
Human-efficient Discovery of Edge-based
Training Data for Visual Machine Learning

Ziqiang Feng
CMU-CS-21-120

August 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Mahadev Satyanarayanan (Satya) (Chair), Carnegie Mellon University

Martial Hebert, Carnegie Mellon University
Roberta Klatzky, Carnegie Mellon University

Padmanabhan Pillai, Intel Labs

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Ziqiang Feng

This research was sponsored by National Science Foundation award number: CNS1518865; by United States De-
fense Advanced Research Projects Agency award number: HR001117C0051; and by Intel Corporation award num-
ber: A018540296213611; and by a Croucher Foundation Scholarship for Doctoral Study. Additional support was
provided by Vodafone, Deutsche Telekom, Crown Castle, InterDigital, Seagate, Microsoft, VMware, and the Con-
klin Kistler family fund. The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the
U.S. government or any other entity.

Keywords: Edge Computing, Cloudlet, Video Analytics, Training Data

To the bond between humans and machines.

iv

Abstract
Deep learning enables effective computer vision without hand crafting feature

extractors. It has great potential if applied to specialized domains such as ecol-
ogy, military, and medical science. However, the laborious task of creating labeled
training sets of rare targets is a major deterrent to achieving its goal. A domain
expert’s time and attention is precious. We address this problem by designing, im-
plementing, and evaluating Eureka, a system for human-efficient discovery of rare
phenomena from unlabeled visual data. Eureka’s central idea is interactive content-
based search of visual data based on early-discard and machine learning. We first
demonstrate its effectiveness for curating training sets of rare objects. By analyzing
contributing factors to human efficiency, we identify and evaluate important system-
level optimizations that utilize edge computing and intelligent storage. Lastly, we
extend Eureka to the task of discovering temporal events from video data.

vi

Acknowledgments
It has been a long journey filled with many moments of excitement, enlight-

enment, and discovery, as well as, inevitably, moments of challenge, struggle, and
confusion. The work of this dissertation would not be possible without the support
of a group of talented and caring people.

I am deeply indebted to my advisor Professor Mahadev Satyanarayanan (Satya).
It has been a great honor to be advised by Satya for the past five years. Satya taught
me many qualities of a good researcher. His multi-decade research experience in
broad areas helps me see connections between things that I may otherwise ignore.
He is a visionary who can acutely discover research opportunities driven by emerg-
ing and futuristic technologies. In addition to being a great scientist, Satya is also a
good leader, a caring mentor, and a nice friend. He has offered invaluable guidance
and help in my career decision. I am also fortunate to have researchers with diverse
backgrounds in my thesis committee. Padmanabhan (Babu) Pillai is an exemplar
system researcher who has broad and deep knowledge of almost every aspect of
computer systems ranging from low level hardware components to application soft-
ware. I also appreciate his patience and kindness in answering my questions and
staying with me late night for paper deadlines. I would like to thank Martial Hebert
for his guidance and critiques from the computer vision perspective, which is a cor-
ner stone of this dissertation. I also thank Roberta (Bobby) Klatzky, who brings
in novel and sometime counter-intuitive viewpoints as an expert in psychology and
human-computer interaction.

Many ideas and experimental results presented in this document come from dis-
cussion and collaborative work with talened individuals of Satya’s research group.
Their day-to-day technical and emotional support has been an irreplaceable part of
my PhD life. Especially, I would like to thank, in alphabetical order, Mihir Bala,
Zhuo Chen, Jason Choi, Kevin Christensen, Thomas Eiszler, Shilpa George, Kiry-
ong Ha, Jan Harkes, Wenlu Hu, Roger Iyengar, Natalie Janosik, Haithem Turki, Jun-
jue Wang. I would also thank Chase Klingensmith for his outstanding administrative
assistance for the group.

My research also benefited from discussion and collaboration with many tal-
ented individuals beyond Satya’s group and beyond CMU. Thank you, Ragaad Al-
tarawneh, Jim Blakley, Pedro Cuadra Chamorro, Eduardo Cuervo, Jason Feist, Guoyao
(Freddie) Feng, Erin Foley, Chris Fulkerson, Greg Ganger, Wei Gao, Philip Gib-
bons, James Gross, Vishakha Gupta, Michael Kozuch, Grace Lewis, Tan Li, Lin Ma,
Manuel Olguı́n, Andy Pavlo, Deva Ramanan, Thomas Rausch, Luis Remis, Dan
Siewiorek, Asim Smailagic, Christina Strong, Jinliang Wei, Shao-Wen Yang, Canbo
(Albert) Ye, Huanchen Zhang.

Finally, I am grateful for the support of my parents. While they had not been in a
graduate school, they have shown enormous trust, understanding, and consideration
through the ups and downs of my PhD study. I could not have finished the PhD
without knowing I will always have their support.

viii

Contents

1 Introduction 1
1.1 Deep Learning for Computer Vision . 1
1.2 Creating and Deploying DNNs . 2
1.3 Creation of Training Data Sets . 3
1.4 Human-efficiency of Domain Experts . 4
1.5 Prior Work in Training Set Creation By Experts 6
1.6 Thesis Statement . 7
1.7 Thesis Validation . 7

2 Background 9
2.1 Edge Computing . 9
2.2 OpenDiamond: Interactive Search of Non-Indexed Image 11

3 Eureka System Design 15
3.1 Edge-based System Architecture . 16
3.2 Programming Abstraction . 18

3.2.1 Item . 18
3.2.2 Filter . 19
3.2.3 Attribute . 19
3.2.4 Examples of Filters . 20

3.3 Optimization for Domain Experts . 21
3.3.1 Filter Container: Offering Software Generality 21
3.3.2 Itemizer: Task-specific Data Transformation 23
3.3.3 Scoping: Utilizing Metadata and Indexes 24
3.3.4 Result Caching: Accelerating Interactive Search Cycles 24

4 Discovering Novel Objects in Image Data 27
4.1 Just-in-time Machine Learning . 28
4.2 Iterative Discovery Workflow . 29
4.3 Evaluation of Productivity . 31

4.3.1 Evaluation Methodology . 31
4.3.2 Results . 33

4.4 Modeling User:System Match . 36
4.4.1 Classifier Metrics . 37

ix

4.4.2 Result Delivery Rate . 37
4.4.3 Analysis . 38
4.4.4 Discussion . 38

4.5 Related Work . 40

5 Improving System Efficiency of Eureka on the Edge 41
5.1 Alleviating WAN Bottleneck via Edge Computing 42
5.2 Enhancing Edge Elasticity via Intelligent Storage 44

5.2.1 Eureka Workload Attributes . 44
5.2.2 Problem: High Scalability Cost of Decoding 46
5.2.3 Solution: Decode-Enabled Storage . 47
5.2.4 Implementation . 49
5.2.5 Timing-Accurate Emulated Prototype 54
5.2.6 Evaluation Methodology . 56
5.2.7 Micro-benchmark Evaluation . 58
5.2.8 End-to-end Evaluation . 64

5.3 Related Work . 66

6 Extending Eureka to Detect Temporal Events in Video Data 69
6.1 A 4-Level Taxonomy of Video Analytics . 70
6.2 Modeling Spatial-Temporal Events in Video . 72

6.2.1 Spatial-Temporal Interval . 73
6.2.2 Interval Stream . 75
6.2.3 Operator on Interval Streams . 75
6.2.4 Example . 75

6.3 Event Discovery Idioms . 77
6.3.1 Representing and Computing Object Trajectories 77
6.3.2 Predicating on Trajectory Relationship 80
6.3.3 Content-based Hierarchical Detection 82
6.3.4 Guess and Verify . 84

6.4 Implementation and Optimization for Video Data 85
6.4.1 Maintaining the Stream Invariant . 87
6.4.2 Exploiting Parallelism . 87
6.4.3 Provenance and Late Materialization . 88
6.4.4 Video Decoder and LRU Frame Cache 88

6.5 Evaluation . 89
6.5.1 Metrics . 89
6.5.2 Data Sets and Tasks . 90
6.5.3 Result . 91

6.6 Discussion . 96
6.7 Related Work . 97

x

7 Conclusion and Future Work 101
7.1 Contributions . 101
7.2 Future Directions . 102

7.2.1 Integrating Labeling, Learning, and Inference 102
7.2.2 Adaptive Workload Sharing Between Edge and Cloud 102
7.2.3 Advanced Computer Vision for Video Analysis 103
7.2.4 User Study with Domain Experts . 103
7.2.5 Eureka in Non-Visual Domains . 104

Bibliography 105

xi

xii

List of Figures

1.1 The inference and training (learning) steps of DNNs 3
1.2 Examples of poor and good use of expert time in finding images of deer 5

2.1 A Three-Tier Model of Modern Computing . 11

3.1 Eureka’s GUI for composing a query to search for deer images. 16
3.2 Eureka System Architecture . 17
3.3 Eureka’s Programming Abstraction . 18
3.4 An Example of Containers and Processes at Query Time 22
3.5 Item Throughput with Varying Computation Per Item and Parallel Workers . . . 23

4.1 Transfer Learning from A Pre-trained DNN to A New Task 29
4.2 Example: Infectious Disease Control . 30
4.3 Training Data Set Size vs. Accuracy Trade-off 30
4.4 Examples of Targets Used in Our Case Studies 32
4.5 Summary Results for Case Studies . 33
4.6 Images Presented to and Labeled by User (Including Positives and Negatives) . . 33
4.7 Notations . 36
4.8 Metrics Pertaining to Classifier Accuracy . 36
4.9 Negative Effect of High False Positive Rate . 39

5.1 Effect of Bandwidth between Cloudlet and Data Source 43
5.2 Storage Efficiency of Encoding: YFCC100M 44
5.3 Storage Efficiency of Encoding: VIRAT . 44
5.4 An Early-discard Pipeline for “Red Bus” . 45
5.5 High Scalability Cost of Image Decode . 46
5.6 Impact of Our Solution on Figure 5.5’s Workload 46
5.7 Thermal Heatmap of Typical Cloudlets . 51
5.8 Alternative Placement of Decode Accelerator (ASIC) 52
5.9 Decode-Enabled Storage Emulator used in Experimental Evaluation 55
5.10 Early Discard Filters Used in Experiments . 57
5.11 Application Throughput of Micro Benchmarks 59
5.12 Data Transfer Rate on Disk Bus . 59
5.13 Effect of Bus Speed . 59
5.14 Effect of Storing Decoded Images . 60

xiii

5.15 Effect of CPU Cores on Throughput . 61
5.16 Extrapolated Application Throughput with Varying Number of Disks 62
5.17 Effect of Video Decoding on CPU (Baseline) vs ASIC 63
5.18 Example Results from Full Eureka Pipelines . 64
5.19 Full End-to-End Visual Pipeline Performance 65

6.1 Examples Frames of “Get-Out-of-Vehicle” Event in A VIRAT Video Clip 70
6.2 A 4-Level Taxonomy for Classifying Video Analytics Systems 71
6.3 Spatial-Temporal Interval Unifies Different Granularities of Visual Content . . . 74
6.4 Example: “A Person Riding A Bike During Red Traffic Light” 76
6.5 Representing An Object’s Trajectory in Eureka 77
6.6 Query Graph: Finding Person Trajectory . 78
6.7 Step-by-step Visualization of the Person Trajectories Query 79
6.8 Query Graph: Person Getting Out of Vehicle (Get-Out) 81
6.9 Detecting Small Objects in Large-view Cameras 83
6.10 Alternative Approaches to Detecting Bicyclist 84
6.11 Eureka Query Template of the “Guess-and-Verify” Idiom 85
6.12 LRU Frame Cache Reduces Redundant Decoding and “Decoder Seeks” 89
6.13 Event Examples Discovered in Our Evaluation 92
6.14 Productivity Improvement Factor over Brute-force Labeling 93

xiv

List of Tables

1.1 Quantities of labeled and unlabeled visual data, as well as data in the wild 4

2.1 Bandwidth and Latency from US East to Different Amazon EC2 Locations . . . 10
2.2 Example Applications Built on the OpenDiamond Platform 13

3.1 Examples of Eureka Filters . 20
3.2 Docker Container Snapshot Sizes with Incremental Content 23
3.3 Experiment query templates . 25
3.4 End-to-end throughput (frames per second) . 25

4.1 Diamond’s effectiveness in discovering rare objects in YFCC100M. 28
4.2 Case Study: Building A Training Set of Deer 34
4.3 Case Study: Building A Training Set of Taj Mahal 35
4.4 Case Study: Building A Training Set of a Fire Hydrant 35

5.1 Energy Efficiency of Hardware Accelerators . 49
5.2 Comparison of Storage Bus Technologies and Storage Devices Internal Throughput 53
5.3 JPEG Decode: Software vs HW Acceleration 53
5.4 Default Experiment Setup and Parameters . 57

6.1 Search Targets in Recent Work of Video Analytics Systems 72
6.2 Example Operators and Predicates in Eureka . 75
6.3 Reserved Attribute Names with Specialized Optimization and Support 86
6.4 Operators Related to Object Detection . 86
6.5 Data Set Used in Evaluation . 90
6.6 Search Targets and Conditions in Evaluation . 91
6.7 Event Discovery VIRAT: Person Getting Out of Vehicle (get-out) 94
6.8 Event Discovery VIRAT: Person Getting into Vehicle (get-in) 94
6.9 Event Discovery VIRAT: Person Loading/Unloading Object to/from Vehicle (load-

ing) . 95
6.10 Event Discovery VIRAT: Person Carrying Bag (carry-bag) 95
6.11 Event Discovery in Okutama: Person Pushing An Object (pushing) 95
6.12 Event Discovery in Okutama: Person Shaking Hands (handshake) 95

xv

xvi

Chapter 1

Introduction

The general goal of computer vision is to understand, like a human does, what is happening in
image and video data. What objects are present in the picture? Where are they? What activity
is the person doing in the video? Recently, methods based on supervised deep learning have
become the standard approach to solving these problems by demonstrating near-human accuracy
on certain tasks. This inspires interest in adopting deep learning in specialized domains such
as sciences, military, and business. However, deep learning’s success is based on the premise
of The Unreasonable Effectiveness of Data [54], which involves laborious manual annotation
of thousands to millions of training examples. In specialized domains, this task often falls on
the shoulder of a single domain expert. It consumes a lot of precious time and attention of an
expert, hindering practical use of deep learning in those domains. Can we remove the hindrance
by improving an expert’s efficiency in this painstaking task? What can a computer system offer
to achieve this goal? We address these questions in this dissertation.

1.1 Deep Learning for Computer Vision

Until the past decade, the popular approaches in computer vision could be broadly described as
the use of manually designed visual feature descriptors (e.g., HOG [32], SIFT [95]) and classical
machine learning (e.g., SVM). These descriptors capture certain aspects of visual objects (e.g.,
color, shape, scale) and each has its limitations. Machine learning is used to properly weigh the
features by learning from examples.

In 2012, a deep learning solution called AlexNet [87] scored an overwhelming victory against
those traditional methods in that year’s ImageNet classification competition. Since then, there
has been avid effort to push the envelope of deep learning. In 2015, ResNet [59] marked an-
other milestone by surpassing human accuracy on ImageNet. Meanwhile, deep learning has
been extended beyond image classification to other computer vision tasks, including object de-
tection [119], semantic segmentation [102], and activity recognition [47], with various degrees
of success. Compared to traditional approaches, deep learning avoids the need for manually de-
signed feature extractors. Deep neural networks (DNNs) are believed to be able to learn a richer
and more complete set of features, given a sufficient amount of example data.

Today, deep learning has reached such a level of accuracy that companies have rolled out

1

services to end consumers. Mobile Apps such as Google Lens use deep learning to recognize
objects in users’ photos. Flickr uses deep learning to auto-tag millions of images [105].

DNNs can embody near-human discriminative power. This inspires interests in adopting deep
learning in specialized domains such as sciences, military, and business. Imagine creating DNNs
that can answer questions hard for non-experts to answer. Examples include: “Is this a caterpillar
of the pest moth Cactoblastis cactorum or of a benign moth?”; “Is this a MQ-9 Reaper drone or a
common drone?”; “Does this video clip show a legit car accident or an insurance fraud?”. Once
created, these DNNs can be deployed at scale in the field to detect targets in real time, or be used
to scan many years of archival data in just hours or days.

1.2 Creating and Deploying DNNs

Conceptually, a DNN is a parameterized mathematical function (also called a model) that trans-
forms the high-dimensional input signals (e.g., millions of RGB pixel values) into low-dimensional
semantic information (e.g., a handful of object labels and bounding boxes). DNNs are huge, in-
volving millions of parameters and millions of FLOPs to compute. AlexNet [123] has 60 million
parameters and takes 720 MFLOPs to compute, while ResNet-50 [119] has 25 million parameters
and takes 4,000 MFLOPs to compute. Furthermore, it proves to be crucial to exploit accelera-
tors such as GPUs to achieve acceptable run time performance. Great care needs to be taken
to turn such conceptions into computer programs. To this end, many deep learning frameworks
have been proposed. The most notable ones among others are Caffe [76], TensorFlow [2], Py-
Torch [111], and MXNet [22]. These frameworks provide deep learning abstractions such as
models, layers, and operators; and encapsulate details of memory allocation, multi-threading,
scheduling, model serialization, and interfacing with GPUs. This allows machine learning re-
searchers to focus on algorithmic design and be able to quickly prototype new ideas and conduct
experimental evaluation.

Enabled by the convenience of these frameworks, many innovations have been made to DNN
architectures (“shape” of the mathematical function) to make them run faster, be more accurate,
or both. To name a few, VGG [136], Inception [141], ResNet [59], MobileNet [63], CFNet [149],
and Faster R-CNN [119]. For example, ResNet uses a novel technique called residual connec-
tion that makes the network significantly smaller and faster than AlexNet, and yet much more
accurate.

Deploying DNNs for practical use cases often requires them to run on devices with limited
compute, memory, and battery. Resource constraints on these devices make it challenging to
meet latency requirements, or even be able to execute at all. To address these challenges, var-
ious techniques of model compression [23, 24, 57, 70] have been proposed to reduce the size
of the DNN models at the expense of minimal accuracy loss. In terms of hardware, vendors
produce specialized accelerators such as Intel Movidius [30] and Google TPU [80] dedicated for
deep learning workloads. These chips often include specialized hardware implementation for the
most commonly-used DNN layers, such as the convolution layer, thus achieving high run time
efficiency and energy efficiency.

2

Raw pixels Deep Neural Network Prediction

Label
(ground truth)

⊗ErrorDeep Neural Network

Prediction

(1) Forward pass

(2) Backward pass (aka back-propagation)

Raw pixels Label
(ground truth)A training example = (,)

Figure 1.1: The inference and training (learning) steps of DNNs

1.3 Creation of Training Data Sets

DNNs need to be trained on a task-specific training set to be useful. Figure 1.1 illustrates the
two-pass concept of training. The forward pass runs the model on the input pixels and receives a
prediction, as it would when the model is deployed; the backward pass compares this prediction
against the ground truth label and adjusts the model parameters in the direction of reducing
that error. The ground truth is what the DNN should ideally output, and is often created by
manual annotation. For binary classification tasks, this means assigning positive/negative to
each example. A training example is thus a pair of raw pixels and label. A training set is a
collection of such examples. The forward and backward passes are repeated many times, on
many training examples, until the model converges to a good average accuracy over the training
set. Work mentioned earlier in Section 1.2 assumes such a training set is available. While the
forward/backward computation is automated by systems such as TensorFlow, preparation of the
training data is left outside the system.

Labeled training data is the key here. Where do the labels come from? Indeed, the suc-
cess of deep learning is made possible thanks to public training sets curated by many diligent
researchers. Table 1.1 lists the statistics of several data sets widely used in academia. It also con-
trasts their sizes to the data “in the wild.” Note that even at moderate sizes, curation of labeled
data sets is a painstaking effort. ImageNet [123] took 19 person-year to curate. The VIRAT
video data set [109] was introduced in 2011 and was under annotation until 2016. To date, the
prevailing solution to accelerating this process is to utilize crowd-sourcing tools such as Amazon
Mechanical Turk. This essentially leverages human-level parallelism offered by many crowd
workers. Unfortunately, as we discuss next, this approach is infeasible in specialized domains.

3

Data set Size Example labels
Labeled: object recognition/detection (image)

PASCAL VOC [40] 12,000 images person, chair, dining table, dog
COCO [93] 330,000 images person, bicycle, cat, dog, knife
ImageNet [123] 1,200,000 images car wheel, goldfish, Irish terrier, kite

Labeled: activity recognition (video)
HMDB51 [88] 7,000 files; 3.9 hours clap, kick ball, push, sit, wave
Charades [135] 10,000 files; 83.3 hours eat sandwich, hold broom, open fridge
UCF101 [138] 13,000 files; 27.0 hours basketball dunk, jump rope, play guitar
VIRAT [109] 329 files; 8.5 hours enter building, get into vehicle

Unlabeled
YFCC100M [145] 99,200,000 images

800,000 video files; 8,000 hours
In the wild

Smartphone [104] 1 trillion (1012) photos captured per year (2017)
YouTube [29] 500 hours’ videos uploaded per minute (2019)

Table 1.1: Quantities of labeled and unlabeled visual data, as well as data in the wild

1.4 Human-efficiency of Domain Experts
For experts in specialized domains, the creation of training sets remains a major challenge, de-
spite the many software and hardware tools introduced earlier. Three factors complicate the
challenges compared to those in Section 1.3. First, targets in specialized domains are usually
rare, due to a low base rate [97]. The target may be a rare animal species, a secret weapon
recently developed by the enemy, etc. Negative examples are abundant. It is the discovery of
positive examples that is difficult and amplifies the labeling work. Second, correctly identifying
the target requires domain-specific knowledge only possessed by an expert, for example, telling
the pest Cactoblastis cactorum from a benign moth. This task cannot be offloaded to a non-
expert crowd worker. Third, patient privacy, national security, or business concerns may prevent
the data from being accessed by a larger labeler group. As a real world example, the MURA data
set of 40,561 images for abnormality detection in radiology took 11 years to create [116]. In the
worst case, a single expert needs to create an entire training set by sifting through lots of data
and discovering the rare positive instances.

Consider a computer system that scans the raw data and provides potentially positive exam-
ples for an domain expert to check and confirm. In this setting, the most precious resource in the
system is the expert’s time and attention. The expert’s time is well spent if she is continuously
confirming positive examples presented by the system. It is poorly spent if she is: (a) dismiss-
ing a flood of frivolous negative examples; (b) waiting for the system to return a candidate for
examination. We collectively call these aspects human-efficiency.

Figure 1.2 shows two possible scenarios when an expert is searching for deer images in the
YFCC100M [145] data set. Here, each screenshot shows a page from a long result stream. In
Figure 1.2(a), only 1 out of 9 displayed candidates is truly a deer (the one in the center). The
expert needs to dismiss the other 8 as negatives. This is a poorer use of expert time when com-

4

(a) Poor use of expert time

(b) Good use of expert time

Figure 1.2: Examples of poor and good use of expert time in finding images of deer

5

pared to Figure 1.2(b), where 8 out of 9 are true positives (the one at bottom right is a negative).
Note the primary metric here is the expert’s productivity in discovering positive (deer) examples.
This “finding a needle in a haystack” setting is different form the ImageNet competition’s task
that classifies evenly-distributed classes. Given the same budget of labeling time, an expert in
Figure 1.2(b) will likely discover a greater number of deer images than (a). In other words, a
system that returns results like (b) is more human-efficient than one that returns results like (a).

1.5 Prior Work in Training Set Creation By Experts
Training set creation is a less-visited topic compared to the design and deployment of DNNs.
Nguyen et al. [107] explored the mixing of crowd and experts for the task of literature screening.
For reasons discussed earlier, data access by the crowd in specialized domains can be completely
precluded. More recently, Snorkel [118] proposed asking the experts to write a handful of “weak
labeling functions” to accomplish the task. Each labeling function reflects a simple heuristic to
classify the data. A labeling function alone is supposed to be far from good, but still better than a
random guess. Multiple labeling functions can then be aggregated under some statistical models
to produce more accurate labels. This approach requires domain experts to write code, raising
the barrier to access of the system. Moreover, Snorkel relies on some statistical assumptions of
the data and the labeling functions that are hard to verify in the real world. Lastly, neither of the
above focused on visual data.

The Diamond system [69] explored the concept of early discard filters for interactive search
of non-indexed image data. In Diamond, a user creates a chain of simple filters based on heuris-
tics, each of which tries to discard an image as early as possible. Note these filter chains are not a
replacement of the DNN to be trained eventually. Their purpose is to prune the data space that is
likely to be negative, and thus to reduce the amount of data that an expert must sift through. For
example, to find images of deer, one may use a color histogram filter to discard images without
a green patch, which is indicative of the vegetation background often found in a deer photo.

While Diamond demonstrated the potential of the early discard paradigm, it has major limi-
tations in face of new technologies and new tasks. First, Diamond was conceived around 2004,
predating the advent of deep learning. The only way to create more accurate filters in Diamond
is to write new pieces of computer vision code. Similar to Snorkel, this requires programming
skills of the experts, raises the barrier to access, and slows down the data discovery cycle. We
observe that with techniques enabled by deep learning – more concretely, a class of methods
called transfer learning [110] – an expert may be able to create better filters by simply sup-
plying more labeled examples. How transfer learning can be utilized and how it affects the
discovery workflow is unclear. Second, Diamond has solely focused on searching of image data.
Discovering events in video data requires the expression of complex multi-object relations and
temporal-spatial relations. How to let a non/minimal-programmer expert express her heuristics
of such relations and how to execute it on data efficiently remains to be answered. Third, with
the emergence of new compute and storage architectures such as edge computing [127], there are
new opportunities to optimize for machine efficiency, which is critical for reducing system stall
time and improving human efficiency. Doing so requires rethinking system-level implementation
and optimization.

6

1.6 Thesis Statement
In this dissertation, we address the problem of human-efficient discovery of training data for
visual machine learning. We claim that:

The manual effort of discovering a large training set for visual machine learning can
be reduced by a system combining: (a) efficient early discard made possible by edge com-
puting; (b) just-in-time machine learning; and (c) the ability to create more accurate filters
immediately without writing new code. This approach is effective for different compute/s-
torage architectures and different vision tasks.

Laborious manual discovery of training data for rare phenomena is a major deterrent to adopt-
ing deep learning in specialized domains. The thesis, if validated, will significantly reduce this
deterrent and enable the creation of scalable computer programs that embody domain-specific
expertise. This challenge is unaddressed by existing deep learning software and hardware tools,
which have focused on other steps of the deep learning workflow. Addressing this challenge
requires taking into account state-of-the-art of machine learning, characterization of system per-
formance, and the way an expert interacts with the system.

1.7 Thesis Validation
We validate the above thesis by building Eureka, an interactive system that lets domain experts
efficiently discover rare phenomena from a large volume of visual data. Eureka treats the im-
provement of an expert’s productivity as its end goal.

The design of Eureka faces three top-level concerns. First, visual data (image and video) is
big, consuming a lot of storage bandwidth and network bandwidth to transmit, and taking a lot
of memory and CPU cycles to process. Large-scale data sources are often distributed and distant
from the expert. An efficient distributed architecture is needed to achieve good performance.
Second, in specialized domains, the use of proprietary or legacy software is common. Eureka
needs to be easily adapted for different domains without much deployment effort. Third, domain
experts are typically not computer scientists and at best elementary programmers. Eureka needs
to provide interfaces that are intuitive and easy to use by experts. We discuss how we design and
implement Eureka to address these concerns in Chapter 3.

We explore how Eureka helps to reduce human labeling effort for the task of discovering rare
objects in image in Chapter 4. We propose an iterative early-discard workflow that is made pos-
sible with transfer learning [110]. We show this new approach significantly improves human effi-
ciency compared to exhaustive labeling and Diamond’s single-stage early discard approach [69].
A model is developed for analyzing how system performance impacts human efficiency. The
model shows that a slow system creates stalls and thus waste of expert time.

Following the model in Chapter 4, we investigate performance bottlenecks of Eureka in Chap-
ter 5. We focus on the edge computing setting as new visual data is intrinsically collected on the
edge. We show how Eureka’s distributed design alleviates the wide area network (WAN) band-
width bottleneck. We then study Eureka’s single-node performance and observe an opportunity
to greatly improve system efficiency by redesigning the storage subsystem on edge nodes. This
opportunity is reminiscent of the decades-old active disk [84] idea, but is driven by new technol-

7

ogy trends such as NVMe on hard disks. We elaborate our new design and present experimental
evidence of its potential gain.

We claim that Eureka’s effectiveness is not limited to static images. We validate this by
considering a more challenging task – discovering instances of novel temporal events in video. To
this end, we extend Eureka’s programming abstraction to treat time, space, and content as three
pillar concepts. Handling video data poses additional challenges in terms of video decoding,
frame buffering, temporal cross-reference, and so on. In Chapter 6, we describe the extended
programming abstraction and system optimization, and then demonstrate how we can search for
novel events in videos using Eureka.

8

Chapter 2

Background

2.1 Edge Computing

Edge computing traces its root to Weiser’s vision of ubiquitous computing [158], also referred to
as pervasive computing [126]. It outlines the dream where a user can access computing services
and personal data anywhere and anytime. The proliferation of smart phones circa 2000 marked a
big step towards this goal in a large-scale and commercially feasible manner. Smart phones allow
users to access most Internet services they can access on PCs, such as email, web browsing, and
even video games. Mobile devices, by definition, encompass great potential to deliver perva-
sive computing, as their users can carry them almost anywhere and anytime. However, as Satya
pointed out [125], mobile elements are always resource-poor compared to their static counter-
parts. This resource gap results from the intrinsic penalty of mobility, rather than the artifacts of
current technology. Size, weight, ergonomics, and heat dissipation are always prioritized. This
observation proves to be valid through generations of mobile hardware technologies.

A natural solution to addressing the resource limitation of mobile devices is to offload compu-
tation to more resource-rich computing infrastructure. This approach was first demonstrated by
Noble et al [108], who implemented speech recognition on mobile devices via offloading. It was
later generalized and termed cyber foraging in 2001 [126]. Many aspects of cyber foraging have
since been studied. For example, Flinn et al [45] exploited cyber foraging to adaptively conserve
energy on mobile devices. A comprehensive survey of this body of work is given in [44].

The rapid growth of public cloud computing services such as Amazon Web Services and
Microsoft Azure in the 2010s made the above concepts widely available. Exascale data centers
house large pools of compute, memory, and storage resources. The economies of scale greatly
improve the efficiency of provision, utilization, maintenance, and SW/HW upgrade. Today, cloud
computing is serving many intelligent mobile applications to billions of users. For example,
when a user asks the Amazon assistant “Alexa, what is the weather today?”, the captured audio is
transmitted across the Internet into the cloud for speech recognition, natural language processing,
and query from weather services; the result is returned to the mobile devices and displayed or
voiced to the user. Millions of users synchronize photos taken on their smart phones to Apple’s
iCloud, so that they can access them on all of their PCs, tablets, and phones without carrying the
original capture device around.

