
Repulsive Energies and their Applications

Christopher Yu

CMU-CS-21-123

July 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

Thesis Committee:
Keenan Crane, Chair

Jessica Hodgins
Jim McCann

Stelian Coros (ETH Zürich)

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Christopher Yu

This research was sponsored by The David and Lucille Packard Foundation award 201868047; by National Science
Foundation award: CCF1717320; and by a National Science Foundation Graduate Research Fellowships Program
fellowship. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the o�cial policies, either expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

Keywords: Computer graphics, optimization, geometry, computational design, visualization,
self-intersection, hierarchical acceleration, Sobolev, gradient descent, repulsive energies

Abstract
Functionals that penalize bending or stretching of a surface play a key role in

geometric and scienti�c computing, but to date have ignored a very basic require-
ment: in many situations, shapes must not pass through themselves or each other.
This condition is critical, for instance, when shapes represent physical membranes
(e.g. in biological simulation), physical products (e.g. in digital manufacturing),
or certain mathematical objects (e.g. isotopy classes of embeddings). This thesis
develops a numerical framework for the intersection-free optimization of curves
and surfaces. The starting point is the tangent-point energy, a “repulsive energy”
that e�ectively pushes apart pairs of points that are close in space but distant along
the domain. We develop discretizations of this energy for curves and surfaces, and
introduce a novel acceleration scheme based on a fractional Sobolev inner prod-
uct. We further accelerate this scheme via hierarchical approximation, and describe
how to incorporate a variety of constraints (lengths, areas, volumes, etc,). Finally,
we explore how this machinery might be applied to problems in mathematical vi-
sualization, geometric modeling, and geometry processing.

iv

Contents

1 Introduction 1
1.1 Contributions . 2

1.1.1 The Tangent-Point Energy as a Tool . 2
1.1.2 Fractional Sobolev Gradient Descent . 4
1.1.3 Optimization of All-Pairs Energies . 4
1.1.4 Thesis Statement . 5

2 Optimization of Repulsive Energies 7
2.1 Background: Repulsive Energies . 7

2.1.1 Coulomb Energy . 8
2.1.2 Möbius Energy . 9
2.1.3 Tangent-Point Energy . 9

2.2 Background: Sobolev Gradient Descent . 11
2.2.1 Tutorial: Dirichlet Energy . 12

2.3 Optimizing the Tangent-Point Energy . 14
2.3.1 Fractional Analysis . 15
2.3.2 Energy Space . 17
2.3.3 Order of the Di�erential . 17
2.3.4 Fractional Inner Product . 17

3 Repulsive Curves 21
3.1 Related Work . 21

3.1.1 Curve Simulation . 22
3.1.2 Knot Energies . 22
3.1.3 Geometric Optimization . 23

3.2 Smooth Curve Optimization . 24
3.2.1 Curve Tangent-Point Energy . 24
3.2.2 Curve Fractional Sobolev Preconditioner 25

3.3 Discrete Curve Optimization . 26
3.3.1 Discrete Energy . 26
3.3.2 Discrete Energy Gradient . 27
3.3.3 Discrete Inner Product . 28

v

3.3.4 Constraints . 30
3.3.5 Time Stepping . 32

3.4 Acceleration . 33
3.4.1 Energy and Di�erential Evaluation . 33
3.4.2 Hierarchical Matrix-Vector Product . 34
3.4.3 Multigrid Solver . 38

3.5 Evaluation and Comparisons . 40
3.5.1 Dataset . 41
3.5.2 Performance Comparisons . 41
3.5.3 Local minimizers . 43
3.5.4 Scaling behavior . 45

3.6 Results and Applications . 45
3.6.1 Constraints and Potentials . 48
3.6.2 Curve Packing . 49
3.6.3 Graph Drawing . 50
3.6.4 Self-Avoiding Splines . 51
3.6.5 Multi-agent Path Planning . 52
3.6.6 Streamline Visualization . 52

4 Repulsive Surfaces 57
4.1 Related Work . 58

4.1.1 Curvature Functionals . 58
4.1.2 Repulsive Forces . 58
4.1.3 Tangent-Point Energy . 60
4.1.4 Accelerating Optimization . 61
4.1.5 E�cient Evaluation . 61

4.2 Smooth Formulation . 62
4.2.1 Energy . 62
4.2.2 Gradient Flow . 63
4.2.3 Order of the Di�erential . 64
4.2.4 Inner Product . 64

4.3 Discretization . 65
4.3.1 Discrete Energy . 66
4.3.2 Discrete Inner Product . 66
4.3.3 Constraints . 67

4.4 Fast Energy and Derivative Evaluation . 68
4.4.1 Approximate Energy . 68
4.4.2 Approximate Derivative . 69

4.5 Iterative Linear Solver . 69
4.5.1 Hierarchical Matrices . 69
4.5.2 Preconditioner . 72
4.5.3 Schur Complement . 73

vi

4.5.4 Accelerated Algorithm Overview . 74
4.6 Dynamic Remeshing . 74
4.7 Constraints and Penalties . 75

4.7.1 Constraints . 75
4.7.2 Fast Positional Constraints . 77
4.7.3 Penalties . 77

4.8 Evaluation and Comparisons . 79
4.8.1 Consistency Testing . 79
4.8.2 Comparison of Optimization Methods 81
4.8.3 Time Step Restriction . 82
4.8.4 Wall-Clock Performance . 82

4.9 Examples and Applications . 82
4.9.1 Mathematical Visualization and Exploration 83
4.9.2 Geometry Processing and Shape Modeling 91

5 Conclusion 99
5.1 Limitations and Future Work . 99
5.2 Final Remarks . 101

A Derivations 103
A.1 Action of the Fractional Operators . 103
A.2 Fast Matrix-Vector Multiplication . 104

Bibliography 107

vii

viii

Chapter 1

Introduction

A geometric functional assigns a real-valued score (f) to each immersion f ∶ M → ℝm of a
surface M . Such functionals serve as regularizers in many geometric problems, helping to de-
�ne a unique solution, or simply making the geometry “nicer” in some sense. For instance, in
geometric modeling they are used to smoothly interpolate given boundary data [26], in math-
ematical visualization they can be used to endow an abstract surface with a concrete geome-
try [30], and in digital geometry processing they are used for e.g. hole �lling [32] or denoising
of measured data [43].

However, classic functionals ignore a basic requirement of many applications – namely, that
surfaces should not exhibit (self-)intersections. Unintended clipping in 3D models can be visu-
ally distracting; self-intersections in mathematical visualizations such as knot embeddings may
alter crucial invariants of the object; intersections in digital fabrication may render a deployable
structure [88] unable to deploy correctly. With so many di�erent application areas demanding
solutions without self-intersection, it is therefore surprising that, to date, there has been little
focus on interpenetration in variational geometric modeling.

In this thesis, we develop repulsive energy functions as an e�ective way to �nd intersection-free
solutions to optimization-based curve and surface modeling problems. These energy functions
are designed to approach in�nity as any two elements come close to intersecting, thus pre-
senting an in�nite potential barrier to both external intersections and self-intersections. This
approach bears similarities to potential-based path planning in robotics [49, 59], as well as short-
range penalty forces in contact dynamics [22]; unlike the �rst, however, our approach does not
assume a static scene and is aware of self-intersections; and unlike the second, our forces have
global support and thus proactively prevent intersections rather than only reacting to dynami-
cal collisions. In particular, we advocate for the use of the tangent-point energy [25], which has
desirable mathematical properties and can also be e�ciently evaluated; notably, the inclusion
of tangent information in the energy enables it to distinguish between intersections and neigh-
boring pairs, making it uniquely suitable for �nding solutions that are free of self-intersections.

1

Conceptually, the core algorithm is quite simple: we de�ne the tangent-point energy over all
pairs of points on the domain, and run gradient descent on this objective function. A naïve
implementation of this method, however, would be unusable for two reasons: (1) the objective
function is an “all-pairs” energy that would be unacceptably slow to evaluate, and (2) a standard
line search strategy will experience extremely slow convergence due to the presence of high-
order spatial derivatives in the gradient �ow equation. To address the �rst point, we will develop
hierarchical acceleration techniques, including an approximate gradient evaluation technique
based on the Barnes-Hut algorithm [9]. To address the second, we will develop a novel fractional
Sobolev preconditioner, which enables large gradient steps to be taken by reducing the order of
the partial di�erential equation underlying the gradient �ow.

1.1 Contributions

The contributions presented in this thesis can be summarized as follows:

• We introduce the tangent-point energy of Buck and Orlo� [25] as a tool for intersection-
free optimization of manifold domains in geometry processing by giving discretizations
for the cases of curves and surfaces in ℝ3,

• We apply recent analysis by Blatt [14] and Strzelecki and von der Mosel [104] to develop
a novel fractional Sobolev-Slobodeckij inner product that is highly e�ective at precondi-
tioning gradient descent on the tangent-point energy, again with concrete discretizations
for curves and surfaces,

• We develop and present a suite of numerical accelerations that achieve e�cient perfor-
mance in practice (e.g. Barnes-Hut, hierarchical matrices, multigrid methods) and

• We develop a host of applications of the tangent-point energy to many domains of com-
puter graphics, including mathematical visualization, geometry processing, and compu-
tational design.

In the following sections, we discuss the scope of these contributions in more detail.

1.1.1 The Tangent-Point Energy as a Tool

The tangent-point energy is a tool that is readily applicable to intersection-free modeling and
optimization of general curves and surfaces. As a simple objective function, it can be easily
incorporated into a variational surface modeling context. It can either be optimized on its
own to produce con�gurations that are “maximally” robust to intersections, or combined with
other terms as a regularizer for ensuring intersection-free minimizers. This relative ease of use
makes it an attractive option for many problems; in this thesis, we chie�y focus on geometry
processing, mathematical visualization, and computational design, but we are certain that there
are many more ways in which the tangent-point energy could prove useful.

2

Geometry processing. As a geometric energy, the tangent-point energy behaves similarly
to the Willmore energy in that it provides some degree of curvature regularization, akin to a
bending energy. It can thus be used in much the same way – for instance, to produce smoothing
or surface fairing. The obvious advantage of the tangent-point energy, of course, is that it
prevents intersections, and thus will not produce non-isotopic motions such as in Figure 4.3.
As seen in Section 3.5 and Section 4.8, our optimization method is also highly consistent at
reaching minimizers of the tangent-point energy on both curves and surfaces, and that more
often than not, these minimizers appear to be global. Thus, not only does the tangent-point
energy succeed at the objective of preventing intersections, but it does so while exhibiting other
desirable properties, and one can be assured that adding the tangent-point energy to another
optimization problem (e.g. as a regularization term) will not cause the problem to become
unstable or otherwise detract from the quality of the solution.

Mathematical visualization. The ability of the tangent-point energy to be aware of inter-
sections are a clear advantage when it comes to computing isotopies such as those in Sec-
tion 3.6 and Section 4.9.1; any attempt to compute intersection-free transformations using
non-repulsive energies would fail more often than not for obvious reasons. The minimizers
themselves have uniform spacing and good readability (Section 3.6.3, Section 4.9.1), and we
can further enhance readability by encouraging them to reside primarily in the 2D plane (Fig-
ure 4.14), making them suitable for use as illustrative mathematical diagrams. Considering our
energy is the �rst to be able to reliably preserve the isotopy class of its input, we expect that
there are many more “never-before-seen” examples that could now be produced – for instance,
minimizers in isotopy classes that not been computed before (e.g. Figure 4.13), or animations
that previously had only existed as hand-drawn series of still frames (Figure 4.15).

Computational design. A key property of the tangent-point energy is its global support; in
other words, all pairs of points exert nonzero in�uence on each other regardless of distance.
As such, the tangent-point energy can e�ectively express the global absence of self-contacts
and intersections as a design objective. In conjunction with the varied set of constraints and
potentials that we have explored on both curves and surfaces, the energy can thus be used
to mimic natural phenomena, such as the tendency of some plants to maximize surface area
within �xed volumes (Figure 4.22). Of course, this kind of generative modeling is not lim-
ited to natural phenomena, and many interesting shapes can be obtained by imposing growth
or shrinkage constraints within various domains (Figure 3.19, Figure 3.20, Figure 4.19). Beyond
gradient optimization, the tangent-point energy also shows potential in interactive editing con-
texts (Section 4.9.2). As a general-purpose objective that can be readily combined with others,
the tangent-point energy can be used in many ways; as with many design tools, the possibilities
are limited primarily by time and imagination.

3

1.1.2 Fractional Sobolev Gradient Descent

One way to improve the e�ectiveness of standard gradient descent is to compute a gradient di-
rection with respect to an inner product other than the standard L2 inner product. One common
approach in particular is known as Sobolev gradient descent, wherein the inner product used is
the H 1 (or Sobolev) inner product (whose Gram matrix is the Laplacian). Sobolev gradient de-
scent algorithms have been used before in computer graphics for such tasks as minimal surface
computation [92], surface fairing using Willmore �ow [33], optimization of surface deforma-
tion energies [68, 120], and mesh improvement [28]. A feature that these prior works share in
common is that the chosen inner product is either represented by the Laplacian (corresponding
to H 1) or the bi-Laplacian (corresponding to H 2). Yu et al. [116] provides a thorough exposition
of fractional Sobolev methods that clearly states the principle of matching the di�erential order
of the inner product operator to that of the energy, even when this order is a fractional value.

As the tangent-point energy has fractional order, we must therefore use an inner product of
fractional order to match. In this thesis, we demonstrate that using a fractional-order pre-
conditioner is substantially more e�ective than even the closest integer-order preconditioner.
We focus on the tangent-point energy, but we expect that fractional Sobolev methods could
be useful for optimizing other energies of fractional order. In particular, using the fractional
Laplacian Δp as a starting point, we derive a method by which a closely-related preconditioner
of fractional order 2p can be obtained, which could be used to precondition other energies. It
is worth noting that energies with fractional order tend to be “all-pairs” energies with highly
non-local interaction kernels. As we will discuss next, fractional Sobolev methods therefore go
hand-in-hand with our numerical acceleration techniques for these energies.

1.1.3 Optimization of All-Pairs Energies

While we only evaluate the numerical techniques developed throughout this thesis on the
tangent-point energy, the same techniques could be readily adapted to other energies of global
support, provided they also fall o� with distance similarly. We demonstrate the utility of Barnes-
Hut (originally developed for n-body simulation) for gradient-based energy minimization. Re-
cent work on generalized winding numbers [8, 62] also evaluates a global-range function using
an adaptation of the Barnes-Hut algorithm; we must also evaluate function gradients in such
a way that they can be used for line search and subsequently gradient descent. By their very
nature, all-pairs energy functions such as these are capable of taking into account the global
con�guration of a domain in a way that local energies such as area or curvature are not, and
as such can express higher-level objectives beyond just local smoothness. We believe that our
techniques open the door to considering and optimizing more members of this rich class of
energy functions.

Barnes-Hut. Classically, the Barnes-Hut algorithm is best known as a technique for n-body
simulation (e.g. in astrophysics or electrostatics); as just mentioned, more recent work has also

4

used the algorithm to evaluate winding numbers in free space. In both cases, only a single
function is approximated: a single scalar function in the case of winding numbers, and vector-
valued forces in the case of gravitation. In our case, we require both the scalar energy function
and its vector-valued di�erential, with su�cient accuracy that line search in the approximate
gradient direction will produce a su�cient decrease in the approximate energy to satisfy the
Armijo condition. By carefully considering the set of terms to di�erentiate (Section 3.4.1, Sec-
tion 4.4.2), we approximate derivatives in a way that is both accurate and e�cient. Empirically,
our coupled energy and gradient approximations are more than su�cient for line search pur-
poses, and as shown by our numerical validation tests, the limiting factor on the accuracy of
the energy is the quality of the normals (Section 4.8.1), rather than anything inherent to the
approximation.

Hierarchical matrices. Hierarchical matrices [53] are a method for the blockwise low-rank
approximation of dense matrices and the evaluation of matrix-vector products. In this thesis,
we show the application of hierarchical matrices in a multi-iteration gradient optimization set-
ting. We �nd that hierarchical matrix-vector products are able to maintain high accuracy and
e�ciency over the course of a gradient �ow; in fact, in our case, per-iteration runtimes tend
to decrease as the optimization continues, as near-contacts are eliminated and elements be-
come more distant in space, enabling more aggressive hierarchical approximations. We have
also shown the utility of hierarchical matrices in conjunction with other techniques for solving
linear systems. In Section 3.4, we demonstrate the e�ectiveness of hierarchical matrix-vector
products with multigrid solvers, with a new hierarchical matrix constructed at every level of the
multigrid hierarchy; meanwhile, in Section 4.5.2, we show how the same hierarchical matrices
can be used to produce a direct preconditioner for a GMRES solver. Importantly, these meth-
ods could be further combined; while constructing a multigrid hierarchy with a preconditioned
GMRES smoother at every level would be a hefty engineering undertaking, such a system could
potentially o�er exceptionally rapid convergence on linear systems like ours.

1.1.4 Thesis Statement

Ultimately, this work serves to support the following statement: that the tangent-point en-
ergy, in conjunction with associated accelerations, is an e�cient and useful tool for computing
intersection-free curves and surfaces, with numerous applications to tasks such as modeling,
design, and visualization.

In Chapter 2, we present the de�nition of the tangent-point energy, and then provide an overview
of classical Sobolev gradient descent techniques, and present our novel fractional-order precon-
ditioner. In Chapter 3, we present the concrete application of these techniques to the case of
space curves embedded in ℝ3, and in Chapter 4, we present the application of analogous tech-
niques to surfaces embedded in ℝ3.

5

6

Chapter 2

Optimization of Repulsive Energies

In this chapter, we will discuss several examples of repulsive energies, including the tangent-
point energy, which will form the basis for the remainder of this work. We will then provide
an overview of Sobolev gradient descent methods, and discuss their application to the tangent-
point energy. For now, we will discuss only the continuous formulations of the energy and
associated metrics; details about discretization will be deferred until Chapter 3. Portions of this
chapter are based on material that previously appeared in Yu et al. [116].

Throughout this work, we will use single bars |X | and brackets ⟨X, Y⟩ to denote the Euclidean
inner product on vectors in ℝn, and reserve double bars ‖f ‖ and brackets ⟨⟨f , g⟩⟩ for norms
and inner products on functions. We also use ⋅|f to indicate that a quantity (e.g. an energy) is
evaluated at a function f .

2.1 Background: Repulsive Energies

Broadly, on a manifold domain M with embedding f ∶ M → ℝn, we can de�ne a repulsive
energy to be any real-valued scalar potential function (f) whose value approaches ∞ “su�-
ciently quickly” as the embedding f approaches self-intersection. In particular, we will consider
energy functions of the form

(f) = ∫
M
∫
M
k(x, y) dxf dyf (2.1)

where dxf denotes the appropriate area form on f , and k(x, y) is a pairwise potential function
governing the interaction between any two points in the domain. We note that it is not merely
su�cient for the value of k(x, y) to approach ∞ pairwise; rather, the units of (f) as a whole
must be of the form meters−p for some p > 0, as only then is the energy guaranteed to present
an in�nite potential barrier to intersections.

7

Möbius Tangent-Point

Figure 2.1: Left: Since the Möbius energy is scale-invariant, it allows “tight spots” where the
curve nearly touches itself; such features are avoided by the tangent-point energy. Right: The
Möbius energy can likewise arti�cially eliminate knots by pulling them tight at no energetic
cost. (Leftmost image from Kusner and Sullivan [70].)

2.1.1 Coulomb Energy

One natural idea for de�ning k is to imagine that there is a uniformly positive electric charge
distributed throughout the domain M . This would give rise to electrostatic repulsion governed
by a Coulomb-like potential

kCoulomb(x, y) ∶=
1

|f (x) − f (y)|p
. (2.2)

The case of p = 1 corresponds to Coulomb’s law in the real world. While this family of repulsive
energies is well-de�ned for any p on a domain of isolated points, it cannot be evaluated on a
continuous domain for any p ≥ 1 due to the divergence of the resulting integrals. Intuitively, if
we consider the simplest case of a one-dimensional domain M (corresponding to an embedded
curve), then for any �xed point x , the inner integral of Equation 2.1 would include an �-ball
B�(x) for which ∫B� (x)

1
|f (x)−f (y)|p dyf ≈ ∫ �

0
1
rp dr , which diverges for p ≥ 1.

One could attempt to repair this by restricting p < 1; however, the resulting energy (f)
would then fail to have units of inverse length for any domain M of more than zero dimen-
sions. Considering again the simplest case of one dimension, Equation 2.1 would have units
(meters2)(meters−p), the power of which would still be positive for any p < 2; in higher dimen-
sions, the required power p only increases. Thus, there is no value of p for which a Coulomb-like
energy is both well-de�ned and has the desired repulsive behavior. However, such energies pro-
vide a starting point for de�nitions of other repulsive energies, which attempt to repair these
shortcomings in various ways.

8

2.1.2 Möbius Energy

One way to obtain a well-de�ned energy from a Coulomb-like starting point is to regularize the
integrand in regions where x approaches y . One such regularization, proposed by O’Hara [85],
is the Möbius energy, with kernel

kMöbius(x, y) ∶=
1

|f (x) − f (y)|2
−

1
d(x, y)2

(2.3)

where d(x, y) denotes the shortest geodesic distance between x and y. Intuitively, if two points
are both close in space and close intrinsically, then the geodesic distance d(x, y) is roughly
equal to the ambient distance |f (x) − f (y)|, and the contribution to the integral thus vanishes.
If they are close in space but distant intrinsically, however, then the geodesic distance is much
greater than the ambient distance, and the 1

|f (x)−f (y)|2 term therefore dominates. Assuming that f
is indeed an embedding and thus free of self-intersections, then no singularity of the form 1/x
is ever integrated, and the energy is always �nite – though it will still grow arbitrarily large as
self-intersections draw closer.

The Möbius energy was originally designed speci�cally for the case of one-dimensional curves,
and the energy is known to be invariant to Möbius transformations [47]. This can be attractive
in the context of knot theory, but it causes problems for computational design, since near-
intersections may not be penalized in a natural way (Figure 2.1). One could attempt to remove
this invariance, but this does nothing to address a second problem, which is that evaluating
the energy requires the computation of geodesic distances. On a curve, this is fairly straight-
forward, but on surfaces and higher-dimensional domains, computation of all-pairs shortest
geodesic distances quickly becomes a di�cult and expensive task. While one could attempt to
address this issue as well, we will instead propose an equally e�ective alternative that su�ers
from neither of these problems.

2.1.3 Tangent-Point Energy

The tangent-point energy was �rst proposed by Buck and Orlo� [25]; it
was originally de�ned only on curves, but generalizes easily to higher-
dimensional manifolds. On a di�erentiable manifold M with embedding
f ∶ M → ℝn, the pairwise interaction kernel can be written as

kpf (x, y) ∶=
1

rf (x, y)p
(2.4)

where rf (x, y) is the radius of the smallest (n − 1)-sphere tangent to the
domain at x and passing through y. This radius is called the tangent-
point radius, and is what lends the energy its name. As with the Möbius energy, the inclusion
of this radius acts to regularize the kernel in nearly intersecting regions. The radius shrinks to
zero for points y that are close to x in space but far from x along the manifold itself, causing

9

the kernel to approach ∞. For points y′ close to x along the curve, however, the radius is very
large, causing the kernel to shrink to 0. (See inset for an illustration in the case of curves.)
The power p ∈ ℝ controls the strength of repulsion; in general, a higher p produces stronger
repulsive forces.

We can write this energy more explicitly by noting that, up to a constant factor, the tangent-
point radius can be written as

r(x, y) =
|f (x) − f (y)|2

| proj⟂(f (x) − f (y), Tf (x))|
(2.5)

where Tf (x) denotes the local tangent space at x under the embedding f , and proj⟂(v, T) denotes
the projection of v onto the orthogonal complement of T . This expression agrees with the
geometric intuition: for any point x , if y is su�ciently close to x along the manifold, then it
nearly lies within the tangent space at x , and the denominator thus approaches 0.

Substituting Equation 4.1 into Equation 2.4 gives a concrete expression for the kernel:

kpf (x, y) ∶=
| proj⟂(f (x) − f (y), Tf (x))|p

|f (x) − f (y)|2p
. (2.6)

We call this kernel the tangent-point kernel. The resulting energy is known as the generalized
tangent-point energy [15], and can be written as

p(f) ∶= ∫
M
∫
M
kpf (f (x), f (y)) dxf dyf .

In general, the energy does not necessarily need to have exponents (p, 2p) in the numerator
and denominator respectively; as shown by Blatt [14] it is well-de�ned for any exponents (�, �)
satisfying � > 1 and � ∈ [� + 2, 2� + 1). Further, as long as � − � > 2, the energy is not scale-
invariant, and hence avoids the pull-tight phenomenon. For most purposes, however, enforcing
the relationship � = 2� provides ample control over the strength of the repulsion. Throughout
this work, p will refer to the energy with exponents (p, 2p), while �

� will refer to the energy
with exponents (�, �).

The tangent-point energy is also attractive for design because it provides a natural regulariza-
tion on the curvature of the domain, akin to a bending energy. This is because the integrand
can vanish only for a straight line (where the radius r is in�nite at every point). The power p
also has an impact on this bending behavior: a higher p gives a more repulsive energy where
curves are willing to bend more in order to avoid intersection (Figure 2.2).

10

Figure 2.2: Local minimizers of the tangent-point energy � . When � = 2 the tangent-point
energy is scale-invariant and can exhibit “tight spots”; for larger values of � local interactions
are penalized more than distant ones.

2.2 Background: Sobolev Gradient Descent

Consider an energy  that depends on a function f . A typical starting point for optimization is
to integrate the gradient �ow

d
dt f = − grad (f), (2.7)

i.e. to move in the direction of “steepest descent.” The e�ciency of this �ow, however, depends
critically on the inner product (or equivalently, the metric) used to de�ne the gradient – in other
words, there are many di�erent notions of what it means to be “steepest.” Recall in particular
that the di�erential d describes the change in  due to any small perturbation u of f :

d |f (u) = lim
"→0

1
" ((f + "u) − (f)) .

The gradient of  is then the unique function grad  whose inner product with any function u
gives the di�erential in that direction:

⟨⟨grad  , u⟩⟩V = d(u). (2.8)

Traditionally, the inner product ⟨⟨⋅, ⋅⟩⟩V is just the L2 inner product

⟨⟨u, v⟩⟩L2 ∶= ∫
M
⟨u(x), v(x)⟩ dx.

