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Abstract

Recent supervised learning approaches focus on designing and building mod-
els that generalize to a wide range of scenarios. The key ingredients for building
these general models are large scale datasets that capture a diverse set of sce-
narios and computational resources to train large models. This large scale
supervised learning approach has well known scalability challenges namely: 1)
accurate general models are computationally expensive for training and infer-
ence 2) collecting and labeling large datasets requires extensive human effort
and 3) datasets need to be repeatedly curated due to shifts in the target dis-
tribution. In this thesis, we argue that in many cases creating a set of highly
specialized models that span the domain of interest can reduce model infer-
ence, training, and supervision costs, compared to creating a single monolithic
model that generalizes across the entire domain. Specifically, we exploit tem-
poral specialization for building efficient video segmentation models. We show
that continuously specializing a compact model to the content in a video stream
enables accurate and efficient inference. We leverage specialization to visually
similar categories for building efficient image classification architectures. We
show that by specializing model features to discriminate between visually simi-
lar categories, one can improve inference efficiency by only computing the subset
of features necessary for classifying a specific image. We exploit specialization
to individual categories for reducing human labeling effort in building models
for rare categories. We show that models specialized for binary classification of
individual rare categories reduce human effort in mining large unlabeled data
collections for relevant examples. More broadly, we demonstrate that by dy-
namically specializing to a moment in time, to an input scene, or to a specific
object category, it is possible to train accurate models quickly, reduce inference
costs, and significantly reduce the amount of supervision required for training.
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Chapter 1

Introduction

Recent approaches to supervised deep learning are focused on designing and building a
model that generalizes to a wide range of scenarios. The key ingredients in building general
models are large scale datasets that capture a diverse set of scenarios and computational
resources to train large models. Although general models that work in any scenario are
desirable, training and using these models has the following scalability challenges that are
well recognized: 1) accurate general models are computationally expensive to train and
use for inference, 2) collecting and labeling a large representative dataset for a wide range
of scenarios is expensive and time consuming, and 3) data distributions evolve over time
requiring repeated dataset curation and model training.

Given that general models are difficult to build and use, we ask the question do we
always need the most general model? If we look at many scenarios where models are used
the data observed has very limited visual diversity and it is sufficient to be accurate for
data observed in that specific scenario. For example, consider the scenario where a drone
is capturing footage of a football match as shown in the bottom left of Figure 1.1 and
following certain players by detecting and tracking them. Detecting players in the images
captured by the drone is far easier compared to detecting people in a general distribution of
images like the ones from COCO [85] dataset shown in the top of Figure 1.1. The reason
the task is easier is due to limited variation is appearance of the players in the match,
scale and background compared to the general distribution. Similarly, consider the task
of detecting bicycles in the footage captured by an ego-centric head mounted camera as
show in Figure 1.1 bottom left or detecting various animal species from wildlife cameras at
a particular location. In both these cases the diversity of images observed is very limited
compared to general distribution we are training models for. The limited diversity opens
up the possibility of building models specialized to each context. Since the specialized
model tackles a simpler task it can be compact and computationally cheaper compared
to a more general model. Moreover, we only need to collect and label a dataset that is
specific to the context reducing supervision and training costs. For instance, when building
a model for detecting animals using wildlife cameras at a specific location, we can focus
human labeling effort on data specific to that location as opposed to creating a general
wildlife dataset.

However, models specialized to a subset of the distribution are only viable when one

1
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(a) Sample of images from the COCO [85] dataset which captures a general distribution of objects.

(b) Images captured from a head-mounted and
a drone camera during a short time window.

(c) Images capturing different animal species
at specific locations.

Figure 1.1: The distribution of images in specific contexts (bottom) is very limited com-
pared to the general distribution of images (top). Due to limited diversity in appearance,
scale and background detecting players in the images captured by the drone (bottom left)
or identifying animal species in images captured at a specific location (bottom right) is
easier compared to performing the same task on a general distribution of images (top).

can rapidly adapt the model to cope with shifts in the target distribution. For instance,
when the player detection model on the drone capturing the football match is specialized
to daytime footage in clear weather conditions it is not going to be effective when there
is change in weather or lighting conditions. In this thesis, rather than trying to build
a general model that is accurate in a wide range of contexts, we embrace the context
specific view and present techniques for rapidly building and using models specialized to a
context. We show that by using these techniques for specialization to a moment in time,
to an input image, or to a specific object category, it is possible to train accurate models
quickly, reduce inference costs, and significantly reduce the amount of supervision required
for training. More broadly, in a world where both the data distributions and tasks are
constantly evolving we argue that:

In many cases creating a set of highly specialized models that span the
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domain of interest can reduce model inference, training, and supervision costs,
compared to creating a single monolithic model that generalizes across the
entire domain.

1.1 Factors for Effective Model Specialization

There are several challenges that arise in building specialized models and using them in
practice to reduce inference, training and supervision costs. We organize the challenges
one needs to address for effective model specialization in terms of the following questions:

What is the model being specialized for? This is the first question we need to answer
when specializing a model. Effective specialization for a task hinges on the choosing the
appropriate strategy for partitioning the general distribution. For example, in the case de-
tecting a rare animal species the model is specialized to detecting specific animal instances
which are a small fraction of the general distribution of images containing other animals
and flora. The model can further be specialized to the specific distribution of animals at a
location since the appearance can vary across geographies. Similarly, the model can also
specialized temporally, for instance, it can be specialized for different times of the day or
across different seasons. More broadly, models for a task can be specialized to a slice or
mode of the general data distribution.

How to curate a dataset specialized to each context? Once we decide on the dimension
for partitioning the general distribution, we need to find the data corresponding to each
partition and get supervision for training specialized models. For instance, when trying to
detect vehicles from stationary cameras at traffic intersections we can choose to specialize
based on location. When training a model specialized to a location we can focus labeling
effort on data from the cameras at that location. Similarly, when trying to segment vehicles
in a video stream we can choose to specialize temporally. In this setting, data from a few
seconds earlier provides more relevant information compared to data from a few minutes or
hours before, this suggests a more on-the-fly approach to dataset curation. In addition to
finding data relevant to a context, an appropriate choice of supervision is crucial for effective
specialization. For example, it might not feasible to leverage human supervision when
specializing a model for monitoring traffic in real-time. However, when specializing models
to mine and label rare categories in a large image collection, sparse human supervision is
viable and can be cost effective.

What are model architecture and training algorithm changes required to induce and
exploit specialization? Effective specialization relies on the ability to dynamically specialize
models to different contexts. For instance, when trying to specialize for a rare category
or a camera at a specific location one cannot wait to collect a representative dataset
spanning all the visual variations of the category or the scene at that location to train a
specialized model. Therefore, we need to be able to build models with limited amount
of data pertaining to a context. Doing so requires both models and training techniques
that are effective with small amount of data and supervision. Such training techniques
and models need to strike a balance between utilizing representations learned on general
distributions with task specific adaptation.
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How do we identify when a specialized model is applicable? A major challenge in re-
alizing the benefits of specialization is knowing when a particular specialized model is
applicable. Consider two models one specialized for classifying animals and another spe-
cialized for classifying vehicles. Both specialized models can be more compact compared to
a general model which can classify both vehicles and animals. Similarly, consider models
for detecting an animal specialized for different weather conditions or different times of
the day. Based on the context in question it is paramount that the appropriate specialized
model is used for an accurate prediction.

1.2 Thesis Contributions

In addressing the challenges associated with effectively specializing models for reducing
inference, training and supervision costs, this thesis makes the following contributions.

Temporal Specialization for Efficient Inference. In Chapter 2, we exploit tempo-
ral specialization for building efficient video segmentation models. Compact models can
closely approximate the behavior of slower accurate models in short temporal windows.
However, the compact models need to be frequently specialized to cope with distribution
shifts in video streams that evolve over time. We show such continuous temporal special-
ization is feasible by designing a compact model architecture called JITNet and an online
distillation algorithm for rapidly specializing the JITNet model. Moreover, our approach
for specialization does not require upfront curation of training data or model training for
individual video streams. We collected a Long Video Stream (LVS) dataset to facilitate
evaluation of inference efficiency on long running video streams from a single camera.

Specialization to Similar Classes for Efficient Inference. In Chapter 3, we exploit
model specialization to visually similar classes for building efficient image classification
architectures. We show that by specializing different parts of a model to produce features
to discriminate between visually similar categories, one can improve inference efficiency by
only computing the subset of features necessary for classifying a specific image. However,
for maintaining high accuracy across a range of categories, such a specialized model needs
to dynamically choose and combine the appropriate specialized features based on the input.
We enable accurate and efficient classification by designing a template architecture called
HydraNet that can be used to transform an off-the-shelf deep architecture to an archi-
tecture the supports specialization. We present a training method which both specializes
components of the HydraNet architecture and trains a sub-network to dynamically choose
features to compute based on the input.

Specialization to Individual Categories for Efficient Supervision. In Chapter 4,
we exploit binary classification models specialized for individual rare categories to effec-
tively mine and label large unlabeled data collections. We show that by specializing models
for binary classification of individual rare categories, as opposed to joint multi-way clas-
sification, one can accurately machine label a large number of negatives and identify a
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small subset of the unlabeled data relevant to each category. However, these specialized
models need to be continuously updated as humans label more data to make better use of
human effort. We design an active approach that utilizes the specialized binary labeling
models to focus human effort on a small amount of hard examples and machine label easy
negatives separately for each category. A key component in our approach is leveraging
a large number of machine labeled negatives for each category to update models. How-
ever, the large number of negatives cause extreme imbalance in the labeled data making
it difficult to train deep models. In Chapter 5, we describe a technique called background
splitting which addresses the challenges in training deep models for rare categories with
extremely imbalanced training data. We created iNat-BG and Places-BG using iNaturalist
and Places datasets to enable evaluation of models for rare categories in settings where
most of the data is background.
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Chapter 2

Temporal Specialization for Efficient
Inference

There are several axes one can specialize the model along and a natural set of axes for spe-
cialization is time and location. In this chapter, we focus on temporal model specialization
to the data captured from a single camera in a short window of time. Most real-world video
cameras capture scenes that feature a small fraction of the distribution of images observed
across all cameras, and this distribution continuously evolves over time. For example, sta-
tionary cameras observe scenes that evolve with time of day, changing weather conditions,
and as different subjects move through the scene. TV cameras pan and zoom, most smart-
phone videos are hand-held, and egocentric cameras on vehicles or robots move through
dynamic scenes. We embrace this reality and move away from attempting to pre-train a
model on camera-specific datasets curated in advance, and instead train models online on
a live video stream as new video frames arrive. Specifically, we apply this methodology
to the task of realizing high-accuracy and low-cost semantic segmentation models that
continuously adapt to the contents of a video stream.

We employ the technique of model distillation [11, 55], training a lightweight “student”
model to output the predictions of a larger, reliable high-capacity “teacher”, but do so
in an online fashion, intermittently running the teacher on a live stream to provide a
target for student learning. We find that simple models can be accurate, provided they
are continuously adapted to the specific contents of a video stream as new frames arrive
(i.e. models can learn to cheat—segmenting people sitting on a park lawn might be as
easy as looking for shades of green!). To achieve high efficiency, we require a new model
architecture that simultaneously supports low-cost inference and fast training, as well as
judicious choice of when to periodically run the teacher to obtain supervision.

We show that online model distillation yields semantic segmentation models that closely
approximate their Mask R-CNN [51] teacher with 7 to 17× lower inference runtime cost (11-
26× when comparing FLOPs), even when the target video’s distribution is non-stationary
over time. Our method requires no offline pretraining on data from the target video
stream, has a small number of hyper parameters, and delivers higher accuracy segmentation
output, than low-cost video semantic segmentation solutions based on flow. The output
of our low-cost student models can be preferable (in terms of temporal stability) to that

7
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Figure 2.1: Online model distillation overview: A low-cost student model is tasked to
generate a high-resolution, per-frame semantic segmentation. To retain high accuracy, as
new frames arrive, an expensive teacher model’s (MRCNN) output is periodically used as
a learning target to adapt the student and selecting the next frame to request supervision.
We call the student model “JITNet” since is designed to be specialized “just-in-time” for
future frames.

of the expensive teacher. We also provide a new video dataset designed for evaluating the
efficiency of inference over long running video streams.

2.1 Related Work

Distillation for specialization: Training a small, efficient model to mimic the output
of a more expensive teacher has been proposed as a form of model compression (also
called knowledge distillation) [11, 55]. While early explorations of distillation focused on
approximating the output of a large model over the entire original data distribution, our
work, like other recent work from the systems community [73], leverages distillation to
create highly compact, domain-specialized models that need only mimic the teacher for a
desired subset of the data. Prior specialization approaches rely on tedious configuration
of models [87, 37] or careful selection of model training samples so as not to miss rare
events [94]. Rather than treating model distillation as an offline training preprocess for
a stationary target distribution (and incurring the high up-front training cost and the
challenges of curating a representative training set for each unique video stream) like
NoScope [73], we perform distillation online to adapt the student model dynamically to
the changing contents of a video stream.

Online training: Training a model online as new video frames arrive violates the inde-
pendent and identically distributed (i.i.d) assumptions of traditional stochastic gradient
descent optimization. Although online learning from non-i.i.d data streams has been ex-
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plored [18, 123], in general there has been relatively little work on online optimization
of “deep” non-convex predictors on correlated streaming data. The major exception is
the body of work on deep reinforcement learning [102], where the focus is on learning
policies from experience. Online distillation can be formulated as a reinforcement or a
meta-learning [36] problem. However, training methods [120, 101] employed in typical re-
inforcement settings are computationally expensive, require a large amount of samples,
and are largely for offline use. Recent systems work [66] uses online model performance
and accuracy profiling to choose the right model configuration from a collection of pre-
trained models. Our goal is to train a single compact model which mimics the teacher in
a small temporal window. In this context, we demonstrate that standard gradient decent
is effective for online training our compact architecture.

Tracking: Traditional object tracking methods [71, 48, 54] and more recent methods built
upon deep feature hierarchies [95, 151, 56, 105] can be viewed as a form of rapid online
learning of appearance models from video. Tracking parameterizes objects with bounding
boxes rather than segmentation masks and its cost scales in complexity with the number of
objects being tracked. Our approach for online distillation focuses on pixel-level semantic
segmentation and poses a different set of performance challenges. It can be viewed as
learning an appearance model for the entire scene as opposed to individual objects.

Fast-retraining of compact models: A fundamental theme in our work is that low-cost
models that do not generalize widely are useful, provided they can be quickly retrained
to new distributions. Thus, our ideas bear similarity to recent work accelerating image
classification in video via online adaptation to category skew [127] and on-the-fly model
training for image super-resolution [131].

Video object segmentation: Solutions to video object segmentation (VOS) leverage
online adaptation of high-capacity deep models to a provided reference segmentation in
order to propagate instance masks to future frames [112, 161, 148, 14]. The goal of these
algorithms is to learn a high-quality, video-specific segmentation model for use on sub-
sequent frames of a short video clip, not to synthesize a low-cost approximation to a
pre-trained general segmentation model like Mask R-CNN [51] (MRCNN). VOS solutions
require seconds to minutes of training per short video clip (longer than directly evaluating
a general segmentation model itself), precluding their use in a real-time setting. We be-
lieve our compact segmentation architecture and online distillation method could be used
to significantly accelerate top-performing VOS solutions (see Section 2.4).

Temporal coherence in video: Leveraging frame-to-frame coherence in video streams,
such as background subtraction or difference detection, is a common way to reduce com-
putation when processing video streams. More advanced methods seek to activate dif-
ferent network layers at different temporal frequencies according to expected rates of
change [77, 126] or use frame-to-frame flow to warp inference results (or intermediate fea-
tures) from prior frames to subsequent frames in a video [38, 166]. We show that for the
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task of semantic segmentation, exploiting frame-to-frame coherence in the form of model
specialization (using a compact model trained on recent frames to perform inference on
near future frames) is both more accurate and more efficient than flow-based methods on
a wide range of videos.

2.2 Just-In-Time Model Distillation

Figure 5.2 provides a high-level overview of online model distillation for high quality, low-
cost video semantic segmentation. On each video frame, a compact model is run, producing
a pixel-level segmentation. This compact student model is periodically adapted using
predictions from a high-quality teacher model (such as MRCNN [51]). Since the student
model is trained online (adapted just-in-time for future use), we refer to it as “JITNet”. To
make online distillation efficient in practice, our approach must: 1) use a student network
that is fast for inference and fast for adaptation, 2) train this student online using imperfect
teacher output, and 3) determine when and how to ask the teacher for labels as new frames
arrive. We next address each of these challenges in turn.

2.2.1 JITNet Architecture

Efficient online adaptation requires a student architecture that (1) is efficient to evalu-
ate even when producing high resolution outputs and (2) is amenable to fast learning.
The ability to make high-resolution predictions is necessary for handling real-world video
streams with objects at varying scales. Fast and stable adaptation is necessary for learning
from the teacher in a small number of iterations.

Our JITNet architecture is a compact encoder-decoder [7] composed of three modified
ResNet [52] blocks. To reduce computation, we replace the second 3×3 filter in each block
with a separable filter (1×3 followed by a 3×1) and also limit the number of channels
for high resolution feature maps. To ensure fast training, we add skip connections from
each encoder block to the corresponding decoder block. This allows the gradient signal to
propagate efficiently to lower layers. We include diagnostic experiments to evaluate the
impact of these skip connections in section .

Table 2.1 gives the parameter count, number of floating-point operations, and runtime
of both JITNet and MRCNN on a frame of 720p video on an NVIDIA V100 GPU. (We
provide both inference and training costs for JITNet.) Compact segmentation models, such
as those based on MobileNet V2 [119, 141], are 3-4× slower than JITNet at high resolution
and are not designed for fast, stable online training. We evaluate the MobileNet V2
architecture as the student model and demonstrate that online distillation is viable using
off-the-shelf architectures. However, we find that JITNet is more suitable for achieving both
higher accuracy and efficiency. We also evaluate JITNet variants on standard semantic
segmentation to ground it relative to other efficiency-oriented architectures.
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Figure 2.2: Left: JITNet architecture. Right: encoder/decoder block details. s = stride, r
= resize, c = output channels.

Model FLOPS (B) Params (M) Time (ms)

Infer Train Infer Train

JITNet 15.2 42.0 3 7 30
MRCNN 1390.0 - 141 300 -

Table 2.1: FLOPS (inference, training), parameter count, and runtime for both JITNet
and MRCNN. JITNet has 47× fewer parameters and requires 91× (inference) and 34×
(training) fewer FLOPS than MRCNN inference.

2.2.2 Online Training with Gradient Descent

Online training presents many challenges: training samples (frames) from the video stream
are highly correlated, there is continuous distribution shift in content (the past may not be
representative of the future), and teacher predictions used as a proxy for “ground truth”
at training can exhibit temporal instability or errors. The method for updating JITNet
parameters must account for these challenges.

To generate target labels for training, we use the instance masks provided by MRCNN
above a confidence threshold, and convert them to pixel-level semantic segmentation la-
bels. All pixels where no instances are reported are labeled as background. On most video
streams, this results in a significantly higher fraction of background compared to other
classes. This imbalance reduces the ability of the student model to learn quickly, especially
for small objects, due to most of the loss being weighted on background. We mitigate this
issue by weighting the pixel loss in each predicted instance bounding box (dilated by 15%)
five times higher than pixels outside boxes. This weighting focuses training on the chal-
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lenging regions near object boundaries and on small objects. With these weighted labels,
we compute the gradients for updating the model parameters using weighted cross-entropy
loss and gradient descent. Since training JITNet on a video from a random initialization
would require significant training to adapt to the stream, we pretrain JITNet on the COCO
dataset, then adapt the pretrained model to each stream.

