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Abstract

This thesis treats the theory and practice of intrinsic triangulations, and their use in 3D
mesh processing algorithms. As geometric data becomes more ubiquitous in applications
ranging from scientific computing to augmented reality to machine learning, there is a
pressing need to develop algorithms that work reliably on low-quality data. Intrinsic
triangulations provide a powerful framework for these problems, by decoupling the mesh
used to encode geometry from the one used for computation. The basic shift in perspective
is to encode the geometry of a mesh not with ordinary vertex positions, but instead with
only edge lengths.

The contributions of this thesis begin with new data structures for richly encoding
intrinsic triangulations, which support new operations necessary for applications while
remaining efficient and robust. Using these data structures, we describe a wide variety of
mesh processing operations on intrinsic triangulations, including powerful retriangulation
schemes with strong guarantees. Additionally, we demonstrate how intrinsic triangulations
can be used for tasks beyond retriangulation, introducing a new flip-based algorithm for
computing geodesic paths on surfaces. Finally, we present a generalization of intrinsic
triangulations, to offer the same benefits for less-structured data such as nonmanifold
meshes and point clouds. Throughout, we show applications to problems in geometry
processing, where intrinsic triangulations lend much-needed automatic robustness to tasks
including parameterization, vector field processing, spectral methods, and more.
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Chapter 1

Introduction

Input Mesh
(low quality)

Black Box —hidden from the user

Intrinsic Mesh
(high quality)
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transfer
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many geometric 
algorithms fail or 
produce wildly 
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geometry is 
unchanged, yet 
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preconditions of 
existing, 
well-established 
algorithms

Figure 1.1: There is a major gap between the kind of data expected by geometric algorithms, and the
quality of data encountered in real applications. One of the goals of this thesis is to build a framework
that allow existing algorithms to be applied in much more challenging scenarios. Here, a high-quality
intrinsic triangulation is overlaid on top of a low-quality input mesh, enabling an existing finite element
solver to compute a more accurate solution. Since the underlying geometry is completely unchanged,
this solution can easily be transferred back to the original mesh for further processing—without the
end user ever having to know that a transformation was applied “under the hood.”

Geometric data plays an increasingly vital role in tasks ranging from computational fabrication
to augmented reality to autonomous driving. Triangle meshes are a basic representation for 3D
geometry, playing the same central role as pixel arrays in image processing. Hence, even seemingly
small shifts in the way we think about triangle meshes can have major consequences for a wide variety
of applications. In this thesis, we will we explore what happens if we replace the ordinary extrinsic
encoding of mesh geometry, via vertex positions in �n, with an alternative intrinsic description, via
lengths associated with edges. The resulting intrinsic triangulations are far more flexible than their
traditional extrinsic counterparts, yet still provide the geometric information needed to execute many
fundamental geometry processing tasks. This thesis introduces the theory and practice of intrinsic
triangulations, from their basic representation, to new data structures and algorithms, to applications
in geometry processing.
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Euclidean
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geodesic triangulations

Euclidean geodesic intrinsic

intrinsic triangulationsintrinsic triangulations

geodesic triangulations

Euclidean
triangulations

Figure 1.2: Traditionally, mesh edges are straight line segments in Euclidean space (far left). The
much larger spaces of geodesic and intrinsic triangulations provide tremendous additional flexibility by
allowing edges to be straight paths along the surface (center left), or by just considering an abstract
collection of triangles identified along shared edges (center right).

Intrinsic triangulations bring many ideas across topology and differential geometry together in
a discrete, computational setting. In particular, the name “intrinsic” arises from a central concept
in modern differential geometry: many properties of a surface do not depend on how the surface is
embedded in space, but only on local measurements of quantities like angles and distances along the
surface. For instance, the shortest path along the surface between two points on a sheet of paper is
unchanged if the paper is rolled up into a tube (intrinsic), whereas the surface normal at a point may
be very different (extrinsic). A very good mental model is to think about maps of the Earth: although
no individual map depicts the whole planet as a round ball floating in outer space, each map conveys
very useful information about some local neighborhood. Likewise, intrinsic triangulations enable one
to inspect and manipulate local pieces of a mesh, without needing to know how (or whether) it floats
in space.

In fact, the practical utility of intrinsic triangulations comes from the ability to work with a much
larger space of meshes than can be represented via the ordinary (extrinsic) approach (Figure 1.2). In
this sense, they provide a “relaxation” of the standard picture, which in turn provides new capabilities
for geometry processing (Figure 1.3). Yet since the final set of intrinsic mesh operations looks much
like those available on an ordinary mesh, the operations can be encapsulated in a “black box” interface
that hides much of the complexity of working in the intrinsic setting. Hence, algorithms written for
intrinsic triangulations often end up looking very similar to ordinary (extrinsic) mesh code.

The framework of intrinsic triangulations is particularly useful for improving the robustness of
existing algorithms. Researchers and engineers have put tremendous effort into developing sophisti-
cated algorithms for surface mesh processing, yet these algorithms often cannot be used in practice
since preconditions on the input do not match up with the reality of actual data (e.g., coarse or
poorly-triangulated meshes from 3D printing or real-time visualization). In a perfect world, geometric
software would automatically build a triangulation “under the hood” that satisfies the preconditions of
a given algorithm, run the algorithm, then return the solution in a format usable within the original
context. Modern numerical linear algebra packages like MATLAB provide an excellent analogy: to solve
a linear system Ax = b users can just type x = A\b; the matrix A is then intelligently re-ordered and
factorized to improve stability, accuracy, and efficiency. As a result, non-expert users trivially benefit
from sophisticated, performance-tuned solvers—which has led to rapid growth of fields like image
processing, computer vision, and machine learning. Geometric computing has not yet achieved this
same level of simplicity—but the intrinsic framework described in these notes provides some important
steps in that direction.
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Figure 1.3: Conceptually, intrinsic triangles can “bend” across an underlying polyhedron, yet still flatten
out into standard triangles described by three ordinary edge lengths (left). This flexibility enables
things that are impossible with standard, extrinsic algorithms—here, a mesh with tiny input angles
becomes a geometrically identical Delaunay triangulation with angles no smaller than 30◦ (right).
Since the output is described by conventional data (connectivity + edge lengths) it can still be used
directly by many standard simulation and mesh processing algorithms.

In particular, intrinsic triangulations provide a valuable bridge between low-quality data, and
algorithms that assume high-quality input (Figure 1.1), enabling:
• algorithms that were not originally designed to be numerically robust to be successfully run on

extremely low-quality meshes,

• algorithms that were originally formulated only for the flat Euclidean plane to be applied to
curved, irregularly-tessellated surfaces, and

• algorithms designed for manifold, orientable data to be applied directly to arbitrary triangle
meshes.

The intrinsic approach also side-steps some fundamental, traditionally unavoidable challenges in
geometric computing—such as the need to trade-off the quality of geometric approximation with the
quality of individual mesh elements.

1.1 Why This Approach?

There are some good reasons for using intrinsic triangulations in practical algorithms:

• Many important problems are intrinsic. An increasingly large set of algorithms from geometric
and scientific computing are expressed in terms of surface differential operators that are inherently
intrinsic. A chief example is the discrete Laplace-Beltrami operator [Dzi88; PP93; War17], which
is the starting point for most PDE-based geometry processing, as well as sub-fields such as
spectral geometry processing [LZ09], functional maps [Ovs+16], and so on [SCV14]. Beyond
the Laplacian, other fundamental geometric quantities (curvatures, geodesic distances, the
logarithmic map, and so on) can easily be computed from intrinsic data alone. For such problems,
working in the strictly larger space of intrinsic triangulations offers, e.g., better accuracy with
fewer degrees of freedom.

• Intrinsic descriptions ignore features that don’t matter. In shape analysis (e.g., classification
or pairwise correspondence) extrinsic descriptions must somehow factor out features like rigid
motions or isometric deformations (e.g., bending of an arm)—often at great computational
expense [Hua+08; LSP08]. Intrinsic representations are oblivious to such transformations by
construction.
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• Traditional trade-offs can be avoided. Mesh generation frequently encounters a “no free
lunch” scenario where one must compromise on either mesh quality, mesh size, or geometric
approximation error. Intrinsic triangulations bypass this classic trade-off by decoupling the
triangulation used to encode shape from the one used for computation.

• Volumetric data structures are not required. Techniques for surface meshing [CDS12, Chapter
13] and robust geometry processing [JKS13; Bar+18] often depend on 3D volumetric data
structures which require significant storage, suffer from difficulties not encountered in 2D (e.g.,
“sliver” tetrahedra), and/or have trouble handling surfaces with boundary or self-intersection.
The intrinsic approach provides some of the very first non-volumetric, surface-only versions of
fundamental algorithms like Delaunay refinement (Section 4.3) and adaptive mesh refinement
(Section 4.5).

• Some important problems do not even have an extrinsic formulation. Many geometry
processing tasks are formulated by mapping a curved manifold into a flat space—e.g., surface
parameterization [SSP08a], shape recovery [IGG01; BI08], and structured meshing [Pai+15],
to name a few. Some of these problems have convex formulations only because they can pass
through the larger space of intrinsic triangulations [Luo04; Spr19]; others simply have no
meaningful definition in the extrinsic context.

More broadly, building up general-purpose tools for working in the intrinsic setting not only improves
solutions to existing problems, but prompts one to ask entirely new questions, or take completely
different approaches.

1.1.1 What Are Intrinsic Triangulations Not?

Intrinsic triangulations are not, of course, a remedy for all difficulties encountered in geometry
processing:

• Intrinsic triangulations do not improve geometric approximation quality. As discussed in
Chapter 2, a basic assumption of the intrinsic triangulation framework is that the input mesh
provides an exact description of the geometry of interest. Atomic operations are designed to
preserve the geometry exactly, and can neither degrade nor improve the approximation quality
of the input geometry—though they can significantly improve the quality of individual triangular
elements.

• Intrinsic triangulations do not repair topological defects. Likewise, the intrinsic framework
will not fill holes in the data, nor fix spurious topological features (like small handles) that result
from “upstream” algorithms like surface reconstruction. The operating assumption is that the
given topology is the correct topology. (Of course, nothing prevents one from running standard
mesh repair algorithms prior to intrinsic processing.)

• Intrinsic triangulations do not yet provide solutions for volumetric problems. Algorithms
and data structures for intrinsic processing of 2D (surface) data are at this point fairly mature;
those for working with 3D (volumetric) meshes are largely unexplored—this is a significant
opportunity for future work.

• An intrinsic triangulation is not a standard triangle mesh. Most importantly, the basic
premise of intrinsic geometry processing is to work with a larger space of triangle meshes
that cannot be expressed via ordinary flat triangles in 3D space (Figure 1.2). Of course, many
“downstream” algorithms may still require an ordinary mesh (or other standard data) as input.
Section 4.11 explores the many ways computation on intrinsic meshes can be used to facilitate
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improved computation downstream. The most basic observation is that one can typically
subdivide an intrinsic mesh into an ordinary extrinsic one (though many other options are
available).

1.2 Historical Roots

Though combinatorial triangulations have long played a role in topology, graph theory, etc., the
framework discussed in this thesis owes its greatest debt to work that considers polyhedral surfaces
from the intrinsic geometric perspective pioneered by Gauss [Gau25] and Riemann [Rie54]. One of the
first major results about the intrinsic geometry of polyhedra was Alexandrov’s uniqueness theorem for
embeddings of convex polyhedra published in the 1940s. Subsequently, Regge [Reg61] explored the
use of intrinsic triangulations to approximate the equations of general relativity. Already in these early
works we find statements that strongly resemble the modern perspective on intrinsic triangulations.
For instance, Regge writes:

“It is interesting to notice that the intrinsic geometry of M is completely fixed by the connection
matrix and the length of all edges. The connection matrix is essentially a list of all faces, edges,
and vertices of M and a list of their mutual relationship, i.e., by reading it one can decide
which vertices, edges, belong to a given face, etc. The connection matrix supplies us with all
the topological information needed in the construction of M.”

The “connection matrix” described by Regge is what we call in these notes a topological data structure
(Section 2.2), which encodes the connectivity of the mesh; he also makes the critical observation that
the edge lengths alone are sufficient to describe some of the most basic geometric quantities:

“The metric tensor on the other hand is replaced by the lengths of the edges . . . the knowledge
of the lengths of all edges of M implies the knowledge of all angles and therefore of the
deficiencies.”

In other words, one can read off the curvature of the discrete surface from the edge lengths, as
discussed in Section 2.3.6. Most importantly, Regge recognizes that the triangulation itself is superficial,
and merely serves as a “scaffolding” to define the underlying space:

“Since we are chiefly interested in the intrinsic geometry of manyfolds, we are not particularly
interested in the edges of M and we regard them as a rather immaterial convention for dividing
M into triangles, any other convention being just as good.”

The fact that the initial triangulation is not “special” is what allows us to move through a much
larger space of meshes than we can in the extrinsic setting—this perspective is discussed further in
Section 2.3.5.

In more recent years, work by Rivin [Riv94a] and others laid the foundation for algorithms by
introducing the notion of intrinsic Delaunay triangulations, which have many attractive features for
geometry processing (Section 4.1); work by Indermitte et al. [Ind+01] and Bobenko and Springborn
[BS07] establishes that such triangulations can always be found via a simple edge flip algorithm
(Section 4.2). Intrinsic Delaunay triangulations in turn lead to a canonical Laplacian for polyhedral
surfaces [BS07]—the Laplacian plays a fundamental role throughout geometry and physics, and in
particular in geometry processing algorithms based on partial differential equations (PDEs). The key
benefit of the intrinsic Laplace operator is that it depends only on the shape of a polyhedral surface,
rather than the quality of the input triangulation. Gu et al. [Gu+10] shows that in fact the discrete
Laplace operator is itself sufficient to describe the geometry of the polyhedron. Glickenstein [Gli05]
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and others generalize the Delaunay property, edge flips, and several other concepts to a richer class
of Euclidean triangulations which includes weighted, Thurston [Thu79], and duality triangulations,
showing that many of the same properties still hold. These triangulations have numerous applications
in geometry processing [Goe+14].

The machinery of intrinsic triangulations also has roots in conformal geometry processing [Luo04;
KSS06]. In particular, a recent discrete uniformization theorem [Gu+18b; Gu+18a; Spr19] guaran-
tees that any triangle mesh (no matter how poorly triangulated) admits a high-quality conformal
parameterization useful for computer graphics and geometry processing [SSP08b; GSC21b], but only
if one is allowed to change the intrinsic triangulation. Here, even though the initial and final meshes
are embeddable in Rn, intermediate triangulations may not be—providing an excellent example of
how working in a “relaxed” space provides fundamentally new opportunities for mesh processing.
These algorithms also build on an unexpected connection between Euclidean polyhedra and ideal
hyperbolic polyhedra [BPS15], which is also explored in recent work by Gillespie, Springborn, and
Crane [GSC21b].

Here, we always take the perspective of a fixed, discrete cone metric which is to be triangulated.
The perspective of triangulating a smooth manifold embedded in Rn via sampling has also been
considered [BG10; BDG13]; under sufficient sampling assumptions a Delaunay complex can always be
constructed, even in high dimension. One can also consider a more general set of triangulations on a
surface which have geodesic (locally-shortest) edges, but relax the requirement that the interior of each
triangle be Euclidean (contain no vertices). Such triangulations arise as the dual of geodesic Voronoi
diagrams [Ye+19], and similar techniques have been used for self-parameterization of meshes [Lee+98;
Liu+20; Liu+21], though the properties of such triangulations have yet to be deeply studied.

Despite the great potential of intrinsic triangulations, there are several reasons that these methods
have not yet seen broader adoption in practice. One is simply the scarcity of material aimed at a
computational audience—which this thesis aims to address. Even in mathematics it took a very long
time (until the 19th century) for the intrinsic perspective to be developed and accepted, yet the shift to
intrinsic formulation was a major step forward for the field. We are likewise optimistic that the intrinsic
perspective has the potential for major impact on geometry processing and scientific computing.

Another major deficit is that, until quite recently [Fis+07; SSC19a; GSC21a], there has been very
little work on practical data structures for intrinsic triangulations. Basic representations developed
in mathematics do not support many of the operations needed for digital geometry processing. For
instance, when studying problems in, say, geometric topology, one is often happy to consider the
coarsest triangulation of a space—and may have no need to insert vertices or split edges. In Chapter 3
we discuss several different data structures for intrinsic triangulations that support a more complete
set of operations, and examine their trade offs for practical computation.

Finally, given that general-purpose intrinsic data structures are quite new, it is not surprising that
we are just starting to see algorithms that fully take advantage of the intrinsic perspective. Chapter 4
explores how several classic algorithms for Delaunay triangulation can be generalized to the intrinsic
setting, which in turn improve accuracy and robustness for a variety of PDE-based geometry processing
tasks. Chapter 5 explores an especially interesting example, where retriangulation unrelated to the
Delaunay property is used to find geodesic curves and curve networks on surfaces. Other algorithms
consider the intrinsic perspective (e.g., [Goe+14; Liu+21]), but do not yet take advantage of the full
space of triangulations accessible via intrinsic edge flips and other intrinsic operations. Beyond this
recent work, a great deal remains to be done—Section 7.1 explores a variety of open questions and
directions for future work.
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Chapter 2

Intrinsic Triangulations

Figure 2.1: An intrinsic triangulation ex-
actly preserves the input geometry, while
changing the mesh connectivity. Hence,
if the input mesh gives an exact descrip-
tion of the geometry (as with the CAD
model at right), it will not be corrupted;
if the input exhibits noise or approxima-
tion error (as with the marching cubes
approximation at left), these errors will
get neither better nor worse.

This thesis expands the standard view of meshes to enable more flexible algorithms in geometric
computing. For this reason, we begin with some careful definitions. Though geometric computing
often considers both surface and volume meshes, we will focus primarily on surfaces. A surface mesh
describes only the boundary of a solid region—or more generally a thin “shell” which need not be the
boundary of any solid. Such meshes arise in a broad range of contexts. For instance, they might arise
from scanning a real physical surface, they may be the output of a physical simulation algorithm, or
they might be designed by an artist or engineer (see Figure 2.1).

The most important idea is that we will often work with two triangulations of the same surface:

• The extrinsic mesh is what one might ordinarily think of as a “triangle mesh:” a collection of
points in �3, connected up into triangles using straight line segments in �3.

• The intrinsic mesh is most easily thought of as another triangulation that sits “on top of” the
extrinsic mesh, whose edges are straight paths along the extrinsic mesh, rather than straight
line segments in �3. As time goes on, we’ll see that there is a much broader view of intrinsic
triangulations, which does not require them to sit on top of an extrinsic surface.
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The framework of intrinsic triangulations makes two important assumptions. First, we imagine that
the input geometry is an exact description of the shape of interest. One of the strengths of the intrinsic
approach is that (unlike conventional remeshing) it exactly preserves the given shape, which means
that one need not worry about, e.g., corrupting small features, sharp edges, or surface detail while
processing geometry. Of course, the intrinsic approach still applies even if the input only approximates
the true geometry (as with, say, 3D scans)—we simply use the “exact input” hypothesis to guide
decisions about data structures and algorithms. On the flip side, if there are defects in the input (noise,
topological errors, etc.), these features will also be retained by the intrinsic mesh. In short: intrinsic
meshes help to improve the quality of mesh elements, but do nothing to improve the quality of the
underlying geometry.

Second, we assume that the geometry is given as a polyhedral surface with flat faces, and moreover,
that some initial triangulation has been chosen for non-triangular faces. This assumption goes hand-
in-hand with the first assumption: in order to exactly preserve the geometry, we must have a clear
definition of what this geometry looks like. Nonplanar polygons (i.e., polygons where all vertices
do not sit in a common plane) do not provide a canonical definition—though some opportunities
for processing nonplanar meshes are discussed in Section 7.1. In contrast, planar polygons provide
a well-defined geometry; assuming that such polygons have already been triangulated is merely a
simplifying assumption that leads to concise descriptions of data structures and algorithms. Moreover,
in several important cases the choice of triangulation will have no effect on the final result—such
as when defining the intrinsic Delaunay Laplacian (Section 4.1), or computing discrete conformal
maps [GSC21b].

The description of a polyhedral surface can be divided into two basic pieces:

• A topological complex describes how mesh elements (vertices, edges, and faces) are connected,
without any reference to the shape, size, or location of these elements. A good analogy would
be an adjacency matrix for a graph, which indicates which nodes are connected by edges (and
nothing more). Working with intrinsic triangulations will require us to expand our notion
of connectivity beyond the usual “vertex-face” adjacency matrix common to many mesh data
structures, as discussed in Section 2.2.

• Associated geometric data provides complementary information about shape. In particular, the
geometry of an extrinsic mesh is given by ordinary vertex positions, whereas the geometry of an
intrinsic mesh is described primarily by edge lengths. Sections 2.3.1 and 2.3.3 provide further
details.

This division between topology and geometry also reflects the standard treatment differential geometry,
where a surface is often thought of as an embedding of an abstract topological surface into Rn. (For an
introduction to this perspective, see Crane et al. [Cra+13, Chapter 3].)
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2.1 Connectivity

pure simplicial
2-complex

not a simplicial
complex

not a pure
complex

Figure 2.2: In a simplicial complex,
an edge must have two distinct end-
points, and a triangle must have three
distinct vertices.

A topological triangulation T describes how a collection of ver-
tices, edges, and faces should be connected up to form a mesh.
Such triangulations describe only the connectivity of the mesh,
and make no assumptions about geometry. For instance, trian-
gles are not required to be flat, and edges are not required to
be straight.

Notation. We will refer to the vertices, edges, and faces of
any topological triangulation T as V , E, and F , resp., so that
T = (V, E, F). We use ∂ E ⊂ E to denote the set of boundary
edges, i.e., edges contained in exactly one triangle, and ∂ V ⊂ V
to denote boundary vertices, i.e., vertices contained in some
boundary edge. Individual vertices will be denoted by indices
i ∈ V . Likewise, edges and triangles will be written as pairs
i j ∈ E and triples i jk ∈ F of vertices. A quantity u at corner i of
triangle i jk will be denoted ujk

i . Sums and products appearing on the right-hand side of an expression
are implicitly restricted to simplices appearing on the left-hand side—for instance, the expression
ui =
∑

i jk vi jk means “to obtain u at vertex i, sum the quantity v over all triangles i jk containing vertex i.”
We will typically express a quantity as a map from mesh elements to some set of values—for instance,
edge lengths can be viewed as a map � : E → �>0 assigning a positive number to each edge, and
triangle normals can be viewed as a map N : F → �3 assigning three coordinates to each face. If
helpful, one can also think of this data as being encoded by column vectors, e.g., � ∈ �|E|.

We will also consider the set of halfedges Hext, directed edges associated with
each edge: for an edge ij the are two associated halfedges, one pointing from i→ j
and one from j→ i.

We will often (but not always) assume that T is manifold and orientable, as defined below. These
assumptions simplify data structures and algorithms, and are often sufficient for working with real
data—especially since one can sometimes build a “bridge” between nonmanifold meshes and algorithms
that operate only on manifold data (see Section 6.1).

nonmanifold
edge

manifold
vertex

manifold
edge

nonmanifold
vertexi

i

i
j

i

j

Manifold Triangulations. A topological trian-
gulation T is manifold if we can find a small
neighborhood around every point that can be
flattened out into the plane. More concretely,
an edge i j ∈ E \∂ E is manifold if it is contained
in exactly one or two faces. A vertex i ∈ V is
manifold if (1) all edges incident on i are are
manifold and (2) the faces incident on i form a
single edge-connected component. A triangulation T is edge-manifold if all its edges are manifold.
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orientableconsistent

inconsistent

nonorientable

Figure 2.3: A pair of triangles is consistently oriented if they disagree on the orientation of the shared
edge (left). A triangulation is orientable if all triangles can be assigned consistent orientations (center)
and nonorientable otherwise (right).

above intrinsic geometry
(unfolded)

intrinsic
connectivity

extrinsic
geometry

Figure 2.4: Intrinsic triangles can “wrap
around” extrinsic polyhedra, allowing
them to have unusual connectivity. Here,
for instance, the dark blue triangle con-
nects once to vertex i and twice to vertex
j—effectively gluing two of its sides to
each other along edge i j.

