Self-Driving Database
Management Systems:
Forecasting, Modeling, and Planning

Lin Ma
CMU-CS-21-134
August 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Andrew Pavlo, Chair
Ruslan Salakhutdinov

Gregory Ganger
Christopher Ré, Stanford University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Lin Ma

This research was sponsored by National Science Foundation award numbers: 1IS-1846158, IIS-1423210, and CCF-
1438955; by a National Science Foundation Graduate Research Fellowship award; by the Intel Corporation award
number 1011856; and by the University Industry Research Corporation award numbers: 1030834 and 1030845.
The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government
or any other entity. This research was sponsored by Intel ISTC-CC and the National Science Foundation under
award numbers CCF-1438955 and IIS-1846158. The views and conclusions contained in this document are those of
the author and should not be interpreted as representing the official policies, either expressed or implied, of any
sponsoring institution, the U.S. government or any other entity.

Keywords: database management systems, self-driving databases, machine learning, arti-
ficial intelligence

For my family

Abstract

Database management systems (DBMSs) are an important part of modern data-
driven applications. However, they are notoriously difficult to deploy and admin-
ister because they have many aspects that one can change that affect their per-
formance, including database physical design and system configuration. There are
existing methods that recommend how to change these aspects of databases for
an application. But most of them require humans to make final decisions on what
changes to apply and when to apply them. Furthermore, these previous tuning
methods either (1) require expensive exploratory testing, (2) are reactionary to the
workload and can only solve problems after they occur, (3) focus only on improving
one single aspect of the DBMS, or (4) do not provide explanations on their decisions.
Thus, most DBMSs today still require onerous and costly human administration.

In this thesis, we present a novel architecture for a self-driving DBMS that
enables automatic system management and removes the administration impedi-
ments. Our approach consists of three frameworks: (1) workload forecasting, (2)
behavior modeling, and (3) action planning. The workload forecasting framework
predicts the query arrival rates under varying database workload patterns using
an ensemble of time-series forecasting models. The behavior modeling framework
constructs fine-grained machine learning models that predict the runtime behavior
of the DBMS. Lastly, the action planning framework generates a sequence of opti-
mization actions based on these forecasted workload patterns and behavior model
estimations. It uses receding horizon control and Monte Carlo tree search to ap-
proximate the complex optimization problem effectively.

Our forecasting-modeling-planning architecture enables an autonomous DBMS
that proactively plans for optimization actions without expensive testing. It auto-
matically applies the actions at proper times, holistically controls all system aspects,
and provides explanations on its decisions.

Acknowledgments

[am very fortunate to have Andrew (Andy) Pavlo as my advisor throughout my
Ph.D. career. Andy always gave me his best help when I needed them. Andy was
never tired of discussing research topics. His passion for databases and humbleness
towards science always inspired me. He taught me not only how to navigate tech-
nical challenges in database research but also how to write elegant papers, make
compelling presentations, light the spirit of students, and manage a professional
career. I learned a lot from him. And I am truly grateful for the experience working
with him over these years.

I would like to thank all my thesis committee members. Thanks to Ruslan
(Russ) Salakhutdinov for the many inspiring discussions we have, especially when
we were designing the system’s high-level self-driving architecture. Russ always
brought genuine opinions and vivid explanations to connect the bridge between
system design and ML methods. Thanks to Christopher (Chris) Ré and Gregory
(Greg) Ganger for their feedback during the course of this project. Chris has sharp
observations. His insights provided exciting possibilities to enhance our self-driving
DBMS. Greg shares valuable research experience on the interactions between ML
and systems. The constructive suggestions from him shepherded my system design.

I am thankful to all of the collaborators on this project. William Zhang pro-
vided vital help in implementing our behavior modeling framework (Chapter 4).
Katrina (Jie) Jiao aided me in building the infrastructure for our action planning
framework (Chapter 5). Ahmed Hefny guided me through the modeling challenge
of our workload forecasting framework (Chapter 3). Thanks to Alex Smola and Ge-
offrey Gordon for their early feedbacks. Also, thanks to other collaborators on this
project: Joy Arulraj, Dana Van Aken, Prashanth Menon, Matt Butrovich, Wan Shen
Lim, Lisa Lee, Gustavo Mezerhane, and Wuwen Wang.

I would like to extend my thanks to my mentors during my internship at Mi-
crosoft Research: Sudipto Das, Bailu Ding, and Adith Swaminathan. All of them are
brilliant researchers. Even though they were not directly involved in this project,
the research skills they taught me during our active learning project significantly
helped this work on self-driving DBMSs.

I want to thank the many talented researchers and students that overlapped
with me at CMU: Laxman Dhulipala, Charles McGuffey, Huanchen Zhang, Tianyu
Li, Matthew Perron, Viktor Leis, Marcel Kost, Ziqi Wang, Michael (Tieying) Zhang,
Yingjun Wu, Xiaoxuan Liu, Sivaprasad Sudhir, Chad Dougherty, Todd Mowry, David
Andersen, Michael Kaminsky, Ricky (Chen) Xu, John Rollinson, Amadou Ngom,
Joseph Koshakow, Kyle Dotterrer, Rohan Aggarwal. All of you inspired me to ex-
plore further and deeper in my research. I would also like to thank all the adminis-
trative staff that helped with many tasks during my graduate school, including Deb
Cavlovich, Catherin Copetas, Jessica Parker, Karen Lindenfelser, and Joan Digney.

This thesis would not be possible without my family’s unconditional support
and love, which I will always remember. I want to dedicate this thesis to them.

Contents

Abstract

Acknowledgments

1 Introduction

3

2 Background
2.1 Self-Driving DBMS
22 Taxonomy e
23 Challenges
Workload Forecasting
3.1 Background
3.1.1 Sample Workloads o o
3.1.2 Workload Patterns
313 Discussion e e e
32 OVervIew
3.3 Pre-Processor e
3.4 Clusterer
3.41 Clustering Features
3.4.2 On-line Clustering,
3.43 Cluster Pruning L
3.5 Forecaster
3.5.1 ForecastingModels
3.5.2 Prediction Horizons & Intervals
3.6 Experimental Analysis
3.61 NumberofClusters
3.6.2 Prediction Accuracy Evaluation 00 L.
3.6.3 Spike Prediction Evaluation
3.6.4 Prediction Interval Evaluation
3.6.5 Computation & Storage Overhead
3.6.6 Automatic Index Selection oo oo oL
3.6.7 Logical vs. Arrival Rate History Feature
3.6.8 Sensitivity Analysisof p oo L

19

23
23
24
26

3.6.9 Input Space for Spike Prediction. 52

3.6.10 Sensitivity Analysisof vo o oL 54
3.6.11 Predicting Noisy Workloads 54

4 Behavior Modeling 56
4.1 Background 57
4.1.1 Behavior Modeling L 57

41.2 Challenges. 58

42 OVeIVIEWo e 59
43 OU-models 62
43.1 Principles 62

432 InputFeatures. 63

433 OutputLabels 65

44 Interference Model 66
441 InputFeatures. 67

442 OutputLabels 67

4.5 Data Generation and Training oL 67
45.1 Data Collection Infrastructure 68

452 OU-Runners 69

453 ConcurrentRunners 69

454 Model Training L 70

4.6 Handling Software Updates 70
4.7 Experimental Evaluation 71
4.7.1 Data Collection and Training 71

47.2 OU-Model Accuracy 72

4.7.3 OU-Model Generalization 73

4.7.4 Interference Model Accuracy, 74

4.7.5 Model Adaptation and Robustness 75

47.6 Hardware Context 76

4.7.7 End-to-End Self-Driving Execution 77

5 Action Planning 80
5.1 Background 81
5.1.1 Static Workload Tuning 81

5.1.2 Receding Horizon Control 81

5.1.3 Monte Carlo TreeSearch 81

52 OVeIVIEW o it e e 82
5.3 Monte Carlo Tree Search and Optimization 85
53.1 RolloutChallenge 86

5.3.2 Search Strategy Challenge 87

5.3.3 Search Interval Challenge 88

5.3.4 Memory Constraint Challenge 88

54 Inference Cache 89
5.5 Implementation Choices 90

5.6 Evaluation s, 91

56.1 Planning Quality o Lo 92

5.6.2 MCTS Search Strategy 94

5,63 InferenceCache 95

6 Related Work 97
6.1 Automated DBMSTuning. 97

6.2 Workload Forecasting 100

6.3 Behavior Modeling 101

6.4 ActionPlanning 102

6.5 Learned DBMS Components 103

7 Future Work 105
7.1 Error Correction and Feedback Control 105

7.2 Supporting Complex DBMS Features 106

7.3 Self-Driving Aggressiveness Level 0 .. 106

7.4 Self-Driving acrossthe Stack oL 107

7.5 Human-Intelligent-System Interaction 107

8 Bibliography 108

11

12

List of Figures

1.1

3.1
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Self-Driving DBMS Architecture — Our architecture consists of an on-line
workload forecasting framework, an off-line behavior modeling framework,
and an on-line action planning framework. o000

Workload Patterns — Examples of three common database workload patterns.
0OB5000 Workflow — The framework receives SQL queries from the DBMS.
This data is first passed into the Pre-Processor that identifies distinct templates
in the workload and records their arrival rate history. Next, the Clusterer com-
bines the templates with similar arrival rate patterns together. This information
is then fed into the Forecaster where it builds models that predict the arrival rate
of templatesin each cluster. L.
Arrival Rate History — The past arrival rates for the largest cluster and the
top four queries within that cluster from BusTracker.
On-line Clustering - Clusterer periodically performs three steps to change
the templates’ cluster assignments incrementally. It first checks the similarities
between the arrival rate history features of new templates with the centers of
existing clusters. Then it removes the templates from their clusters if the arrival
rate patterns of a template and its cluster center have deviated. Finally, it merges
the clusters with high similarities between their centers together.
Cluster Coverage — The average ratio between the volume of the largest clus-
ters and the total workload volume.o o Lo
Cluster Change — The number of clusters that changed among the five largest
clusters between two consecutive days. L.
Forecasting Model Evaluation - The average prediction accuracy of the dif-
ferent forecasting models over prediction horizons ranging from one hour to
one week for the Admissions, BusTracker, and MOOC workloads.
Prediction Results — Actual vs. predicted query arrival rates for the highest-
volume cluster in the BusTracker workload with prediction horizons of one hour
andoneweek.
Prediction Results — Actual vs. predicted query arrival rates for the combined
clusters in the Admissions workload with spike patterns.
Prediction Interval Evaluation — The average prediction accuracy and train-
ing time with different intervals for BusTracker.
Index Selection (MySQL) — Performance measurements for the Admissions
workload using different index selection techniques.

13

3.12

3.13

3.14

3.15

3.16

3.17

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Index Selection (PostgreSQL) — Performance measurements for the BusTracker
workload using different index selection techniques. 50

Cluster Coverage with p — The ratio between the volume of the three largest
clusters and the total workload volume with different similarity threshold p. . . 51

Prediction Accuracy with p — Normalized prediction accuracy for one-hour
horizon with different similarity threshold p. 51
Input Space Time-Progress — The 3D-projected input space for the Admissions
workload with spikes. The trajectory color follows dates. 52

Prediction Results — Actual vs. predicted query arrival rates for the combined
clusters in the Admissions workload with HYBRID (ENSEMBLE model corrected

by KR). . . o 53
Prediction Results — Actual vs. predicted query arrival rates for a synthetic
noisy workload. L 54

Index Build Example — TPC-C query latency running on NoisePage. The
DBMS begins index building after 60s using 4 or 8 threads. 58

System Architecture — MB2 trains OU-models for each OU with the data gen-
erated by OU-runners and builds interference models for concurrent OUs based
on system resource utilization. oo oo o oL 60

MB2 Inference Procedure — Given the forecasted workload and a self-driving
action, MB2 records the OUs for all input tasks, and uses the OU-models and
interference models to predict the DBMS’s behavior. 61

OU and Interference Models - MB2 uses OU-specific input features to predict
their resource consumption and elapsed time. The interference model uses the
summary predictions for concurrent OUs. 64

OU-model Accuracy (OU) - Test relative error for each OU averaging across
all OU-model output labels. OU-models are trained with four ML algorithms:
(1) random forest, (2) neural network, (3) Huber regression, and (4) gradient
boosting machine. Lo oL 72

OU-model Accuracy (Output Labels) — Test relative error for each output
label averaging across all OUs. OU-models are trained with four ML algorithms
with and without output label normalization: (1) random forest, (2) neural net-

work, (3) Huber regression, and (4) gradient boosting machine. 72
OU-Model Generalization — Query runtime estimations on different datasets
and workloads. 73
Interference Model Accuracy — Model trained with 1 GB TPC-H dataset and
odd thread numbers generalizes to other scenarios. 75

Model Adaptation and Robustness — Changes in MB2’s model accuracy un-
der DBMS updates and noisy cardinality estimation. 76

Hardware Context — Extend MB2’s OU-models’ input features to include the
CPU frequency to generalize to different CPU frequencies. 77

14

4.11 End-to-End Self-Driving Execution - An example scenario where NoiseP-
age uses MB2’s OU-models to predict the effects of two actions in a changing
workload. The first action is to change the DBMS’s execution mode. The DBMS
then builds an index with either eight or four threads.

5.1 Pilot Architecture - PBO runs the pilot server for planning on a separate ma-
chine from the DBMS server. It receives the forecasted workload from a model
server to generate candidate self-driving actions. It then uses RHC and MCTS
to search for the best action sequence based on the behavior estimations. It
applies the first action and repeats the above process.

5.2 Receding Horizon Control - PBO repeatedly plans actions for a fixed number

83

of time intervals in the future and applies the first action for the current interval. 83

5.3 Monte Carlo Tree Search - MCTS randomly searches over more promising
action sequences under a time budget and returns the best action sequence ex-
plored.

54 Inference Cache - PBO caches the inference results to accelerate the planning
at two levels: the action state level and the model inference level.

5.5 Planning Quality — System performance with the actions chosen by PB0 and
GREEDY-SEQ under different workload patterns.

5.6 MCTS Search Strategy — Average workload query latency with actions chosen
by PB0 with different MCTS search strategies.

5.7 Inference Caching - Planning time of GREEDY-SEQ and PB0 with different
inference caching methods.

15

16

List of Tables

2.1

31

3.2

3.3

3.4

4.1

4.2

5.1

5.2

Levels of Autonomy - A classification of the levels of autonomy capabilities
ImDBMSs. . ..

Sample Workloads - Summarization of the workload traces collected from
the database applications described in Section 3.1.1.
Workload Reduction — Breakdown of the total number of queries that QB5000
must monitor after applying the reduction techniques in the Pre-Processor and
Clusterer.
Forecasting Models — The properties of the forecasting models that we inves-
tigated for QB5000.
Computation & Storage Overhead — The measurements for QB5000’s differ-
ent components. L

Operating Unit - Property Summary of OUs in NoisePage.
MB2 Overhead - Behavior Model Computation and Storage Cost.

MCTS Search Strategy Statistics — Statistics of the leaf rollout values for the
nodes corresponding to the best action sequence under the diurnal workload
pattern. L
Inference Caching Statistics — Hit rate statistics under different choices of
inference caching.

17

29

18

Chapter 1

Introduction

The idea of using a DBMS to remove the burden of data management from application de-
velopers was one of the original selling points of the relational model and declarative query
languages from the 1970s [200]. With this approach, a developer only writes a query that spec-
ifies what data they want to access. The DBMS then finds the most efficient way to store and
retrieve data, and safely interleave operations.

Over five decades later, DBMSs are now the critical part of every data-intensive applica-
tion in all facets of society, including government, business, and science. These systems are
also more complicated now with a long and growing list of functionalities. For example, the
number of knobs for different versions of MySQL and Postgres DBMS increased by 3x and 6 x
respectively over the past 20 years [215]. An effective DBMS deployment requires not only
tuning these knobs but also deciding the database’s physical design [126], such as indexes and
table partitions. Properly tuning these aspects of a DBMS is an involved and complex task. For
example, selecting the best set of indexes for a database workload can be NP-complete [164].
Furthermore, it is challenging to decide when and how to apply changes to a DBMS. For exam-
ple, an index creation may compete for resources with workload queries and slow them down,
especially when the workload volume is high. And allocating the appropriate amount of re-
sources for such index creation has an intricate trade-off: using a small amount of resource
(e.g., one CPU core) may mitigate the resource contention to the queries but make the index
creation slower; using more resources (e.g., eight CPU cores) may increase the contention, but
the index creation can finish faster and accelerate the queries sooner. Such complexity makes
database tuning a major contributing factor to DBMSs’ high total cost of ownership. Personnel
is estimated to be almost 50% of the total ownership cost of a DBMS [174]. And a survey sug-
gests that 73% of database administrators (DBAs) [197] think that performance tuning occupies
most of their time [170].

Given such complications and costs of deploying a database, people have been dreaming
about DBMSs that can automatically optimize themselves for years [128]. Much of the previ-
ous work on self-tuning systems focuses on standalone tools that target only a single aspect of
the database. For example, some tools can choose the best physical design of a database [45],
such as indexes [46, 92, 214], materialized views [18], partitioning schemes [17, 167], or storage
layout [24]. Other tools are able to select the tuning parameters for an application [60, 202,
206, 215]. Most of these tools operate in the same way: a DBA provides a sample database

19

and workload trace that guides a search process to find an optimal or near-optimal configura-
tion. This is still an onerous process, however, as it requires laborious preparation of workload
samples, spare hardware to test proposed updates, and above all else, intuition into the DBMS’s
internals. DBAs need to select the best set of updates among all recommendations, decide when
to apply them (e.g., during the day or at night) and how to apply them (e.g., using one core or
eight cores), and finally apply the changes. All of the major DBMS vendors’ tools, including
Oracle [62, 123], Microsoft [45, 151], and IBM [201, 211], operate in this manner.

These tools are insufficient for achieving a completely autonomous system because they are
(1) external to the DBMS, (2) reactionary, or (3) not able to take a holistic view that considers
more than one problem at a time. That is, they observe the DBMS’s behavior from outside of
the system, so they cannot provide accurate estimations or explanations on the effect of their
recommendations. They also only advise the DBAs on how to make corrections to fix only
one aspect of the system at a time. Therefore, the DBAs need to repeat the tuning process
for all system aspects and address their interactions, such as resource competitions. Moreover,
they address problems after they occur but do not proactively prepare the system based on the
workload patterns, such as dropping unnecessary indexes ahead of time when the DBMS is ap-
proaching the system’s storage/memory limit. And these tuning tools assume that the human
operating them is knowledgeable enough to update the DBMS during a proper time window
when it will have the least impact on applications. For example, the DBAs may need to update
the system when the workload volume is low (e.g., during midnight) to avoid interrupting the
normal business operation. The database landscape has changed significantly in the last decade:
there are an increasing number of types of databases (e.g., transactional, analytical, or hybrid
of both) with a growing list of functionalities and configuration options. Thus, one cannot as-
sume that a DBMS is always deployed by an expert that understands the intricacies of database
optimization. Furthermore, modern software engineering practices, such as the adoption of
DevOps [76], advocate combining the application development and IT operations, including
DBMS administrations, to shorten the development life cycle. Therefore, development teams
are often comprised of fewer specialized DBAs despite the increasing DBMS complicacy.

There is a recent push from cloud vendors to support more automated tuning that directly
applies tuning actions, such as automatic indexing [58, 226], automatic knob tuning [132, 244],
and dynamic resource allocation [57, 155]. But these methods again only focus on solving
one problem and are mostly reactive. Furthermore, these methods often require lengthy and
expensive testing on copies of databases in the cloud (e.g., testing various candidate indexes
or knob configurations to find the best one to apply). Most of these methods cannot provide
insightful explanations on their decisions either, such as the expected completion time and the
side effect to apply a tuning action. Such explanations are crucial for the system’s debuggability
and transparency, which are essential for real-world applications.

This thesis addresses the challenge of developing completely autonomous DBMSs that au-
tomatically optimize themselves without any human intervention using machine learning (ML)
and control theory. We present a new type of DBMS architecture called “self-driving” that en-
ables proactive, efficient, and explainable control of all DBMS aspects.

We use an analogy to self-driving cars to explain our design for the self-driving DBMS ar-
chitecture. A simplified self-driving car architecture consists of (1) a perception system, (2)
mobility models, and (3) a decision-making system [156]. The perception system observes the

20

1
v
DBMS Forecasting Forecasted Workload

Deployment Framework : :
(On-line) ! !
: [E=mm /\/\/\/ | Apply and
3 i Monitor Action
__UPDATE A o 1
SQL Queries = : :

' Time
Modeling Behavior Planning Planned Self-Driving Action
Framework Models Framework [T 77T T

(Off-line) [> i (On-line) : o o .“i
.|©.| gg; E Create Index ~ Change Knob E

Figure 1.1: Self-Driving DBMS Architecture — Our architecture consists of an on-line work-
load forecasting framework, an off-line behavior modeling framework, and an on-line action
planning framework.

vehicle’s surrounding environment and estimates the potential state, such as other vehicles’
movements. The mobility models approximate a vehicle’s behavior in response to control ac-
tions in relevant operating conditions. Lastly, the decision-making system uses the perception
and the models’ estimates to select actions to accomplish the driving objectives.

As illustrated in Figure 1.1, our design of a self-driving DBMS architecture consists of three
frameworks with analogs to self-driving cars: (1) workload forecasting, (2) behavior modeling,
and (3) action planning. The workload forecasting and action planning are on-line frameworks,
whereas the behavior modeling is an off-line framework. At runtime, the on-line workload fore-
casting framework helps the system observe and predict the application’s future workload (i.e.,
the arrival rates of the workload’s queries over various time horizons). This allows the system
to proactively improve the performance before problems occur. The DBMS then uses these
forecasts with the behavior models generated by the off-line behavior modeling framework to
predict the costs and benefits of all types of self-driving actions without expensive exploratory
testing. The DBMS provides this information to the on-line action planning framework to gen-
erate explainable actions (e.g., building an index or changing a knob) that improve the system’s
target objective function (e.g., latency or throughput). The DBMS then automatically applies
and monitors these actions without any human intervention.

This thesis provides evidence to support the following statement:

Thesis Statement: A self-driving DBMS architecture with workload forecasting, behavior mod-
eling, and action planning frameworks can enable completely autonomous DBMS administration
that is proactive, efficient, and explainable.

We summarize the technical contributions of this thesis as follows:

* We present a workload forecasting framework that predicts the future workload patterns

21

in varying horizons for self-driving DBMSs to proactively choose optimization actions
before problems occur (Chapter 3). Our framework uses query templatization, on-line
clustering, and ensemble-based time-series forecasting to succinctly predict the future
arrival rates of the workload’s queries.

* We present a behavior modeling framework that generates behavior models for self-
driving DBMSs to estimate the effects of various self-driving actions (Chapter 4). Our
framework decomposes the complex DBMS into small and independent tasks to model
separately, which reduces the modeling complexity. It generates workload- and dataset-
independent models that the self-driving DBMS can use on any production database to
avoid the expensive modeling at runtime. These models also provide explanations on the
self-driving actions’ cost and benefit expectations.

+ We present an action planning framework that selects actions for self-driving DBMSs to
automatically optimize themselves (Chapter 5). It integrates the workload forecasting and
modeling frameworks to generate a sequence of actions tailored to the workload patterns.
It uses receding-horizon planning and Monte-Carlo tree search to efficiently approximate
the complex optimization problem optimize the system performance holistically.

We next explain the background information of self-driving DBMSs in Chapter 2. We pro-
vide a detailed review of related work in Chapter 6 and discuss possible areas for future work
in Chapter 7. We discuss our work in the context of the NoisePage DBMS [38] that we use
to implement our self-driving architecture. NoisePage is an in-memory DBMS that supports
hybrid transactional and analytical (HTAP) workloads.

22

Chapter 2

Background

In this chapter, we discuss our definition of self-driving DBMSs and the related background.
We also explain the challenges of building self-driving DBMSs.

2.1 Self-Driving DBMS

The ultimate goal of a self-driving DBMS is to configure, manage, and optimize itself without
any human intervention as the database and its workload evolve over time. A key element that
guides the DBMS’s decision-making is a human-selected objective function. An objective func-
tion could be either performance metrics (e.g., throughput, latency, availability) or deployment
costs (e.g., hardware, hosting, energy). This is akin to a human telling a self-driving car their
desired destination. The DBMS must also operate within human-specified constraints, such as
memory usage or service-level objectives (SLOs).

The way that the DBMS improves its objective function is by deploying actions that it thinks
will potentially help it execute the application’s workload. These actions control three aspects
of the system: (1) physical design, (2) knob configuration, and (3) hardware resources. The first
are changes to the database’s physical representation and data structures (e.g., indexes, mate-
rialized views, partitioning). The second action type are optimizations that affect the DBMS’s
runtime behavior through its configuration knobs. These knobs can target individual client
sessions (e.g., maximum memory consumption allowed per query) or the entire system (e.g.,
buffer pool size for disk-based systems). Lastly, the resource actions change the hardware re-
sources of the DBMS (e.g., instance type, number of machines); these assume that the DBMS
is deployed in an elastic/cloud environment where additional resources are readily available.
This thesis focuses on the first two aspects (physical design and knob configuration) because
the DBMS prototype that we used to implement our self-driving architecture (NoisePage) does
not support resource scaling yet. Nevertheless, we anticipate our proposed architecture can
extend to control resource scaling (Section 7.2). Our discussion also focuses on methods that
improve the DBMS’s efficiency. Automating security protocols in DBMSs is also important, but
these techniques are orthogonal to our focus in this thesis.

Although there are recent announcements on self-driving DBMSs [6, 117, 160], there is no
standard definition of what it means for a DBMS to be “self-driving”. Furthermore, there is con-

23

Level Name Description

0 Manual The system has no autonomy. The user diagnoses performance
problems, creates actions, and applies them manually.

1 Assistant The system recommends promising actions to the user. The user
selects and applies actions.

2 Mixed The system simultaneously applies actions and notifies the user to
make decisions.

3 Local The system has self-contained components that automatically ap-
ply actions for specific aspects of the system.

4 Directed The system is semi-autonomous. It automatically applies actions

but still takes high-level directions from users.

5 Self-Driving The system is fully autonomous. It applies actions to improve all
system aspects holistically without direction, accounts for future
workloads, and generates explanations for its decisions.

Table 2.1: Levels of Autonomy — A classification of the levels of autonomy capabilities in
DBMSs.

fusion about how the label relates to previous attempts on self-adaptive [93], self-tuning [45],
and self-managing [123] DBMSs. To better understand this issue, we next present a taxonomy
of the levels of autonomy that a DBMS could support.

2.2 Taxonomy

Achieving full autonomy in a DBMS is years away. There are, however, intermediate levels
where a DBMS removes control from humans and takes over more management responsibilities
on its own. The amount of autonomy of a self-driving DBMS plays a central role in its design
and the user experience. Thus, we propose the following taxonomy on the levels of autonomy
that a DBMS can provide. We organize this in increasing levels of complexity of autonomy with
decreasing user interaction and control. An overview of these levels is shown in Table 2.1.

Level 0: At the lowest level of autonomy, the system provides an interface for the user to
operate in a manual fashion. In other words, the DBMS only does exactly what the human in-
structs it to do. Many open-source DBMSs, such as MySQL [2], PostgreSQL [8], and SQLite [9],
do not have built-in functionalities to optimize their configurations. Thus, users need to inves-
tigate the DBMS performance and devise actions by themselves unless they use external tools
(discussed in higher autonomy levels) for help.

Level 1: The next level of autonomy provides assistant tools that recommend improved con-
figurations to the user for some of the DBMS’s sub-systems. The user is responsible for (1)
selecting which recommendations to apply, (2) deciding when to apply them, and (3) monitor-
ing the DBMS’s behavior afterward. These tools often also require the user to manually prepare

24

sample workloads and/or deploy a second copy of the database for the tools to generate new
recommendations [48]. All of the major DBMS vendors have their own proprietary tools of this
autonomy level. For example, Microsoft’s AutoAdmin recommends database physical design
structures, including indexes [46], materialized views [18], and partitioning [17], for a given
database and workload. IBM’s DB2 Performance Wizard tool asks DBAs questions about their
application (e.g., whether it is OLTP or OLAP) and then proposes knob settings based on their
answers [125]. Oracle also includes a SQL analyzer tool that estimates the impact of configura-
tion modifications [234]. Moreover, there are external tools for open-source databases that give
users tuning advice, such as MySQLTuner [3] and PGTuner [7] for knob tuning and Dexter [1]
for index selection. Recently, there are attempts to use ML to help configure specific parts of
the DBMS, such as indexes [65], knobs [72, 131, 216, 243], and data layouts [68, 236].

Level 2: This level of autonomy assumes a minimal control system that collaborates with the
user to configure some sub-systems of the DBMS. The initiative for making decisions is mixed
between the DBMS and the user. Such autonomy exposes complex problems with the user
experience since the user may issue changes that conflict with the DBMS’s control component.
For example, the user may disable the autonomy of a particular sub-system, and the DBMS
must account for this in its models. One example of this type of system was a prototype for
IBM DB2 from 2008 [224]. This system used existing tools [125, 201] in an external controller
that triggered a change or sent DBA notifications whenever a resource threshold was surpassed
(e.g., buffer pool hit ratio). It still required a human to select optimizations and to occasionally
restart the DBMS.

Level 3: The next level consists of local autonomy where each sub-system can adapt without
human guidance, but there is no higher-level coordination between them or long-term plan-
ning. The enabling/disabling of autonomy of these components is controlled by the user. For ex-
ample, some DBMSs support automatic memory allocations (e.g., Oracle [123], IBM DB2 [201]),
automatic resource scaling (e.g., Microsoft Azure SQL [57], Amazon Aurora [218]), or automatic
creation/drop of indexes (e.g., Microsoft Azure SQL [58]). We also believe that Oracle’s au-
tonomous database-as-a-service offerings are an example of this level [6]. The service requires
users to select whether their application has either a transactional or analytical workload. It
then uses Oracle’s existing assistance tools (Level 1) in a control loop to handle common tuning
activities, but they are managed in isolation. The DBMS is also unable to predict long-term
workload trends.

Level 4: At the directed level, the system manages all its sub-systems, and the user only pro-
vides high-level direction for global configuration issues. Such direction includes hints about
future workload needs so that the DBMS can prepare for long-term decisions (e.g., capacity
planning). For example, the user may manually select actions to begin scaling the DBMS’s de-
ployment to prepare for an upcoming surge in traffic. We also anticipate that the DBMS still
requires session-specific hints from humans at this level. The DBMS is intelligent enough to
recognize when to ask a human for help with tuning problems.

25

Level 5: Lastly, at the highest level of automation, the DBMS is completely independent (i.e.,
self-driving) because it coordinates across all sub-systems without direction from the user. It
accounts for future workloads in its decision-making and supports all tuning activities that do
not require an external value judgment. The DBMS also tunes individual queries (e.g., join
orderings, index selection) and client sessions (e.g., optimizations, knobs). For each deployed
action, the DBMS also provides human-readable explanations about why it made the decision
to deploy that action. Whether a self-driving DBMS should still allow humans to configure
aspects of the system is up for debate. How the DBMS’s planning components would respond
to such human input is a difficult and unsolved problem.

This thesis presents a DBMS architecture designed for Level 5 autonomy. We view this
architecture as the first step towards a self-driving DBMS that is fully autonomous.

2.3 Challenges

There are recent successes in applying ML for automated decision-making problems, such as
self-driving vehicles [168], Go games [192], and trading systems [103]. We leverage modern
advances in ML and control theory to build the architecture for self-driving DBMSs (Level 5
autonomy). However, ML is not a panacea. There are challenges in applying ML for self-
driving DBMSs because of the characteristics of DBMS systems and database workloads. We
now discuss these challenges.

Workload Forecasting: A key property to distinguish self-driving DBMSs from DBMSs with
lower autonomy levels is the ability to automatically choose when to apply which actions with-
out any human intervention. Achieving this ability requires accurately predicting the workload
in the future so that the system can determine the proper time window to make changes. For
example, the system should schedule expensive changes (e.g., creating an index) when the work-
load volume is low to avoid affecting normal workload operations, such as violating the SLOs.
Recall from Section 2.2 that DBMSs with Level 5 autonomy should be able to anticipate the
future workloads and act accordingly.

However, forecasting database workload in the future is challenging because modern DBMS
applications may execute millions of queries per day [137]. Tracking each of these queries and
building forecasting models for all of them can be expensive. Database workloads can also have
varying patterns, such as cycles [205], growth [137], and evolution [20]. Not only can there be
different workload patterns across applications, but there can also be different patterns that
simultaneously exist for subsets of queries in a single application. Effective database workload
forecasting should capture all these patterns.

Behavior Modeling: The foundation of self-driving DBMSs’ decision-making is the ability
to estimate the action behavior: how an action helps the workload, how long an action takes,
how much resource an action needs, and how applying an action interferes with the system
performance. Only high-fidelity models enable effective and robust control. This is similar to

26

self-driving cars that need accurate mobility models to estimate the effect of their actions, such
as hitting the brake or turning the steering wheel [156].

But building such behavior models to accurately make these estimations is challenging as
DBMSs are complex software systems. There are various components (e.g., storage, query
execution, logging) with diverse configuration options and performance characteristics [95].
database components and queries may also execute concurrently in multi-core environments,
which multiplicates the number of possible behavioral states that a self-driving DBMS needs to
model. Moreover, modern ML models (e.g., neural networks) need high-quality training data
to make accurate inferences [173]. However, collecting training data for self-driving DBMSs
can be expensive since many actions can take a long time to finish and consume a significant
amount of resources, such as creating indexes on large tables.

Action Planning: The effectiveness of self-driving DBMSs relies on their ability to plan for
proper actions based on the workload forecasts and behavior model estimations. Since ac-
tions can be expensive, ineffective actions not only consume time and resources but also can
interfere with the system’s performance. It is also important to arrange the action sequence ap-
propriately. For example, if two actions have similar improvements for a workload, it is more
beneficial to apply the faster action first to accelerate the queries earlier.

It is challenging to plan for such a sequence of actions and when to apply them efficiently.
There are many possible actions across various aspects of the systems, such as changing knob
values and creating indexes. It may also be beneficial to plan for longer sequences to arrange
actions more holistically based on the workload pattern. But the number of possible choices of
action sequences increases exponentially as the sequence length increases, which exacerbates
the planning difficulty. Furthermore, the planning requires the behavior models to estimate the
action effect on the forecasted workload. These estimations can also incur high model inference
overhead on the system. Lastly, the planning needs to account for system constraints, such as
the maximum available memory.

