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Abstract

We introduce novel programming abstractions for isolation of both time and memory. They op-
erate at finer granularity than traditional primitives, supporting preemption at sub-millisecond
timescales and tasks defined at the level of a function call. This resolution enables new functional-
ity for application programmers, including users of unmanaged systems programming languages,
all without requiring changes to the existing systems stack. Despite being concurrency abstrac-
tions, they employ synchronous invocation to allow application programmers to make their own
scheduling decisions. However, we found that they compose naturally with existing concurrency
abstractions centered around asynchronous background work, such as threads and futures. We
demonstrated how such composition can enable asynchronous cancellation of threads and the
implementation of preemptive thread libraries in userland, both regarded for decades as chal-
lenging problems.
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Chapter 1

Introduction

The abstraction most fundamental to modern programs is the function, a section of code that
expects zero ormore data inputs, performs some computation, and produces zero ormore outputs.
It is a structured control flow primitive that obeys a strict convention: whenever invoked from one
of its call sites, a function runs from beginning to (one possible) end, at which point execution
resumes in the caller just after the call site. It is also a synchronous primitive; that is, these
steps happen sequentially and in order. Because processors conceptually implement synchronous
computation, scheduling a function is as trivial as instructing the processor to jump from the call
site to its starting address, then later jump back to the (saved) address of whatever follows the call
site. Thus, the program continues executing throughout, with no inherent need for intervention
by an external scheduler or other utility software.

Note, however, that just because the program has retained control does not mean the pro-
grammer has. Precisely because functions represent an abstraction, the programmer who calls
one is not necessarily familiar with its specific implementation. This can make it hard to predict
the function’s duration, yet calling it requires the programmer to trust it to eventually finish and
relinquish control. The programmer may have made a promise (a “service-level agreement”) that
their whole program will complete within a specified timeframe; unfortunately, they cannot cer-
tify their compliance without breaking the abstraction and examining the internals of each func-
tion they call. Even then, untrusted or unpredictable input may make a function’s performance
characteristics unclear: Perhaps the function solves a problem that is known to be intractable
for certain cases, but such inputs are difficult to identify a priori. Perhaps it performs format
decoding or translation that is susceptible to attacks such as decompression bombs. Or perhaps
it simply contains bugs that open it to inefficient corner cases or even an infinite loop.

Faced with such problems, the programmer is often tempted to resort to an asynchronous
invocation strategy, whereby the function runs in the background while the programmer main-
tains control of the rest of the program. Common abstractions following this model include the
operating system’s own processes and threads, as well as the threads, coroutines, and futures (i.e.,
promises) provided by some libraries and language runtimes. Any use of asynchronous compu-
tation requires an external scheduler to allocate work.

Here again, the programmer is sacrificing control. Upon handing execution control to a sched-
uler, dependencies are no longer clear from the program’s structure and must be passed to the
scheduler by encoding them in synchronization constructs. (For instance, “Do not execute past
this line until no one else is accessing so-and-so resource.”) Sadly, it is difficult to fully communi-
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2 CHAPTER 1. INTRODUCTION

cate the relevant bits of the application logic across this abstraction boundary, which can result
in unintended resource-sharing effects such as priority inversion, where the scheduler chooses to
run a different task than the system designer anticipated. Furthermore, each software scheduler
is itself a piece of code, and because its job does not represent useful application work, any time
it spends executing is pure overhead. Therefore, introducing unnecessary scheduling necessarily
reduces per-processor performance.

In many cases, the only tool necessary to ensure timely completion of a program is preemp-
tion, the ability to externally interrupt execution. Instead of confronting this directly, current
programming environments incentivize the programmer to rely on a scheduler to fix the prob-
lem, limiting them to whatever coarse timescales (often milliseconds) the OS scheduler operates
at, or (in the case of userland schedulers) to cooperative scheduling that doesn’t even address
the problem of infinite loops. The goal of this work is to design and prototype an interface that
extends the programming model with simple preemption, thereby allowing the use of functions
without having to break the abstraction and examine their implementations. If a function times
out, it is paused so that the programmer can later resume and/or cancel it at the appropriate time.
Note that such an interface is still inherently concurrent; that is, the application has to manage
multiple tasks at the same time. Indeed, it is now the programmer who expresses the schedule
describing when to devote time to the timed code, and how much.

It bears mentioning that sometimes a system designer does need asynchronous invocation
and a dedicated scheduler. Most notably, both are necessary to support parallel applications that
actually execute multiple tasks simultaneously. Preemptive function calls are equally applicable
in such situations because they compose with existing concurrency abstractions. In fact, we find
that they make it surprisingly easy to extend existing cooperative schedulers with preemption,
without adding a dependency on nonstandard OS kernel features.

1.1 Thesis statement
Providing language-agnostic abstractions for fine-grained preemption and function-level isola-
tion enables the straightforward implementation of application functionality long considered pro-
hibitively difficult, such as preemptive user threads and asynchronous task cancellation.

1.2 Structure and contributions
This dissertationmotivates and refines a new programming abstraction for calling a functionwith
a timeout (Chapters 2 and 5), and also introduces a separate supporting primitive for providing
memory isolation within a process (Chapter 3). It presents possible applications for memory
isolation (Chapter 4) and timed function calls (Chapters 7, 8, and 9). It also includes an analysis
of the barriers to and a path toward achieving automatic resource cleanup upon cancellation of
unfinished work (Chapter 6).

The remainder of the dissertation proceeds as follows:

Function calls with timeouts (Chapter 2) We examine prior approaches to running timed
code from the literature, triaging the state of the art’s shortcomings. In the process, we rediscover
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a nigh-forgotten interface for making timed function calls, Scheme engines. The interface is
elegant, but only capable of handling purely functional code. Drawing inspiration from it, we
devise a novel interface for calling impure preemptible functions. We set the goal of language
agnosticism, aiming to demonstrate support for unmanaged systems programming languages
(because they provide few abstractions that might be unavailable in other settings). We also
observe that using preemptible functions in an application introduces concurrency that creates
unsoundness arising from shared state, specifically nonreentrancy. The application developer is
unable to address the problem, so we conclude that doing so is a prerequisite for implementing
preemptible functions.

Nonreentrancy and selective relinking (Chapter 3) We confront nonreentrancy, a program
property that permeates the contemporary systems stack from the operating system up, and
which poses a fundamental safety challenge to preempting impure code. To overcome this haz-
ard, we introduce a new form of memory isolation called selective relinking. Crucially, this new
primitive operates at a granularity finer than a kernel thread; in fact, it can be applied at the level
of function calls, as is needed to support preemptible functions.

Rethinking POSIX safety (Chapter 4) We examine the POSIX safety concepts, the rules that
govern what certain parts of a Unix program may—or may not—do. In particular, signal handlers
are ordinarily only allowed to call a restricted subset of the available standard functions, and
cancelable threads are conventionally barred from using operating system facilities altogether.
We show how selective relinking can be applied to lift either of these restrictions and enable
safe signal handlers or asynchronously cancelable threads. While our implementations are only
intended as a demonstration, we find that selective relinking makes both of these seemingly
Herculean tasks simple enough to make for short instructive examples.

Function calls with timeouts, revisited (Chapter 5) We return to the topic of preemptible
functions and illustrate how to implement them atop the existing systems stack. In the process,
we specialize what we had designed as a C interface for the more modern Rust programming
language. The result is a platform that exhibits both seamless interoperability with legacy code
and harmonious integration with the memory and concurrency safety features of Rust’s type
system. The discussion serves both as a demonstration of the kind of considerations that would
go into integrating preemptible functions into other language ecosystems and as an example of
a more advanced use of selective relinking.

Resource cleanup and async unwinding (Chapter 6) We discuss the problem of resource
leaks that can occur when asynchronously cancelling code. We develop an approach and proof-
of-concept system for ensuring the cleanup of cancelled code’s own resources with assistance
from the compiler. We do this by repurposing exception handling, which requires us to repair
asynchronous stack unwinding. Compilers have struggled to support this feature, but we devise
runtimeworkarounds to handle the troublesome cases, introducing onlyminimal additional over-
head on the normal execution path.
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Preemptive userland threading (Chapter 7) We show how preemptible functions compose
with other concurrency abstractions, namely threads and futures. We create a thread library that
implements preemptive scheduling in userland and still supports unmanaged code. To accomplish
this, we construct a preemptible future type, which serves as a language-specific adapter of the
preemptible futures interface. We use this to add preemption to the thread pool of an existing
futures executor.

Preemptive remote procedure calls (Chapter 8) We observe a pain point common to RPC
systems that support impure code: it is universally incumbent on the developer of each server-side
function to manually, and periodically, check whether it has exceeded its service-level agreement.
We describe how a first-year undergraduate student used our preemptible functions abstraction
to build a preemptive RPC system without this limitation in two months. Its server uses a single-
process architecture but isolates each request within a preemptible function. It is also capable
of memoizing both fully- and partially-computed requests; in the latter case, a repeat request
resumes the paused computation from wherever it left off.

Microsecond-scale microservices (Chapter 9) We discuss how preemptible functions could
be applied to address the problem of invocation latency in serverless computing. Whereas con-
temporary systems typically place each tenant in its own separate container comprising one or
more processes and a virtual filesystem, we propose consolidating numerous tenants into a single
worker process. Preemptible functions would provide compute time isolation, whereas memory
isolation would be achieved by requiring tenants to submit only code that could be proven safe
and restricting them to a vetted set of dependencies.

Conclusions and continuations (Chapter 10) We summarize our work, including notewor-
thy technical challenges we faced and selected lessons for future systems builders. We propose
possible future research directions.



Chapter 2

Function calls with timeouts

“ ‘Does everyone just believe what he wants to?’
‘As long as possible. Sometimes longer.’ ”

— Isaac Asimov, The Gods Themselves

In this chapter, we introduce the design of lightweight preemptible functions, our abstraction
formaking ordinary function calls with a timeout. Wewill cover the implementation in Chapter 5,
after the intervening chapters have introduced a supporting abstraction for memory isolation and
shown how to use it.

One thing that distinguishes preemptible functions is that their invocation is synchronous;
that is, the program does not continue executing the code following the call until the callee has
made some progress (though not necessarily run to completion). This stands in contrast to ab-
stractions with asynchronous invocation. The thread and callback-based future abstractions are
like preemptible functions in that structuring code for them involves writing a function describ-
ing the task (a thread main function or a callback, respectively). But these traditional abstractions
differ in that this function does not necessarily begin executing until later: a scheduler or event
loop in the runtime or operating system manages all of the program’s tasks and decides when to
invoke each one.

The other distinguishing feature of preemptible functions is that they are preemptive, mean-
ing that interruption is external and can occur at (almost) any point in their execution. Abstrac-
tions such as futures and user threads are generally cooperative. As such, interruption is internal
and control transfers to another task only when the executing one explicitly yields control (or
calls a library function that does so on its behalf). Table 2.1 classifies concurrency abstractions
based on their type of invocation and interruption.

task interruption
cooperative preemptive

ta
sk

in
vo

ca
tio

n

asynchronous user threads kernel threadscallback-based futures

synchronous “async” futures preemptible functions
(async/await)

Table 2.1: Concurrency abstractions classified by type of invocation and interruption
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Is the library reentrant? Already safe to use
yes 

Is all state internal to the library
(e.g., global variables)?

 no

Addressed by library copying
yes 

Defer preemption.

 no (e.g., shared storage/hardware resource)

Figure 2.1: Taxonomy of support for library code. It is difficult to determine whether a library
is fully reentrant, so in practice we always apply one of the two mitigations. Library copying is
used by default, but deferred preemption is needed to preserve the semantics of malloc() and
users of uncopyable resources such as file descriptors or network adapters.

From the table, it is apparent that the term asynchronous is overloaded. In the context of
invocation, it is synonymous with “background.” Confusingly, in the context of futures, async
functions are those that can use the await keyword to insert a yield point that takes a syn-
chronous function call off the critical path. POSIX has a third meaning for the term: In the context
of signals and cancellation, it means “preemptive.” Examples of this usage include the phrases
“asynchronous cancellation” and “async safety.”

2.1 Motivation
After years of struggling to gain adoption, the coroutine has finally become amainstream abstrac-
tion for cooperatively scheduling function invocations. Languages as diverse as C#, JavaScript,
Kotlin, Python, and Rust now support “async functions,” each of which expresses its dependen-
cies by “awaiting” a future (or promise); rather than polling, the language yields if the awaited
result is not yet available.

Key to the popularity of this concurrency abstraction is the ease and seamlessness of paral-
lelizing it. Underlying most futures runtimes is some form of green threading library that maps
user threads corresponding to futures onto kernel threads serving as workers (i.e., an M:N thread
pool). Without uncommon kernel support (e.g., scheduler activations [3]), however, this logi-
cal threading model renders the operating system unaware of individual tasks, meaning context
switches are purely cooperative. This limitation is common among userland thread libraries, and
illustrates the need for amechanism for preemptive scheduling at finer granularity than the kernel
thread.

In this dissertation , we propose an abstraction for calling a function with a timeout: Once
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invoked, the function runs on the same thread as the caller. Should the function time out, it is
preempted and its execution state is returned as a continuation in case the caller later wishes
to resume it. The abstraction is exposed via a wrapper function reminiscent of a thread spawn
interface such as pthread_create() (except synchronous). Despite their synchronous nature,
preemptible functions are useful to programs that are parallel or rely on asynchronous I/O;
indeed, we later demonstrate how our abstraction composes with futures and threads.

The central challenge of introducing preemption into the contemporary programming model
is supporting existing code. Despite decades of improvement focused on thread safety, modern
systems stacks still contain critical nonreentrancy, ranging from devices to the dynamic mem-
ory allocator’s heap region. Under POSIX, code that interrupts other user code is safe only if
it restricts itself to calling async-signal-safe (roughly, reentrant) functions [63]. This restriction
is all too familiar to those programmers who have written signal handlers: it is what makes it
notoriously difficult to write nontrivial ones. Preemption of a timed function constitutes its in-
terruption by the rest of the program. This implies that the rest of the program should be restricted
to calling reentrant functions; needless to say, such a rule would be impractical. Addressing this
problem is one of the main contributions of this dissertation . Our main insight here, as shown in
Figure 2.1, is that some libraries are naturally reentrant, while many others can be made reentrant
by automatically cloning their internal state so that preempting one invocation does not leave
the library “broken” for concurrent callers.

The most obvious approach to implementing preemptible functions is to map them to OS
threads, where the function would run on a new thread that could be cancelled upon timeout.
Unfortunately, cancelling a thread is also hard. Unix’s pthreads provide asynchronous cancela-
bility, but according to the Linux documentation, it

is rarely useful. Since the thread could be cancelled at any time, it cannot safely re-
serve resources (e.g., allocatingmemorywith malloc()), acquiremutexes, semaphores,
or locks, and so on... some internal data structures (e.g., the linked list of free blocks
managed by the malloc() family of functions) may be left in an inconsistent state if
cancellation occurs in the middle of the function call [51].

The same is true onWindows, whose API documentationwarns that asynchronously terminating
a thread

can result in the following problems: If the target thread owns a critical section, the
critical section will not be released. If the target thread is allocating memory from
the heap, the heap lock will not be released...

and goes on from there [65].
One might instead seek to implement preemptible functions via the Unix fork() call. Assum-

ing a satisfactory solution to the performance penalty of this approach, one significant challenge
would be providing bidirectional object visibility and ownership. In a model where each timed
function executes in its own child process, not only must data allocated by the parent be accessi-
ble to the child, but the opposite must be true as well. The fact that the child may terminate before
the parent raises allocation lifetime questions. And all this is without addressing the difficulty of
even calling fork() in a multithreaded program without subsequently calling exec() from the
newly-created child process: because doing so effectively cancels all threads in the child process
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Dependencies Third-party code support
System Preemptive Synchronous In userland Works without GC Preemptible Works without recompiling

Scheme engines ✓* ✓ ✓ † ✓
Lilt ✓ ✓ †* —

goroutines ✓ ✓ †* —
𝐶∀ ✓ ✓ ✓ †* —

RT library ✓ ✓ ✓ ✓
Shinjuku ✓ ✓ †
libinger ✓ ✓ ✓ ✓ ✓ ✓

✓* = the language specification leaves the interaction with blocking system calls unclear
† = assuming the third-party library is written in a purely functional (stateless) fashion
†* = the third-party code must be written in the language without foreign dependencies

(beyond simple recompilation, this necessitates porting)

Table 2.2: Systems providing timed code at sub-process granularity

except the calling one, the child process can experience the same problems that plague thread
cancellation [6].

These naïve designs share another shortcoming: in reducing preemptible functions to a prob-
lem of parallelism, they hurt performance by placing thread creation on the critical path. Thus,
the state-of-the-art abstractions’ high costs limit their composability. We observe that, when call-
ing a function with a timeout, it is concurrency alone—and not parallelism—that is fundamen-
tal. Leveraging this key insight, we present a design that separates interruption from asynchrony
in order to provide preemption at granularities in the tens of microseconds, orders of magnitude
finer than contemporary OS schedulers’ millisecond timescales. Our research prototype1 is im-
plemented entirely in userland, and requires neither custom compiler or runtime support nor
managed runtime features such as garbage collection.

This dissertation makes three primary contributions: (1) It proposes function calls that return
a continuation upon preemption, a novel primitive for unmanaged languages. (2) It introduces
selective relinking, a compiler-agnostic approach to automatically lifting safety restrictions re-
lated to nonreentrancy. (3) It demonstrates how to support asynchronous function cancellation,
a feature missing from state-of-the-art approaches to preemption, even those that operate at the
coarser granularity of a kernel thread.

2.2 Related work
A number of past projects (Table 2.2) have sought to provide bounded-time execution of chunks
of code at sub-process granularity. For the purpose of our discussion, we refer to a portion of the
program whose execution should be bounded as timed code (a generalization of a preemptible
function); exactly how such code is delineated depends on the system’s interface.

Interface notwithstanding, the systems’ most distinguishing characteristic is the mechanism
by which they enforce execution bounds. At one end of the spectrum are cooperativemultitask-
ing systems where timed code voluntarily cedes the CPU to another task via a runtime check.
(This is often done implicitly; a simple example is a compiler that injects a conditional branch at
the beginning of any function call from timed code.) Occupying the other extreme are preemp-
tive systems that externally pause timed code and transfer control to a scheduler routine (e.g.,

1Our system is open source; the code is available from efficient.github.io/#lpf.

https://efficient.github.io/#lpf
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via an interrupt service routine or signal handler, possibly within the language’s VM).
The cooperative approach tends to be unable to interrupt two classes of timed code: (1)

blocking-call code sections that cause long-running kernel traps (e.g., by making I/O system
calls), thereby preventing the interruption logic from being run; and (2) excessively-tight loops
whose body does not contain any yield points (e.g., spin locks or long-running CPU instructions).
Although some cooperative systems refine their approach with mechanisms to tolerate either
blocking-call code sections [25] or excessively-tight loops [71], we are not aware of any that are
capable of handling both cases.

One early instance of timed code support was the engines feature of the Scheme 84 lan-
guage [30]. Its interface was a new engine keyword that behaved similarly to lambda, but
created a special “thunk” accepting as an argument the number of ticks (abstract time units)
it should run for. The caller also supplied a callback function to receive the timed code’s return
value upon successful completion. Like the rest of the Scheme language, engines were stateless:
whenever one ran out of computation time, it would return a replacement engine recording the
point of interruption. Engines’ implementation relied heavily on Scheme’s managed runtime,
with ticks corresponding to virtual machine instructions and cleanup handled by the garbage
collector. Although the paper mentions timer interrupts as an alternative, it does not evaluate
such an approach.

Lilt [71] introduced a language for writing programs with statically-enforced timing policies.
Its compiler tracks the possible duration of each path through a program and inserts yield oper-
ations wherever a timeout could possibly occur. Although this approach requires assigning the
execution limit at compile time, the compiler is able to handle excessively-tight loops by instru-
menting backward jumps. Blocking-call functions remained a challenge, however: handling them
would have required operating system support, reminiscent of Singularity’s static language-based
isolation [21].

Some recent languages offer explicit userland threading, which can be used to support timed
code. One example is the Go language’s [25] goroutines, which originally relied on a cooperative
scheduler that conditionally yielded at function call sites. This caused real-world problems for
tight loops, requiring affected programmers to manually add calls to the runtime.Gosched()
yield function [10]. To address this, the language eventually migrated to a preemptive goroutine
scheduler [26].

The solutions described thus far all assume languages with a heavyweight, garbage-collected
runtime. However, two recent systems seek to support timed code with fewer dependencies: the
𝐶∀ language [13] and a C thread library for realtime systems (here, “RT”) developed by Molli-
son and Anderson [47]. Both perform preemption using timer interrupts, as proposed in the early
Scheme engines literature. They install a periodic signal handler for scheduling tasks and migrat-
ing them between cores, a lightweight approach that achieves competitive scheduling latencies.
However, as explained later in this section, the compromise is interoperability with existing code.

Shinjuku [35] is an operating system designed to perform preemption at microsecond scale.
Built on the Dune framework [7], it runs tasks on a worker thread pool controlled by a single
centralized dispatcher thread. The latter polices how long each task has been running and sends
an inter-processor interrupt (IPI) to any worker whose task has timed out. The authors study the
cost of IPIs and the overheads imposed by performing them within a VT-x virtual machine, as
required by Dune. They then implement optimizations to reduce these overheads at the expense
of Shinjuku’s isolation from the rest of the system.
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As seen in Section 2.1, nonreentrant interfaces are incompatible with externally-imposed time
limits. Because such interfaces are prolific in popular dependencies, no prior work allows timed
code to transparently call into native third-party libraries. Scheme engines and Lilt avoid this
issue by only supporting functional code, which cannot have shared state. Go is able to preempt
goroutines written in the language itself, but a goroutine that makes any foreign calls to other
languages is treated as nonpreemptible by the runtime’s scheduler [20]. The C∀ language’s pre-
emption model is only safe for functions guarded by its novel monitors: the authors caution that
“any challenges that are not [a result of extending monitor semantics] are considered as solved
problems and therefore not discussed.” With its focus on realtime embedded systems, RT assumes
that the timed code in its threads will avoid shared state; this assumption mostly precludes calls
to third-party libraries, though the system supports the dynamic memory allocator by treating it
as specifically nonpreemptible. Rather than dealing with shared state itself, Shinjuku asks appli-
cation authors to annotate any code with potential concurrency concerns using a nonpreemptible
call_safe() wrapper.

2.3 Preemptible functions: libinger
We observe that today’s concurrency abstractions offer either synchronous invocation or pre-
emptive scheduling, but not both. On one hand we have futures, which are now synchronous2
but purely cooperative. On the other are kernel threads, which are preemptive but asynchronous.
We bridge this gap by introducing a novel abstraction that provides synchrony and preemption
for unmanaged languages.

Doing so requires confronting the nonreentrancy problems that have long doomed attempts
to support asynchronous cancellation outside of purely functional contexts. This turns out to be
a slightly harder problem than safely supporting concurrency, so in addition to cancellation, we
get the ability to externally pause for free.

To address the literature’s shortcomings, we have developed libinger,3 a library providing a
small API for timed function dispatch (Listing 2.1):

• launch() invokes an ordinary function func with a time cap of time_us. The call to
launch() returns when func completes, or after approximately time_us microseconds if
func has not returned by then. In the latter case, libinger returns an opaque continuation
object recording the execution state.

• resume() causes a preemptible function to continue after a timeout. If execution again
times out, resume() updates its continuation so the process may be repeated. Resuming a
function that has already returned has no effect.

Listing 2.2 shows an example use of libinger in a task queue manager designed to prevent
latency-critical tasks from blocking behind longer-running ones. The caller invokes a task with
a timeout. If the task does not complete within the allotted time, the caller saves its continuation
in the task queue, handles other tasks, and later resumes the first task.

2Code interfacing with futures via the “async/await” continuation passing style is now prolific.
3In the style of GNU’s libiberty, we named our system for the command-line switch used to link against it. As

the proverb goes, “Don’t want your function calls to linger? Link with -linger.”
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struct linger_t {
bool is_complete;
cont_t continuation;

};

linger_t launch(Function func, u64 time_us, void *args);
void resume(linger_t *cont, u64 time_us);

Listing 2.1: Preemptible functions core interface

linger = launch(task, TIMEOUT, NULL);
if (!linger.is_complete) {

// Save `linger` to a task queue to resume later
task_queue.push(linger);

}

// Handle other tasks
...

// Resume `task` at some later point
linger = task_queue.pop();
resume(&linger, TIMEOUT);

Listing 2.2: Preemptible function usage example
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2.3.1 Design principles
Althoughwe are introducing a new concurrency abstraction, we have striven to keep the interface
simple and understandable. The following design principles have guided this effort:

• We do not assume that users need asynchrony. Hence, preemptible functions run on
the same kernel thread as their caller. This is good for performance (especially invocation
latency), but it is also important to be aware of; for instance, it means that a preemptible
function will deadlock if it attempts to acquire a lock held by its caller, or vice versa. Of
course, some users may need asynchrony. The preemptible function abstraction composes
naturally with both threads and futures (Chapter 7), so there is no need to reinvent the
wheel.

• We assume that simply calling a preemptible function is the common use case. As
such, the launch() wrapper both constructs and invokes the preemptible function rather
than asking the user to first employ a separate constructor. Users wishing to separate the
construction and invocation operations can pass the sentinel 0 as the timeout, then later
use resume() to start execution.

• We favor a simple, language-agnostic interface. The fact that our interface centers
on a higher-order function in the style of the pthread_create() and spawn() wrapper
functions means that using preemptible functions looks similar regardless of the program-
ming language. Currently, libinger provides bindings for both C and Rust. If and when we
add bindings for other languages, we expect them to have the same feel; in the meantime,
other languages can use preemptible functions (unsafely) through their C foreign-function
interfaces. We considered adhering to the futures interface instead, but decided against
it because each language has its own incompatible variant thereof. The relative ease of
building a futures adapter type (Chapter 7) affirms our decision.

• We keep argument and return value passing simple yet extensible. Because Rust
supports closures, the Rust version of launch() accepts only nullary functions: those seek-
ing to pass arguments should just capture them from the environment. C supports neither
closures nor generics, so the C version of launch() accepts a single void * argument that
can serve as an in/out parameter. It occupies the last position in the parameter list to permit
(possible) eventual support for variable argument lists.

• We choose defaults to favor flexibility and performance. When a preemptible func-
tion times out, libinger assumes the caller might later want to resume it from where it left
off. As such, both launch() and resume() pause in this situation; this incurs some mem-
ory and time overhead to provide a separate execution stack and package the continuation
object, but exhibits lower latency than asynchronous cancellation. If the program does
require cancellation, we provide ways to explicitly request it (Chapter 5).

• In addition to preemption, we offer the option to yield. This feature enables the
construction of higher-level synchronization constructs tailored to preemptible functions
(Chapter 5). It also allows preemptible functions to coexist with cooperatively-scheduled
tasks such as futures (Chapter 7).
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2.4 The preemptible functions ecosystem
In divorcing preemption from asynchronous invocation, preemptible functions disentangle in-
terruption from parallelism. Indeed, libinger does not provide a task scheduler because the only
decision it makes is whether to pause the currently executing code. Whenever it opts to do so, it
unconditionally returns control to the preemptible function’s caller.

This design allows client code to pick and choose the level of runtime support it needs. If
it only invokes preemptible functions synchronously and makes all scheduling decisions itself,
it can link directly against libinger and use the interface presented in Section 2.3. If it prefers
to delegate scheduling to a runtime, we also provide libturquoise, a preemptive futures executor
offering an event loop and thread pool (Chapter 7).

Figure 2.2 shows the dependency relationship between libinger and libturquoise, in the con-
text of the other software components developed for this dissertation. Notably, both libraries
support nonreentrancy by depending on another library called libgotcha, which provides a novel
abstraction of its own for enforcing isolation boundaries. The libinger library is implemented in
approximately 2,500 lines of Rust; libgotcha comprises another 3,000 lines of C, Rust, and x86-64
assembly.

2.4.1 Automatic handling of shared state: libgotcha
As we found in Section 2.1, a key design challenge facing libinger is the shared state problem:
Suppose a preemptible function 𝐹 calls a stateful routine in a third-party library 𝐿, and that 𝐹
times out and is preempted by libinger. Later, the user invokes another timed function 𝐹0, which
also calls a stateful routine in 𝐿. This pattern involves an unsynchronized concurrent access to
𝐿. To avoid introducing such bugs, libinger must hide state modifications in 𝐿 by 𝐹 from the
execution of 𝐹0.

One non-solution to this problem is to follow the approach taken by POSIX signal handlers
and specify that preemptible functions may not call third-party code, but doing so would severely
limit their usefulness (Section 2.2). We opt instead to automatically and dynamically create copies
of 𝐿 to isolate state from different timed functions. Making this approach work on top of existing
systems software required solving many design and implementation challenges, which we cover
when we introduce libgotcha in Chapter 3.

Note that preemptible functions are still a concurrency abstraction, and our automatic han-
dling of shared state internal to dependencies does not exempt the author of a preemptible func-
tion from writing safe concurrent code.
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Dynamic linker

libgotcha

libinger ... Other control lib.
(e.g., libas-safe)

Your novel
preemptive library ... libturquoise

Your program
(if synchronous)

Your program
(if async/parallel)

Figure 2.2: Preemptible functions software stack. Hexagonal boxes show the required runtime
environment. Rectangular boxes represent components implementing the preemptible functions
abstraction. Ovals represent components built on top of these. A preemptible function’s body
(i.e., func) may be defined directly in your program, or in some other loaded library.



Chapter 3

Nonreentrancy and selective relinking:
the libgotcha runtime

“ ‘Alien superweapons were used,’ Alex said, walking into the room,
sleep-sweaty hair standing out from his skull in every direction.

‘The laws of physics were altered, mistakes were made.’ ”
— James S. A. Corey, Nemesis Games

In Section 2.4.1, we saw that it is not safe in general for a preemptible function to call into
stateful code that was written without the preemptible function abstraction in mind. However,
such code is prolific in the modern systems stack, and in order to support interoperability with it,
we need to automatically transform the program to fix the safety hole. This chapter introduces
a novel abstraction for memory isolation and constructs a software system that implements it,
dubbed libgotcha; then, we conclude the chapter by presenting performance metrics.

Despite the name, it is more like a runtime that isolates hidden shared state within an appli-
cation. Although the rest of the program does not interact directly with libgotcha, its presence
has a global effect: once loaded into the process image, it employs a technique we call selective
relinking to dynamically intercept and reroute many of the program’s function calls and global
variable accesses.

The goal of libgotcha is to establish around every preemptible function a memory isola-
tion boundary encompassing whatever third-party libraries that function interacts with (Sec-
tion 2.4.1). The result is that the only state shared across the boundary is that explicitly passed
via arguments, return value, or closure—the same state the application programmer is responsi-
ble for protecting from concurrency violations (Section 2.4). Listing 3.1 shows the impact on an
example program, and Figure 2.1 classifies libraries by how libgotcha supports them.

