
Machine Learning: Metrics and Embeddings

Timothy Chu

CMU-CS-21-147

December 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Gary Miller, Chair

Anupam Gupta
Daniel Sleator

Satish Rao, UC Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2021 Timothy Chu

This research was sponsored by the Department of Interior under award number D16PC00007 and by the National
Science Foundation under award numbers CMMI-1454548 and CCF-1637523. The views and conclusions con-
tained in this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Machine learning, Computational Geometry, Clustering, Kernels, Group Theory,
Theoretical Foundations

To my mother, who supported me since the day I was born.

Abstract
In this thesis, we analyze new theories of clustering, one of the most fundamen-

tal tasks in machine learning. We use methods drawing from multiple disciplines,
including metric embeddings, spectral algorithms, and group representation theory.
• We propose a metric that adapts to the shape of data, and show how to quickly

compute it. These metrics may be useful for improving k-means clustering
methods.

• We build a spectral partition method with provable theoretical guarantees. This
may lead to more theoretically principled spectral clustering methods, as exist-
ing methods do not have any such guarantees. Spectral clustering is one of the
most popular methods of clustering.

• We classify all Manhattan distance kernels. Kernel methods are one of the old-
est and most established methods of clustering data. This result is a Manhattan
distance analog of one of the fundamental results on machine learning kernels.

Each of these contributions answers natural questions in machine learning theory.
We develop multidisciplinary tools from disciplines ranging from linear algebra to
group theory, and combine these with key ideas from metric embeddings and com-
putational geometry.

Acknowledgments
First and foremost, I’d like to thank my advisor Dr. Miller, who among many

things encouraged me to think about unorthodox problems.
I would like to thank my thesis committee: Professor Gary Miller (my afore-

mentioned advisor), Professor Anupam Gupta, Professor Satish Rao, and Professor
Danny Sleator. I would also like to thank Deborah Cavlovich, for her tireless hard
work in helping PhD students at Carnegie Mellon.

Research is always better with a great group of collaborators. I’ve had a great
time working with Professor Donald Sheehy, Professor Noel Walkington, Profes-
sor Sushant Sachdeva, Professor Josh Alman, Aaron Schild, Mark Sellke, Shyam
Narayanan, Alex Wang, Yu Gao, Saurabh Sawlani, Junxing Wang, Jakub Pachocki,
Michael Cohen (now passed), Zhao Song, Nathan Pinsker, and Alex X. Chen. I’ve
also gotten considerable math help from Amol Aggarwal and David Yang.

I would like to thank Professor Mikkel Thorup and the graduate students at
BARC for a wonderful research experience in Copenhagen, Professor Richard Peng
for early mentorship and the opportunity to be included on some cool research
projects early in my PhD career, and Professor Lorenzo Orecchia for a research
opportunity when I was an undergrad at MIT.

Graduate school wouldn’t be the same without a supportive group of friends and
loved ones. I’ve had many great memories with my friends at Carnegie Mellon, in-
cluding Goran Zuzic, Pedro Paredes, Ainesh Bakshi, Travis Hance, Rajesh Jayaram,
Roie Levin, Jonathan Laurent, and Jason Li. Finally, I would like to thank my parents
Iris Li and Weishang Chu, my brother Joseph Chu, and Liting Chen for encouraging
me to finish my PhD when times were hard.

Contents

1 Introduction 1
1.0 Quick Preliminaries: Clustering Definitions and Geometry in ML 1
1.1 Thesis Overview . 1
1.2 Metric Embeddings and Group Theory in Kernels and Natural Language Processing 2
1.3 Data-Sensitive Distances in Clustering . 3
1.4 Spectral Clustering in Large Datasets . 4
1.5 Spectral Graph Theory in Machine Learning . 5

2 Metric Embeddings and Group Theory in Kernels and Natural Language Process-
ing 7
2.1 Introduction . 7

2.1.1 Kernel Methods . 8
2.1.2 Metric Transforms . 10
2.1.3 Only Polynomials Preserve Low Rank Matrices 11

2.2 Technique Overview . 14
2.2.1 Key Lemma . 14
2.2.2 Kernel Methods . 17
2.2.3 Metric Transforms . 17
2.2.4 Polynomial Method Converse . 18

A Preliminaries . 19
A.1 Notations . 19
A.2 Definitions . 19
A.3 Alternate Classifications of Completely Monotone and Bernstein Functions 20
A.4 Metric Hierarchies . 21
A.5 Negative Type Metrics and Euclidean Embeddability 21
A.6 Useful Tools . 22

B Non-Polynomial Functions Blow Up Matrix Rank 22
B.1 Preliminaries . 23
B.2 One Eigenvalue is Identically Zero . 23
B.3 Only Polynomials Have a Zero Eigenvalue 24
B.4 Rewriting the Sum . 25
B.5 Calculating the Limit . 25
B.6 Main Result . 26

C Transforming Manhattan to Euclidean . 26

ix

C.1 Useful Computations . 27
C.2 Main Results . 27
C.3 Function Should be Bounded . 28

D Transforming Manhattan to Manhattan . 29
D.1 Useful Tools . 29
D.2 Main Result . 30
D.3 Discussion and Extensions . 31

E Positive Definite Manhattan Kernels . 31
E.1 A Useful Tool . 31
E.2 Main Result . 31

F Representation Theory of the Real Hyperrectangles 32
F.1 Useful Tools . 32
F.2 Main Result . 33

3 Data-Sensitive Distances 35
1 Introduction . 35

1.1 Contributions and Past Work . 39
1.2 Definitions and Preliminaries . 40

2 Outline . 41
3 Exactly Computing the nearest neighbor metric 41

3.1 From Finite Sets to Finite Collections of Compact Path-Connected Bodies 46
4 Persistent Homology of the Nearest-neighbor Geodesic Distance 47
5 Relating the nearest neighbor metric to Euclidean MSTs, Euclidean Spanners,

and More . 48
5.1 Relation to the Euclidean MST problem 49
5.2 Generalizing Single Linkage Clustering, Level Sets, and k-Centers clus-

tering . 50
6 Spanners for the nearest neighbor metric . 50

6.1 Exact-spanners of nearest neighbor metric in the Probability Density Set-
ting . 50

6.2 Fast, Sparse Spanner for the Edge-Squared Metric 51
7 Conclusions and Open Questions . 51
G Nearest Neighbor Metric and Edge-Power Metrics relate to Single Linkage Clus-

tering, Level Sets, and k-Centers clustering . 52
H Proving Faster and Sparser-than-Euclidean Approximate Spanners 53

H.1 1 +O(δ2) spanners can be generated from a 1/δ WSPD 53
I Spanners in the Probability Density Setting: Full Proof 54

4 Spectral Clustering in the Limit 57
1 Introduction . 57

1.1 Definitions . 58
1.2 Theorems . 59
1.3 Past Work . 60

2 Paper Organization . 62

x

3 Cheeger-Buser inequalities require carefully chosen α, β, γ 62
4 Buser Inequality for Probability Density Functions 63

4.1 Weighted Buser-type Inequality . 64
4.2 Proof Strategy: Mollification by Disks of Radius Proportional to ρ 64
4.3 Key Technical Lemma: Bounding L1 norm of a function with the L1

norm of its mollification . 65
4.4 Upper Bounding the Numerator . 67
4.5 Lower Bound on the Denominator . 71
4.6 Bounding the Rayleigh Quotient (Proof of Theorem ??) 73
4.7 Gradient of Mollifier . 73
4.8 Scaling . 75

5 Cheeger Inequality for Probability Density Functions 77
6 Spectral Sweep Cuts have Provably Good Sparsity (proof of Theorem ??) 78
7 Problems with Existing Spectral Cut Methods 79

7.1 Our density function . 80
7.2 Proof Overview . 80
7.3 The Zero-set of a principal (1, 2) eigenfunction is the line y = 0 80
7.4 Any spectral sweep cut has high (1, β) sparsity 81

8 Conclusion and Future Directions . 83
J Calculating Eigenvalues and Isoperimetry constants for Simple Examples 83

J.1 Notation . 84
J.2 A Lipschitz weight . 84

K Cheeger and Buser for Density Functions does not easily follow from Graph or
Manifold Cheeger and Buser . 84
K.1 Comments on Graph Cheeger-Buser . 84
K.2 Comments on Manifold Cheeger-Buser 85

L A weighted Cheeger inequality in one dimension 85

5 Geometric Spectral Algorithms and Hardness, with Machine Learning applications 89
1 Introduction . 89

1.1 High-dimensional results . 92
1.2 Our Techniques . 95
1.3 Brief summary of our results in terms of pf 99
1.4 Summary of our Results on Examples 101
1.5 Other Related Work . 101

2 Summary of Low Dimensional Results . 102
2.1 Multiplication . 102
2.2 Sparsification . 103
2.3 Laplacian solving . 104

3 Preliminaries . 104
3.1 Notation . 104
3.2 Graph and Laplacian Notation . 105
3.3 Spectral Sparsification via Random Sampling 106
3.4 Woodbury Identity . 107

xi

3.5 Tail Bounds . 108
3.6 Fine-Grained Hypotheses . 108
3.7 Dimensionality Reduction . 108
3.8 Nearest Neighbor Search . 109
3.9 Geometric Laplacian System . 110

4 Equivalence of Matrix-Vector Multiplication and Solving Linear Systems 110
4.1 Solving Linear Systems Implies Matrix-Vector Multiplication 112
4.2 Matrix-Vector Multiplication Implies Solving Linear Systems 115
4.3 Lower bound for high-dimensional linear system solving 115

5 Matrix-Vector Multiplication . 116
5.1 Equivalence between Adjacency and Laplacian Evaluation 117
5.2 Approximate Degree . 118
5.3 ‘Kernel Method’ Algorithms . 119
5.4 Lower Bound in High Dimensions . 121
5.5 Lower Bounds in Low Dimensions . 129
5.6 Hardness of the n-Body Problem . 131
5.7 Hardness of Kernel PCA . 132

6 Sparsifying Multiplicatively Lipschitz Functions in Almost Linear Time 133
6.1 High Dimensional Sparsification . 134
6.2 Low Dimensional Sparsification . 136

7 Sparsifiers for |〈x, y〉| . 137
7.1 Existence of large expanders in inner product graphs 137
7.2 Efficient algorithm for finding sets with low effective resistance diameter 140
7.3 Using low-effective-resistance clusters to sparsify the unweighted IP graph145
7.4 Sampling data structure . 146
7.5 Weighted IP graph sparsification . 150

8 Hardness of Sparsifying and Solving Non-Multiplicatively-Lipschitz Laplacians . 163
9 Fast Multipole Method . 173

9.1 Overview . 173
9.2 K(x, y) = exp(−‖x− y‖2

2), Fast Gaussian transform 174
9.3 Generalization . 183
9.4 K(x, y) = 1/‖x− y‖2

2 . 184
10 Neural Tangent Kernel . 185

xii

List of Figures

1.1 In this picture, A,B, and C are data points in a two dimensional data set. Data-
sensitive metrics have the property that the distance between A and B is short,
while the distance between A and C is long. 3

1.2 We show a probability density function with support on the xy plane, and value
on the z coordinate. Traditional spectral clustering converges to a cut parallel to
the x axis, instead of the cut along the valley. In this figure, BC is a constant fac-
tor longer thanAB, and the height of the lowest point in the valley is 1/(BC)5/2.

. 5

3.1 In this figure we have a collection of points. The length or cost of the green curve
between the two blue points is the integral along the curve scaled by the distance
to the nearest point. 37

3.2 In this figure we have a collection of compact bodies in black. The length or cost
of the green curve between the two blue points is the integral along the curve
scaled by the distance to the nearest body. A curve may traverse a body at no
cost. Theorem ?? establishes that the shortest path curve between two points
goes straight from compact body to compact body. 39

4.1 The function ρ1, a 1-Lipschitz counterexample to Cheeger’s inequality when α+
γ > 2β. The height of the function is ε/2, and the length of the supporting
interval is roughly 2

ε
. 63

4.2 The function ρ2, a 1-Lispchitz counterexample to Buser’s inequality when γ ≥ 1
and γ − 1 < β. 63

4.3 The probability density function where ρ(x, y) = min(ε + x, 1
n
) for arbitrary

X, Y, n. Here, ρ(x, y) is plotted in the z axis, and E is at point (0,−Y, ε). This
function ρ has bad spectral sweep cuts when α = 1, γ = 2. 79

xiii

List of Tables

5.1 Functions among f1, f2, f3, f4 that have almost-linear time algorithms 100
5.2 . 105
5.3 Sparsification Hardness . 163
5.4 Linear System Hardness . 166

xv

Chapter 1

Introduction

Modern machine learning has seen unprecedented practical success in fields ranging from lan-
guage processing, image recognition, data clustering, and more. In this thesis, we aim to un-
derstand the principles behind existing machine learning methods, particularly for the task of
fundamental ML task of clustering. We leverage classical ideas from computational geometry
and metric embeddings to gain deeper insight into machine learning methods like clustering,
kernel methods, natural language processing (transformers), and data mining on graphs.

1.0 Quick Preliminaries: Clustering Definitions and Geome-
try in ML

Clustering consists of taking unlabeled data and categorizing it into different clusters. As an
example, imagine that one measures the size and weight of k different types of bacteria in a cell
culture, and wants to determine what type of bacteria each individual measurement comes from.
This task is known as k-way clustering.

One classical insight in machine learning is that data measurements can be represented as
points in geometric space, and that information about the data set can be inferred from the ge-
ometric configuration of the resulting data points. For example, if one measures the size and
weight of a single bacterium in a cell culture, one can plot this as a two dimensional point with
x coordinate equal to the size, and y coordinate equal to the weight. The representation of data
as points in geometric space is a classical one in machine learning, and is widely used for most
clustering methods. This geometric representation of data is one reason computational geometry
can be expected to lead to a greater understanding of machine learning methods.

1.1 Thesis Overview
In this thesis, we examine metric-based clustering, spectral clustering on large data sets, and ker-
nel methods: each of these are widely used in practice. We prove theorems about the principles
underlying each method. Once we have a greater understanding of these principles, we then
present new machine learning methods based on these principles, where these new methods have

1

theoretical guarantees backing them. The tools in each of our explorations rely heavily on met-
rics and embeddings. In some of our applications, we supplement embedding tools with insights
from spectral graph algorithms and group theory.

Chapter ?? of this thesis is about group theory in kernels and natural language processing.
Chapter ?? is about clustering with data-sensitive distances. Chapter ?? is about a variant of
classical spectral clustering backed by additional mathematical principles and provable guaran-
tees on cluster quality. Chapter ?? is about spectral graph theory can create fast algorithms for
classical clustering methods.

1.2 Metric Embeddings and Group Theory in Kernels and
Natural Language Processing

Smola developed kernel methods in the 1990s to improve machine learning performance [?].
The key idea is that given a set of data in d dimensional space, one can find a function F to
map this data into an infinite dimensional space in which natural clusters can be more easily
discovered. Then, one can perform clustering methods on this new space. The key insight is
that clustering in the new space can be done quickly and efficiently given a fast computational
oracle for 〈F (x), F (y)〉 for any x, y, even when F itself is not known or not computable. In
some settings, F is designed so that an easily computable function f : Rd → R satisfies f(‖x−
y‖p) = 〈F (x), F (y)〉. The set of functions f for which such an F exists, is known as the set of
positive definite `p kernel functions. When p = 2, we refer to such kernels as positive definite
Euclidean kernels, and when p = 1, we refer to such functions as positive definite Manhattan
kernels. The function e−x2 is an example of a positive definite Euclidean kernel, and the function
e−|x| is a positive definite Manhattan kernel [? ?].

Kernel methods have been widely used ever since their introduction by Smola, and have seen
practical applications in almost all areas of machine learning. They have also been shown to have
deep connections to neural networks [?].

Separately, the field of natural language processing has undergone a revolution with the rise
of deep neural networks. One of the most powerful neural network architectures for natural
language processing is the transformer [?]. Despite impressive results in translation, audio
transcription, and speech synthesis, the theory behind transformers is not well understood.

In this dissertation, we develop novel bridges between the mathematical discipline of group
representation theory and metric embeddings, and apply it to kernel methods and natural lan-
guage processing. Group representation theory has previously been used throughout complexity
theory, algorithm design, combinatorics, algebraic geometry, chemistry, quantum physics, and
more. This theory is arguably the foundation of all of modern algebra [? ?].

In our work, we will show the following results:
1. A function is a positive definite Manhattan kernel if and only if it is a completely monotone

function. Positive definite Manhattan kernels are widely used across machine learning;
one example is the Laplace kernel which is widely used in machine learning for chemistry.
This completes the theory of Manhattan metric kernels initiated by Schoenberg in 1942,
and serves as a Manhattan metric analog of the fundamental theory of positive definite

2

Euclidean kernels as pioneered by Smola [? ? ?].

2. A function transforms Manhattan distances to Manhattan distances if and only if it is a
Bernstein function. This work completes the theory of Manhattan to Manhattan metric
transforms initiated by Assouad in 1980 [?].

3. A function applied entry-wise to any square matrix of rank r always results in a matrix
of rank < 2r−1 if and only if it is a polynomial of sufficiently low degree. This gives a
converse to a the polynomial method in algorithm design 1. Moreover, this result will also
illuminate the theory behind key steps of transformers in natural language processing.

Our work combines finite group representation theory, the study of group symmetries (which
is widely used across physics and chemistry), with metric embedding results and linear algebra.
To my knowledge, this is one of the first results that uses finite group representation theory with
metric embeddings to understand machine learning. We elaborate on this in Chapter ??.

1.3 Data-Sensitive Distances in Clustering
In this chapter, we consider a metric-based approach for clustering. We consider a suite of
distance measures, or metrics, between data points embedded in geometric space. Ideally, these
metrics should consider two points in the same cluster to be close, even if their Euclidean distance
is long. Likewise, these metrics should consider two points in different clusters to be far apart,
even if their Euclidean distance is short. We call metrics with this property data-sensitive.

Figure 1.1: In this picture, A,B, and C are data points in a two dimensional data set. Data-
sensitive metrics have the property that the distance between A and B is short, while the distance
between A and C is long.

In this thesis, we explore how to efficiently compute two previously considered data-sensitive

1The polynomial method in algorithm design states that applying a low degree polynomial to the entries of a low
rank matrix results in another low rank matrix

3

metrics: the edge-squared metric [?], and the nearest-neighbor metric [?]. Computing these
metrics efficiently allows clustering to be performed on them in practice.

The results we show on clustering are:
1. A (1 + ε)-spanner of the nearest neighbor metric, a notable example of a data sensitive

distance, can be computed in nearly linear time in constant dimension. This will allow us
to perform clustering using these metrics in a more efficient fashion than was previously
known.

2. The nearest neighbor metric and edge-squared metric are exactly identical in all cases.
Prior to these results, it was not known how to compute either metric efficiently, and it was not
even suspected that these two metrics were secretly identical. For this work, we make heavy use
of the Kirszbraun theorem from metric embedding and computational geometry, also known as
the Lipschitz extension theorem. We go into detail about these results in Chapter ??.

1.4 Spectral Clustering in Large Datasets
One of the most widely used clustering algorithms is known as spectral clustering [?]. We ex-
plore how it clusters data as the number of samples grows large. In this perspective, we make the
assumption that the points are drawn from a probability density function. We show that spectral
clustering has a key deficiency, and then devise a spectral clustering variant that addresses this
deficiency.

1. Given a large set of data drawn from a well-chosen and simple Lipschitz probability den-
sity, the most popular version of spectral clustering will converge to a bad cut of the data
set, with unboundedly bad sparsity guarantees.

2. Given a large data set drawn from any Lipschitz probability density, we present a new vari-
ant of spectral clustering that will converge to a cut of the data set with provable guarantees
on the cut sparsity.

Traditional spectral clustering is one of the most robust and widely used methods of clustering
data. However, it has a major theoretical issue. When a large number of points are drawn from a
probability density, then spectral clustering converges to something called a spectral sweep cut
of the underlying density. However, this spectral sweep cut can partition the probability density
poorly, and thus spectral clustering can converge to a poor partition of the data.

To remedy this, we build a new variant of the classical spectral clustering method (splitting
data into two clusters), and show that it will, in the large data regime, generate a cut of the
underlying probability density with provable guarantees on the cut sparsity. At a high level, this
means that the generated cut cuts through low surface area while splitting the density into two
pieces of relatively high volume.

Spectral clustering itself is based on embedding data into new geometric spaces, and thus
the use of geometric embeddings features prominently in our work. We will prove our variant
of spectral clustering has good sparsity guarantees through new extensions of the Cheeger and
Buser inequalities, applied to probability densities. Cheeger and Buser inequalities are famous
inequalities traditionally used in the graph and manifold setting, with the goal of relating fun-
damental eigenvalues with sparsest cut in each of these settings. We will go into detail about

4

Figure 1.2: We show a probability density function with support on the xy plane, and value on
the z coordinate. Traditional spectral clustering converges to a cut parallel to the x axis, instead
of the cut along the valley. In this figure, BC is a constant factor longer than AB, and the height
of the lowest point in the valley is 1/(BC)5/2.

spectral clustering in Chapter ??

1.5 Spectral Graph Theory in Machine Learning
Graphs are often used in machine learning to encode the relationship between data points. There
is a long history of applying graph theory algorithms on such graphs to perform machine learning
primitives such as clustering, semi-supervised learning, and more.

In Chapter ??, we develop spectral graph algorithms and complexity results on graphs arising
from points in geometric space. Since data is often represented as points in geometric space,
these results can be naturally applied to the above-mentioned machine learning questions. Our
results can be used to speed up certain forms of spectral clustering, semi-supervised learning,
and more.

Results we will show on geometric spectral graph theory include:
1. For certain complete geometric graphs arising from n points in d dimensions, we can

compute a spectral sparsifier of the graph in O(nd) time, where n is the number of points
and d is the dimension.

2. For a large class of complete geometric graphs, it is impossible to solve the Laplacian to
high accuracy in sub-quadratic time (assuming the Strong Exponential Time Hypothesis,
or SETH).

These results have applications to machine learning and physical simulations. In particular, the
first algorithmic result will enable us to perform spectral clustering on these geometric graphs
more efficiently, while the second result shows that the widely used fast-multipole method for
computing forces between electrostatic charges in physics, has a run-time with unavoidable ex-
ponential dependence on dimension. We elaborate on these results in Chapter ??.

5

Chapter 2

Metric Embeddings and Group Theory in
Kernels and Natural Language Processing

In this chapter, we develop a new technique which we call representation theory of the real
hyperrectangle, which describes how to compute the eigenvectors and eigenvalues of certain ma-
trices arising from hyperrectangles. We show that these matrices arise naturally when analyzing
a number of different algorithmic tasks such as kernel methods, neural network training, natural
language processing, and the design of algorithms using the polynomial method. We then use
our new technique along with these connections to prove several new structural results in these
areas, including:

1. A function is a positive definite Manhattan kernel if and only if it is a completely monotone
function. These kernels are widely used across machine learning; one example is the
Laplace kernel which is widely used in machine learning for chemistry.

2. A function transforms Manhattan distances to Manhattan distances if and only if it is a
Bernstein function. This completes the theory of Manhattan to Manhattan metric trans-
forms initiated by Assouad in 1980.

3. A function applied entry-wise to any square matrix of rank r always results in a matrix
of rank < 2r−1 if and only if it is a polynomial of sufficiently low degree. This gives a
converse to a key lemma used by the polynomial method in algorithm design.

Our work includes a sophisticated combination of techniques from different fields, including
metric embeddings, the polynomial method, and group representation theory.

2.1 Introduction

In this chapter, we introduce a new analytic technique we call ‘representation theory of the real
hyperrectangle’. At a high level, this technique gives simple expressions for computing the
eigenvectors and eigenvalues of a large class of matrices which are defined in terms of hyperrect-
angles (high-dimensional analogues of rectangles). We will see that this class of matrices arises
frequently in the study of linear algebraic tools for modern machine learning and algorithm de-
sign. As a result, we use our new technique to prove a number of new structural results in these

7

areas.
Before getting into the representation theory of the real hyperrectangle in more detail, we

first describe our three main applications. First, in Section ??, we give a classification of positive
definite kernels with Manhattan distance input. Second, in Section ??, we categorize all functions
which transform Manhattan distances to Manhattan distances or squared Euclidean distances.
Third, in Section ??, we prove that the only functions which always yield a low-rank matrix
when applied entry-wise to a low-rank matrix are low-degree polynomials; this is a converse of a
key idea behind the polynomial method in algorithm design and in the training of transformers in
natural language processing. Afterwards, in Section ??, we describe our new tool, representation
theory of the real hyperrectangle, and how we use to to yield these applications.

2.1.1 Kernel Methods

Our first application is to the study of kernel methods in machine learning. Much of the prior
work on kernels methods focuses in the Euclidean distance setting. Our new application shows
how to classify kernels in the Manhattan distance setting.

We start with defining positive definite kernel under Euclidean space.
Definition 2.1.1 (Positive definite Euclidean kernel). A function f is a positive definite Euclidean
kernel if, for any x1, . . . xn ∈ Rd for any n and d, the matrix M ∈ Rn×n with

Mi,j = f(‖xi − xj‖2)

is positive semi-definite. Equivalently, f is a positive definite Euclidean kernel if and only if there
exists a function F : Rd → H1 such that:

〈F (x), F (y)〉 = f(‖x− y‖2)

for all x, y ∈ Rd for all d.
The proof of the equivalence can be found in [?]. Positive definite kernels are used in

machine learning to separate data embedded in Rd using linear separator techniques, when the
initial data is not linearly separable [? ? ?]. In other words, a positive definite kernel can map
points in Rd which are not linearly separable, to points in potentially higher dimensions which are
linearly separable. Finding such an embedding is not an easy task in general, but kernel methods
solve this problem [? ? ?]. The key idea is to pick a function f based on the application so that
a function F like the one in Definition ?? can be found which maps the data points to vectors of
possible higher dimensions, after which linear separation can be performed efficiently on these
higher dimensional points.

Interestingly, linear separator algorithms such as the widely used Support Vector Machines
(SVMs) [?] can separate the data efficiently as long as 〈F (x), F (y)〉 is easily computed for
any x, y ∈ Rd, even if F itself cannot be easily computed. By definition of the positive-definite
kernel f , we know that 〈F (x), F (y)〉 = f(‖x− y‖2), which allows us to compute 〈F (x), F (y)〉
quickly by instead computing f(‖x − y‖2). In other words, in order to apply linear separator

1H represents Hilbert space.

8

algorithms, it suffices to know that a F exists, and not necessarily know what it is or how to
compute it.

The core result behind kernel methods is a full classification of all positive-definite Euclidean
kernels, showing that a function f : R→ R is a positive-definite Euclidean kernel if and only if
f(
√
x) is a completely monotone function [? ?]:

Definition 2.1.2 (Completely monotone functions [?]). A function f : R+ → R≥0 is completely
monotone if

(−1)kf (k)(x) ≥ 0

for all k ≥ 0, x > 0. A function f : R≥0 → R≥0 is completely monotone if f(0) ≥ limx→0+ f(x)
and f |R+ is completely monotone.

An example of a completely monotone function is f(x) = e−x.
Theorem 2.1.3 (Classification of all positive definite Euclidean kernels [? ?]). Function f :
R→ R is a positive-definite Euclidean kernel (Definition ??) if and only if f(

√
x) is a completely

monotone function.
This theorem gives a simple criterion to test whether any given function is a positive-definite

Euclidean kernel. One famous example of these kernels include The Gaussian kernel: fσ(x) =
e−σx

2 for σ > 0. Another famous example is called neural tangent kernel: f(x) = (1
2
−

1
2π

arccos(1
2
− 1

2
x2)) · (1

2
− 1

2
x2)2, which recently proposed by machine learning community

[?] and it plays a crucial role in showing the convergence of deep neural networks with non-
linear activation functions [? ? ? ? ? ? ?]. This theory allows practitioners to describe all
positive definite Euclidean kernels.

Main Result

In this chapter, we classify all positive-definite Manhattan kernels. These kernels are widely used
in machine learning for physical and chemical applications [? ? ?]. A notable example of such
a kernel is the Laplace kernel fσ(x) = e−σx which is commonly used in classification tasks [?].
However, a full description of all positive-definite Manhattan kernels was not known before our
work.
Definition 2.1.4 (Positive definite Manhattan kernel). A function f is a positive definite Manhat-
tan kernel if, for any x1, . . . xn ∈ Rd for any n and d, the n× n matrix M with

Mi,j = f(‖xi − xj‖1)

is positive semi-definite.
Our main result is as follows:

Theorem 2.1.5 (Main result, informal statement of Theorem ??). f is a positive definite Man-
hattan kernel (Definition ??) if only if f is completely monotone (Definition ??).

Theorem ?? classifies all positive-definite kernels when the input distance is Manhattan. It
was previously known that completely monotone functions are positive definite Manhattan ker-
nels [? ?], but it was not known these were the only such functions. Interestingly, our new

2This equation is corresponding to the ReLU activation function. For other activation functions, the equation
will be different.

9

classification is similar to Theorem ??, but without a square root applied to the input. Prior to
our result, one could have imagined that there are other positive definite Manhattan kernels to
use in SVMs than were previously known. However, our result shows that there are no other
such kernels.

2.1.2 Metric Transforms

Our second application is to metric transforms, a mathematical notion introduced by Schoenberg
and Von Neumann [?].
Definition 2.1.6 (Metric transform). Suppose X and Y are semi-metric spaces3. Function f
transforms X to Y if, for any finite set S ⊆ X , there is a function F : X → Y such that

f(dX (x1, x2)) = dY(F (x1), F (x2)),

for all x1, x2 ∈ S.
Metric transforms arise naturally in many settings where one wants to transform a set of

points from a metric space while maintaining some of the metric structure between them. They
have proven useful in many areas including sketching and embedding norms [?], algorithms to
compute a manifold geodesic [?], machine learning [? ?], harmonic analysis [? ? ?], complex
analysis [?], and PDE theory [? ?]. Typically we have particular metric spaces X and Y of
interest, as well as certain constraints on the function f , and would like to determine whether
any function which satisfies those constraints and maps X to Y . This leads to the key question
in metric transforms:
Question 2.1.7. For a given semi-metric space X and a given semi-metric space Y , what is the
full classification of functions f that transform X to Y?

Much work has been done on metric transforms in the special case where X and Y are both
Euclidean distances4 or close variants. Building on Schoenberg and Von Neumann’s work [?
], Schoenberg [?] classified all functions that transform Euclidean distances to Euclidean dis-
tances. Interestingly, it is known that there is a close connection between these metric transforms
and positive definite Euclidean kernels [? ?]

One natural question arises: what is the theory of metric transforms for non-Euclidean met-
rics? Surprisingly little attention has been paid to this question.

In the case whenX is Manhattan (or `1) distance, and Y is Euclidean distance, Schoenberg [?
] provided a partial categorization of functions that transform Manhattan distance to Euclidean
distance. This was followed by Assouad’s work in 1980, which provided a partial categorization
of functions that transform Manhattan distances to Manhattan distances [?]. Our work on
metric transforms completes the partial categorizations of Schoenberg and Assouad, and proves
their partial categorization is a full categorization.

3A semi-metric satisfies all the axioms for a metric except possibly the triangle inequality; the square of the
Euclidean distance gives rise to a semi-metric.

4When we refer to Euclidean or Manhattan distance in the remainder of this section, we always refer to distances
in infinite dimensional Euclidean metric space and infinite dimensional Manhattan metric spaces, respectively.

10

Main Result

Our main result about metric transforms is a complete classification of functions that transform
Manhattan distances to Manhattan distances. First, we need to define Bernstein functions:
Definition 2.1.8 (Bernstein functions [?]). A function f : R≥0 → R≥0 is Bernstein if f(0) = 0
and its derivative f ′ is completely monotone (see Definition ??) when restricted to R+. Equiva-
lently, a function f is Bernstein if:

1. (−1)k dkf(x)
dxk

≤ 0 for all k ≥ 1, x ≥ 0,
2. f(x) ≥ 0 for all x ≥ 0, and
3. f(0) = 0.5

Now we are ready to state our main result:
Theorem 2.1.9 (Main result, classifying all Manhattan metric transforms, informal version and
combination of Theorem ?? and ??). For a function f : R≥0 → R≥0, the following are equiva-
lent:

1. f is Bernstein.
2. f transforms Manhattan distances to Manhattan distances.
3. f transforms Manhattan distances to squared Euclidean distances.

It was previously known that Bernstein functions transform Manhattan distances to Manhat-
tan distances [?], and that they transform Manhattan distances to squared Euclidean distances [?
], but in both cases, it was not previously known that these were the only such functions. It
was previously conceivable that, in situations where one needs a metric transform involving
Manhattan spaces, but Bernstein functions do not suffice, one could find other suitable met-
ric transforms; our Theorem ?? rules out such a possibility. This also has a number of simple
consequences, for instance: given any n points x1, . . . xn in the metric space (Rd, `1) for any
d, one can use our construction in Theorem ?? to explicitly calculate F : Rd → `1 such that
‖F (xi)− F (xj)‖1 = f(‖xi − xj‖1).

2.1.3 Only Polynomials Preserve Low Rank Matrices
The polynomial method is a powerful technique for designing algorithms and constructing com-
binatorial objects. A key insight behind many of these results is the following fact, that applying
a low-degree polynomial entry-wise to a low-rank matrix yields another low-rank matrix:
Fact 2.1.10 (The polynomial method, folklore; see e.g. [?]). Suppose f : R→ R is a polynomial
of degree d. Then, for any matrix M ∈ Rn×n of rank r, the matrix M f ∈ Rn×n given by
M f

i,j := f(Mi,j) has rank(M f) ≤ 2
(
r+bd/2c−1
bd/2c

)
. For instance, if r = log2 n and d < o(log2 n),

then rank(M f) < n.
For one example, consider the fastest known algorithm for batch Hamming Nearest Neighbor

Search due to Alman, Chan, and Williams [?]. In this problem, one is given as input 2n vectors
x1, . . . , xn, y1, . . . , yn ∈ {0, 1}d for d = Θ(log n), and a threshold value t ∈ {0, 1, . . . , d},
and one wants to find a pair (i, j) ∈ [n] × [n] such that the Hamming distance between xi

5We remark that the special attention on f(0) in the definitions above is a bit non-standard but are convenient
for our purposes.

11

and yj is at most t. [?] takes an algebraic approach to this problem, by first considering
the matrix M ∈ Rn×n where Mi,j is the Hamming distance between xi and yj . One can see that
rank(M) ≤ 2d, and one could use fast matrix multiplication to quickly compute all the entries of
M 6. However, since M itself has n2 entries, this could not improve much on the straightforward
O(n2 log n) time algorithm. They instead take the following approach:

1. Pick a parameter g = nδ for a constant δ > 0, and a function f : R → R such that
f(x) > g2 for all x ∈ {0, 1, . . . , t}, and f(x) ∈ [0, 1] for all x ∈ {t+ 1, t+ 2, . . . , d}. [?]
use Chebyshev polynomials to construct such an f which is a low-degree polynomial, so
that the matrix M f has low rank by Fact ??.

2. Let S1, . . . , Sn/g be a partition of [n] into n/g groups of size g, and consider the matrix
F ∈ R

n
g
×n
g given by Fa,b =

∑
i∈Sa

∑
j∈SbM

f
i,j . It is not hard to verify that rank(F) ≤

rank(M f). Moreover, by the way f was defined, an entry Fa,b is larger than g2 if and only
if there is an (i, j) ∈ Sa×Sb such that the Hamming distance between xi and yj is at most
t.

There is a trade-off between the parameter δ and the degree of f , and hence the rank of F . [?
] balance this trade-off to yield a matrix F of low rank7 and dimensions n1−δ × n1−δ for some
δ > 0. Since F now has a subquadratic total number of entries, fast matrix multiplication can be
used to compute all its entries and solve the problem, in roughly O(n2−2δ) time.

The polynomial method in algorithm design is used like this to design the fastest known
algorithms for a variety of different, important problems, including: the Orthogonal Vectors
problem from fine-grained complexity [? ?], All-Pairs Shortest Paths [? ?], the lightbulb
problem in which one wants to find a planted pair of correlated vectors among a collection
of random vectors [? ? ?], computational problems related to kernel methods in spectral
clustering and semi-supervised learning [?], and some stable matching problems [?]. In all
these works, one starts with a matrix M describing the input data which has low rank, and one
transforms it into a matrix like M f which ‘amplifies’ the key properties of the data while still
having low rank. A similar approach has also been used to bound the ranks of matrices which
arise in other settings, such as in the recent resolution of the Cap Set Conjecture from extremal
combinatorics [? ?], and in recent proofs that Hadamard and Fourier transforms have low Matrix
Rigidity [? ? ?].

This motivates the question:
Question 2.1.11. Is it possible to generalize the polynomial method (Fact ??) to functions f
other than polynomials?

In other words, are there functions f which are not polynomials, but such that if one starts
with any low-rank matrix M , and applies it entry-wise yielding the matrix M f , then M f also
has low rank? This would allow algorithm designers to expand the efficacy and reach of the
polynomial method, both by expanding the set of constraints on the function f (such as those in
step 1 of the algorithm above) that one could use in the recipe above, and by potentially allowing
us to find new functions which satisfy those constraints but lead to lower rank bounds, and hence

6We first construct the matrices X ∈ Rn×2d and Y ∈ R2d×n such that M = X × Y . We can then compute the
product X × Y in Õ(n2) time using fast rectangular matrix multiplication [? ?] as long as d < n0.1.

7They pick rank ≈ n0.1 in order to apply fast rectangular matrix multiplication as in footnote ??, although
different applications of the polynomial method have aimed for different target ranks.

12

faster algorithms.

Application to Transformers in NLP Question ?? is also important in the study of transform-
ers in machine learning. Transformers are a type of neural network structure that has been widely
applied to many natural language processing (NLP) tasks [?]. A common computational task
which arises when training transformers is to calculate the ‘self attention’ [?]; formally, in this
task, we are given three matrices A,B,C ∈ Rn×d where n� d,8 and we would like to compute

(AB>)f · C (2.1)

where f : R→ R is a non-linear function that we apply entry-wise to the matrix AB> ∈ Rn×n,
then we multiply the result on the right by C. In many applications, f is the soft-max function.

Naively evaluating Eq. (??) takes time O(n2d) (without using fast matrix multiplication).
However, if we can quickly find matrices Ã, B̃ ∈ Rn×d̃ for some d̃ < n such that

(AB>)f = Ã× B̃>,

then we can evaluate Eq. (??) more quickly by first computing B̃> × C and then computing
Ã× (B̃> × C), for a total running time of just O(ndd̃).

Since AB> can be any rank d matrix, and Ã × B̃> has rank at most d̃, it follows that an
upper bound on the best d̃ we can achieve is the maximum, over all matrices M of rank d, of
rank(M f). Question ?? asks whether it is possible to achieve d′ < n for functions f like the
soft-max function which are not a polynomial. If not, then we can only hope to carry out this
plan of attack if we can find a low-degree polynomial approximation to our function f .

Main Result

More formally, the functions f we are interested in are those which preserve low-rank matrices.
We first define applying a function to a matrix entry-wise, then the matrices of interest.
Definition 2.1.12 (Entry-wise application). For a function f : R → R and matrix M ∈ Ra×b,
the entry-wise application of f to M is the matrix M f ∈ Ra×b where M f

i,j := f(Mi,j), for
(i, j) ∈ [a]× [b].
Definition 2.1.13 (Preserve low-rank matrices). For a function f : R → R and positive integer
n, we say f preserves low-rank n× n matrices if, for every matrix M ∈ Rn×n with rank(M) ≤
dlog2(n)e+ 1, we have rank(M f) < n.

For a function f to be effective in the polynomial method as described above, it is necessary
(but usually not sufficient) that f preserves low-rank n×nmatrices in the sense of Definition ??.
Indeed, in all the aforementioned applications of the polynomial method, such as the algorithm
of [?] and the application to transformers that we described above, the original matrix M
describing the data can have rank greater than log2 n. The details of how low the rank of M f

8The matrices A,B and C correspond to the query, key, and value matrices, respectively, when training trans-
formers in NLP applications. For more background, we refer the reader to the post by Kulshrestha [?] and more
followups [? ? ? ?].

13

must be can vary in the different applications, but it is always necessary that M f has less than
full rank (i.e., rank(M f) < n).

Our main result answers Question ?? in the negative, showing that Fact ?? cannot be gener-
alized.
Theorem 2.1.14 (Main result, informal statement of Theorem ??). For any positive integer n ≥
2, if the real analytic function f : R → R preserves low-rank n × n matrices, then f is a
polynomial of degree at most dlog2(n)e.

This shows that real analytic functions f which are not polynomials do not preserve low-rank
n×n matrices, and only polynomials of degree less than dlog2(n)e can preserve low-rank n×n
matrices. Hence, one cannot hope to improve on the polynomial method by extending it to any
classes of real analytic functions other than low-degree polynomials.

We note that there is a small constant-factor gap between the degree which Fact ?? tells us is
sufficient for a polynomial to preserve low-rank n× n matrices, and the degree that Theorem ??
says is necessary: for instance, Fact ?? says that polynomials of degree at most 1

2
log2(n) suffice,

since
(5

4
log2(n)

1
4

log2(n)

)
� n, whereas Theorem ?? says that degree less than log2(n) is necessary. We

leave open the question of closing this gap, although we note that the constant factor in front of
the polynomial degree does not play a major role in most of the aforementioned applications of
Fact ??.9

2.2 Technique Overview

2.2.1 Key Lemma
In this section, we introduce our key new technical idea, representation theory of the real hy-
perrectangle. This technique computes eigenvectors and eigenvalues of a large class of matrices
which are defined in terms of hyperrectangles. We first describe and provide intuition about this
technique, then we will explain how it leads to our applications by demonstrating why these ma-
trices and their eigenvalues are relevant to kernel methods, metric transforms, and the converse
of the polynomial method.

Our new technique concerns matrices defined in terms of a real hyperrectangle.
Definition 2.2.1 (Real hyperrectangle). The d-dimensional real hyperrectangle parameterized
by d variables a1, . . . ad > 0 is the convex hull of the 2d points {±a1/2, . . .± ad/2}.

The eigenvectors of the family of matrices we define shortly will come from columns of
Walsh-Hadamard matrices.
Definition 2.2.2 (Walsh-Hadamard matrices). For a positive integer d, let v1, . . . v2d ∈ {0, 1}d
be the enumeration of all n-bit vectors in lexicographical order. The Walsh-Hadamard matrix
Hd is the 2d × 2d matrix defined by Hd(vi, vj) := (−1)〈vi,vj〉, where 〈vi, vj〉 is the inner product
between vi and vj .

We now introduce our key new technical lemma:

9For instance, our running example algorithm of [?] only uses an asymptotic bound on how the degree grows
with the dimension of the input points, and the constant factor in front of the polynomial degree is ultimately
subsumed by a ‘O’ in the running time.

14

Lemma 2.2.3 (Representation Theory of the Real Hyperrectangle, informal version of Lemma ??).
Consider a d-dimensional hyperrectangle (Definition ??) parameterized by a1, . . . ad > 0. Enu-
merate the vertices in lexicographical ordering as p1, . . . p2d .

For any f : R→ R, let D be the 2d by 2d matrix given by Di,j = f(‖pi − pj‖1). Then:
1. Σ := HdDHd is a diagonal matrix whose entries are the eigenvalues of D multiplied by

2d, and D = 4−d ·HdΣHd.
2. Let v1, . . . v2d be the columns of the Hadamard matrix Hd. Then v1, . . . v2d are the eigen-

vectors of D. For i ∈ [2d], let B(i) ∈ {0, 1}d be the binary representation of i. Then, the
eigenvalue corresponding to vi is:

λi =
∑

b∈{0,1}d
(−1)〈B(i),b〉 · f(〈b, a〉). (2.2)

We will see shortly that this expression for the eigenvalue λi can also be rewritten in terms of
integrals and derivatives of the function f , allowing us to use analytic techniques when comput-
ing or applying these eigenvalues.

Warm-up: d-dimension To illustrate Lemma ??, consider the case when the dimension of the
hyperrectangle is d = 2, and the hyperrectangle is parameterized by a, b > 0.

Let

p1 = (+a/2,+b/2), p2 = (−a/2,+b/2), p3 = (+a/2,−b/2), p4 = (−a/2,−b/2)

be the vertices of the hyperrectangle.
The matrix D ∈ R4×4 we consider is defined by Di,j = f(‖pi − pj‖1), and is thus given by:

D =


f(0) f(a) f(b) f(a+ b)
f(a) f(0) f(a+ b) f(b)
f(b) f(a+ b) f(0) f(a)

f(a+ b) f(b) f(a) f(0)

 . (2.3)

Lemma ?? says that D’s eigenvectors are the columns of the 4 by 4 Hadamard matrix H2:

v1 =


+1
+1
+1
+1

 , v2 =


+1
−1
+1
−1

 , v3 =


+1
+1
−1
−1

 , v4 =


+1
−1
−1
+1

 .
We can verify that these are the eigenvectors, and compute the corresponding eigenvalues

λ1, λ2, λ3, λ4, by multiplying the first row of D by v1, v2, v3, v4:

λ1 = f(0) + f(a) + f(b) + f(a+ b),

λ2 = f(0)− f(a) + f(b)− f(a+ b),

λ3 = f(0) + f(a)− f(b)− f(a+ b), (2.4)
λ4 = f(0)− f(a)− f(b) + f(a+ b).

15

This is the d = 2 version of Eq. (??).
A key remark in some of our proofs is that, if f is smooth, then λ2, λ3, λ4 can also be written

in terms of integrals using the fundamental theorem of calculus:

λ2 = −
∫ a

0

f ′(x)dx−
∫ a+b

b

f ′(x)dx,

λ3 = −
∫ b

0

f ′(x)dx−
∫ a+b

a

f ′(x)dx, (2.5)

λ4 =

∫ a

0

∫ b

0

f ′′(x+ y)dxdy.

Expressions similar to Eq. (??) hold for the general, d-dimensional setting as well.

Proof idea: Representation Theory of the Real Hyperrectangle We call our technique ‘rep-
resentation theory of the real hyperrectangle’ since it is proved by using representation theory
to calculate the eigenvalues of a large class of matrices. Representation theory in general is
used to calculate eigenvalues of matrices associated with objects that have group symmetry [?
?]. The d-dimensional real hyperrectangle has reflection symmetry about each of its d axes,
and Lemma ?? follows from analyzing this symmetry using Schur’s Lemma from representation
theory. In other words, Lemma ?? can be seen as a use of representation theory of the symmetry
group of the real hyperrectangle. For more details on representation theory, see Lemma ?? in
Appendix ??. For a proof of Lemma ??, see Appendix ??.

Related Work Representation Theory is a mathematical field dating back a hundred years,
with many applications in physics and computer science. Representation theory is used in
physics to calculate the spectra of Hamiltonians and compute molecular and atomic orbitals [?].

In computer science, representation theory is used to compute the vibrational spectra of graph
Laplacians where the underlying graph has vertex-transitive group symmetry, a case which cov-
ers the boolean cube, cycle, buckyball, and other molecular structures [? ? ?]. Guattery
and Miller implicitly used representation theory to give structure to the spectra of graphs where
there exists a vertex automorphism of order two [?]. Representation theory is also central to
the study of quantum tomography [?], Boolean function analysis [?], low-sparsity expander
construction [? ?], random walk theory [? ? ?], and more.

Representation Theory is closely related to Fourier transforms [?], which have been exten-
sively studied in theoretical computer science [? ? ? ? ? ? ? ? ? ? ? ?].

Use in Applications We next give an overview of how we use Lemma ?? to derive our three
applications. We focus on explaining how the matrices described by Lemma ?? and their eigen-
values arise in each setting. At a high level, the class of matrices described by Lemma ?? is
sufficiently general that we are able to show it is ‘complete’ for the matrices or distance func-
tions arising in our applications. At the same time, Lemma ?? allows us to easily compute the
eigenvalues of these matrices. To our knowledge, a general enough class of matrices which
capture our applications but whose eigenvalues are understood was previously not known, and

16

this is what allows us to prove that previous partial categorizations (of positive definite kernels
(Definition ??, ??), metric transforms (Definition ??), and functions which preserve low-rank
(Definition ??)) are in fact complete classifications.

2.2.2 Kernel Methods
We begin with an overview of our proof of Theorem ??. Given any n points in d-dimensional
Manhattan space, it is known they can be isometrically embedded into `1 restricted to the corners
of some (possibly high dimensional) hyperrectangle [?]. Therefore, to prove Theorem ??, it
suffices to find all functions f such that the matrix M ∈ R2d × R2d defined as:

Mi,j = f(‖pi − pj‖1)

is positive semi-definite whenever p1, . . . p2d are the vertices of some hyperrectangle.
Fortunately, Lemma ?? gives us a closed form expression for the eigenvalues ofM . ForM to

be positive semi-definite, the eigenvalues of M must all be nonnegative. We exploit a connection
between eigenvalues of M (which are computed by Eq. (??)) and discrete derivatives of f to
prove that f must be completely monotone (Definition ??). The details are quite technical; for
more details, see Appendix ??.

2.2.3 Metric Transforms
We next sketch the proof of Theorem ??. Schoenberg [?] previously showed that Bernstein
functions transform Manhattan distances to squared Euclidean distances, and Assouad [?] pre-
viously showed that Bernstein functions transform Manhattan distances to Manhattan distances.
It thus suffices to prove that any function that transforms Manhattan to squared Euclidean must
be Bernstein, and similarly for any function that transforms Manhattan to Manhattan.

Bernstein functions transform Manhattan to squared Euclidean Our starting point is a clas-
sical criterion for determining whether a set of distances is a squared Euclidean distance due to
Schoenberg [?]:
Lemma 2.2.4 (Squared Euclidean distance criterion [?]). Given a set of distances di,j for all
(i, j) ∈ [n] × [n] satisfying di,j = dj,i and di,i = 0, then di,j can be embedded into squared
Euclidean distance if and only if matrix D with Di,j = di,j satisfies x>Dx ≤ 0 for all x⊥1.

This criterion D must satisfy is known as the negative type condition [?]. As in Section ??
above, we also know that any Manhattan distance can be isometrically embedded into Manhattan
distances between a subset of the corners of a (possibly high) dimensional real hyperrectangle.
Therefore, by carefully considering the definition of Bernstein functions, one can show: to prove
that only Bernstein functions transform Manhattan to squared Euclidean, it suffices to show that
the matrix D where

Di,j = f(‖pi − pj‖1)

satisfies x>Dx ≤ 0 for all x⊥1, whenever p1, . . . p2d are vertices of some hyperrectangle.

17

Lemma ?? tells us that that the all ones vector v1 is an eigenvector of D, since v1 is the
first column of the Hadamard matrix. Therefore, it suffices to show that the eigenvalues of D
except for λ1 are negative. We once again exploit a connection between eigenvalues of D and
discrete derivatives of f to prove that f must be Bernstein (Definition ??). For more details, see
Theorem ?? in Appendix ??.

Manhattan to Squared Euclidean⇔Manhattan to Manhattan We next show that functions
that transform Manhattan to squared Euclidean must transform Manhattan to Manhattan, and
vice versa. It is known that Manhattan distances isometrically embed into squared Euclidean
distances [? ?], which implies that functions that transform Manhattan to Manhattan must
transform Manhattan to squared Euclidean.

To prove the other direction, suppose function f transforms Manhattan to squared Euclidean.
Consider as before the 2d×2d matrixD whereDi,j = f(‖pi−pj‖1), where p1, . . . p2d are vertices
in lexicographical order of some real hyperrectangle (Definition ??).

Using the fact that D contains squared Euclidean distances, we can explicitly find 2d points
whose pairwise squared Euclidean distances are the entries in D (by combining Lemma ?? and
methods of Schoenberg [?]). We show that these 2d points, themselves, lie on another 2d-
dimensional real hyperrectangle! One can see using the Pythagorean theorem that squared Eu-
clidean distances on the real hyperrectangle can be realized as Manhattan distances, so this shows
that f transforms Manhattan to Manhattan as well. For more details, see Appendix ??.

2.2.4 Polynomial Method Converse
In this section, we sketch our techniques for Theorem ??. We also explain how the matrices from
hyperrectangles in Lemma ?? arise in our methods.

Let d = dlog2 ne. Suppose M : Rd → R2d×2d is a family of matrices defined by M(a) =
‖pi−pj‖1 where p1, . . . p2d are vertices in lexicographical order of the hyperrectangle paramater-
ized by a1, . . . ad. We show that these matrices have rank at most d+ 1. Therefore if f preserves
low rank n× n matrices, then M(a)f must have rank < n for all a ∈ Rd.

Recall that representation theory of the real hyperrectangle (Lemma ??) gives an algebraic
formula for the eigenvalues λf1(a), . . . λf

2d
(a) of M(a)f in terms of a and f . The fact that M(a)f

does not have full rank for any a means that, for every a, there is an i such that λfi (a) = 0.
However, using Lemma ??, we prove the stronger statement that there exists an i such that for
all a, we have λfi (a) = 0.

Next, we show that if λfi (a) = 0 for all a, then f (d)(x) = 0 for all x ∈ R, where f (d)

represents the dth derivative of f . We do this by writing f (d) as a linear combination of λfi (a)
for various settings of a, making use of our integral expressions similar to Eq. (??) above. This
implies that f is a degree d = dlog2 ne polynomial if it preserves low rank.

18

Appendix

Roadmap. In Section ??, we define notations, provide several basic definitions and fundamen-
tal tools. In Section ??, we prove that non-polynomial function blows up the matrix rank. It
proves Theorem ??. In Section ??, we prove condition 1 and condition 2 in Theorem ?? are
equivalent. In Section ??, we prove condition 2 and condition 3 in Theorem ?? are equivalent.
Overall, Section ?? and Section ?? together prove Theorem ??. In Section ??, we have a proof
of Theorem ??. In Section ??, we prove our result about representation theory of real hyperrect-
angles.

A Preliminaries

This section is organized as follows:

• In Section ??, we define several basic notations.
• In Section ??, we provide some definitions about Hadamard matrix, high-dimensional

hyperrectangle.
• In Section ??, we provide some previous work about the classifications of completely

monotone and Bernstein function.
• In Section ??, we state well-known results about metric hierarchies.
• In Section ??, we define negative metrics and euclidean embeddability.
• In Section ??, we present previous work about representation theory tools.

A.1 Notations

For a vector x, we use ‖x‖1 to denote the entry-wise `1 norm of x. We use ‖x‖2 to denote the
entry-wise `2 norm of x. For two vectors a, b, we use 〈a, b〉 to denote the inner product between
a and b. For a vector x, we use x> to denote the transpose of x.

A.2 Definitions

We provide an alternate but equivalent definition of Hd as the square Hadamard matrix with 2d

rows. These matrices consist of ±1-valued entries and are defined recursively via:

H0 = [1]

Hk+1 =

[
Hk Hk

Hk −Hk

]
, k ≥ 0.

For a review of Hadamard matrices, see [?].

19

Hyperrectangles Often times in our proof, we may say things like “let x1, . . . x2d be the cor-
ners of a d dimensional hyperrectangle”. For these statements to make sense, we must specify
which corner xi refers to. Scale the d dimensional hyperrectangle to be an axis-aligned hyper-
cube, and place one of the hypercube corners at the origin. Each corner then has a binary number
b as its coordinate bit string. We let xb+1 refer to the original hyperrectangle corner corresponding
to b.

A.3 Alternate Classifications of Completely Monotone and Bernstein Func-
tions

Here we recall the classical Bernstein Theorem from analysis constructively classifying com-
pletely monotone (Definition ??) and Bernstein functions (Definition ??).
Proposition A.1 (Chapter 14, Theorems 3 and 6 in [?]). For a function f : R>0 → R≥0, the
following are equivalent:

1. f is completely monotone.
2. Letting (Daf)(x) = f(x+ a)− f(x), for any (a1, . . . , an) non-negative we have

(−1)n

(
n∏
i=1

Dai

)
f(x) ≥ 0

for all x > 0.
3. There exists a positive finite measure µ on R≥0 such that

f(x) =

∫ ∞
0

e−txdµ(t), x > 0.

The part 2 of Proposition ?? is essentially the definition we gave for completely monotone,
except that it does not assume any smoothness or even continuity a priori. The third shows that all
completely monotone functions are in fact mixtures of decaying exponentials. From the above
one easily derives a corresponding classification of Bernstein functions. If f also has 0 in its
domain, then the above result applies the same way, however (with the same measure µ as in part
3 of Proposition ??) we have

f(0) ≥ µ(R≥0)

since we did not require any continuity at 0.
Proposition A.2 (Theorem 6.7 in [?]). For a function f : R≥0 → R≥0 with f(0) = 0, the
following are equivalent:

1. f is Bernstein.
2. Letting (Daf)(x) = f(x+ a)− f(x), for any (a1, . . . , an) non-negative we have

(−1)n

(
n∏
i=1

Dai

)
f(x) ≤ 0, x > 0.

20

3. There exists a positive measure µ on R+ and a, b ≥ 0 such that

f(x) = a+ bx+

∫
R+

(1− e−tx)dµ(t), x > 0.

Here µ must satisfy
∫
R+

min{1, t}dµ(t) <∞.
Due to the second criterion just above, Bernstein functions are also sometimes called com-

pletely alternating. We remark that these results apply more generally in the setting of abelian
semigroups, where the integral is taken over a measure on the space of positive characters. This
general point of view is explained in [? , Chapter 6], and applies, for instance, to the semigroup
of compact subsets of R under union.

A.4 Metric Hierarchies

Here are well-known facts we will use throughout our proof:
Lemma A.3. For any n points x1, . . . xn in `1, there exist n points y1, . . . yn such that ‖xi −
xj‖1 = ‖yi − yj‖1, and y1, . . . yn are a subset of corners of a d dimensional hyperrectangle for
some d.

Proof. This follows from the equivalence of the cut cone and `1 distance (Theorem 4.2.2 in [?
]).

Lemma A.4. The squared Euclidean distance between points in the corners of a hyperrectangle
isometrically embeds into Manhattan distance.

Proof. This follows from the Pythagorean theorem.

Lemma A.5. Manhattan distances embed isometrically into squared Euclidean distances.

Proof. This follows from Corollary 6.1.4 and Lemma 6.1.7 in [?].

A.5 Negative Type Metrics and Euclidean Embeddability

We now present a criterion by Schoenberg [?] on when a metric is isometrically embeddable
into squared Euclidean distances10.
Definition A.6 (negative type). A matrix D is iff x>Dx ≤ 0 for all x⊥1.
Lemma A.7 (Schoenberg [?]). Consider x1, . . . , xn where di,j is the distance between xi and
xj . LetD be an n by n matrix whereDi,j = d2

i,j . The distances di,j are isometrically embeddable
into Euclidean space iff the matrix D is negative type.

We note that if D happens to have the all ones vector 1 as an eigenvector, we have a simpler
criterion for testing if D is negative type:

10 We note that Schoenberg’s criteria has a beautiful proof, which one can find one direction of in [?].

21

Lemma A.8 (Schoenberg Variant). Consider x1, . . . , xn where di,j is the distance between xi
and xj . Let D be an n by n matrix where Di,j = d2

i,j .
If the all ones vector is an eigenvector of D, then the di,j are isometrically embeddable into

Euclidean space iff every eigenvalue of D, excluding the eigenvalue correseponding to the all
ones vector, is non-positive.

Proof. Lemma ?? follows from Lemma ?? and the fact that every symmetric matrix has an
orthonormal set of eigenvectors.

If dij is isometrically embeddable into Euclidean space, we can find an explicit embedding:
Lemma A.9. Consider x1, . . . xn where di,j is the distance between xi and xj . Let D be the
matrix where Di,j = d2

i,j . Let Π be the projection matrix off the all ones vector, i.e., Π can be
expressed explicitly as I − J/n, where J is the n× n all-ones matrix, and I is identity matrix.

Let M := −1
2
ΠDΠ.

If y1, . . . yn are such that ‖yi − yj‖2 = di,j and
∑n

i=1 yi = 0, then Mi,j = 〈yi, yj〉. Moreover,
if M = U>U for some U , then the columns of U are an embedding of x1, . . . xn into Euclidean
space.

This follows from Eq. 2 in [?]. A longer exposition of the link between distance matrices
and inner product matrices can be found in [?].

A.6 Useful Tools

We present Schur’s lemma for Abelian groups G. Schur’s lemma is one of the cornerstones of
representation theory [?].
Lemma A.10 (Schur’s lemma for Abelian groups). IfG is a finite Abelian group of n×nmatrices
under multiplication, and M is an n × n diagonalizable matrix satisfying Mg = gM , for all
g ∈ G, then there exists a set of linearly independent vectors v1, . . . vn that are eigenvectors of
M and all g ∈ G. In other words, M and G are simultaneously diagonalizable.

Schur’s Lemma will be useful in proving our key result about representation theory of the
real hyperrectangle, or Lemma ??.

B Non-Polynomial Functions Blow Up Matrix Rank

The major goal of this section is to prove Theorem ??. This section is organized as follows
• In Section ??, we show some basic facts.
• In Section ??, we show that one eigenvalue is identically zero.
• In Section ??, we prove that only polynomials have a zero eigenvalue.
• In Section ??, we rewrite the sum of eigenvalues.
• In Section ??, we show the convergence via calculating the limit.
• In Section ??, we state and prove our main result.

22

B.1 Preliminaries
We start with defining a useful tool.
Lemma B.1. If g1, . . . gn : Rd → R are all Taylor expandable, and the union of the zero-sets of
gi is all of Rd, then one of g1, . . . gn is identically zero.

Proof. Firstly, if g : Rd → R is Taylor expandable, then the zero-set of g has a well-defined
measure.

Secondly, if the measure of the zero-set is non-zero, there must exist an open ball in which g
is 0. If this is the case, every higher order derivative at the center of the ball must be 0, meaning
the Taylor series for that function is identically zero.

Finally, since the union of the zero-sets of gi is the entire plane, one of their zero-sets has
non-zero measure. Thus, it must be identically zero.

B.2 One Eigenvalue is Identically Zero
The goal of this section is prove Lemma ??.
Lemma B.2 (One eigenvalue is identically zero). For any Taylor expandable function f , any n,
and d := log n+1: we can findM : Rd → Rn×n and Taylor expandable λfi : Rd → R satisfying:

1. M(a) has rank ≤ d for all a ∈ Rd

2. λf1(a) . . . λfn(a) is the full set of eigenvalues of f(M(a)), for all a ∈ Rd.
3. If there exists i ∈ [n] such that λfi (a) = 0 for all a ∈ Rd, then f is a degree d ≤ log n+ 1

polynomial.

Proof. Constructing M . Consider a mapping B : {0, 1, . . . 2d− 1} → {0, 1}d corresponding to
the conversion of integers into d-digit binary strings, which we interpret as d dimensional 0− 1
vectors. We set

M(a)i,j = 〈a,B(|i− j|)〉

where a ∈ Rd.
Constructing λfi . For each matrix M(a) ∈ Rn×n, we established previously that f(M(a)) ∈

Rn×n has eigenvectors equal to the Hadamard matrix columns, and the corresponding eigenval-
ues are:

λfi (a) =
∑

b∈{0,1}d
(−1)〈B(i),b〉 · f(〈b, a〉)

We note that if f is Taylor expandable, then so is λfi for all i and f .
As noted before, λfi is Taylor expandable if f is Taylor expandable. Also, λfi (a) forms the

full set of eigenvalues for M(a). Therefore, all that’s left to prove is that if any λfi is 0, then so is
f (d).

If λfi is 0, then
(−1)〈B(i),1〉

∑
b∈{0,1}d

(−1)‖b‖1 · λfi (a+ εb) = 0

23

since it is the sum and difference of λfi evaluated at various points. Now:

(−1)〈B(i),1〉
∑

b∈{0,1}d
(−1)‖b‖1 · λfi (a+ εb)

= (−1)〈B(i),1〉
∑

b1∈{0,1}d
(−1)‖b1‖1 ·

 ∑
b2∈{0,1}d

(−1)〈B(i),b2〉f(〈b2, a+ εb1〉)


= (−1)2〈B(i),1〉

∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉)

=
∑

b∈{0,1}d
(−1)‖b‖1 · f(〈a+ εb,1〉

where the first equality follows from the definition of λfi and the second equality follows from
Lemma ??. It follows that if λfi = 0, then∑

b∈{0,1}d
(−1)‖b‖1 · f(〈a+ εb,1〉 = 0

for all ε and a. By taking the limit as ε→ 0 and dividing by εd, we have for all a:

lim
ε→0

1

εd

∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉) = 0 (2.6)

By Lemma ??, the LHS of Eq. (??) is f (d)(a), so f (d)(a) = 0 for all a. Therefore, f is at most a
degree d polynomial as desired. Thus, we complete the proof.

B.3 Only Polynomials Have a Zero Eigenvalue

The goal of this section is to prove Lemma ??.
Lemma B.3 (Only polynomials have a zero eigenvalue). Given:

1. A function f : R→ R
2. A function M : Rd → Rn×n, mapping d dimensional vectors to n dimensional matrices.
3. A set of n functions λf1 , λ

f
2 , · · · , λfn such that each λfi : Rd → R is Taylor expandable,

and λf1(a) . . . λfn(a) is the full set of eigenvalues of f applied entry-wise to M(a) for all
a ∈ Rd,

Then if f transforms matrices M(a) to rank < n for all a ∈ Rd, then there exists i ∈ [n]
where function λfi = 0.

Proof. If f transforms matrix M(a) to rank < n, then for any a, there exists an i where λfi (a) =
0. Thus the union (over i) of the zero sets of λfi is Rd. We can then apply Lemma ?? to show
that one of λfi is identically 0 as desired.

24

B.4 Rewriting the Sum
The goal of this section is to prove ??.
Lemma B.4 (Rewriting the sum).

∑
b1∈{0,1}d

(−1)‖b1‖1

 ∑
b2∈{0,1}d

(−1)〈B(i),b2〉f(〈b2, a+ εb1〉)


= (−1)〈B(i),1〉

∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉)

where a and b are d-dimensional vectors.