Orientation. Orientability is a basic property of a surface—
intuitively it says whether or not a surface has two distinct
“sides.”. For instance, a cylinder is orientable, but a Möbius
strip is not (Figure 2.3). An edge between two vertices i, j ∈
V can be given two different orientations: from i to j, and
from j to i, which we denote by �ij and �ji , resp.. Likewise,
a triangle incident on three vertices i, j, k ∈ V can be given
a counter-clockwise orientation, denoted by −�i jk or any even
permutation thereof, or a clockwise orientation, denoted by
any odd permutation (e.g., −�k ji). Two oriented triangles that
share an edge i j are consistently oriented if they disagree
on the orientation of the shared edge, e.g., −�i jk and −�jil
are consistently oriented. A topological triangulation T
is then orientable if all triangles can be given a consistent
orientation.

Simplicial Complex. A common way to describe a topo-
logical triangulation is via a simplicial complex, which de-
scribes all elements as subsets of the vertex set V . More ab-
stractly, a simplicial complex is any collection of sets closed
under the operation of taking subsets. The sets of size k are
called k-simplices, corresponding to vertices (k = 1), edges
(k = 2), triangles (k = 3). The subset relationships encode

connectivity information—for instance, the edge {i, j} is an edge of triangle {i, j, k}. A basic limitation
of simplicial complexes is that they cannot describe elements with repeated vertices, since sets cannot
have repeated elements. However, restricting our attention to the simplicial case will sometimes be
useful for reasoning about algorithms, since we can make the simplifying assumption that every edge
i j ∈ E has two distinct vertices i �= j, and every triangle i jk ∈ F has three distinct vertices i �= j, i �= k,
j �= k. The simplicial complexes we consider will all be pure 2-simplicial complexes, meaning that every
vertex i ∈ V is contained in some triangle i jk ∈ F , and likewise, every edge i j ∈ E is contained in some
triangle i jk ∈ F .
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∆-Complex. When working with intrinsic triangulations we will inevitably need a more general
∆-complex1. The basic reason is that intrinsic triangles can wrap around the extrinsic surface in
“unusual” ways. For instance, if the total angle around a vertex i of the extrinsic surface is less than π,
then its neighborhood can be covered by a single intrinsic triangle glued to itself along an edge (as
shown in Figure 2.5).

Figure 2.5: In a∆-complex, the vertices
of an edge or triangle need not be dis-
tinct. One can build a cone by gluing
together two edges of the same triangle
(top), or a torus out of two triangles and
just a single vertex (bottom).

In general, a ∆-complex can be viewed as a collection
of disjoint triangles, along with information that describes
how to glue the vertices and edges together. In particu-
lar, suppose we index the vertices of the disjoint triangles
as i0 j0k0, . . . i|F | j|F |k|F |.. A ∆-complex can then be specified
by giving a list of vertex gluings a ∼ b and edge gluings
(a, b)∼ (c, d), where a, b, c, d are vertices from the disjoint
triangles. See Figure 2.5 for some examples. [Hat02, Section
2.1] gives a more precise definition of ∆-complexes; further
intuition is given in Section 2.2, where we describe data
structures for ∆-complexes. Every simplicial complex is also
a ∆-complex. As in the simplicial case we will consider only
pure, 2-dimensional∆-complexes, i.e., every vertex and edge
is contained in some triangle.

Notation becomes more challenging for a ∆-complex,
since edges and triangles are no longer uniquely determined
by their vertices (Figure 2.5). For instance, we may have a
self edge where the same vertex is found at both endpoints.
One possibility might be to write, say, vi(σ) to denote the ith
vertex of a mesh element σ—for instance, v1(e) and v2(e)
would then give the two endpoints of edge e. However, this notation quickly becomes tiresome.

Instead, we stick with the convention that a k-dimensional mesh element is specified by k + 1
vertices—but importantly, one should not assume that these vertices are distinct, nor that they uniquely
determine the identity of the mesh element. For instance, the symbol i jk simply denotes some triangle
with vertices i, j, k, where these indices need not refer to distinct vertices. The value of this notation
is merely that it gives distinct names to the three corners of the triangle, which can be referenced in
subsequent statements. The ambiguous identity of the element in question is typically not a problem,
because we consider statements of the form “for each triangle i jk. . . ”, or sum a quantity over all triangles,
etc.. Definitions, theorems, and algorithms will of course consider special cases (e.g., elements with
repeated vertices) as needed.

Defining the degree of a vertex in a ∆-complex also requires some care. In a simplicial
complex the degree of a vertex i is simply the number of edges incident on i, but in a ∆
complex the same edge may be incident on a vertex more than once. We therefore define
the degree deg(i) as the number of incident edges counted with multiplicity, i.e., +2 for a
self-edge from i back to i, and +1 for any other edge i j with j �= i. For instance, in the inset
figure vertex i has degree four, even though it is contained in only three distinct edges;
vertices j and k both have degree one.

In general one must take care when translating results from the simplicial case to the setting of
∆-complexes: this more general setting often demands new nontrivial proofs even for seemingly
intuitive properties (see for instance Bobenko and Springborn [BS07] and Sharp and Crane [SC20b]).

1pronounced “Delta complex”
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2.2 Topological Data Structures

Topological cell complexes can be encoded by a variety of topological data structures. One basic data
structure is the vertex-face adjacency list, which simply describes each triangle as a list of three vertices.
For instance, the mesh below could be encoded as a table

3 4

1

2
v1 v2 v3

f1 1 2 3
f2 2 1 4

where each row describes a triangle, and the three columns give the indices of the three vertices. This
representation is popular due to its conceptual simplicity, and ease of implementation (e.g., it can be
stored as just a |F | × 3 dense array). However, it has one major shortcoming: a vertex-face adjacency
list cannot, in general, be used to describe a ∆-complex. The basic reason is that it tells us only
how to identify the vertices of different triangles in the adjacency list—but does not unambiguously
determine how edges should be glued together. For example, Figure 2.6 shows an example of a
vertex-face adjacency list where the edges can be glued together in many different ways. The reason
this representation works for ordinary extrinsic triangle meshes is that the geometry canonically defines
the gluings: the only way to connect two vertices in space is by the unique straight line segment
between them. But when edges become geodesics on a polyhedral surface, there are often many
different ways they can be glued together.

It is essential, therefore, that a data structure used to encode the connectivity of an intrinsic
triangulation must describe how edges are glued together. Fortunately, many simple and standard
mesh data structures represent general ∆-complexes without modification, such as edge-based winged-
edge and halfedge structures [Bau75; Wei85; Ket99] which all support traversals and modifications in
constant time; see Botsch et al. [Bot+10] for an introduction. We consider several possibilities and
their trade-offs:

• Halfedge mesh — In a halfedge mesh, each edge is split into pairs of oppositely-oriented
halfedges, which can be used to infer the rest of the connectivity information. Halfedge meshes
makes it easy to circulate around vertices and faces in a consistent order—but as a consequence,
they can only describe manifold, oriented surfaces.

• Signed incidence matrices — Rather than a single vertex-face adjacency list, signed incidence
matrices separately encode vertex-edge and edge-face incidence relationships, via two sparse
matrices. In contrast to a halfedge mesh, signed incidence matrices can encode spaces that are
neither manifold nor orientable—but cannot easily circulate around vertices and faces.

• Gluing map — In addition to a standard vertex-face adjacency list, a gluing map explicitly
specifies how the three sides of each triangle get glued to sides of other triangles in the mesh.
In other words, it provides exactly the missing information about edge gluings. A gluing
map is somewhere between a halfedge mesh and a signed incidence matrices: it can encode
nonorientable meshes that are still edge-manifold, and can easily circulate around vertices and
faces.
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Figure 2.6: A basic vertex-face adjacency list (top left) provides an ambiguous encoding of connectivity.
Here, for instance, it specifies that the mesh is comprised of four triangles and two distinct vertices.
However, without additional information about how edges are glued together, there are many possible
ways to glue these triangles together—three are shown at bottom.

2.3 Geometry

A cell complex (or the data structure that encodes it) captures only the mesh connectivity. To describe
the geometry, we will assign additional information to mesh elements—such as lengths, areas, or
positions in space. Clearly separating a mesh into connectivity and geometry is essential to developing
the intrinsic point of view. A tempting alternative perspective is to imagine that, from the beginning,
the mesh is just a subset of �n, obtained by taking a union of triangles (or other elements). However,
this viewpoint leads to confusion and inflexibility. For instance, one common conundrum is how to
think about self-intersections—for instance, if two triangles intersect, is the mesh still “manifold?”
By separating connectivity and geometry, manifoldness becomes a clear-cut condition on the mesh
connectivity alone (given in Chapter 2); self-intersections are merely an artifact of the way this
connectivity gets mapped into space 2. Hence, one retains a valuable simplifying assumption even in
the presence of intersections (contrast with volumetric approaches, where self-intersections are often a
major nuisance!). More importantly, separating out geometry and connectivity is what enables us to
consider the much larger space of intrinsic triangulations.

In general, extrinsic geometric quantities fundamentally depend on how a shape sits in space,
whereas intrinsic quantities do not. For instance, the length of a piece of string is intrinsic, whereas its
bounding diameter is extrinsic. Likewise, the unit normal of a triangle must be described with respect
to some global coordinate system (extrinsic), whereas the area of a triangle can be described without
reference to any coordinates (intrinsic). In many cases, it will be the interplay between intrinsic and
extrinsic geometry that is most interesting—hence a mesh will store both kinds of data, on two different
triangulations.

Historically, the extrinsic perspective is much older than the intrinsic one. For instance, at the

2In the language of differential geometry: a surface with self-intersections is not an embedding, though it may still be an
immersion.
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Figure 2.7: Shapes that are difficult or impossible to embed in �n are often much easier to describe
intrinsically. For instance, the flat torus (left) can be thought of intrinsically as a square with oppo-
site edges identified—whereas finding a flat embedding into �3 is a major challenge (image from
[Bor+13]). Likewise intrinsic triangulations that describe a perfectly reasonable metric space, such as
the tetrahedron depicted in the right, may be impossible to embed into �3 while preserving lengths.

beginning of the 19th century a smooth surface was most typically described via a parameterization
f : �2 → �n, assigning explicit Cartesian coordinates to each point. The intrinsic perspective later
developed by Gauss, Riemann, and others, provided a more flexible way of describing surfaces. For
instance, a flat torus is a surface that has the connectivity of a donut, but (unlike a donut) is not curved
at any point. This space is very easy to think about intrinsically: just imagine a square where walking
off one side “wraps around” to the other side (Figure 2.7, left). But it is incredibly hard to find a
global embedding of the flat torus into �3 that preserves its flat geometry: such an embedding was not
constructed until the 21st century—and would be very awkward to work with directly (Figure 2.7).

In this section we carefully review both extrinsic and intrinsic encodings of mesh geometry, which
will play a key role in the development of data structures for intrinsic triangulations.

2.3.1 Extrinsic Geometry

A common way to describe the extrinsic geometry of a triangle mesh is by assigning coordinates to
the vertices, which are then interpolated over the rest of the mesh. In particular, suppose we have
vertex coordinates f : V → �3. The geometry associated with an edge i j ∈ E is then given by a straight
line segment connecting the coordinates at vertices i and j. We can express this segment as a linear
combination

fi j :=
�

tifi + t jf j ∈ �3
�

�ti + t j = 1, ti , t j ≥ 0
�

Similarly, the geometry associated with a triangle is then given by

fi jk :=
�

tifi + t jf j + tkf j ∈ �3
�

�ti + t j + tk = 1, ti , t j , tk ≥ 0
�

2.3.2 Barycentric Coordinates

For any point p =
∑

i tifi in an edge or triangle, the values t are called the barycentric coordinates3.
Barycentric coordinates are useful because they enable one to express points of a triangle without
reference to how it is embedded in space—for instance, in barycentric coordinates the corners of a
triangle are always expressed as (1, 0, 0), (0, 1, 0), and (0, 0, 1), and center of mass is always given by
(1

3 , 1
3 , 1

3). For this reason, barycentric coordinates will be essential for linking together the intrinsic and
extrinsic geometry of our mesh.

3Note that since barycentric coordinates always sum to one, in the case of edges we will sometimes consider use just a
single barycentric coordinate s; the other coordinate is then 1− s.
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A helpful mindset when reasoning about barycentric coordinates is to
think of them not as weights, but as actually defining a reference triangle
(or edge) which gets mapped to the triangle in the mesh. In particular, the
set of all barycentric coordinates

σ :=
�

(ti , t j , tk) ∈ �3|ti + t j + tk = 1, ti , t j , tk ≥ 0
�

defines a copy of the standard triangle σ, which is an equilateral triangle
sitting in the positive octant of �3. One can then imagine that there is a
disjoint copy σi jk of the standard simplex σ for each triangle i jk ∈ F . Since
neighboring triangles share vertex coordinates, edges of these disjoint copies get mapped to the same
segments in space, effectively gluing them together.

Barycentric coordinates can also be used to describe vectors tangent to a triangle. Consider in
particular any two points p,q of the same triangle, given in barycentric coordinates (s1, s2, s3) and
(t1, t2, t3), resp. Since the barycentric coordinates of each point sum to one, the barycentric coordinates
of their difference sums to zero:

3
∑

i=1

(p− q)i =
3
∑

i=1

(si − ti) =
3
∑

i=1

si −
3
∑

i=1

ti = 1− 1= 0.

Another way to see that the components of a vector must sum to zero is to consider the normal vector
n = (1, 1, 1) of the standard simplex σ. Any vector u ∈ �3 tangent to this simplex must be orthogonal
to this normal, i.e.,

0= 〈n,u〉=
3
∑

i=1

ui .

For example, in barycentric coordinates the three edge vectors can be expressed as (−1, 1, 0), (0,−1, 1),
and (1, 0,−1). Notice that the components of these vectors do not depend on the length of the edges.

2.3.3 Intrinsic Geometry

Perhaps the most fundamental difference between an intrinsic and extrinsic triangulation is that the
geometry of an intrinsic triangulation is encoded by edge lengths �i j ∈ � rather than vertex positions
fi ∈ �3. Since edge lengths are invariant to extrinsic motions such as rotations or isometric bending of
the surface, they cannot be used to recover extrinsic quantities such as normals, dihedral angles, or
discrete mean curvature. They can however be used to extract important intrinsic information, such as
areas, interior angles of triangles, and discrete Gaussian curvature.

The initial values for these lengths will most often be obtained by measuring the distance between
vertex positions, i.e., by letting �i j := |fi − f j |. However, subsequent operations on the triangulation
(such as intrinsic edge flips—see Section 2.3.4) will then modify the initial lengths in ways that may
not correspond to any operation on the extrinsic mesh.

More explicitly, the geometry of an intrinsic triangulation is given by an assignment � : E→ �>0 of
positive lengths to edges4. These lengths must satisfy three triangle inequalities in each face i jk ∈ F ,
namely

�i j + � jk ≥ �ki ,
� jk + �ki ≥ �i j ,
�ki + �i j ≥ � jk.

4In some cases it is fine to consider zero-length edges, though for simplicity we will generally assume that all lengths are
positive.
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Figure 2.8: Left: an edge flip modifies the connectivity of a triangle mesh, replacing triangles i jk, jim
with triangles kmi, mk j. Right: whereas an ordinary extrinsic edge flip changes the mesh geometry, an
intrinsic flip leaves the original geometry untouched.

Any triple of lengths satisfying these inequalities determines a triangle in the plane—hence, one can
derive other geometric quantities (areas, angles, etc.) from just the three edge lengths (see Section 2.3.6
for further discussion).

2.3.4 Edge Flips

A basic operation in mesh processing is an edge flip, which provides the starting point for many of the
algorithms we will study in Sections 4 and 5. This operation is apparently so natural that it has been
(re-)invented many times, and given many different names: an exchange [Law72], (edge) flip [BJW90,
Figure 1], diagonal switch [Lei99, Figure 3.5], diagonal flip [Eis85], diagonal transformation [NN+93],
Whitehead move [Riv94b, Figure 2], stellar exchange [Pac90, Definition 2], elementary move [Mos88,
Figure 20], 2-2 Pachner move [Pac90], 2-2 bistellar flip [Gli05, Section 3.3], or just 2-2 flip [Mor96].

To flip an edge i j ∈ E we replace the two triangles i jk, jim containing i j with two triangles kmi, mk j
(Figure 2.8, left). This description tells us how to update the connectivity, but how should we define
the new geometry? Traditionally, one just adopts the ordinary extrinsic geometry à la Section 2.3.1:
the vertex positions fi , f j , fk, fl ∈ �n are now linearly interpolated over the new triangles kmi, mk j,
rather than the original triangles i jk, jim. However, unless the two triangles share a common plane,
an extrinsic edge flip will change the geometry of the surface, as seen in Figure 2.8, center. Hence,
if we try to use an edge flip to, say, improve element shape, we do so at the cost of a lower-quality
approximation of the original geometry. This situation highlights a fundamental tension between
element quality and approximation error that pervades ordinary extrinsic mesh processing.

An alternative is to perform an intrinsic edge flip (Figure 2.8, right). Intuitively, rather than connect
vertices k and m along a straight line segment through Euclidean space, we connect them by a straight
path along the domain (formally, a geodesic—see Section 2.4.1). To do so, we update the edge lengths
� : E→ �>0 that describe the intrinsic geometry of our surface. In particular, we can imagine that we
lay out the two original triangles i jk, jim in the plane; the distance between fk and fm in this layout
defines the new edge length �km. In fact, one can compute �km directly from the known edge lengths
according to a simple formula—see Appendix A for further discussion.

Intrinsic Edge Flips Preserve Geometry. The key benefit of intrinsic edge flips is that they exactly
preserve the metric of the surface described by the triangulation. Hence, quantities like surface area,
the shortest path between any pair of points, and the angle sum around each vertex is exactly preserved.
One may therefore freely flip edges toward a more desirable triangulation, without “damaging” the
geometric approximation of the underlying surface. In turn, one side-steps some of the fundamental
trade offs encountered in extrinsic mesh processing, opening the door to new retriangulation strategies—
as discussed in Chapter 4.
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Flippable Edges. Importantly, not all edges can be flipped. Assuming the triangulation is treated as
a general ∆-complex, an edge i j can be flipped if and only if it satisfies two conditions:

flippable not flippable

1. triangles i jk and jil form a convex quad, and

2. the endpoints i and j both have degree at least two.

If the first condition does not hold, then flipping the edge
essentially causes the mesh to fold over itself. See for instance
the inset figure, where flipping the edge i j yields a new triangle
kl j covering the convex hull of the original figure, and a smaller
triangle lki sitting on top of it. In the original configuration,
both triangles have the same orientation relative to the background domain, but in the new config-
uration the orientation of lki is reversed. Moreover, since the triangles overlap, the total area of
the original mesh is not preserved, nor is the total angle around vertices i, j, and k (for instance, if
we assume the original triangulation is planar then these vertices effectively acquire curvature—see
Equation 2.3).

flip
If the second condition does not hold, then flipping the edge would lead to

a degree-zero vertex, which cannot be represented by a triangulation (even a
∆-complex). Consider for instance the inset figure, which is drawn both from the
side and from above. On the left we have a cone obtained by gluing a triangle
to itself along one edge; edge i j hence has a degree-1 endpoint at vertex i.
Attempting to flip this edge causes problems for both connectivity and geometry.
For one thing, in the flipped figure vertex i now has degree zero, and the initial
triangle has been transformed into two faces: a one-sided monogon (inside) and
a two-sided digon (outside). Geometrically, we now have a cone point on the
interior of the monogon, meaning that this face is no longer intrinsically flat. On the whole, it becomes
impossible to describe this space as a collection of flat Euclidean triangles encoded by edge lengths.

Note that one might also worry about flipping an edge with degree-two endpoints,
since flipping a self edge can actually decrease vertex degree by two. However, one
cannot have a degree-two vertex with a self-edge in a ∆-complex, as the neighboring
faces cannot be triangles. For instance, the inset figure shows a topological complex
with a degree-2 self edge, but both faces in this complex are monogons.

Flip Graph. The flip graph is a graph whose vertices correspond to intrinsic triangulations, and two
triangulations are connected if they are related by a single edge flip. Analyzing the correctness and
complexity of many edge flip-based algorithms amounts to proving various properties of the flip graph.

A basic property is connectivity of the flip graph, i.e., given two triangulations T1, T2 of the same
vertex set, can T1 always be transformed into T2 by a sequence of edge flips? The answer depends on
what kind of flips one considers, e.g., whether one considers only the combinatorics of the edge graph,
or also views the flips as transforming the geometry of some domain. [Wag36] showed that the flip
graph is connected in the combinatorial case; [Law72] shows that it is connected for point sets in the
Euclidean plane; and Mosher [Mos88, Connectivity Theorem for Elementary Moves] gives an algorithm
for flipping between hyperbolic triangulations5 using the normal coordinates described in Section 3.5.1.

5Mosher’s algorithm actually works on combinatorial triangulations as well, as all valid combinatorial flips are also
possible in hyperbolic triangulations. This is one way in which Euclidean triangulations are actually more complicated than
ideal hyperbolic triangulations—the conditions on a valid flip are more restrictive.
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The flip graph of Euclidean intrinsic triangulations is connected as a consequence of the Delaunay
triangulation (Section 4.1)—all triangulations can be flipped to a Delaunay configuration [BS07], and
these configurations are necessarily connected by flips between polygons inscribed in circles.

2.3.5 Cone Metric

Figure 2.9: Left: intrinsically, a small neighborhood around any vertex of a polyhedral surface is
indistinguishable from a round circular cone. For instance, a vertex made from triangular pieces of
paper can be easily smoothed out into a circular cone without stretching or ripping. Center: a good
mental “cartoon” of an intrinsic triangulation is hence a surface where the edges are completely smooth,
and only the vertices are visible. Right: from this perspective, no one triangulation is special—there
are many intrinsic triangulations that describe the exact same geometry.

Since neighboring triangles in an intrinsic triangulation have equal edge lengths, they can be
“glued together” to define the global geometry of the surface6. Unlike the extrinsic case, however, these
triangles do not sit in �3, but rather just define an abstract metric where one knows how to walk from
one triangle into the next. There are two very important observations to make about this metric:

1. The geometry in a small neighborhood of any vertex i is indistinguishable from a smooth circular
cone. Consider, for instance, physically gluing together triangular pieces of paper around a
common point—gluing the last edge to the first forms a paper cone, and since the paper is
flexible, this cone can be smoothed out into a circular shape (without distorting lengths along
the surface).

2. The edges are “invisible” from an intrinsic point of view: as one walks from one triangle to
the next across an edge, there is no geometric quantity that can be measured to determine the
moment when the edge is crossed. One way to make this observation is to consider an intrinsic
edge flip (as described in Section 2.3.4). Whether we lay out the original triangles i jk, jim or
the new triangles kmi, mk j in the plane, they both describe an identical quadrilateral piece of
the surface ik jm.

For this reason, the space described by the complex T and the edge lengths � is called a Euclidean
cone metric: it looks like a cone in the vicinity of each point, and otherwise just looks like the flat
Euclidean plane everywhere else (Figure 2.9). The edges initially used to define a cone metric are
then completely superficial: there are many other triangulations that could be used to describe the
exact same geometry. In other words, the initial triangulation is merely “scaffolding” used to get our
hands on a definition of the shape. But we can freely change this triangulation without changing the

6A bit more formally, the Riemannian metric of the surface is defined by taking the quotient of the disjoint union of the
individual triangles, where two points are equivalent if they share barycentric coordinates along a common edge of the
complex K .
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geometry of the underlying surface—just as retriangulating (say) a rectangular region of the plane
does not change its shape.