When fine-tuning models offline, it is common to only update a few layers or use small
learning rates to avoid catastrophic forgetting. In contrast, for online adaptation, the goal
is to minimize the cost of adapting the JITNet model so that it maintains high accuracy
for current and near future video content. Rapidly specializing the compact JITNet to
the temporal context retains high accuracy at low-cost. Therefore, we update all layers
with high learning rates. Empirically, we find that gradient descent with high momentum
(0.9) and learning rate (0.01) works remarkably well for updating JITNet parameters. We
believe high momentum stabilizes training due to resilience to teacher prediction noise.
We use the same parameters for all online training experiments.

Algorithm 1: Online distillation

Input: S0...n, umax, δmin, δmax, athresh, θ0
Output: P0...n

1 δ ← δmin
2 for t ← 0 to n do
3 if t ≡ 0 (mod δ) then
4 Lt ← MaskRCNN(St)
5 u ← 0, update ← true
6 while update do
7 Pt ← JITNet(θt, St)
8 acurr ← MeanIoU(Lt, Pt)
9 if u < umax and acurr < athresh then

10 θt ← UpdateJITNet(θt, Pt, Lt)
11 else
12 update ← false
13 u ← u+ 1
14 if acurr > athresh then
15 δ ← min(δmax, 2δ)
16 else
17 δ ← max(δmin, δ/2)
18 else
19 Pt ← JITNet(θt, St)
20 θt+1 ← θt

2.2.3 Adaptive Online Distillation

Finally, we need to determine when the student needs supervision from the teacher. One
option is to run the teacher at a fixed rate (e.g., once every n frames). However, greater
efficiency is possible using a dynamic approach that adapts JITNet with teacher supervi-
sion only when its accuracy drops. Therefore, we require an algorithm that dynamically
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determines when it is necessary to adapt JITNet without incurring the cost of running the
teacher each frame to assess JITNet’s accuracy.

Our strategy is to leverage the teacher labels on prior frames not only for training,
but also for validation: our approach ramps up (or down) the rate of teacher supervision
based on recent student accuracy. Specifically, we make use of exponential back-off [42], as
outlined in Algorithm 1. Inputs to our online distillation algorithm are the video stream
(St), maximum number of learning steps performed on a single frame (umax), the mini-
mum/maximum frame strides between teacher invocations (δmin, δmax), a desired accuracy
threshold (athresh), and the initial JITNet model parameters (θ0).

The algorithm operates in a streaming fashion and processes the frames in the video
in temporal order. The teacher is only executed on frames which are multiples of the
current stride (δ). When the teacher is run, the algorithm computes the accuracy of the
current JITNet predictions (Pt) with respect to the teacher predictions (Lt). If JITNet
accuracy is less than the desired accuracy threshold (mean IoU), the model is updated using
the teacher predictions as detailed in the previous section. The JITNet model is trained
until it either reaches the set accuracy threshold (athresh) or the upper limit on update
iterations (umax) per frame. Once the training phase ends, if JITNet meets the accuracy
threshold, the stride for running the teacher is doubled; otherwise, it is halved (bounded by
minimum and maximum stride). The accuracy threshold is the only user-exposed knob in
the algorithm. As demonstrated in our evaluation, modifying the threshold’s value allows
for a range of accuracy vs. efficiency trade-offs.

Even when consecutive video frames contain significant motion, their overall appearance
may not change significantly. Therefore, it is better to perform more learning iterations
on the current frame than to incur the high cost of running the teacher on a new, but
visually similar, frame. The maximum stride was chosen so that the system can respond
to changes within seconds (64 frames is about 2.6 seconds on 25 fps video). The maximum
updates per frame is roughly the ratio of JITNet training time to teacher inference cost.
We set δmin and δmax to 8 and 64 respectively, and umax to 8 for all experiments. We do
an ablation study of these parameters, choices in network design, and training method in
section ??.

2.3 Long Video Streams (LVS) Dataset

Evaluating fast video inference requires a dataset of long-running video streams that is
representative of real-world camera deployments, such as automatic retail checkout, player
analysis in sports, traffic violation monitoring, and wearable device video analysis for aug-
mented reality. Existing large-scale video datasets have been designed to support training
high-quality models for various tasks, such as action detection [78, 137], object detection,
tracking, and segmentation [113, 158], and consist of carefully curated, diverse sets of short
video clips (seconds to a couple minutes).

We create a new dataset designed for evaluating techniques for efficient inference in real-
world, long-running scenarios. Our dataset, named the Long Video Streams dataset (LVS),
contains 30 HD videos, each 30 minutes in duration and at least 720p resolution. (900
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MRCNN JITNet 0.9 MRCNN JITNet 0.9

Figure 2.3: Frame segmentations generated by MRCNN (left) and JITNet 0.9 (right) from
a subset of videos in the LVS dataset.

minutes total; for comparison, YouTube-VOS [158] is 345 minutes.) Unlike other datasets
for efficient inference, which consist of streams from fixed-viewpoint cameras such as traffic
cameras [67], we capture a diverse array of challenges: from fixed-viewpoint cameras, to
constantly moving and zooming television cameras, and hand-held and egocentric video.
Given the nature of these video streams, the most commonly occurring objects include
people, cars, and animals.

It is impractical to obtain ground truth, human-labeled segmentations for all 900 min-
utes (1.6 million frames) of the dataset. Therefore, we curate a set of representative videos
and use MRCNN [51] to generate predictions on all the frames. (We evaluated other seg-
mentation models such as DeepLab V3 [20] and Inplace ABN [12], and found MRCNN to
be produce the highest quality labels.) We use the highest-quality MRCNN [34] without
test-time data augmentation, and provide its output for all dataset frames to aid evalua-
tion of classification, detection, and segmentation (semantic and instance level) methods.
Figure 2.3 shows a sampling of videos from the dataset with their corresponding MRCNN
segmentations (left image in each group).

2.4 Evaluation

To evaluate online distillation as a strategy for efficient video segmentation, we compare
its accuracy and cost with an alternative motion-based interpolation method [166] and
an online approach for video object segmentation [14]. While our focus is evaluating
accuracy and efficiency on long video streams (LVS), we also evaluate on the DAVIS video
benchmark [113] to show possible applications to video object segmentation.
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Offline Flow [166] Online Distillation

Video Oracle Slow (2.2×) Fast (3.2×) JITNet 0.7 JITNet 0.8 JITNet 0.9
(20%) (12.5%) ( 6.2%)

Overall 80.3 76.6 65.2 75.5 (17.4×, 3.2%) 78.6 (13.5×, 4.7%) 82.5 (×7.5, 8.4%)

Category Averages

Sports (Fixed) 87.5 81.2 71.0 80.8 (24.4×, 1.6%) 82.8 (21.8×, 1.8%) 87.6 (10.4×, 5.1%)

Sports (Moving) 82.2 72.6 59.8 76.0 (20.6×, 2.1%) 79.3 (14.5×, 3.6%) 84.1 (6.0×, 9.1%)

Sports (Ego) 72.3 69.4 55.1 65.0 (13.6×, 3.7%) 70.2 (9.1×, 6.0%) 75.0 (4.9×, 10.4%)

Animals 89.0 83.2 73.4 82.9 (21.7×, 1.9%) 84.3 (19.6×, 2.2%) 87.6 (14.3×, 4.4%)

Traffic 82.3 82.6 74.0 79.1 (11.8×, 4.6%) 82.1 (8.5×, 7.1%) 84.3 (5.4×, 10.1%)

Driving/Walking 50.6 69.3 55.9 59.6 (5.8×, 8.6%) 63.9 (4.9×, 10.5%) 66.6 (4.3×, 11.9%)

Subset of Individual Video Streams

Table Tennis (P) 89.4 84.8 75.4 81.5 (24.7×, 1.6%) 83.5 (24.1×, 1.6%) 88.3 (12.9×, 3.4%)

Kabaddi (P) 88.2 78.9 66.7 83.8 (24.8×, 1.6%) 84.5 (23.5×, 1.7%) 87.9 (7.8×, 6.3%)

Figure Skating
(P)

84.3 54.8 37.9 72.3 (15.9×, 2.8%) 76.0 (11.4×, 4.1%) 83.5 (5.4×, 9.4%)

Drone (P) 74.5 70.5 58.5 70.8 (15.4×, 2.8%) 76.6 (6.9×, 7.2%) 79.9 (4.1×, 12.5%)

Birds (Bi) 92.0 80.0 68.0 85.3 (24.5×, 1.6%) 85.7 (24.2×, 1.6%) 87.9 (21.7×, 1.8%)

Dog (P,D,A) 86.1 80.4 71.1 78.4 (19.0×, 2.2%) 81.2 (13.8×, 3.2%) 86.5 (6.0×, 8.4%)

Ego Dodgeball
(P)

82.1 75.5 60.4 74.3 (17.4×, 2.5%) 79.5 (13.2×, 3.4%) 84.2 (6.1×, 8.2%)

Biking (P,Bk) 70.7 71.6 61.3 68.2 (12.7×, 3.5%) 72.3 (6.7×, 7.3%) 75.3 (4.1×, 12.4%)

Samui Street
(P,A,Bk)

80.6 83.8 76.5 78.8 (8.8×, 5.5%) 82.6 (5.3×, 9.5%) 83.7 (4.2×, 12.2%)

Driving (P,A,Bk) 51.1 72.2 59.7 63.8 (5.7×, 8.8%) 68.2 (4.5×, 11.5%) 66.7 (4.1×, 12.4%)

Table 2.2: Comparison of accuracy (mean IoU over all the classes excluding background),
runtime speedup relative to MRCNN (where applicable), and the fraction of frames where
MRCNN is executed. Classes present in each video are denoted by letters (A - Auto, Bi -
Bird, Bk - Bike, D - Dog, E - Elephant, G - Giraffe, H - Horse, P - Person). Overall, online
distillation using JITNet provides a better accuracy/efficiency tradeoff than baseline flow
based methods [166] and has accuracy comparable to oracle offline models.

2.4.1 Experimental Setup

Our evaluation focuses on both the efficiency and accuracy of semantic segmentation meth-
ods relative to MRCNN. Although MRCNN trained on the COCO dataset can segment
80 classes, LVS video streams captured from a single camera over a span of 30 minutes
typically encounter a small subset of these classes. For example, none of the indoor ob-
ject classes such as appliances and cutlery appear in outdoor traffic intersection or sports
streams. Therefore, we measure accuracy only on classes which are present in the stream
and have reliable MRCNN predictions. Our evaluation focuses on object classes which
can independently move, since stationary objects can be handled efficiently using simpler
methods. We observed that MRCNN often confused if an instance is a car, truck, or a
bus, so to improve temporal stability we combine these classes into a single class “auto”
for both training and evaluation. Therefore, we only evaluate accuracy on the following
classes: bird, bike, auto, dog, elephant, giraffe, horse, and person. Table 2.2 shows the
classes that are evaluated in each individual stream as an abbreviated list following the
stream name.
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All evaluated methods generate pixel-level predictions for each class in the video. We
use mean intersection over union (mean IoU) over the classes in each video as the accuracy
metric. All results are reported on the first 30,000 frames of each video (≈16-20 minutes
due to varying fps) unless otherwise specified. Timing measurements for JITNet, MR-
CNN (see Table 2.1), and other baseline methods are performed using TensorFlow 1.10.1
(CUDA 9.2/cuDNN 7.3) and PyTorch 0.4.1 for MRCNN on an NVIDIA V100 GPU. All
speedup numbers are reported relative to wall-clock time of MRCNN. Note that MRCNN
performs instance segmentation whereas JITNet performs semantic segmentation on a sub-
set of classes.

2.4.2 Accuracy vs. Efficiency of Online Distillation

Table 2.2 gives the accuracy and performance of online distillation using JITNet at three
different accuracy thresholds: JITNet 0.7, 0.8, and 0.9. Performance is the average speedup
relative to MRCNN runtime, including the cost of teacher evaluation and online JITNet
training. To provide intuition on the speedups possible on different types of videos, we
organize LVS into categories of similar videos and show averages for each category (e.g.,
Sports (Moving) displays average results for seven sports videos filmed with a moving
camera), as well as provide per-video results for a selection of 10 videos. We also show the
fraction of frames for which MRCNN predictions are used. For instance, on the Kabaddi
video stream, JITNet 0.8 is 23.5 times faster than MRCNN, with a mean IoU of 84.5, and
uses 510 frames out of 30,000 (1.7%) for supervision.

On average, across all sequences, JITNet 0.9 maintains 82.5 mean IoU with 7.5× run-
time speedup (11.3× in FLOPs). In the lower accuracy regime, JITNet 0.7 is 17.4× faster
on average (26.2× in FLOPs) while maintaining a mean IoU of 75.5. Mean IoUs in the ta-
ble exclude the background class, where all the methods have high accuracy. As expected,
when the accuracy threshold is increased, JITNet improves in accuracy but uses a larger
fraction of teacher frames for supervision. Average speedup on sports streams from fixed
cameras is higher than that for moving cameras. Even on challenging egocentric sports
videos with significant motion blur, JITNet 0.9 provides 4.9× speedup while maintaining
75.0 mean IoU.

Although JITNet accuracy on the Sports (Fixed), Sports (Moving), Animals, and Traf-
fic categories suggests potential for improvement, we observe that for streams with large
objects, it is often difficult to qualitatively discern if JITNet or MRCNN produces higher
quality predictions. Figure 2.3 displays sample frames with both MRCNN (left) and JIT-
Net (right) predictions (zoom in to view details). The boundaries produced by JITNet on
large objects (1st row) are smoother than MRCNN, since MRCNN generates low-resolution
masks (28 × 28) that are upsampled to full resolution. However, for videos containing small
objects, such as traffic camera (Figure 2.3, 3rd row, right) or aerial views (2nd row, left),
MRCNN produces sharper segmentations. JITNet’s architecture and operating resolution
would need to be improved to match MRCNN segmentations on small objects.

Streams from the Sports (Ego) category exhibit significant motion blur due to fast
motion. Teacher predictions on blurred frames can be unreliable and lead to disruptive
model updates. The Driving/Walking streams traverse a busy downtown and a crowded
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Figure 2.4: Top graph: the accuracy of JITNet 0.8 and Offline Oracle relative to MRCNN.
Bottom graph: the number of updates to JITNet during online distillation. Plotted points
are averages over a 30 second interval of the video. Images correspond to circled points in
bottom plot, and show times where JITNet required frequent training to maintain accuracy.

beach, and are expected to be challenging for online distillation since object instances
persist on screen for only short intervals in these videos. Handling these scenarios more
accurately would require faster methods for online model adaptation.
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Figure 2.5: Top: JITNet 0.9 predictions on a sequence of three frames which are roughly
0.13 seconds apart (4 frames apart) in the Figure Skating video. Bottom: Large deforma-
tions, object and camera motion prove challenging to flow based interpolation.

2.4.3 Comparison with Offline Oracle Specialization

The prior section shows that a JITNet model pre-trained only on COCO can be contin-
uously adapted to a new video stream with only modest online training cost. We also
compare the accuracy of just-in-time adaptation to the results of specializing JITNet to
the contents of the each stream entirely offline, and performing no online training. To
simulate the effects of near best-case offline pre-training, we train JITNet models on every
5th frame of the entire 20 minute test video sequence (6,000 training frames). We refer to
these models as “offline oracle” models since they are constructed by pre-training on the
test set, and serve as a strong baseline for the accuracy achievable via offline specialization.
All offline oracle models were pre-trained on COCO, and undergo one hour of pre-training
on 4 GPUs using traditional random-batch SGD. Note that in contrast, online adaptation
incurs no pre-training cost and trains in a streaming fashion.

As shown in Table 2.2, JITNet 0.9 is on average more accurate than the offline oracle.
Note that JITNet 0.9 uses only 8.4% of frames on average for supervision, while the oracle
is trained using 20%. This trend also holds for the subcategory averages. This suggests that
the compact JITNet model does not have sufficient capacity to fully capture the diversity
present in the 20 minute stream.

Figure 2.4 shows mean IoU of JITNet 0.8 and the offline oracle across time for three
videos. The top plot displays mean IoU of both methods (data points are averages over
30 second time intervals). The bottom plot displays the number of JITNet model updates
in each interval. Images above the plots are representative frames from time intervals
requiring the most JITNet updates. In the Birds video (left), these intervals correspond to
events when new birds appear. In comparison, the Elephant video (center) contains a single
elephant from different viewpoints and camera angles. The offline oracle model incurs a
significant accuracy drop when the elephant dips into water. (This rare event makes up
only a small fraction of the offline training set.) JITNet 0.8 displays a smaller drop since
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it specializes immediately to the novel scene characteristics. The Driving video (right) is
challenging for both the offline oracle and online JITNet since it features significant visual
diversity and continuous change. However, while the mean IOU of both methods is lower,
online adaptation consistently outperforms the offline oracle in this case as well.

2.4.4 Comparison with Motion-Based Interpolation

An alternative approach to improving segmentation efficiency on video is to compute
teacher predictions on a sparse set of frames and interpolate the results using flow. Table 2.2
shows two baselines that propagate pixel segmentations using Dense Feature Flow [166],
although we upgrade the flow estimation network from FlowNet2 [63] to modern methods.
(We propagate labels, not features, since this was shown to be as effective [166].) The
expensive variant (Flow (Slow)) runs MRCNN every 8th frame and uses PWC-Net [139]
to estimate optical flow between frames. MRCNN labels are propagated to the next seven
frames using the estimated flow. The fast variant (Flow (Fast)) uses the same propaga-
tion mechanism but runs MRCNN every 16th frame and uses a faster PWC-Net. Overall
JITNet 0.7 is 2.8× faster and more accurate than the fast flow variant, and JITNet 0.9
has significantly higher accuracy than the slow flow variant except in the Driving/Walking
category.

Figure 2.5 illustrates the challenge of using flow to interpolate sparse predictions. Notice
how the ice skaters in the video undergo significant deformation, making them hard to track
via flow. In contrast, online distillation trains JITNet to learn the appearance of scene
objects (it leverages temporal coherence by reusing the model over local time windows),
allowing it to produce high-quality segmentations despite complex motion. The slower
flow baseline performs well compared to online adaptation on rare classes in the Driving
(Bike) and Walking (Auto) streams, since flow is agnostic to semantic classes. Given the
orthogonal nature of flow and online adaptation, it is possible a combination of these
approaches could be used to handle streams with rapid appearance shifts.

2.4.5 Comparison with Video Object Segmentation

Although not motivated by efficiency, video object segmentation (VOS) solutions employ
a form of online adaptation: they train a model to segment future video frames based
on supervision provided in the first frame. We evaluate the accuracy of the OSVOS [14]
approach against JITNet on two-minute segments of each LVS video. (OSVOS was too
expensive to run on longer segments.) For each 30-frame interval of the segment, we
use MRCNN to generate a starting foreground mask, train the OSVOS model on the
starting mask, and use the resulting model for segmenting the next 29 frames. We train
OSVOS for 30 seconds on each starting frame, which requires approximately one hour to
run OSVOS on each two-minute video segment. Since segmenting all classes in the LVS
videos would require running OSVOS once per class, we run OSVOS on only one class per
video (person or animal class in each stream) and compare JITNet accuracy with OSVOS
on the designated class. (Recall JITNet segments all classes.) Furthermore, we run two
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Category OSVOS (3.3%) JITNet 0.8

A B

Overall 59.9 60.0 77.4 (14.5×, 4.6%)

Sports (Fixed) 75.7 75.7 82.3 (24.0×, 1.6%)

Sports (Moving) 69.1 69.3 78.7 (16.3×, 2.9%)

Sports (Ego) 67.6 68.1 74.8 (9.5×, 5.9%)

Animals 79.3 79.8 86.0 (19.7×, 2.1%)

Traffic 22.3 21.9 70.8 (8.4×, 7.7%)

Driving/Walking 36.7 36.3 66.8 (4.3×, 11.8%)

Table 2.3: JITNet 0.8 generates higher accuracy segmentations than OSVOS on LVS and
is two orders of magnitude lower cost. Percentages give the fraction of frames used for
MRCNN supervision.

configurations of OSVOS: in mode (A) we use the OSVOS model from the previous 30-
frame interval as the starting point for training in the next interval (a form of continuous
adaptation). In mode (B) we reset to the pre-trained OSVOS model for each 30-frame
interval.