9

Cloud Location Bandwidth (Mb/s) Latency (ms)
Average 90%-tile Average 90%-tile

US East 170.7 181.7 48 41
US West 13.7 14.2 342 336
EU West 18.0 24.9 442 431
EU Central 5.5 5.9 478 464
Asia Pacific 1.5 1.6 897 887

(Measured from Pittsburgh, PA in March 2021 via CloudHarmony)

Table 2.1: Bandwidth and Latency from US East to Different Amazon EC2 Locations

Nonetheless, cloud computing is not without its limitations. The tremendous scale and con-
centration of resources makes cloud data centers inevitably scarce. As a result, the cloud is
far away from most mobile users. Meanwhile, offloading computation requires transmitting
input data and output result across the Internet between the mobile and the cloud. Table 2.1
reports the network bandwidth and latency of different Amazon EC2 cloud locations measured
from US East. As the cloud gets farther away, both network metrics deteriorate quickly. Using
Netflix’s recommendation of 25 Mbps for 4K videos [106], even the closest cloud (US East)
can only support no more than a few camera streams, let alone sharing the precious network
with multiple applications. Akamai reported that the US national average bandwidth in 2017
was merely 18.7 Mbps [6]. This poses severe constraints on bandwidth-hungry applications
such as intelligent surveillance. Other genre of applications, such as wearable cognitive as-
sistance [25, 52, 152] and mobile gaming [92], require crisp response time in order to deliver
interactive and immersive experience to the users. The high latency incurred by offloading to the
cloud is intolerable for these applications. Hu et al [67] quantified this issue in their study.

Edge computing emerges as an answer to the above limitations of mobile-cloud computing.
Satya et al [130] present edge computing in a generalized three-tier model of modern computing
landscape, as depicted in Figure 2.1. In this model, each tier represents a distinct set of properties
and design constraints shared by all elements in that tier, regardless of the protocol used and the
hardware vendor. While technology will certainly evolve in absolute terms over time, the relative
strength and weakness between these tiers remains unchanged.

Tier-3 devices, such as smart phones, VR/AR headsets, and drones, feature sensing capability
and mobility. The main purpose of these devices is to capture raw data from the physical world.
For example, modern smart phones include a rich set of sensors, such as camera, microphone, ac-
celerometer, gyroscope and GPS. Internet of Things (IoT), “smart homes,” and “smart factories”
are collecting data of a wide range of modalities, e.g., smart thermostats. The penalty of mobility
makes Tier-3 devices always more resource-constrained than Tier-2 and Tier-1 devices. Many
valuable services, such as intelligent surveillance, language translation, and high-resolution VR
gaming, require considerably more compute power than that Tier-3 devices offer.

Tier-1 the cloud, by contrast, embodies almost infinite compute resources and power supply.
Scalability, elasticity, and reliability are Tier-1’s defining features. The success of public cloud
service in the last decade has led to it being thought as the default “offload destination” for mobile
applications. However, as discussed above, Tier-1 falls short for emerging applications that are

10

low-
latency
high-

bandwidth
network

Tier 2Tier 3
AR Users

CloudletCloudlet

Video & Other
Sensor Arrays

Microsoft
HololensMagic Leap

Google Glass

Wide-Area Internet

Tier 1

CloudCloud

Figure 2.1: A Three-Tier Model of Modern Computing

bandwidth-hungry and latency-sensitive.
Tier-2 bridges the gap by “bringing the cloud closer.” It deploys substantial compute and

storage infrastructure in proximity to Tier-3, or “the edge of the Internet.” The term “proximity”
here refers to network rather than physical distance, indicating high-bandwidth and low-latency
connection between mobile devices and the edge. Such proximity can be achieved with LAN
connection or one-hop away wireless connection. Wifi, 4G LTE, and emerging 5G technologies
are enabling such high-quality connections.

Tier-2 devices, also referred to as the edge [134], cloudlets [128], micro data centers [11], or
the fog [16], may be in different form factors. Their common characteristics are decent compute
and storage resources, reliable power supply and high-bandwidth low-latency network connec-
tion to Tier-3. Although a single cloudlet, by its name, cannot compare with the cloud in terms
of hardware resources, there can be a large number of them dispersed geographically, effectively
amortizing the network, storage, and compute cost. Satya et al [128] highlighted the role of
virtual machines in edge computing for the advantages of rapid provisioning, portability, and
mobility. Ha et al [53] studied agile VM handoff in this context. Wang et al [152] described
the concept of edge-native application which cannot be supported with Tier-1 and Tier-3 alone.
There has been increasing interest in exploiting the edge to analyze video data collected from
Tier-3 sources [19, 77, 78, 153]. Applications running on Tier-2 may pre-filter raw input data
so that only meta-data and a tiny fraction of raw data is transmitted over the scarce wide-area
network. Our work described in this dissertation also aligns with this principle.

2.2 OpenDiamond: Interactive Search of Non-Indexed Image
The search of indexed image data is traditionally studied under the theme of image retrieval [33,
38]. Typically, this task involves computing certain feature descriptors from the RGB content of
a large corpus of images and organizing these features in storage in a way that is efficient for fu-
ture querying and retrieval. Thus, most of its query time is spent on processing the pre-computed
index data. This methodology requires heavy-weight pre-processing to index all images. More-
over, it assumes that the selected features are relevant to all queries that may be posed to the

11

system. Unfortunately, the search for a novel target is by definition ad-hoc and hard to predict.
The feature descriptors chosen to index the images may not be relevant for a new target. Expand-
ing the set of indexed features incurs significantly wasteful computation and can be prohibitively
expensive. In this case, processing of the RGB content at query time is necessary.

Diamond [69] is one of the earliest research efforts to address interactive search of non-
indexed image data. It was originally considered in the context of active disk, where part of
the application-specific processing pipeline, called “searchlet,” is downloaded and executed on
the storage devices in order to “discard a bulk of irrelevant data” before shipping it to the host
computer. Since a host may be connected to multiple storage devices, this process may run on
multiple storage nodes (backends) in parallel. The authors of Diamond [69] referred to such
processing based on application logic as early discard.

OpenDiamond [129] is an open-source implementation of the Diamond concept in the form
of a Linux middleware. OpenDiamond champions the separation of domain-specific and domain-
agnostic aspects of the system. The core of OpenDiamond is a domain-agnostic runtime that
manages TCP-based connections between the client and the backends. It is also responsible
for triggering download and execution of “searchlets” on the backend. Domain-specific code is
encapsulated under a set of domain-agnostic searchlet APIs. On the client side, a frontend GUI
may be tailored to support domain-specific features and ways of interaction. Table 2.2 shows a
number of domain-specific applications built on top of the OpenDiamond platform.

OpenDiamond and these applications were conceived based on the hardware technology and
the status of computer vision around 2004–2010. Most applications in Table 2.2 offer image
filters based on low-level features such as RGB color histogram, difference of Gaussians (DoG),
histogram of oriented gradients (HOG). Some also include domain-specific hand-tuned feature
extractors. There is no use of deep learning in these applications. Lastly, the data examined
in all these applications can be considered as a form of static images, though it may range from
everyday holiday photos to high-resolution whole-slide images obtained from microscopy. Video
data has not been considered in OpenDiamond.

The implementation of Eureka, the system described in the rest of this dissertation, is ex-
tended from that of OpenDiamond. We have since adapted OpenDiamond’s code base on modern
software and hardware stack. In addition, we have added new features to support deep learning,
just-in-time machine learning, and video processing.

12

HyperFind is a sample domain-specific search application built on
the OpenDiamond platform. HyperFind enables users to quickly
search through collections of unlabeled photographs (such as hol-
iday photos).

DermShare is an easy-to-use web-based tool to assist primary
care physicians in more accurately detecting melanoma. The
physician provides a dermatoscopic image of an unknown lesion,
and the tool discovers and displays similar dermatoscopic images
from a large library of samples, along with their pathology reports
and diagnoses.

FatFind is a Diamond application developed in collaboration with
Merck Research. It targets the time-consuming task of manually
counting adipocytes (fat cells) in cell microscopy images and char-
acterizing their size. FatFind exploits the almost perfectly circular
shape of adipocytes in solution to efficiently locate fat cells

MassFind is an implementation of Interactive Search-Assisted Di-
agnosis (ISAD), specifically for mammography. ISAD is a collab-
orative research effort with the University of Pittsburgh and the
University of Pittsburgh Medical Center.

PathFind is developed based on analysis of expected workflow
by a typical pathologist. It incorporates a vendor-neutral whole-
slide image viewer that allows a pathologist to zoom and navigate
a whole slide image just as he does with a microscope and glass
slides today. The PathFind interface allows the pathologist to iden-
tify regions of interest on the slide at any magnification and then
search for similar regions across multiple slide formats. The search
results can be viewed and compared with the original image.
StrangeFind is an application for online anomaly detection across
different modalities and types of data. It was developed with
Merck to assist pharmaceutical researchers in automated cell mi-
croscopy, where very high volumes of cell imaging are typical.

(Adapted from http://diamond.cs.cmu.edu/applications.html.)

Table 2.2: Example Applications Built on the OpenDiamond Platform

13

http://diamond.cs.cmu.edu/applications.html

14

Chapter 3

Eureka System Design

We address the research questions in this dissertation by building Eureka, a distributed system
for interactive content-based discovery of rare phenomena in visual data. Eureka’s ultimate goal
is to improve an expert’s human efficiency in this process. To do so, it needs to address several
system design and implementation challenges.

Because we focus on the discovery of novel targets, by definition, we cannot have a pre-built
index for that target. Hence, content-based analysis on the raw pixel data is necessary. This is
different from existing multimedia data retrieval tasks that are largely based on indexes. Content-
based analysis poses high demand for storage bandwidth, network bandwidth, main memory, and
CPU cycles. In particularly, new visual data is usually generated by cameras on the edge. While
today’s cloud-centric wisdom suggests concentrating all data into the cloud before processing,
doing so will likely saturate the scarce wide area network (WAN) bandwidth. Eureka addresses
these challenges by using an edge-based distributed architecture described in Section 3.1.

Eureka is interactive in two senses. First, it allows a domain expert to express her heuristics
through an explicit combination of early-discard filters, namely a query. The expert does so with
minimal programming effort. Figure 3.1 shows a screenshot of Eureka’s GUI where an expert
uses three filters – a Difference of Gaussian (DoG) texture filter and two RGB color histogram
filters – to search for deer images. The green color filter, for example, prunes data that does not
have a vegetation background. Second, Eureka treats the data source as a stream of data items
and present an item to the expert as soon as it passes the query. This gives opportunities for the
expert to abort the query before it reaches the end of the stream, refine the query and then restart
the search immediately. Because the query is a reflection of expert intuition, it can evolve rapidly
as the expert sees results returned by Eureka and comes up with “fixes” to the query.

Domain experts are usually not computer scientists and at best moderate programmers. To
facilitate interactive use by those experts, Eureka provides an intuitive programming abstraction
that reduces the coding barrier and yet is amenable for system optimization. We describe this
programming abstraction in Section 3.2. We further elaborate how the envisioned use cases by
domain experts drive several implementation decisions of Eureka in Section 3.3.

15

Figure 3.1: Eureka’s GUI for composing a query to search for deer images.

3.1 Edge-based System Architecture

Visual data in real life comes from many difference sources. They can be live (e.g., real time
video feed from a drone) or archival (e.g., multi-year patient record on a local hospital’s servers);
be mobile (e.g., vehicular dash camera) or stationary (e.g., static traffic camera). Data of interest
can be coming from a number of different sources which are often distributed. Unless already
centralized in the cloud (e.g., Amazon Web Services), these data sources can be broadly classified
as the edge. New visual data is always generated at the edge.

A common characteristic of edge data sources is that they connect to the cloud via backbone
wide area network (WAN). The popular cloud-centric philosophy suggests we transmit all data
into the cloud data centers before processing it. Unfortunately, this places a huge burden on the
precious WAN bandwidth. Visual data is large in volume. Unselectively streaming all data from
the edge into the cloud is prohibitively costly, if not infeasible.

Eureka addresses this challenge by using an edge-based architecture that unifies processing
on the edge and in the cloud. We define a cloudlet as a compute infrastructure that can read
from a data source at high bandwidth and low latency. Here we interpret cloudlet broadly: in
edge computing, a cloudlet may correspond to a micro data center, a vehicular computer, or a
smart camera with on-board general-purpose compute capability; in cloud computing, a cloudlet
is typically a cloud VM or container (e.g., AWS EC2 instance).

Figure 3.2 illustrates the system architecture of Eureka. A domain-specific frontend GUI
runs on a client machine close to the expert. The expert composes a chain of early-discard filters
(aka a query) in the GUI. A Eureka backend runs at each cloudlet. As mentioned above, the

16

Expert with
domain-specific

GUI

Archival
Data

Source
LANLAN

cloudlet

Archival
Data

Source
LANLAN

cloudlet

LANLAN

cloudlet Live
Video

I
n
t
e
r
n
e
t

Figure 3.2: Eureka System Architecture

forms of the cloudlets and their associated data sources may be heterogeneous. When the expert
starts a search, the query is serialized and pushed to the cloudlets. The backends execute on
the cloudlets in parallel, evaluate the query on the data, and transmit thumbnails of undiscarded
data to the frontend. Each thumbnail includes back pointers to its origin cloudlet and path to
the original data file on that cloudlet. The expert sees a merged stream of thumbnails from all
backends. If a thumbnail merits closer examination, a mouse click on it will open a separate
window to display the full-fidelity image/video and its associated meta-data. Thumbnails are
queued by the frontend, awaiting the expert’s attention to examine them. If demand greatly
exceeds available attention, queue back pressure throttles cloudlet processing.

Be it on the cloud or on the edge, the expert is usually distant from the data sources and
therefore connections between them are across the wide area network (WAN). This is in contrast
to the LAN-quality connection between a cloudlet and the data source, which is symbolized by
the short and thick “LAN” arrows in Figure 3.2. Since Eureka executes early-discard pipelines
on the cloudlets, the bandwidth demand between cloudlet and expert is typically many orders of
magnitude smaller than the bandwidth demand between data source and cloudlet. This avoids
the WAN being a bottleneck for transmitting unfiltered visual data.

When the expert’s search target is scarce, it is possible that each cloudlet yields candidates
at a slow rate and thus creates system stalls. As pointed out in Section 1.4, this is a poor use
of expert time. To improve this situation, Eureka can harness a larger degree of parallelism by
including more cloudlets (and data sources) in the process. Eureka can thus be viewed as an
architecture that trades off computing resources (e.g., processing cycles, network bandwidth,
and storage bandwidth) for effective use of expert attention. Efficient early-discard close to data
is the key to making this trade-off effective.

17

Itemizer
(scoping, caching)

Data Source
(images, videos, map data, etc.)

User Interface

Item

c k
Attribute

Filter

dcba
jihg C

loudlet
W
AN

Item Processor

F2
drop

drop

e
f k

F1

Figure 3.3: Eureka’s Programming Abstraction

3.2 Programming Abstraction
Eureka encapsulates from the expert the fact that data processing is remote and distributed. It
provides a programming abstraction that: (1) is easy to understand as domain experts; (2) hides
the underlying distributed architecture; (3) offers modularity and composability of computer
visoin building blocks. An expert considers all data sources as a merged collection of data items
and composes a query to discard as many negative examples as possible. Eureka is responsible
for sending the query to each cloudlet and executing it on the local data partition. Figure 3.3
depicts Eureka’s programming abstraction. The itemizer parses a data source and emits a stream
of items (e.g., a, b, c, . . . , k). These items are next processed by the item processor, where each
item is evaluated by a cascade of filters (e.g., F1 → F2). Undiscarded items (e.g, c, k) along
with extracted attributes are transmitted and presented to the user interface. We explain the key
concepts in below.

3.2.1 Item
Eureka views data sources as unstructured collections of items. Items are the top-level elements
in the data model and are treated as independent by Eureka. In the simplest case, an item refers

18

to a single image in JPEG, PNG or other formats stored on the disk. An item may also be an
MP4 file on the disk or a sliding window from a continuously streaming camera. The appro-
priate granularity of an item can be task-specific. For example, an object detection task on an
image data set may use individual files as items, while an activity recognition task may use 10-
second sliding-window video segments as items. The frontend allows the user to configure what
constitutes an item before starting a search.

3.2.2 Filter

A filter is an abstraction for executing any computer vision code in Eureka. A filter’s main
function is to inspect items and attempt to discard them. Eureka separates its runtime frame-
work and the filters through a narrow “Eureka Filter API,” so that third-party developers can
easily create and “plug-and-play” new filters without re-deploying Eureka. A filter uses the
get-parameters call to get user-supplied parameters (e.g., example texture patches) for a
query. A filter is required to implement a scoring function, score(item), where it examines
a given item and outputs a numeric score. The user also specifies a threshold score of each filter.
Eureka applies the filter’s scoring function to each item, and if the returned score exceeds the
threshold, the item is deemed to pass; otherwise the item is discarded. An early-discard query
pipeline consists of multiple filters, with corresponding parameters and passing thresholds. The
current system requires an item to pass all of the filters before transmitting and presenting it to
the user. This effectively implements the Boolean operator AND. Eureka performs short-circuit
evaluation: once an item fails a filter, it is discarded without further evaluation by later filters in
a cascade, thus achieving “early” in early discard.

3.2.3 Attribute

Another valuable function of filters is to attach attributes to an item as a by-product of scoring it.
Attributes are key-value pairs that can represent arbitrary data (including binary), and are read-
/written using the get-attribute(item, key) and set-attribute(item, key,
val) Filter API. Attributes track important information extracted by filters that the user may
wish to see. They also facilitate communication between different filters, where one filter reads
attribute values written by another. Attributes are analogous to columns in relational databases
but with significant differences. In Eureka, attributes are rarely complete for all items (rows) in
the data, both due to early-discard of items in the query and due to fast-aborted searches. Ad-
ditionally, unlike most databases, where the schema tends to be stable, new attributes may be
created rapidly in each new query as the user applies new filters (e.g., a retrained DNN).

The user can designate a set of interesting attributes to be retrieved along with the items.
Unwanted attributes are stripped off before Eureka transmits results back to the user to reduce
bandwidth demand over the WAN. Returned attributes can be used for aggregations and joins
using other tools such as relational databases in a post-processing step.

19

Filter Synopsis

JPEG decoder

jpeg decode()→ bool
Decodes a JPEG image.
Set-attributes: rgb
Returns true if successful, false otherwise.

SIFT matching

sift match(distance ratio: float, example: Image)→ int
Finds matched SIFT keypoints between example and test image.
Get-attributes: rgb
Returns number of matched keypoints.

MobileNet

mobilenet classify(target class: string, top k: int)→ bool
Classifies image into ImageNet classes and test if target class is in
top k predictions.
Get-attributes: rgb
Set-attributes: mobilenet featvec
Returns true if target class is in top k predictions of the test image,
false otherwise.

SVM

svm(training data: List〈Image〉)→ float
Train an SVM with the given training set, using MobileNet’s 1024-
dimensional feature as SVM input. Then use the SVM to classify
the test image.
Get-attributes: mobilenet featvec
Returns probability of the test image being positive.

Table 3.1: Examples of Eureka Filters

3.2.4 Examples of Filters

Table 3.1 presents several example filters in Eureka. While some filters output a pass/fail Boolean
result that evaluates to 0/1 (e.g., JPEG decoder), others output a float score (e.g., SVM confi-
dence). Each filter accepts a set of parameters, and optionally gets/sets some attributes.

Let’s take a closer look at the MobileNet filter. This filter wraps around the MobileNet [63]
model pre-trained on ImageNet’s 1000 classes. At run time, the filter receives two parameters
— target class and top k — through the get-parameters call. It then executes the
DNN over the image item in inference mode. It returns Boolean true (1) if the target class
is within the top k predicted labels; otherwise it returns false (0).

In addition to scoring, the MobileNet filter always sets the mobilenet featvec attribute
to be the 1024-dimensional feature vector extracted by the penultimate layer of the DNN. Inter-
estingly, this allows the filter to be re-purposed as a feature extractor, rather than a classifier. In
this case, the predicted ImageNet labels are ignored and the threshold is set to 0, always passing
an item. The feature vector is then used by downstream filters. The SVM filter illustrates such
an example. It uses the mobilenet featvec attribute as the input feature to train an SVM
to classify the data. This is an example of transfer learning [110] to classify targets that are not
in ImageNet’s 1000 classes. As can be seen, the attribute mechanism allows decomposition of
complex tasks into independent, manageable, and reusable components, while still adhering to
the filter chain abstraction.

20

3.3 Optimization for Domain Experts

Eureka is an extensible architecture that can be flexibly adapted to different specialized domains.
Besides, it optimizes for system efficiency whenever possible in order to reduce system stalls and
avoid underutilizing an expert’s time. In the following, we present several implementation details
that provide these attributes.

3.3.1 Filter Container: Offering Software Generality

In early versions of Eureka, a filter was encapsulated as an executable program to be downloaded
to the Eureka backends. At query time, Eureka’s item processor launched the filters by creating
sub-processes that ran natively on the same system. Eureka communicated with the filters using
the Filter Protocol described earlier via inter-process communication (IPC). This was intended
to provide a “plug-and-play” experience for new filters without the need to re-deploy Eureka.

Unfortunately, this goal was not fully achieved due to complexities of software dependen-
cies. Running filters as native processes requires their dependencies be already installed in the
cloudlet’s OS. This can be challenging for two reasons. First, in specialized domains, the use of
legacy or proprietary software is common. It is not always possible to install those dependencies
on modern OSes of the cloudlets. For example, Python 2 and Java 7 are no longer supported
in OSes after 2019. Second, different filters may depend on conflicting versions of the same
software (e.g., of TensorFlow). Managing this complexity on the cloudlets and anticipating fre-
quently changes due to newly-added filters is a non-trivial task.

To address this challenge, we have since added support to encapsulate filters in Docker con-
tainers. The software dependencies of a filter are included in its own container, without inter-
fering the cloudlet host OS or other filters’ containers. The use of containers also improves
reproducibility even if the host OSes on heterogeneous cloudlets are different.

The orchestration of filter processes remains similar, except that filter processes are now
created inside the container. Figure 3.4 illustrates the system resources allocated when running a
three-filter chain: Jpeg → MobileNet → SVM. The figure depicts several implementation
decisions of Eureka: (1) Eureka uses multiple worker threads to harness data-level parallelism.
Each worker thread creates its own copy of the filter chain (a set of processes) and runs them on
a subset of the data stream. In this way, it can easily scale on multi-core machines. (2) Different
filters (e.g, MobileNet and SVM) may be packaged into the same container snapshot, often
when they share software dependencies. This reduces the container snapshot’s disk usage and the
container’s memory usage. (3) At run time, worker threads try to start new filter processes from
containers that are already running. For example, two Jpeg processes are started in Container I,
each used by a different thread. This reduces the number of containers to be created by Eureka.
In total, Figure 3.4 shows two containers and six processes being used by two worker threads,
each running its own copy of the three-filter query.

We empirically observe no compute or memory penalty for a process that runs inside a con-
tainer. The only concern is the difference in process creation time, which is sub-millisecond for
native processes and sub-second for container processes. The reason is because process creation
inside containers is managed by the Docker daemon dockerd. In order to create a container

21

Item Processor

Container I Container II

Jpeg Jpeg

Worker-Thread 1 Worker-Thread 2 Worker-Thread …

MobileNet

SVM

MobileNet

SVM

Container Process
Inter-process communication
(speaking Eureka Filter Protocol)

Figure 3.4: An Example of Containers and Processes at Query Time

process, Eureka must communicate with dockerd using an HTTP-based Docker Engine API1.
This adds extra latency. Fortunately, Eureka’s Filter Protocol is designed to iterate over many
items. Specifically, the score(item) call implicitly concludes the evaluation of an item and
refreshes the filter’s internal states for a new one. In this way, a worker thread needs to create
only one process of a filter and use it to evaluate thousands to millions of items. The process
creation penalty is thus amortized and negligible.

Filter containers can access multi-core CPU resources as well as specialized hardware (e.g.,
GPUs). A typical usage of GPU is running DNNs in inference mode. To exploit the efficient
mini-batch processing implementation offered by popular deep learning frameworks (e.g., Ten-
sorFlow), Eureka provides helper functions to batch items from multiple worker threads. To
simplify development of new filters, we have implemented Docker base snapshots for different
Linux distributions. These include all of the logic needed to interface with Eureka as well as
a skeleton filter. A developer only needs to add code for the computer vision algorithm that
corresponds to the filter being implemented.

Figure 3.5 shows a micro-benchmark that evaluates Eureka’s single-node scalability. To re-
move content-dependent variance, we use a simply filter that performs a fixed number of sqrt
calculations per item. Fewer sqrt calculations per item leads to higher item throughput. We see
the use of Docker containers and Eureka’s filter protocol has little impact on the linear scalabil-
ity when adding more worker processes. Ultimately, the item throughput is limited by how fast
Eureka receives items from the data source, which in this case is about 10,000 items per second.

Lastly, containers enables efficient deployment of new filters to a backend by exploiting
delta detection and compression. When one installs files, libraries, and software in a container
snapshot, Docker creates intermediate layers corresponding to incremental changes made to the
base OS snapshot. Table 3.2 shows such layers created in the process of creating a set of image
filters in Eureka. When a new set of image filters are created and deployed, Docker automatically
detects that only the last layer needs to be compressed and transmitted to the cloudlets (569 −

1Docker Engine API v1.40. https://docs.docker.com/engine/api/v1.40/

22

https://docs.docker.com/engine/api/v1.40/

Parallel Workers (Filter Processes)

Ite
m

s /
 se

co
nd

Figure 3.5: Item Throughput with Varying Computation Per Item and Parallel Workers

Docker content Docker snapshot size
Ubuntu 16.04 base snapshot 124 MB
+ Eureka filter protocol and dependencies (e.g., Python) 245 MB
+ computer vision libraries and filters (e.g., OpenCV) 569 MB

Table 3.2: Docker Container Snapshot Sizes with Incremental Content

245 = 324 MB), rather than the whole new Docker snapshot (569 MB). This greatly reduces
WAN transmission and deployment time. It can be seen as a variant of VM de-duplication
originally described by Ha [53].

3.3.2 Itemizer: Task-specific Data Transformation

The itemizer bridges the gap between the data’s raw format (e.g., local file system, multimedia
database, or live camera) and Eureka’s item stream abstraction, and can be configured by the
user to emit items of the desired granularity. Consider a live camera as the data source. While
an object detection task may consider individual frames as items, an activity recognition task
may require 10-second segments as items. Furthermore, some tasks may desire the segments
be overlapping, while other not. To to so properly, the itemizer needs to buffer recent frames,
re-encode them into short video clips, and inject the clips into the downstream pipeline.

By default, the itemizer performs these transformations at query time. For data on the disk,
this reduces data replication in a different format and saves disk space. Of course, should a
certain form of transformation become common, it can be done offline and stored on the disk to
reduce future computation.

23

3.3.3 Scoping: Utilizing Metadata and Indexes
As pointed out earlier, a pre-built index of a novel target is unlikely to exist. However, there
may exist indexes of other information that could help to narrow the scope of the data to process,
such as timestamp and geo-location of photos. Consider detecting a (novel) human activity. The
presence of humans is a pre-condition and can be detected by existing algorithms. If such an
index is available, we should utilize it to reduce the data space and thus computation.

Eureka supports utilizing metadata and indexes via scoping [124], an optional configurable
feature of the itemizer. Before starting a search, the user can configure scoping with pointer to
an external index (e.g., a database) and parameters, which is then used by the itemizer to filter
the item list it passes along to the item processor.

3.3.4 Result Caching: Accelerating Interactive Search Cycles
Eureka offers an interactive experience where the abort-refine-restart cycle of a search can hap-
pen frequently. Consider the example in Figure 3.1. After seeing the initial set of results, the
expert may determine that the RGB histogram filter for green vegetation is too restrictive and
remove it from the query. More generally, an expert can refine a query by adding or removing
filters, changing parameters of existing filters, or changing their thresholds. Relaxing the thresh-
old of a filter may allow the expert to discover missed positive examples (aka false negatives) in
the previous query; on the other hand, tightening the threshold may reduce the amount of “junk”
(frivolous false positives).

When an expert refines a query, the new query is likely to be partially similar to the previous
one. This creates opportunities to reduce redundant computation and thus to improve user ex-
perience. Eureka does so via result caching and attribute caching. Both forms of caching were
originally described in OpenDiamond [124]. Eureka renews them for new use cases.

Eureka assumes filters are deterministic — if it re-executes a filter on the same item with the
same parameters, the filter should always return the same score, read the same set of attributes,
and write the same set of attribute values. When Eureka evaluates a filter on an item, it keeps
track of the following information: the set of attributes read (in attrs), the set of attributes
written (out attrs), and the final score. Then Eureka stores two types of entries in a key-
value cache (currently implemented with a Redis database).

In the result cache, it writes:

(item id, filter id, filter params[]) →
(score, {h(a) for a in in attrs}, {h(b) for b in out attrs})
In the attribute cache, it writes:

h(b) → b for all b in out attrs.

Here, h(·) is the hash digest function. When evaluating a new query on an item, Eureka first
identifies all filters in the query and retrieves all cache entries with the matching (item id,
filter id, filter params[]) tuple, should they exist. It then validates the cache en-
tries by examining their chains of dependency. A cache entry is deemed valid if and only if all
hash digests of its input attributes match the hash digests of the output attributes of: (a) another
validated cache entry; or (b) a newly-executed filter. If a valid entry is found, the cached score

24

Query Filter 1 Filter 2 (varied) Use case
Q1 SIFT key point extraction SIFT key point matching Object detection
Q2 MobileNet inference SVM Image classification

Table 3.3: Experiment query templates

Query No cache Cached - refined query Cached - identical query
Q1 23 69 1535
Q2 172 793 1924

Table 3.4: End-to-end throughput (frames per second)

and output attributes are used in place of re-execution; otherwise, the filter must be re-executed.
This approach avoids redundant execution, ensures correctness of cached results, and minimizes
re-computations of hash digests.

Compared to query result caching techniques (i.e., hashing the whole query as a single cache
key) in some DBMS, Eureka’s fine-grained approach provides more opportunities to reuse prior
computation even if the query is partially modified. Table 3.3 shows two query templates in
Eureka. Each template consists of: (a) Filter 1 that computes a certain type of image features,
which can be cached for a refined query; (b) Filter 2 that compares/classifies the feature based
on user-provided examples, which may need to be re-computed for a refined query. Table 3.4
shows the query throughput on a cloudlet. Eureka’s caching mechanism not only benefits when
the same query is issued again (“Cached - identical query”), but also benefits when part of the
query is modified (“Cached - refined query”).

25

26

Chapter 4

Discovering Novel Objects in Image Data

Eureka inherits Diamond’s [69] concept of early-discard to reduce human labeling effort. Di-
amond’s approach can be considered as single-stage early-discard. The expert creates a query
consisting of several filters based on heuristics in her mind, starts the query, and then examines
the result stream, from which she discovers the rare positive examples. When the filters perform
better than random sampling, the expert’s situation is better than exhaustive labeling.

This approach, unfortunately, is not good enough. Diamond includes filters based on classical
computer vision feature extractors, such as scale-invariant feature transform (SIFT) and differ-
ence of Gaussians (DoG). The accuracy of these filters is at most moderate. When the search
target has a very low base rate, the expert still needs to sift through a lot of false positive exam-
ples. Table 4.1 shows Diamond’s effectiveness in discovering three rare targets (deer, Taj Mahal,
fire hydrant) from the YFCC100M [145] data set. Despite of the use of early-discard filters, the
expert still needs to label tens of thousands of images just to discover 100 positives.

Can the expert create more effective early-discard filters? In Diamond, the only way to do
so is through creating more sophisticated computer vision algorithms. This requires knowledge
of computer vision and programming skills, and is often beyond the reach of domain experts.

Recent advancement in deep learning sheds new light on this problem. In particular, the use of
transfer learning [110] based on DNN-extracted features allows us to create more accurate filters
by simply providing more examples and this can be done at interactive speed. We elaborate this
idea, which we call just-in-time machine learning, in Section 4.1.