Note that libgotcha operates at runtime; this constrains its visibility into the program, and
therefore the granularity of its operation, to shared libraries. It therefore assumes that the pro-
grammer will dynamically link all third-party libraries, since otherwise there is no way to tell
them apart from the rest of the program at runtime. We feel this restriction is reasonable because
a programmer wishing to use libinger or libgotcha must already have control over their project’s
build in order to add the dependency.

Before introducing the libgotcha API and explaining selective relinking, we now briefly mo-
tivate the need for libgotcha by demonstrating how existing system interfaces fail to provide the
required type of isolation. Our discussion in this chapter uses libinger as a motivating example of
a libgotcha user, as this configuration was the inspiration for the runtime’s creation. However, we
have found the described techniques to be general and equally relevant to applications beyond
timed functions. As such, libgotcha exposes a general API that allows any control library to
configure its behavior for the process. We give more details later in the chapter, and study other
examples of control libraries in Chapter 4.

15
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base address

Ehdr (ELF object file header)

Phdr (ELF program header/segment table)

.dynsym (dynamic symbol table)

.dynstr (dynamic string table)

.rela.dyn (table of GLOB_DAT relocations)

.rela.plt (table of JUMP_SLOT relocations)

.init (platform initialization code)

.plt (procedure call stubs, lazily-resolved portion)

.plt.got (procedure call stubs, eagerly-resolved portion) R/E

.text (program code)

.fini (platform termination code)

.rodata (static storage, compile-time constant portion)

.eh_frame_hdr (exception-handling header) R/O

.eh_frame (exception-handling stack-unwind metadata)

.tdata (TLS initialization image, initialized portion)

.tbss (TLS initialization image, zero-filled portion)

.init_array (constructor pointer table)

.fini_array (destructor pointer table) R/W at load time
R/O at runtime

.data.rel.ro (static storage, relocated constant portion)

.dynamic (dynamic linking/loading header)

.got (global offset table, eagerly-resolved part)

.got.plt (global offset table, lazily-resolved part)

.data (static storage, mutable initialized portion) R/W

.bss (static storage, mutable zero-filled portion)

Figure 3.1: Layout of a typical module within the process image. Bold sections contain program
data; italicized ones contain metadata for the runtime.
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static bool two;
bool three;

linger_t caller(const char *s, u64 timeout) {
stdout = NULL;
two = true;
three = true;
return launch(timed, timeout, s);

}

void timed(void *s) {
assert(stdout); // (1)
assert(two); // (2)
assert(three); // (3)

}
Listing 3.1: Demo of isolated (1) vs. shared (2&3) state

3.1 A brief tour of linking
We begin with background about linking, a two-stage process that ultimately produces an in-
memory process image containing a program’s code, all the data it needs to execute, and the
code and data of all its dependencies. Linking operates on object files that can take the form of
either an executable or a shared library. Once a program is running, its process image contains
a region corresponding to each loaded object file. We will refer to each such region as amodule,
regardless of whether it corresponds to an executable or a shared library. Each module is divided
into logical sections, each containing a particular type of information. Figure 3.1 shows a typical
module’s layout; notice that it contains both data corresponding to the source code and generated
metadata for runtime consumption.

The linking process occurs in two parts. Static linking occurs at compile time and forms the
last step of the traditional build process. Dynamic linking occurs at a phase of runtime known as
load time, which starts before the program has been loaded from disk or the language runtime
initialized.

3.1.1 Static linking
Invoking the cc compiler driver does more than just compile C code: it runs the C preprocessor
cpp, the C compiler (cc1 in GCC’s case), then the static linker ld.

The output of the second step is a relocatable object file containing code and data with ref-
erenced addresses identified by named symbols. In a relocatable object file, symbol references
such as instructions making function calls or accessing global variables are encoded with a null
address as a placeholder. Each object file contains a relocation table in a separate section that
associates each placeholder with a symbol name, which may or may not be located in the same
file. Each object file also contains a symbol table to identify the symbols it defines and associate



18 CHAPTER 3. NONREENTRANCY AND SELECTIVE RELINKING: THE LIBGOTCHA RUNTIME

themwith the file offset of their definition. Note that only non-static C symbols generate global
symbol table entries that can be referenced from other object files; this keyword is confusingly
named and does not refer to static linking. The compiler’s ultimate output is one relocatable
object file for each source file.

The static linker is responsible for combining one or more relocatable object files into a single
executable or shared library, where either type of output file is ready for loading into memory
for execution. This process consists of verifying that there is a definition corresponding to each
symbol reference, unifying the sections across object files and choosing a final address (or rel-
ative address) for each symbol, encoding the chosen addresses at the location recorded in each
relocation table entry, and writing the resulting file to disk. This output file does not preserve the
relocation table because the linker has already fixed the null pointers it described. The file does
contain a symbol table because it can be useful for debugging (e.g., to generate stack traces), but
this can be removed using the strip utility without affecting the program semantics.

With the exception of macOS, most modern Unix systems use ELF (Executable and Linkable
Format) object files. One advantage of this format is that executables and shared libraries are
themselves ELF object files.

3.1.2 Dynamic linking

Static linking allows programs to reuse “libraries” of precompiled object files, but each program
must be built with its own copy of all its libraries within the executable. This means that every
time an application is loaded, its libraries’ code and data must be read back from disk, even if
another running program uses the same libraries; it also means that updating a library requires
recompiling all dependent programs installed on the system. Dynamic linking solves both prob-
lems by separating libraries into separate files that are not read until the executable runs.1

By splitting libraries into their own files, dynamic linking introduces a build-time challenge:
the relative position and offset of modules cannot be known until runtime. As such, rather than
performing the relocations for inter-module symbol references, the static linker leaves the place-
holder addresses and adds a separate dynamic relocation table and dynamic symbol table into
the output object file. Unlike the tables used for static linking, these are needed to launch the
program, so tools such as strip leave them in place. For executables, the linker also writes the
path to an “interpreter” program into the ELF program header.

When asked to load a program that declares an interpreter, the kernel loads and jumps to
the interpreter instead of the executed program. Usually, this interpreter is the system dynamic
linker, traditionally named ld.so. Before jumping into the program code, the dynamic linker
loads all the modules and processes the entries in each of their dynamic relocation tables. The
relocations are not restricted to modifying writeable memory: they can update constant global
data and even executable instructions. Even if they leave the code unchanged, its position relative
to the rest of the module matters. These points are critical to our use case, as they mean that in
order to duplicate modules’ data, we must also duplicate their code.

1Specifically, this separation obviates the need to read the files from disk multiple times because the runtime
maps them into the process image using the mmap() family of system calls. The kernel tracks regions that are
already mapped and serves recurring requests from memory instead of disk, mapping to the same physical memory
if the pages are read-only or creating copy-on-write page mappings otherwise.
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executable

executable's GOT

0x7ffdef

...

mov data@gotpcrel(%rip), %rax
mov (%rax), %rax

data from library.so

(mov $0x7ffdef, %rax)

library.so

library's GOT

0x7ffdef

...

mov data@gotpcrel(%rip), %rax
mov (%rax), %rax

(mov $0x7ffdef, %rax)

(a) Reading a library’s global variable: size_t tmp = data;

executable

executable's PLT

jmp *...

...

call fun@plt
executable's GOT

0x7ffdef

...

jmp *fun@gotpcrel(%rip)

fun() from library.so

(jmp 0x7ffdef)

library.so

library's PLT

jmp *...

...

call fun@plt
library's GOT

0x7ffdef

...

jmp *fun@gotpcrel(%rip)

(jmp 0x7ffdef)

(b) Calling an eagerly-resolved library function: fun()

executable

executable's PLT

jmp *
push $

jmp 0x7f1d50

...

① call fun@plt
executable's GOT

fun@plt + 1

...

② jmp *fun@gotpcrel(%rip)

library's PLT

jmp *
push $

jmp 0x7f1d50

...

_dl_runtime_resolve() from ld.so

④ push $IDENT_executable_fun
jmp 0x7f1d50

③ (jmp fun@plt + 1)

library.so call fun@plt
library's GOT

fun@plt + 1

...

jmp *fun@gotpcrel(%rip)

push $IDENT_library.so_fun
jmp 0x7f1d50

(jmp fun@plt + 1)

⑤ mov $0x7ffdef, fun@gotpcrel(%rip)

mov $0x7ffdef, fun@gotpcrel(%rip)

fun() from library.so⑥ jmp 0x7ffdef

(c) Calling a lazily-resolved library function. In step 5⃝, the dynamic linker memoizes the resolved address
into the GOT; subsequent calls proceed as above.

Figure 3.2: Table references required to reference global symbols in dynamically-linked pro-
grams

Another consequence of relocations being able to alter read-only memory is that the dynamic
linker must change the page protections of these regions after it has finished processing reloca-
tions. To support this, the compiler splits up module components into fine-grained sections by
purpose. Non-const global variables are placed in the .data and .bss sections, which must
remain writeable at runtime and therefore require no special action. In contrast, const globals
are split between the .rodata and .data.rel.ro sections based on whether they require relo-
cation; in the latter case, the dynamic linker marks the pages read-only before passing control to
the program.

If relocations routinely modified scattered locations throughout the executable .text section,
the dynamic linker would have to change page protections on most or all of each module’s code
pages. This would require a lot of system calls, but it would also require copy-on-write code
mappings, preventing instruction cache hits between processes using the same library. To avoid
these problems, the compiler indirects references to dynamic symbols via a structure called the
GOT (Global Offset Table).

The GOT is a table of relocated pointers to symbol definitions, whether those definitions
are within the same module or in a different one. To avoid generating code pages that require
relocations, the compiler compiles each reference to or dereference of non-static global data
into a position-independent load of the corresponding pointer from the GOT. Figure 3.2a shows
an example of the two instructions and one table reference needed for a dereference. A reference
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would generate only the first mov instruction, as would taking a pointer to a function.
Calling a global function works differently and relies on another indirection structure called

the PLT (Procedure Linkage Table), which contains code instead of pointers. For each call to a
non-static function, the compiler generates a position-independent call to a PLT entry corre-
sponding to the function being called. It generates a PLT entry, which is a short sequence of
instructions that loads the pointer to the real definition from the GOT, then executes an indirect
jump to that location. Figure 3.2b shows an example function call. As with GOT entries, there
are PLT entries for functions defined both within and outside the referencing module.

Not all function calls are this simple. To save the dynamic linker some work at load time,
many function calls resolve lazily on their first execution. Such resolution involves a series of
jumps designed to memoize the address so that subsequent calls to the function from the same
module do not repeat the expensive lookup. Figure 3.2c shows the effect of the first call to such
a function:2 1⃝ The program calls the PLT stub, just as it would for an eagerly-resolved function.
2⃝ The PLT stub is longer (three instructions instead of one), but still begins with an indirect jump
to the pointer found in the corresponding GOT entry. 3⃝ The GOT entry initially contains the
address of the PLT stub’s second instruction, so the indirect jump is a no-op and merely advances
the instruction pointer. 4⃝ The rest of the PLT stub pushes a constant identifying the module and
symbol onto the stack, then jumps to a symbol-lookup function in the dynamic linker. 5⃝ After
looking up the address of the symbol’s definition, the dynamic linker uses the identifier from
the stack to find and update the GOT entry in the calling module. 6⃝ The dynamic linker jumps
to the symbol in the defining module. Because the GOT entry has been updated, future calls
proceed exactly like eagerly-resolved ones and jump directly to the symbol definition from the
first instruction of the PLT stub. Of course, the GOT entries associated with lazy PLT stubs must
be writeable at runtime; this is why Figure 3.1 shows the GOT as split between two sections.

The dynamic linker performs all relocations and other standard module setup automatically
at load time, but the initialization process is pluggable. In particular, modules can include con-
structor functions to be invoked before control is transferred to the runtime and ultimately the
program’s main function. As we will see, our work leverages this feature to override certain
relocations at the conclusion of load time.

3.2 Library copying: namespaces
Expanding a preemptible function’s isolation boundary to include libraries requires providing
it with private copies of those libraries. POSIX has long provided a dlopen() interface to the
dynamic linker for loading shared objects at runtime; however, opening an already-loaded library
just increments a reference count, and this function is therefore of no use for making copies.
Fortunately, the GNU dynamic linker (ld-linux.so) also supports Solaris-style namespaces,
or isolated sets of loaded libraries. For each namespace, ld-linux.somaintains a separate set of
loaded libraries whose dependency graph and reference counts are tracked independently from
the rest of the program [15].

2This representation is slightly simplified for brevity. In practice, it is undesirable to hardcode the address of a
dynamic linker function into each module. Therefore, instead of jumping directly to the symbol resolver, the slow
lookup path jumps to a dedicated PLT stub that loads its address from another GOT entry. Technically, there are
separate identifiers for the symbol and the module, each pushed to the stack by one of these two involved PLT stubs.
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typedef long libset_t;

bool libset_thread_set_next(libset_t);
libset_t libset_thread_get_next(void);
bool libset_reinit(libset_t);

Listing 3.2: libgotcha C interface

It may seem like namespaces provide the isolation we need: whenever we launch(F), we
can initialize a namespace with a copy of the whole application and transfer control into that
namespace’s copy of F, rather than the original. The problem with this approach is that it breaks
the lexical scoping of static variables. For example, Listing 3.1 would fail assertion (2).

3.3 Library copying: libsets
We just saw that namespaces provide too much isolation for our needs: because of their com-
pletely independent dependency graphs, they never encounter any state from another namespace,
even according to normal scoping rules. However, we can use namespaces to build the abstrac-
tion we need, which we term a libset. A libset is like a namespace, except that the program can
decide whether symbols referenced within a libset resolve to the same libset or a different one.
Control libraries such as libinger configure such libset switches via libgotcha’s private control
API, shown in Listing 3.2.

This abstraction serves our needs: when a launch(F) happens, libinger assigns an available
libset_t exclusively to that preemptible function. Just before calling F, it informs libgotcha
by calling libset_thread_set_next() to set the thread’s next libset: any dynamic symbols
used by the preemptible function will resolve to this libset. The thread’s current libset remains
unchanged, however, so the preemptible function itself executes from the same libset as its caller
and the two share access to the same global variables.

One scoping issue remains, though. Because dynamic symbols can resolve back to a defini-
tion in the same executable or shared object that used them, Listing 3.1 would fail assertion (3)
under the described rules. We want global variables defined in F ’s object file to have the same
scoping semantics regardless of whether they are declared static, so libgotcha only performs a
namespace switch when the use of a dynamic symbol occurs in a different executable or shared
library than that symbol’s definition.

Thus, selective relinking is selective in two ways, only affecting execution when the next
libset differs from the current libset and the program references a dynamic symbol defined in a
module that is not currently executing on that thread.

3.3.1 Detecting cross-module symbol references
Identifying which GOT entries correspond to cross-module symbol references is a multi-step pro-
cess: First, we traverse the relocation table for each loaded module, cross referencing each of its
relocation entries against the local module’s symbol table. If the symbol table does not contain
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a definition matching the relocation entry’s target, we conclude that the relocation must corre-
spond to a cross-module call. Otherwise, we check the address in the GOT entry corresponding
to the relocation: If this address is outside the memory bounds of the current module, it is a
cross-module call. Otherwise, if this address matches the one from the symbol table entry, it is
not a cross-module call, and should be skipped. The trickiest case is when the GOT entry does
not match but does point somewhere within the current module, since this means it probably still
refers to the PLT stub (because the symbol reference is lazy and has not yet been resolved, as cov-
ered at the end of Section 3.1.2). In this case, we resolve the symbol early, update the GOT entry,
and recheck whether it resolved to the local definition to determine whether it is a cross-module
call.

3.4 Managing libsets
At program start, libgotcha initializes a pool of libsets, each with a full complement of the pro-
gram’s loaded object files. Throughout the program’s run libinger tracks the libset assigned to
each preemptible function that has started running but not yet reached successful completion.
When a preemptible function completes, libinger assumes it has not corrupted its libset and re-
turns it to the pool of available ones.

If a preemptible function is cancelled rather than being allowed to return, execution might
be interrupted within a call to a library function. For this reason, libgotcha must treat the libset’s
shared state as corrupted; it provides the libset_reinit() function shown in Listing 3.2 to
allow control libraries to inform it of such a situation so it can reinitialize the libset before
returning it to the pool.

Our early approach to reinitialization was to unload and reload all objects in the libset by call-
ing dlclose() followed by dlmopen(). While this approach theoretically allowed us to delegate
the work to the dynamic linker, in practice it introduced significant complications.3 Worse, it
required the dynamic linker to reprocess all relocations throughout the libset, which introduced
prohibitive runtime latency. We measured reinitialization taking almost 5 ms (over 10 million cy-
cles on modern processors) on even minimal example programs [8]. With such delays, the only
reasonable way for the control library to handle cancellation was to delegate the reinitialization
to a separate thread to take it off the critical path; of course, this approach only works as long as
the number of libsets is not a bottleneck.

We have since redesigned reinitialization around a significantly faster approach: checkpoint-
ing only portions of each module. The key insight is that, as we saw in Section 3.1, only some
sections are writeable at runtime. We can therefore assume that these are the only memory
regions of each module that can change. After populating the libset pool at application start,
libgotcha iterates through each module of each libset and makes a backup copy of all its write-
able regions. When a control library calls libset_reinit(), libgotcha restores each such region

3Most notably, some shared libraries are marked with a special configuration flag, DF_1_NODELETE, which pre-
vents the dynamic linker from ever removing them once they have been loaded. Because almost all libraries depend
on libc, the presence of even one such library would prevent us from reinitializing a libset. The flag is mostly used
on libraries that need to monkey-patch some other loaded library, such that the two subsequently have a circular
dependency. Fortunately, this was not generally a problem for us because when we unload one library from a libset,
we then unload the rest. Whenever we encountered a NODELETE object file, we would make a special copy with the
flag cleared, for loading into every namespace except the main one.
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libgotcha constructorat program start

libset_reinit()control library call

module initializer
for each libset and module

dynamic linker1. load a copy of the module

backup store
2. for each writeable address range

memcpy()capture in-memory snapshot

static data restorer
for each module backup store1. for each writeable address range

libset version watermark

2. increment latest version[libset]
memcpy()restore globals from snapshot

Figure 3.3: Libset reinitialization to support asynchronous cancellation

from the backup before returning the affected libset to the pool. We summarize this approach,
which reduces the latency of reinitialization by two orders of magnitude, in Figure 3.3.4 To avoid
having to repeat relocations and rerunmodule constructors, we capture the backup after dynamic
relocation is complete and all constructors have run; the tradeoff is that we must actually copy
memory, rather than leveraging copy on write to later restore to the version on disk.

3.5 Selective relinking
Most of the complexity of libgotcha lies in the implementation of selective relinking, the mecha-
nism underlying libset switches. To establish the libset abstraction, it must arrange to condition-
ally intercept cross-module symbol uses based on the currently-configured next libset.

As we saw in Section 3.1.2, whenever a program references a dynamic symbol, it looks up the
address of the definition in a data structure called the global offset table (GOT). Selective relinking
works by shadowing the GOT.5 Just after the dynamic linker populates the GOTs, libgotcha re-
places every entry that should sometimes trigger a libset switch with a fake address. It stores the
original address in its shadow GOT, which is organized by the libset that houses the definition.
The fake address used depends upon the type of symbol:

3.5.1 Intercepting function calls
When setting up selective relinking, we do not know whether a particular function call needs
to be rerouted until runtime. However, the fact that dynamic function calls consult the GOT to
determine which code to execute makes it efficient and relatively straightforward to receive a
notification whenever they occur. To set this up, at load time, we replace each such cross-module
GOT entry with the address of the special libgotcha function procedure_linkage_override().
Whenever the program tries to call one of the affected functions, control transfers to this function
instead; it then checks the thread’s next libset, looks up the appropriate symbol definition in
the shadow GOT, and jumps to that location. Because procedure_linkage_override() runs
between the caller’s call instruction and the real function, it is written in assembly to avoid
clobbering registers (e.g., those used for argument passing).

There is one major complication that necessitates an additional level of indirection beyond
what we have described. Recall from the eagerly-resolved function calling sequence in Figure 3.2b
that each function call site calls a one-instruction PLT stub that performs an indirect jump to
the real definition via the GOT. This means that if we simply replaced all the GOT entries with

4We will address the version watermark alluded to therein later in this chapter.
5Hence the name libgotcha.
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Figure 3.4: Calling an eagerly-resolved library function under selective relinking

the address of procedure_linkage_override(), that function would not know which GOT
entry it was being called via, and therefore which symbol to look up. Instead, we introduce our
own table of executable stubs called the PLOT (Procedure Linkage Override Table). Unlike PLT
entries, ours always push an identifier indicating which function is being called. For this, we use
indices into a custom data structure called the GOOT (Global Offset Override Table), which stores
enough information to find the symbol’s shadow GOT entries while being practical to traverse in
handwritten assembly code. Figure 3.4 summarizes the modified dynamic function call sequence
under selective relinking.

A subtle but important point about dynamic linking is that pointers to the same definition
must compare equal, regardless of where they are obtained. The reader might notice that in-
vocation is not the only thing a program can do with a function: it might also pass around the
function’s address. In fact, after taking the address, it could pass it to code within a different mod-
ule, which might need to know whether a third module passed a pointer to the same function.
To support such comparisons, the compiler exclusively generates eagerly-resolved relocations
for any function that a particular module obtains a pointer to. This way, the mov to retrieve the
pointer always finds the resolved address of the real definition in the GOT. To avoid breaking
pointer comparison, libgotcha allocates a single PLOT entry for each function definition, rather
than using a separate one for each call site or dependent module. This provides correct com-
parison semantics because all references to a particular function receive the same pointer to the
shared PLOT entry, and although this pointer technically refers to the corresponding symbol’s
definitions in all libsets, at any one time all calls to it will only resolve to the definition in the next
libset. Since at any given time there can only be one next libset, calls to pointers that compare
equal always refer to the same copy of the definition.

The setup described so far works for eagerly-resolved function calls. However, recall that
some function calls resolve to their definition lazily at runtime. For such calls, the dynamic linker
memoizes the resolved address by updating the GOT entry, as shown in Figure 3.2c. Unfortu-
nately, replacing this GOT entry would overwrite the PLOT pointer installed by libgotcha at load
time, thereby preventing it from intercepting future calls to the function. The write to the GOT
happens within the symbol-lookup code in the dynamic linker, so there is no way to skip it. Luck-
ily, the dynamic linker keeps each module’s dynamic relocation table in memory and uses that
to determine which GOT entry to update. The libgotcha constructor exploits this by marking the
relocation table pages writeable, changing the relocation entries corresponding to cross-module
calls, then restoring the protection bits. This fools the dynamic linker’s lazy symbol lookup into
later updating the shadow GOT entry instead. Not only does this avoid breaking selective relink-
ing, it also preserves memoization.

The GNU system supports a second, nonstandard type of lazy function call resolution known
as indirect function calls. Compared to the lazy resolution specified in the ELF standard, this vari-
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ant allows the defining library to provide custom code to resolve the address of the function def-
inition. We must support this mechanism because glibc relies on it to select among architecture-
specific implementations for reasons of optimization (e.g., strstr(), which leverages vector ex-
tensions on processors that have them) or simply portability (e.g., clock_gettime(), which de-
pends on the best available time source). Indirect symbols require special handling because their
definitions are misleading: the symbol table entry in the defining module describes the location
not of the definition but of a function that returns that definition’s location. If we placed such
addresses into our shadow GOTs, each caller would unwittingly invoke the resolver function in-
stead of the function it was trying to call. Whenever we see a symbol table entry marked with the
STT_GNU_IFUNC type, we instead invoke it and place the returned pointer in the shadow GOT. A
final complication is that some indirect resolver functions retrieve their return values from the
GOT, so if we call them after we have manipulated it, they can create inefficient chains of calls
through multiple shadowed GOT entries, or even infinite recursion where a resolver returns the
PLOT stub that leads to the very shadow GOT entry it was intended for. To avoid these prob-
lems, we call all of a module’s indirect resolvers eagerly and save the results into the shadow
GOTs before making any changes to the real GOT.

3.5.2 Intercepting global variable accesses
Unlike function calls, global variable accesses do not provide an opportunity for hijacking the flow
of control to detect the dereference, so we rely on operating system assistance to implement a
mechanism similar to demand paging. At load time, we replace each cross-module global variable
GOT entrywith a carefully-chosen address within amapped but inaccessiblememory region. The
program is therefore able to retrieve a “pointer to” the global variable, but whenever it attempts
to read from or write to the location, it generates a segmentation fault; libgotcha registers a signal
handler so such signals notify it rather than crashing the program. The handler disassembles the
faulting instruction to determine the base address register of its address calculation and attempts
to reconstruct a GOOT pointer based on the invalid address in that register. If successful, it
checks the thread’s next libset, retrieves the address of that libset’s definition of the symbol from
the appropriate shadow GOT, and replaces the base address register’s contents with this address.
It then returns, causing the processor to reexecute the faulting instruction with the valid address
this time. From the application’s perspective, it is as if dereferencing the phony pointer causes
it to change into a real address. To avoid breaking applications with their own segmentation
fault handlers, libgotcha intercepts calls to sigaction() and keeps a pointer to the third-party
handler. Whenever its handler is unable to resolve a segmentation fault, it forwards the signal to
the third-party one.

The above approach assumes that the program will read or write from the global variable, but
the global variable could instead contain a function pointer. If it does and the program tries to
invoke it, it will use an indirect call instruction and the jump will succeed but transfer control
to an invalid location. In this situation, it is important that we do not attempt to disassemble
the faulting instruction, as the instruction pointer is pointing to unreadable memory. However,
we can recognize this case because the address of the fault matches the instruction pointer itself
(instead of whatever address the instruction would have been trying to load data from). To find
the indirect call instruction, we load the return address from the stack; this gives us the subse-
quent instruction, so we subtract the length of an indirect call instruction. We alter the signal
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handler’s context so that the operating system will transfer control back to this instruction when
our handler returns, then we disassemble the instruction and follow our usual approach on its
register operand.

It is possible to generate other code sequences that are incompatible with the approach (e.g.,
because they perform in-place pointer arithmetic rather than using a displacement-mode address
calculation with a base address), so we also employ a few heuristics that consider the context of
the instruction and fault. If the code is reading or writing to a faulting location that we cannot
translate into a GOOT pointer, it might have applied a linear offset to the last address we success-
fully translated. If any of the following indicators point to this, we compute the offset between the
faulting address and the last invalid address we replaced, then compute the replacement register
value by adding this offset to the last replacement address we substituted:

• The client code is using the same base address register as it was when we last intercepted
a global variable access. This might indicate that said code is using the register as an ad-
dress accumulator, but doing so in concert with some other temporary register: because
of this indirection, overwriting the register with the temporary after we had preformed
the original address resolution would have left us unable to process any subsequent values
accumulated into the register.

• The base address register is different than the one updated on our last interception, but
the value of the latter has remained unchanged since we updated it. Because it contains
a memory address we had to resolve, this strongly suggests that the client code has only
executed a few instructions since then, which we can infer even if that set included one or
more branch instructions.

• The current return address points to the instruction immediately following the one that last
faulted, and the current base address register’s value has remained the same since the fault-
ing instruction was executed. This implies that said instruction was an indirect procedure
call, and that the register was probably just used to pass a pointer argument. Because we
didn’t resolve the address of the indirect call until the client code was already transferring
control, there was no way for it to have passed a pointer without performing arithmetic
directly on the dummy address present before the call.

In our experience, these heuristics cover the common cases in compiler-generated code. We
do not allow heuristics to chain (that is, we never use a heuristically-calculated address as the
basis of the offset calculation for another), but we do apply heuristics multiple times based on the
same base address.

While our current approach has proven successful, it does have some downsides. It is complex,
relies on heuristics, and incurs a performance cost on the order of microseconds. It also suffers
from a design flaw affecting large structures: it does not account for the size of globals when
“allocating” them fake addresses within the inaccessible memory region. If a fake address gets
assigned to a global whose size is less than the difference between that address and the end of
the inaccessible region, it is possible for a correct program to dereference outside the inaccessible
region and exhibit emergent undefined behavior. The ELF dynamic symbol table includes objects’
sizes, so it would be possible to account for this when assigning fake addresses.
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One could go further with this idea and redesign global variable interception without the need
for heuristics or the dependency on a disassembler. By allocating each global its own inaccessible
regionmatching its real size, the address of the faulting access could bemade to reveal the access’s
offset within the global. Mapping the fake address back to a symbol would require a lookup data
structure; one option is a hash table with an entry for each of our inaccessible pages. To translate
a fake address, one would zero out its page offset bits, consult the lookup structure to find our
metadata about the page, and use this to convert to a real symbol definition and offset within
it. This final conversion could be done either by starting each global’s fake region on a page
boundary (at the cost of more virtual memory) or binary searching a list of the addresses within
the inaccessible page that corresponded to the starts of new symbols6 (at the cost of logarithmic
worst-case lookups instead of constant average-case ones).

3.6 Uninterruptible functions
Unlike prior work, we support safe asynchronous pausing and cancellation on almost any instruc-
tion boundary, including within most third-party libraries without the need for configuration or
code annotation. However, there are still some cases where we must briefly defer preemption.

The most obvious is the malloc() family of dynamic memory allocation functions. This case
is significant because the allocator manages the heap, a resource shared among all threads of the
application. As we saw in Section 2.1, naïve attempts to provide asynchronous cancellation often
corrupt the heap if they interrupt the allocator. It is even unsafe to call into the allocator from a
thread that has only been asynchronously paused while allocating, as it can cause a deadlock on
the locks intended to protect the heap from concurrent access by different threads. This is the
reason why signal handlers are not allowed to allocate memory. One way around these problems
would be to use a separate heap for each preemptible function, but we have avoided this because
it would complicate the ownership of objects that are allocated by a preemptible function but
escape its scope before it terminates.

Instead, we consider the interfaces to the dynamic allocator to be uninterruptible functions.
Although each libset contains a separate copy of them, all except one are inactive. Specifically, we
route all calls to uninterruptible functions back to the starting libset, the set of modules loaded
before libgotcha loaded any additional copies. The set of uninterruptible functions is currently
governed by an internal allowlist within libgotcha. During load time, the constructor transcribes
this information into the shadow GOTs so lookups will incur no additional runtime overhead.

Although the next libset does not determine which copy of an uninterruptible function
gets invoked, it is relevant during the call. To avoid creating a dependency between the
starting libset and the current one, it is important that the next libset be set to the start-
ing libset while any uninterruptible code is running. To preserve this invariant, whenever
procedure_linkage_override() detects that any libset other than the starting one is calling
an uninterruptible function, it resets the next libset to the starting libset, storing a backup of
the previous value. Then, just before invoking the function, it pushes the address of a trampo-
line function onto the stack. When the function eventually returns, this trampoline runs; before
transferring control back to the call site, it restores the next libset.

