7y i) — ~*and applies a guess-and-double

*

scheme to guess when H’y(i) =7, is sufficiently small. It then applies Algorithm 9 to either

compute an e-optimal e-feasible solution Y'(X) or to declare that v* ¢ U@,

Algorithm 10 CertSDP

Given a rank-k exact QMP-like SDP satisfying Assumption 19, a sequence AW @)

and 0 < € < 9pRy 12
1. Set§ and i asin Lemma 76
2. Foreachi =20, 2% 22 ..
e Ifr® >0
a) Let!() = ]B%(’y(i), r(i)) and computeX' satistying

Quor(X)<  min  Qu(X)+4

XE]R(n—k)xk

using Algorithm 9 }
b) IfY(X) is n-feasible, output Y (X)

The next theorem gives rigorous guarantees on CertSDP and follows from Lemmas 74 to 76
and Theorem 31.

Theorem 32. Suppose (SDP) is a rank-k exact QMP-like SDPsatisfying Assumption 19, A ~@) L
Y and (0 < e < 9/3]%[1]%12,. Let T be such that Hy(t) —* ) < %ﬁforallt > T. Then, CertSDP

(Algorithm 10) accesses at most 2T iterates of the sequence ") and outputs an e-optimal and e-feasible
solution in

0 (\/ﬁlog (M> . log(T)> prox-map calls, and

o (;%7/4[3}?;1%[,

. log(T)) iterations within all prox-map calls.
€
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6 Accelerated first-order methods for a class of semidefinite programs

6.5 NUMERICAL EXPERIMENTS

In this section, we investigate the numerical performance of our new FOM, CertSDP, on rank-k
exact QMP-like SDPs that are both large and sparse. Specifically, we consider random instances of
distance-minimization QMPs and their primal and dual SDP relaxations of the form

. IXIE ., (xrax , EPNRV
XERI(ITE’C)X’C{Q : tr(T) +(Bi, X)+¢; =0, Vi € [m] (6.12)
o v {2 2 et
Zyinsfn <(”_k/ 0>,Y>: ¢ koK
€ k v — (* I*) -0

* g

[ AM)/2 B()/2
> o (e s or) =0}

In our instance generation procedure, we ensure that equality holds throughout this chain of
inequalities.

We will compare the performance of CertSDP on instances of (6.12) to that of several first-
order methods from the literature: the complementary slackness SDP algorithm (CSSDP) [60],
ProxSDP [164], and the splitting cone solver (SCS) [136]. We discuss these algorithms and relevant
implementation details in Section 6.5.1 and the instance generation procedure in Section 6.5.2
before presenting the numerical results in Section 6.5.3.

All algorithms and experiments are implemented in Julia and run on a machine with an AMD
Opteron 4184 processor with 12 CPUs and 70GB of RAM. Our code is publicly available at:

https://github.com/alexlihengwang/CertSDP

We additionally implement a variant of SketchyCGAL [198] adapted to our setting (see Sec-
tion 6.5.1'). We choose to leave this algorithm off of our large-format experiments as its performance
was very similar to that of CSSDP in preliminary experimentation (see Section F.2).

6.5.1 IMPLEMENTATION DETAILS

CErRTSDP. We implemented CertSDP (Algorithm 10) as presented in this chapter except a few
modifications. In addition to simplifying the overall algorithm, these modifications enable CertSDP
to be run without knowledge of the parameters [ and L. While the convergence guarantees of
Theorem 32 may no longer hold, we find empirically that CertSDP continues to perform very
effectively with these modifications.

* We instantiate CertSDP with Accelegrad [108] as the iterative method for producing iterates
~@). Asin [60], we apply Accelegrad to the penalized dual problem

A()/2 B(v)/2 ))

tr(T Ity - mi 0 Anﬁn c
max  tr(7T") + penalty mln( , (B(W)T/2 %Ik—T

yER™, TSk
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for some large value for the penalty parameter. It can be shown that the optimal value and
optimizers of this penalized dual problem coincide with that of the dual SDP whenever the
penalty parameter is larger than tr(Y™*); see [60]. In our experiments, we set the penalty
parameter to be 20 - tr(Y™).

In practice, it is extremely cheap to solve (QMMUP,,) even to high accuracy. Thus, we replace
the guess-and-double scheme in Algorithm 10 with a linear schedule, i.e., we solve (QMMP; )
once every ~ 250 iterations. Additionally, we replace the excessive gap technique used in
Theorem 31 with accelerated gradient descent (see Remark 75).

We set

= l . )‘max(A(”Y(i)))kmin(A('Y(i)))
P Amax(A(YD)) + Ain (A(7D))

if A(Y)) = 0,and r®) = 0 else. Equivalently, () := B(y®, ) is the largest ball
centered at 4(*) for which the condition number of A(v) for any v € B(y®, ") is
guaranteed to be at most twice the condition number of A(y("). Note that it still holds
that A(y) > Oforally € U® (as long as (@) s positive) and that v* € UD for all v
close enough to *.

()

In CautiousAGD (Algorithm 9), we terminate early if max;e|,,]|q; (Xt )| does not decrease
to zero geometrically. Indeed, this can only happen if v* ¢ U,

Theorem 30 gives an a4 priori guarantee on the number of inner iterations required for
solving each prox-map. Instead of using this number of iterations, in our code, we will
monitor the saddle point gap, i.e., the second term in (6.10), and break as soon as the saddle
point gap is small enough.

We warm-start the iterate X in CautiousAGD using the last iterate of the previous run of
CautiousAGD and warm-start 7y in the prox-map computation using the last iterate of the
previous run of the prox-map computation.

Unless the time limit is met first, the overall algorithm is terminated once CautiousAGD
produces a (107 13)-optimal solution of (QMMP,,) that satisfies MaXe () [¢i(Xt)| <
10713,

CSSDP.  The complementary slackness SDP algorithm (CSSDP) [60] similarly constructs a
sequence of iterates A = ~* and occasionally solves a compressed k-dimensional SDP [60, Min-

FeasSDP] in the vector space corresponding to the k-many minimum eigenvalues of the slack matrix
M (’y(i)). As in our implementation of CertSDP, we instantiate CSSDP with Accelegrad [108] as
the iterative method for producing iterates 7(*) and solve the compressed SDP once every = 250
iterations. The compressed SDPs are solved using SCS solver with all error parameters set to 10713,

Since CSSDP needs to solve the compressed SDP frequently, we make sure to instantiate the

optimization problem just once in order to amortize the cost of allocating the k X k symmetric

matrix variable.
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6 Accelerated first-order methods for a class of semidefinite programs

SKETCHYCGAL. Yurtsever et al. [198] observe that one may track any /znear image of the primal
matrix iterates (as opposed to the matrix iterate itself) in the CGAL [197] algorithm. Combining
this observation with the Nystrom sketch gives SketchyCGAL. In our code, we implement a
variant of this idea, where we replace the Nystrom sketch with the linear map sending a matrix in
S™ to its top-right (n — k) X k submatrix. We omit this algorithm in our large-format experiments
as its performance was very similar to that of CSSDP in preliminary experiments (see Section F.2).

ProxSDP anND SCS.  ProxSDP [164] and the splitting cone solver (SCS) [136] are first-order
methods that can be used to tackle large-scale SDPs. ProxSDP combines the primal-dual hybrid
gradient method with an approximate projection operation that allows it to replace a full eigende-
composition with a partial one whenever the rank of the true SDP solution is small. SCS employs
a first-order method to tackle the homogeneous self-dual embedding but does not explicitly take
advantage of possible low rank solutions.

In our experiments, we pass the SDP relaxations of our QMPs to the corresponding Julia
interfaces Proxspp.jland scs.j1 with all error parameters set to 10713, In contrast to CertSDP
and CSSDP, which achieve storage optimality, ProxSDP and SCS both store matrix iterates and
thus require substantially more memory.

6.5.2 RANDOM INSTANCE GENERATION

We generate random sparse instances of distance-minimization QMPs (6.12) as follows: Let
(n, k,m, ;1*, nnz) be input parameters. Here, (1, k, m) control the size of (6.12), p1* is the desired
value of Apmin(A(7*)) and nnz approximately controls the number of nonzero entries in each

A, A,

e Let Ay, ..., Ay, € S" ¥ be sparse symmetric matrices each with & nnz nonzero entries
thatare i.i.d. normal. We scale Ay, ..., Ay, such that || 4;]|, = 1 foralli € [m)].
* Let By,...,Bm € ROk be matrices where all entries are i.i.d. normal. We scale

By, ..., By suchthat | B;||p = 1foralli € [m].

* Pick a direction 4 uniformly from the surface of the sphere S”~1, then set v* := r4 where
r > 0solves Amin (A(7*)) = 147 Amin (1 A5 A;) = p*. Let X* = —A(y*) "1 B(v%).

* Finally, for each i € [m], set ¢; such that tr(%) + (B, X*) +¢; =0.

Exactness is guaranteed to hold throughout (6.12) as (y*, T™), where

. (") B(y)TA(v*)"'B(y*)
T* = =20 - :

9

* (12
achieves the value % in the third line of (6.12) (see Section F.1).

6.5.3 NUMERICAL RESULTS

To investigate the scalability of CertSDP in terms of n, we fix k = 10, m = 10, u* = 0.1
and nnz = n. Note that in this regime, the A; matrices are each individually very sparse with
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approximately one nonzero entry per row or column. We then vary n such that the height of the
matrix variable X € R("=F)xk je n — k takes the values 103, 104, 10°. For each value of
n — k, we generate 10 random instances of (6.12) according to Section 6.5.2 and measure the time,
error, and memory consumption of the tested algorithms.

Remark 76. We measure the memory consumption of each algorithm by monitoring the virtual
memory size (vsz) of the process throughout the run of the algorithm and report the difference
between the maximum value and the starting value. This is the same measurement that is performed
in [198]. We caution that this number should only be treated as a very rough estimate of the storage
requirements. Indeed, virtual memory need not be allocated at all for small enough programs (so
that some algorithms register as using no memory at all for small enough values of n — k) and
furthermore, when it is allocated, it is not always fully used. Experimentally, we found that on
our machine, storage of up to ~ 1.0 MB was often measured as not using any memory at all. We
report such measurements as 0.0 MB in our tables (Tables 6.1 to 6.3) and as 1.0 MB in our log-scale
plot Figure 6.3. O

We ran each algorithm with time limits of 3 x 102, 10%, and 5 x 10% seconds forn — k = 103,
104, 10° respectively. SCS is not tested forn — k = 10* as it was unable to complete a single
iteration within the time limits and utilized over 70GB of memory. Similarly, ProxSDP and SCS
were not tested for n — k = 10° as both came to complete failures due to excessive memory
allocation.

Detailed numerical results are reported in Tables 6.1 to 6.3 forn — k = 103, 104, and 10°
respectively. Additional plots show the time and accuracy of each algorithm (Figure 6.2), the
average memory usage of each algorithm (Figure 6.3), and the convergence behavior of CertSDP
versus CSSDP on a single instance of each size (Figure 6.4). The plots on the left of Figure 6.4
show the primal squared distance || X — X*||% and the dual suboptimality

A 2 B 2
Opts.12) — (tl"(T) -+ penalty - min (07 Amin (B((f;y))T//Q C(];Y)(Iz)i T) ))

for the iterates produced by CertSDP and CSSDP as a function of time. The plots on the right of
Figure 6.4 show the primal squared distance for the iterates produced by CertSDP within the final
call to CautiousAGD.

Algorithm  time (s) std. X — X*||3  std. memory (MB)  std.
CertSDP  1.3x10° 7.6x102 1.9x10722 42x107% 0.0 0.0
CSSDP 3.0x10® 58x107! 73x1072 34x1072 0.0 0.0
ProxSDP 2.1 x 102 1.1x10' 1.2x1071 32x10719 4.8 x 10! 1.9 x 10!
SCS 3.1x10% 25x100  51x10° 95x107° 5.3 x 102 4.3 x 10!

Table 6.1: Experimental results for (n — k) = 103 (10 instances) with time limit 3 x 10 seconds.

We make a few observations:
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Figure 6.2: Convergence plots comparing CertSDP, CSSDP, ProxSDP, and SCSforn —k = 103, 104, 10°.
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At each setting of n — k, we generate 10 instances of (6.12) and plot the time and error of the
solution returned by each algorithm.



6.5 Numerical experiments

Algorithm  time (s) std. X — X3 std. memory (MB)  std.

CertSDP 4.5 x 103 7.0x10® 1.9x107%2 52x1072 85 1.2 x 10!
CSSDP 1.0x 10* 6.6x10"1 27 94x 1071 6.2 1.5 x 10!
ProxSDP 1.2 x10* 1.1x10%2 2.9 9.9 x 1071  1.9x 104 1.2 x 102

Table 6.2: Experimental results for (n — k) = 10 (10 instances) with time limit 10% seconds. SCS was
unable to complete a single iteration within the time limit and utilized over 70GB of memory.

Algorithm  time (s) std. X — X* H% std. memory (MB)  std.
CertSDP 5.0 x 10* 6.2x 102 25x1072 65x 1072 2.3 x 102 2.0 x 102
CSSDPT 5.0 x 10* 4.7 2.8 5.1x 1071 2.0 x 102 2.5 x 102

Table 6.3: Experimental results for (n — k) = 10° (10 instances) with time limit 5 x 10* seconds. SCS
and ProxSDP are not tested as they both come to complete failure due to memory allocation.
TCSSDP failed due to numerical issues within the eigenvalue computation on three instances.

=
=
O
20 10 .
wn
=}
B
[
o
5
S 10°L .
le3 led leb
size: n — k

O CertSDP @ CSSDP 0OProxSDP @SCS

Figure 6.3: Memory usage of different algorithms as a function of the size n — k. In this chart, we plot 0.0
MB at 1.0 MB (see Remark 76 for a discussion on measuring memory usage).
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Figure 6.4: Comparison of convergence behavior between CertSDP (Algorithm 10) and CSSDP. The first,
second, and third rows show experiments withn — k = 102, 10%, and 10° respectively. The
right subplots give zoomed-in views of the primal squared distance in CertSDP on the final call
to Algorithm 9.
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Forn — k = 103 (see Table 6.1), both CertSDP and ProxSDP were able to achieve high
accuracy within the time limit, while CSSDP and SCS could not. ProxSDP was faster than
CertSDP while CertSDP used significantly less memory.

Forn — k = 10% (see Table 6.2), CertSDP was the only algorithm that was able to achieve
high accuracy within the time limit. The measured memory usage of CertSDP and CSSDP
both had high variance, however it is clear that these algorithms use much less memory than
ProxSDP and SCS. As previously mentioned, SCS used over 70GB of memory at this size.

Forn — k = 10° (see Table 6.3), CertSDP and CSSDP were the only algorithms that could
be run without memory allocation errors. While neither algorithm was able to achieve
the desired accuracy within the time limit, CertSDP (average primal squared distance of
2.5 x 1072) significantly outperformed CSSDP (average primal squared distance of 2.8).

The dual suboptimality for CertSDP and CSSDP behave identically. This is expected as we
employ Accelegrad to generate both sequences.

The primal squared distance and the dual suboptimality for CSSDP track quite closely. This
is expected from [60, Theorem 4.1, Table 3], which bounds the primal squared distance by
a constant factor of the dual suboptimality for CSSDP.

The convergence behavior of CautiousAGD depends on whether U (©) in CertSDP is a
certificate of strict complementarity.

When U is not a certificate of strict complementarity, CautiousAGD behaves as in the
bottom-right plot of Figure 6.4: It briefly converges linearly before plateauing. This makes
sense as the iterates in CautiousAGD should converge linearly to arg min y Q) (X) #
X,

When U is a certificate of strict complementarity, the iterates of CautiousAGD converge
linearly to X (see the top-right and middle-right plots of Figure 6.4).
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7 VARIANTS OF SIMULTANEOUS
DIAGONALIZABILITY OF QUADRATIC
FORMS

This chapter is based on joint work [177] with Rujun Jiang.

A set of quadratic forms is simultaneously diagonalizable via congruence (SDC) if there exists a
basis under which each of the quadratic forms is diagonal. This property appears naturally when
analyzing quadratically constrained quadratic programs (QCQPs) and has important implications
in globally solving such problems using branch-and-bound methods. This chapter extends the
reach of the SDC property by studying two new weaker notions of simultaneous diagonalizability.
Specifically, we say that a set of quadratic forms is almost SDC (ASDC) if it is the limit of SDC sets
and d-restricted SDC (d-RSDC) if it is the restriction of an SDC set in up to d-many additional
dimensions. In the context of QCQPs, these properties correspond to problems that may be
diagonalized after arbitrarily small perturbations or after the introduction of d additional variables.
Our main contributions are complete characterizations of the ASDC pairs and nonsingular triples
of symmetric matrices, as well as a sufficient condition for the 1-RSDC property for pairs of
symmetric matrices. Surprisingly, we show that every singular symmetric pair is ASDC and that
almost every symmetric pair is 1-RSDC. We accompany our theoretical results with preliminary
numerical experiments applying these constructions to solve QCQPs within branch-and-bound
schemes.

7.1 INTRODUCTION

This chapter investigates two new notions of simultaneous diagonalizability of quadratic forms
and their applications in solving quadratically constrained quadratic programs (QCQPs).

Let S™ denote the real vector space of n X n symmetric matrices.! Recall that a set of matrices
A C S" is said to be simultaneously diagonalizable via congruence (SDC) if there exists an invertible
P € R™*" such that PTAP is diagonal for every A € A. This property has attracted significant
interest in the optimization community in recent years in the context of solving subclasses of
QCQPs and their relaxations [93, 107, 116, 134, 181, 199, 200]. Specifically, the SDC property
corresponds to the ability to rewrite a given QCQP as a dzagonal QCQP (see Section 7.1.1 below).
The SDC property also finds applications in areas such as signal processing, multivariate statistics,
medical imaging analysis, and genetics; see [39, 175] and references therein.

'While all of our results hold with only minor modifications over both C™ and Hermitian matrices and R™ and
symmetric matrices, we will simplify our presentation in the main body by discussing only the real setting; see
Section G.3 for a discussion of our results in the complex setting.
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7 Variants of simultaneous diagonalizability of quadratic forms

In this chapter, we take a step towards increasing the practical importance of the SDC property
in the context of globally solving QCQPs by investigating two weaker notions of simultaneous
diagonalizability. These weaker notions formalize methods for diagonalizing classes of a priori

non-diagonalizable QCQPs.

7.1.1 MOTIVATION

A general QCQP can be written as

. zTAjx + 2blx +¢; 0O; 0, Vi € [2,m
Opt = Ignﬂ{fn{xTAlx +2blz + 1 : ver [2,m] }, (7.1)

where forevery i € [m], wehave A; € S",b; € R",¢; € R,and 0; € {<,=};and L C R" is
a polyhedron. In words, the objective is to minimize a quadratic function subject to quadratic
(in)equality constraints and linear (in)equality constraints. QCQPs are highly expressive and
capture numerous hard problems of both applied and theoretical interest; see [11, 161, 181] and
references therein. In fact, this class of problems is NP-hard even if £ = [—1, 1]" and there are no
quadratic constraints (e.g., via max-cut).

We will refer to a QCQP in which the set of symmetric matrices A = {A4;,..., 4,,} is SDC
as a diagonalizable QCQP. By definition, a diagonalizable QCQP can be rewritten as a diagonal
QCQP (one in which A is a set of diagonal matrices) upon a linear change of variables. Indeed,
letting y = P~ lzand D; = PTA;P gives

inf {yTDly +2(P"01)Ty + 1 :

yT Dy +2(PTh)Ty + ¢; O; 0, Vi € [2,m] }
yeRn '

yePIL

While diagonal QCQPs are still NP-hard in general, they benefit from a number of advantages
over more general QCQPs:

* Itis well known that the standard Shor semidefinite program (SDP) relaxation of a diagonal
QCQP is equivalent to a second-order cone program (SOCP) [181]. Consequently, the SDP
relaxation can be solved substantially faster for diagonal QCQPs than for general QCQPs.
Similar ideas have be used to build cheap but strong convex relaxations within branch and
bound (BB) frameworks for nonconvex QCQPs [199, 200].

As we will see in Section 7.7, when P is well-conditioned, the computational savings of
replacing an SDP with an SOCP within every node of a BB tree can outweigh the computa-
tional costs of preprocessing a diagonalizable QCQP into a diagonal QCQP.

* Additionally, qualitative properties of the standard SDP relaxation are often easier to analyze
in the context of diagonal QCQPs. For example, a long line of work has investigated when
the SDP relaxations of certain diagonal QCQPs are exact (for various definitions of exact)
and have given sufficient conditions for these properties [21, 24, 38, 87, 89, 92, 93,112, 180].
Often, such arguments rely on conditions (such as convexity” or polyhedrality) of the
quadratic image [147] or the set of convex Lagrange multipliers [181]. In this context, the

2The convexity of the quadratic image is sometimes referred to as “hidden convexity.”

