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Abstract
In recent years with the fast progress made in neural networks research, supervised

machine learning approaches have become increasingly powerful in finding flexible
functions to predict target variable Y from input features X . However, most of these
complex models require a large amounts of data to train, and often work under the
assumption that the data points are i.i.d. In reality these assumptions are very likely
to be violated. A simplified notion of this violation is when the training and the test
datasets come from different joint distributions (i.e. P train(X, Y ) 6= P test(X, Y )). In
this setting, where the training and test datasets are also known as source and target
domains respectively, domain adaptation is required to obtain good performance. In
particular, when only unlabeled features are observed in the target domain, this setting
is referred to as unsupervised domain adaptation, and it will be the main focus of this
thesis.

Domain adaptation is a wide sub-field of machine learning with the task of
designing algorithms to account for this distributional difference under specific
assumptions, for the purpose of better prediction performance in the target domain.
In this thesis we make use of the data-generating process to address several sub-
problems of unsupervised domain adaptation. Namely, we first address the problem
of unsupervised domain adaptation with multiple labeled source domains and an
unlabeled target domain under the conditional-target shift setting, and we present
an approach to capture the low-dimensional changes of the joint distribution across
domains in order to perform prediction in the target domain. Secondly, we introduce
an algorithm to reduce the dimensionality of the data when performing domain
adaptation under the covariate shift setting. In particular, we make use of the particular
properties of the covariate shift setting in order to reduce the dimensionality of the
data such that we preserve relevant predictive information about the target variable Y .

We further investigate domain adaptation from the perspective of the data-generating
process when addressing the problem using neural networks. Deep neural archi-
tectures are commonly used to extract domain-invariant representations from the
observed features. However, without labels in the target domain, there is no guarantee
that these representations will have relevant predictive information for the target
domain data. In this thesis, we investigate techniques to regularize this invariant
representation in order to enforce that it has non-trivial structure which contains
information which is relevant for predicting Y in the target domain. The first of these
techniques is based on mutual information, and the second technique makes use of a
novel criterion of distortion of the marginal distribution when transforming it from
the source to the target domain.



viii



Contents

1 Introduction 1
1.1 Why is adaptation possible? - A Causal View . . . . . . . . . . . . . . . . . . . 2

1.1.1 Causality and Its Relationship with Prediction . . . . . . . . . . . . . . . 3
1.2 Domain Adaptation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Covariate Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 Conditional-Target Shift . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Domain Adaptation via Inference on Learned Graphical Models . . . . . 10
1.2.4 Invariant Representation Learning via Neural Networks . . . . . . . . . . 10
1.2.5 Semi-Supervised Learning Approaches to Domain Adaptation . . . . . . 12

1.3 Thesis Objective and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Data-Driven Approach to Multiple-Source Domain Adaptation 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Representing Distributions in Hilbert Space . . . . . . . . . . . . . . . . 18
2.2.2 Identifying Low-Dimensional Changing Parameters . . . . . . . . . . . 20

2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.1 Reconstruction in the Target Domain . . . . . . . . . . . . . . . . . . . 21
2.3.2 Generative Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.3 Identifability of Target Domain Conditional Distribution . . . . . . . . . 24

2.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.2 Synthetic Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Real Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Derivation of Algorithm and Implementation Details . . . . . . . . . . . . . . . 29

2.6.1 Derivations of Algorithm and Reconstruction of Joint Dinstribution . . . 29
2.6.2 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Proofs of Theorems and Lemmata . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.1 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.7.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

ix



3 Low-Dimensional Density Ratio Estimation for Covariate Shift Correction 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 A Low-Dimensional Reweighting Approach . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Procedure for Approximating the Low-Dimensional Representation . . . 39
3.4 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5.1 Pseudo-Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.2 Experiments on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Proofs of Theoretical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7.1 Proofs of Theorem 1 and Proposition 1 . . . . . . . . . . . . . . . . . . 47
3.7.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.7.3 Covariance Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Domain Adaptation with Invariant Representation Learning: What Transforma-
tions to Learn? 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2 What Does it Take to Learn a Useful Invariant Representation? . . . . . . . . . . 56
4.3 Proposed Method: Domain-Specific Adversarial Training . . . . . . . . . . . . . 58

4.3.1 Enforcing Minimal Change by Mutual Information Minimization . . . . 59
4.4 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.1 Real Data Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Proofs for Theoretical Statements . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.1 Proof of Proposition 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.6.2 Proof of Proposition 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.3 Proof of Lemma 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7.1 Enforcing Invariance with Maximum Mean Discrepancy . . . . . . . . . 67
4.7.2 Using Pseudo-Labels and Ablation Study . . . . . . . . . . . . . . . . . 68
4.7.3 Experimental Setting, Neural Network Architectures, and Hyperparameters 69
4.7.4 Visualization of Reconstructions . . . . . . . . . . . . . . . . . . . . . . 71

4.8 Extended Discussion on Related Work . . . . . . . . . . . . . . . . . . . . . . . 73

5 Domain Adaptation via Direct Transformation 77
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Relating the Domains via a Direct Transformation . . . . . . . . . . . . 79
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3 Characterizing Structural Change when Applying Transformations . . . . . . . . 82

5.3.1 Statistical Interpretation of the Jacobian Determinant . . . . . . . . . . . 82
5.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

x



5.4.1 Alternative Implementation via Invariant Representation Learning . . . . 85
5.4.2 Challenges with Scalability of the Jacobian Determinant . . . . . . . . . 85

5.5 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.1 Experiments on Simulated Data . . . . . . . . . . . . . . . . . . . . . . 87
5.5.2 Experiments on Real Data . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.3 Challenges in High-Dimensional Settings . . . . . . . . . . . . . . . . . 89

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Conclusion and Discussions 93
6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.1.1 Refining the Search for a Low-Dimensional Manifold . . . . . . . . . . . 95
6.1.2 Future Directions for Neural Network-Based Domain Adaptation . . . . 96

Bibliography 99

xi



xii



List of Figures

1.1 A simple illustration how an small adversarial attack can throw off a learning
algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Illustrative example regarding prediction in the anti-causal vs. causal direction, in
the case when Y → X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Examples how selection bias and latent confounders may affect the properties of
the observed distribution (Zhang et al. [150]). . . . . . . . . . . . . . . . . . . . 6

1.4 Example of an augmented graphical model (presented in (Zhang et al. [150])),
learned from observed data via the algorithm introduced in (Zhang et al. [145]). . 8

1.5 Various scenarios of distribution shift from the causal view, when considering two
variables X and Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 An example of covariate shift, first introduced in (Sugiyama et al. [119]). . . . . 8

2.1 Generating process Y → X across domains with domain index variable D =
1, ...,M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Accuracies of the baselines and the proposed method for the task of classifying
between digits 4 and 9, for handwritten digit recognition . . . . . . . . . . . . . 26

2.3 Accuracies of the baselines and the proposed method for the task of classifying
between digits 1 and 7, for handwritten digit recognition . . . . . . . . . . . . . 27

2.4 Accuracies of the baselines and the proposed method for the task of classifying
between two different lung fissures in the real dataset . . . . . . . . . . . . . . . 28

3.1 (a): Estimation L2 error of β in Gaussian mixture toy dataset (b): Term 1 of
bound. (c): Classification accuracy. . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 The underlying data-generating process under conditional shift, of the observed variables
Y and X , and the latent variable Z. θX represents the changing parameters of P (X|Y )

across domains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Two different scenarios in which a single encoder φ(X) is not sufficient to learn Z. 55

xiii



4.3 A diagram of the proposed autoencoder framework. Here, the domain index is
mapped to θX . Subsequently, the input data x and θX are mapped via φ to a latent
representation z, which in turn is reconstructed x̃ using the decoder φ̃, and θX as
additional input. In addition, the penalty Linv. is enforced to ensure invariance
between ZS and ZT . The hidden representation is also used to predict ỹ in the
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Chapter 1

Introduction

In the modern age of powerful computers, mobile phones, and high-bandwidth internet, AI has
found an ever-present role in many aspects of everyday life. It is present in the advertisements
that are shown to us when using many internet applications, in the applications that editors use
to refine photographs and films that we enjoy, in tools used for automatic translations of text, in
surveillance and security systems, operations of vehicles, healthcare applications, among many
others . AI systems often use large amounts of data to train, and in many cases such data is readily
available. For example, Facebook and Google have access to tremendous amounts of diverse user
data. However, even for these technological giants, there is one major problem that constantly
arises when they deploy AI for use in the real world, and that is the fact that the real world is
constantly changing, or in other words, it is nonstationary. This means that there is a very high
chance that when an AI system is deployed to be used for prediction, it may encounter phenomena
that were not present in the data that was used to train it.

Figure 1.1: A simple illustration how an small adversarial attack can throw off a learning algorithm.

In the quite egregious case, when the domain of application consists of human subjects,
training data may have only consisted of Caucasian people, and the system is unable to be
of proper use to people of other ethnicities, raising serious ethical concerns. To see just how
detrimental even a tiny change in environment can be to a common AI algorithm, consider the
simple illustration in Figure 1.1, which was encountered and presented by (Goodfellow et al. [45]).
Here, a very small amount of Gaussian noise was applied to the image, and the change is invisible
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to the human eye, yet the learning algorithm completely fails to classify the image. Therefore,
in order to make AI systems more robust, reliable, and most importantly, fair and accessible to
everyone, one needs to tackle the problem of data nonstationarity or heterogeneity.

To formalize the learning setting and the basic learning task, we represent our data in terms
of features X ∈ Rd and target variable Y ∈ R (or a discrete variable in the case of classifica-
tion), which follow a joint distribution P (X, Y ). In practice, we are given labeled training data
(xtr,ytr) = (xtrk , y

tr)mtrk=1, and unlabeled test data xte = (xte)mtek=1. The goal is to learn to predict
Y from X via a predictor function ĥ: Ŷ = ĥ(X), as accurately as possible on the test data.
Generally, the learning objective can be summarized as minimizing the risk:

h∗ = arg min
h

EX,Y∼P (X,Y )[l(X, h(Y ))],

where l is a loss function to evaluate the degree of error that h makes. In the finite-sample case,
the goal is to minimize the empirical risk:

ĥ = arg min
h

mtr∑
i=1

[l(xtri , h(ytri ))].

IfX te also follows P (X, Y ), then as we accumulate more and more training data, we would expect
the learned predictor ĥ to perform increasingly well on the test data if it is properly regularized.
However, the environment can change at test time, and when it does, one way to formalize this
phenomenon is that the train and test joint distributions are not equal: P tr(X, Y ) 6= P te(X, Y ),
and in this situation ĥ cannot be expected to perform well on the test data.

Domain adaptation is a sub-field of machine learning tasked with studying how to deal with
this setting and adapt the learning machine to account for the difference in the joint distribution at
training and test time. In the field of domain adaptation, the training and test data distributions are
referred to as the source and target domain distributions respectively, and this is the terminology
that will be used throughout this thesis. We will denonte the source domain joint distribution as
P S(X, Y ), and the target domain distribution as P T(X, Y ).

1.1 Why is adaptation possible? - A Causal View
If one solely considers the mathematical formulation of the above problem along with the fact
that P S(X, Y ) 6= P T(X, Y ), one would easily become pessimistic and give up on trying to tackle
the problem of adaptation. However, humans and other intelligent beings can easily and quickly
learn concepts that generalize across environments. For example, humans learn at a very early age
to distinguish a dog from a bird in an image, no matter whether the image is at daytime, night
time, in an urban environment or the countryside. A high-level explanation why this is possible
for us is that there are some core semantic similarities across the different environments that we
can easily recognize. This means that the distribution P (X, Y ) changes across different domains
only in some small, manageable way, such that key information for making decisions was not
lost. In order to reason about parsimonious ways in which changes like this can occur, one has to
go beyond the statistical information observed in the data and consider some kind of structural
(ontological) information. It turns out that causal information is naturally the kind of view that
can provide us with a way to start to reason about minimal changes.
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1.1.1 Causality and Its Relationship with Prediction
In order to reason about parsimonious changes of joint distributions we will first take a causal
view on the two random variables X and Y . If we think of these variables from a purely statistical
aspect, we care about making observational statements about their relationship and its uncertainty.
For example, we may want to know with what probability we can observe specific values of X
and Y (as specified by the joint distribution P (X, Y )), or the probability of a certain value of
Y = y, given that a specific value X = x is observed (as specified by the conditional distribution
P (Y |X = x)).

Causality, on the other hand, deals with how this set of variables behaves when subject to
interventions (Pearl et al. [95], Woodward [134]). To illustrate this, let us suppose that we only
have two variables in the system and they are observed. Specifically, let Y represent a class of
object in a room (out of a finite discrete set of objects), and let X represent the pixels of a digital
photo taken from the individual object. It is possible to intervene on Y by removing all objects
from the room except for toy cars. This intervention will have a strong effect on the distribution
of images X that can be obtained when taking pictures. On the other hand, intervening on X by
modifying the taken digital image in Adobe Photoshop has no effect on the distribution of objects
in the room. This asymmetric behavior under interventions establishes Y as the cause and X as
its effect.

One rigorous way to represent causal relationships are functional causal models (Pearl [94]).
Suppose that the variables X and Y have a causal relationship in addition to their statistical one.
In the case when Y is the cause of X and they do not have a latent common cause, functional
causal models express the generating process of Y and X in terms of functions and independent
noise terms:

Y = EY ,

X = fX(Y,EX),

where EX ⊥⊥ EY . The effect X is a function of Y , along with some random variable EX which
represents all unmeasured factors unrelated to Y . Now, we can make one key observation: that
the way in which Y is generated is independent from the way in which X is generated from Y ,
and we refer to this as the modularity condition. Functional causal models have been studied in
great depth for various classes of functions that fX can represent, such as additive noise models
(Hoyer et al. [59]), and post-nonlinear additive noise models (Zhang and Hyvärinen [142]). By
the modularity condition, the functional properties of fX are unrelated to Y , and furthermore, it
follows that Y and EX are statistically independent. Under this representation, it is then easy to
see that when changing Y , X might also change, but not vice versa. In particular, an intervention
may be a change in the parameters of EY , EX and/or the functional form of fX , and such an
intervention would lead to a different joint distribution P (X, Y ). Furthermore, by representing X
and Y in terms of this causal relationship, the distributions P (Y ) and P (X|Y ) and their respective
parameters correspond to not only statistical properties, but also physical processes regarding how
the data was generated (Schölkopf et al. [102]).

Now let us consider non-stationarity from the view of the data-generating process outlined
above. Namely, let us suppose that the joint distribution P (X, Y ) changes across domains.
This means that its factors P (Y ) and P (X|Y ) may change. Let us use θY and θX to denote
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the changing aspects (parameters) of P (Y ) and P (X|Y ), respectively (Bareinboim and Pearl
[1], Zhang et al. [145]), as shown in Figure 1.5. Since P (Y ) and P (X|Y ) represent physical
processes through which the variables are generated, the changes in the process through which X
is generated from Y are independent from the changes in the process that generated Y itself. To
give an illustrative example, suppose that Y is an object (a cat vs. a dog) that we wish to classify in
an image, and that X is the image itself. The changes in the physical mechanism P (Y ) may entail
different proportions of cats and dogs in different environments, and the changes in P (X|Y ) may
represent different camera resolution or illumination conditions. If we assume that Y and X are
the only variables in the system and that there are no unmeasured confounding factors, then it is
clear that the way the proportion of cats and dogs changes is completely unrelated to the resolution
of the camera or the illumination condition. Thus, factoring the joint distribution in terms of
the physical data-generating processes P (X, Y ) = P (Y )P (X|Y ) yields two independently-
changing causal modules (Zhang et al. [145]). Consequently, via Bayes rule, it becomes apparent
that generally speaking, the factors obtained by the other factorization, P (X) and P (Y |X), have
changes which are coupled (Daniusis et al. [27], Janzing and Schölkopf [65], Zhang et al. [144]).

We can now return to the notion of minimal changes on which we rely in order to do domain
adaptation. Since P (Y ) and P (X|Y ) are the independently-changing causal modules of the joint
distribution, the changes that they undergo are naturally minimal. On the other hand, the changes
in P (X) and P (Y |X) are generally not minimal, because a change in one factor can depend on
one or more changes in the other factor in non-trivial ways. Therefore, one key advantage of
having the causal view of the data is that we can decompose the joint distribution in terms of
independently-changing factors whose changes we know are minimal, so we can hope to adapt
each module individually, and the change we would have to model would not be complex, because
they correspond to (natural) causal generating processes.

However, the property of minimal changes is not the only advantage of the causal view of the
data. In addition to telling us how the minimal changes may have occurred, the causal information
also provides us with knowledge of how we can use the available data for learning. Recall that we
are given labeled training data (XS, Y S) in the source domain (from the distribution P S(X, Y )),
and unlabeled test data XT from P T, since the joint distribution P T(X, Y ) is not observed. It
turns out that the causal view can also tell us whether we can use unlabeled data from P T(X) in
the target domain to facilitate adaptation and guide the learning process towards inferring anything
about P T(X, Y ). Namely, as we mentioned, if Y is the cause of X then P (X) and P (Y |X)
have parameters which are dependent on each other, and P T(X) has useful information about the
unobserved P T(Y |X), which is the quantity we are interested for prediction in the target domain
(Gong et al. [42], Schölkopf et al. [104], Zhang et al. [148]).

To provide an example of how this dependency is useful, consider the illustration on Figure
1.2. Here, we have different individuals (domains), and we collect handwritten digit data from
them. We are given two variables: Y represents the number that the person intends to write,
and X represents the image of the digit they wrote down. Clearly, the generating process in this
example is Y → X , because if at a later time-point, the person changes their intended concept for
writing Y , this will directly impact the observed image X . On the other hand, us changing the
pixels of the image X has no bearing on the abstract concept in the mind of the person who drew
it. Each domain (person) has a different style of writing, which represents the changes of P (X|Y )
across domains. Similarly, each person may have a different favorite number they are more likely
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(a) (b)

des

Figure 1.2: Illustrative example regarding prediction in the anti-causal vs. causal direction, in the
case when Y → X .

to think of, and this represents the variability of P (Y ) across domains.
Now, let us consider the task of predicting the abstract object Y from the image X . In this

case, we are predicting the cause from the effect (anti-causal direction). As shown in Figure 1.2a,
we are given labeled source domains (people) for whom we know the number they meant to write,
and the image that they wrote of that number. At test time, we have one or more people that only
write down an image, and the task is to predict the number they thought of. It is clear that the
distribution of images for the target domain(s), P T(X) has valuable information about the label
Y . Namely, based on what we know from the source domains, we can make use of the image in
the target domain to deduce that its contours have a familiar shape, and in the case shown in the
Figure 1.2a, that the number is most likely "five".

On the other hand, let us consider the opposite scenario - predicting the effect X from the
cause Y (causal direction). In this case, at test time, we know the abstract object the person
thought of, and we have to predict what the image of the written-down digit looks like, as shown
in Figure 1.2b. It is evident that we have no way of knowing anything about the person’s style
from just the concept "five", and the best we can do is take an average of the styles observed in the
source domains, as proven in (Zhang et al. [149]). Therefore, knowledge of the causal direction
tells us not only what the independently changing causal modules are, but also what information
we can make use of for prediction in the target domain.

So far, we have discussed causal and anti-causal learning when considering only two random
variables: the features X and the target variable Y . However, causality is generally not restricted
to two variables, and is typically defined as a directed acyclic graph with multiple (d) vertices,
represented by the random variables X1, ..., Xd, and the directed edges represent direct cause-
effect relationships. In the graph, each vertex Xi is independent of its non-decendants given its
parents (also called the causal Markov condition). Furthermore, when observing data drawn from
the joint distribution of the d variables, a common assumption is that the conditional-independence
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Example 1.
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(d) The augmented graph
explaining the changes of
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Example 2.

Figure 1.3: Examples how selection bias and latent confounders may affect the properties of the
observed distribution (Zhang et al. [150]).

relations observed in the data correspond to the structure of the causal graph (this property is also
known as faithfulness) (Pearl et al. [95], Spirtes et al. [113]). In the case with multiple variables,
functional causal models, or structural equation models, can also be used to describe the same
causal relationships.

If the causal graph underlying the observed data is known, there is no confounder (hidden
direct common cause of two variables), and the observed data are perfect random samples from
the populations, then one can directly benefit from the causal model for transfer learning, as
claimed in (Zhang et al. [150]). However, in practice the observed data undergo an imperfect
sampling process such as a selection bias (Bareinboim et al. [2]), or there may be unobserved
confounders. In this case the learned graph that represents the statistical dependence relations
between the observed variables may not be causal, and thus may not be used to answer questions
regarding what would happen under interventions on a subset of the variables. Fortunately, it turns
out that for passive prediction under distribution shift, it suffices to consider the independently
changing factors of the joint distribution across domains.

To illustrate this more clearly, let us consider the examples on Figure 1.3, introduced by (Zhang
et al. [150]). In Figure 1.3a, we are presented with the underlying causal graph of generating
X from Y along with a biased sampling process. Here, S corresponds to a binary selection
variable whose value is S = 1 if and only if a data-point is selected. The selection process, given
by P (S = 1|X) undergoes changes across domains, as denoted by the auxiliary variable ηS .
However, if this selection process is unobserved, we will observe two phenomena instead: (1) that
the marginal distribution P (X) changes across domains, and (2) that P (Y |X) does not change
across domains, because in the original generating process, Y is conditionally independent of
the auxiliary variable ηX given X . In Figure 1.3b, we see exactly an augmented graphical model
which represents the observed joint distribution along with its changes across domains. Here, θX
indicates the property of distribution shift of P (X) across domains (and has the same value for
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each observation within the same domain, but may have different values across domains). Thus we
observe two independently changing factors of the joint distributions, where P (X) changes and
P (Y |X) stays the same (and thus undergoes the trivial identity map). This compact representation
of the joint distribution reveals to us that given sufficient amount of observed data and a flexible
enough model, it may not be needed to perform domain adaptation at all because the optimal
predictor which is specified by P (Y |X) stays the same across domains.

Similarly, suppose that the true generating process of the variables X and Y involves an
unobserved common cause, as illustrated in Figure 1.3c. If we consider only the observed
variables and their joint distribution in two or more domains, it is apparent that: (1) X and Y are
dependent on each other, (2) P (Y ) does not change across domains, because in the true generating
process Y and ηX are marginally independent, and (3) P (X|Y ) changes across domains. This
yields two independently changing factors of the joint distributions P (Y ) and P (X|Y ) (where
P (Y ) undergoes the trivial identity map). Given these observations, it becomes clear that in
order to deduce what aspects of the joint distribution need to be adapted to a new domain of
interest, one only cares about the joint distribution and its compact representation regarding its
independently-changing factors. For the case when there are only two variables X and Y , there
are various possible scenarios of domain shift which are presented on Figure 1.5, each of which
has been studied in detail and has its own respective techniques to address the domain shift, some
of which we shall discuss below.

1.2 Domain Adaptation Techniques

Causal and anti-causal learning have been analyzed and discussed in detail in (Schölkopf et al.
[102], Zhang et al. [148, 149]). In this thesis, we aim to tackle problems in both the anti-causal
and causal learning paradigms. We now provide an overview of the fundamental techniques used
to tackle domain adaptation in various settings.

1.2.1 Covariate Shift

One of the most widely studied and classical domain-adaptation settings is the one of covariate
shift (Cortes et al. [21], Shimodaira [106], Sugiyama et al. [118, 119]). In this setting it is assumed
that the joint distribution P (X, Y ) changes across domains in a very specific way: P (X) changes
across domains whereas P (Y |X) stays the same. From the causal perspective, since P (X)
changes and P (Y |X) stays the same, they act as independently changing causal modules in a
rather specific way; in which P (Y |X) undergoes a trivial identity transformation. Therefore,
this kind of change is consistent with the causal direction: X → Y (Zhang et al. [149]), shown
in Figure 1.5a (assuming there is no selection bias in the data). This assumption is convenient
because what changes is what is observed, whereas the unobserved quantity is invariant. At first
sight though, it may seem that since what we wish to predict (given by P (Y |X)) is the same
across domains, there is no need for adaptation. This would be true if we had a very flexible class
of functions and a large amount of data. However, in many areas of application, there are small
datasets that require fitting simple, and thus mis-specified models.
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Figure 1.4: Example of an augmented graphical model (presented in (Zhang et al. [150])), learned
from observed data via the algorithm introduced in (Zhang et al. [145]).
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(a) Covariate shift.
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θY
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(b) Target shift.

Y

θX
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(c) Conditional shift.

Y

θY θX

X

(d) Conditional-target shift.

Figure 1.5: Various scenarios of distribution shift from the causal view, when considering two
variables X and Y .

Figure 1.6: An example of covariate shift, first introduced in (Sugiyama et al. [119]).

To have a clearer picture about covariate shift and the need for correcting it, let us consider
the example on Figure 1.6, first introduced in (Sugiyama et al. [119]). On the left panel we are
given the marginal distributions of X , P S(X) and P T(X), with the solid and dotted bell curve
respectively. In the middle panel, we see points from P S(X, Y ) labeled with circles and points
from P T(X, Y ) labeled with crosses, along with a solid curve representing E[Y |X], the optimal
predictor. In this middle panel, there is also a simpler (linear) predictor shown by the dotted line,
which was fit only on the points from the source domain. It is obvious that this predictor would
perform fairly poorly on the target-domain data-points. The objective of covariate shift correction
is to make use of the unlabeled data in the target domain and correct this simple predictor to take
into account the shift in P (X). The result of this correction can be seen in the right panel, in
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which the dotted line now fits the target domain points well.
In order to perform covariate shift correction, one must find a way to prioritize the subset

of the points in the source domain that are most similar in marginal distribution to the target
domain, when constructing the model. In particular, one population way to achieve it is to
compute importance weights for the source domain data-points, which are then incorporated into
the learning algorithm. An importance weight can be thought of as a function of X , given by
β(X), such that when multiplied with the data X , results in the distribution P T(X) in the target
domain. When factoring the joint distribution in the target domain, it is easy to see their form:

P T(X, Y ) = P T(X)P T(Y |X) =
P T(X)

P S(X)
P S(X)P T(Y |X) = β(X)P S(X)P T(Y |X),

where β(X) = PT(X)
PS(X)

, is the importance weight which can be calculated from the observed
features X . Then, the learning algorithm can make use of the source domain data along with its
labels and the importance weights to learn a predictor f ∗:

f ∗ = arg min
h∈H

E(X,Y )∼PS(X,Y )[β(X)l(f(X), Y )],

where l is an appropriate loss function, and H is a hypothesis space.
The bulk of the work done on covariate shift correction deals with efficient computation of

these importance weights from observed data. In Chapter 3 of this thesis, we will examine in detail
the technical underpinnings and challenges of this domain adaptation setting, and introduce a novel
approach of reducing the dimensions so that computing the importance weights is statistically
more efficient, without sacrificing important information for prediction in the target domain.

1.2.2 Conditional-Target Shift

While covariate-shift setting undergoes a change that can be corrected by focusing on the features
X (which are observed in both domains), the assumption that the optimal predictor P (Y |X) does
not change is very strong, and often may not hold in practice. To make a domain adaptation
algorithm more applicable, one is faced with the following question: is there an approach which
does not assume that P (Y |X) is the same across domains, but at the same time does not require
any class labels in the target domain?

As illustrated in the example on Figure 1.2, in the anti-causal learning setting in which
Y → X , P (X) (which is observed in the target domain) contains valuable information about
the optimal predictor P (Y |X) (which is only observed in the source domain). By assuming anti-
causal learning, this allows us to factorize the joint distribution P (X, Y ) into two independently
changing causal modules P (Y ) and P (X|Y ). In prior work (Gong et al. [42], Zhang et al.
[145, 148]), it was reasoned that since these causal modules change independently, the change
they undergo is minimal. Therefore, various assumptions can be made about parametric changes
these modules can undergo across domains, and then try to learn these parametric changes in order
to infer the modules in the target domain (labeled as P T(X|Y ) and P T(Y )) under the constraint
that they can successfully reconstruct the observed distribution P T(X) in the target domain. To
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provide a basic blueprint for the procedure, let us consider a transformation function T which
transforms the data from the source to the target domain:

(T∗) = arg min
T
d(P S(Xnew), P T(X)) ⇐⇒

arg min
T
d(

∫
P S(T(X), y)dy, P T(X)),

where d is any valid distribution divergence metric. In essence, this framework searches for an
optimal transformation T∗ such that when it is applied on the source-domain data, the induced
distribution matches the observed target-domain marginal distribution of the features X . Exam-
ples for parametric forms of T∗ are identity transformation (Zhang et al. [148]), location-scale
transformation (Zhang et al. [148]) and a projection to an invariant subspace (Gong et al. [42]).
Since P (Y ) and P (X|Y ) are independently changing causal modules, and due to the simple
parametric form of P (Y ) in many supervised learning settings, they can be adapted independently.
Typically P (Y ) can be adapted using importance weights β(Y ), in a similar fashion to covariate
shift (Zhang et al. [148]), and P (X|Y ) can be adapted using various parametric transformations
such as location-scale transformation (Zhang et al. [148]), a linear projection to an invariant
subspace (Gong et al. [42]), or as a linear mixture of multiple observed conditional distributions
(Zhang et al. [149]).

