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Abstract
Recent advances in programmable networking hardware technology such as pro-

grammable switches and smart network interface cards create a new computing
paradigm called in-network computing. This new paradigm allows functionality
that has been served by servers or proprietary hardware devices, ranging from net-
work middleboxes to components of distributed systems, to now be performed in
the network. The demand for higher performance and the commercial availability of
programmable hardware have driven the popularity of in-network computing.

While many recent efforts have demonstrated the performance benefit of in-
network computing, we observe a significant gap between what it offers today and
evolving application demands. In particular, we argue that in-network comput-
ing lacks resource elasticity and fault resiliency which are essential building blocks
for practical computing platforms, limiting its potential. Elasticity can address the
shortcoming that today’s in-network computing only supports a simple deployment
model where a single application runs on a single device equipped with fixed and
limited resources. Similarly, fault resiliency is critical for managing prevalent device
failures for the correctness and performance of applications, but it has gained little
attention. Although resource elasticity and fault resiliency have been extensively
studied for traditional CPU server-based computing, we find that enabling them on
programmable networking devices is challenging, especially due to their low-level
abstractions, hardware constraints, heterogeneity, and workload characteristics.

In this thesis, we argue that by designing high-level abstractions and runtime
environments that help leverage compute and memory resources available outside
of one type of device, we can make in-network computing more elastic and resilient
without any hardware modifications. This concept, which we call device resource
augmentation, is a key enabler for resource elasticity and fault resiliency for stateful
in-network applications written for programmable switches. In particular, we design
three systems, named TEA, ExoPlane, and RedPlane, that use this concept to support
elastic memory and elastic compute/memory, and fault resiliency, respectively. Each
of these systems consists of a key abstraction, programming APIs, and a runtime
environment. We demonstrate their feasibility and effectiveness with prototype im-
plementations and evaluations using various in-network applications. Putting all the
pieces together, developers can easily enable resource elasticity and fault resiliency
for their applications without worrying about underlying complexities.
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Chapter 1

Introduction

The traditional view of the network as a “dumb pipe” that merely transmits bits of data from
one application end-point to the other is long gone. Today, the network, especially its data plane,
becomes more programmable, allowing us to implement sophisticated functionality beyond
packet forwarding. The key enabler for this is recent technology advances in programmable net-
work data plane devices. For example, programmable switching Application-Specific Integrated
Circuits (ASICs) provide limited data plane programmability while ensuring packet processing
rates of 10s of Tbps or a few billion packets per second [21, 50, 53, 54], and programmable Net-
work Interface Cards (NICs), also known as smart NICs, with Network Processing Units (NPUs)
or Field Programmable Gate Arrays (FPGAs) support data plane programmability [27, 29, 30],
along with the development of target-independent data plane programming languages such as
P4 [31, 72] and NPL [43].

This technology advance creates a new computing paradigm called in-network computing,
which enables us to run various functionalities that traditionally have been served by CPU
servers or proprietary hardware devices, ranging from network middleboxes to distributed
systems (e.g., [78, 115, 116, 148, 153, 162, 186, 197]) on network data-plane devices. Essentially,
thismakes the network itself a newkind of computing platform. Weobserve that this new formof
computing is becoming promising today because user demands and technological advances have
converged quickly. Today, while network bandwidth is growing rapidly up to several hundreds
of Gbps, the speed of CPU performance improvement has decreasedwith the slowing ofMoore’s
law. This can cause the low and unpredictable performance of networked applications, such as
high tail latency. On the other hand, programmable data plane devices can process data with
limited flexibility at a high rate while providing predictable performance, in-network computing
can provide opportunities for improving the performance of the applications, as well as reducing
operational costs.

Unfortunately, despite many recent efforts that have demonstrated the promise of in-network
computing, we observe that there are still many missing pieces to make the programmable data
plane a practical and future-proof computing platform, primarily to support evolving application
workloads. In particular, as we will describe later in this chapter, while resource elasticity and
resilience against device failures are essential for any practical computing platforms, they have
been considered in an ad-hoc manner or gained little attention in today’s in-network computing.
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Although the resource elasticity and fault resilience have been extensively studied in the context
of traditional server-based computing, we find that it is uniquely challenging to support them for
in-network computing, due to static and limited resource and capability within a single device,
limited programmability with low-level primitives, and high-performance requirements.

In this thesis, we argue that by designing abstractions that effectively expose resources and
capabilities available outside of one type of data plane device (e.g., programmable switches) while
hiding the complexities of dealing with heterogeneity, we can make in-network computing more
elastic and resilient without any hardware modifications. This concept, which we call device
resource augmentation, is a key enabler for resource elasticity and fault resiliency. This is based
on our observation that while each type of device has certain limitations in terms of available
resources and capabilities, different types of devices can complement each other. For example,
while a programmable switch can process packets at the rate of Tbps with only a few 10s MB of
SRAM, a smart NIC can provide a few GB of DRAM at the cost of lower processing capacity.

We particularly focus on enabling resource elasticity and fault resilience for in-network ap-
plications running on programmable switches, also called in-switch applications, which have
the most tight constraint on resource and capability among programmable data plane devices
available today, while leveraging resources on other types of externaldevices (e.g., smartNICs and
commodity CPU servers). In particular, we design three systems for in-switch applications, each
of which consists of a key abstraction, programming APIs, and a runtime environment: (1) Table
Extension Architecture (TEA) provides a virtual table abstraction that gives an illusion of large
match-action tables by effectively utilizingDRAMavailable on remote servers (elastic memory); (2)
ExoPlane offers an operating system for an on-rack switch resource augmentation architecture
to support multiple concurrent applications with an infinite switch resource abstraction (elastic
compute and memory); and (3) RedPlane provides an illusion of one big fault-tolerant switch for
an application deployed on multiple switches in the network (fault resilience). Putting all the
pieces together, they realize elastic and resilient in-network computing without any hardware
modifications.

Thesis statement: With the right abstractions for resources on heterogeneous programmable data
planes and runtime environments, in-network computing can be made more elastic and resilient.

In the remainder of this chapter, we describe today’s limited view of in-network computing,
our vision of elastic and resilient in-network computing, challenges in realizing the vision, and
then highlight our key results.

1.1 Today’s Myopic View of In-Network Computing

With the technology advance in programmable data planes, many recent efforts have shown the
feasibility andeffectiveness of various applications runningonprogrammabledataplanedevices,
including network monitoring and telemetry [78, 146, 186], DDoS defenses [148, 197], key-value
store caches [115, 144], network middlebox functions [153, 162, 168], consensus protocols [116,
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Figure 1.1: Today’s view of in-network computing: A single application instance is deployed on
a single device instance.

137], and others [174, 189]. Today, network administrators or application developers program the
data plane devices like in the early days of server-based computing; they program and deploy a
single program on a single device within a given fixed and limited physical compute and memory
resources.

While the current way of enabling in-network applications might be enough for running a
single program with fixed and small-sized workloads, we argue that it can significantly limit
the potential of in-network computing. First, we observe a huge gap between evolving demands
from network administrators and developers and the currentmyopic view of in-network comput-
ing, especially due to the lack of resource elasticity and fault resiliency, as illustrated in Figure 1.1.
Although the number of in-network applications that can potentially run concurrently keep in-
creasing [109, 125] and the amount of traffic that needs to be handled also grows [25, 81], today,
only a single program can run on a single device under tight resource constraints (e.g., 10s MB
of SRAM on a programmable switch [66]) which is typically hard to be extended without signif-
icant hardware modifications. Thus, if applications’ workload demands exceed the constrained
resource capacity on a single device, the applications will fail to run. Second, in addition to
the resource constraint, several measurement studies in production networks have shown the
prevalence of networking hardware failures [99, 143, 152], which can affect the performance and
correctness of applications [130]. However, handling such failures has received little attention or
considered in an ad-hoc manner.

In summary, although resource elasticity and fault resilience are fundamental building blocks
for any practical and future-proof computing platform, they have not been considered in today’s
in-network computing, significantly limiting its potential.
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1.2 A Vision for Elastic and Resilient In-Network Computing

In this thesis, we envision an in-network computing platform that natively supports resource
elasticity and fault resilience for in-network applications, rather than letting network adminis-
trators and developers constrain their workload sizes (in terms of the number of applications
and traffic volumes) or manually handle failures in application-specific ways.

Supporting resource elasticity and fault resiliency for a computing platform is not a new
problem; they have been extensively studied for traditional server-based computing, especially
in the context of operating systems and distributed systems. For example, while in the early days
of server-based computing, people had to write a program within limited memory space, with
the advent of virtual memory abstraction offered by operating systems [63], they can program
more easily with an illusion of large memory space given the limited physical memory space.
Similarly, while handling failures can be very complicated and error-prone, abstractions such
as replicated state machines [158, 176] provide an illusion of a single, highly available system.
Such abstractions enable elastic and resilient computing while hiding the complexities of how it
actually works. So then, the natural question is: Can we apply these existing techniques designed for
server-based computing to in-network computing to achieve resource elasticity and fault resiliency?

Unfortunately, we find that there are unique practical challenges in supporting the resource
elasticity and fault resiliency for in-network computing platforms, which makes it challenging
to apply the existing techniques:

• Challenge 1: Fixed resource pool. Unlike CPU servers which have a hierarchy of resources
(e.g., CPU caches, main memory, and disks for memory), the current programmable data
plane devices, especially programmable switches which are the context of this thesis, only
have limited resource and capability within a device, which are fixed at a hardware design
time. Thus, there seems no way to utilize resources elastically.

• Challenge 2: Limited programmability. Second, limited programmability with low-
level primitives such as bit-level packet header manipulation in the current data plane
programming languages such as P4 [72] make it hard to implement existing complicated
mechanisms in the device data plane, which are designed for more capable CPU servers
with higher-level primitives.

• Challenge 3: High-performance requirement. Lastly, even if we can somehow implement
the mechanisms in the device data plane, since the data plane needs to process a stream of
packets at a very high rate (e.g., a few tens Tbps in the switch data plane), it is challenging
to run the mechanisms without affecting the performance.

Fortunately, we find an opportunity to address the first challenge raised by the fixed and
limited resources on a single device, which seems to be themost fundamental obstacle to realizing
our vision. We observe that although each type of device has certain limitations in terms of
available resources and capabilities, if we look at outside a single device instance, there are other
types of data plane devices accessible through the network, and different types of devices can be
complementarywith each other. For example, while a programmable switch can process packets
at the rate of Tbps with only a few 10s MB of SRAM, a smart NIC provides lower processing
capacity with a few GB of DRAM. Thus, if we can somehow let applications running on one
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type of device (e.g., a switch) utilize larger resources on another type of device (e.g., DRAM on a
smart NIC), that can be a potential solution to enable elastic resources and potentially provide a
way of supporting resilience as well.

Although this approach sounds promising, realizing it is not trivial, especially due to the
two remaining challenges: limited programmability and high-performance requirement. Since
applications running on a switch now need to access resources on different types of devices
(e.g., from switches to NICs and CPU servers) connected through the network using limited
programmability, sustaining high performancewhile not affecting the correctness of applications
and while hiding the complexities from programmers is challenging.

Our high-level approach to address these challenges consists of three steps: First, we under-
stand the requirements and characteristics of application workloads (e.g.,memory requirements
and state access patterns); second, we carefully design runtime environments that allow a switch
to utilize resources on other types of devices (e.g., a smart NIC) to enable resource elasticity or
fault resilience, which can be implemented under hardware constraints; and lastly, we design
abstractions and programming APIs that expose the new capabilities to application developers
and network administrators to implement applications that their applications without worry-
ing about the underlying complexities of accessing and managing resources on heterogeneous
devices.

1.3 Summary of Contributions

This thesis presents three novel systems that realize our vision of elastic and resilience in-network
computing platform, built based on the above approach. In particular, each of them provides
a new abstraction and runtime environment that exposes resources on external devices for in-
network applications running on the switches to support resource elasticity and fault resiliency:

TableExtensionArchitecture (TEA) is a systemdesigned to offer elasticmemory for state-intensive
applications. It consists of a programmable switch and multiple servers offering DRAM and
provides an illusion of large match-action tables for applications running on programmable
switches via a new abstraction called virtual table abstraction. In TEA, we demonstrate:

• The feasibility of table lookups on available DRAM on remote servers entirely in the data
plane with low and predictable latency (1.8–2.2 µs) while not involving CPUs on servers.

• The feasibility of providing resource elasticity in terms of table size and access bandwidth
that can be scaled linearly by recruiting more servers (e.g., 138 million lookups per second
with 8 servers in our testbed).

• The cost and performance benefits of TEA-enabled applications compared to the same
applications running on servers.

We present TEA in Chapter 3.

ExoPlane presents an operating system for on-rack switch resource augmentation architecture
designed to offer elastic compute and memory for multiple concurrent stateful applications. The
architecture consists of a programmable switch connected tomultiple external data plane devices
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Figure 1.2: Contributions of this thesis: Each system consists of a new abstraction, a program-
ming API, and an runtime environment.

on the same rack. And ExoPlane provides an OS-like abstraction that effectively multiplexes
applications across the switch and external devices. In ExoPlane, we show:

• The feasibility of multiplexing concurrent stateful applications written for a switch across
the multiple heterogeneous devices (NPU-based smart NICs in our prototype) while pro-
viding predictable (e.g., ≈300 ns at the switch and 5.5 ns at an external device in steady
state) and scalable (e.g., up to 394 Gbps, the maximum rate in our testbed) performance.

• The effectiveness of abstractions for resource and state management that allow to hide the
complexities of dealing with heterogeneity from network administrators and application
developers.

• The low control and data plane resource overhead while providing the above benefits.

We present ExoPlane in Chapter 4.

RedPlane is a system designed to offer fault resilience for applications running on programmable
switches. It consists of multiple programmable switches where the same application is running
and servers offering in-memory state store. It provides one big fault-tolerant switch abstraction
that gives an illusion of a single, highly-available switch. In RedPlane, we present:

• The definition of a new correctness model based on the traditional notion of linearizability
for in-switch applications and its realization with RedPlane protocol.

• The feasibility of implementing RedPlane protocol entirely in the data plane, which cor-
rectly replicating state to external state store for different types of applications (i.e., read-
centric, write-centric, and read/write-mixed).
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• The performance benefit compared to alternative approaches by showing negligible per-
packet latency overhead for read-centric applications and less than 8 µs overhead even for
the worst case and fast recovery of end-to-end TCP throughput within a second.

We present RedPlane in Chapter 5.

Overall, our systems provide key building blocks for enabling elastic and resilient in-network
computing, as illustrated in Figure 1.2. Once network administrators or application developers
write their switch programs using our APIs (or without any modifications), our runtime envi-
ronments allow applications to leverage external resources to support large workloads or make
them tolerant of switch failures. They enable these without any hardware modifications.

1.4 Dissertation Plan

This thesis proceeds as follows. In Chapter 2, we discuss the background and related work,
including the history of programmable networks, programmable data plane technology, and
in-network computing and applications. In Chapter 3, we present TEA for state-intensive in-
network applications, which provides a virtual table abstraction. In Chapter 4, we discuss
ExoPlane, an operating system for an on-rack switch resource augmentation architecture to
supportmultiple concurrent stateful in-network applications. InChapter 5, wediscuss RedPlane,
a framework that makes in-network applications tolerant of switch failures by providing a single
highly-available switch abstraction. Finally, in Chapter 6, we discuss lessons learned and future
research directions and conclude.
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Chapter 2

Background and Related Work
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Figure 2.1: Evolution of programmability in the network control and data planes from industry
and the research community over the past 25 years.

Over the past two decades, the research community and industry have made various efforts
to make computer networks more programmable, primarily to easily manage complex networks
and add new functionality. Such efforts toward programmable networks have made indirect or
direct impacts on the in-network computing paradigm. In this chapter, we provide the back-
ground and related work on programmable networks and in-network computing. In particular,
we focus on how the network control and the data plane have been evolved and impacted today’s
programmable networks and in-network computing. Figure 2.1 summarizes the development of
programmability in the control and data planes over the past 25 years.1 We see that there have
been continuous efforts in both planes simultaneously.

In the following sections, we first discuss the evolution in the control plane (Section 2.1) and
data plane (Section 2.2), describe details of programmable data plane technology (Section 2.3),
and provide a background on in-network computing and applications (Section 2.4).

1This figure is inspired by and partly based on the discussion in Feamster et al. [93].
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2.1 Evolution in the Control Plane

While it seems natural to have the network control plane as a separate component in today’s
networks, traditionally, there was a tight integration between the control and data planes. This
made it challenging to configure the network, debug network configuration problems, and
analyze network-wide routing behaviors, motivating the research community and industry to
decouple network devices’ control and data planes.

Control-data plane separation (before 2005). There were several early attempts to build logi-
cally centralized network controller by moving control functionality to commodity servers and
designing interfaces and protocols between the controller and network devices (i.e., switches and
routers). It leveraged improved computing power and memory capacity of the servers while
providing the controller with a network-wide view. For example, the SoftRouter [133] ran a
control software on an external server while allowing it to communicate with the device data
plane via the Forwarding and Control Element Separation (ForCES) API [198] to install entries
to forwarding tables in the data plane. Although it seemed promising, it required switch and
router vendors tomodify hardware to support the newAPI; thus, it has not beenwidely adopted.
As an alternative approach, the Routing Control Platform (RCP) [92] used an existing standard
control-plane protocol, the Border Gateway Protocol (BGP) [149], to install forwarding table
entries in the data plane of legacy switches and routers without hardware modifications.

Clean-slate architectures (2005 – 2007). While thoseproposalsmade someprogress in separating
the control and data planes, they have not been adopted by equipment vendors and network
administrators due to either (1) the requirement of implementing new APIs (e.g., ForCES) or (2)
the support for a limited range of applications running over existing routing protocols (e.g., RCP
using BGP). It motivated a group of researchers to broaden this vision of separating the control
and data planes and design clean-slate architectures for logically centralized controller. The 4D
project [101] proposes an architecture consisting of four layers: the decision plane (consisting
of logically centralized controllers that convert network-level objectives into packet-processing
state), the dissemination plane (for installing packet-processing state to the data plane), the
discovery plane (for discovering network elements and creating a logical network map), and
the data plane (for handling individual packets based on state given by the decision plane).
Following this vision, there was work that proposes a concrete implementation such as the
Ethane project [76] and SANE [75], which creates a logically centralized controller deployed in a
campus network and uses flow-level access control as an example case.

OpenFlow and network operating systems (2008 – today). Lessons learned from earlier at-
tempts on control-data plane separation and prior efforts on clean-slate architectures and their
implementation significantly impacted theOpenFlow [151]-based realization of software-defined
networking (SDN). By locating the sweet spot between the vision of high programmability (e.g.,
managing the network from a logically centralized controller) and pragmatism (e.g., not requir-
ing significant hardware modifications), OpenFlow has gained huge attention and been adopted
by industry. Many device vendors hadmanufactured OpenFlow-compatible switch devices, and
many controller platforms that use the OpenFlow API had been developed [38, 103, 132]. Based
on the OpenFlow ecosystem, network administrators could start writing a consolidated control
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plane program that manages fixed-function switch data planes (e.g., changing packet forward-
ing rules) and run it on a centralized controller. Each OpenFlow switch has match-action tables,
each of which contains a set of rules consisting of match patterns (e.g.,match on a specific packet
header field) and actions (e.g., drop, flood, or forward a packet, modify packet header fields,
and forward the packet to the controller), and the control plane program can install, modify,
or delete entries in the tables via the OpenFlow API. While there is one logically centralized
controller, multiple physical controllers could run on multiple servers for better scalability, reli-
ability, and performance while providing an illusion of a single controller. To this end, the Onix
controller [132] proposes the idea of a network information base that represents the network
topology and other control states shared by all controller replicas while supporting state con-
sistency and durability. More recently, the ONOS project [9] offers a distributed controller with
similar functionality.

2.2 Evolution in the Data Plane

Despite the evolution in the control plane programmability and the success of the SDN, the data
plane programmability remained challenging until recently. This section describes how the data
plane has evolved to support programmability, from early efforts on active networks to the recent
development of programmable hardware switches and NICs.
Active networks (– early 2000). The initial proposal of the active networks [187] and the subse-
quent studies [62, 73, 195] were the first attempts to make the network data plane programmable.
They proposed programming models and interfaces (e.g., the capsule model [194] and the pro-
grammable router/switch model [69, 182]) that exposed compute and memory resources on
individual network nodes, which developers can use to implement custom functionality to pro-
cess a subset of packets passing through the node. The key motivation and enablers behind
active networks were (1) the cost reduction in computing that allowed to put more processing
in the network, and (2) the technology advances in programming languages such as Java that
offered platform portability and safe code execution using virtual machines protecting the host
machine and other processes from misbehaving programs [181]. While the idea of active net-
works sounded promising, it was not adopted by industry and deployed in real networks; the
critical stumbling block was the lack of hardware technology for network nodes that can achieve
both programmability and high performance simultaneously for various applications, making it
difficult to prove the efficiency and effectiveness of the approach beyond the lab environments.
Software routers on commodity servers (2000 – today). At the same time, since the early 2000s,
there have been efforts to enable high-performance and modular software router functionality
on commodity servers. The Click modular router [131] was one of the early efforts focusing
on modularity and programmability. Based on this modular framework, the RouteBrick [87]
system proposed an architecture that can achieve high performance and programmability by
exploiting parallelism across multiple servers and multiple cores within a server. Moreover, the
PacketShader [106] framework further optimized and accelerated the packet processing pipeline
by leveraging massive parallelism supported by general-purpose Graphics Processing Units
(GPUs).
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Programmable hardware switches (2000 – today). In the early 2000s, Intel developed Network
Processor Units (NPUs) named IXP [1] to replace the general-purpose embedded microproces-
sors and ASIC combinations used in network routers. While it provided both performance and
programmability somewhere in the middle of the microprocessors and ASICs, its performance
was limited to a few 10s of Gbps, which is far below today’s requirement. In 2013, a group of
researchers from academia and industry developed a programmable switch ASIC architecture
called Reconfigurable Match Tables (RMT) [71], which becomes a basis for the Barefoot’s Tofino
chip [53]. With the support for a data-plane programming language such as P4 [72], which was
first proposed in 2013, Tofino became one of the widespread programmable switching ASICs
used by academia and industry. Around the same time, other vendors, including Intel and
Cavium (later acquired by Marvell), released programmable switching ASICs called FlexPipe
and Xpliant, respectively [8, 21]. A few years later, another group of researchers developed dis-
aggregated RMT (dRMT) [80] that addressed some architectural restrictions (e.g., tight coupling
between memory and stages) of the original RMT architecture.
Programmable hardware NICs (2007 – today). NetFPGA [58] was one of the earlier network-
attached FPGA-based platforms that have been used for prototyping network equipment, in-
cluding the Ethane [76] switch. While the FPGA chip is typically programmed using Verilog
or other low-level languages, recently, there has been some work from academia and industry
on compiling programs written in high-level languages such as P4 into an RTL to improve pro-
grammability [19, 42, 112, 193]. Moreover, Netronome has manufactured NPU-based NICs [30]
that can be programmed using P4 and Micro-C. In addition, NVidia Mellanox manufactured
another type of smart NIC called Bluefield [34] equipped with multi-core ARM CPUs and their
ConnectX ASIC chip. More recently, Pensando systems have released an ASIC-based P4 pro-
grammable NIC called Capri [47].

2.3 Programmable Data Plane Technology

We now discuss details of a few representative types of programmable data plane hardware,
which are widely used today, including programmable switches and ASIC, NPU, SoC, and
FPGA-based smart NICs.
Programmable switching ASICs. Programmable switch architectures used today, e.g., Intel
Tofino [53], use a limited amount of on-chip memory (e.g., SRAM and TCAM) to provide a vari-
ety of stateful object abstractions, including tables, registers, meters, and counters. Developers
can use these abstractions to keep state across multiple packets, such as the address translation
table in the network address translators (NATs). In the ingress and egress match-action pipeline,
objects are allocated in each stage and accessed by packets via arithmetic logic units (ALUs).
These objects are also accessible by the switch control plane through the ASIC-to-CPU PCIe
channel, which has a limited bandwidth (O(10 Gbps)) compared to the ASIC’s per-port band-
width (O(100 Gbps)). In addition, the ASIC provides other built-in functionality such as packet
replication, recirculation, and mirroring for more advanced packet processing.

To understand how a program is mapped to switch pipelines, we focus on a reconfigurable
match-action table (RMT) [71]-based programmable switch architecture illustrated in Figure 2.2.
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Figure 2.2: Conceptual view of RMT-based programmable switch architecture.

In this architecture, packets are processed in a streamingmanner in a hardware pipeline consisting
of multiple match-action stages with memory and compute resources. When a target-specific
compiler (e.g., Tofino P4 compiler [45]) compiles program codes, it places each object to one or
more stages based on the resource requirements and the resource availability, and the placement
is fixed at compile-time. Typically, the amount of required memory increases proportionally to
the size of an object (e.g., the number of table entries or the size of a register array), whereas
compute resources are allocated per-object basis (e.g., one stateful ALU is allocated to a register
array regardless of its size). If the resource demand from the program exceeds the available
resources in the switch, the compilation process will fail.

ASIC-based smart NICs. ASIC-based NICs, such as NVIDIA Mellanox ConnectX-6 [35], pro-
vide limited programmability for fixed functions implemented on the ASIC through proprietary
APIs. Its pipeline is not fully programmable, but one can add and modify flow rules, similar
to configuring OpenFlow-compatible switches. More recently, Pensando systems have released
P4-programmable ASIC-based smart NICs called Capri [47], but their performance and pro-
grammability are unknown.

NPU-based smart NICs. NPU-based NICs, such as Netronome Agilio CX [30], consist of an
array of wimpy packet processors and provide full programmability through languages such as
P4 or Micro-C. NPUs are programmable processors optimized for several operations frequently
used in packet processing, such as packet I/O, table lookups, queue management, and header
manipulation. While NPUs are more programmable than switching ASICs, they do not scale
beyond a few 10s of Gbps, which is much lower than switching ASICs (a few Tbps). Most
NPU-based NICs support stateful packet processing by providing access to a few 10s of MB of
SRAM and a few GB of DRAM for the processors that operate on packets.

Multicore SoC-based smart NICs. Multicore SoC-based NICs (e.g., NVidia Mellanox Blue-
field [34]) are equipped with on-board CPU cores alongside the ASIC, which is fully pro-
grammable like a regular CPU. These CPU cores are not on the data path and connected with
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the ASIC via a PCIe channel, so they are not adequate for processing every data packet due to
the performance overhead.
FPGA-based smart NICs. These NICs look like regular FPGA cards but are equipped with
Ethernet ports attached to the networks, which is fully programmable either using low-level
languages such as Verilog or libraries for high-level languages such as OpenCL or P4 (e.g., Intel
N3000 [41], Xilinx U50 [56], and Xilinx U280 [55]). As a result, they can be highly customized to
a specific application and potentially achieve speeds as high as 200 Gbps. Many leading cloud
service providers such as Microsoft [94] and Amazon [22] have deployed the FPGA-based NICs
in their data centers to offload various tasks, including indexing for search engines, machine
learning, storage, and virtual network functionality [77, 94].

2.4 Background on In-Network Computing and Applications

The advancement of data plane hardware technology and the development of domain-specific
data plane programming languages such as P4 [72] and NPL [43] have become key enablers for
in-network computing. Network administrators and developers now can easily implement their
custom stateful packet processing logic using the languages and deploy them to the network
data plane. In this section, we first discuss when and which applications can most benefit from
in-network computing and then describe a taxonomy of existing in-network applications.

2.4.1 Justification of In-Network Computing

Although programmable data plane hardware devices become an attractive platform to serve
various applications, we first need to justify whether a given application can benefit from in-
network computing, especially compared to running it on end-host CPU servers, before deciding
to offload or implement it on the switches or NICs. Based on our analysis of various in-network
applications, we observe that considering the following three aspects is necessary for justification:
Functional feasibility. Most importantly, an application or functionalitymust be implementable
on target devices (e.g., switches or NICs). As we described in Section 2.3, each hardware type has
different capabilities and resources. For example, programmable switches guarantee the line-
rate packet processing speed, but they do not support complex arithmetic operations and deep
payload inspection. Given such constraints, network administrators and application developers
need to check whether their applications can be realized on target devices.
Operational regimes. Given multiple feasible deployment options (i.e., target devices), network
administrators need to choose one by considering the performance, resource constraints, cost,
and energy efficiency of each option and theirworkloads and operating conditions (i.e., traffic rate
and the number of concurrent flow that an application instance have to process). For example,
while NATs can be implemented on programmable switches or CPU servers, if the traffic volume
is small (e.g., a few 10s of Gbps), using a few servers could be a better option than implementing
it on a programmable switch, in terms of cost and energy efficiency.
Benefits from “in-network” deployments. Another critical factor to consider is whether an
application can benefit from in-fabric or in-network deployments, compare with end hosts or
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server-based deployment models. Depending on where the application is deployed, it can have
different visibility of the network and performance. For example, running the application at an
aggregation layer of a data center network can provide higher visibility than running it on NICs
or end-host CPU servers. As we will see later, certain applications, such as network monitoring
and security defenses, could benefit from running on programmable switches. Also, when the
application runs on programmable switches where all traffic flows through, it incurs little or no
additional per-packet latency, compare with running it on NICs or end hosts, which requires
re-routing packets and could increase per-packet latency.