208



7.1.2

7.1 Introduction

SDC property ensures that both of these sets are polyhedral. While such conditions have
been generalized beyond only diagonal or diagonalizable QCQPs, the sufficient conditions
often become much more difficult to verify [179, 181].

As we will see in Section 7.7, the SDP relaxation of a diagonal QCQP with bound constraints
(as are encountered within BB schemes) admits low-rank solutions. Heuristically, this
suggests that the corresponding SDP relaxations should be strong. We verify this intuition
with numerical experiments.

MAIN CONTRIBUTIONS AND OUTLINE

In this chapter, we define and analyze the almost SDC (ASDC) and d-restricted SDC (d-RSDC)
properties; see Sections 7.2 and 7.5 for precise definitions. Informally, A C S™ is ASDC if it is
the limit of SDC sets and d-RSDC if it is the restriction of an SDC set in S"T% to S™. In the
context of QCQPs, if the set A = { Ay, ..., Ay} is ASDC, then the QCQP can be diagonalized
after arbitrarily small perturbations to the A; matrices. In a similar vein, if A is &-RSDC, then the
QCQP can be diagonalized after the introduction of d additional “dummy” variables.

A summary of our contributions, along with an outline of the chapter, follows:

We conclude this section in Section 7.1.3 by reviewing related work on BB methods for
QCQPs, the SDC property, and the almost simultaneously diagonalizable via similarity

property.

In Section 7.2, we formally define the SDC and ASDC properties and review known
characterizations of the SDC property. We additionally highlight a number of behaviors of
the SDC property which will later contrast with those of the ASDC property.

In Section 7.3, we give a complete characterization of the ASDC property for pairs of
symmetric matrices. In particular, Theorem 34 states that every singular® pair { A, B} C S™
is ASDC. The proof of this statement relies on the canonical form for pairs of symmetric
matrices [173] under congruence transformations and the invertibility of a certain matrix
related to the eigenvalues of an “arrowhead” matrix.

In Section 7.4, we give a complete characterization of the ASDC property for nonsingular
triples of symmetric matrices. Our proof and constructions rely on facts about block matrices
with Toeplitz upper triangular blocks. We review the relevant properties of such matrices in
Section G.2.

In Section 7.5, we formally define the d-RSDC property and highlight its relation to the
ASDC property. We then show in Theorem 36 that the 1-RSDC property holds for almost
every pair of symmetric matrices. We also give a construction for the d-RSDC property for
d > 1 and almost every pair of symmetric matrices. This second construction makes use of
additional degrees of freedom and empirically leads to improved performance in the context

of globally solving QCQPs (see Section 7.7).

3See Definition 28.
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7 Variants of simultaneous diagonalizability of quadratic forms

* In Section 7.6, we construct obstructions to « prior: plausible generalizations of our devel-
opments in Sections 7.3 to 7.5. Section 7.6.1 shows that, in contrast to Theorem 34, there
exist singular triples of symmetric matrices which are zot ASDC. The same construction can
be interpreted as a triple of symmetric matrices which is not d-RSDC forany d < |[n/2];
this contrasts with Theorem 36. Next, Section 7.6.2 shows that a natural generalization
of our characterizations of the ASDC property for pairs and triples of symmetric matrices
cannot hold for general m-tuples; specifically this natural generalization fails form > 7.

* In Section 7.7, we revisit one of the key motivations for studying the ASDC and d-RSDC
properties—solving QCQPs more efficiently. In this context, we begin by deriving a number
of theoretical results that give heuristic reasons why one would expect SOCP-based BB
methods for diagonal QCQPs to outperform SDP-based BB methods for more general
QCQPs. We then present a number of preliminary numerical experiments that corroborate
this intuition.

Remark 77. In the main body of this chapter, we will state and prove our results for only the real
symmetric setting. Nevertheless, our results and proofs extend almost verbatim to the Hermitian
setting by replacing the canonical form of a pair of real symmetric matrices (Proposition 23) by
the canonical form for a pair of Hermitian matrices (see [105, Theorem 6.1]). As no new ideas or
insights are required for handling the Hermitian setting, we defer formally stating our results in the
Hermitian setting and discussing the necessary modifications to our proofs to Section G.3.  [J

7.1.3 RELATED WORK

BRANCH-AND-BOUND METHODS FOR QCQPs  Most existing works for globally solving QCQPs
are based on spatial BB methods. Audetetal. [8] developed an LP-based branch and cut method for
QCQPs using the reformulation-linearization technique (RLT) [158]. Linderoth [109] proposed
a triangle-based BB algorithm for solving nonconvex QCQPs, where two-dimensional triangles
and rectangles are used to partition the feasible region. Recently, Zhou et al. [200] proposed a
BB algorithm for QCQPs with nonconvex objective functions and convex quadratic constraints,
based on the SDC property between the objective function and a specific aggregation of the convex
quadratic constraints under a positive definiteness assumption. Luo et al. [116] propose a BB
algorithm based on the SDC property of two positive semidefinite matrices for solving a nonconvex
QCQP arising from optimal portfolio deleveraging problems. Please refer to [27, 44, 45, 63, 114]
for other recent developments in globally solving nonconvex QCQPs.

THE SDC PROPERTY FOR SETS OF QUADRATIC FORMS AND SDC ALGORITHMS. The SDC
property for a pair of symmetric matrices (more generally, Hermitian matrices) is well-understood
and follows from results due to Weierstrass [187] and Kronecker (see [102]). We review these
results in Section 7.2 (see also Proposition 23). More recently, there has been much interest in
the optimization literature towards understanding the SDC property for general m-tuples of
quadratic forms [93, 107, 134]. In fact, the search for “sensible and “palpable” conditions” for this
property appeared as an open question on a short list of 14 open questions in nonlinear analysis and
optimization [84]. In the real symmetric setting, Jiang and Li [93] gave a complete characterization
of this property under a semidefiniteness assumption. This result was then improved upon by
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Nguyen et al. [134] who removed the semidefiniteness assumption. Le and Nguyen [107] addi-
tionally extend these characterizations to the case of Hermitian matrices. Bustamante et al. [39]
gave a complete characterization of the simultaneous diagonalizability of an m-tuple of symmetric
complex matrices under T-congruence.*

We remark that this line of work is “algorithmic” and gives numerical procedures for deciding if
a given set of quadratic forms is SDC. See [107] and references therein.

THE ALMOST SDS PROPERTY. An analogous theory for the a/most simultaneous diagonal-
izability of /inear operators has been studied in the literature. In this setting, the congruence
transformation is naturally replaced by a similarity transformation® and the SDC property is
replaced by simultaneous diagonalizability viz similarity (SDS). A widely cited theorem due to
Motzkin and Taussky [127] shows that every pair of commuting linear operators, i.e., a pair of matri-
ces in C™*"™, is almost SDS. This line of investigation was more recently picked up by O’meara and
Vinsonhaler [137] who showed that triples of commuting linear operators are almost SDS under a
regularity assumption on the dimensions of eigenspaces associated with the linear operators.

7.1.4 ADDITIONAL NOTATION

LetN ={1,2,...}and Ny = {0, 1,... }. Form,n € Ny, let [m,n] = {m,m+1,...,n}
and [n] = {1,...,n}. By convention, if m > n + 1 (respectively, n < 0), then [m,n] = &
(respectively, [n] = @). Givenz € R™, letsupp(z) = {i € [n] : x; # 0} denote the support of
x. Let|I| be the cardinality of aset I. For vy, . . ., oy, € R,letDiag(ay, ..., ax) € RF¥** denote
the diagonal matrix with ith entry o. For Ay, ..., A}, square matrices, let Diag(Ax, ..., Aj)
denote the block diagonal matrix with ith block 4;. Given A € R"*" and B € R™*™, let
A@ B € ROHm)x(+m) 4nd A® B € R™™™ denote the direct sum and Kronecker product
of A and B respectively. Given A, B € R™*",let [A, B] := AB — BA denote the commutator
of Aand B. For A € R™*", let || A|| denote the spectral norm of A. Given a € C, let Re(«),
Im(«), and o* denote the real and imaginary parts and complex conjugate of « respectively. For
A € C™", let A* denote the conjugate transpose of A. We will denote the imaginary unit by the
symbol i in order to distinguish it from the variable 7, which will often be used as an index.

7.2 PRELIMINARIES

In this section, we define our main objects of study and recall some useful results from the literature.

Definition 26. A set A C S" is simultaneously diagonalizable via congruence (SDC) if there exists
an invertible P € R™*" such that PTAP is diagonal forall A € A. O

Remark 78. The SDC property is the natural notion for simultaneous diagonalization in the
context of quadratic forms. Indeed, suppose A C S™ is SDC and let P denote the corresponding
invertible matrix. Then, performing the change of variables y = Pz, we have that 2T Az =
yT(PTAP)y is separable in y for every A € A. O

“We emphasize that Bustamante et al. [39] consider complex symmetric matrices and adopt T-congruence as their
notion of congruence.
>Recall that two matrices A, B € C™*™ are similar if there exists an invertible P € C™*" such that A = P~ BP.
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7 Variants of simultaneous diagonalizability of quadratic forms

Observation 5. The SDC property is closed under taking spans and subsets. In particular, A C S™
isSDC if and only if { A1, . .., Ap} is SDC for some basis { A1, . .., Ap, } of span(A).

We begin by studying the following relaxation of the SDC property.

Definition 27. A set A C S" is almost simultaneously diagonalizable via congruence (ASDC) if
there exist sequences A; — A for every A € Asuch thatforeveryi € N, theset {A4; : A € A}
is SDC. g

Observation 6. The ASDC property is closed under taking spans and subsets. In particular, A C S™
is ASDC if and only if { A1, . .., Ap, } is ASDC for some basis { A1, . .., Ap, } of span(A).

When |.A| is finite, we will use the following equivalent definition of ASDC.

Observation 7. 4 finiteset {Ax, ..., Am} C S" is ASDC if and only if for all € > 0, there exist
Ay, ..., Ay € S" such that

* foralli € [m), the spectral norm HAZ — A

< ¢ and
. {Ah...,/im}szDc

We will additionally need the following two definitions.

Definition 28. A set A C S" is nonsingular if there exists a nonsingular A € span(.A). Else, it is
singular. O

Definition 29. Given aset A C S", we will say that S’ € A is a max-rank element of span(A) if
rank(S) = maxec 4 rank(A). O

7.2.1 CHARACTERIZATION OF SDC

A number of necessary and/or sufficient conditions for the SDC property have been given in
the literature [39, 88, 105]. For our purposes, we will need the following two results. The first
result gives a characterization of the SDC property for nonsingular sets of symmetric matrices
and is well-known (see [88, Theorem 4.5.17]). The second result, due to Bustamante et al. [39],
gives a characterization of the SDC property for singular sets of symmetric matrices by reducing
to the nonsingular case. For completeness, we provide a short proof for each of these results in
Section G.1.

Proposition 21. Let A C S™ and suppose S € span(A) is nonsingular. Then, A is SDC if and

only if S Y A is a commutin ¢ set of diagonalizable matrices with real eigenvalues.

Proposition 22. Let A C S"™ and suppose S € span(A) isa max-rank element of span(A). Then,
A is SDC if and only if range(A) C range(S) forevery A € Aand {A|range(5) : Ae .A} is
SDC.

We close this section with two lemmas highlighting consequences of the SDC property which
we will compare and contrast with consequences of the ASDC property.
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7.3 The ASDC property of symmetric pairs

Lemma 77. Let A C S™ and suppose S € span(A) is positive definite. Then, A is SDC if and
only if STYV2ASTY2 is 4 commuting set.

Proof. This follows as an immediate corollary to Proposition 21 and the fact that S~! A has the
same eigenvalues as the symmetric matrix S —12A8-1/2, [

In particular, when span(.A) contains a positive definite matrix, the SDC and ASDC properties
can be shown to be equivalent.

Corollary 27. Let A C S™ and suppose S € span(A) is positive definite. Then, A is SDC if and
only if A is ASDC.

Despite Corollary 27, we will see soon that the ASDC property is qualitatively quite different to
the SDC property in a number of settings (in particular, for singular pairs of symmetric matrices;
see Theorem 34). Specifically, we will contrast the following consequence of the SDC property.

Lemma 78 ([107, Lemma 9]). Let A C S™ and suppose there exists a common block decomposition

=)

orall A € A Then Ais SDC ifand onlyif{ A: Ae A} C S i8SDC.
e 'y

7.3 THE ASDC PROPERTY OF SYMMETRIC PAIRS

In this section, we will give a complete characterization of the ASDC property for pairs of symmetric
matrices (henceforth, symmetric pairs). We will switch the notation above and label our matrices
A = {A, B}. Our analysis will proceed in two cases: when { A, B} is nonsingular and singular
respectively.

7.3.1 A CANONICAL FORM FOR SYMMETRIC PAIRS

In this section and the next, we will make regular use of the canonical form for symmetric pairs
[105, 173].

We will need to define the following special matrices. Forn > 2, let F},, Gy, H,, € S™ denote
the matrices of the form

1 0 10
Fn:< )7 Gn:< 1)7 and Hn:< O >
1 0. 1.
01 0

SCtFl = (1) and Gl = Hl = (0)
The following proposition is adapted® from [105, Theorem 9.1].

®The original statement of [105, Theorem 9.1] contains one additional type of block: those corresponding to the

eigenvalues at infinity. These blocks do not exist in our setting by the assumption that A is a max-rank element of
span({A, B}).
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7 Variants of simultaneous diagonalizability of quadratic forms

Proposition 23. Let A, B € S™ and suppose A is a max-rank element of span({A, B}). Then,
there exists an invertible P € R™ "™ such that PTAP = Diag(S1,...,Sy) and PTBP =
Diag(Th, . .., Tw) are block diagonal matrices with compatible block structure. Here, m = mq +
ma + m3 + my corresponds to four different types of blocks where each m; € Nq may be zero.
Additionally, my € {0, 1}.

The first myi-many blocks of PTAP and PTBP have the form

S; = O','Fni, T, = Uz(Asz + Gm)’

wheren; € N, 0; € {£1}, and N\; € R. The next mo-many blocks of PTAP and PTBP have the

form
Si = (F P, ) T, =F, ® (gnm Re ?>)) + Gy, @ P, (7.2)

Im

wheren; € Nand \; € C\ R. The next mg-many blocks of PTAP and PTBP bave the form

F”i
Si - 0 ) E - GQni—i-l’
Fni

wheren; € N. If my = 1, then the last block of PTAP and PTB P has the form Sy, = Ty, = 0,
for some ny, € N,

m

We will repeatedly encounter real matrices that represent complex numbers, e.g., the blocks
S, T, fori corresponding to my in the canonical form. We recall some useful facts: Let J € C2x2
be the unitary matrix

J = (@ ‘@) e C?*2,
V2 V2

Then, a matrix of the form ( 3183 _RIZ(I?;\)” ) has the same eigenvalues as
T (tmtr) mecny )7 = (M)

7.3.2 THE NONSINGULAR CASE

In this section, we will show that if A is invertible, then { 4, B} is ASDC if and only if A~! B has
real eigenvalues. We begin by examining two examples that are representative of the situation when
Ais invertible. Note in this case, that m3 = m4 = 0 in the canonical form (Proposition 23).

Example 18. Let A € R and consider

1 0 A
A:<1 )ZFQ, B:<)\ 1>:)\F2+G2
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7.3 The ASDC property of symmetric pairs

Noting that A~! B is not diagonalizable, we conclude via Proposition 21 that { 4, B} is not SDC.
On the other hand, let ¢ > 0 and define

a=(5 1)

Now, A~1 B has eigenvalues \ & /€, whence by Proposition 21 {A, B} is SDC. O
Example 19. Let A € C \ R and consider

L 1 ~ (Im(X)  Re())
A_F2_<1 ) B_<Re()\) —Im(/\))'

Noting that A™! B has non-real eigenvalues, we conclude via Proposition 21 (and the fact that
eigenvalues vary continuously) that { A, B} is not ASDC. O

The following technical lemma will be useful in proving the main result of this section and shows
that it is possible to perturb B to ensure that A~1 B has simple eigenvalues while maintaining its
number of real/complex eigenvalues.

Lemma 79. Let {A, B} C S™ and suppose A is invertible. For all ¢ > 0, there exists B such that

5] <
* A7 B bas simple eigenvalues (whence A~1 Bis diagonalizable), and

» A7'B and A™' B bave the same number of real eigenvalues connted with multiplicity.

Proof. Without loss of generality, we may assume that A = Diag(S1,...,5,) and B =
Diag(T7, ..., Tj,) arein canonical form (Proposition 23). Note that as A is invertible, we will have
mg = my = 0. For notational convenience, letr = mj andletoy,..., 00,11 ..., Ny A1, ...y Am
denote the quantities furnished by Proposition 23. We will give a probabilistic construction (sum-
marized in Algorithm 11) for B that satisfies all three conditions with probability one.

Letd = § and pick a random 7 uniformly from [—d, 6]™. Define the blocks T} as

Ty =T, + oi(n; Fy, + 0H,,), Vi € [r],
Ty = T; + (miFp, +0H,,) ® Fy, Vi € [r+1,m], (7.3)

and set B := Diag(T1, ..., ;). Then, A™'B = Diag(S; 'Th, . .., S}, ' T) is again a block
diagonal matrix. Note that for i € [r], the block

Sz_lTl = ()‘Z + ni)Ini + FniGni + 5Fnsz
is a Toeplitz tridiagonal matrix. Next, fori € [r + 1, m], the block S; 7 has the form

_1 ~‘ _
SiTi=1In® (m(x,») Re(\)

) + (iln, + Fn,Gpn, + 0F, Hy,) ® Io. (7.4)
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7 Variants of simultaneous diagonalizability of quadratic forms

Algorithm 11 Construction for simple eigenvalues

Given A’, B’ € S" such that A’ is invertible and € > 0
1. Compute the canonical form [105] for { A/, B}, i.e.,

PTA'P = A = Diag(S1,...,Sm), and
PTB'P = B = Diag(Th, ..., Ty).

2. Sete = GI/HP_1H2 andd = §

3. Pick ) uniformly at random from [—4,0]™ . .
4. Return {A’, P"TBP~!} where B := Diag(T1,. .., Ty) and T; are defined in (7.3)

Note that S, LT: has the same eigenvalues as
(I, ® J) LS Ty(1,, © J)

)\,
= Ini R ( 4 /\%> + (nilm —+ Fnsz + 6Fn2an) ® Is.

)

This is, up to a simultaneous permutation of rows and columns, a direct sum of two Toeplitz
tridiagonal matrices.

Using the closed form expression for eigenvalues of Toeplitz tridiagonal matrices [88], we have
that A~ B has eigenvalues

RSV N e
ZAul{)w%—m+2\/(§cos<ni+1> 1j € [nl]}

"y {A+m+2\/5cos( ”1) :je[ni],)\e{)\i,Af}}.

i=r+1 ni +

Note that the quantity 7; + 2v/ Cos(ni%) is real so that A~ B and A~'B have the same
number of real eigenvalues counted with multiplicity. Furthermore, as ) € [—9, 6]™ was picked

uniformly at random, we have that A~! B has only simple eigenvalues with probability one.
B— BH - HDiag(T1 T T — Tm)H = max;| T, - T3] <. m

Finally,

The following theorem follows as a simple corollary to our developments thus far.

Theorem 33. Let A, B € S™ and suppose A is invertible. Then, { A, B} is ASDC if and only if
A™LB bas real cigenvalues.

Proof. (=) This direction holds trivially by continuity of eigenvalues and the assumption that A
is invertible. 5 .
(<) Lete > 0. Then, applying Lemma 79 to { A, B}, we get B such that HB — BH <€

and A~ B is a matrix with real simple eigenvalues. We deduce by Proposition 21 that {A, B } is
SDC. n

216



7.3 The ASDC property of symmetric pairs

Corollary 28. Ler A = {A1, ..., Ap} in (7.1) and suppose span(A) = span{A, B} where

A is invertible. Furthermore, suppose A=1 B has real eigenvalues. Then for any € > 0, there exist

H/L — A;|| < €such that
. . aT Az 4 20T +¢; 0; 0, Vi € [2,m
;EHan{xTAlx +2bJz + 1 : ver [2,m] } (7.5)

is a diagonalizable QCQP. The matrices A; and the invertible matrix P diagonalizing (7.5) can be
computed via Algorithm 11.

7.3.3 THE SINGULAR CASE

In the remainder of this section, we investigate the ASDC property when { A, B} is singular. We
will show, surprisingly, that every singular symmetric pair is ASDC. We begin with an example and
some intuition.