More generally, however, one can try to pick a so-called Sobolev inner product ⟨⟨u, v⟩⟩H k that
yields an easier gradient �ow equation. Examples include the H 1 and H 2 inner products, which
for a domain without boundary can be written as

⟨⟨u, v⟩⟩H 1 ∶= ⟨⟨grad u, grad v⟩⟩L2 = −⟨⟨Δu, v⟩⟩L2 , (2.9)

and
⟨⟨u, v⟩⟩H 2 ∶= ⟨⟨Δu,Δv⟩⟩L2 = ⟨⟨Δ2u, v⟩⟩L2 , (2.10)

11

standard gradient descent (L2) mismatched Sobolev descent (H 2)

well-matched Sobolev descent (H 1)

Figure 2.3: For Dirichlet energy, which penalizes variations in a function f (x), standard L2
gradient descent mostly smooths out local features (bottom left), whereas an inner product that
is too high-order has trouble removing high frequencies (bottom right). A Sobolev descent that
is well-matched to the order of the energy yields rapid progress toward a local minimizer (top).
We apply a similar strategy to quickly optimize the shape of curves.

which measure �rst and second derivatives (respectively) rather than function values. In gen-
eral, if we write our inner product as ⟨⟨u, v⟩⟩H k = ⟨⟨Au, v⟩⟩L2 for some linear operator A, then
we can express the new gradient direction g as the solution to

Ag = gradL2  . (2.11)

This transformation is akin to the preconditioning provided by Newton’s method, except that
we replace the Hessian with an operator A that is always positive-de�nite, and often easier to
invert. In particular, when A comes from a carefully-designed Sobolev inner product, it will
eliminate spatial derivatives, avoiding the stringent time step restrictions typically associated
with numerical integration of partial di�erential equations (Figure 2.4).

2.2.1 Tutorial: Dirichlet Energy

Since the application of Sobolev methods to the tangent-point energy is quite involved, we
begin with a standard “toy” example that helps sketch out the main ideas of the approach. In
particular, consider the Dirichlet energy

D(f) ∶= 1
2 ∫Ω | grad f (x)|

2 dx, (2.12)

12

which penalizes variation in a function f ∶ Ω→ ℝ. If the domain Ω has no boundary, then we
can use integration by parts to write this energy as

D(f) = 1
2⟨⟨grad f , grad f ⟩⟩L2 = −

1
2⟨⟨Δf , f ⟩⟩L2 ,

where Δ denotes the Laplace operator. The di�erential is then

dD |f (u) = −⟨⟨Δf , u⟩⟩L2 ,

and from Equation 2.8, we see that the L2 gradient of D is given by gradL2 D |f = −Δf . Hence,
L2 gradient descent yields the heat �ow

d
dt f = Δf , (L2 gradient �ow)

which involves second-order derivatives in space [2, Section 1.2]. If we try to solve this equation
using, say, explicit �nite di�erences with grid spacing ℎ, we will need a time step of sizeO(ℎ2) to
remain stable, which will signi�cantly slow down computation as the grid is re�ned. To lift this
time step restriction, we can use a di�erent inner product to de�ne the gradient. In particular,
replacing ⟨⟨⋅, ⋅⟩⟩V with the H 1 inner product in Equation 2.8 yields

⟨⟨ΔgradH 1D , u⟩⟩L2 = ⟨⟨Δf , u⟩⟩L2 . (2.13)

This equation can be satis�ed by letting gradH 1D ∶= f , in which case Equation 2.7 de�nes an
H 1 gradient �ow

d
dt f = −f . (H 1 gradient �ow)

This �ow involves no spatial derivatives, and hence comes with no time step restriction. In
e�ect, rather than a PDE, we now have a system of independent ODEs, which is far easier to
integrate numerically. As shown in Figure 2.3, the character of this �ow is quite di�erent: it
makes progress by simultaneously �attening all spatial frequencies, rather than just perform-
ing local smoothing. While this approach is not appropriate for dynamical simulation, it is
quite useful for �nding local minima, as needed in geometric design. In general, of course,
Sobolev descent is not as simple as just uniform scaling; instead, one must solve a linear PDE
(Equation 2.11) for the new descent direction.

Note that we should not use an inner product with too many derivatives. For example, if we
use the H 2 inner product (Equation 2.10) we get a gradient gradH 2 D |f = −Δ−1f , and a �ow

d
dt f = Δ

−1f . (H 2 gradient �ow)

This �ow is again hard to integrate, and has trouble smoothing out high frequencies (Figure 2.3,
bottom-right). In general, one cannot achieve good behavior by blindly picking a Sobolev inner
product, but must instead carefully match the inner product to the energy.

13

Figure 2.4: Gradient �ows projected onto a low- and high-frequency mode e1, e2, respectively.
Notice that poor preconditioning leads to slow convergence.

Low-Order Terms One remaining issue is that Equation 2.13 determines the H 1 gradient
only up to functions in the null space of Δ. This situation is problematic, since it means we
cannot obtain a gradient by solving Equation 2.11 directly (with A = −Δ). Instead, we must
include low-order terms that make the overall operator A invertible. For instance, we could
let A ∶= −Δ + id, where id denotes the identity. But if we uniformly scale the domain by
a factor c > 0, the new operator becomes − 1

c2Δ + id, and the character of the �ow changes
substantially: when c is small it looks like the H 1 �ow; when c is large, it looks more like
the L2 �ow. Careful treatment of regularization and scaling will therefore be an important
consideration in the application of Sobolev methods to the tangent-point energy.

2.3 Optimizing the Tangent-Point Energy

As with the Dirichlet energy, the gradient of the tangent-point energy  includes relatively
high-order spatial derivatives, which hamper the convergence of standard L2 gradient descent.
Unlike the Dirichlet energy, which includes spatial derivatives of integer order 2, however, the
tangent-point energy includes spatial derivatives of fractional order, due to its substantially
non-local character. As such, a di�erential operator of fractional order is also necessary.

In general, suppose an energy  has a (Fréchet) di�erential d . To determine the highest-order
derivatives, it is not necessary to derive an explicit expression for d as we did for the Dirichlet
energy (Section 2.2.1). Instead, we can reason about the associated function spaces: as long as
we know the order of d , we can “cancel” spatial derivatives by constructing an inner product
of the same order.

14

Figure 2.5: Fractional Laplacian of f for several values of � .

For the tangent-point energy, existing analysis gives the maximum order of derivatives in 
(Section 2.3.2), from which we deduce the fractional order of d (Section 2.3.3). To build an inner
product of matching order, we start with the fractional Laplacian (Section 2.3.1), and formulate
an analogous operator for embedded manifolds. Taking further (integer) derivatives then yields
an operator of the same order as d (Section 4.2.2). From there, we use additional heuristics
(inspired by numerical experiments) to choose a low-order term that makes this operator well-
behaved and invertible (Section 2.3.4).

2.3.1 Fractional Analysis

We begin with a brief discussion of Sobolev spaces of fractional order k ∉ ℤ; for further back-
ground, see [37].

Fractional Di�erential Operators

Whereas standard di�erential operators L are purely local (i.e. the value of (Lu)(x) depends only
on an arbitrarily small neighborhood of u(x)), fractional di�erential operators are nonlocal (i.e.
(Lu)(x) can depend on the value of u at any point y). Since the tangent-point energy is nonlocal,
it will also have nonlocal derivatives. Hence, �nding an inner product well-matched to its
gradient �ow entails constructing an appropriate fractional di�erential operator—an important
example in our setting is the fractional Laplacian (−Δ)� on ℝn, which is commonly de�ned by
taking powers of the eigenvalues in the spectral expansion. For � ∈ (0, 1) and all su�ciently
regular u, v ∶ ℝn → ℝ, the operator can also be expressed via the integral

⟨⟨(−Δ)�u, v⟩⟩ = C∬
ℝn×ℝn

u(x)−u(y)
|x − y |�

v(x)−v(y)
|x − y |�

dxdy
|x − y |n

, (2.14)

15

where the constant C ∈ ℝ depends only on n and � [71]. The behavior of this operator is
illustrated in Figure 2.5.

Fractional Sobolev Spaces

There are two common ways to understand Sobolev spaces of fractional order. One is to con-
sider the Fourier transform of the Laplacian Δ, leading to the Bessel potential spaces H s,p ∶=
(−Δ)−s/2(Lp) [108, Section 2.2.2]. For us, however, this viewpoint helps only to understand
the case W s,2. The other, essential for studying the tangent-point energy, is via the Sobolev-
Slobodeckij spacesW k+�,p . Functions u in these spaces look like functions in an ordinary Sobolev
space, but with a nonlocal regularity condition on the highest-order derivative u(k). In particu-
lar, suppose we write s = k+� for k ∈ ℤ≥0 and � ∈ (0, 1). Then, on an n-dimensional Riemannian
manifold M , one de�nes

W k+�,p(M) ∶=
{
u ∈ W k,p(M) ||| [u

(k)]W �,p < ∞
}
.

The expression in square brackets is the (Gagliardo) semi-norm

[u]W �,p ∶= (∬
M2

||||
u(x)−u(y)
d(x, y)�

||||

p dx dy
d(x, y)n)

1/p

,

where d(x, y) is the shortest distance between x and y in M . Just as a Lipschitz function is
more regular than an arbitrary continuous function without being di�erentiable, a function
in W k+�,p is more regular than one in W k,p , without getting a whole additional derivative (i.e.
W k+1,p ⊊ W k+�,p). Figure 2.6 shows an example.

Dual Space

Just as the dual of the classical Sobolev space W k,p is W −k,q (where 1/p + 1/q = 1), the dual of
the Sobolev-Slobodeckij space W s,p can be characterized as a space with “−s derivatives”, in the

Figure 2.6: The curves (x, |x |�) are examples of curves in W �,p (left). Their 1st derivatives are
not Lp integrable (right).

16

sense that the fractional Laplacian (−Δ)s identi�es W s,p with W −s,q ∶= (W s,p)∗ [37, Remark 2.5].

2.3.2 Energy Space

To determine the order of the tangent-point di�erential dp , we must �rst know the biggest
space of functions for which the energy p is well-de�ned, i.e. the domain of p . Blatt [14,
Theorem 1.1] gives the following condition on the di�erentiability of f (see also Blatt and Reiter
[15]):
Lemma 2.3.1. Let M be a compact, di�erentiable n-dimensional manifold with embedding f ∶
M → ℝ3, and let p > 2n. Then f has �nite tangent-point energy p(
) if and only if f ∈ W s,p

where s = 2 − n
p .

In other words, the tangent-point energy is well-de�ned only for embeddings that have an
sth derivative, and for which the �th power of that derivative is integrable—for example, it
will not be �nite for a polygonal curve. Thus, we can consider the energy to be a function
p ∶ W s,� → ℝ, which will enable us to deduce the order of its di�erential. The somewhat
unusual situation is that s is not an integer: instead, it is a fractional value in the interval (1, 2).

Note that, for energies �
� where the relationship � = 2� is not enforced, following the same

analysis of Blatt [14] results in the di�erentiability value s = (� − n)/� .

2.3.3 Order of the Di�erential

In general, if an energy  ∶ X → ℝ is de�ned for functions in a space X , then its di�erential d
will have the prototype d ∶ X → X ∗, where X ∗ is the dual space. For instance, the Dirichlet
energy D operates only on functions f ∈ H 1. Hence, its di�erential is a map dD ∶ H 1 → (H 1)∗,
which we saw explicitly in Section 2.2.1: given a function f ∈ H 1, evaluating its di�erential
dD |f at any f produces a linear map ⟨⟨−Δf , ⋅⟩⟩ from functions in H 1 to real numbers, and this
map is by de�nition a member of (H 1)∗.

In the case of the tangent-point energy, we similarly observe that d is a map from W s,p to
the dual space (W s,p)∗ = W −s,q (Section 2.3.1). Hence, d is a “di�erential operator” of order
2s, i.e. it reduces the di�erentiability of its argument by 2s. To get a well-behaved �ow, we
should therefore pick an inner product of the same order that (for computational purposes) is
also reasonably easy to invert.

2.3.4 Fractional Inner Product

Just as one uses the Laplace operator Δ to de�ne integer Sobolev inner products, we use a frac-
tional operator to de�ne a fractional Sobolev inner product. For a manifold M with embedding
f ∶ M → ℝ3, one idea is to start with the fractional Laplacian (−Δ)� . While one could attempt to
build this fractional Laplacian using an explicit Fourier transform, this would be prohibitively
expensive, requiring a full eigendecomposition of a discrete Laplace matrix. Instead, we can

17

construct or apply the fractional Laplacian using an integral expression such as Equation 4.5.
While Equation 4.5 de�nes only the operator in Euclidean space ℝn, we can adapt it to an em-
bedded manifoldM by replacing the intrinsic distances |x−y | in the denominators with extrinsic
distances |f (x) − f (y)|, yielding an analogous integral expression

⟨⟨L�u, v⟩⟩ ∶=∬
M2

u(x) − u(y)
|f (x) − f (y)|�

v(x) − v(y)
|f (x) − f (y)|�

dxf dyf
|f (x) − f (y)|n

(2.15)

for all su�ciently regular scalar �elds u, v ∶ M → ℝ. For any � ∈ (0, 1), both (−Δ)� and L� are
fractional operators of order 2� . But the bene�t of L� is that it requires only Euclidean distances,
which in general are easier to evaluate than geodesic distances. In contrast, integral expressions
like Equations 4.5 and 2.15 are straightforward (if still expensive) to evaluate exactly, and can
also be accelerated using hierarchical techniques, as we will see in Chapter 3.

High-Order Term

While it would be simplest to use Equation 2.15 to construct an inner product for d directly,
this is not immediately possible. As per Kwaśnicki [71], Equation 4.5 (and subsequently Equa-
tion 2.15) only holds true for � ∈ (0, 1), yielding an operator of order 2� ∈ (0, 2), whereas the
order of the di�erential of the tangent-point energy is 2s ∈ (2, 4). However, we can achieve the
desired order 2s by further composing L� with (integer) derivatives . In particular, if we let
� = s − 1, then we will have � ∈ (0, 1) (as is necessary to apply Equation 2.15), and the resulting
operator order will be 2s−2. We then boost the order by an additional 2 by applying derivatives
to the arguments of L� , resulting in the product

⟨⟨B�u, v⟩⟩ ∶= ⟨⟨L�u,v⟩⟩

for all su�ciently regular u, v ∶ M → ℝ. The resulting integral expression for the operator is

⟨⟨B�u, v⟩⟩ ∶= ∬
M2 ⟨

u(x) −u(y)
|f (x) − f (y)|�

,
v(x) −v(y)
|f (x) − f (y)|� ⟩

dxf dyf
|f (x) − f (y)|n

(2.16)

where again � = s − 1. The resulting operator order is 2� + 2 = (2s − 2) + 2 = 2s, matching
that of the di�erential of Ep exactly. We call this the “high-order term” to distinguish it from the
other term of the full inner product that we will eventually use. Note that, like the Laplacian,
B� is only semide�nite, since it vanishes for functions that are constant over each component of
the domain M . Therefore, some regularization is necessary to make the full operator invertible,
which we discuss in the next section.

Low-Order Term

As mentioned in Section 2.2.1, a common technique to handle semide�niteness is to add some
small � > 0 times the identity to the inner product. This, however, can yield undesirable behav-
ior, because the inner product B� does not scale similarly to the identity. Instead, we carefully

18

choose an additional, low-order term B0� that not only provides the right scaling behavior, but
also enables us to steer the �ow more quickly toward self-avoiding con�gurations. In particular,
we add an operator ⟨⟨B0�u, v⟩⟩ de�ned by the integral expression

⟨⟨B0�u, v⟩⟩ ∶= ∬
M2
k2f (x, y)

u(x) − u(y)
|f (x) − f (y)|�

v(x) − v(y)
|f (x) − f (y)|�

dxf dyf
|f (x) − f (y)|n

, (2.17)

where k2f is the tangent-point kernel given in Equation 2.6, with a power p = 2. We call this the
“low-order term” to distinguish it from the “high-order term” presented in the previous section.

To see that B� and B0� exhibit the same scaling behavior, consider a rescaling of the domain
f ↦ cf by a factor c > 0, and omit the term k2f (x, y) for the moment. The terms 1/|f (x) − f (y)|�
and dxf dyf /|f (x) − f (y)|n scale identically in both integral expressions, so the only di�erence
to consider is that between u(x) − u(y) and u(x) − u(y). The former does not scale with f ,
while the latter scales by a factor 1/c. With two such factors, the high-order term scales by an
additional 1/c2 factor compared to the low-order term. Thus, we must introduce a coe�cient
with 1/c2 scaling behavior to our regularization term to make up the di�erence.

We use k2f (x, y) for two reasons: (1) it has the desired 1/c2 scaling behavior, and (2) adding
a repulsive energy term to the inner product causes lengths in high-energy (and thus nearly
self-colliding) regions to grow arbitrarily large. The latter behavior is desirable because, as
the domain approaches self-intersection, the distance to the self-intersecting con�guration will
approach∞ (as the energy itself also approaches∞); thus, the continuous gradient �ow will not
be able to reach an actual self-intersection in a �nite amount of time. In practice, this behavior
manifests itself by “freezing” the domain in areas that are near self-contact, while allowing the
rest of the domain to evolve until eventually the near-contact can be resolved.

Full Preconditioner

The continuous preconditioner is thus de�ned as the operator ⟨⟨(B� + B0�)u, v⟩⟩ with B� and B0�
as the previously-de�ned “high-order term” and “low-order term”. Note that B� + B0� still has a
kernel of globally constant functions, corresponding to global translations of the entire domain.
This kernel can be easily removed by adding any constraint that �xes a single translation.

More importantly, B� and B0� both have global support: any two hat functions û and v̂ will
produce a nonzero interaction, even if they are highly separated in space. A straightforward
discretization of this inner product will thus result in a dense linear system, which is slow to
solve. As such, e�cient approximation of these operators (as well as the energy itself) will be
a major focus throughout this work.

19

20

Chapter 3

Repulsive Curves

Space curves are a common tool in many aspects of computer graphics, including modeling,
animation, and computational design. For many such tasks, it is essential to design in con-
text, i.e. relative to the geometry of the surrounding environment. Hard boundary conditions
(e.g. �xing the endpoints of a cable) provide a basic mechanism for providing context, but do
not account for another fundamental requirement: physical objects cannot penetrate solid ob-
jects in the environment, nor can they intersect themselves. In some contexts, self-intersection
can be avoided by detecting and resolving collisions at the moment of impact. However, for-
ward simulation is not particularly e�ective at guiding shape optimization toward an intelligent
design—for example, untangling a complicated knot via forward physical simulation is just as
hard as trying to untangle it by hand. Here, we instead explore how a global variational ap-
proach to intersection-free modeling of curves using the tangent-point energy provides new
opportunities for computational design.

Speci�cally, in this chapter, we develop:

• a principled discretization of the tangent-point energy on embedded curves in ℝ3,

• a novel preconditioner based on the Sobolev-Slobodeckij inner product,

• a numerical solver that easily incorporates constraints needed for design, and

• a Barnes-Hut strategy and a hierarchical multigrid scheme for the tangent-point energy
and associated preconditioner that greatly improve scalability.

We also explore a collection of constraints and potentials that enable us to apply this machinery
to a broad range of applications in visualization and computational design (Section 3.6).

3.1 Related Work

We brie�y review topics related to computational design of curves; Section 2.1 gives more de-
tailed background on curve energies. At a high level, computational design of free-form curves

21

Figure 3.1: Untangling the Freedman unknot (top left) to the unit circle. For the same wall clock
time, standard L2 gradient descent makes almost no progress, whereas conventional Sobolev
descent fails to smooth out low (H 1) or high (H 2) frequencies. By carefully matching the inner
product to the energy, our fractional H s descent quickly �ows to the circle.

has generally focused on speci�c domains such as road networks [57, 80], telescoping struc-
tures [115], or rod assemblies [89, 118]; Moreton [82, Chapter 3] gives a history of traditional
design via spline curves. Our goal is to develop tools that can be applied to a wide range of
multi-objective design scenarios, as explored in Section 3.6.

3.1.1 Curve Simulation

One natural idea is to avoid collision via physics-based simulation of elastic rods [12]. How-
ever, the paradigm of collision detection and response is “too local”: for computational design,
one aims to globally optimize a variety of design criteria, rather than simulate the behavior
of a given curve. Sensitivity analysis, which provides sophisticated local improvement of an
initial design, has been successfully applied to several rod design problems [89, 90, 118]. This
technique can be seen as complementary to global repulsion-based form-�nding, helping to
incorporate e.g. nonlinear mechanical phenomena into a �nal design. Curves also arise nat-
urally as �laments or �eld lines in continuum phenomena like �uids, plasmas, and super�u-
ids [3, 29, 35, 65, 87, 110]. However, using such phenomena for curve design is challenging
since (i) initial conditions are hard to construct, and (ii) these systems naturally exhibit recon-
nection events where distinct pieces of a curve merge [79].

3.1.2 Knot Energies

Motivated by questions in mathematics, biology, and physics [27], there is a signi�cant body of
work on the unknot problem: can a closed loop be continuously deformed into a circle without
passing through itself (i.e. via isotopy)? Solving this decision problem is not our goal—so far
it is not clear it can even be done in polynomial time [72]. Still, knot untangling energies pro-

22

vide a valuable starting point for computational design. Numerically, simple ad-hoc methods
that repel all pairs of vertices can yield inconsistent, unreliable behavior and slow convergence
(Figure 3.10, right). Starting with more principled discretizations, KnotPlot [97] uses a simple
relaxation scheme, and Kusner and Sullivan [70] apply a standard conjugate gradient method
via SurfaceEvolver [20], both evaluating all O(n2) interactions between the n vertices. Other,
adjacent methods have been developed for tightening a given knot [5, 91], simulating the knot
tying process [24, 55, 69], or untangling knots without optimizing their shape [74]; more recent
methods apply L2 [109] or integer Sobolev (H 2) descent [10]. Octrees have been used to evaluate
the ropelength of a static knot [4], but Barnes-Hut/multipole schemes have not yet been devel-
oped for energy minimization. Likewise, little has been said about fractional preconditioners,
and treatment of general constraints.

Our approach builds on careful analysis of the fractional Sobolev spaces associated with the
tangent point energy [13, 14, 15]. Whereas this prior work focuses on the existence of local
minimizers and short-time existence of gradient �ows in the smooth setting, we use it to develop
numerical algorithms.

3.1.3 Geometric Optimization

Optimization of curve and surface energies can be greatly accelerated by “Sobolev-like” precon-
ditioning. The idea is to replace the ordinary L2 inner product with one that is better matched
to the energy, yielding a gradient �ow that is easier to integrate (as previously discussed in
Section 2.2.1). Such �ows make more rapid progress toward minimizers (Figure 3.1), since en-
ergy is reduced uniformly across all spatial frequencies. Crucially, Sobolev preconditioners are
most e�ective when the order of the preconditioner is perfectly matched to the order of spatial
derivatives in the energy. A preconditioner whose order is too high or too low can slow down
convergence—see for instance Figure 2.3, bottom-right.

Sobolev-type preconditioners have seen some prior use in geometry processing and scienti�c
computing. For example, the minimal surface algorithm of Pinkall and Polthier [92] e�ectively
performs Sobolev descent [21, Section 16.10], but was not originally framed in these terms;
Renka and Neuberger [95] give an algorithm directly formulated via a (variable) Sobolev inner
product. Later work adopts Sobolev-like strategies for surface fairing and �ltering [33, 36, 41,
78, 99]. More recently, Sobolev-like descent has become popular for minimizing elastic ener-
gies, such as those arising in surface parameterization or shape deformation [31, 68, 120]; see
Section 3.5 for in-depth comparisons.

Importantly, previous work on shape optimization does not consider the challenging fractional
case, which di�ers signi�cantly from standard Sobolev preconditioning. From an analytical
point of view, one must do work even to determine the order of derivatives arising in the dif-
ferential by reasoning about the associated function spaces (see Section 2.3 for details). From a
computational point of view, the machinery needed to apply a discretized fractional precondi-
tioner is also di�erent from ordinary Sobolev preconditioners: one cannot simply solve a sparse

23

linear system, but must instead construct an e�cient hierarchical scheme for (approximately)
inverting a dense nonlocal operator. None of these pieces appear in the previous optimization
work discussed above, though the combination of Sobolev operators and multigrid methods
has been studied in other contexts, such as �nite element simulation [1] and multiphysics sys-
tems [6, 7]. Further, previously studied Sobolev preconditioners (such as those based on the
Laplacian) and standard optimization strategies (such as Newton descent) are not as e�ective
for our problem—as we show via extensive numerical experiments (Section 3.5).

3.2 Smooth Curve Optimization

In Chapter 2, we presented the tangent-point energy and an associated framework for optimiz-
ing it on general n-dimensional manifolds. In this section, we discuss the specialization of the
energy and optimization method to the case of 1-dimensional curves embedded in ℝ3.

3.2.1 Curve Tangent-Point Energy

Recall from Equation 2.6 the expression for the tangent-point kernel with exponent � on a
general n-dimensional manifold:

k�f (x, y) ∶=
| proj⟂(f (x) − f (y), Tf (x))|�

|f (x) − f (y)|2�
.

Let M now be an embedded curve with embedding
 ∶ M → ℝ3. The tangent T
 (x) of a curve
is uniquely de�ned, and length in the orthogonal complement can be computed using a cross
product. Speci�cally, for any vector v, we have

| proj⟂(v, T
 (x))| = |T
 (x) × v|.

This gives us the following expression for the tangent-point kernel on a curve:

k�
 (x, y) ∶=
|T
 (x) × (f (x) − f (y))|�

|f (x) − f (y)|2�
. (3.1)

For convenience, it will be useful to de�ne a version of this kernel that does not depend directly
on the embedding
 , so we additionally de�ne

k� (p, q, T) ∶=
|T × (p − q)|�

|p − q|2�
(3.2)

where p, q are points in ℝ3, and T is assumed to be a tangent vector to the curve at p. Then, the
total energy of the curve
 can be written as

� (
) = ∫
M
∫
M
k�
 (x, y) dx
 dy
 = ∫

M
∫
M
k� (
 (x),
 (y), T
 (x)) dx
 dy
 (3.3)

24

3.2.2 Curve Fractional Sobolev Preconditioner

The specialization of the fractional Sobolev inner product can be carried out in a similarly
straightforward fashion. The two crucial elements of the inner product are the high-order term
and the low-order term, which we discuss in sequence.

Curve High-Order Term

As discussed in Section 2.3.4, the high-order term for our fractional Sobolev preconditioner is
de�ned on an n-dimensional manifold M with embedding f as

⟨⟨B�u, v⟩⟩ ∶= ∬
M2

u(x)−u(y)
|f (x) − f (y)|�

v(x) −v(y)
|f (x) − f (y)|�

dxf dyf
|f (x) − f (y)|n

The only component that requires some care is the derivative operator , which can be de�ned
on a curve with embedding
 as

u ∶= du d
⊤/|d
 |2. (3.4)

Intuitively, this operator takes the usual derivative of u along M and expresses it as a vector
in ℝ3 tangent to
 ; the factor 1/|d
 |2 accounts for the fact that the curve is not in general arc-
length parameterized. The remainder of the high-order term follows naturally, resulting in the
integral expression

⟨⟨B�u, v⟩⟩ ∶= ∬
M2

u(x) −u(y)
|
 (x) −
 (y)|�

v(x)−v(y)
|
 (x) −
 (y)|�

dx
dy

|
 (x) −
 (y)|

(3.5)

for all su�ciently regular u, v ∶ M → ℝ, where � = s − 1, and s = 2 − 1
p (following from

Section 2.3.2 for dimension n = 1).