2.4.2 A Taxonomy of In-Network Applications on Programmable Switches

Many recent proposals have shown the promise of in-network computing using programmable
switches as a platform. Based on our observation above, we classify them into four categories and
discuss why they can benefit from in-network computing. In particular, we discuss in-network
applications developed for and running on programmable switches, which is the focus of this
thesis.

Network middlebox functions. Network middleboxes refer to a device that performs functions
other than the standard functions of routing or switching packets between a traffic source and
a destination [74]. Examples include NATs, load balancers, firewalls, and intrusion detection
systems (IDSes). Recent work has shown the performance and cost benefits of implementing
middlebox functions on programmable switches [115, 123, 137, 138, 139, 144, 147, 153, 162, 200].
Switch-based middlebox implementations have advantage over alternative deployment options
suchasusingproprietaryhardwaredevices orCPU-basednetwork functionvirtualization (NFV),
in terms of traffic volume it can support and performance (e.g., a single switch can serve tens
of Tbps of traffic at line rate). Also, since switches are typically located on the network path, it
does not incur additional latency due to re-routing to middleboxes. However, programmable
switches do not support all types of middlebox functions; due to their limited computational
capabilities, they are good at serving lookup-heavy, compute-light middlebox functions. They
cannot effectively realize compute-heavy functions such as IDSes. Another limitation of switch-
based middlebox implementations is that they cannot support many concurrent flows (e.g., IP 5-
tuple-based), due to its limitedon-chipSRAMspace,whereasCPUserver-based implementations
can leverage its large DRAM space to handle per-flow states.

Networkmonitoring. Asprogrammable switches are located at a vantage pointwhere they have
high visibility of the network, various network monitoring techniques have been implemented
on programmable switches [13, 78, 146, 183, 199]. To deal with limited on-chip SRAM space
while supporting high accuracy, many of them leverage memory-efficient probabilistic data
structures, including sketches that approximate certain characteristics of packet streams, such
as heavy hitters, cardinality, and entropy. Despite the use of memory-efficient data structures,
they do not scale in terms of number of concurrent monitoring dimensions (e.g., IP 5-tuple,
Source IP, and Destination IP) due to limited on-chip resources, including pipeline stages and
ALUs. Another type of monitoring technique is in-band telemetry (INT) [13], which makes each
packet carry in-network telemetry information such as switch IDs, switch queue lengths, and
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processing latency on custom INT header fields. Such information could be collected by using
programmable switches, and end hosts will consume it for telemetry purposes.
Improving network performance. Congestion control is one of the challenging tasks in data
center networks and the Internet. While congestion control algorithms running at end hosts
typically infer the congestion status (e.g., via packet losses or delays) and use them to adjust
sending rate, recent work has shown that with the help from programmable switches (e.g.,
providing switch queue information via INT [13]), they can outperform existing approaches [108,
140]. Active queuemanagement (AQM) is another type of applications enabledbyprogrammable
switches. AQM is a set of algorithms designed to shorten the queuing delay by preventing
switch buffers from being full. In fixed-function switches, it is difficult or infeasible to modify or
change AQM algorithms. However, recent work has demonstrated that various AQM algorithms
can be implemented on programmable switches by leveraging their stateful operations as well
as traffic management features and showed they could improve the end-to-end application
performance [61, 201].
Security defenses. With the ability to handle Tbps of traffic at line rate, programmable switches
become an appealing platform to implement volumetric network-layer DDoS attacks [148, 197,
203]. By detecting and mitigating attacks in the network, switch-based defenses can prevent
end hosts from being affected by attacks cost-efficiently, compared to alternatives, such as using
proprietary appliances or CPU server-based implementations. However, similar to network
middlebox functions, switch-based defenses cannot prevent every type of attack or implement
every type of defense due to the limited capabilities of the switches. For example, the switches
cannot efficiently serve the function if a defense function requires reassembling TCP flows to
detect or mitigate an attack (e.g., to inspect application-layer header fields).
Accelerating data-intensive systems. Data-intensive systems such as distributed databases,
key-value stores, data analytics, andmachine learning systems involve a massive amount of data
movements or require coordination between nodes, an. CPUs often become the performance
bottleneck. Recent work has shown that programmable switches can help accelerate such dis-
tributed systems by offloading components of the systems to the switches [115, 137, 138, 139, 174,
189, 200, 206]. Proposed systems reduce the amount of data that need to be processed by CPU
servers by effectively performing necessary computations (e.g., data aggregation, sequencing,
and serving cached data) on the fly at the switches.

In the rest of this thesis, we will focus on stateful in-network applications developed for pro-
grammable switches, such as middlebox functions and security defenses, where correctly main-
taining state is critical for their performance and correctness.
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Chapter 3

Table Extension Architecture for
Memory-Intensive In-Network
Applications

In this chapter, we describe how to enable elastic memory for in-network applications using
network functions (NFs) as a use case example. NFs are an essential component in today’s online
service infrastructure. They are deployed on the critical path of the infrastructure (e.g., at the
front-end) where a large volume of traffic with many concurrent flows needs to be handled. It
requires NFs to be scaled for overall network operations.

NFs have been traditionally deployed either using standalone hardware appliances or a
cluster of commodity servers (also known as network function virtualization (NFV)) [90, 163].
More recently, another approach has been gaining attention in the community: NFs implemented
on programmable switch ASICs (e.g., [13, 24, 153]).

However, we find that none of these approaches can handle NFs when there is a combination
of a large number of concurrent flows (e.g., O(10M)) and a very high traffic rate (e.g., > 1 Tbps).
A programmable switch ASIC cannot serve a large number of concurrent flows that requires a
large flow table due to its small on-chip SRAM space although it has enough capacity to process
a very high traffic rate. Similarly, it requires several tens of hardware appliances or hundreds of
servers to handle the high-traffic rate, which significantly increases operational cost.

We observe that the limited on-chip SRAMspace is a key bottleneck for programmable switch
ASICs. If we could enable the switchASICs to store lookup tables on cheaper DRAM in a scalable
way, it could be a new enabler to serve a broader set of operating regimes which are defined
by workloads and operating conditions (i.e., traffic rate and the number of concurrent flows that
NFs have to process), cost-effectively. In this chapter, we envision a new system architecture
called TEA (Table Extension Architecture) that enables the switch ASICs on the top of racks in
an NFV cluster to leverage DRAM on commodity servers.

While using server DRAM is an appealing low-cost and scalable solution, accessing server
DRAM is inherently slower than accessing on-chip SRAM.Aswediscuss in Section 3.2.2, without
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careful design, this can significantly degrade processing performance and availability of NFs.
Indeed there are several technical challenges in realizing this vision in practice:

• First, for external DRAM access, while RDMA (Remote Direct Memory Access) looks like a
promising solution, it is unclear how to doRDMA from the switchASICwithoutmodifying
it. Our insight is that by leveraging the programmability of ASIC, we can implement a
subset of the RDMA protocol that suffices for our rack-scale deployment model in NFV
clusters.

• Second, since each external DRAM access incurs high latency (a few µs), TEA must com-
plete table lookups in a single-round trip to DRAM and must continue processing other
packets. At first glance, it would seem that conventional cuckoo hashing [161] would suf-
fice. However, cuckoo hashing is not suitable for external DRAM because it can require
multiplememory accesses at times. Fortuitously,wefind that bounded linear probing [205],
a design originally created for improving cache hit rates, can be a basis for enabling table
lookups guaranteed to complete in a single round trip. In addition, we adapt this data
structure to provide temporary storage to support our deferred packet processing needs.

• Third, to support NFs that require several hundred million lookups per second, we need
mechanisms to leverage the availableDRAMandDRAM-access bandwidth acrossmultiple
servers. While traditional distributed hashing schemes (e.g., consistent hashing [119]) help
scale out the lookup throughput by distributing table entries and balancing lookup request
load across servers, we observe that they consume toomanyASIC resources. We show that
simpler, resource-efficient hashing schemes, combined with a small on-chip SRAM cache,
can address both the load balancing and scaling requirements.

• Lastly, for high availability, one may detect servers’ availability changes (due to server
failures or congested link) in the control plane, but it could take several milliseconds to
make the data plane react to it, degrading overall performance. We demonstrate that it
is possible to repurpose existing ASIC’s features to support rapid failure detection and
fail-over in the data plane.

TEA provides a virtual table abstraction for lookup tables stored across the combination of
on-chip SRAM and external DRAM, creating the illusion of large, high-performance tables to
NFs. Our focus is on NFs such as L4 load balancers, firewalls, NATs, VXLAN or VPN gateways
that are compute-light and state-heavy. Developers can write such NFs using a library of TEA
APIs implemented in P4 [31] which is a programming language for programmable switches. We
expose the APIs as modularized P4 codes so that developers can easily integrate TEA with their
NF implementations.

We implement a prototype of TEA in P4 and four canonical NFs using the TEA API. We
evaluate it with microbenchmarks as well as NF benchmarks in our testbed consisting of a
Tofino-based programmable switch and 12 commodity servers. Our evaluations show that TEA
allows NFs running on the switch to look up table entries with low and predictable latency
(1.8–2.2 µs), and the throughput can be scaled linearly by recruiting more servers (138 million
lookups per second with 8 servers in our testbed). Compared to server-based NFs with a single
server, TEA-based NFs achieve up to 9.6× higher throughput and 3.1× lower latency without
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Hardware appliance Commodity Server Programmable
Switch

Performance 40 Gbps 10 Gbps 3.3 Tbps
Memory O(10GB) DRAM O(10GB) DRAM O(10MB) SRAM
Price >$40K $3K $10K
Energy consumption 480W 200W 620W

Table 3.1: Comparison of NF deployment options. We excerpt the information from product
briefs [10, 28, 53] and prior work [153, 163].

consuming the CPUs and many ASIC resources. We also show that TEA can react to server
availability changes within a few microseconds.

3.1 Motivation

NFs are deployed in many network settings, including inside the cloud and at the edge. They
performawide range of tasks, ranging frompacket filtering and load balancing to encryption and
deep packet inspection. In this chapter, we focus on compute-light and state-heavyNFs, such as L4
load balancers, firewalls, NATs, VXLAN or VPN gateways. Even thoughNFs in this category are
not compute intensive, they still need to support a large volume of traffic and concurrent flows
on the critical path (e.g., at the front-end of the cloud). Thus, their performance and scalability
are the key for overall network operations.

There are three typical options to realize such NFs today: (1) using standalone hardware
middlebox appliances, (2) implementing them on a cluster of commodity servers (i.e., NFV
cluster) [65, 90, 163], and (3) implementing them on emerging programmable switches [21, 53].
We note that while there are other options such as implementing NFs on FPGA boards attached
to servers (e.g., [94]), we consider the above three options that have been widely studied and
deployed today.

Network operators may choose different options by considering the performance, memory
size, cost, and energy efficiency of each option based on theirworkloads and operating conditions
(i.e., traffic rate and the number of concurrent flow that NF instances have to process). To
understand which option is better in which scenario, we analyze a canonical NF, load balancers,
in four operational regimes.1 Table 3.1 compares these options in terms of performance, memory
size, price, and energy consumption, and we use these numbers in our analysis below.

• Regime 1: Low traffic rate (<100 Gbps) / Small number of concurrent flows (e.g., 100K
flows and≈1MB per-flow state). This regime can be served by using any of three options.
While supporting 100 Gbps traffic would require 3 hardware appliances (∼$120K), or 10
servers (∼$30K), a single programmable switch can support it with on-chip SRAM which
is large enough to serve the small flow state. Thus, using a programmable switch would
be the most cost and energy-efficient solution for this regime.

1While our analysis focuses on a specific case of load balancers, these observations also apply to other NFs such
as firewalls, gateway functions, NATs, and ACLs.
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• Regime 2: Low traffic rate (<100 Gbps) / Large number of concurrent flows (e.g., 10M
flows and≈100MB per-flow state). A programmable switch cannot handle this workload
since it doesnot have enoughSRAMto store theflowstate. Asmentionedabove, supporting
100 Gbps traffic would require 3 hardware appliances or 10 servers. In both these options,
the systems can easily store the relevant flow state.

• Regime 3: High traffic rate (>1 Tbps) / Small number of concurrent flows (e.g., 100K flow
and≈1MBper-flow state) In this regime, using a programmable switchwould be themost
cost and energy-efficient solution because the per-flow state can fit in its SRAM space and
it can easily serve the traffic. Hardware appliances and commodity servers would require
many nodes to support this traffic rate making them very expensive (25× $40K appliances
vs. 100 × $3K servers vs. 1 × $10K switch).

• Regime 4: High traffic rate (>1 Tbps) / Large number of concurrent flows (e.g., 10M
flows and ≈100 MB per-flow state) Many servers or appliances are required as the traffic
rate increases (e.g., 10 Tbps requires 1000 high-end servers, which costs $3M). Although
programmable switches can handle the traffic rate [53], their limited memory makes it
infeasible to support the needed flow state. One could addmore on-chip SRAM ($2-5K per
GB) with chip modification or more switches to address the memory limitation, but costs
would rise significantly.

In summary, our analysis suggests that: (1) servers and appliances can handle the low-
bandwidth regime effectively, (2) programmable switches are great when flow-state fits in the
limited SRAM space, and (3) nothing handles themost demandingworkloads well. Ideally, if we
could build an architecture that enables switches to utilize more memory with cheaper DRAM
(like servers) in a scalable way, it would make programmable switches more broadly applicable
and serve the extreme regime cost-efficiently.

3.2 Overview

3.2.1 Design Space

Building on the above analysis, we explore if and how we can potentially leverage external
DRAM that already exists in the network. Now, there are two places where we can naturally find
available DRAM near the switch ASIC:

• Switch’s control plane. The control plane has a few GB of DRAM to manage the control
plane data. An ASIC could access the DRAM via the PCIe channel between the ASIC
and the control plane CPU. Note that the PCIe channel has a limited bandwidth which is
lower than the ASIC’s per-port bandwidth. While this low and fixed bandwidth is enough
to process occasional control plane traffic, it cannot support higher traffic rates (which
can cause high memory access rate) without significant hardware modifications. Also,
although in theory, it is possible to add additional DRAM to the control plane, in practice,
the size is fixed at design time. (e.g., 8 GB in the switch in our testbed [32]).
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• On-board off-chipDRAM. Some switchASIC vendors have added custom off-chipDRAM
on the switch board [15]. This DRAM is used for custom tasks such as buffering packets
or storing specific lookup tables. Similar to the control plane case, the memory access
bandwidth and size is fixed at design time, which makes it very hard to scale without
chip modification. Note that while a future switch ASIC architecture might provide on-
board off-chip DRAM with larger size and higher bandwidth, it requires new interfaces
and mechanisms to access DRAM from a programmable pipeline. We discuss this further
in Section 3.6.

We observe that two options above do not scale in terms of memory access bandwidth and
capacity today, which are typically fixed at hardware design time. We believe that support for
scaling becomes more critical as the total amount of traffic (both in terms of traffic volume and
number of concurrent flows) each switch needs to process increases [25, 81].
Our vision. In this chapter, we take an alternative approach that leverages DRAM in commodity
servers in NFV clusters in a scalable way. A typical NFV cluster (either inside the cloud or at the
edge) consisting of multiple racks of servers [65, 90, 95, 163] already has several tens of GB of
DRAM on each server. If we can reserve some portion of DRAM and let the switch ASIC located
at the top-of-rack (ToR) access it, the ASIC could make use a large per-flow table, which would
not be possible with on-chip SRAM today.

Using a single server could still limit the access bandwidth, i.e., minimum of network band-
width between the ASIC and the server, and PCIe bandwidth in the server. However, we
can leverage multiple servers to increase the aggregate bandwidth. Also, while the ASIC uses
DRAM in servers, CPUs on the servers can simultaneously serve other tasks such as compute-
intensiveNFs, including traffic en/decryption or payload inspection, which cannot be supported
by switches today.

If this can be realized, programmable switches can become an effectiveway to serve high traffic
rate involving a large number of concurrent flows, and thus work for all the regimes we considered
earlier. However, realizing this vision has key design and implementation challenges, as we
describe next.

3.2.2 Design Challenges

To understand why it is challenging to realize this vision, let us consider a natural starting
point based on prior work using traditional Remote Procedure Call (RPC) mechanisms [117, 160]
(Figure 3.1a). Specifically, the switchASIC sends and receives RPC requests and responses via the
switch control plane to avoid adding complexity (e.g., state management for reliable transport)
to the data plane. While this is functionally correct, there are three fundamental bottlenecks:
(1) High and unpredictable latency. A table lookup can result in high latencies because of the
latency between the ASIC, the control plane CPU, and the server CPU (over the network), which
can take a few hundred microseconds. Moreover, the uncertainty introduced by the scheduling
logic on the switch control plane and server CPU can introduce jitter and high variability [127].
(2) Limitedmemory access bandwidth. The lookup throughput is constrained by theminimum
of the bandwidth between ASIC-to-the-control-plane-CPU and control-plane-CPU-to-server-
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(a) Naïve design and performance bottlenecks (B1
and B2).
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(b) TEA enabling to access external DRAM in the
data plane without CPU involvement.

Figure 3.1: Comparison between RPC-based naïve design and TEA to access external DRAM.

CPU. Both bandwidths are typically very limited (e.g., PCIe bandwidth between the ASIC and
the control plane is a few tens of Gbps which is much lower than a few hundreds of Gbps of
ASIC’s per-port bandwidth available today) and fixed at hardware design time.

(3) Availability. If the server fails or the network link between the control plane and the
server becomes unavailable, the switch cannot lookup tables on external DRAM, degrading NF
performance.

We observe that the root causes of these problems are (1) the involvement of CPUs at the
control plane and the server and (2) the use of the single server (Figure 3.1a). This motivates us
to ask: Is it possible to allow the switch ASIC to access external DRAM purely in the data plane and
without servers’ and the control plane’s CPU involvement in a scalable way across multiple servers? To
answer this question, we must address the following challenges:

Challenge 1. Data-Plane External DRAM Access. Switch ASICs typically do not have direct
external DRAM access capability. Is it possible to enable it without hardware modifications?

Even if theASIC can somehowdirectly access externalDRAM, it can incur a fewmicroseconds
of latency which is an order of magnitude slower than its packet processing speed. This long
latency creates the following two challenges:

Challenge 2. Single Round-Trip Table Lookups. If we use conventional hashing (e.g., cuckoo
hashing [161]) for storing and locating table entries in external DRAM, multiple DRAM accesses
may be required to lookup an entry. Is it possible to make the ASIC do a table lookup in a single
round-trip to DRAM without involving server CPUs and hardware modifications?

Challenge 3. Packet Processing. The ASIC must be able to continue processing the packet (e.g.,
modifying header fields) after completing the lookup from external DRAM. In the meantime,
it also needs to keep processing subsequent packets in the pipeline. How can we manage the
packet until the lookup completes?

Challenge 4. Load-Balanced Bandwidth Use. Although using multiple servers (i.e., adding
network links) increases external DRAM access bandwidth, a subset of links could become
overloaded due to the access locality (i.e.,most of memory accesses are destined to the subset of
servers’ DRAM). This makes it hard to utilize available link bandwidth. How can we ensure that
memory access loads are balanced across servers?
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Figure 3.2: NFs implemented in P4 can be extended with TEA P4 API to look up tables across
external DRAM and on-chip SRAM. The control plane is (dotted lines) involved when establish-
ing a TEA channel.

Challenge 5. Tolerating Server Churn. Access to external DRAM becomes unavailable when a
server fails or the network becomes congested (causing packet drops). How can we detect and
react to these events quickly to minimize performance degradation?

3.3 TEA Design

To address the above challenges, wedesignTEA, a virtual table abstraction for tables stored across
local SRAM and external DRAM. Using the abstraction, NFs running on a ToR programmable
switch can perform key-based (e.g., 5-tuple of an IP packet) table lookups, and TEA fetches
the corresponding entries either from switch-local SRAM or remote DRAM. When it accesses
DRAM, it delays the processing of the packet corresponding to the lookup request without
blocking the rest of the packet processing pipeline. TEA’s lookup response handler resumes the
delayed packet’s processing when DRAM lookup completes.

Figure 3.2 illustrates thisworkflow. TEAprovides a set ofAPIs implemented in P4, a language
to programNFs on programmable switches, and exposes each component as a module in P4 [31,
§13]. This enables developers to easily integrate TEA with their NF implementations in P4.
Once developers write their NFs using TEA components, the unmodified P4 compiler generates
a binary of TEA-enabled NFs that can be loaded to the data plane and control plane APIs that
can be used for configuring TEA components in the data plane.

TEAbuilds on the following five key ideas to address the challenges described in Section 3.2.2:

1. LeveragingASIC programmability to enable simplifiedRDMAin thedata plane (Section 3.3.1).

2. Repurposing bounded linear probing to guarantee hash table lookups in a single-round trip to
external DRAM (Section 3.3.2).

3. Offloading packet store to external DRAM to enable asynchronous lookups (Section 3.3.2).

4. Leveraging the small-cache theory [91] to scale out the throughput (Section 3.3.3).

23



Switch data plane (ASIC)
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Figure 3.3: SwitchASIC generates RDMArequests by addingRoCEheaders on incoming packets
and parse RDMA responses without specialized capabilities for RDMA. To maintain reliable
channels, the ASIC maintains per-QP and per-server metadata.

5. Repurposing ASIC’s hardware capabilities to detect and react to sever availability changes in
the data plane (Section 3.3.4).

3.3.1 DRAM Access in the Data Plane

To access external DRAM,we choose RDMA,which is quite common in service provider deploy-
ments [104, 155]. In comparison to RPC, RDMA is an attractive option because it is designed
specifically for predictable performance memory access. It provides hardware support for a set
of low-level memory operations such as read, write, and a few atomic operations (e.g., fetch-
and-add). Since it does not involve the server CPU for either the memory access or the reliable
transport of messages, RDMA reduces both memory access latency down to ≈2 µs, and delay
jitter, and allows the use of the CPU for other compute-intensive tasks.
Challenges of using RDMA from switch ASICs. However, we still need to address two
practical problems: (1) Is it feasible to generate RDMA packets purely in the switch data plane
when DRAM access is needed? (2) Can we support reliable RDMA transport within the switch
data plane? (i.e., can switch ASICs maintain the necessary per-connection RDMA context and
protocols?)
Our approach. While itmay be hard to implement reliable RDMA in general on a programmable
switch, we observe that we do not need fully functional RDMA for our use case. Our key
insight here is that the programmable features of modern switch ASICs together with the scoped
deploymentmodel of TEA enable us to implement a small but sufficient subset of RDMA features
we need.
(1) Generating RDMA packets. With respect to the first sub challenge we note that the most
popular RDMA technology today is RoCE (RDMA over Converged Ethernet) protocol [113, 114],
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where RDMA requests and responses are regular Ethernet packets with RoCE headers. This
means that ASICs can generate valid RDMA requests by crafting RoCE packets without needing
any RDMA-specific hardware components.

Figure 3.3 illustrates this high-level idea. When the data plane needs to access DRAM, it
crafts an appropriate RDMA packet by adding a series of specific RoCE headers to the incoming
packet. This include Ethernet headers, global route headers, base transport headers, and RDMA
extended transport header with RDMAmetadata such as a queue-pair number (QPN), a packet
sequence number (PSN), a remote access key (Rkey), a remote memory address, and a length of
data to be written or read from the DRAM.2 The needed metadata is provided via the control
plane in advance.

(2) Reliable RDMA. To address the second question of reliable RDMA, we leverage the assump-
tion that in TEA, DRAM servers are directly connected to the ToR switch. This means that if we
can make RDMA request and response packet not be dropped at the switch or NICs, the RDMA
channel becomes reliable. Thus, we can simplify the RoCE protocol with two possible options.
One is by ensuring the underlying Ethernet network is lossless via Priority Flow Control [6]. In
this option, a NIC sends a PAUSE request to the switch when RDMA requests are buffered more
than its threshold to prevent packet drops due to buffer overflow. When the switch receives a
PAUSE request, it has to buffer packets until theNIC allows to send packets. We adopt this option
in our prototype implementation in addition to our simple switch-side flow control to cope with
the current NIC configuration as we describe in Section 3.4.3.3 Alternatively, we can also con-
figure a higher QoS-level for our RDMA traffic over lossy fabric [49]. These options allow us to
enable RDMA between the ASIC and DRAM servers with a minimal amount of RDMA context
metadata and without complex retransmission schemes. Specifically, it only needs to maintain
a QPN (4 bytes) and tracks a packet sequence number (4 bytes) and the number of outstanding
requests (2 bytes) for each queue-pair, which are used when crafting RDMA requests for the QP.
Maintaining such metadata in the data plane requires only up to a few KBs of SRAM in total.

3.3.2 TEA-Table: Lookup Table Structure

The design of TEA’s table data structure, TEA-Table, addresses two key issues: (1) how to
complete a lookup in a single round-trip to external DRAM and (2) how to defer processing of
the current packet until the lookup completes and continue processing other packets without
blocking. TEA-Table repurposes a data structure that was originally designed for improving
cache hit rates in software switches [205] to achieve single RTT lookups and incorporates remote
packet buffers within the data structure to accommodate deferred packet processing.

2QP is the connection abstraction used in RDMA communications (similar to the socket) and QPN is a unique
identifier assigned for each QP. RKey is assigned to each memory protection domain where allocated memory region
is registered.

3In our experiments, we observe that our switch-side flow control mechanism prevents a NIC buffer from being
overflowed before the NIC generates PAUSE frames.
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Figure 3.4: Cuckoo hashing and bounded linear probing. In this example, there are 6 buckets
and 2 cells per bucket. The numbers on the top and right side indicate cell and bucket indices
respectively.

Single Round-trip Lookups:

RDMAonly provides low-levelmemory operations such as read andwrite, using virtualmemory
addresses. However, NFs require richer key-based lookup interface to retrieve table entries with keys
(e.g., an IP 5-tuple for an address mapping table in NAT) from DRAM. Thus, TEA must map a
key to a virtual memory address. The challenge is that due to relatively large DRAM access latency
(≈2 µs), we must be able to locate and fetch the entry in a single DRAM read.

Strawman solutions. At first glance, it appears we can use traditional hashing techniques.
Indeed, many modern switch ASICs adopt variations of cuckoo hashing [161] for exact-match
lookups in SRAM as it guarantees constant-time lookup. A caveat, however, is that each lookup
requires multiple memory accesses. This means, with two-way cuckoo hashing, each lookup
requires two independent memory reads. While this is feasible with fast parallel lookups on
SRAM, our experience suggests that extending it to external DRAM via RDMA channel would
either significantly degrade the performance of NFs or make the data plane logic complicated.
To reduce multiple DRAM accesses in cuckoo hashing, we need to know precisely which of
the two hash tables to access for a given key. Recent work, EMOMA [165], uses additional
Bloom filters [70] in SRAM to address this issue. By checking for membership, the query can be
directed to the appropriate hash table. Since there is a risk of false positives in the filter, EMOMA
has a more complex item insertion that checks if inserting a new entry causes false positives.
Unfortunately, this makes it impractical.4

Our approach. We build on a recent approach called Bounded Linear Probing (BLP) [205]. BLP
was originally designed for improving cache hit rates and reducing lookup latency in software
switches. Somewhat serendipitously, we find that it can also be used in our setting. Figure 3.4

4In our simulation, it takes several hours to insert just a few tens of million entries and implementing BFs for such
a scale consumes other resources across multiple packet processing stages in the ASIC. Since such a slow insertion
speed with a non-negligible amount of resource consumption makes this approach impractical, we do not consider
this design.
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Figure 3.5: Designof TEA-Tablewith scratchpads. Scratchpads temporarily store original packets
during lookups. ith bucket of the shadow table has a copy of ((i + 1) mod n)th bucket of the
original table (n = 6 in this figure).

illustrates the differences between cuckoo hashing and BLP.When placing and looking up a table
entry, instead of using two hash functions as in cuckoo hashing (Figure 3.4a), BLP uses one hash
function and lets the second bucket be placed right next to the first bucket (Figure 3.4b).

We find that BLP’s design lends itself to fetching both hash buckets in a single RDMA read.
However, since BLP is designed for caching, we need to handle colliding entries differently. In
BLP, when hash collisions happen, it evicts colliding entries and puts them to the main memory
region (i.e., DRAM). In contrast, in TEA, since the table is already located in DRAM, we put
colliding entries to switch SRAM, making all entries exist in either SRAM or DRAM. Although it
consumes some amount of SRAM space, we empirically prove that the collision rate is only 0.1%
for the same size of the hash table as the cuckoo hash table and the same number of keys inserted.
For example, when the total number of table entries is 80 million, 80K colliding entries are stored
in SRAM, which takes around 4MB in the NAT mapping table with IPv6 addresses. This design
is much simpler than the cuckoo hash-based approaches and requires fewer resources in the
ASIC while guaranteeing at most one RDMA read per lookup.