6The faulting address would not be found if the program was dereferencing at an offset into the global, but one
would just return the next-lowest entry.
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In addition to controlling libgotcha’s treatment of calls to uninterruptible functions, the next
libset also communicates valuable information to the control library. The starting libset must
always be valid, and because we maintain the invariant that the next libset is always equal to the
starting libset when the current libset is and third-party code is executing,7 it is safe to preempt
execution if and only if the next libset is not equal to the starting one. It is crucial that the control
library check this before deciding to preempt, and as we saw in Listing 3.2, it can do so using the
libset_thread_get_next() function.

Unlike function calls, accesses to global variables do not have defined end points after which
they are complete. That is, a single write might leave a structure in a temporarily-invalid state
that is corrected by a subsequent one, but there is no structural association between the two. We
do not currently change the next libset when we resolve a global variable access, which means
a control library might pause or cancel code in the middle of such a write or sequence of writes.
This is safe because the allowlist does not contain any writeable variables, so the only time that
a global variable write can resolve to a definition in a different libset is when the current libset is
the starting one, the next libset is any other one, and the program performs an access such as (1)
from Listing 3.1. Such an access would be routed to the code’s own libset, so any corruption due
to concurrency would remain properly isolated and could not infect the starting libset.8

3.6.1 Other uninterruptible functions
The memory allocator interfaces are not the only functions in the allowlist. The dynamic linker
behaves specially with respect to namespaces: although it appears to be loaded into every names-
pace, it refuses to load additional copies of itself and instead includes special logic that proxies
calls to it from other namespaces back to the main one. If such calls were considered interruptible,
the proxying would change the current libset out from under libgotcha, violating the invariant
that the next libset must equal the starting libset when the current one does and potentially cor-
rupting the dynamic linker. To avoid this, we add all of the dynamic linker’s functions to the
allowlist.

The dynamic linker introduces other complications as well. While itself dependency free, the
GNU implementation is part of the glibc project, and other glibc modules depend on it, includ-
ing on internal interfaces that should not be exposed to the rest of the program. To keep these
interfaces private, the dynamic linker does not export them as dynamic symbols, and instead
exposes them via an opaque data region whose layout is partially known to the other glibc mod-
ules. Fortunately, the region is split into separate subregions under the _rtld_global_ro and
_rtld_global dynamic symbols based on whether the area is writeable, which helps us deter-
mine whether a particular use has the potential to corrupt the dynamic linker state. In particular,
we have allowlisted all the functions that access the latter structure, a set currently consisting
of fork(), posix_spawn(), uselocale(), and __cxa_thread_atexit_impl() from libc.so

7By third-party code, wemean code that does not interact with the selective relinking primitive or any abstraction
built on top of it. Any code that makes use of selective relinking is responsible for doing so safely (i.e., ensuring that
it does not corrupt its own state).

8If one did need support for allowlisted writeable global variables, the resolver signal handler described in Sec-
tion 3.5.2 would need to serve a read-only copy of such variables; this way, each write would generate an additional
segmentation fault and the handler could batch writes to the backing object. Determining a safe boundary for this
batching would require at least additional runtime heuristics, if not static analysis.
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and pthread_create() from libpthread.so. To flag potential breakage from future changes
in the region’s use, libgotcha emits a warning at load time whenever it encounters an unexpected
access to _rtld_global.

We have encountered one instance where a glibc module modifies _rtld_global without a
corresponding dynamic function call. The libpthread constructor monkey patches the dynamic
linker to replace pointers to stubbed-out mutex functions with its own proper implementation
before the application can spawn any POSIX threads.9 These changes would create a hazardous
dependency between the dynamic linker and whichever copy of libpthread was last loaded (in our
case, the one in the last libset). To avoid this problem, libgotcha’s constructor checks for libraries
that (1) directly access _rtld_global, (2) have the type of constructor in question, and (3) are
markedwith the ELF configuration flag DF_1_NODELETE to indicate that they are unsafe to unload
once present in the process image. Before loading copies of a library with all of these properties
into any libsets, we create a temporary copy of its shared library with its ELF metadata tweaked
to prevent the constructor from running. We add these patched libraries to the beginning of the
search path so libsets do not modify the dynamic linker at load time and it continues to depend
on the copy of libpthread in the starting libset.

In a few places, a glibc module asks the dynamic linker to load or unload another shared li-
brary at runtime by calling the internal _dl_open() or _dl_close() interface using a function
pointer hidden in _rtld_global_ro. The most obvious of these is the public-facing functions
in libdl.so, the same interface that libgotcha uses to populate libsets. We considered adding
all of this library’s functions to the allowlist, but this presents a problem: in order to decide
which namespace to load the library into, dlopen() checks which module contains its return ad-
dress.10 Treating it as uninterruptible would result in a libset switch when calling it from outside
the starting libset, pushing a libgotcha trampoline “return” address onto the stack and thereby
causing all dynamically-loaded libraries to be added to the starting libset instead of the current
libset. Other functions that use these internal dynamic loading calls include the iconv() fam-
ily of character-conversion functions, getaddrinfo() and the other DNS-translation functions
(which can load GNU Libidn to handle internationalized domain names), and the modular Name
Service Switch system for accessing the users, hosts, protocols, and services databases. Adding
these functions to the allowlist would not break them, but it would treat what are potentially
long-running operations (even including network communication) as uninterruptible code. We
instead handle both of these situations by replacing the _dl_open() and _dl_close() pointers
in _rtld_global_ro with our own hook functions that transition to uninterruptible code only
while modules are being loaded or unloaded. Since the region is opaque and its layout is subject
to change and dependent on the glibc build configuration, we find the appropriate pointers by re-
peatedly replacing one entry at a time with a probe function and executing no-op dlopen() and

9It also installs hooks to support stack execution protection and enable full support for thread-local variables. As
with the mutex changes, these tweaks appear to replace stubbed placeholders rather than establish information flow
from the dynamic linker to the specific copy of libpthread.

10Note that this means a dlopen() loads the module into the current libset rather than the next one. We preserve
this standard system behavior even though it is somewhat surprising. The only time it could cause unexpected
results is when a module containing a preemptible function definition loads other modules at runtime, and since it
used preemptible functions, such a module could be expected to be aware of this case. If this choice later proved
problematic to application designers (e.g., of systems that make heavy use of runtime plugins), it would be possible
to instead base the destination on the next libset by injecting a trampoline return address from the appropriate copy
of libgotcha.
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// Pointer to function taking and returning void
typedef void (*libset_cb_t)(void);

void libset_register_callback(libset_cb_t);
void libset_register_returnback(libset_cb_t);
libset_t libset_of_caller(void);

Listing 3.3: libgotcha C callback interface

dlclose() operations until the probe function gets called. Once we have found both pointers,
we record their original values, mark their containing page writeable, replace them with pointers
to our hook functions, and restore the page protections.

3.6.2 Control library callbacks
While a control library can identify an uninterruptible task by observing that the thread’s

next libset is equal to the starting one, many control libraries will benefit from active notification
of interruptibility. For this purpose, libgotcha provides a callback interface that allows the con-
trol library to register functions that should be invoked whenever an uninterruptible function is
called or returns. A control library can use such call callbacks and return callbacks to disable
and reenable preemption mechanisms or establish a critical section around uninterruptible code
(e.g., by taking a mutex or blocking signals). Callbacks run when we automatically switch to the
starting libset from any other; since this change is idempotent, a callback is only invoked once at
the beginning or end of each uninterruptible region, even if the function calls others within the
starting libset. Figure 3.5 shows the effect of such callbacks on function call interception by com-
paring against both interruptible calls and uninterruptible calls when no callbacks are registered.

Listing 3.3 shows the functions for managing callbacks, which form an extension to the main
libgotcha control API. The control library can pass a function pointer to either of the registration
functions to have it invoked on entry to or exit from uninterruptible code. In developing this
interface, we discovered it was very hard to write correct callbacks that could tolerate being
preempted, so we elected to run all callbacks with the next libset set to the starting one.11 Recall
that it is never safe to pause or cancel execution in this state, so the control library’s preemption
mechanism will defer preemption in callbacks, just as it was already required to do in other such
places. Because the control library’s callback might want to know which libset control switched
from, we provide a libset_of_caller() function for retrieving the previous value of the next
libset (which is also the value it will be restored to when exiting the uninterruptible region).

The way that we currently implement callbacks places some restrictions on what they

11This is actually only currently true of the call callback, as return callbacks run in the caller’s libset for largely
historical reasons. We originally made this decision because this callback type predated the mechanism for querying
the caller’s libset. After adding both this feature and call callbacks, we planned to change the behavior for consistency
between the two callback types, but encountered a complication. Some publicly-callable and initially uninterruptible
libgotcha functions sometimes need to change the next libset partway through in order to finish in an interruptible
state, and we did not want such changes to be observable by the callback.
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caller module libgotcha callee module

callee()                                                               
(redirected to procedure_linkage_override())

callee()

(a) Interruptible call
caller module libgotcha callee module

callee()                                                               
(redirected to procedure_linkage_override())

callee()

(b) Uninterruptible call when no callbacks are registered
caller module control library libgotcha callee module

callee()                                                               
(redirected to procedure_linkage_override())

call_callback()

return_callback()

callee()

(c) Uninterruptible call when callbacks are registered for both calls and returns

Figure 3.5: Interception of cross-module function calls. Solid lines represent function calls;
dashed ones represent returns. Colormarks uninterruptible code (i.e., next libset = starting libset).
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are allowed to do. The libgotcha assembly trampoline that invokes return callbacks backs up
the integer return registers, but such callbacks cannot use floating point unless they man-
ually save and restore the floating-point return registers. As an implementation shortcut,
procedure_linkage_override() invokes the call callback via a SIGTRAP handler by execut-
ing an int3 instruction, in order to avoid having to save and restore a large set of registers itself
(since the return registers account for only two of the many caller-saved registers). The signal
occurs at a well-known point in execution (e.g., not in the middle of memory allocation), so it
does not subject the callback function to the usual safety constraints on signal handlers, but it
does make this type of callback orders of magnitude slower. Fortunately, we anticipate rarer need
for them; libinger, for example, only uses a return callback.

3.7 Control libraries
Selective relinking is a low-level abstraction useful in special situations that require fine-grained
memory isolation (e.g., legalizing types of concurrency that would otherwise exhibit undefined
behavior). As such, libgotcha takes no stance on how libsets should be applied, instead leaving
it up to other code to use them (by changing the next libset). We refer to this other code as a
control library because it controls libgotcha using the API shown in Listings 3.2 and 3.3.

The semantics of a control library depend on how it is built:

• An internal control library is statically linked with libgotcha to form a single shared object
file that is loaded (or preloaded) as one unit. Because each libset contains a separate copy
of its module, libgotcha adds itself to the uninterruptible allowlist described in Section 3.6.
This redirects all calls to it into the starting libset, rendering its other copies dormant in a
manner similar to the dynamic linker’s proxying mechanism. By virtue of being part of lib-
gotcha’s module, internal control libraries enjoy the same guarantee that their code always
executes in the base libset.12 This also means that they, like libgotcha, are automatically
considered uninterruptible.

• An external control library is dynamically linked with libgotcha, and therefore constitutes
a separate shared object file that depends on libgotcha.so (or, perhaps, a compatible
internal control library). Calls into such a library do not cause an automatic libset switch
unless explicitly allowlisted within libgotcha, so the library is responsible for coping with
preemption and multiple copies of itself. Despite these limitations, support for external
control libraries enables control libraries to compose without mutual build system support,
allows a single application to have more than one unrelated control library, and supports
updating to a new version of libgotcha without rebuilding the control library.

12There is actually one exception to this rule: control libraries written in Rust can include generic functions in
their public interface. Because rustc monomorphizes such functions for the client code that uses them, their im-
plementations are not actually in libgotcha’s module! Rather, there are one or more copies of them (specialized for
various type arguments) in each program module that calls them. It is difficult to write correct control library code
that can tolerate preempting itself or interacting with other copies of itself, so we recommend that control libraries
with generic interfaces manually transfer control to the starting libset before doing the bulk of their work. One way
to improve the experience for control library authors would be to provide a procedural macro compiler plugin that
would at least partially automate this using custom Rust attributes.
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3.7.1 Enforced interposition
A few libc functions either present an opportunity to circumvent the libset abstraction or mis-
behave when called from a program that uses libsets. To address this, libgotcha uses a dynamic-
linking trick called interposition to substitute its own implementation of these functions. In-
terposition occurs when one module defines a symbol with the same name as another module’s
symbol, resulting in calls intended for the other module being routed to it instead. This relies on
the interposing library appearing earlier in the dynamic linker’s dependency search order, so the
technique is only reliable when the application binary is the interposer or the interposing library
is preloaded by defining the LD_PRELOAD environment variable before executing the application.

While libgotcha supports being preloaded, it is intended to work seamlessly even when the
application is launched normally, so normal interposition is not strong enough. Fortunately, we
already control dynamic linking by rewriting GOT entries, so at the same time, we implement a
variant that we term enforced interposition. Whenever we encounter a relocation in a third-
party module referencing a dynamic symbol with the same name as one defined in libgotcha’s
module, we replace its GOT entry with the address of the PLOT stub corresponding to that defi-
nition, so that all calls to that symbol from any other module are redirected to libgotcha.13 Con-
versely, whenever we encounter such a dynamic symbol that is also referenced from libgotcha’s
module, we replace its GOT entry there with a reference to the real third-party definition (or
interposition, as the case may be). In this way, the code in libgotcha can implement wrappers
around standard library (or any other) functions without inadvertently interposing its own uses
thereof.

We saw in Section 3.5.2 that one fraught case is the sigaction() function, which could be
used to replace the libgotcha signal handler that resolves global variable accesses at runtime to the
appropriate definition under the rules of selective relinking. As such, we provide a replacement
implementation that checks whether the caller is trying to install a SIGSEGV handler; if so, instead
of honoring the request, we store the handler internally and our handler calls it whenever it is
unable to recover from a segmentation fault by fixing one of our fake addresses. We provide
a similar replacement for the legacy signal() function. One other signal-related problem can
occur when an application or library temporarily blocks signals to establish a critical section.
Blocking our handler would cause the critical section to crash if it accessed a global variable,
so we replace sigprocmask() and pthread_sigmask() to leave SIGSEGV alone. Finally, we
replace sigfillset() and sigaddset() to exclude SIGSEGV, which prevents signal handlers
from implicitly masking and unmasking it (via Linux’s sigreturn() helper function14). The
latter replacements are simple enough to make good examples, so we include them in Listing 3.4.
Note that although they may appear recursive, they are not: enforced interposition rebinds their
references to their own names to the external definitions in libc.so.

Another troublesome call is dlsym(), used to manually look up the address of a dynamic
symbol by name. For the same reason we encountered with dlopen() in Section 3.6.1, simply
marking it as uninterruptible would cause it to search the wrong libset. Because it implements
its logic directly in libdl.so rather than deferring to a private dynamic linker interface, we

13We export a minimal and deliberate subset of libgotcha’s functions as dynamic symbols to avoid unexpected
applications of this rule.

14This function is provided by the kernel for direct use by unprivileged code. It is defined in the VDSO (Virtual
Dynamic Shared Object), an emulated shared library that the kernel maps into each processes’s address space.
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int sigfillset(sigset_t *set) {
int res = sigfillset(set);
if(!config_noglobals())

sigdelset(set, SIGSEGV);
return res;

}

int sigaddset(sigset_t *set, int signum) {
if(!config_noglobals() && signum == SIGSEGV)

return 0;
return sigaddset(set, signum);

}
Listing 3.4: libgotcha sigfillset() and sigaddset() replacements

initially assumed it would work fine out of the box; however, when we implemented the warning
about direct accesses to _rtld_global described in that section, we were surprised to find that
dlsym() triggered it. Some investigating revealed that dlsym()was directly taking the dynamic
linker’s big lock for the entire duration of every lookup because, whenever it hands one module
the address of a symbol defined in another, it adds a dependency edge between them to ensure the
definingmodule cannot be unloaded before the referencing one.15 To solve this and prevent many
manual symbol lookups from being uninterruptible, we implemented a dlsym() replacement that
becomes interruptible (by restoring the next libset) and does not take the big lock when it detects
that the calling code’s current libset is not the starting one and that it is looking up a symbol in
some specific other module in that libset. This is safe because such lookups can only modify the
dynamic linker state corresponding to their own libset, and the state changes (or any breakage
caused by pausing or cancellation) will therefore not impact any other libsets.16 Our replacement
function also makes one important tweak to the symbol lookup semantics: if we have a PLOT
entry or fake global address for the requested symbol, we return that instead of its true definition
to avoid creating a backdoor around selective relinking and to preserve pointer comparison. As
part of these changes, we also had to add a dlerror() replacement to report errors encountered
during symbol lookups.

15Technically, there is one other reason for taking the big lock: to prevent a concurrent dlclose() from remov-
ing the defining module and/or corrupting the dependency graph while the symbol search is in progress. Unloading
modules is a rare operation that we currently consider out of scope, so we do not guard against this situation. How-
ever, one feasible approach would be to replace dlclose()with a version that took a libgotcha-local lock to establish
mutual exclusion with symbol lookups without taking the big lock. To avoidmaking symbol lookups uninterruptible,
libset_reinit() could break the local lock in response to cancellation. A simpler option would be a dlclose()
replacement that disallowed unloading modules from libsets other than the starting one; this would have the ad-
ditional benefit of preventing a preemptible function from making a lasting change to the modules available in its
(reusable) libset.

16We currently remain interruptible if it is traversing the entire global search list rather than searching a specific
module, because the symbol might resolve to a definition in the dynamic linker. In this case, the dynamic linker
would add a dependency edge into the starting libset because of the dynamic linker’s special proxying. We suspect
that such searches could safely be made preemptible if one checked the symbol being searched against the dynamic
linker’s symbol table to ensure this outcome was impossible.
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Finally, we encountered one apparent incompatibility between exception handling and dy-
namic linker namespaces. After noticing that Rust panics would crash the programwhen the cur-
rent libset was not the starting one, we discovered that libgcc and libunwind’s implementations
of the _Unwind_RaiseException() function from the C++ ABI (Application Binary Interface)
call glibc’s dl_iterate_phdr() function to find each module’s .eh_frame section containing
metadata about the stack frame address. We then noticed that the latter function only searches
the invoking namespace, which causes unwinding to fail as soon as it encounters a function call
that crossed a namespace boundary. We fixed this by adding a replacement implementation that
extends the search to other namespaces as long it has not yet found the module the caller is
seeking.

Because internal control libraries are within the same module as libgotcha, enforced inter-
position treats them in the same special way. This enables such control libraries to define their
own replacements merely by implementing a function with a well-known name and exporting
it in their dynamic symbol table. By default, all of their own uses of such a symbol refer to the
third-party definition. We recognize that control libraries may need to further wrap our replace-
ment functions instead of overriding them completely, however, so for each symbol name that
libgotcha implements a replacement for, it also exports a symbol libgotcha_name that refers
unambiguously to that replacement. These symbols are local by default to prevent abuse, but any
control library that needs them can configure its build system to change their type before linking
against the libgotcha static library.

3.7.2 Thread-local storage
Selective relinking seeks to isolate global state that would otherwise infect the entire program if
left corrupted or inconsistent by pausing or cancellation. We saw in Section 3.5 that this state
includes global variables and functions (which might be nonreentrant). However, there is a third
class of state that escapes a function’s scope: thread-local variables.

Thread-local variables reside in a memory region known as the TLS (Thread-Local Storage).
This, in turn, is located just before the TCB (Thread-Control Block), a region storing metadata
about the thread (Figure 3.6). The pthreads implementation maintains a pointer to the current
thread’s TCB in the %fs segment register for fast access, so the compiler simply translates refer-
ences to thread-local variables into negative offsets into that segment.17

Unlike the types of state we have seen so far, the desired semantics of thread-local variable
accesses depend on how the control library is using libsets. For some use cases, it may even be
necessary to widen the scope of thread-locals beyond their thread; for instance, this is required to
support pausing code on one kernel thread and then resuming its execution on a different one.
Furthermore, there is no efficient way to consistently make relinking selective based on the mod-
ule relationship between the referee and the referent because TLS pointer calculations do not use
GOT entries and can use hardcoded offsets. But neither is it clear whether the abstraction pro-
vided by any given control library can tolerate a thread-local variable’s apparent value changing

17This is a slight simplification because the layout of the TLS depends on the order in which libraries are loaded,
and therefore is not fully known until runtime. Depending on the thread-local variable’s scope and which module
it is defined in, the dynamic linker may have to determine the offset in the middle of program execution. Each
combination of these two factors constitutes a different access “model,” and causes the compiler to emit a different
sequence of instructions to find the variable.
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TLS N (thread-local storage area, library N)

...

TLS 1 (thread-local storage area, library 1)

TLS 0 (thread-local storage area, library 0)
thread segment register

TCB (thread-control block)

Figure 3.6: Per-thread portion of process image

as soon as the next libset does and while the current libset remains the same, which would make
thread_local variables fail assertions analogous to (2) and (3) from Listing 3.1.

Rather than being opinionated and choosing the wrong stance, libgotcha leaves the scope
of thread-local variables up to the control library. The default is the system behavior, where
thread-local variables are associated with the kernel thread and unaffected by the next libset
(though of course they do depend on the current libset, since the TLS contains a separate copy
of each thread local for each copy of its defining module). However, if the control library instead
wants to tie the scope of “thread”-local variables to that of a custom task abstraction, it may
allocate custom TCBs and swap their pointers into the segment register when switching tasks.
One hazard for this approach is that pthread_self() simply retrieves the TCB pointer from the
thread segment register, so changing it alters the thread’s view of its own identifier. The most
significant consequence of this is that if the thread attempts to send itself a signal (e.g., to support
preemption), the thread ID it passes will be invalid and the operation will fail. To address this, we
provide replacement functions for the arch_prctl() function for updating segment registers18
and the pthread_kill() function for sending signals directed at a specific thread. Respectively,
our replacements store the pointer to the original TCB the installed one is replacing and substitute
the original pointer when they see one saved.

One thing that libgotcha does have to do is restore the TLS upon a cancellation, since failing to
do so might leave it permanently corrupt. A naïve approach would be to do this for every thread’s
TLS, but this could be quite expensive, especially since it would require thread synchronization.
Instead, we observe that each libset is likely to only ever be used by a single thread, and that
threads that never use a particular libset will never reference their TLS areas that correspond

18Although x86-64 processors provide an instruction for updating the segment registers, the operating system
can disable its use by non-supervisor code. The Linux kernel does so to guard against a class of privilege-escalation
bugs, and instead provides a system call for changing segment registers so that it can validate the new location before
applying the update. While a rogue application could avoid our replacement function by calling syscall() instead
of the glibc wrapper function, this is a rare case and a difficult one to guard against.
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libset_thread_set_next()control library call

arch_prctl()change TCB selector

TLS data restorer

if TLS version[libset] out of date

if TLS version[libset] out of date

memcpy()1. restore TLS from snapshot

TLS libset version

2. update TLS version[libset]

Figure 3.7: Lazy TLS reinitialization following asynchronous cancellation and libset reuse

to it. Consequently, we reinitialize TLSes lazily: We allocate a thread-local variable (per TCB,
of course) to track each TLS’s current “version” of each libset. Whenever a control library calls
libset_reinit() to signal a cancellation, we merely increment a separate program-wide ver-
sion watermark for that libset, as shown at the bottom of Figure 3.3. We know that a libset whose
execution has just been cancelled cannot currently be in use by any thread, so we do not need to
do anything further unless and until the libset is reused. We can recognize such reuse because it
begins with the control library passing the libset identifier to libset_thread_set_next(), and
we respond by checking the current TCB’s current version for that library against the watermark.
If the TCB is out of date, we iterate over the TLS’s regions and restore the contents correspond-
ing to modules from that libset using each module’s initialization image in its .tdata and .tbss
sections. Then we update the TCB’s current version for that libset to match the watermark. Of
course, the control library might have multiple TCBs that it uses with the same libset, but we
detect this by following the same procedure from our arch_prctl() replacement function. Fig-
ure 3.7 summarizes the algorithm; note that it is even robust to control libraries that use the same
libset from multiple threads concurrently, as long as they never illegally reinitialize a libset while
it is in use by any thread.

It is important that if a control library switches the TCB, it does not affect libgotcha’s internal
state. Yet libgotcha relies on thread-local variables to store information such as the pointer to the
thread’s original TCB. In addition to the enforced dynamic interposition mechanism described
in the previous section, libgotcha includes a static interposition system whereby it can define
statically-linked replacement functions (not exported to the dynamic symbol table) that apply
throughout its own code but not to the rest of the program, even internal control libraries. This
works because the static linker prefers to link against static symbols provided directly in object
files so that it can avoid generating relocations against the GOT, but given the choice between
(static) symbols in a static library and (dynamic) ones in a shared library, it prefers to link against
the latter (so for internal control libraries, the third-party definition rather than libgotcha’s static
replacement). To insulate its own thread-local variables against TCB changes, libgotcha includes
a static replacement for the dynamic linker’s __tls_get_addr() function that reroutes all its
accesses to its own thread locals to the original TCB for the current thread.19

19There are currently three thread locals that libgotcha deliberately accesses via static offsets from the TCB instead
of using __tls_get_addr(). The first stores the current version counters for each libset, and is truly specific
to the TCB rather than the kernel thread. The other two still correspond to the kernel thread, but are accessed
from assembly by procedure_linkage_override() and its return trampoline, whose implementation is greatly
simplified by being able to access them without calling into C code. One is the thread’s record of the next libset
before the libset switch, which our arch_prctl() replacement manually copies over whenever the control library
swaps in a different TCB. The other is the actual next libset, which is always set to the starting libset while a TCB
swap occurs because of said function replacement, and the trampoline will automatically restore its value from the
aforementioned upon return from the uninterruptible call.



38 CHAPTER 3. NONREENTRANCY AND SELECTIVE RELINKING: THE LIBGOTCHA RUNTIME

3.8 Limitations
Selective relinking successfully mitigates the shared state problem to allow safe forms of asyn-
chronous pausing and cancellation on top of the existing systems stack. That said, we should
emphasize a few shortcomings of our approach:

3.8.1 Portability

Selective relinking is grounded in general principles of dynamic linking and the ELF specification.
The main burden of porting libgotcha to another architecture would be rewriting the assembly
portions (procedure_linkage_override(), its trampolines, and the PLOT stubs), which cur-
rently account for under 300 lines of code. However, porting to another operating system would
be more difficult, as selective relinking requires linker namespaces, which are only available na-
tively on Solaris derivatives and the GNU system (although modern versions of Android’s Bionic
runtime appear to include internal dynamic linker features sufficient to support the namespace
abstraction [4]). And of course, selective relinking is only relevant to dynamically-linked appli-
cations, which precludes its use in embedded systems or with those programming languages that
do not bother to support dynamic linking.

Furthermore, getting libgotcha to run real unmodified applications has required handling
many GNU/Linux-specific features and behaviors. Examples include indirect function calls (Sec-
tion 3.5.1); dynamic linker proxying, glibc-wide shared state, monkey patching, and implicit mod-
ule loading (Section 3.6.1); sigreturn() signal masking, big locks that escape the dynamic linker,
and the interaction between namespaces and exception handling (Section 3.7.1); and thread-local
storage details such as TCB switching and __tls_get_addr()’s interface (Section 3.7.2). As
such, porting to a different dynamic linker and C library would surely require a fair amount of
systems hacking and debugging.

Indeed, libgotcha’s degree of dependence on glibc means that even upgrades can require some
work. We originally developed libgotcha atop glibc 2.29, and we found that both the 2.30 and 2.31
releases introduced breaking changes.20 Fortunately, we have prioritized debuggability through-
out the development of libgotcha, and provide several features to make it less painful. Among
these are a shell script for tracing intercepted function calls and global variable accesses, a GDB
script that automatically loads debugging symbols for namespaces other than the starting one,
environment variables for disabling features that make debugging difficult (e.g., global variable
interception, which generates numerous segmentation faults), and specific workarounds to sup-
port running under Valgrind [60] and Mozilla’s rr reverse debugger [49]. With the help of these
tools, we were able to port to both glibc versions; furthermore, libgotcha subsequently survived

20The 2.30 release stopped accepting position-independent executables as arguments to the dlopen() family
of functions because they can contain COPY relocations that break if they are not present from the start of the
program. As we discuss later in this section, we do not support such relocations anyway. However, we need to
open a copy of the executable in each libset just like any other module, so we work around the change by stripping
the DF_1_PIE ELF flag from the executable using the same approach we use for monkey-patching constructors
(Section 3.6.1). The 2.31 release introduced a dependency between the number of supported namespaces and the size
of the _rtld_global_ro structure. At hundreds of libsets, this caused the member to grow as large as 16 pages,
triggering the symbol size limitation discussed at the end of Section 3.5.2. We responded by increasing the (currently
hardcoded) number of inaccessible pages used to intercept global variable accesses.
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the 2.32 and 2.33 upgrades unmodified.21

3.8.2 Scalability
Although libgotcha is compatible with an unmodified glibc in principle, vanilla glibc builds are
limited to 16 dynamic linker namespaces including the main one. This means that we can only
create up to 15 new libsets, and that a control library can only have this many preemptible tasks
running and/or paused at any time. To raise this limit, we rebuild the glibc sources with an in-
creased value of the DL_NNS macro, which controls the number of supported namespaces. There
is no need to install the resulting runtime on the host system; instead, we supply a custom inter-
preter path when linking any application that needs more libsets. We have tested this configura-
tion up to 512 namespaces, but the setting remains a fixed (glibc) compile-time limit. Removing
the per-process libset limit altogether would require porting libgotcha to work with an alternate
dynamic linker that allocates namespaces at runtime, such as drow [17].

Relatedly, libgotcha itself prepares all libsets at load time, and therefore delays program startup
in proportion to both the number of libsets and the number of modules. The good news is that
doing this work up front significantly reduces the latency at runtime. That said, initializing lib-
sets at runtime would allow control libraries to strike their own balance between startup time and
runtime cost. Selective relinking is not fundamentally incompatible with such a feature, but sup-
porting it would require significant engineering effort, most notably modification of all existing
data structures to support resizing.

Initializing more than a few libsets reveals another scaling limitation in glibc: certain dynamic
libraries include eager relocations that require their thread-local variables to be assigned TLS off-
sets at load time. To support this, the GNU dynamic linker reserves a certain amount of static TLS
space that must be sufficient for all libraries with this requirement across all namespaces. Popu-
lating the libsets multiplies modules’ space requirements, and can quickly exhaust this static area.
Part of the problem is that libgotcha itself includes such relocations to make its assembly portions
easier to write, and since it currently loads copies of itself into each libset, it too contributes to
the increased footprint. When launching a program that must support more than a few libsets,
one must export an environment variable to tune glibc’s static TLS size.

3.8.3 Flexibility
Selective relinking supports all but one of the cross-module dynamic relocation types. All forms of
GLOB_DAT relocations work: global variables, eagerly-resolved function calls, and indirect func-
tion calls. Lazily-resolved function calls via JUMP_SLOT relocations work as usual (including
memoization), except that we must eagerly resolve some of them to determine whether they
represent cross-module calls.

