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Abstract
Hypercontractive inequalities and small-set expansion are two fundamental top-

ics closely related to each other and play important roles in many fields, including
hardness of approximation, probability theory, social choice theory, information the-
ory, and cryptography. This thesis studies generalizations and applications of hyper-
contractivity and small-set expansion in the following areas:
• The recent breakthrough proof of the 2-to-2 games conjecture was completed

by showing a pseudorandom-set expansion result on Grassmann graphs [KMS18].
A similar property has also been shown on Johnson graphs [KMMS18]. These
results can be seen as an improved version of small-set expansion on pseu-
dorandom sets. We prove the pseudorandom-set expansion result on general
product probability spaces, with a very clean and short proof. A key step in the
proof involves a new hypercontractive-style inequality.

• The communication-assisted agreement distillation problem is about two par-
ties with noisy private randomness trying to extract a common random string
via communication. We give the optimal upper bound on the amount of com-
munication necessary for achieving constant success probability for this prob-
lem. In addition, we calculate the optimal communication for the reverse binary
erasure channel case by studying properties of extreme points in its hypercon-
tractivity region. The proof technique is highly related to the equivalence of
hypercontractivity and small-set expansion.

• “Decoupling” refers to the idea of analyzing a complicated random sum in-
volving dependent random variables by comparing it to a simpler random sum
where some independence is introduced between the variables. We present a
new kind of “one-block decoupling” with better parameters than the classical
results. We use decoupling and hypercontractivity to show tight tail bounds
of low-degree Boolean functions and tight versions of several theorems from
[DFKO07].

• A probability distribution over {−1, 1}n is k-wise uniform if its marginal dis-
tribution on every subset of k coordinates is the uniform distribution. These
k-wise uniform distributions have the property that all low-degree Fourier co-
efficients of their density functions are equal to zero. Motivated by this, we
use hypercontractive inequalities to study the properties of low-degree Fourier
weights of Boolean function. In particular, we show better bounds for the
Closeness and Testing problems of k-wise uniformity.
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Chapter 1

Introduction

Hypercontractivity and small-set expansion are two fundamental and related topics which play
important roles in a variety fields, including several recent breakthroughs in theoretical computer
science. In this thesis, we show more generalizations and applications of hypercontractivity
and small-set expansion in several domains. Before further discussion, we first give a brief
introduction for these two topics.

Hypercontractivity is a property of a finite probability space. Let p, q ∈ [1,∞]. We say
a finite probability space (Ω, π) is (p, q)-hypercontractive on some function operator T, if for
every function f : Ω→ R, the following inequality holds:

‖Tf‖q ≤ ‖f‖p,

where ‖f‖p = E[|f(x)|p]1/p.
Here “-contractivity” means that the function operator T is a contraction of the norms, while

“hyper-” means that the inequality is established on two different norms, the Lp- and Lq-norms.
There are two motivations for studying hypercontractive inequalities from interpreting the

form literally. First of all, hypercontractivity is a tool which allows one to transfer between
different norms, and is especially useful for converting between general Lq-norms and the more
standard L2- and L1-norms, which are often easier to deal with. Another motivation is that there
might exist some useful operator T which is very complicated to understand. In this case, a
hypercontractive inequality allows us to study the Lp-norm of the original function instead of the
Lq-norm of the function with T acting on it.

As we will show in later chapters, for some specific kinds of function operators, there is a
two-function version of the hypercontractive inequality which can be shown equivalent to our
above definition via Hölder’s inequality. More precisely, we say that a finite joint probability
space (Ωx × Ωy, µ) is (p, q)-hypercontractive for some p, q ∈ [1,∞], if for any real-valued
functions f : Ωx → R, g : Ωy → R, the following inequality holds:

E
(x,y)∼µ

[f(x)g(y)] ≤ ‖f‖p‖g‖q′ ,

where q′ is the Hölder conjugate of q (i.e. the number q′ such that 1/q + 1/q′ = 1), and here the
Lp- and Lq′-norms are defined for the marginal distributions on Ωx and Ωy. The Hölder conjugate
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q′ here looks asymmetric, but stating it in this manner allows it to be consistent with the one-
function version of hypercontractivity. This two-function hypercontractive inequality can in fact
be seen as a generalization of Hölder’s inequality.

If we look at functions f and g with a binary output of {0, 1}, there is an interesting combi-
natorial interpretation of two-function hypercontractivity. LetA ⊆ Ωx be the set where f(x) = 1
and B ⊆ Ωy be the set where g(y) = 1. Then we can rewrite the two-function hypercontractive
inequality into the following form:

Pr
(x,y)∼µ

[x ∈ A,y ∈ B] ≤ |A|1/p|B|1/q′ ,

where |A| and |B| are the volumes of the set A and B, respectively, based on the marginal
distributions. With proper parameters p and q, this inequality says that the joint distribution
µ is a good “small-set expander”, meaning that when x is drawn from set A, then with high
probability y will end up outside of set B, and vice versa. Therefore, a statement of this form
is called a small-set expansion theorem. Small-set expansion is related to expander graphs and
therefore has several applications in hardness of approximation and coding theory.

The remainder of this chapter expands upon this introduction. We survey the classic results
of hypercontractivity in Section 1.1 and small-set expansion in Section 1.2. We explain our
contributions in Section 1.3. We give the outline of the rest of the thesis in Section 1.4.

1.1 Hypercontractivity

1.1.1 Classical hypercontractivity results on uniform ±1 bits
The most important and useful hypercontractivity results deal with functions on the Boolean
hypercube with the uniform distribution. Before stating the hypercontractivity results, we first
start by introducing the definitions of norms and noise operators in this setting.

Norm and Noise operator

The domain of a Boolean function

f : {−1, 1}n → R,

is the Boolean hypercube {−1, 1}n. Here f maps each Boolean string of length n into a real
number.

For p ∈ [1,∞), we define the usual norm

‖f‖p = (E[|f(x)|p])1/p.

We consider the expectation with respect to a uniformly random x ∼ {−1, 1}n. This is the
case for most parts of this thesis when we use the probability notation Pr and the expectation
notation E, unless otherwise specified. As p approaches∞, the p-norm approaches the infinity
norm ‖f‖∞ = maxx∈{−1,1}n{|f(x)|}.

2



One of the most important operators in the analysis of Boolean functions is the noise operator
Tρ. The noise operator Tρ, when applied to a function f , is defined as the expectation of the
output of f while adding to each bit of the input an independent amount of noise according to
the parameter ρ. Here is the formal definition of the noise operator Tρ:
Definition 1.1.1. Let ρ ∈ [0, 1]. For fixed x ∈ {−1, 1}n, we write y ∼ Nρ(x) to denote the
random variable y ∈ {−1, 1}n drawn as follows: for each i ∈ [n],

yi =

{
xi with probability ρ,
uniformly random with probability 1− ρ,

independently. We define the noise operator Tρ as the following linear operator:

Tρf(x) = E
y∼Nρ(x)

[f(y)].

The noise operator was introduced to the analysis of Boolean functions by Bonami [Bon70].
Beckner used the notation Tρ in [Bec75] and the notation was standardized in [KKL88].

The noise operator is strongly related to other fundamental concepts of Boolean functions,
such as degree and influence. In coding theory and information theory, the random variable
y ∼ Nρ(x) can be seen as the random string received when passing x through a binary symmetric
channel with “flipping probability” of 1−ρ

2
. As a result, the noise operator can be seen as the

expectation of the output of a function where the input is received through a binary symmetric
channel. Finally, the noise operator also appears in social choice theory; see [Kal02, FKN02] for
two examples.
Example 1.1.2. Let A ⊆ {−1, 1}n be a subset of the Boolean hypercube with volume α; i.e.,
Pr[x ∈ A] = α. We write 1A : {−1, 1}n → {0, 1} for the indicator function of A; i.e.,

1A(x) =

{
1 if x ∈ A,
0 otherwise.

Then we have ‖1A‖p = α1/p for any 1 ≤ p <∞ and

Tρ1A(x) = Pr
y∼Nρ(x)

[y ∈ A].

Example 1.1.3. Consider the single bit function f : {−1, 1} → R in which f(x) = 1 + εx, with
parameter 0 ≤ ε ≤ 1. Then we have ‖f‖p =

(
1
2
(1 + ε)p + 1

2
(1− ε)p

)1/p for any 1 ≤ p <∞ and
Tρf(x) = 1 + ρεx.

The Hypercontractivity Theorem

Now we are ready to present the Hypercontractivity Theorem. In 1970, Bonami proved the
Hypercontractivity Theorem for uniform ±1 bits in [Bon70]:
Theorem 1.1.4 (The (p, q)-Hypercontractivity Theorem). Let f : {−1, 1}n → R, and let
1 ≤ p ≤ q ≤ ∞. Then

‖Tρf‖q ≤ ‖f‖p

for 0 ≤ ρ ≤
√

p−1
q−1

.

3



The term “hypercontractivity” was introduced in [SHK72]. The suffix “contractivity” de-
scribes the fact that Tρ is a “contraction” or a “smoothing” operator while the prefix “hyper-”
indicates that it can be even viewed as a contractive operator fromLp({−1, 1}n) toLq({−1, 1}n).

Earlier works [Pal32, Bon68, Kie69, Sch69] focus on the hypercontrative properties of ho-
mogeneous functions. In 1970 Bonami published her Ph.D. Thesis [Bon70], which contains the
full Hypercontractivity Theorem. She first gave a proof for the case n = 1 and then extended
it to general n by induction. Nelson [Nel73] gave the full Hypercontractivity Theorem in the
Gaussian setting independently. Gross [Gro75] derived Nelson’s result from the Log-Sobolev
Inequalities. See more history of hypercontractivity in [O’D14].

A special case of Theorem 1.1.4 which is of particular interest is when p = 2 and q = 4,
because of the importance of the 2nd and 4th moments. The (2, 4)-Hypercontractivity Theorem
is also called the Bonami Lemma and is strong enough for many well-known applications, as we
will see in the next part.

The value ρ =
√

p−1
q−1

in Theorem 1.1.4 is optimal. There are several sharp cases, including
Example 1.1.2 when A is a Hamming ball with volume α→ 0 and dimension n→∞, and even
the single-bit case from Example 1.1.3 when ε→ 0.

1.1.2 Applications of classical hypercontractivity results
Theorem 1.1.4 has applications in many fields of theoretical computer science, such as ex-
pander graphs [HLW06], probability theory [BLM13], circuit complexity [LMN89], coding the-
ory [CCH10], and hardness of approximation [KKMO07, DS05].

The Hypercontractivity Theorem for Boolean functions with binary output is also called the
Small-Set Expansion Theorem. We will have a detailed introduction to the Small-Set Expansion
Theorem and its consequence, the Kahn-Kalai-Linial Theorem, in the next section. Here we start
with some other applications of Boolean functions with general real-valued outputs.

Fourier expansion and low-degree functions

One basic fact is that a Boolean function can be represented as a unique multilinear polynomial

f(x) =
∑
S⊆[n]

f̂(S)xS,

where parity function xS =
∏

i∈S xi. This is called Fourier expansion of the function f , and
f̂(S) is the Fourier coefficient of f on set S. The degree of f is defined to be the degree of its
Fourier expansion, i.e. the size of the largest S for which f̂(S) is nonzero.

The parity functions xS in the Fourier expansion are orthogonal with respect to the uniform
measure on {−1, 1}n. Therefore we can express the p-norm of a Boolean function using its
Fourier coefficients whenever p is an integer (though the function needs to be nonnegative when
p is odd). In particular, the square of the 2-norm of a Boolean function f can be calculated by
the sum of squares of f ’s Fourier coefficients; i.e., for any f : {−1, 1}n → R,

‖f‖2
2 =

∑
S⊆n

f̂(S)2.

4



This fact is called Parseval’s Theorem. Another useful fact is that ‖f‖1 = f̂(∅) for any nonneg-
ative Boolean function f .

From the Fourier expansion perspective, the noise operator Tρ can be interpreted as follows:

Tρf(x) =
∑
S⊆[n]

ρ|S|f̂(S)xS.

The Fourier coefficient of each term shrinks (resp., expands) exponentially in its degree when
0 ≤ ρ < 1 (resp., ρ > 1). This is an illustration of why the noise operator tends to be contractive
when 0 ≤ ρ < 1.

Combining the Fourier expansion, the (q, 2)-Hypercontractivity Theorem and Parseval’s Theo-
erem, it is easy to show that a low-degree polynomial of uniform ±1 bits has a “reasonable”
behavior, in the sense that its general q-norm is not too large compared to its 2-norm:
Theorem 1.1.5. For any Boolean function f : {−1, 1}n → R with degree at most k,

‖f‖q ≤
√
q − 1

k
‖f‖2,

for any q ≥ 2.
Bonami stated Theorem 1.1.5 in [Bon68]. In particular, Theorem 1.1.5 with case q = 4 is

called the Bonami Lemma.
Not only does Theorem 1.1.5 upper-bound the higher norms of a low-degree polynomial, it

can also be used to lower-bound the p-norm for 1 ≤ p ≤ 2 using Hölder’s Inequality (as shown
in [Jan97]). This is stated as follows.
Theorem 1.1.6. For any Boolean function f : {−1, 1}n → R with degree at most k,

‖f‖2 ≤ (e
2
p
−1)k‖f‖p,

for any 1 ≤ p ≤ 2.
Theorem 1.1.6 with p = 1 is useful when dealing with nonnegative Boolean functions with

low or fixed expectation, for example the probability mass function of a distribution on Boolean
strings of fixed length. We will present an application of this in Chapter 5.

Theorems 1.1.5 and 1.1.6 can be used to get a strong tail bound for low-degree Boolean
functions showing that a low-degree function cannot exceed its standard deviation with high
probability, but they can also be used to show that it does in fact exceed its mean with noticeable
probability, at least in a “one-sided” sense (from [PZ78, Bor79, Jan97]).
Theorem 1.1.7. For any Boolean function f : {−1, 1}n → R with degree at most k,

Pr
x∼{−1,1}n

[|f(x)| ≥ t‖f‖2] ≤ exp

(
− k

2e
t2/k
)
,

for any t ≥ (2e)k/2. On the other hand, if f is not a constant function,

Pr
x∼{−1,1}n

[f(x) > E[f ]] ≥ 1

4
e−2k.
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We will utilize Theorem 1.1.7 and present another tail bound for low-degree functions in
Chapter 4.

These small and crucial facts of low-degree Boolean functions, especially The Bonami Lemma,
have become essential tools appearing in numerous places throughout theoretical computer sci-
ence. We will now show an influential application related to Chapter 4: the Invariance Principle.
Then we will finish this section with a brief summary of hypercontractivity using in other areas.

The Invariance Principle

A multilinear polynomial function whose inputs are independent standard Gaussian random vari-
ables can be seen as a special case of a Boolean function, because one can use the sum of many
Boolean random bits to “simulate” Gaussian random variables. It is easy to check that the hy-
percontractivity results for Boolean functions also hold for the low-degree polynomials with
independent standard Gaussian random variables. On the other hand, Gaussian random variables
also have many good behaviors and are sometimes easier to work with compared to Boolean bits.
Mossel et al. [MOO10] showed that in some situations it is also possible to use Gaussian random
variables to “simulate” Boolean bits:
Theorem 1.1.8 (The Invariance Principle (informal)). Let the Boolean function f be a low-
degree multilinear polynomial with small influences on all coordinates. Replacing the input bits
by standard Gaussian independent random variables for f does not change the distribution of
its output much.

The Invariance Principle is one of the most important applications of hypercontractivity to
theoretical computer science. The Bonami Lemma for uniform Boolean bits and standard Gaus-
sian random variables plays a key role in its proof.

The main purpose of studying the Invariance Principle in [MOO10] came from the field of
hardness of approximation. They deduced that the Majority function is “stablest” on the Boolean
hypercube from the Invariance Principle and proved a tight upper-bound on the approximability
of the Max-Cut problem assuming the Unique Games Conjecture holds.

1.1.3 Generalizations of hypercontractivity
Product spaces

The Boolean hypercube {−1, 1}n is an example of a product domain. In general, we can consider
the case of functions f : Ω1 × · · · × Ωn → R where the domain has the product probability
distribution π1 ⊗ · · · ⊗ πn. We begin by extending ρ-correlation to these general domains.
Definition 1.1.9. Consider a product probability space (Ω, π), where Ω = Ω1 × · · · × Ωn and
π = π1 ⊗ · · · ⊗ πn. We say y is ρ-correlated to x ∈ Ω to denote that the random string y is
drawn as follows: for each i ∈ [n] independently,

yi =

{
xi with probability ρ,
under distribution πi with probability 1− ρ;

We say that the pair (x,y) is ρ-correlated under π if x is drawn under distribution π, and then y
is ρ-correlated to x.
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The definition of the noise operator remains the same as in the case of uniform ±1 bits.
In this situation, the following general hypercontractivity theorem was shown in the earlier

works [BKK+92, Tal94, FK96, Fri98]:
Theorem 1.1.10 (The General Hypercontractivity Theorem). Let f ∈ L2(Ω, π), where Ω =
Ω1 × · · · ×Ωn and π = π1 ⊗ · · · ⊗ πn. Let λ be the minimum probability of all outcomes among
the distributions π1, . . . , πn. Let 2 ≤ q ≤ ∞. Then

‖Tρf‖q ≤ ‖f‖2

for 0 ≤ ρ ≤ 1√
q−1

λ1/2−1/q.
This bound has the correct asymptotic dependence on λ. One sharp case is a subcube indi-

cator of a Boolean hypercube with a very biased distribution, in which λ → 0. However, when
λ → 0, this inequality becomes very weak and hard to use, partially due to the fact that the
range of allowed ρ’s is very limited. Researchers have considered several techniques to get rid of
this situation. Earlier works [FB99] utilized randomization/symmetrization techniques to reduce
biased random variables to symmetric random variables (i.e. uniform ±1 bits). Keevash et al.
[KLLM21] studied global/pseudorandom functions which excludes those bad cases. We study
this as well in our thesis; see Chapter 2 for more discussion.

The optimal value of ρ was calculated in [LO94, Wol07] for the case in which each xi is a
mean-zero random variable. The correct asymptotic bound for general (p, q)-hypercontractivity
is still unknown to our knowledge.

Similar to the uniform ±1 case, researchers have found useful applications of the General
Hypercontractivity Theorem to the study of low-degree polynomials, as in Section 1.1.2. As
mentioned above, these inequalities are useful when λ is large, and become trivial when λ→ 0.

Non-product spaces

Hypercontractivity has also been studied on Johnson graphs and Grassmann graphs, which was
motivated by proving the 2-to-2 Games Conjecture in [KMMS18, KMS18]. These two graphs
are tightly related to each other, as well as to Boolean hypercube: the Grassmann graph is known
as a “2-analog” of the Johnson graph, and the Johnson graph can be seen as a slice of the Boolean
hypercube. See Chapter 2 for more discussion.

Other studies include hypercontractivity results for the multislice [FOW18], the symmetric
group [FKLM20], and the Poisson semigroup on the hypersphere [FI21].

1.1.4 Two-function hypercontractivity
There is an equivalent two-function version of hypercontractivity on uniform ±1 bits:
Theorem 1.1.11 (Two-Function Hypercontractivity Theorem for the uniform distribution). Let
f, g : {−1, 1}n → R, and let 1 ≤ p ≤ q ≤ ∞. Then

E
(x,y)

ρ-correlated

[f(x)g(y)] ≤ ‖f‖p‖g‖q′

for 0 ≤ ρ ≤
√

p−1
q−1

, where q′ is the Hölder conjugate of q: i.e., 1
q

+ 1
q′

= 1.
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The Two-Function Hypercontractivty Theorem and its equivalence to the Hypercontractiv-
ity Theorem are from [Nev76]. The proof of the equivalence uses Hölder’s inequality in both
directions. O’Donnell [O’D14] uses two-function hypercontractivity to facilitate induction and
simplify the proof of the Hypercontractivity Theorem.

In the previous discussion we focused on ρ-correlated random variables (x,y) on finite do-
mains. From the form of the two-function version it is natural to generalize the definition of
hypercontractivity to any joint distribution µ of random variables (x,y) on the finite domain
Ωx × Ωy. We use µx and µy to denote the marginal distributions of x and y, respectively. We
also use µx|y to denote the conditional distribution of x given y = y.

In this setting we define the operator T as Tf(y) = Eµx|y [f(x)]. Notice that if the function f
is in L2(Ωx, µx) then Tf is in L2(Ωy, µy). The equivalence of the one-function and two-function
versions of hypercontractivity still holds in this setting:
Theorem 1.1.12. In the above setting,

‖Tf‖q ≤ ‖f‖p
holds for all f ∈ L2(Ωx, µx) if and only if

E
(x,y)∼µ

[f(x)g(y)] ≤ ‖f‖p‖g‖q′

holds for all f ∈ L2(Ωx, µx) and g ∈ L2(Ωy, µy), where q′ is the Hölder conjugate of q.
The proof is the same as the proof of the ρ-correlated case in [Nev76] with only notational

changes. In this setting, we say that random variables (x,y) ∼ µ is (p, q)-hypercontractive. It is
slightly awkward that in the two-function version p and q are not symmetric (again, p and q′ are),
but we want to keep the definition consistent with our one-function hypercontractivity results.

The Two-Function Hypercontractivity Theorem is convenient in the field of communication
complexity and information theory, where two parties (or the transmitter and receiver) may have
different domains and compute different functions.

1.2 Small-set expansion
An expander graph is a graph that has strong connectivity properties. Expander graphs have
found extensive applications in computer science, especially in complexity theory, computer
networks, coding theory and cryptography. See [HLW06] for a summary.

Consider a regular graph G = (V,E) and a non-empty set of vertices A ⊆ V . We write
u ∼ v to denote that we draw random vertex the v from the uniform distribution on V , and then
draw the random vertex u uniformly from v’s neighbors. The edge expansion of A is defined as:

Φ(A) = Pr
u∼v

[u /∈ A|v ∈ A].

A regular graph G is a good expander if Φ(A) is high for all |A| ≤ 1
2
|V |.

In recent years there has been considerable interest in small-set expanders, which are graphs
where only sets containing a small fraction of the nodes are required to expand. In this sec-
tion, we will introduce classical results of small-set expansion on noisy Boolean hypercubes,
some generalizations to other graphs and applications, and the relationship between small-set
expansion and hypercontractvity.
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1.2.1 Small-set expansion on noisy Boolean hypercube
The (p, 2)-Hypercontractivity Theorem on uniform±1 bits says for any function f : {−1, 1}n →
R and 1 ≤ p ≤ 2,

‖T√p−1f‖2 ≤ ‖f‖p.

This theorem does not have a good combinatorial meaning by itself. However, the noise operator
T can be interpreted in terms of an important concept known as noise stability:

Stabρ[f ] = 〈f,Tρf〉 = ‖T√ρf‖2
2 ≤ ‖f‖2

1+ρ.

By focusing on a binary-output function f : {−1, 1}n → {0, 1}, as in Example 1.1.2, [KKL88]
gave the following interesting way of interpreting the Hypercontractivity Theorem:
Theorem 1.2.1 (Small-Set Expansion Theorem). Let A ⊆ {−1, 1}n have volume α; i.e., let
1A : {−1, 1}n → {0, 1} satisfy E[1A] = α. Then for any 0 ≤ ρ ≤ 1,

Stabρ[1A] = Pr
x∼{−1,1}n
y∼Nρ(x)

[x ∈ A,y ∈ A] ≤ α
2

1+ρ .

That is to say,
Pr

x∼{−1,1}n
y∼Nρ(x)

[y ∈ A|x ∈ A] ≤ α
1−ρ
1+ρ .

Consider the edge-weighted hypercube graph G = (V,E) with vertices V = {−1, 1}n and
edges E = V × V , where the weight of edge (x, y) is equal to Pr[(x,y) = (x, y)] when x,y
are ρ-correlated (ρ < 1). Then Theorem 1.2.1 suggests that for any subset A with small volume
α, choosing a random vertex x ∈ A and a random edge out of x with probability proportional
to its weight, we will go outside of A with high probability, at least 1 − α

1−ρ
1+ρ . Therefore this

hypercube graph is a good small-set expander.
This graph can also be thought of as the discrete-time Markov chain on state space {−1, 1}n

in which a step from state x ∈ {−1, 1}n consists of moving to state y ∼ Nρ(x). This is a
reversible chain with the uniform stationary distribution. Each discrete step is equivalent to run-
ning the usual continuous-time Markov chain on the hypercube for time t = ln(1/ρ) (assuming
0 ≤ ρ ≤ 1).

Theorem 1.2.1 is essentially sharp whenA is a Hamming ball, as mentioned in the discussion
of the Hypercontractivity Theorem.

We can also deduce a general small-set expansion result from Theorem 1.1.10:
Theorem 1.2.2 (General Small-Set Expansion Theorem). In the same setting as Theorem 1.1.10,
let A ⊆ Ω have volume α; i.e., let 1A : Ω → {0, 1} satisfy E[1A] = α. Let q > 2. Then for any
0 ≤ ρ ≤ 1

q−1
λ1−2/q,

Stabρ[1A] = Pr
x∼(Ω,π)
y∼Nρ(x)

[x ∈ A,y ∈ A] ≤ α2−2/q.

This bound is useful when the minimum outcome parameter λ is large and becomes trivial
when λ→ 0.
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1.2.2 Generalizations and applications of small-set expansion

The Kahn-Kalai-Linial Theorem and its generalization

Kahn, Kalai and Linial first mentioned small set expansion of the uniform distribution of the
Boolean hypercube in [KKL88], and their main application is the following:
Theorem 1.2.3 (The Kahn-Kalai-Linial Theorem (informal)). For f : {−1, 1}n → {−1, 1},
there exists some coordinate i ∈ [n], such that the probability that flipping xi affects the outcome
of f is at least Var[f ] · Ω

(
logn
n

)
.

The Kahn-Kalai-Linial Theorem is famous for two reasons: first, it pioneers multiple con-
cepts in theoretical computer science, including Fourier expansion, noise stability, influence, and
small-set expansion. Second, the KKL Theorem has plenty of applications, including to social
choice theory [FKN02] and cryptography [BGM16]. The Kahn-Kalai-Linial Theorem is tight
and the best bound is achieved by the tribes functions.

One might think that we can similarly deduce a KKL-style theorem on general product spaces
from Theorem 1.2.2. But unfortunately the general small-set expansion result in Theorem 1.2.2
is too weak to prove a good KKL result when λ is small. Bourgain [Bou02] showed that those
functions which cannot get a good KKL result must satisfy some specific constraints:
Theorem 1.2.4 (Bourgain’s Sharp Threshold Theorem (informal)). For f ∈ L2(Ωn, π⊗n) be
{0, 1} valued. Assume the probability that flipping xi affects the outcome is small for all coor-
dinates i ∈ [n] (i.e., the total influence of f is small), and Var[f ] ≥ .01. Then for a typical
input string x, there is a large chance that it contains a constant-sized substring such that the
restriction of f to this substring can change the expectation of f by a large amount.

The constraint looks slightly complicated, but it is very similar to the definition of non-
pseudorandomness mentioned in the next part. One key trick in the proof is the randomiza-
tion/symmetrization technique which reduces biased distributed random variables into uniform
±1 bits.

Pseudorandom-set expansion

The recent breakthrough proof of the 2-to-2 Games Conjecture is related to the pseudomrandom-
set expansion in Grassmann graphs [KMS18]. In Grassmann graphs, not every small set has a
nearly perfect expansion. However, [KMS18] showed that most of the small sets expand per-
fectly except for those sets which are not pseudorandom. Roughly speaking, a pseudorandom set
is one in which any constant-size restriction cannot change the density of the set by a lot. This
definition is very similar to the constraint in the Bourgain’s Sharp Threshold Theorem. Pseudo-
randomness is also studied on Johnson graphs in [KMMS18]. We will have a detailed discussion
and study pseudorandomness on the biased Boolean hypercube in Chapter 2.