2.3.6 Length Based Formulas

In an ordinary extrinsic mesh, local geometric quantities such as areas, lengths, angles, etc., are
expressed in terms of the vertex coordinates fi . For instance, the area Ai jk of a triangle i jk ∈ F can be
expressed by taking half the magnitude of the cross product of two of the edge vectors:

Ai jk =
1
2 |(fi − f j)× (fi − fk)|.

Since these expressions use extrinsic operations on coordinates, we must seek other ways to express
geometric quantities in the intrinsic setting.

The three edge lengths of a triangle are sufficient to determine any intrinsic property of a triangle—
in fact, a good way to understand which quantities are intrinsic (versus extrinsic) is to ask whether
they can be obtained from edge lengths alone. For instance, the normal vector of a triangle cannot be
determined from lengths, because there are motions of a triangle (such as rotations) that change the
normal but do not change the lengths. Likewise, the dihedral angle at an edge must be an extrinsic
property, since one can bend two triangles along a shared edge without changing any of the edge
lengths. On the other hand, the area Ai jk of any triangle i jk ∈ F is invariant to length-preserving
motions, and can be deduced via Heron’s formula

Ai jk =
q

s(s− `i j)(s− ` jk)(s− `ki), (2.1)

where here s = (`i j + ` jk + `ki)/2 is the semi-perimeter. The interior angle θ jk
i at corner i of triangle

i jk is likewise intrinsic, and can be obtained via the law of cosines:

`2
i j − `

2
jk + `

2
ki = 2`ik`ki cosθ jk

i . (2.2)

Hence, the interior angle itself can be expressed as

θ
jk
i = arccos

�

`2
i j − `

2
jk + `

2
ki

2`ik`ki

�

,

though quite often there are ways to avoid evaluating the arc cosine directly. Appendix A gives a more
extensive list of such formulas.

Using these local, per-element formulas one can deduce more global quantities by taking sums
over mesh elements. For instance, the total surface area is just

∑

i jk∈F Ai jk. Another very important
example of an intrinsic quantity is the vertex angle deficit

Ωi := 2π−
∑

i jk

θ
jk
i , (2.3)

which measures how much the sum of angles around a vertex deviates from the sum of 2π that
one would find in the plane. This quantity provides a notion of Gaussian curvature for polyhedral
surfaces—since the angles θ jk

i can be expressed in terms of edge lengths, this notion of curvature can,
remarkably enough, be measured without embedding the surface in space7.

7This fact is captured in the smooth setting by Gauss’ theorema egregium or “remarkable theorem.”
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Barycentric CoordinatesLocal Coordinates (2D) Local Coordinates (3D)

Figure 2.10: Given the three edge lengths of a triangle �i j ,� jk,�ki , one can always find a corresponding
set of vertex positions fi , f j , fk in either 2D or 3D. If the vertices of the 3D embedding are placed along
the principal axes, then they are related to the barycentric coordinates by a simple diagonal scaling D.

2.3.7 Local Coordinates

2D Local Coordinates. In cases where an intrinsic quantity has no obvious expression in terms of edge
lengths, one can still construct local vertex coordinates for the triangle in �n and take measurements
of this triangle via ordinary expressions from vector calculus. As depicted in Figure 2.10, left, we can
construct a triangle with edge lengths �i j ,� jk,�ki ∈ �>0 via three points in the plane:

fi := (0, 0),
f j := (�i j , 0),
fk := �ki(cosθ jk

i , sinθ jk
i ),

where θ jk
i is obtained from the law of cosines (Equation 2.2). In other words, we put the first vertex

at the origin, and the second at a distance �i j along the x-axis. The third vertex is likewise placed a
distance �ki from the origin, making the appropriate angle θ jk

i with the first edge.

From 2D to Barycentric Coordinates. Often we will need to express
a point p ∈ �2 in a triangle in barycentric coordinates. There are several
ways to express these coordinates.

One way is to measure the distance from each edge, normalized
by the corresponding triangle height. More explicitly, if ui j := f j − fi
is the vector along edge i j in 2D local coordinates, and J denotes a
90-degree rotation in the counter-clockwise direction8, then we can
write the inward unit normal along i j as

ni j = J
ui j

|ui j |
= J ui j/�i j .

The kth barycentric coordinate of p is then given by

bk =
1
hk
〈ni j ,p− fi〉,

8A simple way to express this operation is to just exchange the two components and then negate the first one: J (x , y) =
(−y, x).
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where hk is the height of vertex k above edge i j, i.e., the barycentric coordinate is equal to the fraction
of the height covered by the point p (yielding a value between zero and one). We can simplify this
expression by noting that Ai jk =

1
2�i jhk, i.e., the area of a triangle is one-half its base length times its

height (with respect to any edge). Hence,

bk =
1
�i jhk
〈J ui j ,p− fi〉=

1
2Ai jk
〈J ui j ,p− fi〉=

1
2Ai jk
〈J (f j − fi),p− fi〉,

which involves only the point p, the vertex positions f, and the triangle area Ai jk. Note that these
expressions are linear in p, and yield barycentric coordinates (1, 0, 0), (0, 1, 0), (0, 0, 1) when p is placed
at fi , f j , fk, respectively, i.e., they do indeed give the barycentric coordinates as defined in Section 2.3.2.

Taking this calculation further reveals that the barycentric coor-
dinates can be expressed as ratios of triangle areas. Consider that
〈J u,v〉 = u × v, where here u × v := u1v2 − u2v1 gives the nonzero
component of the cross product of two vectors in the plane, interpreted
as vectors in 3D. Also recall that that the area of a triangle is equal to
half the cross product of two of its edge vectors. Hence,

bk =
1

2Ai jk
(f j − fi)× (p− fi) =

Ai jp

Ai jk
,

where Ai jp is the area of the triangle made by fi , f j and the point p.
For near-degenerate triangles (e.g., small/large angles, or lengths near zero) it can be more accurate

to directly solve a linear system for the barycentric coordinates. Consider in particular the matrix9

A :=





fx
i fx

j fx
k

fy
i fy

j fy
k

1 1 1



 .

If we let p := (px ,py , 1), then solving the matrix equation

Ab= p

yields barycentric coordinates b = (bi , bj , bk) that describe the point p, and such that bi + bj + bk = 1.
Likewise, given a vector v := (vx ,vy , 0), the corresponding vector in barycentric coordinates is found by
solving Aw= v. We find that solving this system with a (dense) QR solver with Householder pivoting
works quite well in practice.

3D Local Coordinates. Alternatively, we can find 3D vertex coordinates
along the three axes that realize the given lengths (Figure 2.10, center)—
which will also provide a straightforward way to convert points and vectors
on our triangle to barycentric coordinates. In particular, suppose that u =
(a, b, 0) and v= (a, 0, c) are two edge vectors incident on a common vertex
p= (a, 0, 0) a distance a along the x-axis (see inset). Then we have

〈u,v〉= a · a+ b · 0+ 0 · c = a2.

Hence, the distance of p along the x-axis is just a =
�

〈u,v〉. If we are given
just three edge lengths then we do not yet know the edge vectors of the

9Geometrically this matrix represents a linear map from barycentric coordinates to 2D homogeneous coordinates.
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triangle in R3—but can nonetheless compute their inner products, via the law of cosines. Recall that if
two vectors u and v make an angle θ , then 〈u,v〉 = |u||v| cosθ . Hence, applying the law of cosines
(Equation 2.2) yields

a2 = 〈u,v〉=
|u|2 + |v|2 − |w|2

2
,

where w := u− v is the third edge of the triangle.
We can hence draw a triangle with edge lengths `i j ,` jk,`ki as three points

fi := (ai , 0, 0),
f j := (0, a j , 0),
fk := (0,0, ak),

where

ai :=

√

√

√`2
i j − `

2
jk + `

2
ki

2
,

and a j , ak are obtained by permuting indices10.

From 3D to Barycentric Coordinates. The 3D local coordinates have a close relationship to barycen-
tric coordinates: by just sliding each point fi along its respective axis to a distance “1” from the origin,
we transform this triangle into the standard triangle σ. More explicitly, consider the diagonal matrix

D :=





ai 0 0
0 a j 0
0 0 ak



 .

Given a point b = (bi , b j , bk) in barycentric coordinates, p = Db gives the corresponding point on
the triangle, and likewise, b = D−1p (where D is easily inverted by just taking the reciprocal of the
diagonal elements). Likewise, if w= (wi , w j , wk) is a tangent vector in barycentric coordinates, then
u= Dw is the corresponding vector in local 3D coordinates and vice-versa.

Local Coordinates and Length-Based Formulas. The local embeddings provide a unified way to
derive expressions that depend only on edge lengths (like those given at the beginning of this section).
Suppose, for instance, we have a vector u expressed in barycentric coordinates (ui , u j , uk) and want to

measure its length. Simply taking the Euclidean norm
Ç

u2
i + u2

j + u2
k will not give the correct length,

since the standard triangle σi jk gets stretched out when we map it to the true geometric triangle fi jk.
Instead, we can account for this stretching by measuring the length of the vector v = Du. In particular,

|v|2 = x2
i u2

i + x2
j u2

j + x2
ku2

k =
1
2

�

(`2
i j − `

2
jk + `

2
ki)ui + (`

2
jk − `

2
ki + `

2
i j)u j + (`

2
ki − `

2
i j + `

2
jk)uk

�

.

Noting that uk = −ui − u j and rearranging terms then yields an expression for the norm involving only
the three edge lengths11:

|v|2 = −
�

`2
i juiu j + `

2
jku juk + `

2
kiukui

�

.

10Since these values will be different for each corner of each triangle, it may be better to write them as a jk
i , aki

j and ai j
k ; we

stick to single indices here for brevity.
11In spite of the negative sign, this expression really is positive for all vectors with coordinates satisfying ui + u j + uk = 0.
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Other quantities can often be derived in a similar way, avoiding the need to construct an explicit
local embedding. Avoiding the local embedding saves some small amount of computation, but more
importantly it can help to avoid numerical operations that may be inaccurate in extreme situations,
e.g., when edge lengths are close to zero, or interior angles are close to zero or π.

2.4 Tangent Vectors

Figure 2.11: Local coordinate
system for tangent vectors at
vertices.

Vectors tangent to the surface play an important role in geometry
processing. In our correspondence data structures, they help to de-
scribe the direction of intrinsic edges over the extrinsic mesh and
vice versa. At points interior to a face or edge, where the surface is
intrinsically flat, tangent vectors have a straightforward encoding,
e.g., using Cartesian or barycentric coordinates as discussed in Sec-
tion 2.3.2. At vertices, however, where the surface locally looks like
a cone, we need a different description.

For an extrinsic mesh, one idea is to simply pick some tangent
plane at each vertex—however, the best choice of tangent plane is not
always clear (much like picking a vertex normal), and this approach
will not work in the intrinsic setting. A more canonical approach
is to encode tangent vectors at a vertex i in local polar coordinates
(r,ϕ) ∈ �≥0 × [0,2π), i.e., as a radius r and angle ϕ relative to
some reference direction ϕ = 0. For instance, suppose we pick some
arbitrary (but fixed) edge i j0 to serve as the reference direction, and
let

θ̃
jk
i :=

2π
Θi
θ

jk
i ,

where Θi :=
∑

i jk θ
jk
i . Then the directions of all the outgoing edges with respect to this local coordinate

system are given by

ϕi ja =
2π
Θi

a−1
∑

n=0

θ̃
jn, jn+1
i ,

In other words, we take the cumulative angle sum up to edge i ja, normalized by the total angle around
the vertex. Geometrically, these are the angles we would get by isometrically smoothing a polyhedral
vertex neighborhood out into a smooth cone (Figure 2.11, top). Alternatively, we can imagine that we
cut the vertex open, flatten it into the plane, and then stretch it12 into a closed figure (Figure 2.11,
bottom), effectively normalizing all vectors to the range [0, 2π).

2.4.1 Geodesics

A geodesic is the generalization of the notion of a “straight line” to a curved surface. On a smooth
surface, a geodesic is a curve γ that is both straightest and locally shortest. Straightest essentially
means that the curve experiences no tangential acceleration—extrinsically, the direction of the curve
changes purely in order to remain on the surface. Locally shortest means that the restriction of γ
to a sufficiently small neighborhood around each point p ∈ γ is the shortest possible path between

12In fact, stretching this figure out via the complex map z �→ z2π/Θi effectively defines a Riemannian atlas that gives the
polyhedral surface not only a smooth structure, but also a conformal structure, as studied by Troyanov [Tro91].
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locally shortest globally shortest

geodesics

Figure 2.12: A geodesic is often confused with a “shortest path” between points p and q, but in general
a geodesic can be any path that locally minimizes length, or equivalently, that exhibits no tangential
acceleration.

Straightest Locally Shortest

Figure 2.13: There are two distinct ways to define geodesics on polyhedra: as “straightest” curves,
with equal angle on both sides (left), or as “locally shortest” curves that cannot be pulled tighter (right).
A curve through a positively-curved vertex (Ωi > 0) can always be made shorter, whereas there are
many ways to continue a path through a negatively-curved vertex (Ωi < 0) while remaining locally
shortest—for example, a path from p through i and then to either q1 or q2 is locally shortest. For
intrinsic triangulations, we need only consider locally shortest geodesics. (Leftmost figure adapted from
[PS06])

the endpoints of this smaller curve. Importantly, a geodesic need not be globally shortest curve: for
instance, a straightest curve that winds many times around a cylinder is still a geodesic. The globally
shortest geodesic between two points is called a minimal geodesic. Figure 2.12 shows some examples.

On a polyhedral surfaces, straightest paths are not always locally shortest (Figure 2.13). In
particular, a straightest geodesic through a vertex can be defined as a curve with equal angle on both
sides [PS06]. However, a path through a positively-curved vertex (Ωi > 0) can always be made shorter
by going around the vertex. Likewise, for any segment entering a negatively-curved vertex (Ωi < 0)
there are many outgoing segments that make a locally shortest path. For intrinsic triangulations, we
need only consider locally shortest paths. In particular, edges of an intrinsic triangulation will never
pass through a cone point; geodesics computed by the algorithm in Chapter 5 are locally shortest.

Algorithmically, there are several distinct types of problems where one might need to compute a
geodesic. One is an initial value problem where one must trace out a geodesic starting at a given point
p in a given direction u—this problem is easily solved by evaluating the discrete exponential map, as
discussed in Section 2.4.2, and will be essential for tracing out edges of one triangulation over another.
One might also seek to compute a minimal geodesic between two distinct points p,q (see [Cra+20] for a
detailed survey), or to shorten an existing curve until it becomes a locally shortest geodesic—Chapter 5
describes an algorithm for this final task that takes advantage of intrinsic triangulations.
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Figure 2.14: Left: the exponential map simply walks along the surface in a given direction x, starting
at a given point p. Right: on a triangle mesh, the exponential map can be computed by tracing out a
straight line through a strip of triangles. Each step amounts to performing ray-edge intersections, then
transporting the ray direction vector to the next triangle.

2.4.2 Exponential Map

Intuitively, the exponential map simply captures the idea of “walking straight along the surface”
(Figure 2.14, left). More precisely, for any surface M , expp(x) gives the point q ∈ M reached by starting
at a point p ∈ M and traveling in a straight or geodesic path for a distance L := |x|, starting in the
direction u := x/|x| (see inset). On a polyhedral surface the exponential map traces out straight line
segments in a sequence of triangles—if these triangles are laid out in the plane, it is simply a straight
line. If the path reaches a vertex, it continues in the direction that maintains equal angles on both
sides [PS06]—though as noted before when working with intrinsic triangulations all the paths we
consider will terminate at vertices (or at interior points).

To evaluate the map on a polyhedral surface (Figure 2.14, right), one can start in the triangle i jk
containing the point p and find the intersection of the ray r(t) = p+ tu with the three edges, i.e., the
smallest positive value of t for which r(t) is on the boundary of i jk. The vector u is then transported
to the neighboring triangle, and the process is repeated until the total distance traveled is equal to L.
Below we describe this procedure in greater detail, letting f jk

i , fki
j , fi j

k ∈ �
n be 2D or 3D local coordinates

for any triangle i jk.

Ray-Edge Intersections. To compute the ray-edge intersections,
assume that the point p and the unit vector u are given in local co-
ordinates, and let b,w be the corresponding barycentric coordinates
(as described in Section 2.3.7). Finding an intersection with the
three edges then amounts to finding the smallest positive t values at
which each of the three barycentric coordinates vanishes—viewed
from the perspective of the standard triangle, we are just looking for
the points where ray hits the planes x = 0, y = 0, and z = 0. Solving
the ray equation r(t) = 0 for these three planes then amounts to just
evaluating

tn := −bn/wn, n ∈ {i, j, k}.

Letting t∗ be the smallest positive value from this set, the intersection with the triangle boundary
is then a := b+ t∗w. Suppose, without loss of generality, that the ray intersects edge i j. Then the
intersection will have barycentric coordinates (bi , bj , 0), and the origin of the ray in the next triangle
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(in local coordinates) is given by
p′ = bif

mj
i + bjf

im
j .

Parallel Transport. To transport the ray direction vector from
one triangle to the next, consider an orthonormal basis for i jk
aligned with edge i j:

ei j :=
fik

j − f jk
i

|fik
j − f jk

i |
and ti j := �ni jk × ei j .

Here �ni jk is the unit vector in the normal direction

ni jk := (fki
j − f jk

i )× (f
i j
k − f jk

i );

a cross product with this vector just represents a 90-degree rotation in the plane of the triangle13.
Let e ji , t ji be the corresponding basis for jim, aligned with edge ji. We can then transport the vector
u ∈ �n tangent to i jk to the corresponding vector u′ ∈ �n tangent to jim via

u′ = −
�

〈u,ei j〉e ji + 〈u, ti j〉t ji

�

,

i.e., by measuring its components in the basis for i jk, and re-expressing it in the basis for jim. The
negative sign accounts for the fact that the orientation of the shared edge is reversed.

This process is then repeated in the next triangle jim for the ray r ′(t) := p′ + tu′, stopping when
the sum of all t values equals L.

2.5 The Laplace Matrix

The Laplace matrix for a triangle mesh is a fundamental quantity which appears widely in geometry
processing algorithms, ranging from smoothing operations to conformal parameterization to spectral
methods. It is the discrete equivalent of the continuous Laplacian ∆, or more formally the Laplace-
Beltrami operator when defined on curved surfaces. The Laplace matrix is a real sparse matrix
L ∈ �|V |×|V |, where each row corresponds to a vertex, and there is a nonzero entry Li j corresponding
to each edge ij in a mesh. We will discretize this matrix as the cotan-Laplacian, which can be derived
in the context of electrical networks [Mac49; Duf59], minimal surfaces [PP93], finite elements, or
discrete exterior calculus [Cra+13], among others. The entries of the cotan Laplacian are given by

wi j =
∑

ijk

1
2

cotθi j Li j = −wi j Lii =
∑

j∈Ni

wi j (2.4)

where wi j is the cotangent weight, the sum of cotθi j over all triangles in which an edge ij
appears, with θi j as the angle of the triangle opposite the edge ij (inset). The off-diagonal
entries Li j are the negative cotangent weights for the pair of vertices Li j , and the diagonal
entries Lii are the sum over all cotangent weights for vertex i. Note that any self-edges
(where i = j) do not contribute to L. Past work varies in the sign given to the Laplace
matrix; in this document we will always use the positive (semi)-definite Laplacian given above. Lastly,
we note that the cotangent weights, and thus the Laplacian, can be constructed from just the edge

13In 2D one can also just apply the transformation (x , y) �→ (−y, x)
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lengths of each triangle if desired (Equation A.3), like the many other intrinsic properties in this
section.

On “nice” triangulations (for instance, a triangulation with all acute angles), the cotangent weights
will all be nonnegative wi j ≥ 0. However, on low-quality triangulations some of these weights may
be negative. In the nice case where all weights are nonnegative, the Laplace matrix has a maximum
principle—a desirable basic property of the continuous Laplacian, which guarantees that solutions to
Laplace equations will have extrema only on the boundary. Edges with positive cotangent weights
are Delaunay edges, corresponding to the widely-studied Delaunay property is from planar geometry.
A key benefit of intrinsic triangulations will be the ability to construct a special high-quality Laplace
matrix with all nonnegative cotangent weights called the intrinsic Delaunay Laplacian, which not
only guarantees the maximum principle but also generally improves accuracy across applications
(Section 4.10).

Perfect Laplacians. Wardetzky et al. [War+07] identify several properties that one would commonly
desire in a discrete Laplace matrix for a triangle mesh, including linear precision, a maximum principle,
and locality, and prove that there can be no Laplacian which simultaneously satisfies all of these
properties. The intrinsic Delaunay Laplacian [BS07], which we discuss at length beginning in Section 4.1
technically fails the locality property as defined by Wardetzky et al. [War+07]. We note, however,
that the connectivity for the intrinsic Delaunay Laplacian is actually geometrically more local than
that of the original triangulation, in the sense that each vertex is necessarily connected to its nearest
neighbor (Section 4.1.1), and the matrix still has the same sparsity ratio as the cotangent Laplacian of
the original mesh. In some contexts, the geometric perspective may be a more meaningful notion of
locality, and in this sense the intrinsic Delaunay Laplacian is indeed a “perfect Laplacian”, reflecting
its overwhelming effectiveness in practice, as explored in Section 4.10. (See also Sharp and Crane
[SC20a, Section 3.3] for further discussion.)

2.5.1 The Mass Matrix

The Laplace matrix L actually represents the weak Laplacian, which means that uT Lv approximates the
smooth integral

∫

M u(x)∆v(x) d x . For technical reasons, this means that if we wish to approximate
the solution u to an equation of the form ∆u = f , we actually need to solve the discrete equation
Lu =M f , where M is the mass matrix, a sparse symmetric matrix depending only on the area of faces
of the mesh. There are several common choices. The vertex lumped mass matrix is a diagonal |V | × |V |
matrix whose ith entry is one third of the areas of the triangles incident on vertex i:

(Mvertex lumped)ii =
1
3

∑

ijk

Aijk. (2.5)

This is easy to construct, and to invert, but is not always very accurate. For higher accuracy, one can
instead use the Galerkin mass matrix:

(MGalerkin)ii =
1
6

∑

ijk

Aijk, (MGalerkin)ij =
1
12

∑

ijk

Aijk. (2.6)

If we think of u and v as piecewise-linear functions on our domain, then uT MGalerkinv is precisely equal
to the L2 inner product

∫

M u(x)v(x) d x [SF08, Chapter 10, (32)].
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Chapter 3

Representing Correspondence

To represent an abstract intrinsic triangulation, one needs only a mesh data structure that can encode
a ∆-complex (Section 2.1), and a list of edge lengths (Section 2.3.3). This representation completely
encodes the intrinsic geometry of the surface. However, in the common case where the intrinsic
triangulation is defined on top of an extrinsic input mesh, it may not be sufficient: it says nothing about
how the intrinsic triangulation is situated relative to the extrinsic mesh. The abstract representation
alone does not specify the correspondence between the two meshes. For example, one cannot use it to
translate points between the extrinsic and intrinsic triangulations, or even to transfer tangent data at
shared vertices. In this section, we discuss concepts that arise from an intrinsic triangulation sitting on
top of an embedded mesh, and introduce several data structures encode the relationship between the
two triangulations while supporting essential queries and operations.

3.1 Intrinsic Triangulations of Embedded Surfaces

i
k

j

i
k

j

Usually, we obtain an intrinsic triangulation by
starting with an ordinary extrinsic mesh in �3,
reading off the edge lengths �i j = | f j − fi | from
the vertex positions to initialize an intrinsic tri-
angulation, then transforming this triangulation
via local intrinsic operations (edge flips, vertex
insertions, etc., see Chapter 4). Because these
operations preserve the geometry of the extrin-
sic surface, there is always a well-defined 1-to-1
map between points on the extrinsic and extrinsic
meshes. The intrinsic triangulation can hence be
drawn “on top of” the extrinsic mesh, where each intrinsic edge is drawn as a geodesic curve1.