Example 20. In contrast to the SDC property (cf. Lemma 78), the ASDC property of a pair
{A, B} in the singular case does not reduce to the ASDC property of {A, B }, where A and B
are the restrictions of A and B to the joint range of A and B. For example, let

a=() m=(",)

and let A and B denote the respective 2 X 2 leading principal submatrices.
By Theorem 33, {/_1, B } is not ASDC (and in particular not SDC). On the other hand, we
claim that {4, B} is ASDC: For € > 0, consider the matrices

_ . 1 e
A= (1 ! ), B = —1 /€ |.
¢ Vee 0
A straightforward computation shows that A~1B has simple eigenvalues {—1, 0,1} whence
{4, B}isspC.
The fact that {f_l, B } is not SDC is equivalent to the statement: there does 7oz exist a basis

{p1,p2} € R? such that the quadratic forms 2T Az and T Bz can be expressed as

2T Az = ay(p]z)” + aa(piz)®, and

xTBz = 51(?{56)2 + ﬁQ(PEx)Qa

for some «;, 5; € R. On the other hand, the fact that {fl, B } is SDC shows that there exists a
spanning set {p1, p2, p3} C R? and ay, 3; € R such that

2T Az = Oél(pIJU)Q + 042(17593)2 + aB(ng)za and
2T Bx = 1 (plx)” + Bo(pha)” + Ba(pix)’.
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7 Variants of simultaneous diagonalizability of quadratic forms

Intuitively, the ASDC property asks whether a set of quadratic forms can be (almost) diagonalized
using 1 (the ambient dimension)-many linear forms whereas the SDC property may be forced to
use a smaller number of linear forms. 0

Theorem 34. Let {A, B} C S™ If{ A, B} issingular, then it is ASDC.

Proof. We make simplifying assumptions: Without loss of generality, we may assume that A is a
max-rank element of span({ A, B}) and A = Diag(S1,...,Sm)and B = Diag(T1,...,T\n)
are in canonical form (Proposition 23). We may assume m1 = 0 (else consider the submatrix
of A, B corresponding to the remaining blocks). As A is singular, we have m3 4+ my4 > 1. In
fact, we may assume m3 + my = 1 (else, perturb the submatrix of A corresponding to the first
m — 1 blocks so that A is nonsingular on those blocks). Similarly, if m4 = 1, we may assume
that n,,, = 1. Finally, assume Diag(Sl_lTl, e S;ﬁle_l) has simple eigenvalues (clse apply
Algorithm 11 to the first m — 1 blocks). For notational convenience, let ma = k.

After the above simplifying assumptions, there are three cases left to consider: where m > 2
and my4 = 1, where m > 2 and m3 = 1, and where m = 1. In the first two cases, A, B have the
form

1 Im(A1) Re(Ar)
1 Re()q) —Im()\l)
A= , B =
1 Im(A;) Re(Ag)
1 Re(M,) —Im(Ag)
Sm T,
(7.6)
where A\, AT, ..., A\, Af € C\ Rare distinct.
Casel. Incasel, S, = 15, = 07. Set
1 Im(\1) Re(M\1) V& Re(ar)
1 Re(A1) —Im(A1) V8 Im(aq)
A= || By= - -
L Im(Ar) Re(Ag) V6 Re(ay,)
5 Re(Ak) —Im(Ag) V8 Im(ay,)
VERe(ar) VéIm(a1) | -+ | VdRe(ay) VIm(ay) 0z
(7.7)
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7.3 The ASDC property of symmetric pairs

for some o € CF, 2 € R, and § > 0 to be chosen later. The eigenvalues ijl(s_lég are equal to
the eigenvalues of

J B J
AS'B
J o J

1 1

Ve Ve
A1 04’1‘/\/i
M o1/V2

- M ar V2|
A o /V?2
—a’{i*/\/i —ali/\/§ ce —aZi*/\/i —aki/\/i z
The characteristic polynomial (in §) of this latter matrix is
k k
(=TI =00 =&+ > (m(a?)¢ —m(adX)) [T — OO =€) (78)
i=1 i=1 j#i

and is independent of & > 0. As \; are all non-real, given any x,y € R, itis possible to construct
a € CF such that

Im(a?) =y; and —Im(a?\) =x;, Vie [k (7.9)

Setting «v in this manner reduces the characteristic polynomial to

k k

(z=& [ OO =&+ D (mi+ &) [ [\ — N —9). (7.10)

i=1 i=1 J#i

It suffices to show that there exist -, y € R and z € R such that the roots of (7.10) are all real, as
we may take 0 > 0 to zero independently of our choice of z, ¥, 2.

Define the following polynomials.

fil©) =TI =N =98, (&) =¢fi(€).Vie k], and
i
k

hE) =T — OO = 9).

i=1
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7 Variants of simultaneous diagonalizability of quadratic forms

As {1, ], ..., A, AL} are distinct values in C \ R, we have that { f1, g1, ..., fi, g, h} area
basis for the degree-2k polynomials in §. Now pick 2k + 1 distinct values &1, ..., §ar+1 € R.
Note that {&1, . .., {og+1} are the roots to (7.10) if and only if z, y € R™ and z € R satisfy

1

fi€)  gi(6) - fe(&)  gk(&1) h(&1) b £1h(&1)
: Lo - : | = - . (711)
1

(Eakr1) 91(Enbrr) ~ @) ge(Eansr) h(€ansr) ) | 25

L §2k+1h:(52k+1)
z
Note that the matrix on the left is invertible (as { f1, g1, - - -, fx, gk, I} is independent and the

&; are distinct) and real (as the ; are real). Consequently, the matrix on the left has a real inverse.
Note also that the vector on the right is real. We deduce that there exist 2,y € R (and thus
a € CF)and z € R such that the eigenvalues of Angg are real and simple.

an
Case2. Incase2, S, = (F 0 ) and T}, = Gap,, +1.- Set

1
1
~ 1
A(S = 1 y and
an,
1)
E,,,
Im(A1) Re(M1) \/gRe(Oq)
Re(A1) —Im()q1) V3 Im(ag)
- ' Im(A\;) Re(Ag) ﬁﬁe(ak)
Bs = Re(Ax) — Im(A) V3 Im(ay) (7.12)
Ghn,,
Vi Re(a1) VéIm(ar) | - -+ | VdRe(oy) VéIm(ay) 0z €>{
Gnm €1
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7.3 The ASDC property of symmetric pairs

for some o € CF, 2 € R, and § > 0 to be chosen later. The eigenvalues Ofle(s_lég are equal to
the eigenvalues of

J J
J A;'B;s J
1/V5 1/V5
\/Slnm \/Sl’ﬂm
A1 C‘q/\/5
A o1/V?2
_ M ag/V2
B Ak e /V2
anGnm Cnm
—(a1)* V2 —eai/V2 | - | —(owi)*/V2 —agi/v2 2z el
anGnm
The characteristic polynomial (in &) of this latter matrix is
k
e (=9 [T - 90—
i=1
k
+30 (1) - (@) [[y - 005 -9)  (713)
i=1 i

and is independent of § > 0. As in Case 1 (cf. (7.8)), we may pick o € C* and z € R such that
Angg has real (but no longer necessarily simple) eigenvalues. Finally, applying Theorem 33, we

deduce that forall § > 0, {1215, Bg} is ASDC. We conclude that { A, B} is ASDC.

Casge3. In thefinal case, we have thatm = m3 +my = 1. If my = 1 (sothat A = B = 0), it
is clear that { A, B} is actually SDC. Finally, suppose m3 = 1 so that

Fn,,
A= (an 0 >, B = ngm_H.

~ Fy
A5 = < 0 " >
F"TVL

Note that A~ B is upper triangular with all diagonal entries equal to zero. Then applying Theo-
rem 33, we deduce that forall § # 0, {1215, B} is ASDC. We conclude that { A, B} isASDC. R

Then for § # 0, set

221



7 Variants of simultaneous diagonalizability of quadratic forms

Corollary 29. Let A = { Ay, ..., Ap, }in(7.1) and suppose span(A) = span{ A, B} issingular.

Then for any € > 0, there exist H/L — A;|| < €such that

inf {foh:U +2b]z + ¢ : (7.14)

xTA;x + 201z +¢; 0; 0, Vi € [2,m)]
reR”™

rzel

is a diagonalizable QCQP. The matrices A and an invertible matrix P diagonalizing (7.14) can
be computed via the construction in Theorem 34.

7.4 THE ASDC PROPERTY OF NONSINGULAR SYMMETRIC TRIPLES

In this section, we will prove the following characterization of the ASDC property for nonsingular
triples of symmetric matrices (henceforth, symmetric triples).

Theorem 35. Ler {A, B,C} C S"™ and suppose A is invertible. Then, { A, B, C'} is ASDC if and
only if {A™'B, A=YC'} are a pair of commuting matrices with real eigenvalues.

As always, the forward direction follows trivially from Proposition 21 and continuity. For the
reverse direction, we will extend an inductive argument due to Motzkin and Taussky [127] to
show that we may repeatedly perturb either A=*B or A~1C to increase the number of simple
eigenvalues. In contrast to the original argument in [127], which establishes that any commuting
pair {S, T} C C™*™ is almost simultaneously diagonalizable vz similarity (and thus only needs
to inductively maintain commutativity of S and T'), for our proof we will further need to maintain
that A, B, C are symmetric matrices and that A7'Band A~ C have real eigenvalues.

Our proof will require two technical facts about block matrices consisting of upper triangular
Toeplitz blocks. We present these facts below and defer their proofs to Section G.2.

Definition 30.7 € R™*" isan upper triangular Toeplitz matrix if T is of the form

(1) ¢(2) ... ¢(ng)

(D) tEQ; e () PTCD IR
_ e _ p(2)
T = Onix(n]-—ni) G or T = . t(l)
(1)

t O(Tlifn]‘ ) XNnj
it n; < njandn; < n; respectively. O
Definition 31. Let (nq, ..., ng) such that Y ; n; = n. Let T(nq, ..., ng) € R™*™ denote the
linear subspace of matrices 1" such that each block 7T; j (when the rows and columns of T are
partitioned according to (n1, . .., ny)) is an upper triangular Toeplitz matrix. When the partition
(n1,...,ng) is clear from context, we will simply write T. O

The following fact characterizes the set of matrices which commute with a nilpotent Jordan
chain (see for example [168, Theorem 6]).

Lemma 80. Let (ny, ..., ng) such thaty ; n; = n. Let J € R™ ™ be a block diagonal matrix
with diagonal block J;; = Fy,Gp,, t.e, a nilpotent Jordan block of size n;. Then, T € R™*"
commautes with J if and only if T' € T.

222



7.4 The ASDC property of nonsingular symmetric triples

Definition 32. Let (n1, ..., ng) such that 37, n; = n. Define the linear map I,
T(nl, ey nk) — RFxk by

ne)

1 .
Tz(,]) 1f’)”LZ' = Ny,
0 else.

(H(nl,...,nk) (T))iaj = {

When the partition (11, . . ., ng) is clear from context, we will simply write IT. O

The following fact follows from the observation that the characteristic polynomial of a matrix
T € T depends on only a few of its entries (see Lemma 103).

Lemma 81. Let (ny, ..., ny) such thaty;n; = n. Then, foranyT € T, the matricesT € R"*™
and TL(T) € R¥*¥ bave the same eigenvalues.

We are now ready to prove Theorem 35.

Proof of Theorem 35. It suffices to show thatif { A~ B, A-1C } are a pair of commuting matrices
with real eigenvalues, then { A, B, C'} is ASDC. Note that any set { 4, B, C'} C S!is SDC. Thus,
we may assume that n > 2 and that the statement is true inductively for all smaller n.

We make the following simplifying assumptions: Without loss of generality, we may assume that
either A™! B has multiple eigenvalues or that A71B and A=1C are both nilpotent. Indeed, if
A7 Band A~1C both have asingle eigenvalue, then we may consider the basis { A, B + Ap A, C + Ac A}
forspan{A, B,C} where A=Y{(B+ A gA) = A"'B+ Agland A" (C + \cA) = A~1C +
Ac 1 are both nilpotent. We will work in the basis for R™ furnished by Proposition 23 so that
A~ B isin Jordan canonical form (note that mg = ms = my = 0 by the assumptions that A is
invertible and A™! B has real eigenvalues) and assume that the blocks of A~! B are ordered first
according to increasing eigenvalue then increasing block sizes.

We will break our proof into four cases: First, we will consider where A~1B has multiple
eigenvalues. The remaining three cases will consider when the Jordan block structure of A~ B
has: multiple block sizes, multiple blocks of the same size, and a single block.

Case 1. Suppose A71B has {-many distinct eigenvalues. Write C' as an £ x £ block matrix
according to the partition induced by the eigenvalues of A™1B. Then, as A~1C and A™'B
commute, we have that A~1C' (perforce C) is block diagonal. Thus, according to the block
structure induced by the eigenvalues of A~1B, the matrices A, B, C are jointly block diagonal,
with each diagonal block satisfying the conditions of the inductive hypothesis. We conclude that
{A,B,C}is ASDC.

Case2. Suppose A~'Band A~1C are nilpotent and that A~! B has distinct block sizes. For
concreteness, suppose A"'Bhaskblocksof sizen =ny = -+ =np < nppy < -+ < np. By
Proposition 23,

A = Diag(o1Fy,...,05F,, 0p1F, cyomEy,)

k+17 "
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7 Variants of simultaneous diagonalizability of quadratic forms

for some o; € {£1}. Set
C = C + dDiag(o1Fy, ..., 05Fy, Opy1s- -, 0p ). (7.15)

Applying Lemma 80, we have that A~'C' commutes with A~' B and that C' € S™. Let IT denote
the linear map furnished by Lemma 81. Asn; # n; foralli < kand j > k + 1, we have that
II(A~1C) can be written as a block diagonal matrix

1 (A0,
H(A C) — ( b H(A—lc)272>

with blocks of size k x kand (m — k) x (m — k) respectively. As II preserves eigenvalues for
inputs in T, we have that II(A~1C); 1 and TI(A71C)2 5 are both nilpotent. Then, as A~1C has

the same eigenvalues as

14y (T(A™IC)1 1401
H(A C) — ( b b H(A—lc)272)’

we deduce that A~1C has eigenvalues {0, d }. We have reduced to case (1) whence {A, B,C } is
ASDC. We conclude that {A, B, C'} is ASDC.

Case3. Suppose A~'Band A~1C are nilpotent and that A~ B has Jordan blocks all of the
same dimension. For concreteness, suppose A 'Bhasm > 2 Jordan blocks of dimension 7. In
this case Proposition 23 states that

A = Diag(o1,...,0m) ® F;) and B = Diag(o1,...,0m) ® Gy,

where 0; € {£1}. Write C as am X m block matrix with blocks C; ; € R7*". By Lemma 80,
A~1C € T and we may write

n
¢ _
Cij=Fy (%‘(;‘)In + Z 'Yz'(,j)(FnGn)Z 1) .
(=2

Let IT denote the linear map furnished by Lemma 81. Let

A = Diag(o1,...,0,,) and C = ('Yz(?) (7.16)
Note thatas C' € S", we have %-(;») = j(»’li), whence A, C' € S™. AsTI preserves the eigenvalues

for inputs in T and A~1C' = TI(A~1C'), we deduce that A~1C has real eigenvalues (in fact, the
<4

single eigenvalue 0). Then applying Lemma 79, there exists C" € S™ such that HC’ Sy
and A1’ has m-many distinct real eigenvalues. Finally, set

C=C+(C"-C)®F,.
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7.5 Restricted SDC

Then Lemma 80 implies that A~ B and A~'C' commute. Furthermore, by construction, A~1C'
has upper triangular Toeplitz blocks so that its eigenvalues are the same as the eigenvalues of

II(A-'C) = A~1C". We have reduced to case (1) and {A7 B, C’} is ASDC. We conclude that
{4, B, C} isalso ASDC.

Case4. Suppose A~1Band A~1C are nilpotent and that A~! B is a single Jordan block. Then,
by Proposition 23, A = o F,, and B = 0G), for some o € {£1}. Furthermore, by Lemma 80
and the assumption that A~IC s nilpotent, we may write

C = aFn< ci(FnGn)i_1>

n
i=2
forsomecs,...,c, € R.

If n = 2, then C' = c20G2. We may set

B=0(Gy+6H;) and C = c30(Ga+ 6H>). (7.17)

Then, {A_IB JATIC } are a pair of commuting matrices with real simple eigenvalues.
Ifn > 3, set

B =B+ do(ere] +ene]) and C =C+ a(e,yT +vel) (7.18)

wherey € R" is defined recursively asy,, = 7,,—1 = Oandy; = 0(cit1+7i41) fori € [n—2]. A
straightforward calculation shows that A~ B and A~'C' commute and both have real eigenvalues.
Finally, as A~1B has distinct eigenvalues {0, d }, we have reduced to case (1) and {A, B,C } is
ASDC. We conclude that { A, B, C'} is also ASDC.

Corollary 30. Let A = {A1, ..., An} in(7.1) and suppose span(A) = span{ A, B, C'} where
A is invertible. Furthermore, suppose A7YB and A=YC commute and have real eigenvalues. Then,

forany € > 0, there exist szlZ — A;|| < esuch that

inf {follx +2bJz + 1 : (7.19)

aT Az + 201z + ¢; O; 0, Vi € [2,m]
TeR”

rzel

is a diagonalizable QCQP. The matrices A; and an invertible matrix P diagonalizing (7.19) can
be computed via the construction in Theorem 35.

7.5 REsTRICTED SDC

In this section, we investigate a second new notion of simultaneous diagonalizability called restricted
SDC. We will see soon that we have in fact already seen this property before in Section 7.3.
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7 Variants of simultaneous diagonalizability of quadratic forms

Definition 33. Let A C S" and d € N. We will say that A is d-restricted SDC (d-RSDC) if there
exist matrices A € S"td containing A as its top-left n X n principal submatrix for every A € A

such that {f_l : Ae .A} is SDC. O

We record some simple consequences of the d-RSDC property that follow from Observation 5
and Lemma 78.

Observation 8. Let A C S"andd € N.

* Ais d-RSDC if and only if { A1, ..., A} is d-RSDC for some basis { A1, ..., Ap} of
span(A).

» If Ais d-RSDC, then Ais d'-RSDC forall d' > d.

The following lemma explains the connection between the d-RSDC property and the ASDC
property.
Lemma 82. Let Ay, ..., Ay € S"andlerd € N If A= {Ay,..., Ay} isd-RSDC, then

A0y = {(Ai od> e [m]}

is ASDC. On the other hand, if A ® Oq is ASDC, then for all € > 0, there exist 1211, A A, €S"
such that

* foralli € [m], the spectral norm HAZ — /L < € and

. {Al,...,Am}isd-RSDc

Proof- First, suppose {A1, ..., Ap} is d-RSDC and let {[11, . ,Am} C S"* denote the
matrices furnished by d-RSDC. Next, let € > 0 and set

I,
F= ( \ﬁfd)

Clearly, P is invertible so that {PTAZ-P RS [m]} is also SDC. Then, note that

tip_ pr| A (1{11')1,2 _ A \/E(jzlz)w
pPiAP=p ((Ai)ig (Ai)2 2>P (\ﬁ(Az)fz e(4; 272>

so that A ® 04 is ASDC. ) )
Next, suppose A @ 0g is ASDC and let € > 0. Then, thereexist A1, ..., A, € S"*4 such that

HAZ — A ® OdH < eand {Al, e ,Am} is SDC. Finally, note that HAl — (Al)lalH <e N

Remark 79. While the restriction of an SDC set does not necessarily result in an SDC set, there is a
setting arising naturally when analyzing QCQPs in which the restriction of an SDC set is again SDC.
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7.5 Restricted SDC

Algorithm 12 1-RSDC construction

Given A, B € S" such that A is invertible and A~! B has simple eigenvalues
1. Let P € R™ ™ denote the invertible matrix guaranteed by [173]; this can be computed using
an eigenvalue decomposition of A~'B. Then PTAP = Diag(oy,...,0., Fs,...,F>) and
PTBP = Diag(oip1,.--, 00ty T1, ..., Tk). Here, 01,...,0,. € {£1}, p1,...,pr € R
and for ¢ € [k], the matrix T} has the form

n= () )

forsome A; € C\ R.
2. Choose an arbitrary set of 2k + 1 distinct points &1, . . ., {or41 € R
Solve for z, y € R* and z € R in the linear system (7.11)
4. Leta € CF solve (7.9) and define v € R"+2F g5

»

v=(01xx Re(ar) Im(a;) ... Re(ay) Im(aw))".
S. Return
s (A £ B P~ Ty
) o T
Specifically, let Q1, . . . , @y € S™ where Q; has A; as its top-left n x n principal submatrix.
Furthermore suppose that there exists a positive definite matrix in span({ A1, . .., A, }). Then, if

{Q1,...,Qm,eny1€] 1} isSDC,sois {Ay, ..., Ap}. In words, if the homogenized quadratic
forms in a QCQP, along with en_HeIL 11, are SDC, then so are the original quadratic forms (under
a standard “definiteness” assumption). See Section G.4 for details. O

7.5.1 1-RESTRICTED SDC

We record a recasting of Theorem 34 in terms of these new definitions.