1.2.3 Two-set version and equivalence to hypercontractivity

By focusing on f, g : {−1, 1}n → {0, 1}, the Two-Function Hypercontractivity Theorem (The-
orem 1.1.11) can also be interpreted as a two-set generalization of the Small-Set Expansion
Theorem due to [MOR+06]:
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Theorem 1.2.5. In the setting of Theorem 1.1.12. Let A ⊆ Ωn
x, B ⊆ Ωn

y and random variables
(x,y) ∼ ((Ωx × Ωy)

n, µ⊗n). Then

Pr
(x,y)∼µ⊗n

[x ∈ A,y ∈ B] ≤ |A|
1
p |B|

1
q′ ,

if domain (Ωx × Ωy, µ) is (p, q)-hypercontractive.
For sets A,B with fixed volume, one can take the infimum of |A|1/p|B|1/q′ among all p and

q such that (Ωx × Ωy, µ) is (p, q)-hypercontractive. Here is an example for ρ-correlated random
variables on Boolean hypercube from [O’D14].
Example 1.2.6. Suppose (x,y) are ρ-correlated unbiased random variables on {−1, 1}n with
0 < ρ ≤ 1. LetA,B ⊆ {−1, 1}n have volume exp(−a2

2
) and exp(− b2

2
), and let 0 ≤ ρa ≤ b ≤ a

ρ
.

Then

Pr
(x,y)∼µ⊗n

[x ∈ A,y ∈ B] ≤ exp

(
−1

2

a2 − 2ρab+ b2

1− ρ2

)
.

This bound is sharp in the case when A and B are concentric Hamming balls.
Until recently, the Small-Set Expansion Theorem was seen as a binary-output special case of

the Hypercontractivity Theorem. However, [Nai14] showed that these two theorems are in fact
equivalent.
Theorem 1.2.7. In the setting of Theorem 1.1.12, (Ωx × Ωy, µ) is (p, q)-hypercontractive if and
only if

Pr
(x,y)∼µ⊗n

[x ∈ A,y ∈ B] ≤ |A|
1
p |B|

1
q′ ,

holds for any n, A ⊆ Ωn
x, and B ⊆ Ωn

y .
We remark that for hypercontractivity the cases of n = 1 and general n are equivalent by

induction, but the small set expansion statement requires n to be general, and in fact the sharp
case may happen when n→∞.

Nair studied this equivalence of hypercontractivity and small-set expansion using information
measures, and this result might be overlooked by other fields. We will extend the discussion,
restate Nair’s proof, and give an application in communication complexity in Chapter 3.

1.3 Problem studied
In this thesis, we will calculate the parameter domain of hypercontractivity and small-set expan-
sion for some special cases. We will also give applications of hypercontractivity and small-set
expansion for some problems in coding theory and complexity theory.

Pseudorandom-set expansion. A recent breakthrough of proving the 2-to-2 games conjec-
ture is completed by showing the pseudorandom-set expansion on Grassmann graphs [KMS18].
Roughly speaking, if any subset of vertices on Grassmann graph is “pseudorandom” enough, it
will have almost full expansion on the graph. A similar property is also shown on Johnson graphs
[KMMS18]. These pseudorandom-set expansion results can be seen as an improvement of small-
set expansion for special cases. We prove the pseudorandom-set expansion on biased Boolean

11



cube as an analog of that on Johnson graphs, with a very short and comprehensive proof. Our
goal is to give an analog of Grassmann graph expansion and hope to inspire further directions
for the unique games conjecture.

Communication distillation. The communication distillation problem is about two parties
with noisy private randomness trying to extract a common random string via communication.
We show that the upper and lower bounds of this problem are both related to the small-set ex-
pansion based on the work of [AC98, GR11]. We also show that communication distillation with
high probability is related to some properties of extreme points in the hypercontractivity domain.

Decoupling. The decoupling method refers to the idea of analyzing a complicated random sum
involving dependent random variables by comparing it to a simpler random sum where some in-
dependence is introduced between the variables. Decoupling applies in multiple areas, including
randomly stopped processes and unbiased estimation. Roughly speaking, the decoupling method
transforms a polynomial of random variables into its “multilinear version”. This multilinear
property is convenient. For example we can apply well-studied hypercontractivity results.

Let f(x) = f(x1, . . . , xn) =
∑
|S|≤k aS

∏
i∈S xi be an n-variate real multilinear polynomial

of degree at most k, where S ⊆ [n] = {1, 2, . . . , n}. For its one-block decoupled version,

f̆(y, z) =
∑
|S|≤k

aS
∑
i∈S

yi
∏

j∈S\{i}

zj,

we show tail-bound comparisons of the form

Pr
[∣∣∣f̆(y, z)

∣∣∣ > Ckt
]
≤ DkPr

[
|f(x)| > t

]
.

Our constants Ck, Dk are significantly better than those known for “full decoupling”. For ex-
ample, when x,y, z are independent Gaussians we obtain Ck = Dk = O(k); when x,y, z are
±1 random variables we obtain Ck = O(k2), Dk = kO(k). By contrast, for full decoupling only
Ck = Dk = kO(k) is known in these settings.

We describe consequences of these results for query complexity (related to conjectures of
Aaronson and Ambainis) and for analysis of Boolean functions (including an optimal sharpening
of the DFKO Inequality).

Property testing on k-wise uniformity. The density function of a k-wise uniform distribution
has zero coefficients for any monomial of degree at most k, except for the constant term (which
is always equal to 1). In other word, the Fourier expansion of the function has only high-degree
monomials, which is the opposite case of the low-degree function. However we can transform the
optimization of k-wise uniform distribution into analyzing low-degree polynomials via duality.
Then we can apply the low-degree inequalities, as an application of the hypercontractivity.

A probability distribution over {−1, 1}n is (ε, k)-wise uniform if, roughly, it is ε-close to the
uniform distribution when restricted to any k coordinates. We consider the problem of how far an
(ε, k)-wise uniform distribution can be from any globally k-wise uniform distribution. We show
that every (ε, k)-wise uniform distribution is O(nk/2ε)-close to a k-wise uniform distribution in
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total variation distance. In addition, we show that this bound is optimal for all even k: we find
an (ε, k)-wise uniform distribution that is Ω(nk/2ε)-far from any k-wise uniform distribution in
total variation distance. For k = 1, we get a better upper bound of O(ε), which is also optimal.

One application of our closeness result is to the sample complexity of testing whether a dis-
tribution is k-wise uniform or δ-far from k-wise uniform. We give an upper bound of O(nk/δ2)
(or O(log n/δ2) when k = 1) on the required samples. We show an improved upper bound of
Õ(nk/2/δ2) for the special case of testing fully uniform vs. δ-far from k-wise uniform. Finally,
we complement this with a matching lower bound of Ω(n/δ2) when k = 2.

Our results improve upon the best known bounds from [AAK+07], and have simpler proofs.

1.4 Outline
The thesis is organized as follows: Chapter 2 covers pseudorandom-set expansion on product
probability spaces; Chapter 3 covers the equivalence of hypercontractivity and small-set expan-
sion and its application to communication agreement distillation; Chapter 4 covers decoupling
results; Chapter 5 covers property testing of k-wise uniformity.

Chapter 4 is based on work from [OZ16]. Chapter 5 is based on work from [OZ18]. Chapter 2
is based on unpublished joint work with Ryan O’Donnell; a similar result was also shown in
[KLLM21] independently from our work. Most of Chapter 3 is based on unpublished joint work
with Venkat Guruswami and Ryan O’Donnell, except for Section 3.6, which is from [NW16].
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Chapter 2

Pseudorandom-Set Expansion on Product
Probability Spaces

2.1 Introduction
In this chapter, we focus on expansion properties of product probability spaces, especially on the
noisy Boolean hypercube with biased distribution. In particular, we are interested in the class of
sets on this graph satisfying a property called pseudorandomness.

2.1.1 Pseudorandom-set expansion
Pseudorandom-set expansion appears in the milestone breakthrough proof of the 2-to-2 Games
Conjecture. A line of works [KMS17, DKK+18] reduces an NP-hard problem to the problem of
2-to-2 games on Grassmann graphs, and in the process these works end up showing an expansion
property of small sets in Grassmann graphs [DKK+21]. Unfortunately, not every small set has
nearly perfect expansion, as one might hope, but luckily to prove the 2-to-2 Games Conjecture it
suffices to work with only pseudorandom sets, in the sense that under any small co-dimensional
subspace restriction, the density of the set will not increase too much (this turns out to be very
similar to the idea of closeness to k-wise uniformity mentioned in Chapter 5). Pseudorandom-set
expansion was finally proved in [KMS18], which finished the proof of the 2-to-2 Game Conjec-
ture (at least with imperfect completeness).

In this chapter we will prove the near-perfect expansion property of pseudorandom sets on
product probability spaces. This is an analog of the results in [KMS18, KMMS18] for product
probability spaces. For example, the Boolean hypercube with biased distribution is a special
case of this generalized domain in which Ω = {−1, 1}n and π = π⊗nλ where πλ(−1) = λ,
πλ(1) = 1 − λ. Here is the general definition of pseudorandomness on product probability
spaces.
Definition 2.1.1. Let (Ω, π) be a finite probability space, where the finite set Ω = Ω1× · · · ×Ωn

and the distribution π = π1 ⊗ · · · ⊗ πn are n-dimentional. A subset A ⊆ Ω is called (k, ε)-
pseudorandom if for any restriction J |z with size |J | ≤ k, we have

Pr
x∼(Ω,π)

[x ∈ A|x ∈ (z × ΩJ̄)] ≤ Pr
x∼(Ω,π)

[x ∈ A] + ε.
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This definition is an analog of pseudorandom sets on Johnson graphs in [KMMS18] and
Grassmann graphs in [KMS18]. The restriction part is more similar to the definition on Grass-
mann graphs in [KMS18], in the sense that having different values for each coordinate of z is
an analog of the “zoom-in” and “zoom-out” subspace restrictions in [KMS18]. The definition of
pseudorandomness on Johnson graphs in [KMMS18] is comparable to only considering z being
the all-ones vector, and a similar definition also appears in [KLLM21].

To describe the expansion property of sets on general product probability spaces, we first
extend our classical definitions of the noise operator to general product probability spaces.
Definition 2.1.2. We say y is ρ-correlated to x ∈ Ω to denote that the random string y is drawn
as follows: for each i ∈ [n] independently,

yi =

{
xi with probability ρ,
under distribution πi with probability 1− ρ;

We say pair (x,y) is ρ-correlated if x is drawn under distribution π, and then y is ρ-correlated
to x.

We want to emphasize the relationship between the noisy Boolean hypercube with biased
distribution and the Johnson graph. The Johnson graph J(n, l, t) is the graph whose nodes are
sets of size l in a universe of size n. Two sets have an edge if and only if the cardinality of their
intersection is equal to t. Let (x,y) be ρ-correlated variables on the Boolean hypercube {−1, 1}n
with λ-biased distribution. It is also easy to check that in expectation there are λn bits of x and y
with value−1. It is easy to check that when fixing x to have λn bits of−1’s, the random variable
y will still have λn bits of −1’s in expectation and will share (ρ+ (1− ρ)λ)λn bits of −1’s with
x in expectation. Therefore, the Johnson graph J(n, l, t) can be seen as an “expectation version”
of the ρ-correlated weighted graph on the Boolean hypercube with a λ-biased distribution where
l = λn, t = (ρ+ (1− ρ)λ)λn.

Our main result is the following nearly perfect expansion property for pseudorandom sets:
Theorem 2.1.3 (Pseudorandom-set expansion). In the setting of Definition 2.1.1 and 2.1.2, for
every 0 ≤ ρ < 1 and 0 < η ≤ 1, when k ∈ N and ε > 0 satisfy (1152)k/3ε ≤ (η − ρk)3, the
following holds. If subset A ⊆ Ω is (k, ε)-pseudorandom, then

Pr
(x,y)

ρ-correlated

[y ∈ A|x ∈ A] ≤ η.

This result is most related to the pseudorandom set expansion on Johnson Graphs studied
in [KMS18]. The Johnsonn Graph can be treated as one slice of the Boolean hypercube, and
therefore it has a lot of similar properties as the Boolean hypercube under a biased distribution.
The proof in [KMMS18] served as the inspiration for the paper [KMS18], which gave a proof of
pseudorandom set expansion on Grassmann graphs, which can be seen as q-analog of Johnson
graphs.

The advantage of our result is that the proof is very simple and clear and has a short length.
The product probability spaces is easier to study than the Johnson graphs because there are more
tools available. The key part of our proof is a hypercontractive inequality, which we prove in
Lemma 2.1.4 below. We hope this result can lead to a simplification and improvement of the
proof of the 2-to-2 Games Conjecture.
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2.1.2 Hypercontractivity on biased Boolean hypercube
The classical hypercontractivity theorem for uniform ±1 bits is tight and has a bunch of funda-
mental applications in the analysis of Boolean functions, such as the Kahn-Kalai-Linial Theorem
[KKL88] and the Invariance Principle [MOO10]. However the hypercontractivity theorem seems
to be not that powerful for studying extremely biased distributions. For example, in the useful
(2, 4)-Hypercontractivity Theorem,

‖Tρf‖4 ≤ ‖f‖2,

we can set ρ = 1/
√

3 to ensure the inequality holds for any f ∈ L2({−1, 1}n, π⊗nλ ) with λ = 1/2,
or in other words the norms are calculated for uniform ±1 bits. However when we consider
the general biased distribution, in particular when the lowest probability λ = o(1), then the
correlation parameter ρ can only taken to be ρ ≤ O(λ1/4) due to [LO94]. This correlation
parameter ρ is so small that the General Hypercontractivity Theorem becomes ineffective for
analogs of the KKL Theorem and other applications on extremely biased ±1 bits. One tight
case might be the dictatorship function, e.g. f(x) = x1. One can easy to check that in this case
‖Tρf‖4 ≥ ρλ1/4 while ‖f‖2 = λ1/2. Keevash et al. [KLLM21] observed this phenomenon,
and noted that the key property of these “bad” examples is locality, in the sense that a small
number of coordinates can significantly influence the output of the function. They suggested that
by excluding these local functions, a stronger hypercontractivity theorem may hold for global
functions, and they showed several strengthened biased distributed analogs of the KKL Theorem
and other applications when focusing on these global functions.

Our result of hypercontractivity inequality is following:
Lemma 2.1.4. Let f ∈ L2(Ω1 × · · · × Ωn, π1 ⊗ · · · ⊗ πn) and k ≤ n. There exists a restriction
J ⊆ [n] and z ∈ ΩJ with |J | ≤ k such that

‖f≤k‖4
4 ≤ (1152)k‖f≤k‖2

2‖fJ̄ |z‖2
2.

Notice that this inequality does not depend on any parameter of the distribution π at all. No
matter how biased the distribution is, this inequality is strong whenever f has small ‖fJ̄ |z‖2 for
any restriction J ⊆ [n] and z ∈ ΩJ . Keevash et al. [KLLM21] obtained a similar result with
slightly different conditions. They only consider restrictions with an all-ones vector z, but they
need the function f to be monotone or small density to make the hypercontractive inequality
hold. Another difference is that our result applies not only on the Boolean hypercube, but also
on any arbitrary product probability spaces.

The proof is inspired by randomization/symmetrization tricks used in the proof of Bourgain’s
Sharp Threshold Theorem [FB99].

2.1.3 Related work
Hypercontractivity on general finite spaces. Earlier works [BKK+92, Tal94, FK96, Fri98]

had established forms of the General Hypercontractivity Theorem for λ-biased bits, giving as
applications KKL-type theorems in this setting with the correct asymptotic dependence on λ.
The optimal (2, q)-hypercontractivity parameter for λ-biased Boolean bits is obtained in [LO94].
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The case of general discrete random variables is a reduction to the two-valued case due to
Wolff [Wol07]. Keevash et al. [KLLM21] studied the hypercontractivity of global functions
for λ-biased Boolean bits independently from our work. The definitions of pseudorandom-
ness/globalness are slightly different between their work and ours. As discussed above, their
condition of globalness/pseudorandomness is slightly less restrictive but they need extra small
density or monotonicity properties to ensure the pseudorandom-set expansion property. The
noise stability of monotone functions for biased Boolean bits is also considered in [LM19].

Pseudorandom sets expansion & the 2-to-2 Games Conjecture. The definition of pseu-
dorandom sets on Grassmann graphs first pops up in [DKK+21], where they suggest a better
understanding of these expansion properties of pseudorandom sets is required for the 2-to-2
Games problem. Previous works [KMS17, DKK+18] connected Grassmann graphs to the 2-to-2
Games Conjecture by showing a reduction from an NP-hard problem to an instance of the 2-to-2
games problem on a Grassmann graph. Pseudorandom set expansion on Grassmann graphs was
proved in [KMS18], which completed the proof of the 2-to-2 Games Conjecture (with imperfect
completeness). The proof of pseudorandom set expansion on Grassmann graphs is inspired by
the proof of an easier analog, pseudorandom set expansion on Johnson graphs in [KMMS18].

Biased Boolean hypercubes vs. Johnson graphs. The slice of the Boolean hypercube has
been previously studied in algebraic combinatorics, where it is referred to as the “Johnson as-
sociation scheme”, and in spectral graph theory in relation to the Johnson graphs. An earlier
work [LY98] proved a hypercontractivity property of Johnson graphs. Yuval Filmus [Fil16]
presents an orthogonal basis for functions over a slice of the Boolean hypercube, which gen-
eralized lots of results from the Boolean hypercube to Johnson schemes/graphs, e.g., Friedgut’s
Theorem [Wim14], linearity testing [DDG+17], the Invariance Principle [FM19, FKMW18], and
low-degree spectral concentration [FI19]. The pseudorandom set expansion in the Johnson graph
was proved in [KMMS18]. They mentioned the analog of their result in the noisy biased Boolean
hypercube as an open problem, which is what we prove in this chapter.

Johnson graphs vs. Grassmann graphs and q-analogs. Many of the parameters of Grass-
mann graphs are q-analogs of the parameters of Johnson graphs (the q = 2 case of Grass-
mann graphs is the case relevant to 2-to-2 Games Conjecture), and Grassmann graphs have
several of the same graph properties as Johnson graphs. The Johnson graph analysis is a spe-
cial but crucial case of the Grassmann graph analysis in the proof of pseudorandom set expan-
sion [KMMS18, KMS18]. Boolean analysis of q-eposet (q-simplicial complex) is studied in
[DDFH18], with an application of pseudorandom set expansion on q-simplicial complexes in
[HKL20]. One future direction of our work might be extending the result to the q-analog of the
Boolean hypercube, and doing so might simplify the proof of pseudorandom set expansion on
Grassmann graphs.

Randomization/symmetrization. Kahane [Kah93] has been credited with the early de-
velopment of the randomization/symmetrization technique for random variables. The com-
parison of norms of a function and its randomization/symmetrization is due to [Bou79]. Our
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proof is inspired by the proof of Bourgain’s Theorem in [FB99, Bal13] utilizing the randomiza-
tion/symmetrization tricks.

2.2 Preliminaries
Let π = π1 × · · · × πn be a product probability distribution on finite set Ω = Ω1 × · · · × Ωn.

2.2.1 Orthogonal decomposition on generalized domains
Theorem 2.2.1. Every function f ∈ L2(Ω, π) has a unique decomposition as follows:

f =
∑
S⊆[n]

f=S,

where f=S depends only on the coordinates in S, and for any function g ∈ L2(Ω, π) which only
depends on coordinates T ( S, 〈f=S, g〉 = 0.

This decomposition is orthogonal so it is similar to the Fourier expansion in many ways.
Proposition 2.2.2. For any f, g ∈ L2(Ω, π),

1. 〈f=S, g=T 〉 = 0 if S 6= T ;
2. 〈f, g〉 =

∑
S⊆[n]〈f=S, g=S〉;

3. Tρf(x) = Ey∼Nρ(x)[f(y)] =
∑

S⊆[n] ρ
|S|f=S(x).

The definition of pseudo-random sets involves fixing some coordinates to constant values.
We introduce the following notation:
Definition 2.2.3. Let f ∈ L2(Ω, π). For set J ⊆ [n] we denote ΩJ = ⊗i∈JΩi and πJ = ⊗i∈Jπi.
Let (J, J̄) be a partition of [n]. Let z ∈ ΩJ . We write fJ̄ |z ∈ L2(ΩJ̄ , πJ̄) for the subfunction of f
by fixing the coordinates in J to z.

Note that for indicator function 1A of subset A ⊆ Ω, its restricted function (1A)J̄ |z indicates
the subset A ∩ (z × ΩJ̄). Hence

Pr
x∼(Ω,π)

[x ∈ A|x ∈ z × ΩJ̄ ] = E
xJ̄∼(ΩJ̄ ,πJ̄ )

[(1A)J̄ |z] = ‖(1A)J̄ |z‖qq

for any q > 0.
One easily checks the following formula between f and fJ̄ |z:

Proposition 2.2.4. For any S ⊆ J̄ ,

(fJ̄ |z)
=S(xS) =

∑
I⊆J

f=I∪S(zI , xS).

In other words,
f=J∪S(z, xS) =

∑
I⊆J

(−1)|J |−|I|(fĪ|zI )
=S(xS).

See Chapter 8 in [O’D14] for more details and the origins of these discussions.
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2.2.2 Randomization/symmetrization technique
One key part of the proof of Bourgain’s Sharp Threshold Theorem is the randomization/symmetrization
technique, which introduces independent uniformly random bits and reduces the analysis to uni-
formly random ±1 bits. Here is the formal definition:
Definition 2.2.5. Let f ∈ L2(Ω, π). The randomization/symmtrization of f is the function
f̃ ∈ L2(Ω× {−1, 1}n, π × π⊗n1/2) defined by

f̃(r,x) =
∑
S⊆[n]

rSf=S(x).

The essential feature of the randomization/symmetrization is that the q-norms do not change
that much, as shown in [Bou79].
Proposition 2.2.6. Let f ∈ L2(Ω, π),

1. ‖f̃‖2 = ‖f‖2;
2. ‖f‖q ≤ ‖T̃2f‖q for q ≥ 1.

2.3 Proofs

2.3.1 Proof of Theorem 2.1.3
We prove the following function version of Theorem 2.1.3.
Theorem 2.3.1. Let f ∈ L2(Ω, π) and 0 ≤ ρ ≤ 1 and k ∈ N. There exists a restriction J ⊆ [n]
and z ∈ ΩJ with |J | ≤ k such that

〈f,Tρf〉 ≤ (1152)k/3‖f‖4/3
4/3‖fJ̄ |z‖

2/3
2 + ρk‖f‖2

2.

Theorem 2.1.3 can be seen as a special case of Theorem 2.3.1 on the indicator function 1A.
Theorem 2.3.1 can be easily deduced from the following two steps combining with 2.1.4.

Claim 2.3.2. Let f ∈ L2(Ω, π) and 0 ≤ ρ ≤ 1 and k ∈ N. Then

〈f,Tρf〉 ≤ ‖f≤k‖2
2 + ρk‖f‖2

2.

Proof. Writing f in terms of its orthogonal decomposition, we have:

〈f,Tρf〉 =
∑
S⊆[n]

ρ|S|〈f=S, f=S〉 =
∑
S⊆[n]

ρ|S|‖f=S‖2
2.

Then we conclude ∑
S⊆[n]

ρ|S|‖f=S‖2
2 =

∑
|S|≤k

ρ|S|‖f=S‖2
2 +

∑
|S|>k

ρ|S|‖f=S‖2
2

≤
∑
|S|≤k

‖f=S‖2
2 + ρk

∑
|S|>k

‖f=S‖2
2

≤ ‖f≤k‖2
2 + ρk‖f‖2

2.
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Claim 2.3.3. Let f ∈ L2(Ω, π) and k ∈ N. Then

‖f≤k‖2
2 ≤ ‖f‖4/3‖f≤k‖4.

Proof. Apply orthogonality of the decomposition and then Hölder’s inequality:

‖f≤k‖2
2 = 〈f, f≤k〉 ≤ ‖f‖4/3‖f≤k‖4.

2.3.2 Proof of Lemma 2.1.4
Proof of Lemma 2.1.4. We start with the symmetrization technique. Let g = T2f

≤k. Let r ∼
{−1, 1}n be independent uniformly random bits. Then we have

E
x
E
r

[
g̃(x, r)4

]
≤ E

x

[
9k E

r

[
g̃(x, r)2

]2]
= 9k E

x

∑
|S|≤k

g=S(x)2

2.
The inequality is by Bonami’s Lemma and the equality follows from Parseval’s Theorem on the
random variable r. Recalling the definition of g we conclude

E
x

[f≤k(x)4] ≤ E
x
E
r

[
g̃(x, r)4

]
≤ 9k E

x

∑
|S|≤k

(2kf=S(x))2

2 = (144)k E
x

∑
|S|≤k

(f=S(x))2

2.
Next, we open up the square inside the expectation, and break up the resulting double-sum

over S, T , according to I := S ∪ T :

E
x

∑
|S|≤k

(f=S(x))2

2 = E
x

∑
|I|≤k

∑
|S|≤k
S⊇I

f=S(x)2

 ∑
|T |≤k
S∩T=I

f=T (x)2


. (2.1)

We carefully switch the order of product and expectations based on S ∩T = I . Then we include
the additional nonnegative terms by dropping the condition that S ∩ T = I . Thus

(2.1) ≤
∑
|I|≤k

E
xI


∑
|S|≤k
S⊇I

E
xS\I

[f=S(xS)2]


∑
|T |≤k
T⊇I

E
xT\I

[f=T (xT )2]


.

We upper-bound the second factor by taking a maximum over the set I and its assignment yI :

(2.1) ≤

∑
|I|≤k

∑
|S|≤k
S⊇I

E
xS

[f=S(xS)2]

 max
|I|≤k
yI∈ΩI

∑
|T |≤k
T⊇I

E
xT\I

[f=T (yI ,xT\I)
2]. (2.2)

21



In the first factor, for each set S, f=S is counted 2|S| times, and therefore∑
|I|≤k

∑
|S|≤k
S⊇I

E
xS

[f=S(xS)2] =
∑
|S|≤k

2|S| E
xS

[f=S(xS)2] ≤ 2k E
x

[
∑
|S|≤k

f=S(x)2] = 2k‖f≤k‖2
2. (2.3)

For the second factor, one easily checks that

f=I∪S(yI , xS) =
∑
J⊆I

(−1)|I|−|J |(fJ |yJ )=S(xS).

Hence by dropping the condition that |T | ≤ k and including the additional nonnegative terms we
get ∑

T⊇I

E
xT\I

[f=T (yI ,xT\I)
2] ≤ 2|I|

∑
J⊆I

∑
S⊆Ī

E
xS

[(fJ |yJ )=S(xS)2] ≤ 4k max
J⊆I
‖fJ |yJ‖2

2. (2.4)

The first ineqauality is Cauchy-Schwarz and the second inequality is from adding nonnegative
terms by changing S ⊆ Ī to S ⊆ J̄ . We thus conclude the proof by plugging (2.3) and (2.4) into
(2.2).
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Chapter 3

Communication Assisted Agreement
Distillation and Hypercontractivity Region

3.1 Introduction

3.1.1 Communication assisted agreement distillation
Consider the following communication problem: let µ be an arbitrary joint distribution on the
finite domain Ωx × Ωy. Consider a pair of random strings (x,y) ∼ µ⊗n drawn from the product
probability on (Ωx × Ωy)

n. Alice receives string x and Bob receives string y. The goal is for
Alice and Bob to agree on a uniformly random string in {0, 1}k, using as little communication
between each other as possible.

The agreement distillation problem is very natural in the context of imperfect sharing of
randomness. The pair of random strings (x,y) from the joint distribution µ represents “im-
perfectly shared randomness”, something in the middle of “private randomness” and “perfectly
shared randomness”. An efficient scheme of agreement distillation will convert any communi-
cation protocol with public (perfectly shared) randomness into one that relies only on imperfect
shared randomness. The work [BGI14] studied simulating any communication protocol with
public randomness by a protocol with imperfect shared randomness in the simultaneous message
passing setting. See [CGMS17] for more discussion of communication with imperfectly shared
randomness. The agreement distillation is also related to the communication problem of test-
ing independence of the joint distribution µ, studied in [ST18, ST21], and estimating correlation
parameters of the joint distribution µ, studied in [HLPS19]. The communication-free version
of agreement distillation relates to the problem of extracting a unique identification string from
process variations. See [BM11] for further discussion of this motivation.

The agreement distillation problem is one typical category in the larger area of Common
Randomness Generation and Secret Key Generation problems. The study of these problems
dates back to the seminal work of Shannon on secrecy systems [Sha49] in information theory.
See [STW19] for an up-to-date survey on such problems.

