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Abstract

Reliable transmission of data is a central topic in coding theory and infor-
mation theory. Both of these fields were founded by Claude E. Shannon in his
seminal work, where he formalized the problems of communicating information
and established their limits. It has been a major problem since then to find
explicit coding schemes that achieve these limits.

For channel coding this corresponds to finding codes that achieve channel
(Shannon) capacity. Channel polarization is a novel approach to code con-
struction introduced by Arıkan, which he used to construct polar codes that
provably achieve capacity for any memoryless symmetric channel and have low
encoding and decoding complexities.

The focus of this thesis is on constructing a variant of polar codes with
an almost optimal speed of convergence to capacity. Let W be a binary-input
memoryless symmetric (BMS) channel with Shannon capacity I(W ). Shan-
non’s noisy coding theorem established the existence of capacity-achieving codes
(without efficient construction or decoding) which have rate R = I(W )− δ and
blocklength N = O(1/δ2). This quadratic scaling of blocklength N on the gap
δ to capacity is known to be the best possible.

We construct, for any sufficiently small δ > 0, a variant of polar codes with
rate R = I(W ) − δ and almost-optimal block length N = O(1/δ2+α), which
enables reliable communication on W with quasi-linear time encoding and de-
coding. This result thus yields a constructive version of Shannon’s theorem
with near-optimal convergence to capacity as a function of the block length,
which resolves a central theoretical challenge associated with the attainment of
Shannon capacity.

The codes constructed in this dissertation are a variant of Arıkan’s polar
codes based on multiple carefully constructed local kernels, one for each in-
termediate channel that arises in the decoding. A crucial ingredient in the
analysis is a strong converse of the noisy coding theorem when communicating
using random linear codes on arbitrary BMS channels. Our converse theorem
shows extreme unpredictability of even a single message bit for random coding
at rates slightly above capacity.
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Chapter 1

Introduction

The problem of transmission of information through a noisy channel lies at the heart of
any communication system. This problem is a central topic of information theory and
coding theory, where the goal is to find coding schemes which allow efficient, reliable, and
fast communication.

To reliably transmit a message through a noisy communication channel, the common
approach is to add some redundancy to the message. If the redundancy is introduced in a
clever way, the receiving side might be able to recover the initial message, even though it
was perturbed by noise during the communication. The task is then to try to add as little
additional information as possible, while still keeping the communication reliable.

This problem was first formalized and studied by Shannon in his seminal work [Sha48].
For any probabilistic communication channel W : X → Y which takes an input from al-
phabet X and outputs a symbol from alphabet Y , he considered the maximal rate at which
information can be sent through W in a reliable way. Shannon showed how to compute
this maximal rate, called the capacity of the channel I(W ), and proved the existence of
codes with rates arbitrarily close to I(W ). However, this result only proves the existence
of such codes and leaves open a challenge of finding such good codes constructively.

In more detail, the performance of a code consists of its rate R, block error proba-
bility Pe, and encoding and decoding algorithms complexities. While Shannon’s result
proves the existence of codes for which R → I(W ) and Pe → 0 simultaneously, his noisy
coding theorem is based on the probabilistic method and does not describe any explicit
construction for codes that approach capacity, and does not have a way to decode from
errors efficiently. It has since been a major challenge to find capacity-achieving codes for
which there exist explicit polynomial-time construction procedures and efficient encoding
and decoding algorithms.

Polar codes, introduced by Arıkan in his breakthrough paper [Arı09], formed the first
family of codes that provably resolved this challenge, achieving capacity for any binary-
input memoryless symmetric channel while having low encoding and decoding complexities.
Prior to this discovery, the capacity-achieving property was not proven even for best-
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performing codes used in practical applications (except for the case of the binary erasure
channel).

The next challenge then is finding codes that not only achieve capacity, but also do
it (almost) optimally fast. This means that one wants the rate R to approach channel
capacity I(W ) as fast as possible, in terms of the increasing blocklength N . At the same
time, one might also aim for the best possible convergence of the decoding error probability
Pe to 0. Finally, we desire codes with efficient algorithms.

The ultimate goal in this thesis then is to construct the codes for which:
(1) R→ I(W ), and the convergence is almost optimally fast;
(2) Pe → 0, and the convergence is almost optimally fast;
(3) construction, encoding and decoding algorithms are fast (polynomial in N).

The main contribution of this dissertation is constructing a variant of polar codes
which resolves this challenge, for any binary-input memoryless symmetric channel. We
now explain in more detail what “fast” means for the convergences above.

1.1 Scaling exponent
Consider the binary symmetric channel (BSC), which is one of the most fundamental and
well-studied noise models in coding theory. The BSC with crossover probability p ∈ (0, 1/2)
(BSCp) flips each transmitted bit independently with probability p. By Shannon’s noisy
coding theorem [Sha48], we know that the capacity of BSCp is I(W ) = 1 − h(p), where
h(·) is the binary entropy function. More precisely, the theorem showed that for any
δ > 0, there exist codes of rate I(W )− δ using which one can achieve miscommunication
probability at most 2−Ω(δ2N), where N is the blocklength of the code. In fact, random linear
codes under the maximum likelihood decoding offer this guarantee with high probability.
Thus Shannon’s theorem implies the existence of codes of blocklength N = O(1/δ2) that
can achieve small error probability on BSCp at rates within δ of capacity. Conversely, by
several classical results [Wol57, Str62, Str09, PPV10], it is known that the blocklength N
has to be at least Ω(1/δ2) in order to approach capacity within δ. We refer to δ, which is
equal to I(W )−R, as the gap to capacity.

If the blocklength N of the code scales as O(1/δµ) as a function of the gap δ to capacity,
we say that µ is the scaling exponent. This is equivalent to saying that the gap to capacity
δ scales as O(N−1/µ), and so the scaling exponent captures the convergence of the code rate
to capacity, as the blocklength increases. The previous paragraph shows that the fastest
convergence to capacity corresponds to the minimal value of the scaling exponent µ = 2,
and is achieved by random linear codes.

As this result was only proven for random codes, it is not constructive. The theoretical
challenge of constructing codes of rate 1 − h(p) − δ with blocklength N and construc-
tion/decoding complexity scaling polynomially in 1/δ remained wide open for a long time.
This is not surprising, as we already know that even the problem of designing codes that
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achieve capacity in general is highly non-trivial, and only a few families of codes provably
achieve this. Arıkan’s original analysis [Arı09] established the convergence to capacity for
polar codes as the blocklength grows to infinity, but did not quantify the speed of this
convergence. Later, around 2013, two independent works [GX15, HAU14] gave an effective
finite-length analysis of polar codes, deriving codes with the blocklength, construction, and
decoding complexity all bounded by a polynomial in 1/δ, for any binary-input memoryless
symmetric channel. These results established that the scaling exponent µ of polar codes is
finite. The polar codes are up to this day the only known efficiently decodable capacity-
achieving family of codes proven to have a finite scaling exponent. The work [GX15] did
not give an explicit upper bound on the scaling exponent of polar codes, whereas [HAU14]
showed the bound µ ≤ 6. The upper bound was then improved to µ ≤ 4.714 for a gen-
eral BMS channel in subsequent works [GB14, MHU16]. On the other hand, for original
Arıkan’s polar codes it was shown in [HAU14] that the scaling exponent is lower bounded
by µ ≥ 3.579.

This is quite far from the optimal speed of convergence with N = O(1/δ2) achieved by
random codes. But these recent results raise the intriguing challenge of constructing codes
with the scaling exponent close to 2, a goal we could not even dream of till the recent
successes of polar codes. The main contribution of this dissertation is closing this gap, and
building a variant of polar codes with an almost optimal convergence to channel capacity.
Specifically, for arbitrarily small positive α, we obtain a scaling of N = O(1/δ2+α), or, in
other words, get the scaling exponent µ = 2+α. As we are interested in constructive results,
our codes have polynomial-time construction and efficient (quasi-linear time) encoding and
decoding algorithms.

1.2 Decoding error probability
In addition to looking at the speed of convergence to capacity, we are also interested in how
fast the block error probability Pe tends to 0. Several different regimes can be considered
in terms of scalings of the rate R and the decoding error probability Pe as N increases:

• In the error exponent regime, the rate R < I(W ) is fixed, and the scaling of Pe as a
function of N is studied.

• In the scaling exponent regime, the error probability Pe is fixed, and the scaling of
δ = I(W )−R is considered.

• Finally, in the moderate deviations regime, neither of the parameters is fixed, and
instead the joint scaling of I(W )−R and Pe is studied.

For the standard polar codes in the error exponent regime, Arıkan and Telatar [AT09]
first proved that the decoding error probability scales with blocklength N as exp(−

√
N).

This behaviour was later extended in [KSU10] for a more general version of polar codes
which use larger ℓ × ℓ kernels G, where the decoding error was estimated as PE ≈
exp(−NEc(G)), where Ec(G) < 1 is a constant which depends on the matrix G.

The scaling exponent regime is what we already briefly discussed in Section 1.1.
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For the moderate deviations regime, several works [AW10, AW14, PPV10] studied the
joint behaviour of R and Pe for general codes, and proved the fundamental tradeoff between
these parameters. Namely, they proved − ln Pe

N(I(W )−R)2 →
1

2V
, where V is a parameter

of a channel called channel dispersion (V > 0 for non-trivial binary-input channels so we
always assume this). It then follows that for the code with rate R ≥ I(W ) − N−1/µ (i.e.
scaling exponent µ) and decoding error probability Pe ≤ exp(−Nφ), these scalings must
satisfy the tradeoff 2

µ
+ φ ≤ 1.

As our primary focus is getting the almost-optimal scaling exponent µ = 2 + α, we
see that the best scaling of the block error probability we can hope to achieve is Pe ≤
exp(−NΩ(α)). This can be viewed as achieving the optimal tradeoff curve 2

µ
+ φ ≤ 1 from

one side, near the point (µ = 2, φ = 0). This is exactly the scaling we prove for our codes
by applying the framework from [WD18a] for studying the tradeoff between µ and φ.

1.3 Summary of contributions
The main contribution of this thesis work consists in resolving the challenges we described
for an arbitrary binary-input memoryless symmetric channel. Specifically, we present a
variant of polar codes with a near-optimal convergence to capacity, almost optimal scal-
ing of the decoding error probability, and which also can be constructed in polynomial
time and have quasi-linear encoding and decoding algorithms. This “constructivizes” the
quantitative finite-length version of Shannon’s theorem with a small slack in the speed of
convergence to capacity. Below we outline several ideas and technical contributions that
all lead to this result.

1.3.1 Mixed-kernel construction
Arıkan’s original polar coding construction is based on a large tensor power of a simple
2 × 2 matrix, which is called the kernel of the code construction. For this construction,
it was shown in [HAU14] that the scaling exponent µ for Arıkan’s original polar code
construction is lower bounded by 3.579 (when successive cancellation decoding is used).
Given this limitation, one approach to improve µ is to consider polar codes based on
larger ℓ × ℓ kernels for some ℓ > 2. This approach did in fact lead to improvements in
scaling exponents, but only for the special case of erasure channels. For the BEC, using
large kernels, polar codes with the scaling exponent (2 + α) for any desired α > 0 were
given in [FHMV17], where it was shown that a random kernel of large enough size works.
However, no improvement was proven for the general BMS channel using large matrices.

One of the crucial ideas that lead to our code construction is the use of mixed ker-
nels in the construction of polar codes, where the kernel matrix is not fixed throughout
the recursive construction. This can be viewed as the next natural extension of kernel
usage, after increasing the kernel size from 2 to arbitrary ℓ. Although this approach is not
new and it was shown that using different internal kernels can also lead to polarization
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([PSL15, YB15, GBLB17, BBGL17, WD18a]), no gains in parameter scalings were previ-
ously analytically proven. We show how to utilize the mixed-kernel (also referred to as a
dynamic kernel) approach, and describe a way to choose the kernels during the construc-
tion procedure which results in obtaining the almost-optimal scaling exponent, while also
keeping the other desired properties of the code.

1.3.2 Strong converse for bit-decoding
One of the main technical results that made our code construction possible is formulated
in a context not related to polar codes, and concerns bit-decoding of random linear codes.
The strong converse of Shannon’s theorem implies that if a code has rate greater than
the capacity of the channel, then the probability of error in decoding the entire message
goes to 1. More specifically, Wolfowitz’s classic result [Wol57] implies that if R ≥ I(W ) +
O(1/

√
N), then Pe is close to 1, which means that decoding the whole input message

cannot be done reliably using this code.
In our version of the strong converse we show that for random linear codes with rates

slightly above capacity, decoding even one bit of the message is not possible reliably.
Specifically, if R ≥ I(W ) + O(log3(N)/

√
N), then even when one only needs to recover a

single bit of the input message X given the output Y , this is still not possible to do even
slightly better than a coin flip (for random linear codes). The specific very strong lower
bound on the entropy H(X1 |Y N

1 ) is what makes this statement technically challenging.
As this contribution can be formulated independently of the polar codes context, it is
presented separately in Chapter 3 before we talk about polarization.

1.3.3 Inverse sub-exponential decoding error probability
Decoding error probability scaling as Pe ≤ exp(N−φ) for some φ was previously proven for
polar codes ([AT09, KSU10, HMTU13, MT14, GX15]) and the moderate deviations regime
with both finite scaling exponent and good scaling of the decoding error probability was
proven for general BMS channels in [MHU16] and further improved in [WD18a, WD18b].
However, the challenge of getting the near-optimal scaling exponent and sub-exponentially
small decoding error probability simultaneously was open for some time. The challenge was
resolved in [WD19, WD21], where the authors prove that for any pair of parameters (µ, φ)
satisfying φ + 2

µ
< 1, codes with R ≥ I(W ) − N−1/µ and Pe ≤ exp(N−φ) are achievable,

however their codes are lacking polynomial time construction as presented.
In [GRY20] we first showed how to obtain the almost-optimal scaling exponent but only

with inverse-polynomial error probability Pe ≤ N−Ω(1). After that in [GRY22] we show
that the analysis of polarization from [WD19] can be applied to our codes to improve the
decoding error probability to be sub-exponentially small, while keeping the near-optimal
scaling exponent and polynomial-time construction. In this thesis, we further show that
the framework from [WD19] can also be used to achieve any pair of parameters (φ, µ)
satisfying a certain tradeoff (not optimal), also without sacrificing poly(N) construction,
for any BMS channel.
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1.4 Organization
In Chapter 2 we briefly establish the background for channel coding and go over the
notations, definitions, and several useful technical facts.
In Chapter 3 we prove the strong converse theorem for single-bit decoding for random
linear codes, a self-contained result outside of the context of polar codes.
Chapter 4 gives an overview of polar codes and covers the state of the art.
In Chapter 5 we show for any binary-input symmetric channel how to construct polar
codes with the near-optimal scaling exponent µ = 2 + α for any small α, but with only
inverse-polynomial decoding error probability Pe. This is the result from [GRY20].
Finally, Chapter 6 improves the codes to have sub-exponentially small decoding error
probability, the result from [GRY22] obtained using the tools from [WD18a, WD19].
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Chapter 2

Preliminaries

2.1 Notations
We use bold notations to denote vectors, while keeping the notations for the coordinates
regular font, for instance U ∈ Un corresponds to U = (U1, U2, . . . , Un). We denote a slice
of a vector as U j

i = (Ui, Ui+1, . . . , Uj), and in some places U<i = (U1, . . . , Ui−1) is used.
Calligraphic capital letters (X ,Y) generally correspond to sets/alphabets.
Uppercase letters X, Y, U , and V , and their bold vector notations generally denote

random variables (inputs and outputs of coding channels), while their lowercase versions
usually denote realizations of these random variables.

2.2 Coding channel and its parameters
In this thesis we only work with channel coding, so we first define the channel that describes
the communication.
Definition 2.1. A discrete memoryless channel W : X → Y is described by a finite input
alphabet X , a finite output alphabet Y, and a conditional probability distribution W (y |x),
such that if the input X ∈ X n is fed to n copies of the channel, the output Y ∈ Yn satisfies
P[Y = y |X = x] = ∏n

i=1 W (yi |xi).
We will mostly consider binary-input channels in this thesis, for which X = F2 is a

binary field. Moreover, our focus will only be on symmetric channels:
Definition 2.2. Binary-input discrete memoryless channel is said to be symmetric is
there exists an permutation σ : Y → Y on the output alphabet such that σ−1 = σ (involu-
tion) and W (y | 0) = W (σ(y) | 1) for all y ∈ Y.

We abbreviate a binary-input discrete memoryless symmetric channel as a BMS chan-
nel, and we only consider such channels in this thesis. So assume X = F2 unless stated
otherwise.
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The simplest example of a BMS channel is called a binary symmetric channel (BSC)
for the case Y = F2. The BSCp is described by a crossover (flip) probability p ∈ [0, 1], such
that W (1 | 0) = W (0 | 1) = p and W (0 | 0) = W (1 | 1) = 1− p.

Another basic example of a BMS channel is a binary erasure channel BEC, where
Y = {0, 1, ?}. Each input is either erased with some probability ε, or remains unchanged
with probability (1− ε).

Denote by Q the uniform distribution over the input alphabet F2, and treat it as a dis-
tribution of the input to the channel W . Then by W (x, y) we denote the joint distribution
W (x, y) = Q(x) ·W (y |x) of input X and output Y . Further, we abuse the notation and
use W (x | y) as a posterior distribution of the input x given the output of the channel y.
It will always be clear from the context and difference in notations if we are considering a
transmission probability or a posterior probability.

2.3 Channel parameters
All logarithms in this document are to the base 2, unless explicitly specified.
Definition 2.3. The entropy H(W ) of a BMS channel W is the conditional entropy
H(X |Y ), where X ∼ Q is an input to W and Y is output of W :

H(W ) = H(X |Y ) = −
∑

x∈F2

∑
y∈Y

W (x, y) log2 W (x | y).

The entropy of a channel corresponds to the level of uncertainty about the input X if
the output of the channel is known, and represents the amount of noise the channel W
introduces into communication.

For example, the entropy of BSC(p) is H(BSC(p) ) = −p log p−(1−p) log(1−p) = h(p)
for p ∈ [0, 1], where h(p) is called the binary entropy function. Notice how the entropy of
BSC(p) is 0 for p = 0 or p = 1, as the channel is deterministic for these cases and does not
introduce any noise.
Definition 2.4. For a BMS channel W , the channel capacity I(W ) is equal to the mutual
information I(X : Y ) of the input X and the output Y of the channel:

I(W ) = H(Q)−H(W ) = 1−H(W ).

Definition 2.5. The Bhattacharyya parameter of a BMS channel W is

Z(W ) =
∑
y∈Y

√
W (y | 0)W (y | 1).

The Bhattacharyya parameter Z(W ) also measures the amount of noise W introduced,
since H(W ) is close to 0 if and only if Z(W ) is close to 0, and the same with the other
end of the interval [0, 1]. This can be formalized in the following inequalities:
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Proposition 2.6 ([Arı09, Kor09]). For any BMS channel W ,

I(W ) + Z(W ) ≥ 1,

I(W )2 + Z(W )2 ≤ 1.

2.4 Codes

The communication protocol in channel coding looks as follows. We are trying to send
a message of k bits, U = (U1, U2, . . . Uk) ∈ Fk

2. The encoder function Enc : Fk
2 → FN

2
introduces the redundancy into the message, producing a codeword X = Enc(Uk

1 ) ∈ FN
2 .

The message is then sent through N copies of the communication BMS channel W , which
produce an output vector Y ∈ YN . As the channel is memoryless, this means that each
coordinate Xi is transferred independently to obtain Yi according to transition probabilities
W (y |x) of the channel. Our task is to try and recover the initial message U , so at the
last stage the decoding function Dec : YN → Fk

2 takes the output vector Y and produces
a guess Û for the initial message.

U ∈ Fk
2 X ∈ FN

2 W N Y ∈ YN Û ∈ Fk
2

Enc(·) Dec(·)

The set of codewords X that can be sent through the channel, i.e. the range of Enc(·),
is called the code C, which is a subset of FN

2 .
The length of a codeword N is called a blocklength, and we call the rate of the code

R = k
N

. This is an effective rate at which the communication is happening, meaning
that we are trying to send R bits of information per one usage of the channel W . The
channel capacity I(W ) determines the maximal possible rate, for a given BMS channel
W , for which such communication can be reliable. The reliability of the communication is
described by the probability of decoding the message incorrectly, Pe = P[Û ̸= U ], where
again Û = Dec(W N(Enc(U))). We call Pe to be the decoding error probability or the
block error probability.

Linear codes

A binary code C is a linear code if C is a linear subspace of FN
2 . A binary linear code C

with blocklength N and rate R (so the message length is k = RN) can always be described
by a generator matrix G ∈ Fk×N

2 : C = {xG : x ∈ Fk
2}. For binary linear codes that are

described by a generator matrix the encoding procedure Enc(·) is straightforward – this
is just a matrix multiplication, and can always be done in O(nk) time. Polar codes, as we
will see, are in fact linear codes.
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2.5 Useful facts

Binary entropy function
The binary entropy function is defined as h(x) = −x log x− (1−x) log(1−x), where 0 log 0
is taken to be 0. We will use the following simple fact several times in the proofs:
Proposition 2.7. h(x) ≤ 2x log 1

x
for x ∈ [0, 1/2].

Proof. Consider the function f(x) = 2x log 1
x
− h(x) = x log 1

x
− (1− x) log 1

1−x
on [0, 1/2].

We have f ′′(x) = 2x− 1
x(1− x) ln 2 < 0 on (0, 1/2), so f is strictly concave on this interval,

and further f(0) = f(1/2) = 0. Therefore, f(x) is positive on (0, 1/2).

The following proposition follows from the facts that h(x) is concave, increasing for
x ∈ [0, 1/2), and symmetric around 1/2, i.e. h(x) = h(1− x) for x ∈ [0, 1].
Proposition 2.8. For any x, y ∈ [0, 1], |h(x)− h(y)| ≤ h(|x− y|).

Proof. The inequality is trivial when x or y is equal to 0 or h(x) = h(y). Without loss of
generality, assume x > y. Further, consider first the case h(x) > h(y). We have two cases:

(a) 0 < y ≤ (x − y) < x. By the mean value theorem, we can write (h(x) − h(x −
y)) = h′(ξ1)y for some ξ1 ∈ (x − y, x), and h(y) = h(y) − h(0) = h′(ξ2)y for some
ξ2 ∈ (0, y). Then ξ2 ≤ ξ1, and since h is concave, it follows that h′(ξ2) ≥ h′(ξ1), thus
h(x)− h(x− y) ≤ h(y). Rearranging, obtain the desired inequality.

(b) 0 < (x− y) ≤ y < x. By the same argument, one has (h(x)− h(y)) = h′(ξ1)(x− y)
for ξ1 ∈ (y, x) and h(x− y) = h(x− y)−h(0) = h′(ξ2)(x− y) for some ξ2 ∈ (0, x− y),
and so ξ2 ≤ ξ1, therefore h′(ξ2) ≥ h′(ξ1) by concavity. Thus h(x)− h(y) ≤ h(x− y).

Next, if h(x) < h(y), define x′ = 1 − y and y′ = 1 − x. It follows that x′ > y′ and
h(x′) = h(y) > h(x) = h(y′), so the inequality in the proposition holds for x′ and y′ by the
cases (a)-(b) above. But clearly |h(x)− h(y)| = |h(x′)− h(y′)| ≤ h(|x′ − y′|) = h(|x− y|)
by symmetry of h around 1

2 .

Channel degradation

Definition 2.9. Let W : {0, 1} → Y and W̃ : {0, 1} → Ỹ be two BMS channels. We say
that W̃ is degraded with respect to W , or, correspondingly, W is upgraded with respect to
W̃ , denoted as W̃ ⪯ W , if there exists a discrete memoryless channel W1 : Y → Ỹ such
that

W̃ (ỹ |x) =
∑
y∈Y

W (y |x)W1(ỹ | y) ∀ x ∈ {0, 1}, ỹ ∈ Ỹ .

This is equivalent to saying that W̃ (x) and W1(W (x)) are identically distributed for
any x ∈ {0, 1}. In other words, one can simulate the usage of W̃ by first using the channel
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W and then applying some other channel W1 to the output of W . We utilize the following
fact from [TV13, Lemma 3]:
Proposition 2.10. Let W and W̃ be two BMS channels, such that W̃ ⪯ W . Then
H(W̃ ) ≥ H(W ) and Z(W̃ ) ≥ Z(W ).
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Chapter 3

Strong Converse for Bit-Decoding

In this chapter we describe and prove the strong converse theorem for bit-decoding for
random linear codes. This is one of the main ingredients used in our construction for polar
codes (and probably the most technically challenging one).

We look at the Shannon noisy-channel coding theorem, specifically at its converse, which
sets the upper bound for the achievable rates of communication through the channel. The
original theorem by Shannon [Sha48] showed that if the rate R of a family of codes is larger
than the capacity C(W ) of the channel W , then, as the blocklength N increases, the block
error probability is bounded from 0.

An improvement on this result by Wolfowitz [Wol57] is called a strong converse for
Shannon’s theorem, it shows that the channel capacity is a sharp threshold for reliable
communication. Specifically, it proves that if the rate for the family of codes scales as
R ≥ I(W ) + O(1/

√
N) as N increases, then the block error probability tends to 1. In

other words, the communication is very unreliable even if the rate of the code is just
slightly above capacity.

For the reasons that will become apparent in the later chapters of this thesis, here we
will be considering the strong converse for bit-decoding. That is, while we have the same
communication protocol for channel coding as before, we are only interested in decoding a
single bit of the initial message, given the output vector. Without loss of generality, say we
are trying to decode the first bit. We show that if one uses a random linear code with the
rate slightly above the capacity of the channel, specifically R ≥ I(W ) + O

(
log3 N/

√
N
)
,

then predicting the first bit of a message with even a tiny advantage over a uniform guess
is not possible, with high probability over the randomness of the code.

Notice that if we only want to decode a specific message bit and we do not put any
constraints on the code, then we can easily construct codes with rates substantially above
capacity that still allow us to decode this specific message bit with high probability. All
we need to do is to repeat the message bit sufficiently many times in the codeword, decode
each copy based on the corresponding channel output, and then take a majority vote. The
overall code rate does not even figure in this argument. Therefore, one can only hope
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that the converse theorem for bit-decoding holds for certain code ensembles, and for the
purposes of our polar codes construction, we are interested in the random linear code
ensemble. While the converse for bit-decoding in this case is surely intuitive, establishing
it in the strong quantitative form that we need, and also for all BMS channels, turns out
to be a challenging task.

Below we formulate the main theorem that we prove in this chapter. Notice that in
this chapter the notation ℓ is used for a blocklength, instead of the usual N in all other
places in this document.
Theorem 3.1. Let W be any BMS channel, and ℓ and k be integers that satisfy
ℓ ≥ k ≥ ℓ(1−H(W )) + 14ℓ1/2 log3 ℓ, and let ℓ be large enough so that log ℓ ≥ 20. Let G be
a random binary matrix uniform over {0, 1}k×ℓ. Suppose a message V · G is transmitted
through ℓ copies of the channel W , where V is uniformly random over {0, 1}k, and let Y
be the output vector, i.e. Y = W ℓ(V · G). Then, with probability at least 1 − ℓ−(log ℓ)/20

over the choice of G it holds H
(
V1

∣∣∣ Y)
≥ 1− ℓ−(log ℓ)/20.

We want to point out two quantitative features of the above theorem. First, it applies
at rates really close to the capacity of the channels, almost meeting the second-order scaling
of the standard strong converse, up to polylog factors. Second, it rules out predicting the
bit V1 with advantage ℓ−ω(1) over random guessing. Both of these features are important
for our code construction in the future chapters.

3.1 Proof outline
In this section we describe the plan of the proof for Theorem 3.1, but only restricted to the
case of a binary symmetric channel (BSCp) instead of a general BMS channel. The proof
for the general BMS channel case follows the same blueprint by using the fact that a BMS
channel can be represented as a convex combination of BSC subchannels, but executing it
involves overcoming several additional technical hurdles. We believe that this outline will
help the reader to navigate through the proofs for both BSC and BMS channel cases.

Proof plan for BSCp. We prove the lower bound on H
(
V1

∣∣∣ Y)
by lower bounding

E
g∼G

[
H
(
V1

∣∣∣ Y)]
and using Markov’s inequality. Thus we write

E
g∼G

[
H(g)(V1|Y )

]
=
∑

g

P(G = g)H(g)(V1|Y )

=
∑

g

P(G = g)
∑

y∈Yℓ

P(g)(Y = y)H(g)(V1|Y = y)
 ,

where the summation of g is over {0, 1}k×ℓ, and by P(g)(·) and H(g)(·) we denote probability
and entropy over the randomness of the message V and channel noise for a fixed matrix g.

1: Restrict to zero-input. The first step is to use the linearity of the (random lin-
ear) code and the additive structure of BSC to prove that we can change P(g)(Y = y) to
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P(g)(Y = y |V = 0) in the above summation, where 0 is the all-zero vector. This observa-
tion is crucial for our arguments, since it allows us to only consider the outputs which are
“typical” for the all-zero codeword, and there is no dependence on g in this case. Formally,
we prove Lemma 3.5.1:

E
g∼G

[
H(g)(V1|Y )

]
=

∑
y∈Yℓ

P(Y = y |V = 0) · E
g∼G

[
H(g)(V1|Y = y)

]
.

2: Define a typical set of outputs. We define a typical output set for the zero-input
for BSCp as F :=

{
y ∈ Yℓ : |wt(y) − ℓp| ≤ 2

√
ℓ log ℓ

}
. It is clear that if zero-vector is

transmitted through the channel, the output will be a vector from F with high probability.
It means that we do not lose too much in terms of accuracy if we restrict our attention
only to this typical set, so the following inequality suffices as a good lower bound on the
expectation.

E
g∼G

[
H(g)(V1|Y )

]
≥
∑
y∈F

P(Y = y |V = 0) · E
g∼G

[
H(g)(V1|Y = y)

]
. (3.1)

3: Fix a typical output y ∈ F . For a fixed choice of an output vector y ∈ F , we can
write H(g)(V1|Y = y) = h(P(g)(V1 = 0|Y = y)) = h

(
P(g)(V1=0,Y=y)

P(g)(Y=y)

)
. It suffices to show

that the ratio of these probabilities is very close to 1/2 with high probability. In order
to do this, we will show that both denominator and numerator are highly concentrated
around their respective means for g ∼ G, and that the means have a ratio of nearly 1/2
. Focusing on the denominator (the argument for the numerator is almost identical), we
have:

2k · P(g)(Y = y) = P(Y = y |V = 0) +
ℓ∑

d=0
Bg(d,y)pd(1− p)ℓ−d, (3.2)

where Bg(d,y) is defined as the number of nonzero codewords in the code spanned by the
rows of g at Hamming distance d from y . We proceed with proving concentration on the
summation above by splitting it into two parts.

3a: Negligible part. If y was received as the output of the channel, it is very unlikely
that an input codeword x such that |dist(x,y) − ℓp| ≥ 6

√
ℓ log ℓ was transmitted. It is

then possible to show that the expectation (over g ∼ G) of ∑
d : |d−ℓp|≥6

√
ℓ log ℓ

Bg(d,y)pd(1−p)ℓ−d

is negligible with respect to the expectation of the whole summation. Markov’s inequality
implies then that this sum is negligible with high probability over g ∼ G.

3b: Substantial part. On the other hand, for any d such that |d− ℓp| ≤ 6
√

ℓ log ℓ, the
expectation of Bg(d,y) is going to be extremely large for the above-capacity regime. We
can apply Chebyshev’s inequality to prove concentration on every single weight coefficient
Bg(d,y) with d in such a range. A union bound then implies that they are all concentrated
around their means simultaneously.

This proves that the summation over d is concentrated around its mean in (3.2). Finally,
since |wt(y) − ℓp| ≤ 2

√
ℓ log ℓ for y ∈ F and we leave enough room above the capacity
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of the channel, w.h.p. over choice of g we have Bg(wt(y),y) ≫ 1, and consequently
P(Y = y |V = 0) = pwt(y)(1 − p)ℓ−wt(y) is negligible compared to the second sum term
in (3.2).

4: Concentration of entropy. Proving in the same way concentration on the numerator
P(g)(V1 = 0,Y = y), we derive that P(g)(V1=0,Y=y)

P(g)(Y=y) is close to 1
2 with high probability for

any typical y ∈ F , and thus Eg∼G[H(g)(V1|Y = y)] is close to 1 with high probability for
such y . Recalling that the probability to receive y ∈ F is overwhelming for zero-vector
input, out of (3.1) obtain the desired lower bound on E

g∼G

[
H(g)(V1|Y )

]
.

The full proof for the BSC case is presented in Section 3.2. In order to generalize the
proof to general BMS channels, we need to track and prove concentration bounds for many
more parameters (in the BSC case, we had a single parameter d that was crucial). More
specifically, in the BSC case we have to deal with a single binomial distribution when trying
to estimate the expectation of Bg(d,y). For general BMS channels, however, we have to
cope with a multinomial distribution and an ensemble of binomially distributed variables
that depend on the particular realization of that multinomial distribution. Moreover, we
emphasize that Theorem 3.1 must hold in the non-asymptotic regime independent of the
underlying channel W . (In contrast, in typical coding theorems in information theory one
fixes the channel and lets the block length grow to infinity.) We show how to overcome all
these technical challenges for the general BMS case in the following sections.

The rest of the chapter is organized as follows. In Section 3.2 we first fully prove
Theorem 3.1 for BSCp. Even though it is a partial case of the full proof, we believe it helps
to understand the structure and main ideas behind the proof, and provides the roadmap
for the argument for the general case. Next, in Section 3.3 we prove Theorem 3.1 for the
case when the output alphabet size of a BMS channel W is bounded by 2

√
ℓ. The proof

mimics the approach for the BSC case to some extent. Finally, in Section 3.4, we show
how the case of a general BMS channel can be reduced to the case of the channel with a
bounded alphabet via “upgraded binning” to merge output symbols.

3.2 Strong converse for BSCp

Throughout this section consider the channel W to be BSC with the crossover probability
p ≤ 1

2 . Denote H = H(W ) = h(p), where h(·) is the binary entropy function. For the BSCp

case we actually only require k ≥ ℓ(1−H)+8
√

ℓ log2 ℓ in the condition of the Theorem 3.1,
and it suffices to have ℓ ≥ 8. The bound on the conditional entropy will also be stronger
for this case, we prove H

(
V1

∣∣∣ Y)
≥ 1− ℓ− log ℓ.

Proof of Theorem 3.1 (BSC case). We follow the plan described in Section 3.1. As we
discussed there, we prove that H(V1 |Y ) is very close to 1 with high probability over G
by showing that its expectation over G is already very close to 1 and then using Markov
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inequality. So we want to prove a lower bound on

E
g∼G

[
H(g)(V1|Y )

]
=
∑

g

P(G = g)H(g)(V1|Y ),

where H(g)(V1|Y ) is the conditional entropy for the fixed matrix g. Similarly, in the
remainder of this section, P(g)(·) denotes probabilities of certain events for a fixed matrix
g. By ∑g we denote the summation over all binary matrices from {0, 1}k×ℓ.

Restrict to zero-input. We rewrite

E
g∼G

[
H(g)(V1|Y )

]
=
∑

g

P(G = g)
∑

y∈Yℓ

P(g)(Y = y)H(g)(V1|Y = y)


=
∑
y∈Yℓ

∑
g

P(g)(Y = y) · P(G = g)H(g)(V1|Y = y).

Our first step is to prove that in the above summation we can change P(g)(Y = y) to
P(g)(Y = y |V = 0), where 0 is the all-zero vector. This observation is crucial for our
arguments, since it allows us to only consider the outputs y which are “typical” for the
all-zero codeword when approximating E

g∼G

[
H(g)(V1|Y )

]
. Precisely, we prove

Lemma 3.2. Let W be a BMS channel, ℓ and k be integers such that k ≤ ℓ. Let G be
a random binary matrix uniform over {0, 1}k×ℓ. Suppose a message V · G is transmitted
through ℓ copies of W , where V is uniformly random over {0, 1}k, and let Y be the output
vector Y = W ℓ(V ·G). Then

E
g∼G

[
H(g)(V1|Y )

]
=

∑
y∈Yℓ

∑
g

P(g)(Y = y |V = 0) · P(G = g)H(g)(V1|Y = y). (3.3)

The above lemma is formulated for any BMS channel, and we will also use it for the
proof of the general case in Sections 3.3-3.4. The proof of this lemma uses the symmetry of
linear codes with respect to shifting by a codeword and additive structure of BSC, together
with the fact that a BMS channel can be represented as a convex combination of several
BSC subchannels. The proof is deferred to Section 3.5.1 at the end of this chapter.

Note that P(g)(Y = y |V = 0) does not in fact depend on the matrix g, since 0 · g =
0, and so randomness here only comes from the usage of the channel W . Specifically,
P(g)(Y = y |V = 0) = pwt(y)(1−p)ℓ−wt(y), where we denote by wt(y) the Hamming weight
of y . Then in (3.3) we obtain

E
g∼G

[
H(g)(V1|Y )

]
=

∑
y∈Yℓ

pwt(y)(1− p)ℓ−wt(y) E
g∼G

[
H(g)(V1|Y = y)

]
.