Theorem 36. Let A, B € S™. Then foreverye > 0, thereexist A, B € S”mchthﬂtHA — A, ||B - BH <

€and {fl, B } s 1-RSDC. Furthermore, if A is invertible and A"1B bas simple eigenvalues, then
{A, B} isitself 1-RSDC.

Proof. The first claim follows from Theorem 34 and Lemma 82 applied to {4, B} @ 0;. The
second claim follows from the additional observation that if A is invertible and A~! B has simple
eigenvalues, then the construction of Theorem 34 follows case 1 and does not perturb either A or
B (see also Algorithm 12). |
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7 Variants of simultaneous diagonalizability of quadratic forms

Corollary 31. Let A = {Ay, ..., Apn} in(7.1) and suppose span(A) = { A, B}. Then, for any
€ > 0, there exist A; € S such that H(Ai)m — A,H < eand

T

2\T - (Z)) A; (i) +2blz +¢; O; 0, Vi € [2,m]

inf A 267 :
xelllgn,w (w) ! <w> bt zeLl
w=20

(7.20)

is a diagonalizable QCQP. If A is invertible and A7LB bas simple eigenvalues, then (A;)1.1 can be
taken to be equal to A;. The matrices A; and an invertible matrix P diagonalizing (7.19) can be
computed via Algorithms 11 and 12.

7.5.2 d-RESTRICTED SDC

Let {A, B} C S" such that A is invertible and A~! B has simple eigenvalues. By Observation 8
and Theorem 36, we have that { A, B} is d-RSDC for any d > 1. In this section, we record an
alternate construction showing that { A, B} is d-RSDC for d > 1. This alternate construction
applies Algorithm 12 on smaller blocks of the canonical form and has empirically better numerical
performance in QCQP applications (see Section 7.7.2).

Theorem 37. Let A, B € S" such that A is invertible and A~' B has simple eigenvalues. Then,
{A, B} isd-RSDC forany d > 1.

Proof. Without loss of generality, we may assume that A, B are in canonical form (Proposition 23)
and m1 = 0 (else consider the submatrix of A, B corresponding to the remaining blocks).

Partition [m] into d-many contiguous subintervals. Write A and B as diagonal block matri-
ces of diagonal block matrices according to the partition of [m]. In other words, write A =
Diag(A1,...,Aq) and B = Diag(By, ..., Bg) where each A; is a diagonal block matrix of

Im(A) Re()) )for

F5-matrices and each B; is a diagonal block matrix with matrices of the form ( Re(\) — Im(\)

A€ C\R. Set

Al Bl Z1
- A ~ B
A= d and B=|— d L
1 T 21
1 ] Zd

(7.21)

228



7.5 Restricted SDC

Algorithm 13 d-RSDC construction

Given A, B € S" such that A is invertible and A~! B has simple eigenvalues
1. Let P € R™ ™ denote the invertible matrix guaranteed by [173]; this can be computed using
an eigenvalue decomposition of A~'B. Then PTAP = Diag(oy,...,0., Fs,...,F>) and
PTBP = Diag(oip1,.--, 00ty T1, ..., Tk). Here, 01,...,0,. € {£1}, p1,...,pr € R
and for ¢ € [k], the matrix T} has the form

n= () )

forsome A; € C\ R.
2. Partition [k] = k1 U ... Kq into contiguous subintervals where k; = [start;, end;]
3. Foreachi € [d], apply Algorithm 12 to get z; € RI%il and z; € R such that

Py

are SDC
4. Let ) := P & I; and return

Q TAQ™! and QTBQ!

where A and B are defined in (7.21).

forzi,...,zq € Randvectors 1, . .., x4 of the appropriate dimensions to be chosen later. After
a simultaneous permutation of the coordinates, we can write A and B as diagonal block matrices

with blocks of the form
() e (37)

By Theorem 36 (summarized in Algorithm 12) and the assumption that A™1 B has simple eigen-
values, we may, for each ¢ € [d], pick x; € R™ and 2; € R such that the pair of matrices above is
SDC. It remains to note that the diagonal block concatenation of SDC matrices is SDC. |

Corollary 32. Ler A = {Ay,..., Ay} in(7.1) and suppose span(A) = { A, B}. Then, for any
€ > 0, there exist A; € S such that H(f_li)l,l - AZH < eand

;
R (i) A,-(i) 20Tz + ¢ O; 0, Vi € [2,m]
inf < >A1< )—1—26{3:—}—01:
zeR? weRd | \ W w rx €L

w =20
(7.22)
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7 Variants of simultaneous diagonalizability of quadratic forms

is a diagonalizable QCQP. If A is invertible and A™LB bas simple eigenvalues, then (A;)1,1 can be
taken to be equal to A;. The matrices A; and an invertible matrix P diagonalizing (7.19) can be
computed via Algorithms 11 and 13.

7.6 OBSTRUCTIONS TO FURTHER GENERALIZATION

In this section, we record explicit counterexamples to « priori plausible extensions to Theorems 33
to 35.

7.6.1 SINGULAR SYMMETRIC TRIPLES

In Theorem 34, we showed that any singular symmetric pair is ASDC. A natural question to ask is
whether any singular set of symmetric matrices (regardless of the dimension of its span) is ASDC.
The following theorem presents an obstruction to generalizations in this direction. Specifically,
in contrast to Theorem 34 (where it was shown that singularity implies ASDC in the context of
symmetric pairs), Theorem 38 below shows that even symmetric trzples with “large amounts” of
singularity can fail to be ASDC.

Theorem 38. Let {A = I,,, B,C'} C S™ Then, if d < rank([B, C|)/2, the set
A B C
04/’ 04/’ 04

Proof. Suppose for the sake of contradiction that this set is ASDC. Let € € (0,1/2) and let
{fl, B,C } C S"*4 denote an SDC set furnished by the ASDC assumption. Without loss of

generality, A has rank n + d. Write
o Aig App
A= |57 =07,
(Ab AZ?)

Similarly decompose B and C. As e € (0, 1/2), we have that A1 1 is invertible. Let

P= (Alj/? —Aﬁ&Q).

is not ASDC.

0 Iq

Then as P is invertible, {PTAP, PTBP, PTC'P} is again SDC. Note that PTAP has the form

- I
PTAP =" - L I .
( Az — A{,2A1EA1,2>
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7.6 Obstructions to further generalization

Furthermore,
|PTBP - B|
= H(P — Iid)TB(P — Insg) + B(P — Inia) + (P — Ia)TB + (B — B)H
<||B[1P = Luval® + 2| BI1P = Lotall + .
We claim that || P — I, 44| can be bounded in terms of €:
1P = ol < | 403" = 2]+ [ A7 e

1 1 €
<maxd—— —1,1— +
o {\/1—6 \/l—i-e} 1—¢
2¢

1—¢€

<

Here, we have used the fact that H[l —AQ OdH < ¢, so that ”;11,1 — I"H < eand HALQH <e.
Consequently, as we may also bound HB H < ||B]| + €, we deduce that for any 6 > 0, we can
pick € € (0, 1/2) small enough such that HPTBP - B‘
HPT CP— C’H We conclude that for all § > 0, there exist A, B, C of the form

- I, = Bi1 Bip ~ Ci1 Cia
A= ), B=(28 212 o= (T Oh
< A2,2> <B{2 B2,2> <01T,2 CQ,Z)
such that {A, B, C’} isSDC, ||[A — A|,||B— B ‘, C— C’H < é,and AQQ is invertible. Then

by Proposition 21, the top-left block of the commutator [A~! B, A~1(C] is equal to 0,,. Expanding
this top-left block, we deduce

< 4. An identical calculation holds for

)

[B11,C11] = 0172A£5B1’2 — 31721‘12_7%@{2. (7.23)
Finally, by lower semi-continuity of rank, we have rank( [Bl,l, C’l’l]) > rank([B, C]) for all

0 > 0small enough. This is a contradiction as the expression on the right of (7.23) has rank at
most 2d < rank([B, C]). [

This same construction can be viewed as an obstruction to generalizations of Theorem 36 to
symmetric triples with constant d.

Corollary 33. Let {A = I,,, B,C} C S™ Then A~ B and A=*C are both diagonalizable with
real eigenvalues and { A, B, C'} is not d-RSDC for any d < rank([B, C])/2.
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7 Variants of simultaneous diagonalizability of quadratic forms

Remark 80. Note that forall n € N, there exist B, C' € S§?" such that rank([B, C]) = 2n. For

example, set

Then, {A = Iz,, B,C} C $?" is a nonsingular symmetric triple such that A~' B and A~*C
are both diagonalizable. On the other hand, Corollary 33 and Theorem 38 imply that

(o) o) )y

isnot ASDC and {A, B, C'} isnot (n — 1)-RSDC. O

7.6.2 NONSINGULAR SEPTUPLES

We may reinterpret Theorems 33 and 35 as saying that if A satisfies dim(span(A4)) < 3 and
contains an invertible matrix S, then Ais ASDCif and only if S ~1 A consists of a set of commuting
matrices with real eigenvalues. A natural question to ask is whether the same statement holds
without any assumption on the dimension of the span of .A. Theorem 39 below presents an
obstruction to generalizations in this direction. Specifically, Theorem 39 constructs a non-ASDC
set A = {Aq,..., A7} C S®where A; is invertible and Afl.A consists of a set of commuting
matrices with real eigenvalues.

The following lemma adapts a technique introduced by O’meara and Vinsonhaler [137] for
studying the almost simultaneously diagonalizable via similarity property of subsets of C™*".

Lemma 83. Let A = {A1,..., Ap} C S" where Ay € Ais invertible. If A is SDC, then
dim(R[A] L A]) < n. Here, RIAT A is the real algebra generated by AT A.

Proof. Let P denote the invertible matrix furnished by SDC and suppose PTA; P = D;. Then,
dim(R{AIlAD = dim(R[{Dlei D€ [m]H) <n. [
The following corollary then follows by lower semi-continuity.

Corollary 34. Let A = {Ay,..., A} C S where Ay € Aisinvertible. If A is ASDC, then
dim(R[A] Y A]) < n. Here, RIAT VA is the real algebra generated by AT A.

Theorem 39. There existsaset A = {Aq,..., A7} C SO such that A1 is invertible, A;lA isa
set of commuting matrices with real eigenvalues, and A is not ASDC.

Remark 81. The analogous example in the complex setting states that there exists a set A =

{Aq,..., A5} C H* such that A; is invertible, Al_l.A is a set of commuting matrices with real
eigenvalues, and A is not ASDC. See Section G.3. O
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Proof. Set

0
0
A6_( 0% ), A7
1
1

Note that Ay is invertible. It is not hard to verify that A7 A forms a set of commuting matrices
with real eigenvalues. On the other hand, note that

Il
/
=
[en)
=
=
=}
-
~—

a

QA=Q

R[ATTA] = a s a,be,de f,gER

af
a ce
bc
a
a
a

so that dim(R[A] " A]) = 7 > 6 = n. We deduce from Corollary 34 that A is zor ASDC. W

7.7 AppLicATIONS TO QCQPs

In this section, we suggest several applications of diagonalization to optimizing QCQPs. We begin
by proving properties regarding the SDP and SOCP relaxations of diagonal QCQPs with bound
constraints. Note that QCQPs with bound constraints are the main problems of interest within
spatial branch and bound (BB) schemes for QCQPs. These results give heuristic reasons why one
might expect the SOCP relaxation to give strong yet efficiently computable lower bounds within
BB schemes. These results serve as additional motivation for the ASDC and d-RSDC properties.
We then examine these assertions numerically with preliminary computational experiments.

7.7.1 THE SOCP RELAXATION OF A DIAGONAL QCQP WITH BOUND CONSTRAINTS

Consider solving a QCQP over R™ of the form (7.1) within a BB scheme. At each node of the BB
tree, we encounter the original QCQP with additional bound constraints,

xTA;x + 2b21’ +c¢ O; 0,V € [Q,m]
inf SxTAjz+2blz+cy: z€L ) (7.24)
TER™

x € [¢,u]

and desire to construct and solve strong convex relaxations of (7.24).

One powerful method for constructing such convex relaxations combines the reformulation-
linearization technique with semidefinite programming [6]. We begin by linearizing (7.24) using
the variable Y = zzT. Specifically, replace 7 A;x with (A;,Y’) and include the constraint
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7 Variants of simultaneous diagonalizability of quadratic forms

Y = xaT. Then, relax the pair of constraints © € [/, u] and Y = zaT to the constraint that
(x,Y) belong to the set

}/z',j > Ksz- + Eixj — gjéj, Vi,

}/i,j < wujx; + Eil‘j — Ujgi, Vi, J
Yij > ujmi + uiwy — wiug, Vi, j
Y = zaT

Sspp =1 (2,Y) € R x S" :

The SDP+RLT relaxation then reads

(A, Y)Y + le-T$ +¢ O; 0, Vi € [2,m)]
eRiln;eS” (A1, YY+2b]z+c1: z €Ll . (7.25)
¥ ’ (:U, Y) S SSDP

Note that for diagonal QCQPs (i.e., the setting where Ay, . . ., A,;, are diagonal) that (4;,Y) =
diag(A;)T diag(Y’) so that the SDP+RLT relaxation does not depend on the off-diagonal entries
of Y. In particular, we may replace the variable Y € S™ with a variable y € R" representing
its diagonal entries. Naturally, we then replace the term the term (A4;,Y") and the constraint
(x,Y) € Sspp with the term diag(A4;)Ty and the constraint

(:(:,y) S Ssocp = {(m,diag(Y)) : (:C,Y) S SSDP}-

The following lemma shows that Ssocp is SOC-representable so that the resulting relaxation is in
fact an SOCP. Thus, the SDP+RLT relaxation of a QCQP with bound constraints can be solved
substantially faster when A1, ..., A,, are diagonal.

In the remainder of this section, let o denote the elementwise product between two vectors.

Lemma 84. The following identities hold
Ssocp = {(z,diag(Y)) : (z,Y) € Sspp}
= {(:x,y) ER"XR": zox<y<(ut+l)ox—wuol }

= conv{(x,y) eR*"xR": ©€ [, ul }

rox =y
In particular, Ssocp s SOC-representable.

Proof. For notational convenience, let Sy, Sz, S3 denote the three sets on the right in order. Note
Ssocp = S1 by definition. We will show S1 C &3 = S§3 C .

The containment S C s follows by definition: Given (x,Y) € Sspp, we have that
diag(Y') > x o z by the SDP constraint and diag(Y’) < (u + £) o x — uw o £ by the RLT
constraints.

The identity So = S3 follows the well-known (and easy to verify) fact that in one-dimension

> g2 x; € [, ui]
z;, ;) € R? Yi =% = conv{ (z;,y;) € R?: 7} v
{( i 4i) yi < (ui + 4;)x; — uil; } {( i i) 1'@2 =Y
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and the fact that direct products commute with convex hulls.

Finally, suppose (z,y) € R" x R" satisfiesx € [(,u] andy = x o z. Set Y = 22T so that
diag(Y") = y. Itis straightforward to show that (z,Y") € Sspp so that (z,y) € S1. Thenas S;
is convex, we have that S5 C S7. [ |

The following corollary shows how to construct optimizers of (7.25) with bounded rank when
Ay,..., Ap, are diagonal. The bound depends only on m and the complexity of £ N [¢, u].
This gives a heuristic reason why one would expect the SDP+RLT relaxation (and hence the
SOCP+RLT relaxation) of a diagonal QCQP with bound constraints to be stronger than that of a
general QCQP with bound constraints, especially when m is small and £ is simple.

Lemma 85. Suppose A1, . .., Ay, arediagonal and that L[, w)] can be expressed as the intersection
of [0, u] with k additional linear (in)equality constraints. If (7.25) bas a solution, then it has a
solution (x*,Y™) such that

Y* z*
< .
rank(x*T 1 ) <m+k

Proof. By assumption there exists an affine function L : R" — R¥ such that
[lulNL=[l,ulNn{zeR": L(x); O; 0, Vi € [k]}
where 0; € {<,=}.Define Q : R” x R" — R™ by
Q(z,y)i = (diag(A:), y) + 2b]z + ¢;, Vi € [m]

andlet Q : R™ x R™ — R™FF denote the affine function mapping (z, y) — (Q(z,v), L(x)).

Let (z*,Y™) denote an optimizer of (7.25) and set y* = diag(Y™). By Lemma 84, there
exist points () € [¢,u] and convex combination weights ;; > 0 such that (z*,y*) =

> ai(z, 20 0 2()). Then, by linearity, we have Q(x*, y*) = ¥2; ;Q (2, 2() 0 2(9)),
We claim that {Q(:c(i) 2 o m(i))}i span an affine subspace of dimension < m + k. Indeed,
supposing otherwise, Q(z*, y*) is in the interior of COHV{Q(.CIZ(i) Lz 0 () }z Thus, there
exists (2, y') € Ssocp achieving Q(2', y') = Q(z*, y*) — eeq for some € > 0. This contradicts
optimality of (z*, Y™).
Applying Carathéodory’s Theorem, (2*, y*) is a convex combination of at most m + k points
from {(:z;(i),a;(i) o x(i))}, say (2, y*) = SR (2@, 20) 0 ). Then,

’”’i"‘a‘ x(i):.n(i)T ()
P V@ 1

is an optimal solution to (7.25) with rank < m + k. |
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7 Variants of simultaneous diagonalizability of quadratic forms

7.7.2 NUMERICAL RESULTS

In this subsection, we present preliminary numerical results on diagonalization and the d-RSDC
property in solving QCQP problems with one quadratic constraint and additional linear con-
straints. Problems in this form have received recent interest, for example in the area of optimal
portfolio deleveraging [116]. Furthermore, this restricted class of QCQPs is still NP-hard in
general—as mentioned in the introduction, even the problem of minimizing a general quadratic
function over the hypercube is NP-hard.

We will consider random instances of the following problem

. TAgz +20]x <1
min {$TA1:L‘ : i c 223 2T = } (7.26)

where A1, Ay € S", by € R",and £ C R" is a polytope.

Ranpom MODEL.  We will consider a family of distributions over instances of (7.26) parameter-
izedbyn € Nand k € Ny. Here, k will parameterize the number of (pairs of) complex eigenvalues
ofAl_lAg. Specifically, given (n, k) such that 2k < n:

1. Letr = n — 2k.

2. Generate a random orthogonal matrix V' by taking M to be a random n X n matrix with
entries i.i.d. N(0,1) and then taking V' to be a matrix of left singular vectors of M. Let
O1,...,0 beiid. Rademacher random variables. Let y1, . . . , fi, beii.d. N(0, 1) random
variables. Let 1, ..., Tk, Y1, - - -, Yx beiid. N(0, 1) random variables. Then, set

Al =VT Diag(al, ce ,O'T7F2, e ,FQ)V
A2 =VT Diag(allul, cee 7UTMT7T17 ce ,Tk)V

. . xX; 1
Here, T; € S? is the random matrix ( s ,y;i ).

3. Lettheentries of by bei.i.d. N(0, 1) random variables,and L = ( I 7 ) N, where the entries

of N € R™" areiid. N(0,1) random variables. This ensures that the set £ = {z :
Lz < 1} is bounded almost surely.

Note that Theorem 36 (respectively, Theorem 37) implies that { A1, As} is almost surely 1-RSDC
(respectively, k-RSDC) in this random model.

BRANCH AND BOUND METHODS.  We use BB methods to solve different reformulations of (7.26)
with and without diagonalization.
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We implement two classes of BB methods. The first class, the SDP-based BB method, uses a
simplified SDP+RLT relaxation for computing a lower bound at each node. Specifically, we lower
bound the value of (7.26) with the additional box constraint € [¢, u] by

(A, Y)+2blz —1<0

reLl
min (A1,Y): z e[l . (7.27)
velkr, yes diag(Y) < (u+¥f)ox —uol
Y = zaT

At the root node, we set [/, u] to be coordinate-wise lower and upper bounds on £. Note that
in contrast to the fu/l SDP+RLT relaxation (see (7.25)), we only impose RLT constraints on the
diagonal entries of Y to strike a balance between bound quality and computational cost. This
method then applies a spatial BB rule for each coordinate z; and updates the values of [/, u].
The second class, the SOCP-based BB methods, first diagonalize (7.26) before applying a BB
scheme. The method of diagonalization differs across the different SOCP-based BB methods but
the BB part is the same. Suppose we have already diagonalized (7.26) so that A; is a diagonal matrix
for each i = 1,2. Write A; = Diag(a;") + Diag(a; ), where a;, a; € R™ are nonnegative
and nonpositive respectively. Let I = supp(aj ) U supp(a; ). The SOCP-based BB method
uses the SOCP+RLT relaxation for computing a lower bound at each node. Specifically we lower
bound the value of (7.26) (assuming that the A;s are diagonal) with the additional box constraint

x € [¢,u] by

2T Diag(aj )z + (ay )Ty + 205z — 1 <0

rxeLl
min 2T Diag(a )z + (a7)Ty :
z€R", yeRl| glar)e + (a)Ty x € [{,u]
l‘i Sy < (uji + Eji)xji - ujz[jm Vji el

(7.28)

Again, at the root node, we set [/, u] to be coordinate-wise lower and upper bounds on £. This

method then applies a spatial BB rule for each coordinate z;, such that j; € I and updates [¢, u].