Earlier works for the agreement distillation problem focused on the zero-communication
version. Witsenhausen [Wit75] studied the probability of extracting one bit without communi-
cation. The work [BM11] showed the probability Alice and Bob can agree on a k-bit string is
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exponentially small in k without communication when the joint distribution is correlated unbi-
ased Boolean case (equivalent to the binary symmetric channel). O’Donnell and Wright [OW12]
proved the optimal probability of extracting one bit with zero-communication over the binary
erasure channel. The work [GR16] established the precise trade-off between communication
and probability of agreement for BSC and BEC distribution cases. See [GR16] for a more de-
tailed history before their work. Extracting common random bits from correlated distribution
on large alphabets is considered in [CMN14]. For the interactive multi-round communication
version of this problem, round complexity and communication-round trade-offs are discussed in
[GS20, SGGB19].

These studies mentioned above, as well as our work, focus on communication complexity
and the success probability of the agreement distillation problem. We do not try to optimize n,
the number of correlated samples we use. We allow n → ∞ for any value of k, the number
of common random bits to be generated. Another sequence of earlier works [AC98, ZC11]
also studied the ratio of the number of source samples to the number of common random bits
generated. The work [GJ18] gave a resource-efficient communication protocol matching the
sharp trade-off between communication and probability of agreement in [GR16] for correlated
Boolean and Gaussian cases, with only poly(k) samples used.

Let us be more precise on the setting. Suppose we only allow one-way communication from
Alice to Bob. Ideally Alice decides her uniformly random string hA(x), where the “generator
function” hA : (Ωx)

n → {0, 1}k satisfies Pr[hA(x) = z] = 2−k for any z ∈ {0, 1}k. Alice
also decides the message π she sends to Bob. (The transcript π can also be seen as a function of
random string x.) Bob will try to guess the string Alice generated based on his random string y
and the communication transcript π. We define Bob’s guess as function hB(y,π). The success
probability of this agreement distillation protocol is Pr[hA(x) = hB(y,π)].

However, for a general distribution µ it might be impossible to construct a function hA such
that the output is exactly uniform on {0, 1}k. Here we slightly revise the constraint of hA to be
hA : (Ωx)

n → {{0, 1}k, “FAIL”} satisfying Pr[hA(x) = z|hA(x) 6= “FAIL”] = 2−k for any
z ∈ {0, 1}k. In other words, we want Alice to generate a uniformly random string with length k
most of the time, but also allow Alice to give up and output “FAIL” by some small probability.

The work of [GR16] studied the special cases of this problem in which distribution µ is given
by sending x through a binary symmetric channel (BSC) or a binary erasure channel (BEC) and
letting y be the result. They pinpoint the exact trade-off between the communication and success
probability required in order for Alice and Bob to agree on k bits of common randomness, when
an unlimited number of correlated samples are available.

Though [GR16] only focused on BSC and BEC cases, their lower bound on communication
complexity can be generalized to arbitrary joint distributions µ:
Theorem 3.1.1 (General lower bound from [GR16]). Suppose there is a protocol with Pr[hA(x) =
z] ≤ 2−k for any z ∈ {0, 1}k, and Alice sends ck bits to Bob after which Bob is able to guess
hA(x) with probability at least 2−γk. Then for any (p, q)-hypercontractive distribution µ,

c ≥ 1− q′

p′
− q′γ,

where p′, q′ are Hölder conjugates of p, q.
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In particular, to achieve constant agreement probability, the communication lower bound
would be

c ≥ 1− s∗(x;y)− o(1),

where

s∗(x;y) = lim
q′→∞

inf
(p,q)-hypercontractive

q′

p′

= lim
p→1

inf
(p,q)-hypercontractive

p− 1

q − 1
.

The function s∗(x;y) is the chordal slope of the boundary of the hypercontractivity region
at the infinity, and is determined by the distribution µ. We will study it in further detail in
Section 3.1.3.

The work of [GR16] showed that this lower bound is tight for BSC and some, though not
all, of the BEC cases. One major open question in [GR16] determining the situation for more
general joint distributions beyond the BSC and BEC cases.

The main result of this chapter is to construct a communication assisted agreement dis-
tillation protocol for general distribution µ with constant success probability, communicating
(1− s∗(x;y) + o(1))k bits, which is optimal.
Theorem 3.1.2 (General upper bound for constant success probability). There is a protocol in
which hA(x) is uniformly distributed in {0, 1}k, conditioned on not outputting “FAIL”, such that
Alice sends ck bits to Bob, who then succeeds in guessing hA(x) with probability Θ(1), in which
the communication rate is given by

c ≤ 1− s∗(x;y) + o(1).

Our agreement distillation scheme is explicit, including in the cases of the BSC and BEC
channels. This is another advantage compared to the protocol given in [GR16], which is analyzed
using the probabilistic method and only gives an existential result. In our scheme, the number of
samples n will be exponential in k.

For any arbitrary imperfect shared randomness, one can study the hypercontractivity region
on finite probability space (Ωx × Ωy, µ) and construct an agreement distillation protocol with
constant success probability. We further study the chordal slope of the boundary of the hyper-
contractivity region for the binary erasure channel and can show the following application:
Corollary 3.1.3 (Upper bound for reverse BEC). Consider the joint distribution µ in which x
is the output of the random string y going through the binary erasure channel with erasure
rate ε. There is a protocol such that hA(x) is uniformly distributed in {0, 1}k, conditioned on not
outputting “FAIL”, in which Alice sends ck bits to Bob, who then succeeds in guessing hA(x)
with probability Θ(1). Furthermore, it has communication rate

c =

{
ε if 0 ≤ ε ≤ 1

2
;

1−
(
− log 1−ε

2

)−1 if 1
2
< ε < 1.

.

This communication rate matches the tight lower bound.
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As we can see in the statement of Theorem 3.1.1 and 3.1.2, there is a tight relationship
between this problem and hypercontractive inequalities. Indeed, the optimal bound in Theo-
rem 3.1.2 shows how constructing the agreement distillation protocol and analyzing its com-
munication rate reduced to calculating hypercontractivity parameters for the joint distribution
µ. Our proof relies on hypercontractive inequalities, small-set expansion inequalities, inequali-
ties involving the Kullback-Leibler-divergence, and the equivalences among them. The original
proof of Theorem 3.1.1 in [GR16] relies only on hypercontractive inequalities. In this chapter
we will rewrite the proof in a more comprehensive way with the help of the Small-Set Expansion
Theorem. Our construction of the communication protocols in Theorem 3.1.2 is an extension
of the proof of the equivalence between inequalities involving the KL divergence and small-set
expansion inequalities in [Nai14].

3.1.2 Equivalence of general hypercontractivity and small-set expansion
We start by extending the definition of hypercontractivity to general pairs of random variable
(x,y) ∼ (Ωx × Ωy, µ), where µ is a joint distribution on the finite domain Ωx × Ωy. Let µx
and µy be the marginal distribution of x and y, and let µx|y be the marginal distribution of x with
y = y.
Definition 3.1.4. We say a pair of random variables (x,y) ∼ (Ωx×Ωy, µ) is (p, q)-hypercontractive
for 1 ≤ p ≤ q ≤ ∞ if

‖Tf(y)]‖q ≤ ‖f(x)‖p ∀f : Ωx → R,

where Tf(y) = Ex∼µx|y=y
[f(x)], the left-hand side is the q-norm on the finite probability space

(Ωy, µy), and the right-hand side is the p-norm on the finite probability space (Ωx, µx).
The earliest roots of the operator Tf(y) = Ex∼µx|y [f(x)] are in the famous work of Markov

[Mar06] which discusses stochastic matrices, the transition matrices in a Markov Chain. The
operator T was later known as a Markov operator. The hypercontracting property of the Matrix
operator was independently considered in theoretical physics as mentioned in [AG76]. Ahlswede
and Gács studied the infimum of p/q on the hypercontractivity region in [AG76]. Hypercontrac-
tivity for general distributions is well-studied in the case of noisy channels in multi-user infor-
mation theory. The special case of Gaussian and Boolean random variables and their history is
mentioned in previous chapters. Hypercontractivity on the binary erasure channel is studied in
[NW16, NW17].

Many classical hypercontractivity properties still hold for hypercontractivity on general fi-
nite probability spaces. For example, we also have an equivalent two-function version of the
hypercontractivity statement.
Proposition 3.1.5. The random variable pair (x,y) ∼ (Ωx × Ωy, µ) is (p, q)-hypercontractive
if and only if

E
(x,y)∼µ

[f(x)g(y)] ≤ ‖f(x)‖p‖g(y)‖q′ ∀f : Ωx → R, g : Ωy → R,

where q′ is the Hölder conjugate of q, i.e. 1
q

+ 1
q′

= 1.
The original hypercontractivity definition only focuses on functions of a single random vari-

able x. The two-function version hypercontractivity is more natural and symmetric on x and y.
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We will mainly use the two-function version of hypercontractivity in the rest of this chapter,
while we keep the notation of p and q′ to be aligned with classical definitions.

The fact that the n = 1 case of hypercontractivity can be extended to the general n case by
induction also works for general joint probability distributions. Hence hypercontractive inequal-
ities can be extended to general functions f : (Ωx)

n → R and g : (Ωy)
n → R. For (x,y) which

are (p, q)-hypercontractive, if we look at indicator functions f and g, we can get a small-set
expansion inequality:

Pr
(x,y)∼µ⊗n

[x ∈ A,y ∈ B] ≤ |A|
1
p |B|

1
q′ (3.1)

for any integer n, A ⊆ (Ωx)
n, and B ⊆ (Ωy)

n.
The small-set expansion phenomena and its relationship to hypercontractivity were previ-

ously mentioned in a series of studies [CF63, AGK76, AG76]. For the correlated unbiased
Boolean case, the one-set small-set expansion inequalities were first shown in [KKL88] in order
to study the distribution of Hamming distances in a vector set. The two-set generalization of the
small-set expansion on the correlated unbiased Boolean case was first mentioned in [O’D14],
inspired by a reverse version appeared in [MOR+06], with an application to random walks.

The two-set generalization of small-set expansion arises naturally in communication with im-
perfect shared randomness. Specifically, in our agreement distillation problem, for any Boolean
string output z of length k, let

A = {x | hA(x) = z}, B = {y | ∃π, hB(π, y) = z}.

That is to say, A is the set of all strings x letting Alice output z, and B is the set of all
strings y such that it is possible for Bob to output z with some communication transcript. Then
Pr(x,y)∼µ⊗n [x ∈ A,y ∈ B] naturally becomes an upper bound on the probability of Alice and
Bob agreeing on the output z. We use small-set expansion to simplify the proof of Theorem 3.1.1
in [GR16]. See Section 3.3 for the summary.

For given sets A and B, one can take the infimum among all hypercontractive pairs (p, q)
on the right-hand side of (3.1) and get the best upper bound. In [O’D14], it was shown that
this upper bound is essentially sharp for ρ-correlated unbiased random Boolean strings in the
case that A and B are concentric Hamming Balls. However, this constructive proof cannot be
extended to small-set expansion on general finite domains. In general, the small-set expansion
inequality looks weaker than the hypercontractive inequality since it only focuses on the subset
of indicator functions f : (Ωx)

n → {0, 1}, g : (Ωy)
n → {0, 1}. Surprisingly, Chandra Nair

showed in [Nai14] that the hypercontractivity inequality and the small-set expansion inequality
are identical on general finite probability spaces, and are also identical to an inequality involving
the Kullback-Leibler divergence:
Theorem 3.1.6 (From [Nai14]). Let µ be a joint distribution on the finite domain Ωx × Ωy. The
following statements are equivalent:

1) The random variable (x,y) ∼ (Ωx × Ωy, µ) is (p, q)-hypercontractive;
2) D(ν‖µ) ≥ 1

p
D(νx‖µx)+ 1

q′
D(νy‖µy) for any distribution ν � µ on finite domain Ωx×Ωy;

3) Pr(x,y)∼µ⊗n [x ∈ A,y ∈ B] ≤ |A|
1
p |B|

1
q′ for any integer n, A ⊆ (Ωx)

n, B ⊆ (Ωy)
n.

Here we denote the measure ν is absolutely continuous with respect to the measure µ as
ν � µ and let D(ν‖µ) be the relative entropy between ν and µ when ν � µ.
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Chandra Nair [Nai14] was focusing on equivalent formulations of hypercontractivity using
information measures. The equivalence of the small-set expansion was not mentioned explicitly
in the his theorem statement but appeared in the proof. We summarize and simplify the proof of
Theorem 3.1.6 in Section 3.6.

There are some follow-up works which study Brascamp-Lieb inequalities [LCV15, LCCV16],
which are similar to multi-party versions of hypercontractivity inequalities.

The deduction from the small-set expansion inequality to the inequality involving the KL
divergence also gives us a way to construct sharp cases of setsA andB. We extend this deduction
with a more precise Stirling’s approximation to construct our communication protocol for the
agreement distillation protocol. See the proof of our upper bound for the agreement distillation
problem in Section 3.4.

The proofs of these results on the communication-assisted agreement distillation problem
demonstrate the advantage of all three equivalent formulations in Theorem 3.1.6. First, we show
a comprehensive proof of the lower bounds on communication complexity with the help of small-
set expansion. Next, to show the tightness of these lower bounds, we use the KL-divergence form
to construct sharp cases of sets and communication protocol. Finally, for a specific distribution
µ, calculating the exact lower bound relies on the properties and constraints of hypercontractivity
parameters p, q which are mostly shown and proven in the original hypercontractivity form. We
believe these techniques can be applied to more problems. The equivalence of hypercontractivity
and small-set expansion seems very promising and we hope it will prove useful in the future.

3.1.3 Boundary of hypercontractivity region
In the statement of Theorem 3.1.1 and 3.1.2, the ratio q′/p′ of hypercontractivity parameters
appears. If we focus on the communication protocols achieving constant agreement probability,
it would be related to the ratio q′/p′ where p′, q′ → ∞. Therefore to calculate the exact lower
bound on a specific distribution µ, we need to calculate the infimum of q′/p′ constrained to
(x,y) ∼ (Ωx × Ωy, µ) being (p, q)-hypercontractive.

Because theLp norm is monotone increasing, if (x,y) ∼ (Ωx×Ωy, µ) is (p0, q)-hypercontractive,
then (x,y) is (p, q)-hypercontractive for any p ≥ p0. For a given q > 1, we define

p∗(q) = inf{p | (p, q)-hypercontractive}.

Then p∗(q) is the curve function of the boundary of the hypercontractivity region.
The early study of slope p∗(q)/q appears in [AG76] by Ahlswede and Gács. They showed

that p∗(q)/q is monotonically decreasing in q. In [KA16] they studied the chordal slope (p∗(q)−
1)/(q − 1), as well as

s∗(x;y) = lim
q→1

p∗(q)− 1

q − 1
, s∗(y;x) = lim

q→∞

p∗(q)− 1

q − 1
.

They showed that these quantities are connected to the maximal correlation from information
theory. One can check [AGKN14] for a summary and some further discussion. s∗(x;y) also has
an equivalent KL-divergence definition shown in [KA16]. We will use this property in proving
the upper bound. See Section 3.2.2 for details.
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One can easily check that if (x,y) is (p, q)-hypercontractive, then (y,x) is (q′, p′)-hypercontractive
based on the two-function version of the hypercontractivity. Therefore we can use prior results
to calculate the infimum of q′/p′ in our agreement distillation problem.

The classical Hypercontractivity Theorem on ρ-correlated unbiased Boolean random vari-
ables says that p∗(q)−1

q−1
= ρ2 for any q > 1 in this case. The case of the binary erasure channel

with erasure rate ε, i.e. y ∼ BECε(x), is studied in [NW16, NW17]. In [NW16] they showed
that p

∗(q)−1
q−1

= 1−ε when ε− 1
2
≤ 3

2
(q′−1). In this chapter we calculate the chordal slope p∗(q)−1

q−1

when ε > 1
2

and q →∞, which implies Corollary 3.1.3 as an application.

3.2 Preliminaries

3.2.1 Properties of the slope of hypercontractivity boundary
In this chapter we focus on a general finite domain Ωx × Ωy with joint distribution µ. We write
(x,y) ∼ (Ωx×Ωy, µ) to denote that the random variable pair (x,y) is chosen from Ωx×Ωy with
distribution µ. We also write µx, µy, and µx|y=y to denote the marginal distribution of x, y and
the conditional distribution x given y = y. The Markov operator T on functions f : Ωx → R is
defined by Tf(y) = Ex∼µx|y=y

[f(x)]. Finally we use the notation ‖f(x)‖p = Ex∼µx [|f(x)|p]1/p.
Getting back to the hypercontractivity region, for a real number q > 1, we define

p∗(q) = inf
{
p | ‖Tf(y)]‖q ≤ ‖f(x)‖p ∀f : Ωx → R

}
.

In other words, p∗(q) is the infimum of p such that (x,y) is (p, q)-hypercontractive, and so p∗(q)
is the curve function of the hypercontractivity boundary. One important property of the slope
p∗(q)/q is its monotonicity, as shown in [AG76].
Proposition 3.2.1. p∗(q)

q
is monotonically decreasing as q increases.

Another important quantity is the chordal slope (p∗(q)− 1)/(q − 1). For correlated Boolean
random variables/the binary symmetric channel and the binary erasure channel with erasure prob-
ability ε ≤ 1

2
, the chordal slope is a constant for any q. Here we write y ∼ BSC 1−ρ

2
(x) to denote

that y is the result of transmitting the uniform Boolean string x through a BSC with crossover
probability 1−ρ

2
, i.e. (x,y) is ρ-correlated. Similarly, we write y ∼ BECε(x) to denote that y is

the result of transmitting the uniform Boolean variable x through a BEC with erasure probability
ε.
Proposition 3.2.2 (From [O’D14, NW16]). For the BSC and BEC cases, we have
• p∗(q)−1

q−1
= ρ2 for any q > 1 when y ∼ BSC 1−ρ

2
(x);

• p∗(q)−1
q−1

= 1− ε when y ∼ BECε(x) and (ε− 1
2
)(q − 1) ≤ 3

2
.

We are specifically interested in the chordal slopes of the hypercontractivity boundary at
q → 1 and q →∞. We define

s∗(x;y) = lim
q→1

p∗(q)− 1

q − 1
.

We will present an equivalent definition in terms of the KL divergence in Section 3.2.2.
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Let p′, q′ be the conjugate Hölder indices of p and q, e.g. 1
p

+ 1
p′

= 1. It is easy to check that
if (x,y) is (p, q)-hypercontractive, then (y,x) is (q′, p′)-hypercontractive from the two-function
version of hypercontractivity in Proposition 3.1.5. Similarly we define

q′∗(p′) = inf
{
q′ | ‖Tg(x)]‖p′ ≤ ‖g(y)‖q′ ∀g : Ωy → R

}
,

where Tg(x) = Ey∼µy|x=x
[g(y)].

Proposition 3.2.3. The slopes and the choral slopes have the following properties:
• q′∗(p′)

p′
is monotonically decreasing as p′ increases;

• s∗(x;y) = limq→1
p∗(q)−1
q−1

= limp′→∞
q′∗(p′)
p′

;

• s∗(y;x) = limq→∞
p∗(q)
q

= limp′→1
q′∗(p′)−1
p′−1

.

3.2.2 Kullback-Leibler divergence
For probability distributions ν and µ defined on finite domain Ω, we denote the measure ν is
absolutely continuous with respect to the measure µ as ν � µ.The Kullback-Leibler divergence
from µ to ν when ν � µ is defined to be

D(ν‖µ) =
∑
x∈Ω

ν(x) log
ν(x)

µ(x)
.

We assume ν � µ for the rest discussion of this chapter.
The Kullback-Leibler divergence is an important ingredient in proving the equivalence of

hypercontractivity and small set expansion. On the one hand, the distribution ν is a function
over the domain Ωx × Ωy so it is naturally related to hypercontractivity. On the other hand, the
Kullback-Leibler divergence has the following statistical interpretation:
Claim 3.2.4. Let x ∼ (Ωn, µ⊗n) be n i.i.d. random variables under distribution a µ. Let c be the
histogram with counts ca = ν(a)n for all a ∈ Ω, where the measure ν � µ. Let A be the set of
all strings following the histogram c. I.e., x ∈ A if and only if the number of coordinates with
value a in x is equal to ca for all a ∈ Ω. Then

− logPr[x ∈ A] = D(ν‖µ)n+
1

2

(
log n−

∑
a∈Ω

log ca

)
+ Θ(1).

We remark that in this claim we assume ca = ν(a)n is an integer, which might not be true
for most of the cases. But it is easy to prove that rounding ν(a)n will only introduce constant
difference, and so we omit this part for the simplicity. The proof follows Section 12.1 in [Cov99],
with a more precise Stirling’s approximation.

The slopes and the chordal slopes of the hypercontractivity boundary at q → 1 and q →∞
have an equivalent KL-divergence form proven in [KA12].
Theorem 3.2.5. Consider a pair of random variables (x,y) ∼ (Ωx × Ωy, µ). Then

s∗(x;y) = sup
ν(x,y)=νx(x)µy|x=x(y)

νx 6=µx

D(νy‖µy)
D(νx‖µx)

,
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where the supremum is over all distributions ν satisfying νx(x, y) = ν(x)µy|x=x(y) such that the
marginal distribution νx is not equal to µx.

3.3 Lower bound
In this section, we simplify the proof of the lower bound in Theorem 3.1.1 shown in [GR16] in
the language of small set expansion. Small set expansion naturally arises when we look at the
sets of Alice’s x and Bob’s y in which they would agree on a specific common random string.

Proof of Theorem 3.1.1. On Alice’s side,we define

Az = {x ∈ (Ωx)
n | hA(x) = z}

for all z ∈ [2k]. On Bob’s side, we also define

Bz = {y ∈ (Ωy)
n | ∃π s.t. hB(y, π) = z}.

Because there are 2ck different possible transcripts, Bob can only output 2ck different values
given a fixed y. Therefore

∑
z |Bz| ≤ 2ck. Alice and Bob can agree with the same string only if

x ∈ Az and y ∈ Bz for some z. Therefore

2−γk ≤ Pr[Protocol success] ≤
∑
z

Pr[x ∈ Az,y ∈ Bz] ≤
∑
z

|Az|
1
p |Bz|

1
q′ .

for any (p, q)-hypercontractive. The last inequality holds by Theorem 3.1.6.
Then we conclude

2−γk ≤
∑
z

|Az|
1
p |Bz|

1
q′ ≤ 2−

k
p

∑
z

|Bz|
1
q′ ≤ 2

−
(

1
p

+ 1−c
q′ −1

)
k
,

where the last inequality follows from Jensen’s inequality. We conclude the proof by rearranging
the inequality to

c ≥ 1− q′

p′
− q′γ.

For achieving constant agreement probability, we plug in γ = Θ(1/k), q′ =
√
k and choose

the maximum p such that µ is (p, q)-hypercontractive.

3.4 Upper bound
In this section we will prove the upper bound in Theorem 3.1.2. We first present a construction
of a general one-way communication protocol with any arbitrary sets A and B. This protocol
construction is inspired by the idea in [AC98].
Theorem 3.4.1. For any integer m, any nonempty sets A ( (Ωx)

m, B ( (Ωy)
m. Let k =

blog 1
|A|c, k

′ = blog 1
|B|c. There is a protocol in which hA(x) is uniformly distributed in {0, 1}k,

conditioned on not outputting “FAIL”, such that Alice sends (k − k′) bits to Bob, who then
succeeds in guessing hA(x) with probability at least Pr[y ∈ B|x ∈ A] · 1

2e2
.
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Proof. Let x and y be n = 2km i.i.d. random variables under joint distribution µ. We write
x = (x(1), . . . ,x(2k)) and y = (x(1), . . . ,x(2k)), where each (x(i),y(i)) is a block of m i.i.d.
random variables under joint distribution µ. We then create new random variables which indicate
whether x(i) is in A, and y(i) is in B:

zi =

{
1 if x(i) ∈ A,
0 otherwise;

wi =

{
1 if y(i) ∈ B,
0 otherwise.

In our setting, Alice knows the random variable x and therefore z; Bob knows the random
variable y and therefore w. Alice decides her uniform random string hA(x) as follows:

hA(x) =

{
i if zi = 1 and zj = 0 for all j 6= i;

“FAIL” otherwise.

From the symmetricity of the i.i.d. random variable x we know that hA(x) will be uniformly
random in {0, 1}k conditioned on not outputting “FAIL”.

Alice further divides z into 2k−k
′ blocks with size 2k

′ each. We denote

Ωπ = {[1, 2k′ ], [2k′ + 1, 2k
′
+ 2k

′
], . . . , [2k − 2k

′
+ 1, 2k]}

for the index sets of all these 2k−k
′ blocks. If Alice does not output “FAIL”, there exists only one

index i such that zi = 1. Alice chooses the transcript π ∈ Ωπ such that π 3 i and send π to Bob.
Because |Ωπ| = 2k−k

′ , Alice will send (k − k′) bits to Bob.
Bob has his random variables y and thereforew. He also receives a block π from Alice. Bob

only needs to check if there exists exactly one zi′ with value 1 in block π and outputs index i′:

hB(y, π) =

{
i′ if wi′ = 1 for some i′ ∈ π and wj = 0 for all other j ∈ π, j 6= i′;

“FAIL” otherwise.

The rest of the proof shows a lower bound on the success probability of Alice and Bob
agreeing with each other, i.e. Pr[hA(x) = hB(y,π)]. Consider the case of hA(x) = hB(y, π) =
1. On Alice’s side Alice should have z1 = 1 and zj = 0 for all j 6= 1. Alice then sends
π = [1, 2k

′
] to Bob. On Bob’s side he must have w1 = 1 and wj = 0 for all j ∈ [1, 2k

′
], j 6= 1.

Therefore

Pr[hA(x) = hB(y,π) = 1]

=Pr[z1 = 1,w1 = 1]

 2k
′∏

j=2

Pr[zj = 0,wj = 0]

 2k∏
j=2k′+1

Pr[zj = 0]


≥Pr[z1 = 1,w1 = 1]

 2k
′∏

j=2

Pr[wj = 0]

 2k∏
j=2k′+1

Pr[zj = 0]


≥Pr[x ∈ A,y ∈ B] · (1− |B|)2k

′

· (1− |A|)2k

≥Pr[x ∈ A,y ∈ B] · e−2.
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The last inequality holds since k = blog 1
|A|c, k

′ = blog 1
|B|c.

In total, hA(x) and hB(y, π) have at least 2k > 1
2|A| different values. Therefore the total

success probability will be at least Pr[y ∈ B|x ∈ A] · 1
2e2

.

The following lemma shows that we can always find some sets A and B with proper density
which lie on the hypercontractivity boundary.
Lemma 3.4.2. For any ε > 0, there exists some large q′0 ≥ 2, such that for any q′ ≥ q′0, there
exist integer m, nonempty sets A ( Xm, B ( Ym, satisfying:

Pr[x ∈ A,y ∈ B] > |A|1/p|B|1/q′ , (3.2)

where q′

p′
= s∗(X;Y )− ε, and

log
1

|A|
= Cq′ (3.3)

for some constant C.
We can achieve constant agreement probability by plugging in sets given from Lemma 3.4.2

into the protocol constructed in Theorem 3.4.1.

Proof of Theorem 3.1.2. First of all, we choose q satisfying Cq′ = k, so k = blog 1
|A|c for set A

in Lemma 3.4.2.
Secondly, we need to bound the communication complexity. By (3.2), we know that

|A| > Pr[x ∈ A,y ∈ B] > |A|1/p|B|1/q′ ,

which means |B| < |A|q′/p′ and the communication complexity in the protocol in Theorem 3.4.1
will be k − blog 1

|B|c < (1− s∗(Y ;X) + ε)k.
The last part is showing that Pr[y ∈ B|x ∈ A] is a constant. Using (3.2) again we have

|B| > Pr[x ∈ A,y ∈ B] > |A|1/p|B|1/q′ ,

which means |B| > |A|q/p. Therefore

Pr[y ∈ B|x ∈ A] > |A|
1
p
−1|B|

1
q′ > |A|

1
p

+ q
pq′ = |A|

1
q′−1

(
1− q

′
p′

)
> |A|

2
q′ ,

where the last inequality holds by assuming q′ ≥ 2. Combining with (3.3) we get Pr[y ∈ B|x ∈
A] > Ω(1).