Define a typical set. The above expression allows us to only consider “typical” outputs
y for the all-zero input while approximating Eg∼G

[
H(g)(V1|Y )

]
. For the BSC case, we
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consider y to be typical when |wt(y)− ℓp| ≤ 2
√

ℓ log ℓ. Then we can write:

E
g∼G

[
H(g)(V1|Y )

]
≥

∑
|wt(y)−ℓp|≤2

√
ℓ log ℓ

pwt(y)(1− p)ℓ−wt(y) E
g∼G

[
H(g)(V1|Y = y)

]
. (3.4)

Fix a typical output. Let us fix any typical y ∈ Yℓ such that |wt(y)− ℓp| ≤ 2
√

ℓ log ℓ,
and show that Eg∼G[H(g)(V1|Y = y)] is very close to 1. To do this, we first notice that

H(g)(V1|Y = y) = h

(
P(g)(V1 = 0,Y = y)

P(g)(Y = y)

)
. (3.5)

Denote Ṽ = V [2:k] to be bits 2 to k of vector V , and by g̃ = g[2 : k] the matrix g without
its first row. Next we define the shifted weight distributions of the codebooks generated
by g and g̃:

Bg(d,y) := |{v ∈ {0, 1}k \ 0 : wt(vg + y) = d}|,
B̃g(d,y) := |{ṽ ∈ {0, 1}k−1 \ 0 : wt(ṽ g̃ + y) = d}|.

Therefore,

P(g)(V1 = 0,Y = y)
P(g)(Y = y)

=
∑

ũ P
(g)(Y = y

∣∣∣V1 = 0, Ṽ = ũ)∑
u P(g)(Y = y

∣∣∣V = u)

= pwt(y)(1− p)ℓ−wt(y) +∑ℓ
d=0 B̃g(d,y)pd(1− p)ℓ−d

pwt(y)(1− p)ℓ−wt(y) +∑ℓ
d=0 Bg(d,y)pd(1− p)ℓ−d

. (3.6)

We will prove a concentration of the above expression around 1/2, which will then imply
that H(g)(V1|Y = y) is close to 1 with high probability by (3.5). To do this, we will
prove concentrations around means for both numerator and denominator of the above
ratio. Since the following arguments work in exactly the same way, let us only consider
the denominator for now.

By definition,
Bg(d,y) =

∑
v ̸=0

1[wt(vg + y) = d]. (3.7)

The expectation and variance of each summand is

Var
g∼G

1

[
wt(vg + y) = d

]
≤ E

g∼G
1

[
wt(vg + y) = d

]
=
(

ℓ

d

)
2−ℓ ∀v ∈ {0, 1}k \ 0.

Clearly, the summands in (3.7) are pairwise independent. Therefore,

Var
g∼G

[
Bg(d,y)

]
≤ E

g∼G

[
Bg(d,y)

]
= (2k − 1)

(
ℓ

d

)
2−ℓ, (3.8)
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and then

E
g∼G

[
ℓ∑

d=0
Bg(d,y)pd(1− p)ℓ−d

]
= (2k − 1)2−ℓ

(
ℓ∑

d=0

(
ℓ

d

)
pd(1− p)ℓ−d

)
= (2k − 1)2−ℓ.

Let us now show that ∑ℓ
d=0 Bg(d,y)pd(1−p)ℓ−d is tightly concentrated around its mean

for g ∼ G. To do this, we split the range of d into two parts: when |d − ℓp| > 6
√

ℓ log ℓ,
and when |d− ℓp| ≤ 6

√
ℓ log ℓ:

ℓ∑
d=0

Bg(d,y)pd(1−p)ℓ−d =
∑

|d−ℓp|>6
√

ℓ log ℓ

Bg(d,y)pd(1−p)ℓ−d+
∑

|d−ℓp|≤6
√

ℓ log ℓ

Bg(d,y)pd(1−p)ℓ−d.

In the proof below we will use the following multiplicative form of Chernoff bound
applied to a binomial random variable:

P
X∼Binom(ℓ,p)

[|X − ℓp| ≥ δℓp] ≤ 2e−ℓpδ2/3 for all 0 ≤ δ ≤ 1. (3.9)

Applying this for δ = 6 log ℓ
pℓ1/2 , we have

P
X∼Binom(ℓ,p)

[
|X − ℓp| ≥ 6

√
ℓ log ℓ

]
=

∑
|d−ℓp|≥6

√
ℓ log ℓ

(
ℓ

d

)
pd(1− p)ℓ−d ≤ 2e

−12 log2 ℓ
p < 2ℓ−12 log ℓ.

(3.10)

Negligible part. Denote Zg(y) = ∑
|d−ℓp|>6

√
ℓ log ℓ

Bg(d,y)pd(1− p)ℓ−d, and notice that

E
g∼G

[Zg(y)] = (2k − 1)2−ℓ
∑

|d−ℓp|>6
√

ℓ log ℓ

(
ℓ

d

)
pd(1− p)ℓ−d ≤ (2k − 1)2−ℓ · 2ℓ−12 log ℓ,

where we used (3.8) and (3.10). Then Markov’s inequality gives

P
g∼G

[
Zg(y) ≥ E

g∼G
[Zg(y)]ℓ2 log ℓ

]
≤ ℓ−2 log ℓ,

and so
P
[
Zg(y) < 2(2k − 1)2−ℓℓ−10ℓ log ℓ

]
≥ 1− ℓ−2 log ℓ.

Define the set of matrices for which Zg(y) is indeed negligible as

G1 := {g ∈ {0, 1}k×ℓ : Zg(y) < 2(2k − 1)2−ℓℓ−10ℓ log ℓ}, (3.11)

and then P
g∼G

[g ∈ G1] ≥ 1− ℓ−2 log ℓ.
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Substantial part. Now we deal with the part when |d − ℓp| ≤ 6
√

ℓ log ℓ. For now, let
us fix any d in this interval, and use Chebyshev’s inequality together with (3.8):

P
g∼G

[∣∣∣∣Bg(d,y)− E[Bg(d,y)]
∣∣∣∣ ≥ ℓ−2 log ℓ E[Bg(d,y)]

]
≤ Var[Bg(d,y)]

ℓ−4 log ℓ E2[Bg(d,y)]

≤ ℓ4 log ℓ

E
g∼G

[Bg(d,y)] ≤ ℓ4 log ℓ 2ℓ−k+1(
ℓ
d

) .

(3.12)
We use the following bound on the binomial coefficients

Fact 3.3 ([MS77], Chapter 10, Lemma 7). For any integer 0 ≤ d ≤ ℓ,

1√
2ℓ

2ℓh(d/ℓ) ≤
(

ℓ

d

)
≤ 2ℓh(d/ℓ) (3.13)

Since we fixed |d− ℓp| ≤ 6
√

ℓ log ℓ, Propositions 2.8 and 2.7 imply∣∣∣∣∣h(p)− h

(
d

ℓ

)∣∣∣∣∣ ≤ h(6ℓ−1/2 log ℓ) ≤ 12ℓ−1/2 log ℓ · log ℓ1/2

6 log ℓ
≤ 6ℓ−1/2 log2 ℓ. (3.14)

Recalling that we consider the above-capacity regime with k ≥ ℓ(1−h(p)) + 8
√

ℓ log2 ℓ, we
derive from (3.13) and (3.14)

2ℓ−k+1(
ℓ
d

) ≤
√

2ℓ · 2ℓ[h(p)−h( d
ℓ )−8ℓ−1/2 log2 ℓ] ≤

√
2ℓ · 2−2ℓ1/2 log2 ℓ.

Therefore, we get in (3.12):

P
g∼G

[∣∣∣∣Bg(d,y)− E[Bg(d,y)]
∣∣∣∣ ≥ ℓ−2 log ℓ E[Bg(d,y)]

]
≤
√

2ℓ · ℓ4 log ℓ 2−2ℓ1/2 log2 ℓ ≤ ℓ−
√

ℓ−1,

(3.15)
where the last inequality holds since ℓ ≥ 8. Finally, we denote by G2 the set of binary
matrices from {0, 1}k×ℓ for which Bg(d,y) does not deviate much from its expectation for
all d such that |d− ℓp| ≤ 6

√
ℓ log ℓ:

G2 :=
{

g :
∣∣∣∣Bg(d,y)− E[Bg(d,y)]

∣∣∣∣ ≤ ℓ−2 log ℓ E[Bg(d,y)] for all |d− ℓp| ≤ 6
√

ℓ log ℓ

}
.

(3.16)
Then by a simple union bound applied to (3.15) for all d such that |d− ℓp| ≤ 6

√
ℓ log ℓ we

obtain
P

g∼G
[g ∈ G2] ≥ 1− ℓ−

√
ℓ.

We are now ready to combine these bounds to get the needed concentration.
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Lemma 3.4. Fix y . With probability at least 1− 2ℓ−2 log ℓ over the choice of g ∼ G,

(2k − 1)2−ℓ(1− 2ℓ−2 log ℓ) ≤
ℓ∑

d=0
Bg(d,y)pd(1− p)ℓ−d ≤ (2k − 1)2−ℓ(1 + 2ℓ−2 log ℓ). (3.17)

Proof. Indeed, by union bound Pg∼G[g ∈ G1 ∩ G2] ≥ 1− ℓ−2 log ℓ− ℓ−
√

ℓ ≥ 1− 2ℓ−2 log ℓ. But
for any g ∈ G1 ∩ G2 we derive

ℓ∑
d=0

Bg(d,y)pd(1− p)ℓ−d ≥
∑

|d−ℓp|≤6
√

ℓ log ℓ

Bg(d,y)pd(1− p)ℓ−d

(a)
≥(2k − 1)2−ℓ(1− ℓ−2 log ℓ)

∑
|d−ℓp|≤6

√
ℓ log ℓ

(
ℓ

d

)
pd(1− p)ℓ−d

(b)
≥(2k − 1)2−ℓ(1− ℓ−2 log ℓ)(1− 2ℓ−12 log ℓ)
≥(2k − 1)2−ℓ(1− 2ℓ−2 log ℓ),

where (a) follows from (3.16) (since g ∈ G2) and the expression in (3.8) for E[Bg(d,y)],
and (b) uses the concentration inequality for binomial random variable from (3.10). On
the other hand, we can upper bound this expression as

ℓ∑
d=0

Bg(d,y)pd(1− p)ℓ−d

=
∑

|d−ℓp|≤6
√

ℓ log ℓ

Bg(d,y)pd(1− p)ℓ−d +
∑

|d−ℓp|>6
√

ℓ log ℓ

Bg(d,y)pd(1− p)ℓ−d

(a)
≤(2k − 1)2−ℓ(1 + ℓ−2 log ℓ)

∑
|d−ℓp|≤6

√
ℓ log ℓ

(
ℓ

d

)
pd(1− p)ℓ−d + Zg(y)

(b)
≤(2k − 1)2−ℓ(1 + ℓ−2 log ℓ) + 2(2k − 1)2−ℓℓ−10 log ℓ

≤(2k − 1)2−ℓ(1 + 2ℓ−2 log ℓ),

where (a) is again from (3.16) and (3.8) and the notation Zg(y) for the negligible part,
and (b) is from (3.11) (as g is in G1).

We similarly obtain the concentration for the sum in the numerator of (3.6): with
probability at least 1− 2ℓ−2 log ℓ over the choice of g, it holds

(2k−1−1)2−ℓ(1−2ℓ−2 log ℓ) ≤
ℓ∑

d=0
B̃g(d,y)pd(1−p)ℓ−d ≤ (2k−1−1)2−ℓ(1+2ℓ−2 log ℓ). (3.18)

Next, let us use the fact that we took a typical output y with |wt(y)−ℓp| ≤ 2
√

ℓ log ℓ to
show that the terms pwt(y)(1− p)ℓ−wt(y) are negligible in both numerator and denominator
of (3.6). We have

pwt(y)(1− p)ℓ−wt(y) =
(

1− p

p

)ℓp−wt(y)

· pℓp(1− p)ℓ−ℓp = 2(ℓp−wt(y))·log( 1−p
p ) · 2−ℓh(p). (3.19)
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Simple case analysis gives us:
(a) If p < 1√

ℓ
, then (ℓp− wt(y)) · log

(
1−p

p

)
≤ ℓp log 1

p
< ℓ 1√

ℓ
log
√

ℓ <
√

ℓ log2 ℓ;

(b) In case p ≥ 1√
ℓ
, obtain (ℓp− wt(y)) · log

(
1−p

p

)
≤ 2
√

ℓ log ℓ · log 1
p
≤
√

ℓ log2 ℓ.

Using the above in (3.19) we derive for k ≥ ℓ(1− h(p)) + 8
√

ℓ log2 ℓ

pwt(y)(1− p)ℓ−wt(y) ≤ 2
√

ℓ log2 ℓ−ℓh(p) ≤ 22
√

ℓ log2 ℓ−ℓh(p)−2 log2 ℓ−2 ≤ ℓ−2 log ℓ (2k−1 − 1)2−ℓ.

Combining this with (3.17) and (3.18) and using a union bound we derive that with prob-
ability at least 1− 4ℓ−2 log ℓ it holds
∣∣∣∣∣
(

pwt(y)(1− p)ℓ−wt(y) +
ℓ∑

d=0
Bg(d,y)pd(1− p)ℓ−d

)
− (2k − 1)2−ℓ

∣∣∣∣∣ ≤ 3ℓ−2 log ℓ · (2k − 1)2−ℓ,

∣∣∣∣∣
(

pwt(y)(1− p)ℓ−wt(y) +
ℓ∑

d=0
B̃g(d,y)pd(1− p)ℓ−d

)
− (2k−1 − 1)2−ℓ

∣∣∣∣∣ ≤ 3ℓ−2 log ℓ·(2k−1−1)2−ℓ.

Therefore, with probability at least 1− 4ℓ−2 log ℓ the expression in (3.6) is bounded as

(1− 3ℓ−2 log ℓ)(2k−1 − 1)2−ℓ

(1 + 3ℓ−2 log ℓ)(2k − 1)2−ℓ
≤ P(g)(V1 = 0,Y = y)

P(g)(Y = y)
≤ (1 + 3ℓ−2 log ℓ)(2k−1 − 1)2−ℓ

(1− 3ℓ−2 log ℓ)(2k − 1)2−ℓ
.

(3.20)
We can finally derive:

(1− 3ℓ−2 log ℓ)(2k−1 − 1)
(1 + 3ℓ−2 log ℓ)(2k − 1) ≥ (1− 6ℓ−2 log ℓ)

(1
2 − 2−k

)
≥ (1− 6ℓ−2 log ℓ)

(1
2 − ℓ−8

√
ℓ log ℓ

)
≥ 1

2 − ℓ− log ℓ, (3.21)

(1 + 3ℓ−2 log ℓ)(2k−1 − 1)
(1− 3ℓ−2 log ℓ)(2k − 1) ≤ (1 + 9ℓ−2 log ℓ)1

2 ≤
1
2 + ℓ− log ℓ.

Therefore, with probability at least 1− 4ℓ−2 log ℓ over g ∼ G it holds
∣∣∣∣∣P

(g)(V1 = 0,Y = y)
P(g)(Y = y)

− 1
2

∣∣∣∣∣ ≤ ℓ− log ℓ. (3.22)

Since h(1/2+ x) ≥ 1−4x2 for any x ∈ [−1/2, 1/2] ([Top01, Theorem 1.2]), we then derive:

E
g∼G

[
H(g)(V1|Y = y)

]
= E

g∼G

[
h

(
P(g)(V1 = 0,Y = y)

P(g)(Y = y)

)]
≥ (1− 4ℓ−2 log ℓ)(1− 4ℓ−2 log ℓ)

≥ 1− 8ℓ−2 log ℓ.
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Concentration of entropy. We are now ready to plug this into (3.4):

E
g∼G

[
H(g)(V1|Y )

]
≥ (1− 8ℓ−2 log ℓ)

∑
|wt(y)−ℓp|≤2

√
ℓ log ℓ

pwt(y)(1− p)ℓ−wt(y)

= (1− 8ℓ−2 log ℓ)
∑

|d−ℓp|≤2
√

ℓ log ℓ

(
ℓ

d

)
pd(1− p)ℓ−d

= (1− 8ℓ−2 log ℓ) P
X∼Binom(ℓ,p)

[
|X − ℓp| ≤ 2

√
ℓ log ℓ

]
≥ (1− 8ℓ−2 log ℓ)(1− 2e−(4 log2 ℓ)/3p)
≥ (1− 8ℓ−2 log ℓ)(1− 2ℓ−2 log ℓ)
≥ 1− 10ℓ−2 log ℓ, (3.23)

where the second inequality is obtained from the Chernoff bound (3.9) with δ = 2 log ℓ
pℓ1/2 , and

the third inequality follows from p ≤ 1/2 and e−8/3 < 2−2. Finally, using the fact that
H(g)(V1|Y ) ≤ 1, Markov’s inequality, and (3.23), we get

P
g∼G

[
H(g)(V1|Y ) ≤ 1− ℓ− log ℓ

]
= P

g∼G

[
1−H(g)(V1|Y ) ≥ ℓ− log ℓ

]

≤
E

g∼G

[
1−H(g)(V1|Y )

]
ℓ− log ℓ

≤ 10ℓ− log ℓ.

Thus we conclude that with probability at least 1−10ℓ− log ℓ over the choice of the kernel G
it holds that H(V1 |Y ) ≥ 1− ℓ− log ℓ when k ≥ ℓ(1− h(p)) + 8

√
ℓ log2 ℓ and the underlying

channel is BSC. This completes the proof of Theorem 3.1 for the BSC case.

3.3 Strong converse for BMS channels with bounded
alphabet size

This section is devoted to proving Theorem 3.1 for the case when W : {0, 1} → Y is a
BMS channel which has a bounded output alphabet size, specifically |Y| ≤ 2

√
ℓ.

3.3.1 Notations and settings
We will use the fact that any BMS can be viewed as a convex combination of BSCs (see
for example [LH06, Kor09]), and generalize the ideas of the previous section. One can
think of the channel W as follows: it consists of m possible underlying BSC subchannels
W (1), W (2), . . . , W (m). On any input, W randomly chooses one of the subchannels it is going
to use with probabilities q1, q2, . . . , qm respectively. The subchannel W (j) has crossover
probability pj, and without loss of generality 0 ≤ p1 ≤ p2 ≤ · · · ≤ pm ≤ 1

2 . The subchannel
W (j) has two possible output symbols z

(0)
j or z

(1)
j , corresponding to 0 and 1, respectively

(i.e. 0 goes to z
(0)
j with probability 1− pj, or to z

(1)
j with probability pj under W (j)). Then
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the whole output alphabet is Y = {z(0)
1 , z

(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z(0)

m , z(1)
m }, |Y| = 2m ≤ 2

√
ℓ. The

conditional entropy of the BMS channel W can be expressed as H(W ) =
m∑

i=1
qih(pi), i.e.

it is a convex combination of entropies of the subchannels W (1), W (2), . . . , W (m) with the
corresponding coefficients q1, q2, . . . , qm.
Remark 3.5. Above we ignored the case when some of the subchannels have only one
output (i.e. BEC subchannels). See [TV13, Lemma 4] for a proof that we can do this
without loss of generality.

In this section the expectation is only going to be taken over the randomness of the
matrix g ∼ G, so we omit this in some places. As in the BSC case, by P(g)[·] and H(g)(·)
we denote the probability and entropy only over the randomness of the channel and the
message, for a fixed kernel g.

For any possible output y ∈ Yℓ we denote by di the number of symbols from {z(0)
i , z

(1)
i }

it has (i.e. the number of uses of the W (i) subchannel), so ∑m
i=1 di = ℓ. Let also ti be the

number of symbols z
(1)
i in y . Then

P[Y = y |V = 0] =
m∏

i=1
qdi

i pti
i (1− pi)di−ti . (3.24)

Remark 3.6. For this case of bounded output alphabet size, we will consider the above-
capacity regime when k ≥ ℓ(1−H(W )) + 13ℓ1/2 log3 ℓ (note that this is made intentionally
weaker than the condition in Theorem 3.1).

We will follow the same blueprint of the proof for BSC from Section 3.1, however all
the technicalities along the way are going to be more challenging. In particular, while we
were dealing with one binomial distribution in Section 3.2, here we will face a multinomial
distribution of (d1, d2, . . . , dm) as a choice of which subchannels to use, as well as binomial
distributions ti ∼ Binom(di, pi) which correspond to “flips” within one subchannel.

3.3.2 Proof of Theorem 3.1 begins

As in the BSC case, we are going to lower bound the expectation of H(g)(V1|Y ) and use
Markov’s inequality afterwards.

Restrict to zero-input. We use Lemma 3.2 to write

E
g∼G

[
H(g)(V1|Y )

]
=

∑
y∈Yℓ

P[Y = y |V = 0] E
g∼G

[
H(g)(V1|Y = y)

]
. (3.25)

Notice that there is no dependence of P[Y = y |V = 0] on the kernel g, since the output
for the zero-input depends only on the randomness of the channel.
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Typical output set. As for the binary case, we would like to consider the set of “typical”
outputs (for input 0) from Yℓ. We define y ∈ Yℓ to be typical if

m∑
i=1

(ℓ · qi − di)h(pi) ≤ 2
√

ℓ log ℓ, (3.26)

m∑
i=1

(pidi − ti) log
(

1− pi

pi

)
≤ 3
√

ℓ log2 ℓ. (3.27)

By typicality of this set we mean the following
Lemma 3.7. ∑

y typical
P[Y = y |V = 0] ≥ 1 − ℓ− log ℓ. In other words, on input 0, the

probability to get the output string which is not typical (for which (3.26) or (3.27) is not
satisfied) is at most ℓ− log ℓ.

We defer the proof of this lemma until Section 3.3.5, until after we see why we are
actually interested in these conditions on y .

3.3.3 Fix a typical output

For this part, let us fix one y ∈ Yℓ which is typical and prove that Eg

[
H(g)(V1|Y )

]
is very

close to 1. We have

H(g)(V1|Y ) = h

P(g)
[
V1 = 0,Y = y

]
P(g)

[
Y = y

]
 . (3.28)

Similar to the BSC case, we will prove that both the denominator and numerator of
the fraction inside the entropy function above are tightly concentrated around their means.
The arguments for the denominator and the numerator are almost exactly the same, so we
only consider the denominator for now.

Concentration for P(g)
[
Y = y

]
Define now the shifted weight distributions for the codebook g with respect to m different
underlying BSC subchannels. First, for any x ∈ {0, 1}ℓ and i = 1, 2, . . . , m, define

disti(x,y) = |{positions j such that (xj = 0,yj = z
(1)
i ) or (xj = 1,yj = z

(0)
i )}|.

That is, if you send x through W ℓ and receive y , then disti(x,y) is just the number of
coordinates where the subchannel i was chosen, and the bit was flipped.

In our settings, we now need to think of “distance” between some binary vector x ∈
{0, 1}ℓ and y as of an integer vector s = (s1, s2, . . . , sm) , where 0 ≤ si ≤ di for i ∈ [m],
where si = disti(x,y) is just the number of flips that occurred in the usage of ith subchannel
when going from x to y . In other words, si is just the Hamming distance between the parts
of x and y which correspond to coordinates j where yj is z

(0)
i or z

(1)
i (outputs obtained

from the subchannel W (i)).
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Now we can formally define shifted weight distributions for our fixed typical y . For an
integer vector s = (s1, s2, . . . , sm) , where 0 ≤ si ≤ di define

Bg(s,y) =
∣∣∣∣v ∈ {0, 1}k \ 0 : disti(v · g,y) = si for i = 1, 2, . . . , m

∣∣∣∣.
We can express P(g)[Y = y ] in terms of Bg(s,y) as follows:

2k · P(g)[Y = y ] = P[Y = y |v = 0] +
∑

0≤sj ≤dj
j=1,2,...,m

Bg(s,y)
m∏

i=1
qdi

i psi
i (1− pi)di−si , (3.29)

because ∏m
i=1 qdi

i psi
i (1− pi)di−si is exactly the probability to get output y if a v is sent that

satisfies disti(v · g,y) = si for i = 1, 2, . . . , m.
We have:

Bg(s,y) =
∑
v ̸=0

1

[
disti(v · g,y) = si, ∀i = 1, 2, . . . , m

]
. (3.30)

For a fixed non-zero v but uniformly random binary matrix g, the vector v · g is just a
uniformly random vector from {0, 1}ℓ. Now, the number of vectors x in {0, 1}ℓ such that
disti(x,y) = si ∀i = 1, 2, . . . , m, is ∏m

i=1

(
di

si

)
, since for any i = 1, 2, . . . , m, we need to

choose which of the si coordinates amongst the di uses of the subchannel W (i), got flipped.
Therefore

P
g∼G

[
disti(v · g,y) = si, ∀i = 1, 2, . . . , m

]
= 2−ℓ

m∏
i=1

(
di

si

)
.

Then for the expectation of the shifted weight distributions we obtain

E
g∼G

[Bg(s,y)] =
∑
v ̸=0

P
g∼G

[
disti(v · g,y) = si, ∀i = 1, 2, . . . , m

]
= 2k − 1

2ℓ

m∏
i=1

(
di

si

)
. (3.31)

For the expectation of the summation in the RHS of (3.29), which we denote as E, we
derive:

E := E
g∼G

 ∑
0≤sj ≤dj

j=1,2,...,m

Bg(s,y)
m∏

i=1
qdi

i psi
i (1− pi)di−si


=
(

m∏
i=1

qdi
i

)
·

∑
0≤sj ≤dj

j=1,2,...,m

(
E

g∼G

[
Bg(s,y)

]
·

m∏
i=1

psi
i (1− pi)di−si

)

=2k − 1
2ℓ

(
m∏

i=1
qdi

i

)
·

∑
0≤sj ≤dj

j=1,2,...,m

m∏
i=1

(
di

si

)
psi

i (1− pi)di−si

=2k − 1
2ℓ

m∏
i=1

qdi
i ·

m∏
i=1


di∑

si=0

(
di

si

)
psi

i (1− pi)di−si

︸ ︷︷ ︸
=1

 = 2k − 1
2ℓ

m∏
i=1

qdi
i . (3.32)
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Next, by (3.30) we can see that Bg(s,y) is a sum of pairwise independent indicator random
variables, since v1 · g and v2 · g are independent for distinct and non-zero v1,v2. Therefore

Var
g∼G

[Bg(s,y)] ≤ E
g∼G

[Bg(s,y)]. (3.33)

Splitting the summation in (3.29)

We will split the summation in (3.29) into two parts: for the first part, we will show
that the expectation of each term is very large, and then use Chebyshev’s inequality to
argue that each term is concentrated around its expectation. For the second part, its
expectation is going to be very small, and Markov’s inequality will imply that this part
also does not deviate from its expectation too much with high probability (over the random
kernel g ∼ G). Putting these two arguments together, we will obtain that the sum in the
RHS of (3.29) is concentrated around its mean.

To proceed, define a distribution Ω = Binom(d1, p1)×Binom(d2, p2)×· · ·×Binom(dm, pm),
and consider a random vector χ ∼ Ω. In other words, χ has m independent coordinates
χi, i = 1, . . . , m, where χi is a binomial random variable with parameters di and pi. Note
that by definition then for any vector s = (s1, s2, . . . , sm) , where 0 ≤ si ≤ di and si is
integer for any i, we have

P
χ
[χ = s] =

m∏
i=1

P
χ
[χi = si] =

m∏
i=1

(
di

si

)
psi

i (1− pi)di−si .

Let now T be some subset of S = [0 : d1] × [0 : d2] × · · · × [0 : dm], where [0 : d] =
{0, 1, 2, . . . , (d−1), d} for integer d. Let also N be S \T . Then the summation in the RHS
of (3.29) we can write as

∑
s∈S

Bg(s,y)
m∏

i=1
qdi

i psi
i (1− pi)di−si =

(∑
s∈T

+
∑
s∈N

)
Bg(s,y)

m∏
i=1

qdi
i psi

i (1− pi)di−si . (3.34)

In the next section we describe how we choose T .

3.3.3.1 Substantial part

Exactly as in the binary case, using (3.33) and Chebyshev’s inequality, we have for any
s ∈ S

P
g∼G

[∣∣∣∣Bg(s,y)− E[Bg(s,y)]
∣∣∣∣ ≥ ℓ−2 log ℓ E[Bg(s,y)]

]
≤ Var[Bg(s,y)]

ℓ−4 log ℓ E2[Bg(s,y)]

≤ ℓ4 log ℓ

Eg∼G[Bg(s,y)] ≤ ℓ4 log ℓ 2ℓ−k+1∏m
i=1

(
di

si

) . (3.35)

We need the above to be upper bounded by ℓ−2
√

ℓ to be able to use union bound for all
s ∈ T ⊂ S, since |S| ≤ ℓO(

√
ℓ). Recall that we have k ≥ ℓ(1 − H(W )) + 13ℓ1/2 log3 ℓ, and
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then using a lower bound for binomial coefficients from Fact 3.3 we obtain for the RHS
of (3.35)

ℓ4 log ℓ 2ℓ−k+1∏m
i=1

(
di

si

) ≤ ℓ4 log ℓ ·
(

2
m∏

i=1

√
2di

)
· 2ℓH(W )−

∑m

i=1 dih

(
si
di

)
−13ℓ1/2 log3 ℓ

. (3.36)

We want to show that the term 2−Ω(ℓ1/2 log3 ℓ) is the dominant one. First, it is easy to see
that ℓ4 log ℓ = 24 log2 ℓ ≤ 2ℓ1/2 log3 ℓ for ℓ ≥ 4. To deal with the factor 2∏m

i=1
√

2di, recall that∑m
i=1 di = ℓ and m ≤

√
ℓ in this section (recall discussion at the beginning of Section 3.3),

then AM-GM inequality gives us

2
m∏

i=1

√
2di ≤ 2 · 2m/2 ·

√√√√(∑m
i=1 di

m

)m

= 2 ·
(

2ℓ

m

)m/2

≤ 2 · (2
√

ℓ)
√

ℓ/2 ≤ 2ℓ1/2 log3 ℓ, (3.37)

where we used the fact that (a/x)x is increasing while x ≤ a/e and the condition ℓ ≥ 4.
For the last factor of (3.36) we formulate a lemma.
Lemma 3.8. There exists a set T ⊆ S = [0 : d1] × [0 : d2] × · · · × [0 : dm], such that
P

χ∼Ω
[χ ∈ T ] ≥ 1− ℓ−(log ℓ)/4, and for any s ∈ T it holds that

ℓH(W )−
m∑

i=1
dih

(
si

di

)
≤ 8 ℓ1/2 log3 ℓ.

(Ω = Binom(d1, p1)× Binom(d2, p2)× · · · × Binom(dm, pm))
Proof. Rearrange the above summation as follows:

ℓH(W )−
m∑

i=1
dih

(
si

di

)
=

m∑
i=1

(
ℓqih(pi)− dih

(
si

di

))

=
m∑

i=1

(
ℓqi − di

)
h(pi) +

m∑
i=1

di

(
h(pi)− h

(
si

di

))
.

Now recall that we took typical y for now, so by inequality (3.26) from the definition of
the typicality of y we already have that the first part of the above sum is upper bounded
by ℓ1/2 log3 ℓ.

To deal with the second part, which is ∑m
i=1 di

(
h(pi)− h

(
si

di

))
, we use a separate

Lemma 3.17, since the proof will be almost identical to another concentration inequality
we will need later. Lemma 3.17 claims that ∑m

i=1 di

(
h(pi)− h

(
χi

di

))
≤ 7ℓ1/2 log3 ℓ with

probability at least 1− ℓ−(log ℓ)/4 over χ ∼ Ω. Then the result of the current lemma follows
by taking T to be the subset of S where this inequality holds.

Fix now a set T ⊆ S as in Lemma 3.8. Then using the arguments above we conclude
that the RHS in (3.36), and therefore (3.35), is bounded above by 2−3ℓ1/2 log3 ℓ for any s ∈ T .
Thus we can apply union bound over s ∈ T for (3.35), since |T | ≤ |S| = ∏m

i=1(di + 1) ≤(
2
√

ℓ
)√

ℓ
≤ 2ℓ1/2 log3 ℓ for ℓ ≥ 4, similarly to (3.37). Therefore, we derive
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Corollary 3.9. With probability at least 1 − 2−2ℓ1/2 log3 ℓ (over the random kernel g ∼ G)
it holds simultaneously for all s ∈ T that∣∣∣∣Bg(s,y)− E[Bg(s,y)]

∣∣∣∣ ≤ ℓ−2 log ℓ E[Bg(s,y)].

Moreover, the set N = S \ T satisfies Pχ∼Ω[χ ∈ N ] ≤ ℓ−(log ℓ)/4, which we will use next
section to bound the second part of (3.34).

3.3.3.2 Negligible part

Denote for convenience Zg(y) = ∑
s∈N Bg(s,y)∏m

i=1 qdi
i psi

i (1 − pi)di−si , the second part
of the RHS of (3.34). Recall the value of Eg∼G[Bg(s,Y )] from (3.31) and notation of E
in (3.32). Then for the expectation of Zg(y) derive

E
g∼G

[Zg(y)] =
(

m∏
i=1

qdi
i

)
·
∑
s∈N

(
E

g∼G

[
Bg(s,y)

] m∏
i=1

psi
i (1− pi)di−si

)

= 2k − 1
2ℓ

(
m∏

i=1
qdi

i

)
·
∑
s∈N

m∏
i=1

(
di

si

)
psi

i (1− pi)di−si

= E · P
χ∼Ω

[
χ ∈ N

]
≤ E · ℓ−(log ℓ)/4.

Markov’s inequality implies
Corollary 3.10. With probability at least 1− ℓ−(log ℓ)/8 (over the random kernel g ∼ G) it
holds

Zg(y) ≤ ℓ(log ℓ)/8 E[Zg(y)] ≤ E · ℓ−(log ℓ)/8.

3.3.3.3 Putting it together

Combining the Corollaries 3.9 and 3.10 together and using the union bound, derive
Corollary 3.11. With probability at least 1− ℓ−(log ℓ)/8 − 2−2ℓ1/2 log3 ℓ ≥ 1− 2ℓ−(log ℓ)/8 over
the randomness of the kernel g ∼ G it simultaneously holds∣∣∣∣Bg(s,y)− E[Bg(s,y)]

∣∣∣∣ ≤ ℓ−2 log ℓ E[Bg(s,y)], for all s ∈ T ,

∑
s∈N

Bg(s,y)
m∏

i=1
qdi

i psi
i (1− pi)di−si ≤ E · ℓ−(log ℓ)/8.

(3.38)

We are finally ready to formulate the concentration result we need. The following
lemma is an analogue of Lemma 3.4 from the BSC case:
Lemma 3.12. With probability at least 1− 2ℓ−(log ℓ)/8 over the choice of g ∼ G it holds∣∣∣∣∣∑

s∈S
Bg(s,y)

m∏
i=1

qdi
i psi

i (1− pi)di−si − E

∣∣∣∣∣ ≤ 2ℓ−(log ℓ)/8 · E.

29



Proof. Let us consider a kernel g such that the conditions (3.38) hold, which happens with
probability at least 1− 2ℓ−(log ℓ)/8 according to Corollary 3.11. Then

∑
s∈S

Bg(s,y)
m∏

i=1
qdi

i psi
i (1− pi)di−si ≥

∑
s∈T

Bg(s,y)
m∏

i=1
qdi

i psi
i (1− pi)di−si

(3.38)
≥

∑
s∈T

(
1− ℓ−2 log ℓ

)
E[Bg(s,y)]

m∏
i=1

qdi
i psi

i (1− pi)di−si

(3.31)=
(
1− ℓ−2 log ℓ

) 2k − 1
2ℓ

m∏
i=1

qdi
i ·

∑
s∈T

m∏
i=1

(
di

si

)
psi

i (1− pi)di−si

=
(
1− ℓ−2 log ℓ

)
· E · P

χ∼Ω

[
χ ∈ T

]
≥
(
1− ℓ−2 log ℓ

) (
1− ℓ−(log ℓ)/8

)
E

≥
(
1− 2ℓ−(log ℓ)/8

)
E.

For the other direction, we derive for such g

∑
s∈S

Bg(s,y)
m∏

i=1
qdi

i psi
i (1− pi)di−si =

(∑
s∈T

+
∑
s∈N

)
Bg(s,y)

m∏
i=1

qdi
i psi

i (1− pi)di−si

(3.38)
≤

∑
s∈T

(
1 + ℓ−2 log ℓ

)
E[Bg(s,y)]

m∏
i=1

qdi
i psi

i (1− pi)di−si + E · ℓ−(log ℓ)/8

≤
(
1 + ℓ−2 log ℓ

)∑
s∈S

E[Bg(s,y)]
m∏

i=1
qdi

i psi
i (1− pi)di−si

︸ ︷︷ ︸
E

+E · ℓ−(log ℓ)/8

=
(
1 + ℓ−2 log ℓ + ℓ−(log ℓ)/8

)
E

≤
(
1 + 2ℓ−(log ℓ)/8

)
E.