Curve Low-Order Term

Likewise, as discussed in Section 2.3.4, the low-order term on an n-dimensional manifold is
de�ned as

⟨⟨B0�u, v⟩⟩ ∶= ∬
M2
k2f (x, y)

u(x) − u(y)
|f (x) − f (y)|�

v(x) − v(y)
|f (x) − f (y)|�

dxf dyf
|f (x) − f (y)|n

, (3.6)

All terms within the expression can be specialized to curves in a straightforward way, yielding

⟨⟨B0�u, v⟩⟩ ∶= ∬
M2
k2(
 (x),
 (y), T
 (x))

u(x) − u(y)
|
 (x) −
 (y)|�

v(x) − v(y)
|
 (x) −
 (y)|�

dx
dy

|
 (x) −
 (y)|n

. (3.7)

25

Smooth Gradient Flow

Following Equation 2.8, our �nal gradient gradH s

is de�ned via the fractional inner product:

⟨⟨gradH s

� , X⟩⟩H s

 = d
� |
 (X), for all X ∶ M → ℝ3. (3.8)

Since gradH s

 and X are vector- rather than scalar-valued, we apply the inner product compo-

nentwise. In other words,
gradH s

� = Ā−1� gradL2 

� |
 , (3.9)

where Ā� denotes componentwise application of A� .

3.3 Discrete Curve Optimization

We now discretize the smooth inner product described in previous sections to obtain an e�cient
numerical scheme for minimizing the tangent-point energy. Our discretization operates on
polygonal curves; while in principle splines could be used as in Bartels et al. [10], this makes
little di�erence in practice due to the use of numerical quadrature in both cases. The description
given here assumes a naïve implementation using dense matrices and an O(n2) evaluation of
the energy and its di�erential; hierarchical acceleration is described in Section 3.4.

Notation. In the discrete setting, we will model any collection of curves and loops (including
several curves meeting at a common point) as a graph G = (V , E) with vertex coordinates

 ∶ V → ℝ3 (Figure 3.2); we use |V | and |E| to denote the number of vertices and edges,
respectively. For each edge I ∈ E with endpoints i1, i2, we use

�I ∶= |
i1 −
i2 |, TI ∶= (
i2 −
i1)/�I , and xI ∶= (
i1 +
i2)/2

to denote the edge length, unit tangent, and midpoint, respectively. For any quantity u ∶ V →
ℝ on vertices we use uI ∶= (ui1 + ui2)/2 to denote the average value on edge I = (i1, i2), and
u[I] ∶= [ui1 ui2]⊤ to denote the 2 × 1 column vector storing the values at its endpoints. Finally,
we refer to any pair (T , x) ∈ ℝ6 as a tangent-point.

3.3.1 Discrete Energy

Since the tangent-point energy is in�nite for polygonal curves [105, Figure
2.2], we assume that
 is inscribed in some (unknown) smooth curve, and
apply numerical quadrature to the smooth energy  . The resulting discrete
energy then approximates the energy of any su�ciently smooth curve passing
through the vertices
i . We start by integrating k� over all pairs of edges:

∑
I∈E

∑
J∈E

∫
Ī
∫
J̄
k� (
 (x),
 (y), TI) dx
dy
 . (3.10)

26

Figure 3.2: Left: notation used for discrete curves. Right: Our discrete energy is obtained by
applying the trapezoidal rule to the smooth energy for each edge pair I , J .

Here Ī denotes the interval along edge I . As stated, this expression is ill-de�ned since any two
edges with a common endpoint contribute in�nite energy. One idea is to replace any such term
with one proportional to the curvature of the circle passing through the three distinct endpoints.
However, such terms would contribute nothing to the energy in the limit of regular re�nement
(Figure 3.3)—hence, we simply omit neighboring edge pairs. Applying midpoint quadrature to
Equation 3.10 then yields a discrete energy

̂(
) = ∑∑
I ,J∈E,I∩J=∅

k� (
I ,
J , TI) �I �J . (3.11)

3.3.2 Discrete Energy Gradient

Mathematically, the discrete di�erential of the tangent-point energy consists simply of the par-
tial derivatives of the discrete energy with respect to the coordinates of all the curve vertices:

d̂ |
 = [)̂/)
1 ⋯)̂/)
|V |] ∈ ℝ3|V |.

This requires the discrete derivative of the tangent-point kernel k� (
I ,
J)with respect to a curve
vertex position
i . Assuming for the moment that vertex i is adjacent to edge I , we can derive
an analytic expression for this derivative by applying the chain rule

d
d
i

k� (
I ,
J , TI) =
d
I
d
i

d
d
I

k� (
I ,
J , TI)

Then, d
d
I
k� (
I ,
J , TI) can be evaluated via the quotient rule. Let A = |T × (
I −
J)|� and B =

|
I −
J |2� be the numerator and denominator of the tangent-point energy, respectively. Then,

27

we have

d
d
I

A =
d
d
I

|TI × (
I −
J)|�

= � |TI × (
I −
J)|�−1
d
d
I

|TI × (
I −
J)|

= � |TI × (
I −
J)|�−1 sgn(TI × (
I −
J))⏟⏞⏞⏟⏞⏞⏟
(...)

d
d
I

(TI × (
I −
J))

= (...) [(
I −
J)×(
d
d
I

TI) + (TI)×]

where v× denotes the skew-symmetric cross-product matrix for the vector v. Further,

d
d
I

B =
d
d
I

|
I −
J |2�

= 2� |
I −
J |2�−1
d
d
I

|
I −
J |

= 2� |
I −
J |2�−1(

I −
J
|
I −
J |)

⊤

Then, the quotient rule gives the full expression:

d
d
I

k� (
I ,
J , TI) =
(

d
d
I
A)B − (

d
d
I
B)A

B2
.

The expression for edge J follows analogously, though certain terms are negated due to the
di�erentiation of
I −
J . Then, the partial derivatives of the full discrete energy)̂/)
i can be
computed from derivatives of k� and lengths lI and lJ using the product rule. We note that only
terms where vertex i is adjacent to either edge I or J produce nonzero contributions, and as
such, only these terms need to be considered.

3.3.3 Discrete Inner Product

As in the smooth setting, we de�ne our inner product matrix as a sum A� = B� + B0� of high-
order and low-order terms B,B0 ∈ ℝ|V |×|V | (as de�ned below). For ℝ3-valued functions, we also
de�ne a corresponding 3|V | × 3|V | matrix A3, a block matrix constructed from A by expanding
every scalar entry Aij into a 3 × 3 block

Aij ↦
⎡
⎢
⎢
⎣

Aij 0 0
0 Aij 0
0 0 Aij

⎤
⎥
⎥
⎦

28

Figure 3.3: The tangent-point energy is a double integral of the kernel k� (right) over the curve

 (left). Since this kernel is only weakly singular, omitting diagonal terms has an insigni�cant
e�ect on the overall energy.

by reduplicating the value along the diagonal. Mirroring Equation 2.11, the discrete (fractional)
Sobolev gradient g ∈ ℝ3|V | is then de�ned as the solution to the matrix equation

A3 g = d̂ (3.12)

where the entries of g are ordered with x-, y-, and z-coordinates interleaved for each vertex.

Discrete Derivative Operator

For each edge I ∈ E we approximate the derivative u of a function u ∶ M → ℝ (Equation 3.4)
via the �nite di�erence formula 1

�I
(ui2 − ui1)TI , where ui denotes the value of u sampled at vertex

i. If needed, the corresponding derivative matrix D
 ∈ ℝ3|E|×|V | can be assembled from local 3× 2
matrices

(D
)I = 1
�I
[−TI TI]

with rows corresponding to x-, y-, and z-coordinates for each edge I , and columns correspond-
ing to the �rst and second vertices of the edge, respectively. Alternatively, the result D
u can
be computed directly using the aforementioned �nite di�erence formula for each edge.

Discrete Fractional Laplacian

The fractional Laplacian can be discretized as a |V | × |V | matrix with entries obtained from the
right-hand side of Equation 4.5. Let L� denote the discrete fractional Laplacian. A direct dis-
cretization of Equation 2.15 on a curve domain yields an expression for inner products between
discrete vectors u and v:

u⊤L�v = ∑
I∈E

∑
J∈E

I≠J

(u(x) − u(y))(v(x) − v(y))
|
 (x) −
 (y)|2�+1

�I �J (3.13)

29

ALGORITHM 1: Exact assembly of the discrete fractional Laplacian on curves
initialize L� ← 0
forall distinct pairs of edges I , J do

forall vertices u adjacent to I or J do
forall vertices v adjacent to I or J do

(L�)uv ← (L�)uv + (û(I)−û(J))(v̂(I)−v̂(J))
‖f (x)−f (y)‖2�+1 �I �J

end
end

end
return A

By evaluating this expression for all pairs of unit basis functions û and v̂ centered on pairs of
vertices u and v, one can compute the entries of L� directly. This leads to a quadratic-time
algorithm for assembling the exact discrete fractional Laplacian (Algorithm 1).

High-Order and Low-Order Term. The same algorithm can be used to assemble both the
high-order term B� and low-order term B0� that we will use for preconditioning the gradient
�ow. All that needs to be done is to replace the kernel in Algorithm 1 with the appropriate
kernel for the desired inner product term. For the high-order term, this kernel is

u⊤B�v = ∑
I∈E

∑
J∈E

I≠J

⟨D
u(x) − D
u(y),D
v(x) − D
v(y)⟩
|
 (x) −
 (y)|2�+1

�I �J (3.14)

and for the low-order term, the kernel is

u⊤B0�v = ∑
I∈E

∑
J∈E

I≠J

k2(
I ,
J , TI)
(u(x) − u(y))(v(x) − v(y))

|
 (x) −
 (y)|2�+1
�I �J . (3.15)

The full inner product matrix we assemble is then A� = B� + B0� , and can be constructed by
assembling and adding the two terms.

3.3.4 Constraints

For design applications, we will need to impose a variety of scalar constraints Φi(
) = 0, i =
1,… , k, which we encode as a single constraint function Φ ∶ ℝ3|V | → ℝk . To enforce these
constraints, we project the gradient onto a valid descent direction; after taking a step in this
direction, we also project the result onto the constraint set (Section 3.3.4).

30

Figure 3.4: To enforce constraints Φ(
) = 0 on the curve, we both project the gradient g onto
the tangent of the constraint set, and also apply an iterative procedure to project the curve itself
back onto the constraint set. In both cases, the fractional Sobolev norm provides the de�nition
of closeness.

Gradient Projection

Let C ∶= dΦ(
) be the Jacobian matrix of the constraint, and let g ∶= gradH s

E ∈ ℝ3|V | denote

the unconstrained energy gradient. We seek the descent direction g̃ that is closest to g with
respect to the fractional Sobolev norm, but which is also tangent to the constraint set:

min
g̃

1
2 ||g̃ − g||2H s

s.t. Cg̃ = 0.

Writing ||v||2H s

as v⊤A3v (Section 3.3.3), we can apply the method of Lagrange multipliers to
obtain the usual �rst-order optimality conditions, given by the saddle point system

[
A3 C⊤

C 0] [
g̃

�] = [
d |⊤

0] , (3.16)

where � ∈ ℝk are the Lagrange multipliers, and we have applied the identity A3g = d |⊤

(Equation 3.12). By solving this system, we obtain the constrained descent direction g̃.

Constraint Projection

Suppose that we take a small step of size � along the projected gradient direction g̃ to reach a
new embedding
̃ ∶=
 − � g̃. In general, due to numerical drift,
̃ will not satisfy Φ(
̃) exactly,
and corrective projection is therefore necessary. To perform this projection, we will apply a
“frozen” approximation of Newton’s method. In particular, to �nd a displacement x ∈ ℝ3|V | that
takes us from
̃ back toward the constraint set Φ(g) = 0, we solve the problem

min
x

1
2x

⊤A3x s.t. Cx = −Φ(
̃).

We then update our guess via
̃ ←
̃ + x and repeat until the constraint violation Φ(
̃) is
numerically small (10−4 in our experiments). In practice, this process rarely takes more than
three iterations. At each iteration, x is obtained by solving the saddle point problem

[
A3 C⊤

C 0] [
x

�] = [
0

−Φ(
̃)] , (3.17)

31

Figure 3.5: To accelerate evaluation of the tangent-point energy, we build a bounding volume
hierarchy that partitions both positions (left) and tangent directions (right), here drawn as a
curve on the unit sphere.

where � ∈ ℝk are Lagrange multipliers. We refer to this as a “frozen” approximation because
the approximate Hessian (in this case, the saddle matrix) is not rebuilt after each intermediate
projection, which has the advantage of allowing the same matrix (and, in the exact case, the
same factorization) to be reused throughout.

3.3.5 Time Stepping

A judicious choice of time step can signi�cantly improve the e�ciency of the �ow. One strategy
is to use the �rst time step �max at which a intersection occurs as the starting point for a line
search, which guarantees that the curve remains in the same isotopy class. (Similar approaches
have been used in e.g. KnotPlot [97] for knot untangling, and by Smith and Schaefer [101]
for surface parameterization.) Computing this time step via standard techniques [94] costs
about as much as a single energy evaluation, which is signi�cantly less than the overall cost
of a single time step. From here we apply standard backtracking line search [18, Algorithm
9.2]; as a heuristic, we start this search at 2

3�max. We use this strategy throughout our runtime
comparisons in Section 3.5.

An even simpler strategy that works well in practice (but comes with no intersection-preventing
guarantees) is to just normalize the gradient and perform backtracking line search starting with
� = 1, until both (i) the Armijo condition is satis�ed and (ii) constraint projection succeeds
(Section 3.3.4). We use this latter strategy for all application examples in Section 3.6. We stop
when the L2 norm of the fractional Sobolev gradient goes below a user-speci�ed tolerance ".
In our examples we use " = 10−4, though of course for design applications one can also stop
whenever the results are aesthetically pleasing.

32

3.4 Acceleration

While the naïve optimization strategy of Section 3.3 can be e�ective on very small examples,
it rapidly becomes intractable on resolutions of only a few thousand vertices, since it involves
not only an all-pairs energy (Section 3.3.1), but also a dense matrix inversion (Section 3.3.3).
However, since the relevant kernels falls o� rapidly in space, we can use hierarchical approxi-
mation to avoid a Ω(|V |2) time and storage cost. Though our high-level approach is reasonably
standard, careful consideration of the tangent-point energy is needed to develop a scheme that
is e�cient, easy to implement, and handles general nonlinear constraints. At a high level, our
acceleration consists of three main parts: (1) an adaptation of Barnes-Hut to evaluate the energy
and its gradient, (2) a hierarchical strategy to evaluate matrix-vector products with A� , and (3) a
multigrid scheme for solving the saddle problem of Equation 3.17. Note that since we care only
about �nding a good descent direction—and not accurately simulating a dynamical trajectory—
we are free to use low-order schemes, which still provide good preconditioning. Empirically,
the overall strategy exhibits near-linear scaling in both time and memory (Figure 3.15).

3.4.1 Energy and Di�erential Evaluation

To accelerate evaluation of the energy ̂ and its di�erential, we apply the Barnes-Hut algorithm
from N -body simulation [9]. The basic idea is to approximate distant energy contributions by
aggregating values in a spatial hierarchy. In our case, this hierarchy must have six dimensions
rather than three, since ̂ depends on both positions
 ∈ ℝ3 and tangents T ∈ ℝ3. In lieu of a
standard octree we therefore use an axis-aligned bounding volume hierarchy (BVH), for which
the additional 3 dimensions do not incur signi�cant cost.

Bounding Volume Hierarchy

To build the BVH, we �rst construct tangent-points pI ∶= (TI ,
I) ∈ ℝ6 for each edge I ∈ E.
We then cycle through all six coordinates, choosing a splitting plane that minimizes the sum
of squared diameters of the two child bounding boxes. Splitting continues until all leaf nodes
contain only a single edge each. In each node  we also store data needed for Barnes-Hut.
Speci�cally,

L ∶= ∑
I∈

�I ,
 ∶= ∑
I∈

�I
I /L , T ∶= ∑
I∈

�ITI /L ,

give the total mass, center of mass, and (length-weighted) average tangent, respectively; we will
use p ∶= (T ,
) to denote the corresponding tangent-point. We also store the bounding
box radii rx and rT with respect to spatial and tangential coordinates, respectively.

33

Approximate Energy

At the start of each iteration, we construct a bounding-volume hierarchy (BVH) on the edge set
E as just described. The energy evaluation then becomes a sum

̃̂(
) = ∑
I∈E

∑
∈adm(I)

k(xI ,
, TI) �I L (3.18)

where adm(xI) denotes the set of all admissible nodes with no admissible ancestors when viewed
from the position xI . In the context of Barnes-Hut, the admissibility condition quanti�es the
notion that a cluster is “far enough” away that it can be approximated using its center of mass.
Leaf nodes are always considered admissible; for interior nodes, a Taylor series analysis of
Equation 3.18 indicates that to keep approximation error below a user-speci�ed threshold � > 0,
it is su�cient to ensure that

rx /|
I −
| ≲ � and rT ≲ � (3.19)

where rx denotes the bounding radius of the node in the 3 spatial dimensions, and rT denotes
the same in the 3 tangent directions. Intuitively, if  is far from the query point pI relative
to its size, and contains tangents that are close together, then the “lumped” energy is a good
approximation of the total energy between edge I and the edges in .

Approximate Di�erential

For each vertex v of the curve, to approximate the partial derivative with respect to v, we
evaluate the sum

)̃
)
v

̂(
) = ∑
I∈E(v)

∑
∈adm(
v)

ℎ
 (I ,) (3.20)

where E(v) denotes the edges adjacent to v, and

ℎ
 (I ,) =
)
)
v

[k� (
I ,
, TI) �I L] +
)
)
v

[k� (
,
I , T) �I L] .

In the exact case, for every edge J ∈ , di�erentiating by v would produce nonzero contri-
butions for both the forward terms k� (
I ,
J , TI) and the reverse terms k� (
J ,
I , TJ). All such
forward terms are collectively approximated by the �rst term of ℎ
 , and likewise, all such re-
verse terms are collectively approximated by the second term.

3.4.2 Hierarchical Matrix-Vector Product

For optimization we need to solve linear systems involving so-called kernel matrices. Any such
matrix K ∈ ℝ|E|×|E| has a special form

QI J = q(pI , pJ) �I �J ,

34

inadm
issible

adm
issible

Figure 3.6: Left: A kernel matrix K encodes interactions between all pairs of edges. Center: To
accelerate multiplication, this matrix is approximated by rank-1 blocks K̂, corresponding to
pairs (,) of distant BVH nodes. Right: For pairs that are too close, this approximation is
inadmissible, and we must use the original matrix entries.

where the kernel q maps a pair of tangent-points to a real value. If q is a su�ciently regular
function, then K is well-approximated by a hierarchical matrix [53], which can be thought of
as a blockwise low-rank approximation of the exact matrix. In particular, hierarchical matrices
can be used to perform approximate matrix-vector products with Q without explicitly storing
the entries as a matrix, which is crucial in our case, where Q is a dense matrix.

Block Cluster Tree

The key data structure behind a hierarchical matrix is known as a block cluster tree (BCT). The
BCT can be constructed from a hierarchical partitioning of the domain such as a BVH; in our
case, we can reuse the BVH that we previously constructed for Barnes-Hut energy evaluations.
The nodes of the BCT consist of pairs of clusters (,) from the BVH, with rows indexed by
, and columns indexed by  (Figure 3.6).

To construct the BCT, we initialize it with the node (,) as the root, where  is the root
node of the BVH, containing all elements in the domain. We mark this initial node as “unre-
solved.” We then iteratively loop over all currently “unresolved” BCT nodes. For each such
node, corresponding to a pair of BVH nodes (,), we test if the pair of clusters is admissible
or not. If the pair is admissible, we mark it as “admissible” and do not consider it further. Other-
wise, if |A|+ |B| < Smin for some minimum size threshold Smin, we mark the pair as “inadmissible”
and likewise leave it. If neither of these are true, then the node is discarded and replaced with
the Cartesian product of the child sets of  and  in the BVH, all of which are then initially
marked as “unresolved”. Assuming a binary BVH, each such pair will be split into four children.
The construction procedure thus concludes once all remaining BCT nodes are either admissible
pairs, or inadmissible pairs below the �xed size threshold Smin. In practice, the tree structure
of the BCT is not important to maintain; all that is needed is the �nal list of admissible and
inadmissible pairs.

35

Figure 3.7: We accelerate linear solves using multigrid on a hierarchy of curves.

Cluster Admissibility. The admissibility test for a pair of clusters is similar to the Barnes-
Hut test for a point and a cluster (Equation 3.19). A pair of clusters (,) is considered admis-
sible if they satisfy the inequalities

max(rx , rx)
||
 −


||
≲ � and max(rT , r


T) ≲ � (3.21)

for the same accuracy parameter � .

Fast Approximate Kernel Matrix Multiplication

As discussed, the block cluster tree enables the fast computation of approximate matrix-vector
products with kernel matrices Q. Intuitively, every node of the BCT corresponds to a block of
Q indexed by the clusters  and ; the problem of multiplying by Q thus reduces to multiply-
ing by every block of Q. By construction, many such blocks are admissible, representing the
majority of the matrix entries, and these admissible blocks can be compressed into low-rank
approximations that are e�cient to multiply with vectors.

Concretely, to compute the approximate product ỹ = Qx, we �rst initialize ỹ ← 0. Then, for all
nodes (,) of the BCT:

1. If (,) is inadmissible, then we multiply the block exactly by computing the entries of
the indexed block Q exactly, and multiplying:

ỹ ← ỹ + Qx.

2. If (, is admissible, then we multiply by a rank-1 approximation of the block:

ỹ ← ỹ + � q(
, T;
, T) �⊤ x

where � for a cluster  denotes the vector of edge lengths within that cluster.

36

Applying the Fractional Laplacian via Kernel Matrices

The discrete fractional Laplacian L� (and associated operators derived from it) cannot itself be
easily expressed as a kernel matrix; however, the result of the product L�x can be expressed
in terms of products with kernel matrices. We show the full derivation in this section; see
Equation 3.22 for the �nal expression.

To begin, consider the kernel

q
 (I , J) ∶=

{ �I �J
‖
I−
J ‖2�+1 I ≠ J

0 I = J

Rewriting Equation 3.13 with this kernel yields

u⊤L�v = ∑
I∈E

∑
J∈E

I≠J

(u(I) − u(J)) (v(I) − v(J)) q
 (I , J)

for two functions u and v. Multiplying the product inside the sum gives

(u(I)v(I) + u(J)v(J) − u(J)v(I) − u(I)v(J)) q
 (S, T)

for the pair (I , J). Because q
 (I , J) = q
 (J , I), we can move some terms between the summands
for (I , J) and (J , I), thus reorganizing the sum into

u⊤L�v = ∑
I∈E

∑
J∈E

S≠T

(2u(I) v(I) − 2u(I) v(J)) q
 (S, T)

= ∑
I∈E

∑
J∈E

S≠T

(2u(I) q
 (S, T) v(I) − 2u(I) q
 (S, T) v(J))

Now, let u and v be vectors of length |F | with the values of u(I) and v(I) respectively for all I ∈ E.
Then, the sum is equivalent to

u⊤L�v = 2 (u⊤ diag(Q
1)v) − 2 (u⊤Q
v)
= 2u⊤ (diag(Q
1)v − Q
v)

where Q
 is again the kernel matrix de�ned by q
 . Now, let B
 be the operator that averages
vertex values onto edge midpoints; then we have u = B
u and v = B
v, and

u⊤L�v = 2u⊤B⊤
 (diag(Q
1)(B
v) − Q
 (B
v))
⟨u, L�v⟩ = 2⟨u, B⊤
 (diag(Q
1)(B
v) − Q
 (B
v))⟩

L�v = 2B⊤
 (diag(Q
1)(B
v) − Q
 (B
v)) . (3.22)

Thus, we can perform a matrix-vector product with L� using only products with the kernel

37

matrix Q
 and inexpensive operations involving vectors or small matrices.

Applying High-Order and Low-Order Terms

The same derivation for the high- and low-order matrices B and B0 proceeds analogously to
that of the fractional Laplacian, with the substitution of the derivative operator D
 for B
 in the
case of B. The resulting expression for the high-order term is

B�v = 2D⊤

 (diag(Q
1)(D
v) − Q
 (D
v)) (3.23)

with the kernel
q(T1, x1; T2, x2) =

1
|x1 − x2|2�+1

.

Likewise, for the low order term, the expression is

B0�v = 2B
⊤

 (diag(Q
1)(B
v) − Q
 (B
v)) (3.24)

with the kernel
q(T1, x1; T2, x2) =

k2(x1, x2, T1) + k2(x2, x1, T2)
2 |x1 = x2|2�+1

.

where we symmetrize the kernel k2 by averaging the forward and reverse terms.

3.4.3 Multigrid Solver

Since the hierarchical matrix-vector multiply does not build an explicit matrix, we use an itera-
tive method to solve our linear systems. Empirically, o�-the-shelf methods such as GMRES and
BiCGStab are not well-suited for our problem. Instead, we use geometric multigrid (Figure 3.7),
since (i) it is straightforward to coarsen a curve network, and (ii) the low frequency modes of
our Laplace-like operators are well-captured on a coarse mesh. In the Euclidean case, this type
of approach has been used successfully by Ainsworth and Glusa [1].

In general, suppose we want to solve a linear equation Ax = b. The basic idea of geometric
multigrid is to use a coarser mesh to reduce the residual of an equation on the �ner mesh.
Consider a simple two-level hierarchy—in particular, let A0 ∈ ℝ|V0 |×|V0 | and A1 ∈ ℝ|V1 |×|V1 | be
discretizations of A on a �ne and coarse mesh, respectively, and let b0 be a discretization of
the function b onto the �nest mesh. Also let J1 ∈ ℝ|V0 |×|V1 | be a so-called prolongation operator,
which interpolates data from the coarse mesh onto the �ne mesh. Starting with any initial guess
x0 ∈ ℝ|V0 |, we �rst apply a smoothing procedure S to the system A0x0 = b0, i.e. a �xed number
of iterations of any iterative linear solver to get an improved guess x̃0 ← S(A0, x0, b0). We then
compute the residual r0 ← A0x̃0 − b0, and transfer it to the coarse mesh via b1 ← J⊤1 r0. On
the coarse mesh we solve the system A1x1 = b1 directly, and transfer the result back to the �ne
mesh via y0 ← J1x1. These values are used to update our guess via x̃0 ← x̃0 + y0, and smoothed
again. If the residual is small enough, we stop; otherwise, we repeat another such V-cycle until

38

convergence. More generally, one can apply this two-level strategy to solve the linear system
on the coarser level, yielding a multi-level strategy. The size of the coarsest level is chosen so
that a direct solve at this level is more e�cient than continuing to apply multigrid.

Curve Coarsening and Prolongation

To build a multigrid hierarchy on a general curve network, we apply a sim-
ple coarsening scheme. We mark alternating vertices as “black” and “white”,
and mark all endpoints and junctures where two or more curves meet as black.
The next coarsest curve is obtained by removing white vertices, and we stop
when we reach a target size or when there are no more white nodes. The pro-
longation operator J preserves values at black vertices, and at white vertices
takes the average of the two neighboring black vertices. In our experience,
using linear interpolation based on edge lengths made no appreciable di�er-
ence in performance. Although coarsening can change the isotopy class of the
curve network, it still provides useful preconditioning for the next level of the
hierarchy.