We will prove Lemma 3.4.2 in the rest of this section. We start the construction of the sharp
sets from finding the proper joint distribution ν in the inequality of KL-divergence form.
Claim 3.4.3. For any constant ε > 0, there exists a joint distribution ν on Ωx × Ωy, satisfying:

D(ν‖µ)− 1

p
D(νx‖µx)−

1

q′
D(νy‖µy) < −Ω

(
1

q′

)
,

for any q′

p′
= s∗(X;Y )− ε.
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Proof. From Theorem 3.2.5, we have

s∗(x;y) = sup
νx 6=µx

D(νy‖µy)
D(νx‖µx)

where νy denotes the y-marginal distribution of ν(x, y) = ν(x)µ(x,y)
µx(x)

. Therefore there exists
some distribution ν satisfying

D(νy‖µy)
D(νx‖µx)

= s∗(x;y)− ε

2

and ν(x, y) = ν(x)µ(x,y)
µx(x)

, where νx 6= µx. Then clearly D(ν‖µ) = D(νx‖µx) > 0. Therefore

D(ν‖µ)− 1

p
D(νx‖µx)−

1

q′
D(νy‖µy) =

1

p′
D(νx‖µx)−

1

q′
D(νy‖µy)

=
D(νx‖µx)

q′

(
q′

p′
− D(νy‖µy)
D(νx‖µx)

)
= −D(νx‖µx)ε

2q′
.

Notice that the construction of ν is only depended on µ and ε, not q, so we conclude the proof.

Now we can construct sets A and B based on distribution ν. The proof is a more precise
version of the reduction from the Small Set Expansion Inequality to the KL-divergence Inequality
in Theorem 3.1.6.

Proof of Lemma 3.4.2. Letm be any integer. Define the histogram c on Ωx×Ωy where c(x, y) =
ν(x, y)m with distribution ν in Claim 3.4.3. (We omit the rounding process of ν(x, y)m for the
simplicity of the proof.) Let set A denote all strings in Ωm

x following the histogram cx and B
denote all strings in Ωm

y following the histogram cy. Then using Claim 3.2.4 on sets A × B, A,
B, we get

− logPr[x ∈ A,y ∈ B] = D(ν‖µ)m+
1

2

logm−
∑

µ(x,y)>0

log c(x, y)

+ Θ(1);

− log |A| = D(νx‖µx)m+
1

2

(
logm−

∑
x∈Ωx

log c(x)

)
+ Θ(1);

− log |B| = D(νy‖µy)m+
1

2

logm−
∑
y∈Ωy

log c(y)

+ Θ(1).

Notice that∑
µ(x,y)>0

log c(x, y)−1

p

∑
x∈Ωx

log c(x)− 1

q′

∑
y∈Ωy

log c(y) ≥ − 1

q′

∑
y∈Ωy

log c(y) = −|Ωy|
q′

logm+Θ(1)
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when c(x, y) ≥ 2 for any x, y. Therefore to make (3.2) hold, we need m to satisfy(
D(ν‖µ)− 1

p
D(νx‖µx)−

1

q′
D(νy‖µy)

)
m+

|Ωy|
q′

logm = −Ω(1).

Then by Claim 3.4.3 we know that we can choose m = O(q′) to make (3.2) hold. Adjusting m
such that − log |A| = Cq′ for some large constant C will conclude the proof. Here C is related
to distribution µ and parameter ε.

3.5 Examples and hypercontractivity boundary for BEC

3.5.1 Examples
We will construct protocols of the binary symmetric channel (BSC) and the binary erasure chan-
nel (BEC) cases studied in [GR16]. Our protocols are explicit rather than the probabilistic meth-
ods in [GR16]. We start from the example when Bob receives y by transmitting Alice’sx through
a BSC.
Examples 3.5.1. Let x and y be ρ-correlated unbiased±1 random strings, which is equivalent to
say that random string y is uniformly random string x going through a binary symmetric channel
(BSC) with crossover probability 1−ρ

2
. Consider the agreement distillation where Alice has x and

Bob has y. The following hold.
• Upper bound: Let A,B ⊆ {−1, 1}n be concentric Hamming balls with volumes |A| = α,
|B| = α(1−o(1))ρ2 . Then Pr[x ∈ A,y ∈ B] > .99Pr[x ∈ A], when ρ is fixed and α
is small enough. The protocol in Theorem 3.4.1 with such sets A,B satisfies that Alice
generates hA(x) uniformly distributed in {−1, 1}k (conditioned on not outputting “FAIL”),
Alice sends (1 − ρ2 + o(1))k bits to Bob, and then Bob succeeds in guessing hA(x) with
constant probability;

• Matching Lower bound: According to Theorem 3.1.1 and Proposition 3.2.2, suppose there
is a protocol with Pr[hA(x) = z] ≤ 2−k for any z ∈ {0, 1}k, and Alice sends ck bits to
Bob after which Bob is able to guess hA(x) with probability at least 2−γk. Then

c ≥ (1− ρ2)(1− γ)− 2ρ
√

(1− ρ2)γ.

In particular, the optimal communication approaches (1− ρ2)k to achieve constant agree-
ment probability, for large k.

The optimal upper and lower bounds are the same as the results in [GR16]. Notice that in
the upper bound part, we used the well-studied sets of concentric Hamming balls from [Jan97,
O’D14] to construct the protocol in Theorem 3.4.1 rather then the sets generated in Lemma 3.4.2.
In fact we remark that by adjusting the densities of concentric Hamming balls of A and B prop-
erly, we can get a protocol matching the lower bound for any agreement probability. The un-
derlying reason is that the pair of concentric Hamming balls is always the optimal case of the
small-set expansion.

Another example is Bob receiving y by transmitting Alice’s x through a BEC, which is also
studied in [GR16].
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Examples 3.5.2. Let random stringx be uniform in {−1, 1}N and random string y in {−1, 0, 1}N
be x going through a binary erasure channel with erasure probability ε. Consider the agreement
distillation where Alice has x and Bob has y. The following hold.
• Upper bound: Let A = {

∑
xi ≥ tAn} ⊆ {−1, 1}n and B = {

∑
yi ≥ tBn} ⊆

{−1, 0, 1}n, where parameters tA, tB are chosen to achieve the volumes |A| = α, |B| =
α(1−o(1))(1−ε). Then Pr[x ∈ A,y ∈ B] > .99Pr[x ∈ A], when ρ is fixed and α is small
enough. The protocol in Theorem 3.4.1 with such sets A,B satisfies that Alice generates
hA(x) uniformly distributed in {−1, 1}k (conditioned on not outputting “FAIL”), Alice
sends (ε + o(1))k bits to Bob, and then Bob succeeds in guessing hA(x) with constant
probability;

• Matching Lower bound: According to Theorem 3.1.1 and Proposition 3.2.2, suppose there
is a protocol with Pr[hA(x) = z] ≤ 2−k for any z ∈ {0, 1}k, and Alice sends ck bits to
Bob after which Bob is able to guess hA(x) with probability at least 2−γk. Then

c ≥ ε(1− γ)− 2
√
ε(1− ε)γ.

In particular, the optimal communication approaches εk to achieve constant agreement
probability, for large k.

The construction of setsA andB in the upper bound follows the similar idea of the concentric
Hamming balls in the BSC case. The pair of A and B is the essential sharp case for the BEC
when |B| ≥ |A|, according to Proposition 3.2.2. Therefore by adjusting the parameters of tA, tB,
we can also get an optimal protocol for any agreement probability.

The setup for BEC is not symmetric between Alice and Bob. What can be done if Alice and
Bob switch roles? Alice receives x by transmitting Bob’s y through a BEC channel. This setup
is mentioned as an open problem in [GR16]. We obtain tight communication complexity upper
and lower bounds for the constant agreement probability as in Corollary 3.1.3:
Examples 3.5.3. Let random string y be uniform in {−1, 1}N and random stringx in {−1, 0, 1}N
be x going through a binary erasure channel with erasure probability ε. Consider the agreement
distillation where Alice has x and Bob has y. The following hold.
• Upper bound: If ε < 1

2
, we use the protocol in Example 3.5.2 and communicate (ε+o(1))k

bits to achieve constant agreement probability. Otherwise let A,B be the sets with only
the all-one string of length l =

(
− log 1−ε

2

)−1
k. In this case Pr[x ∈ A,y ∈ B] =

Pr[x ∈ A] and the protocol in Theorem 3.1.2 with such sets A and B will communicate(
1−

(
− log 1−ε

2

)−1
)
k bits to achieve constant agreement probability;

• Matching Lower bound: Combining Theorem 3.1.1, Proposition 3.2.2 and Theorem 3.5.4,
suppose there is a protocol with Pr[hA(x) = z] ≤ 2−k for any z ∈ {0, 1}k, and Alice
sends ck bits to Bob after which Bob is able to guess hA(x) with constant probability.
Then optimal communication rate

c =

{
ε if 0 ≤ ε ≤ 1

2
;

1−
(
− log 1−ε

2

)−1 if 1
2
< ε < 1.

.

The construction of sets A and B in the case 1
2
≤ ε < 1 follows the proofs of Lemma 3.4.2

and Theorem 3.5.4. The exact lower bound is presented in Theorem 3.5.4 for the case 1
2
≤ ε < 1

and in Proposition 3.2.2 for the case ε < 1
2
.
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3.5.2 Limit of gradient at infinity for BEC hypercontractivity boundary
In this section we will calculate s∗(x;y) of the BEC when erasure probability 1

2
≤ ε < 1. The

parameter for the case ε < 1
2

is mentioned in Proposition 3.2.2, which is proved in [NW16]. Plug-
ging Theorem 3.5.4 and Proposition 3.2.2 into Theorem 3.1.2 and 3.1.1, we get Corollary 3.1.3,
the tight communication complexity upper and lower bounds achieving constant agreement prob-
ability in the setting of the reverse BEC.
Theorem 3.5.4. Let y be uniformly random in {−1, 1} and let x be the result of sending y
through a binary erasure channel with erasure probability ε. Then

s∗(x;y) = lim
q→1

p∗(q)− 1

q − 1
=

(
− log

1− ε
2

)−1

,

when 1
2
≤ ε < 1.

Proof. We first show that s∗(x;y) ≥
(
− log 1−ε

2

)−1. It is easy to check that (x,y) being (p, q)-
hypercontractive is equivalent to (y,x) being (q′, p′)-hypercontractive. From Proposition 3.2.3,
s∗(x;y) = limp′→∞

q′∗(p′)
p′

. Let s = q′/p′. Then (y,x) being (q′, p′)-hypercontractive can be
interpreted as

‖T′g(x)‖p′ ≤ ‖g(y)‖p′s,

where T′g(x) = Ey∼µy|x=x
[f(y)]. Henceforth, we are going to calculate the infimum of s at

p′ →∞ such that this inequality holds for all g : {−1, 1} → R.
We consider the case that g(1) = 1 + δ, g(−1) = 1 − δ with the constraint |δ| ≤ 1. In this

case the inequality becomes(
1− ε

2
(1− δ)p′ + 1− ε

2
(1 + δ)p

′
+ ε

) 1
p′

≤
(

1

2
(1− δ)p′s +

1

2
(1 + δ)p

′s

) 1
p′s

.

Consider the case δ = 1: (
(1− ε)2p′−1 + ε

) 1
p′ ≤ 2

1− 1
p′s .

Hence,

s ≥ 1

p′ − log((1− ε)2p′−1 + ε)
.

Then we take the limit at p′ →∞ and conclude s∗(x;y) ≥
(
− log 1−ε

2

)−1.
We use the KL-divergence form to show that s∗(x;y) ≤

(
− log 1−ε

2

)−1. From Theorem 3.2.5,
we have

s∗(x;y) = sup
ν(x,y)=νx(x)µy|x=x(y)

νx 6=µx

D(νy‖µy)
D(νx‖µx)

.

We wish show that
D(νy‖µy)− sD(νx‖µx) ≤ 0

where s =
(
− log 1−ε

2

)−1 for any distribution ν satisfies ν(x, y) = νx(x)µy|x=x(y).

37



We write νx(−1) = ν−1, νx(1) = ν1, νx(0) = ν0. Then νy(−1) = ν−1 + 1
2
ν0 and νy(1) =

ν1 + 1
2
ν0. It is easy to check at the boundaries that the worst case is ν1 = 1, ν−1 = ν0 = 0 and

D(νy‖µy)− sD(νx‖µx) = 0.
The rest of the proof is to show that D(νy‖µy) − sD(νx‖µx) ≤ 0 on all interior stationary

points. That is:(
ν−1 +

1

2
ν0

)
ln(2ν−1 + ν0) +

(
ν1 +

1

2
ν0

)
ln(2ν1 + ν0)

− s
(
ν−1 ln

2ν−1

1− ε
+ ν1 ln

2ν1

1− ε
+ ν0 ln

ν0

ε

)
≤ 0

(3.4)

Here we use base e for logarithm of KL-divergence to make differentiation easier. For any strictly
interior stationary points, the Lagrange conditions yield:

k = ln(2ν−1 + νe) + 1− s
(

ln
2ν−1

1− ε
+ 1

)
, (3.5)

k = ln(2ν1 + νe) + 1− s
(

ln
2ν1

1− ε
+ 1

)
, (3.6)

k =
1

2
ln(2ν−1 + ν0) +

1

2
ln(2ν1 + ν0) + 1− s

(
ln
ν0

ε
+ 1
)
. (3.7)

Equating 1
2
((3.5) + (3.6)) and (3.7) yields:

√
ν−1ν1 =

1− ε
2ε

ν0.

Let ν−1 = 1−ε
2ε
ν0t and ν1 = 1−ε

2ε
ν0t
−1 where t ≥ 0. Plug them into the equation of (3.5) and (3.6):

(1− ε)t+ ε = (1− ε)t−(1−2s) + εt2s. (3.8)

Define
h(t) = (1− ε)t+ ε− (1− ε)t−(1−2s) − εt2s

and h′′(t) = 2t−(3−2s)(1−2s)(ε+s−1+ εs(t−1)). Because s =
(
− log 1−ε

2

)−1 and 1
2
< ε < 1,

we have 0 < s < 1
2

and ε + s − 1 > 0, so h(t) is convex when t ≥ 1. Because h(1) = 0, this
means there will be at most two more roots for (3.8), t = t0 and t = t−1

0 .
We only need to show that t = 1 is a strict local maximum for the left-hand side of (3.4).

Then those two more stationary points could only be local minimum. Plug ν−1 = 1−ε
2ε
ν0t, ν1 =

1−ε
2ε
ν0t
−1, ν−1 + ν1 + ν0 = 1 into the left-hand side of (3.4). Now it is a function of t and we

conclude the proof by taking the second derivative at t = 1 which is−(1−ε)(ε+s−1) < 0.

3.6 Hypercontractivity and Small Set Expansion are equiva-
lent

In this section we summarize the proof of Theorem 3.1.6 shown in [Nai14].
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Proof of 3.1.6, 1)→ 3). From a trivial induction of hypercontractivity, for any positive integer
n, (x,y) ∼ ((Ωx)

n × (Ωy)
n, µ⊗n), we have

E
(x,y)∼µ⊗n

[f(x)g(y)] ≤ ‖f(x)‖p‖g(y)‖q′ ∀f : (Ωx)
n → R, g : (Ωy)

n → R.

Then we can get 3) by setting f = 1A and g = 1B, where 1A and 1B are indicator functions
of sets A and B.

Proof of 3.1.6, 3)→ 2). Let

A := {x ∈ (Ωx)
n : ∀a ∈ Ωx, |{i : xi = a}| = cx(a)},

B := {y ∈ (Ωy)
n : ∀b ∈ Ωy, |{i : yi = b}| = cy(b)},

C := {(x, y) ∈ (Ωx)
n × (Ωy)

n : ∀a ∈ Ωx, b ∈ Ωy, |{i : (xi, yi) = (a, b)}| = cx,y(a, b)},

for some histogram c where n =
∑

a,b cx,y(a, b), cx(a) =
∑

b cx,y(a, b), cy(b) =
∑

a cx,y(a, b). If
(x, y) ∈ C, we have x ∈ A and y ∈ B. Therefore,

|C| ≤ Pr
(x,y)∼µ⊗n

[x ∈ A,y ∈ B] ≤ |A|
1
p |B|

1
q′ . (3.9)

If we set cx,y
n
→ ν(x, y) as n→∞, then Claim 3.2.4 shows that

1

n
log |A| → −D(νx‖µx),

1

n
log |B| → −D(νy‖µy),

1

n
log |C| → −D(ν‖µ).

Hence 2) holds by taking the logarithm on both sides of (3.9).

Proof of 3.1.6, 2)→ 1). Without loss of generalization we can assume E(x,y)∼µ[f(x)g(y)] = 1,
so we only need to prove ‖f(x)‖p‖g(y)‖q′ ≥ 1. We set

ν(x, y) = µ(x, y)f(x)g(y),

Therefore

D(ν‖µ) =
∑
x,y

ν(x, y) log
ν(x, y)

µ(x, y)

=
∑
x,y

ν(x, y) log(f(x)g(y))

=
∑
x

ν(x) log f(x) +
∑
y

ν(y) log g(y).
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Then we have

0 ≤ D(ν‖µ)− 1

p
D(νX‖µX)− 1

q′
D(νY ‖µY )

=
∑
x

ν(x) log f(x) +
∑
y

ν(y) log g(y)− 1

p

∑
x

ν(x) log
ν(x)

µ(x)
− 1

q′

∑
y

ν(y) log
ν(y)

µ(y)

=
1

p

∑
x

ν(x) log
f(x)pµ(x)

ν(x)
+

1

q′

∑
y

ν(y) log
g(y)q

′
µ(y)

ν(y)

≤ 1

p
log

(∑
x

µ(x)f(x)p

)
+

1

q′
log

(∑
y

µ(y)g(y)q
′

)
.

The last inequality holds by Jenson’s inequality. Then we can conclude by taking the exponential
on both sides of the inequality.
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Chapter 4

A New Homogeneous Tail Bound for
Boolean Functions via One-block
Decoupling

4.1 Introduction

Broadly speaking, decoupling refers to the idea of analyzing a complicated random sum involv-
ing dependent random variables by comparing it to a simpler random sum where some indepen-
dence is introduced between the variables. For perhaps the simplest example, if (aij)

n
i,j=1 ∈ R

and x1, . . . ,xn,y1, . . . ,yn are independent uniform±1 random variables, we might ask how the
moments of

n∑
i,j=1

aijxixj, and its “decoupled version”
n∑

i,j=1

aijxiyj

compare. The theory of decoupling inequalities developed originally in the study of Banach
spaces, stochastic processes, andU -statistics, mainly between the mid-’80s and mid-’90s; see [dlPG99]
for a book-length treatment.

The powerful tool of decoupling seems to be relatively under-used in theoretical computer
science. ([BM13] proves a variant of Hanson-Wright Inequality using decoupling inequalities
with degree two; a recent work of Makarychev and Sviridenko [MS14] provides another excep-
tion, though they use a much different kind of decoupling than the one studied in this chapter.) In
this work we will observe several places where decoupling can be used in a “black-box” fashion
to solve or simplify problems quite easily.

The main topic of this chapter, however, is to study a partial form decoupling that we call
“one-block decoupling”. The advantage of one-block decoupling is that for degree-k polynomi-
als we can achieve bounds with only polynomial dependence on k, as opposed to the exponential
dependence on k that arises for the standard full decoupling. Although one-block decoupling
does not introduce as much independence as full decoupling does, we show several applications
where one-block decoupling is sufficient.

The applications we describe in this chapter are the following:
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• (Theorem 4.2.8.) Aaronson and Ambainis’s conjecture concerning the generality of their [AA18,
Theorem 4] holds. I.e., there is a sublinear-query algorithm for estimating any bounded,
constant-degree Boolean function.

• (Theorem 4.2.13.) The Aaronson–Ambainis Conjecture [Aar08, AA14] holds if and only
if it holds for one-block decoupled functions. We also show how the best known result
towards the conjecture can be proven extremely easily (4.1) in the case of one-block de-
coupled functions.

• (Corollary 4.3.6.) An optimal form of the DFKO Fourier Tail Bound [DFKO07]: any
bounded Boolean function f that is far from being a junta satisfies

∑
|S|>k f̂(S)2 ≥ exp(−O(k2)).

Relatedly (Corollary 4.3.5), any degree-k real-valued Boolean function with Ω(1) variance
and small influences must exceed 1 in absolute value with probability at least exp(−O(k2));
this can be further improved to exp(−O(k)) if f is homogeneous.

4.1.1 Definitions
Throughout this section, let f denote a multilinear polynomial of degree at most k in n variables
x = (x1, . . . , xn), with coefficients aS from a Banach space:

f(x) =
∑
S⊆[n]
|S|≤k

aSxS,

where we write xS =
∏

i∈S xi for brevity. (The coefficients aS will be real in all of our ap-
plications; however we allow them to be from a Banach space since the proofs are no more
complicated.)

We begin by defining our notion of partial decoupling:
Definition 4.1.1. The one-block decoupled version of f , denoted f̆ , is the multilinear polynomial
over 2n variables y = (y1, . . . , yn) and z = (z1, . . . , zn) defined by

f̆(y, z) =
∑
S⊆[n]

1≤|S|≤k

aS
∑
i∈S

yizS\i.

In other words, each monomial term like x1x3x7 is replaced with y1z3z7 + z1y3z7 + z1z3y7.
In case f is homogeneous we have the relation f̆(x, x) = kf(x).

Let us also recall the traditional notion of decoupling:
Definition 4.1.2. The (fully) decoupled version of f , which we denote by f̃ , is a multilinear
polynomial over k blocks x(1), . . . , x(k) of n variables; each x(i) is x(i) = (x

(i)
1 , . . . , x

(i)
n ). It is

formed as follows: for each monomial xS in f , we replace it with the average over all ways of
assigning its variables to different blocks. More formally,

f̃(x(1), . . . , x(k)) = a∅ +
∑
S⊆[n]

1≤|S|≤k

(k − |S|)!
k!

· aS
∑

injective
b:S→[k]

∏
i∈S

x
(b(i))
i .
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The definition is again simpler if f is homogeneous. For example, if f is homogeneous of
degree 3, then each monomial in f like x1x3x7 is replaced in f̃ with

1

6
(w1y2z3 + w1z2y3 + y1w2z3 + y1z2w3 + z1w2y3 + z1y2w3).

(Here we wrote w, y, z instead of x(1), x(2), x(3), for simplicity.) Note that f̃(x, x, . . . , x) = f(x)
always holds, even if f is not homogeneous.

We conclude by comparing the two kinds of decoupling. Assume for simplicity that f is
homogeneous of degree k. The fully decoupled version f̃(x(1), . . . , x(k)) is in “block-multilinear
form”; i.e., each monomial contains exactly one variable from each of the k “blocks”. This kind
of structure has often been recognized as useful in theoretical computer science; see, e.g., [KN08,
Lov10, KM13, AA18]. By contrast, the one-block decoupling f̆(y, z) does not have such a
simple structure; we only have that each monomial contains exactly one y-variable. Nevertheless
we will see several examples in this chapter where having one-block decoupled form is just as
useful as having fully decoupled form. And as mentioned, we will show that it is possible to
achieve one-block decoupling with only poly(k) parameter losses, whereas full decoupling in
general suffers exponential losses in k.
Remark 4.1.3. We have also chosen different “scalings” for the two kinds of decoupling. For
example, in the homogeneous case, we have f̃(y, z, z, . . . , z) = 1

k
· f̆(y, z) and also Var[f̃ ] =

1
k·k!

Var[f̆ ] for f : {±1}n → R.

4.1.2 A useful inequality
Several times we will use the following basic inequality from analysis of Boolean functions,
which relies on hypercontractivity; see [O’D14, Theorems 9.24, 10.23].
Theorem 4.1.4. Let f(x) =

∑
|S|≤k aSxS be a nonconstant n-variate multilinear polynomial of

degree at most k, where the coefficients aS are real. Let x1, . . . ,xn be independent uniform ±1
random variables. Then

Pr
[
f(x) > E[f ]

]
≥ 1

4
e−2k.

This also holds if some of the xi’s are standard Gaussians.1 Finally, if the xi’s are not uniform
±1 random variables, but they take on each value ±1 with probability at least λ, then we may
replace 1

4
e−2k by 1

4
(e2/2λ)−k.

4.2 Decoupling theorems, and query complexity applications

4.2.1 Classical decoupling inequalities, and an application in query com-
plexity

Traditional decoupling inequalities compare the probabilistic behavior of f and f̃ under inde-
pendent random variables (usually symmetric ones; e.g., standard Gaussians). The easier forms

1Although it is not stated in [O’D14], an identical proof works since Gaussians have the same hypercontractivity
properties as uniform ±1 random variables.
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of the inequalities compare expectations under a convex test function; e.g., they can be used
to compare p-norms. The following was essentially proved in [dlP92]; see [dlPG99, Theo-
rem 3.1.1,(3.4.23)–(3.4.27)]:
Theorem 4.2.1. Let Φ : R≥0 → R

≥0 be convex and nondecreasing. Let x = (x1, . . . ,xn) con-
sist of independent real random variables with all moments finite, and let x(1), . . . ,x(k) denote
independent copies of x. Then

E
[
Φ
(∥∥∥f̃(x(1), . . . ,x(k)

)∥∥∥)] ≤ E
[
Φ
(
Ck‖f(x)‖

)]
,

where Ck = kO(k) is a constant depending only on k.
Remark 4.2.2. A reverse inequality also holds, with worse constant Ck = k−O(k2).

Another line of research gave comparisons between tail bounds for f and f̃ . This culminated
in the following theorem from [dlPMS95, Gin98]; see also [dlPG99, Theorem 3.4.6]:
Theorem 4.2.3. In the setting of Theorem 4.2.1, for all t > 0,

Pr
[∥∥∥f̃(x(1), . . . ,x(k)

)∥∥∥ > Ckt
]
≤ DkPr

[
‖f(x)‖ > t

]
,

where Ck = Dk = kO(k). The analogous reverse bound also holds.
Remark 4.2.4. Kwapień [Kwa87] showed that when the xi’s are α-stable random variables, the
constant Ck in Theorem 4.2.1, can be improved to kk/α/k!; this is kk/2/k! for standard Gaus-
sians. Furthermore, for uniform ±1 random variables Kwapień’s proof goes through as if they
were 1-stable; thus in this case one may take Ck = kk/k! ≤ ek. In the Gaussian setting with
homogeneous f , Kwapień obtains Ck = kk/2/k! and Dk = 2k for Theorem 4.2.3.

For function f(x) =
∑
|S|≤k aSxS where coefficients aS are real, we denote its p-norm

‖f‖p = E[f(x)p]1/p. Furthermore if f is a bounded function with input x, we denote the infinity
norm

‖f‖∞ = lim
p→∞
‖f‖p = sup

x
|f(x)|.

Corollary 4.2.5. In the setting of Theorem 4.2.1, it holds that ‖f̃‖∞ ≤ kO(k)‖f‖∞. Further, if
f : {±1}n → R then ‖f̃‖∞ ≤ (2e)k‖f‖∞.

Proof. The first statement is an immediate corollary of either Theorem 4.2.1 (taking Φ(u) = up

and p → ∞) or Theorem 4.2.3 (taking t = ‖f‖∞). The second statement is immediate from
Remark 4.2.4, with the better constant kk/k! in case f is homogeneous. In the general case,
we use the fact that if f=j denotes the degree-j part of f , then ‖f=j‖∞ ≤ 2j‖f‖∞; this is also
proved by Kwapień [Kwa87, Lemma 2]. Then

∥∥∥f̃∥∥∥
∞

=

∥∥∥∥∥
k∑
j=0

f̃=j

∥∥∥∥∥
∞

≤
k∑
j=0

∥∥∥f̃=j

∥∥∥
∞
≤

k∑
j=0

(jj/j!)
∥∥f=j

∥∥
∞ ≤

k∑
j=0

(jj/j!)2j‖f‖∞ ≤ (2e)k‖f‖∞.