3.3.4 Concentration of entropy

We can now get a tight concentration for P(g)[Y = y ] using the relation (3.29). We already
showed that the sum in RHS of (3.29) is tightly concentrated around its expectation, so
it only remains to show that P[Y = y |v = 0] is tiny compared to E. Here we will use
that we picked y to be “typical” from the start so that (3.26) and (3.27) hold, and that we
consider here the above-capacity regime. Recall (3.24), as well the the conditions (3.26)
and (3.27) on y being typical. We derive

P[Y = y |V = 0] =
m∏

i=1
qdi

i pti
i (1− pi)di−ti =

m∏
i=1

qdi
i · p

dipi
i (1− pi)di(1−pi) ·

(
1− pi

pi

)dipi−ti


=
m∏

i=1
qdi

i ·
m∏

i=1
2−dih(pi) ·

m∏
i=1

2(dipi−ti) log
(

1−pi
pi

)
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=
m∏

i=1
qdi

i · 2
∑m

i=1(−ℓqih(pi)+(ℓqi−di)h(pi)) · 2
∑m

i=1(dipi−ti) log
(

1−pi
pi

)
(3.26),(3.27)
≤

m∏
i=1

qdi
i · 2−ℓH(W )+2ℓ1/2 log ℓ+3ℓ1/2 log2 ℓ

≤
m∏

i=1
qdi

i ·
2k − 1

2ℓ
· ℓ− log ℓ = E · ℓ− log ℓ, (3.39)

where the last inequality follows from k ≥ ℓ(1−H(W )) + 13ℓ1/2 log3 ℓ.
Now, combining this with Lemma 3.12, we obtain a concentration for (3.29):

Corollary 3.13. With probability at least 1 − 2ℓ−(log ℓ)/8 over the choice of kernel g ∼ G
and for any typical y ∣∣∣2k · P(g)[Y = y ]− E

∣∣∣ ≤ 3ℓ−(log ℓ)/8 · E,

where E = 2k − 1
2ℓ

m∏
i=1

qdi
i .

Next, completely analogously we derive the concentration for P(g)[Y = y |V1 = 0],
which is the numerator inside the entropy in (3.28). The only thing that changes is that
we will have dimension k − 1 instead of k for this case. We can state
Corollary 3.13′. With probability at least 1 − 2ℓ−(log ℓ)/8 over the choice of kernel g ∼ G
and for any typical y ∣∣∣2k · P(g)[V1 = 0,Y = y ]− Ẽ

∣∣∣ ≤ 3ℓ−(log ℓ)/8 · Ẽ,

where Ẽ = 2k−1 − 1
2ℓ

m∏
i=1

qdi
i .

Combining these two together and skipping the simple math, identical to that of the
BSC case in (3.20)–(3.22), we derive
Corollary 3.14. With probability at least 1 − 4ℓ−(log ℓ)/8 over the choice of kernel g ∼ G
and for any typical y , ∣∣∣∣∣P

(g)[V1 = 0,Y = y ]
P(g)[Y = y ]

− 1
2

∣∣∣∣∣ ≤ ℓ−(log ℓ)/9.

Since h(1/2 + x) ≥ 1 − 4x2 for any x ∈ [−1/2, 1/2] ([Top01, Theorem 1.2]), we then
derive for a typical y :

E
g

[
H(g)(V1|Y = y)

]
= E

g

[
h

(
P(g)[V1 = 0,Y = y ]

P(g)[Y = y ]

)]
≥ (1− 4ℓ−(log ℓ)/8) · (1− 4ℓ−(log ℓ)/9)

≥ 1− 8ℓ−(log ℓ)/9.
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Then in (3.25) we have

E
g

[
H(g)(V1|Y )

]
=

∑
y∈Yℓ

P[Y = y |V = 0]E
g

[
H(g)(V1|Y = y)

]
≥

∑
y typical

P[Y = y |V = 0]E
g

[
H(g)(V1|Y = y)

]
≥ (1− ℓ− log ℓ) · (1− 8ℓ−(log ℓ)/9).
≥ 1− 9ℓ−(log ℓ)/9 ≥ 1− ℓ−(log ℓ)/10,

(3.40)

where we used that the probability to get a typical output on a zero input is at least
1− ℓ− log ℓ by Lemma 3.7, as well as the condition log ℓ ≥ 20.

Finally, using the fact that H(g)(V1|Y ) ≤ 1, Markov’s inequality, and (3.40), we get

P
g∼G

[
H(g)(V1|Y ) ≤ 1− ℓ− log ℓ

20

]
= P

[
1−H(g)(V1|Y ) ≥ ℓ− log ℓ

20
]

≤
E
[
1−H(g)(V1|Y )

]
ℓ−(log ℓ)/20 ≤ ℓ−(log ℓ)/20.

This completes the proof of Theorem 3.1 for the case of BMS channel with bounded output
alphabet size, assuming the typicality Lemma 3.7 and concentration Lemma 3.17 which
we used in Lemma 3.8. We now proceed to prove these.

3.3.5 Proof that the typical set is indeed typical
Proof of Lemma 3.7. We start with proving that (3.26) is satisfied with high probabil-
ity (over the randomness of the channel). Notice that (d1, d2, . . . , dm) are multinomially
distributed by construction, since for each of the ℓ bits transitioned, we choose indepen-
dently the subchannel W (i) to use with probability qi, for i = 1, 2, . . . , m, and di rep-
resents the number of times the channel W (i) was chosen. So indeed (d1, d2, . . . , dm) ∼
Mult(ℓ, q1, q2, . . . , qm). The crucial property of multinomial random variables we are going
to use is negative association ([JDP83], [DR96]). The (simplified version of the) fact we are
going to use about negatively associated random variables can be formulated as follows:

Lemma 3.15 ([JDP83], Property P2). Let X1, X2, . . . , Xm be negatively associated random
variables. Then for every set of m positive monotone non-decreasing functions f1, . . . , fm,

E
[

m∏
i=1

fi(Xi)
]
≤

m∏
i=1

E[fi(Xi)].

We also use the fact that since (d1, d2, . . . , dm) are negatively associated, then after
applying decreasing functions gi(x) = ℓqi − x coordinate-wise to these random variables
we also obtain negatively associated random variables ([DR96], Proposition 7). In other
words, we argue that (ℓq1 − d1, ℓq2 − d2, . . . , ℓqm − dm) are also negatively associated, thus
we can apply Lemma 3.15 to these random variables.
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Let us now denote for convenience αi = h(pi) for i = 1, 2, . . . , m, and so 0 ≤ αi ≤ 1.
Let also X = ∑m

i=1(ℓ · qi − di)αi, and we now can start with simple exponentiation and
Markov’s inequality: for any a and any t > 0

P[X ≥ a] = P[etX ≥ eta] ≤ e−ta E
[
etX

]
= e−ta E

[
m∏

i=1
et·αi(ℓqi−di)

]
≤ e−ta

m∏
i=1

E
[
et·αi(ℓqi−di)

]
,

(3.41)
where in the last inequality Lemma 3.15 is applied for negatively associated random vari-
ables (ℓq1 − d1, ℓq2 − d2, . . . , ℓqm − dm), as discussed above, and positive non-decreasing
functions fi(x) = et·αi·x, since αi, t ≥ 0.

Next, consider the following claim, which follows from standard Chernoff-type argu-
ments:

Claim 3.16. Let Z ∼ Binom(n, p), and let b > 0. Then E[e−b·Z ] ≤ enp·(e−b−1).

Proof. We can write Z =
n∑

j=1
Zj, where Zj ∼ Bern(p) are independent Bernoulli random

variables. Then

E
[
e−b·Z

]
= E

 n∏
j=1

e−b·Zj

 =
n∏

j=1
E
[
e−b·Zj

]
=
(
(1− p) + p · e−b

)n
≤ enp(e−b−1), (3.42)

where the only inequality uses the fact that 1 + x ≤ ex for any x.

Turning back to (3.41), we are going to bound the terms E
[
et·αi(ℓqi−di)

]
individually.

It is clear that the marginal distribution of di is just Binom(ℓ, qi), so we are able to use
Claim 3.16 for it. Derive:

E
[
et·αi(ℓqi−di)

]
= etαiℓqi · E

[
e−tαi·di

] (3.42)
≤ et·αiℓqi · eℓqi(e−tαi −1)

= eℓqi(tαi+e−tαi −1) ≤ eℓqi(t+e−t−1),

(3.43)

where the last inequality uses that x+e−x is increasing for x ≥ 0 together with 0 ≤ tαi ≤ t,
as t > 0 and 0 ≤ αi ≤ 1. Plugging the above into (3.41) and using ∑m

i=1 qi = 1, we obtain

P[X ≥ a] ≤ e−ta
m∏

i=1
eℓqi(t+e−t−1) = e−ta · eℓ(t+e−t−1) ≤ e−ta+ℓ t2

2 , (3.44)

where we use x + e−x − 1 ≤ x2

2 for any x ≥ 0. Finally, by taking a = 2
√

ℓ log ℓ, setting
t = a/ℓ, and recalling what we denoted by X and αi above, we immediately deduce

P
[

m∑
i=1

(ℓ · qi − di)h(pi) ≥ 2
√

ℓ log ℓ

]
≤ e− a2

2ℓ = e−2 log2 ℓ ≤ ℓ−2 log ℓ.

This means that the first typicality requirement (3.26) holds with very high probability
(over the randomness of the channel).
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Let us now prove that the second typicality condition (3.27) holds with high probability.
For that, we condition on the values of d1, d2, . . . , dm. We will see that (3.27) holds with
high probability for any fixed values of d1, d2, . . . , dm, and then it is clear that is will imply
that it also holds with high probability overall.

So, fix the values of d1, d2, . . . , dm. Denote Y = ∑m
i=1(pidi − ti) log

(
1−pi

pi

)
, and then

our goal it to show that Y is bounded above by O(
√

ℓ log2 ℓ) with high probability (over
the randomness of ti’s). Given the conditioning on d1, d2, . . . , dm, it is clear that ti ∼
Binom(di, pi) for all i = 1, 2, . . . , m, and they are all independent (recall that di corresponds
to the number of times subchannel W (i) is chosen, while ti corresponds to the number of
“flips” within this subchannel).

We split the summation in Y into two parts: let T1 = {i : pi ≤ 1
ℓ
} and T2 = [m] \ T1.

Then for any realization of ti’s, we have ∑
i∈T1

(pidi − ti) log
(

1−pi

pi

)
≤ ∑

i∈T1
pidi log

(
1
pi

)
≤∑

i∈T1

di log ℓ
ℓ
≤ log ℓ.

Denote the second part of the summation as Y2 = ∑
i∈T2(pidi − ti) log

(
1−pi

pi

)
. Notice

that log
(

1−pi

pi

)
≤ log

(
1
pi

)
≤ log ℓ for i ∈ T2. Denote then γi = log

(
1−pi

pi

)
/ log ℓ, and so

0 ≤ γi ≤ 1 for i ∈ T2. Finally, let Ỹ2 = Y2/ log ℓ = ∑
i∈T2(pidi − ti) · γi.

We now prove the concentration on Ỹ2 in almost exactly the same way as we did for X
above. Similarly to (3.41) obtain

P
[
Ỹ2 > a

]
= P

[
etỸ2 > eta

]
≤ e−ta E

[
etỸ2

]
= e−ta · E

[
m∏

i=1
et·γi·(pidi−ti)

]

= e−ta ·
m∏

i=1
E
[
et·γi·(pidi−ti)

]
,

(3.45)

where the last equality holds because we conditioned on d1, d2, . . . , dm, and so t1, t2, . . . , tm

are independent, as discussed above. Next, Claim 3.16 applied for ti ∼ Binom(di, pi) and
t · γi > 0 for any t > 0 gives E [e−tγi·ti ] ≤ edipi(e−tγi −1), and so similarly to (3.42)–(3.44)
derive from (3.45)

P
[
Ỹ2 > a

]
≤ e−ta ·

∏
i∈T2

epidi(tγi+e−tγi −1) ≤ e−ta ·
∏

i∈T2

epidi(t+e−t−1)

≤ e
−ta+

∑
i∈T2

pidi·t2/2 ≤ e−ta+ℓt2/2

for any t > 0, where we used 0 ≤ γi ≤ 1 for i ∈ T2, pi < 1, and ∑i∈T2 di ≤ ℓ. Therefore, by
taking again a = 2

√
ℓ log ℓ and t = a/ℓ, obtain

P
[
Y2 ≥ 2

√
ℓ log2 ℓ

]
= P

[
Ỹ2 ≥ 2

√
ℓ log ℓ

]
≤ ℓ−2 log ℓ.

Since Y ≤ log ℓ + Y2, we conclude that Y ≤ 3
√

ℓ log2 ℓ with probability at least 1− ℓ−2 log ℓ

over the randomness of the channel.

34



Since both (3.26) and (3.27) hold with probability at least 1 − ℓ−2 log ℓ, the union
bound implies that these two conditions hold simultaneously with probability at least
1− 2ℓ−2 log ℓ ≥ 1− ℓ− log ℓ.

3.3.6 Concentration lemma
Lemma 3.17. Let χ ∼ Ω = Binom(d1, p1)× Binom(d2, p2)× · · · × Binom(dm, pm), where
di’s are nonnegative integers for i ∈ [m], pi ≤ 1/2, ∑m

i=1 di = ℓ, and m ≤
√

ℓ. Let also ℓ
be large so that log ℓ ≥ 8. Then the following holds with probability at least 1− ℓ−(log ℓ)/4:

m∑
i=1

di

(
h(pi)− h

(
χi

di

))
≤ 7ℓ1/2 log3 ℓ. (3.46)

Proof. First, notice that we can disregard all the indices i for which di = 0, as they do not
contribute anything to the LHS of (3.46). So from now on, we assume for simplicity that
di ≥ 1 for all i = 1, 2, . . . , m.

Next, we split the interval [1 : m] into two parts. In the first part the value of di · pi is
going to be small, and the sum of dih(pi) will also be small and can be upper bounded. For
the second part, when di · pi is large enough, we will be able to apply some concentration
arguments. Denote:

F1 :=
{

i : pi ≤
4 log2 ℓ

di

}
,

F2 := {1, 2, . . . , m} \ F1.

Then
m∑

i=1
di

(
h(pi)− h

(
χi

di

))
≤
∑
i∈F1

dih(pi) +
∑
i∈F2

di

(
h(pi)− h

(
χi

di

))
. (3.47)

Let us deal with the summation over F1 first. Split this set even further: F
(1)
1 = {i ∈

F1 : di ≥ 8 log2 ℓ}, and F
(2)
1 = F1 \ F

(1)
1 . Then for any i ∈ F

(1)
1 we use h(pi) ≤ 2pi log 1

pi

from Proposition 2.7, since pi ≤ 1/2. For any i ∈ F
(2)
1 we just use h(pi) ≤ 1. Combining

these, obtain

∑
i∈F1

dih(pi) ≤
∑

i∈F
(1)
1

2dipi log 1
pi

+
∑

i∈F
(2)
1

di ≤
∑

i∈F
(1)
1

8 log2 ℓ · log
(

di

4 log2 ℓ

)
+
∣∣∣F (2)

1

∣∣∣ · 8 log2 ℓ

≤ 8 log2 ℓ ·
∑

i∈F
(1)
1

log di +
∣∣∣F (2)

1

∣∣∣ · 8 log2 ℓ. (3.48)

For the second summand in the RHS above, we will just use
∣∣∣F (2)

1

∣∣∣ ≤ m ≤ ℓ1/2. For the

first summand, we use Jensen’s inequality, the fact that
m∑

i=1
di = ℓ, and

∣∣∣F (1)
1

∣∣∣ ≤ m ≤ ℓ1/2

35



to derive

∑
i∈F

(1)
1

log di ≤
∣∣∣F (1)

1

∣∣∣ · log
∑i∈F

(1)
1

di∣∣∣F (1)
1

∣∣∣
 ≤ ∣∣∣F (1)

1

∣∣∣ · log
 ℓ∣∣∣F (1)

1

∣∣∣
 ≤ ℓ1/2 log

(
ℓ1/2

)
= 1

2ℓ1/2 log ℓ,

where the last inequality uses that x log(ℓ/x) is increasing while x ≤ ℓ/e. Therefore,
in (3.48) obtain∑

i∈F1

dih(pi) ≤ 8 log2 ℓ ·
∑

i∈F
(1)
1

log di +
∣∣∣F (2)

1

∣∣∣ · 8 log2 ℓ ≤ 5ℓ1/2 log3 ℓ, (3.49)

where we also used 8 ≤ log ℓ.
Therefore, the first part of the RHS of (3.47) is always bounded by 5ℓ1/2 log3 ℓ. We will

now deal with the remaining summations over i ∈ F2.
For any i ∈ F2, by definition dipi ≥ 4 log2 ℓ. Now apply the multiplicative Chernoff

bound (3.9) for χi ∼ Binom(di, pi) and δ = log ℓ√
dipi

to get

P
χi

[
|χi − dipi| ≥

√
dipi log ℓ

]
≤ 2e− log2 ℓ/3 ≤ ℓ−(log ℓ)/3 if log ℓ ≤

√
dipi, (3.50)

where the last inequality holds for log ℓ > 3 because the log in the exponent is to base 2. The
condition log ℓ ≤

√
dipi is required in order to have δ ≤ 1 for the multiplicative Chernoff

bound (3.9) to be applicable, and it is satisfied for i ∈ F2.
Then, by the union bound, we derive

P
χ∼Ω

[
|χi − dipi| ≥

√
dipi log ℓ for some i ∈ F2

]
≤ |F2| · ℓ−(log ℓ)/3 ≤ ℓ−(log ℓ)/3+1/2. (3.51)

Define the sets T (i)
1 for all i = 1, 2, . . . , m as follows:

T (i)
1 :=

{
si ∈ [0 : di] : |si − dipi| ≤

√
dipi log ℓ

}
, for i ∈ F2;

T (i)
1 := [0 : di], for i /∈ F2,

(3.52)

and let
θi := P[χi ∈ T (i)

1 ]. (3.53)
Then by (3.50) we have

θi ≥ 1− ℓ−(log ℓ)/3, for i ∈ F2;
θi = 1, for i /∈ F2.

Finally, define

θ :=
m∏

i=1
θi =

∏
i∈F2

θi =
∏

i∈F2

P[χi ∈ T (i)
1 ] = P

χ∼Ω
[χi ∈ T (i)

1 for all i ∈ F2] ≥ 1− ℓ−(log ℓ)/3+1/2,

(3.54)
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where the last inequality is a direct implication of (3.51).
We will now define a set of new probability distributions Di for all i = 1, 2, . . . , m, as

binomial distributions Binom(di, pi) restricted to intervals T (i)
1 . Formally, let us write

P
ηi∼Di

[
ηi = x

]
=

0, if x /∈ T (i)
1 ;

Pχi∼Binom(di,pi)
[
χi = x

]
· θ−1

i , if x ∈ T (i)
1 .

(3.55)

(So to get Di we just took a distribution Binom(di, pi), truncated it so it does not have
any mass outside of T (i)

1 , and rescaled appropriately.)

Next, define a product distribution D :=×m

i=1Di on the set T1 :=×m

i=1 T
(i)

1 . Notice
now that it is trivial that for any subset R ⊆ T1 it holds

P
χ∼Ω

[χ ∈ R] = P
η∼D

[η ∈ R] · θ. (3.56)

Since θ is very close to 1, it suffices to prove the claims for D instead of Ω.
Recall that our goal was to show that ∑i∈F2 di

(
h(pi)− h

(
χi

di

))
(the second part from

(3.47)) is bounded above by O(ℓ1/2 log3 ℓ) with high probability, when χ ∼ Ω. Instead now
let us show that this summation is small with high probability when χ ∼ D, and then use
the arguments above to see that there is not much of a difference when χ ∼ Ω.

Claim 3.18. Let i ∈ F2 and χi ∼ Di. Then∣∣∣∣di

(
h(pi)− h

(
χi

di

))∣∣∣∣ ≤ √dipi log2 ℓ. (3.57)

Proof. First,
∣∣∣χi

di
− pi

∣∣∣ ≤ √
pi

di
log ℓ for χi ∼ Di by definition of the distribution Di. Now,

for i ∈ F2, pi ≥ 4 log2 ℓ
di

, from which it follows that pi

2 ≥
√

pi

di
log ℓ, and therefore pi

2 ≤
χi

di
≤ 3pi

2 . We then use the concavity of the binary entropy function on [0, 1]. For a
concave differentiable function f on an interval [a, b], one has |f(b) − f(a)| ≤ |b − a| ·
max {|f ′(a)|, |f ′(b)|}, which follows from a standard inequality f(y) ≤ f(x) + f ′(x)(y − x)
applied for (a, b) or (b, a), depending on which of f(a) and f(b) is larger. We apply this for
the binary entropy function h(·) and one of the intervals

[
χi

di
, pi

]
and

[
pi,

χi

di

]
, depending on

which of χi

di
and pi is smaller:

∣∣∣∣h(χi

di

)
− h(pi)

∣∣∣∣ ≤ ∣∣∣∣χi

di

− pi

∣∣∣∣ ·max
{∣∣∣∣∣dh

dx
(pi)

∣∣∣∣∣ ,
∣∣∣∣∣dh

dx

(
χi

di

)∣∣∣∣∣
}

.

Now, both pi and χi

di
lie in the interval

[
pi

2 , 3pi

2

]
, which is contained in

[
pi

2 , 1− pi

2

]
, as

pi < 1/2. Out of symmetry of h around 1/2, it follows that the maximal value of
∣∣∣dh

dx
(·)
∣∣∣

on the interval
[

pi

2 , 1− pi

2

]
is attained at pi

2 . Therefore, we have
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∣∣∣∣h(χi

di

)
− h(pi)

∣∣∣∣ ≤ ∣∣∣∣χi

di

− pi

∣∣∣∣ ·max
{∣∣∣∣∣dh

dx
(pi)

∣∣∣∣∣ ,
∣∣∣∣∣dh

dx

(
χi

di

)∣∣∣∣∣
}

≤
√

pi

di

log ℓ ·
∣∣∣∣∣dh

dx

(
pi

2

)∣∣∣∣∣ =
√

pi

di

log ℓ · log 1− pi/2
pi/2

≤
√

pi

di

log ℓ · log 2
pi

≤
√

pi

di

log ℓ · log
(

di

2 log2 ℓ

)
≤
√

pi

di

log2 ℓ,

where the penultimate inequality follows from pi ≥ 4 log2 ℓ
di

for i ∈ F2, and the last inequality
uses di

2 log2 ℓ
≤ ℓ, as ∑m

i=1 di = ℓ and di’s are nonnegative. Therefore, (3.57) follows.

Let χ ∼ D here and further. Denote for convenience new random variables Xi =
di

(
h(pi)− h

(
χi

di

))
for all i ∈ F2, and let also X = ∑

i∈F2 Xi = ∑
i∈F2 di

(
h(pi)− h

(
χi

di

))
.

Claim 3.19. With probability at least 1− ℓ− log ℓ,

X − E[X] ≤ ℓ1/2 log3 ℓ.

Proof. Obviously all the Xi’s are independent, and also Xi ∈
[
−
√

dipi log2 ℓ,
√

dipi log2 ℓ
]

by Claim 3.18. Then we can apply Hoeffding’s inequality for the sum of bounded indepen-
dent random variables ([Hoe63, Theorem 2]), and obtain

P
χ∼D

[
X − E[X] ≥ ℓ1/2 log3 ℓ

]
≤ exp

− 2ℓ log6 ℓ∑
i∈F2

(2
√

dipi log2 ℓ)2



= exp

− 2ℓ log6 ℓ

log4 ℓ · ∑
i∈F2

(4dipi)

 ≤ exp

−ℓ log2 ℓ∑
i∈F2

di


≤ e− log2 ℓ ≤ ℓ− log ℓ,

where we use pi ≤ 1/2 and ∑
i∈F2

di ≤
m∑

i=1
di = ℓ in the second and third inequalities,

respectively.

So by now we proved that X = ∑
i∈F2 di

(
h(pi)− h

(
χi

di

))
does not deviate much from

its expectation, when χ ∼ D. What we are left to show now is that E[X] is not very large
by itself.

The following two claims show that the first moment and mean absolute deviation
of the distribution Di are close to those of Ωi, for i ∈ F2. This easily follows from the
definition (3.55) of Di, and the proofs are deferred to Section 3.5.2 at the end of this
chapter.
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Claim 3.20. Let i ∈ F2. Then
∣∣∣∣ E
χi∼Di

[
χi

di

]
− pi

∣∣∣∣ ≤ 1
di

.

Claim 3.21. Let χi ∼ Di and ηi ∼ Ωi for i ∈ F2. Then E
∣∣∣∣χi−E[χi]

∣∣∣∣ ≤ E
∣∣∣∣ηi−E [ηi]

∣∣∣∣+ 1.

These observations allow us we prove the following

Claim 3.22. Let i ∈ F2, and χi ∼ Di. Then h
(
E
[

χi

di

])
− E

[
h
(

χi

di

)]
≤ 5 log ℓ

di
.

Proof. Unfortunately, Jensen’s inequality works in the opposite direction for us here. How-
ever, we use some form of converse Jensen’s from [Dra11], which says the following:

Lemma 3.23 (Converse Jensen’s inequality, [Dra11], Corollary 1.8). Let f be a concave
differentiable function on an interval [a, b], and let Z be a (discrete) random variable, taking
values in [a, b]. Then

0 ≤ f(E[Z])− E[f(Z)] ≤ 1
2 (f ′(a)− f ′(b)) · E |Z − E[Z]| .

We apply it here for the concave binary entropy function h and random variable Z = χi

di

for χi ∼ Di, which takes values in [a, b] :=
[
pi −

√
pi

di
log ℓ, pi +

√
pi

di
log ℓ

]
. Recall also that

for i ∈ F2, pi ≥ 4 log2 ℓ
di

and then pi

2 ≥
√

pi

di
log ℓ, therefore a = pi −

√
pi

di
log ℓ ≥ pi

2 , and also
b = pi +

√
pi

di
log ℓ ≤ 3pi

2 . Using the mean value theorem, for some c ∈ [a, b] ⊆
[

pi

2 , 3pi

2

]
we

have
h′(a)− h′(b) = (b− a) · (−h′′(c)) ≤ 2

√
pi

di

log ℓ · (−h′′(c)).

Now we look at (−h′′(c)) = 1
c(1−c) ln 2 for some c ∈

[
pi

2 , 3pi

2

]
. As pi < 1/2, it follows[

pi

2 , 3pi

2

]
⊆
[

pi

2 , 1− pi

2

]
. Using the symmetry of a function x(1−x) around 1/2, we conclude

that its minimal value over the interval
[

pi

2 , 3pi

2

]
is attained at pi/2. Thus derive c(1− c) ≥

pi

2

(
1− pi

2

)
≥ 3pi

8 , since pi < 1/2. And so (−h′′(c)) = 1
c(1−c) ln 2 ≤

8
pi·3 ln 2 ≤

4
pi

. Therefore

h′(a)− h′(b) ≤ 8 log ℓ√
dipi

.

Finally, Claim 3.21 gives E |Z − E[Z]| ≤ E
∣∣∣Z2

di
− E

[
Z2
di

]∣∣∣+ 1
di

for Z2 ∼ Binom(di, pi), thus

E |Z − E[Z]| ≤ 1
di

E |Z2 − E[Z2]|+
1
di

≤ 1
di

√
E[(Z2 − E[Z2])2] + 1

di

=
√

pi(1− pi)
di

+ 1
di

≤
√

pi

di

+ 1
di

.
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Putting all this together, Lemma 3.23 gives us

0 ≤ h
(
E
[
χi

di

])
− E

[
h
(

χi

di

)]
≤ 1

2 ·
8 log ℓ√

dipi

·
(√

pi

di

+ 1
di

)
= 4 log ℓ

di

+ 4 log ℓ

di

√
dipi

≤ 5 log ℓ

di

,

where the last step uses
√

pidi ≥ 2 log ℓ for i ∈ F2.

We can now use the above claims and Proposition 2.8 to bound the expectation of X:

E[X] =
∑
i∈F2

di

(
h(pi)− E

[
h
(

χi

di

)])
≤
∑
i∈F2

di

(
h(pi)− h

(
E
[
χi

di

])
+ 5 log ℓ

di

)

≤
∑
i∈F2

di

(
h
(∣∣∣∣pi − E

[
χi

di

]∣∣∣∣)+ 5 log ℓ

di

)

≤
∑
i∈F2

di

(
h
( 1

di

)
+ 5 log ℓ

di

)

≤
∑
i∈F2

di

(
2
di

log di + 5 log ℓ

di

)

≤ 7ℓ1/2 log ℓ ≤ ℓ1/2 log3 ℓ,

(3.58)

where the first inequality is from Claim 3.22, the second is by Proposition 2.8, the third one
follows from Claim 3.20, the fourth inequality is from Proposition 2.7, and the next ones
follow from di ≤ ℓ, |F2| ≤ m ≤ ℓ1/2, and log ℓ > 8 by the conditions for this Lemma 3.17.

So we showed in Claim 3.19 that X does not exceed its expectations by more than
ℓ1/2 log3 ℓ with high probability (over χ ∼ D), and also that E[X] is bounded by ℓ1/2 log3 ℓ
in (3.58), and therefore X does not exceed 2ℓ1/2 log3 ℓ with high probability. Specifically,
it means that there exists T ⊆ T1, such that Pχ∼D[χ ∈ T ] ≥ 1 − ℓ− log ℓ, and that for any
s ∈ T it holds ∑

i∈F2
di

(
h(pi)− h

(
si

di

))
≤ 2ℓ1/2 log3 ℓ. Recall that ∑

i∈F1
dih(pi) ≤ 5ℓ1/2 log3 ℓ

as we showed in (3.49). Thus, by summing these two inequalities, we conclude from (3.47)
that ∑m

i=1 di

(
h(pi)− h

(
si

di

))
≤ 7ℓ1/2 log3 ℓ for any s ∈ T .

Finally, the last step is to return back from the product of “truncated binomials” D to
the original product of binomials Ω. As we defined the set T above, we have Pχ∼D[χ ∈
T ] ≥ 1− ℓ− log ℓ. But by (3.56) the distributions Ω and D are very close to each other, and
therefore we obtain:

P
χ∼Ω

[χ ∈ T ] = P
χ∼D

[χ ∈ T ] · θ ≥
(
1− ℓ− log ℓ

) (
1− ℓ−(log ℓ)/3+1/2

)
≥ 1− ℓ−(log ℓ)/4,

where we used the bound (3.54) on θ for the first inequality and log ℓ ≥ 8 for the second
one.

This concludes the proof of Theorem 3.1 for the case of a BMS channel with a bounded
size of an output alphabet (modulo some technical lemmas, proofs for which are deferred
to Section 3.5).
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3.4 Strong converse for BMS channels with arbitrary
alphabet size

In this section we finish the proof of Theorem 3.1 for the general BMS channel using the
results from the previous section.

For BMS channels with large output alphabet size we will use binning of the output,
however we will do it in a way that upgrades the channel, rather than degrades it (recall
Definition 2.9). Specifically, we will employ the following statement:
Proposition 3.24. Let W be any BMS channel. Then there exists another BMS chan-
nel W̃ with the following properties:

(i) Output alphabet size of W̃ is at most 2
√

ℓ;
(ii) W̃ is upgraded with respect to W , i.e. W ⪯ W̃ ;

(iii) H(W̃ ) ≥ H(W )− log ℓ

ℓ1/2 .

Before proving this proposition, we first show how we can finish a proof of Theo-
rem 3.1 using it. So, consider any BMS channel W with output alphabet size larger
than 2

√
ℓ, and consider the channel W̃ which satisfies properties (i)-(iii) from Proposi-

tion 3.24 with respect to W . First of all, notice that k ≥ ℓ(1 − H(W )) + 14ℓ1/2 log3 ℓ ≥
ℓ
(
1−H(W̃ )− log ℓ

ℓ1/2

)
+ 14ℓ1/2 log3 ℓ, and thus k ≥ ℓ(1−H(W̃ )) + 13ℓ1/2 log3 ℓ. Taking the

property (i) into consideration, it follows that the channel W̃ satisfies all the conditions for
the arguments in the Section 3.3 to be applied (see remark 3.6), i.e. the statement of The-
orem 3.1 holds for W̃ . Therefore, we can argue that with probability at least 1− ℓ−(log ℓ)/20

over a random kernel G it holds H(V1 | Ỹ ) ≥ 1− ℓ−(log ℓ)/20, where Ỹ = W̃ ℓ(V ·G) is the
output vector if one would use the channel W̃ instead of W , for V ∼ {0, 1}k.

Now, let W1 be the channel which “proves” that W̃ is upgraded with respect to W ,
i.e. W1

(
W̃ (x)

)
and W (x) are identically distributed for any x ∈ {0, 1}. Trivially then,

W ℓ
1

(
W̃ ℓ(X)

)
and W ℓ(X) are identically distributed for any random variable X supported

on {0, 1}ℓ.
Next, observe that the following forms a Markov chain

V1 → V → V ·G→ W̃ ℓ(VG)→ W ℓ
1

(
W̃ ℓ(VG)

)
,

where V is distributed uniformly over {0, 1}k. But then the data-processing inequality
gives

I
(
V1 ; W ℓ

1

(
W̃ ℓ(VG)

))
≤ I

(
V1 ; W̃ ℓ(VG)

)
.

However, as we discussed above, W ℓ
1

(
W̃ ℓ(VG)

)
and W ℓ(VG) are identically distributed,

and so

I(V1 ; Y ) = I
(
V1 ; W ℓ(VG)

)
= I

(
V1 ; W ℓ

1

(
W̃ ℓ(VG)

))
≤ I

(
V1 ; W̃ ℓ(VG)

)
= I(V1 ; Ỹ ).
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Therefore using H(X|Y ) = H(X)− I(X; Y ) we derive that

H(V1 |Y ) ≥ H(V1 | Ỹ ) ≥ 1− ℓ−(log ℓ)/20

with probability at least 1− ℓ−(log ℓ)/20. This concludes the proof of Theorem 3.1.

Proof of Proposition 3.24. We describe how to construct such an upgraded channel W̃ .
We again are going to look at W as a convex combination of BSCs, as we discussed in
Section 3.3.1: let W consist of m underlying BSC subchannels W (1), W (2) . . . , W (m), each
has probability qj to be chosen. The subchannel W (j) has crossover probability pj, and
0 ≤ p1 ≤ · · · ≤ pm ≤ 1

2 . The subchannel W (j) can output z
(0)
j or z

(1)
j , and the whole output

alphabet is then Y = {z(0)
1 , z

(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z(0)

m , z(1)
m }, |Y| = 2m. It will be convenient to

write the transmission probabilities of W explicitly: for any k ∈ [m], c, x ∈ {0, 1}:

W
(

z
(c)
k

∣∣∣∣ x
)

=

qk · (1− pk), x = c,

qk · pk, x ̸= c.
(3.59)

The key ideas behind the construction of W̃ are the following:
– decreasing a crossover probability in any BSC (sub)channel always upgrades the

channel, i.e. BSCp1 ⪯ BSCp2 for any 0 ≤ p2 ≤ p1 ≤ 1
2 ([TV13, Lemma 9]). Indeed,

one can simulate a flip of coin with bias p1 by first flipping a coin with bias p2, and
then flipping the result one more time with probability q = p1−p2

1−2p2
. In other words,

BSCp1(x) and BSCq (BSCp2(x)) are identically distributed for x ∈ {0, 1}.
– “binning” two BSC subchannels with the same crossover probability doesn’t change

the channel ([TV13, Corollary 10]).
Let us finally describe how to construct W̃ . Split the interval [0, 1/2] into

√
ℓ parts

evenly, i.e. let θj = j−1
2
√

ℓ
for j = 1, 2, . . . ,

√
ℓ + 1, and consider intevals [θj, θj+1) for j =

1, 2, . . . ,
√

ℓ (include 1/2 into the last interval). Now, to get W̃ , we first slightly decrease
the crossover probabilities in all the BSC subchannels W (1), W (2) . . . , W (m) so that they all
become one of θ1, θ2, . . . , θ√

ℓ. After that we bin together the subchannels with the same
crossover probabilities and let the resulting channel be W̃ . Formally, we define

Tj :=
{

i ∈ [m] : pi ∈
[
θj, θj+1

)}
, j = 1, 2, . . . ,

√
ℓ− 1,

T√
ℓ :=

{
i ∈ [m] : pi ∈

[
θ√

ℓ, θ√
ℓ+1

]}
.