Multigrid for Saddle Point Problems

Our constraint scheme entails solving saddle point problems of the form

[
A3 C⊤

C 0] [
x

�] = [
a

0] , (3.25)

where A3 is the inner product for vector-valued functions, and C is the constraint matrix (Sec-
tion 3.3.4); the data a ∈ ℝ3|V | depends on the problem being solved. We follow the approach of
Braess and Sarazin [19], who note that for the structurally identical Stokes’ problem (where A3
and C are replaced by the Laplace and divergence operators, respectively, applying multigrid
to the whole matrix does not work well. Instead, let P ∈ ℝ3|V |×3|V | be a projection onto the null
space of C, i.e. CP = 0 and P2 = P. Then by construction, any solution y to the equation

P⊤A3Py = P⊤a (3.26)

yields a vector x = Py within the constraint space Cx = 0 that satis�es our original equation.
Equation 3.26 is therefore the system that we actually solve via multigrid. In particular, we use
the projection P ∶= CC†, where † denotes the (Moore-Penrose) pseudoinverse

C† ∶= (CC⊤)−1C⊤.

Since our constraints are typically sparse, we can factorize the inner term CC⊤ (once per time
step) to further accelerate computation. Note that one must build a constraint matrix Ci and
projection matrix Pi at each level i of the multigrid hierarchy.

39

Gradient Solve and Constraint Projection

With these pieces in place, we can apply multigrid to compute the constrained gradient (Equa-
tion 3.16), and perform constraint projection (Equation 3.17).

Initialization. We obtain an initial guess x0 by �rst coarsening the �ne right-hand side b0
down to the coarsest mesh. We then perform a direct solve and prolong the solution all the
way to the �nest mesh, applying smoothing after each re�nement. In practice, this strategy
works much better than starting with the zero vector.

Smoother. We use a standard conjugate gradient smoother, with a target relative residual on
the order of 10−3. Making the residual smaller via further cycles (and a more accurate BCT)
yields diminishing returns: we need only a reasonable intermediate descent direction. We ob-
serve that, typically, we only require 6 or fewer V-cycles to reach this residual value. Note that
forward matrix-vector products are performed approximately at all levels of the hierarchy us-
ing the method outlined in Section 3.4.2; as such, we must build a block cluster tree at every
level of the hierarchy. The total construction cost is only about twice the cost at the �nest level,
however, due to geometrically decreasing vertex counts on successive levels.

Gradient. To compute the gradient, recall that A� = B� + B0� ; a matrix-vector product with
A� can thus be implemented via products with its two terms. As discussed in Section 3.4.2,
products with the high- and low-order terms can be implemented using products with kernel
matrices (see Equation 3.23 and Equation 3.24). Finally, the product with A3 can be implemented
using three successive products with A� on the strided vectors consisting of each coordinate
per vertex.

Constraint Projection To use our multigrid solver for constraint projection, we apply a sim-
ple transformation to Equation 3.17 that gives it the same form as Equation 3.25. In particular,
we solve

[
A3 C⊤

C 0] [
y

�] = [
A3z

0] ,

where z ∶= C†b, and b is the lower block of the right-hand side of Equation 3.17. The �nal
result is then given by

x = z − y. (3.27)

3.5 Evaluation and Comparisons

We performed an extensive evaluation and comparisons of our fractional Sobolev descent strat-
egy relative to other methods. Here we give an overview of results; a detailed account of how
these evaluations were performed can be found in the supplemental material of Yu et al. [116].

40

Knot128 Trefoil100

Figure 3.8: To evaluate performance, we built a “stress test” dataset of 128 random embeddings
of di�erent knot classes (left) and 100 random embeddings of the trefoil knot (right). The tangent
point energy drives these curves toward much simpler embeddings, as shown here.

3.5.1 Dataset

We created two datasets of di�cult knot embeddings: Knot128, which contains random em-
beddings of 128 distinct isotopy classes from KnotPlot’s “knot zoo,” and Trefoil100, which
contains 100 random embeddings of the trefoil knot (Figure 3.8). We also used the Freedman
unknot (Figure 3.1, top left), which is a standard “challenge problem” from the knot energy liter-
ature [97, Section 3.3]. To examine scaling under re�nement, we performed regular re�nement
on knots from each of these sets.

3.5.2 Performance Comparisons

We compared our fractional Sobolev descent strategy to a variety of methods from optimization
and geometry processing. Overall, methods that use our fractional preconditioner performed
best, especially as problem size increases. We �rst ran all methods on several resolutions of a
small set of test curves (Figure 3.13); we then took the fastest methods, and ran them on all 228
curves from our two datasets (Figure 3.14). For simplicity we did not use hierarchical accelera-
tion in our method (and instead just solve dense systems), which gave a signi�cant performance
advantage to alternative methods (which are based on sparse solves). Even with this handicap,
the fractional approach outperformed all other methods; as indicated in Figure 3.15, hierarchi-
cal acceleration would widen this gap even further. Importantly, previous methods also have a
much higher failure rate at untangling di�cult curves such as those in our dataset (Figure 3.14).
Further, cases on which the fractional approach itself fails generally contain near-intersections
in the initial con�guration (Figure 3.9), which also lead to failures in most or all other methods.

Note that some previous methods do not directly handle hard nonlinear constraints; for these
methods we perform an apples-to-apples comparison by replacing—in all methods—hard edge
length constraints with a soft elastic penalty (see supplemental material for further details).

41

Figure 3.9: An example of a “failed” knot, which features a near-self-intersection in the initial
con�guration.

KnotPlot
2500 iterations

fractional
Sobolev

120 iterations

SONO
2500 iterations

Figure 3.10: Our fractional Sobolev strategy is dramatically more e�cient than previous meth-
ods for knot untangling—here we untangle the unknot from Figure 3.1. Neither KnotPlot nor
SONO converged after several hours.

Knot untangling methods. We �rst compared to two well-known methods for knot untan-
gling (Figure 3.10): KnotPlot, based on the so-called symmetric energy, and shrink on no overlaps
(SONO) [91] which performs a local iterative projection in the spirit of contemporary position-
based dynamics [84]. Both methods successfully untangle the Freedman knot, but only after
tens of thousands of iterations [97, Figure 7.6]. The basic reason is that, like L2 descent, such
methods focus on reduction of local error, making global convergence quite slow.

1st-order methods Figure 3.11 indicates that basic 1st-order schemes like ordinary L2 gradi-
ent descent, L-BFGS using 10, 30, or 100 vectors, and nonlinear conjugate gradients [44] exhibit
poor performance relative to our fractional scheme in terms of both wall clock time and num-
ber of iterations. This example also indicates that for 1 < s < 2, the next smallest or largest
integer Sobolev preconditioners (H 1 and H 2) underperform the fractional H s preconditioner,
whether using explicit (forward) or implicit (backward) Euler. We solve the backward Euler
update equation using Newton’s method, either by updating the Hessian for each Newton step
(“Newton”), or “freezing” the Hessian at the beginning of the time step (“frozen”). If Newton’s

42

method fails to converge within a few (10) iterations, the step size is halved and the solve is
reattempted. We also tried stochastic gradient descent (SGD) with respect to the L2 inner prod-
uct, implemented by subsampling a �xed proportion (25% in our trials) of edge pairs (u, v) for
each edge u in each iteration for energy and gradient evaluation. This method did far worse
than any other scheme we tried. SGD with respect to H s works better, but the speedup from
stochastic evaluation does not compensate for the poor quality of the descent direction.

2nd-order methods Second-order schemes like Newton’s method can be adapted to non-
convex problems by projecting the Hessian onto a nearby positive-semide�nite matrix. Since
a global projection is prohibitively expensive, a heuristic sometimes used in geometric opti-
mization is to project and sum up the Hessians of each local energy term [107]; in our case we
can decompose the energy into the edge-edge terms from Equation 4.10. Though this heuristic
can work well for, e.g. elastic energies, it does not appear to work very well for the tangent-
point energy, and for larger examples had among the slowest run times of any scheme we tried
(Figure 3.13).

Quasi-Newton methods Several recent methods from geometry processing apply Sobolev-
like preconditioning to elastic energies, such as those used for shape deformation or surface
parameterization [31, 68, 120]. Since the highest-order term in such problems often looks like
a Dirichlet energy, H 1 preconditioning via the Laplacian Δ can be an e�ective starting point
for optimization (as discussed in Section 2.2.1). However, such preconditioners do not perform
as well as our fractional preconditioner, since they are not as well-matched to the order of the
di�erential d . For instance, as seen in Figure 3.13, the AQP strategy of Kovalsky et al. [68] sig-
ni�cantly underperforms our preconditioner when the Laplacian is used as the quadratic proxy;
using our fractional operator as the quadratic proxy improves performance—but of course re-
quires the machinery introduced in this paper. Another possibility is to use Laplacian-initialized
L-BFGS (in the spirit of Zhu et al. [120]); we found this strategy works a bit better than AQP, but
again not as well as the fractional preconditioner. We also considered several variants of these
strategies, such as applying Nesterov acceleration, and combining nonlinear conjugate gradi-
ents (NCG) (as in Polak and Ribiere [93]) or L-BFGS with our fractional preconditioner. For hard
constraints we advocate the use of our fractional (H s) projected gradient scheme (as detailed
in Section 3.3); if soft constraint enforcement is acceptable, then L-BFGS or H s-preconditioned
NCG are both good options: the former converges faster near minima; the latter gets stuck less
often.

3.5.3 Local minimizers

As seen in Figure 3.12, the local minimizers found via our fractional descent strategy generally
appear to be the same as with other schemes, up to rigid motions. Hundreds more such exam-
ples can be found in the supplemental material. Very rarely, two di�erent methods produced
local minimizers that were identical up to a re�ection; such amphichiral pairs exist in some knot
classes [76], but of course have the same energy.

43

0 100 200 300 400 500 600
energy vs. wall clock time (s)energy vs. iteration

0 5 10 15 20
0

5

10

15

20

25

30

35

L2 (explicit)

L2 (implicit,frozen)

L2 (implicit,Newton)

L2 (stochastic) Hs (stochastic)

Hs (explicit)

Hs (implicit,frozen)

Hs (implicit,Newton)

H2 (explicit)

H2 (implicit,frozen)

H2 (implicit,Newton)

H1 (explicit)

H1 (implicit,frozen)

H1 (implicit,Newton)

L- BFGS (100)

L- BFGS (30)

L- BFGS (10)

CG

CG (stochastic)

H1

(implicit, Newton)

H1

(implicit, frozen)

H1

(explicit)

H2

(implicit, Newton)

H2

(implicit, frozen)

H2

(explicit)

Hs

(implicit, Newton)

Hs

(implicit, frozen)

Hs

(explicit)

Hs
(stochastic)

L2

(implicit, Newton)

L2

(implicit, frozen)

L2

(explicit)

L-BFGS (10)

L-BFGS (30)

L-BFGS (100)

CG CG
(stochastic)

L2

(stochastic)

Figure 3.11: Across a wide variety of descent methods and inner products, our fractional Sobolev
approach does signi�cantly better both in terms of energy reduction per iteration (middle left)
and real-world run time (middle right). At top we show results for an equal amount of compute
time.

44

convexified Newtonconvexified NewtonL2 projected gradientL2 projected gradientinitial curve
(knot0064_1024E)
initial curve
(knot0064_1024E)

AQPAQP

H1 projected gradientH1 projected gradient

Hs projected gradientHs projected gradient Hs NCGHs NCG Hs L-BFGSHs L-BFGS

H1 NCGH1 NCG H1 L-BFGSH1 L-BFGS H2 projected gradientH2 projected gradient

Figure 3.12: The tangent point energy appears to have relatively few local minima; hence, dif-
ferent descent strategies tend to �nd the same local minimizers (though some, like L2, do not
�nd solutions in a reasonable amount of time). See supplemental material for several hundred
more examples.

3.5.4 Scaling behavior

We compared per-iteration costs of the unaccelerated scheme, a scheme using only Barnes-Hut
(Section 3.4.1), and the full acceleration scheme described in Section 3.4—see Figure 3.15. With
full acceleration we observe near-linear scaling, whereas schemes that directly solve the dense
system exhibit super-quadratic scaling and quickly run out of memory. Note that constraint
projection with direct solvers comes nearly for free, since a factorization of Equation 3.17 can be
reused to solve Equation 3.16. In contrast, no reuse is possible in the fully accelerated scheme,
making constraint projection relatively expensive. Disabling this step further speeds up the
accelerated scheme, but leads to constraint drift over time. Alternative methods for constraint
enforcement (such as soft penalties, as noted above) might hence provide further improvement.

3.6 Results and Applications

Given how ubiquitous plane and space curves are in areas like geometry, graphics, robotics, and
visualization—and how natural it is to want to avoid intersection of such curves—our method
provides a useful computational framework for a wide variety of tasks. Here we explore some
preliminary applications that we hope will inspire future work. All other examples in this
section completed within a few minutes, except for the 3D curve packing example where we
allowed curves to grow longer for several hours as a stress test. We �rst describe constraints
and potentials used for these examples.

45

0 160 320 480

0

1k

2k

3k

4k

en
er

gy

time (s)

1600

0

1k

2k

3k

4k

en
er

gy

320 1600

0

1k

2k

3k

4k

en
er

gy

320 iterationsiterationsiterations 1600

0

1k

2k

3k

4k

en
er

gy

320

high resolution (1648 edges)low resolution (412 edges) medium resolution (824 edges)

ours

ours

ours ours

0

1k

2k

3k

4k

en
er

gy

time (s)0 10050

ours

ours0

1k

2k

3k

4k

en
er

gy

time (s)200100 3000

L2 L-BFGS [sparse]
L2 NCG [sparse]
L2 Nesterov [sparse]

AQP [sparse]
convexi�ed Newton NCG [dense]

fractional (Hs) AQP [dense]

fractional (Hs) L-BFGS [dense]

fractional (Hs) NCG [dense]

fractional (Hs) Nesterov [dense]

Laplacian (H1) L-BFGS [sparse]

Laplacian (H1) NCG [sparse]

Laplacian (H1) Nesterov [sparse]

so� constraint methods

— stuck/time out

en
er

gy

0 300 600 900

0

1k

2k

3k

4k

high resolution (1648 edges)

time (s)

low resolution (412 edges)

time (s)200 3001000

0

1k

2k

3k

4k

medium resolution (824 edges)

time (s)800600 4002000

0

1k

2k

3k

4k

en
er

gy

en
er

gy

1600

0

1k

2k

3k

4k

en
er

gy

3201600

0

1k

2k

3k

4k

en
er

gy

320 iterations iterations1600

0

1k

2k

3k

4k

en
er

gy

320 iterations

ours

ours
ours ours

ours ours L2 projected gradient [sparse]

convexi�ed Newton [dense]

fractional (Hs) projected gradient [dense]

fractional (Hs) projected gradient — implicit [dense]

Laplacian (H1) projected gradient [sparse]

bi-Laplacian (H2) projected gradient [sparse]

L2 projected gradient — implicit [sparse]

hard constraint methods

— stuck/time out

low resolution (FreedmanHeWang_00412E)

medium resolution (FreedmanHeWang_00824E)

high resolution (FreedmanHeWang_01648E)

Figure 3.13: We compared our descent strategy to a variety of 1st-order, 2nd-order, and quasi-
Newton strategies, using both hard constraints (top) and a soft penalty (bottom) to preserve
length. Here we show energy versus both time and iteration count for several resolutions of
the initial curve from Figure 3.1; tests on additional curves yield very similar results (see sup-
plemental material). Note that we achieve the best real-world clock time—even though we
compare a dense implementation of our method (without hierarchical acceleration) to sparse
versions of other schemes.

46

101 stuck (47.2%), 37 nonconvergent (17.3%)138 total failed (64.5%)

130 stuck (60.7%), 67 nonconvergent (31.3%)197 total failed (92.1%)

14 stuck (6.5%)14 total failed (6.5%)

102 103

102

103

18 stuck (8.4%), 196 nonconvergent (91.6%)214 total failed (100.0%)

29 stuck (13.6%), 180 nonconvergent (84.1%)209 total failed (97.7%)

2x reference
tim

e

reference
tim

e

4x reference
tim

e

(214 curves total)

Hard constraint methods
time (s) to achieve 1.1x minimal energy (log-log plot)

time (s) for fractional (Hs) projected gradient

180 stuck (85.7%)180 total failed (85.7%)

105 stuck (50.0%), 1 nonconvergent (0.5%)106 total failed (50.5%)

139 stuck (66.2%)139 total failed (66.2%)

31 stuck (14.8%)31 total failed (14.8%)

7 stuck (3.3%)7 total failed (3.3%)

101 102

101

102

0.5x reference
iterations

reference
iterations

2x reference
iterations

4x reference
iterations

(210 curves total)

So� constraint methods
iterations to achieve 1.1x minimal energy (log-log plot)

iterations for fractional (Hs) NCG

so� constraint methods

Laplacian (H1) L-BFGS [sparse]

AQP

Laplacian (H1) NCG [sparse]

fractional (Hs) NCG [dense]

fractional (Hs) L-BFGS [dense]

180 stuck (85.7%)180 total failed (85.7%)

105 stuck (50.0%), 1 nonconvergent (0.5%)106 total failed (50.5%)

139 stuck (66.2%)139 total failed (66.2%)

31 stuck (14.8%)31 total failed (14.8%)

7 stuck (3.3%)7 total failed (3.3%)

101 102 103

101

103

0.5x reference
tim

e2x reference
tim

e

reference
tim

e

4x reference
tim

e

(210 curves total)

time (s) for fractional (Hs) NCG

so� constraint methods

Laplacian (H1) L-BFGS [sparse]

AQP

Laplacian (H1) NCG [sparse]

fractional (Hs) NCG [dense]

fractional (Hs) L-BFGS [dense]

101 stuck (47.2%), 37 nonconvergent (17.3%)138 total failed (64.5%)

130 stuck (60.7%), 67 nonconvergent (31.3%)197 total failed (92.1%)

14 stuck (6.5%)14 total failed (6.5%)

18 stuck (8.4%), 196 nonconvergent (91.6%)214 total failed (100.0%)

29 stuck (13.6%), 180 nonconvergent (84.1%)209 total failed (97.7%)

101 102

101

102

2x reference iterations

reference iterations

4x reference iterations

(214 curves total)

Hard constraint methods
iterations to achieve 1.1x minimal energy (log-log plot)

iterations for fractional (Hs) projected gradient

it
er

at
io

ns
 fo

r
ot

he
r

m
et

ho
ds

FA
IL

ED

FA
IL

ED

FA
IL

ED

FA
IL

ED

it
er

at
io

ns
 fo

r
ot

he
r

m
et

ho
ds

ti
m

e
(s

) f
or

 o
th

er
 m

et
ho

ds
ti

m
e

(s
) f

or
 o

th
er

 m
et

ho
ds

So� constraint methods
time (s) to achieve 1.1x minimal energy (log-log plot)

hard constraint methods
Laplacian (H1) projected gradient [sparse]

bi-Laplacian (H2) projected gradient [sparse]

fractional (Hs) projected gradient [dense]

standard (L2) projected gradient [sparse]
Newton (convexified)

hard constraint methods
Laplacian (H1) projected gradient [sparse]

bi-Laplacian (H2) projected gradient [sparse]

fractional (Hs) projected gradient [dense]

standard (L2) projected gradient [sparse]
Newton (convexified)

Figure 3.14: We used a dataset of about two hundred di�cult knot embeddings to evaluate
the performance of our strategy compared to the next most competitive methods. Even with-
out hierarchical acceleration, our fractional strategy was signi�cantly faster—and succeeded
at untangling a much larger fraction of knots. Here we plot the time it took for each method
to get within 1.1x of the reference energy, against the time taken by our fractional strategy.
Results have been split into hard/soft constraint enforcement (top/bottom rows), and iteration
count/wall clock time (left/right columns). At the top of each plot we show the number of fail-
ures after 24 minutes of compute time—stuck indicates a failure of line search to make progress
due to intersections; nonconvergent means the method failed to get below 1.1x of the reference
energy.

47

Figure 3.15: A comparison of runtime per iteration on samplings of the same curve with increas-
ing resolution. “Exact” indicates no acceleration, “Barnes-Hut” indicates accelerated gradients
only, and “Multigrid” indicates all accelerations enabled, with and without constraint projec-
tion. Reported numbers are averages over up to 500 iterations or until convergence.

Figure 3.16: Interwoven curves of increasing length are con�ned inside a �xed domain, resulting
in an intricate “curve packing.”

3.6.1 Constraints and Potentials

A key feature of our optimization framework is that it not only e�ciently minimizes knot en-
ergies, but that it can do so in conjunction with fairly arbitrary user-de�ned constraints and
penalties (Section 3.3.4). This opens the door to a rich variety of computational design appli-
cations beyond the basic “knot untangling” that has been the focus of previous work. For the
applications that will be explored in Section 3.6, we consider the following constraints:

• Barycenter. This �xes the barycenter of the curve to a point x0 via Φbarycenter(
) ∶=
∑I∈E �I (xI − x0). In the absence of other constraints, this eliminates the null space of
globally constant functions discussed in Section 4.2.2.

• Length. The repulsive curve energy naturally wants to make the curve longer and longer.
A simple way to counteract this is via a total length constraint Φlength(
) ∶= L0 −∑I∈E �I ,

48

where L0 is the target length.

• Edge Length. We can also constrain the lengths of each individual edge, allowing only
isometric motions. This entails a constraint Φlength,I (
) ∶= � 0I − �I for each edge I , where
� 0I is the target edge length.

• Point Constraint. To �x the position of a vertex i to the point xi ∈ ℝ3, we can add the
constraint Φpoint,i(
) ∶=
i − xi .

• Surface Constraint. To keep a point of the curve constrained to an implicit surface
f (x) = 0, we can add the constraint Φsurface,i(
) ∶= f (
i).

• Tangent Constraint. We can force the tangent TI of an edge I to match a unit vector
X ∈ ℝ3 via the constraint Φtangent,I (
) ∶= TI − X .

In several applications, we progressively increase or decrease the target length values L0 or l0I ;
the next constraint projection step then enforces the new length. We also consider the following
penalties:

• Total length. A simple energy is the total curve length, which provides a “soft” version
of the total length constraint. Discretely, this energy is given by ̂length(
) ∶= ∑I∈E �I .

• Length di�erence. This energy penalizes di�erences in adjacent edge lengths, given by
̂di�(
) = ∑v∈Vint

(�Iv − �Jv)2, where Vint denotes the set of “interior” vertices with degree 2,
and Iv and Jv are the indicent edges to v.

• Surface potential. Given a surface M ⊂ ℝ3, we use the energy M (
) ∶= ∫
 ∫M 1/|xM −

 (x
)|�−�dxM dy
 to avoid intersections. This is e�ectively a Coulomb potential of the
same order as  on M . In the discrete setting, M is a triangulated surface, and we use a
BVH on M to accelerate the evaluation of M and its di�erential, in a similar fashion to
 .

• Field potential. Given a �xed unit vector �eld X on ℝ3, the energy X (
) ∶= ∫ L
0 |T (x) ×

X (
 (x))|2 dx
 encourages
 to run parallel (or anti-parallel) to X . We discretize this as
̂X (
) ∶= ∑I∈E �I |TI × X (
I)|2.

Note that the energies considered here involve lower-order derivatives than those in  , and
do not therefore have a major e�ect on the sti�ness of the overall system. Hence, the frac-
tional Sobolev inner product will continue to provide e�cient convergence on these composite
energies.

3.6.2 Curve Packing

Packing problems (such as bin packing) appear throughout geometry and computer graphics,
playing an important role in, e.g. 2D layouts for manufacturing or UV atlas generation. An ad-
jacent problem is generation of regular sampling patterns, e.g. blue noise sampling via Poisson

49

Figure 3.17: Allowing curves to slide freely over constraint surfaces (left) enables design tasks
like arranging networks of muscles or muscle �bers (right).

Figure 3.18: Just as repulsive potentials are commonly used to �nd equally-distributed points,
we can compute collections of equally-spaced curves (here constrained to a region via a �xed
curve potential).

disk rejection. The ability to optimize large families of repulsive curves enables us to solve anal-
ogous “curve packing” problems—for instance, in Figure 3.18, we use a �xed boundary curve
to pack disks of increasing length; likewise, in Figure 3.16 and Figure 3.19, we use a surface
penalty to pack increasingly long curves into a target region. Figure 3.20 likewise packs in-
creasingly long curves on a surface. Going the opposite direction, we can also decrease length
while encouraging repulsion to generate clean illustrations that are di�cult to draw by hand
(Figure 3.21). Finally, by constraining only parts of curves to lie on surfaces, we can design
biologically-inspired curve networks such as muscle �bers (Figure 3.17), which are attached to
objects at their endpoints but are otherwise free.

3.6.3 Graph Drawing

A basic problem in data visualization is drawing graphs; a typical approach is to use a force-
based layout that seeks to avoid intersections between nodes, or over/under-extension of edges [48].
Our framework makes it easy to optimize the geometry of the edges themselves, opening the
door to graph layouts that are both more compact and more legible (Figure 3.22). We can also use

50

Figure 3.19: By penalizing proximity to a �xed surface, we can pack curves into any domain.
Progressively increasing edge length forces curves to maintain a balance between surface avoid-
ance and self-avoidance. (Here we render curves with a non-circular cross section, which is not
modeled by the energy.)

this machinery to obtain legible drawings of nonplanar graphs, by perturbing a planar embed-
ding (Figure 3.23); here, the ability to preserve lengths conveys information about edge weights.
A particularly interesting graph embedding problem is the design of synthetic hydrogel vascular
networks [51]; Figure 3.24 shows a simple example where we optimize a multivascular network
(starting from subgraphs of a tet mesh and its dual).

L

Note that at junctures between more than two edges, the tangent-point energy
will always be large (since three or more edges cannot be collinear), rapidly
forcing vertices away from each other. This can be counteracted by constrain-
ing their edge lengths, forcing the vertices to lie on spheres of constant radii
around the junctures.

3.6.4 Self-Avoiding Splines

Beyond standard Bézier input, sophisticated tools have been developed for drawing spline
curves—but do not consider the basic constraint of ensuring that curves do not cross them-
selves (which is often desirable for physical or aesthetic reasons). For instance, Figure 3.26
(center) shows the interpolation of a set of control points by k-curves [113], which underpin
one of the basic drawing tools in Adobe Illustrator (the Curvature Tool). By simply applying
point constraints at the control points, and letting the length increase under our repulsive �ow,
we obtain a nice interpolating curve without self-intersection (Figure 3.26, right). In this con-
text we can also use our tangent constraint to control the behavior of such a curve at open
endpoints (Figure 3.25).

51

Figure 3.20: Patterns obtained by constraining a collection of repulsive curves to a surface and
increasing their lengths (initial states shown above their �nal con�gurations).