The viability of just-in-time machine learning motivates us to propose an iterative discovery
workflow in Eureka described in Section 4.2. This workflow improves the accuracy of early-
discard filter progressively without the need of coding, in contrast to Diamond’s single-stage
approach. We then evaluate the efficacy of this workflow on a classic task – discovering novel
objects in static image data – in Section 4.3. Our result shows Eureka significantly reduces
human labeling effort compared to exhaustive labeling and Diamond.

Finally, to generalize our findings, we develop a model in Section 4.4 for analyzing how
human-efficiency is impacted by a wide range of factors, including system efficiency, target
scarcity, and filter accuracy.

27

Target Estimated base rate Filter precision Hand-labeled images to
in YFCC100M in OpenDiamond discover 100 true positives

Deer 0.07 % 0.27% 37,000
Taj Mahal 0.02 % 0.11% 90,000
Fire hydrant 0.005% 0.09% 111,000

Table 4.1: Diamond’s effectiveness in discovering rare objects in YFCC100M.

4.1 Just-in-time Machine Learning
A DNN consists of many layers, each of which progressively computes some feature values
based on the values in the previous layer. Usually, the last layer outputs the prediction of the task
for which it is being trained. In the case of ImageNet, they are probabilities of the 1000 classes
in the training set (Figure 4.1(a)). Each layer has parameters (aka weights) to be learned during
the training process outlined in Section 1.3. A DNN created from scratch will initialize these
weights with random values, and use training examples to adjust the weights until the model
converges. This process requires a lot of training examples and compute resources, and may take
days or weeks to finish even on a GPU. If there is insufficient data for a large model, the model’s
output will be largely random and thus unuseful.

For a novel target with a dozen of examples, training a DNN from scratch is not promising.
Fortunately, there is hope. It is commonly believed that if a DNN has been trained on a suffi-
ciently large and generic data set (like the ImageNet), it will learn to extract intermediate features
(e.g., colors, edges, shapes, body parts, furry patterns) that are relevant beyond the scope of the
original task (e.g., classifying unicorns). This concept is called transfer learning [110] as the
knowledge learned from an old task is “transferred” to a new task.

More concretely, this is done as follows. In its simplest form, all layers up to the penultimate
layers of a pre-trained DNN are frozen, when only the last layer is re-initialized randomly (Fig-
ure 4.1(b)). The last layer must be changed to match the new task. For example, if the new task is
a binary classification task, then it must output a 2-dimensional rather than a 1000-dimensional
vector. We then re-train the new model with training examples of the new task. During training,
only the final layer’s weights are tuned; weights in the frozen layers are unchanged and as a
result their outputs can be computed only once and cached. An alternative view to seeing this is
to think of the all-but-last-layer part of the pre-trained DNN as a given feature extractor, and we
are training a light-weight machine learning model (e.g., an SVM) on top of those features. We
call this shallow transfer learning. Because the trainable part is small and shallow: (a) it requires
fewer training examples to converge; (b) it runs much faster, in particular, at interactive speed. In
practice, training an SVM on top of MobileNet’s 1024-dimensional features takes a few seconds
to minutes.

In a more general form of transfer learning, more layers towards the input are unfrozen and
become trainable (Figure 4.1(c)). When training for a new task, the weights of the intermediate
layers are initialized from the pre-trained model, rather than randomly. The intuition is that those
weights have stored useful knowledge which is a good basis for adaptation. This is also referred
to as “finetuning.” How many layers to unfreeze is a trade-off. The more layers we unfreeze: (a)
the more training examples of the new tasks are needed; (b) the more time it takes to train; (c)

28

In
p

u
t

L
ay

er
 1

L
ay

er
 2

L
ay

er
 N

-1




…
 


…

Prediction of 1000

ImageNet classes

In
p

u
t

L
ay

er
 1

L
ay

er
 2

L
ay

er
 N

-1




…

Prediction of new classes

Frozen Retrain

In
p

u
t

L
ay

er
 1

L
ay

er
 2

L
ay

er
 N

-1


…

Prediction of new classes

Frozen Retrain

(a) A pre-trained DNN on ImageNet (b) Shallow transfer learning (c) Deep transfer learning

Figure 4.1: Transfer Learning from A Pre-trained DNN to A New Task

the higher accuracy the new model can potentially achieve. We call this deep transfer learning.
Depending on the model size and the number of layers unfrozen, deep transfer learning can take
minutes to hours to finish.

Given a reasonable amount of compute resources (e.g., GPUs), transfer learning can be done
approximately at interactive speed. Once configured, all that an expert needs to do in order
to retrain a new model is to supply a training set. A more accurate model becomes available
after moderate waiting and can be used immediately. We call this concept just-in-time machine
learning. It motivates Eureka’s iterative discovery workflow introduced in the next section.

4.2 Iterative Discovery Workflow

As a working example, consider the scenario described in Figure 4.2. Starting from just a few
example images, how can the expert bootstrap her way to the thousands to tens of thousands of
images needed for deep learning? The base rate is low — i.e., that the rodent is rarely seen, and
hence there are very few images in which it appears. If a good classifier already existed, a single-
stage early-discard search could run in parallel on a large number of cloudlets. The number of
false positives would be low, and the rate of true positives would be reasonably high. The expert
would neither waste her time rejecting obvious false positives, nor would she waste time waiting
for the next image to appear. Most of her time would be spent examining results that prove to
be true positives. Alas, this state of affairs will only exist at the end of the Eureka workflow. No
classifier exists at the beginning. What can we use for early discard at the start of the workflow?

Eureka’s discovery workflow is based on the observation depicted in Figure 4.3. A spectrum
of different computer vision techniques offer different trade-offs between accuracy (higher is
better, but not to scale) and the amount of labeled training data that is available. When there are
too few examples for a technique, its output is unreliable; providing more examples often helps
improving accuracy up to a certain point; beyond that the technique’s performance is saturated
and can no longer be improved.

While the ultimate goal of deep learning sits on the extreme right, the expert starts on the

29

An infectious disease expert has just learned that a shy ro-
dent, long considered benign, may be the transmitter of a
new disease. There is a need to create an accurate im-
age classifier for this rodent so that it can be used in public
health efforts to detect and eradicate the pest. The expert
has only a few images of the rodent, but needs thousands
to build an accurate DNN. There are likely to be some un-
tagged occurrences of this rodent in the background of im-
ages that were captured for some other purpose in the epi-
demiological image collections of many countries. A Eu-
reka search can reveal those occurrences. In the worst
case, it may be necessary to deploy cloudlets with large ar-
rays of associated cameras in the field to serve as live data
sources for Eureka.

Figure 4.2: Example: Infectious Disease Control

Explicit features, manual
weights (color histogram,
SIFT, perceptual hashing)

Explicit features, learned
weights (HOG + SVM)

Shallow transfer learning
(MobileNet + SVM)

Deep transfer learning
(Faster R-CNN finetuning)

Deep learning

100 101 102 103 104

Number of Images (log scale)

A
cc

ur
ac

y
(n

ot
 to

 s
ca

le
)

Figure 4.3: Training Data Set Size vs. Accuracy Trade-off

extreme left. An interactive workflow helps an expert to efficiently climb the stairs and reach the
right. In the very beginning, the Eureka GUI allows simple features such as color and texture
to be defined by example patches outlined on the few training examples that are available. This
defines a very weak and yet better-than-random classifier that can be used as the basis of early
discard. Because of the weakness of the classifier, there are likely to be many false positives.
Unless the expert restricts her search to just a few data sources, she will be overwhelmed by the
flood of false positives. Buried amidst the false positives are likely to be a few true positives. As
the expert sees these in the result stream, she labels and adds them to the training set. Over a
modest amount of time (tens of minutes to a few hours, depending on the base rate and number
of cloudlets), the training set is likely to grow to a few tens of images. At this point, there is a
sufficient amount of training data to create a classifier based on more sophisticated features such
as HOG (histogram of oriented gradients), and learned weights from a simple machine learning

30

algorithm such as SVM. The resulting classifier is still far from the desired accuracy, but it is
significantly improved. Since the improved accuracy reduces the number of false positives, the
number of data sources explored in parallel can be increased by recruiting more cloudlets. Once
the training set size reaches a few hundreds, shallow transfer learning can be used. This yields
an improved classifier that further reduces false positives, and allows further expansion in the
number of data sources, thus speeding up the search. Shallow transfer learning may be repeated
several times, each time with a larger training set, until it saturates. Once the training set size
reaches a few thousands, deep transfer learning can be used and beyond that, deep learning.

Compared to Diamond’s single-stage early-discard, Eureka lets a domain expert create more
accurate filters progressively without the need to write code. The expert does so by selecting the
appropriate filter from the spectrum and providing the training set. Two metrics improve hand-
in-hand in this process: (a) the size of the labeled training set collected so far; (b) the accuracy of
the filter being deployed. A larger training set allows the creation of more accurate vision filters,
which in turn reduces false positives, making it more human-efficient to discover more examples
and grow the training set. Hence, an expert’s productivity is improved over time.

4.3 Evaluation of Productivity
In this section, we evaluate whether Eureka is effective in improving an expert’s productivity.
We consider the task of discovering rare objects from the YFCC100M data set [145]. This data
set includes 99.2 million (106) images uploaded to Flickr between 2004 and 2014. The data is
unlabeled and has not been filtered or re-balanced for particular classes. Therefore, we expect it
contains a long-tail distribution of rare objects found in mundane photos.

4.3.1 Evaluation Methodology
Two graduate students (including the author) played the role of an expert and conducted case
studies by applying the iterative workflow to search for rare targets in the data. We choose three
search targets (in descending order of base rate): (1) deer; (2) Taj Mahal; and (3) fire hydrant.
Although these are not targets from specialized domains, they are fairly rare in YFCC100M and
we do not have (or use) any pre-trained DNN detectors or crowd-sourcing. For each target, five
examples are provided for bootstrapping. Figure 4.4 shows example images of those targets.

We keep track of the early-discard filters used in each iteration, the duration of each iteration,
the images presented in the GUI, and the positives/negatives labeled by the user. We consider
two major criteria:

• the total elapsed time taken to discover a training set of a certain number (100) of positives;
• productivity: number of positives discovered per minute, which changes over the iterations.
We compare Eureka against two alternatives: brute force and single-stage early-discard rep-

resented by Diamond. With brute force, the user manually inspects and labels every image. For
targets with a low base rate this requires the user to plow through many images before collecting
even a small training set. Single-stage early-discard improves the situation by allowing the user
to create a filter chain in the beginning to perform early-discard. These filters are based on the
bootstrapping examples of the target, and are essentially identical to the ones used in the first

31

Bootstrap examples Examples discovered from Eureka

(a) Deer

(b) Taj Mahal

(c) Fire hydrant

Figure 4.4: Examples of Targets Used in Our Case Studies

iteration of the Eureka experiments. However, there is no use of machine learning or of iterative
refinement based on new data.

We run experiments on 8 cloudlets. Each cloudlet has a 6-core/12-thread 3.6GHz Intel Xeon
E5-1650 v4 processor, 32GB DRAM, a 4 TB SSD for image storage, and an NVIDIA GTX
1060 GPU (6GB RAM). The 99.2 million images in YFCC100M are evenly divided among the
cloudlets. Each cloudlet accesses its own subset of the data from its SSD, thus ensuring high
bandwidth and low latency. The user’s GUI connects to the cloudlets over the Internet.

For each target, we went through five Eureka iterations, reaching a total of approximately 100
positive examples. No coding was needed in this process. The user selected filters, labels results,
and supplies training examples through the Eureka GUI. The early iterations usually consist of
simple filters based on color (RGB), texture (difference of Gaussians, DoG), etc. Once more
than 10 positives are collected, we switched to transfer learning based on MobileNet + SVM.
This uses a pre-trained MobileNet to extract 1024-dimensional feature vectors, on top of which
we train a new SVM for the novel class. We retrained the SVM (as a new iteration) when the
training set was approximately doubled. In general, it is difficult to know a priori the optimal
point to trigger retraining. We empirically find the double rule works well in practice.

For the purpose of scientific evaluation, we used a disjoint subset of input data for each
iteration, so that the filters always run on unseen data. This facilitates unbiased evaluation of
the filters and also mimics a streaming setting. Therefore, the following results did not take
advantage of result/attribute caching.

32

Target Estimated Images Positive
base inspected examples
rate by user discovered

Deer 0.07 % 7,447 111
Taj Mahal 0.02 % 4,791 105
Fire hydrant 0.005% 15,379 74

Figure 4.5: Summary Results for Case Studies

Y-axis in log scale.

Figure 4.6: Images Presented to and Labeled by User (Including Positives and Negatives)

4.3.2 Results

Figure 4.5 summarizes the Eureka’s results of discovering approximately 100 examples for each
of the three targets. Base rates are estimated based on the metadata of Flickr tags, titles, and
descriptions. This metadata is only used in analysis of the results and not used in the search
process. Although this measure is subject to inclusion error (tag without actual target) and ex-
clusion error (target without tag), it provides at least a crude estimate and still serves as a basis
to compare the scarcity of different targets.

Figure 4.6 compares Eureka to alternative approaches in terms of the number of images the
user labeled. This measure includes both targets (true positives) and non-targets (false positives)
presented to the user and is a direct indicator of human effort. For brute force, the number is
extrapolated using the estimated base rate. For single-stage early-discard, this is based on the
precision of the filters used in the first Eureka iteration. We see that single-stage early-discard
reduces demand for human effort by an order of magnitude over brute force. Eureka reduces
demand by a further order of magnitude. In below, we discuss each case study in more details.

33

Filters Examples Items Items New Pass Preci- Time Product-
+ - processed shown hits rate sion ivity

Initial set of images 5
1 RGBh x2 + DoG 5 0 991,814 1,836 5 0.19% 0.27% 12.53 0.40
2 RGB x2 + DoG 10 0 652,357 2,002 5 0.31% 0.25% 13.98 0.36
3 MobileNet + SVM 15 15 90,047 1,704 17 1.89% 1.00% 11.40 1.49
4 MobileNet + SVM 32 32 130,266 1,204 35 0.92% 2.91% 8.25 4.24
5 MobileNet + SVM 67 67 247,039 701 49 0.28% 6.99% 10.27 4.77
Number of initial examples = 5
Examples = positive(+)/negative(-) examples used to create/train the filters
Items processed = Images processed by Eureka on cloudlets (including discarded and undiscarded)
Items shown = Images passing all filters, transmitted and shown to user
New hits = Images labeled as true positives by user in that iteration
Pass rate = Items shown / Items processed
Precision = New hits / Items shown
Time = Wall clock time of that iteration (minutes)
Productivity = New hits / Elapsed time (# per minute)

Table 4.2: Case Study: Building A Training Set of Deer

Case Study: Deer

Table 4.2 reports the detail results of the deer case study. In the first iteration we used an RGB
color histogram filter and a DoG (Difference of Gaussians) texture filter. Patches of deer fur from
the bootstrapping images were given to the DoG texture filter as reference examples. Patches
defining the color of the deer fur and verdure of the scene constituted the two RGB histogram
filters. The fact the verdure color is not part of a deer’s body and yet a useful filter is, by
definition, an expert’s heuristics.

Each of the five iterations lasted 8–14 minutes, with the variation reflecting image process-
ing time on cloudlets, filter accuracy, and human labeling time. As with most animals, deer is
a highly deformable class of objects. The RGB histogram and DoG texture filters showed no
improvement over two successive iterations even when more examples are provided. The Mo-
bileNet + SVM filter introduced in iteration 3, by contrast, showed substantial improvements
across subsequent iterations in terms of precision. Most importantly, it resulted in greater pro-
ductivity of the expert (last column). Over the five iterations, the productivity increased from
0.40 new positives per minute to 4.77, an improvement of more than 10x.

Case Study: Taj Mahal

Table 4.3 reports the detail results of the Taj Mahal case study. Since the Taj Mahal is a rigid
structure with distinctive features, we used a SIFT (Scale Invariant Feature Transform) filter.
We further added a RGB color histogram filter (for the white marble) and a human detector
(for tourists). Again, this is based on contextual knowledge that Taj Mahal is a popular tourist
destination and is likely to have humans in its images.

On the second iteration, two HOG filters (Histogram of Oriented Gradients) were created

34

Filters Examples Items Items New Pass Preci- Time Product-
+ - processed shown hits rate sion ivity

Initial set of images 5
1 RGB+SIFT+Human 5 0 850,352 3,741 4 0.44% 0.11% 30.17 0.13
2 HOG x2 9 0 245,315 352 5 0.14% 1.42% 9.88 0.51
3 MobileNet + SVM 14 14 228,266 343 13 0.15% 3.79% 8.07 1.61
4 MobileNet + SVM 27 27 590,187 172 37 0.03% 21.51% 20.50 1.80
5 MobileNet + SVM 64 64 633,560 183 46 0.03% 25.14% 15.63 2.94

Columns have the same meaning detailed in Table 4.3.

Table 4.3: Case Study: Building A Training Set of Taj Mahal

Filters Examples Items Items New Pass Preci- Time Product-
+ - processed shown hits rate sion ivity

Initial set of images 5
1 HOG x2 5 0 524,136 6,643 6 1.27% 0.09% 13.00 0.46
2 HOG x3 11 0 523,008 3,133 5 0.60% 0.16% 15.15 0.33
3 MobileNet + SVM 16 16 210,688 1,775 9 0.84% 0.51% 7.68 1.17
4 MobileNet + SVM 25 25 517,789 2,856 24 0.55% 0.84% 17.52 1.37
5 MobileNet + SVM 49 49 973,828 972 30 0.10% 3.09% 23.18 1.29

Columns have the same meaning detailed in Table 4.2.

Table 4.4: Case Study: Building A Training Set of a Fire Hydrant

based on the 9 available examples, to capture the shape of (1) minarets, and (2) small domes.
From the third iteration onwards we used a MobileNet + SVM filter which was improved in
each iteration by adding the new positive examples obtained in the prior iteration. The returned
false positives were mostly buildings such as Humayun’s tomb and Sikandara which closely
resemble Taj Mahal’s dome and entrance. Similar the deer case study, there is an improvement
of productivity over five iteration. In the final iteration, a quarter (25.14%) of the items presented
to the user are true positives.

Case Study: Fire Hydrant

Table 4.4 reports the detail results of the fire hydrant case study. The base rate of fire hydrant
is much lower than the first two targets chosen. HOG filters were used initially to capture the
vertical cylinder shape of the hydrants. From the third iteration onwards, using a MobileNet +
SVM filter helped to improve precision. Many of the false positives returned by Eureka include
British royal mail boxes and traffic cones that resemble fire hydrants.

In the last iteration, the classifier accuracy improves significantly from 0.84% to 3.09%, but
productivity stalls at about 1.3 positives per minute. This is due to: (a) the low inherent base rate
of the target; and (b) the limited resources of 8 cloudlets. In particular, we observed user-side
wait time in this iteration, a sign of underutilized expert time. In general, a wider range of factors
could cause such situations. In the next section, we formally study these factors and propose a
model for predicting human efficiency.

35

Ground Truth
(annotated by expert or confirmed

by scientific experiment)
Positive Negative

Prediction Positive TP (true positive) FP (false positive)
(output from a model) Negative FN (false negative) TN (true negative)

W = TP + FP + FN + TN

Figure 4.7: Notations

TPR =
TP

TP + FN

FPR =
FP

FP + TN

BR =
TP + FN

W

True positive rate
(aka “recall” or “hit rate”)

False positive rate
(aka “false alarm rate”)

Base rate
(aka “prevalence”)

Figure 4.8: Metrics Pertaining to Classifier Accuracy

4.4 Modeling User:System Match

One of Eureka’s goal is to best utilize an expert’s time without over-committing system resources.
We consider this problem by comparing the speed at which an expert can label the candidates
and the speed at which Eureka returns candidates. We call the ratio between them User:System
Match. In the ideal case, the match should be close to 1. That is, the expert is continuously
labeling new candidates while not creating a backlog. A match > 1.0 implies the expert is con-
stantly waiting in front of a blank screen for candidates to show up. This is an under-utilization
of the precious expert time. A match < 1.0 means Eureka is showing new results faster than the
expert can consume them. In this case, some results may never been seen and thus the compu-
tation/bandwidth is wasted; unnecessary resources may have been allocated on cloudlets, which
could have been released for other edge applications.

An expert’s labeling speed is fundamentally subject to human’s cognitive ability, and thus
typically within small variations depending on the task. The system’s speed of returning can-
didates, however, depends on a wide range of factors, including the intrinsic scarcity of the
target, distribution of the data set, accuracy of the filters, and software/hardware resources on the
cloudlets. In the following, we model how these factors impact the User:System Match.

36

4.4.1 Classifier Metrics

Figure 4.7 and 4.8 give the notations and metrics to describe the “goodness” of a classifier and the
“scarcity” of a target. Note that we consider TPR (true positive rate) and FPR (false positive rate)
separately. Because Eureka is dealing with unbalanced class distributions, the simpler single-
number accuracy = (TP + TN)/W provides little insight. A say-no classifier that drops
everything would achieve high accuracy but could not discover a single example of the rare
object. In that case, TPR will be extremely low (0), which we explicitly account for. Another
common used metric is precision = 1 − FPR. We use TPR and FPR for the ease of analysis,
as they both move in the same direction as the result delivery rate.

4.4.2 Result Delivery Rate

While machines often compute faster than humans, Eureka may not return results fast enough,
because only undiscarded items are passed and shown to the expert. When the base rate BR of a
target is low, a classifier will yield candidate at low frequency even if it is very accurate. This can
be captured by the pass rate defined below. Note that in a low base rate scenario, BR is small
and (1−BR) is large. Hence, FPR governs the pass rate more than TPR.

pass rate = BR · TPR + (1−BR) · FPR

≈ (1−BR) · FPR

(when BR is small)

Next, we must take into account the computation cost of executing the classifiers. Let ts be
the average time to evaluate a filter chain on a single image on a cloudlet. Typically, this encap-
sulates the software and hardware configuration of the cloudlets, the availability of accelerators,
concurrently-running applications, etc. We can then model the result delivery rate from a single
cloudlet with time to next result (TTNR):

TTNR =
ts

pass rate

Scaling out the system to N cloudlets/data sources reduces user-side TTNR (and thus in-
creases delivery rate), assuming the WAN bandwidth is not a bottleneck:

TTNR(N) =
ts

N · pass rate

Finally, let’s denote an expert’s average time to inspect and label a single image as tu. The
User:System Match can be calculated as

TTNR(N)

tu
.

37

4.4.3 Analysis

The User:System Match depends on the true positive rate TPR, false positive rate FPR, base
rate BR of the target, and the number of sources N . It also depends on the time for the classifier
to process an item at one cloudlet ts relative to the time for the expert to evaluate a delivered item
tu. Without loss of generality, in the following, we assume tu : ts = 5. Other values of this ratio
would scale the results differently, but the qualitative pattern would be the same.

Based on the model described above, Figure 4.9 explores the User:System Match under a
wide range of parameter values. The dotted line marks the ideal match of 1.0. Higher than 1.0
implies user wait time and underutilized expert attention. Lower than 1.0 implies wasted system
resources. Figure 4.9(a) illustrates the effect of a good classifier (TPR = 0.8, FPR = 0.01).
Under these conditions, the User:System Match is correlated with the base rate and number of
sources/cloudlets. Because target items are scarce, and most of the items that Eureka returns are
true positives, it is beneficial to scale out the system to more sources – more so when the base
rate is lower. The optimal match is approached here with 8 sources, regardless of base rate.

Figure 4.9(b), by contrast, shows the disastrous effect of a bad classifier with high FPR =
0.1. As the number of sources increases, the User:System Match quickly drops below 1. The
expert is flooded with mostly false positive results. The system backs up, wasting resources. Base
rate is irrelevant here because it is not the sparse targets buried in the results that are consuming
most expert attention. Rather it is the majority of false positives. At the lowest base rate BR =
0.001, the user needs to reject 125 items for each one accepted.

4.4.4 Discussion

In above, we focus on the temporal performance of the system and the expert. Nonetheless,
time is not the only concern. It is also desired to keep the expert occupied with meaningful
decisions that will ultimately improve the filters. It is easy to let the system send in more “junk”
to eliminate user wait time. Imagine a scenario when the User:System Match is high, that is, the
expert waits a long time to see the next candidate. It may be tempting to increase the system
delivery rate by lowering the thresholds of the filters. Unfortunately, this tends to increase FPR
and occupy the expert with obviously bad candidates (false positives) that have little value in
improving the filters. Ultimately, the solution is to leverage the iterative workflow to improve
the filter accuracy as soon as possible. Ideally, this will reduce false positives without increasing
false negatives.

The model is idealized and is intended for studying how the various parameters interact in
Eureka. It is not intended to predict numerical outcomes in real-world use cases, where the base
rate is generally unknown; the targets are not uniformly distributed; and the ratio of machine
to human processing time may be greatly skewed in favor of the machine. Nonetheless, by
characterizing the User:System Match, the model provides an observable metric that can be used
in Eureka to recruit or omit cloudlets and thus move toward an optimal match.

38

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9

U
se

r:S
ys

te
m

 M
at

ch

Number of Sources

TPR = 0.8, FPR = 0.01
BR = 0.001
BR = 0.005
BR = 0.009
BR = 0.013
Ideal

(a) Low False Positive Rate (Good Classifier)

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9

U
se

r:S
ys

te
m

 M
at

ch

Number of Sources

TPR = 0.8, FPR = 0.1
BR = 0.001
BR = 0.005
BR = 0.009
BR = 0.013
Ideal

(b) High False Positive Rate (Bad Classifier)
This graph shows User:System Match under varying number of cloudlets (N), base rates (BR),
and different classifier accuracy (TPR, FPR). The ideal match of 1.0 is marked the dotted line.

Figure 4.9: Negative Effect of High False Positive Rate

39

4.5 Related Work
The practice of using deep learning can be generally arranged in three stages: (1) gathering
and annotating training data; (2) designing and training a DNN; (3) deploying the DNN in the
field to detect objects of interest. To date, much of stages (2) and (3) have been automated and
accelerated by systems such as TensorFlow [2]. Stage (1), however, remains largely manual.

Researchers have taken advantage of millions of images/videos uploaded to the Internet since
the inception of social platforms (e.g., Flickr, Youtube). This saves the effort of travelling to a
place and taking photos of an object. Nonetheless, the task of annotating the data is not done.
The sheer volume of that data entails many person-years’ labeling work. Initially, this task was
often performed by diligent researchers and in-house paid/volunteer annotators. As the data size
grows, crowd-sourcing becomes the standard solution [86]. Data sets including ImageNet [123]
and Charades [135] crowd-sourced the labeling task on Amazon Mechanical Turk (AMT). This
essentially harnesses human-level parallelism. AMT is not free though. Therefore, active learn-
ing [150, 156] aims to reduce the labeling cost without hurting accuracy of the trained model
by selectively requesting human annotations. This is usually done by choosing a subset of most
“informative” examples to label based on some criteria.

For reasons discussed in Section 1.4, crowd-sourcing is not viable in specialize domains.
Nguyen et al. [107] consider the task of literature screening and use a mix of crowd and experts
to reduce total labeling cost. They assume that the crowd are still to some extent competent
in labeling the ground truth. Similar to Eureka, Snorkel [117] considers an expert-only setting.
However, they request the experts to write “labeling functions” rather than inspecting and anno-
tating examples, which may be a barrier for domain experts. Similar to Nguyen et al., Snorkel
only considers text data. We focus on visual data in this dissertation.

Data augmentation is a standard technique in computer vision to create quasi-new training
examples from existing ones. Typically, it involves cropping, rotating, flipping, and randomly
distorting existing training examples. Naturally, the generated examples inherit their ground
truth labels from the original one. The purpose of data augmentation is to make the trained DNN
more robust to image distortions of the same kinds. Popular deep learning frameworks (e.g.,
TensorFlow, PyTorch) all support automated data augmentation. Data synthesis focuses on syn-
thesizing training images with different backgrounds, clutters, and occlusions [39, 61, 118]. The
purpose is to generate more diverse scenarios of the target, without actually setting up the new
backgrounds and clutters in the real world, as doing so may be costly. This body of work often
borrows techniques from computer graphics (e.g., image smoothing, 3D rendering). Both data
augmentation and data synthesis share a fundamental limitation: because the generated exam-
ples are based on existing ones, they cannot generate examples of unseen/novel object instances.
Therefore, these techniques are orthogonal to Eureka, and can be applied when the expert trains
a DNN using examples discovered from Eureka.

40

Chapter 5

Improving System Efficiency of Eureka on
the Edge

Analysis in Section 4.4 highlights the importance of Eureka’s system efficiency: a slow system
decreases result delivery rate, which increases the User:System Match, resulting in user-side wait
time. One way to addressing this problem is to increase the system delivery rate by expanding
the system to include more compute power (i.e., cloudlets) and possibly more data sources.
However, two limitations need to be considered.

First, although each cloudlet will probably have its own CPU and memory resources, many
cloudlets reading from the data sources at the same time may stress the wide area network (WAN)
bandwidth. This is particularly the case if the compute is centralized in data centers while the
data sources are dispersed on the edge. In 2019, 500 hours of video is uploaded to YouTube per
minute [29]. That means an amplification factor of about 30,000. In the meantime, it is estimated
there is one public security camera for every eleven citizens in the UK [14]. Although this is a
rough estimate, streaming millions of camera feeds into the cloud is expensive and probably
beyond the ingress bandwidth of cloud data centers, let alone sharing this precious resource
with other applications. Eureka alleviates this bottleneck by using an edge-based architecture
(Section 3.1). This architecture executes early-discard filters on compute infrastructure that has
high-bandwidth low-latency access to data, and only transmits a small portion of undiscarded
data across the WAN. We evaluate the importance of this design in Section 5.1.

Second, compared to the cloud, the edge has limited elasticity. The cloud has access to seem-
ingly inexhaustible compute and storage resources that can be spun up dynamically as demand
increases. Performance isolation can be easily achieved by launching new cloud VMs for new
applications. By contrast, a cloudlet is typically designed with a moderate physical space, electri-
cal power, and thermal envelope, and must be shared by multiple tenants. A smart traffic camera
cannot be made into the size of a data center. It is difficult to provide more compute without
sacrificing the high-bandwidth and low-latency property (e.g., offloading to a remote cloudlet)
or incurring significant cost (e.g., laying direct optical cables). A flash crowd can easily over-
whelm cloudlet resources. How can we improve edge elasticity for Eureka workloads? We start
by recognizing that the very first step of a typical Eureka pipeline, namely decoding visual data,
is a surprisingly large burden on edge elasticity. As a solution, we propose the well-known mo-
bile computing technique of offloading computation [12, 31, 126], but apply it to a local rather

41

than remote accelerator. Based on thermal, energy density and data copying considerations, we
identify cloudlet storage as the optimal location for placement of the accelerator. Synergistically,
we also incorporate batch operations and scheduling into the storage system to reduce stalls and
disk seek overheads. We collectively called this solution decode-enabled storage. We present
our findings and solution in Section 5.2.

5.1 Alleviating WAN Bottleneck via Edge Computing
In this section, we examine the importance of high-bandwidth and low-latency connections be-
tween Eureka’s early-discard backends and the data sources. We use the same experimental set-
ting of 8 cloudlets described in Section 4.3. By default, each cloudlet has at least 1 Gbps (Giga
bits per second) to its associated data source, representing LAN quality network. We throttle this
bandwidth down to 100 Mbps, 25 Mbps, and 10 Mbps respectively using the Linux command
line tool tc qdisc. The lower bandwidth numbers represent the realistic WAN scenarios —
the US national average broadband was 18.7 Mbps in 2017 [6].