So, Tj is going to be the set of indices of subchannels of W for which we decrease
the crossover probability to be equal to θj. Then the probability distribution over the
new, binned, BSC subchannels W̃ (1), W̃ (2) . . . , W̃ (

√
ℓ) in the channel W̃ is going to be
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(q̃1, q̃2, . . . , q̃√
ℓ), where q̃j := ∑

i∈Tj

qi. The subchannel W̃ (j) has crossover probability θj,

and it can output one of two new symbols z̃
(0)
j or z̃

(1)
j . The whole output alphabet is

then Ỹ = {z̃(0)
1 , z̃

(1)
1 , z̃

(0)
2 , z̃

(1)
2 , . . . , z̃

(0)√
ℓ
, z̃

(1)√
ℓ
}, |Ỹ| = 2

√
ℓ. To be more specific, we describe

W̃ : {0, 1} → Ỹ , as follows: for any j ∈ [
√

ℓ] and any b, x ∈ {0, 1}

W̃
(

z̃
(b)
j

∣∣∣∣ x
)

=


∑

i∈Tj

qi · (1− θj), x = b,∑
i∈Tj

qi · θj, x ̸= b.
(3.60)

Property (i) on the output alphabet size for W̃ then holds immediately. Let us verify
(ii) by showing that W̃ is indeed upgraded with respect to W .

One can imitate the usage of W using W̃ as follows: on input x ∈ {0, 1}, feed it through
W̃ to get output z̃

(b)
j for some b ∈ {0, 1} and j ∈ [

√
ℓ]. We then know that the subchannel

W̃ (j) was used, which by construction corresponds to the usage of a subchannel W (i) for
some i ∈ Tj. Then we randomly choose an index k from Tj with probability of i ∈ Tj

being chosen equal to qi

q̃j

. This determines that we are going to use the subchannel W (k)

while imitating the usage of W . By now we flipped the input with probability θj (since we
used the subchannel W̃ (j)), while we want it to be flipped with probability pk ≥ θj overall,
since we decided to use W (k). So the only thing we need to do it to “flip” b to (1− b) with
probability pk−θj

1−2θj
, and then output z

(b)
k or z

(1−b)
k correspondingly.

Formally, we just describe the channel W1 : Ỹ → Y which proves that W̃ is up-
graded with respect to W by all of its transmission probabilities: for all k ∈ [m], j ∈ [

√
ℓ],

b, c ∈ {0, 1} set

W1

(
zc

k

∣∣∣∣ z̃
(b)
j

)
=



0, k /∈ Tj

qk∑
i∈Tj

qi

·
(

1− pk − θj

1− 2θj

)
, k ∈ Tj, b = c,

qk∑
i∈Tj

qi

·
(

pk − θj

1− 2θj

)
, k ∈ Tj, b ̸= c.

(3.61)

It is easy to check that W1 is a valid channel, and that it holds for any k ∈ [m] and
c, x ∈ {0, 1} ∑

j∈[
√

ℓ], b∈{0,1}

W̃
(

z̃
(b)
j

∣∣∣∣x)W1

(
z

(c)
k

∣∣∣∣ z̃
(b)
j

)
= W

(
z

(c)
k

∣∣∣∣ x
)

, (3.62)

which proves that W̃ is indeed upgraded to W . For completeness, we prove the above
equality in Section 3.5.3.
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It only remains to check that the property (iii) also holds, i.e. that the entropy did not
decrease too much after we upgrade the channel W to W̃ . We have

H
(
W̃
)

=
∑

j∈[
√

ℓ]

q̃jh(θj) =
∑

j∈[
√

ℓ]

∑
i∈Tj

qi

h(θj) =
∑

k∈[m]
qkh(θjk

),

where we again denoted by jk the index from [
√

ℓ] for which k ∈ Tjk
. Therefore

H(W )−H
(
W̃
)

=
∑

k∈[m]
qk

(
h(pk)− h(θjk

)
)
≤

∑
k∈[m]

qk

(
h(θjk+1)− h(θjk

)
)
,

since pk ∈ [θjk
, θjk+1] as k ∈ Tjk

. Finally, since θj+1 − θj = 1
2
√

ℓ
, Proposition 2.8 gives

H(W )−H
(
W̃
)
≤

∑
k∈[m]

qk

(
h(θjk+1)− h(θjk

)
)
≤ h

(
1

2
√

ℓ

)
≤ 2 · 1

2
√

ℓ
log

(
2
√

ℓ
)
≤ log ℓ√

ℓ
.

This marks the end of the proof for Proposition 3.24, and therefore of the general case of
Theorem 3.1, modulo deferred technical proofs presented in the next section.

3.5 Deferred proofs

3.5.1 Proofs of entropic lemma for BMS channels
In the following proof we use the representation of BMS channel W as a convex com-
bination of several BSC subchannels W (1), W (2), . . . , W (m), see the beginning of Sec-
tion 3.3.1 for details. Each subchannel W (j) can output one of two symbols z

(0)
j , z

(1)
j ,

and W (j)(z(0)
j |0) = W (j)(z(1)

j |1), W (j)(z(1)
j |0) = W (j)(z(0)

j |1). The output alphabet for W

is thus Y = {z(0)
1 , z

(1)
1 , z

(0)
2 , z

(1)
2 , . . . , z(0)

m , z(1)
m }. Define for these proofs the “flip” operator

⊕ : Y ×{0, 1} → Y as follows: z
(c)
j ⊕ b = z

(b+c)
j , where b, c ∈ {0, 1}, and (b + c) is addition

mod 2. In other words, z
(c)
j ⊕0 doesn’t change anything, and z

(c)
j ⊕1 flips the output of the

subchannel W (j) to the opposite symbol. Note then that W (j)(z(c)
j | b) = W (j)(z(c)

j ⊕ b | 0).
Finally, we overload the operator to also work on Yℓ × {0, 1}ℓ → Yℓ by applying it
coordinate-wise. It then easily follows that W ℓ (y |x) = W ℓ (y ⊕ x |0) for any y ∈ Yℓ

and x ∈ {0, 1}ℓ.
Proof of Lemma 3.2. We can write

E
g∼G

[
H(g)(V1|Y )

]
=
∑

g

P(G = g)
∑

y∈Yℓ

P(g)[Y = y ]H(g)(V1|Y = y)


=
∑

g

P(G = g)
∑

y∈Yℓ

 ∑
v∈{0,1}k

P(g)[Y = y ,V = v ]
h

(
P(g)[V1 = 0,Y = y ]

P(g)[Y = y ]

)
= 1

2k

∑
v∈{0,1}k

∑
g

P(G = g)
∑
y∈Yℓ

P(g)[Y = y
∣∣∣V = v ]h

(
P(g)[V1 = 0,Y = y ]

P(g)[Y = y ]

)
, (3.63)
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where h(x) := −x log2 x− (1−x) log2(1−x) is the binary entropy function. Next, we show
that for any fixed matrix g and any fixed v ∈ {0, 1}k it holds

∑
y∈Yℓ

P(g)[Y = y
∣∣∣V = v ]h

(
P(g)[V1 = 0,Y = y ]

P(g)[Y = y ]

)
=

=
∑
y∈Yℓ

P(g)[Y = y
∣∣∣V = 0]h

(
P(g)[V1 = 0,Y = y ]

P(g)[Y = y ]

)
, (3.64)

where 0 is the all-zero vector.
First of all, we know that

P(g)[Y = y
∣∣∣V = v ] = W ℓ(y |vG) = W ℓ(y⊕vG |0) = P(g)[Y = y⊕vG |V = 0], (3.65)

as was discussed at the beginning of this appendix. In the same way, it’s easy to see

P(g)[Y = y ] = 1
2k

∑
u∈{0,1}k

P(g)[Y = y
∣∣∣V = u]

= 1
2k

∑
u∈{0,1}k

P(g)[Y = y ⊕ vG
∣∣∣V = u + v ]

= 1
2k

∑
u+v∈{0,1}k

P(g)[Y = y ⊕ vG
∣∣∣V = u + v ] = P(g)[Y = y ⊕ vG].

(3.66)

The above equality uses the fact that we are considering linear codes, and vG is an arbitrary
codeword. It follows from the symmetry of linear codes that “shifting” the output by a
codeword does not change anything. Shifting here means the usual shifting for the BSC
case, though for a general BMS channel this is actually flipping the outputs or appropriate
BSC subchannels, without changing which subchannel was used for which bit.

Denote now Ṽ = V>1, and recall that we are considering fixed v for now. Denote then
also v1 as the first coordinate of v and ṽ = v>1. Then we derive similarly

P(g)[V1 = 0,Y = y ] = 1
2k

∑
ũ∈{0,1}k−1

P(g)[Y = y
∣∣∣V1 = 0, Ṽ = ũ]

= 1
2k

∑
ũ∈{0,1}k−1

P(g)[Y = y ⊕ vG |V1 = v1, Ṽ = ũ + ṽ ]

= 1
2k

∑
ũ+ṽ∈{0,1}k−1

P(g)[Y = y ⊕ vG
∣∣∣V1 = v1, Ṽ = ũ + ṽ ]

= P(g)[V1 = v1,Y = y ⊕ vG].

(3.67)

Notice that

P(g)[V1 = v1,Y = y ⊕ vG] + P(g)[V1 = 1− v1,Y = y ⊕ vG] = P(g)[Y = y ⊕ vG],
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and thus using the symmetry of the binary entropy function around 1/2 obtain

h

(
P(g)[V1 = v1,Y = y ⊕ vG]

P(g)[Y = y ⊕ vG]

)
= h

(
P(g)[V1 = 1− v1,Y = y ⊕ vG]

P(g)[Y = y ⊕ vG]

)
.

Using this and (3.65)–(3.67) derive

P(g)[Y = y
∣∣∣V = v ]h

(
P(g)[V1 = 0,Y = y ]

P(g)[Y = y ]

)

=P(g)[Y = y ⊕ vG |V = 0]h
(
P(g)[V1 = 0,Y = y ⊕ vG]

P(g)[Y = y ⊕ vG]

)
.

Finally, summing both parts over y ∈ Yℓ and noticing that y⊕vG will also range through
all Yℓ in this case, we establish (3.64). Then in (3.63) deduce

E
g∼G

[
H(g)(V1|Y )

]
= 1

2k

∑
v∈{0,1}k

∑
g

P(G = g)
∑
y∈Yℓ

P(g)[Y = y
∣∣∣V = 0]h

(
P(g)[V1 = 0,Y = y ]

P(g)[Y = y ]

)

=
∑
y∈Yℓ

∑
g

P(G = g)P(g)[Y = y
∣∣∣V = 0]h

(
P(g)[V1 = 0,Y = y ]

P(g)[Y = y ]

)

=
∑
y∈Yℓ

P[Y = y
∣∣∣V = 0] E

g∼G

[
H(g)(V1|Y = y)

]
,

since P(g)[Y = y
∣∣∣V = 0] does not depend on the matrix g.

3.5.2 Proofs for lemmas in Section 3.3.6
Proof of Claim 3.20. Denote for convenience the distribution Ωi := Binom(di, pi). Note
that Eχi∼Ωi

[
χi

di

]
= pi. Then we derive∣∣∣∣ E

χi∼Di

[
χi

di

]
− pi

∣∣∣∣ =
∣∣∣∣ E
χi∼Di

[
χi

di

]
− E

χi∼Ωi

[
χi

di

]∣∣∣∣
=

∣∣∣∣∣∣
∑

s∈[0:di]

s

di

P
χi∼Di

[χi = s]−
∑

s∈[0:di]

s

di

P
χi∼Ωi

[χi = s]

∣∣∣∣∣∣
(3.55)=

∣∣∣∣∣∣∣
∑

s∈T (i)
1

s

di

P
χi∼Ωi

[χi = s] · θ−1
i −

∑
s∈[0:di]

s

di

P
χi∼Ωi

[χi = s]

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∑

s∈T (i)
1

s

di

P
χi∼Ωi

[χi = s] ·
(
θ−1

i − 1
)
−

∑
s/∈T (i)

1

s

di

P
χi∼Ωi

[χi = s]

∣∣∣∣∣∣∣
≤

∑
s∈T (i)

1

s

di

P
χi∼Ωi

[χi = s] ·
(
θ−1

i − 1
)

+
∑

s/∈T (i)
1

s

di

P
χi∼Ωi

[χi = s].
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We have ∑
s/∈T (i)

1

s
di
Pχi∼Ωi

[χi = s] ≤ ∑
s/∈T (i)

1

Pχi∼Ωi
[χi = s] (3.53)= (1− θi)

(3.50)
≤ 2ℓ−(log ℓ)/3.

Next, ∑
s∈T (i)

1

s
di
Pχi∼Ωi

[χi = s] ≤ Eχi∼Ωi

[
χi

di

]
≤ 1, and θ−1

i − 1 = 1−θi

θi
≤ 2(1 − θi) ≤

4ℓ−(log ℓ)/3.
Combining the above together, conclude

∣∣∣E [χi

di

]
− pi

∣∣∣ ≤ 6ℓ−(log ℓ)/3 ≤ 1
ℓ
≤ 1

di
.

Proof of Claim 3.21. Using the result of Claim 3.20 derive

E
∣∣∣∣χi − E[χi]

∣∣∣∣ ≤ E
∣∣∣∣χi − pidi

∣∣∣∣+ E
∣∣∣∣pidi − E[χi]

∣∣∣∣ ≤ E
∣∣∣∣χi − pidi

∣∣∣∣+ 1. (3.68)

From (3.53), (3.56), and definition (3.52) of T (i)
1 for i ∈ F2 observe also the following:

E
χi∼Di

∣∣∣∣χi − pidi

∣∣∣∣ =
∑

s∈T (i)
1

∣∣∣∣s− pidi

∣∣∣∣ · P
ηi∼Ωi

[s] · θ−1
i

=
∑

s∈T (i)
1

∣∣∣∣s− pidi

∣∣∣∣ · P
ηi∼Ωi

[s] +
∑

s∈T (i)
1

∣∣∣∣s− pidi

∣∣∣∣ · P
ηi∼Ωi

[s] · (θ−1
i − 1)

≤
∑

s∈T (i)
1

∣∣∣∣s− pidi

∣∣∣∣ · P
ηi∼Ωi

[s] +
√

dipi log ℓ ·
∑

s∈T (i)
1

P
ηi∼Ωi

[s]

︸ ︷︷ ︸
θi

·
(

1− θi

θi

)

=
∑

s∈T (i)
1

∣∣∣∣s− pidi

∣∣∣∣ · P
ηi∼Ωi

[s] +
√

dipi log ℓ · (1− θi)

=
∑

s∈T (i)
1

∣∣∣∣s− pidi

∣∣∣∣ · P
ηi∼Ωi

[s] +
∑

s/∈T (i)
1

√
dipi log ℓ · P

ηi∼Ωi

[s]

≤
∑

s∈T (i)
1

∣∣∣∣s− pidi

∣∣∣∣ · P
ηi∼Ωi

[s] +
∑

s/∈T (i)
1

∣∣∣∣s− pidi

∣∣∣∣ · P
ηi∼Ωi

[s] = E
ηi∼Ωi

∣∣∣∣ηi − pidi

∣∣∣∣.
Combining this with (3.68), obtain the needed.

3.5.3 Proof in Section 3.4

Here we explicitly show that the channel W̃ we constructed in Section 3.4 is indeed up-
graded with respect to W . Recall that W , W̃ , and W1 are defined in (3.59), (3.60),
and (3.61) correspondingly, and our goal is to prove (3.62). First, to check that W1 is a
valid channel, observe

∑
k∈[m], c∈{0,1}

W1

(
z

(c)
k

∣∣∣∣ z̃
(b)
j

)
=
∑

k∈Tj

(
W1

(
z0

k

∣∣∣∣ z̃
(b)
j

)
+ W1

(
z1

k

∣∣∣∣ z̃
(b)
j

))
=
∑

k∈Tj

qk∑
i∈Tj

qi

= 1.
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Finally, for any k ∈ [m], c ∈ {0, 1}, let jk be such that k ∈ Tjk
. Then we have for any

x ∈ {0, 1}

∑
j∈[

√
ℓ], b∈{0,1}

W̃
(

z̃
(b)
j

∣∣∣∣x)W1

(
z

(c)
k

∣∣∣∣ z̃
(b)
j

)
=

∑
b∈{0,1}

W̃
(

z̃
(b)
jk

∣∣∣∣x)W1

(
z

(c)
k

∣∣∣∣ z̃
(b)
jk

)
.

Now, if x = c, we derive
∑

b∈{0,1}
W̃
(

z̃
(b)
jk

∣∣∣∣x)W1

(
z

(c)
k

∣∣∣∣ z̃
(b)
jk

)

= W̃
(

z̃
(x)
jk

∣∣∣∣x)W1

(
z

(x)
k

∣∣∣∣ z̃
(x)
jk

)
+ W̃

(
z̃

(1−x)
jk

∣∣∣∣x
)

W1

(
z

(x)
k

∣∣∣∣ z̃
(1−x)
jk

)

=
∑

i∈Tjk

qi · (1− θjk
) · qk∑

i∈Tjk

qi

·
(

1− pk − θjk

1− 2θjk

)
+
∑

i∈Tjk

qi · θjk
· qk∑

i∈Tjk

qi

·
(

pk − θjk

1− 2θjk

)

= qk

(
1− θjk

− (1− θjk
) ·
(

pk − θjk

1− 2θjk

)
+ θkj

·
(

pk − θjk

1− 2θjk

))

= qk

(
1− θjk

− (1− 2θjk
) ·
(

pk − θjk

1− 2θjk

))
= qk · (1− pk).

Otherwise, then x = 1− c, obtain
∑

b∈{0,1}
W̃
(

z̃
(b)
jk

∣∣∣∣x)W1

(
z

(c)
k

∣∣∣∣ z̃
(b)
jk

)

= W̃
(

z̃
(x)
jk

∣∣∣∣x)W1

(
z

(1−x)
k

∣∣∣∣ z̃
(x)
jk

)
+ W̃

(
z̃

(1−x)
jk

∣∣∣∣x
)

W1

(
z

(1−x)
k

∣∣∣∣ z̃
(1−x)
jk

)

=
∑

i∈Tjk

qi · (1− θjk
) · qk∑

i∈Tjk

qi

·
(

pk − θjk

1− 2θjk

)
+
∑

i∈Tjk

qi · θjk
· qk∑

i∈Tjk

qi

·
(

1− pk − θjk

1− 2θjk

)

= qk

(
(1− θjk

) ·
(

pk − θjk

1− 2θjk

)
+ θjk

− θjk
·
(

pk − θjk

1− 2θjk

))

= qk

(
(1− 2θjk

) ·
(

pk − θjk

1− 2θjk

)
+ θjk

)
= qk · pk.

Therefore, for any k ∈ [m] and c, x ∈ {0, 1}

∑
j∈[

√
ℓ], b∈{0,1}

W̃
(

z̃
(b)
j

∣∣∣∣x)W1

(
z

(c)
k

∣∣∣∣ z̃
(b)
j

)
= W

(
z

(c)
k

∣∣∣∣ x
)

.
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Chapter 4

Polar Codes Overview

In this chapter we describe the context and background of the phenomenon of channel
polarization that lies at the heart of Arıkan’s polar coding approach. We start with de-
scribing the original Arıkan’s construction from [Arı09], where the author introduced the
first-ever family of codes that provably achieves capacity for any BMS channel and has
low-complexity encoding and decoding procedures. This invention of polar codes is con-
sidered to be one of the most important major advances in modern coding theory, from
both theoretical and practical standpoints. Further we review the state of the art on polar
codes and discuss our results.

4.1 Original polar codes

4.1.1 Polar transformation
The idea of channel polarization introduced by Arıkan is based on a small linear transfor-
mation. Define a binary matrix

A2 =
[
1 0
1 1

]
,

which we call a basic Arıkan’s kernel. Let U = (U1, U2) ∈ F2 be a vector of two uniformly
random bits. Suppose we are transmitting the vector U by first encoding it as X = U ·A2,
and then sending X through two independent copies of the channel W , obtaining the
output vector Y = (Y1, Y2).

U1

U2

X1 = U1 + U2

X2 = U2

A2

W

W

Y1

Y2

Denote by W(2) the channel that sends U to Y , i.e.

W(2)(y |u) = W 2(y |x) = W 2(y |u · A2) =
2∏

i=1
W (yi | (uA2)i).
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So, W(2) describes a combination of two copies of channels W that sends U to Y , this
step is referred to as channel combining in [Arı09]. Since the linear transformation A2 is
invertible, the mutual information between the output Y and either of U , X is the same,

I(U ; Y ) = I(X ; Y ) = I(X1 ; Y1) + I(X2 ; Y2) = 2I(W ). (4.1)

Using the chain rule for the mutual information, we can also write

I(U ; Y ) = I(U0 ; Y ) + I(U1 ; Y , U0). (4.2)

We can interpret the summands in this equation in the following way. Suppose we are
trying to guess the message U based on the output vector Y , and we are doing it in a
specific way, in a successive fashion. We first decode the first bit U1 based on Y , producing
a guess Û1. And after that, we are trying to guess U2 based on both Y and Û1, where we
are “pretending” (or assuming) that our first guess was correct.

Define then two synthetic channels, which correspond to these two guessing procedures.
The channel W (0) : F2 → Y2 is the channel that sends U1 to Y , and it views U2 as a random
noise. The second channel W (1) : F2 → Y 2 × F2 sends the bit U2 to Y and U0. They can
be formally described as:

W (0)(y |u1) = 1
2
∑

u1∈F2

W (y1 |u1 + u2)W (y2 |u2),

W (1)(y , u1 |u2) = 1
2W (y1 |u1 + u2)W (y2 |u2).

(4.3)

The capacities of these channels are exactly the summands that appear in the RHS
of (4.2). Then, using also the preservation of mutual information from (4.1), and rewriting
it in the form of channel entropies, we observe the entropy preservation property:

H(W (0)) + H(W (1)) = 2H(W ). (4.4)

We transformed two copies of the channel W into a pair of channels (W (0), W (1)) with
preservation of total entropy, however, these channels are not identical anymore (except in
some trivial cases). The following relation on the entropies is straightforward:

H(W (1)) ≤ H(W ) ≤ H(W (0)).

Indeed, this follows from H(W (1)) = H(U2 |Y , U1) ≤ H(U2 |Y2) = H(X2 |Y2) = H(W ).
Moreover, for the Bhattacharyya parameter on the new channels we have the relations

Z(W (0)) ≤ 2Z(W )− Z(W )2,

Z(W (1)) = Z(W )2.
(4.5)

In other words, instead of a pair of identical channels (W, W ), after this transformation we
end up with a worse channel W (0) and a better channel W (1).
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4.1.2 Recursive application
The next step is to apply this transformation recursively. We will combine two pairs
of channels (W (0), W (0)) and (W (1), W (1)), and apply the same transformation to them,
producing 4 channels

{
(W (0))(0), (W (0))(1), (W (1))(0), (W (1))(1)

}
. Let us now understand

why these channels are important.
For that, consider now sending 4 bits U ∈ F4

2, which are transformed linearly into
X = U ·B4 ·A⊗2

2 , where ⊗ denotes a Kronecker product/powering, and Bn is a certain bit-
reversal permutation1. After that X is sent through 4 copies of the channel W . Consider
then again the process of guessing U based on Y in a successive manner: for i = 1, 2, 3, 4,
we are producing a guess Ûi for Ui, based on Y and our previous guesses Û i−1

1 . Similarly,
this can be viewed as trying to decode the communication through four synthetic bit-
channels, where the channel Wi : F2 → Y4 × Fi−1

2 sends the bit Ui to Y and U i−1
1 , for

all i ∈ [4]. Arıkan showed that these four synthetic bit-channels are exactly the channels{
(W (0))(0), (W (0))(1), (W (1))(0), (W (1))(1)

}
.

More generally (but analogically), say we are now sending N = 2n bits U ∈ Fn
2 , by

computing X = U ·BN ·A⊗n
2 and sending X through N copies of W . Again, we are trying

to decode U in the same successive fashion, which leads to N synthetic bit-channels

Wi : F2 → YN × Fi−1
2 , Wi(y ,ui−1

1 |ui) := 1
2N−1

∑
uN

i+1∈FN−i
2

W N(y |u ·BNA⊗n
2 ). (4.6)

Arıkan showed that the choice of linear transformation as a Kronecker product A⊗n
2 , to-

gether with the bit-reversal permutation BN , gives a recursive representation for these bit-

channels, such that the set {Wi}N
i=1 is equal to the set

{(
. . .
(
W (i1)

)(i2)
. . .
)(in)

}
, where

i = (i1, i2, . . . , in) ∈ {0, 1}n ranges through all possible binary vectors of length n. This
means that all N bit-channels can be obtained by recursively applying the basic polar
transformations, defined in (4.3), n times.

4.1.3 Code construction
Let us describe how we construct and use (polar) codes given such a set of synthetic bit-
channels {Wi}N

i=1. To construct a code of rate R, select a set I of k = RN indices from [N ],
and use the bits in U on the corresponding positions, i.e. UI , to send a message of k bits.
Denote the remaining positions F = [N ]\I, and set a value for the remaining positions, i.e.
UF , to be equal to 0 (these are called frozen bits). This establishes the encoding, and the
actual code C (set of codewords) is then going to be a set of all possible linear combinations
of rows of BNA⊗n

2 with indices from I. Now, let us use the successive cancellation decoding
1The bit-reversal operation is not necessary for polarization and just makes the analysis easier. Even

though it can be ignored for the pure purpose of this overview, for completeness: V = UBN for N = 2n

for such V that V(b1,b2,...,bn) = U(bn,bn−1,...,b2,b1), where (i−1) = (b1, b2, . . . , bn) is the base-2 representation
(i− 1), for all i ∈ [N ].
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algorithm, the idea for which we actually considered these bit-channels. That is, for i =
1, 2, . . . , N , produce a guess Ûi for Ui, based on Y and the previous guesses Û i−1

1 . If i ∈ I,
this is done by comparing which one of Wi(Y , Û i−1

1 | 0) and Wi(Y , Û i−1
1 | 1) is larger. The

probability to make an error at this step, if we guessed all the previous bits correctly and
Û i−1

1 = U i−1
1 , is exactly the decoding error probability of Wi under the uniform input2 ,

i.e. Pe(Wi), for which we can use inequality Pe(Wi) ≤ Z(Wi). Otherwise, for i ∈ F , we
guess Ûi = 0, as this is a frozen bit, and we cannot make a mistake at this step. Therefore,
union bound implies that the overall decoding error probability is bounded by

Pe ≤
∑
i∈I

Z(Wi). (4.7)

To construct such codes which would allow reliable communication one would take the
set of indices I for which Z(Wi) is small. Therefore, we want to prove that there are
a lot of channels, specifically as close to I(W )N as possible, for which Z(Wi) is small.
Finally, we want Z(Wi) to be sufficiently small to get the decoding error probability as low
as possible. This is exactly what is called to be channel polarization – we want to show
that out of these N channels, approximately I(W )N will be almost noiseless. This would
mean, because of the conservation of entropy property (4.4), that at the same time around
(1− I(W ))N channels should become very noisy.

All this leads us to the task of analyzing the bit-channels Wi and their parameters, in
order to construct good (polar) codes. This is where the recursive way to describe these
bit-channels comes in handy.

4.1.4 Stochastic processes
A convenient way to analyze the bit-channels is using a stochastic process of coding chan-
nels, where at each step we take one of the transformations in (4.3) with equal probability.
Formally, let W0 = W (the initial channel), and Wi+1 = (Wi)(0) or Wi+1 = (Wi)(1) with
probability 1/2 each. We equivalently can define a random sequence B1, B2, . . . of i.i.d
Bernoulli(1/2) random variables, i.e. random 0/1 coin flips. In such settings we can define
the channel process as Wi+1 = (Wi)(Bi+1).

Another useful way to look at it is by looking at the channel tree. For convenience,
denote for b1, b2, . . . , bj ∈ {0, 1}j recursively Wb1,b2,...,bj

=
(
Wb1,b2,...,bj−1

)(bi), i.e. this is
the channel which is obtained after applying the corresponding transformation •(0) an
•(1) in the order that the sequence b1, b2, . . . , bj dictates. The binary channel tree then is
constructed in a natural manner – the root is W . After that, every channel W ′ in the
tree has two children (W ′)(0) and (W ′)(1). Then the channels at level j of this tree are
exactly the channels {Wb1,b2,...,bj

} for all b1, b2, . . . , bj ∈ {0, 1}j. Define the random process
W as a random walk down this tree, which starts at the root, and at each steps moves to
the child of the current channel, choosing either one with equal probability. Clearly, this

2technically, this is true on average over all possible values of frozen bits UF , however [Arı09] also
proves the inequality between Pe(Wi) and Z(Wi) for any fixed value of frozen bits if W is symmetric.
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defines the same stochastic process Wn of channels. Notice that for a fixed n, the marginal
distribution of Wn is uniform over all 2n bit-channels at the level n of this tree.

Further, define two stochastic processes for channel parameters as Hn = H(Wn) and
Zn = Z(Wn). Then the entropy conservation property (4.4) and the relations for Bhat-
tacharyya parameter (4.5) immediately imply the following
Proposition 4.1 ([Arı09], Prop. 8 and 9). Hn is a bounded martingale. Zn is a bounded
super-martingale.

4.1.5 Channel polarization
The last proposition and evolution of the Bhattacharyya parameter (4.5) can be used to
prove (a weak form of) polarization
Lemma 4.2 (Channel Polarization [Arı09, Prop. 8-10]).

• The process {Hn} converges almost surely to a random variable H∞ such that H∞ = 1
w.p H(W ) and H∞ = 0 w.p. 1−H(W ).

• The process {Zn} converges almost surely to a random variable H∞ such that Z∞ = 1
w.p H(W ) and Z∞ = 0 w.p. 1−H(W ).

This implies the following polarization behaviour : for any δ > 0

P
i∼[N ]

[H(Wi) ∈ (δ, 1− δ)] −→ 0 as N →∞,

P
i∼[N ]

[H(Wi) ∈ [0, δ)] −→ I(W ) as N →∞,

P
i∼[N ]

[H(Wi) ∈ (1− δ, 1]] −→ 1− I(W ) as N →∞,

meaning that as N increases, almost all of the bit-channels become either very noisy
(entropy > δ) or almost noiseless (entropy < δ), and the fraction of unpolarized channels
tends to 0. The same holds if we change the entropy to the Bhattacharyya parameter.

This does not quite give us capacity-achieving codes yet, as in (4.7) we want the sum
of Bhattacharyya parameters Z(Wi) for good channels to be o(1/N) for decaying decoding
error probability. What Arıkan originally proved in [Arı09] is the following:
Theorem 4.3 ([Arı09, Theorem 2]). For any binary-input discrete memoryless channel W

lim
n→∞

P
[
Zn < 2−5n/4

]
= I(W ). (4.8)

This allows to construct polar codes which have rates arbitrarily close to capacity with
decaying decoding error probability:
Theorem 4.4 ([Arı09, Theorem 4]). Consider any binary-input discrete memoryless chan-
nel W , and fix a rate R < I(W ), where I(W ) is a symmetric capacity of the channel3.
Then there exists a family of polar codes with increasing blocklength N , with rates RN > R
and decoding error probability PN = O(N1/4).

3For symmetric channels, symmetric capacity matches the Definition 2.4 we considered.
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Proof. Fix any 0 < ε < I(W )−R, then from Theorem 4.3 have P
[
Zn < 2−5n/4

]
≥ I(W )−ε

for sufficiently large n. Recall that the marginal distribution of Zn is uniform over N = 2n

parameters of bit-channels {Z(W1), Z(W2), . . . , Z(WN)}. As we described in Section 4.1.3,
fix the set of information indices

I =
{
i ∈ [N ] : Z(Wi) < 2−5n/4 = N−5/4

}
,

therefore the rate for such code is RN = |I|
N
≥ (I(W ) − ε) > R. Finally, under successive

cancellation decoding the decoding error probability is bounded by (4.7), therefore

PN ≤
∑
i∈I

Z(Wi) ≤ N ·N−5/4 = N−1/4.

This shows how to translate the limiting behavior of the parameters of the bit-channels
as in (4.8) into constructing capacity-achieving codes. Soon after the original introduction
of polar codes, the rate at which Zn decays, when tends to 0, was improved:
Theorem 4.5 ([AT09, Theorem 2]). limn→∞ P

[
Zn < 2−2βn

]
= I(W ) for any β < 1/2. On

the contrary, for any β′ > 1/2, limn→∞ P
[
Zn > 2−2β′n

]
= 1 if I(W ) < 1.

This established that polar codes have the decoding error probability scaling as 2−N1/2 .
Furthermore, Arıkan presented in [Arı09] quasi-linear time O(N log N) algorithms for de-
coding and decoding procedures, which rely on a recursive (FFT-like) structure of the
linear transformation A⊗n

2 .
Notice, however, that this does not yield any results as to how fast the codes approach

capacity in terms of blocklength N . That is, no estimation on how fast P
[
Zn < 2−2βn

]
tends to I(W ), in terms of n, is yet given, whereas recall that the main focus of this thesis
in on the speed of this convergence. We discuss this after we do a slight detour and discuss
two ways how the construction of polar codes can be generalized.

4.2 Larger kernels and general alphabets
While the original polar codes are based on a recursive application of a small 2× 2 linear
transform A2, which is called the kernel of the transformation A⊗n

2 , Arıkan inferred that
polarization behavior is a general phenomenon, and is not restricted to this particular
kernel. It was indeed shown in [KSU10] how to prove the polarization for ℓ×ℓ kernels for any
ℓ ≥ 2, and a simple criterion for a matrix to be polarizing was given. For completeness (and
since our results concern large kernels), let us write down the polarization transformation
for this case explicitly, although it is very similar to the 2× 2 case.

Consider an arbitrary BMS channel W : F2 → Y , and an ℓ× ℓ invertible binary matrix
(kernel) K. Suppose we are transmitting a binary vector U = (U1, U2, . . . , Uℓ) uniformly
chosen from {0, 1}ℓ in the following way: first, it is transformed into X = UK, which is
then sent through ℓ copies of the channel W to get the output Y = W ℓ(X) ∈ Yℓ.
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Now imagine decoding the input bits Ui successively in the order of increasing i. This
naturally leads to a binary-input channel Wi : F2 → Yℓ×Fi−1

2 , for each i ∈ [ℓ], which is the
channel “seen” by the bit Ui when all the previous bits U<i and all the channel outputs
Y ∈ Yℓ are known. Formally, the transition probabilities of this channel are

Wi(Y ,U<i |Ui) = 1
2ℓ−1

∑
V∈Fℓ−i

2

W ℓ
(
Y | (U<i, Ui,V )K

)
, (4.9)

where U<i ∈ Fi−1
2 are the first (i − 1) bits of U , and the sum is over all possible values

V ∈ Fℓ−i
2 that the last (ℓ − i) bits of U can take. This is a direct generalization of the

bit-channels in (4.6). In this document we call the channel Wi as “Arıkan’s ith bit-channel
of W with respect to K”, where some parts of this naming might be skipped and implied
from the context.

A polarization transform associated with the kernel K is then defined as a transfor-
mation that maps ℓ copies of the channel W to the bit-channels W1, W2, . . . , Wℓ. Since
K is invertible, a direct implication of the chain rule for entropy also gives the entropy
conservation property, which is

ℓ ·H(W ) = H(X |Y ) = H(U |Y ) =
ℓ∑

i=1
H(Ui|U<i,Y ) =

ℓ∑
i=1

H(Wi). (4.10)

Definition 4.6. An invertible binary matrix is called mixing, or polarizing, if it is not
upper-triangular under any column permutation.

In [KSU10] the authors proved that any mixing matrix K polarizes any BMS channel,
i.e. the Arıkan’s bit-channels (with respect to K) W1, W2, . . . , Wℓ start polarizing – some
of them become better than W (have smaller entropy), and some become worse. Applying
this kernel recursively, similar to the idea of original polar codes, naturally leads to an ℓ-ary
tree of bit-channels. The t’th level of the tree corresponds to the linear transformation K⊗t,
the t-fold Kronecker product of K.4. The results in [KSU10] then actually show the same
polarization as in Lemma 4.2 for any mixing matrix G and BMS channel W . Moreover,
they also prove sub-exponentially small decay rate of the decoding error probability Pe <
2−NE(K) , similarly to Theorem 4.5, but with a matrix-dependent constant E(K) < 1 instead
of β < 1/2.

Another way to generalize the problem is to consider coding channels with non-binary
input alphabets. It is not surprising that the same polarization ideas and construction work
for other alphabet sizes. Initially, in [STA09] the results from [Arı09] and [AT09] were gen-
eralized to arbitrary alphabets, with prime-sized alphabets being the most straightforward
case, and with certain restrictions for other cases. The construction was further studied
under various regimes in subsequent works, but since the focus of this thesis is primarily on
the binary-input channels, we omit a detailed discussion here. However, we will review the
advances in the scaling exponent for the case of non-binary alphabets in the next section.

4As before, the analysis is more convenient if one applies a bit-reversal permutation of the Ui’s, and
indeed we do so also in our construction, but we skip this detail here for simplicity.
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4.3 Prior work
Let us recall the context of Section 1.1, where we explained that the main goal of this
dissertation is to find the codes which achieve capacity optimally fast. That is, for a
channel W we want to construct the codes for which the gap to capacity δ = I(W ) − R
scales almost optimally, as the blocklength N increases (or we can talk about scaling of N
with respect to δ, equivalently). Of course, we also want these codes to enjoy low block
error probability and have efficient encoding and decoding probability. It is known that
the best scaling of blocklength is of the form N = O(1/δµ), where µ is called a scaling
exponent. The optimal scaling exponent is µ = 2, and is achieved by random codes (and
even by random linear codes), which is implied by Shannon’s noisy coding theorem [Sha48].