Proof. First, we can show: If b2 is a d dimensional vector with any 0s in its vector notation, we
know ∑

b1∈{0,1}d
(−1)‖b1‖1f(〈b2, a+ εb1〉) = 0 (2.7)

for any ε, and any constant d dimensional vector a. The reason is if b2 has any 0’s in its vector
notation, then flipping the corresponding bit in b1 causes (−1)‖b1‖1 to change sign, while leaving
〈b2, a+ εb1〉 unchanged.

Now, we know that:

∑
b1∈{0,1}d

(−1)‖b1‖1

 ∑
b2∈{0,1}d

(−1)〈B(i),b2〉f(〈b2, a+ εb1〉)


=

∑
b2∈{0,1}d

(−1)〈B(i),b2〉

 ∑
b1∈{0,1}d

(−1)‖b1‖1f(〈b2, a+ εb1〉)


= (−1)〈B(i),1〉

 ∑
b1∈{0,1}d

(−1)‖b1‖1f(〈1, a+ εb1〉)

 .

where the first equality follows by rearranging sums, and the second equality follows from
Eq. (??). This completes the proof.

B.5 Calculating the Limit
The goal of this section is to prove Lemma ??.
Lemma B.5 (Calculating the limit). Suppose the dth derivative of f , denoted as f (d), is continu-
ous. Then:

lim
ε→0

ε−d
∑

b∈{0,1}d
(−1)‖b‖1 · f(〈a+ εb,1〉) = f (d)(〈a,1〉).

25

Proof. We have:

∑
b∈{0,1}d

(−1)‖b‖1 · f(〈a+ εb,1〉) =
d∑
s=0

(−1)s
(
d

s

)
· f(〈a+ εb,1〉)

=
d∑
s=0

(−1)s
(
d

s

)
· f(〈a,1〉+ sε)

=

∫ ε

0

∫ ε

0

. . .

∫ ε

0

f (d)(〈a+ x,1〉)dx1 . . . dxd (2.8)

which we note, is independent of i. The first and second equality follow from grouping b by the
number of ones it has, which we denote as s. The last equality follows from the fundamental
theorem of calculus.

Thus:

lim
ε→0

ε−d
∑

b∈{0,1}d
(−1)‖b‖1 · f(〈a+ εb,1〉)

= lim
ε→0

ε−d
∫ ε

0

∫ ε

0

. . .

∫ ε

0

f (d)(〈a+ x,1〉)dx1 . . . dxd

= f (d)(〈a,1〉)

where the first equality follows from Eq. (??) and the last equality follows from the continuity of
f (d) This completes the proof of Lemma ??.

B.6 Main Result
In this section, we prove main result Theorem ?? using Lemma ?? and Lemma ??.
Theorem B.6 (Formal statement of Theorem ??). For any positive integer n ≥ 2, the function
f : R → R preserves low rank matrices if and only if f is a polynomial of degree less than
dlog2(n)e.

Proof. Suppose f is a Taylor expandable function. By Lemma ??, we can find M : Rd → Rn×n

and a Taylor expandable λfi : Rlogn+1 → R such that the image of M has rank ≤ log n+ 1, and
{λfi (a)}i∈[n] is the full set of eigenvalues of M(a). Further, if there exists i ∈ [n] with function
λfi = 0, then f is a degree d ≤ log n+ 1 polynomial.

Now, suppose that f is a function that transforms all rank log n + 1 matrices to rank < n
matrices. Then it must transform all matrices M(a) to rank < n matrices. By Lemma ??, it must
follow that λfi = 0 for some i. However, we just established via Lemma ?? that if λfi = 0, then
f is a degree d ≤ log n+ 1 polynomial. This completes the proof of Theorem ??.

C Transforming Manhattan to Euclidean
In this section, we prove Theorem ??, which states that functions f that transform Manhattan
distances to squared Euclidean distances are Bernstein. This section is organized as follows

26

• In Section ??, we show that any function f : R≥0 → R≥0 transforming Manhattan to
squared Euclidean is increasing. This serves as a warm-up for the general result which
involves higher difference operations.

• In Section ??, we prove the main result of this section, Theorem ??.
• In Section ??, Lemma ?? shows f must be bounded and continuous. This lemma is used

in the proof of our main result.

C.1 Useful Computations
Lemma C.1. If f transforms Manhattan to squared Euclidean, then f is increasing on R+.

Proof. We fix c > 0 and show f ′(c) ≥ 0. Consider χ : [d]→ {0, 1} which transforms 1 to 1 and
everything else to 0. Let a1 = ε and a2, . . . ad = 2c

d
. Here, ε is a constant which we will adjust

later.
The eigenvalue corresponding to χ (by Lemma ??) is, by straightforward calculation:

d−1∑
s=0

(
d− 1

s

)(
f

(
2cs

d

)
− f

(
2cs

d
+ ε

))
(2.9)

If we divide by 2d−1 and take d to to infinity, the quantity in Eq. (??) becomes

f(c)− f(c+ ε)

for continuous functions f . Indeed, nearly all of the probability mass in the binomial coefficients
concentrates around s = d/2 by the law of large numbers and the limit follows from continuity
of f and the boundedness of f on bounded sets established below in Lemma ??.

Applying Lemma ??, we see that if f transforms Manhattan to squared Euclidean distances,
then f(c)− f(c+ ε) ≤ 0 for any ε > 0. This implies the desired result.

C.2 Main Results
The goal of this section is to prove Theorem ??.
Theorem C.2 (Manhattan to squared Euclidean, formal version of part (1)⇔ part (3) of Theo-
rem ??). If f transforms Manhattan distances to squared Euclidean distances, it must be Bern-
stein.

Proof. Fix a k-tuple ε = (ε1, . . . , εk) of positive real numbers and define

∆k
ε (f, t) := f(t)−

∑
i1∈[k]

f(t+ εi1) +
∑

i1<i2∈[k]

f(t+ εi1 + εi+2) + . . .+ (−1)kf

(
t+

k∑
i=1

εi

)
.

Consider χ that transforms 1, 2, . . . k to 1 and everything else to 0. Let ai = εi for i ∈ [k] and
ak+1 . . . ad = 2c

d
where c, k and ε are fixed.

27

The eigenvalue corresponding to χ is, by direct calculation using Lemma ??:

λχ =
d−k∑
s=0

(
d− k
s

)
∆k
ε (f, 2sc/d). (2.10)

Eq. (??) is the d-dimensional analog of Eq. (??), and this eigenvalue must satisfy λχ ≤ 0 by
Lemma ??. Dividing by 2d−k and taking d to infinity, we obtain:

∆k
ε (f, c) ≤ 0.

This is because again the probability mass in the binomial coefficients in Eq. (??) concen-
trates around the s = d/2 coefficient, where we use continuity and boundedness of f for any
compact set (guaranteed by Lemma ??). By Proposition ?? this implies f is Bernstein (Defini-
tion ??) since k, c were arbitrary. This completes the proof.

C.3 Function Should be Bounded
The goal of this section is to prove Lemma ??.
Lemma C.3. Any function f : R≥0 → R≥0 that transforms Manhattan to squared Euclidean is
bounded on bounded sets and continuous on (0,∞).

Proof. By the triangle inequality, f(x) ≤ f(1/2) + f(1/2) for all 0 ≤ x ≤ 1, so f is bounded
on [0, 1]. By scaling, from now on we assume f is bounded by 1 on [0, 1].

Now, we show f is continuous on (0, 1). Suppose there is a discontinuity at some point
0 < p < 1. This means that there exists some ε such that for all δ > 0, there are a, b ∈
[p− δ, p+ δ] such that f(a)− f(b) ≥ ε. Since f(x) ≤ 1 for all x ∈ [0, 1], this means that for all
δ < min{p, 1− p}, we have that f(a)

f(b)
> 1 + ε.

Now, fix some ε satisfying the above, and some n = 2k. Consider points x1, . . . , xn parti-
tioned into sets A = x1, . . . , xk and B = xk+1, . . . , xn. For some small δ that we will choose
later, pick a, b ∈ [p− δ, p+ δ] such that f(a)

f(b)
> 1 + ε, and define the metric

d(xi, xj) :=


0 i = j

a i, j ∈ A, i 6= j

b i or j is in B, i 6= j

Now apply f : this gives us some metric d′(xi, xj) such that

d′(xi, xj) :=


0 i = j

f(a) i, j ∈ A, i 6= j

f(b) i or j is in B, i 6= j

We show that matrix D′i,j := d′(xi, xj) is not negative type if n is sufficiently large (as a
function of ε). Consider the vector

v = (1, 1, . . . 1,−1,−1, . . .− 1)

28

with the first k coordinates are ones and the last k coordinates are negative ones. This is orthog-
onal to the all ones vector, but

v>D′v = k(k − 1)f(a)− 2k2f(b) + k(k − 1)f(b)

= k(k − 1)f(a)− k(k + 1)f(b).

Since f(a)
f(b)

> 1 + ε, if we choose n > 100/ε, we will have that

k(k − 1) · f(a)− k(k + 1) · f(b) > 0.

Therefore, by Lemma ??, d′ does not embed into `2
2, Squared Euclidean space.

However, we show that if δ is sufficiently small (in terms of n, p), then d(xi, xj) is embed-
dable into `1. First note that the metric d1(i, j) which equals 0 if i = j and c for some constant
c > 0 is embeddable into `1, by transforming i to xi = c

2
· ei for all i, where ei is the ith unit

vector. Likewise, the metric dk,`(i, j) which equals 0 if i = j or if i = k, j = ` or i = `, j = k
and c otherwise is also embeddable into `1, by transforming i to xi = c

2
· ei, except ` which is

sent to x` = xk = c
2
· ek. Now, it is trivial to see that by adding a finite number of these metrics,

we still get a metric that is embeddable into `1.
But, if a

b
∈
[
1− 1

10n2 , 1 + 1
10n2

]
, then any metric such that d(i, j) ∈ {a, b} for all a, b can be

written as some positive finite combination of d1 and dk,` over all 1 ≤ k < ` ≤ n.
Therefore, if f is discontinuous at p, we can set n = 100

ε
, δ = min(p,1−p)

100n2 , and the metric on
x1, . . . , xn as defined previously. We will have that

a

b
∈
[
1− 1

10n2
, 1 +

1

10n2

]
whereas f(a)

f(b)
> 1 + ε, which means that while d is embeddable into `1, d

′ = f(d) is not em-
beddable into `2

2. Thus, if f is discontinuous at p, we have that f cannot transform Manhattan
Distances to Squared Euclidean distances.

By scaling the x-axis, we have that f is bounded on any interval [0, a] and that f is continuous
at all x > 0.

D Transforming Manhattan to Manhattan
This section is organized as follows:
• Section ?? provides some useful tools that are related to `1 distance, `2 distance and

Hadamard transform.
• In Section ??, we prove Theorem ?? which is the main result.
• Section ?? provide some discussions.

D.1 Useful Tools
Suppose f transforms Manhattan distance to squared Euclidean distance. By definition, f sat-
isfies the following: for any n and any x1, . . . xn ∈ (RN, `1), there exist p1, . . . pn ∈ (RN, `2)

29

such that f(‖xi − xj‖1) = ‖pi − pj‖2
2. We can assume without loss of generality that points

x1, x2, . . . xn are distinct corners of a d dimensional hyperrectangle (Definition ??), and n = 2d.
This is because any point set in `1 can be embedded isometrically into `1 on corners of a hyper-
rectangle (Lemma ??).
Lemma D.1. Let f : R → R. If x1, . . . x2d are corners of a hyperrectangle (Definition ??), the
matrix D where Di,j = f(‖xi − xj‖1) must have eigenvectors which are the columns of Hd,
where Hd is the Hadamard matrix of size 2d by 2d.

Proof. This follows from Lemma ??. We note that this lemma does not rely on any assumptions
on f .

Lemma D.2. Let D be the matrix where Di,j = f(‖xi − xj‖1), and let M := −1
2
ΠDΠ. Then

M has eigenvectors Hd.

Proof. This follows from Lemma ?? and the definition of M . It is critically important that the
columns of Hd are orthogonal to the all ones vector (with the exception of the all ones column in
Hd).

Lemma D.3. Let M = HdΣHd be an eigendecomposition of M , where M is defined as in
Lemma ??. If f transforms `1 to `2

2, then Σ has entirely non-negative entries.
For each i, we use pi to denote the i-th column of P =

√
ΣHd, we have 〈pi, pj〉 = Mi,j and

f(‖xi − xj‖1) = ‖pi − pj‖2
2.

Proof. This follows from Lemma ?? and Lemma ??.

D.2 Main Result

The goal of this section is to prove Theorem ??.
Theorem D.4 (Manhattan to squared Euclidean, formal version of part (2)⇔ part (3) of Theo-
rem ??). Any function that transforms Manhattan distances to squared Euclidean distances must
transform Manhattan distances to Manhattan distances, and vice versa.

Proof. Let pi be defined as in Lemma ??. By construction, the vectors pi are a subset of the
corners of a 2d-dimensional hyperrectangle, with side lengths

√
Σi,i. Thus, the pairwise squared

Euclidean distances between pi are isometrically embeddable into `1 by Lemma ??. In other
words, f(‖xi − xj‖1) = ‖pi − pj‖2

2 = ‖qi − qj‖1 for some qi ∈ `1 for all i, j. This shows that
any f that transforms `1 to `2

2 transforms `1 to `1 as desired.

Note that for any xi, the vectors qi are finite dimensional and can be explicitly written down
in closed form.

30

D.3 Discussion and Extensions
In our proof of Theorem ??, we exploited that our points x1, . . . xn are points in a hyperrectangle,
which has a vertex transitive group symmetry. Similar theories can be generated when the point
set lives on any object with a vertex-transitive group symmetry, and the distance measure between
points is some function of the Euclidean distance. Such objects include higher dimensional
platonic solids, spheres, equilateral triangular prisms, and more.

We remark that the group symmetry must be vertex-transitive to ensure the matrix D in
Lemma ?? has an eigenvector equal to the all ones vector. If this were not the case, Lemma ??
would no longer hold.

E Positive Definite Manhattan Kernels
The section is organized as follows:
• In Section ??, we state a useful tool.
• In Section ??, we present our main result. This result classifies all positive definite Man-

hattan kernels (Definition ??), and is a formal restatement of Theorem ??.

E.1 A Useful Tool
First, we prove the following lemma.
Lemma E.1. If f is a positive definite Manhattan kernel (Definition ??), then f(t) ≥ 0 for all
t ≥ 0.

Proof. Let X denote metric space (RN , `1). For anyN ≥ 0 we consider the points xi = t
2
ei ∈ X

for i ∈ [N] where ei = (0, . . . , 0, 1, 0, . . . , 0) is a standard basis vector, so that ‖xi − xj‖1 = t
for any i 6= j. Since the matrix of values (f(‖xi − xj‖1)i,j∈[N] must be positive semidefinite, the
sum of all its entries must be positive, hence:

N(f(0) + (N − 1)f(t)) ≥ 0.

The above equation implies the following:

f(0)

N − 1
+ f(t) ≥ 0

for all integer N ≥ 0 and real t ≥ 0.
Since N can be arbitrarily large, therefore we conclude f(t) ≥ 0 as claimed.

E.2 Main Result
The goal of this section is to prove Theorem ??.
Theorem E.2 (Formal statement of Theorem ??). f : R≥0 → R is a positive definite Manhattan
kernel (Definition ??) if and only if f(x) is completely monotone (Definition ??).

31

Proof. First, we prove that if f is a positive definite Manhattan kernel, then f must be completely
monotone. The converse direction is previously known, and is a consequence of Lemma ?? and
Theorem 3 of [?]11.

Suppose that f is a positive definite Manhattan kernel (Definition ??). Cauchy-Schwarz
easily implies that f(t) ≤ f(0) for all t, so f is bounded.. Now, if x1, . . . , xn correspond to
y1, . . . , yn then

f(‖xi − xj‖1) = 〈yi, yj〉

= f(0)− 1

2
‖yi − yj‖2

2.

Therefore 2(f(0) − f(t)) (equivalently, f(0) − f(t)) sends Manhattan distances to squared
Euclidean distances. Therefore f(0) − f(t) is Bernstein (Definition ??), by Theorem ??. Com-
bining with Lemma ?? we conclude that f must be completely monotone (Definition ??).

F Representation Theory of the Real Hyperrectangles

In this section, we prove Lemma ??, the formal version of Lemma ??. This lemma uses represen-
tation theoretic ideas to compute the eigenvalues of matrices arising from the real hyperrectangle.
We introduce Lemma ??, which expresses these same eigenvalues in terms of integrals. This in-
tegral formulation is useful for proving Theorem ??.

F.1 Useful Tools

Lemma F.1. Let g : (Rd×Rd)→ R such that g(x, y) is invariant under axis reflection. Consider
a d-dimensional hyperrectangle with corners x1, . . . x2d . Let D be a 2d by 2d matrix such that
Dij = g(xi, xj). Then there is an eigendecomposition of D into HdΣHd where Σ is a diagonal
matrix.

Proof. This lemma can be proven directly via computation. However, it is more instructive to
view this through the representation theoretic lens. We note that D has the property that for any
permutation matrix σ corresponding to a reflection about one of the hyperrectangle’s axes, we
have σD = Dσ. Schur’s lemma from representation theory (see Lemma ??) states that D and all
σ in the reflectional symmetry group of the hyperrectangle have a common set of eigenvectors.
It is straightforward to verify that the only common set of eigenvectors for all σ is the columns
of the Hadamard matrix, and thus D must have the columns of Hd as its eigenvectors.

We note that variants of this lemma are used to prove Delsarte’s linear programming bound
in error correcting codes [? ?].

11Theorem 3 of [?] is a modern restatement of Schoenberg’s work in [?]

32

F.2 Main Result
Lemma F.2 (Representation theory of the real hyperrectangle, formal version of Lemma ??).
Consider a d-dimensional hyperrectangle (Definition ??) parameterized by a1, . . . ad > 0. Enu-
merate the vertices in lexicographical ordering as p1, . . . p2d .

For any f : R→ R, let D be the 2d by 2d matrix given by Di,j = f(‖pi − pj‖1). Then:
1. Σ := HdDHd is a diagonal matrix whose entries are the eigenvalues of D multiplied by

2d, and D = 4−d ·HdΣHd.
2. Let χ : [d] → {0, 1}. Let k equal the integer corresponding to transforming χ (written as

a d dimensional binary vector) into an integer via binary conversion. For each χ, there is
an eigenvector of D equal to the k-th column of Hadamard matrix Hd, and its associated
eigenvalue is:

∑
T⊆[d]

(−1)
∑
t∈T χ(t)f

(∑
t∈T

at

)
. (2.11)

The second part of this theorem on its surface differs from that in Lemma ??, but the state-
ments are in fact identical via straightforward computation.

Proof. By Lemma ??, we know that the Hadamard matrix columns are eigenvectors of the ma-
trix D. The result follows by direct computation, noting that the formula in Eq. (??) is the d
dimensional analog of Eq. (??), and can be derived in the same way.

We now give an alternate formulation of the eigenvalues in Lemma ??. This lemma is of
independent interest.
Lemma F.3. Given a box with side lengths a1, . . . ad, each eigenvalue analogous to those in
Eq. (??) corresponds to a function χ : [d]→ {0, 1}. Let Q = {q1, . . . qk} be the full set of values
on which χ is 1. Then the Eigenvalues in Eq. (??) equal:

∑
T⊆[d]\Q

∫ aq1+
∑
t∈T at

∑
t∈T at

. . .

∫ aqk+
∑
t∈T ak

∑
t∈T at

(−1)k
dkf

dxk

(∑
q∈Q

sq

)
ds1 . . . dsk.

Proof. The proof is identical to that of Eq. (??), but for d dimensions. It follows directly from
Lemma ?? combined with the fundamental theorem of calculus.

33

Chapter 3

Data-Sensitive Distances

Data-sensitive metrics adapt distances locally based the density of data points with the goal of
aligning distances and some notion of similarity. In this chapter, we give the first exact algorithm
for computing a data-sensitive metric called the nearest neighbor metric. In fact, we prove the
surprising result that a previously published 3-approximation is an exact algorithm.

The nearest neighbor metric can be viewed as a special case of a density-based distance used
in machine learning, or it can be seen as an example of a manifold metric. Previous computational
research on such metrics despaired of computing exact distances on account of the apparent
difficulty of minimizing over all continuous paths between a pair of points.

We leverage the exact computation of the nearest neighbor metric to compute sparse span-
ners and persistent homology. We also explore the behavior of the metric built from point sets
drawn from an underlying distribution and consider the more general case of inputs that are finite
collections of path-connected compact sets.

The main results connect several classical theories such as the conformal change of Rieman-
nian metrics, the theory of positive definite functions of Schoenberg, and screw function theory
of Schoenberg and Von Neumann. We also develop some novel proof techniques based on the
combination of screw functions and Lipschitz extensions that may be of independent interest.

1 Introduction

The profound success of nonlinear methods in machine learning such as kernels methods, density-
based distances, and neural nets reveals that although data are often represented as points in Rn,
the shortest path between two points is not a straight line. It is widely believed that a more useful
metric on the data points would have the property that two points in a dense cluster will be close
in some underlying metric, even if the Euclidean distance is far [? ? ? ?]. That is, distances are
scaled inversely according to the density of the data along a path between points. We call such a
metric data-sensitive.

Data-sensitive metrics arise naturally in machine learning, and are implicitly central in cel-
ebrated methods such as k-NN graph methods, manifold learning, level-set methods, single-
linkage clustering, and Euclidean MST-based clustering (see Section ?? and Appendix ?? for
details). The construction of appropriate data-sensitive metrics is an active area of research. We

35

consider a simple data-sensitive metric with an underlying manifold structure called the nearest
neighbor metric. This metric was first introduced in [?]. It and its close variants have been
studied in the past by multiple researchers [? ? ? ? ?]. In this chapter, we show how to compute
the nearest neighbor metric exactly for any dimension, which solves one of the most important
and challenging problems for any manifold-based metric.

The starting point will be the nearest neighbor function rP for the data set P :

rP (z) = 4 min
x∈p
‖x− z‖,

where the factor of 4 normalizes and simplifies expressions later. This function is also known as
the distance function to the set P and is the basic object of study in the critical point theory of
distance functions, a generalization of Morse Theory [?]. This theory has found many recent
uses in computational geometry [? ?] as it is a natural way to infer underlying structure from
a sample of points. We have a similar goal of inferring underlying structure when we use rP as
a cost function for a density-based distance defined as follows (see also Section ?? for explicit
inference results).
Definition 1.1. Given a continuous cost function c : Rk → R, we define the density-based cost
of a path γ relative to c as:

`c(γ) =

∫ 1

0

c(γ(t))‖γ′(t)‖dt.

Here, the path γ is defined as a continuous map γ : [0, 1] → Rk. Let path(a, b) denote the set
of piecewise-C1 paths from a to b. We then define the density-based distance between two points
a, b ∈ Rk as

dc(a, b) inf
γ∈path(a,b)

`c(γ)

This is a slight simplification of the density-based distances from [?] which included other
requirements to facilitate approximation. Conceptually, the density-based cost of a path is the
weighted path length, where each infinitesimal path piece is weighted according to c. The cost c
is usually some function of an underlying density f (the natural choice would be c(x) = f(x)−

1
k).

Density-based distances have been notable in the machine learning setting for over a decade [? ?
]. To build a data-sensitive metric from density-based distances, we would like a cost function c
that is small when close to the data set, and large when far away. The nearest neighbor function
rP is the most natural candidate, and has been traditionally used as a proximity measure between
points and a data set in both the geometry and machine learning settings [?]. It has been used
as such in nearest neighbor (and k-NN) classification, k-means/medians/center clustering, finite
element methods, and any of the numerous methods that use Voronoi diagrams or Delaunay
triangulation as intermediate data structures.
Definition 1.2. Given any finite set P ⊂ Rk, the nearest neighbor cost function is `N := `rP
and the nearest neighbor metric is dN := drP . That is, it’s the density-based distance with cost
function rP .

The nearest neighbor metric, and density-based distances in general, are examples of man-
ifold geodesics [? ?]. Manifold geodesics of data sets are defined by embedding points into
a manifold and computing the infimum length path in the manifold. Within computer science,

36

�

s

Figure 3.1: In this figure we have a collection of points. The length or cost of the green curve
between the two blue points is the integral along the curve scaled by the distance to the nearest
point.

dozens of foundational papers in machine learning and surface reconstruction rely on manifold-
based metrics to perform clustering, classification, regression, surface reconstruction, persistent
homology, and more [? ? ? ? ? ? ? ?]. Manifold geodesics predate computer science, and are
the cornerstone of many fields of physics and mathematics. Exactly computing geodesics is fun-
damental to countless areas of physics including: the brachistochrone and minimal-drag-bullet
problem of Bernoulli and Newton [?], exactly determining a particle’s trajectory in classi-
cal physics (Hamilton’s Principle of Least Action) [?], computing the path of light through a
non-homogeneous medium (Snell’s law), finding the evolution of wave functions in quantum me-
chanics over time (Feynman path integrals [?]), and determining the path of light in the presence
of gravitational fields (General Relativity, Schwarzschild metric) [? ?]. In mathematics, mani-
fold geodesics appear in many branches of higher mathematics including differential equations,
differential geometry, Lie theory, calculus of variations, algebraic geometry, and topology.

One of the most significant problems on any manifold geodesic is how to compute its length.
Exact computation of manifold metrics is considered a fundamental problem in mathematics and
physics, dating back for four centuries: entire fields of mathematics, including the celebrated
calculus of variations, have arisen to tackle this [?]. Historically, mathematicians placed strong
emphasis on exact computation as opposed to constant factor approximations [?]. An algo-
rithmic problem on manifold geodesics, with modern origins, is to (1 + ε) approximate these
metrics efficiently on a computer. The core difficulty in the first problem is that geodesics are
the minimum cost path out of an uncountable number of paths that can travel ’anywhere’ on
the manifold structure. This makes exactly computing these metrics challenging, even in the
case of the nearest neighbor metric for just four fixed points in two dimensions (the authors are
unaware of any easy method for this simplified task). Calculus of variations can show that the
optimal nearest neighbor path is piecewise hyperbolic, but this is generally insufficient to exactly
compute the nearest neighbor metric—there are point sets where there are many differentiable,
piecewise hyperbolic paths between two data points with different costs.

In this chapter, we solve both problems: we exactly compute the Nearest Neighbor metric in
all cases, and we (1 + ε) approximate it quickly. Our approach is based on a novel embedding
of the data into high dimensions where the geodesics are straight lines. Then we use a Lipschitz
extension theorem to relate the lengths of the shortest paths in the original space and the em-
bedding. We combine these tools to prove that the nearest neighbor metric is exactly equal to a
shortest path distance on a geometric graph, the so-called edge-squared metric, in all cases. This

37

allows us to compute the nearest-neighbor metric exactly for any given point set in polynomial
time, and it is the only known (non-trivial) density-based distance that can be computed by a
discrete algorithm.
Definition 1.3. For x ∈ Rd, let ‖x‖ denote the Euclidean norm. For a set of points P ⊂ Rd: the
edge-squared metric for a, b ∈ P is

d2(a, b) = inf
(p0,...,pk)

k∑
i=1

‖pi − pi−1‖2,

where the infimum is over sequences of points p0, . . . , pk ∈ P with p0 = a and pk = b.
Theorem 1.4. The nearest neighbor metric and edge squared metric are equivalent for any set
P in arbitrary dimension that is the finite collection of compact path-connected sets.

This in particular covers the case of n points in n − 1 dimension. The exact equality is
realized when the nearest neighbor path is piecewise linear, traveling straight from data point
to data point. The edge squared metric has been previously studied by multiple researchers in
machine learning and power-efficient wireless networks, but previously has only been linked to
the nearest neighbor metric by a fairly weak 3-approximation [?]. There are several reasons
why it is surprising that these metrics are equal:

1. The optimal nearest neighbor path for two points not in the dataset is generally composed
of hyperbolic arcs. This holds true even when the dataset is a single point, and was estab-
lished by [?] using tools in Riemannian surfaces and the complex plane. Meanwhile, our
Theorem implies an optimal nearest neighbor path for two data points (in a dataset of any
size) is piecewise linear!

2. There are simple and natural variants of the nearest neighbor metric, for which no analog
of Theorem ?? is known nor suspected. For example, if one considers powers (other than
one) of the distance function as a cost, a corresponding graph-based metric is known to
exist only for sets of size at most two.

3. For just three points in a right triangle configuration, there exist an uncountable suite of
optimal-cost paths between the two endpoints of the hypotenuse. Each path in this un-
countable suite is piecewise hyperbolic, but, surprisingly, they all have the exact same cost
as the edge-squared distance. Thus, there shortest paths may not even be unique.

4. The finite union of compact path-connected geometric bodies in arbitrary dimension can
have extremely complicated geometry, and the Voronoi diagram on which the nearest
neighbor metric depends is poorly understood for even three of these bodies in two di-
mension. There is no other restriction on the compact geometric objects, and they need not
be convex or even simply connected, see figure ??.

We can now tackle a second problem of interest for manifold geodesics, which is efficiently
(1 + ε) approximating them. In this chapter, we show that the nearest neighbor metric admits
(1 + ε) spanners computable in nearly-linear time, with linear size, for any point set in constant
dimension. Remarkably, these spanners are significantly sparser and faster to compute than
the theoretically optimal Euclidean spanners with the same approximation constant, and nearly
match the sparsity of the best known Euclidean Steiner spanners. Moreover, if the point set comes

38

�

s

Figure 3.2: In this figure we have a collection of compact bodies in black. The length or cost of
the green curve between the two blue points is the integral along the curve scaled by the distance
to the nearest body. A curve may traverse a body at no cost. Theorem ?? establishes that the
shortest path curve between two points goes straight from compact body to compact body.

from a well-behaved probability distribution in constant dimension (a foundational assumption
in machine learning [?]), we show that the nearest neighbor metric has perfect 1-spanners of
nearly linear size. The latter result is impossible for many non-density sensitive metrics, such
as the Euclidean metric. Both results rely on Theorem ??, and significantly improve the nearest
neighbor spanners of Cohen et al in [?].

Theorem ?? and our spanner theorems solve two core problems of interest for the nearest
neighbor metric: exactly computing it for any dimension, and approximating it quickly for both
general point sets and point sets arising from a well-behaved probability distribution in constant
dimension. This is the first work we know of that computes a manifold metric exactly without
calculus of variations, and we hope that our tools can be useful for other metric computations
and approximations.

1.1 Contributions and Past Work

Our primary contribution is Theorem ??, which lets us exactly compute the nearest neighbor
metric. This significantly strengthens a core result of Cohen et al [?]. This theorem should be
considered quite surprising: it equates the nearest neighbor metric with the edge-squared metric,
even when the point set is a collections of compact, path-connected objects in arbitrarily large
dimension. There are no restrictions on the convexity or simple-connectedness of such objects, so
in general the Voronoi diagram of these objects (on which the nearest neighbor metric critically
depends) can be extremely complicated.

Besides for exactly computing the nearest neighbor metric, we present the following theo-
rems on approximate computation:
Theorem 1.5. For any set of points in Rd for constant d, there exists a (1 + ε) spanner of the
nearest neighbor metric with size O

(
nε−d/2

)
computable in time O

(
n log n+ nε−d/2 log 1

ε

)
.

The log 1
ε

term goes away given access to an algorithm computing floor function in O(1) time.
Theorem 1.6. Suppose points P in Euclidean space are drawn i.i.d from a Lipschitz probability
density bounded above and below by a constant, with support on a smooth, connected, compact
manifold with intrinsic dimension d with boundary of bounded curvature. Then w.h.p. the k-
NN graph of P for k = O(2d lnn) and edges weighted with Euclidean distance squared, is a
1-spanner of the nearest neighbor metric on P .

39

These theorems rely on Theorem ?? and considerably strengthen the spanner results on the
nearest neighbor metric from [?]. They critically rely on Theorem ??, which show it suffices to
compute spanners of the edge-squared metric. Previously, sparse spanners of the edge-squared
metric were shown to exist in two dimensions via Yao graphs and Gabriel graphs [?], but these
did not generalize well to constant dimension: Yao graphs are not very efficient to compute, and
Gabriel graphs can have quadratically many edges even in 3 dimensions [?]. The spanners we
produce are sparser than the theoretical optimal for Euclidean spanners [?].

Theorem ?? proves that a 1-spanner of the nearest neighbor metric can be found assuming
points are samples from a probability density, by using a k-NN graph for appropriate k. Our
result is tight when d is constant. This is not possible for Euclidean distance, as a 1-spanner is
almost surely the complete graph. Although the restrictions on the probability density may seem
limiting, they are in fact quite flexible and standard in machine learning theory and practice [?
?]. For example, although they do not cover the case of a Gaussian (unbounded support), they
do cover the case of a Gaussian where the very thin tail is cut off, and this recovers most of the
relevant data in a Gaussian distribution. Past work on similar results include [? ?].

Theorem ?? will additionally allow us to compute the persistent homology of dN , a task use-
ful for topological data analysis [?]. We also show how the nearest neighbor metric generalizes
Euclidean distance and maximum-edge Euclidean MST distance [?]

The core mathematical contribution of our work is the statement and proof of Theorem ??.
The techniques to prove our other results are simpler and mostly leverage Theorem ?? and past
work. We have included them nonetheless to provide a more complete picture of the nearest
neighbor metric, and to provide possible directions for future work.

1.2 Definitions and Preliminaries

In this section, we establish additional definitions for this chapter. These are mostly of interest
for our spanner and persistent homology results, and are not strictly necessary for Theorem ??.

Spanners: For real value t ≥ 1, a t-spanner of a weighted graph G is a subgraph S such that
dG(x, y) ≤ dS(x, y) ≤ t ·dG(x, y) where dG and dS represent the shortest path distance functions
between vertex pairs in G and S. Spanners of Euclidean distances, and general graph distances,
have been studied extensively, and their importance as a data structure is well established. [? ?
? ?].

k-nearest neighbor graphs: The k-nearest neighbor graph (k-NN graph) for a set of objects V
is a graph with vertex set V and an edge from v ∈ V to its k most similar objects in V , under
a given distance measure. In this chapter, the underlying distance measure is Euclidean, and the
edge weights are Euclidean distance squared. k-NN graph constructions are a key data structure
in machine learning [? ?], clustering [?], and manifold learning [?].

Gabriel Graphs: The Gabriel graph is a graph where two vertices p and q are joined by an edge
if and only if the disk with diameter pq has no other points of S in the interior. The Gabriel graph
is a subgraph of the Delaunay triangulation [?], and a 1-spanner of the edge-squared metric [?
]. Gabriel graphs will be used in the proof of Theorem ??.

40

Persistent Homology: Persistent homology is a popular tool in computational geometry and
topology to ascribe quantitative topological invariants to spaces that are stable with respect to
perturbation of the input. In particular, it’s possible to compare the so-called persistence diagram
of a function defined on a sample to that of the complete space [?]. These two aspects of
persistence theory—the intrinsic nature of topological invariants and the ability to rigorously
compare the discrete and the continuous—are both also present in our theory of nearest neighbor
metrics. Indeed, our primary motivation for studying these metrics was to use them as inputs to
persistence computations for problems such as persistence-based clustering [?] or metric graph
reconstruction [?].

2 Outline
Section ?? contains the proof of Theorem ??, equating the edge-squared metric and nearest
neighbor metric in all cases. It should be noted that our proof is robust enough to handle not just
finite point sets, but also countably infinite collections of disjoint path-connected, compact sets.
Remarkably, there is no restriction on the convexity or simply-connectedness of these sets.

As an example of using the nearest neighbor metric to compute intrinsic structure, Section ??
shows how Theorem ?? allows us to compute the persistent homology of the nearest neighbor
metric.

Section ?? introduces the p-power metrics. We show that Euclidean spanners and Euclidean
MSTs are special cases of p-power spanners. We show how clustering algorithms including
k-means, level-set methods, and single linkage clustering, are special cases of clustering with
p-power metrics. p-power metrics are identical to the Neighbor metric when p = 2. This is
further detailed in Appendix ??.

Section ?? outlines a proof of Theorem ??, and compares our spanner to new lower bounds
on the sparsity of (1 + ε)-spanners of the Euclidean metric. We outline a proof of Theorem ??
in Section ?? and discuss its implications.

Conclusions and open questions are in Section ??. Full proofs for Theorems ??, ?? are
contained in the Appendix.

3 Exactly Computing the nearest neighbor metric
In this section, we prove Theorem ?? on finite point sets, and explain in Section ?? that our proof
strategy applies to finite collections of path-connected compact bodies.

First, lets observe what happens when P has only two points a and b, d2(a, b) = dN(a, b).
This reduces to a high school calculus exercise as the minimum path γ will be a straight line
between the points and the nearest neighbor metric is

dN(a, b) = 4

∫ 1

0

rP (γ(t))‖γ′(t)‖dt

= 8

∫ 1
2

0

t‖a− b‖2dt = ‖a− b‖2 = d2(a, b).

41

Now it is easy to observe that the nearest neighbor metric is never greater than the edge-squared
distance, as proven in the following lemma.
Lemma 3.1. For all s, p ∈ P , we have dN(s, p) ≤ d2(s, p).

Proof. Fix any points s, p ∈ P . Let q0, . . . , qk ∈ P be such that q0 = s, qk = p and

d2(s, p) =
k∑
i=1

‖qi − qi−1‖2.

Let ψi(t) = tqi + (1 − t)qi−1 be the straight line segment from qi−1 to qi. Observe that `(ψi) =
‖qi − qi−1‖2/4, by the same argument as in the two point case. Then, let ψ be the concatenation
of the ψi and it follows that

d2(s, p) = 4`(ψ) ≥ 4 inf
γ∈path(s,p)

`(γ) = dN(s, p).

By Lemma ??, it suffices to show that dN(a, b) ≥ d2(a, b) for all a, b ∈ P .
Let P ⊂ Rd be a set of n points. Pick any source point s ∈ P . Order the points of P as

p1, . . . , pn so that
d2(s, p1) ≤ · · · ≤ d2(s, pn).

This will imply that p1 = s. It will suffice to show that for all pi ∈ P , we have d2(s, pi) =
dN(s, pi). There are three main steps:

1. We first show that when P is a subset of the vertices of an axis-aligned box, d = dN . In
this case, shortest paths for d are single edges and shortest paths for dN are straight lines.

2. We then show how to lift the points from Rd to Rn by a Lipschitz map m that places all
the points on the vertices of a box and preserves d2(s, p) for all p ∈ P .

3. Finally, we show how the Lipschitz extension of m is also Lipschitz as a function between
nearest neighbor metrics. We combine these pieces to show that d ≤ dN . As d ≥ dN
(Lemma ??), this will conclude the proof that d = dN .

The key to the second step, to be elaborated in Section ??, is that if you take points on a line and
raise the pairwise distances to the 1/2 power, you get points on a box. This is a special case of the
general theory on screw functions developed by Von Neumann and Schoenberg, which asserts a
far more general criterion on when functions applied to pairwise distances between points on a
line can be embedded into Euclidean space [?].

Boxes

Let Q be the vertices of a box in Rn. That is, there exist some positive real numbers α1, . . . , αn
such that each q ∈ Q can be written as q =

∑
i∈I αiei, for some I ⊆ [n].

Let the source s be the origin. Let rQ : Rn → R be the distance function to the set Q. Setting
ri(x) := min{xi, αi − xi} (a lower bound on the difference in the ith coordinate to a vertex of

42

the box), it follows that

rQ(x) ≥

√√√√ n∑
i=1

ri(x)2. (3.1)

Let γ : [0, 1] → Rn be a curve in Rn. Define γi(t) to be the projection of γ onto its ith
coordinate. Thus,

ri(γ(t)) = min{γi(t), αi − γi(t)} (3.2)

and

‖γ′(t)‖ =

√√√√ n∑
i=1

γ′i(t)
2. (3.3)

We can bound the length of γ as follows. For simplicity of exposition we only present the case
of a path from the origin to the far corner, p =

∑n
i=1 αiei.

`(γ) =

∫ 1

0

rQ(γ(t))‖γ′(t)‖dt

[by definition]

≥
∫ 1

0

√√√√ n∑
i=1

ri(γ(t))2

√√√√ n∑
i=1

γ′i(t)
2

 dt

[by (??) and (??)]

≥
n∑
i=1

∫ 1

0

ri(γ(t))γ′i(t)dt

[by Cauchy-Schwarz]

≥
n∑
i=1

(∫ `i

0

γi(t)γ
′
i(t)dt+

∫ 1

`′i

(αi − γi(t))γ′i(t)dt

)
[by (??) where γi(`i) = αi/2 for the first time
and γi(`′i) = αi/2 for the last time.]

=
n∑
i=1

2

∫ `i

0

γi(t)γ
′
i(t)dt

[by symmetry]

≥
n∑
i=1

α2
i

4

[by basic calculus]

It follows that if γ is any curve that starts at s and ends at p =
∑n

i=1 αiei, then dN(s, p) =
d2(s, p).

43

Lifting the points to Rn

Define a mapping m : P → Rn. We do this by adding the points p1, . . . , pn, as defined above,
one point at a time. For each new point we will introduce a new dimension. We start by setting
m(p1) = 0 and by induction:

m(pi) = m(pi−1) +
√
d2(s, pi)− d2(s, pi−1)ei, (3.4)

where the vectors ei are the standard basis vectors in Rn. A similar embedding works for some
other functions and was extensively studied by Schoenberg and Von Neumann in the theory of
screw functions.
Lemma 3.2. For all pi, pj ∈ P , we have

(i) ‖m(pj)−m(pi)‖ =
√
|d2(s, pj)− d2(s, pi)|, and

(ii) ‖m(s)−m(pj)‖2 ≤ ‖m(pi)‖2 + ‖m(pi)−m(pj)‖2.

Proof. Proof of (i). Without loss of generality, let i ≤ j. Then, by the definition of m, expanding
the norm, and telescoping the sum, we get the following.

‖m(pj)−m(pi)‖

=

∥∥∥∥∥
j∑

k=i+1

√
d2(s, pk)− d2(s, pk−1)ek

∥∥∥∥∥
=

√√√√ j∑
k=i+1

(d2(s, pk)− d2(s, pk−1))

=
√

d2(s, pj)− d2(s, pi).

Proof of (ii). As m(s) = 0, it suffice to observe that

‖m(pj)‖2 = d2(s, pj) [by (i)]

≤ d2(s, pi) + |d2(s, pj)− d2(s, pi)|
= ‖m(pi)‖2 + ‖m(pi)−m(pj)‖2 [by (i)]

We can now show that m has all of the desired properties.
Proposition 3.3. Let P ⊂ Rd be a set of n points, let s ∈ P be a designated source point, and
let m : P → Rn be the map defined as in (??). Let d′ denote the edge squared metric for the
point set m(P) in Rn. Then,

(i) m is 1-Lipschitz as a map between Euclidean metrics,
(ii) m maps the points of P to the vertices of a box, and

(iii) m preserves the edge squared distance to s, i.e. d′(m(s),m(p)) = d2(s, p) for all p ∈ P .

44

Proof. Proof of (i). To prove the Lipschitz condition, fix any a, b ∈ P and bound the distance as
follows.

‖m(a)−m(b)‖ =
√
|d2(s, a)− d2(s, b)| [Lem. ??(i)]

≤
√

d2(a, b) [triangle ineq.]

≤ ‖a− b‖. [by def. of d2]

Proof of (ii). That m maps P to the vertices of a box is immediate from the definition. The box
has side lengths ‖mi −mi−1‖ for all i > 1 and pi =

∑i
k=1 ‖mk −mk−1‖ek.

Proof of (iii). We can now show that the edge squared distance to s is preserved. Let q0, . . . , qk
be the shortest sequence of points of m(P) that realizes the edge-squared distance from m(s) to
m(p), i.e., q0 = m(s), qk = m(p), and

d′(m(s),m(p)) =
k∑
i=1

‖m(qi)−m(qi−1)‖2.

If k > 1, then Lemma ??(ii) implies that removing q1 gives a shorter sequence. Thus, we may
assume k = 1 and therefore, by Lemma ??(i),

d′(m(s),m(p)) = ‖m(s)−m(p)‖2 = d2(s, p).

The Lipschitz Extension

Proposition ?? and the Kirszbraun theorem on Lipschitz extensions imply that we can extend m
to a 1-Lipschitz function f : Rd → Rn such that f(p) = m(p) for all p ∈ P [? ? ?].
Lemma 3.4. The function f is also 1-Lipschitz as mapping from Rd → Rn with both spaces
endowed with the nearest neighbor metric.

Proof. We are interested in two distance functions rP : Rd → R and rf(P) : Rn → R. Recall
that each is the distance to the nearest point in P or f(P) respectively.

rf(P)(f(x)) = min
q∈f(P)

‖q − f(x)‖ [by definition]

= min
p∈P
‖f(p)− f(x)‖ [q ∈ f(P)]

≤ min
p∈P
‖p− x‖ [f is 1-Lipschitz]

= rP (x). [by definition]

For any curve γ : [0, 1] → Rd and for all t ∈ [0, 1], we have ‖(f ◦ γ)′(t)‖ ≤ ‖γ′(t)‖. It then
follows that

45

`′(f ◦ γ) =

∫ 1

0

rf(P)(f(γ(t)))‖(f ◦ γ)′(t)‖dt

≤
∫ 1

0

rP (γ(t))‖γ′(t)‖dt = `(γ), (3.5)

where `′ denotes the length with respect to rf(P). Thus, for all a, b ∈ P ,

dN(a, b) = 4 inf
γ∈path(a,b)

`(γ) [by definition]

≥ 4 inf
γ∈path(a,b)

`′(f ◦ γ) [by (??)]

≥ 4 inf
γ′∈path(f(a),f(b))

`′(γ′) [f ◦ γ is a path]

= dN(f(a), f(b)). [by definition]

We now restate Theorem ?? for convenience, and prove it.
Theorem 3.5. For any point set P ⊂ Rd, the edge squared metric d and the nearest neighbor
metric dN are identical.

Proof. Fix any pair of points s and p in P . Define the Lipschitz mapping m and its extension f
as in (??). Let d′ and d′N denote the edge-squared and nearest neighbor metrics on f(P) in Rn.

d2(s, p) = d′(m(s),m(p)) [Proposition ??(iii)]

= d′N(m(s),m(p)) [f(P) are vertices of a box]

≤ dN(s, p) [Lemma ??]

We have just shown that d ≤ dN and Lemma ?? states that d ≥ dN , so we conclude that d = dN
as desired.

3.1 From Finite Sets to Finite Collections of Compact Path-Connected
Bodies

All of our proof steps hold for finite collections of compact, path-connected bodies in arbitrarily
large dimension. Our Lipschitz map m can still be extended to a Lipschitz map f in this setting,
largely due to the generality of the Kirszbraun theorem. In this case, the pre-image of the con-
tractive map is the set of all points belonging to some body. Meanwhile, the image is a finite
set of points, the corners of a multi-dimensional box. Thus our construction of m contracts each
convex body into a single point, and the image of our compact bodies under f is still a finite
point set on the corners of a box. Therefore, the remainder of our theorem proof goes through
unchanged.

46

This result is rather remarkable: path-connected compact sets in high dimensional space can
have extremely convoluted geometry, and the Voronoi diagrams on these collections (on which
the nearest neighbor metric depends) can be massively complex. The key is that our Lipschitz
map is robust enough to handle objects of considerable geometric complexity.

4 Persistent Homology of the Nearest-neighbor Geodesic Dis-
tance

In this section, we show how to compute the so-called persistent homology [?] of the nearest
neighbor metric in two different ways, one ambient and the other intrinsic. The latter relies on
Theorem ?? and would be quite surprising without it.

The input for persistence computation is a filtration—a nested sequence of spaces, usually
parameterized by a real number α ≥ 0. The output is a set of points in the plane called a
persistence diagram that encodes the birth and death of topological features like connected com-
ponents, holes, and voids.

The Ambient Persistent Homology Perhaps the most popular filtration to consider on a Eu-
clidean space is the sublevel set filtration of the distance to a sample P . This filtration is (Fα)α≥0,
where

Fα := {x ∈ Rd | rP (x) ≤ α},
for all α ≥ 0. If one wanted to consider instead the nearest neighbor metric dN , one gets instead
a filtration (Gα)α≥0, where

Gα := {x ∈ Rd | min
p∈P

dN(x, p) ≤ α},

for all α ≥ 0.
Both the filtrations (Fα) and (Gα) are unions of metric balls. In the former, they are Eu-

clidean. In the latter, they are the metric balls of dN . These balls can look very different, for
example, for dN , the metric balls are likely not even convex. However, these filtrations are very
closely related.
Lemma 4.1. For all α ≥ 0, Fα = G2α2 .

Proof. The key to this exercise is to observe that the nearest point p ∈ P to a point x is also
the point that minimizes dN(x, p). To prove this, we will show that for any p ∈ P and any path
γ ∈ path(x, p), we have `(γ) ≥ 1

2
rP (x)2. Consider any such x, p, and γ. The euclidean length

of γ must be at least rP (x), so we will assume that ‖γ′‖ = rP (x) and will prove the lower bound
on the subpath starting at x of length exactly rP (x). This will imply a lower bound on the whole
path. Because rP is 1-Lipschitz, we have rP (γ(t)) ≥ (1 − t)rP (x) for all t ∈ [0, 1]. It follows
that

`(γ) =

∫ 1

0

rP (γ(t))‖γ′(t)‖dt

≥ rP (x)2

∫ 1

0

(1− t)dt =
1

2
rP (x)2

47

The bound above applies to any path from x to a point p ∈ P , and so,

dN(x, p) = 4 inf
γ∈path(x,p)

`(γ) ≥ 2rP (x).

If p is the nearest neighbor of x in P , then dN(x, p) = 2rP (x), by taking the path to be a straight
line. It follows that minp∈P dN(x, p) = 2rP (x).

The preceding lemma shows that the two filtrations are equal up to a monotone change in pa-
rameters. By standard results in persistent homology, this means that their persistence diagrams
are also equal up to the same change in parameters. This means that one could use standard tech-
niques such as α-complexes [?] to compute the persistence diagram of the Euclidean distance
and convert it to the nearest neighbor metric afterwards. Moreover, one observes that the same
equivalence will hold for variants of the nearest neighbor metric that take other powers of the
distance.

Intrinsic Persistent Homology Recently, several researchers have considered intrinsic nerve
complexes on metric data, especially data coming from metric graphs [? ?]. These complexes
are defined in terms of the intersections of metric balls in the input. The vertex set is the input
point set. The edges at scale α are pairs of points whose α-radius balls intersect. In the in-
trinsic Čech complex, triangles are defined for three way intersections, tetrahedra for four-way
intersections, etc.

In Euclidean settings, little attention was given to the difference between the intrinsic and
the ambient persistence, because a classic result, the Nerve Theorem [?], and its persistent
version [?] guaranteed there is no difference. The Nerve theorem, however, requires the com-
mon intersections to be contractible, a property easily satisfied by convex sets such as Euclidean
balls. However, in many other topological metric spaces, the metric balls might not be so well-
behaved. In particular, the nearest neighbor metric has metric balls which may take on very
strange shapes, depending on the density of the sample. This is similarly true for graph metrics.
So, in these cases, there is a difference between the information in the ambient and the intrinsic
persistent homology.
Theorem 4.2. Let P ⊂ Rd be finite and let dN be the nearest neighbor metric with respect
to P . The edges of the intrinsic Čech filtration with respect to dN can be computed exactly in
polynomial time.

Proof. The statement is equivalent to the claim that dN can be computed exactly between pairs
of points of P , a corollary of Theorem ??. Two radius α balls will intersect if and only of the
distance between their centers is at most 2α. The bound on the distance necessarily implies a
path and the common intersection will be the midpoint of the path.

5 Relating the nearest neighbor metric to Euclidean MSTs,
Euclidean Spanners, and More

The nearest neighbor metric, as seen in Theorem ??, is equal to the edge-squared metric. This
allows us to connect this manifold distance to a graph distance, which we will in turn show

48

is a generalization of maximum-edge distance on minimum spanning trees. The results in this
section are quite simple to prove, but we nonetheless believe they are important properties of the
Nearest Neighbor metric and its variants.

The edge-squared metric on a Euclidean point set, as we recall, is defined by taking the
Euclidean distances squared and finding the shortest paths. We could have taken any such power
p of the Euclidean distances. We will soon see that taking p = 1 gives us the Euclidean distance,
and finding spanners of the graph as lim p→∞ is the Euclidean MST problem. Let the p-power
metric be defined on a Euclidean point set by taking Euclidean distances to the power of p, and
performing all-pairs shortest path on the resulting distance graph.
Theorem 5.1. For all q > p, any 1-spanner of the p-power metric is a 1-spanner of the q-power
metric on the same point set

Proof. A 1-spanner of the q-power metric can be made by taking edges uv where

min
p0=u,...pk=v,k 6=1

∑
k

||pi − pi−1||q > ||u− v||q. (3.6)

If
∑k

i=1 ||pi − pi−1||q > ||u− v||q for any points p1, . . . pk, then
∑k

i=1 ||pi − pi−1||p > ||u− v||p
for any q > p. Thus, for all such edges uv satisfying Equation ??:

min
p0=u,...pk=v,k 6=1

∑
k

||pi − pi−1||p > ||u− v||p.

Such edges uv must be included in any 1-spanner of the p-power metric.

Corollary 5.1.1. Let P be a set of points in Euclidean space drawn i.i.d. from a Lipschitz
probability density bounded above and below, with support on a smooth, compact manifold with
intrinsic dimension d, bounded curvature, and smooth boundary of bounded curvature. Then the
k-NN graph on P when k = O(2d log n) is a 1-spanner of the p-power metric for every p ≥ 2,
w.h.p.

This follows from combining Theorem ?? and Theorem ??.

5.1 Relation to the Euclidean MST problem
Definition 5.2. Let the normalized p-power metric between two points in Rd be the p-power
metric between the two points, raised to the 1

p
power. Define the normalized∞-power metric as

the limit of the normalized p-power metric as p→∞.
Lemma 5.3. The Euclidean MST is a 1-spanner for the normalized∞-power metric.

This lemma follows from basic properties of the MST. The normalized p-power metrics give
us a suite of metrics such that p = 1 is the Euclidean distance and p = ∞ gives us the distance
of the longest edge on the unique MST-path. Setting p = 2 gives the edge-squared metric, which
sits between the Euclidean and max-edge-on-MST-path distance. Theorem ?? establishes that
minimal 1-spanners of the (normalized) p-power metric are contained in each other, as p varies
from 1 to∞. The minimal spanner for a general point set when p = 1 is the complete graph, and
the Euclidean MST is the minimal spanner for p =∞. Thus:

49

Theorem 5.4. For points in Rd, every 1-spanner of the p-power metric on that set of points
contains every Euclidean MST.
Corollary 5.4.1. Every 1-spanner for the Nearest Neighbor metric contains every Euclidean
MST.

5.2 Generalizing Single Linkage Clustering, Level Sets, and k-Centers clus-
tering

If our point set is drawn from a well-behaved probability density, then the normalized edge-
power metrics converge to a nice geodesic distance detailed in [?]. When p = 1, clustering
with this metric is the same as Euclidean metric clustering (k-means, k-medians, k-centers),
and when p = ∞, clustering with this metric is the same as the single-linkage clustering and
the widely used level-set method [? ? ? ?]. Thus, clustering with normalized edge-power
metrics generalizes these two very popular methods, and interpolates between their advantages.
Definitions of the level-set method and a full discussion are contained in Appendix ??

6 Spanners for the nearest neighbor metric
In this section, we prove our theorems on spanners of the nearest neighbor metric. The proofs
of these theorems mostly leverage Theorem ?? and past work on geometric spanners. We have
nonetheless included them for completeness, and to illustrate that spanners of manifold distances
like the nearest neighbor metric can have interesting properties not found in Euclidean spanners
(assuming no Steiner points).

6.1 Exact-spanners of nearest neighbor metric in the Probability Density
Setting

Theorem ?? states that for k = O(2d log n), the k-NN graph of n points drawn i.i.d from a nicely
behaved probability distribution is a 1-spanner of the nearest neighbor metric. This section is
dedicated to outlining a proof of this Theorem, the full result which will be in Appendix ??.
This result is clearly impossible for Euclidean distances, whose 1-spanner is the complete graph
almost surely. Our theorem implies any off-the-shelf k-nearest neighbor graph generator can
compute edge-squared metric. We strongly rely on Theorem ?? for this result, and the fact that
Gabriel graphs are 1-spanners of the edge-squared metric.

First, let us assume that the support of our probability density D has the same dimension as
our ambient space. This simplifies our calculations without changing the problem much. Then,
we note that as our number of sample points get large, the density inside a k-NN ball around any
point x (the ball with radius kth-NN distance, center at x) looks like the uniform distribution on
that ball, possibly intersected with a halfspace. The bounding plane of our halfspace represents
the boundary of our density D.

For simplicity in the outline, let’s suppose that D is convex. If we condition on the radius of
the k-NN ball, then the k − 1st nearest neighbors of x are distributed roughly according to the

50

above distribution, described by the ball intersected with a halfspace. For any other point p in
D, we project p onto the k-NN ball to point p′, and show that the ball p′x contains a kth nearest
neighbor w.h.p, when k = O(2d log n). This implies ball with diameter px contains a kth nearest
neighbor of x, and thus px is not necessary in any 1-spanner of the edge-squared metric. Then
we take union bound over all x. A rigorous proof of Theorem ?? requires careful analysis, and
is contained in Section ??. Our proof can be tweaked to show:
Theorem 6.1. Given a Lipschitz distribution bounded above and below with support on convex
set C ⊂ Rd, the k-NN graph is Gabriel w.h.p. for k = O(2d log n).

6.2 Fast, Sparse Spanner for the Edge-Squared Metric
Now we outline a proof for Theorem ??, which shows that one can construct a (1 + ε) nearest
neighbor metric spanner of size O(nε−d/2) in time O

(
n log n+ nε−d/2 log

(
1
ε

))
, for points in

constant dimensional space. The full proof is in Appendix ??. We critically rely on Theorem ??
for this work, which shows a spanner for the edge-squared metric is equivalent to a spanner for
the nearest neighbor metric.

Note that this spanner is sparser and faster in terms of epsilon dependency than the theoretical
optimal spanner for Euclidean distances [?]. We rely extensively on well-separated pair decom-
positions (WSPDs), and this outline assumes familiarity with that notation. For a comprehensive
set of definitions and notations on well separated pairs, refer to any of [? ? ? ?]. Our proof
consists of three parts.

1. Showing that connecting a (1 +O(δ2))-approximate shortest edge in a 1/δ well separated
pair for all the pairs in the decomposition gives a 1 + O(δ2) edge-squared spanner. The
processing for this step takes O(n log n+ δ−dn) time.

2. Previous work contains an algorithm computing 1 + O(δ2)-approximate shortest edge in
a 1/δ well separated pair for all the pairs in a WSPD, and takes O(1) time per pair. The
pre-processing for this step will be bounded by O(δ−dn log

(
1
δ

)
) time. The log

(
1
δ

)
factor

goes away given a fast floor function. This procedure was first introduced in [?].

3. Putting these two together, and setting ε = δ2 gives us a 1 + ε spanner with O(ε−d/2n)
edges in O(n log n+ ε−d/2n) time.

Full details of this proof are contained in Appendix ??

7 Conclusions and Open Questions
We examined the nearest neighbor metric and showed how to compute it exactly, as well as
find sparse data structures efficiently for approximate computation in practice. Many problems
remain open.

First: are there generalizations of these metrics, for which our proof techniques will still
hold? The nearest neighbor metric has many natural generalizations, including the kth nearest
neighbor or powers of the nearest neighbor function.

Can we efficiently compute o(log n)-spanners of the nearest neighbor metric in high dimen-
sion, such the the spanners have a nearly linear number of edges? The existence of such spanners

51

has been studied for Euclidean metrics in [?], where the stretch obtained is
√

log n.
Does computing k-NN graphs with approximate nearest neighbor methods give 1-spanners

of the edge-squared metric with high probability? Approximate nearest neighbors have been
studied extensively [? ? ?], including locality-sensitive hashing for high dimensional point
sets [?] and more [?]. Recent work by Andoni et al. [?] showed how to compute approximate
nearest neighbors for any non-Euclidean norm. Perhaps there is a rigorous theory about data-
sensitive metrics generated from any such norm? Similar to how the edge-squared metric is
generated from the Euclidean distance.

It remains an open question how well clustering or classification with nearest neighbor met-
rics performs on real-world data. Experiments have been done by Bijral, Ratliff, and Srebro in [?
]. Theorem ?? implies that future experiments can be done using any k-nearest-neighbor graph.
We believe that the interest in alternative metrics on Euclidean data will continue to be a rich
source of interesting problems.

G Nearest Neighbor Metric and Edge-Power Metrics relate to
Single Linkage Clustering, Level Sets, and k-Centers clus-
tering

Many popular clustering algorithms, including k-centers, k-means, and k-medians clustering,
use Euclidean distance as a measure of distance between points in Rd. These methods are useful
when clusters are spherical and well-separated. However, it is believed by practitioners that
data-sensitive distances more accurately capture intrinsic distances between data [?].

The celebrated single-linkage clustering algorithm [? ?], which is clustering based on an
MST, is a widely used tool in machine learning, and gets around many of the problems of the
Euclidean distance clustering. In single-linkage clustering, two points are considered similar if
the maximum length edge on the path between them in the MST is small. This turns out to be
equivalent to computing the normalized ∞-power metric between the two points. Therefore,
single linkage clustering can be seen as clustering using the normalized∞-power metric. Gen-
erally, normalized p-power metrics can be seen as an intermediary between Euclidean distances
(1-power metrics) and Euclidean MST-based clustering.

Clustering with p-power metric relates to another popular clustering method in machine
learning, known as level-set clustering. Loosely speaking, level set clustering involves finding
an estimate for the probability density that points are drawn from, finding a cut threshold t, and
then taking as clusters all regions with probability density > t. Level set clustering has appeared
in many incarnations [? ? ?], including the celebrated and widely used DBScan method [?
] and its considerable number of variations [?]. It is known that level-set clustering is related
to single-linkage clustering, as the latter is an approximation of the former [? ?]. Level-set
methods have the advantage that they can find arbitrarily shaped clusters [?], but can cause two
points that are very close in Euclidean distance to be considered far apart.

Clustering with the p-power metric incorporates the advantages of both Euclidean distance
clustering and level set clustering, as it is both data-sensitive and takes into account overall
Euclidean distance between two points. Here, p can be toggled to change the sensitivity of the

52

metric to the underlying density. As the number of samples drawn from our probability density
grows large, it has been proven that the behavior of normalized p-power metrics converges to
a natural geodesic distance on the underlying probability density [?]. Clustering with this
geodesic distance for p = 1 is exactly Euclidean clustering, and for p = ∞ is exactly the level
set method. Thus, clustering with p-power metric converges to a clustering method that smoothly
interpolates between Euclidean-distance clustering and level set clustering.

H Proving Faster and Sparser-than-Euclidean Approximate
Spanners

In this appendix, we finish the proof of Theorem ?? based on the outline given in Section ??.

H.1 1 +O(δ2) spanners can be generated from a 1/δ WSPD

Definition H.1. Let e be a critical edge in a shortest path metric on any graph if the (possibly-
not-unique) shortest path between the endpoints of e is the edge e.
Lemma H.2. The set of critical edges on any graph forms a 1-spanner of the shortest path
metric.

The above lemma is known in the literature.
To check that any graph H is a (1 + O(δ2) spanner of any graph G, it suffices to prove that

all critical edges in the edge-squared metric have a stretch no larger than 1 +O(δ2). Let G be the
edge-squared graph arising from points P ⊂ Rd. Build a well-separated pair decomposition on P,
with pairs given as {A1, B1}, {A2, B2}, . . . {Am, Bm}. Create a spanner H as follows: for each
pair {Ai, Bi}, connect an edge {a, b}, a ∈ Ai, b ∈ Bi such that the Euclidean distance between a
and b is a (1+cδ2) approximation of the shortest distance between point setsAi andBi, for some
constant c independent of i. This can be accomplished in O(1) time assuming a preprocessing
step of O(δ−d log

(
1
δ

)
time, as noted in Callahan’s paper on constructing a Euclidean MST [?].

Do this for all 1 ≤ i ≤ m.
For each critical edge (s, t), consider the well-separated pair {A,B} that (s, t) is part of.

Let s ∈ A and t ∈ B. Let (a, b) be a (1 + cδ2)-approximate shortest edge between A and B
(a ∈ A, b ∈ B). Scale ||a − b||2 to be 1. A and B have Euclidean radius at most δ, by the
definition of a well separated pair. By induction on Euclidean distance, H is an edge-squared
2-spanner of the edge-squared metric for all points in A and B and all points in B (assuming
sufficiently small δ).
Lemma H.3.

distH(s, t) ≤ distH(s, a) + distH(a, b) + distH(b, t)

≤ 1 +O(δ2)

Proof. We know distH(a, b) = 1 by our scaling, and

distH(s, a) ≤ 2 · (distG(s, a)) ≤ 2 · ||s− a||2 ≤ 8δ2

53

The first inequality follows by the inductive hypothesis that H is a 2-spanner of G in A. The
third inequality follows since both s and a are contained in a ball of radius δ.

The same bound applies for distH(b, t).

Lemma H.4.
(1 + cδ2)(distG(s, t)) ≥ distG(a, b) = 1

⇒ distG(s, t) ≥ 1

1 + cδ2

Lemma ?? follows from the fact that (a, b) is a (1 + cδ2) approximate shortest distance
between A and B.

Therefore

stretchH(s, t) ≤ distH(s, t)

distG(s, t)

≤ (1 + 16δ2)(1 + cδ2)

= 1 +O(δ2)

Thus we have proven that H is a 1 + 16δ2 spanner. Now set ε = δ2, which completes proof
of Theorem ??.