We now discuss how we address each of these challenges in the following chapters.

27

Chapter 3

Workload Forecasting

To be fully autonomous, the DBMS must be able to predict what the workload will look like
in the future. If a self-driving DBMS only considers the behavior of the application in the past
when selecting which optimizations to apply, these optimizations may be sub-optimal for the
workload in the near future. It can also cause resource contention if the DBMS tries to apply
optimizations after the workload has shifted (e.g., it is entering a peak load period). Instead, a
self-driving DBMS should choose its optimizations proactively according to the expected work-
load patterns in the future. But the DBMS’s ability to achieve this is highly dependent on its
knowledge of the queries and patterns in the application’s workload.

Previous work has studied database workload modeling in different contexts. For example,
one way is to model the demands of resources for the system, rather than a direct representa-
tion of the workload itself [56, 172]. Other methods model the performance of the DBMS by
answering “what-if” questions about changes in OLTP workloads [148, 151]. They model the
workload as a mixture of different types of transactions with a fixed ratio. There is also work to
predict how the workload will shift over time using hidden Markov models [99, 100, 101, 102]
or regressions [77, 144]. Earlier work has also modeled database workloads using more formal
methods with pre-defined transaction types and arrival rates [181, 182].

All of these methods have deficiencies that make them inadequate for self-driving DBMSs.
For example, some use a lossy compression scheme that only maintains high-level statistics,
such as average query latency and resource utilization [56, 148, 151, 172]. Others assume that
the tool is provided with a static workload [181, 182], or they only generate new models when
the workload shifts, thereby failing to capture how the volume of queries and the workload
trends change over time [77, 144, 181, 182]. Lastly, some models are hardware and/or database
design dependent [99, 100, 101, 102], which means the DBMS has to retrain them whenever its
configuration changes.

In this chapter, we present a method to succinctly forecast the workload for self-driving
DBMSs. Our approach continuously clusters queries based on the their arrival rate temporal
patterns. It seamlessly handles different workload patterns and shifts. It then builds models
to predict the future arrival patterns for the query clusters. Such predictions are necessary
to enable an autonomous DBMS’s planning module to identify optimizations to improve the
system’s performance and apply them proactively [160]. The key advantage of our approach
over previous forecasting methods is that the data we use to train our models is independent

28

‘ Admissions ‘BusTracker‘ MOOC

DBMS Type MySQL PostgreSQL MySQL
Num of Tables 216 95 454
Trace Length (Days) 507 58 85
Avg. Queries Per Day 5M 19.9M 1.1IM

Num of SELECT Queries | 2541M [99.8%] | 19.5M [98%] | 0.97M [88%]
Num of INSERT Queries | 1.8M [0.07%] | 15K [0.8%] | 14K [1.3%]
Num of UPDATE Queries | 2.6M [0.1%] 22K [1%] 66K [6%]

Num of DELETE Queries | 0.4M [0.02%] 3K [0.2%] 51K [4.7%]

Table 3.1: Sample Workloads — Summarization of the workload traces collected from the
database applications described in Section 3.1.1.

of the hardware and the database design. Thus, it is not necessary to rebuild the models if the
DBMS’s hardware or configuration settings change.

To evaluate our forecasting models, we integrated this framework into both MySQL [2]
and PostgreSQL [8], and measure its ability to model and optimize three real-world database
applications. The results demonstrate that our framework can efficiently forecast the expected
future workload with only a minimal loss in accuracy. They also show how a self-driving DBMS
can use this framework to improve the system’s performance.

The remainder of this chapter is organized as follows. Section 3.1 discusses common work-
load patterns in database applications. We next give an overview of our approach in Section 3.2
and then present the details of its components: Pre-Processor (Section 3.3), Clusterer (Sec-
tion 3.4), and Forecaster (Section 3.5). We provide an experimental analysis of our methods in
Section 3.6.

3.1 Background

The goal of workload forecasting in an autonomous DBMS is to enable the system to predict
what an application’s workload will look like in the future. This is necessary because the work-
loads for real-world applications are never static. The system can then select the optimizations
to prepare based on this prediction.

We contend that there are two facets of modern database applications that make robust,
unsupervised workload forecasting challenging. The first is that an application’s queries may
have vastly different arrival rates. Thus, an effective forecasting model must be able to identify
and characterize each of these arrival rate patterns. The second is that the composition and vol-
ume of the queries in an application’s workload change over time. If the workload deviates too
much from the past, then the forecasting models become inaccurate and must be recomputed.

We now investigate the common characteristics and patterns in today’s database applica-
tions in more detail. We begin with an introduction of the three real-world database application
traces used in our discussions and experiments, followed by an overview of the common pat-
terns that these traces exhibit. We then discuss the challenges that effective forecasting models
must overcome.

29

300

E |
~ 200l r i’ L : T | B]
% ‘[‘L H ' l\ | “ | ‘ H & 1 ‘ “J‘J | I“‘ MH “lj‘ ‘
'é 100 muw,,u‘ﬁJ-‘w““‘ J‘JW \‘(LV M‘ M “ I ” A - \M U ,M 1 ‘\ ! “ ‘,‘L \W‘ ’ W‘/‘l_ﬂm}&»f'x“MW|~\J\‘Uj‘ﬂjw‘n\w‘1‘\:‘I{"L\}‘\\\M‘M\W
O L L L L L

08:00 12:00 00:00 12:00 00:00 12:00 00:00

(a) Cycles (BusTracker)
1 8 X 1 05'

S :
o 1.2t .
Q
o 0.6} ‘ ‘ ‘ ARRTIRT Pl .
© 0.0 * j i j Deadline=»

" Dec 09 Dec 11 Dec 12 Dec 14 Dec 15

(b) Growth and Spikes (Admissions)
@ 900
g 600 S]
S 300 e 1 o 8
2 0 New Release
D I I I I I
May 16 May 31 Jun 15 Jun 30 Jul 15

(c¢) Workload Evolution (MOOC)

Figure 3.1: Workload Patterns — Examples of three common database workload patterns.

3.1.1 Sample Workloads

We now give a high-level description of the three sample workload traces collected from real-
world database applications. Table 3.1 provides a more detailed summary of their properties.

Admissions: An admissions website for a university’s graduate program. Students submit
their application materials to programs in different departments. Faculties review the applica-
tions after the deadline and give their decisions.

BusTracker: A mobile phone application for live-tracking of the public transit bus system. It
ingests bus location information at regular intervals from the transit system, and then helps
users find nearby bus stops and get route information.

MOOC: A web application that offers on-line courses to people who want to learn or teach [4].
Instructors can upload their course materials, and students can check out the course content
and submit their course assignments.

30

3.1.2 Workload Patterns

We now describe the three common workload patterns prevalent in today’s database applica-
tions. The first two patterns are examples of different arrival rates that the queries in database
applications can have. The third pattern exhibits how the composition of the queries in the
workload can change over time.

Cycles: Many applications are designed to interact with humans, and as such, their workloads
follow cyclic patterns. For example, some applications execute more queries at specific ranges
of a day than at others because this is when people are awake and using the service. Figure 3.1a
shows the number of queries executed per minute by the BusTracker application over a 72-hour
period. The DBMS executes more queries in the daytime, especially during the morning and
afternoon rush hours since this is when people are taking buses to and from work. This cycle
repeats every 24 hours. Not all applications have such peaks at the same time each day, and the
cycles may be shorter or longer than this example.

Growth and Spikes: Another common workload pattern is when the query volume increases
over time. This pattern is typical in start-ups with applications that become more popular and
in applications with events that have specific due dates. The Admissions application has this
pattern. Figure 3.1b shows the number of queries per minute executed over a week-long period
leading up to the application deadline. The arrival rate of queries increases as the date gets
closer: It grows slowly at the start of the week but then increases rapidly for the final two days
before the deadline.

Workload Evolution: Database workloads evolve over time. Sometimes this is a result of
changes in the arrival rate patterns of existing queries (e.g., new users located in different
time zones start using an application). The other reason this happens is that the queries can
also change (e.g., new application features). Of our three applications, MOOC incurs the most
changes in its workload mixture. Figure 3.1c shows the accumulated number of distinct queries
that the MOOC application executes over time. The graph shows that there is a large shift in
the workload after the organization released a new feature in their application in early May.

3.1.3 Discussion

There are three challenges that a forecasting framework must solve to work in real-world DBMS
deployments. Foremost is that in order to exploit the various arrival rate patterns in the work-
loads for optimization planning, there is a need for good arrival rate forecasting models. Not
only do different workloads have different patterns, but a single workload can also have sep-
arate patterns for sub-groups of queries. Thus, an effective forecasting model must be able to
identify and characterize patterns that are occurring simultaneously within the same workload.

The second challenge is that since applications execute millions of queries per day, it is not
feasible to build forecasting models for each query in the workload. This means that the frame-
work must reduce the complexity of the workload that it analyzes without severely reducing
the accuracy of its predictions.

31

Pre-Processor Clusterer Forecaster

! Raw SQL Template [1 :
1 | 1 1
1 [SELECT * FROM foo WHERE id = E"E>|SELECT * FROM foo WHERE id = @ [A i1 °
| 1 1
1 1 !
J

Target DBMS |

'
:
'
'

Arrival Rate History 1 E> o4°© I

! 1 Minute Interval 1 Hour Interval e !

' '

1 [sELECT * FRoM foo whERE 1d =] AU\ AU L A A {

= b 1 1

) [DELETE FROM foo WHERE id = @ A A "M] I

1 »> > 1 1 1 1

= [[i 1

SQL Queries! [UPDATE fo.o SET value = J | \AVAVAWY *’\f\f\/' { 1 Template Clusters KD Tree | : Predict [\[\/\/ |
1 1 1 1

1 o [[i

__

Figure 3.2: QB5000 Workflow — The framework receives SQL queries from the DBMS. This
data is first passed into the Pre-Processor that identifies distinct templates in the workload
and records their arrival rate history. Next, the Clusterer combines the templates with similar
arrival rate patterns together. This information is then fed into the Forecaster where it builds
models that predict the arrival rate of templates in each cluster.

Lastly, the framework must handle the changes in the workload’s patterns as well as the
query mixtures. All of this must be done without any human intervention. That is, the frame-
work cannot require for a DBA to tune its internal parameters or provide hints about what the
application’s workload is and when it changes.

3.2 Overview

The QueryBot 5000 (QB5000) is a workload forecasting framework that runs as either an ex-
ternal controller or as an embedded module. The target DBMS connects to the framework and
forwards all the queries that applications execute on it. Decoupling the framework from the
DBMS allows the DBA to deploy it on separate hardware resources. Forwarding the queries to
QB5000 is a lightweight operation and is not on the query executor’s critical path. As QB5000
receives these queries, it stores them in its internal database. It then trains models that predict
which types of queries and how many of them the DBMS is expected to execute in the future.
A self-driving DBMS can then use this information to deploy optimizations that will improve
its target objective (e.g., latency, throughput) [160].

As shown in Figure 3.2, QB5000’s workflow is comprised of two phases. When the DBMS
sends a query to QB5000, it first enters the Pre-Processor and the Clusterer components. This
is the part of the system that maps the unique query invocation to previously seen queries. This
enables QB5000 to reduce both the computational and storage overhead of tracking SQL queries
without sacrificing accuracy. The Pre-Processor converts raw queries into generic templates by
extracting constant parameters out of the SQL string. It then records the arrival rate history for
each template.

It is still, however, not computationally feasible to build models to capture and predict the ar-
rival patterns for each template. To further reduce the computational resource pressure, QB5000
then maps the template to the most similar group of previous queries based on its semantics
(e.g., the tables that it accesses). The Clusterer then performs further compression of the work-
load using an on-line clustering technique to group templates with similar arrival rate patterns
together. It is able to handle evolving workloads where new queries appear and older ones

32

disappear.

In the final phase, the Forecaster selects the largest template clusters (i.e., clusters with the
highest query volumes) and then trains forecasting models based on the average arrival rate
of the templates within each cluster. These models predict how many queries in each template
cluster that the application will execute in the future (e.g., one hour from now, one day from
now). This is important because the DBMS will decide how to optimize itself based on what it
expects the application to do in the future, rather than what happened in the past. QB5000 also
automatically adjust these clusters as the workload changes over time. Every time the cluster
assignment changes for templates, QB5000 re-trains its models.

The Pre-Processor always ingests new queries and updates the arrival rate history for each
template in the background in real time when the DBMS is running. The Clusterer and Fore-
caster periodically update the cluster assignments and the forecasting models. When QB5000
predicts the expected workload in the future, it uses the most recent data as the input to the
models.

3.3 Pre-Processor

Most applications interact with a DBMS in a programmatic way. That is, the queries are con-
structed by software in response to some external mechanism rather than a human writing the
query by hand. For OLTP workloads, the application invokes the same queries with different
input parameters (e.g., prepared statements). For OLAP workloads, a user is often interacting
with a dashboard or reporting tool that provides an interface to construct the query with dif-
ferent predicates and input parameters. Such similar queries execute with the same frequency
and often have the same resource utilization in the system. Thus, QB5000 can aggregate the
volume of queries with identical templates together to approximate the characteristics of the
workload. This reduces the number of queries that QB5000 tracks since it only needs to main-
tain arrival rate information for each template rather than each individual query. Given this,
we now describe how QB5000’s Pre-Processor collects and combines the queries that it receives
from the DBMS.

The Pre-Processor processes each query in two steps. It first extracts all of the constants
from the query’s SQL string and replaces them with value placeholders. This converts all of the
queries into prepared statements. These constants include:

* The values in WHERE clause predicates.
» The SET fields in UPDATE statements.
* The VALUES fields in INSERT statements. For batched INSERTs, QB5000 also tracks the

number of tuples.

The Pre-Processor then performs additional formatting to normalize spacing, case, and
bracket/parenthesis placement. We use the abstract syntax tree from the DBMS’s SQL parser
to identify the tokens. The outcome of this step is a generic query template.

QB5000 tracks the number of queries that arrive per templates over a given time interval and
then stores the final count into an internal catalog table at the end of each interval. The system

33

‘Admissions BusTracker | MOOC

Total Number of Queries 2546M 1223M 95M

Total Num of Templates 4060 334 885

Num of Clusters 1950 107 391
Reduction Ratio | 1.3M | 105M | 0.24M

Table 3.2: Workload Reduction — Breakdown of the total number of queries that QB5000
must monitor after applying the reduction techniques in the Pre-Processor and Clusterer.

aggregates stale arrival rate records into larger intervals to save storage space. We explain how
to choose the time interval in Section 3.5.

QB5000 also maintains a sample set of the queries’ original parameters for each template
in its internal database. We use reservoir sampling to select a fixed amount of items with low
variance from a list containing a large or unknown number of items [219]. An autonomous
DBMS’s planning module uses these parameter samples when estimating the cost/benefit of
optimizations [160].

The Pre-Processor then performs a final step to aggregate templates with equivalent seman-
tic features to further reduce the number of unique templates that QB5000 tracks. Evaluating
semantic equivalence is non-trivial, and there has been extensive research on this topic [107,
180, 212]. QB5000 uses heuristics to approximate the equivalence of templates. It considers
two templates as equivalent if they access the same tables, use the same predicates, and return
the same projections. One could use more formal methods to fully exploit semantic equiva-
lence [50]. We found, however, that heuristics provide reasonable performance without reduc-
ing accuracy. We defer investigating more sophisticated methods as future work.

Table 3.2 shows that QB5000’s Pre-Processor is able to reduce the number of queries from
millions to at most thousands of templates for our sample workloads.

3.4 Clusterer

Even though the Pre-Processor reduces the number of queries that QB5000 tracks, it is still not
feasible to build models for the arrival patterns of each template. Our results in Section 3.6.5
show that it can take over three minutes to train a single model. Thus, we need to further
reduce the total number of templates that QB5000 forecasts.

The Clusterer component combines the arrival rate histories of templates with similar pat-
terns into groups. It takes templates in a high-dimensional feature space and identifies groups
of comparable templates using a similarity metric function. To support modeling an applica-
tion in a dynamic environment (i.e., one where the workload, database physical design, and the
DBMS’s configuration can change), the clustering algorithm must generate stable mappings
using features that are not dependent on the current state of the database. This is because if
the mapping of templates to clusters changes, then QB5000 has to retrain all of its models.

We now examine the three design decisions in our implementation of QB5000’s clustering
phase. We begin with a discussion of the features that it extracts from each template. We then
describe how it determines whether templates belong to the same cluster. Lastly, we present

34

QB5000’s clustering algorithm that supports incremental updates as the application’s workload
evolves, and how the framework quickly determines whether to rebuild its clusters.

3.4.1 Clustering Features

There are three types of features that the framework can derive from templates: (1) physical,
(2) logical, and (3) arrival rate history. Physical features are the amount of resources and other
runtime metrics that the DBMS used when it executed the query, such as the number of tuples
read/written or query latency. Previous clustering algorithms for database applications have
used physical features for query plan selection [84], performance modeling [148], and workload
compression [48]. The advantage is that they provide fine-grained and accurate information
about an individual query. But they are dependent on the DBMS’s configuration and hardware,
the database’s contents, and what other queries were running at the same time. If any of these
change, then the previously collected features are useless and the framework has to rebuild its
models. Such instability makes it difficult for the DBMS’s planning module to learn whether its
decisions are helping or hurting the performance.

Another approach is to use the template’s logical features, such as the tables/columns it
accesses and the properties of the query’s syntax tree. Unlike physical features, these logical
features do not depend on the DBMS’s configuration nor the characteristics of the workload
(e.g., which queries execute more often than others). The disadvantage, however, is that they
may generate clusters without a discernible workload pattern because there is limited infor-
mation from the logical feature and thus the forecasting models make poor predictions. The
inefficiency of logical features has also been identified in previous work on predicting query
runtime metrics [83].

QB5000 uses a better approach to cluster queries based on their arrival rate history (i.e.,
the sequence of their past arrival rates). For example, consider the cluster shown in Figure 3.3
from the BusTracker application that is derived from four templates with similar arrival rate
patterns. The cluster center represents the average arrival rate of the templates within the
cluster. Although the total volume per template varies at any given time, they all follow the
same cyclic patterns. This is because these queries are invoked together as part of performing
a higher level functionality in the application (e.g., a transaction). Since templates within the
same cluster exhibit similar arrival rate patterns, the system can build a single forecasting model
for each cluster that captures the behavior of their queries.

Calculating the similarity between a pair of arrival rate history features is straightforward.
QB5000 first randomly samples timestamps before the current time point. Then for each series
of arrival rate history, QB5000 takes the subset of values at those timestamps to form a vector.
The similarity between the two features is defined as the cosine similarity of the two vectors. If
the template is new, we compare its available timestamps with the corresponding subset in the
vectors of other templates. Our current implementation uses 10k time points in the last month
of a template’s arrival rate history as its feature vector. We found that this is enough to capture
the pattern of every arrival rate history in our experiments.

Logical features and arrival rate history features express different characteristics of the
queries. But as we show in Section 3.6.7, clustering on the arrival rate features produce better
models for real-world applications because they capture how queries impact the system’s per-

35

| === Cluster Center — Query 1 — Query 2 — Query 3 Query 4
75000 ‘ ‘

Zﬁm AAWMWANAA%M

DOec 23 Dec 26 Dec 29 Jan 01 Jan 04

Queries / h

Figure 3.3: Arrival Rate History — The past arrival rates for the largest cluster and the top
four queries within that cluster from BusTracker.

® New Template KD Tree Remain Cluster #1
Fa | A, Cuserrn gy tneres
cos- > p?
Af. % ® 2
Cluster #1 Rog cos- > p?
: ! Cluster #3
Template with changed

A\. Tormoiate Amval Rat Arrival Rate Pattern o5 > 7
emplate Arrival Rate . ?
s M\' Apnly Step #1

to the template

(a) Step #1 (b) Step #2 (c) Step #3

Figure 3.4: On-line Clustering — Clusterer periodically performs three steps to change the
templates’ cluster assignments incrementally. It first checks the similarities between the arrival
rate history features of new templates with the centers of existing clusters. Then it removes the
templates from their clusters if the arrival rate patterns of a template and its cluster center have
deviated. Finally, it merges the clusters with high similarities between their centers together.

formance. Though using the template’s arrival rates avoids rebuilding clusters whenever the
DBMS changes, it is still susceptible to workload variations, such as when the system identifies
a new template or the arrival rates of existing ones change.

3.4.2 On-line Clustering

QB5000 uses a modified version of DBSCAN ([78] algorithm. It is a density-based clustering
scheme: given a set of points in some space, it groups together points with many nearby neigh-
bors (called core objects), and marks points that lie alone in low-density regions as outliers (i.e.,
points whose nearest neighbors are too far away). Unlike K-means, this algorithm is not affected
by the number of small clusters or the cluster densities’.

The original DBSCAN algorithm evaluates whether an object belongs to a cluster by check-
ing the minimum distance between the object and any core object of the cluster. But we want
to assign templates to clusters based on how close they are to a cluster’s center and not just
any random core object. This is because QB5000 uses the center of a cluster to represent the

'We also evaluated K-means clustering, but it has a known problem when the workload has a large number of small clusters, or the clusters

have different sizes or densities. These issues have also been observed for previous database workload modeling techniques [48].

36

templates that are members of that cluster, and builds forecasting models with the center. An
on-line extension of the canonical DBSCAN algorithm also has high overhead when updating
clusters [79].

Our on-line variant of DBSCAN uses a threshold, p (0 < p < 1), to decide how similar the
arrival rates of the templates must be for them to belong to the same cluster. The higher p is, the
more similar the arrival rates of the templates within a cluster are, so the modeling result will
be more accurate. But the computational overhead will also be higher given the larger number
of generated clusters. We conduct a sensitivity analysis on setting this value in Section 3.6.8.
As shown in Figure 3.4, QB5000’s incremental clustering algorithm periodically performs the
following three steps together:

Step #1: For each new template, QB5000 first checks whether the similarity score between its
arrival rate history and the center of any cluster is greater than p. The template is assigned to the
cluster with the highest similarity score that is greater than p. We use a kd-tree to allow QB5000
to quickly find the closest center of existing clusters to the template in a high-dimensional
space [30]. Then QB5000 will update the center of that cluster, which is the arithmetic average
of the arrival rate history of all templates in that cluster. If there is no existing cluster (this is
the first query) or none of the clusters’ centers are close enough to the template, QB5000 will
create a new cluster with that template as its only member.

Step #2: QB5000 checks the similarity of previous templates with the centers of the clusters
they belong to. If a template’s similarity is no longer greater than p, QB5000 removes it from
its current cluster and then repeat step (1) to find a new cluster placement. Sometimes moving
a template from one cluster to another causes the centers of the two clusters to change, and
recursively forces other templates from the two clusters to move. QB5000 defers modifying the
clusters until the next update period. QB5000 removes a template if it has not received one of
its queries for an extended period.

Step #3: QB5000 computes the similarity between the clusters’ centers and merges two clus-
ters with a score greater than p.

In addition to periodically executing these three steps, QB5000 monitors the new templates
in the workload. If the percentage of previously unseen templates is above a threshold, it then
triggers these steps to adapt to the workload change. Setting this threshold properly is depen-
dent on the performance attributes of the target DBMS. We defer investigating this problem as
future work.

QB5000’s incremental algorithm adaptively adjusts the clusters for a dynamic workload
without requiring a warm-up period or having prior knowledge of the workload. More impor-
tantly, it guarantees that the similarity between a template’s arrival rate history and the center
of its cluster is smaller than p, which improves the accuracy of QB5000’s forecasting models.
The complexity of these steps is bounded by O(n log n), where n is the number of templates in
the workload. Since Step #2 does not apply cluster changes recursively, this approach does not
guarantee the convergence of the clusters at any specific time. Thus, QB5000 might not achieve

37

| LR ARMA KR RNN FNN PSRNN
Linear | v Ve X X X X
Memory | X v X 4 X v
Kernel | X X v X X v

Table 3.3: Forecasting Models — The properties of the forecasting models that we investigated
for QB5000.

the optimal clustering given the similarity metric. We found, however, this does not affect the
efficacy of its forecasting models in practice.

Table 3.2 shows the number of clusters determined by Clusterer and the reduction ratio
from the total number of queries in the three workloads. Since QB5000 periodically updates its
clustering results, we show the average number of clusters per day.

3.4.3 Cluster Pruning

Even after using clustering techniques to reduce the total number of queries that QB5000 needs
to model, real-world applications still tend to have lots of clusters because of the long-tailed
distribution of the arrival rate patterns. There are only a few large clusters that exhibit the
major workload patterns, but several small clusters with noisy patterns. Those small clusters
usually contain queries that only appear a few times and increase the noise in the models with
little to no benefit since they are not representative of the application’s main workload. QB5000
does not build models for them since their impact on the DBMS’s performance is limited. Our
experiments in Section 3.6.1 show that the five largest clusters cover up to 95% of the query
volume for our three sample workloads.

3.5 Forecaster

At this point in QB5000’s pipeline, the framework has converted raw SQL queries into templates
and grouped them into clusters. QB5000 is also recording the number of queries executed per
minute for each cluster. The final phase is to build forecasting models to predict the arrival rate
patterns of the clusters’ queries. These models allow the DBMS’s planning module to estimate
the number of queries that the application will execute in the future and select the proper
optimizations to meet SLAs [6, 160]. In this section, we describe how QB5000 constructs and
uses its forecasting models. We begin with an explanation of its underlying data structures
and training methods. We then discuss how QB5000 supports different prediction horizons and
intervals for the same cluster over multiple models.

3.5.1 Forecasting Models

There are many choices for forecasting models of the query arrival rates with different pre-
diction properties. Table 3.3 shows a summary of the six models that we considered in the
development of QB5000. The first property is whether the model is linear, which means that it

38

assumes that there is a linear relationship between the input and output data. Next, a model
can retain memory that allows it to use both the input data and the information “remembered”
from the past observations to predict the future. Lastly, a model can support kernel methods
to provide another way to model non-linear relationships. In contrast to models that employ
non-linear functions, kernel methods achieve non-linearity by using linear functions on the
feature maps in the kernel space of the input.

Linear models are good at avoiding overfitting when the intrinsic relationship in the data
is simple. They take less computation to build and require a smaller amount of training data.
On the other hand, more powerful non-linear models are better at learning complex data pat-
terns. They do, however, take longer to train and are prone to overfitting. Thus, they require
more training data. As we will show in Section 3.6.2, linear models often perform better at
making predictions in the near future (e.g., one hour) whereas the non-linear models are better
at making predictions further out in time (e.g., over a day). But it is non-trivial to determine
which type of model to use for different time horizons on different workloads. Likewise, there
are also trade-offs between memory-based models. Retaining memory allows the model to ex-
ploit the dynamic temporal behavior in an arbitrary sequence of inputs, but this adds training
complexity and makes the model less data-efficient.

A well-known solution that works well in other application domains is to use an ensemble
method (ENSEMBLE) that combines multiple models together to make an average prediction.
Ensemble methods are used in prediction tasks to combine several machine learning techniques
into one predictive model in order to decrease variance or bias (e.g., boosting) [154]. Previous
work has shown that ensemble methods work well on challenging datasets and they are often
among the top winners of data science competitions [165, 250].

We now discuss the two types of forecasting models that QB5000 combines to make its
ENSEMBLE model.

Linear Regression (LR): LR models are also known in the statistics and time series prediction
literature as linear auto-regressive models. They are simple linear models that have closed-form
solutions, which means that they do not require an additional optimization step to find a global
optima. In QB5000, the framework regresses the future arrival rate of queries in a cluster based
on the arrival rate of the query over a specified period of time in the past. LR has been used for
DBMS operator modeling in prior work [23].

Recurrent Neural Network (RNN): Previous work has shown RNNs to be effective at pre-
dicting patterns for non-linear systems [225]. It is a class of network where its neurons have a
cyclic connection. QB5000 uses a variant of the RNN called long short-term memory (LSTM) [98].
LSTMs contain special blocks that determine whether to retain older information and when to
output it into the network. This allows the networks to automatically learn the periodicity and
repeating trends of data points in a time-series beyond what is possible with regular RNNs [81].
This approach has been used to predict the host-load in data centers [195].

We apply an ensemble method by equally averaging the prediction results of the LR and RNN
models. We also tried averaging the models with weights derived from the training history, but
that led to overfitting and generated worse results.

39

Although the ensemble method achieves good average prediction accuracy, we found that
it fails to predict the periodic spikes in the workload that are far apart from each occurrence.
For example, the December 15th deadline shown in Figure 3.1b occurs each year on the same
date, but both the LR and RNN models are unable to predict this annual pattern. This is a
common workload pattern, and the ability to predict such spikes ahead of time is necessary for
many database optimizations, such as resource provisioning. Thus, we now describe the third
forecasting model that we employ in QB5000 that is able to correctly handle this scenario.

Kernel Regression (KR): This is a non-linear variant of LR models that uses the Nadaraya-
Watson estimator to achieve its non-linearity without iterative training [33]. The prediction
for a given input is a weighted average of training outputs where the weights decrease with
distance between the given input and corresponding training inputs.

KR is a non-parametric method, which means that it assumes no particular functional form.
It instead only assumes that the function is smooth. This provides it with the necessary flexibil-
ity to model different non-linear functions between the inputs and the outputs. Thus, it is able
to predict when a spike will repeat in the future even if the spike has only occurred a few times
in the past. KR, however, does not extrapolate well with data it has not seen before. As we show
in Section 3.6.2, it performs worse than ENSEMBLE in terms of the average prediction accuracy.
But it is the only investigated model that is able to handle the yearly spike in Admissions.

Given this, QB5000 uses a hybrid forecast model (HYBRID) that we developed to automati-
cally determine when to use predictions from ENSEMBLE versus ones generated from KR. Since
KR is good at predicting spikes with a small number observations, if its predicted workload vol-
ume is above that of ENSEMBLE by more than a specified threshold, v (7 > 0), then QB5000 uses
the result from KR as its prediction. Otherwise, it uses the result generated from the ENSEMBLE
model. In QB5000, we set v to 150% as this provided the most accurate forecasts for all of the
application workloads that we tested. We provide a sensitivity analysis of 7y in Section 3.6.10.

3.5.2 Prediction Horizons & Intervals

The scope of a forecasting model is defined in terms of its horizon and interval. How far into
the future a model can predict is known as its prediction horizon. In general, the longer the
horizon is, the less accurate its predictions are expected to be. This is important for self-driving
DBMSs since it improves their ability to prepare for immediate workload and resource demand
changes. The time granularity at which the model can predict is called its prediction interval.
For example, a model can predict the number of queries that will execute in one-minute or
one-hour intervals. Like the horizon, using a shorter interval often improves the accuracy of
its models, but increases the storage and computational overhead.

QB5000 sets the interval at which it records the query arrival rates to be one minute, which
is the finest level of prediction that QB5000 is able to provide to the DBMS. When a self-driving
DBMS’ planning module evaluates potential optimizations, it can decide how to aggregate the
per-minute history into longer intervals to train the forecasting models. We evaluate QB5000’s
performance when aggregating over different time intervals in Section 3.6.4. To predict the
spikes, QB5000 trains the KR model used by HYBRID using the entire history of an application

40

—_

o 0 A o
g (\ O 7
q_,o-g;_/—"f o T T T “f oo Admissions b
% : : | &= BusTracker
§0-81' o T e MOOG]
307 ‘

1 2 3 4 5

Number of Clusters

Figure 3.5: Cluster Coverage — The average ratio between the volume of the largest clusters
and the total workload volume.

aggregated into one-hour intervals to reduce the computational and storage overhead.
A self-driving DBMS’ planning module also decides how far ahead of time its models need
to make predictions. QB5000 builds a forecasting model for each required prediction horizon.

3.6 Experimental Analysis

We now present an evaluation of QB5000’s ability to model a database application’s workload
and predict what it will look like in the future. We implemented QB5000’s algorithms using
scikit-learn, Tensorflow, and PyTorch. We use the three real-world workload traces de-
scribed in Section 3.1.1. We performed our experiments on a single server with an Intel Xeon
E5-2420v2 CPU and 32 GB RAM. Unless otherwise noted, we use a GeForce GTX 1080 GPU
with 8 GB RAM for training QB5000’s forecasting models.

We first analyze the effectiveness of the Clusterer’s compression techniques. We then evalu-
ate the accuracy of the Forecaster’s models. We also examine the computation time and storage
footprint for QB5000’s components. Next, we demonstrate the benefits of QB5000 for self-
driving DBMSs for an example application. Lastly, we provide the results of a few sensitivity
analysis of QB5000’s abilities.

3.6.1 Number of Clusters

The goal of this first experiment is to show that QB5000 can model the majority of a database
workload using a small number of the highest-volume clusters. Although modeling more clus-
ters may allow QB5000 to capture more information about the workload, it also increases the
computational overhead, data requirements, and memory footprint. We use the method de-
scribed in Section 3.4 to perform on-line query clustering for all the three workloads. We set
QB5000’s threshold as p=0.8 and the frequency at which it performs incremental clustering
algorithm to be once per day. We provide a sensitivity analysis for selecting p in Section 3.6.8.

We first calculate the average ratio between the volume of the largest clusters and the total
workload volume for each day throughout the entire workload execution. It is calculated by
dividing the volume of a given cluster by the total volume of all the clusters for that day. The
results in Figure 3.5 show that the highest-volume clusters cover the majority of the queries in
the workload. For example, in BusTracker most of the queries come from people checking bus
schedules during the morning and evening rush hours. In particular, the five largest clusters

41

ET3 Admissions =S BusTracker EEE MOOC
< 100 : : :

]
o

N
al

Num of Days (%
o)
o

= ‘
3 4

o

Number of Changed Clusters

Figure 3.6: Cluster Change - The number of clusters that changed among the five largest
clusters between two consecutive days.

comprise over 95% of the queries for all three workloads. This shows that even though a real-
world application may consist of several arrival rate patterns among sub-groups of queries, we
can still obtain a good estimation of the workload by modeling only a few of its major patterns.
Recall that QB5000 tracks the ratio between the volume of the templates within a cluster.