Deferred Packet Processing:

Another key challenge is storing the packet while DRAM is accessed. This is especially critical
since the ≈2 µs DRAM access time is very long in the context of high-speed switching where
a packet is processed every nanosecond. A naïve solution would be to buffer the packet using
on-chip SRAM. However, it is undesirable to use scarce SRAM for buffering a large number of
packets during DRAM access.
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We address this issue by storing packets to DRAM and reading back the packet along with
retrieving the table entry. Specifically, we propose TEA-Table which extends our hash table
structure by employing scratchpads. In each scratchpad, we temporarily store a packet during
lookups. As shown in Figure 3.5, in TEA-Table, we allocate a scratchpad for each bucket large
enough to hold an MTU size packet. Note that our design requires the path MTU between
the switch and the DRAM servers to be larger than the end-to-end MTU. In our prototype
implementation, we set the path MTU size to 9000 bytes and the end-to-end MTU to 1500 bytes.

Hardware constraints of current RDMA NIC and switch ASIC impose another challenge.
Since the NIC allows an RDMA read operation to read only a continuous memory region, with
a naïve design of TEA-Table, an original packet is placed between two buckets in a lookup
response, as illustrated in Figure 3.5a. While we need to parse both buckets, with this format
of a lookup response, the ASIC often cannot parse the second bucket (blue-colored) when the
original packet (orange-colored) is large. This is because high-speed switching ASICs usually
can parse only the first few hundreds of bytes in each packet.

To address this issue, we put a shadow table whose ith bucket contains a copy of the ((i +

1)mod n)th bucket of the original table, where n is the number of buckets in the table. As shown
in Figure 3.5b, the shadow table allows placing two buckets consecutively before the scratchpad
in the lookup response packet. In this way, the switch can parse two buckets. Although the
shadow table incurs additional DRAM consumption, given a small bucket size (<150 B) and a
large available DRAM size (>O(1 GB)), the cost is reasonable to achieve our goal.

TEA-Table operations:

Given these building blocks, we now describe operations in TEA-Table.
• Inserting an entry (Algorithm 1): Since it takes some time to complete an insertion operation,

new entries are first inserted in to an SRAM stash, which is a small SRAM space to keep the
pending entries. When there is no room in both buckets, our insertion logic running on the
control plane chooses a victim cell and replaces it with the new key. In the next iteration,
the logic tries to insert the key from the victim cell. If there still exists a key that fails to
be inserted after MaxTries iterations, it remains in the SRAM Stash. Once the insertion is
completed, the entry will be removed from the stash.

• Deleting an entry: Deletion is a simple operation which takes a key of a target entry as a
parameter. To delete the entry, our deletion logic running on the control plane locates the
cell of the entry using the same logic as in the insertion operation and overwrites the cell
with zeros.

• Lookup an entry (Algorithm 2): When an NF requests a lookup for an entry, our lookup logic
first checkswhether it exists in SRAMStash or Cache (we explain the cache in Section 3.3.3),
and if it does, the entry in SRAMis returned. Otherwise, after retrieving theDRAMaddress
of the bucket, it uses RDMA to write the packet to the scratchpad of the bucket and then
performs an RDMA read of the entire bucket including the packet stored in the scratchpad.

• Lookup response handler: Upon receiving the RDMA read request, the NIC sends an RDMA
read response containing a lookup response back to the switch. To handle the lookup
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Algorithm 1: Insert(key,value) for TEA-Table (Control plane).
1 tries=0;
2 entry=(key,value);
3 while tries < MaxTries do

/* Temporally store the entry in SRAM during insertion */

4 insert entry to SRAM Stash;
5 i=hash(key);
6 if bucket[i] has an empty cell then
7 insert entry to the cell;
8 remove entry from SRAM;
9 copy the cell to the shadow table;

10 return Done;
11 j=(i+1) % n;
12 if bucket[j] has an empty cell then
13 insert entry to the cell;
14 remove entry from SRAM;
15 copy the cell to the shadow table;
16 return Done;
17 select a random cell c from bucket[i] ∪ bucket[j];
18 victim=c.entry;
19 insert entry to c;
20 remove entry from SRAM stash;
21 entry=victim;
22 tries++;

Algorithm 2: Lookup(key) for TEA-Table (Data plane).
1 if key exists in SRAM Stash or Cache then
2 return (SRAM [key],packet);
3 i=hash(key);
/* Resolve memory address of the bucket */

4 addr=resolve_addr(i);
/* Write the packet to the scratchpad */

5 RDMA_Write (addr+KV_LEN, packet, packet_length);
6 length=KV_LEN+packet_length;
/* Read the bucket and packet */

7 (kv_cells, packet) = RDMA_Read (addr, length);

8 Lookup response handler:
9 Upon receive lookup response packet
10 return (kv_cells[key], packet);

response at the switch, we introduce Lookup response handler, which is a similar concept as
the callback handler in other programming languages. Upon receiving a lookup response,
the handler returns an entry and the original packet parsed from the response. TEA allows
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developers to define custom actions in the handler (e.g., modifying header fields with the
fetched entry).

Note that as the insertion and deletion operations are relatively complex compared to the
lookup operation, the control plane has to execute them. Due to this constraint, our current
design does not support NFs that add and delete table entries in the data plane.

3.3.3 Multiple DRAM Servers

Recall from Section 5.2, we can achieve higher lookup throughput using multiple servers. To
utilize the available access bandwidth effectively, we need to answer the following questions:
(1) How to partition and distribute a TEA-Table across multiple servers? (2) How to balance
memory access load across the servers?
Strawman solution. To partition the table and provide load balancing, we can consider conven-
tional distributedhashing schemes suchas consistent hashing [119] and rendezvoushashing [188]
as they can achieve good load balance among servers by partitioning hash tables. However, in
these algorithms, each server is in charge of many non-contiguous parts (i.e., buckets) of the
table. In turn, this causes the switch ASIC to maintain a large number of 〈bucket range, server
ID〉 mappings, consuming a non-negligible amount of TCAM space. For example, if one wants
to implement consistent hashing, supporting N servers with 100N virtual nodes5 can use up to
(100N − 1) range-matching rules.
Our approach. Instead, we apply a simpler, resource-efficient hashing scheme to partition the
table. We split the entire hash table into N sub-tables that contain buckets in a contiguous hash
space and distribute them to N servers. The size of each sub-table can be different depending
on the available DRAM provided by each server. This design requires only N range-matching
rules in TCAM to locate a server for a key.

While this simple design reduces the TCAM usage, it may not guarantee the same load
balance as the traditional distributed hashing approaches. Fortunately, we find that adding a
small cache to the switch SRAM is helpful for load balancing across the servers. In particular,
we leverage the theoretical results that caching at least O(N logN) popular entries where N is
the number of servers, not the number of entries, can provide uniform load balancing across N
servers regardless of traffic patterns or skewness [91]. For example, for NFs using per-flow table
entries, the popularity can be defined as the number of packets in each flow. Specifically, we
keep track of the popular entries within the data plane using a count-min sketch [84], for which
efficient switch data plane implementations are already available [115, 147].

As an additional benefit, this cache also reduces the total DRAM access traffic in TEA.
When an NF looks up the cached entries, the requests are absorbed by the switch without
consuming DRAM access link bandwidth, thus reducing the number of lookup requests that
need to be served by the NICs. In practice, the small cache can help achieve near switch line-rate
throughput since only a few popular entries are frequently requested and consume a significant
portion of throughput [67, 85, 172]. We show the effectiveness of caching for load balancing and
throughput improvement in Section 3.5.1.

5In consistent hashing, multiple virtual nodes are assigned to each physical node for better load balancing [119].
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3.3.4 High Availability

As mentioned in Section 5.2, TEA needs to detect and react to lookup failures to ensure high
availability. We consider the following two lookup failure modes: (1) high link utilization due
to regular network traffic (i.e., other than lookup requests) could cause table lookup requests be
dropped. (2) When a server fails, lookup requests destined to the server cannot be completed.

Strawman solution. Failures could be detected by periodically checking the port counters (to
estimate link utilization) and port status (as an indicator of server failures) from the control
plane. However, it could take a few tens of milliseconds from detecting an event to updating the
state in the data plane. The delay can result in: (1) dropping many lookup requests due to the
out-of-date state and (2) overlooking short-duration events (e.g.,microbursts).

Our solution. To reduce the delay, we repurpose the meter and packet generator engine of the
switch ASIC to estimate port utilization and port status, respectively. Typically, the meter, which
implements the RFC 2698 [110], is used for enforcing QoS policies (e.g., rate limiting). When it
is executed, it returns a color (red, yellow, or green) based on pre-configured rates (i.e., if the
utilization exceeds the rate, the meter returns red). The packet generator engine is typically
configured to inject packets into a switch pipeline when a certain event happens mainly for
diagnosis purposes.

To detect high port utilization, we set a threshold (link bandwidth in bps) for the per-port
meter and get colors for ports where a lookup request can be routed. To detect a port down
event, we configure the packet generator engine to generate a packet when ports go down. By
processing the generated packet, TEA updates the port status table in the data plane. Based on
these two per-port state information (utilization and status), TEA decides an egress port for a
lookup request (i.e., an active port that is not over-utilized). Note that since the meter is updated
after a packet is completely received, it can lag behind less than a microsecond. We show that
the gap is small enough to make it useful to react to high link utilization in Section 3.5.1.

In our prototype, we replicate hash tables in TEA-Table to two servers and let TEA choose a
server based on the availability.

3.3.5 Putting It All Together

Figure 3.6 illustrates the key components of TEA on the switch data plane and servers, and how
an NF uses it for packet processing. When the NF performs a lookup with a key using the TEA
APIs, TEA first updates the count-min sketch of the key. Then, it checks whether an entry for the
key exists in SRAM Stash or Cache (green-colored). If it exists, it directly passes the entry to the
NF. Otherwise, it resolves a memory address and server ID using the memory address resolver.
It then generates an RDMAwrite of the packet contents to the scratchpad and an RDMA read of
the table row using the memory access requester (orange-colored). This design guarantees that
RDMAwrite and read requests are always destined to the same server, andwith our flow control
mechanism described in Section 3.4.3, both requests are not issued and a packet is droppedwhen
the destination server is overloaded. Upon receiving an RDMA request from the switch, RDMA
NICs on servers fetch entries from DRAM and send them back to the switch. Then, the lookup
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Figure 3.6: Summary of key components in TEA. The components form one logical TEA
component (dotted-red box) used by an NF pipeline.

response handler extracts matched entries and the original packet contents to pass them to the
NF.

Overhead of TEA. When an NF accesses external DRAM for table lookups using TEA, it incurs
some amount of latency and bandwidth overheads for packet processing. For latency, as we
show in Section 3.5.1, it adds up to around 2 µs per-packet latency depending on the packet size.
For bandwidth, since TEA generates additional RDMA packets for external DRAM lookups, it
affects both the switch pipeline and link bandwidth consumption. Within the switch pipeline,
as it replicates an incoming packet to generate RDMA write and read packets, it doubles the
bandwidth usage of the egress pipeline. It also consumes the same amount of link bandwidth
between the switch and a server where a target entry is located. On the server side, while TEA
does not involve CPUs, it consumes some amount of servers’ memory bandwidth, which may
affect performance of memory-intensive applications running on servers, especially when the
memory bandwidth is fully utilized. Note that if an entry for the packet is already cached, there
is no overhead.

3.4 Implementation

3.4.1 Data and Control Plane

We implement TEA’s data plane in P4 [72] and compile it to Barefoot Tofino ASIC [53] with P4
Studio [45]. In the memory address resolver, we use Tofino-embedded crc64 as a hash function
to locate a bucket in TEA-Table. We implement the server ID resolution using a range-matching
table. In the memory access requestor, to craft lookup request packets, we make the packet
replication engine in theASIC replicate an incoming packet into two packets. The engine ensures
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Network function State Table size (MB)

NAT Per-flow address mapping 525
Stateful firewall Per-flow connection state 353
Load balancer Per-flow connection mapping 525
VPN gateway Ext.-to-int. tunnel mapping 343

Table 3.2: The NFs we developed with TEA. Table sizes are estimated by assuming 10 million
entries with IPv6 addresses.

that there is no interleaved packet between two replicas. Based on the replicas, it generates RoCE
packets (i.e., an RDMA write and read) by adding RoCE headers on top of the packets based on
the metadata resolved by the memory address resolver.

We implement the count-min sketch [84] for collecting the statistics and determining popular
entries, similar to that of prior work [115, 146]. We use 4 register arrays and 64K 16-bit slots
per array to implement sketches. When the sketches detect a popular key (i.e., counts of the
key exceed a threshold), it reports the key to the control plane by using the digest feature in
the ASIC. The digest internally maintains a Bloom filter that prevents duplicate keys from being
reported. The control plane populates popular entries to the cache which is implemented as a
regular exact-matching table. We use a cache of size N=1024 in our prototype which consumes
approximately 55 KB of SRAM in NAT for IPv6 addresses.

Switch control plane and server agent. We implement the switch control plane in Python and
C. It manages the ASIC via the ASIC driver using a runtime API generated by the P4 compiler.
The server agent running on servers is written in C, which initializes an RDMA NICs on the
servers and communicates with the switch control planewhen it establishes RDMA connections.

3.4.2 Programming Network Functions with TEA

Our prototype implements TEA APIs as a library of modularized P4 codes using the concept
of control block in P4 [31, §13]. Figure 5.8 shows an example program written in P4 using
the TEA APIs. control block implements key modules such as the lookup response handler,
memory address resolver, and memory access requestor. Extending this template, developers
can integrate TEA with their NF implementations. Developers provide TEA with a definition
of key (e.g., 5-tuple) used of a lookup table, a structure of the table stored in DRAM (e.g., using
struct in C), and where to store the lookup response for further packet processing.

Based on the template, we implementNAT, stateful firewall, load balancer, and VPNgateway,
described in Section 5.5 and below are the simplified P4 codes of theNFs. For example, Figure 3.8
shows how these blocks would be used to implement NAT.

To demonstrate the applicability of TEA, we implement four NFs in P4 using TEA: a NAT,
a stateful firewall, a load balancer, and a VPN gateway. Table 3.2 describes the state each NF
maintains using TEA and its estimated size. Brief descriptions of each are below, and simplified
P4 codes are in Appendix A.
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#include "tea_core.p4"
control Ingress (headers hdr, metadata meta) {

LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

lookup_handler.apply(hdr, meta);
if (meta.lookup_md.found == true) {

[Ingress NF logic]
} else {

server_resolver.apply(meta); 
mem_resolver.apply(meta); 

} 
}

}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == true) {
[Egress NF logic]

} else {
lookup_req.apply(hdr, meta);

}
}

}

Figure 3.7: A template of P4 program using TEA abstraction. TEA exposes as a library of P4
control functions (e.g., lookup_response_handler).

NAT. TheNAT implementation uses the TEA to storeNAT translation tables, to lookup a 〈private
IP, Port〉 pair for a given 5-tuple. It modifies the IP address and port header fields using lookup
results.

Firewall. The firewall stores the connection state to external DRAM using TEA. For an external
connection, the firewall looks up a connection state and uses it to determine how to handle
packets.

Load balancer. The load balancer stores the per-flow server mapping table to external DRAM
using TEA. For each incoming packet, it looks up a 〈Backend server’s IP address, Port〉 from the
table.

VPN gateway. We implement a VPN gateway (e.g., [23]) based on the details described in prior
work [65]. It manages the external-to-internal tunnel mapping table consisting of a 〈customer’s
external tunnel ID, VM IP〉 pair as a key and a 〈Server IP, internal tunnel ID〉 pair as a value.
For incoming packets from customers, the gateway looks up the table to retrieve corresponding
server IPs and internal tunnel IDs, and translates packets.
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Figure 3.8: Comparison of simplified NAT data plane with and without TEA. To use TEA, in
addition to the original logic (white-boxes), developers need to add TEA modules (blue-boxes)
and provide basic information necessary for lookup (red-colored).

3.4.3 Limitations

The NICs in our testbed limit the maximum number of outstanding RDMA read requests to
16, and if there are more requests than the limit (i.e., overloaded), they drop the requests and
the QP state becomes invalid. To prevent the NICs on servers from being overloaded, we
implement a simple flow control in the switch data plane, which counts and limits the number of
outstanding read requests. If there is a lookup request and the number of outstanding requests
has already reached to the limit, it drops the request (i.e., not generating both RDMA read and
write requests), causing a packet drop. This may affect the end-to-end performance. We plan to
design a mechanism that routes lookup requests to an alternative DRAM server in such a case,
instead of dropping packets. Also, currently, we assume that there exists at least one server that
is not overloaded, and if there is no available server, TEA does not generate lookup requests and
drops the packets as above.

While our NF implementations (Section 3.4.2) access one large table, some NFs may require
multiple large tables. Although the current design of TEA can support multiple tables through
multiple external DRAM accesses, we plan to improve its efficiency as future work.
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3.5 Evaluation

We evaluate TEA on a testbed consisting of a programmable switch and commodity servers
using both real data center network packet traces and synthetic packet traces. Our key findings
are:

• With a single server, TEAprovides apredictable lookup latency (1.8–2.2µs) and throughput
(7.3–10.9million lookups per second) for different sizes of packets. Withmultiple servers, a
small cache helps balance loads across servers across different skewness parameters. With
the cache, adding servers scales the throughput effectively and 8 servers can perform 138
million lookups per second under a skewed workload. (Section 3.5.1).

• Compared to server-based NFs, TEA-enabled NFs are cost effective. TEA shows up to 9.6×
higher throughput and 3.1× lower latency under the same hardware configuration. Even
under an optimal setting for server-based NFs, TEA still shows ≈2.3× higher throughput
without requiring costly hardware (Section 3.5.2).

• TEA-enabled NFs can serve traffic with latency and throughput that is comparable to
the switch-only implementation (i.e., NFs running on a switch without accessing external
DRAM) in the common case (Section 3.5.2).

• TEAprovides these benefits without incurringmuchASIC resource overhead. It consumes
on-chip resources, including SRAM, TCAM, and hash bits, all less than 9% (Section 3.5.3).

Experimental setup. Our testbed consists of a Wedge 100BF-32X 32-ports programmable
switch [32] with a Tofino ASIC and 12 servers equipped with two Intel Xeon E5-2609 CPUs
(8 logical cores in total), 64 GB RAM, and a 40 Gbps Mellanox CX-3 Pro RDMANIC. The servers
run Ubuntu 18.04 with the kernel version 4.4.0. All servers are directly connected to the switch.
We use 4 servers as packet generators and 8 as DRAM servers.
Traffic workloads. We use both packet traces collected from a real data center network [3] and
synthetically generated ones. The packet sizes vary (64–1500 B) in the real trace. The synthetic
traces are based on the observations from several data center measurement studies [67, 85, 172].
We generate packet traces with the flow size distribution in terms of the number of packets per
flow that follows Zipf distribution with the skewness parameter (α=0.99, 0.95, 0.90). We use a
keyspace of 1million randomly generated IPv4 5-tupleswhen creatingpacket traces. Wegenerate
multiple packet traces with different packet sizes and skewness parameters. We replay the traces
using DPDK-pktgen [4] on packet generator nodes. In our testbed, each traffic generator node
can generate 64 B packets at around 34.54 Mpps and 1500 B packets at 40 Gbps.

3.5.1 Microbenchmarks

Single-server lookup latency and throughput. First, we evaluate the performance of theDRAM
access channel with a single server. For this experiment, we disable the SRAM cache. For latency,
we inject 10,000 packets of different sizes (64–1500 B) to measure the lookup time. As a baseline,
we setup two servers directly connected and run ib_read_lat in perftest [18] to measure RDMA
read latencies for different message sizes. For throughput, we replay the trace for 30 seconds and
measure the number of lookups completed during the period. Since the memory access pattern
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Figure 3.9: Lookup performance of TEA via an RDMA channel with a single server.

might affect the throughput, we force TEA to access buckets sequentially or randomly in this
measurement.

Figure 3.9a shows the median, 10th and 90th percentile of lookup time. We see that each
lookup takes 1.8–2.2 µs and the latency grows with the packet size, which is higher than raw
RDMA reads (0.1–0.2 µs). This is mainly because our RDMA read request and response packets
are larger than raw RDMA read packets. First, due to switch ASIC limitation, we are not able
to remove an original packet from each replicated packet. This makes each RDMA read request
packet have the original packet as a trailer. Second, in TEA, each RDMA read response packet
consists of a bucket and the original packet, as illustrated in Figure 3.5b.

Figure 3.9b shows the lookup throughput with different packet sizes. At the maximum
traffic rate we can generate in our testbed, the server NIC can handle 7.3–10.9 million lookups
per second, and there is the only negligible difference (up to 0.02 million lookups per second)
between sequential and random memory access patterns.

Overall, our evaluation shows TEA’s remote DRAM access channel can provide predictable
performance which is close to the raw RDMA performance.
Throughput scalingwithmultiple servers. Next, we evaluate the effectiveness of usingmultiple
servers and a small cache to scale up the lookup throughput. Here, we replay synthetic packet
traces consisting of 64 B packets with the different skewness parameter (α) for the flow size
distribution and measure the number of lookups served by each server with/without the cache
enabled.

Figure 3.10a shows that the lookup load distribution is skewed across servers without the
cache. We also observe that such a skewed access pattern limits the aggregate when the lookup
request rate is high, even if there is available link bandwidth to servers. Finally, we see that
with cache, even with the most skewed access pattern (α=0.99), the load is evenly spread across
servers and 49% of requests are served by the cache.

Next, we measure the aggregate lookup throughput varying the number of servers with
different α values. As shown in Figure 3.10b, in all four cases, while the aggregate throughput
scales linearly as we addmore server, there is the difference in achievable maximum throughput

37



0

8 w/o cache α = .90

0

8 w/o cache α = .95

1 2 3 4 5 6 7 8
Server ID

0

8

M
ill

io
n

lo
ok

u
p

s/
se

c

w/ cache α = .99

(a) Small cache balances memory access
loads.

1 2 4 8

Number of servers

0

50

100

150

M
ill

io
n

lo
ok

u
p

s/
se

c Uniform w/o cache

Uniform w/ cache

α = .95 w/cache

α = .99 w/cache

(b) Lookup throughput scales with more
servers and cache.
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Figure 3.11: Lookup throughput changes during failover events.

depending on the skewness and the existence of the cache. We see that themore skewed the load
distribution, the higher aggregate throughput TEA can support with the cache. When α=0.99
or 0.95, TEA can process 138 million lookups per second with 8 servers and the cache. Note
that this performance is limited by the maximum packet generation rate we can achieve in our
testbed.

One natural question regarding the throughput would be what is the maximum throughput an
NF with TEA can achieve with N servers in a rack? The evaluation result shows that with 8 servers
TEA can support up to 138 million lookups per second. If we extrapolate this result, it means
that the NF can process up to 138/8 ×N million packets per second, which is not high enough
to support very high traffic rate with small size packets, especially when skewness is not high,
and this is a limitation of our current design. For example, to support a few billion packets per
second traffic rate, TEA requires more than a hundred servers, which is waymore than a number
of servers typically existing in a rack and a number of switch ports. Note that this analysis may
not be perfectly accurate because as mentioned above, the measured maximum throughput is
capped by the packet generation rate in our testbed. We plan to analyze the system throughput
by injecting packets at higher rates with more servers.
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Network func.
TEA w/o cache TEA w/ cache Server-based

Lat. Tput. Lat. Tput. Lat. Tput.
(µs) (Mpps) (µs) (Mpps) (µs) (Mpps)

NAT 2.34 10.64 1.93 79.37 5.62 8.49
Stateful firewall 2.35 10.58 1.91 79.23 5.59 8.37
Load balancer 2.33 10.61 1.91 79.34 5.64 8.37
VPN gateway 2.30 10.80 1.92 79.45 5.99 8.25

Table 3.3: Throughput and latency of NFs implemented using TEA with a single server and
corresponding software implementations running on a single server (4 CPU cores). Note that
TEA does not involve the CPU on the server.

Availability. Next, we evaluate how TEA reacts to server churn by setting up 2 servers, loading
the same table entries using server-1 as a primary and server-2 as a secondary server. We replay
the 64 B packet trace and measure the lookup throughput by disabling the cache. For the result
in Figure 5.16, we inject the background traffic from packet generators to server-1 to emulate
link utilization increase. We see that TEA starts sending lookup requests to server-2, and the
throughput reaches the maximum within a second (at around 24 sec.). At this point, server-
2 becomes primary. We then stop injecting the background traffic and disconnect server-2 to
emulate a server failure. We can see that TEA starts routing lookup requests to server-1 as soon
as it detects the event (at around 71 sec.). We observe that TEA can react to the changes in the
link and server availability quickly despite a slight throughput drop at the time of failure.

3.5.2 Application Performance

Comparison with server-based NFs. We note that many factors including hardware config-
urations (e.g., number of CPU cores) and software optimizations can affect the performance of
software-based NFs. Our goal here is to show the cost benefit of TEA by comparing the per-
formance with the same hardware configuration (i.e., a server connected to a switch). For the
evaluation, we implement NFs described in Table 3.2 using Click-DPDK [26] which is one of
popular ways to implement high-performance NFs. We run them on the server described above.

For a fair comparison, we focus on a per-packet processing latency and throughput for
64 B packets with a single server for TEA and server-based NFs. We inject packets using 4
traffic generator nodes (max. traffic rate is ≈138 Mpps). Table 3.3 summarizes the results with
median values for each experiment. Within each implementation option, there is no significant
differences between NFs. Between TEA and server-based NFs, TEA shows up to 1.3× and 9.6×
higher throughput, without and with the cache, respectively. For latency, TEA is up to 2.6×
faster without cache and 3.1× faster with cache. TEA does not involve the server’s CPU at all
during the experiments while server-based NFs fully utilize 4 CPU cores. Note that with more
CPU cores, the server-based implementations could achieve higher throughput, ideally, close to
the NIC’s raw performance (≈34 Mpps). Even compared to that case, TEA with cache can still
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Figure 3.12: Performance of NAT using TEA.

achieve ≈2.3× higher throughput with much lower hardware cost since it does not involve the
CPU.
Comparisonwith switch-basedNFs. To understand the overhead that TEA incurs, we compare
the performance of a specific NF, NAT, running on a programmable switch, when using TEA
and when using local SRAM tables (referred as baseline). The results for other NFs are similar.

Tomeasure latency, we replay both synthetic and real data center packet traces [67] consisting
of 64 B packets. Note that since the real traces consist of varying sizes of packets, we make the
payload size of each packet be 64 B with the original headers (i.e., the flow information is
maintained). To measure the per-packet latency, we record two timestamps when packets come
into the switch and leave the switch after the NAT processes the packet. Figure 3.12a shows the
CDF of the latency distribution. The baseline and uniform represent the best and worst possible
performance, respectively. We see that the more skewed the flow size distribution is, the lower
the median latency is. Interestingly, we observe that the real traces show a skewness even higher
than α=0.99. In the traces, top 95 popular flows take more than 50% of total flows), so the cache
can serve more packets, lowering the median latency. Regardless of the skewness, we see that
the variance is small (no long tail), resulting in the predictable latency.

To measure throughput, we replay real data center packet traces at the rate which is higher
than the original rate at which it was captured. Since the packet sizes vary, we measure the
throughput in Gbps rather than Mpps. A single packet generator node can replay the trace
at 14.48 Gbps, thus the maximum transmission rate we could achieve is around 57.92 Gbps
with our four packet generator nodes. Figure 3.12b shows the throughput of NAT with varied
transmission rates. We see that NAT with TEA can serve the traffic at the incoming rate for all
cases.

3.5.3 TEA ASIC Resource Usage

We evaluate how much ASIC resource is consumed only by TEA based on the P4 compiler’s
output. Note that as mentioned in Section 3.3.2, the number of colliding entries in TEA-Table
that are stored in the SRAM is 0.1% of the total number of entries. Thus, the SRAM space usage
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Resource Additional usage

Match Crossbar 12.6%
SRAM 8.5%
TCAM 0.4%
VLIW Instruction 4.2%
Hash Bits 6.3%

Table 3.4: Additional switch ASIC resources used by TEA.

depends on the total number of inserted entries, and in this evaluation, we insert 10 million
entries. Table 5.2 shows the resource consumption. We see that there are plenty of resources
remaining to implement other functionality on the ASIC along with TEA. It consumes some
amount of SRAM, TCAM, VLIW instruction, and hash bits, all less than 9%. Match crossbar
is the most consumed resource. We observe that count-min sketch, cache, stash, and lookup
response handler consume most of the match crossbar. Memory address resolver and access
requestor modules consume SRAM and hash bits to store metadata for RDMA connections and
resolve bucket and server IDs.