Remark 4.2.6. Classical decoupling theory has not been too concerned with the dependence of
constants on k, and most statements like Theorem 4.2.3 in the literature simply write Dk = Ck
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to conserve symbols. However there are good reasons to retain the distinction, since making
Ck small is usually much more important than making Dk small. For example, we can deduce
Corollary 4.2.5 from Theorem 4.2.3 regardless of Dk’s value.

Let us give an example application of these fundamental decoupling results. In a recent work
comparing quantum query complexity to classical randomized query complexity, Aaronson and
Ambainis [AA18] presented2 3 the following:
Conjecture 4.2.7. Let f be an N -variate degree-k homogeneous block-multilinear polynomial
with real coefficients. Assume that under uniformly random ±1 inputs we have ‖f‖∞ ≤ 1.
Then there is a randomized query algorithm making 2O(k)(N/ε2)1−1/k nonadaptive queries to
the coordinates of x ∈ {±1}N that outputs an approximation to f(x) that is accurate to within
±ε (with high probability).

The authors “strongly conjecture[d]” that the assumption of block-multilinearity could be
removed, and gave a somewhat lengthy proof of this conjecture in the case of k = 2, us-
ing [DFKO07] . We note that the full conjecture follows almost immediately from full decou-
pling:
Theorem 4.2.8. If Aaronson and Ambainis’s Conjecture 4.2.7 holds, then it holds without the
assumption of block-multilinearity or homogeneity.

Proof. Given a non-block-multilinear f on N variables ranging in {±1}, consider its full de-
coupling f̃ on kN variables. By Corollary 4.2.5 we have ‖f̃‖∞ ≤ (2e)k. Let g = (2e)−kf̃ ,
so that g : {±1}kN → [−1,+1] is a degree-k block-multilinear polynomial with f(x) =
(2e)kg(x, x, . . . , x). Now given query access to x ∈ {±1}N and an error tolerance ε, we apply
Conjecture 4.2.7 to g(x, x, . . . , x) with error tolerance ε1 = (2e)−kε; note that we can simulate
queries to (x, x, . . . , x) using queries to x. This gives the desired query algorithm, and it makes
2O(k)(kN/ε21)1−1/k = 2O(k)(N/ε2)1−1/k queries as claimed. There is one more minor point: Con-
jecture 4.2.7 requires its function to be homogeneous in addition to block-multilinear. However
this assumption is easily removed by introducing k dummy variables treated as +1, and padding
the monomials with them.

4.2.2 Our one-block decoupling theorems, and the AA Conjecture

We now state our new versions of Theorems 4.2.1, 4.2.3 which apply only to one-block decou-
pling, but that have polynomial dependence of Ck on k. Proofs are deferred to Section 4.4.

As before, let f(x) =
∑
|S|≤k aSxS be an n-variate multivariate polynomial of degree at

most k with coefficients aS in a Banach space; let x = (x1, . . . ,xn) consist of independent real
random variables with all moments finite, and let y, z be independent copies. We consider three

2Actually, there is a small gap in their proof. In the line reading “By the concavity of the square root function. . . ”,
they claim that ‖X‖1 ≥ ‖X‖2 whenX is a degree-k polynomial of uniformly random±1 bits. In fact the inequality
goes the other way in general. But the desired inequality does hold up to a factor of ek by [O’D14, Theorem 9.22],
and this is sufficient for their proof.

3Conjecture 4.2.7 is claimed as a theorem in [AA18]. However Aaronson et al.[AAB+21] found a flaw but prove
the correctness in the case k = 1.
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slightly different hypotheses:

H1: x1, . . . ,xn ∼ N(0, 1) are standard Gaussians.
H2: x1, . . . ,xn are uniformly random ±1 values.
H3: x1, . . . ,xn are uniformly random ±1 values and f is homogeneous.

Theorem 4.2.9. If Φ : R≥0 → R≥0 is convex and nondecreasing, then

E
[
Φ
(∥∥∥f̆(y, z)

∥∥∥)] ≤ E
[
Φ
(
Ck‖f(x)‖

)]
.

Also, if t > 0 (and we assume f ’s coefficients aS are real under H2, H3), then

Pr
[∥∥∥f̆(y, z)

∥∥∥ > Ckt
]
≤ DkPr

[
‖f(x)‖ > t

]
.

Here

Ck =


O(k) under H1,
O(k2) under H2,
O(k3/2) under H3,

Dk =

{
O(k) under H1,
kO(k) under H2, H3.

Remark 4.2.10. It may seem that for the Φ-inequality in the Gaussian case, Kwapień’s result
mentioned in Remark 4.2.4 is better than ours, since he achieves full decoupling with a better
constant than we get for one-block decoupling. But actually they are incomparable; the reason is
the different scaling mentioned in Remark 4.1.3.
Remark 4.2.11. As we will explain later in Remark 4.3.4, the bound Ck = O(k) under H1 is
best possible (assuming that Dk ≤ exp(O(k2))).

An immediate consequence of the above theorem, as in Corollary 4.2.5, is the following:
Corollary 4.2.12. If f : {±1}n → R then ‖f̆‖∞ ≤ O(k2)‖f‖∞.

Let us now give an example of how one-block decoupling can be as useful as full decou-
pling, and why it is important to obtain Ck = poly(k). A very notable open problem in anal-
ysis of Boolean functions is the Aaronson–Ambainis (AA) Conjecture, originally proposed in
2008 [Aar08, AA14]:

AA Conjecture. Let f : {±1}n → [−1,+1] be computable by a multilinear polynomial of
degree at most k, f(x) =

∑
|S|≤k aSxS . Then MaxInf [f ] ≥ poly(Var[f ]/k).

Here we use the standard notations for influences and variance:

MaxInf [f ] = max
i∈[n]
{Inf i[f ]}, Inf i[f ] =

∑
S3i

a2
S, Var[f ] =

∑
S 6=∅

a2
S, ‖f‖2

2 =
∑
S

a2
S.

The AA Conjecture is known to imply (and was directly motivated by) the following folklore
conjecture concerning the limitations of quantum computation, dated to 1999 or before [AA14]:
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Quantum Conjecture. Any quantum query algorithm solving a Boolean decision problem
using T queries can be correctly simulated on a 1− ε fraction of all inputs by a classical query
algorithm using poly(T/ε) queries.

Because of their importance for quantum computation, Aaronson has twice listed these con-
jectures as “semi-grand challenges for quantum computing theory” [Aar05, Aar10].

The best known result in the direction of the AA Conjecture [AA14] obtains an influence
lower bound of poly(Var[f ])/ exp(O(k)), using the DFKO Inequality [DFKO07]. Here we
observe that there is a “one-line” deduction of this bound under the assumption that f is one-
block decoupled.4 To see this, suppose that f is indeed one-block decoupled, so it can be written
as f(y, z) =

∑n
i=1 yigi(z), where gi(z) =

∑
S3i aSzS\i is the ith “derivative” of f . Observe that

‖gi‖2
2 = Inf i[f ] and hence

∑n
i=1 ‖gi‖2

2 ≥ Var[f ]. Also note that for any z ∈ {±1}n we must
have

∑n
i=1 |gi(z)| ≤ 1, as otherwise we could achieve |f(y, z)| > 1 by choosing y ∈ {±1}n

appropriately. Taking expectations we get
∑n

i=1 ‖gi‖1 ≤ 1, and hence

ek−1 ≥ ek−1

n∑
i=1

‖gi‖1 ≥
n∑
i=1

‖gi‖2 ≥
∑n

i=1 ‖gi‖2
2

maxni=1 ‖gi‖2

≥ Var[f ]

maxni=1

√
Inf i[f ]

⇒ MaxInf [f ] ≥ e2−2kVar[f ]2, (4.1)

where the second inequality used the basic fact in analysis of Boolean functions [O’D14, Theo-
rem 9.22] that ‖g‖2 ≤ ek−1‖g‖1 for g : {±1}n → R of degree at most k − 1.

The above gives a good illustration of how even one-block decoupling can already greatly
simplify arguments in analysis of Boolean functions. We feel that (4.1) throws into sharp relief
the challenge of improving exp(−O(k)) to 1/poly(k) for the AA Conjecture. We now use our
results to show that the assumption that f is one-block decoupled is completely without loss of
generality.
Theorem 4.2.13. The AA Conjecture holds if and only if it holds for one-block decoupled func-
tions f .

Proof. Suppose f : {±1}n → [−1,+1] has degree at most k. By Corollary 4.2.12 we get that
‖f̆‖∞ ≤ Ck = O(k2). Now g = C−1

k f̆ is one-block decoupled and has range [−1,+1]. Assum-
ing the AA Conjecture holds for it, we get some i ∈ [2n] such that Inf i[g] ≥ poly(Var[g]/k).
Certainly this implies Inf i[f̆ ] ≥ poly(Var[f̆ ]/k). It is easy to see that Inf i[f ] = Inf i[f̆ ] and
Inf i[f ] ≥ Inf i+n[f̆ ]/(k − 1) for all i ∈ [n]. Therefore letting i′ = max{i, i − n} ∈ [n], we
have Inf i′ [f ] ≥ Inf i[f̆ ]/(k − 1), and also Var[f̆ ] ≥ Var[f ]. Thus Inf i′ [f ] ≥ poly(Var[f ]/k),
confirming the AA Conjecture for f .

In particular, by combining this with (4.1) we recover the known poly(Var[f ])/ exp(O(k))
lower bound for the AA Conjecture as applied to general f .

4This observation is joint with John Wright.
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4.3 Tight versions of the DFKO theorems

This section is concerned with analysis of Boolean functions f : {±1}n → R. We will use
traditional Fourier notation, writing f(x) =

∑
S⊆[n] f̂(S)xS . A key theme in this field is the

dichotomy between functions with “Gaussian-like” behavior and functions that are essentially
“juntas”. Recall that f is said to be an (ε, C)-junta if ‖f − g‖2

2 ≤ ε for some g : {±1}n → R de-
pending on at mostC input coordinates. Partially exemplifying this theme is a family of theorems
stating that any Boolean function f which is not essentially a junta must have a large “Fourier
tail” — something like

∑
|S|>k f̂(S)2 > δ. Examples of such results include Friedgut’s Aver-

age Sensitivity Theorem [Fri98], the FKN Theorem [FKN02] (sharpened in [JOW15, O’D14]),
the Kindler–Safra Theorem [KS02, Kin02], and the Bourgain Fourier Tail Theorem [Bou02].
The last of these implies that any f : {±1}n → {±1} which is not a (.01, kO(k))-junta must
satisfy

∑
|S|>k f̂(S)2 > k−1/2+o(1). This k−1/2+o(1) bound was made more explicit in [KN06],

and the optimal bound of Ω(k−1/2) was obtained in [KO12]. These “Fourier tail” theorems have
had application in fields such as PCPs and inapproximability [Kho02, Din07], sharp threshold
theory [FK96], extremal combinatorics [EFF12], and social choice [FKN02].

All of the aforementioned theorems concern Boolean-valued functions; i.e., those with range {±1}.
By contrast, the DFKO Fourier Tail Theorem [DFKO07] is a result of this flavor for bounded
functions; i.e., those with range [−1,+1].

DFKO Fourier Tail Theorem. Suppose f : {±1}n → [−1,+1] is not an (ε, 2O(k)/ε2)-
junta. Then ∑

|S|>k

f̂(S)2 > exp(−O(k2 log k)/ε).

Most applications do not use this Fourier tail theorem directly. Rather, they use a key inter-
mediate result, [DFKO07, Theorem 3], which we will refer to as the “DFKO Inequality”. This
was the case, for example, in a recent work on approximation algorithms for the Max-kXOR
problem [BMO+15].

DFKO Inequality. Suppose f : {±1}n → R has degree at most k and Var[f ] ≥ 1. Let
t ≥ 1 and suppose that MaxInf [f ] ≤ 2−O(k)/t2. Then Pr[|f(x)| > t] ≥ exp(−O(t2k2 log k)).

Returning to the theme of “Gaussian-like behavior” versus “junta” behavior, we may add that
the DFKO results straightforwardly imply (by the Central Limit Theorem) analogous, simpler-to-
state results concerning functions on Gaussian space and Hermite tails. We record these generic
consequences here; see, e.g., [O’D14, Sections 11.1, 11.2] for a general discussion of such im-
plications, and the definitions of Hermite coefficients f̂(α).
Corollary 4.3.1. Any f : Rn → [−1,+1] satisfies the Hermite tail bound∑

|α|>k

f̂(α)2 > exp(−O(k2 log k)/Var[f ]).
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Furthermore, suppose z is a standard n-dimensional Gaussian random vector and t ≥ 1. Then
any n-variate polynomial f of degree at most k with Var[f(z)] ≥ 1 satisfies Pr[|f(z)| > t] ≥
exp(−O(t2k2 log k)).

Even though the Gaussian results in Corollary 4.3.1 are formally easier than their Boolean
counterparts, we are not aware of any way to prove them — even in the case n = 1 — except via
DFKO.

Tightness of the bounds. In [DFKO07, Section 6] it is shown that the results in Corol-
lary 4.3.1 are tight, up to the log k factor in the exponent; this implies the same statement about
the DFKO Fourier Tail Theorem and the DFKO Inequality. The tight example in both cases is es-
sentially the univariate, degree-k Chebyshev polynomial.5 In the next section we will show how
to use our one-block decoupling result to remove the log k in the exponential from both DFKO
theorems. The results immediately transfer to the Gaussian setting, and we therefore obtain the
tight exp(−Θ(k2)) bound for all versions of the inequality.

Our method of proof is actually to first prove the results in the Gaussian setting, where
the one-block decoupling makes the proofs quite easy. Then we can transfer the results to the
Boolean setting by using the Invariance Principle [MOO10]. This methodology — proving the
more natural Gaussian tail bound first, then transferring the result to the Boolean setting via In-
variance — is quite reminiscent of how the optimal form of Bourgain’s Fourier Tail Theorem
was recently obtained [KO12].

There is actually an additional, perhaps unexpected, bonus of our proof methodology; we
show that the bound in the DFKO Inequality can be improved from exp(−O(t2k2)) to exp(−O(t2k))
whenever f is homogeneous.

4.3.1 Proofs of the tight DFKO theorems

We begin with a tail-probability lower bound for one-block decoupled polynomials of Gaussians.
Lemma 4.3.2. Suppose f(y, z) =

∑n
i=1 yigi(z) is a one-block decoupled polynomial on n + n

variables, with real coefficients and degree at most k. Let y, z ∈ N(0, 1)n be independent
standard n-dimensional Gaussians and write

σ2 = Var[f(y, z)] =
n∑
i=1

‖gi‖2
2. (4.2)

Then for u > 0 we have Pr[|f(y, z)| > u] ≥ exp(−O(k + u2/σ2)).

Proof. Let v(z) =
∑n

i=1 gi(z)2, a polynomial of degree at most 2(k − 1) in z1, . . . , zn. By (4.2)
we have E[v(z)] = σ2. We now use Theorem 4.1.4 to get

Pr[v(z) > σ2] ≥ 1

4
e−2(2k−1) = exp(−O(k)).

5Formally speaking, [DFKO07, Section 6] only argues tightness of the Boolean theorems, but their constructions
are directly based on the degree-k Chebyshev polynomial applied to a single standard Gaussian.

49



On the other hand, for any outcome z = z we have that f(y, z) ∼ N(0, v(z)). Thus

v(z) > σ2 =⇒ Pr[|f(y, z)| > u] ≥ Ω(e−u
2/2σ2

).

Combining the previous two statements completes the proof, since y and z are independent.

We can now prove an optimal version of the DFKO Inequality in the Gaussian setting. It is
also significantly better in the homogeneous case.
Theorem 4.3.3. Let f : Rn → R be a polynomial of degree at most k, and let x ∼ N(0, 1)n be
a standard n-dimensional Gaussian vector. Assume Var[f(x)] ≥ 1. Then for t ≥ 1 it holds that
Pr[|f(x)| > t] ≥ exp(−O(t2k2)). Furthermore, if f is multilinear and homogeneous then the
lower bound may be improved to exp(−O(t2k)).

Proof. For any n-variate polynomial of Gaussians, we can find an N -variate multilinear polyno-
mial of Gaussians of no higher degree that is arbitrarily close in Lévy distance (see, e.g., [Kan11,
Lemma 15], or use the CLT to pass to ±1 random variables, then Invariance to pass back to
Gaussians). Note, however, that this transformation does not preserve homogeneity. In any case,
we can henceforth assume f is multilinear, f(x) =

∑
|S|≤k aSxS .

For independent y, z ∼ N(0, 1)n, observe that

Var[f̆(y, z)] =
k∑
j=1

j
∑
|S|=j

a2
S ≥

∑
S 6=∅

a2
S = Var[f(x)] ≥ 1,

and if f is homogeneous we get the better bound Var[f̆(y, z)] ≥ k. By our Theorem 4.2.9 on
one-block decoupling, we have

Pr
[∣∣∣f(x)

∣∣∣ > t
]
≥ D−1

k Pr
[∣∣∣f̆(y, z)

∣∣∣ > Ckt
]
,

where Ck = Dk = O(k). The theorem is now an immediate consequence of Lemma 4.3.2.

Remark 4.3.4. A consequence of this proof is that — assuming Dk ≤ exp(O(k2)) — it is
impossible to asymptotically improve on our Ck = O(k) in Theorem 4.2.9 in the Gaussian
setting H1. Otherwise, we would achieve a bound of exp(−o(k2)) in Theorem 4.3.3, contrary to
the example in [DFKO07, Section 6].

We can now obtain the sharp DFKO Inequality in the Boolean setting by using the Invariance
Principle.
Corollary 4.3.5. Theorem 4.3.3 holds when x ∼ {±1}n is uniform and we additionally assume
that MaxInf [f ] ≤ exp(−Ct2k2), or just exp(−Ct2k) in the homogeneous case. Here C is a
universal constant.

Proof. This follows immediately from the Lévy distance bound in [MOO10, Theorem 3.19,
Hypothesis 4]. We only need to ensure that the Lévy distance is noticeably less than the target
lower bound we’re aiming for. (We also remark that the Invariance Principle transformation
preserves variance and homogeneity.)
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Next, we obtain the sharp DFKO Fourier Tail Theorem. Its deduction from the DFKO In-
equality in [DFKO07] is unfortunately not “black-box”, so we will have to give a proof.
Corollary 4.3.6. Suppose f : {±1}n → [−1,+1] is not an (ε, 2O(k2/ε))-junta. Then∑

|S|>k

f̂(S)2 > exp(−O(k2)/ε). (4.3)

Proof. We use notation and basic results from [O’D14]. Given f : {±1}n → [−1,+1], let
J = {i ∈ [n] : Inf≤ki [f ] > exp(−Ak2/ε)}, where A is a large constant to be chosen later. Since
‖f‖2

2 ≤ 1 it follows easily that |J | ≤ 2O(k2/ε). Now define g = f − f⊆J ; note that g has range in
[−2,+2] since f⊆J has range in [−1,+1], being an average of f over the coordinates outside J . If
‖g‖2

2 < ε/2 then f is ε/2-close to the 2O(k2/ε)-junta f⊆J and we are done. Otherwise, ‖g‖2
2 ≥ ε/2

and we let h = g≤k. If ‖h− g‖2
2 > ε/4 then we immediately conclude that

∑
|S|>k f̂(S)2 > ε/4,

which is more than enough to be done. Otherwise ‖h − g‖2
2 ≤ ε/4, from which we conclude

‖h‖2
2 ≥ ε/4. Now h has degree at most k and satisfies Inf i[h] ≤ exp(−Ak2/ε) for all i 6∈ J .

Let h̃ denote the mixed Boolean/Gaussian function which has the same multilinear form as h,
but where we think of the coordinates in J as being±1 random variables and the coordinates not
in J as being standard Gaussians. We now “partially” apply the Invariance Principle [MOO10,
Theorem 3.19] to h, in the sense that we only hybridize over the coordinates not in J . We
conclude that the Lévy distance between h and h̃ is at most exp(−Ω(Ak2/ε)). Our goal is now
to show that

Pr[|h̃| > 3] ≥ exp(−O(k2/ε)), (4.4)

where the constant in the O(·) does not depend on A. Having shown this, by taking A large
enough the Lévy distance bound lets us deduce (4.4) for h as well. But then since |g| ≤ 2
always, we may immediately deduce ‖g − h‖2

2 ≥ exp(−O(k2)/ε) and hence (4.3).
It remains to verify (4.4). For each restriction xJ to the J-coordinates, the function h̃xJ is a

multilinear polynomial in independent Gaussians with some variance σ2
xJ

. From Theorem 4.3.3
we can conclude that Pr[|h̃xJ | > 3] ≥ exp(−O(k2/σ2

xJ
)). Thus if we can show σ2

xJ
≥ Ω(ε)

with probability at least 2−O(k) when xJ ∈ {±1}J is uniformly random, we will have estab-
lished (4.4). But this follows similarly as in Lemma 4.3.2. Note that σ2

xJ
= E[h̃2

xJ
], since h

has no constant term. Now σ2
xJ

is a degree-2k polynomial in xJ , and its expectation is simply
‖h‖2

2 ≥ ε/4, so Theorem 4.1.4 indeed implies that Pr[σ2
xJ
≥ ε/4] ≥ 2−O(k) and we are done.

Remark 4.3.7. We comment that the dependence of MaxInf [f ] on t in Corollary 4.3.5, and the
junta size in Corollary 4.3.6, are not as good as in [DFKO07]. This seems to be a byproduct of
the use of Invariance.

A similar (but easier) proof can be used to derive the following Gaussian version of Corol-
lary 4.3.6; alternatively, one can use a generic CLT argument, noting that the only “junta” a
Gaussian function can be close to is a constant function:
Corollary 4.3.8. Any f : Rn → [−1,+1] satisfies the Hermite tail bound∑

|α|>k

f̂(α)2 > exp(−O(k2)/Var[f ]).

This strictly improves upon Corollary 4.3.1.
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4.4 Proofs of our one-block decoupling theorems

In this section we prove Theorem 4.2.9. The key idea of the proof is to express f̆(y, z) as a
“small” linear combination of expressions of the form f(αix + βiy), where α2

i + β2
i = 1 (in the

Gaussian case) or |αi|+ |βi| = 1 (in the Boolean case). The following is the central lemma.
Lemma 4.4.1. In the setting of Theorem 4.2.9, there exists m = O(k) and α, β, c ∈ Rm such
that
• f̆(y, z) =

∑m
i=1 cif(αiy + βiz);

•
∑m

i=1 |ci| ≤ Ck;
• α2

i + β2
i = 1 for all i ∈ [m] under H1, and |αi|+ |βi| = 1 for all i ∈ [m] under H2, H3;

• |αi|, |βi| ≥ 1/O(Ck) for all i ∈ [m].
With Lemma 4.4.1 in hand, the proof of Theorem 4.2.9 is quite straightforward in the Gaus-

sian case, and not much more difficult in the Boolean case. We show these deductions first.

Proof of Theorem 4.2.9 under Hypothesis H1. By Lemma 4.4.1, for any convex nondecreasing
function Φ : R≥0 → R≥0 we have

E
[
Φ
(∥∥∥f̆(y, z)

∥∥∥)] = E
[
Φ
(∥∥∥ m∑

i=1

cif(αiy + βiz)
∥∥∥)]

≤ E
[
Φ
( m∑
i=1

|ci|
∥∥∥f(αiy + βiz)

∥∥∥)]
≤

m∑
i=1

|ci|
Ck

E[Φ(Ck‖f(αiy + βiz)‖)]

=
m∑
i=1

|ci|
Ck

E[Φ(Ck‖f(x)‖)]

≤ E[Φ(Ck‖f(x)‖].

Here the inequalities follow from the convexity and monotonicity of Φ, and the second equality
holds because αiy + βz ∼ N(0, 1)n due to α2

i + β2
i = 1.

As for the tail-bound comparison, by Lemma 4.4.1, whenever y, z are such that ‖f̆(y, z)‖ >
Ckt, the triangle inequality implies that there must exist at least one i ∈ [m] with ‖f(αiy + βiz)‖ > t.
It follows that there must exist at least one i ∈ [m] such that

Pr[‖f(αiy + βiz)‖ > t] ≥ 1

m
Pr[‖f̆(y, z)‖ > Ckt].

This completes the proof, since αiy + βiz ∼ N(0, 1)n and m = O(k).

Proof of Theorem 4.2.9 under Hypotheses H2, H3. We define ±1 random variables as follows:

x
(i)
j =

{
sgn(αi)yj with probability |αi|,
sgn(βi)zj with probability |βi|,
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for all i ∈ [m] and j ∈ [n] independently. Notice that each x(i) is distributed uniformly on
{±1}n, though they are not independent. To prove the desired inequality concerning Φ, we can
repeat the proof in the Gaussian case, except that we no longer have the identity

E[Φ(Ck‖f(αiy + βiz)‖)] = E[Φ(Ck‖f(x)‖)].

In fact we will show that the left-hand side is at most the right-hand side. Notice that for all fixed
y, z ∈ {±1}n, the multilinearity of f implies that

f(αiy + βiz) = E[f(x(i)) | (y, z) = (y, z)]. (4.5)

Thus

E[Φ(Ck‖f(αiy + βiz)‖)] = E
y,z

[
Φ

(
Ck

∥∥∥∥ E
x(i)|y,z

[
f(x(i))

]∥∥∥∥)]
≤ E

y,z
E
x(i)

[
Φ
(
Ck‖f(x(i))‖

)]
= E[Φ(Ck‖f(x)‖)],

as claimed, where we used convexity again.
As for the tail-bound comparison, recall that we are now assuming f has real coefficients. As

in the Gaussian case there is at least one i ∈ [m] with

Pr[|f(αiy + βiz)| > t] ≥ 1

O(k)
Pr[|f̆(y, z)| > Ckt].

Now suppose y, z are such that |f(αiy + βiz)| > t and consider the conditional distribution
on x(i). If we can show that, conditionally, Pr[|f(x(i))| > t] ≥ k−O(k) then we are done. But
from (4.5) we have that

∣∣E[f(x(i))]
∣∣ > t; therefore the desired result follows from Theorem 4.1.4

and the fact that min(|αi|, |βi|) ≥ 1/O(Ck) = 1/poly(k).

4.4.1 Proof of Lemma 4.4.1
The proof of Lemma 4.4.1 involves minimizing

∑m
i=1 |ci| by carefully setting the ratios of αi and

βi to be a hyperharmonic progression.

Proof of Lemma 4.4.1. The main work involves treating the homogeneous case.

Homogeneous case. Our goal for homogeneous f is to write

f̆(y, z) =
k+1∑
i=1

cif(αiy + βiz).

Comparing the expressions term by term, it is equivalent to say that for any S ⊆ [n] with |S| = k,

∑
j∈S

yjzS/j =
k+1∑
i=1

ci
∏
j∈S

(αiyj + βizj).
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We can further simplify this to the conditions

k+1∑
i=1

ciα
k−t
i βti =

{
1 if t = k − 1

0 otherwise
(4.6)

for all integers 0 ≤ t ≤ k. Let us write ∆i = βi
αi

and introduce the Vandermonde matrix

V =


1 1 . . . 1

∆1 ∆2 · · · ∆k+1

· · · · · · · · · · · ·
∆k−1

1 ∆k−1
2 · · · ∆k−1

k+1

∆k
1 ∆k

2 · · · ∆k
k+1

.

We will also writeA for the diagonal matrix diag(αk1, α
k
2, . . . , α

k
k+1), and write ek for the indicator

vector of the kth coordinate, ek = (0, 0, . . . , 0, 1, 0). Then the necessary conditions (4.6) are
equivalent to the matrix equation V Ac = ek. Assuming all the ∆i’s are different, V is invertible
and there is an explicit formula for its inverse [MS58]. This yields the following expression for
the c1, . . . , ck+1 in terms of α and β:

ci = (A−1V −1ek)i =
1

αki
·

∆i −
∑k+1

j=1 ∆j∏k+1
j=1,j 6=i(∆i −∆j)

. (4.7)

The main illustrative case: Hypothesis H1 and k odd. We will now assume that k is
odd; this assumption will be easily removed later. It will henceforth be convenient to replace our
indices 1, . . . , k + 1 with the following slightly peculiar but symmetric set of indices:

I =
{
±1,±2, . . . ,±k−1

2
,±1

2

}
.