We then calculate how frequently the five highest-volume clusters change from one day to
the next. Figure 3.6 shows the number of days where zero or more changes occurred in the
five largest clusters of the three workloads. For Admissions and BusTracker, there is at most one
change in the five largest clusters for over 90% of the days. This shows that QB5000’s on-line
clustering method is not only efficient regarding the characterization of the workload, but is
also stable under the usual fluctuations in the workload. The MOOC workload has more cluster
changes than the other two because new queries appear as instructors create and launch new
classes. This shows that QB5000’s incremental clustering algorithm can capture shifts in the
application’s workload as it changes over time.

3.6.2 Prediction Accuracy Evaluation

We now evaluate the prediction accuracy of QB5000’s forecasting models for different predic-
tion horizons. Recall from Section 3.5.2 that the prediction horizon defines how far into the
future a model predicts. In this experiment, QB5000 models the highest-volume clusters that
cover more than 95% of the total queries in the workload. Our previous results in Figure 3.5
show that we can achieve this by modeling the three largest clusters for Admissions and Bus-
Tracker, and the five largest clusters for MOOC. QB5000 trains a single forecasting model that
jointly predicts the query arrival rates for all of the clusters on each prediction horizon. This
allows for sharing information across clusters, which improves the prediction accuracy. It uses
up to three weeks of the latest query arrival rate data for the training. We use the log of the
mean squared error (MSE) as the metric for measuring the accuracy of QB5000’s forecasting
models. The smaller the MSE, the better the prediction accuracy. We use one-hour prediction
horizon in this experiment.

For a self-driving DBMS, a desirable property of its forecasting models is that they are not
overly sensitive to their hyperparameters. This is because fine-tuning a model’s hyperparam-
eters is by itself a hard optimization task. To evaluate this, we fix the hyperparameters for all
models to be the same across the different prediction horizons and workloads. We obtained
these settings using cross-validation. Except for the KR used by HYBRID, we use the last day’s

42

N (R B KR [l ARMA [FNN [EEE RNN [0 PSRNN BB ENSEMBLE (LR+RNN) E== HYBRID

@
o
©
o
(2]
(o))
o
w
U) {r
E 0 & d - 4 1] 4
1 Hour 12 Hour 1 Day 2 Days 3 Days 5 Days 1 Week
Prediction Horizon
(a) Admissions
,g .
S4 a0 =
"
[o))
L2
W
@ 0 & & d o o
= 12 Hour 1 Day 2 Days 3 Days 5 Days
Prediction Horizon
(b) BusTracker
)
o
©
o
"
(o]
o
i
%)
=

12 Hour

Prediction Horizon

(c) MOOC

Figure 3.7: Forecasting Model Evaluation — The average prediction accuracy of the differ-
ent forecasting models over prediction horizons ranging from one hour to one week for the
Admissions, BusTracker, and MOOC workloads.

arrival rate as the input for the LR and KR models. For RNN, we use a linear embedding layer
of size 25 followed by two LSTM layers each with 20 cells. We take the log of the input before
training the models, and convert them back by taking the exponentials of the output.

We compare the accuracy of QB5000’s forecasting models discussed in Section 3.5.1 against
other models used for forecasting arrival rate patterns. They are used in existing approaches
for modeling system workloads and resource usages, as introduced below.

Autoregressive Moving Average (ARMA): ARMA is a generalization of LR models that con-
sists of an autoregressive part and a moving average part acting on residuals. When making
predictions, ARMA makes use of all previous observations, either directly or through its residu-
als. This approach was used for predicting workloads in cloud service environments [27, 176].

Feed-forward Neural Network (FNN): This is a non-linear version of the LR models in
which the linear function that approximates the output is replaced by a feed-forward neural
network that separates a sequence of linear transformations to the input vector by non-linear
activations [207]. FNNs differ from RNNs in that their neurons do not form a cycle that feeds
information from all previous observations back into the model. This approach was used to

43

predict the resource usage for transactions in an OLTP DBMS [105].

Predictive State Recurrent Neural Network (PSRNN): This a newer RNN variant that out-
performs LSTMs in a variety of prediction tasks [70]. The key advantage of RNNs is that they
have an initialization algorithm based on a method of moments that aims to start the optimiza-
tion process in a better position towards the global optima, as opposed to typical RNN/LSTM
initializations.

Figure 3.7 shows the average prediction accuracy of the forecasting models over horizons
ranging from one hour to one week for the three workloads. These results exhibit similar trends
for how the horizon impacts the prediction accuracy of the models. First, we observe that for
shorter horizons, the LR models perform as well as or better than the more complex RNN models.
This is because when the horizon is short, the relationship between the arrival rate observed in
the recent past and the arrival rate in the near future is more linear than for longer horizons.
Thus, a simple model like LR is sufficient for making predictions. In contrast, complex models
often overfit the noise in the training data and generate less accurate results when the horizon is
short. But as the horizon increases, the relationship between the past and the future also grows
in complexity. In this case, more powerful models like RNNs that are adept at learning complex
relationships achieve better accuracy. This is consistent with our results; RNN outperforms LR
when the horizon is greater than or equal to one day. This effect is also observed in sequence
prediction in other domains [34].

These results also show that the accuracy of ARMA is not stable across the different horizons.
For all of the trials in Figure 3.7, it achieves the best performance for only 10% of them, but
it has the worst performance 38% of the time. This is because the model is sensitive to its
hyperparameters. The optimal hyperparameter settings for ARMA are highly dependent on the
statistical properties of the data, such as stationarity and the autocorrelation structure.

The FNN models generally have worse prediction accuracy compared to the RNN models.
FNN achieves the best and the worst accuracy in both 5% of the trials. The FNN models cannot
remember the state of the workload like RNNs. They also lack the simplicity of LR that protects
against overfitting.

KR has the best performance in 19% of the experiments, but the worst in 24% of the exper-
iments. This model is able to model non-linear functions, but it is prone to error when it has
not seen inputs in training that are close to the input to make the prediction with.

PSRNN also performs worse than RNN. It is supposed to have a better initialization than
RNN, but this does not always guarantee a better performance because (1) it uses approximation
algorithms to find the initialization and (2) its benefit from smarter initialization is restricted
when the size of the training data is limited [70]. Since RNN takes less training time than PSRNN
and is more available in ML frameworks, we did not use PSRNN in ENSEMBLE.

As shown in Figure 3.7, ENSEMBLE provides the best overall prediction accuracy. It per-
forms better than all the stand-alone models in 61% of the experiments and never has the worst
performance. Ensemble methods often have lower variance than their underlying models and
produce better results when their models have complementing characteristics [124]. LR and
RNN have distinct properties: LR only uses a limited number of observations from the past
when making linear predictions, whereas RNN is non-linear and maintains state to memorize

44

o—o Actual =—a Prediction

75000
<
& 50000 L R T SO S PP A .
GE) \ e € 1 e :
© 25000} =g |- A\ T W N e N T N AN AR e
S D e o
O 0] 2
Jan 09 Jan 11 Jan 13 Jan 15 Jan 17
(a) 1-Hour Horizon
75000
<
"o 50000f - g PSPPI A | i
2 : . -
@ 25000} A% [T AN AN NN A |
5 @ & > & 5 o g
O Oﬁ i i =] i =] i i
Jan 09 Jan 11 Jan 13 Jan 15 Jan 17

(b) 1-Week Horizon

Figure 3.8: Prediction Results — Actual vs. predicted query arrival rates for the highest-
volume cluster in the BusTracker workload with prediction horizons of one hour and one week.

the information from all previous observations. Since LR has comparable performance to EN-
SEMBLE for horizons shorter than a day, using LR on these short horizons may also be desirable
for a DBMS that is short of computational resource.

Even though ENSEMBLE achieves the best accuracy of all the models, recall from Section 3.5.1
that it cannot predict the spikes that repeat infrequently in the workload. HYBRID solves this
issue by correcting the result of ENSEMBLE with the help of the prediction from KR. Figure 3.7
shows that HYBRID has little impact on the average prediction accuracy compared to ENSEMBLE.

We now demonstrate how QB5000 uses its HYBRID models to predict queries’ arrival rates
for each cluster. We compare the predicted arrival rates of the queries belonging to the highest-
volume cluster in the BusTracker application with their actual arrival rates for one-hour and one-
week horizons. Figure 3.8 shows that the one-hour horizon prediction is more accurate than the
one-week horizon. This is consistent with Figure 3.7 where the prediction accuracy decreases
for longer horizons. The results also show that QB5000’s models provide good predictions for
both horizons since the predicted patterns of the arrival rates closely mimic the actual patterns.

3.6.3 Spike Prediction Evaluation

Next, we evaluate QB5000’s ability to forecast the growth and spike workload pattern. As
mentioned in Section 3.5.2, QB5000 uses the full workload history aggregated into one-hour
intervals to predict spikes. It tries to identify workload spikes one week before they will occur.
The other settings are the same as in Section 3.6.2. We again evaluated all of the models and
present the forecasting results from Nov 15 to Dec 31 (2017), which include two spikes from
the admission deadlines on Dec 1 and Dec 15. The Admissions trace contains the similar spikes
from the previous year (2016).

45

x107 ‘ ‘ x107

e ey
~ 1.2+ 12t
7] (%]
.0 @
P 5] S S 5 0.6}
= o e 5 =) g &
OOOﬂeejngugc,gjﬁ”ﬁce;”ﬂu OO.O e Vo prememmp Bpemfiin -
Nov 29 Dec 10 Dec 21 Nov 29 Dec 10 Dec 21
(a) Linear Regression (LR) (b) Kernel Regression (KR)
x107 ‘ ‘ x107
ey ey
<12} T 12}
)] (]
2 Ko}
o 0.6} o 0.6} i
2 ° 2 o) 'Q ?
Oo_o g Y8 popaemer @ D B nin g B 00.0 o L A TR, L L o o
Nov 29 Dec 10 Dec 21 Nov 29 Dec 10 Dec 21
(c) Recurrent Neural Network (RNN) (d) Ensemble (LR + RNN)

Figure 3.9: Prediction Results — Actual vs. predicted query arrival rates for the combined
clusters in the Admissions workload with spike patterns.

The results in Figure 3.9 show that ENSEMBLE and its two base models are unable to predict
the spikes in the workload. Although they are not shown here, the other models also perform
poorly in this scenario. The linear models’ failure is likely due to the scarcity of the spike data
and the limited capacity of the models. In contrast, models with higher capacity, like RNNs,
may get caught in local optima and thus are also not able to produce good results. KR is the
only model that successfully predicts the spikes. This is because its prediction is based on the
distance between the test points and training data, where the influence of each training data
point decreases exponentially with its distance from the test point. We further demonstrate why
KR can separate data points with high query volumes from the other data points in Section 3.6.9.

3.6.4 Prediction Interval Evaluation

We next evaluate the prediction accuracy and the training time of our ENSEMBLE forecasting
models with varying prediction intervals. Since KR from HYBRID always uses one-hour in-
tervals, it is unnecessary to evaluate it for other intervals. To provide a fair comparison, we
compute the total prediction for each hour in the horizon by summing the predictions across
the intervals within that hour. We then use these per-hour predictions to compute the MSE.
For two-hour intervals, we calculate the prediction for each hour by dividing the interval that
contains that hour into two.

The results in Figure 3.10a show that the accuracy of the models increases as the intervals
become shorter. This is because shorter intervals provide more training samples and better
information for learning the patterns in the data. Shorter intervals are especially beneficial
for longer horizons since the relationship between the future and the past arrival rate is more
complex. But shorter intervals increase the noise in the data and require more intervals to
include the same extent of time. Thus, models trained on shorter intervals are larger (e.g.,

46

|- 10 mins 3 20 mins @ 30 mins = 60 mins EEE 120 mins

©

o

3.0

w

[@)]

915
w 07 0.6 0.6 0.6
2 40 -III'A

Prediction Horizon

(a) Prediction Accuracy

(o]
o

Training Time (s)
LN
o

o

Prediction Horizon

(b) Training Time (GPU)

Figure 3.10: Prediction Interval Evaluation - The average prediction accuracy and training
time with different intervals for BusTracker.

higher input dimension) and more complex.

Figure 3.10b shows the training time for each model at different intervals. It takes less
time to train the models on longer intervals, which is expected since these models are smaller
and less complex. Increasing the interval from 10 to 120 minutes reduces the training time by
roughly 2.5x across all horizons, but decreasing the horizon provides only a minor training
time reduction across all intervals.

One must consider these trade-offs when setting the interval, along with the planning ca-
pabilities of the target self-driving DBMS. We found that a one-hour interval works well for
our operating environment in Section 3.6.6. As such, we use this interval for the remainder of
the evaluation. Automatically determining the interval is beyond the scope of this thesis and
we leave it as future work.

3.6.5 Computation & Storage Overhead

To better understand the computational and storage overhead of QB5000, we instrumented its
code to record the amount of time and space it spends in its four components:

Pre-Processor : The time to templatize a query and update its arrival rate history, and the
amount of history data generated daily.

Clusterer : The time to update the clustering results once per day according to the latest
history, and the size of the result data.

47

Pre-Processor | Clusterer LR RNN KR
GPU:0.3s | GPU:9s | GPU:0.16

” .
g Admissions | 0.043ms/query | 15s/day CPU-03s | CPU:58s | CPU-0.18s
=

< CPU:0.12s | GPU:33s | GPU:0.02s
E BusTracker | 0.05ms/query | 3s/day | o1y 156 | cPUI221s | CPU0.025
S GPU:0.54s| GPU:5s |GPU:0.04s
S| MOOC | 0.048ms/query | 12s/day | by 51| cpU1ss | CPU:0.04s
8| Admissions| 1.6MB/day 6.7KB 100B 28KB 11MB
S| BusTracker | 0.25MB/day 2.2KB 100B 28KB 1.9MB
g MoocC 1.4MB/day 0.8KB 100B 28KB 0.4MB
7]

Table 3.4: Computation & Storage Overhead — The measurements for QB5000’s different
components.

LR Model : The time to train one LR model, and the size of the learned weights.

KR Model : The time to predict one test point with the KR model, and the size of the historical
data maintained for the model.

RNN Model : The time to train one RNN model, and the size of the serialized model object
from PyTorch, which contains both the model parameters and network structure.

For LR, RNN, and KR, we use a one-hour interval and measure the model’s time and space
requirements over seven horizons. We report the average overhead of these horizons.

Table 3.4 shows that all of QB5000’s components have reasonable storage overhead. The
results also show that training the RNN models is the most computationally expensive task. We
stop training the RNN models when the validation accuracy stops improving. This means that
the number of iterations performed and the training time differ per workload. Using a GPU
improves the training time of RNN models by 3.6-7x. The overhead of training LR models
is low compared to RNN models, and that the CPU/GPU performances are similar for the LR
models since they are so simple. KR requires no training time and little testing time. But its
testing time and training-data size increases linearly with the length of the workload history.
QB5000 reduces this overhead by always aggregating the training for KR to one-hour intervals
(see Section 3.5.2).

3.6.6 Automatic Index Selection

We now demonstrate how self-driving DBMSs can use QB5000’s workload forecasts to make
proactive optimizations that improve the system’s performance. We integrate QB5000 with
MySQL [2] and PostgreSQL [8] to process, cluster, and predict SQL workloads to automatically
builds indexes for the predicted workload. We select a representative workload for PostgreSQL
(BusTracker) and for MySQL (Admissions) for the evaluation. We use a 10 GB database for the

48

ll—l AUTO =0 STATIC A AUTO-LOGICALI

9000 .

» T

3 3000 Y ALA N

> A . o HA ' A

3 MYNYWEIVNINS W2 M Ve T MV e et
08:00 0200 0400 0600 0800 1000 12:00 1400 16:00

(a) Throughput

D s S AR i Mk R A St D6 sl M.) Sl : = QQ.
08200 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00
(b) Latency

Figure 3.11: Index Selection (MySQL) - Performance measurements for the Admissions work-
load using different index selection techniques.

Admissions and a 5 GB database for the BusTracker. We set each DBMS’s buffer pool size to be
1/5 of the database size.

We use an index selection technique based on the one introduced by AutoAdmin to generate
the set of indexes to build [46]. AutoAdmin first selects the best index for each query in a sample
workload to form a candidate set of indexes. It then uses a heuristic search algorithm to find
the best-bounded subset of indexes within the candidates. Instead of using a sample workload
to generate the candidate indexes, we use the predicted workload of the three largest clusters
generated by Clusterer. We note that the purpose of this evaluation is to demonstrate QB5000’s
ability to dynamically model and predict workloads, and not the efficacy of the index selection
algorithm. We compare the performance of the automatic index selection (AUTO) against a
static index selection method, which uses the same index selection algorithm but applies it to a
fixed workload sample over the entire query history that is prepared manually before the start
of the experiment (STATIC).

In both of the workloads, we initialize the DBMSs with the primary key and foreign key
indexes defined in the applications’ original schemas but remove all secondary indexes. We
choose a random date to start the index selection process and train QB5000’s forecasting models
from the previous three weeks history. The system builds a new index at hourly intervals based
on QB5000’s real-time workload predictions for one-hour and twelve-hour prediction horizons.
We weight the predictions from the one-hour horizon higher since models for shorter horizons
are more accurate. We run the index selection technique for a 16 hour period. To control the
total experiment time, we replay the workload 600 faster than the actual workload execution
speed. That is, one second in our experiment represents 10 minutes of workload execution in
the traces. During the experiment AUTO builds 20 indexes in total, and thus we set STATIC to

49

75000

"% 50000F" i TN 4 g ; ;
3 : / Wv] /‘ AVAHR Vv AR WY : \;
@ 25000 b
> . H | H H H u H H H H . X 3 H H v
G PO RSN N O o O L R
H \/ H H . H . H . H H H H H .
0800~ 0200 0400 06:00 08:00 1000 12:00 1400 16:00
(a) Throughput
Tér75°
2 5001\,
250 1 -
N .
g \/\MM\(\/' iV N P
08:00 02:00 " 0400 ~ 06:00 0800 1000 ~ 12:00 ~ 1400 16:00

(b) Latency

Figure 3.12: Index Selection (PostgreSQL) — Performance measurements for the BusTracker
workload using different index selection techniques.

also build 20 indexes before the experiment begins.

Figures 3.11 and 3.12 show the performance of MySQL and PostgreSQL using the AUTO and
STATIC index selection techniques. The vertical green dotted lines indicate when the DBMS
builds a new index. The results in Figure 3.11 show that the throughput and latency of MySQL
executing the Admissions workload improve by 5x and 78% over the 16 hour period, respectively.
AUTO initially performs worse than STATIC since it has not yet created any secondary indexes,
but achieves 28% better throughput and 23% better latency by the end of the experiment. This
is because AUTO selects four indexes that were not chosen by STATIC since it is able to leverage
QB5000’s forecasts. Figure 3.12 shows that PostgreSQL achieves 180x better throughput and
99% better latency for the BusTracker workload over this period. AUTO selects only one different
index than STATIC, and thus their final performances are similar.

Automatic index selection is just one example of how QB5000’s workload forecasting could
be applied in a self-driving DBMS. There are other application scenarios that would serve as
more powerful examples, such as resource provisioning. Such scenarios require a planning
module for a self-driving DBMS, which requires a forecasting framework like what we present
in this chapter.

3.6.7 Logical vs. Arrival Rate History Feature

In this final experiment, we compare the effectiveness of the arrival rate history feature that
QB5000’s Clusterer uses against the logical feature (AUTO-LOGICAL). We repeat the same ex-
periments from Section 3.6.6, except that we group templates based on the similarity of the
logical structures of SQL strings. More specifically, the logical feature vector of a templates
consist of the query type (e.g., INSERT, SELECT, UPDATE, or DELETE), tables that it accesses, the
columns that it references, number of clauses (e.g., JOIN, HAVING, or GROUP BY), and number of

50

_g 10] fo}
0] oo Admissions
30'87 | ~=a BusTracker]
°>’ 0.7 Fmm b gl MOOC
o
O 0. . . .
0 8.5 0.6 0.7 0.8 0.9

Similarity Threshold(p)

Figure 3.13: Cluster Coverage with p — The ratio between the volume of the three largest
clusters and the total workload volume with different similarity threshold p.

oo Admissions ~—= BusTracker s—a MOOC|

340 - .

0

2.4} \ T —

o 1.6] | o o |

n

=085 0.6 0.7 0.8 0.9
Similarity Threshold(p)

Figure 3.14: Prediction Accuracy with p — Normalized prediction accuracy for one-hour
horizon with different similarity threshold p.

aggregations (e.g., SUM, or AVG). We use the L2 distance to measure the similarity between two
templates. We adjust the threshold p so that the volumes of the largest clusters are similar to
those generated with the arrival rate history features.

The results in Figures 3.11 and 3.12 show that the DBMSs’ throughput is ~20% slower for
AUTO-LOGICAL than for AUTO for both workloads. Figure 3.11 shows that the latencies are
similar for AUTO-LOGICAL and AUTO for MySQL running the Admissions workload. But the re-
sults in Figure 3.12 show BusTracker in PostgreSQL has 38% higher latency with AUTO-LOGICAL.
There are two reasons why logical features lead to worse index selection. The first is that the
SQL queries are insufficient for determining whether two templates will have similar impacts
on the system. The second reason is that templates within the same logical feature cluster may
have multiple arrival rate patterns (including anomalies like one-time queries); this makes it
more difficult for the Forecaster to identify these patterns and predict the trends according to
the cluster centers.

3.6.8 Sensitivity Analysis of p

We now the analyze QB5000’s cluster coverage ratio and prediction accuracy for different p
values. As discussed in Section 3.4.2, p is the sensitivity threshold used by the on-line clustering
component to determine whether a template should belong to a cluster. In these experiments,
we perform on-line clustering and arrival rate forecasting for values of p ranging from 0.5 to 0.9
for each of the three workloads. Setting p=1.0 results in every template having its own cluster,
whereas setting it to 0.0 would group all the templates into a single cluster. We set both the

51

prediction interval and the horizon to be one hour for the forecasting. We then measure the
cluster coverage ratio and the prediction accuracy for the three highest-volume clusters.

Figure 3.13 shows the average volume ratio between the three largest clusters and the total
workload volume for increasing values of p. The higher the p is, the more similar the templates
within the same cluster are. But the number of templates contained in each cluster is also
smaller, which means that the three largest clusters cover less of the workload when p is high.
The results show that the coverage of the largest clusters is stable when p increases from 0.5 to
0.8 for all three workloads, but it drops when p reaches 0.9.

Figure 3.14 shows the sensitivity of the prediction accuracy to different values of p for the
three largest clusters. The results show that the prediction accuracy improves as p increases for
all three workloads. Since the similarity of the templates within the same cluster increases with
p, the prediction results also improve since the centers of the clusters provide a more accurate
representation of the arrival rate patterns captured by each cluster.

Given this analysis, we set p=0.8 in our evaluation since we find that it provides the best
balance between the prediction accuracy and the coverage ratio for all three of the workloads.

W 2016 Dec 01 A 2016 Dec 31
B 2017 Dec 01 A 2017 Dec 31
% 2016 Dec 15 @® 2016 Sep 01
% 2017 Dec 15 @ 2017 Sep 01

Figure 3.15: Input Space Time-Progress — The 3D-projected input space for the Admissions
workload with spikes. The trajectory color follows dates.

3.6.9 Input Space for Spike Prediction

We now demonstrate why KR is able to better predict spikes in a workload compared to the
other forecasting models we considered. Recall from Section 3.5.1 that the prediction of KR for
a given input is a weighted average of all of the training inputs, where the weights decrease
with the distance between the given input and the corresponding training inputs in the kernel
space. QB5000 uses the arrival rate history from the previous three weeks (aggregated into
one-hour intervals) as the input for KR.

52

o—e Actual s—a Prediction

x107 ‘ ‘
e : :
~ L2F
» : .
2 ; ;
]
= ‘8 . :
OOO sl DDEGaﬂ L T

Nov 29 Dec 10 Dec 21
(a) Threshold 7 = 100%

x107]]]
< : : :
Z12l S I IO I |
) . : :
Q0 : : :
506_ e R RN e i
= ‘a oo :
000 s LT . T L N e

Nov 29 Dec 10 Dec 21
(b) Threshold v = 150%

x107
-
~ 1.2 b
%)
Q
§ 06F]
> 'a i
OOO QDP;DDEUQHFEQU;EDD

Nov 29 Dec 10 Dec 21
(c) Threshold ~ = 200%

Figure 3.16: Prediction Results — Actual vs. predicted query arrival rates for the combined
clusters in the Admissions workload with HYBRID (ENSEMBLE model corrected by KR).

Figure 3.15 shows the inputs for KR at each hour-interval in the Admissions workload trace.
The input is projected into 3D space using a common dimensionality reduction technique,
PCA [162]. Inputs on nearby dates have similar colors in the trajectory. From this figure,
we see the points that correspond to the spike activity are clearly separated from the “normal”
activity points. The trajectories from December 1st to December 31st in both 2016 and 2017
travel a much longer distance in the 3D space than in other months. The results also show
that inputs that correspond to the same spikes in each of the two years have closer positions
in the space. This demonstrates how kernel methods can easily recognize points with high
query volumes and predict the future spikes based on the ones observed in the previous year.

KR enables QB5000 to predict which dates spikes might occur on throughout the year without
explicit domain knowledge.

53

o—o Actual =—a Prediction

3 x10°
< :
<2} i
3 16
S .
S il .
c g Z E' o g & a

(0]
0 | Sy a B e 9ve 8 T N D YN - pallibeleatiun 9 (Y 1 i snin idihe” b 8
% % % %M N NS %N
A ®7 o N\ o0 oM AP
W W W N N N »*

Figure 3.17: Prediction Results — Actual vs. predicted query arrival rates for a synthetic
noisy workload.

3.6.10 Sensitivity Analysis of v

We next analyze the impact of the threshold v on the prediction performance of QB5000’s
HYBRID models for workloads with growth and spike patterns. We use the same experimental
settings as in Section 3.6.3.

Figure 3.16 shows the combined query arrival rate predictions from all clusters when the
threshold + is set to be 100%, 150%, and 200%. The model is able to predict the major spike
patterns for all three settings of v. When + is lower, HYBRID uses the result from KR more often
than ENSEMBLE, thus improving its ability to predict spikes. However, lower values of v have
increasingly negative impacts on the MSE of the predictions when no spike patterns are present
in the workload. In our experiments, we found out that HYBRID has a negligible effect on the
MSE of ENSEMBLE when v > 100%. Given this analysis, we set 7y to 150% in QB5000.

3.6.11 Predicting Noisy Workloads

In Section 3.1.2, we presented three workload patterns that are prevalent in today’s applications.
But some workloads may not exhibit strong temporal patterns, and thus their arrival rates from
the recent past may differ substantially from the present. This section extends our evaluation of
QB5000 by demonstrating its ability to predict the arrival rates of a noisy workload without any
temporal patterns to exploit. We use the HYBRID forecast models in this experiment. Such a
workload represents a worst-case scenario for QB5000 since the arrival rates are unpredictable.

We constructed a synthetic workload trace that consists of benchmarks from the OLTP-
Bench testbed that differ in complexity and system demands [63, 64]. We execute the following
eight benchmarks consecutively with varying average arrival rates: Wikipedia, TATP, YCSB,
Smallbank, TPCC, Twitter, Epinions, and Voter. Each benchmark is executed for 10 hours.
We add white noise to the arrival rate that has a variance set to be 50% of its mean. We also
inject random anomalies (i.e., spikes) into the arrival rate of the queries. As we described in
Section 3.4.2, QB5000 monitors the ratio of previously unseen templates in the workload, and
re-clusters the templates once it detects that the workload has switched from one to another.
We set the prediction horizon to be one hour and the prediction interval to be one minute. Since
each workload is executed for only 10 hours, QB5000 does not have enough training data to

54

predict long horizons.

The results in Figure 3.17 show the combined predicted arrival rates of all clusters. Each time
tick represents when the benchmark shifts from one to another. The results show that QB5000
is able to automatically identify these shifts in the workload and adapt to the new queries.
This demonstrates that even when the workload is noisy and the arrival rate is unpredictable,
QB5000 is still able to predict the average query volume most of the time.

55

Chapter 4

Behavior Modeling

An essential component that enables a self-driving DBMS to optimize for the forecasted work-
load is behavior models. These models estimate and explain how the system’s performance
changes due to a potential action (e.g., changing knobs, creating an index). This is similar to
how self-driving vehicles use physical models to guide their autonomous planning [156]. But
existing DBMSs do not contain the embedded low-level models for self-driving operations, nor
do they support generating the training data needed to build such models.

Techniques for constructing database behavior models fall under two categories: (1) “white-
box” analytical methods and (2) ML methods. Analytical models use a human-devised formula
to describe a DBMS component’s behavior, such as the buffer pool or lock manager [148, 151,
239]. These models are customized per DBMS and version. They are difficult to migrate to a new
DBMS and require redesign under system updates or reconfiguration. Recent works on using
ML methods to construct models have shown that they are more adaptable and scalable than
white-box approaches, but they have several limitations. These works mostly target isolated
query execution [23, 74, 83, 133, 141]. The models that support concurrent queries focus on
real-time settings where the interleaving of queries is known [73, 230, 249], but a self-driving
DBMS needs to plan for future workloads without such accurate information [137]. Many ML-
based models also rely on dataset or workload-dependent information [73, 141, 203]; thus, a
DBMS cannot deploy these models in new environments without expensive retraining.

Given this, we present a framework, called ModelBot2 (MB2), that generates behavior mod-
els that estimate the performance of a self-driving DBMS’s components and their interference
during concurrent execution. This enables the DBMS’s planning components to reason about
the expected benefit and the impact of actions. For example, suppose the self-driving DBMS
plans to create a new index. In that case, MB2’s models can answer how long the index creation
is, how the index creation impacts the system performance, and how the new index accelerates
the workload’s queries.

The main idea of MB2 is to decompose a DBMS’s internal architecture into small, indepen-
dent operating units (OUs) (e.g., building a hash table, flushing log records). MB2 then uses
ML methods to train an OU-model for each OU that predicts its runtime and resource con-
sumption for the current DBMS state. Compared to a single monolithic model for the entire
DBMS, these OU-models have smaller input dimensions, require less training time, and pro-
vide performance insight to each DBMS component [85]. During inference, MB2 combines

56

OU-models to predict the DBMS’s performance for the future workload (which we assume is
provided by workload forecasting techniques [137]) and the system state. To support multi-
core environments with concurrent threads, MB2 also estimates the interference between OUs
by defining the OU-models’ outputs as a set of measurable performance metrics that summa-
rizes each OU’s behavior. MB2 then builds interference models for concurrent OUs based on
these metrics. MB2 also provides a principled method for data generation and training for self-
driving DBMSs: developers create offline runners that exercise the system’s OUs under various
conditions, and MB2 uses the runner-produced data to train a set of workload and dataset in-
dependent OU-models.

To evaluate our approach, we implement our framework into the NoisePage DBMS [38] and
measure its ability to model its runtime components and predict its behavior using workload
forecasts. We also compare against a state-of-the-art external modeling approach based on deep
learning [141]. Our results show that our models support OLTP and OLAP workloads with a
minimal loss of accuracy.

4.1 Background

Behavior models are the foundation for building a self-driving DBMS since high-fidelity models
form the basis of robust planning and control. We now provide an overview of the salient
aspects of modeling for self-driving DBMSs. We then discuss the limitations and unsolved
challenges with existing approaches.

4.1.1 Behavior Modeling

Given an action, a self-driving DBMS’s behavior models estimate (1) how long the action takes,
(2) how much resource the action consumes, (3) how applying the action impacts the system
performance, and (4) how the action impacts the system once it is deployed. Such models can
also provide explanations about the self-driving DBMS’s decisions and debug potential issues.

Analytical models use a human-devised formula to describe a DBMS component’s behav-
ior, such as the buffer pool or the lock manager [148, 151, 239]. The unknown variables in the
formula generally come from a workload specification. The models (formulas) are disparate for
different DBMSs, components, and algorithms. For example, these works have devised drasti-
cally different I/O formulas for MySQL and SQL Server [148, 151]. Thus, it is challenging and
onerous to revise these models for new DBMSs or DBMS updates.

Recent works show promising results using ML to model query execution in analytical
workloads [74, 133, 141]. These ML-based models use query plan information (e.g., cardinal-
ity estimates) as input features to estimate system performance metrics (e.g., query latency).
Although ML-based models’ are potentially easier to transfer to new environments, they still
require feature adjustments, data remaking, and retraining. Existing models also do not support
transactional workloads, nor do they consider the effects of the DBMS’s maintenance opera-
tions (e.g., garbage collection).

Some methods also support concurrent queries when the arrival time of each query is
known. They derive the concrete interleaving of queries as the input for their analytical or

57

—
(&)
o
o

Start Index Creation |

~ _
1000 /\‘/\,\ //\V'\I'Jv M

Index Created Index Created
with 8 Threads with 4 Threads
5001 Ve

—s— 4 Create Index Threads AA\/‘\/\/‘—fw‘\/‘\'

8 Create Index Threads

Average Query Latency (us)

0 25 50 75 100 125 150 175 200
Time (s)

Figure 4.1: Index Build Example — TPC-C query latency running on NoisePage. The DBMS

begins index building after 60s using 4 or 8 threads.

ML models [73, 230, 249]. This is insufficient for a self-driving DBMS because it must account
for unknown future workloads when planning expensive actions.

To illustrate the difficulties inherent in self-driving DBMS modeling, consider the scenario
of when a DBMS must decide whether to build an index. For this example, we use the TPC-C
benchmark running on NoisePage; we provide our experimental details in Section 4.7. The re-
sults in Figure 4.1 show the query latency for the TPC-C workload when we remove a secondary
index on the CUSTOMER table. After 60s, the DBMS begins adding that index back to improve the
latency. However, before it can start, the DBMS’s planning component uses behavior models to
identify what benefit (if any) adding that index would provide. The planning component also
must select how many threads to use to build the index; using more threads will decrease the
build time but degrade the system’s performance. For example, Figure 4.1 shows that build-
ing with four threads only degrades performance by 25%, but it takes 80s to finish, whereas
using eight threads degrades performance by 32% but completes in 40s. A DBMS needs this
information to determine which action deployment to choose based on the environment and
constraints.

4.1.2 Challenges

Despite the advantages of using ML to build models, there are several challenges in using them
in a self-driving DBMS.