In some contexts, such as constructing operators like the intrinsic Delaunay Laplacian (Section 4.1),
the abstract intrinsic representation is entirely sufficient. However in other contexts, it will be important
to directly represent and evaluate this relationship between an intrinsic triangulation and the underlying
extrinsic mesh. A basic example is visualization, where we seek to draw the intrinsic triangulation

1Note that in principle, there is no reason that the underlying carrier mesh needs to be extrinsic—we could just as easily
define one intrinsic triangulation on top of an initial intrinsic triangulation. All the machinery described here still applies,
although we cannot construct and embedding for visualization. Nevertheless, we will refer to the underlying mesh as the
“extrinsic mesh” because that is the overwhelmingly common case in practice.
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sitting along the embedded surface in space. More fundamentally, evaluating this relationship is
necessary to translate data between the intrinsic triangulation and extrinsic mesh: common operations
will include interpolating data defined at the vertices the extrinsic mesh to the vertices of a finer intrinsic
triangulation, or mapping a point defined in barycentric coordinates along the intrinsic triangulation
to the corresponding point on the embedded mesh, or vice versa.

Whenever we are dealing with an extrinsic and intrinsic triangulation of the same surface, we
will denote the extrinsic triangulation by Text = (Vext, Eext, Fext) and the intrinsic triangulation by
Tint = (Vint, Eint, Fint).

3.1.1 Common Subdivision

An intrinsic triangulation Tint and the corresponding extrinsic mesh
Text are related via their common subdivision S. Intuitively, the common
subdivision is the intersection of Tint and Text, an extrinsic polygon
mesh obtained by “cutting up” Text along the edges of Tint. More
formally, given two triangulations of a surface T1, T2, the common
subdivision S(T1, T2) is the coarsest polygonal decomposition2 such
that every edge of T1 and T2 can be expressed as a union of edges in
S(T1, T2). A consequence of this construction is that every vertex in T1 and T2 appears in S(T1, T2),
and every face of T1 and T2 can be expressed as as union of faces in S(T1, T2). In this text we will
refer to S(Text, Tint) as simply the common subdivision S. Any piecewise-linear function on Text or Tint
can be represented exactly as a piecewise-linear function on S. We can then interpolate the vertex
positions fi from the extrinsic triangulation to obtain vertex positions on S, which make each face
planar and convex. The faces of S can then be triangulated arbitrarily if desired.

These properties make the common subdivision well-suited for interpolation and visualization
of quantities defined on Text and Tint. For example, in figures throughout this text, we visualize an
intrinsic triangulation Tint of an embedded surface Text by extracting the common subdivision and
rendering it as an ordinary mesh in space, with some appropriate shading policy (e.g. Figure 1.3,
Figure 4.1). The common subdivision can also be used to rigorously transfer data between the bases
of Text and Tint, as described in Section 4.11. The rich data structures described below will support
explicitly constructing common subdivision from a representation of an intrinsic triangulation.

We emphasize that even if Text and Tint consist of well-conditioned triangles, S may have low-quality
or even near-degenerate faces. As such, it is not a suitable domain for computation, e.g. solving PDEs.
Instead, the common subdivision serves a complementary role, e.g. for visualization and data transfer.

3.2 Correspondence Data Structures

To manipulate intrinsic triangulations in geometry processing, we will often require richer data
structures to represent the correspondence of an intrinsic triangulation with an extrinsic mesh, encoding
not just intrinsic edge lengths, but also the paths of these geodesic edge along the surface. These data
structures support operations like constructing the common subdivision, extracting the trajectory of
geodesic intrinsic edges, or querying the bijection between a point on the intrinsic triangulation and
the equivalent point on the extrinsic mesh. The remainder of this section we will introduce three data
structures capable of representing the correspondence (Figure 3.1). Table 3.1 outlines the capabilities
of the different approaches.

2Formally, a 2-manifold CW complex, as defined in Hatcher [Hat02]
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Operation Meaning
Representation

Notes
Lengths Explicit Signpost Integer

edge flip replace ij with lm 3 3 3 3

face split insert a new vertex
in intrinsic face ijk

3 3 3

edge split insert a new ver-
tex along intrinsic
edge ij

3 3 3

vertex reposition reposition vertex i
along the surface

3 3 3 must be an in-
serted vertex

remove vertex remove vertex i
and triangulate

3 3 3 must be an in-
serted vertex

correspondence map points be-
tween intrinsic
and extrinsic mesh

3 3 3

transfer tangent
data

transfer tangent
vector data be-
tween the intrinsic
and extrinsic mesh

3

extract edge get the trajectory
of intrinsic edge
along the extrinsic
mesh

3 3 3

extract common
subdivision

get all faces of com-
mon subdivision

3 3 3 signpost does not
guarantee valid
connectivity

Table 3.1: The operations supported by various representations of intrinsic triangulations. Only
signposts and integer coordinates support a full range of remeshing operations, while still encoding
the trajectory of intrinsic edges along the surface. In principle the explicit representation could support
insertion and removal operations, though these have not been described and may be prohibitively
complex. Similarly, any data structure which can extract the common subdivision could in principle
transfer tangent data, but it is easiest with the signpost representation.
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lengths & mesh
[Bobenko and Springborn 2007]

explicit crossings
[Fisher et al. 2007]

signposts

#10
#4

[Sharp et al. 2019b]
integer coordinates

3

1

12

0

[Gillespie et al. 2021a]

Figure 3.1: The representations for intrinsic triangulations considered in this thesis.

3.3 Explicit Crossings

The most direct approach to encoding correspondence is to maintain an explicit representation of the
common subdivision (Section 3.1.1), which is immediately updated as the intrinsic triangulation is
modified—this strategy was first explored by Fisher et al. [Fis+07]. To encode the common subdivision
S, this representation explicitly stores all crossings, locations where an intrinsic edge crosses an edge
of the underlying mesh, which become additional vertices of S. Accordingly we will refer to this data
structure as explicit crossings, or simply the explicit approach. An annotated mesh data structure stores
the connectivity of S; this mesh data structure must support general polygonal faces, as well as fast
insertion and removal operations to facilitate edge flips—Fisher et al. [Fis+07] suggest a halfedge mesh.
The vertices of the common subdivision are labelled as actual triangulation vertices or as crossings;
each edge is likewise labelled as coming from Text (an “o” edge), Tint (a “c” edge), or both (an “oc”
edge). In this context we refer to the edges of S segments and reserve the word “edge” to mean the
sequence of segments that make up an edge of Text or Tint.

Figure 3.2: Flipping an edge in
the explicit crossing representa-
tion [Fis+07].

An advantage of the explicit crossing representation is that the
common subdivision is always available, and can be queried at any
time without additional cost. Furthermore, the connectivity of the
common subdivision is always correct by construction, unlike e.g.
the signpost representation in Section 3.4. The price for these prop-
erties is that flipping an edge in the explicit crossing representation
is a nontrivial operation which must traverse and update the com-
mon subdivision, in contrast to the formulaic constant-time updates
offered by other representations. Additionally, explicit crossings as
described by Fisher et al. [Fis+07] support only edge flip operations,
with a restriction that the vertex sets of Text and Tint are identical.
Other operations such as vertex insertions have not yet been defined,
though in principle the crossing data structure could be generalized
to support such additional operations, at the expense of additional
complexity.

3.3.1 Edge Flips

To perform an edge flip in the explicit representation, we begin by removing the c edge, and merging
the pairs of o segments that it split (Figure 3.2, top). Then we insert the opposite diagonal c′, splitting
any o segments that it crosses. Note that the necessary connectivity changes to not depend at all on
the mesh geometry: all information about which segments to merge is present in the original common
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subdivision mesh, and we can tell if c′ crosses an edge by checking if it touches both the left and
right boundary of the diamond. For this reason, the explicit representation always encodes the correct
connectivity of the common subdivision. Once the connectivity is determined, we can measure the
location of crossings by laying the diamond out in the plane.

Some care is required when flipping a shared edge (Figure 3.2, bottom). In this case, the edge is
not removed, but simply relabeled from oc to o. Otherwise, the procedure proceeds in the same way
as before. Similar treatment is required when flipping a c edge to lie along an o edge.

3.4 Signposts

#10
#4

Figure 3.3: Signposts encode edges of an
intrinsic by storing the length and direc-
tion of each edge in the tangent space
each vertex.

Rather than explicitly encoding the trajectory of each intrin-
sic edge, we can instead implicitly represent the trajectory
by storing not just intrinsic edge lengths, but also the di-
rection of each edge, as a tangent vector at the incident
vertices; this strategy was developed by Sharp, Soliman,
and Crane [SSC19a]. The benefit of this approach is that
it retains the simplicity and efficiency of the lengths-only
case, while any additional data about how the intrinsic tri-
angulation sits atop the extrinsic triangulation can be lazily
recovered from the signposts when needed. Furthermore,
signposts are straightforward to generalize to the case of
inserting additional vertices, and facilitate the manipulation
of vector-valued quantities on a surface. A disadvantage of
this approach is that correspondence is stored only inexactly
in floating point coordinates, and thus accuracy may degrade for numerically degenerate inputs.

More precisely, in addition to the connectivity and edge lengths always used to represent an
intrinsic triangulation, the signpost data structure stores a set of angles ϕ : Hint → [0,2π). Each
angle ϕi j stores the direction of the halfedge from vertex i ∈ Vint to vertex j ∈ Vint, in the local polar
coordinate system at vertex i. These polar coordinate systems are chosen to coincide with tangent
coordinates frames on Text, constructed as described in Section 2.4. Because the tangent coordinate
systems are in correspondence between Text and Tint, tangent vectors on one triangulation can be
directly interpreted as tangent vectors on the other surface—this is they key property which makes
the signpost representation work, and which we must carefully maintain as we modify the intrinsic
triangulation. Additionally, as new points are inserted in to the intrinsic triangulation, we will store
the location of each intrinsic vertex on the extrinsic mesh as barycentric coordinates in a face or edge.

3.4.1 Tracing Through Triangulations

The path of an intrinsic edge along the extrinsic mesh is recovered by “tracing”
the edge along the surface—in the signpost representation this amounts to
evaluating the exponential map (Section 2.4.2), where the direction and distance
of each edge provide the initial conditions. This is an easy and efficient local
geometric operation, which essentially amounts to evaluating many ray-line
intersections while traversing the extrinsic mesh, to compute where the path
exits each triangle and enters the next (inset).

In fact, this basic tracing operation enables many queries on the signpost
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intrinsic triangulation, such as evaluating the correspondence from some point on the intrinsic triangu-
lation to the same point on the extrinsic triangulation, or vice-versa [SSC19a, Section 3.4]. Tracing
out all of the edges in the intrinsic triangulation provides the necessary data to construct the common
subdivision (Section 3.6).

3.4.2 Local Mesh Operations

In Sharp, Soliman, and Crane [SSC19a], we define a wide variety of mesh-processing algorithms on
the signpost representation of intrinsic triangulations. For the most basic edge flip, signposts can
be updated via a simple local formula, just as edge lengths are updated [SSC19a, Section 3.3.1].
However, the key advance of the signpost data structure is that it supports a wide variety of additional
operations beyond flipping edges, such as inserting new vertices and repositioning vertices, all while
maintaining an encoding of correspondence for queries like extracting the common subdivision or
evaluating the bijection. These operations in turn enable higher-level retriangulation algorithms, like
intrinsic Delaunay refinement and optimal Delaunay relaxation, discussed at length in Chapter 4.

Signpost Update. While working with the signpost data structure, one
often needs to update the direction of a halfedge from known direction
of adjacent halfedges. In particular, suppose we know the direction ϕi j
and the three edge lengths �i j ,� jk,�ki. Then we can evaluate the an-
gle θ jk

k as in Equation A.2, and update the direction of halfedge �ik as

ϕik = ϕi j +
2π
Θi
θ

jk
i , (3.1)

where Θi is the angle sum at vertex i.

Edge Flip. An edge flip replaces an edge ij with its opposite diagonal
kl. As always, we must first compute the length of the flipped edge
(Equation A.4). In addition, the signpost data structure requires the
angles of the two new halfedges �kl and �lk , computed via the signpost
update above.

Face Split. Given barycentric coordinates for a point p inside triangle ijk ∈
Fint, a face split replaces ijk with three new triangles: ijp, jkp, kip. The lengths
of the new edges can be computed via Equation A.5, and the angles at incoming
halfedges ϕip can be computed via a signpost update.

The angles at outgoing halfedges are more complicated, because we must
be sure to construct a tangent basis for p which is aligned with basis for the
face or edge of Text on which the new vertex sits. To do so, we will trace one
of the incoming halfedges �ip along Text to p. Not only does this operation
give the location of p on Text, but we can also use the final incoming direction
of this vector to construct an aligned tangent space. More precisely, first we
trace along any halfedge �ip from i to p—recall that tracing just means means

evaluating the discrete exponential map (Section 2.4.2). This yields barycentric coordinates for p
within some extrinsic triangle x yz ∈ Fext. Furthermore, the direction vector at the conclusion of
tracing gives us the vector u pointing from i to p in the tangent basis of x yz. We then set ϕpi to be the
angle between −u and the reference direction of triangle x yz. This ensures that our signposts at p are
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expressed in the coordinate system of its parent extrinsic triangle, which allows us to perform tracing
queries from p in future. Now that we have determined ϕpi , we can compute ϕp j and ϕpk via signpost
updates.

Edge Split. Edge splits proceed in essentially the same manner as face splits, by first updating
connectivity, lengths, and angles for the incoming halfedges, then tracing out one of the incoming
edges to the new vertex to determine its location and construct angles for outgoing halfedges in an
aligned tangent coordinate system. Splitting a boundary edge of Eint is again essentially the same, but
we create only three incoming edges to the new vertex, and ensure that the new vertex location is
along the corresponding boundary edge of Eext.

Vertex Removal. We can remove any inserted vertex simply by flipping any incident edges until it
has degree three and then removing the vertex and its 3 remaining edges, leaving behind a triangular
face. In [GSC21a] we argue for the correctness of this flipping strategy. We emphasize that vertices of
the extrinsic mesh cannot be removed in this manner, only vertices which were previously inserted.
This is not merely a limitation of the signpost data structure, but a more fundamental limitation of our
formulation for Euclidean intrinsic triangulations of a piecewise-flat domain—geometry can no longer
be exactly preserved if extrinsic vertices were allowed to be removed. A more general formulation will
be needed to support removal of arbitrary vertices from the intrinsic triangulation.

Vertex Repositioning. Inserted vertices i ∈ Vint can also be moved
to another location p on the surface. One can always move vertices
by first3 inserting p at the target position and then removing i. For
smaller motions within a local vertex neighborhood, we can instead
perform an explicit update. Let v be a vector pointing from i to p. The
new edge lengths are given by

� jp =
�

|v|2 + �2i j − 2|v|�i j cosα, (3.2)

where α := ϕi j −ϕv is the angle between v and edge i j. Angles on halfedges incident on p can be
computed just as in a face split.

3.4.3 Queries

The signpost representation encodes the correspondence between an intrinsic triangulation and an
underlying surface, so it can be queried for data like edge trajectories, or translating a location from
one triangulation to the other. Because this correspondence is stored implicitly via edge vectors,
correspondence queries typically involve evaluating the exponential map.

Point Query. One basic operation is a point query, evaluating the bijection
between Text and Tint. Given a point p described by barycentric coordinates
on some element of Text, we can find the corresponding point on Tint by
constructing a vector pointing to p from any adjacent vertex, then evaluating
the exponential map to trace out that vector on Tint. The same procedure can
likewise be applied to map a location from Tint to Text.

3It is important to insert p first, as removing i changes the triangulation, and could invalidate the barycentric coordinates
which specify p.
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Construct Edge Trajectory. Signposts can also be used to efficiently reconstruct the path of a single
edge *i j along the surface. This simply requires tracing the edge by evaluating the exponential map
from i in the direction and distance of *i j , resulting in a path represented as a polyline of barycentric
points along the other triangulation. Again, this procedure can be applied identically for an edge
from Text along Tint, or an edge from Tint along Text. This operation is as efficient as possible—the
time complexity of the operation is equal to the number of edge crossings in the generated trajectory.
Because these trajectories are encoded only inexactly in floating point coordinates, the traced edge
will generally not terminate exactly at the target j, but rather at some very nearby location; Sharp,
Soliman, and Crane [SSC19a, Appendix A] describe some simple policies for projecting to the expected
termination point.

Construct the Common Subdivision. If the trajectories of all edges are extracted, they can be
assembled to form the common subdivision of Text and Tint (Section 3.1.1). This assembly is described
in detail in Section 3.6.

Transfer Tangent Data. Signposts define a very particular choice of tangent coordinates at vertices of
Tint which is in correspondence with the tangent coordinates on Text. When these tangent coordinates
are used for computation on Tint (e.g., generating a tangent vector field at vertices), the resulting values
can be directly transferred between Tint and Text. In particular, any vertex which appears in both Tint
and Text has matching tangent coordinates on both triangulations, so tangent-valued quantities can be
trivially copied at vertices. Newly inserted vertices on Tint have tangent spaces in correspondence with
the canonical tangent space on the face or edge of Text along which they sit.

3.4.4 Robustness

The implicit encoding of intrinsic edge trajectories in a signpost triangulation is discretely exact: in
proper real arithmetic, it would always perfectly reconstruct the paths and the corresponding crossing
connectivity. Recall also that in practice, it is not necessary that tracing the edge ij “exactly” hit the
vertex j, merely arriving in the correct vertex neighborhood is sufficient. However, even with this
observation, recovering the trajectory of an edge in inexact floating-point arithmetic may fail for
nearly-degenerate inputs. Although this behavior is typical of geometry processing algorithms, it is
particularly worrisome for intrinsic triangulations, for which a key application is robust computation
on degenerate 3D models. The integer-based representation (Section 3.5) supports a similar set
of operations, while offering a guarantee of correctly recovering the connectivity of the common
subdivision, at the cost of some increased algorithmic complexity.

3.5 Integer Coordinates

Rather than encoding the correspondence with floating-point signposts, we can instead use integer
coordinates in the form of normal coordinates and roundabouts [GSC21a]. Like the signpost represen-
tation, these integer coordinates implicitly encode the correspondence: rather than maintaining an
explicit representation of all crossings, one instead maintains some simpler data and lazily determines
correspondence data as needed. More explicitly, in addition to the connectivity and edge lengths
of the intrinsic mesh, this data structure stores normal coordinates n : Eint → Z and roundabouts
r : Hint → Z≥0 on the intrinsic mesh. As with signposts, when new vertices are inserted into the
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intrinsic mesh one must also store the corresponding location on the extrinsic mesh as barycentric
coordinates in a face or edge.

3.5.1 Normal Coordinates
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Normal coordinates have a long history in computational geom-
etry and topology as a compressed representation of curves on a
complex [Kne29; Hak61; SSŠ02]. The basic idea is that one can
represent a curve on a triangulated surface simply by counting how
many times it crosses each edge (inset). These crossing counts
uniquely determine the curve so long as it normal, i.e. it never
intersects itself and always enters and exits triangles on different
sides4. To see why, consider a single triangle. Given valid crossing
counts on its edges, there is always a unique way of connecting
them up to form segments which do not cross and do not loop
back on themselves: you simply pair up endpoints near corners.
Connecting up the crossings like this in each triangle determines
the topology of the curve along the surface.
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In order to encode intrinsic triangulations, we will need to allow curves
to begin and end at vertices, and to run parallel to mesh edges between
vertices. This only requires a small change: we set the normal coordinate
nij to k for edges with k crossings, and set it to −k for edges that have
k parallel curves. Note that since our curves are not allowed to cross
each other, we cannot have any curves running parallel to an edge which also intersects curves
transversally, so these cases are mutually exclusive. It is often convenient to define n+ij :=max(nij , 0)
and n−ij := −min(nij , 0) which count crossings and parallel curves respectively.

i

j

k

emanating from corner k crossing corner k

i

j

k

In this setting, there are two useful quantities that we can
define at each corner: the number of edges leaving the corner,
and the number of edges crossing the corner. These are simple
functions of the triangle’s normal coordinates [GSC21a]:

ei j
k =max(0, n+i j − n+jk − n+ki), (3.3)

ci j
k =

1
2

�

max
�

0, n+jk + n+ki − n+i j

�

− e jk
i − eki

j

�

. (3.4)

We can also reconstruct the normal coordinates from these quantities, since each
curve crossing edge ij must have either crossed an adjacent corner or emanated
from the opposite vertex. Explicitly, the normal coordinate ni j is given by:

ni j = cik
j + ei j

k + c jk
i . (3.5)

4This condition that the curves never cross back on themselves is a combinatorial version of the geodesic property: normal
curves are locally-shortest in the sense that they cross as few edges as possible [TY12].
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In the classical setting of closed curves, these “corner coordinates” are themselves
often used to represent curves, e.g. [EN13]. This should also be possible in the setting of intrinsic
triangulations, but has not yet appeared in the literature.

go le� terminate go right

Using the corner coordinates, we can easily
trace out the curve. A curve entering a triangle
can either go left, stop at the opposite vertex, or
go right. The number of curves which go left is
precisely cik

j , and the number of curves which go
right is ck j

i , so we can determine which way the
curve goes from its index along edge i j.

This tracing procedure only determines the triangle strip that the
curve passes through. But when the curves are geodesic—as in the
case of intrinsic triangulations—this actually determine the geometry
of the curve. Once we know the triangle strip, we can simply lay the
triangles out in the plane and connect the endpoints with a straight
line to obtain the exact geometry of the curve. Although this final layout step may suffer from floating
point error on near-degenerate meshes, everything up until this point has depended only on integer
data. In particular, the computed curve is guaranteed to pass through the correct triangle strip.
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32
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43
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11
And finally, rather than just using normal coordinates

to represent a single curve, we can use them to represent a
whole collection of curves. The key idea is that if you have
two disjoint curves, their union is represented by the sum
of their normal coordinates. Hence, we can represent an
entire intrinsic triangulation simply by counting how many times it intersects each extrinsic edge.

3.5.2 Roundabouts

i

j

k

While normal coordinates determine the geometry of curves along a triangulation,
they fail to fully encode the full correspondence between two triangulations, as they
do not specify which logical edge each curve corresponds to. Since the triangulations
are ∆-complexes, the endpoints of an edge may not uniquely identify it—see for
example the inset, where a curve traced from i to j could correspond to either of
the edges between them. Roundabouts, introduced by Gillespie, Springborn, and
Crane [GSC21b], resolve this issue by explicitly tracking the cyclic ordering of edges

from both triangulations around each vertex of the extrinsic triangulation Text.

halfedge (extrinsic)

halfedge (intrinsic)

halfedge (shared)

roundabout

i

0
03

1

4 4

0

0

12

3

4

Precisely, for each intrinsic halfedge �a j starting at a
shared vertex a ∈ Vext ∩ Vint, the roundabout stores the first
extrinsic halfedge ab ∈ Hext following �a j . This is encoded
as an index r�a j ∈ �≥0, where we enumerate the halfedges of
Text about vertex a in counterclockwise order (inset). Note
that we only need roundabouts at halfedges pointing away
from shared vertices a ∈ Vext ∩ Vint since all edges of the
extrinsic triangulation must start and end at such vertices.
Even if such an edge has been split, the corresponding
sequence of curves starts and ends at such vertices.
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3.5.3 The Abstract Viewpoint
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In principle, normal coordinates could either be
defined as a value per edge of Text, counting the
number of crossings from Tint, or as a value per
edge of Tint. The latter approach (insert, left)
works better for representing intrinsic triangula-
tions, as it remains fully-informative even when
we insert new vertices in to Tint. It is then natural
to think of Tint as the primary triangulation, with
Text as a collection of geodesic curves sitting along
it (inset, right).