3.6.5 Multi-agent Path Planning

In robotics, numerous algorithms have been developed for the problem of multi-agent path
planning [34], wherein multiple agents must travel from �xed start to end locations without
colliding with the environment or each other. Many algorithms operate on a discrete grid or
graph [117], which quantizes the solution space and does not penalize near-intersections; such
trajectories may therefore not be robust to sensing or control error. By treating path planning
as a space-time optimization of continuous curves with �xed endpoints, we can use curve re-
pulsion to �nd (or re�ne) trajectories that maximize collision avoidance, making them more
resilient to error (Figure 3.27). Finding such trajectories in n dimensions is equivalent to opti-
mizing a braid in n+1 dimensions; since neither the size of the curve nor the cost of a BVH/BCT
depends strongly on dimension, this strategy easily generalizes to three (or more) dimensions.

3.6.6 Streamline Visualization

A common way to visualize vector �elds is by tracing integral curves or streamlines; signi�cant
e�ort has gone into algorithms that provide uniform spacing e.g. by incrementally construct-
ing a Delaunay triangulation [81]), though such methods can be di�cult to generalize to 3D
volumes or vector �elds on surfaces. We can generate nicely-spaced streamlines by adding a
�eld alignment potential to the tangent-point energy—for instance, in Figure 3.28 we start with
a set of random curve segments, which automatically coalesce into streamlines.

52

output

input

sketch #1

sketch #2

Figure 3.21: Loops arising in topology can be di�cult to draw by hand—the sketches at left
were done by Nathan Dun�eld to illustrate Dehn-Thurston coordinates. At right we generate
an equispaced version of this curve by �owing a rough sketch, subject to an implicit surface
constraint.

0

1

2

3

4

5

6

7

8

9
10

11

12
13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

3637

38

39

40
41

42

43

44

45

46

47

48

49

50

51

52

5354
5556

57

58
59

60

61

62

63

64

65

66

67

68
69

70

71

72

73

74

75
76

77

78

79

80

81

82

83

84

85

86 87

88
89

90

91
92

93

94
95

96
97

98

99

0

1

2 3

4

5
6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

26

27

28
29 30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49
50

51
52

53
545556575859

60
61

62
63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
84

85
86

87 88 89 90 91 92
93

94
95

96
97

98

99

0

1

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40
41

42

43

44

45

46

47

48

49

50

5152

53

54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73 74

75

76
77

78

79

80

81

82
83

84

85

86

87

88

89

90

91

92

93

94

95

96

97
98

99

neato

twopi

ours

Figure 3.22: Traditional 2D graph drawing algorithms based on nodal proximity may cause
edges to cross (left) or position nodes extremely close together (center); these layouts were
produced by the popular Graphviz library [42]. By treating edges as repulsive curves, we can
obtain graph drawings that are both more compact and more legible (right).

53

Figure 3.23: Isometric embedding: by jittering 2D drawings of non-planar graphs (which neces-
sarily have crossings), curve repulsion with length constraints yields nicely spaced embeddings
in R3 with prescribed edge lengths.

initial initialoptimized

optimized

Figure 3.24: Left: a crude initial topology for a synthetic vascular network (left) is optimized to
achieve more uniform delivery of nutrients throughout a volume. Right: plotting the maximum
intersection-free thickness helps to visualize the improvement in uniformity.

Figure 3.25: As with Bézier curves, we can also control curve tangents at both interior and
endpoints. Here we �ow a polygonal curve (left), to a smooth interpolant with �xed points
(red), and �xed points and tangents (blue).

54

k-curves ours

Figure 3.26: Standard curve interpolation methods in 2D drawing programs can cause curves
to self-intersect (center), even when the control polygon (left) does not. By starting from the
control polygon and constraining the control points, we obtain a smooth, non-intersecting in-
terpolant (right).

tim
e

initial configuration

target configuration

Figure 3.27: Top-left: In this path planning scenario, an initial trajectory brings the four agents
dangerously close together. Bottom-left: By treating trajectories as curves in space-time, our
system provides solutions that maximally avoid intersections, making them more robust to
control errors. Right: Finding 2D trajectories is equivalent to optimizing a 3D braid with �xed
endpoints constrained to an extrusion of the given environment.

55

input

input output

output

Figure 3.28: Encouraging curve tangents to align with a given vector �eld improve the quality
of streamline visualization. Here, a random set of curve segments (top) aligns itself with a
rotational vector �eld; we can also optimize randomly sampled streamlines (bottom) to improve
their spacing.

56

Chapter 4

Repulsive Surfaces

When working with surfaces, intersections and self-intersections are just as much (if not more)
of a consideration as they are on curves. Intersections can have serious implications when the
surfaces in question represent physical membranes (e.g. in biological simulation), boundaries
of solid objects (e.g. for digital manufacturing), or certain mathematical objects (e.g. isotopy
classes of embeddings). It is therefore surprising that, to date, there is still no known general-
purpose algorithm for preventing non-local intersections on embedded surfaces. In this chapter,
we aim to �ll this void by presenting an algorithm for intersection-free optimization of surfaces
based on the tangent-point energy, which can be easily incorporated into variational surface
modeling frameworks. In particular, we develop

• the �rst discretization of tangent-point energy for surfaces,

• a novel preconditioner that avoids a multigrid hierarchy,

• a hierarchical solver that scales to large meshes, and

• a framework for handling auxiliary constraints and penalties.

We also perform a preliminary investigation of applications in geometric modeling, mathemat-
ical visualization, and geometry processing. Notably, although one can prove that minimizers
of the tangent-point energy exist [67, Theorem 2], these proofs are non-constructive. Since we
provide the �rst discretization and optimization procedure for the tangent-point energy on sur-
faces, we obtain the �rst glimpse (experimentally) at what some of these surfaces might actually
look like.

After a brief review of related work (Section 4.1), we will begin by de�ning our problem in
the smooth setting (Section 4.2), followed by a novel discretization of the tangent-point energy
and a basic numerical strategy for minimizing it subject to constraints (Section 4.3). We then
signi�cantly accelerate this strategy in two distinct ways. First, we choose an inner product in
the smooth setting that vastly improves the convergence of the gradient �ow (Section 4.2.4).
Second, in the discrete setting, we propose a preconditioner that dramatically reduces the cost

57

of solving for the descent step (Section 4.5). We also accelerate evaluation of the energy and its
derivatives, as well as dense matrix-vector products, using hierarchical acceleration (Section 4.4,
Section 4.5). We then consider dynamic remeshing (Section 4.6) and auxiliary penalties and con-
straints (Section 4.7), which enable a variety of potential applications (Section 4.9); Section 4.8
provides numerical validation.

4.1 Related Work

The tangent-point energy is an example of a geometric functional, which assigns a real-valued
score (f) to each immersion f ∶ M → ℝn of a surface M . Such functionals serve as regular-
izers in many geometric problems, helping to de�ne a unique solution, or simply making the
geometry “nicer” in some sense. For instance, in geometric modeling they are used to smoothly
interpolate given boundary data [26], in mathematical visualization they can be used to endow
an abstract surface with a concrete geometry [30], and in digital geometry processing they are
used for tasks such as hole �lling [32] or denoising of measured data [43].

4.1.1 Curvature Functionals

A basic functional for surfaces is total surface area; gradient descent on total area leads to
mean curvature �ow, which has been used for surface denoising [36] but can develop non-
smooth singularities or pinch-o� artifacts. Though e�orts have been made to desingularize this
�ow [64], sharp peaks and cusps are ultimately impossible to detect from area alone. For this
reason, functionals used in geometric modeling typically incorporate curvature information—
most prominently the Willmore energy W (f) ∶= ∫M (H

2 − K) dA, where H and K are the mean
and Gaussian curvatures, respectively. Signi�cant work has focused on numerical optimization
of Willmore energy [16, 33, 38, 102], but since this energy is Möbius invariant, it e�ectively
provides a notion of regularity for surfaces in the 3-sphere S3, rather than Euclidean ℝ3. In
the context of geometric modeling, this means that even minimizers of Willmore energy can
have poor distributions of curvature—see for example Figure 4.3, bottom left. Though further
energies have been developed to address such issues [63, 83], none of these energies avoid
intersections.

4.1.2 Repulsive Forces

Collision response forces from physical simulation [23] and contact mechanics [112] can be
used to locally resolve contact, but do not help to guide shape optimization toward a state that
is far from interpenetration. Moreover, whereas level set representations of geometry ensure
(by construction) that surfaces have no self-intersections, the raison d’être of such methods is
to allow the surface topology to change, rather than to preserve it [86]. We instead consider

58

input

Coulomb tangent-point

Figure 4.1: Ad-hoc schemes such as vertex-vertex Coulomb forces do not correspond to a
meaningful smooth energy, and can be numerically unstable. Here we minimize Coulomb and
tangent-point energies subject to a �xed area constraint.

“all-pairs” energies of the form

(f) = ∫
M×M

k(x, y) dxf dyf ,

where dxf denotes the area element induced by f , and the kernel k ∶ M ×M → ℝ is designed
to discourage self-contact.

We �rst review some natural possibilities for such energies. The �rst possibility one might
consider is the Coulomb-like potential

kCoulomb(x, y) =
1

|f (x) − f (y)|�

for some fallo� parameter � > 0; on a triangle mesh, this amounts to just penalizing the distance
between all pairs of vertices. As noted in Section 2.1.1, however, the resulting energy is too
weak to prevent intersections for � < 2, and yet ill-de�ned in the continuum limit for � ≥
1. Numerically, ad-hoc vertex-vertex penalties are hence unstable and highly unpredictable
(Figure 4.1).

The Möbius energy (Section 2.1.2) regularizes the Coulomb potential by subtracting the contri-
bution of points that are nearby on the surface:

kMöbius(x, y) =
1

|f (x) − f (y)|2
−

1
d(x, y)2

.

While this energy is well-de�ned and strong enough to prevent intersections (for suitable �), it

59

Figure 4.2: For each pair of points x, y on the surface, the tangent-point energy considers the
radius r(x, y) of the smallest sphere tangent to x and passing through y , penalizing 1/r(x, y).
Hence, the contribution will be very large for points y close in space but distant along the
surface—and small for points z nearby along the surface, where the radius is huge.

has two signi�cant drawbacks for geometric modeling. First, like Willmore energy, Möbius en-
ergy is invariant to Möbius transformations—leading in this case not only to uneven curvature
([70, Figure 5]), but also “tight spots” where points distant in S3 become arbitrarily close when
projected into ℝ3 (Figure 2.1). Second, the geodesic distance d(x, y), though easy to compute
for curves, is prohibitively expensive to compute for all pairs of points on a surface—much less
to di�erentiate with respect to motions of the surface.

4.1.3 Tangent-Point Energy

For all these reasons (as also outlined in Section 2.1), we are prompted to instead consider
the tangent-point energy introduced for curves by [25] and extended to higher dimensions by
[106]. On surfaces as on curves, for each pair of points x, y ∈ M , this energy considers the
radius r(x, y) of the smallest sphere tangent to f (x) and passing through f (y) (Figure 4.2). This
energy has several features that make it a prime candidate for repulsive surface optimization,
namely:

• It provides an in�nite barrier to self-intersection [106].

• Like Willmore energy, it penalizes bending (Section 4.2.1), preventing singularities and
cusps.

• Unlike Willmore and Möbius energy, it is neither Möbius nor scale invariant, helping to
evenly distribute curvature and avoid tight spots.

• Unlike Möbius energy it does not require geodesic distances, and instead depends only
on quantities like surface normals N and extrinsic distances |f (x) − f (y)| that are cheap

60

Willmore

minimizer

self-intersection

minimizer

Tangent-Point

initial

Figure 4.3: Willmore energy does nothing to prevent intersections (in red), and can have min-
imizers that asymmetrically distribute curvature over the surface. Right: tangent-point energy
avoids intersections and tends to provide a more uniform curvature distribution.

to compute and easy to di�erentiate.

However, there are still two signi�cant challenges in applying tangent-point energy to practical
surface optimization, namely, (i) picking an inner product that accelerates optimization and (ii)
e�ciently inverting this inner product.

4.1.4 Accelerating Optimization

To integrate a parabolic gradient �ow of order k with average node spacing ℎ, one must typi-
cally take time steps of size around O(1/ℎk), which is prohibitively expensive for �ne meshes.
However, one can e�ectively transform gradient descent into a 0th-order equation by de�ning
the gradient with respect to a di�erent inner product—mitigating the time step restriction. This
idea of Sobolev gradients has long been applied to surface �ows [41, 78, 92, 95, 99, 102], and more
recently to elastic energies in geometry processing [31, 68, 120]. However, all this work consid-
ers energies with integer-order di�erentials, whereas the tangent point energy has a di�erential
of fractional order, as discussed in Chapter 2. The fractional inner product hence performs far
better than even integer Sobolev schemes, especially for �nely-tessellated or highly-knotted
curves. We adopt the same basic strategy, adapting it to surfaces.

4.1.5 E�cient Evaluation

A second challenge is that there is a dramatic increase in problem size when going from curves
to surfaces: rather than integrate an energy over all O(n2) pairs of elements on a curve, we now
must consider O(n4) element pairs on a surface (where n ≈ 1/ℎ). Standard hierarchical Barnes-
Hut approximation is still su�cient to approximate the energy and its di�erential (Section 4.4),
but we must also invert the fractional Sobolev inner product, which is now a dense matrix with
O(n4) entires. In Section 3.4.3, we used a multigrid solver based on a simple multiresolution
curve hierarchy, but building a multiresolution surface mesh hierarchy on each optimization

61

L2
co

ar
se

input Hs (ours) AQP BCQNH1 L-BFGSH2H1
m

ed
iu

m
fin

e

result a�er same number of optimization steps

Figure 4.4: Unlike other schemes, our fractional preconditioner does not su�er from a mesh-
dependent time step restriction. Here for example we take 300 optimization steps of maximum
size (determined by line search) for each scheme. As resolution increases, all methods but H s

make slower and slower progress. Note also that schemes based on H 1 preconditioning (H 1, H 1

L-BFGS, AQP, BCQN) quickly eliminate high-frequency details but are slower to smooth the
bulk shape; conversely, H 2 quickly smooths out the bulk shape but �ne details remain. Using
H s for 1 < s < 2 nicely handles both local and global features.

step is far more di�cult and expensive. Our key insight is that the inverse of our fractional
operator can be approximated by the inverse of two ordinary (integer-order) Laplace operators,
together with forward application of a lower-order fractional derivative (Section 4.5.2). Since
this decomposition is only approximate in the discrete setting, we use it to precondition an
iterative linear solver (GMRES) that does not require a mesh hierarchy.

4.2 Smooth Formulation

In this section we de�ne the smooth tangent-point energy p , and give some remarks on the
order of derivatives appearing in its di�erential dp . Determining the order of the di�erential
is essential to accelerating the gradient �ow d

dt f = −d
p(f), since it enables us to de�ne a new

inner product (in Section 4.2.4) with respect to which the gradient �ow e�ectively becomes a
0th-order equation. Hence, the numerical integrator developed in Section 4.3 will be able to
take dramatically larger time steps, of a size that does not depend strongly on mesh resolution
(Figure 4.4).

4.2.1 Energy

As discussed in Section 4.1.3, we can de�ne a repulsive energy by considering the tangent-point
radius rf (x, y), de�ned as the radius of the smallest sphere tangent to f (x) and passing through

62

f (y) (Figure 4.2). Letting Nf (x) be the unit normal at x , this radius can be computed as

rf (x, y) =
|f (x) − f (y)|2

2|Pf (x) (f (x) − f (y))|
, (4.1)

where Pf (x) = Nf (x)Nf (x)⊤ denotes orthogonal projector onto the normal space at x . Note that
expressing rf via the projector avoids picking a sign for the normal, which will be useful in Sec-
tion 4.5.1 (it is also valid for submanifolds of arbitrary dimension and codimension). Omitting
the constant factor 2, the tangent-point kernel (due to Buck and Orlo� [25]) is then given by

kf ,p(x, y) ∶=
2p

rf (x, y)p
=

|Pf (x) (f (x) − f (y))|p

|f (x) − f (y)|2p
(4.2)

for some p > 0, and hence the energy itself is

p(f) ∶= ∬
M2
kf ,p(x, y) dxf dyf . (4.3)

While in principle it is possible to allow the exponents in the numerator and denominator to
vary independently [15], we use exponents p, 2p (as above), which simpli�es analysis. Note
that, because kf ,p has units m−p (in meters) and p is a double integral over an n-dimensional
manifold, p has units m2n−p . Therefore, p > 2n is required for the energy to be truly repulsive
(i.e. to have units corresponding to inverse meters); otherwise, the energy could be reduced to
0 by simply shrinking the domain to a single point. As we deal with surfaces here (n = 2), p > 4
is su�cient. Unless otherwise noted, we use p = 6 for all examples in this paper.

4.2.2 Gradient Flow

Attempting to perform standard L2 gradient descent on the tangent-point energy yields a �ow

d
dt
f = −dp(f).

This �ow exhibits poor convergence due to the presence of high-order spatial derivatives on
the right-hand side, which even aggressive line search or general-purpose preconditioning (e.g.
L-BFGS) cannot alleviate; see Figure 4.4. However, we can obtain a di�erent descent strategy
by de�ning the gradient with respect to a di�erent inner product. In particular, if A is the linear
operator de�ning the inner product, the descent equation becomes

d
dt
f = −A−1dp(f). (4.4)

An optimal choice of A will match the order of the di�erential, so that the right hand side no
longer involves any spatial derivatives (hence avoiding a mesh-based time step restriction). We
�rst establish the order of the di�erential dp in the surface case (Section 4.2.3), then de�ne a

63

ALGORITHM 2: Assembly of the exact discrete fractional operator L�
initialize L� ← 0
forall distinct pairs of faces S, T do

forall vertices i adjacent to S or T do
forall vertices j adjacent to S or T do

L�ij ← L�ij +
(�̄i (S)−�̄i (T))(�̄j (S)−�̄j (T))

|Xf (S)−Xf (T)|2�+2
af (S) af (T)

end
end

end
return L�

fractional Sobolev inner product that matches this order (Section 4.2.2).

4.2.3 Order of the Di�erential

Though originally de�ned for curves, the tangent-point energy p can be formulated for a
quite broad class of n-dimensional sets � ⊂ ℝm “with tangent planes,” that need not even be
manifolds [106]. In the case of 2-dimensional surfaces, one can argue (as discussed below) that
dp is a nonlocal, nonlinear di�erential operator of fractional order 2(2−2/p) ∈]3, 4[, rather than
integer order. This distinguishes the tangent-point energy from standard geometric energies
like Willmore, and it is why we have to develop special tools for it.

In more detail: Strzelecki and von der Mosel [106] show that if tangent-point energy is �nite
for some n-dimensional � ⊂ ℝm, then � must be an embedded submanifold of Hölder class C1,� ,
where � = 2−2n/p. Intuitively: it must be free of self-intersections, and also fairly regular. This
result is improved by [14], who establishes that p(�) is �nite if and only if � is an embedded
submanifold of fractional Sobolev class W s,p , where s = 2 − n/p. In particular, this implies that
� can be expressed as an embedding f ∈ W s,p(M ;ℝm) for some smooth manifold M . For n = 2
we have s ∈]3/2, 2[, so we inevitably have to deal with fractional Sobolev spaces. Knowing the
natural habitat of p is key because it allows for the following observation: the di�erential dp

is a mapping from W s,p to the dual space (W s,p)∗ = W −s,p . Hence it is plausible that dp reduces
the di�erentiability of its argument by 2s = 2(2 − 2/p), as claimed above.

4.2.4 Inner Product

Standard (integer) Sobolev inner products are expressed via the Laplacian Δ. We likewise con-
sider the fractional Laplacian of order 0 < 2� < 2 on ℝn, which can be expressed in integral
form up to a constant factor as

⟨(−Δ)�u, v⟩L2 = ∬
ℝn

(u(x) − u(y)) (v(x) − v(y))
|x − y |2�+n

dx dy (4.5)

64

for su�ciently smooth functions u, v ∶ ℝn → ℝ [71]. While this formula only relates to ℝn,
we can obtain an analogous operator L� of fractional order 2� on functions u, v ∶ M → ℝ by
mimicking this expression on the n-dimensional manifold M :

⟨L�u, v⟩L2 = ∬
M2

(u(x) − u(y)) (v(x) − v(y))
|f (x) − f (y)|2�+n

dxf dyf . (4.6)

Note that, for p > 2n, the order of dp is 2s = 2(2 − n/p) > 3, which is outside the bounds
0 < 2� < 2. We can “boost” the order of this operator by introducing a �rst order derivative
operator f in the numerator, yielding a “high-order” operator

⟨Bu, v⟩L2 =∬
M2

⟨fu(x) −fu(y),fv(x) −fv(y)⟩
|f (x) − f (y)|2�+n

dxf dyf . (4.7)

More precisely, we use fu(x) ∶= du(x) df (x)† ∈ End(ℝm), where df (x)† ∈ Hom(ℝm; TxM)
denotes the Moore-Penrose pseudoinverse of df (x). If we now let � = s − 1, then the operator
B achieves the desired order 2s.

Low order term. Similarly to the case of curves, we can get even better preconditioning in
situations with close contact by adding an additional term of lower order, which in our case
translates to

⟨B0u, v⟩L2 =∬
M2

(u(x) − u(y))(v(x) − v(y))
|f (x) − f (y)|2�+n

kf ,2(x, y)dxf dyf . (4.8)

The inclusion of the tangent-point kernel kf ,2(x, y) e�ectively distorts lengths in regions of high
energy: as the local energy increases, so too does the apparent length induced by the inner
product. As a result, self-intersecting con�gurations, having in�nite energy, are so distant (if
not in�nitely so) that they are unlikely to be reached within a �nite time. The kernel kf ,2(x, y)
is chosen here so that B and B0 have the same units and thus behave similarly under scaling.

The overall operator A = B + B0 will de�ne the inner product we consider throughout this
work. The order of this inner product matches that of the Sobolev space W s,2 = H s , so we will
occasionally use the term H s to refer to our preconditioner.

4.3 Discretization

Here, we present discretizations of all components needed for our surface optimization scheme.
The basic idea is to minimize tangent-point energy by following the gradient �ow, precondi-
tioned by our fractional inner product. In practice we will also want to incorporate a variety
of constraints, which we do by both projecting the �ow direction onto the tangent space of the
constraint manifold, and by then projecting the surface itself onto this manifold. The overall
algorithm for each descent step can be summarized as:

1. Assemble the derivative d̂p(f) of the energy (Section 4.3.1).

65

2. Construct the fractional operator A = B + B0 (Section 4.3.2).

3. Solve Equation 4.14 to obtain the descent direction x.

4. Take a step in the direction of x using Armijo line search.

5. Project the resulting embedding onto the constraint manifold of Φ (Section 4.3.3).

The initial algorithm outlined in this section is of course quite ine�cient; we will introduce
accelerations in subsequent sections. For the �nal accelerated algorithm, see Section 4.5.4.

4.3.1 Discrete Energy

On a discrete triangle mesh M = (V , E, F) with embedding f ∶ V → ℝ3, we evaluate the double
integral of Equation 4.3 using simple mid-point quadrature on all faces. We de�ne the discrete
tangent-point kernel on a pair of faces S, T as

Kf ,p(S, T) =
|Pf (S) (Xf (S) − Xf (T))|p

|Xf (S) − Xf (T)|2p
, (4.9)

whereXf (S) denotes the barycenter of face S under embedding f . The full energy is then de�ned
as a double sum over faces

̂p(f) = ∑
S∈F

∑
T∈F

Kf ,p(S, T) af (S) af (T), (4.10)

where af (S) denotes the area of face S under embedding f . The di�erential d̂p(f) of this energy
with respect to f ∈ ℝ3|V | can be obtained via the chain rule.

4.3.2 Discrete Inner Product

The fractional operator L� can be discretized as a |V | × |V | matrix with entries obtained from
the right-hand side of Equation 4.6. The rows and columns of L� are indexed by vertices, and
each entry can naïvely be computed as

L�ij = ∑
S∈F

∑
T∈F

S≠T

(�̄i(S) − �̄i(T)) (�̄j(S) − �̄j(T))
|Xf (S) − Xf (T)|2�+2

af (S) af (T), (4.11)

where �i denotes the piecewise linear hat-function centered at vertex i, and where �̄i(S) denotes
its evaluation on the barycenter of S, i.e. �̄i(S) is 1/3 if vertex i is adjacent to face S and 0
otherwise. Assembling L� using Equation 4.11 would require quartic complexity; however, the
integrand vanishes for most pairs S, T , so the assembly can be done in quadratic time by only
considering nonzero contributions (Algorithm 2).

66

High- and Low-Order Terms

The high-order matrix B of our inner product (Equation 4.7) can be assembled using the same
procedure as in Algorithm 2, simply using the summand

⟨Df�i(S) − Df�i(T),Df�j(S) − Df�j(T)⟩
|Xf (S) − Xf (T)|2�+2

af (S) af (T) (4.12)

in place of the one in Equation 4.11. Here Df is a discretization of f . Intuitively, Dfu(S) is the
derivative of the function u = ∑i∈V ui �i within the triangle S, and can be evaluated as

−2 af (S)−1(Nf (S) × (uiejk + ujeki + ukeij))
⊤
,

where i, j, k are the vertices of triangle S and where ejk , eki , and eij) denote the unit edge vector
of S. The low-order matrix B0 can be assembled likewise with the summand

(�̄i(S) − �̄i(T)) (�̄j(S) − �̄j(T))
|Xf (S) − Xf (T)|2�+2

Kf ,2(S, T) af (S) af (T) (4.13)

using the discrete tangent-point kernel Kf ,2(S, T) from Equation 4.9. We can then assemble
A = B+B0 by assembling both terms. The matrixA is |V |×|V | and thus applies to scalar functions,
but we can construct a corresponding operatorA3 on vector-valued functions u, v ∶ V → ℝ3 by
replacing each entry Aij with the 3 × 3 block Aij I3×3, thus obtaining a matrix of size 3 |V |× 3 |V |.

4.3.3 Constraints

Gradient Projection

Like the integer vector Laplacian, our operator A3 possesses a nullspace consisting of uniform
translations. A simple way to eliminate this nullspace is to de�ne a constraint function Φ ∶
ℝ3|V | → ℝk and require (with some abuse of notation) that Φ(f) = 0. The constrained descent
direction x can then be obtained by solving the saddle point problem

[
A3 dΦ(f)⊤

dΦ(f) 0] [
x
�] = [

−d̂p(f)
0] , (4.14)

where dΦ(f) denotes the Jacobian ofΦ. Assuming a suitableΦ is chosen, this saddle point matrix
is invertible, and the result will be tangent to the constraint manifold {f ∣ Φ(f) = 0}. Beyond
just eliminating nullspaces, such constraints can also be used to achieve design objectives such
as control of areas or volumes.

67

Corrective Projection

The descent direction x obtained in Section 4.3.3 is tangent to the constraint manifold, but this
does not prevent the embedding f itself from drifting away from the constraint manifold. To
counteract this, after we have found a feasible step size � > 0 via line search, we project the
current state f + � x back onto the constraint manifold of Φ. We reuse the left-hand side of
Equation 4.14 and solve

[
A3 dΦ(f)⊤

dΦ(f) 0] [
h
�] = [

0
−Φ(f + � x)] (4.15)

to obtain a Newton step h, which we add to the updated embedding f + � x. With respect to the
metric encoded by A3, h is the least-norm solution of the linear equation dΦ(f) h = −Φ(f). This
correction can be repeated several times if the constraint violation is not su�ciently close to 0.
For the constraints we explored, however, a single step was always su�cient.