I Spanners in the Probability Density Setting: Full Proof
We prove Theorem ?? in full. Through this section, we assume that D is a probability density
function with support on smooth connected compact manifold with intrinsic dimension d embed-
ded in ambient space Rs, with smooth boundary of bounded curvature. This probability density
function is further assumed to be bounded above and below, and to be Lipschitz. For simplic-
ity, we assume that s = d, and we can prove all our results when s > d by taking coordinate
charts from the manifold into Euclidean space. We will show at the end of the section that if the
distribution is supported on a convex set of full dimension in the ambient space, then the k-NN
graph is Gabriel for the same k. It is not difficult to see that Gabriel graphs are 1-spanners of the
edge-squared metric [?].
Lemma I.1. Let M be a compact object in Rd, whose boundary is a smooth manifold of dimen-
sion d−1 with bounded curvature. Let B be any ball with sufficiently small radius rB with center
in M , that intersects the boundary of D at some point x. Let H be the halfspace tangent to M at
x containing the center of the ball.

For any point Q ∈M , let Q′ be the point in B closest to Q. If d(Q′, H)/rB > c for arbitrary
constant c, then d(Q,H) ≥ c′ for some constant c′.

This is a basic fact about the smoothness and bounded curvature of the boundary.
Lemma I.2. Pick n points fromD. W.h.p, any two points in Support(D) with Euclidean distance
≥ Ω(1) have nearest neighbor metric of o(1).

This is implicit in [?].

54

Lemma I.3. For any ball B with center O and any point Q′ on the boundary of B, let BQ′O be
the ball with diameter Q′O. Let H be any halfspace containing O. If d(Q′, H)/rB ≤ c for some
constant c possibly depending on the dimension d, then Vol(BQ′O ∩H) ≥ 1−c′

2d
Vol(B ∩H) for

some constant c′, where c′ goes to 0 as c goes to 0.

Proof. First, let us consider the case where d(Q′H) = 0, that is, Q′ is contained in halfspace H ′.
In this case, dilating BQ′O ∩ H by a factor of 2 about point Q′ gives a superset of B ∩ H , as
BQ′O maps to B and H maps to a halfspace strictly containing H . In this case, Vol(BQ′O∩H) ≥
1
2d

Vol(B ∩H) as desired. The case when d(Q′, H)/rB is bounded follows in a straightforward
manner.

This leads us to our following theorem:
Theorem I.4. For any n point set P picked i.i.d from D, consider any point O. Let B be the
k-NN ball of O. Let Q ∈ Support(D) be any point outside B, and let the closest point to Q in B
be Q′. For a point x inside B on the boundary of D (assuming such a point exists), let H be the
tangent halfplane containing the center of B.

Then: either d(Q′, H)/rB ≤ c′ for some constant c′ or there exists a constant cwhere |QO| >
c. Here, c and c′ are independent of the number of points chosen, and c′ can be set arbitrarily
small.

In the latter case, w.h.p. QO is not in the edge-squared 1-spanner. In the former case, setting
c′ to be a very small constant ε lets us say:

Vol(BQ′O ∩H) ≥ 1− ε
2d

Vol(B ∩H), (3.7)

or equivalently:

P
x∼D

[x ∈ BQO|x ∈ B] (3.8)

≥ P
x∼D

[x ∈ BQ′O|x ∈ B] (3.9)

≥1− ε− o(1)

2d
(3.10)

Expression ?? > Expression ?? follows from Equation ??, and the fact that the radius of
the k-NN ball goes to 0 as n gets large, and thus the probability density of sampling x from D
conditioned on x being in B approaches the uniform density in B ∩ Support(D). Also, B ∩H
approaches B ∩ Support(D) as the radius of B goes to 0.

Expression ?? > Expression ?? since BQO ⊃ BQ′O. (Here, the k-NN ball B w.r.t. point O is
defined as the ball centered at O with radius equal to the distance of the kth nearest neighbor to
O).

Note that the k−1 nearest neighbors ofO, conditioned only on the radius ofB, are distributed
equivalently to k − 1 i.i.d samples of D conditioned on containment in B. It follows that for any
point Q outside B and in the support of D, where |QO| < c:

55

P
P∼Dk

[QO is not Gabriel w.r.t. P |Q 6∈ B]

≥ 1−
(

1− 1− ε− o(1)

2d

)k
Thus, setting ε = 0.1 and k > O(log n/2d), and factoring in the case where |QO| > c, then

w.h.p.:
P

P∼Dk
[QO is not critical w.r.t. P |Q 6∈ B]

Here, we recall that an edge AB is Gabriel with respect to a point set P if and only if BAB does
not contain any points in P . Note that every non-Gabriel edge is non-critical, where a critical
edge is an edge that must be in the 1-spanner (as in Definition ??). Thus taking the union bound
over Q,O ∈ P gives us that no edge outside the k-NN graph is critical w.h.p, and thus the k-NN
graph contains all critical edges and is a 1-spanner w.h.p.

This proves Theorem ?? when the support of D has the same intrinsic dimension as the
ambient space. If the support of D has dimension d < d′ (where d′ is the ambient dimension of
the space), simply take coordinate charts from D onto Rd and the previous arguments will still
carry through . We should note that if no point x inside B on the boundary of D exists, then we
can ignore H and all the steps of the proof still follow.

56

Chapter 4

Spectral Clustering in the Limit

Cheeger and Buser inequalities relate fundamental eigenvalues with isoperimetric constants.
These inequalities for graphs are the foundation of spectral graph theory.

In this chapter, we introduce Cheeger and Buser inequalities for Lipschitz probability density
functions. To do this, we create new definitions of isoperimetry and eigenvalues in this setting.
For past definitions, one of the inequalities must fail. We apply our work to give a new spectral
algorithm for partitioning probability densities, which is a variant of classical spectral clustering.
Classical spectral clustering can fail when data comes from a nicely behaved Lipschitz density
function, and our new variant will overcome traditional problems in spectral clustering when
points are drawn from general Lipschitz probability densities.

1 Introduction

The Cheeger and Buser inequalities relate isoperimetric cuts with eigenvalues. Up to a constant
factor, the Cheeger inequality lower bounds the fundamental eigenvalue of a Laplacian with the
square of the isoperimetric constant [? ?], and the Buser inequality upper bounds the eigenvalue
with the isoperimetric constant [? ?].

These inequalities appear in two settings: the graph setting [?] and the manifold setting [? ?
]. In graphs, these inequalities are the foundation of spectral graph theory [? ?]. Spectral graph
theory has provided surprising insights on problems including maximum flow [?], fast Laplacian
solving [?], expander decompositions [? ?], sparse cuts [? ? ?], and longstanding mathe-
matical conjectures like the Kadison Singer conjecture [?]. In this setting, the Buser inequality
is trivial, and the Cheeger inequality is mathematically substantial [? ?]. In manifold theory,
the Cheeger and Buser inequalities have proven useful for probability theory on manifolds [?],
machine learning [?], and more [? ?]. Unlike in the graph setting, the Buser inequality on
manifolds is highly nontrivial, and historically came as a surprise to manifold theorists [? ?].

This chapter introduces Cheeger and Buser inequalities in a new setting: Lipschitz probability
density functions. Here, a probability density function refers to a function ρ : Rd → R≥0 where∫
Rd ρ = 1. A Lipschitz probability density refers to a probability density ρ where |ρ(x)−ρ(y)| <
L‖x − y‖2 for some constant L. Cheeger inequalities have been used in the probability density
setting in the past [?], but primarily in the setting where there are strong parametric assumptions

57

on the density (such as when the density is Gaussian or log-concave) [?]. We show that for
general Lipschitz probability densities, either the Cheeger or the Buser inequality must fail using
past definitions of eigenvalue and isoperimetric constant.

Since past definitions of eigenvalue and isoperimetric constant are inadequate in the prob-
ability density setting, we present new definitions of these quantities for which a Cheeger and
Buser inequality will hold. Using our new definitions, the Cheeger inequality can be proven us-
ing standard techniques. Akin to the manifold setting, the Buser inequality here is more difficult
to prove. New mathematical ideas are required to prove the Buser inequality. We prove both the
Cheeger and Buser inequalities on Lipschitz probability densities, using our new definitions.

Applications

We will use our inequalities to show that a spectral sweep cut of a Lipschitz probability density
functions will partition it into two pieces with good sparsity guarantees. We then discuss potential
applications to machine learning and spectral clustering.

Spectral clustering [? ?] is one of the most widely used techniques in machine learning [?].
It is known to have a close connection to past definitions for eigenvalues of a probability density
function [?]. However, spectral clustering is not known to have any good theoretical sparsity
guarantees on partition quality as the number of samples grows large, in part due to the lack of
a Cheeger and Buser inequality for past definitions of eigenvalues. Our new Cheeger and Buser
inequalities may motivate theoretically principled spectral clustering methods.

1.1 Definitions
To establish our Cheeger and Buser inequalities, we define new notions of isoperimetric constant
(equivalently, sparsity), Rayleigh quotients, eigenvalues, eigenvectors, and sweep cuts. Appro-
priate definitions will let us establish basic spectral theory in the Lipschitz probability density
setting.

Definition 1.1. Let ρ be a probability density function with domain Rd, and let A be a subset of
Rd.

The (α, β)-sparsity of the cut induced by A is denoted by Φ(A). It is defined as (d − 1)
dimensional integral of ρβ on the cut, divided by the d dimensional integral of ρα on the side of
the cut where this integral is smaller.

For nice smooth cuts this intuitive definition is fine but a more general and precise definition
using total variation is given in definition ??
Definition 1.2. The (α, β)-isoperimetric constant of ρ is defined as the infimum of Φ(A) over all
A.

Definition 1.3. The (α, γ)-Rayleigh quotient of u with respect to ρ : <d → <≥0 is:

Rα,γ(u) :=

∫
<d ρ

γ|∇u|2∫
<d ρ

α|u|2

A (α, γ)-principal eigenvalue of ρ is λ2, where:

58

λ2 := inf∫
ραu=0

Rα,γ(u).

Define a (α, γ)-principal eigenfunction of ρ to be a function u such that Rα,γ(u) = λ2, if
such u exists.

Now we define a sweep cut for a given function with respect to a a positive valued function
supported on Rd:

Definition 1.4. Let α, β be two real numbers, and ρ be any function from <d to <≥0. Let u be
any function from <d → <, and let Ct,u be the cut defined by the set {s ∈ <d | u(s) > t}.

The sweep-cut algorithm for u with respect to ρ returns the cut Ct,u of minimum (α, β) spar-
sity, where this sparsity is measured with respect to ρ.

When u is a (α, γ)-principal eigenfunction, the sweep cut is called a (α, γ)-spectral sweep
cut of ρ.

Additional Definitions:
A function ρ : <d → <≥0 is L-Lipschitz if |ρ(x)− ρ(y)|2 ≤ L|x− y|2 for all x, y ∈ <d.
A function is ρ : <d → <≥0 is α-integrable if

∫
<d ρ

α is well defined and finite. Throughout
this chapter, we assume ρ is always α-integrable.

Our definitions depend on three constants: α, β, and γ. Informally, these constants can be
thought of as the mass constant, the cut constant, and the spring constant respectively. In the
graph and manifold setting, the spring and cut constant are the same. One key contribution of
our definitions is the decoupling of the cut and spring constants which will allow us to get tight
Cheeger and Buser results.

1.2 Theorems

Theorem 1.5. Probability Density Cheeger and Buser:
Let ρ : Rd → R ≥ 0 be an L-Lipschitz density function. Let α = β − 1 = γ − 2.
Let Φ be the infimum (α, β)-sparsity of a cut through ρ, and let λ2 be the (α, γ)-principal

eigenvalue of ρ. Then:
Φ2/4 ≤ λ2

and
λ2 ≤ Oα,β(dmax(LΦ,Φ2)).

The first inequality is Probability Density Cheeger, and the second inequality is Probability
Density Buser.

In particular, a Cheeger and Buser inequality exist when α = 1, β = 2, γ = 3. Note that we
don’t need ρ to have a total mass of 1 for any of our proofs. The overall probability mass of ρ
can be arbitrary.

Theorem ?? has partial converses:
Lemma 1.6. If α + γ > 2β, the Cheeger inequality in Theorem ?? does not hold.
Lemma 1.7. If γ ≥ 1 and γ − 1 < β, then the Buser inequality in Theorem ?? does not hold.

59

In particular, if α = β = γ = 1, the Buser inequality fails. If α = 1, γ = 2, no Cheeger-
Buser inequality can hold for any β. These settings encompass most past work on sparse cuts
and eigenvectors in probability densities, as mentioned in Section ??.

We apply these inequalities to show that spectral sweep cuts of Lipschitz probability den-
sity functions give sparse cuts of the density. This contrasts with past work on sweep cuts in
probability densities, as mentioned in Section ??.
Theorem 1.8. Spectral Sweep Cuts give Sparse Cuts:

Let ρ : <d → <≥0 be an L-Lipschitz probability density function, and let α = β− 1 = γ− 2.
The (α, γ)-spectral sweep cut of ρ has (α, β) sparsity Φ satisfying:

ΦOPT ≤ Φ ≤ O(
√
dLΦOPT).

Here, ΦOPT refers to the optimal (α, β) sparsity of a cut on ρ.
In words, the spectral sweep cut of the (α, γ) eigenvector gives a provably good approxima-

tion to the sparsest (α, β) cut, as long as β = α + 1 and γ = α + 2. We will also show that this
theorem is not possible for past definitions of eigenvectors and sparsity on probability density
functions.

1.3 Past Work
Cheeger and Buser Inequalities for Graphs and Manifolds

Cheeger and Buser inequalities for graphs are the foundation of spectral graph theory [?]. These
inequalities were first discovered by Alon and Millman [?] based on similar inequalities in
the manifold setting [? ?]. These inequalities have been applied to graph partitioning, random
walks, and spectral graph theory [? ? ? ? ? ? ?]. In the graph setting, the Buser inequality is
trivial [?], while the Cheeger inequality is mathematically substantial [?].

Cheeger inequality for manifolds have been extensively used in Riemannian geometry [? ?
?]. Buser’s inequality on manifolds is mathematically non-trivial, unlike the graph case. This
inequality depends on a Ricci curvature term, and it is false if the manifold has unbounded Ricci
curvature [? ?]. This inequality has been applied to diffusion processes on Manifolds [?],
machine learning [? ?], and more [?].

For formal definitions of Cheeger and Buser inequalities for graphs and manifolds, refer to [?
] and [?] respectively.

Eigenvalues, Sweep Cuts, and Isoperimetry on Probability Densities

Recently, eigenvalues and sparse cuts have been used in the probability density setting [? ?],
in connection with the Kannan-Lovasz-Simonovits conjecture. There is a Cheeger and Buser
inequality in this setting, as long as strong parametric assumptions (such as log concavity) are
given [?]. These inequalities use what we call (α = 1, γ = 1) eigenvectors, and (α = 1, β = 1)
isoperimetric constants. We will show in our paper that any Buser inequality using (α = 1, β =
1, γ = 1) must fail for simple Lipschitz densities. No Cheeger-Buser inequality was previously
known for probability densities without strong parametric assumptions.

60

In another line of work by Von Luxburg et al and Rosasco et al [? ?], the authors use
perturbation theory results to show that the second eigenvalue of a graph Laplacian generated
from samples on a probability density converges to what we call the (α = 1, γ = 2)-principal
eigenvalue of the density. Trillos et al. [? ?] improved the convergence rate and showed that
the (extensions of the) eigenvectors of the graph Laplacian approach the eigenfunctions of the
weighted Laplacian operator for a probability density.

These results show that spectral clustering algorithms like the one in [?] can be thought of
as taking an iid sample from a distribution, constructing a graph Laplacian, and computing its
fundamental eigenvector as an approximation for finding the eigenfunction over the original dis-
tribution. The eigenfunction that they end up approximating is the (α = 1, γ = 2) eigenfunction.
The clustering algorithm then takes a sweep cut with respect to this eigenfunction.

Unfortunately, sweep cut algorithms based on the (1, 2) eigenfunction can produce cuts of
probability densities with bad isoperimetry properties. See Theorem ??. The strength of our
Cheeger and Buser inequalities are that they will imply new sweep cut algorithms on probability
densities, with provably good isoperimetry.

Technical Contribution

The key technical contribution of our proof is proving Buser’s inequality on Lipschitz probability
densities via mollification [? ?] with disks of varying radius. This chapter is the first time
mollification with disks of varying radius have been used. We emphasize that the most difficult
part of our paper is proving the Buser inequality.

Mollification has a long history in mathematics dating back to Sergei Sobolev’s celebrated
proof of the Sobolev embedding theorem [?]. It is one of the key tools in numerical analysis,
partial differential equations, fluid mechanics, and functional analysis [? ? ? ?], and analogs
of mollification have been used in computational complexity settings [?]. Informally speaking,
mollification is used to create a series of smooth functions approximating a non-smooth function,
by convolving the original function with a smooth function supported on a disk. Notably, an
approach using convolution is used by Buser in [?] to prove the original Buser’s inequality,
albeit with an intricate pre-processing step on any given cut.

To prove Buser’s inequality on Lipschitz probability density functions ρ, we will show that
given a cut C with low (α, β)-sparsity, we can find a function u with low (α, γ)-Rayleigh quo-
tient. We build u by starting with the indicator function IC for cut C (which is 1 on one side
of the cut and 0 on the other). Next, we mollify this function with disks of varying radii. In
particular, for each point r in the domain of ρ, we spread out the point mass IC(r) over a disk
of radius proportional to ρ(r)L, where L is the Lipschitz constant of ρ. The resulting function u
obtained by ‘spreading out’ IC will have low (α, γ)-Rayleigh quotient.

For all past uses of mollification, the disks on which the smooth convolving function is sup-
ported (we call this the mollification disk) have the same radius throughout the manifold. The
use of a uniform radius disk is critical for most uses and proofs in mollification. Our contribution
is to allow the disks to vary in radius across our density. This variation in radius allow us to deal
with functions that approach 0 (and explains the importance of the density being Lipschitz). No
mollification disks centered anywhere in our probability density will intersect the 0-set of the
density. This overcomes significant hurdles in many results for functional analysis and PDEs,

61

as many past significant results related to partial differential equations rely on having a positive
lower bound on the density [? ?].

Proving our Buser inequality using mollification by disks of various radius requires a fairly
delicate proof with many pages of calculus. Our key technical lemma is a bound on how the
l1 norm of a mollified function when the mollification disks have various radius, which can be
found in Section ??.

2 Paper Organization

In Section ??, we go over example 1-D distributions that show that either Cheeger or Buser
inequality must fail for past definitions of sparsity and eigenfunctions. These examples motivate
our new definitions. We will prove Lemma ?? and Lemma ?? in this section.

We prove the Buser inequality in Section ??, via a rather extensive series of calculus compu-
tations. Our proof relies on a key technical lemma, which is presented in Section ??. The Buser
inequality is by far the most difficult part of our proof.

We prove the Cheeger inequality in Section ??. The proof in this section implies that the
(α, α + 1) sparsity of the (α, α + 2) spectral sweep cut of a probability density function ρ is
provably close to the (α, α + 2) principal eigenvalue of ρ. We note that this inequality does not
depend on the Lipschitz nature of the probability density function.

In Section ??, we prove Theorem ??, which shows that a (α, α + 2) spectral sweep cut has
(α, α + 1) sparsity which provably approximates the optimal (α, α + 1) sparsity.

In Section ??, we show an example Lipschitz probability density where the (α = 1, γ = 2)
spectral sweep cut has bad (1, β) sparsity for any β < 10, and will lead to an undesirable cut
(from a clustering point of view) on this density function. This is important since the spectral
clustering algorithm of Ng et al [?] is known to converge to a (α = 1, γ = 2) spectral sweep cut
on the underlying probability density function, as the number of samples grows large [?].

Finally, we state conclusions and open problems in Section ??.
In the appendix, we note that the Cheeger and Buser inequalities for probability densities are

not easily implied by graph or manifold Cheeger-Buser. We also provide a simplified version of
Cheeger’s and Buser’s inequality for probability densities, in the 1-dimensional case. This may
make easier reading for those unfamiliar with technical multivariable mollification.

3 Cheeger-Buser inequalities require carefully chosen α, β, γ

In this section, we prove Lemma ?? and Lemma ??. As a consequence, we show that settings of
α, β, γ common in past work (see Section ??) violates either the Cheeger or Buser inequality.

We consider two simple density functions:
1. The function ρ1(x) = ε/2 for−1

ε
< x < 1

ε
, with a 1-Lipschitz dropoff to 0 at the endpoints

of [−1
ε
, 1
ε
].

2. The function ρ2(x) = min(|x|+ ε,−|x|+
√

2) for |x| <
√

2 and ρ2(x) = 0 for |x| >
√

2.

62

Figure 4.1: The function ρ1, a 1-Lipschitz counterexample to Cheeger’s inequality when α+γ >
2β. The height of the function is ε/2, and the length of the supporting interval is roughly 2

ε
.

Figure 4.2: The function ρ2, a 1-Lispchitz counterexample to Buser’s inequality when γ ≥ 1 and
γ − 1 < β.

We will show that if α, β, γ satisfy α + γ > 2β, then the Cheeger inequality will fail for ρ1,
and if γ ≥ 1 and γ − 1 < β, then the Buser inequality will fail for ρ2.

In example ρ1, let ε < 0.01. The (α, β) isoperimetric constant Φ is O((1/ε)α−β−1), and the
eigenvalue is O((1/ε)α−γ−2). Therefore, the Cheeger inequality will fail for some ε if 2(α− β−
1) > α− γ − 2, or α + γ > 2β. This proves Lemma ??.

In example ρ2, let ε < 0.01. The (α, β) isoperimetric constant Φ is O(εβ). The eigenvalue
λ2 is lower bounded by O(εγ−1) when γ > 1, and ln(1/ε) when γ = 1. In either case, the Buser
inequality will fail if γ − 1 < β, proving Lemma ??.

We show details of our eigenvalue and isoperimetry calculations in Appendix ??.

4 Buser Inequality for Probability Density Functions
In this section the theory of functions of bounded variation is used to justify certain formal
calculations. The key step is to define the geometric quantities variationally.
Definition 4.1. For a measurable set A ⊆ <d and ρ : <d → <≥0 integrable define

|A|α :=

∫
A

ρα(x) dx.

We define the weighted boundary area variationally [? ?].

63

Definition 4.2. For ρ : <d → <≥0 integrable and A ⊆ <d the weighted perimeter of A is

|∂A|β := sup

{∫
A

÷(ρβ(x)φ(x)) dx

∣∣∣∣φ ∈ C1
c (<d), ‖φ‖∞ ≤ 1

}
.

Remark 4.2.1. This definition corresponds to the intuitive definition of the boundary integral of
ρβ when ∂A is sufficiently regular. Specifically, if A ⊆ <d has smooth boundary and then,

|∂A|β =

∫
∂A

ρβ(x) dHn−1(x),

whereHn−1 denotes surface (Hausdorff) measure.
Definition 4.3. Let A ⊆ <d be a set of finite perimeter such that |A|α ,

∣∣<d \ A∣∣
α
> 0. The

isoperimetric ratio of the cut induced by A is

Φ(A) :=
|∂A|β

min (|A|α , |<d \ A|α)

and the isoperimetric constant with weight ρ is

Φ := inf
A⊆<d

Φ(A).

Here, A is taken over sets of finite perimeter such that |A|α ,
∣∣<d \ A∣∣

α
> 0.

4.1 Weighted Buser-type Inequality
We now prove our weighted Buser-type inequality Theorem ??. We state our result in terms of
general (α, β, γ).
Theorem 4.4. Let ρ : <d → <≥0 be an L-Lipschitz function, λ2 be a (α, γ)-principal eigenvalue,
and Φ the (α, β) isoperimetric cut.

Then:

λ2 ≤ 3 · 2β+1d
∥∥ργ−β−1

∥∥
L∞

max
(
LΦ, 2β+1

∥∥ρα+1−β∥∥
L∞

Φ2
)

We note that when setting (α, β, γ) = (1, 2, 3), the above expression simplifies into:

λ2 ≤ 24dmax
(
LΦ, 8Φ2

)
.

4.2 Proof Strategy: Mollification by Disks of Radius Proportional to ρ
To prove Theorem ??, for A ⊂ <d fixed, we construct an approximation uθ of the characteristic
function, u, of A for which the numerator and denominator of the Rayleigh quotient, R(uθ),
approximate respectively the numerator and denominator of this expression. Specifically, uθ
will constructed as a mollification of u, Recall the following two equivalent definitions of a
mollification. They are equivalent by the change of variables z = x− θρ(x)y.

64

uθ(x) :=

∫
B(0,1)

u(x−θρ(x)y)φ(y) dy =

∫
u(z)φθρ(x)(x−z) dz, where φη(z) =

1

ηd
φ

(
z

η

)
,

(4.1)
with θ > 0 a parameter to be chosen and φ : <d → [0,∞) a smooth radially symmetric

function supported in the unit open ball B(0, 1) = {x ∈ <d | |x| < 1} with unit mass
∫
<d φ = 1.

When ρ is constant it follows from the Tonelli theorem that ‖uθ‖L1 = ‖u‖L1; when ρ is not
constant the following lemma shows that the latter still bounds the former.

4.3 Key Technical Lemma: Bounding L1 norm of a function with the L1

norm of its mollification
The following is our primary technical lemma, which roughly bounds the L1 norm of a mollified
function f by the L1 norm of the original f . Here, the mollification radius is determined by a
function δ(x).
Lemma 4.5. Let δ : Rd → R be Lipschitz continuous with Lipschitz constant |∇δ(x)| ≤ c < 1
for almost every x ∈ Rd. Let φ : Rd → R≥0 be smooth,

∫
Rd φ = 1, and supp(φ) ⊆ B(0, 1).

Then

1

1 + c
‖f‖L1 ≤

∫
Rd

∫
B(0,1)

|f(x− δ(x)y)|φ(y) dy dx ≤ 1

1− c
‖f‖L1 , f ∈ L1(Rd).

Proof. (of Lemma ??) An application of Tonelli’s theorem shows∫
Rd

∫
B(0,1)

|f(x− δ(x)y)|φ(y) dy dx =

∫
B(0,1)

φ(y)

∫
Rd
|f(x− δ(x)y)| dx dy. (4.2)

Fix y ∈ B(0, 1) and consider the change of variables z = x− δ(x)y. The Jacobian of this map-
ping is I−y⊗∇δ(x) which by Sylvester’s determinant theorem has determinant 1−y.∇δ(x) > 0.
It follows that∫

Rd

∫
B(0,1)

|f(x− δ(x)y)|φ(y) dy dx =

∫
B(0,1)

φ(y)

∫
Rd

|f(z)|
1− y.∇δ(x)

dx dy, (4.3)

and the lemma follows since 1− c ≤ 1− y.∇δ(x) ≤ 1 + c.

(Here, a.b denotes the dot product between a and b.)
We present the following simple corollaries, which is the primary way our proof makes use

of Lemma ??
Corollary 4.5.1. For any Lipschitz continuous function ρ : Rd → R≥0 with Lipschitz constant L
and any θ with 0 < θL < 1, we have:

1

1 + θL

∥∥ρβ∇u∥∥
L1 ≤

∫
Rd

∫
B(0,1)

ρβ(x−θρ(x)y)|∇u(x−θρ(x)y)|φ(y) dy dx ≤ 1

1− θL
∥∥ρβ∇u∥∥

L1 ,

when ρβ|∇u| ∈ L1.

65

Proof. (of Corollary ??) Apply Lemma ?? with δ(x) = θρ(x), and f(x) = ρβ(x)∇u(x).

This corollary will be used to bound the numerator of our Rayleigh quotient. Note that the
expression ∫

Rd

∫
B(0,1)

ρβ(x− θρ(x)y)|∇u(x− θρ(x)y)|φ(y)dydx

is close to
∫
Rd ρ

β(x)∇|uθ(x)|dx when θ ≤ 1
2L

. This is the guiding intuition behind how Corol-
lary ?? and Lemma ?? will be used, and will be formalized later in our proof of Theorem ??.

We present another simple corollary whose proof is equally straightforward. This corol-
lary will be used to bound the denominator, and is a small generalization of Corollary ??. We
write down both corollaries anyhow, since this will make it easier to interpret our bounds on the
Rayleigh quotient.
Corollary 4.5.2. For any Lipschitz continuous function ρ : Rd → R≥0 with Lipschitz constant
L, any 0 < t < 1, and any θ with 0 < θL < 1, we have:

1

1 + θL

∥∥ρβ∇u∥∥
L1 ≤

∫
Rd

∫
B(0,1)

ρβ(x−θtρ(x)y)|∇u(x−θtρ(x)y)|φ(y) dy dx ≤ 1

1− θL
∥∥ρβ∇u∥∥

L1

Proof. (of Corollary ??) Apply Lemma ?? with δ(x) = θtρ(x), and f(x) = ρβ(x)∇u(x).

A key technical step is to observe that the above two corollaries hold when u is a function of
bounded variation provided the left and right terms are interpreted as their variation. In particular,
consider A ⊂ <d with finite perimeter and let u be the characteristic function of A. (u(x) = 1 if
x ∈ A and zero otherwise). Then there exists a sequence of functions {un}∞n=1 ⊂ C∞(<d) with
un → u in L1 for which [?]

|∂A|β = lim
n→∞

∫
Ω

ρβ|∇un| =:

∫
Ω

ρβ|∇u|. (4.4)

Interchanging A and Ω \ A if necessary, it follows that Φ(A) defined in Definition ?? can be
written as

Φ(A) =

∫
Ω
ρβ|∇u|∫
Ω
ραu

= lim
n→∞

∫
Ω
ρβ |∇un|∫

Ω
ρα |un|

.

Now we are ready to prove our main Theorem, which is the Buser inequality for probability
densities stated in Theorem ??.

Proof. (of Theorem ??)
Fix A ⊂ Rd with |A|α ≤ |1|α/2 and let u(x) = χA(x) be the characteristic function of A.

Setting u to be the weighted average of u,

u =

∫
ραu∫
ρα

=

∫
A
ρα∫
ρα

=
|A|α
|1|α

∈ [0, 1/2], then
∫
ρα(u− u) = 0,

and
‖ρα(u− u)‖L1 =

∫
ρα|u− u| = 2|A|α(1− u) = 2

∫
ρα|u− u|2. (4.5)

66

Since |A|α = ‖u‖L1
α

and 1− u ∈ [0, 1/2] it follows that

(1/2)

∥∥ρβ∇u∥∥
L1

‖ρα(u− u)‖L1

≤ Φ(A) =

∥∥ρβ∇u∥∥
L1

‖ραu‖L1

≤
∥∥ρβ∇u∥∥

L1

‖ρα(u− u)‖L1

. (4.6)

In the calculations below we omit the limiting argument with smooth approximations of u
in equation (??) which justify formula involving ∇u. In particular, only the L1 norm of ρβ|∇u|
will appear in the estimates since this has meaning while the L2 norm is undefined.

Next, let uθ be the mollification of (an extension of) u given by equation (??). Then uθ(x)
is a local average average of u so uθ(x) ≥ 0, ‖uθ‖L∞ ≤ 1 and ‖u− uθ‖L∞ ≤ 1. Letting L
denote the Lipschitz constant of ρ, the parameter θ will to be chosen less than 1/(2L) so that that
Lemma ?? is applicable with constant c = 1/2.

The remainder of the proof constructs an upper bound on the numerator
∫
Rd ρ

γ|∇uθ|2 of the
Rayleigh quotient for uθ−uθ by

∥∥ρβ∇u∥∥
L1 and to lower bound the denominator

∫
Rd ρ

α(uθ−uθ)2

by ‖ρα(u− u)‖L1 . The conclusion of the theorem then follows from equation (??).

4.4 Upper Bounding the Numerator

To bound the L2 norm in the numerator of the Rayleigh quotient by the L1 norm in the numerator
of the expression for Φ(A) it is necessary to obtain uniform bound on ρ(x)∇uθ(x).

Lemma 4.6. Let u be any function, and let uθ be defined as in Equation ??. Let ρ : <d → <≥0

be an L-Lipschitz function.

‖ρ(x)∇uθ(x)‖L∞ ≤ ‖u‖L∞
d(2 + 3L)

θ
(4.7)

Proof. In order to prove this lemma, we first need to get a handle on ∇uθ(x), which is the
gradient of u after mollification by θ.

We take the the second representation of uθ in equation (??) to get

∇uθ(x) =

∫
Rd
u(z)

{
−d
θρ(x)

φθρ(x− z)∇ρ+
1

(θρ(x))d+1

(
I +∇ρ(x)⊗ x− z

θρ(x)

)
∇φ
(
x− z
θρ(x)

)}
dz,

(4.8)

which is a consequence of the multivariable chain rule. Here, v⊗u refers to the outer product of
v and u.

Multiplying by ρ gives:

ρ(x)∇uθ(x) =

∫
Rd
u(z)

{
−d
θ
φθρ(x)(x− z)∇ρ(x) +

1

(θd+1ρ(x)d)

(
I +∇ρ(x)⊗ x− z

θρ(x)

)
∇φ
(
x− z
θρ(x)

)}
dz.

(4.9)

67

Now, we can bound the above equation by carefully bounding each part. We note:∫
Rd

1

(θd+1ρ(x)d)
∇φ
(
x− z
θρ(x)

)
dz (4.10)

=

∫
Rd

1

(θd+1ρ(x)d)
∇φ
(
−z
θρ(x)

)
dz (4.11)

=
1

θ

∫
Rd
∇φ(−y)dy (4.12)

where the last step follows by a simple change of variable. Here, we note that∇φ(y) is a vector,
and the integral is over Rd, which is how we eliminated 1

(θρ(x))d
from the expression.

Next, we examine the term:

I +∇ρ(x)⊗ x− z
θρ(x)

(4.13)

Here, we aim to bound the operator norm of this matrix. Here, we note that

|x− z| ≤ θρ(x)

when

∇φ
(
x− z
θρ(x)

)
6= 0

and thus, when the latter equation holds, we can say:∣∣∣∣x− zθρ(x)

∣∣∣∣ < 1.

Since |∇ρ(x) < L|, we now have:

|I +∇ρ(x)⊗ x− z
θρ(x)

|2 < 3/2 (4.14)

Combining Equation ?? Equation ?? to show:∣∣∣∣∫
Rd

1

(θd+1φ(x)d)

(
I +∇ρ(x)⊗ x− z

θρ(x)

)
∇φ
(
x− z
θρ(x)

)
dz

∣∣∣∣ (4.15)

≤ (1 + L)

θ

∫
Rd
|∇φ(y)|dy, (4.16)

where L = ‖∇ρ‖L∞ is the Lipschitz constant for ρ. We note that Section ?? shows that∫
Rd
|∇φ(y)dy| ≤ 2d. (4.17)

and therefore: ∣∣∣∣∫
Rd

1

(θd+1φ(x)d)

(
I +∇ρ(x)⊗ x− z

θρ(x)

)
∇φ
(
x− z
θρ(x)

)
dz

∣∣∣∣ (4.18)

≤ 2d(1 + L)

θ
(4.19)

68

Now we turn our attention to the first term, which is:∫
Rd

−d
θ
φθρ(x)(x− z)∇ρ(x)dz (4.20)

We note that ∫
Rd

∣∣φθρ(x)(x− z)
∣∣ dz = 1

by our definition of φ (which was defined when we defined uθ). Combining this with |∇ρ(x)| <
L, we get: ∫

Rd

∣∣∣∣−dθ φθρ(x)(x− z)∇ρ(x)

∣∣∣∣ dz (4.21)

<
dL

θ
(4.22)

Therefore,∣∣∣∣∫
Rd

−d
θρ(x)

φθρ(x− z)∇ρ+
1

(θρ(x))d+1

(
I +∇ρ(x)⊗ x− z

θρ(x)

)
∇φ
(
x− z
θρ(x)

)
dz

∣∣∣∣
≤ d

θ
(L+ 2(1 + L))

=
d(2 + 3L)

θ
. (4.23)

where the first inequality comes from combining Equations ?? and ??.
This allows us to bound ‖ρ(x)∇uθ(x)‖L∞:

‖ρ(x)∇uθ(x)‖L∞ (4.24)

=

∥∥∥∥∣∣∣∣∫
Rd
u(z)

{
−d
θ
φθρ(x)(x− z)∇ρ(x) +

1

(θd+1ρ(x)d)

(
I +∇ρ(x)⊗ x− z

θρ(x)

)
∇φ
(
x− z
θρ(x)

)}
dz

∣∣∣∣∥∥∥∥
L∞

(4.25)

≤ ‖u‖L∞
∥∥∥∥∫

Rd

∣∣∣∣−dθ φθρ(x)(x− z)∇ρ(x) +
1

(θd+1ρ(x)d)

(
I +∇ρ(x)⊗ x− z

θρ(x)

)
∇φ
(
x− z
θρ(x)

)∣∣∣∣ dz∥∥∥∥
L∞

(4.26)

≤ ‖u‖L∞
d(2 + 3L)

θ
(4.27)

where we make use of the fact that ‖ab‖L∞ < ‖a‖L∞ ‖b‖L1 . This completes our proof.

Next, we want an L1 bound on ρβ(x)∇uθ(x).

Lemma 4.7. Let u be any function, and let uθ be defined as in Equation ??. Let ρ : <d → <≥0

be an L-Lipschitz function, and let θL < 1/2.
Then: ∥∥ρβ(x)∇uθ(x)

∥∥
L1 ≤ Cβ

∥∥ρβ(x)∇u(x)
∥∥
L1 (4.28)

69

Proof. First, we take the gradient first representation of uθ in equation (??). Using the chain rule
gives us an alternate form for∇uθ(x):

∇uθ(x) =

∫
<d

(I − θ∇ρ⊗ y)∇u(x− θρy)φ(y) dy, (4.29)

so

ρβ(x)∇uθ(x) =

∫
<d

(I − θ∇ρ⊗ y)
ρβ(x)

ρβ(x− θρy)
ρβ(x− θρy)∇u(x− θρy)φ(y) dy. (4.30)

The ratio in the integrand is bounded using the Lipschitz assumption on ρ (and |y| ≤ 1),

ρ(x)

ρ(x− θρy)
≤ ρ(x)

ρ(x)− Lθρ(x)
=

1

1− Lθ
≤ 2, when θ < 1/(2L). (4.31)

Note that

‖I − θ∇ρ⊗ y‖2 ≤ 3/2 (4.32)

where ‖M‖2 represents the `2 matrix norm of M . This is because |∇ρ(x)| ≤ L, and θL < 1/2,
and |y| ≤ 1 every time φ(y) 6= 0, and thus

I

2
� I − θ∇ρ⊗ y � 3I

2
.

Therefore, we can now apply Corollary ?? to Equation (??) to show:∥∥ρβ(x)∇uθ(x)
∥∥
L1

≤ ‖I − θ∇ρ(x)⊗ y‖2 ·max
x

(
ρ(x)

ρ(x− θρy)

)
·
∫
Rd

∣∣∣∣∫
Rd
ρβ(x− θρy)∇u(x− θρy)φ(y)dy

∣∣∣∣
≤ 3 · 2β−1

∫
Rd
ρβ(x− θρ(x)y)∇u(x− θρ(x)y

≤ 3 · 2β
∥∥ρβ∇u∥∥

L1 , when θ < 1/(2L).

here, the first inequality comes from the equation ‖abc‖L1 ≤ ‖a‖L∞ ‖b‖L∞ ‖c‖L1 , the second
inequality comes from Equations ?? and ??, and the third inequality comes from Corollary ??
assuming θL ≤ 1/2.

Lemma 4.8. For any L-Lipschitz distribution ρ, any function u, and any θ such that θL < 1/2:

∫
Rd
ργ|∇uθ|2 ≤ Cβ

∥∥ργ−β−1
∥∥
L∞

d(2 + 3L)

θ
‖u‖L∞

∥∥ρβ∇u∥∥
L1 , (4.33)

Proof. Combining the two estimates from Lemma ?? and ?? gives an upper bound for the
Rayleigh quotient∫
Rd
ργ|∇uθ|2 =

∫
Rd
ργ−β−1 ρ|∇uθ| ρβ|∇uθ| ≤ 3 · 2β+1

∥∥ργ−β−1
∥∥
L∞

d(2 + 3L)

θ
‖u‖L∞

∥∥ρβ∇u∥∥
L1 ,

(4.34)

70

We note that in the case where γ = β + 1, and if u is a step function, the expression would
simplify to: ∫

Rd
|ργ|∇uθ|2 ≤ 3 · 2β+1d(2 + 3L)

θ
‖u‖L∞

∥∥ρβ∇u∥∥
L1 ,

4.5 Lower Bound on the Denominator
Let u and uθ be the ρα–weighted averages of u and uθ. For any function f , let ‖f‖L2

α
denote

the L2 norm of ραf , and let ‖f‖L1 denote the L1 norm of ραf for functions f where these
two quantities are well defined. Our core lemma is a bound on ‖uθ − uθ‖L2

α
in terms of l1 and

weighted l1 norms of∇u and u− u respectively.

Lemma 4.9. Let ρ be anL-Lipschitz function ρ : <d → <≥0, and let θ be such that θL < 1/2. Let
u be an indicator function of a set A with finite β-perimeter. Let u be defined as u(x) := u(x)−∫
u(y)dy uθ be defined as in Equation ??, and uθ be defined as uθ(x) := uθ(x) −

∫
uθ(y)dy.

Then:

‖uθ − uθ‖2
L2
α
≥ (1/4) ‖u− u‖L1

α
− C(β)θ

∥∥ρα+1−β∥∥
L∞

∥∥ρβ∇u∥∥
L1 , when θ < 1/(2L).

(4.35)

Note that when α + 1 = β, as is true when (α, β, γ) = (1, 2, 3), the inequality in Lemma ??
becomes:

‖uθ − uθ‖2
L2
α
≥ (1/4) ‖u− u‖L1

α
− C(β)θ

∥∥ρβ∇u∥∥
L1 , when θ < 1/(2L).

The estimate in Lemma ?? will be combined with the estimate in Lemma ?? to prove Theorem ??
in Section ??.

Proof. The key to this proof is to upper bound the quantity ‖uθ − uθ‖L2
α

with the expression ap-
pearing in Corollary ??. We will do so by a series of inequalities, application of the fundamental
theorem of calculus, and more.

Using the property that subtracting the average from a function reduces theL2 norm it follows
that

‖uθ − uθ‖L2
α

≥ ‖u− u‖L2
α
− ‖uθ − u− (uθ − u)‖L2

α

≥ ‖u− u‖L2
α
− ‖uθ − u‖L2

α
.

If a ≥ b− c then a2 ≥ b2/2− c2, so a lower bound for the denominator of the Rayleigh quotient

‖uθ − uθ‖2
L2
α

(4.36)

≥ (1/2) ‖u− u‖2
L2
α
− ‖uθ − u‖2

L2
α

≥ (1/4) ‖u− u‖L1
α
− ‖uθ − u‖L1

α
,

71

where the identity ‖u− u‖2
L2
α

= ‖u− u‖L1
α
/2 from Equation ??, and the bound ‖uθ − u‖L∞ ≤

1, were used in the last step.
It remains to estimate the difference ‖uθ − u‖L1

α
. To do this, we use the multivariable funda-

mental theorem of calculus to write

uθ(x)− u(x) =

∫
(u(x− θρy)− u(x))φ(y) dy

=

∫ ∫ 1

0

−θρ(x)∇u(x− tθρ(x)y).yφ(y) dt dy

=

∫ ∫ 1

0

−θρ(x)

ρβ(x− tθρ(x)y)
ρβ(x− tθρ(x)y)∇u(x− tθρ(x)y).yφ(y) dt dy,

where the first and second equalities came from application of the multivariable fundamental
theorem of calculus, and the last equation is straightforward. This tells us that:

ρα(x)(uθρ(x)− u(x))

=

∫ ∫ 1

0

−θρα+1(x)

ρβ(x− tθρy)
ρβ(x− tθρ(x)y)∇u(x− tθρ(x)y).yφ(y) dt dy.

=

∫ ∫ 1

0

ρβ(x)

ρβ(x− tθρ(x)y)

−θρα+1(x)

ρβ(x)
ρβ(x− tθρ(x)y)∇u(x− tθρ(x)y).yφ(y) dt dy. (4.37)

Equation (??) bounds the ratio ρ(x)/ρ(x − tθρ(x)y) as less than 2 when θL < 1/2, so Equa-
tion (??) is always less than or equal to:∫ ∫ 1

0

2β
−θρα+1(x)

ρβ(x)
ρβ(x− tθρ(x)y)∇u(x− tθρ(x)y).yφ(y) dy dt. (4.38)

An application of Corollary ?? then shows∫ ∫ 1

0

2β
−θρα+1(x)

ρβ(x)
ρβ(x− tθρ(x)y)∇u(x− tθρ(x)y).yφ(y) dy dt. (4.39)

≤
∫ ∫ 1

0

2β
−θρα+1(x)

ρβ(x)
ρβ(x− tθρ(x)y) |∇u(x− tθρ(x)y)φ(y)| dy dt. (4.40)

≤ 2β+1
∥∥ρα+1−β∥∥

L∞
θ

∫ ∫ 1

0

ρβ(x− tθρ(x)y) |∇u(x− tθρ(x)y)φ(y)| dy dt. when θ < 1/(2L).

(4.41)

≤ 2β+1
∥∥ρα+1−β∥∥

L∞
θ
∥∥ρβ∇u∥∥

L1 (4.42)

where the last inequality follows from Corollary ??.
Using this estimate in (??) gives a lower bound on the denominator of the Rayleigh quotient,

‖uθ − uθ‖2
L2
α
≥ (1/4) ‖u− u‖L1

α
− 2β+1θ

∥∥ρα+1−β∥∥
L∞

∥∥ρβ∇u∥∥
L1 , when θ < 1/(2L).

(4.43)

as desired.

72

4.6 Bounding the Rayleigh Quotient (Proof of Theorem ??)
Combining Lemmas ?? and Lemmas ?? provides an upper bound for the Rayleigh quotient of
uθ − uθ,

λ2 ≤
∫
Rd ρ

γ|∇uθ|2∫
Rd ρ

α(uθ − uθ)2

≤ d · 3 · 2β

θ

∥∥ργ−β−1
∥∥
L∞

(2 + 3L)
∥∥ρβ∇u∥∥

L1

‖u− u‖L1
α
− 2β+1θ ‖ρα+1−β‖L∞ ‖ρβ∇u‖L1

≤ d · 3 · 2β

θ

∥∥ργ−β−1
∥∥
L∞

(2 + 3L)

1− 2β+1θ ‖ρα+1−β‖L∞ Φ(A)
Φ(A).

Selecting θ = (1/2) min
(
1/
(
2β+1

∥∥ρα+1−β
∥∥
L∞

Φ(A)
)
, 1/L

)
shows

λ2 ≤ 2d · 3 · 2β
∥∥ργ−β−1

∥∥
L∞

(2 + 3L) max
(
LΦ(A), 2β+1

∥∥ρα+1−β∥∥
L∞

Φ(A)2
)
.

When γ = (1, 2, 3), this simplifies into:

λ2 ≤ 12(2 + 3L)dmax
(
LΦ(A), 8Φ(A)2

)
.

We note that, via the work shown in Section ??, we can strengthen our inequality to:

λ2 ≤ 24dmax
(
LΦ(A), 8Φ(A)2

)
.

4.7 Gradient of Mollifier
Let φ be a standard mollifier i.e. φ ∈ C∞c (Rd) is a function from Rd → [0,∞) satisfying∫
Rd φ dx = 1 and supp(φ) ⊆ B(0, 1). We will define φ by its profile. Namely, let φ̂(r) :

[0,∞) → [0, 1] be a fixed monotone decreasing profile with φ̂(0) = 1, 0 < φ̂(r) < 1 for
0 < r < 1, and φ̂(r) = 0 for r ≥ 1. Then define φ : <d → < by φ(x) = cφ̂(|x|) with c > 0
chosen so that

∫
<d φ(x) dx = 1; that is,

1 =

∫
<d
φ(x) dx = c|Sd−1|

∫ 1

0

φ̂(r)rd−1 dr ⇒ c =
1

|Sd−1|
∫ 1

0
φ̂(r)rd−1 dr

,

where |Sd−1| is the (d − 1)–area of the unit sphere in <d. We claim the L1 norm of the
gradient of∇φ(x) is linear in d.

Lemma 4.10. ∫
<d
|∇φ(x)| dx ≤ (d− 1)

(
d2d

φ̂(1/2)

)1/(d−1)

d→∞−→ 2(d− 1).

For the classic mollifier φ̂(r) = exp(−1/(1− r2)) we get∫
<d
|∇φ(x)| dx ≤ 2d.

73

From the formula∇φ(x) = cφ̂′(|x|)(x/|x|) we compute∫
<d
|∇φ(x)| dx = c|Sd−1|

∫ 1

0

|φ̂′(r)|rd−1 dr

= c|Sd−1|
∫ 1

0

−φ̂′(r)rd−1 dr

= c|Sd−1|
∫ 1

0

φ̂(r)(d− 1)rd−2 dr

= (d− 1)

∫ 1

0
φ̂(r)rd−2 dr∫ 1

0
φ̂(r)rd−1 dr

.

To estimate the numerator use Holder’s inequality: for 1 ≤ s, s′ ≤ ∞ with 1/s+ 1/s′ = 1

∫
fg ≤

(∫
|f |s
)1/s(∫

|g|s′
)1/s′

.

Set s = (d− 1)/(d− 2) and s′ = d− 1 to get

∫ 1

0

φ̂(r)rd−2 dr =

∫ 1

0

φ̂(r)1/srd−2 × φ̂(r)1/s′ dr ≤
(∫ 1

0

φ̂(r)rd−1 dr

)1/s(∫ 1

0

φ̂(r) dr

)1/s′

.

It follows that ∫
<d
|∇φ(x)| dx ≤ (d− 1)

(∫ 1

0
φ̂(r) dr∫ 1

0
φ̂(r)rd−1 dr

)1/(d−1)

. (4.44)

Since 0 ≤ φ̂(r) ≤ 1 we can bound the numerator by 1, and since φ̂(r) is monotone decreasing
we have φ̂(r) ≥ φ̂(1/2) on (0, 1/2), so

∫
<d
|∇φ(x)| dx ≤ (d−1)

(
1

φ̂(1/2)
∫ 1/2

0
rd−1 dr

)1/(d−1)

≤ (d−1)

(
d2d

φ̂(1/2)

)1/(d−1)

d→∞−→ 2(d−1).

(4.45)
It will be convenient to write equation ?? as a simple inequality. Observer that

(
d2d

φ̂(1/2)

)1/(d−1)

is monotone decreasing. We now pick the classic φ̂(r) = exp(−1/(1 − r2)) we have φ̂(1/2) ≥
1/4 and if d ≥ 5 the right hand side of equation (?? is bounded by 2d. If d < 5 explicit
computations of the integrals shows the right hand side of equation (?? is bounded by 2d.

74

4.8 Scaling
In this section we show that if one scales the density function ρ then the isoperimetric value
Φ(A) and the Rayleigh quotient R(u) scale nicely. More formally Let A ⊂ Ω ⊆ <d, ρ a density
function over a domain Ω, and u an arbitrary differentiable function over Ω.

Consider the transformation x̂ = `x with ` > 0 which maps Ω to the domain Ω̂ = {`x |
x ∈ Ω}. Given u : Ω → <, we define û : Ω̂ → < by û(x̂) = u(x). We will future scale ρ by
αρ̂(x̂) = ` ρ(x) where α > 0.
Theorem 4.11. When scaling by α and ` then

Φ(A) = αΦ̂(Â)

and
R(u) = α2R̂(û) and thus λ2 = α2λ̂2

.
We will use this scaling theorem to improve the bounds of theorem ??.
That is, if we have a density function ρ over a domain Ω the isoperimetric number that the

fundamental eigenvalue only change as a function of the scaling. Thus the optimal cut and
eigenvector are unchanged by scaling up to the transformation.

If u and l are as defined above then we get the simple but basic identity. Suppose that
u : R→ R then:

∂u

∂x
=
∂û

∂x̂

∂x̂

∂x
=
∂û

∂x̂
`, in general we get |∇u(x)| = `|∇̂û(x̂)|.

In the case of ρ : Ω → (0,∞), where ρ̂ : Ω̂ → (0,∞) is defined by αρ̂(x̂) = ` ρ(x) we get
that

|∇ρ(x)| = α|∇̂ρ̂(x̂)|.

It follows that Lρ̂ and Lρ, the Lipschitz constants for ρ̂ and ρ, satisfy Lρ̂ = (1/α)Lρ.
• Since dx̂ = `d dx we have ∫

Ω

ρ dx =
α

`d+1

∫
Ω̂

ρ̂ dx̂,

• IfA ⊂ Ω and Â = `A ⊂ Ω̂, let fA(x) = 1 if x ∈ A and zero otherwise, and similarly fÂ =

1 if x̂ ∈ Â and zero otherwise. We next perform a set of standard integral calculations.∫
Ω

ρ2|∇fA| dx =

∫
Ω̂

(
α

`
)2ρ̂2`|∇̂fÂ|

1

`d
dx̂ (4.46)

=
α2

`d+1

∫
Ω̂

ρ̂2|∇̂fÂ| dx̂ (4.47)

Equation ?? follows by making the substitutions:

ρ(x) = (
α

`
)ρ̂(x̂) |∇fA| = `|∇̂fÂ| dx =

1

`d
dx̂

75

Observing the fA(x) = fÂ(x̂) we get the following identity.∫
Ω

ρfA dx =

∫
Ω̂

α

`
ρ̂fÂ

1

`d
dx̂ =

α

`d+1

∫
Ω̂

ρ̂fû dx̂ (4.48)

Combining equation ?? and equation ?? we get that:

Φ(A) = αΦ̂(Â) (4.49)

• We next do a similar calculation for the Rayleigh quotient. If u : Ω→ < and û(x̂) = u(x),
the Rayleigh quotients can be computed as follows,∫

Ω

ρ3|∇u|2 dx =

∫
Ω̂

(
α

`
)3ρ̂3`2|∇̂û|2 1

`d
dx̂ =

α3

`d+1

∫
Ω̂

ρ̂3|∇̂û|2 dx̂

∫
Ω

ρu2 dx =

∫
Ω̂

α

`
ρ̂û2 1

`d
dx =

α

`d+1

∫
Ω̂

ρ̂û2 dx

Thus
R(u) = α2R̂(û)

.

We next use our scaling result in the (1, 2, 3) case to our Buser-type bound, Theorem ??.
Theorem ?? states that the following hold:

λ2 ≤ 24d(1 + L) max
(
LΦ(A), 12Φ(A)2

)
. (4.50)

We now make substitutions into equation ?? from Theorem ?? and its proof for some param-
eter α to be determined.

λ2 = α2λ̂2 ≤ α224d(1 + L̂) max
(
L̂Φ̂(Â), 12Φ̂(Â)2

)
= α224d(1 + (L/α)) max

(
(L/α)(Φ(A)/α), 12(Φ(A)/α)2

)
= 24d(1 + (L/α)) max

(
LΦ(A), 12Φ(A)2

)
= 24dmax

(
LΦ(A), 12Φ(A)2

)
where the last line holds when taking α to infinity.

Thus we get that λ2 only depends linear in the dimension and the Lipschitz constant:
Corollary 4.11.1.

λ2 ≤ 24dmax
(
LΦ, 12Φ2

)
76

5 Cheeger Inequality for Probability Density Functions

In this section, we prove the Cheeger inequality from Theorem ??. That is a weighted Cheeger
inequality in higher dimensions. This is the easier to prove than Buser’s inequality, which con-
trasts with what happens in the graph case (the graph Buser inequality is trivial).

For a simplified proof of the Cheeger inequality for distributions in one-dimension, see Ap-
pendix ??.

As we will see from simple counterexamples in Section ??, the Cheeger-direction does not
hold for all setting of (α, β, γ). The proof we give is requires fewer assumptions than the Buser
inequality for probability densities. One, the Cheeger inequality is independent of the Lipschitz
constant of ρ and two, the proof also holds when ρ is supported on a set Ω ⊂ Rd.

The proof is almost identical to the proof in one dimension and only a slight modification of
standard proofs The only change in the proof is replacing the change of variables formula with
a co-area formula. Let ρ : Ω → R> be an Lipschitz density function that is (α, β, γ)-integrable
over an open set Ω ⊆ Rd. Note a stronger hypothesis on Ω is that it is the support of ρ when
ρ : Rd → R≤.
Theorem 5.1. Let ρ : Ω→ R>0 be a Lipschitz function. Then,

Φ2 ≤ 4
∥∥∥ρβ−α+γ2 ∥∥∥2

∞
λ2.

In particular, when (α, β, γ) = (1, 2, 3) we have

Φ2 ≤ 4λ2.

Here, Φ is the optimal (α, β)-sparsity of a cut through ρ. We note that we can say something
a little stronger:
Theorem 5.2. Let ρ : Ω→ R>0 be a Lipschitz function. Let Φ(α,β,γ) be the (α, β) sparsity of the
(α, γ) spectral sweep cut. If α = β − 1 = γ − 2, then:

Φ2
(α,β,γ) ≤ 4λ2

Proof. (of both theorems): Letw ∈ W 1,2, functions whose gradient is square integrable, nonzero
with

∫
Ω
ραw dx = 0. Let v = w + a1 where a is chosen such that |{v < 0}|α = |{v > 0}|. Note

that

R(w) =

∫
Ω
ργ |∇w|2 dx∫
Ω
ραw2 dx

≥
∫

Ω
ργ |∇w|2 dx∫

Ω
ραw2 dx+ a2 |Ω|α

= R(v).

Without loss of generality, the function u = max(v, 0) satisfies R(u) ≤ R(v).

77

Let Ω0 = {v > 0}. Let g = u2. Noting that∇g = 2u∇u a.e., we can apply Cauchy-Schwarz
to obtain ∫

Ω0

ρβ |∇g| dx = 2

∫
Ω0

ρβ |u| |∇u| dx

≤ 2

√∫
Ω0

ρ2β−α |∇u|2 dx

√∫
Ω0

ραu2 dx

≤ 2
∥∥∥ρβ−α+γ2 ∥∥∥

∞

√∫
Ω0

ργ |∇u|2 dx

√∫
Ω0

ραu2 dx.

Then, dividing by
∫

Ω0
ραg dx, we have∫

Ω0
ρβ |∇g| dx∫

Ω0
ραg dx

≤ 2
∥∥∥ρβ−α+γ2 ∥∥∥

∞

√
R(w).

Let At = {g > t}. Then, by the weighted co-area formula,∫
Ω0

ρβ |∇g| dx =

∫ ∞
0

|∂At|β dt.

Writing g(x) =
∫ g(x)

0
1 dt and applying Tonelli’s theorem, we rewrite the denominator∫

Ω0

ραg dx =

∫ ∞
0

|At|α dt.

Thus, by averaging, there exists some t∗ such that

Φ ≤ Φ(At∗)

≤
∫

Ω0
ρβ |∇g| dx∫

Ω0
ραg dx

≤ 2
∥∥∥ρβ−α+γ2 ∥∥∥

∞

√
R(w).

Optimizing over the set
{
w ∈ W 1,2

∣∣w 6= 0,
∫

Ω
ραw dx = 0

}
completes the proof.

6 Spectral Sweep Cuts have Provably Good Sparsity (proof of
Theorem ??)

Theorem ?? tells us that
Φ2

(1,2,3)/4 ≤ λ
(1,3)
2

for all 1-Lipschitz ρ whose domain is on Rd. Here, φ(1,2,3) is the (1, 2) sparsity of the (1, 3)-
spectral sweep cut, and λ(1,3)

2 is the (1, 3)-principal eigenvalue.

78

Next Theorem ?? tells us that

λ
(1,3)
2 ≤ O(dΦ(1,2)),

where Φ(1,2) is the minimal (1, 2)-sparsity of any cut through ρ.
Therefore,

Φ2
(1,2,3) ≤ Φ(1,2) ≤ Φ2

(1,2,3),

where Φ(1,2) is the minimum (1, 2)-sparsity of a cut through ρ, proving Theorem ??.

7 Problems with Existing Spectral Cut Methods
In this section, we introduce a simple Lipschitz distribution where the (α = 1, γ = 2)-spectral
sweep cut fails to find a (1, β) sparse cut for any 0 ≤ β < 10. Meanwhile, the (1, 3)-spectral
sweep cut finds a desirable cut with good (1, 2)-sparsity. We note that (α = 1, β > 10)-sparse
cuts are likely to find cuts where one side has extremely small probability mass, making it unde-
sirable for machine learning.

Figure 4.3: The probability density function where ρ(x, y) = min(ε+x, 1
n
) for arbitrary X, Y, n.

Here, ρ(x, y) is plotted in the z axis, and E is at point (0,−Y, ε). This function ρ has bad spectral
sweep cuts when α = 1, γ = 2.

We note that this section combined with Theorem ??, Lemma ?? and Lemma ?? shows that
no Cheeger and Buser inequality can hold when α = 1 and γ = 2 for any β: this section
combined with Theorem ?? will show that the Cheeger-Buser inequalities can only hold for
β > 10, while Lemma ?? and Lemma ?? shows that they can only hold for β ≤ 1. Therefore,
the Cheeger-Buser inequalities cannot hold for any β, for α = 1 and γ = 2.
Theorem 7.1. (α = 1, γ = 2)-Spectral Sweep Cut Counterexample:

For a 1-Lipschitz positive valued function ρ, let Φ be the sparsity of the (1, 3)-spectral sweep
cut, and let ΦOPT be the cut of optimal (1, β) sparsity for any β < 10. There there exists a
1-Lipschitz density function ρ such that:

79

Φ > C max(ΦOPT ,
√

ΦOPT)

for any constant C.

7.1 Our density function
We first construct our 1-Lipschitz Density function for which a (1, 2) spectral cut has poor (1, β)
sparsity. Our density function has parameters X, Y, ε, n which we will set later.
Definition 7.2. Let ρ : [−X,X]× [−Y, Y]→ R be a density function such that:

ρ(x, y) = min(ε+ x, 1/n)

To turn this into a 1-Lipschitz probability density function, we simply extend it to a function
ρ′ : R2 → R where ρ′ agrees with ρ on [−X,X]× [−Y, Y], and the function goes 1-Lipschitzly
to 0 outside this range.

We will set X =
√
n/10, Y = 10

√
n, and n large, to obtain a density function where the

(1, 2) spectral cut has arbitrarily bad (1, β) sparsity for all β < 10.

7.2 Proof Overview
First, we prove theorems about the zero-set of this density’s (α = 1, γ = 2) eigenfunction. In
particular, the zero-set of this eigenfunction must cut from the line x = −X to x = X . It cannot
cut from the line y = −Y to the line y = Y .

We prove that any level-set of the eigenfunction can’t cut from y = −Y to y = Y . We then
show that any cut that doesn’t cut from y = −Y to y = Y has bad (1, β) sparsity for β < 10. This
completes our proof. Moreover, any cut that doesn’t cut from y = −Y to y = Y is intuitively a
poor cut of our density function, according to standard machine learning intuition.

We note the natural cut of this distribution is the straight line cut x = 0, which the (1, 3)-
spectral sweep cut will find (this is an artifact of our proof, though we do not explicitly prove it
here).

First, we prove a few lemmas on the zero-set of the (1, 2) eigenfunction.

7.3 The Zero-set of a principal (1, 2) eigenfunction is the line y = 0

Theorem 7.3. The Zero-set of the eigenfunction for our given density function, is the line y = 0.
Lemma 7.4. Let f be any eigenfunction of our given density function, for which f(x, y) 6=
f(x, y′) for some x, y 6= y′. Then ∫ Y

0

f(x, y)dy = 0.

Lemma 7.5. There exists a principal eigenfunction f2 of our given density function, for which

f2(x, y) = f2(−x, y) = −f2(x,−y)

80

Proof. This follows from a (non-trivial) symmetrization argument put forward in the graph case
in Guattery and Miller [?].

Lemma 7.6. (Nodal domains for Densities) Every principal eigenfunction f2 of our given density
function satisfies: the closure of the set {S = (x, y)|f2(x, y) > 0} is connected.

Proof. This follows analogously to the proof of Fiedler’s nodal domains for eigenfunctions of a
graph [?].

Lemma 7.7. Let f be a (α, β) eigenfunction of any density function supported on a compact set
S ⊂ Rn for some n. For every point in the zero-set, if any open set containing that point contains
a positive element, it must also contain a negative element.

Proof. This follows directly from the definition of eigenfunction.

Proof. (of Theorem ??): First, we note that there is a principal eigenfunction whose zero set
contains y = 0, by Lemma ??. We claim there is a principal eigenfunction for which this is the
entire zero-set. This follows from Lemma ?? and Lemma ??.

7.4 Any spectral sweep cut has high (1, β) sparsity
In this section, we prove that the spectral sweep cut must have high (1, β)-sparsity for 0 < β <
10, and for β > 10 the spectral sweep-cut either has high (1, β) sparsity or else divides the
probability density into two pieces, one of which has less than ≤ 1/n fraction of the probability
mass.
Lemma 7.8. Any spectral sweep cut (of the principal (1, 2) eigenfunction whose eigenvector’s
zero-set is the line y = 0) can’t cut through y = Y and y = −Y .

Proof. This is clear.

Lemma 7.9. Any cut that doesn’t cut through both y = Y and y = −Y has poor (1, β) sparsity
for any 0 < β < 10. For β > 10, a cut of good (1, β) sparsity must have its smaller side contain
on(1) fraction of the mass.

To be precise, if Φβ is the optimal (1, β) sparsity of the cut, and Φ is the (1, β) sparsity in-
duced by a cut that doesn’t cut both y = Y and y = −Y , then there is no constant C independent
of n for which

Φ2 < CΦβ .
We note that Theorem ?? follows from Lemma ?? and ??. Thus, it remains to show Lemma ??.