In both methods, we use a successive convex approximation [119], which linearizes nonconvex

terms in the quadratic objective and constraint, to attempt to construct feasible solutions and good
upper bounds.

In more detail, we implemented the following five BB methods for solving instances of (7.26).
* sopsB solves (7.26) directly using the SDP-based BB method.

* spceB is a solution method which can only be applied when { A1, A2} is already SDC. In
this case (letting P denote the corresponding invertible matrix), spceg reformulates (7.26)
as

min {xT(PTAlP)x : (7.29)

xT(PTAyP)x + 2(PThy)Tx < 1
rzER”

LPx <1,

and solves this reformulation using the SOCP-based BB method.
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* 1-rRspcBB applies Algorithm 12 to construct an SDC pair {[11, flg} € S"*1 whose top-left

n+1)x(n+1)

n X n principal submatrices are A1 and Ay, respectively. Let P € R( denote

the invertible matrix furnished by the SDC property of {/Nll, Ay } Also, set by = (b}, 0)7

and L = (L, 0p,1). Then, 1-rsbces reformulates (7.26) as

i wT(PT A2 P)w + 2(PThy)Tw < 1
ian wT(PTA1P)w: (LP)w<1 (7.30)
e (Pw)s1 =0

and solves this reformulation using the SOCP-based BB method. Note that for this refor-
mulation, £ is the set of w € R™ " satisfying both the linear inequality and linear equality
constraints.

* k-rRspc applies Algorithm 13 with d = k to construct an SDC pair {1211, 1212} €

S"*t* whose top-left n x n principal submatrices are A1 and As, respectively. Let P €
R H+k)*(n+k) denote the invertible matrix furnished by the SDC property of {Al, A }
Also, set by = (b],0%1)T and L= (L, Oy, k). Then, k-rspces reformulates (7.26) as

wT(PTAyP)w + 2(PThy)Tw < 1
inrf;+1 wT(PTA P)w: (LP)w<1
ek (Pw)ns1 = (Pw)pyz =+ = (Pw)py =0
(7.31)

and solves this reformulation using the SOCP-based BB method. Note that for this refor-
mulation, £ is the set of w € R™+F satisfying both the linear inequality and linear equality
constraints.

* eigBB first performs an eigenvalue decomposition on A to write D1 = P A; P;, where
Dy is a diagonal matrix. Then, it performs a second eigenvalue decomposition to write
Dy = PJ(P] A2 Py) P2, where Dy is a diagonal matrix. Finally, eig8s reformulates (7.26)
as

2TDoz + 2(Pbo)Ty +c2 < 1
inf ¢y"Dyy: (LP)y<1 (7.32)
y,z€R”
y= Prz

and solves this reformulation using the SOCP-based BB method. Note that for this refor-
mulation, £ is the set of (y, z) € R™ x R" satisfying both the linear inequality and linear
equality constraints.

All experiments are implemented using MATLAB R2021a on a PC running Windows 10
Intel(R) Core(TM) i9-10900KF CPU (3.70GHz) and 64GB RAM. All the SDP and SOCP
problems in the BB methods are solved by the commercial solver MOSEK [126] through its Matlab
interface.
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Remark 82. spces, 1-RSDCBB, k-RSDCBB, and eigBB can be thought of as different reformulations
within a parameterized family of reformulations of (7.26). Specifically, these four algorithms
reformulate (7.26) as diagonal QCQPs with n, n + 1, n + k, and 2n variables respectively. [

ExPERIMENT SETUP. We tested the solution methods on random instances for various settings
of (n, k). For k = 0, i.e., the case where A1 and A3 are guaranteed to be SDC, we compared
SDPBB, SDCBB, and eigBB. For & > 0, we compared spbPBB, 1-RSDCBB, k-RSDCBB, and eigBB. For each
(n, k), we generated 5 random problems and used the command boxplot in MATLAB to present
the statistics. Each procedure was terminated when the CPU time reached 1800 seconds or when
the relative gap (between the objective value of the current solution and the best lower bound) fell
below the default tolerance threshold, 10~%. In all of our figures and tables, we set

Upest — V0

x 100,
"Ubest’

Gap =
where vy is the initial lower bound computed from the corresponding convex relaxation, and Upese
is the best upper bound computed within the BB method.

ComPARISON FOR THE SDC case. W first test instances where { A1, A3} is SDC, ie., k = 0,
forn = 10, 20, 30, 40, 50. The results on CPU time, relative gap, and number of explored
nodes in the search tree are reported in Figure 7.1. Figure 7.1 shows us that spces performs the
best in general, i.e., sbceB achieves the lowest relative gap and smallest CPU time across all tested
values of . Both of the SOCP-based methods are much more efficient than sppss. In fact, sbprss
fails to solve any of the instances to relative gap 10~* when n > 20 and fails on four of the five
instances with n = 20. Moreover, for n = 10, we observe that the SDP-based BB method explores
more nodes than either of the SOCP-based BB methods, even though the SDP lower bounds are
computationally more expensive than the SOCP lower bounds. Indeed, we will see soon that the
SOCP relaxation experimentally yields tighter lower bounds (resulting in fewer search tree nodes)
than the SDP relaxation. We also observe that eigsg is comparable to but slightly less efficient than
spceB. Specifically, we note that spces and eigs explore similar numbers of nodes but that spces
does so in comparable or less time.

To further understand the performance between the SDP-based and SOCP-based BB methods,
we compare initial bound quality and CPU time for spbpes, sbces and eigss in the case k = 0. For
Figure 7.2 only, define

Gap = Usoces — V0 100,

‘USDCBB|
where vy is the initial lower bound computed by spbpBB, SpcBB or eigBB and Uspegs is the best upper
bound computed by spces after 1800 seconds. Figure 7.2 shows that both SOCP relaxations are
faster to compute than the SDP relaxation, as expected. More interestingly, both SOCP relaxations
provide a better initial lower bound as can be seen by the fact that the gap is significantly smaller for
the SOCP relaxations than it is for the SDP relaxation. See Section 7.7.1 for heuristic explanations

why we would expect this to hold. Both observations in Figure 7.2 suggest that diagonalization
can be used within branch and bound schemes to solve QCQPs more efficiently.
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Figure 7.1: Comparison of sbpeB, spces and eigBs for the case with & = 0.
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Comparing sbces and eigss in Figure 7.2, we see that eigss generally produces tighter lower
bounds but spces needs less computation time to solve its relaxation. This parallels the observation
in Figure 7.1 that spces is capable of exploring more nodes than eiggs in similar amounts of time.
We believe that spces solves its relaxation faster simply because its diagonal reformulation is smaller.

Indeed, spceg solves an SOCP (7.29) with (n + ‘supp(af) U supp(a; ) D—many variables while
eigBBsolves an SOCP (7.32) with roughly twice as many variables: (2n + ’supp(al_) ‘ + ‘Supp(az_) D -

many variables.

COMPARISON FOR THE NON-SDC cast.  We now consider the case where { A1, A2} is not
SDC,ie., k > 0. We tested sppBB, 1-RSDCBB, k-RsDCBB and eigds forn = 10, 20, 30 and & =
L, 1+, 1+ %l, 14+ %, 1+ %. The results on CPU time, relative gap, and number of explored
nodes in the search tree for sbpPBB, k-RsDCBB and e gBB are reported in Figure 7.3. Figure 7.3 indicates
that both k-rspces and e g largely outperform sppss. Indeed, sppes cannot solve most instances
in the time limit, evidenced from the left plot in Figure 7.3, while k-rsbceg and eigBB can solve
more instances and have lower relative gaps for unsolved instances in the time limit. In general,
k-RsDCBB and eigBB are comparable and do not dominate each other.

It remains to comment on the numerical performance of 1-rspces. Experimentally, we observed
that the 1-RSDC construction (Algorithm 12) yields very large condition numbers for the P
matrices in (7.30) (e.g., larger than 1e6). This leads to inaccurate solutions or numerical failures
in MOSEK when solving the SOCP+RLT relaxation, especially for £ > 5. Note also that 1-
rRsDCBB coincides with k-rspces for k& = 1. Thus, we compare the three SOCP-based BB methods,
1-RSDCBB, k-RSDCBB, and eigBB, for values of 1 < k < 5in Table 7.1.

One may observe that, for n = 10, 1-rsdCBB seems to perform worse (compared to 1-RSDCBB
and eigBB) as k increases. This trend can be explained by observing that the condition numbers of
the P matrices for (7.30) are likely to “blow up” as k increases (see the two rightmost columns of
Table 7.1). In particular, we observed that the lower and upper bounds that we computed for the
decision variables (i.e., the values of £ and w at the root node) in k-rRsbcBB and eigB were relatively
small intervals, while the corresponding bounds for those in 1-rspces were often much larger (e.g.,
on the order of 1000 times larger for k& = 3). Comparing the rightmost two columns of Table 7.1,
we see that the condition numbers of the invertible matrices P that we construct are often much
smaller for k-rspces than for 1-rspcBB, especially as k gets larger. We believe this explains why
k-rsbcBB generally outperforms 1-rRspces for larger values of the parameter k. Finally, we observe
that for the last instances in (10,4) and (30,4), 1-rRsbces returned solutions without reaching the
prescribed gap or CPU times. We believe that this was caused in both instances by numerical
inaccuracies within the interior point solves in MOSEK due to the large condition numbers, i.e.,
2.73e6 and 1.15e5. For k > 5, the condition number of 1-RSDCBB is even worse and 1-RsDCBB fails
for almost all instances (not reported here).
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Figure 7.3: Comparison of sppBB, k-rRsbcsB and eigbs for non-SDC instances.
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7 Variants of simultaneous diagonalizability of quadratic forms

(n, k) 1-RSDCBB k-RSDCBB eigBB cond num
’ time node  gap(%) | time node gap(%) | time node  gap (%) | 1-Rsbc 2-RSDC

(10,2) 5.73 2830 0.00 9.68 4582 0.00 3.02 1335 0.01 5.14e+01  3.79e+00
(10,2) | 27.87 11462 0.00 42.68 17944 0.00 35.49 13335 0.00 2.78¢+01  5.09¢+00
(10,2) | 30.82 13764 0.00 6.52 2995 0.00 11.11 4234 0.00 4.70e+02  4.54e+00
(10,2) 2.55 972 0.00 0.77 331 0.00 0.79 299 0.00 4.22e+02  2.25e+00
(10,2) | 15.84 4423 0.00 10.23 4045 0.01 4.27 1521 0.01 1.59e+02  2.37e¢+00
(10,3) 2.71 1264 0.01 0.45 203 0.01 0.57 264 0.01 2.29e+02  2.72e+00
(10,3) 16.67 6848 0.00 13.15 5899 0.00 14.04 5295 0.00 1.89¢+02  4.87¢+00
(10,3) 19.55 8176 0.01 40.75 17257 0.01 10.04 4056 0.00 5.36e+01  3.42e+00
(10,3) 191 789 0.00 0.08 29 0.01 0.06 19 0.00 1.68e+03  2.24e+00
(10,3) 54.33 20000 0.01 2.36 1080 0.01 1.06 402 0.01 2.28e+03  1.44e+01
(10,4) | 259.95 69602 0.01 11.95 5289 0.01 1.97 879 0.01 4.37e+03  3.31e+00
(10,4) | 1800.05 147765  23.56 7.93 3746 0.00 3.13 1414 0.00 1.17e+04  8.04e+00
(10,4) | 46.22 19976 0.01 74.85 32075 0.01 16.55 7295 0.01 3.63e+02  7.57e+01
(10,4) | 1800.08 130796 158.72 5.81 2381 0.01 4.61 1858 0.00 2.10e+04  6.55e+00
(10,4) | 77.54 16565 161 50.20 15150 0.01 3.71 1427 0.01 2.73e+06  2.49¢+01
(20,3) | 1800.07 120343 169.36 193.58 36815 0.01 126.92 25152 0.01 3.64e+05  3.20e+01
(20,3) | 1800.05 107481  216.00 | 1800.05 150828 22.65 | 1800.04 156611  8.94 | 8.99¢+03 1.44e+01
(20,3) | 1800.05 162012  49.30 | 790.61 166079  0.00 | 1800.05 156891 13.02 | 2.35¢+02  9.71e+00
(20,3) | 1800.07 115944 331.43 | 1800.07 156808 20.78 | 1800.07 133551 106.07 | 1.06e+03 3.76e+00
(20,3) 6.74 1866 0.01 2.32 643 0.01 3.02 650 0.01 6.00e+02  1.0le+01
(30,4) | 1800.08 102100 100.73 | 1800.08 116527  25.97 | 1800.07 103676  42.39 | 2.85e+03 5.81e+00
(30,4) | 1800.06 117590  205.94 | 1800.05 138837 34.78 | 1800.07 113383  44.58 | 1.26e+04 6.50e+00
(30,4) | 1800.07 95644  838.24 | 1800.04 145488 6.80 1345.35 136907 0.01 2.27e+05  1.4le+01
(30,4) | 1800.03 110507 1463.26 | 1800.08 99003 130.64 | 1800.08 101895  75.89 | 2.57e+05 6.43¢+00
(30,4) | 66.06 5380 0.02 2.05 291 0.01 3.19 241 0.01 1.15e+05  1.04e+01

Table 7.1: Comparison of different SOCP-based BB methods for 1 < k& < 5. In each row, the solution
method with the lowest solution time is highlighted. For instances where all three methods time
out (1800 seconds) before reaching optimality, the solution method with the lowest objective

value is highlighted. Two outliers are highlighted in blue.
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A APPENDICES FOR CHAPTER 1

A.1 PrRoOF OF PROPOSITION 1

Proposition 1. For any SD-QCQP, we have
Dsocp = Dspp  and  Optgocp = Optspp -

Proof. The second identity follows immediately from the first identity, thus it suffices to prove
only the former.
Let (x,t) € Dspp. By definition, there exists X € S¥ such that the following system is satisfied

v (1 asT)
rz X

(Qo,Y) <2t

(Qi,Y) <0, Vi € [my]
(Q;,Y) =0, Vi € [m1 +1,m]
Y > 0.

Taking a Schur complement of 1 in the matrix Y, we see that X > x2T. In particular, we have
that X ; > 7 forall j € [N]. Define the vector y by y; = X ; > 23. Then, noting that
(Diag(ai), X) = (a;,y) foralli € [0, m], we conclude that (x,t) € Dsocp.

Let (z,t) € Dsocp. By definition, there exists y € R¥ such that the following system is
satisfied

(ao,y) + 2(bo, x) + co < 2t

(ai,y) +2(bi,z) + ¢; <0, Vi € [mg]
(ai, y) +2(bj, ) + ¢; =0, Vi € [my +1,m]
Vj e [N].

2
2

Define X € S” such that X ; = yj forall j € [N]and X = zjxy for j # k. From the
definition of Dsocp, the relation y; > J)JQ holds for all j € [N], therefore

1 2T 1 2T
- = 0.
(ac X) - <x ara?T> =0

Finally, noting that (Diag(a;), X) = (a;,y) foralli € [0,m], we conclude that (z,t) €

A.2 PROOF OF THEOREM 8

Theorem 8. Suppose Assumption 1 holds. Define the byperplane H = {(m, t) e RVHL: 2t = Optst}.

If the quadratic eigenvalue multiplicity k satisfies k > m + 1, then conv(D N H) = Dspp N H.
In particular, Opt = Optgpp.
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A

Proof: Suppose (2,1) € Dspp N H. Then by Lemma 1 and optimality of £, we have that 2f =
SUPer Q(77 SAU)’ ie,

2t = sup S q(v, %) :
YER™

= sup {q(’y,ﬂ?) : A() = 0 }

~yER™ vi = 0, Vi € [mf]

A(y) =0 }

Vi > 0, Vi € [m[]

The second line follows as A(y) = 0 if and only if A(y) = 0. Note that Assumption 1 allows
us to apply strong conic duality to the program on the second line. Furthermore, this dual SDP
achieves its optimal value, i.e., there exists Z € S™ such that (#, 7, Z) satisfies

qo(2) + (Ao, Z) = 2t

4i(2) + (Ai, Z) <0, Vi € [m]

qi(2) + (A, Z) =0, Vi € [m;+ 1,m]
Z = 0.

A

We will show by induction on rank(Z) that for any (#, , Z) satisfying (1), we have (#,7) €
conv(D N H). The claim clearly holds when rank(Z) = 0.

Now suppose 1 := rank(Z) > 1. Let (£, , Z) satisty (1). Write Z = Y1, z;2] where each
z; is nonzero. Fix z = 27.

We claim that the following system in y is feasible:

()

(Aid + bj,y®2) =0,Vie [m]
y € Sk 1,

Indeed, the linear constraints impose at most m homogeneous linear equalities in & > m + 1
variables. In particular, there exists a nonzero solution ¥ to the linear constraints. This y may then
be scaled to satisfy y € SF~ 1.

Note then that foralli € [m)],

G ty®@z2)+ (A Z —22T) = (2 +y®2)TA@ Lty®2) +20] (T Ly ®z)+ ¢ + (A, Z — 22T)
(2)

Consequently, (£ + y ® z,t, Z — z2T) satisfies all of the constraints in (1) except possibly the
first. We now verify that the first constraint is also satisfied: From

Q@@ Lty®2)+ (Ao, Z — 22T) = qo(2) £ 2(ApZ + by, y ® 2) + (Ag, 22T) + (Ao, Z — 22T)
= q0(2) + (Ao, Z) + 2(Aod + bo, y ® 2)
= 21?:&2<A0:i‘—|—b0,y®2>,
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we deduce that (& + y ® 2,2t + 2(Ap# + by, y ® 2)) € Dspp. Then, by minimality of  in
Dspp, we infer that (Agz + by, y ® z) = 0.

We deduce that (2 &y ® 2, , Z — 227) satisfies (1). Furthermore, we have rank(Z — 227) =
r—1. Byinduction, (2 +y®z,t) € conv(DNH). We conclude that (2, ) € conv(DNH). N

B APPENDICES FOR CHAPTER 2

B.1 DEFERRED PROOFS FROM SECTION 2.4
DEFERRED PROOFS FROM SECTION 2.4.1

We compute

I'= {(%bjﬁlﬂz) eRy x R? . <72?1& ’72/\@> - 0}

“Yobj

: >
= {(70bj7'71a72) er?: JeHth 2D }

2%0b71 > 73

= {(%b,-,'n,w) €R®: o+ 71 > \/(’Yobj —71)?+ (\@72)2}-

The expression for I'° follows from I'.

Proofof (2.5). Let (x,t) € Sspp \ S such that G(x,t) is a one-dimensional face of I'°. For
notational convenience, let £on = qobj() —2t, 1 = q1(z) and 3 = g2(x). Note that G(z,t) =
Ry (Lobj, €1, €2) so that F(x,t) = Ry (—f1, =L, £2). Furthermore, by the assumption that
(€obj; £1, £2) is nonzero and on the boundary of ', we have

Al ly
Gz, t)" =span{ | Loy |, | —2
by b — Loy
We deduce that
_gobj 62/\/5
R/(xat) = g?/\/ﬁ ) _El ) (3)
0 0
L
—lobj(2x1 — 1) 4 Lo (V/212) —lo(2x1 — 1) + (61 — Lopy) (V222)
—01(2x9) + V20a(x1 — 1) |, | €2(222) + V2(lr — Loyj) (21 — 1)
201 —209
(4)

Here, the first two vectors span span(A( fopj, f)). The second two vectors correspond to the

constraints <A(%bj, v)x, :c’> — Yobjt" = 0 for (Yobj,¥) € G(, )+
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Below, we will simplify this expression. By the assumption that (£, £1, £2) is nonzero and on
the boundary of I'°, we have

—Lopj — 41 = \/(fobj —0) + (V2£o)?

where the term within the radical is nonzero. Expanding, we deduce that

eobj+€1<0 _ x%—2t+x1(x1—1)<0
03 — 2lgpil1 = 0 (23 — 2tz1) (w1 — 1) =0

Note that (0,1,0) € I'so thatzy € [0,1]. Ifz1 = 1, then £y < 0,¢; = Oand f2 = Os0
that (1, 22,t) € S, a contradiction. We deduce 1 — 21 > 0and 22 — 2tz; = 0 and that
(Lovj, 1, 02) = (w1 — 1)(2t, 1, V/222). Plugging this into (3) gives

1
—2t ) t 1:2(1’1 -1+ 2t)
R (z,t) = zo |, | =2 |, | —22 |, | =2 + 21 — 2t2y — 2t ) [
0 0 X1 21’2

DEFERRED PROOFS FROM SECTION 2.4.3

We will prove Proposition 8 in the following series of lemmas. Note that the first identity of
Proposition 8 follows from definition. To prove the second identity of Proposition 8, we will
partition I'y into n + 1 pieces depending on the sign pattern of v € I'y.