High Dimensionality: One approach for behavior modeling is to build a monolithic model
that captures all aspects of the DBMS, including its workload, configuration, and actions. Al-
though this is conceptually clean, it incurs the “curse of dimensionality” problem where an ML
model’s predictive power decreases as the number of dimensions or features increases [210].
Even if the model only targets query execution, a modern DBMS will still have hundreds of
plan operator features [23, 141]. Naively concatenating these features into the model will lead
to sparse input and weak predictive efficacy. Partially because of this, modeling techniques
target individual operators instead of the entire query plan [133, 141]. A self-driving DBMS
must also consider its runtime state (e.g., database contents, knob configurations), interactions
with other components (e.g., garbage collection), and other autonomous actions (e.g., building

58

indexes), which further increases dimensionality.

Concurrent Operations: Since queries and DBMS components that run simultaneously will
interfere with each other, a self-driving DBMS needs to model such interference in dynamic en-
vironments. A simple approach is to duplicate the input features by the maximum degree of
concurrency (e.g., number of threads). This multiplicatively increases feature dimensionality
and exponentially increases the possible input features for the models. For example, a work-
load with 10 different queries running on a 20 core machine has 11%° possible input feature
combinations. Queries may also incur interference that is not easily identifiable solely on plan
features, such as the resource contention between concurrent queries.

Training, Generalizability, and Explainability: Collecting sufficient training data to build
ML models for DBMSs is non-trivial when there are many features with large domains. Part
of this difficulty is because some DBMS operations take a long time to complete. Thus, collect-
ing this data is expensive, which is a key problem for many ML methods [169]. For example,
building indexes can take hours [58], limiting the amount of training data that a DBMS can
collect. Most of the previous work on using ML to predict query execution times rely on syn-
thetic benchmarks for training [133, 138, 141, 216]. Although their models perform well for the
same workload used for training, they have high prediction errors on different workloads. The
behavior models should also be explainable and debuggable to facilitate their practical applica-
tion [122].

4.2 OQOverview

MB?2 is an embedded behavior modeling framework for self-driving DBMSs. There are two
key design considerations: (1) since collecting training data, building models, and diagnosing
problems are expensive and time-consuming, MB2 generates models offline in a dataset and
workload independent manner. The DBMS then uses the same set of models to estimate the
runtime actions’ impact on any workload or dataset. (2) MB2’s models are debuggable, explain-
able, and adaptable. These qualities reduce development complexity and provide a view of why
the DBMS chooses specific actions.

Figure 4.2 provides an overview of MB2’s modeling architecture. The main idea is to decom-
pose the DBMS into independent operating units (OUs). An OU represents a step that the DBMS
performs to complete a specific task. These tasks include query execution steps (e.g., building
join hash tables (JHTs)) and internal maintenance steps (e.g., garbage collection). DBMS de-
velopers are responsible for creating OUs and deciding their boundaries based on the system’s
implementation. We decompose NoisePage naturally following the system’s source code orga-
nization. For example, NoisePage defines an OU for the function that builds a hash table.

MB2 pairs each OU with an OU-runner that exercises the OU’s corresponding DBMS com-
ponent by sweeping the component’s input parameter space. MB2 then provides a lightweight
data collection layer to transform these OU-runners’ inputs to OU features and track the OU’s
behavior metrics (e.g., runtime, CPU utilization). For each OU, MB2 automatically searches,
trains, and validates an OU-model using the data collected from the related OU-runner.

59

OU-Model Generation Interference

__

C Training Data Collection Zj

Operating Unit Behavior @ Metrics @
Translator % Tracker :@ Collector &

<
3

: Model Generation
) T T T e/——
1 S |

@ ! : b= :
: = . h : I B 1
' é’ Index Sequantial Join Hash | |Log Record||:, 5 & '
B i Table Build ' Q€ -
=) Build Scan able Bui Flush ' gé TPC-C :
:O OU-Runner 1 OU-Runner 2 OU-Runner 3 OU-Runner 4 ::U TPC-H '
1 I : :

OU-Model1 OU-Model 2 OU-Model 3 OU-Model 4

Interference
Model

OU-Models

Figure 4.2: System Architecture — MB2 trains OU-models for each OU with the data gen-
erated by OU-runners and builds interference models for concurrent OUs based on system re-
source utilization.

To orchestrate data collection across all OUs and to simulate concurrent environments, MB2
uses concurrent runners to execute end-to-end workloads (e.g., benchmarks, query traces) with
multiple threads. MB2 uses its training data collectors to build interference models that estimate
the impact of resource competition, cache locality, and internal contention among concurrent
OUs.

With OU-models trained for the entire system, a self-driving DBMS can use them as a simu-
lator to approximate its runtime behavior. Figure 4.3 shows how a DBMS uses MB2’s models for
inference. The inputs for MB2 are the forecasted workload and a potential action. Employing
the same translator infrastructure for training data collection, MB2 first extracts the OUs from
the inputs and generates their model features. It then uses OU-models to predict the behavior
of each OU, and uses the interference models to adjust the OU-model’s prediction to account
for the impact of concurrent OUs. Finally, MB2 sums OU’s prediction to derive information that
guides the DBMS’s planning system, such as how long the action takes and its impacts on the
forecasted workload’s performance.

Returning to our example from Section 4.1.1, before a self-driving DBMS chooses the action
to build the index, it can use MB2’s models to estimate the time and consumed resources (e.g.,
CPU, memory) for the action’s OUs. MB2 also estimates the effect of building the index on the
regular workload by converting its queries into OUs and predicting their performance. The
DBMS’s planning system then decides whether to build this index and provides explanations
for its decision based on these detailed predictions.

60

Forecasted Workload Candidate Action

Create Index Change Knob

__Operating Unit Translator ~ ___Behavior Models ____
: Input ou1l ou 2 » 1: :r :
: Action Index Build : : :
: Query 1 | Sequential Scan JHT Build |> |i> :
| | Transaction | Log Record Garbage Vi :
| 1&2 Flush Collection o |
: 1 OU-Models Interference Model |

! Action Deployment Workload Performance |
! INSERT ... |
| UPDATE ... |
\ , SELECT ... Ift> \
! : CPU Memory DJ..Sk ——— Resource | !
| Time Resource Consumption Workload Latency ylization !

Figure 4.3: MB2 Inference Procedure — Given the forecasted workload and a self-driving
action, MB2 records the OUs for all input tasks, and uses the OU-models and interference models
to predict the DBMS’s behavior.

Assumptions and Limitations: We now clarify MB2’s capabilities on what it can and can-
not do. Foremost is that we assume the framework uses a forecasting system to generate es-
timations for future workload arrival rates in fixed intervals (e.g., a minute/hour) [137]. The
workload forecasting system cannot predict ad-hoc queries it has never seen before. Thus, we
assume the DBMS executes queries with a cached query plan except for the initial invocation.

We assume that the target system is an in-memory DBMS; MB2 does not support disk-
oriented DBMSs with buffer pools. This assumption simplifies MB2’s behavior models since it
does not have to consider what pages could be in memory for each query. Estimating cache con-
tents is difficult enough for a single query. It is more challenging when evaluating a sequence
of forecasted queries.

MB2 supports both OLTP and OLAP workloads, as well as mixed workloads. Assuming an
in-memory DBMS makes it easier to model OLAP workloads since each query’s performance
is affected by aspects of the system that are observable by MB2: (1) database contents, (2) con-
figuration, and (3) operating environment. Modeling OLTP queries poses additional challenges
due to higher variance with short query execution times. Supporting transactions also means
that MB2 must consider logical contention (e.g., transactions updating the same record) as well

61

as physical contention for hardware resources. We assume that the DBMS uses MVCC [233]
and MB2 supports capturing lock contention. MB2 does not, however, model transaction aborts
due to data conflicts because it is challenging to get precise forecasts of overlapping queries.

MB2’s OU-models’ input features contain the cardinality estimation from the DBMS opti-
mizer, which is known to be error-prone [130]. Our evaluation shows that MB2’s prediction is
insensitive against cardinality estimation errors within a reasonable range (30%). There are re-
cent works that use ML to improve an optimizer’s cardinality estimations [75, 112, 227, 228, 235],
which MB2 may leverage.

Lastly, while MB2 supports hardware context in its models (see Section 4.3.2), we defer the
investigation on what features to include for different hardware (e.g., CPU, disk) and environ-
ments (e.g., bare-metal, container) as future work.

4.3 OU-models

We now discuss how to create a DBMS’s OU-models with MB2. The goal of these models is
to estimate the time and resources that the DBMS will consume to execute a query or action.
A self-driving DBMS can make proper planning decisions by combining these estimates from
multiple queries in a workload forecast interval. In addition to accuracy, these models need to
have three properties that are important for self-driving operations: (1) they provide explana-
tions of the DBMS’s behavior, (2) they support any dataset and workload, and (3) they adapt to
DBMS software updates.

4.3.1 Principles

Developers use MB2 to decompose the DBMS into OUs to build explainable, adaptable, and
workload independent behavior models. The first step is to understand the principles for di-
viding the DBMS’s internal components into these OUs. For this discussion, we use examples
from NoisePage’s OUs shown in Table 4.1:

Independent: The runtime behavior of an OU must be independent of other OUs. Thus,
changes to one OU do not directly affect another unrelated OU. For example, if the DBMS
changes the knob that controls the join hash table size then this does not change the resource
consumption of the DBMS’s WAL component or the resource consumption of sequential scans
for the same queries.

Low-dimensional: An OU is a basic operation in the DBMS with a small number of input
features. That is, the DBMS can construct a model that predicts the behavior of that part of
the system with as few features as possible. We have found that it is best to limit the number
of features to at most ten, which includes any hardware and database state contexts. If an OU
requires more than this, then one should attempt to divide the OU into sub-OUs. This limit
may increase as ML algorithms and hardware improve over time. Restricting the number of
features per OU improves the framework’s ability to collect sufficient training data to support
any workload.

62

‘ Operating Unit | Features ‘ Knobs ‘ Type

Sequential Scan 7 1 Singular
Index Scan 7 1 Singular
Join Hash Table Build 7 1 Singular
Join Hash Table Probe 7 1 Singular
7z | Agg. Hash Table Build 7 1 Singular
E Agg. Hash Table Probe 7 1 Singular
2 Sort Build 7 1 Singular
) Sort Iterate 7 1 Singular
o Insert Tuple 7 1 Singular
Update Tuple 7 1 Singular
Delete Tuple 7 1 Singular
Arithmetic or Filter 2 1 Singular
= Garbage Collection 3 1 Batch
’5 Index Build 5 1 Contending
j Log Record Serialize 4 1 Batch
= Log Record Flush 3 1 Batch
2 Transaction Begin 2 0 Contending
ﬁ Transaction Commit 2 0 Contending
E ‘ Output Result ‘ 7 ‘ 1 ‘ Singular

Table 4.1: Operating Unit — Property Summary of OUs in NoisePage.

Comprehensive: Lastly, the framework must have OUs that encompass all DBMS operations
which consume resources. Thus, for any workload, the OUs cover the entire DBMS, including
background maintenance tasks (e.g., garbage collection) and self-driving actions that the DBMS
may deploy on its own (e.g., index creation).

A DBMS will have multiple OU decompositions according to these principles, which allows
for flexible implementation choices. Adding more OUs may lead to smaller models with finer-
grained predictions and less required training data for each model. But additional OUs may
also increase the inference time, model maintenance cost, and stacking of prediction errors.
We defer the problem of deriving the optimal OU set for a DBMS as future work.

4.3.2 Input Features

After deciding which OUs to implement, DBMS developers then specify the OU-models’ input
features based on their degree of freedom [69]. These features may contain (1) the amount of
work for a single OU invocation or multiple OU invocations in a batch (e.g., the number of
tuples to process), (2) the parallel invocation status of an OU (e.g., number of threads to create
an index), and (3) the DBMS configuration knobs (e.g., the execution mode). Although humans
select the features for each OU-model, the features’ values are generated automatically by the
DBMS based on the workload and actions. Some features are generic and will be the same

63

Fea::‘::st |# rowsl# columnsl key size | | |# rowsl# columnsl key size | |

Q
(o))
1]
L d
9 | OU-Models @" @"
[}
'8 Join-Hash-Table-Build Index-Build
s OU-Model OU-Model
Sl - - = — -
© OU-Model (Ocpu Ovo [Memory [Time)

. Instru- Block Mem-|Elapsed| |Instru- Block Mem- |Elapsed

Predict Cycles Cycles
rédiCction | ,ng (<Y "|Written|™"| ory | Time ||ctions 4 “"|Written|"| ory | Time
1 1
< = < =

g Additional Summary Statistics of Sum Variance
s Input OU-Model Predictions ~ — < —
& Features for Concurrent OUs [CPY | VO [Memory| Time[CPU| 1/0_[Memory[Time |
I 25 S |
T
<]
= —
o |Interference Apply tc()j elach grlglnal |
Q OU-model prediction separately
S Model (indicated by § or §)
Llmaorence " . S
& |Interference
1= Model [TAdjusted 1Adjusted TAdjusted TAdjusted
= Prediction Instructions | " | " | " | Elapsed Time Instructions | " | ©" | 7 | Elapsed Time

Figure 4.4: OU and Interference Models — MB2 uses OU-specific input features to predict
their resource consumption and elapsed time. The interference model uses the summary pre-
dictions for concurrent OUs.

across many DBMSs, whereas others are specific to a DBMS’s implementation. We categorize
OUs into three types based on their behavior pattern, which impacts what information the input
features have.

Singular OUs: The first type of OUs have input features that represent the amount of work
and resource consumption for a single invocation. These include NoisePage’s execution cate-
gory OUs in Table 4.1. Almost all its execution OUs have the same seven input features. The
first six features are related to the relational operator that the OU belongs to: (1) number of in-
put tuples, (2) number of columns of input tuples, (3) average input tuple size, (4) estimated key
cardinality (e.g., sorting, joins), (5) payload size (e.g., hash table entry size for hash joins), and
(6) number of loops (only for index nested loop joins). The first three features indicate the tuple
volume that the OU will process as an estimate of the amount of work it will perform. Likewise,
the fourth and fifth features approximate the expected output, which helps determine the inter-
mediate state that the OU maintains during execution. The sixth feature indicates whether the
OUs is repeatedly executed in a loop, which helps capture short OUs’ caching effect. Lastly, the
seventh feature is an execution mode flag that is specific to NoisePage; this indicates whether
the DBMS executes a query with its interpreter or as JIT-compiled [116, 146]. NoisePage’s
networking OU also belongs to this type since network communication is discrete amount of

64

work.

Batch OUs: The second type of OUs have input features that represent a batch of work across
multiple OU invocations. It is challenging to derive features for these OUs since a single invoca-
tion may span multiple queries based on when those queries arrive and the invocation interval.
For example, the OU for log flushes will write the log records generated from queries since the
last invocation, the timing of which is unknown. To address this, we define the log flush OU’s
input features to represent the total amount of records generated by the set of queries predicted
to arrive in a workload forecasting interval: (1) the total number of bytes, (2) the total number
of log buffers, and (3) the log flush interval. These features are independent of what plans the
DBMS chooses for each query.

Contending OUs: The last type of OUs are for operations that may incur contention in par-
allel invocations. For example, the DBMS can use multiple threads to build an index, but the
threads have to acquire latches in the data structure. We include the contention information
into these OUs input features. For the index build OU, its input features include: (1) number
of tuples, (2) number of keys, (3) size of keys, (4) estimated cardinality of the keys, and (5)
the number of parallel threads, which indicates the contention'. Similarly, the OUs related to
starting and ending transactions also contain information about transactions’ arrival rates in
the workload forecast interval. The internal contention is orthogonal to the concurrent impact
that MB2’s interference model captures based on resource consumption that we will discuss in
Section 4.4.

A self-driving DBMS must also predict how changes to its configuration knobs impact its
OUs. We categorize these tunable knobs into behavior knobs and resource knobs. The former
affects the internal behavior of one or more OUs, such as the execution mode and log flush-
ing interval. As shown in these examples, MB2 appends behavior knobs to the impacted OUs’
features. Thus, the OU-models can predict the OU behavior when changing these knobs. MB2
can also append the hardware context to the OU features to generalize the OU-models across
hardware. We demonstrate such ability by extending the OU features with one hardware fea-
ture, i.e., the CPU frequency (Section 4.7.6). We leave a thorough investigation for the proper
hardware context features as future work.

4.3.3 Output Labels

Every OU-model produces the same output labels. They are a vector of commonly available
hardware metrics (Section 4.5.1) that approximate the OU’s behavior per invocation (i.e., for a
single set of input features): (1) elapsed time, (2) CPU time, (3) CPU cycles, (4) CPU instructions,
(5) CPU cache references, (6) CPU cache misses, (7) disk block reads, (8) disk block writes (for
logging), and (9) memory consumption. These metrics explain what work an OU does indepen-
dent of which OU it is. Using the same labels enables MB2 to combine them together to predict
the interference among concurrent OUs. They also help the self-driving DBMS estimate the

'For parallel OUs, including the index build, MB2 uses the max (instead of the sum) predicted elapsed time
among each single-threaded invocation as the elapsed time.

65

impact of knobs for resource allocation. For example, the OU-models can predict each query’s
memory consumption by predicting the memory consumption for all the OUs related to the
query. A self-driving DBMS evaluates what queries can execute under the knob that limits
the working memory for each query, and then sets that knob according to its memory budget.
Similarly, CPU usage predictions help a self-driving DBMS evaluate whether it has assigned
enough CPU resources for queries or its internal components.

Output Label Normalization: We now discuss how MB2 normalizes OU-models’ output
labels by tuple counts to improve their accuracy and efficiency. DBMSs can execute queries that
range from accessing a single tuple (i.e., OLTP workloads) to scanning billions of tuples (i.e.,
OLAP workloads). The former is fast to replicate with OU-runners, but the latter is expensive
and time-consuming. To overcome this issue, MB2 employs a normalization method inspired
by a previous approach for scaling query execution modeling [133]. We observe that many OUs
have a known complexity based on the number of tuples processed, which we denote as n. For
example, if we fix all the input features except for n, the time and resources required to build
a hash table for a join are O(n). Likewise, the time and resources required to build buffers for
sorting are O(n log n). We have found in our evaluations with NoisePage that with typically less
than a million tuples, the output labels converge to the OU’s asymptotic complexity multiplied
by a constant factor.

Given this, for OU-models that have the number of processed tuples/records as an input
feature, MB2 normalizes the outputs. It divides the outputs by the related OU’s complexity
based on the number of tuples, while the inputs remain intact. A special case is the memory
consumption label for building hash tables: NoisePage uses different hash table implementa-
tions for joins and aggregations. The hash table pre-allocates memory for joins based on the
number of tuples; for aggregations, the hash table grows with more inserted unique keys. Thus,
to normalize this label, MB2 divides it by the number of input tuples for the join hash table OU
and by the cardinality feature for the aggregation hash table OU.

With such normalization, MB2 only needs to collect training data for OU-models with the
number of tuples up to the convergence point. Although previous work on analytical DBMS
models also leverages similar database domain knowledge [148, 151], MB2’s normalization to
OU-models is simple to implement regardless of the OU’s implementation and is easy to adapt
when there are system updates (Section 4.6). We demonstrate in Section 4.7 that MB2 gener-
alizes to datasets with orders of magnitude higher number of tuples than what exists in the
training data using this approach.

4.4 Interference Model

The OU-models capture the internal contention on data structures or latches within an OU
(Section 4.3.2). But there can also be interference among OUs due to resource competition,
such as CPU, I/O, and memory.? MB2 builds a common interference model to capture such

2We observe that in corner cases, there can also be resource sharing among OUs, such as the cache locality
across consecutively running OUs. MB2 does not model such interference since it has little impact on our evalua-
tion.

66

interference since it may impact any OU.

As shown in Figure 4.4, MB2 first extracts all OUs from the forecasted workload and the
planned action before using OU-models to estimate their output labels. It then applies the in-
terference model to each OU separately to adjust the OU-model’s output labels based on the
workload forecast’s concurrency information and the OU-model predictions for other OUs.
Building such an interference model has two challenges: (1) there are an exponential num-
ber of concurrent OU combinations, and (2) self-driving DBMSs need to plan actions ahead of
time [160], but predicting queries’ exact future arrival times and concurrent interleavings is
arguably impossible.

To address these challenges, we formulate a model based on summary statistics [69] of the
unified behavior metrics estimated by the OU-models. Given that all the OU-models have the
same output labels, the interference model uses a fixed set of input features that summarize the
OU-model predictions regardless of the underlying OUs. Furthermore, the summary statistics
aggregate the behavior information of the OUs forecasted to run in an interval, which does
not require the exact arrival time of each query. Figure 4.4 illustrates the formulation of the
resource competition interference model.

4.4.1 Input Features

The interference model’s inputs are the OU-model’s output labels for the OU to predict and
summary statistics of the OUs forecasted to run in the same interval (e.g., one minute). MB2
adds the OU-models’ output labels for the OUs assigned to run on each thread separately and
uses the sum and variance for each thread’s total labels as the summary. Although MB2 can
include other summaries, such as percentiles of concurrent OUs’ OU-model predictions, we find
the above summary effective in our evaluation. MB2 also normalizes the interference model’s
inputs by dividing them by the target OU-model’s estimated elapsed time to help generalization.

4.4.2 Output Labels

The interference model generates the same set of outputs as the OU-models. Instead of esti-
mating the absolute values of the output metrics, the model predicts the element-wise ratios
between the actual metrics and the OU-model’s prediction. These ratios are always greater
than or equal to one since OUs run the fastest in isolation. We observe that under the same
concurrent environment, OUs with similar per-time-unit OU-model estimation (part of the in-
terference model’s inputs) experience similar impacts and have similar output ratios regardless
of the absolute elapsed time. Thus, the combination of normalizing the inputs by the elapsed
time and using the ratios as the outputs helps the model generalize to OUs with various elapsed
times.

4.5 Data Generation and Training

MB2 is an end-to-end solution that enables self-driving DBMSs to generate training data from
OUs and then build accurate models that predict their behavior. We now describe how MB2

67

facilitates this data collection and model training. We begin with discussing MB2’s internal
components that developers must integrate into their DBMS. We then present our OU- and
concurrent-runner infrastructure that exercises the system to produce training data.

We again emphasize that this training data collection process uses the DBMS in an offline
manner. That is, developers run the system in non-production environments. We defer the
problem of how to collect this training data for an on-line system without incurring observable
performance degradation as future work.

4.5.1 Data Collection Infrastructure

MB2 provides a lightweight data collection framework that system developers integrate into
their DBMS. We first describe how to set up the system to collect the behavior data of OUs (i.e.,
input features, output labels). We then describe the runtime mechanisms that MB2 uses for
tracking each OU’s resource consumption. Lastly, we discuss how the framework retrieves this
data for model training.

OU Translator: This component extracts OUs from query and action plans and then gener-
ates their corresponding input features. MB2 uses the same translator infrastructure for both
offline training data collection and runtime inference.

Resource Tracker: Next, MB2’s tracker records the elapsed time and resource consumption
metrics (i.e., output labels) during OUs execution. The framework also uses this method for the
interference model data since it uses the same output labels to adjust the OU-models’ outputs.
MB?2 enables this resource tracking right before the invocation of an OU, and then disables it
after the OU completes. The tracker uses a combination of user- and kernel-level primitives for
recording a OU’s actions during execution. For example, it uses C++11’s std: :chrono high-
resolution clock to record the elapsed time of the OU. To retrieve hardware counter information,
MB2’s uses the Linux perf library and the rusage syscall. Although these tracking methods do
not require the DBMS to run with root privileges to collect the data, they do add some amount
of runtime overhead to the system. Investigating more customized and lightweight methods
for resource tracking is future work [10, 13].

Metrics Collector: The challenges with collecting training data are that (1) multiple threads
produce metrics and thus require coordination, and (2) resource tracker can incur a noticeable
cost. It is important for MB2 to support low-overhead metrics collection to reduce the cost of
accumulating training data and interference with the behavior of OUs, especially in concurrent
environments.

MB2 uses a decentralized metrics collector to address the first issue. When the DBMS ex-
ecutes in training mode, a worker thread records the features and metrics for each OU that
it encounters in its thread-local memory. MB2 then uses a dedicated aggregator to periodi-
cally gather this data from the threads and store it in the DBMS’s training data repository. To
address the second challenge, MB2 supports resource tracking only for a subset of queries or

68

DBMS components. For example, when MB2 collects training data for the OUs in the execution
engine, the DBMS can turn off the tracker and metrics collector for other components.

4.5.2 OU-Runners

An OU-runner is a specialized microbenchmark in MB2 that exercises a single OU. The goal
of each OU-runner is to reproduce situations that an OU could encounter when the DBMS
executes a real application’s workload. The OU-runners sweep the input feature space (i.e.,
number of rows, columns, and column types) for each OU with fixed-length and exponential
step sizes, which is similar to the grid search optimization [31]. For example, with singular OUs
related to query execution, the OU-runner would evaluate different combinations of tuple sizes
and column types. Although it not possible to exercise every possible variation for some OU’s,
MB2’s output label normalization technique (Section 4.3.3) reduces the OU-runners’ need to
consider large data sets.

There are two ways to implement OU-runners: (1) low-level execution code that uses the
DBMS’s internal API and (2) high-level SQL statements. We chose the latter for NoisePage be-
cause it requires less upfront engineering effort to implement them, and has little to no main-
tenance costs if the DBMS’s internal API changes.

MB2 supports modeling OLTP and OLAP workloads. To the best of our knowledge, we
are the first to support both workload- and data-independent modeling for OLTP query exe-
cution. Prior work either focused on modeling OLAP workloads [133, 141, 230] or assumes a
fixed set of queries/stored procedures in the workload [148, 151]. Modeling the query execution
in OLTP workloads is challenging for in-memory DBMSs: since OLTP queries access a small
number of tuples in a short amount of time, spikes in hardware performance (e.g., CPU scaling),
background noise (e.g., OS kernel tasks), and the precision of the resource trackers (e.g., hard-
ware counters) can inflict large variance on query performance. Furthermore, DBMSs typically
execute repeated OLTP queries as prepared statements.

To address the first challenge on variability, MB2 executes the OU-runners for the OUs in the
execution engine with sufficient repetitions (10x) and applies robust statistics [104] to derive
a reliable measurement of the OU’s behavior. Robust statistics can handle a high proportion
of outliers in the dataset before giving an incorrect (e.g., arbitrarily large) result, where such
proportion is called the breakdown point. MB2 uses the 20% trimmed mean statistics [198],
which has a high breakdown point (i.e., 0.4), to derive the label from the repeated measurements.
To address the second challenge, MB2 executes each query for five warm-up iterations before
taking measurements for the query’s OUs, with all executions of a given query using the same
query template. MB2 starts a new transaction for each execution to avoid the data residing in
CPU caches. For queries that modify the DBMS state, MB2 reverts the query’s changes using
transaction rollbacks. We find the labels insensitive to the trimmed mean percentage and the
number of warm-up iterations.

4.5.3 Concurrent Runners

Since OU-runners invoke their SQL queries one at a time, MB2 also provides concurrent runners
that execute end-to-end benchmarks (e.g., TPC-C, TPC-H). These concurrent runners provide

69

MB2 with the necessary data to train its interference model (Section 4.4).

To generate training data with diverse concurrent execution profiles, each concurrent run-
ner executes their workload by varying three parameters: (1) the subsets of queries in the bench-
mark to execute, (2) the number of concurrent threads that the DBMS uses, and (3) the workload
submission rate. The concurrent runners execute their workload with each parameter combina-
tion for a brief period of time (e.g., 30s) in correspondence to the short-term prediction intervals
used by the DBMS’s workload forecasting framework [137]. As discussed in Section 4.4.2, MB2’s
interference model is agnostic to the OU elapsed time, so the concurrent runners do not need
to execute the workloads at different interval lengths.

4.5.4 Model Training

Lastly, we discuss how MB2 trains its behavior models using the runner-generated data. Since
OUs have different input features and behaviors, they may require using different ML algo-
rithms that are better at handling their unique properties and assumptions about their behav-
ior. For example, Huber regression (a variant of linear regression) is simple enough to model
the filter OUs with arithmetic operations. In contrast, sorting and hash join OUs require more
complex models, such as random forests, to support their behaviors under different key number,
key size, and cardinality combinations.

MB2 trains multiple models per OU and then automatically selects the one with the best
accuracy for each OU. MB2 currently supports seven ML algorithms for its models: (1) linear
regression [186], (2) Huber regression [104], (3) support vector machine [194], (4) kernel re-
gression [149], (5) random forest [135], (6) gradient boosting machine [82], and (7) deep neural
network [175]. For each OU, MB2 first trains an ML model using each algorithm under the
common 80/20% train/test data split and then uses cross-validation to determine the best ML
algorithm to use [115]. MB2 then trains a final OU-model with all the available training data
using the best ML algorithm determined previously. Thus, MB2 utilizes all the data that the
runners collect to build the models. MB2 uses this same procedure to train its interference
models.

4.6 Handling Software Updates

DBMSs with an active install base likely have software updates to fix bugs, improve perfor-
mance, and add new features. If its behavior models cannot keep up with these changes, the
DBMS will be unable to adjust itself correctly . To handle software updates, MB2 only needs
to run the OU-runners for the affected OUs. This restricted retraining is possible because the
OUs are independent of each other. The OU-runners issue SQL queries to the DBMS to exercise
the OUs, which means that developers do not need to update them unless there are changes to
the DBMS’s SQL syntax. Furthermore, MB2 does not need to retrain its interference models in
most cases because resource competition is not specific to any OU.

If a DBMS update contains changes that introduces new OU behaviors (e.g., adding a new
DBMS component), then MB2 re-runs the concurrent runners to generate the interference mod-
els. In NoisePage, we currently use a heuristic for MB2 to retrain the interference models when

70

Model Type ‘ Runner Time ‘ Data Size ‘ Training Time ‘ Model Size
OUs 514 min 38 MB 18 min 338 MB

Interference 82 min 236 MB 21 min 66 KB

Table 4.2: MB2 Overhead - Behavior Model Computation and Storage Cost.

a DBMS update affects at least five OUs.

4.7 Experimental Evaluation

We now discuss our evaluation of MB2 using the NoisePage DBMS. We deployed the DBMS on
a Ubuntu 18.04 LTS machine with two 10-core Intel Xeon E5-2630v4 CPUs, 128GB of DRAM,
and Intel Optane DC P4800X SSD.

We use the OLTP-Bench [64] testbed as an end-to-end workload generator for the Small-
Bank [25], TATP [153], TPC-C [208], and TPC-H [209] benchmarks. SmallBank is an OLTP
workload that consists of three tables and five transactions that models customers interacting
with a bank branch. TATP is an OLTP workload with four tables and seven transactions for
a cellphone registration service. TPC-C is a more complex OLTP benchmark with nine tables
and five transactions that models back-end warehouses fulfilling orders for a merchant. Lastly,
TPC-H is an OLAP benchmark with eight tables and queries that model a business analytics
workload. We use numactl to fix the DBMS and OLTP-Bench processes on separate CPU sock-
ets. We also set the Xeon CPUs’ power governor setting to “performance” mode to reduce the
variance in our measurements.

We use two evaluation metrics. For OLAP workloads, we use the average relative error
({Actual—Predict]) yyged in similar prediction tasks in previous work [133, 141]. Since OLTP queries
have short run-times with high variance, their relative errors are too noisy to have a meaning-
ful interpretation. Thus, we use the average absolute error (|Actual — Predict|) per OLTP query
template.

We implemented MB2’s models with scikit-learn [14]. We use the default hyperparame-
ters except for random forest with 50 estimators, neural network with 2 layers with 25 neurons,
and gradient boosting machine with 20 depth and 1000 leaves. We also implemented MB2’s OU-
runners using Google’s Benchmark library [11] with 1ibpgxx [12] to connect to NoisePage.

4.7.1 Data Collection and Training

We first discuss MB2’s data collection and model training. The results in Table 4.2 show a
breakdown between the time that MB2 spends generating data versus the time that it spends
training its models. We generated ~1M unique data points for NoisePage’s 19 OUs. Exercising
the OU-runners is the most costly step because (1) OU-runners enumerate a wide range of
feature combinations, and (2) certain data points are expensive to collect (e.g., building a hash
table with 1m tuples). The model training step does not take too much time because we designed
each OU-model to have a small number of features. Table 4.2 also shows that the concurrent
runners produce a larger data set than the OU-runners because they execute multiple OUs at

71

BE Random Forest BB Huber Regression
0.8 [EZH Neural Network BEEE Gradient Boosting Machine

LOGFLUSH ~ OUTPUT SEQSCAN IDXSCAN SORT.BUILD HASHIOINBULD AGGBUILD SORTITER HASHJOIN PROBEAGG PROBE INSERT UPDATE DELETE INDEXBUILD LOG SERIALIZE TXN.BEGIN TXN.COMMIT ARITHMETICS
Operating Unit

Figure 4.5: OU-model Accuracy (OU) - Test relative error for each OU averaging across all
OU-model output labels. OU-models are trained with four ML algorithms: (1) random forest,
(2) neural network, (3) Huber regression, and (4) gradient boosting machine.

)

EEE Random Forest without Normalization EEA Random Forest

E==3 Neural Network without Normalization E=3 Neural Network

BBl Huber Regression without Normalization B Huber Regression

I Gradient Boosting Machine without Normalization B Gradient Boosting Machine

I~
o ™

Relative Error
o o

o
LI

o
=)

I

=

[=

= -

= = 1

= I 1

1 | | | |

| 1 | |

— 1 i A I I

cl [CACHE MISS CPU TIME BLOCK READ BLOCK WRITE MEMORY B ELAPSED US
Target Metric

PU CYCLE INSTRUCTION ACHE REF

Figure 4.6: OU-model Accuracy (Output Labels) — Test relative error for each output label
averaging across all OUs. OU-models are trained with four ML algorithms with and without
output label normalization: (1) random forest, (2) neural network, (3) Huber regression, and (4)
gradient boosting machine.

the same time. The model is much smaller since, unlike OU-models with one model for each
OU, MB2 generated a single interference model that is not specific to any OU.

In our experiments, OU translator and OU-model inference for a single query (may contain
multiple OUs) on average take 10us and 0.5ms. Each resource tracker invocation on average
takes 20us.