3.6 Discussion

Deployment locations. As a starting point, we focus on designing TEA for ToR switches in
NFV clusters. However, TEA can be deployed in other locations. In data center racks, one can
enable TEA at ToR switches with compute servers. For that, we need to make sure that there is
unused DRAM space in servers and link bandwidth. Moreover, our design can be extended to
non-ToR switches (e.g., aggregation-layer switches) in data centers, which do not have directly
connected servers under it. Since it requires multi-hop routing for lookup requests, we need
to have a careful design that deals with longer and (possibly) unpredictable lookup latencies
and unreliability. For example, with RoCEv2 protocol [114], which runs on top of IP/UDP and
supports multi-hop routing, external DRAM access requests from upper-level switches can be
routed to servers.
Match types. In this chapter, we mainly focus on exact-matching semantics. Other NFs may
require other lookup types such as longest-prefixmatching (LPM). Previous work emulates LPM
using exact-matching [192] or converts an LPM table into a large exact-match table [126]. We can
leverage such ideas to support other lookup types in TEA.
Use cases. Although the current design of TEA-Table provides a key-value based table abstrac-
tion, we can extend it to support other use cases. For example, by adopting the FIFO queue
abstraction, TEA allows utilizing external DRAM as a large packet buffer which can be useful
for handling packet drops due to congestion.
Other programmable switch ASICs. While we use Tofino-based programmable switches for
our implementation, we believe our design can be implemented on other switch ASICs since
hardware capabilities leveraged in TEA (i.e., packet manipulation, meter, packet generation
engine, etc.) are general features supported by most switch ASICs available today.
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TEAusing on-board off-chipDRAM. Asmentioned in Section 3.2.1, some switchASICs support
on-boardoff-chipDRAMfor specificpurposes suchaspacket buffers and select lookup tables [15].
As the traffic demand increases, programmable switch ASIC vendors may also consider to adopt
such on-board DRAM. However, to use DRAM in a flexible manner, they need to address the
same practical challenges as the ones described in this chapter, including asynchronous and
low-latency DRAM access without stalling the packet processing pipeline. Thus, we believe
that our techniques designed for TEA can be extended for such a future programmable switch
architecture.

3.7 Related Work

Hardware-accelerated NFs. NF tasks have been accelerated using programmable switch ASICs,
FPGAs, or Smart NICs to outperform CPU-only designs. Examples include offloading load
balancers [153] and network monitoring [13, 105, 157] to switches and IPSec gateway, load
balancer, and other NFs to FPGA-based smart NICs [94, 136]. TEAmakes it possible to accelerate
a wider range of NFs on programmable switches and support more operating scenarios by
addressing the memory constraint issue.

Using external memory from switches. Prior work has suggested system architectures that
allow switches to utilize external memory on servers [65, 122]. Such architectures run packet
processing logic on both a hardware switch and a software switch on the servers and use
servers’ memory (i.e., accessing lookup tables on servers’ memory) by forwarding a subset of
packets (i.e., offloading traffic in certain conditions) to the software switch. This involves CPUs,
increasing both average and tail packet processing latencies. In contrast, TEA purely uses DRAM
on servers without involving CPUs via RDMA while addressing practical challenges in using
multiple servers.

NFV state management. Previous work on state management for stateful NFs in NFV utilizes
the local or remote storage to manage NF state [97, 117, 170, 196]. For example, statelessNF [117]
allows NFs to leverage a centralized storage to store and load states for NFs. Their focus is better
scaling and failure handling in the NFV context. In contrast, TEA leverages external DRAM to
enable state-heavy NFs on programmable switches.

Other applications on programmable switches. Recent work has shown that it can be useful
to offload other applications or primitives to programmable switches to enhance their perfor-
mance. For example, offloading the sequencer [137], key-value cache [115, 147], and coordination
service [116] improves the performance of distributed systems, in terms of throughput, scalabil-
ity, and load balancing. Such systems also suffer due to switch memory constraints. TEA-like
techniques could help such applications as well.

Accessing remote memory via RDMA. RDMA has been used in applications such as key-value
stores [88, 118, 154], distributed shared-memory [88], transactional systems [79, 89, 127], and
distributed NVM systems [150, 178]. This thesis demonstrates a novel use of RDMA, which
allows a programmable switch to leverage external DRAM on such servers.
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3.8 Summary

While emerging programmable switch ASIC designs make it possible for moving NFs from
commodity servers to switches, the limited memory on these ASICs has been a significant
impediment in their use for many NFs. To address this issue, in this chapter, we envisioned a
new system architecture, called Table ExtensionArchitecture (TEA), for top-of-rack switchASICs
in NFV clusters. TEA provides a performant virtual table abstraction for NFs on programmable
switches so that they canmake use of DRAMon servers connected to the switch in a cost-efficient
and scalable manner. Our evaluation with microbenchmarks and NF implementations showed
that TEA can provide NFs with low and predictable latency and scalable throughput for table
lookups without servers’ CPU involvement. Looking forward, even though our specific focus
in this chapter was on NFs, we believe that TEA can be a key enabler for many innovative
memory-intensive applications running on programmable switches.
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Chapter 4

On-Rack Switch Resource
Augmentation to Support Multiple
Concurrent In-Network Applications

In the previous chapter, we show that TEA provides elastic memory via the virtual table abstrac-
tion, which is optimized for a single stateful application that uses a single large table. However,
we observe that the elastic memory will not be enough to support evolving in-network applica-
tion workloads. The growing popularity of in-network computing is associated with two trends:
(1) the increasing number of in-network applications [109, 125] which can co-exist on a switch,
and (2) the increasing demand of these applications to handle heavier workloads in terms of
traffic volume and flows [25, 81]. Unfortunately, current switch resources are limited (e.g., 10s
MB of SRAM) and cannot keep up with the ever-increasing demands.

In this chapter, we explore an on-rack switch resource augmentation architecture that consists
of a programmable switch and a few other data plane devices connected to the switch on
the same rack. These external devices (e.g., includes smart NICs [16, 41, 47, 56] and software
switches running on servers [36, 190]), offer more resources to offload packet processing, albeit
with some performance penalty. Perhaps more significantly, they offer a path to affordably and
incrementally scale the effective capacity of a programmable network.

To effectively realize this vision of on-rack switch resource augmentation, we need the equiv-
alent of an operating system to manage resources spread across multiple on-rack devices. To
borrow from Anderson et al. [63], we can draw a first-principles analogy to the three roles that
any OS serves: (1) “glue” to provide a set of common services that facilitate the sharing of re-
sources among applications; (2) an “illusionist” to provide an abstraction of physical hardware to
simplify application design; and (3) “referee” for managing resources shared between multiple
applications. While there is some work on mapping a single switch app to heterogeneous de-
vices or to augment memory (e.g., [96, 128, 129, 185]), these fundamentally do not tackle multiple
concurrent applications or provide these capabilities.
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However, on-rack switch resource augmentation creates new challenges different from those
in traditional OSes with respect to these roles. In designing ExoPlane,1 an OS for switch resource
augmentation, we address these as follows:

• Runtime service (the glue): To avoid frequent inter-device communications during packet
processing, we propose a packet-pinning operating model that guarantees that a packet is
processed entirely on a single device.

• State abstraction (the illusionist): To enable correct stateful processing of packets even un-
der dynamically changing workloads, we design a two-phase state management that places
application states correctly on different devices as workload changes. We also design
appropriate levels of consistency for different types of stateful objects that appear in appli-
cations.

• Resource allocation (the referee): To achieve performance and policy goals specified by
developers and administrators, we formulate and solve an optimal resource allocation
problem that accommodates heterogeneity across applications and data plane device ca-
pabilities.

ExoPlane consists of two key components called the planner and runtime environment.
The ExoPlane planner takes multiple P4 [72] applications written for a switch with no or little
modifications and optimally allocates resources to each app based on inputs from an network
administrator and developers. It requires developers to add application-specific logic using our
APIs only if the application contains a data-plane updatable object. Then, the ExoPlane runtime
environment executes workloads across the switch and external devices by correctly managing
state, balancing loads across devices, and handling device failures.

We implement the planner in C++, the data plane of the runtime environment in P4, and the
control plane component of it in Python and C++. We evaluate it using various P4 programs in
our testbed consisting of a Tofino-based programmable switch [32] and four servers equipped
with Netronome Agilio CX smart NICs [16]. Our evaluations show that ExoPlane provides
predictable latency (e.g., ≈300 ns at the switch and 5.5 µs at an external device in steady-state)
and scalable throughput with more external devices (e.g., up to 394 Gbps, the maximum rate
in our testbed). In case of an external device failure, ExoPlane can recover an end-to-end TCP
throughput within 200ms using alternative device. ExoPlane achieves these with small control
plane (a few tens MB) and switch ASIC resource overheads (less 4.5% of ASIC resources).

4.1 Motivation

In this section, we provide a primer on in-switch applications andmotivate the need for resource
augmentation.

4.1.1 Primer on Stateful In-Switch Applications

Many in-switch applications are stateful; i.e., state on the switch determines how to process
packets. A typical program (p) contains one or more stateful objects (oi), each of which can

1The name denotes an external (exo-) data plane
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Control Plane Program

Key: SrcIP
Val: 4B int.

Pkt Counter (o2)
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Packet

P4 program (p)

④

Figure 4.1: An abstract P4 application and runtime model. An application consists of multiple
stateful objects (white boxes) and the control plane logic (blue arrows).

be represented as a P4 construct [72] such as a match-action table and a register.2 Each object
contains not only state data in the form of key-value pairs ((Koi , Voi)) but also actions. For example,
a register in P4 consists of a data array and actions that access the array. Figure 4.1 shows an
example stateful P4 program (p) with three objects (o1–o3). Each object requires some amount
of memory (e.g., SRAM) for state data and compute resources (e.g., stateful ALUs (SALUs)) for
actions. The vendor-provided compiler (e.g., Tofino compiler) allocates resources to each object
using proprietary heuristics; if it cannot find a feasible allocation, the compilation will fail.

Once the program is successfully compiled and loaded to a pipeline, it can process incoming
packets using its stateful objects; e.g., the firewall application in Figure 4.1 tracks active connec-
tions and drops unwanted packets from the Internet that do not belong to active connections.
At runtime, the control plane logic can access the objects in the data plane (e.g., inserting a new
entry to the stateful firewall (FW) object). Note that in the current switch architecture, inserting
and deleting entries from a match-action table can be done only via the control plane. From the
data plane, a packet only can look up an entry from the table. Registers can be read and updated
by both the data and control plane. For example, in Figure 4.1, when a packet from an internal
network comes in and if a state miss occurs at the stateful FW ( 1 ), it reports the packet to the
control plane program ( 2 ) that inserts new entries for the packet (or flow) ( 3 ). Optionally, it
sends the packet back to the data plane ( 4 ) so that it can be processed with the inserted entries.

4.1.2 Motivation

As in-network computing becomes more popular, we observe two key trends that result in
increasing demand on switch resources. First, the number of applications that administrators
need to run concurrentlywill likely increase [109, 125]. Second, the per-applicationworkload size
in terms of traffic volume and the number of flows also keeps growing [25, 81]. Unfortunately,
the switch cannot keep upwith this ever-increasing workloads with its limited on-chip resources
(e.g., 10s MB of SRAM).

As a concrete example, suppose a cloudoperatorwants todeploy four applications inTable 4.1
on a network frontend switch processing traffic entering/leaving the network. Each application
maintains per-flow states for each tenant to enable virtual private networks (VPN gateway), route

2While our focus of this chapter is on P4, other programming languages for programmable switches such as
NPL [43] provide similar constructs.
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Applications States

Per-tenant VPN gateway +
Packet counter

External-to-internal tunnel mapping and processed packet counter for
each tenant.

Per-tenant NAT Per-flow address mapping for each tenant. Per-flow address mapping
for each tenant.

Per-tenant ACL + Filtered
packet counter

Per-flow ACL and dropped packet counter for each tenant.

Sketch-based monitor UnivMon [146] for remaining traffic classes.

Table 4.1: P4 applications deployed in a front-end switch of the data center in our motivating
scenario.
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Figure 4.2: SRAM requirements (normalized to the total amount of SRAM on a switch) with
varyingworkload size andnumber of applications. If the requirement exceeds 1, it is an infeasible
case.

traffic from tenants’ on-premise networks to VMs running services (NAT), or control access
to services running on tenants’ VMs (ACL). The sketch-based monitor collects statistics for the
remaining traffic classes using an UnivMon sketch [146]. To see if/how these applications can
coexist, we implement these applications in P4 or adopt source codes from the original authors,
compose them into a single P4 program using our merger (described in Section 4.5) and compile
it using the Tofino P4 compiler.

Unfortunately, we find that enabling these applications concurrently in a switch is infeasible
for typical cloud workloads where an application running on a switch should be able to support
at least 1M flows [85, 153, 162], as shown in Figure 4.2. We consider two scenarios: (a) running
all 4 applications but varying number of concurrent flows per-application and (b) fixing number
of flows to 1M but adding applications incrementally. Here, we use SRAM requirements from
each application, normalized to the total amount of SRAM on a switch,3 which is the bottleneck
resource in our scenario. In Figure 4.2a, we see that as the workload increases, it becomes
infeasible to run all the applications. Similarly, in Figure 4.2b, we see that the switch can support

3We use normalized numbers due to NDA.
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only a single application. Note that in Figure 4.2b, adding the 4th application (sketch-based
monitor) does not increase the SRAM usage much because its SRAM usage does not increase in
proportion to the number of flows.

4.1.3 A Case for On-Rack Switch Resource Augmentation

Given these above trends, one can consider several candidate approaches; e.g., optimizing appli-
cations to reduce resource footprint or adding more resources to the switch ASIC. While these
are valid approaches, they have limitations; e.g., applications, even if optimized, may have high
resource usage, and extending switching hardware is expensive.

We explore a different practical alternative, and envision an on-rack switch resource augmenta-
tion architecture consisting of a programmable switch connected to a few other programmable
external data plane devices on the same rack could be a potential solution. For example, we can
assign 2U in a rack, where a programmable switch is located, to install a server equipped with
four 100 Gbps Smart NICs connected to the switch. Since it only consumes a small amount of
rack space and does not require any changes in other parts of the network, it provides a practical
deployment model.

Note that this architecture is well aligned with technology trends. First, there are many
efforts to enable P4 frontends for many data plane devices, including NPU or FPGA-based smart
NICs [16, 19, 112, 193] and software switches on x86 servers [36, 44, 190]. While these devices
provide lower packet processing throughput (up to a few 100s Gbps), compared to hardware
switches (a few tens Tbps), they have more resources (e.g., a few GB of DRAM vs. a few 10s MB
of SRAM) to support more demanding workloads. For example, Netronome’s Agilio CX Smart
NICs [16] are equipped with 2 GB of DRAM that is enough for maintaining several million flow
states while being able to sustain up to 40 Gbps of packet processing rate. Second, and perhaps
more importantly, we can augment the resources as needed by simply adding more devices
as needed. Taking these above two factors into account suggests that if we could effectively
realize such an architecture, it offers a cost-efficient, incrementally extensible, and potentially
“future-proof” way forward to support the growing demands of multiple in-switch applications
by adapting more and newer generation of external devices.

4.2 Overview

While the vision of on-rack switch resource augmentation is promising, to realize it in practice,
we will need a practical OS to effectively share resources spread on multiple devices across mul-
tiple applications. Drawing an analogy from traditional computing [63], ideally this OS provides
an infinite switch resource abstraction that gives an illusion of large resources to each application.
That is, application developers and network administrators can express their programs and re-
quirements at a higher level of abstraction without having to worry about the complexities of
managing and multiplexing the resources on heterogeneous devices. While some early efforts
have leveraged resources on heterogeneous data plane devices for individual in-switch appli-
cations [96, 129, 185], they do not provide the OS-like capabilities and abstractions we need for
multiple concurrent applications.
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4.2.1 Choice of Operating Model

A classical OS multiplexes multiple programs on the limited CPU/memory by choosing when
and what processes to swap in/out. In our context, the workload is a set of incoming packets
mapped to various in-switch applications, and we need to analogously choose a runtime model
to multiplex the processing of these packets across applications and different devices.

Strawmanmodels. The design space for the operatingmodel can be defined by two dimensions:
(1) Can an application run onmultiple devices? and (2) Can an individual packet be processed on
multiple devices? To understand the trade-offs involved, let us consider two candidate options.

• A first option is an app-pinning model where an application is pinned to a single device,
and a packet is entirely processed on that device. In this model, since the packet is pro-
cessed entirely on a single device without requiring additional logic, there is no additional
processing latency due to inter-device rerouting and resource overhead. However, since
the app can only run on that particular device, its throughput and available resources are
limited.

• Alternatively, we can consider a full-disaggregation model where an application can run
on multiple devices, and a packet also can be processed on multiple devices. Since an
application can be placed any device, it has more available resources. However, depending
on the availability of state, a packet needs to be routed between the switch and the external
device multiple times. Such frequent inter-device routing increases packet processing
latency andmakes it unpredictable. Also, it incurs high resource overhead due to per-object
inter-device processing logic to route packets to a particular device and resume processing
at that object on the device. It also consumes additional link and device bandwidth.

A case for packet-pinning. We adopt a middle ground called a packet-pinningmodel that pins a
given packet to one device (i.e., the switch or an external device) where it is completely processed
while still providing flexibility of placing an application and its flows on any devices, based on
two key insights. First, it can avoid frequent per-packet inter-device routing with much lower
complexity and resource overhead. Second, we observe from packet traces captured from real
networks that flow key distribution is highly skewed, and only a small fraction of popular keys
serves the majority of the traffic for an application (e.g., 6% of keys takes more than ≈80% of an
Internet backbone traffic [57]). Thus, in thismodel, if we could place popular flow state entries on
the switch, it allows processing the majority of traffic (i.e., packets) for the application entirely at
the switch while the rest of them are processed at the external device by trading off performance
for more resources.

4.2.2 ExoPlane Architecture

Our ExoPlane OS implements the packet-pinning operating model via two key components
(Figure 4.3):

• ExoPlane planner takes inputs from developers and the network administrator and allo-
cates resources on the switch and external devices to each application.
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• ExoPlane runtime environment places workloads on devices, manages application states,
and handles external device failures. In particular, at runtime, it tracks workload changes
(i.e., new flows arrive or flow popularity changes) and (re)places state object entries to the
switch and external devices according to the changes.

In designing ExoPlane, we consider the following deployment capabilities: (1) A switch and
external devices located on the same rack are programmable in P4-16 [31] with the same set
of P4 constructs (e.g., tables and registers), and we have access to vendor-provided blackbox
P4 compilers; (2) External devices are equipped with large enough memory (e.g., a few GB) to
store entire state for multiple application. We acknowledge that not every P4-programmable
device supports all the features provided by switching ASICs. According to our conversation
with vendors, they plan to add such missing features, so this is not a fundamental limitation.
Nonetheless, we design ExoPlane to adapt such devices as well by considering the application
to device compatibility; (3) Each application handles a non-overlapping subset of traffic, which
we call a traffic class so that there is no dependency between different applications (i.e., a given
packet is processed by only a single application);4 and (4) Data-plane updatable stateful objects
maintain mergeable statistical data (e.g., packet counter) that do not impact the control flow.

End-to-end view. As illustrated in Figure 4.3, to run applications on ExoPlane, developers
provides P4 program codes and app-specific requirements (e.g., affinity to the switch). Note
that ExoPlane requires application modifications only if it contains data-plane updatable object
whose copies can exist on multiple devices. The administrator provides information on devices
(e.g., resources types), cross-application workload (e.g., traffic distribution), and an objective
function. Then, the ExoPlane planner profiles the applications to get a compatibility to each

4If needed, we can apply prior offline preprocessing steps to convert overlapping subsets into an equivalent
non-overlapping set [166].
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device type and estimated resource footprint and performance, computes an optimal resource
allocation, and generates a merged P4 program. Then, it compiles the merged program using
vendor-provided P4 compilers and loads the binaries to the switch and external devices. At
runtime, the ExoPlane runtime environment executes the workload (i.e., packets) across the
switch and external devices.

4.2.3 Design Challenges

Challenge 1. Correctness even under new flow arrivals or flow popularity changes. When
the traffic workload changes, we need to (re)place object entries at the switch. We find that
this can lead to incorrect packet processing due to the slow control plane operations. Also,
when there are multiple copies of a data-plane updatable object on multiple devices, each of
them can be updated simultaneously. While we need to synchronize them properly, we observe
that it is infeasible to apply existing shared object management schemes used in server-based
systems [97, 170, 196] due to hardware constraints.
Challenge 2. Handlingmultiple devices and device failures. While one can addmore external
devices to extend resources or processing capacity, we find that just adding more devices would
not be effective due to possible access load imbalance across the external devices. Also, when an
external device fails, we need to detect and react to the failure rapidly.
Challenge 3. Meeting objectives across applications. Given multiple applications, we have
to share resources among them properly while considering per-app and cross-app objectives
provided by an administrator and developers.

4.3 ExoPlane Runtime Environment

In this section, we discuss the design of the ExoPlane runtime environment. For clarity of
exposition, we start with a few simplifying assumptions— a single instance of external device,
steady state traffic with no workload changes, no data plane-updatable state, no device failure,
and a single application. We revisit and relax these assumptions subsequently.

4.3.1 Packet-pinning Operating Model

Recall from Section 4.2.1 that we adopt the packet-pinning model that ensures that each packet
is completely processed at a single device (i.e., requires at most a single round-trip between the
switch and an external device). Here, we load an application binary and all state entries on an
external device with a subset of entries loaded along with the application on the switch. As
mentioned in Section 4.1.3, an external device has a few GB of DRAM, which is enough to store
all state entries (requiring up to a few hundred MB for a few million entries). In this model,
if there is no entry for an incoming packet at the switch, the packet is routed to an external
device where the packet can be processed as all state entries needed to process the packet will
be presented.

However, naïvely implementing the packet-pinning model has two potential problems (Fig-
ure 4.4). First, if we do not carefully choosewhich entries to place on the switch, a high volume of
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the remaining at the external device in a run-to-completion manner. The green box is a per-app
ExoPlane flow manager, and UKey indicates a union key of the application.

trafficwill be routed to the external device (flow 2 and 3 in the figure), and it becomes overloaded,
limiting the throughput. Second, since an entry miss can happen for an arbitrary object (e.g.,
while looking up an entry of the counter object for flow 2), per-object inter-device processing
logic is needed to handle such cases. Such additional logic incurs switch data plane resource
overheads.

To address these problems, we propose a union-key based state management that enables us
to process a majority of traffic for an application at the switch and the remaining at the external
device (Figure 4.5). We define a union key type (UK) of an application as the union of key types
of its constituent objects (i.e., UK = ∪iKoi). A flow then is a set of packets with the same union
key value. For example, in the figure, an IP 5-tuple is the union key type and packets with the
same IP 5-tuple forms a flow.

Having defined the union key, we can use trafficworkload characteristics to enable the switch
to serve the majority of traffic for the application. Specifically, we build on the observation that
the distribution of flow keys (including the union key) is highly skewed in typical networking
workloads. As an example, we measure the distribution of IP 5-tuple which is the union key
of our example application, by analyzing packet traces collected from an Internet backbone [57]
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Figure 4.6: Skewness in flow key (IP 5-tuple): For both Internet backbone and data center case,
a few popular keys serve the most of the traffic. This is consistent across measurement epochs.
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Figure 4.7: Basic workflow for inserting new flow entries in ExoPlane.

and a university data center [67]. Figure 4.6 shows the results. For both cases, we see that a
small fraction of the keys contribute to the majority of the traffic; ≈6% of keys in the backbone
and ≈10% of keys in the data center takes more than ≈80% of traffic. The skew persists across
measurement epochs (5 mins and 1mins for the backbone and data center, respectively). We also
confirm the skew exists for other coarse-grained keys such as the source IP. This suggests that
we can serve the majority of the traffic at the switch by placing a few state entries with popular
union keys (e.g., 516 entries for 80% in the data center trace).

Based on this, we employ a per-app ExoPlane flow manager (the green box in Figure 4.5 and
denoted as oFM ) at the switch, which maintains a list of popular union keys for an application
and checks whether the key of an incoming packet exists in the list when it arrives at the switch.
If the key exists (i.e., the packet is from a popular flow), the packet is processed entirely at the
switch. Otherwise, it is routed and processed at the external device. This way, we do not need
to have per-object inter-device processing logic, minimizing the resource overhead.

In sum, our choice of packet-pinning model and its data plane design provides the following
correctness property:

Invariant 1 (Packet-pinning model). For each application, if the ExoPlane flow manager (oFM ) has
the packet’s union key (UK(pkt)), the constituent objects (oi) must have entries (Koi(pkt)) for the packet.

∀pkt : UK(pkt) ∈ oFM =⇒ ∀i : Koi(pkt) ∈ oi.

54



Key: SrcIP
Pkt Counter

UKey: 5-tuple
Flow manager

Key: dstIP
forward

Key: 5-tuple
Stateful FW

Switch control plane

Switch data plane

Flow 1

① ②⑥

⑤

Entry deleted �
Packet dropped!

④

③

Figure 4.8: Incorrect state eviction: application’s state has been removed while there is a packet
being processed.

4.3.2 Handling Workload Changes

So far we assumed steady state—(1) no new flows and (2) no changes in flow popularity. Next,
we discuss how we handle new flows and then tackle popularity churn.
Handling new flows. Figure 4.7 illustrates a new flow arriving in the ExoPlane flow manager.
When a packet belonging to the new flow arrives at the switch, and if a miss occurs in the
ExoPlane flow manager ( 1 ), it routes the packet to the external device. Note that there are two
cases for a miss happens: (1) first packet of the new flow or (2) a packet of an existing flow for
which the flow state is not at the switch. Since these two cases are indistinguishable from the
view of ExoPlane flow manager, it always routes packets with misses to the external device.
When a packet arrives at the external device for a new flow, it must first be processed by the
application’s control logic for handling new flow arrivals. In this example, the stateful FW table
reports the packet to the control logic ( 2 ) that inserts entries for the flow to three objects ( 3 ).
Depending on the application logic, the packet can be sent back to the data plane and processed
with the new entries ( 4 ). Subsequent packets in the flow will be processed at the external
device.
Promoting popular flows. In practice, the popularity of flows can change and we need to
promote and demote flow states as the popularity changes. Suppose we know which flow keys
become popular (i.e., their entries are currently not on the switch) and unpopular (i.e., their
entries are currently on the switch) (We discuss how we track this in Section 4.5).

When promoting a new popular flow (i.e., installing state at the switch), there are two
possibilities: (1) there is spare space in the ExoPlane flow manager and application’s other
objects for new entries or (2) there is no room in the objects. For (1), we can simply insert new
entries to the objects. For (2), however, we need to evict some unpopular flow tomake a room. As
we discuss below, doing this correctly is challenging. Figure 4.8 illustrates why via a naïve update
mechanism can violate our correctness property (1). Suppose that flow 2 becomes popular while
flow 1 becomes unpopular, and there is no room for inserting new entries. Thus, the switch
control plane tries to replace the entries for flow 1 with the flow 2’s. It first evicts entries for flow
1 fromapplication objects (FW,Counter, andForward) aswell as theExoPlaneflowmanager (blue
arrows in Figure 4.8). However, in the current switch architecture, a set of eviction operations
(blue arrows) cannot be executed atomically. Thus, there could be cases where application’s state
entries have been removed already while there are packets being processed in the data plane
( 5 ), violating our correctness property. Even if eviction is correct, insertion can be incorrect.
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That is, during the time the switch control plane tries to insert entries for a flow, packets for the
flow arrives and are looked up the ExoPlane flowmanager. If the entry exists, the packet must be
processed completely at the switch. However, since entries in other objects may not be available,
the packet cannot be processed and gets dropped.

Our approach: Two-phase state update. To address the issues, we propose a two-phase state
update mechanism, inspired by classical two-phase update or commit protocols [68, 171]. As
illustrated in Figure 4.9, when evicting entries for flow 1, in the first phase, the switch control
plane evicts an entry from the ExoPlane flow manager. Since there can be some packets being
processed in the switch data plane, it waits for a certain time period (Tflush) to flush out the
packets. And then in the second phase, it evicts entries from the application’s objects. This
mechanism ensures that all packets that arrive at the switch before the entry of the ExoPlane
flow manager has been evicted are correctly processed in the switch. Note that when it evicts
entries from the application’s objects, it ensures that entries for other non-victim flows will
remain. The insertion works similarly. To insert entries for a flow, in the first phase, the switch
control plane inserts entries to the application’s objects, and then in the second phase, it inserts
an entry to the ExoPlane flow manager.

4.3.3 Synchronizing Shared Stateful Objects

The previous discussion considers scenarios with no cross-flow objects that can be updated at
runtime, which meant there was no need for objects on an external device and the switch to
be synchronized. In practice, applications may have some such objects; e.g., per-SrcIP packet
counter in our example is shared across flows. Next, we extend the basic ExoPlane protocol to
handle such objects.