We benchmarked with three early-discard filters: (1) RGB histogram: the least compute-
intensive; (2) MobileNet inference: compute-intensive but can be accelerated by using a GPU;
(3) SIFT key point matching: compute-intensive and cannot be accelerated by a GPU. Using
these filters allows us to gauge the impact of bandwidth for a wide range of computer vision
filters in practice.

Figure 5.1(a) measures the processing throughput on the 8 cloudlets (higher is better) as
we decrease data access bandwidth from 1 Gbps (LAN) to 10 Mbps (WAN). At 1 Gbps, the
RGB histogram filter achieves significantly higher throughput than the other two because it is
the least computationally expensive. As the bandwidth decreases, its throughput decreases as
the bottleneck quickly shifts from compute to I/O. Decreasing from 1 Gbps to 100 Mbps has
little impact on SIFT matching, the most compute-intensive filter. Nonetheless, as we further
constrain the bandwidth, its throughput ultimately drops by more than 50%. At 10 Mbps, all
three filters show the same throughput as they are bottlenecked by data transfer.

Figure 5.1(b) shows the same experiments from a different perspective. Here we measure the
percentage of total run time spent on retrieving data as opposed to computation. As bandwidth
becomes more scarce, this percentage tends to increase. At the lowest bandwidth of 10 Mbps,
even the most compute-intensive SIFT filter spends 80% of its run time retrieving data, and
the RGB filter spends 98%! In summary, the above experiments confirm that high-bandwidth
low-latency access is crucial for scaling out Eureka to more cloudlets in order to increase result
delivery rate, which in turn is important for achieving human-efficiency.

42

Bandwidth

Pr
oc

es
se

d
im

ag
es

 /
se

c

0

250

500

750

1000

1 Gbps 100 Mbps 25 Mbps 10 Mbps

RGB histogram MobileNet inference SIFT matching

(a) Image Processing Rate

Bandwidth

Da
ta

 a
cc

es
s

tim
e

/ t
ot

al
 ti

m
e

(%
)

0

25

50

75

100

1 Gbps 100 Mbps 25 Mbps 10 Mbps

RGB histogram MobileNet inference SIFT matching

(b) Fraction of Time Spent on Data Access

Figure 5.1: Effect of Bandwidth between Cloudlet and Data Source

43

0 20 40
Compression Ratio

0.0

0.5

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Mean = 14.9
Median = 13.2

0 200
Encoded file size (K Bytes)

0.0

0.5

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Mean = 75 KB
Median = 53 KB

99.2 Million JPEG and PNG Images

Figure 5.2: Storage Efficiency of Encoding: YFCC100M

0 500
Compression Ratio

0.0

0.5

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Mean = 294.6
Median = 300.6

0 200 400
Encoded file size (M Bytes)

0.0

0.5

1.0

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
Mean = 117 MB
Median = 29 MB

353 MP4/H.264 Videos

Figure 5.3: Storage Efficiency of Encoding: VIRAT

5.2 Enhancing Edge Elasticity via Intelligent Storage

In this section, we will first examine the performance characteristics of Eureka’s workload on
a cloudlet. Based on our observation, we propose and evaluate an approach that enhances a
cloudlet’s elasticity through the use of a novel intelligent storage architecture.

5.2.1 Eureka Workload Attributes

Encoded Disk Storage of Visual Data

As discussed, scarce WAN bandwidth precludes transmission of all data into the cloud, mak-
ing the edge the final destination of most visual data. The search for novel targets requires
content-based processing rather than index search. Therefore, re-processing visual data stored
on a cloudlet is the norm in Eureka. The quantity of this data is staggering. In 2017 alone, over
one trillion (1012) photographs were captured on smartphones [104]. In 2019, estimated 500
hours of new data were uploaded to YouTube every minute [29]. Even more visual data is gener-
ated by dense IoT camera deployments. Visual data is large but highly compressible, as shown in
Figures 5.2 and 5.3 for the widely-used YFCC100M [145] and VIRAT [109] datasets. Encoded

44

(R) disk

read

(C) color filter for red

(B) DNN bus detector

(D) decode

drop

Figure 5.4: An Early-discard Pipeline for “Red Bus”

object sizes will increase over time due to improving camera resolution. As data volumes are
high even with compression, the higher capacity and lower cost per bit of spinning disks relative
to SSDs make compressed data on disks the only cost-effective storage strategy. Thus, we expect
cloudlets to be multi-processor, GPU-enabled machines with multiple direct-attached disks to
provide storage and compute capacity to run a Eureka backend.

Short-circuit Execution of Early-discard Pipelines

A Eureka query typically consists of a cascade of early-discard filters. These filters may encom-
pass traditional computer vision algorithms (e.g., RGB histogram, perceptual hashing), machine
learning (e.g., SVM), and deep learning (e.g., Faster R-CNN). While DNNs are accurate, exe-
cuting them on all images and video frames can be very expensive. Eureka orders the filters in
such a way that cheap and selective filters are executed first; if an data item is dropped, execution
of subsequent filters is skipped. In general, this short-circuit evaluation strategy helps Eureka
achieve high throughput while maintaining accuracy.

Figure 5.4 depicts a Eureka pipeline for finding red buses. Compressed images (e.g., JPEG
files) are read from the disk, decoded into RGB arrays, and then examined by a “redness” color
filter, which discards images with a below-threshold number of red pixels. Only a small percent-
age of images pass the color filter and are processed by the more expensive DNN bus detector.
The color filter runs much faster than the DNN. Thus, it is both computationally inexpensive
and selective. Unlike “pure” machine learning workloads which run DNN inference/training on
huge batches of images, Eureka’s early-discard pipelines execute the DNN only occasionally,
effectively amortizing its cost over many data items.

45

R R+D R+D+C R+D+C+B
0

2

4

6

M
ill

is
ec

on
d

pe
ri

m
ag

e Avg. CPU time

R: Read files from disk
D: Decode JPEG to RGB

C: Color filter for redness
B: Bus detection with DNN

Figure 5.5: High Scalability Cost of Image Decode

R R+D R+D+C R+D+C+B
0

2

4

6

M
ill

is
ec

on
d

pe
ri

m
ag

e Avg. CPU time

R: Read files from disk
D: Decode JPEG to RGB

C: Color filter for redness
B: Bus detection with DNN

Figure 5.6: Impact of Our Solution on Figure 5.5’s Workload

5.2.2 Problem: High Scalability Cost of Decoding

The Eureka pipeline shown in Figure 5.4 consists of four main operations: (R) reading encoded
images from disk, (D) decoding into pixel arrays, (C) execution of color-based filtering, and
(B) execution of the bus detection DNN. Figure 5.5 shows the average per-image CPU cost of
these four steps in processing 50,000 images from the YFCC100M dataset. The experiments
were run on a cloudlet (4-core slice of a server with two Intel® Xeon® E5-2699v3 processors at
2.30 GHz and an NVIDIA GTX 1080 Ti GPU) with a Seagate 4TB hard disk drive (7200 RPM,
SATAv3). This configuration reflects the typical per-drive resources of a 2-socket server with
8–12 direct-attached disks.

In Figure 5.5, the four steps are added incrementally from left to right. Initially (label “R”),
the process is I/O-bound as the read data is discarded immediately. As soon as decoding of visual
data is added (label “R+D”), CPU time jumps dramatically. In fact, image decoding (Step D

46

alone) consumes 70% of the CPU cost of the full pipeline. The third step (label “R+D+C”) shows
that applying a color detection filter on all data items only increases total CPU usage modestly,
relative to the cost of decoding. What this implies is that the color filter (Step C) can operate at
much higher throughput than JPEG decoding (Step D). The small difference between the bars
labeled “R+D+C” and “R+D+C+B” shows the benefit of early discard. The expensive DNN for
bus detection (Step B) only has to be applied to about 3% of the images that pass the color filter.
We seek a way to reduce cost (D) that is simple, effective and future-proof. Figure 5.6, which
previews our experimental results from Setcion 5.2.8, confirms the effectiveness of the solution.
Comparing Figure 5.6 to Figure 5.5, we see that the average per-image CPU cost of decoding is
reduced to a half (2.3 ms vs 4.7 ms), indicating potential improvement of scalability.

5.2.3 Solution: Decode-Enabled Storage
Our solution is developed from an application viewpoint, rather than a systems viewpoint. All
that a typical visual analytics application desires is to obtain RGB arrays of the visual data in its
virtual memory. The application does not care exactly how these arrays materialize. This leads
to a simple question: “Why doesn’t the storage subsystem return the decoded data when it is
read?” In below, we propose a decode-enabled storage API that embodies this abstraction. The
API simultaneously simplifies application development and allows for placement of functionality
close to their optimal position (discussed in Section 5.2.4). These APIs let an application obtain
the decoded version of a visual data object stored on the disk. Beyond that, it supports a high-
value subset of image processing functions and multi-object read optimization. In Section 5.2.4,
we consider alternative approaches to implementing the abstraction of decode-enabled storage.

Extended Object Store API to Retrieve Decoded Objects

Our decode-enabled storage abstraction extends the well-known object store concept [101] that
allows an application to create, read, write, and delete logical objects. Our extensions let the
calling application specify operations and transformations to perform on an object as it is read.
This is embodied in the FetchAndDecodeObject call as follows:
FetchAndDecodeObject(

int64 object_id,
int32 opcode,
void* params,
iovec* where_to_put_decoded_object,
iovec* where_to_put_original_object)

Each object is addressed by an integer Object ID. The opcode field indicates whether to
fetch the original compressed object, the decoded version, or both. The last is useful in a server
context, where images may need to be transmitted across a network after local filtering: decoded
objects improve analytics performance and CPU load, while the original versions can be sent
without re-encoding. The final two vectors indicate memory regions into which the fetched data
will be placed using a scatter-gather approach.

Other operations may also be requested using opcode. In this paper, we focus on image de-
coding and (content-based) cropping (e.g., face detection), which can be accelerated with ASICs

47

and will remain useful long into the future. Parameters for operations can be provided through
the params pointer.

Partial read or write of an object is not supported. This enables additional disk optimizations,
reduces internal fragmentation, and maximizes sequential reads. These semantics are a natural
fit for compressed image data, but work well for video, too. For example, B-frames in H.264
are encoded using information from both past and future frames. Thus, to successfully decode a
single frame, the decoder needs to retrieve large amounts of surrounding data, possibly the whole
object. We suggest keeping the size of individual objects moderate, on the order of several MBs.
Very large videos (GBs to TBs) can be stored as a sequence of objects, for which the mapping
can be stored in a separate object.

Multi-Object Batch Iteration

The above single-object API can be seen as offloading computation (e.g., decode) at the gran-
ularity of an image. This granularity can be increased to reap additional benefit. Visual data
analytics is typically a form of batch processing, applied thousands to millions of images, with
no requirements on order. Performance can be improved by re-ordering the objects, for example,
to reduce disk seeks or to exploit parallel read heads. Although it is well known that access pat-
tern can have a great impact on I/O performance, the most efficient read order varies from device
to device. On traditional disks, it mostly depends on physical block location and disk geometry,
but this can be obscured by logical block addressing and remapping. On object store disks such
as Seagate’s Kinetic HDD [131], it is further complicated by the firmware’s approach to storing,
fetching, and caching metadata. Access to this information is obscure in the application, but
straightforward in the disk. Moreover, a system may use a heterogeneous set of disks that further
complicate application-level optimization.

Therefore, it is more intuitive to optimize this within the storage subsystem, behind a unified
batch-oriented API call. Note that this is different from request scheduling on current disks,
which only re-order requests on short work queues. Our decode-enabled storage API provides
an iterator-style batch operation as follows:

IterateCollection(
int64 collection_id,
int32 opcode,
void* params,
int64 logical_index,
int64* flags,
int64* returned_object_id,
iovec* where_to_put_decoded_object,
iovec* where_to_put_original_object)

The list of Object IDs to fetch are created a priori in an object of some custom format, refer-
enced by collection id. The application iteratively calls this API to retrieve another object.
The returned object id tells which object was fetched. The API guarantees exactly-once
semantics of objects — exhaustive and non-repeating, but makes no promise of the order. The
logical index tracks the iterator cursor. A flag COLLECTION LAST is set in flags to

48

Architecture Efficiency (GFLOP / J)
CPU (Core i7) 1.14

FPGA (Xilinx LX760) 3.62
GPU (NVIDIA GTX285) 6.78

GPU (AMD R5870) 9.87
ASIC 50.73

Source: Table 4 in Chung et al [28]

Table 5.1: Energy Efficiency of Hardware Accelerators

terminate iteration when the last object is returned. The other fields are the same as in the single-
object API.

5.2.4 Implementation
The API described in Section 5.2.3 discloses application intent to the system. Using a hardware
accelerator to implement the most compute-intensive parts of this API is clearly the way to reduce
CPU demand, and thereby improve scalability. On cloudlets without the accelerator, a pure
software implementation of the API can provide compatibility. Applications can be written to
this API today, and will continue to work unmodified over the long period of time that it typically
takes for hardware optimizations to gain market share. This is the same strategy that has been
used for GPU acceleration in popular open-source libraries such as OpenGL and DirectDraw.

Two questions follow from this decision. First, what type of accelerator should we use?
Second, where should it be placed? We discuss below the design rationale that leads to our
recommended solution of ASICs within storage devices.

Energy and Thermal Considerations

As mentioned, energy efficiency is a key consideration for a cloudlet. This is especially true for
a hyperconverged multi-tenant cloudlet that must fit into very limited space, yet support many
CPU cores and at least one high-end GPU for visual data analytics. The tight thermal envelope
and limited electrical power budget of such a cloudlet requires very careful attention to energy
and cooling efficiency.

Table 5.1 from Chung et al [28] shows the relative energy efficiency (expressed in GigaFLOPs
per Joule) of different hardware accelerators. These specific measurements are for matrix multi-
plication, but the trend holds across applications [55]. Energy efficiency improves as one moves
down the rows of Table 5.1, but comes at the cost of flexibility. When flexibility is paramount,
CPUs are optimal; when it is not important, ASICs are optimal. Intermediate points in this
spectrum correspond to programmable accelerators such as GPUs.

In our setting, flexibility is not important. The formats used by visual data such as JPEG,
PNG, JPEG2000, and MP4 are well standardized today. These will remain unchanged forever,
because of vast archives of precious data stored worldwide in these formats. If new formats
arise in the future, support for them can be software-only on legacy cloudlets. New accelerators
can support the new formats, in addition to all the old formats. Use of the APIs described in

49

Section 5.2.3 insulates legacy applications from this discontinuity in hardware implementations.
They only deal with decoded data, and are thus impervious to lower-level changes. What is
unlikely to ever change is the need for decoding data as the first step in visual data processing
pipelines.

ASICs, which are fixed-function (i.e., non-programmable), thus emerge as the best type of
hardware accelerator to use. Their lack of versatility is not a handicap for our use case, and their
superior energy efficiency is a major advantage.

The placement of the ASIC is also guided by energy and thermal considerations. Figure 5.7
shows the thermal heat maps of a typical rackmount cloudlet and a typical standalone cloudlet
while they are processing a visual data pipeline. The brightest areas (in white, yellow and orange)
represent the current “thermal bottleneck” of the system. Adding new hardware to any of these
areas will only worsen this bottleneck, and make cooling the system more difficult. The power
density in these areas is already high, and delivering more power there will also be difficult. As
long as performance is not compromised, adding new hardware to the coolest parts of this heat
map (in blue or black) that are furthest from the current thermal bottleneck is the wise path to
follow. Storage devices are among the coolest parts of Figure 5.7, and located furthest from the
thermal bottleneck. They also represent the starting points of all visual data pipelines. They are
thus the logical choice for placement of the ASIC.

Minimizing Data Copying

A well-known design principle for scalability from “big data” systems is to minimize data copy-
ing [71, 74, 91]. Locating the decode-acceleration ASIC in a storage device aligns well with this
principle. No new data copies are needed; rather, data is decoded in a streaming operation as it
is read off the disk surface. This may seem to be a counter-intuitive optimization at first glance,
because early decoding increases the bandwidth demand on the SATA interconnect from disk.
However, this can be overcome by replacing SATA by the modern NVMe host-storage intercon-
nect [1]. NVMe was originally created to support the much higher bandwidth demand of SSDs.
There is industry speculatation NVMe will become the unified interface for all storage types in
the near future, including SSD and disks [99]. By fortunate coincidence, this trend aligns well
with our proposal to place decoding functionality on disks.

Figure 5.8(a) illustrates the placement of a decode ASIC directly on disk. A cloudlet can be
attached to multiple such disks to exploit parallel storage bandwidth and decode throughput. In
other words, compute and storage scale together when more disks are added to a system.

An alternative approach, shown in Figure 5.8(b), is to separate the ASIC from storage and
place it on the I/O bus (typically PCIe). Similar to (a), this strategy makes it easy to add more
accelerators to the system. However, it has at least two deficiencies relative to Figure 5.8(a).
First, it requires some host mediation of the decoding process, incurring context-switching over-
heads. Specifically, the host must initiate reads of encoded objects from disk into DRAM; once
complete, it triggers the decoding of these objects and sends them to the accelerator. While the
overhead of this mediation can be reduced by batching over many objects, it can never be re-
duced to zero. Second, it incurs two more round trips of the encoded data over the system bus.
Assuming a compression ratio of 15, this amounts to 2/15 = 13% additional cost in terms of bus
data transfer and energy. Decode in GPU (e.g., NVIDIA’s NVDEC) is an instantiation of this

50

CPU0

GPU

HDD

PSU

CPU1

Fan array

(a) Rackmount Cloudlet

CPU &

Fan

GPU

HDD

PSU

(b) Standalone Cloudlet

Figure 5.7: Thermal Heatmap of Typical Cloudlets

51

CPU

DRAM

NVMe (PCIe)

Disk

CPU

DRAM

SATA

Disk

PCIe

ASIC

CPU

DRAM

SATA

Disk

ASIC

Encoded data Decoded data

(a) Accelerator on

NVMe-disk

ASIC

(b) Accelerator on

expansion bus (PCIe)

(c) Accelerator

integrated in CPU

Figure 5.8: Alternative Placement of Decode Accelerator (ASIC)

strategy, but GPUs are more expensive and less energy-efficient than an ASIC, and are already a
thermal bottleneck (Figure 5.7).

A third alternative, shown in Figure 5.8(c), avoids data copying by integrating the ASIC
directly on a CPU die. An example of this approach is Intel’s Quick Sync Video (QSV) feature.
With this approach, decoded data completely bypasses the system bus and possibly even DRAM
(if it can be written directly to CPU cache). However, as discussed in Section 5.2.4, there are
strong thermal considerations that argue against adding an accelerator to the already-hot CPU
die if an alternative placement can perform just as well. In addition, it is difficult to scale the
CPU-integrated decoder. Most processors have many CPU cores, but just one (if any) hardware
decoder block. Such a decoder typically can handle hundreds of frames or images per second,
more than sufficient for the vast majority of real-world use cases. Thus, there is little incentive
to add more than one such decoder to a general-purpose processor. However, as our experiments
in Section 5.2.7 show, we may need many times the decode capability to fully utilize all of the
compute cores and disk bandwidth in a reasonably-sized cloudlet. Finally, a CPU-integrated
solution provides a fixed decode capability that cannot be scaled up easily – adding processors or
additional servers may not be feasible on the edge – in contrast, a solution with one appropriately-
sized ASIC decoder per disk will naturally scale up decode capability as more storage is added
to a system.

Technical Feasibility

Decoding on disk critically depends on the use of NVMe host-storage interconnects. Table 5.2
lists reference speeds of SATA and NVMe, as well as the internal transfer speeds of disks and
SSDs. With an average compression ratio of 15x for JPEG, a disk that delivers 200 MB/s from
its platters will produce 3000 MB/s of decoded data. This is well above what SATA can sustain,
but well within the bandwidth supported by current NVMe products [142].

52

SATA 500 – 700 MByte/s
NVMe 1,000 – 6,000 MByte/s

HDD “internal” 100 – 300 MByte/s
SSD “internal” > 500 MByte/s

Table 5.2: Comparison of Storage Bus Technologies and Storage Devices Internal Throughput

Device JPEG Decode Speed
Disk CPU (ARM-based, 1.0 GHz) 15 MPixel/s
Host CPU (Intel-based, 2.3 GHz) 60 MPixel/s

FPGA 1 [72] 73 MPixel/s
FPGA 2 [163] 140 MPixel/s

Intel Quick Sync Video 600 – 1,000 MPixel/s

Table 5.3: JPEG Decode: Software vs HW Acceleration

Fixed-function hardware and FPGAs have already been adopted on hard disks for other
functions [132, 144, 146, 162]. Low-power, low-cost hardware accelerator or FPGA for im-
age decoding has been studied, prototyped, and validated in both academia and industry (e.g.,
[5, 72, 89, 163]). Table 5.3 compares the published performance of two FPGA-based JPEG
decoders with experimental measurements of software decode on a single host CPU core and
an embedded CPU core of an active disk (ARM Cortex A53 on Seagate Kinetic HDD). For
reference, we also benchmarked with Intel Quick Sync Video (QSV), a hardware-accelerated
decoder integrated on certain Intel processors. We see large performance gains with accelerators
compared to software decode on CPUs.

Unlike many previous designs of intelligent storage or active disk [3, 84, 98, 100, 120, 122,
159], our design precludes the execution of arbitrary code within a disk. This greatly reduces
the disk’s cost, complexity, and security risk. In addition, it avoids putting the cost-, power-,
and memory-limited on-disk computational capabilities in competition against well-provisioned
host processors, which are designed for computational throughput. Any advantage of on-disk
general computation is often rendered obsolete by rapid improvements of the host system driven
by Moore’s Law. Decoding, in contrast, represents a very constrained form of application-level
logic that is well standardized, and is unlikely to become obsolete even if the workload evolves
in the long term.

Another advantage of on-drive decoders is that they can be co-designed with the disk’s specs
in order to fully utilize its internal throughput and outbound bandwidth. A decode-enabled disk
can be equipped with multiple hardware decoders. Under a simple system model, we can bound
the number of decoders by the minimum between its internal (encoded) object throughput and
outbound (decoded) object throughput:

min
(

Disk Internal Read Speed
Avg Encoded Object Size ,

NVMe Speed
Avg Decoded Object Size

)
Object Throughput Per Decoder

(5.1)

The arguments for images apply similarly to video decoding. IP cores exist that can decode
4K resolution H.264 video at 60 – 120 frames per second (FPS) [113, 143]. We will experimen-
tally explore how much on-disk decoding capability is needed to deliver performance gains.

53

Beyond Decoding on Drive

Beyond hardware-assisted decode, it is difficult to justify running computer vision operations on
a disk CPU. Computer vision algorithms tend to be both compute- and memory-intensive, and
have been changing at a rapid pace. They are more suited to execution on powerful host CPUs or
GPUs. General compute capacity in drives is typically modest, and it is usually not worthwhile
to implement new hardware for rapidly evolving workloads.

The one exception we consider here is image cropping on disk. Concretely, we consider two
types of cropping. In the first type, the application provides a bounding box. Cropping based
on pixel coordinates incurs data movement, but only trivial computation, and can be performed
efficiently on disk. This is particularly useful for static cameras where the application has a
priori knowledge about regions of interest, e.g., portion of a traffic camera view covering a
crosswalk [19].

The second type uses dynamic coordinates based on image content analysis. While this can
be expensive in general, we consider operations that can be accelerated through hardware, for
example, face detection. Prior research on face detection accelerators achieved between 30 and
600 FPS [21, 27, 58, 62, 79]. These accelerators output the coordinates of the faces, which the
disk processor uses to perform cropping.

Cropping is possible only after decoding, but offers the opportunity to reduce the amount
of data transferred on the bus. Only the cropped patches are returned, and the other bytes are
discarded. This has the potential to reduce the bandwidth requirement, depending on the crop
size or sparsity of faces in the data set.

Although we only consider cropping here, as other computer vision algorithms become stan-
dardized and implemented in low-cost hardware, they can be added to the list supported by a
decode-enabled storage device.

5.2.5 Timing-Accurate Emulated Prototype

We implement timing-accurate emulation of an NVMe-attached decode-enabled disk that allows
execution of real application code and measurement of wall-clock time and real OS-level statis-
tics (e.g., CPU time, bandwidth). The emulation allows us to experiment with a wide range
of parameters that are otherwise unavailable in existing hardware products (Section 5.2.7 and
5.2.8). This section describes our discrete event-driven simulation that uses pre-computation and
modeling to emulate HW decoders, while disk timing is based on a real HDD.

HW/SW-based Emulation Framework

Figure 5.9 depicts the architecture of our emulator, implemented in a similar way to DiskSim [18]
and Memulator [49]. Application programs are largely unchanged except for the use of the
new APIs to fetch (decoded) data. It includes critical components of a decode-enabled storage
device – the host-disk interconnect bus, potentially parallel HW accelerators for decoding, and
mechanical disk timings. The controller implements the logic to control data flow and coordinate
different components in order to service a request from applications.

54

Application (slightly-modified)

Emulated Disk

Proposed Decode-Enabled Storage API

Emulated Hardware Decoder

RAM

RGB Arrays
Software

Decode Profile

Emulated Hardware Face Detector

Controller

Emulated Bus

Software Face

Detection Profile

Batch Read Optimization Decode on Read Crop on Read

Real HDD

JPEG Images

MP4 Videos

Figure 5.9: Decode-Enabled Storage Emulator used in Experimental Evaluation

For each software-emulated component, we construct (1) a model to calculate the (content-
dependent) completion time for operations, and (2) a mechanism to generate the actual results
produced (e.g., the actual decoded pixel arrays). The latter mechanism must execute faster than
the modeled time; this is achieved by serving pre-computed results from memory. As this gener-
ally runs faster than needed, we insert high resolution sleep to achieve the modeled latency.

Following DiskSim, we use a discrete event-driven approach to model complex interactions
between components. For example, requests to the decode ASICs are serialized through a pri-
ority queue sorted by the simulation timestamp. Thus, requests are ordered “correctly” even if
generated out of order by the concurrently executing components. The simulation clock is con-
tinually updated to match the real world time. When a request’s computed completion time is
reached by the simulation, we send the response back to the application.

Emulating Specialized Hardware

Prototypes ASIC- and FPGA-based image decoders [5, 72, 89, 163] have been characterized by
a metric specified in MegaPixels per second (MPixel/s). Hence, we parameterize our emulated
decoder with a targeted MPixel/s. In practice, decoding time may vary based on content and
compression level of images. Our emulator accounts for such variability, while maintaining a
target speed. We compute a global scaling factor that scales the average software decode time
for an entire image dataset to the target rate; we apply this factor to the software decode time
of each image to obtian its simulated HW decode time. More concretely, suppose the data set
has N images, the software decode time of image i is tswi , and its decoded size is ri MPixel.
When simulating an image decoder parameterized at M sim MPixel/s, the simulated decode time
of image i is calculated as:

tsimi =

∑N
k=0 rk∑N
k=0 t

sw
k

· tswi
M sim

55

To emulate real-time hardware decode, we pre-decode all images and store them in a ram-
disk. At run time, the decoded data is rapidly returned to the application.

We emulate video decoding and face detection hardware in a similar fashion. For simplicity,
we parameterize them using a target frame per second (FPS), and scale individual elapsed times
based on profiled software times.

Emulating Disk Hardware Timing

We emulate mechanical disk timing factors, such as seeks, platter rotations, and block cache by
reading files from a real hard disk. Although this will include overheads of the OS, filesystem,
and bus, we find that these are small by performing similar tests on a fast SSD. We were careful
to clear the OS page cache before each experiment.

Emulating the Bus

We parameterize the host-disk bus by a maximum bandwidth (MByte/s). Each (decoded) object
exclusively occupies the bus during its transmission and other objects must wait for the bus to be
relinquished. We assume the bus operates at the maximum rate when in use and is idle otherwise.
This model is sufficient to estimate transfer rates for different interconnect technologies.

5.2.6 Evaluation Methodology
We chose a set of early-discard filters that prove to be valuable both in Eureka and in other visual
analytics systems [81, 82] (Figure 5.10). These filters are typically able to discard a significant
portion of data and are less computationally expensive than a DNN, though some of the filters
are more compute-intensive than others.

We ran experiments on a workstation with two Intel® Xeon® E5-2699v3 processors (total
of 36 cores/ 72 threads @ 2.3 GHz), 128 GB DRAM, and an NVIDIA GTX 1080 Ti. Because
our emulator pre-stages decoded data in DRAM to emulate fast HW-accelerated decode, we ran-
domly sampled 50,000 images from the YFCC100M data set [145]. The corresponding decoded
data totals 51 GB, fitting comfortably in DRAM. Likewise, we randomly sampled 6 videos from
the VIRAT Release 2.0 Ground data set [109], which are encoded in H.264 format @ 30 FPS.

Table 5.4 summarizes the default parameters used in experiments. To saturate a 2,000 MB/s
bus, we used Formula 5.1 to calculate that we need about 5 JPEG decoders at 140 MPixel/s each
(ref. Table 5.3). We first report results under these default settings, and then study the effect of
varying different host and disk parameters. The preview results presented earlier in Figure 5.6
hinted at the potential for greatly improved scalability based on CPU utilization, here we delve
into a more detailed study based on wall-clock time, disks supported per server, and end-to-end
throughput, by addressing the following questions:

• Can decode-enabled storage improve application-level performance?
• Can decode-enabled storage reduce processing load on the cloudlet CPU?
• Is NVMe necessary and sufficient for transmitting decoded data from the disk?
• How much processing is needed on the disk?

56

Frame sampling. Useful when event of interest takes some
time [81], e.g., pedestrian crossing street.

Color filter. Counts pixels in given RGB range; can cheaply detect
sky (blue), vegetation (green), etc.

Face detection. Finds faces in images. Computationally expensive,
but is an effective early-discard filter when finding human activities
or recognizing individuals. Can be HW-accelerated.

Image difference. Computes mean square error (MSE) between
current and prior image; if MSE is small, can assume identical
results of later processing stages.

Perceptual hashing. Like image difference, but more robust to
pixel noise, minor lighting differences, etc.

Tiny DNNs. Much smaller, faster, but less accurate versions of
standard DNNs [81, 82]. Useful as early discard filters prior to
running an expensive DNN.

Figure 5.10: Early Discard Filters Used in Experiments

Host
CPU (cgroup) 4 cores/8 threads, 2.30 GHz

DRAM (cgroup) 64 GB
GPU NVIDIA GTX 1080 Ti
Decode-Enabled Disk (Emulated)

Host-Disk Bus 2,000 MB/s
HW JPEG Decoder 140 MPixel/s ×5
HW Face Detector 30 FPS ×1
HW Video Decoder 480 FPS @ 720p

Standard SATA Disk (Real, baseline)
Specs 3.6 TB, 7200 RPM, SATAv3

Throughput (Bulk) 187 MB/s
Throughput (JPEG) 98 MB/s

Table 5.4: Default Experiment Setup and Parameters

57

• How many disks and accelerators can be connected to one server before saturating the host
system’s resource?

• How does decode-enabled storage compare to alternative solutions?

5.2.7 Micro-benchmark Evaluation

We first evaluate a series of micro benchmarks by running the following early-discard filters on
YFCC100M images.

• Color finds images with many red pixels.
• PHash calculates an image’s perceptual hash value.
• ResNet10[82] is a tiny DNN based on ResNet [59], with 65 × 65 input and 10 layers

(reduced from 224× 224 input, 50–100 layers).
• Face detects and crops faces in an image, and drops images with no faces.

Color and PHash offload image decode operations to the disk. ResNet10 offloads image
decoding to the disk, runs resizing and normalization on the CPU, and runs the neural network
on the GPU. Face offloads both image decode, face detection, and cropping to the on-disk ac-
celerators. Only the cropped patches containing faces, or a null list if there are none, is returned.