4.7.2 OU-Model Accuracy

We next evaluate the accuracy of MB2’s OU-models, which are the foundation of the self-driving
DBMS behavior models. Recall from Section 4.5.4 that we split the data of each OU-runner into
80/20% train/test and build models with seven ML algorithms. From the test result, MB2 selects
the best algorithm for each OU and trains the final OU-model using all available OU-runner
data. Due to space limitations, we only demonstrate the results for a few more-representative
and better-performing ML algorithms.

Figure 4.5 shows the OU-model test relative error averaged across all output labels. More
than 80% of the OU-models have an average prediction error less than 20%, which demonstrates
the effectiveness of the OU-models. The transaction OU models have higher relative error be-
cause most cases have short elapsed times (< 10us) unless the system is under heavy contention.
Similarly, probing an aggregation hash table takes less than 10us in most cases enumerated by
the OU-runner. Thus, for these short-running tasks, small perturbations in the predictions can
lead to high relative error.

For most OUs, random forest and gradient boosting machine are the best-performing ML
algorithms with sufficient generalizability. Neural networks have higher errors in comparison

72

1S
o

5.35 B QPPNet EEE QPPNet 10.10

I MB2 w/o Normalization E=E MB2 w/o Normalization
B MB2 s MB2

:h
(&)
!
©
L

»
1

—
)]
!
w
I

Average Relative Error
w
o
Average Absolute Error
per Query Template (us)

TPC-H0.1G TPC-H1G TPC-H 10
(a) OLAP Query Runtime Prediction (b) OLTP Query Runtime Prediction

TPC-C TATP SmallBank

Figure 4.7: OU-Model Generalization - Query runtime estimations on different datasets and
workloads.

because they are prone to overfitting given the OU-models’ low dimensionality. For simple OUs
(e.g., arithmetics), less complex models like Huber regression achieve competitive accuracy and
are cheaper to train.

In Figure 4.6, we show the predictive accuracy of the OU-models for each output label, av-
eraging across all OUs. Most labels have an average error of less than 20%, where the highest
error is on the cache miss label. Accurately estimating the cache misses for OUs is challenging
because the metrics depend on the real-time contents of the CPU cache. Despite the higher
cache miss error, MB2’s interference model still captures the interference among concurrent
OUs (see Section 4.7.4) because the interference model extracts information from all the output
labels. The results in Figure 4.6 also show the OU-model errors without output label normaliza-
tion optimization from Section 4.3.3. From this, we see that normalization has minimal impact
on OU-model accuracy while enabling generalizability.

4.7.3 OU-Model Generalization

We now evaluate the OU-models’ ability to predict query runtime and generalize across work-
loads. Accurate query runtime prediction is crucial since many self-driving DBMSs’ optimiza-
tion objectives are focused on reducing query latency [161]. As discussed in Section 4.2, MB2
extracts all OUs from a query plan and sums the predicted labels for all OUs as the final predic-
tion.

For a state-of-the-art baseline, we compare against the QPPNet ML model for query per-
formance prediction [106, 141]. QPPNet uses a tree-structured neural network to capture a
query plan’s structural information. It outperforms other recent models on predicting query
runtime [23, 133, 231], especially when generalizing the trained model to different workloads
(e.g., changing dataset sizes). Since NoisePage is an in-memory DBMS with a fused-operator
JIT query engine [152], we remove any disk-oriented features from QPPNet’s inputs and adapt
its operator-level tree structure to support pipelines. But such adaptation requires QPPNet’s

73

training data to contain all the operator combinations in the test data pipelines to do inference
with the proper tree structure. Thus, we can only train QPPNet on more complex workloads
(e.g., TPC-C) and test on the same or simpler workloads (e.g., SmallBank).

We evaluate MB2 and QPPNet on the (1) TPC-H OLAP workload and (2) TPC-C, TATP, and
SmallBank OLTP workloads. To evaluate generalizability, we first train a QPPNet model with
query metrics from a 1 GB TPC-H dataset and evaluate it on two other dataset sizes (i.e., 0.1 GB,
10 GB). We then train another QPPNet model with data collected from the TPC-C workload (one
warehouse) and evaluate it on the OLTP workloads. For MB2, we use the same OU-models only
trained once (Section 4.7.2) for all the workloads.

The results in Figure 4.7a show that QPPNet achieves competitive prediction accuracy on
the 1 GB TPC-H workload since it is the same as its training dataset. But QPPNet has larger
errors for TPC-H on other scale factors. The authors of QPPNet also observed similar gener-
alization challenges for their models despite it outperforming the baselines [141]. In contrast,
MB2 achieves up to 25x better accuracy than QPPNet and has more stable predictions across
all the workload sizes. We attribute this difference to how (1) MB2 decomposes the DBMS into
fine-grained OUs and the corresponding OU-runner enumerates various input features that
cover a range of workloads, and (2) MB2’s output label normalization technique further bol-
sters OU-models’ generalizability. Even though the 10 GB TPC-H workload has tables up to
60m tuples, which is 60 larger than the largest table considered by MB2’s OU-runners, MB2
is still able to generalize with minimal loss of accuracy. MB2 without the output normalization
has much worse accuracy on large datasets.

Similarly, Figure 4.7b shows that while MB2 has 4x higher prediction error compared to
QPPNet on TPC-C workload where QPPNet is trained, MB2 achieves 1.8 x and 10X better ac-
curacy when generalizing to TATP and SmallBank workloads. Such generalizability is essential
for the real-world deployment of MB2 for self-driving DBMSs. Since these OLTP queries access
a small number of tuples, output normalization has little impact on the model accuracy.

4.7.4 Interference Model Accuracy

We next measure the ability of MB2’s interference model to capture the impact of resource com-
petition on concurrent OUs. We run the concurrent runner with the 1 GB TPC-H benchmark
since it contains a diverse set of OUs. The concurrent runner enumerates three parameters: (1)
subsets of TPC-H queries, (2) number of concurrent threads, and (3) query arrival rate. Since
the interference model is not specific to any OU or DBMS configuration, the concurrent run-
ner does not need to exercise all OU-model inputs or knobs. For example, with the knob that
controls the number of threads, we only generate training data for odd-numbered settings (i.e.,
1, 3, 5, ...19) and then test on even-numbered settings. The concurrent runner executes each
query setup for 20s. To reduce the evaluation time, we assume the average query arrival rate
per query template per 10s is given to the model. In practice, this interval can be larger [137].
Neural network performs the best for this model given its capacity to consume the summary
statistics of OU-model output labels.

To evaluate the model’s generalizability, the concurrent runner executes queries only in the
DBMS’s interpretive mode (execution knob discussed in Section 4.3.2), but we test the model
under JIT compilation mode. We also evaluate the model with thread numbers and workload

74

—_
o
1

1 Actual
[Interference Model Estimated

0.86

3 Actual
[|nterference Model Estimated

o
o
1

o
©
1
I
o
1

71

0.46

Average Query Runtime Increment
o
»
1
Average Query Runtime Increment
o
AN
1

0.38 0.25 0.26
0.3 2
016 0.21 0
0.0- 0.0
2 8 16 TPC-HO0.1G TPC-H 10G
Number of Concurrent Threads Dataset Sizes
(a) Varying Concurrent Threads (b) Varying Dataset Sizes

Figure 4.8: Interference Model Accuracy — Model trained with 1 GB TPC-H dataset and odd
thread numbers generalizes to other scenarios.

sizes that are different from those used by MB2’s concurrent runners. To isolate the interference
model’s estimation, we execute the queries in both single-thread and concurrent environments
and compare the true adjustment factors (the concurrent interference impact) against the pre-
dicted adjustment factors.

Figure 4.8 shows the actual and interference model-estimated average query run times un-
der concurrent environments. The interference model has less than 20% error in all cases. It
generalizes to these environments because (1) it leverages summary statistics of the OU-model
output labels that are agnostic to specific OUs and (2) the elapsed time-based input normal-
ization and ratio-based output labels help the model generalize across various scenarios. We
also observe that generalizing the interference model to small data sizes result in the highest
error (shown under TPC-H 0.1 GB in Figure 4.8b) since the queries are shorter with poten-
tially higher variance in the interference, especially since the model only has the average query
arrival information in an interval as an input feature.

4.7.5 Model Adaptation and Robustness

We now evaluate MB2’s behavior models’ adaptivity under DBMS software updates and robust-
ness against DBMS estimation errors. For the former, we use a case study where we simulate a
series of incremental improvements to the join hash table algorithm. To control the amount of
change, we inject sleeps (1us) during the hash table creation with different frequencies: no sleep
(fastest), sleep once with every 1000 inserted tuples, and sleep once with every 100 inserted tu-
ples (slowest). This change does not affect the behavior of other OUs, such as sequential scans
or sorts. Thus, without modifying any other OU-models, we only rerun MB2’s OU-runner for
hash join and retrain the corresponding OU-model, which takes less than 23 minutes. This
is 24 faster than rerunning MB2’s entire training process. Figure 4.9a shows the prediction
errors for the TPC-H 1 GB workload with the old and updated models. The new models only

75

3.0 2.68 0.40
EZZ1 1/100 Sleep Model /] B Accurate Cardinality
g 2.4 E=3 1/1000 Sleep Model 50.32- Z1 Noisy Cardinality
| BN No Sleep Model / 5
g 1.73 0 025 920
2 1.8 — = 0.24-
5 / T 0.20 0.20 0.21
i i
o 1.2 P
2 o
5 ©
$os6 % E
0.09 0.15 0-250.20
0.0 mN{A N/A =||N/A : 0.00
' 1/100 Sleep 1/1000 Sleep No Sleep ’ TPC-H0.1G TPC-H1G TPC-H 10G
Join Hash Table Build Sleep Frequency Dataset Sizes
(a) DBMS Updates (TPC-H 1 G) (b) Noisy Cardinality Estimation

Figure 4.9: Model Adaptation and Robustness — Changes in MB2’s model accuracy under
DBMS updates and noisy cardinality estimation.

updated with the join-hash-table-build OU have significantly better accuracy compared to the
old models prior to the system update. This demonstrates MB2’s ability to quickly adapt its
models in response to updates. QPPNet, on the other hand, needs full data remaking and model
retraining.

Since the OU-models in NoisePage’s execution engine use cardinality estimates as input
features, we also evaluate the models’ sensitivity to noisy estimations. We introduce a Gaussian
white noise [69] with 0 mean and 30% variance of the actual value to the tuple number and
cardinality features for OUs impacted by cardinality estimation (e.g., joins). Figure 4.9b shows
the model’s predictive accuracy under accurate and noisy cardinalities with different TPC-H
dataset sizes. The models have minimal accuracy loss (< 2%) due to the noise because (1) they
are insensitive to moderate noise in the features, and (2) there are many TPC-H queries with
high selectivity that reduces the impact of wrong cardinality estimation when executing joins
or sorts. Improving the model accuracy by leveraging learned cardinality estimation is left as
future work [97, 235].

4.7.6 Hardware Context

Since MB2 generates models offline, their predictions may be inaccurate when the hardware
used for training data generation and production differs. Thus, we evaluate MB2’s ability to ex-
tend the OU-model features to include the hardware context and generalize the models across
hardware. We also use a case study where we change the CPU frequency through its power
governor. We append the frequency to the end of all the OU-models’ input features. We com-
pare the OU-models trained with either only the CPU’s base frequency (2.2 GHz) or a range of
frequencies (1.2-3.1 GHz), and test the model generalization on a different set of frequencies.
Figure 4.10 shows that extending the OU-model with hardware context improves the predic-
tion in most cases since the context captures the hardware performance differences. A special

76

B Train with 2.2 GHz A Train with 1.2, 1.8, 2.2, 2.6, and 3.1 GHz

o
o

0.46 10

©
N
I

8- 779 785 7.49

o
w
1

Average Relative Error
Normalized Average Absolute
Error per Query Template

0.2+
0.1+
0.0- 0
16GHz 20GHz 24GHz 2.8GHz 1.6 GHz 20GHz 24GHz 2.8GHz
CPU Frequency CPU Frequency
(a) TPC-H 1 G Query Runtime Prediction (b) TPC-C Query Runtime Prediction

Figure 4.10: Hardware Context — Extend MB2’s OU-models’ input features to include the
CPU frequency to generalize to different CPU frequencies.

case where including the hardware context performs notably worse is for the TPC-C work-
load under 2.0 GHz CPU frequency (Figure 4.10b). This is because the models generally over-
predict the TPC-C query runtime for a given frequency, and slightly slowing the CPU frequency
(2.2 GHz to 2.0 GHz) falsely improves the prediction of the model trained under 2.2 GHz. The
results show promise to extend MB2’s models with hardware context to generalize across hard-
ware.

4.7.7 End-to-End Self-Driving Execution

Lastly, we demonstrate MB2’s behavior models’ application for a self-driving DBMS’s planning
components and show how it enables interpretation of its decision-making process. We assume
that the DBMS has (1) workload forecasting information of average query arrival rate per query
template in each 10s forecasting interval, similar to Section 4.7.4, and (2) an “oracle” planner
that makes decisions using predictions from behavior models. We assume a perfect workload
forecast to isolate MB2’s prediction error.

We simulate a daily transactional-analytical workload cycle by alternating the execution of
TPC-C and TPC-H workloads on NoisePage. We use the TPC-C workload with 20 warehouses
and adjust the number of customers per district to 50,000 to make the choice of indexes more
important. For TPC-H, we use a dataset size of 1 GB. We execute both workloads with 10
concurrent threads under the maximum supported query arrival rate.

After the DBMS loads the dataset, we execute the workload in NoisePage using its interpre-
tive mode, which is a sub-optimal knob configuration for long-running TPC-H queries. We also
remove a secondary index on the CUSTOMER table for the (C_W_ID, C_D_ID, C_LAST) columns,

77

CPU Utilization
(Relative to the DBMS)
o
N

Figure 4.

0} TPC-H Start Build Index
£ TPC-C Start with 8 Threads
51.51 Index Built
o Change Execution and
> Mode Knob TPC-C Start
g
G 1.0
2
<
kst
N 0.57 Index Built 3
TEu Actual Query Runtime (?Esi)r(na;gd)—__)
5 —— Estimated Query Runtime
<00 , i , , , ,
0 20 40 60 80 100 120
Time (s)
(a) Knob Changing and Index Creation (Eight Create Index Threads)
0.8

o
»
1

—e— Actual Query on CUSTOMER:.c last
—+— Estimated Query on CUSTOMER.c last
—<— Actual Index Build

—a— Estimated Index Build

o
N
h

0.0 — — — =
0 20 40 60 80 100 120
Time (s)
(b) CPU Utilization Prediction (Eight Create Index Threads)
o TPC-H Start Change Execution
_g TPC-C Start Mode Knob
5 1.51 Index Built
o Build Index and
g with 4 Threads TPC-C Start
& 1.0
o
E /
B
N 0.5 X Index Built
g Actual Query Runtime (Estimated)
5 —— Estimated Query Runtime
<00 ! i , , , |
0 20 40 60 80 100 120

Time (s)

(c) Knob Changing and Index Creation (Four Create Index Threads)

11: End-to-End Self-Driving Execution — An example scenario where NoisePage
uses MB2’s OU-models to predict the effects of two actions in a changing workload. The first
action is to change the DBMS’s execution mode. The DBMS then builds an index with either
eight or four threads.

which inhibits the performance of TPC-C. We then let the DBMS choose actions based on the
forecasted workload and the behavior model estimations from MB2.

78

Figure 4.11a shows the actual and estimated average query runtime per 3s interval across
the entire evaluation session. We normalized the query runtime against the average runtime
under the default configuration to keep metrics within the same scale. The workload starts as
TPC-C and switches to TPC-H after 30s. During the first 55s, the DBMS does not plan any
actions. Then it plans to change the execution mode from interpretive to compiled with MB2
estimating a 38% average query runtime reduction. The average query runtime drops by 30%
after updating this knob, which reflects the models’ estimation. After 72s, the DBMS builds the
above secondary index on CUSTOMER with eight threads before the next time that the TPC-C
workload starts. Both the estimated and the actual query runtime increase by more than 25%
because of resource competition; and the contention lasts for 27s during the index build with
the estimated build time being 26s. After 99s the workload switches back to TPC-C with 73%
(60% estimated) faster average query runtime because of the secondary index built by the self-
driving DBMS °. This example demonstrates that MB2’s behavior models accurately estimate
the cost, impact, and benefit of actions for self-driving DBMSs ahead of time given the workload
forecasting, which is a foundational step towards building a self-driving DBMS [160].

We next show how MB2’s behavior models help explain the self-driving DBMS’s decision.
Figure 4.11b shows the actual and estimated CPU utilization for the queries associated with
the secondary index on the CUSTOMER and the index build action. Both the actual and estimated
CPU utilization for the queries on CUSTOMER drop significantly as the TPC-C workload starts for
the second time, which is the main reason for the average query runtime reduction. Similarly,
the high CPU utilization of index creation, which MB2 successfully predicts, is also the main
reason for the query runtime increment between 72s to 99s. MB2’s decomposed modeling of
each OU is the crucial feature that enables such explainability.

Lastly, we demonstrate MB2’s estimations under an alternative action plan of the self-
driving DBMS in Figure 4.11c. The DBMS plans the same actions under the same setup as
in Figure 4.11a except to build the index earlier (at 58s) with four threads to reduce the im-
pact on the running workload. MB2 accurately estimates the smaller query runtime increment
along with the workload being impacted for longer. Such a trade-off between action time and
workload impact is essential information for a self-driving DBMS to plan for target objectives
(e.g., SLAs). We also observe that MB2 underestimates the index build time under this scenario
by 27% due to a combination of OU- and interference-model errors.

3The DBMS does not change the execution mode for TPC-C to isolate the action effect.

79

Chapter 5

Action Planning

We presented techniques to predict the future workload and estimate the behavior of self-
driving actions. A self-driving DBMS still needs to decide when to apply what actions given
those predictions. Recall that the ability to automatically choose and apply actions without
any human intervention distincts self-driving DBMSs from DBMSs with lower autonomy lev-
els (Section 2.2). Proper action planning is essential because actions may (1) take a long time to
finish, (2) consume a significant amount of resources, and (3) contend with client queries and
slow them down. It is also important to plan a sequence of actions ahead of time because of
the potential interactions between actions. For instance, creating one index can make creating
another index with overlapping columns unnecessary. Furthermore, as discussed in Chapter 3,
database workloads often have cyclical patterns. For example, many workloads have a diurnal
pattern that follows human living-cycle [137, 205]. Thus, it is often beneficial to apply expensive
actions when the workload volume is low to avoid resource contention.

It is challenging to plan effective actions for self-driving DBMSs efficiently. The sequence
of actions may span short and long horizons. Finding the best sequence among various po-
tential actions (e.g., changing knobs or creating indexes) over these horizons is an expensive
constrained optimization problem with an exponential search space. The action planning also
relies on the behavior models (Chapter 4) to estimate the actions’ impact. The model inferences
may incur high overhead, which poses more challenges on the planning efficacy.

Most of the previous work on automated database tuning has focused on static workloads
(e.g., knob tuning [132, 215, 244], physical design [22, 58, 118], or both [220]). These methods
select the best set of knobs or physical design given a static representative workload, typically
provided by DBAs. The DBAs then manually decide which action to apply at what time. Some
methods focus on database tuning under workload shifts [37, 163, 185]. But most of these
works are reactionary: they address the problems after the workload has shifted but do not plan
actions proactively based on future workload patterns. To the best of our knowledge, the most
recent work that generates a sequence of database tuning actions given the workload patterns is
GREEDY-SEQ [20]. This is a heuristic algorithm that recursively merges small action sequences.
Though it generates action sequences efficiently, it may miss many optimization opportunities.
Moreover, GREEDY-SEQ only supports tuning physical design but not knobs.

We propose an action planning framework for self-driving DBMSs, called PilotBot0 (PB0),
leveraging control theory and recent advances in artificial intelligence (AI). PBO uses the reced-

80

ing horizon control scheme [145] to plan action sequence across both short and long horizons.
It also adapts the Monte Carlo tree search (MCTS) method [51] that has recent successes in Al
systems [192, 193], to efficiently approximate the optimization problem. MCTS enables PBO to
effectively select a promising action sequence given any specified time budget. Furthermore,
PBO uses a two-level caching design to accelerate the model inference at both action state and
model inference level, which reduces the planning cost.

We first introduce the background information in Section 5.1. We then give an overview of
PBO0 in Section 5.2. We discuss PB0’s MCTS technique and our optimizations in Section 5.3. We
explain PBO’s caching techniques and implementation choices in Section 5.4 and Section 5.5.
And we present our evaluation results in Section 5.6.

5.1 Background

We first discuss the related background information to help understand PB0’s mechanism.

5.1.1 Static Workload Tuning

There are many works that help select the best set of changes (e.g., knobs or physical design)
for a database given a static workload. For example, many works aim to find optimized index
configurations for a workload [46, 58, 59, 183, 214]. Others try to find the best set of knob con-
figurations [132, 215, 244]. These are degenerate cases of self-driving DBMSs’ action planning,
i.e., the workload only has one uniform pattern. PBO builds on top of these methods. Instead
of searching over the exponential number of all possible changes (actions) for the database,
PBO0 uses previous methods to generate a small set of candidate actions for the entire set of the
forecasted workload. It then searches for the best action sequence from the candidate actions
considering the workload patterns.

5.1.2 Receding Horizon Control

Receding horizon control (RHC) is a general-purpose control scheme to solve a constrained op-
timization problem over a moving time horizon [145]. It uses predictions of future costs/benefits
to choose appropriate actions. It has successful applications in various practical scenarios, such
as industrial and chemical process control [166], supply chain management [49], and stochastic
control in economics [96]. The main advantage of RHC is that it optimizes the current time
interval while keeping future times intervals into account. It achieves this by repeatedly opti-
mizing over a finite time horizon but only implementing the action for the current time interval.

5.1.3 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) is a randomized search algorithm used for decision processes
that are difficult or impossible to solve using other approaches [51]. MCTS has been success-
fully applied to many strategy design problems in computer science, such as Go game [192],
chess [193], and poker [178]. MCTS focuses on the analysis of the most promising actions and

81

expands the search tree based on random samplings of the search space. It returns the best se-
quences of actions explored until the time budget is exhausted. And the quality of the selected
actions often increases with time as the algorithm explores more promising actions [43].

MCTS, however, is not a silver bullet. We discuss the additional challenges in applying
MCST for self-driving databases that we identify and address in Section 5.3.

5.2 Overview

The DBA must specify the objective (i.e., SLA) before PBO plans actions, similar to how pas-
sengers in a self-driving vehicle need to specify their destinations. For example, the objective
can be minimizing the query latency within a storage/memory constraint. PB0 uses the fore-
casted workload and behavior models to evaluate the effect of self-driving actions relative to
the objective and choose the best actions.

There are certain responsibilities that PBO must fulfill to enable a completely autonomous
system:

* Plan actions for both the current and future (forecasted) workloads to address problems

before they occur.

* Ensure the satisfaction of all system constraints (e.g., maximum memory consumption).

* Decide when to apply the actions, how to apply them, and apply them automatically
without human intervention.

* Provide explanations for the past and future planned actions, which are important for
examination, debugging, and auditing.
We now give an overview of how PB0 achieves these goals.

As illustrated in Figure 5.1, PB0O executes the planning on a pilot server that is seperate
from the DBMS server. PBO also uses a model server that maintains the workload forecast and
behavior estimation models. Conceptually, the pilot server and the model server can run on any
machine. We expect users to deploy the pilot server and model server on a separate machine
from the DBMS to avoid resource contention. Furthermore, the model server may run a on
machine with hardware accelerators (e.g., GPUs) to further boost the planning speed.

PBO continuously repeats a planning process with following steps:

@ At the beginning of each time interval, PB0 requests the DBMS to send the query trace

(Chapter 3) to the model server to predict the future workload.

+ @ After the pilot server receives the forecasted workload from the model server, it first
uses existing methods (Section 5.1.1) to generate candidate actions for the entire set of
the forecasted workload without considering the workload patterns. For example, it uses
an algorithm inspired by AutoAdmin from Microsoft [46, 58] to generate the set of candi-
date indexes that may improve the DBMS’s performance on the workload. It uses simple
heuristics to generate candidate actions that change the DBMS knobs (e.g., the log seri-
alization interval) with values of different ranges (e.g., increment by 10 or 100).

+ @ PBO then plans an action sequence out of the candidates based on the predicted work-
load patterns. It uses RHC to optimize the objective over a fixed planning horizon with

82

Apply Action and Repeat

' Pilot @f
DBMS Server
Server o r Py X
° 000
Forecasted Workload - /\f\f\/ oo.L’
UV, > os
Time
Query Workload Forecast Candidate Actions
Trace| | Model
v | Server
- Action @
Feature @
Behavior [
: Estimation
Forecast ~ Behavior Action Search using Action to Apply
Models Models RHC and MCTS

Figure 5.1: Pilot Architecture - PBO runs the pilot server for planning on a separate machine
from the DBMS server. It receives the forecasted workload from a model server to generate can-
didate self-driving actions. It then uses RHC and MCTS to search for the best action sequence
based on the behavior estimations. It applies the first action and repeats the above process.

Past Future (Predicted)

Planning Horizon
A

Workload Volume

- - - . - H H >
' 41 2 i+3 i+4 i+5 i+6 Time Interval

Apply Action G G G G G Planned

for Current 4_@ Actions
Time Interval

Figure 5.2: Receding Horizon Control - PB0 repeatedly plans actions for a fixed number of
time intervals in the future and applies the first action for the current interval.

multiple time intervals. PB0 uses MCTS with the behavior model estimations to solve
RHC’s optimization problem (details in Section 5.3).
+ @ Lastly, PBO requests the DBMS to apply the first action planned for the current time
interval and discards the remaining actions. At the beginning of the next time interval,
PBO repeats this optimization process and generates another series of actions optimized
for the subsequent forecasted workload.
Figure 5.2 illustrates an example of the RHC process in PB0. The planning horizon has five
time intervals. PBO plans a sequence of five actions with one action for each interval based

83

on the forecasted workload. ' It then applies the first action for the current time interval and
repeats the planning process as the time advances to the next interval.

The behavior models (Chapter 4) serve as the predictive models that the RHC process uses
to estimate the action’s costs and benefits relative to the self-driving objective. For example,
PB0 may need to evaluate the effectiveness of an index creation action based on the objective of
reducing the average query latency. In this case, the behavior models estimate how much the
forecasted queries’ latency increases during the index creation because of the resource com-
petition and how much the forecasted queries’ latency decreases after the index creation. PB0
then computes the average query latency by adding these estimations as RHC’s cost function.
The behavior models also estimate whether the index creation violates any constraints, such as
consuming more memory than the system provides. Because PBO requires these estimations,
the pilot server needs to frequently request the model server to perform inferences on the be-
havior models, which can seriously reduce the planning efficiency. PB0 uses a two-level caching
design to accelerate this inference process (Section 5.4).

PBO also records the forecasted workload and the planned/applied actions in internal tables
to serve as an explanation of its decisions. The record for each action contains the action iden-
tifier (a monotonically increasing integer), the action command, and the cost/benefit estimation
for that action from the behavior models, such as the action’s application time, resource con-
sumption, and impact on the self-driving objective. Users or developers can query these tables
through the DBMS’s SQL interface for debugging, examining, or auditing purposes.

Limitation: We now discuss the assumptions and limitations in PB0. Foremost is that PB0’s
current implementation only supports reducing the average query latency as the self-driving
objective under a memory constraint specified by the user. Nevertheless, we design PB0’s ar-
chitecture and search mechanism to be independent of the self-driving objective. We anticipate
that extending PBO to support other objectives, such as reducing the 95th percentile latency,
only involves changing the formula to calculate the initial value number of the MCTS tree
node (Section 5.3.1).

We implement PB0 in an in-memory DBMS, NoisePage. Thus, PB0 does not need to sup-
port disk-based storage constraints. We anticipate that supporting storage constraints during
PB0’s planning process is similar to supporting the memory constraint (Section 5.3.4). However,
the behavior models need to extend to support estimating the storage overhead for any self-
driving actions [139]. NoisePage, as a research prototype, does not support complex database
design features (e.g., views, table partitioning) or resource scaling yet. Thus, PB0 focuses on
creating/dropping indexes and changing knob values as self-driving actions.

Lastly, PBO selects the best action sequence from a set of given candidate actions based
on the workload patterns but does not generate the candidate actions. As discussed earlier,
there are many existing works that PBO may leverage to further increase the candidate actions’
quality. For example, PBO uses simple heuristics to generate candidate change-knob actions
since NoisePage only exposes a small number of configuration knobs. As NoisePage extends
its functionalities and uses more knobs, PB0 may use existing methods [215] to pre-select more

!For simplicity we assume each action takes at most one interval to finish. We discuss how PB0 handles actions
that take multiple intervals in Section 5.3.3.

84

important knobs to reduce the number of candidate actions and facilitate the planning process.

5.3 Monte Carlo Tree Search and Optimization

The core challenge in PB0’s RHC process is to select a sequence of actions that optimize the self-
driving objective given a fixed horizon of forecasted workload. The optimization also needs to
satisfy any system constraint, such as the maximum memory consumption. We now formally
define the optimization problem that PB0 considers.

We denote the total number of time intervals in the planning horizon as n. Recall that
the workload forecast predicts the workload w; for each time interval t € {1,2,...,n}. And
w; contains the number of arrivals and parameter samples for each query template in that
time interval. The set of candidate actions is A. The self-driving objective (e.g., the average
query latency) for workload w; under the changes for a set of actions A’ C A is g(w;, A"). The
maximum amount of allowed memory consumption is M and the system memory consumption
at time interval ¢ after applying a set of actions A” C A is m(t, A”).

Users specify M, and PBO derives g(w;, A’) based on the user-specified objective using the
behavior model estimations. For example, if the objective is to reduce the average query latency,
then PBO uses behavior models to predict the average query latency in w; after applying A". The
optimization goal is to find a series of d actions a4, as, ..., a4, where a; € A and d < n, and their
corresponding application times ¢,, , t,,, ..., t4,, to minimize the total objective over all horizons:

arg minal,“.,ad,tl,...,td Z g(wi7 {aj’taj <i5,1<7< d})
ie{1,...,n}

subject to
Vie{l,..,n},m(i,{a;|t,, <i,1 <j<d}) <M

Some actions (e.g., creating an index) may take a long time to finish and cannot improve the
workload immediately. We do not include this in the formal problem definition for simplicity.
We discuss this in Section 5.3.3.

PB0’s constrained optimization problem is expensive to solve as it has an exponential search
space of (n + 1)I4l. Given this complexity, previous work has resolved to heuristics that can
generate an action sequence in a reasonable time but may miss many optimization opportuni-
ties [20]. PBO uses a principled framework (MCTS) to effectively search for promising action
sequences given a time budget.

MCTS finds action sequences using a search tree. Each tree level represents a potential
action at a specific time interval. Thus, a path from the root to any node of the search tree
represents a sequence of d actions at corresponding time intervals, where d equals the node’s
depth. MCTS maintains a value number for each tree node. A node’s value number can change
during the seach based on how its decendents expand. Therefore, MCTS cannot pre-compute
a value number for an action and reuse it across the entire search. MCTS keeps repeating the
following search process:

(1) Start from the root to recursively select child with the value number as the sampling
weight until reaching a leaf.

85

Al

» .‘:}. Create Index Change Knob
[=Q=]=1=]
Actio/ Action 5 i{?i Drop Index @ No-op
Action 6 '

Action 7
e —— Best Action
Sequence
Action 1 Action 4 Action 8
l l] .
Current Time 1 5 10
N = Time Interval

v
Planning Horizon

Figure 5.3: Monte Carlo Tree Search - MCTS randomly searches over more promising action
sequences under a time budget and returns the best action sequence explored.

(2) If the selected leaf node does not reach the planning horizon, expand the leaf node with
one or more children.

(3) Select a child and populate its initial value number (also called rollout).

(4) Update the value numbers for the nodes from the root to selected leaf based on the child’s
rollout result.

The essence of MCTS is a search strategy that determines the value numbers, which balance
the exploration and exploitation (Section 5.3.2). After the search finishes, PB0 chooses the action
sequences represented by nodes with the highest value numbers as its decision. There is a trade-
off between the search time budget the planning quality. Such an explicit search process also
provides explanations for the cost-benefit estimation of each action in each time interval.

Figure 5.3 illustrates an example of the MCTS result. There are four types of actions in
this example, including a no-op action that skips all actions at a time interval. The MCTS
explores six action sequences (six leaf nodes) over a planning horizon of ten time intervals.
There may not be actions for every time interval, and action sequences may not reach the end
of the planning horizon, either. After MCTS exhausts the time budget, it returns the best action
sequence explored under the self-driving objective (Action 2—4—38).

There are additional challenges, however, that that we identify in applying MCTS for PBO.
We now discuss these challenges and our solutions.

5.3.1 Rollout Challenge

The first challenge to implement MCTS for PBO is to determine the initial value number for a
new leaf node (child of the original leaf) to perform the search. Most existing MCTS methods
focus on win/loss games that have a binary outcome, and the canonical method to derive such
value is to perform a random rollout: play moves (i.e., apply actions) randomly starting at the
new leaf node until a win/loss outcome is determined [114, 192, 193]. This does not directly

86

apply to PBO since there is no win/loss for a database workload.

Given this, PB0 adapts such canonical rollout method by directly using the objective func-
tion g over the entire workload as the initial value number for a newly expanded leaf node [,
given the actions from the root to [applied. We denote this rollout value for [as ;. Further-
more, we observe that since the rollout does not need to determine win/loss, it does not need to
apply actions randomly after /, either. This also avoids large oscillations in (G; when the rollout
randomly selects a poor action, which may make the search miss promising action sequences.
For example, if the rollout randomly drops an important secondary index after /, the average
query latency can become drastically higher even though the actions from the root to [have
a low G). In this case, MCTS is less likely to expand further from [even though actions from
the root to [may already benefit the workload without any more actions. Lastly, PB0’s MCTS
performs rollout for all the new leaf nodes during an expansion together to give the search
strategy a better action quality overview.