Note that y € T'y ifand only if aa " + Diag(7) > 0. In particular, 7y € T'y if 7 is nonnegative.
On the other hand, by the Eigenvalue Interlacing Theorem, v ¢ I'y if it has at least two negative
coordinates. It remains to understand N; := Ty N{y € R" : ~; < 0, v; > 0, Vj # i}. The

next lemma follows from a straightforward application of the Schur Complement Lemma and the
Sherman—Morrison Formula.

Lemma 86. Suppose Assumption 6 holds. Then, for any i € [n),

2
S —4
M: f}/E]Rn; 0> 2 1+Zj¢ia32'/7]' .
v >0,V #i

Proof. Without loss of generality we assume ¢ = n. For convenience, let y and @ denote the first
n — 1 entries of 7y and a respectively. By Assumption 6, we have that v; > 0 forall j < n (as
otherwise the 2 x 2 minor of aa " + Diag(7) corresponding to (j, 1) is not positive semidefinite).
The Schur Complement Lemma and the Sherman-Morrison Formula then imply that y € A, if
and only if vy, < 0,7 > 0and

Yn + a% > ai(i—r (deT + Diag(fy))_l&

_ . _\— Diag(¥)~'aa " Diag(7)~ 1) =
= ala’ (Diag(y) ! — Desbilta_pusi =g

— a2 a' Diag(y)~'a
— “ni1+a' Diag(y)~lta’
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Rearranging terms completes the proof. n

Then decomposing I't = R’} U U;epp) N, we get

_ n . 2t > maX;cp, supyen; [v, ¢(2)]
SSDP = {(l‘,t) e R": re [:l:l]n

It remains to prove the following lemma.

Lemma 87. Suppose Assumption 6 holds and let i € [n]. For any x € [£1]", we have
2
sup [, q(a)] = (a'2)” + (azm ~Sa;/1- x§> . (5)
e i#i N

We will need the following two useful facts.

Lemma 88. Ler& € RY and oo > 0, then

2

gt iEe) .

C€R++ (3 ].

Proof. Without loss of generality, we rnay assume £ € R® . Then by Cauchy-Schwarz, we have

- Zf:l §i/CE=—4 <E =1 52/C2> ( =1 sz) > é(Zle —§i>2. Furthermore, equality
holds when ¢? oc /. |

Lemma 89. Let o, 5 > 0, then

sup< “ —f) = (\/5—\/3)2+

>0 14z

Proof. Let f(z) == a(1 + z)~! — Bx~1. Note that % () = —a(l+z)72 + B2 There
are three cases to consider. If 3 = 0, then f(z) = a(1 + ) tand sup,~ga(l + 2)7! = a.
Next, suppose 0 < o < 3, then %f(x) =—a(l+z)2+Bz72>B(x2—(1+2)"2) >0
so thatsup,~ o f(z) = lim,;_,o0 f(2) = 0. Finally, suppose 0 < 3 < «. Note that f'(z) > 0
for all z small enough. Similarly, f’(x) < 0 for all z large enough. We deduce that sup,~( f(x)

is achieved. Computing the first-order-necessary conditions, we see that f(z) is maximized at

\/a\{B\/B with value (/o — \/,3)2 |
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Proof of Lemma 87. Without loss of generality, ¢ = n. Let b € R” where b; = x? — 1. Let¥y
denote the first n — 1 entries of 7. Then,

2
azbn
sup [, q(z)] — qobj(x) = sup (y,b) = sup ~ib
7ENR J YENR 7€R++ zz; . 1+Zz 1 a2/’7@
2 n—1 92 n—1
an, bn, asb;
=sup| — + sup i . G=«
a>0( 1+« (eRT 1{; Gi ; ! })

(O3 (S )

_ <an¢_7n_ éaﬁ)j

Here, the second line follows from a change of variables of (; := CL? /viand @ == ?:_11 ;- The
third line follows from Lemma 88 and the fourth line follows from Lemma 89. |

Proof of Corollary 7. Lety € I'y and ¢ € R”™. By convexity of [y, ¢(x)] in = and the fact that
q(z) = q(—z),wededuce that [y, ¢(0)] < [v, ¢(z)]. Wededuce that Optgpp = inf, SUP,er, [v,q(x)] =
sup.cr, [7, ¢(0)]. By Proposition 8, we conclude that

2
Opt =max| a a . [ |
Ptspp P X(z Z J)

J#i +

Proof of Corollary 8. Pick an openset U C [+1]" such that

ay(1 —z?%) >Zaj l—m) Ve e U.
7>1

Then by Proposition 8, for any « € U, we have (x,t) € Sspp if and only if

2
2t > f(x) = (aTx)Q—i—( 11— 2?2 — Za],/ ) .

j>1

Note that f(x) is smooth on U and nonlinear (for example note 821; (Qx) # (). We conclude that

Sspp # conv(S) as conv(S) is polyhedral. [
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B.2 DEFERRED PROOFS FROM SECTION 2.6
USEFUL LEMMAS

We first recall that under some minor conditions, pointwise convergence implies uniform conver-
g

gence for convex functions. We extend this statement to show that pointwise z.4.s. convergence

implies 4.4.s. uniform convergence.

Lemma 90. Let @ C R" be an open set and let f 2 8 — R be a convex function. Suppose
91,92, - - -+ = Risa sequence of random convex functions such that for all x € Q) and e > 0,
we bave that a.a.s.,

lgi(z) — f(z)| <e.
Then, for any compact C C Q and € > 0, we have that a.a.s.,

lgi(x) — f(x)| <€ Va € C.

Proof. Fix C° C € compact. Without loss of generality, we will assume that € > 0 satisfies
C + B(0,3¢) C Qand that f is 1-Lipschitz on C' + B(0, 3¢).

Fix a finite net N' C C + B(0, 3¢) such that forall z € C + B(0,2¢), we have x €
conv(N N B(x, €)). By our assumption and the fact that \V is finite, we have thata.a.s., | f (z) — gi(x)| <
e forall 2 € V. We condition on this event in the remainder of the proof.

Foranyz € C,letx = 3 ; A\jz; denote the convex decomposition guaranteed by x €
conv(N N B(x,€)). Then,

gi(z) < Z)\jgi(%) < Z%‘(f(ﬂﬂj) +€) < f(x) + 2

Here, the last inequality follows from f(z;) < f(z) + ||z — ||, < f(z) + e

Letz € Cand2’ € N N B(z,¢). Note thaty = 2/ + (2/ — ) € C + B(0,2¢). By
construction, there exists y’ € N'N B(y, €) such that g;(y’) > gi(y). Finally,

f@)+4e> f(y)+e> gi(y) = gi(y) = 2gi(2) — gi(x) > 2(f(2') — €) — gi(x) > 2f () — gs(x) — 4e.

Therefore, by rearranging and combining, we deduce that a.4.s., |g;(z) — f(x)| < 8¢, Vz €
C. [ |

Lemma 91. Letr € [—1,1], then

T2
_ /01 " (o) = 2(/T =2 — 1) = $(r).

—11+4+rc
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Proof. We begin by expanding the definition of iy, and substituting 0 = — cos ¢:

SRR e

dnsc =
i 1+re Cl4ro

- 2
:_7/ r2sin? 0 20
9—0 1 — rcosf

2 /7r r? —r2cos? 0
0

do

-0 1—1rcosf

2 (7 r2—1 9
B _;/gzomde_ ;/6:0(1—#7“0089)0[0

20 —1r2) ([T 1
BECE Yy A S
T 9=0 1 —rcosf
We now focus on the bracketed integral. Perform the change of variables 6 = 27 to get
T 1 w/2 1
——df =2 ——dn. 8
/9:0 1—17rcos@ /nzo 1 —rcos(2n) " ()

Recalling the identities cos(2) = 2cos?(n) — 1and cos™2n = sec’n = tan’n + 1 =
% tan(n), we then have

1 B 1 B d%tann
1—rcos(2n) 1+4+7—2rcos?n (1+7r)tan?n+ (1 —7r)

Performing one last change of variables ¢ = tan 7 gives

5 /2 J 5 /2 < tann J
/0 1—rcos 1—rcos(2n) = /770 (1+7)tan?n+ (1 —7) g

e 1

=2 dt
t=0 (14+7r)t2+(1—1r)

arctan (t %) >

=2
vier t=0
7T

= . 9

—— )

Combining (7), (8), and (9) gives the desired identity. |
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DEFERRED PROOFS FROM SECTION 2.6.2

Proof of Lemma 15. Let Q@ = R™ and set f(7y) := 1 — ||7||5. Note that f and Ayin(A[7]) are
both concave functions on €. We have Ain(A[0]) = 1 = f(0). Furthermore, for any nonzero
v € R"™and e > 0,

Amin(A[]) = 14 [[7][2Amin (Z ) €1+ [la[=1+¢ =[F(v) £ Vllyel, 2.a.5.

171l

Here, the inclusion holds by Facts 4 and 6. Taking C' = rS™ 1 and applying Lemma 90. |

Proof of Lemma 16. Fixr € (0, 1). Withoutloss of generality, r+2¢ < 1. SetQ := {y € R™ : ||v||, < + 2¢}.
Let 4 € (2. Note that we may generate A[9] and b[4] via the following equivalent process: Sample

A ~ NGOE(n) and b ~ N (0, I,,/n) independently and set A[§] := I + A and b[§] := rb.

With this notation, —b[§]A[5]7'0[5] = —r2b" (I + rA)~'b. Let A = Y, ovv, be

the eigenvalue decomposition of A and let 1 7 denote its Empirical Spectral Distribution. By

Lemma 91, we have

1 . =112
| -bB1" A bl - ()|
1 AT a1—T11rA 1 7'2
= 5| A P nsc
2| AR + )
:bTI+TA / —11+ro Atnse
n ( Tb —1/n 1
- d nsc )
I 1+r0, ' 1+r0 alo) /1—#7"0'u ()

where the last inequality follows from the identity (I +rA)~1 = >, 1+m ———w;v;] and Cauchy-

Schwartz inequality. Note that by Fact 6, for all i € [n] we have that1 +70; > 1 — 7 —re >
1—r—e€>caas. We will compute the mean and variance of the first term conditioned on this
event. By independence of b and A,

n (viTI_J)Q—l/n ' n 1
I%Z 1+ ro; L+roi 2 e Vi :Z<1+rai>15E

(So) - 1m)

—\ 2 1
(vin) —‘1+Tai26,Vi]:O,and
n

9 .

n (o78) —1
Z(v’)/n 1+r0i26,Vi§<1>

E
b 1—|—7"Ui

i=1 en

2
14+7ro; > ¢, Vz’] = —.

In particular, the first term can be bounded by €/(2r?) z.4...
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For the second term, define the C2° function

=, iflz| <140
P(z) =40, if x| > 1420
C,  else.
By Fact 6, we have that .a.s. [ 1= +w dpz(o) = [¢(o (o). Applying Fact S, we conclude
that the second term can be bounded by €/ (27“ ) a.a.s..
—bly] " A bly] - 6(7)| <
€ a.a.s.. Applying Lemma 90 with C' = rS™~1 concludes the proof. n

DEFERRED PROOFS FROM SECTION 2.6.3

Lemma 92. Fixe > 0and N € N. Let A ~ NGOE(n). Then, a.a.s. there existsa N -dimensional
vector space W C R" such that

w' Aw € [1 £ €|jw||?, Yw € W.

Proof. Let 1) denote a CZ° function from R to [0, 1] that takes the value one on [1 & €/2] and
the value zero outside of [1 £ €]. Note that 6 := [ ¢d s is some positive constant independent
of n. Let W denote the vector space corresponding to the eigenvalues of A in the range [1 & €].
Clearly w! Aw € [1 + €]||w]|3 for all w € W. It remains to note that by Fact 5, we have a.4..

dim(W) _ [{i€fn]: (A e+l

> [wdng > [ e - 0/2=0/2
so that dim(W) > N a.a.s.. [

Proof of Lemma 18. Let N denote a finite e-net on 8™ C R, By Lemma 92, 4.a.s., for every
(%bj, 7v) € N, there exists an N dimensional subspace T such that

A(Wob s 1)w € [i€]||w‘|2, Yw e W.

Furthermore, by Lemma 15, we have that 2.4.s. HA(%bj, v,0) H2 € H (Yobj> V) H [1 £ €] forall

(Yobj> 7) € R™. We condition on these two events.
Now, let (Yobj,7) € S™ and let ('y(’)bj,’y’) € N N B((7obj,7), €). Let W denote the N-
dimensional subspace guaranteed for (vf)bj, 7). Then forallw € W,

wTA(’Yoij s 1)’LU = wTA(’V:)ij 7/7 1)w + wTA(’Yobj - ’Yc/)ij Y- ’)/)’LU € [:I:Se] ||,LUH2 L

C APPENDICES FOR CHAPTER 3

C.1 Proor orF LEMMaA 35

For completeness we restate Lemma 35.
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Lemma 35. Let M = { M, Ma}. Suppose Assumption 7 holds and n = 3. If neither conditions
(i) nor (i) of Theorem 17 bold, then N'(M) is the union of at most four one-dimensional subspaces of
RS,

Proof. As oy My + ao My ¢ Si forany (a1, az) # (0, 0), we have that My and M3 must each
have rank either two or three. We will break the proof into two cases.

Suppose first that rank (M) = rank(Ma) = 2. As My, My ¢ S, each M; has exactly one
positive and one negative eigenvalue. We can then write M/ = Sym(abT) and My = Sym(cdT).
Then

NM)={z: 2T(abT)z = 2T (cd)x = 0}
=(atubh)n(ctudh)
=(@tneHuatndbH)utneh)utndh).

As condition (ii) does not hold, each of the four spaces on the final line have dimension one. Thus
N (M) is the union of at most four distinct lines.

Next suppose without loss of generality that rank (M) = 3. As M, ¢ Szi, we may assume
that it has two positive eigenvalues and one negative eigenvalue. Performing a change of basis, it
suffices to consider when

1 a b ¢
M, = 1 and Mo=1|b d e
-1 c e f

We will consider the intersection N'(M) N {x € R3 : z3 = 1}. Note thatif z € N (M) has
x3 coordinate equal to zero, then = 0. Thus, the number of distinct lines in N (M) is equal to
the number of distinct points in

2., .2 1_
P::{($17m2)6R2: r{+a253—-1=0 }

(az? + dx3 + 2cxy + f) + 22(2bz1 + 2€) =0

Suppose that /(M) contains at least five lines so that PP contains at least five points. Without loss
of generality, we may assume that the £1 coordinates of these five points are distinct (else, perform
an orthonormal change of basis on the first two dimensions). Let the 21 coordinates of these five
points be 1, &2, . . ., &5. For each &;, by the first constraint in the definition of P, we have that the

corresponding 2 coordinate must be either /1 — &2 or —y/1 — &2. Hence,

[(aﬁ +d(1—€)+2cE+ [) +1/1- 52(2b5+2e)} [(aﬁ +d(1 - €2) + 26 + f) — /1 - £2(2bg + 26)]
= [(a = @)% + 4?|¢" + [4(a — d)c + 8be€® + [2(a — d)(d + f) +4c? + 4e? — 4?| 7+
[de(d + ) — 8bel + [(d + f)? - 4¢?]

is a degree-4 polynomial in £ which is zero on five distinct points &1, . . . , §5. We conclude that this
polynomial is identically zero. The coefficient of § 4 implies that a = d and b = 0. The coefhicient
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of €2 implies that ¢ = e = 0. The constant term implies that f = —d. We conclude that My has
the form

This contradicts the assumption that there does not exist an (a1, a2) # (0, 0) such that a1 M7 +
as My € Sr_f_ [ |

D ArrENDICES FOR CHAPTER 4

D.1 ProOFS OF THEOREMS 21 AND 22

In this appendix, we outline how to modify the proofs of Theorems 19 and 20 to prove Theo-
rems 21 and 22.

Theorem 21. Suppose there exists v* > 0 such that A(~*) = 0. Consider the closed nonempty
interval ' = {y € Ry : A(y) = 0}. Lez y_ denote its leftmost endpoint.

o IfT is bounded above, let y denote its rightmost endpoint. Then,
conv(S) = S(7-) N S(v+).

In particular, we havemingegrn{qo(z) : ¢1(z) < 0} = mingern max{q(y—, ), ¢(v4, )}

o IfT is not bounded above, then q1(x) is convex and
conv(8) = S(v-) N {(z,t) e R : qu(x) <0}.

In particular, we havemingegrn{qo(z) : ¢1(z) < 0} = mingern{q(7—, ) : q1(z) < 0}.

Proof. The “C” inclusions follow from a trivial modification of Lemma 43. It suffices to prove
the “2” inclusions. The case where Ag and A; are both nonconvex is covered by Theorem 19. We
consider the four remaining cases:

* Suppose Ag and A; are both convex. In this case, I' = [0, 00) and it suffices to show that
conv(S) = {(z,t) : qo(x) <t, gi(x) <0} = S. This holds as S is convex.

* Suppose Ap is nonconvex and A; is convex. In this case, I' = [y_, 00) is unbounded
above. Furthermore, v_ is positive and A(7— ) has a zero eigenvalue. Suppose (2, ) satisfies
q(y_,2) < tand q1 (&) < 0. If g1 (&) = 0, then we also have go(2) = q(7_,2) < 1,
whence (£,1) € S. On the other hand, if ¢1 () < 0, we may apply the argument in case
(iii) in the proof of Lemma 44 verbatim (after replacing all occurrences of 4 by v*) to
conclude that (2, ) € conv(S).

* Suppose Ay is convex and A; is nonconvex. In this case, I' = [0, v4] is bounded above
and 7y_ is defined to be 7~ = 0. Furthermore, A(7y4) has a zero eigenvalue. Suppose
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(2,1) € S(y_)NS(y4). Ifq1(2) < 0, then we also have qo(#) = q(7—, %) < #, whence
(#,%) € S. On the other hand, if ¢ () > 0, we may apply the argument in case (ii) in the
proof of Lemma 44 verbatim to conclude that (%, ) € conv(S). [

We will prove Theorem 22 using a limiting argument and reducing it to Theorem 21. The proof
follows that of Lemma 46 almost verbatim.

Theorem 22. Suppose there exists v* > 0 such thatr A(v*) = 0. Consider the closed nonempty
interval I := {y € Ry : A(y) = 0}. Let y— denote its leftmost endpoint.

* IfT is bounded above, let v denote its rightmost endpoint. Then,
conv(S) = S(y-) N S(v+)-

In particular, inf zepn {qo(x) : q1(x) < 0} = infyern max{q(y—, ), ¢(v4+,2)}

o IfT is not bounded above, then q,(x) is convex and
onv(S) = S(v-) N {(,1) € R™! : gi(z) < 0}.

In particular, inf zern {qo(x) : q1(x) < 0} = infyern{q(y—,2) : q1(z) < 0}.

Proof. The “C” inclusions follow from a trivial modification of Lemma 45. It suffices to prove
the “O” inclusions.

Denote the set on the right hand side by R, i.e., R := S(7v—-) N S(74) when I is bounded and
R :=S8(v-)N{(x,t): qi(z) <0} whenI"is unbounded.

Let (2, %) € R. It suffices to show that (2, + €) € conv(S) forall € > 0.

We will perturb Ay slightly to create a new instance of the problem. Let § > 0 to be picked
later. Define Afy = Ay + 1, and let all remaining data be unchanged, i.e.,

/

qo(w) = 2T Az + 2b x + cf := 2T (Ag + 61,,)x + 2bJz + co
qi(z) == 2TAlx + 202 + ¢} = 2T Ayz + 2b]x + ¢1.
We will denote all quantities related to the perturbed system with an apostrophe.

We claim it suffices to show that there exists § > 0 small enough such that (£, + ¢) € R/.
Indeed, suppose this is the case. Note that for any 2 € R", we have g1 (z) = ¢} (x) and go(z) <
¢ (x). Hence, conv(S’) C conv(S). Then, noting that A'(v*) = A(v*) + 1, > 0, we may
apply Theorem 21 to the perturbed system to get (2, + €) € R’ = conv(S’) C conv(S) as
desired.