Consistencymode. P4 programs can have two types of stateful objects: (1) control plane-updatable
object can be updated only from the control plane, such as a match-action table and (2) data plane-
updatable object can be updated from the data plane, such as a register. Correspondingly, ExoPlane
provides two levels of consistency. Control plane-updatable objects are rarely updated (e.g., a
stateful firewall table entry is inserted only for the first packet of each flow generated from an
internal network) and an exact value is critical for correct behavior (e.g., allowing packets for
an established TCP connection). Thus, for this type, we provide a strong-consistency mode. In
contrast, data plane-updatable objects can be updated more frequently (e.g., per-SrcIP packet
counter is updated for every packet) in the data plane and typically do not require strong
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Figure 4.10: Our state synchronization protocol synchronizes two copies of an entry in the packet
counter.

consistency since they maintain approximate or statistical information (e.g., packet counters and
sketches). Thus, for data plane-updatable objects, we provide a bounded-inconsistency mode that
provides consistency within a configurable time bound Tε (e.g., 1 second in our prototype).

Supporting strong consistency for control plane-updatable objects is straightforward; when
the external device’s control plane receives a request for updating (or inserting) an entry to an
object ( 2 in Figure 4.7) with a key (e.g., a SrcIP), it updates (or inserts) all entries corresponding
to the key existing at the external device and the switch.

Bounded-inconsistency for data-plane updatable objects is more challenging. Consider the
per-SrcIP packet counter implemented using an array of registers in our example. Suppose that
for a given SrcIP, there are two copies placed on the switch and the external device that can
be updated simultaneously. To achieve bounded-inconsistency, the ExoPlane runtime needs to
periodically merge values of the copies. Traditional techniques for state merging in server-based
network functions (e.g., [97, 170, 196]), are impractical in our context since they rely on buffering
incoming packets and pausing processing while combining copies. This is expensive and even
infeasible in the switch because packet rates are much higher, and we cannot buffer packets.

Our approach for bounded-inconsistency mode. We devise a state synchronization protocol
that achieves bounded-inconsistency without needing packet buffering. We do so by combining
capabilities of both the switch and external device’s control and data plane. In particular, we use
the control plane’s memory to track the history of periodic synchronizations while executing the
merge operation in the data plane.

We explain the idea using our counter example in Figure 4.10. The control plane of each
device maintains per-entry metadata including the current snapshot (Snap) and a history (H)
of an entry value on the other side (i.e., the switch tracks the history of the external device and
vice versa). For every Tε seconds, the switch control plane initiates synchronization by sending
its Snap and the H , and the external device’s control plane replies it with its snapshot and
history; e.g., switch sends <Snap=3,H=0> to the external device, and the external device sends
<Snap=2, H=0> back. Then, each side computes the changes that have been made at the other
side (δ) after the previous synchronization by subtracting two history values from the received

57



snapshot value. This prevents a potential under or double-counting issue. Lastly, the control
plane of both devices injects a special control packet containing δ to the data plane to combine
the changes to the current state value. Note that our protocol synchronizes the copies of states
correctly even when the external device fails and gets recovered. This is because the switch
maintains the progress that the external device had made before the failure (H) and provides
this information to the recovered device so that it can resume the synchronization from the state
when it failed.

Algorithm 3: State synchronization – Switch
1 Sswitch : The current state of the value on the switch
2 Ext: a set of external device IDs
3 Snapswitch : The latest snapshot of the value on the switch
4 Hext[1 . . . N ] : The latest information received from each external device
5 Upon the snapshot timer expires:
6 foreach exti ∈ Ext do

/* Send an initiate message to exti */

7 send (Snapswitch, Iswitch[exti]);
/* Receive a response from exti */

8 (Snapexti , Iexti ) = recv ();
9 foreach exti ∈ Ext do

/* Adjust snapshot values and merge them */

10 δ = Snapexti ◦− (Iswitch[exti] ◦+ Iexti);
/* Update the information for exti */

11 Iswitch[exti] = Snapexti ◦− Iexti
/* Merge (◦+) the adjusted value with the current state in the data plane */

12 Sswitch = Sswitch ◦+ δ

Algorithm 4: State synchronization – External device
1 Snapext : The latest snapshot of the value on the external device
2 Sext : The current state of the value on the external device
3 Iext : The latest information received from the switch
4 Upon receiving a message from the switch (Snapswitch, Iswitch):
/* Send a response to the switch */

5 send (Snapext, Iext);
/* Adjust snapshot values and merge them */

6 δ = Snapswitch ◦− (Iext ◦+ Iswitch);
/* Update the history for the switch */

7 Iext = Snapswitch ◦− Iswitch;
/* Merge the adjusted value with the current state */

8 Sext = Sext ◦+ δ

In Section 4.3.3, we describe our state synchronization protocol to synchronize entries in
a data-plane updatable object. Algorithm 3 and Algorithm 4 describe the detailed algorithm
running on the switch and external devices, respectively.
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More generally, our protocol supports objects that can be expressed in a key-value structure.
We provide a developer interface to specify an object-specific merge administrator expressed
by an addition (◦+) administrator that combines two values and an optional subtraction (◦−)
administrator that subtracts one value from the other, which are used by the protocol to compute
δ and commit the update. For example, a Bloom filter [70] can be expressed as (Key: an integer,
Value: {0, 1}) pairs with the binary OR as ◦+ (no subtraction administrator is needed).

4.3.4 Scaling to Multiple Devices

Thus far, we have assumed that there is a single external device. However, in practice, a single
device may not provide enough processing capacity or resources, and we may need multiple
external devices for this. To use multiple devices, ExoPlane shards entries in objects across the
devices based on the union key. So, when an entry miss occurs at the ExoPlane flow manager,
it routes a packet based on the union key to a specific external device that has state for the key.
However, the skewness in the union key space (Section 4.3.1) could result in load imbalance
across the devices (i.e., a subset of devices can be overloaded). Fortuitously, the small fraction
of popular entries we already have at the switch is helpful for load balancing. Prior analysis
in storage systems shows that by caching at least O(N logN) popular entries where N is the
number of backend servers (in our context, external devices), guarantees uniform load balancing
across the servers regardless of the skew [91]. Thus, by placing ≥ O(N logN) popular union
keys at the switch, we can provide the cache effect for load balancing.

4.3.5 Handling Failures

Application state loss due to failures can affect the performance or correctness of applica-
tions [130]. Specifically, we consider the failure model where an external device (or its hosting
machine) fails or a network link between the switch and the device fails. To deal with state loss
due to such failures, the ExoPlane runtime environment replicates each flow state to at least one
additional external device when initiating entries for the flow, and when the primary device
fails, it falls back to a replica. It achieves this by managing the logical to physical external device
ID mapping at the switch, where the primary and replica devices share the same logical ID.
However, even if there is a replica, if the runtime environment cannot detect failures and route
packets to a replica quickly, the application performance can be degraded (e.g., due to packet
drops). To enable rapid failure detection and reaction, we repurpose the packet generation en-
gine of the switch ASIC (which is typically used for diagnosis), similar to previous work [129].
We configure the engine to generate a packet when ports go down. By processing the generated
packet, ExoPlane updates the external device ID table in the data plane. Using this, the runtime
environment decides an egress port for routing the packet to a replica device.

4.4 ExoPlane Planner

Having discussed the packet-pinning for a single application, next we tackle the issue of sharing
resources across multiple applications to meet the performance objectives given by developers
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and the network administrator. To this end, we design a ExoPlane planner consisting of the
resource allocator and the application merger. The resource allocator takes inputs from the de-
velopers and the network administrator, finds an optimal resource allocation, and the application
merger generates a merged P4 program based on the optimal allocation decision. Figure 4.11
illustrates example inputs for an application.

4.4.1 Inputs

Developers provide a set of P4 programs (p), each of which consists of a set of stateful objects.
For each object, developers specify required size (e.g., the number of entries in a table or register
object). Optionally, they can also provide a per-app affinity to the switch as one of three values:
high, medium, and low. If the affinity of an application is set to high (or low), the applicationwill
run entirely at the switch (or at external devices). The network administrator provides cross-app
and per-app traffic information, which includes a fraction of traffic served by each application
out of the entire traffic arriving at the switch (Wp) and the cumulative traffic distribution (Dp)
over the union key space. While using a fraction of traffic served by each key provides the most
fine-grained information, we find that it could make the search space for resource allocation too
large. Instead, we use the distribution discretized into a larger quantum size denoted as Qp.
Based on Dp, we compute the estimated fraction of traffic served by each quantum q (Fp,q) The
network administrator also provides resource type (r) information of device (i). For example, we
consider SRAM, TCAM, hash units, and SALUs for a Tofino-based switch and compute units,
SRAM, and DRAM for NPU-based NICs. The network administrator can easily extend this to
other resource types.

4.4.2 Profiler

Based on the inputs, we generate per-app profiles consisting of a resource footprint, per-packet
processing latency, and compatibility matrix for each device type.

The profiler estimates resource footprint of r for p serving q on i denoted as Rp,q,i,r. Since
blackbox compilers determine the resource usage using proprietary heuristics, our preprocessor
compiles p to obtain the usage information. For each q, it updates the size of each object specified
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in an application code and compiles it using vendor-provided compilers. Then it extracts the
resource usage from compiler outputs. If the compilation fails due to insufficient resources, it sets
the resource usage to infinite. We use constantsCapi,r to represent the total amount of r available
on i. The profiler also estimates a per-packet processing latency of p on i, Lp,i. Specifically, it
instruments the switch to record two timestamps on a custom packet header field when a packet
enters and leaves the rack. Then it injects PktSizep-sized packets to the rack and estimates the
latency based on the timestamps in returned packets.

Finally, some vendor-provided P4 compilers for external devices may not support certain
switch hardware features or P4 constructs (e.g., Packet recirculation and P4 registers) used by
applications. Because of this, if an application uses a feature that is not supported by an external
device, the device cannot run the app. To consider the compatibility of the app on devices, our
profiler generates a compatibility matrix (Cp,i) that indicates whether p can be run on device i
based on a set of features supported by i and a set of features used by p. The first set can be
typically obtained from vendor’s compiler manual. For the second set, the profiler analyzes the
app code to extract used features.

4.4.3 Resource Allocation

Given these inputs, nextwediscuss howwe formulate the problemof finding an optimal resource
allocation satisfying per-app and cross-app requirements.

In our formulation, we assume that the resource usage of multiple applications can be
estimated by accumulating the resource usage of each app. We use binary decision variables
dp,q,i to indicate whether q for p is assigned to i. There are three types of constraints imposed by:
(1) the assignment of q, (2) the compatibility of p on i, (3) the amount of available resources, and
(4) the processing latency of p on i.

∀p, q :
∑
i

dp,q,i = 1 (4.1)

∀p, q, i : dp,q,i ≤ Cp,i (4.2)
∀i, r :

∑
p

∑
q

dp,q,i ×Rp,q,i,r ≤ Capi,r (4.3)

∀p : latp =
∑
q

∑
i

dp,q,i × Fp,q × Lp,i (4.4)

First, q must be assigned to a unique i (Equation 4.1). Second, q can be assigned to i if and
only if p is compatible with i (Equation 4.2). Third, the amount of r consumed by q on imust be
less than or equal to the total amount of r on i (Equation 4.3). Last, the expected latency of p is
the sum of per-packet processing latency of p on iweighted by Fp,q (Equation 4.4).

The network administrator provides an objective to share resources across multiple applica-
tion fairly. One possible fairness metric would be minimizing the weighted sum of the expected
processing latency of each application:

61



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

control App1_Ingress(...)
{

// objects
table A {

keys = {...}
actions = {...}
size = 1024;

...
// ExoPlane flow manager
table FlowManager {

keys = {// Union key}
actions = {...}
size = 10240;

}
// App1's control flow
apply {

...
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

// individual app sources
#include <App1.p4>

...

control Merged_Ingress(...)
{

// instantiate apps
App1_Ingress() app1_ig;
...
apply {

// execute App1’s logic
app1_ig.apply();
...

}
}

Step 1: Renaming the main control block (line 1)
Step 2: Alloca�ng the size of each object (line 6)
Step 3: Inser�ng the ExoPlane flow manager (line 9)

Step 4: Ini�a�ng app instances (line 2, 7)
Step 5: Inser�ng app execu�on logic (line 11)

{App1,…AppN}.p4

Merged.p4

Merging

Figure 4.12: Merging multiple P4 programs into a single program.

Minimize
∑
p

Wp × latp (4.5)

Other commonly used fairness metrics such as maximizing the minimum expected throughput
can be used as well. By solving the ILP, ExoPlane resource allocator finds an optimal assignment
of q to i for p, and the size of each object and ExoPlane flow manager for p accordingly, which
are used as input for the application merger, as we describe next.

4.4.4 Application Merger

Given a set of P4 programs and the optimal resource allocation decision, our application merger
combines the programs into a single P4 program, following our deployment model for multiple
applications, described in Section 4.2.2. Our merger supports programs written in P4-16 [31].
Figure 4.12 illustrates how the merger works. First, for each application, the merger renames the
main control block [31] to avoid naming conflicts between applications. Second, it specifies the
size of each object (e.g., number of entries in a table) based on the decision made by our resource
allocator. Third, it inserts an ExoPlane flowmanager. Last, in amerged P4 code, it instantiates an
instance of each application and inserts execution logic. The merged P4 code is compiled using
the vendor-provided compiler and loaded to the switch and external devices. Sometimes, the
compilation process could fail due to its proprietary heuristics for resource allocation. In such a
case, we try more conservative allocation (i.e.,with a tighter resource constraint).

In summary, ExoPlane planner allocates resources across multiple applications based on
inputs from developers and network administrators and produces a merged P4 program loaded
to devices. This process needs to be re-run when a set of applications or workloads changes,
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which we do not expect to happen frequently (e.g., for every hour). While this module is not on
the critical path, we evaluate it for completeness in Section 4.6.6.

4.5 Implementation

Data plane. The data plane components of the runtime environment implemented in P4-16
consists of: (1) ExoPlane flow manager implemented using a match-action table and (2) global
logical to physical external device IDmapping implementedusing a register array (on the switch).
Tracking flow popularity. We implement a switch resource-efficient flow popularity tracking
mechanism based on the fact that in ExoPlane, packets corresponding to potentially popular flows
are routed to an external device which has a larger amount of resources. On external devices,
we use the count-min sketch [84] to track the frequently accessed flow keys. When it detects a
new popular key, it reports the key to its control plane that maintains a list of reported flow keys
and corresponding entries, and they are reported to the switch control plane. On the switch,
we enable the aging supported by the switch ASIC for the ExoPlane flow manager. If a certain
key of the ExoPlane flow manager has not been accessed for a timeout period (Tidle), a callback
function registered at the switch control plane is triggered along with the information about the
key. In our prototype, we set Tidle to 5 seconds.
Control plane. We implement the control plane components of the runtime environment in
Python and C++. The main capability needed is to initialize new flow entries and promote new
popular flows’ entries on the switch based on the information reported by the data plane runtime
components. To implement this, on the switch side, we use Barefoot Runtime APIs to access
the stateful object in the switch data plane and on the smart NIC side, we use Netronome Thrift
APIs [51] to interact with the NIC data plane. The switch and the external device control planes
are communicated via an out-of-band TCP session over the 1 Gbps management network.
Resource allocator. We implement the resource allocator in C++ based on the Gurobi C++
API [39] to encode and solve our resource allocation ILP.
Application profiler and merger. We extend the open-source P4 compiler [46] to parse and
analyze input P4 programs. Using its frontend, we extract information from each program
including an entry size of each object. We implement the applicationmerger in C++, which takes
an IR generated by the compiler frontend, and produces a merged P4 program.

4.6 Evaluation

We evaluate ExoPlane on a testbed consisting of a programmable switch and servers equipped
with a smart NIC using various workloads. Our key findings are:

• In steady-state, ExoPlane provides predictable per-packet latency (e.g., 273–384 ns at the
switch) and scalable throughput with more external devices while the app-pinning model
achieves a limited throughput (Section 4.6.1).

• Even under dynamic workloads, ExoPlane can process packets with the correct state and
sustain high throughput with multiple devices (Section 4.6.2).
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Applications States

Per-VM NAT Per-flow address mapping for each VM.

Per-VM Stateful FW + Packet counter Established TCP connection list.

Per-VM SYN proxy Per-flow sequence number translation table.

NetCache [115] Key-value store cache.

Table 4.2: Switch programs written in P4 used in the evaluation in addition to ones introduced
in Table 4.1.

• In case of an external device failure, ExoPlane can recover an end-to-end TCP throughput
within 200ms (Section 4.6.4).

• ExoPlane provides the above benefits with small control plane (e.g., a few tens MB) and
switch ASIC resource overheads (e.g., less than 4.5% of ASIC resources) (Section 4.6.5).

Testbedsetup. Webuild anon-rack resource augmentationarchitecture consistingofWedge100BF-
32X Tofino-based programmable switches [32] and 4 servers equipped with Netronome Agilio
CX 40 Gbps Smart NICs [16]. We use 4 additional servers to generate traffic workloads. All
servers are equipped with an Intel Xeon Silver 4110 CPU and 128 GB DRAM, running Ubuntu
18.04 (kernel version 4.15.0). We repeat each experiment 100 times unless otherwise noted.

Traffic workloads. We use packet traces collected from a real data center [3], the Internet
backbone [57], and synthetically generated ones. The packet sizes vary (64–1500 B) in the real
trace. We generate packet traces with the flow key distribution in terms of the number of packets
per flow that follows a Zipf distribution with the skewness parameters (α=0.9, 0.95, 0.99). We
use a keyspace of 1 million randomly generated IPv4 5-tuples when creating packet traces. We
generate multiple packet traces with different packet sizes and skewness parameters. We replay
the traces using DPDK-pktgen [4] or run iperf [14] for TCP workloads.

Deployment scenarios. Weuse two scenarioswithmultipleP4applications: (1) at thedata center
front-end, 4 applications in Table 4.1 and (2) at the leaf of the network, 4 applications from Ta-
ble 4.2. Given packet traces, we synthesize inputs for the resource allocator in ExoPlane plan-
ner (e.g., per-app affinity and a flow key distribution). For example, we set the affinity level
for the UnivMon [146] and NetCache [115] to high so that workloads for these applications are
always processed at the switch.

4.6.1 Performance in Steady State

First, we evaluate the per-packet processing latency and throughput of applications running
on ExoPlane in steady state (i.e., no new flows, no changes in flow popularity, and no device
failures). Here, we pre-populate popular flow entries at the switch and assume that the traffic is
equally distributed across the applications (i.e.,Wp = 0.25 for all applications).

Per-packet processing latency. We define the packet processing latency as the time difference
between when a packet first arrives at the switch from a sender and when it is sent to a receiver
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Figure 4.13: Per-packet processing latency distribution of applications concurrently running on
ExoPlane in steady state.
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Figure 4.14: Throughput of each application running on ExoPlane in steady-state with a single
external device (Applications are running concurrently).

after processing. We instrument the P4 program running on the switch to record two timestamps
(48-bits each) to our custom packet header fields of each packet so that the receiver can compute
the processing latency for a packet. From the sender, we replay the backbone packet traces, each
of which contains more than 6 million flows.

Figure 4.13 shows the CDF of the per-packet latency distribution for each application. For
the applications that are assigned to the high affinity (UnivMon and NetCache), every packet
is processed at the switch, where each packet is processed in 273–384 ns depending on packet
sizes. For other applications, the distributions vary depending on packet sizes and how much
traffic is processed at the switch and the external device. The higher affinity level assigned to an
application, the more traffic is processed at the switch. For example, in the front-end scenario
(Figure 4.13a), at the switch, the ACL processes ≈70% of its traffic whereas the NAT processes
≈75% of its traffic. At the external device, packets are processed in 5.1–6.1 µs depending on an
application. The key takeaway from this experiment is while there is latency gap between the
switch and the external device, on each device, per-packet processing latency is predictable.

Application throughput. Tomeasure the application throughput, we replay the synthetic packet
trace that consists of 1500 B packets at line rate (98.6 Gbps in our testbed). We use four sender
nodes, each of which generates traffic for each of four applications (e.g., node 1 generates traffic
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Figure 4.15: Scalable throughputwithmultiple devices. Each color represents a different fraction
of traffic offloaded to external devices.

for application 1). Each application sends processed packets to the receiver node to measure the
throughput. We start with a single external device to demonstrate the impact of the number of
external devices to the throughput.

Figure 4.14 shows the throughput of each application. The applications that run entirely on
the switch (UnivMon and NetCache) process traffic at line rate without dropping any packets.
However, we observe that the others cannot process their traffic at line rate. This is because the
aggregate amount of traffic across the applications, which needs to be processed at the external
device (≈81 Gbps in the front-end case) exceeds the processing capacity of the single device
(≈39 Gbps).
Scaling throughput with multiple devices. By adding more devices, ExoPlane can support
higher throughput. To demonstrate this, we measure the aggregate throughput of the four
applications in the front-end scenario (the maximum traffic rate is ≈394 Gbps) while varying
the fraction of traffic offloaded to external device(s) and the number of external devices. In
this experiment, we control the fraction of traffic offloaded to external devices by manually
assigning the affinity of each application. UnivMon is still pinned to the switch. Figure 4.15
shows the results. In the case of 30, 40, 50% of the traffic being offloaded to external devices, we
see the throughput effectively increases with more devices. In contrast, when 100% of traffic is
offloaded, adding more external devices is not effective even though there is remaining capacity
in the devices due to load imbalance. This results show the load balancing effect of serving
popular flows at the switch, described in Section 4.3.4.
Comparison with the app-pinning model. We evaluate the benefit of ExoPlane over the app-
pinning model (described in Section 4.2.1) while running 4 applications from Table 4.1. In
this model, we place an application along with its entire state at the switch if there is a room.
Otherwise, we place it to one of the external devices, which has the largest remaining capacity.
Table 4.3 compares the aggregate throughput when running an ensemble of applications. While
ExoPlane provides themaximum throughput for each ensemble, the app-pinningmodel achieves
up to 69.3% lower throughput. This is becausewhile ExoPlane allows an application to effectively
utilize available resources across different devices, the app-pinning model fixes an application
to a device.
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Ensemble of applications App-pinning ExoPlane

VPN 98.6 Gbps 98.6 Gbps
VPN+NAT 137.1 Gbps 197.2 Gbps
VPN+NAT+ACL 174.6 Gbps 295.6 Gbps
VPN+NAT+ACL+UnivMon 271.3 Gbps 394.1 Gbps

Table 4.3: Comparison of aggregate throughput of four applications running on the app-pinning
model and ExoPlane with four external devices.
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Figure 4.16: Throughput changes due to workload changes.

4.6.2 Performance under Dynamic Workload

Per-packet processing latency. As mentioned in Section 4.3.2, workload changes happen due
to new flows arriving or changes in flow popularity. Handling new flows in ExoPlane can
increase packet processing latency because the first packet of a new flow can be processed only
after initiating necessary state for both the ExoPlane flow manager and application’s objects. In
contrast, packets in the flow that becomes popular can be processed either at the switch or an
external device with the same latency shown in Section 4.6.1. Thus, for each application, we
measure the processing latency of the first packet of each flow. We observe that the median
latency for the first packet of a new flow is 32 ms, which is an order of magnitude higher than
that of an external device in steady state. There are two factors that contribute to this latency.
First, the Netronome Thrift API takes a few tens of ms to insert new entries to objects, which is
not an ExoPlane-specific overhead. Second, since ExoPlane replicates entries for new flows to
one another external device, it incurs additional latency when handling new flows.

Application throughput. The changes inflowpopularity can impact the application throughput.
To measure the throughput changes, we use the same setup as the previous measurement in
steady state, but for every 10 second, we alter the most popular top 10 flows for the VPN gateway
of the front-end scenario. Figure 4.16 shows the throughput changes over time. Again, we first
use a single external device. As shown in Figure 4.16a, when the popularity changes, there is a
sharp drop in the throughput of the VPN gateway. Also, the throughput of other applications
slightly decreases as well. This is because until the state entries for the new set of popular flows
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Figure 4.17: Difference in shared object values on the switch and external devices; there are no
more packets after the 32nd epoch.

are installed at the switch (i.e., a transient period), a high volume of traffic for the flows are
routed to the external device, exceeding its processing capacity. On the other hand, as shown
in Figure 4.16b, with 4 external devices, there is no such performance drop because there is
enough processing capacity at the external devices to handle the traffic during the transient
period.

4.6.3 Shared Stateful Object Synchronization

Next, we evaluate the effectiveness of our state synchronization protocol (Section 4.3.3) using
the per-SrcIP packet counter in the stateful FW. Here, the metric of interest is the difference
between the shared counter entries maintained by each device at each synchronization interval
(Tε=1 sec.). We measure this by recording the values at each device right after executing the
merge operation in the data plane while injecting 1500 B packets for 60 seconds at 98.6 Gbps.
We vary the fraction of traffic offloaded to external devices. In our setting, there are 1000 entries
shared between the switch and at least one of the external devices, and we get the median of the
differences. Figure 4.17 shows the result with three different fractions of offloaded traffic. When
the switch and external devices process the same amount of traffic (i.e., 50% offload), there is
almost no difference, whereas when there is a gap between the amounts of traffic (i.e., 30% or
40% offload), there are some differences. This is because incoming packets keep updating the
counter at each devices during the synchronization, affecting the measured values. However,
we see that the variance of the difference is small across the synchronization intervals regardless
of the gap, showing that our mechanism synchronizes the values. We also confirm that after the
packet transmission is done, copies at each device are synchronized with the same value as the
total number of packets.

4.6.4 Failover

In this experiment, we demonstrate how fast the end-to-end TCP throughput can be recovered
by ExoPlane in the presence of external device failure. In Figure 5.16, we use a NAT as an
example and run iperf to measure TCP throughput changes. There are 4 TCP connections,
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and we configure two of them to be processed at the switch while the remaining is processed
at an external device. There are two external devices enabled, and we compare changes in
TCP throughput when (1) there is no failure and (2) one of the external devices fails with and
without ExoPlane. We emulate the failure by disabling a port connected to the external device.
At around 20 sec., when the external device-1 goes down, our failover mechanism generates a
control packet that modifies the logical to physical device ID mapping in the switch data plane
without involving the control plane. Then, subsequent packets are routed to the replica device.
We see that the TCP throughput is recovered to its original ratewithin a 200ms5 whereaswithout
ExoPlane, it cannot be recovered.

4.6.5 Runtime Resource Overheads

Control plane resource overhead. The control plane component of ExoPlane runtime environ-
ment maintains metadata for application’s states, including a mapping between union keys and
devices and a history of each shared object entry on other devices. (e.g., the switch control plane
maintains the history of entries on external devices). Each of them consumes the control plane
memory. In our scenarios, the union keys to device mapping consumes 12.5 MB per application
and the history metadata consumes 1.5 MB per shared object (e.g., srcIP counter in the firewall).
Our state synchronization protocol consumesmanagement network bandwidth as it periodically
exchanges the information between devices, which contains a snapshot and a history of each
entry. In our setting, the bandwidth consumption is 24.4Mbps per shared object, which increases
in proportion to the number of devices, the sync. interval, and the number of entries.
Switch ASIC resource usage. The data plane component of ExoPlane runtime environment
consumes some switch ASIC resources. Since we implement it using an exact-match table
with the aging feature and a register array, it consumes SRAM, SALUs, hash bits, MAP RAM,
and match crossbar,6 whose usage increases proportionally to the number of popular flows
maintained (except for SALUs). In our setting where 10240 popular flow entries are managed, it
consumes 4.4% of the SRAM, 2.1% of SALUs, 3.5% of the hash bits, 3.8% of the MAP RAM, and
3.6% of the match crossbar, leaving ample resources to application logics.

5The finest sampling granularity supported by iperf is 100ms.
6MAP RAMs are used for the aging feature and match crossbars are used for implementing the ‘matching’ part of

match-action tables.
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Figure 4.19: Elapsed time for the resource allocator.

4.6.6 Performance of the ExoPlane Planner

We evaluate the performance of the ExoPlane planner. In this experiment, we measure the
elapsed time for finding optimal resource allocations and generating a merged P4 program
on a server in our testbed. For the two sets of applications and the hardware configuration
used in our evaluations, our resource allocation takes 54.5 ms and merging the program takes
642ms, which is reasonable since the orchestrator needs to run this process on the hours or days
timescale. To further understand the impact of different parameter values including the number
of applications and traffic workload sizes, we synthesize inputs for the resource allocator and
measure the elapsed time. First, we fix the number of external devices to 16 (to support a large
number of applications) and the number of union key-based flow entries to 1 million for each
application. Then, we vary the number of flow entries while fixing the number of applications
to 4 and the number of devices same as the above. As illustrated in Figure 4.19a, the resource
allocation time grows linearly up to 712 ms as the number of application increases. Also, as
shown in Figure 4.19b, as the number of flow entries increases, the elapsed time also increases
up to 4.1 second when each application needs to handle 10 million flow entries. This experiment
illustrates the ExoPlane orchestrator takes longer time aswe addmore applications and increases
the workload size, which can be up to a few seconds, it is still with in the reasonable timescale
under our deployment model.