Table 2.3 compares the accuracy of both OSVOS variants to online distillation with
JITNet. The table also provides model accuracy, runtime speedup relative to MRCNN,
and the fraction of frames used by JITNet 0.8 for supervision in the two-minute interval.
Overall JITNet 0.8 is more accurate than OSVOS and two orders of magnitude faster.
On Traffic streams, which have small objects, and Driving/Walking streams with rapid
appearance changes, OSVOS has significantly lower accuracy than JITNet 0.8. We also
observe that the mode A variant of OSVOS (continuously adapted) performs worse than
the variant which is re-initialized. We believe the JITNet architecture could be employed
as a means to significantly accelerate online VOS methods like OnAVOS [148] or more
recent OSVOS-S [96] (uses MRCNN predictions every frame).

2.4.6 Online Distillation Ablation Study

Our online distillation approach has several parameters (maximum updates (umax), mini-
mum stride (δmin), learning rate and network size) that enable different trade-offs between
accuacy and efficiency. Here, we study the impact of these parameters on the accuracy vs.
efficiency trade-off on a subset of six video streams (which are representative of different
scenarios) in the LVS dataset. We also evaluate the impact of skip connections and reso-
lution on accuracy and efficiency. Table 2.4 compares the accuracy, speedup (relative to
running the teacher on every frame), fraction of frames used for supervision, and number of
FLOPS (floating point operations) for both training and inference on each of the variants.
The baseline is JITNet 0.8, the online distillation algorithm run with an accuracy threshold
of 0.8. For JITNet 0.8, the maximum updates, minimum stride, and learning rate were set
to 8, 8 and 0.01 respectively. We vary one parameter at a time, and each column in the
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JITNet MobileNet

Baseline Max Updates Learning Rate Min Stride Width Skip Scale Output Stride

4 16 0.001 0.1 4 16 0.5 2.0 No 0.5 0.75 8 16

Accuracy
(mIoU)

78.7 77.3 78.0 75.6 16.7 79.8 76.1 62.0 80.3 76.0 75.9 78.1 75.3 74.6

Speed
Up

19.2× 17.2× 22.8× 14.3× 7.3× 17.1× 22.9× 14.9× 12.4× 12.4× 20.0× 22.0× 9.5× 16.8×

Teacher
Samples

5.0% 6.1% 3.7% 6.7% 10.6% 7.7% 3.3% 5.1% 4.2% 6.3% 6.2% 5.3% 5.0% 5.8%

Inference
(FLOPS)

15.2 11.8 47.9 14.3 4.6 10.3 60.3 18.3

Training
(FLOPS)

42.0 31.8 140.4 39.4 8.6 22.4 176.1 53.0

Table 2.4: Comparison of different input parameter settings to the online distillation algo-
rithm. The algorithm is robust to all parameter changes except very high learning rates,
where online training becomes unstable.

table corresponds to a variation of the JITNet 0.8 baseline.

Learning rate: High learning rates allow for faster adaptation. Therefore, we chose
the highest learning rate at which online training is stable for all our experiments. As one
can see in Table 2.4, a lower learning rate of 0.001 reduces both accuracy and speedup.
Increasing the learning rate to 0.1 destabilizes training and yields low accuracy.

Max updates and stride: The number of updates needed on a single frame depends
on how much the model can learn from one frame, and how useful that information is in the
immediate future. Increasing the number of updates leads to overfitting, reducing accuracy
while increasing speedup, and reducing the number of teacher samples used. This suggests
some room for improvement in choosing how many updates to perform on a given frame
over our simple accuracy-based heuristic. As one would expect, increasing and decreasing
minimum stride increase and decrease accuracy respectively.

JITNet capacity: Intuitively, as the capacity of the student architecture is increased,
the student model should require less help from the teacher. We verify this by varying
the width of JITNet (the number of channels in each layer), and observe that a smaller
capacity network (width 0.5) requires more supervision from the teacher, and also results
in a significant drop in accuracy. Doubling JITNet width improves overall accuracy and
reduces the number of teacher samples used. However, overall speedup is lower than the
baseline due to the increased inference and training cost of the wider JITNet model.

JITNet resolution: High resolution is necessary for maintaining high accuracy on
video streams that have small objects. When the input resolution to JITNet is halved (scale
0.5), there is an overall increase in the number of frames on which teacher supervision is
used, and also a drop in accuracy relative to the baseline. However, reducing the resolution
to 75% (scale 0.75) retains high accuracy while being slightly faster than the baseline. This
suggests the possibility of varying resolution based on the contents in a video stream, which
could be explored in the future.

Skip connections: We added encoder-to-decoder skip connections to facilitate better
gradient propagation and make JITNet suitable for fast online adaptation. We evaluate
the impact of the skip connections by removing them (Table 2.4, No Skip). JITNet without
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Method JM JR JD FM FR FD

JITNet A 0.642 0.731 0.238 0.680 0.761 0.235
JITNet B 0.796 0.927 0.018 0.798 0.904 0.060
JITNet C 0.811 0.924 -0.004 0.831 0.913 0.004
OSVOS-S [96] 0.856 0.968 0.055 0.875 0.959 0.082
OSVOS [14] 0.798 0.936 0.149 0.806 0.926 0.150

Table 2.5: Accuracy comparison of different methods using the JITNet architecture and
recent methods for semi-supervised video object segmentation on the DAVIS 2016 bench-
mark.

skip connections requires more teacher samples and adaptation, reducing both accuracy
and speedup relative to the baseline.

Overall, the online distillation algorithm is reasonably robust to different parameter
settings and provides a range of options for accuracy vs. efficiency.

2.4.7 MobileNet Student

We compare JITNet with a popular efficiency-oriented MobileNetV2 [119, 141] architecture
in the context of online distillation. Table 2.4 shows online accuracy and speedup of
online distillation when the MobileNetV2 architecture is used as the student. The two
MobileNetV2 variants produce outputs at 1/8th and 1/16th of the input resolution. As one
can see, the higher resolution variant of the MobileNetV2 architecture is significantly slower
and has lower accuracy than the JITNet baseline. Even the lower resolution (scale 0.75)
version of JITNet has higher accuracy and speedup compared to the MobileNetV2 student.
These results demonstrate that off-the-shelf models can be used in our online distillation
framework. However, JITNet provides a better accuracy vs. efficiency spectrum compared
to MobileNetV2 for online distillation, since it is designed for fast adaptation. Note that
we measure FLOPS, which is a platform-agnostic metric, to ensure fair comparison, since
wall-clock time (MobileNetV2 takes 38ms for inference compared to 7ms for JITNet on
a Nvidia V100 GPU) depends on various factors, including target platform, underlying
libraries, and specific implementation.

2.4.8 DAVIS Evaluation

Online distillation as a technique can be used to mimic an accurate teacher model with a
compact model, improving runtime efficiency. The main focus of this work is to demon-
strate the viability of the online distillation technique for semantic segmentation on streams
captured from typical use case scenarios. In this section, we show preliminary results on
the viability of online distillation combined with the JITNet architecture for accelerat-
ing semi-supervised video object segmentation methods. Specifically, we evaluate how the
JITNet architecture can be combined with state-of-the-art methods such as OSVOS-S [96].

We evaluate three different configurations of JITNet at varying levels of supervision.
In configuration A, we train JITNet on only the first ground truth frame of each sequence,
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and evaluate JITNet over the rest of the frames in the sequence without any additional
supervision (the standard video object segmentation task). On many sequences in DAVIS,
object appearance changes significantly and requires prior knowledge of the object shape.
Note that JITNet is a very low capacity model designed for online training, and cannot
encode such priors. Configuration A is not an online distillation scenario, but even with
its low capacity, the JITNet architecture trained on just the first frame yields reasonable
results.

Recent methods such as OSVOS-S [96] leverage instance segmentation models such as
Mask R-CNN for providing priors on object shape every frame. We take a similar approach
in configuration B, where the goal is to mimic the expensive OSVOS-S model. We train
JITNet on the first ground truth frame, then adapt using segmentation predictions from
OSVOS-S [96] every 16 frames. Note that in configuration B, our combined approach does
not use additional ground truth, since OSVOS-S predictions are made using only the first
ground truth frame. Finally, in configuration C, we train on the first ground truth frame,
and adapt on the ground truth mask every 16 frames. This gives an idea of how the quality
of the teacher effects online distillation.

We use the validation set of the DAVIS 2016 [113] dataset for our evaluation. The
dataset contains 50 video sequences of 3455 frames total, each labeled with pixel-accurate
segmentation masks for a single foreground object. We evaluate using the main DAVIS
metrics: region similarity J and contour accuracy F, with precision, recall, and decay over
time for both. We present metrics over the entire DAVIS 2016 validation set for all three
JITNet configurations, alongside a subset of state-of-the-art video object segmentation ap-
proaches. In all configurations, we start with JITNet pre-trained on YouTube-VOS [158],
with max updates per frame set to 500, accuracy threshold set to 0.95, and use standard
data augmentation (flipping, random noise, blurring, rotation). JITNet A performs sim-
ilarly to OFL [143], a flow-based approach for video object segmentation, while JITNet
B, using OSVOS-S predictions, performs comparably to OSVOS, with significantly lower
runtime cost. Finally, JITNet C, which uses ground truth masks for adaptation, performs
comparably to only using OSVOS-S predictions. This suggests that even slightly noisy su-
pervision suffices for online distillation. Overall, these results are encouraging with regards
to further work into exploring architectures well suited for online training.

2.4.9 Standalone Semantic Segmentation

The JITNet architecture is specifically designed with low capacity so that it can support
both fast training and inference. To understand the accuracy vs. efficiency trade-off
relative to other architectures such as MobileNetV2 [119, 141], we trained a JITNet model
with twice the number of channels and encoder/decoder blocks than the one used in other
experiments. This modified architecture is 1.5× faster than the semantic segmentation
architecture based on MobileNetV2. The larger JITNet gives a mean IoU of 67.34 on
the cityscapes [28] validation set and compares favorably with the 70.71 mean IoU of the
MobileNetV2 based model [141]. We started with the larger JITNet architecture in the
online distillation experiments, but lowered the capacity even further, with half the number
of channels and encoder/decoder blocks, since it provided a better cost vs. accuracy trade-



24 CHAPTER 2. TEMPORAL SPECIALIZATION FOR EFFICIENT INFERENCE

off for online distillation.

2.5 Discussion

We demonstrate that for common, real-world video streaming scenarios, it is possible to
perform online distillation of compact (low cost) models to obtain semantic segmentation
accuracy that is comparable with an expensive high capacity teacher. We summarize our
approach as answers to the questions we need to address for effective specialization.

• What is the model being specialized for? The JITNet model is specialized for short
temporal windows.

• How to curate a dataset specialized to the context? The data required for temporal
specialization comes naturally from the recent past in a video stream and the large
accurate model is used to provide sporadic supervision on recent frames.

• What are model architecture and training algorithm changes required to induce and
exploit specialization? The JITNet model is designed to support not only real-time
inference but also real-time training. Unlike the conventional training online distilla-
tion continuously trains the JITNet model on a stream of data and noisy supervision.

• How do we identify when a specialized model is applicable? Deviation from the
predictions of the accurate teacher model is used to indicate when the JITNet model
is no longer applicable and needs to be updated.

The solution space becomes more apparent when thinking in terms of these questions. For
instance the question of how to curate a dataset specialized to the context corresponds
to how we use the prior data observed in the stream for improving the model. We show
that continuously specializing to the most recent data is more accurate and also sidesteps
the need to curate datasets and train models offline. The question of what the model is
being specialized for encompasses the choice of specializing to short windows of time as
opposed to individual cameras or a different temporal partitioning (day vs. night). The
question of identifying when a specialized model is applicable highlights the reactive nature
of our approach since it can only identify the JITNet model failing after it performs poorly.
Our approach is more suitable for throughput oriented applications since it recovers fairly
quickly (few seconds) and reduces the overall cost. However, it is not suitable for mission
critical settings where a failure cannot be tolerated. In such settings, a predictive method
for JITNet performance is more applicable. For instance, one can rely on low-level cues
like large changes in depth or significant motion of the camera to preemptively identify
situations where the JITNet model might need to adapt.

Going forward, we hope that our results encourage exploration of online distillation for
domain adaptation and self-supervised learning. More generally, with continuous capture of
high-resolution video streams becoming increasingly commonplace, we believe it is relevant
for the broader community to think about the design and training of models that are not
trained offline on carefully curated datasets, but instead continuously evolve each day with
the data that they observe from specific video streams. We hope that the Long Video
Streams dataset serves this line of research.



Chapter 3

Specialization to Similar Classes for
Efficient Inference

One of the scalability challenges with accurate general models is the inference cost which
can consume a significant fraction of data center capacity [70] and is not practical on
resource-constrained mobile devices. As a result, there is growing interest in improving the
design of deep architectures to be both accurate and computationally efficient. In many
cases, the solution has been to create new architectures that achieve a better accuracy/cost
balance. Like most architectures, these new designs are static architectures that activate
the entire network for each input, regardless of the input’s characteristics. In contrast,
dynamic architectures attempt to specialize the work performed during inference to prop-
erties of a particular input. For example, a cascade is a dynamic architecture that employs
multiple models with different computational costs and uses low cost models to “early out”
on easy-to-process inputs.

In this chapter, we explore a dynamic architecture, which we call a HydraNet, which
achieves efficiency gains by dynamically determining which subset of the architecture
should be run to best perform inference on a given input. In other words, a HydraNet
retains accuracy by maintaining large capacity that can be specialized to aspects of the
input domain. However, a HydraNet retains performance by only using a small fraction
of this capacity when conducting inference on any one input. The HydraNet architecture
template, shown in Figure 3.1, is a recipe for transforming state-of-the-art static network
designs into conditional architectures that offer a better accuracy-per-unit-cost trade-off.
We evaluate the HydraNet architecture in the context of image classification, where mul-
tiple branches of the network are specialized for different visual appearance. Although
the idea of dynamically routing inputs specialized subnetworks is conceptually simple,
successfully exploiting dynamic execution during inference requires subtle network design
choices that balance the need to aggressively, but accurately, determine what subset of the
architecture to run for a given task with the cost of making these dynamic decisions.

25
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Figure 3.1: HydraNet architecture template supports conditional execution by spe-
cializing the branches to visually similar classes. During inference, only a subset of the
branches relevant to each image chosen by the gate are executed reducing computational
cost.

3.1 Related Work

Sparsity. The common approach to improving DNN efficiency is to enforce sparsity in
network connectivity [86, 157, 24, 57]. This can be achieved via manual design of new DNN
modules (Inception [140], SqueezeNet [62], MobileNet [57]) or via automated techniques
that identify and remove the least important connections from a dense network [47, 46]. In
either case, determination of the network topology is a static preprocessing step, and all
connections are evaluated at the time of inference.

A complimentary optimization is to employ conditional execution at the time of in-
ference to exploit sparsity in activations (skipping computation and memory accesses for
model weights when activations are known to be zero). While attractive for reducing the
energy consumption of DNN accelerators [45], fine-grained, per-element sparsity is difficult
to exploit on CPUs and GPUs, which rely heavily on wide vector processing for perfor-
mance. The subtask specialization we exploit in HydraNets can be viewed as a mechanism
for designing and training a network architecture that, through coarse-grained conditional
execution, is able to more effectively exploit dynamic sparsity.

Cascades. Cascades [147] are a common form of conditional model execution that re-
duces inference cost (on average) by quickly terminating model evaluation on inputs that
are easy to process (“early out”). Region proposal [116] based models for object detec-
tion are canonical example of cascades in DNNs. Recent work has shown that integrating
cascades into deep network architectures [35, 60] can improve the accuracy vs. cost of
state-of-the-art architectures, where the later stages in a cascade specialize for difficult
problem instances. Recent systems work [128, 58] also addresses the challenges in scaling
up data analysis with deep models by using a using cascade like approach. Focus [58] uses
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a cheap model to first index the data during ingest and selectively uses a more expensive
model during query time. The HydraNet approach of specializing network components for
different subtasks is orthogonal and complementary to the benefits of cascades.

Mixture of experts. The idea of specializing components of a model for different sub-
tasks is related to mixture-of-experts models where the experts are specialized for different
inputs or tasks. Recent work on training very large DNNs for language modeling [125]
has used conditional execution of experts for evaluating only a small fraction of experts
for each training instance. One of the key aspects addressed in [125] is the design of the
mechanism for choosing which experts to evaluate and trade-offs in network architecture to
maintain computational efficiency. These design choices are tailored for recurrent models
and cannot be directly applied to state-of-the-art image classification models which are
feed-forward convolutional networks.

Hierarchical classification. Categories in ImageNet [30, 117] are organized into a hi-
erarchy using an external knowledge base. The hierarchy can be used to first predict the
super class and only perform fine grained classification within the super class [29, 31]. HD-
CNN [160] is a hierarchical image classification architecture which is similar in spirit to our
approach. HDCNN and Ioannou [75, 64] improve accuracy with significant increase in cost
relative to the baseline architecture. In contrast, HydraNets on ImageNet improve top-1
accuracy by 1.18-2.5% with the same inference cost as corresponding baseline architectures.

Both HDCNN and Ioannou model the routing weights as continuous variables which
are used to linearly combine outputs from multiple experts. Jointly learning the routing
weights with the experts is similar to learn in Table 8, and performs poorly due to
optimization difficulties (collapse and poor utilization of experts). HDCNN uses complex
multi-stage training to mitigate optimization issues and provides robustness to routing
error by overlapping the classes handled by each expert. HydraNets use binary weights
for experts during both training and inference by dropping out all but the top-k experts.
This enables joint training of all the HydraNet components while allowing flexible usage
of experts.

Architectural structures similar to HydraNet [2] have been used for learning the par-
tition of categories into disjoint subsets. Our main contribution is a gating mechanism
which reduces inference cost by dynamically choosing components of the network to eval-
uate at runtime. Recent work [88, 99] has explored directly incorporating inference cost
in the optimization and explore training methods for jointly learning the routing and the
network features. In contrast to the complex training regime required for joint learning,
our approach enables a simple and effective training strategy which we comprehensively
evaluate cost on both ImageNet and CIFAR-100 datasets.

3.2 HydraNet Architecture Template

The HydraNet template, shown in Figure 3.1, has four major components.
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• Branches which are specialized for computing features on visually similar classes. We
view computing features relevant to a subset of the network inputs as a subtask of
the larger classification task.

• A stem that computes features used by all branches and in deciding which subtasks
to perform for an input.

• The gating mechanism which decides what branches to execute at inference by using
features from the stem.

• A combiner which aggregates features from multiple branches to make final predic-
tions.

Realizing the HydraNet template requires partitioning the classes into visually similar
groups that the branches specialize for, an accurate and cost-effective gating mechanism for
choosing branches to execute given an input, and a method for training all the components.
The following sections describe how we address these key questions.

3.2.1 Subtask Partitioning

To create a HydraNet with nb branches, we partition the classes into nb groups of equal size.
Similar to hierarchical classification we group visually similar classes so that branches can
specialize in discriminating among these classes. While it might be possible to manually
create groups when the number of classes is small, for large classification problems we need
a mechanism for automatically creating visually similar groups. We compute a feature
representation for each class by averaging the features from the final fully connected layer
of an image classification network for several training images of the same class. Clustering
these average class features using k-means with nb cluster centers results in a partitioning
of the feature space. Directly assigning each class to its nearest cluster center leads to
an imbalanced class partitioning. Instead, each cluster center is assigned the class that
is nearest to it and this process is repeated for C

nb
steps, where C is the total number of

classes, resulting in a balanced partitioning. Each of the nb class partitions is assigned to
one of the branches, which we refer to as a subtask.