4.3.1 Capacity-achieving codes
Before we talk about achieving capacity fast, let us first briefly review what we know about
achieving capacity in general. A classical example of a capacity-achieving family is Forney’s
concatenated codes [For65], however, their decoding complexity scales exponentially in
the gap to capacity δ. Turbo codes invention [BGT93] was a breakthrough in practical
coding theory, and even though empirically they operate with rates close to capacity, they
were not proven to achieve capacity. Low-density parity-check (LDPC) codes, introduced
in [Gal65] in the 1960s and later rediscovered [Mac99, Spi96] in the 1990s, also enjoyed
a very good practical performance, and eventually were proven to achieve capacity for
the binary erasure channel (BEC) in [LMSS98, LMSS01]. However, nothing rigorous was
proven for their scaling exponent.

Recently, spatially-coupled LDPC codes were proven to achieve capacity for arbitrary
BMS channel in [KRU13] using density evolution and low-complexity message-passing al-
gorithms. A heuristic argument suggests that the scaling exponent for such codes has a
value close to 3, however, this has not been rigorously proven and appears to be technically
challenging.

In another recent breakthrough [KKM+17] the authors prove that Reed-Muller codes
achieve capacity over BEC under the maximum-likelihood decoding, but there are no
known bounds on the scaling exponents. In [AY20] it is shown that Reed-Muller codes
have polarization property for an arbitrary BMS channel, however, this does not lead (at
least yet) to the argument that they achieve capacity.

Finally, there are polar codes, discussed in the next section.

4.3.2 Scaling exponent for polar codes
As we saw in Section 4.1, the original Arıkan’s polar codes achieve symmetric capacity
for any binary-input discrete memoryless channel, with the block error scaling as Pe <
exp(−N1/2) as the blocklength N increases, when the rate R < I(W ) is fixed. We also
discussed that this was generalized in [KSU10] to larger ℓ × ℓ binary kernels with Pe <
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exp(−NE(K)), where the exponent depends on the kernel K. These results were further
generalized for channels with prime power input alphabet size in [MT14].

As for the scaling exponent, empirical bounds for BEC and original polar codes were
presented in [KMTU10], suggesting µBEC ≈ 3.627, based on a certain “scaling assumption”.
The first rigorous proofs of finite scaling exponents for polar codes were (independently)
presented in [GX13] and [HAU14]. In [GX13, GX15] the authors showed that there exists a
finite µ such that I(W )−R scales as N−1/µ and Pe ≤ exp(−N0.49) at the same time, while
also keeping poly(N) construction time for such codes, along with O(N log N) encoding
and decoding complexities, since the proof was for the standard Arıkan’s polar codes. No
explicit upper bound on µ was provided though, so although convergence with poly(1/δ)
speed was proven, the degree of this polynomial was not determined.

In [HAU14] concrete lower and upper bounds on the scaling exponent µ for standard
Arıkan’s polar code were presented, for a fixed decoding error probability Pe. The authors
proved 3.579 ≤ µ ≤ 6 for any BMS channel, where they relied on studying the largest
eigenvalue of a polar operator (similarly to [KMTU10]). This idea is still the main tool for
getting estimates or bounds on the scaling exponent for polar codes, and we will learn more
about it in Section 5.1. The upper bound was then improved to µ ≤ 5.702 in [GB14], and
further to µ ≤ 4.714 for any BMS channel W and to µBEC ≤ 3.639 for the BEC in [MHU16].
In the same paper, the authors discussed the moderate deviations regime, where the codes
have both good scaling exponent µ and block error probability Pe ≤ exp(−Nφ), and they
showed that any pair of parameters can be achieved if the point (φ, 1/µ) lies under a certain
curve connecting points (0, 1/(µ∗ + 1)) and (1/2, 0), µ∗ being the best provably achievable
exponent. This curve was later improved in [WD18a] and [WD18b].

We can already see, however, that the lower bound 3.579 ≤ µ shows that the original
polar codes (with a 2 × 2 kernel A2) fall short of achieving the optimal scaling of N =
O(1/δ2), at least when the standard successive-cancellation decoding is used. So we need
to consider larger kernels if we hope to get this scaling with polar codes.

The results of [GX15] were generalized significantly in [BGN+18], proving that the
entire class of polar codes, based on arbitrary ℓ× ℓ mixing matrices over any prime field as
kernels, has a finite scaling exponent. This was initially done with only inverse-polynomial
decoding error probability Pe = O(N−Ω(1)), and was improved to Pe < exp(−Nφ) for any
desired φ < 1 in [BGS18], however the claim was only that the scaling exponent is finite.

For the binary erasure channel (BEC), several studies showed that larger kernels can
benefit the scaling exponent. Binary ℓ × ℓ kernels for powers of two ℓ ≤ 64 optimized for
the binary erasure channel appear in [MT12, FV14, YFV19]; a 64 × 64 kernel achieving
µ < 3 is reported in [YFV19]. Pfister and Urbanke proved in [PU16] that the optimal
scaling exponent µ = 2 can be approached if one considers transmission with q× q kernels
over the q-ary erasure channel, as the input alphabet size q grows.

Finally, Fazeli, Hassani, Mondelli, and Vardy [FHMV17, FHMV18] showed how to
achieve any near-optimal scaling exponent µBEC > 2 for the BEC, using large binary
ℓ × ℓ kernels. Specifically, they show how to get any scaling exponent µBEC = 2 + α, for
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arbitrarily small α > 0, using kernel size ℓ ≥ ℓ0(α) = exp (Ω(α−1.01)). The decoding error
probability Pe is fixed here. This is a significant result, which constructs, for the first time
ever, a family of codes which achieve capacity of a channel near-optimally fast and have
low encoding/decoding complexities.

4.4 Current and parallel work
In this section we briefly describe the contribution of this thesis and how it relates to the
relevant recent work that came out while this dissertation was in writing. The brevity is
because a) our results were discussed in some detail in Section 1.3; and b) they will be
described in even more detail and formalized soon in the next chapter.

Our main result can be viewed as an extension to [FHMV18] to the general case of BMS
channels. Specifically, in [GRY20] we construct a variant of polar codes which has scaling
exponent arbitrarily close to 2, i.e. µ = 2 + α, for an arbitrary BMS channel W , also using
large ℓ×ℓ kernels (the scaling is similar to ℓ0(α) from before). This is a much more general
family of coding channels, and the generalization is by no means straightforward. Some
of the inherent difficulties when coming from the BEC to BMS channels are described in
Sections 5.1.1 and 5.1.2. For the codes in [GRY20] we obtained inverse-polynomial decoding
error probability Pe = O

(
N−Ω(1)

)
, polynomial-time construction and O(N log N) encoding

and decoding.
At nearly the same time, Wang and Duursma in [WD19] also presented the construc-

tion of polar codes with scaling exponent arbitrarily close to 2, but for even more general
settings – they prove it for an arbitrary discrete memoryless channel (DMC). This includes
asymmetric channels and arbitrary input alphabet size. Moreover, their result covers mod-
erate deviations regime, where both convergences of R to I(W ) and of Pe to 0 are studied
at the same time. The authors showed that for each (φ, µ) such that φ + 2/µ < 1 (which
is the best achievable region for any possible code for channels with positive dispersion
V ), the polar code with R ≥ I(W ) − N−1/µ and Pe ≤ exp(−Nφ) can be constructed.
However, to the best of our understanding, the construction complexity is not addressed
in [WD19, WD21], and seems to be exponential in N .

In [GRY22] we show that we can apply the convergence analysis from [WD19] to our
construction to also get sub-exponentially small Pe ≤ exp(−NΩ(α)) when µ = 2 + α,
while keeping polynomial-time construction, for any BMS channel. The same machinery
also appeared previously in [WD18a] and [WD18b], see also a dissertation [Wan21]. In
this thesis we further show how to use the same approach to get any pair of parameters
(φ, µ) which satisfy a certain condition, similar to the curve for moderate deviations regime
from [MHU16] and [WD18b], while still preserving poly(N) time construction complexity.
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Chapter 5

Near-Optimal Convergence to
Capacity

This chapter contains the construction of polar codes with the near-optimal convergence
to capacity for any BMS channel. Specifically, we prove
Theorem 5.1. Let W be an arbitrary BMS channel with Shannon capacity I(W ) and fix
any c > 0. For any desired α ∈

(
0, 1

12+2c

)
, if we choose a large enough constant ℓ ≥ ℓ0(α)

to be a power of 2, then there is a code C generated by the polar coding construction using
kernels of size ℓ× ℓ such that the following four properties hold when N is the code length:

1. the code construction has NOα(1) complexity;
2. both encoding and decoding have Oα(N log N) complexity;
3. the rate of C is I(W )−O(N−1/2+(c+6)α); and
4. the decoding error probability of C is Oα(log N/N c) under successive cancellation

decoding when C is used for channel coding over W .
The value for ℓ0(α) is the smallest number which satisfies log ℓ0 ≥ 11

α
and log ℓ0

log log ℓ0+2 ≥
3
α
,

and does not depend on the channel W .
Notice that the above theorem only gets the inverse-polynomial decoding error proba-

bility. This will be improved to sub-exponentially small decay in the next chapter.
The notation Oα(•) hides the constant factors which depend only on α and ℓ (since the

size ℓ that we must choose only depends on α itself, we ignore it in this notation). Note
that these constants might be arbitrarily large in terms of α, but are still constants, and
treated as such.

A similar lower bound on the required kernel size ℓ also appears in [FHMV17], where
polar codes with the near-optimal convergence to channel capacity for the BEC are con-
structed. Due to this requirement of extremely large ℓ, we want to point out that this result
is primarily theoretical in nature, and meant to illustrate that the polar coding framework
is powerful enough to achieve an asymptotically optimal rate of convergence to Shannon
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capacity with efficient algorithms. The choice of (very) large constants which is required
to prove this convergence makes this construction unsuitable for practical applications. To
convince the reader even more and avoid the attempts to try this at home, the constants in
the theorem hide 2ℓ factors, since ℓ is treated as a constant, which means it actually hides
doubly-exponential in 1/α factors, i.e. exp(21/α). So we are paying a stiff (but constant in
terms of N) price if we want to get the codes with near-optimal scaling exponent.

The rest of the chapter is structured as follows. In Section 5.1 we give an overview of how
our construction works. We start by explaining the standard (in the polar coding literature)
way to obtain bounds on the scaling exponents, and then proceed with explaining the ideas
we introduce to get the scaling exponent arbitrarily close to 2. After that, in Sections 5.2-
5.5 we show our construction and prove that is works.

5.1 Approach overview

5.1.1 Analysis of polarization via recursive potential function
For any fixed BMS channel W , recall the random process of bit-channels Wt defined for
recursive polar codes construction in Section 4.1.4. We defined it as a random walk down
the binary tree for the standard kernel A2; however, it is defined in an identical way for
ℓ×ℓ kernels by walking down the ℓ-ary tree. That is, define W0 = W and Wj+1 = (Wj)i for
i uniformly chosen from [ℓ], where (Wj)i is the ith Arıkan’s bit-channel of Wj with respect
to the kernel K. On the tree of channels, where each node W ′ has exactly ℓ children
marked as Arıkan’s bit channels (W ′)1, (W ′)2, . . . , (W ′)ℓ, this corresponds to starting with
W0 = W and walking down to a uniformly random child of the current node at each
step. The entropy and Bhattacharyya processes are defined similarly as Hj := H (Wj)
and Zj := Z (Wj). Since every kernel in the construction is chosen to be invertible, Hj

is a martingale due to the conservation of entropy property (4.10). It is clear that Wj

marginally is a uniformly random channel of the jth level of the channel tree, and then Hj

marginally is the entropy of such a randomly chosen channel.
The principle behind polarization is that for large enough t, almost all of the channels

on the t-th level of the channel tree will be close to either a useless or a noiseless channel, i.e.
their entropy will be very close to 1 or 0. To estimate how fast such polarization actually
happens, one needs to bound the fraction of unpolarized channels (which have entropies
not close to neither 0 nor 1) on the t-th level, i.e., δt = P

[
Ht ∈ (ζt, 1 − ζt)

]
for some tiny

threshold ζt, and show that this fraction vanishes rapidly with increasing t. Notice that
this is essentially what we did in Section 4.1.5 for the A2 kernel case, however, we looked
at Zt instead and considered the event that it is small, but it is not hard to see that one
can switch back and forth between these two arguments. We also were only interested in
δt → 0, without considering its speed, as we merely wanted to obtain capacity-achieving
property.

With this notation for the fraction of unpolarized codes, one (roughly) gets codes of
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length ℓt, rate I(W )−δt− ζt, for which the SC decoder achieves decoding error probability
ζtℓ

t for communication over W . While the gap to capacity is (roughly) δt +ζt, the quantity
ζt is not that hard to get to be very small (we already know that we can get it sub-
exponentially small in N = ℓt for some cases), so the fraction of unpolarized channels δt

is what actually governs the gap to capacity of polar codes. Therefore, one would need to
show δt ≤ O(ℓ−t/µ) to establish a scaling exponent of µ, since the blocklength is N = ℓt.

Being more precise, we have the following result (stated explicitly in [BGN+18, Theo-
rem A.3]): if for all t

P[Ht ∈ (pℓ−t, 1− pℓ−t)] ≤ D · βt, (5.1)

then this corresponds to a polar code with block length N = ℓt, rate (D ·βt +pℓ−t)-close to
the capacity of the channel, and decoding error probability at most p under the successive
cancellation decoder. The reader should think of p as being inverse polynomial (of fixed
degree) in N for discussion in this chapter.

To track the fractions of polarized and non-polarized channels at each level of the
construction, we use a potential function on channel entropy

gα(h) = (h(1− h))α, (5.2)

where α > 0 is some small fixed parameter. This α corresponds to the gap to the scaling
exponent in Theorem 5.1, and in this document we always consider α < 1

12 (and smaller
bounds in some cases). Such a potential function was also used for example in [MHU16]
and [FHMV17], and in general the use of some kind of concave potential function on channel
parameters was used since [KMTU10] to obtain all known results for scaling exponents, to
the best of our knowledge. Such a potential function just needs to “punish” the channels
when they have entropy far from the endpoints on [0, 1] interval. We are going to track
the expected value E[gα(Ht)] as t increases, and then use Markov’s inequality to get

P[Ht ∈ (pℓ−t, 1− pℓ−t)] = P[gα(Ht) ≥ gα(pℓ−t)] ≤ E[gα(Ht)]
gα(pℓ−t) ≤ 2

(
ℓt/p

)α
· E[gα(Ht)]. (5.3)

To give an upper bound on E[gα(Ht)], we desire to prove that the average of the potential
function of all the children of any channel in the tree decreases significantly with respect
to the potential function of this channel. Specifically, we want to obtain for some small λα

and any channel W ′ in the bit-channel tree the inequality

E
i∼[ℓ]

[
gα (H(W ′

i ))
]
≤ λα · gα (H(W ′)) , (5.4)

where W ′
i are the children of W ′ in the construction tree for i ∈ [ℓ], and the constant

λα should only depends on the potential function gα (in our particular case (5.2), just on
α) and ℓ, but should be universal for all the channels in the tree. If one can guarantee
that (5.4) holds throughout the construction process, then for the martingale process Ht
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obtain
E
[
gα (Ht)

]
= E

[
E

j∼[ℓ]

[
gα (H ((Wt−1)j))

] ∣∣∣∣∣Wt−1

]

= E
[

1
ℓ

∑ℓ
j=1 gα (H ((Wt−1)j))

gα (H(Wt−1))
· gα (H(Wt−1))

∣∣∣∣∣Wt−1

]

≤ λα · E
[
gα (Ht−1)

]
,

(5.5)

and inductively

E
[
gα (Ht)

]
≤ λα · E

[
gα (Ht−1)

]
≤ λ2

α · E
[
gα (Ht−2)

]
≤ · · · ≤ λt

αH0 ≤ λt
α. (5.6)

Then (5.3) and (5.1) imply the existence of codes with rate O ((N/p)α · λt
α)-close to

capacity of the channel. It is then clear that estimating λα, which one can represent as
λα = ℓ−1/µ, directly leads to statements about the scaling exponents. Since our main task
is to achieve a gap which is close to N−1/2 = ℓ−t/2, we want to construct the codes in such
a way that we can prove multiplicative decrease (5.4) for some λα ≈ ℓ−1/2 at each step t.

This is exactly what was achieved in [FHMV17] for the binary erasure channel (BEC)
case. The polarization process for BEC has a particularly nice structure. If the initial
channel W is the binary erasure channel with erasure probability z (denoted BEC(z)),
then the Arıkan’s bit-channels Wi, i ∈ [ℓ], with respect to any kernel K are also binary
erasure channels. Moreover, they can be written as BEC(p(K)

i (z)), where p
(K)
i (·) are some

polynomials of degree at most ℓ, which are fully determined by the choice of K. Crucially,
all the channels in the recursive tree remain BEC. Therefore it suffices to prove the existence
of a good polarizing kernel for the class of binary erasure channels, which is parameterized
by a single number, the erasure probability, which also equals the entropy of the channel.
In [FHMV17] it is proven that a random kernel works with good probability for all BEC
universally. Fundamentally the calculations for BEC revolve around the rank of various
random subspaces, as decoding under the BEC is a linear-algebraic task. Moving beyond
the BEC takes us outside the realm of linear algebra into information-theoretic settings
where tight quantitative results are much harder to establish.

5.1.2 The road to BMS channels: using multiple kernels
For the case when the initial channel W is a BSC, a fundamental difficulty (among others)
is that the channels in the recursion tree will no longer remain BSC (even after the first
step). Further, to the best of our knowledge, the various channels that arise do not share
a nice common exploitable structure. Therefore, we have to think of the intermediate
channels as arbitrary BMS channels, a very large and diverse class of channels. It is not
clear (to us) if there exists a single kernel K to universally polarize all BMS channels at a
rapid rate, i.e. for which we can prove (5.4) for small λα universally for all BMS channels
W ′, where W ′

i are Arıkan’s bit-channels of W ′ w.r.t. K. Even if such a kernel exists,
proving so seems out of reach of current techniques. Finally, even for a specific BMS,
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proving that a random kernel polarizes it fast enough requires very strong quantitative
bounds on the performance and limitations of random linear codes for channel coding.

Since we are not able to establish that a single kernel would work for the whole con-
struction universally, the idea behind our codes is to use different kernels, which are picked
individually for each bit-channel that we face in the channel tree. That way, by choosing a
suitable kernel for each channel in the tree, we can ensure that polarization is fast enough
throughout the whole process. Notice that while we required the decay rate λα in (5.4)
to be fixed for the whole process (tree), we did not say that the kernel with respect to
which the Arıkan’s transformation is taken should be the same. As long as (5.4) holds at
each node of the channel tree, the speed of convergence to capacity follows. The idea of
using several distinct internal kernels (it is called dynamic kernels in some places) is not
new and previously appeared in [YB15, PSL15, GBLB17, BBGL17] in some variations, but
was not used to improve the scaling exponent of polar codes before [WD19] and our result
in [GRY20]. Below we describe the mixed-kernel construction slightly more formally.

Though we use different kernels in the code construction, all of them have the same size
ℓ× ℓ (mixed-sized constructions also do enjoy polarization behavior). We say that a kernel
is good if all but a Õ(ℓ−1/2) fraction of the bit-channels obtained after polar transform
by this kernel have entropy ℓ−Ω(log ℓ)-close to either 0 or 1. Given a BMS channel W ,
the code construction consists of t steps, from Step 0 to Step t − 1. At Step 0, we find
a good kernel K

(0)
1 for the original channel W . After the polar transform of W using

kernel K
(0)
1 , we obtain ℓ bit-channels W1, . . . , Wℓ. Then in Step 1, we find good kernels

for each of these ℓ bit-channels. More precisely, the good kernel for Wi is denoted as K
(1)
i ,

and the bit-channels obtained by polar transforms of Wi using kernel K
(1)
i are denoted

as {Wi,j : j ∈ [ℓ]}; see Figure 5.1 for an illustration. At Step j, we will have ℓj bit-
channels {Wi1,...,ij

: i1, . . . , ij ∈ [ℓ]}. For each of them, we find a good kernel K
(j)
i1,...,ij

.
After polar transform of {Wi1,...,ij

: i1, . . . , ij ∈ [ℓ]} using these kernels, we will obtain ℓj+1

bit-channels. Finally, after the last step (Step t − 1), we will obtain N = ℓt bit-channels
{Wi1,...,it : i1, . . . , it ∈ [ℓ]}. Using the good kernels we obtained in this code construction
procedure, we can build an N ×N matrix (or we can view it as a large single kernel) M (t)

such that the N bit-channels resulting from the polar transform of the original channel W
using this large kernel M (t) are exactly {Wi1,...,it : i1, . . . , it ∈ [ℓ]}. We will say a few more
words about this in Section 5.1.4 and provide all the details in Section 5.4.

5.1.3 Sharp transition in polarization
The main technical challenge then consists in showing that if ℓ is large enough, it is possible
to choose kernels in the construction process for which λα is close to ℓ−1/2. Specifically, we
prove that if ℓ is a power of 2 such that log ℓ = Ω

(
1

α1.01

)
, then it is possible to achieve

λα ≤ ℓ−1/2+5α (5.7)

by individually choosing suitable kernels in the code construction. To obtain such behavior,
while choosing the kernel for the current channel W ′ during the recursive process we
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Figure 5.1: The left figure illustrates the code construction, and the right figure shows the
encoding procedure for the special case of ℓ = 3 and t = 2. All the kernels in this figure
have size 3 × 3. One can show that the bit-channel Wi,j in the left figure is exactly the
channel mapping from U3(i−1)+j to (U[1:3(i−1)+j−1],Y[1:9]) in the right figure.

distinguish two cases:

Case 1: W ′ is already very noisy or almost noiseless. We call this regime suction at
the ends (following [BGN+18]), and it is well understood that polarization happens very
fast for this case, even for standard choice of a kernel. So in this case we take a power
of standard Arıkan’s polarization kernel K = [ 1 0

1 1 ]⊗ log ℓ and prove (5.4) with a geometric
decrease factor λα ≤ ℓ−1/2.

Case 2: W ′ is neither very noisy nor almost noiseless. We refer to this case
as variance in the middle regime (following [BGN+18] again). For such a channel we
adopt the framework from [FHMV17] and show a sharp transition in polarization for a
random kernel K, with respect to W ′. Specifically, we prove that with high probability
over K ∼ {0, 1}ℓ×ℓ (for ℓ large enough) it holds

H(W ′
i (K)) ≤ ℓ−Ω(log ℓ) for i ≥ ℓ ·H(W ′) + Ω(ℓ1/2 log3 ℓ),

H(W ′
i (K)) ≥ 1− ℓ−Ω(log ℓ) for i ≤ ℓ ·H(W ′)− Ω(ℓ1/2 log3 ℓ).

(5.8)

It then follows that only about Õ(ℓ−1/2) fraction of bit-channels are not polarized for some
kernel K, which then easily translates into the bound (5.7) on λα that we desire. Note that
we can always ensure that we take an invertible kernel K since a random binary matrix is
invertible with at least some constant probability.

Proving such a sharp transition constitutes the bulk of the technical work for our
construction, however, the majority of it was already done in Chapter 3. This is because
in Section 5.2.2 we show that inequalities in (5.8) correspond to decoding a single bit of
a message which is transmitted through W ′ using a random linear code, which is exactly
the setting for the strong converse theorem we proved. The first set of inequalities in (5.8)
correspond to saying that one can decode this single bit with low error probability with
high probability over the randomness of the code, if the rate of the code is at least Õ(ℓ−1/2)
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smaller than the capacity of the channel (where ℓ is the blocklength of the code). This
follows from the well-studied fact that random linear codes achieve Shannon’s capacity
over any BMS channel ([Gal65, BF02]).

The second set of inequalities, on the other hand, corresponds to saying that for a
random linear code with rate exceeding capacity by at least Õ(ℓ−1/2), even predicting a
single bit of the message with a tiny advantage over a uniform guess is not possible. This
is exactly what we proved in Theorem 3.1.

5.1.4 Construction, encoding and decoding

Once we have obtained the kernels in the code construction, the encoding procedure is
pretty standard; see [PSL15, YB15, GBLB17, BBGL17, WD18a] for discussions on polar
codes using multiple kernels. As mentioned in Section 5.1.2, we can build an N×N matrix
M (t) := D(t−1)Q(t−1)D(t−2)Q(t−2) . . . D(1)Q(1)D(0), where the matrices Q(1), Q(2), . . . , Q(t−1)

are some permutation matrices, and D(0), D(1), . . . , D(t−1) are block diagonal matrices. In
particular, all the blocks on the diagonal of D(j) are the kernels that we obtained in Step
j of the code construction. We illustrate the special case of ℓ = 3 and t = 2 in Figure 5.1.
We take a random vector U[1:N ] consisting of N = ℓt i.i.d. Bernoulli-1/2 random variables
and we transmit the random vector X[1:N ] through N independent copies of W . Denote
the output vector as Y[1:N ]. Then for every i ∈ [N ], the bit-channel mapping from Ui to
(U[1:i−1],Y[1:N ]) is exactly Wi1,...,it , where (i1, . . . , it) is ℓ-ary expansion of i.

We have shown that almost all of the N bit-channels {Wi1,...,it : i1, . . . , it ∈ [ℓ]} become
either noiseless or completely noisy. In the code construction, we can track H(Wi1,...,it)
for every (i1, . . . , it) ∈ [ℓ]t, and this allows us to identify which Ui’s are noiseless under
successive decoding. Then in the encoding procedure, we only put information in these
noiseless Ui’s and set all the other Ui’s to be some “frozen” value, e.g., 0. This is equivalent
to saying that the generator matrix of our code is the submatrix of M (t) consisting of rows
corresponding to indices i of the noiseless Ui’s. In Section 5.4, we will show that similarly to
the classical polar codes, both the encoding and decoding of our code also have O(N log N)
complexity.

To achieve polynomial-time construction for the codes, we need to quantize every bit-
channel we obtain in every step of the code construction. The idea was used in [TV13] and
subsequent polar codes papers in which careful estimation of construction complexity was
present. More precisely, we merge the output symbols whose log-likelihood ratios are close
to each other, so that after the quantization, the output alphabet size of every bit-channel is
always polynomial in N . This allows us to construct the code in polynomial time. Without
quantization, the output alphabet size would eventually be exponential in N . However,
notice that approximating the channels in such a way can only give us inverse-polynomial
approximations on channel parameters, and thus on decoding error probability. We provide
more details about this aspect, and how it affects the code construction and the analysis
of decoding, in Section 5.2.1 and Section 5.4. This problem is further addressed (and is
the main focus of) Chapter 6.
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5.2 Give me a channel, I’ll give you a kernel
In this section we prove that a suitable kernel can be chosen for any bit-channel which
appears in the channel tree during the construction. Specifically, we show that for any
given binary-input memoryless symmetric (BMS) channel W we can find a kernel K of
size ℓ × ℓ, such that the Arıkan bit-channels of W with respect to this kernel will be
highly polarized. By this we mean that the multiplicative decrease λα defined in (5.4)
will be sufficiently close to ℓ−1/2. The algorithm (Algorithm A) to find such a kernel is as
follows: if the channel is already almost noiseless or too noisy (entropy is very close to 0
or 1), we take this kernel to be a tensor power of original Arıkan’s kernel for polar codes,
A2 = [ 1 0

1 1 ]. Otherwise, the algorithm will just try out all the possible invertible kernels
in {0, 1}ℓ×ℓ, until a “good” kernel is found, which means that conditions (5.9) should be
satisfied. Before proving that Algorithm A achieves our goals of bringing λα close to ℓ−1/2,
we discuss several details about it.

5.2.1 Local kernel construction

Algorithm A: Kernel search
Input: BMS channel W̃ with output size ≤ Q, error parameter ∆, and number ℓ
Output: invertible kernel K ∈ {0, 1}ℓ×ℓ

1 if H(W̃ ) < ℓ−4 or H(W̃ ) > 1− ℓ−4 + ∆ then
2 return K = A⊗ log ℓ

2
3 else
4 for K ∈ {0, 1}ℓ×ℓ, if K is invertible do
5 Compute Arıkan’s bit-channels W̃i(K) of W̃ with respect to the kernel K,

as in (4.9)
6 if

H(W̃i(K)) ≤ ℓ−(log ℓ)/4 for i ≥ ℓ ·H(W̃ ) + ℓ1/2 log3 ℓ

H(W̃i(K)) ≥ 1− ℓ−(log ℓ)/20 for i ≤ ℓ ·H(W̃ )− 14ℓ1/2 log3 ℓ
(5.9)

then
7 return K
8 end
9 end

10 end

As briefly discussed at the end of Section 5.1.4, we are unable to efficiently track all
the bit-channels in the ℓ-ary recursive tree exactly. This is because the size of the output
alphabet of the channels increases exponentially after each step deeper into the tree (this
simply follows from the definition of bit-channels (4.9)). Thus computing all the channels
(and their entropies) cannot be done in poly(N) time. To overcome this issue we follow
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the approach of [TV13], with subsequent simplification in [GX15], of approximating the
channels in the tree by degrading (see Definition 2.9) them. Degradation is achieved via
the procedure of merging the output symbols, which (a) decreases the output alphabet
size, and (b) does not change the entropy of the channel too much. This implies (with all
the details worked out in Section 5.4) that we can substitute all the channels in the tree of
depth t by their degraded approximations, such that all the channels have output alphabet
size at most Q (a parameter depending on N = ℓt to be chosen), and that if W̃ is a
degraded approximation of the channel W in the tree, then H(W ) ≤ H(W̃ ) ≤ H(W ) + ∆
for some ∆ depending on Q. Moreover, in Theorem 5.2 which we formulate and prove
shortly, we show that when we apply Algorithm A to a degraded approximation W̃ of W
with small enough ∆, then, even though conditions (5.9) only dictate a sharp transition
for W̃ , the same kernel will induce a sharp transition in polarization for W .

The second issue which such degraded approximation resolves is the running time of
Algorithm A. Notice that we are only going to apply it for channels with output size
bounded by Q, and recall ℓ is treated as a constant (though very large). First of all,
trying out all the possible kernels will then also take a constant number of iterations.
Finally, within each iteration, calculating all the Arıkan’s bit-channels and their entropies
in a straightforward way will take poly(Qℓ) time, which is poly(Q) since ℓ is a constant.
Therefore by choosing Q to be polynomial in N , the algorithm indeed works in poly(N)
time.

We now leave the full details concerning the complexity of the algorithm to be handled
in Section 5.4, and proceed with showing that Algorithm A always returns a kernel which
makes λα from (5.4) close to ℓ−1/2.

Theorem 5.2. Let α ∈
(
0, 1

12

)
be a small fixed constant. Let ℓ be an even power of 2 such

that log ℓ ≥ 11
α

and log ℓ
log log ℓ+2 ≥

3
α
. Let W : {0, 1} → Y and W̃ : {0, 1} → Ỹ be two BMS

channels, such that W̃ ⪯ W , H(W̃ )−∆ ≤ H(W ) ≤ H(W̃ ) for some 0 ≤ ∆ ≤ ℓ− log ℓ, and
|Ỹ| ≤ Q. Then Algorithm A on inputs W̃ , ∆, and ℓ returns a kernel K ∈ {0, 1}ℓ×ℓ that
satisfies

1
ℓ · gα(H(W ))

ℓ∑
i=1

gα (H(Wi)) ≤ ℓ− 1
2 +5α, (5.10)

where W1, W2, . . . , Wℓ are the Arıkan’s bit-channels of W with respect to the kernel K, and
gα(·) is the potential function gα(h) = (h(1− h))α for any h ∈ [0, 1], as defined in (5.2).

Proof. As we discussed above, we consider two cases:

Suction at the ends. If H(W̃ ) /∈ (ℓ−4, 1 − ℓ−4 + ∆), Algorithm A returns a standard
Arıkan’s kernel K = A⊗ log ℓ

2 on input W̃ and ∆. For this case H(W ) /∈ (ℓ−4, 1− ℓ−4), and
fairly standard arguments imply that the polarization under such a kernel is much faster
when the entropy is close to 0 or 1. For completeness, we present the full proofs for this
case in a deferred Section 5.3. Specifically, Lemma 5.10 immediately implies the result of
the theorem for this regime, as we pick log ℓ ≥ 1

α
.
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Variance in the middle. Otherwise, if H(W̃ ) ∈ (ℓ−4, 1 − ℓ−4 + ∆), it holds H(W ) ∈
(ℓ−4 −∆, 1− ℓ−4 + ∆), thus H(W ) ∈ (ℓ−4/2, 1− ℓ−4/2) since 0 ≤ ∆ ≤ ℓ− log ℓ and log ℓ is
large by the conditions of the theorem.

We first need to argue that the algorithm will at least return some kernel. We formulate
this as a separate Theorem 5.5 in Section 5.2.2. The theorem essentially claims that for
any W̃ an overwhelming fraction of possible kernels K ∈ {0, 1}ℓ×ℓ satisfies the conditions
in (5.9) for W̃ and K (note that we do not use any conditions on the size of Ỹ or the entropy
H(W̃ ) at all at this point). Clearly then, there is a decent fraction of invertible kernels
from {0, 1}ℓ×ℓ which also satisfy these conditions. Therefore, the algorithm will indeed
terminate and return such a good kernel. Moreover, the theorem claims that a random
kernel from {0, 1}ℓ×ℓ will satisfy (5.9) with high probability, and it is also known that it
will be invertible with at least some constant probability. It means that instead of iterating
through all possible kernels in step 4 of Algorithm A, we could take a random kernel and
check it, and then the number of iterations needed to find a good kernel would be very
small with high probability. In four words, random dynamic kernels work. However, to
keep everything deterministic, we stick to the current approach.

Suppose now the algorithm returned an invertible kernel K ∈ {0, 1}ℓ×ℓ, which means
that relations (5.9) hold for W̃ and Arıkan’s bit-channels W̃1, W̃2, . . . , W̃ℓ (we omit de-
pendence on K from now on). Denote also Wi = Wi(K) as Arıkan’s bit-channels of W
with respect to K. Now we use the property that degradation is preserved under Arıkan’s
transformation:

Proposition 5.3 ([YB15, Lemma IV.1]). Let W and W̃ be BMS channels, such that
W̃ ⪯ W , and K ∈ {0, 1}ℓ×ℓ be any invertible matrix. Denote by Wi, W̃i the Arıkan’s
bit-channels of W and W̃ with respect to the kernel K for any i ∈ [ℓ]. Then for any i ∈ [ℓ],
we have W̃i ⪯ Wi, and consequently H(W̃i) ≥ H(Wi).

This fact was proved in [KU10, Lemma 21] for the special case of Arıkan’s kernel and
then generalized in [YB15, Lemma IV.1] to general kernels. Apply this directly to our
situation, thus H(Wi) ≤ H(W̃i) for all i ∈ [ℓ]. Now, since K is invertible, conservation
of entropy implies ∑ℓ

i=1

(
H(W̃i)−H(Wi)

)
= ℓ

(
H(W̃ )−H(W )

)
≤ ℓ ·∆, therefore derive

H(Wi) ≤ H(W̃i) ≤ H(Wi) + ℓ ·∆ for any i ∈ [ℓ]. Then deduce from (5.9)

H(Wi) ≤ H(W̃i) ≤ ℓ−(log ℓ)/4 for i ≥ ℓ ·H(W̃ ) + ℓ1/2 log3 ℓ

H(Wi) ≥ H(W̃i)− ℓ ·∆ ≥ 1− ℓ−(log ℓ)/21 for i ≤ ℓ ·H(W̃ )− 14 · ℓ1/2 log3 ℓ,
(5.11)

where we used that ∆ ≤ ℓ− log ℓ and ℓ is large in the condition of the theorem.
Recall that H(W ) ∈ (ℓ−4/2, 1− ℓ−4/2) for variance in the middle regime, and note that

this implies

gα(H(W )) ≥ gα(ℓ−4/2) =
(1

2 · (1− ℓ−4/2)
)α

· ℓ−4α ≥
(1

4

)α

ℓ−4α ≥ 1
2ℓ−4α, (5.12)
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since gα is increasing on (0, 1/2) and α < 1/2. Using (5.11) and the trivial bound gα(x) ≤ 1
for all the indices i close to ℓ ·H(W̃ ) obtain that the LHS of the desired inequality (5.10)
is at most

1
ℓ · gα(H(W ))

 ℓ·H(W̃ )−14·ℓ1/2 log3 ℓ∑
i=1

gα

(
1− ℓ−(log ℓ)/21

)
+ 15ℓ1/2 log3 ℓ

+
ℓ∑

i=ℓ·H(W̃ )+ℓ1/2 log3 ℓ

gα

(
ℓ−(log ℓ)/4

)
(a)
< 2ℓ4α−1

(
15ℓ1/2 log3 ℓ + ℓ ·H(W̃ ) · ℓ−(α log ℓ)/21 + (ℓ− ℓ ·H(W̃ )) · ℓ−(α log ℓ)/4

)
< 30ℓ− 1

2 +4α log3 ℓ + 2ℓ−(α log ℓ)/21+4α

(b)
≤ ℓ− 1

2 +4α
(
30 log3 ℓ + 2ℓ−1/42

)
< ℓ− 1

2 +4α · 32 log3 ℓ

(c)
≤ ℓ− 1

2 +5α,

where (a) follows from (5.12) and the fact that gα(x) = gα(1 − x) ≤ xα for x ∈ (0, 1); (b)
uses the condition log ℓ ≥ 11

α
, and (c) uses log ℓ

log log ℓ + 2 ≥
3
α

from the requirements that
we have on ℓ in the conditions of this theorem.