4.7 Related Work

Switch resource augmentation. Our work, TEA (Chapter 3) provides a virtual table abstraction
that allows a single switch app to access remote DRAM for lookup tables. It is optimized
for a single app with a single table. Flightplan [185] takes a single app written with custom
annotations and disaggregates it to multiple devices. Developers need to be aware of external
devices and manually partition the app so that each device runs only a particular portion of the
app. Lyra [96] proposes a custom language for writing a single app that is disaggregated across
multiple heterogeneous switches. In contrast, ExoPlane provides an OS for switch resource
augmentation to support multiple concurrent P4 programs.
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Language and framework for data plane composition. Some prior works attempt to support
multiple data plane programs or modules in a single device [107, 184, 202, 204]. For example,
virtualization approaches such as Hyper4 [107] and HyperV [202] allow composing multiple P4
programs with a constrained programming model. P4Visor [204] provides a resource-efficient
merger thatmerges different versions of a program. However, they fail to workwhen the amount
of resource required by the composed program exceeds the available resources in the switch and
do not consider multiple heterogeneous devices.
Server-based network function state management. Previous work on state management for
server-basedNFs inNFVutilizes the local or remote storage tomanageNF state [97, 117, 120, 170,
196]. While they work well for server-based NFs, they do not directly applicable in our setting
due to workload characteristics of switch applications and hardware constraints, as pointed
in Section 4.3.3.

4.8 Summary

To fully unleash the potential of in-network computing, we need to look beyond the single appli-
cation, fixed workload models in consideration today to support richer concurrent application
workloads. Unfortunately, limited on-chip resources has been a roadblock to support multiple
applications concurrently on a switch. In this chapter, we envisioned a practical approach of
on-rack switch resource augmentation as an affordable and incrementally expandable solution
to this dilemma. To effectively realize this architecture, we argued the need for systematic
OS abstractions and addressed key challenges in realizing these abstractions. Our evaluation
with various P4 applications showed that ExoPlane can provide applications with low and pre-
dictable latency, scalable throughput, and fast failover while achieving these with small resource
overheads and no or little modifications on applications. Thus, ExoPlane can be a basis for a
future-proof way of enabling in-network computing workloads for future apps, workloads, and
emerging hardware device capabilities.
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Chapter 5

Supporting Fault-Tolerance for Stateful
In-Network Applications

Although with TEA and ExoPlane, we can support multiple concurrent stateful in-network
applications, a key missing piece remains: fault tolerance. Classic network designs followed the
end-to-end principle [173], keeping a critical state only on the end hosts. It enabled a fate-sharing
approach to reliability [82]; when switches are stateless, recovering from their failure simply
entails finding a new communication path. Stateful in-switch applications [12] challenge this
paradigm; e.g., the failure of a switch running a load balancermay cause the loss of its forwarding
state, breaking thousands of active connections. While data center networks are engineeredwith
redundant network paths [102, 172, 180] to provide fault tolerance at the routing layer, there are
no capabilities for recovering in-switch states after a failure.

Thus, we need to reconsider fault tolerance for in-switch processing – something previously
done in ad hoc, application-specific ways. Our goal in this chapter is to ensure that, after a failure
and reroute, the same application state becomes available at the replacement switch, without
degrading performance and while remaining transparent to end hosts.

Making switch state fault tolerant is uniquely challenging because of the scale and resource
constraints involved. Techniques like checkpointing and active replication, which have been
applied to software middleboxes [169, 179], are designed for server-based systems. These tech-
niques rely on obtaining a consistent snapshot of state and buffering output until state updates
are durably recorded to other servers. However, a switch’s high packet processing speed (a
few billion packets/second [50, 53, 54]) and its limited compute and storage capabilities make it
infeasible to translate these techniques to the switch context.

In this chapter, we introduce RedPlane,1 a fault-tolerant state store for in-switch applications.
RedPlane provides APIs for developers to (re)write their stateful P4 programs and make them
fault-tolerant. This allows an application to retain consistent access to its state, even if the switch
it runs on fails or traffic is rerouted to an alternative switch. RedPlane achieves this through a
data plane centric replicationmechanism that continuously replicates state updates to an external

1The name denotes a replicated data plane.

73



state store implemented using DRAM on commodity servers. Note that running entirely in the
data plane channel is key to keeping up with the switch’s full processing speed.

Realizing this high-level idea in practice entails several challenges. First, traditional notions
of strict correctnesswith linearizability and exactly-once semantics for operations require reliable
communication and output buffering. However, this is infeasible on the switch data plane due
to its limited capabilities. Second, at the traffic volumes the switch data plane needs to process,
naïvely requiring per-packet coordination with the server-based state store imposes severe per-
formance overheads. Last, routing decisions when a switch fails could be unpredictable. Thus,
we must be able to transparently migrate the relevant state between two switches regardless of
the routing decisions.

We address these challenges with the following key ideas:

• Based on the requirements of in-switch applications, we define two practical correctness
models. First, based on our observation that network applications are already resilient
to packet loss, we define a strict consistency mode by explicitly adopting the standard
definition of linearizability [111], which permits operations that do not complete while still
providing strong consistency. Second, for write-centric applications (e.g.,monitoring using
sketches [84]) that can tolerate approximate results, we propose a relaxed consistencymode
that allows some state to be lost after a failure, but bounds the inconsistency with lower
overheads.

• Instead of buffering packets using limited switch resources, we use the network itself and
state store’smemoryas temporary storagebypiggybackingpacket contents on coordination
messages.

• To enable reliable state replication, we build a lightweight sequencing and retransmission
protocol that ensures state updates are processed in the correct order, without requiring
complex protocols (e.g., TCP) in the switch data plane.

• To avoid overheads due to frequent coordination with the state store, we propose a lease-
based state ownership protocol [100, 142, 158] to provide correctness without coordinating
on every state access and migrate ownership between different switches as needed.

We design the RedPlane protocol that realizes our consistency modes, prove its correctness,
and confirm this using a TLA+ model checker [52]. We implement a prototype of RedPlane in
P4 [31] and C++ and Python, and show that different types of applications can be fault tolerant
using it. We evaluate it with various applications in our testbed consisting of two Tofino-based
programmable switches, four regular switches, and 10 servers. Our evaluation results show
that under failure-free operation, RedPlane has negligible per-packet latency overhead for read-
centric applications like NAT, and less than 8 µs overhead even for the worst case. When a switch
fails, RedPlane can recover end-to-end TCP throughput within a second by accessing the correct
state.
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5.1 Motivation

In-network processing has flourished in recent years, as a natural convergence of the demand for
sophisticated network functionality from data center operators and the commercial availability
of programmable switch platforms [21, 50, 53]. Programmable switches are used for classic
middlebox functionality [123, 153], monitoring [13, 105], DDoS defense systems [197, 203] and
accelerating other networked systems [115, 137, 138, 139, 147, 174, 189, 206].

These applications are stateful; i.e., state on the switch determines how to process packets. In
this chapter, we focus primarily on hard state applications, where a loss of state disrupts network
or application functionality.2 An example is an in-switch NAT, where the key state is an address
translation table. Losing this state would make it impossible to forward packets for existing
connections.
Network model. We consider a deployment model where programmable switches are installed
into the network fabric such that all traffic to be processed by an in-switch application traverses
one of the programmable switches. This could be achieved in several different ways, depending
on the network architecture. In a typical data center architecture (Figure 5.1), this could be
achieved by using the switches on all core or all aggregation-layer switches.3 All traffic entering
or leaving a cluster, for example, would traverse one of these switches. Alternatively, an operator
might deploy a cluster of programmable switches as dedicated “NF accelerators”, explicitly
routing traffic through them; this approach is similar to how software load balancers [90, 163]
are deployed today.
State partitioning. We assume that application state is partitionable using some key derived
from the packet header, and that each packet’s processing uses only state from the associated
partition. In many cases, such as for the NAT example, the key will be the IP 5-tuple, and, hence,
we use “partition” and “flow” interchangeably. However, other applications may use different
partitioning, e.g., partitioning on VLAN ID to detect heavy-hitter flows for a particular tenant.

We also assume that the network is configured to provide best-effort affinity such that packets
from the same partition usually arrive at the same switch. Standard layer-3 routing protocols
such as Equal-Cost Multi-Path routing (ECMP) provide this property when they are configured
to use the partition key as their hash key.
Primer on programmable switches. Programmable switch architectures used today, e.g., Intel
Tofino [53], use a limited amount of on-chipmemory (e.g., SRAMandTCAM) to provide a variety
of stateful object abstractions, including tables, registers, meters, and counters. Applications can
use these to keep state across multiple packets, such as the address translation table in the NAT
example above. In the ingress and egressmatch-actionpipeline, objects are allocated in each stage
and accessed by packets via ALUs. These objects are also accessible by the switch control plane

2Other applications maintain only soft state in the switch and provide their own failure recovery mechanisms.
These are not the focus of our work, though RedPlane could perhaps help simplify their design or improve recovery
performance.

3In principle, RedPlane could be deployed on top-of-rack (ToR) switches, but it is potentially less useful. If each
rack has one ToR switch, and it fails, connectivity to the servers in that rack is lost. RedPlane can restore the switch
state onto a different rack, but depending on the application that may not be useful. However, if there are two ToR
switches per rack, RedPlane would be useful.
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Figure 5.1: Impact of switch failures on in-switch NATs.

State access Applications Impact of switch failure

Read-centric

NAT Connection broken
Stateful firewall Connection broken
Load balancer [153] Connection broken
SYN flood defense [203] Dropping valid packets

Write-centric Super-spreader detection [186] Inaccurate detection
Heavy-flow detection [146] Inaccurate detection

Mixed-read/write

SGW in EPC [177] Active session broken
In-network sequencer [137] Incorrect sequencing
Per-object routing [139, 206] Choosing wrong servers
In-network key-value store Losing key-value pairs

Table 5.1: Examples of stateful in-switch applications and impact of switch failures.

through the ASIC-to-CPU PCIe channel which has a limited bandwidth (O(10 Gbps)) compared
to the ASIC’s per-port bandwidth (O(100 Gbps)). In addition, the ASIC provides other built-in
functionality such as packet replication, recirculation, and mirroring for more advanced packet
processing. While we use Tofino-based programmable switches for our work, we believe our
design can be implemented on other programmable switch ASICs since hardware capabilities
leveraged in RedPlane’s switch data plane (e.g., packet mirroring) are general features supported
by most switch ASICs.

5.1.1 Impact of Switch Failures

Switches can fail, either by a switch failing entirely (a fail-stop model), or by individual links
losing their connectivity. Measurement studies in production data centers have shown that
such switch failures are prevalent. For example, in Microsoft’s data center, 29% of customer-
impacting incidents are related to hardware failures including ASIC failure, fiber cuts, or power
failures [143], and in Facebook’s data center, 26% of incidents are related to switch failures [152].
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Switch failures can impact stateful applications in two ways. If a switch fails entirely, all
application state it held is lost. Beyond that, a link failure or the failure of a different switch can
impact many paths in the network [145], causing traffic to be rerouted [64, 102, 134]. Traffic
that previously traversed one switch might be routed to a different one, where the appropriate
state is unavailable. In the absence of this state, application processing can fail. For example,
as illustrated in Figure 5.1, lacking the proper translation table entries, the NAT cannot forward
packets for existing connections, breaking open connections en masse. Indeed, this is a serious
problem – software-based stateful load balancers at cloud providers implement complex failover
mechanisms [90, 163].

Beyond the conventional NFs (e.g., NATs, load balancers, firewalls), there are several in-
switch applications (shown in Table 5.1) that exhibit complex state access patterns. For example,
many applications that are designed to enforce QoS policies (e.g., rate limits) employ streaming
algorithms (e.g., sketching) to capture characteristics of traffic such as heavy-hitters [146, 186].
Switch failures lead them to make inaccurate decisions as the statistical data is lost. Such
applications update state (e.g., sketches) on every packet, so we call them write-centric. In
contrast, many conventional NFs and DDoS defense systems (e.g., SYN proxy) [197, 203] are
read-centric.

Another group of applications havemixed-read/write state access patterns, typicallywithmuch
less frequent updates than write-centric applications. One example in this category is NFs in
the packet core for cellular networks (e.g., Evolved Packet Core (EPC) for LTE) [37]. Packet core
NFs such as a serving gateway (SGW) route users’ data traffic from user devices to the Internet
and vice versa based on per-user states (e.g., forwarding state), which are updated when the
control plane receives signaling messages (e.g., device attached). To cope with the increasing
volume of signaling traffic [7, 25],4 there have been recent efforts to accelerate the control plane
functions by offloading them to the programmable data plane [11, 17, 164, 177]. For example, a
SGW running on a switch maintains per-user tunnel endpoint IDs (TEIDs) to route packets, and
this state is updated by signaling messages and read by data packets that are encapsulated with
TEIDs. Thus, when a switch fails, since the SGW loses the state, it cannot forward packets for
users, disrupting active connections. Affected users need to re-establish connections after the
failure [60], increasing the service latency. Other applications that route requests in application-
specific ways (e.g., for databases [206] or key-value stores [139]) also fall into this category since
they require state updates on every write (but not read) request.

5.1.2 Existing Approaches and Limitations

We now examine classical fault tolerance mechanisms [98, 159, 191] andmechanisms tailored for
network middleboxes [169, 179]. At a high level, these approaches can be categorized into three
classes: (1) checkpoint-recovery, (2) rollback-recovery, and (3) state replication. All prior work
targets server-based implementations. In what follows, we discuss why natural adaptations of
these approaches to the switch environment fail to ensure correct behavior during failures.

4Despite the growth, it is expected that signaling traffic rate is still much lower than that of data traffic (e.g., 5% of
data traffic [156]).
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(c) State replication: Switches replicate state to data plane memory using chain replication. Packets must
be routed to the correct chain node. By design, the upstream switch at one-level below or above needs to
route packets to a specific switch in a chain depending on the packet.

Figure 5.2: Highlighting why adapting existing approaches for fault tolerance fails for hardware
switches.

Checkpoint-recovery. Checkpointing approaches periodically snapshot application state (e.g.,
an address translation table in NAT) and commit it to stable storage (e.g., [169]). When a
failure occurs, the latest snapshot is populated on a backup node (i.e., an alternative switch in
our context). Figure 5.2a illustrates a candidate implementation on switches using an external
controller to store snapshots via the switch control plane. To achieve a consistent snapshot,
data plane execution must be paused and packets buffered during the snapshot period. Limited
data-to-control plane bandwidth in modern switch architectures makes this impractical.

78



Rollback-recovery. This approach, previously used for software middleboxes [179], logs every
packet to stable storage and replays the traffic logs on a new device after failure to reconstruct
application state. A natural implementation is sending every packet to the switch control plane,
which logs it to the controller (Figure 5.2b). In principle, this approach can guarantee correctness
if every packet is synchronously logged and replayed after a failure. However, the mismatch
between the data traffic rate (Tbps) and the data-to-control plane bandwidth (Gbps) will result
in many packets being dropped and will, thus, be incorrect.

State replication among switch data planes. Consider a state machine replication approach
using chain replication [191], but applied to switch data planes (Figure 5.2c). Packets are for-
warded through a sequence of switches, each of which updates its state and forwards the packet
to the next switch in a chain. Only once the packet has reached the tail of the chain is it for-
warded on its way to its destination. This is done entirely on the data plane, so it can function at
high speed. This approach achieves correctness only if state updates are not lost. However, the
state updates are delivered over an unreliable channel, and since the switch data plane cannot
effectively support reliable transport protocols (e.g., TCP) updates could be lost or reordered,
violating correctness. Also, using one switch to replicate another switch’s state makes poor use
of data plane-accessible switch memory – the most costly and limited resource. It also requires
changes to the routing policy of the network since a packet needs to be explicitly routed to a
specific switch in the chain depending on whether the packet updates state or not.

Takeaways. From the above discussion, we see two key takeaways. First, approaches that rely
on the switch control plane must consider the mismatch between control and data plane speeds.
Second, while switch data-plane-only approaches can provide good performance, they suffer
three shortcomings: (a) incurring significant switch resource overhead; (b) making it difficult to
reason about correctness due to unreliable communication channels between switch data planes;
and (c) they may additionally constrain routing policies.

5.2 Overview

Our goal is to design a fault tolerance solution that provides the following four properties:
• Correctness: Switch failure should be transparent to applications: clients should not see

state that would not be possible in the absence of a failure.
• Performance: Under failure-free operation, overhead for per-packet latency should be low

(say, a few tens of µs).
• Low resource overhead: It should not consume switches’ limited compute and storage

resources excessively.
• Transparency to routing policies: That is, we must allow a packet to update and/or read

state regardless of the location of a switch where the packet is routed.
To this end, we present RedPlane, which provides an abstraction of fault-tolerant state storage

for stateful in-switch applications. RedPlane provides an illusion of “one big fault-tolerant
switch” – the behavior is indistinguishable from the same application running on a single switch
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Figure 5.3: RedPlane overview highlighting extensions to traditional workflows for in-switch
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that never fails. To achieve this, RedPlane continuously replicates state updates which can be
restored without loss after a failure.

RedPlane takes a state replication approachwith two defining characteristics: (1) the switch’s
state replication mechanism is implemented entirely in the data plane, and (2) state storage is
done through an external state store, a reliable replicated service made up of traditional servers.
Property (1) means that the switch’s control plane is not required for state replication, avoiding
the issues with the checkpointing and rollback-recovery approaches of Section 5.1.2. Property
(2) means that the replicated state is stored in commodity server DRAM, a relatively low cost
storagemedium compared to switch data planememory. This avoids the high resource overhead
of the state replication approach discussed in Section 5.1.2.

While the idea of using servers’ memory as an external store is similar to recent work on
TEA [129], it is important to note that TEA does not tackle fault tolerance. It focuses on the
problem of resource augmentation to enable a switch to retrieve state stored in memory of
servers. Furthermore, that design can only utilize servers directly attached to a top-of-rack switch.
As such, their design does not tackle fault tolerance or provide provable correctness in the
scenarios when multiple switches can access the store.

RedPlane provides a set of APIs (Figure 5.3) implemented in P4 [31], a language to specify
data plane programs onprogrammable switches, to allowdevelopers to easily integrateRedPlane
with their stateful P4 applications. Once developers (re)write their applications using RedPlane
APIs, the P4 compiler generates a binary of RedPlane-enabled applications loaded to the switch,
which continuously replicates updates to the state store through the data plane.
Scope and limitations: In this work, our focus is on enabling fault tolerance for stateful ap-
plications with partitionable hard state, where a loss of state disrupts network or application
functionality, shown in Table 5.1. Applications only with non-partitionable state (e.g., global
counter) are beyond the scope of this work. Also, we assume that global state in an application
(e.g., a port pool inNAT) is sharded across andmanaged by state store servers. Other applications
that need soft-state (e.g., in-network caches or ML accelerators) do not require fault tolerance,
but may benefit from RedPlane.
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5.2.1 Design Challenges

While replicating state updates through the data plane to an external state store seems appealing,
realizing this idea in practice presents some challenges:

• Challenge 1. Providing correct replication in the data plane while tolerating unreliable
communication Traditional server-based replicated systems aim to provide strict correct-
ness by ensuring not just linearizability but also that each operation is executed exactly
once even in the presence of dropped or retransmitted messages [135, 142, 158]. To do so,
they build on reliable communication channels like TCP. However, the switch data plane
cannot support reliable communication, nor can it buffer significant amounts of traffic.

• Challenge 2. Handling high traffic volume Switch data plane operates at immense traffic
volumes (up to a few billion packets per second [33, 50, 54]), in contrast to server-based
systems handling a few million. If each packet that reads or updates state requires inter-
acting with a server-based state store, the servers’ capacity will rapidly be exceeded. It will
also incur significant performance overhead.

• Challenge 3. Being transparent to routing policies A switch failure, recovery, or network
routing change could cause traffic flows originally processed at a switch S1 to be routed
to a different switch S2. However, since the routing decisions may be unpredictable, we
cannot make assumptions on S2 or presuppose what backup routes will be taken. That is,
we must be able to transparently migrate the relevant state from S1 to S2 irrespective of the
location of S2. For instance, we need to make the NAT table entry available when packets
for a particular connection are processed by a different instance.

5.2.2 Key Ideas

To tackle these challenges, we build on four key ideas:
• Idea 1: Practical correctness for switch state (Section 5.3). We define two correctness

models based on the requirements of in-switch applications. The first, a strict consistency
mode, is based on linearizability [111]. Because we observe that network applications are
already designed to tolerate packet loss, we explicitly adopt the standard definition of
linearizability, which permits operations that do not complete while still providing strong
consistency for those that do. Second, since many write-centric applications (e.g., moni-
toring using sketches [84]) accept approximate results, we propose a relaxed consistency
mode that allows some state to be lost after a failure, but bounds the inconsistency.

• Idea 2: Piggybacking output packets (Section 5.4.1). Instead of buffering output packets
using limited switch resources, we use the network itself as temporary storage by piggy-
backing packet contents on coordination messages.

• Idea 3: Lightweight sequencing and retransmission (Section 5.4.2). To cope with the
unreliable communication channel between the switch data plane and the state store with
low resource overhead, we employ a sequencing mechanism for protocol messages and
devise a lightweight switch-side retransmission mechanism by repurposing the switch
ASIC’s packet mirroring feature.

81



• Idea 4: Lease-based state ownership (Section 5.4.3). To reduce the frequency with which
the switch must coordinate with the state store, especially for applications with read-
centric and mixed-read/write workloads, we adopt a lease-based mechanism inspired by
prior work [100, 142, 158]. This allows us to avoid coordination with the state store for
packets which need to read but do not modify state. At the same time, we ensure that all
state updates are durably recorded before any of their effects are externalized, guaranteeing
linearizability. Thismechanismalso serves as themeans bywhich state ismigrated between
switches to support the transparency.

Taken together, these high-level ideas address the aforementioned challenges. First, the
linearizability-based consistencymodel coupledwith thepiggybacking and lightweight sequenc-
ing and retransmission mechanism allows to replicate state reliably and correctly (Challenge 1).
Second, the relaxed consistency and lease-based state ownership help cope with high traffic
volume (Challenge 2). Lastly, the lease-based state ownership makes RedPlane transparent to
routing policies (Challenge 3).

5.3 Correctness Model

RedPlane provides two levels of consistency, which applications can choose between based on
their requirements. A linearizable mode provides strict guarantees, making the system indistin-
guishable from a single fault-tolerant switch. Because this has a high overhead for write-centric
applications due to frequent coordination with the state store, RedPlane also offers a bounded-
inconsistencymode that permits some state updates to be lost on switch failure, but guarantees a
consistent view of switch state.

5.3.1 Preliminaries

Bydefault, RedPlane provides linearizability [111], a correctness condition for concurrent systems.
We model a stateful in-switch program as a state machine, where the output and next state are
determined entirely by the input and current state:
Definition 1 (Stateful in-switch program). A stateful program P is defined by a transition
function (I, S) → (O∗, S′) that takes an input packet and the current state, and produces zero,
one, or multiple output packets, along with a new state.
To simplify the definitions below, we will assume that each input packet p produces exactly one
output packet P (p); it is straightforward to extend them to the zero- or many-output case. This
implies that the program’s behavior is determined entirely by the sequence of input packets,
and in particular that it is deterministic and that packets are processed atomically. Although
switch architectures are pipelined designs that process multiple packets concurrently [71], their
compilers assign state topipeline stages in away thatmakespacket processing appear atomic [66].

The gold standard for replicated statemachine semantics is single-system linearizability [111].
That is, that the observed execution matches a sequential execution of the program that respects
the order of non-overlapping operations. To adapt linearizability for in-switch programs, we
first redefine a history in terms of packet processing:
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Definition 2 (History). A history is an ordered sequence of events. These can be either input
events Ip, in which a packet p is received at a RedPlane switch, or output events Op in which the
corresponding output packet is output by a RedPlane switch.

Note that it is possible for there to be input events Ip without the corresponding output Op,
if the processing of p is still in process or due to a failure. We discuss this in depth next.

5.3.2 Linearizable Mode

Definition 3 (Linearizability for a stateful in-switch program). A history H is a linearizable
execution of a program P if there is a reordering S of the input events in H such that (1) the
value for each output event Op that exists inH is given by running P on the input events in S in
sequence, and (2) if Ox precedes Iy in H then Ix precedes Iy in S.
Here, S is the apparent sequential order of execution.

Linearizability is fundamentally a safety property, not a liveness one: it specifies what output
values are acceptable, but does not guarantee that all operations complete. It is possible for a
packet to be received and (1) update switch state, but produce no output, or (2) neither update
switch state nor produce any output. Definition 3 reflects this: a packet with an input event but
no output event can still appear in the sequential order S. If it precedes the processing of other
packets, then they see the effects of its state update. If it appears at the end of S, it has no visible
effect on system state.

While these anomalies comport with the definition of linearizability, most replicated systems
aim to provide a stronger property: that every operation is executed exactly once and returns its
result to the client. Ensuring this requires several protocol-level mechanisms: typically, clients
retry requests that do not receive a response, and replicas keep state to detect duplicate requests
and resend the responses without executing them twice [135, 142, 158]. As we see (Section 5.4.2),
these techniques are not feasible in our environment.

Accordingly, RedPlane takes a different approach: it explicitly permits these two types of
anomalies. While this may seem surprising, it matches the semantics of modern networks. The
two cases correspond to a packet being lost (1) between the RedPlane switch and its destination
or (2) between the source and the RedPlane switch, respectively. Network applications must
already tolerate lossy networks, so they are resilient to such losses.

Relaxing the definition of correctness enables a tractable implementation. By not requiring
the system to achieve complete reliability, our protocol may drop packets during failover, or if
messages between a switch and the state store are lost. In these scenarios, an input packet or
its output may be lost. Of course, dropping too many packets is undesirable for performance
reasons; such loss events are rare.

5.3.3 Per-flow Linearizability

In most in-switch programs, some or all state is associated with a particular flow – a subset of
traffic identified by a unique key, e.g., an IP 5-tuple, VLAN ID, or an application-specific object
ID. For example, each translation table entry in a NAT is tied to a specific flow based on an IP
5-tuple. For many applications, per-flow state is the only state that needs to be consistent or
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fault tolerant – either because there is no global state, or because global state can tolerate weaker
consistency, e.g., traffic statistic counters that need not be precise. RedPlane generally provides
consistency for per-flow state (consistency for global state is optional):
Definition 4 (Per-flow linearizability). A history H is per-flow linearizable if, for each flow f ,
the subhistory Hf for the packets in flow f is linearizable.

As long as programs use only per-flow state, per-flow linearizability is the same as global
linearizability, because linearizability is a local (i.e., composable) property [111]. The benefit of
operating on a per-flow level is that it means synchronization between states associated with
different flows are not required. As we show in Section 5.4, this allows RedPlane to distribute
execution of a program acrossmultiple switches: each has the state associatedwith certain flows,
and can process packets for those flows. This matches the way many applications are deployed
in practice, e.g., a NAT will be deployed to a cluster of switches, using ECMP for load balancing.
Because this load balancing is done on a per-flow granularity, each switch is responsible for
performing translation for a subset of flows, and does not need access to the translation table for
the other flows.

5.3.4 Bounded-inconsistency mode

RedPlane’s linearizable mode uses a synchronous replication protocol (Section 5.4.1), which can
induce high overhead for write-centric applications. However, we observe that many write-
centric applications in programmable switches operate in contexts where approximate results
are acceptable, e.g., monitoring using sketches [84] or Bloom filters [70]. For these applications,
RedPlane offers a bounded-inconsistencymode that has lower overhead.

In this mode, RedPlane takes periodic snapshots of data plane state and replicates them
asynchronously. This means that upon switch failure, the most recent state updates can be
lost. However, RedPlane ensures that the system recovers to a consistent state from within a
time interval ε. RedPlane’s consistent snapshot mechanism ensures that the state after recovery
reflects an actual state of the system, which simplifies reasoning about the correctness of complex
data structures.5 In Section 5.4.4, we describe how we address key challenges in realizing this
mode in RedPlane.

5.4 RedPlane Design

Now,wedescribe theRedPlaneprotocol that realizes our linearizable andbounded-inconsistency
modes. We begin with an overview of the protocol and explain how we address practical
challenges.

5Although the bounded-inconsistency mode may affect properties of some approximate data structures (e.g., no
false negatives in Bloom filters), since it bounds the inconsistencywithin ε, developers or network operators can easily
reason about the potential inconsistency.
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Figure 5.4: RedPlane state replication protocol packet format.

5.4.1 Basic Design

As shown in Figure 5.3, RedPlane consists of (1) an external state store built on commodity
servers and (2) a RedPlane-enabled application running on the switch data plane. In this section,
we describe how the components work together via the state replication protocol.

For clarity of exposition, we start with simplifying assumptions: there is no packet loss or
reordering between switches and the state store, switches do not failwhilemessages are in transit,
and packets for a flow are routed to only one switch at a time. We revisit these assumptions in
Section 5.4.2 and Section 5.4.3.

External state store:

The external state store is an in-memory key-value storage system. We partition it acrossmultiple
shards by flow – identified by an IP 5-tuple or other key. Each state store shard can be replicated
using conventional mechanisms and we do not seek to innovate here as many existing key-value
stores meet our needs (e.g., [48, 141, 160]). Specifically, our prototype is a simple in-memory
storage server implemented in C++ that uses chain replication [191] with a group size of 3.