3.5.4 Local Mesh Operations

These integer coordinates support all of the local mesh operations that signposts do, enabling the same
applications, e.g. intrinsic Delaunay refinement, to be performed while maintaining provably correct
correspondence.

Roundabout Update. Just as we can update signposts based on some known
edge lengths and angles, we can update roundabouts based on known roundabouts
and normal coordinates

rik = ri j + e jk
i + n−i j . (3.6)

The quantity e jk
k counts how many extrinsic edges emanate strictly between �i j and �ik , while n−i j

detects whether an extrinsic edge lies exactly along i j. One can optionally reduce rik modulo the
degree of vertex i in the extrinsic triangulation, like taking an angle module 2π.

Edge Flip. Again, we consider replacing edge ij with its opposite diagonal kl. In addition to computing
the length of �kl , we compute new normal coordinates as

nkl = c jk
l + ci j

k +
1
2

�

�

�cil
j − cki

j

�

�

�+ 1
2

�

�

�cl j
i − c jk

i

�

�

�− 1
2 e ji

l −
1
2 ei j

k + el j
i + e jk

i + eil
j + eki

j + n−i j , (3.7)

and compute new roundabouts via a roundabout update.

p
2

1
1

Face Split. We take as input a point p within intrinsic triangle ijk, represented by
barycentric coordinates. We update the mesh connectivity and compute new edge
lengths just as with signposts. Updating the normal coordinates is more involved since
unlike edge flips, where the new normal coordinates depend only on the old ones, face
splits are a fundamentally geometric operation. The result depends essentially on the
barycentric coordinates of p.

We begin by tracing curves over the extrinsic mesh to compute the barycentric
coordinates of each crossing along the edges of ijk. Once we have located the crossings, we use line
side tests to determine which region p lies in. This determines the new normal coordinates, as well
as the location of p along the extrinsic mesh [GSC21a, Appendix B]. After the normal coordinates
have been computed, the new roundabouts can be obtained via roundabout updates. Note that we
only have to compute roundabouts for halfedges pointing at p; halfedges emanating from p start at an
inserted vertex and thus are not assigned roundabouts.
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face split edge flip
Edge Split. We take as input a point p along intrinsic edge ij, repre-
sented by barycentric coordinates. If ij does not lie along an extrinsic
edge (i.e. ni j ≥ 0), then we simply perform a face split in one of
the adjacent faces and then flip edge ij. However, if ij lies along an
extrinsic edge (i.e. ni j < 0), then we perform a different edge split routine, which ensures that the
new vertex is inserted along the extrinsic edge.

p

In this case, the new normal coordinate is simply nkp = max(nki , nk j , 0), since edge
pk intersects every curve in the face. We can compute the length of edge pk using
the same barycentric coordinate formula that we use to perform face splits, and we can
perform roundabout updates on any necessary halfedges. All that remains is computing the
barycentric coordinates of p on Text, which we do by linearly interpolating the barycentric
coordinates at intrinsic vertices i and j.

Vertex Removal. As in the signpost representation, inserted vertices can be removed by flipping to
degree-three, and then deleting the vertex and its three adjacent edges. Again, only previously-inserted
vertices can be removed in this manner; a more generally representation would be needed to allow
the removal of extrinsic vertices.

Vertex Repositioning. Vertices can be moved by inserting a new vertex and then removing the old
one. In principle, a local update procedure similar to the signpost one should be possible, but no such
procedure exists at the moment.

Point Query. We can convert points from the intrinsic mesh to the extrinsic mesh as described in the
face split operation. However, converting points from the extrinsic mesh to the intrinsic mesh is more
complicated. One possibility is to use the common subdivison: given a point p on the extrinsic mesh
one can identify the face of the common subdivison containing p. This common subdivison face is itself
contained within some face of the intrinsic mesh, and by converting between barycentric coordinates
within the different faces, we can locate p on the intrinsic mesh.

3.5.5 Robustness

The key property of the integer coordinate representation is that topologically-correct connectivity of
edge trajectories and the common subdivision is always maintained through any sequence of operations.
As always, geometric accuracy may still degrade in floating point, but a guarantee of correct connectivity
is an important building block for robust systems. This property is shared with the explicit crossing
representation, but is in contrast to the signpost representation, where connectivity must be recovered
from implicit floating point data. However, unlike explicit crossings, integer coordinates offer a
formulaic constant-time edge flip operation, as well as operations beyond edge flips such as insertions.

3.6 Extracting the Common Subdivision

Both the signpost and integer coordinate representations do not explicitly store the common subdivision
S, but instead store other implicit data from which edge crossings can be recovered. We can then
construct a mesh encoding of the common subdivision from these edge crossings using a procedure
which applies identically to either representation.
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This procedure operates independently in each face of the intrinsic trian-
gulation ijk ∈ Fint, cutting it along the edges of the extrinsic mesh Text. We
first determine where each edge of ijk is crossed by edges of Text by tracing
edges, an operation supported by our rich representations. These crossings
are then gathered and ordered along each edge, and will become vertices of
the common subdivision. The choice to define this procedure per-face of Fint
rather than Fext is intentional—because our intrinsic triangulations support
inserting additional vertices, faces of Fext may contain arbitrary configura-
tions of vertices from Vint on their interior, which would greatly complicate
extraction of the common subdivision if we attempted to define it per-face
of Fext. In contrast, the faces of Fint always have empty interiors, and within
each the connectivity of the common subdivision falls in to just two cases
(see inset). The first case is when there is some corner of the face from which
edges of Eext emanate, labelled here as the corner at vertex i without loss
of generality; this can be detected when the number of crossings along jk
is greater than the sum of the crossings along ij and ki. Otherwise, in the
second case there are no edges of Eext emanating from any corner.

In Case 1, all extrinsic edges intersect edge jk. Let c1, . . . , cr denote these crossings. For each
crossing along ji, we emit a segment connecting ja to ca. Similarly, for each crossing along ki we emit
a segment connecting ka to cr−a+1. Finally, we simply connect the remaining crossings along jk to
vertex i.

In Case 2, some extrinsic edges clip off each corner. At corner i, we emit segments between
crossings jp and kp until the number of remaining crossings is equal to the number of crossings along
edge jk. Repeating this procedure at the other two corners yields all of the necessary segments.

Repeating this procedure for each face of Fint yields the entire common subdivision. To assemble
polygons, we then emit faces corresponding to consecutive segments crossing the intrinsic triangle, as
well as the final central polygon in Case 2. Assigning unique indices to each crossing ensures that the
output is a standard vertex-face adjacency list representation of the common subdivision. If desired,
the emitted vertices and faces of can be labelled according the element of Text and Tint from which
they originated, and geometry can be associated with the mesh as barycentric coordinates on Text, Tint,
or as an interpolated extrinsic embedding from Text. Note also that the generated faces are planar
polygons of degree ranging from 3− 6, which can be optionally triangulated if desired.
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Chapter 4

Retriangulation
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Figure 4.1: Intrinsic retriangulation schemes applied to a computed-aided design model with poor
triangle quality. The black wireframe denotes the extrinsic mesh, colored triangles give the intrinsic
triangulation. Delaunay flips achieve the Delaunay property for a fixed vertex set, while refinement
and repositioning further improve triangle quality and vertex distribution.

The intrinsic representation offers a large space of possible triangulations of a surface, all of
which exactly encode the underlying intrinsic geometry. We traverse this space with retriangulation
algorithms, performing edge flips, vertex insertions, and other operations to construct triangulations
with improved numerical conditioning and other desirable properties.

4.1 Intrinsic Delaunay Triangulations

The Delaunay triangulation of a point set in the plane is a fundamental concept in computational
geometry which has a beautiful analogue on intrinsic triangulations. These triangulations are widely
studied for the geometric and algorithmic quantities; in many senses the Delaunay triangulation is
the “best” triangulation of a point set, e.g. by Rippa’s Theorem the Delaunay triangulation offers the
smoothest linear interpolation of values at vertices [Rip90]. In the plane, there are many equivalent
characterizations of the Delaunay triangulation of a point set (Figure 4.2), including:
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local conditionsglobal conditions

edge angle sums
nonnegative

cotan weightsempty circumcirclesdual to Voronoi diagram

Figure 4.2: There are many equivalent characterizations of the Delaunay triangulation. Here we
illustrate a few examples.

1. The Delaunay triangulation is the dual of the Voronoi diagram.

2. The Delaunay triangulation is the set of all triangles with empty circumcircles.

3. The Delaunay triangulation is the triangulation where all cotangent weights are nonnegative.

4. The Delaunay triangulation is the triangulation where for each edge ij, the sum of the angles
opposite ij in the adjacent triangles is at most π.

5. The connectivity of the Delaunay triangulation is that of the 3-dimensional lower convex hull of
the point set, after lifting to a parabola according to z := x2 + y2.

All but the last characterization can be easily generalized to intrinsic triangulations of curved surfaces.
Amazingly they still coincide, defining the intrinsic Delaunay triangulation. Formally we take (4) as
our definition, since it is concrete and was the definition that Rivin [Riv94a] originally proposed, but
we could take any one since they are all equivalent.

Concyclic Quads. For a generic polyhedron, these equivalent conditions
uniquely determine the intrinsic Delaunay triangulation; any given polyhedron
admits exactly one intrinsic triangulation of its vertices which satisfies them. How-
ever, this may not be the case in non-generic configurations; in particular, if the
neighboring triangles around edge ij form an intrinsic concylic quadrilateral, then
both ij and the opposite diagonal km will have angle sum π (and equivalently
have cotan weight 0, etc.) Thus, there may be several triangulations which satisfy
all of the conditions, so in general one should speak of an intrinsic Delaunay triangulation, rather than
the intrinsic Delaunay triangulation1. Note that these edges with cotangent weight 0 do not contribute
anything to the Laplace matrix, and thus the intrinsic Delaunay Laplace matrix really is unique for any
polyhedron, even though the Delaunay triangulation is not—this is one of the core results of Bobenko
and Springborn [BS07].

1Some authors instead choose to define the Delaunay tessellation in such scenarios, which is still uniquely-defined, but
takes the form of a polygon mesh rather than a triangle mesh. However, in our applications we will always work with triangle
meshes, and generally will not be concerned with the existence of multiple Delaunay triangulations.
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4.1.1 Properties of Intrinsic Delaunay Triangulations

Here, we gather a collection of useful properties of intrinsic Delaunay triangulations, along with their
proof sketches. Properties of planar Delaunay triangulations usually extend to the intrinsic surface
case, when defined in an appropriate manner. In particular, we carefully clarify these properties in
non-generic configurations, where there may be multiple Delaunay triangulations.

Generally, two main proof techniques are used to generalize results
from the planar setting. The first is to consider the change in the
some quantity when a non-Delaunay edge is flipped; if the quantity
can be shown to decrease, then it must be minimized on a Delaunay
triangulation, though careful treatment of the case where there are
multiple Delaunay triangulations may be necessary. This strategy is useful for establishing minimal
geometric quantities, bounds, and conserved quantities on the Delaunay triangulation. The second
technique is to consider all possible triangle-strip unfoldings of a triangulation (inset). All of these
unfoldings are themselves planar Delaunay triangulations, so we can apply properties from planar
computational geometry to all possible unfoldings to generalize them to the intrinsic case.

Lastly, we note that when the notion of a circumcircle or disk arises in the intrinsic setting, it can
be formalized as an isometric immersion of a Euclidean disk into the surface. Such an immersion is
only well-defined if the immersed disk does not strictly contain any cone points; we will only need to
consider such empty disks for our arguments. A disk immersed in this manner may overlap itself along
the surface.

4.1.1.1 Empty Triangle Circumcircles & Edge Disks

If a triangle ijk appears in a Delaunay triangulation, then it has a geodesic circumcircle with empty
interior [BS07]. Conversely, if any triangle ijk has a geodesic circumcircle with empty and interior and
furthermore i, j,k are the only vertices on the boundary of the circle, then ijk necessarily appears in
every Delaunay triangulation.

Similarly, each edge ij in a Delaunay triangulation has a geodesic disk with i, j on its boundary and
an empty interior [BS07]. Conversely, if i and j are the only vertices on the boundary of the disk, then
the edge ij necessarily appears in every Delaunay triangulation. The disk need not be a diametral disk
(that is, a disk for which edge ij is a diameter). The edges for which an empty diametral disk does
exist form the Gabriel graph [GS69], which is a subgraph of every Delaunay triangulation.

Bobenko and Springborn [BS07] actually define the Delaunay triangulation2 as a cell complex
whose edges are precisely the geodesic segments between vertices which have empty circumcircles,
whose faces are disk-inscribed geodesic polygons with empty circumcircles. In Proposition 10, they
prove that this construction is equivalent to the opposite angle sum characterization of the Delaunay
property, which proves that intrinsic Delaunay triangulations obey the empty circumcircle property for
faces and edges.

4.1.1.2 Contains Nearest Neighbors

For vertex i, every Delaunay triangulation has an edge connecting to its nearest geodesic neighbor
j. In a non-generic configuration, if there are multiple other vertices at the same minimal geodesic
distance from i, then all of these edges must appear in every Delaunay triangulation. Another subtlety

2Technically the Delaunay tessellation: the polygon mesh of edges which strictly satisfy the Delaunay property. They then
obtain Delaunay triangulations by arbitrarily triangulating any non-triangular face immediately preceding their Definition 8.

45



in the intrinsic setting is that vertex i may be its own nearest neighbor: if there is a non-constant
geodesic from i to itself which is shorter than all paths to other vertices, we say that i is its own nearest
neighbor, and it is this edge which must appear in the Delaunay triangulation.

i

jThis follows from the empty edge disk property in a straightforward way. Suppose
that i’s nearest neighbor is j, and they are separated by a length of �i j . Now consider
the geodesic disk of radius �i j about i. Since j is the nearest neighbor, this disk
must be empty. This empty disk contains a smaller disk which goes through i and
is tangent to the larger disk at j. Hence, the curve connecting i to j has an empty
disk about it, and must therefore be a Delaunay edge.

4.1.1.3 Maximizes Angles

A Delaunay triangulation maximizes the minimum corner angle in the triangulation. A stronger
statement also holds in general position, when there are no cocircular quadrilaterals: the sequence of
all corner angles sorted from smallest to largest is lexicographically maximized [Sib78].

The proof of this property proceeds exactly like the planar case. In order to
prove that the planar Delaunay triangulation maximizes angles, Sibson observed
that flipping a non-Delaunay edge increases the lexicographic rank of the set of
angles. In particular, Sibson notes that in the inset diagram, each primed angle
is strictly smaller than the corresponding unprimed angle. This implies that
only a Delaunay triangulation can maximize the lexicographic ordering—for any
non-Delaunay triangulation, we can flip some non-Delaunay edge to increase its
lexicographic rank.

Some difficulty arises in the case of non-unique Delaunay triangulations: not all Delaunay triangu-
lations have the same set of angles. However, they each have the same minimum angle3, so it is still
true that all Delaunay triangulations maximize the minimum angle.

4.1.1.4 Smoothest Piecewise-Linear Interpolation (Rippa’s Theorem)

For any function defined at the vertices, a Delaunay triangulation yields the smoothest piecewise-linear
interpolation over the domain, in the sense of Dirichlet energy [Rip90; BS07; Che+10].

Bobenko and Springborn [BS07, Rippa’s Theorem 1] observe that Rippa’s proof holds without
change in the intrinsic setting. Much like the angle maximization property, the basic idea is to show
that flipping a non-Delaunay edge always makes any piecewise-linear interpolant smoother. This
then implies that only a Delaunay triangulation can minimize Dirichlet energy—for any non-Delaunay
triangulation, flipping some non-Delaunay would decrease the Dirichlet energy. Unlike the angle
maximization case, however, there is no difficulty for surfaces with multiple Delaunay triangulations:
all Delaunay triangulations have equally-smooth piecewise-linear functions4.

3Here the Delaunay tessellation perspective is quite useful. Recall that the Delaunay tessellation is a polygon mesh whose
faces are all concyclic polygons. All Delaunay triangulations arise by triangulating these polygonal faces in different ways.
So to prove that all Delaunay triangulations have the same minimum angle, it suffices to prove that all triangulations of a
concyclic polygon have the same minimum angle. This follows from elementary geometry, using the fact that the angles of
an inscribed triangle are proportional to the length of the opposite arc.

4One way of seeing this is that the smoothness of a piecewise-linear function is measured by the cotan Laplacian. Because
all Delaunay triangulations induce the same cotan Laplacian, they all produce equally-smooth interpolations. .
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4.1.1.5 Minimal Spectrum

The eigenvalues of the Laplace matrix are minimized on a Delaunay triangulation, that is for the i’th
eigenvalue λi , all other triangulations have λ′i ≥ λi [Che+10].

Chen et al. prove this property by again observing that flipping a non-Delaunay edge can never
increase the eigenvalues of the Laplacian. Note that no special treatment of non-generic surfaces is
needed as all Delaunay triangulations have the same Laplace matrix.

4.1.1.6 Minimal Minimum Spanning Tree

A Delaunay triangulation has the shortest possible minimum spanning tree among all triangulations of
the vertex set [Tou80].

Toussaint originally proved this theorem in the planar case in relation to relative neighborhood
graphs. We instead follow the planar proof found in [ORo98] which generalizes immediately to the
intrinsic setting. We consider spanning trees of the vertices of an intrinsic triangulation whose edges
are geodesic paths. Let MST be the shortest such spanning tree. We will show that the edges of MST
must appear the Delaunay. Assume for contradiction that an edge ij ∈ MST does not appear in the
Delaunay triangulation. Thus, the disk which has ij as a diameter5 is not empty. There must be some
third vertex k in this disk (or on its boundary).

Now, we consider removing i j from MST splits the tree into two parts,
which we will call Ti and Tj . Without loss of generality, let k ∈ Ti . Now, we
will show that there is a geodesic connecting j to k with length strictly less
than �ij. Replacing edge i j with edge jk will thus yield a spanning tree of
strictly less weight, contradicting our assumption that MST was minimal.

Suppose k is in the interior of the disk. Then the distance from k the
midpoint of edge i j is strictly less than �ij/2. Since the distance from this midpoint to j is �ij/2, we
conclude that the distance from j to k is strictly less than �ij as desired. On the other hand, suppose
that there are no other vertices in the interior of the disk and that k lies on the boundary. Then the
disk is intrinsically flat. In a Euclidean disk, the distance from j to any point on the boundary other
than i is strictly less than the diameter �ij .

Hence, we can remove edge ij from the spanning tree and add a shorter edge jk instead. This
contradiction implies that every edge of the MST must lie in the Delaunay triangulation, as desired.

4.1.1.7 Geometric Spanner

A geometric spanner is a graph with the property that distance along edges between any two vertices
is at most some constant factor more than the actual geometric distance between those vertices—here,
the geodesic distance along the surface. Any intrinsic Delaunay triangulation is a 2-spanner: between
any two vertices the graph distance along edges is at most twice the geodesic distance [Xia13].

Xia considers only the case of planar Delaunay triangulations, but the analogous result for surfaces
follows almost immediately. Consider vertices i, j on an intrinsic triangulation, with shortest path
γ between them. γ is contained in some triangle strip in the Delaunay triangulation, or possibly a
sequence of strips (due to saddle vertices). We can lay each triangle strip out in the plane to obtain a
planar Delaunay triangulation, preserving the distance between the beginning and end of the strip.
From the planar result, each strip is a geometric spanner, where the graph distance is at most twice

5Formally, this disk can be defined as the geodesic ball of radius �ij/2 centered at the midpoint of edge ij
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the straight-line distance. Applying this argument to each triangle strip composing γ implies that there
must be a path along the edges of the intrinsic Delaunay triangulation within the desired bound.

4.2 Delaunay Flipping

flip
A key result for intrinsic geometry processing is that any triangulation
can be transformed to be an intrinsic Delaunay triangulation by repeat-
edly flipping any edge with α + β > π (inset) [Ind+01; BS07]. This
mirrors Lawson’s edge flipping algorithm in the plane [Law77], though
significantly more sophisticated machinery is needed to prove correctness
in the intrinsic setting.

Theorem 1 (Indermitte et al. [Ind+01] and Bobenko and Springborn [BS07]). Repeat-
edly flipping non-Delaunay edges yields an intrinsic Delaunay triangulation after a finite
number of flips.

Proof. See Bobenko and Springborn [BS07, Proposition 12]. Essentially, Delaunay edge
flips always decrease Musin’s harmonic index [Mus97], and there are a finite number
of intrinsic triangulations of a given domain with bounded harmonic index.

An important fact is that every non-Delaunay edge is indeed flip-
pable. Recall that an edge is flippable if and only if its endpoints have
degree greater than 1, and its neighboring faces form a convex quadri-
lateral (Section 2.3.4). For an edge ij incident on a degree-1 vertex
(inset, left), both neighboring faces must actually be the same isosceles
triangle. Since 2α < 2α+ 2β , the sum of opposite angles is less than

the sum of the angles at ij’s endpoints, and is hence less than π. So ij must be Delaunay. Similarly, if
ij’s neighbors form a nonconvex quadrilateral (inset, right), then the angle at one endpoint must be
strictly greater than π. Thus, the sum of opposite angles must be strictly less than π, so ij must be
Delaunay.
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Figure 4.3: An empirical study of the
number of edge flips to produce an in-
trinsic Delaunay triangulation [SSC19a].
Each point is a 3D model from the
Thingi10k dataset [ZJ16].

Delaunay edge flipping is then the most basic and essen-
tial intrinsic retriangulation scheme. Given any standard
mesh with vertex positions, one can read off edge lengths
to define an intrinsic triangulation, perform edge flips to
generate the IDT, and use the resulting mesh for subse-
quent computation. In terms of runtime, Delaunay edge
flipping typically takes just milliseconds in practice for typ-
ical inputs, and an empirical study in Sharp, Soliman, and
Crane [SSC19a] (Figure 4.3) showed linear scaling on a
challenging dataset of real-world models [ZJ16]. How-
ever, there is a wide gap between this practical efficiency
and asymptotic analysis: the only known runtime bound
is exponential [Ind+01; BS07], although the most difficult
known counterexample requires only O(n2) flips (consider
triangulating points along the planar parabola y = x2).
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To implement the flip
algorithm, we maintain
a queue of possibly non-
Delaunay edges. For
each edge in the queue, we check the De-
launay condition, which is implemented by
checking the sign of the edge’s cotan weight.
In practice, we allow some epsilon toler-
ance on this check due to floating point
errors—a tolerance of 10−5 is generally suf-
ficient. If the cotan weight is negative, then
the edge is not Delaunay and we flip it.

After flipping, a non-Delaunay edge nec-
essarily becomes Delaunay. However, any
of the 4 neighboring edges on the bound-
ary of the diamond may be become non-
Delaunay due to the flip—these edges must
then be enqueued to be checked themselves.
There is no reason to keep multiple copies
of an edge in the queue to be checked, so
as an efficiency optimization we can op-
tionally maintain an auxiliary boolean ar-
ray indicating which edges are currently in
the queue, updating it as necessary when
edges are pushed or popped. The process is
summarized in Algorithm 1, with the inset
notation.

Algorithm 1 FLIPTODELAUNAY(Tint)

Input: An intrinsic triangulation Tint. This may be repre-
sented via any of the data structures from Chap-
ter 3.

Output: An updated intrinsic Delaunay triangulation Tint.
1: toCheck← E �Enqueue all edges
2: while toCheck is not empty do
3: ij← POPFRONT(toCheck)

�Check if ij violates the Delaunay condition
4: if COTANWEIGHT(Tint, ij)< −ε then
5: Tint← FLIPEDGE(Tint, ij)

�Now push neighboring edges onto the queue
�(the flip may have made them non Delaunay)

6: neighbors← {im, mj, jk, ki}
7: for edge e ∈ neighbors do
8: if e �∈ toCheck then
9: toCheck← PUSHBACK(toCheck, e)

10: end while
11: return Tint

Algorithm 2 EDGECOTANWEIGHT(Tint, ij)

Input: An edge ij of an intrinsic triangulation Tint.
Output: The cotan weight of edge ij.