3.2.2 Cost Effective Gating

Given a subtask partitioning, traditional hierarchical classification uses the gating function
to classify among the subtasks and the branches for classifying among the classes within
a subtask. For dynamic execution to be accurate, both the gating function and the cho-
sen branch need to perform their respective classification tasks accurately. In practice,
the accuracy of the gating function depends on the capacity (computational cost and pa-
rameters) of the gating component. Making the gating function highly accurate incurs
significant computational cost negating the benefits of dynamic execution.

Our key insight in making the gating both computationally efficient and accurate is
to change the function of both the subtasks and the gating function. In a HydraNet
architecture, the branches do not perform final classification, instead they only compute
features relevant to the subtask assigned to the branch. For example, a branch corresponding
to a cluster of bird classes might compute features that distinguish between the different
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species of birds. Since the branches compute features instead of final predictions, executing
more branches translates to computing more features that can be combined to make final
predictions. Therefore, the job of the gating function is to choose which features (which
branches) to compute. Since the gating function only needs to narrow down the final
classification problem to determining which k subtasks to compute (rather than a single
precise subtask), a lower capacity gating function is sufficient. Note that in the HydraNet
template the stem computation is shared across different branches making the execution
of k branches computationally efficient by design (Section 3.3.2).

We denote gating function score for an input I by g(I) ∈ [0, 1]nb , the output of branch
b by branch(b), and indices of the top-k branches by topk(g(I)). The combined output of
the branches comb is given by:

comb(I) =
∑

b∈topk(g(I))

branch(b) (3.1)

We find that combining the features from the branches by concatenation works equally
well in practice, but requires more memory and parameters than linear combination.

3.2.3 Training

Given a subtask partitioning, the stem, the branches, and the gating function of the Hy-
draNet architecture are trained jointly. While direct supervision for branch outputs is not
available, the labels for the gating function are given by the class to branch mapping de-
termined by the subtask partitioning. The gating function and the downstream combiner
indirectly provide supervision for the features that each branch needs to compute. Since
the mapping of the class clusters to branch is fixed and determined by subtask partitioning,
consistently using the features from the same branch for a subtask drives the features to
specialize for the subtask. This approach is similar to the modular network approach for
visual question answering [3, 69], where the questions define the set of modules to execute
and a consistent mapping from questions to the modules encourages approximately learn-
ing the function designated to each module. The branches are indirectly supervised by the
classification predictions after combining the features computed by the top-k branches.

Both the gating function and the branches are supervised using ground truth labels for
image classification. During training, the top-k branches chosen for different inputs in the
mini-batch can be different. We evaluate all branches on all inputs and mask out features
from branches not picked by the gating function. In effect, the branch outputs from the
branches other than the top-k for each input are ignored and not seen by the combiner.
Masking ensures that weights of the branches not chosen by the gating remain unchanged
during back propagation. This can also be view as an adaptive form of drop out [6] where
entire paths are dropped instead of units within a layer. We use the cross entropy loss for
both the gating function and the final predictions.
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Model Configuration Params MADDs Accuracy
d w (×106) (×106) (Top-1)

ResSep-A 2 0.50 1.96 181 61.88
ResSep-B 3 0.50 2.68 290 65.27
ResSep-C 2 0.75 3.98 380 67.16
ResSep-D 3 0.75 5.58 620 69.90
ResSep-E 3 1.00 9.53 1060 72.02

ResNet-18 - 11.69 1800 69.30
MobileNet - 4.2 569 70.60

Table 3.1: Number of multiply-add operations and Top-1 ImageNet classification accuracy
of variants of ResSep, ResNet-18, and MobileNet architectures for image classification.
ResSep-D model is more accurate than Resnet-18, and 2.5× less expensive.

3.3 Architecture for ImageNet Classification

To analyze the computational cost and accuracy trade-offs enabled by HydraNet designs,
we need a baseline architecture that is both computationally efficient at inference like
MobileNet [57] and allows fast training like ResNet [52] in order to rapidly train multiple
models in the design space. In response we created a static architecture, called ResSep
which incorporates desirable architectural choices from both the MobileNet and the ResNet
architectures, namely depth wise separable convolutions and residual connections.

3.3.1 Baseline Architecture

The high-level structure of the ResSep architecture (Figure 3.2) is similar to the ResNet
architecture for ImageNet classification. There are four blocks (excluding the initial block)
that can be stacked multiple times to create deep networks. Residual connections are
added between the input and output of each block to accelerate training and provide reg-
ularization. Unlike ResNet, instead of using convolution layer for each of the blocks we
use depth-wise separable convolutions, which have been shown to be effective at reducing
computation costs with only minor reduction in accuracy [57]. The configuration of layers
comprising each block in ResSep is shown in Figure 3.2. The amount of computation and
number of parameters can be varied by scaling the number of filters in each block by the
parameter w and the depth of the network by the stacking factor d. Table 3.1 compares
the computation cost, number of parameters and Top-1 ImageNet classification accuracy
of several variants of the baseline ResSep architecture to popular image classification archi-
tectures. The ResSep-D model is more accurate than Resnet-18, and is 2.5× less expensive;
it also compares favorably to the MobileNet architecture which is highly tuned for low cost
inference on mobile devices.
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(a) Transforming the baseline ResSep architecture for ImageNet classification into a HydraNet
architecture. Left: ResSep with separable convolutions in each block. The hyper parameter d is
number of times each block is stacked. Residual connections are added from each block’s input to
its output. Right: the corresponding HydraNet architecture with branches, gate, and combiner
components.

Name Layers Stride Channels

Init block conv 3 × 3 2 64
max pool 3 × 3 2 64

Block 1 sep conv 3 × 3 [1, 2] 128 ×w
sep conv 3 × 3 1 128 ×w

Block 2 sep conv 3 × 3 [1, 2] 256 ×w
sep conv 3 × 3 1 256 ×w

Block 3 sep conv 3 × 3 [1, 2] 512 ×w
sep conv 3 × 3 1 512 ×w

Block 4 sep conv 3 × 3 [1, 2] 1024 ×w
sep conv 3 × 3 1 1024 ×w

Projection conv 1 × 1 1 1024 ×w
Combiner add 1024 ×w

sep conv 3 × 3 1 1024 ×w
Prediction avg pool 7 × 7 1 1024 ×w

fully connected 1000

(b) Layer configuration for each of the block in the ResSep architecture. The parameter w controls
the number of filters in each block. The first convolution layer in the first instance of each blocks
uses stride 2 and subsequent instances use stride 1.

Figure 3.2: ResSep and the corresponding HydraNet Architecture for ImageNet.
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Parameter Description

d Number of times each block is stacked. Controls overall network depth.

nb Total number of branches

k Number of branches selected by the gating mechanism for an input image

ws, wb, wg Multipliers for controlling number of filters in layers of stem, branches,
and gating components respectively

Table 3.2: Hyper parameters for exploring various trade-offs in the design of HydraNet
architectures.

3.3.2 Design Space for HydraNet Transformation

Transforming a baseline static architecture into a dynamic HydraNet architecture involves
several design choices for each of the components. We describe these choices in the context
of ResSep, but the design space transforming ResNet [52] and DenseNet [61] architectures
for CIFAR-100 classification is similar (Section 3.4.1).

The first of these choices is determining the architecture of the stem and the branches.
Having a deeper stem allows sharing higher level features across the different branches or
subtasks and allows features from deeper layers to be used to make more accurate gating
decisions. On the other hand, making the gating decision after a deep stem diminishes
the potential savings of dynamic execution. Therefore, deciding where to branch is crucial
for retaining both computational efficiency and accuracy. We empirically observe that
partitioning the first three ResSep blocks into the stem and replicating the fourth block in
each of the branches gives better accuracy per unit computation cost.

In designing the branches, directly replicating ResSep Block 4 into branches results in
an inordinate increase in the number of model parameters and the number of floating point
operations (by 3-4× for nb = 10) during training, even for a small number of branches.
Since training on ImageNet is computationally expensive, we retain the structure of Block
4 but scale the number of filters in each convolution layer by wb to reduce training time.
Balancing the computation in the branches, stem, and the number of branches is essential
for improving computational efficiency of inference. The hyper parameters that govern this
balance are listed in Table 3.2: nb controls the number of branches, ws and wb control the
number of filters in the layers in the stem and branches respectively. When transforming
architectures for smaller datasets (CIFAR-100) where training is relatively cheap we do
not scale down the number of filters.

The architecture of the gating function is the same as that of a branch, but followed by
a prediction block. The gating function predicts the top-k branches relevant for the given
input. Features from these branches are combined by first projecting them from a wb-
dimensional space into a ws-dimensional space and adding them together. The combiner
block uses the ws features to make final class predictions. The hyper parameters wg and k
(Table 3.2) control the cost of the gating function and the number of branches dynamically
evaluated for each input. We further elaborate on how these hyper parameter choices
impact gating accuracy in Section 3.4.2.
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3.4 Evaluation

In this section, we demonstrate the effectiveness of HydraNet architectures by evaluat-
ing the computational cost vs. accuracy for image classification using both ImageNet
and CIFAR-100 datasets. We use the total number of multiply-add (MADD) operation
performed by the network during inference as measure of cost. Although the number of
MADDs does not directly translate to inference runtime, it is indicative of the runtime
and allows for comparing network cost independent of hardware and associated software
implementation details.

We first analyze the computational cost and accuracy of HydraNet architectures based
on two state-of-the-art architectures on CIFAR-100. We then use the ResSep architecture,
which is designed to be computationally efficient for both training and inference, on the
ImageNet dataset for evaluating the design choices in each component of the HydraNet
template.
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(a) ResNet architectures.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
MADDs (×106)

66

68

70

72

74

76

78

To
p-
1 
A
cc
ur
ac

y

Hydra-Dense
DenseNet

(b) DenseNet architectures.

Figure 3.3: Inference cost vs accuracy of HydraNet architectures for CIFAR-100 classifica-
tion. HydraNet architectures have the same accuracy as the baseline ResNet and DenseNet
architecture at lower dynamic cost.

3.4.1 CIFAR

We use the HydraNet template to transform ResNet (plain residual units) and DenseNet
architectures for CIFAR-100 classification into Hydra-Res and Hydra-Dense architectures.
The overall structure of the Hydra-Res and Hydra-Dense models is similar to that of the
Hydra-ResSep architecture for ImageNet, however both ResNet and DenseNet for CIFAR-
100 classification architectures have three blocks instead of four. We replicate the third
block in each of the nb = 20 branches and dynamically run k = 4 branches for each
input. Unlike the Hydra-ResSep model for ImageNet, the number of filters in the stem,
branches and gating function are not scaled down (wb, ws, wg=1) from the design of the
static baseline architecture. We create multiple variants of both Hydra-ResNet and Hydra-
DenseNet by varying the depth (which is encoded in the variant name in Table 3.3). The
hyper parameters k, nb and the point to branch were chosen empirically by searching over
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Model Params Inference Accuracy
(×106) MADDs (×106) (Top-1)

Hydra-Res-d1 1.28 52 65.81
Hydra-Res-d2 2.86 118 71.24
Hydra-Res-d3 4.43 184 72.30
Hydra-Res-d4 6.01 251 73.35
Hydra-Res-d5 7.59 317 73.84
Hydra-Res-d6 9.17 383 74.29
Hydra-Res-d7 10.74 449 74.71
Hydra-Res-d9 13.90 581 75.26

ResNet-14 0.17 52 65.42
ResNet-20 0.27 81 66.18
ResNet-26 0.37 109 67.55
ResNet-32 0.47 137 67.98
ResNet-56 0.85 250 69.89
ResNet-110 1.73 505 72.11
ResNet-164 2.60 760 73.26

Hydra-Dense-d2 2.77 195 72.04
Hydra-Dense-d3 5.43 360 73.58
Hydra-Dense-d4 8.97 574 74.84
Hydra-Dense-d6 18.72 1151 76.25

DenseNet-d3 0.36 212 67.58
DenseNet-d4 0.58 333 69.41
DenseNet-d6 1.19 655 72.18
DenseNet-d8 2.00 1080 73.80
DenseNet-d10 3.03 1619 75.03
DenseNet-d12 4.27 2260 75.43
DenseNet-d14 5.72 3008 75.68

Table 3.3: Computation cost and CIFAR Top-1 accuracy of several variants of HydraNet ar-
chitectures and baseline architectures. The HydraNet architectures have the same accuracy
as the baseline networks with much lower dynamic cost. All the HydraNet architectures
have nb = 20 branches and use k = 4 branches during inference.

nb = [5, 10, 20, 25], k = [3, 4, 5] and branching at block 2 or block 3. The hyper parameter
sweep was done using the smallest HydraNet architecture, Hydra-Res-d1 and Hydra-Dense-
d2 in Table 3.3 and reused for the more expensive variants. We found that increasing the
total number of branches (nb) and dynamic branches (k) beyond 20 and 4 respectively had
diminishing returns, while branching at block 2 delivered the better cost-accuracy trade-off.

The cost (in MADDs), number of model parameters and accuracy of variants of both
Hydra-Dense and Hydra-Res are shown in Table 3.3. Both the Hydra-Res and Hydra-
Dense architectures give the same level of accuracy as the static baseline architectures
with significantly lower computational cost. For example, Hydra-Res-d4 yields the same
accuracy as ResNet-164 while incurring one third the cost. As seen in Figure 3.3, similar
trends hold for several variants of the HydraNet architectures. The improved accuracy of
the HydraNet models is due to the overall increased capacity of the model, i.e., the total
number of parameters and MADDs. However, at inference time the model dynamically
picks a small subset of branches to execute; reducing the inference cost dramatically.
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Model Branch Configuration Params MADDs Accuracy
Point d ws wb wg k nb (×106) (×106) (Top-1)

Hydra-ResSep-A Block 3 2 0.50 0.125 0.125 5 50 10.89 193 64.40
Hydra-ResSep-B Block 3 3 0.50 0.125 0.250 5 50 13.30 299 68.13
Hydra-ResSep-C Block 3 2 0.75 0.125 0.250 5 50 15.70 374 69.09
Hydra-ResSep-D Block 3 3 0.75 0.125 0.500 5 50 19.51 630 71.52
Hydra-ResSep-E Block 3 3 1.00 0.125 0.500 5 50 26.83 1075 73.20

Table 3.4: Computation cost, hyper parameters, and Top-1 accuracy several variants of
the Hydra-ResSep architecture for ImageNet classification. All the architectures are trans-
formed from corresponding baseline ResSep architecture.

3.4.2 ImageNet

As with CIFAR, we trained multiple HydraNets to explore the accuracy vs. cost land-
scape. However, due to the high cost of training large models on ImageNet classification
we focus on a single baseline family of architectures (ResSep from Section 3.3.2). The
ResSep-D model takes ∼ 12 hours to train with distributed asynchronous training using 32
GPUs. Relative to ResSep-D, the Hydra-ResSep-D architecture shown in Table 3.4 takes
∼ 2.5× longer to train. Training time and GPU memory make it impractical to explore
large values for nb and wb. For example, setting wb = 0.5 instead of wb = 0.125 in the
Hydra-ResSep-D architecture makes the training time ∼ 4× longer. The particular con-
figurations in Table 3.4 were chosen to have similar inference cost as the baseline ResSep
architectures (the hyper parameters d, ws directly correspond to the baseline architectures
and nb, k, wg are balanced such that the dynamic inference cost closely matches the corre-
sponding baseline). We further elaborate on the choice of hyper parameters in the rest of
the section with associated experiments.

HydraNet architecture improves accuracy while having similar computation
costs as the baseline ResSep architecture. Figure 3.4 shows the cost vs. accuracy
of both Hydra-ResSep and the baseline ResSep architectures. As shown in Table 3.4, the
HydraNet architectures are more accurate, and have more parameters compared to the
baseline ResSep architectures with similar inference cost, especially in the low-cost regime.
However, at inference time only k = 5 of the nb = 50 branches are evaluated, making
the inference cost comparable to the corresponding baseline architecture. The accuracy
improvements of HydraNets in the low cost regime are more pronounced. We believe this
is because of the increase in total capacity (parameters and total static MADDs) of the
HydraNet architectures relative to the baseline is larger in this regime (HydraNet-ResSep-
A has 5.6× more parameters and 3.3× more MADDs). In the high accuracy regime, the
accuracy improves by 1.18% relative to the baseline (HydraNet-ResSep-D has 2.8× more
parameters and 1.5× more multiply-adds).

Increasing the total number of branches results in better accuracy and increases
training costs. In order to analyze the impact of the number of branches (nb) we vary
nb while keeping the other hyper parameters the same as HydraNet-ResSep-A (Figure 3.4).
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Figure 3.4: Cost vs. accuracy trend for Hydra-ResSep and the baseline ResSep architec-
tures.

Total branches nb = 10 nb = 25 nb = 50

Accuracy (Top-1) 61.76 63.21 64.40
Params (×106) 3.30 6.14 10.89
Total MADDs (×106) 239 376 605

Table 3.5: Increasing number of branches (nb) gives better accuracy but increases training
cost and the number of model parameters. Total MADDs is the cost of all branches which
is proportional to training time. Other hyper parameters are the same as Hydra-ResSep-A
in Table 3.4.

Increasing the number of branches increases the total capacity of the network and allows
for more specialization, but makes learning the subtask gating function harder. However,
since we rely on a soft top-k gating mechanism, increasing the total number of branches
results in a net improvement in overall accuracy as shown in Table 3.5. Note that increasing
the total number of branches increases the training cost, but not inference cost. Training
cost and available GPU memory make it impractical to scale nb and wb to large values.
We set nb = 50 and wb = 0.125 to keep the training time under ∼ 2 days (asynchronous
training with 32 GPUs) for all the variants of HydraNet-ResSep.

Dynamic branches k = 1 k = 3 k = 5 k = 10

Accuracy 60.08 63.38 64.40 64.89
Inference MADDs (×106) 157 175 193 239

Table 3.6: Increasing the number of dynamically executed branches (k) of HydraNet-
ResSep-A results in better accuracy with diminishing returns.
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Split point Params MADDs (×106) Accuracy
Total Cond

Block 2 9.66 695 174 61.35
Block 3 9.66 605 193 64.40

Table 3.7: Branching at Block 2 of ResSep-A gives lower accuracy compared to branching
at Block 3. All other hyper parameters are the same as Hydra-ResSep-A in Table 3.4.

Method Accuracy

random 63.07
learn 61.50
learn-balance 63.17
cluster 64.40
no gating 66.21

Table 3.8: Accuracy of HydraNet-ResSep-A with different subtask partitioning and gating
strategies. Other hyper parameters are the same as in Table 3.4 except for no gating which
uses outputs of all the branches.

Executing a small number of branches dynamically improves accuracy signif-
icantly relative to executing a single branch. Table 3.6 shows the importance of
the soft-gating mechanism by varying k while keeping other hyper parameters the same.
Dynamically executing only a single branch results in lower accuracy than the ResSep-A
model. This is due to inaccuracy in gating as well as the low capacity of a single branch.
However, executing a small number of branches recovers accuracy and outperforms the
ResSep-A model by 2.5%. There are diminishing improvements in accuracy with increas-
ing k. We set k = 5 for all the HydraNet-ResSep architectures.

Branching earlier in the network hurts accuracy with only a slight reduction in
dynamic compute cost. An important aspect of transforming a baseline architecture
using the HydraNet template is deciding where the model is partitioned into branches.
Table 3.7 shows the accuracy when the baseline architecture ResSep-A is transformed into
a HydraNet architecture by branching at Block 2 (each branch and the gating function
now has both Block 3 and 4 with the number of filters scaled by wb and wg respectively).
Branching earlier in the network increases the overall training cost and results in signifi-
cantly lower accuracy. We believe this is due to inaccurate decisions by the gating function
when relying on low-level features. In principle, one could empirically search for the best
split point at the layer granularity rather than block granularity. We restricted our exper-
iments to block granularity to limit the time spent on this search.