First note that A} = A/ so that I" is bounded if and only if I is bounded. We will then pick
0 > 0 small enough such that

R € . € R €
oel* <5 hl—vlla@i < b -wlla@ <3,
where the last condition is only required when v and 7/, both exist. This is possible as the
expression on the left of each inequality is continuous in § and is strictly satisfied when 6 = 0.
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The following computation shows that ¢/ (v, #) <  + €.

Y- )1 (2)
) + \% —v-|lq1(2)

¢ (7, 2) = (+e)=q(y-.3) = (+e) +
< q(y-, @) + 612" — (F +
- )

(v
£+

H)
SN—
~

qa\y
0

IN A

The first inequality follows by noting ¢/ (v, z) = q(7, x) + 8||||%, the second inequality follows
from our assumptions on 0, and the third inequality follows from the assumption that (#,1) €
S(v-). Thus (2, + €) € S'(v"). When I is bounded (or equivalently, when 7/ and v, exist),
a similar calculation shows that ¢/(7/,, #) — (f + €) < Oso that (2,1 +¢€) € S’(’y_,_) Finally,
when T is unbounded we have ¢} (2) = ¢1(#) < 0so that (2,7 + ¢) € {(z,t) : ¢}(z) < 0}.
Thus, (2, + €) is in R’, concluding the proof. [ |

D.2 ESTIMATION OF THE REGULARITY PARAMETERS

In Section 4.4 we gave algorithms to solve the GTRS assuming that we had access to (£, () and 4
satisfying Assumption 12. In this appendix, we show how to compute these quantities.

Let qo, g1 satisfy Assumption 11. Recall the definitions

&= min{l, max )\min(A(fy))}7 ¢* = max{l,v4}.
>
We will find (¢, ¢) satisfying

Fa<E<g, <A

and a 4 such that Apin (A(%)) > &.

We will accomplish this in two stages. We begin by estimating £* using only an upper bound ¢
of (*. Then using our estimate § we will compute ¢.

COMPUTING £ AND 7
We start with the following guarantee for the algorithm TestXi (Algorithm 14).

Lemma 93. Given qo, q1 satisfying Assumption 11, an arbitrary 0 < & < 1, an upper bound
¢ > (%, and a failure probability pe > 0, TestXi (Algorithm 14) will ontput

A such that Amin (A(5)) > €/2 ifE < &
A such that Apin(A(Y)) > &/20r “Fail” if € < & < 2&*
“Fail” F26* < €
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Algorithm 14 TestXi(qo, q1, &, 5 , pg)

Given qq, ¢ satisfying Assumption 11, a guess &, an upper bound ¢ > ¢*, and a failure probability
pe > 0
1. Letsg=0andtg=C
2. LetT = [log k| + 2 where k = /¢
3. Fork=0,...,T—1
a) Letx = ApproxEig(A(sy), 2(,£/4, B5). If 2T A(sp)x > 3€/4, then return 4 = s,
b) Letx = ApproxEig(A(tx), 2(,€/4, %) IfxTA(tg)x > 3¢/4, thenreturn 4 = ty.
c) Lety = (s + tx)/2
d) Letz = ApproxEig(A(¥),2(, &/4, 55). IfaTA(Y)x > 3¢ /4, then return § = 7.
e) IfxTAjx > 0,let g1 = Yand tgy1 = ti. Else, let g1 = spand tiq = 7.
4. Return “Fail”

with probability 1 — pe. This algorithm runs in time

owem()(9)

Proof. We condition on the event that ApproxEig succeeds every time it is called. By the union
bound, this happens with probability at least 1 — pg.

As we have conditioned on ApproxEig succeeding, any 4 which is output by TestXi will satisfy

It is clear that TestXi will output “Fail” if £ > 2£* as there does not exist any 4 such that
Amin (A(5)) > &*. It remains to show that, given § < £*, TestXi will output some 4.

For the sake of contradiction, assume that the algorithm fails to output in each of the 7" rounds.
Let P == {7 : Amin(A(y)) > 3§*/4}. Recall that Apyin(A(7)) is 1-Lipschitz in y. As there
exists some 7y such that Apin (A(y)) > £* (see Definition 17), we conclude that P is an interval of
length at least £* /2.

Note that P C [s, to]. We will inductively show that P C [sy, t] foreach k € {1,...,T}.
Letk € {0,...,7 — 1} and let s, 7, ), be defined as in the algorithm and let z be the unit
vector found in step 3.(d). We claim that xTA1z # 0. Indeed suppose 2TA1x = 0, then
2TA(y)x = 2TA(7)z < 3§ /4 for all y. This contradicts the assumption that there exists some
7y such that Apin (A(7)) > £ Now suppose y € P, then

% < zTA(y)x = 2TAF)z + (v — y)2T Az <

3 *
i + (v = y)zT Az,

where the first inequality follows from v € P, and the last one from the fact that the algorithm

did not output in iteration k (and thus the if statement in step 3.(d) did not hold). Thus, if

xT A1z > 0, then we have the implicationy € P = 7 > 7. Similarly, if zTA;2 < 0, then

we have the implicationy € P = v < 4. Then by induction, we have P C [sg41, tp11].
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We conclude that P, an interval of length at least £* /2, is contained in [s7, t7] an interval of
length

to — S0
tr — st = oT < f / 4.
Noting that § < £* gives us the desired contradiction.

The running time of this algorithm follows from Lemma 52. [ |

Given a lower bound § < &%, Lemma 93 guarantees that TestXi will find a 4 satistying
Amin(A(%)) > &/2 with high probability. In order to make use of this lemma withont a lower
bound on £*, we will simply repeatedly call TestXi with decreasing guesses for {. Consider Algo-
rithm 15.

Algorithm 15 ApproxXi(qo, g1, ¢,p)

Given qq, ¢ satisfying Assumption 11, an upper bound ¢ > (¥, and failure probability p > 0
1. Fork=1,2,...
a) Run TestXi(qo, q1,2~ %, (, 27 Fp).
b) If TestXi outputs “Fail” then continue.
c) Else, let 4 be the output of TestXiand let § = 27 return € and 4.

Theorem 40. Given qo, q1 satisfying Assumption 11, an upper bound E > (", and a failure
probability p > 0, ApproxXi (Algorithm 15) will output & and 7y such that

f*/4 < f < 5*7 )‘min(A('AY)) > f

o(N € oe(2) (0 bg(;*)?’)

and run in time

with probability 1 — p.

Proof. We condition on the event that TestXi succeeds every time it is called. By the union bound,
this happens with probability at least 1 — p.

Letk* € {1,2,...}besuchthat£*/2 < 27F" < ¢*, Then, as we have conditioned on TestXi
succeeding, Lemma 93 guarantees that TestXi(qo, ¢1, 2k ¢, 2= (kt1) p) outputs

4 such that Apin (A(%)) > 27F if2=k < ¢*/2
4 such that Apin(A(%)) > 27F or “Fail”  if €*/2 < 27F < ¢
“Fail” ifer < 2k,
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Thus, TestXi will output “Fail” for every & < £* and will output 4 either on round £* or £* + 1.
We can then bound

Auin(A(3) 2 200 2 £

We bound the run time of the algorithm as follows.

COMPUTING (
Recall the guarantee of the algorithm ApproxGammaPlus.

Lemma 53. Given qo, q1 satisfying Assumption 11, (&,¢) and 4 satisfying Assumption 12, 6 > 0,
and p5 ., ApproxGammaPlus (Algorithm 2) outputs 7 satisfying

Y+ € [v+ — 0, V4], Amin(A(7+)) < 6/K

with probability 1 — ps,, . This algorithm runs in time

(i) ()

Ve

We will repeatedly call ApproxGammaPlus with different choices of d. Consider the algorithm

ApproxZeta.

Algorithm 16 ApproxZeta(qo, g1, &, ¢, %, p)

Given qo, ¢ satisfying Assumption 11, (£, ¢) and 4 satisfying Assumption 12, and failure proba-
bility p > 0
L Fork=1,2,...
a) Let { be the output of ApproxGammaPlus(go, ¢1,§,2~ (k=1)¢, 4, 2=+ ¢ 2=kp)
b) If(k < 2=+ ¢ then continue
¢) Elseset ¢ :=2~*=1¢ return ¢

Theorem 41. Given qo, q1 satisfying Assumption 11, (§, ¢ ) and 4 satisfying Assumption 12, and
failure probability p > 0, ApproxZeta (Algorithm 16) will output  such that

¢F<C<4¢
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and run in time

with probability 1 — p.

Proof. We condition on the event that ApproxGammaPlus succeeds every time it is called. By the
union bound, this happens with probability at least 1 — p.

We first check that the assumptions of Lemma 53 hold. For k = 1, we have 2-(k—1)¢ = ¢ > ¢*.
Then by induction, and conditioning on ApproxGammaPlus succeeding, Lemma 53 guarantees

If ApproxZeta fails to terminate in round k, then 1.(b) ensures ék < 2=(+D ¢ This in turn
implies that ¢* < 27 ((*+D=1)¢ and, by induction, the assumptions of Lemma 53 hold in every
round that ApproxGammaPlus is called.

Let k be the round in which the algorithm terminates. If k = 1, then the guarantee of Lemma
53 implies ¢* > (1, whence

C_ZC*Z€1>ZC-

Thus, we may assume k& > 2. The condition of step 1.(b) then guarantees the two inequalities
o1 £ 277¢, and & > 27FFDC, (10)

Then, we have
¢ > G > 2 = (2744 2740) > (G + 27 E0H0) > ¢

where the first and fifth relations follow from Lemma 53 and the second and fourth relations
follow from (10) above.

It remains to bound the run time of ApproxZeta. Let k* € {1,2,... } be such that (* <
2~ (K" =1)¢ < 2¢*. We show that ApproxZeta terminates within £* rounds. Suppose ApproxZeta
reaches the k*th round. Then, we have

Coo > (F = 2 WHNE S 97k F Lo (W41 E — 9= (1)
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where we used Lemma S3 in the first relation, and the definition of k* in the second relation.
Therefore, ApproxZeta terminates in round £* at the latest and we can bound the run time of this

So( 20 (5 e (208
-0l ()
0 (N\/\/g»* log(Z) log<§) log (C{) 2) . |
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algorithm as

E.1 USEFUL LEMMAS REGARDING QUADRATIC FUNCTIONS

The following two basic bounds will be useful in our error analysis.

Lemma 94. Lerq(x) = xTAz + 207w + cfor A € S*, b € R", and ¢ € R. Then, for all
z,y € R |q(x) — a(y)| < IAlllly — 21> + 20| Allllzl| + [bI)ly — @||. I particular, if
[All [l <L ||z|| < pand ||z —y|| <6 forsomed <1 < p, then |q(z) — q(y)| < 5dp.

Proof. Writingy = (y — x) + = and expanding the formula for ¢(y), we obtain

qy) = (y—2)TA(y —2) + 22TA(y — z) + 2T Az + 2bT(y — z) + 2Tz + ¢
=q(z)+ ((y —2)TA(y — ) + 2(Az + b,y — z)). [ |

Lemma 95. Let o, 3,7 € Ruwhere o # 0 and v/ < 0. Then the roots of az® + 23z + = 0
satisfy |z| < 2‘%’ +4/ 5

Proof. Let{z_, z; } denote the roots (possibly with multiplicity). We bound

(st = -ty ()2

E.2 USEFUL PROCEDURES

This appendix contains running time guarantees for well-known algorithms that we will utilize as

building blocks in Algorithm 5.
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THE LANCZOS METHOD

The following lemma characterizes the running time for approximating the minimum eigenvalue
of a symmetric matrix.

Lemma 96 ([103]). There exists an algorithm, ApproxEig(A, p, 0, p), which given a symmetric
matrix A € S", p such that ||A||y < p, and parameters 6,p > 0, will, with probability at least
1 — p, return a unit vector x € R" such that £V Ax < Ain(A) + 6. This algorithm runs in time

Np n
O(SF 1o8(3)):
where N is the number of nonzero entries in A.

ArPPrROXGAMMA

The following algorithm extends [180, Algorithm 2] to find ay < # such that p() fallsin a
prescribed range. An analogous algorithm can be used to find 2y > 4 such that pu(7) fallsin a
prescribed range.

Algorithm 17 ApproxGammaleft

Given (Ao, 41), (£,¢,9),p € (0,1),and p € (0,¢)

1. Setﬁl = 0,’/“1 = ’A}/

2. Fort=1,...,T = "log(%)-‘
a) ve= (b +11)/2
b) Letz, = ApproxEig(A(v),2¢, /8, p/T) and fu = xl A(ve)w
C) Ifﬂt > [y SCE€t+1 =l Terl = Ve
d) Else lfﬂt < %ILL, Set£t+1 =Yty Tt41 = Tt
e) Else, output vy, 74

Lemma 61. Suppose Assumption 14 holds, 1 € (0,§) and p € (0, 1). Then, with probability at
least 1 — p, ApproxGammaLeft(f1, p) (Algorithm 17) returns (7y, v) such that ~y < 4 and v is a unit
vector satisfying (1/2 < p(y) < vTA(y)v < pin time

~( N
ot s 3)1(5)).
Proof. We condition on ApproxEig succeeding in each call. This happens with probability at least
1—np.
Suppose ApproxGammaLeft outputs on iteration ¢. On this iteration, we have p(ye) > i —
(/8 > pu/2. Similarly note 2TA(v)z = iy < p.
Next, we show that ApproxGammaLeft is guaranteed to output within 7" iterations. Suppose

otherwise and consider the interval

<4
T = cR.: .
{7 U ouy) € [3m ) }
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Note that if 7, € 7 for some ¢ then ApproxGammaLeft will output at step ¢. Indeed, at iteration
t, we will have iy € [p(ve), u(ye) + g] - {%,u, u] In particular, we deduce that y; ¢ 7 for

anyt = 1,...,T. Next, by construction, the interval [¢;, 7] contains Z for every t. On the other
hand, |[¢7, rr]| < 277¢ < & <|Z],a contradiction.
It remains to bound the running time of ApproxGammaLeft. By Lemma 96, each iteration of step

o(" i os(3))

Finally, note that the number of iterations of step 2 is bounded by 7' = O (log (%) ) . |

2.(b) runs in time

CON]UGATE GRADIENT

The following lemma characterizes the running time for approximately minimizing a strongly
convex quadratic function using the conjugate gradient algorithm.

Lemma 97. There exists an algorithm, ConjGrad(A, b, p, u, 0), which given symmetric matrix
Ae S withul < A < plandb € R", returns x € R" such that Hx + A_le < 0. This

algorithm runs in time
o{2fe(41)

ArPrROXNU

The following algorithm uses the conjugate gradient algorithm to approximate /() for a given
value of 7.

Algorithm 18 ApproxNu

Given (Ao, A1, by, b1, co, c1), (&, ¢, ) satisfying Assumption 14, 7, r such that € (0,1) and
A(vy) = pl,and § > 0

* Apply the conjugate gradient method to find Z such that ||Z — z(7)|| < %

* Return Z, ¢1 (%)

Lemma 62. Suppose Assumption 14 bolds, p € (0,€], § € (0,1), and A(vy) = pl. Then
Approxiu(p, 0,7y) (Algorithm 18) returns (&, ) such that | — x(7)|| < pé/10(, and v =

q1(%) € [v(vy) £ 6] in time
o 10s())

Proof. The running time follows from Lemma 97. Note that Assumption 14 and A(y) > pf to-

gether'imply lz(y)| < % Then, from the definition of () and z(7y) and applying Lemma 94,
we arrive at

1 (2) —v(7)] < 5(2—;) (1“—54) <. -
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NESTEROV’S ACCELERATED MINIMAX SCHEME

The following lemma characterizes the running time for finding an approximate optimizer of the
maximum of two strongly convex smooth quadratic functions.

Lemma 98. There exists an algorithm, AccMinimax, which given A(l), AR ¢ sn b(l), b2 ¢
R", ¢V, c®) € R, and (1, p, ) > 0 satisfying pl = AD < oI and ‘ b(®)
such that

< p, will return x

max zTAWZ + 2T 4 ¢; < (min max zTAWz + 26Ty 4 ci) + 9,

r€eR”™

in time

O(% os ()

Proof. For notational convenience, define ¢ () = 2TAWz + 2007z + ¢ and f(z) =
max; ¢V (). We may take g = 0in [132, Algorithm 2.3.12] and bound

£(0) = min f(x) < £(0) — maxmin ¢ (z)
< max (¢ ?(0) ~ min g ()

ma b(in( A(z’))*lbu)

IN

2
W .
The running time then follows from [132, Theorem 2.3.5] and [180, Lemma 14]. |

E.3 DEFERRED PROOFS FROM SECTION 5.2

Lemma 99. Suppose Assumption 13 holds. Then

Opt = inf su , ).
pt = f velgq('v )

Proof. (>)Letz € R"suchthatqy(z) < 0. Then,asI" C R, wehaveqo(z) > sup,cp q(7, ).
Taking the infimum in & concludes this direction.

(<) Letz € R™. We split into three cases depending on the sign of ¢ ().

If g1 (x) = 0, then Opt < go(z) = sup,er q(7, ).

Next, suppose q1(z) < 0so thatsup,cp q(7, 7) = q(y-, ). If y— = 0, then again Opt <
qo(z) = sup,er q(7, ). On the other hand, if v~ > 0, then A(~y-) is positive semidefinite
but not positive definite and there exists nonzero v € ker(A(v_)). Without loss of generality,

(v,b(y-)) <0.Letaw > Osuch that ¢ (24 awv) = 0 (thisexistsasvTAjv = UT%U >
0). We deduce Opt < qo(z + av) = q(v—, 7 + av) < q(v—, x) = sup,r q(7, 7).
Finally, suppose g1(x) > 0. If I' is unbounded, then sup,cp (v, 2) = +00 and Opt <

sup,er q(7, 7). Else, we have that A(7.) is positive semidefinite but not positive definite and
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there exists nonzero v € ker(A(y4)). An argument identical to the one in the previous paragraph
shows Opt < sup,cr q(7, 7).
Taking the infimum over all z € R"™ completes the proof. [

E.4 DEFERRED PROOFS FROM SECTION 5.4.1

In this appendix, we motivate a generalized-eigenvalue-based replacement for ApproxGammaLeft
(Algorithm 17) of crLeft (Algorithm 6). Given i € (0, &), our goal is to compute v < 4 and
v such that 11/2 < p(y) < vTA(y)v < p. We will do so by approximating the minimum
eigenvalue A(and a corresponding eigenvector) for

Ay = A(A(:y) - %z)v (11)

and setting ¥ == 4 + % Note that defining v := 4 + %, where )\ is the true minimum eigenvalue
to (11), gives

p7) = Amin(AGR) = 21+ 141 +3p/4 = 3/4.

In the following, we abbreviate A=AR)- %TNI . Asin Lemma 61, we will assume Assumption 14
throughout this appendix. We will take \, © to be the output of eigifp on the input (—A1, A, J)
where § > 0 will be fixed later.

Recall [75] that \, ¥ satisfies

(—A1 + B)o = AM(A+C)o (12)

for some || B|| < §||A1] and ||C]] < 5HAH We will assume that X is in fact the minimum
eigenvalue of (12).

Lemma 100. Swppose ‘)\ - ;\’ < 1/5C2, then (7)) > /2.

Proof. As () is 1-Lipschitz, it suffices to show that |5 — v| < 11/4. Note that % =5 —4so
that |A\| > 1/¢. We deduce that ‘5\’ > A\ — ‘)\ - 5\’ Combining,

NS <
ST R OI o -

Lemma 101. Suppose N is a minimum eigenvalue of (12) and 26¢ < £/8. Then,

Proof. Note that

A= max{)\ C A — M = 0}, and )\ = max{j\ : (A1 + B) — 5\(121 +0C) = 0}.
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We compute

—A - A—a)A=(—A1+B)—XNA+C)—B+AC+aA
= —8(1+ 2¢|A|) + aA.

We may thus deduce that —A; — (A — @) A > 0 whenever @ > 64(1%%'5‘”. Hence,

;\_/\§54(1+§2<‘)\).

Similarly,
(wA1+B) —(A—a)(A+C)=—A4, —AA+B - XC + a(A+C)
= —0(1+2¢|\) + a(A 4 O).

We may thus deduce that (—A; + B) — (A — a)(fl +C) = 0 whenever v > 58(1%2@\‘). Hence,

s 8 +£2C\A\)

Finally, we may estimate H’ > g and ‘%‘ > % ‘We conclude

BL+8C/E) _ 5\ o ,A0L+17¢/8) »

=y
§ §

Proposition 24. Let 6 = % and suppose X is the minimum eigenvalue of (12). Then,

1/2 < p(y) < TAM)D < p

Proof. The first inequality follows from Lemmas 100 and 101. The second inequality follows from
the definition of . The third inequality follows as

3TAGR)D =0 (A+ 1 A41)5+3u/4
=5"((A+C) + $(A1 = B) = C + 1 B) 7+ 3/4
< |Icl JrﬁHBH + 3pu/4
< 46¢ + 3u/4.