Proof. (of Lemma ??). We split this into two cases. Consider the side of the level set cut with
smaller probability mass. The first case is when this side has at least half its probability mass
outside the region |x| < 1/n− ε. The second case is when the side has less than half its mass in
this region.

In the first case, we note that we can lower bound the cut by its projection onto the x axis.
A quick calculation shows that when X = 1

10
√
n

and Y = 10√
n

, the (1, β)-sparsity of this cut is

81

within a factor of 2 of the (1, β)-sparsity of the cut y = 0 through the uniform distribution of
height 1

n
supported on [−X,X]× [−Y, Y]. This (1, β) sparsity is

A := O(
X

nβ
) = O(

√
n

nβ
)

.
When ε is chosen to be 1

n2
√
n

, then the (1, β) sparsity of the optimal cut is the cut x = 0,
which has (1, β) sparsity of:

B := O(
Y

(n
√
n)β

) = O(

√
n

(n2
√
n)β

.

We note that this choice of ε is the minimum such choice such that the principal eigenvector
is not constant on the Y axis.

Now we note that A2/B goes to infinity as n gets large, if and only if

n2β
√
n
β
n/n2β

√
n

goes to infinity,
or

√
n(
√
n
β
)

goes to infinity. This is true for any β > 0. This proves Theorem ?? in case 1, where at least half
of the probability mass is outside the region |x| < 1/n.

In case 2, we consider the case when the smaller side of the cut has more than half its prob-
ability mass inside the region |x| < 1/n − ε, which we note is a very small portion of the
probability mass of the overall probability density. In this case, it turns out that we need β < 10
to give isoperimetry guarantees, since for any β > 10, it turns out that even cuts containing small
probability mass are considered to have good (1, β) sparsity, since for large β, (1, β) sparse cuts
tremendously favor small cuts, even if the smaller side has negligible probability mass.

Since at least half the mass is inside the region |x| < 1/n, we can assume without loss of
generality that the entire probability mass of the smaller side of the cut is inside this region, by
simply projecting the cut onto this region (reducing its β-perimeter while decreasing probability
mass by at most a factor of 2). We can again use a symmetry argument analogous to ?? to
show that any level set of this principal eigenfunction is symmetric about the x axis (we note
Lemma ?? is slightly stronger than this as it does not assume symmetry, but for our purposes
we can strictly deal with symmetric cuts, and the non-symmetric case follows through a similar
argument).

Now given the cut is symmetric about the x axis, if the cut cuts through (x′, y′), then it also
cuts through (−x′, y′), and we can lower bound the probability mass contained by the cut y = y′

with x′ · ρ(x′, y′). A simple calculation using this estimate finishes the proof for us.

82

8 Conclusion and Future Directions

We define a new notion of spectral sweep cuts, eigenvalues, Rayleigh quotients, and sparsity
for probability densities. We present the first known Cheeger and Buser inequality on Lipschitz
probability density functions, and use this to show an (α = 1, γ = 3) spectral sweep cut on a
L-Lipschitz probability density function has provably low (α = 1, γ = 2)-sparsity. This work is
the first spectral sweep cut algorithm on non-parametric probability densities with any guarantees
on the cut quality.

Further, we show that existing spectral sweep cut methods (such as those implicit in spectral
clustering) compute (1, 1) or (1, 2) spectral sweep cuts, neither of which has any sparsity guar-
antees. We prove that (1, 2) spectral sweep cuts, which are implicitly used in traditional spectral
clustering, can lead to undesirable partitions of simple 1-Lipschitz probability densities. Mean-
while, our work showed that using (1, 3) spectral sweep cuts give provably good (1, 2) sparse
cuts.

For future directions, we conjecture that β = α + 1 and γ = α + 2 is the only settings of
(α, β, γ) in which both Cheeger and Buser inequalities are provable. This would be a stronger
theorem than we currently have for Lemma ?? and Lemma ??.

In the Buser inequality, we would like to iron out the exact dimensional dependence on the
dimension, d (Theorem ??). The authors believe that this dependence can be reduced to

√
d.

It is an open question whether any dimension dependence is required. In particular, the latest
version of Buser’s inequality for manifolds has no dimension dependence [?]. It is an open
question how to generalize their techniques into the density setting, as the Bochner formula does
not easily generalize to densities.

Another open question is whether multi-way Cheeger and Buser inequalities can be proven
on densities, mirroring the work on graphs [? ? ? ?]. This would allow our clustering
algorithms to generalize into k-way clusterings. We additionally would like to know whether
one can understand balanced cuts on proability densities for our new definitions of sparsity.
Balanced cuts in this setting may have applications to machine learning.

Finally, we would like to know whether Buser and Cheeger inequalities may exist for L-
Lipschitz probability densities supported on manifolds with bounded curvature. If true, this
would fully generalize the work of Cheeger and Buser on manifolds, which may lead to deeper
insight into manifold theory. Moreover, it could have foundational impact: a fundamental as-
sumption underlying modern machine learning is that most data comes from probability density
supported on a manifold, and a Cheeger and Buser inequality in this setting would give provable
sparsity guarantees about spectral sweep cuts in this setting.

J Calculating Eigenvalues and Isoperimetry constants for Sim-
ple Examples

Recall from Section ?? the definitions of ρ1 and ρ2. This section is devoted to computing the
eigenvalues and isoperimetric constants of these densities. We note that the eigenvalue and
isoperimetry computation for ρ1 is straightforward, so we omit it. The isoperimetry constant

83

for ρ2 is also straightforward, as the isoperimetric cut will be at x = 0. The only non-trivial
computation is the (α, β)-eigenvalue for ρ2.

J.1 Notation
We will write a & b if a ≥ cb for some absolute constant 0 < c < ∞. Similarly define a . b.
We will write a � b if both relations hold.

J.2 A Lipschitz weight
It is clear that

Φ � εβ.

Next, we apply the Hardy-Muckenhoupt inequality [?] to estimate λ2 for ρ2.
We upper boundH as:

H ≤ R(1)M(0)

�
∫ 1

0

1

(x+ ε)γ
dx

.


1 if γ < 1

ln (1/ε) if γ = 1

Oε1−γ if γ > 1.

By the Hardy-Muckenhoupt inequality, we can lower bound λ2 with the inverse of an upper
bound onH. Thus, as claimed in Section ??, we can lower bound λ2 with εγ−1 when γ ≥ 1.

Thus, if we want a Buser-type inequality to hold, then (α, β, γ) needs to satisfy,
1 . λ2 . max(Φ,Φ2) � εβ if γ < 1

1
ln(1/ε)

. λ2 . max(Φ,Φ2) � εβ if γ = 1

εγ−1 . λ2 . max(Φ,Φ2) � εβ if γ > 1.

By letting ε go to zero, it is clear that γ − 1 ≥ β, as desired.

K Cheeger and Buser for Density Functions does not easily
follow from Graph or Manifold Cheeger and Buser

K.1 Comments on Graph Cheeger-Buser
The most natural method of proving distributional Cheeger-Buser inequality using the graph
Cheeger-Buser inequality is to generate a vertex and edge weighted graph approximating the

84

distribution, and write down graph Cheeger-Buser. Then, one would generate a sequence of
graphs with an increasing number of vertices. Ideally, the graph Cheeger-Buser inequality on
these graphs would converge to a Cheeger-Buser inequality on the underlying distribution. This
discretization approach follows a standard paradigm of approximating distributions with graphs,
present in numerical methods, finite element methods, and machine learning [? ? ?].

Such an approach cannot work (no matter how the eigenvalues and isoperimetric cuts are
defined for distributions). The easiest way to see this is to attempt to execute this strategy for a
simple uniform distribution in 1 dimension, on the interval [0, 1]. One would naively approximate
this distribution with a line graph with n vertices, with edge weights wn and vertex weights mn.
Then one would take n to go to infinity.

If one writes down the Cheeger and Buser inequalities for graphs in this example, we get:

wn
mnn2

≤ ΦOPT ≤
wn
mnn

No matter what mn and wn are, the ratio between the upper and lower bound is n, which
diverges. Thus, either the Cheeger inequality or the Buser inequality becomes meaningless:
either the lower bound goes to 0 or the upper bound goes to∞, or both, depending on how wn
and mn are set.

Thus, even for the simple case of a uniform distribution on [0, 1] the natural strategy for
deriving probability density Cheeger/Buser from graph Cheeger/Buser fails.

K.2 Comments on Manifold Cheeger-Buser
Distributional Buser does not easily follow from an application of the manifold Buser inequality.
We recall that manifold Buser only applies for manifolds with bounded Ricci curvature. The
natural way to parlay manifold Buser into distributional Buser on Rd is to change the underlying
metric tensor on Rd to factor in the probability density function at that point. However, the
authors are unaware of any method of doing this for which one can recover a meaningful Cheeger
and Buser inequality. Moreover, it is unclear how to obtain any Ricci curvature bounds when we
change the metric tensor.

Most modern approaches to proving Buser’s inequality for manifolds rely on the Li-Yau
inequality, which in turn depends on the Bochner identity for manifolds on bounded Ricci cur-
vature [?]. The authors are unaware of a clean Bochner-like identity for distributions. Older
techniques use Almgren’s minimizing currents and/or Epsilon nets [?]. For the former, we do
not know of any analog for distributions. For the latter, the corresponding Buser inequality has a
2d multiplicative dependence, which is significantly worse than our d dependence.

L A weighted Cheeger inequality in one dimension
Theorem L.1. Let Ω = (a, b) where −∞ < a < b < ∞. Let ρ : (a, b) → R>0 be Lipschitz
continuous. Then,

Φ(Ω)2 ≤ 4
∥∥∥ρβ−α+γ2 ∥∥∥2

∞
λ2(Ω).

85

In particular, when (α, β, γ) = (1, 2, 3), we have

Φ(Ω)2 ≤ 4λ2(Ω).

Proof. Let w ∈ W 1,2(Ω) ∩ C∞(Ω) be a strictly decreasing function with
∫

Ω
ραw dx = 0. Let

v = w + a1 where a is chosen such that |{v < 0}|α = |{v > 0}|α. Note that

R(w) =

∫
Ω
ργ(w′)2 dx∫

Ω
ραw2 dx

≥
∫

Ω
ργ(w′)2 dx∫

Ω
ραw2 dx+ a2 |Ω|α

= R(v).

Let x̂ ∈ (a, b) be the unique value such that v(x̂) = 0. Without loss of generality, the function
u = max(v, 0) satisfies R(u) ≤ R(v) and has u(a) = 1.

Let g = u2. Noting that g′ = 2uu′ a.e., we can apply Cauchy-Schwarz to obtain∫ x̂

a

ρβ |g′| dx = 2

∫ x̂

a

ρβ |u| |u′| dx

≤ 2

√∫ x̂

a

ρ2β−α(u′)2 dx

√∫ x̂

a

ραu2 dx

≤ 2
∥∥∥ρβ−α+γ2 ∥∥∥

∞

√∫ x̂

a

ργ(u′)2 dx

√∫ x̂

a

ραu2 dx.

Then, dividing by
∫ x̂
a
ραg dx, we have∫ x̂

a
ρβ |g′| dx∫ x̂
a
ραg dx

≤ 2
∥∥∥ρβ−α+γ2 ∥∥∥

∞

√
R(w).

By change of variables, ∫ x̂

a

ρβ |g′| dx =

∫ 1

0

ρβ(g−1(t)) dt.

Writing g(x) =
∫ g(x)

0
1 dt and applying Tonelli’s theorem, we rewrite the denominator∫ x̂

a

ραg dx =

∫ 1

0

∣∣(a, g−1(t))
∣∣
α
dt.

Thus, by averaging, there exists some t∗ such that,

Φ(Ω) ≤ ρβ(t∗)

|(a, t∗)|α
≤
∫ x̂
a
ρβ |g′| dx∫ x̂
a
ραg dx

≤ 2
∥∥∥ρβ−α+γ2 ∥∥∥

∞

√
R(w).

g

86

Theorem L.2. Let Ω = (a, b) where −∞ < a < b < ∞. Let ρ : (a, b) → R>0 be Lipschitz
continuous with Lipschitz constant L. Then,

λ2(Ω) ≤ 8 · (3/2)γ/α
∥∥ργ−1−β∥∥

∞max

(
4
∥∥ρα+1−β∥∥

∞Φ2(Ω),
α

ln(3/2)
LΦ(Ω)

)
.

In particular, when (α, β, γ) = (1, 2, 3), we have

λ2(Ω) ≤ O
(
max

(
Φ2(Ω), LΦ(Ω)

))
.

Proof. Let x̂ ∈ (a, b). We will show that there exists a u ∈ W 1,2(Ω) with small Rayleigh quotient
compared to Φ(x̂). Let A = (a, x̂) and B = (x̂, b). Without loss of generality |A|α ≤ |B|α and
hence Φ(x̂) = ρβ(x̂)

|A|α
. For notational convenience, we will write Φ = Φ(x̂) in this proof.

Let

u(x) =

{
|A|α a ≤ x ≤ x̂

− |B|α x̂ < x ≤ b.

Let δ = θρ(x̂) where θ > 0 will be picked later. Define the continuous function

uδ(x) =


|A|α a ≤ x ≤ x1

linear with slope −|Ω|α
δ

x1 ≤ x ≤ x2

− |B|α x2 ≤ x ≤ b

where a ≤ x1 < x̂ < x2 ≤ b are picked such that
∫ b
a
ραuδ dx = 0. Note x2 − x1 ≤ δ.

We bound the numerator in R(uδ) using the mean value theorem.∫ b

a

ργ(u′δ)
2 dx =

|Ω|2α
δ2

∫ x2

x1

ργ dx

≤ |Ω|
2
α

δ
ργ(x̃) for some x̃ ∈ [x1, x2]

≤ |Ω|2α ρ
γ−1(x̂)(1 + Lθ)γ/θ

In the third line we used the Lipschitz estimate ρ(x̃) ≤ ρ(x̂)(1 + Lθ). We lower bound the
denominator in R(uδ) using the mean value theorem and the same Lipschitz estimate. We will
also recall that Φ = ρβ(x̂)/ |A|α.∫ b

a

ραu2
δ dx ≥

∫ b

a

ραu2 dx−
∫ x2

x1

ραu2 dx

≥ |A|α |B|α |Ω|α − δρ
α(x̃) |B|2α for some x̃ ∈ [x1, x2]

≥ |A|α |B|α |Ω|α − ρ
α+1(x̂) |B|2α (1 + Lθ)αθ

≥ |Ω|2α
(
|A|α /2− ρ

α+1(x̂)(1 + Lθ)αθ
)

≥ |Ω|2α |A|α
(
1/2−

∥∥ρα+1−β∥∥
∞Φ(1 + Lθ)αθ

)
87

The parameter θ will be chosen such that the estimate of the denominator is positive. We combine
the two bounds above.

R(uδ) ≤
|Ω|2α ργ−1(x̂)(1 + Lθ)γ/θ

|Ω|2α |A|α (1/2− ‖ρα+1−β‖∞Φ(1 + Lθ)αθ)

=
ργ−1−β(x̂)Φ(1 + Lθ)γ/θ

1/2− ‖ρα+1−β‖∞Φ(1 + Lθ)αθ

≤
∥∥ργ−1−β

∥∥
∞Φ(1 + Lθ)γ/θ

1/2− ‖ρα+1−β‖∞Φ(1 + Lθ)αθ
.

We make the following choice of θ > 0,

θ = min

(
1

4Φ ‖ρα+1−β‖∞
,
ln(3/2)

αL

)
.

Then, (1 + Lθ) ≤ (3/2)1/α and Φθ ≤ 1

4‖ρα+1−β‖∞
. Thus,

λ2 ≤ R(uδ)

≤ 8 · (3/2)γ/α
∥∥ργ−1−β∥∥

∞
Φ

θ

= 8 · (3/2)γ/α
∥∥ργ−1−β∥∥

∞max

(
4
∥∥ρα+1−β∥∥

∞Φ2,
α

ln(3/2)
LΦ

)
.

Finally, picking x̂ such that Φ(x̂)→ Φ(Ω) completes the proof.

Remark L.2.1. Recall the example presented in Section ??, i.e. Ω = (−1, 1), ρ = |x| + ε. For
the choice (α, β, γ) = (1, 1, 1), it was shown that λ2(Ω)

Φ(Ω)p
diverges to infinity as ε → 0 for any

p > 0. This does not contradict our Theorem ??, which only asserts that

λ2(Ω) .
1

ε
max

(
Φ2(Ω),Φ(Ω)

)
.

88

Chapter 5

Geometric Spectral Algorithms and
Hardness, with Machine Learning
applications

For a function K : Rd × Rd → R≥0, and a set P = {x1, . . . , xn} ⊂ Rd of n points, the K graph
GP of P is the complete graph on n nodes where the weight between nodes i and j is given
by K(xi, xj). In this chapter, we study when efficient spectral graph theory is possible on these
graphs. We investigate whether or not it is possible to solve the following problems in n1+o(1)

time for a K-graph GP when d < no(1):

• Multiply a given vector by the adjacency matrix or Laplacian matrix of GP

• Find a spectral sparsifier of GP

• Solve a Laplacian system in GP ’s Laplacian matrix

For each of these problems, we consider all functions of the form K(u, v) = f(‖u− v‖2
2) for

a function f : R → R. We provide algorithms and comparable hardness results for many such
K, including the Gaussian kernel, Neural tangent kernels, and more. For example, in dimension
d = Ω(log n), we show that there is a parameter associated with the function f for which low
parameter values imply n1+o(1) time algorithms for all three of these problems and high parameter
values imply the nonexistence of subquadratic time algorithms assuming Strong Exponential
Time Hypothesis (SETH), given natural assumptions on f .

As part of our results, we also show that the exponential dependence on the dimension d in
the celebrated fast multipole method of Greengard and Rokhlin cannot be improved, assuming
SETH, for a broad class of functions f . To the best of our knowledge, this is the first formal
limitation proven about fast multipole methods.

1 Introduction

Linear algebra has a myriad of applications throughout computer science and physics. Consider
the following seemingly unrelated tasks:

89

1. n-body simulation (one step): Given n bodies X located at points in Rd, compute the
gravitational force on each body induced by the other bodies.

2. Spectral clustering: Given n points X in Rd, partition X by building a graph G on the
points in X , computing the top k eigenvectors of the Laplacian matrix LG of G for some
k ≥ 1 to embed X into Rk, and run k-means on the resulting points.

3. Semi-supervised learning: Given n points X in Rd and a function g : X → R whose
values on some of X are known, extend g to the rest of X .

Each of these tasks has seen much work throughout numerical analysis, theoretical computer
science, and machine learning. The first task is a celebrated application of the fast multipole
method of Greengard and Rokhlin [? ? ?], voted one of the top ten algorithms of the twentieth
century by the editors of Computing in Science and Engineering [?]. The second task is spectral
clustering [? ?], a popular algorithm for clustering data. The third task is to label a full set
of data given only a small set of partial labels [? ? ?], which has seen increasing use in
machine learning. One notable method for performing semi-supervised learning is the graph-
based Laplacian regularizer method [? ? ? ?].

Popular techniques for each of these problems benefit from primitives in spectral graph theory
on a special class of dense graphs called geometric graphs. For a function K : Rd×Rd → R and
a set of points X ⊆ Rd, the K-graph on X is a graph with vertex set X and edges with weight
K(u, v) for each pair u, v ∈ X . Adjacency matrix-vector multiplication, spectral sparsification,
and Laplacian system solving in geometric graphs are directly relevant to each of the above
problems, respectively:

1. n-body simulation (one step): For each i ∈ {1, 2, . . . , d}, make a weighted graph Gi on
the points in X , in which the weight of the edge between the points u, v ∈ X in Gi is
Ki(u, v) := (

Ggrav·mu·mv
‖u−v‖22

)(vi−ui
‖u−v‖2), where Ggrav is the gravitational constant and mx is the

mass of the point x ∈ X . Let Ai denote the weighted adjacency matrix of Gi. Then Ai1
is the vector of ith coordinates of force vectors. In particular, gravitational force can be
computed by doing O(d) adjacency matrix-vector multiplications, where each adjacency
matrix is that of the Ki-graph on X for some i.

2. Spectral clustering: Make a K graph G on X . In applications, K(u, v) = f(‖u − v‖2
2),

where f is often chosen to be f(z) = e−z [? ?]. Instead of directly running a spec-
tral clustering algorithm on LG, one popular method is to construct a sparse matrix M
approximating LG and run spectral clustering on M instead [? ? ?]. Standard sparsifica-
tion methods in the literature are heuristical, and include the widely used Nystrom method
which uniformly samples rows and columns from the original matrix [?].
If H is a spectral sparsifier of G, it has been suggested that spectral clustering with the top
k eigenvectors of LH performs just as well in practice as spectral clustering with the top
k eigenvectors of LG [?]. One justification is that since H is a spectral sparsifier of G,
the eigenvalues of LH are at most a constant factor larger than those of LG, so cuts with
similar conductance guarantees are produced. Moreover, spectral clustering using sparse
matrices like LH is known to be faster than spectral clustering on dense matrices like LG
[? ? ?].

3. Semi-supervised learning: An important subroutine in semi-supervised learning is com-
pletion based on `2-minimization [? ? ?]. Specifically, given values gv for v ∈ Y ,

90

where Y is a subset of X , find the vector g ∈ Rn (variable over X \ Y) that minimizes∑
u,v∈X,u6=v K(u, v)(gu − gv)2. The vector g can be found by solving a Laplacian system

on the K-graph for X .

In the first, second, and third tasks above, a small number of calls to matrix-vector multiplica-
tion, spectral sparsification, and Laplacian system solving, respectively, were made on geometric
graphs. One could solve these problems by first explicitly writing down the graph G and then
using near-linear time algorithms [? ?] to multiply, sparsify, and solve systems. However, this
requires a minimum of Ω(n2) time, as G is a dense graph.

In this chapter, we initiate a theoretical study of the geometric graphs for which efficient
spectral graph theory is possible. In particular, we attempt to determine for which (a) functions K
and (b) dimensions d there is a much faster, n1+o(1)-time algorithm for each of (c) multiplication,
sparsification, and Laplacian solving. Before describing our results, we elaborate on the choices
of (a), (b), and (c) that we consider in this work.

We start by discussing the functions K that we consider (part (a)). Our results primarily focus
on the class of functions of the form K(u, v) = f(‖u − v‖2

2) for a function f : R≥0 → R
for u, v ∈ Rd. Study of these functions dates back at least eighty years, to the early work of
Bochner, Schoenberg, and John Von Neumann on metric embeddings into Hilbert Spaces [? ?
?]. These choices of K are ubiquitous in applications, like the three described above, since
they naturally capture many kernel functions K from statistics and machine learning, including
the Gaussian kernel (e−‖u−v‖

2
2), the exponential kernel (e−‖u−v‖2), the power kernel (‖u − v‖q2)

for both positive and negative q, the logarithmic kernel (log(‖u − v‖q2 + c)), and more [? ? ?
]. See Section ?? below for even more popular examples. In computational geometry, many
transformations of distance functions are also captured by such functions K, notably in the case
when K(u, v) = ‖u− v‖q2 [? ? ? ?].

We would also like to emphasize that many kernel functions which do not at first appear to
be of the form f(‖u − v‖2

2) can be rearranged appropriately to be of this form. For instance, in
Section ?? below we show that the recently popular Neural Tangent Kernel is of this form, so
our results apply to it as well. That said, to emphasize that our results are very general, we will
mention later how they also apply to some functions of the form K(u, v) = f(〈u, v〉), including
K(u, v) = |〈u, v〉|.

Next, we briefly elaborate on the problems that we consider (part (c)). For more details,
see Section ??. The points in X are assumed to be real numbers stated with polylog(n) bits of
precision. Our algorithms and hardness results pertain to algorithms that are allowed some degree
of approximation. For an error parameter ε > 0, our multiplication and Laplacian system solving
algorithms produce solutions with ε-additive error, and our sparsification algorithms produce a
graph H for which the Laplacian quadratic form (1± ε)-approximates that of G.

Matrix-vector multiplication, spectral sparsification, and Laplacian system solving are very
natural linear algebraic problems in this setting, and have many applications beyond the three
we have focused on (n-body simulation, spectral clustering, and semi-supervised learning). See
Section ?? below where we expand on more applications.

Finally, we discuss dependencies on the dimension d and the accuracy ε for which n1+o(1)

algorithms are possible (part (b)). Define α, a measure of the ‘diameter’ of the point set and f ,

91

as

α :=
maxu,v∈X f(‖u− v‖2

2)

minu,v∈X f(‖u− v‖2
2)

+
maxu,v∈X ‖u− v‖2

2

minu,v∈X ‖u− v‖2
2

.

It is helpful to have the following two questions in mind when reading our results:

• (High-dimensional algorithms, e.g. d = Θ(log n)) Is there an algorithm which runs in time
poly(d, log(nα/ε))n1+o(1) for multiplication and Laplacian solving? Is there an algorithm
which runs in time poly(d, log(nα))n1+o(1) for sparsification when ε = 1/2?

• (Low-dimensional algorithms, e.g. d = o(log n)) Is there an algorithm which runs in time
(log(nα/ε))O(d)n1+o(1) for multiplication and Laplacian solving? Is there a sparsification
algorithm which runs in time (log(nα))O(d)n1+o(1) when ε = 1/2?

We will see that there are many important functions K for which there are such efficient low-
dimensional algorithms, but no such efficient high-dimensional algorithms. In other words, these
functions K suffer from the classic ‘curse of dimensionality.’ At the same time, other functions
K will allow for efficient low-dimensional and high-dimensional algorithms, while others won’t
allow for either.

We now state our results. We will give very general classifications of functions K for which
our results hold, but afterwards in Section ?? we summarize the results for a few particular
functions K of interest. The main goal of our results is as follows:

Goal: For each problem of interest (part (c)) and dimension d (part (b)), find a natural pa-
rameter pf > 0 associated with the function f for which the following dichotomy holds:
• If pf is high, then the problem cannot be solved in subquadratic time assuming SETH on

points in dimension d.
• If pf is low, then the problem of interest can be solved in almost-linear time (n1+o(1) time)

on points in dimension d.
As we will see shortly, the two parameters pf which will characterize the difficulties of our

problems of interest in most settings are the approximate degree of f , and a parameter related to
how multiplicatively Lipschitz f is. We define both of these in the next section.

1.1 High-dimensional results
We begin in this subsection by stating our results about which functions have poly(d, log(α), log(1/ε))·
n1+o(1)-time algorithms for multiplication and Laplacian solving and poly(d, log(α), 1/ε)·n1+o(1)-
time algorithms for sparsification. When reading these results, it is helpful to think of d =
Θ(log n), α = 2polylog(n), ε = 1/2polylog(n) for multiplication and Laplacian solving, and ε = 1/2
for sparsification. With these parameter settings, poly(d)n1+o(1) is almost-linear time, while
2O(d)n1+o(1) time is not. For results about algorithms with runtimes that are exponential in d, see
Section ??.

Multiplication

In high dimensions, we give a full classification of when the matrix-vector multiplication prob-
lems are easy for kernels of the form K(u, v) = f(‖u− v‖2

2) for some function f : R≥0 → R≥0

that is analytic on an interval. We show that the problem can be efficiently solved only when K is

92

very well-approximated by a simple polynomial kernel. That is, we let pf denote the minimum
degree of a polynomial that ε-additively-approximates the function f .
Theorem 1.1 (Informal version of Theorem ?? and Corollary ??). For any function f : R+ →
R+ which is analytic on an interval (0, δ) for any δ > 0, and any 0 < ε < 2−polylog(n), consider
the following problem: given as input x1, . . . , xn ∈ Rd with d = Θ(log n) which define a K graph
G via K(xi, xj) = f(‖xi−xj‖2

2), and a vector y ∈ {0, 1}n, compute an ε-additive-approximation
to LG · y.
• If f can be ε-additively-approximated by a polynomial of degree at most o(log n), then the

problem can be solved in n1+o(1) time.
• Otherwise, assuming SETH, the problem requires time n2−o(1).

The same holds for LG, the Laplacian matrix of G, replaced by AG, the adjacency matrix of G.
While Theorem ?? yields a parameter pf that characterizes hardness of multiplication in

high dimensions, it is somewhat cumbersome to use, as it can be challenging to show that a
function is far from a polynomial. We also show Theorem ??, which shows that if f has a
single point with large Θ(log n)-th derivative, then the problem requires time n2−o(1) assuming
SETH. The Strong Exponential Time Hypothesis (SETH) is a common assumption in fine-
grained complexity regarding the difficulty of solving the Boolean satisfiability problem; see
section ?? for more details. Theorem ?? informally says that assuming SETH, the curse of
dimensionality is inherent in performing adjacency matrix-vector multiplication. In particular,
we directly apply this result to the n-body problem discussed at the beginning:
Corollary 1.1.1. Assuming SETH, in dimension d = Θ(log n) one step of the n-body problem
requires time n2−o(1).

The fast multipole method of Greengard and Rokhlin [? ?] solves one step of this n-body
problem in time (log(n/ε))O(d)n1+o(1). Our Corollary ?? shows that assuming SETH, such an
exponential dependence on d is required and cannot be improved. To the best of our knowledge,
this is the first time such a formal limitation on fast multipole methods has been proved. This
hardness result also applies to fast multipole methods for other popular kernels, like the Gaussian
kernel K(u, v) = exp(−‖u− v‖2

2), as well.

Sparsification

We next show that sparsification can be performed in almost-linear time in high dimensions for
kernels that are “multiplicatively Lipschitz” functions of the `2-distance. We say f : R≥0 → R≥0

is (C,L)-multiplicatively Lipschitz for C > 1, L > 1 if for all x ∈ R≥0 and all ρ ∈ (1/C,C),

C−Lf(x) ≤ f(ρx) ≤ CLf(x).

Here are some popular functions that are helpful to think about in the context of our results:
1. f(z) = zL for any positive or negative constant L. This function is (C, |L|)-multiplicatively

Lipschitz for any C > 1.
2. f(z) = e−z. This function is not (C,L)-multiplicatively Lipschitz for any L > 1 and

C > 1. We call this the exponential function.
3. The piecewise function f(z) = e−z for z ≤ L and f(z) = e−L for z > L. This function

is (C,O(L))-multiplicatively Lipschitz for any C > 1. We call this a piecewise exponential

93

function.
4. The piecewise function f(z) = 1 for z ≤ k and f(z) = 0 for z > k, where k ∈ R≥0. This

function is not (C,L)-multiplicatively Lipschitz for any C > 1 or L > 1. This is a threshold
function.

We show that multiplicatively Lipschitz functions can be sparsified in n1+o(1)poly(d) time:
Theorem 1.2 (Informal version of Theorem ??). For any function f such that f is (2, L)-
multiplicatively Lipschitz, building a (1 ± ε)-spectral sparsifier of the K-graph on n points in
Rd where K(u, v) = f(‖u− v‖2

2), with O(n log n/ε2) edges, can be done in time

O(nd
√
L log n) + n log n · 2O(

√
L logn) · (logα)/ε2.

This Theorem applies even when d = Ω(log n). When L is constant, the running time
simplifies to O(nd

√
log n + n1+o(1) logα/ε2). This covers the case when f(x) is any rational

function with non-negative coefficients, like f(z) = zL or f(z) = z−L.
It may seem more natural to instead define L-multiplicatively Lipschitz functions, without

the parameter C, as functions with ρ−Lf(x) ≤ f(ρx) ≤ ρLf(x) for all ρ and x. Indeed, an L-
multiplicatively Lipschitz function is also (C,L)-multiplicative Lipschitz for any C > 1, so our
results show that efficient sparsification is possible for such functions. However, the parameter
C is necessary to characterize when efficient sparsification is possible. Indeed, as in Theorem ??
above, it is sufficient for f to be (C,L)-multiplicative Lipschitz for a C that is bounded away
from 1. To complement this result, we also show a lower bound for sparsification for any function
f which is not (C,L)-multiplicatively Lipschitz for any L and sufficiently large C:
Theorem 1.3 (Informal version of Theorem ??). Consider an L > 1. There is some sufficiently
large value CL > 1 depending on L such that for any decreasing function f : R≥0 → R≥0 that
is not (CL, L)-multiplicatively Lipschitz, no O(n2L

.48
)-time algorithm for constructing an O(1)-

spectral sparsifier of the K-graph of a set of n points in O(log n) dimensions exists assuming
SETH, where K(x, y) = f(‖x− y‖2

2).
For example, when L = Θ(log2+δ n) for some constant δ > 0, Theorem ?? shows that there

is a C for which, whenever f is not (C,L)-multiplicatively Lipschitz, the sparsification problem
cannot be solved in time n1+o(1) assuming SETH.

BoundingC in terms of L above is important. For example, ifC is small enough thatCL = 2,
then f could be close to constant. Such K-graphs are easy to sparsify by uniformly sampling
edges, so one cannot hope to show hardness for such functions.

Theorem ?? shows that geometric graphs for threshold functions, the exponential function,
and the Gaussian kernel do not have efficient sparsification algorithms. Furthermore, this hard-
ness result essentially completes the story of which decreasing functions can be sparsified in high
dimensions, modulo a gap of L.48 versus L in the exponent. The tractability landscape is likely
much more complicated for non-decreasing functions. That said, many of the kernels used in
practice, like the Gaussian kernel, are decreasing functions of distance, so our dichotomy applies
to them.

We also show that our techniques for sparsification extend beyond kernels that are functions
of `2 norms; specifically K(u, v) = |〈u, v〉|:
Lemma 1.4 (Informal version of Lemma ??). The K(u, v) = |〈u, v〉|-graph on n points in Rd

can be ε-approximately sparsified in n1+o(1)poly(d)/ε2 time.

94

Laplacian solving

Laplacian system solving has a similar tractability landscape to that of adjacency matrix multi-
plication. We prove the following algorithmic result for solving Laplacian systems:
Theorem 1.5 (Informal version of Corollary ?? and Proposition ??). There is an algorithm that
takes n1+o(1)poly(d, log(nα/ε)) time to ε-approximately solve Laplacian systems on n-vertex
K-graphs, where K(u, v) = f(‖u− v‖2

2) for some (nonnegative) polynomial f .1

We show that this theorem is nearly tight via two hardness results. The first applies to mul-
tiplicatively Lipschitz kernels, while the second applies to kernels that are not multiplicatively
Lipschitz. The second hardness result only works for kernels that are decreasing functions of `2

distance. We now state our first hardness result:
Corollary 1.5.1. Consider a function f that is (2, o(log n))-multiplicatively Lipschitz for which
f cannot be (ε = 2−poly(logn))-approximated by a polynomial of degree at most o(log n). Then,
assuming SETH, there is no n1+o(1)poly(d, log(αn/ε))-time algorithm for ε-approximately solv-
ing Laplacian systems in the K-graph on n points, where K(u, v) = f(‖u− v‖2

2).
In Section ??, we will see, using an iterative refinement approach, that if a K graph can be

efficiently sparsified, then there is an efficient Laplacian multiplier for K graphs if and only if
there is an efficient Laplacian system solver for K graphs. Corollary ?? then follows using this
connection: it describes functions which we have shown have efficient sparsifiers but not efficient
multipliers.

Corollary ??, which is the first of our two hardness results in this setting, applies to slowly-
growing functions that do not have low-degree polynomial approximations, like f(z) = 1/(1 +
z). Next, we state our second hardness result:
Theorem 1.6 (Informal version of Theorem ??). Consider an L > 1. There is some sufficiently
large value CL > 1 depending on L such that for any decreasing function f : R≥0 → R≥0 that
is not (CL, L)-multiplicatively Lipschitz, no O(n2L

.48
logα)-time algorithm exists for solving

Laplacian systems 2−poly(logn) approximately in the K-graph of a set of n points in O(log n)
dimensions assuming SETH, where K(u, v) = f(‖u− v‖2

2).
This yields a quadratic time hardness result when L = Ω(log2 n). By comparison, the first

hardness result, Corollary ??, only applied for L = o(log n). In particular, this shows that for
non-Lipschitz functions like the Gaussian kernel, the problem of solving Laplacian systems and,
in particular, doing semi-supervised learning, cannot be done in almost-linear time assuming
SETH.

1.2 Our Techniques

Multiplication

Our goal in matrix-vector multiplication is, given points P = {x1, . . . , xn} ⊂ Rd and a vector
y ∈ Rn, to compute a (1 ± ε)-approximation to the vector LG · y where LG is the Laplacian
matrix of the K graph on P , for ε = n−Ω(1) (see Definition ??for the precise error guarantees
on ε). We call this the K Laplacian Evaluation (KLapE) problem. A related problem, in which

1f is a nonnegative function if f(x) ≥ 0 for all x ≥ 0.

95

the Laplacian matrix LG is replaced by the adjacency matrix AG, is the K Adjacency Evaluation
(KAdjE) problem.

We begin by showing a simple, generic equivalence between KLapE and KAdjE for any K:
an algorithm for either one can be used as a black box to design an algorithm for the other with
only negligible blowups to the running time and error. It thus suffices to design algorithms and
prove lower bounds for KAdjE.

Algorithmic Techniques We use two primary algorithmic tools: the Fast Multipole Method
(FMM), and a ‘kernel method’ for approximating AG by a low-rank matrix.

FMM is an algorithmic technique for computing aggregate interactions between n bodies
which has applications in many different areas of science. Indeed, when the interactions between
bodies is described by our function K, then the problem solved by FMM coincides with our
KAdjE problem.

Most past work on FMM either considers the low-dimensional case, in which d is a small
constant, or else the low-error case, in which ε is a constant. Thus, much of the literature does not
consider the simultaneous running time dependence of FMM on ε and d. In order to solve KAdjE,
we need to consider the high-dimensional, high-error case. We thus give a clean mathematical
overview and detailed analysis of the running time of FMM in Section ??, following the seminal
work of Greengard and Strain [?], which may be of independent interest.

As discussed in section ?? above, the running time of FMM depends exponentially on d, and
so it is most useful in the low-dimensional setting. Our main algorithmic tool in high dimensions
is a low-rank approximation technique: we show that when f(x) can be approximated by a
sufficiently low-degree polynomial (e.g. any degree o(log n) suffices in dimension Θ(log n)),
then we can quickly find a low-rank approximation of the adjacency matrix AG, and use this to
efficiently multiply by a vector. Although this seems fairly simple, in Theorem ?? we show it
is optimal: when such a low-rank approximation is not possible in high dimensions, then SETH
implies that n2−o(1) time is required for KAdjE.

The simplest way to show that f(x) can be approximated by a low-degree polynomial is by
truncating its Taylor series. In fact, the FMM also requires that a truncation of the Taylor series
of f gives a good approximation to f . By comparison, the FMM puts more lenient restrictions
on what degree the series must be truncated to in low dimensions, but in exchange adds other
constraints on f , including that f must be monotone. See Section ?? and Corollary ?? for more
details.

Lower Bound Techniques We now sketch the proof of Theorem ??, our lower bound for
KAdjE for many functions K in high enough dimensions (typically d = Ω(log n)), assuming
SETH. Although SETH is a hardness hypothesis about the Boolean satisfiability problem, a
number of recent results [? ? ? ?] have showed that it implies hardness for a variety of nearest
neighbor search problems. Our lower bound approach is hence to show that KAdjE is useful for
solving nearest neighbor search problems.

The high-level idea is as follows. Suppose we are given as input points X = {x1, . . . , xn} ⊂
{0, 1}d, and our goal is to find the closest pair of them. For each ` ∈ {1, 2, . . . , d}, let c` denote
the number of pairs of distinct points xi, xj ∈ X with distance ‖xi − xj‖2

2 = `. Using an

96

algorithm for KAdjE for our function K(x, y) = f(‖x− y‖2
2), we can estimate

1>AG1 =
∑
i 6=j

K(xi, xj) =
d∑
`=1

c` · f(`).

Similarly, for any nonnegative reals a, b ≥ 0, we can take an appropriate affine transformation of
X so that an algorithm for KAdjE can estimate

d∑
`=1

c` · f(a · `+ b). (5.1)

Suppose we pick real values a1, . . . , ad, b1, . . . , bd ≥ 0 and define the d × d matrix M by
M [i, `] = f(ai · ` + bi). By estimating the sum (??) for each pair (ai, bi), we get an estimate of
the matrix-vector product Mc, where c ∈ Rd is the vector of the c` values. We show that if M
has a large enough determinant relative to the magnitudes of its entries, then one can recover an
estimate of c itself from this, and hence solve the nearest neighbor problem.

The main tool we need for this approach is a way to pick a1, . . . , ad, b1, . . . , bd for a function
f which cannot be approximated by a low degree polynomial so that M has large determinant.
We do this by decomposing det(M) in terms of the derivatives of f using the Cauchy-Binet
formula, and then noting that if f cannot be approximated by a polynomial, then many of the
contributions in this sum must be large. The specifics of this construction are quite technical; see
section ?? for the details.

Comparison with Previous Lower Bound Techniques Prior work (e.g. [?], [?], [?])
has shown SETH-based fine-grained complexity results for matrix-related computations. For
instance, [?] showed hardness results for exact algorithms for many machine-learning related
tasks, like kernel PCA and gradient computation in training neural networks, while [?] and
[?] showed hardness results for kernel density estimation. In all of this work, the authors
are only able to show hardness for a limited set of kernels. For example, [?] shows hardness
for kernel PCA only for Gaussian kernels. These limitations arise from the technique used. To
show hardness, [?] exploits the fact that the Gaussian kernel decays rapidly to obtain a gap
between the completeness and soundness cases in approximate nearest neighbors, just as we do
for functions f like f(x) = (1/x)Ω(logn). The hardness results of [?] and [?] employ a similar
idea.

As discussed in Lower Bound Techniques, we circumvent these limitations by showing that
applying the multiplication algorithm for one kernel a small number of times and linearly com-
bining the results is enough to solve Hamming closest pair. This idea is enough to give a nearly
tight characterization of the analytic kernels for which subquadratic-time multiplication is possi-
ble in dimension d = Θ(log n). As a result, by combining with reductions similar to those from
past work, our lower bound also applies to a variety of similar problems, including kernel PCA,
for a much broader set of kernels than previously known; see Section ?? below for the details.

Our lower bound is also interesting when compared with the Online Matrix-Vector Multipli-
cation (OMV) Conjecture of Henzinger et al. [?]. In the OMV problem, one is given an n × n
matrix M to preprocess, then afterwards one is given a stream v1, . . . , vn of length-n vectors,

97

and for each vi, one must output M × vi before being given vi+1. The OMV Conjecture posits
that one cannot solve this problem in total time n3−Ω(1) for a general matrix M . At first glance,
our lower bound may seem to have implications for the OMV Conjecture: For some kernels K,
our lower bound shows that for an input set of points P and corresponding adjacency matrix AG,
and input vector vi, there is no algorithm running in time n2−Ω(1) for multiplying AG × vi, so
perhaps multiplying by n vectors cannot be done in time n3−Ω(1). However, this is not necessarily
the case, since the OMV problem allows O(n2.99) time for preprocessing AG, which our lower
bound does not incorporate. More broadly, the matrices AG which we study, which have very
concise descriptions compared to general matrices, are likely not the best candidates for proving
the OMV Conjecture. That said, perhaps our results can lead to a form of the OMV Conjecture
for geometric graphs with concise descriptions.

Sparsification

Algorithmic techniques Our algorithm for constructing high-dimensional sparsifiers for K(x, y) =
f(‖x − y‖2

2), when f is a (2, L) multiplicatively Lipschitz function, involves using three clas-
sic ideas: the Johnson Lindenstrauss lemma of random projection [? ?], the notion of well-
separated pair decomposition from Callahan and Kosaraju [? ?], and spectral sparsification via
oversampling [? ?]. Combining these techniques carefully gives us the bounds in Theorem ??.

To overcome the ‘curse of dimensionality’, we use the Lindenstrauss lemma to project onto
√
L log n dimensions. This preserves all pairs distance, with a distortion of at most 2O(

√
logn/L).

Then, using a 1/2-well-separated pair decomposition partitions the set of projected distances
into bicliques, such that each biclique has edges that are no more than 2O(

√
logn/L) larger than

the smallest edge in the biclique. This ratio will upper bound the maximum leverage score of
an edge in this biclique in the original K-graph. Each biclique in the set of projected distances
has a one-to-one correspondence to a biclique in the original K-graph. Thus to sparsify our K-
graph, we sparsify each biclique in the K-graph by uniform sampling, and take the union of the
resulting sparsified bicliques. Due to the (2, L)-Lipschitz nature of our function, it is guaranteed
that the longest edge in any biclique (measured using K(x, y)) is at most 2O(

√
L logn). This upper

bounds the maximum leverage score of an edge in this biclique with respect to the K-graph,
which then can be used to upper bound the number of edges we need to sample from each
biclique via uniform sampling. We take the union of these sampled edges over all bicliques,
which gives our results for high-dimensional sparsification summarized in Theorem ??. Details
can be found in the proof of Theorem ?? in Section ??. When L is constant, we get almost linear
time sparsification algorithms.

For low dimensional sparsification, we skip the Johnson Lindenstrauss step, and use a (1 +
1/L)-well separated pair decomposition. This gives us a nearly linear time algorithm for spar-
sifying (C,L) multiplicative Lipschitz functions, when (2L)O(d) is small, which covers the case
when d is constant and L = no(1). See Theorem ?? for details.

For K(u, v) = |〈u, v〉|, our sparsification algorithm is quite different from the multiplicative
Lipschitz setting. In particular, the fact that K(u, v) = 0 on a large family of pairs u, v ∈ Rd

presents challenges. Luckily, though, this kernel does have some nice structure. For simplicity,
just consider defining the K-graph on a set of unit vectors. The weight of any edge in this graph

98

is at most 1 by Cauchy-Schwarz. The key structural property of this graph is that for every set
S with |S| > d + 1, there is a pair u, v ∈ S for which the u-v edge has weight at least Ω(1/d).
In other words, the unweighted graph consisting of edges with weight between Ω(1/d) and 1
does not have independent sets with size greater than d + 1. It turns out that all such graphs
are dense (see Proposition ??)and that all dense graphs have an expander subgraph consisting
of a large fraction of the vertices (see Proposition ??). Thus, if this expander could be found
in O(n) time, we could partition the graph into expander clusters, sparsify the expanders via
uniform sampling, and sparsify the edges between expanders via uniform sampling. It is unclear
to us how to identify this expander efficiently, so we instead identify clusters with effective
resistance diameter O(poly(d log n)/n). This can be done via uniform sampling and Johnson-
Lindenstrauss [?]. As part of the proof, we prove a novel Markov-style lower bound on the
probability that effective resistances deviate too low in a randomly sampled graph, which may
be of independent interest (see Lemma ??).

Lower bound techniques To prove lower bounds on sparsification for decreasing functions
that are not (CL, L)-multiplicatively Lipschitz, we reduce from exact bichromatic nearest neigh-
bors on two sets of points A and B. In high dimensions, nearest neighbors is hard even for
Hamming distance [?], so we may assume that A,B ⊆ {0, 1}d. In low dimensions, we may
assume that the coordinates of points in A and B consist of integers on at most O(log n) bits. In
both cases, the set of possible distances between points in A and B is discrete. We take advan-
tage of the discrete nature of these distance sets to prove a lower bound. In particular, CL is set
so that CL is the smallest ratio between any two possible distances between points in A and B.
To see this in more detail, see Lemma ??.

Let xf be a point at which the function f is not (CL, L)-multiplicatively Lipschitz and sup-
pose that we want to solve the decision problem of determining whether or not mina∈A,b∈B ‖a−
b‖2 ≤ k. We can do this using sparsification by scaling the points in A and B by a factor of
k/xf , sparsifying the K-graph on the resulting points, and thresholding based on the total weight
of the resulting A-B cut. If there is a pair with distance at most k, there is an edge crossing the
cut with weight at least f(xf) because f is a decreasing function. Therefore, the sparsifier has
total weight at least f(xf)/(1 + ε) = f(xf)/2 crossing the A-B cut by the cut sparsification
approximation guarantee. If there is not a pair with distance at most k, no edges crossing the
cut with weight larger than f(CLxf) ≤ C−LL f(xf) ≤ (1/n10) · f(xf) by choice of CL. There-
fore, the total weight of the A-B cut is at most (1/n8) · f(xf), which means that it is at most
((1 + ε)/n8) · f(xf) < f(xf)/4 in the sparsifier. In particular, thresholding correctly solves the
decision problem and one sparsification is enough to solve bichromatic nearest neighbors.

1.3 Brief summary of our results in terms of pf
Before proceeding to the body of the chapter, we summarize our results. Recall that we consider
three linear-algebraic problems in this chapter, along with two different dimension settings (low
and high). This gives six different settings to consider. We now define pf in each of these
settings. In all high-dimensional settings, we have found a definition of pf that characterizes
the complexity of the problem. In some low-dimensional settings, we do not know of a suitable

99

definition for pf and leave this as an open problem. For simplicity, we focus here only on
decreasing functions f , although all of our algorithms, and most of our hardness results, hold for
more general functions as well.

Dimension Multiplication Sparsification Solving
d = poly(log n) f1 f1, f2 f1

clog∗ n < d < O(log1−δ n) for δ > 0 f1, f2, f3 f1, f2, f3 f1, f2, f3

Table 5.1: Functions among f1, f2, f3, f4 that have almost-linear time algorithms

1. Adjacency matrix-vector multiplication
(a) High dimensions: pf is the minimum degree of any polynomial that 1/2poly(logn)-

additively approximates f . pf > Ω(log n) implies subquadratic-time hardness (The-
orem ?? part 2), while pf < o(log n) implies an almost-linear time algorithm (Theo-
rem ??, part 1).

(b) Low dimensions: Not completely understood. The fast multipole method yields an
almost-linear time algorithm for some functions, like the Gaussian kernel (Theorem
??), but functions exist that are hard in low dimensions (Proposition ??).

2. Sparsification. In both settings, pf is the minimum value for which f is (C, pf)-multiplicatively
Lipschitz, where C = 1 + 1/pcf for some constant c > 0 independent of f .

(a) High dimensions: If pf > Ω(log2 n) and f is nonincreasing, then no subquadratic
time algorithm exists (Theorem ??). If pf < o(log n), then an almost-linear time
algorithm for sparsification exists (Theorem ??).

(b) Low dimensions: There is some constant t > 1 such that if pf > Ω(nt) and f
is nonincreasing, then no subquadratic time algorithm exists (Theorem ??).If pf <
no(1/d), then there is a subquadratic time algorithm (Theorem ??).

3. Laplacian solving.
(a) High dimensions: pf is the maximum of the pf values in the Adjacency matrix-vector

multiplication and Sparsification settings, with hardness occurring for decreasing
functions f if pf > Ω(log2 n) (Corollary ?? combined with Theorem ??) and an
algorithm existing when pf < o(log n) (Theorem ??).

(b) Low dimensions: Not completely understood, as in the low-dimensional multipli-
cation setting. As in the sparsification setting, we are able to show that there is a
constant t such that if f is nonincreasing and pf > Ω(nt) where pf is defined as in
the Sparsifiction setting, then no subquadratic time algorithm exists (Theorem ??).

Many of our results are not tight for two reasons: (a) some of the hardness results only
apply to decreasing functions, and (b) there are gaps in pf values between the upper and lower
bounds. However, neither of these concerns are important in most applications, as (a) weight
often decreases as a function of distance and (b) pf values for natural functions are often either
very low or very high. For example, pf > Ω(polylog(n)) for all problems for the Gaussian kernel
(f(x) = e−x), while pf = O(1) for sparsification and pf > Ω(polylog(n)) for multiplication
for the gravitational potential (f(x) = 1/x). Resolving the gap may also be difficult, as for
intermediate values of pf , the true best running time is likely an intermediate running time of
n1+c+o(1) for some constant 0 < c < 1. Nailing down and proving such a lower bound seems

100

beyond the current techniques in fine-grained complexity.

1.4 Summary of our Results on Examples

To understand our results better, we illustrate how they apply to some examples. For each of the
functions fi given below, make the K-graph, where Ki(u, v) = fi(‖u− v‖2

2):
1. f1(z) = zk for a positive integer constant k.
2. f2(z) = zc for a negative constant or a positive non-integer constant c.
3. f3(z) = e−z (the Gaussian kernel).
4. f4(z) = 1 if z ≤ θ and f4(z) = 0 if z > θ for some parameter θ > 0 (the threshold kernel).
In Table ??, we summarize for which of the above functions there are efficient algorithms

and for which we have hardness results. There are six regimes, corresponding to three prob-
lems (multiplication, sparsification, and solving) and two dimension regimes (d = poly(log n)
and d = clog∗ n). A function is placed in a table cell if an almost-linear time algorithm exists,
where runtimes are n1+o(1)(log(αn/ε))t in the case of multiplication and system solving and
n1+o(1)(log(αn))t/ε2 in the case of sparsification for some t ≤ O(log1−δ n) for some δ > 0.
Moreover, for each of these functions f1, f2, f3, and f4, if it does not appear in a table cell,
then we show a lower bound that no subquadratic time algorithm exists in that regime assuming
SETH.

1.5 Other Related Work

Linear Program Solvers Linear Program is a fundamental problem in convex optimization.
There is a long list of work focused on designing fast algorithms for linear program [? ? ? ?
? ? ? ? ? ? ? ? ? ?]. For the dense input matrix, the state-of-the-art algorithm [?] takes
nmax{ω,2+1/18} log(1/ε) time, ω is the exponent of matrix multiplication [?]. The solver can run
faster when matrix A has some structures, e.g. Laplacian matrix.

Laplacian System Solvers It is well understood that a Laplacian linear system can be solved
in time Õ(m log(1/ε)), where m is the number of edges in the graph generating the Laplacian [?
? ? ? ? ? ? ?]. This algorithm is very efficient when the graph is sparse. However, in our
setting where the K graph is dense but succinctly describable by only n points in Rd, we aim for
much faster algorithms.

Algorithms for Kernel Density Function Approximation A recent line of work by Charikar
et al. [? ?] also studies the algorithmic KDE problem. They show, among other things,
that kernel density functions for “smooth” kernels K can be estimated in time which depends
only polynomially on the dimension d, but which depends polynomially on the error ε. We are
unfortunately unable to use their algorithms in our setting, where we need to solve KAdjE with
ε = n−Ω(1), and the algorithms of Charikar et al. do not run in subquadratic time. We instead
design and make use of algorithms whose running times have only polylogarithmic dependences
on ε, but often have exponential dependences on d.

101

Kernel Functions Kernel functions are useful functions in data analysis, with applications in
physics, machine learning, and computational biology [?]. There are many kernels studied and
applied in the literature; we list here most of the popular examples.

The following kernels are of the form K(x, y) = f(‖x−y‖2
2), which we study in this chapter:

the Gaussian kernel [? ?], exponential kernel, Laplace kernel [?], rational quadratic kernel,
multiquadric kernel [?], inverse multiquadric kernel [? ?], circular kernel [?], spherical kernel,
power kernel [?], log kernel [? ?], Cauchy kernel [?], and generalized T-Student kernel [?].

For these next kernels, it is straightforward that their corresponding graphs have low-rank
adjacency matrices, and so efficient linear algebra is possible using the Woodbury Identity (see
Section ?? below): the linear kernel [? ? ? ?] and the polynomial kernel [? ? ? ?].

Finally, the following relatively popular kernels are not of the form we directly study in this
chapter, and we leave extending our results to them as an important open problem: the Hyperbolic
tangent (Sigmoid) kernel [? ? ? ? ? ? ? ?], spline kernel [? ?], B-spline kernel [? ?], Chi-
Square kernel [?], and the histogram intersection kernel and generalized histogram intersection
[?]. More interestingly, our result also can be applied to Neural Tangent Kernel [?], which
plays a crucial role in the recent work about convergence of neural network training [? ? ? ? ?
? ? ?]. For more details, we refer the readers to Section ??.

Acknowledgements The authors would like to thank Lijie Chen for helpful suggestions in the
hardness section and explanation of his papers. The authors would like to thank Sanjeev Arora,
Simon Du, and Jason Lee for useful discussions about the neural tangent kernel.

2 Summary of Low Dimensional Results
In the results we’ve discussed so far, we show that in high-dimensional settings, the curse of di-
mensionality applies to a wide variety of functions that are relevant in applications, including the
Gaussian kernel and inverse polynomial kernels. Luckily, in many settings, the points supplied
as input are very low-dimensional. In the classic n-body problem, for example, the input points
are 3-dimensional. In this subsection, we discuss our results pertaining to whether algorithms
with runtimes exponential in d exist; such algorithms can still be efficient in low dimensions
d = o(log n).

2.1 Multiplication

The prior work on the fast multipole method [? ? ?] yields algorithms with runtime
(log(n/ε))O(d)n1+o(1) for ε-approximate adjacency matrix-vector multiplication for a number
of functions K, including when K(u, v) = 1

‖u−v‖c2
for a constant c and when K(u, v) = e−‖u−v‖

2
2 .

In order to explain what functions K the fast multipole methods work well for, and to clarify de-
pendencies on d in the literature, we give a complete exposition of how the fast multipole method
of [?] works on the Gaussian kernel:
Theorem 2.1 (fast Gaussian transform [?], exposition in Section ??). Let K(x, y) = exp(−‖x−
y‖2

2). Given a set of points P ⊂ Rd with |P | = n. Let G denote the K-graph. For any vector

102

u ∈ Rd, for accuracy parameter ε, there is an algorithm that runs in n logO(d)(‖u‖1/ε) time to
approximate AG · u within ε additive error.

The fast multipole method is fairly general, and so similar algorithms also exist for a number
of other functions K; see Section ?? for further discussion. Unlike in the high-dimensional case,
we do not have a characterization of the functions for which almost-linear time algorithms exist
in near-constant dimension. We leave this as an open problem. Nonetheless, we are able to
show lower bounds, even in barely super-constant dimension d = exp(log∗(n))2, on adjacency
matrix-vector multiplication for kernels that are not multiplicatively Lipschitz:
Theorem 2.2 (Informal version of Proposition ??). For some constant c > 1, any function f that
is not (C,L)-multiplicatively Lipschitz for any constants C > 1, L > 1 does not have an n1+o(1)

time adjacency matrix-vector multiplication (up to 2−poly(logn) additive error) algorithm in clog∗ n

dimensions assuming SETH when K(u, v) = f(‖u− v‖2
2).

This includes threshold functions, but does not include piecewise exponential functions.
Piecewise exponential functions do have efficient adjacency multiplication algorithms by Theo-
rem ??.

To illustrate the complexity of the adjacency matrix-vector multiplication problem in low
dimensions, we are also able to show hardness for the function K(u, v) = |〈u, v〉| in nearly
constant dimensions. By comparison, we are able to sparsify for this function K, even in very
high d = no(1) dimensions (in Theorem ?? above).
Theorem 2.3 (Informal version of Corollary ??). For some constant c > 1, assuming SETH,
adjacency matrix-vector multiplication (up to 2−poly(logn) additive error) in clog∗ n dimensions
cannot be done in subquadratic time in dimension d = exp(log∗(n)) when K(u, v) = |〈u, v〉|.

2.2 Sparsification

We are able to give a characterization of the decreasing functions for which sparsification is pos-
sible in near-constant dimension. We show that a polynomial dependence on the multiplicative
Lipschitz constant is allowed, unlike in the high-dimensional setting:
Theorem 2.4 (Informal version of Theorem ??). Let f be a (1 + 1/L, L)-multiplicatively Lips-
chitz function and let K(u, v) = f(‖u−v‖2

2). Then an (1±ε)-spectral sparsifier for the K-graph
on n points can be found in n1+o(1)LO(d)(logα)/ε2 time.

Thus, geometric graphs for piecewise exponential functions with L = no(1) can be sparsified
in almost-linear time when d is constant, unlike in the case when d = Ω(log n). In particular,
spectral clustering can be done in O(kn1+o(1)) time for k clusters in low dimensions. Unfortu-
nately, not all geometric graphs can be sparsified, even in nearly constant dimensions:
Theorem 2.5 (Informal version of Theorem ??). There are constants c′ ∈ (0, 1), c > 1 and a
value CL given L > 1 for which any decreasing function f that is not (CL, L)-multiplicatively
Lipschitz does not have an O(nLc

′
) time sparsification algorithm for K-graphs on clog∗ n dimen-

sional points, where K(u, v) = f(‖u− v‖2
2).

This theorem shows, in particular, that geometric graphs of threshold functions are not spar-
sifiable in subquadratic time even for low-dimensional pointsets. These two theorems together

2Here, log∗(n) denotes the very slowly growing iterated logarithm of n.

103

nearly classify the decreasing functions for which efficient sparsification is possible, up to the
exponent on L.

2.3 Laplacian solving

As in the case of multiplication, we are unable to characterize the functions for which solving
Laplacian systems can be done in almost-linear time in low dimensions. That said, we still have
results for many functions K, including most kernel functions of interest in applications. We
prove most of these using the aforementioned connection from Section ??: if a K graph can be
efficiently sparsified, then there is an efficient Laplacian multiplier for K graphs if and only if
there is an efficient Laplacian system solver for K graphs.

For the kernels K(u, v) = 1/‖u − v‖c2 for constants c and the piecewise exponential kernel,
we have almost-linear time algorithms in low dimensions by Theorems ?? and ?? respectively.
Furthermore, the fast multipole method yields almost-linear time algorithms for multiplication.
Therefore, there are almost-linear time algorithm for solving Laplacian systems in geometric
graphs for these kernels.

A similar approach also yields hardness results. Theorem ?? above implies that an almost-
linear time algorithm for solving Laplacian systems on K-graphs for K(u, v) = |〈u, v〉| yields an
almost-linear time algorithm for K-adjacency multiplication. However, no such algorithm exists
assuming SETH by Theorem ?? above. Therefore, SETH implies that no almost-linear time
algorithm for solving Laplacian systems in this kernel can exist.

We directly (i.e. without using a sparsifier algorithm) show an additional hardness result
for solving Laplacian systems for kernels that are not multiplicatively Lipschitz, like threshold
functions of `2-distance:
Theorem 2.6 (Informal version of Theorem ??). Consider an L > 1. There is some sufficiently
large value CL > 1 depending on L such that for any decreasing function f : R≥0 → R≥0 that is
not (CL, L)-multiplicatively Lipschitz, no O(nLc

′
logα)-time algorithm exists for solving Lapla-

cian systems 2−poly(logn) approximately in the K-graph of a set of n points in clog∗ n dimensions
for some constants c > 1, c′ ∈ (0, 1) assuming SETH, where K(u, v) = f(‖u− v‖2

2).

3 Preliminaries
Our results build off of algorithms and hardness results from many different areas of theoretical
computer science. We begin by defining the relevant notation and describing the important past
work.

3.1 Notation

For an n ∈ N+, let [n] denote the set {1, 2, · · · , n}.
For any function f , we write Õ(f) to denote f · logO(1)(f). In addition to O(·) notation, for

two functions f, g, we use the shorthand f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for
an absolute constant C. We use f h g to mean cf ≤ g ≤ Cf for constants c, C.

104

For a matrix A, we use ‖A‖2 to denote the spectral norm of A. Let A> denote the transpose
of A. Let A† denote the Moore-Penrose pseudoinverse of A. Let A−1 denote the inverse of a full
rank square matrix.

We say matrix A is positive semi-definite (PSD) if A = A> and x>Ax ≥ 0 for all x ∈ Rn.
We use �, � to denote the semidefinite ordering, e.g. A � 0 denotes that A is PSD, and A � B
means A − B � 0. We say matrix A is positive definite (PD) if A = A> and x>Ax > 0 for all
x ∈ Rn − {0}. A � B means A−B is PD.

For a vector v, we denote ‖v‖p as the standard `p norm. For a vector v and PSD matrix A,
we let ‖v‖A = (v>Av)1/2.

The iterated logarithm log∗ : R→ Z is given by

log∗(n) =

{
0, if n ≤ 1;

1 + log∗(log n), otherwise.

We use Ggrav to denote the Gravitational constant.
We define α slightly differently in different sections. Note that both are less than the value of

α used in Theorem ??:

Table 5.2

Notation Meaning Location
α

maxi,j f(‖xi−xj‖22)

mini,j f(‖xi−xj‖22)
Section ??

α
maxi,j ‖xi−xj‖2
mini,j ‖xi−xj‖2 Section ??

3.2 Graph and Laplacian Notation
Let G = (V,E,w) be a connected weighted undirected graph with n vertices and m edges and
edge weights we > 0. We say re = 1/we is the resistance of edge e. If we give a direction to the
edges of G arbitrarily, we can write its Laplacian as LG = B>WB, where W ∈ Rm×m is the
diagonal matrix W (e, e) = we and B ∈ Rm×n is the signed edge-vertex incidence matrix and
can be defined in the following way

B(e, v) =


1, if v is e’s head;

−1, if v is e’s tail;
0, otherwise.

(5.2)

A useful notion related to Laplacian matrices is the effective resistance of a pair of nodes:
Definition 3.1 (Effective resistance). The effective resistance of a pair of vertices u, v ∈ VG is
defined as

ReffG(u, v) = b>u,vL
†bu,v

where bu,v ∈ R|VG| is an all zero vector except for entries of 1 at u and −1 at v.

105

Using effective resistance, we can define leverage score
Definition 3.2 (Leverage score). The leverage score of an edge e = (u, v) ∈ EG is defined as

le = we · ReffG(u, v).

We define a useful notation called electrical flow
Definition 3.3 (Electrical flow). LetB ∈ Rm×n be defined as Eq. (??), for a given demand vector
d ∈ Rn, we define electrical flow f ∈ Rm as follows:

f = arg min
f :B>f=d

∑
e∈EG

f 2
e /we.

We let d(i) denote the degree of vertex i. For any set S ⊆ V , we define volume of S:
µ(S) =

∑
i∈S d(i). It is obvious that µ(V) = 2|E|. For any two sets S, T ⊆ V , let E(S, T) be

the set of edges connecting a vertex in S with a vertex in T . We call Φ(S) to be the conductance
of a set of vertices S, and can be formally defined as

Φ(S) =
|E(S, V \ S)|

min(µ(S), µ(V \ S))
.