One of the main drawbacks of this line of work is the parametric assumptions that are made
regarding the transformation T when matching the source and target domains. In Chapter 2 of this
thesis, we explore a non-parametric way of making use of multiple labeled source domains in
order to map to an unlabeled target domain and perform prediction.

1.2.3 Domain Adaptation via Inference on Learned Graphical Models
Given multiple domains with their respective joint distributions, it is possible use conditional-
independence testing (Zhang et al. [147]), to find a probabilistic graphical model over the variables
of interest, in which each conditional distribution that changes across domains is associated with
an additional (latent) variable θ which represents its changing properties (Zhang et al. [145]),
as presented in Figure 1.4. Here, we are shown a graphical model that consists of a target
variable Y and seven other features X , and variables with incoming edges from θ are the ones
whose conditional distributions given their parents change across domains (P (X1), P (Y |X1),
P (X3|Y,X2), P (X2|X4, Y ), P (X6|X4)), whereas shaded variables are the ones that are in the
Markov Blanket of Y and are relevant for its prediction. Once the graph is learned, Generative
Adversarial Networks (GAN) (Goodfellow et al. [44], Mirza and Osindero [87]) can be used to
learn the conditional distributions, and stochastic variational inference (Hoffman et al. [58]) can
be used to perform inference using the conditional distributions, in order to infer the posterior of
Y given the relevant features (in this example, P (Y |X1, X5, X3, X2, X4)), in the unlabeled target
domain (Zhang et al. [150]).

1.2.4 Invariant Representation Learning via Neural Networks
So far we have discussed ways to break down the joint distribution into independently-changing
factors, and depending on the change, apply an appropriate correction. However, as described
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so far, these approaches operate directly on the observed features X . When working with
popular real-world applications such as text and images, the observed features have thousands
of dimensions, many of which are redundant and noisy. Thus, even if the distribution matching
approach described above for conditional-target shift can successfully reconstruct the target
domain joint distribution in the infinite-sample setting, in practice it would suffer from very high
estimation error. Specifically, a distribution metric d (such as the Jensen-Shannon Divergence)
may suffer from curse of dimensionality when operating on high-dimensional raw features.

In the past decade deep neural networks have become a universally-used methodology to
extract features from complex high-dimensional data for various supervised and unsupervised
learning tasks. For example, convolutional neural networks (CNNs, (LeCun et al. [71])) have
become ubiquitous in using as a backbone feature extractor for many supervised learning tasks in
computer vision. One example is object classification in images, where a CNN can be represented
as a function f : X → Z from the raw feature space to a hidden space Z, on top of which a
classifier like a multi-layer perceptron operates, given by a function h : Z→ Y which predicts the
label from the hidden representation. Such a framework for prediction has yielded state-of-the-art
performance for most supervised learning on images and text. Given the promising empirical
results, there was a clear need to combine the deep representation learning paradigm with the
notion of distribution matching and domain adaptation.

One of the main motivations for formulating domain adaptation as a deep representation
learning problem was a seminal theoretical analysis, presented by (Ben-David et al. [4]). In this
study, given a hypothesis space H with VC dimension d, the authors provided a bound on the
true risk in the target domain, given by εT (h) := EX,Y∼PT(X,Y )[I(h(X) 6= Y )], in terms of the
following quantities:
• εS(h) := EX,Y∼PS(X,Y )[I(h(X) 6= Y )], the source domain risk, which can be estimated

from the labeled source domain data,
• dH∆H(P S(X), P T(X)), a divergence metric between the marginal distributions P S(X) and
P T(X),

• λ∗ := εS(h∗)+εT (h∗), the best achievable joint risk in both domains in terms of the optimal
hypothesis h∗ := arg minh∈H εS(h) + εT (h).

Given these three quantities, the bound is as follows:

Theorem 1 ((Ben-David et al. [4])). Let H be a hypothesis space of VC dimension d and
P̂ S(X) and P̂ T(X) be the empirical distributions induced by n samples from P S(X) and P T(X)
respectively. Then, with probability at least 1− δ, h ∈ H:

εT (h) ≤ εS(h) + dH∆H(P̂ S(X), P̂ T(X)) + λ∗ +O(

√
d log n+ log 1/δ

n
).

From this theorem, one can appreciate that the first two terms are entirely dependent on
data that is observed and available for training in the unsupervised domain adaptation setting.
Therefore, a plethora of studies ((Long et al. [77, 79, 81], Na et al. [89], Shu et al. [108])) have
used this theoretical result as point of departure for designing deep learning architectures for
domain adaptation. The first framework to do so was introduced by (Ganin and Lempitsky [38]),
in which:
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(1) novel techniques motivated by Generative Adversarial Networks (Goodfellow et al. [44])
were introduced used to learn a function φ : X → Z such that dH∆H(P̂ S(Z), P̂ T(Z)) = 0, and

(2) the inferred representation Z is predictive of Y in the labeled source domain data (which can
be done by training a predictor g : Z→ Y simultaneously with φ).

Ensuring that dH∆H(P̂ S(Z), P̂ T(Z)) = 0 essentially implies that P S(Z) = P T(Z), which is
why we refer to this sub-area of domain adaptation as invariant representation learning. The
hope is that the overall mapping h : X→ Y such that h = g ◦ φ is predictive of Y in the target
domain. Unfortunately, since labels are not observed in the target domain data, this cannot be
guaranteed. This desired property is represented by λ∗ in Theorem 1, which can be minimized if
the model can ensure that P S(Z|Y ) = P T(Z|Y ). Since the feature map φ and predictor g can be
arbitrarily complex and are modeled by neural networks, this equality of the induced conditional
distributions in latent feature space cannot be guaranteed, and the bound can be arbitrarily loose.
The problem that results from P S(Z|Y ) 6= P T(Z|Y ) and the lack of control of the λ∗ term in
the bound of Theorem 1 has prompted many attempts to mitigate this issue. For example, the
study by (Long et al. [83]) introduces pseudo-labels and a joint distribution divergence measure
in an attempt to align the joint distributions P S(Z, Y ) and P T(Z, Y ). In (Bousmalis et al. [12]), a
decoder φ̃ : Z→ X is used to ensure that Z contains meaningful invariant information, including
predictive information about the target variable Y . Another approach, introduced in (Shu et al.
[108]), is to ensure that the decision boundary of the predictor g does not cross high-density
regions in the latent representation Z, thereby taking advantage of the cluster structure of the data.

While ongoing work has produced promising and increasing empirical performance on bench-
mark datasets, there is lack of reasoning what the latent features Z represent (from an inter-
pretability stand-point), what information is required to infer them, and what properties of the
data make it possible/impossible to do so. In Chapters 4 and 5 of this thesis, we view the invariant
representation learning paradigm through the lens of the data-generating process, which allows
us to reason about which information is needed to infer Z, how we can incorporate it into the
invariant representation learning framework, and what other regularization techniques we can use
to ensure that Z contains sufficient label-specific information in the target domain.

1.2.5 Semi-Supervised Learning Approaches to Domain Adaptation
Semi-supervised learning is a long-studied field of machine learning which specializes in making
use of a large amount of unlabeled data to improve a predictor which has a very few labeled
data-points for training (Chapelle et al. [16], Van Engelen and Hoos [127], Zhang et al. [153], Zhu
[159]). Formally, instead of a source and target domain, the data-set is divided into labeled points
(xl,yl) = (xlk, y

l
k)
nl
k=1, and unlabeled points xu = (xu)nuk=1, drawn from P (X, Y ) and P (X)

respectively (note that here we only have one joint distribution, instead of two or more which is
the case in domain adaptation). The approaches take advantage of the structure of the features
X to inform the search for a predictor trained on the few labeled data-points. For example, this
structure can be defined in terms of high-density and low-density regions of P (X), and constraints
can be enforced to ensure that the predictor does not cross high-density regions. This reasoning
is exploited for the semi-supervised approaches of entropy minimization (Grandvalet et al. [46])
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and self-training (Lee et al. [72]). Another way to define the structure is by assuming that the
input space can be broken down into multiple low-dimensional manifolds, and samples on the
same manifold should share the same class label (Zhou et al. [157]). These techniques have been
recently adopted to unsupervised domain adaptation (French et al. [36], Jin et al. [67], Tarvainen
and Valpola [125]), and shown to achieve state-of-art performance on several benchmark datasets
(Zhang et al. [153]).

1.3 Thesis Objective and Outline
The main goal of our thesis is to incorporate the causal view (although some representations we
use for domain adaptation are not necessarily causal without additional assumptions) into the
unsupervised domain adaptation setting in order to contribute to the understanding of the problem,
by reasoning under which settings it is (or is not) solvable. Furthermore, our aim is to provide
methodology that has strong performance, intuitive justification and can be extended to novel
neural architectures and more general/challenging settings, in a principled way. We make use of
this view to contribute to more classical domain adaptation approaches/settings (such as covariate
shift and conditional-target shift using classical prediction methods such as SVMs), and invariant
representation learning via neural networks. Our hope is that this thesis will provide a unified
picture for all three of these approaches. The outline of the thesis can be summarized as follows:

Chapter 2: "Data-Driven Approach to Multiple-Source Domain Adaptation" (Stojanov
et al. [114]) tackles the unsupervised domain adaptation problem in which thare are multiple
labeled source domains and a single unlabeled target domain. We make use of the data-generating
process under the conditional-target shift setting, to design an algorithm that extracts the low-
dimensional changes across domains, and makes use of them for prediction in the target domain.

Chapter 3: "Low-Dimensional Density Ratio Estimation for Covariate Shift Correc-
tion" (Stojanov et al. [115]) deals with the unsupervised domain adaptation problem under the
covariate-shift setting. In particular, we develop an approach that makes use of the assumptions of
covariate shift, along with reproducing kernel techniques, in order to reduce the dimensionality of
the data for the purposes of density ratio estimation.

Chapter 4: "Domain Adaptation with Invariant Representation Learning: What Trans-
formations to Learn?" (in submission) provides a novel approach for unsupervised domain
adaptation using invariant representation learning, in which we make use of the data-generating
process to formulate a notion of minimal change across domains based on mutual information,
and use it to provide a principled regularizer that ensures that the latent representation Z contains
useful information about the target variable Y .

Chapter 5: "Domain Adaptation via Direct Transformation" (pre-print) extends on the
idea that more general techniques are needed to enforce minimal change of the joint distribution,
within a neural architecture framework. In this chapter, we provide a more general notion of
minimal change than mutual information, and provide two approaches to incorporate it within a
deep learning domain adaptation algorithm.

Our hope is that each chapter of this thesis will provide the reader with sufficient insight
regarding the respective domain adaptation sub-problem, its real-world applications, the core
challenges that the state-of-the-art methods are facing, and how the view introduced here can be
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used to provide advances towards solving each problem. We also recognize that the approaches
presented here are only scratching the surface regarding how generating process information and
the concept of minimal changes can be used to improve transfer learning, and we further hope
that this thesis contributes to novel and bold ideas not only in domain adaptation, but other areas
of machine learning as well.
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Chapter 2

Data-Driven Approach to Multiple-Source
Domain Adaptation

A key problem in domain adaptation is determining what to transfer across different domains.
We propose a data-driven method to represent these changes across multiple source domains
and perform unsupervised domain adaptation. We assume that the joint distributions follow a
specific generating process and have a small number of identifiable changing parameters, and
develop a data-driven method to identify the changing parameters by learning low-dimensional
representations of the changing class-conditional distributions across multiple source domains.
The learned low-dimensional representations enable us to reconstruct the target-domain joint
distribution from unlabeled target-domain data, and further enable predicting the labels in the
target domain. We demonstrate the efficacy of this method by conducting experiments on synthetic
and real datasets.

2.1 Introduction

In recent years machine learning techniques have become ubiquitous in solving real-world
problems. For many of these applications obtaining new labeled data can be difficult, time-
consuming, or expensive. Moreover, the training and test data are collected during different time
periods and/or under different conditions, often yielding a shift in the distribution across datasets.
For example, the distribution of medical data regarding a particular disease may vary from patient
to patient because of heritable factors and different laboratory and measurement conditions.
Furthermore, image datasets are collected in more than one setting, with different viewpoints and
illumination conditions. Suppose we have one or more labeled datasets called source domains, and
a new unlabeled dataset called target domain which has a different distribution from the source
domain(s). Domain adaptation is the problem of accounting for the shift in distribution across
domains such that relevant information is transferred from source domain(s) to the target domain
so as to predict the target domain labels. Let X denote the features and Y denote the labels. In
the multiple-source domain adaptation setting, there are M > 1 source domains in the training
data generated from multiple respective joint distributions P (1)

XY , ..., P
(M)
XY . The goal is to learn a

classifier for a new target domain with unlabeled data generated from P T
X . To enable successful
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domain transfer, one needs to make some assumptions about the joint distribution and take into
account the generating process of the data. Following (Gong et al. [42], Zhang et al. [148, 149]),
we assume that the causal direction is Y → X; then PX|Y corresponds to the causal mechanism
that generates features from the label. According to the modularity property of a causal model,
Y → X implies that PY and PX|Y change independently across domains (Pearl [93], Schölkopf
et al. [102], Spirtes et al. [112]). The generating process is illustrated on Figure 2.1. For example,
in image classification, the class label can be considered as the cause of images. If we change
the label distribution, this would not change the causal mechanism PX|Y that generates images
from labels. The change of PX|Y can be due to other factors such as illumination and viewpoint.
Thus, the factorization of the joint distribution following the causal direction (given byPY PX|Y )
is more favorable, because the other factorization yields factors PX and PY |X which arise from
independent modules PY and PX|Y (via Bayes rule), and are thus coupled and change dependently
across domains in the generic case.

Determination of what information to transfer from source domains to the target is a crucial
issue in domain adaptation. In this paper, we propose a nonparametric approach to capture
distribution changes and recover the target domain joint distribution. Since the causal direction
is Y → X , it is not surprising that the changes in the data generating process, PX|Y , are usually
simple and relatively easy to model. More specifically, we assume an infinite-dimensional
nonparametric paradigm for the causal mechanism of all domains, i.e., {PX|Y ;Θ : Θ ∈ Θ∞},
where Θ∞ is an infinite-dimensional space of parameters. We show that if the number of changing
parameters in PX|Y is small, P (1)

X|Y , · · · , P
(M)
X|Y lie in a low-dimensional manifold. Given enough

source domains, we can identify the manifold of the d changing parameters by learning low-
dimensional representations of the distributions P (1)

X|Y , · · · , P
(M)
X|Y . Furthermore, we can make use

of the low-dimensional representation to reconstruct the target-domain causal mechanism P T
X|Y ,

which can then be used to construct the target-domain classifier.
Therefore, the motivation of our approach is two-fold: (1) Working with a plausible represen-

tation for the generating process of the data allows us to observe a low-dimensional change across
domains. (2) When factorized according to the generative process, the factors of the distribution
(i.e. PY and PX|Y ) change independently, and their respective low-dimensional changes across
domains can be learned separately. The proposed method leverages these properties to extract the
low-dimensional representations of the changing parameters across domains, and make use of it
for predicting target-domain labels.

2.1.1 Related Work

Classical single-source domain adaptation focuses on the setting where there are two domains,
one labeled training dataset and one unlabeled test dataset (termed source and target domain),
arising from two joint distributions P S

X,Y and P T
X,Y , respectively. In order for classification in the

test domain to be feasible, there must be some connection between the source and target domains,
and this connection is reflected in the respective joint distributions. Therefore, domain adaptation
approaches generally focus on understanding what aspects of the joint distribution change and
leveraging this knowledge to account for the difference and construct an appropriate hypothesis in
the target domain. Single-source domain adaptation has been extensively studied, with some of its
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Figure 2.1: Generating process Y → X across domains with domain index variable D = 1, ...,M

theoretical underpinnings analyzed in (Jiang [66], Pan and Yang [90]) and (Ben-David et al. [8]).
When considering the change of PXY across domains, prior approaches generally make some

assumptions of changes in its factors. Namely, a large body of work has focused on the setting in
which it is assumed that PX changes and PY |X remains the same. Approaches in this setting focus
on minimizing the discrepancy in PX between the weighted source domain and the target. This
setting is called covariate shift or sample selection bias (Zadrozny [140]), and has been thoroughly
studied in (Ben-David and Urner [6], Shimodaira [106], Sugiyama et al. [120]). However, in
practice both PX and PY |X can change across domains. An alternative assumption to address
this is the setting in which PY changes and PX|Y remains the same, a setting termed target shift
(Zhang et al. [148]) or prior probability shift (Du Plessis and Sugiyama [31], Storkey [117]).

A particular line of work in single-source domain adaptation , (Gong et al. [42], Zhang et al.
[148]) makes assumptions on the generative process across domains. With the assumption that
the labels generate the features (Y → X) (which is reasonable for many real-world scenarios
including digit recognition and medical diagnosis) , the authors work with the factors PX|Y and
PY , which are assumed to change independently under this causal generative process assumption
(Woodward [134]). This property is leveraged to model the changes in PX|Y and PY separately,
naturally reducing the complexity of the problem.

Recently there have also been deep learning approaches to single-source domain adaptation.
They are based on constructing domain adaptation layers with the aim of learning transferable
representations for classification under the covariate shift setting (Bousmalis et al. [13], Ganin
et al. [39], Long et al. [78, 80], Shu et al. [108]). Recent work by (Long et al. [79]) focuses
on the setting when multiple components of the joint distribution may change, and presents an
architecture that extracts transferable representations that reduce the discrepancy of the joint
distribution across domains.

There is a diverse body of work in multiple-source domain adaptation. Similar to single
domain adaptation, (Muandet et al. [88]) learns domain invariant components that are shared
by all domains and uses them for prediction in the target domain. Other approaches focus
on combining multiple hypotheses from the source domains and weighing them based on the
source-domain marginal distributions, P (1)

X , ..., P
(M)
X , (Mansour et al. [85]), where the weights are

determined in various ways (Chattopadhyay et al. [17], Duan et al. [32], Gao et al. [40]). Another
approach (Blanchard et al. [11]) focuses on incorporating the marginal distribution PX as an
additional input of the classifier. However, PX is an infinite-dimensional object, and performing
direct comparisons on it across domains may lead to high estimation error and overfitting.

This fact is addressed by a method which assumes that the generating process is Y → X
and that the change across domains follows the Conditional-Target Shift setting (described
above) (Zhang et al. [149]). This approach performs domain adaptation by assuming that the
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target conditional distribution P T
X|Y is a linear mixing of the conditional distributions in the

source domains P (1)
X|Y , ..., P

(M)
X|Y , and solving for the mixing weights. However, the linear mixture

assumption imposes a rather strong constraint on the type of low-dimensional changes that can be
modeled and accounted for across domains. The same can be said about another related body of
work that aims to find a low-dimensional representation of relevant changes, called metric learning
(Weinberger and Saul [133]) learns a distance matrix that operates on a learnt low-dimensional
subspace of the data, such that relevant information for prediction is contained. However, this
distance metric has a particular parametric form, and may discard meaningful information about
the change in distribution across domains, if applied to domain adaptation.

In our approach, we follow the same domain adaptation setting, and we aim to automatically
discover the (potentially nonlinear) low-dimensional changes across domains from data. This
work consists of the following main contributions:
(1) We present a data-driven approach to capturing the low-dimensional manifold of the changes
in the distribution across domains.
(2) We show that if the source- and target-domain joint distributions lie on a low-dimensional
manifold, then the joint distribution in the target domain P T

XY can be identified from the marginal
distribution P T

X .
(3) We provide an algorithm that makes use of the low-dimensional manifold in order to recon-
struct the joint distribution in the target domain and perform classification.

2.2 Theoretical Foundation

Closely following the multiple-source settings of binary classification of (Blanchard et al. [11])
and (Muandet et al. [88]), we let X be the input feature space, and let Y = {−1, 1} be the output
space. Let PX×Y be the family of joint distributions over X× Y. Also, let PY and PX|Y be the
respective families of distributions. Let there be a distribution µ on PX×Y, where P (1)

XY , ..., P
(M)
XY

are independent and identically distributed (i.i.d.) realizations from this family for the source
domains, and P (T)

XY is the realization for the target domain. In what follows, we shall describe
some of the mathematical tools required to represent and make use of the changing parameters
across source domains.

2.2.1 Representing Distributions in Hilbert Space

To perform domain adaptation, one needs to compare probability distributions. Kernel mean
embeddings provide a convenient way to represent probability distributions as points in a Repro-
ducing Kernel Hilbert Space (RKHS) associated with some positive semi-definite kernel, where
the distance between them can be easily computed (Smola et al. [109]).

Given a positive semi-definite kernel function k with corresponding RKHS Hk and a feature
map ψ : X → Hk (s.t. for x1, x2 ∈ X, k(x1, x2) = 〈ψ(x1), ψ(x2)〉Hk), the kernel mean
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random variable X Y
domain X Y

feature map ψ(x) ρ(y)
kernel k(x, x′) l(y, y′)
i-th domain data point x(i) y(i)

empirical estimates of PX(x)
and PY (y)

P̂X(x) P̂Y (y)

kernel mean embedding on i-
th domain µ

(i)
X µ

(i)
Y

feature map on kernel mean
embedding

Φ(µX)

Table 2.1: Notation used

embedding of the marginal distribution PX is given by:

µX :=

∫
X

k(x, ·)dPX(x) = EPX [ψ(x)]. (2.1)

When k is a characteristic kernel (such as the Gaussian kernel), µX is a point in Hk that captures
all the moments of PX . A computationally convenient distance metric between two distributions
P

(1)
X and P (2)

X is their Euclidean distance in the high-dimensional embedding space, given by
d(P

(1)
X , P

(2)
X ) ≡ ||µ(1)

X − µ
(2)
X ||2. It is also known as the Maximum Mean Discrepancy (MMD)

(Gretton et al. [51]). A consistent estimator of the kernel mean embedding with finite n data
points is µ̂X = 1

n

∑n
i=1 ψ(xi).

While the marginal distribution is fully represented as a single point in Hilbert space, the
conditional distribution PXY is represented by a set of a family of points in RKHS indexed by the
conditioning variable Y (Song et al. [110]). Namely, given a kernel l corresponding to a feature
map ρ : Y→ Hl and kernel k corresponding to feature map ψ : X→ Hk, the conditional kernel
mean embedding is given by the operator UX|Y , a mapping from Hl to Hk. Using this operator,
the kernel sum rule (Song et al. [110]) can be used to express the embedding of the marginal
distribution PX in terms of the independently changing factors PX|Y and PY : µX = UX|Y µY . For
a fixed value of the conditioning variable Y = c, the kernel mean embedding of PX|Y=c is given
by:

µX|Y=c :=

∫
X

k(x, ·)dPX|Y=c(x) = EPX|Y=c
[ψ(x)].

It can be shown that when Y is discrete and l(y1, y2) = δ(y1, y2) is the Kronecker delta kernel,
UX|Y = [µX|Y=1, ..., µX|Y=C ]T . Furthermore, similarly to the marginal case, the conditional
kernel mean embedding for a fixed Y = c can be estimated by µ̂X|Y=c = 1

nc

∑nc
i=1 ψ(xi), where

nc is the number of observations which have class c.
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2.2.2 Identifying Low-Dimensional Changing Parameters

The goal of our method is to mathematically express and utilize the identifiable changing pa-
rameters in PXY across domains via its independent factors, in our case PX|Y and PY . We work
with PX|Y and demonstrate how this can be achieved. When performing kernel mean embedding
of the conditional distributions of the features given a class label c in the the source domains,
P

(1)
X|Y=c, ..., P

(M)
X|Y=c, we obtain M points in Hk given by µ(1)

X|Y=c, ..., µ
(M)
X|Y=c. Let there be a kernel

kµ with an RKHS Hkµ and a corresponding feature map Φ : Hk → Hkµ . To extract the nonsta-
tionary components (parameters) of these distributions, one needs to find the transformations of
the distributions with maximal variability. This can be achieved by performing Kernel Principcal
Component Analysis (KPCA) (Schölkopf et al. [103]) on µ(1)

X|Y=c..., µ
(M)
X|Y=c, using an additional

kernel kµ, resulting in a centered kernel Gram Matrix: K̃ij = kµ(µ
(i)
X|Y=c, µ

(j)
X|Y=c). To show that

this is the case, we first need the following lemma regarding linear PCA.
Lemma 2 Let points φ1, ..., φM be p-dimensional vectors (where p could be infinite). Let

λ1, ..., λq be the set of all non-zero eigenvalues after performing PCA on these vectors. If
Pλ(φi) is the projection of φi on the principal eigenvectors corresponding to λ1, ..., λq, then
φi 6= φj ⇐⇒ Pλ(φi) 6= Pλ(φj).

The proof can be found in section 2.7. Using this lemma we are now ready to formally
establish the connection between the changing parameters of distributions and the outcome of
KPCA performed on their kernel mean embeddings:

Theorem 1 Let P (1)
X|Y=c, ..., P

(M)
X|Y=c be probability distributions with d identifiable changing

parameters Θd = θ1, .., θd, and ξ1, ..., ξq be principal components resulting from KPCA with
kernel kµ on kernel mean embeddings µ(1)

X|Y=c...µ
(M)
X|Y=c. If k and kµ are characteristic kernels,

then ξ1, ..., ξq are a one-to-one mapping of the d changing parameters (i.e. ξ1, .., ξq = f(θ1, ..., θd),
where f is a bijective mapping.)

Proof: The characteristic property of kernel k and identifiability of parameters θ1, ..., θd imply
that Θ

(1)
d 6= Θ

(2)
d =⇒ µ

(1)
X|Y=c 6= µ

(2)
X|y=c for the KMEs of two distributions P (1)

X|Y=c and P (2)
X|Y=c,

where Θ
(1)
d and Θ

(2)
d are their respective realizations of the d parameters. Performing KPCA on

µ
(1)
X|y=c...µ

(M)
X|y=c using kernel kµ results in non-zero eigenvalues λ1, ..., λq. An important observa-

tion is that for a particular µ(i)
X|Y=c, its principal components corresponding to the non-zero eigen-

values, given by ξ(i)
1,c, ..., ξ

(i)
q,c are a function of µ(i)

X|Y=c (i.e. ξ(i)
1,c, ..., ξ

(i)
q,c = g(µ

(i)
X|Y=c)). Therefore, it

suffices to show that g is a one-to-one function. By the characteristic property of kµ, it follows
that Θ

(1)
d 6= Θ

(2)
d =⇒ Φ(µ

(1)
X|Y=c) 6= Φ(µ

(2)
X|Y=c), and Φ(µ

(1)
X|Y=c), ...,Φ(µ

(M)
X|Y=c) are points in

a q-dimensional subspace in Hkµ . Since KPCA performs linear PCA on infinite-dimensional
points Φ(µ

(1)
X|Y=c), ...,Φ(µ

(M)
X|Y=c), by Lemma 2, Φ(µ

(1)
X|Y=c) 6= Φ(µ

(2)
X|Y=c) ⇐⇒ ξ

(1)
1,c , ..., ξ

(1)
q,c 6=

ξ
(2)
1,c , ..., ξ

(2)
q,c , so g is a one-to-one function. This means that Θ

(1)
d 6= Θ

(2)
d =⇒ ξ

(1)
1,c , ..., ξ

(1)
q,c 6=

ξ
(2)
1,c , ..., ξ

(2)
q,c , implying that f is a composition of one-to-one functions, and is itself a one-to-one

function.�

By establishing this one-to-one correspondence between the d changing parameters and the
q principal components of KPCA, we have shown that the resulting q-dimensional manifold
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contains valuable low-dimensional information regarding the change of a particular factor of the
joint distribution (in the proof treated as PX|Y=c) across source domains i = 1, ...,M .

2.3 Algorithm

Now that we have a way of representing the changes of distributions across domains, we can use
them to reconstruct the factors of the joint distribution in the target domain that will be used for
classification. Given class labels c = 1, ..., C, the first step of the algorithm is to reconstruct the
marginal distribution P T

X by using the q-dimensional manifold of change across domains, such
that the relevant factors are identified. The second step uses the reconstructed components P T

Y

and P T
X|Y from the reconstructed marginal distribution in order to calculate P T

Y |X and thus do
classification in the target domain.