Effects on Application Throughput

Figure 5.11 reports the application-level throughputs (image/s) for three systems:
• Baseline: uses standard SATA-connected disk and software decode;
• Batch Iteration Only: optimizes multi-object batch read order on a standard disk;
• Decode-enabled Storage: combines batch iteration, on-disk decode, and NVMe. The data

labels show improvement factors relative to Baseline.
Batch Iteration Only is approximated by accessing files sorted by the starting blocks of the file
extents returned by Linux system call FIEMAP. This does not fully account for a hardware
implementation, but provides a partial estimate of the potential gain.

We see batch iteration alone is effective (up to 2.5x improvement), but is not responsible for
all performance gains. Adding on-disk decode HW and NVMe achieves up to 4.9x improvement
over Baseline. Face is much slower than the others, because face detection is computationally
expensive. However, even a single face detection chip at 30 FPS delivers 2x gain over software
detection on the 4 CPU cores used in this experiment.

Is NVMe Necessary and Sufficient?

Figure 5.12 measures the data transfer rate on the bus for Baseline and Decode-enabled Storage.
With decode-enabled storage, up to 1,400 MB/s is transferred to the host, clearly exceeding
SATA bandwidth. This increase reflects two factors: (1) the transfer of decoded, rather than
compressed images; (2) the host CPU, freed from decode tasks, can process images at higher
throughput (Figure 5.11).

58

Color PHash ResNet10 Face
0

500

1000

1500

Im
ag

es
/s

2.4x 2.5x 2.4x

1.0x

4.7x 4.9x 4.9x

2.0x

Baseline Batch Iteration Only Decode-Enabled Storage

Figure 5.11: Application Throughput of Micro Benchmarks

Color PHash ResNet10 Face
0

500

1000

1500

M
B

yt
e

/s

20 21 21 1.1

1328 1409 1422

0.6

Baseline Decode-Enabled Storage

Figure 5.12: Data Transfer Rate on Disk Bus

500 1000 2000 4000
Emulated Bus Speed (MByte/s)

0

500

1000

Im
ag

es
/s

Color
PHash
ResNet10

Figure 5.13: Effect of Bus Speed

59

Color PHash ResNet10 Face
0

20

40

60

M
B

yt
e

/s
Baseline: Stored Encoded
Alternative: Stored Decoded

Color PHash ResNet10 Face
0

100

200

Im
ag

es
/s

Baseline: Stores Encoded
Alternative: Stores Decoded

(a) Transfer rate on Bus (b) Application Throughput

Figure 5.14: Effect of Storing Decoded Images

With Face, decode-enabled storage actually consumes less bandwidth than baseline (0.6 vs. 1.1),
despite running 2x faster. This is due to cropping-on-disk that only sends cropped faces. In
YFCC100M, only 23% of images contain human faces, with an average size of 97.5 × 126.9
pixels. Hence, even though they are sent as uncompressed pixels, the face crops require less
bandwidth than whole-image JPEG files for the entire dataset.

To study how the bus speed impacts performance, we throttle the emulated bus’s band-
width between 500 MB/s (SATA speed) and 4,000 MB/s (high-end NVMe speed), and measure
throughput for Color, PHash and ResNet10 (Figure 5.13). We see that bus bandwidth has
almost linear impact on application performance up to 2,000 MB/s, again confirming the impor-
tance of NVMe for our design.

Alternative Solution: Storing Decoded Data

We evaluate the alternative approach of storing decoded images (RGB arrays) instead of com-
pressed ones (JPEG) on a standard disk. This completely eliminates image decoding, but reads
more data from the disk platters. Figure 5.14 reports the host-disk transfer rate and application
throughput. As expected the data transfer rate increases significantly by up to 3.7x over baseline,
limited by the internal read speed of the disk. This increase is due to larger sequentially accessed
files, resulting in fewer seeks, and the fact that the decode bottleneck is removed from the CPU.
Unfortunately, this increase is offset by the 15x inflation in object sizes, resulting in a net de-
crease in application-level throughput. Furthermore, this in effect reduces the disk’s capacity by
15x as well. Overall, storing decoded images on the disk is a losing proposition due to poor
performance and poor cost-efficiency.

Scaling on A Large Cloudlet

In a realistic edge deployment, a cloudlet typically has dozens of CPU cores that process data
from a dozen disks in parallel. Among others, general-purpose compute cycles are a precious
resource. Utilizing decode-enabled storage is a more economic way to improve elasticity than

60

1 2 4 8
Number of Physical Cores

0

500

1000

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t

(I
m

ag
es

/s
)

Color
PHash
ResNet10
Face

Figure 5.15: Effect of CPU Cores on Throughput

adding more CPU hosts. This leads to a question: “For a given cloudlet, how many disks should
be used?”

We first investigate how many CPU cores the application utilizes when saturating a single
disk. Figure 5.15 shows the application throughput on a single decode-enabled disk, as we vary
the number of physical cores allocated to the processes. The “kinks” of the curves indicate when
the CPU cores start being underutilized, as the bottleneck shifts to I/O. For Color, PHash, and
ResNet10, the sweet spot appears to be 4 cores / 8 threads. Face is not limited by CPU, as the
processing running on CPU is negligible.

Based on measured CPU/GPU utilization at that point of saturation, we extrapolate the
scaled-out performance as more standard or decode-enabled disks are connected to our 36-core
cloudlet. This machine has 136 GB/s DRAM bandwidth, well above the bandwidth demands cal-
culated in this scenario. Besides, we benchmarked the GTX 1080 Ti GPU can run ResNet10
at 40,000 images/sec, and should not be a bottleneck in our scaling range. Figure 5.16 shows the
extrapolated application throughput as the number of disks is increased. For all cases, decode-
enabled storage achieves more than 2x higher throughput than standard disks. It also suggests
connecting up to 20 decode-enabled disks to a cloudlet, requiring up to 20× 1.5 = 30 GB/s of
data transfer rate. Can a modern machine support this required I/O bandwidth? With 40 lanes of
PCIe 3.0 per socket, and two sockets, the benchmark machine has a theoretical peak I/O band-
width of 80 GB/s, so it is feasible to support more than 20 decode-enabled disks in one system.

Figure 5.16 also shows that the general-purpose CPU cores, when freed from the decode task,
can execute the early-discard filters at more than 15,000 image/s. This is approximately 20x
higher than the JPEG decode throughput we can get from the Intel Quick Sync Video accelerator
(Table 5.3). In other words, on-die accelerators need to be scaled up by 20x to meet the whole
CPU’s processing speed, of which the challenges were discussed in Section 5.2.4.

Micro Benchmarks on Video

We run experiments on the VIRAT video data set using a “frame sampling + image difference”
pipeline. Here, we sample video frames at fixed intervals; then compute the mean squared error
(MSE) between the sampled frame and the frame one second (30 frames) earlier. If MSE is

61

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Standard Disk Decode-Enabled Storage

10 20 30
Number of Disks

0

5000

10000

15000
Im

ag
es

/s

Color

10 20 30
Number of Disks

0

5000

10000

15000

Im
ag

es
/s

PHash

10 20 30
Number of Disks

0

5000

10000

15000

Im
ag

es
/s

ResNet10

Figure 5.16: Extrapolated Application Throughput with Varying Number of Disks

62

Base
lin

e
24

0
48

0
96

0

On-drive Decoder FPS

0

250

500

750

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t

Base
lin

e
24

0
48

0
96

0

On-drive Decoder FPS

0

200

400

600

800

B
us

Tr
an

sf
er

R
at

e
(M

B
/s

)

(a) Sample 10% of Frames (every 10 frames)

Base
lin

e
24

0
48

0
96

0

On-drive Decoder FPS

0

250

500

750

A
pp

lic
at

io
n

T
hr

ou
gh

pu
t

Base
lin

e
24

0
48

0
96

0

On-drive Decoder FPS

0

200

400

600

800

B
us

Tr
an

sf
er

R
at

e
(M

B
/s

)

(b) Sample 50% of Frames (every 2 frames)

Figure 5.17: Effect of Video Decoding on CPU (Baseline) vs ASIC

lower than a threshold, we consider the frame to have the same content as the prior one and
suppress further processing. With decode-enabled storage, decoding is performed on the disks
and skipped frames are not transmitted. MSE computation always runs on the host.

Processing video shows two key differences from processing image. First, because of the very
high compression ratios and many frames per video, disk read is not as much of a bottleneck as
with images, and the use of batch iteration makes little difference. Second, the frame sampling
rate greatly affects the relative cost of decode. When frames are sampled more frequently, an
increased fraction of CPU cycles need to be devoted to MSE calculation, while the decode costs
remain constant since most frames need to be decoded due to the sequential nature of modern
video encoders like H.264.

Figure 5.17 reports the application-level throughput and host-disk data transfer rate under two
sampling rates: 10% and 50%. We varied the video decoding throughput of decode-enabled stor-
age from 240 to 960 FPS. Higher video decoding capacity in the disk leads to higher application-

63

YFCC100M/RedBus YFCC100M/Obama

VIRAT/Pedestrian

Figure 5.18: Example Results from Full Eureka Pipelines

level throughput, but not proportionally, due to overheads of MSE computation. When sampling
rate is high (Figure 5.17(b)), application throughput is lower (600 vs. 800), because more MSE
computation is needed. Meanwhile, host-disk transfer rate will be higher (800 vs. 300 MB/s),
as more decoded frames are sent over the bus. Overall, we observe that decode-enabled storage
must have decode capability of over 480 FPS (at 720p) to outperform baseline on this task.

5.2.8 End-to-end Evaluation
Finally, we evaluate the following complete Eureka pipelines for real-world search tasks:

• RedBus runs the pipeline depicted in Figure 5.4 to find red buses in YFCC100M. It first
runs a redness color filter, and then passes the candidates to an SSD-MobileNet [94] run-
ning on the GPU to detect the presence of buses.

• RedBus-fast trades off accuracy for speed by replacing object detection with image
classification (MobileNet [63]). Classification is faster, but may miss images where the
bus is not the dominant object.

• Obama searches for Barack Obama in YFCC100M. It first runs face detection to discard
images without faces, and then runs face recognition on the face patches.

• Pedestrian detects humans in VIRAT videos. It performs frame sampling and uses
image difference to filter sampled frames. Because the VIRAT videos are captured from
wide angles and far distances, the candidate frames are passed to Faster R-CNN ResNet101
to detect humans, a more expensive but accurate DNN than SSD-MobileNet for this kind

64

RedBus

RedBus-fast
Obama

Pedestrian-10%

Pedestrian-50%
0

500

1000

1.9x
2.1x

1.0x

1.2x

1.0x

2.6x

3.5x

2.7x

1.3x

1.1x

HDD SSD Decode-Enabled Storage

(a) Application Throughput (Images / sec)

500

1000
99%

24%

RedBus

RedBus-fast
Obama

Pedestrian-10%

Pedestrian-50%
0

10
121% 130%

100%

100%

50% 52%
20%

56%

(b) CPU Time (Milliseconds) per Image

Figure 5.19: Full End-to-End Visual Pipeline Performance

of task. We evaluate this with two frame-sampling rates: 10% and 50%.

Figure 5.18 gives a search result example of each application. The selectivity — fraction of
images/frames that contain the search target — is 0.01% for RedBus, 0.004% for Obama, and
2.45% for Pedestrian.

We compare the performance of these visual search tasks on (1) a standard SATA HDD; (2) a
standard SATA SSD — today’s go-to choice for fast but expensive storage; and (3) our proposed
NVMe-connected Decode-enabled Storage. Figure 5.19 reports the application throughput and
CPU cost per image for each application and storage type. The annotated numbers are improve-
ments relative to the standard SATA HDD (gray bar).

Overall, decode-enabled storage shows greater throughput with lower host CPU cost than
standard HDD and standard SSD. Comparing RedBus and RedBus-fast, we observe that
this commonly used classification-detection tradeoff is effective only when the disk and decode

65

overhead is removed. With Obama, throughput is limited by face detection either in software or
hardware. Similarly, Pedestrian is largely limited by video decode speed, which is similar in
software and hardware. Nonetheless, offloading decode reduces the host CPU cost by 50–80%,
allowing more apps to run in parallel on an edge node.

5.3 Related Work
Edge computing features miniature cloud-like compute infrastructure that is deployed close to
mobile and IoT devices [127, 134]. This compute infrastructure is exploited either to provide
latency-sensitive interactive user experience, such as in wearable cognitive assistant [52, 155]
and mobile gaming [133], or to execute pre-filtering of data, thus reducing the demand for WAN
bandwidth, such as in distributed video analytics [19, 77, 78]. Similar to the latter, Eureka utilizes
edge computing to execute early-discard filters that reduce the volume of data to transmit over
the Internet by orders of magnitude.

As mentioned, unlike the cloud, elasticity of the edge is limited. However, it can be im-
proved by coordinated execution between the cloudlet and mobile devices or between different
applications [60, 66, 154, 155]. Our observation of image decoding and disk I/O being the local
bottleneck stems from the unique characteristics of Eureka workload. In contrast to Eureka, edge
applications that process real-time video feeds (e.g., wearable cognitive assistant) obtain frames
from cameras directly, without encoding and storing on disks. Likewise, many video analytic
systems (e.g., [77]) are GPU-bound as they need to execute DNNs on many frames. Most rele-
vant to Eureka are systems such as NoScope [81] and BlazeIt [82], which focus on the selection
and creation of efficient early-discard filters. The use of effective early-discard filters reduces
the load on GPUs and shifts the bottleneck towards the early steps (I/O and decoding) of the
processing pipeline. Nonetheless, that body of work generally considers target objects for which
there exist off-the-shelf DNN detectors. For example, NoScope [81] uses a standard “teacher”
DNN to train a light-weight “student” DNN as an early-discard filters. Such “teacher” models
are not available in Eureka’s use cases.

Our proposal of decode-enabled storage can be considered as a revisit of intelligent storage
or active disks [120], which refers to the execution of application logic inside storage devices. An
excellent account of the origin and history of the active disk concept is provided by Riedel [121].
That work attributes the roots of this concept to research on database machines from the mid-
1970s through the early 1990s [17, 34, 35, 36, 64, 114, 140]. Riedel’s work confirmed the
significant performance benefits of this approach for systems of the late 1990s to early 2000s.

Various other researchers have also investigated this concept, including Acharya et al [3],
Keeton et al [84], Ma et al [98], Memik et al [100], Rubio et al [122], and Wickremesinghe et
al [159]. Closely-related work on optimal function placement at different levels of the memory
hierarchy include Abacus [8], Coign [68], River [9], and Eddies [10]. By the mid-2000s, interest
in active disks had faded. Their predicted wins were muted by the onward march of commodity
hardware performance through Moore’s Law. By the late 2000s, active disks appeared to be an
idea whose time had come and gone. There has recently been renewed interest in intelligent
storage driven by the emergence of SSDs [15, 26, 37, 83, 147, 151]. Most of this work focuses
on file system and database workloads rather than multimedia processing.

66

Decode-enabled storage complements improvements in other layers of multimedia systems,
such as visual data encoding [85, 115, 139], hardware accelerators [5, 21, 27, 58, 62, 72, 79,
89, 163], computer vision algorithms [56, 59, 63, 119], and distributed data processing systems,
including some optimized for multimedia data [4, 41, 51, 112, 137, 165].

67

68

Chapter 6

Extending Eureka to Detect Temporal
Events in Video Data

In the previous chapters, we have focused on discovering objects from static images and have
treated video data as “a collection of image frames,” so that we can adapt techniques designed for
static images to videos. While this methodology suffices for a limited set of use cases, it does not
fully realize the value of video data. Consider the task of finding examples of the event “a person
getting out of a vehicle” (abbreviated get-out), one of the annotated events from the VIRAT
data set [109]. If we have hundreds of labeled video clips of this event, recent work on activity
recognition [47, 75, 148, 164] can be applied to train a DNN from those examples. How shall
we obtain this training data? Traditionally, these examples are found by human labelers (e.g.,
through crowd-sourcing) who spend many hours watching possibly boring street surveillance
feeds and annotate all “get-out” events they see. Clearly, this cannot scale out to millions of
cameras and to specialized domains. Can an expert do better?

By definition, an accurate “get-out” event detector does not exist yet. What an expert can
rely on is a discard-based search that hopefully prunes much of the irrelevant video segment. If
early-discard is effective, the expert will be able to find a modest number of the event instances
without plowing through all video record. What early-discard conditions should an expert use?

Notably, the early-discard condition is not only determined by an expert’s intuition, but also
constrained by visual information that can be reliably extracted using state-of-the-art computer
vision techniques. In this “get-out” example, the objects “person” and “vehicle” can be reliably
detected in images, but the minuscule gesture of opening a car door may not. Thus, one solution
is to filter the video frames by the presence of vehicles and persons in the scene. This makes
sense — a scene without a vehicle or a person cannot have the target event. Standard object
detection methods for image analysis (e.g., Faster R-CNN [119]) can be applied on individual
video frames with little change.

Alas, on an urban road, there are probably some persons and some vehicles at any point of
time, even though the “get-out” event is infrequent. Using the above early-discard approach, an
expert may still have to watch and label a significant portion of the video data, if not all of it. In
other words, improvement of productivity is marginal.

The key to this problem is to consider a temporal sequence of frames, instead of filtering
frames independently. Figure 6.1 shows a frame sequence of the “get-out” event from VIRAT.

69

Frame 254 Frame 336 Frame 456
(a) (b) (c)

Yellow box: vehicle;
Red box: the person getting out of the vehicle;
Blue box: person irrelevant to the event

Figure 6.1: Examples Frames of “Get-Out-of-Vehicle” Event in A VIRAT Video Clip

One can easily conclude that a person is getting out of a car by looking at the sequence. However,
it is not obvious by looking at each frame separately. Reasoning on a sequence of frames, an
expert may use the following heuristics: (a) a vehicle that is stopped at time t; (b) a person that
is not in the scene before time t; (c) the person referred to in (b) appears in the scene at time t,
from the vehicle referred to in (a).

How should an expert convey these heuristics to Eureka? How should Eureka convert these
conceptions into computable programs? These are the questions addressed in this chapter. We
assume individual objects involved in an event (e.g., person, vehicle, suitcase) can be reliably
detected on the frame level. We introduce an approach to modeling events in terms of inter-
object spatial-temporal relationships. We then describe how Eureka is extended to support and
execute these models efficiently.

6.1 A 4-Level Taxonomy of Video Analytics

To start, we first consider the challenge in the broader context of a large body of recent work on
the theme of video analytics systems. Since AlexNet’s victory in the 2012 ImageNet competition
— a task on analyzing static images, there has been growing interest in applying deep learning
to analyzing video data. Two questions follow naturally: “What can we do with video data?”
and “How should we do it?”

Figure 6.2 presents a 4-level taxonomy that can be used to classify current and future research
on video analytics systems. As the levels progress, it allows us to extract “deeper” knowledge
from video data. Each level poses unique challenges in terms of system design and algorithms

Level 0 (L0) represents the simplest and almost trivial way of handling video data. It treats
video as nothing but a bunch of independent static images. Standard image analytics tasks, such
as classification and object detection, can be applied to video data with little change.

Level 1 (L1) exploits certain attributes of video data in order to reduce processing cost and

70

Level 0

Video as a bag of independent images. No difference than a
bunch of static photos.

Level 1

Video as a sequence of similar frames. Exploit these
attributes to accelerate frame analysis.

Level 2

Video as a container of temporal events. Modeling events
across both time and space is indispensable.

Level 3
Multi-sensor multi-modality data fusion (multi-camera,
audio, thermometer, etc.)

Figure 6.2: A 4-Level Taxonomy for Classifying Video Analytics Systems

improve application-level utility. The majority of recent work falls in this category. Table 6.1 lists
some of the most important recently-published systems. Typically, L1 systems seek to reduce
two types of system costs when running video analytics workloads: (1) execution of compute-
intensive DNNs on scarce GPU device (e.g., [19, 77]); (2) transmission of frames from wireless
devices over scarce 4G/5G bandwidth (e.g., [154, 155]). They take advantage of the fact that
frames from a video stream are highly correlated in terms of background, scale, motion speed,
appearing objects, etc.; rather than being independent. Commonly used optimizations include:

• Sampling frames at a lower frame rate than the camera source to avoid analyzing every
raw frame.

• Reduce redundant computation via inexpensive motion/change detection, such as back-
ground subtraction, pixel-level delta, perceptual hashing.

• Training light-weight machine learning models that are effective only for the target camera
stream, but not in general settings.

Nonetheless, as can be seen in Table 6.1, L1 systems mostly focus on frame-based analysis.
Hence, they are able to answer questions such as “Are there more than 5 cars in this frame?”;
and simple aggregations based on those results, such as “What is the 95%-tile of car counts in all
frames?”

Level 2 (L2) represents a significant semantics leap from L1, as frame-based analysis alone
is insufficient for tasks at this level, as shown in Figure 6.1. L2 systems treat video as a spatial-
temporal container of events. Detecting and modeling events in both space and time is indis-
pensable. Because of the need to maintain temporal information, L2 analytics poses additional
challenges in terms of algorithmic design and system optimization. L2 analytics is the focus of
this chapter.

71

System from recent work Search targets considered
NoScope [81] Person, bus, car
BlazeIt [82] Bus, car, boat
Chameleon [78] Targets from the COCO data set [93]
Focus [65] Targets from the COCO data set
Mainstream [77] Pedestrian, bus, car, train
FilterForward [19] Pedestrian, pedestrian wearing red
Live drone video analytics [154] Person, car, raft, elephant
Wearable cognitive assistance [155] Lego blocks, ping-pong table, human face

Table 6.1: Search Targets in Recent Work of Video Analytics Systems

Activity recognition from the computer vision literature [47, 75, 148, 164] can be seen as
a form of L2 analytics. However, this body of work follows the standard supervised learning
approach which requires sufficient annotated training data. We give a more detailed account
of this related work in Section 6.7. Object tracking [157] is another heavily-studied problem
that falls in the L2 category. Tracking is a very specific task, though we will show that it is an
important building block in Eureka.

Finally, Level 3 (L3) video analytics involves fusion of multi-sensor multi-modality data.
This includes video data from multiple cameras, as well as other sensor types such as audio
sensors and thermometers. L3 analytics enables new tasks that cannot be accomplished with a
single video camera. Some researchers have started to consider this problem [73], but overall it
is still a nascent area.

In the above 4-level taxonomy, higher levels subsume lower levels. Tasks of a lower level can
be formulated as a degenerated case of a higher level. For example, L1 frame-based analysis can
be seen as finding one-frame L2 events (e.g., “object X appears in frame t”); L2 event analysis
in a video stream can be seen as n-camera fusion where n = 1.

6.2 Modeling Spatial-Temporal Events in Video
As discussed earlier, the collection-of-frames view is insufficient for modeling many events that
can be discovered from video data. In this section, we describe a programming abstraction that
is more suitable for modeling those events. In particular, we focus on modeling events that
can be described by coarse-grained inter-object spatial-temporal relationships. We assume the
individual objects participating in an event can be reliably detected on per-frame basis. This
approach complements computer vision methods that focus on low-level fine-grained features
(discussed in Section 6.7).

Our approach is based on the observation that complex events can be specified recursively in
terms of simpler events that conform to a set of relationships. For example, object detection on a
single frame can discover the following simple event:

“Presence of a person at position (x, y) in frame t”
Grouping all presence of the same person across consecutive frames — typically formulated

as a tracking problem — produces the person’s motion trajectory over time. This can be inter-

72

preted as the complex event:
“A person appears in the video at time-space sequence
(t, xt, yt), (t+ 1, xt+1, yt+1), . . . , (t+ n, xt+n, yt+n).”

On top of this, more complex events can be specified, for example, by comparing a person’s
trajectory with a vehicle’s position, which may calculate the following event:

“A person first appears from a vehicle located at (x, y) in frame t.”
In real-world video data, there are likely many persons and many vehicles in the scene, though

not every pair of them constitutes the above event. Finding the matches requires comparing them
under a set of constrains. These constrains may be not only on their time and space, but also
on their visual features. To the best of our knowledge, Eureka is the first system that integrates
operations on time-space information (typically considered as “metadata”) and operations on
visual content in a unified framework.

6.2.1 Spatial-Temporal Interval

We extend Eureka’s programming abstraction to explicitly represent the following of an object or
event: (a) its spatial position; (b) its temporal position; (c) its visual content, extracted features,
and other information. These are encapsulated in the spatial-temporal interval data structure
(“interval” in short):

c l a s s I n t e r v a l {
s t r u c t {

f l o a t x1 , x2 , y1 , y2 , t1 , t 2 ;
} bounds ;

KeyValue<S t r i n g , Anything> a t t r i b u t e s ;
} ;

Figure 6.3 shows how this interval abstraction unifies visual content of different granularities.
The bounds coordinates define an axis-aligned bounding box. By default, the x-y coordinates
are between 0 and 1, and are relative to the screen space. This allows for simple calculation of
spatial predicates (e.g., overlap) even if the visual content (pixel arrays) are down-sampled. The
temporal duration of a single frame is assumed to be the reciprocal of the the frame rate (FPS).

The attributes key-value dictionary is similar to the attributes described in Section 3.2
and supports values of any type. Most notably, a dictionary value can be:

• Raw pixels arrays representing the visual content within the interval’s bounds
• Feature vectors computed on the pixel content
• Meta-data extracted by computer vision algorithms (e.g., labels, confidence scores)
• Pointers to another Interval instance
• Nested structure of the above, for example, a list of Interval objects.
The Interval data structure can seen as the “container” of an event. Hence, the bounds

73

x

y

t

A video file

1/FPS

A single

frame

A cropped

frame

A video

segment

A cropped

video

segment

Figure 6.3: Spatial-Temporal Interval Unifies Different Granularities of Visual Content

should be tight and complete with regard to the attributes. In other words, the information
carried in the attributes, let it be RGB arrays or meta-data, must span the full extent of the
bounds, no less and no more. Manipulation of intervals should maintain this semantic invariant.
For example, making a crop of a frame requires: (1) shrinking the bounds to reflect the spatial
position of the crop; (2) changing the RGB array maintained in attributes.

Compared to the collection-of-frames abstraction, the use of intervals provides a finer-grained
notation of the space-time of objects/events. It also allows us to model events that cannot be mod-
eled on per frame basis. Besides, it fits with the “entry-points” of most computer vision primi-
tives. For example, most image classification and object detection algorithms take rectangular-
shaped images as input; activity recognition algorithms take sequences of temporally-consecutive
frames as input. Both of them are trivially represented by intervals. This unified representation
allows flexible composition of computer vision primitives even if they receive different forms of
data as input. For example, detecting the “get-out” event involves operators that work on dif-
ferent granularity of data: (1) object detection (e.g., by Faster R-CNN) that works on individual
frames; (2) object tracking (e.g., by optical flow) that works on a fixed-length sequence of W
frames; and (3) generating sliding window of W frames from an endless stream.

There exist more complicated and finer-grained abstractions from computer vision literature,
such as polygon mesh and point cloud. Although these abstractions can be more powerful, they
are less intuitive and more difficult to reason with for a domain expert who does not specialize in
computer vision. Nonetheless, Eureka does not preclude extensions to support those abstractions.
In fact, the interval abstraction provides a good basis for such extensions. Consider computing
whether two arbitrary polygons overlap, which is O(n) in computational complexity. If built on
top of the interval abstraction, it can be accelerated by first computing whether their respective
axis-aligned bounding boxes overlap, which takes only O(1) time.

74

Category Example Operators and Predicates
Generic map, reduce, filter, sort, join, flatten
Data transformation VideoToFrames, FramesToVideo, ImageCrop, VideoCrop
Spatial IoU (intersection over union), merge span, above, below
Temporal during, before, after, coalesce
Visual features RGB color histogram, perceptual hashing, SIFT key points,

image classification, object detection

Table 6.2: Example Operators and Predicates in Eureka

6.2.2 Interval Stream

An interval stream is a stream of intervals that are in ascending order of (t1, t2). Typically,
an interval stream is used to represent all instances of the same type of event (e.g., presence of a
vehicle), which are considered as the “candidates” used to compose a more complex event. The
choice of the stream abstraction, rather than the set abstraction (i.e., not necessarily ordered in
time), offers two benefits: (1) it maps naturally to live video feeds so that Eureka’s implemen-
tation can be applied to live cameras and archival video records without change; (2) it enables
optimization of the query engine and certain operators, which we will discuss later.

6.2.3 Operator on Interval Streams

Finally, Eureka enables the discovery of novel events through the use of operators. An operator
takes interval stream(s) as input and outputs interval stream(s). Since both the input and output
are interval streams, one can pipeline the output of an operator into the input of another and
therefore compose a complex query in the form of a directed acyclic graph (DAG) of operators.
An operator examines the spatial/temporal/visual information of its input “candidates” and emits
those satisfying certain constraints. A user specializes the behavior of operators by passing
in different parameters. Eureka offers a set of operators found in standard “big data” systems,
such as map, filter, reduce, flatten, sort, join. Of course, its power stems
from specializations of these generic operators that encompass a rich set of spatial, temporal,
and, visual predicates. Table 6.2 lists some commonly used operators and predicates. We will
elaborate these operators through more concrete examples in the rest of the chapter. The use of
DAGs, in principle, allows for open-ended composition that can detect very complicated events.

6.2.4 Example

Figure 6.4 illustrates the concepts of interval, interval stream, and operator in a simple example
that detects “a person riding a bike during red traffic light.” Here, each row represents an interval
stream where each colored cuboid represents an interval. Assume object detection on individual
video frames produces the atomic events “person instances” and “bike instances.” A Join
operator with the spatial overlap() predicate finds matching person-bike pairs that indicate
the event “bicyclist.” On top of that, joining these “bicyclist” events with the “red light” events

75

All detected person instances

All detected bike instances

Bicyclist = Join(
predicate=overlap()

)(person, bike)

Period of red light

Bicyclist_red_light = Join(
predicate=during()

)(bicyclist, red_light)

Figure 6.4: Example: “A Person Riding A Bike During Red Traffic Light”

76

x

y

t

Figure 6.5: Representing An Object’s Trajectory in Eureka

using the temporal during() predicate selects only those bicyclists who appear simultaneously
with a red traffic light.

6.3 Event Discovery Idioms
In this section, we introduce several event discovery “idioms” that we empirically find to be
useful in a wide range of use cases. These idioms embody certain ways of reasoning about
multiple events’ relationships, and more technically, recurring query (sub-)graph patterns. We
do so by walking through several concrete examples. Throughout these examples, we will also
introduce the most important operators in Eureka as well as several implementation details.

6.3.1 Representing and Computing Object Trajectories
One cornerstone of modeling temporal events in video data is to represent an object’s motion
trajectory across space and time. This takes more than object detection on individual frames —
we must maintain the identity of the object at different timestamps.

In Eureka, a trajectory is represented as a temporal list of intervals belonging to the same
entity, indicated by the blue cuboids in Figure 6.5. Here, each blue box represents the atomic
event “object entity X appears at time-space (t, x, y).” Bundling them together creates a higher-
level event, that is, the object’s trajectory. The trajectory, considered as an interval by itself, has
its bounds corresponding to the gray box in Figure 6.5. Essentially, the gray box “spans” all of
the blue boxes. The blue boxes, in turn, are stored under the attributes of the gray box.

The task of computing object trajectories has been traditionally considered as “tracking” in
computer vision. In particular, when there are multiple objects to track in the scene, it creates
challenges in terms of computation and ambiguity. In the following, we describe a Eureka query
to accomplish this task. Although there have been many specialized solutions to the problem
[160, 161], our approach has the advantage of simplicity. It is composed only of off-the-shelf
object detector and single-object trackers, and produces reasonable results in many simple cases.