All TLS access modes are supported by swapping out the TCB, although the semantics of
thread-local accesses depend on the control library’s choice of when to do so. Unlike with global

21More recently, glibc 2.34 has consolidated the interfaces formerly exposed by libpthread.so and other files
into a monolithic libc.so. As of this writing, we have not tried to run libgotcha atop this version, but we expect
this major restructuring to require at least minor changes. We suspect the problem is not unique to us: In the more
than six months since the upstream release, most major GNU/Linux distributions have not yet stabilized this version.
This includes distributions such as Arch and Gentoo that are typically known for shipping bleeding-edge packages.
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relocations, selective relinking does not reroute cross-module accesses based on the next libset,
so the control library has the choice between resolving all thread-local variable accesses to their
definition in either the current libset or the next libset at any given time. While either of these
choices might be confusing, thread-local “globals” are quite rare. Of the three such variables re-
maining in glibc’s libc.so, only errno was ever part of its stable interface; even it has been
obsoleted, with the Linux Standard Base long specifying that it is to be defined as a preprocessor
macro invoking the __errno_location() function [44]. The other two are used for commu-
nication between glibc modules, and hold ephemeral state that needs only persist while code is
conducting associated calls to the C library’s DNS-resolution facilities, something that is unlikely
to be split up regardless of the control library’s choice of “thread” isolation boundary.

The only cross-module relocation type we do not support is the COPY relocation, which ex-
ists as an optimization to accelerate the executable’s access to global variables defined in other
modules. It works by having the static linker allocate redundant space for all libraries’ globals
directly within the executable’s file, then asking the dynamic linker to initialize them at load time
by copying the contents of the version in their defining modules. The dynamic linker then sets
all other modules’ GOT entries to refer to the new copies, thereby rendering the libraries’ own
definitions vestigial. Because the definitions are all located within the executable’s module, it can
access them directly using instruction-relative offsets rather than looking up their addresses in
the GOT. However, this transformation breaks selective relinking for three reasons: (1) The eli-
sion of GOT entries from the executable means that we can no longer intercept the executable’s
cross-module accesses to global variables to redirect them to the next libset, causing Listing 3.1
to fail assertion (1) if its code is located in the executable. (2) In performing the setup work, the
dynamic linker assumes that only one copy of the executable will ever be loaded, an assumption
that the libset abstraction violates. (3) Migrating the effective definitions from libraries’ modules
into the executable’s disassociates symbols from their defining library, causing Listing 3.1 to fail
assertion (3) if its code is located in a library. When building a program that depends on libgotcha,
programmers must instruct their compiler to disable COPY relocations, as with the -fpic switch
to GCC and Clang. If libgotcha encounters any COPY relocations at load time, it prints a warning
that the application is unsupported as compiled. Forsaking COPY relocations does incur a small
performance penalty, but exported global variables are rare now that thread safety is a pervasive
concern in system design.

3.9 Evaluation
We benchmarked libgotcha on an Intel Xeon Gold 6130 (Skylake) server clocked at 2.1 GHz and
running Linux 5.4, rustc 1.56.0, gcc 9.3.0, and glibc 2.33.

3.9.1 Microbenchmarks
Recall that linking an application against libgotcha imposes additional overhead onmost dynamic
symbol accesses; we report these overheads in Table 3.1a. Eager function calls account for almost
all of a program’s dynamic symbol accesses: lazy resolution only occurs the first time a module
calls a particular function (Section 3.1.2) and globals are becoming rare (Section 3.8.3).

Table 3.1b shows that the libgotcha eager function call overhead of 15 ns roughly doubles the
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Symbol resolution scheme Time without libgotcha (𝑛𝑠) Time with libgotcha (ns)
eager (load time) 1 ± 0 15 ± 0
lazy (runtime) 95 ± 2 110 ± 3
global variable 0 ± 0 4917 ± 46

(a) Generic symbols, without and with libgotcha

Baseline Time without libgotcha (ns)
gettimeofday() 17 ± 0

getpid() 361 ± 16

(b) Library functions and syscalls without libgotcha

Trigger Time with libgotcha (ns)
Uninterruptible call 25 ± 0

Uninterruptible call + call callback 1813 ± 94
Uninterruptible call + return callback 26 ± 1

(c) Uninterruptible calls triggering a libset switch

Table 3.1: Runtime overheads of accessing dynamic symbols

latency of a trivial C library function (gettimeofday()) and imposes a less than 5% latency over-
head on a simple system call (getpid()).22 This overhead affects the entire program, regardless
of the current libset at the time of the call. Additionally, calls to uninterruptible functions from
outside the starting libset incur just under twice this latency to switch back to themain libset (Sec-
tion 3.6); Table 3.1c shows this figure alongside the cost of notification callbacks (Section 3.6.2).
Notification at the start of a call is markedly more expensive because of the implementation
shortcut described in Section 3.6.2, but is unnecessary for preemptible functions.

3.9.2 Libset initialization and reinitialization
Because libgotcha front loads the work of populating libsets (Section 3.4) and updating GOTs
(Section 3.5), it also inflates application startup time. To measure the extent of this effect, we
preloaded libgotcha into version 1.17.0 of the Deno JavaScript runtime [14], which ships as a
single 81-MB executable that includes the V8 engine [69] and all its other dependencies except
for glibc and libgcc. We measured the execution time of an empty JavaScript program, a good
proxy for startup time because the script starts running mere milliseconds before the process
terminates. We found that with only one libset enabled, selective relinking raises the execution
time from 35 to 122 ms. Figure 3.8a shows how the runtime, memory footprint, and page faults
scale with the number of available libsets.

The default Deno configuration provides a realistic benchmark of libgotcha’s impact on a large
application, but we also wanted to approximate a worst-case scenario. To do so, we rebuilt Deno

22The cost of a system call slipped by an order of magnitude in our benchmarks as a result of the Meltdown and
Spectre mitigations, which require the kernel to unmap its page tables before context switching to user code to guard
against timing attacks. Previously, a system call was approximately three times as expensive as the libgotcha eager
function call overhead.
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with V8 and each of its Rust dependencies compiled as a separate shared library, a configuration
we will refer to as “Dyno.” While Dyno’s executable is only 14 MB, compared to Deno it depends
on 240 additional shared object files whose size totals 268 MB. Dyno takes 4.4x as long to start
without libgotcha, and selective relinking with a single libset slows it down 4.4x over that. We
present its resource scaling behavior in Figure 3.8b.

We also measured the time to reinitialize a libset, as required after the cancellation of an iso-
lated task. In Deno, this takes 167 µs, whereas in Dyno it takes 8039. Note that neither of the
two configurations is ideal for actually making use of libsets: Deno statically links third-party
libraries in the executable, meaning that their internal state will not be isolated. Dyno splits
the build into much more granular linkage units than necessary, incurring noticeable latencies
even without selective relinking. The most useful arrangement for selective relinking would be
a balanced configuration, building only the executable’s top-level dependencies—and any depen-
dencies shared between those—as shared libraries. Such a system would experience libgotcha
overheads somewhere between those for Deno and Dyno, but we expect they would be much
closer to the former.

3.9.3 Thread spawn performance
While evaluating the latency of operations under libgotcha, we encountered a surprising degra-
dation in thread spawn performance. Further investigation revealed that the duration of each
pthread_create() was proportional to the number of libsets we had initialized. The culprit
turned out to be our large static TLS footprint (Section 3.8.2). When allocating a TLS, glibc it-
erates over each module that uses static TLS space, memcpy()s its initialization image from the
.tdata section of its module, and memset()s an area the size of its .tbss section. When spawn-
ing a thread, the new TCB and TLS are merged into the mmap() stack allocation to avoid having
to commit heap space. However, glibc then uses the aforementioned initialization process on
the static portion of the TLS, which immediately faults all its pages and zeroes memory that the
kernel had already cleared. In the case of libgotcha, the performance impact is particularly severe.

We hypothesized that this problem could be solved by initializing the entire TLS at once
with a single copy-on-write mapping. To confirm this, we built a small proof-of-concept library
called libtlsblock that interposes the _dl_allocate_tls() and pthread_create() functions
with wrapper implementations that do exactly that. Our finding, shown in Figure 3.9, was that
this approach incurs a latency overhead of just under 100% for thread spawns at small numbers of
libsets, but that the cost remains flat as the number of libsets increases, with a break-even point
at about 250 libsets. It would be easy to tweak libtlsblock to only activate at this number of libsets.
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Figure 3.8: Effect of libgotcha on process startup
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Chapter 4

Rethinking POSIX safety:
libas-safe and libac-safe

“ ‘Ah! This is obviously some strange use of the word safe
that I wasn’t previously aware of.’ ”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

In this chapter, we explore how the isolation provided by selective relinking can be applied
to make otherwise unsound Unix programs safe. Along the way, we present broken sample pro-
grams that can be automatically fixed with little or no programmer intervention, and discuss
practical applications to real-world systems. Through its presentation of two simple control li-
braries, this chapter also serves as a straightforward example of how to use libgotcha. The insights
from this chapter, both about selective relinking and about POSIX safety itself, will be useful when
we later explain the workings of libinger, a more complicated control library.

The reader will probably not be surprised to learn that the POSIX specification guarantees
that most C library functions are thread safe; that is, assuming they are not explicitly instructed
to use the same resources, it is safe to call them from concurrent kernel threads within the same
process. However, POSIX also defines two less familiar types of safety that become relevant when
an individual thread does something other than execute a single task to synchronous completion
or failure:

Async-signal safety. Async-signal-safe functions are those library functions that can be safely
called from a signal handler that has interrupted a non–async-signal-safe function (or conversely,
can be safely interrupted by a signal handler that calls non–async-signal-safe functions).

Async-cancel safety. Async-cancel-safe functions are those library functions that can be
called by asynchronously-cancelable threads, which we first saw in Section 2.1. One can
ostensibly cancel such threads at any point in their execution; however, POSIX marks almost no
functions as async-cancel safe, so in practice the feature is only useful for threads executing a
compute-bound loop with no I/O or other reliance on the OS.

Along with thread safety, these two classes of safety exist because of nonreentrant interfaces
(functions whose signatures do not expose all of the shared state they use). To understand the
need for these two classes of safety, it is helpful to consider how one might implement a thread-
safe function. For the sake of this discussion, consider the nonreentrant pseudorandom-number
generator rand(), which takes no arguments but returns a random number. Clearly, the function
needs some kind of entropy pool to produce such a number, and since the caller doesn’t provide
it with any information, the rand() function must manage the entropy pool itself. This implies

45
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the function has internal state that is implicitly shared among all its callers. The simplest way
to implement an entropy pool is to feed some seed value to a one-way function, and use the
resulting pseudorandom number as the new seed value. Thus, the entropy pool needs only to
store the current seed value.

It’s easy to see that a trivial implementation of rand() using the aforementioned approach is
subject to data races when used by multiple threads: the function must update the entropy pool
on each invocation, and concurrent accesses may interleave. Establishing thread safety is as easy
as using a thread-local variable to maintain a separate entropy pool for each thread of execution,
thereby eliminating the shared state. Unfortunately, this mitigation is applicable neither to async-
signal safety nor to async-cancel safety: In the former case, there is no analogue of thread-local
variables capable of retargeting data accesses depending on whether a signal handler is running.
In the latter case, a function that mutates state that must be shared between threads is likely
to corrupt such state if cancelled in the middle of writing to it, even if the function employs
concurrency control to prevent data races. (One such example is the malloc() family of dynamic
memory allocation functions, which carve their allocations out of a fixed heap. Although they
take a lock on a portion of the heap while reserving each allocation, cancelling them during this
critical section will result in the lock never being released and the affected portion of the heap
becoming unusable.)

4.1 Establishing async-signal safety: libas-safe
Our approach to automatically establishing async-signal safety is to repurpose selective relinking
to isolate signal handlers from the rest of the program. We do so by running the entire program,
with the exception of uninterruptible library functions (Section 3.6) and custom signal handlers, in
a newly-allocated libset. When handling a signal, we switch to the starting libset before executing
its handler, then switch back before returning to the rest of the program.

As a demonstration of our technique, we have implemented libas-safe, a tiny runtime com-
prising 127 lines of C code that automatically fixes programs whose signal handlers call functions
that are not async-signal safe. To use it, you either preload it at load time or link your buggy appli-
cation directly against it at build time. Note that it only fixes bugs truly arising from async-signal
safety: it will neutralize most resulting undefined behavior, but it will not address logic errors in
the program itself (e.g., a handler’s attempt to traverse a corrupt or otherwise inconsistent data
structure). Furthermore, it is a proof of concept and there are cases it does not bother to handle.
Most notably, it does not isolate handlers for different signals from one another, so programs that
handle multiple signals must ensure the other(s) are masked while any handler that calls unsafe
functions is running.1

To avoid affecting the initialization of the C runtime, libas-safe performs its own setup as
late as possible by replacing libc’s __libc_start_main() function, responsible for calling the
program’s main() function. Because it is an internal control library (Section 3.7), doing so is as
simple as defining a non-static function with that name, which automatically becomes a forced
interposition (Section 3.7.1). Our replacement wraps the libc implementation, but allocates and

1Technically, this stipulation is slightly stronger than necessary, both in terms of scope (all other handlers) and
enforcementmechanism (signal masks). The exact requirement is that no two handlers that both use unsafe functions
can be allowed to interleave their execution.
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switches to a new libset just before jumping to main(). It also registers an uninterruptible return
callback (Section 3.6.2) and checks an environment variable to determine wither to run in verbose
mode and log its actions.

The bulk of libas-safe’s code merely wraps the sigaction() function for installing signal
handlers. We show the replacement for this function in Listing 4.1, slightly simplified for brevity.2
If used to set a signal’s disposition to default (SIG_DFL) or ignored (SIG_IGN) or query the config-
uration of a signal without a custom handler, neither of the conditionals is taken and it defers to
the underlying sigaction() (in this case, libgotcha’s ownwrapper). Otherwise, if the caller is in-
stalling a custom handler, it saves a pointer to the provided handler into the persistent handlers
array and installs its own stub() function as the handler instead; this function expects three
arguments rather than System V’s traditional one, so it sets the SA_SIGINFO flag [61]. If the
caller is querying the configuration of a custom handler, it looks up the handler the program had
requested and furnishes that instead of a pointer to stub().

The stub() function serves as a wrapper for each installed signal handler, and is shown in
Listing 4.2. If the program is interruptible (that is, the next libset is not equal to the starting one),
neither of the conditionals is taken. In this case, the wrapper simply switches to the starting
libset, calls the real handler for the arriving signal, then resets the libset.

Things are more complicated if the signal arrives while uninterruptible code is running, in
which case libas-safe defers invoking its handler until the end of the uninterruptible section. In
this case, stub() takes its else if branch and stores the siginfo_t structure describing the
cause of the signal into the thread-local pending variable.3 It then changes the signal mask of the
calling code to block the signal from arriving and returns without invoking the handler. When-
ever the program becomes interruptible again, libgotcha will invoke the restorer() callback,
also shown in Listing 4.2.

If it finds a deferred signal to deliver, the callback sends the current thread that signal if it is
not already pending (i.e., if it has not arrived again since the instance that prompted us to defer it).
It then uses sigsuspend() to temporarily unblock the signal and atomically wait for its handler
to run. This jumps back to stub(), which now enters its if branch, sets the signal as no longer
deferred, configures it to be unblocked upon return from the handler, and substitutes the saved
siginfo_t for the real one (in case restorer() had to signal the thread). Finally, it calls the
real handler and leaves the starting libset.4 (Note that deferring a signal only works assuming
the handler does not provide a service that is necessary to continue execution. For instance,
it is nonsensical to defer handlers that grow exhausted memory allocations or resolve faulting
addresses, such as libgotcha’s own signal handler from Section 3.5.2. Handlers for signals such as
segmentation fault that cause the architecture to resume by reexecuting the faulting instruction
are more likely to exhibit this property.)

2Compared to our actual prototype, the version in these source listings runs internal libas-safewrapper code with
the same signal mask that the caller requested for its signal handler. This can lead to conflicts between libas-safe’s
own handlers for different signals, or even between its handler for one signal and that handler itself if the caller
installs the handler with the SA_NODEFER flag. Unrelatedly, the depicted version of the sigaction() wrapper does
not roll back its changes if the underlying implementation reports an error.

3Our prototype does not support deferring more than one distinct signal at a time, and always forwards the
siginfo_t corresponding to the first instance thereof to arrive. It follows the semantics of non-realtime Unix
signals and only delivers a deferred signal once, regardless of how many times it occurred while blocked.

4If curious why restoring the libset in this way works, see the sister footnote in Section 3.6.2.
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typedef void (*handler_t)(int, siginfo_t *, void *);

static struct handler_t *handlers;
static bool verbose;

int sigaction(int signum,
const struct sigaction *act,
struct sigaction *oldact) {

handler_t oldact = handlers[signum];
struct sigaction sa;
if(act && act->sa_sigaction != SIG_DFL

&& act->sa_sigaction != SIG_IGN) {
// We have been asked to install a custom signal handler.
if(verbose) fprintf(

stderr,
"LIBAS-SAFE:␣sigaction()␣installing␣signal␣%d␣handler\n",
signum);

memcpy(&sa, act, sizeof sa);
handlers[signum] = sa.sa_sigaction;
sa.sa_sigaction = stub;
sa.sa_flags |= SA_SIGINFO;
act = &sa;

}

// Call the real sigaction().
int status = libgotcha_sigaction(signum, act, oldact);
if(oldact && oldact->sa_sigaction == stub)

// We have been asked to provide the previous configuration.
// Fib that we installed the provided handler, not our wrapper.
oldact->sa_sigaction = oldact;

return status;
}

Listing 4.1: libas-safe’s sigaction() replacement
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static thread_local siginfo_t pending;

static void stub(int no, siginfo_t *si, ucontext_t *uc) {
libset_t libset = libset_thread_get_next();
if(pending.si_signo) {

// It is time to deliver a signal we had previously deferred.
assert(pending.si_signo == no);
pending.si_signo = 0;
sigdelset(&uc->uc_sigmask, no);
si = &pending;

} else if(libset == LIBGOTCHA_LIBSET_STARTING) {
// The program is uninterruptible; we need to defer delivery.
if(verbose) fprintf(

stderr,
"LIBAS-SAFE:␣stub()␣deferring␣handling␣of␣signal␣%d\n",
no);

memcpy(&pending, si, sizeof pending);
libgotcha_sigaddset(&uc->uc_sigmask, no);

// Do not call the handler at this time.
return;

}

libset_thread_set_next(LIBGOTCHA_LIBSET_STARTING);
handlers[no](no, si, co);
libset_thread_set_next(libset);

}

static void restorer(void) {
if(pending.si_signo) {

// There is a deferred signal to deliver.
sigset_t ready;
sigpending(&ready);
if(!sigismember(&ready, pending.si_signo))

libgotcha_pthread_kill(pthread_self(),
pending.si_signo);

sigset_t full;
libgotcha_sigfillset(&full);
sigdelset(&full, pending.si_signo);
sigsuspend(&full);

}
}

Listing 4.2: libas-safe’s signal handler wrapper and control library callback
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While the technique employed by libas-safe makes it easier to write signal handlers in C, this
is not its most exciting application. Async-signal safety is a very specific case that otherwise
sound systems programming type systems have long struggled to handle. Rust is no exception,
and writing signal handlers requires unsafe code. Yet this style of runtime assistance may of-
fer a route to lifting this requirement in situations where the load-time and runtime costs are
acceptable.

4.1.1 Automatically repaired example program
Listing 4.3 shows a small example program whose signal handler illegally calls the printf()
function, which is not async-signal safe. It configures a custom signal handler and an interval
timer that invokes it every 10 µs, then prints a circular spinner to visually indicate that the pro-
gram is making progress. When run on glibc 2.29, the program reliably deadlocks in under 10 s.

The deadlock occurs because main()’s call to fflush() and handler()’s call to printf()
both take a lock on the line-buffered stdout stream. Eventually, the signal arrives during the
critical section within fflush(), causing the thread to block on the same lock it already holds. It
is worth emphasizing that this is undefined behavior that is not guaranteed to cause any problem.
As such, a change introduced in a subsequent glibc release replaced this particular lock with a
“recursive” one that can be locked multiple times by the same thread without blocking. Although
this hides the issue on at least glibc 2.33, it does not fix the program, which remains vulnerable
to future platform changes.

Running the program with the environment variable LD_PRELOAD set to ./libas-safe.so
fixes the deadlock automatically. It does so by resolving the standard library calls and stdout
reference to a different copy depending onwhether they occur inside or outside the signal handler.
In this way, the stream uses two separate buffers guarded by separate locks. Note that this does
alter the stream’s interleaving behavior; however, as the upstream glibc change demonstrates,
these semantics were undefined to begin with.

The program also serves as a demonstration of a second way to fix the problem: instead of
weakening the protection against interleaving writes to the terminal, we can prevent the inter-
leaving function calls from happening in the first place. The libgotcha implementation recognizes
a configuration environment variable that can be used to treat the entirety of libc.so (as op-
posed to only allowlisted functions) as uninterruptible code.5 Enabling both this and libas-safe’s
verbose mode shows that deferring signal arrival also fixes the program’s deadlock. Here is an
example invocation:

$ LD_PRELOAD=./libas-safe.so LIBGOTCHA_SHAREDLIBC= LIBAS_VERBOSE= ./signal
libgotcha notice: Treating entirety of libc as shared code
LIBAS-SAFE: as_safe() initializating...
LIBAS-SAFE: sigaction() installing signal 14 handler
LIBAS-SAFE: stub() deferring handling of signal 14
In signal handler
In signal handler

5We added this feature when we were finalizing the allowlist, as an easy way to eliminate an incomplete allowlist
as a possible cause of program misbehavior. Note that it is intended only for debugging, as it violates libgotcha’s
design assumption that all writeable global variables are private to each interruptible region (Section 3.6).
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static void handler(int ignored) {
printf("In␣signal␣handler\n");

}

int main(void) {
struct sigaction sa = {

.sa_handler = handler,
};
sigaction(SIGALRM, &sa, NULL);

struct timeval tv = {
.tv_usec = 10000,

};
struct itimerval it = {

.it_interval = tv,

.it_value = tv,
};
setitimer(ITIMER_REAL, &it, NULL);

char spinner = '|';
while(true) {

printf("%c\b", spinner);
fflush(stdout);
switch(spinner) {
case '|':

spinner = '/';
break;

case '/':
spinner = '-';
break;

case '-':
spinner = '\\';
break;

case '\\':
spinner = '|';
break;

}
}
return 0;

}
Listing 4.3: Example program with a signal handler that causes undefined behavior
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LIBAS-SAFE: stub() deferring handling of signal 14
In signal handler
In signal handler
In signal handler
LIBAS-SAFE: stub() deferring handling of signal 14
In signal handler
In signal handler
LIBAS-SAFE: stub() deferring handling of signal 14
...

The attentive reader may notice that the signal handler has a second mistake: it does not
save and restore the errno variable, thereby changing its value in the middle of execution and
potentially interfering with error detection or recovery outside the handler. Interestingly, libas-
safe makes this step unnecessary by providing a separate copy of errno (along with the rest of
libc) for the code inside versus outside signal handlers. (Unless, that is, libgotcha is operating in
the special uninterruptible libc execution mode we just saw.)

While this example may seem contrived, it is easy to accidentally introduce this class of bug
into a large application simply by calling a helper function from a signal handler without first ex-
amining its implementation (and that of every function it might call) to verify async-signal safety.
Such issues have been used to conduct arbitrary code execution attacks on widely-deployed soft-
ware, including gaining root access on systems with vulnerable installations of the (setuid root)
Sendmail and GNU Screen servers [74].

4.2 Establishing async-cancel safety: libac-safe
To establish async-cancel safety, we apply selective relinking in a slightly different manner. In-
stead of establishing partial memory isolation between signal handlers and the rest of the pro-
gram, we establish it between each thread and every other. Whenever the program spawns a
new thread, we allocate and install a private libset for it, then enable POSIX asynchronous can-
celability. In this way, every kernel thread in the application except for the main one becomes
cancelable at almost any point in its execution.

Our demo of this approach is called libac-safe, and consists of 119 lines of C that makes threads
asynchronously cancelable. As with libas-safe, it can be either preloaded or linked against like
any other library. And as before, it only fixes problems arising in library functions due to async-
cancel safety, not program logic errors. In addition to observing traditional concurrency control
practices, the developer of an application using asynchronously cancelable threads must exercise
extreme caution when interacting with threads that might be cancelled in this way or accessing
any data structures that such threads modify. Our prototype is experimental and omits important
features such as automatic cleanup of resources allocated by cancelled threads (a topic we will
revisit in Chapters 5 and 6).

As an internal control library, libac-safe works by defining a forced interposition function
(Section 3.7.1) that wraps pthread_create(). As shown in Listing 4.4, the first time the appli-
cation creates a thread, the library bootstraps itself by registering uninterruptible call and return
callbacks with libgotcha (Section 3.6.2). The former callback is invoked any time the thread calls
an uninterruptible function (Section 3.6) and automatically transitions the thread back to the de-
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fault cooperative cancellation mode, wherein certain calls into the C standard library implicitly
check whether there is an outstanding request for the thread to be cancelled. The latter callback
happens at the end of the uninterruptible region, and transitions the thread into preemptive can-
cellationmode oncemore [51]. Once the library has been bootstrapped or on subsequent calls, the
wrapper simply packages up the supplied pointer to the thread’s main function and arguments
along with a newly-assigned libset. It then calls into the real pthread_create(), substituting
the libac-safe main function wrapper() and arranging for it to be passed all of these items.

Listing 4.5 shows the additional initialization and teardown we perform on each thread. Once
libpthread has created the new kernel thread, it runs our wrapper() on it, which configures
libpthread to run the release() handler if the thread ever gets cancelled. It then sets the next
libset to the one allocated for this thread and initializes the locale selections of its copy of libc.6
Then it calls into the thread’s main function. Assuming the thread does not get cancelled, this will
eventually return back, at which point wrapper() will return to the starting libset, set a flag to
indicate that the thread ran to completion, and call the release() handler. This will skip the first
conditional in the latter function, save the libset identifier for future zero-cost reuse by the parent
thread (if it does not already have one saved), and deallocate our packaged thread information.

If instead the thread gets prematurely cancelled, release() will be called and find that the
thread is not tagged as finished, at which point it will leave the thread’s private libset then force-
fully reinitialize it. Thereafter, it proceeds as before. Recall that cancellation will have happened
cooperatively if the threadwas executing uninterruptible code and preemptively otherwise.7 This
respects the selective relinking safetymodel; that is, assuming the allowlist is configured correctly
and glibc’s implementation of cooperative cancellation is sound, cancellation will neither corrupt
the starting libset nor create dependencies between it and any thread’s private libset (Section 3.6).

Notice that, regardless of what is causing the thread to terminate, it attempts to pass its now-
unused libset’s identifier back to its parent for reuse on the next spawn. The decision to reuse
happens in pthread_create()’s call to the alloc_libset() helper function, also shown in
Listing 4.5. This version takes two related implementation shortcuts, neither of which is central
to our approach’s design: (1) Terminating child threads assume their parent still exists and directly
read and write its thread-local reuse record. (2) Each parent thread only remembers up to one
reusable libset,8 so if two or more of its child threads exit in between any two consecutive times
that it spawns, it will leak a libset that the process will never reuse. The correct solution is to use
a pool allocator for libsets, and we will see an example of this in Chapter 5.

In summary, libac-safe makes it possible for Unix applications to use asynchronous thread
cancellation. Thus, developers can now leverage a feature that, as we saw in Section 2.1, was

6Without this thread-specific initialization, calls to ctype.h functions would invoke NULL pointers inside glibc.
The reason we have to invoke it manually is that libpthread does so from within its pthread_create() implemen-
tation, but that (intentionally) happens before we switch away from the starting libset. Third-party libraries do not
receive such special glibc initialization treatment; instead, their ELF constructors handle setup. Technically, a direct
call into __ctype_init() as shown in the listing will not work because libac-safe’s status as an internal control
library means that its calls only ever resolve back into the starting libset (Section 3.7). Instead of using a simple
function call, it uses an additional libgotcha API to look up the specific function pointer for the allocated libset in the
shadow GOTs, then makes an indirect call.

7The current implementation unnecessarily reinitializes the libset following cooperative cancellation. One could
avoid this by setting the finished flag in the cooperative() callback, then unsetting it again in preemptive().

8Because child threads do not atomically update the parent’s variable, the implementation does not guarantee
which libset will be reused in case of a tie. This is still safe because all contending libsets are valid for reuse.
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static thread_local libset_t reuse;

struct wrapper {
void *(*fun)(void *);
void *arg;
bool finished;
libset_t libset;
struct reuse *parent;

};

int pthread_create(pthread_t *thread,
const pthread_attr_t *attr,
void *(*fun)(void *),
void *arg) {

static bool bootstrapped;
if(!bootstrapped) {

libset_register_callback(cooperative);
libset_register_returnback(preemptive);
bootstrapped = true;

}

struct wrapper *args = malloc(sizeof *args);
args->fun = fun;
args->arg = arg;
args->finished = false;
args->libset = alloc_libset();
args->parent = &reuse;
return pthread_create(thread, attr, wrapper, args);

}

static void cooperative(void) {
pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);

}

static void preemptive(void) {
pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);

}
Listing 4.4: libac-safe’s pthread_create() replacement and control library callbacks
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static void *wrapper(wrapper *wrapper) {
pthread_cleanup_push(release, wrapper);

libset_thread_set_next(wrapper->libset);
__ctype_init();

void *res = wrapper->fun(wrapper->arg);

libset_thread_set_next(LIBGOTCHA_LIBSET_STARTING);

wrapper->finished = true;
pthread_cleanup_pop(true);
return res;

}

static void release(void *wrapper) {
if(!wrapper->finished) {

libset_thread_set_next(LIBGOTCHA_LIBSET_STARTING);
libset_reinit(wrapper->libset);

}
if(*wrapper->parent != LIBGOTCHA_LIBSET_STARTING)

// Our parent thread does not already have a libset to reuse.
*wrapper->parent = wrapper->libset;

free(wrapper);
}

static libset_t alloc_libset(void) {
if(reuse != LIBGOTCHA_LIBSET_STARTING)

// This thread has a leftover libset to reuse.
return reuse;

else
// We have to use a fresh one.
return libset_new();

}
Listing 4.5: libac-safe’s thread initializer and cleanup handler
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practically useless out of the box. The library also makes a good case study of a libgotcha control
library for which it is correct to adopt the default behavior of tying TCBs to kernel threads (Sec-
tion 3.7.2), since the kernel thread corresponds to the unit of cancellation, and therefore memory
isolation as well. Because of this, libgotcha does not need to reinitialize TLS areas, as they are
specific to each thread and not reused with the libset.