2.3.1 Reconstruction in the Target Domain

The main objective of our method is to identify the two factors of the joint distribution: P T
X|Y=c and

P T
Y=c, ∀c. All of the information about these two factors is contained in the marginal distribution

of the target-domain P T
X =

∑C
c=1 P

T(X|y = c)P T(Y = c). Since we have access to unlabeled
data points xT

1 , ...,x
T
ntin the target domain, we can estimate the marginal distribution P̂ T

X , and
search for factors P̂ new(X|y = c) and P̂ new(Y = c) that best reconstruct the marginal distribution
estimate in terms of: P̂ new

X =
∑C

c=1 P̂
new(X|y = c)P̂ new(Y = c). Thus, we aim to find the

respective factors which minimize a distance metric d(P̂ T
X , P̂

new
X ).

A computationally and statistically efficient procedure for minimization of the distance
between the reconstructed and true marginal distribution is via Maximum Mean Discrepancy
(MMD): ||µT

X − µnewX ||2, where µT
X and µnewX are the kernel mean embeddings of P T

X and P new
X

respectively (Gretton et al. [51]).
We parameterize conditional distribution mean embedding in the target domain as µnewX|Y=c =

EX∼PT
X

[βc(x)ψ(x)], where βc(x) represents the class-specific density ratio P T
X|Y=c/P

T
X which

needs to be learned. Here, ψ is the feature transform into Hilbert space corresponding to the
Gaussian kernel or another characteristic kernel, while for the label Y we have a feature map
ρ(y) corresponding to the Kronecker Delta kernel k(x, y) = δ(x, y), so the kernel mean embed-
ding for the label is µY = EY∼PT

Y
[ρ(y)]. For possible labels y = 1, .., C, the feature map of

this kernel is the standard basis ρ(y) = eY and the corresponding kernel mean embedding is:
µY = EY∼PT

Y
[ρ(y)] = [PY=1, ..., PY=C ].

In addition to this parameterization of the target domain, we are also given a q-dimensional
manifold in Hk of the changing parameters of PX|Y=c across domains. We minimize the max-
imum mean discrepancy (MMD) (Gretton et al. [51]) between the marginal distribution of the
target domain and its reconstruction µnewX|Y=c, such that the reconstruction is as close as possible to
the q-dimensional manifold. For this purpose, we introduce the following minimization criterion,
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given in population version:

min
β,µY
||µTX − UnewX|Y µ

new
Y ||2

⇐⇒ min
β,µY
||µTX −

C∑
c=1

µnewX|Y=c(µY )c||2 (2.2)

⇐⇒ min
β,µY
||µTX −

C∑
c=1

EX∼PT
X

[βc(x)ψ(x)](µY )c||2 (2.3)

s.t.
C∑
c=1

||Φ(µnewX|Y=c)− PqΦ(µnewX|Y=c)||2 ≤ ε (2.4)

βc(x) ≥ 0,EX∼PT
X

[βc(x)] = 1 ∀c (2.5)

In the first constraint, (2.4), Φ represents an additional feature map corresponding to the Gaussian
kernel kµ (which we also use to perform Kernel PCA), and we use PqΦ(µ̂newX|Y=c) to represent the
reconstruction of µnewX|Y=c onto the q-dimensional manifold described by the principal components
of the source domains (µ1

X|Y=c, ..., µ
M
X|Y=c) in the Gaussian Kernel feature space. Namely, if

v1, ...,vq are the eigenvectors corresponding to the nonzero eigenvalues in that feature space, then
we let ξnewk,c = (vk · Φ(µ̂newX|Y=c)) =

∑M
i=1 α

k
i,ckµ(µ̂newX|Y=c, µ̂

(i)
X|Y=c) be the projection of µ̂newX|Y=c on

the k-th principal component, where αααc vectors are eigenvectors of the centered Gaussian Kernel
Gram Matrix K̃ which was used to perform Kernel PCA on the source domains (Mika et al. [86]).
Then PqΦ(µnewX|Y=c) =

∑n
k=1 ξkvk, and the k-th eigenvector vk can be expressed as the following

linear combination: vk =
∑M

l=1 α
k
i,cΦ(µiX|Y=c). One should note that for each class label c we try

to identify a separate low-dimensional manifold corresponding to the conditional distributions
P

(i)
X|Y=c of the source domains, and the regularizer penalizes the sum of reconstruction errors

across all label-specific manifolds.
The last two constraints, given in (2.5), ensure that P T

X|Y=c = βc(x)P T
X is a valid distribution.

The empirical version of the objective is:

min
B,γγγ
||µ̂TX − ÛnewX|Y µ̂

new
Y ||2 (2.6)

⇐⇒ min
B,γγγ
||µ̂TX −

C∑
c=1

γγγj
1

nT

nT∑
i=1

Bicψ(xTi )||2 (2.7)

s.t.
C∑
c=1

||Φ(µ̂newX|Y=c)− PqΦ(µ̂newX|Y=c)||2 ≤ ε (2.8)

Bic ∈ [0, Bmax] and |
nT∑
i=1

Bic| = nT, (2.9)

∀c ∈ 1, 2, . . . , C. (2.10)

Here, B ∈ RnT×C contain the re-weighting coefficients that help reconstruct (estimate) the target
conditional distribution given a specific class c: P̂ T

X|Y=c = B:,cP̂ T
X .

γγγ is used to estimate class probabilities (given by P̂ T
Y , as a result of applying the Kronecker
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Delta Kernel feature map) across all source domains, resulting in a new estimated marginal class
probability in the target domain: P̂ new

Y=c = γγγc.

In order to make sure that B is a smooth function of the data, we reparameterize it as in (Zhang
et al. [148]); namely, we let B = RA where R = KB(KB + λBI)

−1, where KB is calculated
using the Gaussian kernel with a separate width parameter σB, and regularized with a separate
λB. We then minimize over A ∈ RnT×K instead. After incorporating this reparameterization and
putting the objective in Lagrange form, we have:

min
A,γγγ
||µ̂TX − ÛnewX|Y µ̂

new
Y ||2+

λf (

C∑
c=1

||Φ(µ̂newX|Y=c)− PqΦ(µ̂newX|Y=c)||2)

⇐⇒ min
A,γγγ
||µ̂TX −

C∑
c=1

γγγc
1

nT

nT∑
i=1

(RA)icψ(xTi )||2+ (2.11)

λf (
C∑
c=1

||Φ(µ̂newX|Y=c)− PqΦ(µ̂newX|Y=c)||2) (2.12)

s.t. (RA)ic ∈ [0, Bmax] and |
nT∑
i=1

(RA)ic| = nT.

We use alternating optimization for this task; optimizing w.r.t γγγ is a straight-forward quadratic
programming problem and optimizing w.r.t A can be done using a barrier method (for details see
Section 2.6). The procedure is outlined in Algorithm 1.

2.3.2 Generative Classifier

Once we have the key components of the joint distribution in the target domain, we can perform
classification in the target domain. The probability of the label given the data is

P̂ T
Y (yi = c|xT) =

ˆP new
Y (yi = c)P̂ new(xT|yi = c)

P T
X(xT)

= ˆP new
Y (Yi = c)Bic (2.13)

We test the efficacy of this approach in the following section.
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Algorithm 1 Classification Routine for Data-Driven Multi-Source Domain Adaptation

Input: (1) M source domains with ni labeled training data-points: (x1, y1), ..., (xni , yni) ∼ P
(i)
XY

∀i ∈ 1, ...,M .
(2) A target domain with unlabeled data-points: x1, ..., xnT

∼ P T
X

Output: predicted class labels in target domain: ŷ
1: while not converged do
2: Solve MMD problem given by (2.11) for γγγ using quadratic programming.
3: Solve MMD problem given by (2.11) for A using barrier method.
4: end while
5: B = RA,
6: Return P̂ T

Y (yi = c|xi) = γγγcBic, ∀i ∈ 1, ..., nT, ∀c ∈ 1, ..., C.

2.3.3 Identifability of Target Domain Conditional Distribution

The above algorithm identifies the separate components PX|Y and PY while reconstructing the
marginal distribution PX . Before presenting the identifiability result, we make some assumptions:

A1: For each value of c, the distribution PX|Y=c has only a finite number of parameters that
change across possible domains. Suppose we have enough source domains, and let q be the
number of non-zero eigenvalues of Gram matrix on µX|Y=c across all source domains.

Assumption A1 implies that there exists a nonlinear one-to-one transformation h : PX|Y → Rq.
Then, the conditional distribution in each domain j is a linear combination of the other domains
after such a transformation: h(P

(j)
X|Y=c) =

∑M
i=1,i 6=j η

j
ich(P

(i)
X|Y=c) for some weights ηj1c, .., η

j
Mc.

Furthermore, for the target domain T, ∃ ηηη∗c s.t. h(P T
X|Y=c) =

∑M
i=1,i 6=j η

∗
ich(P

(i)
X|Y=c). In other

words, all domain-specific conditional distributions for label c lie in a q-dimensional subspace of
Hµ. This means that each conditional distribution corresponding to domain j can be uniquely
determined by the mixture weights ηj1c, .., η

j
Mc.

A2: Let PηηηcX|Y=c be a distribution determined by weights ηηηc, and Pηηη
′
c

X|Y=c be determined by ηηη′c.

Then the elements of the set {p1cP
ηηηc
X|Y=c + p2cP

ηηη′c
X|Y=c; c = 1, .., C} are linearly independent for

∀ηηηc, ηηη′c, p1c, p2c, p
2
1c + p2

2c 6= 0.

We can now state the following identifiability theorem:

Theorem 2 Let A1 and A2 hold, and η̂c be the weights such that P new
X|Y=c = P

η̂ηηc
X|Y=c is

the reconstructed distribution, namely P new
X|Y=c = B:,cP

T
X . If ∃ η̂ηηc s.t P T

X =
∑C

c=1 P
new
Y (Y =

c)P
η̂ηηc
X|Y=c =

∑C
c=1 γγγcP

η̂ηηc
X|Y=c, then we have ∀ c, P T

Y (Y = c) = γγγc and P η̂ηηcX|Y=c = P T
X|Y=c.
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2.4 Empirical Results

2.4.1 Baselines

We consider several baselines that can be used to perform classification in the target domain using
data from multiple source domains:
(1) The simplest and most straightforward approach is to combine the data from all source domains
and treat it as if it arose from a single joint distribution PXY and use it for training via SVM. This
approach is called “poolSVM”.

(2) The method introduced by (Mansour et al. [85]), in which the target-domain conditional
distribution P T

Y |X is represented as a linear mixture of the source-domain marginal distributions,

P T
Y |X =

∑M
i=1 λiP

(i)
Y |X , where the weights are functions of the marginal distributions of the source

domain, namely λi =
α̃iP

(i)
X∑M

q=1 α̃qP
(q)
X

. When they introduced the method, (Mansour et al. [85]) used

uniform weights α̃i = 1
M
∀i ∈ 1, ...,M . As described in (Zhang et al. [149]), the weights can also

be learned using a kernel mean matching approach, such that
∑M

i=1 α̃iP
(i)
X is as close to P T

X as
possible (we refer to this approach as “dist-weight”).

(3) Treating the target conditional distribution as a uniform mixture of the source-domain condi-
tional distributions, P T

X|Y = 1
M

∑M
i=1 P

(i)
X|Y . We refer to this baseline as "uniform".

(4) The algorithm proposed by (Zhang et al. [149]) which, like our approach, assumes the
generative process Y → X , and aims to use the relevant low-dimensional factors PY and PX|Y ,
where the kernel mean embedding of PX|Y in the target domain is a linear mixture of the kernel
mean embeddings in the source domains, namely: µT

X|Y=c =
∑M

i=1 λiµ
(i)
X|Y=c. The mixing weights

are learned jointly with P T
Y , and this information is used to do distribution-weighted combination

of the classifiers in the source domains, like in the method by (Mansour et al. [85]). We denote
this method by "dist-comb".

(5) The method proposed by (Blanchard et al. [11]), which uses a kernel SVM approach. The
authors used the canonical SVM framework with a product kernel which, in addition to comparing
data points, also compares marginal distributions across domains. This kernel is given by a prod-
uct of two kernel functions: kB((P

(i)
X Xiq), (P

(j)
X , Xjl)) = kP (P

(i)
X , P

(j)
X )kX(Xiq, Xjl) between

two points Xiq and Xjl of domains i and j. Here, kP is a characteristic kernel that operates on
probability distributions, and kX is a kernel applied directly on the data points. We refer to this
method as "marg-kernel".

2.4.2 Synthetic Datasets

In order to test the effectiveness of our proposed method, we perform the task of handwritten digit
recongition on the MNIST (LeCun et al. [71]) dataset. This task satisfies the assumption of the
generative process Y → X , and is thus suitable for application of our approach. We performed

25



two classification tasks; in the first one we classify digits 4 and 9, and in the second one we try
to discern between digits 1 and 7. For each task, we create a multiple-source domain adaptation
setting, where each domain represents a rotation of a digit with a different angle. We establish
20 such angles, with the difference of two adjacent domains (angles) being 18 degrees . Thus, in
this setting, rotation is the only changing parameter across domains. Because of the choice of
the changing parameter, this dataset violates the commonly required assumption that the target
domain must be contained in the support of the source-domain joint distributions. We conduct
20 experiments, where each angle is treated as a target domain, and 10 other source angles are
sampled randomly, while ensuring that the nearest source angle is at least 36 degrees away from
the target. We sample 350 points for each source domain and the target domain. Because the
dimensionality of images is high and we used a very simple approach to reduce it, we fixed
P (Y = c) to range between 0.2 and 0.8 for the two classes in order to prevent instability when
estimating PX|Y /PX in our generative approach via MMD.

We present the accuracies of all the baselines and the proposed method (termed "generative")
in Figures 2.2 and 2.3, for the classification of digits "4" vs. "9" and "1" vs. "7" respectively. In
addition, we also provide the average accuracy together with standard deviations and Wilcoxon
signed rank tests in Table 2.2.
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Figure 2.2: Accuracies of the baselines and the proposed method for the task of classifying
between digits 4 and 9, for handwritten digit recognition

From the figures, one can see that the proposed method outperforms all the baselines. In
particular, this performance gap is drastic in the task with digits 4 and 9, where the digits
are difficult to classify and there is no possibility for support overlap between the source and
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Figure 2.3: Accuracies of the baselines and the proposed method for the task of classifying
between digits 1 and 7, for handwritten digit recognition

target domains because of reflexion. It demonstrates that our method is capable of utilizing the
one-dimensional rotational changes across domains to perform classification on datasets with a
complex decision boundary.

dist-comb dist-weight simple-adapt uniform poolSVM marg-kernel generative
MNIST 4/9
% accuracy 55.6391(4.43) 58.0(4.8) 54.0 (3.4) 51.4 (1.8) 57.93 (15.9) 58.0 (17.0) 65.8 (9)

p-value 0.0006 0.0033 0.0003 0.0001 0.0795 0.0766 –
MNIST 1/7
% accuracy 76.81 (7.4) 76.76 (7.7) 72.0 (8) 64.96 (8.8) 77.74 (8.8) 77.72(12.3) 84.4 (2.7)

p-value 0.01 0.009 0.001 0.0003 0.035 0.035 –
Medical

% accuracy 75.07(14.4) 79.39 (15.0) 81.76 (14.2) 81.75 (13) 76.7 (13.9) 81.41 (14.7) 85.62 (7.4)
p-value 0.0002 0.015 0.07 0.05 0.0005 0.08 –

Table 2.2: Accuracies and p values for Wilcoxon signed rank test across the baselines and the
proposed method performed on: the MNIST dataset where we classify 4 vs. 9 (top), he MNIST
dataset where we classify 1 vs. 7 (top), and the real dataset from lung lobe images (bottom). The
p-values displayed are comparing the proposed method with each respective baseline.
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2.4.3 Real Dataset

We also applied our method to lung phenotype data (CT images) from the COPDGene cohort,
which is a public dataset for lung disease study. The task here is to detect the fissure between
two lung lobes, which is a binary classification problem. This task is an important intermediate
step towards understanding which genes are responsible for certain lung diseases. The fissure is
represented by a 3D point set obtained by the method proposed in (Ross et al. [99]) and further
refined by manual annotations. The goal is to classify whether the 3D points belong to one fissure
region or another (represented by the positive and negative labels). Since the lung and fissure
shape varies from patient to patient, the distributions of the points for the two fissures change
across different patients. Furthermore, since labeling the points is costly and expensive, it would
be very useful to be able to learn an optimal classifier on lung image data for a target patient by
using existing labeled data from a few other patients by applying our method.

We conducted 40 experiments, in which randomly picked 7 source patients, and for each
experiment we randomly sampled a target patient. We then subsampled 250 points for each patient
(domain), such that P (Y = 1) varies uniformly between 0.2 and 0.8 across all patients (both
sources and target) for each experiment. We then performed classification using the generative
method in each of the 40 target patients, and we present the accuracies in Figure 2.4 and Table 2.2.
From these real dataset experiments, we see that our method outperforms all of the baselines. We

dis
t-c

om
b

dis
t-w

eig
ht

sim
ple

-ad
ap

t

un
ifo

rm

po
ol-

SVM

marg
-ke

rne
l

ge
ne

rat
ive

30

40

50

60

70

80

90

100

%
 A

cc
ur

ac
y

Figure 2.4: Accuracies of the baselines and the proposed method for the task of classifying
between two different lung fissures in the real dataset

also note that all of the baselines have a much higher variance probably due to larger differences
between the distributions of the target patient and source patients in some of the experiments.
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2.5 Conclusion
We developed a data-driven method to discover and utilize low-dimensional changes of the joint
distribution across domains for the purpose of domain adaptation. We did so by representing and
exploiting the low-dimensionality of the change of the causal mechanism PX|Y across source
domains. Out approach consists of two steps: (1) reconstructing the marginal distribution in the
target-domain P T

X such that P T
X|Y=c and P T

Y can be identified, and (2) using the reconstructed
joint distribution in the target domain to perform classification. We have proven that this method
is theoretically well grounded and have demonstrated its increased efficacy compared to the
baselines via synthetic and real data experiments. We believe that this method opens the door for
more flexible and principled data-driven approaches to domain adaptation.

2.6 Derivation of Algorithm and Implementation Details

2.6.1 Derivations of Algorithm and Reconstruction of Joint Dinstribution
We now expand the squares of equations (2.11) and (2.12) to express the objective only in terms
of kernel Gram matrices:

min
A,γγγ

C∑
j=1

C∑
j′=1

γjγj′
1

n2
t

nt∑
i=1

nt∑
i′=1

k(xti, x
t
i′)(RA)ij(RA)i′j′ (2.14)

− 2
C∑
j=1

γj
1

n2
t

nt∑
i=1

nt∑
i′=1

(RA)ijk(xti, x
t
i′) (2.15)

+ λf [−
C∑
c=1

2

nd∑
k=1

ξnewk,c

M∑
i=1

αki,ckµ(µ̂iX|Y=c, µ̂
new
X|Y=c)) (2.16)

+

nd∑
k=1

nd∑
k′=1

ξnewk,c ξ
new
k′,c

M∑
i=1

M∑
i′=1

αki,cα
k′

i′,ckµ(µ̂iX|Y=c, µ̂
i′

X|Y=c)] (2.17)

where kµ corresponds to the Gaussian kernel function used to perform Kernel PCA, and (RA):,i

denotes the i-th column of RA. We observe that kµ(µ̂newX|Y , µ̂
new
X|Y ) = 1, so we omit this term as

well. Here, nd represents the number of dimensions we use to reconstruct Φ(µ̂newX|Y=c) on the
low-dimensional manifold. For completeness, we fully expand the regularization term:

− 2
C∑
c=1

nd∑
k=1

M∑
i=1

M∑
j=1

αki,cα
k
j,ckµ(µ̂iX|Y=c, µ̂

new
X|Y=c)kµ(µ̂jX|Y=c, µ̂

new
X|Y=c)+

nd∑
k=1

nd∑
k′=1

M∑
j=1

M∑
j′=1

αkj,cα
k′

j′,ckµ(µ̂newX|Y=c, µ̂
j
X|Y=c)kµ(µ̂newX|Y=c, µ̂

j′

X|Y=c)
M∑
i=1

M∑
i′=1

αki,cα
k′

i′,ckµ(µ̂iX|Y=c, µ̂
i′

X|Y=c)

For simplicity, we assume binary classification and we differentiate with respect to one of the
columns of A (ex. the second row corresponding to the label 1, denoted by a1). To maintain
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clarity, we denote the above terms as T1,..,4 and we will differentiate each w.r.t a1. For the first
two terms T1 and T2 we have:

∂T1

∂a1

=
2

n2
t

[γ2

C∑
j′=1

γj′
nt∑
i=1

nt∑
i′=1

k(xti, x
t
i′)Ri,:(R

T
i′,:aj′) + γ2

2

nt∑
i=1

nt∑
i′=1

k(xti, x
t
i′)Ri,:(R

T
i′,:a1)] (2.18)

∂T2

∂a1

= 2γ2
1

n2
t

nt∑
i=1

nt∑
i′=1

k(xti, x
t
i′)Ri,: (2.19)

(2.20)

We now address the second two terms (T3 and T4) that correspond to the regularizer:

∂T3

∂a1

= −2
M∑
i=1

M∑
i′=1

[
∂kµ(µ̂newX|Y=c, µ̂

i
X|Y=c)

∂a1

kµ(µ̂newX|Y=c, µ̂
i′

X|Y=c)+ (2.21)

∂kµ(µ̂newX|Y=c, µ̂
i′

X|Y=c)

∂a1

kµ(µ̂newX|Y=c, µ̂
i
X|Y=c)]

nd∑
k=1

αki,cα
k
i′,c (2.22)

∂T4

∂a1

=

nd∑
k=1

nd∑
k′=1

M∑
i=1

M∑
i′=1

M∑
j=1

M∑
j′=1

αki,cα
k
i′,cα

k′

j α
k′

j′,c[[
∂kµ(µ̂newX|Y=c, µ̂

i
X|Y=c)

∂a1

kµ(µ̂newX|Y=c, µ̂
j
X|Y=c)+

(2.23)

∂kµ(µ̂newX|Y=c, µ̂
j
X|Y=c)

∂a1

kµ(µ̂newX|Y=c, µ̂
i
X|Y=c)] (2.24)

where:

∂kµ(µ̂newX|Y=c, µ̂
i
X|Y=c)

∂a1

= − 1

2σ2
(
(µ̂newX|Y=c)

T (µ̂iX|Y=c)

∂a1

+
(µ̂newX|Y=c)

T (µ̂newX|Y=c)

∂a1

)kµ(µ̂newX|Y=c, µ̂
i
X|Y=c)

(2.25)

(2.26)

and:

(µ̂newX|Y=c)
T (µ̂iX|Y=c)

∂a1

=
∂[ 1

ni1nt
1TKi,c

1 diag((RA):,1)1]

∂a1

(2.27)

=
∂[ 1

ni1nt
1TKi,c

1 (RA):,1]

∂a1

=
1

ni1nt
(Ki,c

1 R)T1 (2.28)

(µ̂newX|Y )T (µ̂newX|Y )

∂a1

=
∂[ 1

n2
t
1Tdiag((RA):,1Ktdiag((RA):,1)1]

∂a1

(2.29)

=
∂[ 1

n2
t
((RA):,1)TKt(RA):,1]

∂a1

=
1

n2
t

∂[aT1 R
TKtRa1]

∂a1

=
1

n2
t

2RTKtRa1 (2.30)

Here, Kt is the Gram matrix for the kernel mean embedding kernel of the target data, and Ki,c
1 is

the cross-kernel matrix between the target-domain data, and the data of source i with label 1. nt is
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the number of samples in the target domain, and ni1 is the number of samples in the i-th source
domain that have a label 1. Furthermore, for the mean embeddings of conditional distributions
conditioned on discrete labels, we have:

µ̂newX|Y=1 = [
1

nt
(ψ(xT )diag((RA):,1))1] (2.31)

µ̂iX|Y=1 = [
1

ni1
ψ(xT )1] (2.32)

Vectorization of Objective

We rewrite the objective function in terms of matrix operations:

min
γγγ,A

1

n2
t

γγγTFγγγ − 2

nt
γγγT (K1)T (RA) + λfR(A) (2.33)

where Fj,j′ = (RA)T:,j[(K1)� (RA):,j′ ]. R(A) represents a regularization term, now given by a
summation over labels:

C∑
c=1

||Φ(µ̂newX|Y=c)− PnΦ(µ̂newX|Y=c)||2 =
C∑
c=1

[kµ(µ̂newX|Y=c, µ̂
new
X|Y=c)− (2.34)

2

nd∑
k=1

αααkTc Dαααkc +

nd∑
k=1

nd∑
k′=1

(αααkTc Dαααk
′

c )(αααkTc K̃αααk
′

c )] (2.35)

kµ(µ̂newX|Y=c, µ̂
new
X|Y=c) = 1 so it is a constant we can ignore for the optimization. Here, Dij =

kµ(µ̂newX|Y=c, µ̂
i
X|Y=c)kµ(µ̂newX|Y=c, µ̂

j
X|Y=c), and K̃ is the Gram matrix over the embeddings of the

source domains. Now we write down the derivatives in vectorized form:

∂T1

∂a1

=
2γ1γ1γ1

nt
((Ra1)� (K1)TR +

2γ1γ1γ1

n2
t

K∑
j′=1

γj′((Raj′)� (K1)TR (2.36)

∂T2

∂a1

=
2γ1γ1γ1

n2
t

(K1)TR (2.37)

∂T3

∂a1

=

nd∑
k=1

αkT1 Qαk1 (2.38)

∂T4

∂a1

=

nd∑
k=1

αkT1 Qαk1α
kT
1 K̃αk1 (2.39)

where:

Qii′ = [
∂kµ(µ̂newX|Y=1, µ̂

i
X|Y=1)

∂a1

kµ(µ̂newX|Y=1, µ̂
i′

X|Y=1) +
∂kµ(µ̂newX|Y=1, µ̂

i′

X|Y=1)

∂a1

kµ(µ̂newX|Y=1, µ̂
i
X|Y=1)]

(2.40)

Having the first derivatives of the objective with respect to colums of A is sufficient for imple-
menting a barrier method using most packages (we used fmincon() in MATLAB), which then use
the first derivatives to approximate the second derivatives during optimization.
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2.6.2 Hyperparameter Tuning
Here we describe the hyperparameter settings in the baselines and the proposed method in the
experiments. For the "poolSVM" method, we tuned the slackness parameter and the kernel width
using 5-fold cross-validation on the pooled training data. For the "marg-kernel" method, we used
the optimal slackness and kX kernel width according to cross-validation via "poolSVM". For the
kP kernel, we varied the kernel width on a grid of values proportional to the median pairwise
distance of the training data pooled together. For each dataset, we present the results with a kP
kernel width with the best average performance. For the methods "dist-weight" and "dist-comb",
for all kernel mean embeddings we also tried several different values proportional to the median
pairwise distance of the training data, and we report the results corresponding to the kernel width
with best average performance for each respective baseline.

For our method, we set the kernel mean embedding kernel widths corresponding to k and
kµ, in the same manner as "dist-weight" and "dist-comb",with the only difference that we used
only 5 percent of the experiments in each dataset in order to pick kernel widths with the best
average performance, and then report the accuracies for all experiments using the selected kernel
widths. Regarding the other hyperparameters of our method, in all experiments we fixed σB to the
median pairwise distance of the data in the target domain. We kept λf = 1 and λR = 0.1.

2.7 Proofs of Theorems and Lemmata

2.7.1 Proof of Lemma 2
We restate the lemma here:

Let points φ1, ..., φM , be p-dimensional vectors (where p could be infinite). Let λ1, ..., λq be the set
of all non-zero eigenvalues after performing PCA on these vectors. If Pλ(φi) is the projection of
φi on the principal eigenvectors corresponding to λ1, ..., λq, then φi 6= φj ⇐⇒ Pλ(φi) 6= Pλ(φj)

Proof : Let φi 6= φj . Then expressing φi and φj in terms of a Fourier expansion on eigen-
vectors corresponding to the nonzero eigevalues (v1, ...,vq), we obtain Pλ(φi) =

∑q
k=1(φTi vk)vk,

Pλ(φj) =
∑q

k=1(φTj vk)vk, and there are no residual terms because the rest of the eigenvalues are
zero. Then it immediately follows that Pλ(φi) 6= Pλ(φj).

2.7.2 Proof of Theorem 2
We restate the theorem here:

Theorem 2 Let A1 and A2 hold, and η̂c be the weights such that P new
X|Y=c = P

η̂ηηc
X|Y=c is the recon-

structed distribution, namely P new
X|Y=c = B:,cP

T
X . If ∃ η̂ηηc s.t P T

X =
∑C

c=1 P
new
Y (Y = c)P

η̂ηηc
X|Y=c =∑C

c=1 γγγcP
η̂ηηc
X|Y=c, then we have ∀ c, P T

Y (Y = c) = γγγc and P η̂ηηcX|Y=c = P T
X|Y=c.
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Proof : Making use of A1 to express P T
X as P T

X =
∑C

c=1 P
T
Y (Y = c)P

ηηη∗c
X|Y=c. After solving

(6), we can achieve: P T
X = P new

X =⇒ ∑C
c=1 P

T
Y (Y = c)P

ηηη∗c
X|Y=c =

∑C
c=1 γγγcP

η̂ηηc
X|Y=c =⇒∑

c=1[γγγcP
η̂ηηc
X|Y=c−P T

Y (Y = c)P
ηηη∗c
X|Y=c] = 0. By A2 we can conclude that ∀ c, γγγcP η̂ηηcX|Y=c−P T

Y (Y =

c)P
ηηη∗c
X|Y=c = 0. Taking the integral of the last expression yields P T

Y (Y = c) = γγγc, and therefore

P
η̂ηηc
X|Y=c = P

ηηη∗c
X|Y=c = P T

X|Y=c.