Remark 5.4. We are mostly interested in the cases where α is close to 0, as our goal is
to approach the optimal scaling exponent 2. For such α, we can absorb the two conditions
on ℓ in Theorem 5.2 into one condition log ℓ ≥ Ω(α−1.01) for convenience of notation.

5.2.2 Strong channel coding and converse theorems
In this section we will show that Algorithm A, which is used to prove the multiplicative
decrease of almost ℓ−1/2 as in (5.10) in the settings of Theorem 5.2, indeed always returns
some kernel. While the analysis of suction at the ends regime, deferred to Section 5.3,
follows standard methods in the literature and only relies on the fact that polarization
becomes much faster when the channel is noiseless or useless, in this section we follow the
ideas from [FHMV17] and prove a sharp transition in the polarization behavior, when we
use a random and sufficiently large kernel.

The sharp transition stems from the fact that when the kernel K is large enough, with
high probability (over the randomness of K) all the Arıkan’s bit-channel with respect to
K, except for approximately ℓ1/2 of them in the middle, are guaranteed to be either very
noisy or almost noiseless. We formulate the following theorem, which was used in the proof
of Theorem 5.2:
Theorem 5.5. Let W be any BMS channel. Let W1, W2, . . . , Wℓ be the Arıkan’s bit-
channels defined in (4.9) with respect to the kernel K chosen uniformly at random from
{0, 1}ℓ×ℓ, where ℓ is a large integer such that log ℓ > 40. Then for the following inequalities
all hold with probability (1− oℓ(1)) over the choice of K:
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(a) H(Wi) ≤ ℓ−(log ℓ)/4 for i ≥ ℓ ·H(W ) + ℓ1/2 log3 ℓ;
(b) H(Wi) ≥ 1− ℓ−(log ℓ)/20 for i ≤ ℓ ·H(W )− 14 · ℓ1/2 log3 ℓ.

Remark 5.6. One can notice that the above theorem is stated for any BMS channel W ,
independent of the value of H(W ). So in terms of sharp polarization, a random kernel
also works for the suction at the ends regime. The technical difficulty though arises because
we need the lower bound (5.12) on gα(H(W )) in order to get the desired inequality (5.10),
which is why we distinguish the suction at the ends regime separately.

The proof of this theorem relies on the strong converse for bit-decoding which we proved
in Chapter 3. The following proposition shows how to connect Arıkan’s bit-channels to
this context.
Proposition 5.7. Let W be a BMS channel, K ∈ {0, 1}ℓ×ℓ be an invertible matrix, and
i ∈ [ℓ]. Set k = ℓ− i + 1, and let G be a matrix which is formed by the last k rows of K.
Let U be a random vector uniformly distributed over {0, 1}ℓ, and V be a random vector
uniformly distributed over {0, 1}k. Then

H
(

Ui

∣∣∣∣ W ℓ(U ·K),U<i

)
= H

(
V1

∣∣∣∣ W ℓ(V ·G)
)

. (5.13)

We are implicitly using the concept of coset codes [Gal68, Section 6.2] in this propo-
sition, and the proof technique here is quite standard in the polar coding literature. For
example, the same proof technique is used to show that the values of the frozen bits do
not matter for polar codes [Arı09, KU10] when W is a symmetric channel. The proof of
this proposition only uses basic properties of BMS channels and linear codes, we present it
here for completeness, as it is an important tool that connects the context of polar codes
to the bit-decoding of linear codes.

Proof of Proposition 5.7. Let us unfold the conditioning in the LHS as follows

H
(

Ui

∣∣∣∣ W ℓ(U ·K),U<i

)
= E

w∼{0,1}i−1

[
H
(

Ui

∣∣∣∣ W ℓ(U ·K),U<i = w
)]

. (5.14)

We are going to show that the conditional entropy inside the expectation doesn’t depend
on the choice of w , which will allow us to restrict to w = 0.

Denote the (random) output of the channel Y = W ℓ(U · K). Let us fix some w ∈
{0, 1}i−1 and consider H

(
Ui

∣∣∣∣ Y ,U<i = w
)

. Unfolding the conditional entropy even more,
derive

H
(

Ui

∣∣∣∣ Y ,U<i = w
)

=
∑
y∈Yℓ

P[Y = y |U<i = w ] ·H
(

Ui

∣∣∣∣ Y = y ,U<i = w
)

. (5.15)

Denote by B the first (i−1) rows of K, and thus Y = W ℓ(U ·K) = W ℓ(U<i·B+U≥i·G).
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We then have

P[Y = y |U<i = w ] =
∑

v∈{0,1}k

1
2k

P[Y = y |U<i = w ,U≥i = v ]

=
∑

v∈{0,1}k

1
2k

W ℓ
(
y

∣∣∣∣w ·B + v ·G
)

=
∑

v∈{0,1}k

1
2k

W ℓ
(
y ⊕wB

∣∣∣∣v ·G)

=
∑

v∈{0,1}k

1
2k

P[Y = y ⊕wB |U<i = 0,U≥i = v ]

= P[Y = y ⊕wB |U<i = 0]. (5.16)

For the entropy in the RHS of (5.15), observe

H
(

Ui

∣∣∣∣ Y = y ,U<i = w
)

= h
(
P [Ui = 0 |Y = y ,U<i = w ]

)
,

where h(·) is a binary entropy function. Out of the definition of conditional probability,
obtain

P [Ui = 0 |Y = y ,U<i = w ] = P[Ui = 0,Y = y |U<i = w ]
P[Y = y |U<i = w ]

= P[Ui = 0,Y = y ⊕wB |U<i = 0]
P[Y = y ⊕wB |U<i = 0]

= P [Ui = 0 |Y = y ⊕wB,U<i = 0] ,

where the second equality also uses (5.16) (and similar equality with Ui = 0 inside the
probability, which is almost identical to (5.16)). Therefore, deduce in (5.15)

H
(

Ui

∣∣∣∣Y ,U<i = w
)

=
∑
y∈Yℓ

P[Y = y ⊕wB |U<i = 0] ·H
(

Ui

∣∣∣∣Y = y ⊕wB,U<i = 0
)

=
∑
z∈Yℓ

P[Y = z |U<i = 0] ·H
(

Ui

∣∣∣∣ Y = z,U<i = 0
)

= H
(

Ui

∣∣∣∣ Y ,U<i = 0
)

,

since z = y ⊕wB ranges over all Yℓ for y ∈ Yℓ. Therefore, in (5.14) there is no actual
dependence on w under the expectation in the RHS, and thus

H
(

Ui

∣∣∣∣ W ℓ(U ·K),U<i

)
= H

(
Ui

∣∣∣∣ W ℓ(U ·K),U<i = 0
)

.

Finally, note that we can take V = U≥i, since it is uniformly distributed over {0, 1}k,
and then V1 = Ui. Since U ·K = U≥i ·G = V ·G when U<i = 0, we indeed obtain

H
(

Ui

∣∣∣∣ W ℓ(U ·K),U<i

)
= H

(
Ui

∣∣∣∣ W ℓ(U ·K),U<i = 0
)

= H
(

V1

∣∣∣∣ W ℓ(V ·G)
)

.
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This brings us to the settings of bit-decoding for random linear codes. Notice that
the LHS of (5.13) is exactly the entropy H(Wi) of the i-th Arıkan’s bit-channel of W with
respect to the kernel K, by definition of this bit-channel. On the other hand, one can think
of the RHS of (5.13) in the following way: look at G as a generator matrix for a linear
code of blocklength ℓ and dimension k, which is transmitted through the channel W . Then
H
(

V1

∣∣∣∣ W ℓ(V ·G)
)

corresponds to how well one can decode the first bit of the message,
given the output of the channel. Since in Theorem 5.5 we are interested in random kernels,
the generator matrix G is also random, and thus we are indeed interested in understanding
the bit-decoding of random linear codes.

5.2.2.1 Part (a): channel capacity theorem

Part (a) of Theorem 5.5 corresponds to transmitting through W random linear codes with
rates below the capacity of the channel. For this regime, it turns out that we can use the
classical result that random linear codes achieve the capacity of the channel with low error
decoding probability. Trivially, the bit-decoding error probability is even smaller, making
the corresponding conditional entropy also very small. We just need to formally show
the strong quantitative form we require in Theorem 5.5. Therefore, the following theorem
follows from classical Shannon’s theory:
Theorem 5.8. Let W be any BMS channel and k ≤ ℓ(1−H(W ))−ℓ1/2 log3 ℓ, where ℓ ≥ 4.
Let G be a random binary matrix uniform over {0, 1}k×ℓ. Suppose a codeword V · G is
transmitted through ℓ copies of the channel W , where V is uniformly random over {0, 1}k,
and let Y be the output vector, i.e. Y = W ℓ(V ·G). Then with high probability over the
choice of G it holds H

(
V1

∣∣∣ Y)
≤ ℓ−(log ℓ)/4.

Proof. The described communication is just a transmission of a random linear code C =
{vG, v ∈ {0, 1}k} through W ℓ, where the rate of the code is R = k

ℓ
≤ I(W )− ℓ−1/2 log3 ℓ,

so it is separated from the capacity of the channel. It is a well-studied fact that random
(linear) codes achieve capacity for BMS, and moreover a tight error exponent was described
by Gallager in [Gal65] and analyzed further in [BF02], [For05], [DZF16]. Specifically, one
can show Pe ≤ exp(−ℓEr(R, W )), where Pe is the probability of decoding error, averaged
over the ensemble of all linear codes of rate R, and Er(R, W ) is the so-called random coding
exponent. It is proven in [iFLM11, Theorem 2.3] that for any BMS channel W , one has
Er(R, W ) ≥ EBSC

r (R, I(W )) where the latter is the error exponent for the BSC channel
with the same capacity I(W ) as W . But the optimal scaling exponent for BSC channels
for the regime when the rate is close to the capacity of the channel is given by the so-called
sphere-packing exponent EBSC

r (R, I) = Esp(R, I) (see, for instance, [For05, Section 1.2],
which is easily shown to be almost quadratic in (I −R). Specifically, we use the following

Lemma 5.9. Esp(R, I) ≥ 2 log4 ℓ
ℓ

for R ≤ I − ℓ−1/2 log3 ℓ.
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Proof. For the sphere-packing exponent we use the expression from [For05, eq (1.4)]

Esp(R, I) = DKL

(
δGV(R)

∣∣∣∣∣∣ p),

where I = I(W ) = 1 − H(W ) = 1 − h(p) is the capacity of the BSCp channel (with
p < 1

2), DKL stands for the Kullback–Leibler divergence, and δGV (R) is the relative Gilbert-
Varshamov distance, which is defined as the solution to 1 − h(δ) = R for δ ∈

(
0, 1

2

)
. For

convenience, we will just write δ instead of δGV(R) below.
For R ≤ I − ℓ−1/2 log3 ℓ = 1 − h(p) − ℓ−1/2 log3 ℓ, we then have 1 − h(δ) ≤ 1 − h(p) −

ℓ−1/2 log3 ℓ, and so h(δ) − h(p) ≥ ℓ−1/2 log3 ℓ. Using Proposition 2.8, obtain h(δ − p) ≥
h(δ)− h(p) ≥ ℓ−1/2 log3 ℓ. Next, since h(x) in increasing on

(
0, 1

2

)
and by Proposition 2.7

h(ℓ−1/2 log2 ℓ) ≤ 2ℓ−1/2 log2 ℓ · log ℓ1/2

log2 ℓ
≤ 2ℓ−1/2 log2 ℓ · 12 log ℓ = ℓ−1/2 log3 ℓ,

we conclude that δ − p ≥ ℓ−1/2 log2 ℓ.
Finally, we use Pinsker’s inequality DKL (P ||Q) ≥ 2∆2(P, Q) between the KL diver-

gence and the total variation distance ∆(P, Q) = 1
2 ||P −Q||1 of two distributions P and Q

over the same probability space. Abusing the notation and denoting ∆(δ, p) as the distance
between Bern(δ) and Bern(p), we have ∆(δ, p) = |δ − p|, and so obtain

Esp(R, I) = DKL
(
δ || p

)
≥ 2∆2(δ, p) = 2(δ − p)2 ≥ 2 log4 ℓ

ℓ
.

Therefore using this lemma we have Pe ≤ exp(−ℓEr(R, W )) ≤ exp(−ℓEsp(R, I(W ))) ≤
exp(−2 log4 ℓ). Then Markov’s inequality implies that if we take a random linear code (i.e.
choose a random binary matrix G), then with probability at least 1 − ℓ−2 the decoding
error is going to be at most ℓ2exp(−2 log4 ℓ) ≤ exp(− log4 ℓ) ≤ ℓ− log ℓ. Consider such a
good linear code (matrix G), and then V can be decoded from Y with high probability,
thus, clearly, V1 can be recovered from Y with at least the same probability. Then Fano’s
inequality and Proposition 2.7 gives us:

H(V1 |Y ) ≤ h2(ℓ− log ℓ) ≤ 2ℓ− log ℓ · log
( 1

ℓ− log ℓ

)
= 2ℓ− log ℓ · log2 ℓ ≤ ℓ−(log ℓ)/4,

where the last inequality follows from 2 log2 ℓ ≤ 2 3 log2 ℓ
4 , which holds for ℓ ≥ 4. Thus we

indeed obtain that the above holds with high probability (at least 1 − ℓ−2, though this is
very loose) over the random choice of G.

5.2.2.2 Part (b): strong converse for bit-decoding under noisy channel coding

On the other hand, part (b) of Theorem 5.5 concerns bit-decoding of linear codes with
rates above the capacity of the channel. This is exactly the strong converse in Theorem 3.1
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we proved in Chapter 3, where we proved that with high probability, for a random linear
code with rate slightly above the capacity of a BMS channel, any single bit of the input
message is highly unpredictable based on the outputs of the channel on the transmitted
codeword.

The above statements make the proof of Theorem 5.5 immediate:

Proof of Theorem 5.5. Fix i and denote k = ℓ − i + 1, then by Proposition 5.7
H(Wi) = H

(
V1

∣∣∣∣ W ℓ(V ·Gk)
)

, where V ∼ {0, 1}k and Gk is formed by the last k rows of
K. Note that since K is uniform over {0, 1}ℓ×ℓ, this makes Gk uniform over {0, 1}k×ℓ for
any k. Then:

(a) For any i ≥ ℓ · H(W ) + ℓ1/2 log3 ℓ, we have k ≤ ℓ(1 − H(W )) − ℓ1/2 log3 ℓ, and
therefore Theorem 5.8 applies, giving H(Wi) ≤ ℓ−(log ℓ)/4 with probability at least
1− ℓ−2 over K.

(b) Analogically, if i ≤ ℓ ·H(W )− 14 · ℓ1/2 log3 ℓ, then k ≥ ℓ(1−H(W )) + 14ℓ1/2 log3 ℓ,
and Theorem 3.1 gives H(Wi) ≥ 1− ℓ−(log ℓ)/20 with probability at least 1− ℓ−(log ℓ)/20

over K.
It only remains to take the union bound over all indices i in (a) and (b) and recall that we
took ℓ large enough so that log ℓ > 40. This implies that all of the bounds on the entropies
will hold simultaneously with probability at least 1 − ℓ · ℓ−2 ≥ 1 − ℓ−1 over the random
kernel K.

5.3 Suction at the ends
In this section we present the proof for Theorem 5.2 in the case the standard Arıkan’s
kernel was chosen in Algorithm A – the so-called suction at the ends regime. Recall that,
as we discussed in section 5.2.1, this regime applies when the entropy of the channel W falls
outside of the interval (ℓ−4, 1− ℓ−4), and the algorithm directly takes a kernel K = A⊗ log ℓ

2 ,
where A2 = [ 1 0

1 1 ] is the kernel of Arıkan’s original polarizing transform, instead of trying
out all the possible ℓ× ℓ matrices (or picking it at random). Note that multiplying by such
a kernel K is equivalent to applying the Arıkan’s 2 × 2 transform recursively log ℓ times.
Suppose we have a BMS channel W with H(W ) very close to 0 or 1. For Arıkan’s basic
transform, by working with the channel Bhattacharyya parameter Z(W ) instead of the
entropy H(W ), it is well known that one of the two Arıkan bit-channels has Z value getting
much closer (quadratically closer) to the boundary of the interval (0, 1) [Arı09, Kor09].
Using these ideas, we prove in this section that basic transform decreases the average of
the potential function gα(·) of entropy at least by a factor of ℓ−1/2 after log ℓ iterations for
large enough ℓ.

The basic Arıkan’s transform takes one channel W and splits it into a slightly worse
channel W − and a slightly better channel W + (we used slightly different notations W (0)

and W (1) in Section 4.1 for the same channels). Then the transform is applied recursively
to W − and W +, creating channels W −−, W −+, W +−, and W ++. One can think of the
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process as of a complete binary tree of depth log ℓ, with the root node W , and any node
at the level i is of form W Bi for some Bi ∈ {−, +}i, with two children W Bi− and W Bi+.
Denote r = log ℓ, then the channels at the leaves {W Br}, for all Br ∈ {−, +}r are exactly1

the Arıkan’s subchannels of W with respect to the kernel K = A⊗ log ℓ
2 . We prove the

following
Lemma 5.10. Let W be a BMS channel with H(W ) /∈ (ℓ−4, 1 − ℓ−4), and α ∈

(
0, 1

12

)
be

some constant. Let ℓ be a power of two and denote r = log ℓ. Then for ℓ large enough such
that r ≥ max

{ 1
α

, 128
}

∑
B∈{−,+}r

gα

(
H
(
W B

))
≤ ℓ1/2gα (H(W )) , (5.17)

where gα(·) is the potential function defined in (5.2).
Clearly, the above lemma implies the suction at the end case of Theorem 5.2, as the

inequality log ℓ ≥ 1
α

holds by the conditions of this theorem.
For the analysis below, apart from the entropy of the channel, we will also use the

Bhattacharyya parameter Z(W ) (Definition 2.5) and the inequalities which connect it to
the entropy:

Z(W )2 ≤ H(W ) ≤ Z(W ), (5.18)

for any BMS channel W ([Kor09, Lemma 1.5], [Arı10, Proposition 2]). The reason we use
this parameter is because of the following relations, which show how the Bhattacharrya
parameter changes after the basic transform ([Arı09, Proposition 5] [RU08], [HAU14, eq
(13)]):

Z(W +) = Z(W )2, (5.19)

Z(W )
√

2− Z(W )2 ≤ Z(W −) ≤ 2Z(W ). (5.20)

The fact that Z squares for the better channel and is at worst multiplied by a constant
in the worse channel is what enables to prove strong suction at the ends, and this is what
lies at the root of sub-exponentially small block error probability for polar codes.

We will also use the conservation of conditional entropy (4.4)

H(W +) + H(W −) = 2H(W ). (5.21)

Proof of Lemma 5.10. The proof is presented in the next two sections, as it is divided into
two parts: the case when H(W ) ≤ ℓ−4 (suction at the lower end), and when H(W ) ≥ 1−ℓ−4

(suction at the upper end).
1We ignore bit-reversal permutation here, as is doesn’t change the proofs.
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5.3.1 Suction at the lower end
Suppose H(W ) ≤ ℓ−4 for this case, thus Z(W ) ≤ ℓ−2 = 2−2r.

First, recursive application of (5.21) gives∑
B∈{−,+}r

H
(
W B

)
= 2rH(W ), (5.22)

and since entropy is always nonnegative, this implies for any B ∈ {−, +}r

H
(
W B

)
≤ 2rH(W ). (5.23)

Denote now k =
⌈
log 1

α

⌉
, and notice that log r ≥ k − 1 since r ≥ 1

α
. For B ∈ {−, +}r,

define wt+(B) to be number of +’s in B. We will split the summation in (5.17) into two
parts: the part with wt+(B) < k, and when wt+(B) ≥ k.

First part. Out of (5.23) derive

∑
wt+(B)<k

gα

(
H
(
W B

))
≤

k−1∑
j=0

(
r

j

)
gα (2rH(W )) ≤ log r ·

(
r

log r

)
· 2rαH(W )α

≤ 2log2 r+rα ·H(W )α,

(5.24)

where we used
(

r
log r

)
≤ rlog r

(log r)! ; the fact the gα is increasing on
(
0, 1

2

)
together with

2rH(W ) ≤ ℓ−3 < 1
2 , and that gα(x) ≤ xα for x ∈ (0, 1).

Second part. We are going to use the following observation, which was established in
[AT09, Lemma 1] and can be proved by induction based on (5.19) and (5.20):

Claim 5.11. Let B ∈ {−, +}r, such that number of +’s in B is equal to s. Then

Z
(
W B

)
≤
(
2r−s · Z(W )

)2s

.

This corresponds to first using the upper bound in (5.20) (r − s) times, and after that
using (5.19) s times while walking down the recursive binary tree of channels.

Then, using Claim 5.11 along with (5.18) and the fact that Z(W ) ≤ ℓ−2 = 2−2r, we
obtain the following for any B ∈ {−, +}r with wt+(B) = s ≥ k:

H
(
W B

)
≤ Z

(
W B

)
≤
(
2r−s · Z(W )

)2s

≤ 2(r−s)2s · Z(W )2s−2 ·H(W )
≤ 2(r−s)2s · 2−2r·2s+4r ·H(W )
= 2−r2s−s2s+4r ·H(W )
≤ 2−r2k−k2k+4r ·H(W ).
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Therefore∑
wt+(B)≥k

gα

(
H
(
W B

))
≤

∑
wt+(B)≥k

H
(
W B

)α
≤ 2r · 2α(−r2k−k2k+4r) ·H(W )α. (5.25)

Observe now the following chain of inequalities

r

2 + 4rα + 2 ≤ r ≤ r · 2kα ≤ r · 2kα + k · 2kα,

which trivially holds for α ≤ 1
12. Therefore

r + α(−r2k − k2k + 4r) ≤ r

2 − 2,

and thus in (5.25) obtain ∑
wt+(B)≥k

gα

(
H
(
W B

))
≤ 2r/2−2 ·H(W )α. (5.26)

Overall bound. Combining (5.24) and (5.26) we derive∑
B∈{−,+}r

gα

(
H
(
W B

))
≤
(
2log2 r+rα + 2r/2−2

)
·H(W )α

≤ 2r/2 · H(W )α

2
≤ ℓ1/2gα(H(W )),

where we used log2 r + rα ≤ r
2 − 2 for r ≥ 128, and 1

2 ≤ (1 − x)α for any x ≤ 1
2 . This

proves Lemma 5.10 for the lower end case H(W ) ≤ ℓ−4.

5.3.2 Suction at the upper end
Now consider the case H(W ) ≥ 1 − ℓ−4. The proof is quite similar to the previous case,
but we are going to track the distance from H(W ) (and Z(W )) to 1 now. Specifically,
denote

I(W ) = 1−H(W ),
S(W ) = 1− Z(W ),

where I(W ) is actually the (symmetric) capacity of the channel, and S(W ) is a notation
for a parameter we use in this proof2. Notice that gα(x) = gα(1 − x), therefore it suffices
to prove (5.17) with capacities of the channels instead of entropies in the inequality. Also
notice that I(W ) ≤ ℓ−4 for the current case of suction at the upper end.

2for analyzing suction at the end for channels with non-binary input alphabet, a more complex param-
eter S(W ) is usually studied, see e.g [MT14, WD19].
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Let us now derive the relations between I(W ), S(W ), as well as evolution of S(·) for
W + and W −, similar to (5.18), (5.19), (5.20), and (5.21). Inequalities in (5.18) imply

S(W ) = 1− Z(W ) ≤ 1−H(W ) = I(W ),
I(W ) = 1−H(W ) ≤ 1− Z(W )2 ≤ 2(1− Z(W )) = 2S(W ),

so let us combine this to write

S(W ) ≤ I(W ) ≤ 2S(W ). (5.27)

Next, (5.19) and (5.20) give

S(W +) = 1− Z(W )2 ≤ 2(1− Z(W )) ≤ 2S(W ), (5.28)

S(W −) ≤ 1− Z(W )
√

2− Z(W )2 ≤ 2(1− Z(W ))2 = 2S(W )2, (5.29)

where we used 1− x
√

2− x2 ≤ 2(1− x)2 for any x ∈ (0, 1), which can be proven easily by
showing that equality holds at x = 1 and that the derivative of RHS minus LHS is negative
on (0, 1).

Finally, it easily follows from (5.22) that∑
B∈{−,+}r

I
(
W B

)
= 2rI(W ),

and since capacity is nonnegative as well, we also obtain for any B ∈ {−, +}r

I
(
W B

)
≤ 2rI(W ). (5.30)

We now proceed with a very similar approach to the suction at the lower end case
in Section 5.3.1: denote k =

⌈
log 1

α

⌉
, and notice that log r ≥ k − 1 since r ≥ 1

α
. For

B ∈ {−, +}r, define wt−(B) to be number of −’s in B. We will split the summation
in (5.17) (but with capacities of channels instead of entropies) into two parts: the part
with wt−(B) < k, and when wt−(B) ≥ k.

First part. Out of (5.30) derive, similarly to (5.24)

∑
wt−(B)<k

gα

(
I
(
W B

))
≤

k−1∑
j=0

(
r

j

)
gα (2rI(W )) ≤ log r

(
r

log r

)
2rαI(W )α ≤ 2log2 r+rα · I(W )α.

(5.31)

Second part. Similarly to Claim 5.11, one can show via induction using (5.28) and (5.29)
the following

Claim 5.12. Let B ∈ {−, +}r, such that number of −’s in B is equal to s. Then

S
(
W B

)
≤ 22s−1

(
2r−s · S(W )

)2s

.

This corresponds to first using equality (5.28) (r−s) times, and after that using bound (5.29)
s times while walking down the recursive binary tree of channels.
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Using this claim with (5.27) and the fact that S(W ) ≤ I(W ) ≤ ℓ−4 ≤ 2−4r obtain for
any B ∈ {−, +}r with wt−(B) = s ≥ k

I
(
W B

)
≤ 2S

(
W B

)
≤ 22s ·

(
2r−s · S(W )

)2s

≤ 2(r−s+1)2s · S(W )2s−1 · I(W )
≤ 2(r−s+1)2s−4r2s+4r · I(W ) = 2−2s(3r+s−1)+4r · I(W )
≤ 2−2k(3r+k−1)+4r · I(W ) ≤ 2−r2k · I(W ),

where the last inequality uses 4r ≤ 2k(2t+k−1), which holds trivially for k ≥ 1. Therefore∑
wt−(B)≥k

gα

(
I
(
W B

))
≤

∑
wt−(B)≥k

I
(
W B

)α
≤ 2r · 2−αr2k · I(W )α ≤ I(W )α, (5.32)

since α · 2k ≥ 1 by the choice of k.

Overall bound. The bounds (5.31) and (5.32) give us∑
B∈{−,+}r

gα

(
H
(
W B

))
=

∑
B∈{−,+}r

gα

(
I
(
W B

))
≤
(
2log2 r+rα + 1

)
· I(W )α ≤ ℓ1/2gα(H(W ))

for large enough r when H(W ) ≥ 1− ℓ−4. This completes the proof of Lemma 5.10.

This also marks the end of the complete proof for Theorem 5.2. So we know know
that we indeed can find a suitable kernel for each bit-channel in the tree, such that the
total fraction of unpolarized channels decays fast enough to ensure the near-optimal scaling
exponent. In the remaining part of this chapter, we formally describe our construction and
wrap up the proof of Theorem 5.1.

5.4 Code construction, encoding and decoding proce-
dures

Before presenting our code construction and encoding/decoding procedures, we first dis-
tinguish the difference between the code construction and the encoding procedure. The
objectives of code construction for polar-type codes are two-fold: First, find the N × N
encoding matrix; second, find the set of noiseless bits under the successive cancellation
decoder, which will carry the message bits. On the other hand, by encoding we simply
mean the procedure of obtaining the codeword X[1:N ] by multiplying the information vector
U[1:N ] with the encoding matrix, where we only put information in the noiseless bits in
U[1:N ] and set all the frozen bits to be 0. As we will see at the end of this section, while
the code construction has complexity polynomial in N , the encoding procedure only has
complexity Oℓ(N log N).

For polar codes with a fixed invertible kernel K ∈ {0, 1}ℓ×ℓ, the polarization process
works as follows: We start with some BMS channel W . After applying the polar transform
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Algorithm B: Degraded binning algorithm
Input: W : {0, 1} → Y , bound Q on the output alphabet size after binning
Output: W̃ : {0, 1} → Ỹ , where |Ỹ| ≤ Q

1 Initialize the new channel W̃ with output symbols ỹ1, ỹ2, . . . , ỹQ by setting
W̃ (ỹi|x) = 0 for all i ∈ [Q] and x ∈ {0, 1}

2 for y ∈ Y do
3 p(0|y)← W (y|0)

W (y|0)+W (y|1)
4 i← ⌈Q · p(0|y)⌉
5 if i = 0 then
6 i← 1 // i = 0 if and only if p(0|y) = 0; we merge this single point into

the next bin
7 end
8 W̃ (ỹi|0)← W̃ (ỹi|0) + W (y|0)
9 W̃ (ỹi|1)← W̃ (ỹi|1) + W (y|1)

10 end
11 return W̃

to W using kernel K, we obtain ℓ bit-channels {Wi : i ∈ [ℓ]} as defined in (4.9). Next, we
apply the polar transform using kernel K to each of these ℓ bit-channels, and we write the
polar transform of Wi as {Wij : j ∈ [ℓ]}. Then we apply the polar transform to each of the
ℓ2 bit channels {Wi1,i2 : i1, i2 ∈ [ℓ]} and obtain {Wi1,i2,i3 : i1, i2, i3 ∈ [ℓ]}, so on and so forth.
After t rounds of polar transforms, we obtain ℓt bit-channels {Wi1,...,it : i1, . . . , it ∈ [ℓ]}, and
one can show that these are the bit-channels seen by the successive cancellation decoder
when decoding the corresponding polar codes constructed from kernel K.

For our purpose, we need to use polar codes with mixed kernels, and we need to search
for a “good” kernel at each step of polarization. We will also introduce a new notation for
the bit-channels in order to indicate the usage of different kernels for different bit-channels.
As mentioned in Sections 5.1.4 and 5.2.1, we need to use a binning algorithm (Algorithm B)
to quantize all the bit-channels we obtain in the code construction procedure. As long as
we choose the parameter Q in Algorithm B to be a large enough polynomial of N , the
quantized channel can be used as a very good approximation of the original channel. This
is made precise by [GX15, Proposition 13]: For W and W̃ in Algorithm B, we have3

H(W ) ≤ H(W̃ ) ≤ H(W ) + 2 log Q
Q . (5.33)

Given a BMS channel W , our code construction works as follows:
1. Step 0: We first use Algorithm B to quantize/bin the output alphabet of W such

that the resulting (degraded) channel has at most N3 outputs, i.e., we set Q = N3

3The binning algorithm (Algorithm 2) in [GX15] has one minor difference from the binning algorithm
(Algorithm B) here, but one can easily check that this minor difference does not affect the proof at all.
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in Algorithm B. Note that the parameter Q can be chosen as any polynomial of
N . By changing the value of Q, we obtain a tradeoff between the decoding error
probability and the gap to capacity; see Section 5.5.2. Here we choose the special
case of Q = N3 to give a concrete example of code construction. Next we use
Algorithm A in Section 5.2 to find a good kernel4 for the quantized channel and
denote it as K

(0)
1 . Recall from Section 5.1.2 that a kernel is good if all but a Õ(ℓ−1/2)

fraction of the bit-channels obtained after polar transform by this kernel have entropy
ℓ−Ω(log ℓ)-close to either 0 or 1. The superscript (0) in K

(0)
1 indicates that this is the

kernel used in Step 0 of polarization. In this case, we use {Wi(B, K
(0)
1 ) : i ∈ [ℓ]} to

denote the ℓ bit-channels resulting from the polar transform of the quantized version
of W using kernel K

(0)
1 . Here B stands for the binning operation, and the arguments

in the brackets are the operations to obtain the bit-channel Wi(B, K
(0)
1 ) from W :

first bin the outputs of W and then perform the polar transform using kernel K
(0)
1 .

For each i ∈ [ℓ], we again use Algorithm B to quantize/bin the output alphabet
of Wi(B, K

(0)
1 ) such that the resulting (degraded) bit-channel Wi(B, K

(0)
1 , B) has at

most N3 outputs.
2. Step 1: For each i1 ∈ [ℓ], we use Algorithm A to find a good kernel for the quan-

tized bit-channel Wi1(B, K
(0)
1 , B) and denote it as K

(1)
i1 . The ℓ bit-channels result-

ing from the polar transform of Wi1(B, K
(0)
1 , B) using kernel K

(1)
i1 are denoted as

{Wi1,i2(B, K
(0)
1 , B, K

(1)
i1 ) : i2 ∈ [ℓ]}. In this step, we will obtain ℓ2 bit-channels

{Wi1,i2(B, K
(0)
1 , B, K

(1)
i1 ) : i1, i2 ∈ [ℓ]}. For each of them, we use Algorithm B to

quantize/bin its output alphabet such that the resulting (degraded) bit-channels
{Wi1,i2(B, K

(0)
1 , B, K

(1)
i1 , B) : i1, i2 ∈ [ℓ]} has at most N3 outputs. See Fig. 5.2 for an

illustration of this procedure for the special case of ℓ = 3.
3. We repeat the polar transforms and binning operations at each step of the code

construction. More precisely, at Step j we have ℓj bit-channels

{Wi1,i2,...,ij
(B, K

(0)
1 , B, K

(1)
i1 , B, . . . , K

(j−1)
i1,...,ij−1 , B) : i1, i2, . . . , ij ∈ [ℓ]}.

This notation is a bit messy, so we introduce some simplified notation for the bit-
channels obtained with and without binning operations: We still use

Wi1,i2,...,ij
(K(0)

1 , K
(1)
i1 , . . . , K

(j−1)
i1,...,ij−1)

to denote the bit-channel obtained without the binning operations at all, and we use

W bin
i1,i2,...,ij

(K(0)
1 , K

(1)
i1 , . . . , K

(j−1)
i1,...,ij−1)

to denote the bit-channel obtained with binning operations performed at every step
from Step 0 to Step j − 1, i.e.,

W bin
i1,i2,...,ij

(K(0)
1 , K

(1)
i1 , . . . , K

(j−1)
i1,...,ij−1) := Wi1,i2,...,ij

(B, K
(0)
1 , B, K

(1)
i1 , B, . . . , K

(j−1)
i1,...,ij−1 , B).

4We will prove in Proposition 5.15 that the error parameter ∆ in Algorithm A can be chosen as
∆ = 6ℓ log N

N2 when we set Q = N3.
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Moreover, we use W bin ∗
i1,i2,...,ij

(K(0)
1 , K

(1)
i1 , . . . , K

(j−1)
i1,...,ij−1) to denote the bit-channel ob-

tained with binning operations performed at every step except for the last step, i.e.,

W bin ∗
i1,i2,...,ij

(K(0)
1 , K

(1)
i1 , . . . , K

(j−1)
i1,...,ij−1) := Wi1,i2,...,ij

(B, K
(0)
1 , B, K

(1)
i1 , B, . . . , B, K

(j−1)
i1,...,ij−1).

Next we use Algorithm A to find a good kernel for each of them and denote the
kernel as K

(j)
i1,...,ij

. After applying polar transforms using these kernels, we obtain ℓj+1

bit-channels

{W bin ∗
i1,...,ij+1

(K(0)
1 , K

(1)
i1 , . . . , K

(j)
i1,...,ij

) : i1, . . . , ij+1 ∈ [ℓ]}.

Then we quantize/bin the output alphabets of these bit-channels using Algorithm B
and obtain the following ℓj+1 quantized bit-channels

{W bin
i1,...,ij+1

(K(0)
1 , K

(1)
i1 , . . . , K

(j)
i1,...,ij

) : i1, . . . , ij+1 ∈ [ℓ]}.

4. After step t− 1, we obtain N = ℓt quantized bit-channels

{W bin
i1,...,it

(K(0)
1 , K

(1)
i1 , . . . , K

(t−1)
i1,...,it−1) : i1, i2, . . . , ij ∈ [ℓ]},

and we have also obtained all the kernels in each step of polarization. More precisely,
we have ℓi kernels in step i, so from step 0 to step t−1, we have 1+ℓ+· · ·+ℓt−1 = N−1

ℓ−1
kernels in total.