Basic replication protocol:

ARedPlane-enabled application replicates state updates to the state store by exchanging protocol
messages formatted as shown in Figure 5.4. It uses standard UDP and IP headers to address
messages to the state store or the switch using their respective IP addresses. TheRedPlane header
consists of a sequence number, a message type, and a flow key. Depending on the message type,
it can also include flow state and an output packet. Wewill discuss these fields shortly. Note that
we assign an IP address to each RedPlane switch and use it for routing requests and response
packets between state store servers and RedPlane switches. This works with general L3 routing
protocols including ECMP and BGP.

As an illustrative example to help understand the protocol, we consider a per-flow counter
application shown in Figure 5.5, This application updates or reads the state for each packet. In
the example, there are two switches and a state store. We have multiple packets in each flow f ,
with the nth packet denoted as pktfn. This example illustrates a case where the Switch-1 initially
handles f1, but after its failure, the flow is rerouted to the Switch-2.
State initialization or migration (Step 1 or 4 in Figure 5.5). When the application receives
a packet that belongs to a flow it has never seen before (e.g., pktf11 ), it needs to send a state
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Figure 5.5: Basic workflow of RedPlane state replication protocol. “Repl” indicates a state
replication request. pktfn indicates nth packet of a flow f .

initialization request. It identifies the corresponding state store server by hashing the flow key
(e.g., IP 5-tuple), and looking up the corresponding server IP andUDP port from a preconfigured
table.

There are two possible cases: (1) the flow is new and so has no state, or (2) the flow state
previously existed on a failed switch, and a packets for that flow are now being routed to a
switch on an alternative path (i.e., failover). In case (1), upon receiving the request, the state
store initializes its storage for the state and sends a response back to the switch (Step 1 ). In case
(2), since the state store already has the flow state, it sends a response containing the latest state
(Step 4 ).

Upon receiving the response, the application installs the returned state into the corresponding
switchmemory. For statefulmemory registers, this can be done entirely in the data plane. On the
Tofino architecture, updates to match tables or certain other resources need to be done through
the switch control plane. In this case, RedPlane routes the processing through the control plane.
This can introduce additional latency (we measure this in Section 5.6.1). However, many in-
switch applications already require a control plane operation on a new flow (e.g., to install a new
translation mapping in a NAT), in which case the added overhead is minimal.
Reading or updating state (Step 2 or 3 in Figure 5.5). Once the state has been initialized, the
application can read the state value (i.e., the counter in our example) directly (Step 3 ). When it
updates the state (i.e., the counter value), RedPlane sends a replication requestwith the new value
to the state store. This message is generated entirely through the data plane. The state store
applies the update, and sends a replication reply message (Step 2 ).
Piggybacking output packets. When the application updates the state, RedPlane should not
allow an output packet to be released until the state has been recorded at the state store –
otherwise, the update could be lost during a switch failure, violating correctness. This requires
the output packet to be buffered until the replication reply is received.

Unfortunately, the switch data plane does not have sufficient memory to buffer packets in
this way (and various other constraints on how memory can be accessed make it unsuitable for
storing complete packet contents). RedPlane instead piggybacks the packet onto its replication
request message, and the state store returns it in its reply. When the reply is received, RedPlane
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Figure 5.6: Serializing out-of-order requests with sequencing. Counter values (cnt) in red and
blue indicate the state on the switch and the state store, respectively.

decapsulates and releases the packet. In effect, this uses the network and the memory on the
state store as a form of delay line memory – trading off network bandwidth, which is plentiful
on a switch, for data plane memory, which is scarce.

Note that it is possible to receive packets that read state when there are in-flight replication
requests for the state. In this case, the packets are buffered in the same way through the network
(with a special RedPlane request type) until a switch receives a response for the latest replication
request.

While our basic design provides correctness under the simplified assumptions, we find that
in more realistic environments, it may not be able to guarantee correct behavior. In the following
sections, we describe potential challenges, and how we extend the basic design to address them.

5.4.2 Sequencing and Retransmission

To guarantee correctness, replication requests must be successfully delivered and replicated in
order at the state store. For example, the replication request (Step 2 in Figure 5.5) must be
delivered in order. However, successful in-order delivery is not guaranteed in a best-effort
network between switches and the state store.

Figure 5.6a illustrates why such unreliability in the network can be problematic. We use the
same per-flow counter as an example. Each time the counter is incremented, RedPlane sends the
new value to the state store. If the state store just processes updates in the order they are received,
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a reordering could cause a later counter value to be replaced with an earlier one. Request loss
can cause a similar issue.

A traditional replication system, like chain replication, might address this by relying on a
reliable transport protocol like TCP. Unfortunately, it is not practical to implement a full TCP
stack on the switch data plane – if it is possible at all, it would excessively consume data plane
resources.

Our approach. Instead of implementing a full-fledged reliable transport on a switch data plane,
we choose to build a simpler UDP-based transport with mechanisms that deal with possible
packet reordering and loss. First, to handle out-of-order state replication request messages, we
employ a mechanism called request sequencing [137], which assigns a per-flow monotonically
increasing sequence number to each request message. The state store uses this sequence number
to avoid applying updates out of order (Figure 5.6b).

Second, to cope with lost replication requests or responses, we develop a mechanism for
request buffering. RedPlane buffers replication requests and retransmits them if it does not receive
a replybefore a timeout. We implement this by repurposing the egress-to-egresspacketmirroring
capability of switch ASICs. When RedPlane sends a replication request, it mirrors a copy with
the current timestamp as metadata. When the mirrored request enters the egress pipeline and it
has not been acknowledged by a response with the same or a higher sequence number, RedPlane
checks whether the request has timed out by comparing the current timestamp to the timestamp
in its metadata. If it has timed out, it resends the request to the state store. Otherwise, it mirrors
the request again without ending the request to the state store.

As discussed previously, buffering a full packet payload is challenging on a switch due to
memory limitations. Instead, RedPlane buffers only state updates (i.e., the RedPlane header) – not
the piggybacked output packet by truncating the packet. This reduces the amount of data that
needs to be mirrored. A consequence of this is that if a replication request or its response is
dropped, the output packetwill be lost. This is permitted by our linearizability-based correctness
model: it is indistinguishable from the output packet being sent and dropped in the network.
The state updates must be retransmitted, however, because subsequent packets processed by the
switchmay see the new version, and thus it must be durably recorded. Wemeasure the overhead
of request buffering in Section 5.6.4.

5.4.3 Lease-based State Ownership

What if multiple switches attempt to process packets for a particular flow at the same time,
especially during failover or recovery? The protocol in Section 5.4.2 will not be correct in this
case, when there are concurrent accesses to the same state. Figure 5.7a illustrates why. After
Switch-1 has a link failure (but does not lose its state, which is cnt=2), packets are routed to
an alternate, Switch-2. If Switch-1 recovers, a packet may read its old state, a violation of
linearizability.

Our approach. RedPlane ensures that only one switch can process packets for a given flow
at a time using leases, a classic mechanism for managing cached data in file systems [100] and
replicated systems [142, 158]. Figure 5.7b illustrates this. If a packet wants to access state, but
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Figure 5.7: Consistent state access for multiple switches.

the state is not available at the switch, it first requests a lease for the flow. The state store grants
a lease for a specific time period (1 second in our prototype) only if no other switch holds an
active lease on the same flow state. The lease time is renewed each time the switch sends a
replication request for that flow; switches that frequently read but infrequently update state can
send explicit lease renewal requests. Our prototype does so every 0.5 seconds.

5.4.4 Periodic Snapshot Replication

As described in Section 5.3, RedPlane offers bounded-inconsistency mode for write-centric ap-
plications that permit approximate results, e.g., monitoring using sketches [186] or Bloom fil-
ters [197]. In this section, we describe how we realize it in the switch data plane.

For such applications, RedPlane replicates snapshots of state asynchronously and periodically.
Every Tsnap seconds, a snapshot of the current state is sent to the state store, while output packets
are released without waiting for replication to complete.

However, realizing this approach entirely in the data plane is challenging. While data
structures often consist of multiple entries (e.g., slots in sketches), the switch is architected, and
the P4 language is designed, to allow access to a single entry per register array per packet. Also,
building hardware that could atomically copy entire register arrays would be costly.
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To address this challenge, we employ a lazy snapshotting approach. We maintain two copies
of the data structure that are lazily synchronized with each other. These are interleaved in the
switch’s register arrays so that each array index contains two entries, one from each copy. Two
metadata registers are used to indicate which entry at each index is the active copy. The first,
a 1-bit flag, is toggled when a snapshot is taken. The second, a 1-bit register array, represents
whether that index has been updated since the current snapshot started.

To take a snapshot, we flip the flag and read values from the now-inactive copy. Meanwhile,
when packets arrive and update the array, one of two operations occur. The first packet to update
an index synchronizes the two copies and then updates the active copy. Later packets simply
update the active copy. This allows us to take a consistent snapshot of the entire structure while
incoming packets continue to update it. Additional snapshots must wait for the current one to
complete. We describe the pseudocode of our mechanism in Appendix B.

Replication is achieved using the switch ASIC’s packet generator. We configure it to generate
a batch of packets every Tsnap seconds. To replicate a data structure with n entries, we generate a
batch of n packets, eachwith a unique ID pi. The ID in each packet is used to address the ith entry
in the data structure and copy its value into a RedPlane replication protocol header. Note that
while RedPlane asynchronously replicates snapshots, it still guarantees successful replication
with its sequencing and retransmission mechanisms.

5.4.5 Protocol Correctness

RedPlane’s replication protocol provides per-flow linearizability defined in Section 5.3. Due to
space constraints, we give only a brief sketch of the reasoning here. The lease protocol ensures
that at most one switch is executing a program for a particular flow at a time. The sequencing,
retransmission, and buffering protocol ensure that an output packet is never sent unless the
corresponding state update has been recorded and acknowledged by the state store.

During non-failure periods, RedPlane provides per-flow linearizability because the single
switch processing packets for a flow operates linearizably, but some output packets may be lost
(due to dropped replication traffic with piggybacked messages). After a failover, the new switch
receives a state version at least as new as the most recent output packet from the old switch.
This satisfies the linearizability requirement that any packet sent after these output packets were
observed follow it in the apparent serial order of execution. We also wrote a TLA+ specification
of the linearizable mode to model-check the above property (Appendix C).

Our periodic snapshot replication guarantees that the system recovers to a consistent state
from within a time bound ε (i.e., bounded inconsistency) by tracking the time since the last
successful replication; if the time bound is exceeded, an application-specific action may be taken
(e.g., dropping further packets or treating the switch as failed).

5.5 Implementation

Our prototype implementation is available in our repository [59].
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Data plane. We implement RedPlane’s data plane components in P4-16 [31] (≈1192 lines of
code) and expose them as a library of P4 control blocks [31, §13], which form the RedPlane APIs
that developers can use to make application state fault tolerant. We compile RedPlane-enabled
applications to the Intel Tofino ASIC [53] with P4 Studio 9.1.1 [45]. We implement key functions
such as lease request generation, lease management, sequence number generation, and request
timeout management, using a series of match-action tables and register arrays. We evaluate
the additional resource usage in Section 5.6.4. As mentioned in Section 5.4.2, we implement
request buffering via the mirroring and truncation capabilities of the switch ASIC, which allows
us to buffer only the replication protocol data and discard the original payload. We implement
a basic sketch that supports lazy snapshotting; developers can modify it to implement similar
data structures such as Bloom filters.
Control plane. We implement the switch control plane in Python and C++. Its main function
is to initialize and migrate (if available) state for the data plane by processing corresponding
responses forwarded by the data plane component.
State Store. Our contribution is in the fault tolerance protocol design and switch components.
As such, our state store prototype is built based on readily available libraries and simple imple-
mentations. We implement RedPlane’s state store in C++ for Linux servers. It uses Mellanox’s
kernel-bypass raw packet interface [5] for optimized I/O performance. To ensure reliability in
the presence of server failures, we implement chain replication [191] using a group of 3 servers
located in different racks.
Applications. To demonstrate the applicability of RedPlane, we implement various applications
in P4 described below. Figure 5.8 illustrates how the P4 implementation of RedPlane-enabled
NAT looks like. Developers need to include the P4 file of RedPlane core APIs (line 1) and the P4
file of their original application code (line 2). Lines highlighted in red shows initialization and
the use of the RedPlane ingress and egress control block instances (line 5, 9, 20, and 24). And the
lines highlighted in bold blue indicates modules of the original NAT program (line 6 and 11).
Since NAT does not update state in the data plane (i.e., read-centric), no modification is needed
to their original P4 implementation. Other applications described below can be implemented in
a similar way.
(1) NAT: The NAT implementation uses RedPlane to implement a fault-tolerant per-5-tuple
address translation table and available port pool. Since the port pool is a shared by different
flows, it is sharded across state store servers and managed by them. The state is updated when
a TCP connection is established from an internal network.
(2) Firewall: The stateful firewall adds fault-tolerance to a per-5-tuple TCP connection state table
using RedPlane. Its state is updated when a TCP connection is established from an internal
network.
(3) Load balancer: The load balancer maintains a per-5-tuple server mapping table; we make it
fault-tolerant using RedPlane. It also uses a server IP pool, which is shared state. When a new
TCP connection is established from an external network, the state is updated.
(4) EPC-SGW:We also implement a simplified serving gateway (SGW) used in cellular networks,
a mixed-read/write application. It maintains per-user tunnel endpoint ID state. The state is
updated by signaling messages and read by data packets.

91



1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

#include "redplane_core.p4" // RedPlane core API
#include "nat.p4" // developer’s NAT program

control Ingress (headers hdr, metadata meta) {
RedPlaneIngress() redplane_ingress;
NAT_Ingress() nat_ingress;
L3_Routing() l3_routing;
apply {

redplane_ingress.apply(hdr, meta);
if (meta.is_normal_pkt == true) {

nat_ingress.apply (hdr, meta);
}
if (meta.is_normal_pkt == true ||

meta.is_piggybacked == true) {
l3_routing_ingress.apply (hdr, meta);

}
}

}
control Egress (headers hdr, metadata meta) {

RedPlaneEgress() redplane_egress;
apply {

if (meta.is_redplane_req == true ||
meta.is_redplane_ack == true) {
redplane_egress.apply(hdr, meta);

}
}

}

Pipeline(
IngressParser(),
Ingress(),
IngressDeparser(),
EgressParser(),
Egress(),
EgressDeparser()

) pipe;

Switch(pipe) main;

Figure 5.8: The main part of P4 implementation of RedPlane-enabled NAT.

(5)Heavy-hitter (HH)detection: Weimplement aheavy-hitterdetectorusing count-min sketches [84]
as an example of write-centric applications; there are 3 sketches, each consisting of 64×32-bit
slots indexed by a hash of the IP 5-tuple. We implement separate sketches per VLAN ID, as-
suming that the network operator wants to enforce different policies for each cloud tenant. Since
sketches are an approximate data structure which can be replicated asynchronously, we use
periodic snapshot replication.

(6) Per-flow counter: To demonstrate RedPlane’s worst-case performance, this application counts
packets forwarded for each IP 5-tuple. State is updated for every packet and synchronous
replication must be used.
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Figure 5.9: Three-layer network testbed for experiments.

5.6 Evaluation

We evaluate RedPlane on a testbed consisting of six commodity switches (including two pro-
grammable ones) and servers using both real data center network packet traces and synthetic
packet traces. Our key findings are:

• In failure-free operation, RedPlane adds no per-packet latency overhead for applications
that are read-centric or replicate state asynchronously. For write-centric applications in
linearizable mode, RedPlane incurs 8 µs per-packet overhead (Section 5.6.1).

• In failure-free operation, the throughput of read-centric applications is not degraded. For
write-centric applications, the throughput is bottlenecked by state store performance in
linearizable mode, but periodic snapshot replication reduces the overhead. Similarly,
RedPlane incurs almost no bandwidth overhead for read-centric applications and small
overhead for write-centric in bounded-inconsistency mode even at scale (Section 5.6.2).

• After a switch failure, RedPlane-enabled applications access their correct state and recover
end-to-end TCP throughput within a second (Section 5.6.3).

• RedPlane provides these benefits with little resource overhead as it consumes <14% of
ASIC resources (Section 5.6.4).

Testbed setup. We build on a three-layer network testbed consisting of six commodity switches
(including two programmable ones) and servers, as shown in Figure 5.9. The aggregation
layer has two 64-port Arista 7170 Tofino-based programmable switches [33] running stateful
applications written in P4. The core and ToR switches run 5-tuple-based ECMP routing to route
packets to end hosts even when one aggregation switch fails. Each ToR switch has two servers
connected, and four additional servers attached to the core switch emulate hosts outside the
datacenter. The state store runs on one server in each rack. All servers are equipped with an
Intel Xeon Silver 4114 CPU (40 logical cores), 48 GBDRAM, and a 100GbpsMellanox ConnectX-5
NIC, running Ubuntu 18.04 (kernel version 4.15.0). We repeat each experiment 100 times unless
otherwise noted.
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Figure 5.10: End-to-end RTT when RedPlane-NAT processes packets vs. other approaches.

5.6.1 Latency in Normal Operation

First, we evaluate the per-packet latency overhead introduced by RedPlane under failure-free
operation for the 5 applications in Section 5.5. To measure the processing latency, we have each
application send packets back to a sender node and track the RTT of each packet. We replay
publicly available packet traces from a real data center and enterprise network [2, 3] to generate
100,000 packets and measure the processing latency of each packet. The packet sizes vary (64–
1500 bytes) in the real traces. To evaluate EPC-SGW, we inject a signaling packet for every 17
data packets, following statistics used in previous studies [156, 167].

Overhead of RedPlane. As an exemplar application, we evaluate the per-packet latency for a
NAT in RedPlane6 and compare it with baseline implementations: (1) NATwritten in P4 without
fault-tolerance (Switch-NAT), (2)NATwritten in P4with controller based fault-tolerance (Switch-
NAT w/ an external controller)7 (3) NAT implemented on a CPU server without fault-tolerance
(Server-NAT), (4) NAT implemented on a server with fault-tolerance (FT Server-NAT), and (5)
FTMB-NAT which uses rollback-recovery for server-based middleboxes [179].8 For switch-NAT
w/ controller, RedPlane-NAT, and server-NAT, we enable chain replication for the controller,
state store, and NAT instances, respectively.

Figure 5.10 shows the CDF of the per-packet latency distribution. Compared to Switch-
NAT, which is expected to have the lowest latency, RedPlane-NAT shows the same 50th and
90th percentile latency (7 µs and 8 µs, respectively), meaning that there is no overhead. This
is because for NATs, packets except for the first packet of each flow only require state (i.e.,
address translation table) to be read. Both Switch-NAT and RedPlane-NAT show a high 99th
percentile latency (110 µs and 142 µs, respectively), mainly due to the overhead introduced by
our control plane implementation; in Switch-NAT, the first packet of every flow is forwarded to
the switch control plane to create and insert a new entry to the translation table. RedPlane-NAT
has additional overhead since it needs to request a lease from the state store before updating

6We choose NAT to compare results with those reported in prior work [179].
7We implement a simple external controller to emulate SDN controller-based approaches (e.g., Morpheus [175]

and Ravana [121]), which communicates with the switch control plane via a 1 Gbps management channel.
8We use the latency reported in the original FTMB aper [179] since we were not able to get its full implementation.
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Figure 5.11: End-to-end RTT for RedPlane-enabled applications. All applications have chain
replication enabled for the state store. For Sync-Counter, we also show its overhead without
chain replication.

state. Switch-NATwith the external controller incurs higher 99th percentile latency (185 µs) due
to the communication overhead between the switch control plane and the controller and between
controller instances (for chain replication) over the slower management network. Server-based
versions (FT Server-NAT and FTMB-NAT) have 7–14× higher median latency compared to the
switch-based approaches, as packets need to traverse additional hops in the network and they
have inherent performance limitations.

Impact on different applications. Next, we evaluate the per-packet processing latency overhead
of different RedPlane-enabled applications. As shown in Figure 5.11, RedPlane-enabled NAT,
firewall, load balancer, EPC-SGW, andheavy-hitter (HH) detection, all have the same 8µsmedian
latency, identical to that without fault-tolerance. The NAT, firewall, and load balancer are read-
centric and update state only when a new flow is created; EPC-SGW is mixed-read/write,
and updates state on signaling packets whose frequency is 5% of data packets. HH detection,
although it is write-centric, performs periodic state replication asynchronously, so it does not
affect the latency. On the other hand, since Sync-Counter updates state and replicates updates
synchronously for every packet, it adds an additional latency of 20 µs to every packet. 12 µs of
this overhead is due to the 3-way chain replication used to tolerate state store server failures.

5.6.2 Bandwidth Overheads

To evaluate network bandwidth overheads, we inject 64-byte packets from three traffic generation
servers at ≈207.6 Mpps9 which is the maximum rate that our traffic generator can achieve.

Additional bandwidth consumed. In this experiment, we instrument each application to count
the number of bytes it sends and receives, including both original packets and protocol message
packets. Figure 5.12 shows the ratio of bandwidth used for RedPlanemessages to the total traffic.
For read-centric applications including NAT, firewall, load balancer, we see that there is almost
no bandwidth overhead since RedPlane generates protocol messages only for the first packet of

9Each server generates packets at ≈69.2 Mpps.
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Figure 5.12: RedPlane replication bandwidth overhead.
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Figure 5.13: Impact of the frequency of snapshotting on RedPlane-enabled HH-detector.

each flow. For EPC-SGW, RedPlane incurs 12.8% overhead since it generates protocol messages
for signaling packets, and some of data packets are buffered through the network as described
in Section 5.4.1. For HH-detector, which asynchronously replicates a snapshot of state for every
1 ms, RedPlane incurs negligible overhead. We also measure the absolute bandwidth overhead
for different snapshot frequencies and number of sketches as shown in Figure 5.13. For a 1 ms
period, it consumes 34.16 Mbps (13.8%). Even with 5 sketches, this is lower than the bandwidth
overhead for Sync-Counter (51.2%) because in the latter case RedPlane requests and responses
contain both headers and original payload. This result implies that in an extreme case where an
application replicates state updates synchronously for every packet, achieving fault-tolerance is
expensive. We also analyze the bandwidth overhead at scale (i.e., a topologywithmore RedPlane
switches) for all 6 applications using our analytical model-based simulation, and the result is
consistent with Figure 5.12 in terms of the percentage overhead.
Throughput impact on applications. In this experiment, we measure the throughput of
RedPlane-enabled applications and compare it with the same applications without fault tol-
erance. We send 64-byte packets from three servers, one from each rack, to one of servers
attached to the core switch at≈207.6 Mpps. In our testbed, the link between an aggregation and
a core switch becomes the bottleneck, and we observe that the maximum forwarding rate the
aggregation switch can achieve is around 122.5Mpps. Figure 5.14 shows themedian throughput
of each application with and without RedPlane. Obviously, applications achieve the maximum
throughput without RedPlane. With RedPlane, read-centric (NAT, firewall, and load balancer)
applications and applications that replicate state updates asynchronously (HH-detector) can
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Figure 5.14: Impact of RedPlane on data plane throughput of RedPlane-enabled applications.
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Figure 5.15: Impact of update ratio on data plane throughput of the RedPlane-enabled key-value
store.

achieve the same throughput as their non fault-tolerant counterparts. The RedPlane-enabled
EPC-SGW achieves a slightly lower throughput than that of its counterpart, mainly due to
some data packets buffered through the network during the replication. The throughput of
Sync-Counter becomes nearly half that of its counterpart: we find that it is bottlenecked by the
performance of the state store. This suggests that applying a strict consistency mode degrades
the throughput of write-centric applications as they are also affected by the performance of the
state store.

Varying update ratios. Whilemost of existing in-switch applications are read-centric or perform
asynchronous replication, incurring little overhead, it is important to understand the maximum
throughput of applications characterized by different read/write (i.e., update) ratios. For this
experiment, we write a simple in-switch key-value store in P4 with RedPlane and generate
packets consisting of custom header fields that indicate an operation (read or update), a key, and
a value (for updates). We use the same setup as the previous experiment and let each server
generate packets based on a predefined update ratio with uniformly distributed random keys.
Figure 5.15 shows that as the update ratio increases, the throughput degradation depends on the
number of state store servers; by adding more servers, we can achieve higher throughput.
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Figure 5.16: End-to-end throughput changes during failover and recovery with and without
RedPlane.

20 40 60 80 100

Traffic rate (Gbps)

0

10

20

30

B
u

ff
er

o
cc

u
p

a
n

cy
(K

B
)

0% loss 1% loss 2% loss

Figure 5.17: Switch packet buffer occupancy due to request buffering.

5.6.3 Failover and Recovery

Next, we measure how fast the end-to-end performance can be recovered by RedPlane in the
presence of switch failure and recovery. We run iperf [40] to measure between two servers,
attached to a core switch and a ToR switch respectively. All traffic passes through aNAT running
on the programmable switches. We compare changes in TCP throughput when (1) there is no
failure (Baseline), (2) one switch fails without RedPlane (Failure), (3) one switch fails while using
RedPlane (Failure+RedPlane).

Figure 5.16 shows the results. In anetworkwithoutRedPlane,whenSwitch-1 fails, packets are
rerouted to another switch and dropped, breaking the TCP connections. In contrast, RedPlane-
enabled NAT successfully maintains high throughput when the switch fails and recovers after
short disruptions (0.9 and 1.0 seconds). This recovery time is affected both by the core switch’s
failure detection/rerouting time and RedPlane’s lease period (set to 1 second here). Control
plane and state store optimizations could further reduce this.

5.6.4 RedPlane Switch ASIC Resource Usage

Packet buffer usage. In this experiment, we evaluate the overhead of our request buffering
mechanism (Section 5.4.2). Since RedPlane buffers a replication request until it receives a reply
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Resource Additional usage
Match Crossbar 5.3%
Meter ALU 8.3%
Gateway 9.9%
SRAM 13.2%
TCAM 11.8%
VLIW Instruction 5.5%
Hash Bits 3.7%

Table 5.2: Switch ASIC resources used by RedPlane.

corresponding to the request from the state store, it consumes some amount of the switch packet
buffer. Since there is no preciseway ofmeasuring the buffer usage in real-time, we instead use the
queue depth information provided by the switch ASIC to estimate the upper bound of the buffer
occupancy.10 Specifically, we assume a write-centric application where every incoming packet
issues a request (i.e., the most demanding scenario). And we let each request packet record its
queue depth information to a P4 register in the data plane and read it from the control plane for
every second and take the maximum value. We generate packets from a traffic generation server
while varying the traffic rate and the request loss rate.11 Figure 5.17 shows the result. When there
is no request loss, the buffer occupancy is less than 1.5 KB even at 100 Gbps traffic rate. As we
increase the request loss rate, the buffer usage also grows; when the traffic rate is 100 Gbps and
≈2% of requests are lost, our buffering mechanism consumes at most 18 KB, which is acceptable
for a given a few tens of MB of the packet buffer in the switch ASIC.

Table 5.2 shows the additional switch ASIC resource consumption of RedPlane for 100K con-
current flows (using the P4 compiler’s output), expressed relative to each application’s baseline
usage. Overall, there are ample resources remaining to implement other functions along with
RedPlane.12 RedPlane uses TCAM to implement acknowledgment processing and request time-
out management, which need range matches. In terms of scale vs. number of concurrent flows,
only the SRAM usage would increase proportional to the number of flows as it stores per-flow
information (lease expiration time, current sequence number, and last acknowledged sequence
number).

5.7 Related Work

Fault-tolerance for in-switch applications. Recent efforts have shown that offloading to pro-
grammable switches enhances performance. For example, offloading the sequencer [137], key-
value cache [115, 147], and coordination service [116] improves the performance of distributed

10It is a per-packet queue depthmeasuredwhen a packet is dequeued from the buffer, and the TofinoASIC provides
this information as an intrinsic metadata that can be accessed at the egress pipeline.

11We emulate the request loss by dropping requests at a certain probability at the switch.
12Match Crossbars are used for implementing the ‘matching’ part of match-action tables. Meter ALUs perform

stateful operations on registers. Gateways perform ‘if-else’ conditions in the control flow.
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systems. However, these applications can lose their state due to switch failures. RedPlane can
help make them fault-tolerant or simplify their designs.
Fault-tolerance and state management for server-based NFs. Fault-tolerance for server-based
NFs or middleboxes has been addressed by prior systems like Pico [169] and FTMB [179]. When
an NF instance fails, the state of the failed NF is recovered through checkpoint or rollback
recovery on a new NF instance. These approaches cannot be applied directly to the switch data
plane (Section 5.1.2). Previous work on state management for stateful NFs uses local or remote
storage to manage NF state [97, 170, 196]. However, these APIs target planned state migration
rather than unplanned failures. Similar work (again, targeting planned migration) has also been
proposed for router migration [124].
External memory for switches. TEA (Chapter 3) shares RedPlane’s approach of using servers’
memory as external storage for switch state [129], but towards a different goal: allow switches
to handle state larger than their on-device memory. It does not address fault tolerance or multi-
writer consistency.
Switch-based reliability protocols. Other recent work runs coordination protocols between
switches to build reliable storage [86, 116]. Our goal is conceptually different – to replicate
state for in-switch applications rather than provide a networked storage service – but uses some
similar mechanisms, like network sequencing [137].