33



34



Chapter 3

Low-Dimensional Density Ratio Estimation
for Covariate Shift Correction

Covariate shift is a prevalent setting for supervised learning in the wild when the training and test
data are drawn from different time periods, different but related domains, or via different sampling
strategies. This paper addresses a transfer learning setting, with covariate shift between source
and target domains. Most existing methods for correcting covariate shift exploit density ratios of
the features to reweight the source-domain data, and when the features are high-dimensional, the
estimated density ratios may suffer large estimation variances, leading to poor performance of
prediction under covariate shift. In this work, we investigate the dependence of covariate shift
correction performance on the dimensionality of the features, and propose a correction method that
finds a low-dimensional representation of the features, which takes into account feature relevant
to the target Y , and exploits the density ratio of this representation for importance reweighting.
We discuss the factors that affect the performance of our method, and demonstrate its capabilities
on both pseudo-real data and real-world applications.

3.1 Introduction

We are concerned with the learning problem where we are given labeled training (source-
domain) data (xtr1 , y

tr
1 ), ..., (xtrn , y

tr
ntr) ⊆ X × Y, generated from joint distribution P tr

XY , and
aim to find a function that can predict the target Y from the features X on test (target-domain)
data (xte1 , y

te
1 ), ..., (xten , y

te
nte) ⊆ X× Y, generated by P te

XY , where the labels yte are not observed.
While most off-the-shelf supervised learning algorithms assume that P tr

XY = P te
XY , this might

not be the case in practice. For example, consider the task of predicting a prognostic outcome in
cancer patient cohorts given abundant clinical and molecular data such as gene expression. The
data would often be collected from different populations and may be generated and processed
under different lab conditions for the training and test cohorts. In this case, assuming that the joint
distributions in the two domains are identical may lead to poor prediction performance.

Covariate shift (aka sample selection bias) (Heckman [56], Storkey [117], Zadrozny [140]) is
the transfer learning setting in which P tr

XY 6= P te
XY where the distribution of the features changes

between the training and test domains (P tr
X 6= P te

X ), with the assumption that P tr
Y |X = P te

Y |X .
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The general approach to accounting for this particular distribution difference is to re-weight the
source-domain labeled data such that the weighted data and the target-domain data have the
same distribution, and then incorporate this weight information into the appropriate supervised
learning procedure (Gretton et al. [50], Kanamori et al. [68], Sugiyama et al. [120], Yamada
et al. [138]). More formally, the goal is to the minimize the risk under the test data distribution,
given by Rte(l) = E(X,Y )∼P teXY [l(x, y; θ)]. Density ratio-based covariate shift correction aims
to find a re-weighting function β(x) such that the reweighted risk in the source domain given
by Rtr

β (l) = E(X,Y )∼P trXY [β(x)l(x, y; θ)] matches the risk under the test data distribution (i.e.

Rtr
β (l) = Rte(l)). The optimal function β is given by the density ratio β(x) =

P teX (x)

P trX (x)
.

In density ratio-based covariate shift correction, while β̂ is a consistent estimator of the density
ratio, it can suffer high variance in the finite sample case, as initially demonstrated in (Shimodaira
[106]). A key contributing factor to this variance in the estimate is the dimensionality of the
data, and this is very apparent if one attempts to estimate the densities pte(x) and ptr(x) from
data and then calculate their ratio. In high dimensions, dividing by an estimated quantity like
a density can amplify the error (Sugiyama et al. [122]). To avoid estimating the density and
performing the division explicitly, various methods have been developed to find the density ratio
directly via criteria such as moment matching (Gretton et al. [50]), KL divergence, (Sugiyama
et al. [120]), and relative Pearson divergence via least squares density estimation (Yamada et al.
[138]), and thus achieve better statistical and/or computational efficiency. However, even if β is
estimated very accurately, the prediction risk in the target domain may suffer high variance if the
dimensionality of the features is high. This indicates that reducing the data dimensionality may
improve prediction performance in the target domain.

To cope with this problem, there have also been efforts to reduce the dimensionality used
in estimating the density ratio by searching for a low-dimensional subspace where the marginal
distributions of the source and target domains are different; see, e.g., the method of Least-Squares
Hetero-distributional Subspace Search (LHSS) (Sugiyama et al. [121]). Another way to cope with
high dimensionality is by expanding the density ratio in terms of eigenfunctions of a kernel-based
operator (Izbicki et al. [64]). While these directions have shown improvements in estimating the
density ratio, they do not take into account the relevance of the features to the target variable
Y ; as a consequence, they may risk discarding useful information for prediction, and may still
have unnecessarily high variance in the estimated density ratio (e.g., consider the case where
a particular feature is independent from Y and the remaining features but has very different
distributions across domains). Finding alternative ways of reducing the dimensionality of the
features to improve prediction under covariate shift is our goal. Furthermore, the finite-sample
generalization bounds performed thus far focus on the effect of sample size in the source and
target domains. In this study, we extend some of these results and analyze them in terms of
dimensionality, in order to provide insight into the relationship between covariate shift correction
performance and the number of features.

3.1.1 Related Work

The theory of domain adaptation has been studied extensively in several settings; for instance,
see (Ben-David et al. [7, 8], Li and Bilmes [73]). There has also been a rich body of work done
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regarding covariate shift (sample selection bias) both from a theoretical and empirical points of
view. The consistency of the density ratio importance weights was established (Shimodaira [106]),
and it was demonstrated that in the finite sample scenario, the estimate suffers higher variance.
Sample selection bias was approached from a learning theoretic point of view (Zadrozny [140]),
and how various supervised learning algorithms behave was studied in this setting. Maximum-
entropy density estimation was also investigated under sample selection bias (Dudík et al. [33]).
As previously mentioned, several prior studies have attempted to avoid estimating the densities of
the target and source domains and calculating the ratio explicitly with various methodologies; see,
e.g., (Bickel et al. [10], Dai et al. [26], Huang et al. [62], Kanamori et al. [68], Sugiyama et al.
[120]). Regarding the theoretical properties of covariate shift correction, finite sample analyses of
the risk in the target domain have been conducted (Gretton et al. [50]), producing a transductive
bound of the empirical weighted risk for the kernel mean matching (KMM) method (this result
was stated in Corollary 1 below). Furthermore, the effects of the estimation error of β̂ on the
risk in the target domain have been analyzed for KMM (Cortes et al. [21]). The generalization
error under covariate shift has been provided without assuming boundedness on the weights β,
but instead assuming that the second moment is bounded (Cortes et al. [22]).

3.2 Motivation
To illustrate the problem more clearly, let us consider one of the main transductive results on the
empirical weighted risk in the training data, proven in (Gretton et al. [50]):

Corollary 1(Gretton et al. [50]) With probability 1 − δ the following bound on the expected
risk in the target domain holds:

sup
l(·,·,θ)
| 1

ntr

ntr∑
i=1

βil(x
tr
i , y

tr
i , θ)− EY |X [

1

nte

nte∑
i=1

l(xtei , y
te
i , θ)]|

≤ ||β||CR2 +
√

4 log(1/δ)

ntr
+

C(1 +
√

4 log(1/δ))R
√
B2/ntr + 1/nte,

where C and R are constants specific to the model class of l(·, ·, θ), and B is the upper bound of
β.

Now consider an example in which data were generated according to a simple model given by:
Xtr ∼ 0.5N([0, ..., 0]d,Σ)+0.5N([0.5, ..., 0.5]d,Σ),Xte ∼ 0.5N([1.5, ..., 1.5]d,Σ)+0.5N([2, ..., 2]d,Σ),
P (Y = 1|X) = sigmoid(X1 + 5 tan(X1)), where we can range d to explore the behavior of
importance re-weighting with varying dimensionality. One can appreciate that in this toy example,
the target Y only depends on the first feature X1. However, when we plot this bound, we see
that the variance of the empirical risk estimate grows with increasing dimensionality (as seen in
Figure 3.1b). Furthermore, there are additional difficulties that arise with the task of estimating β̂
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Figure 3.1: (a): Estimation L2 error of β in Gaussian mixture toy dataset (b): Term 1 of bound.
(c): Classification accuracy.

from data, in which the estimation error ||β − β̂||2 is also larger with increasing dimensionality,
as shown in Figure 3.1a. Finally, to observe the effect of these phenomena on prediction accuracy,
we plotted the classification accuracy using logistic regression for the above-mentioned dataset in
Figure 3.1c. It is clear that as the dimensionality increases, the prediction accuracy deteriorates.

Given these observations, a question arises: is there a way to automatically derive and
make use of the relevant low-dimensional representation of the features for the purpose of
covariate shift correction? If we could find such a low-dimensional representation to capture
all of the relevant information in the features X relative to the target Y , then we would be
able to perform covariate shift correction on this representation and enjoy a low variance and
high estimation accuracy of the importance weights, as well as low variance of the empirical
risk. Note that the target-domain risk can be expressed as the re-weighted source domain risk:
Rte(l) =

∫
P tr
XY ·

P teXY
P trXY

l(x, y; θ)dxdy =
∫
P tr
XY ·

P teX
P trX
l(x, y; θ)dxdy = Rtr

β (l). Given features
X ∈ RD, is it possible to find a function of the features X , h : RD → Rd such that the ratio
βh(x) = pte(h(x))

ptr(h(x))
can be used to express the target-domain risk in term of the re-weighted source

domain risk (i.e. such that Rte(l) = Rtr
βh

(l))?

3.3 A Low-Dimensional Reweighting Approach

Since covariate shift correction can suffer in high dimensions, the goal is to find a principled way
to represent X in a low-dimensional space, which means that for X ∈ RD, we need to find a
function h : RD → Rd s.t. D > d, such that βh(x) = pte(h(x))

ptr(h(x))
is a density ratio that can be used

to express the risk in the target domain in the population case. For this purpose, we develop the
following result, inspired by the idea of propensity score in causal effect estimation (Rosenbaum
and Rubin [98]). It identifies some key properties that an appropriate function h(x) needs to have.

Theorem 1: Suppose i) X ⊥⊥ Y |h(X) and that ii) the loss l(x, y, ; θ) can be rewritten as
lh(h(x), y, ; θ′), which involves h(x) instead of x. Then density ratio βh(x) = pte(h(x))

ptr(h(x))
and β(x) =

pte(x)
ptr(x)

are loss-equivalent for covariate shift correction, in the sense that E(X,Y )∼P teXY [l(x, y; θ)] =
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E(h(X),Y )∼P tr
h(X),Y

[β(h(x))lh(h(x), y; θ′)].

This result implies that βh := β(h(x)) is just as optimal as β in terms of minimizing the target-
domain risk in the infinite sample case, but h(X) could potentially have lower dimensionality and
thus avoid negative effects that high dimensionality has on prediction performance in the covariate
shift setting. Condition ii) will hold if the optimal function f(x) can be rewritten as a function of
h(x)–intuitively, if X ⊥⊥ Y |h(X), h(X) contains all information in X that is relevant to Y , and
hence the optimal prediction function f(x) is also a function of h(x). (The effect of the functional
class of f(x) will be discussed later.)

Now that we have established the main property required for h(X), we need to find a function
h that satisfies it. Thus, we identify two functions that satisfy these properties for the purposes of
classification and regression respectively, in the following proposition:

Proposition 1: Suppose Y is binary. Then h(X) = p(Y = 1|X) satisfies X ⊥⊥ Y |h(X).
Suppose Y is continuous and that Y = f(X) + ε, where ε is noise and is independent from X .
Then h(X) = E[Y |X].

In the covariate shift setting, the main premise is that although P (Y = 1|X) and E[Y |X]
do not change, they are too complex to be reliably estimated by a simple method from a finite
labeled sample in the source domain (otherwise, there would be no need for covariate shift
correction since P tr

Y |X = P te
Y |X). We need a way to estimate a rather simple function ĥ(X) that

satisfies the conditional independence property required by Theorem 1 using source-domain data.

3.3.1 Procedure for Approximating the Low-Dimensional Representation

Our approach involves finding a low-dimensional representation of X via a random vector
h(X) = h = [h1(X)...hd(X)], where d < D, such that X ⊥⊥ Y |h(X). We can use kernel meth-
ods and covariance operators in Hilbert Space to express the degree to which h(X) satisfies the
conditional independence property, which was widely applied in sufficient dimension reduction
(Fukumizu et al. [37], Suzuki and Sugiyama [124]).

We approximate h(X) by assuming that it is given by a linear transformation ĥ(X) = WTX ,
where W ∈ RD×d is a projection matrix to a d-dimensional space, then ĥ(X) can be found by
minimizing a magnitude of the conditional covariance operator ÛY Y |ĥ(X). In our case, we minize
the trace of this operator:

arg min
W

C(W) = Tr[ÛY Y |ĥ(X)] (3.1)

s.t. WTW = I (3.2)

After solving for W, we can use an out-of-box density ratio estimation procedure, to estimate β̂W
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d-dimensional space. In our procedure, we use Kernel Mean Matching:

β̂W = arg min
β
|| 1

ntr

ntr∑
i=1

βiφ(xtrWi)−
1

nte

nte∑
i=1

φ(xteWi)|| (3.3)

s.t. βi = [0, B],∀i, |
ntr∑
i=1

βi − ntr| ≤ ntrξ (3.4)

where a good value for ξ is O(B/
√
ntr) (Gretton et al. [50]). Thus, the procedure for finding the

importance weights using a low-dimensional representation of X consists of two steps:

(1) Use the source-domain labeled training data to solve problem in equation 3.1 to obtain
W such that Y ⊥⊥ X|WTX .

(2) Obtain β̂W by solving problem in equation 3.3 on the projected unlabeled data xW in
the source and target domains using the operator W.
After these two steps are completed, β̂W can be used along with the projections xWi, ..., .xWn

to do covariate shift correction and subsequently apply a supervised learning algorithm on the
reweighted projected source-domain data points.

An important design choice of this algorithm is d, the dimensionality of the projection WTX .
To select this value, we perform 5-fold cross-validation on the source-domain data, and select the
dimensionality that yields the lowest average cost C(W) (from equation 3.1) across the hold-out
samples.

3.4 Theoretical Analysis
In order to gain insight into the implications of dimensionality reduction on learning across do-
mains, we derived a transductive bound on the generalization error given by: |Rte(lβ̂W )−Rte(l∗)|,
where:

(1) Rte(l∗) is the optimal risk in the target domain and it is given by

Rte(l∗) = EY |X [
1

nte

nte∑
i=1

l∗(xtei , y
te
i , θ)]

for test data pairs (xte1 , y
te
1 ), ..., (xtente , y

te
nte), where l∗ = arg minl∈HR

te(l);

(2) Rte(lβ̂W ) is the true risk arising from the loss applied on reweighted and dimensionality-
reduced data using estimated weights β̂W , and it is given by

Rte(lβ̂W ) = EY |X [
1

nte

nte∑
i=1

lβ̂W (xtei , y
te
i , θ)].

Here, lβ̂W (xtei , y
te
i , θ) = l(hβ̂W (xtei ), ytei ), where hβ̂W is a hypothesis function on X that has been

learned from re-weighted projected training data using β̂W .
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(3) The expected risk in the target domain with projected features:

Rte
W (l) = EY |X [

1

nte

nte∑
i=1

l(W ᵀxtei , y
te
i , θ)],

with the optimal function l∗W = arg minl∈GR
te
W (l).

In order to derive the aforementioned transductive generalization bound, we rely on the following
assumptions which were initially also made by were first made in (Cortes et al. [21], Gretton et al.
[50]):

A1 The kernel k is a product kernel, and it satisfies k(x,y) =
∏d

i=1 k(x(i), y(i)). It is also
bounded: k(x,x) ≤ κ <∞.

A2 (Gretton et al. [50]): The loss function l(x, θ) satisfies: l(x, θ) = 〈Φ(X),Θ〉, and such that
Θ ≤ C. Similarly, l(x, y, θ) = 〈Ψ(x, y),Λ〉, where ||Λ|| ≤ C and ||Ψ(x, y)|| ≤ R,||Φ(x)|| ≤ R
(same constant is used for convenience). Thus, l(x, θ) and l(x, y, θ) each belong to a correspond-
ing RKHS. We shall further assume that this RKHS corresponds to a product kernel as defined in
A1. We also assume the loss l is σ-admissible, as defined by Cortes et al. (Cortes et al. [21]), and
differentiable. We provide more detail on this assumption in the Appendix, and it is satisfied by
many loss functions including the quadratic cost.

A3 The features after projection wT1 X, ..., w
T
dX , where wi is the i-th column of W, are in-

dependent.

This is assumed for the sake of simplicity of the analysis (if needed, one can further apply
a linear transformation to make the outputs independent). Using these quantities defined in the
target domain along with the assumptions stated above, we provide a bound on the generalization
error in terms of the dimensionality of the features X:

Theorem 2: Assume that A1, A2 and A3 hold and let for each projected feature i, ||βW (wTi x)||22 ≤
Q, βW (wTi x) ≤ T ∀i ∈ 1, ..., d. Furthermore, let the importance weights β̂W be a result of the
KMM procedure using a feature map Φ : X→ H which corresponds to a kernel function k that
satisfies A1, and such that ||Φ(Xj)|| ≤ U ∀j ∈ 1, ..., d. Let K be the kernel Gram matrix for
kernel k, K1, K2,...,Kd be the kernel Gram matrices of k(xT, yT), .., k(x(d), y(d)) respectively, and
let λ̃ be the smallest among the minimum eigenvalues λmin(K1), ..., λmin(Kd). Then with probability
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1− δ the following bound in the target domain holds:

|Rte(lβ̂W )−Rte(l∗)| ≤ |Rte(l∗W )−Rte(l∗)|+
(2 +

√
2 log(6/δ))CUd

ntr√
Qd

+ C(1 +
√

2 log(6/δ))Ud
√
T 2d/ntr + 1/nte

+
σ2κ2

λ
(
ξT d√
ntr

+
κ

1
2

λ̃d/2

√
T 2d

ntr
+

1

nte
(1 +

√
2 log(6/δ))),

where λ is a hyper-parameter that controls regularization over the hypothesis set. The first term
on the RHS corresponds to the bias that arises from the difference between the optimal hypothesis
function given by covariate shift correction in the original D-dimensional space and the one
given by covariate shift correction in the reduced d-dimensional space (our method). The second
and third terms correspond to the variance of the empirical risk estimate, and the fourth term
corresponds to the estimation error in β̂W .

We can see from this bound that the dimensionality of the dataset is present in each term. Let
us first assume that there is no bias in covariate shift correction after dimensionality reduction. For
instance, consider an example where the true generating process for Y is Y = f(RTX)+ε, where
E[ε] = 0. This implies thatX ⊥⊥ Y |RTX . Let the sample size be infinite. Suppose that we use the
correct functional form for prediction, resulting in the optimal function under original covariate
shift correction (using all of the features) given by Ŷ = f ∗(R∗TX), where R∗ is a projection
matrix and f ∗ is a nonlinear function. Our method can find W such that X ⊥⊥ Y |WTX , so it
follows that:

P (Y |RTX) = P (Y |RTX,X) = P (Y |WTX,X) = P (Y |WTX)

(because the information of WTX and RTX is contained in X and because of the conditional
independence relations). This implies that we have f ′ such that E(Y |RTX) = E(Y |WTX),
indicating that the optimal decision function under the original covariate shift setting and the one
after dimensionality reduction are the same. This means that f ∗(R∗TX) = f ′(WTX). Therefore,
one only needs to use a low-dimensional representation WTX and learn f ′ instead of using all of
the features of X and learn both R and f ∗. If f ′ and f ∗ are in the same function class, there will
be no bias, implying that the first term of the RHS will be equal to 0. In this case, the first term in
the risk will vanish.

One should note, however, that there are cases in which performing dimensionality reduction
with a linear transformation can incur large bias. Consider the case where X has two variables,
and the generating process is X2 = X3

1 + ε1, Y = X
1/3
2 + ε2. If under covariate shift, we use a

linear model to predict Y, then both X1 and X2 are relevant. However, our method would select
only feature X2, which has a nonlinear relationship in Y , resulting in a large bias.

Even though in certain cases our method can have some bias, it can enjoy smaller variance in
the risk estimate and smaller estimation error of the weights as a result of low dimensionality. First,
the effective sample size M := n2

tr/||β||2 ≥ n2
tr/Q

d in the second term, as defined by Gretton et
al. (Gretton et al. [50]), can get exponentially smaller as d increases, which explains one of the
main reasons why performance may suffer in the target domain when the dimensionality of the
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data is high. d is also present in the exponent of constants T and U in the second and third term.
This means that the variance increases exponentially with respect to d.

Furthermore, the estimation error of the weights βW also gets exponentially larger as d
increases, as can be seen in the third term of the RHS. In the denominator, we have the value λ̃d/2,
which is the minimum of the smallest eigenvalues corresponding to the kernel Gram matrices for
each feature. This number can often be smaller than 1. For example, for the Gaussian RBF kernel
this is guaranteed unless the kernel width used is so small that the kernel Gram matrix becomes
the identity matrix. This follows from the fact that for the RBF kernel, Tr(K) = n =

∑n
i=1 λi(K)

where λi(K) is the i-th largest eigenvalue, thus guaranteeing that λmin < 1 if there is more than
one unique eigenvalue.

3.5 Empirical Evaluation
For the purposes of evaluating our method we performed experiments on both pseudo-real and
real-world data: T for pseudo-real regression datasets, we created a source domain and a target
domain from real datasets with an artificial sample selection bias, and (2) two real datasets consists
of a classification problem and a regression problem. We compare our method, i.e., finding the
low-dimensional representation WTX and using it to compute the importance weights, with four
prediction schemes, including: (i) no reweighting, which treats both the source and the target
domains as if they came from the same distribution, (ii) using all the features to compute the
importance weights (corresponding to original covariate shift correction), (iii) LHSS (Sugiyama
et al. [121]), as a marginal distribution-based dimensionality reduction method, and (iv) using a
low-dimensional representation obtained by performing PCA and its density ratio for covariate
shift correction. For computing importance weights in schemes (ii) and (iii), we used the three
above-mentioned algorithms: KMM ((Huang et al. [62])), KLIEP ((Sugiyama et al. [120])) and
RuLSIF (Yamada et al. [138]), which were briefly described in the Related Work section above.
We obtained the code for each of these baselines, and ran it on our datasets after tuning the
methods to the best of our ability.

3.5.1 Pseudo-Real Data Experiments
We used benchmark regression datasets1 to generate pseudo-real data, which were also used
in (Huang et al. [62]) and (Cortes et al. [21]). We biased the data in the following way, as in
(Cortes et al. [21]). We made use of a sample selection variable s, and we calculate a conditional
probability of selecting a data point to be observed in the source domain given its features as
p(s = 1|x) = ev

1+ev
, where v = 4w·(x−x̄)

σw·(x−x̄)
and where w is a random projection vector chosen

uniformly from [−1, 1]d. As done in (Cortes et al. [21]), we chose random directions w such that
the selection probabilities yield sufficiently different performance between using no weights and
using an ideal weight given by β(x) = 1

P (s=1|x)
, thus ensuring that the biased dataset is a good

candidate dataset for covariate shift correction. We performed this biased sampling scheme on 10
random subsamples of size 2000 from each of the original datasets.

1https://www.dcc.fc.up.pt/ ltorgo/Regression/DataSets.html
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We performed covariate shift correction on these biased datasets using the above-mentioned
approaches and used KRR for regression; we present these results on Table 3.1 in terms of
normalized mean-squared error (NMSE): 1

nte

∑nte
i=1

(yi−ŷi)2

σ2
y

, as performed in (Cortes et al. [21]).

Regarding hyperparameters selection, here for KRR we used a kernel width σr =
√

D
2

where
D is the number of features of the dataset, as done in (Cortes et al. [21]) (please see Appendix
for more details on hyper-parameter settings). When using PCA for the baselines, we either
reduced the dimensionality to 95 percent of the cumulative energy content or to the same number
of dimensions used by our method, and report the best results. A table with standard deviations is
included in the Appendix due to space constraints.
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Ailerons 2.26 2.01 2.09 2.18 2.06 2.72 2.74 2.81 0.92 9 40 0.0010
Bank32NH 0.79 0.79 0.82 0.78 0.73 0.91 0.92 0.91 0.62 11 32 0.0527
Bank8FM 0.81 0.78 0.84 0.79 0.74 0.92 0.99 0.99 0.32 1 8 0.0010
Abalone 0.99 0.87 0.90 0.95 0.85 1.27 1.05 0.96 0.87 7 7 0.7842
Elevators 1.14 1.02 1.07 1.12 1.02 1.50 1.10 1.12 1.02 16 18 0.4229
CPU-
Act

1.56 1.29 1.46 1.44 1.36 2.12 2.10 2.22 0.53 13 21 0.0010

California 0.99 0.93 1.00 0.99 0.94 1.21 1.55 1.23 0.78 5 8 0.0049
Puma8NH 0.45 0.38 0.43 0.44 0.38 0.74 0.74 0.74 0.33 3 8 0.0049

Table 3.1: NMSE results on the baselines and the proposed method, on the pseudo-synthetic
datasets. The methods with the suffix "-all" use all the features to calculate importance weights.
The "-PCA" suffix means that PCA was used to represent the data in lower dimensions before
estimating the weights β̂; the suffix "-W" means that the proposed low-dimensional representation
given by WTX.

There are several take-aways from these experimental results. One can appreciate that the
proposed method outperforms the baselines in the majority of the datasets, and it does so by a
large margin. In the cases in which it does not outperform the baselines (such as "Abalone" and
"Elevators"), it selects almost all the features and reduces to regular covariate shift correction.
This may be because on these datasets, h(X) s.t. X ⊥⊥ Y |h(X) cannot be summarized in a
lower-dimensional linear projection of X .

Furthermore, we see that on these datasets PCA as a dimensionality reduction technique is
not effective for the purposes of covariate shift correction. This unreliability as a method for
covariate shift correction likely comes from the fact that PCA does not take into account the
relationship of the dimensions of X with the target Y , and thus is likely to disregard relevant
features that explain less of the variance in the data.
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Unweight. KMM KLIEP RuLSIF LHSS KMM-
W

p-value

T1 → T2 95.4(0.9) 95.2(0.6) 95.7(0.6) 95.8(0.6) 95.9(0.6) 97.3(0.4) 0.014
T2 → T1 90(1.2) 92.4(1.2) 91.4(1.3) 91.2(1.2) 91.7(1.3) 94.8(0.7) 0.006
M → F 94.4(1.0) 95.4(0.8) 93.5(1.1) 92.8(1.5) 95.1(0.7) 95.4(0.9) 0.548
F →M 91(1.5) 92.1(1.1) 90.4(2.1) 90.9(2) 92.7(0.8) 93.7(1.0) 0.082

Table 3.2: SVM accuracy results on the baselines and the proposed method on the cancer gene
expression dataset. We performed PCA on the data before testing all of the baselines and the
proposed method, due to the high dimensionality of the original dataset. Standard error is in
parentheses.

Direction UnweightedKMM KLIEP RuLSIF LHSS KMM-
W

p-value

A→ C 75.93(1.1) 75.67(1.2) 76.27(1.1) 75.8(1.1) 75(1.4) 74.27(1.9) 0.746
A→ D 76.6(1.5) 75.53(1.5) 77.33(1.8) 75.33(1.1) 70.93(1.8) 70.27(3.8) 0.96
A→ W 67(1.9) 66.67(1.8) 66.47(1.9) 66.4(2) 62.67(2.2) 71.67(1.9) 0.037
C → A 86.93(1.6) 86.13(1.2) 86.87(2.3) 88.53(0.9) 86.27T 88.4(0.5) 0.535
C → D 78.2(1.1) 77.53(1.8) 77.53(1.2) 78.2(1.3) 73.8(3.2) 77.13(2.1) 0.582
C → W 67.07(1.8) 68(1.7) 67.73(1.8) 67.8(2.1) 66.27(1.8) 73.27(1.8) 0.009
D → A 75.8(1.3) 78.93(1.4) 77.47(1.2) 78.87(1.3) 71.8(1.1) 83.87(0.9) 0.005
D → C 63(1.2) 67.67(1.2) 67.53(1.6) 67.6(1.1) 60.53(1.5) 71.33(0.9) 0.001
D → W 93.67(0.6) 96.33(0.8) 96.4(0.9) 96.47(0.9) 93.27(0.8) 95.8(0.8) 0.891
W → A 71.33(0.8) 70.33(0.8) 71.13(0.7) 71.13(0.9) 71.4(0.6) 72.27(2.3) 0.191
W → C 63.87(1.5) 65.53(1.5) 65.6(2.1) 64.8(2) 63.13(1.5) 70.93(1.3) 0.041
W → D 97.53(0.4) 97.6(0.4) 97.4(0.3) 97.27(0.4) 96.93(0.5) 97.8(0.3) 0.445

Table 3.3: SVM accuracy results on the baselines and the proposed method on the Office-Caltech
dataset. Here we did PCA on all baselines before performing covariate shift, due to the high
dimensionality of the dataset.