4.2.1 Program repaired with the help of our system
Listing 4.6 shows an only slightly contrived example program that tries to use asynchronous
thread cancellation. It attempts to simulate performing a large number of cancelable DNS lookups:
The main thread starts by performing a reverse lookup on a link-local IPv4 address (in order to
populate a socket address structure). It then enters an infinite loop, each iteration of which up-
dates a circular spinner to indicate that the program is making progress,9 spawns a thread to
resolve the hostname back to an address, cancels the thread, and joins on it before spawning the
next. Each time a thread terminates prematurely, the loop increments a success counter; each
time one runs to completion, it prints out the current counter and the hostname the thread was
passed. Upon creation, each thread immediately sets itself as asynchronously cancelable, per-
forms a forward DNS lookup, and exits.

The program does not work. Asynchronous cancellation both fails to interrupt some of the
threads (likely due to the proximity between the call and a library function that performs system
calls) and eventually deadlocks the program, as indicated by the spinner becoming frozen. Here
is the output of a representative run, which lasted under three seconds before hanging:

69437 localhost
75670 localhost
128996 localhost
-

Running the program with the environment variable LD_PRELOAD set to ./libac-safe.so
almost fixes the problemwith no programmer intervention. All of the threads are cancelled before
they can complete, and the only problem is that each of the calls to getnameinfo() allocates a
new file descriptor that is leaked upon the thread’s death. Eventually, this results in the program
crashing because it has too many open file descriptors.

After adding a cleanup handler, the program runs apparently forever without deadlocking,
allowing any of the threads to finish, or leaking file descriptors. The cleanup handler is as follows,
and is registered from thread() using the pthread_cleanup_push() function as in Listing 4.5:

static void handler(void *ignored) {
{

close(STDERR_FILENO + 1);
}

9We implement this as in Section 4.1.1.
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#define NAMESZ 10

struct args {
socklen_t addrlen;
const struct sockaddr *addr;
char name[NAMESZ];

};

static void *thread(struct args *args) {
pthread_setcanceltype(PTHREAD_CANCEL_ASYNCHRONOUS, NULL);
getnameinfo(args->addr, args->addrlen, args->name, NAMESZ, NULL, 0, 0);
return NULL;

}

int main(void) {
struct addrinfo *ai;
getaddrinfo("127.0.0.1", NULL, NULL, &ai);

struct sockaddr_storage sa;
socklen_t salen = ai->ai_addrlen;
memcpy(&sa, ai->ai_addr, salen);
freeaddrinfo(ai);
ai = NULL;

struct args args = {
.addrlen = salen,
.addr = (struct sockaddr *) &sa,

};
char spinner = '|';
unsigned cancelled = 0;
while(true) {

print_and_advance_spinner(&spinner);

pthread_t tid;
void *res;
pthread_create(&tid, NULL, thread, &args);
pthread_cancel(tid);
pthread_join(tid, &res);
if(res != PTHREAD_CANCELED)

printf("%d␣%s\n", cancelled, args.name);
else

++cancelled;
}
return 0;

}
Listing 4.6: Example program using asynchronous thread cancellation
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Chapter 5

Function calls with timeouts, revisited:
the libinger library

“ A half-read book is a half-finished love affair. ”
— David Mitchell, Cloud Atlas

In Chapter 2, we introduced and motivated lightweight preemptible functions, a novel con-
currency abstraction pairing synchronous invocation with preemption. At that time, we covered
the design principles underlying the API for managing preemptible functions; in this chapter, we
discuss the API itself in more detail and the design and implementation of libinger, the library
that provides preemptible functions.

We start by giving the full libinger C interface in Listing 5.1. The launch() and resume()
functions work as already described: the former creates a new preemptible function and lets it
run on the caller’s thread for the specified number of microseconds (which may be zero), and the
latter resumes a preemptible function that had become paused after exhausting its time budget.
The new cancel() function allows the caller to discontinue a paused preemptible function rather
than allowing it to run to completion. Finally, the pause() function may be called from within
a preemptible function to cooperatively yield. It immediately pauses the function and returns to
its caller, just as if the function had been preempted.

The Rust interface appears in Listing 5.2 and differs in several important ways:

struct linger_t {
bool is_complete;
cont_t continuation;

};

typedef void (*Function)(void *);

linger_t launch(Function func, uint64_t time_us, void *args);
void resume(linger_t *cont, uint64_t time_us);
void cancel(linger_t *cont);
void pause(void);

Listing 5.1: Preemptible functions extended C interface

59
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// Tagged union
pub enum Linger<T> {

Completion(T),
Continuation(Continuation),
Poison,

}

pub fn launch<T: Send>(func: impl FnOnce() -> T + Send,
time_us: u64) -> Result<Linger<T>>;

pub fn resume<T>(func: &mut Linger<T>,
time_us: u64) -> Result<&mut Linger<T>>;

pub fn pause();

impl<T> Linger<T> {
pub fn yielded(&self) -> bool;

}

// Destructor
impl Drop for Continuation { ... }

Listing 5.2: Preemptible functions Rust interface

Closure support. We leverage Rust’s first-class closures to enable the caller to pass to launch()
a function that captures state from its environment. We expect the caller to provide any inputs to
the function in this manner. Unlike with the C interface, there is no need to wrap the arguments
in a struct when there are multiple, or to pass an empty value when there are none.

Type safety. The aforementioned interface change means that the Rust wrapper functions do
not erase the types of the preemptible function’s parameters by diluting them to a void *; thus,
the preemptible function does not have to perform an unsafe cast before using them, and the com-
piler can still type check the program. Furthermore, both launch() and resume() are generic on
the preemptible function’s return type: instead of a linger_t, they return a tagged union. Once
the preemptible function runs to completion, the caller may destructure this type to retrieve the
function’s return value. Because the union is tagged, it is impossible to destructure it to retrieve
the return value unless the function has truly run to completion.

RAII. Our Rust interface adheres to the RAII (Resource Allocation Is Initialization) idiom, al-
lowing continuation deallocation to happen automatically. Unlike the C interface, the Rust one
has no cancel() function; instead, its continuation objects implement the language’s Drop trait.
Whenever a continuation goes out of scope without being consumed by running to completion,
the language calls its destructor, which implicitly performs a cancellation.

Safe concurrency. The launch() function requires that the preemptible function closure im-
plement the language’s Send trait, which is true provided that all of the values it captures have
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this trait. In Rust, a type is Send if and only if ownership of it can be safely transferred between
threads. This includes all objects that do not contain any references, as well as those that do but
only to data that is safe to access concurrently (Sync in Rust parlance) [55]. This restriction on
the closure means that any attempt to share state between a caller and its preemptible function
without the use of appropriate concurrency control will fail at compile time.

Flexibility. The requirement that Rust preemptible functions be Send is similar to the restric-
tions imposed by the standard library’s thread spawn() interface. However, launch() differs
in an important way: unlike a thread, a preemptible function is not restricted to the ’static
lifetime, and so is able to accept references to local variables and other dynamically-allocated
data. In contrast, attempts to transfer such references to a thread would result in a compile error.
What makes it safe to use all lifetimes with preemptible functions is the fact that they execute
synchronously, and therefore cannot outlive the calling context without first becoming paused.
If a preemptible function times out, the Rust compiler knows the lifetime of any references it has
captured, so any attempt to pass the paused closure to a scope where its shared data no longer
exists will be met with a compile error.

Composability. In addition to the closure being Send, the opaque Continuation type is as
well. This means that a preemptible function can be launched on one thread, become paused,
then be moved to another thread and resumed there. Applications may use this trick to move
long-running tasks off the critical path, but it is especially important for implementing thread
libraries. In fact, as we will see in Chapter 7, it makes it easy to implement preemptive thread
libraries in userland.

5.1 Shared responsibility for concurrency control
The preceding points about concurrency restrictions in the Rust API may seem incongruous with
Chapter 3, which spent dozens of pages introducing selective relinking, a technique billed as
solving the concurrency perils of preemptible functions. In fact, that runtime exists to address a
completely separate (but equally critical) problem.

Adding preemptible functions to an application actually introduces two distinct forms of con-
currency. Both stem from the fact that code within the same thread is now allowed to interleave
its execution at almost entirely arbitrary points, but they differ in whether the code in question
can possibly anticipate this problem, and therefore have any hope of addressing it.

First, there is concurrency involving the libraries that the program depends on, many of which
were probably authored by third parties. Although such libraries now execute concurrently with
preemptible functions by virtue of being used from the same kernel thread, they conceptually
“predate” preemptible functions’ existence; that is, they cannot even be expected to be aware
of this concurrency. The job of libgotcha is to reconcile this, first by establishing an isolation
boundary between each library (and the executable, for that matter) and the rest of the program,
and then by deferring preemption where shared state is still unavoidable.

Separately, there is concurrency involving the code that uses the preemptible functions ab-
straction (i.e., implements and invokes preemptible functions). Not only can this code take mea-
sures to ensure this concurrency is safe: it has to be the one to do so. This is because there is often
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a legitimate need to explicitly exchange information between a preemptible function and the sur-
rounding program, in which case the possibility of interleaving must be directly confronted. As a
simple example, consider a preemptible function that is populating some data structure for later
use by the rest of the program. Imagine that the function exhausts its time budget and the appli-
cation is running behind schedule and opts to cancel it. Should the application need to retrieve
the work done so far, it must use its knowledge of how the preemptible function mutates the
data structure to individually validate each portion thereof before trusting it to be in a consistent
state. (The preemptible function can make this easier by exposing a record of its progress that
indicates what parts of its data structures are consistent.)

Even without using cancellation, the traditional hazards of concurrency arise, just as they
do with state-of-the-art abstractions. This problem space has long posed a challenge to systems
programmers, and we do not pursue any novel solution. When using the C interface, the pro-
grammer bears complete responsibility for writing code that is free of data races. Our Rust API,
however, leverages that language’s first-class concurrency support so the compiler can catch such
mistakes.

5.1.1 Locking and deadlocks
While the Rust compiler rejects all code that shares state unsafely, it is still possible to introduce
correctness bugs such as deadlock [57]. This is nothing new, a common cause being an ordinary
function blocking on a mutual-exclusion lock that is already held by its caller. But it is especially
easy to make this mistake with preemptible functions. The developer must remember that each
preemptible function runs on the same thread as its caller, so blocking is not a legitimate way for
a preemptible function to synchronize except with independent threads.

Still, it is sometimes necessary for a preemptible function to protect a non-atomic resource
from other code on the same thread. This is possible to do with yielding. When a preemptible
function needs to acquire a mutex, it should use a try lock operation instead of a blocking lock.
If it fails to acquire exclusive access, it should call pause() and wait for the caller to reschedule
it at a later time when the resource is hopefully available. To make this more ergonomic, one
could easily build a custom mutex type that used this algorithm to implement its “blocking lock”
operation when called from a preemptible function.

The Rust API includes a yielded() method that the caller can use to determine whether
a preemptible function paused cooperatively. This can be used to implement the equivalent of
deadlock detection for situations where multiple preemptible functions are contending for a re-
source.

5.2 Launching a preemptible function
Invoking the launch() wrapper function with a nonzero time limit does the following:

1. Allocates and installs a private thread control block specific to the preemptible function
(Section 5.3)

2. Captures a snapshot of the kernel thread’s execution context (Section 5.4)
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3. Allocates and switches to a private execution stack specific to the preemptible function
(Section 5.5)

4. Allocates a preemption signal specific to the kernel thread (Section 5.6)

5. Records a timestamp shortly before invoking the preemptible function (Section 5.7)

6. Allocates and switches to a private libset specific to the preemptible function (Section 5.8)

7. Invokes the preemptible function (Section 5.9)

Several of these steps involve allocating resources assigned to each preemptible function.
Some of these allocations are slow as currently implemented, but the resources are reusable once
a preemptible function has completed or been cancelled. We use pool allocators to automatically
reuse released resources when available. To take expensive operations off the critical path, some
of the allocators preallocate a number of instances up front.

The following sections discuss each of the preemptible function invocation steps in detail.

5.3 Thread control blocks
As discussed in Section 3.7.2, libgotcha leaves it to control libraries to decide the scope of thread-
local variables. However, the preemptible functions Rust API constrains libinger’s choice in the
matter. Because the Continuation type is Send, preemptible functionsmay resume execution on
a different thread than they were running on before becoming paused. To prevent their thread-
local variables from changing out from under them, we therefore associate thread-local variables
with the preemptible function instead of the thread. Application programmers should be aware
that, unlike global variables, thread locals’ values are not shared between a preemptible function
and its defining module.1

To allocate a thread control block, libinger calls the dynamic linker’s _dl_allocate_tls()
function (the same one used by pthread_create()). This function creates a TCB and accom-
panying TLS area, but only initializes the latter. Unfortunately, there are a few TCB fields that
must be initialized for the thread to operate properly, so libinger manually sets those.2 It then
calls __ctype_init() to select the correct ctype.h implementations for the locale. Thread con-
trol blocks are one of the resources it pool allocates and reuses unless a preemptible function is
cancelled. This choice was informed by the expense of allocating TCBs as seen in Section 3.9.3;
however, it is possible to instead reduce this cost using a technique like the one we prototyped
in that section.

To install the TCB, we need to load it into the thread segment register using arch_prctl().
This is one of the functions that libgotchawraps (Section 3.7.1); since libinger is an internal control
library, it calls libgotcha_arch_prctl() instead to also notify libgotcha of the change.

1Users of thread pools built on top of preemptible functions need not be aware of this detail, or even of preemptible
functions. This is because thread pool users must already assume their task will be scheduled on a different thread
than the code that submitted it.

2Two of these are self-referential pointers back to the beginning of the TCB: one is for finding the TLS area (which
is located just before the TCB), and one is the thread identifier returned by pthread_self(). There is also a pointer
guard field that glibc uses to decode some of its internal pointers that are mangled as an exploit mitigation, and a
field containing the kernel’s thread identifier.
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5.4 Execution contexts
The Continuation type inside a paused preemptible function must contain enough information
to resume the function’s execution from where it left off, which could be any program point be-
cause we interrupt asynchronously. To capture a snapshot of themachine registers, we use POSIX
contexts, amechanism for non-local jumps. Unlike the better known setjmp()/longjmp() inter-
face from the C standard, POSIX contexts permit capturing an execution snapshot on one thread
and resuming it on another.

One of launch()’s early actions is to snapshot its own execution context. It keeps this snap-
shot available while the preemptible function is running; if the function times out, libinger will
use the snapshot to jump directly back into launch() (or resume()), which will populate the
Continuation type and return it to the caller.

5.4.1 Using POSIX contexts safely
Any nontrivial use of the POSIX contexts interface requires some surprisingly subtle boilerplate
code. Like the setjmp() function, the getcontext() function can return multiple times: it al-
ways returns once when the snapshot is initially captured, but each subsequent restoration of the
context causes it to return again. Unfortunately, it provides no indication of whether it is return-
ing for the first time, even though the caller almost always needs to know. For instance, we only
want to launch the preemptible function after we capture the snapshot, not after it is restored (in
which case we want to package the Continuation and return). A simple boolean flag does not
work because the compiler is likely to store it in a register, so any updates after the capture will
be undone by the restore. At a minimum, one must store the flag in a volatile variable [24].

In C, getting the flag right would be enough boilerplate to use the context, as long as we did so
sensibly. However, RAII in languages such as Rust makes it very easy to implicitly create memory
corruption. Consider the example in Listing 5.3, which is correct as written but deceivingly brittle.
It prints:

Snapshot was captured!
About to restore snapshot!
Snapshot was restored!
Deallocating `closure`, `capturing`, and `snapshot`!

The closure here is of type Fn(&ucontext_t) -> (), which means it takes a reference to a
POSIX context and returns nothing. However, changing the code in the closure might affect that
type. For example, imagine we had a type OneTimePadded for storing data that could only be
unwrapped once. We might want closure to capture such a value and “decode” it:

let secret = OneTimePadded::from("About␣to␣restore␣snapshot!");
let closure = move |snapshot| {

println!("{}", secret.into_inner());
setcontext(snapshot);

};

If we make this substitution, the code still compiles. The program’s output describes when
the existing variables go out of scope, but how about the new secret variable? Recall that it
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unsafe {
// Closure that runs once right after we capture the snapshot
let closure = |snapshot| {

println!("About␣to␣restore␣snapshot!");
setcontext(snapshot);

};

// Flag to track whether we are capturing or restoring the snapshot
let mut capturing = Volatile::from(true);

// Checkpoint the program
let mut snapshot = MaybeUninit::uninit();
getcontext(snapshot.as_mut_ptr());

if capturing.read() {
println!("Snapshot␣was␣captured!");
capturing.write(false);
closure(snapshot.assume_init_ref());

} else {
println!("Snapshot␣was␣restored!");

}

println!("Deallocating␣`closure`,␣`capturing`,␣and␣`snapshot`!");
}

Listing 5.3: Subtly unsound use of POSIX contexts from Rust
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can only be unwrapped once; therefore the secret.into_inner() call consumes it (by taking
ownership). When that call returns, it will go out of scope and its destructor will be invoked.
This should be troubling: we said earlier that closure was in scope until the end of the unsafe
block, so it would seem that closure would have to live that long as well (so that secret would
still be deallocated if closure were never called).

In fact, the Rust compiler is aware that the closure “uses up” its captured variable. The
most important implication of this is that the closure can never be called more than once, so
the compiler has changed its type to FnOnce(&ucontext_t) -> (). As with our imagined
into_inner() method, calling a FnOnce closure consumes the closure. For this reason, the
scope of closure has changed and it now gets deallocated either when it is called or at the
end of the unsafe block, depending on which branch is taken. Unfortunately, when we restore
the snapshot, Rust does not know that the if has already been taken, so it assumes it is in the
latter situation and deallocates closure at the end, calling secret’s destructor in the process.
If secret includes any heap-allocated memory, this is a double free. Note that this unsound-
ness was introduced not because closure now captures a variable, but because it consumes that
variable.

Programmers might need to write preemptible functions that consume variables, so we want
to support this case. In order for launch() to safely accept a FnOnce, however, we need to fix the
potential double free. To do so, we need to make Rust “leak” closure in the else branch. We can
do this by passing it to the standard library function mem::forget(), which takes ownership of
its argument but wraps it in an untagged union so the compiler is unable to invoke its destructor.
Doing so will leak any of closure’s locals or captured variables that are still in scope when it
called setcontext(), so it should make sure to explicitly deallocate them before doing so by
calling the standard library function drop().3 The libinger implementation is careful to do this
with its internal variables, but the preemptible function cannot because pausing is preemptive
and can occur at any point in its body (or that ofmost functions it might call). If it is eventually run
to completion, all its variables will go out of scope normally. Alternatively, it might be cancelled
before this happens (Section 5.11).

A more obvious thing that a user of POSIX contexts can do wrong is to restore a snapshot
after the function that captured it has returned. This is undefined behavior because the stack
may have been clobbered, taking with it any local variables and the return pointer. To avoid
this and the above problems with the flag and destructors, libinger encapsulates boilerplate code
with the solutions we have developed into a getcontext() wrapper function that restricts the
scope of the snapshot to that of a callback function (called in the same place as closure from the
example):

fn getcontext(callback: impl FnOnce(&ucontext_t) -> ())

Sometimes the safety of this interface is too restrictive for libinger’s needs. For instance, when
a preemptible function times out, the continuation that launch() returns to its caller contains a
POSIX context. If the caller ever calls resume() on the continuation, we must graft a new return
point onto the context before restoring it to remove its dependency on the stack frame of the
launch() call that has since returned. Restoring a context in this way is not safe in general:
as we will see in the next section, it requires careful management of multiple execution stacks.

3The reader might notice that this will leak the closure itself. This is inconsequential unless the closure was
allocated on the heap, in which case the disclaimer from Section 5.11 applies.
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Rather than try to catch this class of bugs at compile time, we compile extra runtime checks into
debug builds of libinger that validate the stacks and return point before restoring each context.

One final danger when using POSIX contexts from Rust is that the glibc implementation of
the ucontext_t structure contains a self-referential pointer to the floating-point context. This
can cause surprising undefined behavior with contexts allocated on the stack, because the Rust
compiler assumes that it is safe to move objects in memory; however, this glibc implementation
detail means that doing so invalidates the pointer. To work around the issue, our setcontext()
wrapper function fixes up the self-referential pointer just before restoring the passed context.
Since we implemented this part of libinger, Rust has introduced a Pin wrapper type for statically
expressing that certain operations are only safe on objects that are allocated at a stable address.
Instead of our approach, one could employ this feature to make such unsound calls impossible.

Ensuring that our use of POSIX contexts is free of undefined behavior has been the most
challenging part of implementing libinger. The static and dynamic checks described in this section
provide a measure of confidence (but not a full proof) that the current implementation is sound,
and have also served as an indispensable tool for debugging past errors.

5.5 Execution stacks
When a preemptible function times out, libinger returns a continuation object. The caller might
pass this object around the program while the function is paused, then later call resume() from
a different stack frame. Were libinger not careful, this would be equivalent to restoring a POSIX
context whose stack frame had already returned. To avoid this unsoundness, launch() allocates
a dedicated execution stack and switches to it before calling the preemptible function.

Figure 5.1 shows the frames of both stacks just after we have transferred control to the user-
supplied preemptible function F (). Note that the preemptible function can call functions nor-
mally, but that if it finishes and returns, it will reach the bottom of its stack. We need a return
to transfer control back to launch() (or resume()), so we must plant a “return” address within
one of those functions’ code at the bottom of the preemptible function’s stack. To do this, we
use the makecontext() convenience function, which patches a POSIX context with a dedicated
stack so that it restores another context when it returns. We use the snapshot we captured before
switching stacks (Section 5.4) as the context to restore. This means that execution proceeds from
the same point in launch() or resume() regardless of whether the function returned normally
or timed out.

If the function becomes paused, we store its stack in the Continuation alongside the TCB so
neither gets released until the program is done with the preemptible function. It is infeasible to
relocate a stack in virtual memory while a preemptible function is paused, so libinger currently
preallocates large 2-MB stacks to avoid having to resize them (as this should be large enough
for any function that does not stack allocate large locals). As an implementation shortcut, it
currently allocates the stacks with malloc() and uses a pool allocator to preallocate and reuse
stacks (regardless of whether the preemptible function ended in cancellation).

Neither of these limitations is fundamental. If one wanted to avoid preallocating stacks to
reduce startup time and physical memory requirements, one could allocate stacks with mmap()
to avoid faulting the pages. This technique would also allow one to make resizeable stacks by
requesting even “bigger” stacks that would expand to meet functions’ needs (up to some fixed
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Caller’s stack:

...

launch()

Preemptible function’s stack:

[bottom]

F()[caller]

Figure 5.1: The stacks just after the preemptible function F () has been invoked

maximum size) using demand paging. If one needed truly “boundless” stack sizes, one could place
an unmapped guard page at the top of each stack; if the stack tried to grow into this space, one
would allocate another stack somewhere else and chain them together with another synthetic
return address.

5.6 Signal-based preemption

The defining feature of preemptible functions is that they can be interrupted at any point. We
implement this external interruption using POSIX interval timers. The launch() function calls
timer_create() to request that the kernel enable fine-grained timer interrupts and periodically
signal the process. When the signal arrives, control transfers to a handler function in libinger
that may decide to pause the preemptible function or let it continue running. Unfortunately, the
signal is process-directed and gets delivered to an arbitrary thread, not necessarily the one that
is running the preemptible function.

To achieve thread-directed signaling, launch() allocates the current thread a signal number
from a pool. We use the assigned signal to interrupt this specific thread. Once the thread is
no longer running a preemptible function, we can release the signal for use by a different one.
Of course, the signal might still be received by an unintended thread, so the first thing that our
signal handler does is check whether the arriving signal is assigned to the current thread; if not,
it blocks the signal on that thread. After as many time periods as the application has threads,
this approach converges to delivering the signal only to its corresponding thread. Convergence
is even faster when reusing a signal from the pool, as it will already have been blocked by all
except one of the threads that existed when it was last used.

A limitation of this design is that the number of kernel threads running preemptible functions
at any given time cannot exceed the number of different signals that the operating system pro-
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vides. Linux currently has 31 standard signals, of which libinger uses up to 16 for preemption.4
It currently assumes that the process will not use any of these signals for other purposes, but
detecting other uses would be as simple as adding enforced interposition wrapper functions for
signal() and sigaction() (Section 3.7.1).

If a signal arrives in the middle of a system call, the system call aborts and returns an error
code. This is unacceptable because it would mean that moving code into a preemptible func-
tion would introduce spurious error returns from C library and POSIX functions, which the
preemptible function would then have to handle. When we install our signal handler, we use
sigaction()’s SA_RESTART flag to request BSD signal semantics. This hides the signal arrivals
from the preemptible function by making most standard library functions transparently retry in-
terrupted system calls. The read() and write() families of functions change their behavior in
this configuration: blocking calls that have already transferred some data when the signal arrives
will return early, reporting successful completion and the number of bytes processed. Program-
mers using these interfaces should already defend against the possibility of short counts, so this
should not affect correct programs but might expose existing bugs. There are also some functions
that still exit with an interruption error code; see Section 5.10 for further discussion.

5.6.1 Interval length and accuracy

We have described our preemption mechanism, but the question remains of how frequently the
signal handler should check whether the preemptible function has timed out. For simplicity,
libinger currently uses a single fixed scheduling quantum (timer signal interval) across all pre-
emptible functions.

Before choosing the quantum to use, we were curious how short an interval was achievable
with Linux signals on modern high-precision CPU timers. We ran an experiment to determine
the effect of a POSIX timer’s period on its accuracy. To measure accuracy, we wrote a small
test program that installs a signal handler and configures a POSIX timer to trigger it every 𝑇 µs.
Ideally, this handler would always be called exactly 𝑇 µs after its last invocation; we measured
this duration and recorded the observed deviations from 𝑇 over 65,535 iterations. Repeating this
for various values of 𝑇 showed that the variance is smaller than 0.5 µs for 𝑇 ≥ 3 µs, although it
exhibits a warmup effect after configuring (or reconfiguring) the timer.

Of course, at a quantum of 3 µs, the CPU will be wasting much of its time on signal han-
dling. To assess the overhead of various quanta, we wrote another test program that repeatedly
computed SHA-512 sums over 64 B of data at a time. We subjected this program to SIGALRMs gen-
erated by a POSIX timer, varying the quantum and observing the resulting hashing throughput.
Figure 5.2 shows that by a quantum of about 20 µs, throughput had reached 90% of baseline.

This study shows that it is feasible to support preemption at granularities in the tens of mi-
croseconds, up to two orders of magnitude faster than Linux’s default 4-ms scheduling quantum
for processes. However, it has been our experience that such small quanta pose a headache during
development because they overwhelm debugging tools such as GDB and Valgrind, causing them

4This limit could be roughly tripled by using POSIX real-time signals, although we have not attempted
this because they have slightly different behavior [62]. Alternatively, glibc on Linux offers a nonstandard
SIGEV_THREAD_ID configuration parameter for directing timer signals at a specific kernel thread; this could be
used to remove the limit (and the pool allocator) entirely [67].
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to become unresponsive to user input (even if configured not to deliver the signal to the target
program). To avoid such problems, libinger currently adopts a “compromise” quantum of 100 µs.

The quantum determines how small a timeout libinger can enforce for a preemptible function.
Note that the quantum represents the duration by which a preemptible function might exceed its
prescribed timeout: in the worst case, it will exhaust its time budget infinitesimally long after the
handler has interrupted it, and therefore not be paused until one full quantum later (assuming
the timeout is not so short that the timer is still in its warmup stage).

Competing preemption systems sometimes direct timer signals to a central “watchdog” thread
that checks whether any tasks are in need of interruption and forwards a signal to the kernel
thread of each that does. This avoids reducing each preemptible function’s compute throughput
at the expense of sacrificing one CPU core. We instead opted to use per-thread timer signals
for two reasons: First, assuming most preemptible functions achieve over 90% of their baseline
throughput as predicted by our benchmark, it would take more than nine cores constantly run-
ning preemptible functions to break even by committing a watchdog core. Second, although
such a design may permit preemption quanta in the single-digit microseconds, the gains would
be less in practice because moving the decision to pause to a watchdog core would increase the
worst-case timeout overrun by the latency of propagating the signal between cores. Recent mea-
surements place this latency at just under 5,000 cycles on Linux, which on a 2-GHz processor
already represent almost 10% of the quanta achievable with marginal throughput cost. Worse,
the sender thread incurs almost half of this latency [35], meaning the effect could compound on
the watchdog thread and add to the overrun of other preemptible functions as well. That said,
if an application could not cope with the throughput cost posed by our approach, would bene-
fit from dropping the preemption quantum by one additional order of magnitude, or found our
signal pool to constrain its scaling, it could revisit this design decision.

The use of a fixed quantum is not fundamental. One alternative option is to adjust the quan-
tum based on the magnitude of the requested timeout, so that the preemptible function pays
a compute overhead proportional to the precision of its time budget. To be effective, this may
require collecting per-machine profiling data on signal timing characteristics. A separate en-
hancement that would benefit longer-running preemptible functions while still delivering very
accurate preemption is to configure a non-repeating timer to trigger a single signal shortly be-
fore the function was scheduled to time out, then have the handler reconfigure the timer to repeat
with a small quantum for the remainder of the program’s run. The choice of pre-deadline duration
should be informed by the machine’s timer signal warmup behavior.

5.7 Pausing a running preemptible function
We base the decision of whether to pause a running preemptible function on elapsed wall-clock
time, not actual compute time. One of launch()’s final actions before invoking the preemptible
function is to save a timestamp. Each time our signal handler runs, it checks whether the function
has exceeded its timeout. If so, it pauses it by performing an unstructured jump back to launch()
(or resume()). Specifically, the location it jumps to is the snapshot captured earlier, as described
in Section 5.4.

While it is possible to call setcontext() from a signal handler [24], there is an easier way
to restore the snapshot. When installing our signal handler, we set the SA_SIGINFO flag to re-
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Figure 5.3: The stacks and continuations just after libinger’s signal handler has been invoked

quest that each invocation receive more context. This passes additional arguments to the handler
function, one of which is a POSIX context recording the execution state just before the signal
arrived. This is also the state that will be restored when the handler returns, so we implement
the jump simply by overwriting it with our saved snapshot. Because the context checkpoints the
registers including the stack pointer, returning also switches back to the execution stack of the
preemptible function’s caller.

We are only pausing the preemptible function, so the program might later want to resume
it from where it left off. The preemptible function is already running on its own stack, and the
context passed to the signal handler contains its remaining state. Before overwriting it, we copy
its contents for launch() or resume() to package into the returned Continuation. Figure 5.3
shows the state of both stacks and which frames both continuations point to at the start of the
signal handler’s execution. Recall that the snapshot serves as the bridge between the two stacks,
and represents the location that the preemptible function will return to regardless of whether the
handler chooses to pause it.

5.7.1 Resuming a paused preemptible function
Should the application resume a paused preemptible function, resume() repeats many of the
transition actions performed by launch().5 It reuses most resources wholesale from the
Continuation object, but it may need to allocate a new preemption signal (if the application
has transferred the paused preemptible function between kernel threads). To resume execution,
it must restore the context saved by the signal handler.