Clustering based subtask partitioning works well in practice. We evaluate the
effectiveness of clustering based subtask partitioning by comparing with several baselines.
Table 3.8 shows different methods for partitioning and their corresponding accuracy. clus-
ter is the k-means based subtask partitioning described in Section 3.2.1. random parti-
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tions the classes into equally sized subsets randomly. no gating does not require subtask
partitioning since all the branches are used both at training and inference, and serves as
an upper bound on the accuracy that can be achieved since any gating function will uti-
lize a subset of the branches per input. cluster is 1.33% more accurate than random
demonstrating that partitioning the classes based on visual similarity allows the branches
to specialize more effectively. The accuracy gap between cluster and no gate is 1.8%,
which is narrow given that cluster only uses five branches out of the total 50 per input.

We also explored alternative methods to cluster which learn the subtask partitioning
jointly with the training of the branches. Instead of supervising the gating function with a
branch classification loss, learn uses the scores generated by the gating function as weights
for linearly combining output features of the top-k branches. The gating function learns
to weigh the relevant branches higher for a given input based on the overall classification
loss. Table 3.8 shows that learn gives lower accuracy than the baseline. We observe
the gating function tends to favor branches which initially get more training signal. This
results in a self-reinforcing loop: branches which are not picked do not learn to compute
useful features and the gating function learns to ignore these branches. Prior work in
language modeling has overcome the under utilization problem by adding a loss term
encouraging equal utilization of branches for a batch of inputs [125]. Given a batch size of
N and the gating function g(batch id, branch id), the utilization of the branch b across the
batch is given by

∑N
i=0 g(i, b). We encourage equal utilization of branches by adding an

additional loss term λbal
∑nb

b=0(
∑N

i=0 g(i, b))2, this corresponds to the learn-balance row
in the table. learn-balance does significantly better than learn but still falls short of
cluster.

3.5 Discussion

The HydraNet architecture reduces computational cost by specializing components of a
network for subtasks and exploiting this specialization at inference time. We summarize
our approach as answers to the questions we need to address for effective specialization.

• What is the model being specialized for? The branches in the HydraNet model are
specialized for computing features to discriminate between groups of visually similar
looking classes.

• How to curate a dataset specialized to the context? The data and supervision required
for specializing the branches is generated by clustering the training data using a
general feature representation.

• What are model architecture and training algorithm changes required to induce and
exploit specialization? The HydraNet template is designed to support conditional ex-
ecution and the training algorithm makes the branches specialize for different groups
of classes.

• How do we identify when a specialized model is applicable? The gating function
determines the set of branches that should be picked based on the input.

Thinking in terms of these questions organizes the solution space for each key compo-
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nent enabling specialization. For instance, clustering using general feature representation
trained using supervised data is one way of generating the class grouping and labels for
supervising the gating function. With more recent advances in self-supervised learning one
can revisit both how to generate the visual grouping as well as the supervision for gating
and specializing branches. Similarly, more recent work has show that it is feasible learn the
grouping classes each branch jointly with the gating function which is a training method
for inducing specialization.

HydraNet architectures enable more efficient inference than static architectures, this
efficiency comes at the cost of longer training times due to the network’s many branches.
One approach to reducing the training time is to leverage dynamic execution in the train-
ing process. Unlike inference, training is sensitive to batch size and efficient dynamic
execution in small batch settings is challenging since each item in the batch may need to
execute a different set of branches. Current deep learning frameworks are not designed for
efficient execution in these scenarios. Extending deep learning frameworks with support
for conditional training would be necessary to scale up training of conditional models like
HydraNet. Although, we focus on classification we believe that sparse dynamic execution
will be increasingly important for building multi-task models which perform a wide range
of tasks using a shared representation. Especially with the current trend of training larger
and more accurate models on increasing amounts of data.
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Chapter 4

Specialization to Individual
Categories for Efficient Supervision

Training image classification models for a single (or small number of) rare categories is
common in real-world settings and is a natural scenario where models need to target a
small subset of the general distribution. For instance, autonomous vehicle development
requires recognizing rare entities, like construction vehicles, in the video logs collected
by the fleet. Ecological monitoring requires recognition of rare animal species. A major
challenge in building models for rare categories is acquiring training examples - precisely
because they are rare!. Fortunately, in many real-world settings one has access to a large
amount of unlabeled data. In this chapter, we focus on leveraging models specialized to
small amounts of human labeled data to continuously guide human and machine effort in
improving classification models for rare categories.

Because naive labeling is likely to waste human effort on easy background examples, a
natural strategy is to interactively mine the data by combining [98, 104, 44, 121, 150, 134]
active [122] and semi-supervised [19, 165, 136, 156] learning. However, most prior active and
semi-supervised learning approaches assume upfront access to a modest amount of labeled
data and assume that every image belongs to a common class of interest (Figure 4.1). In
contrast, we are interested in building models for rare categories starting with only a few
labeled positives (as little as 5) and where most of the unlabeled data (as much as 99.9%)
is background. Simply put, our goal is to maximize model accuracy for rare categories
given a small fixed amount of human labels (500–1000).

Typical active and semi-supervised approaches use an initial labeled set to train a model
for identifying and labeling relevant data. However, we have so few labeled positives for
each rare category that it is difficult to train a reliable deep model using only the initial
labeled set. Prior work in the rare category setting resorts to training simple linear models
on pre-defined features [111, 26]. We show that it is feasible to improve deep features
with a limited amount of labeled data by integrating active and semi-supervised learning
to address the following challenges:
• Because humans can only label a small fraction of the full dataset, we make use of

semi-supervised learning to pseudo-labels additional examples. Pseudo-labeling posi-
tives works poorly because they are rare. We let humans label “hard” examples

41
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Figure 4.1: Problem setup: Top half shows the setting widely studied in active and
semi-supervised literature; where the goal is to build a model for many common categories
starting from 100’s-1000’s of labeled images using unlabeled data that is balanced and
only contains images belonging to the categories of interest. Bottom half shows our setting
that is commonplace in many practical scenarios; where the goal is to build a model for a
few rare categories starting from a small number of exemplars using unlabeled data that
mostly (as much as 99.9%) does not belong to the categories of interest.

that may contain positives and hard negatives and let machines pseudo-label
“easy” negatives.

• Training on large amounts of pseudo-labeled negatives leads to difficult, highly-imbalanced
learning. We adapt background splitting [103], a recently proposed technique
for learning from highly imbalanced human labeled datasets, for iterative
semi-supervised learning with both human and machine labels.

• Iteratively learning (deep) features significantly improves accuracy but is computation-
ally expensive and adds significant delays between model updates and human labeling.
To reduce overall computational costs and latency between model updates
and human labeling, we update the features at a low frequency but train
linear models on cached features at a high frequency to pick the samples to
query humans on.

4.1 Related Work

Our work overlaps with research in active learning, semi-supervised learning, and the inter-
section of both of these methods with deep learning. Broadly unlike prior work, we explore
semi-supervised active learning in the context of learning deep models for a small number
of rare categories starting with a few labeled positives and a large amount of unalabeled
data mostly consisting of images not relevant to the categories of interest.
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Active learning The problem of choosing data to label to learn a model has be exten-
sively studied in active learning [122] literature. Much of the early work has focused on
training a classifier on top of pre-defined features where the unlabeled dataset has a balanced
category distribution, and the goal is to build a model to classify all categories. State-of-
the-art methods in this setting label data that the current classifier model is confused
about (as measured by entropy or margin distance) [25] or data with the most information
gain, often measured by the expected model gradient [122, 149]. When unlabeled data
is balanced simple strategies like uniform random sampling are quite competitive [100].
Prior work has shown that uniform sampling as well as standard active learning techniques
struggle in our imbalanced setting [5, 4]. Some work has explored active learning in the im-
balanced/rare category setting [155, 13, 1], where unlabeled data only contains categories
of interest and the imbalance studied is minor (2-99×) compared to the setting we study
(384-10,000×).

Our work is most closely related to the Tropel system [111], which trains a rare-category
classifier via active learning starting with just a few samples of the rare class. Tropel uses a
fixed feature representation from a pre-trained deep model for classifier training. Similarly
more recent work trains a logistic regression classifier on top of frozen deep features by
limiting candidates for human labeling to the nearest-neighbors of the samples that have
already been labeled [26]. In contrast, we update the deep feature representation used in
the active process. Even though we have only a small amount of human labeled data, we
make this update viable by also utilizing the unlabeled data.

Deep active learning & semi-supervised learning In traditional active learning
methods, a classifier is learned on top of fixed features, whereas when training a complete
deep model from actively-acquired samples the goal is to learn both a feature represen-
tation and a classifier. This difference requires fundamental changes to active learning
techniques. Recent work [100] demonstrates that active learning with deep models in the
common category setting benefits enormously from data augmentation or semi-supervised
techniques using the unlabeled data. Therefore, straightforward adaptations of traditional
active learning methods to training deep models [121, 49] are less efficient in their use of
human samples than methods which augment deep active learning with semi-supervised
learning [150, 134, 108, 39]. These combined techniques build on earlier work from the
pre-deep-model era [98, 104, 44, 81].

Semi-supervised methods rely on an existing model to infer labels on the unlabeled data
either using proxy-labeling or graph-based methods [108]. The existing model used to infer
labels must be reasonably accurate for the methods to successfully improve the model.
Most prior semi-supervised methods are evaluated in the many common category setting
and start with 100’s-1000’s of labeled examples to train a good initial model [108, 65, 115].
However, with rare categories it is unrealistic to start with such a large number of labeled
positive instances. In the realistic scenario that trains an initial model with just a few
positive instances, we find that the model’s positive predictions on unlabeled data are
unreliable (the false positive rate is high). Therefore, we limit semi-supervised labeling to
just a subset of the samples strongly predicted to be negative, confirming previous results
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in the classical setting [23]. The semi-supervised method that we use is a modified variant
of the relatively simple proxy-labeling method [108].

Knowledge transfer and representation learning Techniques like knowledge distil-
lation [21, 159, 115] enable transferring knowledge from a model in a related domain to
learn better representations. We rely on a recent distillation based technique developed
specifically for the rare category settings with extreme imbalance [103]. More recently self-
supervised representation learning techniques have been successful for balanced datasets
like ImageNet [16, 43, 21, 22]. We find that representations learned using such methods
are good starting points but they need to be updated with supervision relevant to the rare
categories of interest.

Few-shot learning Much work on active learning assumes a small but sizable portion
of data is labeled (e.g., 5%), enough to warm-start with a reasonable model [129, 59]. In
our setting, we assume only a small number of initial examples per class (5). This setting
is close to that of a cold start in active learning [40, 68]. Our initial setup is similar to a
few-shot learning problem, which often focuses on learning general representations [135] or
aggressive data augmentation [154]. Rather than focusing on complex few-shot learning
strategies our approach focuses on learning a good feature representations using unlabeled
data echoing recent work [142].

Heterogeneous models for active learning Actively training deep models produces
more accurate models but incurs a high computational cost. Prior work has shown that
simpler models such as linear classifiers can be trained quickly compared to complex models
such as deep CNNs, and are often good enough for sample selection in active learning [80,
27]. We use a similar approach and interleave linear classifier training with deep model
training to retain advantages of both.

4.2 Approach

Our goal is to build an accurate model for a rare category given the following inputs: a
small set of labeled positives (Ip); a large amount of unlabeled data (>99.9% of data is
negative instances) from the target domain U ; a pre-trained model Mpre from a related
domain; and the ability to query a human for labels on a set of samples. Figure 5.2 provides
an overview of our approach and Algorithm 2 gives concrete details. At a high level our
approach iteratively builds a model by utilizing the best feature representation (F ) and
labeled positives (Lp), negatives (Ln), and pseudo negatives (Wn) available on hand to
rapidly train linear models. Then we use the linear models to rank the unlabeled images
and to query humans for labels on the top images in the ranking R. In addition to human
labels, the linear model is used to accurately pseudo label a large number of easy negatives
(Wn) by picking images from the bottom 50% of the ranking. Using fixed features not
trained for the task limits the accuracy of the linear models. Therefore, the deep features
are periodically updated at a slower rate by training the deep model (Md) with both human
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Figure 4.2: Overview: Our approach builds rare category models by alternating (top
cycle) between selecting unlabeled samples for a human to label and training a linear
model on top of frozen deep features from labeled images. Our pipeline focuses human
effort on images likely to contain positives by ranking unlabeled images with the linear
model and querying humans on high scoring unlabeled images. In addition to human
labels, the linear model is used to automatically label a large number of easy negatives by
picking images from the bottom 50% of the ranking. Using fixed features not trained for the
task limits the accuracy of the linear models. Therefore, the deep feature representation is
periodically updated at a slower rate (bottom cycle) by training the deep model with both
human and automatically labeled data.
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Algorithm 2: Our rare category active approach.

Input: U , Ip, M
d
pre, B, N , Q, fa

Output: Md
1...N

1 F ← cacheFeatures(Md
pre, U)

2 Al ← auxiliaryLabels(Md
pre, U)

3 c← computeFeatureCentroid(Md
pre, Ip)

4 Rpos ← rankByCosineSimilarity(c, F )
5 Lp ← Ip, Ln ← {}, Wn ← {}
6 Md

0 ←Md
pre

7 for i ← 1 to N do
8 for j ← 1 to Q do
9 if |Lp| < |Ln| then

10 Hp, Hn ← queryHumanTopK(B, Rpos)
11 else
12 Hp, Hn ← queryHumanTopK(B, Rent)
13 Lp ← Hp ∪ Lp, Ln ← Hn ∪ Ln
14 Wn ← pseudoNegativeLabels(Rpos, fa)
15 M l ← trainLinearModel(F ,Lp,Ln,Wn)
16 U ← U − (Hp ∪Hn)
17 Rpos ← sortPositiveScore(M l, U)
18 Rent ← sortMarginDistance(M l, U)

19 Md
i ← trainBGSplit(Md

i−1,Lp, Ln, Wn, Al)
20 F ← cacheFeatures(Md

i , U)

and automatically labeled data. We use the recently proposed background splitting [103]
technique to learn good representations even with the extreme imbalance encountered in
the training data. The rest of the section elaborates on the motivation and the resulting
design choices in the key components of our approach.

Bootstrapping the initial model and ranking. The first challenge we need to tackle
is building a model for ranking the unlabeled data using the starting set of positives we
call the prototype positives (Ip). Given only the prototype positives it is difficult to train
a classifier since there are no negatives on hand. One could sample negatives randomly
from the unlabeled data, but we find that randomly sampled negatives are not effective for
building an accurate classifier. Instead it is more effective to rely on feature similarity to
the positive instances for finding hard negative examples. Therefore, we generate a feature-
similarity based ranking using the prototype positives. cacheFeatures (Line 1) uses the
pre-trained model Md

pre to pre-compute the features F for all the samples in the unlabeled
data U . Then computeFeatureCentroid (Line 3) normalizes the feature representations
of all the prototype positive examples Ip and computes an average feature representation
c (category prototype) for the rare category. Finally, rankByCosineSimilarity (Line 4)
generates the initial ranking Rpos of unlabeled images in U by sorting them by cosine
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similarity to the category prototype c.

Querying for human labels on high-ranking samples. Given the initial boot-
strapped model c or the linear models (M l) in later iterations we need to choose which
unlabeled images to present to the human for labeling. The initial ranking (Line 4) is based
on similarity and surfaces data that is visually similar to the category of interest. However,
the ranking can be unreliable (especially for fine-grained categories) since the similarity
is computed using only a few positive instances (Ip) based on a representation learned
for a different task (ImageNet classification or a self-supervised auxiliary task). Even in
subsequent iterations we only request a small number of (B = 10) additional labels every
iteration to update the ranking model (M l). For instance, Figure 5.2 top shows the highest
ranking unlabeled images during the active loop. Most of the top images surfaced by the
model are visually similar, but only a small fraction of those images belongs to the category
of interest making it difficult to automatically label positives. Therefore, we focus human
labeling effort on the top scoring positive images in the ranking.

Each iteration of the inner loop j, queryHumanTopK (Lines 10,12) queries the human
for labels on the B top ranked images, where B is the labeling budget per iteration.
The human labeled positives and negatives Hp, Hn are added to the appropriate labeled
sets Lp, Ln and removed from the unlabeled data pool. As we request more labels in
the iterative process and update the model, the model becomes more accurate and scores
easy positives highly. Once the model is reasonably accurate, labeling more easy positives
doesn’t improve the model much, but the model is then able to identify samples near the
true margin (hard positives and hard negatives). Based on this intuition, we use a simple
heuristic to estimate model quality and adaptively choose a strategy for picking the samples
for human labeling. The key insight is that a high quality model finds more positives than
negatives. Our approach keeps track of the number of positives and negatives labeled so far
(|Lp|, |Ln|). If the number of positives labeled so far is less than the number of negatives,
we ask the human to label the most-likely-positive images (Rpos), otherwise we ask the
human to label the images closest to the linear model’s margin (Rent).

Generating negative pseudo labels on low ranking samples. Given only the small
number of human labeled images (|Lp|, |Ln|) it is difficult to improve the deep feature
representation. Our approach addresses this issue by machine labeling a large subset of
the unlabeled images U . Firstly, our approach avoids labeling errors by restricting pseudo
labels to negatives and more precisely the low ranked samples in the current ranking Rpos

which are unlikely to be positives. Secondly, our algorithm takes a progressive approach
to machine labeling based on the number of human-labeled positives and negatives (Lp
and Ln). The routine pseudoNegativeLabels (Line 14) chooses fa(|Lp| + 0.1|Ln|) samples
uniformly from the bottom half of the ranking as pseudo negatives. fa is a scalar hyper
parameter that controls the amount of pseudo labels relative to the human-labeled data the
algorithm uses. The goal of this heuristic is to keep the label errors relative to the amount
of human-labeled data low while maintaining diversity in the negatives. Although easy
negatives can be automatically labeled reliably with simple heuristics, similar heuristics
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cannot be used to generate automatic labels for positives of the rare category. We show
that even conservatively pseudo labeling positives results in lower accuracy in the active
process compared to our approach.

Updating feature representation with extreme imbalance. Training the deep
models Md

i with a small number of human labeled images and a large number of pseudo
labeled negatives remains challenging due to the extreme imbalance in the training data.
Our approach mitigates this issue while distilling information from a related domain by
using a recent deep-model training technique called background splitting [103] designed for
coping with extreme imbalance. trainBGSplit (Line 19) trains the deep representation
using all the human-labeled and pseudo-labeled data, plus auxiliary labels Al computed
using the pre-trained model Md

pre.

Interleaved feature representation and ranking updates. In principle, we can up-
date the deep model with every human label to make best use of subsequent human effort.
However, updating the deep representation frequently is computationally expensive and
gives diminishing returns as we show in our experiments. Conversely, training linear mod-
els on fixed features is computationally cheap but results in lower quality models. Our
approach strikes a balance between the two extremes by interleaving low frequency up-
dates of the feature representation (every QB human labels) with high frequency training
of a linear model (every B human labels) used to update the ranking. The outer loop i
corresponds to feature updates and the inner loop j corresponds to ranking updates with
a fixed feature representation. The parameters N and Q specify the number of feature and
ranking update iterations respectively. The routine trainBGSplit starts with the model
from the previous iteration and only trains it for a few epochs on the current labeled data
(Lp, Ln,Wn). Continuous training of the deep model across the active iterations keeps the
training cost close to that of training a fully supervised deep model on all the data. After
every update the features for the unlabeled data are cached (Line 20) for training linear
models used to choose images for human labeling. In between the feature updates, the
routine trainLinearModel uses the current features to rapidly train a linear model (M l)
using both human and pseudo negative labels. The resulting linear model is used to update
the ranking used to pick images for human labeling as well as pseudo negatives.