Here, the first inequality holds as (—A; + B)& = A(A + C)@. The second inequality follows as
[tedl §25Cand‘5\’ > ])\|f’)\75\’ > 1/2¢. n
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N =10* N =10°
Time Time
i Alg. Error ErrorcR  Time Ref. Solve Error ErrorcR  Time Ref. Solve
WLK21 4.8 6.1 01 0.05 0.05 5.1 5.4 0.8 03 0.4
WK20 5.7 6.7 0.5 0.1 0.3 4.8 5.3 4.4 0.5 3.8
le-2 JLie  1.5e+03 1.8e+06 0.7 0.1 0.6 5.1e+01 2.1e+06 8.2 0.6 7.6
AN19  6.7e+02 - 1.5 - - 6.4e+02 - 2.2 - -
BTH14 4.2¢+08 - 1.1 - - 7.5e+08 - 1.5 - -
WLK21 6.7 7.2 0.4 02 0.2 8.5 8.4 2.9 1.0 1.8
WK20 8.1 7.1 0.7 0.1 0.6 7.0 7.1 7.0 0.6 6.4
le-4 JLig  2.3e+09  4.dle+12 3.0 0.1 2.8 | 1.0e+09 3.6e+12 499 0.6 493
AN19 4.9 - 1.6 - - 5.0 - 2.4 - -
BTH14 4.0e+08 - 1.2 - - 4.4e+08 - 1.7 - -
WLK21 6.5 6.1 0.8 0.3 0.5 8.3 8.2 6.3 1.8 4.4
WK20 6.4 6.4 1.6 0.1 1.5 7.6 8.2 155 05 150
le-6 JLi9 7.9e+04 7.5e+10 3.1 0.1 3.0 | 8.4e+04 7.le+l0 40.4 05 399
AN19  l.4e+06 - 1.7 - - 1.3e+06 - 2.4 - -
BTH14 1.3e+09 - 1.4 - - 1.0e+09 - 1.7 - -

Table E.1: Average errors and solution times for n = 102 over 100 random instances for each parameter
combination. Note that errors are reported in units of 10716, We call attention to the setting
(N,i*) = (10°,1075). In this setting, the fastest algorithm is 8TH14. On the other hand,
BTH14 also reports the highest error of ~ 1077. BTH14 is followed by an19 which achieves slightly
smaller error of = 10~ 10, While wLk21 is slightly slower than both of these algorithms it achieves
significantly smaller errors of 2 10716, The results are similar for (N, z*) = (10°,107%) as
well.

E.S NUMERICAL EXPERIMENT TABLES

We provide additional statistics for the numerical results plotted in Figures 5.2 to 5.4 forn =
103, 10%, 10%, respectively. In Tables E.1 and E.2, we present the averages for n = 103, 10*
respectively over 100 random instances each, and in Table E.3 the averages for n = 10 are given
over 5 random instances. In these tables, Error and Errorcr correspond to the error of ¢o(Z) and
the error of T within the convex reformulation respectively as defined in Section 5.4.3. For wiLk21,
wk20 and JL19, we also report time for constructing the convex reformulation and solving the
reformulation as Ref. and Solve. For each parameter combination, we highlight the algorithm
with the smallest running time.

F APPENDICES FOR CHAPTER 6

F.1 DEFERRED PROOFS

The following proof is adapted from [132].

Proof of Lemma 67. Itis evident that ¢4 (X') are quadratic matrix functions of the form (6.6) with
Vo = Xo and ¢§ = Q(Xo). The remainder of the proof verifies the recurrences on V;1 and
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N =10 N =10°
Time Time
w* Alg. Error ErrorcR  Time Ref. Solve Error Errorck  Time Ref. Solve
WLK21 4.9 6.4 1.8 0.8 0.9 4.7 5.4 11.1 4.8 4.8
WK20 4.9 5.7 9.8 1.6 8.1 5.3 6.0 675 105 56.8
le-2 JLig  l4e+02  1.7e+06  15.3 1.6 136 | 6.3e+02 18e+06 938 10.7 828
AN19  6.8e+02 - 184.1 - - 1.2e+03 - 324.5 -
wik2r  1.5e+01  1.6e+01 6.6 2.6 3.7 | 41e+01 4.2¢+01 57.0 24.0 303
wk2o  1.0e+01 1.le+01  16.6 1.5 151 | 2.9¢e+01 3.0e+01 207.0 11.0 195.8
le-4 JjL1g  6.7e+09  4.2e+12 579 15 56.4 | 2.1e+10 3.de+12 3931 11.3 3816
AN19 4.3 - 205.7 - - 4.5 - 476.4 -
wik21  9.1e+01  9.2e+01 151  S.1 9.8 | 2.7e+01 2.8e+01 130.7 491 79.0
wk2o  6.1e+01  6.1e+01  33.0 15 315 | 3.1e+01 3.1e+01 264.0 10.6 253.2
le-6 JjLig 2.5e+09  7.8e+10 59.7 15 581 | 1.6e+08 7.1e+10 402.7 11.0 3914
AN19  8.0e+06 - 206.6 - - 4.4e+06 - 475.5 - -

Table E.2: Average errors and solution times for n = 10* over 100 random instances for each parameter
combination. Note that errors are reported in units of 1016,

N =10* N =10°
Time Time
o Alg. Error ErrorcR  Time Ref.  Solve Error ErrorCR Time Ref. Solve
WLK21 33 9.9 301 126 136 5.3 2.7 229.2  100.8 101.7
le-2 WK20 4.7 7.8 162.9 247 137.0 3.1 4.9 1748.4 5279  1216.3
JL19 4.9 l.4e+06 2873 27.4 2591 | 1.6e+02 2.3e+06 1930.7 419.0 1507.5
wik2r  1.5e+01  1.6e+01 141.6 651 70.8 | 9.5e+01 9.5¢+01 1586.3 767.0 728.5
le-4 wk2e  1.6e+01 1.6e+01 3343 257 307.9 | 1.4e+02 1.4e+02 106229 437.7 10180.8
JLig  2.5e+09  4.3e+12 1044.3 26.8 1016.5 | 9.2e+10 8.7e+11 115269 S14.5 11007.9
wik2r  2.2e+01  2.0e+01 294.2 97.8 190.0 | 6.2e+01 6.4e+01  3361.1 15695 17017
le-6 wk2e  1.5e+01 1.6e+01  612.3 257 585.6 | l.4e+02 1.4e+02 77815  367.8  7409.8
JLig  7.6e+04 8.5e+10 1081.4 195 1061.2 | 2.1e+06 7.5e+10 10960.0 355.3 10600.8

Table E.3: Average errors and solution times for n = 10° over S random instances for each parameter
combination. Note that errors are reported in units of 1016

284



F Appendices for Chapter 6

¢}, 1. We suppose that the stated form holds for some ¢, and we will show that it will hold for ¢ + 1
as well. We compute

We deduce that Vi1 = (1 — a)V; + (2 — 15,). Noting that ¢;,; = ¢y41(Vis1), and
applying the recursive definition of ¢441(X) gives us

* * ﬂ
0t = (=) (07 + 5 Vi — Vil
L2 | - =\, P =112
+a| Q(Xir1) + i”QtHF + (G, Virr — E¢) + §||V2+1 — E¢||7

- (1= o + (@) + 112

P 2 , ot = SN | TP
(1= )5 Via = Vill+ 5 [V = (& = ), — g5 10l
L
= (- )i +a QW) + o=l
pl—a)a?y o o2 pe(l—a)y o g2 a
+ 5 Hvt_(ut_ﬂgt)HF‘F 5 Hvt_(ut_ﬁgt)HF QﬂHQtH
1

A= 2 ~ = S
+a(l —a) §H:t—VtHF+<9t,Vt—5t> —ﬁHgtHFv

where the third equation follows from substituting the expression for V; 1, and the last one from
regrouping the terms. u

The following proof is adapted from [132, Page 92].

Proof of Lemma 68. Note that

- 1
Vigr = (1 —a)%+a<:t - ﬂgt)-
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Therefore,
1+a)2; — X _ 1.
Vier = (1 - a)w +04(5t - ~gt>
o i
1 1
=X —=—-X Y
t+a< t t— L9t>
=X+ — (Xt+1 X).
Then,
St = Xep1 + ——(Vigr — Xop1)
St41 = Akt + (Vi t+1
l—«
= X, — (X — X4). [ |
t+1+1+a( t+1 t)

Lemma 102. Consider an instance of (6.12) generated by the random procedure in Section 6.5.2.
Then equality holds throughout (6.12).

Proof. Tt suffices to show that v* and T* are feasible and achieve value | X*||%. in the dual SDP
(i.e., the third line of (6.12)).

Note that by Schur Complement Theorem,

AGY2 BOOR N (b N (1
B(y*)T/2 C(Z )Ik; _ T C(Lk)[k _7*_ Bl )TA(“/2) B(v*) 0 |

Here, ~ indicates matrix similarity. Thus v* and 7™ are feasible in the dual SDP.
Next,

trm):tr(cw*)%_ B TAG ) <*>>

k

_ tr((X*)T;l(v*)X*) +(B(Y*), X*) + c(7%)

HX*IIF <<X*)TAiX*> oy ,>_||X*II%
+Z 5 (B X +) =" W

F.2 ADDITIONAL NUMERICAL RESULTS

Table F.4 displays numerical results for a variant of SketchyCGAL (see Section 6.5.1 for implemen-
tation details) on one random instance of (6.12) for each of n — k = 103, 104, and 105.

G APPENDICES FOR CHAPTER 7

G.1 ProoF oF PROPOSITIONS 21 AND 22

Proposition 21. Let A C S" and suppose S € span(A) is nonsingular. Then, A is SDC if and
only if S™Y A is a commuting set of diagonalizable matrices with real eigenvalues.
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n—k time(s) |X — X*||3 memory (MB)

103 3.0x10° 2.1 2.2 x 10!
104 1.0 x 10* 25 6.0 x 10!
10° 5.6 x 104 3.0 2.9 x 102

Table F.4: Preliminary experimental results for (n — k) = 10, 10%, 10° (1 instance) with time limit
3 x 103, 10%, 5 x 10* seconds for a variant of SketchyCGAL.

Proof. (=) Let P € R™*" furnished by SDC. For A € A, note that
P7'ST'AP = (PTSP) Y (PTAP).

Then, as PTSP and PTAP are both diagonal matrices with real entries, we deduce that § “1Ais
diagonalizable with real eigenvalues. The fact that S ~1 Aisasetof commuting matrices follows
similarly.

(«<=) Recall that a commuting set of diagonalizable matrices can be simultaneously diagonalized
via a similarity transformation, i.e., there exists an invertible P € R™*" such that P “18-1 AP s
diagonal for each A € A [88]. The diagonal entries of P~1S~1 AP are furthermore real by the
assumption that ™1 A has a real spectrum. For each A € A, define

A= PTAP, Dy =P 's AP,

Next, note that the identity P_IS__IAP = (PTSP)~!(PTAP) can be expressed as D4 =
S~1A. Or, equivalently, SD4 = Aforall A € A. Fori, j € [n], we have the identity

Sij(Da)jj = Aij=Aji = S;i(Da)ii = Sij(Da)is-

Here, we have used that S and A are symmetric and D Als real cijagonal. In particular, if there
exists some A € ./_1 such that (Dy);; # (Da)jj»> then S; j; = A; j = 0. Furthermore, by the

relation SDp = B, we also have that Biyj = Oforall other B € A.

We conclude that by permuting the columns of P if necessary (so that [n] is grouped according
to the equivalence relation: i ~ j ifand only if (D4);; = (Da);,; forall A € A), we can write
S as a block diagonal matrix S = Diag(S(), ..., S*)). Furthermore, for every A € A, there
exists A1, ..., \z € Rsuchthat A = Diag()\ls(l), e )\kS(k)). It remains to note that each

block S can be diagonalized separately. n

Proposition 22. Let A C S™ and suppose S € span(.A) is a max-rank element of span(A). Then,
A is SDC if and only if range(A) C range(S) forevery A € A and {Ayrange(s) L A€ A} is
SDC.

Proof- It suffices to show that if A is SDC then range(A) C range(.S) for every A € Aas then
applying Lemma 78 completes the proof.

Letr = rank(S). Let P € R™*" furnished by SDC. Note that by permuting the columns of
P if necessary, we may assume that PTS P is a diagonal matrix with support contained in its first
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r-many diagonal entries. As S is a max-rank element of span(.A), we similarly have that for every
A € A, the matrix PTAP is a diagonal matrix with support contained in its first 7-many diagonal
entries. For A € A, write PTAP = Diag(A, 0(;,—)x (n—r)) Where A is a diagonal 7 x r matrix.
Then,

range(A) = range(P"TPTAPP™!) C span{qi,...,q}.

Here, g; € R™ is the ith column of P~T. On the other hand, as S has full rank, range(S) =
span{qi, ..., q}. |

G.2 FACTS ABOUT MATRICES WITH UPPER TRIANGULAR TOEPLITZ BLOCKS

Lemma 103. Let (ny, ..., ng) with Y, ng = n. Suppose T' € T. Then, the characteristic polyno-

mial of T' depends only on the entries {t;lj) DNy =n,; }

Proof- In this proof, we will use a, b € [n] to index entries in 1" (specifically, Tp, ;, € Ris a scalar,
not a matrix block). Foreach a € [n], leti, € [k] denote the block containing a, and let £, € [ny]
denote the position of a within block ¢,. By the assumption that 7" € T, we have

Top #0 = min{n;,, ny} —ni, + (la — &) > 0.

Now, for each a € [n], assign the weight w, = ¢, — n;“ . Note that by construction, if
Top # 0, then
wa—wb:%—%—k(ﬁa—ﬁb)ZO.

Furthermore, note thatif T, ;, # 0 and w, — wp = 0, thenn;, = n;, and £ = 4.
Next, consider a permutation o € Sy, such that [, T}, 5(a) # 0. Note that

n

Zwa — Wo(a) = Z:lwa - Z_:lwa(a) =0.

a=1

Then, by the above paragraph, we conclude that o satisfies n;, = n;_ @) and ¢, = {,(a) forall
a € [n].

Returning to the previous notation, the characteristic polynomial of 7" depends only on the
entries {tl(}j) ;= nj}. [
Lemma 81. Let (ny, ..., ny) such thaty;n; = n. Then, foranyT € T, the matricesT € R"*™
and T1(T) € R¥*¥ bave the same eigenvalues.

Proof. Without loss of generality, suppose 1 < --- < njandletT" € T. By Lemma 103, T" has
the same eigenvalues as the matrix 7' € T with entries

l .
7O T ifn=mny, 0 =1,
J 0 else.
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Now, suppose that there are m distinct block sizes s1, . . . , Sy,. Partitioning both II(T") and T’
according to 51, . . ., Sy, we have that

I(T) = Diag(Ty,...,T;n) and T = Diag(Ti ® Is,,...,Trn ® I,,).
We conclude that TI(7) and T have the same eigenvalues. [

(G.3 DETAILS FOR THE HERMITIAN CASE

Let H” denote the real vector space of n x n Hermitian matrices. Forv € C" and A € C"*" let
v* and A* denote the conjugate transpose of v and A respectively.

DEFINITIONS AND THEOREM STATEMENTS
Almost all of our results extend verbatim to the Hermitian setting. For brevity, we only state our
more interesting definitions and results as adapted to this setting.

Definition 34. A set A C H" is simultaneously diagonalizable via congruence (SDC) if there
exists an invertible P € C™*" such that P* AP is diagonal forall A € A. O

Definition 35. A set A C H" is almost simultaneously diagonalizable via congruence (ASDC) if
there exist sequences A; — A forevery A € A such that forevery i € N, theset {4; : A € A}

is SDC. -
Definition 36. A set A C H" is nonsingular if there exists a nonsingular A € span(A). Else, it
is singular. 0

Definition 37. Given a set A C H", we will say that S' € A is a max-rank element of span(A) if
rank(S) = maxec 4 rank(A). O

Theorem 42. Let A, B € H" and suppose A is invertible. Then, { A, B} is ASDC if and only if

A™LB bas real eigenvalues.
Theorem 43. Let {A, B} C H". If { A, B} is singular, then it is ASDC.

Theorem 44. Ler {A, B,C} C H" and suppose A is invertible. Then, { A, B, C'} is ASDC if
and only if {A_lB JATIC } are a pair of commuting matrices with real eigenvalues.

Definition 38. Let A C H" and d € N. We will say that A is d-restricted SDC (d-RSDC) if there
exist matrices A € H"t4 containing A as its top-left n X n principal submatrix for every A € A

such that {A 1 Ae .A} is SDC. O

Theorem 45. Let A, B € H". Then for every € > 0, there exist A, B € H" such that
HA — A, ’B — BH < eand {fl, B} is 1-RSDC. Furthermore, if A is invertible and A71B has
simple eigenvalues, then { A, B} is itself 1-RSDC.

Theorem 46. Let {A = I,,, B,C} C H" Then, if d < rank([B, C|)/2, the set

(o) ("0 ()]
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is not ASDC.

Theorem 47. Thereexistsaset A= {Aq,..., A5}y C H* such that Ay is invertible, AflA isa
set of commuting matrices with real eigenvalues, and A is not ASDC.

In the Hermitian setting, the statement in Theorem 39 should be changed to: “There exists a
set A = {Aq,..., A5} C H* such that Aj is invertible, A;lA is a set of commuting matrices
with real eigenvalues and A is not ASDC.” The proof is unchanged after setting

1 0 0
Al_( 11 )7 AQ_(Ol )7 A3_(001)7
1 0 10
0 0
= () A= ()
—i0 1

NECESSARY MODIFICATIONS

Next, we discuss technical changes that need to be made to adapt our proofs from the real symmetric
setting to the Hermitian setting. For brevity, we only list changes beyond the trivial changes, e.g.,

replacing S by H"”, R™*" by C"*", and T by *.

* In the Hermitian version of Proposition 23, the mg-many blocks corresponding to non-real
eigenvalues (previously (7.2)) will have the form

i

¥
l) +GnZ®F2

wheren; € Nand \; € C\ R. See [105, Theorem 9.2] for further details.

* In the proof of Lemma 79, note that for all ¢ € [r + 1, m], the block

Ak

(3

1 i
Si 1Ti = Ini & ( ’ ) + (nilni + Fnian‘ + 5FniHni) ® Io.

The remainder of the proof is unchanged.

* In the proof of Theorem 34, we will work in the basis furnished by the Hermitian version
of Proposition 23 for C2k, That is, we may assume in the first two cases that A and B
(previously (7.6)) have the form
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We will set 1215 as in the Hermitian case for both Cases 1 and 2. We will set Bg to be

AE a1/ —0i/2

A1 (a11/=01/2)"

Bs =
_ Ak _ (ak\/Ti/Q)*
<a1\/?> a1ﬁ <ak\/?> akﬁ 52
and

Gnm el

for Cases 1 and %, resPectively. Here, « € CF, 2 € R, and § > 0. The characteristic
polynomials of A5 Bj are given by (7.8) and (7.13) in Cases 1 and 2 respectively. The
remainder of the proof remains unchanged.

G.4 AN EXAMPLE WHERE THE SDC PROPERTY IS PRESERVED UNDER RESTRICTION

In this section, we give an example of a setting in which the restriction of an SDC set to one of its
principal submatrices results in another SDC set. This setting arises for example in QCQPs [93].

Proposition 25. Ler Ay, ..., Ay, € S" such that span({A1, ..., Am}) contains a positive
definite matrix. Let by, ... by, € R"and cy, ..., cp € R, and define

(A b nt1
Q’_<b} O)eS .

(3

IF{Q1,....,Qm,ens1e} 1} isSDC thensois {Ay, ..., A }.

Proof. Without loss of generality, let A; = 0. Note that forall A € R large enough, the matrix
Sy = Q1+ Aent1 e,TL 41 = 0. By the inverse formula for a block matrix [88], we have that for all
A large enough,

ATl 4 AT1o1bT AT — ATy
g-1_ [ At(e1—b]A1b1)  A(c1—bi1A] 'br)
A —bjAT! 1
)\+(01,b1A;1b1) A+(leb1A171b1)
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In particular,

A—l
. 1 _ 1
pmsit= (M)

On the other hand, by Lemma 77, we have that for all 4, j € [m)],

0=5'Qi, $5'Qy]-

Finally, by continuity we have that
ATYA;, ATTAS
_ . —1 . —1 = 1 19 1 ¥
O—Allm {SA Qi, Sy QJ} = <{ } 0).

We conclude that A7 { Ay, ..., A, } commute, whence by Lemma 77 this set is SDC. n
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