4.4 Fast Energy and Derivative Evaluation

The naïve algorithm of Section 4.3 is bottlenecked by several operations of at least quadratic
complexity. The �rst such bottleneck is the evaluation of the energy and its derivative, which
requires iteration over all pairs of elements. We thus use a Barnes-Hut hierarchical approxima-
tion [9] to evaluate the tangent-point energy ̂p and its derivative d̂p .

4.4.1 Approximate Energy

The kernel Kf ,p(S, T) (Equation 4.9) only requires three quantities to evaluate: the barycenters
of S and T , and the normal projector of S. We can make this dependence clearer by rewriting
it as Kf ,p(S, T) = Kp(Xf (S), Pf (S);Xf (T)), with

Kp(X, P ; Y) ∶=
|P (X − Y)|p

|X − Y |2p
.

We can then hierarchically approximate the all-pairs interactions ofKp . We construct a bounding-
volume hierarchy (BVH) on the face set F , where each node  computes the total area a , the
barycenter X , and the average projector P (corresponding to the average normal) of its ele-
ments. To reduce the number of nodes, we stop splitting leaf nodes once they have l or fewer
elements (l = 8 in our experiments). For a given � ≥ 0, we say that  is admissible with respect
to S if (1) it is a leaf node or if (2) it satis�es

max(r(S), r()) < dist(S, conv()).

Here r(S), r() are the radii of the triangle S and the node , respectively, both measured from
their barycenters; dist denotes the minimal Euclidean distance between two sets; and conv()

68

denotes the convex hull of . In practice, we approximate these quantities by replacing the
node  by its axis-aligned bounding boxes, leading to a slightly stricter admissability condition.
Then, adm(S) is the set of all admissible nodes with respect to S with no admissible ancestors.
The energy evaluation then becomes the sum

̃p(f) = ∑
S∈F

∑
∈adm(S)

Kp(Xf (S), Pf (S);X) af (S) a . (4.16)

The separation parameter � controls the approximation quality; the higher � is, the faster the
computation, but the less accurate the result. For � = 0, the sum degenerates to an all-pairs
exact computation. Unless otherwise noted, we use � = 0.5 for all experiments.

4.4.2 Approximate Derivative

Computing an approximate derivative with Barnes-Hut is not entirely analogous to computing
the energy. For each vertex v ∈ V , we evaluate the sum

)̃v̂p(f) = ∑
S∈F (v)

∑
∈adm(S)

ℎf (S,)

where F (v) denotes the set of faces containing v, and where

ℎf (S,) =)v [Kp (Xf (S), Pf (S);X) af (S) a] +)v [Kp (X , P ;Xf (S)) af (S) a]

This approximates both the forward and reverse terms that would be di�erentiated by v in an
exact computation. Note that the outer sum over all S ∈ F (v) for both energy and derivative
evaluations can be evaluated as a parallel reduction without modi�cation.

4.5 Iterative Linear Solver

An even more signi�cant bottleneck than the energy is the dense saddle point problem of Equa-
tion 4.14. Rather than solving this problem via dense matrix inversion, we will solve it instead
using GMRES, an iterative method. In general, e�cient iterative methods require two key in-
gredients: fast matrix-vector products, and e�ective preconditioners. Here, we will describe
methods for both.

4.5.1 Hierarchical Matrices

We use hierarchical matrices [53] to perform fast multiplication with A without explicitly as-
sembling the matrix. In this section, we present the special case of rank-1 compression of kernel
matrices, while noting that the original method can also perform higher-rank approximations.
In our setting, a kernel matrix H is a matrix of size |F | × |F | whose entries are de�ned by

HST = (1 − �ST) ℎ(Xf (S), Pf (S);Xf (T), Pf (S)),

69

where ℎ ∶ (ℝm ×End(ℝm)) × (ℝm ×End(ℝm))→ ℝ is a suitable kernel function. To motivate this
approach, we �rst reduce the actions of the operators L� , B, and B0 to the multiplication with
certain kernel matrices.

Applying the operator L�

An elementary computation shows (see Appendix A.1) that the action of the discrete linear
operator L� on a vector v ∈ ℝ|V | can be written as

L�v = 2U⊤[diag (diag(af)−1H af) − H]U v.

Here af is the |F |-vector of face areas; U is the |F | × |V |-matrix that averages values on vertices
onto faces and multiplies with the face areas; and H is the kernel matrix of size |F | × |F | to the
singular kernel ℎ(X, P ; Y , Q) = |X − Y |−(2�+2). U is sparse, so we just need an e�cient product
with H to evaluate the full product with L� .

Applying the High-Order Term

To evaluate a matrix-vector product with A = B + B0, it su�ces to evaluate B and B0 separately.
This can be done in a similar fashion as for L� . For the higher order term B, we have the identity

Bv = 2V⊤[diag (diag(af)−1H af) − H]V v,

where V = diag(af)Df with the discrete derivative operator Df described in Section 4.3.2 and
where the kernel ℎ of the kernel matrix H is given by ℎ(X, P ; Y , Q) = |X − Y |−(2(s−1)+2).

Applying the Low-Order Term

Likewise, we can write the action of B0 as

B0v = 2V⊤[diag (diag(af)−1H af) − H]V v,

where the kernel ℎ of the kernel matrix H is given by

ℎ(X, P ; Y , Q) =
k2(X, P ; Y) + k2(Y , Q;X)

2|X − Y |2(s−1)+2
.

Block Cluster Tree

In order to compress these kernel matrices, we reuse the BVH from Section 4.4, but addition-
ally compute the average projector P ∶= a−1 ∑S∈ af (S) Pf (S) for each node . From this, we
construct a block cluster tree, whose nodes (termed block clusters) consist of pairs of BVH nodes
(termed clusters in the following). For a given separation parameter � ≥ 0, we say that two BVH

70

Figure 4.5: A block decomposition of a kernel matrix H induced by a block cluster tree. Admis-
sible blocks are shown in green, while inadmissible blocks are in red.

clusters  and  are an separated pair if

max (r(), r()) ≤ � dist(conv(), conv()).

Here again, r(), r() are the radii of the nodes ,  as measured from their barycenters. The
parameter � controls the accuracy of the approximation; it will be discussed further in the next
section. Then, denoting the BVH root by , we construct the block cluster tree by starting with
the single pair (,), and iteratively splitting nonseparated nodes (,) into the Cartesian
products of their constituents’ children until all leaf nodes are either separated or cannot be
split any further. In practice, the tree structure is not important to maintain; only the lists of
leaf nodes matter. We refer to the separated leaf nodes of the block cluster tree as admissible
blocks and to the others as inadmissible blocks; Figure 4.5 illustrates the decomposition of the
full matrix into these blocks.

Hierarchical Multiplication

The block cluster tree allows us to perform approximate multiplication with a kernel matrix H
as follows. Every pair of BVH clusters (,) corresponds to a block of H with rows indexed
by  and columns by  . Let H denote this matrix block and let x and 1 denote the slices
of x ∈ ℝ|F | and of the all-ones vector indexed by , respectively. Then, for all leaf blocks (,),

71

we compute the product y = H x in two steps:

1. If (,) is inadmissible, then we multiply exactly:

y ← y + H x .

2. If (,) is admissible, we employ rank-one approximation:

y ← y + 1 ℎ(X , P ;X , P) 1⊤ x .

Here, we can see more clearly the e�ect of � . For � = 0, all blocks are considered inadmissible,
and the action of H is evaluated exactly. For � > 0, the larger the value, the more blocks will
be considered admissible and thus multiplied using the fast approximation in Step 2, leading
to faster evaluation time – but also higher error, analogous to the � parameter for Barnes-Hut.
For our experiments, we found � = 0.5 to be a broadly acceptable value. Note that, while a
straightforward implementation of these two steps is su�cient to evaluate the product, a much
faster implementation can be obtained by employing multipole methods; see Appendix A.2 for
details.

4.5.2 Preconditioner

While we can now evaluate matrix-vector products with A e�ciently, this alone does not gen-
erally allow us to e�ciently solve Ax = b. We further require a preconditioner whose action can
be computed e�ciently. As we never construct A, classical preconditioners such as incomplete
Cholesky factorizations or even diag(A) are unusuable. Instead, we note that our operator A is
closely related to the fractional Laplacian (−ΔM)s , and has the same order 2s. Assembling (−ΔM)s
is infeasible, but we can obtain a cheap approximation of its inverse (−ΔM)−s by factoring it as

(−ΔM)−s = (−ΔM)−1(−ΔM)2−s(−ΔM)−1,

where the two occurrences of the integer Laplace-Beltrami operator (−ΔM) can then be replaced
by the sparse cotan-weighted Laplace-Beltrami operator on meshes. What remains is a forward
application of the fractional Laplacian (−ΔM)2−s , to which we do not have direct access. Fortu-
nately, since 0 < 2 − s < 2 holds, we can replace (−ΔM)2−s with L2−s (as per Section 4.2.4), whose
action can e�ciently approximated by Section 4.5.1. Thus, if we �rst pre-factorize (−ΔM), we
can apply our preconditioner

Ã−1 ∶= (−ΔM)−1L2−s(−ΔM)−1

with just two back-substitutions and one hierarchical matrix-vector product per application, all
of which can be evaluated reasonably e�ciently. Note that, despite having the same order as
our operatorA (and therefore our energy), Ã−1 is not suitable for direct use as the inner product:
as a direct approximation of the inverse operator (as opposed to the forward operator), it cannot

72

be added with other inner product terms such as those of Equation 4.8 or Section 4.7.3. As a
preconditioner for GMRES, however, it is highly e�ective, allowing us to invert A (plus any
auxiliary terms) e�ciently.

4.5.3 Schur Complement

While we are now capable of solving the unconstrained problemAx = b iteratively, this does not
immediately allow us to solve the saddle point problem (Section 4.3.3). While the method can be
applied, we empirically found that it exhibited poor convergence when used on the constrained
system. We instead use the Schur complement [119] to handle the additional rows. Let M be the
saddle point matrix:

M ∶= [
A3 dΦ⊤

dΦ 0]

Then, the Schur complement of M with respect to A3 is given by

(M/A) = −dΦ (A−13 dΦ
⊤) (4.17)

Note that it is useful to cache A−13 dΦ⊤ here for future reuse. Expressions for each block of M−1

are then given as

[
A−13 + (A−13 dΦ⊤)(M/A3)−1dΦA−13 −(A−13 dΦ⊤)(M/A)−1

−(M/A)−1(A−13 dΦ⊤)
⊤

(M/A)−1]

A−13 can be applied using the iterative method just outlined; a product with A3 is equivalent to
three separate products with A. The complement M/A is dense, but it has dimensions k × k,
corresponding to the number of scalar constraints. As long as k is a small constant, (M/A)−1
can be computed quickly. Thus, all blocks of M−1 can be computed without having to invert a
large matrix. Further, to obtain the constrained descent direction x, we only require the top-left
block. Let g ∶= d̂p(f); then, we can compute the descent direction by directly applying the
top-left block to x, producing

x = A−13 g + (A−13 dΦ
⊤)(M/A)−1dΦ (A−13 g). (4.18)

Equation 4.17 requires one application A−13 per row of dΦ. Equation 4.18 contains three occur-
rences of A−13 , but A−13 g can be reused in both places where it appears, and A−13 dΦ⊤ can be reused
from its earlier computation in Equation 4.17. Thus, the method requires k + 1 iterative solves,
where k is the number of constraints. In our examples, we never have k > 2, so the cost remains
acceptable.

73

Corrective Projection

We similarly use the Schur complement to solve Equation 4.15 for the corrective step h. Only
the top-right block of the Schur complement is needed, giving the expression

h = −(A−13 dΦ
⊤)(M/A)−1(−Φ(f)). (4.19)

(M/A) does not need to be recomputed, and A−13 dΦ⊤ can again be reused. Thus, constraint
projection incurs no signi�cant costs.

4.5.4 Accelerated Algorithm Overview

The accelerated algorithm is as follows:

1. Assemble the (approximate) derivative d̂p(f) of the energy using Barnes-Hut (Section 4.4).

2. Construct a BVH that partitions the faces of the mesh, and use it to create a block cluster
tree (Section 4.5.1).

3. Use the Schur complement to solve the constrained saddle point problem (Equation 4.14).

(a) Evaluate products with (A3)−1 by using a matrix-free iterative method (e.g. GMRES),
with the preconditioner from Section 4.5.2, and an initial guess of 0.

(b) Within the iterative method, evaluate products with A using the block cluster tree
(Section 4.5.1, Section 4.5.1).

4. Take a step in the direction of x using standard line search.

5. Reuse the Schur complement to project the resulting embedding onto the constraint man-
ifold of Φ (Section 4.5.3).

If no constraints are imposed, then the algorithm can be simpli�ed: step 3 can be replaced by a
single iterative solve A3x = b, and step 5 can be omitted entirely.

4.6 Dynamic Remeshing

Minimizing the tangent-point energy often induces large surface deformations that degrade
triangle inequality. We therefore use a dynamic remeshing scheme similar to the approach
of Chen and Holst [28]. The exact algorithm we use is as follows:

1. Edges with length greater than 3L0/2 are split and edges with length smaller than L0/2 are
collapsed, unless this operation would result in triangle foldover.

2. For N iterations:

(a) All edges that violate the Delaunay condition are �ipped until no such �ippable
edges can be found.

74

input
without

remeshing
with

remeshing

Figure 4.6: Adaptive remeshing not only improves element quality—it also helps to avoid local
minima where the surface gets “stuck.”

(b) Vertex positions are smoothed by computing a displacement vector from neighbor-
ing triangles

ui = �
∑S∈F (i) af (S)(cf (S) − f (i))

∑S∈F (i) af (S)
.

Here F (i) denotes the set of faces containing vertex i, cf (S) is the circumcenter of the
triangle S, and � < 1 is a constant. This displacement is projected onto the tangent
space of the vertex and added to the original position.

Our implementation uses � = 0.5 and N = 5; L0 is set to the average edge length of the initial
mesh and remains constant throughout. We apply this remeshing procedure at the end of each
iteration, after the �nal step of Section 4.5.4. Remeshing is crucial to reaching minimizers of the
tangent-point energy; without it, degrading triangle quality can impede or even halt progress,
as seen in Figure 4.6.

4.7 Constraints and Penalties

A variety of constraints and penalties can be imposed on the tangent-point energy, both for
regularization of minimizers and for speci�c design purposes. In this section, we discuss the
constraints and penalties that we have investigated; more are certainly possible, and in partic-
ular, combining the tangent-point energy with other classical surface energies could make for
interesting future work.

4.7.1 Constraints

We consider four types of constraints: �xed barycenter, vertex pins, total area, and total volume.

75

Figure 4.7: To handle multiple components (as shown here), we �x the barycenter of each one
during preconditioning, then add back in the mean motion of each component from the original
L2-gradient after the solve.

Fixed Barycenter Constraint

A �xed barycenter constraint can be de�ned as

ΦC(f) =
∑i∈V f (i) af (i)
∑i∈V af (i)

− X0,

where X0 is the target barycenter location and af (i) denotes the area associated to vertex i. Its
Jacobian dΦC is a 3 × 3|V | matrix consisting of |V | copies of the 3 × 3 identity matrix appended
horizontally. This constraint primarily serves to eliminate the nullspace of the fractional Lapla-
cian (Section 4.3.3); either a barycenter constraint or at least one pin constraint must be added
to every problem to be well-posed. For domains with multiple components, barycenters are
constrained separately for each component.

Barycenter Motions. In some cases, it might be desirable to allow the barycenter to �oat
freely, e.g. when a scene contains �xed obstacles for the surface to avoid. A simple modi�-
cation enables this motion: compute the weighted average over all vertices of the L2 gradient
before projection, and then add the constant translation by that vector back to the descent direc-
tion after projection. For domains with multiple components, the average motion is computed
separately for each component (Figure 4.7).

Vertex Pin Constraints

A vertex pin constraint simply �xes a vertex to a position. Every pinned vertex i produces a
constraint function ΦPi (f) = f (i) − f0(i), where f0(i) is the pinned position. The Jacobian dΦPi is
a 3 × 3|V | matrix, but the only nonzero entries consist of a single copy of the identity matrix in
the block indexed by i. A pin also eliminates the nullspace of the Laplacian, so if any pins are
used, then a barycenter constraint is unneeded.

76

Total Area Constraint

A total area constraint preserves the total surface area of the mesh, and can be written as

ΦA(f) = (∑T∈F af (T)) − A0,

where A0 is the target area. The Jacobian dΦA is a 3|V | row vector with the area gradient at
each vertex, which is equivalent to twice the mean curvature normal.

Total Volume Constraint

Likewise, a total (signed) volume constraint can be written as

ΦA(f) = 1
6(∑(ijk)∈F f (i) ⋅ (f (j) × f (k))) − V0,

where V0 is the target volume. For each vertex, the Jacobian dΦA is proportional to the area-
weighted vertex normal.

4.7.2 Fast Positional Constraints

As previously discussed, computing the Schur complement requires one iterative solve per row
of the constraint block dΦ. For linear positional constraints such as barycenters (3 rows per
component) and vertex pins (3 rows per pinned vertex), this can be disproportionately expen-
sive. Rather than handling these rows using the Schur complement, we include them directly
in the matrix A, producing a smaller saddle point matrix with structure analogous to Equa-
tion 4.14. Forward matrix-vector products for the iterative solve require only sparse products
with dΦC and dΦPi in addition to the hierarchical products of Section 4.5.1. The same rows and
columns are then appended to the integer Laplacians in the preconditioner (Section 4.5.2), and
the system is solved iteratively as before.

Fast convergence in this scenario requires that orthogonality to these constraints be su�ciently
similar under the two inner products de�ned by the integer Laplacian Δ and the fractional
operator A. Empirically, this is the case for linear positional constraints, but is not the case for
constraints such as total area and volume. Thus, we reserve the Schur complement for these
more di�cult constraints.

4.7.3 Penalties

In addition to hard constraints, a number of soft penalty potentials can be added to regularize
the �ow in some way. These potentials are added directly to the objective function with some
weighting coe�cient alongside the tangent-point energy, and their gradients are accumulated
in the same step.

77

Total Area and Volume Potentials

Soft penalties for total area and volume can be used in place of hard constraints, encouraging
these quantities to stay close to their initial values without enforcing this exactly. For total area,
the potential is de�ned as

area(f) = ((∑T∈F af (T))/A0 − 1)
2
.

The raw deviation is normalized by the initial area A0 to make the penalty scale invariant. The
total volume potential is de�ned analogously.

Static Obstacles

For practical modeling purposes, it may be desirable not to design an object in isolation, but
instead to design it within its intended environment. To that end, we provide the ability to place
“obstacles”, which are static meshes that exert a repulsive force on the optimization surface.
These obstacles can be used to model surrounding environments such as rooms and the objects
within them, which must be avoided by the object under design. From an obstacle O with
embedding fO , each point x in the domain experiences a repulsive potential equal to

obs(x) = ∑S∈FO |fO(S) − x |
−p afO (S)

with p matching the exponent of the tangent-point energy. Naïvely, this requires iteration over
all faces ofO, but Barnes-Hut can be used as in Section 4.4 to approximate the obstacle potential.

Implicit Obstacles and Attractors

Similarly to static mesh obstacles, one can also use implicit surfaces de�ned by signed distance
�elds as obstacles or attractors. Given a signed distance �eld d ∶ ℝ3 → ℝ, the repulsive
potential experienced at any point x due to the implicit obstacle de�ned by d(x) = 0 is simply

i(x) = d(x)−p .

An implicit attractor, rather than repelling other objects away from it, pulls objects towards it.
The attractive potential experienced at any point x is simply the reciprocal of the above, or

a(x) = d(x)p .

Boundary Length and Curvature

For meshes with boundary (e.g. Figure 4.18), it may be bene�cial to regularize the shape of the
boundary curves. We support two potentials for this purpose. One is a regularizer on the length

78

of the boundary, de�ned as

b = (L −∑e∈)M l(e))
2 ,

where L is a target boundary length, and l(e) is the length of boundary edge e. The other
regularizes the curvature, and is de�ned as

c = ∑v∈)M �(v)2/� (v),

where �(v) is the turning angle at vertex v, and � (v) is the dual length (i.e. half the length of
the two incident edges).

Willmore Energy

One can also add surface fairing energies such as the Willmore energy. For example, we use
the following discrete variant of the squared mean curvature integral:

Willmore(f) = f ⊤AM−1A f .

Here A is the sti�ness matrix of the cotan Laplacian and M is the lumped mass matrix. Up to
mass lumping, this is the discrete Willmore energy from [40]. As suggested in [41, 99], we add
an H 2 inner product term AM−1A to the matrix that we invert in Section 4.5.

4.8 Evaluation and Comparisons

4.8.1 Consistency Testing

Evaluating convergence of our discretization and approximation scheme to minimizers is not
straightforward, since to date there are only conjectures about what minimal solutions might
look like (Section 4.9.1). Instead, we numerically investigate the consistency of our energy dis-
cretization: We generate several smooth surfaces, compute their true tangent-point energies,
and compare to our discrete energy and its Barnes-Hut approximation.

The exact energy can be computed directly only for very simple shapes, like a round sphere or
torus of revolution. To get a more generic picture, we took the parameterized torus of revolu-
tion f0(�, �) = ((1+ 1

3 cos(�)) cos(�), (1+
1
3 cos(�)) sin(�),

1
3 sin(�)) and perturbed it by a random

trigonometric polynomial Φ∶ ℝ3 → ℝ3 of small magnitude (to ensure embeddedness) and
small order (to obtain moderate curvature) to obtain the �nal smooth surface f ∶= f0 +Φ◦f0. We
computed p(f) up to 6 digits of precision by numerical integration with Mathematica’s NIn-
tegrate command using the "LocalAdaptive" strategy. Afterwards, we computed an
a�nely squeezed Delaunay triangulation of [0, 2�] × [0, 2�] and used it to sample the surface f .
The remaining nonuniformities in triangle size and aspect ratio were repaired by the remesh-
ing routine from Section 4.6 followed by projecting each resulting vertex position back to the

79

-

-

error relative to true energy vs. h, θ
test surface

=

=

=

=

=

=

=

=

=

=

error relative to true energy vs. h error relative to discrete energy vs. θ

Figure 4.8: Empirically, our discrete tangent-point energy appears to converge to the true
smooth energy at a rate somewhere between O(ℎ) and O(ℎ2); as expected, our Barnes-Hut
approximation also converges to the discrete energy as � → 0. Reference values are obtained
by applying highly accurate numerical integration to the tangent-point energy on a smooth
parameterized surface (triangulated in top right).

80

surface f . For the resulting discrete surface fℎ we computed its Barnes-Hut energy ̃p(fℎ) (see
Equation 4.16) for various values of the separation parameter � ; in the case � = 0, this is the
all-pairs energy ̂(fℎ) from Equation 4.10. The resulting relative errors are shown in Figure 4.8.

The discrete energy ̂p(fℎ) employs the face normals, which are known to be consistent of order
1 only. That means, their error is O(ℎ), where ℎ > 0 denotes the longest edge length. So it is
expected that the discretization error eℎ ∶= |̂p(fℎ) − p(f)| is no better than O(ℎ). Surprisingly,
the experiments show that the numerical rate is considerably better (see Figure 4.8, bottom
left and for � = 0). Moreover, we use center of mass data on BVH nodes; so the deviation
eℎ,� ∶= |̃p(fℎ) − ̂p(fℎ)| of the Barnes-Hut approximation from the discrete energy should be
dominated by the midpoint rule’s consistency error which is O(�2). Indeed our experiments
seem to con�rm this (see Figure 4.8, bottom right).

4.8.2 Comparison of Optimization Methods

We next compare to other accelerated descent strategies from geometry processing and geo-
metric optimization. Our overall observations are consistent with those from Section 4.8: the
fractional Sobolev scheme converges to local minimizers far quicker than general-purpose ac-
celeration strategies (dramatically so, in the case of highly knotted con�gurations). This should
not come as a surprise: the all-pairs energy we seek to minimize behaves very di�erently from
those arising in e.g. curvature �ows or elasticity, which are based on discrete di�erential oper-
ators with small local stencils.

To make a fair comparison, all methods use identical code for accelerated energy and di�erential
evaluations (Section 4.4), and di�er only in how they use these values. The same dynamic
remeshing routine (Section 4.6) is also run at the end of each iteration for all methods. Note
that edge splits and collapses invalidate the history of methods such as L-BFGS; here we use
memory vectors for as long as they are valid, and reset them when edge splits or collapses occur.
All experiments were run with barycenter and total area constraints. Since AQP and L-BFGS
methods do not support nonlinear constraints such as total area—for these methods, we instead
use sti� penalty functions (Section 4.7.3) to discourage excessive drift.

Comparison Methods. Our comparisons are guided by the extensive comparisons carried
out in Section 4.8 (and published in Yu et al. [116]); here we compare with the best of those
methods. As a baseline we consider ordinary L2 gradient descent, which amounts to replacing
A in Equation 4.14 with the mass matrix. Likewise, replacing A with the weak Laplacian Δ
(encoded by the cotan matrix) yields standard H 1 Sobolev preconditioning; H 2 Sobolev precon-
ditioning is achieved by solving Equation 4.14 with the weak formulation of the bi-Laplacian Δ2
in place of A. (This latter preconditioner is essentially an ideal choice for Willmore �ow [99].)
Like H 1 preconditioning, the accelerated quadratic proxy (AQP) method uses the weak Lapla-
cian Δ as the inner product, but also computes a Nesterov acceleration step from the previous
two con�gurations; this strategy is compatible only with linear constraints [68, Section 2]. An-
other common strategy, which we refer to as H 1 L-BFGS, is to initialize L-BFGS with the weak

81

Laplacian rather than the identity matrix, and likewise use the Laplacian to evaluate inner prod-
ucts. Finally, Blended cured quasi-Newton (BCQN) essentially interpolates between ordinary H 1

Sobolev preconditioning and H 1 L-BFGS, together with barrier penalties to prevent triangle in-
version. Since our gradient is almost H s orthogonal with tangential motions of the surface (and
do not experience element inversions), we omit these penalties.

4.8.3 Time Step Restriction

Figure 4.4 veri�es that matching the order of the inner product to that of the energy di�erential
essentially lifts the mesh-dependent time step restriction. Here, we sampled the same surface
at three resolutions, and ran each method for the same number of iterations. Our H s scheme
makes more progress for an equal number of iterations—but more importantly, the per-iteration
progress of H s is largely una�ected by mesh resolution, whereas all other methods slow down
as resolution increases. Hence, even if some of these methods could be further accelerated
by a constant factor (e.g. via code-level optimization), asymptotic behavior would ultimately
dominate.