We define the notation conductance, which is standard in the literature of graph partitioning and
graph clustering [? ? ? ? ? ? ?].
Definition 3.4 (Conductance). The conductance of a graph G is defined as follows:

ΦG = min
S⊂V

Φ(S).

Lemma 3.5 ([? ?]). A graph G with minimum conductance ΦG has the property that for every
pair of vertices u, v,

ReffG(u, v) ≤ O

((1

cu
+

1

cv

)
· 1

Φ2
G

)
where cu is the sum of the weights of edges incident with u. Furthermore, for every pair of
vertices u, v,

ReffG(u, v) ≥ max(1/cu, 1/cv)

For a function K : Rd × Rd → R, the K-graph on a set of points X ⊆ Rd is the graph with
vertex set X and edge weights K(u, v) for u, v ∈ X . For a function fR≥0 → R≥0, the f -graph
on a set of points X is defined to be the K graph on X for K(u, v) = f(‖u− v‖2).

3.3 Spectral Sparsification via Random Sampling
Here, we state some well known results on spectral sparsification via random sampling, from
previous works. The theorems below are essential for our results on sparsifying geometric graphs
quickly.

106

Theorem 3.6 (Oversampling [?]). Consider a graph G = (V,E) with edge weights we > 0 and
probabilities pe ∈ (0, 1] assigned to each edge and parameters δ ∈ (0, 1), ε ∈ (0, 1). Generate a
reweighted subgraph H of G with q edges, with each edge e sampled with probability pe/t and
added to H with weight wet/(peq), where t =

∑
e∈E pe. If

1. q ≥ C · ε−2 · t log t · log(1/δ), where C > 1 is a sufficiently large constant
2. pe ≥ we · ReffG(u, v) for all edges e = {u, v} in G

then (1− ε)LG � LH � (1 + ε)LG with probability at least 1− δ.

Algorithm 1
1: procedure OVERSAMPLING(G,w, p, ε, δ) . Theorem ??
2: t←

∑
e∈E pe

3: q ← C · ε−2 · t log t · log(1/δ)
4: Initialize H to be an empty graph
5: for i = 1→ q do
6: Sample one e ∈ E with probability pe/t
7: Add that edge with weight wet/(peq) to graph H
8: end for
9: return H

10: end procedure

Theorem 3.7 ([?] effective resistance data structure). There is a Õ(m(logα)/ε2) time algorithm
which on input ε > 0 and G = (V,E,w) with α = wmax/wmin computes a (24 log n/ε2) × n
matrix Z̃ such that with probability at least 1− 1/n,

(1− ε)ReffG(u, v) ≤ ‖Z̃buv‖2
2 ≤ (1 + ε)ReffG(u, v)

for every pair of vertices u, v ∈ V .
The following is an immediate corollary of Theorems ?? and ??:

Corollary 3.7.1 ([?]). There is a Õ(m(logα)/ε2) time algorithm which on input ε > 0 and
G = (V,E,w) with α = wmax/wmin, produces an (1± ε)-approximate sparsifier for G.

3.4 Woodbury Identity

Proposition 3.8 ([? ?]). The Woodbury matrix identity is

(A+ UCV)−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

where A,U,C and V all denote matrices of the correct (conformable) sizes: For integers n and
k, A is n× n, U is n× k, C is k × k and V is k × n.

The Woodbury identity is useful for solving linear systems in a matrix M which can be
written as the sum of a diagonal matrix A and a low-rank matrix UV for k � n (setting C = I).

107

3.5 Tail Bounds
We will use several well-known tail bounds from probability theory.
Theorem 3.9 (Chernoff Bounds [?]). Let X =

∑n
i=1Xi, where Xi = 1 with probability pi and

Xi = 0 with probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n

i=1 pi. Then
1. Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;
2. Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.
Theorem 3.10 (Hoeffding bound [?]). LetX1, · · · , Xn denote n independent bounded variables
in [ai, bi]. Let X =

∑n
i=1Xi, then we have

Pr[|X − E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)

3.6 Fine-Grained Hypotheses
Strong Exponential Time Hypothesis Impagliazzo and Paturi [?] introduced the Strong
Exponential Time Hypothesis (SETH) to address the complexity of CNF-SAT. Although it was
originally stated only for deterministic algorithms, it is now common to extend SETH to ran-
domized algorithms as well.
Hypothesis 3.11 (Strong Exponential Time Hypothesis (SETH)). For every ε > 0 there exists
an integer k ≥ 3 such that CNF-SAT on formulas with clause size at most k (the so called k-SAT
problem) and n variables cannot be solved in O(2(1−ε)n) time even by a randomized algorithm.

Orthogonal Vectors Conjecture The Orthogonal Vectors (OV) problem asks: given n vectors
x1, · · · , xn ∈ {0, 1}d, are there i, j such that 〈vi, vj〉 = 0 (where the inner product is taken over
Z)? It is easy to see that O(n2d) time suffices for solving OV, and slightly subquadratic-time
algorithms are known in the case of small d [? ?]. It is conjectured that there is no OV algorithm
running in n1.99 time when d = ω(log n).
Conjecture 3.12 (Orthogonal Vectors Conjecture (OVC) [? ?]). For every ε > 0, there is a
c ≥ 1 such that OV cannot be solved in n2−ε time on instances with d = c log n.

In particular, it is known that SETH implies OVC [?]. SETH and OVC are the most common
hardness assumption in fine-grained complexity theory, and they are known to imply tight lower
bounds for a number of algorithmic problems throughout computer science. See, for instance,
the survey [?] for more background.

3.7 Dimensionality Reduction
We make use of the following binary version of the Johnson-Lindenstrauss lemma due to Achliop-
tas [?]:
Theorem 3.13 ([? ?]). Given fixed vectors v1, . . . , vn ∈ Rd and ε > 0, let Q ∈ Rk×d be a
random ±1/

√
k matrix (i.e. independent Bernoulli entries) with k ≥ 24(log n)/ε2. Then with

probability at least 1− 1/n,

(1− ε)‖vi − vj‖2 ≤ ‖Qvi −Qvj‖2 ≤ (1 + ε)‖vi − vj‖2

108

for all pairs i, j ∈ [n].
We will also use the following variant of Johnson Lindenstrauss for Euclidean space, for

random projections onto o(log n) dimensions:
Lemma 3.14 (Ultralow Dimensional Projection [? ?], see Theorem 8.2 in [?] for example).
For k = o(log n), with high probability the maximum distortion in pairwise distance obtained
from projecting n points into k dimensions (with appropriate scaling) is at most nO(1/k).

3.8 Nearest Neighbor Search

Our results will make use of a number of prior results, both algorithms and lower bounds, for
nearest neighbor search problems.

Nearest Neighbor Search Data Structures
Problem 1 ([? ?] data-structure ANN). Given an n-point dataset P in Rd with d = no(1), the
goal is to preprocess it to answer the following queries. Given a query point q ∈ Rd such that
there exists a data point within `p distance r from q, return a data point within `p distance cr
from q.
Theorem 3.15 ([?]). There exists a data structure that returns a 2c-approximation to the nearest
neighbor distance in `d2 with preprocessing time and spaceOc(n

1+1/c2+oc(1) +nd) and query time
Oc(dn

1/c2+oc(1))

Hardness for Approximate Hamming Nearest Neighbor Search We provide the definition
of the Approximate Nearest Neighbor search problem
Problem 2 (monochromatic ANN). The monochromatic Approximate Nearest Neighbor (ANN)
problem is defined as : given a set of n points x1, · · · , xn ∈ Rd with no(1), the goal is to compute
α-approximation of mini 6=j d(xi, xj).
Theorem 3.16 ([?]). Let d(x, y) be `p distance. Assuming SETH, for every δ > 0, there is a
ε > 0 such that the monochromatic (1 + ε)-ANN problem for dimension d = Ω(log n) requires
time n1.5−δ.
Problem 3 (bichromatic ANN). Let d(·, ·) denote the some distance function. Let α > 1 denote
some approximation factor. The bichromatic Approximate Nearest Neighbor (ANN) problem
is defined as: given two sets A,B of vectors Rd, the goal is to compute α-approximation of
mina∈A,b∈B d(a, b).
Theorem 3.17 ([?]). Let d(x, y) be any of Euclidean, Manhattan, Hamming(‖x − y‖0), and
edit distance. Assuming SETH, for every δ > 0, there is a ε > 0 such that the bichromatic
(1 + ε)-ANN problem for dimension d = Ω(log n) requires time n2−δ.

By comparison, the best known algorithm for d = Ω(log n) for each of these distance mea-
sures other than edit distance runs in time about dn+ n2−Ω(ε1/3/ log(1/ε)) [?].

Hardness for Z-Max-IP

109

Problem 4. For n, d ∈ N, the Z-MaxIP problem for dimension d asks: given two sets A,B of
vectors from Zd, compute

max
a∈A,b∈B

〈a, b〉.

Z-MaxIP is known to be hard even when the dimension d is barely superconstant:
Theorem 3.18 (Theorem 1.14 in [?]). Assuming SETH (or OVC), there is a constant c such that
any exact algorithm for Z-MaxIP for d = clog∗ n dimensions requires n2−o(1) time, with vectors
of O(log n)-bit entries.

It is believed that Z-MaxIP cannot be solved in truly subquadratic time even in constant
dimension [?]. Even for d = 3, the best known algorithm runs in O(n4/3) time and has not been
improved for decades:
Theorem 3.19 ([? ? ?]). Z-MaxIP for d = 3 can be solved in time O(n4/3). For general d, it
can be solved in n2−Θ(1/d).

The closely related problem of `2-nearest neighbor search is also hard in barely superconstant
dimension:
Theorem 3.20 (Theorem 1.16 in [?]). Assuming SETH (or OVC), there is a constant c such that
any exact algorithm for bichromatic `2-closest pair for d = clog∗ n dimensions requires n2−o(1)

time, with vectors of c0 log n-bit entries for some constants c > 1 and c0 > 1.

3.9 Geometric Laplacian System
Building off of a long line of work on Laplacian system solving [? ? ? ? ?], we study the
problem of solving geometric Laplacian systems:
Problem 5. Let K : Rd × Rd → R. Given a set of points x1, · · · , xn ∈ Rd, a vector b ∈ Rn and
accuracy parameter ε. Let graph G denote the graph that has n vertices and each edge(i, j)’s
weight is K(xi, xj). Let LG denote the Laplacian matrix of graph G. The goal is to output a
vector u ∈ Rn such that

‖u− L†Gb‖LG ≤ ε‖L†Gb‖LG

where L†G denotes the pseudo-inverse of LG and matrix norm is defined as ‖c‖A =
√
c>Ac.

4 Equivalence of Matrix-Vector Multiplication and Solving
Linear Systems

In this section, we show that for linear systems with sparse preconditioners, approximately solv-
ing them is equivalent to approximate matrix multiplication. We begin by formalizing our notion
of approximation.
Definition 4.1. Given a matrix M and a vector x, we say that b is an ε-approximate multiplica-
tion of Mx if

(b−Mx)>M †(b−Mx) ≤ ε · x>Mx.

110

Given a vector d, we say that a vector y is an ε-approximate solution to My = d if y is an
ε-approximate multiplication of M †d.

Before stating the desired reductions, we state a folklore fact about the Laplacian norm:
Proposition 4.2 (property of Laplacian norm). Consider aw-weighted n-vertex connected graph
G and let wmin = minu,v∈Gwuv, wmax = maxu,v∈Gwuv, and α = wmax/wmin. Then, for any
vector x ∈ Rn that is orthogonal to the all ones vector,

wmin

2n4α2
‖x‖2

∞ ≤ ‖x‖2
LG
≤ n2wmax‖x‖2

∞

and for any vector b ∈ Rn orthogonal to all ones,

1

n2wmax

‖b‖2
∞ ≤ ‖b‖2

L†G
≤ 2n4α2

wmin

‖b‖2
∞

Proof. Lower Bound for LG: Let λmin and λmax denote the minimum nonzero and maximum
eigenvalues of D−1/2

G LGD
−1/2
G respectively, where DG is the diagonal matrix of vertex degrees.

Since G is connected, all cuts have conductance at least wmin/(n
2wmax) = 1/(n2α). Therefore,

by Cheeger’s Inequality [?], λmin ≥ 1/(2n4α2). It follows that,

‖x‖2
LG

= x>LGx

≥ (x>DGx)/(2n4α2)

≥ ‖x‖2
∞wmin/(2n

4α2)

as desired.
Upper bound for LG: λmax ≤ 1. Therefore,

‖x‖2
LG
≤ x>DGx ≤ n2wmax‖x‖2

∞

as desired.
Lower bound for L†G:

‖b‖2

L†G
≥ (1/λmax)‖b‖2

D−1
G
≥ 1/(n2wmax)‖b‖2

∞

Upper bound for L†G:

‖b‖2

L†G
≤ (1/λmin)‖b‖2

D−1
G
≤ (2n4α2/wmin)‖b‖2

∞

Proposition ?? implies the following equivalent definition of ε-approximate multiplication:
Corollary 4.2.1. LetG be a connected n-vertex graph with edge weights {we}e∈E(G) withwmin =
mine∈E(G) we, wmax = maxe∈E(G) we, and α = wmax/wmin and consider any vectors b, x ∈ Rn.
If

‖b− LGx‖∞ ≤ εwmax‖x‖∞
,b>1 = 0, and x>1 = 0, then b is an 2n3α2ε-approximate multiplication of LGx.

111

Proof. Since b>1 = 0, (b− LGx)>1 = 0 also. By the upper bound for L†G-norms in Proposition
??,

‖b− LGx‖2

L†G
≤ 2n4α2

wmin

‖b− LGx‖2
∞ ≤ 2n4α4ε2wmin‖x‖2

∞

Since x>1 = 0, x has both nonnegative and nonpositive coordinates. Therefore, since G is
connected, there exists vertices a, b in G for which {a, b} is an edge and for which |xa − xb| ≥
‖x‖∞/n. Therefore,

x>LGx ≥ wab(xa − xb)2 ≥ (wmin/n
2)‖x‖2

∞

Substitution shows that

‖b− LGx‖2

L†G
≤ 2n4α4ε2(n2x>LGx)

This is the desired result by definition of ε-approximate multiplication.

Corollary 4.2.2. LetG be a connected n-vertex graph with edge weights {we}e∈E(G) withwmin =
mine∈E(G) we, wmax = maxe∈E(G) we, and α = wmax/wmin and consider any vectors b, x ∈ Rn.
If b is an ε/(2n3α2)-approximate multiplication of LGx and b>1 = 0, then

‖b− LGx‖∞ ≤ εwmin‖x‖∞

Proof. Since b>1 = 0, (b− LGx)>1 = 0 as well. By the lower bound for L†G-norms in Proposi-
tion ?? and the fact that b is an approximate multiplication for LGx,

‖b− LGx‖2
∞ ≤ n2αwmin‖b− LGx‖2

L†G
≤ ε2wmin

4n4α3
x>LGx.

Notice that

x>LGx =
∑

{a,b}∈E(G)

wab(xa − xb)2 ≤ n2wmax(4‖x‖2
∞).

Therefore, by substitution,

‖b− LGx‖2
∞ ≤ (

ε2wmin

4n4α3
)(n2αwmin(4‖x‖2

∞)) ≤ w2
minε

2‖x‖2
∞.

Taking square roots gives the desired result.

4.1 Solving Linear Systems Implies Matrix-Vector Multiplication
Lemma 4.3. Consider an n-vertexw-weighted graphG, letwmin = mine∈Gwe,wmax = maxe∈Gwe,
α = wmax/wmin, and H be a known graph for which

(1− 1/900)LG � LH � (1 + 1/900)LG.

112

Suppose thatH has at mostZ edges and suppose that there is a T (n, δ)-time algorithm SOLVEG(b, δ)
that, when given a vector b ∈ Rn and δ ∈ (0, 1), returns a vector x ∈ Rn with

‖x− L†Gb‖LG ≤ δ · ‖L†Gb‖LG .

Then, given a vector x ∈ Rn and an ε ∈ (0, 1), there is a

Õ((Z + T (n, ε/(n2α))) log(Znα/ε))

-time algorithm MULTIPLYG(x, ε) (Algorithm ??) that returns a vector b ∈ Rn for which

‖b− LGx‖∞ ≤ ε · wmin · ‖x‖∞.

The algorithm MULTIPLYG (Algorithm ??) uses standard preconditioned iterative refine-
ment. It is applied in the opposite from the usual way. Instead of using iterative refinement
to solve a linear system given matrix-vector multiplication, we use iterative refinement to do
matrix-vector multiplication given access to a linear system solver.

Algorithm 2 MULTIPLYG and MULTIPLYGADDITIVE

1: procedure MULTIPLYG(x, ε) . Lemma ??, Theorem ??
2: Given: x ∈ Rn, ε ∈ (0, 1), the sparsifier H for G, and a system solver for G
3: Returns: an approximation b to LGx
4: return MULTIPLYGADDITIVE(x, ε‖x‖∞/(log2(αn/ε)))
5: end procedure
6: procedure MULTIPLYGADDITIVE(x, τ)
7: if ‖x‖∞ ≤ τ/(n10α5) then
8: return 0
9: end if

10: xmain ← SOLVEG(LHx, τ
√
wmin/(n

10α5))
11: xres ← x− xmain

12: bres ← MULTIPLYGADDITIVE(xres, τ)
13: return LHx+ bres

14: end procedure

Proof. In this proof, assume that 1>x = 0. If this is not the case, then shifting x so that it is
orthogonal to 1 only decreases its `2-norm, which means that the `∞ norm only increases by a
factor of

√
n, so the error only increases by O(log n) additional solves.

Reduction in residual and iteration bound: First, we show that

‖xres‖LG ≤ (1/14)‖x‖LG

113

Since (I − LHL†G)LG(I − L†GLH) � 3(1/900)LG,

‖xres‖LG = ‖x− xmain‖LG
≤ ‖x− L†GLHx‖LG + ‖L†GLHx− xmain‖LG
≤ (1/15)‖x‖LG + (1/10000)‖L†GLHx‖LG
≤ (1/14)‖x‖LG

Let xfinal be the lowest element of the call stack and let k be the number of recursive calls to
MULTIPLYGADDITIVE (Algorithm ??). By Proposition ??,

‖x‖LG ≤ ‖x‖∞
√
wmax · n and ‖xfinal‖LG ≥ ‖xfinal‖∞

√
wmin/(2n

2α).

By definition of xfinal,

‖xfinal‖∞ ≥
τ

(14n10α5)
=

ε
√
wmin‖x‖∞

28n12α5 log(αn/ε)
.

Therefore,

k ≤ log14(‖x‖LG/‖xfinal‖LG) ≤ log2(αn/ε)

as desired.
Error: We start by bounding error in theL†G norm. Let b be the output of MULTIPLYGADDITIVE(x, τ)

(Algorithm ??). We bound the desired error recursively:

‖b− LGx‖L†G = ‖LHx+ bres − LGx‖L†G
= ‖bres − LG(x− L†GLHx)‖L†G
= ‖bres − LG(x− xmain)− LG(xmain − L†GLHx)‖L†G
≤ ‖bres − LG(x− xmain)‖L†G + ‖LG(xmain − L†GLHx)‖L†G
= ‖bres − LGxres‖L†G + ‖xmain − L†GLHx‖LG
≤ ‖bres − LGxres‖L†G +

√
wminτ/(n

10α5)

Because 0 = MULTIPLYGADDITIVE(xfinal, τ) (Algorithm ??),

‖b− LGx‖L†G ≤ ‖xfinal‖LG + k
√
wminτ/(n

10α5)

≤ n
√
wmax‖xfinal‖∞ + k

√
wminτ/(n

10α5)

≤
√
wminτ/(n

8α4)

≤ ε
√
wmin‖x‖∞/(n8α4) by τ ≤ ε‖x‖∞

114

By Proposition ?? applied to L†G, ‖b− LGx‖L†G ≥ ‖b− LGx‖∞/(n
√
wmax). Therefore,

‖b− LGx‖∞ ≤ n
√
wmax‖b− LGx‖L†G

≤ n
√
wmaxε

√
wmin

1

n8α4
‖x‖∞

≤ εwmin‖x‖∞ ·
1

n7α3.5
by α = wmax/wmin

≤ εwmin‖x‖∞

as desired.
Runtime: There is one call to SOLVEG and one multiplication byLH per call to MULTIPLYGADDITIVE

(Algorithm ??). Each multiplication by LH takes O(Z) time. As we have shown, there are only
k ≤ O(log(nα/ε)) calls to MULTIPLYGADDITIVE (Algorithm ??). Therefore, we are done.

4.2 Matrix-Vector Multiplication Implies Solving Linear Systems
The converse is well-known to be true [? ?]:
Lemma 4.4 ([?]). Consider an n-vertex w-weighted graph G, let wmin = mine∈Gwe, wmax =
maxe∈Gwe, α = wmax/wmin, and H be a known graph with at most Z edges for which

(1− 1/900)LG � LH � (1 + 1/900)LG.

Suppose that, given an ε ∈ (0, 1), there is a T (n, ε)-time algorithm MULTIPLYG(x, ε) (Algo-
rithm ??) that, given a vector x ∈ Rn, returns a vector b ∈ Rn for which

‖b− LGx‖∞ ≤ ε · wmin · ‖x‖∞.

Then, there is an algorithm SOLVEG(b, δ) that, when given a vector b ∈ Rn and δ ∈ (0, 1),
returns a vector x ∈ Rn with

‖x− L†Gb‖LG ≤ δ · ‖L†Gb‖LG .

in

Õ(Z + T (n, δ/(n4α2))) log(Znα/δ)

time.

4.3 Lower bound for high-dimensional linear system solving
We have shown in this section that if a K graph can be efficiently sparsified, then there is an
efficient Laplacian multiplier for K graphs if and only if ther is an efficient Laplacian system
solver for K graphs. Here we give one example of how this connection can be used to prove
lower bounds for Laplacian system solving:

115

Corollary 4.4.1 (Restatement of Corollary ??). Consider a function f that is (2, o(log n))-
multiplicatively Lipschitz for which f cannot be ε-approximated by a polynomial of degree at
most o(log n). Then, assuming SETH, there is no poly(d log(αn/ε))n1+o(1)-time algorithm
for ε-approximately solving Laplacian systems in the K-graph on n points, where K(u, v) =
f(‖u− v‖2

2).

Proof. By Theorem ??, there is a poly(d log(α))n1+o(1)-time algorithm for sparsifying the K-
graph on n points. Since sparsification is efficient, Lemma ?? implies that the existence of
a poly(d log(αn/ε))n1+o(1)-time Laplacian solver yields access to a poly(d log(αn/ε))n1+o(1)-
time Laplacian multiplier. The existence of this multiplier contradicts Theorem ?? assuming
SETH, as desired.

5 Matrix-Vector Multiplication
Recall the adjacency and Laplacian matrices of a K graph: For any function K : Rd × Rd → R,
and any set P = {x1, . . . , xn} ⊆ Rd of n points, define the matrix AK,P ∈ Rn×n by

AK,P [i, j] =

{
K(xi, xj), if i 6= j;

0, if i = j.

Similarly, define the matrix LK,P ∈ Rn×n by

LK,P [i, j] =

{
−K(xi, xj), if i 6= j;∑

a∈[n]\{i} K(xi, xa), if i = j.

AK,P and LK,P are the adjacency matrix and Laplacian matrix, respectively, of the complete
weighted graph on n nodes where the weight between node i and node j is K(xi, xj).

In this section, we study the algorithmic problem of computing the linear transformations
defined by these matrices:
Problem 6 (K Adjacency Evaluation). For a given function K : Rd × Rd → R, the K Adjacency
Evaluation (KAdjE) problem asks: Given as input a set P = {x1, . . . , xn} ⊆ Rd with |P | = n
and a vector y ∈ Rn, compute a vector b ∈ Rn such that ‖b− AK,P · y‖∞ ≤ ε · wmax · ‖y‖∞.
Problem 7 (K Laplacian Evaluation). For a given function K : Rd × Rd → R, the K Laplacian
Evaluation (KLapE) problem asks: Given as input a set P = {x1, . . . , xn} ⊆ Rd with |P | = n
and a vector y ∈ Rn, compute a vector b ∈ Rn such that ‖b− LK,P · y‖∞ ≤ ε · wmax · ‖y‖∞.

We make a few important notes about these problems:
• In both of the above, problems, wmax := maxu,v∈P |K(u, v)|.
• We assume ε = 2−polylogn when it is omitted in the above problems. As discussed in Sec-

tion ??, this is small enough error so that we can apply such an algorithm for K Laplacian
Evaluation to solve Laplacian systems, and furthermore, if we can prove hardness for any
such ε, it implies hardness for solving Laplacian systems.

• Note, by Corollary ??, that when ε = 2−polylogn, the result of KAdjE is an ε-approximate
multiplication of AK,P · y (see Definition ??), and the result of KLapE is an ε-approximate
multiplication of LK,P · y.

116

• We will also sometimes discuss the f KAdjE and f KLapE problems for a single-input
function f : R→ R. In this case, we implicitly pick K(u, v) = f(‖u− v‖2

2).
Suppose the function K can be evaluated in time T (in this chapter we’ve been assuming

T = Õ(1)). Then, both the KAdjE and KLapE problems can be solved in O(Tn2) time, by com-
puting all n2 entries of the matrix and then doing a straightforward matrix-vector multiplication.
However, since the input size to the problem is only O(nd) real numbers, we can hope for much
faster algorithms when d = o(n). In particular, we will aim for n1+o(1) time algorithms when
d = no(1).

For some functions K, like K(x, y) = ‖x−y‖2
2, we will show that a running time of n1+o(1) is

possible for all d = no(1). For others, like K(x, y) = 1/‖x− y‖2
2 and K(x, y) = exp(−‖x− y‖2

2),
we will show that such an algorithm is only possible when d� log(n). More precisely, for these
K:

1. When d = O(log(n)/ log log(n)), we give an algorithm running in time n1+o(1), and

2. For d = Ω(log n), we prove a conditional lower bound showing that n2−o(1) time is neces-
sary.

Finally, for some functions like K(x, y) = |〈x, y〉|, we will show a conditional lower bound
showing that Ω(n2−δ) time is required even when d = 2Ω(log∗ n) is just barely super-constant.

In fact, assuming SETH, we will characterize the functions f for which the KAdjE and KLapE
problems can be efficiently solved in high dimensions d = Ω(log n) in terms of the approximate
degree of f (see subsection ?? below). The answer is more complicated in low dimensions d =
o(log n), and for some functions f we make use of the Fast Multipole Method to design efficient
algorithms (in fact, we will see that the Fast Multipole Method solves a problem equivalent to
our KAdjE problem).

5.1 Equivalence between Adjacency and Laplacian Evaluation

Although our goal in this section is to study the K Laplacian Evaluation problem, it will make
the details easier to instead look at the K Adjacency Evaluation problem. Here we show that any
running time achievable for one of the two problems can also be achieved for the other (up to
a log n factor), and so it will be sufficient in the rest of this section to only give algorithms and
lower bounds for the K Adjacency Evaluation problem.
Proposition 5.1. Suppose the KAdjE (Problem ??) can be solved in T (n, d, ε) time. Then, the
KLapE (Problem ??) can be solved in O(T (n, d, ε/2)) time.

Proof. We use the K Adjacency Evaluation algorithm with error ε/2 twice, to compute s :=
AK,P · y and g := AK,P · ~1, where ~1 is the all-1s vector of length n. We then output the vector
z ∈ Rn given by zi = gi · yi − si, which can be computed in O(n) = O(T (n, d, ε/2)) time.

Proposition 5.2. Suppose the KLapE (Problem ??) can be solved in T (n, d, ε) time, and that
T satisfies T (n1 + n2, d, ε) ≥ T (n1, d, ε) + T (n2, d, ε) for all n1, n2, d, ε. Then, the KAdjE
(Problem ??) can be solved in O(T (n log n, d, 0.5ε/ log n)) time.

117

Proof. We will show that the K Adjacency Evaluation problem can be solved in

logn∑
i=0

O(2i · T (n/2i, d, 0.5ε/ log n))

time, and then apply the superadditive identity for T to get the final running time. For a fixed d,
we proceed by strong induction on n, and assume the K Adjacency Evaluation problem can be
solved in this running time for all smaller values of n.

Let a′, a′′ ∈ Rn be the vectors given by a′i = yi and a′′i = 0 when i ∈ [n/2], and a′i = 0 and
a′′i = yi when i > n/2.

We first compute z′ ∈ Rn and z′′ ∈ Rn as follows:

z′ := LK,P · a′ and z′′ := LK,P · a′′

in O(T (n, d, 0.5ε/ log n)) time.
Next, let y′, y′′ ∈ Rn/2 be the vectors given by y′i = yi and y′′i = yn/2+i for all i ∈ [n/2], and

let P ′, P ′′ ⊆ Rd be given by P ′ = {x1, . . . , xn/2} and P ′′ = {xn/2+1, . . . , xn}.
We recursively compute r′, r′′ ∈ Rn/2 given by

r′ = LK,P ′ · y′ and r′′ = LK,P ′′ · y′′.

Finally, we can output the vector z ∈ Rn given by zi = z′′i + r′i and zn/2+i = z′n/2+i + r′′i for all
i ∈ [n/2]. Each of the two recursive calls took time

log2(n)∑
i=1

O(2i−1 · T (n/2i, d, 0.5ε/ log n)),

and our two initial calls took time O(T (n, d, 0.5ε/ log n)), leading to the desired running time.
Each output entry is ultimately the sum of at most 2 log n terms from calls to the given algorithm,
and hence has error ε (since we perform all recursive calls with error 0.5ε/ log n and the additive
error guarantees in recursive calls can only be more stringent).

Remark 5.2.1. In both Proposition ?? and Proposition ??, if the input to the KLapE (resp.
KAdjE) problem is a {0, 1} vector, then we only apply the given KAdjE (KLapE) algorithm on
{0, 1} vectors. Hence, the two problems are equivalent even in the special case where the input
vector y must be a {0, 1} vector.

5.2 Approximate Degree
We will see in this section that the key property of a function f : R→ R for determining whether
f KAdjE is easy or hard is how well it can be approximated by a low-degree polynomial.
Definition 5.3. For a positive integer k and a positive real number ε > 0, we say a function
f : [0, 1] → R is ε-close to a polynomial of degree k if there is a polynomial p : [0, 1] → R of
degree at most k such that, for every x ∈ [0, 1], we have |f(x)− p(x)| ≤ ε.

118

The Stone-Weierstrass theorem says that, for any ε > 0, and any continuous function f which
is bounded on [0, 1], there is a positive integer k such that f is ε-close to a polynomial of degree
k. That said, k can be quite large for some natural and important continuous functions f . For
some examples:
Example 5.4. For the function f(x) = 1/(1 + x), we have f(x) =

∑∞
`=0(−1)`x` for all x ∈

[0, 1). Truncating this series to degree O(log(1/ε)) gives a ε approximation on the interval
[0, 1/2]. The following proposition shows that this is optimal up to constant factors.
Proposition 5.5. Any polynomial p(x) such that |p(x)− 1/(1 + x)| ≤ ε for all x ∈ [0, 1/2] has
degree at least Ω(log(1/ε)).

Proof. For such a polynomial p(x), define q(x) := 1 − x · p(x − 1). Thus, the polynomial q
has the two properties that |q(x)| < ε for all x ∈ [1, 3/2], and q(0) = 1. By standard properties
of the Chebyshev polynomials (see e.g. [? , Proposition 2.4]), the polynomial q with those two
properties of minimum degree is an appropriately scaled and shifted Chebyshev polynomial,
which requires degree Ω(log(1/ε)).

Example 5.6. For the function f(x) = e−x, we have f(x) =
∑∞

`=0(−1)`x`/`! for all x ∈ R+.
Truncating this series to degree O(log(1/ε)/ log log(1/ε)) gives a ε approximation on any inter-
val [0, a] for constant a > 0. Such a dependence is believed to be optimal, and is known to be op-
timal if we must approximate f(x) on the slightly larger interval [0, log2(1/ε)/ log2 log(1/ε)] [?
, Section 5].

In both of the above settings, for error ε = n−Ω(log4 n), the function f is only ε-close to a
polynomial of degree ω(log n). We will see in Theorem ?? below that this implies that, for each
of these functions f , the ε-approximate f KAdjE problem in dimension d = Ω(log n) requires
time n2−o(1) assuming SETH.

5.3 ‘Kernel Method’ Algorithms
Lemma 5.7. For any integer q ≥ 0, let K(u, v) = (‖u−v‖2

2)q. The KAdjE problem (Problem ??)
can be solved exactly (with 0 error) in time Õ(n ·

(
2d+2q−1

2q

)
).

Proof. The function

K(u, v) =

(
d∑
i=1

(ui − vi)2

)q

is a homogeneous polynomial of degree 2q in the variables u1, . . . , ud, v1, . . . , vd. Let

V = {u1, . . . , ud, v1, . . . , vd},

and let T be the set of functions t : V → {0, 1, 2, . . . 2q} such that
∑

v∈V t(v) = 2q.
We can count that

|T | =
(

2d+ 2q − 1

2q

)
.

119

Hence, there are coefficients ct ∈ R for each t ∈ T such that

K(u, v) =
∑
t∈T

ct ·
∏
v∈V

vt(v). (5.3)

Let Vu = {u1, . . . , ud} and Vv = V \ Vu. Define φu : Rd → R|T | by, for t ∈ T ,

φu(u1, . . . , ud)t = ct ·
∏
ui∈Vu

ui
t(ui).

Similarly define φv : Rd → R|T | by, for t ∈ T ,

φv(v1, . . . , vd)t =
∏
vi∈Vv

vi
t(vi).

It follows from (??) that, for all u, v ∈ Rd, we have K(u, v) = 〈φu(u), φv(v)〉.
Our algorithm thus constructs the matrix Mu ∈ Rn×|T | whose rows are the vectors φu(xi) for

i ∈ [n], and the matrix Mv ∈ R|T |×n whose columns are the vectors φv(xi) for i ∈ [n]. Then, on
input y ∈ Rn, it computes y′ := Mv · y ∈ R|T | in Õ(n · |T |) time, then z := Mu · y′ ∈ Rn, again
in Õ(n · |T |) time, and outputs z. Since Mu ·Mv = AK,{x1,...,xn}, it follows that the vector we
output is the desired z = AK,{x1,...,xn} · y.

Remark 5.7.1. The running time in Lemma ?? can be improved to Õ(n ·
(
d+q−1
q

)
) with more

careful work, by noting that each monomial has either ‘x-degree’ or ‘y-degree’ at most d, but we
omit this here since the difference is negligible for our parameters of interest.

Corollary 5.7.1. Let q, d be positive integers which may be functions of n, such that
(

2(d+q)
2q

)
<

no(1). For example:

• when d = o(log n/ log log n) and q ≤ poly(log n), or
• when d = o(log n) and q ≤ O(log n), or
• when d = Θ(log n) and q < o(log n).

If f : R → R is a polynomial of degree at most q, and we define K(u, v) := f(‖u − v‖2
2), then

the KAdjE problem in dimension d can be solved exactly in n1+o(1) time.

Proof. This follows by applying Lemma ?? separately to each monomial of f , and summing the
results.

When d = o(log n) and q ≤ O(log n), then we can write d = 1
a(n)

log n for some a(n) =

120

ω(1), and q = b(n) · log n for some b(n) = O(1). It follows that(
2(d+ q)

2q

)
=

(
2(d+ q)

2d

)
=

(
O(q)

O(d)

)
by d = O(q)

≤ O(q/d)O(d)

= 2O(d log(q/d))

= 2O(
log(ab)
a

)·logn by d =
log n

a
, q = b log n

≤ 2O(
log(a)
a

)·logn by b = O(1)

< no(1). by a = ω(1)

The other cases are similar.

Corollary 5.7.2. Suppose f : R → R is ε/n-close to a polynomial of degree q (Definition ??),
where q, d are positive integers such that

(
2(d+q)

2q

)
< no(1) (such as the parameter setting examples

in Corollary ??), and define K(u, v) := f(‖u − v‖2
2). Then, the KAdjE problem in dimension d

can be solved ε-approximately in n1+o(1) time.

Proof. Apply Corollary ?? for the degree q approximation of f .

5.4 Lower Bound in High Dimensions
We now prove that in the high dimensional setting, where d = Θ(log n), the algorithm from
Corollary ?? is essentially tight. In that algorithm, we showed that (recalling Definition ??)
functions f which are ε-close to a polynomial of degree o(log n) have efficient algorithms; here
we show a lower bound if f is not ε-close to a polynomial of degree O(log n).
Theorem 5.8. Let f : [0, 1] → R be an analytic function on [0, 1] and let κ : N → [0, 1] be a
nonincreasing function. Suppose that, for infinitely many positive integers k, f is not κ(k)-close
to a polynomial of degree k.

Then, assuming SETH, the KAdjE problem for K(x, y) = f(‖x − y‖2
2) in dimension d and

error (κ(d+ 1))O(d4) on n = 1.01d points requires time n2−o(1).
This theorem will be a corollary of another result, which is simpler to use in proving lower

bounds:
Theorem 5.9. Let f : [0, 1] → R be an analytic function on [0, 1] and let κ : N → [0, 1] be
a nonincreasing function. Suppose that, for infinitely many positive integers k, there exists an
xk ∈ [0, 1] for which |f (k+1)(xk)| > κ(k).

Then, assuming SETH, the KAdjE problem for K(x, y) = f(‖x − y‖2
2) in dimension d and

error (κ(d+ 1))O(d4) on n = 1.01d points requires time n2−o(1).
To better understand Theorem ?? in the context of our dichotomy, think about the following

example:

121

Example 5.10. Consider a function f that is exactly κ(k) = 2−k
3
-far from the closest polyno-

mial of degree k for every k ∈ N. By Corollary ??, there is an dlog1/3 nn < n1+o(1)-time algo-
rithm for 1/poly(n)-approximate adjacency matrix multiplication on an n-vertex f -graph when
d = Θ(logn). In fact, there is an algorithm even for 2−o(log3 n)-error that takes n1+o(1). How-
ever, by Theorem ??, there is no n2−o(1)-time algorithm for 2−d

3·d4 = 2−Θ(log7 n)-approximate
multiplication.

We now give a more concrete version of the proof outline described in the introduction. To
prove Theorem ?? given Theorem ??, it suffices to show that for any function that is far from
a degree k polynomial, there exists a point with high (k + 1)-th derivative (Lemma ??). To
prove Theorem ??, we start by showing that there exists an interval (not just a single point)
with high (k + 1)-th derivative (Lemma ??). This is done by integrating over the (k + 2)-nd
derivative, exploiting the fact that it is bounded for analytic functions (Proposition ??). Then,
we further improve this derivative lower bound by showing that there is an interval on which all
i-th derivatives for i ≤ k + 1 are bounded from below (Lemma ??). This is done by induction,
deriving a bound for i-th derivatives by integrating over the (i + 1)-th derivative. The lower
bound on the (i+ 1)-th derivative ensures that it can only be close to 0 at a small interval around
one point, so picking an interval far from that point suffices for the inductive step.

Up to this point, we have argued that there must be an interval I ⊂ [0, 1] on which all of f ’s
≤ (k+1)-derivatives are large in absolute value (Lemma ??). We exploit this property to solve an
exact bichromatic nearest neighbors problem in Hamming distance in d = Θ(log n) dimensions
(Lemma ??). Since even approximate nearest neighbors cannot be solved in n2−δ-time for δ > 0
assuming SETH (Theorem ??), this suffices. To solve Hamming nearest neighbors a a pair of sets
S and T with |S| = |T | = n, we set up d + 1 different f -graph adjacency matrix multiplication
problems. In problem i, we scale the points in S and T by a factor of ζi for some ζ0 and translate
them by c ∈ [0, 1] so that they are in the interval I . Then, with one adjacency multiplication, one
can evaluate an expression Zi, where Zi =

∑
x∈S,y∈T f(c + i2ζ2‖x − y‖2

2). For each distance
i ∈ [d], let uj = |{x ∈ S, y ∈ T : ‖x − y‖2

2 = j}|. To solve bichromatic nearest neighbors,
it suffices to compute all of the ujs. This can be done by setting up a linear system in the ujs,
where there is one equation for each Zi. The matrix for this linear system has high determinant
because f has high ≤ (k + 1)-th derivatives on I (Lemma ??). Cramer’s Rule can be used to
bound the error in our estimate of the ujs that comes from the error in the multiplication oracle
(Lemma ??). Therefore, O(d) calls to a multiplication oracle suffices for computing the number
of pairs of vertices in S × T that are at each distance value. Returning the minimum distance i
for which ui > 0 solves bichromatic nearest neighbors, as desired.

In Lemma ??, we will make use of the Cauchy-Binet formula:
Lemma 5.11 (Cauchy-Binet formula for infinite matrices). Let k be a positive integer, and for
functions A : [k]× N→ R and B : N× [k]→ R, define the matrix C ∈ Rk×k by, for i, j ∈ [k],

Cij :=
∞∑
`=0

Ai` ·B`j,

and suppose that the sum defining Cij converges absolutely for all i, j. Then,

det(C) =
∑

1≤`1<`2<···<`k

det(A[`1, `2, · · · , `k]) · det(B[`1, `2, · · · , `k]),

122

whereA[`1, `2, · · · , `k] ∈ Rk×k denotes the matrix whose i, j entry is given byAi`j andB[`1, `2, · · · , `k]
denotes the matrix whose i, j entry is given by B`ij .

In this section, we exploit the following property of analytic functions:
Proposition 5.12. Consider a function f : [0, 1] → R that is analytic. Then, there is a constant
B > 0 depending on f such that for all k ≥ 0 and all x ∈ [0, 1], |f (k)(x)| < B4kk!

Proof. We first show that, for any x ∈ [0, 1], |f (k)(x)| < Bx2
kk! for some constantBx depending

on x. Write f ’s Taylor expansion around x:

f(y) =
∞∑
i=0

f (i)(x)(y − x)i/i!.

Let y0 = arg maxa∈{0,1} |a − x|. Note that |y0 − x| ≥ 1/2. Since f(y0) is a convergent series,
there exists a constant Nx dependent on x such that for all i > Nx, the absolute value of the i-th
term of the series for f(y0) is at most 1/2. Therefore, for all i > Nx, |f (i)(x)| < 2(2i)i!. For all
i ≤ Nx, f (i)(x) is a constant depending on x, so we are done with this part.

Next, we show that |f (k)(x)| < B4kk! for all x ∈ [0, 1] and some constant B depending only
on f . Let x0 ∈ {i/8}8

i=0 be the point that minimizes |x− x0|. Note that |x− x0| < 1/16. Taylor
expand f around x0:

f(x) =
∞∑
i=0

f (i)(x0)(x− x0)i/i!.

Take derivatives for some k ≥ 0 and use the triangle inequality:

|f (k)(x)| ≤
∞∑
i=0

|f (i+k)(x0)||x− x0|i/i!

By the first part, |f (i+k)(x0)| ≤ Bx02
i+k(i+ k)!, so

|f (k)(x)| ≤
∞∑
i=0

Bx02
i+k((i+ k)!/i!)(1/16)(i+k)

Note that (i + k)!/i! ≤ (2i)k for i > k (we are done for i ≤ k). There is some constant C for
which

∑∞
i=0 i

k4−i = C, so letting B = Bx0C suffices, as desired.

We now move on to proving the main results of this section, which consists of several steps.
Lemma 5.13 (Step 1: high (k + 1)-derivative). Let f : [0, 1] → R be an analytic function on
[0, 1] and let κ : N→ [0, 1] be a nonincreasing function. Suppose that, for some positive integer
k, f is not κ(k)-close to a polynomial of degree k. Then, there exists some x ∈ [0, 1] for which
|f (k+1)(x)| > κ(k).

Proof. Define the function g : [0, 1] → R by g(x) = f(x) −
∑k

`=0
f (`)(0)·x`

`!
. We claim that, for

each i ∈ {0, 1, . . . , k + 1}, there is an xi ∈ [0, 1] such that |g(i)(xi)| > κ(k). Since g(k+1)(x) =

123

f (k+1)(x), plugging in i = k+1 into this will imply our desired result. We prove this by induction
on i.

For the base case i = 0: note that g is the difference between f and a polynomial of degree
k, and so by our assumption that f is not κ(k)-close to a polynomial of degree k, there must be
an x0 ∈ [0, 1] such that |g(x0)| > κ(k).

For the inductive step, consider an integer i ∈ [k+ 1]. Notice that g(i−1)(0) = 0 by definition
of g since i ≤ k + 1. By the inductive hypothesis, there is an xi−1 ∈ [0, 1] with |g(i−1)(xi−1)| >
κ(k). Hence, by the mean value theorem, there must be an xi ∈ [0, xi−1] such that

|g(i)(xi)| ≥ |g(i−1)(xi−1)− g(i−1)(0)|/xi−1 ≥ |g(i−1)(xi−1)| > κ(k),

as desired.

Proof of Theorem ?? given Theorem ??. For each of the infinitely many ks for which f is κ(k)-
far from a degree k polynomial, Lemma ?? implies the existance of an xk for which |f (k+1)(xk)| >
κ(xk). Thus, f satisfies the input condition of Theorem ??, so applying Theorem ?? proves The-
orem ?? as desired.

Now, we focus on Theorem ??:
Lemma 5.14 (Step 2: high (k + 1)-derivative on interval). Let f : [0, 1] → R be an analytic
function on [0, 1] and let κ : N → [0, 1] be a nonincreasing function. There is a constant B > 0
depending only on f such that the following holds.

Suppose that, for some sufficiently large positive integer k, there is an x ∈ [0, 1] for which
|f (k+1)(x)| > κ(k). Then, there exists an interval [a, b] ⊆ [0, 1] with the property that both
b− a ≥ κ(k)/(32Bk4k · k!) and, for all y ∈ [a, b], |f (k+1)(y)| > κ(k)/2.

Proof. Since f is analytic on [0, 1], Proposition ?? applies and it follows that there is a constant
B > 0 dependent on f such that for every y ∈ [0, 1] and every nonnegative integer m, we have
|f (m)(y)| ≤ Bm4m · m!. In particular, for all y ∈ [0, 1], we have |f (k+2)(y)| ≤ 16Bk4k · k!.
Let δ = κ(k)/(32Bk4k · k!), then let a = max{0, x − δ}, and b = min{1, x + δ}. We have
b − a ≥ δ = κ(k)/(32Bk4k · k!), since when k is large enough, we get that δ < 1/2, so we
cannot have both a = 0 and b = 1. Meanwhile, for any y ∈ [a, b], we have as desired that

|f (k+1)(y)| ≥ |f (k+1)(x)| − |x− y| · sup
y′∈[a,b]

|f (k+2)(y′)|

> κ(k)− δ · 16Bk4k · k!

= κ(k)/2.

Lemma 5.15 (Step 3: high lower derivatives on subintervals). Let f : [0, 1]→ R be an analytic
function on [0, 1] and let κ : N → [0, 1] be a nonincreasing function. There is a constant B > 1
depending only on f such that the following holds.

Suppose that, for some sufficiently large positive integer k, there exists an x ∈ [0, 1] for
which |f (k+1)(x)| > κ(k). Then, there exists an interval [c, d] ⊆ [0, 1] with the property that
both d − c > κ(k)/(128Bk42k+1 · k!) and, for all y ∈ [c, d] and all i ≤ k + 1, |f (i)(y)| >[
κ(k)2/(64Bk42k+1 · k!)

]k+2−i.

124

Proof. We will prove that, for all integers 0 ≤ i ≤ k+ 1, there is an interval [ci, di] ⊆ [0, 1] such
that di − ci > κ(k)/(32Bk42k+1−i · k!), and for all integers i ≤ i′ ≤ k + 1 and all y ∈ [ci, di] we
have |f (i′)(y)| >

[
κ(k)2/(64Bk42k+1 · k!)

]k+2−i′ . Plugging in i = 0 gives the desired statement.
We will prove this by induction on i, from i = k + 1 to i = 0. The base case i = k + 1 is given
(with slightly better parameters) by Lemma ??.

For the inductive step, suppose the statement is true for i + 1. We will pick [ci, di] to be a
subinterval of [ci+1, di+1], so the inductive hypothesis says that for every y ∈ [ci, di] and every
integer i < i′ ≤ k + 1 we have |f (i′)(y)| >

[
κ(k)2/(64Bk42k+1 · k!)

]k+2−i′ . It thus remains
to show that we can further pick ci and di such that di − ci ≥ 1

4
(di+1 − ci+1) and |f (i)(y)| >[

κ(k)2/(64Bk42k+1 · k!)
]k+2−i for all y ∈ [ci, di].

Recall that |f (i+1)(y)| >
[
κ(k)2/(64Bk42k+1 · k!)

]k+1−i for all y ∈ [ci+1, di+1]. Since f (i+1)

is continuous, we must have

• either f (i+1)(y) >
[
κ(k)2/(64Bk42k+1 · k!)

]k+1−i for all such y,
• or −f (i+1)(y) >

[
κ(k)2/(64Bk42k+1 · k!)

]k+1−i for all such y.

Let us assume we are in the first case; the second case is nearly identical. Let δ = (di+1−ci+1)/4,
and consider the four subintervals

[ci+1, ci+1 + δ], [ci+1 + δ, ci+1 + 2δ], [ci+1 + 2δ, ci+1 + 3δ], and [ci+1 + 3δ, ci+1 + 4δ].

Since f (i+1)(y) >
[
κ(k)2/(64Bk42k+1 · k!)

]k+1−i for all y in each of those intervals, we know
that for each of the intervals, letting c′ denote its left endpoint and d′ denote its right endpoint,
we have

f (i)(d′)− f (i)(c′) ≥ δ ·
[
κ(k)2/(64Bk42k+1 · k!)

]k+1−i

≥
[
κ(k)/(32Bk42k+1−i · k!)

]
·
[
κ(k)2/(64Bk42k+1 · k!)

]k+1−i
/4

≥
[
κ(k)2/(64Bk42k+1 · k!)

]k+2−i
.

In particular, f (i) is increasing on the interval [ci+1, di+1], and if we look at the five points
y = ci+1 + a · δ for a ∈ {0, 1, 2, 3, 4} which form the endpoints of our four subintervals, f (i)

increases by more than
[
κ(k)2/(64Bk42k+1 · k!)

]k+2−i from each to the next. It follows by a
simple case analysis (on where in our interval f (i) has a root) that there must be one of our four
subintervals with |f (i)(y)| >

[
κ(k)2/(64Bk42k+1 · k!)

]k+2−i for all y in the subinterval. We can
pick that subinterval as desired.

To simplify notation in the rest of the proof, we will let ρ(k) =
[
κ(k)2/(64Bk42k+1 · k!)

]k+2.
We now use these properties of f to reason about a certain matrix connected to f that can be used
to count the number of pairs of points at each distance.
Definition 5.16 (Counting matrix). For a function f : R→ R, an integer k ≥ 1, and a function
ρ : N → R>0, let [c, d] be the interval from Lemma ??. Define the counting matrix be the k × k
matrix M for which

Mij = f(c+ (ρ(k)/(B(200k)k))10k · i · j/k2).

125

Lemma 5.17 (Step 4: determinant lower bound for functions f that are far from polynomials
using Cauchy-Binet). Let f : [0, 1]→ R be an analytic function on [0, 1], let κ : N→ [0, 1] be a
nonincreasing function, and let ρ(`) =

[
κ(`)2/(64B`42`+1 · `!)

]`+2 (as discussed before). Let k
be an integer for which there exists an x ∈ [0, 1] with |f (k+1)(x)| > κ(k).

Let M be the counting matrix (Definition ??) for f , k, and ρ. Then

| det(M)| > (ρ(k))k(ρ(k)/(Bk2(200k)k))10k3 .

Proof. Since f is analytic on [c, d], we can Taylor expand it around c:

f(x) =
∞∑
`=0

f (`)(c)

`!
(x− c)`

Let δ = (ρ(k)/(B(200k)k))10k/k2. Note that for all values of i, j ∈ [k], the input to f in Mij is
in the interval [c, d] by the lower bound on d− c in Lemma ??. In particular, for all i, j ∈ [k],

Mij =
∞∑
`=0

f (`)(c)

`!
δ`i`j`

Define two infinite matrices A : [k]× Z≥0 → R and C : Z≥0 × [k]→ R as follows:

Ai` =
f (`)(c)

`!
δ`i`

C`j = j`

for all i, j ∈ [k] and ` ∈ Z≥0. Then

Mij =
∞∑
`=0

Ai`C`j

for all i, j ∈ [k] and converges, so we may apply Lemma ??. By Lemma ??,

det(M) =
∑

0≤`1<`2<...<`k

det(A[`1, `2, . . . , `k]) det(C[`1, `2, . . . , `k])

To lower bound | det(M)|, we

(1) lower bound the contribution of the term for the tuple (`1, `2, . . . , `k) = (0, 1, . . . , k − 1),
(2) upper bound the contribution of every other term,
(3) show that the lower bound dominates the sum.

We start with part (1). Let D and P be k × k matrices, with D diagonal, D`` = f (`)(c)δ`

`!
, and

Pi` = i` for all ` ∈ {0, 1, . . . , k} and i ∈ [k]. Then A[0, 1, . . . , k − 1] = PD, which means that

det(A[0, 1, . . . , k − 1]) = det(P) · det(D)

126

P and C[0, 1, . . . , k−1] are Vandermonde matrices, so their determinants has a closed form and,
in particular, have the property that | det(P)| ≥ 1 and | det(C[0, 1, . . . , k− 1])| ≥ 1. By Lemma
??, |D``| > δ`ρ(`) ≥ δ`ρ(k) for all ` ∈ {0, 1 . . . , k − 1}. Therefore,

| det(A[0, 1, . . . , k − 1])| · | det(C[0, 1, . . . , k − 1])| > δ1+2+...+(k−1)ρ(k)k

= δ(
k
2)ρ(k)k.

This completes part (1). Next, we do part (2). Consider a k-tuple 0 ≤ `1 < `2 < . . . < `k and a
permutation σ : [k]→ [k]. By Proposition ??, there is some constant B > 0 depending on f for
which |f (`)(c)| ≤ B10`(`!) ≤ B(10`)` for all `. Therefore,∣∣∣∣∣

k∏
i=1

Ai`σ(i)

∣∣∣∣∣ ≤ Bk(10δk)
∑k
i=1 `i

We also get that ∣∣∣∣∣
k∏
j=1

C`σ(j)j

∣∣∣∣∣ ≤ k
∑k
j=1 `j

Summing over all k! permutations σ yields an upper bound on the determinants of the blocks of
A and C, excluding the top block:

∑
0≤`1<`2<...<`k,`k 6=k−1

| det(A[`1, `2, . . . , `k])|| det(C[`1, `2, . . . , `k])|

≤
∑

0≤`1<`2<...<`k,`k 6=k−1

(k!)2Bk(10δk2)
∑k
i=1 `i

≤
∞∑

τ=1+2+...+(k−3)+(k−2)+k

τ k(k!)2Bk(10δk2)τ

≤ 2τ k0 (k!)2Bk(10δk2)τ0 ,

where τ0 =
(
k
2

)
+ 1. This completes part (2). Now, we do part (3). By Lemma ??,

| det(M)| ≥ | det(A[0, 1, . . . , k − 1])|| det(C[0, 1, . . . , k − 1])|

−
∑

0≤`1<`2<...<`k,`k 6=k−1

| det(A[`1, . . . , `k])|| det(C[`1, . . . , `k])|

Plugging in the part (1) lower bound and the part (2) upper bound yields

| det(M)| ≥ δτ0−1ρ(k)k − 2τ k0 (k!)2Bk(10δk2)τ0

= δτ0−1
(
ρ(k)k − 2δτ k0 (k!)2Bk(10k2)τ0

)
> δτ0−1ρ(k)k/2

> ρ(k)k(ρ(k)/(Bk2(200k)k))10k3

127

as desired.

Lemma 5.18 (Step 5: Cramer’s rule-based bound on error in linear system). Let M be an invert-
ible k by k matrix with |Mij| ≤ B for all i, j ∈ [k]. Let b be a k-dimensional vector for which
|bi| ≤ ε for all i ∈ [k]. Then, ‖M−1b‖∞ ≤ εk!Bk/| det(M)|.

Proof. Cramer’s rule says that, for each i ∈ [k], the entry i of the vector M−1b is given by

(M−1b)i =
det(Mi)

det(M)
,

where Mi is the matrix which one gets by replacing column i of M by b. Let us upper-bound
| det(Mi)|. We are given that each entry of Mi in column i has magnitude at most ε, and each
entry in every other column has magnitude at most B. Hence, for any permutation σ ∈ Sk on
[k], we have ∣∣∣∣∣

k∏
j=1

(Mi)j,σ(j)

∣∣∣∣∣ ≤ ε ·Bk−1,

and so

| det(Mi)| ≤
∑
σ∈Sk

∣∣∣∣∣
k∏
j=1

(Mi)j,σ(j)

∣∣∣∣∣ ≤ ε ·Bk−1 · k!.

It follows from Cramer’s rule that |(M−1b)i| ≤ ε ·Bk−1 · k!/| det(M)|, as desired.

Lemma 5.19 (Step 6: reduction). Let f : [0, 1] → R be an analytic function on [0, 1], let
κ : N → [0, 1] be a nonincreasing function, and let ρ(`) =

[
κ(`)2/(64B`42`+1 · `!)

]`+2 for any
` ∈ N (as discussed before). Suppose that, for infinitely many positive integers k, there exists an
xk for which |f (k+1)(x)| > κ(k).

Suppose that there is an algorithm for ε-approximate matrix-vector multiplication by an n×n
f -matrix for points in [0, 1]d in T (n, d, ε) time. Then, there is a

n · poly(d+ log(1/κ(d+ 1))) +O(d · T (2n, d+ 1, (κ(d+ 1))O(d4))))

time algorithm for exact bichromatic Hamming nearest neighbors on n-point sets in dimension
d.

Proof. Let x1, . . . , xn ∈ {0, 1}d be the input to the Hamming nearest neighbors problem, so our
goal is to compute min1≤i<j≤n ‖xi − xj‖. Let t ∈ Zd+1

≥0 be the 0-indexed vector of nonnegative
integers, where t` := |{1 ≤ i < j ≤ n | ‖xi − xj‖2

2 = `}| counts the number of pairs of input
points with distance `. Our goal will be to recover the vector t, from which we can recover the
answer to the Hamming nearest neighbors problem by returning the smallest index where t is
nonzero.

Let k = d + 1 and let ε = (κ(k))α·k
4 for a constant α > 0 to be picked later. In order to

recover t, we will make d+ 1 calls to our given algorithm. For ` ∈ {0, 1, . . . , d}, the goal of call
` is to compute a value u` which is an approximation, with additive error at most ε, of entry ` of
the vector Mt, where M is the counting matrix defined above.

128

Let us explain why this is sufficient to recover t. Suppose we have computed this vector u.
We claim that if we compute M−1u, and round each entry to the nearest integer, the result is the
vector t. Indeed, by Lemma ??, each entry of M−1u differs from the corresponding entry of t by
at most an additive ε · Bk−1 · k!/| det(M)|, where the constant B is from Proposition ?? (since
|f(z)| ≤ B for all z ∈ [0, 1]). Substituting our lower bound on | det(M)| from Lemma ??, we
see this additive error is at most 1/3 as long as we’ve picked a sufficiently large constant α > 0.
Thus, rounding each entry to the nearest integer recovers t, as desired.

It remains to show how to compute u`, an approximation with additive error at most ε of
entry ` of the vector Mt. In other words, we need to approximate the sum

d∑
p=0

M`,p · tp =
∑

1≤i<j≤k

f(c+ (ρ(k)/(B(200k)k))10k · ` · ‖xi − xj‖2
2/k

2).

To do this, we will pick points y1, . . . , yn, z1, . . . , zn ∈ [0, 1]d+1 such that

‖yi − zj‖2
2 = c+ (ρ(k)/(B(200k)k))10k · ` · ‖xi − xj‖2

2/k
2

for all i, j ∈ [n], and apply our given algorithm with error ε to these points. For i ∈ [n], let
x′i = (ρ(k)/(B(200k)k))5k ·

√
` · xi/k be a rescaling of xi. We pick yi to equal x′i in the first

d entries and 0 in the last entry, and zi to equal x′i in the first d entries and
√
c in the last entry.

These points have the desired distances, completing the proof.

Step 7: proof of Theorem ??. If the KAdjE problem for K(x, y) = f(‖x − y‖2
2) in dimension d

and error (κ(d+ 1))O(d4) on n = 1.01d points could be solved in time time n2−δ for any constant
δ > 0, then one could immediately substitute this into Lemma ?? to refute SETH in light of
Theorem ??.

5.5 Lower Bounds in Low Dimensions
The landscape of algorithms available in low dimensions d = o(log n) is a fair bit more complex.
The Fast Multipole Method allows us to solve KAdjE for a number of functions f , including
K(x, y) = exp(−‖x − y‖2

2) and K(x, y) = 1/‖x − y‖2
2, for which we have a lower bound in

high dimensions. Classifying when these multipole methods apply to a function f seems quite
difficult, as researchers have introduced more and more tools to expand the class of applicable
functions. See Section ??, below, in which we give a much more detailed overview of these
methods.

That said, in this subsection, we prove lower bounds for a number of functions K of interest.
We show that for a number of functions K with applications to geometry and statistics, the KAdjE
problem seems to become hard even in dimension d = 3 (see the end of this subsection for a list
of such K).

We begin with the function K(x, y) = |〈x, y〉|. Here, the K Adjacency Evaluation problem
becomes hard even for very small d. We give an n1+o(1) time algorithm only for d ≤ 2. For
d = 3 we show that such an algorithm would lead to a breakthrough in algorithms for the Z-
MaxIP problem, and for the only slightly super-constant d = 2Ω(log∗ n), we show that a n2−ε time
algorithm would refute SETH.

129

Lemma 5.20. For the function K(x, y) = |〈x, y〉|, the KAdjE problem (Problem ??) can be
solved exactly in time n1+o(1) when d = 2.

Proof. Given as input x1, . . . , xn ∈ R2 and y ∈ Rn, our goal is to compute z ∈ Rn given
by zi :=

∑
j 6=i |〈xi, xj〉| · yj . We will first compute z′i :=

∑
j |〈xi, xj〉| · yj , and then subtract

|〈xi, xi〉| · yi for each i to get zi.
We first sort the input vectors by their polar coordinate angle, and relabel so that x1, . . . , xn

are in sorted order. Let φi be the polar coordinate angle of xi. We will maintain two vectors
x+, x− ∈ R2. We will ‘sweep’ an angle θ from 0 to 2π, and maintain that x+ is the sum of the
yi · xi with 〈xi, θ〉 > 0, and x− is the sum of the other yi · xi. Initially let θ = 0 and let x+ be
the sum of the yi · xi with φi ∈ [−π/2, π/2), and x− be the sum of the remaining yi · xi. As we
sweep, whenever θ is in the direction of an xi we can set z′i = 〈xi, x+ − x−〉. Whenever θ is
orthogonal to an xi, we swap yi · xi from one of x+ or x− to the other. Over the whole sweep,
each point is swapped at most twice, so the total running time is indeed n1+o(1).

Lemma 5.21. For the function K(x, y) = |〈x, y〉|, if the KAdjE problem (Problem ??) with
error 1/nω(1) can be solved in time T (n, d), and n > d+ 1, then Z-MaxIP (Problem ??) with d-
dimensional vectors of integer entries of bit lengthO(log n) can be solved in timeO(T (n, d) log2 n+
nd).

Proof. Let x1, . . . , xn ∈ Zd be the input vectors. Let M ≤ nO(1) be the maximum magnitude of
any entry of any input vector. Thus, maxi 6=j〈xi, xj〉 is an integer in the range [−dM2, dM2]. We
will binary search for the answer in this interval. The total number of binary search steps will be
O(log(dM2)) ≤ O(log n).

We now show how to do each binary search step. Suppose we are testing whether the answer
is ≤ a, i.e. testing whether 〈xi, xj〉 ≤ a for all i 6= j. Let S1, . . . , Slogn ⊆ {1, . . . , n} be subsets
such that for each i 6= j, there is a k such that |Sk ∩ {i, j}| = 1. For each k ∈ {1, . . . , log n} we
will show how to test whether there are i, j with |Sk ∩ {i, j}| = 1 such that 〈xi, xj〉 ≤ a, which
will complete the binary search step.

Define the vectors x′1, . . . , x
′
n ∈ Zd+1 by (x′i)j = (xi)j for j ≤ d, and (x′i)d+1 = a − 1 if

i ∈ Pk, and (x′i)d+1 = −1 if i /∈ Pk. Hence, for i, j with |Sk ∩ {i, j}| = 1 we have 〈x′i, x′j〉 =
〈xi, xj〉 − a+ 1, and so our goal is to test whether there are any such i, j with 〈x′i, x′j〉 > 0.

Let vk ∈ {0, 1}n be the vector with (vk)i = 1 when i ∈ Pk and (vk)i = 0 when i /∈ Pk. Use
the given algorithm to vector vk, we can compute a (a± n−ω(1)) approximation to

s1 :=
∑
i∈Pk

∑
j /∈Pk

|〈x′i, x′j〉|

in time O(T (n, d)). Similarly, using the fact that the corresponding matrix has rank d by defini-
tion, we can exactly compute

s2 :=
∑
i∈Pk

∑
j /∈Pk

〈x′i, x′j〉

in timeO(nd). Our goal is to determine whether s1 = −s2. Since each s1 and s2 is a polynomially-
bounded integer, and we have a superpolynomially low error approximation to each, we can
determine this as desired.

130

Combining Lemma ?? with Theorem ?? we get:
Corollary 5.21.1. Assuming SETH, there is a constant c such that for the function K(x, y) =
|〈x, y〉|, the KAdjE problem (Problem ??) with error 1/nω(1) and dimension d = clog∗ n vectors
of O(log n) bit entries requires time n2−o(1).