Figure 6.6 shows the query graph of the query. This is a relatively simple linear DAG. Fig-
ure 6.7 shows its line-by-line Python code and visualization of intermediate results. Each line
uses an operator (name in blue font) to compute an output interval stream (LHS of =), which is
used as input to the next operator. On the right shows the output stream of each line, where every
colored cuboid represents an Interval object in the stream. The horizontal dimension is time.

Line 1 parses a local video file and emits intervals representing all frames. Note that the
RGB pixels of the frames, which can be accessed through the reserved attribute name rgb, are

77

Sample

Detection(“person”)

Track

VideoToFrames

Coalesce

DetectionFlatten

Figure 6.6: Query Graph: Finding Person Trajectory

not materialized at this point. Each interval simply has different (t1, t2) values and has a
pointer to a video decoder. The RGB pixels are materialized only when the attribute rgb is
accessed for the first time — in this case, Line 3. This late materialization strategy reduces
memory footprint to hold decoded data and avoids unnecessary decoding.

Line 2 samples the frames with a step size of 5. The input stream to the Sample operator is
the output stream from Line 1.

Line 3 runs DNN-based object detection on each (sampled) frame to detect persons. Here,
the operator Detection is a specialization of Map and treats each frame as an independent
image. RGB pixels are needed to run object detection, so the rgb attribute is materialized
during execution. The JSON-style detection result is stored as an attribute in the output intervals.
Typically, the result includes x-y coordinates and confidence scores of multiple detected instances
(black-edge hollow boxes).

Line 4 parses the JSON-style detection result extracted in Line 3, and emits smaller intervals
that tightly bound individual persons. Here, each input interval may generate multiple output
intervals. This is done by the operator DetectionFlatten, a specialization of Flatten.
Each output interval essentially represents a crop of a video frame. Likewise, the RGB pixels of
these crops are not materialized at this point. In total, the operator receives 4 inputs and emits 6
outputs.

Line 5 uses a cross-frame single-object tracking algorithm to track each input interval forward
in time. The tracking is done for up to five frames in the original video but may lose track earlier.
We use a small tracking window because most tracking algorithms tend to lose track over time,
and we want to re-initialize the trackers with object detection. The window size is tunable to trade
off between expensive object detection and accuracy. The Track operator generates a short
trajectory (black curved arrows). As mentioned, a trajectory is programmatically a temporal list
of (nested) intervals (not shown here). Again, these short trajectories are stored as an attribute in
each output interval.

Finally, Line 6 attempts to merge short trajectories found in Line 5 to form complete tra-

78

1
a
l
l
_
f
r
a
m
e
s
=
V
i
d
e
o
T
o
F
r
a
m
e
s
(
“
i
n
p
u
t
.
m
p
4
”
)
(
)

2
s
a
m
p
l
e
d
_
f
r
a
m
e
s
=
S
a
m
p
l
e
(
s
t
e
p
=
5
)
(
a
l
l
_
f
r
a
m
e
s
)

3
d
e
t
e
c
t
i
o
n
s
=
D
e
t
e
c
t
i
o
n
(

c
l
a
s
s
=
“
p
e
r
s
o
n
”
)
(
s
a
m
p
l
e
d
_
f
r
a
m
e
s
)

4
p
e
r
s
o
n
s
=
D
e
t
e
c
t
i
o
n
F
l
a
t
t
e
n
(
)
(
d
e
t
e
c
t
i
o
n
s
)

5
s
h
o
r
t
_
t
r
a
j
e
c
t
o
r
i
e
s
=
T
r
a
c
k
(

m
e
t
h
o
d
=
“
o
p
t
i
c
a
l
_
f
l
o
w
”
)
(
p
e
r
s
o
n
s
)

6
f
u
l
l
_
t
r
a
j
e
c
t
o
r
i
e
s
=
C
o
a
l
e
s
c
e
(

p
r
e
d
i
c
a
t
e
=
l
a
m
b
d
a

i
1
,

i
2
:
i
o
u
(

i
1
.
t
r
a
j
e
c
t
o
r
y
.
l
a
s
t
,
i
2
.
t
r
a
j
e
c
t
o
r
y
.
f
i
r
s
t
)
>
0
.
5
,

)
(
s
h
o
r
t
_
t
r
a
j
e
c
t
o
r
i
e
s
)

Figure 6.7: Step-by-step Visualization of the Person Trajectories Query

79

jectories of unique persons. We do so with the Coalesce operator, which tries to merge two
temporally-adjacent intervals into a larger one, if they satisfy a predicate. Eureka provides a li-
brary of auxiliary functions to interpolate, smooth, and compare trajectories, which can be passed
in as the predicate. For illustration purpose, Figure 6.7 includes the function definition of a rela-
tively simple predicate. Conceptually, this predicate tests whether the “end” of a short trajectory
is spatially overlapped with the “start” of another that immediately follows in time. A low IoU
means they are likely of two different persons and should not be merged. More sophisticated
predicates can be used in place of IoU, though, such as color histogram, perceptual hashing,
and deep feature extractors [161]. The output intervals, colored differently, ideally represent the
complete trajectories of three unique persons. The trajectory in green is not coalesced with any
other because it is not temporally adjacent to any, indicating a person who newly entered the
scene. Also note that the coalesced trajectories (red and blue) have bigger bounds than their
constituents in Line 5, following the principles that the bounds must be complete and tight.

6.3.2 Predicating on Trajectory Relationship
The notion of trajectory gives us a powerful tool to express intuition of temporal events. Consider
the “a person getting out of a vehicle” (get-out) event mentioned earlier. How shall we distinguish
the get-out event from the following events, when all of them involve persons and vehicles?

• A person getting into a vehicle
• A person walking past a vehicle from elsewhere
• A vehicle moving past a person from elsewhere
We propose the following heuristics:

“When a person first appears in the video, she appears from a vehicle.”
More technically:

“The first position of a person’s trajectory overlaps with a vehicle.”
We can see that, if this condition can be evaluated accurately, it can successfully resolve the

ambiguity mentioned above. A person that walks past a vehicle from elsewhere will likely have
her trajectory originated from elsewhere in the scene, not the vehicle. Obviously, this condition
cannot be evaluated on per-frame basis.

Figure 6.8(a) shows a straightforward translation of the above heuristics in a Eureka query.
This query DAG has a branch. The left branch detects vehicles in individual frames, while the
right branch constructs person trajectories using the same approach described in Figure 6.7. The
Join operator receives two interval streams as input and finds vehicle-person pairs that satisfy
our condition. The behavior of Join is controlled by passing in a join predicate:

lambda i v e h i c l e , i p e r s o n :
d u r i n g (i p e r s o n . t1 , i v e h i c l e) and
i o u (i p e r s o n . t r a j e c t o r y . f i r s t , i v e h i c l e) > 0 . 5

This tests whether a person trajectory originates from a vehicle — both spatially (via the IoU
condition) and temporally (via the during condition). The .trajectory.first attribute

80

Sample

Detection(“vehicle”) Detection(“person”)

Track

Join

VideoToFrames

Coalesce

DetectionFlatten DetectionFlatten

(a) Simple version

Sample

Detection(“vehicle”)

Detection(“person”)

Track

Join

VideoToFrames

Coalesce

DetectionFlatten

DetectionFlatten

(b) Improved version

Figure 6.8: Query Graph: Person Getting Out of Vehicle (Get-Out)

81

represents the location of that person’s first appearance. In other words, the person is not in the
scene before that point of time.

6.3.3 Content-based Hierarchical Detection

The query expressed in Figure 6.8(a) depends critically on accurate object detection on video
frames to detect persons and vehicles. Unfortunately, modern DNN-based object detection algo-
rithms (e.g., Faster R-CNN [119]) are well known to have difficulty detecting small-scale objects,
because they always resize input images to a fixed size (e.g., 600x800). For the “get-out” event,
we find that two factors exacerbate the issue. First, public surveillance cameras are often in-
stalled from a far distance and cover a large area, rendering each person relatively small in the
screen space. Second, intrinsic to the event, a person who is getting out of a vehicle is likely
occluded by the vehicle itself, making detection even harder. As a result, we observe that even
state-of-the-art object detectors often fail to detect the person involved in the get-out event, as
shown in Figure 6.8(a).

The traditional way to addressing this problem is to divide the screen into fixed-size tiles
(Figure 6.9(b)) and run object detection on each tile separately, so that the relative scale of the
objects become larger, which in turn increases the chance of successful detection. However, this
approach has three drawbacks: first, it increases cost of GPU-bound DNN-based object detection
linearly with the number of tiles; second, it does not account for scale variance – objects farther
from the camera may require more zoom-in than closer ones; lastly, it is non-trivial to handle
objects crossing tile boundaries.

Figure 6.9(c) shows a better approach called content-based hierarchical detection. We ob-
serve that vehicles are usually larger and less prone to the small object issue. Hence, we first
detect vehicles in the full frame. After that, we make a crop surrounding each detected vehicles
and run the DNN again on the crops to detect persons. Similar to tiling, this greatly increases
the relative scale of the persons in the second detection step and therefore increases the chance
of success. In contrast to tiling, the size of the crop adapts naturally to the size of the vehicles.
Besides, it avoids wasting DNN computation on frames where no vehicles are detected.

Figure 6.8(b) shows the query DAG that applies content-based hierarchical detection. Inter-
estingly, compared to Figure 6.8(a), Eureka’s programming abstraction makes it almost trivial
to implement the change — all it takes is to move one edge in the DAG (colored in blue), or
changing one line of Python code. The new query pipelines the individual vehicle patches com-
ing out from the vehicle detector, instead of the full frames, into the person detector. Because
Interval unifies the representation of both full frames and image patches, no change of the
operators is needed.

Note that the query in Figure 6.8(b) also ignores persons that are not nearby a vehicle. Thus,
the applicability of this optimization is specific to the search target. Without a priori knowledge
of the the task, the system cannot apply this idiom during its pre-processing/indexing stage. This
highlights the importance of the human-in-the-loop nature of Eureka.

82

(a) Small-object issue: the pointed person

is not detected by Faster R-CNN

(b) Tiling increases input resolution to DNNs

about also increases computation cost linearly

(c) Content-based hierarchical detection

Figure 6.9: Detecting Small Objects in Large-view Cameras

83

Join(overlap())

(a) Detect bicyclist by construction

Detect

bike

Guess

person ? Crop
Classify(“person”)

Verify

(b) Detect bicyclist by guess-and-verify

Figure 6.10: Alternative Approaches to Detecting Bicyclist

6.3.4 Guess and Verify

So far, we have described several examples where we detect events by construction. That is, we
start by detecting individual objects that involve in an event, and then we examine whether they
relate to each other in a certain manner. Figure 6.10(a) visualizes this approach for detecting
bicyclist: we first try to detect the bike and the person in the frame, respectively; we then check
whether whether they overlap with each other.

Figure 6.10(b) shows an alternative guess-and-verify approach for the same task. In the
beginning, we only try to detect the bike. Using the bike’s position as an anchor, we guess the
position of a person (orange box). This guess is based on our real-life knowledge: if this frame
includes a bicyclist, the rider will probably be found on top of the bike. Finally, we crop our
guessed area and verify whether there is a person in it. Again, without a large amount of training
data to learn from, an expert’s knowledge is the only source of the guessing heuristics.

Compared to Figure 6.10(a), this guess-and-verify approach has three advantages. First,
we may use image classification instead of object detection in the verify step. As a result, it
only incurs 1 detection call + 1 classification call per frame, rather than 2 detection calls. This
greatly reduces computation cost as classification methods generally execute an order of mag-
nitude faster than detection. Second, the verify step only needs to focus on a small region of
interest rather than the whole frame, making it less prone to clutter in the background. Third, in
case we do not have access to an effective person detector but just a person classifier, this is the
only method that enables us to detect bicyclist.

84

def g u e s s (i a n c h o r : I n t e r v a l) −> I n t e r v a l :
cus tom l o g i c t o g u e s s t a r g e t ’ s l o c a t i o n
based on anchor ’ s l o c a t i o n and v i s u a l i n f o r m a t i o n
. . .

def v e r i f y (i t a r g e t : I n t e r v a l) −> bool :
cus tom l o g i c t o v e r i f y t a r g e t , r e t u r n s True or F a l s e
. . .

def p o s t p r o c e s s (
i a n c h o r : I n t e r v a l , i t a r g e t : I n t e r v a l) −> I n t e r v a l :
cus tom l o g i c t o p o s t p r o c e s s a match ing p a i r
. . .

a n c h o r s = D e t e c t i o n F l a t t e n (a n c h o r l a b e l) (input)
g u e s s e d t a r g e t s = Map(map fn= g u e s s) (a n c h o r s)
v e r i f i e d t a r g e t s = F i l t e r (f i l t e r f n = v e r i f y) (g u e s s e d t a r g e t s)
f i n a l r e s u l t s = J o i n (merge fn = p o s t p r o c e s s) (

anchor s , v e r i f i e d t a r g e t s)

Figure 6.11: Eureka Query Template of the “Guess-and-Verify” Idiom

In general, implementing the “guess-and-verify” idiom in Eureka is simple, using the the
query template given in Figure 6.11. The expert only needs to provide the task-specific guess,
verify functions and optionally the postprocess function.

6.4 Implementation and Optimization for Video Data

Eureka features the separation of expression and execution. A domain expert expresses what
to compute in a succinct, declarative programming abstraction (Figure 6.7); the Eureka system
takes care of how to compute it efficiently. Efficiency is the key here, due to the high bit rate
of visual data and the compute- and memory-intensive nature of computer vision algorithms.
On receiving a query, Eureka compiles it into a physical execution plan that optimally utilizes
multi-core CPUs, main memory, GPUs, and parallel cloudlets.

On the high level, Eureka exploits distributed cloudlets and data sources to increase result de-
livery rate, as already described in previous chapters. In this section, we focus on implementation
and optimization that is specialized for video processing. Many of these optimizations are har-
nessed through the use of special attribute names, for which Eureka provides special treatments
and auxiliary libraries. Table 6.3 summarizes these reserved attributes.

85

Attr name Type & Format Semantics & Eureka Support
parent Ref<Interval> The upper-level interval from which the current

interval is (temporally-spatially) cropped.
rgb RGBArray The decoded RGB data that is “tight and com-

plete” with regard to the bounds. Together with
parent enables late materialization.

detection JSON Labels, coordinates, and scores of multiple de-
tected objects. Eureka provides operators for
futher manipulation of these results (Table 6.4).

trajectory List<Interval>
(temporally ordered)

Eureka provides auxiliary functions and oper-
ators to interpolate, smooth, manipulate, and
compare trajectories.

v decoder LRUVideoDecoder Thread-safe wrapper of a video decoder and a
LRU frame cache.

Table 6.3: Reserved Attribute Names with Specialized Optimization and Support

Detection (string model name)

A specialization of Map that runs an object detection model on every frame
and stores the JSON-formatted result under the .detection attribute.
The JSON result contains bounding boxes, object classes, and scores of
multiple detected objects.
DetectionFilter (string class name, float score)

A specialization of Filter. It parses the .detection attribute of input,
typically generated by the Detection operator, and only passes on frames
with certain object classes detected.
DetectionFlatten (string class name, float score)

A specialization of both Filter and Flatten. Similar to
DetectionFilter, it filters inputs by object classes. Moreover, it emits
tight crops around the bounding boxes as individual outputs. Thus this is a
1-to-N operator.

Table 6.4: Operators Related to Object Detection

86

6.4.1 Maintaining the Stream Invariant
The interval stream model in Eureka maps natively to live video processing, as discovered events
arrive in temporal order and may never end. Moreover, maintaining the stream assumption
throughout the system allows for optimized implementation of certain operators.

For example, the Join operator, in theory, may produce the Cartesian product of its inputs in
the worst case. Nonetheless, we observe that the more constrained WindowedJoin operator is
sufficient in most use cases, as one typically wants to relate an event to other events that happen
in proximate time. The WindowedJoin operator only considers input pairs that are within a
small temporal window of each other. As Algorithm 1 shows, the stream assumption of the join
inputs allows an efficient implementation that only needs to maintain a small input buffer, and
releases obsolete buffered inputs as soon as new ones run out of their window.

Algorithm 1: Windowed Join of Two Interval Streams
Input: IntervalStream leftIn, IntervalStream rightIn
Input: int window, function predicateFn, function mergeFn
leftBuffer ← List();
rightBuffer ← List();
while True do

// Get a new input from the left upstream
iL← leftIn.getNext();
for iR in rightRuffer do

if iR.t2 < iL.t1− window then
Remove iR from rightBuffer ;

else if iR.t1 < iL.t2 + window then
if predicateFn(iL, iR) = True then

Output(mergeFn(iL, iR));

leftBuffer.append(iL);
// Get a new input from the right upstream
iR = rightIn.getNext();
... // Mirror operations above

6.4.2 Exploiting Parallelism
Under the collection-of-frames model, it is straightforward to exploit inter-frame parallelism
in processing video data, as the frames are treated just as independent image files. However,
exploiting such parallelism is a challenge when we must account for the sequential dependency
between the frames. Instead, Eureka uses following three levels of parallelism on a cloudlet.

Eureka exploits inter-file/inter-stream parallelism, by creating separate instances of the user
query for each input file or live stream, and executes them in parallel. Nonetheless, a high degree
of inter-stream parallelism may not be available, for example, when only a single camera is

87

attached to a cloudlet. On the other hand, it may not be desirable, because a complicated query
requires a lot of DRAM to run. In those cases, the other forms of parallelism are used.

Eureka exploits inter-operator parallelism within a query. This is done by running each
operator in its own thread. Take Figure 6.8(a) as an example. Eureka creates a thread for each
node (box) and a thread-safe queue for each edge in the query graph. In other words, it adopts the
producer-consumer execution model. The operator threads run in parallel, possibly overlapping
CPU-bound, GPU-bound, and memory-bound processing. Temporally-ordered interval streams
flow through the queues. Queue sizes are bounded and queue pressure throttles the pace of
individual operators. This implementation offers a large degree of parallelism to utilize many-
core CPUs, while preventing the in-memory states from growing indefinitely.

Finally, Eureka exploits intra-operator parallelism offered by two major sources: (1) multi-
threaded implementation of computer visions algorithms (e.g., those offered by OpenCV and
OpenBLAS); (2) data-parallel versions of generic operators (e.g., Map → ParallelMap,
Filter → ParallelFilter). These data-parallel operators typically use a thread pool
to process multiple inputs simultaneously. In the specific context here, it can seen as a form of
inter-interval parallelism.

6.4.3 Provenance and Late Materialization
Eureka queries often involves deriving visual data from the input, e.g., by (spatial-temporal)
cropping. Such derivation may be recursive, e.g., by making crops inside a crop. Eureka tracks
provenance of such derivations via a reserved attribute name parent. It allows an operator to
access the upper-level element from which the crop is created, much like the “..” (double-dot)
directory in Linux file system.

Tracking provenance enables late materialization of decoded visual data. When an operator
makes a crop of a frame, the crop is logical — a new Interval object is created with new
(reduced) bounds and its parent pointing to the source. The RGB array is not materialized
immediately. Instead, the reserved attribute name rgb is replaced by a callback function that
performs the actual cropping using its source’s RGB data. The source itself may not have been
materialized, either. In that case, callback and cropping is perform recursively towards upper-
level data.

6.4.4 Video Decoder and LRU Frame Cache
During the execution of a query, many operators require decoding video frames from a file. Be-
cause of the high frame rate and high compression ratio of video, decoding and staging all frames
in the DRAM is infeasible. Neither is pre-decoding them on disk, as discussed in Chapter 5. The
only feasible path is to read compressed files from the disk, decode specific frames on demand,
and release the memory as soon as they are no longer needed.

With this approach, there are still several concerns. First, the runtime cost of video decoding
is high. Second, for a large query graph, it requires a lot of DRAM to hold “on-the-fly” decoded
frames that awaits to be processed by downstream operators. Third, video decoders are stateful
and have tape-like performance: decoding forward in time is efficient, while winding-back or
random seek is costly.

88

Sample(step=10)

Filter Track

Detection

Join

100

140
110

120150160170

170

130

160

Dropped:100, 110, 120, 150

Decode head=140

140

Unmaterialized Frame Materialized Frame Frame being materialized

LRU cache: 130 140

130

Figure 6.12: LRU Frame Cache Reduces Redundant Decoding and “Decoder Seeks”

We address these issues by sharing a single video decoder between multiple operators. Fur-
thermore, we introduce an LRU frame cache. Figure 6.12 visualizes a snapshot of the system
state during the execution of a simple query. The Track operator and the Detection operator
are trying to decode frame 130 and 160, respectively, while the decode head is at frame 140.
Without the frame cache, an expensive “wind-back” is necessary and frame 130 needs to be de-
coded again. With the frame cache, cached frame 130 can be returned to Detection without
moving the decode head. Ditto for the subsequent frame 140. The frame cache not only reduces
redundant decoding of the same frame, but also reduces DRAM used by “on-the-fly” intervals
by passing cached frames by reference, instead of by value.

The above optimization is encapsulated in a class LRUVideoDecoder. An “unmaterial-
ized” interval has its v decoder attribute pointing to an LRUVideoDecoder, and its (t1,
t2) indicating its time in the video. Again, the rgb attribute in this case is a callback function
that materializes the frame’s RGB data on demand.

6.5 Evaluation

6.5.1 Metrics
Before presenting our evaluation results, we first introduce the evaluation metrics. We focus on
event discovery from open-ended video. We consider the following scenario: the system being
evaluated, regardless which method is used, processes the raw video data and returns a variable
number of video segments, each of variable length; a domain expert goes through these video
segments and labels all event instances found in them. As a result, the expert’s labeling effort is
measured by the total time length of the returned video segments (= number of frames / frame
rate). Essentially, this measures the time (hours) to play back all video segments at 1.0x speed

89

Data set Size Description
VIRAT [109] 8.6 hours, 329 files Captured from real-life public surveillance cameras

at parking lots, school campus, streets, etc.
Okutama [13] 0.55 hours, 33 files Captured from drones. Aerial view of actors per-

forming scripted scenes in a playground.

Table 6.5: Data Set Used in Evaluation

and watch them. Furthermore, as we focus on detecting temporal events, we should count the
number of event instances, rather than the number of video frames. Some instances may last
for longer duration, but do not necessarily offer more value from the perspective of discovering
events. This is significantly different from classification of static images. It is also different
from video classification in data sets such as HMDB51 [88] and UCF101 [138]. In those data
sets, video clips are universally trimmed to 2–3 seconds and a label is assigned to the whole
clip. In that case, an expert’s labeling effort can be simply counted by the number of video clips.
By contrast, in our setting, a clip’s length may range between seconds to minutes, demanding
different amount of expert attention.

Our most important metrics is an expert’s productivity:

Productivity [#/hr] =
Event instances discovered
Total length of returned video

The above definition of productivity makes two simplifying assumptions. First, we assume
system performance is not the bottleneck, so that we can focus on evaluating the expressive power
of our approach. Second, we ignore confounding factors that may affect an expert’s labeling time
in a more realistic setting. For example, certain events may require an expert to wind back and
re-watch the video in order to confirm her opinion. This is more likely to happen when the target
event has subtle details or the camera scene is crowded. An expert may also choose to play
back video clips at faster or slower speed, while still being able to correctly label events. In this
chapter, we ignore such task-dependent and content-dependent complications and assume that
labeling time is a flat rate in terms of total video length in its recording speed.

In case the ground truth (i.e., all event instances in the raw data) is available, it also allows us
to calculate the event recall:

Event recall [%] =
Event instances discovered

Ground Truth Event instances
Note that the canonical concept of precision is ill-defined here. Imagine the system returns a

1-minute “negative” clip and a 1-hour “negative clip, ” both of which do not include any event. It
would be unfair to simply count them as “2 negative examples.” The different amount of time it
takes an expert to label them needs to be accounted. Our productivity metric serves this purpose.

6.5.2 Data Sets and Tasks
We evaluate using the VIRAT [109] and Okutama [13] video data sets. Table 6.5 summarizes
their characteristics. They are two of the very few public data sets that can be considered as open-

90

Data set Event Frame-based Event-based
(abbreviation) early-discard heuristics early-discard heuristics

VIRAT Person getting out
of a vehicle (get-
out)

Presence of person and
vehicle

A person’s trajectory emerges
from a stopped vehicle

VIRAT Person getting
into a vehicle
(get-in)

Presence of person and
vehicle

A person’s trajectory disap-
pears into a stopped vehicle

VIRAT Person loading or
unloading objects
into/from a vehi-
cle (loading)

Presence of person and
vehicle

A person stays still next to a
vehicle for > 2 seconds

VIRAT Person carrying
bag (carry-bag)

Presence of person A person attached to a bag for
> 2 seconds.

Okutama Person pushing
or pulling object
(pushing)

Presence of person and
non-person object

A person attached to a non-
person object and move with
it for > 2 seconds

Okutama Person shaking
hands (hand-
shake)

Presence of≥ 2 persons Two persons’ trajectories
“meet” for > 2 seconds

Table 6.6: Search Targets and Conditions in Evaluation

ended and have annotated multi-object events. That is, unlike HMDB51 [88] and UCF101 [138],
video files in these data sets are not trimmed to singleton actions. Instead, multiple actions
can be happening simultaneously in a scene, while there are also “boring” non-event periods
in the long video streams. We choose 6 person-object and person-person events as our search
targets, for which the data sets provide ground truth annotations. Table 6.6 lists these targets,
as well as the frame-based early-discard heuristics (as discussed in previous chapters) and the
event-based early-discard heuristics (as discussed in this chapter) used to search for the targets.
These heuristics conditions, such as the choice of constants like 2 seconds, are based on human
intuition about these actions in real life. Figure 6.13 shows example frame sequences of each
event discovered in our evaluation.

6.5.3 Result

Using the 6 search tasks from Table 6.6, we evaluate the effectiveness of the following labeling
methods:

• Brute force: An expert goes through all video data and labels all event instances in it,
without the use of early discard. This result is calculated based on ground truth (GT)
annotations — after all, that is how the GT was created in the first place. By definition, the
expert will discover all events, effectively achieving 100% event recall. However, it comes
at the cost of plowing through hours of video data.

91

(a) VIRAT Get-Out Example

(b) VIRAT Get-In Example

(c) VIRAT Loading Example

(d) VIRAT Carry-Bag Example

(e) Okutama Pushing Example

(f) Okutama Handshake Example

Figure 6.13: Event Examples Discovered in Our Evaluation

92

0.00

1.00

2.00

3.00

4.00

5.00

get-out get-in loading carry-bag pushing handshake

Frame-based Event-based

Figure 6.14: Productivity Improvement Factor over Brute-force Labeling

• Eureka (frame-based): The expert uses a frame-based early-discard approach to filter video
frames independently. Consecutive undiscarded frames are encoded back to video clips
and returned to the expert. The frame-based early-discard conditions used are given in
Table 6.6 column 3.

• Eureka (event-based): The expert uses an event-based early-discard approach as described
in this chapter. The final output spatial-temporal intervals are materialized as video files
and returned to the expert. The event-based early-discard conditions used are given in
Table 6.6 column 4.

Figure 6.14 summarizes the improvement factors over brute force labeling of the two early-
discard approaches. Tables 6.7–6.12 report the details of each task. Note that the “Productivity”
column of the “Brute force” row in these tables may also be re-interpreted as the “base rate” of
an event — it measures how many event instances can be found per hour of raw data. We see
that our search targets have a diverse range of base rate of 9 – 242 instances per hour.

The VIRAT data set includes long surveillance recordings from real-life scenes. Therefore,
there are often “boring” periods when the objects involved in an event are not present in a frame,
for example, when nobody is in a parking lot. As a result, frame-based early-discard based on
presence of these objects is able to improve productivity modestly (≤1.8x, Figure 6.14) by drop-
ping those non-event frames. Nonetheless, as discussed in the beginning of this chapter, those
frame-based heuristics tend to be under-specifying. For example, a pedestrian walking by a ve-
hicle may be returned under the frame-based approach for the get-out event. The event-based
approach, by contrast, is more descriptive and is able to eliminate those candidates, resulting in
up to 5.0x productivity improvement. In either case, imperfection of DNN-based object detec-
tion, especially false negatives (i.e., failure to detect an object in a scene), causes the system to
miss events, therefore reducing their event recall. The tradeoff, however, is effective in terms of
improving an expert’s productivity of discovering event instances.

93

Labeling effort Discovered events Event recall Productivity
[hr] [#] [#/GT] [#/hr]

Brute force 8.60 97 100% 11
Eureka (frame-based) 3.86 76 78% 20
Eureka (event-based) 1.05 59 61% 56

Ground truth events (GT) = 97; Base rate = 11/hr

Table 6.7: Event Discovery VIRAT: Person Getting Out of Vehicle (get-out)

Labeling effort Discovered events Event recall Productivity
[hr] [#] [#/GT] [#/hr]

Brute force 8.60 111 100% 13
Eureka (frame-based) 3.86 77 69% 20
Eureka (event-based) 1.06 55 50% 52

Ground truth events (GT) = 111; Base rate = 13/hr

Table 6.8: Event Discovery VIRAT: Person Getting into Vehicle (get-in)

For the get-out and get-in events, the event-based predicates are based on the start/end point of
a person’s trajectory. These require object tracking. Because tracking is not perfect, it causes an
additional 17% (get-out, Table 6.7) and 19% (get-in, Table 6.8) drop of event recall, compared to
frame-based. Interestingly, we observe that some of those missed instances are discovered by the
frame-based approach, because a person irrelevant to the event appears in the scene at the same
time. Nonetheless, event-based is effective in most cases and thus is more than 2x productive
than frame-based.

For the loading event, the object being loaded/unloaded is often occluded by the person or
the vehicle. Therefore, we exclude it from our predicate. Likewise, for the carry-bag event, the
bag being carried is often so small that it cannot be detected on the frame level without using the
“content-based hierarchical detection” idiom introduced in Section 6.3. Therefore, with frame-
based early-discard, we only predicate on the presence of persons. Unsurprisingly, this leads to
its high event recall but low productivity (Table 6.10).

The last two tasks on the Okutama data set (pushing and handshake) is more difficult than
VIRAT for two reasons. First, because the content of the videos is performed by actors according
to a script, there are much less “boring” moment than in real-life video. In other words, there
are almost always some actions happening in the video. This can be seen from the Okutama
events’ relatively high “base rate” (Table 6.11 242/hour for pushing; Table 6.12 128/hour for
handshake). Second, the videos are captured from a drone that flies at an altitude and performs
abrupt turnings. The aerial view of objects and the rapid camera motion makes them very difficult
to detect and track even with state-of-the-art algorithms (Figure 6.13(e) and (f)). With frame-
based early-discard, the false negatives issue offsets the benefit gained from effective pruning
of non-event frames, resulting in little productivity improvement — in fact, it hurts productivity
slightly. Nonetheless, the event-based approach is able to achieve 1.6x improvement for the
pushing event, despite suffering from the same issues.

The results above are measured by writing Eureka queries that embody the heuristics shown

94

in Table 6.6. These queries are deterministic and thus the results can be seen as the effect
achieved by one expert. For broader evaluation in the future, it would be valuable to let mul-
tiple experts perform the same search task and possibly describe the same event in different
ways. This will allow us to gauge Eureka’s applicability and benefit at a larger scale.