1: totalWeight← 0
2: for face ijk neighboring edge ij do

�Compute face area with Heron’s formula
3: s← (�i j + � jk + �ki)/2
4: area←
�

s(s− �i j)(s− � jk)(s− �ki)
5: angleCotan← (�2jk + �

2
ki − �

2
i j)/(4 area)

6: totalWeight += angleCotan/2

7: return totalWeight

There are many ways to compute edge cotan
weights. After some trigonometry, we can com-
pute edge cotan weights directly from edge
lengths without using any inverse trigonomet-
ric functions. Consider a single triangle:

The area of the triangle is 1
2�ki� jk sinθ i j

k , and
we can compute 2�ki� jk cosθ i j

k via the law of
cosines. By dividing the two expressions, we
obtain cotθ jk

k (Equation A.3, Algorithm 2).

Alternative Strategies. Many other strategies have been developed to compute the Delaunay trian-
gulation of a point set in the plane. A direct method is to construct a parabolic lifting of the point
set in to �3, then compute convex hull of point set, however algorithms for constructing 3D convex
hulls are nontrivial in and of themselves. In modern planar geometry, the edge-flipping approach is
often avoided in favor of spatial partitioning schemes which are asymptotically more efficient [GS85;
Dwy87]. However unlike flipping, spatial decompositions do not generalize immediately to the setting
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Figure 4.4: Left: Rich data structures enable intrinsic Delaunay refinement, generating triangulations
with good angle bounds. The black wireframe denotes the extrinsic mesh, while colored triangles give
the intrinsic triangulation. Right: Signposts further enable vector field processing; the Laplacian of
the intrinsic Delaunay triangulation offers a maximum principle for tangent vector fields, which here
avoids unexpected flipped vectors when generating a smooth field.

of intrinsic triangulations. Furthermore, we observe empirically that flipping exhibits essentially linear
scaling on real data (Figure 4.3). On surfaces, an alternate approach is to construct the geodesic
Voronoi diagram and take its dual [Liu+17b]. This algorithm provably terminates in O(n2 log n) time,
though it requires the construction of shortest paths along the mesh as subroutine (e.g. via the MMP
algorithm [MMP87]), which can be complex and difficult to implement robustly in practice.

4.3 Delaunay Refinement

In practice one often seeks triangulations which satisfy criteria beyond the Delaunay property, such
as bounds on angles or edge lengths. Delaunay refinement progressively inserts vertices to achieve
a specified minimum-angle bound, while maintaining the Delaunay property. Sharp, Soliman, and
Crane [SSC19a] describe intrinsic Delaunay refinement, making use of the insertion operations offered
by the signpost data structure. The same procedure can be applied on any intrinsic triangulation
which supports operations like insertion; Gillespie, Sharp, and Crane [GSC21a] further the develop the
routine with a proof and treatment of surfaces with boundary. The method uses an intrinsic variant of
Chew’s 2nd algorithm [Che93; She97], which essentially amounts to the following steps:

Until a specified minimum angle bound is satisfied:

Flip to Delaunay
Find any intrinsic triangle ijk that violates the angle bound
Insert the circumcenter p of ijk

The only remaining difficulty with implementing this algo-
rithm intrinsically is locating the circumcenter of ijk. However,
this is also fairly straightforward because our triangulation
necessarily satisfies the Delaunay property. Since the triangu-
lation is Delaunay, ijk has an empty circumcircle—in partic-
ular, this circumcircle bounds an intrinsically-flat disk with a
well-defined center which can be found tracing from the barycenter of ijk [GSC21a].
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Robust Triangulation. In practice intrinsic Delaunay refinement is quite effective, reproducing the
behavior of the planar algorithm and consistently generating meshes with an interior angle bound of
30◦. This aligns with the treatment of the planar case [Che89], though formally extending the analysis
to the intrinsic setting on general meshes with boundary is an area of ongoing work. In Gillespie,
Sharp, and Crane [GSC21a] we prove that the algorithm succeeds on meshes without boundaries
or needle vertices, though a full proof of the most general case remains open. The practical utility
of this approach should not be understated: it automatically generates a surface triangulation with
guaranteed quality bounds, and furthermore it does not require the tuning of any numerical parameters.
Such behavior is extremely valuable for robust PDE-based geometry processing in practice, generating
high-quality meshes for downstream applications without any tradeoff of approximation error, and
only modestly increasing element counts (Figure 4.9).

Algorithm 3 FLIPQUEUETODELAUNAY(Tint, edgesToCheck,θmin)

Input: A triangulation Tint, a queue edgesToCheck of possibly non-
Delaunay edges, and a minimum angle bound θmin.

Output: An updated Delaunay triangulation Tint, and a list facesToCheck
of all newly-created faces which violate the minimum angle
bound

1: facesToCheck← ;
2: while edgesToCheck is not empty do
3: i j← POPFRONT(edgesToCheck)
4: if i j is not Delaunay then
5: Tint← FLIPEDGE(Tint, i j)
6: for neighboring edge ei j which is not in edgesToCheck do
7: edgesToCheck← PUSHBACK(edgesToCheck, ei j)
8: for neighboring face ijk which is not in facesToCheck do
9: if SHOULDREFINE(Tint, ijk,θmin) then

10: facesToCheck← PUSHBACK(facesToCheck, ijk)
11: end while
12: return Tint, facesToCheck

Now we can elaborate
on the implementation of in-
trinsic Delaunay refinement.
Similar to the Delaunay flip-
ping algorithm, we maintain
a queue of possibly-invalid
faces to check. We initial-
ize the queue with all faces
of the mesh. Then, for each
face in the queue, we check
whether it satisfies the min-
imum angle bound. If it
does not, we insert its cir-
cumcenter into the mesh,
and push all of the faces
incident on the new vertex
onto the queue of faces to
check. Finally, we flip to De-
launay. Each time we flip
an edge, the two new faces
are pushed onto the queue if
they violate the minimum angle bound.

We can accelerate this algorithm by integrating the Delaunay flip algorithm. Using Algorithm 1
each time would require checking the Delaunay condition at every edge of the mesh after inserting
each vertex, which quickly becomes expensive. Fortunately, the mesh was Delaunay before inserting
the vertex, so the only edges which could fail to satisfy the Delaunay condition are those neighboring
to the newly-inserted vertex. Accordingly, we define an alternative flipping procedure (Algorithm 3)
which takes in the list of all possibly non-Delaunay edges, and then runs the ordinary flipping algorithm.
This flipping procedure also returns the set of all faces which were created by flips and violate the
minimum angle bound—we process these faces later in the outer loop of the algorithm.
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In the presence of boundary, triangle circumcircles may not be contained in
the mesh. In the planar case, Chew’s 2nd algorithm splits boundary segments,
then removes previously inserted vertices within the diametral ball as a technical
requirement to ensure the algorithm converges. We employ an analogous geodesic
procedure for the intrinsic case. To find vertices within a ball around the edge with-
out a complicated geodesic distance query, we instead remove vertices within twice
the graph distance; by the geometric spanner property of Delaunay triangulations
this includes all vertices within the desired geodesic ball (Section 4.1.1). Precisely,
whenever a circumcenter tracing query hits a boundary edge, we instead split that edge at its midpoint.
Then, we flip the triangulation to Delaunay, and remove all inserted vertices within a Dijkstra ball 6 of
radius �ij centered at the new vertex. We assume that the REMOVEVERTEX routine returns the list of
edges that were modified due to the removal; these edges and their adjacent faces must be checked
for the Delaunay property and refinement criteria respectively.

Algorithm 4 SHOULDREFINE(Tint, ijk,θmin)

Input: A face ijk in triangulation Tint, and the angle
bound θmin.

Output: Whether or not the face should get refined
1: for vertex m in ijk do
2: if CORNERANGLE(ijk, m)< θmin then
3: if DEGREE(m)> 1 then
4: return true
5: return false

Finally, it can be impossible to
achieve a given minimum an-
gle bound near extremely skinny
needle-like vertices. At best a sin-
gle triangle wraps around the ver-
tex, making it a degree-1 vertex.
For this reason, we only refine tri-
angles which have a corner angle
less that θmin that are incident on
a vertex with degree greater than
one (Algorithm 4). One can also
incorporate other conditions, e.g.
refining triangles whose circumradii exceed a given bound to impose triangle area con-
straints, but for simplicity we consider only angle bounds here.

Algorithm 5 DELAUNAYREFINE(Tint,θmin)

Input: A triangulation Tint = (Vint, Eint, Fint) and a desired minimum corner angle θmin ≤ 30◦.
Output: An updated triangulation Tint whose faces all have corner angles at least θmin.

1: Tint, _← FLIPQUEUETODELAUANY(Tint, Eint) �Initially flip to Delaunay, checking all edges
2: facesToCheck← Fint �Maintain an explicit queue of possibly-invalid faces to check
3: while facesToCheck is not empty do
4: edgesToCheck← � �List of possibly non-Delaunay edges to check at the end of this iteration
5: ijk← POPFRONT(facesToCheck) �Get next face. Skip faces which no longer exist.
6: if SHOULDREFINE(Tint, ijk,θmin) then �Check face for refinement

�Compute the barycentric coordinates of the circumcenter
7: v̂i = �2jk(�

2
i j + �

2
ki − �

2
jk) �And similarly for v̂j , v̂k

8: (vi , vj , vk) = (v̂i , v̂ j , v̂k)/(v̂i + v̂ j + v̂k) �Normalize to obtain true barycentric coordinates
9: p← EXP

�

BARYCENTER(i jk), v − (1
3 , 1

3 , 1
3)
�

�Find circumcenter by tracing from barycenter

6i.e.the set of vertices within a certain distance along the edge graph.
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10: if p lies in the mesh interior then
11: Tint, q← INSERTVERTEX(Tint, p) .Insert circumcenter. The new vertex is named q
12: else

.If the circumcenter lies outside the mesh, then we split the boundary edge separating ijk

.from its circumcenter, and remove all vertices within a Dijkstra ball of the new vertex
13: ei j← the edge that p lies on
14: Tint, q← SPLITEDGEATMIDPOINT(Tint, ei j)
15: for face f adjacent to inserted point q do
16: for edge e of face f which is not in edgesToCheck do
17: edgesToCheck← PUSHBACK(edgesToCheck, e)

.We need to flip to Delaunay before computing the Dijkstra ball centered at q, since

.in a Delaunay triangulation the Dijkstra ball approximates a geodesic ball
18: Tint, newFacesToCheck← FLIPQUEUETODELAUNAY(Tint, edgesToCheck)
19: facesToCheck← APPENDBACK(facesToCheck, newFacesToCheck)
20: edgesToCheck← ;
21: D← DIJKSTRABALL(Tint, q,`ĩ j)
22: for inserted vertex m ∈ D which is not on the boundary do
23: Tint, modifiedEdges← REMOVEVERTEX(m)

.REMOVEVERTEX modifies neighbors; enqueue them to check the Delaunay condition.

.We also put their neighboring faces into the face queue as necessary.
24: for edge e ∈modifiedEdges do
25: edgesToCheck← PUSHBACK(edgesToCheck, e)
26: for face f adjacent to e which is not in facesToCheck do
27: if SHOULDREFINE(Tint, f ,θmin) then
28: facesToCheck← PUSHBACK(facesToCheck, f )
29: for face f adjacent to q do .Add faces/edges incident on the inserted vertex to queues
30: if f 6∈ facesToCheck then
31: facesToCheck← PUSHBACK(facesToCheck, f )
32: for edge e of face f which is not in edgesToCheck do
33: edgesToCheck← PUSHBACK(edgesToCheck, e)

.Flip to Delaunay after vertex insertion. Since the mesh was Delaunay before,

.the only possible non-Delaunay edges are edgesToCheck
34: Tint, newFacesToCheck← FLIPQUEUETODELAUNAY(Tint, edgesToCheck)
35: facesToCheck← APPENDBACK(facesToCheck, newFacesToCheck)
36: end while
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4.4 Constrained Triangulation

input graph constrained
Delaunay

Delaunay
re�nement

Figure 4.5: Top. Planar constrained Delaunay trian-
gulations are used to produce high-quality triangula-
tions which conform to a collection of specified lines.
Bottom. Constrained intrinsic triangulations play a
similar role on surfaces, preserving a set of intrinsic
edges in the triangulation.

A constrained triangulation is a triangulation
required to contain some predefined collection
of edges. For traditional mesh generation in �2

and �3, constrained Delaunay triangulations
are a standard tool, yielding meshes which
align to specified boundary geometry [Che89;
She02b; CDS12]. With the intrinsic approach,
we can can likewise generate constrained intrin-
sic triangulations, which are guaranteed con-
tain specified intrinsic edges of interest. These
edges can then be used in applications e.g. to
impose boundary conditions along predefined
regions (Figure 5.8), or to preserve “feature
edges” or creases in a mesh7. The intrinsic FLIP-
TODELAUNAY and DELAUNAYREFINE procedures
(Algorithm 1 and Algorithm 5) are easily mod-
ified to preserve constrained edges, by either
declining to flip such edges (allowing them to
be non-Delaunay), or by splitting a constrained
edge instead of flipping it (which will eventu-
ally yield a Delaunay edge).

However, if the desired edges are not already present in the initial triangulation, then we face a
significant new challenge in the intrinsic setting: unlike in the planar case, we cannot simply draw a
straight line between distant vertices to obtain the specified edge. The FlipOut procedure, described in
Chapter 5, fills this necessary role, allowing us to introducing long geodesic edges between a specified
pair of vertices into the triangulation. The long red geodesic edges used as constraints in Figure 4.5,
bottom are generated using this procedure.

4.5 Optimal Delaunay Triangulation

An optimal Delaunay triangulation improves element quality not just by refining the triangulation, but
also by adjusting the placement of vertices [CX04]. Sharp, Soliman, and Crane [SSC19a] apply this
idea in the intrinsic setting by optimizing the location of inserted vertices—modifying the original
vertices is of course undesirable, since it would change the surface geometry as well as the triangulation.
The basic strategy is to iteratively move all vertices toward the triangle-area-weighted sum of the
circumcenters of incident triangles, again performing edge flips after each iteration to maintain the
Delaunay property [CH11, Equation 4.13]. In the intrinsic setting we can locate circumcenters as in
Delaunay refinement; rather than averaging these locations, we simply average the vectors to these
locations, then use this average as our update direction. We insert new vertices on each iteration by
splitting edges longer than a user-defined target length (à la Tournois et al. [Tou+09]). In general
we observe the same behavior as in the Euclidean case: in contrast to Delaunay refinement, we get a
better distribution of areas, at the cost of some skinnier angles (Figure 4.1). Crucially, throughout this

7Crease edges characterized by by sharp dihedral angles are of course indistinguishable in the intrinsic geometry, but may
nonetheless be useful to preserve as constrained edges for applications, e.g. for directional alignment.
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Figure 4.6: Intrinsic AMR allows one to efficiently compute standard geometric kernels to high accuracy.
Performing ordinary Delaunay refinement to the same accuracy requires 18x and 54x as many vertices
on the harmonic Green’s function and short time heat kernel resp. [SSC19a].

process we do not reposition the initial vertices, only those which we previously inserted, and thus
continue to exactly preserve the geometry.

4.6 Adaptive Mesh Refinement

Rather than globally improving an entire mesh, one could instead refine only in regions of interest.
Since many PDEs used in geometry processing display interesting behavior only in a localized region
of the mesh, this can greatly improve efficiency. In [SSC19a, Section 5.4 & Supplemental], we perform
adaptive mesh refiniement (AMR), using a posteriori error estimates to guide Delaunay refinement to
provide higher resolution near interesting features. They find that such adaptive refinement can produce
2-10x speedups when compared against global refinement when computing standard geometric kernels
such as the harmonic Green’s function or short-time heat kernel (Figure 4.6). As another application,
we consider harmonic maps to the plane: intrinsic Delaunay triangulations guarantee that such
parameterizations are injective thanks to the maximum principle, but still result in significant distortion
near the boundary. AMR provides the resolution necessary to resolve the map in these boundary
regions, while leaving the triangulation sparse in the smoother interior regions (Figure 4.10).

4.7 Intrinsic Mollification

Meshes encountered “in the wild” may have near-degenerate geometry (e.g., near-zero angles or areas)
that can impair even basic floating point arithmetic [ZJ16]. Delaunay flips sometimes fix degenerate
triangles, but are not guaranteed to do so, and even evaluating these flips may be difficult on degenerate
geometry. Extrinsically, it is difficult to repair degeneracies with any kind of guarantee, because a
perturbation that improves one element might make another worse. However, in the intrinsic setting
there is a simple mollification procedure which provably resolves degeneracies, while making only a
negligible change to the geometry [SC20a].

The strategy is to increase the length of all edges by a small, constant amount until no triangle is
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degenerate. More precisely, for each corner of each triangle we want

`i j + ` jk > `ki +δ, (4.1)

for some user-defined tolerance δ > 0, i.e., we want the triangle inequality to hold with significant
inequality, so that triangles are nondegenerate. Then

ε :=max
ijk

max(0,δ− `ki − `i j + ` jk) (4.2)

is the smallest length we can add to all edge lengths to ensure that Equation 4.1 holds. Note that this
strategy closely preserves the given geometry: at worst, ε can be just slightly larger than δ (due to
floating point error); when the mesh is already nondegenerate, ε = 0. Applying intrinsic mollification
as a pre-process allows us to apply intrinsic retriangulation even on inputs which are so degenerate
that basic floating point arithmetic would otherwise file. We recommend δ = 1e−5h as a reasonable
default value for double precision arithmetic, where h is the mean edge length. Empirical studies
[SC20a; GSC21a] have demonstrated that mollification enables intrinsic retriangulation of extremely
poor quality meshes, successfully processing all models in the challenging Thingi10k dataset [ZJ16].

4.8 Metric Scaling

Some problems in geometric computating make use of a customized, possibly-anisotropic metric along
the domain, such as a spatially-varying speed function affecting distances along a surface [CHK13], or
a preferrential alignment for vector fields [Jia+15]. The most direct approach to compute with such
metrics is to modify algorithms to incorporate a metric tensor or scaling factor when deriving relevant
operators and expressions. However, the intrinsic perspective offers an appealing alternative strategy:
rescale the edge lengths ` according to the metric, then simply use any ordinary isotropic algorithm.
The intrinsic viewpoint is crucial here, because finding a new extrinsic embedding which respescts a
custom metric would be a difficult global problem which may not even admit any solutions, whereas
scaling intrinsic edge lengths is generally a simple, local operation.

As one concrete strategy, suppose anistropy is specified by a norm |v|g in each face ijk which
measures the length of a tangent vector v in local coordinates (Section 2.3.7). Scaled edge lengths can
then be computed by measuring each edge vector uij as `′ij = |uij|g , averaged over all faces incident on
the edge. Any subsequent computation is performed on the intrinsic triangulation defined by these
scaled edge lengths `′. For large scalings, the resulting edge lengths may violate the triangle inequality,
invalidating the representation—this can be addressed by constraining the edge lengths, or modifying
the mesh. This approach, and related concerns, are discussed at length by Campen, Heistermann,
and Kobbelt [CHK13]. It should be noted that applying transformations to edges lengths yields an
abstract intrinsic triangulation which does not necessarily have an isometric correspondence with the
original underlying surface, and thus the data structures from Chapter 3 cannot be directly applied as
described.
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4.9 Comparison to Traditional Remeshing

input same geometry same #elements

3k faces 330k faces 3k faces

Figure 4.7: Traditional remeshing cannot improve
element quality without increasing mesh size or
disturbing the geometry; intrinsic triangulations
escape this tradeoff.

Remeshing of surfaces meshes is widely studied
in geometry processing [CDS12; CH11; All+08],
but such methods must inevitably trade off be-
tween element quality and geometric approxima-
tion of the input surface. The intrinsic approach
escapes this tradeoff, operating in a space of tri-
angulations which all exactly represent the un-
derlying geometry. In fact, intrinsic algorithms
offer concrete algorithmic guarantees about the
quality of the resulting meshes, which generally
are not otherwise available for surface remeshing
routines.

Another important advantage of the intrinsic approach is efficiency. Whereas surface remeshing
often amounts to difficult optimization problems or long-running iterative schemes, intrinsic retrian-
gulation is extremely efficient, more akin to planar triangulation. The procedures described in this
section generally have runtimes on the order of milliseconds.

Of course, the price for this algorithmic power is that the output of intrinsic retriangulation is an
intrinsic object with only edge lengths, not a traditional mesh with vertex positions. Fortunately, it is
straightforward to adapt subsequent computations to this paradigm; generally one simply needs to
evaluate geometric quantities from edge lengths, rather than vertex positions. As one example, the
GEOMETRY-CENTRAL C++ library contains a growing collection of routines which seamlessly support
this paradigm [SC+19].

4.9.1 Other Notions of Delaunay

restricted
Delaunay

optimal
Delaunay

There are many other seemingly-similar notions of Delaunay tri-
angulation which arise in surface mesh generation. One common
strategy, referred to as “restricted Delaunay” is to generate a De-
launay tetrahedralization8 of a point set, and take a subset of the
faces of the tetrahedralization as a surface mesh[CDS12, Chapter
13]. Other methods define planar schemes, then project on to
surfaces [CH11] In fact, the classic work now known for describing
Chew’s 2nd algorithm mainly concerns a notion of circumspheres in
3D space for surface meshes [Che93]. Recent work by Khoury and
Shewchuk [KS21] defines a related construction of constrained
restricted Delaunay triangulations, though no concrete algorithms are yet known. However, these
alternate definitions come without any of the same Delaunay properties, such as positive cotangent
weights (inset image, edges with negative cotan weights highlighted in black) or empty geodesic
circumballs (Section 4.1.1). The intrinsic Delaunay criterion is the only notion of Delaunay for surface
meshes which extends all of these desirable properties of the planar Delaunay triangulations to the
surface case.

8A note on terminology: in some contexts, the term Delaunay triangulation may be used for a Delaunay complex of any
dimension, such that a “3D Delaunay triangulation” really refers to a set of Delaunay tetrahedra, not triangles.

57



intrinsic
Delaunay
re�nement[Liu et al. 2015] intrinsic �ips input

Figure 4.8: Left: Extrinsic schemes may need to insert many vertices and create skinny triangles to
produce a Delaunay triangulation while preserving the shape, while the intrinsic approach preserves
the vertex set and improves triangles quality. Right: Small corner angles in an extrinsic triangulation
must remain if extrinsic shape is to be preserved, but instead preserving only the intrinsic shape allows
these angles to be improved.

4.9.2 Extrinsic Construction

Instead of taking the intrinsic approach, it is also possible to construct traditional, extrinsic triangle
meshes which satisfy the intrinsic Delaunay criterion while also preserving the geometry. However,
preserving the extrinsic geometry is stricter requirement than preserving only the intrinsic geometry:
the resulting meshes may require inserting a large number of elements, whereas the intrinsic approach
achieves the Delaunay property without changing the number of elements (Figure 4.8, left). In
particular, Shewchuk [She02b, Section 7.1] discusses extrinsic Delaunay refinement of surface meshes,
which essentially amounts to applying planar Delaunay refinement independently in each triangle.
The same can also be achieved using only edge splits and planar flips [DZM07; Liu+15], and in
fact Ye et al. [Ye+20] show that interpolating scalar functions to such a mesh yields a Rippa-like
smoothness guarantee. However, beyond increasing element counts, a disadvantage of geometry-
preserving extrinsic Delaunay remeshing is that such schemes cannot possibly improve small triangle
corner angles which appear in an input mesh (Figure 4.8, right). In contrast, intrinsic remeshing has
significant freedom to improve skinny corner angles while preserving intrinsic geometry.