5.3.2 Search Strategy Challenge

One of MCTS’s key challenges is to balance exploration (exploring more action sequences) and
exploitation (extending better-performing action sequences). MCTS addresses such challenge
using a search strategy that determines each node’s value number (i.e., the sampling weight
used to select the leaf node to expand). As mentioned in Section 5.3.1, most existing MCTS
algorithms focus on win/loss games with a binary outcome. A well-known strategy that most
contemporary MCTS search strategies employ is called UCT [114], which calculates the value
number for a node o, which can be either an internal node or a leaf node, as:

W, 2InV,
+

Vo Vo

where w, is the the number of wins for the nodes considered after o, v, is the number of the
times o has been visited, and V,, is the total number of times that o’s parent has been visited. The
formula’s first component corresponds to exploitation that favors moves with a high average
win ratio. The second component corresponds to exploration that favors moves with few visits.
Given PBO’s rollout method discussed in Section 5.3.1, a natural adaptaion of UCT is:

Average, | G, N 2InV,

o’s parent

Average; G, U,

where L, is the set of leaves after node o. The formula’s first component immitates %2, which
favors nodes with better (lower) average self-driving objective among its peers from the parent.

However, one challenge we observe with this formula is that a single leaf node with an ac-
tion that negatively affects the workload’s queries can drastically change the average objective
of all its ancestors. Similar to the rollout challenge, a leaf node that drops an important sec-
ondary index can significantly increase the value function of its ancestors. This may lead the
search to miss promising action sequences. To address such challenge, PB0 applies a simple yet
effective modification to the formula:

Mince L

0’s parent

G. 2InV,
- +
MlncELo Gc Vo

87

Intuitively, this formula uses the best leaf after a node o to represent o’s value, which is
robust against outlier leaf nodes that may considerably increase the average self-driving objec-
tive. And it favors nodes that have a best leaf with low objective value. The first component’s
range is also between [0, 1], which is the same as the range of the original UCT formula’s first
component (the win ratio 2) . We observe that this strategy is more stable and generates better
actions under the same time budget than the first adaptation.

5.3.3 Search Interval Challenge

The workload forecasts determine the finest granularity of the planning time interval (e.g., one
minute). A straightforward MCTS implementaion for PBO is to search one action for each time
interval during the entire planning horizon (e.g., one day), which can make 7 large. Thus, the
search tree depth can be deep, which exponentially increases the number of possible states.
This is challenging for MCTS to generate high-quality actions.

PBO0 addresses this challenge by dynamically increasing the number of intervals between
actions (search tree levels) during MCTS. The intuition is that actions planned for intervals in
the near future may be more important and require finer-grained control since the self-driving
DBMS will apply them at first. In contrast, actions for intervals in the far future may be less
important since PBO will re-plan for them later. Thus, PBO starts its MCTS with a small number
of time intervals between actions for fine-grained action optimization. It then increases the
number of intervals for each level of the search tree to reduce MCTS’s depth and complexity.

In our implementation, PBO exponentially increases the number of time intervals in every
level of MCTS’ search (1, 2, 4, 8, 16...). Self-driving DBMS developers may use their domain
knowledge to better specify these intervals. For example, many database applications have a
diurnal workload pattern that repeats similar workloads in the duration of a day [137, 205].
Thus, developers can set a fixed number of time intervals for the search tree levels correspond-
ing to the first day, so that MCTS can perform fine-grained planning for a full workload cycle.
The number of time intervals for the levels after the first day can then increase to reduce the
search complexity.

Another difference between PB0’s planning and canonical MCTS is that some self-driving
database actions (e.g., creating an index) may take a long time to finish. Thus, one action may
not finish within the number of time intervals specified for the corresponding search tree level.
In this case, PBO extends that level’s number of intervals to the action applying time. Recall that
PBO uses the behavior models (Chapter 4) to estimate the action applying time and the action’s
interference to the DBMS performance during its application. Only after the action finishes can
it help improve the system performance. Thus, PBO needs to predict the system performance
for the workloads before, in-between, and after the action application separately to calculate
the objective function g (used in the rollout as discussed in Section 5.3.1).

5.3.4 Memory Constraint Challenge

PB0’s MCTS needs to ensure that the explored action sequences do not violate the memory
constraint specified by the user. MCTSs designed for games do not support this. PBO sup-
ports ensuring such memory constraint during MCTS by extrapolating the system memory

88

consumption based on the workload forecasts and behavior model estimations.

Recall that the workload forecasts have the query (template) arrival prediction in each time
interval in the planning horizon. Thus, PB0 can approximate the table size changes at a given
time interval by estimating how many tuples that the workload inserts into/deletes from each
table. And it can access the initial system memory consumption for all the tables and indexes
at the beginning of MCTS (recall that NoisePage stores tables and indexes in memory as an in-
memory DBMS). Thus, PB0 linearly extrapolates the system memory consumption based on the
table size changes at any time interval during MCTS. It also uses behavior models to estimate
the action memory consumption and extrapolate the value similarly at a given time interval.

If the estimated memory consumption at the time interval of a newly expanded leaf / exceeds
the constraint, PB0’s MCTS sets {’s value number to infinity to avoid future selection of /. It
also needs to recalculate the value numbers of all [’s ancestors. This is because [’s parent may
have a high value number before the expansion, but all the new leaves (I’s peers) may exceed
the memory constraint because of the workload’s tuple inserts. In this case, [’s parent’s original
value number becomes invalid, which also impacts all ancestors.

5.4 Inference Cache

MCTS in PB0 makes many inference requests to the behavior models to estimate the action
impacts. After a leaf expansion, it estimates the objective function g for both the workloads
under the time intervals represented by the current leaf level and the remaining time intervals
until the end of the planning horizon. PB0 uses the operating unit (OU) translator (Chapter 4)
to generate OUs and corresponding features for these workloads and actions. Then it sends a
request to the model server to make inferences on these features, retrieve the estimated values,
and sums them up as the inference result. Each query or action may generate multiple OUs and
thus require multiple inferences. And every inference takes ~0.5ms based on our experiments.
Thus, these inferences add up as significant overhead to the planning.

We observe that there can be repeated inference requests during MCTS, such as estimating
the impact of the same action at the same search tree level or invoking the same model from the
model server with the same input feature. Thus, PBO0 uses a two-level cache to reuse inference
results and accelerate the planning.

Action State Cache: The higher-level cache stores the value of the objective function g over
a range of time intervals given a set of applied actions. For example, if two leaves at the same
level of the search tree have the same set of applied actions along their paths from the root,
they share the same value of the objective function g over the remaining time intervals of the
workload. Note that the two action sequences (paths) only need to be logically equivalent to
reuse such value. For example, if one leaf has actions CREATE INDEX A, CREATE INDEX B, and
DROP INDEX A applied, and the other leaf has the action CREATE INDEX B applied at the same
level, they still share the same value of ¢ for the remaining intervals.

Model Inference Cache: The lower-level cache stores the value of an OU or interference
model inference result. For example, suppose PB0 needs to perform a model inference on the

89

Inference Request o Action State Cache

Intervals: 5-10 Query: Intervals: Intervals: 5-10 Intervals: |i

=i 15 -5 |

L& - Lh LA |

1 1

Create Change — 1| No Action Create Create h :
; Change

Index A Knob X=v | Ifhit | Index A Index B Knob \?:w i

i [Value: 100 Value: 150 Value: 120 |

1 1

e \)e o e e e o e e o e o e O M R M e M O EE e e e e o
UValue N> (2) If not
e Model Inference Cache e hit

Query [[(————— ——
Model i[ou: scan | |oU: Index Probe|; Query Operating
Server — : Feature: ... | |Feature: ... ! — Unit
Value Value: 10 | |Value: 3 ! ﬁ Translator
T o o o o e e e e e e e o I

Figure 5.4: Inference Cache - PBO caches the inference results to accelerate the planning at
two levels: the action state level and the model inference level.

same OU with the same feature as a previous inference request. In that case, it can reuse the
cached value to avoid the inference call to the model server.

Figure 5.4 illustrates PB0’s inference request procedure under the two-level caching:

* @ When MCTS expands a new leaf, PBO first asks the action state cache whether the
search has calculated the objective function g for the same range of time interval with
the same set of actions. If so, it directly returns the cached value for the leaf.

+ @ If the request does not hit the action state cache, PB0 uses the OU translator to generate
the OUs and features for the workload and action.

+ @ PBO then checks the model inference cache for the same inferences performed before.
If all the inference requests are in the model inference cache, PB0 calculates the objective
function ¢ for the leaf based on the cached values and populates the action state cache.

« @ If there are still remaining uncached inference requests, PB0 queries the model server
to obtain the estimated values.

+ @ The model server returns the inference results for PBO to calculate the leaf’s objective
function g. PBO then populates the unfulfilled model inference and action state cache.
Each entry in the action state cache or the model inference cache is smaller than 1 KB.
Recall from Section 5.2 that RHC starts one MCTS for each of the repeated planning process.
PBO keeps all the entries in the two caches during a planning process’s MCTS. When MCTS
finishes, PBO releases the entire cache and re-create the caches when RHC starts MCTS in the
next planning process.

5.5 Implementation Choices

We now describe PB0’s several implementation choices.
The first is that the pilot server is a special “replica” node of the database server. It replicates

90

the database catalog and statistics (from ANALYZE). Thus, PBO on the pilot server can generate
candidate actions and translate the forecasted workload and actions into OUs with proper fea-
tures. PBO uses these features with the behavior models to estimate the action impact. The
pilot server does not need to replicate the table contents, which reduces the synchronization
overhead.

The second notable aspect of the system is that PBO uses “what-if” API [44] to help evaluate
the action impact. When MCTS expands a new leaf, PB0 applies actions from the root to the leaf
under the “what-if” APL It then uses the optimizer to re-generate query plans for the workload’s
queries under these actions. Such plan re-generation is necessary because (1) the behavior
models rely on the query plan to generate OUs and corresponding features to perform inference
and (2) there are actions (e.g., creating indexes) that are only useful when the optimizer chooses
to use them in the query plan. After one search expansion of MCTS, PBO restores the applied
actions to prepare for the next search.

Lastly, PBO implements what-if API with NoisePage’s transactional catalog. Before MCTS
starts, PB0 opens a transaction for each database and applies all the actions within the scope
of these transactions. For example, if an action is to create an index, PBO only inserts the index
entry into the catalog without populating the index. The optimizer can decide whether the new
query plan uses this index. When MCTS finishes, PB0 aborts all the transactions to revert any
temporary changes. Thus, the pilot server isolates the action search against other queries from
users or developers. For example, developers can query the pilot server to access the workload
forecasts or action history information without interfering with PB0’s search process.

5.6 Evaluation

We now discuss our evaluation of PB0 using the NoisePage DBMS. We deployed the DBMS on
a Ubuntu 20.04 LTS machine with two 10-core Intel Xeon E5-2630v4 CPUs, 128GB of DRAM,
and Intel Optane DC P4800X SSD.

We use the OLTP-Bench [64] testbed as an end-to-end workload generator. We use the
TPC-C [208] benchmark that has nine tables and five transaction profiles that model backend
warehouses fulfilling orders for a merchant. We use numactl to fix the DBMS on one CPU
socket and the OLTP-Bench clients and PBO processes on the other CPU socket. We also use
QB5000 to generate the workload forecasts and MB2 to generate the behavior models.

We compare PB0 against a state-of-the-art method that generates a sequence of DBMS tun-
ing actions based on workload patterns, called GREEDY-SEQ [20]. Instead of planning for
all actions together, GREEDY-SEQ uses a heuristic to reduce the planning complexity by first
choosing the best timings to apply each action separately and then merging the actions into a
sequence. This method only applies to physical design (e.g., indexes) but not knobs.

We evaluate PB0’s planning quality and the effectiveness of PB0’s MCTS optimization and
caching design. We use the workload’s average query latency as the evaluation metric, which
is the same as the self-driving objective.

91

60

2500 —— PBO
@ | GREDDY-SEQ starts —e— GREDDY-SEQ
=] i ting ind OORDER
52000 :<_crea Ing Inaex on NO-OP
c \

] i
‘© 1500+ i
;' f PBO starts creating
S j index on CUSTOMER
S 1000+ <=
g
=)
Z 900+ ieindex on OORDER
i GREDDY-SEQ stafts
0 ik.crea}ing index on QUSTOMER. _ aaaaa. ' | |
0 20 40 60 80 100 120 140 160
Time (s)
(a) Diurnal Pattern
. GREDDY-SEQ starts —— PBO
2 300 (_/creating index on CUSTOMER —e— GREDDY-SEQ
=
[&]
c
2
3 200
>
(0]
i
© 100
2 GREDDY-SEQ drops
< index on CUSTOMER —.
0 y - .
0 10 20 30 40 50
Time (s)
(b) Growth Pattern

15.20 P :
o Memory | GREDDY-SEQstarts GREDDY-SEQdrops |
o Constraint l__creating index on CUSTOMER index on CUSTOMER __!
c 15,15 i -2 :
S i PBO-Estimated starts [i |
g— iie—Creating index on CUSTOMER x/’ ! i

H R 1 H
3 15.10{ —e— PBO * ' '
3 —— GREDDY-SEQ P :
§15 05/ ~>- PBO-Estimated
OE) /X,,
=

PP il
15.00 r :
0 10 20 30 40
Time (s)

(c) Growth Pattern Memory Consumption

Figure 5.5: Planning Quality - System performance with the actions chosen by PB0 and

GREEDY-SEQ under different workload patterns.

5.6.1 Planning Quality

As discussed in Chapter 3, database workloads often have patterns and choosing action se-
quences tailored to these patterns is crucial to the system’s performance. Thus, we first eval-
uate PB0’s planning quality under two common database workload patterns. We simulate the

92

patterns in short durations to accelerate the evaluation. We use QB5000 to generate workload
forecasting information of average query arrival rate per query template in each 5s forecasting
interval. Therefore, the smallest planning time interval is 5s. We use a two-minute planning
horizon. As discussed in Section 5.3.3, we set PB0O to exponentially increase the number of
intervals between MCTS’s levels. We set MCTS to execute 80 searches for each workload.

We use the TPC-C workload with 10 warehouses and adjust the number of customers
per district to 100,000 to make the choice of indexes more important. We remove the sec-
ondary indexes for TPC-C before the experiments. We extend an algorithm inspired by Au-
toAdmin [46, 58] to generate candidate actions that create secondary indexes for TPC-C with
different numbers of threads (1, 2, 4, or 8). We also use heuristics to generate candidate actions
that change NoisePage’s knobs.

We now discuss PB0’s performance for each workload pattern.

Diurnal Pattern: Many applications have a workload pattern that follows the human living-
cycle (i.e., large query volume during the day and little to no query volume during the night [137,
205]). We simulate such a pattern by pausing the TPC-C workload for one minute starting at
40s during a 160s period. And we let the self-driving DBMS plan for action sequences starting
at 10s. We also added a NO-OP baseline that does not apply any actions.

Figure 5.5a shows the average query latency during the workload period for PBO and GREEDY-
SEQ. GREEDY-SEQ and NO-OP’s query latencies on average are 49% and 55% slower than PBO.
GREEDY-SEQ chooses to build the same pair of secondary indexes as PB0. And both methods
use eight threads to create the indexes for fast completion. When the DBMS creates indexes, the
queries becomes 63% slower because of the resource competition. Unlike PB0O, GREEDY-SEQ’s
heuristic method does not account for the action application time nor the action’s interfer-
ence to the queries during its application. So it builds the two indexes consecutively, with the
CUSTOMER index at first, which the behavior models estimate to take 2.5x more time to build
but reduces the workload queries’ latency 9x more than the 00RDER index. In contrast, PBO rec-
ognizes that the DBMS cannot finish creating the CUSTOMER index before the workload pauses.
Thus, it builds the cheaper 00RDER index first and builds the CUSTOMER index after the workload
pauses. Therefore, the index creations have minimal interference to the queries and the new
indexes significantly accelerate the queries after the workload resumes. ?

Growth Pattern: There are also applications that have a growth pattern where their database
sizes increase over time [137]. But the hardware that runs the DBMS often has a fixed resource
limit, such as the maximum memory consumption.” We simulate this pattern by increasing the
ratio of the NEWORDER transaction in TPC-C to 90% and decrease the ratio of other transactions.
The workload starts with 15 GB memory consumption, and we set the system’s memory con-
straint to 15.15 GB. We execute the workload for 60s and again let the DBMS plan for action
sequences starting at 10s.

The results in Figure 5.5b show that GREEDY-SEQ’s query latency on average is 55% higher
than PB0. GREEDY-SEQ creates the index on CUSTOMER at 10s, but has to drop it right after

“NoisePage’s knobs do not have measurable performance impact on TPC-C so PB0 does not change them.
*NoisePage does not support resource scaling, so PBO cannot choose to increase the system’s resource capacity.

93

BB PB0O FE= PBO-Avg

800

659.0

441.0

138.0 138.0

Avg. Query Latency (us)
N B (e}
o o o
o o o

o
|

Diurnal Growth
Workload Pattern

Figure 5.6: MCTS Search Strategy - Average workload query latency with actions chosen
by PBO with different MCTS search strategies.

Strategy ‘ Action ‘ Level ‘ Interval ‘ Min ‘ Max ‘ Avg ‘ Std
CREATE INDX ON OORDER 1 0-2 6.4e8 | 8.8e8 | 7.9e8 | 6.1e7

PBO NO-OP 2 3-3 6.4e8 | 8.8e8 | 7.7¢8 | 7.1e7
NO-OP 3 5-5 6.4e8 | 8.3e8 | 7.5e8 | 7.8e7

CREATE INDX ON CUSTOMER 4 9-13 6.4e8 | 8.2e8 | 7.8e8 | 6.6e7

CREATE INDX ON CUSTOMER 1 0-6 6.6e8 | 9.0e8 | 8.2e8 | 6.1e7

PBO-Avc CREATE INDX ON OORDER 2 7-9 7.1e8 | 9.0e8 | 8.0e8 | 6.0e7
NO-OP 3 10-10 7.1e8 | 9.0e8 | 7.5e8 | 6.7e7

Table 5.1: MCTS Search Strategy Statistics — Statistics of the leaf rollout values for the nodes
corresponding to the best action sequence under the diurnal workload pattern.

the creation finishes because the system exceeds the memory constraint. PB0, on the contrary,
does not build any indexes because its MCTS recognizes that the system memory consumption
is increasing (Section 5.3.4) and the index creation exceeds the memory constraint threshold.

Figure 5.5¢ shows the system’s memory consumption over time under the growth workload
pattern. The memory consumption with GREEDY-SEQ hits the constraint at the end of the index
creation, so the system needs to drop the index immediately. PB0’s MCTS has also explored the
same action choice as GREEDY-SEQ (denoted as PBO-Estimated) during its search before the
system applies any action. Though it underestimates the time to create the index by 25% due to
imperfect interference estimation, it correctly predicts that the system memory consumption
exceeds the threshold before the index creation finishes. Thus, PB0 avoids the unnecessary
index creation and resource contention.

5.6.2 MCTS Search Strategy

MCTS’s search strategy is the key for finding actions sequences that benefits the system per-
formance as the strategy balances the search’s exploration and exploitation. We next evaluate
the effectiveness of different MCTS search strategies for PB0. As discussed in Section 5.3.2, a

94

Workload Pattern | Caching Choice | ASC Hit Rate ‘ MIC Hit Rate

PBO 40% 97%

DIurNAL PBO w/o ASC N/A 98%
PB0 w/o MIC 40% N/A

PBO 80% 96%

GROWTH PBO w/o ASC N/A 98%
PB0 w/o MIC 80% N/A

Table 5.2: Inference Caching Statistics — Hit rate statistics under different choices of infer-
ence caching.

straightforward MCTS search strategy is to use the average rollout value among all leaves as
a node’s value number (denoted as PB0-Avg). PB0 adapts this strategy to use the minimum
rollout value among leaves that better suits self-driving DBMSs. We evaluate the search strate-
gies under the same workload settings as Section 5.6.1 with the same candidate actions and
environments.

Figure 5.6 shows the measured average query latency over the entire workload. The two
strategies make the same decision under the growth workload pattern because the pattern is
simple (growing under a fixed rate). However, PB0-Avg makes a similar decision as GREEDY-
SEQ under the diurnal workload pattern, which results in 49% higher query latency than PBO.
The variance among the leaves’ rollout values affects PB0-Avg to choose the best action se-
quences tailored to a more complex workload pattern.

Table 5.1 shows more details for the nodes corresponding to the best action sequence of the
two search strategies under the diurnal workload pattern. For each node, we show its level in the
search tree, the estimated time intervals * to apply its action, and the statistics of all its leaves’
rollout values. These statistics show that there can be large difference (up to 38%) between the
min (best) and max (worst) rollout values of a node’s leaves. Thus, the outliers (e.g., leaves with
the highest values) can affect the average rollout value for a node’s leaves. Moerover, the max
rollout values of PB0 are lower than PB0-Avg’s. And despite PB0-Avg selects actions based on
the average rollout values of a node’s leaves, its best action sequence’s average rollout values
are mostly higher than PB0. These statistics suggest that PB0 selects more effective actions than
PB0-Avg.

5.6.3 Inference Cache

Lastly, we evaluate the efficacy of PB0’s two-level inference cache (Section 5.4). We aim to
demonstrate the benefit of each level of the cache and their combined effect. We remove the
action state cache (ASC) and model inference cache (MIC) from PB0 separately, denoted as PBO
w/o ASC and PB0 w/o MIC. We compare their planning time against PBO and GREEDY-SEQ
under the same workload settings in Section 5.6.1.

The results are shown in Figure 5.7. GREEDY-SEQ has the fasted planning time since it uses
a heuristic method without an exhaustive search. And PB0’s two caching methods significantly

*Recall from Section 5.6.1 that each planning time interval is 5s.

95

BN GREDDY-SEQ B PBO =21 PBO w/o ASC X1 PBO w/o MIC

600
508.7
2 450
[0}
€
t,300
£
S
©
= 150
& 382 596 921
0 16.2 - 7 49 141 276 [\ \|
Diurnal Grolwth

Workload Pattern

Figure 5.7: Inference Caching - Planning time of GREEDY-SEQ and PB0 with different in-
ference caching methods.

reduce its planning time. The MIC on average reduces the planning time 13 X more than the
ASC because there are many repeated model inference requests during the search, even among
different actions. For example, the workload may contain queries that neither the candidate
secondary indexes affect. Thus, PB0 always infer the same OUs for these queries for all the
nodes in the same search tree level. And PB0 only needs to make one inference for them with
the MIC.

The cache hit rate statistics shown in Table 5.2 verify such analysis. PBO w/o ASC has on
average 38% higher cache hit rate than PB0 w/o MIC over the two workload patterns. PB0 and
PB0 w/o MIC has the same cache hit rate for ASC because MIC is at lower level than ASC and
does not affect ASC’s hit rate. In contrast, PB0 has lower MIC hit rate than PB0 w/o ASC because
ASC already removes certain repetitive inference requests. Lastly, PBO has 2x higher ASC hit
rate under the growth workload pattern compared to the diurnal workload pattern because the
growth pattern is simpler and thus the explored actions sequences are less diverse.

96

Chapter 6

Related Work

In this chapter, we discuss the prior work related to self-driving DBMSs. We first explain previ-
ous efforts on automated DBMS tuning, which has been studied for decades. We then introduce
the methods related to the three frameworks that constitute our self-driving architecture: work-
load forecasting, behavior modeling, and action planning. Lastly, we briefly discuss the work
on learned DBMS components.

6.1 Automated DBMS Tuning

Previous researchers in the last 40 years have studied and devised several methods for auto-
matically optimizing DBMSs [32, 45, 47, 222]. As such, there is an extensive corpus of previous
work, including both theoretical [40] and applied research [72, 224, 253]. But no existing sys-
tem incorporates these techniques to achieve full operational independence without requiring
humans to monitor, manage, and tune the DBMS because they (1) cannot predict the future
workload to optimize the DBMS proactively and apply changes at proper times, (2) require ex-
pensive exploratory testing on a copy of the database, or (3) only target one system aspect and
cannot optimize the system holistically. We categorize these techniques based on their tun-
ing targets, including physical design tuning, knob configuration tuning, hardware resource
tuning, and autonomous DBMSs.

Physical Design Tuning: Physical design tuning addresses the problem of selecting the best
physical design for a given database and its workload. Such tuning optimizes one or more met-
rics for the workload that satisfies budget constraints. The metrics are the desired performance
outcomes when the DBMS executes the workload, such as minimizing the average query la-
tency. The budget constraints are defined in terms of hardware resources, such as storage (e.g.,
the maximum amount of memory allowed for creating new indexes) or CPU overhead (e.g., the
total time to create the indexes). Previous work on physical design tuning focuses on three
areas: index selection, table partitioning, and materialized view selection.

Some early index selection algorithms determine the benefits of indexes using characteris-
tics of the data, such as Drop [223]. In the 1990s, Microsoft’s AutoAdmin pioneered the use of
leveraging the DBMS’s built-in cost models from its query optimizer to estimate the benefits

97

of indexes, which is called “what-if” API [44]. This avoids a disconnection between what the
tool chooses as a good index and what the system uses at runtime when it generates query
plans. Most contemporary index selection algorithms leverage such “what-if” API [118]. Some
algorithms optimize the index benefit per storage unit [36, 59, 214] while others aim to maxi-
mize the total benefit under a storage budget [1, 44, 223]. Most of these algorithms support the
selection of multi-column indexes and consider the index interaction.

Table partitioning divides a table into multiple disjoint fragments. The values of one or
more table columns determine the boundaries of these fragments, typically with either range
partitioning or hash partitioning [88, 251]. Previous database partitioning approaches mainly
focus on (1) generating the candidate partitioning attributes and (2) searching for the optimal
partitioning scheme. The former examines the benefits of each attribute given a sample work-
laod [19, 41, 167, 251]. There are techniques to prune the candidate set [252] or combine the
candidates to generate multi-attributes for partitioning [17]. The latter searches for the optimal
partitioning attributes for each table using greedy strategy [167], approximation method [53],
or exhaustive search [251, 252]. There are also search methods that leverage the source code
information [213], minimize the contention bottlenecks [157], or adaptively adjust the parti-
tioning scheme [187].

Many materialized view selection algorithms share similar ideas with techniques for multi-
query optimization and common subexpression selection [86, 91, 110, 177, 190, 246]. For exam-
ple, Microsoft SCOPE uses an ILP-based formulation to select sub-expressions for large work-
loads by finding common parts of query logical plans and materializing them to accelerate
subsequent queries [109]. Most commercial database vendors offer automated physical design
tools that support materialized view selection. For example, IBM’s DB2 Advisor recommends
materialized view using an algorithm based on Knapsack problem [253, 254]. The DB2 Advisor
also exploits multi-query optimization techniques to construct the candidates [129]. The Oracle
Autonomous Database on the Cloud uses an extended covering subexpression algorithm for its
materialized view selection [22]. Microsoft’s AutoAdmin adopts a three-step search process to
deal with the large space of materialized view alternatives [18]. There are also recent attempts
that use reinforcement learning for materialized view recommendation [94, 134, 242].

Knob Configuration Tuning: DBMSs’ built-in cost models estimate the amount of work for
a particular query execution [196]. These models’ original intention is for the query optimizer
to compare alternative query execution strategies under a specific DBMS configuration. Thus,
unlike physical design tuning, knob configuration tuning cannot leverage these built-in models.

All major DBMS vendors provide proprietary tools to help users determine the knob config-
uration [62, 123, 151]. And these tools have varying amounts of automation [29]. For example,
the DB2 Performance Wizard tool released by IBM in the early 2000s asks high-level questions
about the application (e.g., whether the application is transactional or analytical) to the users
and then recommends knob settings accordingly [125]. IBM engineers need to manually create
models used by this tool. A later version of DB2 has a self-tuning memory manager that deter-
mines the memory allocation of the DBMS’s internal components using heuristics [201, 211].
Oracle has techniques to determine the system bottleneck due to sub-optimal knob configura-
tions [62, 123]. Oracle also develops a SQL analyzer to estimate the impact of the changes in

98

knob configurations [28, 234]. Microsoft’s SQL Server has a Resource Advisor that predicts the
effect of buffer pool size changes on OLTP workloads [151].

There are also knob configuration tuning tools developed for open-source DBMSs. For
example, DBSherlock helps DBAs diagnose performance problems for MySQL by identifying
anomalies in the DBMS’s performance time-series data [239]. iTuned is a generic configuration
used in MySQL or PostgreSQL [72]. It continuously evaluates incremental changes to the knob
configurations using a workload sample when the DBMS is under low demand.

Recent efforts have focused on using ML to help tune DBMS configuration knobs. Otter-
Tune is a DBMS tuning service similar to iTuned, except that it leverages data collected from
previous tuning sessions for different workloads to train ML models to evaluate configuration
changes [216]. Extensions of OtterTune include replacing Ottertune’s Gaussian Process Regres-
sion model with an actor-critic reinforcement learning model [243] (CDBTune) or a general
purpose configurator [191] (using irace), incorporating query information in the model input
features [131] (QTune), and optimizing resource utilization instead of system throughput [245]
(ResTune). These techniques have also been evaluated on workloads from FoundationDB [184]
and a multi-national bank [217]. iBTune uses a pairwise deep neural network to recommend
individualized buffer pool sizes to database instances in the cloud [206].

Hardware Resource Tuning: Much previous work on hardware resource tuning focuses on
the enterprise database workload consolidation. These techniques construct models and esti-
mate the workload resource consumption based on a “representative workload” provided for
each application. For example, one technique uses the optimizer (“what-if” API [44]) to estimate
the impact of resources to configure virtual machines for database workloads [196]. Kairos ex-
ecutes the representative workloads on a spare hardware to capture their resource utilization
characteristics and consolidates these workloads [54]. DBSeer uses analytical models to esti-
mate the resource utilization for a set of transactions to estimate the resource consumption if
the arrival rates of these transactions change [148]. Some works also try to automatically scale
resources for cloud databases [56, 87, 176] (which we provide more details in Section 6.2) and
predicting resource usage for individual queries [21, 23, 73, 83, 133] (which we provide more
details in Section 6.3).

Autonomous DBMSs: To the best of our knowledge, there has never been a fully autonomous
DBMS that achieves Level 5 autonomy we defined in Section 2.2. In the early 2000s, there were
several groundbreaking solutions that moved towards this goal [45], most notably Microsoft’s
SQL Server AutoAdmin [47] and IBM’s DB2 Database Advisor [167, 199, 253]. Others proposed
RISC-style DBMS architectures made up of inter-operable components that make it easier to
reason about and therefore control the overall system [222]. But over a decade later, all of this
research has been relegated to standalone tools that assist DBAs and not supplant them.

The closest attempt to a fully automated DBMS was IBM’s proof-of-concept for DB2 from
2008 [224]. This system used existing tools [125] in an external controller and monitor that trig-
gered a change whenever a resource threshold was surpassed (e.g., the number of deadlocks).
This prototype still required a human DBA to select tuning optimizations and to occasionally
restart the DBMS. And unlike our proposed techniques, it could only react to problems after

99

they occur because the system lacked forecasting.

Automation is more common in cloud computing platforms because of their scale and com-
plexity [55, 111]. Microsoft appears to be again leading research in this area. Their Azure service
models resource utilization of DBMS containers from internal telemetry data and automatically
adjusts allocations to meet QoS and budget constraints [56]. There are also controllers for ap-
plications to perform black-box provisioning in the cloud [15, 39, 172]. The authors in [176]
use the same receding-horizon controller model [171] that we propose, but they only perform
simple changes to the system. Oracle announced their own “self-driving” DBaaS in 2017 [6].
Users select one of the three types of autonomous DBMS services with varying automation
features: data warehouse, transaction processing, or JSON database. Although there is little
public information about its implementation, our understanding from their developers is that
it runs their previous tuning tools in a managed environment. Some of its automation also re-
quire expensive testing of candidate changes (e.g., indexes) on replicas. Oracle also just released
the MySQL Autopilot that automates certain aspects for their MySQL Cloud Database Service,
including provisioning, data loading, query execution, and failure handling [5].

Recent work explores using reinforcement learning (RL) [193, 204] to tune specific aspect
of the DBMS, such as indexes [127, 179, 188], materialized views [94, 134, 242], and knob con-
figurations [89, 131, 243]. These approaches are each limited to a single decision problem in
a static operating environment and do not consider long-term forecasts in their models. They
also often require expensive tests on data copies to collect a large amount of training data. We
use a modularized (forecasting-modeling-planning) design for self-driving DBMSs, which has a
different methodology than RL-based approaches. We think this approach provides better data
efficiency, debuggability, and explainability, which are essential for the system’s practical appli-
cation. All major organizations working on self-driving cars also use a modularized approach
instead of end-to-end RL [136].

6.2 Workload Forecasting

We classify the previous work on workload forecasting and modeling in systems into several
categories: resource estimation for auto-scaling, performance diagnosis and modeling, shift
detection, and workload characterization for system design.

Resource Estimation: There are works on automatically identifying the workload trends
and scaling resources for provisioning. Das et al. proposed an auto-scaling solution for database
services using a manually constructed hierarchy of rules [56]. The resource demand estima-
tor derives signals from the DBMS’s internal latency, resource utilization, and wait statistics
to determine whether there is a high or low demand for the resource. Their work focuses on
short-term trends and estimates the demand for each resource in isolation. Other works inves-
tigated scaling resources proactively in cloud platforms [87, 176]. All of these methods estimate
whether there will be a demand for each type of resource in the near future. In contrast, we
model the query arrival rates for both short- and long-term horizons to support complex opti-
mization planning decisions.

100

Performance Diagnosis: There is previous research on the modeling and diagnosis of DBMS
performance. DBSeer predicts the answer of “what-if” questions given workload changes, such
as estimating the disk I/O for future workload fluctuations [148]. The model clusters the work-
load based on transaction types and predicts the resource utilization of the system based on
transaction mixtures. It is an off-line model that assumes fixed types of transactions. Our work
not only looks at the current workload mixtures but also predicts the future workload. DBSh-
erlock is a diagnostic tool for transactional databases that uses causal models to identify the
potential causes of abnormal performance behavior and provides a visualization [239]. The
modeling in this line of work aims to help the DBAs understand their system and identify bot-
tlenecks. The authors in [151] use analytical models to continuously monitor the relationship
between system throughput, response time, and buffer pool size.

Shift Detection: Others have used Markov models to predict the next SQL statement that a
user will execute based on what statements the DBMS is currently executing [100, 159]. The
authors in [71] combine Markov models with a Petri-net to predict the next transactions. The
technique proposed in [100] extends this model to detect workload shifts. Previous work com-
bines these techniques with a workload classification method to model periodic and recurring
patterns of the workload [101, 102]. These methods capture certain patterns in a workload, but
none of them are able to predict the volume, duration, and changes of workloads in the future.