4.8.4 Wall-Clock Performance

We also timed the real-world performance of each method on several challenge meshes, using
an AMD Ryzen Threadripper 3990X with 32 GB of RAM. Though in practice our solver bene-
�ts from multiple threads (as per Section 4.4 and Section 4.5), we ran this benchmark single-
threaded to ensure a fair comparison. Figure 4.9 plots energy as a function of time; we ran each
method for 3600 seconds for the �gure-8 and trefoil tunnels, and 2400 seconds for all others.
Reference energy values were computed by evaluating the exact energy, without Barnes-Hut
approximation. Our H s projected gradient method gave the best performance in all cases, re-
liably reaching a minimum within the alloted time. In some cases the initial rate of decrease
is faster for other methods, likely because there are initially many small local features to be
smoothed out. Subsequently, however, these methods make much slower progress at evolving
the global shape. Though AQP and BQN are also based on H 1 preconditioning, they do not do
as well here as the “vanilla” H 1 preconditioner. One possible reason is that these methods do
not support hard nonlinear constraints, and hence penalty forces may �ght with the main ob-
jective. See Section 4.8 for much more extensive discussion and analysis of fractional methods
versus a similar set of alternatives.

4.9 Examples and Applications

We here explore a variety of applications that help to further evaluate our method, show how
it can be used in context, and also identify issues that might be improved in future work. These
applications are also illustrated in the accompanying video—note that for many of these exam-
ples we take time steps far smaller than the optimal step determined by line search, in order to
produce smooth animation.

82

Figure 4.9: Energy plots showing the e�ectiveness of a suite of methods at minimizing the
tangent-point energy. Our H s method (in green) reaches minimizers more quickly and consis-
tently than the alternatives. Points at which methods became unstable are marked with an X.
Renderings of the meshes used and their minimizers can be seen in Figure 4.10.

4.9.1 Mathematical Visualization and Exploration

Mathematically, the motions computed by our method are ambient isotopies: given two em-
beddings f0, f1 ∶ M → ℝ3, an ambient isotopy is a continuous map F ∶ ℝ3 × [0, 1] → ℝ3 such
that for all x ∈ M , F (x, 0) = x , F (f0(x), 1) = f1(x), and F (x, t) is a homeomorphism from ℝ3 to ℝ3

for every time 0 ≤ t ≤ 1. Intuitively, an ambient isotopy is a deformation of space that “drags
along” f0 with it, turning it into f1 while avoiding any changes to the initial topology. A basic
question in geometric topology is whether two embedded manifolds are ambiently isotopic,
and in general this question can be quite hard to answer—for instance, even detecting whether
an embedding of the circle in ℝ3 is equivalent to the unit circle (or “unknot”) has not yet ad-
mitted a polynomial time algorithm [73]. Hence, computational tools have been developed to
explore such questions experimentally, with a notable example being the widely-used KnotPlot
package for curve untangling [97]. The software developed for our project e�ectively provides
the �rst “KnotPlot for surfaces.” Especially the fact that our solver exhibits rapid convergence
and excellent scaling enables us to investigate questions that would be impossible with naïve

83

linked
handcu�s

doubly-wound
handcu�s

trefoil
tunnel

�gure-8
tunnel

6x-wound
handcu�s

Figure 4.10: Gallery of isotopies obtained by minimizing tangent-point energy—notice that
highly knotted surfaces, as well as surfaces with thin sheets and handles, successfully �ow to
their canonical embeddings. Surfaces are grouped by their isotopy equivalence classes, which
are extremely di�cult to determine via visual inspection (and also not simply determined by
Euler characteristic—see Figure 4.13). Labeled meshes are used for performance comparisons
in Figure 4.9.

numerical methods.

Canonical Embeddings

Global minimizers of geometric energies provide the “simplest” possible geometric represen-
tative of a given topological space. Such minimizers also play a critical role in geometric
algorithms since they provide a canonical domain for e.g. surface correspondence and data
transfer—see for instance recent algorithms in both the intrinsic [50, 98] and extrinsic [64, 114]
settings. Formally proving that a given surface is a global minimizer is quite challenging. For
instance, even the classicWillmore conjecture (which says that the Cli�ord torus minimizes Will-
more energy for genus-1 surfaces) was resolved only very recently, after about 50 years of sus-
tained e�ort [77]. Hence, numerical tools are essential for formulating hypotheses about the
behavior of minimizers and other critical points. To date, there are no clear conjectures about
tangent-point minimizers for surfaces of genus g ≥ 2. For reasons discussed in Section 4.1.3,
these minimizers likely exhibit symmetries in ℝ3 rather than S3, making them potentially use-
ful as a base domain for algorithms in extrinsic shape processing. To do so, one would simply
need to track the parametric correspondence (e.g. via UV-coordinates), and perhaps minimize
tangential distortion after �owing to a geometric minimizer (as in Schmidt et al. [98]).

Unknotted Minimizers Figure 4.12 shows a numerical study for untangled surfaces of in-
creasing genus, initialized with a linear arrangement of handles. For genus 0, 1, and 2 we get a
round sphere, a torus of revolution, and a surface with symmetries of a triangular prism. Other
surfaces appear to exhibit symmetries of a highly regular polyhedron—for instance, for genus
3, 4, 5, 6, 8, 9, and 11 we get symmetries of the tetrahedron, triangular prism, cube, pentagonal
prism, truncated bipyramid, rectangular prism, and dodecahedron, respectively. Symmetries (if
any) for genus 7 and 10 are less clear—or we may have simply failed to reach a global minimum.

84

Figure 4.11: Top: even careful illustrations of topological phenomena (here drawn by mathe-
matician Peter Lynch) can be di�cult to understand without a good visual imagination. Bottom:
our method automatically generates continuous motions that are easier to interpret (see video),
enabling exploration by students and researchers who do not have signi�cant artistic training.

Interestingly, an octahedral con�guration does not appear to be a minimizer for genus 7, even
if we start with a symmetric con�guration (and similarly for the icosahedron, not shown). In
general it seems that triangular “faces” are not preferred in higher-genus con�gurations due to
the small angle between “edges”—much as electron repulsion maximizes bond angles in molec-
ular geometries (e.g. stable compounds like graphite prefer bond angles near 120◦, whereas only
unstable compounds like white phosphorus exhibit tetrahedral symmetry).

Knotted Minimizers A key feature of tangent-point energy (versus, say,
Willmore energy) is that it enables us to �nd minimizers within a given iso-
topy class. Hence, just as it is quite common to make tables of canonical knot
embeddings, we can now make tables of canonical embeddings for knotted sur-
faces. For instance, Figure 4.13 shows the �rst-ever visualization of the di�erent
ways a genus-2 surface can be embedded in space. In the past, these isotopy
classes have been depicted only as trivalent graphs—we take each such graph
from [61, Table 1], and construct a topologically equivalent initial mesh that is
optimized by our approach (see inset). As with knots most of these minimizers do not exhibit
much extrinsic symmetry, except for e.g. 67 and 53 which exhibit bilateral and 3-fold symmetry,
respectively.

Planar Representatives. Although minimizers exhibit a high degree
of symmetry in ℝ3, it can be hard to determine even the genus of a min-
imizer when viewed from just a single viewpoint. In contrast, topo-
logical �gures depicted by expert illustrators tend to be somewhat “2.5-
dimensional” so that they can be better understood when projected onto the image plane. We

85

input surface (genus g)

g=1g=0 g=2

…

g=3 g=4 g=5

g=6 g=7 g=8

g=9 g=10 g=11

Figure 4.12: Global minimizers of geometric energies provide canonical domains that can be
used to map between surfaces of the same topology, or simply help visualize a topological
space. Here we show conjectured minimizers of tangent-point energy for unknotted surfaces
of genus g; adjacent �gures illustrate symmetries (when present).

86

41

51 52 53 54 61

62 63 64 65 66

67 68 69 610 611

612 613 614 615 616

Figure 4.13: Geometric functionals provide a bridge between topology and geometry by en-
abling one to construct canonical geometric representatives of a given topological space. Here,
minimizers of tangent point energy are used to visualize nontrivial isotopy classes of a genus-2
surface. (Numbers indicate number of crossings; subscripts index trivalent graphs from [61,
Table 1]).

87

Figure 4.14: Top: minimizers of tangent-point energy often exhibit three-dimensional symme-
tries which can be di�cult to understand from a single view—by adding an attracting plane,
we get embeddings that can be nicely displayed in two-dimensional illustrations. Bottom: con-
strained minimizers for genus 2 through 6.

88

can replicate this behavior by adding a simple attractive plane potential, as depicted in Fig-
ure 4.14, yielding minimizers that are much easier to recognize (contrast with Figure 4.12). An
additional plane constraint yields a linear arrangement of handles, as commonly drawn by hand
(see inset).

Illustrating Isotopies

Our method also provides signi�cant utility for mathematical visualization and illustration.
Traditionally, interesting homotopies and isotopies are depicted by a sequence of drawings
(or perhaps physical models) highlighting key moments of transition—a practice that has de-
veloped over time into a true art form [46]. However, even the best drawings can be di�-
cult to understand without signi�cant thought and visual imagination. To obtain continuous
motions (that are more easily understood), a small number of carefully “hand-crafted” com-
puter animations have been produced over the years by either artist keyframing, or explicit
programming of meticulously derived parametric formulas [11, 75]. More recently, automatic
optimization-based tools have been used to produce animations, such as the minimax sphere
eversion [45], as well as recent work in computer graphics on metric embedding [30] and
conformally-constrained Willmore surfaces [102]. Since these optimization-based tools are
largely automatic, they help to democratize the creation of topological animations—our scheme
extends such tools to the important and di�cult case of ambient isotopies.

One classic example is “unlinking” a pair of handcu�s (as shown in
the inset), though mathematically speaking these handcu�s are not
actually linked: surprisingly, they belong to the same isotopy class.
Figure 4.11 compares a hand drawing of this isotopy with a di�er-
ent isotopy automatically computed via our method—and which is
much better depicted in the accompanying video. To create this animation we simply minimize
tangent-point energy from both start and end con�gurations, together with a potential that
encourages the surface to lay parallel to the view plane. Since we reach the same minimizer in
both cases (seen in Figure 4.16, far right), we can compose these two sequences (one in reverse)
to depict the complete motion. Other similar examples are shown in Figure 4.10, and in the
video.

Figure 4.17:
An IH-move.

Figure 4.15 shows another classic example: removing one handle of a pair of
handcu�s from a rigid pole or ring. The hand-drawn illustration helps to in-
dicate several stages of this isotopy, which are also captured in our animation.
However, the remarkable fact about our version is that it is driven purely by
energy minimization—we did not perform any keyframing, nor impose any
boundary conditions, yet it still constructs an isotopy in several “stages”: �at-
ten out the two handles, perform a so-called IH-move (see Figure 4.17 and [60]), and then op-
timize the geometry of the untangled surface. Our speci�c setup here is to minimize tangent-
point energy while �xing surface area, and incorporating an in�nite repulsive cylinder (mod-
eled by an implicit surface). As in the previous example we use an attractive plane orthogonal to

89

Figure 4.15: Surprisingly, one can remove a handle of a double torus from a loop or pole without
cutting or pinching the surface. Top: hand-drawn illustration by Wells [111]. Bottom: isotopy
computed automatically by our method (see video); no keyframing or boundary conditions
were used.

Figure 4.16: Here, we automatically �nd an unexpected transition between linked and unlinked
states of a pair of “handcu�s” by simply minimizing a repulsive energy.

90

midsurface
(zero volume)

positive signed volume

negative signed volume

Figure 4.18: Minimizing the tangent-point energy of a punctured torus while pushing signed
volume toward zero yields a surface with re�ection symmetry. Applying a re�ection and re-
versing the �ow hence yields an eversion that turns the surface “inside-out” while avoiding
self-intersections.

the pole to obtain a more canonical-looking minimizer. The only hand-tuning was reducing the
repulsive strength of the cylinder near the end of the animation, to give the handles of the �nal
surface a similar size. Importantly, allowing the barycenter to �oat freely (as per Section 4.7.1)
is essential here, since the center of mass must ultimately move away from the pole.

Punctured Torus Eversion. Our discrete tangent-point energy can also be evaluated on
surfaces with boundary, since we simply take a sum over pairs of triangles. Since we did not
develop a careful treatment of boundary conditions, we simply penalize the total length and
total squared curvature to ensure the boundary at least remains regular. In Figure 4.18 we use
this setup to compute an isotopic eversion between the two orientations of a punctured torus.
Unlike the classical sphere eversion, where one typically starts with a symmetric midsurface and
�ows toward the round sphere, we start with the punctured torus and use our �ow to �nd the
mid-surface. The key observation is that the oriented volume of the surface ∫M⟨f (x), Nf (x)⟩ dxf
will be zero for a symmetric con�guration; �xing the area ensures that our zero-volume penalty
does not cause the surface to collapse to a point. Once we reach zero volume we transform
the midsurface by a re�ection and 90-degree rotation, and run the same �ow in reverse (with
opposite colors) to obtain the eversion.

4.9.2 Geometry Processing and Shape Modeling

The no-intersection condition is also natural in geometry processing and shape modeling, espe-
cially when a surface is meant to represent the boundary of a solid object (e.g. for computational
fabrication). As noted in Section 4.1, there has been relatively little work on intersection-aware
geometric modeling—see for instance Harmon et al. [56] and references therein. In contrast

91

to resolving local intersections, tangent-point energy adds the complementary functionality of
global prevention of intersections to a broad range of existing tasks. Here we present several
aspirational examples—importantly, our goal is not to outperform more specialized, mature so-
lutions, but rather to explore how a tangent-point regularizer might serve as a uni�ed approach
to intersection-free modeling across many disparate applications.

Proximity-Aware Variational Modeling As a basic example, the inset
�gure above shows a simple example of interactive surface editing, where sur-
face geometry is guided by point constraints, and nearby geometry is moved
out of the way by the tangent-point energy. To better preserve the details of
an initial mesh one might also combine tangent-point energy with a discrete
shell energy [52], which would entail transferring the material con�gura-
tion across meshing operations (a question which is beyond the scope of this
work). Figure 4.19 shows another example where pinned points and edges
are interpolated while optimizing the rest of the geometry. (Here we disable
remeshing, but could easily modify remeshing to ignore pinned vertices). Un-
like harmonic interpolation or area minimization, for which point constraints are ill-posed, we
get nice curvature behavior even near the pins; unlike Willmore �ow (which provides good
curvature behavior), we avoid self-intersection. Tangent-point energy could also in principle
be used as a regularizer to discourage intersection in other common modeling paradigms, such
as as rigid as possible (ARAP) modeling [103].

Shrink Wrapping

One class of methods for reconstructing a surface from a collection of points is to “shrink-
wrap” them with a triangle mesh [54, 66]; such methods are especially suitable in problems
where one wishes to �t a high-quality template mesh to a known class of shapes (e.g. head or
body scans). A basic problem, however, is that the mesh can get “tangled” during wrapping,
inhibiting progress or requiring intricate remeshing to resolve self-intersections. Tangent-point
energy may prove useful as a regularizer for such methods—Figure 4.20 shows a basic shrink
wrapping example on a point cloud, and on polygon soup with severe holes. Here we minimize
tangent-point energy with a gradually decreasing volume constraint.

Nested Envelopes

In a similar vein, nested sequences of solids U1 ⊂ ⋯ ⊂ Uk ⊂ ℝn represented by progressively
coarser meshes have applications in multiresolution solvers, cage-based editing, and physical
simulation [96]. In Figure 4.21 we construct each surface)Uk by minimizing tangent point
energy plus a volume constraint, and gradually adjusting the constrained volume to achieve a
�xed constant factor (here, 1.15x) of the volume of)Uk−1. This variational approach may o�er
interesting generalizations of ordinary nested cages, since it can easily incorporate constraints
and objectives beyond just the absence of intersections.

92

input increase volume
(sparse pins)

increase volume
(Willmore)

increase volume
(dense pins)

increase volume
(no pins)

constant area
(sparse pins)

Figure 4.19: The tangent-point energy can be used to make variational surface modeling respon-
sive to proximity, rather than just intersections. Here for instance we pin a sparse or dense set
of points and modify volume and surface area to adjust the appearance of some text (in some
cases enclosed in a box). Like Willmore energy (top right), we get smooth behavior near point
constraints (see magni�ed portion), but avoid overlap.

93

Figure 4.20: Here we perform a simple “shrink wrapping” to obtain a manifold, intersection-free
reconstruction (top), which works well even for points or polygon soup with severe holes and
missing data.

Figure 4.21: We can “shrink wrap” a model to get a sequence of progressively coarser approx-
imating envelopes that exhibit a strict containment property, and are free of self-intersection.
Here we aim for a 1.15x increase in volume at each level.

94

Figure 4.22: We can also use tangent-point energy for generative modeling by “growing” a
surface subject to constraints. Top: con�ning to a sphere while increasing area leads to a wrin-
kled shape reminiscent of a walnut. Bottom: growing many small spheres inside a slab yields a
tileable cobblestone pattern.

95

Figure 4.23: For exponents p < 4, the tangent-point energy p is no longer in�nite for self-
intersecting surfaces, but still discourages overlap. Here we try using this “subcritical” energy
to resolve intersections, which works for small intersections (top), but fails for an unembeddable
surface like the Klein bottle (bottom).

Generative Modeling

Rather than using the tangent-point energy to edit or process existing data, we can also use
it to generate new geometry. In nature, the growth of organic shapes is often governed by
simple combinations of objectives, e.g. a balance between area and volume while avoiding self-
intersection. We can likewise use such forces to drive the growth of organic-looking objects,
such as the “walnut” depicted in Figure 4.22 (top). The same technique is used in Figure 4.22
(bottom) where multiple objects are packed into a volume to create a repeating organic pattern.

Self-Intersection Resolution

In many geometry processing tasks, input data is not free of self-intersections. For exponents
p > 4, the tangent-point energy p of a non-embedded surface is in�nite; to resolve intersections
in the input, we can try reducing the exponent to a value p < 4, at which point p becomes �nite
but still discourages intersection. Here we �nd that it also helps to disable the low-order term
from Equation 4.8. Empirically, the same system framework now appears capable of eliminating
small self-intersections (Figure 4.23, top), through struggles in more di�cult scenarios like the
Klein bottle depicted in Figure 4.23 (bottom), which cannot be globally embedded without self-
intersection. Further analysis of the energy for these “subcritical” values may help to provide

96

more robust tools for global intersection resolution.

97

98

Chapter 5

Conclusion

In this thesis, we have proposed the tangent-point energy as a tool for �nding intersection-free
solutions to optimization problems on curves and surfaces, and built an optimization system
demonstrating its practicality and applicability across numerous tasks therein. The success of
our system at producing compelling results in such a broad range of tasks demonstrates the
e�ectiveness of the tangent-point energy at geometric modeling, particularly when it comes
to preventing self-intersections. Further, our ability to achieve reasonable runtimes despite the
“all-pairs” nature of the tangent-point energy demonstrates the e�ectiveness of our numerical
techniques at optimizing such challenging energies. Both of these points extend beyond the
scope of this thesis; there are certainly many more tasks for which intersection-free optimiza-
tion by way of the tangent-point energy could be a valuable tool, and many more challenging
energies capturing other interesting objectives that could be optimized using the techniques
we have developed.

5.1 Limitations and Future Work

Since we approximate the tangent-point energy via numerical quadrature, it is possible for a
very coarse curve or surface to reach a self-intersecting state. These events are more easily
observable on coarse surfaces, which e�ectively have fewer quadrature points per unit surface
area; in particular, in situations such as “shrink wrapping” where we force very tight contact
(Section 4.9.2), the occurrence of these intersections e�ectively becomes the primary obstacle
to achieving a tighter �t. Adding additional quadrature points, either overall or to elements
in near-contact through some form of adaptive re�nement, may help alleviate this problem.
Intersections can also be prevented via continuous time collision detection (Section 3.3.5); to
maintain accuracy, one could try adding more quadrature points at the previous time step if
any intersections occur.

Even in the absence of intersections, elements that are extremely close together can temporarily
get stuck in a con�guration very close to self-contact (Figure 5.1). In this situation, the term k2

99

Figure 5.1: A nearly crossing initial con�guration that can be di�cult for the �ow to escape,
due to the behavior of the low-order term.

from the low-order term (Equation 4.8) is very large, causing the inverse of A—and hence the
Sobolev gradient—to be very small. One idea is to use adaptive quadrature for pairs that are
close in space, which would better resolve the near-in�nite high-order term and hence push the
curve apart. Given the scalability of our approach, however, a more pragmatic solution may
simply be to increase the overall resolution.

There are also many ways to further accelerate our solver; for instance, we did not make use of
the GPU, and only made limited use of vectorized arithmetic. For small time steps one might re-
�t rather than re-build the BVH; likewise, it may be bene�cial to incrementally update the BCT.
Signi�cant performance gains could also be achieved purely through better software engineer-
ing, e.g. by improving our parallel implementation of hierarchical matrix multiplication (which
is currently bottlenecked around 4–8 threads). On an algorithmic level, better line search or
descent direction heuristics may also reduce the overall number of steps.

The relatively complex remeshing algorithm on surfaces compared to curves (where we simply
split each edge in half) also presents some challenges speci�c to the surface case. For instance,
it would also be quite useful to track mesh attributes across remeshing operations, to enable
(for instance) mapping of data from one shape to another through the canonical minimizer.
Implementing curvature-adaptive remeshing (as in [39]) might also provide some bene�ts over
our current approach of a uniform target edge length, as it would allow �nely tessellating only
those areas where resolution is required to resolve details, rather than the entire domain.

Several other issues speci�c to meshes require deeper investigation. For one thing, unlike in
the case of curves, our preconditioning strategy for surfaces cannot easily accommodate dense
constraints (e.g. preservation of each triangle area), which would require a prohibitive num-
ber of iterative solves. Revisiting the multigrid approach via hierarchical coarsening [17, 100]
may prove fruitful in this regard. Currently, we present two options for inverting the fractional

100

Laplacian: a multigrid method with simple CG or GMRES as the smoother (Section 3.4.3), and
a preconditioned iterative GMRES solver with no multiresolution hierarchy (Section 4.5). In
reality, these options are not mutually exclusive; a preconditioned GMRES solver could be used
as the smoother on each level of the multigrid hierarchy. Such an approach could potentially
achieve superior convergence to either option alone, while also potentially handling dense con-
straints more e�ciently if it allows for omitting the Schur complement (as in Section 3.4.3).

For shape interpolation and mathematical visualization, it would be quite useful to �nd the
trajectory that minimizes overall tangent-point energy, rather than just �owing to a common
minimizer—here, ideas about shell-space geodesics may prove valuable [58]. Likewise, inte-
grating repulsive regularization into a thin shell model might provide better proximity-aware
shape editing by retaining a “memory” of the initial shape. Finally, we do not directly treat
boundary conditions or more general arrangements of repulsive curves and surfaces, both of
which could have interesting modeling applications.

5.2 Final Remarks

As we have seen, the tangent-point energy goes a long way towards making intersection-free
modeling practical in a variety of problem settings involving non-rigid curves and meshes. Fur-
ther, the numerical techniques that we have developed for the tangent-point energy could also
make the optimization of other global all-pairs energies a more tractable task. In general, we
hope that the insights provided in this thesis will pave the way for further integration of geom-
etry and optimization techniques into pipelines for modeling and computational design. Our
hope is that, by providing a rich lexicon of intuitive objectives that can be speci�ed and com-
bined – in the form of constraints, obstacles, potentials, and so on – we can make optimization
algorithms more and more accessible to end users. As an energy-based solution to intersection-
free optimization that can easily be deployed on curves and meshes, the tangent-point energy
is one major step in that direction.

101

102

Appendix A

Derivations

A.1 Action of the Fractional Operators

In Section 4.5.1, we claimed that the actions of the fractional operators L� , B, and B0 can be
expressed by suitable kernel matrices that we then compress by hierarchical methods. We
include a brief derivation here to substantiate this claim. Consider the kernel matrix

HST ∶= (1 − �ST) |Xf (S) − Xf (T)|−(2�+2).

Rewriting Equation 4.11 for general u and v ∈ ℝ|V | in terms of this kernel yields

u⊤L�v = ∑S∈F ∑T∈F (ū(S) − ū(T)) (v̄(S) − v̄(T)) af (S)HST af (T).

Multiplying the product inside the sum gives

(ū(S) v̄(S) + ū(T) v̄(T) − ū(T) v̄(S) − ū(S) v̄(T)) af (S)HST af (T)

for the pair (S, T). Because HST = HTS , we can move some terms between the summands for
(S, T) and (T , S), and thus reorganize the sum into

u⊤L�v = 2 ∑S∈F ∑T∈F (ū(S) v̄(S) − ū(S) v̄(T)) af (S)HST af (T)

= 2 ∑S∈F ū(S)af (S) (af (S)−1∑T∈F HSTaf (T)) af (S)v̄(S)
− 2 ∑S∈F ∑T∈F ū(S) af (S)HST af (T) v̄(T).

Recall that U ∈ Hom(ℝ|V |;ℝ|F |) is de�ned by (Uu)(S) = af (S)ū(S). Thus the above collapses to

u⊤L�v = 2 u⊤U⊤ diag(af)−1 diag(H af)U v − 2 u⊤U⊤H U v

= 2 u⊤U⊤[diag (diag(af)−1H af) − H]U v.

103

The derivation follows analogously for the high- and low-order matrices B and B0, with the
substitution of the operator V = diag(af)Df for U in the case of B.

A.2 Fast Matrix-Vector Multiplication

Step 1 of Section 4.5.1 corresponds to thinning out the matrix shown in Figure 4.5 by removing
all the green parts. The remainder is a sparse block matrix with variable block size. We store
this sparse matrix in CSR format and perform matrix-vector multiplication via sparse BLAS
routines.

In Step 2 the kernel matrix H is compressed into the rank-one-matrix 1 ℎ(X , P ;X , P) 1⊤ .
In this step, we are cautious not to move the input data x and output data y directly to
and from the clusters  and  . Instead, we employ a common technique for fast multipole and
hierarchical matrix methods and use the BVH for that. For each cluster ,  , we allocate scalars
x̃ and ỹ . We start only with the leaf clusters and set

x̃ ← ∑T∈ x(T) for each leaf cluster  .

Then, during a parallel traversal of the BVH in post-order, for each cluster  , we add the x̃-
values of its children into x̃ . After this upward pass is �nished, we loop over all clusters  and
set

ỹ ← ∑ ℎ(X , P ;X , P) x̃ , (A.1)

where the sum runs over the  such that (,) is admissible. This operation is also best
performed by a sparse matrix multiplication. To this end, we �x an ordering of the BVH clus-
ters, e.g. depth-�rst ordering. Then we assemble a sparse matrix H̃ with the nonzero value
ℎ(X , P ;X , P) at the position that correspond to the admissible block cluster (,). Storing
x̃ and ỹ as vectors, Equation A.1 amounts to

ỹ ← H̃ x̃ .

Afterwards, we use a downward pass through the BVH to distribute the ỹ-values back into the
vector y: We traverse the BVH in pre-order and let each cluster  add its ỹ-value into each of
its children’s ỹ-values. Finally each leaf cluster adds its value into each of its member’s y-entry:

y(S)← y(S) + ỹ for each leaf  and each S ∈ .