3.5.2 Experiments on Real Data
In order to further examine the efficacy of our approach, we performed experiments on two real
datasets. In addition to the object recognition task, we also performed experiments on a publicly
available cancer gene expression dataset, provided by The Cancer Genome Atlas (TCGA) Network
2. The data were collected from large set of patients with five different tumor types (colon cancer,
breast cancer, stomach cancer, glioblastoma, and kidney cancer), and various clinical parameters
were collected for each patient. In this dataset, each patient is a data point, and the features are
20531 annotated genes. This dataset is very high-dimensional, yet the task is simple and boils
down to identifying the different organs where the tumor took place, which can be identified by
a limited set of genes (features). We performed prediction of the tumor type based on the gene

2http://cancergenome.nih.gov/ and http://firebrowse.org
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expression profile across domains, which are obtained as follows.
The different domain subdivisions we consider are time (patients diagnosed before and after

the year of 2008), and gender (excluding breast cancer). For both domain subdivisions, there may
be an overall change in the distribution of gene expression, i.e., P source(X) 6= P target(X). For
example, methodologies of collecting biopsies and measuring gene expression evolve over time.
Similarly, the overall gene expression profile across genders may be different due to different
epigenetic factors. Furthermore, it is safe to assume that P source(Y |X) = P target(Y |X), because
various time points at which the patients were diagnosed or their gender, are not supposed to
affect the biology of the tumor tissue. Therefore, this dataset and task correspond to the covariate
shift setting.

Before running each method, we performed PCA as a pre-processing step. We tested our method
against LHSS and SVM without re-weighting, on the PCA-derived features. We also ran the
baselines KMM, KLIEP, and RuLSIF by using: (1) all n− 1 PCA-derived features for estimating
the weights (that is the highest possible number of features since D > n in the original dataset),
(2) the dimensions corresponding to the 95 percent of the cumulative energy content, (3) the same
number of dimensions that our method selected. For the baselines, we report best accuracy of the
three dimensionality reduction schemes. For each transfer direction we performed 20 replicates,
in each of which we subsample 50 points in each domain, and the average accuracies for each
direction are reported in Table 3.2. The dimensionality of our method selected was d = 3 in all
transfer directions. The results show that our method outperforms the baselines in three of the four
transfer directions with statistical significance, and in one of them it ties with the KMM baseline.

In addition to the cancer dataset, we also evaluated our method on the Office-Caltech
datase (Gong et al. [41]), and it is concerned with the task of object recognition. This dataset was
constructed from two prior datasets: Office (Saenko et al. [100]) and Caltech (Griffin et al. [52]),
and has four domains with images: Amazon images, webcam (low-resolution), DSLR (high-
resolution), and Caltech-256. We used the DeCAF6 features extracted by a convolutional neural
network described in (Donahue et al. [30]). We conducted experiments with each source-target
ordered pair of the domains in this dataset, using SVM to classify the data after covariate shift
correction. Since each data point (image) in this dataset has 4096 CNN features, PCA was used for
preprocessing. For each transfer direction, we performed 10 replicate experiments by subsampling
150 points in the corresponding source and target domains. We used the same experimental setting
as in the cancer dataset. However, we note that different from the cancer data, in this dataset
the assumption of covariate shift may not hold true: p(Y |X) may change across the domains, in
which the images were collected under different conditions.

In order to fully assess the reliability of our method, for each baseline we used SVM classifi-
cation in which we either set the kernel width and the slackness parameter C to fixed values and
assuming a misspecified model, or selected them via 5-fold CV. We reported the best accuracy of
the two options. For our method we used a simple model, where we set a kernel width proportional
to the median pairwise distance of all the unlabeled data points (with constants of proportionality
4 and 1 for the cancer and the Office-Caltech datasets respectively), and fixing C = 10.

The average accuracies for each experiment are given in Table 3.3. It shows that our method
outperforms the baselines in 6 of the settings. In the settings where our method does not outperform
the baselines, it is either tied with at least one more of the baselines, or there is no single baseline
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that significantly outperforms the others. These results suggest that even when the covariate
shift assumption is likely to be violated, our method still reliably improves the accuracy. For all
source-target domain pairs, the most often selected dimensionality by our method was 10.

3.6 Discussion

This study aimed to tackle dimensionality reduction for covariate shift correction, by taking into
account the target variable Y and the features that are relevant for predicting it. We provided some
theoretical insights in terms of the role that high dimensionality plays in poor generalization in
the target domain. We focused on a linear projection as the low-dimensional representation of
X . However, this might not satisfy the conditional independence properties for some datasets,
and the importance weights derived from this representation may not be as useful. This may have
contributed to the cases in our experiments when using all features performed better than using
the W projection to reduce the dimensionality. A potentially fruitful future direction of research
would be to develop methodology which can identify nonlinear functions of X that satisfy the
necessary conditional independence property and reduce the dimensionality efficiently, as this
would broaden the applicability of this type of approach to more domains and datasets. Another
line of our future work is to extend the idea to hand other settings for domain adaptation, such as
target shift (Zhang et al. [148]).

3.7 Proofs of Theoretical Results

In this appendix we provide proofs for some theoretical results in this chapter.

3.7.1 Proofs of Theorem 1 and Proposition 1

1. Proof for Theorem 1

Proof: If the conditions in the theorem hold true, we can rewrite the expected loss as fol-
lows:

lPXY [f ] , EPXY [l(f(X), Y )]

=

∫
l(f(x), y)p(y|x)p(x)dxdy

=

∫
lh(f̃(h(x)), y)p(y|x, h(x))p(x|h(x))p(h(x))dhdxdy

=

∫
lh(f̃(h(x)), y)p(y|h(x))p(h(x))dhdy.

Since pte(y|x) = ptr(y|x), implied by the covariate shift setting, and p(y|h(x)) = p(y|h(x), x) =

p(y|x), we have pte(y|h(x)) = ptr(y|h(x)). Let β(h) , pte(h(x))
ptr(h(x))

, and the expected loss in the
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target domain, lP teXY [f ], further becomes

lP teXY [f ] =

∫
lh(f̃(h(x)), y)pte(y|h(x))pte(h(x))β(h)dhdy

=

∫
lh(f̃(h(x)), y)ptr(y|h(x))ptr(h(x))β(h)dhdy

= EP trXY [lh(f̃(h(x)), y)β(h)].

�

2. We also present a proof for Proposition 1

Proof: For the case when Y is binary, we have: p(Y = 1 |X) = p(Y = 1 |X, h(X)) =
h(X) = p(Y = 1 |h(X)), and similarly p(Y = 0 |X) = p(Y = 0 |X, h(X)) = 1 − h(X) =
p(Y = 0 |h(X)). For the case when Y is continuous, it follows trivially because f(X) = E[Y |X],
and Y ⊥⊥ f(X)|f(X), which implies that Y ⊥⊥ X|f(X) due to the fact that X and ε are indepen-
dent. �

3.7.2 Proof of Theorem 2
We shall first introduce some relevant quantities:
• Expected risk in target domain

Rte(l) = Ey|x[
1

nte

nte∑
i=1

l(xtei , y
te
i , θ)],

the optimal function l∗ = arg minl∈GR
te(l)

• Expected risk in the target domain with projected features

Rte
W (l) = Ey|x[

1

nte

nte∑
i=1

l(W ᵀxtei , y
te
i , θ)],

the optimal function l∗W = arg minl∈GR
te
W (l)

• Expected risk in the weighted source domain with original features

Rtr
β (l) = Ey|x[

1

ntr

ntr∑
i=1

βil(x
tr
i , y

tr
i , θ)],

the estimated function l∗β = arg minl∈GR
tr
β (l)

• Expected risk in the weighted source domain with projected features

Rtr
βW

(l) = Ey|x[
1

ntr

ntr∑
i=1

βW,il(W
ᵀxtri , y

tr
i , θ)],

the estimated function l∗βW = arg minl∈GR
tr
βW

(l)
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• Empirical risk in the weighted source domain with true weights

R̂tr
β (l) =

1

ntr

ntr∑
i=1

βil(x
tr
i , y

tr
i , θ),

the estimated function lβ = arg minl∈G R̂
tr
β (l)

• Empirical risk in the weighted source domain with projected features and true weights

R̂tr
βW

(l) =
1

ntr

ntr∑
i=1

βW,il(W
ᵀxtri , y

tr
i , θ),

the estimated function lβW = arg minl∈G R̂
tr
βW

(l)

• Empirical risk in the weighted source domain with original features and estimated weights

R̂tr
β̂

(l) =
1

ntr

ntr∑
i=1

β̂il(x
tr
i , y

tr
i , θ),

the estimated function lβ̂ = arg minl∈G R̂
tr
β̂

(l)

• Empirical risk in the weighted source domain with projected features and estimated weights

R̂tr
β̂W

(l) =
1

ntr

ntr∑
i=1

β̂W,il(W
ᵀxtri , y

tr
i , θ)

, the estimated function lβ̂W = arg minl∈G R̂
tr
β̂W

(l)

Before we proceed to the proof of Theorem 2, we present some lemmata that are required to
analyze the generalization in the target domain. We we also need a general variant of A3:

A3’: The features of X, given by X1, ..., XD are independent.

Both of them are proven assuming we have features X , in with D dimensions.

We first introduce a lemma which is a modification of the result by Gretton et al., in which
we analyze the impact of dimensionality on the variance of the empirical weighted risk in the
source domain, under the assumptions made in this study. Please note that we prove the lemmata
assuming an input feature space of D, regardless if it is an original feature space of observations
or a result of a transformation.

Lemma 1 (Adapted from Corollary 1.9 in Gretton et al): Assume A1, A2 and A3’ hold. Then the
following bound on the reweighted risk in the source domain holds with probability at least 1− δ:

sup
l∈G
|R̂tr

β (l)−Rte(l)| = | 1

ntr

ntr∑
i=1

βil(x
tr
i , y

tr
i , θ)− EY |X [

1

nte

ntr∑
i=1

l(xtei , y
te
i , θ)]| ≤ (3.5)

(2 +
√

4 log(1/δ))CUD

ntr√
QD

+ C(1 +
√

4 log(1/δ))UD
√
T 2D/ntr + 1/nte (3.6)
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Proof: The proof will examine the constants R, B and provide an upper bound on ||β||2, which
can then be used to modify the bound in the corollary by Gretton et al. Assume for now that
all the dimensions of X are independent: p(x) =

∏D
i=1 p(x

(i)). This means that the weights on
all the features β(x) = β(x(1))β(x(2))...β(x(D)). Therefore, the squared norm of the weights
is: ||β(x)||22 =

∫
β(x)2dx =

∫ ∏D
i=1 β(x(i))2dx =

∏D
i=1

∫
β(x(i))2dx =

∏D
i=1 ||β(x(i))||22 ≤ QD

where the third equality is due to the independence of the features.

Furthermore, from the assumptions on the feature transform Φ and its corresponding repro-
ducing kernel k, we see that ||Φ(Xi)||2 ≤ R2 =⇒ k(xi, xi) ≤ R2 ∀i ∈ {1, ..., D} =⇒
k(x,x) ≤ U2D =⇒ ||Φ(x)|| ≤ UD, meaning we can substitute R with Ud in the bound. By the
same derivation, ||Ψ(x,y)|| ≤ UD as well.

Finally, it can be easily seen that from the assumption of independence of the features, β(xi) ≤ T
∀i ∈ {1, ..., D} =⇒ β(X) ≤ TD.

Plugging the bound on ||β(x)||22 ≤ QD, UD for R, and TD for B in the bound by Gretton
et al. yields the result. �

In addition to the variance of the empirical weighted risk in the source domain, another component
that is important for analysis of the generalization in the target domain is the estimation error
of the weights obtained by KMM, given by β̂. For this purpose, we analyze the role of the
dimensionality on the estimation error as studied by Theorem 4 in Cortes et al. (Cortes et al.
[21]). We first restate the formal definition of admissibility given by Cortes et al. (Cortes et al. [21])

Definition 1:(Cortes et al. [21])Let H be a hypothesis set. The loss l is σ-admissible if there exists
σ ∈ R+ such that for any two hypotheses h, h′ ∈ H and for all (x, y) ∈ X × Y ,

|l(x, y, h)− l(x, y, h′)| ≤ σ|h(x)− h′(x)|
We now present Theorem 4 proved by Cortes et al (Cortes et al. [21]), before we analyze it in

terms of the dimensionality of the dataset:

Theorem 4(Cortes et al. [21]) Let k be a strictly positive definite symmetric universal kernel
suck that k(x, x) ≤ κ <∞. Let hβ be the hypothesis returned by a kernel-based regularization
algorithm using a weighted sample Sβ using weights β, and let ĥβ be a hypothesis obtained
the same way using a weighted sample Sβ̂ with weights β̂. Let lβ be the loss on a hypothesis
function hβ and let lβ̂ be the loss on hypothesis function hβ̂, where the loss function l(·, ·, h) is
σ-admissible. Then, for any δ > 0 with probability at least 1− δ, the difference in generalization
error of the hypotheses is bounded as:

|R(lβ)−R(lβ̂)| = σ2κ2

λ
(
ξB√
ntr

+
κ

1
2

λ
1
2
min(K)

√
B2

ntr
+

1

nte
(1 +

√
2 log(

2

δ
))) (3.7)

Now we can make use of this estimation error result and analyze it in terms of dimensinality in
the following lemma :
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Lemma 2: Let the σ-admissibility assumption hold on the loss function l(·, ·, θ), and let as-
sumptions A1, A2 and A3 hold. Let k be a kernel function that satisfies A2, and such that
||Φ(Xj)|| ≤ U ∀j ∈ 1, ..., d. Let K be the kernel Gram matrix for kernel k, K1, K2,...,Kd be the
kernel Gram matrices of k(x(1), y(1)), .., k(x(d), y(d)) respectively, and let λ̃ be the smallest among
the minimum eigenvalues λmin(K1), ..., λmin(Kd). Then the following bound on the estimation error
of the risk in the test domain holds:

|Rte(lβ̂)−Rte(lβ)| ≤ σ2κ2

λ
(
ξT d√
ntr

+
κ

1
2

λ̃
d
2

√
T 2d

ntr
+

1

nte
(1 +

√
2 log(

2

δ
))) (3.8)

Proof: Since k satisfies A1, from the positive-semidefinite property of the kernel gram matrix,
the following holds:

λmin(K) ≥ λmin(K1...Kd) ≥
d∏
i=1

λmin(Ki) ≥ λ̃d

Thus, we can insert λ̃d for λmin(K) in the bound by Cortes et al (Cortes et al. [21]) to obtain the
result. Similarly, we can insert T d for B with the same argument used in the proof of Lemma 1. �

Now that we have the bounds on the variance of the empirical risk in the source domain and the
estimation error of β, we can combine them to prove Theorem 2 which we presented in the main
text, and we restate here:

Theorem 2: Assume that A1, A2 and A3 hold and let for each feature i, ||βW (x(i))||22 ≤
Q, βW (x(i)) ≤ T ∀i ∈ 1, ..., d. Furthermore, let the importance weights βW be a result of
the KMM procedure using a feature map Φ : X→ H which corresponds to a kernel function k
that satisfies A1, and such that ||Φ(Xj)|| ≤ U ∀j ∈ 1, ..., d. Let K be the kernel Gram matrix
for kernel k, K1, K2,...,Kd be the kernel Gram matrices of k(x(1), y(1)), .., k(x(d), y(d)) respec-
tively, and let λ̃ be the smallest among the minimum eigenvalues λmin(K1), ..., λmin(Kd). Then the
generalization bound in the target domain satisfies:

|Rte(lβ̂W )−Rte(l∗)| ≤|Rte(l∗W )−Rte(l∗)|+ (2 +
√

2 log(6/δ))CUd

ntr√
Qd

+ C(1 +
√

2 log(6/δ))Ud
√
T 2d/ntr + 1/nte

+
σ2κ2

λ
(
ξT d√
ntr

+
κ

1
2

λ̃d/2

√
T 2d

ntr
+

1

nte
(1 +

√
2 log(6/δ)))
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Proof: By expanding the risk in the target domain and using triangle inequality, we have:

|Rte(lβ̂W )−Rte(l∗)|
=|Rte(lβ̂W )−Rte(lβW ) +Rte(lβW )−Rtr

βW
(lβW ) (3.9)

+Rtr
βW

(lβW )−Rtr
βW

(l∗βW ) +Rtr
βW

(l∗βW )−Rte(l∗W ) +Rte(l∗W )−Rte(l∗)|
≤|Rte(lβ̂W )−Rte(lβW )|+ |Rte(lβW )−Rtr

βW
(lβW )|+ |Rtr

βW
(lβW ) (3.10)

−Rtr
βW

(l∗βW )|+ |Rtr
βW

(l∗βW )−Rte(l∗W )|+ |Rte(l∗W )−Rte(l∗)|
≤|Rte(lβ̂W )−Rte(lβW )|+ 2 sup

l∈G
|R̂tr

βW
(l)−Rtr

βW
(l)| (3.11)

+ 2 sup
l∈G
|Rtr

βW
(l)−Rte(l)|+ |Rte(l∗W )−Rte(l∗)|

≤|Rte(l∗W )−Rte(l∗)|+ |Rte(lβ̂W )−Rte(lβW )|+ 2 sup
l∈G
|R̂tr

βW
(l)−Rte(l)| (3.12)

Substituting the bound of Lemma 1 for the second term in the RHS, and the bound of Lemma 2 in
the first term of the RHS yields the final result. �

3.7.3 Covariance Operators
In the main text we discussed estimating the trace of the conditional covariance operator. It can be
empirically estimated as (using notation as defined in the main text):

Tr[ÛY Y |ĥ(X)]

= Tr[ÛY Y ]− Tr[ÛY,ĥ(X)Û
−1

ĥ(X),ĥ(X)
Ûĥ(X),Y ]

=
1

ntr
Tr[ρ(Y)ρ(Y)T ]− 1

ntr
Tr[ρ(Y)φ(ĥ(X))T (φ(ĥ(X))φ(ĥ(X))T + ntrεI)

−1φ(ĥ(X))ρ(Y)T ],

where ε is a small number to prevent ill conditioning of the matrix, and fixed to 0.01.
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Chapter 4

Domain Adaptation with Invariant
Representation Learning: What
Transformations to Learn?

Unsupervised domain adaptation, as a prevalent transfer learning setting, spans many real-world
applications. With the increasing representational power and applicability of neural networks,
state-of-the-art domain adaptation methods make use of deep architectures to map the input
features X to a latent representation Z that has the same marginal distribution across domains.
This has been shown to be insufficient for generating optimal representation for classification,
and to find conditionally invariant representations, usually strong assumptions are needed. We
provide reasoning why when the supports of the source and target data from overlap, any map of
X that is fixed across domains may not be suitable for domain adaptation via invariant features.
Furthermore, we develop an efficient technique in which the optimal map from X to Z also takes
domain-specific information as input, in addition to the features X . By using the property of
minimal changes of causal mechanisms across domains, our model also takes into account the
domain-specific information to ensure that the latent representation Z does not discard valuable
information about Y . We demonstrate the efficacy of our method via synthetic and real-world
data experiments.

4.1 Introduction

Unsupervised domain adaptation (UDA) is a common setting for supervised learning, in which
the labeled training and unlabeled test data come from different distributions. More formally,
given features X ∈ Rd and labels Y ∈ R, we observe labeled source and unlabeled target
domain instances, represented by (xS,yS) = (xS

k, y
S
k)
mS
k=1 and xT = (xT)mTk=1 respectively, where

P S(X, Y ) 6= P T(X, Y ) (and mS and mT are the number of observations of the source and target
domain instances, respectively). The main challenge of domain adaptation is to use the given
source domain observations for learning a predictor that will perform well in the target domain.
To do so, the procedure needs to make use of some similarities between the two domains. One
way to formalize this is by making assumptions about how the joint distribution joint P (X, Y )
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changes across domains. For example, in the well-studied setting of covariate shift (Ben-David
et al. [5], Cortes et al. [20], Huang et al. [61], Shimodaira [105], Sugiyama et al. [119], Zadrozny
[139]), the marginal distribution P (X) changes while the conditional distribution P (Y |X) (i.e.,
the optimal predictor) is shared across domains.

However, in many real-world applications, P (Y |X) can also change, and this requires mak-
ing use of further assumptions. One such assumption is that the factorization P (X, Y ) =
P (Y )P (X|Y ) allows for addressing the changes in P (Y ) and P (X|Y ) independently in a situa-
tion where their respective changes are simple and easier to capture (Schölkopf et al. [102], Zhang
et al. [148]). In this particular setting, the problem is generally broken down into: (1) Target
shift: P (Y ) changes across domains while P (X|Y ) stay the same (Lipton et al. [74], Plessis and
Sugiyama [96], Storkey [116], Zhang et al. [148]) (2) Conditional shift: P (X|Y ) changes across
domains but P (Y ) stays the same (Long et al. [75], M. Gong and Schölkopf [84], Zhang et al.
[148]). (3) Conditional-target shift: Both P (X|Y ) and P (Y ) change independently across do-
mains - the most general setting under this generating process assumption (Chen et al. [18], Zhang
et al. [148]). Then, assumptions about the changes of the factors of the joint distrubution can
be made so that the problem is solvable, such as location-scale transformation (M. Gong and
Schölkopf [84], Zhang et al. [143]), or that the changing parameters lie on a low-dimensional
manifold (Stojanov et al. [114]), and algorithms can be designed to enforce these constraints and
make use of them for prediction in the target domain.

Another fruitful view of the problem is through the lens of representation learning, due to
wide-spread applicability of neural architectures for many real-world problems. In particular, state
of the art deep learning techniques harness the high representational capacity of neural networks
to transform the input data into a latent feature representation which is predictive of the target
variable Y in the source domain, and has the same distribution across domains. Formally, this
means learning a function (encoder) φ : X → Z from the input space to a latent space Z, such
that P S(Z) = P T (Z). At the same time, a function h : Z→ Y can be learnt to minimize the risk
in the labeled source domainn (Ben-David et al. [4]). The hope is then, that the overall function
g := h ◦ φ will have low prediction risk in the target domain.However, the above-described
theoretical and methodological framework does not guarantee that the learnt representation Z
will have any relevant information for predicting Y in the target domain. Namely, one can easily
have a situation in which the learnt representation Z is marginally invariant (P S(Z) = P T (Z)),
but not conditionally invariant (P S(Z|Y ) 6= P T (Z|Y )), as discussed in (Zhao et al. [156]). This
means that the learnt function g := h ◦ φ can have very good prediction performance in the
source domain, but generalize very poorly to the target domain. In many methods, the same

Figure 4.1: The underlying data-generating process under conditional shift, of the observed variables Y
and X , and the latent variable Z. θX represents the changing parameters of P (X|Y ) across domains.

encoding function φ(X) across domains is used to learn invariant latent representations. This
enjoys computational benefits and makes the learning procedure relatively simple, and the vast
majority of approaches ((Ganin and Lempitsky [38], Gu et al. [54], Long et al. [78, 82, 83])
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(a) (b)

Figure 4.2: Two different scenarios in which a single encoder φ(X) is not sufficient to learn Z.

among many) employ this technique. However, in certain situations, the same encoding function
across domains cannot learn a marginally invariant representation that is optimal for classification
in the target domain. There are certain studies ((Bousmalis et al. [12], Tzeng et al. [126], Wang
et al. [129])) which implement domain-specific encoders φS and φT . Unfortunately, such methods
suffer from the following drawbacks: (1) the exact motivation behind having separate encoders
for each domain is not clear; (2) including two separate encoders may be inefficient because it
greatly increases the number of parameters that we need to learn; (3) in the field of UDA based
on invariant representation learning, there is still no principled way to guarantee that the learned
marginally invariant representation Z has sufficient structural (semantic) information, and has the
potential to be conditionally invariant.

In this paper we assume the setting of conditional shift, and we make use of the data-generating
process to: (i) justify the use of two separate encoding functions in order to infer the latent
representation, (ii) implement the two encoding functions more efficiently, and (iii) constrain the
latent representation Z to have meaningful structure which is useful for prediction in the target
domain. In Section 2 of this chapter, we first motivate the use of two separate encoders to infer
Z, via rigorous treatment and an illustrative example. Subsequently, in Section 3, we introduce
an efficient way to implement two separate functions for inferring Z. In Section 3 we shall also
introduce a principled way to ensure that the latent representation Z to contain useful information
for prediction, and finally, in Section 4 we provide empirical evaluation.

4.1.1 Related Work

As previously mentioned, there is a vast body of work exploring approaches to make use of latent
invariant representations for the purposes of unsupervised domain adaptation, using both deep
learning and more traditional techniques. Namely, invariant representations were considered as a
linear projection in (M. Gong and Schölkopf [84]), where theoretical guarantees were established
regarding the conditional invariance of the latent representation and the identifiability of the joint
distribution in the target domain. Furthermore, this framework was generalized to nonlinear maps
to invariant latent representations, parameterized by neural network termed DANN (Ganin and
Lempitsky [38]). In this framework, the constraint that P S(Z) = P T (Z) can be enforced in
various ways, including adversarial training, Maximum Mean Discrepancy (Long et al. [76]),
Wassertstein Distance (Courty et al. [23]) and Margin Disparity Discrepancy (Zhang et al. [155]).
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However, none of these studies have considered using two separate encoders for the two domains.
Subsequently, this reasoning has been considered in combination with image-to-image transla-

tion (CYCADA) (Hoffman et al. [57]). Another assumption frequently made in recent studies is
that the input features X have a clustering structure in which each cluster has a different label
Y . Therefore, further directions were pursued by incorporating additional information contained
in the unlabeled target domain data, such as pseudo-labels provided by the classifier which is
initially trained on the labeled source domain data (Long et al. [83], Wang and Breckon [132])
(termed CDAN and SLPP, respectively). In addition, one can also make use of this assumption to
enforce that the prediction function g does not pass through high-density regions in input space,
as performed by the DIRT-T algorithm (Shu et al. [108]). The method by (Tzeng et al. [126])
makes use of two separate encoding functions, but does not regularize their output to preserve
semantic information in any way. In addition to these, approaches, the DSN algorithm (Bousmalis
et al. [12]) takes into models the changing parameters of P (X, Y ) in the latent representation
and enforces that they are different from the invariant representation Z. The only method that
we are aware of, which takes domain-specific information into account is the study by (Wang
et al. [129]), in which domain information is given and continuous, and therefore contains a lot
more information than the discrete domain index that is typically considered. In (Gu et al. [54]),
a spherical architecture is used for φ, however there is only one encoder for both domains. The
study by (Na et al. [89]) performs bridging between the source and the target domains using
data-augmentation, but this is a technique specific to image data.

While the above-mentioned methods use various approaches to improve the quality of the
learnt invariant latent representation and show competitive performance, there is no guarantee
that these approaches are general enough to encompass all scenarios. Namely, the challenge that
existing methods face is two-fold: (1) there is no principled way to ensure that marginal invariance
(P S(Z) = P T (Z)) preserves conditional invariance (P S(Z|Y ) = P T (Z|Y )), (2) there are cases
(especially in lower-dimensional datasets) where the encoding function φ needs domain-specific
information, in addition to the features X . The aim of this paper is to address these two issues.In
this paper, we introduce the first invariant representation learning method that makes use of the
data-generating process to justify and efficiently use domain-specific information in the encoder
φ, and to properly constrain it to ensure that Z contains relevant label-specific information.

4.2 What Does it Take to Learn a Useful Invariant Represen-
tation?

To gain insights into what information is necessary for learning an intermediate representation Z
via φ, let us consider the data-generating process depicted on Figure 4.1. In this graphical model,
the label Y is generated first from its prior distribution P (Y ). Then, the invariant representation Z
is generated from Y via the generating mechanism P (Z|Y ) and X is subsequently generated from
P (X|Z; θX), where θX are the changing parameters of P (X|Y ) across domains. We consider
θX as a parameter vector with a constant value for each point within a domain, and we generally
assume that the change across domains in P (X|Y ) is minimal. This generating process, in part or
in whole, can be exploited in many classification applications. For example, in object classification
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in images, Y is the label (the object the picture was taken of), X is the observed pixels, and Z
can correspond to latent features with semantic relevance, such as some function of the edges
and contours on the image. In this case, θX can correspond to different resolution, illumination
conditions, or other environment-specific changes that are not relevant for predicting the class
Y . In this graphical representation, we see that generally speaking, Z is conditionally dependent
from θX given X , although they may be marginally independent. This implies that in order to
recover Z, given that X is considered, the information of θX should also be considered in the
transformation, because it is in the Markov Blanket of Z.