Now under Hypothesis H1, we will choose

αi =
i√

k2 + i2
, βi =

k√
k2 + i2

=⇒ ∆i =
k

i

for all i ∈ I . These choices satisfy α2
i + β2

i = 1 and |αi|, |βi| ≥ 1/O(Ck), so it remains to prove
that for c defined by (4.7) we have

∑
|ci| ≤ O(k).

Let us upper-bound all |ci|. Since it easy to see that |ci| = |c−i| for all i ∈ I , it will suffice
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for us to consider the positive i ∈ I . For 1 ≤ i ≤ k−1
2

, we have∣∣∣∣∣ ∏
j∈I,j 6=i

(∆i −∆j)

∣∣∣∣∣ = (∆1/2 −∆i)(∆i −∆−1/2) ·
(k−1)/2∏
j=1,j 6=i

|∆i −∆j| ·
−1∏

j=−(k−1)/2

(∆i −∆j)

=

(
2k − k

i

)(
2k +

k

i

)
·

(k−1)/2∏
j=1,j 6=i

∣∣∣∣ki − k

j

∣∣∣∣ · (k−1)/2∏
j=1

(
k

i
+
k

j

)

= kk
(

4− 1

i2

)
·

(k−1)/2∏
j=1,j 6=i

|j − i|
ij

·
(k−1)/2∏
j=1

j + i

ij

=
kk

ik−2

(
4− 1

i2

)(k−1
2

+ i
)
!
(
k−1

2
− i
)
!(

k−1
2

)
!2

.

Thus from (4.7),

|ci| =

(√
k2 + i2

i

)k

· k
i
· i

k−2

kk
· 1

4− 1/i2
·

(
k−1

2

)
!2(

k−1
2

+ i
)
!
(
k−1

2
− i
)
!

=
k

i3

(
1 +

i2

k2

)k/2
1

4− 1/i2

(
k−1

2

)
!2(

k−1
2

+ i
)
!
(
k−1

2
− i
)
!
.

When 1 ≤ i ≤
√
k, we have

|ci| =
k

i3

(
1 +

i2

k2

)k/2
1

4− 1/i2

(
k−1

2

)
!2(

k−1
2

+ i
)
!
(
k−1

2
− i
)
!
≤ k

i3

(
1 +

1

k

)k/2
≤
√
ek

i3
.

For
√
k ≤ i ≤ k−1

2
, consider the ratio between (i+ 1)3|ci+1| and i3|ci|; it satisfies

(i+ 1)3|ci+1|
i3|ci|

≤ (k2 + (i+ 1)2)k/2

(k2 + i2)k/2
·

k−1
2
− i

k−1
2

+ i+ 1

=

(
1 +

2i+ 1

k2 + i2

)k/2
· k − 1− 2i

k + 1 + 2i

≤
(

1 +
2i+ 1

k2

)k/2
· k − 1− 2i

k

≤ e
2i+1
2k

(
1− 2i+ 1

k

)
≤ 1.

The last inequality holds since ex/2(1− x) ≤ 1 for all 0 ≤ x ≤ 1. Thus we have (i+ 1)3|ci+1| ≤
i3|ci|, and hence by induction that

|ci| ≤
√
ek

i3
∀ 1 ≤ i ≤ k−1

2
. (4.8)
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We now need to bound c1/2. Similarly to the above, we have∣∣∣∣∣∣
∏

j∈I,j 6= 1
2

(∆1/2 −∆j)

∣∣∣∣∣∣ = (∆ 1
2
−∆−1/2) ·

(k−1)/2∏
j=1

(∆1/2 −∆j) ·
−1∏

j=−(k−1)/2

(∆ 1
2
−∆j)

= 4k ·
(k−1)/2∏
j=1

(
2k − k

j

)
·

(k−1)/2∏
j=1

(2k +
k

j
)

= 4kk ·
(k−1)/2∏
j=1

2j − 1

j
·

(k−1)/2∏
j=1

2j + 1

j

= 4kk
(k − 2)!!k!!(

k−1
2

)
!2

Thus from (4.7) we get

|c1/2| =
(
√
k2 + (1/2)2)k

(1/2)k
· 2k · 1

4kk
·
(
k−1

2

)
!2

(k − 2)!!k!!

=

(
1 +

1

4k2

)k/2(
(k − 1)!!

(k − 2)!!

)2

≤ 4k. (4.9)

Now combining (4.8), (4.9), we obtain

∑
i

|ci| = 2

(k−1)/2∑
i=1

|ci|+ 2|c1/2| ≤ 2
√
e

(k−1)/2∑
i=1

k

i3
+ 8k ≤ 20k,

as needed.

Handling even k. If k is even, we define our index set to be

I =
{

0,±1,±2, . . . ,±k−2
2
,±1

2

}
.

For i ∈ I \ {0} we define αi and βi as before; we also define α0 = 1, β0 = 0, and hence ∆0 = 0.
It is easy to check that c0 = 0 (and hence we haven’t actually violated |βi| ≥ 1/O(Ck)), and
the upper bounds for the other |ci| still hold. This completes the proof of the homogeneous case
under Hypothesis H1.

Hypotheses H3. We explain the case of k odd; the same trick as before can be used for
even k. For Hypothesis H3 we use

αi =
i

k3/2 + |i|
, βi =

k3/2

k3/2 + |i|
=⇒ ∆i =

k3/2

i
,

which satisfy |αi| + |βi| = 1 and |αi|, |βi| ≥ 1/O(k3/2). Analysis similar to before shows that∑
i |ci| ≤ O(k3/2). This completely finishes the proof under Hypothesis H3.
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Hypothesis H2, the homogeneous case. Here we do something slightly different. For even
or odd k we let the index set be I = {1, 2, . . . , k, 1

2
} and then define

αi =
i2

k2 + i2
, βi =

k2

k2 + i2
=⇒ ∆i =

k2

i2
.

Now we have |αi|+ |βi| = αi + βi = 1 and |αi|, |βi| ≥ 1/O(k2). Again, similar analysis shows
that

∑
i |ci| ≤ O(k2).

Extending to the non-homogeneous case under H2. Now we need to be concerned with
the terms at degree k′ < k. Here a key observation is that, since αi + βi = 1 for all i, the
following holds for all k′ < k:∑

i

ciα
k′−t
i βti =

∑
i

ciα
k′−t
i βti(αi + βi) =

∑
i

ciα
k′−t+1
i βti +

∑
i

ciα
k′−t
i βt+1

i .

Thus an induction shows that in fact

∑
i

ciα
k′−t
i βti =


k − k′ if t = k′

1 if t = k′ − 1

0 otherwise

for all k′ ≤ k. This is almost exactly what we need to treat the non-homogeneous case using all
the same choices for c, α, β, except for the t = k′ case. But we can use a simple trick to fix this:

1

2

∑
i

ciα
k′−t
i βti −

1

2

∑
i

ci(−αi)k
′−tβti =

1− (−1)k
′−t

2

∑
i

ciα
k′−t
i βti =

{
1 if t = k′ − 1

0 otherwise

From this we get

f̆(y, z) =
m∑
i=1

cif(αiy + βiz)

even in the non-homogeneous case, with all the desired conditions and m = 2(k + 1).

Extending to the non-homogeneous case under H1. The trick here for handling degree
k′ < k is similar. Using the fact that α2

i + β2
i = 1 for all i, we get that for all k′ < k,∑

i

ciα
k′−t
i βti =

∑
i

ciα
k′−t
i βti(α

2
i + β2

i ) =
∑
i

ciα
k′−t+2
i βti +

∑
i

ciα
k′−t
i βt+2

i .

Then by induction, the we conclude that

k+1∑
i=1

ciα
k′−t
i βti =

{
1 if t = k′ − 1

0 otherwise

holds for all 0 ≤ k′ ≤ k such that k − k′ is even. We are therefore almost done: we have
established the H1 case of Lemma 4.4.1 for all polynomials with only odd-degree terms or only
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even-degree terms. Finally, for a general polynomial f we can decompose it as f = fodd + feven,
where fodd (respectively, feven) contains all the terms in f with odd (respectively, even) degree.
We know that there exist some vectors α, β, c and α′, β′, c′ satisfying

f̆odd(y, z) =
k+1∑
i=1

cifodd(αiy + βiz), f̆even(y, z) =
k+1∑
i=1

c′ifeven(α
′
iy + β′iz),

and
∑

i |ci|,
∑

i |c′i| ≤ 20k. Thus

f̆(y, z) = f̆odd(y, z) + f̆even(y, z)

=
k+1∑
i=1

cifodd(αiy + βiz) +
k+1∑
i=1

c′ifeven(α
′
iy + β′iz)

=
k+1∑
i=1

1

2
ci(f(αiy + βiz)− f(−αiy − βiz)) +

k+1∑
i=1

1

2
c′i(f(α′iy + β′iz) + f(−α′iy − β′iz))

=

4(k+1)∑
i=1

c′′i f(α′′i y + β′′i z),

where c′′ = (c/2,−c/2, c′/2, c′/2), α′′ = (α,−α, α′,−α′), β′′ = (β,−β, β′,−β′) and
∑

i |c′′i | ≤
40k.
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Chapter 5

On Closeness to k-wise Uniformity

5.1 Introduction

5.1.1 k-wise uniformity and almost k-wise uniformity
We say that a probability distribution over {−1, 1}n is k-wise uniform if its marginal distribution
on every subset of k coordinates is the uniform distribution. For Fourier analysis of the Hamming
cube, it is convenient to identify the distribution with its density function ϕ : {−1, 1}n → R

≥0

satisfying
E

x∼{−1,1}n
[ϕ(x)] = 1.

We write x ∼ ϕ to denote that x is a random variable drawn from the associated distribution
with density ϕ:

Pr
x∼ϕ

[x = x] =
ϕ(x)

2n

for any x ∈ {−1, 1}n. Then a well-known fact is that a distribution is k-wise uniform if and only
if the Fourier coefficient of ϕ is 0 on every subset S ⊆ [n] of size between 1 and k:

ϕ̂(S) = E
x∼ϕ

[∏
i∈S

xi

]
= 0.

k-wise uniformity is an essential tool in theoretical computer science. Its study dates back to
work of Rao [Rao47]. He studied k-wise uniform sets, which are special cases of k-wise uniform
distribution. A subset of {−1, 1}n is a k-wise uniform set if the uniform distribution on this
subset is k-wise uniform. Rao gave constructions of a pairwise-uniform set of size n + 1 (when
n = 2r−1 for any integer r), a 3-wise uniform set of size 2n (when n = 2r for any integer r), and
a lower bound (reproved in [ABI86, CGH+85]) that a k-wise uniform set on {−1, 1}n requires
size at least Ω(nbk/2c). An alternative proof of the lower bound for even k is shown in [AGM03]
using a hypercontractivity-type technique, as opposed to the linear algebra method. Coding
theorists have also heavily studied k-wise uniformity, since MacWilliams and Sloane showed that
linear codes with dual minimum distance k+1 correspond to k-wise uniform sets in [MS77]. The
importance in theoretical computer science of k-wise independence for derandomization arose
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simultaneously in many papers, with [KW85, Lub86] emphasizing derandomization via the most
common pairwise-uniformity case, and [ABI86, CGH+85] emphasizing derandomization based
on k-wise independence more generally.

A distribution is “almost k-wise uniform” if its marginal distribution on every k coordinates
is very close to the uniform distribution. Typically we say two distributions ϕ, ψ are δ-close, if
the total variation distance between ϕ and ψ is at most δ; and we say they are δ-far, if the total
variation distance between them is more than δ. However the precise notion of “close to uniform”
has varied in previous work. Suppose ψ is the density function for the marginal distribution of ϕ
restricted to some specific k coordinates and 1 is the density function for the uniform distribution.
Several standard ways are introduced in [AGM03, AAK+07] to quantify closeness to uniformity,
corresponding to the L1, L2, L∞ norms:
• (L1 norm): ‖ψ − 1‖1 = 2dTV(ψ,1) ≤ ε, where dTV denotes total variation distance;

• (L2 norm): ‖ψ − 1‖2 =
√
χ2(ψ,1) =

√∑
S 6=∅ ψ̂(S)2 ≤ ε, where χ2(ψ,1) denotes the

χ2-divergence of ψ from the uniform distribution;
• (L∞ norm): ‖ψ − 1‖∞ ≤ ε, or in other words, for any x ∈ {−1, 1}n,∣∣∣∣Pr

x∼ψ
[x = x]− 2−k

∣∣∣∣ ≤ 2−kε.

Note the following: First, closeness in L1 norm is the most natural for algorithmic deran-
domization purposes: it tells us that the algorithm cannot tell ψ is different from the uniform dis-
tribution up to ε error. Second, these definitions of closeness are in increasing order of strength.
On the other hand, we also have that ‖ψ − 1‖1 ≤ ‖ψ − 1‖∞ ≤ 2k‖ψ − 1‖1; thus all of these
notions are within a factor of 2k. We generally consider k to be constant (or at worst, O(log n)),
so that these notions are roughly the same.

A fourth reasonable notion, proposed by Naor and Naor in [NN93], is that the distribution
has a small bias over every non-empty subset of at most k coordinates. We say density function
ϕ is (ε, k)-wise uniform if for every non-empty set S ⊆ [n] with size at most k,

|ϕ̂(S)| =

∣∣∣∣∣Pr
x∼ϕ

[∏
i∈S

xi = 1

]
− Pr

x∼ϕ

[∏
i∈S

xi = −1

]∣∣∣∣∣ ≤ ε.

Here we also have ε = 0 if and only if ϕ is exactly k-wise uniform. Clearly if the marginal
density of ϕ over every k coordinates is ε-close to the uniform distribution in total variation
distance, then ϕ is (ε, k)-wise uniform. On the other hand, if ϕ is (ε, k)-wise uniform, then
the marginal density of ϕ over every k coordinates is 2k/2ε-close to uniform distribution in total
variation distance. Again, if k is considered constant, this bias notion is also roughly the same as
previous notions. In the rest of this chapter we prefer this (ε, k)-wise uniform notion for “almost
k-wise uniform” because of its convenience for Fourier analysis.

The original paper about almost k-wise uniformity, [NN93], was concerned with derandom-
ization; e.g., they use (ε, k)-wise uniformity for derandomizing the “set balancing (discrepancy)”
problem. Alon et al. gave a further discussion of the relationship between almost k-wise uni-
formity and derandomization in [AGM03]. The key idea is the following: In many cases of
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randomized algorithms, the analysis only relies on the property that the random bits are k-wise
uniform, as opposed to fully uniform. Since there exists an efficiently samplable k-wise uniform
distribution on a set of size at most O(nbk/2c), one can reduce the number of random unbiased
bits used in the algorithm down to O(k log n). To further reduce the number of random bits used,
a natural line of thinking is to consider distributions which are “almost k-wise uniformity”. Alon
et al. [AGHP92] showed that we can deterministically construct (ε, k)-wise uniform sets that are
of size poly(2k, log n, 1/ε), much smaller than exact k-wise uniform ones (roughly Ω(nbk/2c)
size). Therefore we can use substantially fewer random bits by taking random strings from an
almost k-wise uniform distribution.

However we need to ensure that the original analysis of the randomized algorithm still holds
under the almost k-wise uniform distribution. This is to say that if the randomized algorithm
behaves well on a k-wise uniform distribution, it may or may not also work as well with an
(ε, k)-wise uniform distribution, when the parameter ε is small enough.

5.1.2 The Closeness Problem

For the analysis of derandomization, it would be very convenient if (ε, k)-wise uniformity –
which means that “every k-local view looks close to uniform” – implies global δ-closeness to
k-wise uniformity. A natural question that arises, posed in [AGM03], is the following:

How small can δ be such that the following is true? For every (ε, k)-wise uniform distribution
ϕ on {−1, 1}n, ϕ is δ-close to some k-wise uniform distribution.

In this chapter, we will refer to this question as the Closeness Problem.

Previous work and applications

On one hand, the main message of [AGM03] is a lower bound: For every even constant k > 4,
they gave an (ε, k)-wise uniform distribution with ε = O(1/nk/4−1), yet which is 1

2
-far from

every k-wise uniform distribution in total variation distance.
On the other hand, [AGM03] proved a very simple theorem that δ ≤ O(nkε) always holds.

Despite its simplicity, this upper bound has been used many times in well known results.
One application is in circuit complexity. [AGM03]’s upper bound is used for fooling disjunc-

tive normal formulas (DNF) [Baz09] and AC0 [Bra10]. In these works, once the authors showed
that k-wise uniformity suffices to fool DNF/AC0, they deduced that (O(1/nk), k)-uniform distri-
butions suffice, and henceO(1/nk)-biased sets sufficed trivially. [AGM03]’s upper bound is also
used as a tool for the construction of two-source extractors for a similar reason in [CZ16, Li16].

Another application is for hardness of constraint satisfactory problems (CSPs). Austrin and
Mossel [AM09] show that one can obtain integrality gaps and UGC-hardness for CSPs based on
k-wise uniform distributions of small support size. If a predicate is k-wise uniform, Kothari et
al. [KMOW17] showed that one can get SOS-hardness of refuting random instances of it when
there are around n(k+1)/2 constraints. Indeed, [KMOW17] shows that if we have a predicate that
is δ-close to k-wise uniform, then with roughly n(k+1)/2 random constraints, SOS cannot refute
that a (1−O(δ))-fraction of constraints are satisfiable. This also motivates studying δ-closeness
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to k-wise uniformity and how it relates to Fourier coefficients. δ-closeness to k-wise uniformity
is also relevant for hardness of random CSP, as shown in [AOW15].

Alon et al. [AAK+07] investigated the Closeness Problem further by improving the upper
bound to δ = O((n log n)k/2ε). Indeed, they showed a strictly stronger fact that a distribution
is O
(√

W1...k[ϕ] logk/2 n
)

-close to some k-wise uniform, where W1...k[ϕ] =
∑

1≤|S|≤k ϕ̂(S)2.
Rubinfeld and Xie [RX13] generalized some of these results to non-uniform k-wise independent
distributions over larger product spaces.

Let us briefly summarize the method [AAK+07] used to prove their upper bounds. Given
an (ε, k)-wise uniform ϕ, they first try to generate a k-wise uniform “pseudo-distribution” ϕ′ by
forcing all Fourier coefficients at degree at most k to be zero. It is a “pseudo-distribution” because
some points might have negative density. After this, they use a fully uniform distribution and k-
wise uniform distributions with small support size to try to mend all points to be nonnegative.
They bound the weight of these mending distributions to upper-bound the distance incurred by
the mending process. This mending process uses the fully uniform distribution to mend the
small negative weights and uses k-wise uniform distributions with small support size to correct
the large negative weights point by point. By optimizing the threshold between small and large
weights it introduces a factor of (log n)k/2.

Though they did not mention it explicitly, they also give a lower bound for the Closeness
Problem of δ ≥ Ω

(
n(k−1)/2

logn
ε
)

for k > 2 by considering the uniform distribution on a set of

O(nk) random chosen strings. No previous work gave any lower bound for the most natural case
of k = 2.

Our result

In this chapter, we show sharper upper and lower bounds for the Closeness Problem, which are
tight for k even and k = 1. Comparing to the result in [AAK+07], we get rid of the factor of
(log n)k/2.
Theorem 5.1.1. Any density ϕ over {−1, 1}n is δ-close to some k-wise uniform distribution,
where

δ ≤ ek
√

W1...k[ϕ] = ek
√ ∑

1≤|S|≤k

ϕ̂(S)2.

Consequently, if ϕ is (ε, k)-wise uniform, i.e., |ϕ̂(S)| ≤ ε for every non-empty set S with size at
most k, then

δ ≤ eknk/2ε.

For the special case k = 1, the corresponding δ can be further improved to δ ≤ ε.
Our new technique is trying to mend the original distribution to be k-wise uniform all at once.

We want to show that some mixture distribution (ϕ+wψ) is k-wise uniform with small mixture
weight w. The distance between the final mixture distribution and the original distribution ϕ
is bounded by O(w). Therefore we only need to show that the mending distribution ψ exists
for some small weight w. Showing the existence of such a distribution ψ can be written as
the feasibility of a linear program (LP). We upper bound w by bounding the dual LP, using the
hypercontractivity inequality.
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Our result is sharp for all even k, and is also sharp for k = 1. We state the matching lower
bound for even k:
Theorem 5.1.2. For any n and even k, and small enough ε, there exists some (ε, k)-wise uniform
distribution ϕ over {−1, 1}n, such that ϕ is δ-far from every k-wise uniform distribution in total
variation distance, where

δ ≥ Ω

(
1

k

)k
nk/2ε.

Our method for proving this lower bound is again LP duality. Our examples in the lower
bound are symmetric distributions with Fourier weight only on level k. The density functions
then can be written as binary Krawtchouk polynomials which behave similar to Hermite polyno-
mials when n is large. Our dual LP bounds use various properties of Krawtchouk and Hermite
polynomials.

Interestingly both our upper and lower bound utilize LP-duality, which we believe is the most
natural way of looking at this problem.

We remark that we can derive a lower bound for odd k from Theorem 5.1.2 trivially by
replacing k by k − 1. There exists a gap of

√
n between the resulting upper and lower bounds

for odd k. We believe that the lower bound is tight, and the upper bound may be improvable by
a factor of

√
n, as it is in the special case k = 1. We leave it as a conjecture for further work:

Conjecture 5.1.3. Suppose the distribution ϕ over {−1, 1}n is (ε, k)-wise uniform. Then ϕ is
δ-close to some k-wise uniform distribution in total variation distance, where

δ ≤ O(nbk/2cε).

5.1.3 The Testing Problem
Another application of the Closeness Problem is to property testing of k-wise uniformity. Sup-
pose we have sample access from an unknown and arbitrary distribution; we may wonder whether
the distribution has a certain property. This question has received tremendous attention in the
field of statistics. The main goal in the study of property testing is to design algorithms that
use as few samples as possible, and to establish lower bound matching these sample-efficient
algorithms. In particular, we consider the property of being k-wise uniform:

Given sample access to an unknown and arbitrary distribution ϕ on {−1, 1}n, how many
samples do we need to distinguish between the case that ϕ is k-wise uniform versus the case that
ϕ is δ-far from every k-wise uniform distribution?

In this chapter, we will refer to this question as the Testing Problem.
We say a testing algorithm is a δ-tester for k-wise uniformity if the algorithm outputs “Yes”

with high probability when the distribution ϕ is k-wise uniform, and the algorithm outputs “No”
with high probability when the distribution ϕ is δ-far from any k-wise uniform distribution (in
total variation distance).

Property testing is well studied for Boolean functions and distributions. Previous work stud-
ied the testing of related properties of distribution, including uniformity [GR11, BFR+00, RS09]
and independence [BFF+01, BKR04, ADK15, DK16].
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The papers [AGM03, AAK+07, Xie12] discussed the problem of testing k-wise uniformity.
[AGM03] constructed a δ-tester for k-wise uniformity with sample complexity O(n2k/δ2), and
[AAK+07] improved it to O(nk logk+1 n/δ2). As for lower bounds, [AAK+07] showed that
Ω(n(k−1)/2/δ) samples are necessary, albeit only for k > 2. This lower bound is in particular for
distinguishing the uniform distribution from δ-far-from-k-wise distributions.

We show a better upper bound for sample complexity:
Theorem 5.1.4. There exists a δ-tester for k-wise uniformity of distributions on {−1, 1}n with
sample complexity O

(
1
k

)k/2 nk
δ2 . For the special case of k = 1, the sample complexity is O

(
logn
δ2

)
.

A natural δ-tester of k-wise uniformity is mentioned in [AAK+07]: Estimate all Fourier
coefficients up to level k from the samples; if they are all smaller than ε then output “Yes”. In
fact this algorithm is exactly attempting to check whether the distribution is (ε, k)-wise uniform.
Hence the sample complexity depends on the upper bound for the Closeness Problem. Therefore
we can reduce the sample complexity of this algorithm down to O

(
nk logn
δ2

)
via our improved

upper bound for the Closeness Problem. One log n factor remains because we need to union-
bound over the O(nk) Fourier coefficients up to level k. To further get rid of the last log n factor,
we present a new algorithm that estimates the Fourier weight up to level k,

∑
1≤|S|≤k ϕ̂

2(S),
rather than estimating these Fourier coefficients one by one.

Unfortunately, a lower bound for the Closeness Problem does not imply a lower bound for the
Testing Problem directly. In [AAK+07], they showed that a uniform distribution over a random
subset of {−1, 1}n of size O(n

k−1

δ2 ), is almost surely δ-far from any k-wise uniform distribution.
On the other hand, by the Birthday Paradox, it is hard to distinguish between the fully uniform
distribution on all strings of length n and a uniform distribution over a random set of such size.
This gives a lower bound for the Testing Problem as Ω(n(k−1)/2/δ). Their result only holds for
k > 2; there was no previous non-trivial lower bound for testing pairwise uniformity. We show
a lower bound for the pairwise case.
Theorem 5.1.5. Any δ-tester for pairwise uniformity of distributions on {−1, 1}n needs at least
Ω( n

δ2 ) samples.
For this lower bound we analyze a symmetric distribution with non-zero Fourier coefficients

only on level 2. We prove that it is hard to distinguish a randomly shifted version of this distribu-
tion from the fully uniform distribution. This lower bound is also better than [AAK+07] in that
we have a better dependence on the parameter δ ( 1

δ2 rather than 1
δ
). Unfortunately we are unable

to generalize our lower bound for higher k.
Notice that for our new upper and lower bounds for k-wise uniformity testing, there still

remains a quadratic gap for k ≥ 2, indicating that the upper bound might be able to be improved.
Both the lower bound in this chapter and that in [AAK+07] show that it is hard to distinguish
between the fully uniform distribution and some specific sets of distributions that are far from
k-wise uniform. We show that if one wants to improve the lower bound, one will need to use
a distribution in the “Yes” case that is not fully uniform, because we give a sample-efficient
algorithm for distinguishing between fully uniform and δ-far from k-wise uniform:
Theorem 5.1.6. For any constant k, for testing whether a distribution is fully uniform or δ-
far from every k-wise uniform distribution, there exists an algorithm with sample complexity
O(k)k · nk/2 · 1

δ2 ·
(
log n

δ

)k/2.
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In fact, for testing whether a distribution is αk-wise uniform or δ-far from k-wise uniform

with α > 4, there exists an algorithm with sample complexity O(α)k/2 · nk/2 · 1
δ2 ·
(
nk

δ4

)1/(α−2)

.

We remark that testing full uniformity can be treated as a special case of testing αk-wise
uniformity approximately, by setting α = log n

δ
.

Testing full uniformity has been studied in [GR11, BFR+00]. Paninski [Pan08] showed that
testing whether an unknown distribution on {−1, 1}n is Θ(1)-close to fully uniform requires
2n/2 samples. Rubinfeld and Servedio [RS09] studied testing whether an unknown monotone
distribution is fully uniform or not.

The fully uniform distribution has the nice property that every pair of samples is different
in n

2
± O(

√
n) bits with high probability when the sample size is small. Our algorithm first

rejects those distributions that disobey this property. We show that the remaining distributions
have small Fourier weight up to level 2k. Hence by following a similar analysis as the tester
in Theorem 5.1.4, we can get an improved upper bound when these lower Fourier weights are
small.

The lower bound remains the same as testing k-wise vs. far from k-wise. Our tester is tight
up to a logarithmic factor for the pairwise case, and is tight up to a factor of Õ(

√
n) when k > 2.

We compare our results and previous best known bounds from [AAK+07] in Table 5.1. (We
omit constant factors depending on k.)

Upper bound Lower bound
[AAK+07] Our results [AAK+07] Our results

Closeness Problem O(nk/2(log n)k/2ε)
O(nk/2ε)

Ω
(
n(k−1)/2

logn ε
)

Ω(nbk/2cε)
O(ε) for k = 1

Testing k-wise vs.
O

(
nk(log n)k+1

δ2

)
O
(
nk

δ2

)
Ω

(
n(k−1)/2

δ

)
for k > 2 Ω

( n
δ2

)
for k = 2

far from k-wise O
(

logn
δ2

)
for k = 1

Testing n-wise vs.
O

(
nk(log n)k+1

δ2

)
O
(
nk/2

δ2 (log n
δ )k/2

)
Ω

(
n(k−1)/2

δ

)
for k > 2 Ω

( n
δ2

)
for k = 2

far from k-wise O
(

logn
δ2

)
for k = 1

Table 5.1: Comparison of our results to [AAK+07]

5.1.4 Organization

Section 5.2 contains definitions and notations. We will discuss upper and lower bounds for the
Closeness Problem in Section 5.3. We will discuss the sample complexity of testing k-wise
uniformity in Section 5.4. We present a tester for distinguishing between αk-wise uniformity (or
fully uniformity) and far-from k-wise uniformity in Section 5.5.
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5.2 Preliminaries

5.2.1 Fourier analysis of Boolean functions
We use [n] to denote the set {1, . . . , n}. We denote the symmetric difference of two sets S and
T by S ⊕ T . For Fourier analysis we use notations consistent with [O’D14]. Every function
f : {−1, 1}n → R has a unique representation as a multilinear polynomial

f(x) =
∑
S⊆[n]

f̂(S)xS where xS =
∏
i∈S

xi.