Labeling effort Discovered events Event recall Productivity
[hr] [#] [#/GT] [#/hr]

Brute force 8.60 80 100% 9
Eureka (frame-based) 3.86 37 46% 10
Eureka (event-based) 0.76 33 41% 43

Ground truth events (GT) = 80; Base rate = 9/hr

Table 6.9: Event Discovery VIRAT: Person Loading/Unloading Object to/from Vehicle (loading)

Labeling effort Discovered events Event recall Productivity
[hr] [#] [#/GT] [#/hr]

Brute force 5.80 822 100% 141
Eureka (frame-based) 4.08 809 98% 198

Eureka (interval-based) 0.97 556 68% 573
Ground truth events (GT) = 822; Base rate = 141/hr

Table 6.10: Event Discovery VIRAT: Person Carrying Bag (carry-bag)

Labeling effort Discovered events Event recall Productivity
[hr] [#] [#/GT] [#/hr]

Brute force 0.55 134 100% 242
Eureka (frame-based) 0.43 100 75% 234
Eureka (event-based) 0.20 77 57% 395

Ground truth events (GT) = 134; Base rate = 242/hr

Table 6.11: Event Discovery in Okutama: Person Pushing An Object (pushing)

Labeling effort Discovered events Event recall Productivity
[hr] [#] [#/GT] [#/hr]

Brute force 0.55 71 100% 128
Eureka (frame-based) 0.39 48 68% 124
Eureka (event-based) 0.37 48 68% 130

Ground truth events (GT) = 71; Base rate = 128/hr

Table 6.12: Event Discovery in Okutama: Person Shaking Hands (handshake)

95

6.6 Discussion
In the earlier chapters, we described Eureka’s discard-based methodology that lets a domain ex-
pert discover rare objects based on human knowledge. In this chapter, we extended that approach
to discovering events from video data. The primary goal of Eureka is to let a domain expert ef-
fectively express her knowledge of an event and let the system compute the heuristics efficiently.
With event discovery, the challenge is to support the expression of temporal-spatial constraints
of events. Our interval-based abstraction provides a tool for an expert to convert an intuitive idea
in mind into a computable program

In all examples above, the lowest-level events are location of an object in a single frame.
The term “object” here refers to entities such as persons, vehicles, suitcases, chairs, dogs. The
methods introduced in this chapter are suitable for describing events in terms of coarse-grained
inter-object relationship. The relationship can be spatial (“is A located to the left of B?”), tem-
poral (“did A happen before B?”), or visual (“how many SIFT key points of A match with B?”).
Such relationships can be specified recursively and hierarchically. Nonetheless, there are some
limitations to this approach.

Eureka 6= Activity Recognition. Certain events are defined by intra-object states rather
than inter-object relationships, for example, whether person is clapping or waving her hands.
An object detector can only output the location of the person without knowing her gesture. Fur-
thermore, some inter-object relationships are difficult to compute. Consider the “get-out” query
described in Figure 6.8. This search predicate, in fact, does not distinguish between “person get-
ting out of a vehicle from driver seat” (get-out) and “person crawling out from under a vehicle”
(crawl-out), because both satisfy the condition that a person’s trajectory “emerges” from a vehi-
cle. Making this subtle distinction requires examining finer-grained intra-object features. Those
kinds of tasks are more suitable to be solved by standard activity recognition methods which
learn sophisticated mathematical functions from large amount of training examples. Eureka is
not intended to replace those methods. Instead, Eureka’s goal is to accelerate the process of find-
ing those training examples. Although the query in Figure 6.8 does not differentiate get-out from
crawl-out, it is able to significantly improve an expert’s productivity in finding get-out examples
in hours long video data.

Eureka 6= Deep Learning System. Eureka’s implementation (Section 6.4) is a form of
data flow graph where each node represents a unit of computation and each edge represents a
producer-consumer data flow. This model is widely adopted by deep learning systems such as
TensorFlow [2]. However, those systems mainly focus on mathematical operations on numeric
matrices and do not have explicit notions of event, time, space, etc. By contrast, Eureka must
deal with hybrid forms of data, including JSON-style metadata, RGB arrays, and feature vectors.
On the other hand, deep learning systems usually provide important functions for learning, such
as automatic differentiation and back-propagation, which are beyond the scope of Eureka.

Eureka→ Declarative Video Query Language. This chapter represents an important step
towards the vision of a declarative video query language. With this vision, a user can express
a search target via (nearly) natural language (e.g., “a person on top of a bike”), rather than
writing low-level, imperative code that computes over pixel values. Eureka advances state-of-
the-art by encapsulating low-level computer vision code into operators and providing relational
operators on time, space, and features. This makes it possible to analyze video data without

96

taking a PhD in computer vision. Nonetheless, the domain expert still needs to have some basic
understanding of computer vision in order to use Eureka effectively. One such example is to
figure out the content-based hierarchical detection improvement presented in Section 6.3.3, by
knowing the small-object issue faced by DNN-based object detectors. Moving forward, it will
be highly valuable if the system can employ this optimization without user guidance. However,
it is a research challenge to automatically detect and materialize such opportunities, given the
stochastic and content-dependent nature of computer vision algorithms. We leave this exciting
direction to future work.

6.7 Related Work
Edge-based Video Analytics Systems

There is growing interest recently in building edge-based video analytics systems [19, 65, 77,
78, 81, 82, 154, 155]. This interest is driven by deep learning’s success in image analysis and
increasingly pervasive deployment of video cameras in the forms of surveillance, autonomous
cars, drones, smart phones, and wearable devices. These two converging factors enable valuable
applications such as wearable cognitive assistance and urban traffic analysis. DNNs are accurate,
but demand a lot of compute resources to run. It is particularly challenging to execute DNNs at
full frame rate in edge computing environments such as drones, smart glasses, and multi-tenant
edge nodes. Other resources, such as 4G/5G wireless bandwidth, may also limit the transmission
of frames for DNN inference on a cloudlet.

As elaborated in Section 6.1, this body of work focuses on exploiting certain aspects of
video data to reduce frame-based analytics cost, and thus can be classified as L1 in our 4-level
taxonomy (Figure 6.2). Modeling events across the frame boundary has not been studied in this
context.

Spatial Databases

Spatial databases are a class of database systems that specialize in managing and processing
spatial data and spatial relationships [50]. Traditionally, it mainly refers to geographical data ob-
tained from GPS sensors. Obtaining this data is considered to be reliable and inexpensive. Thus,
the main focus has been developing algorithms to efficiently compute certain spatial relation-
ships, such as detecting “stay points” and “flock” patterns. Zheng [166] gives a comprehensive
survey of related work in the context of trajectory data mining.

Eureka focuses on information extracted from analyzing image and video. In this setting,
“spatial” refers to the screen space rather than geo-location in the physical world. Closest to
our work is the Rekall system [46], which describes a set of spatial and temporal operators
that extend from Allen’s interval operations [7]. However, Rekall only deals with operations
on spatial-temporal “metadata” that is extracted outside the system. The extraction of this data
relies on compute-intensive deep learning methods, which consumes most of the compute time
in the whole process. Besides, the separation of space-time processing and content processing
makes it impossible to implement all of the idioms we introduce in Section 6.3. To the best of
our knowledge, Eureka is the first system to integrate both in a unified framework.

97

Activity Recognition

In computer vision, activity recognition is one of the most considered problems where examining
a sequence of video frames is indispensable. Indeed, it can be classified as L2 analytics according
to our 4-level taxonomy (Section 6.1).

Some prior work shares our idea of using object detection on individual frames as a pre-
liminary step. Zhu et al [167] use techniques pre-dating deep learning to detect persons and
vehicles (e.g., part based models [42]) in VIRAT; and then extract histogram of oriented gradi-
ents (HOG) and histogram of optical flow (HOF) features from the relevant regions, which are
later used to learn a classifier. Gleason et al [48] follow a similar methodology but with more
advanced building blocks. They use Faster R-CNN to detect objects of interest in frames. Based
the detections, they generate multiple spatial-temporal region proposals which are then classi-
fied using a DNN. Another body for work called skeleton-based activity recognition focuses on
learning classifiers on top of positions of human body joints [164]. These joint positions may
be annotated or computed by human pose estimation algorithms such as OpenPose [20]. This
class of methods are suitable for distinguishing actions that are solely dependent on a person’s
posture, such as sitting versus standing. However, it may ignore useful contextual information
for predicting an activity, for example, the presence of a basketball for “basketball dunk.” More
recently, there is growing interest in creating DNNs that can be trained end-to-end directly from
RGB pixel data [47, 75, 148] without an intermediate step of object detection or human pose
estimation. These methods can learn human and non-human information from the scene, but
may suffer from noise and clutter in the background.

Nevertheless, all the above solutions are considered in the standard setting of supervised
learning. Typically, a model needs to be trained on at least tens to hundreds of example clips
of the actions. Creating labeled data sets of activities is extremely expensive, given the large
(almost infinite) vocabulary of objects and interactions between them. For example, it took the
VIRAT data set’s authors [109] at least four years to annotate the data and the authors had to seek
additional funding in order to complete the project. Eureka can be seen as a tool to accelerate
this process of curating training data for activity recognition.

In addition to the requirement of training data, Eureka is complementary to activity recogni-
tion in two aspects. First, Eureka focuses on events defined by coarse-grained inter-object re-
lationships, while activity recognition focuses on activities defined by fine-grained intra-object
features. For example, determining whether a person is clapping or waving hands requires ex-
amining her fine-grained limbs configuration. Second, some activity recognition solutions only
work on video that is trimmed both to space and to time of the actions. In popular data sets such
as HMDB51 [88] and UCF101 [138], all video clips are trimmed to 2–3 seconds long and there
is only one person performing one activity in a clip. When applying those methods to open-
ended video such as VIRAT, one first needs to find out when and where to look. Eureka can be
used to bridge this gap: it finds the space-time span of probable events based on coarse-grained
analysis, makes the 2-second single-person crops, and then passes those cropped segments to the
aforementioned activity recognition algorithms.

98

Part-based Models

The idea of specifying an object detector as a set of geometric relationships between parts dates
back to Fischler and Elschlager’s pictorial structures [43], with the deformable part models
(DPM) [42] being a more modern realization. It can be seen as a top-down approach where
the parts are detected by geometric templates. This methodology was later muted by the out-
standing performance achieved by deep learning that learns visual features bottom-up. In a way,
Eureka can be seen as a system that nicely combines top-down relationships and bottom-up
learned DNNs to detect the parts. Besides, part-based models only focus on detecting objects,
not events in video.

Zero-shot Learning and Compositional Models

Eureka lets an expert discover events that do not have large-scale training sets. In computer
vision, this is typically considered as the problem of zero-shot learning (ZSL). Here is a classic
ZSL problem: given that there is no example of “black swan” in the training set, can we build a
model that is able to detect black swans in new data?

An important class of ZSL methods to address this problem is compositional model [90, 96,
103]. Composition models treat the novel target “black swan” as a composition of two atomic
attributes — “black” and “swan.” They further assume that those attributes exist in the training
data, separately. For example, there are training examples of “black sheep” and “white swan.”
Then, compositional models are able to learn from the training data: (1) to distill classifiers of
the atomic attributes; (2) to compose these attributes into a compound target organically. In
other words, although the training set might only have “black sheep” and “white swan,” the
compositional model is able to detect “black swan.”

In a similar way, a novel target “monkey riding horse” may be seen as a composition of three
attributes — “monkey,” “riding,” and “horse.” It can be detected by a compositional model if
the training set has the following labels: “monkey riding bike,” “monkey eating banana,” and
“person riding horse.”

Although compositional models are powerful in some cases, they are highly constrained in
two senses:

First, the form of composition is constrained. In the above example, “black swan” is in
the form of “Adjective-Noun” (A-N) composition; while “monkey riding horse” is the form of
“Subject-Verb-Object” (S-V-O) composition. A model that is trained on one form: (a) cannot be
applied to detect targets in another form; (b) requires training set that is labeled in the same form.
To train an A-N compositional model, it requires training labels such as “black sheep,” “white
swan,” “gray rhino,” etc. This data cannot be used to train an S-V-O model. To do so, one has to
carrying out additional work to collect data and label it in the S-V-O format, which in turn can
be very costly.

For real-life events, the form of composition can be quite complicated, such as “Adjective 1-
Subject-Verb-Adjective 2-Object.” Creating data sets for every possible way of composition is
infeasible. By contrast, Eureka offers a way to specify events hierarchically and recursively.
Composition in Eureka, at least in principle, can be open-ended and infinite.

Second, the attribute vocabulary is constrained. That is, the attributes used in the composition

99

are limited by the model’s vocabulary. For example, an A-N compositional model is unable to
detect “cyan swan” if there is no cyan things in the training set. Likewise, a S-V-O model is
unable to detect “monkey pushing suitcase” if there is no “pushing” examples in the training
set. In other words, although composition models tolerate the lack of examples of a compound
target, they do not tolerate the lack of examples of all attributes. When these examples are not
available, we see Eureka’s approach of letting an expert conduct early-discard based on intuition
as the only path forward.

Finally, most recent work on ZSL focus on classifying static image data. We are not aware
of any ZSL techniques for temporal event detection in video data.

100

Chapter 7

Conclusion and Future Work

This dissertation addresses the problem of human-efficient discovery of training data for visual
machine learning. It tackles a major hindrance to common adoption of deep learning in special-
ized domains. We propose Eureka, a system that supports interactive search of scarce targets
in a large volume of unindexed visual data. We describe system architecture, programming ab-
straction, modelling of human productivity, and various optimizations that improve an expert’s
efficiency in discovering training examples. We show Eureka is effective and efficient for dis-
covering rare phenomena from both static image data and temporal video data. In this chapter,
we summarize the contributions made this dissertation and outline future directions.

7.1 Contributions

In this dissertation, we claim that

The manual effort of discovering a large training set for visual machine learning
can be reduced by a system combining: (a) efficient early discard made possible by
edge computing; (b) just-in-time machine learning; and (c) the ability to create more
accurate filters immediately without writing new code. This approach is effective for
different compute/storage architectures and different vision tasks.

We validated this thesis statement from multiple aspects. We started by recognizing the
unique challenges faced by domain experts that interesting phenomena in those domains are
often scarce and crowd-sourced labeling is not feasible. We designed Eureka to support human-
efficient interactive discovery of scarce targets by an expert. Eureka treats the expert’s attention
as a critical resource in the system. Eureka is built on OpenDiamond’s [69] idea of early-discard,
but extends it with iterative just-in-time machine learning. Using the task of object detection in
images, we demonstrated this approach is able improve an expert’s productivity progressively.

Based on image analysis, we developed a model of the Use:System Match — a metric for
gauging human efficiency. Our model depends on a wide range of factors pertaining to the user,
the system resources, the data, and the search target. Among others, it highlights the importance
of Eureka’s system efficiency in reducing an expert’s wait time.

101

We studied methods to improve Eureka’s system efficiency. Eureka utilizes edge computing
to execute early-discard filters on cloudlets with high-bandwidth access to data sources, and thus
avoids transmitting large amounts of visual data across the WAN. Nonetheless, elasticity of a
cloudlet on the edge is limited compared to their counterparts in the cloud. We further identified
that decoding is a scalability bottleneck in Eureka workload. To address this bottleneck, we
proposed a novel storage architecture on the edge which encompasses hardware accelerators for
decoding in disks and high-speed NVMe interconnect for transmitting decoded data.

Finally, we demonstrated that Eureka is not only effective for discovering objects in static
images, but also effective for discovering temporal events in videos. We described extensions
of Eureka for specifying spatial-temporal relationships and multi-object relationships. In addi-
tion, we described system optimizations specific to expensive video processing. We showed that
Eureka enables human-efficient discovery of multi-object events with little coding effort.

7.2 Future Directions

7.2.1 Integrating Labeling, Learning, and Inference
In this dissertation we validated the effectiveness of an iterative discovery workflow, where an
expert frequently repeats labeling, (re-)training, and inference with new classifiers. Nonetheless,
in the current implementation, labeling and learning is performed “out-of-band” via a separate
tool chain. For example, to train a new object detector, the user needs to: (1) download the
positive and negative examples from Eureka; (2) upload them to the training directory, either to
the local machine or to a remote service such as OpenTPOD [152]; (3) configure several training
parameters and launch the training process, again, either locally or remotely; (4) download the
trained model and upload it to Eureka for new queries.

Integrating labeling and learning within the system can offer additional usability and effi-
ciency benefits. It can lower user friction by reducing moving parts of the system, ensuring
compatibility of APIs, and simplifying deployment. It may also overlap model training, user
labeling, and inference time on the edge, which further improves user productivity.

Training DNNs involves choosing a set of hyper-parameters (e.g., batch size, number of
epochs, learning rate) which we currently leave to the user’s decision. Although many third-
party training services automate this to some extent, the optimal choice of hyper-parameters are
often task-dependent. Hence, the expert needs to at least know a set of machine learning rule-
of-thumbs. Integrating labeling and learning into Eureka takes off this burden from the expert.
Moreover, it can expose run-time statistics (e.g., inference speed, accuracy, AUC) to the training
component so that it can make better-informed decisions about configuring the hyper-parameters.
How that information should be used to derive effective training process needs to be explored.

7.2.2 Adaptive Workload Sharing Between Edge and Cloud
So far, we have assumed the expert interacts with the Eureka backends on a computer that is
quite wimpy and only sufficient for running simple GUI programs (aka a think client). As a
result, we push all the heavy weight computation towards the edge, which both harvests parallel

102

edge-based computation and reduces data traffic across the WAN. In a broader setting, an expert
may have access to a public or private cloud which can share the load from the edge; the edge
may be hierarchical, with some cloudlets being slightly “farther away” from the data sources but
still having higher bandwidth than the cloud. At first glance, offloading to the cloud or deeper
cloudlets seems to be defeating the purpose of edge computing. However, edge infrastructure
is typically shared by multiple tenants and multiple applications. A transient surge of demand
for edge resource may occur, for example, due to a flash crowd of mobile VR gamers. In that
case, we may forego a certain degree of WAN frugality and move part of the processing pipeline
into the cloud. Hopefully, the filter and operator concepts introduced in this dissertation provide
a starting point of structuring a workload into offload-able units. More work needs to be done
in monitoring cloudlet resources, identifying profitable offload options, and developing work
sharing protocols and fault tolerance mechanisms.

7.2.3 Advanced Computer Vision for Video Analysis

Although deep learning has proven tremendous success on static image analysis, it is not until
very recently that applying it on video understanding starts to gain traction. To date, state-of-the-
art video analysis methods are still very compute-intensive and lagging behind image analysis in
terms of quality. For example, one of the most recent methods for multi-object tracking [157]
reports 65% accuracy and runs at near real-time (30 FPS) on a single video stream, while image
classification DNNs easily achieve human-level accuracy and super real-time speed. Although
one can usually gain better speed by sacrificing accuracy, that tradeoff may not always be desir-
able. There is still large room for pushing the Pareto frontier of the speed-accuracy space (i.e.,
improving one without sacrificing another). In addition to more advanced algorithms, special-
ized hardware for certain tasks (e.g., multi-object tracking, human pose recognition) is also an
attractive path, although it requires significant incentive to drive its development.

7.2.4 User Study with Domain Experts

The experiments in this dissertation were conducted by the author and other graduate students,
and used data sets curated by the computer vision community. This allows us to conduct re-
producible experiments and evaluate metrics such as recall that otherwise cannot be measured
without ground truth annotations. Throughout, we chose low base-rate targets for which there do
not exist off-the-shelf models. In this regard, it has the same attributes as we envision in Eureka’s
use cases by domain experts.

It would be valuable to invite experts from specialized domains (e.g., medical, military) to
use Eureka for discovering domain-specific targets. This may confirm our observation or offer
new insights. Domain experts may have different user habits; domain-specific targets may have
novel visual characteristics that we have not yet accounted for. These can help us significantly
improve Eureka’s usability and effectiveness towards its real-world deployment.

103

7.2.5 Eureka in Non-Visual Domains
The value of Eureka hinges on two fundamental premises: (1) the use of supervised learning
that requires a significant amount of accurately annotated examples to train effective machine
learning models; (2) the demand for domain expert knowledge to label a rare phenomenon, where
the expertise is generally not available in the crowd. While this dissertation has focused on
visual data (image and video), these premises generalize to non-visual domains. Recently, there
has been success in applying (supervised) deep learning to areas beyond computer vision, such
as natural language processing and time series analysis. Thus it will be interesting to extend
Eureka’s approach to these areas as well. Interesting questions include: identifying tasks that
require domain expertise to label; designing proper ways for an expert to express heuristics with
those data types; quantifying the benefit of Eureka in those domains.

104

Bibliography

[1] NVM Express. https://nvmexpress.org/. 5.2.4

[2] TensorFlow. https://www.tensorflow.org/, 2019. 1.2, 4.5, 6.6

[3] A. Acharya, M. Uysal, and J. Saltz. Active Disks: Programming Model, Algorithms and
Evaluation. In Proceedings of Architectural Support for Programming Languages and
Operating Systems, 1998. 5.2.4, 5.3

[4] Harsh Agrawal, Clint Solomon Mathialagan, Yash Goyal, Neelima Chavali, Prakriti
Banik, Akrit Mohapatra, Ahmed Osman, and Dhruv Batra. Cloudcv: Large-scale dis-
tributed computer vision as a cloud service. In Mobile cloud visual media computing.
Springer, 2015. 5.3

[5] Jahanzeb Ahmad, Kamran Raza, Mansoor Ebrahim, and Umar Talha. FPGA Based Im-
plementation of Baseline JPEG Decoder. In Proceedings of the 7th International Con-
ference on Frontiers of Information Technology, 2009. URL http://doi.acm.org/
10.1145/1838002.1838035. 5.2.4, 5.2.5, 5.3

[6] Akamai. Q1 2017 state of the Internet / connectivity report. 2017. 2.1, 5.1

[7] James F Allen. Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11):832–843, 1983. 6.7

[8] K. Amiri, D. Petrou, G. Ganger, and G. Gibson. Dynamic Function Placement for Data-
Intensive Cluster Computing. In Proceedings of USENIX Annual Technical Conference,
2000. 5.3

[9] R. Arpaci-Dusseau, E. Anderson, N. Treuhaft, D. Culler, J. Hellerstein, D. Patterson, and
K. Yelick. Cluster I/O with River: Making the Fast Case Common. In Proceedings of
Input/Output for Parallel and Distributed Systems, 1999. 5.3

[10] R. Avnur and J. Hellerstein. Eddies: Continuously Adaptive Query Processing. In Pro-
ceedings of ACM SIG on Management of Data, 2000. 5.3

[11] Victor Bahl. Emergence of micro datacenter (cloudlets/edges) for mobile computing.
Microsoft Devices & Networking Summit 2015, 2015. 2.1

[12] Rajesh Balan, Jason Flinn, Mahadev Satyanarayanan, Shafeeq Sinnamohideen, and Hen-I
Yang. The Case for Cyber Foraging. In Proceedings of the 10th ACM SIGOPS European
Workshop, 2002. 5

[13] Mohammadamin Barekatain and et al. Okutama-action: An aerial view video dataset for
concurrent human action detection. In IEEE Computer Vision and Pattern Recognition

105

https://nvmexpress.org/
https://www.tensorflow.org/
http://doi.acm.org/10.1145/1838002.1838035
http://doi.acm.org/10.1145/1838002.1838035

Workshops, pages 2153–2160, 2017. 6.5.2, 6.5.2

[14] David Barrett. One surveillance camera for every 11 people in Britain, says CCTV survey.
Daily Telegraph, July 10, 2013. Last accessed: December 2019. 5

[15] Simona Boboila, Youngjae Kim, Sudharshan S. Vazhkudai, Peter Desnoyers, and
Galen M. Shipman. Active Flash: Out-of-core Data Analytics on Flash Storage. In Pro-
ceedings of the 28th IEEE Mass Storage Symposium, 2012. 5.3

[16] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and its
role in the internet of things. In Proceedings of the first edition of the MCC workshop on
Mobile cloud computing, pages 13–16. ACM, 2012. 2.1

[17] H. Boral and D.J. DeWitt. Database machines: An idea whose time has passed? In
International Workshop on Database Machines, September 1983. 5.3

[18] John S Bucy, Jiri Schindler, Steven W Schlosser, and Gregory R Ganger. The DiskSim
simulation environment version 4.0 reference manual, 2008. 5.2.5

[19] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek Lim, David G.
Andersen, Michael Kaminsky, and Subramanya R. Dulloor. Scaling video analytics on
constrained edge nodes. In SysML, 2019. 2.1, 5.2.4, 5.3, 6.1, 6.7

[20] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Realtime
multi-person 2d pose estimation using part affinity fields. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2019. 6.7

[21] Changjian Gao and Shih-Lien Lu. Novel fpga based haar classifier face detection algo-
rithm acceleration. In 2008 International Conference on Field Programmable Logic and
Applications, 2008. doi: 10.1109/FPL.2008.4629966. 5.2.4, 5.3

[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao, Bing
Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine learning
library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274, 2015.
1.2

[23] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari Bal-
akrishnan. Glimpse: Continuous, Real-Time Object Recognition on Mobile Devices. In
Proceedings of ACM SenSys, 2015. 1.2

[24] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and Yixin Chen. Com-
pressing neural networks with the hashing trick. In International Conference on Machine
Learning, pages 2285–2294, 2015. 1.2

[25] Zhuo Chen. An Application Framework for Wearable Cognitive Assistance. PhD thesis,
Intel, 2016. 2.1

[26] Benjamin Y Cho, Won Seob Jeong, Doohwan Oh, and Won Woo Ro. XSD: Accelerating
mapreduce by harnessing the gpu inside an ssd. In Proceedings of the 1st Workshop on
Near-Data Processing, 2013. 5.3

[27] Junguk Cho, Shahnam Mirzaei, Jason Oberg, and Ryan Kastner. Fpga-based face de-
tection system using haar classifiers. In ACM/SIGDA international symposium on Field
programmable gate arrays, 2009. 5.2.4, 5.3

106

[28] Eric Chung, Peter A. Milder, James C. Hoe, and Ken Mai. Single-Chip Heterogeneous
Computing: Does the Future Include Custom Logic, FPGAs, and GPGPUs? In Proc. of
the 43rd Annual IEEE/ACM Intl. Symp. on Microarchitecture (MICRO-43), 2010. 5.2.4,
5.2.4

[29] J. Clement. Hours of video uploaded to youtube every minute as of
may 2019. https://www.statista.com/statistics/259477/
hours-of-video-uploaded-to-youtube-every-minute/. Last accessed
December 11, 2020. 1.3, 5, 5.2.1

[30] Intel Corp. https://www.movidius.com/myriadx, 2019. 1.2

[31] Eduardo Cuervo, Aruna Balasubramanian, Dae ki Cho, Alec Wolman, Stefan Saroiu, Ran-
veer Chandra, and Paramvir Bahl. MAUI: Making Smartphones Last Longer with Code
Offload. In Proceedings of the 8th International Conference on Mobile Systems, Applica-
tions, and Services, 2010. 5

[32] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In 2005 IEEE computer society conference on computer vision and pattern recognition
(CVPR’05), volume 1, pages 886–893. Ieee, 2005. 1.1

[33] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z Wang. Image retrieval: Ideas, influences,
and trends of the new age. ACM Computing Surveys (Csur), 40(2):1–60, 2008. 2.2

[34] D. J. Dewitt, S. Ghandeharizadehand, D. A. Schneider, A. Bricker, H-I Hsiao, and R. Ras-
mussen. The Gamma Database Machine Project. IEEE Transactions on Knowledge and
Data Engineering, 2(1), March 1990. 5.3

[35] D.J. DeWitt. DIRECT - A Multiprocessor Organization for Supporting Relational
Database Management Systems. IEEE Transactions on Computers, 28(6), June 1979.
5.3

[36] D.J. DeWitt and P.B. Hawthorn. A Performance Evaluation of Database Machine Archi-
tectures. In Proceedings of VLDB, September 1981. 5.3

[37] Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park, and
David J DeWitt. Query processing on smart ssds: opportunities and challenges. In Pro-
ceedings of the 2013 ACM SIGMOD. ACM, 2013. 5.3

[38] Shiv Ram Dubey. A decade survey of content based image retrieval using deep learning,
2020. 2.2

[39] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. Cut, paste and learn: Surprisingly
easy synthesis for instance detection. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1301–1310, 2017. 4.5

[40] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal
visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):
303–338, June 2010. 1.3

[41] Zhou Fang, Dezhi Hong, and Rajesh K. Gupta. Serving deep neural networks at the
cloud edge for vision applications on mobile platforms. In Proceedings of the 10th ACM
Multimedia Systems Conference, 2019. doi: 10.1145/3304109.3306221. URL https:

107

https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.movidius.com/myriadx
https://doi.org/10.1145/3304109.3306221
https://doi.org/10.1145/3304109.3306221
https://doi.org/10.1145/3304109.3306221

//doi.org/10.1145/3304109.3306221. 5.3

[42] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Object
detection with discriminatively trained part-based models. IEEE transactions on pattern
analysis and machine intelligence, 2009. 6.7, 6.7

[43] Martin A Fischler and Robert A Elschlager. The representation and matching of pictorial
structures. IEEE Transactions on computers, 100(1):67–92, 1973. 6.7

[44] Jason Flinn. Cyber Foraging: Bridging Mobile and Cloud Computing via Opportunistic
Offload. Morgan & Claypool Publishers, 2012. 2.1

[45] Jason Flinn and Mahadev Satyanarayanan. Energy-aware Adaptation for Mobile Appli-
cations. In Proceedings of the Seventeenth ACM Symposium on Operating systems Prin-
ciples, Charleston, SC, 1999. 2.1

[46] Daniel Y. Fu, Will Crichton, James Hong, Xinwei Yao, Haotian Zhang, Anh Truong,
Avanika Narayan, Maneesh Agrawala, Christopher Ré, and Kayvon Fatahalian. Rekall:
Specifying video events using compositions of spatiotemporal labels. 2019. URL http:
//arxiv.org/abs/1910.02993. 6.7

[47] Rohit Ghosh. Deep learning for videos: A 2018 guide
to action recognition. https://blog.qure.ai/notes/
deep-learning-for-videos-action-recognition-review, 2018.
Last Accessed January 23, 2021. 1.1, 6, 6.1, 6.7

[48] Joshua Gleason, Rajeev Ranjan, Steven Schwarcz, Carlos Castillo, Jun-Cheng Chen,
and Rama Chellappa. A proposal-based solution to spatio-temporal action detection in
untrimmed videos. In 2019 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 141–150. IEEE, 2019. 6.7

[49] John Linwood Griffin, Jiri Schindler, Steven W Schlosser, John S Bucy, and Gregory R
Ganger. Timing-accurate storage emulation. In Conference on File and Storage Technolo-
gies, 2002. 5.2.5

[50] Ralf Hartmut Güting. An introduction to spatial database systems. the VLDB Journal, 3
(4):357–399, 1994. 6.7

[51] Gylfi Guundefinedmundsson, Laurent Amsaleg, Björn Jónsson, and Michael J. Franklin.
Towards engineering a web-scale multimedia service: A case study using spark. In
Proceedings of the 8th ACM on Multimedia Systems Conference, 2017. doi: 10.1145/
3083187.3083200. URL https://doi.org/10.1145/3083187.3083200. 5.3

[52] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and Mahadev
Satyanarayanan. Towards wearable cognitive assistance. In Proceedings of the 12th an-
nual international conference on Mobile systems, applications, and services, pages 68–81.
ACM, 2014. 2.1, 5.3

[53] Kiryong Ha, Yoshihisa Abe, Thomas Eiszler, Zhuo Chen, Wenlu Hu, Brandon Amos,
Rohit Upadhyaya, Padmanabhan Pillai, and Mahadev Satyanarayanan. You can teach
elephants to dance: Agile vm handoff for edge computing. In Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, pages 1–14, 2017. 2.1, 3.3.1

108

https://doi.org/10.1145/3304109.3306221
https://doi.org/10.1145/3304109.3306221
https://doi.org/10.1145/3304109.3306221
http://arxiv.org/abs/1910.02993
http://arxiv.org/abs/1910.02993
https://blog.qure.ai/notes/deep-learning-for-videos-action-recognition-review
https://blog.qure.ai/notes/deep-learning-for-videos-action-recognition-review
https://doi.org/10.1145/3083187.3083200

[54] A. Halevy, P. Norvig, and F. Pereira. The unreasonable effectiveness of data. IEEE
Intelligent Systems, 24(2):8–12, 2009. doi: 10.1109/MIS.2009.36. 1

[55] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomatnikov, Ben-
jamin C Lee, Stephen Richardson, Christos Kozyrakis, and Mark Horowitz. Understand-
ing Sources of Inefficiency in General-Purpose Chips. In Proc. of the 37th Annual Intl.
Symp. on Computer Architecture, 2010. 5.2.4

[56] Ben Hamlin, Ryan Feng, and Wu-chi Feng. Isift: Extracting incremental results from
sift. In Proceedings of the 9th ACM Multimedia Systems Conference, 2018. doi: 10.1145/
3204949.3210549. URL https://doi.org/10.1145/3204949.3210549. 5.3

[57] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connec-
tions for efficient neural network. In Advances in neural information processing systems,
pages 1135–1143, 2015. 1.2

[58] Chun He, Alexandros Papakonstantinou, and Deming Chen. A novel soc architecture on
fpga for ultra fast face detection. In 2009 IEEE International Conference on Computer
Design, 2009. 5.2.4, 5.3

[59] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In Proceedings of IEEE Computer Vision and Pattern Recognition,
pages 770–778, 2016. 1.1, 1.2, 5.2.7, 5.3

[60] Jeffrey Helt, Guoyao Feng, Srinivasan Seshan, and Vyas Sekar. Sandpaper: Mitigat-
ing performance interference in cdn edge proxies. In Proceedings of the 4th ACM/IEEE
Symposium on Edge Computing, 2019. doi: 10.1145/3318216.3363313. URL https:
//doi.org/10.1145/3318216.3363313. 5.3

[61] Stefan Hinterstoisser, Olivier Pauly, Hauke Heibel, Martina Marek, and Martin Bokeloh.
An annotation saved is an annotation earned: Using fully synthetic training for object
instance detection, 2019. 4.5

[62] Yuichi Hori and Tadahiro Kuroda. A 0.79-mm2 29-mw real-time face detection core.
IEEE Journal of solid-state circuits, 2007. 5.2.4, 5.3

[63] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, To-
bias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional
neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
1.2, 3.2.4, 5.2.8, 5.3

[64] D.K. Hsiao. DataBase Machines Are Coming, DataBase Machines Are Coming! IEEE
Computer, 12(3), March 1979. 5.3

[65] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman, Paramvir
Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. Focus: Querying large video
datasets with low latency and low cost. In 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18), pages 269–286, 2018. 6.1, 6.7

[66] Bo Hu and Wenjun Hu. Linkshare: Device-centric control for concurrent and continuous
mobile-cloud interactions. In Proceedings of the 4th ACM/IEEE Symposium on Edge
Computing, 2019. doi: 10.1145/3318216.3363303. URL https://doi.org/10.