4.3 Evaluation

Our approach has three components: active sampling, pseudo labeling and deep model
training on imbalanced data. Prior work has largely focused on individual components of
our approach. We compare our approach to prior work by replacing individual components
with prior methods and evaluating the overall performance. We also present ablation
studies for key ideas.
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Approach
Pseudo

Positives
Pseudo

Negatives
BG

Splitting
Train

Features Active Learning

Ours ◦ 7 3 3 3 3(adaptive)

KD-Semi + 3 3 3 3 3(adaptive)

DeepProp × 3 3 3 3 3(adaptive)

Tropel-Deep 4 7 7 7 3 3(most-likely-positive)

Tropel 5 7 7 7 7 3(most-likely-positive)

Fully supervised 7 7 3 3 7
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(b) Places 20 categories (each is ∼0.19-0.27% of data)

Figure 4.3: Comparison to baselines. Plots show average F1 accuracy of our approach
and baselines on iNaturalist (5 × 10) and Places (2 × 10) categories as a function of
human labeling effort. Our approach gives higher accuracy per human effort compared
to baselines, especially when a small number of images are labeled. The Tropel baseline
trains a linear model on fixed features and is competitive with Tropel-Deep baseline in the
low data regime. DeepProp and KD-Semi baselines pseudo label positives in addition
to negatives. The false positives in the pseudo positive labels leads to lower accuracy
compared to our approach.
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4.3.1 Experimental setup

We evaluate our approach for building rare category models using two datasets: the iNatu-
ralist [144] fine-grained species recognition dataset and the Places [162] scene classification
dataset. We randomly choose 50 categories from the iNaturalist dataset and 20 categories
from the Places dataset for evaluation as rare categories. For the iNaturalist dataset we
restrict the random choice to categories with more than 50 instances in the training set, so
that the active learning process has something to find. Given this setup, positive instances
for individual categories are extremely rare in both datasets. For iNaturalist, the number
of positives for each selected category is in the range 50-1500 (∼0.01-0.26% of the training
set). For Places, the categories are more uniformly distributed, with ∼3500-5000 instances
per category (∼0.19-0.27% of the training set). For each category we pick five randomly
chosen positives as the initial labeled set and treat the rest of the training data as the
unlabeled pool of data. We evaluate the trained models on the full validation set of each
dataset. All images not in a category of interest are considered negatives in our evaluation
i.e., our validation set reflects the imbalance in the training set. We use the F1 metric for
evaluation instead of classification accuracy since classification accuracy is easily gamed
for rare categories by just predicting everything as negative.

Rare-category active learning baselines: Tropel [111] is a prior active learning ap-
proach for rare categories. Tropel iteratively trains a linear model (on top of frozen
pre-trained deep features) by labeling the top-k scoring predictions from the current linear
model. We also evaluate a new variant, Tropel-Deep, which trains a deep model instead
of a linear model at each iteration. Tropel-Deep uses the same incremental deep-model
training that we use in our approach.

Semi-supervised baselines As the results show, our method outperforms Tropel (be-
cause we train a deep model) and Tropel-Deep (because our method augments the human
labels with pseudo-labels). This second result raises the question as to whether traditional
semi-supervised techniques could perform just as well as our enhanced methods. To study
this question, we implemented additional baselines based on label propagation [65, 134]
and knowledge distillation [21, 159, 115]. We replace our pseudo negative labeling approach
with these approaches for generating automatic labels, naming them DeepProp and KD-
Semi. For the DeepProp baseline, instead of only using the pseudo negatives Wn to train
the deep model, we also use pseudo positive labels generated with label propagation [65].
For the KD-Semi baseline, instead of only using the pseudo negatives Wn produced by the
linear model, we use the high confidence predictions of the deep model from the previous
iteration on the unlabeled data as pseudo positive and negative labels.

Implementation and configuration details We use a ResNet-50 model [53] pre-
trained on ImageNet or using self-supervised methods (Md

pre) to initialize the deep model
and compute feature representations for all the unlabeled data. The same ResNet-50 model
is used to generate labels for the background splitting auxiliary loss. We run our active
approach and its variants with N = 10, Q = 5, and B = 10 for iNaturalist and N = 10,
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Figure 4.4: Analysis of automatic positives. Plot shows the average false positive
rate in the automatic positives labeled by KD-Semi and DeepProp baselines for the
50 iNaturalist categories. Lowering the confidence threshold for automatic positives with
KD-Semi increases the false positive rate. The high false positive rates showcase the
difficulty in automatically labeling positives.

Q = 5, and B = 20 for Places unless specified otherwise. We use the same set of initial
positives (Ip) for each category across all the methods and set fa to 100 unless specified
otherwise. We show that our approach is robust to a range of values for fa.

Ideally, we would evaluate our approach and all the baselines individually for each
category. However, due to computational limitations it is not feasible to train deep models
with pseudo negatives individually for each category. Therefore, we run our approach
and baselines for groups of ten categories at a time to reduce the compute costs. We
maintain the same grouping of categories across all the experiments. When training the
deep model we use binary cross entropy loss for each category as opposed to cross entropy
loss across all the ten categories and supervise the model with only binary labels for each
category. The linear models used to rank unlabeled data are trained independently for
each category and humans are queried for binary labels for each category separately.
Therefore, images might only be labeled for one of the ten categories. When training the
deep models we deal with the missing labels by masking the corresponding binary loss for
categories that are not labeled.

When updating the feature representation we train the deep model for 15 epochs on
the currently labeled data in the active loop. In the N = 10, Q = 5, and B = 10
configuration we thus run 150 total epochs of training. However, on average an epoch
in our approach only uses a quarter of the unlabeled data. Therefore, the overall cost of
training is approximately equal to 40 epochs of training on the full dataset. When training
deep models in the active active loop we train for 15 epochs on the currently labeled data.
We start with a learning rate of 0.025 and follow a step schedule for decaying the learning
rate every 5 epochs by a factor of 10. When training the fully supervised models we train
for 50 epochs and follow a step schedule for decaying the learning rate every 20 epochs
by a factor of 10. We use SGD with momentum and a batch size 256 for training all the
models.
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4.3.2 Comparison with baselines

Figure 4.3 shows that mean F1 accuracy of our approach and several baselines on the 50
and 20 categories of interest in the iNaturalist and Places datasets as a function of human
labeling effort. We measure labeling effort as the number of binary labels per category. Our
approach gives higher accuracy for the same human labeling effort compared to baselines,
especially when a small number of images are labeled. The Tropel baseline trains a linear
model on fixed features computed using a deep model pre-trained on ImageNet. The
Tropel-Deep baseline trains a deep model only using the human labeled data. When
only a small amount of human labeled data is available training a deep model can overfit
leading to low accuracy. As one can see, Tropel-Deep performs worse than Tropel when
a small amount of images are labeled. In contrast, our approach uses pseudo negatives in
addition to human labeled data allowing us to update the feature representation without
overfitting. On the iNaturalist categories, our approach matches fully supervised accuracy
when 500 images per category are labeled since the dataset contains less than 500 positives
for each of the categories. On the Places categories, there is a significant gap with fully
supervised accuracy but this expected since there are 5000 positives per category and we
only label a total of 1000 images per category.

DeepProp and KD-Semi use pseudo labels on the unlabeled data to update the
deep feature representation. Unlike our approach these baselines do not restrict pseudo
labels to easy negatives. DeepProp propagates labels to all the unlabeled data based on
the feature similarity graph and assigns weights to the pseudo labels, whereas KD-Semi
uses the current model to predict pseudo labels on the unlabeled data. Both DeepProp
and KD-Semi perform worse that our approach due to errors in the labels propagated
on positives. Figure 4.4 shows the false positive rate of KD-Semi and DeepProp on
the iNaturalist categories. A high false positive rate is expected since the models are
trained from very few labeled examples. The false positive rate keeps increasing as errors
in labeling propagate and distort the definition of the category. KD-Semi can be tuned
to reduce errors in the positive pseudo labels by increasing the confidence threshold at
which the labels are trusted. Figure 4.4 shows the false positive rates for KD-Semi at
different confidence thresholds. Even with confidence threshold as high as 0.98 the false
positive rate is significant and is even worse with lower confidence thresholds. Setting the
confidence threshold higher than 0.98 effectively results in almost no pseudo positive labels
and tends to our strategy in the limit. DeepProp performs worse than Tropel due to the
high amount of errors in label propagation which is difficult to control unlike KD-Semi
as shown in Figure 4.4. We note that KD-Semi and DeepProp baselines only vary the
pseudo labeling in our approach for a fair comparison.

4.3.3 Ablation study

Figure 4.5 shows F1 accuracy for variants of our approach on selected categories from the
iNaturalist (5 × 10) dataset as a function of human labeling effort. The variants evaluate
the impact of different aspects of our approach. -Pseudo Neg and -BG Splitting are
variants without pseudo negatives and background splitting respectively. As one can see
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Figure 4.5: Ablation study. Plot shows average F1 accuracy for variants of our approach
on iNaturalist (5 × 10) categories as a function of human labeling effort. Not using pseudo
negatives -Pseudo Neg or background splitting to handle imbalance -BG Splitting
results in lower model accuracy, especially when a small amount of images are labeled. Not
updating linear models between representation updates -Linear Updates also results in
lower accuracy.

not using the pseudo negatives when updating the deep representation results in lower
accuracy for the same human labeling effort. As one would expect, the effect of pseudo
negative and background splitting is more pronounced when a small amount of images are
labeled. Since our approach only uses a fraction of the easy negatives along with the human
labeled positives and hard negatives for training, it also reduces the imbalance between
positive and negative instances when compared to fully supervised training using all the
data. -Linear Updates only updates the linear model once every representation update,
this corresponds to the parameter setting N = 10, B = 50, Q = 1. Skipping the linear
model updates results in a lower accuracy for the same labeling effort. The linear model
updates enable quickly adapting the ranking used to choose images for human labeling and
hence lead to better overall model.

4.3.4 Using self-supervised representations

Until now we have evaluated our approach using a model pre-trained on ImageNet using
supervised labels shown as Ours-Sup-ImageNet in Figure 4.6. Instead Ours-Self-iNat
and Ours-Self-ImageNet use self-supervised models trained on iNaturalist and ImageNet
with SwAV [16] as the starting point. We generate auxiliary labels for background split-
ting by clustering the iNaturalist data with the self-supervised feature representations.
Similarly, Tropel-Self-iNat and Tropel-Self-ImageNet actively train linear models us-
ing fixed self-supervised representations. Our approach produces more accurate models
showing the importance of updating feature representation with actively labeled data even
when starting with a self-supervised representation trained on the same data. These re-
sults show that our approach when combined with self-supervised pre-training produces
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Figure 4.6: Self-supervised representations. Plot shows average F1 accuracy of our
approach and Tropel on iNaturalist (5 × 10) categories as a function of human labeling
effort. Ours-Self-iNat and Ours-Self-ImageNet use self-supervised models trained on
iNaturalist and ImageNet as the starting point. Tropel-Self-iNat and Tropel-Self-
ImageNet train linear models using fixed self-supervised representations. Our approach
is more label efficient showing the importance of actively updating features. Ours-Sup-
ImageNet uses ImageNet supervised representation as the starting point and outperforms
self-supervised representations.

accurate models with just 500 binary labels for each category. However, our approach
produces better models with supervised pre-trained representations on ImageNet. This
suggests room for improvement in self-supervised representation learning approaches.

4.3.5 Feature update rate

Figure 4.7 shows variants our approach where we update features with different frequencies.
The plot shows average F1 accuracy on iNaturalist (5 × 10) categories. The three variants
in Figure 4.7 update the deep feature representation after every 25, 50 and 100 images are
labeled by a human and correspond to the following configurations (N = 5, B = 20, Q = 5),
(N = 10, B = 10, Q = 5) and (N = 20, B = 5, Q = 5) respectively. As once can see
updating the features at low frequency (every 100 human labeled images) results in lower
accuracy compared to more frequent updates, especially in the early iterations where only
a small amount of data is labeled. However, as one would expect increasing the frequency
of updates gives diminishing returns in accuracy since the representation change between
iterations would be minimal with a very few additional labeled images.

4.3.6 Fraction of auto negatives fa

Figure 4.8 shows variants of our approach where we change the ratio (fa) of pseudo nega-
tives labeled per human labeled image. The plot shows average F1 accuracy on iNaturalist
(5 × 10) categories and each series corresponds to a different value of fa. Using a small
value for fa (25) results in slightly lower accuracy. However, our approach is robust to
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Figure 4.7: Increasing feature update rate. Plot shows average F1 accuracy for variants
of our approach on iNaturalist (5 × 10) categories as a function of human labeling effort.
The variants use different rates (number of labeled images) of updating the deep features.
Updating at a low frequency (every 100 images) leads to lower accuracy models, especially
in the early iterations. Very high frequency updates (every 25 images) gives diminishing
improvements in model accuracy.

a range of values of fa and provides significant improvement compared not using pseudo
negatives fa = 0.

4.3.7 Impact of adaptive sampling

Figure 4.9 shows variants of our approach where we change the sampling strategy for
picking images to query humans. The plot shows average F1 accuracy on Places (2 × 10)
categories. When there is a sufficient number of positives in the unlabeled data set always
sampling the most likely positives is not effective since we would query humans on a lot of
easy negatives. This scenario occurs with the Places dataset where there are 5000 positives
in the unlabeled data for most of the categories. In such scenarios, as Figure 4.9 shows our
adaptive strategy that switches between samples on the margin and most likely positives
performs better than a fixed strategy which queries humans on images which are likely to
be positives (strategy used by Tropel).

4.4 Discussion

In many real world scenarios it is often necessary to build a model for a rare category
starting from a small positive set with access to a large unlabeled data collections which
contain instances of the rare category. We demonstrate that specializing models to mine
unlabeled data for instances of rare categories significantly lowers human effort in build-
ing accurate models for rare categories. We summarize our approach as answers to the
questions we need to address for effective specialization.
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Figure 4.8: Varying number of pseudo negatives fa. Plot shows average F1 accuracy
for variants of our approach on iNaturalist (5 × 10) categories as a function of human
labeling effort. The variants use different ratio (fa) of pseudo negatives relative to the
human labeled data. Low values of fa leads to slightly lower accuracy but our overall
approach is robust for a wide range of fa.
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Figure 4.9: Impact of adaptive sampling. Plot shows average F1 accuracy for variants
of our approach on Places (2 × 10) categories as a function of human labeling effort.
Our adaptive sampling strategy for choosing the images to query humans is more effective
compared to sampling most likely positives (strategy used by Tropel).
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• What is the model being specialized for? The ranking models are specialized to
individual categories and small amount of human labeled positives.

• How to curate a dataset specialized to the context? The data for training the per cat-
egory specialized models is curated using separate ranking models for each category.
Instead of using k-way classification labels the ranking for each individual category
is used to query humans for binary labels on a small number of images. In addition
to human labels a large number of per category negative labels are automatically
inferred using the ranking model.

• What are model architecture and training algorithm changes required to induce and
exploit specialization? Background splitting is used to update feature representation
with a small amount of positives and large number of negatives for each category.

• How do we identify when a specialized model is applicable? The specialized ranking
models are only used to automatically label negatives in bottom half of the ranking.

Our approach can also be viewed as combining semi-supervised learning on the large
amount of easy negative data with human supervision on a small subset of rare category
positives and hard negatives. We find that techniques that work well in the common multi
category setting like propagating positive labels or training a deep model using standard
losses do not work off-the-shelf and need to be adapted to rare category settings with
extreme imbalance in the training data. We hope that our work showcases the challenges
in building models for rare categories by mining large unlabeled collections and encourages
further work into the different under studied aspects of the problem.
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Chapter 5

Background Splitting

One appeal of specializing models to a subset of the distribution is that we only need to
label data for that subset. However, only labeling a subset of data can lead to impoverished
supervision and imbalance in the training data both of which pose challenges for deep model
training. Training classification models for rare categories is a natural scenario where the
need for specializing to a narrow domain arises. In many real-world settings, categories
of interest are sufficiently rare that it is far more common for images to not exhibit any
categories of interest. For example, consider a newly collected dataset (e.g., obtained by
an autonomous vehicle fleet) where a new category – an e-scooter – is annotated. This is
a highly imbalanced binary image classification problem, as the vast majority of collected
images will not contain an e-scooter (sparse positives). In this chapter we focus on the
problem of training accurate deep models for image classification of a small number of rare
categories assuming we have labeled a large amount of negative data and small amount
of positive data for these categories. We first study this problem because it is relatively
easy to machine label a large number of negatives for rare categories with a high degree
of accuracy. In these scenarios, not only is there a small number of positives per category,
but the overall number of positive examples for all categories is dominated by the number
of background images (e.g., our experiments include cases where 99.98% of the dataset is
background). We find that even state-of-the-art methods for deep imbalanced classification
based on data sampling [72] or loss reweighting [15] fail to produce accurate models in this
extremely imbalanced setting.

We propose a surprisingly simple method to address learning challenges posed by severe
background dominance: we split the visually diverse, but monolithic background category
into many smaller, visually similar categories during training. However, rather than mod-
ify the main (rare category) classification loss of the model to identify more categories,
our approach adds an auxiliary loss that forces the model to mimic the predictions of an
existing, pre-trained image classification model on all training examples, the vast majority
of which constitute “easy” background instances in the main rare category classification
task. Jointly learning using the main classification loss and the auxiliary classification
loss regularizes the rare category classification model by forcing it to discriminate between
pseudo-categories for all training examples and helps reduce overfitting to the small num-
ber of rare category positives. Most importantly, this solution transfers knowledge of an

59
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Figure 5.1: Top: Training classification models for rare categories is difficult because of the
limited information content and extreme label imbalance provided by a large “background”
category. During training we address these issues by splitting the background category into
a large set of smaller categories according to pseudo-labels produced by an existing, pre-
trained model. Bottom: positive (blue outline) and negative (orange outline) images for
a fine-grained lizard category in iNaturalist. Even though the negatives all have the same
label (background) they encompass a diverse set of hard negatives (hard to distinguish
from the positives) and a vast number of easy negatives. Background splitting extracts
value from all negatives by forcing the model to predict pseudo-labels for all images.

auxiliary classification task into the target model via distillation—it only requires access to
the pre-trained model, not access to any additional labels beyond those used for the main
classification task.

Benchmarking: Although background dominant scenarios are common in real-world
applications of computer vision, no academic datasets directly target this important task.
To evaluate our methods and facilitate future rare category learning research, we con-
tribute modified label distributions for two existing large-vocabulary datasets: the highly-
imbalanced iNaturalist dataset [145], and the Places365 dataset [162]. In both cases we
select only a small number of categories as targets of interest, and merge all other categories
into a single, large background category. These new label sets model real-world training
scenarios in that they contain a small number of rare categories, and a vast majority of
images exhibit only background. (We will release these modified label distributions to the
public.)

Analysis: We find that state-of-the-art techniques for imbalanced classification [72, 15]
perform worse than standard fine-tuning in scenarios where the background category makes
up more than 98% of the dataset. In contrast, background splitting outperforms prior art
by 8.9 mAP points. In extreme cases of a single, rare foreground category (e.g., 99.98%
background), background splitting yields mAP improvements from 10.6 to 52.9. We also
evaluate the benefits of background splitting under different amounts of background dom-
inance, and varying semantic overlap between the auxiliary task and main task categories.
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5.1 Related Work

Category imbalance. Training deep classifiers on heavily imbalanced data is challeng-
ing because standard losses focus on majority categories (failing to learn minority cate-
gories) or overfit to the few positive examples of minority categories. Most methods for
learning under long-tail, imbalanced datasets [50] rely on techniques such as re-balancing,
re-weighting/category-conditioned adjustments to final loss values, and category clustering.
Re-balancing methods alter the training distribution to simulate traditional balanced
training sets [15, 146]. Recent work showed re-balancing should be limited to a final
stage of model training to encourage more general feature representations [72, 15, 153].
Re-weighting/category-conditioned methods adjust the loss attributed to a sample
based on its category [163, 15, 72] or how hard the sample is. Category clustering
methods use clustering of embeddings from training samples to improve transfer learning
from head to tail categories [92] and to train sub-models specialized to individual categories
(avoiding imbalance) [164, 109, 82].