The structure of the kernel matrices of L� , B, and B0 is very similar. This allows us to use a
single block cluster tree to compress all of them. Moreover, the sparsity patterns for the two
sparse matrices used to perform Steps 1 and 2 can be shared and the corresponding nonzero
values can be computed in a single parallelized loop over the admissible and inadmissible blocks,
respectively.

104

For the application of A3 to a vector v of size 3|V |, we could apply A = B + B0 separately on
three vectors v1, v2, and v3 of size |V | that each store only one spatial component of the vertex
positions. However, it turns out to be more e�cient to store v1, v2, and v3 as columns of a
matrix of size |V | × 3 and to replace the sparse matrix-vector products by sparse matrix-dense
matrix products.

105

106

Bibliography

[1] M. Ainsworth and C. Glusa. Aspects of an adaptive �nite element method for the frac-
tional Laplacian. Comput. Methods Appl. Mech. Eng., 327, 2017. ISSN 0045-7825. 3.1.3,
3.4.3

[2] B. Andrews, B. Chow, C. Guenther, and M. Langford. Extrinsic Geometric Flows, volume
206 of Graduate Studies in Mathematics. 2020. ISBN 147045596X. 2.2.1

[3] A. Angelidis and F. Neyret. Simulation of smoke based on vortex �lament primitives. In
Symp. Comp. Anim., pages 87–96, 2005. 3.1.1

[4] T. Ashton and J. Cantarella. A fast octree-based algorithm for computing ropelength. In
Physical And Numerical Models In Knot Theory, pages 323–341. 2005. 3.1.2

[5] T. Ashton, J. Cantarella, M. Piatek, and E. Rawdon. Knot tightening by constrained gra-
dient descent. Experimental Mathematics, 20(1):57–90, 2011. 3.1.2

[6] Trygve Bærland. An auxiliary space preconditioner for fractional laplacian of negative
order. arXiv preprint arXiv:1908.04498, 2019. 3.1.3

[7] Trygve Bærland, Miroslav Kuchta, and Kent-Andre Mardal. Multigrid methods for
discrete fractional Sobolev spaces. SIAM J. Sci. Comput., 41(2):A948–A972, 2019.
ISSN 1064-8275. doi: 10.1137/18M1191488. URL https://doi.org/10.1137/
18M1191488. 3.1.3

[8] Gavin Barill, Neil Dickson, Ryan Schmidt, David I.W. Levin, and Alec Jacobson. Fast
winding numbers for soups and clouds. ACM Transactions on Graphics, 2018. 1.1.3

[9] J. Barnes and P. Hut. A hierarchical o(n log n) force-calculation algorithm. Nature, 324
(6096):446–449, 1986. 1, 3.4.1, 4.4

[10] S. Bartels, P. Reiter, and J. Riege. A simple scheme for the approximation of self-avoiding
inextensible curves. IMA J. Num. Anal., 38(2):543–565, 2018. 3.1.2, 3.3

[11] Adam Bednorz and Witold Bednorz. Analytic sphere eversion using ruled surfaces. Dif-
ferential Geometry and its Applications, 64:59–79, 2019. 4.9.1

107

[12] M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun. Discrete elastic rods.
In ACM Trans. Graph., volume 27, page 63. ACM, 2008. 3.1.1

[13] S. Blatt. Boundedness and regularizing e�ects of o’hara’s knot energies. Journal of Knot
Theory and Its Rami�cations, 21(01), 2012. 3.1.2

[14] S. Blatt. The energy spaces of the tangent point energies. Journal of Topology andAnalysis,
5(3):261–270, 2013. ISSN 1793-5253. 1.1, 2.1.3, 2.3.2, 2.3.2, 3.1.2, 4.2.3

[15] S. Blatt and P. Reiter. Regularity theory for tangent-point energies: the non-degenerate
sub-critical case. Adv. Calc. Var., 8(2):93–116, 2015. ISSN 1864-8258. 2.1.3, 2.3.2, 3.1.2,
4.2.1

[16] Alexander I. Bobenko and Peter Schröder. Discrete willmore �ow. In Proceedings of the
Third Eurographics Symposium on Geometry Processing, SGP ’05, pages 101–es, Goslar,
DEU, 2005. Eurographics Association. ISBN 390567324X. 4.1.1

[17] Mario Botsch and Leif Kobbelt. A remeshing approach to multiresolution modeling. In
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,
SGP ’04, pages 185–192, New York, NY, USA, 2004. Association for Computing Machin-
ery. ISBN 3905673134. 5.1

[18] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.
ISBN 0521833787. 3.3.5

[19] D. Braess and R. Sarazin. An e�cient smoother for the stokes problem. Applied Numerical
Mathematics, 23(1):3–19, 1997. 3.4.3

[20] K. Brakke. The surface evolver. Experimental mathematics, 1(2), 1992. 3.1.2

[21] K. Brakke. Surface evolver manual, 1994. 3.1.3

[22] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of collisions, con-
tact and friction for cloth animation. In Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’02, page 594âĂŞ603, New
York, NY, USA, 2002. Association for Computing Machinery. ISBN 1581135211. 1

[23] Robert Bridson, Ronald Fedkiw, and John Anderson. Robust treatment of collisions, con-
tact and friction for cloth animation. In Proceedings of the 29th annual conference on
Computer graphics and interactive techniques, pages 594–603, 2002. 4.1.2

[24] J. Brown, J. Latombe, and K. Montgomery. Real-time knot-tying simulation. The Visual
Computer, 20(2):165–179, May 2004. ISSN 1432-2315. 3.1.2

[25] G. Buck and J. Orlo�. A simple energy function for knots. Top. Appl., 61(3), 1995. ISSN
0166-8641. 1, 1.1, 2.1.3, 4.1.3, 4.2.1

[26] Dorin Bucur and Giuseppe Butazzo. Variational methods in shape optimization problems,
2006. 1, 4.1

108

[27] J. Calvo, K. Millett, and E. Rawdon. Physical Knots: Knotting, Linking, and Folding Geo-
metric Objects in ℝ3, volume 304. American Mathematical Society, 2002. 3.1.2

[28] Long Chen and Michael Holst. E�cient mesh optimization schemes based on optimal
delaunay triangulations. Computer Methods in Applied Mechanics and Engineering, 200
(9):967 – 984, 2011. ISSN 0045-7825. 1.1.2, 4.6

[29] A. Chern, F. Knöppel, U. Pinkall, P. Schröder, and S. Weißmann. Schrödinger’s smoke.
ACM Trans. Graph., 35(4):77, 2016. 3.1.1

[30] Albert Chern, Felix Knöppel, Ulrich Pinkall, and Peter Schröder. Shape from metric. ACM
Transactions on Graphics (TOG), 37(4):1–17, 2018. 1, 4.1, 4.9.1

[31] S. Claici, M. Bessmeltsev, S. Schaefer, and J. Solomon. Isometry-aware preconditioning
for mesh parameterization. In Comp. Graph. Forum, volume 36, 2017. 3.1.3, 3.5.2, 4.1.4

[32] Ulrich Clarenz, Udo Diewald, Gerhard Dziuk, Martin Rumpf, and R Rusu. A �nite ele-
ment method for surface restoration with smooth boundary conditions. Computer Aided
Geometric Design, 21(5):427–445, 2004. 1, 4.1

[33] K. Crane, U. Pinkall, and P. Schröder. Robust fairing via conformal curvature �ow. ACM
Trans. Graph., 32(4), 2013. 1.1.2, 3.1.3, 4.1.1

[34] B. de Wilde, A. ter Mors, and C. Witteveen. Push and rotate: cooperative multi-agent
path planning. In Proc. Conf. Auton. Agents and Multi-agent Sys., 2013. 3.6.5

[35] C. DeForest and C. Kankelborg. Fluxon modeling of low-beta plasmas. J. Atm. Sol.-Terr.
Phys., 69(1-2):116–128, 2007. 3.1.1

[36] M. Desbrun, M. Meyer, P. Schröder, and A. Barr. Implicit fairing of irregular meshes using
di�usion and curvature �ow. In Proc. ACM SIGGRAPH, 1999. ISBN 0-201-48560-5. 3.1.3,
4.1.1

[37] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional Sobolev
spaces. Bull. Sci. Math., 136(5):521–573, 2012. ISSN 0007-4497. 2.3.1, 2.3.1

[38] Marc Droske and Martin Rumpf. A level set formulation for willmore �ow. Interfaces
and free boundaries, 6(3):361–378, 2004. 4.1.1

[39] Marion Dunyach, David Vanderhaeghe, Loïc Barthe, and Mario Botsch. Adaptive remesh-
ing for real-time mesh deformation. In Eurographics 2013. The Eurographics Association,
2013. 5.1

[40] Gerhard Dziuk. Computational parametric Willmore �ow. Numer. Math., 111(1):55–80,
2008. ISSN 0029-599X. 4.7.3

[41] I. Eckstein, J. Pons, Y. Tong, C. Kuo, and M. Desbrun. Generalized Surface Flows for Mesh
Processing. In Alexander Belyaev and Michael Garland, editors, Geometry Processing. The
Eurographics Association, 2007. ISBN 978-3-905673-46-3. 3.1.3, 4.1.4, 4.7.3

109

[42] J. Ellson, E. Gansner, L. Koutso�os, S. North, and G. Woodhull. Graphviz: Open source
graph drawing tools. In Int. Symp. on Graph Drawing, pages 483–484, 2001. 3.22

[43] Matthew Elsey and Selim Esedoḡlu. Analogue of the total variation denoising model in
the context of geometry processing. Multiscale Modeling & Simulation, 7(4):1549–1573,
2009. 1, 4.1

[44] R. Fletcher and C. Reeves. Function minimization by conjugate gradients. The computer
journal, 7(2):149–154, 1964. 3.5.2

[45] George Francis, John M Sullivan, Rob B Kusner, Ken A Brakke, Chris Hartman, and Glenn
Chappell. The minimax sphere eversion. In Visualization and mathematics, pages 3–20.
Springer, 1997. 4.9.1

[46] George K Francis and GK Francis. A topological picturebook, volume 2. Springer, 1987.
4.9.1

[47] M. Freedman, Z. He, and Z. Wang. Mobius energy of knots and unknots. Annals of
Mathematics, 139(1):1–50, 1994. ISSN 0003486X. 2.1.2

[48] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement. Software:
Practice and experience, 21(11):1129–1164, 1991. 3.6.3

[49] S. S. Ge and Y. J. Cui. New potential functions for mobile robot path planning. IEEE
Transactions on Robotics and Automation, 16(5):615–620, 2000. 1

[50] Mark Gillespie, Boris Springborn, and Keenan Crane. Discrete conformal equivalence of
polyhedral surfaces. ACM Trans. Graph., 40(4), 2021. 4.9.1

[51] B. Grigoryan, S. Paulsen, et al. Multivascular networks and functional intravascular
topologies within biocompatible hydrogels. Science, 364(6439):458–464, 2019. 3.6.3

[52] Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. Discrete shells. In
Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation,
pages 62–67. Citeseer, 2003. 4.9.2

[53] W. Hackbusch. Hierarchical matrices: algorithms and analysis, volume 49. Springer, 2015.
1.1.3, 3.4.2, 4.5.1

[54] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-Or. Point2mesh: A self-prior
for deformable meshes. ACM Trans. Graph., 39(4), July 2020. ISSN 0730-0301. 4.9.2

[55] D. Harmon, E. Vouga, B. Smith, R. Tamstorf, and E. Grinspun. Asynchronous contact
mechanics. In ACM Trans. Graph., volume 28, page 87. ACM, 2009. 3.1.2

[56] David Harmon, Daniele Panozzo, Olga Sorkine, and Denis Zorin. Interference-aware
geometric modeling. ACM Transactions on Graphics (TOG), 30(6):1–10, 2011. 4.9.2

110

[57] Y. Hassan, S. Easa, and A. Abd El Halim. State-of-the-art of three-dimensional highway
geometric design. Can. J. Civ. Eng., 25(3):500–511, 1998. 3.1

[58] Behrend Heeren, Martin Rumpf, Max Wardetzky, and Benedikt Wirth. Time-discrete
geodesics in the space of shells. In Computer Graphics Forum, volume 31, pages 1755–
1764. Wiley Online Library, 2012. 5.1

[59] Y. K. Hwang and N. Ahuja. A potential �eld approach to path planning. IEEE Transactions
on Robotics and Automation, 8(1):23–32, 1992. 1

[60] Atsushi Ishii. Moves and invariants for knotted handlebodies. Algebraic & Geometric
Topology, 8(3):1403–1418, 2008. 4.9.1

[61] Atsushi Ishii, Kengo Kishimoto, Hiromasa Moriuchi, and Masaaki Suzuki. A table of
genus two handlebody-knots up to six crossings. Journal of Knot Theory and Its Rami�-
cations, 21(04):1250035, 2012. 4.9.1, 4.13

[62] Alec Jacobson, Ladislav Kavan, and Olga Sorkine. Robust inside-outside segmentation
using generalized winding numbers. ACM Trans. Graph., 32(4), 2013. 1.1.3

[63] Pushkar Joshi and Carlo Séquin. Energy minimizers for curvature-based surface func-
tionals. Computer-Aided Design and Applications, 4(5):607–617, 2007. 4.1.1

[64] Michael Kazhdan, Jake Solomon, and Mirela Ben-Chen. Can mean-curvature �ow be
modi�ed to be non-singular? In Computer Graphics Forum, volume 31, pages 1745–1754.
Wiley Online Library, 2012. 4.1.1, 4.9.1

[65] D. Kleckner, L. Kau�man, and W. Irvine. How super�uid vortex knots untie. Nature
Physics, 12(7):650, 2016. 3.1.1

[66] Leif P. Kobbelt, Jens Vorsatz, and Ulf Labsik. A shrink wrapping approach to remeshing
polygonal surfaces. Computer Graphics Forum, 18(3):119–130, 1999. 4.9.2

[67] Sławomir Kolasiński, Paweł Strzelecki, and Heiko von der Mosel. Compactness and iso-
topy �niteness for submanifolds with uniformly bounded geometric curvature energies,
2015. 4

[68] S. Kovalsky, M. Galun, and Y. Lipman. Accelerated quadratic proxy for geometric opti-
mization. ACM Trans. Graph., 35(4):1–11, 2016. 1.1.2, 3.1.3, 3.5.2, 4.1.4, 4.8.2

[69] B. Kubiak, N. Pietroni, F. Ganovelli, and M. Fratarcangeli. A robust method for real-time
thread simulation. In Proc. ACM Symp. Virt. Real. Soft. Tech., pages 85–88. ACM, 2007.
3.1.2

[70] R. Kusner and J. Sullivan. Möbius-invariant knot energies. Ideal knots, 19, 1998. 2.1, 3.1.2,
4.1.2

[71] M. Kwaśnicki. Ten equivalent de�nitions of the fractional Laplace operator. Fract. Calc.
Appl. Anal., 20(1):7–51, 2017. ISSN 1311-0454. 2.3.1, 2.3.4, 4.2.4

111

[72] M. Lackenby. Elementary knot theory. Clay Mathematics Institute, 2014. 3.1.2

[73] Marc Lackenby. Elementary knot theory. arXiv preprint arXiv:1604.03778, 2016. 4.9.1

[74] A. Ladd and L. Kavraki. Motion Planning for Knot Untangling, pages 7–23. 2004. ISBN
978-3-540-45058-0. 3.1.2

[75] Silvio Levy and William P Thurston. Making waves: A guide to the ideas behind Outside
In. Geometry Center, 1995. 4.9.1

[76] C. Liang and K. Mislow. On amphicheiral knots. J. Math. Chem., 15(1), 1994. 3.5.3

[77] Fernando C Marques and André Neves. Min-max theory and the willmore conjecture.
Annals of mathematics, pages 683–782, 2014. 4.9.1

[78] T. Martin, P. Joshi, M. Bergou, and N. Carr. E�cient non-linear optimization via multi-
scale gradient �ltering. In Comp. Grap. Forum, volume 32, pages 89–100, 2013. 3.1.3,
4.1.4

[79] F. Maucher and P. Sutcli�e. Untangling knots via reaction-di�usion dynamics of vortex
strings. Physical review letters, 116(17):178101, 2016. 3.1.1

[80] J. McCrae and K. Singh. Sketching piecewise clothoid curves. Computers & Graphics, 33
(4):452–461, 2009. 3.1

[81] A. Mebarki, P. Alliez, and O. Devillers. Farthest point seeding for e�cient placement of
streamlines. In IEEE Visualization, pages 479–486, Oct 2005. 3.6.6

[82] H. Moreton. Minimum curvature variation curves, networks, and surfaces for fair free-form
shape design. PhD thesis, University of California, Berkeley, 1992. 3.1

[83] Henry P Moreton and Carlo H Séquin. Functional optimization for fair surface design.
ACM SIGGRAPH Computer Graphics, 26(2):167–176, 1992. 4.1.1

[84] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcli�. Position based dynamics. J. Vis.
Comm. and Im. Repr., 18(2):109–118, 2007. 3.5.2

[85] J. O’Hara. Energy of a knot. Topology, 30(2):241–247, 1991. 2.1.2

[86] Stanley Osher and Ronald Fedkiw. Level set methods and dynamic implicit surfaces, vol-
ume 153. Springer Science & Business Media, 2006. 4.1.2

[87] M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. On bubble rings and ink
chandeliers. ACM Trans. Graph., 38(4):129, 2019. 3.1.1

[88] S. Pellegrino. Deployable Structures. CISM International Centre for Mechanical Sciences.
Springer Vienna, 2002. ISBN 9783211836859. 1

[89] J. Pérez, B. Thomaszewski, et al. Design and fabrication of �exible rod meshes. ACM
Trans. Graph., 34(4), 2015. 3.1, 3.1.1

112

[90] J. Pérez, M. Otaduy, and B. Thomaszewski. Computational design and automated fabri-
cation of kirchho�-plateau surfaces. ACM Trans. Graph., 36(4):62, 2017. 3.1.1

[91] P. Pierański. In search of ideal knots. In A. Stasiak, V. Katritch, and L. Kau�man, editors,
Ideal Knots, volume 19. World Scienti�c, 1998. 3.1.2, 3.5.2

[92] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates.
Experimental mathematics, 2(1):15–36, 1993. 1.1.2, 3.1.3, 4.1.4

[93] E. Polak and G. Ribiere. Note sur la convergence de méthodes de directions conjuguées.
ESAIM: Math. Model. Num. Anal., 3(R1):35–43, 1969. 3.5.2

[94] S. Redon, A. Kheddar, and S. Coquillart. Fast continuous collision detection between rigid
bodies. In Comp. Graph. Forum, volume 21, pages 279–287, 2002. 3.3.5

[95] R. Renka and J. Neuberger. Minimal surfaces and sobolev gradients. SIAM Journal on
Scienti�c Computing, 16(6):1412–1427, 1995. 3.1.3, 4.1.4

[96] Leonardo Sacht, Etienne Vouga, and Alec Jacobson. Nested cages. ACM Transactions on
Graphics (TOG), 34(6):1–14, 2015. 4.9.2

[97] R. Scharein. Interactive Topological Drawing. PhD thesis, University of British Columbia,
1998. 3.1.2, 3.3.5, 3.5.1, 3.5.2, 4.9.1

[98] Patrick Schmidt, Marcel Campen, Janis Born, and Leif Kobbelt. Inter-surface maps via
constant-curvature metrics. ACMTransactions on Graphics (TOG), 39(4):119–1, 2020. 4.9.1

[99] H. Schumacher. On H 2-gradient Flows for the Willmore Energy. arXiv e-prints, Mar
2017. 3.1.3, 4.1.4, 4.7.3, 4.8.2

[100] Lin Shi, Yizhou Yu, Nathan Bell, and Wei-Wen Feng. A fast multigrid algorithm for mesh
deformation. ACM Trans. Graph., 25(3):1108–1117, 2006. ISSN 0730-0301. 5.1

[101] J. Smith and S. Schaefer. Bijective parameterization with free boundaries. ACM Trans.
Graph., 34(4):1–9, 2015. 3.3.5

[102] Yousuf Soliman, Albert Chern, Olga Diamanti, Felix Knöppel, Ulrich Pinkall, and Peter
Schröder. Constrained willmore surfaces. ACM Trans. Graph., 40(4), 2021. 4.1.1, 4.1.4,
4.9.1

[103] Olga Sorkine and Marc Alexa. As-rigid-as-possible surface modeling. In Symposium on
Geometry processing, volume 4, pages 109–116, 2007. 4.9.2

[104] P. Strzelecki and H. von der Mosel. Tangent-point self-avoidance energies for curves. J.
Knot Theory Rami�cations, 21(5), 2012. ISSN 0218-2165. 1.1

[105] P. Strzelecki and H. von der Mosel. Geometric curvature energies: facts, trends, and open
problems. In New Directions in Geometric and Applied Knot Theory. 2017. 3.3.1

113

[106] PawełStrzelecki and Heiko von der Mosel. Tangent-point repulsive potentials for a class
of non-smooth m-dimensional sets in ℝn. Part I: Smoothing and self-avoidance e�ects.
J. Geom. Anal., 23(3):1085–1139, 2013. ISSN 1050-6926. doi: 10.1007/s12220-011-9275-z.
4.1.3, 4.2.3

[107] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust quasistatic �nite elements and �esh
simulation. In Symp. Comp. Anim., pages 181–190, 2005. 3.5.2

[108] H. Triebel. Theory of function spaces, volume 78 of Monographs in Mathematics. 1983.
ISBN 3-7643-1381-1. 2.3.1

[109] S. Walker. Shape optimization of self-avoiding curves. J. Comp. Phys., 311, 2016. 3.1.2

[110] S. Weißmann and U. Pinkall. Filament-based smoke with vortex shedding and variational
reconnection. In ACM Trans. Graph., volume 29, 2010. 3.1.1

[111] David Wells. The Penguin dictionary of curious and interesting numbers. Penguin, 1997.
4.15

[112] Peter Wriggers and Giorgio Zavarise. Computational contact mechanics. Encyclopedia
of computational mechanics, 2004. 4.1.2

[113] Z. Yan, S. Schiller, G. Wilensky, N. Carr, and S. Schaefer. k-curves: interpolation at local
maximum curvature. ACM Trans. Graph., 36(4), 2017. 3.6.4

[114] Zi Ye, Olga Diamanti, Chengcheng Tang, Leonidas Guibas, and Tim Ho�mann. A uni�ed
discrete framework for intrinsic and extrinsic dirac operators for geometry processing.
In Computer Graphics Forum, volume 37, pages 93–106. Wiley Online Library, 2018. 4.9.1

[115] C. Yu, K. Crane, and S. Coros. Computational design of telescoping structures. ACM
Trans. Graph., 36(4), 2017. 3.1

[116] Chris Yu, Henrik Schumacher, and Keenan Crane. Repulsive curves. ACM Trans. Graph.,
40(2), May 2021. ISSN 0730-0301. doi: 10.1145/3439429. 1.1.2, 2, 3.5, 4.8.2

[117] J. Yu and S. LaValle. Multi-agent path planning and network �ow. In Algorithmic Foun-
dations of Robotics X, pages 157–173. Springer, 2013. 3.6.5

[118] J. Zehnder, S. Coros, and B. Thomaszewski. Designing structurally-sound ornamental
curve networks. ACM Trans. Graph., 35(4):99, 2016. 3.1, 3.1.1

[119] Fuzhen Zhang. The Schur Complement and its Applications, volume 4 of Numerical Meth-
ods and Algorithms. Springer, New York, 2005. 4.5.3

[120] Y. Zhu, R. Bridson, and D. Kaufman. Blended cured quasi-newton for distortion opti-
mization. ACM Trans. Graph., 37(4):1–14, 2018. 1.1.2, 3.1.3, 3.5.2, 4.1.4

114

	1 Introduction
	1.1 Contributions
	1.1.1 The Tangent-Point Energy as a Tool
	1.1.2 Fractional Sobolev Gradient Descent
	1.1.3 Optimization of All-Pairs Energies
	1.1.4 Thesis Statement

	2 Optimization of Repulsive Energies
	2.1 Background: Repulsive Energies
	2.1.1 Coulomb Energy
	2.1.2 Möbius Energy
	2.1.3 Tangent-Point Energy

	2.2 Background: Sobolev Gradient Descent
	2.2.1 Tutorial: Dirichlet Energy

	2.3 Optimizing the Tangent-Point Energy
	2.3.1 Fractional Analysis
	2.3.2 Energy Space
	2.3.3 Order of the Differential
	2.3.4 Fractional Inner Product

	3 Repulsive Curves
	3.1 Related Work
	3.1.1 Curve Simulation
	3.1.2 Knot Energies
	3.1.3 Geometric Optimization

	3.2 Smooth Curve Optimization
	3.2.1 Curve Tangent-Point Energy
	3.2.2 Curve Fractional Sobolev Preconditioner

	3.3 Discrete Curve Optimization
	3.3.1 Discrete Energy
	3.3.2 Discrete Energy Gradient
	3.3.3 Discrete Inner Product
	3.3.4 Constraints
	3.3.5 Time Stepping

	3.4 Acceleration
	3.4.1 Energy and Differential Evaluation
	3.4.2 Hierarchical Matrix-Vector Product
	3.4.3 Multigrid Solver

	3.5 Evaluation and Comparisons
	3.5.1 Dataset
	3.5.2 Performance Comparisons
	3.5.3 Local minimizers
	3.5.4 Scaling behavior

	3.6 Results and Applications
	3.6.1 Constraints and Potentials
	3.6.2 Curve Packing
	3.6.3 Graph Drawing
	3.6.4 Self-Avoiding Splines
	3.6.5 Multi-agent Path Planning
	3.6.6 Streamline Visualization

	4 Repulsive Surfaces
	4.1 Related Work
	4.1.1 Curvature Functionals
	4.1.2 Repulsive Forces
	4.1.3 Tangent-Point Energy
	4.1.4 Accelerating Optimization
	4.1.5 Efficient Evaluation

	4.2 Smooth Formulation
	4.2.1 Energy
	4.2.2 Gradient Flow
	4.2.3 Order of the Differential
	4.2.4 Inner Product

	4.3 Discretization
	4.3.1 Discrete Energy
	4.3.2 Discrete Inner Product
	4.3.3 Constraints

	4.4 Fast Energy and Derivative Evaluation
	4.4.1 Approximate Energy
	4.4.2 Approximate Derivative

	4.5 Iterative Linear Solver
	4.5.1 Hierarchical Matrices
	4.5.2 Preconditioner
	4.5.3 Schur Complement
	4.5.4 Accelerated Algorithm Overview

	4.6 Dynamic Remeshing
	4.7 Constraints and Penalties
	4.7.1 Constraints
	4.7.2 Fast Positional Constraints
	4.7.3 Penalties

	4.8 Evaluation and Comparisons
	4.8.1 Consistency Testing
	4.8.2 Comparison of Optimization Methods
	4.8.3 Time Step Restriction
	4.8.4 Wall-Clock Performance

	4.9 Examples and Applications
	4.9.1 Mathematical Visualization and Exploration
	4.9.2 Geometry Processing and Shape Modeling

	5 Conclusion
	5.1 Limitations and Future Work
	5.2 Final Remarks

	A Derivations
	A.1 Action of the Fractional Operators
	A.2 Fast Matrix-Vector Multiplication

	Bibliography