Workload Characterization: The workload compression technique in [48] shares a similar
goal with our work. A set of SQL DML statements are compressed by searching which queries
to remove from the workload with an application-specific distance function D(g;, ¢;) for any
pair of SQL queries ¢; and ¢;. This technique does not model the temporal pattern of the queries.
Previous works also use set representation to model a database workload [181, 182]. They as-
sume that all transactions arriving at the system belong to a fixed set of pre-defined transaction
types. Various collected/aggregated runtime statistics are also used to analyze the structure and
complexity of SQL statements and the runtime behaviors of the workload [240].

6.3 Behavior Modeling

We broadly classity the previous work in DBMS modeling into the following categories: (1) ML
models, (2) analytical models, and (3) methods for handling concurrent workloads.

Machine Learning Models: Most ML-based behavior models use query plan information
as input features for estimating system performance. Techniques range from Ganapathi et al.’s
subspace projections [83] to Gupta et al.’s PQR hierarchical classification of queries into latency
buckets [90]. Some methods mix plan- and operator-level models to balance between accuracy
and generality, compensating further for generalizability issues by adjusting pre-built off-line
models at runtime [23] or by building additional scaling functions [133]. QPPNet [141] predicts
the latency of query execution plans by modeling the plan tree with deep neural networks.
ML-based models still require developers to adjust features, recollect data, and retrain them
to generalize to new environments. Most frameworks also train models on a small number of

101

synthetic benchmarks and thus have high prediction errors on different workloads. Further-
more, these ML-based models do not support transactional workloads and ignore the effects
of internal DBMS operations. This is in contrast to MB2 that builds a holistic model for the
entire system that accounts for internal operations and handles software updates with limited
retraining over SQL.

Analytical Models: Researchers have also built analytical models for DBMS components.
DBSeer builds off-line models that predict the resource bottleneck and maximum throughput
of concurrent OLTP workloads, given fixed transaction types and fixed DBMS configuration
and physical design [148]. Wu et al. tunes the optimizer’s cost models for better query ex-
ecution time predictions through off-line profiling and on-line refinement of cardinality esti-
mates [231, 232]. Narasayya and Syamala provides DBAs with index defragmentation sugges-
tions by modeling workload I/O costs [150].

Concurrent Queries: Due to the difficulty of modeling concurrent operations as described
in Section 4.1.2, the aforementioned techniques largely focus on performance prediction for one
query at a time. For concurrent OLAP workloads, researchers have built sampling-based statis-
tical models that are fixed for a known set of queries. The predictions have seen applications to
scheduling [21], query execution time estimation [73], and overall analytical workload through-
put prediction [74]. Wu et al. support dynamic query sets by modeling CPU, I/O interactions,
and buffer pool hit rates with queuing networks and Markov chains [230]. More recently, GPre-
dictor predicts concurrent query performance by using a deep learning prediction network on a
graph embedding of query features [249]. But it requires the exact interleaving of queries to be
known, which is arguably impossible to forecast and thus does not apply to MB2’s context. All
of these methods also require updating their models whenever the DBMS’s software changes.

6.4 Action Planning

We categorize previous work on action planning for DBMS into (1) sequence planning methods,
(2) on-line tuning methods, and (3) MCTS applications in DBMS tuning.

Sequence Tuning: As discussed in Section 6.1, most previous work on DBMS tuning focus
on static workloads: these techniques recommend a set of changes (actions) for the DBMS given
a set of queries (typically provided by DBAs) without any temporal information. In contrast, a
self-driving DBMS needs a planning method that not only determines what actions to apply, but
also decides when and how to apply the actions given the temporal patterns of the forecasted
workload (Section 2.2). To the best of our knowledge, the most recent method that addresses
such a planning problem is GREEDY-SEQ [20]. Similar to PB0 (Chapter 5), GREEDY-SEQ first
uses previous methods for static workload tuning to generate a set of candidate actions. It
then uses heuristics to determine the best timing to apply each action separately given a query
sequence. It merges the decision for each individual action to generate the best sequence of
actions based on the workload pattern. GREEDY-SEQ does not account for the action applica-

102

tion time nor the action’s interference to the queries during its application. Its heuristic method
may also miss optimization opportunities.

On-line Tuning: There are DBMS tuning methods developed for on-line scenarios. For ex-
ample, Microsoft proposed a method that continuously modifies the DBMS physical design
reacting to changes in the query workload [37]. It generates candidate physical designs that
may improve the performance during query optimization. It then keeps identifying the most
promising candidates using the statistics gathered from query execution. COLT is another
framework that continuously monitors the workload and creates additional indexes [185]. It
gathers performance statistics at different levels of detail to allocate more profiling resources
to the most promising candidate indexes. DBA bandit learns the benefits of candidate indexes
through strategic exploration and performance observation from the workload instead of using
the optimizer’s estimates [185]. These methods identify promising changes to the DBMS based
on the most recent workload but do not plan actions proactively based on future workload
patterns.

MCTS Applications: There are also applications of MCTS in DBMS tuning besides action
planning. openGauss uses MCTS to rewrite a single query to more efficient equivalent queries [89].
UDO uses MCTS to explore potential configurations for a DBMS given a workload and converge
to near-optimal solutions [220]. UDO still focuses on static workloads without temporal infor-
mation. In contrast, we use MCTS to generate the best sequence of tuning actions considering
the workload pattern.

6.5 Learned DBMS Components

Recently, there have been attempts to use ML, especially deep learning [221], to develop “learned”
DBMS components that replace their canonical counterparts. For example, a main area of the
research focus has been learned cardinality estimators that replace traditional histograms [75,
97,112, 158, 189, 203, 227, 235, 237, 247]. Learned indexes have been proposed to replace tradi-
tional index techniques (e.g., b+-tree, radix tree) [16, 52, 66, 67, 80, 113, 119, 229]. There are also
studies on learned query optimizers [121, 140, 142, 143, 228, 241], learned checkpoint optimiz-
ers [238], and learned filters [61]. Moreover, there are platforms that integrate these learned
components into a single DBMS [89, 120, 248].

These methods are orthogonal to the goal of self-driving DBMSs as the former replaces the
heuristics in canonical DBMS components with ML models, and the latter automates the DBMS
administrative tasks. Managing the learned components may increase the DBMS administra-
tion challenge as users need to decide whether to use such learned components, what learned
components to use, when to deploy the learned components, and how to deploy the learned
components. For example, learned indexes may replace the traditional B+-tree with ML mod-
els, but users still need to determine on which columns to build a learned index, when to build
the learned index, and how to build the learned index (e.g., using one CPU core or eight CPU
cores). Learned DBMS components and self-driving DBMSs may also complement each other.

103

For example, our self-driving architecture’s behavior modeling framework (Chapter 4) may use
learned cardinality estimators to generate more accurate input features for the behavior models.

104

Chapter 7

Future Work

We believe the efforts towards self-driving DBMSs (Level 5 autonomy as defined in Section 2.2)
are just beginning. Thus, we think there are several open questions beyond the topics covered
in this thesis that are worth exploring. We now present some of these future research direc-
tions, including extensions of our forecasting-modeling-planning architecture to improve its
self-driving capabilities and the broader opportunities and challenges for self-driving DBMSs.

7.1 Error Correction and Feedback Control

Although our forecasting-modeling-planning architecture strives to make the self-driving DBMS
select the best actions, there may still be applied actions with behavior that does not match the

system’s expectation. For example, an action may provide less performance benefit than the

system predicts or take longer to finish than the system estimates. There are two possible

sources for these estimations errors: the workload forecasts and the behavior model estima-

tions. Even when these estimations are accurate, the system may still select sub-optimal actions

because the action planning cannot exhaust all possible action sequences. Thus, one important

area of further research is to incorporate the feedback from self-driving DBMS deployments to

improve the model estimations and the action effectiveness.

The workload forecasting framework may use change point detection techniques [26] to
intelligently identify workload changes and proactively re-train its forecasting models. It may
also use anomaly detection techniques [42] to exclude outliers from the model training. There
are also remaining challenges, such as properly determining the time range of the historical
data that the model re-training should use: using more training data may improve the model
generalization, but outdated training data may also affect the model accuracy.

The behavior modeling framework may incorporate the action behavior observed in on-line
deployments into the models to correct mispredictions. But how to perform such incorpora-
tion is still an open question. For example, the modeling framework may combine the off-line
training data from the runners with the on-line data to train new behavior models. But the
off-line data may quantitatively overwhelm the on-line data, and thus the model training may
not fully exploit the information in the on-line data. The modeling framework may also train a
separate model only with the on-line data. But it may be challenging to properly combine the

105

predictions from the on-line and off-line models.

The self-driving DBMS may also directly leverage the observed information of the applied
actions in its action planning framework to improve the search (MCTS) effectiveness. There
are several possible approaches. For example, the action planning framework may use a simple
“black-list” to avoid searching over actions that do not improve the system performance. It may
also adjust an action’s estimated behavior during MCTS with the observed performance metrics
for that action. Lastly, it may learn a high-level policy over the applied actions to enhance the
action selection during MCTS [192, 193].

7.2 Supporting Complex DBMS Features

Recall from Chapter 5 that we only evaluate our forecasting-modeling-planning architecture
with actions that create/drop indexes and adjust knob configurations due to NoisePage’s fea-
ture limitation. Many real-world applications require more complex DBMS features, such as
materialized view [22] or resource scaling [58]. We believe our proposed architecture can ex-
tend to automate the tuning for these features.

We do not anticipate that supporting more DBMS features requires changes in the work-
load forecasting framework, which predicts the query arrival rates that are independent from
the DBMS configuration. We also anticipate that the infrastructure in the action planning
framework requires minimal extensions, such as generating new types of candidate actions,
to support tuning additional features. This shows the flexibility and maintainability of our
modularized self-driving architecture. The behavior modeling framework needs to extend the
OU-models for the additional DBMS features. It is interesting to evaluate the framework’s ef-
fectiveness with such extension. While the principle of OU-decomposition can apply to any
DBMS features, developers need to decide the boundaries and input features for the new OU-
models. Lastly, more DBMS features introduce more candidate actions to the action planning
framework, which may enable opportunities to further optimize the action search.

7.3 Self-Driving Aggressiveness Level

Our action planning framework aims to find a sequence of actions that best improve the DBMS
performance based on the self-driving objective. However, as discussed in Section 7.1, an ap-
plied action’s behavior may not match the system’s expectation. Thus, it is possible that a self-
driving action incurs high overhead that is unnecessary. For example, the workload forecasting
framework may significantly over-predict the future workload volume. Thus, a self-driving
DBMS may apply actions to provision many unnecessary resources (e.g., machines), which
may also negatively impact the system performance because of the data re-arrangement.

One possible solution is to have multiple self-driving aggressiveness levels. For example,
the highest aggressiveness level may allow the system to apply any possible actions to opti-
mize the self-driving objective. A lower aggressiveness level may prohibit the system from
using actions that drastically impact the system performance (e.g., creating an expensive index
or significantly scaling up the resources). Thus, the system may have sub-optimal but more

106

stable performance under the lower aggressiveness level, which may better suit many applica-
tions [215, 217]. Furthermore, Furthermore, the system can also use the lower aggressiveness
level when the observed action behavior significantly deviates from the expectation, especially
before the system can finish incorporating the feedback (e.g., re-training the models).

7.4 Self-Driving across the Stack

DBMS:s are typically deployed with one or more frontend/middleware applications (e.g., web-
sites [108], reporting software [147], or in-memory caches [35]). The configurations of these
applications may impact the performance of the DBMS. For example, the content in the mem-
ory cache may determine what queries the DBMS receives, which affects the DBMS’s tuning
decisions. Thus, it may be beneficial to extend the self-driving architecture to support tuning
software systems across the stack.

There are many open research questions in this direction. For example, there can be diverse
software combinations deployed with a DBMS. It is unclear what the appropriate granularity
should be to model behavior of all the systems in a deployment. Similar to the challenge of
DBMS behavior modeling (Chapter 4), a monolithic model that captures the behavior of all
software combinations may be infeasible because of the model complexity. But applying our
OU-based decomposed modeling approach on each software system may also be challenging
since it requires close familiarity with these systems and source code instrumentation. One
may also use off-the-shelf ML models to model each system as a “black-box”. But the model
dimensionality may still be high, which poses challenges on training data collection and de-

bugging.

7.5 Human-Intelligent-System Interaction

Though a self-driving DBMS can control itself autonomously, there can still be external infor-
mation humans may provide to the DBMS to further enhance its performance. For example,
a human may be aware of an immense workload volume increase in the future that does not
occur before, and thus the DBMS cannot infer the increase from the workload history. If the hu-
man can provide hints on such an increase, the DBMS can plan appropriate actions proactively.
Alternatively, the human may also directly hint the DBMS to scale up the resources before the
workload increase.

We believe it is exciting to explore how humans should interact with future intelligent sys-
tems, including self-driving DBMSs. Certain information may be straightforward to transfer
between humans and the self-driving DBMS. For example, the workload forecasting frame-
work may adjust the query arrival rate predictions according to the workload volume hinted
by the human. And the behavior modeling and action planning framework can remain intact.
Other information may be more challenging to convey. For example, a specific action hinted
at by a human may conflict with the actions planned by the self-driving DBMS, such as com-
peting resources. And the system must properly resolve such conflict even the motivation (e.g.,
workload increase) for such hinted action may not be revealed.

107

Chapter 8

Bibliography

index.html, . 2.1, 2.2, 3.5, 6.1

] PGTuner. https://github.com/jfcoz/postgresqltuner. 2.2

] PostgreSQL. https://www.postgresql.org/. 2.2, 3, 3.6.6

] SQLite. https://sqlite.org/. 2.2

[10] Bpf compiler collection (bcc). https://github.com/iovisor/bce/, 2020. 4.5.1
] Google benchmark support library. https://github.com/google/benchmark, 2020. 4.7
]

libpgxx - official c++ client api for postgresql. http://pqxx.org/development/libpqxx/,
2020. 4.7

[13] Processor counter monitor (pcm). https://github.com/opcm/pcm/, 2020. 4.5.1
[14] scikit-learn: Machine learning in python. https://scikit-learn.org/stable/, 2020. 4.7

[15] Sherif Abdelwahed, Nagarajan Kandasamy, and Sandeep Neema. A control-based frame-
work for self-managing distributed computing systems. In Proceedings of the 1st ACM
SIGSOFT Workshop on Self-managed Systems, WOSS 04, pages 3-7, 2004. 6.1

[16] Hussam Abu-Libdeh, Deniz Altinbiiken, Alex Beutel, Ed H Chi, Lyric Doshi, Tim Kraska,
Andy Ly, Christopher Olston, et al. Learned indexes for a google-scale disk-based
database. arXiv preprint arXiv:2012.12501, 2020. 6.5

[17] Sanjay Agrawal and et al. Integrating vertical and horizontal partitioning into automated
physical database design. SIGMOD, 2004. 1, 2.2, 6.1

[18] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated selection of
materialized views and indexes in SQL databases. VLDB, 2000. ISBN 1-55860-715-3. 1,

108

https://github.com/ankane/dexter
https://www.mysql.com/
https://github.com/major/MySQLTuner-perl
http://oli.cmu.edu
https://www.oracle.com/mysql/heatwave/
https://www.oracle.com/database/autonomous-database/index.html
https://www.oracle.com/database/autonomous-database/index.html
https://github.com/jfcoz/postgresqltuner
https://www.postgresql.org/
https://sqlite.org/
https://github.com/iovisor/bcc/
https://github.com/google/benchmark
http://pqxx.org/development/libpqxx/
https://github.com/opcm/pcm/
https://scikit-learn.org/stable/

[19]

[20]

[21]

[24]

[25]

[30]

[31]

[32]

2.2,6.1

Sanjay Agrawal, Surajit Chaudhuri, Abhinandan Das, and Vivek Narasayya. Automat-
ing layout of relational databases. In Proceedings 19th International Conference on Data
Engineering (Cat. No. 03CH37405), pages 607-618. IEEE, 2003. 6.1

Sanjay Agrawal, Eric Chu, and Vivek Narasayya. Automatic physical design tuning:
workload as a sequence. In Proceedings of the 2006 ACM SIGMOD international conference
on Management ofdata, pages 683-694, 2006. 2.3, 5, 5.3, 5.6, 6.4

Mumtaz Ahmad, Songyun Duan, Ashraf Aboulnaga, and Shivnath Babu. Predicting com-
pletion times of batch query workloads using interaction-aware models and simulation.
In Proceedings of the 14th International Conference on Extending Database Technology,
pages 449-460. ACM, 2011. 6.1, 6.3

Rafi Ahmed, Randall Bello, Andrew Witkowski, and Praveen Kumar. Automated gener-
ation of materialized views in oracle. Proceedings of the VLDB Endowment, 13(12):3046—
3058, 2020. 5, 6.1, 7.2

Mert Akdere, Ugur Cetintemel, Matteo Riondato, Eli Upfal, and Stanley B Zdonik.
Learning-based query performance modeling and prediction. In 28th International Con-
ference on Data Engineering, pages 390-401. IEEE, 2012. 3.5.1, 4, 4.1.2,4.7.3, 6.1, 6.3

Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2o: A hands-free adaptive
store. SIGMOD, pages 1103-1114, 2014. 1

Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. The cost of serial-
izability on platforms that use snapshot isolation. In Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, ICDE °08, pages 576—585. IEEE Computer
Society, 2008. 4.7

Samaneh Aminikhanghahi and Diane J Cook. A survey of methods for time series change
point detection. Knowledge and information systems, 51(2):339-367, 2017. 7.1

Francisco Javier Baldan Lozano, Sergio Ramirez-Gallego, Christoph Bergmeir, Jose Ben-
itez, and Francisco Herrera. A forecasting methodology for workload forecasting in cloud
systems. PP:1-1, 06 2016. 3.6.2

P. Belknap, B. Dageville, K. Dias, and K. Yagoub. Self-tuning for SQL performance in
Oracle Database 11g. In ICDE, pages 1694-1700, 2009. 6.1

Darcy G Benoit. Automatic diagnosis of performance problems in database management
systems. In Second International Conference on Autonomic Computing (ICAC’05), pages
326-327. IEEE, 2005. 6.1

Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509-517, 1975. 3.4.2

James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization.
The Journal of Machine Learning Research, 13(1):281-305, 2012. 4.5.2

Phil Bernstein, Michael Brodie, Stefano Ceri, David DeWitt, Mike Franklin, Hector
Garcia-Molina, Jim Gray, Jerry Held, Joe Hellerstein, HV Jagadish, et al. The asilomar
report on database research. SIGMOD record, 27(4):74-80, 1998. 6.1

109

[33]

[43]

[44]

[45]

[46]

Herman J. Bierens. The nadaraya-watson kernel regression function estimator. In Top-
ics in Advanced Econometrics: Estimation, Testing, and Specification of Cross-Section and
Time Series Models, pages 212-247. Cambridge University Press, 1994. doi: 10.1017/
CB09780511599279.011. 3.5.1

Byron Boots, Geoffrey J. Gordon, and Arthur Gretton. Hilbert space embeddings of pre-
dictive state representations. In Proceedings of the Twenty-Ninth Conference on Uncer-
tainty in Artificial Intelligence, UAI 2013, Bellevue, WA, USA, August 11-15, 2013, 2013.
3.6.2

Dhruba Borthakur. Petabyte scale databases and storage systems at facebook. In Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management of Data, pages
1267-1268, 2013. 7.4

Nicolas Bruno and Surajit Chaudhuri. Automatic physical database tuning: A relaxation-
based approach. In Proceedings of the 2005 ACM SIGMOD international conference on
Management of data, pages 227-238, 2005. 6.1

Nicolas Bruno and Surajit Chaudhuri. An online approach to physical design tuning. In
2007 IEEE 23rd International Conference on Data Engineering, pages 826-835. IEEE, 2007.
5,64

Carnegne Mellon Database Group. Noisepage. https://noise.page/, 2020. 1, 4

Emmanuel Cecchet, Rahul Singh, Upendra Sharma, and Prashant Shenoy. Dolly:
Virtualization-driven database provisioning for the cloud. VEE ’11, pages 51-62, 2011.
6.1

S. Ceri, S. Navathe, and G. Wiederhold. Distribution design of logical database schemas.
IEEE Trans. Softw. Eng., 9(4):487-504, 1983. ISSN 0098-5589. doi: http://dx.doi.org/10.
1109/TSE.1983.234957. 6.1

Stefano Ceri, Shamkant Navathe, and Gio Wiederhold. Distribution design of logical
database schemas. IEEE Transactions on Software Engineering, (4):487-504, 1983. 6.1

Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection for discrete
sequences: A survey. IEEE transactions on knowledge and data engineering, 24(5):823-839,
2010. 7.1

Guillaume M JB Chaslot, Mark HM Winands, H JAAP VAN DEN HERIK, Jos WHM Uiter-
wijk, and Bruno Bouzy. Progressive strategies for monte-carlo tree search. New Mathe-
matics and Natural Computation, 4(03):343-357, 2008. 5.1.3

Surajit Chaudhuri and Vivek Narasayya. Autoadmin “what-if” index analysis utility.
ACM SIGMOD Record, 27(2):367-378, 1998. 5.5, 6.1, 6.1

Surajit Chaudhuri and Vivek Narasayya. Self-tuning database systems: a decade of
progress. In Proceedings of the 33rd international conference on Very large data bases,
pages 3-14, 2007. 1, 2.1, 6.1, 6.1

Surajit Chaudhuri and Vivek R. Narasayya. An efficient cost-driven index selection tool
for microsoft SQL server. VLDB, pages 146-155, 1997. ISBN 1-55860-470-7. 1, 2.2, 3.6.6,
5.1.1, 5.2, 5.6.1

110

https://noise.page/

[47]

[48]

[52]
[53]

[54]

[55]

[56]

[59]

[60]

[61]

Surajit Chaudhuri and Gerhard Weikum. Rethinking database system architecture: To-
wards a self-tuning RISC-style database system. In VLDB, pages 1-10, 2000. 6.1, 6.1

Surajit Chaudhuri, Ashish Kumar Gupta, and Vivek Narasayya. Compressing sql work-
loads. In Proceedings of the 2002 International Conference on Management of Data, pages
488-499. ACM, 2002. 2.2,3.4.1, 1, 6.2

Eunkyoung G Cho, Kristin A Thoney, Thom] Hodgson, and Russell E King. Supply chain
planning: Rolling horizon scheduling of multi-factory supply chains. In Proceedings of
the 35th conference on Winter simulation: driving innovation, pages 1409-1416. Citeseer,
2003. 5.1.2

Shumo Chu, Daniel Li, Chenglong Wang, Alvin Cheung, and Dan Suciu. Demonstration
of the cosette automated sql prover. In Proceedings of the 2017 International Conference
on Management of Data, pages 1591-1594. ACM, 2017. 3.3

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In
International conference on computers and games, pages 72—83. Springer, 2006. 5, 5.1.3

Andrew Crotty. Hist-tree: Those who ignore it are doomed to learn. In CIDR, 2021. 6.5

Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel R Madden. Schism: a
workload-driven approach to database replication and partitioning. 2010. 6.1

Carlo Curino, Evan PC Jones, Samuel Madden, and Hari Balakrishnan. Workload-aware
database monitoring and consolidation. In Proceedings of the 2011 ACM SIGMOD Inter-
national Conference on Management of data, pages 313-324, 2011. 6.1

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Elastras: An elastic, scalable, and
self-managing transactional database for the cloud. ACM Trans. Database Syst., 38(1):
5:1-5:45, April 2013. 6.1

Sudipto Das, Feng Li, Vivek R Narasayya, and Arnd Christian Konig. Automated demand-
driven resource scaling in relational database-as-a-service. In Proceedings of the 2016
International Conference on Management of Data, pages 1923-1934. ACM, 2016. 3, 6.1,
6.1, 6.2

Sudipto Das, Feng Li, and et al. Automated demand-driven resource scaling in relational
database-as-a-service. SIGMOD, pages 1923-1934, 2016. 1, 2.2

Sudipto Das, Miroslav Grbic, Igor Ilic, Isidora Jovandic, Andrija Jovanovic, Vivek R
Narasayya, Miodrag Radulovic, Maja Stikic, Gaoxiang Xu, and Surajit Chaudhuri. Auto-
matically indexing millions of databases in microsoft azure sql database. In Proceedings
of the 2019 International Conference on Management of Data, pages 666—679, 2019. 1, 2.2,
4.1.2,5,5.1.1,5.2,5.6.1,7.2

Debabrata Dash, Neoklis Polyzotis, and Anastasia Ailamaki. Cophy: A scalable, portable,
and interactive index advisor for large workloads. Proceedings of the VLDB Endowment,
4(6), 2011. 5.1.1, 6.1

B.K. Debnath, DJ. Lilja, and M.F. Mokbel. SARD: A statistical approach for ranking
database tuning parameters. In ICDEW, pages 11-18, 2008. 1

Kyle Deeds, Brian Hentschel, and Stratos Idreos. Stacked filters: learning to filter by

111

[62]

[63]

[64]

[65]

structure. Proceedings of the VLDB Endowment, 14(4):600-612, 2020. 6.5

Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Graham
Wood. Automatic performance diagnosis and tuning in oracle. CIDR, 2005. 1, 6.1

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux. Oltp-
bench: An extensible testbed for benchmarking relational databases. Proceedings of the
VLDB Endowment, 7(4):277-288, 2013. 3.6.11

Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux. Oltp-
bench: An extensible testbed for benchmarking relational databases. Proceedings of the
VLDB Endowment, 7(4):277-288, 2013. 3.6.11,4.7, 5.6

Bailu Ding, Sudipto Das, Ryan Marcus, Wentao Wu, Surajit Chaudhuri, and Vivek R
Narasayya. Ai meets ai: Leveraging query executions to improve index recommenda-
tions. In Proceedings of the 2019 International Conference on Management of Data, pages
1241-1258. ACM, 2019. 2.2

[66] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li, Hantian

Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann, et al. Alex: an up-
datable adaptive learned index. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 969-984, 2020. 6.5

[67] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. Tsunami: a learned

multi-dimensional index for correlated data and skewed workloads. Proceedings of the
VLDB Endowment, 14(2):74-86, 2020. 6.5

[68] Jialin Ding, Umar Farooq Minhas, Badrish Chandramouli, Chi Wang, Yinan Li, Ying Li,

Donald Kossmann, Johannes Gehrke, and Tim Kraska. Instance-optimized data layouts
for cloud analytics workloads. In Proceedings of the 2021 International Conference on
Management of Data, pages 418-431, 2021. 2.2

Yadolah Dodge and Daniel Commenges. The Oxford dictionary of statistical terms. Oxford
University Press on Demand, 2006. 4.3.2, 4.4, 4.7.5

Carlton Downey, Ahmed Hefny, Byron Boots, Geoffrey J] Gordon, and Boyue Li. Pre-
dictive state recurrent neural networks. In Advances in Neural Information Processing
Systems, pages 6055-6066, 2017. 3.6.2

Naigiao Du, Xiaojun Ye, and Jianmin Wang. Towards workflow-driven database sys-
tem workload modeling. In Proceedings of the Second International Workshop on Testing
Database Systems, page 10. ACM, 2009. 6.2

Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database configura-
tion parameters with ituned. Proceedings of the VLDB Endowment, 2(1):1246-1257, 2009.
2.2,6.1,6.1

[73] Jennie Duggan, Ugur Cetintemel, Olga Papaemmanouil, and Eli Upfal. Performance pre-

diction for concurrent database workloads. In Proceedings of the 2011 ACM SIGMOD
International Conference on Management of data, pages 337-348. ACM, 2011. 4,4.1.1, 6.1,
6.3

[74] Jennie Duggan, Yun Chi, Hakan Hacigumus, Shenghuo Zhu, and Ugur Cetintemel. Pack-

112

(81]

ing light: Portable workload performance prediction for the cloud. In Data Engineering
Workshops (ICDEW), 2013 IEEE 29th International Conference on, pages 258-265. IEEE,
2013. 4,4.1.1,6.3

Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya, and Surajit
Chaudhuri. Selectivity estimation for range predicates using lightweight models. Pro-
ceedings of the VLDB Endowment, 12(9):1044-1057, 2019. 4.2, 6.5

Christof Ebert, Gorka Gallardo, Josune Hernantes, and Nicolas Serrano. Devops. Ileee
Software, 33(3):94-100, 2016. 1

Said S Elnaffar and Pat Martin. An intelligent framework for predicting shifts in the
workloads of autonomic database management systems. 3

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A density-based algo-
rithm for discovering clusters in large spatial databases with noise. In kdd, volume 96,
pages 226—231, 1996. 3.4.2

Martin Ester, Hans-Peter Kriegel, Jorg Sander, Michael Wimmer, and Xiaowei Xu. Incre-
mental clustering for mining in a data warehousing environment. In VLDB, volume 98,
pages 323-333, 1998. 3.4.2

Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-dynamic compressed
learned index with provable worst-case bounds. Proceedings of the VLDB Endowment, 13
(8):1162-1175, 2020. 6.5

Fakultit F/jr Informatik, Y Bengio, Paolo Frasconi, and Jfirgen Schmidhuber. Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies. 03 2003. 3.5.1

[82] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. An-

(83]

nals of statistics, pages 1189-1232, 2001. 4.5.4

Archana Ganapathi, Harumi Kuno, Umeshwar Dayal, Janet L Wiener, Armando Fox,
Michael Jordan, and David Patterson. Predicting multiple metrics for queries: Better
decisions enabled by machine learning. In International Conference on Data Engineering,
pages 592-603. IEEE, 2009. 3.4.1, 4, 6.1, 6.3

Antara Ghosh, Jignashu Parikh, Vibhuti S Sengar, and Jayant R Haritsa. Plan selection
based on query clustering. In Proceedings of the 28th International Conference on Very
Large Data Bases, pages 179-190. VLDB Endowment, 2002. 3.4.1

Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana
Kagal. Explaining explanations: An overview of interpretability of machine learning.
In 2018 IEEE 5th International Conference on data science and advanced analytics (DSAA),
pages 80-89. IEEE, 2018. 4

[86] Jonathan Goldstein and Per-Ake Larson. Optimizing queries using materialized views: a

(87]

(88]

practical, scalable solution. ACM SIGMOD Record, 30(2):331-342, 2001. 6.1

Zhenhuan Gong, Xiaohui Gu, and John Wilkes. Press: Predictive elastic resource scal-
ing for cloud systems. In International Conference on Network and Service Management
(CNSM), pages 9-16. leee, 2010. 6.1, 6.2

Le Gruenwald and Margaret H Eich. Selecting a database partitioning technique. Journal

113

(89]

[90]

[95]

[96]

[97]

[101]

[102]

[103]

of Database Management (JDM), 4(3):27-39, 1993. 6.1

Guoliang Li, Xuanhe Zhou, Ji Sun, Xiang Yu, Yue Han, Lianyuan Jin, Wenbo Li, Tianqing
Wang, and Shifu Li. opengauss: An autonomous database system. Proceedings of the
VLDB Endowment, 14(12):3028-3041, 2021. 6.1, 6.4, 6.5

Chetan Gupta, Abhay Mehta, and Umeshwar Dayal. Pqr: Predicting query execution
times for autonomous workload management. In International Conference on Autonomic
Computing, pages 13-22. IEEE, 2008. 6.3

Himanshu Gupta and Inderpal Singh Mumick. Selection of views to materialize under
a maintenance cost constraint. In International Conference on Database Theory, pages
453-470. Springer, 1999. 6.1

Himanshu Gupta, Venky Harinarayan, Anand Rajaraman, and Jeffrey D. Ullman. Index
selection for olap. ICDE, pages 208-219, 1997. ISBN 0-8186-7807-0. 1

Michael Hammer and Arvola Chan. Index selection in a self-adaptive data base manage-
ment system. In SIGMOD, pages 1-8, 1976. 2.1

Yue Han, Guoliang Li, Haitao Yuan, and Ji Sun. An autonomous materialized view man-
agement system with deep reinforcement learning. In 2021 IEEE 37th International Con-
ference on Data Engineering (ICDE), pages 2159-2164. IEEE, 2021. 6.1, 6.1

Joseph M Hellerstein, Michael Stonebraker, and James Hamilton. Architecture of a
database system. Now Publishers Inc, 2007. 2.3

Florian Herzog. Strategic portfolio management for long-term investments: An optimal
control approach. ETH Zurich, 2005. 5.1.2

Benjamin Hilprecht, Andreas Schmidt, Moritz Kulessa, Alejandro Molina, Kristian Ker-
sting, and Carsten Binnig. Deepdb: learn from data, not from queries! Proceedings of the
VLDB Endowment, 13(7):992-1005, 2020. 4.7.5, 6.5

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997. 3.5.1

Marc Holze and Norbert Ritter. Towards workload shift detection and prediction for
autonomic databases. In Proceedings of the ACM first Ph. D. workshop in CIKM, pages
109-116. ACM, 2007. 3

Marc Holze and Norbert Ritter. Autonomic databases: Detection of workload shifts with
n-gram-models. In East European Conference on Advances in Databases and Information
Systems, pages 127-142. Springer, 2008. 3, 6.2

Marc Holze, Claas Gaidies, and Norbert Ritter. Consistent on-line classification of dbs
workload events. In Proceedings of the 18th ACM conference on Information and knowledge
management, pages 1641-1644. ACM, 2009. 3, 6.2

Marc Holze, Ali Haschimi, and Norbert Ritter. Towards workload-aware self-
management: Predicting significant workload shifts. In 26th International Conference
on Data Engineering Workshops (ICDEW), pages 111-116. IEEE, 2010. 3, 6.2

Boming Huang, Yuxiang Huan, Li Da Xu, Lirong Zheng, and Zhuo Zou. Automated

114

[104]
[105]

trading systems statistical and machine learning methods and hardware implementation:
a survey. Enterprise Information Systems, 13(1):132-144, 2019. 2.3

Peter] Huber. Robust statistics, volume 523. John Wiley & Sons, 2004. 4.5.2, 4.5.4

Sadeka Islam, Jacky Keung, Kevin Lee, and Anna Liu. Empirical prediction models for
adaptive resource provisioning in the cloud. Future Generation Computer Systems, 28(1):
155-162, 2012. 3.6.2