Instead of altering the training distribution through rebalancing or reweighting, back-
ground splitting keeps the training distribution for the main loss fixed and instead adds
an additional auxiliary loss that forces the model to make fine-grained distinctions among
images in the background category (the model must perform a challenging task even for
“easy” background images). This approach encourages the feature representation to be
more discriminative while still learning from the unaltered primary training distribution.

Large, diverse background. Background dominant scenarios are an important real-
world case of imbalanced classification where instances of a large, diverse background
category are more common than any foreground category. Prior work has modeled the
background by adding an additional “N+1” category to represent the background [97, 93,
90] (which we use in our method, Sec. 5.3.2), modeling the background as a Gaussian
distribution [107], or by training the model to predict low scores for background instances
and then applying a threshold to filter them [32, 97].

Handling a large, diverse background in classification is related to the foreground-
background class imbalance problem in object detection [106], where ideas such as re-
balancing (hard-negative mining [132]) and re-weighting (focal loss [84]) are employed to
improve object detection performance. We focus on background imbalance problem in the
context of image classification, but our findings may also benefit object detection tasks as
well.

Open-world, open-set, and out-of-distribution recognition. Unlike the background
category setting (in which models are given access to training instances which are from
the same distribution as the test instances), Open World, Open Set, or Out-of-distribution
recognition datasets test on data from categories (Open World/Open Set) or entire datasets
(Out-of-distribution) not seen during training [92, 8, 9, 32]. In this setting, the model is
tasked with identifying “unknown unknowns” in the test distribution that are not present
in the training distribution. Typically, these “unknown unknowns” are not a significant
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majority of the test distribution. In contrast, we are interested in “known unknowns”
which are present in the training distribution, but make up a majority of the data.

Knowledge transfer and sharing. Our approach leverages knowledge contained in
a pre-trained model to improve performance on the rare category classification task. Our
approach modifies standard transfer learning methods [110, 114, 124, 76] by introduc-
ing an auxiliary distillation loss to improve model performance in background dominant
scenarios. Thus our solution is similar in spirit to multi-task learning methods [17, 79],
in particular those addressing the challenges of incremental learning [83, 133, 74, 130].
However, our approach uses supervision from an existing classifier to regularize training
on the rare-category classification task. It does not aim to train a model that accurately
classifies both prior and novel categories. Instead of transferring knowledge exclusively
via fine tuning, we transfer knowledge using a combination of fine tuning and knowledge
distillation [55, 152], where the distillation is performed using data from the new domain
rather than data from the original domain. This approach to knowledge transfer has been
shown to outperform fine tuning for some tasks [138, 89], and is also useful when the source
and destination models are different [41].

5.2 Large Background Datasets

To support image classification research in real-world, large-background settings, we cre-
ated modified variants of the iNaturalist 2017 dataset and the Places365 dataset, which we
call iNaturalist-BG and Places-BG. We selected iNaturalist 2017 because of its large (and
imbalanced) category vocabulary (5089 categories, including many visually similar species),
and because it is based on a real-world use case of identifying the world’s flora and fauna.
(iNaturalist was collected by thousands of real individuals interested in species identifica-
tion, not by choosing a list of categories then collecting images by querying internet search
engines [92, 15]). Places365 exhibits a more modestly sized vocabulary (365 categories),
but contains content that differs significantly from iNaturalist, making the pair of datasets
a good test of generalizability of rare category methods.

To construct our modified datasets, we consider a small number (N) of the original
dataset’s categories to be “labeled” and combine the remainder of the categories from the
original dataset into a single background category. To study how the size of the background
category affects model performance, we provide training and test set pairs for varying N .
For example, for iNaturalist we create pairs for N = 5089 (equivalent to the standard
iNaturalist 2017 category distribution), 1100, 100, 10, and 1). Figure 5.2-right shows the
distribution of images to categories for the iNaturalist-BG (N=100) training set. In total,
the 100 chosen categories constitute only 1.7% of the dataset (98.3% background).

Note that in all cases, models are trained on all images in the original dataset’s training
set (579,184 for iNaturalist, 1.8 million for Places), and tested on the dataset’s full test
set. (Images not belonging to the N categories of interest are labeled “background”.)



5.3. METHOD 63

Foreground Categories

Single Background 
Category

iNaturalist-BG
Foreground Categories

Categories to Aggregate
into Background Category

iNaturalist17 
Category Distribution

iNaturalist-BG (N=100)
Category Distribution

# 
im

ag
es

 p
er

 c
at

eg
or

y

Categories Categories

Figure 5.2: Left: distribution of images per category in the iNaturalist-2017 training set,
sorted by category frequency. Although there is no “background” category in iNaturalist,
we color categories based on whether they are placed in the background category in our
modified dataset, iNaturalist-BG. Right: distribution of examples in iNaturalist-BG (N=
100). The background category (yellow) contains 98.3% of the images in the dataset.

5.3 Method

When training a model for classifying a small set of rare categories (main task), we want
to avoid overfitting to the small set of foreground positives and avoid solutions which
predict all instances are part of the background category. We address these challenges
by transforming the model optimization problem into a easier one with significantly lower
distribution skew. We also describe how we combine our background splitting technique
with the common softmax thresholding method introduced by Matan et al. [97].

5.3.1 Regularization via Auxiliary Loss

In addition to supervising the model with the main task’s cross-entropy loss for (N+1)-way
classification during training (the additional +1 category representing the background),
we also add an auxiliary task by attaching a second classification head to the network
supervised by pseudo-labels generated with using pre-trained model. (Figure 5.3-right,
“Auxiliary Task”). Let y ∈ {0, . . . N} be the main (N+1)-way classification task where 0
is treated as the background class. Given a training set with a large fraction of background
examples, we assume access to an auxiliary model with K classes that provides pseudo-
labels on all training pairs {(xi, yi)}:

{(xi, yi, ti)} yi ∈ {0, . . . N}, ti ∈ {1, . . . K}.

where ti is the auxiliary model’s pseudo-label. We then learn a classifier with a multi-task
loss:

min
θ,w,v

∑
i

loss
(
yi, Gw(Fθ(xi))

)
+ λH loss

(
ti, Hv(Fθ(xi))

)
where G and H refer to the main and auxiliary task classification heads, respectively, of
a base network trunk F with shared features θ and task-specific features w and v. λH is
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Figure 5.3: Left: distribution of images for the iNaturalist-BG (N=100) dataset after par-
titioning into pseudo-categories determined by the output of a pre-trained auxiliary model
(in this example, 1000 ImageNet categories). The largest pseudo-category is only 4.5% of
the dataset, far smaller than the iNaturalist-BG “background” category (98.3%). Right:
the training configuration for our method. We use two tasks, one supervised by labels
from the target dataset (e.g., iNaturalist-BG) and one supervised by pseudo-labels from
the auxiliary model. The main loss uses a fixed background logit to improve background
classification.

the weight for the auxiliary loss. The loss function is the standard softmax cross-entropy
loss. Note that the pseudo-labels ti are generated by evaluating the auxiliary model on
all training data. No additional human labeling effort is required beyond the labels yi
provided for the main rare category classification task. Figure 5.3-right visualizes the full
training graph for our multi-task network, which defines task-specific linear weights (w,v)
on the shared feature trunk θ. Note that at test time, performing the main rare category
classification task requires only evaluating Gw(Fθ(x)) (for test sample x).

During training, the role of the auxiliary task is to effectively “split up” the large
background category into a large number of visually coherent sub-categories. This reduces
distribution skew and forces learning of robust features θ that discriminate between the
many psuedo-categories, even for the large majority of training data that would otherwise
serve as a “easy” background examples for the main classification task. Figure 5.3-left
shows the results of splitting the iNaturalist-BG (N = 100) background category into
K=1000 categories defined by an auxiliary model that classifies images into ImageNet
categories. Although the background category is 98.3% of the training set in this case, the
most frequently occurring auxiliary task category contains only 4.5% of the dataset.

Importantly, a direct mapping between auxiliary model categories and the content of
the dataset being evaluated on is not necessary for visually coherent groupings to occur.
Figure 5.4 illustrates that visual coherence of sub-categories that emerge when evaluating
an ImageNet category classification model on the iNaturalist dataset. Rows 1, 3, 4, and 5
contain visually similar images, even though they do not contain the animal the auxiliary
model category was trained for. (Row 1’s category is “flamingo”, but the birds at right are
a different species of pink bird; Row 4’s category is “European fire salamander” but the
images to the right are of owls). In Section 5.4.3, we evaluate how different choices for the
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Figure 5.4: An auxiliary model pre-trained to perform ImageNet category classification
groups semantically similar iNaturalist images together, resulting in pseudo-labels that
split the large background category in iNaturalist-BG. Each row represents a category
chosen at random from the auxiliary model categories (ImageNet categories). The image
on the left is an example of the category taken from the auxiliary model training set
(ImageNet). Images on the right are the auxiliary model’s five most confident predictions
for that category on the iNaturalist dataset. Notice that rows 1, 3, 4, and 5 contain visually
similar images even though the auxiliary model category is different from the animals in
the iNaturalist images.

auxiliary task influence the extent auxiliary loss helps main task classification performance.

5.3.2 Background Thresholding

The straightforward approach to performing classification with a background category
modifies the N-way classification problem into an (N+1)-way classification problem. How-
ever, linear (softmax) classification encourages examples that fall into the same category
to have similar features that can be linearly separated from other classes. This may be
problematic for the background class, which we expect to be very large and diverse in
our setting (Figure 5.2-left). We address this issue by choosing to not learn a classifier
for the background category. Instead, we adopt the method of Matan et al. [97], which
assigns the background category (category 0) a fixed activation, as represented by b0 in
Figure 5.3-right. We write the softmax classifier for Gw(Fθ(x)) as follows:

p(y = n|x) ∝ ewn·Fθ(x)+bn , n ∈ {0, 1, . . . N} (5.1)

where Fθ(x) is the nonlinear (deep) embedding shared across our heads and w = {w0, b0, . . . , wN+1, bN+1}.
Because the weight associated with the background class (n = 0) can be difficult to estimate



66 CHAPTER 5. BACKGROUND SPLITTING

given the large expected variability in appearance, we clamp it to be the 0 vector:

w0 = 0, b0 = constant (5.2)

and do not update either during learning. This modification is equivalent to setting the
background class logit to a fixed constant during learning:

p(y = n|x) =
ewn·Fθ(x)+bn

eb0 +
∑N+1

i=1 ewi·Fθ(x)+bi
, n ∈ {1, . . . N} (5.3)

where the sum over N class probabilities can now be less than 1 (where the remaining
probability mass is assigned to the background class). The above model no longer learns a
hyperplane w0 to separate background examples from the foreground category examples,
but instead classifies an example as background only if the model produces logit values
lower than b0 for all foreground categories.

5.4 Evaluation

We perform an in-depth analysis of background splitting on the iNaturalist-BG dataset
by comparing its performance to strong baselines in multiple different regimes of back-
ground dominance. We also provide diagnostic experiments that explore the sensitivity of
background splitting to different choices of auxiliary task and show the necessity of jointly
optimizing the main task loss with the auxiliary loss. Finally, we also demonstrate the
benefits of background splitting on Places-BG, suggesting applicability to a wide range of
classification tasks.

5.4.1 Experimental Setup

Evaluation metrics. Traditional metrics for image classification include top-1 or top-5
error, but these metrics can be manipulated by constructing models that favor the back-
ground. (Always predicting background yields a top-1 accuracy of 98.3% on iNaturalist-BG
N=100.) Instead, we propose two evaluation protocols for datasets with N category labels
plus a large background category. The first protocol is motivated by top-1 error: algorithms
must report a single (N + 1)-way label for each test sample. It computes the F1 accuracy
(harmonic mean of precision and recall) for each of the N classes and reports their mean.
The second protocol, motivated by those used for large-background tasks such as object
detection [33], recasts the problem as N retrieval tasks corresponding to each foreground
category. For each category, algorithms must return a confidence for each test sample.
These are ranked to produce N precision-recall curves, which in turn are summarized by
their average area underneath (mAP).

For iNaturalist-BG, we evaluate using label sets that range from no background (N =
5089) to increasing levels of background dominance (N=1100, 100, 10, 1). Even though
the foreground category distribution varies with N , we construct training/set pairs so that
evaluation metrics remain comparable across N . Specifically, we evaluate performance
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using a fixed set of 100 categories. When N > 100, we only compute mean F1 or mAP
from the selected 100 categories. The N = 10 and N = 1 setups do not contain all 100
categories, so we provide 10 test set pairs for N = 10 (spanning all 100 test categories)
and average performance across these subsets. Computational constrains required us to
limit evaluation to 10 pairs for N = 1. (Evaluation averages over only 10 of the 100 test
categories, so N = 1 results are not directly comparable to results for other N .)

Model and training details. In our background splitting configurations (referred to as
bg-split) we use the ResNet-50 architecture [53] (initialized via ImageNet pre-training)
in all experiments. We set the background threshold value to b0 = 0.1, the weight on the
auxiliary loss to λG=0.1, and batch size to 1024. We find that large batch sizes are crucial
for training models when the background category is dominant, and provide an additional
evaluation of the effect of batch size on different methods.

Unless otherwise stated, we use a standard ResNet50 model trained on the 1000-
category ImageNet [118] dataset, as an auxiliary model. We evaluate alternative choices
for auxiliary models in Sec. 5.4.3.

Baselines. We compare our method to standard fine-tuning with cross entropy loss (de-
noted as ft), as well as two state-of-the-art baselines for training on the iNaturalist dataset:
lws [72] which performs sample re-balancing; and ldam [15], which performs loss re-
weighting. ldam and lws have been shown to perform better than a broad set of other
imbalanced learning methods, including recent methods from the object detection litera-
ture such as focal loss [84]. lws trains in two stages: first training a standard cross-entropy
model with uniform sampling and no re-weighting for 90 epochs; then freezing all layers
but the final classification layer and retraining for 15 epochs using class-balanced sam-
pling. ldam also uses a two-stage training approach: first training a classification model
using uniform sampling and weighting samples with a Label-Distribution Aware Margin
(LDAM) loss for 60 epochs; and then continue training the same model by re-weighting
the loss for individual examples based upon their frequency for 30 epochs. We train these
baseline models using the official code provided by each method 1 2.

We tuned the learning rate and batch size for ft via hyperparameter search. For lws
when N = 5089 we train the base representation model for the first stage using published
hyperparameters [72]. When N<5089 we use the same hyperparameters as ft. We report
results for the best-performing second-stage method (Tau Norm for N = 100 and 1100,
LWS for N=5089).

5.4.2 Comparison with Baselines

iNaturalist-BG comparison. Table 5.1 compares the mAP and F1 scores of models
trained using bg-split against all baselines on iNaturalist-BG. ldam and lws perform

1LWS: https://github.com/facebookresearch/classifier-balancing
2LDAM: https://github.com/kaidic/LDAM-DRW

https://github.com/facebookresearch/classifier-balancing
https://github.com/kaidic/LDAM-DRW
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Model Performance: iNaturalist-BG

N = 1 N = 10 N = 100 N = 1100 N = 5089
(99.98%) (99.83%) (98.30%) (77.95%) (0%)

mAP F1 mAP F1 mAP F1 mAP F1 mAP F1

ft 10.6 10.8 9.3 8.9 38.3 38.4 50.9 44.8 57.7 49.9
ldam - - - - 24.7 21.1 41.6 37.1 57.4 55.1
lws - - - - 35.5 36.6 42.5 37.3 60.0 56.9
focal - - - - 5.97 3.94 25.2 21.7 58.3 50.7

bg-split 52.9 51.7 44.6 39.4 47.2 40.7 51.4 44.7 59.9 52.5

Table 5.1: bg-split outperforms all baselines when the background frequency
exceeds 98% on iNaturalist-BG. Comparison of mAP and F1 scores of bg-split to
baselines on the iNaturalist-BG dataset (percentages indicate background frequency). bg-
split is 8.3 mAP points more accurate than state-of-the-art baselines in the N = 100
setting, and 42.3 points higher than fine tuning (ft) in the extremely imbalanced N = 1
setting that is typical of many real-world image classification scenarios. Prior state-of-
the-art baselines for imbalanced training (ldam [15], lws [72]) perform worse than ft in
background dominated settings. (N=1 results are not directly comparable to other choices
of N , see Section 5.4.1).

Model Performance: Places-BG

N = 1 N = 10
(99.72%) (97.22%)

mAP F1 mAP F1

ft 44.0 41.3 56.8 51.4

bg-split 53.8 48.7 61.0 56.6

Table 5.2: bg-split outperforms ft on Places-BG. The benefit of bg-split over ft
increases with increasing background size (percentages indicate background frequency).
Overall, the magnitude of benefit of bg-split is less on Places-BG than on iNaturalist-
BG (Table 5.1) because categories in Places-BG are on average over 13× more frequent
than iNaturalist-BGcategories (0.27% vs. 0.02%). Places-BG categories are also less fine-
grained than those in iNaturalist-BG, making the background easier to discriminate.

slightly better than bg-split in the N=5089 case they were designed for (original iNat-
uralist setting, no background), however as background size increases (N=1100, 78.0%
background) and (N=100, 98.3% background), both baselines degrade rapidly, performing
worse than the ft baseline, even when using the best hyperparameter configurations found
for each N . In the N=100 configuration bg-split outperforms the best results of ldam
and lws by 11.7 (mAP) and 4.1 (F1) points. We observe that class-balanced sampling
(lws) and loss re-weighting based on class frequency (ldam) cause accuracy on the dom-
inant background category to decrease, yielding a significant increase in false positives for
foreground categories. This results in a minor increase in foreground category recall, but a
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Aux Task Ablations: iNaturalist-BG (N=100)

Auxiliary Task bg-split

Source Dataset Label Method mAP F1

— No auxiliary loss — 41.1 37.7
None Random-1K 37.2 35.0
Places365 Classifier 39.3 34.1
ImageNet Cluster-1K 45.9 39.0
ImageNet Cluster-5K 45.9 41.0
ImageNet Classifier 47.2 40.7

Table 5.3: Choice of auxiliary task significantly impacts bg-split model per-
formance. Due to similarity between ImageNet classification and iNaturalist-BG clas-
sification tasks, pseudo-labels from ImageNet-based auxiliary tasks increase the perfor-
mance of models trained using bg-split on iNaturalist-BG, even when categories are
machine-defined (imagenet/cluster-1k, imagenet/cluster-5k). Auxiliary tasks
based on random pseudo-labels (random-1k) or significantly different classification tasks
(places/classifier) are destructive to model training for iNaturalist-BG. Note that the
no auxiliary loss configuration is similar to that of ft (N=100) in Table 5.1, but with two
differences for consistency within this table: no auxiliary loss uses batch size 1024 instead
of 512, and uses the background thresholding loss modification.

large reduction in precision and overall worse performance for ldam and lws in the sparse
positive setting. Since the performance of ldam and lws further degrades with decreasing
N , we do not evaluate these methods for N = 10 and N = 1 to save experimental costs.

The value of bg-split increases as background dominance is further increased. In the
extreme case of N=1 (98.98% background), bg-split beats ft by 42.3 (mAP) and 40.9
(F1) points. We note that the extreme background dominance in the N=1 configuration
is typical of many real-world applications. The overall performance of bg-split decays
gracefully with decreasing N without modifying key hyperparameters (e.g., learning rate,
batch size, b0, λG). Hyperparameter robustness across different levels of background im-
balance is an attractive property of our method which makes it easy to use in practice.
focal implements the Focal Loss method [84], which increases the loss value for difficult
to classify examples and decreases the loss value for easy to classify examples. We find that
the focal baseline performs slightly better than ft for N = 5089, but overall performs
worse than any other baseline.