109

https://doi.org/10.1145/3204949.3210549
https://doi.org/10.1145/3318216.3363313
https://doi.org/10.1145/3318216.3363313
https://doi.org/10.1145/3318216.3363303
https://doi.org/10.1145/3318216.3363303
https://doi.org/10.1145/3318216.3363303

1145/3318216.3363303. 5.3

[67] Wenlu Hu, Ying Gao, Kiryong Ha, Junjue Wang, Brandon Amos, Zhuo Chen, Padmanab-
han Pillai, and Mahadev Satyanarayanan. Quantifying the impact of edge computing on
mobile applications. In Proceedings of the 7th ACM SIGOPS Asia-Pacific Workshop on
Systems, page 5. ACM, 2016. 2.1

[68] G. Hunt and M. Scott. The Coign Automatic Distributed Partitioning System. In Proceed-
ings of USENIX Operating Systems Design and Implementation, 1999. 5.3

[69] Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, Mahadev Satyanarayanan, Gre-
gory R Ganger, Erik Riedel, and Anastassia Ailamaki. Diamond: A storage architecture
for early discard in interactive search. In Proceedins of USENIX Conference on File and
Storage Technologies, 2004. 1.5, 1.7, 2.2, 4, 7.1

[70] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally,
and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡
0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016. 1.2

[71] Dewan Ibtesham. Improving Large Scale Application Performance via Data Movement
Reduction. PhD thesis, University of New Mexico, December 2017. 5.2.4

[72] Intel. Intel jpeg decoder core. https://www.intel.com/content/www/
us/en/programmable/solutions/partners/partner-profile/
a2e-technologies/ip/jpeg-decoder-core.html, 2019. Last accessed
September 12, 2019. 5.2.4, 5.2.5, 5.3

[73] Samvit Jain, Ganesh Ananthanarayanan, Junchen Jiang, Yuanchao Shu, and Joseph Gon-
zalez. Scaling video analytics systems to large camera deployments. In Proceedings of
the 20th International Workshop on Mobile Computing Systems and Applications, pages
9–14, 2019. 6.1

[74] Peter Jeffcock. Minimize Data Movement. https://blogs.oracle.com/
bigdata/minimize-data-movement. Last accessed January 10, 2021. 5.2.4

[75] Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3d convolutional neural networks for hu-
man action recognition. IEEE transactions on pattern analysis and machine intelligence,
2012. 6, 6.1, 6.7

[76] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Gir-
shick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the 22nd ACM international conference on Multi-
media, pages 675–678, 2014. 1.2

[77] Angela H Jiang, Daniel L-K Wong, Christopher Canel, Lilia Tang, Ishan Misra, Michael
Kaminsky, Michael A Kozuch, Padmanabhan Pillai, David G Andersen, and Gregory R
Ganger. Mainstream: Dynamic stem-sharing for multi-tenant video processing. In 2018
USENIX Annual Technical Conference USENIX ATC 18), pages 29–42, 2018. 2.1, 5.3,
6.1, 6.7

[78] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion Stoica.
Chameleon: scalable adaptation of video analytics. In Proceedings of the 2018 Conference

110

https://doi.org/10.1145/3318216.3363303
https://doi.org/10.1145/3318216.3363303
https://doi.org/10.1145/3318216.3363303
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/a2e-technologies/ip/jpeg-decoder-core.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/a2e-technologies/ip/jpeg-decoder-core.html
https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/a2e-technologies/ip/jpeg-decoder-core.html
https://blogs.oracle.com/bigdata/minimize-data-movement
https://blogs.oracle.com/bigdata/minimize-data-movement

of the ACM Special Interest Group on Data Communication, pages 253–266. ACM, 2018.
2.1, 5.3, 6.1, 6.7

[79] Seunghun Jin, Dongkyun Kim, Thuy Tuong Nguyen, Daijin Kim, Munsang Kim, and
Jae Wook Jeon. Design and implementation of a pipelined datapath for high-speed face
detection using fpga. IEEE Transactions on Industrial Informatics, 2011. 5.2.4, 5.3

[80] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-
mance analysis of a tensor processing unit. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA), 2017. 1.2

[81] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. Noscope:
optimizing neural network queries over video at scale. Proceedings of the Very Large Data
Bases, 2017. 5.2.6, 5.3, 6.1, 6.7

[82] Daniel Kang, Peter Bailis, and Matei Zaharia. BlazeIt: Fast Exploratory Video Queries
using Neural Networks. arXiv:1805.01046v1, 2018. 5.2.6, 5.2.7, 5.3, 6.1, 6.7

[83] Yangwook Kang, Yang-suk Kee, Ethan L Miller, and Chanik Park. Enabling cost-effective
data processing with smart ssd. In 2013 IEEE 29th symposium on mass storage systems
and technologies (MSST), 2013. 5.3

[84] K. Keeton, D. Patterson, and J. Hellerstein. A Case for Intelligent Disks (IDISKs). ACM
SIG on Management of Data Record, 1998. 1.7, 5.2.4, 5.3

[85] Aaron Koehl and Haining Wang. Serf: Optimization of socially sourced images using
psychovisual enhancements. In Proceedings of the 7th International Conference on Mul-
timedia Systems, 2016. doi: 10.1145/2910017.2910609. URL https://doi.org/
10.1145/2910017.2910609. 5.3

[86] Adriana Kovashka, Olga Russakovsky, Li Fei-Fei, and Kristen Grauman. Crowdsourcing
in computer vision. CoRR, abs/1611.02145, 2016. URL http://arxiv.org/abs/
1611.02145. 4.5

[87] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in Neural Information Processing Sys-
tems, pages 1097–1105, 2012. 1.1

[88] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a large video database
for human motion recognition. In Proceedings of the International Conference on Com-
puter Vision (ICCV), 2011. 1.3, 6.5.1, 6.5.2, 6.7

[89] George Kyrtsakas and Roberto Muscedere. An fpga implementation of a custom jpeg im-
age decoder soc module. In IEEE 30th Canadian Conference on Electrical and Computer
Engineering (CCECE). IEEE, 2017. 5.2.4, 5.2.5, 5.3

[90] Jimmy Lei Ba, Kevin Swersky, Sanja Fidler, et al. Predicting deep zero-shot convolutional
neural networks using textual descriptions. In Proceedings of the IEEE International
Conference on Computer Vision, 2015. 6.7

[91] Patrick Michael Leyshock. Optimizing Data Movement in Hybrid Analytic Systems. PhD
thesis, Portland State University, 2014. 5.2.4

111

https://doi.org/10.1145/2910017.2910609
https://doi.org/10.1145/2910017.2910609
http://arxiv.org/abs/1611.02145
http://arxiv.org/abs/1611.02145

[92] Yong Li and Wei Gao. Muvr: Supporting multi-user mobile virtual reality with resource
constrained edge cloud. In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages
1–16. IEEE, 2018. 2.1

[93] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common objects in
context. In European Conference on Computer Vision. Springer, 2014. 1.3, 6.1

[94] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In European Con-
ference on Computer Vision, pages 21–37. Springer, 2016. 5.2.8

[95] David G Lowe. Object recognition from local scale-invariant features. In Proceedings
of the seventh IEEE international conference on computer vision, volume 2, pages 1150–
1157. Ieee, 1999. 1.1

[96] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detec-
tion with language priors. In European Conference on Computer Vision, 2016. 6.7

[97] Spencer K Lynn and Lisa Feldman Barrett. ‘Utilizing’ signal detection theory. Psycho-
logical science, 2014. 1.4

[98] X. Ma and A. Reddy. MVSS: An Active Storage Architecture. IEEE Transactions On
Parallel and Distributed Systems, 2003. 5.2.4, 5.3

[99] Chris Mellor. Will NVMe become the universal block storage ac-
cess protocol? https://blocksandfiles.com/2020/05/27/
nvme-universal-block-storage-access-protocol/, 2020. Last ac-
cessed: August 23, 2020. 5.2.4

[100] G. Memik, M. Kandemir, and A. Choudhary. Design and Evaluation of Smart Disk Archi-
tecture for DSS Commercial Workloads. In Proceedings of the International Conference
on Parallel Processing, 2000. 5.2.4, 5.3

[101] Mike Mesnier, Gregory R Ganger, and Erik Riedel. Object-based storage. IEEE Commu-
nications Magazine, 41(8), 2003. 5.2.3

[102] Shervin Minaee, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and
Demetri Terzopoulos. Image segmentation using deep learning: A survey, 2020. 1.1

[103] Ishan Misra, C Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised
learning using temporal order verification. In European Conference on Computer Vision,
2016. 6.7

[104] MyLio.com. Here’s How Many Digital Photos Will Be Takein
in 2017. https://focus.mylio.com/tech-today/
how-many-digital-photos-will-be-taken-2017-repost, 2017. 1.3,
5.2.1

[105] BRAD NEMIRE. Nvidia gpus sort through tens of millions of flickr photos —
nvidia blog. https://blogs.nvidia.com/blog/2015/07/15/flickr/,
2015. (Accessed on 11/05/2020). 1.1

[106] Netflix. Internet connection speed recommendations. https://help.netflix.

112

https://blocksandfiles.com/2020/05/27/nvme-universal-block-storage-access-protocol/
https://blocksandfiles.com/2020/05/27/nvme-universal-block-storage-access-protocol/
https://focus.mylio.com/tech-today/how-many-digital-photos-will-be-taken-2017-repost
https://focus.mylio.com/tech-today/how-many-digital-photos-will-be-taken-2017-repost
https://blogs.nvidia.com/blog/2015/07/15/flickr/
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306

com/en/node/306, 2017. 2.1

[107] An Thanh Nguyen, Byron C Wallace, and Matthew Lease. Combining crowd and ex-
pert labels using decision theoretic active learning. In Third AAAI conference on human
computation and crowdsourcing, 2015. 1.5, 4.5

[108] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, J. Eric Tilton, Jason Flinn,
and Kevin R. Walker. Agile Application-Aware Adaptation for Mobility. In Proceed-
ings of the 16th ACM Symposium on Operating Systems Principles, Saint-Malo, France,
October 1997. 2.1

[109] Sangmin Oh, Anthony Hoogs, Amitha Perera, Naresh Cuntoor, Chia-Chih Chen,
Jong Taek Lee, Saurajit Mukherjee, JK Aggarwal, Hyungtae Lee, Larry Davis, et al. A
large-scale benchmark dataset for event recognition in surveillance video. In CVPR 2011.
IEEE, 2011. 1.3, 5.2.1, 5.2.6, 6, 6.5.2, 6.5.2, 6.7

[110] Sinno Jialin Pan, Qiang Yang, et al. A survey on transfer learning. IEEE Transactions on
knowledge and data engineering, 2010. 1.5, 1.7, 3.2.4, 4, 4.1

[111] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differ-
entiation in PyTorch. In NIPS-W, 2017. 1.2

[112] Konstantin Pogorelov, Sigrun Losada Eskeland, Thomas de Lange, Carsten Griwodz,
Kristin Ranheim Randel, Håkon Kvale Stensland, Duc-Tien Dang-Nguyen, Concetto
Spampinato, Dag Johansen, Michael Riegler, and et al. A holistic multimedia system
for gastrointestinal tract disease detection. In Proceedings of the 8th ACM on Mul-
timedia Systems Conference, 2017. doi: 10.1145/3083187.3083189. URL https:
//doi.org/10.1145/3083187.3083189. 5.3

[113] Cision PRWeb. Introducing the highest performance and most power efficient
4Kp120 HEVC/H.265 decoder. http://www.prweb.com/releases/2014/01/
prweb11491436.htm, 2014. Last accessed September 17, 2019. 5.2.4

[114] G. Qadah and K. B. Irani. A Database Machine for Very Large Relational Databases.
IEEE Transactions on Computers, C-34(11), November 1985. 5.3

[115] Yanyuan Qin, Shuai Hao, Krishna R. Pattipati, Feng Qian, Subhabrata Sen, Bing Wang,
and Chaoqun Yue. Quality-aware strategies for optimizing abr video streaming qoe and
reducing data usage. In Proceedings of the 10th ACM Multimedia Systems Confer-
ence, 2019. doi: 10.1145/3304109.3306231. URL https://doi.org/10.1145/
3304109.3306231. 5.3

[116] Pranav Rajpurkar, Jeremy Irvin, Aarti Bagul, Daisy Ding, Tony Duan, Hershel Mehta,
Brandon Yang, Kaylie Zhu, Dillon Laird, Robyn L Ball, et al. MURA: Large dataset for
abnormality detection in musculoskeletal radiographs. arXiv preprint arXiv:1712.06957,
2017. 1.4

[117] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christo-
pher Ré. Snorkel: Rapid training data creation with weak supervision. Proceedings of the
VLDB Endowment, 11(3):269–282, 2017. 4.5

113

https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://help.netflix.com/en/node/306
https://doi.org/10.1145/3083187.3083189
https://doi.org/10.1145/3083187.3083189
http://www.prweb.com/releases/2014/01/prweb11491436.htm
http://www.prweb.com/releases/2014/01/prweb11491436.htm
https://doi.org/10.1145/3304109.3306231
https://doi.org/10.1145/3304109.3306231

[118] Alexander J Ratner, Henry Ehrenberg, Zeshan Hussain, Jared Dunnmon, and Christopher
Ré. Learning to compose domain-specific transformations for data augmentation. In
Advances in neural information processing systems, pages 3236–3246, 2017. 1.5, 4.5

[119] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-
time object detection with region proposal networks. In Advances in neural information
processing systems, 2015. 1.1, 1.2, 5.3, 6, 6.3.3

[120] E. Riedel, G. Gibson, and C. Faloutsos. Active Storage for Large-Scale Data Mining and
Multimedia. In Proceedings of Very Large Data Bases, 1998. 5.2.4, 5.3

[121] Erik Riedel. Active Disks — Remote Execution for Network-Attached Storage. PhD thesis,
Department of Electrical and Computer Engineering, Carnegie Mellon University, 1999.
CMU-CS-99-177. 5.3

[122] J. Rubio, M. Valluri, and L. John. Improving Transaction Processing using a Hierarchical
Computing Server. Technical Report TR-020719-01, Laboratory for Computer Architec-
ture, The University of Texas at Austin, July 2002. 5.2.4, 5.3

[123] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Journal
of Computer Vision, 2015. 1.2, 1.3, 4.5

[124] M Satyanarayanan, Rahul Sukthankar, Adam Goode, Larry Huston, Lily Mummert, Adam
Wolbach, Jan Harkes, Richard Gass, and Steve Schlosser. The opendiamond platform for
discard-based search. In Tech rep School of Computer Science, Carnegie Mellon Univer-
sity. 2008. CMU-CS-08-132. 3.3.3, 3.3.4

[125] Mahadev Satyanarayanan. Fundamental Challenges in Mobile Computing. In Proceed-
ings of the ACM Symposium on Principles of Distributed Computing, Ottawa, Canada,
1996. 2.1

[126] Mahadev Satyanarayanan. Pervasive Computing: Vision and Challenges. IEEE Personal
Communications, 8(4), 2001. 2.1, 5

[127] Mahadev Satyanarayanan. The Emergence of Edge Computing. IEEE Computer, 50(1),
January 2017. 1.5, 5.3

[128] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The
Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing, 8(4),
October-December 2009. 2.1

[129] Mahadev Satyanarayanan, Rahul Sukthankar, Lily Mummert, Adam Goode, Jan Harkes,
and Steve Schlosser. The Unique Strengths and Storage Access Characteristics of Discard-
Based Search. Journal of Internet Services and Applications, 2010. 2.2

[130] Mahadev Satyanarayanan, Wei Gao, and Brandon Lucia. The computing landscape of the
21st century. In Proceedings of the 20th International Workshop on Mobile Computing
Systems and Applications, pages 45–50, 2019. 2.1

[131] Seagate. Kinetic HDD. https://www.seagate.com/support/
enterprise-servers-storage/nearline-storage/kinetic-hdd/.

114

https://www.seagate.com/support/enterprise-servers-storage/nearline-storage/kinetic-hdd/
https://www.seagate.com/support/enterprise-servers-storage/nearline-storage/kinetic-hdd/

5.2.3

[132] K. Sengchuai, W. Wichakool, N. Jindapetch, and P. Smithmaitrie. Fpga-based hardware-
in-the-loop verification of dual-stage hdd head position control. In IEEE Regional Sym-
posium on Micro and Nanoelectronics (RSM), 2015. 5.2.4

[133] Shu Shi, Varun Gupta, Michael Hwang, and Rittwik Jana. Mobile VR on Edge Cloud:
A Latency-Driven Design. In Proceedings of the 10th ACM Multimedia Systems Confer-
ence, 2019. doi: 10.1145/3304109.3306217. URL https://doi.org/10.1145/
3304109.3306217. 5.3

[134] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge computing: Vision
and challenges. IEEE Internet of Things Journal, 3(5), October 2016. 2.1, 5.3

[135] Gunnar A. Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav
Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding.
In European Conference on Computer Vision, 2016. 1.3, 4.5

[136] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014. 1.2

[137] Chen Song, Jiacheng Chen, Ryan Shea, Andy Sun, Arrvindh Shriraman, and Jiangchuan
Liu. Scalable distributed visual computing for line-rate video streams. In Proceedings of
the 9th ACM Multimedia Systems Conference, New York, NY, USA, 2018. doi: 10.1145/
3204949.3204974. URL https://doi.org/10.1145/3204949.3204974. 5.3

[138] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. Ucf101: A dataset of 101
human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402, 2012.
1.3, 6.5.1, 6.5.2, 6.7

[139] Hui Su, Alexander Bokov, Urvang Joshi, Debargha Mukherjee, Jingning Han, and Yue
Chen. Context-adaptive recursive-filtering-based intra prediction in video coding. In
Proceedings of the 24th ACM Workshop on Packet Video, New York, NY, USA, 2019.
doi: 10.1145/3304114.3325615. URL https://doi.org/10.1145/3304114.
3325615. 5.3

[140] S.Y.W. Su, L.H. Nguyen, A. Emam, and G.J. Lipovski. The Architectural Features and
Implementation Techniques of the Multicell CASSM. IEEE Transactions on Computers,
28(6), June 1979. 5.3

[141] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of IEEE Computer Vision and Pattern Recognition,
pages 1–9, 2015. 1.2

[142] Billy Tallis. Western digital launches new wd black nvme ssds and
thunderbolt dock. https://www.anandtech.com/show/16149/
western-digital-launches-new-wd-black-nvme-ssds-and-thunderbolt-dock,
2020. Last accessed January 21, 2021. 5.2.4

[143] SOC Technologies. H.264 4k video decoder chipset. https://www.
soctechnologies.com/chipsets/chipset-h264-4k-decoder, 2019.

115

https://doi.org/10.1145/3304109.3306217
https://doi.org/10.1145/3304109.3306217
https://doi.org/10.1145/3204949.3204974
https://doi.org/10.1145/3304114.3325615
https://doi.org/10.1145/3304114.3325615
https://www.anandtech.com/show/16149/western-digital-launches-new-wd-black-nvme-ssds-and-thunderbolt-dock
https://www.anandtech.com/show/16149/western-digital-launches-new-wd-black-nvme-ssds-and-thunderbolt-dock
https://www.soctechnologies.com/chipsets/chipset-h264-4k-decoder
https://www.soctechnologies.com/chipsets/chipset-h264-4k-decoder

Last accessed September 17, 2019. 5.2.4

[144] J. N. Teoh, W. E. Wong, T. Ould Bachir, Y. Hu, F. Hong, C. Du, and A. Al-Mamun.
Fpga implementation of nonlinear control on hard disk drive. In 2009 IEEE International
Conference on Control and Automation, 2009. 5.2.4

[145] Bart Thomee, David A Shamma, Gerald Friedland, Benjamin Elizalde, Karl Ni, Douglas
Poland, Damian Borth, and Li-Jia Li. YFCC100M: the new data in multimedia research.
Communications of the ACM, 2016. 1.3, 1.4, 4, 4.3, 5.2.1, 5.2.6

[146] K. Thongkhome, C. Thanavijitpun, and S. Choomchuay. A fpga design of aes core ar-
chitecture for portable hard disk. In International Joint Conference on Computer Science
and Software Engineering (JCSSE), 2011. 5.2.4

[147] Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhkudai, Youngjae Kim, Xiaosong Ma,
Peter J. Desnoyers, and Yan Solihin. Active Flash: Towards Energy-Efficient, In-Situ Data
Analytics on Extreme-Scale Machines. In Proceedings of the File and Storage Technolo-
gies Conference, 2013. 5.3

[148] Arash Vahdat, Kevin Cannons, Greg Mori, Sangmin Oh, and Ilseo Kim. Compositional
models for video event detection: A multiple kernel learning latent variable approach. In
Proceedings of the IEEE International Conference on Computer Vision, 2013. 6, 6.1, 6.7

[149] Jack Valmadre, Luca Bertinetto, João Henriques, Andrea Vedaldi, and Philip HS Torr.
End-to-end representation learning for correlation filter based tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2805–2813,
2017. 1.2

[150] Sudheendra Vijayanarasimhan and Kristen Grauman. Large-scale live active learning:
Training object detectors with crawled data and crowds. International Journal of Com-
puter Vision, 2014. 4.5

[151] Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou, and Steven
Swanson. Ssd in-storage computing for list intersection. In Proceedings of the 12th Inter-
national Workshop on Data Management on New Hardware, 2016. 5.3

[152] Junjue Wang. Scaling Wearable Cognitive Assistance. PhD thesis, CMU-CS-20-107,
CMU School of Computer Science, 2020. 2.1, 2.1, 7.2.1

[153] Junjue Wang, Brandon Amos, Anupam Das, Padmanabhan Pillai, Norman Sadeh, and
Mahadev Satyanarayanan. A Scalable and Privacy-Aware IoT Service for Live Video
Analytics. In Proceedings of ACM Multimedia Systems, Taipei, Taiwan, June 2017. 2.1

[154] Junjue Wang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanabhan Pillai,
Shao-Wen Yang, and Mahadev Satyanarayanan. Bandwidth-efficient live video analyt-
ics for drones via edge computing. In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 159–173. IEEE, 2018. 5.3, 6.1, 6.7

[155] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar, Padmanabhan Pillai, and Ma-
hadev Satyanarayanan. Towards Scalable Edge-Native Applications. In Proceedings of
the Fourth IEEE/ACM Symposium on Edge Computing (SEC 2019), Washington, DC,
November 2019. 5.3, 6.1, 6.7

116

[156] K. Wang, D. Zhang, Y. Li, R. Zhang, and L. Lin. Cost-effective active learning for deep
image classification. IEEE Transactions on Circuits and Systems for Video Technology,
27(12):2591–2600, 2017. doi: 10.1109/TCSVT.2016.2589879. 4.5

[157] Zhongdao Wang, Liang Zheng, Yixuan Liu, and Shengjin Wang. Towards real-time multi-
object tracking. arXiv preprint arXiv:1909.12605, 2019. 6.1, 7.2.3

[158] Mark Weiser. The computer for the 21 st century. Scientific american, 265(3):94–105,
1991. 2.1

[159] R. Wickremisinghe, J. Vitter, and J. Chase. Distributed Computing with Load-Managed
Active Storage. In Proceedings of IEEE International Symposium on High Performance
Distributed Computing, 2002. 5.2.4, 5.3

[160] Nicolai Wojke and Alex Bewley. Deep cosine metric learning for person re-identification.
In 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pages
748–756. IEEE, 2018. doi: 10.1109/WACV.2018.00087. 6.3.1

[161] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking
with a deep association metric. In 2017 IEEE International Conference on Image Pro-
cessing (ICIP), pages 3645–3649. IEEE, 2017. doi: 10.1109/ICIP.2017.8296962. 6.3.1

[162] W. Wu, H. Su, and Q. Wu. Implementing a serial ata controller base on fpga. In Second
International Symposium on Computational Intelligence and Design, 2009. 5.2.4

[163] Xilinx. Xilinx jpeg decoder. https://www.xilinx.com/products/
intellectual-property/1-4dcu5s.html, 2019. Last accessed: September 12,
2019. 5.2.4, 5.2.5, 5.3

[164] Fan Yang, Sakriani Sakti, Yang Wu, and Satoshi Nakamura. Make skeleton-based ac-
tion recognition model smaller, faster and better. In ACM International Conference on
Multimedia in Asia, 2019. 6, 6.1, 6.7

[165] Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu. Video processing with server-
less computing: A measurement study. In ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video, 2019. doi: 10.1145/3304112.3325608.
URL https://doi.org/10.1145/3304112.3325608. 5.3

[166] Yu Zheng. Trajectory data mining: An overview. 6(3), 2015. ISSN 2157-6904. doi:
10.1145/2743025. URL https://doi.org/10.1145/2743025. 6.7

[167] Yingying Zhu, Nandita M Nayak, and Amit K Roy-Chowdhury. Context-aware activity
recognition and anomaly detection in video. IEEE Journal of Selected Topics in Signal
Processing, 7(1):91–101, 2012. 6.7

117

https://www.xilinx.com/products/intellectual-property/1-4dcu5s.html
https://www.xilinx.com/products/intellectual-property/1-4dcu5s.html
https://doi.org/10.1145/3304112.3325608
https://doi.org/10.1145/2743025

	1 Introduction
	1.1 Deep Learning for Computer Vision
	1.2 Creating and Deploying DNNs
	1.3 Creation of Training Data Sets
	1.4 Human-efficiency of Domain Experts
	1.5 Prior Work in Training Set Creation By Experts
	1.6 Thesis Statement
	1.7 Thesis Validation

	2 Background
	2.1 Edge Computing
	2.2 OpenDiamond: Interactive Search of Non-Indexed Image

	3 Eureka System Design
	3.1 Edge-based System Architecture
	3.2 Programming Abstraction
	3.2.1 Item
	3.2.2 Filter
	3.2.3 Attribute
	3.2.4 Examples of Filters

	3.3 Optimization for Domain Experts
	3.3.1 Filter Container: Offering Software Generality
	3.3.2 Itemizer: Task-specific Data Transformation
	3.3.3 Scoping: Utilizing Metadata and Indexes
	3.3.4 Result Caching: Accelerating Interactive Search Cycles

	4 Discovering Novel Objects in Image Data
	4.1 Just-in-time Machine Learning
	4.2 Iterative Discovery Workflow
	4.3 Evaluation of Productivity
	4.3.1 Evaluation Methodology
	4.3.2 Results

	4.4 Modeling User:System Match
	4.4.1 Classifier Metrics
	4.4.2 Result Delivery Rate
	4.4.3 Analysis
	4.4.4 Discussion

	4.5 Related Work

	5 Improving System Efficiency of Eureka on the Edge
	5.1 Alleviating WAN Bottleneck via Edge Computing
	5.2 Enhancing Edge Elasticity via Intelligent Storage
	5.2.1 Eureka Workload Attributes
	5.2.2 Problem: High Scalability Cost of Decoding
	5.2.3 Solution: Decode-Enabled Storage
	5.2.4 Implementation
	5.2.5 Timing-Accurate Emulated Prototype
	5.2.6 Evaluation Methodology
	5.2.7 Micro-benchmark Evaluation
	5.2.8 End-to-end Evaluation

	5.3 Related Work

	6 Extending Eureka to Detect Temporal Events in Video Data
	6.1 A 4-Level Taxonomy of Video Analytics
	6.2 Modeling Spatial-Temporal Events in Video
	6.2.1 Spatial-Temporal Interval
	6.2.2 Interval Stream
	6.2.3 Operator on Interval Streams
	6.2.4 Example

	6.3 Event Discovery Idioms
	6.3.1 Representing and Computing Object Trajectories
	6.3.2 Predicating on Trajectory Relationship
	6.3.3 Content-based Hierarchical Detection
	6.3.4 Guess and Verify

	6.4 Implementation and Optimization for Video Data
	6.4.1 Maintaining the Stream Invariant
	6.4.2 Exploiting Parallelism
	6.4.3 Provenance and Late Materialization
	6.4.4 Video Decoder and LRU Frame Cache

	6.5 Evaluation
	6.5.1 Metrics
	6.5.2 Data Sets and Tasks
	6.5.3 Result

	6.6 Discussion
	6.7 Related Work

	7 Conclusion and Future Work
	7.1 Contributions
	7.2 Future Directions
	7.2.1 Integrating Labeling, Learning, and Inference
	7.2.2 Adaptive Workload Sharing Between Edge and Cloud
	7.2.3 Advanced Computer Vision for Video Analysis
	7.2.4 User Study with Domain Experts
	7.2.5 Eureka in Non-Visual Domains

	Bibliography