5. Find the set of good (noiseless) indices. More precisely, we use the shorthand nota-
tion5

Hi1,...,it(W ) := H(Wi1,...,it(K
(0)
1 , K

(1)
i1 , . . . , K

(t−1)
i1,...,it−1))

Hbin
i1,...,it

(W ) := H(W bin
i1,...,it

(K(0)
1 , K

(1)
i1 , . . . , K

(t−1)
i1,...,it−1))

(5.34)

and define the set of good indices as

Sgood :=
{

(i1, i2, . . . , it) ∈ [ℓ]t : Hbin
i1,...,it

(W ) ≤ 7ℓ log N

N2

}
. (5.35)

6. Finally, we need to construct the encoding matrix from these N−1
ℓ−1 kernels. The

kernels we obtained in step j are

{K(j)
i1,...,ij

: i1, . . . , ij ∈ [ℓ]}.

For an integer i ∈ [ℓj], we write the j-digit ℓ-ary expansion of i− 1 as (̃i1, ĩ2, . . . , ĩj),
where ĩj is the least significant digit and ĩ1 is the most significant digit, and each
digit takes value in {0, 1, . . . , ℓ− 1}. Let (i1, i2, . . . , ij) := (̃i1 + 1, ĩ2 + 1, . . . , ĩj + 1),
and define the mapping τj : [ℓj]→ [ℓ]j as

τj(i) := (i1, i2, . . . , ij) for i ∈ [ℓj]. (5.36)
5We omit the reference to the kernels in the notation Hi1,...,it

(W ) and Hbin
i1,...,it

(W ).
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This is a one-to-one mapping between [ℓj] and [ℓ]j, and we use the shorthand notation
K

(j)
i to denote K

(j)
τj(i) for i ∈ [ℓj]. For each j ∈ {0, 1, . . . , t − 1}, we define the block

diagonal matrices D
(j) with size ℓj+1 × ℓj+1 and D(j) with size N ×N as

D
(j) := Diag(K(j)

1 , K
(j)
2 , . . . , K

(j)
ℓj ), D(j) := {D(j)

, D
(j)

, . . . , D
(j)}︸ ︷︷ ︸

number of D
(j) is ℓt−j−1

. (5.37)

For i ∈ [ℓt], we have τt(i) = (i1, . . . , it). For j ∈ [t − 1], we define the permutation
φ(j) on the set [ℓt] as

φ(j)(i) := τ−1
t (i1, . . . , it−j−1, it, it−j, it−j+1, . . . , it−1) ∀i ∈ [ℓt]. (5.38)

By this definition, φ(j) simply keeps the first t− j − 1 digits of i to be the same and
performs a cyclic shift on the last j + 1 digits. Here we give some concrete examples:

φ(1)(i) = τ−1
t (i1, . . . , it−2, it, it−1),

φ(2)(i) = τ−1
t (i1, . . . , it−3, it, it−2, it−1),

φ(3)(i) = τ−1
t (i1, . . . , it−4, it, it−3, it−2, it−1),

φ(t−1)(i) = τ−1
t (it, i1, i2, . . . , it−1).

For each j ∈ [t− 1], let Q(j) be the ℓt × ℓt permutation matrix corresponding to the
permutation φ(j), i.e., Q(j) is the permutation matrix such that

(U1, U2, . . . , Uℓt)Q(j) = (Uφ(j)(1), Uφ(j)(2), . . . , Uφ(j)(ℓt)). (5.39)

Finally, for each j ∈ [t], we define the N ×N matrix

M (j) := D(j−1)Q(j−1)D(j−2)Q(j−2) . . . D(1)Q(1)D(0). (5.40)

Therefore, M (j), j ∈ [t] satisfy the following recursive relation:

M (1) = D(0), M (j+1) = D(j)Q(j)M (j).

Our encoding matrix for code length N = ℓt is the submatrix of M (t) consisting of
all the row vectors with indices belonging to the set Sgood defined in (5.35); see the
next paragraph for a detailed description of the encoding procedure.

Once we obtain the matrix M (t) and the set Sgood in the code construction, the encoding
procedure is standard; it is essentially the same as the original polar codes [Arı09]. Let
U[1:N ] be a random vector consisting of N i.i.d. Bernoulli-1/2 random variables, and let
X[1:N ] = U[1:N ]M

(t). Recall that we use {Wi(M (t)) : i ∈ [ℓt]} to denote the ℓt bit-channels
resulting from the polar transform of W using matrix M (t). If we transmit the random
vector X[1:N ] through N independent copies of W and denote the channel outputs as
Y[1:N ], then by definition, the bit-channel mapping from Ui to (U[1:i−1],Y[1:N ]) is exactly
Wi(M (t)). Therefore, if we use a successive cancellation decoder to decode the input
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Figure 5.2: Illustration of code construction for the special case of ℓ = 3.
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Figure 5.3: Illustration of the encoding process X[1:N ] = U[1:N ]M
(t) for the special case

of ℓ = 3 and t = 2. Here X[1:N ] and U[1:N ] are row vectors. All four kernels in this
figure K

(0)
1 , K

(1)
1 , K

(1)
2 , K

(1)
3 have size 3 × 3, and the outputs of each kernel is obtained by

multiplying the inputs with the kernel, e.g. V
(1)
[1:3] = U[1:3]K

(1)
1 .
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Figure 5.5: The (stochastic) mapping from U[4:6] to (V (1)
[1:3],Y[1:9])
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Figure 5.6: The (stochastic) mapping from U[7:9] to (V (1)
[1:6],Y[1:9])

vector U[1:N ] bit by bit from all the channel outputs Y[1:N ] and all the previous input
bits U[1:i−1], then Wi(M (t)) is the channel seen by the successive cancellation decoder
when it decodes Ui. Clearly, H(Wi(M (t))) ≈ 0 means that the successive cancellation
decoder can decode Ui correctly with high probability. For every i ∈ ℓt, we write τt(i) =
(i1, i2, . . . , it). In Proposition 5.13 below, we will show that H(Wi(M (t))) = Hi1,...,it(W ).
Then in Proposition 5.15, we further show that Hi1,...,it(W ) ≈ Hbin

i1,...,it
(W ). Therefore,

H(Wi(M (t))) ≈ Hbin
i1,...,it

(W ). By definition (5.35), the set Sgood contains all the indices
(i1, . . . , it) for which Hbin

i1,...,it
(W ) ≈ 0, so for all i such that τt(i) ∈ Sgood, we also have

H(Wi(M (t))) ≈ 0, meaning that the successive cancellation decoder can decode all the bits
{Ui : τt(i) ∈ Sgood} correctly with high probability. In the encoding procedure, we put all
the information in the set of good bits {Ui : τt(i) ∈ Sgood}, and we set all the other bits to
be some pre-determined value, e.g., set all of them to be 0. It is clear that the generator
matrix of this code is the submatrix of M (t) consisting of all the row vectors with indices
belonging to the set Sgood.
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5.4.1 Analysis of bit-channels
We say that two channels W1 : {0, 1} → Y1 and W2 : {0, 1} → Y2 are equivalent if there
is a one-to-one mapping φ between Y1 and Y2 such that W1(y1|x) = W2(φ(y1)|x) for all
y1 ∈ Y1 and x ∈ {0, 1}. Denote this equivalence relation as W1 ≡ W2. Then we have the
following result.
Proposition 5.13. For every i ∈ ℓt, we write τt(i) = (i1, i2, . . . , it). Then we always have

Wi(M (t)) ≡ Wi1,...,it(K
(0)
1 , K

(1)
i1 , . . . , K

(t−1)
i1,...,it−1).

Before formally proving this proposition, we first use the special case of t = 2 and ℓ = 3
to illustrate the main idea behind the proof. In this case, we obtained one kernel K

(0)
1 in

step 0 and three kernels K
(1)
1 , K

(1)
2 , K

(1)
3 in step 1. See Fig. 5.3 for an illustration of the

encoding process X[1:9] = U[1:9]M
(2). In particular, we can see that

V
(1)
[1:9] = U[1:9]D

(1), U
(1)
[1:9] = V

(1)
[1:9]Q

(1), X[1:9] = U
(1)
[1:9]D

(0).

Therefore, we indeed have X[1:9] = U[1:9]D
(1)Q(1)D(0) = U[1:9]M

(2). Assume that U[1:9]
consists of 9 i.i.d. Bernoulli-1/2 random variables. Since D(1), Q(1), D(0) are all invertible
matrices, the random vectors V

(1)
[1:9],U

(1)
[1:9] and X[1:9] also consist of i.i.d. Bernoulli-1/2

random variables.
In order to analyze the bit-channels, we view Fig. 5.3 from the right side to the left

side. First, observe that the following three vectors

(U (1)
1 , U

(1)
2 , U

(1)
3 , Y1, Y2, Y3), (U (1)

4 , U
(1)
5 , U

(1)
6 , Y4, Y5, Y6), (U (1)

7 , U
(1)
8 , U

(1)
9 , Y7, Y8, Y9)

are independent and identically distributed (i.i.d.).
Given a channel W1 : X → Y and a pair of random variables (X, Y ) that take values

in X and Y respectively, we write

P(X → Y ) ≡ W1

if P(Y = y|X = x) = W (y|x) for all x ∈ X and y ∈ Y , where P(X → Y ) means the
channel that takes X as input and gives Y as output. By this definition, we have

P(U (1)
1 → Y[1:3]) ≡ P(U (1)

4 → Y[4:6]) ≡ P(U (1)
7 → Y[7:9]) ≡ W1(K(0)

1 ).

Since V
(1)

1 = U
(1)
1 , V

(1)
2 = U

(1)
4 , V

(1)
3 = U

(1)
7 , we also have

P(V (1)
1 → Y[1:3]) ≡ P(V (1)

2 → Y[4:6]) ≡ P(V (1)
3 → Y[7:9]) ≡ W1(K(0)

1 ).

Moreover, the following three vectors

(V (1)
1 ,Y[1:3]), (V (1)

2 ,Y[4:6]), (V (1)
3 ,Y[7:9])
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are independent. Therefore, the (stochastic) mapping from U[1:3] to Y[1:9] in Fig. 5.3 can be
represented in a more compact form in Fig. 5.4. From Fig. 5.4, we can see that

W1(M (2)) ≡ P(U1 → Y[1:9]) ≡ W1,1(K(0)
1 , K

(1)
1 ),

W2(M (2)) ≡ P(U2 → (U1,Y[1:9])) ≡ W1,2(K(0)
1 , K

(1)
1 ),

W3(M (2)) ≡ P(U3 → (U1, U2,Y[1:9])) ≡ W1,3(K(0)
1 , K

(1)
1 ).

Next we investigate W4(M (2)), W5(M (2)), W6(M (2)). Observe that

P(U (1)
2 → (U (1)

1 ,Y[1:3])) ≡ P(U (1)
5 → (U (1)

4 ,Y[4:6])) ≡ P(U (1)
8 → (U (1)

7 ,Y[7:9])) ≡ W2(K(0)
1 ).

Therefore,

P(V (1)
4 → (V (1)

1 ,Y[1:3])) ≡ P(V (1)
5 → (V (1)

2 ,Y[4:6])) ≡ P(V (1)
6 → (V (1)

3 ,Y[7:9])) ≡ W2(K(0)
1 ).

Moreover, since

(V (1)
1 , V

(1)
4 ,Y[1:3]), (V (1)

2 , V
(1)

5 ,Y[4:6]), (V (1)
3 , V

(1)
6 ,Y[7:9])

are independent, the (stochastic) mapping from U[4:6] to (V (1)
[1:3],Y[1:9]) in Fig. 5.3 can be

represented in a more compact form in Fig. 5.5. Notice that there is a bijection between
U[1:3] and V

(1)
[1:3]. Thus we can conclude from Fig. 5.5 that

W4(M (2)) ≡ P(U4 → (U[1:3],Y[1:9])) ≡ P(U4 → (V (1)
[1:3],Y[1:9])) ≡ W2,1(K(0)

1 , K
(1)
2 ),

W5(M (2)) ≡ P(U5 → (U[1:4],Y[1:9])) ≡ P(U5 → (U4,V
(1)
[1:3],Y[1:9])) ≡ W2,2(K(0)

1 , K
(1)
2 ),

W6(M (2)) ≡ P(U6 → (U[1:5],Y[1:9])) ≡ P(U6 → (U4, U5,V
(1)
[1:3],Y[1:9])) ≡ W2,3(K(0)

1 , K
(1)
2 ).

Finally, we can use the same method to show that

P(V (1)
7 → (V (1)

1 , V
(1)

4 ,Y[1:3])) ≡ P(V (1)
8 → (V (1)

2 , V
(1)

5 ,Y[4:6]))
≡P(V (1)

9 → (V (1)
3 , V

(1)
6 ,Y[7:9])) ≡ W3(K(0)

1 ).

Therefore, the (stochastic) mapping from U[7:9] to (V (1)
[1:6],Y[1:9]) in Fig. 5.3 can be repre-

sented in a more compact form in Fig. 5.6. Notice that there is a bijection between U[1:6]

and V
(1)
[1:6]. Thus we can conclude from Fig. 5.6 that

W7(M (2)) ≡ P(U7 → (U[1:6],Y[1:9])) ≡ P(U7 → (V (1)
[1:6],Y[1:9])) ≡ W3,1(K(0)

1 , K
(1)
3 ),

W8(M (2)) ≡ P(U8 → (U[1:7],Y[1:9])) ≡ P(U8 → (U7,V
(1)
[1:6],Y[1:9])) ≡ W3,2(K(0)

1 , K
(1)
3 ),

W9(M (2)) ≡ P(U9 → (U[1:8],Y[1:9])) ≡ P(U9 → (U7, U8,V
(1)
[1:6],Y[1:9])) ≡ W3,3(K(0)

1 , K
(1)
3 ).

Now we have proved Proposition 5.13 for the special case of ℓ = 3 and t = 2. The proof
for the general case follows the same idea, and we defer it to Section 5.6 at the end of this
chapter.
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5.4.2 Complexity of code construction, encoding and decoding

Proposition 5.14. The code construction has NOℓ(1) complexity. Both the encoding and
successive decoding procedures have Oℓ(N log N) complexity.

Proof. The key in our proof is that we consider ℓ as a (possibly very large) constant. We
start with the code construction and we first show that both Algorithm A and Algorithm B
have poly(N) time complexity. In the worst case, we need to check all 2ℓ2 possible kernels
in Algorithm A, and for each kernel we need to calculate the conditional entropy of the
ℓ subchannels. Since we always work with the quantized channel with output size upper
bounded by N3, each subchannel of the quantized channels has no more than 2ℓN3ℓ outputs.
Therefore, the conditional entropy of these subchannels can be calculated in poly(N) time,
so Algorithm A also has poly(N) complexity. After finding the good kernels, we need
to use Algorithm B to quantize/bin the output alphabet of the subchannels produced by
these good kernels. As mentioned above, the original alphabet size of these subchannels is
no more than 2ℓN3ℓ. Therefore, Algorithm B also has poly(N) complexity. At Step i, we
use Algorithm A ℓi times to find good kernels, and then we use Algorithm B ℓi+1 times to
quantize the bit-channels produced by these kernels, so in total we use Algorithm A N−1

ℓ−1
times and we use Algorithm B ℓ(N−1)

ℓ−1 times. Finally, finding the set Sgood only requires
calculating the conditional entropy of the bit-channels in the last step, so this can also
be done in polynomial time. Thus we conclude that the code construction has poly(N)
complexity, albeit the degree in poly(N) complexity depends on ℓ.

In the encoding procedure, we first form the vector U[1:N ] by putting all the information
in the bits {Ui : τt(i) ∈ Sgood} and setting all the other bits {Ui : τt(i) /∈ Sgood} to
be 0. Then we multiply U[1:N ] with the encoding matrix M (t) and obtain the codeword
X[1:N ] = U[1:N ]M

(t). Since the matrix M (t) has size N × N , a naive implementation of
the encoding procedure would require O(N2) operations. Fortunately, we can use (5.40)
to accelerate the encoding procedure. Namely, we first multiply U[1:N ] with D(t−1), then
multiply the result with Q(t−1), then multiply by D(t−2), so on and so forth. As mentioned
above, for j = 0, 1, . . . , t− 1, each D(j) is a block diagonal matrix with N/ℓ blocks on the
diagonal, where each block has size ℓ× ℓ. Therefore, multiplication with D(j) only requires
Nℓ operations. By definition, Q(j), j ∈ [t− 1] are permutation matrices, so multiplication
with them only requires N operations. In total, we multiply with 2t − 1 = 2 logℓ N − 1
matrices. Therefore, the encoding procedure can be computed in Oℓ(N log N) time, where
Oℓ means that the constant in big-O depends on ℓ.

The decoding algorithm uses exactly the same idea as the algorithm in Arıkan’s original
paper [Arı09, Section VIII-B]. Here we only use the special case of ℓ = 3 and t = 2 in Fig. 5.3
to explain how Arıkan’s decoding algorithm works for large (and mixed) kernels, and we
omit the proof for general parameters. We start with the decoding of U1, U2, U3 in Fig. 5.3.
It is clear that decoding U1, U2, U3 is equivalent to decoding U

(1)
1 , U

(1)
4 , U

(1)
7 . Then the log-

likelihood ratio (LLR) of each of these three bits can be calculated locally from only three
output symbols. More precisely, the LLR of U

(1)
1 can be computed from Y[1:3], the LLR

of U
(1)
4 can be computed from Y[4:6], and the LLR of U

(1)
7 can be computed from Y[7:9].

88



Therefore, the complexity of calculating each LLR only depends on the value of ℓ. Since ℓ
is considered as a constant, the calculation of each LLR also has constant time complexity
(although the complexity is exponential in ℓ). The next step is to decode U[4:6] from Y[1:9]

together with U[1:3]. This is equivalent to calculating the LLRs of U
(1)
2 , U

(1)
5 , U

(1)
8 given

Y[1:9] and U
(1)
1 , U

(1)
4 , U

(1)
7 . This again can be done locally: To compute the LLR of U

(1)
2 ,

we only need the values of Y[1:3] and U
(1)
1 ; to compute the LLR of U

(1)
5 , we only need the

values of Y[4:6] and U
(1)
4 ; to compute the LLR of U

(1)
8 , we only need the values of Y[7:9] and

U
(1)
7 . Finally, the decoding of U[7:9] from Y[1:9] and U[1:6] can be decomposed into local

computations in a similar way. Using this idea, one can show that for general values of
ℓ and t, the decoding can also be decomposed into t = logℓ N stages, and in each stage,
the decoding can further be decomposed into N/ℓ local tasks, each of which has constant
time complexity (although the complexity is exponential in ℓ). Therefore, the decoding
complexity at each stage is Oℓ(N), and the overall decoding complexity is Oℓ(N log N).
As a final remark, we mention that after calculating the LLRs of all Ui’s, we will only use
the LLRs of the bits {Ui : τt(i) ∈ Sgood}. For these bits, we decode Ui as 0 if its LLR is
larger than 0 and decode it 1 otherwise. Recall that in the encoding procedure, we have
set all the other bits {Ui : τt(i) /∈ Sgood} to be 0, so for these bits we simply decode them
as 0.

5.5 Putting everything together

5.5.1 Code rate and decoding error probability
In (5.34), we have defined the conditional entropy for all the bit-channels obtained in the
last step (Step t − 1). Here we also define the conditional entropy for the bit-channels
obtained in the previous steps. More precisely, for every j ∈ [t] and every (i1, i2, . . . , ij) ∈
[ℓ]j, we use the following short-hand notation:

Hi1,...,ij
(W ) := H(Wi1,...,ij

(K(0)
1 , K

(1)
i1 , . . . , K

(j−1)
i1,...,ij−1))

Hbin
i1,...,ij

(W ) := H(W bin
i1,...,ij

(K(0)
1 , K

(1)
i1 , . . . , K

(j−1)
i1,...,ij−1))

Hbin ∗
i1,...,ij

(W ) := H(W bin ∗
i1,...,ij

(K(0)
1 , K

(1)
i1 , . . . , K

(j−1)
i1,...,ij−1)).

According to (5.33), we have

Hbin ∗
i1,...,ij

(W ) ≤ Hbin
i1,...,ij

(W ) ≤ Hbin ∗
i1,...,ij

(W ) + 6 log N

N3 (5.41)

for every j ∈ [t] and every (i1, i2, . . . , ij) ∈ [ℓ]j.
Proposition 5.15. For every j ∈ [t] and (i1, i2, . . . , ij) ∈ [ℓ]j, the conditional entropy
Hi1,...,ij

(W ) and Hbin
i1,...,ij

(W ) satisfy the following inequality

Hi1,...,ij
(W ) ≤ Hbin

i1,...,ij
(W ) ≤ Hi1,...,ij

(W ) + 6ℓ log N

N2 (5.42)
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Proof. Since the binning algorithm (Algorithm B) always produces a channel that is de-
graded with respect to the original channel, the first inequality in (5.42) follows immediately
by applying Proposition 5.3 recursively in our t-step code construction.

Now we prove the second inequality in (5.42). We will prove the following inequality
by induction on j:

Hbin
i1,...,ij

(W ) ≤ Hi1,...,ij
(W ) + 6 log N

N3 (1 + ℓ + ℓ2 + · · ·+ ℓj) ∀(i1, i2, . . . , ij) ∈ [ℓ]j. (5.43)

The base case of j = 0 is trivial. Now assume that this inequality holds for j and we prove
it for j + 1. By the chain rule, we know that

ℓ∑
ij+1=1

Hbin ∗
i1,...,ij ,ij+1

(W ) = ℓHbin
i1,...,ij

(W ),
ℓ∑

ij+1=1
Hi1,...,ij ,ij+1(W ) = ℓHi1,...,ij

(W ).

Therefore,

ℓ∑
ij+1=1

(
Hbin ∗

i1,...,ij ,ij+1
(W )−Hi1,...,ij ,ij+1(W )

)
= ℓ

(
Hbin

i1,...,ij
(W )−Hi1,...,ij

(W )
)

.

Since every summand on the left-hand side is non-negative, we have

Hbin ∗
i1,...,ij ,ij+1

(W )−Hi1,...,ij ,ij+1(W )≤ ℓ
(

Hbin
i1,...,ij

(W )−Hi1,...,ij
(W )

)
≤ 6 log N

N3 (ℓ+ℓ2+· · ·+ℓj+1),

where the second inequality follows from the induction hypothesis. Combining this with
(5.41), we obtain that

Hbin
i1,...,ij ,ij+1

(W ) ≤ Hi1,...,ij ,ij+1(W ) + 6 log N

N3 (1 + ℓ + ℓ2 + · · ·+ ℓj+1).

This establishes the inductive step and completes the proof of (5.43). The inequality (5.42)
then follows directly from (5.43) by using the fact that 1+ℓ+· · ·+ℓj < ℓN for all j ≤ t.

Recall that in Remark 5.4 we denoted by ℓ ≥ exp(Ω(α−1.01)) the conditions on ℓ to be
large enough so that log ℓ ≥ 11

α
and log ℓ

log log ℓ+2 ≥
3
α
. In the theorems below, even though the

statements hold for any α ∈ (0, 1/12), we modify the intervals of α so that the rate appears
positive in the formulations. This is also why in the formulation of the Theorem 5.1 we
take α from (0, 1/36).

We now can formulate
Theorem 5.16. For arbitrarily small α ∈

(
0, 1

14

)
, if we choose a large enough constant

ℓ ≥ exp(Ω(α−1.01)) to be a power of 2 and let t = logℓ N grow, then the codes constructed
from the above procedure have decoding error probability Oα(log N/N) under successive
decoding and code rate I(W )−N−1/2+7α, where N = ℓt is the code length.
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Proof. By (5.42) and the definition of Sgood in (5.35), we know that for every (i1, . . . , it) ∈
Sgood, we have Hi1,...,it(W ) ≤ Hbin

i1,...,it
(W ) ≤ 7ℓ log N

N2 . Then by Lemma 2.2 in [BGN+18], we
know that the decoding error probability of the channel Wi1,...,it(K

(0)
1 , K

(1)
i1 , . . . , K

(t−1)
i1,...,it−1)

is also upper bounded by 7ℓ log N
N2 (under ML decoding). Since the cardinality of Sgood is at

most N , we can conclude that the overall decoding error probability under the successive
cancellation decoder is Oα(log N/N) using the union bound.

Notice that |Sgood| is the code dimension. Therefore, we only need to lower bound
|Sgood| in order to get the lower bound on the code rate. Define another set

S ′
good :=

{
(i1, i2, . . . , it) ∈ [ℓ]t : Hi1,...,it(W ) ≤ ℓ log N

N2

}
. (5.44)

According to (5.42), if Hi1,...,it(W ) < ℓ log N
N2 , then Hbin

i1,...,it
(W ) ≤ 7ℓ log N

N2 . Therefore, S ′
good ⊆

Sgood, so |Sgood| ≥ |S ′
good|. In Lemma 5.17 below, we will prove that |S ′

good| ≥ N(I(W ) −
N−1/2+7α). Therefore, |Sgood| ≥ N(I(W ) − N−1/2+7α). This completes the proof of the
theorem.

Lemma 5.17. If α ∈
(
0, 1

14

)
and ℓ is large enough so that log ℓ ≥ 11

α
and log ℓ

log log ℓ+2 ≥
3
α
,

then the set S ′
good defined in (5.44) satisfies the following inequality∣∣∣S ′

good

∣∣∣ ≥ N
(
I(W )−N− 1

2 +7α
)

.

Proof. Recall that we proved in (5.3)–(5.6)

P
[
Ht ∈

(
ℓ log N

N2 , 1− ℓ log N

N2

)]
≤ 2 N2α

(ℓ log N)α
· λt

α,

where Ht is (marginally) the entropy of the random channel at the last level of construction,
i.e. Ht is uniformly distributed over Hi1,...,it(W ) for all possible (i1, i2, . . . , it) ∈ [ℓ]t, and λα is
such that (5.4) holds for any channel W ′ throughout the construction. By Proposition 5.15,
we can choose the error parameter ∆ in Algorithm A to be ∆ = 6ℓ log N

N2 , which satisfies
the condition ∆ ≤ ℓ− log ℓ in Theorem 5.2. Then Theorem 5.2 tells us that as long as the
conditions on ℓ and α specified in this lemma hold, Algorithm A allows us to choose kernels
such that λα ≤ ℓ−1/2+5α, which gives

P
[
Ht ∈

(
ℓ log N

N2 , 1− ℓ log N

N2

)]
≤ 2N−1/2+7α

(ℓ log N)α
. (5.45)

On the other hand, conservation of entropy throughout the process implies E [Ht] = H(W ),
therefore by Markov’s inequality

P
[
Ht ≥ 1− ℓ log N

N2

]
≤ H(W )

1− ℓ log N
N2

≤ H(W ) + 2ℓ log N

N2 .
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Since H(W ) = 1− I(W ) for symmetric channels and
∣∣∣S ′

good

∣∣∣ = N ·P
[
Ht ≤ ℓ log N

N2

]
, we have

∣∣∣S ′
good

∣∣∣ ≥ N

(
1− 2N−1/2+7α

(ℓ log N)α
−H(W )− 2ℓ log N

N2

)

≥ N

(
I(W )− 3N−1/2+7α

(ℓ log N)α

)

≥ N
(

I(W )−N−1/2+7α
)

.

5.5.2 Main theorem
As we mentioned at the beginning of this section, the code construction presented above
only takes the special case of Q = N3 as a concrete example, where Q is the upper bound
on the output alphabet size after binning; see Algorithm B. In fact, we can change the
value of Q to be any polynomial of N , and this allows us to obtain a trade-off between the
decoding error probability and the gap to capacity while maintaining the polynomial-time
code construction as well as the Oα(N log N) encoding and decoding complexity. That
is, we prove the Theorem 5.1 teased at the beginning of this chapter, restated below for
convenience:
Theorem 5.1. Let W be an arbitrary BMS channel with Shannon capacity I(W ) and fix
any c > 0. For any desired α ∈

(
0, 1

12+2c

)
, if we choose a large enough constant ℓ ≥ ℓ0(α)

to be a power of 2, then there is a code C generated by the polar coding construction using
kernels of size ℓ× ℓ such that the following four properties hold when N is the code length:

1. the code construction has NOα(1) complexity;
2. both encoding and decoding have Oα(N log N) complexity;
3. the rate of C is I(W )−O(N−1/2+(c+6)α); and
4. the decoding error probability of C is Oα(log N/N c) under successive cancellation

decoding when C is used for channel coding over W .
The value for ℓ0(α) is the smallest number which satisfies log ℓ0 ≥ 11

α
and log ℓ0

log log ℓ0+2 ≥
3
α
,

and does not depend on the channel W .

Proof. We set Q = N c+2 (instead of N3 as before). Properties (1) and (2) follow from
Proposition 5.14. Here we explain how to adjust the proof of Theorem 5.16 to show
properties (3) and (4). First, we change the definitions of Sgood and S ′

good to

Sgood :=
{

(i1, i2, . . . , it) ∈ [ℓ]t : Hbin
i1,...,it

(W ) ≤ (2c + 3)ℓ log N

N c+1

}
,

S ′
good :=

{
(i1, i2, . . . , it) ∈ [ℓ]t : Hi1,...,it(W ) ≤ ℓ log N

N c+1

}
.

The definition of Sgood immediately implies property (4). Next we prove property (3).

92



Since we change Q from N3 to N c+2, inequality (5.41) becomes

Hbin ∗
i1,...,ij

(W ) ≤ Hbin
i1,...,ij

(W ) ≤ Hbin ∗
i1,...,ij

(W ) + 2(c + 2) log N

N c+2 .

As a consequence, inequality (5.42) in Proposition 5.15 becomes

Hi1,...,ij
(W ) ≤ Hbin

i1,...,ij
(W ) ≤ Hi1,...,ij

(W ) + 2(c + 2)ℓ log N

N c+1 .

This inequality tells us that S ′
good ⊆ Sgood, so |Sgood| ≥ |S ′

good|. Then we follow Lemma 5.17
to lower bound |S ′

good|. Inequality (5.45) now becomes

P
[
Ht ∈

(
ℓ log N

N c+1 , 1− ℓ log N

N c+1

)]
≤ 2N−1/2+(c+6)α

(ℓ log N)α
.

Therefore, we obtain that

|Sgood| ≥ |S ′
good| ≥ N

(
I(W )−N−1/2+(c+6)α

)
.

This completes the proof of the main theorem of this chapter.

5.6 Deferred proof of Proposition 5.13

We still use U[1:N ] to denote the information vector and use X[1:N ] = U[1:N ]M
(t) to denote

the encoded vector. Assume that U[1:N ] consists of N i.i.d. Bernoulli-1/2 random variables.
Similarly to the example in Section 5.4.1, we define the random vectors V

(j)
[1:N ],U

(j)
[1:N ] for

j = t− 1, t− 2, . . . , 1 recursively

V
(t−1)
[1:N ] = U[1:N ]D

(t−1),

U
(j)
[1:N ] = V

(j)
[1:N ]Q

(j) for j = t− 1, t− 2, . . . , 1,

V
(j)
[1:N ] = U

(j+1)
[1:N ] D(j) for j = t− 2, t− 3, . . . , 1,

X[1:N ] = U
(1)
[1:N ]D

(0).

(5.46)

Moreover, let U
(t)
[1:N ] := U[1:N ]. We will prove the following two claims:

1. For every a = 1, 2, . . . , t, the following ℓt−a random vectors

(U (a)
[hℓa+1:hℓa+ℓa],Y[hℓa+1:hℓa+ℓa]), h = 0, 1, . . . , ℓt−a − 1

are i.i.d.
2. For every a = 1, 2, . . . , t and every i ∈ [ℓa], we write τa(i) = (i1, i2, . . . , ia), where τa is

the a-digit expansion function defined in (5.36). Then for every h = 0, 1, . . . , ℓt−a− 1
and every i ∈ [ℓa], we have

P(U (a)
hℓa+i → (U (a)

[hℓa+1:hℓa+i−1],Y[hℓa+1:hℓa+ℓa])) ≡ Wi1,...,ia(K(0)
1 , K

(1)
i1 , . . . , K

(a−1)
i1,...,ia−1).

(5.47)
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Note that Proposition 5.13 follows immediately from taking a = t in (5.47). Therefore, we
only need to prove these two claims.

We start with the first claim. By (5.37), for every j = 0, 1, . . . , t − 1, the matrix
D(j) is a block diagonal matrix with ℓt−j−1 blocks on the diagonal, where each block has
size ℓj+1 × ℓj+1, and all the ℓt−j−1 blocks are the same. According to (5.38)–(5.39), the
permutation matrix Q(j) keeps the first t−j−1 digits of the ℓ-ary expansion to be the same
and performs a cyclic shift on the last j +1 digits. Therefore, for every j = 1, . . . , t−1, the
permutation matrix Q(j) is also a block diagonal matrix with ℓt−j−1 blocks on the diagonal,
where each block has size ℓj+1 × ℓj+1, and all the ℓt−j−1 blocks are the same. Therefore,
for every j ∈ [t], the matrix M (j) defined in (5.40) can be written in the following block
diagonal form

M (j) := {M (j)
, M

(j)
, . . . , M

(j)}︸ ︷︷ ︸
number of M

(j) is ℓt−j

, (5.48)

where the size of M
(j) is ℓj × ℓj. By the recursive definition (5.46), one can show that for

every j ∈ [t], we have
X[1:N ] = U

(j)
[1:N ]M

(j).

Combining this with (5.48), we obtain that for every a ∈ [t] and every h = 0, 1, . . . , ℓt−a−1,

X[hℓa+1:hℓa+ℓa] = U
(a)
[hℓa+1:hℓa+ℓa]M

(a)
. (5.49)

Since X[1:N ] consists of N i.i.d. Bernoulli-1/2 random variables, the following ℓt−a random
vectors

(X[hℓa+1:hℓa+ℓa],Y[hℓa+1:hℓa+ℓa]), h = 0, 1, . . . , ℓt−a − 1

are i.i.d. Combining this with (5.49), we conclude that the random vectors

(U (a)
[hℓa+1:hℓa+ℓa],Y[hℓa+1:hℓa+ℓa]), h = 0, 1, . . . , ℓt−a − 1

are also i.i.d. This proves claim 1.
Next, we prove claim 2 by induction. The case of a = 1 is trivial. Now we assume that

(5.47) holds for a and prove it for a + 1. In light of claim 1, we only need to prove (5.47)
for the special case of h = 0 because the distributions for different values of h are identical,
i.e. we only need to prove that

P(U (a+1)
i → (U (a+1)

[1:i−1],Y[1:ℓa+1])) ≡ Wi1,...,ia+1(K(0)
1 , K

(1)
i1 , . . . , K

(a)
i1,...,ia

) ∀i ∈ [ℓa+1].
(5.50)

For a given i ∈ [ℓa+1], we write its (a + 1)-digit expansion as τa+1(i) = (i1, i2, . . . , ia+1).
By (5.46), we know that V

(a)
[1:N ] = U

(a+1)
[1:N ] D(a). By (5.37), the matrix D(a) is a block

diagonal matrix with ℓt−1 blocks on the diagonal, where each block has size ℓ × ℓ. (Note
that these ℓt−1 blocks are not necessarily all the same unless a = 0.) Therefore, for
every h = 0, 1, . . . , ℓt−1 − 1, there is a bijection between the two vectors V

(a)
[hℓ+1:hℓ+ℓ] and
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U
(a+1)
[hℓ+1:hℓ+ℓ]. Consequently, there is a bijection between the two vectors U

(a+1)
[1:i−ia+1] and

V
(a)
[1:i−ia+1], so we have

P(U (a+1)
i → (U (a+1)

[1:i−1],Y[1:ℓa+1])) ≡ P(U (a+1)
i → (U (a+1)

[i−ia+1+1:i−1],V
(a)
[1:i−ia+1],Y[1:ℓa+1])).

(5.51)
By (5.37), we also have that

V
(a)
[i−ia+1+1:i−ia+1+ℓ] = U

(a+1)
[i−ia+1+1:i−ia+1+ℓ]K

(a)
i1,i2,...,ia

. (5.52)

Let î := (i− ia+1)/ℓ, so τa(̂i) = (i1, i2, . . . , ia). According to the induction hypothesis,

P(U (a)
î
→ (U (a)

[1:̂i−1],Y[1:ℓa])) ≡ Wi1,...,ia(K(0)
1 , K

(1)
i1 , . . . , K

(a−1)
i1,...,ia−1).

Combining this with the relation U
(a)
[1:N ] = V

(a)
[1:N ]Q

(a) and (5.51)–(5.52), we can prove (5.50)
with the ideas illustrated in Fig. 5.4–5.6. This completes the proof of claim 2 as well as
Proposition 5.13.
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Chapter 6

Near-Optimal Decoding Error
Probability

In this section we show how to adjust our construction to obtain inverse sub-exponential
exp(−Nα) probability of error decoding, while still having poly(N) time complexity of con-
struction. Note that up to this point we only claimed inverse-polynomial decoding error
probability in Theorem 5.1. This restriction came from the fact that we need to approxi-
mate the channels we see in the tree during the construction phase (recall the discussion
at the beginning of Sections 5.2.1 and 5.4), and to get a polynomial-time construction we
need the binning parameter Q to be poly(N) itself. But this means that we are only able
to track the parameters (entropies, for instance) of the bit-channels approximately, with an
additive error which is inverse-polynomial in N , see (5.41). Since the decoding error prob-
ability relates directly to the upper bound on the entropies of the “good” bit-channels we
choose, this leads to only being able to claim inverse-polynomial decoding error probability.