Unfortunately, a restriction in the POSIX specification complicates this unstructured jump.
The behavior of calling setcontext() on a POSIX context obtained from a signal handler is

5In fact, there is so much overlap that we implement launch() simply by creating a Continuation, and then
calling resume() if the timeout argument is nonzero.
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unspecified [24], and it is our experience that glibc’s Linux implementation is unreliable in this
case. As a workaround, we manually raise a signal on the thread and restore the context the same
way we restored the snapshot when pausing, by overwriting the signal handler’s context.

5.8 Memory isolation and deferred preemption
There is one final resource that libinger allocates for each preemptible function: a libset (Sec-
tion 3.3). Here again, it uses a pool allocator so that each is reused automatically once no longer
claimed by any preemptible function’s Continuation. Recall that a libset represents a copy of
the program’s other dynamically-linked modules, and is used to isolate these modules’ nonreen-
trant state by selectively relinking module entry points against this copy if they occur within
the preemptible function (Section 3.5). Where this approach applies, it happens transparently to
libinger.

Recall also that some functions cannot be duplicated in this manner, and instead require pre-
emption to be deferred until the conclusion of their invocation. The libinger implementation
observes the selective linking rule that the starting libset is uninterruptible (Section 3.6). Before
pausing a preemptible function, the handler checks whether the next libset is equal to the start-
ing libset. If so, it blocks the preemption signal and returns without affecting execution, thereby
deferring preemption. When the running uninterruptible function returns, libinger receives a
notification via a control library callback (Section 3.6.2) and unblocks the signal again. To guard
against preemptible functions overrunning their deadlines by calling uninterruptible functions in
a loop, this callback also immediately invokes the preemption handler, which pauses the function
if it has timed out during the uninterruptible region.

To illustrate the division of responsibility between libinger and libgotcha, Figure 5.4 shows
an example program that calls a preemptible function, alongside the resulting control transfers
between modules.6 1⃝ The main() function calls launch() to invoke F() as a preemptible func-
tion. 2⃝ Among launch()’s responsibilities are switching out of the starting libset and enabling
the preemption signal. At this point, the preemption handler starts executing periodically and
checking whether the preemptible function is out of execution time. (If it ever detects a timeout,
it will pause the preemptible function as described in Section 5.7, effectively skipping to step 9⃝.)
3⃝ Its setup work complete, launch() invokes the preemptible function. 4⃝ This preemptible
function happens to call another function callee() located in a different module, so libgotcha
intercepts the call for selective relinking. There are two possibilities for what happens next: ei-
ther callee() is an ordinary function (in which case libgotcha routes the call to the libset’s local
copy and we skip to step 8⃝ once it returns), or it is an uninterruptible function. 5⃝ In the latter
case, before transferring control to callee(), libgotcha automatically switches to the starting lib-
set, deferring preemption (Section 3.6). 6⃝ When callee() returns, libgotcha invokes libinger’s
callback, which switches back to the preemptible function’s libset and reenables the preemption
signal. 7⃝ The callback raises the preemption signal, and the handler checks whether the pre-
emptible function has timed out (skipping to step 9⃝ if so). 8⃝ The function call has completed
without timing out, so libinger returns control to the preemptible function. The preemptible func-
tion happens to return, transferring control back to launch(). 9⃝ Before returning to main(),

6We depict libinger and libgotcha as separate modules for clarity. However, recall that libinger is actually located
in the same module as libgotcha because it is an internal control library (Section 3.7).
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int main(void) {

launch(F, 400, NULL);

}

static void F(void *) {

callee();

return;

}

(a) Example program

caller module libinger libgotcha callee module

①
launch(F)

③
F()

④                                                                
callee()                                                               
(redirected to procedure_linkage_override())

⑧

②
libset_thread_set_next()

⑥
return_callback()

⑦ handler()

⑨
libset_thread_set_next()

⑤
callee()

(b) Corresponding inter-module control transfers (callee() is uninterruptible)

Figure 5.4: Cross-module function calls under libinger. Solid lines represent function calls;
dashed ones represent returns. Color indicates uninterruptible code (i.e., next libset = starting
libset).

launch() switches back to the starting libset, disabling preemption.

5.8.1 Starting libset exit analysis
The preemptible function abstraction permits an optimization that reduces the runtime overhead
of selective relinking. If we can prove that a library can never call launch(), we also know that
it can never cause a switch out of the starting libset, so libgotcha does not need to intercept any
function calls or global variable accesses made by the copy of it in the starting libset.

In contrast to the control libraries featured in Chapter 4, libinger implements a new abstrac-
tion rather than reusing a well-known API surface. Recall from Section 3.3 that a preemptible
function, like any isolated task, always runs with its own private next libset. Furthermore, the
fact that the only way to create a new preemptible function is by calling the launch() wrapper
function means that there is also only one way for a preemptible function to run with its cur-
rent libset set to the starting libset: if it is invoked from the same module that defines it (since
otherwise the caller of the wrapper function would see the function’s symbol resolve to a PLOT
stub that would update its current libset from its next one upon invocation). Isolated tasks run-
ning with their current libset set to the starting one are the only code regions that can cause
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an automatic switch out of the starting libset (if they call an interruptible function in any other
module). We know that a preemptible function with this property can only exist in a module that
contains a call to launch(), so we only have to update the real GOT entries of those starting
libset modules that declare a dependency on libinger.so.

The performance implications of this insight are significant. By exempting most of the start-
ing libset from the runtime overheads of selective relinking, it eliminates all of the global variable
interceptions that would otherwise occur on the critical path of launch() and resume(). Fur-
thermore, it eliminates most or all global variable interceptions that would occur during other
uninterruptible function calls, reducing the risk of significantly exceeding a timeout. And as we
saw in Section 3.9, each global variable interception incurs several microseconds of latency.

We call the optimization starting libset exit analysis, and it should be equally applicable to
other novel task abstractions. A general rule of thumb is that it applies to any control library
whose benefits would not be reaped merely by preloading it.

5.9 Calls and returns
When invoking the preemptible function, there is a possibility that it will throw an exception.
Most of libinger is implemented in Rust, but the process of switching stacks creates control trans-
fers through C code when calling and returning from a preemptible function. It is undefined
behavior for Rust panics to cross these call boundaries [56], so libinger must handle exceptions
specially. When calling into the preemptible function, launch() stops exception unwinding by
wrapping the call in the standard library’s catch_unwind() function. When a preemptible func-
tion runs to “completion,” launch() and resume() check whether it threw an exception and
call resume_unwind() if so. It is possible that applications seeking to limit functions’ execution
time might also want to prevent them from crashing the thread, so one possible revision to the
interface would be to provide a configuration option to skip this rethrow.

The other state that must be transferred between stacks is the preemptible function’s return
value, so launch() and resume() store it in an optional type before switching stacks. As ex-
plained in Section 5.5, each stack switch returns to the same point regardless of whether the func-
tion ran to completion or timed out and became paused. To disambiguate these cases, launch()
and resume() check whether they have stored a return value. If so, they return it; otherwise,
they package a Continuation object containing the paused function’s execution state.

5.10 Application compatibility
To assess the extent to which libinger and libgotcha break existing code, we ran the Gnulib test
suite, which exercises hundreds of POSIX and ISO C library functions. We ran each test in the
suite within a preemptible function by preloading a library that wrapped __libc_start_main()
and launch()ed the program’s real main() with an infinite timeout. On a glibc 2.29 system, we
currently pass approximately 495 of the 519 supported tests (give or take one or two flaky tests
that rely on precise timing behavior affected by our high-frequency timer signals).

Of the roughly 25 failing tests, most center around functions that we have not prioritized sup-
porting within preemptible functions: 7 use pthread_create() and other thread spawn func-
tions, 6 use fork() and other process creation functions, and 4 use functions from the exec()
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family. We have not decided what behavior is desirable when a preemptible function invokes
these functions, but the simplest option is to disallow their use by defining enforced interposi-
tion replacement functions (Section 3.7.1) that return a failure code when called from within a
preemptible function.

Three other recurring issues we encountered were conflicting uses of signals, replacement
of our signal handlers, and interrupted system calls not restarted by SA_RESTART (Section 5.6).
The former included tests using historical interfaces such as alarm() that use the same SIGALRM
signal that we allocate for preempting the first preemptible function. This is not unexpected
because libinger does not currently ensure that its preemption signals are not also used by the
program. The handler replacement issues mostly involved tests removing our preemption han-
dler by restoring the default signal disposition. This would cause the program to crash when
the preemption signal came in, so we worked around it by providing a replacement signal()
wrapper that ignored requests for the SIG_DFL disposition. It is never desirable for a preemptible
function to interfere with its own preemption signal, so a more robust solution would be to add a
replacement wrappers that were aware of its assigned signal and reported failure on all requests
to reconfigure it. The most frequently recurring functions that did not respect SA_RESTART were
sleep(), usleep(), and nanosleep(), which when interrupted return a “success” status and
the remaining duration they would have continued to sleep for. We added replacement wrapper
functions to call them repeatedly using this information. One function that returns the EINTR in-
terrupted error code even under SA_RESTART is select(), so we added a replacement wrapper
that runs it in a loop as long as this happened. There are other functions with atypical interrup-
tion behavior, and our system would benefit from systematically adding additional wrappers to
hide this behavior [62].

A final interesting complication we encountered is that glibc functions that automatically
load supporting dynamic libraries at runtime are not functional by default in manually-loaded
linker namespaces. For instance, calling the iconv() family of character set conversion func-
tions causes libc to attempt to load multiple libraries, each of which performs pairwise conver-
sions between two specific character sets. The library attempts to find a minimal sequence of
available pairwise conversions that provides a route between the requested source and destina-
tion character sets; to test whether each candidate pairwise conversion is supported, it attempts
to load a formulaically-named shared library that may or may not exist. This means that it is
expected that dlopen() may fail, in which case the dynamic linker will notify libc.so by call-
ing its _dl_signal_exception() error-handling function. This function’s default action is to
abort the process, so in the case of iconv(), libc updates some internal state to indicate that this
behavior should be suppressed if the call fails. Unfortunately, the dynamic linker always invokes
_dl_signal_exception() in the main namespace. In our case, this means that if a preemptible
function calls iconv(), the call is routed to the copy of libc.so in its own libset, which updates
its internal state and then calls into the dynamic linker, which in turn calls into the starting lib-
set’s libc.so that is still configured to crash on failure. We work around the problem by defining
a replacement _dl_signal_exception() wrapper that checks the old value of next libset and
reroutes the call to that libset’s libc. The problem and this solution apply to several other glibc
features besides iconv() (Section 3.6.1).

We are confident that with additional engineering effort, it would be possible to pass the full
test suite with the possible exception of the few tests that rely on precise timing characteristics or
incorrectly assume that short blocking file descriptor I/O operations will not return short counts.



5.11. CANCELLING A PAUSED PREEMPTIBLE FUNCTION 77

5.11 Cancelling a paused preemptible function
Should a caller decide not to finish running a timed-out preemptible function, it must deallocate
it. In Rust, deallocation happens implicitly via the Linger type’s destructor, whereas users of the
C interface are responsible for explicitly calling the cancel() function on the linger_t instance.

As discussed in Chapter 3, libgotcha returns a preemptible function’s libset to the pool for
reuse when that function returns normally. However, when a function is cancelled before it
finishes, none of the modules in its libset is safe to reuse in general: a library function might have
been in themiddle of executing. To avoid future problems with the libset, as part of a cancellation,
libinger instructs libgotcha to reinitialize the function’s libset before returning it to the pool.

Cancellation cleans up libinger resources allocated by launch(); however, the current imple-
mentation does not automatically release resources already claimed by the preemptible function
itself. Instead, the preemptible function author must write a cleanup handler (Section 4.2) and in-
voke it immediately before any call to cancel(). We have, however, created a prototype demon-
strating the feasibility of automatic cleanup in RAII languages such as Rust, which we detail in
Chapter 6.

5.12 Evaluation
Table 5.1 shows the overhead of libinger’s core functions. Each test uses hundreds of preemptible
functions, each with its own stack and continuation, but sharing an implementation; the goal
is to measure invocation time, so the function body immediately calls pause(). We show the
latencies with and without the use of dedicated TCBs and TLS areas for each preemptible func-
tion (Section 5.3). For comparison, we also measured the cost of calling fork() then exit(),
and of calling pthread_create() with an empty function, while the parent thread waits using
waitpid() or pthread_join(), respectively.

The results show that, as long as preemptible functions are allowed to run to completion,
invoking them incurs a fraction of the latency of spawning a kernel thread, and an order of mag-
nitude reduction over forking a process. We collected these measurements on the same machine
using the same software versions as in Section 3.9. Note that the overheads from that section also
apply to any program using preemptible functions, although the optimization from Section 5.8.1
mitigates the runtime latency effect on many of the function calls and global variable accesses
that occur outside any preemptible function.

5.12.1 Cancellation response time
Unlike state of the art approaches, lightweight preemptible functions support cancellation.

To demonstrate this feature, we consider decompression bombs, files that expand exponen-
tially when decoded, consuming enormous computation time in addition to their large memory
footprint. PNG files are vulnerable to such an attack, and although libpng now supports some
mitigations [52], one cannot always expect (or trust) such functionality from third-party code.

We benchmarked the use of libpng’s “simple API” to decode an in-memory PNG file. We
then compared against synchronous isolation using preemptible functions, as well as the naïve
alternative mitigations proposed in Section 2.1. For preemptible functions, we wrapped all uses
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Operation Time with TLSes (𝜇𝑠) Time without TLSes (µs)
launch() 11.0 ± 0.5 8.0 ± 0.7
resume() 10.4 ± 0.4 6.9 ± 0.2
cancel() 42.0 ± 3.7 42.1 ± 1.8

(a) Preemptible function operations, with and without per-function TLS areas

Operation Time (µs)
fork() 686 ± 21

pthread_create() 68 ± 18

(b) Process and thread spawns without libinger

Table 5.1: Latency of preemptible function interfaces
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Figure 5.5: libpng in-memory image decode times

of libpng in a call to launch() and used a dedicated (but blocking) reaper thread to remove the
cost of cancellation from the critical path; for threads, we used pthread_create() followed
by pthread_timedjoin_np() and, conditionally, pthread_cancel() and pthread_join();
and for processes, we used fork() followed by sigtimedwait(), a conditional kill(), then
a waitpid() to reap the child. We ran pthread_cancel() both with and without asynchronous
cancelability enabled, but the former always deadlocked. The timeout was 10 ms in all cases.

Running on the benign RGB image mirjam_meijer_mirjam_mei.png from version
1:0.18+dfsg-15 of Debian’s openclipart-png package showed launch() to be both faster and
lower-variance than the other approaches, adding 355 𝜇s or 5.2% over the baseline (Figure 5.5a).
The results for fork() represent a best-case scenario for that technique, as we discarded the re-
sult buffer rather than implementing a shared memory mechanism to transfer its ownership to
the rest of the application, and as the cost of the system call will increase with the number pages



5.12. EVALUATION 79

mapped by the process (which was small in this case).
Next, we tried a similarly-sized RGB decompression bomb from revision b726584 of https:

//bomb.codes (Figure 5.5b). Without asynchronous cancelability, the pthreads approach was
unable to interrupt the thread. Here, launch() exceeded the deadline by just 100 𝜇s, a figure that
includes deviation due to the 100-𝜇s preemption interval in addition to libinger’s own overhead.
It again had the lowest variance.

Applying preemptible functions proved easy: the launch()/cancel() approach took just 20
lines of Rust, including the implementation of a reaper thread to move libset reinitialization off
the critical path. In comparison, the fork()/sigtimedwait() approach required 25 lines of Rust.
Note that both benchmarks include unsafe Rust (e.g., to use the libpng C library and zero-copy
buffers).

We ran this experiment on an Intel Xeon E5-2683 v4 (Broadwell) server clocked at 2.1 GHz and
running Linux 4.12.6, rustc 1.36.0, and glibc 2.29. As this kernel did not providemitigations for the
Meltdown or Spectre side-channel attacks, this configuration is especially favorable for fork()
and pthread_create() latencies. We used an older version of libinger predating support for
preemptible function–specific TLS andwith libgotcha’s global variable interception disabled. This
build relied on our early, higher-latency approach to libset reinitialization (Section 3.4), hence our
use of a dedicated reaper thread.

https://bomb.codes
https://bomb.codes
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Chapter 6

Resource cleanup and async unwinding:
the ingerc compiler

“ And with that Glóin embarked on a long account of the doings of the
Dwarf-Kingdom. He was delighted to have found so polite a listener... ”

— J. R. R. Tolkien, The Fellowship of the Ring

As described so far, one of the facilities that libinger enables is asynchronous function cancel-
lation. As we saw in Chapters 2 and 4, this is a significant achievement that is only possible under
the POSIX safetymodel thanks to selective relinking. However, onemissing piece of functionality
is automatic cleanup of any resources the cancelled function had allocated.

The resource leaks associated with cancelling a function are a significant problem: they make
cancellation infeasible for long-running applications, which would experience the cumulative
leakage of the resources allocated by all such cancelled functions. While a garbage collectorwould
be able to find the leaked resources, deallocating them might still prove challenging because,
without a record of the interruption point where cancellation occurred, it would not be safe to
run object finalizers. Of course, our system targets unmanaged languages, so wemust accomplish
resource cleanup without a garbage collector.

6.1 Languages with unstructured resource management
In languages such as C, resource lifetimes are completely unstructured, with each allocation and
deallocation performed via an ad-hoc function call. Some such functions are well-known because
they are prescribed by the C and/or POSIX standards: malloc()/free(), open()/close(), etc.
However, applications and libraries can provide their own resource-allocation interfaces, so it
is not possible to identify or track resource management in general. Worse, there is no stan-
dardization of deallocation functions’ interface. These language properties mean that automating
cleanupwould require hand-annotating all custom allocation and deallocation functions through-
out the application and its dependencies; such annotations would have to provide associations
between each allocator and its corresponding deallocator, as well as information about how to
call the latter.

Were one to build a system to support this, one would need to use an approach like that of
Valgrind’s Memcheck [60] or LLVM’s AddressSanitizer [59], which instrument the application’s
allocation and deallocation calls. Neither system could be imported wholesale: Both assume at
a design level that memory is the only resource whose allocations are being tracked. Valgrind
depends on expensive dynamic instruction translation that is not suitable for production use.
AddressSanitizer does not track how each resource was allocated unless paired with the separate

81
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MemorySanitizer system [64] run in origin-tracking mode; this adds another 2–7x slowdown on
top of AddressSanitizer’s own 2x execution time penalty.

For rolling one’s own allocation and deallocation tracker, libgotcha’s existing ability to inter-
cept function calls might prove useful. The bookkeeping structures would need to be mutable,
so care would have to be taken to avoid designing around data structures with amortized time
complexities, as this would introduce undesirable unpredictable pauses in preemptible function
execution reminiscent of garbage collection.1 For instance, storing allocation records in a hash
table would require periodic rebalancing.

Because of the above limitations, we have not pursued automatic resource cleanup for pre-
emptible functions written in C. Developers of long-running C applications should always write
a cleanup handler for each preemptible function they might need to cancel (Section 5.11).

6.2 Languages following the RAII principle
The situation is more promising in Rust. Like C++, it adheres to the RAII (Resource Allocation
Is Initialization) idiom that associates each resource’s lifetime with that of some object. When-
ever an object goes out of scope, the program invokes its destructor and those of its members,
freeing the associated resources. Thus, the problem of releasing the resources associated with a
cancellation can be reduced to that of invoking the destructors of the objects that are alive at the
interruption point. Notice that, in contrast to garbage collection, such a model does not divorce
the problem of deallocation from the cancelled function’s code; as such, it is not subject to the
safety problems of invoking finalizers, as only the destructors of objects whose initialization is
already complete can be invoked.

Faced with the challenge of safely preempting in the presence of shared state caused by non-
reentrant library interfaces, we found that we could leverage dynamic linking to solve the prob-
lem automatically, and built the libgotcha runtime to do just that. Here again, we are fortunate to
find an existing runtime facility that can be repurposed to call destructors at an arbitrary position
in the program: the Rust language already supports exceptions (which it calls “panics”). One sig-
nificant advantage to building on top of exceptions rather than implementing separate resource
tracking is that exception handling is already designed to add no overhead to the non-exceptional
execution path. With the exception of adding one function call to each function that owns ob-
jects with destructors, we believe it is possible to provide automatic cleanup without imposing
runtime overhead on tasks that are never cancelled.

6.3 A brief tour of exception handling
Whenever a program throws an exception, the language runtime must find the point in the pro-
gram that handles that exception. To prevent resource leaks, deadlocks, and other bugs, it must
then invoke the destructors of all objects that are in scope at the point where the exception was
thrown, but out of scope at the point where it is caught. This feature of exception handling is
perfectly suited to our use case.

1The libgotcha runtime itself does not suffer from this problem because its symbol lookup tables are immutable
once process initialization is complete.
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It is possible for a function to throw an exception that is then caught by one of its callers,
so the language runtime must be able to “unwind” the stack, locating the stack frame of each
function’s caller. Code for the x86 architecture used to maintain a frame pointer that made it
easy to find the bounds of a function’s stack frame, but with the advent of x86-64, this is no
longer standard; thus, the runtime needs some other way to find the next frame. Debuggers have
long faced this very problem on other architectures, and the common approach is to rely on extra
debugging information stored in the executable or library on disk. On Unix operating systems,
most debuggers use the CFI (Call Frame Information) facility of the standard DWARF debugging
format [19].

Modern exception runtimes repurpose this debugging information to unwind the stack once
an exception has been thrown. The compiler produces the requisite information by generating
CFI pseudoinstructions, which the assembler then transcribes into DWARF format and stores in
the .eh_frame section of the object file. This section is present in non-debug builds and stripped
object files and gets loaded into the process’s memory image by the ELF loader or dynamic linker,
in contrast to the CFI’s more traditional home, the .debug_frame section. With the complexity
of this approach comes the advantage that the application no longer has to update frame pointers
during normal execution.

Call Frame Information alone is not a sufficient primitive to implement exception handling:
the runtime must also be able to find the exception handler(s) present in each call frame and the
destructors to invoke based on where in the function the exception was thrown. The compiler
must supply this information, which it does by emitting pseudoinstructions that describe a meta-
data region known as the LSDA (Language-Specific Data Area); the assembler stores this in the
object file’s .gcc_except_table section. For each function, the LSDA contains a table mapping
instruction address ranges to landing pads, code regions within the function that serve either to
catch exceptions or to invoke destructors. Our discussion will focus on the latter type, known as
cleanup landing pads.

6.4 Asynchronous exception handling
Because exceptions are generated synchronously, they can only occur on calls to functions that
can throw. Since compilers know which functions can throw, they generally only output LSDA
entries that are accurate for those functions’ call sites. But since libinger interrupts functions
preemptively, we need to trigger unwinding and cleanup at whatever arbitrary point the function
was paused at before being cancelled.

Triggering unwinding is a simple matter of tweaking the stack pointer and instruction pointer
of the preemptible function to be cancelled in order to forge a call to a function that raises an
exception using Rust’s panic!()macro. But providing instruction-accurate cleanup information
requires us to address the following challenges:

1. Optimized builds remove some functions’ LSDA tables and landing pads. We have
noticed that enabling optimizations via the Rust compiler’s -O switch causes some functions
that have exception-handling support in debug builds to instead be compiled without it. We
describe our workaround for this issue in Section 6.4.1.

2. Functions that “return” values via pointer parameters lack exception-handling in-
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formation. We have noticed that such “sret” functions tend to lack any exception informa-
tion at the LLVM IR level, even if they operate on objects with destructors. This is a problem
because, although the objects exist in the caller’s stack frame, they must still be treated as
owned by the function that is “returning” them, so that we will clean them up if cancella-
tion occurs between the time they are allocated and that function returns. Such functions
are more common than one might expect and include most constructors: the Rust compiler
prefers to compile functions that return large objects in this manner to avoid moving them
to the caller’s stack frame immediately afterward. See Section 6.4.2.

3. Many LSDA entries associate the landing pad with too few instructions following
or preceding a function call site. Injecting an exception in such execution regions results
in leaks or deallocating before allocation, respectively. Our investigation revealed that these
discrepancies result from changing instruction boundaries during lowering from LLVM IR
to the platform’s assembly language; in particular, the backend does not account for the mov
and lea instructions that perform argument passing before most calls. See Section 6.4.3.

4. The runtime does not discriminate between being in the middle of executing a
function and having just retired its ret instruction and jumped back to the call
site. In either case, it will not invoke any cleanup landing pads in the caller. The two
scenarios are indistinguishable under the assumption that no exception can occur at these
points in the function. However, the fact that we can inject one there creates an important
distinction for our purposes: until the function returns, it still has ownership of its live
variables and its landing pads are responsible for cleaning them up, whereas after it has
returned, it is impossible for those landing pads to be invoked and cleanupmust necessarily
be up to the caller. See Section 6.4.4.

5. Unwinding on the first instruction of a function fails because the runtime con-
sults the LSDA table for the function whose definition precedes it in memory. This
issue turns out to have the same cause as the previous one, but the two situations demand
different solutions. See Section 6.4.5.

6. Performing function calls during the prologue or epilogue of a function is unsafe.
The x86-64 ABI (Application Binary Interface) specifies that the stack must always be 16-
byte aligned before calling a function, which is not true until the function has reserved
space for an odd number of 8-byte values (excluding the return address) in its stack frame.
See Section 6.4.6.

7. If attempted on the instruction just after one that repositions the stack pointer,
unwinding miscalculates the frame address. While this behavior appears consistent
between the libgcc and libunwind (LLVM) unwind implementations, we suspect it exists
because exceptions ordinarily never occur in the prologue or epilogue of the function. GCC
has an -fasynchronous-unwind-tables switch that is intended to make the frame infor-
mation accurate down to the instruction, but Clang only includes this switch for command-
line compatibility and doesn’t actually implement this feature. As a likely consequence of
this lack of support from the LLVM project itself, the Rust compiler also makes no attempt
to offer it. See Section 6.4.7.
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8. Cleanup landing pads do not work reliably if associated with the function epi-
logue. This happens because the epilogue adjusts the stack pointer, in many cases causing
any synthetic function call (e.g., to inject an exception) to clobber the very stack values the
landing pad is trying to clean up. Incidentally, a Web search for “LLVM unwind function
epilogue” reveals that the unwind info is not trustworthy during the epilogue in the general
case. Indeed, there have been several patchsets attempting to fix this, some of which were
merged, but each of which was subsequently reverted for breaking some other architecture.
So it would appear not only that this is the primary design issue blocking LLVM support for
asynchronous unwind tables, but also that we must avoid injecting exceptions in epilogues
altogether. See Section 6.4.8.

Rather than integrate a fully general resource cleanup solution into libinger, we have proto-
typed the components to solve these problems and used these to build a proof of concept imple-
mentation of the compiler transformations necessary to support asynchronous exception han-
dling. This prototype represents preliminary evidence that our approach is feasible, although it
would take additional engineering effort to achieve compatibility with nontrivial applications.

The below numbered sections describe our approach to solving each of the challenges listed
above. The product of the work described in this section is a shell script, ingerc, that wraps rustc
and applies all the described transformations to produce an output program or library ready for
runtime-assisted cancellation cleanup.

6.4.1 Skipping optimization passes that remove exception handling
Testingwith rustc 1.56.0, we have found that the prune-eh, function-attrs, and inline LLVM
optimization passes are responsible for stripping the LSDA tables and landing pads from some
functions in optimized builds. We have developed a shell script to invoke rustc without these
passes, a task that is unfortunately complicated by the compiler’s command-line interface, which
only accepts a list of all the passes to run.

We recognize that disabling the inlining pass is likely to reduce the efficiency of compiled code,
but we leave it to futurework to investigatewhy this pass is removing exception information from
functions otherwise unaffected by inlining.

6.4.2 Adding exception-handling support to functions’ LLVM IR
The above script does not address functions for which the compiler emits no exception-handling
information even in debug builds. As before, this problem is easiest to address in the intermedi-
ate representation, where the addition of an exception-handling personality and a landingpad
instruction will cause the LLVM backend to emit an LSDA table and landing pad for the function.

To reduce implementation complexity, we do not attempt to detect which functions own ob-
jects with destructors, and instead introduce exception handling into any functions that do not
already have it. This saves us from having to query complex properties of the IR and reduces our
task to one of simple text transformations. We implement these in a TypeScript script performing
regular expression replacements.

The landing pads we insert at this stage are empty skeletons that do not actually invoke any
destructors. We describe how we identify which destructor(s) to invoke (if any) and add the calls
at the end of Section 6.4.3.
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6.4.3 Adjusting LSDA entries
The possibility that cancellation injects an exception during the argument-passing instructions
preceding a call violates a design assumption of LLVM’s LSDA generation. IR instructions such
as call often expand to multiple machine instructions, most commonly to perform argument
passing before the function dispatch. However, the backend generates the address ranges for
LSDA entries using labels in the IR. This means that ordinary optimization and transform passes
cannot associate landing pads with some but not all of the instructions comprising a function call
sequence.

To get around this problem, we had to implement a plugin that loads a code generation pass
into llc, the LLVM static compiler. The pass works at the x86-64 machine instruction level to
reposition LSDA-related labels and resize the code region on the normal execution path with
which a cleanup landing pad is associated. To prevent leaks, if the ending label falls before a de-
structor call, the pass moves it downward to just before the machine call instruction; otherwise,
the pass moves it downward to just before the function epilogue. To prevent issuing destructor
calls before construction, if the starting label falls before the function call that produces the object
to be cleaned up, the pass moves it downward to just after that call.

The pass also identifies functions with parameters annotated as sret in the LLVM IR. These
correspond to functions where the script from Section 6.4.2 added synthetic landing pads. The
pass checks to see whether the involved type(s) have destructors; if so, it adds destructor calls to
the landing pad.

6.4.4 Detecting whether a function has just returned
Regardless of whether a function has returned, LLVM’s libunwind treats the caller frame as sitting
within the call instruction, rather than on the subsequent instruction located at the return address.
Here is the offending libunwind code:

// If the last line of a function is a "throw" the compiler sometimes
// emits no instructions after the call to __cxa_throw. This means
// the return address is actually the start of the next function.
// To disambiguate this, back up the pc when we know it is a return
// address.
if (isReturnAddress)

--pc;

Since we propose to inject the exception by forging a function call, libunwind always as-
sumes the frame where we did this is a return address and performs the decrement. The obvious
workaround would be to remove this code from libunwind, at the cost of potentially breaking
unwinding through C++ code that might be present in the program. Indeed, a glance through
the disassembly of the Rust standard library shows that rustc emits ud2 (invalid) instructions
following the call sites in the scenario described in the comment, so Rust code is unaffected by
the problem.

However, it turns out that the above code has another important effect beyond that docu-
mented in the comment: it avoids running the cleanup landing pad associated with the code
region following the call site if the called function was still executing at the time the exception
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was thrown. This is essential because in this case, the called function still has ownership over
any objects requiring cleanup, and their state is undefined from the perspective of the caller. The
safe and correct thing for the runtime to do is to invoke the called function’s landing pad but not
the caller’s.