4.10 Robustifying Applications with Intrinsic Triangulations

A key application of intrinsic retriangulation is providing robustness as a subroutine: we can make
classical algorithms dramatically more robust to low-quality inputs simply by running them on a
high-quality intrinsic triangulation rather than directly on the extrinsic mesh. The basic pipeline is:

1. intrinsically retriangulate the extrinsic mesh,

2. solve the problem on the intrinsic triangulation,

3. transfer the solution back to the extrinsic mesh.

Crucially, we can generally run existing geometric algorithms directly on an intrinsic triangulation:
there is no need reinvent or re-derive the algorithms. Intrinsic triangulations still offer a familiar mesh
interface, and are equipped with linear basis functions in triangles widely used in geometry processing
(higher-order basis can of course likewise be constructed if desired). The most common change is
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Figure 4.9: Intrinsic triangulations dramatically
improve the quality of solutions from PDE-based
geometry processing algorithms such as the
heat method when run on low-quality geome-
try. [SSC19a]

input iDT AMR

Figure 4.10: Using an intrinsic Delaunay triangu-
lation ensures that a harmonic parameterization is
flip-free, while adaptive mesh refinement provides
high-resolution in the interesting regions of the
mesh. [SSC19a]

simply to evaluate geometric quantities directly from edge lengths rather than vertex positions—see
Appendix A for some useful expressions. Many algorithms involve only intrinsic data and operators,
but there are some in which extrinsic operations play a crucial role, such as bending energies—it is not
yet straightforward to apply intrinsic to these problems. However, a common setting is an intrinsic
operator (e.g. the Laplacian) applied to extrinsic data (e.g. vertex positions), such as the surface editing
context in Figure 6.1. In this case, intrinsic triangulations can be used to build a high-quality operator,
which is then applied to the extrinsic data, improving robustness.

4.10.1 The Intrinsic Delaunay Laplacian

The most widespread usage of intrinsic triangulations is to construct the intrinsic Delaunay triangulation
for a low-quality mesh, and then read off the corresponding Laplace matrix, the intrinsic Delaunay
Laplacian [BS07]. This Laplacian has a variety of desirable properties, including a guarantee of a
maximum principle (Section 2.5), and improved element quality (by maximizing minimal corner
angles, Section 4.1.1, see [She02a] for further discussion). The most basic usage of the intrinsic
Delaunay Laplacian is to simply build a better matrix, and substitute it in place of the ordinary cotan
Laplacian. This is already remarkably effective in practice, although further benefits may be had by
evaluating an entire algorithm on a high-quality intrinsic triangulation, as opposed to just building the
Laplace matrix. The applications we explore will improve accuracy and robustness both through the
use the intrinsic Delaunay Laplacian, as well as other techniques such as evaluating other operators
beyond the Laplacian, and computing on an intrinsic Delaunay refinement with guaranteed element
quality.

4.10.2 Examples

We illustrate robustness with intrinsic triangulations through several examples.
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Figure 4.11: Here we visualize a local parameteri-
zation, the logarithmic map, computed via the vec-
tor heat method. Although the vector heat method
internally uses tangent vector diffusion, the final
logarithmic map is a scalar function, and can hence
be visualized using the integer coordinate repre-
sentation. [GSC21a]
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Figure 4.12: The signpost data structure also en-
ables processing tangent data. Here, smoothest
vector fields computed on an intrinsic triangula-
tion have much lower Dirichlet energy than one
computed on a low-quality mesh. [SSC19a]

The Heat Method for Geodesic Distance. PDE-based methods abound in geometry processing, as
they generally provide simple and inexpensive algorithms which benefit from decades of research into
fast linear solvers. The heat method is a representative example, computing approximate geodesic
distance on a mesh by solving a short-time diffusion equation [CWW13]. Evaluating the algorithm on
an intrinsic retriangulation greatly improves the accuracy of the solution to the diffusion equation,
which in turn leads to much more accurate distances on low quality meshes. (Figure 4.9)

The Logarithmic Map. The logarithmic map, the inverse of the exponential map (Section 2.4.2), is
useful as a parameterization of a surface mesh [SGW06] 9. This parameterization can be computed
with the vector heat method [SSC19b], which again amounts to solving a diffusion equation, but this
time diffusing tangent vectors rather than just scalar functions. Once again, we apply the method on
an intrinsic triangulation without any other modifications, and observe significantly more accurate
results. Although this algorithm uses tangent vectors during computation, the end result is simply
a pair of functions, and thus the procedure could be evaluated on the simple edge length-only data
structure, with no additional correspondence tracking. However, in Figure 4.11 we visualize the
intrinsic logarithmic map represented in the bases of the intrinsic triangulation, which requires a more
sophisticated data structure to construct the common subdivision.

Globally-Optimal Direction Fields. We can also use intrinsic triangulations to compute tangent
vector fields. For instance, here we compute smooth vector fields by minimizing a vector Dirichlet
energy [Knö+13]. In this case, the solution is a vector field, rather than a scalar function, so even
copying values at vertices requires some sort of correpondence data structure. (Figure 4.12)

9Note that Schmidt et al. refer to the logarithmic map as the “exponential map”.
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4.11 Transferring Solutions Between Triangulations

After computing the solution to a problem on the intrinsic triangulation, one often wants to obtain a
solution on the extrinsic mesh. The simplest strategy is to simply copy values at vertices back to the
extrinsic mesh. Since intrinsic retriangulation never removes extrinsic vertices, this operation is always
well-defined, and can even be performed when using only the abstract edge length representation. This
approach is already quite effective in practice, but it is not optimal in any sense, and does not apply to
more general tangent vector data, so we will describe some alternative notions of data transfer.

4.11.1 Optimal Attribute Transfer

Rather than simply copying values back at vertices, we can seek the function on the extrinsic mesh
which is closest to the intrinsic solution, in the L2 sense. As described by Gillespie, Sharp, and Crane
[GSC21a], this amounts to a sparse linear system constructed over the common subdivision. Other
notions of closeness, and other basis functions could easily be treated similarly. Note that this operation
is impossible using only intrinsic edge lengths; it requires the common subdivision, as provided by rich
mesh data structures (Chapter 3).

Formally, given a piecewise-linear function f on the intrinsic triangulation, we seek the piecewise-
linear function f̂ on the extrinsic mesh which minimizes the squared L2 distance:

‖ f − f̂ ‖2L2 :=

∫

M

�

� f (x)− f̂ (x)
�

�

2
d x . (4.3)

If f and f̂ were defined over a single mesh, then we could evaluate this distance exactly using the
Galerkin mass matrix M (Section 2.5.1):

‖ f − f̂ ‖2L2 = ( f − f̂ )TM( f − f̂ ), (4.4)

where we implicitly identify the piecewise-linear functions f and f̂ with finite-dimensional vectors in
�|V | given by their values at mesh vertices. However, f and f̂ are defined on different triangulations:
Tint and Text, respectively. Nonetheless, f and f̂ are both piecewise-linear over the common subdivision
S. Thus, we can evaluate the L2 distance by interpolating both functions to S as

‖ f − f̂ ‖2L2 = (Pint f − Pext f̂ )TMS(Pint f − Pext f̂ ), (4.5)

where MS is the Galerkin mass matrix of the common subdivision, and Pext, Pint are interpolation
matrices mapping functions on the extrinsic and intrinsic triangulations to S resp.. In particular, Pext is
a |Vext| × |VS | matrix where each row corresponds to a vertex of S and has that vertex’s barycentric
coordinates on the extrinsic mesh as entries, and likewise for Pint. We can now find the function f̂
which is L2-closest to the intrinsic function f simply by minimizing Equation 4.5, which amounts to
solving a linear system.

# vertices

original
IDT - copy values
IDT - L210-4

26 27 28 29 210 211

10-3

10-2

10-1
solution error

25.0x12.5x

The inset example illustrates the bene-
fits of this technique, improving the accu-
racy of solutions on near-degenerate triangu-
lations [GSC21a]. We begin by generating a
low-quality mesh of the unit square via ran-
dom edge splits, and solve the Poisson equation
∆ f = sin(πx) sin(πy) on this extrinsic mesh,
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then solve the same problem on the intrinsic Delaunay triangulation. We transfer the intrinsic solution
back to the extrinsic mesh by copying values at vertices, as well as via the L2 projection described above,
yielding two more solutions on the extrinsic mesh. Finally, we compute the error of each solution as
represented in the basis of the original extrinsic mesh against an analytic ground truth, and plot the
average error after 100 trials on randomly generated meshes of the domain. Copying back intrinsic
solution values at vertices provides already improves accuracy by 12.5× compared to solving directly
on the extrinsic mesh, and picking the L2-closest function results in even better solution, decreasing
error by a factor of 25× (inset figure).

4.11.2 Transferring Tangent Vectors

Sometimes, the quantity to be transferred is a tangent vector field (Section 2.4) rather than a scalar
function. In this case, even copying the solution back at vertices becomes complicated, as tangent
vectors on the intrinsic and extrinsic meshes are represented in different coordinate systems. Copying
tangent vectors is easiest to do using the signpost data structure, since signposts directly encode the
mapping between these coordinate systems, as discussed in Section 3.4.3. In other representations,
a change of basis can be computed by comparing the angle between edges in Tint and Text on the
common subdivision.
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Chapter 5

Geodesics

Geodesic curves generalize the notion of a straight line to curved surfaces; they can be defined for-
mally as locally-shortest paths, or curves of zero tangential acceleration (Section 2.4.1). Fast and
accurate computation of geodesics enables a multitude of algorithms throughout science and engineer-
ing [Bos+11], and the ability to construct “straight lines” on polyhedral surfaces allows us to run classic
algorithms from 2D computational geometry on curved surfaces. Here, we consider exact, polyhedral
geodesics, which are exactly geodesic along the piecewise-flat geometry of a mesh, as opposed to some
approximate or smoothed notion of geodesic.

Computationally, geodesics are most widely studied in the context of finding globally shortest
geodesics from a source point; such paths are useful for defining distance along a surface—the geodesic
distance between two points is the length of the shortest path along the surface between. Algorithms in
this vein have roots in the strategy of Mitchell, Mount, and Papadimitriou [MMP87]: they start at the
source, and propagate “windows” of geodesic paths sharing a common history in a traversal similar
to Dijkstra’s algorithm. Many improvements, generalizations, and approximations have since been
developed along this line of research [KS98; Sur+05; BK07; XW09; CWW13; YWH13; Xu+15; YXH14;
Qin+16; Wan+17; Yin+19; AFH20; Cao+20].

However, in geometry processing we will often also need to consider geodesic paths which are
not necessarily globally-shortest geodesics. For instance, every edge of an intrinsic triangulation is
a geodesic path, but not necessarily the shortest geodesic path between the endpoints. Though less
widely-studied than the geodesic distance problem, there is also a wide variety of existing algorithms for
constructing and manipulating these more general general geodesic curves. One important approach
is to shorten a given curve to be a geodesic, akin to a curve shortening flow on the surface [Gag90].
Such procedures can construct a larger space of geodesics beyond merely shortest geodesics including
even closed loops, and can preserve the topological class of curves—both of which are critical for tasks
like modeling and fabrication. Lagrangian approaches to curve shortening represent curves as a lists
of vertices which move along the surface or in �3 [HS94; MVC05; XW07; ASS09; XHF11; Han+17;
Liu+17a; RŠN19]. On the other hand, Eulerian methods encode curves as the level sets of real-valued
functions on the surface [Set89; WT09; Zha+10].

input curve geodesic curveinput curve
Given the variety of complicated algorithms which have been

developed to construct geodesic curves, it is somewhat remark-
able that they emerge automatically as the edges of an intrinsic
triangulation, and can be manipulated by simple edge flips. In
fact, in Sharp and Crane [SC20b] we show that a greedy edge
flipping strategy can be used to intentionally introduce particular
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edges in an intrinsic triangulation; providing a simple and efficient scheme for constructing geodesic
paths (see inset). The resulting strategy is quite simple, and more interestingly represents a totally dif-
ferent approach to finding geodesics, compared to the window-based and unfolding-based approaches
prevalent in past work. By building a method for computing geodesics within the framework of intrinsic
triangulations, we benefit from all of the machinery in the preceding sections, such as the highly robust
integer-based representation (Section 3.5.1). The remainder of this section will outline the intrinsic
flip-based geodesic algorithm of Sharp and Crane [SC20b], and show how it can be applied to problems
in geometry processing.

5.1 Geodesics from Intrinsic Edge Flips

The edges in an intrinsic triangulation are always geodesics along the surface (Section 2.3.4); the basic
strategy is then to construct desired geodesic paths with a simple greedy edge flipping policy which
intentionally introduce edges of interest in an intrinsic triangulation. In particular, we will take as
input some path γ along the edges of an intrinsic triangulation Tint (or more generally a loop or even a
network of paths and loops). As output we will produce a geodesic path γ′ which is isotopic to the
input, along the edges of an updated intrinsic triangulation T ′int. As the algorithm proceeds, the curve
will always be represented as a sequence of edges in an intrinsic triangulation, akin to a path in the
graph theory sense. Finally, these paths can be extracted as explicit polylines along the surface as a
post-process, using the data structures described in Chapter 3.

Lagrangian straightening
(regions not well-defined)

input regions flip-based straightening
(regions are preserved)

Noncrossing Curves. This algorithm will
operate in the space of noncrossing curves:
the input curves must not cross transversely,
and it is guaranteed that the output will
not contain any new crossings. Noncross-
ing curves arise frequently in geometry pro-
cessing algorithms, such as cuts or seams
made to parameterize a shape with low dis-
tortion [CZ18; LDB17; SC18], and as the
boundaries of regions or segmentations along a shape (see e.g. [CGF09]). Straightening such curves is
important in computational fabrication, or satisfy smoothness objectives in optimization. Flip-based
geodesics are particularly suited for straighting such curves precisely because they will guarantee to
preserve the noncrossing property—otherwise, unintentional crossings would render the curves useless
for the corresponding applications (inset). In our algorithms, a flexible joint is a local region of the path
which can be straightened without introducing a crossing. In the notation of Figure 5.2, the joint is
flexible if there are no other path segments in the region swept by the angle labelled αabc . Sharp and
Crane [SC20b, Section 3.2] describe a data structure for tracking flexible joints, efficiently handling
arbitrary path configurations.

Constructing Geodesics with Edge Flips. The key algorithmic building block is the FLIPOUT sub-
routine, so-named because it flips edges out of a neighborhood to provably introduce a shorter path
(see inset diagram for notation). At a vertex i where the path is not yet a geodesic, FLIPOUT simply
repeatedly flips any edge outgoing from i which can be flipped (see Section 2.3.4, essentially any
edge contained in a convex diamond). In Sharp and Crane [SC20b, Theorem 4.1], this subroutine
is proven to always terminate with a shorter path along the perimeter. The essence of the proof is
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Figure 5.1: FLIPOUT shortens the curve γ by repeatedly flipping edges to introduce a shorter path.

that each flip removes an edge from the neighborhood of i, until the only edges left form a convex
curve along the perimeter. The convex perimeter curve is guaranteed to be shorter than the initial
path as a corollary of Crofton’s formula [Cro68]: for two nested convex curves sharing endpoints, the
inner one is shorter. The formal proof for the general case of ∆-complex (Sharp and Crane [SC20b,
Appendix A]) is nontrivial, but necessary because the triangulation may be reduced to a ∆-complex at
intermediate stages of the algorithm.

Algorithm 6 FLIPOUT(Tint,γabc)

Input: A triangulation Tint, and a flexible joint γabc where
αabc < π and segments ab, bc are distinct.

Output: A shorter edge path γshorter connecting a to c in an up-
dated triangulation Tint.

1: while any βi < π do
2: j←min i s.t. βi < π �choose the first edge with βi < π

3: FLIPEDGE(Tint, bnj)
4: end while
5: γshorter← (a, n1, . . . , nk−1, c) �path along the outer arc
6: return Tint,γshorter

Figure 5.2: FLIPOUT notation.

This procedure is easiest to conceptualize in a planar triangulation (as shown in Figure 5.1).
However, the algorithm (as well as its proof of correctness) depends only on measuring triangle corner
angles and flipping edges—both of which are perfectly well-defined on intrinsic triangulations. Thus
we can use this procedure to shorten paths, and ultimately construct geodesics, along curved surfaces.

Theorem 2 (Sharp and Crane [SC20b]). When FLIPOUT terminates, |γshorter|< γabc, i.e.
the new path is shorter than the input path.

Proof. Upon termination the angles βi are all greater than or equal to π. Hence, in the
planar layout, γshorter is a convex curve contained in the initial curve γabc . A corollary
of Crofton’s formula [Cro68] is that for two nested convex curves sharing endpoints,
the inner one is shorter. Since the planar layout is isometric, the lengths of curves in
this planar diagram exactly match the lengths of edge paths on the surface, and thus
|γshorter|< |γabc |.

For a full proof that FLIPOUT terminates, even in the case where Tint may be a
general ∆-complex, see Sharp and Crane [SC20b, Appendix A].
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Figure 5.3: Basic results shortening an initial path
to a geodesic by flipping edges. Inset values give
the runtimes. All of the resulting curves shown are
exact polyhedral geodesics.

input geodesic

x5

5ms

Figure 5.4: Careful treatment of noncrossing
curves enables finding geodesics that overlap many
times (top), or those that get pulled tight around
endpoints of the path itself (bottom).

Geodesic Paths. Starting from an arbitrary edge path γx↔y between vertices x and y, we can
compute an exact polyhedral geodesic in a finite number of steps by simply applying FLIPOUT repeatedly
(Figure 5.3). Each iteration shortens the path until we obtain a locally shortest, i.e. geodesic, path.
Algorithm 7 describes the procedure, while Theorem 3 argues that it must terminate after a finite
number of steps. In practice we suggest always processing the flexible joint with smallest curve corner
angle, by maintaining a priority queue of flexible joints sorted by corner angle.

Algorithm 7 MAKEPATHGEODESIC(Tint,γx↔y)

Input: A triangulation Tint and an edge path γx↔y , connecting vertices x and y .
Output: A geodesic edge path γx↔y in an updated triangulation Tint.

1: while γx↔y is not geodesic do
2: γabc ← flexible joint in γx↔y with smallest angle αabc
3: Tint,γshorter← FLIPOUT(Tint,γabc) �locally shorten
4: γx↔y ← UPDATEPATH(γx↔y ,γabc ,γshorter) �Replace old subpath γabc with new subpath γshorter
5: end while
6: return Tint,γx↔y

By definition, if Algorithm 7 terminates then the result is an exact polyhedral geodesic along the
surface, so to understand its correctness we need only argue that it must terminate. Note that much
like the termination proof for the Delaunay flipping algorithm (Section 4.2), we merely argue that this
procedure passes through a collection of states which is finite, albeit exponentially large. Giving any
meaningful bound on the time complexity of the procedure is still an open question, though it is very
efficient in practice.
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Theorem 3 (Sharp and Crane [SC20b]). MAKEPATHGEODESIC terminates in finitely
many iterations.

Proof. The path γt at iteration t is a collection of segments which are geodesic curves
between vertices. We have |γt+1|< |γt |, and will denote the initial (maximum) length
by L = |γ0|. To show termination, we will argue that the set of possible paths γt is
finite. Consider GL, the set of all geodesic curves which connect pairs of vertices and
have length ≤ L; this set is finite [Ind+01, Prop. 1]. Let lmin be the shortest curve in GL ,
and observe that all γt have at most nmax := �L/lmin� segments. Thus every possible
path γt is a collection of at most nmax geodesics from the finite set GL, and there are
finitely many such collections.

Instead of running MAKEPATHGEODESIC until convergence, one can also stop when the length has
decreased by a sufficient amount. This generates curves which are shorter and straighter but not fully
geodesic, similar to the intermediate results of a curve-shortening flow (Figure 5.5).

The only other tool needed for this algorithm is a data structure to encode paths along the edges
of a mesh. For simple curve between two points, it is generally sufficient to mark edges which make
up the path, but to support any more complicated configurations which may arise (Figure 5.4), one
may employ a data structure which encodes an ordered stack of path segments along each edge of a
mesh as in Sharp and Crane [SC20b, Section 3.2]

5.2 Geodesic Loops and Curve Networks

The iterative shortening procedure in Algorithm 7 can also be applied to closed loops, or even networks
of paths and loops along the surface. For the closed loops, a small extra step of the algorithm is needed
for cases where the loop consists of a single edge, and segments ab and bc in Algorithm 6 are in
fact the same segment. In this case, one should replace the single segment of the triangle with the
two opposite of the containing triangle 1. Constructing geodesic loops (Figure 5.6) is particularly
interesting, because algorithms for finding shortest geodesics are fundamentally unable to construct
them, as no initial point the loop is known a priori. Loops and more general curve networks arise
frequently in geometry processing, e.g. as cut graphs for parameterization and fabrication (Figure 5.7),
or as the boundaries of regions on a surface.

5.3 Geodesic Bézier Curves input 
control points

midpoint subdivision
(1 round)

Bézier curve
(4 rounds)

12ms

Bézier curves are an indispensable tool in
geometric modeling. Classically defined in
the plane, Bézier curves were extended to
polygonal surfaces by Morera, Carvalho, and
Velho [MCV08] via a geodesic version of de
Casteljau’s algorithm. The basic idea is that

1The proof of termination does not handle this case, but termination has always been observed in practice. For details see
Sharp and Crane [SC20b, Appendix B].
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Figure 5.5: Algorithm 7 acts as discrete curve-
shortening flow; stopping the procedure early via
a length or angle threshold generates straighter
curves, without drifting too far from the initial-
ization or contracting to a point.
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Figure 5.6: Geodesic loops generated by with
edge flips in an intrinsic triangulations. Inset
values give the runtimes.
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< 1ms

Figure 5.7: Curve networks arise when cutting
and flattening a shape for computational fabrica-
tion. Our method is perfectly suited to straighten
an initial cut network along edges (left) to a
geodesic network (right), yielding a much more
natural pattern for fabrication (bottom).

given an ordered list of control points (connected by Dijkstra paths), one can transform the control
polygon into a smooth Bézier curve by repeatedly applying the following steps:

1. Shorten all curves between control points to geodesics

2. Insert a new control point vertex at the midpoint between each pair of old control points

3. Un-mark all old control points except the first and last

4. If there are >2 points left, return to (1), and shrink the working set to exclude the first and last
control points.

By using MAKEPATHGEODESIC for the first step (inset), we can construct intrinsic triangulations which
contain approximate Bézier curves. Incorporating this Bézier curve construction into our retriangulation
pipeline has numerous benefits, in particular because we also generate triangulations which conform
to these paths.

5.4 Triangulated Geodesic Paths

When constructing geodesics by applying the FLIPOUT procedure to an intrinsic triangulation, we not
only construct the geodesic path itself, but also a triangulation which contains that path among its
edges. This triangulation may have many extremely poor quality triangles in it (e.g., with very skinny
corner angles), but it can easily be improved as a post-process by applying the retriangulation schemes
discussed in Chapter 4 while preserving the path edges. In fact, Section 4.4 discusses how this FLIPOUT
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Figure 5.8: PDEs taking boundary conditions from constrained intrinsic triangulations. Top, a cross
field conforming to curves on a 3D scan of a pelvis [Knö+13], and bottom, a Poisson equation with
boundary conditions defined along a Bézier curve on a mechanical part.

procedure fills a very important role for generating constrained intrinsic triangulations which align to
desired curves. In applications, these constrained edges can then be used as boundary conditions or
guiding features for geometry processing algorithms; Figure 5.8 shows two such examples.

5.5 Single-Source Geodesics

The methods described above are a kind of curve-shortening flow: they
take some particular curve along the edges of an intrinsic triangulation
as a input, and shorten it to be a geodesic. It is natural to wonder
whether the same techniques can be applied to the widely-studied
single source all destination problem, where one seeks a geodesic
path to all other vertices in a mesh.