Similarly, combining with Theorem ?? we get:
Corollary 5.21.2. For the function K(x, y) = |〈x, y〉|, if the KAdjE problem (Problem ??) with
error 1/nω(1) and dimension d = 3 vectors ofO(log n) bit entries can be solved in time n4/3−O(1),
then we would get a faster-than-known algorithm for Z-MaxIP (Problem ??) in dimension d = 3.

The same proof, but using Theorem ?? instead of Theorem ??, can also show hardness of
thresholds of distance functions:
Corollary 5.21.3. Corollary ?? also holds for the function K(x, y) = TH(‖x − y‖2

2), where
TH is any threshold function (i.e. TH(z) = 1 for z ≥ θ and TH(z) = 0 otherwise, for some
θ ∈ R>0).

Using essentially the same proof as for Lemma ?? in Section ??, we can further extend
Corollary ?? to any non-Lipschitz functions f :
Proposition 5.22. Suppose f : R+ → R is any function which is not (C,L)-multiplicatively
Lipschitz for any constants C,L ≥ 1. Then, assuming SETH, the KAdjE problem (Problem ??)
with error 1/nω(1) and dimension d = clog∗ n requires time n2−o(1).

5.6 Hardness of the n-Body Problem

We now prove Corollary ?? from the Introduction, showing that our hardness results for the
KAdjE problem (Problem ??) also imply hardness for the n-body problem.
Corollary 5.22.1 (Restatement of Corollary ??). Assuming SETH, there is no

poly(d, log(α)) · n1+o(1)

-time algorithm for one step of the n-body problem.

Proof. We reduce from the K graph Laplacian multiplication problem, where K(u, v) = f(‖u−
v‖2

2) and f(z) = 1
(1+z)3/2

. A K graph Laplacian multiplication instance consists of the K graph
G on a set of n points X ⊆ Rd and a vector y ∈ {0, 1}n for which we wish to compute LGy.
Think of y as vector with coordinates in the set X . Compute this multiplication using an n-body
problem as follows:

1. For each b ∈ {0, 1}, let Xb = {x ∈ X | yx = b}. Let Z ⊆ Rd+1 be the set of all (x, 0) for
x ∈ X0 and (x, 1) for x ∈ X1.

2. Solve the one-step n-body problem on Z with unit masses. Let z ∈ Rn be the vector of the
(d+ 1)-th coordinate of these forces, with forces negated for coordinates x ∈ X0.

3. Return −z/Ggrav (Note that Ggrav is the Gravitational constant)

We now show that z = LGy. For x ∈ Xb, (LGy)x = (−1)1−b∑
x′∈X1−b

K(x, x′). We now
check that zx is equal to this by going through pairs {x, x′} individually. Note that the (d+ 1)-th

131

coordinate of the force between (x, b) and (x′, b) is 0. The (d + 1)-th coordinate of the force
exerted by (x′, 1) on (x, 0) is

Ggrav

‖(x, 0)− (x′, 1)‖2
2

· (1− 0)

‖(x, 0)− (x′, 1)‖2

= Ggrav · K(x, x′)

Negating this gives the force exerted by (x′, 0) on (x, 1). All of these contributions agree with
the corresponding contributions to the sum (LGy)x, so −z/Ggrav = LG · y as desired.

The runtime of this reduction is O(n) plus the runtime of the n-body problem. However,
Theorem ?? shows that no almost-linear time algorithm exists for K-Laplacian multiplication,
since f is not approximable by a polynomial with degree less than Θ(log n). Therefore, no
almost-linear time algorithm exists for n-body either assuming SETH, as desired.

5.7 Hardness of Kernel PCA

For any function K : Rd × Rd → R, and any set P = {x1, . . . , xn} ⊆ Rd of n points, define the
matrix KK,P ∈ Rn×n by

KK,P [i, j] = K(xi, xj)

AK,P and KK,P differ only on their diagonal entries, so a n1+o(1) time algorithm for multiply-
ing by one can be easily converted into such an algorithm for the other. Kernel PCA studies
Problem 8 (K PCA). For a given function K : Rd × Rd → R, the K PCA problem asks: Given
as input a set P = {x1, . . . , xn} ⊆ Rd with |P | = n, output the n eigenvalues of the matrix
(In − Jn) × KK,P × (In − Jn), where Jn is the n × n matrix whose entries are all 1/n. In ε-
approximate K PCA, we want to return a (1±ε)-multiplicative approximation to each eigenvalue.

We can now show a general hardness result for K PCA:
Theorem 5.23 (Approximate). For every function f : R → R which is equal to a Taylor ex-
pansion f(x) =

∑∞
i=0 cix

i on an interval (0, 1), if f is not ε-approximated by a polynomial of
degree O(log n) (Definition ??) on an interval (0, 1) for ε = 2− log4 n, then, assuming SETH, the
ε-approximate K PCA problem (Problem ??) in dimension d = O(log n) requires time n2−o(1).

Proof Sketch. Theorem ?? follows almost directly from Theorem ?? when combined with the
reduction from [? , Section 5]. The idea is as follows: Suppose we are able to estimate the n
eigenvalues of (In − Jn) × KK,P × (In − Jn). Then, in particular, we can estimate their sum,
which is equal to:

tr((In−Jn)×KK,P×(In−Jn)) = tr(KK,P×(In−Jn)2) = tr(KK,P×(In−Jn)) = tr(KK,P)−S(KK,P)/n,

where S(KK,P) denotes the sum of the entries ofKK,P . We can compute tr(KK,P) exactly in time
n1+o(1), so we are able to get an approximation to S(KK,P). However, in the proof of Theorem ??,
we showed hardness for approximating S(KK,P), which concludes our proof sketch.

132

6 Sparsifying Multiplicatively Lipschitz Functions in Almost
Linear Time

Given n points, let α denote

α =
maxu,v∈P (‖u− v‖2

2)

minu,v∈P (‖u− v‖2
2)
.

In this section, we give an algorithm to compute sparsifiers for a large class of kernels K in
almost linear time in nd, with logarithmic dependency on α and 1/ε2 dependence on ε. When
d = log n, our algorithm runs in almost linear time in n. To formally state our main theorem, we
define multiplicatively Lipschitz functions:
Definition 6.1. Let C ≥ 1 and L ≥ 1. A function f : R≥0 → R≥0 is (C,L)-multiplicatively
Lipschitz iff for all c ∈ [1/C,C], we have:

1

CL
<
f(cx)

f(x)
< CL,∀x ∈ R≥0.

Examples: Any polynomial with non-negative coefficients and maximum degree q is (1 +
ε, q) multiplicatively Lipschitz for any ε > 0. The function f(x) = 1 when x < 1 and f(x) = 2
when x ≥ 1 is (2, 1) multiplicatively Lipschitz.

The following lemma is a simple consequence of our definition of multiplicatively Lipschitz
functions:
Lemma 6.2. Let C ≥ 1 and L > 0. Any function f : R≥0 → R≥0 that is (C,L)-multiplicatively
Lipschitz satisfies for all c ∈ (0, 1/C) ∪ [C,+∞) :

1

c2L
<
f(cx)

f(x)
< c2L.

We now state the core theorem of this section:
Theorem 6.3. Let C ≥ 1 and L ≥ 1. Consider any (C,L)-multiplicatively Lipschitz func-
tion f : R → R, and let K(x, y) = f(‖x − y‖2

2). Let P be a set of n points in Rd. For
any k ∈ [Ω(1), O(log n)] such that C = nO(1/k), there exists an algorithm SPARSIFY-K-
GRAPH(P, n, d,K, k, L) (Algorithm ??) that runs in time:

O(ndk) + ε−2 · n1+O(L/k)2O(k) log n · logα

and outputs an ε-spectral sparsifier H of the K graph with |EH | = O(n log n/ε2).
We give a corollary of this theorem.

Corollary 6.3.1. Consider a K graph where K(x, y) = f(‖x−y‖2
2), and f is (2, L)-multiplicatively

Lipschitz. Let G denote the K graph from n points in Rd. There is an algorithm that takes in time

O(nd
√
L log n) + ε−2 · n · 2O(

√
L logn log logn) · logα

and outputs an ε-spectral sparsifierH ofGwith |EH | = O(n log n/ε2). IfL = o(log n/(log log n)2),
this runs in time

o(nd log n) + ε−2n1+o(1) logα.

133

Proof. Set k =
√
L log n, and the corollary follows from Theorem ??.

This implies that if f is a polynomial with non-negative coefficients, then sparsifiers of the
corresponding K-graph can be found in almost linear time. The same result holds if f is the
reciprocal of a polynomial with non-negative coefficients.

We will need a few geometric preliminaries in order to present our core algorithm of this
section, SPARSIFY-K-GRAPH.
Definition 6.4 (ε-well separated pair). Given two sets of points A and B. We say A,B is an
ε-well separated pair if the diameter of Ai and Bi are at most ε times the distance between Ai
and Bi.
Definition 6.5 (ε-well separated pair decomposition [?]). An ε-well separated pair decompo-
sition (ε-WSPD) of a given point set P is a family of pairs F = {(A1, B1), . . . (As, Bs)} with
Ai, Bi ⊂ P such that:
• ∀i ∈ [s], Ai, Bi are ε-well separated pair (Definition ??)
• For any pair p, q ∈ P , there is a unique i ∈ [s] such that p ∈ Ai and q ∈ Bi

A famous theorem of Callahan and Kosaraju [?] states:
Theorem 6.6 (Callahan and Kosaraju [?]). Given any point set P ⊂ Rd and 0 ≤ ε ≤ 9/10, an
ε-WSPD (Definition ??) of size O(n/εd) can be found in 2O(d) · (n log n+n/εd) time. Moreover,
each vertex participates in at most 2O(d) · logα ε-well separated pairs.

Well-separated pairs can be interpreted as complete bipartite graphs on the vertex set, or
bicliques. The biclique associated with a well-separated pair is the bipartite graph connecting
all vertices on one side of the pair to another.

This concludes our definitions on well-separated pairs. We now give names to some algo-
rithms in past work, which will be used in our algorithm SPARSIFY-k-GRAPH. We define the
algorithm GENERATEWSPD(P, ε) to output an ε-WSPD (Definition ??) of P . We define the
algorithm RANDOMPROJECT(P, k) to be a random projection of P onto k dimensions.

Let BICLIQUE(K, P, A,B) be the complete biclique on the K-graph of P with one side of the
biclique having verticese corresponding to points in A, and the other side having vertices corre-
sponding to points in B. We store this biclique implicitly as (A,B) rather than as a collection of
edges.

Let RANDSAMPLE(G, s) be an algorithm uniformly at random sampling O(s) edges from
G, where the big O is the same constant as the big O in the nO(1/k) from Lemma ??.

Let SPECTRALSPARSIFY(G, ε) be any nearly linear time spectral sparsification algorithm
that outputs a (1 + ε) spectral sparsifier with O(n log n/ε2) edges, such as that in Theorem ??
from [?].

The rest of this section is devoted to proving Theorem ??.

6.1 High Dimensional Sparsification
We are nearly ready to prove Theorem ??. We start with a Lemma:
Lemma 6.7 ((C,L) multiplicative Lipschitz functions don’t distort a graph’s edge weights much).
Consider a complete graph G, and a complete graph G′, where vertices of G are identified with
vertices of G′ (which induces an identification between edges). Let K ≥ 1. Suppose each edge

134

Algorithm 3
1: procedure SPARSIFY-K-GRAPH(P, n, d,K, k, L, ε) . Theorem ??
2: Input: A point set P with n points in dimension d, a kernel function K(x, y) = f(‖x−
y‖2

2), an integer variable Ω(1) ≤ k ≤ O(log n), and a variable L, and error ε.
3: Output: A candidate sparsifier of the K-graph on P .
4: P ′ ← RANDOMPROJECT(P, k)
5: H ← empty graph with n vertices.
6: {(A′1, B′1), . . . (A′t, B

′
t)} ← GENERATEWSPD(P ′, n, d, 1/2) . t = n · 2d

7: for i = 1→ t do
8: Find (Ai, Bi) corresponding to (A′i, B

′
i), where Ai, Bi ⊂ P .

9: Q← BICLIQUE(K, P, Ai, Bi).
10: s← ε−2nO(L/k)(|Ai|+ |Bi|) log(|Ai|+ |Bi|)
11: Q← RANDSAMPLE(Q, s)
12: Q← Q with each edge scaled by |Ai||Bi|/s.
13: H ← H +Q
14: end for
15: H ← SPECTRALSPARSIFY(H, ε) . Corollary ??
16: Return H
17: end procedure
18: procedure GENERATEWSPD(P, n, d, ε) . Theorem ??
19: See details in [?]
20: end procedure
21: procedure RANDSAMPLE(G, s)
22: Sample O(s) edges from G and generate a new graph G
23: return G
24: end procedure
25: procedure RANDOMPROJECT(P, d, k)
26: P ′ ← ∅
27: Choose a JL matrix S ∈ Rk×d

28: for x ∈ P do
29: x′ ← S · x
30: P ′ ← P ′ ∪ x′
31: end for
32: return P ′
33: end procedure

in G satisfies:

1

K
· wG′(e) ≤ wG(e) ≤ K · wG′(e)

If f is a (C,L) multiplicative Lipschitz function, and f(G) refers to the graph G where f is

135

applied to each edge length, and C < K then:

1

K2L
· wG′(e) ≤ wf(G)(e) ≤ K2L · wG′(e).

Proof. This follows from Lemma ??.

Proof. (of Theorem ??): The Algorithm SPARSIFY-K-GRAPH starts by performing a random
projection of point set P into k dimensions. Call the new point set P ′. This runs in time O(ndk),
and incurs distortion nO(1/k), as seen in Lemma ??. Next, our algorithm performs a 1/2-WSPD
on P ′. As seen in Theorem ??, this runs in time

O(n log n+ n2O(k))

We view each well-separated pair (A′i, B
′
i) on P ′ as a biclique, where the edge length between

any two points in P ′ corresponds to the edge length between those two points in the original K-
graph. By the guarantees of Theorem ??, the longest edge divided by the shortest edge between
two sides of a well-separated pair in P ′ is at most 2. Thus, the longest edge divided by the
shortest edge within any induced bipartite graph on the K-graph is 2 · nO(1/k), by Lemma ??.

For each such biclique, the leverage score for each edge is overestimated by

nO(L/k) · (|A′i|+ |B′i|)/(|A′i||B′i|).

This comes from first applying Lemma ?? to upper bound the ratio of the longest edge in a
biclique divided by the shortest edge. This ratio comes out to be 2nO(L/k). Now recall the
definition of leverage score on graphs as weRe, where Re is the effective resistance assuming
conductances of we on the graph, and we is the edge weight. Here, we is upper bounded by the
longest edge length, andRe is upper bounded by the leverage score of a biclique supported on the
same edges, where all edges lengths are equal to the shortest edge length (this is an underestimate
of effective resistance due to Rayleigh monotonicity, see [?] for details). Therefore, a leverage
score overestimate of the graph can be obtained by nO(L/k) · (|A′i|+ |B′i|)/(|A′i||B′i|), as claimed.
The union of these graphs is a spectral sparsifier of our K-graph.

Finally, our algorithm samples nO(L/k)(|A′i|+|B′i|) log(|A′i|+|B′i|) edges uniformly at random
from each biclique, scaling each sampled edge’s weight so that the expected value of the sampled
graph is equal to the original biclique. Each vertex participates in at most logα2O(k) bicliques
(see Theorem ??). Thus, this uniform sampling procedures’ run time is bounded above by

n1+O(L/k)2O(k) log n · logα.

Finally, our algorithm runs a sparsification algorithm on our graph after uniform sampling,
which gets the edge count of the final graph down to O(n log n/ε2). This completes our proof of
Theorem ??.

6.2 Low Dimensional Sparsification
We now present a result on sparsification in low dimensions, when d is assumed to be small or
constant.

136

Theorem 6.8. Let L ≥ 1. Consider a K-graph with n vertices arising from a point set in d
dimensions, and let α be the ratio of the maximum Euclidean distance to the minimum Euclidean
distance in the point set . Let f be a (1 + 1/L, L) multiplicatively Lipschitz function. Then an ε
spectral sparsifier of the K-graph can be found in time

ε−2 · n · log n · logα · (2L)O(d)

Proof. We roughly follow the proof of Theorem ??, except without the projection onto low
dimensions. Now, on the d dimensional data, we create a 1/L-WSPD. This takes time

O(n log n) + n · (2L)O(d).

Since f is (1 + 1/L, L)-multiplicatively Lipschitz, it follows that within each biclique of the K-
graph induced by the WSPD (Definition ??), the maximum edge length divided by the minimum
edge length is bounded above by (1 + 1/L)O(L) = O(1). Therefore, performing scaled and
reweighted uniform sampling on each biclique takes O(s log s) time if there are s vertices in the
biclique, and gives a sparsified biclique with O(s log s) edges.

Taking the union of this number over all bicliques gives an algorithm that runs in time

ε−2 · n · log n · logα · (2L)O(d)

as desired.

7 Sparsifiers for |〈x, y〉|
In this section, we construct sparsifiers for Kernels of the form |〈x, y〉|.
Lemma 7.1 (sparsification algorithm for inner product kernel). Given a set of vectors X ⊆
Rd with |X| = n and accuracy parameter ε ∈ (0, 1/2), there is an algorithm that runs in
ε−2n · poly(d, log n) time, and outputs a graph H that satisfies both of the following properties
with probability at least 1− 1/poly(n):

1. (1− ε)LG � LH � (1 + ε)LG;
2. |E(H)| ≤ ε−2 · n · poly(d, log n).

where G is the K-graph on X , where K(x, y) = |〈x, y〉|.
Throughout this section, we specify various values Ci. For each subscript i, it is the case that

1 ≤ Ci ≤ poly(d, log n).

7.1 Existence of large expanders in inner product graphs
We start by showing that certain graphs that are related to unweighted versions of K-weighted
graphs contain large expanders:
Definition 7.2 (k-dependent graphs). For a positive integer k > 1, call an unweighted graph G
k-dependent if no independent set with size at least k + 1 exists in G.

We start by observing that inner product graphs are (d+ 1)-dependent.

137

Definition 7.3 (inner product graphs). For a set of points X ⊆ Rd, the unweighted inner product
graph for X is a graph G with vertex set X and unweighted edges {u, v} ∈ E(G) if and only if
|〈u, v〉| ≥ 1

d+1
‖u‖2‖v‖2. The weighted inner product graph for X is a complete graph G with

edge weights we for which wuv = |〈u, v〉|.
We now show that these graphs are k-dependent:

Lemma 7.4. Suppose M ∈ Rn×n such that M [i, i] = 1 for all i ∈ [n], and |M [i, j]| < 1/n for
all i 6= j. Then, M has full rank.

Proof. Assume to the contrary thatM does not have full rank. Thus, there are values c1, . . . , cn−1 ∈
R such that for all i ∈ [n] we have

∑n−1
j=1 cjM [i, j] = M [i, n].

First, note that there must be a j with |cj| ≥ 1 + 1/n. Otherwise, we would have

1 = |M [n, n]| =

∣∣∣∣∣
n−1∑
j=1

cjM [n, j]

∣∣∣∣∣ < 1

n

n−1∑
j=1

|cj| <
n− 1

n
(1 + 1/n) < 1.

Assume without loss of generality that |c1| ≥ |cj| for all j ∈ {2, 3, . . . , n − 1}, so in particular
|c1| ≥ 1 + 1/n. Letting cn = −1, this means that

∑n
j=1 cjM [1, j] = 0, and so M [1, 1] =

−
∑n

j=2(cj/c1)M [1, j]. Thus,

1 = |M [1, 1]| =

∣∣∣∣∣
n∑
j=2

cj
c1

M [1, j]

∣∣∣∣∣ ≤
n∑
j=2

∣∣∣∣cjc1

M [1, j]

∣∣∣∣ < n∑
j=2

|M [1, j]| < (n− 1) · 1

n
< 1,

a contradiction as desired.

Proposition 7.5. The unweighted inner product graph for X ⊆ Rd is (d+ 1)-dependent.

Proof. For an independent set S in the unweighted inner product graph G for X , define an S×S
matrix M with M [i, j] = 〈si, sj〉 where S = {s1, s2, . . . , s|S|}. Then Lemma ?? coupled with
the definition for edge presence in G shows that M is full rank. However, M is a rank d matrix
because it is the matrix of inner products for dimension d vectors. Therefore, d ≥ |S|, so no
independent set has size greater than d.

Next, we show that k-dependent graphs are dense:
Proposition 7.6 (dependent graph is dense). Any k-dependent graph G has at least n2/(2k2)
edges.

Proof. Consider any k+1-tuple of vertices inG. There are
(
n
k+1

)
such k+1-tuples. By definition

of k-dependence, there must be some edge with endpoints in any k + 1-tuple. The number of
k-tuples that any given edge can be a part of is at most

(
n−2
k−1

)
. Therefore, the number of edges in

the graph is at least (
n
k+1

)(
n−2
k−1

) ≥ n(n− 1)

(k + 1)k
≥ n2

2k2

as desired.

138

Next, we argue that unweighted inner product graphs have large expanders:
Proposition 7.7 (every dense graph has a large expander). Consider an unweighted graph G
with n vertices and at least n2/c edges for some c > 1. Then, there exists a set S ⊆ V (G) with
the following properties:

1. (Size) |S| ≥ n/(40c)

2. (Expander) ΦG[S] ≥ 1/(100c log n)

3. (Degree) The degree of each vertex in S within G[S] is at least n/(10000c)

Proof. We start by partitioning the graph as follows:

1. Initialize F = {V (G)}
2. While there exists a set U ∈ F with (a) a partition U = U1 ∪ U2 with U1 cut having

conductance ≤ 1/(100c log n) or (b) a vertex u with degree less than n/(10000c) in G[U]

(a) If (a), replace U in F with U1 and U2

(b) Else if (b), replace U in F with U \ {u} and {u}

We now argue that when this procedure stops,∑
U∈F

|E(G[U])| ≥ n2/(2c)

To prove this, think of each splitting of U into U1 and U2 as deleting the edges in E(U1, U2)
from G. Design a charging scheme that assigns deleted edges due to (a) steps to edges of G as
follows. Let ce denote the charge assigned to an edge e and initialize each charge to 0. When U
is split into U1 and U2, let U1 denote the set with |E(U1)| ≤ |E(U2)|. When U is split, increase
the charge ce for each e ∈ E(U1) ∪ E(U1, U2) by |E(U1, U2)|/|E(U1) ∪ E(U1, U2)|.

We now bound the charge assigned to each edge at the end of the algorithm. By construction,∑
e∈E(G) ce is the number of edges deleted over the course of the algorithm of type (a). Each edge

is assigned charge at most log |E(G)| ≤ 2 log n times, because |E(U1)| ≤ |E(U1)|+|E(U2)|
2

≤ |E(U)|
2

when charge is assigned to edges in U1. Furthermore, the amount of charge assigned is the
conductance of the cut deleted, which is at most 1/(100c log n). Therefore,

ce ≤
2 log n

100c log n
=

1

50c

for all edges in G, which means that the total number of edges deleted of type (a) was at most
n2/(100c). Each type (b) deletion reduces the number of edges in G by at most n/(10000c), so
the total number of type (b) edge deletions is at most n2/(10000c). Therefore, the total number
of edges remaining is at least

n2

c
− n2

100c
− n2

10000c
>
n2

2c
,

as desired.
By the stopping condition of the algorithm, each connected component of G after edge dele-

tions is a graph with all cuts having conductance at least 1/(100c log n) and all vertices having

139

degree at least n/(10000c). Next, we show that some set in F has at least n/(40c) vertices. If
this is not the case, then∑

U∈F

|E(G[U])| ≤
∑
U∈F

|U |2

≤
∑
U∈F

n

40c
|U | by assuming all |U | ≤ n/(40c)

≤ n2

40c
by |U | ≤ n

<
n2

2c

which leads to a contradiction. Therefore, there must be some connected component with at least
n/(40c) vertices. Let S be this component. By definition S satisfies the Size guarantee. By the
stopping condition for F , S satisfies the other two guarantees as well, as desired.

Proposition ?? does not immediately lead to an efficient algorithm for finding S. Instead, we
give an algorithm for finding a weaker but sufficient object:
Proposition 7.8 (algorithm for finding sets with low effective resistance diameter). For any set
of vectors X ⊆ Rd with n = |X| and unweighted inner product graph G for X , there is an
algorithm LOWDIAMSET(X) that runs in time

poly(d, log n)n

and returns a set Q that has the following properties with probability at least 1− 1/poly(n):

1. (Size) |Q| ≥ n/C1, where C1 = 320d2

2. (Low effective resistance diameter) For any pair of vertices u, v ∈ Q, ReffG(u, v) ≤ C2

n
,

where C2 = (10d log n)10

We prove this proposition in Section ??.

7.2 Efficient algorithm for finding sets with low effective resistance diam-
eter

In this section, we prove Proposition ??. We implement LOWDIAMSET by picking a random
vertex v and checking to see whether or not it belongs to a set with low enough effective resis-
tance diameter. We know that such a set exists by Proposition ?? and the fact that dense expander
graphs have low effective resistance diameter. One could check that v lies in this set in Õ(n2)
time by using the effective resistance data structure of [?]. Verifying that v is in such a set
in poly(d, log n)n time is challenging given that G is dense. We instead use the following data
structure, which is implemented by uniformly sampling sparse subgraphs of G and using [?] on
those subgraphs:
Proposition 7.9 (Sampling-based effective resistance data structure). Consider a set X ⊆ Rd,
let n = |X|, let G be the unweighted inner product graph for X , and let S ⊆ X be a set with the
following properties:

140

1. (Size) |S| ≥ n/C3a, where C3a = 40 · 8d
2. (Expander) ΦG[S] ≥ 1/C3b, where C3b = 800d log n

3. (Degree) The degree of each vertex in S withinG[S] is at least n/C3c, where C3c = 10000 ·
8d.

There is a data structure that, when given a pair of query points u, v ∈ X , outputs a value
REFFQUERY(u, v) ∈ R≥0 that satisfies the following properties with probability at least 1 −
1/poly(n):

1. (Upper bound) For any pair u, v ∈ S, REFFQUERY(u, v) ≤ C4ReffG(u, v), where C4 =
10

2. (Lower bound) For any pair u, v ∈ X , REFFQUERY(u, v) ≥ ReffG(u, v)/2.

The preprocessing method REFFPREPROC(X) takes poly(d, log n)n time and REFFQUERY

takes poly(d, log n) time.
We now implement this data structure. REFFPREPROC uniformly samples O(log n) sub-

graphs ofG and builds an effective resistance data structure for each one using [?]. REFFQUERY

queries each data structure and returns the maximum:

1: procedure REFFPREPROC(X)
2: Input: X ⊆ Rd with unweighted inner product graph G
3: C5 ← 1000 log n
4: C6 ← 80000CC2

3aC
2
3bC

2
3c, where C is the constant in Theorem ??

5: for i from 1 through C5 do
6: Hi ← uniformly random subgraph of G; sampled by picking C6n uniformly random

pairs (u, v) ∈ X × X and adding the e = {u, v} edge to Hi if and only if {u, v} ∈ E(G)
(that is when |〈u, v〉| ≥ 1

d+1
‖u‖2‖v‖2).

7: For each edge e ∈ E(Hi), let we = |E(G)|
|E(Hi)| .

8: fi ∈ RX×X ← approximation to ReffHi(u, v) given by the data structure of Theorem
?? for ε = 1/6.

9: end for
10: end procedure
11: procedure REFFQUERY(u, v)
12: Input: A pair of points u, v ∈ X
13: Output: An estimate for the u-v effective resistance in G
14: return maxC5

i=1 fi(u, v)
15: end procedure

Bounding the runtime of these two routines is fairly straightforward. We now outline how
we prove the approximation guarantee for REFFQUERY. To obtain the upper bound, we use
Theorem ?? to show that Hi contains a sparsifier for G[S], so effective resistances are preserved
within S. To obtain the lower bound, we use the following novel Markov-style bound on effective
resistances:
Lemma 7.10. Let G be a w-weighted graph with vertex set X and assign numbers pe ∈ [0, 1]
to each edge. Sample a reweighted subgraph H of G by independently and identically selecting

141

q edges, with an edge chosen with probability proportional to pe and added to H with weight
twe/(peq), where t =

∑
e∈G pe. Fix a pair of vertices u, v. Then for any κ > 1,

Pr [ReffH(u, v) ≤ ReffG(u, v)/κ] ≤ 1/κ.

Proof. For two vertices u, v, define the (folklore) effective conductance between u and v in the
graph I to be

CeffI(u, v) := min
q∈Rn:qu=0,qv=1

∑
edges {x,y}∈I

wxy(qx − qy)2.

It is well-known that CeffI(u, v) = 1/ReffI(u, v).
Let

q∗ = arg min
q∈Rn:qu=0,qv=1

∑
{x,y}∈E(G)

wxy(qx − qy)2.

Using q∗ as a feasible solution in the CeffH optimization problem shows that

E[CeffH(u, v)] ≤ E

 ∑
{x,y}∈E(G)

wHxy(q
∗
x − q∗y)2


=

∑
{x,y}∈E(G)

E[wHxy](q
∗
x − q∗y)2

=
∑

{x,y}∈E(G)

pxy
t

q∑
i=1

(
twGxy
qpxy

)(q∗x − q∗y)2

=
∑

{x,y}∈E(G)

wGxy(q
∗
x − q∗y)2

= CeffG(u, v)

where wIe denotes the weight of the edge e in the graph I .
Finally, we have

Pr[ReffH(u, v) < ReffG(u, v)/κ] = Pr[CeffH(u, v) > κ · CeffG(u, v)]

≤ 1/κ,

where the first step follows from ReffG(u, v) = 1/CeffG(u, v), and the last step follows from
Markov’s inequality.

We now prove Proposition ??:

Proof of Proposition ??. Runtime. We start with preprocessing. Sampling C6n pairs and check-
ing if each pair satisfies the edge presence condition for G takes O(dC6n) = poly(d, log n)n
time. Preprocessing for the function fi takes poly(d, log n)n time by the preprocessing guaran-
tee of Theorem ??. Since there are C5 ≤ poly(d, log n) different is, the total preprocessing time
is poly(d, log n)n, as desired.

142

Next, we reason about query time. This follows immediately from the query time bound of
Theorem ??, along the the fact that C5 ≤ poly(d, log n).

Upper bound. Let pupper
e = C7/n for each edge e ∈ E(G[S]), where C7 = 2C3aC

2
3b. We

apply Theorem ?? to argue that Hi[S] is a sparsifier for G[S] for each i. By choice of C7 and
the Size condition on |S|, pupper

u,v ≥ 2
Φ2
G[S]
|S| . By Lemma ?? and the Expander condition on G[S],

2
Φ2
G[S]
|S| ≥ ReffG[S](u, v) for each pair u, v ∈ S. Therefore, the second condition of Theorem

?? is satisfied by the probabilities pe. Let q = 10000C(n2/(C3aC3c)) log(n2/(C3aC3c))(C7/n),
where C is the constant in Theorem ??. This value of q satisfies the first condition of Theorem
??.

To apply Theorem ??, we just need to show that Hi[S] has at least q edges with probability
at least 1− 1/poly(n). First, note that for uniformly random u, v ∈ X

Pr
u,v∈X

[{u, v} ∈ E(G[S])] = Pr[{u, v} ∈ E(G[S]), u, v ∈ S]

= Pr[{u, v} ∈ E(G[S])|u, v ∈ S] Pr[u ∈ S] Pr[v ∈ S]

≥ 1

2C3c

1

C2
3a

by the Degree and Size conditions on S. Since at least C6n pairs in X × X are chosen,
E[|E(Hi[S])|] ≥ C6n(1

2C3c
)(1
C2

3a
) ≥ 2q. By Chernoff bounds, this means that |E(Hi[S])| ≥

q with probability at least 1 − 1/poly(n). Therefore, Theorem ?? applies and shows that
Hi[S] with edge weights |E(G[S])|/|E(Hi[S])| is a (1/6)-sparsifier for G[S] with probability
at least 1 − 1/poly(n). By Chernoff bounds, |E(G[S])|/|E(Hi[S])| ≥ |E(G)|/(2|E(Hi)|), so
ReffHi[S](u, v) ≤ ReffG[S](u, v)(1 + 1/6)2 ≤ C4ReffG[S](u, v) for all u, v ∈ S by the spar-
sification accuracy guarantee. Since this holds for each i, the maximum over all i satisfies the
guarantee as well, as desired.

Lower bound. Let plower
e = 1/|E(G)| for each edge e. Note that t = 1, so with q = |E(Hi)|,

all edges in the sampled graph should have weight twe/(peq) = |E(G)|/|E(Hi)|. Therefore, by
Lemma ??, for a pair u, v ∈ X

Pr[ReffHi(u, v) ≤ 4ReffG(u, v)/5] ≤ 4

5

for each i. Since the His are chosen independently and identically,

Pr[max
i

ReffHi(u, v) ≤ 4ReffG(u, v)/5] ≤
(

4

5

)C5

≤ 1

n100

Union bounding over all pairs shows that

REFFQUERY(u, v) > (6/7)(4/5)ReffG(u, v) > ReffG(u, v)/2

for all u, v ∈ X with probability at least 1− 1/n98 = 1− 1/poly(n), as desired.

143

We now describe the algorithm LOWDIAMSET. This algorithm simply picks random vertices
v and queries the effective resistance data structure to check that v is in a set with the desired
properties:

1: procedure LOWDIAMSET(X)
2: REFFPREPROC(X)
3: while true do
4: Pick a uniformly random vertex v from X
5: Qv ← {u ∈ X : REFFQUERY(u, v) ≤ C2/(2n)}
6: Return Qv if |Qv| ≥ n/C1

7: end while
8: end procedure

We now prove that this algorithm suffices:

Proof of Proposition ??. Size and Low effective resistance diameter. Follows immediately
from the return condition and the fact that for every u ∈ Qv for the returned Qv,

ReffG(u, v) ≤ 2REFFQUERY(u, v) ≤ C2/n

by the Lower bound guarantee of Proposition ??.
Runtime. We start by showing that the while loop terminates after poly(d, log n) iterations

with probability at least 1−1/poly(n). By Proposition ??,G is (d+1)-dependent. By Proposition
??, G has at least n2/(8d2) edges. By Proposition ??, G has a set of vertices S for which
|S| ≥ n/(320d2), ΦG[S] ≥ 1/(800d2 log n), and for which the minimum degree of G[S] is at
least n/(80000d2). By the first condition on S,

Pr[v ∈ S] ≥ 1/(320d2)

so the algorithm picks a v in S with probability at least 1−1/poly(n) after at most 32000d2 log n ≤
poly(d, log n) iterations. By Lemma ?? applied to S,

ReffG(x, y) ≤ ReffG[S](x, y) ≤
(

1

dS(x)
+

1

dS(y)

)
1

Φ2
G[S]

for any x, y ∈ S, where dS(w) denotes the degree of the vertex w in G[S]. By the third property
of S, dS(x) ≥ n/(80000d2) and dS(y) ≥ n/(80000d2). By this and the second property of S,

ReffG(x, y) ≤ 102400000000d6(log2 n)/n ≤ C2/(2C4n)

for any x, y ∈ S. S satisfies the conditions required of Proposition ?? by choice of the values
C3a, C3b, and C3c. Therefore, by the Upper bound guarantee of Proposition ??,

REFFQUERY(u, v) ≤ C2/(2n)

for every u ∈ S if v ∈ S. Since |S| ≥ n/C1 by choice of C1, the return statement returns Qv

with probability at least 1 − 1/poly(n) when v ∈ S. Therefore, the algorithm returns a set Qv

with probability at least 1− 1/poly(n) after at most poly(d, log n) iterations.

144

Each iteration consists of O(n) REFFQUERY calls and O(n) additional work. Therefore,
the total work done by the while loop is poly(d, log n)n with probability at least 1− 1/poly(n).
REFFPREPROC(X) takes poly(d, log n)n by Proposition ??. Thus, the total runtime is poly(d, log n)n,
as desired.

7.3 Using low-effective-resistance clusters to sparsify the unweighted IP
graph

In this section, we prove the following result:
Proposition 7.11 (Unweighted inner product sparsification). There is a poly(d, log n)n/ε2-time
algorithm for constructing an ε-sparsifier with O(n/ε2) for the unweighted inner product graph
of a set of n points X ⊆ Rd.

To sparsify an unweighted inner product graph, it suffices to apply Proposition ?? repeatedly
to partition the graph into poly(d, log n) clusters, each with low effective resistance diameter.
We can use this structure to get a good bound on the leverage scores of edges between clusters:
Proposition 7.12 (bound leverage scores of edges between clusters). For a w-weighted graph G
with vertex setX and n = |X|, let S1, S2 ⊆ X be two sets of vertices, letR1 = maxu,v∈S1 ReffG(u, v),
and let R2 = maxu,v∈S2 ReffG(u, v). Then, for any u ∈ S1 and v ∈ S2,

ReffG(u, v) ≤ 3R1 + 3R2 +
3∑

x∈S1,y∈S2
wxy

.

where wxx =∞ for all x ∈ X

Proof. Let χ ∈ Rn be the vector with χu = 1, χv = −1, and χx = 0 for all x ∈ X with
x 6= u and x 6= v. For each vertex x ∈ S1, let sx =

∑
y∈S2

wxy. For each vertex y ∈ S2, let
sy =

∑
x∈S1

wxy. Let τ =
∑

x∈S1
sx =

∑
y∈S2

sy =
∑

x∈S1,y∈S2
wxy. Write χ as a sum of three

vectors d(1), d(12), d(2) ∈ Rn as follows:

d(1)
x =


1− sx

τ
x = u

− sx
τ

x ∈ S1 \ {u}
0 otherwise

d(2)
x =


sx
τ
− 1 x = v

sx
τ

x ∈ S2 \ {v}
0 otherwise

d(12)
x =


sx
τ

x ∈ S1

− sx
τ

x ∈ S2

0 otherwise

Notice that d(1) + d(2) + d(12) = χ. Furthermore, notice that d(1) =
∑

x∈S1
pxχ

(ux) and d(2) =∑
y∈S2

qyχ
(yv), where χ(ab) is the signed indicator vector of the edge from a to b and

∑
x∈S1

px =

145

1,
∑

y∈S2
qy = 1, and px ≥ 0 and qy ≥ 0 for all x ∈ S1, y ∈ S2. The function f(d) = d>L†d is

convex, so by Jensen’s Inequality,

(d(1))>L†G(d(1)) ≤
∑
x∈S1

px(χ
(ux))>L†Gχ

(ux)

≤
∑
x∈S1

pxR1

≤ R1

and (d(2))>L†G(d(2)) ≤ R2. Let f ∈ R|E(G)| be the vector with fxy = wxy
τ

for all x ∈ S1, y ∈ S2

and let fe = 0 for all other e ∈ E(G). By definition of the sus, f is a feasible flow for the
electrical flow optimization problem for the demand vector d(12). Therefore,

(d(12))>L†Gd
(12) ≤

∑
x∈S1,y∈S2

f 2
xy

wxy

=
∑

x∈S1,y∈S2

wxy
τ 2

=
1

τ

so we can upper bound ReffG(u, v) in the following way

ReffG(u, v) = (d(1) + d(2) + d(12))>L†G(d(1) + d(2) + d(12))

≤ 3(d(1))>L†Gd
(1) + 3(d(2))>L†Gd

(2) + 3(d(12))>L†Gd
(12)

≤ 3R1 + 3R2 + 3/τ

as desired.

7.4 Sampling data structure
In this section, we give a data structure for efficiently sampling pairs of points (u, v) ∈ Rd × Rd

with probability proportional to a constant-factor approximation of |〈u, v〉|:
Lemma 7.13. Given a pair of sets S1, S2 ⊆ Rd, there is a data structure that can be constructed
in Õ(d|S1|+ |S2|) time that, in poly(d log(|S1|+ |S2|)) time per sample, independently samples
pairs u ∈ S1, v ∈ S2 with probability puv, where

1

2

|〈u, v〉|∑
a∈S1,b∈S2

|〈a, b〉|
≤ puv ≤ 2

|〈u, v〉|∑
a∈S1,b∈S2

|〈a, b〉|
Furthermore, it is possible to query the probability puv in poly(d log(|S1|+ |S2|)) time.

To produce this data structure, we use the following algorithm for sketching `1-norms:
Theorem 7.14 (Theorem 3 in [?]). An efficiently computable, poly(log d, 1/ε)-space linear
sketch exists for the `1 norm. That is, given a d ∈ Z≥1, δ ∈ (0, 1), and ε ∈ (0, 1), there is a
matrix C = SKETCHMATRIX(d, δ, ε) ∈ R`×d and an algorithm RECOVERNORM(s, d, δ, ε) with
the following properties:

146

1. (Approximation) For any vector v ∈ Rd, with probability at least 1−δ over the randomness
of SKETCHMATRIX, the value r = RECOVERNORM(Cv, d, δ, ε) is as follows:

(1− ε)‖v‖1 ≤ r ≤ (1 + ε)‖v‖1

2. ` = (c/ε2) log(1/δ) for some constant c > 1

3. (Runtime) SKETCHMATRIX and RECOVERNORM take Õ(`d) and poly(`) time respec-
tively.

We use this sketching algorithm to obtain the desired sampling algorithm in the following
subroutine:
Corollary 7.14.1. Given a set S ⊆ Rd, an ε ∈ (0, 1), and a δ ∈ (0, 1), there exists a data
structure which, when given a query point u ∈ Rd, returns a (1±ε)-multiplicative approximation
to
∑

v∈S |〈u, v〉| with probability at least 1− δ. This data structure can be computed in O(`d|S|)
preprocessing time and takes poly(`d) time per query, where ` = O(ε−2 log(1/δ)).

Proof. Let n = |S| and C = SKETCHMATRIX(n, δ, ε). We will show that the following algo-
rithm returns the desired estimate with probability at least 1− δ:

1. Preprocessing:
(a) Index the rows of C by integers between 1 and `. Index columns of C by points

v ∈ S.
(b) Compute the vector x(i) =

∑
v∈S Civv for each i ∈ `, where ` = (c/ε2) log(1/δ) for

the constant c in Theorem ??.
2. Given a query point u ∈ Rd,

(a) Let y ∈ R` be a vector with yi = 〈u, x(i)〉 for each i ∈ [`].
(b) Return RECOVERNORM(y, n, δ, ε)

Approximation. Let w ∈ Rn be the vector with wv = 〈u, v〉 for each v ∈ S. It suffices
to show that the number that a query returns is a (1 ± ε)-approximation to ‖w‖1. By definition,
yi =

∑
v∈S Civwv for all i ∈ [`] and v ∈ S, so y = Cw. Therefore, by the Approximation

guarantee of Theorem ??, RECOVERNORM(y, n, δ, ε) returns a (1 ± ε)-approximation to ‖w‖1

with probability at least 1− δ, as desired.
Preprocessing time. Computing the matrix C takes Õ(n`) time by the Runtime guarantee

of Theorem ??. Computing the vectors x(i) for all i ∈ [`] takes O(d`n) time. This is all of the
preprocessing steps, so the total runtime is Õ(d`n), as desired.

Query time. Each query consists of ` inner products of d dimensioal vectors and one call to
RECOVERNORM, for a total of O(`d+ poly(`)) work, as desired.

We use this corollary to obtain a sampling algorithm as follows, where n = |S1|+ |S2|:
1. Preprocessing:

(a) Use the Corollary ?? data structure to (1±1/(100 log n))-approximate
∑

v∈S2
|〈u, v〉|

for each u ∈ S1. Let tu be this estimate for each u ∈ S1. (one preprocess for S ← S2,
|S1| queries).

147

(b) Form a balanced binary tree T of subsets of S2, with S2 at the root, the elements of S2

at the leaves, and the property that for every parent-child pair (P,C), |C| ≤ 2|P |/3.

(c) For every node S in the binary tree, construct a (1±1/(100 log n))-approximate data
structure for S.

2. Sampling query:

(a) Sample a point u ∈ S1 with probability tu/(
∑

a∈S1
ta).

(b) Initialize S ← S2. While |S| > 1,

i. Let P1 and P2 denote the two children of S in T
ii. Let s1 and s2 be the (1 ± 1/(100 log n))-approximations to

∑
v∈P1
|〈u, v〉| and∑

v∈P2
|〈u, v〉| respectively obtained from the data structure for S computed dur-

ing preprocessing.

iii. Reset S to P1 with probability s1/(s1 + s2); otherwise reset S to P2.

(c) Return the single element in S.

3. puv query:

(a) Return the product of the O(log n) probabilities attached to ancestor nodes of the
node {v} in T for u, obtained from the preprocessing step (as during the sampling
query)

si/(s1 + s2) is a (1 ± 1/(100 log n))2-approximation to Pr[v ∈ Pi|v ∈ S] for each i ∈
{1, 2}. A v ∈ S2 is sampled with probability proportional to the product of these conditional
probabilities for the ancestors, for which puv is a (1 + 1/(100 log n))2 logn+1 ≤ 2-approximation.
The total preprocessing time is proportional to the size of all sets in the tree, which is at most
O(|S2| log |S2|). The total query time is also polylog(|S1|+ |S2|)poly(d) due to the logarithmic
depth of the query binary tree.

We now expand on this intuition to prove Lemma ??:

Proof of Lemma ??. We show that the algorithm given just before this proof satisfies this lemma:
Probability guarantee. Consider a pair u ∈ S1, v ∈ S2. Let A0 = S2, A1, . . . Ak−1, Ak =

{v} denote the sequence of ancestor sets of the singleton set {v} in T . For each i ∈ [k], let
Bi be the child of Ai−1 besides Ai (unique because T is binary). For a node X of T , let sX be
the (1 ± 1/(100 log n))-approximation to

∑
v∈X |〈u, v〉| used by the algorithm. The sampling

probability puv is the following product of probabilities:

puv =
tu∑
a∈S1

ta

k∏
i=1

sAi
sAi + sBi

sAi + sBi is a (1± 1/(100 log n))-approximation to
∑

v∈Ai−1
|〈u, v〉| by the approximation guar-

antee of Corollary ??. sAi is a (1 ± 1/(100 log n))-approximation to
∑

v∈Ai |〈u, v〉| by the ap-
proximation guarantee of Corollary ??. By these guarantees and the approximation guarantees
for the tas for a ∈ S1, puv is a (1± 1/(100 log n))2k+2 ≤ (1± 1/2)-approximation to

148

∑
b∈S2
|〈u, b〉|∑

a∈S1,b∈S2
|〈a, b〉|

k∏
i=1

∑
b∈Ai |〈u, b〉|∑
b∈Ai−1

|〈u, b〉|
=

|〈u, v〉|∑
a∈S1,b∈S2

|〈a, b〉|

as desired, since k ≤ log n.
Preprocessing time. Let δ = 1/n1000 and ` = (c/ε2) log(1/δ), where c is the constant

from Theorem ??. Approximating all tus takes Õ(`d|S2|) + |S1|poly(`d) = npoly(`d) time by
Corollary ??. Preprocessing the data structures for each node S ∈ T takes

∑
S∈T O(`d|S|) time

in total. Each member of S2 is in at most O(log n) sets in T , since T is a balanced binary tree.
Therefore,

∑
S∈T O(`d|S|) ≤ Õ(n`d), so the total preprocessing time is Õ(n`d), as desired.

Query time. O(log n) of the data structures attached to sets in T are queried per sample
query, for a total of O(log n)poly(`d) time by Corollary ??, as desired.

We use this data structure via a simple reduction to implement the following data structure,
which suffices for our applications:
Proposition 7.15. Given a family G of sets in Rd, a collection of positive real numbers {γS}S∈G ,
and a set S2 ⊆ Rd, there is a data structure that can be constructed in Õ(d(|S2| +

∑
S∈G |S|))

time that, in poly(d log(|S2| +
∑

S∈G |S|)) time per sample, independently samples pairs u ∈ S
for some S ∈ G, v ∈ S2 with probability puv, where

γS|〈u, v〉|
(
∑

A∈G γA)
∑

a∈A,b∈S2
|〈a, b〉|

is a 2-approximation to puv. Furthermore, it is possible to query the number puv in time poly(d log(|S2|+∑
S∈G |S|)) time.

Proof. Define a new set S1 ⊆ Rd+logn as follows, where n = |S2|+
∑

S∈G |S|:

S1 = ∪S∈G{fS(u)∀u ∈ S}

where the function fS : Rd → Rd is defined as follows for any set S ∈ G:

fS(u) =
γS(u, id(u))∑
a∈S,b∈S2

|〈a, b〉|

where id : ∪S∈GS → {0, 1}logn is a function that outputs a unique ID for each element of
∪S∈GS. Define f(u) = fS(u) for the unique S containing u (Without loss of generality assume
that exactly one S contains u). Let S ′2 = {(x, 0logn)∀x ∈ S2}. Construct the data structure
D from Lemma ?? on the pair of sets S1, S

′
2. Now, sample a pair of d-dimensional vectors as

follows:

1. Sample:
(a) Sample a pair (x, (y, 0logn)) from D, where y ∈ S2 and x ∈ Rd+logn.
(b) Since the function id outputs values that are not proportional to one other, the function

f is injective.
(c) Return the pair (f−1(x), y).

149

(d) (For the proof, let w = f−1(x) and let S be the unique set for which w ∈ S)

This data structure has preprocessing time Õ(d(|S ′2| + |S1|)) = Õ(d(|S2| +
∑

S∈G |S|)) and
sample query time poly(d log n) by Lemma ??, as desired. Therefore, we just need to show that
it samples a pair (w, y) with the desired probability. By the probability guarantee for Lemma ??
and the injectivity of the mapping f combined over all S ∈ G, pwy is 2-approximated by

|〈x, (y, 0logn)〉|∑
a∈S1,b∈S′2

|〈a, b〉|
=

γS|〈w, y〉|∑
A∈G

∑
p∈A,q∈S2

|〈p, q〉|

as desired.

7.5 Weighted IP graph sparsification
In this section, we use the tools developed in the previous sections to sparsify weighted inner
product graphs. To modularize the exposition, we define a partition of the edge set of a weighted
inner product graph:
Definition 7.16. For a w-weighted graph G and three functions on pairs of vertex sets ζ, κ, δ, a
collection of vertex set family-vertex set pairs F is called a (ζ, κ, δ)-cover for G iff the following
property holds:

1. (Coverage) For any e = {u, v} ∈ E(G), there exists a pair (G, S1) ∈ F and an S0 ∈ G
for which u ∈ S0, v ∈ S1 or u ∈ S1, v ∈ S0, and

ReffG(u, v) ≤ δ(S0, S1)

wuv
+

κ(S0, S1)

maxx∈S0,y∈S1 wxy
+

ζ(S0, S1)∑
x∈S0,y∈S1

wxy

A (ζ, κ, δ)-cover is said to be s-sparse if
∑

(G,S1)∈F
∑

S0∈G((δ(S0, S1) +κ(S0, S1))|S0||S1|+
ζ(S0, S1)) ≤ s. A (ζ, κ)-cover is said to be w-efficient if

∑
(G,S1)∈F

(
|S1|+

∑
S0∈G |S0|

)
≤ w.

When δ = 0, we simplify notation to refer to (ζ, κ)-covers instead.
Given a (ζ, κ)-cover for a weighted or unweighted inner product graph, one can sparsify it

using Theorem ?? and the sampling data structure from Proposition ??:
Proposition 7.17. Given a set X ⊆ Rd with n = |X| and an s-sparse w-efficient (ζ, κ, δ)-cover
F for the weighted inner product graph G on X , and ε, δ ∈ (0, 1), there is an

poly(d, log n, log s, logw, log(1/δ))(s+ w + n)/ε4

time algorithm for constructing an (1± ε)-sparsifier for G with O(n log n/ε2) edges with prob-
ability at least 1− δ.

Proof. Filling in algorithm details (the bolded parts). We start by filling in the details in the
algorithm
OVERSAMPLINGWITHCOVER. First, we define ruv for each pair of distinct u, v ∈ X . {u, v} is
a weighted edge in G with weight wuv. Define

150

Algorithm 4
1: procedure OVERSAMPLINGWITHCOVER(X,F , ε, δ)
2: (for analysis only: define ruv for each pair u, v ∈ X as in proof)
3: Construct the Proposition ?? data structure D(G,S1) with γS = ζ(S, S1) for each
S ∈ G

4: t←
∑

u,v∈X ruv
5: q ← C · ε−2 · t log t · log(1/δ)
6: Initialize H to be an empty graph
7: for i = 1→ q do
8: Sample one e = {u, v} ∈ X × X with probability re/t by sampling {u, v} uni-

formly or from some data structure D(G,S1) (see proof for details)
9: Add that edge with weight wet/(req) to graph H (note: re can be computed in

poly(d, logw) by the puv query time in Prop ??)
10: end for
11: return Spielman-Srivastava [?] applied to H
12: end procedure

ruv = 2
∑

(G,S1)∈F

∑
S0∈G:u∈S0,v∈S1 or v∈S0,u∈S1

(
δ(S0, S1) + κ(S0, S1) +

(∑
A∈G

ζ(A, S1)

)
p(G,S1)
uv

)

where p(G,S1)
uv is the probability puv defined for the data structure D(G,S1) in Proposition ??. Next,

we fully describe how to sample pairs {u, v} with probability proportional to ruv. Notice that t
can be computed in O(w) time because

t = 2
∑
u,v∈X

ruv

= 2
∑

(G,S1)∈F

∑
S0∈G

∑
u∈S0,v∈S1

(
δ(S0, S1) + κ(S0, S1) +

(∑
A∈G

ζ(A, S1)

)
p(G,S1)
uv

)

= 2
∑

(G,S1)∈F

((∑
A∈G

ζ(A, S1)

)
+
∑
S0∈G

|S0||S1|(δ(S0, S1) + κ(S0, S1))

)

can be computed in O(w) time. Sample a pair {u, v} with probability equal to ruv/t as follows:

1. Sample a pair:

(a) Sample a Bernoulli b ∼ Bernoulli
(

1
t

∑
(G,S1)∈F

(∑
A∈G ζ(A, S1)

))
.

(b) If b = 1

i. Sample a pair (G, S1) ∈ F with probability proportional to
∑

A∈G ζ(A, S1).

151

ii. Sample the pair (u, v) using the data structure D(G,S1).
(c) Else

i. Sample a pair (G, S1) ∈ F with probability proportional to
∑

S0∈G |S0||S1|(δ(S0, S1)+
κ(S0, S1)).

ii. Sample an S0 ∈ G with probability proportional to |S0|(δ(S0, S1) + κ(S0, S1)).
iii. Sample (u, v) ∈ S0 × S1 uniformly.

All sums in the above sampling procedure can be precomputed in poly(d)w time. After doing
this precomputation, each sample from the above procedure takes poly(d, log n, logw) time by to
Proposition ?? for the last step in the if statement and uniform sampling from [0, 1] with intervals
otherwise.

Sparsifier correctness. By the Coverage guarantee of F and the approximation guarantee
for the puvs in Proposition ??, wuvReffG(u, v) ≤ ruv for all u, v ∈ X . Therefore, Theorem ??
applies and shows that the graph H returned is a (1± ε)-sparsifier for G with probability at least
1 − δ. Spielman-Srivastava only worsens the approximation guarantee by a (1 + ε) factor, as
desired.

Number of edges in H . It suffices to bound q. In turn, it suffices to bound t. Recall from
above that

t = 2
∑

(G,S1)∈F

((∑
A∈G

ζ(A, S1)

)
+
∑
S0∈G

|S0||S1|(δ(S0, S1) + κ(S0, S1))

)

= 2
∑

(G,S1)∈F

(∑
S0∈G

(|S0||S1|(δ(S0, S1) + κ(S0, S1)) + ζ(S0, S1))

)
≤ 2s

since F is s-sparse. Therefore, q ≤ poly(d, log s, log 1/δ)s/ε2.
Runtime. We start by bounding the runtime to produce H . Constructing the data struc-

ture D(G,S1) takes poly(d, log n, logw)(|S1| +
∑

S0∈G |S0|) time by Proposition ??. Therefore,
the total time to construct all data structures is at most poly(d, log n, logw)w. Computing
t and q, as discussed above, takes O(w) time. q ≤ poly(d, log s, log 1/δ)s/ε2 as discussed
above and each iteration of the for loop takes poly(d, log n, logw) time by the query com-
plexity bounds of Proposition ??. Therefore, the total time required to produce H is at most
poly(d, log n, log s, logw, log 1/δ)(s + w)/ε2. Running Spielman-Srivastava requires an addi-
tional poly(log s, log n)(s/ε2 + n)/ε2 time, for a total of poly(d, log n, log s, logw, log 1/δ)(s+
w)/ε4 time, as desired.

Therefore, to sparsify weighted inner product graphs, it suffices to construct an poly(d, log n)n-
sparse, poly(d, log n)n-efficient (ζ, κ)-cover. We break up this construction into a sequence of
steps:

152

(ζ, κ)-cover for unweighted IP graphs

We start by constructing covers for unweighted inner product graphs. The algorithm repeatedly
peels off sets constructed using LOWDIAMSET and returns all pairs of such sets. The sparsity of
the cover is bounded due to Proposition ??. The efficiency of the cover is bounded thanks to a
poly(d, log n) bound on the number of while loop iterations, which in turn follows from the Size
guarantee of Proposition ??.
Proposition 7.18 (Cover for unweighted graphs). Given a set X ⊆ Rd with |X| = n, there
is an poly(d, log n)-time algorithm UNWEIGHTEDCOVER(X) that, with probability at least
1− 1/poly(n), produces an poly(d, log n)n-sparse poly(d, log n)n-efficient (ζ, κ)-cover for the
unweighted inner product graph G on X .

Algorithm 5
1: procedure UNWEIGHTEDCOVER(X)
2: Input: X ⊆ Rd

3: Output: An sparse, efficient (ζ, κ) cover for the unweighted inner product graph G on
X

4: U ← ∅
5: Y ← X
6: while Y 6= ∅ do . Finding expanders
7: Let Q← LOWDIAMSET(Y)
8: Add the set Q to U
9: Remove the vertices Q from Y

10: end while
11: return {(U , S) : ∀S ∈ U}
12: end procedure

Proof. Let F = UNWEIGHTEDCOVER(X) and define the functions ζ, κ as follows: ζ(S0, S1) =

3 and κ(S0, S1) = C2

(
3
|S0| + 3

|S1|

)
for any pair of sets S0, S1 ⊆ X . Recall that C2 is defined in

the statement of Proposition ??.
Number of while loop iterations. We start by showing that there are at most poly(d, log n)

while loop iterations with probability at least 1 − 1/poly(n). By the Size guarantee of Propo-
sition ??, when LOWDIAMSET succeeds (which happens with probability 1 − 1/poly(n)), Y
decreases in size by a factor of at least 1− 1/p(d, log n) for some fixed constant degree polyno-
mial p. Therefore, after p(d, log n) log n = poly(d, log n) iterations, Y will be empty, as desired.
Therefore, |U| ≤ poly(d, log n).

Runtime. The runtime follows immediately from the bound on the number of while loop
iterations and the runtime bound on LOWDIAMSET from Proposition ??.

Coverage. For each S ∈ U , maxu,v∈S ReffG(u, v) ≤ C2

|S| by the Low effective resistance
diameter guarantee of Proposition ??. Plugging this into Proposition ?? immediately shows that
F is a (ζ, κ)-cover for G.

Sparsity bound. We bound the desired quantity directly using the fact that |U| ≤ poly(d, log n):

153

∑
(U ,S1)∈F

∑
S0∈U

(κ(S0, S1)|S0||S1|+ ζ(S0, S1)) ≤ poly(d, log n)
∑

(U ,S1)∈F

∑
S0∈U

(|S0|+ |S1|+ 1)

≤ poly(d, log n)n

as desired.

Efficiency bound. Follows immediately from the bound on |U|.

(ζ, κ)-cover for weighted IP graphs on bounded-norm vectors

Given a covers for unweighted inner product graphs, it is easy to construct covers for weighted
inner product graphs on bounded norm vectors simply by removing edge weights and produc-
ing the cover. Edge weights only differ by a factor of O(d) in these two graphs, so effective
resistances also differ by at most that amount. Note that the following algorithm also works for
vectors with norms between z and 2z for any real number z.
Proposition 7.19 (Weighted bounded norm cover). Given a set X ⊆ Rd with 1 ≤ ‖u‖2 ≤ 2
for all u ∈ X and |X| = n, there is an npoly(d, log n) time algorithm BOUNDEDCOVER(X)
that produces a poly(d, log n)-sparse, poly(d, log n)-efficient (ζ, κ)-cover for the weighted inner
product graph G on X .

Proof. Let G0 be the unweighted inner product graph on X . Let G1 be the weighted graph G
with all edges that are not in G0 deleted. Let F be the (ζ0, κ0)-cover given by Proposition ??
for G0. Let this cover be the output of BOUNDEDCOVER(X). It suffices to show that F is a
(ζ, κ)-cover for G, where ζ = 8dζ0 and κ = 8dκ0. By Rayleigh monotonicity,

ReffG(u, v) ≤ ReffG1(u, v)

for all u, v ∈ X . Let we denote the weight of the edge e in G1. For all edges e in G1, 1
d+1
≤

we ≤ 4 by the norm condition on X . Therefore, for all u, v ∈ X ,

ReffG1(u, v) ≤ (d+ 1)ReffG0(u, v)

By the Coverage guarantee on F , there exists a pair (G, S1) and an S0 ∈ G for which u ∈ S0, v ∈
S1 or v ∈ S0, u ∈ S1 and

ReffG1(u, v) ≤ (d+ 1)

(
κ0(S0, S1) +

ζ0(S0, S1)

|S0||S1|

)
By the upper bound on the edge weights for G1,

ReffG1(u, v) ≤ 4(d+ 1)

(
κ0(S0, S1)

maxx∈S0,y∈S1 wxy
+

ζ0(S0, S1)∑
x∈S0,y∈S1

wxy

)
Since 4(d+ 1) ≤ 8d, F is a (ζ, κ)-cover for G as well, as desired.

154

(ζ, κ)-cover for weighted IP graphs on vectors with norms in the set [1, 2] ∪ [z, 2z] for any
z > 1

By the previous subsection, it suffices to cover the pairs (u, v) for which ‖u‖2 ∈ [1, 2] and
‖v‖2 ∈ [z, 2z]. This can be done by clustering using LOWDIAMSET on the [z, 2z]-norm vectors.
For each cluster S1, let G = {{u} : ∀u ∈ X with ‖u‖2 ∈ [1, 2]}. This cover is sparse because
of the fact that the clusters have low effective resistance diameter. It is efficient because of the
small number of clusters.
Proposition 7.20 (Two-scale cover). Given a set X ⊆ Rd for which |X| = n and ‖u‖2 ∈ [1, 2]∪
[z, 2z] for all u ∈ X , there is a poly(d, log n)n-time algorithm TWOBOUNDEDCOVER(X) that
produces an poly(d, log n)n-sparse, poly(d, log n)-efficient (ζ, κ)-cover for the weighted inner
product graph G on X .

Algorithm 6
1: procedure TWOBOUNDEDCOVER(X)
2: Input: X ⊆ Rd, where ‖u‖2 ∈ [1, 2] ∪ [z, 2z] for all u ∈ X
3: Output: An sparse, efficient (ζ, κ) cover for the weighted inner product graph G on X
4: Xlow ← {u ∈ X : ‖u‖2 ∈ [1, 2]}
5: Xhigh ← {u ∈ X : ‖u‖2 ∈ [z, 2z]}
6: U ← ∅
7: Y ← Xhigh

8: while Y 6= ∅ do
9: Let Q← LOWDIAMSET(Y)

10: Add the set Q to U
11: Remove the vertices Q from Y
12: end while
13: return {({{u}∀u ∈ Xlow}, S1) : ∀S1 ∈ U}
14: ∪BOUNDEDCOVER(Xlow) ∪ BOUNDEDCOVER(Xhigh)
15: end procedure

Proof. Suppose that the BOUNDEDCOVERs returned for Xlow and Xhigh are (ζlow, κlow) and
(ζhigh, κhigh)-covers respectively. Recall the value C2 ≤ poly(d, log n) from the statement of
Proposition ??. Letwuv = |〈u, v〉| denote the weight of the u-v edge inG. LetF = TWOBOUNDEDCOVER(X)
and define the functions ζ, κ as follows:

ζ(S0, S1) =


ζlow(S0, S1) if S0, S1 ⊆ Xlow

ζhigh(S0, S1) if S0, S1 ⊆ Xhigh

3 if S0 ⊆ Xlow and S1 ⊆ Xhigh

∞ otherwise

155

κ(S0, S1) =


κlow(S0, S1) if S0, S1 ⊆ Xlow

κhigh(S0, S1) if S0, S1 ⊆ Xhigh
24dC2

|S1| if S0 ⊆ Xlow and S1 ⊆ Xhigh

∞ otherwise

Number of while loop iterations. A poly(d, log n)-round bound follows from the Size bound
of Proposition ??. For more details, see the same part of the proof of Proposition ??, which used
the exact same algorithm for producing U .

Runtime. Follows immediately from the runtime bounds of LOWDIAMSET, BOUNDEDCOVER,
and the number of while loop iterations.

Coverage. Consider a pair u, v ∈ X . We break the analysis up into cases:
Case 1: u, v ∈ Xlow. In this case, the Coverage property of BOUNDEDCOVER(Xlow) implies

that the pair (u, v) is covered in F by Rayleigh monotonicity (since Glow is a subgraph of G,
where Glow is the weighted inner product graph for Xlow).

Case 2: u, v ∈ Xhigh. In this case, the Coverage property of BOUNDEDCOVER(Xhigh) implies
that the pair (u, v) is covered in F by Rayleigh monotonicity.