5.8 Summary

While many recent efforts have demonstrated the potential benefits of running datacenter func-
tions on programmable switches, we argued that there is one critical missing piece in current
designs, which is fault tolerance. To address this issue, in this chapter, we presented RedPlane,
which provides a fault tolerant state store abstraction for in-switch applications. We formally de-
fined a linearizability-based correctness model for a replicated switch data plane state and build
a practical replication protocol based on it. Our evaluation with various stateful applications on
a real testbed showed that RedPlane can support fault-tolerance with minimal performance and
resource overheads and enable end-to-end performance to quickly recover from switch failures.
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Chapter 6

Conclusions

In this thesis, we have argued that by designing the right abstractions and runtime environments
for programmable data plane devices, we can build an in-network computing platform that
supports resource elasticity and fault resiliency without any hardware modifications.

With Table Extension Architecture (TEA) (Chapter 3), we explored a new approach that
leverages DRAM on remote servers available in a typical data center, with a focus on network
functions (NFs) as an application. TEA provides a virtual table abstraction that allows NFs on
programmable switches to look up large virtual tables built on external DRAM. Our approach
enables switch ASICs to access external DRAM purely in the data plane without involving CPUs
on servers and the switch control plane. TEA provides low and predictable table lookup latency
scalable throughput with additional servers (e.g., 138million lookups per secondwith 8 servers).

With ExoPlane (Chapter 4), we argued that an on-rack switch resource augmentation ar-
chitecture that augments a programmable switch with other programmable network hardware,
such as smart NICs, on the same rack could be an affordable and incrementally scalable solution.
To realize this vision, we designed and implemented ExoPlane, an operating system for on-rack
switch resource augmentation to support multiple concurrent stateful applications. ExoPlane
provides in-network applications with low and predictable latency, scalable throughput, and
fast failover while achieving these with small resource overheads and no or little modifications
on applications.

With RedPlane (Chapter 5), we designed and implemented a fault-tolerant state store for
stateful in-network applications. RedPlane provides in-switch applications consistent access to
their state, even if the switch they run on fails or traffic is rerouted to an alternative switch.
We address key challenges in devising a practical, provably correct replication protocol and
implementing it in the switch data plane. RedPlane incurs negligible overhead and enables
end-to-end applications to recover from switch failures rapidly.

Before concluding, we summarize a few of the lessons learned during the course of this thesis
work and sketch future research directions in this space.
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6.1 Putting All The Pieces Together

Since the goal of our three systems (TEA, ExoPlane, and RedPlane) is to provide resource
elasticity or fault resiliency for stateful in-network applications, the natural question is: Can the
three systems be used simultaneously for a stateful in-network application? Although this thesis has not
shown an integrated use case, one could build a memory-intensive and fault-tolerant in-network
application by using the P4 interfaces provided by each system as they are independent. For
example, in our ongoing work, we leverage the ExoPlane and RedPlane APIs to build a defense
system that canmitigate volumetricmulti-vector attacks (e.g.,distributeddenial of service (DDoS)
attacks). In this example system, each attack mitigation function running on programmable
switches is a stateful program, and ExoPlane and RedPlane make multiple concurrent functions
fault-tolerant using resources on external smart NICs and commodity servers. One challenge in
using different systems’ APIs simultaneously is that the restriction and lack of modularity in the
P4 language require developers to manually combine two API implementations at the P4-code
level, which is an error-prone and tedious task. As future work, we plan to address this challenge
with the compiler or language support to automate the integration process (Section 6.3).

6.2 Lessons Learned

Throughout this thesis research, we have explored various programmable networking hardware
devices and built our runtime environments on top of them. In this section, we share some of
the lessons we have learned and discuss what we need for future-proof in-network computing.
Need for runtime reconfigurability for data plane devices. For most of the programmable
devices we have used, we find that an ability to reconfigure the functionality of the data plane
(e.g., replacing a program A with a program B or partially reconfiguring a program’s logic) is
essential, but it is one of themissing features in today’s data plane devices. For example, fromour
experience, for Intel Tofino-based programmable switches [53] and Netronome Agilio CX smart
NICs [30], there is a few 10s seconds of “downtime” when loading a new binary (or firmware) to
the ASIC or NPUs. Even worse, FPGA-based NICs such as Intel N3000 [41] takes a few tens of
minutes to load a new bitstream! During this reconfiguration period, devices cannot serve any
incoming traffic, significantly limiting the availability of in-network computingplatforms, andwe
had to consider this constraint when designing our systems carefully. For example, in ExoPlane,
we assumed that a set of applications or trafficworkload distributions do not change on the small
timescale (e.g., for every minute) so that the ExoPlane planner does not need to reconfigure the
switch and external devices frequently. While such an assumption is reasonable in our setting,
we admit that it can limit other possible deployment models (e.g., traffic workload distributions
change for every minute). To make in-network computing platform future-proof, we believe
that future hardware device design should consider runtime reconfigurability into account. One
possible way is to partially reconfigure the ASIC or NPUs so that while reconfiguring the main
logic, the remaining “active” portion of the device can process traffic as a fallback mode.

Need for better control-to-data plane communication interfaces. While our primary focus
in this thesis is on in-network applications running in the network data plane, we realize that
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the interface between the control to the data plane, which is used to manipulate objects in the
data plane (e.g., tables and register arrays) from the control plane, can be critical for overall
performance. As we analyzed in RedPlane, many applications involve at least one control-to-
data plane operation to initialize or update the data plane objects, which takes a few tens ofms
in the case of Intel Tofino-based programmable switches and Netronome Agilio CX NICs. Also,
in terms of throughput, we find that it supports up to a few thousand operations per second. The
root cause of this is the delay from the PCIe interface between the control plane and the data plane
and the control plane’s OS kernel driver stack. In most cases, these control plane operations are
rare (e.g., for the first packet of each flow), so we often assume that this delay becomes a one-time
cost. However, we observe that in some cases, these delays can be non-negligible and impact
application performance. For example, if some adversarial traffic generates new flow at a high
rate, the control plane cannot keep up with the request rate. Also, if one needs to implement a
fast feedback loop between the control and data plane, a few tens ofms of latency would not be
acceptable. Thus, we need a better and faster communication interface between the control and
the data plane to support such scenarios.

Need for better understanding of proprietary blackbox compilers. While implementing the
data plane components of our systems and various applications running on them, we often
face compile-time errors from vendor-provided proprietary backend compilers (e.g., Intel Tofino
P4 compiler), which complain about failing to allocate resources or violate some rules without
providing detailed reasons even when there seem to be available resources. In such cases, since
we do not know the exact reasons why the compiler fails, we have to manually fine-tune our P4
implementations to try different resource allocations, which is tedious and could be error-prone.
We believe that open-sourcing the compiler or even part of it (e.g., heuristic resource allocation
algorithm it uses) would be helpful for building and debugging in-network applications more
systematically.

6.3 Future Directions

Analysis of adversarial workloads. As network devices become programmable, their data and
control plane functionality can bemore intricate than conventional fixed-function devices, poten-
tially leading tomore potential security vulnerabilities. Attackers can exploit such vulnerabilities
to bombard the data (e.g., impacting false-positive rates of probabilistic data structures [83]) or
control planes (e.g., forwarding an excessive volume of traffic to the device control plane) by
generating adversarial traffic patterns that trigger abnormal behaviors. Thus, TEA-, ExoPlane-,
RedPlane-enabled applications can also be vulnerable to adversarial workloads. Unfortunately,
there is no systematic method for identifying and fixing such possible vulnerabilities in in-
network applications. One potential approach is automatically generating adversarial traffic
workloads by statically analyzing the data and control plane implementation of in-network
applications that can run on heterogeneous devices.

Manageable in-Network computing at scale. While in-network computing can bring us many
benefits, a fundamental question remains: how can we deploy and manage in-network applica-
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tions in a large-scale network without affecting the rest of the network? Answering this question
is critical for large-scale deployments of in-network applications. This question involves many
challenges, including concurrent updates of multiple device data planes, deployment of mul-
tiple concurrent applications, state management, and device heterogeneity. Addressing these
challenges is critical for large-scale deployments.

Automatically enabling elasticity and resiliency with language and compiler supports. TEA,
ExoPlane, and RedPlane provide application developers with APIs in the form of P4 control
blocks so that they can use our elastic and resilient resource abstractions when building their
applications. However, due to the constraints of the current P4 language (e.g., program codes
cannot be fully modularized as in other high-level programming languages such as C++) and
vendor-provided proprietary compilers, our systems currently require somemanual efforts from
developers. For example, in TEA and RedPlane, developers have to manually insert the data
plane components of our runtime environments and combine them with original application
logic manually. Ideally, this process should be automated via support from a language and
a compiler. For example, to make a match-action table fault-tolerant, developers annotate the
table object, and a compiler front-end detects the annotation and automatically combines our
runtime logic with the application logic wold be one possible direction. Moreover, while our
implementation ismainly on the data plane, wefind that integrating the control plane component
of our runtime environments with an application’s control plane component requires some
engineering efforts. Thus, automatically combining the control plane logic while not affecting
the correctness of each of them is an important problem to tackle.

Verifying the performance and correctness of in-network applications. One of the missing
pieces in today’s in-network computing is the ability to verify the performance and correctness
of applications running on different types of multiple devices in the network at scale. As we add
more functionalities to individual network devices, it can affect the performance or correctness
of other applications. While there have been several works on verifying the correctness of
network configurations and data plane programs, they focus on the correctness of either the
network’s control plane or a single program running on a single data plane device. Also, they
do not consider the performance aspect of data plane programs. Thus, we need a way to
systematically verify the correctness and performance of multiple applications simultaneously
running on multiple devices in the network. Such a verification tool can even be useful for
testing our approach at scale. Conceptually, our runtime environments add a logical “plane” to
the network that allows accessing external resources at runtimewhile physically sharing network
resources with the existing data plane (e.g., network links). While we have demonstrated the
feasibility of our approaches and evaluated their performance in our current deployment model,
the performance and correctness verification tools will be essential to extend it at larger scale.

Designing next-generation switch architectures as future-proof in-network computing plat-
forms. This thesis focuses on applications that require capabilities supported by the current
programmable switchingASICs (e.g.,not requiringpacket payload inspection). Looking forward,
we see that there are increasing demands from applications that could benefit from in-network
computing but cannot be realized on today’s switches. For example, applications that require
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inspection of packet payloads, such as intrusion detection over fragmented packet streams (e.g.,
TCPstreams), ormiddlebox functions over encryptedpacket streams, arenot possible on switches
due to the lack of an ability to process packet payloads. While other devices in the network (e.g.,
a software switch [20, 36] and FPGA-based smart NICs) could implement some of the necessary
functionality, the design of modern switches makes it challenging to incorporate this external
functionality seamlessly. Furthermore, we observe that the current inflexible design of the switch
data plane makes it difficult to keep up with these evolving application demands. Traditionally,
switching ASICs are designed to support only stateless or simple stateful functionality such as
packet forwarding and access control in a synchronous manner at line-rate (e.g., a few Tbps).
Because of this, even today, they are equipped with a limited amount of fast and expensive
memory (e.g., SRAM and TCAM) and compute (e.g., simple ALUs and hashing units) on-chip
resources, which are complex or infeasible to be extended once the chip is manufactured. Due
to these constraints, they cannot support evolving applications. Thus, we need to rethink how
the switch architecture as an in-network computing platform is designed to support evolving
application demands.
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Appendix A

Simplified Codes of TEA-enabled NF
Implementations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

#include "tea_core.p4”
...
control Ingress (headers hdr, metadata meta) {

...
LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

...
lookup_handler.apply(hdr, meta);
if (is_ext.apply().hit) { //packet from external?

if (meta.lookup_md.found == true) {
forward.apply();

} else {
if (meta.lookup_md.remote_miss == false) {

server_resolver.apply(meta); 
mem_resolver.apply(meta); 

}
} 

}
...

}
}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == false &&
meta.lookup_md.remote_miss == false) {
lookup_req.apply(hdr, meta);

} 
}

}

Figure A.1: Firewall.
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#include "tea_core.p4”
...
control Ingress (headers hdr, metadata meta) {

...
action update_server_addr () {

hdr.ipv4.dstIP = meta.lookup_md.serverIP;
}
...
LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

...
lookup_handler.apply(hdr, meta);
if (meta.lookup_md.found == true) {

update_server_addr();
forward.apply();

} else {
server_resolver.apply(meta); 
mem_resolver.apply(meta); 

} 
...

}
}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == false) {
lookup_req.apply(hdr, meta);

} 
}

}

Figure A.2: Load balancer.
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34
35
36
37
38
39
40
41
42
43
44

#include "tea_core.p4”
...
control Ingress (headers hdr, metadata meta) {

...
action nat_ext_to_int () {

hdr.ipv4.dstIP = meta.lookup_md.pip;
hdr.ipv4.dstPort = meta.lookup_md.pport;

}
...
table nat {

key = {
meta.lookup_md.dir: exact;

}
actions = {

nat_ext_to_int;
nat_int_to_ext;
drop;

}
}
...
LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

...
lookup_handler.apply(hdr, meta);
if (meta.lookup_md.found == true) {

nat.apply();
forward.apply();

} else {
server_resolver.apply(meta); 
mem_resolver.apply(meta); 

} 
...

}
}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == false) {
lookup_req.apply(hdr, meta);

} 
}

}

Figure A.3: Network address translator.
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#include "tea_core.p4”
...
control Ingress (headers hdr, metadata meta) {

...
action update_server_addr () {

hdr.ipv4.dstIP = meta.lookup_md.serverIP;
}
...
LookupHandler() lookup_handler;
ServerResolver() server_resolver;
MemResolver() mem_resolver;
apply {

...
lookup_handler.apply(hdr, meta);
if (meta.lookup_md.found == true) {

update_server_addr();
forward.apply();

} else {
server_resolver.apply(meta); 
mem_resolver.apply(meta); 

} 
...

}
}
control Egress (headers hdr, metadata meta) {

LookupRequestor() lookup_req;
apply {

if (meta.lookup_md.found == false) {
lookup_req.apply(hdr, meta);

} 
}

}

Figure A.4: VPN gateway.
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Appendix B

Lazy Snapshotting Algorithm in
RedPlane

Algorithm 5 shows the pseudocode for lazy snapshotting described in Section 5.4.4. We imple-
ment this logic in P4 to provide a basic sketch with 64×32-bit slots. As explained in Section 5.5,
we implement count-min sketches using three of this sketch.
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Algorithm 5: Lazy snapshotting
/* 1-bit variable indicating the current active buffer */

1 active_buffer← 0;
/* array of 1-bit variables indicating which buffer has has lastly been updated for a

certain slot */

2 last_updated_buffer[0. . .REGISTER_SIZE]← 0;
/* two copies of the replicated data structure (e.g., a sketch in this example) */

3 pair<int,int> sketch [0. . .REGISTER_SIZE]← 0;

4 Upon receiving a packet (pkt):
/* is this the first pkt of a snapshot read burst? */

5 if pkt.type = SNAPSHOT_READ and pkt.index = 0 then
/* if so, swap the active buffer */

6 active_buffer← swap_active_buffer();
7 else

/* if not, get the current active buffer */

8 active_buffer← get_active_buffer();
/* which buffer was lastly updated for this index? */

9 last_updated_buffer_for_index← update_last_updated_buffer(pkt.index,active_buffer);
/* for a regular packet */

10 if pkt.type = SKETCH_UPDATE then
/* is this the first time this buffer has been touched since we took a snapshot? */

11 if active_buffer 6= last_updated_buffer_for_index then
/* if so, copy data from the inactive buffer before updating */

12 if active_buffer = 0 then
13 pkt.result← copy_update_and_read_buffer_0(pkt.index, pkt.update);
14 else
15 pkt.result← copy_update_and_read_buffer_1(pkt.index, pkt.update);

/* if not, some other packet has touched this buffer since we took a snapshot, so just

do update */

16 else
17 if active_buffer = 0 then
18 pkt.result← update_and_read_buffer_0(pkt.index,pkt.update);
19 else
20 pkt.result← update_and_read_buffer_1(pkt.index, pkt.update);
/* for a snapshot read packet */

21 else if pkt.type = SNAPSHOT_READ then
22 pkt.update = 0; /* is this the first time this buffer has been touched since we took a

snapshot? */

23 if active_buffer 6= last_updated_buffer_for_index then
/* if so, copy data from the inactive buffer before updating */

24 if active_buffer = 0 then
25 pkt.result← copy_update_and_read_buffer_0(pkt.index, pkt.update);
26 else
27 pkt.result← copy_update_and_read_buffer_1(pkt.index, pkt.update);

/* if not, some other packet has touched this buffer since we took a snapshot, so just

do read */

28 else
29 if active_buffer = 0 then
30 pkt.result← update_and_read_buffer_1(pkt.index, pkt.update);
31 else
32 pkt.result← update_and_read_buffer_0(pkt.index, pkt.update);
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Appendix C

TLA+ Specification of RedPlane
Protocol

We write a TLA+ specification of RedPlane protocol to model-check its correctness.
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module redplane protocol
extends Integers, Sequences, TLC , FiniteSets
constants NULL, SWITCHES , LEASE PERIOD , TOTAL PKTS

variables query , request queue, SwitchPacketQueue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum, pc

Exists(val)
∆
= val 6= NULL

RequestingSwitches
∆
= {sw ∈ SWITCHES : Exists(query [sw ]) ∧ query [sw ].type = “request”}

variables switch, q , seqnum, round , upSwitches, sent pkts

vars
∆
= 〈query , request queue, SwitchPacketQueue, RemainingLeasePeriod ,

owner , up, active, AliveNum, global seqnum, pc, switch, q , seqnum,
round , upSwitches, sent pkts〉

ProcSet
∆
= {“StateStore”} ∪ (SWITCHES ) ∪ {“LeaseTimer”} ∪ {“pktgen”}

Init
∆
= Global variables

∧ query = [sw ∈ SWITCHES 7→ NULL]
∧ request queue = 〈〉
∧ SwitchPacketQueue = [sw ∈ SWITCHES 7→ 0]
∧ RemainingLeasePeriod = [sw ∈ SWITCHES 7→ 0]
∧ owner = NULL
∧ up = [sw ∈ SWITCHES 7→ true]
∧ active = [sw ∈ SWITCHES 7→ false]
∧AliveNum = Cardinality(SWITCHES )
∧ global seqnum = 0

∧ switch = NULL
∧ q = NULL

∧ seqnum = [self ∈ SWITCHES 7→ 0]
∧ round = [self ∈ SWITCHES 7→ 0]

∧ upSwitches = {}
∧ sent pkts = 0
∧ pc = [self ∈ ProcSet 7→ case self = “StateStore”→ “START STORE”
2self ∈ SWITCHES → “START SWITCH”
2self = “LeaseTimer”→ “START TIMER”
2self = “pktgen”→ “START PKTGEN”]

START STORE
∆
= ∧ pc[“StateStore”] = “START STORE”
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∧ pc′ = [pc except ! [“StateStore”] = “STORE PROCESSING”]
∧ unchanged 〈query , request queue, SwitchPacketQueue,
RemainingLeasePeriod , owner , up, active,
AliveNum, global seqnum, switch, q , seqnum,
round , upSwitches, sent pkts〉

STORE PROCESSING
∆
= ∧ pc[“StateStore”] = “STORE PROCESSING”

∧ if request queue 6= 〈〉
then ∧ switch ′ = Head(request queue)
∧ request queue ′ = Tail(request queue)
∧ q ′ = query [switch ′]
∧ if q ′.lease request = “new”
then ∧ if owner 6= NULL
then ∧ pc′ = [pc except ! [“StateStore”] = “BUFFERING”]
else ∧ pc′ = [pc except ! [“StateStore”] = “TRANSFER LEASE”]
else ∧ if q ′.lease request = “renew”
then ∧ pc′ = [pc except ! [“StateStore”] = “RENEW LEASE”]
else ∧ pc′ = [pc except ! [“StateStore”] = “START STORE”]
else ∧ pc′ = [pc except ! [“StateStore”] = “START STORE”]
∧ unchanged 〈request queue, switch, q〉
∧ unchanged 〈query , SwitchPacketQueue,
RemainingLeasePeriod , owner , up, active,
AliveNum, global seqnum, seqnum, round ,
upSwitches, sent pkts〉

TRANSFER LEASE
∆
= ∧ pc[“StateStore”] = “TRANSFER LEASE”

∧ query ′ = [query except ! [switch] = [type 7→ “response”] @@ ([last seqnum 7→ global seqnum])]
∧ RemainingLeasePeriod ′ = [RemainingLeasePeriod except ! [switch] = LEASE PERIOD ]
∧ owner ′ = switch
∧ pc′ = [pc except ! [“StateStore”] = “START STORE”]
∧ unchanged 〈request queue, SwitchPacketQueue, up, active,
AliveNum, global seqnum, switch, q , seqnum,
round , upSwitches, sent pkts〉

BUFFERING
∆
= ∧ pc[“StateStore”] = “BUFFERING”

∧ request queue ′ = Append(request queue, switch)
∧ pc′ = [pc except ! [“StateStore”] = “STORE PROCESSING”]
∧ unchanged 〈query , SwitchPacketQueue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum,
switch, q , seqnum, round , upSwitches, sent pkts〉

RENEW LEASE
∆
= ∧ pc[“StateStore”] = “RENEW LEASE”

∧ global seqnum ′ = q .write seq
∧ query ′ = [query except ! [switch] = [type 7→ “response”] @@ ([last seqnum 7→ global seqnum ′])]
∧ RemainingLeasePeriod ′ = [RemainingLeasePeriod except ! [switch] = LEASE PERIOD ]

2



∧ owner ′ = switch
∧ pc′ = [pc except ! [“StateStore”] = “START STORE”]
∧ unchanged 〈request queue, SwitchPacketQueue, up, active,
AliveNum, switch, q , seqnum, round , upSwitches,
sent pkts〉

statestore
∆
= START STORE ∨ STORE PROCESSING ∨ TRANSFER LEASE

∨ BUFFERING ∨ RENEW LEASE

START SWITCH (self )
∆
= ∧ pc[self ] = “START SWITCH”

∧ ∨ ∧ (up[self ] ∧ SwitchPacketQueue[self ] > 0)
∧ active ′ = [active except ! [self ] = true]
∧ if RemainingLeasePeriod [self ] = 0
then ∧ pc′ = [pc except ! [self ] = “NO LEASE”]
else ∧ pc′ = [pc except ! [self ] = “HAS LEASE”]
∨ ∧ pc′ = [pc except ! [self ] = “SW FAILURE”]
∧ unchanged active
∧ unchanged 〈query , request queue, SwitchPacketQueue,
RemainingLeasePeriod , owner , up,
AliveNum, global seqnum, switch, q ,
seqnum, round , upSwitches, sent pkts〉

NO LEASE (self )
∆
= ∧ pc[self ] = “NO LEASE”

∧ query ′ = [query except ! [self ] = [type 7→ “request”] @@ ([lease request 7→ “new”])]
∧ request queue ′ = Append(request queue, self )
∧ pc′ = [pc except ! [self ] = “WAIT LEASE RESPONSE”]
∧ unchanged 〈SwitchPacketQueue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum,
switch, q , seqnum, round , upSwitches,
sent pkts〉

WAIT LEASE RESPONSE (self )
∆
= ∧ pc[self ] = “WAIT LEASE RESPONSE”

∧ query [self ].type = “response”
∧ seqnum ′ = [seqnum except ! [self ] = query [self ].last seqnum]
∧ query ′ = [query except ! [self ] = NULL]
∧ pc′ = [pc except ! [self ] = “HAS LEASE”]
∧ unchanged 〈request queue, SwitchPacketQueue,
RemainingLeasePeriod , owner , up,
active, AliveNum, global seqnum,
switch, q , round , upSwitches,
sent pkts〉

HAS LEASE (self )
∆
= ∧ pc[self ] = “HAS LEASE”

∧ seqnum ′ = [seqnum except ! [self ] = seqnum[self ] + 1]
∧ query ′ = [query except ! [self ] = [type 7→ “request”] @@ ([lease request 7→ “renew”, write seq 7→ seqnum ′[self ]])]

3



∧ request queue ′ = Append(request queue, self )
∧ pc′ = [pc except ! [self ] = “WAIT WRITE RESPONSE”]
∧ unchanged 〈SwitchPacketQueue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum,
switch, q , round , upSwitches, sent pkts〉

WAIT WRITE RESPONSE (self )
∆
= ∧ pc[self ] = “WAIT WRITE RESPONSE”

∧ query [self ].type = “response”
∧Assert(seqnum[self ] = query [self ].last seqnum,
“assertion failed.”)
∧ query ′ = [query except ! [self ] = NULL]
∧ active ′ = [active except ! [self ] = false]
∧ SwitchPacketQueue ′ = [SwitchPacketQueue except ! [self ] = SwitchPacketQueue[self ]− 1]
∧ pc′ = [pc except ! [self ] = “START SWITCH”]
∧ unchanged 〈request queue,
RemainingLeasePeriod , owner , up,
AliveNum, global seqnum, switch,
q , seqnum, round , upSwitches,
sent pkts〉

SW FAILURE (self )
∆
= ∧ pc[self ] = “SW FAILURE”

∧ if AliveNum > 1 ∧ up[self ] = true
then ∧ up′ = [up except ! [self ] = false]
∧AliveNum ′ = AliveNum − 1
∧ query ′ = query
else ∧ if up[self ] = false
then ∧ up′ = [up except ! [self ] = true]
∧ query ′ = [query except ! [self ] = NULL]
∧AliveNum ′ = AliveNum + 1
else ∧ true
∧ unchanged 〈query , up, AliveNum〉
∧ pc′ = [pc except ! [self ] = “START SWITCH”]
∧ unchanged 〈request queue, SwitchPacketQueue,
RemainingLeasePeriod , owner , active,
global seqnum, switch, q , seqnum, round ,
upSwitches, sent pkts〉

switch (self )
∆
= START SWITCH (self ) ∨NO LEASE (self )

∨WAIT LEASE RESPONSE (self ) ∨HAS LEASE (self )
∨WAIT WRITE RESPONSE (self ) ∨ SW FAILURE (self )

START TIMER
∆
= ∧ pc[“LeaseTimer”] = “START TIMER”

∧ owner 6= NULL
∧ if RemainingLeasePeriod [owner ] > 0 ∧ active[owner ] = false
then ∧ RemainingLeasePeriod ′ = [RemainingLeasePeriod except ! [owner ] = RemainingLeasePeriod [owner ]− 1]
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∧ owner ′ = owner
else ∧ if RemainingLeasePeriod [owner ] = 0
then ∧ owner ′ = NULL
else ∧ true
∧ owner ′ = owner
∧ unchanged RemainingLeasePeriod
∧ pc′ = [pc except ! [“LeaseTimer”] = “START TIMER”]
∧ unchanged 〈query , request queue, SwitchPacketQueue, up,
active, AliveNum, global seqnum, switch, q ,
seqnum, round , upSwitches, sent pkts〉

expirationTimer
∆
= START TIMER

START PKTGEN
∆
= ∧ pc[“pktgen”] = “START PKTGEN”

∧ if sent pkts < TOTAL PKTS
then ∧AliveNum ≥ 1
∧ upSwitches ′ = {sw ∈ SWITCHES : up[sw ]}
∧ ∃ sw ∈ upSwitches ′ :
SwitchPacketQueue ′ = [SwitchPacketQueue except ! [sw ] = SwitchPacketQueue[sw ] + 1]
∧ sent pkts ′ = sent pkts + 1
∧ pc′ = [pc except ! [“pktgen”] = “START PKTGEN”]
else ∧ pc′ = [pc except ! [“pktgen”] = “Done”]
∧ unchanged 〈SwitchPacketQueue, upSwitches,
sent pkts〉
∧ unchanged 〈query , request queue, RemainingLeasePeriod ,
owner , up, active, AliveNum, global seqnum,
switch, q , seqnum, round〉

packetGen
∆
= START PKTGEN

Next
∆
= statestore ∨ expirationTimer ∨ packetGen

∨ (∃ self ∈ SWITCHES : switch (self ))

Spec
∆
= ∧ Init ∧2[Next ]vars

∧WFvars(statestore)
∧ ∀ self ∈ SWITCHES : WFvars(switch (self ))
∧WFvars(expirationTimer)
∧WFvars(packetGen)

AtLeastOneAliveSwitch
∆
=

∧AliveNum ≥ 1
∧ ∃ sw ∈ SWITCHES : up[sw ] = true

SingleOwnerInvariant
∆
=

5



∀ sw ∈ SWITCHES :
sw 6= owner ⇒ RemainingLeasePeriod [sw ] = 0

Liveness
∆
=

∨ ∀ sw ∈ SWITCHES :
(query [sw ] 6= NULL ∧ query [sw ].type = “request”) ;
owner = sw

6
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