We call f̂(S) the Fourier coefficient of f on S. We use x ∼ {−1, 1}n to denote that x is
uniformly distributed on {−1, 1}n. We can represent Fourier coefficients as

f̂(S) = E
x∼{−1,1}n

[
f(x)xS

]
.

We define an inner product 〈·, ·〉 on pairs of functions f, g : {−1, 1}n → R by

〈f, g〉 = E
x∼{−1,1}n

[f(x)g(x)] =
∑
S⊆[n]

f̂(S)ĝ(S).

We introduce the following p-norm notation: ‖f‖p = (E[|f(x)|p])1/p, and the Fourier `p-

norm is ‖f̂‖p =
(∑

S⊆[n] |f̂(S)|p
)1/p

.
We say the degree of a Boolean function, deg(f) is k if its Fourier polynomial is degree k.

We denote f=k(x) =
∑
|S|=k f̂(S)xS , and f≤k(x) =

∑
|S|≤k f̂(S)xS . We denote the Fourier

weight on level k by Wk[f ] =
∑
|S|=k f̂(S)2. We denote W1...k[ϕ] =

∑
1≤|S|≤k ϕ̂(S)2.

We define the convolution f ∗ g of a pair of functions f, g : {−1, 1}n → R to be

(f ∗ g)(x) = E
y∼{−1,1}n

[f(x)g(x ◦ y)],

where ◦ denotes entry-wise multiplication. The effect of convolution on Fourier coefficients is
that f̂ ∗ g(S) = f̂(S)ĝ(S).

5.2.2 Densities and distances
When working with probability distribution on {−1, 1}n, we prefer to define them via density
function. A density function ϕ : {−1, 1}n → R

≥0 is a nonnegative function satisfying ϕ̂(∅) =
Ex∼{−1,1}n [ϕ(x)] = 1. We write y ∼ ϕ to denote that y is a random variable drawn from the
distribution ϕ, defined by

Pr
y∼ϕ

[y = y] =
ϕ(y)

2n
,

for all y ∈ {−1, 1}n. We identify distributions with their density functions when there is no risk
of confusion.
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We denote ϕ+t(x) = ϕ(x ◦ t). We denote by 1A the density function for the uniform distri-
bution on support set A. The density function associated to the fully uniform distribution is the
constant function 1.

The following lemma about density functions of degree at most k derives from Fourier anal-
ysis and hypercontractivity.
Lemma 5.2.1. Let ϕ : {−1, 1}n → R≥0 be a density function of degree at most k. Then

‖ϕ̂‖2 =

√∑
S

ϕ̂(S)2 ≤ ek.

Proof.
‖ϕ̂‖2 = ‖ϕ‖2 ≤ ek‖ϕ‖1 = ek.

The first equality holds by Parseval’s Theorem (see Section 1.4 in [O’D14]). The inequality
holds by hypercontractivity (see Theorem 9.22 in [O’D14]). The last equality holds since ϕ is a
density function.

A distribution ϕ over {−1, 1}n is k-wise uniform if and only if ϕ̂(S) = 0 for all 1 ≤ |S| ≤ k
(see Chapter 6.1 in [O’D14]). We say that distribution ϕ over {−1, 1}n is (ε, k)-wise uniform if
|ϕ̂(S)| ≤ ε for all 1 ≤ S ≤ k.

The most common way to measure the distance between two probability distributions is via
their total variation distance. If the distributions have densities ϕ and ψ, then the total variation
distance is defined to be

dTV(ϕ, ψ) = sup
A⊆{−1,1}n

∣∣∣∣Pr
x∼ϕ

[x ∈ A]− Pr
x∼ψ

[x ∈ A]

∣∣∣∣ =
1

2
E
x

[|ϕ(x)− ψ(x)|] =
1

2
‖ϕ− ψ‖1.

We say that ϕ and ψ are δ-close if dTV(ϕ, ψ) ≤ δ.
Supposing H is a set of distributions, we denote

dTV(ϕ,H) = min
ψ∈H

dTV(ϕ, ψ).

In particular, we denote the set of k-wise uniform densities by kWISE. We say that density ϕ is
δ-close to k-wise uniform if dTV(ϕ, kWISE) ≤ δ, and is δ-far otherwise.

5.2.3 Krawtchouk and Hermite polynomials
Krawtchouk polynomials were introduced in [Kra29], and arise in the analysis of Boolean func-
tions as shown in [Lev95, Kal02]. Consider the following Boolean function of degree k and
input length n: f(x) =

∑
|S|=k x

S . It is symmetric and therefore only depends on the Hamming
weight of x. Let t be the number of −1’s in x. Then the output of f is exactly the same as the
Krawtchouk polynomial K(n)

k (t).
Definition 5.2.2. We denote by K(n)

k (t) the Krawtchouk polynomial:

K
(n)
k (t) =

k∑
j=0

(−1)j
(
t

j

)(
n− t
k − j

)
,

for k = 0, 1, . . . , n.
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We will also use Hermite polynomials in our analysis.
Definition 5.2.3. We denote by hk(z) the normalized Hermite polynomial:

hk(z) =
1√
k!

(−1)ke
1
2
z2 dk

dzk
e−

1
2
z2

.

Its explicit formula is

hk(z) =
√
k! ·
(

zk

0!! · k!
− zk−2

2!! · (k − 2)!
+

zk−4

4!! · (k − 4)!
− zk−6

6!! · (k − 6)!
+ · · ·

)
.

One useful fact is that the derivative of a Hermite polynomial is a scalar multiple of a Hermite
polynomial (see Exercise 11.10 in [O’D14]):
Fact 5.2.4. For any integer k ≥ 1, we have

d

dz
hk(z) =

√
khk−1(z).

The relationship between Krawtchouk and Hermite polynomials is that we can treat Her-
mite polynomials as a limit version of Krawtchouk polynomials when n goes to infinity (see
Exercise 11.14 in [O’D14]).
Fact 5.2.5. For all k ∈ N and z ∈ R we have(

n

k

)−1/2

·K(n)
k

(
n− z

√
n

2

)
n→∞−−−→ hk(z).

Instead of analyzing Krawtchouk polynomials, it is easier to study Hermite polynomials when
n is large because Hermite polynomials have a more explicit form. We present some basic
properties of Hermite polynomials with brief proofs.
Lemma 5.2.6. The following are properties of hk(z):

1. |hk(z)| ≤ hk(k) for any |z| ≤ k;
2. hk(z) is positive and increasing when z ≥ k;
3. hk(Ck) ≤ (Ck)k/

√
k! for any constant C ≥ 1.

Proof. We will treat the case of k = 4i + 2 for some integer i. The proof for the general case is
similar. When k = 4i+ 2, we can group adjacent terms into pairs:

hk(z) =
√
k! ·

(k−2)/4∑
i=0

zk−4i−2

(4i+ 2)!! · (k − 4i)!
((4i+ 2)z2 − (k − 4i)(k − 4i− 1)).

1. Notice that |(4i+ 2)z2 − (k − 4i)(k − 4i− 1)| is always between −(k − 4i)(k − 4i− 1)
and (4i + 2)k2 − (k − 4i)(k − 4i − 1) when |z| ≤ k. Both the upper and lower bound
have absolute value at most (4i + 2)k2 − (k − 4i)(k − 4i − 1). Therefore by the triangle
inequality we have |hk(z)| ≤ hk(k).

2. It is easy to check that ((4i + 2)z2 − (k − 4i)(k − 4i− 1)) is positive when z ≥ k. Then
by Fact 5.2.4, d

dz
hk(z) =

√
khk−1(z) > 0 when z ≥ k.

3. This is trivial from the explicit formula since each term is exactly smaller than the previous
term when z ≥ k.
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5.3 The Closeness Problem
In this section, we prove the upper bound in Theorem 5.1.1 and the lower bound in Theo-
rem 5.1.2. One interesting fact is that we use duality of linear programming (LP) in both the
upper and lower bound. We think this is the proper perspective for analyzing these questions.

5.3.1 Upper bound
The key idea for proving the upper bound is mixture distributions. Given an (ε, k)-wise uniform
density ϕ, we try to mix it with some other distribution ψ using mixture weight w, such that
the mixture distribution 1

1+w
(ϕ+wψ) is k-wise uniform and is close to the original distribution.

The following lemma shows that the distance between the original distribution and the mixture
distribution is bounded by the weight w.
Lemma 5.3.1. If ϕ′ = 1

1+w
(ϕ + wψ) for some 0 ≤ w ≤ 1 and density functions ϕ, ψ, then

dTV(ϕ, ϕ′) ≤ w.

Proof. dTV(ϕ, ϕ′) = 1
2
‖ϕ′ − ϕ‖1 = 1

2
‖ϕ′ − ((1 + w)ϕ′ − wψ))‖1 = 1

2
w‖ϕ′ − ψ‖1 ≤ w.

Therefore we only need to show the existence of an appropriate ψ for some small w. The
constraints on ψ can be written as an LP feasibility problem. Therefore by Farkas’ Lemma we
only need to show that its dual is not feasible. The variables in the dual LP can be seen as a
density function of degree at most k.

Proof of Theorem 5.1.1 (general k case). Given density function ϕ, we try to find another den-
sity function ψ with constraints

ψ̂(S) = − 1

w
ϕ̂(S)

for all 1 ≤ |S| ≤ k. Suppose such a density function ψ exists. Then it is trivial that ϕ+wψ
1+w

is also a
density function and is k-wise uniform. By Lemma 5.3.1, we conclude that dTV(ϕ, kWISE) ≤ w.

The rest of proof is to show that such a ψ exists when w = ek
√

W1...k[ϕ]. We can write the
existence as an LP feasibility problem with variables ψ(x) for x ∈ {−1, 1}n and constraints:

ψ̂(∅) = 1,

ψ̂(S) = − 1

w
ϕ̂(S), ∀1 ≤ |S| ≤ k,

ψ(x) ≥ 0, ∀x ∈ {−1, 1}n,

where ψ̂(S) = E[ψ(x)xS] is a linear combination of variables ψ(x).
The dual LP has variables ψ′(x) for x ∈ {−1, 1}n with constraints:

ψ̂′(∅) = 1,

ψ̂′(S) = 0, ∀|S| > k,

ψ′(x) ≥ 0, ∀x ∈ {−1, 1}n,
1

w

∑
1≤|S|≤k

ϕ̂(S)ψ̂′(S) > 1.
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The original LP is feasible if and only if its dual LP is infeasible, by Farkas’ Lemma. This
completes the proof, since when w = ek

√
W1...k[ϕ], for any density function ψ′ with degree k

we have
1

w

∑
1≤|S|≤k

ϕ̂(S)ψ̂′(S) ≤ 1

ek
√

W1...k[ϕ]

∑
1≤|S|≤k

|ϕ̂(S)||ψ̂′(S)| ≤ 1

ek
‖ψ̂′‖2 ≤ 1,

where the second inequality holds by Cauchy–Schwarz, and the last inequality holds by Lemma 5.2.1
since ψ′ has degree at most k.

For k = 1, further improvement can be achieved. We still try to use mixture distributions.
Here we want to mix the distribution ϕ with indicator distributions on subsets of coordinates that
have opposite biases to those of the original distribution.

Proof of Theorem 5.1.1 (case k = 1). By identifying each xi with −xi if necessary, we may as-
sume without loss of generality that ϕ̂({i}) ≥ 0 for all i. In addition, by reordering the co-
ordinates, we may assume without loss of generality that 0 ≤ ϕ̂({1}) ≤ · · · ≤ ϕ̂({n}) = ε.
Define ψj to be the density of the distribution over {−1, 1}n which is uniform on coordinates
x1, . . . , xj−1, and has xi constantly fixed to be −1 for j ≤ i ≤ n. It is easy to check ψ̂j({i}) = 0

for i < j and ψ̂j({i}) = −1 for i ≥ j.
We define ϕ′ as

ϕ′ =
1

1 + ε

(
ϕ+

n∑
j=1

wjψj

)
,

where
w1 = ϕ̂({1}), wj = ϕ̂({j})− ϕ̂({j − 1}) ∀1 < j ≤ n.

It is easy to check that ϕ′ is a density function and

ϕ̂′({i}) =
1

1 + ε

(
ϕ̂({i}) +

(
i∑

j=1

wj

)
(−1)

)
= 0.

Therefore ϕ′ is 1-wise uniform. Then by Lemma 5.3.1,

dTV (ϕ, 1WISE) ≤ 1

2
‖ϕ− ϕ′‖1 ≤

n∑
j=1

wj = ε.

5.3.2 Lower bound
Interestingly, our proof of the lower bound also utilizes LP duality. We can write the Closeness
Problem in the form of linear programming with variables ϕ′(x) for x ∈ {−1, 1}n, as follows:

minimize dTV(ϕ, ϕ′) =
1

2
‖ϕ− ϕ′‖1

subject to: ϕ̂′(∅) = 1,

ϕ̂′(S) = 0, ∀1 ≤ |S| ≤ k,

ϕ′(x) ≥ 0, ∀x ∈ {−1, 1}n.
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We ignore the factor of 1/2 in the minimization for convenience in the following analysis.
The dual LP, which has variables p(x), q(x) for x ∈ {−1, 1}n, is the following:

maximize 〈ϕ, q〉 − p̂(∅)
subject to: p(x)− q(x) ≥ 0, ∀x ∈ {−1, 1}n,

q(x) ≤ 1, ∀x ∈ {−1, 1}n,
p(x) ≥ −1, ∀x ∈ {−1, 1}n,

deg(p) ≤ k.

Thus given a pair of Boolean functions p, q satisfying the constraints, the quantity 〈ϕ, q〉 −
p̂(∅) is a lower bound for our Closeness Problem. Our distribution ϕ achieving the lower bound
is a symmetric polynomial, homogeneous of degree k (except that it has a constant term of 1, as
is necessary for every density function). We can use Krawtchouk and Hermite polynomials to
simplify the analysis.

Proof of Theorem 5.1.2. We define

ϕ(x) = 1 + µ

(
n

k

)−1/2 ∑
|S|=k

xS, p(x) = µ

(
n

k

)−1/2 ∑
|S|=k

xS, q(x) = min(p(x), 1),

where µ is a small parameter to be chosen later that will ensure ϕ(x) ≥ 0 and p(x) ≥ −1 for all
x ∈ {−1, 1}n. We have ε = max1≤|S|≤k |ϕ̂(S)| = µ

(
n
k

)−1/2.
Since p̂(∅) = 0, the objective function of the dual LP is

〈ϕ, q〉 = 〈ϕ,min(p, 1)〉 = 〈ϕ, 1p>1〉+ 〈ϕ, p1p≤1〉 = 〈ϕ, p〉 − 〈ϕ, (p− 1)1p>1〉
≥ 〈ϕ, p〉 −

√
Pr
x∼ϕ

[p(x) > 1] · 〈ϕ, (p− 1)2〉,

where the last inequality holds by Cauchy–Schwarz. It is easy to calculate the inner products
〈ϕ, p〉 = µ2, and

〈ϕ, (p− 1)2〉 = 〈ϕ, p2〉 − 2〈ϕ, p〉+ 1

= µ2 + µ3

(
n

k

)−1/2(
k

k/2

)(
n− k
k/2

)
− 2µ2 + 1

≤ 1 + µ3

(
k

k/2

)3/2

− µ2.

Assuming µ < 2−
3
2
k, we have 〈ϕ, (p− 1)2〉 < 1.

Now we need to upper bound Prx∼ϕ[p(x) > 1]. Define z satisfying (n− z
√
n)/2 =

∑
i xi.

Then

Pr
x∼ϕ

[p(x) > 1] = Pr
x∼ϕ

[
µ

(
n

k

)−1/2

·Kk

(
n− z

√
n

2
, n

)
> 1

]
.
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By Fact 5.2.5, we know that when z ≤ k, for sufficient large n,(
n

k

)−1/2

·Kk

(
n− z

√
n

2
, n

)
< 2hk(z).

Now we set µ =
√
k!

2(Ck)k
with some constant C ≥ 1. It is easy to check that µ < 2−

3
2
k. Using

the properties in Lemma 5.2.6, we get

Pr
x∼ϕ

[
µ

(
n

k

)−1/2

·Kk

(
n− z

√
n

2
, n

)
> 1

]
≤ Pr

x∼ϕ
[2µhk(z) > 1]

≤ Pr
x∼ϕ

[hk(z) > hk(Ck)]

= Pr
x∼ϕ

[|z| > Ck].

Then using Cauchy–Schwarz again, we get

Pr
x∼ϕ

[|z| > Ck] ≤
√

E
x∼{−1,1}n

[ϕ(x)2]
√

Pr
x∼{−1,1}n

[|z| > Ck]

≤
√

1 + µ2
√

2 exp(−C2k2/2)

≤ 2 exp(−(Ck)2/4).

Therefore we get that the objective function is at least

〈ϕ, p〉 −
√

Pr
x∼ϕ

[p(x) > 1] · 〈ϕ, (p− 1)2〉 ≥ µ2 −
√

2 exp(−(Ck)2/4) ≥ Ω

(
1

k

)k
.

The last inequality holds when we choose a sufficiently large constant C.
This completes the proof, because ϕ is at least δ-far from k-wise uniform with δ = Ω

(
1
k

)k,

and we have ε = µ
(
n
k

)−1/2 ≤ n−k/2

2Ω(k) . Therefore we have δ ≥ Ω
(

1
k

)k
nk/2ε.

5.4 The Testing Problem
In this section, we study the problem of testing whether a distribution is k-wise uniform or δ-far
from k-wise uniform. These bounds are based on new bounds for the Closeness Problem. We
present a new testing algorithm for general k in Section 5.4.1. We give a lower bound for the
pairwise case in Section 5.4.2.

5.4.1 Upper bound
Given m samples from ϕ, call them x1, . . . ,xm, we will first show that

∆(X) = avg
1≤s<t≤m

 ∑
1≤|S|≤k

xSsx
S
t


is a natural estimator of W1...k[ϕ].
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Lemma 5.4.1. It holds that

µ = E[∆(X)] = W1...k[ϕ];

Var[∆(X)] ≤ 4

m2
Lk(ϕ) +

4

m

√
Lk(ϕ)µ, (5.1)

where Lk(ϕ) =
∑

1≤|S1|,|S2|≤k ϕ̂(S1 ⊕ S2)2.

Proof. We denote F (x, y) =
∑

1≤|S|≤k x
SyS . We know that

E
x,y∼ϕ

[xSyS] = E
x∼ϕ

[xS] E
y∼ϕ

[yS] = ϕ̂(S)2,

when x and y are independent samples drawn from ϕ. Therefore by linearity of expectation,
Ex,y∼ϕ[F (x,y)] = W1...k[ϕ], and clearly by taking the average,

µ = E[∆(X)] = E[avgs<tF (xs,xt)] = avgs<tE[F (xs,xt)] = W1...k[ϕ].

We need to expand the variance:

Var

[
avg
s<t

(F (xs,xt))

]
=

1(
m
2

)2

∑
s<t
s′<t′

Cov[F (xs,xt), F (xs′ ,xt′)]. (5.2)

We will discuss these covariances in three cases.
Case 1: |{s, t} ∩ {s′, t′}| = 2. Let x,y ∼ ϕ be independent random variables.

Cov[F (x,y), F (x,y)] = Var
x,y∼ϕ

[F (x,y)] ≤ E
x,y∼ϕ

[F (x,y)2] = E
x,y∼ϕ

 ∑
1≤|S|≤k

xSyS

2.
Notice here all xi’s are Rademacher variables with x2

i = 1, and similarly for the yi’s. Therefore

E
x,y∼ϕ

 ∑
1≤|S|≤k

xSyS

2 =
∑

1≤|S1|,|S2|≤k

E
x,y∼ϕ

[
xS1⊕S2yS1⊕S2

]
=

∑
1≤|S1|,|S2|≤k

ϕ̂(S1 ⊕ S2)2 = Lk(ϕ).

Case 2: |{s, t} ∩ {s′, t′}| = 1. Let x,y, z ∼ ϕ be independent random variables. Similar to
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Case 1, we have:

Cov[F (x,y), F (x, z)] ≤ E[F (x,y)F (x, z)]

= E

 ∑
1≤|S1|≤k

xS1yS1

 ∑
1≤|S2|≤k

xS2zS2


= E

 ∑
1≤|S1|,|S2|≤k

xS1⊕S2yS1zS2


=

∑
1≤|S1|,|S2|≤k

ϕ̂(S1 ⊕ S2)ϕ̂(S1)ϕ̂(S2)

≤
√ ∑

1≤|S1|,|S2|≤k

ϕ̂(S1 ⊕ S2)2

√ ∑
1≤|S1|,|S2|≤k

ϕ̂(S1)2ϕ̂(S2)2

=
√
Lk(ϕ)µ,

where the inequality comes from Cauchy–Schwarz.
Case 3: |{s, t} ∩ {s′, t′}| = 0. Let x,y, z,w ∼ ϕ be independent random variables. Clearly

F (x,y) and F (z,w) are independent and therefore Cov[F (x,y), F (z,w)] = 0.
Plugging all these cases into eq. (5.2), we get

Var[∆(X)] = Var

[
avg
s<t

(F (xs,xt)

]
=

1(
m
2

)2

((
m

2

)
Lk(ϕ) +m(m− 1)(m− 2)

√
Lk(ϕ)µ

)
≤ 4

m2
Lk(ϕ) +

4

m

√
Lk(ϕ)µ.

Given Lemma 5.4.1 we can bound the samples we need for estimating W1...k[ϕ].
Theorem 5.4.2 (W1...k Estimation Test). Let ϕ : {−1, 1}n → R

≥0 be a density function,
promised to satisfy Wi[ϕ] ≤ Ani/2 for all i = 0, 1, . . . , 2k. There is an algorithm that, given

m ≥ 1000
2k
√
Ank/2

θ
(5.3)

samples, distinguishes with probability at least 3/4 whether W1...k[ϕ] ≤ 1
2
θ or W1...k[ϕ] > θ.

Proof. The algorithm is simple: we report “µ ≤ 1
2
θ” if ∆(X) ≤ 3

4
θ and report “µ > θ” if

∆(X) > 3
4
θ.

Now we need to bound Lk(ϕ) to bound the variance of ∆(X). For a fixed subset |S| ≤ 2k,
how many pairs of 1 ≤ |S1|, |S2| ≤ k are there satisfying S = S1⊕S2? We denote S1 = S ′1∪T ,
S2 = S ′2 ∪ T , where S ′1, S

′
2, T are disjoint. Then S = S ′1 ∪ S ′2. For a fixed set S, there are at

most 2|S| different ways to split it into two sets S ′1, S
′
2. Because max{S ′1, S ′2} ≥ d|S|/2e and
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|S1|, |S2| ≤ k, we have |T | ≤ k − d|S|/2e. Therefore there are at most

k−d|S|/2e∑
j=0

(
n− |S|

j

)
≤ 2nk−d|S|/2e

(k − d|S|/2e)!

ways to choose the set T for any fixed S ′1, S
′
2. Hence,

Lk(ϕ) =
∑

1≤|S1|,|S2|≤k

ϕ̂(S1 ⊕ S2)2

=
∑
|S|≤2k

∑
S′1∩S′2=∅
S′1∪S′2=S

∑
T∩S′1=∅,T∩S′2=∅

|T |+max{|S′1|,|S′2|}≤k

ϕ̂(S)2

≤
∑
|S|≤2k

2|S|
2nk−d|S|/2e

(k − d|S|/2e)!
ϕ̂(S)2

=
2k∑
i=0

2i
2nk−di/2e

(k − di/2e)!
Wi[ϕ].

Plugging in Wi[ϕ] ≤ Ani/2, we get

Lk(ϕ) ≤
2k∑
i=0

2i
2nk−di/2e

(k − di/2e)!
Wi[ϕ] ≤ 22k+2Ank. (5.4)

By substituting eq. (5.4) and eq. (5.3) into eq. (5.1), we have

Var[∆(X)] ≤ 4

5002
θ2 +

4

500
θµ ≤ 1

64
max{θ2, µ2}.

Then we conclude our proof by Chebyshev’s inequality:

Pr

[
|∆(X)− µ| ≤ 1

4
max{θ, µ}

]
≥ Pr

[
|∆(X)− µ| ≤ 2

√
Var[∆(X)]

]
≥ 1−

(
1

2

)2

=
3

4
.

This W1...k Estimation Test is just what we need for testing k-wise uniformity with the upper
bound of the Closeness Problem.

Proof of Theorem 5.1.4. From Theorem 5.1.1 we know that if density ϕ is δ-far from k-wise
uniform, then W1...k[ϕ] >

(
δ
ek

)2. On the other hand if ϕ is k-wise uniform, by definition we
have W1...k[ϕ] = 0. Therefore distinguishing between k-wise uniform and δ-far from k-wise
uniform can be reduced to distinguishing between W1...k[ϕ] >

(
δ
ek

)2 and W1...k[ϕ] = 0.
For any density function ϕ, |ϕ̂(S)| =

∣∣E[ϕ(x)xS]
∣∣ ≤ 1 for any S ⊆ [n]. Therefore assigning

A = nk, we have
Wi[ϕ] =

∑
|S|=i

ϕ̂(S)2 ≤ ni ≤ Ani/2
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for every i = 0, 1, . . . , 2k.
Hence we can run the W1...k Estimator Test in Theorem 5.4.2 with parameter θ =

(
δ
ek

)2 and
A = nk, thereby we solve the Testing Problem with sample complexity 2O(k)nk/δ2.

In fact by mroe precise calculation we can further improve the constant factor involving k to
O
(

1
k

)k/2, but we will omit the proof here for the sake of brevity.

5.4.2 Lower bound for the pairwise case
An upper bound for the Closeness Problem implies an upper bound for the Testing Problem. But
a lower bound for Closeness does not obviously yield a lower bound for the Testing Problem. The
function used to show the lower bound for the Closeness Problem is far from k-wise uniform,
but it is not sufficient to say that it is hard to distinguish between it and some k-wise uniform
distribution. In [AAK+07], they show that it is hard to distinguish between the fully uniform
distribution and the uniform distribution on a random set of size around O(nk−1/δ2); this latter
distribution is far from k-wise uniform with high probability for k > 2.

We show that the density function ϕ we used for the lower bound for the Closeness Problem
is a useful density to use for a testing lower bound in the pairwise case. However it is not hard
to distinguish between the fully uniform distribution and ϕ. Our trick is shifting ϕ by a random
“center”. We remind the reader that we denote by ϕ+t(x) = ϕ(x ◦ t) the distribution ϕ shifted
by vector t. We claim that with m = o(n/δ2) samples, it is hard to distinguish the fully uniform
distribution from ϕ+t with a uniformly randomly chosen t.
Lemma 5.4.3. Let ϕ be the density function defined by ϕ(x) = 1 + δ

n

∑
i<j xixj . Assume

m < n/δ2. Let Φ : ({−1, 1}n)m → R
≥0 be the density associated to the distribution on m-

tuples of strings defined as follows: First, choose t in {−1, 1}n uniformly; then choose m strings
independently from ϕ+t. Let 1 denote the constantly 1 function on ({−1, 1}n)m, the density
associated to the uniform distribution. Then the χ2-divergence between Φ and 1, ‖Φ − 1‖2

2, is
bounded by

‖Φ− 1‖2
2 ≤ O

(
mδ2

n

)
.