For this reason, we need to override this libunwind behavior only at the instruction where
we injected the exception, and only if that instruction immediately follows a call (so that libun-
wind would confuse the situation with one where the called function was still executing). We
propose to accomplish that by applying a heuristic-based tweak just before the libinger cancel-
lation code injects the exception call: if the instruction pointer is equal to the 8-byte value offset
–8 bytes from the stack pointer, the function return just completed and we should add one to the
instruction pointer to counteract the described libunwind behavior for this stack frame only. We
have prototyped this technique in a GDB script, allowing us to test it at any arbitrary instruction
within a simulated preemptible function.

6.4.5 Unwinding from the first instruction of a function

Another consequence of the libunwind implementation detail described in Section 6.4.4 is that
unwinding with the instruction pointer positioned on the first instruction of a function results in
an address associated with the preceding function in memory. Therefore, the runtime does not
find the correct LSDA for the function (if it finds one at all).

It is hard to detect this problemwithout consulting the LSDA, so we implement a fix by patch-
ing libunwind, which already decodes this information. We insert a check whether the current
instruction pointer falls at the very beginning of its function; if so, we set the isReturnAddress
flag to skip the instruction pointer adjustment.

6.4.6 Calling functions when the stack is misaligned

Our standard cancellation response of forging a call to a function that panics causes crashes when
the stack is misaligned, as during a function prologue. Fortunately, we can easily solve this by
instead selectively calling a function that does not allocate any space in its own stack frame.
This has the effect of restoring the stack alignment (because of the return address pushed by the
call instruction) before calling any complex code that relies on alignment. Crucially, it does
so without introducing any invalid stack frames that would break unwinding. The following
function suffices:

.globl realign
realign:

.cfi_startproc
call panic
ud2
.cfi_endproc

(where panic is the function that would ordinarily inject the exception). We have tested this
solution in GDB’s scripting language.
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6.4.7 Unwinding after an instruction that moves the stack pointer
To compute the offset from the stack pointer to the return address, libunwind contains a function
called parseFDEInstructions(). It loops through the CFI instructions in the .eh_frame sec-
tion, continuing as long as codeOffset < pcoffset to process the stack pointer adjustments
for the instructions that have executed so far. Unfortunately, this appears to fall one CFI instruc-
tion short when the instruction that has just retired repositioned the stack pointer. Changing the
< to a <= fixes the problem.

Section 6.4.3 of the DWARF specification [18] seems to agree with this sign change. We hy-
pothesize that libunwind inherited this off-by-one error from libgcc in its effort to replicate the
older library’s behavior. The libunwind test suite continues to pass after making the change,
suggesting that an incomprehensive test suite has allowed the mistake to avoid detection. Fur-
thermore, Clang’s lack of support for asynchronous unwind tables has probably prevented the
community from encountering the unwind failures we have.

6.4.8 Unwinding in the epilogue of a function
As discussed in Section 6.4, function epilogues are perilous for exception injection, and even
unwinding in them is currently unreliable. To work around these limitations, we have developed
our own compiler-assisted runtime component.

That epilogues pop values off the stack might suggest that it is no longer possible to clean up
a function’s resources once its epilogue has started executing; fortunately, they have an impor-
tant property that refutes this intuition. Although the epilogue removes elements such as saved
register values from the stack, it only moves the stack pointer and does not overwrite the con-
tents of the stack frame. Thus, if we could undo the epilogue’s effects, we could then inject an
exception and it would be handled as if the epilogue had never executed at all. This is precisely
our approach.

To support time traveling backward to just before a function’s epilogue, we need the program
to record its instruction pointer just before it enters the epilogue. We accomplish this by having
the script introduced in Section 6.4.2 and our LLVM pass cooperate to insert a call to a custom
function, ingerc_epilogue_start(), before each function’s epilogue(s).

In addition to saving the instruction pointer, ingerc_epilogue_start() informs libinger
that an epilogue is currently running, so that cancelling a preemptible function will not inject
an exception in the usual way. This means that we must also be able to inform libinger once
the epilogue is finished, so ingerc_epilogue_start() overwrites the function’s return address
with the location of another function, ingerc_epilogue_end(), that performs this notification
before returning to the real return address.

There are a few other values we need to save before starting the epilogue: (1) When
ingerc_epilogue_end() runs, it will need to know the function’s original return address. (2) If
either of the functions we introduce at the beginning and end of the epilogue is running when
the function is cancelled, the stack pointer will be different than at the point we intend to travel
to, so we always store the original stack pointer as well. (3) To restore the return address in
ingerc_epilogue_end() or when time traveling, we need the frame pointer. The frame ad-
dress is not normally accessible at runtime, so we have our LLVM plugin insert code to pass it to
ingerc_epilogue_begin().
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The functions we introduce run just before the function returns, so they must not overwrite
any return registers. Because of this, we have hand coded them in assembly. We give their
implementations in Listing 6.1. The ingerc_epilogue_begin() function saves all values into
globals so they are accessible by the runtime. This allows us to use the stored return address
(ingerc_epilogue_ra) to notify the runtime that the epilogue is currently executing, so we are
careful to set that last and reset it to null in ingerc_epilogue_end().

There is one other thing that these functions have to be careful about: if cancellation occurs
while they are running but outside the region where ingerc_epilogue_ra is set, unwinding
must be safe and invoke the correct cleanup landing pads. This is why ingerc_epilogue_end()
returns to the real caller using a push and a ret instead of an unconditional branch. The
ingerc_epilogue_start() implementation is compatible with ordinary unwinding, but its in-
vocation can be troublesome because it is intentionally the last instruction before the epilogue.
This would mean that cleanup in the caller frame would invoke the epilogue’s landing pad, but it
never has one. To prevent a leak in this situation, our LLVM plugin inserts a nop instruction after
the call and before the epilogue label, in order to associate the function’s return address with the
landing pad for the preceding basic block.

6.5 Preemptible function cancellation
While we have not integrated resource cleanup support into libinger, our work on asynchronous
exception handling suggests a design. We have prototyped the approach in isolation using a set
of scripts that use GDB to interrupt execution after an arbitrary number of instructions have
retired and inject an exception at that point. In this section, we give the algorithm and how it
would integrate with the existing libinger codebase. We conclude by reasoning about its correct-
ness based on where the preemptible function is in its execution at the time it is cancelled and
discussing performance considerations.

Section 6.4 introduced our fundamental approach to asynchronous cleanup: the runtime
should inject a synthetic exception at an arbitrary point in the preemptible function. It also
presented a compiler wrapper script, ingerc, that applies a series of transformations to the code
to make this safe and correct. In this section, we assume that the preemptible functions being
cancelled are written in Rust, and that the application and all its Rust dependencies have been
compiled with ingerc instead of rustc. We believe the latter requirement is reasonable because
the Cargo build system already expects to have the source of all dependencies available. Indeed,
new languages such as Rust and Go follow a growing trend of having unstable ABIs that preclude
linking against precompiled build artifacts generated by a different compiler version.

Whereas the libinger C bindings implement the cancel() operation as a standalone function,
the Rust interface performs cancellation in the destructor. Whenever a paused preemptible func-
tion goes out of scope, the destructor notices that it has not run to completion and reinitializes
its libset to prepare it for reuse. Listing 6.2 gives pseudocode for a function that the destructor
would call right before this reinitialization to clean up the preemptible function’s own resources.
This works because, for safety, resume() catches all panics before they can cross the FFI (For-
eign Function Interface) boundary (Section 5.9). To prevent the Rust runtime from outputting
a diagnostic message when the panic occurs, it is advisable to first disable the Rust standard
library’s panic handler in the preemptible function’s libset. The standard library exposes the
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.globl ingerc_epilogue_start
ingerc_epilogue_start:

# Save our return address as the destination instruction pointer.
mov ingerc_epilogue_ip@gotpcrel(%rip), %rsi
mov (%rsp), %rcx
mov %rcx, (%rsi)
# Save the stack pointer as it was before we were called.
mov ingerc_epilogue_sp@gotpcrel(%rip), %rsi
lea 8(%rsp), %rcx
mov %rcx, (%rsi)
# Save the frame pointer, which we received as an argument.
mov ingerc_epilogue_fp@gotpcrel(%rip), %rsi
mov %rdi, %rcx
mov %rcx, (%rsi)
# Save the return address of our caller.
mov ingerc_epilogue_ra@gotpcrel(%rip), %rsi
mov (%rdi), %rcx
mov %rcx, (%rsi)
# Make our caller return to ingerc_epilogue_end().
mov ingerc_epilogue_end@gotpcrel(%rip), %rsi
mov %rsi, (%rdi)
# Return.
ret

.globl ingerc_epilogue_end
ingerc_epilogue_end:

# Put the original return address on the stack.
mov ingerc_epilogue_ra@gotpcrel(%rip), %rsi
mov (%rsi), %rdi
push %rdi
# Clear the saved return address.
xor %rcx, %rcx
mov %rcx, (%rsi)
# Return to the original caller.
ret

Listing 6.1: Code to support time travel out of the epilogue. The @gotpcrel relocations are
position-independent GOT lookups of the globals’ addresses.
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function cleanup(linger_t func):
ucontext_t snapshot = func.continuation;

// Check whether some callee just returned (section 6.4.4)
uint64_t retaddr = 8 bytes preceding snapshot.uc_mcontext[REG_RSP]
if snapshot.uc_mcontext[REG_RIP] == retaddr:

increment snapshot.uc_mcontext[REG_RIP]

// If in epilogue, time travel to before (section 6.4.8)
if ingerc_epilogue_ra != NULL:

snapshot.uc_mcontext[REG_RIP] = ingerc_epilogue_ip
snapshot.uc_mcontext[REG_RSP] = ingerc_epilogue_sp
location ingerc_epilogue_fp = ingerc_epilogue_ra
ingerc_epilogue_ra = NULL

if 16 divides snapshot.uc_mcontext[REG_RSP]:
// Inject an exception using panic!() (section 6.4)
snapshot.uc_mcontext[REG_RIP] = panic

else:
// Realign the stack and inject exception (section 6.4.6)
snapshot.uc_mcontext[REG_RIP] = realign

// Throw the exception and let the cleanup landing pads run
resume(func, UNLIMITED_TIME)
Listing 6.2: Resource cleanup for cancelled preemptible functions (pseudocode)

panic::set_hook() function for doing this.
Table 6.1 summarizes our method of resource cleanup, showing the actions taken by our

proposed runtime at each possible point the preemptible function (or any of its callees) might be
paused when cancellation occurs. It can be seen that we have handled all possible points within
the body of an ordinary function. The case we have scoped out of our investigation is cancelling
a preemptible function while it is running a destructor; instead of attempting this, we suggest
implementing a mechanism to detect this case (e.g., unwinding the stack or hooking into the
Rust standard library) and using a return address trick similar to that from Section 6.4.8 to delay
resource cleanup until the destructor has finished.

6.6 Performance considerations
While our approach mostly avoids adding operations to the common execution path, the excep-
tion is epilogue handling. To support that case, we add one function call and six global variable
accesses. We saw in Chapter 3 that in a normal application, each of these operations has a neg-
ligible cost of just a few cycles. However, we also found that libgotcha slows down accesses to
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Position within Possible to Handling
running function Indicator unwind here? Normal execution When cancelling
First instruction Stack alignment No (stack mis-

alignment)
– § 6.4.5, 6.4.6

Function prologue Stack alignment No (stack mis-
alignment)

– § 6.4.6

Function body – Yes – Raise exception
After call site Return address Yes (but leaks) – § 6.4.4
Before epilogue – Yes § 6.4.8 Raise exception
Function epilogue Saved return ad-

dress
No (calls could
clobber stack
frame)

– § 6.4.8

After return – – § 6.4.8 Raise exception

Table 6.1: Cancelled function resource cleanup by position within the running function

dynamically-linked global variables considerably. Fortunately, the names of the symbols we in-
troduce are well known, so when integrating the new runtime components, we could introduce
special cases to prevent libgotcha from intercepting their uses. This would make the symbols
local to each libset and thereby obviate the need to pay the expensive reference costs.



Chapter 7

Preemptive userland threading:
the libturquoise futures executor

“ Who controls the past controls the future.
Who controls the present controls the past. ”

— George Orwell, 1984

Until now, we have limited our discussion to synchronous, single-threaded programs. In
this chapter, we will show that the preemptible function abstraction is equally relevant to asyn-
chronous and parallel programs, and that it composes naturally with both futures and threads.
As a proof of concept, we have created libturquoise,1 a preemptive userland thread library.

That libturquoise provides preemptive scheduling is a significant achievement: Shinjuku ob-
serves that “there have been several efforts to implement efficient, user-space thread libraries.
They all focus on cooperative scheduling” [35]. (Though RT from Section 2.2 could be a coun-
terexample, its lack of nonreentrancy support renders it far from general purpose.) We attribute
the dearth of preemptive userland thread libraries to a lack of natural abstractions to support
them.

Before presenting the libturquoise design, we begin with some context about futures.

7.1 Futures and asynchronous I/O
As mentioned in Section 2.1, futures are a primitive for expressing asynchronous program tasks
in a format amenable to cooperative scheduling. Structuring a program around futures makes it
easy to achieve low latency by enabling the runtime to reschedule slow operations off the critical
path. Alas, blocking system calls (which cannot be rescheduled by userland) defeat this approach.

The community has done extensive prior work to support asynchronous I/O via result call-
backs [42, 41, 43, 48]. Futures runtimes such as Rust’s Hyper [31] have adapted this approach by
providing I/O libraries whose functions return futures. Rather than duplicate this work, we have
integrated preemptible functions with futures so they can leverage it.

7.2 Preemptible futures
For seamless interoperation between preemptible functions and the futures ecosystem, we built
a preemptible future adapter that wraps the libinger API. Like a normal future, a preemptible
future yields when its result is not ready, but it can also time out.

1so called because it implements “green threading with a twist”
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function PreemptibleFuture(Future fut, Num timeout):
function adapt():

// Poll wrapped future in the usual way
while poll(fut) == NotReady:

pause()
fut.linger = launch(adapt, CREATE_ONLY)
fut.timeout = timeout
return fut

// Custom polling logic for preemptible futures
function poll(PreemptibleFuture fut):

resume(fut.linger, fut.timeout);
if has_finished(fut.linger):

return Ready
else

if called_pause(fut.linger):
notify_unblocked(fut.subscribers)

return NotReady
Listing 7.1: Futures adapter type (pseudocode)

Each language has its own futures interface, so preemptible futures are not language agnostic
like the preemptible functions API. Fortunately, they are easy to implement by using pause()
to propagate cooperative yields across the preemptive function boundary. We give the type con-
struction and polling algorithm in Listing 7.1; our Rust implementation is only 70 lines.

7.3 Preemptive userland threading
We built the libturquoise thread library by modifying the tokio-threadpool [68] work-stealing
scheduler from the Rust futures ecosystem. Starting from version 0.1.16 of the upstream project,
we added 50 lines of code that wrap each incoming task in a preemptible future.

Currently, libturquoise assigns each future it launches or resumes the same fixed time budget,
although this design could be extended to support multiple job priorities. When a task times
out, the scheduler pops it from its worker thread’s job queue and pushes it to the incoming
queue, offering it to any available worker for rescheduling after all other waiting jobs have had
a turn.

7.4 Evaluation
To test whether our thread library could combat head-of-line blocking in a large system, we
benchmarked hyper, the highest-performingWeb server in TechEmpower’s plaintext benchmark
as of July 2019 [31]. The server uses tokio-threadpool for scheduling; because the changes de-
scribed in Chapter 7 are transparent, making hyper preemptive was as easy as building against
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Figure 7.1: hyper Web server with 500-𝝁s (short) and 50-ms (long) requests

libturquoise instead. In fact, we did not even check out the hyper codebase. We configured lib-
turquoise with a task timeout of 2 ms, give or take a 100-𝜇s libinger preemption interval, and con-
figured it to serve responses only after spinning in a busy loop for a number of iterations specified
in each request. For our client, we modified version 4.1.0 of the wrk [72] closed-loop HTTP load
generator to separately record the latency distributions of two different request classes.

Our testbed consisted of two machines connected by a direct 10-GbE link. We pinned hyper
to the 16 physical cores on the NIC’s NUMA node of our Broadwell server. Our client machine, a
Intel Xeon E5-2697 v3 (Haswell) running Linux 4.10.0, ran a separate wrk process pinned to each
of the 14 logical cores on the NIC’s NUMA node. Each client core maintained two concurrent
pipelined HTTP connections.

We used loop lengths of approximately 500 𝜇s and 50 ms for short and long requests, re-
spectively, viewing the latter requests as possible DoS attacks on the system. We varied the
percentage of long requests from 0% to 2% and measured the round-trip median and tail latencies
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of short requests and the throughput of all requests. Figure 7.1 plots the results for three server
configurations: baseline is cooperative scheduling via tokio-threadpool, baseline+libgotcha
is the same but with libgotcha loaded to assess the impact of slower dynamic function calls, and
baseline+libturquoise is preemptive scheduling via libturquoise. A 2% long request mix was
enough to reduce the throughput of the libgotcha server enough to impact the median short re-
quest latency. The experiment shows that preemptible functions keep the tail latency of short
requests scaling linearly at the cost of a modest 4.5% median latency overhead when not under
attack.

All experiments were run on an Intel Xeon E5-2683 v4 (Broadwell) server running Linux
4.12.6, rustc 1.36.0, gcc 9.2.1, and glibc 2.29. We used an older version of libinger without support
for per-task thread-local storage (Section 3.7.2). This version exhibited the lower launch() and
resume() latencies reported in our conference paper [8], as opposed to the latencies of the more
feature-complete version benchmarked in Section 5.12; however, we expect the latest version to
exhibit the same behavior, albeit with the knee of the latency curve at a different x value.

7.5 Conclusion
In this chapter, we used preemptible functions to implement both preemptible futures and a first-
in-class preemptive user thread library with no dependency on custom kernel support. Making
the thread library preemptive was transparent, with the resulting system exposing the same API
surface as the (cooperative) upstream project. We demonstrated how such preemptive threading
can mitigate denial-of-service attacks based on compute-bound requests.

While both artifacts created for this chapter are useful in their own right, they also serve to
demonstrate that the preemptible functions abstraction composes with both futures and threads.



Chapter 8

Preemptible remote procedure calls:
the strobelight caching RPC server

“ ‘Do you really think I am so shortsighted? The Guild
of Engineers plans further ahead than you suspect.

London will never stop moving. Movement is life.’ ”
— Philip Reeve, Mortal Engines

Whereas local function calls with timeouts have yet to become a mainstream idea, it has long
been standard to use timeouts when making RPCs (Remote Procedure Calls) where a program
on one machine invokes a function that executes on another. Because the connection to the
remote machine could fail, it is common for the caller to specify a timeout after which the call
should return an error code, allowing the client program to continue running. What these systems
usually do not do is use this timeout to reducewastedwork on the server side. In their most classic
formulation, RPCs do not even inform the server of the timeout; if the client times out, the server
continues to work on the request, only to find once it has finished the work that the client is
no longer listening for an answer. This is particularly wasteful if an ill-behaved client repeats a
failing request with the same timeout, in which case the server duplicates the same work with
the same likely fate. Newer systems might share the timeout with the server, but generally use it
only for cooperative scheduling. Therefore, it is up to the developer of each server-side function
to implement cancellation to prevent it from wasting resources serving doomed requests.

We had a first-year undergraduate student prototype a novel caching RPC server that ad-
dresses this limitation transparently to the server-side programmer. Over the course of two
months, he built the strobelight RPC server, so called because it processes each request only while
the client is listening for a response and pauses in the intervening intervals to avoid wasting
server compute time. The system serves as an example of the new capabilities possible by using
preemptible functions, and also a demonstration that preemptible functions are not only usable
by expert programmers.

8.1 State-of-the-art RPC systems
The motivation for this work is that contemporary RPC systems do not generally support pre-
emption. We begin with a brief survey of well-known systems and their approach to timeouts.

ONC RPC In the 1980s, Sun Microsystems developed a custom RPC protocol as part of the
NFS (Network File System) project. The protocol has come to be known as ONC (Open Network
Computing) RPC, and was standardized in a series of RFCs, most recently updated in 2009. The
protocol is widely implemented, shipping with many Unix systems and Microsoft Windows. It is
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if(context->IsCancelled()) {
return Status(StatusCode::CANCELLED, "Deadline␣exceeded");

}
Listing 8.1: Checking the cancellation flag in a gRPC server-side function

minimal and leaves features such as timeouts to the transport protocol. The RFC notes that clients
and servers must carefully handle the case of retrying timed out or otherwise failed requests to
avoid executing the task multiple times [53].

eRPC The eRPC project achieves lower RPC latencies by providing low-level primitives tai-
lored to userland networking drivers. Instead of Sun-style timeouts, it uses heartbeats to detect
broken connections. Unrequited heartbeats cause the session to expire, in which case the server
immediately notifies the client of the failure, but continues waiting for the associated task(s) to
finish executing [36].

gRPC In 2015, Google open sourced a new RPC system designed for use in modern datacenters.
The gRPC documentation encourages clients to include a timeout, which it refers to as a deadline,
with their requests [28]. This timeout is transmitted to the server along with the request, where it
can be used to cancel the associated request. Unfortunately, each server-side function is respon-
sible for detecting such cancellations by periodically checking a flag and responding accordingly,
as shown in Listing 8.1 [29].

ZIO gRPC ZIO gRPC is an experimental RPC system based on gRPC. It adds asynchronous
cancellation, which it accomplishes by requiring that server-side functions are written in purely
functional Scala. Upon a timeout, the system transparently cancels any partial work the server
has done and cleans up its associated resources [75].

8.2 Language support for asynchronous cancellation
Today’s RPC systems force the server-side programmer to handle timeouts and cancellation man-
ually. The only exception is ZIO gRPC, which only supports purely functional services.

This state of affairs becomes less surprising—albeit no less disappointing—if we recall that
operating systems have long failed to support asynchronous cancellation (Section 2.1). Unsur-
prisingly, most programming languages that support shared state have struggled with the same
problem.

C# used to provide the Thread.Abort() method for asynchronously cancelling a thread. It
has since marked it obsolete because it suffers from the same safety problems as cancelling POSIX
and Windows kernel threads. As the documentation remarks:

The Thread.Abort() method should be used with caution. Particularly when you
call it to abort a thread other than the current thread, you don’t know what code has
executed or failed to execute when the ThreadAbortException is thrown. You also
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cannot be certain of the state of your application or any application and user state that
it’s responsible for preserving. For example, calling Thread.Abort() may prevent
the execution of static constructors or the release of unmanaged resources [66].

The Java standard library initially offered a Thread.stop() method for asynchronous can-
cellation, but the language was soon forced to deprecate the feature. Notably, it purports to avoid
the resource leak and deadlock problems of competing systems, but can still corrupt program and
library state:

Stopping a thread causes it to unlock all themonitors that it has locked. (Themonitors
are unlocked as the ThreadDeath exception propagates up the stack.) If any of the
objects previously protected by these monitors were in an inconsistent state, other
threads may now view these objects in an inconsistent state. Such objects are said
to be damaged. When threads operate on damaged objects, arbitrary behavior can
result. This behavior may be subtle and difficult to detect, or it may be pronounced.
Unlike other unchecked exceptions, ThreadDeath kills threads silently; thus, the
user has nowarning that his programmay be corrupted. The corruption canmanifest
itself at any time after the actual damage occurs, even hours or days in the future [33].

Even scarier is Ruby, which still offers the Thread.raise interface and higher-level “features”
such as Timeout. These are still marketed as useful and bear no disclaimers, despite making no
effort to address any of the perils of asynchronous preemption [22].

8.3 Easier RPCs with strobelight

Our work on preemptible functions paves the way for systems that safely support both preemp-
tion and asynchronous cancellation. The new concurrency abstraction provides what the Java
commentary identifies as missing: a way to determine that structures may be in a damaged state.
Furthermore, it contains such damage to those objects directly used by the cancelled preemptible
function by isolating library state using selective relinking. (As we have noted, resource leaks
remain a problem that the programmer must solve manually, but we sketched an approach to
automatic cleanup in Chapter 6.)

The strobelight system leverages preemptible functions to improve the usability of RPCs in
two significant ways: preventing wasted work and preserving salvageable progress. It does this
by extending libturquoise’s approach of wrapping each task in a preemptible function (Chapter 7).
A strobelight client sends a request consisting of a function identifier, set of arguments, and its
timeout. As each request arrives, the strobelight server invokes a preemptible function to process
it. If the client times out and stops listening for a response, the server’s preemptible function
does so at a similar time, automatically pausing execution. The server keeps paused preemptible
functions around and “memoizes” repeated requests by resuming them when an incoming func-
tion identifier and argument set match those of one that has timed out. The server also memoizes
computed results, so that repeating a completed request does not result in duplicate work.
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8.4 Future work
The strobelight server is a proof-of-concept system implemented in 128 lines of Rust. As such,
it has several shortcomings that a production system would need to address. For one thing, it
currently memoizes all partial and completed requests, assuming that all server-side functions
neither affect one another’s results nor depend on anything other than their arguments. Lifting
these impractical restrictions would require a configuration or annotation mechanism to indicate
which functions have these properties; ideally, the system would also provide transaction man-
agement that was aware of dependencies and able to determine when a restart or recalculation
was required. Another shortcoming of the current system is that it keeps all past requests around
forever. To avoid a ballooning resource footprint, a real server would need to use an LRU cache
or similar approach. For partially-computed functions, this would either require the programmer
to write a specific cleanup handler to accompany each server-side function or the integration of
our automatic cancellation ideas into the preemptible functions stack. There is currently high
request latency because the server spawns a kernel thread to handle each request and uses block-
ing I/O, but it could use a userland thread pool and futures. The current implementation does
not provide type safe bindings for the client, but systems such as gRPC already solve this using
Protocol Buffers. Finally, strobelight does not presently allow installing additional functions into
a running server, but this would be easy to support thanks to libgotcha’s compatibility with the
dynamic linker’s dlopen() interface for runtime loading (Section 3.7.1).

8.5 Conclusion
This chapter introduced the strobelight RPC system, which uses preemptible functions to make
each server-side task time out automatically when the client’s request does. This saves imple-
menters of server-side functions from having to punctuate their code with frequent deadline
checks like that shown in Listing 8.1, and from relying on the authors of third-party libraries
to do the same. Furthermore, the server memoizes partial computations to avoid repeated work
should the client retry a failed request. The system showcases how preemptible functions em-
power even non-expert programmers to implement complex application functionality.



Chapter 9

Microsecond-scale microservices

“ The ships hung in the sky in much the same way that bricks don’t. ”
— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

This chapter provides a case study of how lightweight preemptible functions could be used to
create the serverless platform of the future. We have not prototyped any of its ideas on libinger ;
rather, they formed the initial motivation for fine-grained preemption and the inspiration for the
preemptible function abstraction.

Modern cloud computing environments strive to provide users with fine-grained scheduling
and accounting, as well as seamless scalability. The most recent face to this trend is the “server-
less” model, in which individual functions, or microservices, are executed on demand. Popular
implementations of this model, however, operate at a relatively coarse granularity, occupying
resources for minutes at a time and requiring hundreds of milliseconds for a cold launch. In this
chapter, we describe a novel design for providing “functions as a service” (FaaS) that attempts
to be truly micro: cold launch times in microseconds that enable even finer-grained resource
accounting and support latency-critical applications. Our proposal is to eschew much of the tra-
ditional serverless infrastructure in favor of language-based isolation. The result is microsecond-
granularity launch latency, and microsecond-scale preemptive scheduling using high-precision
timers.

9.1 Introduction
As the scope and scale of Internet services continues to grow, system designers have sought
platforms that simplify scaling and deployment. Services that outgrew self-hosted servers moved
to datacenter racks, then eventually to virtualized cloud hosting environments. However, this
model only partially delivered two related benefits:

1. Pay for only what you use at very fine granularity

2. Scale up rapidly on demand

The VM approach suffered from relatively coarse granularity: Its atomic compute unit of ma-
chines were billed at a minimum of minutes to months. Relatively long startup times often re-
quired system designers to keep some spare capacity online to handle load spikes.

These shortcomings led cloud providers to introduce a new model, known as serverless com-
puting, in which the customer provides only their code, without having to configure its environ-
ment. Such “function as a service” (FaaS) platforms are now available as AWS Lambda [2], Google
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Cloud Functions [27], Azure Functions [46], and Apache OpenWhisk [5]. These platforms pro-
vide a model in which: (1) user code is invoked whenever some event occurs (e.g., an HTTP API
request), runs to completion, and nominally stops running (and being billed) after it completes;
and (2) there is no state preserved between separate invocations of the user code. Property (2)
enables easy auto-scaling of the function as load changes.

Because these services executewithin a cloud provider’s infrastructure, they benefit from low-
latency access to other cloud services. In fact, acting as an access-control proxy is a recurring
microservice pattern: receive an API request from a user, validate it, then access a backend storage
service (e.g., S3) using the service’s credentials.

In this chapter, we explore a design intended to reduce the tension between two of the desider-
ata for cloud functions: low latency invocation and low cost. Contemporary invocation tech-
niques exhibit high latency with a large tail; this is unsuitable for many modern distributed sys-
tems which involve high-fanout communication, sometimes performing thousands of lookups to
handle each user request. Because user-visible response time often depends on the tail latency of
the slowest chain of dependent responses [12], shrinking the tail is crucial [32, 73, 40, 34].

Thus we seek to reduce the invocation latency and improve predictability, a goal supported
by the impressively low network latencies available in modern datacenters. For example, it
now takes < 20𝜇𝑠 to perform an RPC between two machines in Microsoft Azure’s virtual ma-
chines [23]. We believe, however, that fully leveraging this improving network performance will
require reducing microservices’ invocation latencies to the point where the network is once again
the bottleneck.

We further hypothesize—admittedly without much proof for this chicken-and-egg scenario—
that substantially reducing both the latency and cost of running intermittently-used services will
enable new classes and scales of applications for cloud functions, and in the remainder of this
chapter, present a design that achieves this. As Lampson noted, there is power in making systems
“fast rather than general or powerful” [38], because fast building blocks can be used more widely.

Of course, a microservice is only as fast as the slowest service it relies on; however, recall
that many such services are offered in the same clouds and datacenters as serverless platforms.
Decreasing network latencies will push these services to respond faster as well, and new stable
storage technologies such as Intel Optane (which offers sub-microsecond reads and writes) will
further accelerate this trend by offering lower-latency storage.

In this chapter, we propose a restructuring of the serverless model centered around low-
latency: lightweightmicroservices run in shared processes and are isolated primarilywith language-
based compile-time guarantees and fine-grained preemption.

9.2 Motivation
Our decision to use language-based isolation is based on two experimental findings: (1) Process-
level isolation is too slow for microsecond-scale user functions. (2) Commodity CPUs support
task preemption at microsecond scale. We conducted our experiments on an Intel® Xeon® E5-
2683 v4 server (16 cores, 2.1 GHz) and Linux 4.13.0.1

1Source code for the benchmarks in this chapter is available from https://github.com/efficient/microservices_
microbenchmarks.

https://github.com/efficient/microservices_microbenchmarks
https://github.com/efficient/microservices_microbenchmarks
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Figure 9.1: Language-based isolation design. The dispatcher process uses shared in-memory
queues to feed requests to the worker processes, each of which runs one user-supplied microser-
vice at a time.