Case 3: u ∈ Xlow and v ∈ Xhigh. Since U is a partition ofXhigh, there is a unique pair (G, S1) ∈
F for which {u} ∈ G and v ∈ S1. Let H denote the unweighted inner product graph on Xhigh.
By Rayleigh monotonicity, the fact that z2

2d
≤ z2

d+1
≤ wxy for all {x, y} ∈ E(H), and the Low

effective resistance diameter guarantee of Proposition ??,

ReffG(x, y) ≤ ReffGhigh(x, y)

≤ 2dReffH(x, y)

z2

≤ 2dC2

z2|S1|

for any x, y ∈ S1. Since z > 1, wxy ≤ 4z2 for all x, y ∈ X . Therefore,

ReffG(x, y) ≤ 8dC2

maxp∈Xlow,q∈S1 wpq

for any x, y ∈ S1. Therefore, Proposition ?? implies the desired Coverage bound in this case.
Sparsity bound. We use the fact that |U| ≤ poly(d, log n) along with sparsity bounds for

BOUNDEDCOVER from Proposition ?? to bound the sparsity of F as follows:

156

∑
(G,S1)∈F

∑
S0∈G

(κ(S0, S1)|S0||S1|+ ζ(S0, S1)) = Sparsity(BOUNDEDCOVER(Xlow))

+ Sparsity(BOUNDEDCOVER(Xhigh))

+
∑

u∈Xlow,S1∈U

(κ({u}, S1)|S1|+ ζ({u}, S1))

≤ poly(d, log n)n+ |Xlow||U|(24dC2 + 3)

≤ poly(d, log n)n

as desired.
Efficiency bound. We use the efficiency bounds of Proposition ?? along with the bound on

|U|:

∑
(G,S1)∈F

(
|S1|+

∑
S0∈G

|S0|

)
= Efficiency(BOUNDEDCOVER(Xlow))

+ Efficiency(BOUNDEDCOVER(Xhigh))

+
∑
S1∈U

(|S1|+ |Xlow|)

≤ poly(d, log n)n+ |Xhigh|+ |U||Xlow|
≤ poly(d, log n)n

as desired.

(ζ, κ)-cover for weighted IP graphs with polylogarithmic dependence on norm

We now apply the subroutine from the previous subsection to produce a cover for weighted inner
product graphs on vectors with arbitrary norms. However, we allow the sparsity and efficiency
of the cover to depend on the ratio τ between the maximum and minimum norm of points in X .
To obtain this cover, we bucket vectors by norm and call TWOBOUNDEDCOVER on all pairs of
buckets.
Proposition 7.21 (Log-dependence cover). Given a set of vectors X ⊆ Rd with τ = maxx∈X ‖x‖2

minx∈X ‖x‖2
and n = |X|, there is a poly(d, log n, log τ)n-time algorithm LOGCOVER(X) that produces a
poly(d, log n, log τ)n-sparse, poly(d, log n, log τ)n-efficient (ζ, κ)-cover for the weighted inner
product graph G on X .

Proof. Coverage. For any edge {u, v} ∈ E(G), there exists a pair i, j ∈ {0, 1, . . . , log τ} for
which u, v ∈ Xi ∪Xj . Therefore, the Coverage property for TWOBOUNDEDCOVER(Xi ∪Xj)
(which is part of F) implies that the pair {u, v} is covered by F .

157

Algorithm 7
1: procedure LOGCOVER(X)
2: Input: X ⊆ Rd

3: Output: An sparse, efficient (ζ, κ) cover for the weighted inner product graph G on X
4: dmin ← minx∈X ‖x‖2, dmax ← maxx∈X ‖x‖2

5: for i ∈ {0, 1, . . . , log τ} do
Xi ← {x ∈ X : ‖x‖2 ∈ [2idmin, 2

i+1dmin)}
6: end for
7: F = ∅
8: for each pair i, j ∈ {0, 1, . . . , log τ} do
9: Add TWOBOUNDEDCOVER(Xi ∪Xj) to F

10: end for
11: return F
12: end procedure

Runtime, efficiency, and sparsity. Efficiency and sparsity of F are at most the sum of the
efficiencies and sparsities respectively of the constituent TWOBOUNDEDCOVERs, each of which
are at most poly(d, log n)n by Proposition ??. There are O(log2 τ) such covers in F , so the
efficiency and sparsity ofF is at most poly(d, log n) log2 τn ≤ poly(d, log n, log τ)n, as desired.
Runtime is also bounded due to the fact that there are at most log2 τ for loop iterations.

Desired (ζ, κ, δ)-cover

Now, we obtain a cover for all X with sparsity, efficiency, and runtime poly(d, log n). To do this,
we break up pairs to cover {u, v} ∈ X ×X into two types. Without loss of generality, suppose
that ‖u‖2 ≤ ‖v‖2. The first type consists of pairs for which ‖v‖2 ≤ (dn)1000‖u‖2. These pairs
are covered using several LOGCOVERs. The total efficiency, sparsity, and runtime required for
these covers is poly(d, log n)n due to the fact that each vector is in at most poly(d, log n) of these
covers.

The second type consists of all other pairs, i.e. those with ‖v‖2 > (dn)1000‖u‖2. For these
pairs, we take care of them via a clustering argument. We cluster all vectors in X into d + 1
clusters in a greedy fashion. Specifically, we sort vectors in decreasing order by norm and create
a new cluster for a vector x ∈ X if |〈x, y〉| < 1

d+1
‖x‖2‖y‖2 for the first vector y in each cluster.

Otherwise, we assign x to an arbitrary cluster for which |〈x, y〉| ≥ 1
d+1
‖x‖2‖y‖2 for first cluster

vector y. We then cover the pair {u, v} using the pair of sets ({u}, C), where C is the cluster
containing v. To argue that this satisfies the Coverage property, we exploit the norm condition
on the pair {u, v}. To bound efficiency, sparsity, and runtime, it suffices to bound the number of
clusters, which is at most d+ 1 by Proposition ??.

In order to define this algorithm, we use the notion of an interval family, which is exactly the
same as the one-dimensional interval tree from computational geometry.
Definition 7.22. For a set X and a function f : X → R, define the interval family for X ,
denoted X = INTERVALFAMILY(X), to be a family of sets produced recursively by initializing
X = {X} and repeatedly taking an element S ∈ X , splitting it evenly into two subsets S0 and

158

S1 for which maxx∈S0 f(x) ≤ minx∈S1 f(x), and adding S0 and S1 to X until X contains all
singleton subsets of X .
X has the property that for any set S ⊆ X consisting of all x ∈ X for which a ≤ f(x) ≤ b

for two a, b ∈ R, S is the disjoint union of O(log |X|) sets in X . Furthermore, each element in
X is in at most O(log |X|) sets in X .
Proposition 7.23 (Desired cover). Given a set X ⊆ Rd with n = |X|, there is a poly(d, log n)n-
time algorithm DESIREDCOVER(X) that produces a poly(d, log n)n-sparse, poly(d, log n)n-
efficient (ζ, κ, δ)-cover for the weighted inner product graph G on X .

Algorithm 8
1: procedure DESIREDCOVER(X)
2: Input: X ⊆ Rd

3: Output: An sparse, efficient (ζ, κ, δ)-cover for the weighted inner product graph G on
X , where ζ, κ, and δ are defined in the proof of Proposition ??.

4: F ← ∅
5: ξ ← (dn)1000

6: dmin ← minx∈X ‖x‖2, dmax ← maxx∈X ‖x‖2

. Cover nearby norm pairs
7: for i ∈ {0, 1, . . . , log(dmax/dmin)− dlog ξe do
8: Xi ← {x ∈ X : ‖x‖2 ∈ [dmin2i, dmin2i+1)
9: Add LOGCOVER(Xi ∪Xi+1 ∪ . . . ∪Xi+dlog ξe) to F

10: end for
. Create approximate basis for spread pairs

B ← ∅
11: for x ∈ X in decreasing order by ‖x‖2 do
12: if there does not exist y ∈ B for which |〈x, y〉| ≥ ‖x‖2‖y‖2/(d+ 1) then
13: Add x to B and initialize a cluster Cx = {x}
14: else
15: Add x to Cy for an arbitrary choice of y satisfying the condition
16: end if
17: end for

. Cover the spread pairs
18: for w ∈ B do
19: Cw ← INTERVALFAMILY(Cw)
20: for each set C ∈ Cw do
21: GC ← the family of all singletons of x ∈ X for which the disjoint union of

O(log n) sets for {y ∈ Cw : ‖y‖2 ≥ ξ‖u‖2} obtained from Cw contains C
22: Add (GC , C) to F
23: end for
24: end for

return F
25: end procedure

159

Proof. We start by defining the functions ζ, κ, and δ. Let ζi and κi denote the functions for
which LOGCOVER(Yi) is a (ζi, κi)-cover for the weighted inner product graph on Yi, where
Yi = Xi ∪Xi+1 ∪ . . . ∪Xi+dlog ξe for all i ≤ log(dmax/dmin)− dlog ξe. Let

ζ(S0, S1) =



∑
i:S0,S1⊆Yi,ζi(S0,S1)6=∞ ζi(S0, S1) if there exists i for which S0, S1 ⊆ Yi

2 if S1 ∈ Cy for some y ∈ B and S0 = {x} for some x
with ‖x‖2 ≤ mina∈C ‖a‖2/ξ

∞ otherwise

κ(S0, S1) =



∑
i:S0,S1⊆Yi,κi(S0,S1)6=∞ κi(S0, S1) if there exists i for which S0, S1 ⊆ Yi

0 if S1 ∈ Cy for some y ∈ B and S0 = {x} for some x
with ‖x‖2 ≤ mina∈C ‖a‖2/ξ

∞ otherwise

δ(S0, S1) =


0 if there exists i for which S0, S1 ⊆ Yi

1
|S1| if S1 ∈ Cy for some y ∈ B and S0 = {x} for some x

with ‖x‖2 ≤ mina∈C ‖a‖2/ξ

∞ otherwise

Before proving that the required guarantees are satisfied, we bound some important quanti-
ties.

Bound on wyw in terms of wuy for y ∈ Cw if ‖y‖2 ≥ ξ‖u‖2. By definition of Cw, wyw ≥
1
d+1
‖y‖2‖w‖2 for any y ∈ Cw. w was the first member added to Cw, so ‖w‖2 ≥ ‖y‖2. By

the norm assumption on y, ‖y‖2 ≥ ξ‖u‖2. By Cauchy-Schwarz, ‖y‖2‖u‖2 ≥ |〈y, u〉| = wuy.
Therefore,

wyw ≥
ξ

d+ 1
wuy

Bound on ReffG(u,w) for w ∈ B. We start by bounding the effective resistance between
u ∈ X and any w ∈ B for which ‖w‖2 > ξ‖u‖2. Recall that wxy = |〈x, y〉| for any x, y ∈ X .
Consider any C ∈ Cw for which mina∈C ‖a‖2 > ξ‖u‖2. We show that

ReffG(u,w) ≤ 2∑
y∈C wuy

Consider all 2-edge paths of the form u-y-w for y ∈ C. By assumption on C, ‖y‖2 ≥ ξ‖u‖2 for
any y ∈ C. Therefore, the bound on wyw applies:

wyw ≥
ξ

d+ 1
wuy

for any y ∈ C. By series-parallel reductions, the u-w effective resistance is at most

160

ReffG(u,w) ≤ 1∑
y∈C

1
1/wuy+1/wyw

≤ 1∑
y∈C

1
(1+(d+1)/ξ)/wuy

≤ 2∑
y∈C wuy

as desired.
Bound on ReffG(u, y) for y ∈ C. Any y ∈ C has the property that ‖y‖2 ≥ ξ‖u‖2. There-

fore, for y ∈ C, ReffG(y, w) ≤ d+1
ξwuy
≤ 1
|C|wuy . By the triangle inequality for effective resistance,

ReffG(u, y) ≤ ReffG(u,w) + ReffG(w, y) ≤ 1

|C|wuy
+

2∑
a∈C wua

Coverage. For any pair {u, v} for which there exists i with u, v ∈ Yi, {u, v} is still covered
byF by the Coverage property of LOGCOVER(Yi). Therefore, we may assume that this is not the
case. Without loss of generality, suppose that ‖v‖2 ≥ ‖u‖2. Then, by assumption, ‖v‖2 ≥ ξ‖u‖2.
By definition of the Cws, there exists a w ∈ B for which v ∈ Cw. By the first property of interval
families, the set {x ∈ Cw : ‖x‖2 ≥ ξ‖u‖2} is the disjoint union of O(log n) sets in Cw. Let C be
the unique set among these for which v ∈ C. By our effective resistance bound,

ReffG(u, v) ≤ 1

|C|wuv
+

2∑
x∈C wux

=
δ({u}, C)

wuv
+

κ({u}, C)

maxx∈C wux
+
ζ({u}, C)∑

x∈C wux

so the coverage property for the pair {u, v} is satisfied within F by the pair (GC , C), as desired.
Efficiency. The efficiency of F is at most the efficiency of the LOGCOVERs and the remain-

ing part for spread pairs. We start with the LOGCOVERs. By Proposition ??,

∑
i

Efficiency(LOGCOVER(Yi)) ≤
∑
i

poly(d, log |Yi|, log ξ)|Yi|

≤
∑
i

poly(d, log n)|Yi|

≤ (log ξ + 1)poly(d, log n)
∑
i

|Xi|

≤ poly(d, log n)n

161

Therefore, we just need to bound the efficiency of the remainder of F . The efficiency of F is at
most

Efficiency(F) =
∑

(G,S1)∈F

∑
S0∈G

((δ(S0, S1) + κ(S0, S1))|S0||S1|+ ζ(S0, S1))

=
∑
i

Efficiency(LOGCOVER(Yi))

+
∑
w∈B

∑
C∈Cw

∑
{u}∈GC

(δ({u}, C)|C|+ ζ({u}, C))

≤ poly(d, log n)n+
∑
w∈B

∑
C∈Cw

3|GC |

By the first property of interval families, each x ∈ X is present as a singleton in at mostO(log n)
GCs for C that are a subset of a given Cw. Therefore,

Efficiency(F) ≤ poly(d, log n)n+
∑
w∈B

O(log n)n

By Proposition ??, |B| ≤ d+ 1. Therefore, Efficiency(F) ≤ poly(d, log n)n, as desired.
Sparsity. By Proposition ??,

∑
i

Sparsity(LOGCOVER(Yi)) ≤
∑
i

poly(d, log n, log ξ)|Yi| ≤ poly(d, log n)n

Therefore, we may focus on the remaining part for spread pairs. In particular,

Sparsity(F) =
∑

(G,S1)∈F

(|S1|+
∑
S0∈G

|S0|)

≤ poly(d, log n)n

+
∑
w∈B

∑
C∈Cw

(|C|+ |GC |)

≤ poly(d, log n)n+
∑
w∈B

∑
C∈Cw

|C|

where the last inequality follows from the first property of interval families. By the second prop-
erty of interval families, each element of Cw is in at most O(log n) sets in Cw, so

∑
C∈Cw |C| ≤

O(log n)|Cw|. Since |B| ≤ d+ 1, Sparsity(F) ≤ poly(d, log n)n, as desired.
Runtime. The first for loop takes

∑
i poly(d, log n)|Yi| ≤ poly(d, log n)n by Proposition ??.

The second for loop takes O(d|B|n) ≤ poly(d, log n)n by the bound on |B|. The third for loop
takes poly(d, log n)n by the runtime for INTERVALFAMILY and the two properties of interval
families. Therefore, the total runtime is poly(d, log n)n, as desired.

162

Proof of Lemma ??

Proof of Lemma ??. Follows immediately from constructing the cover F given by Proposition
?? and plugging that into Proposition ??.

8 Hardness of Sparsifying and Solving Non-Multiplicatively-
Lipschitz Laplacians

We now define some terms to state our hardness results:
Definition 8.1. For a decreasing function f that is not (C,L)-multiplicatively Lipschitz, there
exists a point x for which f(Cx) ≤ C−Lf(x). Let x0 denote one such point. A set of real
numbers S ⊆ R≥0 is called ρ-discrete for some ρ > 1 if for any pair a, b ∈ S with b > a, b ≤ ρa.
A set of points X ⊆ Rd is called ρ-spaced for some ρ > 1 if there is some ρ-discrete set S ⊆ R≥0

with the property that for any pair x, y ∈ X , ‖x− y‖2 ∈ S. S is called the distance set for X .

Dim. Thm. d g(p) ρ Time
Low ?? clog∗ n p 1 + 16 log(10(L1/(4c0)))/L O(nL1/(8c0))

High ?? log n ep 1 + 2 log(10(2L
0.48

))/L O(n2L
.48

)

Table 5.3: Sparsification Hardness

In this section, we show the following two hardness results:
Theorem 8.2 (Low-dimensional sparsification hardness). Consider a decreasing function f :
R≥0 → R≥0 that is not (ρ, L)-multiplicatively lipschitz for some L > 1, where c and c0 are the
constants given in Theorem ?? and ρ = 1 + 2 log(10L1/(4c0))/L. There is no algorithm that,
given a set of n points X in d = clog∗ n dimensions, returns a sparsifier of the f -graph for X in
less than O(nL1/(8c0)) time assuming SETH.
Theorem 8.3 (High-dimensional sparsification hardness). Consider a decreasing function f :
R≥0 → R≥0 that is not (ρ, L)-multiplicatively Lipschitz for some L > 1, where ρ = 1 +
2 log(10(2L

0.48
))/L. There is no algorithm that, given a set of n points X in d = O(log n)

dimensions, returns a sparsifier of the f -graph for X in less than O(n2L
.48

) time assuming
SETH.

Both of these results follow from the following reduction:
Lemma 8.4. Consider a decreasing function f : R≥0 → R≥0 that is not (ρ, L)-multiplicatively
Lipschitz for some L > 1, where ρ = 1 + 2 log(10n)/L and n > 1. Suppose that there is an
algorithm A that, when given a set of n points X ⊆ Rd, returns a 2-approximate sparsifier for
the f -graph ofX withO(n) edges in T (n, L, d) time. Then, there is an algorithm (Algorithm ??)
that, given two sets A,B ⊆ Rd for which A ∪ B is ρ-spaced with distance set S, k ∈ S, and
|A ∪B| = n, returns whether or not mina∈A,b∈B ‖a− b‖2 ≤ k in

O(T (|A ∪B|, L, d) + |A ∪B|)

time.

163

The reduction described starts by scaling the points in A ∪ B by a factor of x0/k to obtain
Ã and B̃ respectively. Then, it sparsifies the f -graph for Ã ∪ B̃. Finally, it computes the weight
of the edges in the Ã-B̃ cut. Because f is not multiplicatively Lipschitz and the distance set for
Ã ∪ B̃ is spaced, thresholding suffices for solving the A×B nearest neighbor problem.

Proof of Lemma ??. Consider the following algorithm, BICHROMATICNEARESTNEIGHBOR (Al-
gorithm ??), given below:

Algorithm 9
1: procedure BICHROMATICNEARESTNEIGHBOR(A,B, k) . Lemma ??
2: Given: A,B ⊂ Rd with the property that A ∪ B is ρ-spaced, where ρ = 1 +

2(log(10n))/L, and k ∈ S
3: Returns: whether there are a ∈ A, b ∈ B for which ‖a− b‖2 ≤ k

4: Ã← {a · √x0/k | ∀a ∈ A} . Ã ⊂ Rd

5: B̃ ← {b · √x0/k | ∀b ∈ B} . B̃ ⊂ Rd

6: H ← A(Ã ∪ B̃) . H is a 2-approximate sparsifier for the f -graph G of Ã ∪ B̃
7: if the total weight of edges between Ã and B̃ in H is at least f(x0)/2 then
8: return true
9: else

10: return false
11: end if
12: end procedure

We start by bounding the runtime of this algorithm. Constructing Ã and B̃ and calculating
the total weight of edges between Ã and B̃ takes O(n) time since H has O(n) edges. Since the
sparsification algorithm is only called once, the total runtime is therefore T (n, L, d) + O(n), as
desired. For the rest of the proof, we may therefore focus on correctness.

First, suppose that mina∈A,b∈B ‖a− b‖2 ≤ k. There exists a pair of points ã ∈ Ã, b̃ ∈ B̃ with
‖ã − b̃‖2 ≤

√
x0. Since f is a decreasing function, the edge between ã and b̃ in G has weight

at least f(x0), which means that the total weight of edges in the Ã-B̃ cut in G is at least f(x0).
Since H is a 2-approximate sparsifier for G, the total weight of edges in the Ã-B̃ cut is at least
f(x0)/2. This means that true is returned, as desired.

Next, suppose that mina∈A,b∈B ‖a − b‖2 > k. Since A ∪ B is ρ-spaced with distance set S
and k ∈ S, ‖a − b‖2 ≥ ρ · k for all a ∈ A and b ∈ B. Therefore, ‖ã − b̃‖2 ≥ ρ · √x0 for all
ã ∈ Ã and b̃ ∈ B̃.

Since f is decreasing and not (ρ, L)-multiplicatively Lipschitz, the weight of any edge be-
tween Ã and B̃ in G is at most

f(ρ · x0) ≤ f(x0)/(100n2).

The total weight of edges between Ã and B̃ is therefore at most

n2 · (f(x0)/(100n2)) < f(x0)/8.

164

Since H is a 2-approximate sparsifier for G, the total weight between C and D is at most
f(x0)/4 < f(x0)/2, so the algorithm returns false, as desired.

We now prove the theorems:

Proof of Theorem ??. Consider an instance of `2-bichromatic closest pair for n = L1/(4c0) and
d = clog∗ n, where c is the constant given in the dimension bound of Theorem ?? and c0 is
such that integers have bit length c0 log n in Theorem ??. This consists of two sets of points
A,B ⊆ Rd with |A ∪ B| = n for which we wish to compute mina∈A,b∈B ‖a− b‖2. By Theorem
??, the coordinates of points in A are also c0 log n bit integers. Therefore, the set S of possible
`2 distances between points in A and B is a set of square roots of integers with log d+ c0 log n ≤
2c0 log n bits. Therefore, S is a ρ-discrete (recall ρ = 1 + (2 log(10n))/L), since 1 + 1/n2c0 >
1 + (2 log(10n))/L. Furthermore, note that f is not (ρ, L)-multiplicatively Lipschitz.

We now describe an algorithm for solving `2-closest pair on A × B. Use binary search on
the values in S to compute the minimum distance between points in A,B. For each query point
k ∈ S, by Lemma ??, there is a

T (n, L, d) = O(T (L1/(4c0), L, clog∗ L) + L1/(4c0))

-time algorithm for determining whether or not the closest pair has distance at most k. Therefore,
there is a

O(log |S| · (T (L1/(4c0), L, clog∗ L) + L1/4c0)) = Õ(L1/(4c0)L1/(8c0)) < O(n3/2)

time algorithm for solving `2-closest pair on pairs of sets with n points. But this is impossible
given SETH by Theorem ??, a contradiction. This completes the result.

Proof of Theorem ??. Consider an instance of bichromatic Hamming nearest neighbor search
for n = 2L

0.49 and d = c1 log n for the constant c1 in the dimension bound in Theorem ??. This
consists of two sets of points A,B ⊆ Rd with |A ∪ B| = n for which we wish to compute
mina∈A,b∈B ‖a− b‖2. The coordinates of points in A and B are 0-1. Therefore, the set S of pos-
sible `2 distances between points in A and B is the set of square roots of integers between 0 and
c1 log n, which differ by a factor of at least 1+1/(2c1 log n) > ρ (recall ρ = 1+(2 log(10n))/L).
Therefore, A ∪ B is ρ-spaced. Note that f is also no (ρ, L)-multiplicatively Lipschitz by defini-
tion.

We now give an algorithm for solving `2-closest pair on A×B. Use binary search on S. For
each query k ∈ S, Lemma ?? implies that one can check if there is a pair with distance at most
k in

T (n, L, d) = O(T (2L
.49

, L, c1L
.49) + 2L

.49

)

≤ O(2L
.49+L.48)

= n1+o(1)

time on pairs of sets with n points. But this is impossible given SETH by Theorem ??. This
completes the result.

165

Next, we prove hardness results for solving Laplacian systems. In these hardness results, we
insist that kernels are bounded:
Definition 8.5. Call a function f : R≥0 → R≥0 g(p)-bounded for a function g : R≥0 → R≥0

iff for any pair a, b > 0 with b > a, f(b) ≥ f(a) · g(b/a). Call a set S ⊆ R≥0 γ-bounded iff
maxs∈S s ≤ γmins∈S,s6=0 s. A set of points X ⊆ Rd is called γ-boxed iff the set of distances
between points in X is γ-bounded.

Dim. Thm. d g(p) ρ Time ε

Low ?? clog∗ n p 1 + 16 log(10(L1/(4c0)))/L n log(g(γ))L1/(64c0) 1/(g(γ)32poly(logn))

High ?? log n ep 1 + 2 log(10(2L
0.48

))/L n log(g(γ))2L
.48

1/(g(γ)32poly(logn))

Table 5.4: Linear System Hardness

We show the following results:
Theorem 8.6 (Partial low-dimensional linear system hardness). Consider a decreasing g(p) = p-
bounded function f : R≥0 → R≥0 that is not (ρ, L)-multiplicatively Lipschitz for some L > 1,
where c and c0 are the constants given in Theorem ?? and ρ = 1 + 16 log(10(L1/(32c0)))/L.
Assuming SETH, there is no algorithm that, given a γ-boxed set of n points X in d = clog∗ n

dimensions with f -graphG and a vector b ∈ Rn, returns a ε = 1/(g(γ)32poly(logn))-approximate
solution x ∈ Rn to the geometric Laplacian system LGx = b in less thanO(n log(g(γ))L1/(64c0))
time.
Theorem 8.7 (Partial high-dimensional linear system hardness). Consider a decreasing g(p) =
ep-bounded function f : R≥0 → R≥0 that is not (ρ, L)-multiplicatively Lipschitz for some L > 1,
where ρ = 1 + 16 log(10(2L

0.48
))/L. Assuming SETH, there is no algorithm that, given a γ-

boxed set of n points X in d = O(log n) dimensions with f -graph G and a vector b ∈ Rn,
returns a ε = 1/(g(γ)32poly(logn))-approximate solution x ∈ Rn to the geometric Laplacian
system LGx = b in less than O(n log(g(γ))2L

.48
) time assuming SETH.

To prove these theorems, we use the following reduction from bichromatic nearest neighbors:
Lemma 8.8. Consider a decreasing g(p)-bounded function f : R≥0 → R≥0 that is not (ρ, L)-
multiplicatively Lipschitz for some L > 1, where ρ = 1 + 16(log(10n))/L and n > 1. Suppose
that there is an algorithmA that, given a γ-boxed set of n pointsX in d dimensions with f -graph
G and a vector b ∈ Rn, returns an ε = 1/(g(γ)32poly(logn))-approximate solution x ∈ Rn to the
geometric Laplacian system LGx = b in T (n, L, g(γ), d) time. Then, there is an algorithm that,
given two sets A,B ⊆ Rd for which A ∪ B is ρ-spaced with |S|O(1)-bounded distance set S,
k ∈ S, and |A ∪B| = n, returns whether or not mina∈A,b∈B ‖a− b‖2 ≤ k in

O((log n)T (n, L, g(|S|O(1)), d) + |A ∪B|)

time.
This reduction works in a similar way to the effective resistance data structure of Spielman

and Srivastava [?], but with minor differences due to the fact that their data structure requires
multiplication by incidence matrix of the graph, which in our case is dense. Our reduction uses
Johnson-Lindenstrauss to embed the points

vs = L†bs

166

for vertices s in the graph G into O(log n) dimensions in a way that distorts the distances

b>st(L
†)2bst

for vertices s, t in G by a factor of at most 2. After computing this embedding, we build an
O(log n)-approximate nearest neighbor data structure on the resulting points. This allows us to
determine whether or not a vertex inA has a high-weight edge inG toB in almost-constant time.
After looping through all of the edges in A in total time n1+o(1), we determine whether or not
there are any high-weight edges between A and B in G, allowing us to answer the bichromatic
nearest neighbors decision problem.

We start by proving a result that links norms of vs to effective resistances:
Proposition 8.9. In an n-vertex graph G with vertices s and t,

0.5 · (ReffG(s, t))2 ≤ ‖vs − vt‖2
2 ≤ n · (ReffG(s, t))2

Proof. Lower bound. Let x = vt − vs = L†Gbst ∈ Rn. By definition,

‖vs − vt‖2
2 = ‖x‖2

2

≥ (xs)
2 + (xt)

2

= (xs)
2 + (xs − b>stL

†
Gbst)

2

≥ (b>stL
†
Gbst)

2/2,

where third step follows from xt = xs − b>stL
†
Gbst.

Thus we complete the proof of the lower bound.
Upper bound. Next, we prove the upper bound. The maximum and minimum coordinates

of x are xt and xs respectively. By definition of the pseudoinverse, image(L†G) = image(LG).
Therefore, 1>x = 0, xs ≤ 0, and xt ≥ 0. xs ≤ 0 implies that for all i ∈ [n],

xi ≤ xs + b>stL
†
Gbst ≤ b>stL

†
Gbst.

xt ≥ 0 implies that for all i ∈ [n],

xi ≥ xt − b>stL
†
Gbst ≥ −b

>
stL
†
Gbst.

Therefore, |xi| ≤ b>stL
†
Gbst = ReffG(s, t) for all i ∈ [n]. Summing across i ∈ [n] yields the

desired upper bound.

Furthermore, the minimum effective resistance of an edge across a cut is related to the maxi-
mum weight edge across the cut:
Proposition 8.10. In an m-edge graph G with vertex set S,

min
s∈S,t/∈S

ReffG(s, t) ≤ min
e∈∂S

(1/we) ≤ m min
s∈S,t/∈S

ReffG(s, t).

167

Proof. Lower bound. The lower bound on mine 1/we follows immediately from the fact that
for any edge e = {s, t}, ReffG(s, t) ≤ re.

Upper bound. For the upper bound, recall that

ReffG(s, t) = min
f∈Rm:B>f=bst

∑
e∈E(G)

f 2
e /we

≥ min
f∈Rm:B>f=bst

∑
e∈∂S

f 2
e /we

≥

(
min

f∈Rm:B>f=bst

∑
e∈∂S

f 2
e

)(
min
e∈∂S

1/we

)

≥ 1

|∂S|

(
min

f∈Rm:B>f=bst

∑
e∈∂S

|fe|

)2(
min
e∈∂S

1/we

)
where the first step follows from definition of effective resistance, the third step follows from
taking w out, and the last step follows from Cauchy-Schwarz.

Since s ∈ S and t /∈ S,
∑

e∈∂S |fe| ≥ 1. Therefore,

ReffG(s, t) ≥ 1

m
min
e∈∂S

1/we

completing the upper bound.

Proposition 8.11. Consider an n-vertex connected graph G with edge weights {we}e∈G, two
matrices Z, Z̃ ∈ Rk×n with rows {zi}ki=1 and {z̃i}ki=1 respectively for k ≤ n, and ε ∈ (1/n, 1).
Suppose that both of the following properties hold:

1. ‖zi − z̃i‖LG ≤ 0.01n−12w2
minw

−2
max‖zi‖LG for all i ∈ [k], where wmin and wmax are the

minimum and maximum weights of edges in G respectively
2. (1− ε/10) · ‖L†Gbst‖2 ≤ ‖Zbst‖2 ≤ (1 + ε/10) · ‖L†Gbst‖ for any vertices s, t in G
Then for any vertices s, t in G,

(1− ε) · ‖L†Gbst‖2 ≤ ‖Z̃bst‖2 ≤ (1 + ε) · ‖L†Gbst‖2.

Proof. We start by bounding

((zi − z̃i)>bst)2

for each i ∈ [k]. SinceG is connected, there is a path from s to t consisting of edges e1, e2, . . . , e`
in that order, where ` ≤ n. By the Cauchy-Schwarz inequality,

((zi − z̃i)>bst)2 ≤ n
∑̀
j=1

((zi − z̃i)>bej)2

≤ (n/wmin) · ‖zi − z̃i‖2
LG

≤ 0.01n−23w3
minw

−4
max · ‖zi‖2

LG

168

where the last step from property 1 in proposition statement.
By the upper bound on ‖Zbs′t′‖2 for any vertices s′, t′ in G, (z>i be)

2 ≤ (1 + ε)2b>e (L†G)2be for
all edges e in G, so

0.01n−23w3
minw

−4
max · ‖zi‖2

LG
= 0.01n−23w3

minw
−4
max ·

∑
e∈E(G)

we((zi)
>be)

2

≤ 0.01n−23w3
minw

−3
max ·

∑
e∈E(G)

((zi)
>be)

2

≤ 0.01n−23w3
minw

−3
max ·

∑
e∈E(G)

(1 + ε)2b>e (L†G)2be

≤ 0.01n−21w3
minw

−3
max(1 + ε)2 max

e∈E(G)
(b>e (L†G)2be)

≤ 0.04n−21w3
minw

−3
max max

e∈E(G)
(b>e (L†G)2be).

where the first step follows from ‖zi‖2
LG

=
∑

e∈E z
>
i webeb

>
e zi, the second step follows from

wmax = maxe∈Gwe, and the third step follows from (z>i be)
2 ≤ (1 + ε)2b>e (L†G)be, the forth

step follows from summation has at most n2 terms, the last step follows from (1 + ε)2 ≤ 4,
∀ε ∈ (0, 1).

L†Gbe is a vector that is maximized and minimized at the endpoints of e. Furthermore,
1 ∈ kernel(L†G) by definition of the pseudoinverse. Thus, we know L†Gbe has both positive
and negative coordinates and that ‖L†Gbe‖∞ ≤ maxi 6=j |(L†Gbe)i − (L†Gbe)j| ≤ b>e L

†
Gbe .

We have

0.04n−21w3
minw

−3
max · max

e∈E(G)
b>e (L†G)2be

≤ 0.04n−20w3
minw

−3
max · max

e∈E(G)
(b>e L

†
Gbe)

2

≤ 0.4n−20wminw
−3
max

≤ 0.4n−16wminw
−1
max · (b>stL

†
Gbst)

2

≤ 0.8n−16wminw
−1
max · ‖L

†
Gbst‖

2
2

where the first step follows from maxe∈E(G) b
>
e (L†G)2be = maxe∈E ‖L†Gbe‖2

2 ≤ nmaxe∈E ‖L†Gbe‖2
∞ ≤

nmaxe∈E(G)(b
>
e L
†
Gbe)

2, the second step follows from maxe(b
>
e L
†
Gbe)

2 ≤ w−2
min (the lower bound

in Proposition ??), and the third step follows from w−2
max ≤ n4(bstL

†
Gbst)

2 (the upper bound in
Proposition ??), and the last step follows from (b>stL

†
Gbst)

2 ≤ 2‖L†Gbst‖2
2 (Since L†Gbst is maxi-

mized and minimized at t and s respectively).
Combining these inequalities shows that

((zi − z̃i)>bst)2 ≤ 0.8n−16wminw
−1
max · ‖L

†
Gbst‖

2
2

169

Summing over all i and using the fact that k ≤ n, ε > 1/n, and wmin ≤ wmax shows that

‖(Z − Z̃)bst‖2
2 =

k∑
i=1

((zi − z̃i)>bst)2

≤ 0.8kn−16wminw
−1
max · ‖L

†
Gbst‖

2
2

≤ 0.8ε2n−13wminw
−1
max · ‖L

†
Gbst‖

2
2

≤ 0.8ε2n−13 · ‖L†Gbst‖
2
2

Combining this with the given upper and lower bounds on ‖Zbst‖2 using the triangle inequal-
ity yields the desired result.

Proof of Lemma ??. Consider the following algorithm BICHROMATICNEARESTNEIGHBOR, given
below:

Algorithm 10
1: procedure BICHROMATICNEARESTNEIGHBORPROJ(A,B, k) . Lemma ??
2: Given: A,B ∈ Rd with the property thatA∪B is ρ-spaced with |S|O(1)-bounded distance

set , where ρ = 1 + 16(log(10n))/L, and k ∈ S
3: Returns: whether there are a ∈ A, b ∈ B for which ‖a− b‖2 ≤ k
4: C ← {a · √x0/k | ∀a ∈ A}
5: D ← {b · √x0/k | ∀b ∈ B}
6: `← 200 log n
7: Construct matrix P ∈ R`×d, where each entry is 1/

√
` with prob 1/2 and −1/

√
` with

prob 1/2

8: Z̃i,∗ ← A(C ∪D,Pi,∗) for each i ∈ [`] . Pi,∗, Z̃i,∗ denotes row i of P ∈ R`×d, Z̃ ∈ R`×n

9: Ĉ ← {Z̃ · bc | ∀c ∈ C} . bc ∈ Rn denotes the indicator vector of the vertex c, i.e.
(bc)c = 1 and (bc)i = 0 for all i 6= c

10: D̂ ← {Z̃ · bc | ∀c ∈ D}
11: t← (log n)-approximation to closest Ĉ-D̂ `2-distance using Theorem ??
12: if t ≤ 3

√
n(log n)/f(x0) then

13: return true
14: else
15: return false
16: end if
17: end procedure

First, we bound the runtime of BICHROMATICNEARESTNEIGHBORPROJ (Algorithm ??).
Computing the sets C,D and the matrix P trivially takes Õ(n) time. Computing the matrix Z̃
takes

O(log n)T (n, L, g(|S|O(1)), d)

time since the point set C ∪ D is |S|O(1)-boxed. Computing Ĉ and D̂ takes Õ(n) time, as
computing Ẑbi takes O(log n) time for each i ∈ C ∪D since bi is supported on just one vertex.

170

Computing t takes n1+o(1) time by Theorem ??. In particular, one computes t by preprocessing
a O(log n)-approximate nearest neighbors data structure on D̂ (takes n1+o(1) time), queries the
data structure on all points in Ĉ (takes n(no(1)) = n1+o(1) time), and returns the minimum of all
of the queries. The subsequent if statement takes constant time. Therefore, the reduction takes

O((log n) · T (n, L, |S|O(1), d) + n1+o(1)

time overall, as desired.
Next, suppose that there exists a ∈ A and b ∈ B for which ‖a − b‖2 ≤ k. We show that the

reduction returns true with probability at least 1− 1/n. Let G denote the f -graph on C ∪D. By
definition of C and D and the fact that f is decreasing, there exists a pair of points in C and D
with edge weight at least f(x0).

By the lower bound on Proposition ??,

∃p ∈ C, q ∈ D s.t. ReffG(p, q) ≤ 1/f(x0).

By the upper bound of Proposition ??,

b>pq(L
†
G)2bpq ≤ n · (ReffG(p, q))2 ≤ n/f(x0)2.

Let Z ∈ R`×n be defined as Z = P · L†G. By Theorem ?? with ε = 1/2 applied to the
collection of vectors {L†Gbs}s∈C∪D and projection matrix P ,

1

2
‖L†Gbst‖2 ≤ ‖Zbst‖2 ≤

3

2
‖L†Gbst‖2

for all pairs s, t ∈ C ∪D with high probability. Therefore, the second input guarantee of Propo-
sition ?? is satisfied with high probability. Furthermore, for each i ∈ [`], z̃i, the ith row of Z̃,
satisfies the first input guarantee by the output error guarantee of the algorithm A. Therefore,
Proposition ?? applies and shows that

‖Z̃ · bpq‖2 ≤
9

4
‖L†G · bpq‖2 ≤ 3

√
n/f(x0).

This means that there exists of vectors a ∈ Ĉ, b ∈ D̂ with

‖a− b‖2 ≤ 3
√
n/f(x0).

By the approximation guarantee of the nearest neighbors data structure, t ≤ (3
√
n/f(x0)) log n

and the reduction returns true with probability at least 1− 1/n, as desired.
Next, suppose that there do not exist a ∈ A and b ∈ B for which ‖a− b‖2 ≤ k. We show that

the reduction returns false with probability at least 1− 1/n. Since k ∈ S and A∪B is ρ-spaced,
‖a−b‖2 ≥ ρ ·k for all a ∈ A and b ∈ B. Therefore, all edges between C andD in the f -graphG
for C ∪D have weight at most f(ρx0) ≤ f(x0)

100n16 since f is not (ρ, L)-multiplicatively Lipschitz.
By the upper bound of Proposition ??,

ReffG(s, t) ≥ 1

n2f(ρx0)
≥ 100n14

f(x0)

171

for any pair of vertices s ∈ C, t ∈ D.
By the lower bound of Proposition ??,

b>st(L
†
G)2bst ≥ (ReffG(s, t))2/2 ≥ (

50n14

f(x0)
)2

for all s ∈ C, t ∈ D.
Recall from the discussion of the ‖a−b‖ ≤ k case that Theorem ?? and Proposition ?? apply.

Therefore, with probability at least 1− 1/n, by the lower bound of Proposition ??,

‖Z̃bst‖2 ≥
1

4
‖L†Gbst‖2 ≥

12n14

f(xf)

for any s ∈ C, t ∈ D.
Therefore, by the approximate nearest neighbors guarantee,

t ≥ 12n14

(log n) · f(x0)
>

3
√
n(log n)

f(x0)
,

so the algorithm returns false with probability at least 1− 1/n, as desired.

We now prove the theorems:

Proof of Theorem ??. Consider an instance of bichromatic `2-closest pair for n = L1/(32c0) and
d = clog∗ n, where c is the constant given in the dimension bound of Theorem ?? and c0 is
such that integers have bit length c0 log n in Theorem ??. This consists of two sets of points
A,B ⊆ Rd with |A ∪ B| = n for which we wish to compute mina∈A,b∈B ‖a− b‖2. By Theorem
??, the coordinates of points in A are also c0 log n bit integers. Therefore, the set S of possible
`2 distances between points in A and B is a set of square roots of integers with log d+ c0 log n ≤
2c0 log n bits. Therefore, S is a ρ-discrete (recall ρ = 1 + (16 log(10n))/L) since 1 + 1/n2c0 >
1+(16 log n)/L. Furthermore, note that f is not (ρ, L)-multiplicatively Lipschitz by assumption.

We now describe an algorithm for solving `2-closest pair on A × B. Use binary search on
the values in S to compute the minimum distance between points in A,B. S consists of integers
between 1 and nc0 (pairs with distance 0 can be found in linear time), so γ ≤ nc0 . For each query
point k ∈ S, by Lemma ??, there is a

O((log n) · T (n, L, g(γ), d) + n) = O((log n) · T (L1/(32c0), L, L1/32, clog∗ L) + L1/(32c0))

-time algorithm for determining whether or not the closest pair has distance at most k. Therefore,
there is a

O((log n)T (L1/(32c0), L, L1/32, clog∗ L) + L1/(32c0)) = Õ(L1/(32c0)L1/(64c0) log(L1/32)) < Õ(n3/2)

time algorithm for solving `2-closest pair on pairs of sets with n points. But this is impossible
given SETH by Theorem ??, a contradiction. This completes the result.

172

Proof of Theorem ??. Consider an instance of bichromatic Hamming nearest neighbor search
for n = 2L

0.49 and d = c1 log n for the constant c1 in the dimension bound in Theorem ??. This
consists of two sets of points A,B ⊆ Rd with |A ∪ B| = n for which we wish to compute
mina∈A,b∈B ‖a − b‖2. The coordinates of points in A and B are 0-1. Therefore, the set S of
possible `2 distances between points in A and B is the set of square roots of integers between
0 and c1 log n, which differ by a factor of at least 1 + 1/(16c1 log n) > ρ (recall ρ = 1 +
(16 log(10n))/L). Therefore, A ∪ B is ρ-spaced. Note that f is not (ρ, L)-multiplicatively
Lipschitz by assumption. Furthermore, A ∪B is

√
c1 log n ≤ L.25-boxed.

We now give an algorithm for solving `2-closest pair on A×B. Use binary search on S. For
each query k ∈ S, Lemma ?? implies that one can check if there is a pair with distance at most
k in

T (n, L, d) = O(T (2L
.49

, L, eL
.25

, 2c1L
.49

) + 2L
.49

)

≤ O(2L
.49+L.48)

= n1+o(1)

time on pairs of sets with n points. But this is impossible given SETH by Theorem ??. This
completes the result.

9 Fast Multipole Method
The fast multipole method (FMM) was described as one of the top-10 most important algorithms
of the 20th century [?]. It is a numerical technique that was developed to speed up calculations
of long-range forces in the n-body problem in physics. In 1987, FMM was first introduced by
Greengard and Rokhlin [?], based on the multipole expansion of the vector Helmholtz equation.
By treating the interactions between far-away basis functions using the FMM, the corresponding
matrix elements do not need to be explicitly computed or stored. This is technique allows us to
improve the naive O(n2) matrix-vector multiplication time to o(n2).

Since Greengard and Rokhlin invented FMM, the topic has attracted researchers from many
different fields, including physics, math, and computer science [? ? ? ? ? ? ? ? ? ? ? ? ? ?].

We first give a quick overview of the high-level ideas of FMM in Section ??. In Section ??,
we provide a complete description and proof of correctness for the fast Gaussian transform,
where the kernel function is the Gaussian kernel. Although a number of researchers have used
FMM in the past, most of the previous papers about FMM either focus on the low-dimensional
or low-error cases. We therefore focus on the superconstant-error, high dimensional case, and
carefully analyze the joint dependence on ε and d. We believe that our presentation of the original
proof in Section ?? is thus of independent interest to the community. In Section ??, we give the
analogous results for other kernel functions used in this paper.

9.1 Overview
We begin with a description of high-level ideas of the Fast Multipole Method (FMM). Let K :
Rd × Rd → R denote a kernel function. The inputs to the FMM are N sources s1, s2, · · · , sN ∈

173

Rd and M targets t1, t2, · · · , tM . For each i ∈ [N], the source si has a strength qi. Suppose all
sources are in a ‘box’ B and all the targets are in a ‘box’ C. The goal is to evaluate

uj =
N∑
i=1

K(si, tj)qi, ∀j ∈ [M]

Intuitively, if K has some nice property (e.g. smooth), we can hope to approximate K in the
following sense

K(s, t) ≈
P−1∑
p=0

Bp(s) · Cp(t), s ∈ B, t ∈ C

where P is a small positive integer, usually called the interaction rank in the literature.
Now, we can construct ui in two steps:

vp =
∑
i∈B

Bp(si)qi, ∀p = 0, 1, · · · , P − 1,

and

ũj =
P−1∑
p=0

Cp(tj)vp, ∀i ∈ [M].

Intuitively, as long as B and C are well-separated, then ũj is very good estimation to uj even
for small P , i.e., |ũj − uj| < ε.

Recall that, at the beginning of this section, we assumed that all the sources are in the the
same box B and C. This is not true in general. To deal with this, we can discretize the continuous
space into a batch of boxes B1,B2, · · · and C1, C2, · · · . For a box Bl1 and a box Cl2 , if they are
very far apart, then the interaction between points within them is small, and we can ignore it. If
the two boxes are close, then we deal wit them efficiently by truncating the high order expansion
terms in K (only keeping the first logO(d)(1/ε)). For each box, we will see that the number of
nearby relevant boxes is at most logO(d)(1/ε).

9.2 K(x, y) = exp(−‖x− y‖22), Fast Gaussian transform
Given N vectors s1, · · · sN ∈ Rd, M vectors t1, · · · , tM ∈ Rd and a strength vector q ∈ Rn,
Greengard and Strain [?] provided a fast algorithm for evaluating discrete Gauss transform

G(ti) =
N∑
j=1

qje
−‖ti−sj‖2/δ

for i ∈ [M] in O(M +N) time. In this section, we re-prove the algorithm described in [?], and
determine the exact dependences on ε and d in the running time.

By shifting the origin and rescaling δ, we can assume that the sources sj and targets ti all lie
in the unit box B0 = [0, 1]d.

174

Let t and s lie in d-dimensional Euclidean space Rd, and consider the Gaussian

e−‖t−s‖
2
2 = e−

∑d
i=1(ti−si)2

We begin with some definitions.
Definition 9.1 (one-dimensional Hermite polynomial). The Hermite polynomials h̃n : R→ R is
defined as follows

h̃n(t) = (−1)net
2 dn

dt
e−t

2

Definition 9.2 (one-dimensional Hermite function). The Hermite functions hn : R → R is
defined as follows

hn(t) = e−t
2

h̃n(t)

We use the following Fact to simplify e−(t−s)2/δ.
Fact 9.3. For s0 ∈ R and δ > 0, we have

e−(t−s)2/δ =
∞∑
n=0

1

n!
·
(
s− s0√

δ

)n
· hn

(
t− s0√

δ

)
and

e−(t−s)2/δ = e−(t−s0)2/δ

∞∑
n=0

1

n!
·
(
s− s0√

δ

)n
· h̃n

(
t− s0√

δ

)
.

Proof.

e−(t−s)2/δ = e−(t−s0−(s−s0))2/δ

=
∞∑
n=0

1

n!

(
s− s0√

δ

)n
hn

(
t− s0√

δ

)
= e−(t−s0)2/δ

∞∑
n=0

1

n!

(
s− s0√

δ

)n
h̃n

(
t− s0√

δ

)
.

Using Cramer’s inequality, we have the following standard bound.
Lemma 9.4. For any constant K ≤ 1.09, we have

|h̃n(t)| ≤ K · 2n/2 ·
√
n! · et2/2

and

|hn(t)| ≤ K · 2n/2 ·
√
n! · e−t2/2.

175

Next, we will extend the above definitions and observations to the high dimensional case.
To simplify the discussion, we define multi-index notation. A multi-index α = (α1, α2, · · · , αd)
is a d-tuple of nonnegative integers, playing the role of a multi-dimensional index. For any
multi-index α ∈ Rd and any t ∈ Rt, we write

α! =
d∏
i=1

(αi!), tα =
d∏
i=1

tαii , Dα = ∂α1
1 ∂α2

2 · · · ∂
αd
d .

where ∂i is the differentiatial operator with respect to the i-th coordinate in Rd. For integer p, we
say α ≥ p if αi ≥ p,∀i ∈ [d].

We can now define:
Definition 9.5 (multi-dimensional Hermite polynomial). We define function H̃α : Rd → R as
follows:

H̃α(t) =
d∏
i=1

h̃αi(ti).

Definition 9.6 (multi-dimensional Hermite function). We define function Hα : Rd → R as
follows:

Hα(t) =
d∏
i=1

hαi(ti).

It is easy to see that Hα(t) = e−‖t‖
2
2 · H̃α(t)

The Hermite expansion of a Gaussian in Rd is

e−‖t−s‖
2
2 =

∑
α≥0

(t− s0)α

α!
hα(s− s0). (5.4)

Cramer’s inequality generalizes to
Lemma 9.7 (Cramer’s inequality). Let K < (1.09)d, then

|H̃α(t)| ≤ K · e‖t‖22/2 · 2‖α‖1/2 ·
√
α!

and

|Hα(t)| ≤ K · e−‖t‖22/2 · 2‖α‖1/2 ·
√
α!

The Taylor series of Hα is

Hα(t) =
∑
β≥0

(t− t0)β

β!
(−1)‖β‖1Hα+β(t0) (5.5)

176

Estimation

We first give a definition
Definition 9.8. Let B denote a box with center sB and side length r

√
2δ with r < 1. If source sj

is in box B, we say j ∈ B. Then the Gaussian evaluation from the sources in box B is,

G(t) =
∑
j∈B

qj · e−‖t−sj‖
2
2/δ.

The Hermite expansion of G(t) is

G(t) =
∑
α≥0

Aα · hα
(
t− sB√

δ

)
, (5.6)

where the coefficients Aα are defined by

Aα =
1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α
(5.7)

The rest of this section will present a batch of Lemmas that bound the error of the function
truncated at certain degree of Taylor and Hermite expansion.
Lemma 9.9. Let p denote an integer, let ErrH(p) denote the error after truncating the series
G(t) (as defined in Def. ??) after pd terms, i.e.,

ErrH(p) =
∑
α≥p

Aα ·Hα

(
t− sB√

δ

)
.

Then we have

|ErrH(p)| ≤ K ·
∑
j∈B

|qj| ·
(

1

p!

)d/2
·
(
rp+1

1− r

)d
,

where K = (1.09)d.

Proof. Using Eq. (??) to expand each Gaussian (see Definition ??) in the

G(t) =
∑
j∈B

qj · e−‖t−sj‖
2
2/δ

into a Hermite series about sB∑
α≥0

(
1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α)
Hα

(
t− sB√

δ

)
and swap the summation over α and j to obtain∑

j∈B

qj
∑
α≥0

1

α!
·
(
sj − sB√

δ

)α
·Hα

(
t− sB√

δ

)
The truncation error bound follows from Cramer’s inequality (Lemma ??) and the formula for
the tail of a geometric series.

177

The next Lemma shows how to convert a Hermite expansion about sB into a Taylor expansion
about tC . The Taylor series converges rapidly in a box of side length r

√
2δ about tC , where r < 1.

Lemma 9.10. The Hermite expansion of G(t) is

G(t) =
∑
α≥0

Aα ·Hα

(
t− sB√

δ

)
has the following Taylor expansion, at an arbitrary point t0 :

G(t) =
∑
β≥0

Bβ

(
t− t0√

δ

)β
. (5.8)

where the coefficients Bβ are defined as

Bβ =
(−1)|β|

β!

∑
α≥0

Aα ·Hα+β

(
sB − t0√

δ

)
. (5.9)

Let ErrT (p) denote the error by truncating the Taylor series after pd terms, in the box C with
center tC and side length r

√
2δ, i.e.,

ErrT (p) =
∑
β≥p

Bβ

(
t− tC√

δ

)β
Then

|ErrT (p)| ≤ K ·QB ·
(

1

p!

)d/2(
rp+1

1− r

)d
.

Proof. Each Hermite function in Eq. (??) can be expanded into a Taylor series by means of
Eq. (??). The expansion in Eq. (??) is obtained by swapping the order of summation.

The truncation error bound can be proved as follows. Using Eq. (??) for Aα, we can rewrite
Bβ:

Bβ =
(−1)|β|

β!

∑
α≥0

AαHα+β

(
sB − tC√

δ

)

=
(−1)|β|

β!

∑
α≥0

(
1

α!

∑
j∈B

qj

(
sj − sB√

δ

)α)
Hα+β

(
sB − tC√

δ

)

=
(−1)|β|

β!

∑
j∈B

qj
∑
α≥0

1

α!

(
sj − sB√

δ

)α
·Hα+β

(
sB − tC√

δ

)
By Eq. (??), the inner sum is the Taylor expansion of Hβ((sj − tC)/

√
δ). Thus

Bβ =
(−1)‖β‖1

β!

∑
j∈B

qj ·Hβ

(
sj − tC√

δ

)

178

and Cramer’s inequality implies

|Bβ| ≤
1

β!
K ·QB2‖β‖1/2

√
β! ≤ KQB

2‖β‖1/2√
β!

The truncation error follows from summation the tail of a geometric series.

For the purpose of designing our algorithm, we’d like to make a variant of Lemma ?? in
which the Hermite series is truncated before converting it to a Taylor series. This means that in
addition to truncating the Taylor series itself, we are also truncating the finite sum formula in
Eq. (??) for the coefficients.
Lemma 9.11. Let G(t) be defined as Def ??. For an integer p, let Gp(t) denote the Hermite
expansion of G(t) truncated at p,

Gp(t) =
∑
α≤p

AαHα

(
t− sB√

δ

)
.

The function Gp(t) has the following Taylor expansion about an arbitrary point t0:

Gp(t) =
∑
β≥0

Cβ ·
(
t− t0√

δ

)β
,

where the the coefficients Cβ are defined as

Cβ =
(−1)‖β‖1

β!

∑
α≤p

Aα ·Hα+β

(
sB − tC√

δ

)
. (5.10)

Let ErrT (p) denote the error in truncating the Taylor series after pd terms, in the box C with
center tC and side length r

√
2δ, i.e.,

ErrT (p) =
∑
β≥p

Cβ

(
t− tC√

δ

)β
.

Then, we have

|ErrT (p)| ≤ K ′ ·QB

(
1

p!

)d/2(
rp+1

1− r

)d
where K ′ ≤ 2K and r ≤ 1/2.

Proof. We can write Cβ in the following way:

Cβ =
(−1)‖β‖1

β!

∑
j∈B

qj
∑
α≤p

1

α!

(
sj − sB√

δ

)α
·Hα+β

(
sB − tC√

δ

)

=
(−1)‖β‖1

β!

∑
j∈B

qj

(∑
α≥0

−
∑
α>p

)
1

α!

(
sj − sB√

δ

)α
·Hα+β

(
sB − tC√

δ

)

= Bβ −
(−1)‖β‖1

β!

∑
j∈B

qj
∑
α>p

1

α!

(
sj − sB√

δ

)α
·Hα+β

(
sB − tC√

δ

)
= Bβ + (Cβ −Bβ)

179

Next, we have

|ErrT (p)| ≤

∣∣∣∣∣∑
β≥p

Bβ

(
t− tC√

δ

)β∣∣∣∣∣+

∣∣∣∣∣∑
β≥p

(Cβ −Bβ) ·
(
t− tC√

δ

)β∣∣∣∣∣ (5.11)

Using Lemma ??, we can upper bound the first term in the Eq. (??) by,

K ·QB

(
1

p!

)d/2
·
(
rp+1

1− r

)d
To bound the second term in Eq. (??), we can do the following∣∣∣∣∣∑

β≥p

(Cβ −Bβ) ·
(
t− tC√

δ

)β∣∣∣∣∣
≤ QB ·

∑
β≥p

∣∣∣∣(t− tC√δ
)β∣∣∣∣ · 1

β!

∑
α>p

1

α!

∣∣∣∣(sj − sB√
δ

)α∣∣∣∣ · ∣∣∣∣Hα+β

(
sB − tC√

δ

)∣∣∣∣
≤ KQB

∑
α>p

∑
β>p

r‖α‖1√
α!
·

√
(α + β)!

α!β!
· r
‖β‖1
√
β!

Finally, the proof is complete since we know that

(α + β)!

α!β!
≤ 2‖α+β‖1 .

The proof of the following Lemma is almost identical. We omit the details here.
Lemma 9.12. Let Gsj(t) be defined as

Gsj(t) = qj · e−‖t−sj‖
2
2/δ

has the following Taylor expansion at tC

Gsj(t) =
∑
β≥0

Bβ
(
t− tC√

δ

)β
,

where the coefficients Bβ is defined as

Bβ = qj ·
(−1)‖β‖1

β!
·Hβ

(
sj − tC√

δ

)
and the error in truncation after pd terms is

|ErrT (p)| =

∣∣∣∣∣∑
β≥p

Bβ

(
t− tC√

δ

)β∣∣∣∣∣ ≤ K · qj ·
(

1

p!

)d/2
·
(
rp+1

1− r

)d
for r < 1.

180

Algorithm

The algorithm is based on subdividing B0 into smaller boxes with sides of length r
√

2δ parallel
to the axes, for a fixed r ≤ 1/2. We can then assign each source sj to the box B in which it lies
and each target t, to the box C in which it lies.

For each target box C, we need to evaluate the total field due to sources in all boxes. Since
boxed B have side lengths r

√
2δ, only a fixed number of source boxes B can contribute more

than Qε to the field in a given target box C, where Q = ‖q‖1 and ε is the precision parameter. If
we cut off the sum over all B after including the (2k + 1)d nearest boxes to C, it incurs an error
which can be upper bounded as follows∑

j:‖t−sj‖∞≥kr
√

2δ

|qj| · e−‖t−sj‖
2
2/δ ≤

∑
j:‖t−sj‖∞≥kr

√
2δ

|qj| · e−‖t−sj‖
2
∞/δ

≤
∑

j:‖t−sj‖∞≥kr
√

2δ

|qj| · e−(k·r
√

2δ)2/δ

≤ Q · e−2r2k2 (5.12)

where the first step follows from ‖·‖2 ≥ ‖·‖∞, the second step follows from ‖t−sj‖∞ ≥ kr
√

2δ,
and the last step follows from a straightforward calculation.

For a box B and a box C, there are several possible ways to evaluate the interaction between
B and C. We mainly need the following three techniques:

1. NB Gaussians, accumulated in Taylor series via definition Bβ in Lemma ??
2. Hermite series, directly evaluated

3. Hermite series, accumulated in Taylor series in Lemma ??
Essentially, having any two of the above three techniques is sufficient to give an algorithm that
runs in (M +N) logO(d)(‖q‖1/ε) time.

In the next a few paragraphs, we explain the details of the three techniques.

Technique 1. Consider a fixed source box B. For each target box C within range, we must
compute pd Taylor series coefficients

Cβ(B) =
(−1)|β|

β!

∑
j∈B

Hβ

(
sj − tC√

δ

)
.

Each coefficient requires O(NB) work to evaluate, resulting in a net cost O(pdNB). Since there
are at most (2k + 1)d boxes within range, the total work for forming all the Taylor series is
O((2k + 1)dpdN). Now, for each target ti, one must evaluate the pd-term Taylor series corre-
sponding to the box in which ti lies. The total running time of algorithm is thus

O((2k + 1)dp2N) +O(pdM).

181

Technique 2. We form a Hermite series for each box B and evaluate it at all targets. Using
Lemma ??, we can rewrite G(t) as

G(t) =
∑
B

∑
j∈B

qj · e−‖t−sj‖
2
2/δ

=
∑
B

∑
α≥0

Aα(B)Hα

(
t− sB√

δ

)
+ ErrH(p)

where |ErrH(p)| ≤ ε and

Aα(B) =
1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α
. (5.13)

To compute each Aα(B) costs O(NB) time, so forming all the Hermite expansions takes O(pdN)
time. Evaluating at most (2k + 1)d expansions at each target ti costs O((2k + 1)dpd) time per
target, so this approach takes

O(pdN) +O((2k + 1)dpdM)

time in total.

Technique 3. LetN(B) denote the number of boxes. Note thatN(B) ≤ min((r
√

2δ)−d/2,M).
Suppose we accumulate all sources into truncated Hermite expansions and transform all Her-

mite expansions into Taylor expansions via Lemma ??. Then we can approximate the function
G(t) by

G(t) =
∑
B

∑
j∈B

qj · e−‖t−sj‖
2
2/δ

=
∑
β≤p

Cβ

(
t− tC√

δ

)β
+ ErrT (p) + ErrH(p)

where |ErrH(p)|+ |ErrT (p)| ≤ Q · ε,

Cβ =
(−1)‖β‖1

β!

∑
B

∑
α≤p

Aα(B)Hα+β

(
sB − tC√

δ

)
and the coefficients Aα(B) are defined as Eq. (??). Recall in Part 2, it takes O(pdN) time to
compute all the Hermite expansions, i.e., to compute the coefficients Aα(B) for all α ≤ p and all
sources boxes B.

Making use of the large product in the definition of Hα+β , we see that the time to compute
the pd coefficients of Cβ is only O(dpd+1) for each box B in the range. Thus, we know for each
target box C, the running time is

O((2k + 1)ddpd+1).

Finally we need to evaluate the appropriate Taylor series for each target ti, which can be done
in O(pdM) time. Putting it all together, this technique 3 takes time

O((2k + 1)ddpd+1N(B)) +O(pdN) +O(pdM).

182

Result

Finally, in order to get ε additive error for each coordinate, we will choose k = O(log(‖q‖1/ε))
and p = O(log(‖q‖1/ε)).
Theorem 9.13 (fast Gaussian transform). GivenN vectors s1, · · · , sN ∈ Rd,M vectors t1, t2, · · · , tM
∈ Rd, a number δ > 0, and a vector q ∈ Rn, let function G : Rd → R be defined as
G(t) =

∑N
i=1 qi · e−‖t−si‖

2
2/δ. There is an algorithm that runs in

O
(

(M +N) logO(d)(‖q‖1/ε)
)

time, and outputs M numbers x1, · · · , xM such that for each j ∈ [M]

G(tj)− ε ≤ xj ≤ G(tj) + ε.

The proof of fast Gaussian transform also implies a result for the online version:
Theorem 9.14 (online version). Given N vectors s1, · · · , sN ∈ Rd, a number δ > 0, and a
vector q ∈ Rn, let function G : Rd → R be defined as G(t) =

∑N
i=1 qi · e−‖t−si‖

2
2/δ. There is an

algorithm that takes

O
(
N logO(d)(‖q‖1/ε)

)
time to do preprocessing, and then for each t ∈ Rd, takes O(logO(d)(‖q‖1/ε)) time to output a
number x such that

G(t)− ε ≤ x ≤ G(t) + ε.

9.3 Generalization
The fast multipole method described in the previous section works not only for the Gaussian
kernel, but also for K(u, v) = f(‖u, v‖2

2) for many other functions f . As long as f has the
following properties, the result of Theorem ?? also holds for f :
• f : R→ R+.
• f is non-increasing, i.e., if x ≥ y ≥ 0, then f(x) ≤ f(y).
• f is decreasing fast, i.e., for any ε ∈ (0, 1), we have f(Θ(log(1/ε))) ≤ ε.
• f ’s Hermite expansion and Taylor expansions are truncateable: If we only keep logd(1/ε)

terms of the polynomial for K, then the error is at most ε.
Let us now sketch how each of these properties is used in discritizing the continuous domain

into a finite number of boxes. First, note that Eq.(??) holds more generally for any function f
with these properties. Indeed, we can bound the error as follows (note that Q = ‖q‖1):∑

j:‖t−sj‖∞≥kr
√

2δ

|qj| · f(‖t− sj‖2/
√
δ) ≤

∑
j:‖t−sj‖∞≥kr

√
2δ

|qj| · f(‖t− sj‖∞/
√
δ)

≤
∑

j:‖t−sj‖∞≥kr
√

2δ

|qj| · f(
√

2kr)

≤ Q · f(
√

2kr)

≤ ε (5.14)

183

where the first step follows from ‖ · ‖2 ≥ ‖ · ‖∞ and that f is non-increasing, the second step
follows from ‖t − sj‖∞ ≥ kr

√
2δ and that f is non-increasing, and the last step follows from

the fact that f is decreasing fast, and choosing k = O(log(Q/ε)/r).
We next give an example of how the truncatable expansions property is used. Here we only

show to generalize Definition ?? to Definition ?? and generalize Lemma ?? to Definition ??; the
other Lemmas in the proof can be extended in a similar way.
Definition 9.15. Let B denote a box with center sB and side length r

√
2δ with r < 1. If source

sj is in box B, we say j ∈ B. Then the Gaussian evaluation from the sources in box B is,

G(t) =
∑
j∈B

qj · f(‖t− sj‖2/
√
δ).