Proof. We need to show that E[(Φ− 1)2] = E[Φ2]− 1 ≤ O(mδ2/n). For uniform and indepen-
dent x(1), . . . ,x(m),

E[Φ(x(1), . . . ,x(m))2] = E
x

(E
t

[
m∏
i=1

ϕ+t(x(i))

])2


= E
x,t,t′

[
m∏
i=1

ϕ+t(x(i))ϕ+t′(x(i))

]
= E

t,t′
[〈ϕ+t, ϕ+t′〉m].

It is a trivial fact that 〈ϕ+t, ϕ+t′〉 = ϕ ∗ ϕ(t+ t′). Therefore

E[Φ(x(1), . . . ,x(m))2] = E[(ϕ ∗ ϕ)m].
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We know that ϕ̂ ∗ ϕ(S) = ϕ(S)2. Therefore

ϕ ∗ ϕ = 1 +
δ2

n2

∑
i<j

xixj.

To compute E[(ϕ ∗ ϕ)m], we just need to calculate the constant term of (1 + δ2

n2

∑
i<j xixj)

m

since x2
i = 1. Suppose that when expanding this out, we take l terms of xixj; we think these

as l (possibly parallel) edges in the complete graph on n vertices. Then if these l terms “cancel
out”, the associated edges form a collection of cycles, since each vertex has even degree. There
are at most nl collections of cycles with l edges. Considering choosing those l terms (edges) in
order, we get an upper bound of (mn)l for the number of ways of choosing l terms of xixj to get
canceled. Therefore we have

E

[(
1 +

δ2

n2

∑
i 6=j

xixj

)m]
≤

m∑
l=0

(mn)l
(
δ2

n2

)l
≤

m∑
l=0

(
mδ2

n

)l
≤ 1 +O

(
mδ2

n

)
,

which completes the proof.

Now we are ready to give the lower bound for sample complexity of testing fully uniform vs.
far-from-pairwise uniform.

Proof of Theorem 5.1.5. If m = o(n/δ2), by Lemma 5.4.3 we have ‖Φ − 1‖2
2 ≤ o(1). Then

any tester cannot distinguish, with more than o(1) advantage, whether those m samples are fully
uniform or they are drawn from ϕ+t for some random t.

On the other hand, the proof of Theorem 5.1.2 shows that ϕ is Ω(δ)-far from pairwise uni-
form, and from the Fourier characterization, we have that ϕ+t is pairwise uniform whenever ϕ
is. We can conclude that testing fully uniform versus δ-far-from-pairwise-uniform needs sample
complexity at least Ω(n/δ2).

Unfortunately, we do not see an obvious way to generalize this lower bound to k > 2.

5.5 Testing αk-wise/fully uniform vs. far from k-wise uniform

5.5.1 The algorithm
In this section we show a sample-efficient algorithm for testing whether a distribution is αk-
wise/fully uniform or δ-far from k-wise uniform. As a reminder, Theorem 5.4.2 indicates that
the sample complexity of estimating W1...k[ϕ] is bounded by the Fourier weight up to level 2k.
This suggests using a filter test to try to “kick out” those distributions with noticeable Fourier
weight up to degree 2k.

Filter Test. Draw m1 samples from ϕ. If there exists a pair of samples x,y such that
|
∑n

i=1 xiyi| > t
√
n, output “Reject”; otherwise, output “Accept”.

The Overall Algorithm is combining the Filter Test and the W1...k Estimation Test.
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Overall Algorithm. Do the Filter Test with m1 samples and parameter t. If it rejects, say
“No”. Otherwise, do the W1...k Estimation Test with m2 samples and θ = (δ/ek)2. Say “No” if
it outputs “W1...k[ϕ] > θ” and say “Yes” otherwise.

Here “Yes” means ϕ is αk-wise/fully uniform, and “No” means ϕ is δ-far from k-wise uni-
form. We will decide the parameters m1, t,m2 in the Overall Algorithm later.

For simplicity, we denote k = αk. We will focus on testing αk-wise uniform vs. far from
k-wise uniform in the analysis. For fully uniformity, the analysis is almost the same, and we will
discuss it at the end of this subsection.

First of all, we will prove that if ϕ is k-wise uniform, it will pass the Filter Test with high
probability, provided we choose m1 and t properly.
Lemma 5.5.1. If ϕ is k-wise uniform (assuming k is even), the Filter Test will accept with
probability at least .9 when m2

1 ≤ tk

5k
k/2

.

Proof. If ϕ is k-wise uniform with k even, then by Markov’s inequality on the k-th moment, we
have

Pr
x,y∼ϕ

independent

[∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ > t
√
n

]
= Pr

x,y∼ϕ

( n∑
i=1

xiyi

)k

> (t
√
n)k

 ≤ Ex,y∼ϕ

[
(
∑n

i=1 xiyi)
k
]

tknk/2
.

When we expand (
∑n

i=1 xiyi)
k, each term is at most degree k in x or y. Because x and y are

independent random variables chosen from k-wise uniform distribution ϕ, the whole polynomial
behaves the same as if x and y were chosen from the fully uniform distribution:

E
x,y∼ϕ

( n∑
i=1

xiyi

)k
 = E

z∼{−1,1}n

( n∑
i=1

zi

)k


≤ k
k/2

 E
z∼{−1,1}n

( n∑
i=1

zi

)2
k/2

= k
k/2
nk/2.

The inequality uses hypercontractivity; see Theorem 9.21 in [O’D14]. Hence we have

Pr
x,y∼ϕ

[∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ > t
√
n

]
≤ k

k/2

tk
.

When drawingm1 examples, there are at most
(
m1

2

)
≤ 1

2
m2

1 pairs. Hence by the union bound,

the probability of ϕ getting rejected is at most m
2
1k
k/2

2tk
≤ 1

10
.

Secondly, we claim that for any distribution ϕ that does not get rejected by the Filter Test, it
is close to a distribution ϕ′ with upper bounds on the Fourier weights of each of its levels.
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Lemma 5.5.2. Any distribution ϕ either gets rejected by the Filter Test with probability at least
.9, or there exists some distribution ϕ′ such that:

1. ϕ′ and ϕ are 8
m1

-close in total variation distance;

2. Wi[ϕ′] ≤ 107

m2
1
ni + tini/2 for all i = 1, . . . , n.

We will present the proof of Lemma 5.5.2 in the next subsection.
If ϕ is not rejected by the Filter Test, Lemma 5.5.2 tells us that it is close to some distribution

ϕ′ with bounded Fourier weights on each of its levels. Even though we are drawing samples
from ϕ, we can “pretend” that we are drawing samples from ϕ′ since they are close:
Claim 5.5.3. Let m2 ≤ m1

200
, and let A(X(m2)) be any event related to m2 samples in {−1, 1}n,

X(m2) = {x1, . . . , xm2}. Then we have∣∣∣∣ Pr
X(m2)∼ϕ

[A(X(m2))]− Pr
X(m2)∼ϕ′

[A(X(m2))]

∣∣∣∣ ≤ .08,

when ϕ and ϕ′ are 8
m1

-close.

Proof. We denote by Φ(respectively, Φ′) the joint distribution ofm2 samples fromϕ(respectively,
ϕ′). Then by a union bound we know that Φ and Φ′ are .04-close, since m2

8
m1
≤ .04. We denote

1[A(X(m2))] as the indicator function of event A happening onX(m2). Then we have∣∣∣∣ Pr
X(m2)∼ϕ

[A(X(m2))]− Pr
X(m2)∼ϕ′

[A(X(m2))]

∣∣∣∣ =

∣∣∣∣∣ ∑
X(m2)

1[A(X(m2))]
(
Φ(X(m2))− Φ′(X(m2))

)∣∣∣∣∣
≤
∑
X(m2)

∣∣Φ(X(m2))− Φ′(X(m2))
∣∣

= 2dTV(Φ,Φ′) ≤ .08

which completes the proof.

Now we are ready to analyze the Overall Algorithm.

Proof of Theorem 5.1.6. We discuss distinguishing between k-wise uniform and δ-far from k-

wise uniform first. In the Overall Algorithm, we set the parameters t =
(

1011(4e4)kk
k/2 nk

δ4

) 1
k−2k

and m1 =

√
tk

5k
k/2

in the Filter Test; and, we set m2 = 1
200
m1 and θ =

(
δ
ek

)2 in the W1...k

Estimation test.

In total we use m1 + m2 = O

(√
tk

k
k/2

)
samples in the Overall Algorithm. By plugging in

the definition of t and k = αk, we can simplify the sample complexity to O(α)k/2 · nk/2 · 1
δ2 ·(

nk

δ4

)1/(α−2)

.
The rest of the proof is to show the correctness of this algorithm. We discuss the two cases.
“Yes” case: Suppose ϕ is k-wise uniform. By Lemma 5.5.1 we know that ϕ will pass the

Filter Test with probability at least .9 since m2
1 = tk

5k
k/2

.
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Now ϕ is k-wise uniform with k > 2k, which means ϕ̂(S) = 0 for any 1 ≤ |S| ≤ 2k.
Therefore by setting δ =

(
θ
ek

)2 and A = 1, Theorem 5.4.2 tells us that m2 samples are large
enough for W1...k Estimation Test to output “W1...k[ϕ] ≤ 1

2
θ” with probability 3/4.

The overall probability of the Overall Algorithm saying “Yes” is therefore at least .9× 3
4
> 2

3
.

“No” case: Suppose ϕ is δ-far from k-wise uniform. Either ϕ gets rejected by the Filter Test
with probability .9, or according to Lemma 5.5.2, we know that there exists some distribution ϕ′

which is 8
m1

-close to ϕ and Wi[ϕ′] ≤ 107

m2
1
ni + tini/2 for all i = 1, . . . , n.

The second stage is slightly tricky. As described in Claim 5.5.3, at the expense of losing
.08 probability, we may pretend we are drawing samples from ϕ′ rather than ϕ. Notice that
m2

1 = tk

5k
k/2

= ω(nk). We have

Wi[ϕ′] ≤ 107

m2
1

ni + tini/2 = (1 + o(1))tini/2 ≤ Ani/2

for i = 0, . . . , 2k with parameter A = 1.01t2k. Then plugging A = 1.01t2k and θ =
(
δ
ek

)2 into
Theorem 5.4.2, we know that the W1...k Estimation Test will say “W1...k[ϕ] > θ” with proba-
bility at least 3

4
when ϕ′ is δ-far from k-wise uniform, provided we have at least 1005 (2e2)ktknk/2

δ2

samples. It is easy to check m2 = 1
200

√
tk

5k
k/2

is sufficient.

However, in the real algorithm we are drawing samples fromϕ rather thanϕ′. From Claim 5.5.3,
we know that the estimator will accept with probability at least 3

4
− .08 > 2

3
when ϕ′ is δ-far from

k-wise uniform. Notice that ϕ and ϕ′ are 8
m1

-close, where 8
m1

= o
(
δ4

nk

)
. Hence if ϕ is δ-far from

k-wise uniform, ϕ′ is also δ-far from k-wise uniform, which completes the proof.
Finally, for distinguishing between a distribution being fully uniform and a distribution being

δ-far from k-wise uniform, the modification we need is that in Lemma 5.5.1 we use Hoeffding’s
inequality to get

Pr
x,y∼ϕ

[∣∣∣∣∣
n∑
i=1

xiyi

∣∣∣∣∣ > t
√
n

]
≤ 2e−t

2/2,

and then we have the constraint m2
1 ≤ 1

10
et

2/2. Following exactly the same analysis, we get the

same algorithm with sample complexity O(k)k · nk/2 · 1
δ2 ·
(
log n

δ

)k/2.

5.5.2 Proof of Lemma 5.5.2

The rest of this section is devoted to proving Lemma 5.5.2. We will use the following definition
in the analysis.
Definition 5.5.4. For x, y ∈ {−1, 1}n, we say (x, y) is skewed if |

∑n
i=1 xiyi| > t

√
n. We say

that x is β-bad for distribution ϕ if Pry∼ϕ[(x,y) is skewed] > β.

Claim 5.5.5. If Prx∼ϕ

[
x is 8

m1
-bad for ϕ

]
> 8

m1
, then ϕ will be rejected by the Filter Test with

probability at least .9.
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Proof. Suppose Prx∼ϕ

[
x is 8

m1
-bad for ϕ

]
> 8

m1
. We will divide the samples we draw for the

Filter Test into two sets with size m1/2 each. Then the probability of choosing an 8
m1

-bad x
among the first m1/2 samples is at least

Pr
x1,...,xm/2∼ϕ

[
∃x 8

m1

-bad for ϕ among x1, . . . ,xm/2

]
> 1−

(
1− 8

m1

)m1/2

≥ 1− e−4.

Now if we have such an 8
m1

-bad x among the first m1/2 samples, each (x,xt) will be skewed
with probability at least 8

m1
for any t = m1/2 + 1, . . . ,m. Therefore

Pr
xm/2+1,...,xm

[(x,xt) is skewed for some t =
m

2
+ 1, . . . ,m] ≥ 1−

(
1− 8

m1

)m1/2

≥ 1− e−4.

Combining the two inequalities together, we know that the probability of at least one pair being
skewed is at least (1− e−4)2 ≥ .9.

Now we only need to consider the case when the probability of drawing a bad x from ϕ is
very small. We want to show a stronger claim that even the probability of drawing a skewed pair
from ϕ is small. However this might not be true for ϕ itself. Thus we look at another distribution
ϕ′, which is defined to be ϕ conditioned on outcomes being not bad. Define ϕ′ as

ϕ′(x) = ϕ(x)
1
[
x not 8

m1
-bad for ϕ

]
1−Prx∼ϕ

[
x is 8

m1
-bad for ϕ

] . (5.5)

We show that ϕ′ is close to ϕ and that ϕ′ has no bad samples:

Claim 5.5.6. Suppose ϕ satisfies Prx∼ϕ

[
x is 8

m1
-bad for ϕ

]
≤ 8

m1
and m1 ≥ 16. Let ϕ′ be

defined as in eq. (5.5). Then:
1. ϕ and ϕ′ are 8

m1
-close;

2. ϕ′(x) = 0 for any x that is 16
m1

-bad for ϕ′.

Proof. 1. Notice that ϕ′(x) = 0 ≤ ϕ(x) when x is 8
m1

-bad for ϕ, and ϕ′(x) ≥ ϕ(x) other-
wise. Hence,

dTV(ϕ, ϕ′) =
1

2
E
x

[|ϕ(x)− ϕ′(x)|]

=
1

2n

∑
ϕ′(x)<ϕ(x)

(ϕ(x)− ϕ′(x))

≤ Pr
x∼ϕ

[
x

8

m1

-bad on ϕ
]
≤ 8

m1

.
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2. ϕ′(x) is either 0 or at most (1 + 16
m1

)ϕ(x) given Prx∼ϕ

[
x is 8

m1
-bad for ϕ

]
≤ 8

m1
and

m1 ≥ 16. Therefore if ϕ′(x) > 0, x is not 8
m1

-bad for ϕ. Hence,

Pr
y∼ϕ′

[(x,y) is skewed] ≤
(

1 +
16

m1

)
Pr
y∼ϕ

[(x,y) is skewed]

≤
(

1 +
16

m1

)
8

m1

≤ 16

m1

.

Claim 5.5.7. Suppose distribution ϕ satisfies Prx∼ϕ

[
x is 8

m1
-bad for ϕ

]
≤ 8

m1
. Letϕ′ be defined

as in eq. (5.5). If Prx,y∼ϕ′ [(x,y) is skewed] > 107

m2
1
, then with probability at least .9, ϕ will be

rejected by the Filter Test.
We want to clarify that the constraint is about ϕ′, but we are drawing samples from ϕ in the

Filter Test.

Proof. We only consider the first m′1 = m1

200
samples. From Claim 5.5.6 we know that ϕ and

ϕ′ are 8
m1

-close. Therefore, we only need to show that if the samples are drawn from ϕ′, the
probability of appearing a skewed pair among these m′1 samples is at least .98. Then ϕ will be
rejected by the Filter Test with probability at least .98− .08 ≥ .9 according to Claim 5.5.3.

Define random variable U s,t to be the indicator associated with the event that (xs,xt) is
skewed, and U =

∑
1≤s<t≤m′1

U s,t. We need to prove that Pr[U = 0] ≤ .02. (From now
on, all probabilities and expectations are based on choosing samples from distribution ϕ′.) By
Chebyshev’s inequality, we know that Pr[U = 0] ≤ Var[U ]

E[U ]2
, so we need to calculate Var[U ] and

E[U ].
Denote µ = Prx,y∼ϕ′ [(x,y) is skewed]. Then E[U s,t] = µ for any s < t and hence we have

E[U ] =
∑
s<t

E[U s,t] =

(
m′1
2

)
µ.

It remains to calculate E[U 2]. We can expand it as

E[U 2] = E

(∑
s<t

U s,t

)2
 =

∑
s<t
s′<t′

E[U s,tU s′,t′ ].

Similar to the proof of Lemma 5.4.1, we discuss these expectations in three cases.
Case 1: |{s, t} ∩ {s′, t′}| = 2. Since U s,t is a Bernoulli random variable, we know that

E[U 2
s,t] = E[U s,t] = µ.

Case 2: |{s, t} ∩ {s′, t′}| = 1. Without loss of generality we assume s = s′. We consider
drawing xs first. For any fixed xs with ϕ′(xs) > 0,

E
xt′

[U s,t′ ] = Pr
xt′

[(xs,xt′) get skewed] ≤ 16

m1

=
2

25m′1
,
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where the inequality comes from Claim 5.5.6. Therefore,

E[U s,tU s,t′ ] = E
xs,xt

[U s,t E
xt′

[U s,t′ ]] ≤
2µ

25m′1
.

Case 3: |{s, t} ∩ {s′, t′}| = 0. Since s, t, s′, t′ are all distinct, we have

E[U s,tU s′,t′ ] = E[U s,t]E[U s′,t′ ] = µ2.

Combining these cases together, we get

E[U 2] =

(
m′1
2

)
µ+m′1(m′1 − 1)(m′1 − 2)

2µ

25m′1
+

(
m′1
2

)(
m′1 − 2

2

)
µ2.

Then we have
Var[U ]

E[U ]2
=

E[U 2]

E[U ]2
− 1 ≤ 58

25m′21 µ
.

By substituting µ ≥ 107

m2
1

= 103

4m′21
, we conclude Pr[U = 0] = Var[U ]

E[U ]2
≤ .02, which completes the

proof.

Now we only need to consider those distributions ϕwhere their corresponding ϕ′ satisfies that
Prx,y∼ϕ′ [(x,y) is skewed] ≤ 107

m2
1
. This gives us an upper bound on the Fourier weight on all

levels of ϕ′.
Claim 5.5.8. If Prx,y∼ϕ′ [(x,y) is skewed] ≤ 107

m2
1
, then

Wi[ϕ′] ≤ 107

m2
1

ni + tini/2

for i = 1, . . . , n.

Proof. We will first show that Wi[ϕ′] ≤ Ex,y∼ϕ′ [(
∑n

j=1 xjyj)
i]. Since (

∑n
j=1 xjyj)

i is a sym-
metric function, we can expand it as(

n∑
j=1

xjyj

)i

=
∑

0≤k≤i
i−k even

αk

∑
|S|=k

xSyS

,
with positive integer coefficients αk. Notice that

E
x,y∼ϕ′

∑
|S|=k

xSyS

 = Wk[ϕ′].

Therefore

E
x,y∼ϕ′

( n∑
j=1

xjyj

)i
 =

∑
0≤k≤i
i−k even

αkW
k[ϕ′] ≥Wi[ϕ′].
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The last inequality holds because the αk’s are positive integers and each Wk[ϕ′] is non-negative.
The rest of the proof is devoted to bounding Ex,y∼ϕ′ [(

∑n
j=1 xjyj)

i]. When (x, y) is not
skewed,

∑
j xjyj is at most n; otherwise by the definition of “being skewed”,

∑
j xjyj is at most

t
√
n. Therefore,

E

( n∑
j=1

xjyj

)i
 ≤ 107

m2
1

ni + tini/2

for all i = 1, . . . , n.

Combining the above discussion, we get the proof of Lemma 5.5.2.

Proof of Lemma 5.5.2. We consider three cases for ϕ.
Case 1: If Prx∼ϕ

[
x is 8

m1
-bad on ϕ

]
> 8

m1
, Claim 5.5.5 tells us that ϕ is rejected by the

Filter Test with probability at least .9.
For the remaining two cases we know that Prx∼ϕ

[
x is 8

m1
-bad on ϕ

]
≤ 8

m1
. We construct ϕ′

as in eq. (5.5).
Case 2: If Prx∼ϕ

[
x is 8

m1
-bad on ϕ

]
≤ 8

m1
but Prx,y∼ϕ′ [(x,y) is skewed] > 107

m2
1
, Claim 5.5.7

tells us that ϕ also gets rejected with probability at least .9.
Case 3: If Prx,y∼ϕ′ [(x,y) is skewed] > 107

m2
1
, then according to Claim 5.5.8, Wi[ϕ′] ≤

107

m2
1
ni + tini/2 for all i = 1, . . . , n. Also by Claim 5.5.6 we know that ϕ and ϕ′ are 8

m1
-close.
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[BFR+00] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick
White. Testing that distributions are close. In Proceedings of the 41st Annual
Symposium on Foundations of Computer Science, pages 259–269, 2000. 5.1.3,
5.1.3

[BGI14] Mohammad Bavarian, Dmitry Gavinsky, and Tsuyoshi Ito. On the role of shared
randomness in simultaneous communication. In International Colloquium on Au-
tomata, Languages, and Programming, pages 150–162. Springer, 2014. 3.1.1

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof
of work. In International conference on financial cryptography and data security,
pages 142–157. Springer, 2016. 1.2.2

86



[BKK+92] Jean Bourgain, Jeff Kahn, Gil Kalai, Yitzhak Katznelson, and Nathan Linial. The
influence of variables in product spaces. Israel Journal of Mathematics, 77(1):55–
64, 1992. 1.1.3, 2.1.3

[BKR04] Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing
monotone and unimodal distributions. In Proceedings of the thirty-sixth annual
ACM symposium on Theory of computing, pages 381–390, 2004. 5.1.3
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[CF63] Péter Csáki and János Fischer. On the general notion of maximal correlation. Mag-
yar Tud. Akad. Mat. Kutato Int. Kozl, 8:27–51, 1963. 3.1.2

[CGH+85] Benny Chor, Oded Goldreich, Johan Håstad, Joel Friedman, Steven Rudich, and
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[Kra29] Mikhail Krawtchouk. Sur une généralisation des polynomes d’hermite. Comptes
Rendus de l’Académie des sciences, 189:620–622, 1929. 5.2.3

[KS02] Guy Kindler and Shmuel Safra. Noise-resistant Boolean functions are juntas.
Manuscript, 2002. 4.3

91



[KW85] Richard M. Karp and Avi Wigderson. A fast parallel algorithm for the maximal
independent set problem. Journal of the ACM, 32(4):762–773, 1985. 5.1.1
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L2. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 14(1):36–
48, 1969. 1.1.1

[SGGB19] Madhu Sudan, Badih Ghazi, Noah Golowich, and Mitali Bafna. Communication-
rounds tradeoffs for common randomness and secret key generation. In Proceed-
ings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1861–1871. SIAM, 2019. 3.1.1

[Sha49] Claude E Shannon. Communication theory of secrecy systems. The Bell System
Technical Journal, 28(4):656–715, 1949. 3.1.1

[SHK72] Barry Simon and Raphael Høegh-Krohn. Hypercontractive semigroups and two
dimensional self-coupled Bose fields. Journal of Functional Analysis, 9(2):121–
180, 1972. 1.1.1

[ST18] K.R. Sahasranand and Himanshu Tyagi. Extra samples can reduce the communi-
cation for independence testing. In 2018 IEEE International Symposium on Infor-
mation Theory (ISIT), pages 2316–2320. IEEE, 2018. 3.1.1

[ST21] K.R. Sahasranand and Himanshu Tyagi. Communication complexity of distributed
high dimensional correlation testing. IEEE Transactions on Information Theory,
2021. 3.1.1

[STW19] Madhu Sudan, Himanshu Tyagi, and Shun Watanabe. Communication for gener-
ating correlation: A unifying survey. IEEE Transactions on Information Theory,
66(1):5–37, 2019. 3.1.1

[Tal94] Michel Talagrand. On Russo’s approximate zero-one law. Annals of Probability,
22(3):1576–1587, 1994. 1.1.3, 2.1.3

[Wim14] Karl Wimmer. Low influence functions over slices of the Boolean hypercube de-
pend on few coordinates. In 2014 IEEE 29th Conference on Computational Com-
plexity (CCC), pages 120–131. IEEE, 2014. 2.1.3

94



[Wit75] Hans S Witsenhausen. On sequences of pairs of dependent random variables. SIAM
Journal on Applied Mathematics, 28(1):100–113, 1975. 3.1.1

[Wol07] Paweł Wolff. Hypercontractivity of simple random variables. Studia Mathematica,
3(180):219–236, 2007. 1.1.3, 2.1.3

[Xie12] Ning Xie. Testing k-wise independent distributions. PhD thesis, Massachusetts
Institute of Technology, 2012. 5.1.3

[ZC11] Lei Zhao and Yeow-Kiang Chia. The efficiency of common randomness genera-
tion. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pages 944–950. IEEE, 2011. 3.1.1

95


	1 Introduction
	1.1 Hypercontractivity
	1.1.1 Classical hypercontractivity results on uniform 1 bits
	1.1.2 Applications of classical hypercontractivity results
	1.1.3 Generalizations of hypercontractivity
	1.1.4 Two-function hypercontractivity

	1.2 Small-set expansion
	1.2.1 Small-set expansion on noisy Boolean hypercube
	1.2.2 Generalizations and applications of small-set expansion
	1.2.3 Two-set version and equivalence to hypercontractivity

	1.3 Problem studied
	1.4 Outline

	2 Pseudorandom-Set Expansion on Product Probability Spaces
	2.1 Introduction
	2.1.1 Pseudorandom-set expansion
	2.1.2 Hypercontractivity on biased Boolean hypercube
	2.1.3 Related work

	2.2 Preliminaries
	2.2.1 Orthogonal decomposition on generalized domains
	2.2.2 Randomization/symmetrization technique

	2.3 Proofs
	2.3.1 Proof of Theorem 2.1.3
	2.3.2 Proof of Lemma 2.1.4


	3 Communication Assisted Agreement Distillation and Hypercontractivity Region
	3.1 Introduction
	3.1.1 Communication assisted agreement distillation
	3.1.2 Equivalence of general hypercontractivity and small-set expansion
	3.1.3 Boundary of hypercontractivity region

	3.2 Preliminaries
	3.2.1 Properties of the slope of hypercontractivity boundary
	3.2.2 Kullback-Leibler divergence

	3.3 Lower bound
	3.4 Upper bound
	3.5 Examples and hypercontractivity boundary for BEC
	3.5.1 Examples
	3.5.2 Limit of gradient at infinity for BEC hypercontractivity boundary

	3.6 Hypercontractivity and Small Set Expansion are equivalent

	4 A New Homogeneous Tail Bound for Boolean Functions via One-block Decoupling
	4.1 Introduction
	4.1.1 Definitions
	4.1.2 A useful inequality

	4.2 Decoupling theorems, and query complexity applications
	4.2.1 Classical decoupling inequalities, and an application in query complexity
	4.2.2 Our one-block decoupling theorems, and the AA Conjecture

	4.3 Tight versions of the DFKO theorems
	4.3.1 Proofs of the tight DFKO theorems

	4.4 Proofs of our one-block decoupling theorems
	4.4.1 Proof of Lemma 4.4.1


	5 On Closeness to k-wise Uniformity
	5.1 Introduction
	5.1.1 k-wise uniformity and almost k-wise uniformity
	5.1.2 The Closeness Problem
	5.1.3 The Testing Problem
	5.1.4 Organization

	5.2 Preliminaries
	5.2.1 Fourier analysis of Boolean functions
	5.2.2 Densities and distances
	5.2.3 Krawtchouk and Hermite polynomials

	5.3 The Closeness Problem
	5.3.1 Upper bound
	5.3.2 Lower bound

	5.4 The Testing Problem
	5.4.1 Upper bound
	5.4.2 Lower bound for the pairwise case

	5.5 Testing k-wise/fully uniform vs. far from k-wise uniform
	5.5.1 The algorithm
	5.5.2 Proof of Lemma 5.5.2


	Bibliography