To gain intuition why considering the Markov Blanket is important, consider the following
scenario, depicted in Figure 4.2a. In this setting, we are given the source domain with Gaussian
distribution, and the target domain with Uniform distribution. Here, we have a region A ⊂ X

(highlighted in red), in which both of the domains’ distributions have support, so there is support
overlap. However, each domain has a different density in this region. The following proposition
claims that in this situation, we cannot infer an invariant representation Z from X with a single
encoder φ:

Proposition 1: Let A ⊂ X be a region in input space such that P S(X ∈ A) > 0 and
P T(X ∈ A) > 0, and let there be a ⊂ A such that P S(X ∈ a) 6= P T(X ∈ a). Furthermore, let
φ : X→ Z be an encoder s.t. A = {x : φ(x) ∈ B} for some B ⊂ Z. Then, there is no function φ
s.t. P S(φ(X) ∈ B) = P T(φ(X) ∈ B).

All omitted proofs can be found in the appendix of this chapter. This proposition implies that
if the supports of the marginal distributions of the source and target domains overlap, and if the
distributions are different in the specific region of the support overlap (set A), then we cannot
use a fixed transformation to transform the data in that region to an invariant representation in Z

space.
There is an additional case in which a single encoder φ is not sufficient to learn an optimal

latent representation Z. The scenario is illustrated on Figure 4.2b. In this case, even though both
domains have the same distribution P (X) in the region of support overlap between the source
and the target domain (labeled in red), the value of Y is opposite between the two domains. The
following proposition demonstrates that in this setting, a single encoding function φ is inherently
sub-optimal:

Proposition 2: Let the true labeling functions in the source and target domain be fS, fT : X→ Y,
respectively. Let A ⊂ X be a region s.t. fS(a) 6= fT (a),∀a ∈ A. Let g : X→ Y be a composition
of a representation learner φ : X → Z and a classifier h : X → Y. If φ is the same function
across domains, then for a 0-1 loss, the risk over the region A: εA(g) = εA(g)S + εA(g)T ≥ 1.

In this scenario, no matter what criterion one uses to find the representation for downstream
classification using h, as long as the two domains use the same transformation φ for the repre-
sentation, the points in A cannot be correctly classified in the target domain, if they are correctly
classfied in the source domain. This is because the final classifer of the data, g = h ◦ φ, is fixed
across domains. As a consequence, any point a ∈ A will be mapped to the same class label, no
matter which domain it is in. These two scenarios generally occur in low-dimensional datasets,
such as scientific and healthcare applications. In very high-dimensional structured data such as
images and text, there will be some domain-specific dimensions which will have very different
values in the source and the target domain (such as brightness in images in daytime vs. nighttime).
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This will result in no overlap between the supports of the source and target domain distributions,
and thus the domain-specific dimensions will act as domain specific information. In this case
using φ which is only a function of X is sufficient. However, even in this scenario, we need to find
a principled way to constrain the encoder such that Z contains relevant label-specific information
for the prediction in the target domain.

The observations from the perspective of the causal mechanism of generating X from Z and
θX provide hints how to tackle the problem of UDA using invariant latent representations in a
general way. First of all, we observe that θX needs to be an input to the encoder φ, in addition
to X. Secondly, in this causal mechanism, we can safely assume that the influence of θX on the
relationship between X and Z (and therefore the relationship between X and Y ) is minimal. This
allows us to: (1) model θX as a latent variable and provide it is an input to φ(X, θX), instead of
learning two separate encoders φS and φT; (2) mimic the causal mechanism of generating X, given
by X = φ̃(Z, θX), via a decoder φ̃ : Z× Θ → X, in which we constrain the influence of θX to
be minimal. The hope is then that such a decoder would act as a regularizer on the encoder φ,
forcing it to preserve important semantic information when inferring Z. In this paper, we design a
method based on this reasoning in order to address the problem of UDA in a principled manner.

4.3 Proposed Method: Domain-Specific Adversarial Training

Motivated by the above discussion, we aim to design a domain-adversarial network which can
infer the latent domain-specific parameters θX . Let θX ∈ {θSX , θTX}, which are its possible values
in the source and target domains. Our goal is to design a neural network which can provide good
estimates for them, given by θ̂SX and θ̂TX , and subsequently make use of them for learning an
appropriate invariant representation Z = φ(X, θX) which is predictive of Y . The model for the
proposed method DSAN (Domain-Specific Adversarial Network) is depicted in Figure 4.3.

We first consider the domain index of the data: j ∈ {S,T} (which indicates whether a
data-point comes from the source or target domain), and parameterize the estimated latent domain-
specific parameters θ̂(j)

X as a function of the domain index of the i-the data-point ji (0 for source, 1

for target domain). We make use of θ̂(j)
X and data encoder φ to obtain z

(j)
i = φ(x

(j)
i , θ̂

(j)
X ), where

x
(j)
i and z

(j)
i represent the the i-th input point and latent representation point respectively, from

the j-th domain. We can then use the latent representation z
(j)
i to obtain a softmax probability for

the predicted label label ỹ(j)
i = h(z

(j)
i ), and this predictor can be trained in the source domain.

To enforce the condition P S(Z) = P T (Z), we also have an adversarial predictor which predicts
the domain index, given by j̃ = ha(z

(j)
i ). In order to successfully infer the latent changes θX , our

model also needs to make use of (or mimic) the data-generating process depicted on Figure 4.1,
in particular the process of generating X from Z and θX . This can be achieved via a decoder φ̃
which reconstructs the features X in both the source and the target domain, from Z and θX , given
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by x̃
(j)
i = φ̃(z

(j)
i , θ̂

(j)
X ). As described so far, our model consists of the following loss functions:

Lreconst. =
1

mS +mT

mS+mT∑
i=1

||xi − x̃||2,

Lclassif. = − 1

mS

C∑
c=1

mS∑
i=1

yiclog(ỹic),

Linv. = −
mS+mT∑
i=1

{ji log j̃i + (1− ji) log(1− j̃i)},

Lcent. = −
mT∑
i=1

h(zTi )T log(h(zTi ))

Here, Lreconst., Lreconst., and Linv. are the reconstruction, classification and adversarial loss
respectively. Lcent. is the conditional cross-entropy of the predictions in the target domain, and
intuitively, it serves to enforce that the decision boundary does not cross data-dense regions (Shu
et al. [108]). The current loss functions do not involve a constraint on the encoding transformation
φ which would prevent it from discarding valuable information about Y . We now describe how
we can make use of the data-generating process and the assumption of minimal change across
domains to enforce such a constraint.

4.3.1 Enforcing Minimal Change by Mutual Information Minimization
Before we delve into the details of how to enforce minimality of the influence of θX on the
generating process of X from Y , we need to find a way to measure it. One way to formally
do so is the joint mutual information I(θX ; (X, Y )). Intuitively, this means that the change
of the joint distribution (conditional distribution P (X|Y ) in the case of covariate shift) across
domains is minimal. Conveniently, this term is known to be related to a distributional divergence
measure that can be minimized, as stated by the following lemma (and is a well-established result):

Lemma 1: Let X, Y ∼ P (X, Y ; θX), and let θX be a discrete random variable with pos-
sible values θSX and θTX in the source and target domains respectively, with a uniform prior
P (θX = θSX) = 0.5, P (θX = θTX) = 0.5. Then, I(θX ; (X, Y )) = JSD(PX,Y ;θX=θSX

||PX,Y ;θX=θTX
),

where JSD is the Jensen-Shannon Divergence, and PX,Y ;θX=θSX
and PX,Y ;θX=θTX

are the source
and target domain joint distributions respectively.

Therefore, to measure the influence of θX on the generating process as mimicked by our de-
coder, we need to measure the JSD between the joint distributions as implied by the reconstructed
data, given by JSD(PX,Y ;θX=θ̂SX

||PX,Y ;θX=θ̂TX
) (note that here we are using inferred domain-specific

variables θ̂SX and θ̂TX). In theory, given enough data and expressiveness of the decoder, we can
assume that we can learn to reconstruct the data perfectly. However, due to lack of labeled data in
the target domain, we can only reconstruct the unlabeled features in the target domain ( and have
no access to PX,Y ;θX=θ̂TX

). To cope with this, we can use the inferred domain-specific variable
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θ̂TX to translate the source domain data to the target domain via the decoder: x̃S
trans. = φ̃(zS, θ̂TX).

To minimize the Jensen-Shannon Divergence, one could use an adversarial approach to match
the joint distributions P S(X̃, Y ) and P S(X̃trans., Y ) (Biau et al. [9]) (the joint distribution of the
source reconstruction and the source labels, and the joint distribution of the translation from source
to target and the source labels, respectively). This can be achieved by providing concatenated data
and label vectors: [x̃S, yS]T and [x̃S

trans., y
S]T to an adversarially-trained classifier.

The following Theorem, adopted from (Gong et al. [43]), gives an upper bound of the JSD
which is easy to minimize:

Theorem 1 (Gong et al. [43]): Let PY X|θX=θS and PY X|θX=θT denote the source and target
domain distributions respectively. Let Qhc

Y |X denote the conditional distribution of Y given X
specified by an auxiliary classifier hc. We have:

JSD(PXY ;θX=θSX
||PXY ;θX=θTX

) ≤ 2c1

√
JSD(PX|θX=θSX

||PX|θX=θTX
)

+ c2

√
KL(PY |X,θX=θSX

||Qhc
Y |X) + c1

√
KL(PY |X,θX=θTX

||Qhc
Y |X)

Here, JSD(PX|θX=θ̂SX
||PX|θX=θ̂TX

) is equal to the JSD between the source and target domain
marginal distributions of X and is fixed, we can ignore this term when we minimize the upper
bound using our algorithm. Therefore, to minimize the two KL divergences on the RHS:

KL(PY |X,θ̂X=θSX
||Qhc

Y |X) and KL(PY |X,θX=θ̂TX
||Qhc

Y |X),

it suffices to train a joint auxiliary classifier hc on the reconstructed source domain data x̃S and
the translated data x̃Ttrans.. Namely, these divergences can be expressed as:

KL(P S(Y |f(X))||Qhc
Y |X) = H(P S(Y |f(X)), Qhc

Y |X) +H(P S(Y |f(X))

KL(P S(Y |X)||Qhc
Y |X) = H(P S(Y |X), Qhc

Y |X) +H(P S(Y |X)),

where,

H(P S(Y |f(X)), Qhc
Y |X) = −

C∑
j=1

mS∑
i=1

yij log(ỹcij,trans.),

H(P S(Y |X), Qhc
Y |X) = −

C∑
j=1

mS∑
i=1

yij log(ỹcij)

are the cross-entropy terms which need to be minimized. Therefore, we introduce a cross-entropy
loss Ltrans.

inv. for the auxiliary classifier, whose two terms can be used to minimize the two KL
divergences respectively:

Ltrans
inv. = −

C∑
j=1

mS∑
i=1

yij log(ỹcij)−
C∑
j=1

mS∑
i=1

yij log(ỹcij,trans.), where ỹci = hc(x̃
S
i ),
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and ỹci,trans. = hc(x̃
S
i,trans.) are the softmax predictions of the reconstruction and the translation

of the source domain respectively, using predictor hc. Therefore, the total loss function can be
formulated in the following manner: Ltotal = λαLreconst. +λδLclassif.−λγLinv. +λτL

trans.
inv. , and

can be minimized by alternating optimization:

min
φ,φ̃,ρ,h,hc

Ltotal

min
ha

λγLinv..

Figure 4.3: A diagram of the proposed autoencoder framework. Here, the domain index is mapped
to θX . Subsequently, the input data x and θX are mapped via φ to a latent representation z, which
in turn is reconstructed x̃ using the decoder φ̃, and θX as additional input. In addition, the penalty
Linv. is enforced to ensure invariance between ZS and ZT . The hidden representation is also
used to predict ỹ in the source domain. Finally, Ltrans−y

inv. enforces the minimal change of P (X|Y )
across domains. The pink and orange lines depict the flow of the source and target data and
domain-specific information respectively.

This alternating minimization problem can be solved using Gradient-Reversal Layers (GRL),
as shown in (Ganin et al. [39]). Linv. can also be expressed in terms of Maximum Mean Dis-
crepancy (MMD) (Gretton et al. [49]). Our model is now equipped with a way to ensure that
when reconstructing the data, θX cannot play a major role in the decoder φ̃. Since θX correspond
to minimal changes of the conditional distribution P (X|Y ), this forces Z to retain Y -specific
structure, and in turn implicitly regularizes the encoder φ, resulting in a conditionally invariant
representation. In the following section, we will empirically demonstrate this property of the
constraint.
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4.4 Empirical Evaluation
In order to provide intuition about the proposed method’s advantages in the challenging sce-
narios described above, we first designed a simple but informative 2D simulated example for
domain adaptation using mixtures of Gaussian distributions. This simulated dataset is presented
on Figure 4.4(a), and is representative of the example discussed in Figure 4.2, since there is a
significant region of overlap between the two domains, in which the points have opposite labels
across domains. In this experiment, we compared our method DSAN, with the following baselines:

(1) DSAN-unreg., which is our proposed method but without regularizing the transformation φ
using the mutual information minimization in our loss;

(2) DSN, the method proposed in (Bousmalis et al. [12]), which makes use of domain-specific
private encodings, but which are only used for reconstruction of the data, and not for inferring the
shared invariant representation Z;

(3) DANN, the classical domain-adversarial method proposed by (Ganin et al. [39]). We used a
2D hidden representation Z (more details about implementation and tuning can be found in the
supplement).

The results are presented in Table 4.3, demonstrating that our approach greatly outperforms
the baselines. To visualize how our algorithm is able to solve this challenging example with much
greater success, we also present the 2D invariant representations in the source and target domains
on Figure 5.5. At the top, we have the hidden representations Z of DSAN-unreg., and on the
bottom the ones yielded by our method DSAN. On the left side we present Z in the source domain,
labeled by the true values, in the middle we show this representation in the target domain labeled
with the prediction of the algorithm, and on the right-hand side we present Z in the target domain
labeled with the true labels. From this figure, one can appreciate that the unregularized version of
our approach yields a representation Z which discards a lot of information about Y , as can be seen
in parts 4.5b and 4.6a. On the other hand, parts 4.5e and 4.5f show that our algorithm with the
mutual information minimization constraint can successfully preserve label-specific information
in the invariant representation.

4.4.1 Real Data Experiments
To evaluate our method on real datasets, we consider three datasets and respective tasks from
various domains of applications: cross-domain Wi-Fi localization, Amazon product reviews and
image classification. For detailed descriptions of the experimental design, hyperparameter tuning
and neural network architectures, as well as ablation studies, we refer the interested reader to the
supplementary materials. We performed evaluation on the following datasets: Wi-Fi localization:
Introduced in (Zhang et al. [146]), is a dataset in which wireless signal data was collected in
a hallway area discretized as a grid. In each grid, data was recorded from 67 access points
(dimensions). The task is to predict the location from the signals (which has been converted to
a classification problem with 19 classes). There are three domains in this dataset (with 1140
points each), collected in three different time points. This is a low-dimensional dataset, in which
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we verified via manual inspection and tSNE and PCA projections that both scenarios of support
overlap described in Chapter 2 hold; Amazon Review: Amazon Review is another benchmark
for multi-domain sentiment analysis. It contains positive and negative reviews of four kinds of
products: Kitchen appliance (K), DVDs (D), Electronics (E), and Books (B). ImageCLEF: A
standard UDA benchmark dataset for image classification, consisting of three domains: Caltech-
256(C), ImageNet ILSVRC(I), and Pascal VOC2012(P), consisting of 12 classes. Baselines: We
compare DSAN with classical approaches like TCA (Pan et al. [91]) and GFK (Gong et al. [41]),
as well as with some deep transfer learning models. Three recently proposed methods, DSR (Cai
et al. [14]), DIRT-T (Shu et al. [107]), MDD (Zhang et al. [154]), BSP (Chen et al. [19]), and
RSDA (Gu et al. [54]) are included. For both the real-world and simulated experiments, we ran
and tuned the baseline methods ourselves (all baselines for Wi-Fi and simulated, and MDD and
DIRT-T for Amazon dataset).

The classification accuracies on the Amazon-Review Dataset for unsupervised domain adap-
tation are shown in Table 4.2, which shows that our algorithm model outperforms the baselines
in the vast majority of source-target directions. We also perform a Wilcoxon signed-rank test
on the experiment result of different random seed, and the p-value is 0.0216. The performance
of our method on the Wi-Fi localization dataset is shown on Table 4.1. In this experiment, we
sub-sampled 950 points in each domain to create 10 replicate experiments, and we present the
accuracies and standard deviations across all replicates. From the results, one can appreciate that
our method outperforms all baselines, for the majority of the pairs. For one of the remaining two
pairs in which it does not, the performance is within margin of error with the strongest baseline.
We calculated a Wilcoxon p value p = 0.002 across all replicate experiments combined. The
performance of our method on the ImageCLEF dataset is presented on Table 4.4(b), in which one
can appreciate that we achieve state-of-the-art performance on all transfer directions.

4.5 Conclusion

In this paper, we have demonstrated that the existing paradigm of representation learning for
domain adaptation using a fixed encoder φ of the data, can be sub-optimal when the same
points can have different labels across domains. We have introduced a method which takes
domain-specific information in order to provide the data encoder with the necessary flexibility and
appropriate constraints, in order to retain valuable information about Y in the latent representation
Z. We note that in many real-world applications with high-dimensional datasets, the supports
of the source and target domains may not overlap. In this case, domain-specific information is
contained in the features X and can be automatically used by the encoder φ(X). However, φ(X)
would then have the same problem with excessive flexibility and can still suffer from finding
trivial reprepresentatons of Z that discard information about Y . Therefore, our principle for
constraining domain-specific encoders would still be beneficial in this scenario. For future work,
a promising direction is combining this framework motivated by the data-generating process with
more powerful encoders, such as the spherical neural network proposed by (Gu et al. [54]).
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(a) Scatter plot of simulated data

(b) Accuracy (%) on ImageCLEF dataset for
unsupervised domain adaptation (reproduced by
(Gu et al. [54])

)

Models I→ P P→ I I→ C C→ I C→ P P→ C Average

DResNet-50 (He et al. [55]) 74.8 83.9 91.5 78.0 65.5 91.2 80.7
iCAN (Zhang et al. [151]) 79.5 89.7 94.7 89.9 78.5 92.0 87.4
CDAN (Long et al. [81]) 77.7 90.7 97.7 91.3 74.2 94.3 87.7

SymNets (Zhang et al. [152]) 80.2 93.6 97.0 93.4 78.7 96.4 89.9
SAFN+ENT (Xu et al. [137]) 79.3 93.3 96.3 91.7 77.6 95.3 88.9

CAT (Deng et al. [28]) 77.2 91.6 95.5 91.3 75.3 93.6 87.3
DANN (Ganin and Lempitsky [38]) 75.0 86.0 96.2 87.0 74.3 91.5 85.0

DANN+S (Gu et al. [54]) 78.3 91.0 96.8 91.8 77.7 95.2 88.5
RSDA-DANN (Gu et al. [54]) 79.2 93.0 98.3 93.6 78.5 98.2 90.1

MSTN (Xie et al. [135]) 77.3 91.3 96.8 91.2 77.7 95.0 88.2
DSAN-U 79.4 94.5 96.8 94.5 76.1 88.5 88.3

DSAN 81.0 95.7 97.3 95.3 80.5 97.0 91.1

Figure 4.4

Table 4.1: Accuracy (%) on Wi-Fi localization dataset for unsupervised domain adaptation

Models t1→ t2 t1→ t3 t2→ t1 t2→ t3 t3→ t1 t3→ t2 Average

DANN (Ganin and Lempitsky [38]) 31.30((1.3) 33.15(1.9) 38.03(2.0) 32.41(2.3) 28.54((0.8) 31.12(1.6) 32.59
DSN (Bousmalis et al. [12]) 31.25(1.5) 34.23(2.4) 34.32(2.8) 29.47(0.7) 27.0(1.6) 31.8(1.3) 31.35

DSR (Cai et al. [14]) 34.20(1.3) 34.62(4.8) 30.61(3.5) 34.72(1.1) 33.13(0.5) 31.61(0.9) 31.13
MDD (Zhang et al. [154]) 30.92(2.1) 34.42(1.8) 30.01(1.5) 27.58(1.8) 33.25(1.0) 27.34(2.3) 30.59
DIRT-T (Shu et al. [107]) 36.38(1.2) 33.66(2.7) 37.12(3.4) 31.85(2.87) 33.98(1.42) 28.48(2.68) 33.58

BSP (Shu et al. [107]) 35.5(1.3) 32.16(2.1) 31.15(1.4) 31.06(1.9) 32.91(1.1) 33.83(2.2) 32.72
DSAN-U 31.16(1.1) 29.01(1.7) 32.76(0.9) 32.18(1.1) 31.02(1.7) 33.62(1.8) 31.45

DSAN 40.45(1.6) 37.35(2.3) 38.22(2.4) 39.94(2.1) 36.47(3.5) 34.18(2.9) 37.77

Table 4.2: Accuracy (%) on Amazon Review dataset for unsupervised domain adaptation

Methods B→D B→E B→K D→B D→E D→K E→D E→B E→K K→B K→D K→E Avg

NN 49.6 49.8 50.3 53.3 51.0 53.1 50.8 50.9 51.2 52.2 51.2 52.3 51.3
TCA (Pan et al. [91]) 63.6 60.9 64.2 63.3 64.2 69.1 59.5 62.1 74.8 64.1 65.4 74.5 65.5

GFK (Gong et al. [41]) 66.4 65.5 69.2 66.3 63.7 67.7 62.4 63.4 73.8 65.5 65.0 73.0 66.8
SA (Fernando et al. [34]) 67.0 70.8 72.2 67.5 67.1 69.4 61.4 64.9 70.4 64.4 64.6 68.2 67.3
BDA (Wang et al. [130]) 64.2 62.1 65.4 62.4 66.3 68.9 59.6 61.6 74.7 62.7 64.3 74.0 65.5

CORAL (Sun et al. [123]) 71.6 65.1 67.3 70.1 65.6 67.1 67.1 66.2 77.6 68.2 68.9 75.4 69.1
JGSA (Zhang et al. [141]) 66.6 75.0 72.1 55.5 67.3 65.6 51.6 50.8 55.0 58.3 56.4 51.7 60.5

DANN (Ganin and Lempitsky [38]) 78.4 73.3 77.9 72.3 75.4 78.3 71.3 73.8 85.4 70.9 74.0 84.3 64.9
MDD (Zhang et al. [154]) 77.1 74.4 77.0 74.7 74.1 76.3 72.4 70.2 83.3 69.3 73.2 82.8 75.4
DIRT-T (Shu et al. [107]) 78.6 76.1 75.5 76.8 75.2 79.1 69.6 71.0 84.2 69.2 73.3 79.5 75.7

EasyTL (Wang et al. [131]) 79.8 79.7 80.9 79.9 80.8 82.0 75.0 75.3 84.9 76.5 76.3 82.5 79.5
BSP (Chen et al. [19]) 79.33 73.86 75.86 75.67 74.77 77.2 72.81 71.3 84.02 70.92 73.59 84.29 76.14
RSDA (Gu et al. [54]) 80.1 77.8 84.4 76.6 79.4 82.3 73.6 71.1 86.6 71.8 74.7 84.4 77.9

DSAN-U 81.0 78.6 78.9 78.4 79.4 83.3 76.2 74.5 87.4 73.1 77.0 83.0 78.9
DSAN 82.7 80.8 82.6 79.5 81.4 85.3 76.7 75.1 88.0 73.8 77.3 85.0 80.7
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Table 4.3: Results on the simulated data.

Model DANN DSN DSAN-unreg. DSAN
Accuracy 58.2(4.3) 58.8(5.2) 79.4(2.2) 87(1.0)

(a) (b) (c)

(d) (e) (f)

Figure 4.5:
Z in the simulations. First three scatter-plots show it without regularization: (a) Z of the source
domain labeled with true labels, (b) Z of the target domain labeled with the predictions (c) Z of

the target domain with the true labels. (d), (e), and (f) show the same, but with regularization.

4.6 Proofs for Theoretical Statements
In this section we provide proofs for theoretical statements in the chapter.

4.6.1 Proof of Proposition 1:
Before proving this proposition, let us re-state it:

Proposition 1: Let A ⊂ X be a region in input space such that P S(X ∈ A) > 0 and
P T(X ∈ A) > 0. Furthermore, let φ : X → Z be an encoder s.t. A = {x : φ(x) ∈ B}
for some B ⊂ Z. Then, there is no function φ s.t. P S(φ(X) ∈ B) = P T(φ(X) ∈ B).

Proof. Let X be the input feature space, and Z be the latent space in which the invariant represen-
tation is learned via encoder φ : X→ Z.

Let there be a subset in the invariant space B ⊂ Z, and suppose that we have marginal in-
variance in the latent space: P S(φ(X) ∈ B) = P T(φ(X) ∈ B),∀B. Define the pre-image of B
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as:

A = {x ∈ X : φ(x) ∈ B}.

Then, we have the following equality relationships:

P S(φ(X) ∈ B) = P S(X ∈ A)

= P T(φ(X) ∈ B) = P T(X ∈ A),

which implies that P S(X ∈ A) = P T(X ∈ A) must hold. This further implies that if there is
difference in the source and target distributions in the support-overlapping region A, given by:

P S(X ∈ A) 6= P T(X ∈ A),

then the following must hold: P S(φ(X) ∈ B) 6= P T(φ(X) ∈ B). Therefore, if there is a region
of support overlap for which the distributions of the source and target domain are different,
a single transformation φ cannot be used to map data in this region to a marginally-invariant
representation.

4.6.2 Proof of Proposition 2:

Before proving this proposition, let us re-state it:

Proposition 2: Let the true labeling functions in the source and target domain be fS, fT : X→ Y,
respectively. Let A ⊆ X be a region s.t. fS(a) 6= fT (a),∀a ∈ A. Let g : X→ Y be a composition
of a representation learner φ : X → Z and a classifier h : X → Y. If φ is the same function
across domains, then for a 0-1 loss, the risk over the region A is εA(g) = εAS (g) + εAT (g) ≥ 1.

Proof: The total risk for the 0-1 loss is:

εA(g) = εAS (g) + εAT (g) = Pr(g(a) 6= fS(a)) + Pr(g(a) 6= fT (a)). (4.1)

Since fS(a) 6= fT (a),∀a ∈ A, g either predicts the correct label for a in one domain and not the
other, or predicts the wrong label in both. Therefore, for the multiple-class classification problem,
the following inequality holds:

Pr(g(a) 6= fT (a)) ≥ 1− Pr(g(a) 6= fS(a)), (4.2)

so it follows that:

εA(g) = εAS (g) + εAT (g) = Pr(g(a) 6= fS(a)) + Pr(g(a) 6= fT (a)) ≥ 1.

�
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4.6.3 Proof of Lemma 1:
Before proving this lemma, we shall first state it here:

Lemma 1: Let X, Y ∼ P (X, Y ; θX), and let θX be a discrete random variable with pos-
sible values θSX and θTX in the source and target domains respectively, with a uniform prior
P (θX = θSX) = 0.5, P (θX = θTX) = 0.5. Then, I(θX ; (X, Y )) = JSD(PX,Y ;θX=θS ||PX,Y ;θX=θT),
where JSD is the Jensen-Shannon Divergence.

Proof: From the general definition of mutual information, and the by factoring the joint dis-
tribution according to the generating process in Figure 4.1 we have:

I(θX ; (X, Y )) =

∫
pXY θX (x, y, θ) log

pXY θX (x, y, θ)

pθX (θ)pXY (x, y)
dxdydθ

=

∫
pXY θX (x, y, θ) log

pXY |θX (x, y|θ)
pXY (x, y)

dxdydθ.

Since θX is a discrete random variable with a uniform prior, the above expression can be rewritten
as:

I(θX ; (X, Y )) =
1

2

∫
pXY |θX=θSX

(x, y) log
pXY |θX=θSX

(x, y)

pXY (x, y)
dxdy

+
1

2

∫
pXY |θX=θTX

(x, y) log
pXY |θX=θTX

(x, y)

pXY (x, y)
dxdy

=
1

2
KL(PXY |θX=θSX

||PXY ) +
1

2
KL(PXY |θX=θTX

||PXY )

= JSD(PXY |θX=θSX
||PXY |θX=θTX

).� (4.3)

4.7 Implementation Details
In this section we provide implementation details for the experiments performed in this chapter.