9.2.1 Process-level isolation is too slow
We use a single-machine experiment to evaluate the invocation overhead of different isolation
mechanisms: Microservices run on 14 worker CPU cores. Another core runs a dispatcher process
that launches microservices on the workers. All requests originate at the dispatcher (which in a
full serverless platform would forward from a cluster scheduler); it schedules ≤14 microservices
at a time, one per worker core, choosing from a pool of 5,000.

To provide a comparison against contemporary system designs, we use two different isolation
mechanisms:

1. Process-based isolation: Each microservice is a separate process. We expect this ap-
proach to exhibit latency at least as low as the container isolation common in contemporary
serverless deployments.

2. Language-based isolation: Each worker core hosts a single-threaded worker process that
directly executes different microservices, one at a time. In this approach, shown in Fig-
ure 9.1, a worker process runs a microservice by calling its registered function; we assume
that themicroservice function can be isolated from theworker process with language-based
isolation techniques that we discuss in Section 9.3. The dispatcher schedules microservices
on worker processes by sending them requests on a shared memory queue, which idle
worker processes poll.

We use 5,000 copies of a Rust microservice that simply records a timestamp: latency is measured
between when the dispatcher invokes a microservice and the time that microservice records.
There are two experiment modes:

Warm-start requests. We first model a situation where all of the microservices are already
resident on the compute node. In the case of process-based isolation, the dispatcher launches
all 5,000 microservices at the beginning of the experiment, but they all block on an IPC call; the
dispatcher then invokes each microservice by waking up its process using a UDP datagram. In
the case of language-based isolation, the microservices are dynamic libraries preloaded into the
worker processes.

Table 9.1 shows the latency and throughput of the two methods. We find that the process-
based isolation approach takes 9 µs and achieves only 300,000 warm microservice invocations
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Microservices Latency (µs) Throughput
Resident? Isolation Median 99% (M invoc/s)

Warm-start Process 8.7 27.3 0.29
Language 1.2 2.0 5.4

Cold-start Process 2845.8 15976.0 –
Language 38.7 42.2 –

Table 9.1: Microservice invocation performance

per second. In contrast, language-based isolation achieves 1.2 µs latency (with a tail of just 2.0
µs) and over 5 million invocations per second.

Considering that the FaRM distributed computing platform achieved mean TATP transaction
commit latencies as low as 19 µs in 2015 [16], a 9 µs microservice invocation delay represents al-
most 50% overhead for a microservice providing a thin API gateway to such a backend. We there-
fore conclude that even in the average case, process-based isolation is too slow for microsecond-
scale scheduling. Furthermore, IPC overhead limits invocation throughput.

Process-based isolation also has a higher memory footprint: loading the 5,000 trivial microser-
vices consumes 2 GiB of memory with the process-based approach, but only 1.3 GiB with the
language-based one. However, this benefit may reduce as microservices’ code sizes increase.

Cold-start requests. Achieving ideal wakeup times is possible only when the microservices
are already resident, but the tail latency of the serverless platform depends on those requests
whose microservices must be loaded before they can be invoked. To assess the difference be-
tween process-based and language-based isolation in this context, we run the experiment with
the following change: In the former case, the dispatcher now launches a transient microservice
process for each request by fork()/exec()’ing. In the latter, the dispatcher asks a worker to
load a microservice’s dynamic library (and unload it afterward). The results in Table 9.1 reveal an
order-of-magnitude slip in the language-based approach’s latency; however, this is overshadowed
by the three orders of magnitude increase for process-based isolation.

9.2.2 Intra-process preemption is fast
In a complete serverless platform, some cluster-level scheduler would route incoming requests to
individual worker nodes. Since we run user-provided microservices directly in worker processes,
a rogue long-running microservice could thwart such scheduling by unexpectedly consuming the
resources of a worker that already had numerous other requests queued. We hypothesize that,
in such situations, it is better for tail latency to preempt the long microservice than retarget the
waiting jobs to other nodes in real time. (Only the compute node already assigned a request is
well positioned to know whether that request is being excessively delayed: whereas other nodes
can only tell that the request hasn’t yet completed, this node alone knows whether it has been
scheduled.) At our scale, this means a preemption interval up to two orders of magnitude faster
than Linux’s default 4 ms process scheduling quantum. Section 5.6.1 demonstrates that interval
timers are capable of delivering signals with this frequency.
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9.3 Providing isolation

Consolidatingmultiple users’ jobs into a single process requires addressing security and isolation.
We aim to do it without compromising our ambitious performance goals.

Our guiding philosophy for achieving this is “language-based isolation with defense in depth.”
We draw inspiration from two recently-published systems whose own demanding performance
requirements drove them to perform similar coalescing of traditionally independent components:
NetBricks [50] is a network functions runtime for providing programmable network capabilities;
it is unique among this class of systems for running third-party network functions in-process
rather than in VMs. Tock [39] is an embedded microkernel whose servers (“capsules”) form a
common compilation unit and communicate using type-safe function calls. As their primary
defense against untrusted code, both systems leverage Rust [54], a new type-safe systems pro-
gramming language.

Rust is a strongly-typed, compiled language that uses a lightweight runtime similar to C. Un-
like many other modern systems languages, Rust is an attractive choice for predictable perfor-
mance because it does not use a garbage collector. It provides strong memory safety guarantees
by focusing on “zero-cost abstractions” (i.e., those that can be compiled down to code whose
safety is assured without runtime checks). In particular, safe Rust code is guaranteed to be free of
null or dangling pointer dereferences, invalid variable values (e.g., casts are checked and unions
are tagged), reads from uninitialized memory, mutations of non-mut data (roughly the equivalent
of C’s const), and data races, among other misbehaviors [56].

We require each microservice to be written in Rust (although, in the future, it might be possi-
ble to support subsets of other languages by compiling them to safe Rust), giving us many aspects
of the isolation we need. It is difficult for microservices to crash the worker process, since most
segmentation faults are prevented, and runtime errors such as integer overflow generate Rust
panics that we can catch. Microservices cannot get references to data that does not belong to
them thanks to the variable and pointer initialization rules.

Given our performance goals, there is a crucial isolation aspect that Rust does not provide:
there is nothing to stop users from monopolizing the CPU. Our system, however, must be pre-
emptive. We can apply preemptible functions (Chapter 2) here to impose a time quota on each
microservice. This has the added benefit of automatically providing memory isolation between
library dependencies (Chapter 3), insulating unsafe platform code from affecting the state of other
microservices or the rest of the worker process.

Our defense-in-depth comes from using lightweight operating-system protections to block
access to certain system calls, as well as the proposed mechanisms in Section 9.5. Some system
calls must be blocked to have any defense at all; otherwise, the microservice could create kernel
threads (e.g., fork()), create competition between threads (e.g., nice()), or even terminate the
entire worker (e.g., exit()). Finally, user functions should not have unmonitored file system
access.

We propose to block system calls using Linux’s seccomp() system call [58]; each worker
process should call this during initialization to limit itself to a allowlisted set of system calls. Prior
to lockdown, the worker process should install a SIGSYS handler for regaining control from any
microservice that attempts to violate the policy.
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9.4 Deployment
We now describe our microservices in the broader context of our full proposed serverless system.
We clarify their lifecycle, interactions with the compute nodes, and the trust model for the cloud
provider.

Users submit their microservices in the form of Rust source code, allowing the serverless
operator to pass the -Funsafe-code compilation flag to reject any unsafe code. This process
need not occur on the compute nodes, provided the deployment server tasked with compilation
runs the same version of the Rust compiler.2 The operator needs to trust the compiler, standard
library, and any libraries against which it will permit the microservice to link (since they might
contain unsafe code), but importantly need not worry about the microservice itself.

We believe that restricting microservices to a specific list of permitted dependencies is rea-
sonable. Any library that contains only safe Rust code could be allowlisted without review. To
approximate the size of such a list given the current Rust ecosystem, we turn to a 2017 study [9]
by the Tock authors that found just under half of the Rust package manager’s top 1000 most-
downloaded libraries to be free of unsafe code. They caution that many of those packages have
unsafe dependencies, but reviewing a relatively small number of popular libraries would open up
the majority of the most popular packages.

If the application compiles (is proven memory-safe) and links (depends only on trusted li-
braries) successfully, the deployment server produces a shared object file, which the provider
then distributes to each compute node on which it might run. Then, in order to ensure that in-
vokers will experience the warm-start latencies discussed in Section 9.2, those nodes’ dispatcher
processes should instruct one or more of their workers to preload the dynamic library. If the
provider experiences toomany active microservices for its available resources, it can unload some
libraries; on their next invocation, they will experience higher (cold start) invocation latencies as
they synchronously load the dynamic library.

9.5 Future work
As noted above, our exploration is preliminary; this section outlines several open questions.
These questions fall into two categories: simplifications we made for benchmarking and defense-
in-depth safeguards against unexpected failures (e.g., compiler bug or the operator allowing use
of a buggy or malicious library).

Host process. Our benchmarks do not account for isolation between the dispatcher andworker
processes. A real deployment would want to employ standard OS techniques to reduce the chance
of interference by a misbehaving worker. Examples include auditing interactions with the shared
memory region to ensure invalid or inconsistent data originating from a worker cannot create an
unrecoverable dispatcher error; handling the SIGCHLD signal to detect aworker that has somehow
crashed; and keeping a recovery log in the dispatcher process so that any user jobs lost to a failed
worker process can be reassigned to operational workers.

2This restriction exists because, as of the latest release (1.23.0) of the compiler, Rust does not have a stable ABI.
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Further defense in depthwith ERIM. ERIM outlines a set of techniques and binary rewriting
tools useful for using Intel’s Memory Protection Keys to restrict memory access by threads within
a process [70]. While preliminary andwithout source yet available, this appears to be an attractive
approach for defense-in-depth both within worker processes and between the workers and the
dispatcher.

Library functions. As with system calls, there may exist library functions in Rust (and cer-
tainly in libc, which we deny by default) that are unsafe for microservices to access. Because the
Rust standard library requires unsafe code, defense-in-depth suggests that a allowlisting-based
approach should be employed for access to its functions. Certainly library functions must be
masked—for example, our use of Rust’s panic handler for preemption means that we must deny
microservice code the ability to catch the panic and return to execution. Although we mitigate
this possibility by detecting and blocklisting microservices that fail to yield under a SIGALRM, it
would be desirable to block such behavior entirely. Possible options include using the dynamic
linker to interpose stub implementations or linking against a custom build of the library, or using
more in-depth static analysis.

Resource leaks. Safe Rust code provides memory safety, but it cannot prevent memory
leaks [57]. For example, destructor invocation is not guaranteed using Rust’s default reference
counting-based reclamation; therefore, unwinding the stack during preemption is not guaran-
teed to free all of a microservice’s memory or other resources. Potential solutions are interpos-
ing on the dynamic allocator to record tracking information (likely proving expensive) or using
per-microservice heaps that main worker process can simply deallocate when terminating a mi-
croservice. The worker can also deallocate other resources, such as unclosed file descriptors. If
these checks end up being too expensive, the worker could execute its cleanup after a certain
number of microservices have run or when the load is sufficiently low.

Side channels. Our current approach is vulnerable to side-channel attacks [45, 37]. For exam-
ple, microservices have access to the memory addresses and timings of dynamic memory alloca-
tions, as well as the numbers of opened file descriptors. Although side-channels exist in many
systems, the short duration of microservice functions may make mounting such attacks more
challenging; nevertheless, standard preventative practices found in the literature should apply.
Despite the security challenges of running microservice as functions, worker processes are still
well-isolated from the rest of the system. Worst case, the central dispatcher process can restart a
failed worker and automatically ban suspect microservices.

9.6 Conclusion
In order to permit applications to fully leverage the 10s of 𝜇𝑠 latencies available from the lat-
est datacenter networks, we propose a novel design for serverless platforms that runs user-
submitted microservices within shared processes. This structure is possible because of language-
based compile-time memory safety guarantees and microsecond-scale preemption. Our benchmark
demonstrates that these goals of high throughput, low invocation latency, and rapid preemption
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are achievable on today’s commodity systems, while potentially supporting hundreds of thou-
sands of concurrently available microservices on each compute node. We believe that these two
building blocks will enable new FaaS platforms that can deliver single-digit microsecond invoca-
tion latencies for lightweight, short-lived tasks.

Since we published this benchmark, Cloudflare has built and deployed a production FaaS
platform called Workers. Like our proposed architecture, this system omits containers and vir-
tual machines by running user code in process [11]. It accomplishes this by requiring users to
submit JavaScript code (or WebAssembly) and running each task as a separate Isolate under the
V8 JavaScript engine [69], thereby halvingmajor competitors’ cold-start latencies. While running
under a JavaScript engine confers some practical benefits such as not having to audit dependen-
cies, we believe that a shift to native code will be necessary to further reduce cold-start latencies
from the millisecond range to the tens or hundreds of microseconds.



Chapter 10

Conclusions and continuations

The dissertation set out to substantiate this thesis statement:

Providing language-agnostic abstractions for fine-grained preemption and function-
level isolation enables the straightforward implementation of application functional-
ity long considered prohibitively difficult, such as preemptive user threads and asyn-
chronous task cancellation.

We now break this down and briefly recap our work pertaining to each of its claims (Sec-
tion 10.1), discuss applications and directions for future work (Section 10.2), review a selection
of the technical challenges we had to overcome (Section 10.3), and distill a few lessons for future
systems builders (Section 10.4).

10.1 Contributions
The abstract expands on the thesis statement:

We introduce novel programming abstractions for isolation of both time andmemory.
They operate at finer granularity than traditional primitives, supporting preemption
at sub-millisecond timescales and tasks defined at the level of a function call. This
resolution enables new functionality for application programmers, including users of
unmanaged systems programming languages, all without requiring changes to the
existing systems stack. Despite being concurrency abstractions, they employ syn-
chronous invocation to allow application programmers tomake their own scheduling
decisions. However, we found that they compose naturally with existing concurrency
abstractions centered around asynchronous background work, such as threads and
futures. We demonstrated how such composition can enable asynchronous cancel-
lation of threads and the implementation of preemptive thread libraries in userland,
both regarded for decades as challenging problems.

It makes specific references to key contributions; we now further expand on each of these
and give pointers back to the relevant chapters and sections.
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Novel programming abstractions for isolation of both time andmemory These abstrac-
tions are lightweight preemptible functions and selective relinking. They are introduced in Chap-
ter 2 and Chapter 3, respectively.

Preemption at sub-millisecond timescales We found in Section 5.6.1 that the modern sys-
tems stack is capable of supporting timer signals with periods on the order of microseconds.
We argued that the design of lightweight preemptible functions is compatible with preemption
quanta down to at least the tens of microseconds, with scaling limited by increasing CPU time
overheads. We also demonstrated that the latency of invoking a preemptible function is in the
same order of magnitude (Section 5.12). This is one order of magnitude faster than forking a
new process and two orders of magnitude finer than the typical operating system preemption
quantum.

Tasks defined at the level of a function call Both lightweight preemptible functions and se-
lective relinking explicitly treat function calls as an isolation boundary. The former expresses this
boundary by asking the programmer to annotate preemptible functions by invoking them with
a wrapper function (Section 2.3); the latter does so by intercepting calls to dynamically-linked
functions based on the context of the call (Section 3.3) and knowledge of specific functions that
cannot be protected solely through memory isolation (Section 3.6). That our system understands
function calls is significant because traditionally both preemption and memory isolation have
operated exclusively at the granularity of a kernel thread.

New functionality for application programmers It is worth emphasizing that our abstrac-
tions are available in userland and accessible to any programmer experienced with concurrency.
They expose powerful APIs that we summarize in Listings 5.1 and 5.2 (lightweight preemptible
functions) and Listings 3.2 and 3.3 (selective relinking). The preemptible functions Rust API is
even type safe and usable in contexts where the standard library does not allow thread spawns
(Chapter 5). Preemptible functions themselves serve as an example application for selective
relinking, and Chapters 7, 8, and 9 present case studies in building systems atop preemptible
functions. Simpler applications include detection of pathological cases such as adversarially-
constructed compressed images (Section 5.12.1) and graceful degradation by dropping video
frames.

Unmanaged systems programming languages Unlike prior art, our abstractions are re-
stricted neither to purely functional code nor to managed languages with heavyweight, garbage-
collected runtimes (Section 2.2). In principle, their only operating system and runtime require-
ments are timer signals (Section 5.6) and dynamic linking (Section 3.8.1).1 We officially support
the low-level C and Rust systems programming languages. We have tried to keep the API lan-
guage agnostic, and the fact that many languages include C foreign-function interfaces means
that some of them may already be able to use preemptible functions out of the box.

1It helps to also have exception handling, as per Section 6.2.
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Without requiring changes to the existing systems stack We implement everything en-
tirely in userland by building on existing abstractions such as dynamic linking, memory pro-
tection, POSIX signals and timers, and exception handling. Where we alter the behavior of the
dynamic linker and C runtime, we make those changes at load time (Section 3.4). (While we do
not in principle require a custom glibc, one must rebuild from source with a different configura-
tion macro for full functionality, as explained in Section 3.8.2. The only component of the system
that absolutely requires the developer of an application to rebuild its dependencies is cancellation
resource cleanup, per Sections 6.4.5, 6.4.7, and 6.5.)

Synchronous invocation Unlike threads and callback-based futures, preemptible functions
are invoked synchronously. This eliminates the need for an external scheduler and the associ-
ated overhead in cases where the programmer is willing to manually manage which preemptible
function to launch or resume next (Chapter 2). It also allows a preemptible closure to safely
capture local variables in Rust (Chapter 5).

Compose naturally with existing concurrency abstractions Both abstractions are usable
in multithreaded contexts. In fact, one can even take a paused preemptible function that was
executing one one kernel thread and resume it on a different one (Section 5.3), a property that
allows schedulers to treat preemptible functions like any other task. Preemptible functions can
be used to construct preemptible futures (Section 7.2) and even mutexes with await-style call
with current continuation semantics (Section 5.1.1).

Asynchronous cancellation of threads It has long proven difficult to cancel running threads,
both at the operating system level (Section 2.1) and at the language level (Section 8.2). We discover
that we can leverage thememory isolation provided by selective relinking to enable asynchronous
cancellation of POSIX threads, a feature that is almost unusable as shipped in the Unix operating
system and its clones (Chapter 4.2). Although resource cleanup requires careful programmer
attention (Section 4.2.1), we argue that this is possible to address automatically, even without
garbage collection, for languages conforming to RAII (Chapter 6).

Preemptive thread libraries in userland By modifying the thread pool from a Rust futures
executor to transparently wrap tasks in preemptible futures, we have created arguably the first
general-purpose preemptive thread library implemented entirely in userland. Details are in Chap-
ter 7.

10.2 Applications and future work
This dissertation leaves ample opportunity for future work on lightweight preemptible functions
and selective relinking. Possible directions include exploring other applications for our abstrac-
tions, conducting a deeper investigation of our example applications, making performance im-
provements, lifting scalability restrictions, adding defense in depth, improving application com-
patibility, and contributing more of our discoveries upstream.
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There are plenty of possible applications we have not explored. We have focused on pre-
emptible functions that use timeouts as a resource limit, but the underlying fine-grained pre-
emption we developed to support them is actually more general. One can imagine applying it to
real-time scheduling or imposing quotas based on resources other than time, such as data trans-
ferred or number of page faults. Chapter 9 proposed the use of preemptible functions to merge
multiple cloud tenants’ microservices into a single worker process, a technique that could be ap-
plied to locally-running programs as well. One could even write a tool that took two or more
dynamically-linked position-independent executables and merged them into a single application
that included in-process scheduling. Selective relinking, with its ability to intercept function calls
and issue notification callbacks, surely has applications in aspect-oriented programming. Its tech-
niques could be applied to other problems as well, such as allowing applications to depend on
more than one version of a dynamic library. Both abstractions enable numerous new use cases,
and we are sure there are many we have not thought of.

Those applications that we have explored also merit deeper study. Section 4.1 demonstrated
how selective relinking can be used to lift the primary safety restriction on signal handlers. Our
treatment was brief, but in our opinion it represents such a significant improvement to the signal
abstraction that it would be worth carrying beyond the prototype stage. In creating an implemen-
tation suitable for deployment, one might explore isolating each signal handler from the others or
defining a completely safe interface for signal handling in Rust or another language with a sound
type system. Section 4.2 gave a preliminary implementation of asynchronous thread cancella-
tion, a feature that operating systems and programming languages alike have long struggled to
support. Refining this prototype might involve fixing the resource leaks problem by integrating
the automatic cleanup approach we sketched in Chapter 6. We think that preemptible futures and
preemptive userland threading hold enormous potential for building scalable systems with bet-
ter resistance to denial of service attacks. We implemented these concepts before we had proper
support for thread-local storage and at a time when the Rust ecosystem was in flux because the
language was just stabilizing futures and async/await. As such, the majority of the preemptible
future code is compatibility calls to convert between different futures interfaces, and the thread
pool works only with a very old version of the Tokio futures executor. Porting to a modern fu-
tures executor and leveraging libinger’s support for thread locals would permit experiments on
the latest high-performance systems.

The performance of our implementation could be improved in several ways. As Section 5.6.1
noted, one current limitation is our use of a globally constant preemption quantum. We could
reduce the throughput overhead while preserving preemption granularity by varying the inter-
val based on the requested timeout and delaying the first signal for longer-running preemptible
functions. Even more granular preemption might be achievable by using hardware interrupts
directly instead of paying the overhead of POSIX signals; options include a custom kernel mod-
ule or porting to the Dune system [7]. We saw in Section 3.9.3 that the increased TLS size has
an impact on thread spawn performance. Incorporating a more robust implementation of the
workaround we prototyped in that section into libgotchawould mitigate much of this effect. This
might also eliminate the need to preallocate TCBs up front to keep preemptible function launch
latencies low.

Another area for improvement is scalability, as ours is currently constrained in multiple ways.
Preemptible functions’ stacks have a fixed size, but leveraging demand paging would resolve this
problem and also avoid having to preallocate them (Section 5.5). The fact that we need a dedi-



10.3. TECHNICAL CHALLENGES 113

cated preemption signal for each preemptible function places a fixed upper bound on parallelism,
but (mis)using glibc’s nonstandard SIGEV_THREAD_ID feature intended for thread libraries could
make a single signal sufficient (Section 5.6). That the dynamic linker supports a limited num-
ber of namespaces determined at compile time places a fixed upper bound on concurrency, but
one could port selective relinking to an alternative dynamic linker such as drow (Section 3.8.2).
Our current implementation reduces runtime latency at the cost of startup time, which is fine
for long-running processes or where workers can be spawned from template “zygote” processes,
but could pose issues otherwise (Section 3.9.2). The performance and scalability improvements
proposed thus far are likely to make pool allocators unnecessary for TCBs and stacks, the largest
resources we preallocate. Our remaining startup overhead comes from preparing all libsets at
load time, a tradeoff that one would already have to revisit in order to support a variable number
of libsets.

Applying our isolation mechanisms to multi-tenancy situations as proposed in Chapter 9
would require defense in depth. Both libgotcha and libinger would benefit from using enforced
interposition (Section 3.7.1) to replace library functions that could be used to circumvent selective
relinking and preemption in isolated code regions (e.g., by interfering with signals). One might
also consider expanding the preemptible functions interface to allow configurable isolation of
other actions that could affect the rest of the application, such as raising exceptions (Section 5.9).

There are a few enhancements that would improve compatibility, making more unmodified
existing code work with libsets and within preemptible functions. One could replace library func-
tions that exhibit unusual signal interruption behavior with wrappers that hid those differences
(Section 5.10). One could detect signals already used by the application to avoid conflicting allo-
cation of the same signals for preemption (Section 5.6). One could improve interception of global
variable accesses to properly support symbols of any size and remove the reliance on heuristics
that cannot handle certain instruction sequences (Section 3.5.2). One could consider support-
ing preemptible functions that spawned threads and/or forked new processes. Finally, one could
implement support for nested preemptible functions.

While we have discovered and reported multiple bugs over the course of this project, we have
encountered other issues that may or may not be worth addressing upstream. In some cases, it
was unclear whether issues truly represented a misimplementation of the relevant specification,
or whether they were relevant outside our own specific and arcane use of runtime features. It
is likely worth revisiting our workarounds and considering which could be reimplemented up-
stream to benefit other users. Examples include _Unwind_RaiseException()’s linker names-
pace limitations (Section 3.7.1), GDB’s reluctance to load symbols from modules loaded in alter-
nate namespaces (Section 3.8.1), scaling problems in glibc’s allocation of TCBs (Section 3.9.3),
certain glibc functions misbehaving in alternate namespaces (Section 5.10), and what may be
an off-by-one error in libgcc and libunwind’s implementation of the DWARF specification (Sec-
tion 6.4.7).

10.3 Technical challenges
Manipulating GOTs is not the only thing that gives libgotcha its name. Over the course of this
project, we encountered and had to adapt to a number of tricky low-level details of other systems.
We also developed some possibly novel insights and had to create some hackery of our own.
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We spent a lot of time comprehending and responding to implementation details of glibc,
and especially its dynamic linker. One of the early setbacks was its use of NODELETE shared
libraries (Section 3.4) that monkey patch one another’s internal state (Section 3.6.1). Debug-
ging unexpected crashes while calling some library functions, we learned about the nonstandard
GNU_IFUNC relocation type that we had not accounted for because of its absence from the ABI
specification (Section 3.5.1). Once we had more complex programs running, we were surprised to
find that exceptions were causing Rust programs to abort, even though we had built with excep-
tion unwinding and were careful not to allow exceptions to propagate across foreign function call
boundaries (Section 5.9). The cause turned out to be poor interplay between the stack unwind
library and the dynamic linker’s _dl_iterate_phdr() interface in the presence of calls between
linker namespaces (Section 3.7.1). When we started to run programs with multiple libsets, they
crashed and we learned about the dynamic library’s static TLS surplus (Section 3.8.2); at the time,
tweaking this required modifying a macro in the dynamic linker sources, but it has since been
moved to a tunable configured via an environment variable. This is not the only recent upstream
change to affect us (Section 3.8.1). When we added support for thread-local storage, we found
that in order to allocate our own TCBs without creating POSIX threads, we needed to manually
initialize some critical fields (Section 5.3). This led to another issue that briefly broke threads’
ability to signal themselves (Section 3.7.2). Finally, when writing libas-safe, we had to grok libc’s
initialization code in order to inject a libset switch late enough in startup that it did not leave the
starting libset’s C runtime broken (Section 4.1).

We also encountered a few dark corners of the Rust language. Although Rust’s ABI is tech-
nically unstable, it mostly follows the C ABI. However, there are exceptions, and the lack of
stability means there is no single reference of the deviations. After hours debugging mysterious
crashes, we learned the hard way about one such difference: Rust uses %rdx as a second return
register to store the other half of fat pointers. We had to tweak our trampoline code to preserve
this register on return callbacks following uninterruptible code (Section 3.6.2). Once we started
implementing preemptible functions, we quickly ran into double frees caused by the interaction
between POSIX contexts and destructors. We also stumbled upon a self-referential pointer in the
definition of the POSIX context structure (Section 5.4.1). This can lead to undefined behavior if
contexts are not heap allocated or when we need to copy one over another (Section 5.7). In such
cases, we manually update the troublesome pointer just before restoring the context.

Implementing libgotcha required writing some elaborate low-level code. To reroute dynamic
function calls based on runtime information, we had to inject code at the start of the call. We had
to write this code in assembly to avoid clobbering registers, and design our data structures to be
easy to access without compiler-generated code (Section 3.5.1). This also meant storing thread-
local variables using a TLS model that did not require making calls into the runtime in order to
resolve addresses (Section 3.7.2). To disambiguate which function was being called, we had to
generate executable pages of stub functions based on a common template, but with slight differ-
ences between each entry (Section 3.5.1). Supporting control library callbacks required pushing
a trampoline onto the stack to mark the call that had prompted the transition into uninterrupt-
ible code (Section 3.6.2). We had to size the trampoline’s stack frame to maintain stack alignment,
and incorporate logic to prevent any libset switches inside the callback from prompting recursive
callbacks. Intercepting global variable accesses was challenging in a different way, requiring a
difficult-to-debug segmentation fault handler, a dependency on a disassembler library, and custom
heuristics based on patterns we observed in compiled code (Section 3.5.2). We wanted enforced
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interposition functions to be able to call the functions they wrapped without manually resolving
the underlying symbol (Section 3.7.1). Preventing GCC and Clang from assuming these calls were
recursive required a combination of the -fno-optimize-sibling-calls compiler switch and
symbol aliases.

Finally, we had to develop some insights of our own that might prove useful to others working
with signals, POSIX contexts, exceptions, or dynamic linking. We created a portable mechanism
for directing external signals at particular threads using a signal pool and convergence algorithm
(Section 5.6). We also discovered a way of safely restoring a POSIX context obtained from a
signal handler (Section 5.7.1). In our exploration of automatic resource cleanup, we sketched out
workarounds to some of the problems that have long plagued asynchronous exception handling
(Section 6.4). We designed algorithms for detecting cross-module dynamic symbol references
(Section 3.3.1) and lazily reinitializing portions of the TLS area on demand (Section 3.7.2). In
extending pointer equality to selective relinking, we realized that two pointers can be statically
equivalent within a certain context even without knowing which libset their calls will be routed
to at runtime (Section 3.5.1). In the latter section, we also invented a trick for convincing the
dynamic linker to write the address of lazily-resolved symbol addresses to a custom location.

10.4 Lessons for systems builders
We leave the reader with a few higher-level lessons that have saved us time and pain, but would
have saved us more of each if we had fully appreciated them from the start:

• You cannot have fine-grained time isolation without fine-grained memory isolation.

• Design abstractions modularly and with an eye to other use cases; for instance, do not try
to fold time and memory isolation into a single tightly-coupled primitive as we almost did.

• The ability to resume interrupted tasks is a useful feature that improves composability
and is cheaper than cancellation, but it also introduces explicit concurrency into the task
interface.

• Treat debuggability as a first-order concern. Include runtime assertions with descriptive
errors, trace safety violations in unsound interfaces at runtime in debug builds, detect and
warn on misuse that could cause confusing or invalid results, make it easy to disable com-
plex features that may create or obscure problems, and test and maintain support for run-
ning under debugging and diagnostic tools.

• Periodically teach students and peers about aspects of your system. Often you (or they)
will discover design shortcomings, interface paper cuts, or pivotal enhancements. Even if
not, you will come to better understand its workings and be able to clearly articulate its
insights and their broader implications.

• Systems programming languages could save many programmers from handwriting assem-
bly code by providing a portable way to specify that a function should preserve all of its
caller’s registers. GCC and LLVM provide the no_caller_saved_registers function at-
tribute, but it is only implemented for the x86 family of architectures and its effect on
non–general-purpose registers differs between these two code generators.
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