[106] Jie Jao. Qppnet in pytorch. https://github.com/rabbit721/QPPNet. 4.7.3

[107]

[108]

[109]

[110]

TS Jayram, Phokion G Kolaitis, and Erik Vee. The containment problem for real conjunc-
tive queries with inequalities. In Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 80-89. ACM, 2006. 3.3

Anant Jhingran. Moving up the food chain: Supporting e-commerce applications on
databases. ACM SIGMOD Record, 29(4):50-54, 2000. 7.4

Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. Selecting subex-
pressions to materialize at datacenter scale. Proceedings of the VLDB Endowment, 11(7):
800-812, 2018. 6.1

Tarun Kathuria and S Sudarshan. Efficient and provable multi-query optimization. In
Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, pages 53-67, 2017. 6.1

[111] Jeffrey O. Kephart. Research challenges of autonomic computing. ICSE *05, pages 15-22,

[112]

[113]

[114]

[115]

[116]

2005. 6.1

Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter A. Boncz, and Alfons
Kemper. Learned cardinalities: Estimating correlated joins with deep learning. In CIDR
2019, 9th Biennial Conference on Innovative Data Systems Research, Asilomar, CA, SA,
January 13-16, 2019, Online Proceedings, 2019. URL http://cidrdb.org/cidr2019/papers/
p101-kipf-cidr19.pdf. 4.2, 6.5

Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper, Tim
Kraska, and Thomas Neumann. Radixspline: a single-pass learned index. In Proceedings
of the Third International Workshop on Exploiting Artificial Intelligence Techniques for Data
Management, pages 1-5, 2020. 6.5

Levente Kocsis and Csaba Szepesvari. Bandit based monte-carlo planning. In European
conference on machine learning, pages 282-293. Springer, 2006. 5.3.1, 5.3.2

Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy estimation and
model selection. In [jcai, volume 14, pages 1137-1145. Montreal, Canada, 1995. 4.5.4

André Kohn, Viktor Leis, and Thomas Neumann. Adaptive execution of compiled queries.
In ICDE, pages 197-208, 2018. 4.3.2

[117] Jan Kossmann. Self-driving: From general purpose to specialized dbmss. In Proceedings

of the VLDB 2018 PhD Workshop, 2018. 2.1

[118] Jan Kossmann, Stefan Halfpap, Marcel Jankrift, and Rainer Schlosser. Magic mirror in

my hand, which is the best in the land? an experimental evaluation of index selection

115

https://github.com/rabbit721/QPPNet
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p101-kipf-cidr19.pdf

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

algorithms. Proceedings of the VLDB Endowment, 13(12):2382-2395, 2020. 5, 6.1

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for
learned index structures. In Proceedings of the 2018 International Conference on Manage-
ment of Data, pages 489-504, 2018. 6.5

Tim Kraska, Mohammad Alizadeh, Alex Beutel, H Chi, Ani Kristo, Guillaume Leclerc,
Samuel Madden, Hongzi Mao, and Vikram Nathan. Sagedb: A learned database system.
In CIDR, 2019. 6.5

Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion Stoica.
Learning to optimize join queries with deep reinforcement learning. arXiv preprint
arXiv:1808.03196, 2018. 6.5

Max Kuhn, Kjell Johnson, et al. Applied predictive modeling, volume 26. Springer, 2013.
4.1.2

Sushil Kumar. Oracle Database 10g: The self-managing database, November 2003. White
Paper. 1, 2.1, 2.2, 6.1

Ludmila I Kuncheva and Christopher] Whitaker. Measures of diversity in classifier en-
sembles and their relationship with the ensemble accuracy. Machine learning, 51(2):181-
207, 2003. 3.6.2

Eva Kwan, Sam Lightstone, Adam Storm, and Leanne Wu. Automatic configuration for
IBM DB2 universal database. Technical report, IBM, jan 2002. 2.2, 2.2, 6.1, 6.1

Wilburt Juan Labio, Dallan Quass, and Brad Adelberg. Physical database design for data
warehouses. In Proceedings 13th International Conference on Data Engineering, pages 277-
288. IEEE, 1997. 1

Hai Lan, Zhifeng Bao, and Yuwei Peng. An index advisor using deep reinforcement learn-
ing. In Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pages 2105-2108, 2020. 6.1

Giovanni Lanfranchi, Pietro Della Peruta, Antonio Perrone, and Diego Calvanese. To-
ward a new landscape of systems management in an autonomic computing environment.
IBM Systems journal, 42(1):119-128, 2003. 1

Wolfgang Lehner, Bobbie Cochrane, H Pirahesh, and Markos Zaharioudakis. Applying
mass query optimization to speed up automatic summary table refresh. In Proceedings of
the International Conference on Data Engineering, 2001. 6.1

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and Thomas
Neumann. How good are query optimizers, really? Proceedings of the VLDB Endowment,
9(3):204-215, 2015. 4.2

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. Qtune: A query-aware database tuning
system with deep reinforcement learning. volume 12, pages 2118-2130. VLDB Endow-
ment, 2019. 2.2, 6.1, 6.1

Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. Qtune: A query-aware database tuning
system with deep reinforcement learning. Proceedings of the VLDB Endowment, 12(12):
2118-2130, 2019. 1,5,5.1.1

116

[133] Jiexing Li, Arnd Christian Konig, Vivek Narasayya, and Surajit Chaudhuri. Robust esti-

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

mation of resource consumption for sql queries using statistical techniques. Proceedings
of the VLDB Endowment, 5(11):1555-1566, 2012. 4,4.1.1,4.1.2,4.1.2,4.3.3,4.5.2, 4.7, 4.7.3,
6.1, 6.3

Xi Liang, Aaron J Elmore, and Sanjay Krishnan. Opportunistic view materialization with
deep reinforcement learning. arXiv preprint arXiv:1903.01363, 2019. 6.1, 6.1

Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest. R
news, 2(3):18-22, 2002. 4.5.4

Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque, Lingjia Tang,
and Jason Mars. The architectural implications of autonomous driving: Constraints and
acceleration. In Proceedings of the Twenty-Third International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 751-766, 2018. 6.1

Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and Geof-
frey J Gordon. Query-based workload forecasting for self-driving database management
systems. In Proceedings of the 2018 ACM International Conference on Management of Data,
SIGMOD 18, 2018. 2.3, 4, 4.2,4.5.3,4.7.4, 5, 5.3.3, 5.6.1, 5.6.1

Lin Ma, Bailu Ding, Sudipto Das, and Adith Swaminathan. Active learning for ml en-
hanced database systems. In Proceedings of the 2020 ACM SIGMOD International Confer-
ence on Management of Data, pages 175-191, 2020. 4.1.2

Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen Lim,
Prashanth Menon, and Andrew Pavlo. Mb2: Decomposed behavior modeling for self-

driving database management systems. In Proceedings of the 2021 International Conference
on Management of Data, pages 1248-1261, 2021. 5.2

Ryan Marcus and Olga Papaemmanouil. Deep reinforcement learning for join order enu-
meration. pages 3:1-3:4, 2018. URL http://doi.acm.org/10.1145/3211954.3211957. 6.5

Ryan Marcus and Olga Papaemmanouil. Plan-structured deep neural network models for
query performance prediction. Proceedings of the VLDB Endowment, 12(11):1733-1746,
2019. 4,4.1.1,4.1.2,4.1.2,4.5.2,4.7,4.7.3, 6.3

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh, Tim
Kraska, Olga Papaemmanouil, and Nesime Tatbul. Neo: A learned query optimizer. Pro-
ceedings of the VLDB Endowment, 12(11), 2019. 6.5

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Nesime Tatbul, Mohammad Alizadeh, and
Tim Kraska. Bao: Making learned query optimization practical. In Proceedings of the 2021
International Conference on Management of Data, pages 1275-1288, 2021. 6.5

Patrick Martin, Said Elnaffar, and Ted Wasserman. Workload models for autonomic
database management systems. In International Conference on Autonomic and Au-
tonomous Systems, pages 10-10. IEEE, 2006. 3

[145] Jacob Mattingley, Yang Wang, and Stephen Boyd. Receding horizon control. IEEE Control

[146]

Systems Magazine, 31(3):52-65, 2011. 5, 5.1.2
Prashanth Menon and Andrew Pavlo Amadou Ngom, Todd C. Mowry. Permutable com-

117

http://doi.acm.org/10.1145/3211954.3211957

[147]

[148]

[149]
[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

piled queries: Dynamically adapting compiled queries without recompiling. Under Sub-
mission, 2020. 4.3.2

Kristi Morton, Magdalena Balazinska, Dan Grossman, Robert Kosara, and Jock Mackin-
lay. Public data and visualizations: How are many eyes and tableau public used for
collaborative analytics? ACM SIGMOD Record, 43(2):17-22, 2014. 7.4

Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden. Performance and
resource modeling in highly-concurrent OLTP workloads. In Proceedings of the 2013
International Conference on Management of data, pages 301-312. ACM, 2013. 3, 3.4.1, 4,
41.1,4.3.3,45.2,6.1,6.2,6.3

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012. 4.5.4

Vivek Narasayya and Manoj Syamala. Workload driven index defragmentation. In Data
Engineering (ICDE), 2010 IEEE 26th International Conference on, pages 497-508. IEEE, 2010.
6.3

Dushyanth Narayanan, Eno Thereska, and Anastassia Ailamaki. Continuous resource
monitoring for self-predicting dbms. In 13th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, pages 239-248.
IEEE, 2005. 1, 3, 4,4.1.1,4.3.3, 4.5.2, 6.1, 6.2

Thomas Neumann. Efficiently compiling efficient query plans for modern hardware.
Proceedings of the VLDB Endowment, 4(9):539-550, 2011. 4.7.3

Simo Neuvonen, Antoni Wolski, Markku Manner, and Vilho Raatikka. Telecom-
munication application transaction processing (tatp) benchmark description. http://
tatpbenchmark.sourceforge.net/, July 2011. 4.7

David W Opitz and Richard Maclin. Popular ensemble methods: An empirical study.
1999. 3.5.1

Oracle. Oracle autonomous database. https://www.oracle.com/autonomous-database/,
2020. 1

Brian Paden, Michal Cép, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli. A survey
of motion planning and control techniques for self-driving urban vehicles. IEEE Trans-
actions on intelligent vehicles, 1(1):33-55, 2016. 1, 2.3, 4

Ippokratis Pandis, Pinar T6ziin, Ryan Johnson, and Anastasia Ailamaki. Plp: page latch-
free shared-everything oltp. Proceedings of the VLDB Endowment, 4(10):610-621, 2011.
6.1

Yongjoo Park, Shucheng Zhong, and Barzan Mozafari. Quicksel: Quick selectivity learn-
ing with mixture models. In Proceedings of the 2020 ACM SIGMOD International Confer-
ence on Management of Data, pages 1017-1033, 2020. 6.5

Andrew Pavlo, Evan P.C. Jones, and Stan Zdonik. On predictive modeling for optimizing
transaction execution in parallel OLTP systems. Proc. VLDB Endow., 5:85-96, October
2011. 6.2

Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma, Prashanth
Menon, Todd Mowry, Matthew Perron, Ian Quah, Siddharth Santurkar, Anthony Toma-

118

http://tatpbenchmark.sourceforge.net/
http://tatpbenchmark.sourceforge.net/
https://www.oracle.com/autonomous-database/

sic, Skye Toor, Dana Van Aken, Ziqi Wang, Yingjun Wu, Ran Xian, and Tieying Zhang.
Self-driving database management systems. In CIDR 2017, Conference on Innovative Data
Systems Research, 2017. 2.1, 3, 3.2, 3.3, 3.5, 4.4, 4.7.7

[161] Andrew Pavlo, Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth Menon, Dana
Van Aken, Lisa Lee, and Ruslan Salakhutdinov. External vs. internal: an essay on ma-
chine learning agents for autonomous database management systems. IEEE bulletin, 42
(2), 2019. 4.7.3

[162] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559—
572, 1901. 3.6.9

[163] R Malinga Perera, Bastian Oetomo, Benjamin IP Rubinstein, and Renata Borovica-Gajic.
Dba bandits: Self-driving index tuning under ad-hoc, analytical workloads with safety
guarantees. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages
600-611. IEEE, 2021. 5

[164] Gregory Piatetsky-Shapiro. The optimal selection of secondary indices is np-complete.
ACM SIGMOD Record, 13(2):72-75, 1983. 1

[165] Robi Polikar. Ensemble based systems in decision making. IEEE Circuits and systems
magazine, 6(3):21-45. 3.5.1

[166] S Joe Qin and Thomas A Badgwell. A survey of industrial model predictive control tech-
nology. Control engineering practice, 11(7):733-764, 2003. 5.1.2

[167] JunRao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. Automating physical database
design in a parallel database. SIGMOD’02, pages 558—-569. 1, 6.1, 6.1

[168] Qing Rao and Jelena Frtunikj. Deep learning for self-driving cars: Chances and chal-
lenges. In Proceedings of the 1st International Workshop on Software Engineering for Al in
Autonomous Systems, pages 35-38, 2018. 2.3

[169] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christo-
pher Ré. Snorkel: Rapid training data creation with weak supervision. In Proceedings
of the VLDB Endowment. International Conference on Very Large Data Bases, volume 11,
page 269. NIH Public Access, 2017. 4.1.2

[170] Unisphere Research. The real world of the database administrator, 2015. 1

[171] Jacques Richalet, A Rault, JL Testud, and J Papon. Model predictive heuristic control:
Applications to industrial processes. Automatica, 14(5):413-428, 1978. 6.1

[172] Jennie Rogers, Olga Papaemmanouil, and Ugur Cetintemel. A generic auto-provisioning
framework for cloud databases. In International Conference on Data Engineering Work-
shops (ICDEW), pages 63—-68. IEEE, 2010. 3, 6.1

[173] Yuji Roh, Geon Heo, and Steven Euijong Whang. A survey on data collection for machine
learning: a big data-ai integration perspective. IEEE Transactions on Knowledge and Data
Engineering, 2019. 2.3

[174] Alex Rosenberg. Improving query performance in data warehouses. Business Intelligence
Journal, 11, January 2006. 1

119

[175]

[176]

[177]

Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958. 4.5.4

Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscaling in the cloud
using predictive models for workload forecasting. In International Conference on Cloud
Computing, pages 500-507. IEEE, 2011. 3.6.2, 6.1, 6.1, 6.2

Prasan Roy, Srinivasan Seshadri, S Sudarshan, and Siddhesh Bhobe. Efficient and exten-
sible algorithms for multi query optimization. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data, pages 249-260, 2000. 6.1

[178] Jonathan Rubin and Ian Watson. Computer poker: A review. Artificial intelligence, 175

[179]

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]

(5-6):958-987, 2011. 5.1.3

Zahra Sadri, Le Gruenwald, and Eleazar Leal. Online index selection using deep rein-
forcement learning for a cluster database. In 2020 IEEE 36th International Conference on
Data Engineering Workshops (ICDEW), pages 158-161. IEEE, 2020. 6.1

Yehoshua Sagiv and Mihalis Yannakakis. Equivalences among relational expressions with
the union and difference operators. Journal of the ACM (JACM), 27(4), 1980. 3.3

S Salza and R Tomasso. A modelling tool for the performance analysis of relational
database applications. In Proc. 6th Int. Conf. on Modelling Techniques and Tools for Com-
puter Performance Evaluation, pages 323-337, 1992. 3, 6.2

Silvio Salza and Mario Terranova. Workload modeling for relational database systems.
In Database Machines, pages 233-255. Springer, 1985. 3, 6.2

Rainer Schlosser, Jan Kossmann, and Martin Boissier. Efficient scalable multi-attribute
index selection using recursive strategies. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pages 1238-1249. IEEE, 2019. 5.1.1

Thomas Schmied, Diego Didona, Andreas Doring, Thomas Parnell, and Nikolas Ioannou.
Towards a general framework for ml-based self-tuning databases. In Proceedings of the
1st Workshop on Machine Learning and Systems, pages 24-30, 2021. 6.1

Karl Schnaitter, Serge Abiteboul, Tova Milo, and Neoklis Polyzotis. On-line index selec-
tion for shifting workloads. In 2007 IEEE 23rd International Conference on Data Engineer-
ing Workshop, pages 459-468. IEEE, 2007. 5, 6.4

George AF Seber and Alan J Lee. Linear regression analysis, volume 329. John Wiley &
Sons, 2012. 4.5.4

Marco Serafini, Rebecca Taft, Aaron] Elmore, Andrew Pavlo, Ashraf Aboulnaga, and
Michael Stonebraker. Clay: fine-grained adaptive partitioning for general database
schemas. Proceedings of the VLDB Endowment, 10(4):445-456, 2016. 6.1

Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. The case for auto-
matic database administration using deep reinforcement learning. arXiv preprint
arXiv:1801.05643, 2018. 6.1

Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas, and Gautam Das. Astrid:
accurate selectivity estimation for string predicates using deep learning. Proceedings of
the VLDB Endowment, 14(4):471-484, 2020. 6.5

120

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

Yasin N Silva, Paul-Ake Larson, and Jingren Zhou. Exploiting common subexpressions for
cloud query processing. In 2012 IEEE 28th International Conference on Data Engineering,
pages 1337-1348. IEEE, 2012. 6.1

Moisés Silva-Muiioz, Alberto Franzin, and Hugues Bersini. Automatic configuration of
the cassandra database using irace. Peerj Computer Science, 7:€634, 2021. 6.1

David Silver, Aja Huang, Chris] Maddison, Arthur Guez, Laurent Sifre, George Van
Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
nature, 529(7587):484-489, 2016. 2.3, 5, 5.1.3, 5.3.1, 7.1

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A
general reinforcement learning algorithm that masters chess, shogi, and go through self-
play. Science, 362(6419):1140-1144, 2018. 5, 5.1.3, 5.3.1, 6.1, 7.1

Alex] Smola and Bernhard Schélkopf. A tutorial on support vector regression. Statistics
and computing, 14(3):199-222, 2004. 4.5.4

Binbin Song, Yao Yu, Yu Zhou, Zigiang Wang, and Sidan Du. Host load prediction with
long short-term memory in cloud computing. The Journal of Supercomputing, pages 1-15,
2017. 3.5.1

Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem, Peter
Kokosielis, and Sunil Kamath. Automatic virtual machine configuration for database
workloads. In SIGMOD, pages 953-966, 2008. 6.1, 6.1

Bureau Of Labor Statistics. = Database administrators. https://www.bls.gov/ooh/
computer-and-information-technology/database-administrators.htm, 2019. 1

Stephen M Stigler. The asymptotic distribution of the trimmed mean. The Annals of
Statistics, pages 472-477, 1973. 4.5.2

Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. LEO - DB2’s Learn-
ing Optimizer. In Proceedings of the 27th International Conference on Very Large Data
Bases, VLDB 01, pages 19-28, 2001. 6.1

Michael Stonebraker and Joey Hellerstein. What goes around comes around. Readings
in Database Systems, 4, 2005. 1

Adam J. Storm, Christian Garcia-Arellano, and et al. Adaptive self-tuning memory in
DB2. VLDB, pages 1081-1092, 2006. 1, 2.2, 2.2, 6.1

David G. Sullivan and et al. Using probabilistic reasoning to automate software tuning.
SIGMETRICS, pages 404—405, 2004. 1

[203] Ji Sun and Guoliang Li. An end-to-end learning-based cost estimator. Proceedings of the

[204]

[205]

VLDB Endowment, 13(3):307-319, 2019. 4, 6.5

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018. 6.1

Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga, Michael

121

 https://www.bls.gov/ooh/computer-and-information-technology/database-administrat ors.htm
 https://www.bls.gov/ooh/computer-and-information-technology/database-administrat ors.htm

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. P-store: An elastic database
system with predictive provisioning. In Proceedings of the 2018 International Conference
on Management of Data, pages 205-219, 2018. 2.3, 5, 5.3.3, 5.6.1

Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin Qiao,
Yue Shi, Wei Cao, and Rui Zhang. ibtune: Individualized buffer tuning for large-scale
cloud databases. Proceedings of the VLDB Endowment, 12(10):1221-1234, 2019. 1, 6.1

Zaiyong Tang and Paul A Fishwick. Feedforward neural nets as models for time series
forecasting. ORSA journal on computing, 5(4):374-385, 1993. 3.6.2

The Transaction Processing Council. TPC-C Benchmark (Revision 5.11.0). http://www.
tpc.org/tpce/, February 2010. 4.7, 5.6

The Transaction Processing Council. TPC-H Benchmark (Revision 2.16.0). http://www.
tpc.org/tpch/, June 2013. 4.7

Sergios Theodoridis and Konstantinos Koutroumbas. Pattern recognition. Elsevier, 2003.
4.1.2

Wenhu Tian, Pat Martin, and Wendy Powley. Techniques for automatically sizing mul-
tiple buffer pools in DB2. CASCON, pages 294-302, 2003. 1, 6.1

Boris A Trakhtenbrot. Impossibility of an algorithm for the decision problem in finite
classes. Doklady Akademii Nauk SSSR, 70:569-572, 1950. 3.3

Khai Q Tran, Jeffrey F Naughton, Bruhathi Sundarmurthy, and Dimitris Tsirogiannis.
Jecb: A join-extension, code-based approach to oltp data partitioning. In Proceedings of
the 2014 ACM SIGMOD International Conference on Management of Data, pages 39-50,
2014. 6.1

G. Valentin, M. Zuliani, and et al. DB2 advisor: an optimizer smart enough to recommend
its own indexes. ICDE, pages 101-110, 2000. 1, 5.1.1, 6.1

Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. Automatic
database management system tuning through large-scale machine learning. In Proceed-
ings of the 2017 ACM International Conference on Management of Data, pages 1009-1024,
2017. 1,5,5.1.1,5.2, 7.3

Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic
database management system tuning through large-scale machine learning. In Proceed-
ings of the 2017 ACM International Conference on Management of Data, SIGMOD ’17, pages
1009-1024, 2017. 2.2, 4.1.2, 6.1

Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang, Chris-
tian Bilien, and Andrew Pavlo. An inquiry into machine learning-based automatic con-
figuration tuning services on real-world database management systems. Proceedings of
the VLDB Endowment, 14(7):1241-1253, 2021. 6.1, 7.3

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal Gupta,
Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili, and Xi-
aofeng Bao. Amazon aurora: Design considerations for high throughput cloud-native
relational databases. In Proceedings of the 2017 ACM International Conference on Manage-

122

http://www.tpc.org/tpcc/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

ment of Data, pages 1041-1052, 2017. 2.2

[219] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical

Software (TOMS), 11(1):37-57, 1985. 3.3

[220] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. Demonstrating udo: A unified

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

approach for optimizing transaction code, physical design, and system parameters via re-
inforcement learning. In Proceedings of the 2021 International Conference on Management
of Data, pages 2794-2797, 2021. 5, 6.4

Wei Wang, Meihui Zhang, Gang Chen, H. V. Jagadish, Beng Chin Ooi, and Kian-Lee Tan.
Database meets deep learning: Challenges and opportunities. SIGMOD Rec., 45(2):17-22,
September 2016. URL http://doi.acm.org/10.1145/3003665.3003669. 6.5

Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zabback. Self-tuning
database technology and information services: from wishful thinking to viable engineer-
ing. In VLDB’02: Proceedings of the 28th International Conference on Very Large Databases,
pages 20-31. Elsevier, 2002. 6.1, 6.1

Kyu-Young Whang. Index selection in relational databases. In Foundations of Data Orga-
nization, pages 487-500. Springer, 1987. 6.1

David Wiese, Gennadi Rabinovitch, Michael Reichert, and Stephan Arenswald. Auto-
nomic tuning expert: A framework for best-practice oriented autonomic database tuning.
In Proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative
Research: Meeting of Minds, CASCON ’08, pages 3:27-3:41, 2008. 2.2, 6.1, 6.1

Ronald J Williams and David Zipser. A learning algorithm for continually running fully
recurrent neural networks. Neural computation, 1(2):270-280, 1989. 3.5.1

Andrew Witkowski, Rafi Ahmed, and Murali Thiyagarajan. Oracle autonomous db: Chal-
lenges and some solutions. 2nd International Workshop on Applied AI for Database
Systems and Applications, 2020. URL https://sites.google.com/view/aidb2020/home/
invited-talks#h.pyh4j69fn27v. 1

Lucas Woltmann, Claudio Hartmann, Maik Thiele, Dirk Habich, and Wolfgang Lehner.
Cardinality estimation with local deep learning models. In Proceedings of the Second Inter-
national Workshop on Exploiting Artificial Intelligence Techniques for Data Management,
pages 1-8, 2019. 4.2, 6.5

Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi Qiao, and
Sriram Rao. Towards a learning optimizer for shared clouds. Proceedings of the VLDB
Endowment, 12(3):210-222, 2018. 4.2, 6.5

[229] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing. Up-

[230]

[231]

datable learned index with precise positions. Proceedings of the VLDB Endowment, 14(8):
1276-1288, 2021. 6.5

Wentao Wu, Yun Chi, Hakan Hacigiimiis, and Jeffrey F Naughton. Towards predicting
query execution time for concurrent and dynamic database workloads. Proceedings of the
VLDB Endowment, 6(10):925-936, 2013. 4, 4.1.1, 4.5.2, 6.3

Wentao Wu, Yun Chi, Shenghuo Zhu, Junichi Tatemura, Hakan Hacigiimiis, and Jeffrey F

123

http://doi.acm.org/10.1145/3003665.3003669
https://sites.google.com/view/aidb2020/home/invited-talks#h.pyh4j69fn27v
https://sites.google.com/view/aidb2020/home/invited-talks#h.pyh4j69fn27v

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

[241]

[242]

Naughton. Predicting query execution time: Are optimizer cost models really unusable?
In Data Engineering (ICDE), 2013 IEEE 29th International Conference on, pages 1081-1092.
IEEE, 2013. 4.7.3, 6.3

Wentao Wu, Xi Wu, Hakan Haciglimiig, and Jeffrey F Naughton. Uncertainty aware
query execution time prediction. Proceedings of the VLDB Endowment, 7(14):1857-1868,
2014. 6.3

Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical evaluation
of in-memory multi-version concurrency control. Proceedings of the VLDB Endowment,
10(7):781-792, 2017. 4.2

Khaled Yagoub, Pete Belknap, Benoit Dageville, Karl Dias, Shantanu Joshi, and Hailing
Yu. Oracle’s sql performance analyzer. IEEE Data Engineering Bulletin, 31(1), 2008. 2.2,
6.1

Zongheng Yang, Eric Liang, Amog Kamsetty, Chenggang Wu, Yan Duan, Xi Chen, Pieter
Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. Deep unsupervised car-
dinality estimation. Proceedings of the VLDB Endowment, 13(3):279-292, 2019. 4.2, 4.7.5,
6.5

Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li, Umar Fa-
rooq Minhas, Per-Ake Larson, Donald Kossmann, and Rajeev Acharya. Qd-tree: Learning
data layouts for big data analytics. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 193-208, 2020. 2.2

Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and Ion
Stoica. Neurocard: one cardinality estimator for all tables. Proceedings of the VLDB
Endowment, 14(1):61-73, 2020. 6.5

Yiwen Zhu, Matteo Interlandi, Abhishek Roy, Krishnadhan Das, Hiren Patel, Malay Bag,
Hitesh Sharma, and Alekh Jindal. Phoebe: A learning-based checkpoint optimizer. Pro-
ceedings of the VLDB Endowment, 14(11):2505-2518, 2021. 6.5

Dong Young Yoon, Ning Niu, and Barzan Mozafari. Dbsherlock: A performance diagnos-
tic tool for transactional databases. In Proceedings of the 2016 International Conference on
Management of Data, pages 1599-1614. ACM, 2016. 4, 4.1.1, 6.1, 6.2

Philip S. Yu, M-S Chen, H-U Heiss, and Sukho Lee. On workload characterization of
relational database environments. IEEE Transactions on Software Engineering, 18(4):347—
355, 1992. 6.2

Xiang Yu, Guoliang Li, Chengliang Chai, and Nan Tang. Reinforcement learning with
tree-Istm for join order selection. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 1297-1308. IEEE, 2020. 6.5

Haitao Yuan, Guoliang Li, Ling Feng, Ji Sun, and Yue Han. Automatic view generation
with deep learning and reinforcement learning. In 2020 IEEE 36th International Conference
on Data Engineering (ICDE), pages 1501-1512. IEEE, 2020. 6.1, 6.1

[243] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao

Wang, Tianheng Cheng, Li Liu, et al. An end-to-end automatic cloud database tuning

124

[244]

[245]

[246]

[247]

[248]

[249]

[250]
[251]

[252]

[253]

[254]

system using deep reinforcement learning. In Proceedings of the 2019 International Con-
ference on Management of Data, SSIGMOD 19, pages 415-432, 2019. 2.2, 6.1, 6.1

Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yangtao
Wang, Tianheng Cheng, Li Liu, et al. An end-to-end automatic cloud database tuning
system using deep reinforcement learning. In Proceedings of the 2019 International Con-
ference on Management of Data, pages 415-432, 2019. 1, 5, 5.1.1

Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying Zhang,
and Bin Cui. Restune: Resource oriented tuning boosted by meta-learning for cloud
databases. In Proceedings of the 2021 International Conference on Management of Data,
pages 2102-2114, 2021. 6.1

Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, and Wolfgang Lehner. Effi-
cient exploitation of similar subexpressions for query processing. In Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pages 533-544, 2007.
6.1

Qi Zhou, Joy Arulraj, Shamkant Navathe, William Harris, and Jinpeng Wu. Sia: Optimiz-
ing queries using learned predicates. In Proceedings of the 2021 International Conference
on Management of Data, pages 2169-2181, 2021. 6.5

Xuanhe Zhou, Lianyuan Jin, Ji Sun, Xinyang Zhao, Xiang Yu, Jianhua Feng, Shifu Li,
Tianqing Wang, Kun Li, and Luyang Liu. Dbmind: A self-driving platform in opengauss.
6.5

Xuanhe Zhou, Ji Sun, Guoliang Li, and Jianhua Feng. Query performance prediction for
concurrent queries using graph embedding. Proceedings of the VLDB Endowment, 13(9):
1416-1428, 2020. 4, 4.1.1, 6.3

Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press, 2012. 3.5.1

Daniel C Zilio. Physical database design decision algorithms and concurrent reorganization
for parallel database systems. Citeseer, 1999. 6.1

Daniel C Zilio, Anant Jhingran, and Sriram Padmanabhan. Partitioning key selection for
a shared-nothing parallel database system. IBM T] Watson Research Center, 1994. 6.1

Daniel C. Zilio, Jun Rao, Sam Lightstone, Guy Lohman, Adam Storm, Christian Garcia-
Arellano, and Scott Fadden. DB2 design advisor: integrated automatic physical database
design. In VLDB, pages 1087-1097, 2004. ISBN 0-12-088469-0. 6.1, 6.1, 6.1

Daniel C Zilio, Calisto Zuzarte, Sam Lightstone, Wenbin Ma, Guy M Lohman, Roberta]
Cochrane, Hamid Pirahesh, Latha Colby, Jarek Gryz, Eric Alton, et al. Recommending
materialized views and indexes with the ibm db2 design advisor. In International Confer-
ence on Autonomic Computing, 2004. Proceedings., pages 180-187. IEEE, 2004. 6.1

125

	Abstract
	Acknowledgments
	1 Introduction
	2 Background
	2.1 Self-Driving DBMS
	2.2 Taxonomy
	2.3 Challenges

	3 Workload Forecasting
	3.1 Background
	3.1.1 Sample Workloads
	3.1.2 Workload Patterns
	3.1.3 Discussion

	3.2 Overview
	3.3 Pre-Processor
	3.4 Clusterer
	3.4.1 Clustering Features
	3.4.2 On-line Clustering
	3.4.3 Cluster Pruning

	3.5 Forecaster
	3.5.1 Forecasting Models
	3.5.2 Prediction Horizons & Intervals

	3.6 Experimental Analysis
	3.6.1 Number of Clusters
	3.6.2 Prediction Accuracy Evaluation
	3.6.3 Spike Prediction Evaluation
	3.6.4 Prediction Interval Evaluation
	3.6.5 Computation & Storage Overhead
	3.6.6 Automatic Index Selection
	3.6.7 Logical vs. Arrival Rate History Feature
	3.6.8 Sensitivity Analysis of
	3.6.9 Input Space for Spike Prediction
	3.6.10 Sensitivity Analysis of
	3.6.11 Predicting Noisy Workloads

	4 Behavior Modeling
	4.1 Background
	4.1.1 Behavior Modeling
	4.1.2 Challenges

	4.2 Overview
	4.3 OU-models
	4.3.1 Principles
	4.3.2 Input Features
	4.3.3 Output Labels

	4.4 Interference Model
	4.4.1 Input Features
	4.4.2 Output Labels

	4.5 Data Generation and Training
	4.5.1 Data Collection Infrastructure
	4.5.2 OU-Runners
	4.5.3 Concurrent Runners
	4.5.4 Model Training

	4.6 Handling Software Updates
	4.7 Experimental Evaluation
	4.7.1 Data Collection and Training
	4.7.2 OU-Model Accuracy
	4.7.3 OU-Model Generalization
	4.7.4 Interference Model Accuracy
	4.7.5 Model Adaptation and Robustness
	4.7.6 Hardware Context
	4.7.7 End-to-End Self-Driving Execution

	5 Action Planning
	5.1 Background
	5.1.1 Static Workload Tuning
	5.1.2 Receding Horizon Control
	5.1.3 Monte Carlo Tree Search

	5.2 Overview
	5.3 Monte Carlo Tree Search and Optimization
	5.3.1 Rollout Challenge
	5.3.2 Search Strategy Challenge
	5.3.3 Search Interval Challenge
	5.3.4 Memory Constraint Challenge

	5.4 Inference Cache
	5.5 Implementation Choices
	5.6 Evaluation
	5.6.1 Planning Quality
	5.6.2 MCTS Search Strategy
	5.6.3 Inference Cache

	6 Related Work
	6.1 Automated DBMS Tuning
	6.2 Workload Forecasting
	6.3 Behavior Modeling
	6.4 Action Planning
	6.5 Learned DBMS Components

	7 Future Work
	7.1 Error Correction and Feedback Control
	7.2 Supporting Complex DBMS Features
	7.3 Self-Driving Aggressiveness Level
	7.4 Self-Driving across the Stack
	7.5 Human-Intelligent-System Interaction

	8 Bibliography