4.7.1 Enforcing Invariance with Maximum Mean Discrepancy
When the input dataset is low-dimensional, it is also possible to enforce marginal invariance for
the representation Z using MMD (Maximum Mean Discrepancy) (Gretton et al. [48]) between
the representations Z in the source and target domains, instead of adversarial training. Let zSi , z

T
i

denote the i-th instance of Z in the source and target domains respectively. Then, the MMD loss
can be written as follows:

LMMD
inv. =

1

m2
S

mS∑
i,j=1

κ(zSi , z
S
j ) +

1

mSmT

mS ,mT∑
i,j=1

κ(zSi , z
T
j ) +

1

m2
T

mT∑
i,j=1

κ(zTi , z
T
j ).

We followed the procedure in (Bousmalis et al. [12]), and used a mixture kernel function of
q RBF kernels: κ(z1, z2) =

∑q
i=1 ηi exp{−||z1 − z2||2}/σ2

i , where σ2
i is the kernel width of
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the i-th kernel, and ηi is a mixing weight which we set to 1/q. For all experiments where
we used MMD, we used the following RBF kernels (indexed by the respective kernel width):
σ2
i = [10−2, 10−1, 1, 5, 10, 50, 100, 500, 1000, 5000, 10000]. Then, the total loss can be modified

as follows:

Ltotal = λαLreconst. + λδLclassif. + λγL
MMD
inv. + λτL

trans.
inv. , (4.4)

and in this case, alternating optimization is not needed. Then, we can simply minimize this total
loss:

min
φ,φ̃,ρ,h,hc

Ltotal. (4.5)

4.7.2 Using Pseudo-Labels and Ablation Study
In the main text, for the ImageCLEF dataset, in addition to Ltotal as described in the methods
section, we make use of pseudo-labels to refine the quality of the invariant latent representation Z.
For this purpose, we make use of the centroid procedure described in (Xie et al. [135]). Namely,
for this dataset we introduce an additional term to the loss. Given C class labels and a distance
metric Φ (we use Euclidean distance), we have:

LSM =
C∑
j=1

Φ(CS
j , C

T
j ),

where CS
j , C

T
j are the centroids for the j-the class in the source and target domains respectively.

Thus, we add this loss function to our total loss, in addition to the other terms described in the
main text.

Ablation Study

To demonstrate the efficacy of the proposed procedure, we performed ablation studies to assess
the contribution of the following design choices:
• the various terms in our total loss function,
• the need to have domain-specific information in the encoder and decoder

In Table 4.4 we present the results. Here, the columns are described as follows:
• "Dec." indicates whether a decoder is being used at all.
• "θ-Enc." indicates whether domain-specific information is being used in the encoder.
• "θ-Dec." indicates whether domain-specific information is being used in the decoder.
• "Entropy" indicates whether the conditional-entropy loss is being used.
• "Pseudo-labels" indicates whether pseudo-labels are being used.

From the results, a simple conclusion that can be derived is that the constraining the decoder
according to the minimality of the generating process (via mutual information minimization) is
instrumental to the performance of our method, and to attaining state-of-the-art performance.
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Dec. θ-Enc. θ-Dec. Entropy Pseudo Reg. I→ P P→ I I→ C C→ I C→ P P→ C Avg.

× X N/A X X X 77.5 89.2 95 91.8 74.2 92.3 87.53
X X × X X X 78.8 93.2 95.7 93.7 77.83 92.6 88.63
X × X X X X 79.7 93.5 96.5 93.00 79.5 95.3 89.58
X X X × × X 80.0 90.3 95.0 93.5 72.1 94.3 87.53
X X X × X X 80.0 90.7 95.1 94.00 79.00 94.0 89.7
X X X X × X 80 95.0 96.1 93.7 78.3 96.7 89.96
X X X X X × 79.4 94.5 96.8 94.5 76.1 88.5 88.3
X X X X X X 81.0 95.7 97.3 95.3 80.5 97.0 91.1

Table 4.4: Ablation study on the ImageCLEF dataset.

4.7.3 Experimental Setting, Neural Network Architectures, and Hyperpa-
rameters

In this section we provide details regarding the empirical evaluation in the main text. We
note that unless mentioned otherwise, all non-linearity activations of hidden units in the neural
network model are ReLU. We also note that in all of our experiments θX is one-dimensional and
parameterized by a linear function of j, the domain index. Furthermore, in our implementation,
the inputs X and Z were concatenated with θX before being passed to the encoder and decoder φ
and φ̃ respectively.

Simulated Experiments

The simulated dataset was generated in the following manner: we first let Z ∼ 0.5N([0, 0]T , I2) +
0.5N([0, 3]T , I2), where the two mixtures correspond to labels Y = 0 and Y = 1 respectively,
where P (Y = 0) = P (Y = 1) = 0.5, and I2 corresponds to a 2 × 2 identity matrix. Then, we
let the source domain data XS = R(Z + [2, 0]T ) and XT = Z + [0,−3]T , where R is a rotation
matrix which rotates the data 45 degrees clockwise.

We performed 10 replicate experiments, in which we generated 3200 points in the source and
target domains each, as described above. For each replicate, the same random seed was used for
each method. As mentioned in the main text, all baselines and the proposed method used the same
architecture:
• The encoder φ is a multi-layer perceptron (MLP) with two hidden layers of 128 dimensions

each.
• The invariant representation Z has 2 dimensions, so that it can be easily visualized.
• The classifier h is an MLP of a single hidden layer of 128 dimensions.
• The decoder φ̃ (for DSAN and DSAN-unreg.) is an MLP with two hidden layers of 128

dimensions each.
• The regularization (auxiliary) classifier: hc is an MLP with with two hidden layers of

512 dimensions each.
For this experiment, to enforce invariance we used the MMD formulation of our approach instead
of adversarial training (hence, no details regarding ha are provided). The hyper-parameters used
for training are presented on Table 4.5.
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Hyperparameter: Value:
learning rate 0.011
λα 0.1
λγ 0.2
λδ 0.5
batch size 128
optimizer SGD
L2 weight decay 1.00E-06
dropout 0
batch normalization 0
λτ 1

Table 4.5: Hyperparameter settings for the simulated dataset experiments.

Wireless Localization Experiments

Similarly to the simulated experiment, we performed 10 replicate experiments subsampling 950
points from a total of 1140, for each of the three domains. Furthermore, we used the same
architecture of the neural network for the baselines and for the proposed method, where applicable.
The neural network architecture can be summarized as follows:

• The encoder φ is a multi-layer perceptron (MLP) with two hidden layers of 512 dimensions
each.

• The invariant representation Z is of 20 dimensions.
• The classifier h is an MLP of a single hidden layer of 128 dimensions with ReLU activation.
• The decoder φ̃ (for DSAN, DSAN-unreg., and DSN) is an MLP with two hidden layers of

512 dimensions each.
• The regularization (auxiliary) classifier: hc is an MLP with with two hidden layers of

512 dimensions each.

For this experiment, to enforce invariance we used the MMD formulation of our approach instead
of adversarial training. Each replicate experiment was run for 400 epochs, and the accuracies
reported are the ones at the last epoch. The hyperparameter settings can be found on Table 4.6.

We also considered MDD (Zhang et al. [155]) and DIRT-T (Shu et al. [108]) on this dataset.
For each baseline, the encoder was selected among MLP dimensionalities 64, 128 and 512, and
between one and two layers in depth. The same dimensionalities were used as options for the
hidden representation Z. We selected the one with best performance in each respective baseline.
The hyperparameter settings used are as follows:

• for MDD, the encoder consists of two layers of 128 dimensions each. The hidden represen-
tation is 128, and the learning rate is 0.01. For this experiment, we used batch normalization

• for DIRT-T, the encoder consists of two layers of 64 dimensions each. The hidden repre-
sentation is 64, and the learning rate is 2e-03. For this experiment, we did not use batch
normalization
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Hyperparameter: Value:
learning rate 0.001
λα 0.01
λγ 0.4
λδ 0.4
batch size 128
optimizer SGD
L2 weight decay 1.00E-06
dropout 0
batch normalization 0
λτ 2

Table 4.6: Hyperparameter settings for the wireless localization dataset experiments.

(a) (b)

Figure 4.6: tSNE figures of representations and features of the ImageCLEF dataset: (a) source
original features and source reconstructed features (b) the source reconstructed features (green),
the target reconstructed features (red), and the source translated data to the target domain (blue).

4.7.4 Visualization of Reconstructions
For the ImageCLEF dataset, we performed a dimensionality reduction via tSNE, and we visualize
the reconstructions of the source and target domain data, as well as the translation from the source
to the target domain on Figure 4.6.

Sentiment Prediction in the Amazon Product Reviews

For the experiments on the Amazon dataset, we performed 5 runs on different random seeds using
the entire dataset. Each replicate experiment was run for 150 epochs, and the accuracies reported
are the best ones across epochs. We provide the details regarding the architecture used below:
• The encoder φ is a multi-layer perceptron (MLP) with a single hidden layer of 4000

dimensions.
• The invariant representation Z is of 4096 dimensions.
• The classifier h is an MLP of a single hidden layer with 100 dimensions.
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• The decoder φ̃ is an MLP with a single layer of 5000 dimensions (which is the input
dimensionality of the Amazon Product Reviews data. It is only a linear transformation with
ReLU activation, and no hidden layers).

• The domain-adversarial discriminator ha is an MLP of a single hidden layer with 100
dimensions.

• The regularization (auxiliary) classifier: hc is an MLP with two hidden layers of 3000
dimensions each.

The hyperparameter setting used for this experiment is presented on Table 4.9.

Hyperparameter: Value:
learning rate 1.00E-04
λα 1
λγ 1
λδ 1
batch size 128
optimizer Adam
L2 weight decay 1.00E-05
dropout 0.75
batch normalization 0
λτ 0.005

Table 4.7: Hyperparameter settings for the Amazon Product Reviews dataset experiment.

Regarding the baselines for this experiment, for a fair comparison, the result of most baselines
are directly reported from their original papers wherever available. In order to include more
recent state-of-the-art baselines, we also compare our model with DIRT (Shu et al. [108]) and
MDD (Zhang et al. [155]). For these two baselines, we ran the experiments ourselves using the
respective source codes. The hyper-parameter settings are shown in Table 4.8. To select the

RSDA DIRT-T MDD
dropout rate 0.5 0.5 0.5
feature demension 4096 4096 4096
batch size 64 128 128
learning rate 0.04 0.002 0.01
optimizer SGD Adam SGD

Table 4.8: Hyperparameter settings for the Amazon Product Reviews dataset experiment for
baselines

hyperparameters in Table 4.8, we try different hyperparameter combinations according to various
ranges for each hyper-parameter. For DIRT-T, the range of learning rate considered is 0.001-0.01,
the range of dropout rate is 0.1-0.9. For MDD, the range of learning rate is [0.005,0.015], the
range of dropout rate is 0.1-0.9 and the range of gamma is [1,2,3,4,5]. We try 5 different random
seeds for each hyper-parameters combination and choose the best result.
We use the same dimensionality of the latent representation Z for both baselines, and we used the
same encoder architecture as used in the proposed method. The encoder architecture was selected
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for the proposed method and for these baselines according to the best performance obtained on
the basic baseline DANN (Ganin et al. [39]). The dimensionality of the hidden representation Z
was selected among the values: 512, 1024, 2048, 4096 and the one with the best performance in
DANN was retained.

Image Classification in the ImageCLEF Dataset

Here we present details regarding the experiment on the ImageCLEF dataset. For all baselines,
we used reproduced results reported by previous studies.
• The encoder φ is a multi-layer perceptron (MLP) with a single hidden layer of 2048

dimensions.
• The invariant representation Z is of 2048 dimensions.
• The classifier h is an MLP of a single hidden layer with 2048 dimensions.
• The decoder φ̃ is an MLP with a single of 2048 dimensions (which is the input dimension-

ality of the ImageCLEF data.).
• The domain-adversarial discriminator ha is an MLP of two hidden layer with 100 di-

mensions.
• The regularization (auxiliary) classifier: hc is an MLP with two hidden layers of 2048

dimensions each.

Hyperparameter: Value:
learning rate 0.05
λα 0.01
λγ 1
λδ 0.001
batch size 64
optimizer Adam
L2 weight decay 1.00E-04
dropout 0.70
batch normalization 0
λτ 1.0
vada hyperparameter 1 1.0
vada hyperparameter 2 0.5
pseudo label hyperparameter 2 0.5

Table 4.9: Hyperparameter settings for the ImageCLEF dataset experiment.

4.8 Extended Discussion on Related Work
In this section, we briefly discuss the relationship between our work and other related methods for
domain adaptation using neural architectures. In the main text, we mentioned recent advances
in neural architectures such as spherical CNNs (Gu et al. [54]), source-target domain bridging
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via data augmentation (Na et al. [89]) and pseudo-labels (Xie et al. [135]). We note that these
techniques do not mimic the data-generating process and ensure that all information is available to
infer Z and reconstruct the original data. However, the methods operate mainly on image datasets,
and the techniques that they use are complementary to ours. We have attempted to incorporate
some of them in our method, and we show in our ablation study that combining them with our
approach is as a fruitful direction for improving performance in UDA. In this section, we focus on
related studies that use domain-specific information when learning latent representations, in some
shape or form.

Relationship to "Domain Separation Networks"(Bousmalis et al. [12])

"Domain Separation Networks" (DSN) is a study which is in principle most similar to ours. It
relies on a autoencoder framework, in which there are two separate private encoders, in addition to
a shared encoder, which together constitute in two separate encoding functions for the source and
target domains, in order to infer Z. In addition to this, the authors explicitly model a private-part of
Z which can be thought of as analogous of our use of θX in our encoding and decoding functions,
and the decoder is then a function of both the shared and private parts.

The main conceptual difference between this work and ours is that our work is motivated by
the causal mechanism of generating X from θX and Z. This inspired us to try to measure the
influence of θX in this generating process (via the mutual information) and restrict it, thereby
ensuring that Z will not be a trivial and potentially useless representation for predicting Y . The
method DSN achieves this as a by-product of using addition of the private and shared parts before
providing them as input to the decoder which reconstructs the original features. This addition is
a heuristic technique which is expected to specifically work with image datasets, whereas our
mutual information minimization approach does not make such assumptions.

Relationship to ADDA (Tzeng et al. [126])

The method ADDA is a well known domain adaptation technique which uses two separate
encoders φS and φT to learn the latent representation Z. However, as mentioned in the main text,
this is an inefficient way to parameterize the two separate encoding functions. Furthermore, this
study lacks a decoder, and therefore does not attempt to regularize the latent representation Z to
have meaningful structure.

Relationship to "Continuously-Indexed Domain Adaptation" CIDA (Wang et al. [129])

The method CIDA, like our method, takes domain index as input to the encoder φ. However, in
this method θ (the domain-specific information) is thought of a continuous random variable which
is: (1): of different value for each data-point, and (2): has predictive information about the random
variable Y . This reasoning assumes a different generating assumes a different generating process
of the data than the one presented on Figure 4.1, in which Y and θ are conditionally independent
given Z. By assuming that θ has predictive information about Y , the authors implicitly assume
that θ and Y are dependent conditioned on Y in the data-generating process, and thus their
algorithm is tailored to benefit this information in θ. On the other hand, our method only assumes
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that domain-specific information comes in the form of a discrete domain index unrelated to Y , and
tries to make the best of that information to ensure the invariant representation Z has sufficient
quality.
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Chapter 5

Domain Adaptation via Direct
Transformation

Most real-world data comes from different distributions, and many widely-used prediction tasks
have to cope with this non-stationarity in the datasets. To do so, the main challenge is how to
relate the various distributions the data comes from, and how to reason about what information is
meaningful across different distributions. In this thesis, we have so far introduced two ways to do
so:

(1) in Chapter 2, we postulated that the change across distributions is low-dimensional, and
we have presented a way to extract it so we can reconstruct the joint distribution in the target
domain;

(2) in Chapter 4 we assumed that the generating process of the features X from the label Y
undergoes minimal change, as measured by the mutual information.

Despite the encouraging empirical results, these two approaches have significant drawbacks in
principle, and expressing the minimality of change (or semantic similarity across distributions)
in a way that is sensible and tractable remains a challenge in unsupervised domain adaptation
and other related tasks. For example, image-to-image translation could also benefit from a more
principled approach to represent the minimal changes across distributions, in order to ensure that
meaningful semantic information in the image is not lost. In this chapter, we introduce a novel
measure of change across domains which may have utility in several different cross-distributional
tasks such as domain adaptation and image-to-image translation.

5.1 Introduction

In this study, we again assume the unsupervised domain adaptation setting, in which we are given
labeled source and unlabeled target domain instances, represented by (xS,yS) = (xS

k, y
S)mSk=1

and xT = (xT)mTk=1 respectively, where P S(X, Y ) 6= P T(X, Y ). Furthermore, we assume the
conditional shift setting as presented in Figure 4.1, and was previously assumed in Chapter 4.

77



In domain adaptation, preservation of meaningful information is most commonly thought of
as preserving the relationship between X and Y as much as possible. One way to measure
this quantity is via the difference between P S(X, Y ) and P T(X, Y ). However, measuring this
difference directly involves taking into account all features X regardless of their redundancy of
relationship with Y , and therefore may not capture the minimal changes that are relevant for
prediction. To mitigate this issue, in Chapter 2 we presented an approach that breaks down the
joint distribution into two independently-changing modules, P (X|Y ) and P (Y ), and extracts the
low-dimensional changes in them in a non-parametric way. However, a major drawback of this
approach is that it operates on the original features, and does not use neural architectures, and
therefore does not take advantage of the expressive power of neural networks. Furthermore, the di-
mensionality it can capture is restricted to the reproducing kernel function type of the kernel-PCA
approach, and the number of labeled source domains available to perform kernel-PCA.

In the previous chapter of this thesis, we tried to mitigate these issues by designing a neural
network architecture to explicitly model the changes of the joint distribution P (X, Y ) as a function
of the domain index, and make use of them for regularizing the latent invariant representation
Z. However, to do so, we relied on calculating the Jensen-Shannon Divergence between recon-
struction and translation outputs of the decoder, which assumes that the source and the target
domain distributions have substantial support overlap. However, in practice domain adaptation is
frequently required and used in very high-dimensional data such as images or text. For example,
in image datasets, a simple transformation such as increased brightness may affect the majority of
the pixels in the image when going from source to the target domain, resulting in non-overlapping
supports of their respective distributions. A similar case can be found in natural language data,
where the target domain can make use of frequent vocabulary not present in the source and vice
versa, which may happen if the two domains represent two different jargons.

Another way to reason about low-dimensional changes is by automatically discovering which
subset of the featuresX have a dependence relationship with the target variable Y via a conditional-
independence testing method (Zhang et al. [145]). This method yields a probabilistic graphical
model of the Markov Blanket of Y , augmented with information regarding which of its conditional
distributions change across domains. This information can then be provided to a conditional
GAN which can be used to learn/represent the conditional distributions, and stochastic variatonal
inference framework to perform inference of Y given the features X in the target domain (Zhang
et al. [150]). The main drawback of this approach is that, similarly to the method presented in
Chapter 2, it performs graph learning and inference on the observed features X , which may be
high-dimensional, noisy and redundant.

Throughout this thesis, particularly in Chapter 4, we emphasized the popularity and promising
performance of approaches that learn an invariant latent representation Z, which is then used for
prediction in the target domain. Another way to represent the relationship between X and Y in
this framework (and hopefully improve the quality of the learned representation Z) is to train a
predictor on the source domain and apply it to the target domain to obtain pseudo-labels. These
pseudo-labels allow for an initial approximation of the target domain joint distribution and can
then be refined in various ways, and within several related deep learning frameworks based on
invariant representation learning (Gu et al. [54], Long et al. [83], Xie et al. [135]). The hope is
that a sufficiently well-approximated joint distribution in the target domain via pseudo-labels
can be used to learn a good predictor in the target domain within the respective deep learning
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framework. However, this technique depends heavily on the quality of the initial pseudo-labels
learnt from the source domain predictor, and thus it implicitly assumes that relationship between
X and Y is preserved across domains, at least to some extent. Similarly to pseudo-labels, one can
make use of an assumption that the data in both domains from the same label belongs to its own
respective cluster. Thus, a specific penalty can be used to ensure that the learned predictor does
not cross high-density regions in the target domain (Shu et al. [108]), and we used such a penalty
in the algorithm presented in Chapter 4 as an additional regularizer.

5.1.1 Relating the Domains via a Direct Transformation
In addition to the aforementioned approaches to transfer information about predicting Y from
X from the source to the target domain, yet another strategy is to assume that the two domains
can be related through a direct transformation. Namely, one can postulate that there is a true
function φ∗, such that XT = φ∗(XS). Then, the problem reduces to finding the mapping φ∗ such
that P S(φ∗(XS)) = P T(X). In general, a search for such a function from the source to the target
domain data is an ill-posed problem because there may be many non-linear functions that satisfy
this criterion.

Since in domain adaptation we rely on fundamental similarities between the joint distributions
P S(X, Y ) and P T(X, Y ), the function φ∗ is assumed to have specific properties to ensure that the
relevant information for predicting Y is preserved after applying the function on source domain
data. For simplicity, we in this study we assume that P (Y ) is invariant, and P (X|Y ) changes
(i.e. conditional shift), and consequently, they are independently changing modules of the joint
distribution. As discussed in Chapter 1, this implies that there is a dependence between the
marginal distribution of P (X) and the optimal predictor P (Y |X), and that P (X) may contain
invaluable information about the joint distribution that can be exploited when searching for the
optimal transformation φ∗.

In addition to the assumptions regarding the specific changes of the distribution P (X, Y )
across domains, one also needs to make some constraints about the function φ∗ itself. One such
assumption is that for each class c, the true φ∗ transforms each class-conditional distribution
P (X|Y = c) as a location-scale transformation, as done in (Zhang et al. [148]). Under this
assumption (and other mild assumptions), it has been shown that φ∗ is identifiable asymptotically,
and an optimization algorithm was presented to search for this function in a finite-sample setting.

One popular way to relax these strong linearity assumptions on φ∗ in domain adaptation
is Optimal Transport. Optimal Transport is a more general optimization problem which aims
to map one probability measure µS to another, µT (with respective supports XS and XT) at a
minimum cost c, which is a function which can be defined in various ways. This problem was
first introduced by French mathematician Gaspard Monge in the 18-th century, and revisited and
refined by Kantorovich in the 20th century (Kantorovich [69]). It is defined as follows:

φ∗ = arg min
φ

∫
X

c(x, φ(x))dµS(x),

s.t. φ∗#µS = µT ,

where φ∗#µS(x) = µS(φ∗−1(x)), is the push-forward operator, and using it in the constraint of
the problem ensures that the transformation φ∗ transforms one probability measure to another. A
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convenient feature of this problem is that the supports XS and XT do not need to overlap. Optimal
transport was first adapted to domain adaptation in (Courty et al. [24, 25]), and subsequently
used within the framework of invariant representation learning and combined with pseudo-label
techniques (Xu et al. [136]), yielding strong empirical results. Therefore, this direction of
searching for a direct transformation φ∗ from the source to the target domain may be a promising
way to reason about the minimal change between the joint distributions that does not assume
support overlap between the source and target domain marginal distributions.

While promising, optimal transport relies on a distance metric as a cost function in order
to evaluate how complex the transport map φ∗ may be. In this work, we introduce another
measurement of how complex φ∗ is, without relying on a choice of a cost function. The choice
of a cost function may greatly affect the usefulness of the transport map for domain adaptation.
Furthermore, since optimal transport is based on measuring distance, it is affected by the distance
between XS and XT, the supports of the source and the target domains. However, the two supports
could be very far away in practice, and an example of this is when one domain represents images
in day-time and the other domain represents images at night. In such cases, there is a risk that
the optimal transport-based loss may be dominated by the distance between the supports rather
than comparing the statistical properties of the source and target domain distributions. To see an
example of problems arising in optimal transport, consider the simulated dataset on Figure 5.1.
Here we have the source domain data, XS, which follows a mixture of Gaussian distributions, and
the target domain data is a linear function of the source domain: XT = AXS. On the figure, the
optimal coupling yielded by solving the optimal transport problem (using the toolkit provided by
(Flamary et al. [35])) is shown with blue lines, and one can appreciate that there are samples with
opposite classes across domains being coupled with each other (some of them are shown in red
circles). Therefore, the OT cost can be heavily influenced by affine transformations.

In this study, we assume that the two domains are related through a relatively simple transfor-
mation φ∗ (XT = φ∗(XS)), and we try to learn this function via a novel criterion. Namely, in this
chapter we argue that the variance of the log-determinant of the Jacobian of a given transformation
φ, V[log | detJφ|], is a suitable measure of how complex φ is in regards to its influence on the
change of the distribution across domains. In the following section, we will show motivating
examples demonstrating why this quantity is a good measure for preserving predictive information
about Y when transforming the source domain data to the target domain. We will then present
approaches to incorporate this criterion into existing domain-adaptation frameworks. Lastly, we
will conclude this chapter with related work and empirical results.

5.2 Related Work
In addition to the many approaches mentioned in this thesis regarding learning domain-invariant
representations, there is a lot of ongoing work tackling the problem of domain shift via direct
transformations (translations). One subset of this body of work deals with unsupervised translation
of text and images. For images, one of the widely used and adapted approaches is CycleGAN
(Zhu et al. [158]), which imposes a so-called cycle consistency constraint, which is imposed by
learning an inverse-map X̃T = ψ(XT) s.t. P (X̃T) = P (XS) and s.t. φ(X̃T) = XT, thus ensuring
that φ is a bijection and hoping that it preserves relevant semantic information after translating
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the image. However, under these contraints, φ and ψ can still be arbitrarily flexible and there is
no guarantee that they will not discard semantic information (and thus information about Y if
the aim is subsequent classification). For example, under the given constraints, when translating
digit datasets, such as MNIST to MNIST-M, the model will successfully learn to capture the style
change from one domain to another, but there is no guarantee that it will not flip one digit number
to another as well. Our method provides a specific constraint on the translation function φ that
aim to ensure that the main structural information in the distribution is preserved, and at the same
time does not rely on CNNs or specific properties of image data.

Another sub-field of research that is related to this approach are generative models which use
normalizing flows for a variety of tasks, such as more general variational inference (Rezende
and Mohamed [97]), density estimation and generation (Dinh et al. [29], Gresele et al. [47],
Kingma and Dhariwal [70], Papamakarios et al. [92]), and image-to-image translation and domain
adaptation (Grover et al. [53]). As we shall we shall discuss in the following section, density
estimation via a transformation involves the determinant of the Jacobian. The bulk of the literature
of normalizing flows deals with the computation and differentiation of the log-determinant of
the Jacobian matrix in deep neural networks. Namely, the task is to design neural network
architectures such that the Jacobian matrix is ensured to be simpler, with a triangular or diagonal
structure.

Figure 5.1: A simulated example showing the drawbacks of optimal transport, and the advantages
of the Jacobian determinant.
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source domain variables XS Y S

target domain variables XT Y T

i-th domain data point x(i) y(i)

translation function φ(X)

translated source domain data X̃S

class label classifier hc
domain label classifier hα

domain index
j ∈
S,T

Jacobian matrix of φ evaluated
at point i J

(i)
φ

Table 5.1: Notation used

5.3 Characterizing Structural Change when Applying Trans-
formations

Before we examine how the determinant Jacobian matrix is related to preserving predictive
information when performing transformations from the source to the target domain, we first
describe its role in change of variables via functions. Suppose we have two 2d-dimensional vectors
[x1, x2]T and [y1, y2]T related through a function g, y = g(x). When performing integration in
calculus, it is often necessary to change one variable into another inside the integral. For example,
if we consider integrating a function f with respect to y, the change of variables rule is as follows:∫ g(b)

g(a)

f(y)dy =

∫ b

a

f(g(x))| detJg|dy,

where | detJg| is the the absolute value of the determinant of the Jacobian matrix of g. Intuitively,
this value represents the degree to which a very small rectangular region in the x1-x2 coordinate
plane gets distorted by g.

An example of this process can be seen on Figure 5.2. Here, we define g : R2 → R2 as
follows: y1 = x2

1 − x2
2, y2 = 2x1x2. In the figure, the blue curves in the middle and right-

most panel correspond to x2
1 − x2

2 = 3 and x2
1 − x2

2 = 4, whereas the red curves correspond to
2x1x2 = 3 and 2x1x2 = 4. We see that by applying g, the rectangle in the x1-x2 plane on the
left-most gets distorted to form the purple area in the middle panel. The right-most panel of the
figure shows a parallelogram with a gray rectangle over the purple region. This rectangle is a
linear approximation of the purple region that the Jacobian performs. The log-determinant of
the Jacobian is the ratio of the areas of the gray linear approximation on the right-most plot and
the purple rectangle in original space on the left-most plot and thus it approximates the level of
distortion applied on this region by the function g.