Sharp and Crane [SC20b] also present a simple algorithm for this
task based on the FLIPOUT subroutine. The basic idea of which is to
run a Dijkstra search outward from the source vertex, while constantly
applying the FLIPOUT procedure at the frontier to ensure all accepted
paths are geodesic. Of course, this procedure is only guaranteed to
yield geodesics, not necessarily globally-shortest geodesics, but in
practice it is quite efficient and very often does find shortest geodesics
(see inset). Perhaps the most interesting consequence of this algorithm is that it constructively implies
the existence of a single triangulation of a surface, which contains among its edge set geodesics from a
particular source vertex to every other vertex in the mesh—it is remarkable that such a triangulation
exists at all.
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Chapter 6

Generalized Domains

The standard definition an intrinsic triangulation relies on strong assumptions about the domain: it
must be a manifold, oriented triangle mesh. In this section we relax these assumptions, generalizing
intrinsic triangulations to nonmanifold meshes and point clouds, corresponding to the work in [SC20a].

6.1 Nonmanifold Intrinsic Triangulations

i

j

i

nonmanifold
edge

nonmanifold
vertex

Recall that manifold connectivity requires that any neighborhood of
the surface looks like the plane (Section 2.1). Manifold connectivity
endows a mesh with numerous useful mathematical properties and
is essential for many of the constructions in these notes. However,
nonmanifold features (see inset) often arise in the geometric data
that one encounters in practice, either intentionally or due to noise.
Moreover, a lot of data is stored in point clouds which have even less
structure: they lack any connectivity information at all. Handling

such inputs is crucial to leverage intrinsic triangulations for robust geometry processing. This section
introduces a simple technique introduced by Sharp and Crane [SC20a], which enables the construction
of an intrinsic Delaunay triangulation all triangle meshes, even those which may be nonmanifold and
nonorientable, via a covering space. With this same technique, we can also generate intrinsic Delaunay
triangulations of point clouds which have no connectivity information whatsoever (Section 6.2).

nonmanifold
mesh tu�ed cover

Laplacian

intrinsic Delaunay
triangulation

The Tufted Cover. To construct intrinsic triangula-
tions of nonmanifold meshes, we use a special covering
of the mesh called the tufted cover. It has the same ver-
tex set as the nonmanifold mesh but twice as many faces,
which we glue together along their edges according to
a simple strategy. Then, we can construct the intrinsic
Delaunay triangulation of the tufted cover, and e.g. use
its Laplace matrix as a high-quality Laplacian for the
original mesh. The key observation behind this strategy
is that only nonmanifold edges obstruct the usage of
intrinsic triangulations, because there is no notion of an edge flip at a nonmanifold edge; nonmanifold
vertices are a non-issue. By construction the tufted cover is edge-manifold, so we can perform edge
flips on it, allowing us to e.g. obtain an intrinsic Delaunay triangulation.
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We build the tufted cover is defined by splitting each
face f in to two copies σF ( f ) and σB( f ), then cyclically
gluing together consecutive faces around each original edge
(see inset). By construction, the tufted cover is always an
edge manifold, closed, and oriented triangulation. The
resulting triangulation has twice as many faces, but the
exact same vertex set as the original mesh, which makes it

trivial to transfer functions and operators defined at vertices between the tufted cover and the original
mesh. The name “tufted cover” arises because the nonmanifold vertices are reminiscent of the buttons
on tufted upholstery. Purely for visualization, we “inflate” the cover outward to clearly distinguish
front and back faces, but the actual geometry of each triangle remains flat.

More precisely, the tufted cover of an extrinsic mesh Text = (Vext, Eext, Fext) is a triangle mesh
T̃ = (Ṽ , Ẽ, F̃) with the same vertices (Ṽ = Vext), together with a gluing map G̃. Recall from Section 2.2
that a simple face-vertex list is often not sufficient to specify the connectivity of a triangulation; in
this section we will additionally make use of the gluing map G̃ to precisely specify connectivity while
building the tufted cover. The gluing map specifies, for each side of each triangle, the side of some
other triangle to which it is glued, encoded as a pair ( f , s) of a face f and a side within that face s.

For each face f ∈ Fext, T̃ has two oppositely oriented copies σF ( f ),σB( f ) ∈ F̃ which one can think
of as the “front” and the “back” of f , respectively. Nonmanifold edges are resolved by the way we define
the gluing map G̃. We first list the faces around each edge e ∈ Eext in a circular order ρe := ( f1, . . . , fk);
this ordering can be chosen as the angular order of the faces around the edge, though any choice of
ordering will suffice ([SC20a, Section 5.4]). If we imagine that these faces are consistently orientated
relative to e, then we just glue them “front to back” along the shared edge, i.e., we glue σF ( fi) to
σB( fi+1 mod k) for i = 1, . . . , k (the inset figure gives an example). A more precise description of the
gluing procedure which takes orientation into account is given in Algorithm 8; here SIDE(e, f ) just
gives the side index of e within face f (1, 2, or 3).

Algorithm 8 CONSTRUCTTUFTEDCOVER(Text,ρ)

Input: A (possibly nonmanifold) triangle mesh Mext and an ordering ρ of faces around each edge.
Output: The tufted cover mesh T̃ and edge glue map G̃

1: F̃ ←
⋃

ijk∈Fext
{ijk, jik} .two copies of each face

2: G̃← {} .assemble an edge glue map
3: for each edge e ∈ Eext do
4: if e and σF (ρe

1) have the same orientation then
5: f ← σF (ρe

1)
6: else f ← σB(ρe

1)

7: for i = 1, . . . , k do .letting k := |ρe|
8: g1← σF (ρe

i+1 mod k)
9: g2← σB(ρe

i+1 mod k)
10: if f and g1 have different orientation along e then
11: SWAP(g1, g2)
12: G̃( f , SIDE(e, f ))← (g1, SIDE(e, g1))
13: G̃(g1, SIDE(e, g1))← ( f , SIDE(e, f ))
14: f ← g2

15: return T̃ , G̃
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input naive cotan-Laplacian
nonmanifold IDT

Laplacian

control handle

nonmanifold edge

Figure 6.1: Robustness in the context of differential surface editing [Yu+04; Lip+04; Sor+04], where
a system of equations involving a Laplacian is solved to deform a 3D model. Applying these techniques
naively in the extrinsic mesh, which is nonmanifold and has many low-quality triangles, yields only
numerical noise. Substituting the nonmanifold IDT Laplacian constructed on the tufted cover generates
the expected smooth deformation.

It should be emphasized that the tufted cover is not globally vertex-manifold; in fact the it is
nonmanifold at nearly every vertex. We have constructed a triangulation that has exactly the right
structure to apply intrinsic edge flips, but we have not otherwise rectified the nonmanifoldness.

We construct the intrinsic Delaunay Laplacian on the tufted cover exactly as described in Section 4.2,
dividing the matrix by a factor of 2, because the tufted cover is a double cover of the original mesh.
This construction offers a high-quality cotan-Laplace matrix for nonmanifold meshes for the first
time, extending the benefits to all triangle meshes without restrictions on connectivity. Substituting
this operator in to existing algorithms immediately improves there performance and robustness on
low-quality input meshes (Figure 6.1).

Beyond Intrinsic Delaunay Laplacians.. In [SC20a] we focus entirely on building the nonmanifold
intrinsic Delaunay Laplace matrix, which is the most basic use of intrinsic triangulations; for instance
it does not demand any of the higher-order data structures like signposts and normal coordinates
described in Chapter 4. It is reasonable to wonder whether the other techniques in this text can be
likewise generalized to the nonmanifold intrinsic setting. The answer is generally yes, though care
must be taken about their meaning on the tufted cover, which is not vertex manifold and furthermore
is a double cover of the original surface.

For instance, the explicit crossing representation (Section 3.3) applies to the tufted cover without
modification1. However, signposts (Section 3.4) require vertex tangent spaces, which are not well-
defined without vertex manifoldness—a remedy is to split each vertex of the tufted cover in to
multiple copies, corresponding to each tangent neighborhood. The integer coordinates representation
(Section 3.5) requires similar treatment for its roundabouts. Intrinsic Delaunay refinement (Section 4.3)
is well-defined on the tufted cover, with the caveat that new vertices should be inserted as “tufted”
vertices, rather than separately on each sheet of the cover. Edge flip geodesics (Chapter 5) can likewise
be applied to paths along a sheet of the tufted cover, though the path will stay along the sheet of the
cover where it was initially constructed, which may or may not be the expected result.

1As long as the mesh data structure supports nonmanifold meshes.
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cotan-Laplace

interpolation

tu�ed Laplacian
(ours)

Domains with boundary.. The tufted intrin-
sic Delaunay Laplacian has useful properties
not only for nonmanifold meshes, but for any
mesh with boundary. Both the extrinsic cotan-
Laplacian and the intrinsic Delaunay Laplacian
will have negative edge weights for a boundary
edge ij opposite an obtuse angle θ ij

k . Delaunay
flips are no help here, since boundary edges can-
not be flipped. These weights pose no problem
when Dirichlet boundary conditions are enforced
along the entire domain boundary, since bound-
ary weights do not enter into the equation, but
can be problematic for interpolating other sets
of pinned values. However, since the tufted cover is always closed it has no boundary edges, and
therefore all weights of its intrinsic Delaunay Laplacian will be nonnegative—even for edges on the
boundary of the original nonmanifold mesh. For this reason, harmonically interpolating any set of
pinned values will yield a function bounded within the range of these values, whereas for standard
intrinsic Delaunay triangulations this property does not hold along the boundary. In the inset figure we
show an example where two known values at vertices are harmonically interpolated across a shape;
only the tufted intrinsic Delaunay Laplacian gives a guarantee that the interpolated values stay within
the range of the inputs2. This property provides additional robustness for algorithms built on top of
interpolated weights, Green’s functions, etc.

6.2 Point Clouds

Point clouds, i.e. sets of points p ∈ �3, are a another common surface representation in geometry
processing; however, the total absence of connectivity information makes many computations more
difficult on point clouds than on meshes. We can use the tufted cover to construct a high-quality
Laplace matrix for points clouds, which inherits all of the benefits of intrinsic triangulations. The basic
idea is to take the union of many local triangulations, obtaining connectivity which represents the
surface well but creates many nonmanifold edges, repeated triangles, etc. We can then build the tufted
intrinsic Delaunay triangulation, since the tufted cover frees us of any constraints on the connectivity
of our mesh.

More precisely, a common strategy for building a Laplacian on a point cloud P = {p1, . . . , pn} ⊂ �3

is to:

(i) identify the k nearest neighbors of each point p,

(ii) project these neighbors onto an estimated tangent plane, and

(iii) construct the planar Delaunay triangulation Tp of the projected points.

These local triangulations can then be used to build a Laplacian in a variety of ways. For instance,
both Belkin et al. [BSW08] and Liu et al. [LPG12] use the triangulations to determine the mass
matrix M , and determine edge weights via a Gaussian function of the distance in �3. Such schemes
are accurate and have nice theoretical properties, such as pointwise convergence for fairly uniform

2We note that harmonic interpolation by pinned values at vertices is not a well-posed convergent discretization, but
nonetheless it is common and pragmatic.
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triangulations
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parameterizationnoisy point cloud

Figure 6.2: The tufted intrinsic Delaunay point
cloud Laplacian, demonstrated here for spec-
tral conformal parameterization of a point
cloud [Mul+08].

source

Figure 6.3: Angular parameterizations of point
clouds, computed with the tufted intrinsic De-
launay point cloud Laplacian via the vector heat
method [SSC19b].

point distributions, but involve numerical parameters which are difficult to estimate and produce
matrices that are far more dense than the cotan Laplacian of a mesh. Alternate schemes use the local
triangulations only to determine connectivity; the original point locations are still used to accumulate
cotan weights [CRT04; Cao+10]. A significant benefit of this latter approach is that (like mesh-based
Laplacians) it accurately handles nonuniform point distributions, while still retaining a high degree of
sparsity. However, since edges may not satisfy the local Delaunay property, the resulting Laplacian can
have negative edge weights.

p p

boundaryinterior boundaryinterior
Sharp and Crane [SC20a] observe that nonmanifold intrinsic

Delaunay triangulations can be directly applied in this setting. Like
past approaches, the point cloud Laplacian is constructed from
from local triangulations, but rather than accumulating weights
independently, we take the union T =

⋃

p∈P Tp of all local trian-
gulations Tp; points contained in a noncompact cell of the local
Voronoi diagram can be tagged as boundary vertices (see inset).
The resulting global triangulation T has highly irregular connec-
tivity, is nonmanifold almost everywhere, and has duplicate copies of many faces. However, we can
simply proceed as before: build the tufted cover, flip to an intrinsic Delaunay triangulation, and read
off the corresponding Laplace matrix L—which can then be used directly on the original point cloud P.
(We also multiply L by 1/3, since the triangles triply-cover the local neighborhoods.) This Laplacian
exhibits all the desired properties (symmetry, positive-definiteness, nonnegative edge weights, etc.)
while remaining very sparse. And unlike schemes based on Gaussian weights, there are no parameters
to estimate or tune.

Equipped with a high-quality point cloud Laplacian, we can easily translate many algorithms
designed for meshes to the point cloud setting. In Figure 6.2 we use this Laplacian to generate a
conformal parameterization of a noisy point cloud, adapting the mesh-based method of [Mul+08], and
in Figure 6.3 we show a more sophisticated algorithm run directly on point clouds: parameterization
by the logarithmic map, computed via the vector heat method [SSC19b, Section 8.2].
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Chapter 7

Conclusion

Geometry processing offers a wealth of algorithmic tools for manipulating 3D surfaces, but these tools
are only as good as the representations we apply them to. The intrinsic triangulations explored in this
thesis open doors to new and better representations of shapes, offering the freedom to retriangulate a
surface while always preserving its geometry. To make use of this flexibility, we must slightly change
how we think about triangulations—shifting from an embedding defined by vertex positions to a metric
defined only by edge lengths. Although this definition is a slight departure from the norm in geometry
processing, it mirrors the turn to intrinsic formulations in differential geometry, and still supports a
broad range of common algorithms which require only an intrinsic formulation.

To manipulate intrinsic triangulations in practice, we need data structures which support queries
involving the original underlying geometry. The work in this thesis contributes two new data structures,
the signpost representation and integer coordinates, which are both efficient and robust (Chapter 3).
Furthermore, we concretely state how these representations can be used to support retriangulation
operations on intrinsic surfaces (Chapter 4). A benefit of the intrinsic approach is that many planar
retriangulation routines, such as Delaunay triangulation and refinement, can be directly generalized to
surfaces while retaining the same guarantees. These high-quality intrinsic triangulations are excellent
computational domains for geometry processing—they offer guaranteed element quality, exactly
preserve intrinsic geometry, and can be constructed extremely efficiently. Many existing routines in
geometry processing gain remarkable robustness when applied directly on an intrinsic triangulation.
We also show how a carefully-constructed covering space can extend many of the same benefits to
more general data, such as nonmanifold meshes and point clouds (Chapter 6). Furthermore, these
triangulations hold great promise beyond retriangulation: as a first example, we present a new edge flip-
based algorithm for constructing geodesic paths on surfaces (Chapter 5). Together, these contributions
develop intrinsic triangulations as a powerful tool in geometry processing, and we are optimistic that
there is much more to be built on top of this tool.

Looking forward, an important next phase for intrinsic triangulations is promoting widespread
adoption. To again draw a comparison to numerical linear solvers, there was a wide gap between the
development of the algorithms and their uptake as a standard automatic tool in numerical packages—
this is the gap which we must cross with intrinsic triangulations to realize their full value for the
community. Intrinsic triangulations have an important role to play, enabling many powerful algorithms
in geometry processing to be applied to low-quality data, but only if we continue to develop them both
in theory and in practice. With an investment of energy and creativity, this will be an exciting area of
research for many years to come.
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7.1 Open Questions

We conclude with open questions in the area of intrinsic triangulations, several of which are the subject
of ongoing work.

Asymptotic complexity of Delaunay flipping. In practice, Delaunay flipping seems to run
significantly faster than known runtime bounds suggest (Figure 4.3). Are there special classes
of triangulations on which the algorithm is guaranteed to be fast, or better general asymptotic
bounds on the runtime of the algorithm?

Lifting definitions of Delaunay. Can you generalize the parabolic lifting definition of Delaunay
to surfaces (Section 4.1)? There is also a similar lifting definition for the sphere: the connectivity
of the Delaunay triangulation of a set of points in R2 is the convex hull of the stereographic
projection of those points onto the sphere. Does this generalize somehow to intrinsic Delaunay
triangulations of surfaces?

Hybrid data structures. Can you augment the signpost data structure with normal coordinates
to obtain a data structure which provably encodes the correct correspondence while being faster
than the full integer coordinate data structure?

Exact predicates. The Delaunay flipping algorithm is only guaranteed to terminate in real
arithmetic. In floating point, one often uses various epsilon tolerances to make the algorithm
terminate on difficult inputs. Exact predicates have been successfully applied to similar prob-
lems [DP03], but have proved difficult to apply in the setting of intrinsic triangulations, as the
necessary predicates are not functions of a fixed amount of input data. For example, the length
of an intrinsic edge can depend on the lengths of arbitrarily many original edges. Can exact
predicates, or similar ideas, help to compute the exact Delaunay triangulation in floating point?

Truly integer-only intrinsic triangulations. The integer coordinate correspondence data struc-
ture (Section 3.5.1) does not depend purely on integers—it also stores edge lengths and barycen-
tric coordinates in floating point. However this is, in some sense, merely a performance op-
timization. In theory, these edge lengths and positions could be computed from the normal
coordinates, roundabouts, and the geometry of the input mesh, leading to a true integer-only
correspondence data structure. In practice, a naive implementation of this integer-only data
structure is prohibitively slow, taking hours to compute Delaunay triangulations on even the
simplest of models. But this notion still seems appealing theoretically, and perhaps a more
efficient implementation could make it a viable option in practice.

The embedding problem. Suppose you’re given only the connectivity of a triangulation and its
edge lengths. Can this metric be embedded as a Euclidean polyhedron in R3, or Rn? If so, which
triangulation is needed to construct a piecewise linear embedding? How do you construct this
embedding? Can you determine the embeddable triangulation without actually constructing the
embedding (and in particular, is the former problem any easier than the latter?). This problem
was solved in the convex case by Bobenko and Izmestiev [BI08], who provide an algorithm
based on convex optimization and intrinsic edge flips; Kane, Price, and Demaine [KPD09] give a
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pseudopolynomial time algorithm to actually compute the solution to a given numerical precision.
The problem remains open for the general nonconvex case.

Nonplanar faces. Many polygonal meshes encountered in practice have nonplanar faces, i.e.,
polygons whose vertices do not all lie in a common plane. A basic question is how to interpret
such polygons geometrically—for instance, should one fit a smooth interpolating patch? How do
you assign an area to such faces? How do you define (discrete) curvature on such meshes? Etc..
Several techniques in geometry processing and architectural geometry seek to planarize such
meshes before processing [Gly+04; CW07; Liu+06], whereas others define operators that do
not require the geometry to be planar [Bun+20]. Planarization is especially tricky, since one
must find vertex positions f : V → R3 that simultaneously make all faces planar—a constraint
that is often quite rigid, and can push the vertices far from their original positions [VB15]. The
intrinsic point of view offers a potentially interesting alternative: for each face, find the planar
polygon with the same side lengths, and whose angles are as close as possible (in some sense) to
the original angles. These planar polygons endow the input surface with a new Euclidean cone
metric that can be treated in exactly the same way as the intrinsic triangulations discussed so
far. Moreover, unlike searching for compatible vertex positions in R3 (which typically entails
global optimization), the geometry of each polygon can be constructed independently, in a
straightforward fashion. However, a variety of challenges remain, such as defining and tracking
correspondence between the extrinsic and intrinsic polygonal mesh.

Intrinsic tetrahedra. The same intrinsic formulation can be likewise applied to higher dimen-
sional complexes, in particular tetrahedral meshes. In the most basic sense, one can certainly
discard the vertex positions of a tetrahedral mesh and retrain only edge lengths, and this rep-
resentation may already have benefits e.g. for anisotropic problems. However, more advanced
operations such as producing Delaunay meshes will require deeper thought. There is no direct
analogue of the basic Delaunay flipping algorithm (Theorem 1) in higher dimensions, even edge
flips must be generalized to more complex bistellar flips. One appealing viewpoint is to generalize
flipping operations as projections of a higher-order simplex [BEE02]. More general local cavity
operations may also be a promising alternative [LM14]. Additionally, the notion of curvature on
tetrahedral meshes differs from the surface case: input meshes generally have no curvature on
their interior, but a general intrinsic metric might induce curvature concentrated along edges.
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Appendix A

Evaluating Geometric Quantities

Here we express several basic geometric quantities in terms of the intrinsic edge lengths. See also
Schindler and Chen [SC12] for useful perspectives on such quantities via barycentric coordinates.

Triangle Area. One can compute the area of triangle ijk via Heron’s formula:

Aijk =
�

s(s− �i j)(s− � jk)(s− �ki),

where s :=
�i j+� jk+�ki

2 .
(A.1)

Corner Angles. One can compute the corner angles of triangle ijk via

the law of cosines: θ
i j
k = arccos

�

�2jk + �
2
ki − �

2
i j

2� jk�ki




. (A.2)

Cotan Weights. It’s possible to compute the cotangent of a corner angle by taking the cotangent of
the angle defined above. However, one can avoid inverse trigonometric functions by recalling that the
area of a triangle is proportional to the sine of its corner angle. Thus,

cotθ i j
k :=

cosθ i j
k

sinθ i j
k

=
�2jk + �

2
ki − �

2
i j

4Aijk
. (A.3)

Opposite Diagonal. To flip an edge i j contained in a pair of triangles i jk, jim
we need to compute the length of the opposite diagonal km. Recall that an
edge flip can be performed only if the two triangles form a convex quadrilateral.
In this case, the opposite diagonal length is given by the relationship

�2km =
1
2

�

�2im + �
2
jk + �

2
jm + �

2
ki − �

2
i j +
(�2im − �

2
jm)(�

2
jk − �

2
ki))

�2i j




+
8Ai jkAjim

�2i j

,

(A.4)
where the triangle areas Ai jk and Ajim are computed as above. Take care when implementing, that

the edge lengths in this diagram are labelled relative to the diamond connectivity before the flip is
performed. Also note that this expression gives the square of the diagonal length—for an edge flip one
must then take the square root to recover the new length.

Though this expression is easy to write down and implement, there are many other possible
numerical expressions for the same quantity, which may be more accurate or efficient—see especially
the discussion in Sharp, Soliman, and Crane [SSC19a, Appendix A].
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Distance in Barycentric Coordinates. Given two points in triangle ijk encoded as barycentric
coordinates p and q, we can compute the distance between them as a function of the edge lengths,
and their barycentric difference u := p− q:

|u|=
�

−�2i juiuj − �2jkujuk − �2kiukui . (A.5)

For a derivation, see Section 2.3.6, or Schindler and Chen [SC12, Section 3.2].

Planar Layout. The 2D layout from Section 2.3.7 can be computed as follows.
Given a triangle ijk, we can place vertices i and j at positions

qi := (0, 0) q j := (�i j , 0). (A.6)

We can compute the height of the triangle (or equivalently the y-coordinate of qk)
as

qk
y = h=

2Aijk

�i j
, (A.7)

and we can use the Pythagorean theorem to solve for the x position of qk:

qk
x = ±
�

�2ki − h2, (A.8)

taking the positive solution if θ jk
i < 90◦ and the negative solution otherwise. Note that we can check

this condition by checking the sign of cosθ jk
i . Using the law of cosines, one can show that θ jk

i < 90◦ if
and only if �2jk < �

2
jk + �

2
ki .
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