Places-BG comparison. Table 5.2 compares bg-split to ft on two configurations of
Places-BG: N=10 (97.2% background) and N=1 (99.7% background). Despite Places-BG
containing notably different categories and image content than iNaturalist-BG, the overall
trends on Places-BG are similar. The benefit of bg-split is significant and increases with
increasing background dominance. However, for a given N , the benefits of bg-split are
lower on Places-BG than for iNaturalist-BG because Places-BG contains a smaller number
of categories with higher per-category frequency, making the foreground category classifi-
cation problem easier (helping the ft baseline). Note that N=10 background frequency
on Places-BG is similar to that of N=100 on iNaturalist-BG.
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5.4.3 Sensitivity to Choice of Auxiliary Task

A goal of background splitting’s auxiliary task is to leverage the vast number of back-
ground examples to learn useful representations that aid the main classification task. To
understand the sensitivity of background splitting’s benefits to auxiliary tasks that exhibit
varying degrees of similarity to the main classification task, we trained bg-split models
on iNaturalist-BG with the following auxiliary tasks: pseudo-labeling via a pre-trained
ImageNet classification model (imagenet/classifier), pseudo-labeling via pre-trained
image classification model for the Places365 dataset[162] (places/classifier), perform-
ing approximate k-means clustering 3 on features generated by the pre-trained ImageNet
model (imagenet/cluster-1k, imagenet/cluster-5k), and assigning 1000 pseudo-
categories to training images at random (random-1k).

Table 5.3 summarizes results for iNaturalist-BG (N = 100), where all methods are
trained using a batch size of 1024 and include the background thresholding loss modifi-
cation. random-1k, which splits the background into equal-sized categories, but yields
categories that lack visual or semantic coherence, degrades performance compared to a
training configuration that does not employ any auxiliary task (it is destructive to feature
learning). places/classifier also degrades performance because scene-specific classifi-
cation on Places365 is a significantly different task than species classification. (Table 5.2
showed ImageNet classification is a beneficial auxiliary task for Places-BG but Places365
classification is a destructive auxiliary task for iNaturalist-BG classification.) However,
since the ImageNet dataset has a large number of categories (1000), including some with
semantic category overlap with iNaturalist (e.g., many animal categories), there is sub-
stantial improvement from auxiliary tasks based on ImageNet models. For example, even
though imagenet/cluster-1k and imagenet/cluster-5k generate pseudo-labels for
machine-generated categories, these auxiliary tasks significantly improve final model per-
formance. Although imagenet/classifier yields the highest mAP gain, the fine-scale
clusters of imagenet/cluster-5k are the pseudo-labels that produce the highest F1
gain.

5.4.4 Value of Joint Training

Can the auxiliary loss alone produce an effective feature representation without target
foreground category labels? If so, one could use the auxiliary loss for dataset pre-training,
and leverage the resulting representations to rapidly learn a model for novel foreground
categories. To isolate the value of background splitting’s joint training approach vs. su-
pervision from main task and pseudo-labels alone, we conducted an ablation experiment
where we separated the aux loss training and main loss training into separate phases, and
froze the features after the first phase.

Table 5.4 compares the performance of the resulting models on iNaturalist-BG (N=100).
Even though pre-training using only the auxiliary loss (row 2) keeps 98.3% of the labels
the same as the full bg-split solution (row 3), the bg-split method is over over 18 mAP

3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.

html

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html
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Feature Learning Ablations: iNaturalist-BG (N=100)

Method
Step 1
loss

Freeze/FT
Step 2
loss(es)

mAP

Linear model
on ImageNet
features

– Freeze Main 25.5

Decoupled
aux/main

Aux Freeze Main 28.3

bg-split – Fine tune
Main &
Aux

47.2

Table 5.4: Combining sparse foreground category labels with pseudo-labels is
critical to feature learning. Feature learning using only auxiliary task loss (row 2)
provides improvement over initial ImageNet features (row 1). However a model trained
using bg-split (row 3) is over 18 mAP points higher.

bg-split Component Analysis: iNaturalist-BG (N=100)

None Aux loss BG thresh Both
(ft) only only (bg-split)

mAP F1 mAP F1 mAP F1 mAP F1

36.0 35.6 46.0 40.4 41.1 37.7 47.2 40.7

Table 5.5: Most of the benefits of the full bg-split solution are due to the use of
an auxiliary loss. However, use of auxiliary loss and background logic clamping are com-
plementary techniques (additive benefits), suggesting auxiliary losses could be combined
with other techniques for learning on imbalanced data.

points higher than this decoupled method. These results suggest that feature learning via
joint training from sparse positive examples and abundant pseudo-labels from the auxiliary
task is critical.

5.4.5 Component Analysis

The full bg-split solution has two new components: an auxiliary loss and the background
thresholding modification to the main task loss. Table 5.5 isolates the relative gains due
to each of these components on iNaturalist-BG (N=100). The majority of the benefit
of bg-split comes from the use of the auxiliary loss (10 mAP points “aux loss only”).
Background logit thresholding in isolation yields 1.1 mAP points (“bg thresh only”). These
techniques are complementary techniques (additive effects in the final solution), suggesting
that the benefits of using an auxiliary loss could be combined with other state-of-the-art
techniques for imbalanced learning such as ldam.
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5.4.6 iNaturalist-BG and Places-BG Details

The original iNaturalist 2017 dataset has 579,184 training images and 95,986 validation
images. The dataset is long-tailed and each individual category is rare.

• N = 5098: Train a single model with all the 5098 categories in the dataset labeled.
This corresponds to the standard setting on the iNaturalist dataset, with 0% of the
data in the background class.

• N=1100: Single model with 1100 categories with the 100 test categories included in
N . 77.95% of data is in the background category.

• N=100: Single model for all the 100 random test categories. 98.3% of data is in the
background category.

• N=10: 10 models each trained with a subset of 10 categories from the 100 randomly
chosen categories. 99.83% of data is in the background category on average.

• N = 1: 10 binary models for a subset of 10 categories from the randomly chosen
categories. We limit evaluate our evaluation to 10 categories in the case of binary
models since it is too expensive to train separate deep binary models for all the 100
categories evaluated in other settings. As such, the performance for this setting is
not directly comparable to the other settings. 99.98% of data is in the background
category on average.

The original Places365 dataset has 1,803,460 training images and 21,700 validation
images across 365 categories. The number of images per category ranges from 3,068 to
5,000.

• N=10: 5 models each trained with a subset of 10 categories from the 365 places365
categories. 97.22% of data is in the background category on average.

• N = 1: 10 binary models for a subset of 10 categories from the N = 10 chosen
categories. We limit evaluate our evaluation to 10 categories in the case of binary
models since it is too expensive to train separate deep binary models for all the 100
categories evaluated in other settings. As such, the performance for this setting is
not directly comparable to the other settings. 99.72% of data is in the background
category on average.

5.4.7 Generalization of BG Splitting learned features

Are the features learned with Background Splitting more useful for training a classifier
for a new set of categories than the features learned from a standard fine-tuning baseline?
That is, are the features learned by BG Splitting just better for classifying the target
set of categories, or does BG Splitting produce features which can be effectively adapted
to classify new categories? Table 5.6 shows the accuracy of a linear classifier trained to
classify a set of 100 new classes S2 using features produced by two methods trained on a
different set of 100 classes S1: a standard fine-tuning baseline (ft), and our method (bg-
split). The bottom row is the result of training the bg-split method to directly classify
the S2 classes and thus represents an upper bound. We find that the features produced
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Method Weight Initialization mAP on 100 new categories (S2)

Fine-tune last layer ft on 100 categories (S1) 15.4
Fine-tune last layer bg-split on 100 categories (S1) 32.4

bg-split (full model training on S2 categories) 44.4

Table 5.6: Feature generalization study. Using bg-split to train a model for one set of
categories (S1) results in features than generalize well for a different set of categories (S2)
compared to ft.

Batch size
ft bg-split

AP F1 Recall Precision AP F1 Recall Precision

128 28.4 19.0 53.8 12.9 48.2 44.8 53.0 44.0
256 37.7 30.8 50.8 24.7 48.8 46.6 42.8 61.3
512 38.3 38.4 42.5 41.1 47.9 44.3 37.4 68.1

1024 36.0 35.6 35.2 44.1 47.2 40.7 33.4 67.1

Table 5.7: Performance of standard fine-tuning and our approach with different batch
sizes. Larger batch sizes than the ones traditionally used in balanced training (64 or 128)
significantly improves performance of ft. bg-split (our approach) is more robust to batch
size but also benefits from a larger batch size.

by the bg-split method are very useful for classifying new sets of categories, as seen by
the 17 point mAP increase from using the bg-split features versus the ft features. Note
that there is still significant advantage to training the entire model for the target set of
new categories S2, as seen by further 12 point boost from 32.4 to 44.4 mAP, echoing our
observation in Section 5.4 that using the small set of positives for the foreground categories
is critical.

5.4.8 Batch Size Study

Classification networks are typically trained with a batch size of 64 or 128. However, we
empirically observed that, in settings with a large background category, larger batch sizes
(512 for traditional fine-tuning and 256 for our approach) result in improved performance
over small batch sizes. To understand this effect, we evaluated the performance of both
traditional fine-tuning and our approach for different batch sizes (Table 5.7). For traditional
fine-tuning, a batch size of 512 results in the best performance. Our approach is more
robust to smaller batch sizes and marginally benefits from increasing the batch size from
128 to 256. A clear empirical trend we observed is that increasing the batch size results
in higher model precision at the cost of lower recall. Our hypothesis for this trend is
that as the batches become larger, the model sees more positives and hard negatives in the
same batch, requiring the model to be more discriminative, thus increasing precision at the
cost of reducing recall. Further exploration of this behavior could lead to better sampling
and batch size selection techniques in scenarios with extreme imbalance and a majority
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Setting (N = 100)

1% 5% 25% 100%
(36.64%) (74.30%) (93.52%) (98.30%)

AP F1 AP F1 AP F1 AP F1

ft 23.5 18.7 27.9 22.4 36.3 32.5 38.3 38.4
ldam 23.0 5.7 14.8 3.3 13.2 2.7 24.7 21.1
lws 15.0 3.9 12.7 3.8 38.8 39.1 35.5 36.6

bg-split - - - - - - 47.2 40.7

Table 5.8: AP and F1 scores for baseline methods using a downsampled background cat-
egory. In all cases, using the downsampled background category dataset does not result
in performance which exceeds our method. In nearly all cases, the downsampled dataset
results in reduced performance because it drastically decreases precision, resulting in a
large number of false positives.

background category. We note that all other experiments in this are performed with a
batch size of 1024 in order to produce results in a reasonable time–although training with
smaller batch sizes results in a small increase in performance, it requires training much
longer and with lower learning rates to reach convergence.

5.4.9 Background Category Downsampling

As the training issues caused by the extremely large background category are due to imbal-
ance between the number of foreground and background examples, one might ask if simply
’downsampling’ the number of background category instances would solve the problem. We
implemented this approach by selecting increasingly smaller fractions of the background
category images in the training set, and creating new training sets using all the foreground
images plus this smaller background set. Table 5.8 shows the AP and F1 score for the
baselines when trained with the downsampled background datasets for 100%, 25%, 5%,
and 1% of all background instances. In nearly all cases, using the downsampled versions of
the dataset results in lower overall performance across both AP and F1. In particular, we
find that using these downsampled datasets increases the recall of the baseline methods,
but at drastic cost to precision, resulting in a lower overall F1 and AP score.

5.5 Discussion

A key component in specializing deep models to narrow distributions is the ability to train
accurate deep models with a small amount of data pertaining to task and a large amount
of irrelevant or background data which can often be obtained without human labeling
effort. State-of-the-art classification methods for handling imbalanced data do not perform
well in the presence of a large and diverse background. In response we contribute a new
approach that handles the imbalance by jointly training the main classification task along
with an auxiliary classification task that involves categories that are better balanced and
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less rare. This approach improves on baselines by over 42 mAP points in situations of
significant background dominance, making it feasible to train useful binary classification
models for rare categories without additional human-provided labels. We also contribute
the iNaturalist-BG and Places-BG datasets, which we hope will encourage further research
in this important training regime. Our approach raises the broader question of integrating
self-supervised representation learning methods with small amounts of human labeled data
to learn accurate and highly specialized models. An interesting aspect of our approach is
that it agnostic of how the feature representation used to formulate the auxiliary task is
trained. We can in fact use self-supervised representations to cluster and generate labels
for the auxiliary task and given the simplicity of our approach it can be more readily
integrated with training for a specialized task.
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Chapter 6

Conclusion

We outlined the challenges one needs to address for effectively specializing models and
demonstrated the benefits of dynamically specializing models in several scenarios. Chapters
2 and 3 focus on efficient inference using dynamically specialized models. Chapters 4 and
5 focus on efficient training and leveraging specialized models for lowering human labeling
effort. The are many avenues for further research in exploiting and exploring different
aspects of model specialization. In the following sections we outline some of the directions
for future work and point out broader implications of model specialization techniques
presented in the thesis.

6.1 Exploring Different axes for Specialization

We have demonstrated the benefits of specializing models to short windows in time, to
visually similar categories and to individual rare categories. There are a range of different
axes to exploit model specialization beyond the ones explored in this thesis; especially
in the context of autonomous robots and digital assistants personalized to specific users.
Many autonomous robots are deployed in a specific spatial context like a user’s home in
the case of vacuuming robot or a neighborhood in an city in the case of a self-driving
car or a warehouse in the case of a robotic arm that moves boxes around. In all these
cases a model specialized to the specific spatial context could potentially be more accurate
and efficient to train and deploy. For instance, models specialized to different geographic
locations or indoor spaces can capture nuances that are specific to a city or a home like
the kind of vehicles or furniture encountered. Another interesting axis for specialization
is personalizing models to a specific user. For instance, in the case of digital assistants
like Alexa or Siri, speech recognition models can be specialized to individual users to
enable a better experience. Augmented and virtual reality experiences can benefit from
specializing models both to user’s spatial context as well as personal characteristics. We
believe that specialization techniques proposed in the thesis can push the boundaries of
model specialization in these application areas. Interesting avenues for future work include
hierarchically specializing models at different time scales or spatial contexts and preserving
user privacy when personalizing models.
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Another way of looking a model specialization is through the lens of multi-task learning.
Solving a prediction problem on different subsets of the general distribution can be viewed
as different tasks. For instance, detecting cars from an aerial satellite images is very differ-
ent from detecting cars in google street view images. Taking this perspective establishes
the connection between the model specialization perspective and heterogeneous multi-task
learning. In multi-task learning models are typically specialized to perform different tasks
on the same data. Instead of completely specializing models to each individual task like
depth estimation, detection or motion estimation the recent trend especially in robotics
settings has been to build models that share a representation which is then specialized for
individual tasks. This is similar to the HydraNet architecture proposed in this thesis but
for heterogeneous tasks as opposed to classification for different groups of visually similar
categories. The outputs of these heterogeneous multi-task networks are used to predict and
plan actions that other agents and the robot should execute. We believe that conditional
execution architectures and training techniques similar to the ones we proposed in the
thesis can be beneficial for both training and deployment of large heterogeneous multi-task
models.

6.2 Utilizing Specialized Models for Supervision

We exploited models specialized to individual rare categories to mine unlabeled data and
focus human effort on the hard examples (chapter 4). We envision that temporally special-
ized models can similarly be used to reduce human effort in mining large video collections
for hard instances. For instance, In Figure 6.1 the images on the top show an instance
where the temporally specialized JITNet model does not predict the shadow as a bicycle
but the more general Mask R-CNN model does. The graphs in the bottom of Figure 6.1
show the number of updates required for the temporally specialized JITNet model to adapt
as a function of time. We find that the adaptation effort correlates well with interesting
events that occur in a video stream. For instance, the peaks in the adaptation effort in the
bottom left graph correspond to different birds and the peak in the bottom right graph
corresponds to an elephant taking a dip in the water. Combining both these properties
temporally specialized models can be used to identify interesting events in video and sug-
gest labels to be verified by humans or used directly as a source of weak supervision. More
broadly we believe that model specialization is an addition to the toolbox of self-supervised
and semi-supervised techniques for reducing human labeling effort.

6.3 Rapid and Effective Model Specialization

A major challenge we address in the thesis is effectively training and adapting deep models
with small amounts of labeled training data. We believe that techniques which enable
specialization can be utilized for few-shot learning and domain adaptation. One way to
look at both domain adaptation and few-shot learning problems is to think of them as
specializing models to a new distribution and a new task respectively. Similarly, techniques
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(a) On the left are the predictions of the temporally specialized JITNet model and on the right
are predictions from the general Mask R-CNN model. The temporally specialized model does
not predict the shadow as a bicycle while the general model does.

(b) Number of updates to JITNet during online distillation on two video streams. Plotted points
are averages over a 30 second interval of the video. Images correspond to circled points in bottom
plot, and show times where JITNet required frequent training to maintain accuracy.

Figure 6.1: Top: Temporally specialized JITNet models can often be more accurate than a
general model because of coherence in the temporal context. Bottom: The effort required
for temporal specialization is often indicative of interesting events in a video stream.

from style transfer, domain adaptation and low-shot learning can be leveraged for more
effective specialization.

6.4 Datasets and Evaluation Metrics

A significant challenge in enabling future research on model specialization and more broadly
continuous learning is datasets and evaluation metrics. Current datasets in machine learn-
ing and computer vision are largely geared towards supporting research on improving
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modeling and training techniques assuming the training and test distributions are identical.
The standard academic metrics for evaluation focus on the average model performance on
large scale datasets. In many real-world settings the target distribution continuous evolves
over time violating the assumptions under which most large scale datasets are constructed.
Moreover, in many settings high average case performance by itself is not sufficient or in-
dicative of model reliability. Constructing more datasets like LVS which focus on evolving
distributions and evaluation metrics which capture model performance on subsets of the
distribution instead of average performance will be crucial going forward. Datasets and
competitions that emulate settings like autonomous robot fleets or personalized digital as-
sistants would bring attention to a host of challenges that are currently under explored in
academic research. In addition to datasets, frameworks for model training and inference
are largely geared towards static datasets and long development cycles. Exploiting the full
benefits of rapid specialization would require rethinking the systems we use for training
and deploying models today.

6.5 Continuous Learning Systems

Figure 6.2: Effective model specialization can pave the way for rapid continuous learning
on evolving streams of data. As general purpose models (left) become larger and larger
(e.g., recent trends in language modeling [10, 91]), specializing compact models (right) to
subsets of the overall distribution will be more crucial for inference efficiency. In turn,
efficient models will enable humans to rapidly explore streams of unlabeled data to further
improve general models.

The need for continuous learning systems is ubiquitous in many real-world scenarios
where data driven models are widely used and there is a constant stream of new data being
observed. For example, perception models on self-driving cars are continuously updated
using data collected from the fleet of vehicles. An interesting aspect that emerges when
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we take a holistic view of the life cycle of a model is the relationship between model spe-
cialization, large scale modeling and continuous learning. Specializing models for efficient
inference is intertwined with efficient supervision as illustrated in Figure 6.2. As larger and
larger general models are trained with more data, computational resources and emerging
self-supervised techniques (e.g., recent trends in language modeling [10, 91]), specializing
compact models to subsets of the general distribution will be even more crucial for infer-
ence efficiency. These efficient specialized models can help humans label rapidly explore
unlabeled data streams and provide supervision with low effort. The supervision in-turn
improves the general model enabling a cycle of continuous human-in-the loop learning. We
hope that the model specialization techniques presented in this thesis help pave the path
towards machine learning systems the continuous learn and evolve with the data with low
human effort.
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and Luc Van Gool. One-shot video object segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2017.

[15] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbal-
anced datasets with label-distribution-aware margin loss. In Advances in Neural Informa-
tion Processing Systems, pages 1565–1576, 2019.

[16] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Ar-
mand Joulin. Unsupervised learning of visual features by contrasting cluster assignments.
NeurIPS, 2020.

[17] Rich Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.
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