It was proved in a recent work [WD19] that it is possible to achieve a fast scaling
of polar codes (good scaling exponent) and a good decoding error probability (inverse
sub-exponential instead of inverse-polynomial in N) simultaneously, also using the idea
of multiple (dynamic) random kernels in the construction. Specifically, for any constants
φ, µ > 0 such that φ+2/µ < 1, it is shown that one can construct a polar code with the rate
N−1/µ close to capacity of the channel (i.e. the scaling exponent µ) and the decoding error
probability exp(−Nφ), as N → ∞. Moreover, it is known that this is an optimal scaling
of these two parameters one can obtain for any (not just polar) codes (for coding over
non-trivial BMS channels). However, the construction phase in [WD19] tracked the true
bit-channels that are obtained in the ℓ-ary tree of channels, which makes the construction
intractable. This is because (most of) the true bit-channels cannot even be described in a
tractable way, since they have exponential sizes of output alphabet.

In what follows we show that we can apply a very strong analysis of polarization
from [WD18a, WD19] to our codes to overcome this issue of intractable construction. A
nuance of our codes that we utilize is that we use a fixed kernel A2 for suction at the
ends regime. We can then ensure that even though we track only approximations (binned
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versions) of the bit-channels in the tree, we are still able to prove very strong polarization
if we use the analysis from [WD19]. This comes from the fact that we know very well how
Arıkan’s basic 2 × 2 kernel evolves the parameters of the bit-channels. This allows us to
get very strong bounds on the parameters of the true bit-channels (which leads to good
decoding error probability), while still only tracking their approximations (which keeps the
construction time polynomial). This approach is in fact quite standard for the standard
(A⊗t

2 ) polar codes, when one aims at sub-exponentially small decoding error probability
but wishes to keep the poly-time construction, see for example [TV13, GX13]. However,
the challenge here consists in not losing the quality of the scaling exponent while we are
trying to capture better Pe. Somewhat surprisingly, the construction phase for our codes
where the local kernels are chosen is exactly the same as it was before in Section 5.4, and
the difference lies in a much tighter analysis of how to choose a set of “good” indices to
actually construct a polar code.

Without stating the theorem, here is what we prove in this section: for any BMS
channel W and α ∈

(
0, 1

36

)
, for large enough constant ℓ = 2s, we can build the codes in

poly(N) time such that R ≥ I(W )−N−1/2+18α and Pe ≤ exp(−Nα), and for which we have
Oα(N log N) complexity encoding and decoding algorithms. Essentially we get the scaling
exponent close to 2, but improve the decoding error probability to sub-exponentially small
in N , keeping the construction polynomial-time.

6.1 Preliminaries

6.1.1 Notations
We fix a small positive parameter α > 0 from the statement of Theorem 5.1, which cor-
responds to how close the scaling exponent will be to 1/2. Specifically, we will have the
scaling exponent µ = 2 + O(α). As before, the size of the kernel is denoted by ℓ = 2s,
where ℓ is large enough in terms of α (specifically, the bounds from the statement of the
Theorem 5.1 must hold).

We are going to work with the complete ℓ-ary tree of bit-channels, as described in
Section 5.1.2. Let t be the depth of this tree, then there are N = ℓt bit-channels at the last
level, denoted as Wi for i ∈ [ℓt] (these notations depend on the depth t of the tree at which
we are looking, but it will always be clear from the context). Throughout this section we
will denote such a tree of depth t as Tt.

We will work with the same random process Wi of walking down the tree Tt, starting
from a root and taking a uniformly random child at each step. As before, define the random
processes Zj = Z(Wj) and Hj = H(Wj). Further, we will also look at random processes
Wbin

j , Hbin
j , Zbin

j , which means that we also do the binning procedure as described in the
construction phase in Section 5.4. Note that Wbin

j are the channels that we actually track
during the construction of the code, while Wj are the true bit-channels in the tree.

Finally, by exp(•) we will denote 2• in this section, and we denote by x+ = max{x, 0}
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the positive part of x.

6.1.2 Plan
First, notice that building the tree Tt of bit-channels is itself a part of the construction of
our polar codes. This includes tracking the binned versions of the bit-channels and picking
the kernels using Algorithm A. This part will stay exactly the same as it is described in
Section 5.4, with the binning parameter Q = N3, and the same threshold of ℓ−4 in the
Algorithm A. The only part of the construction that is going to change is how we pick the
set of good indices which we use to transmit information.

We will follow the analysis from [WD19, Appendices B, C], which also appeared be-
fore that in [WD18a] under the name of “recyclable recruit-train-retain template”. An
experienced reader might notice that the proof we provide is a careful application of this
technique, slightly modified for our purposes to ensure polynomial-time construction.

The proof consists of three steps, where at each step we improve the decoding error
probability while keeping the scaling exponent close to 2 (recall that s = log2 ℓ):

1) P
[
Zt ≤ exp(−2st)

]
≥ I(W )− ℓ−(1/2−10α)t,

2) P
[
Zt ≤ exp

(
−2t1/3

) ]
≥ I(W )− ℓ−(1/2−11α)t+

√
t,

3) P
[
Zt ≤ exp (−st · ℓα·t)

]
≥ I(W )− ℓ−(1/2−16α)t+2

√
t for t = Ω(log6 s).

Moreover, the polarization at each step is poly-time constructible:
Definition 6.1. We call the polarization P[Zt ≤ p(t)] ≥ R(t) to be poly-time constructible
if one can find at least N · R(t) indexes i ∈ [N ] such that Z(Wi) ≤ p(t), where N = ℓt, in
time polynomial in N .

Notice that poly-time constructible polarization immediately implies polar codes with
polynomial-time construction. Therefore, the polarization behavior from Step 3 with t ≥ 1

α2

will correspond to polar codes with rate I(W )−N−1/2+18α (i.e. codes with scaling exponent
(2 + O(α)) and sub-exponentially small decoding error probability N · exp (−st · ℓα·t) =
exp(−Nα), with poly(N) construction time.

6.2 Getting exp(−Nα) decoding error probability

6.2.1 Step 1

Lemma 6.2. P
[
Zt ≤ exp(−2st)

]
≥ I(W ) − ℓ−(1/2−10α)t. Moreover, this polarization is

poly-time constructible.
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Proof. This follows from the analysis of the construction we already have in the previous
sections. Fix some t and let N = ℓt. Then the following is implied from Section 5.5.2 if
one takes Q = N3, i.e. c = 3:

P
i∼[N ]

[
H(W bin

i ) ≤ 1
N4

]
≥ I(W )−N−(1/2−10α).

Note here that H(W bin
i ) are the entropies of the binned bit-channels that we are actually

tracking during the construction phase, so they are computable in polynomial time. This
means that there is poly(N)-time procedure which returns all the indices i for which
H(W bin

i ) ≤ 1
N4 . Then Z(W bin

i ) <
√

H(W bin
i ) ≤ 1

N2 for these indices, so we have for the
random process Zbin

t :

P
[
Zbin

t ≤ ℓ−2t
]

= P
[
Zbin

t ≤ 2−2st
]

= P
[
Zbin

t ≤ exp (−2st)
]
≥ I(W )−N−(1/2−10α),

and moreover, one can find at least N(I(W ) − N−(1/2−10α)) indexes within i ∈ [N ] for
which the inequality Z(W bin

i ) ≤ exp (−2st) holds in poly(N) time (just by returning the
indices for which H(W bin

i ) ≤ 1
N4 ). Since it always holds Zt ≤ Zbin

t , the statement of the
lemma follows.

6.2.2 Step 2
Next, we are going to strengthen the polarization of the construction, using the result of
Lemma 6.2. Specifically, we prove

Lemma 6.3. P
[
Zn ≤ exp

(
−2n1/3

) ]
≥ I(W ) − ℓ−(1/2−11α)n+

√
n. Moreover, this polariza-

tion is poly-time constructible.
Proof. For this lemma, we fix n to be the total depth of the tree (instead of t), and we
want to prove the speed of polarization at level n. To do this, we will divide the tree into√

n stages1, each of depth
√

n, and apply the polarization we obtained at Step 1 at each
stage. So, we look at m being

√
n, 2
√

n, . . . , n−
√

n. Define the following events, starting
with E

(0)
0 = ∅ (again, closely following [WD19]):

Am =
{
Zbin

m < exp(−2sm)
}
\ E

(m−
√

n)
0

Bm = Am

⋂
s
√

n∑
i=1

gsm+i ≤ β · s
√

n


Em = Am \Bm

E
(m)
0 = E

(m−
√

n)
0 ∪ Em,

1In this chapter, we always implicitly round square roots to the nearest integer. Such approximation
only introduces negligible inaccuracies, which we can ignore
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where for now one can think of gj’s as of independent Bern(1/2) random variables for all
j ∈ [s · n]. In the following several paragraphs we explain what these events are going to
correspond to. First of all, the actual random variable we are tracking here is Wn, and its
realizations are ℓn bit-channels Wi for i ∈ [ℓn] at the last level of the tree. We can then
think of events and subsets of bit-channels at level n interchangeably.

Notice that each bit-channel Wi for i ∈ [ℓn] corresponds to a unique path in the tree Tn

from the root W (the initial channel) to the leaf Wi on the nth level. We will be interested in
the bit-channels on these path, their binned versions, and the parameters of both versions
(true and binned) of these channels during the ensuing arguments. We denote this path
of true bit-channels as W

(0)
i = W, W

(1)
i , . . . , W

(n−1)
i , W

(n)
i = Wi. Clearly, this path is just

a realization of a random walk W0, W1, . . . , Wn, when Wn ends up being Wi. In the same
way, we will denote by W

(k),bin
i , for k = 0, 1, . . . , n the binned version of the bit-channel

along this path, and by H
(k)
i , H

(k),bin
i , Z

(k)
i , and Z

(k),bin
i the corresponding parameters of

these channels.
We are going to construct a set of “good” bit-channels E

(n−
√

n)
0 incrementally, by in-

specting the tree from top to bottom. We start with the set E
(0)
0 = ∅. Then, at each

stage m =
√

n, 2
√

n, . . . , n −
√

n, we find a set Em of bit-channels which we mark to be
“good” at level m. Precisely, the channel Wi, for some i ∈ [ℓn], is going to be in Em, if:
a) it was not marked as good before that (i.e. it is not in E

(m−
√

n)
0 ); b) the Bhattacharyya

parameter Z
(m),bin
i is small, specifically smaller then exp(−2sm); and c) a certain condition

holds for how the branches are chosen in the path for Wi between levels m and m +
√

n
in the tree (more details on this later). Here conditions a) and b) correspond together
to the event Am, while condition c) further defines the event Bm. Then the set E

(m)
0 will

be the set of all bit-channels that we marked to be good up to the level m in the tree,
and in the end, by collecting all the bit-channels that we marked as good at the stages
m =

√
n, 2
√

n, . . . , n−
√

n, we obtain the final set E
(n−

√
n)

0 .
Denote by corresponding lowercase letters the probabilities of the events described

before, i.e. am := P[Am], etc. Finally, let qm = I(W )− e
(m)
0 , i.e. qm is the gap between the

capacity and the fraction of the channels which we marked as “good” up to level m.
To begin the formal analysis, let us first consider what happens in the case of the event

Am. First, it means that Zbin
m < exp(−2sm). But then we know that we are going to apply

Arıkan’s kernel A⊗s
2 to this bit-channel at level m, since the threshold for picking Arıkan’s

kernel in Algorithm A, which we use in the construction phase, is ℓ−4 = exp(−4s). This
means that, conditioned on Am, we have Zm+1 ≤ Zm ·2s ≤ Zbin

m ·2s < 2s ·exp(−2sm), where
the first inequality follows from that we know how the Bhattacharyya parameter evolves
when we use basic Arıkan’s transforms. Precisely, using the kernel A⊗s

2 is equivalent to
using the basic 2 × 2 kernel A2 for s times, and the kernel A2 in the worst case doubles
the Bhattacharyya parameter. Thus s applications of A2 can increase the Bhattacharyya
parameter by at most a factor of 2s.

Then it is easy to see that even after we apply Arıkan’s kernel A⊗s
2 a total of

√
n times,

the Bhattacharyya parameter will still be below the threshold ℓ−4: conditioned on Am, one
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has Zm+
√

n ≤ Zm · (2s)
√

n < exp(−2sm) · exp(s
√

n) < exp(−sm) < ℓ−4, as m ≥
√

n. It
is easy to verify, using Proposition 5.15 and the relation (5.18) between the entropy and
Bhattacharyya parameter of the bit-channel, that the binned parameter Hbin

m+j will also be
below ℓ−4 for j = 1, 2, . . . ,

√
n. This means that indeed for these

√
n levels, the Arıkan’s

kernel was taken in the construction phase. Therefore, we know that only the kernel A⊗s
2

was applied at levels between m and m +
√

n, which can also be viewed as applying the
basic 2× 2 kernel A2 for s

√
n levels in the tree. Further this can be viewed as taking s

√
n

“good” or “bad” branches while going down the tree, where the good branch corresponds
to squaring the Bhattachryya parameter, and the bad branch at most doubles it. Denote
then by bits gsm+i ∈ {0, 1}, for i ∈ [s

√
n], the indicators of these branches being good or

bad, where gsm+i = 0 means the branch is bad, and gsm+i = 1 means the branch is good. It
is clear then that since we consider the random process of going down the tree choosing the
next child randomly, then all gsm+i’s are independent Bern(1/2) random variables. These
are exactly the random variables appearing in the definition of Bm.

Notice then that

bm

am

= P

s
√

n∑
i=1

gsm+i ≤ β · s
√

n

 ≤ 2−s
√

n(1−h2(β)) ≤ 2−γs
√

n ,

where we can take, for instance, β = 1/20 and γ = 0.85. The inequality follows from
entropic bound on the sum of binomial coefficients (one could also just use the Chernoff
bound).

Recall that we defined qm = I(W ) − e
(m)
0 . We then can write qm−

√
n − am = I(W ) −

(e(m−
√

n)
0 + am). But note that by definition, the event

{
Zbin

m < exp(−2sm)
}

is a subevent
of Am ∪E

(m−
√

n)
0 , and thus using the bound from Lemma 6.2 (applied for the depth m) we

know that

(e(m−
√

n)
0 + am) ≥ P[Am ∪ E

(m−
√

n)
0 ] ≥ P[Zbin

m < exp(−2sm)] ≥ I(W )− 2(−1/2+10α)sm .

Therefore we conclude
(qm−

√
n − am)+ ≤ 2(−1/2+10α)sm.

We can then derive

qm = I(W )− e
(m)
0 = I(W )− (e(m−

√
n)

0 + em) = qm−
√

n − em

= qm−
√

n

(
1− em

am

)
+ em

am

(qm−
√

n − am)

≤ q+
m−

√
n ·

bm

am

+ (qm−
√

n − am)+

≤ q+
m−

√
n · 2

−γs
√

n + 2(−1/2+10α)sm.

Thus we end up we the following recurrence on q+
m (recall that ℓ = 2s):

q+√
n ≤ 1

q+
m ≤ q+

m−
√

n · ℓ
−γ

√
n + ℓ− m

2 +10αm.
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Solving this recurrence gives us q+
n−

√
n ≤ ℓ− n

2 +11αn+
√

n, since γ > 1/2. Therefore we can
conclude

e
(n−

√
n)

0 ≥ I(W )− ℓ− n
2 +11αn+

√
n. (6.1)

Next, let us look at an arbitrary bit-channel (realization of Zn) for which the event E
(n−

√
n)

0

happens, and prove that such a bit-channel is indeed “good.” Since E
(n−

√
n)

0 happened, it
means that Em happened at some stage, thus Zbin

m < exp(−2sm) and ∑s
√

n
i=1 gsm+i ≥ β ·s

√
n,

where gsm+i for i ∈ [s
√

n] correspond to taking bad or good branches in the basic 2 × 2
Arıkan’s kernel. Similarly to Claim 5.11, we then can bound

Zm+
√

n <
(
2s

√
nZm

)2β·s
√

n

< (2sm exp(−2sm))2β·s
√

n

≤ exp
(
−sm · 2β·s

√
n
)

.

Then for the remaining (n −m −
√

n) levels of the tree, it is easy to see that the Bhat-
tacharyaa parameter will also not ever be above the threshold of picking Arıkan’s kernel
in Algorithm A, thus, similarly as before, we can argue that the Bhattacharyya parameter
increases by at most a factor of 2s at each level. Therefore, we derive

Zn < 2s(n−m−
√

n)Zm+
√

n ≤ 2sn exp
(
−sm · 2β·s

√
n
)

< exp
(
−2n1/3)

,

where the last inequality follows from m ≥
√

n, β = 1
20 , and the condition s ≥ 11

α
from

Theorem 5.2 combined with the fact that α is small.
Since we proved that the event E

(n−
√

n)
0 implies Zn < exp(−2n1/3), we conclude, us-

ing (6.1):
P[Zn < exp(−2n1/3)] ≥ e

(n−
√

n)
0 ≥ I(W )− ℓ− n

2 +11αn+
√

n,

which precisely proves the polarization that was stated in the lemma.
The only thing left to prove then is that this polarization is poly-time constructible.

To do this, we show that one can find the set E
(n−

√
n)

0 of bit-channels in poly-time (recall
here the equivalence between events and subsets of the bit-channel at the level n of the
tree Tn). But one can see that checking if a particular bit-channel Wi, for some i ∈ [ℓn],
is easy. Indeed, to check if Wi is in E

(n−
√

n)
0 , it suffices to check if Wi is in Em for any

m =
√

n, 2
√

n, . . . , n−
√

n. But this corresponds to looking at a Bhattacharyya parameter
Z

(m),bin
i and checking if it is smaller than exp(−2sm), and, if this is the case, also looking at

how many “good” branches (in the basic 2× 2 Arıkan’s transforms) there were within the
next stage (

√
n levels) in the tree Tn. The latter can be done easily since this information

is essentially given by the index i of the bit-channel Wi (by its binary representation, to be
precise). The former is actually also straightforward, since Z

(m),bin
i is the parameter of the

binned bit-channel W
(m),bin
i that we are actually tracking during the construction phase,

so we have this channel written down explicitly, and thus calculating its Bhattacharyya
parameter is simple. Therefore all this can be done in time polynomial in ℓn, and then
the whole set E

(n−
√

n)
0 can be found in polynomial time (we can also say that the event

E
(n−

√
n)

0 is poly-time checkable). This finishes the proof of this lemma.
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For the following step, we will use the event E
(n−

√
n)

0 as was defined in the proof of the
above lemma. For convenience, we denote it as Rn = E

(n−
√

n)
0 , for any integer n. What

we will use is that P[Rn] ≥ I(W ) − ℓ− n
2 +11αn+

√
n; if Rn happens, then Zn < exp

(
−2n1/3

)
;

and that for any bit-channel it can be checked in poly-time if Rn happened, all of which is
proven in Lemma 6.3.

6.2.3 Step 3
Here we prove the final polarization step, which implies the results alluded at the beginning
of this chapter:

Lemma 6.4. P
[
Zt ≤ exp (−st · ℓα·t)

]
≥ I(W ) − ℓ−(1/2−16α)t+2

√
t for t ≥ C · log6 s, where

C is a constant. Moreover, this polarization is poly-time constructible.
Proof. We will again closely follow the approach from [WD19], though we are going to
change the indexing notations to avoid any confusion with the previous step. We return to
having the total depth of the tree to be t, and we will have

√
t stages in the tree, each of

length
√

t, similarly to the previous step. As before, we will define several events, starting
with C

(0)
0 = ∅ and Q

(0)
0 = ∅. Then, for n being

√
t, 2
√

t, . . . , t−
√

t, we define:

Cn = Rn \ C
(n−

√
t)

0

C
(n)
0 = C

(n−
√

t)
0 ∪ Cn

Dn = Cn

⋂
s(t−n)∑

i=1
gi ≤ α · s · t


Qn = Cn \Dn

Q
(n)
0 = Q

(n−
√

t)
0 ∪Qn,

(6.2)

where Rn is defined at the end of previous step, and gi’s can again be thought of as inde-
pendent Bern(1/2) random variables. The intuition behind what these events correspond
to is almost the same as in Step 2, but the bit-channels in Dn have conditions on branching
from level n down to the bottom level t (instead of levels between n and n +

√
t). Here,

the channels in Q
(n)
0 are the channels that we mark as “good” up to level n in the tree,

and we will be interested in the final set Q
(t−

√
t)

0 of “good” channels in the end. We again
denote by corresponding lowercase letters the probabilities of these events. Define also

fn = I(W )− c
(n)
0 and pn = I(W )− q

(n)
0 .

First, consider event Cn happening. It means that Rn happens, so Zn < exp
(
−2n1/3

)
.

Then at least for some time, we are going to pick Arıkan’s kernel in the construction phase,
since the Bhattacharyya parameter is small enough. But assuming that we take Arıkan’s
kernels all the way down to the bottom of the tree, one can see

Zt < ℓt−n · Zn < ℓt · exp
(
−2n1/3) ≤ 2st · exp

(
−2t1/6)

< 2−4s = ℓ−4
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for t ≥ C log6 s, where C is large enough. Again, by using Proposition 5.15 and (5.18) it is
easy to show that the entropy of the binned version of the bit-channel will also always be
below the threshold ℓ−4. It means that we cannot in (t−n) levels go over the threshold of
choosing Arıkan’s kernel, thus we indeed take Arıkan’s kernel all the way down in the tree
for the path for which Rn happens. Thus, similarly to the proof of Lemma 6.3 in Step 2, we
can think of it as taking the basic 2×2 Arıkan’s kernels s · (t−n) times, starting at level n.
Therefore if Rn happens, the branching down from level n can be viewed as taking “good”
or “bad” branches in the A2 kernels, so we again define indicator random variables gi, for
i ∈ [s(t − n)], to denote these branches. It is clear that these random variables are going
to be independent Bern(1/2). These are exactly the random variables gi, for i ∈ [s(t−n)],
appearing in the definition of Dn.

We have
dn

cn

= P

s(t−n)∑
i=1

gi ≤ αst

 ≤ 2−s(t−n)(1−h2(δ)) , (6.3)

where we denote δ := min
{

αt
t−n

, 1
}
. The inequality again follows from the entropic inequal-

ity on the sum of binomial coefficients.
Recall that we denoted fn = I(W )− c

(n)
0 . The event C

(n)
0 contains the event Rn, thus

fn ≤ ℓ− n
2 +11αn+

√
n, which follows from the proof of Lemma 6.3. Same inequality holds for

f+
n .

We will obtain a recurrence on pn − f+
n as follows:

pn − f+
n = I(W )− q

(n)
0 − (I(W )− c

(n)
0 )+

= pn−
√

t − qn − (fn−
√

t − cn)+

≤ pn−
√

t − qn −
qn

cn

(fn−
√

t − cn)+

≤ pn−
√

t − qn −
qn

cn

(f+
n−

√
t
− cn)

≤ pn−
√

t − f+
n−

√
t
+
(

1− qn

cn

)
f+

n−
√

t

= pn−
√

t − f+
n−

√
t
+ dn

cn

f+
n−

√
t

≤ pn−
√

t − f+
n−

√
t
+ ℓ−(1/2−11α)(n−

√
t)+

√
n · 2−s(t−n)(1−h2(δ)),

(6.4)

where recall that δ = min
{

αt
t−n

, 1
}
. We want to obtain an upper bound on the additive

term in the inequality above. Consider the following two cases:
i) δ > 1

10 , i.e. 10αt > t − n, thus n > (1 − 10α)t. Then we give up on the term
2−s(t−n)(1−h2(δ)) completely, and we can write

ℓ−(1/2−11α)(n−
√

t)+
√

n · 2−s(t−n)(1−h2(δ)) ≤ ℓ−(1/2−11α)(1−10α)t+ 3
2

√
t ≤ ℓ−(1/2−16α)t+ 3

2
√

t;
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ii) δ ≤ 1
10 , and then h2(δ) < 1/2. In this case we derive

ℓ−(1/2−11α)(n−
√

t)+
√

n · 2−s(t−n)(1−h2(δ)) ≤ ℓ−(1/2−11α)n+ 3
2

√
t · ℓ−1/2·(t−n)

= ℓ−1/2·t+11αn+ 3
2

√
t < ℓ−1/2·t+11αt+ 3

2
√

t.

Putting the above together, we obtain

p0 − f+
0 = 0

pn − f+
n ≤ pn−

√
t − f+

n−
√

t
+ ℓ−(1/2−16α)t+ 3

2
√

t.

Therefore pt−
√

t−f+
t−

√
t
≤
√

t·ℓ−(1/2−16α)t+ 3
2

√
t. Combining this with f+

t−
√

t
≤ ℓ−(1/2−11α)(t−

√
t)+

√
t,

we obtain pt−
√

t ≤ ℓ−(1/2−16α)t+2
√

t, and thus

P
[
Q

(t−
√

t)
0

]
= q

(t−
√

t)
0 ≥ I(W )− ℓ−(1/2−16α)t+2

√
t. (6.5)

Let us now check that the event Q
(t−

√
t)

0 is actually “good” and allows us achieve the
needed polarization. If Q

(t−
√

t)
0 happens, then Qn happened for some n = k ·

√
t. It means

that Cn, and therefore Rn takes place, thus Zn < exp
(
−2n1/3

)
. It also means that Dn

does not happen, and thus there is at least αst “good” branches taken in the way down
the tree, which corresponds to αst squarings of the Bhattacharyya parameter. Therefore

Zt ≤
(
ℓt−nZn

)2αst

<
(
2st exp

(
−2n1/3))2αst

< exp
(
−st · 2αst

)
= exp

(
−st · ℓαt

)
= 1

N
exp (−Nα) , (6.6)

where the third inequality trivially follows from n ≥
√

t and t ≥ C log6 s for large enough
C. Combining this with (6.5), we obtain the desired polarization:

P
[
Zt < exp

(
−st · 2αst

)]
≥ q

(t−
√

t)
0 ≥ I(W )− ℓ−(1/2−16α)t+2

√
t.

It only remains to argue that this polarization is poly-time constructible. But this
easily follows from the fact that the event Rn is poly-time checkable, which we proved in
Step 2. Indeed, now for any bit-channel Wi, i ∈ [ℓt], we need to check if it is in Q

(t−
√

t)
0 .

This means that one need to see if Qn happened for some n = k
√

t. To do this, one
checks in poly-time if Cn happened, which reduces to checking Rn (which can be done in
poly-time). If Rn happened, then the only thing to check is how many “good” branches
the remaining path to Wi has, which is easily (in poly-time) retrievable information from
the index i. Therefore, the event Q

(t−
√

t)
0 is indeed poly-time checkable, which finishes the

proof of the lemma.
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6.3 Moderate deviations regime

The proof in Section 6.2 is what we use in [GRY22] to achieve scaling exponent µ = 2 + α
and Pe ≤ exp(−NO(α)). Our primary goal there was to get the scaling exponent as close to
2, however, the framework used in [WD18a, WD19] applies more generally to the moderate
deviation regime, where one is interested in the tradeoff between µ and φ, where we denote
by φ such a value that Pe ≤ exp(−Nφ).

For this section, denote the inverse of the scaling exponent as ρ = 1
µ
, and we will use

these interchangeably. Recall that any achievable pair (φ, ρ) must satisfy φ + 2ρ < 1
(e.g. [WD19, Proposition 2]) for non-trivial BMS channels (for the more general case of a
discrete memoryless channel, this tradeoff holds for any channel with non-zero dispersion).
In [MHU16], where the authors proved new upper bounds on the scaling exponents µ ≤
µ∗ := 4.714 and µBEC ≤ 3.639, they also proved that all for all pairs of scaling regimes
(φ, ρ) which lie under some curve connecting

(
0, 1

1+µ∗

)
and (1/2, 0) (where β = 1/2 is the

best constant for which Pe ≤ exp(−Nβ) for standard polar codes) are achievable. This
was improved in [WD18a] to the curve connecting

(
0, 1

µ∗

)
and (1/2, 0) for any BMS, and

furthermore to any pair of points satisfying φ + 2ρ < 1 for the BEC, when large kernels
are used. The similar approach of “interpolating” the tradeoff between φ and µ given the
best achievable values for µ∗ and φ∗ was used in [WD19] for their dynamic random kernels
code construction to prove that actually any pair which satisfies φ + 2

µ
< 1 is achievable

for arbitrary discrete memoryless channel W . The reader can also refer to [Wan21] for a
unified view on this approach and these results.

In this section we show that the approach from [WD18a] for “interpolating” best-
known φ and µ parameters is also applicable to our codes, while retaining polynomial-time
construction. This shows that the curve that was described there also applies to our codes,
except we can take the best achievable scaling exponent of µ∗ = 1/2.

Moderate deviations for our construction
We will in fact only need to modify Step 3 of the proof in Section 6.2, following the proof
in [WD18a] (or [Wan21, Theorem 2.18]). We have α > 0 fixed, denote then ξ = 1

2 − 11α,
and take any pair (φ, µ) of positive numbers such that

1− h

(
φx

x− y

)
>

x
µ
− ξ · y
x− y

(6.7)

for all 0 < x < y, where h(·) is a binary entropy function. This is equivalent to saying that
the point (φ, 1/µ) lies strictly to the left of the convex hull of a union of a point (0, ξ) and
an epigraph of the function 1− h(x) (and in the first quadrant), see Figure 6.1.

The idea is to give up some of the scaling exponent (notice that we have scaling exponent
close to 2 after Step 2) to improve the decoding error probability. In Step 3, change the
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definition for the event Dn in (6.2) to

Dn = Cn

⋂
s(t−n)∑

i=1
gi ≤ φ · s · t

 ,

so we only change the threshold of how many “good” branches we want to take. Recall
that before that, the threshold was αst, which was exactly what gave us Pe ≤ exp(−Nα).
Then the bound (6.3) turns into similar

dn

cn

= P

s(t−n)∑
i=1

gi ≤ φst

 ≤ 2−s(t−n)(1−h2(δ)),

but now for δ = φt
t−n

. Our condition (6.7) on where the point (φ, µ) lies implies (for
x = t, y = n) that s(t− n) (1− h2(δ)) > st

µ
− sn · ξ, and so derive

dn

cn

≤ 2ξsn− st
µ = ℓξn− t

µ .

Notice that ξ is exactly the scaling exponent we got after Step 2. Therefore in (6.4) we
can write

pn − f+
n ≤ pn−

√
t − f+

n−
√

t
+ ℓ−ξ(n−

√
t)+

√
n · ℓξn− t

µ

= pn−
√

t − f+
n−

√
t
+ ℓ−t/µ+ξ

√
t+

√
n ≤ pn−

√
t − f+

n−
√

t
+ ℓ−t/µ+ 3

2
√

t.

But then we obtain similarly to (6.5) that pn−
√

t ≤ ℓ−t/µ+2
√

t, and further

P
[
Q

(t−
√

t)
0

]
= q

(t−
√

t)
0 ≥ I(W )− ℓ−t/µ+2

√
t.

Finally, in (6.6) we conclude (just by substituting α with µ) that if the event Q
(t−

√
t)

0

happens, then Zt ≤ (ℓt−nZn)2φst

≤ 1/N exp(−Nφ), again with the only condition being t ≥
C log6 s. This then implies the codes with scaling exponent 1/µ and Pe ≤ 1/N exp(−Nφ)
for any such pair of µ and φ for which the condition (6.7) satisfied. It only remains to
point out that the polarization we obtained is also poly-time constructible, as we are still
only tracking the number of good branches on Step 3, to check when the event Dn holds.

Denote then by D an open region of pairs (φ, 1/µ) for which (6.7) is satisfied with ξ = 1
2

(as we can set α arbitrarily small). So D is a region in the first quadrant which lies to
the left of a convex hull of

{(
0, 1

2

)⋃ epi(1− h(x))
}
, see Figure 6.1. Then [WD18a] for our

code construction implies the following
Corollary 6.5. For any BMS channel and any (φ, 1/µ) ∈ D, there is a large enough ℓ
for which there exist codes with rate R ≥ I(W ) − N−1/µ, decoding error probability Pe ≤
exp(−Nα), encoding and decoding complexities Oα(N log N), which we can construct in
polynomial time.
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0.0 0.1 0.2 0.3 0.4 0.5 0.6
φ

0

1/2

1/µ

(0.293, 0.128)D

1− h(x)

Figure 6.1: Region D of attainable pairs (φ, 1/µ) with polynomial-time construction. The
line coming from (0, 1/2) is a tangent to the plot of 1−h(x), h(x) being the binary entropy
function.

This corollary essentially shows that the arguments from [WD18a] work in exactly
the same way if the optimal scaling exponent µ∗ = 2 is obtained using mixed-kernel
construction but when Arıkan’s kernels are used for suction at the ends regime, which allows
polynomial-time construction. Notice that the fact that our construction only reaches the
point (1/2, 0) also stems from the fact that we are using Arıkan’s kernels. This is because
the scaling of decoding error probability is actually dictated by our speed of convergence at
suction at the end regimes, where we capped ourselves with the performance of the original
polar codes, by our choice of kernels there.

6.4 Concluding remarks

We conclude with a discussion about how the code constructions in [GRY22] and [WD21]
might be slightly modified to improve provable performance. However, no rigorous claims
are provided here.

Recall the two reasons why Arıkan’s kernels were chosen for the suction at the ends
regime in our construction: a) to simplify the proof of (5.10) when gα(H(W )) is tiny (see
Remark 5.6; and b) it allows for polynomial-time construction and very small Pe at the
same time. However, neither of these are actually specific to Arıkan’s kernel.

The evolution of the potential function is, in general, much faster for the suction at the
ends regime, for any polarizing matrix. This is inherent to the fact that the Bhattacharyya
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parameter Z is raised to some power for the bit-channels that become better, and on the
other hand it is at worst multiplied by constant for the worse channel (recall Z(W +) ≤
Z(W )2, Z(W −) ≤ 2Z(W ) from (5.19) and (5.20)). Although we did not discuss it for
our construction and just proved all the necessary claims for the A2 kernel, such evolution
happens for any ℓ× ℓ polarizing (mixing) matrix. The powering that is happening to Z is
exactly what defines the kernel error exponent E(K), which shows in Pe ≤ exp(−NE(K)).
Without formalizing it here, it is possible to show that the suction at the end regime would
work if some other fixed polarizing matrix was taken instead of A2, and used recursively a
sufficient amount of times. In particular, a fixed sub-kernel with exponent E(K) close to
1 would be of interest (E(A2) = 1/2).

As for b), if we use another fixed kernel K for suction at the ends regime, then instead
of only counting “good” and “bad” branches to track the evolution of the true underlying
parameters, we would just need to look at the exact indices of bit-channels that were taken
during the recursive construction, but these are also easily available to us. In other words,
the construction procedure can also be made polynomial-time if another fixed kernel is
used. But then, by using a kernel with a larger error exponent E(K), this would directly
correspond to a larger region of attainable parameters (φ, 1/µ).

Instead of making the last statement more precise, we claim that similar arguments will
work in the general case of [WD19, Wan21], where arbitrary discrete memoryless channels
are considered. By fixing the kernel K with a good exponent E(K) and some additional
properties for the suction at the ends regime in their construction, this eliminates the need
to track the true bit-channels in order to find a good local kernel. The existence of such a
good fixed kernel K for which E(K) is close to 1 can be derived from their arguments. The
only remaining piece would be to apply degraded binning to the construction procedure, to
make it polynomial-time. While this does introduce additional technical difficulties which
need to be dealt with, we believe these are solvable by carefully bounding the parameters
of the true and approximated channels, as we have done in our analysis. If done rigorously,
this would imply that any pair of parameters (φ, µ) for which φ + 2/µ < 1 is achievable
with codes that can be constructed in poly(N) time for an arbitrary discrete memoryless
channel.
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[AW10] Yücel Altuğ and Aaron B. Wagner. Moderate deviation analysis of channel
coding: Discrete memoryless case. In 2010 IEEE International Symposium on
Information Theory, pages 265–269, 2010. 4
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of polar codes: Error exponent, scaling exponent, moderate deviations, and
error floors. IEEE Trans. Information Theory, 62(12):6698–6712, 2016. 3, 5,
57, 58, 61, 107

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of
error-correcting codes, volume 16. Elsevier, 1977. 20

[MT12] Vera Miloslavskaya and Peter Trifonov. Design of binary polar codes with

114



arbitrary kernel. 2012 IEEE Information Theory Workshop, pages 119–123,
2012. 57

[MT14] Ryuhei Mori and Toshiyuki Tanaka. Source and channel polarization over
finite fields and reed-solomon matrices. IEEE Trans. Information Theory,
60(5):2720–2736, 2014. 5, 57, 77

[PPV10] Yury Polyanskiy, H Vincent Poor, and Sergio Verdú. Channel coding rate
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