The Hermite expansion of G(t) is

G(t) =
∑
α≥0

Aα · hα
(
t− sB√

δ

)
, (5.15)

where the coefficients Aα are defined by

Aα =
1

α!

∑
j∈B

qj ·
(
sj − sB√

δ

)α
(5.16)

Definition 9.16. Let p denote an integer, let ErrH(p) denote the error after truncating the series
G(t) (as defined in Def. ??) after pd terms, i.e.,

ErrH(p) =
∑
α≥p

Aα ·Hα

(
t− sB√

δ

)
.

We say f is Hermite truncateable, if Then we have

|ErrH(p)| ≤ p−Ω(pd)

where K = (1.09)d.

9.4 K(x, y) = 1/‖x− y‖22
Similar ideas yield the following algorithm:
Theorem 9.17 (FMM, [? ?]). Given n vectors x1, x2, · · · , xn ∈ Rd, let matrix A ∈ Rn×n be
defined as Ai,j = 1/‖xi − xj‖2

2. For any vector h ∈ Rn, in time O(n logO(d)(‖u‖1/ε)), we can
output a vector u such that

(Ah)i − ε ≤ ui ≤ (Ah)i + ε.

184

10 Neural Tangent Kernel

In this section, we show that the popular Neural Tangent Kernel K from theoretical Deep Learn-
ing can be rearranged into the form K(x, y) = f(‖x − y‖2

2) for an appropriate analytic function
f , so our results in this chapter apply to it. We first define the kernel.
Definition 10.1 (Neural Tangent Kernel, [?]). Given n points x1, x2, · · · , xn ∈ Rd, and any
activation function σ : R → R, the neural tangent kernel matrix K ∈ Rn×n can be defined as
follows, where N (0, Id) denotes the Gaussian distribution:

Ki,j :=

∫
N (0,Id)

σ′(w>xi)σ
′(w>xj)x

>
i xjdw.

In the literature of convergence results for deep neural networks [? ? ? ? ? ? ?], it is
natural to assume that all the data points are on the unit sphere, i.e., for all i ∈ [n] we have
‖xi‖2 = 1 and datas are separable i.e., for all i 6= j, ‖xi − xj‖2 ≥ δ. One of the most standard
and common used activation functions in neural network training is ReLU activation, which is
σ(x) = max{x, 0}. Using Lemma ??, we can figure out the corresponding kernel function. By
Theorem ??, the multiplication task for neural tangent kernels is hard. In neural network training,
the multiplication can potentially being used to speed the neural network training procedure(See
[?]).

In the following lemma, we compute the kernel function for ReLU activation function.
Lemma 10.2. If σ(x) = max{x, 0}, then the Neural Tangent Kernel can be written as K(x, y) =
f(‖x− y‖2

2) for

f(x) =
1

π
(π − cos−1(1− 0.5x)) · (1− 0.5x)

Proof. First, since ‖xi‖2 = ‖xj‖2, we know that

‖xi − xj‖2
2 = ‖xi‖2

2 − 2〈xi, xj〉+ ‖xj‖2
2 = 2− 2〈xi, xj〉.

By definition of σ, we know

σ(x) =

{
1, if x > 0;

0, otherwise.

Using properties of the Gaussian distribution N (0, Id), we have∫
N (0,Id)

σ′(w>xi)σ
′(w>xj)dw =

1

π
(π − cos−1(xixj))

=
1

π
(π − cos−1(1− 0.5‖xi − xj‖2

2))

185

We can rewrite Ki,j as follows:

Ki,j =

∫
N (0,Id)

σ′(w>xi)σ
′(w>xj)x

>
i xjdw

= (1− 0.5‖xi − xj‖2
2) ·
∫
N (0,Id)

σ′(w>xi)σ
′(w>xj)dw

= (1− 0.5‖xi − xj‖2
2) · 1

π
(π − cos−1(1− 0.5x))

= f(‖xi − xj‖2
2).

Lemma 10.3. Given n data points x1, . . . , xn ∈ Rd on unit sphere. For any activation function
σ : R→ R, the corresponding Neural Tangent Kernel K(xi, xj) is a function of ‖xi − xj‖2

2.

Proof. Note that w ∼ N (0, Id), so we know (x>i w, x
>
j w) ∼ N (0,Σi,j), where the covariance

matrix

Σi,j =

[
x>i xi x>i xj
x>j xi x>j xj

]
=

[
1 x>i xj

x>i xj 1

]
∈ R2×2,

since ‖xi‖2 = ‖xj‖2 = 1. Thus,

K(xi, xj) = E(a,b)∼N (0,Σi,j)[σ
′(a)σ′(b)]x>i xj = g(x>i xj)

for some function g.
Note x>i xj = −1

2
‖xi − xj‖2 + 1, so K(xi, xj) = f(‖xi − xj‖2

2) for some function f , which
completes the proof.

186

Bibliography

[] Mridul Aanjaneya, Frédéric Chazal, Daniel Chen, Marc Glisse, Leonidas Guibas, and
Dmitriy Morozov. Metric graph reconstruction from noisy data. International Journal of
Computational Geometry and Applications (IJCGA), 22(04):305–325, 2012. 1.2

[] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the twenty-sixth annual ACM-SIAM sym-
posium on Discrete algorithms (SODA), pages 218–230. SIAM, 2014. 2.1.3

[] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster
alignment of sequences. In International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), pages 39–51. Springer, 2014. 3.12

[] Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In Proceedings of the twenty-sixth annual ACM-SIAM sym-
posium on Discrete algorithms (SODA), pages 218–230, 2015. 3.6

[] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. J. Comput. Syst. Sci., 66(4):671–687, 2003. doi: 10.1016/S0022-0000(03)
00025-4. URL https://doi.org/10.1016/S0022-0000(03)00025-4. 3.7,
3.13

[] Michal Adamszek, Henry Adams, Florian Frick, Chris Peterson, and Corrine Previte-
Johnson. Nerve complexes of circular arcs. Discrete & Computational Geometry, 56(2):
251–273, 2016. 4

[] Pankaj K Agarwal and R Sharathkumar. Approximation algorithms for bipartite matching
with metric and geometric costs. In Proceedings of the forty-sixth annual ACM symposium
on Theory of computing (STOC), pages 555–564, 2014. 1

[] Pankaj K Agarwal, Herbert Edelsbrunner, Otfried Schwarzkopf, and Emo Welzl. Eu-
clidean minimum spanning trees and bichromatic closest pairs. Discrete & Computational
Geometry, 6(3):407–422, 1991. 3.19

[] Pankaj K. Agarwal, Hsien-Chih Chang, and Allen Xiao. Efficient algorithms for geometric
partial matching. In 35th International Symposium on Computational Geometry (SoCG),
pages 6:1–6:14, 2019. 1

[] Morteza Alamgir and Ulrike von Luxburg. Shortest path distance in random k-nearest
neighbor graphs. In Proceedings of the 29th International Conference on Machine Learn-
ing, 2012. 1, 1, 1.1, G

187

https://doi.org/10.1016/S0022-0000(03)00025-4

[] Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph clustering
using effective resistance. In ITCS, 2018. 3.5

[] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recur-
rent neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
2019. 1.5, 10

[] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning (ICML),
2019. 1.5, 10

[] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning
via over-parameterization. In International Conference on Machine Learning (ICML),
2019. 2.1.1

[] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recur-
rent neural networks. In Advances in Neural Information Processing Systems (NeurIPS),
2019. 2.1.1

[] Josh Alman. An illuminating algorithm for the light bulb problem. In SOSA. arXiv preprint
arXiv:1810.06740, 2019. 2.1.3

[] Josh Alman and Ryan Williams. Probabilistic polynomials and hamming nearest neigh-
bors. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS),
pages 136–150, 2015. 1.2

[] Josh Alman and Ryan Williams. Probabilistic rank and matrix rigidity. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 641–652,
2017. 2.1.3

[] Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In 32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
2021. 1.5

[] Josh Alman, Timothy M Chan, and Ryan Williams. Polynomial representations of thresh-
old functions and algorithmic applications. In 2016 IEEE 57th Annual Symposium on
Foundations of Computer Science (FOCS), pages 467–476. IEEE, 2016. 2.1.3, 1, 2.1.3,
2.1.3, 9, 3.8

[] Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for
linear algebra on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 541–552. IEEE, 2020. 2.1.3

[] N. Alon and V. D. Milman. Eigenvalues, expanders and superconcentrators. In Proceed-
ings of the 25th Annual Symposium on Foundations of Computer Science, 1984, FOCS
’84, pages 320–322, Washington, DC, USA, 1984. IEEE Computer Society. ISBN 0-
8186-0591-X. doi: 10.1109/SFCS.1984.715931. URL http://dx.doi.org/10.
1109/SFCS.1984.715931. 1, 1.3

[] Reid Andersen and Yuval Peres. Finding sparse cuts locally using evolving sets. In Pro-
ceedings of the forty-first annual ACM symposium on Theory of computing (STOC), 2009.
3.2

188

http://dx.doi.org/10.1109/SFCS.1984.715931
http://dx.doi.org/10.1109/SFCS.1984.715931

[] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank
vectors. In 2006 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’06), pages 475–486. IEEE, 2006. 3.2

[] Alexandr Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD
thesis, Massachusetts Institute of Technology, 2009. 1

[] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions. In 47th Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 459–468, 2006. 3.15

[] Alexandr Andoni, Piotr Indyk, Thijs Laarhovn, Ilya Razenshteyn, and Ludwig Schmidt.
Practical and optimal lsh for angular distance. In 29th Annual Conference on Neural Infor-
mation Processing Systems (NIPS), 2015. URL https://arxiv.org/abs/1509.
02897. 7

[] Alexandr Andoni, Robert Krauthgamer, and Ilya Razenshteyn. Sketching and embedding
are equivalent for norms. In Proceedings of the Forty-seventh Annual ACM Symposium
on Theory of Computing (STOC), pages 479–488, 2015. 2.1.2

[] Alexandr Andoni, Assaf Naor, Aleksandar Nikolov, Ilya Razenshteyn, and Erik Wain-
garten. Navigating nets: Simple algorithms for proximity search. In 59th Annual Sympo-
sium on Foundations of Computer Science (FOCS), 2018. URL https://ilyaraz.
org/static/papers/daher.pdf. 7

[] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jorg Sander. Optics:
Ordering points to identify cluster structure. In ACM SIGMOD International Con-
ference on Management of Data, 1999. URL http://www.dbs.ifi.lmu.de/
Publikationen/Papers/OPTICS.pdf. 5.2, G

[] Nachman Aronszajn. Theory of reproducing kernels. Transactions of the American math-
ematical society, 68(3):337–404, 1950. 2.1.2

[] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric em-
beddings and graph partitioning. In László Babai, editor, Proceedings of the 36th An-
nual ACM Symposium on Theory of Computing (STOC), Chicago, IL, USA, June 13-
16, 2004, pages 222–231. ACM, 2004. doi: 10.1145/1007352.1007355. URL https:
//doi.org/10.1145/1007352.1007355. 1

[] Sunil Arya and David M. Mount. A fast and simple algorithm for computing approximate
euclidean minimum spanning trees. In Proceedings of the Twenty-seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA ’16, pages 1220–1233, Philadelphia,
PA, USA, 2016. Society for Industrial and Applied Mathematics. ISBN 978-1-611974-
33-1. URL http://dl.acm.org/citation.cfm?id=2884435.2884520. 6.2

[] Sunil Arya, Gautam Das, David M. Mount, Jeffrey S. Salowe, and Michiel Smid. Eu-
clidean spanners: Short, thin, and lanky. In Proceedings of the Twenty-seventh An-
nual ACM Symposium on Theory of Computing, STOC ’95, pages 489–498, New York,
NY, USA, 1995. ACM. ISBN 0-89791-718-9. doi: 10.1145/225058.225191. URL
http://doi.acm.org/10.1145/225058.225191. 6.2

189

https://arxiv.org/abs/1509.02897
https://arxiv.org/abs/1509.02897
https://ilyaraz.org/static/papers/daher.pdf
https://ilyaraz.org/static/papers/daher.pdf
http://www.dbs.ifi.lmu.de/Publikationen/Papers/OPTICS.pdf
http://www.dbs.ifi.lmu.de/Publikationen/Papers/OPTICS.pdf
https://doi.org/10.1145/1007352.1007355
https://doi.org/10.1145/1007352.1007355
http://dl.acm.org/citation.cfm?id=2884435.2884520
http://doi.acm.org/10.1145/225058.225191

[] Patrice Assouad. Plongements isométriques dans l1: aspect analytique. Number, 14:
1979–1980, 1980. 1.2, 2, 2.1.1, 2.1.2, 2.1.2, 2.2.3

[] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity of
empirical risk minimization: Kernel methods and neural networks. In Advances in Neural
Information Processing Systems (NIPS), pages 4308–4318, 2017. 1.2

[] Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density
evaluation for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 615–626, 2018. 1.2, 1.5, 5.7

[] Paul Balister, Bela Bollobas, Amites Sarkar, and Mark Walters. Connectivity of random
k-nearest-neighbour graphs. Advances in Applied Probability, 37(1):1–24, 2005. ISSN
00018678. URL http://www.jstor.org/stable/30037313. 1.1

[] Rick Beatson and Leslie Greengard. A short course on fast multipole methods. Wavelets,
multilevel methods and elliptic PDEs, 1:1–37, 1997. 1.5, 9, 9.17

[] Mikhail Belkin and Partha Niyogi. Semi-supervised learning on riemannian mani-
folds. Mach. Learn., 56(1-3):209–239, June 2004. ISSN 0885-6125. doi: 10.1023/
B:MACH.0000033120.25363.1e. URL https://doi.org/10.1023/B:MACH.
0000033120.25363.1e. 1, 1.3

[] Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for laplacian-based
manifold methods. In International Conference on Computational Learning Theory, pages
486–500. Springer, 2005. 1, 1.3

[] Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geo-
metric framework for learning from labeled and unlabeled examples. J. Mach. Learn.
Res., 7:2399–2434, December 2006. ISSN 1532-4435. URL http://dl.acm.org/
citation.cfm?id=1248547.1248632. 1

[] Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need
to understand kernel learning. In International Conference on Machine Learning, pages
541–549. PMLR, 2018. 2.1.1

[] Asa Ben-Hur, Cheng Soon Ong, Sören Sonnenburg, Bernhard Schölkopf, and Gunnar
Rätsch. Support vector machines and kernels for computational biology. PLoS computa-
tional biology, 4(10):e1000173, 2008. 1.5

[] Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic analysis on
semigroups: theory of positive definite and related functions, volume 100. Springer, 1984.
A.2, A.3

[] Johann Bernoulli. Brachistochrone problem. Acta Eruditorum, June 1696. 1

[] Serge Bernstein. Sur les fonctions absolument monotones. Acta Mathematica, 52(1):
1–66, 1929. 2.1.2, 2.1.8

[] M Francesca Betta, Friedemann Brock, Anna Mercaldo, and M Rosaria Posteraro.
Weighted isoperimetric inequalities on Rn and applications to rearrangements. Mathe-
matische Nachrichten, 281(4):466–498, 2008. 4

[] Avleen Singh Bijral, Nathan D. Ratliff, and Nathan Srebro. Semi-supervised learning with

190

http://www.jstor.org/stable/30037313
https://doi.org/10.1023/B:MACH.0000033120.25363.1e
https://doi.org/10.1023/B:MACH.0000033120.25363.1e
http://dl.acm.org/citation.cfm?id=1248547.1248632
http://dl.acm.org/citation.cfm?id=1248547.1248632

density based distances. In Fabio Gagliardi Cozman and Avi Pfeffer, editors, UAI, pages
43–50. AUAI Press, 2011. 1, 1, 1, 7

[] Salomon Bochner. Monotone funktionen, stieltjessche integrale und harmonische analyse.
Mathematische Annalen, 108:378–410, 1933. 1

[] Karol Borsuk. On the imbedding of systems of compacta in simplicial complexes. Fund.
Math., 35:217–234, 1948. 4

[] Sabri Boughorbel, Jean-Philippe Tarel, and Francois Fleuret. Non-mercer kernels for svm
object recognition. In BMVC, pages 1–10, 2004. 1.5

[] Sabri Boughorbel, J-P Tarel, and Nozha Boujemaa. Conditionally positive definite kernels
for svm based image recognition. In 2005 IEEE International Conference on Multimedia
and Expo, pages 113–116, 2005. 1, 1.5

[] Sabri Boughorbel, J-P Tarel, and Nozha Boujemaa. Generalized histogram intersection
kernel for image recognition. In IEEE International Conference on Image Processing
2005, volume 3, pages III–161. IEEE, 2005. 1.5

[] Sabri Boughorbel, Jean-Philippe Tarel, François Fleuret, and Nozha Boujemaa. The gcs
kernel for svm-based image recognition. In International Conference on Artificial Neural
Networks, pages 595–600. Springer, 2005. 1.5

[] Jan van den Brand. A deterministic linear program solver in current matrix multiplication
time. In SODA, 2020. 1.5

[] Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear
programs in nearly linear time. In 52nd Annual ACM Symposium on Theory of Computing
(STOC), 2020. 1.5

[] Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (over-
parametrized) neural networks in near-linear time. In The 12th Innovations in Theoretical
Computer Science Conference (ITCS), 2021. 1.5, 10

[] Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (over-
parametrized) neural networks in near-linear time. In 12th Innovations in Theoretical
Computer Science Conference (ITCS), 2021. 2.1.1

[] Ulrich Brehm. Extensions of distance reducing mappings to piecewise congruent map-
pings on `m. Journal of Geometry, 16(1):187–193, 1981. 3

[] Peter Buser. A note on the isoperimetric constant. Annales scientifiques de l’École
Normale Supérieure, Ser. 4, 15(2):213–230, 1982. doi: 10.24033/asens.1426. URL
http://www.numdam.org/item/ASENS_1982_4_15_2_213_0. 1, 1.3, 1.3,
K.2

[] Paul B. Callahan and S. Rao Kosaraju. Faster algorithms for some geometric graph
problems in higher dimensions. In Proceedings of the Fourth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA ’93, pages 291–300, Philadelphia, PA, USA,
1993. Society for Industrial and Applied Mathematics. ISBN 0-89871-313-7. URL
http://dl.acm.org/citation.cfm?id=313559.313777. 1.2, 6.2

[] Paul B Callahan and S Rao Kosaraju. Faster algorithms for some geometric graph prob-

191

http://www.numdam.org/item/ASENS_1982_4_15_2_213_0
http://dl.acm.org/citation.cfm?id=313559.313777

lems in higher dimensions. In SODA, pages 291–300, 1993. 1.2

[] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67–
90, January 1995. ISSN 0004-5411. doi: 10.1145/200836.200853. URL http://doi.
acm.org/10.1145/200836.200853. 6.2, 2, H.1

[] Paul B Callahan and S Rao Kosaraju. A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM,
42(1):67–90, 1995. 1.2, 6.5, 6, 6.6, 19

[] Alireza Chakeri, Hamidreza Farhidzadeh, and Lawrence O Hall. Spectral sparsification in
spectral clustering. In 23rd international conference on pattern recognition (ICPR), pages
2301–2306. IEEE, 2016. 2

[] Timothy M Chan and Ryan Williams. Deterministic apsp, orthogonal vectors, and more:
Quickly derandomizing razborov-smolensky. In Proceedings of the twenty-seventh annual
ACM-SIAM symposium on Discrete algorithms (SODA), pages 1246–1255. SIAM, 2016.
2.1.3, 3.6

[] Yin-Wen Chang, Cho-Jui Hsieh, Kai-Wei Chang, Michael Ringgaard, and Chih-Jen Lin.
Training and testing low-degree polynomial data mappings via linear svm. Journal of
Machine Learning Research, 11(Apr):1471–1490, 2010. 1.5

[] Olivier Chapelle, Bernhard Scholkopf, and Alexander Zien. Semi-supervised learning.
IEEE Transactions on Neural Networks, 20(3):542–542, 2009. 1

[] Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in
high dimensions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1032–1043, 2017. 1.2, 1.5

[] Shuchi Chawla, Anupam Gupta, and Harald Räcke. Embeddings of negative-type met-
rics and an improved approximation to generalized sparsest cut. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, Vancou-
ver, British Columbia, Canada, January 23-25, 2005, pages 102–111. SIAM, 2005. URL
http://dl.acm.org/citation.cfm?id=1070432.1070447. 1

[] Frédéric Chazal and André Lieutier. Smooth manifold reconstruction from noisy and
non-uniform approximation with guarantees. Computational Geometry: Theory and Ap-
plications, 40:156–170, 2008. 1

[] Frédéric Chazal and Steve Y. Oudot. Towards persistence-based reconstruction in Eu-
clidean spaces. In Proceedings of the 24th ACM Symposium on Computational Geometry,
pages 232–241, 2008. 1.2, 4

[] Frédéric Chazal, David Cohen-Steiner, and André Lieutier. A sampling theory for compact
sets in Euclidean space. Discrete & Computational Geometry, 41:461–479, 2009. 1

[] Frédéric Chazal Chazal, Leonidas J. Guibas, Steve Y. Oudot, and Primoz Skraba.
Persistence-based clustering in riemannian manifolds. J. ACM, 60(6:41):97–106, 2013.
doi: 10.1145/2535927. URL http://doi.acm.org/10.1145/2535927. 1.2

[] Bernard Chazelle, Herbert Edelsbrunner, Leonidas J. Guibas, John E. Hershberger,

192

http://doi.acm.org/10.1145/200836.200853
http://doi.acm.org/10.1145/200836.200853
http://dl.acm.org/citation.cfm?id=1070432.1070447
http://doi.acm.org/10.1145/2535927

Raimund Seidel, and Micha Sharir. Selecting heavily covered points. SIAM J. Comput.,
23(6):1138–1151, 1994. 1.1

[] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In Problems in
Analysis: A Symposium in Honor of Salomon Bochner, pages 195–199. Princeton Univ.
Press, Princeton, N. J., 1970. 1, 1.3

[] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. In In Gunning,
Robert C. Problems in analysis (Papers dedicated to Salomon Bochner, 1969). Princeton,
N. J.: Princeton Univ. Press., pages 195–199, 1970. 4

[] Ching-Shyang Chen, Chia-Ming Fan, and PH Wen. The method of approximate particular
solutions for solving certain partial differential equations. Numerical Methods for Partial
Differential Equations, 28(2):506–522, 2012. 2.1.2

[] Jie Chen, Hawren Fang, and Yousef Saad. Fast approximate knn graph construction for
high dimensional data via recursive lanczos bisection. Journal of Machine Learning Re-
search, 10:1989–2012, 2009. 1.2, 7

[] Lijie Chen. On the hardness of approximate and exact (bichromatic) maximum inner
product. In Computational Complexity Conference (CCC), 2018. 1.2, 3.18, 3.8, 3.20

[] Sitan Chen and Ankur Moitra. Algorithmic foundations for the diffraction limit. In STOC.
https://arxiv.org/pdf/2004.07659.pdf, 2021. 2.2.1

[] W. Chen, Y. Song, H. Bai, C. Lin, and E. Y. Chang. Parallel spectral clustering in
distributed systems. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 33(3):568–586, March 2011. doi: 10.1109/TPAMI.2010.88. 2

[] Xue Chen, Daniel M Kane, Eric Price, and Zhao Song. Fourier-sparse interpolation with-
out a frequency gap. In 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 741–750. IEEE, https://arxiv.org/pdf/1609.01361.pdf,
2016. 2.2.1

[] Herman Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on
the sum of observations. The Annals of Mathematical Statistics, pages 493–507, 1952.
3.9

[] P Chew. There is a planar graph almost as good as the complete graph. In Proceedings
of the Second Annual Symposium on Computational Geometry, SCG ’86, pages 169–177,
New York, NY, USA, 1986. ACM. ISBN 0-89791-194-6. doi: 10.1145/10515.10534.
URL http://doi.acm.org/10.1145/10515.10534. 1.2

[] Anna Choromanska, Tony Jebara, Hyungtae Kim, Mahesh Mohan, and Claire Monteleoni.
Fast spectral clustering via the nyström method. In International Conference on Algorith-
mic Learning Theory, pages 367–381. Springer, 2013. 2

[] Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, An-
dreea Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz
Kaiser, et al. Rethinking attention with performers. In International Conference on Learn-
ing Representations (ICLR), 2020. 8

[] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-

193

https://arxiv.org/pdf/2004.07659.pdf
https://arxiv.org/pdf/1609.01361.pdf
http://doi.acm.org/10.1145/10515.10534

Hua Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow
in undirected graphs. In Lance Fortnow and Salil P. Vadhan, editors, Proceedings of the
43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8
June 2011, pages 273–282. ACM, 2011. doi: 10.1145/1993636.1993674. URL https:
//doi.org/10.1145/1993636.1993674. 1

[] Timothy Chu, Gary L. Miller, and Donald Sheehy. Exact computation of a manifold
metric, via lipschitz embeddings and shortest paths on a graph. In SODA, 2020. 2.1.2, 1

[] Fan Chung. Spectral graph theory. 92. American Mathematical Soc., 1997. 6.1

[] F.R.K. Chung. Spectral Graph Theory, volume 92 of Regional Conference Series in Math-
ematics. American Mathematical Society, 1997. 1, 1.3

[] Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng,
Anup B Rao, and Shen Chen Xu. Solving sdd linear systems in nearly m log1/2 n time. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing (STOC),
pages 343–352, 2014. 1, 1.5, 3.9

[] Michael B. Cohen, Brittany Terese Fasy, Gary L. Miller, Amir Nayyeri, Donald R. Sheehy,
and Ameya Velingker. Approximating nearest neighbor distances. In Proceedings of the
Algorithms and Data Structures Symposium, 2015. 1.3, 1, 1, 1, 1, 1, 1.1, 1.1

[] Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In Proceedings of the 51th Annual Symposium on the Theory
of Computing (STOC), 2019. 1.5

[] Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM Journal on Com-
puting, 11(3):467–471, 1982. 6

[] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995. 2.1.1, 1.5

[] Richard Courant and David Hilbert. Methods of Mathematical Physics. Interscience
Publishers, Inc., 1953. 1

[] Frank Critchley. On certain linear mappings between inner-product and squared-distance
matrices. Linear Algebra and its Applications, 105:91–107, 1988. A.5

[] Ernie Croot, Vsevolod F Lev, and Péter Pál Pach. Progression-free sets in are exponen-
tially small. Annals of Mathematics, pages 331–337, 2017. 2.1.10, 2.1.3

[] George B Dantzig. Maximization of a linear function of variables subject to linear in-
equalities. Activity analysis of production and allocation, 13:339–347, 1947. 1.5

[] Eric Darve. The fast multipole method: numerical implementation. Journal of Computa-
tional Physics 160.1, 2000. 9

[] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003. 3.14

[] Philippe Delsarte. An algebraic approach to the association schemes of coding theory.
PhD thesis, Philips Research Laboratories, 1973. F.1

[] Michel Marie Deza and Monique Laurent. Geometry of Cuts and Metrics. Springer

194

https://doi.org/10.1145/1993636.1993674
https://doi.org/10.1145/1993636.1993674

Publishing Company, Incorporated, 1st edition, 2009. 2.2.2, 2.2.3, 2.2.3, A.4, A.4

[] Persi Diaconis and Susan Holmes. Random walks on trees and matchings. Electron. J.
Probab., 7:17 pp., 2002. doi: 10.1214/EJP.v7-105. 2.2.1

[] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools
degree-2 threshold functions. In 51th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 11–
20, 2010. doi: 10.1109/FOCS.2010.8. URL https://doi.org/10.1109/FOCS.
2010.8. 1.3

[] Pedro Domingos. Every model learned by gradient descent is approximately a kernel
machine. arXiv preprint arXiv:2012.00152, 2020. 1.2

[] Wei Dong, Moses Charikar, and Kai Li. Efficient k-nearest neighbor graph construction
for generic similarity measures. In Proceeding of the International Conference on World
Wide Web, pages 577-586, 2011. 1.2, 7

[] Jack Dongarra and Francis Sullivan. Guest editors’ introduction: The top 10 algorithms.
Computing in Science & Engineering, 2(1):22, 2000. 1, 9

[] Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably
optimizes over-parameterized neural networks. In ICLR, 2019. 2.1.1, 1.5, 10

[] Zeev Dvir and Benjamin L Edelman. Matrix rigidity and the croot-lev-pach lemma. The-
ory of Computing, 15:1–7, 2019. 2.1.3

[] Zeev Dvir and Allen Liu. Fourier and circulant matrices are not rigid. In Computational
Complexity Conference (CCC), volume 137, pages 17:1–17:23, 2019. 2.1.3

[] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological persistence and
simplification. Discrete & Computational Geometry, 4(28):511–533, 2002. 1, 1.1, 4, 4

[] Jordan S Ellenberg and Dion Gijswijt. On large subsets of with no three-term arithmetic
progression. Annals of Mathematics, pages 339–343, 2017. 2.1.3

[] Nader Engheta, William D. Murphy, Vladimir Rokhlin, and Marius Vassiliou. The fast
multipole method for electromagnetic scattering computation. IEEE Transactions on An-
tennas and Propagation 40, pages 634–641, 1992. 9

[] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algo-
rithm for discovering clusters a density-based algorithm for discovering clusters in large
spatial databases with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, pages 226–231. AAAI Press, 1996.
URL http://dl.acm.org/citation.cfm?id=3001460.3001507. 5.2, G

[] Pavel I Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex Schwendner, Dmitry
Vaintrob, and Elena Yudovina. Introduction to representation theory, volume 59. Ameri-
can Mathematical Soc., 2011. 1.2, 2.2.1, A.6

[] Lawrence C. Evans and Ronald F. Gariepy. Measure Theory and Fine Properties of Func-
tions. CRC Press, 2015. 4.3

[] Felix Faber, Alexander Lindmaa, O Anatole von Lilienfeld, and Rickard Armiento. Crys-

195

https://doi.org/10.1109/FOCS.2010.8
https://doi.org/10.1109/FOCS.2010.8
http://dl.acm.org/citation.cfm?id=3001460.3001507

tal structure representations for machine learning models of formation energies. Interna-
tional Journal of Quantum Chemistry, 115(16):1094–1101, 2015. 2.1.1

[] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. arXiv preprint arXiv:2101.03961,
2021. 8

[] R. P. Feynman. Space-time approach to non-relativistic quantum mechanics. Rev. Mod.
Phys, 20(367), 1948. 1

[] Richard Feynman, Robert Leighton, and Matthew Sands. The Feynman Lectures, Vol III
Chapter 8: The Hamiltonian Matrix, 1964. URL: http://www.feynmanlectures.
caltech.edu/III_08.html. 2.2.1

[] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak Math. J., 23(98):298–
305, 1973. 7.3

[] Yuval Filmus, Ryan O’Donnell, and Xinyu Wu. A log-sobolev inequality for the multi-
slice, with applications. ITCS, 2019. 2.2.1

[] François Fleuret and Hichem Sahbi. Scale-invariance of support vector machines based
on the triangular kernel. In 3rd International Workshop on Statistical and Computational
Theories of Vision, pages 1–13, 2003. 1.5

[] Carsten Franke and Robert Schaback. Solving partial differential equations by collocation
using radial basis functions. Applied Mathematics and Computation, 93(1):73–82, 1998.
2.1.2

[] Kurt Otto Friedrichs. The identity of weak and strong extensions of differential operators.
Transactions of the American Mathematical Society, 55:132–151, 1944. 1.3

[] William Fulton and Joe Harris. Representation Theory, A first course, Readings in Math-
ematics, volume 129. Springer-Verlag, New York, NY, USA, 1991. 1.2

[] Nicolás García Trillos and Dejan Slepčev. On the rate of convergence of empiri-
cal measures in ∞-transportation distance. Canadian Journal of Mathematics, 67(6):
1358âĂŞ1383, 2015. doi: 10.4153/CJM-2014-044-6. 1.3, 1.3, K.1

[] Ellen Gasparovic, Maria Gommel, Emilie Purvine, Bei Wang, Yusu Wang, and Lori
Ziegelmeier. A complete characterization of the 1-dimensional intrinsic cech persistence
diagrams for metric graphs. https://arxiv.org/abs/1702.07379, 2017. 4

[] Yoav Goldberg and Michael Elhadad. splitsvm: fast, space-efficient, non-heuristic, poly-
nomial kernel computation for nlp applications. Proceedings of ACL-08: HLT, Short
Papers, pages 237–240, 2008. 1.5

[] Jose Maria Gonzalez-Barrios and Aldofo J. Quiroz. A clustering procedure based on the
comparison between the k nearest neighbors graph and the minimal spanning tree. Statis-
tics and Probability Letters, 2003. URL https://www.sciencedirect.com/
science/article/pii/S0167715202004212. 1.1

[] J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster analysis.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 18(1):54–64, 1969.
ISSN 00359254, 14679876. URL http://www.jstor.org/stable/2346439.

196

http://www.feynmanlectures.caltech.edu/III_08.html
http://www.feynmanlectures.caltech.edu/III_08.html
https://www.sciencedirect.com/science/article/pii/S0167715202004212
https://www.sciencedirect.com/science/article/pii/S0167715202004212
http://www.jstor.org/stable/2346439

5.2, G

[] Leo Grady and Eric L Schwartz. Isoperimetric graph partitioning for image segmentation.
IEEE transactions on pattern analysis and machine intelligence, 28(3):469–475, 2006.
1.3

[] Fan Chung Graham and Shlomo Sternberg. Laplacian and vibrational spectra for homo-
geneous graphs. Journal of Graph Theory, 16:605–627, 1992. 2.2.1

[] Leslie Greengard. The rapid evaluation of potential fields in particle systems. MIT press,
1988. 9

[] Leslie Greengard. The numerical solution of the n-body problem. Computers in physics,
4(2):142–152, 1990. 9

[] Leslie Greengard. Fast algorithms for classical physics. Science, 265(5174):909–914,
1994. 9

[] Leslie Greengard and Vladimir Rokhlin. A fast algorithm for particle simulations. Journal
of computational physics, 73(2):325–348, 1987. 1, 1.1, 2.1, 9

[] Leslie Greengard and Vladimir Rokhlin. The rapid evaluation of potential fields in three
dimensions. Vortex Methods. Springer, Berlin, Heidelberg, pages 121–141, 1988. 1, 2.1,
9

[] Leslie Greengard and Vladimir Rokhlin. On the evaluation of electrostatic interactions in
molecular modeling. Chemica scripta, 29:139–144, 1989. 1, 1.1, 2.1, 9

[] Leslie Greengard and Vladimir Rokhlin. An improved fast multipole algorithm in thre
dimensions. ., 1996. 9

[] Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific
and Statistical Computing, 12(1):79–94, 1991. 1.2, 2.1, 2.1, 9, 9.2

[] Karsten Grove. Critical point theory for distance functions. Proceedings of the Symposia
in Pure Mathematics, 54(3):357–385, 1993. 1

[] Stephen Guattery and Gary Miller. On the quality of spectral separators. ACM-SIAM
Symposium on Discrete Algorithms (SODA), 1998. 2.2.1

[] Stephen Guattery and Gary L. Miller. On the performance of the spectral graph partition-
ing methods. In SODA’95, pages 233–242. ACM-SIAM, 1995. 7.3

[] Steve R Gunn. Support vector machines for classification and regression. ISIS technical
report, 14(1):5–16, 1998. 1.5

[] Bart Hamers. Kernel models for large scale applications. ., 2004. 1.5

[] Sariel Har-Peled, Piotr Indyk, and Anastasios Sidiropoulos. Euclidean spanners in high
dimensions. In SODA, 2013. 1.2, 7

[] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly optimal sparse
Fourier transform. In Proceedings of the forty-fourth annual ACM symposium on The-
ory of computing (STOC), pages 563–578. ACM, https://arxiv.org/pdf/1201.
2501.pdf, 2012. 2.2.1

[] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and practical al-

197

https://arxiv.org/pdf/1201.2501.pdf
https://arxiv.org/pdf/1201.2501.pdf

gorithm for sparse Fourier transform. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms (SODA), pages 1183–1194. SIAM, https:
//groups.csail.mit.edu/netmit/sFFT/soda_paper.pdf, 2012. 2.2.1

[] A Hedayat and Walter Dennis Wallis. Hadamard matrices and their applications. The
Annals of Statistics, 6(6):1184–1238, 1978. A.2

[] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranu-
rak. Unifying and strengthening hardness for dynamic problems via the online matrix-
vector multiplication conjecture. In Proceedings of the forty-seventh annual ACM sympo-
sium on Theory of computing, pages 21–30, 2015. 1.2

[] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997. 1.5

[] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Jour-
nal of the American Statistical Association, 58(301):13–30, 1963. 3.10

[] Heiko Hoffmann. Kernel pca for novelty detection. Pattern recognition, 40(3):863–874,
2007. 1.5

[] Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero III. Shortest path through ran-
dom points. Ann. Appl. Probab., 26(5):2791–2823, 10 2016. doi: 10.1214/15-AAP1162.
URL http://dx.doi.org/10.1214/15-AAP1162. 1, 1, 1.1, 5.2, G, I

[] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. Journal of
Computer and System Sciences, 62(2):367–375, 2001. 3.6

[] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. Journal of the ACM (JACM), 53(3):307–323, 2006. 7.14

[] Piotr Indyk and Michael Kapralov. Sample-optimal Fourier sampling in any constant di-
mension. In IEEE 55th Annual Symposium onFoundations of Computer Science (FOCS),
pages 514–523. IEEE, https://arxiv.org/pdf/1403.5804.pdf, 2014. 2.2.1

[] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing
the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, pages 604–613, 1998. 1.2

[] Piotr Indyk, Michael Kapralov, and Eric Price. (Nearly) Sample-optimal sparse Fourier
transform. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 480–499. SIAM, 2014. 2.2.1

[] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence
and generalization in neural networks. In Advances in neural information processing
systems (NeurIPS), pages 8571–8580, 2018. 2.1.1, 1.5, 10.1

[] Kevin Jarrett, Koray Kavukcuoglu, and Yann LeCun. What is the best multi-stage archi-
tecture for object recognition? In 2009 IEEE 12th International Conference on Computer
Vision (ICCV), pages 2146–2153, 2009. 1.5

[] Shunhua Jiang, Yunze Man, Zhao Song, and Danyang Zhuo. Graph neu-
ral network acceleration via matrix dimension reduction. In Openreview.
https://openreview.net/forum?id=8IbZUle6ieH, 2020. 1.5

198

https://groups.csail.mit.edu/netmit/sFFT/soda_paper.pdf
https://groups.csail.mit.edu/netmit/sFFT/soda_paper.pdf
http://dx.doi.org/10.1214/15-AAP1162
https://arxiv.org/pdf/1403.5804.pdf

[] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix
inverse for faster lps. arXiv preprint arXiv:2004.07470, 2020. 1.5

[] Yaonan Jin, Daogao Liu, and Zhao Song. A robust multi-dimensional sparse fourier trans-
form in the continuous setting. arXiv preprint arXiv:2005.06156, 2020. 2.2.1

[] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984. 1.2, 3.13, 3.14

[] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and spectral.
In Journal of the ACM (JACM), pages 497–515, 2004. 3.2

[] Michael Kapralov. Sparse Fourier transform in any constant dimension with nearly-
optimal sample complexity in sublinear time. In Symposium on Theory of Computing
Conference (STOC). https://arxiv.org/pdf/1604.00845.pdf, 2016. 2.2.1

[] Michael Kapralov. Sample efficient estimation and recovery in sparse FFT via isolation on
average. In 58th Annual IEEE Symposium on Foundations of Computer Science (FOCS).
https://arxiv.org/pdf/1708.04544, 2017. 2.2.1

[] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-
ceedings of the sixteenth annual ACM symposium on Theory of computing (STOC), pages
302–311, 1984. 1.5

[] Matti Karppa, Petteri Kaski, and Jukka Kohonen. A faster subquadratic algorithm for
finding outlier correlations. ACM Transactions on Algorithms (TALG), 14(3):1–26, 2018.
2.1.3

[] Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple,
combinatorial algorithm for solving sdd systems in nearly-linear time. In Proceedings of
the forty-fifth annual ACM symposium on Theory of computing (STOC), pages 911–920,
2013. 1.5, 3.9

[] Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computa-
tional Mathematics and Mathematical Physics, 20(1):53–72, 1980. 1.5

[] George Kimeldorf and Grace Wahba. Some results on tchebycheffian spline functions.
Journal of mathematical analysis and applications, 33(1):82–95, 1971. 2.1.2

[] M. Kirszbraun. Über die zusammenziehende und lipschitzsche transformationen. Fun-
damenta Mathematicae, 22(1):77–108, 1934. URL http://eudml.org/doc/
212681. 3

[] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer.
In International Conference on Learning Representations (ICLR), 2019. 8

[] Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving
SDD linear systems. In 51th Annual IEEE Symposium on Foundations of Computer Sci-
ence, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 235–244. IEEE
Computer Society, 2010. doi: 10.1109/FOCS.2010.29. URL https://doi.org/10.
1109/FOCS.2010.29. 1

[] Ioannis Koutis, Gary L Miller, and Richard Peng. Approaching optimality for solving sdd
linear systems. FOCS, 2010. 1.2, 1.5, 3.9

199

https://arxiv.org/pdf/1604.00845.pdf
https://arxiv.org/pdf/1708.04544
http://eudml.org/doc/212681
http://eudml.org/doc/212681
https://doi.org/10.1109/FOCS.2010.29
https://doi.org/10.1109/FOCS.2010.29

[] Ioannis Koutis, Gary L Miller, and Richard Peng. A nearly-m log n time solver for sdd lin-
ear systems. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science
(FOCS), pages 590–598, 2011. 1.5, 3.6, 3.9, 4.2

[] Robert Krauthgamer and Tal Wagner. Cheeger-type approximation for sparsest st-cut.
ACM Trans. Algorithms, 13(1):14:1–14:21, 2016. doi: 10.1145/2996799. URL https:
//doi.org/10.1145/2996799. 1.3, 8

[] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing sys-
tems (NIPS), pages 1097–1105, 2012. 1.5

[] Ria Kulshrestha. Transformers. https://towardsdatascience.com/transformers-
89034557de14, 2020. 1.2, 2.1.3, 8

[] Sanjiv Kumar, Mehryar Mohri, and Ameet Talwalkar. Sampling methods for the nyström
method. Journal of Machine Learning Research, 13(Apr):981–1006, 2012. 2

[] Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians-
fast, sparse, and simple. In 57th Annual Symposium on Foundations of Computer Science
(FOCS), pages 573–582, 2016. 1.5

[] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In STOC, 2016. 1.5

[] Thijs Laarhoven. Graph-based time-space trade-offs for approximate near neighbors. In
Symposium on Computational Geometry, 2018. 7

[] Peter Lax. Functional Analysis. Wiley, 1st edition, 2002. ISBN 0471556041. A.1

[] Hung Le and Shay Solomon. Truly optimal euclidean spanners. FOCS, 2019. URL
http://arxiv.org/abs/1904.12042. 1.1, 6.2

[] Michel Ledoux. Spectral gap, logarithmic Sobolev constant, and geometric bounds. Sur-
veys in differential geometry, 9(1):219–240, 2004. 1, 1.3, 8, K.2

[] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning
and higher-order cheeger inequalities. Journal of the ACM (JACM), 61(6):37, 2014. 1.3,
8

[] James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multi-way spectral partitioning
and higher-order cheeger inequalities. Journal of the ACM, 61(6)(37), 2014. 8

[] Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized leverage
score sampling for neural networks. In NeurIPS, 2020. 2.1.1, 1.5, 10

[] Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and
faster algorithms for solving linear systems. In FOCS, 2013. 1.5

[] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in O(

√
rank) iterations and faster algorithms for maximum flow. In 2014

IEEE 55th Annual Symposium on Foundations of Computer Science (FOCS), pages 424–
433. IEEE, 2014. 1.5

[] Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear

200

https://doi.org/10.1145/2996799
https://doi.org/10.1145/2996799
http://arxiv.org/abs/1904.12042

time. In FOCS, 2015. 1.5

[] Yin Tat Lee and Santosh S. Vempala. Stochastic localization + stieltjes barrier = tight
bound for log-Sobolev. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, pages 1122–1129, New York, NY, USA, 2018. ACM.
ISBN 978-1-4503-5559-9. doi: 10.1145/3188745.3188866. URL http://doi.acm.
org/10.1145/3188745.3188866. 1.3

[] Yin Tat Lee and Santosh S. Vempala. The Kannan-LovÃąsz-Simonovits conjecture, 2018.
1, 1.3

[] Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empricial risk minimization in the
current matrix multiplication time. In COLT, 2019. 1.5

[] Xiang-Yang Li, Peng-Jun Wan, and Yu Wang. Power efficient and sparse spanner for
wireless ad hoc networks. In Proceedings Tenth International Conference on Computer
Communications and Networks, 2001. 1.1

[] Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochas-
tic gradient descent on structured data. In Advances in Neural Information Processing
Systems (NeurIPS), 2018. 2.1.1, 1.5, 10

[] O Anatole Von Lilienfeld. Quantum machine learning in chemical compound space. Ange-
wandte Chemie International Edition, 57(16):4164–4169, 2018. 2.1.1

[] O Anatole Von Lilienfeld, Raghunathan Ramakrishnan, Matthias Rupp, and Aaron Knoll.
Fourier series of atomic radial distribution functions: A molecular fingerprint for ma-
chine learning models of quantum chemical properties. International Journal of Quantum
Chemistry, 115(16):1084–1093, 2015. 2.1.1

[] Chun Liu and Noel J Walkingron. An Eulerian description of fluids containing visco-
elastic particles. Archive for rational mechanics and analysis, 159(3):229–252, 2001. 1.3

[] J. Liu, C. Wang, M. Danilevsky, and J. Han. Large-scale spectral clustering on graphs. In
In Twenty-Third International Joint Conference on Artificial Intelligence, 2013. 1

[] Ting Liu, Andrew W. Moore, Alexander Gray, and Ke Yang. An investigation of prac-
tical approximate nearest neighbor algorithms. In Proceedings of the 17th International
Conference on Neural Information Processing Systems, NIPS’04, pages 825–832, Cam-
bridge, MA, USA, 2004. MIT Press. URL http://dl.acm.org/citation.cfm?
id=2976040.2976144. 7

[] Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh. A unified framework for
data poisoning attack to graph-based semi-supervised learning. In Advances in Neural
Information Processing Systems (NeurIPS), 2019. 1, 3

[] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory,
28(2):129–137, 1982. 1

[] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Algorithmic
extensions of cheeger’s inequality to higher eigenvalues and partitions. In In Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages
315–326, 2011. 3.2

201

http://doi.acm.org/10.1145/3188745.3188866
http://doi.acm.org/10.1145/3188745.3188866
http://dl.acm.org/citation.cfm?id=2976040.2976144
http://dl.acm.org/citation.cfm?id=2976040.2976144

[] Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many sparse
cuts via higher eigenvalues. In Proceedings of the forty-fourth annual ACM symposium
on Theory of computing, FOCS 2012, pages 1131–1140. ACM, 2012. 1.3, 8

[] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica, pages 261–
277, 1988. 2.2.1

[] Ulrike Von Luxburg. Tutorial on spectral clustering. Statistics and Computing, 17(4),
2007. 1, 1.2

[] Shaogao Lv, Huazhen Lin, Heng Lian, and Jian Huang. Oracle inequalities for sparse
additive quantile regression in reproducing kernel hilbert space. The Annals of Statistics,
46(2):781–813, 2018. 2.1.2

[] Adam Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families I: bipartite
ramanujan graphs of all degrees. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 529–
537. IEEE Computer Society, 2013. doi: 10.1109/FOCS.2013.63. URL https://
doi.org/10.1109/FOCS.2013.63. 1

[] G. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their
applications in the construction of expanders and concentrators. Probl. of Inform. Transm.,
pages 51–60, 1988. 2.2.1

[] Per-Gunnar Martinsson. Encyclopedia entry on fast multipole methods. In University of
Colorado at Boulder, 2012. 1.5, 9, 9.17

[] Peter Massopust. Interpolation and approximation with splines and fractals. Oxford
University Press, Inc., 2010. 1.5

[] Jiří Matoušek. Efficient partition trees. Discrete & Computational Geometry, 8(3):315–
334, 1992. 3.19

[] Charles A Micchelli. Interpolation of scattered data: distance matrices and conditionally
positive definite functions. In Approximation theory and spline functions, pages 143–145.
Springer, 1984. 1.5

[] Sebastian Mika, Bernhard Schölkopf, Alex J Smola, Klaus-Robert Müller, Matthias
Scholz, and Gunnar Rätsch. Kernel pca and de-noising in feature spaces. In Advances
in neural information processing systems (NIPS), pages 536–542, 1999. 1.5

[] Gary L. Miller, Noel J. Walkington, and Alex L. Wang. Hardy-muckenhoupt bounds
for laplacian eigenvalues. CoRR, abs/1812.02841, 2018. URL http://arxiv.org/
abs/1812.02841. J.2

[] Daniel Moeller, Ramamohan Paturi, and Stefan Schneider. Subquadratic algorithms for
succinct stable matching. In International Computer Science Symposium in Russia, pages
294–308. Springer, 2016. 2.1.3

[] Ankur Moitra. The threshold for super-resolution via extremal functions. In STOC.
https://arxiv.org/pdf/1408.1681.pdf, 2015. 2.2.1

[] Peter Monk. Finite Element Methods for Maxwell’s Equations (Numerical Analysis and
Scientific Computation Series). Oxford Press, 01 2003. ISBN 0198508883. 1.3

202

https://doi.org/10.1109/FOCS.2013.63
https://doi.org/10.1109/FOCS.2013.63
http://arxiv.org/abs/1812.02841
http://arxiv.org/abs/1812.02841
https://arxiv.org/pdf/1408.1681.pdf

[] Vasileios Nakos, Zhao Song, and Zhengyu Wang. (Nearly) Sample-optimal sparse Fourier
transform in any dimension; RIPless and Filterless. In FOCS. https://arxiv.org/
pdf/1909.11123.pdf, 2019. 2.2.1

[] J. Von Neumann and I. J. Schoenberg. Fourier integrals and metric geometry. Transactions
of the American Mathematical Society, 50(2):226–251, Sep 1941. 3

[] J. Von Neumann and I. J. Schoenberg. Fourier integrals and metric geometry. Transactions
of the American Mathematical Society, 50(2):226–251, 1941. 2.1.2, 2.1.2, 1

[] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Proceedings of the 14th International Conference on Neural Informa-
tion Processing Systems: Natural and Synthetic, NIPS’01, pages 849–856, Cambridge,
MA, USA, 2001. MIT Press. URL http://dl.acm.org/citation.cfm?id=
2980539.2980649. 1.4, 1, 1.3, 2

[] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and
an algorithm. In Advances in neural information processing systems (NeurIPS), pages
849–856, 2002. 1, 2, 1.5

[] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York,
NY, USA, 2014. ISBN 1107038324, 9781107038325. 2.2.1, F.1

[] Ryan O’Donnell and John Wright. Efficient quantum tomography. In Proceedings of the
Forty-eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 899–
912, 2016. 2.2.1

[] Lorenzo Orecchia and Nisheeth K. Vishnoi. Towards an sdp-based approach to spec-
tral methods: A nearly-linear-time algorithm for graph partitioning and decomposition.
In Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’11, pages 532–545, Philadelphia, PA, USA, 2011. Society for Indus-
trial and Applied Mathematics. URL http://dl.acm.org/citation.cfm?id=
2133036.2133078. 1.3

[] Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based algorithms for local graph clus-
tering. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1267–1286, 2014. 3.2

[] Lorenzo Orecchia, Leonard J Schulman, Umesh V Vazirani, and Nisheeth K Vishnoi. On
partitioning graphs via single commodity flows. In Proceedings of the fortieth annual
ACM symposium on Theory of computing, STOC ’08, pages 461–470. ACM, 2008. 1.3

[] Mark JL Orr. Introduction to radial basis function networks, 1996. 2.1.2

[] Enea Parini. An introduction to the cheeger problem. Surv. Math. Appl., 6:9–21, 2011. 4

[] Pablo A. Parrilo. Algebraic techniques and semidefinite optimization, February 2012. 10

[] Eric Price and Zhao Song. A robust sparse Fourier transform in the continuous setting. In
Foundations of Computer Science (FOCS), 2015 IEEE 56th Annual Symposium on, pages
583–600. IEEE, https://arxiv.org/pdf/1609.00896.pdf, 2015. 2.2.1

[] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. In
Advances in neural information processing systems (NIPS), pages 1177–1184, 2008. 1.5

203

https://arxiv.org/pdf/1909.11123.pdf
https://arxiv.org/pdf/1909.11123.pdf
http://dl.acm.org/citation.cfm?id=2980539.2980649
http://dl.acm.org/citation.cfm?id=2980539.2980649
http://dl.acm.org/citation.cfm?id=2133036.2133078
http://dl.acm.org/citation.cfm?id=2133036.2133078
https://arxiv.org/pdf/1609.00896.pdf

[] Ilya Razenshteyn. High-dimensional similarity search and sketching: algorithms and
hardness. PhD thesis, Massachusetts Institute of Technology, 2017. 1

[] Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. On learning with integral opera-
tors. Journal of Machine Learning Research, 11(Feb):905–934, 2010. 1.3

[] Aviad Rubinstein. Hardness of approximate nearest neighbor search. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 1260–
1268, 2018. 1.2, 1.2, 3.17

[] Karthik C. S. and Pasin Manurangsi. On closest pair in euclidean metric: Monochromatic
is as hard as bichromatic. In ITCS, 2019. 1.2, 3.16

[] Sushant Sachdeva and Nisheeth K Vishnoi. Faster algorithms via approximation theory.
Foundations and Trends in Theoretical Computer Science, 9(2):125–210, 2014. 5.2, 5.6

[] Sajama and Alon Orlitsky. Estimating and computing density based distance metrics.
In ICML ’05, pages 760–767, New York, NY, USA, 2005. ACM. ISBN 1-59593-
180-5. doi: 10.1145/1102351.1102447. URL http://doi.acm.org/10.1145/
1102351.1102447. 1, 1, 1

[] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee.
Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.
1.5

[] Laurent Saloff-Coste. Random walks on finite groups. In Probability on discrete struc-
tures, pages 263–346. Springer, 2004. 2.2.1

[] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA,
January 6-9, 2019, pages 2616–2635. SIAM, 2019. doi: 10.1137/1.9781611975482.162.
URL https://doi.org/10.1137/1.9781611975482.162. 1

[] I Schoenberg. Positive definite functions on spheres. Duke Math. J, 1:172, 1942. 1.2,
2.1.1, 2.1.3, 2.1.2, 11

[] I. J. Schoenberg. Remarks to maurice frechet’s article" sur la definition axiomatique d’une
classe d’espace distancies vector! ellement applicable sur l’espace de hilbertl. Ann. of
Math, 36:724–732, 1935. 2.2.3, 2.2.4, 2.2.3, A.5, A.7

[] I. J. Schoenberg. On certain metric spaces arising from euclidean spaces by a change of
metric and their imbedding in hilbert space. Annals of Mathematics, 38(4):787–793, 1937.
ISSN 0003486X. URL http://www.jstor.org/stable/1968835. 1

[] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector ma-
chines, regularization, optimization, and beyond. MIT press, 2001. 1, 2.1.1, 2.1.2

[] Bernhard Scholkopf, Kah-Kay Sung, Christopher JC Burges, Federico Girosi, Partha
Niyogi, Tomaso Poggio, and Vladimir Vapnik. Comparing support vector machines with
gaussian kernels to radial basis function classifiers. IEEE transactions on Signal Process-
ing, 45(11):2758–2765, 1997. 2.1.2

[] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component

204

http://doi.acm.org/10.1145/1102351.1102447
http://doi.acm.org/10.1145/1102351.1102447
https://doi.org/10.1137/1.9781611975482.162
http://www.jstor.org/stable/1968835

analysis as a kernel eigenvalue problem. Neural computation, 10(5):1299–1319, 1998.
1.5

[] Karl Schwarzschild. Uber das gravitationsfeld eines massenpunktes nach der einstein-
schen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin,
1916. 1

[] Jonah Sherman. Generalized preconditioning and network flow problems. In SODA, pages
772–780, 2017. 3.14

[] J.B. Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Trans. on
Pattern Anal. and Mach. Intell., 22:888–905, 01 1997. 1

[] Jonathon Shlens. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014. 1.5

[] Alex J Smola. Regression estimation with support vector learning machines. PhD thesis,
MasterâĂŹs thesis, Technische Universität München, 1996. 1.2, 1, 2.1.1

[] Alex J Smola, Zoltan L Ovari, and Robert C Williamson. Regularization with dot-product
kernels. In Advances in neural information processing systems (NeurIPS), pages 308–314,
2001. 1, 2.1.1, 2.1.3, E.2, 11

[] S Soboleff. Sur un théorème d’analyse fonctionnelle. Matematicheskii Sbornik, 46(3):
471–497, 1938. 2.1.1, 2.1.2, 2.1.2, 2.2.3, 2.2.3, 1.3

[] Zhao Song. Matrix Theory : Optimization, Concentration and Algorithms. PhD thesis,
The University of Texas at Austin, 2019. 1.5

[] Zhao Song and Xin Yang. Quadratic suffices for over-parametrization via matrix chernoff
bound. arXiv preprint arXiv:1906.03593, 2019. 2.1.1, 1.5, 10

[] Zhao Song and Zheng Yu. Oblivious sketching-based central path method for solving lin-
ear programming problems. In Openreview. https://openreview.net/forum?id=fGiKxvF-
eub, 2020. 1.5

[] César R Souza. Kernel functions for machine learning applications. Creative Commons
Attribution-Noncommercial-Share Alike, 3:29, 2010. 1, 1.5

[] Daniel Spielman. Spectral graph theory and its applications, 2018. URL: http://www.
cs.yale.edu/homes/spielman/eigs.pdf. Last visited on 2019/10/15. 2.2.1

[] Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011. 1, 1.2, 3.7, 3.7.1, 6, 7.2, 7.2, 4, 8

[] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In Proceedings of the Thirty-sixth
Annual ACM Symposium on Theory of Computing, STOC ’04, pages 81–90, New York,
NY, USA, 2004. ACM. ISBN 1-58113-852-0. doi: 10.1145/1007352.1007372. URL
http://doi.acm.org/10.1145/1007352.1007372. 1.3

[] Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In STOC, 2004. 1.5, 3.2, 3.5,
3.9, 4.2, 4.4

205

http://www.cs.yale.edu/homes/spielman/eigs.pdf
http://www.cs.yale.edu/homes/spielman/eigs.pdf
http://doi.acm.org/10.1145/1007352.1007372

[] Daniel A. Spielman and Shang-Hua Teng. Spectral partitioning works: Planar graphs
and finite element meshes. Linear Algebra and its Applications, 421(2):284 – 305, 2007.
ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.2006.07.020. URL http://www.
sciencedirect.com/science/article/pii/S0024379506003454. Spe-
cial Issue in honor of Miroslav Fiedler. K.1

[] Prashant Sridhar. An experimental study into spectral and geometric approaches to data
clustering. Master’s thesis, Carnegie Mellon University, October 2015. CMU CS Tech
Report CMU-CS-15-149. 1.2, I

[] Elias M Stein and Rami Shakarchi. Real analysis: measure theory, integration, and
Hilbert spaces. Princeton University Press, 2009. 1.3

[] Werner Stuetzle. Estimating the cluster tree of a density by analyzing the minimal span-
ning tree of a sample. Journal of Classification, 20(1):025–047, May 2003. ISSN
1432-1343. doi: 10.1007/s00357-003-0004-6. URL https://doi.org/10.1007/
s00357-003-0004-6. G

[] Werner Stuetzle. A generalized single linkage method for estimating the cluster tree of a
density. 2007. G

[] H. J. Sussmann and J. C. Willems. 300 years of optimal control: from the brachystochrone
to the maximum principle. IEEE Control Systems Magazine, 17(3):32–44, June 1997.
ISSN 1066-033X. doi: 10.1109/37.588098. 1

[] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000. 1, 1.2

[] Shang-Hua Teng. The laplacian paradigm: Emerging algorithms for massive graphs. In
International Conference on Theory and Applications of Models of Computation, pages
2–14. Springer, 2010. 2.2.1

[] NicolÃąs GarcÃ a Trillos and Dejan SlepÄ ev. A variational approach to the consistency
of spectral clustering, 2015. 1, 1.3, 2, K.1

[] Michael Unser. Splines: A perfect fit for signal and image processing. IEEE Signal
processing magazine, 16(6):22–38, 1999. 1.5

[] Pravin M Vaidya. An algorithm for linear programming which requires O(((m+ n)n2 +
(m+ n)1.5n)L) arithmetic operations. In FOCS, 1987. 1.5

[] Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In
30th Annual Symposium on Foundations of Computer Science (FOCS), pages 332–337.
IEEE, 1989. 1.5

[] Pravin M. Vaidya. A sparse graph almost as good as the complete graph on points
in k dimensions. Discrete & Computational Geometry, 6(3):369–381, Sep 1991.
ISSN 1432-0444. doi: 10.1007/BF02574695. URL https://doi.org/10.1007/
BF02574695. 1.2

[] F. A. Valentine. A Lipschitz condition preserving extension for a vector function. Amer-
ican Journal of Mathematics, 67(1):83–93, 1945. ISSN 00029327, 10806377. URL
http://www.jstor.org/stable/2371917. 3

206

http://www.sciencedirect.com/science/article/pii/S0024379506003454
http://www.sciencedirect.com/science/article/pii/S0024379506003454
https://doi.org/10.1007/s00357-003-0004-6
https://doi.org/10.1007/s00357-003-0004-6
https://doi.org/10.1007/BF02574695
https://doi.org/10.1007/BF02574695
http://www.jstor.org/stable/2371917

[] Gregory Valiant. Finding correlations in subquadratic time, with applications to learning
parities and juntas. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science (FOCS), pages 11–20, 2012. 2.1.3

[] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in
neural information processing systems (NeurIPS), pages 5998–6008, 2017. 2.1.3

[] Andrea Vedaldi and Andrew Zisserman. Efficient additive kernels via explicit feature
maps. IEEE transactions on pattern analysis and machine intelligence, 34(3):480–492,
2012. 1.5

[] Pascal Vincent and Yoshua Bengio. Density sensitive metrics and kernels. In Snowbird
Workshop, 2003. 1.3, 1, 1

[] Ulrike von Luxburg. A tutorial on spectral clustering, 2007. 2

[] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):
395–416, 2007. 1

[] Ulrike Von Luxburg, Mikhail Belkin, and Olivier Bousquet. Consistency of spectral clus-
tering. The Annals of Statistics, pages 555–586, 2008. 1.3

[] Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-
attention with linear complexity. arXiv preprint arXiv:2006.04768, 2020. 8

[] Jonathan Whiteley. Linear elliptic partial differential equations. In Finite Element Meth-
ods, pages 119–141. Springer, 2017. 1.3

[] R Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM Journal on
Computing, 47(5):1965–1985, 2018. 2.1.3, 6

[] Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2-3):357–365, 2005. 3.12, 3.6

[] Virginia Vassilevska Williams. On some fine-grained questions in algorithms and com-
plexity. In Proceedings of the International Congress of Mathematicians (ICM), 2018.
3.6

[] D. Wishart. Mode analysis: A generalization of the nearest neighor which reduces chain-
ing effects. 1969. 5.2, G

[] Max A Woodbury. The stability of out-input matrices. Chicago, IL, 9, 1949. 3.8

[] Max A Woodbury. Inverting modified matrices. Memorandum report, 42(106):336, 1950.
3.8

[] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-
case update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing (STOC), STOC 2017, page 1130âĂŞ1143, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450345286. doi: 10.1145/3055399.
3055415. URL https://doi.org/10.1145/3055399.3055415. 1

[] Changjiang Yang, Ramani Duraiswami, Nail A. Gumerov, and Larry Davis. Improved
fast gauss transform and efficient kernel density estimation. In Proceedings Ninth IEEE

207

https://doi.org/10.1145/3055399.3055415

International Conference on Computer Vision (ICCV), 2003. 9

[] Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel machines using
the improved fast gauss transform. In NIPS, 2004. 9

[] Andrew Chi-Chih Yao. On constructing minimum spanning trees in k-dimensional spaces
and related problems. SIAM Journal on Computing, 11(4):721–736, 1982. 3.19

[] Grigory Yaroslavtsev and Adithya Vadapalli. Massively parallel algorithms and hardness
for single linkage clustering under lp distances. Arxiv. ACM, 2017. URL https://
arxiv.org/pdf/1710.01431. G

[] Kai Zhong, Zhao Song, and Inderjit S Dhillon. Learning non-overlapping convolutional
neural networks with multiple kernels. arXiv preprint arXiv:1711.03440, 2017. 1.5

[] Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery
guarantees for one-hidden-layer neural networks. In Proceedings of the 34th International
Conference on Machine Learning (ICML), pages 4140–4149, 2017. 1.5

[] Kai Zhong, Zhao Song, Prateek Jain, and Inderjit S Dhillon. Provable non-linear inductive
matrix completion. In Advances in Neural Information Processing Systems (NeurIPS),
pages 11439–11449, 2019. 1.5

[] Xiaojin Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon Uni-
versity, language technologies institute, school of Computer Science, 2005. 1, 3, 1

[] Xiaojin Zhu and John Lafferty. Harmonic mixtures: combining mixture models and graph-
based methods for inductive and scalable semi-supervised learning. In Proceedings of the
22nd international conference on Machine learning (ICML), pages 1052–1059, 2005. 1

[] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, University
of Wisconsin-Madison Department of Computer Sciences, 2005. 1, 3

[] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab Mirrokni. A local algorithm for finding
well-connected clusters. In Proceedings of the 30th International Conference on Machine
Learning (ICML), pages 396–404, 2013. 3.2

208

https://arxiv.org/pdf/1710.01431
https://arxiv.org/pdf/1710.01431