5.3.1 Statistical Interpretation of the Jacobian Determinant
The same reasoning of change of variables naturally extends to random variables. Given two
continuous random vectors XS and XT, such that Y = g(X), with cumulative distribution
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Figure 5.2: Example 2D transformation and visualization of the Jacobian and the effect of its
determinant.

functions (CDFs) FX and FY and probability density functions (PDFs) pSX and pTX , the above
change of variables principle can be applied to the CDF (Casella and Berger [15]), in order to
derive pTX in terms of pSX :

pTX(φ∗(XS)) = pSX(XS)/| det(Jφ∗)| =⇒ | det(Jφ∗)| =
pTX(φ∗(XS))

pSX(XS)
.

From this expression we see that, the determinant of the Jacobian of transformations of random
variables expresses distortion by the density ratio before and after applying the transformation.
It is immediately apparent that this measure of distortion implied by the transformation φ does
not require a distance metric, and is concerned with the change in density applied in each small
region of XS, the support of the source domain. It is worth mentioning that change of variables is
heavily utilized in density estimation using generative models, as mentioned in the related work
section. In that case, φ represents a map from original feature space to a simplified latent space
which follows a simple parametric distribution, and the objective is to maximize its parametric
likelihood. However, the calculation involves the log-determinant of the Jacobian of φ, so the key
technical contributions consist of using normalizing flows to construct neural architectures the
Jacobian matrix has simple diagonal or triangular structure, so that its determinant can be easily
calculated and differentiated.

Given this, it would be useful to summarize the information conveyed by the determinant of
the Jacobian matrix across the entire source dataset. Therefore, one may consider the expected
value as a suitable criterion:

E[log | det(Jφ∗)|] = H(φ∗(XS))−H(XS),

where H is the entropy. However, this quantity is very sensitive to simple changes in scale that
may affect the entire dataset, because the overall level of density across the entire target domain
support XT can change drastically, whereas the shapes and the other characteristics of the source
and target domain distributions, P (X)S and P (X)T may be similar. To ensure that the criterion
is agnostic to such changes in scale, we opt to use the variance of the log-determinant of the
Jacobian, LJφ := V[log | detJφ|]. This value measures the overall degree to which there are
local changes in density over the entire support of of the source domain XS, regardless of global
differences in scale.
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To see how this measure can be effective, consider again the example on Figure 5.1, and recall
that the relationship between the source and the target domain, φ∗ is linear: XT = AXS. Then,
each entry in the Jacobian of this transformation, Jφ is a constant, and so is the log-determinant of
its Jacobian. Therefore, in this case, LJ = 0, and the search for a non-parametric flexible function
φ∗ under the constraint that P T(X) = P S(φ(X)). Thus, we can formulate a simple optimization
problem that searches for an optimal translator as follows:

φ∗ = arg min
φ

LJφ := V[log | detJφ|]

s.t. P T(X) = P S(φ(X)).

After solving this problem and finding φ∗, one can use this to transfer the source domain data to
a translation X̃S

trans. in the target domain, and pair it up with source domain labels Y S to train a
classifier which should be optimal for prediction for the unlabeled target domain data. In practice,
one can also make use of the source domain labels to facilitate the search for the optimal translator.
In the following section, we shall present two ways to make use of this criterion in a deep learning
framework.

5.4 Method

Given the new criterion for minimal change introduced in the previous section, we now aim to
design a deep architecture to make use of it. The first approach for doing so is via training a
direct translation function φ from the source to the target domain, instead of relying on invariant
representation learning. We present the proposed method on Figure 5.3. The model consists of
four main components which are trained jointly:
• The first component maps the source domain data using a transformation φ : Rd → Rd and

yields a translation X̃S = φ(XS).
• The second component learns to predict class label Ỹ S from the transformed source domain

data X̃S via a class predictor: Ỹ S = hc(X̃
S).

• The third component ensures that the transformed data matches the target domain data
in marginal distribution P S(φ(X)) = P T(X), and is usually modeled by an adversarial
domain label classifier: j̃ = hα(X̃S) and j̃ = hα(XT).

• The fourth component minimizes the level of distortion via the newly introduced criterion:
LJφ = V[log | detJφ|].

To enforce the above-mentioned constraints, we need the following loss functions:

Lclassif. = −
C∑
j=1

mS∑
i=1

yij log(ỹcij),

Linv. = −
mS+mT∑
i=1

{ji log(j̃i) + (1− ji) log(1− j̃i)},

84



and the total loss can be minimized in an alternate fashion:

min
φ
λcLclassif. + λjLJφ − λhLinv.

min
hα
λhLinv..

Here, after training, we can obtain the predicted labels Ỹ T = hc(X
T), and if needed one can also

train a classifier from scratch on the translated features X̃S and source domain labels Y S.

5.4.1 Alternative Implementation via Invariant Representation Learning

In addition to implementing the search for φ∗ by directly mapping the source domain to the target
domain, the same constraint for minimum distortion via the variance of the Jacobian matrix can be
implemented within the framework of invariant latent representation learning. Let us assume that
the data-generating process is as in Chapter 4, depicted in Figure 4.1. Motivated by this generating
process assumption, in Chapter 4 we introduced an autoencoder framework (depicted on Figure
4.3) in which we map the input data X (along with appropriate domain-specific information)
to an invariant representation Z via an encoder φ. Subsequently, the invariant features Z (also
together with appropriate domain-specific information) are inputs to a decoder function φ̃(Z, θX).
As described in Chapter 4, depending on the domain-specific input θX , the decoder may either
produce a reconstruction X̃S = φ̃(ZS, θSX), or a translation X̃S

trans. = φ̃(ZS, θTX). This presents
an overall translation function ψ(XS) = φ̃(φ(XS, θSX), θTX), whose influence on the distribution
change can be regularized via the constraints on the variance of the log-determinant of the
Jacobian, given by LJψ . The only change to the algorithm in Chapter 4 is providing LJψ to its
total loss instead of the cross-entropy loss Ltrans

inv. of the auxiliary classifier hc.
By applying this kind of change to the algorithm in Chapter 4, we are effectively using a

different criterion for a minimal change of the generating process of X from Y across domains.
Namely, instead of mutual information, we are now using a measurement of minimal distortion
of the marginal distribution. As mentioned before, this criterion has an advantage over mutual
information, in that it does not require there to be overlap between the supports XS and XT.

5.4.2 Challenges with Scalability of the Jacobian Determinant

The main drawback of the proposed framework is the computational cost of computing the
Jacobian during the forward pass. The Jacobian involves derivatives of φ with respect to the input
features X , and we perform their evaluation using automatic differentiation. It can be shown
(Baydin et al. [3], Gresele et al. [47]) that for a D-dimensional dataset and a fully-connected
neural network consisting of L layers, the cost of computing the Jacobian is in the order of
O(LD3). Therefore, this computation may be prohibitively expensive for high-dimensional
datasets such as images, so in the following section, we restrict our empirical evaluation to
relatively low-dimensional datasets.
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Figure 5.3: Diagram of the proposed model.

5.5 Empirical Evaluation

To evaluate the efficacy of the proposed method, we conduct experiments on a synthetic and real
dataset. We consider the following baseline methods in our experiments:

• no-transfer: a simple classifier only trained on the source domain
• DANN (Ganin et al. [39]): a classic invariant training method which learns a marginally

invariant representation that is predictive of Y in the source domain,
• DSN (Bousmalis et al. [12]): an invariant training method that explicitly models the invariant

and the changing parts of the data in its latent representation, and regularizes them via a
reconstruction loss,

• DSAN: our recently-proposed method which for learning invariant latent representations,
which uses mutual information minimization to enforce minimal change on the encoding
function,

• DSAN: optimal transport mapping (Flamary et al. [35]) of the source domain data to the
target domain and subsequent classification done by SVM,

• TRANS-U: unregularized translation method without constraining the variance of the
Jacobian matrix of the translation function φ.
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5.5.1 Experiments on Simulated Data

To evaluate our method, we created a binary classification dataset in which there is minimal
change of P (X|Y ) across domains and there is little to no support overlap across the two domains.
The dataset is shown on Figure 5.4, in which the source and target domains follow mixtures of
uniform and Gaussian distributions respectively, ensuring that the true transformation function
φ∗ is nonlinear and requires a neural network to learn. For this experiment, we implemented the
algorithm as a direct translation as opposed to an invariant representation learning approach.

We implemented each of the components of our proposed model using a multi-layer perceptron,
and we sampled 3200 points from each domain in 10 separate experiments using different random
initializations. We present the results on Table 5.4c, where we provide the accuracy and the
standard deviation across the different replicate experiments (shown in parentheses). From the
results, one can appreciate that our proposed method significantly outperforms the baselines by a
significant margin. Furthermore, it is apparent that the translation-based baseline TRANS-U does
significantly better than the other baselines. We postulate that this is due to the fact that in this
example, a well-initialized MLP can still perform translation and preserve meaningful information
of the target variable Y in its output for certain random initializations of the network. However,
baseline methodologies that perform invariant representation learning are unlikely to maintain
knowledge of this information in the latent representation, since they perform transformations
on both the source and the target domain data. On Figure 5.1, we see the source domain data
after mapping them to the target domain using optimal transport, colored by their respective
source domain labels. From this figure, it is apparent that the optimal transport approach does
not successfully capture the properties of the joint distribution in the target domain, and discards
meaningful information about the target variable Y .

To see the effects of the Jacobian criterion, on Figure 5.5 we show the source domain
data mapped to the target domain when we use the constraint on the variance of the Jacobian
determinant (TRANS) versus when we do not (TRANS-U). Here, the top row shows the translation
and the performance on the target domain data, when the constraint on the variance on the log-
determinant of the Jacobian matrix is not imposed: (a) the target domain data with the true labels,
(b) the output X̃S = φ(XS) when run without the constraint on the variance of the Jacobian,
colored by the true source domain labels (c) the target domain data XT, colored by the the
predictions Ỹ T after training. Top row shows the translation and the performance on the target
domain data, when the constraint on the variance on the log-determinant of the Jacobian matrix is
enabled: (d) the translation run with the constraint on the variance of the Jacobian, (e) the target
domain data colored by the prediction after training. From these visualizations, one can appreciate
that the proposed approach is indeed necessary for preserving label-specific information and
successful prediction in the target domain.

5.5.2 Experiments on Real Data

To further examine the efficacy of the proposed approach, we also perform experiments on real-
world datasets. The first dataset we consider the 67-dimensional wireless localization dataset used
in Chapter 4. To ease the process of translation and to reduce dimensionality for the purpose
of calculating the gradient of LJ, we use the conditional independence-based graph discovery
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(a) (b)

Model Accuracy
no-transfer 50.4(4.3)

DANN 51.1(4.3)
DSN 52.3(5.2)
OT 82.65(1.1)

TRANS-U 84.1(15.1)
TRANS 93.3(1.3)

(c)

Figure 5.4: Scatter-plot of the simulated dataset and performance of the proposed method
compared to baselines (percent accuracy).

Table 5.2: Accuracy (%) on Wi-Fi localization dataset for unsupervised domain adaptation.

Models t1→ t2 t1→ t3 t2→ t1 t2→ t3 t3→ t1 t3→ t2 Average

CDAN (Long et al. [83]) 37.95(2.3) 30.31(2.2) 35.79 (1.9) 34.21(1.2) 31.03(0.8) 32.44(1.1) 33.62
MSTN (Xie et al. [135]) 32.32(1.2) 26.56(1.8) 25.68 (2.2) 27.66(2.3) 29.3(1.3) 28.66(1.2) 28.36

MDD (Zhang et al. [154]) 29.33(2.2) 31.61(2.9) 28.905(3.1) 27.62(2.3) 29.57(3.0) 26.31(3.3) 28.89
BSP (Shu et al. [107]) 37.8(2.2) 32.07(1.8) 35.76(2.8) 34.23(1.5) 31.49 (1.2) 31.63(1.1) 33.83

DSAN-U 44.33(2.9) 33.63(4.2) 37.10(1.8) 34.77(2.1) 36.77(2.6) 34.55(3.5) 36.96
DSAN-Jac 44.50(2.5) 36.3(4.3) 37.75(2.8) 36.7(4.0) 37.28(1.7) 35.55(2.8) 37.89
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(a) (b) (c)

(d) (e)

Figure 5.5: The translated data X̃S in the simulated experiments at the end of the run.

approach by (Zhang et al. [145]) to reduce dimensionality of the dataset to the 16 features which
are in the Markov Blanket of Y. We used the following recently-proposed baselines: MDD (Zhang
et al. [154]), BSP (Shu et al. [107]), as well as the established pseudo-label based methods: CDAN
(Long et al. [83]) and MSTN (Xie et al. [135]). In addition to these baselines, we also include the
baseline of an autoencoder approach as described in Chapter 4, without any regularization (we
refer to it as DSAN-U). For this experiment, we implemented the proposed method as a regularizer
of an invariant representation learning approach (as described as an alternative implementation to
a direct translation approach, in subsection 5.3.1 of this chapter). Since in this setting, the baseline
methods and our proposed method use an encoding function φ, we used the same MLP architecture
for each baseline as well as the proposed method (which we refer to here as DSAN-Jac). When
comparing to DSAN-U, we ensure that both the encoder and decoder have the same architecture.

The results of the wireless localization dataset experiment are presented in Table 5.2. From
these results, one can appreciate that the proposed method marginally outperforms the baselines.
While the results show an encouraging trend when using our approach, they are not statistically
significant. We found that the most likely reason for this is that the proposed method is challenging
to tune – in particular the penalty parameter that corresponds to the LJ (given by λj). Given the
significant results on simulated data, we are confident that the proposed method can be tuned to
outperform the baselines more convincingly.

5.5.3 Challenges in High-Dimensional Settings
The criterion introduced in this study relies on computing the Jacobian matrix of the translation
function. When the translation function is parameterized by a neural network architecture, the
Jacobian matrix can be calculated by backpropagation. However, when there are many dimensions
and limited number of observations, the euclidean distance between each pair of points may be
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(a) (b) (c)

Figure 5.6: Analysis of the effect of dimensionality on the variance and expectation of the
log-determinant of the Jacobian of the transformation in a simple simulated setting.

very large, and the estimated translation function can be arbitrarily flexible between them, thus
overfitting on the training data. Therefore, the variance of the Jacobian may suffer from estimation
error when calculated this way.

To demonstrate this phenomenon, we conducted a simple simulation experiment. Namely,
we simulated a dataset consisting of 100 data-points from the standard normal distribution
XS ∼ N(0, Id), where we vary the dimensionality of the data given by d. We then apply a simple
scale transformation XT = 2XS, thus generating paired source and target domain data. We
learned this transformation via a deep fully-connected feed-forward network and a mean-squared
error loss between the paired instances. In Figure 5.6, we present the effect of the dimensionality
of the data on the moments of the Jacobian log-determinant. To generate simulated data, we
sampled 200 points from the above model, and we vary the dimensionality between 5 and 195.

On the right panel in Figure 5.6c we observe that the mean squared error on the training dataset
is low and that the loss evaluated on a held out validation dataset is increasing, indicating that
there is gradually increasing overfitting on the training data with increasing dimensionality. On
the middle panel (Figure 5.6b), we present the expectation of the log-determinant of the Jacobian
of the learnt transformation, and we see that it drops rapidly when evaluated on the training data,
indicating that the average determinant (without the log transformation) approaches zero, and
the function is not invertible. Furthermore, we can also observe that this phenomenon begins to
occur even before significant overfitting takes place, when the dimensionality ranges from 10 to
30. Consequently, due to the logarithm transformation on the determinant in our objective, the
increase in scale of the expectation in the middle panel is reflected on an increase in variance of
the log-determinant in the left panel (Figure 5.6a), which is the criterion we use in our approach.
Therefore, we can conclude that with limited number of data-points, using a very flexible model
to learn the transformation may result in an unreliable measurement of distortion with imposed by
the transformation as calculated by our proposed criterion. In conclusion, further investigation is
required to adapt the proposed criterion for use in high-dimensional settings.

5.6 Conclusion
In this chapter we introduced a novel criterion for change implied on the distribution of the
features by a transformation from the source to the target domain. We have performed simulated
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and real-world dataset experiments to examine the effectiveness of this criterion, and to show that
it has promising potential when added to existing domain adaptation frameworks. One direction
of future work would be to combine this criterion with methods that rely on pseudo-labels, and to
see whether it improves the quality the of the pseudo-labels and thus the prediction performance
in the target domain. Furthermore, as currently implemented the current approach performs
back-propagation through a log-determinant operation, which is computationally prohibitive for
any dataset beyond a few dimensions. Therefore, combining this criterion with the machinery
and computational efficiency of normalizing flows would be instrumental in incorporating it in
high-dimensional datasets such as text and images, and for using to facilitate applications such as
image-to-image translation.

91



92



Chapter 6

Conclusion and Discussions

In this thesis, we have approached the problem of unsupervised domain adaptation from various
and often orthogonal viewpoints. However, all of the studies presented in this thesis are motivated
and follow one underlying line of reasoning: that considering the data-generating process can lead
to a compact representation of the minimal changes across different domains, which can then be
adapted to various learning techniques and algorithms. In each of the studies our assumption is
that the joint distribution P (X, Y ) can be broken down into two independently-changing modules.

In Chapters 2, 4, and 5 we assumed that these modules are P (Y ) and P (X|Y ), which can
result from two scenarios: (1) the true underlying causal process is Y → X and there are no
hidden confounders or selection bias in the observed data, or (2) the two independent modules
in the joint distribution can result from a hidden common cause L in the true causal process, as
demonstrated in example 2 of Figure 1.3. On the other hand, in Chapter 3 we assumed that the two
independently-changing modules of the joint distribution are P (X) are P (Y |X). This can arise
due to: (1) the true underlying causal process is X → Y and there are no hidden confounders or
selection bias in the observed data or (2) the true underlying causal process is Y → X and there
is selection bias on X which varies across domains, as demonstrated in example 1 of Figure 1.3.

Taking into consideration the data-generating process and coming up with a compact represen-
tation of the joint distribution was invaluable in deciding how to represent the changing parts of
the distribution in the learning procedure, and make use of them for adaptation. The manner in
which we achieved this varied depending on the generating process assumptions and the specific
properties of the machine learning techniques we used. In the context of this overarching theme,
we shall now briefly revisit the various approaches used in this thesis and point out some of their
main drawbacks.

In Chapter 2, we worked in a classification setting under the conditional-target shift, meaning
that both P (Y ) and P (X|Y ) change across domains, and they do so independently. In this study,
we assumed that there are multiple labeled source domains and a single unlabeled target domain.
We designed an algorithm that makes use of reproducing kernel techniques such as Kernel
PCA (Schölkopf et al. [103]) and Maximum Mean Discrepancy (MMD) (Smola et al. [109])
which accomplishes two tasks simultaneously: (1) we extracted the low-dimensional manifold of
changing parameters of P (X|Y ) in the source domains, and (2) we made use of this manifold
to successfully reconstruct the joint distribution in the target domain, and we showed that the
joint distribution in the target domain is identifiable in the asymptotic case. Despite the promising

93



performance, there are some drawbacks of the proposed approach. Firstly, the approach is heavily
dependent on the number of source domains in the datasets. If this number is smaller than the
number of effective changing parameters of P (X|Y ), then it will not be possible to capture all of
the changes of the proposed approach in the low-dimensional manifold learned via Kernel PCA.
Secondly, the approach operates on the raw features of the data, and therefore may suffer from
estimation error when dealing with high-dimensional and noisy datasets such as images or text.
Finally, we applied this algorithm on all of the features of the data,

In Chapter 3, we assumed that the two independently-changing modules of the joint distribu-
tion across domains are P (X) and P (Y |X). Specifically, we worked in the setting of covariate
shift, in which P (X) changes, but P (Y |X) stays the same (it undergoes a trivial identity change).
We demonstrated that correcting for covariate shift can have deteriorating performance with
increasing number of dimensions in the data, and we introduced an approach to reduce the dimen-
sionality while ensuring that relevant information for predicting Y is not discarded. In particular,
we made use of reproducing kernel techniques in order to express the dependence between the
target variable Y and a linear projection of the features X , given by WTX . Furthermore, we
established an algorithm that minimizes this dependence by searching over the manifold of linear
projections. The main drawback of this approach is that the relationship between X and Y may
be non-linear, and in this case our approach will suffer from bias, as demonstrated by the main
theoretical results of this study.

In Chapter 4, we again worked with the independently-changing modules P (Y ) and P (X|Y ),
but we assumed that P (Y ) undergoes the trivial identity transformation (i.e. is invariant), and we
worked within the realm of invariant representation learning methods using neural architectures. In
this study, we further assumed that the generating process is known and there is no selection bias
and/or unobserved confounders (as shown in Figure 4.1). This assumption allowed us to interpret
the invariant representation being learned in the network as corresponding to a latent variable Z
in the generating process, and we were able to dissect what information is necessary to infer this
variable from observed data. This view of the problem allowed us to accomplish two main tasks:
(1) infer the latent representation from X and domain-specific information θX via an encoder, and
(2) mimic the data-generating process of X from Z and θX via a decoder, thus ensuring that Z
has non-trivial structure which preserves information for predicting Y in the target domain. To
ensure this, a key ingredient to our method was a way to represent the notion of minimal change in
the generating process of X from Y (given by P (X|Y )) across domains. Namely, we expressed
this dependence in terms of the mutual information of I((X, Y ); θX), and we demonstrated a
convenient way to implement it within the invariant representation learning framework. The main
drawback of this approach is that this constraint for minimal change across domains comes with
the assumption that the source and target domain distribution have a significant amount of support
overlap. This is a problem when working with data which is high-dimensional, as it is likely that
there are dimensions which have values that are different by orders of magnitude between the two
domains.

In Chapter 5, we attempt to mitigate this issue by viewing the relationship between the
source and the target domain in terms of a direct transformation from the source to the target.
We make the same generating process assumptions as in Chapter 4, and we represent the notion
of minimal change across domains in terms of the variance of the Jacobian determinant of this
transformation, which measures the degree of local changes of the density p(X) imposed by the
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transformation. Since in this setting, P (X) has information about P (Y |X), our conjecture was
that this measure can be used as a proxy to assess to which degree label-specific information is
being lost when applying the direct transformation. The main disadvantage of this approach is
the poor scalability to high-dimensions, due to the high computational cost of computing and
differentiating the determinant of the Jacobian.

6.1 Future Work
In this thesis, we have made contributions to several sub-branches of unsupervised domain
adaptation, and provided new strategies and insight through which this challenging problem can
be tackled. For each of them, there are several natural directions to go further and improve on
them. We shall now provide a survey of some of these future directions.

6.1.1 Refining the Search for a Low-Dimensional Manifold
In Chapter 2, we presented a novel approach of capturing low-dimensional changes across do-
mains via kernel methods. This approach relied on embedding M source domain distributions
P (1)(X|Y ), .., .P (M)(X|Y ) into Hilbert space, and then performing PCA and projecting (repre-
senting) these distributions as points a hyperplane in this infinite-dimensional space. However,
we do not impose any constraints regarding where on this hyperplane these points may lie. In
practice, it could be that these distributions (points) may be close to each other on the hyper-plane.
In fact, it has been suggested that it is reasonable to assume that points mapped to an RKHS using
the Gaussian kernel follow approximately a Gaussian distribution when projected on a random
element in the RKHS (Huang et al. [63]). This property can be used to establish an additional
Gaussian likelihood-based constraint on the distributions upon mapping them into Hilbert space
and projecting them on the hyperplane in that space.

Furthermore, we previously mentioned that the number of labeled source domains is instru-
mental for the effectiveness in capturing more complex changes of P (X|Y ) across domains.
When the total number of domains available is small, it may be beneficial to make use of the
target domain when learning the low-dimensional manifold of changes. Since P (X|Y ) is not
observed in the target domain, a pseudolabel-based procedure may be used to assign initial labels,
and refine them iteratively by re-learning the manifold and performing prediction on the target
domain.

Finally, as discussed throughout this thesis, using all of the observed features for prediction
may be sub-optimal because a large fraction of them may be irrelevant for predicting Y , and
taking all of them into account may introduce more complex changes for the algorithm to capture
via Kernel-PCA. Thus, the algorithm may require more labeled source domains for reliable
transfer learning. To prevent this from happening, one could discover a compact representation
of the changes of P (X, Y ) across domains using conditional-independence testing to discover
an augmented graphical model of the data, as presented in Figure 1.4 (Zhang et al. [145]).
This representation will yield independently-changing modules of the distribution, and a low-
dimensional manifold of changes may be learnt for each of them. Then, the task would be to
combine this information for prediction in the target domain.
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6.1.2 Future Directions for Neural Network-Based Domain Adaptation

In Chapters 4 and 5 of this thesis we dealt with building on existing deep learning frameworks
for unsupervised domain adaptation. In particular, we dealt with ways to represent the property
of minimal change of P (X|Y ) across domains and incorporate it in a deep learning architecture.
In Chapter 5 we introduced a way to measure the change of P (X|Y ) across domains by only
using the marginal distributions of X in the source and the target domain. The main building
blocks of this approach was to assume that there is a simple direct transformation from the source
to the target domain, and to try to approximating via a constraint on its Jacobian determinant.
However, as discussed before, there are scalability issues with this criterion, rendering it unviable
for high-dimensional datasets without previously compressing them to a low-dimensional space,
and therefore this criterion cannot be explored for applications such as image-to-image translation
at the moment.

Furthermore, when working with a limited number of points in a very high-dimensional space,
calculating the Jacobian (and its determinant) of the transformation by back-propagation may
not be an accurate representation of the smoothness of the transformation. Therefore, efficient
nearest-neighbor approaches to approximate the Jacobian matrix via finite differences in this
scenario is a crucial next step for making this method directly applicable to high-dimensional
datasets. In addition to this future direction, another next step towards deploying this method
in a high-dimensional setting is to ensure that the determinant of the Jacobian can be calculated
and differentiated computationally efficiently. Therefore, a fruitful direction to investigate would
be how to incorporate a normalizing flow into the neural architecture corresponding to the
transformation in the model, in order to ensure that the determinant of the Jacobian can be
calculated easily.

In the introduction of this thesis we mentioned that semi-supervised learning approaches have
recently been explored in the unsupervised domain-adaptation setting and have shown very strong
empirical performance on several benchmark datasets. A large subset of these techniques rely on
making use of large unlabeled data in order to guide a predictor towards regions of low density.
Examples of these techniques are self-training (Lee et al. [72]) and cross-entropy minimization
(Grandvalet et al. [46]), which have been successfully incorporated into unsupervised domain
adaptation (Saito et al. [101], Shu et al. [108], Zhang et al. [153]). When used in unsupervised
domain adaptation, the semi-supervised learning techniques are applied on the unlabeled target
domain data in order to inform the predictor which is trained on the source-domain labeled
data. When using self-training, the general approach is to train a predictor on the labeled source
domain data, and then apply it on the target domain data to generate pseudo-labels which are then
iteratively refined. However, the initial pseudo-labels obtained this way may be very noisy due
to the different joint distributions between the source and target domains, and this may hurt the
overall prediction performance in the target domain. Therefore, a fruitful future direction would
be to explore how the constraint on the variance of the Jacobian determinant can be used to reduce
the noise of the pseudo-labels by determining the distortion that they impose on P (X|Y ) (instead
of simply using the constraint on P (X) like we did in Chapter 5).

In addition to designing the criterion for minimal change (such as mutual information or
variance of the Jacobian determinant), another promising direction to investigate is the degree to
which novel neural network architectures such as transformers (Vaswani et al. [128]), can be used
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to apply these ideas more efficiently on structured data such as text and images. In particular, the
attention mechanisms and their respective hidden representations may have valuable information
about the change of the distribution across domains, and would be worthwhile to explore how to
harness them in a domain adaptation framework.

Finally, the ultimate goal of our line of thinking is to work towards the most general neural
network framework for domain adaptation which can provably capture the changes of the joint
distribution across domains, given enough labeled source domains. In Chapter 2, we introduced
a method to capture the changes of the conditional distribution P (X|Y ) across domains via
Reproducing Kernel techniques. Similarly, (Zhang et al. [150]), generative models were used to
capture the changes of specific conditional distributions relevant for predicting Y . However, both
of these lines of work only capture limited factors of change across domains. Ultimately, the goal
would be to design generative models that can capture various latent factors of variation of the
joint distribution across domains and explore what would be needed for their identifiability. This
line of reasoning is related to learning latent variable graphical models, and one of the approaches
developed for this task is spectral learning (Hsu et al. [60], Song et al. [111]). Therefore, a
promising direction to study would be making use of these established approaches to learn a latent
variable model under simpler assumptions, after which one can move to flexible neural-network
based generative models with various disentanglement properties.
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