
Preconditioning and Locality in
Algorithm Design

Jason Li

CMU-CS-21-119

June 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Anupam Gupta, Chair

Bernhard Haeupler, Chair
Gary Miller

Satish Rao (UC Berkeley)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Jason Li

This research was sponsored by National Science Foundation award numbers: CCF-1536002, CCF-1540541,
CCF-1617790, CCF-1907820, CCF-1955785, and CCF-2006953. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity

Keywords: preconditioning, locality, graph algorithms, minimum cut, expander graphs

To my family

Abstract
Algorithms is a broad, rich, and fast-growing field. For the latter half of last

century, many branches of algorithms have emerged and grown in popularity, and
many different techniques have been invented to solve the central problems in each
area. Some of these techniques, such as the push-relabel algorithm for maximum
flow, are specially designed to solve a single problem. Other techniques, such as
the multiplicative weights update method, are more general and applicable to a
wide range of problems. And others, such as dynamic programming, divide and
conquer, and linear programming relaxation and rounding, are so fundamental
that they have not only pervaded every branch of algorithms, but have ultimately
reshaped the way we approach algorithm design.

This thesis is devoted to studying two more modern algorithmic techniques,
namely preconditioning and locality, which were pioneered by Spielman and
Teng [100] in their ground-breaking work on Laplacian system solvers and have
seen countless new applications in the past decade. In this thesis, I successfully
apply preconditioning and locality to resolve fundamental open problems from
a wide array of algorithmic subfields, from fast, sequential algorithms to deter-
ministic algorithms to parallel algorithms, thereby demonstrating the power and
versatility of the two techniques. Taking one step further, I make my case that
preconditioning and locality are more than just powerful tools with countless
applications: they are new, fundamental ways of thinking about algorithms that
have the potential to revolutionize algorithm design just like dynamic program-
ming and divide and conquer had done in the past.

vi

Acknowledgements
First and foremost, I would like to thank my advisors, Anupam Gupta and Bernhard

Haeupler, for all the inspiration and support they have provided over the years. Research
was not always as fruitful or rewarding as it is now, and I am forever grateful to have had
such caring and supportive advisors to guide my way through the early, most formative years
of my PhD.

Second, I would like to thank my other thesis committee members, Gary Miller and
Satish Rao. Thank you both for all the fun, inspiring discussions we have had, and I am
honored to have such esteemed and renowned researchers on my thesis committee.

Research is a collaborative process of mutual learning and discovery, and I would like to
thank all of my collaborators throughout my PhD journey without whom research would not
be the same. Special thanks to my closest collaborator, Thatchaphol Saranurak, for all our
productive, late-night research sessions, leading to a total of six papers over the two years
we have worked together. I would also like to thank Nikhil Bansal, Julia Chuzhoy, Vincent
Cohen-Addad, Michael Elkin, Mohsen Ghaffari, Janardhan Kulkarni, Danupon Nanongkai,
Jesper Nederlof, Ofer Neiman, Debmalya Panigrahi, and Merav Parter for generously hosting
me during my many research visits, as well as all of my other collaborators: John Augustine,
Yu Gao, Robert Gmyr, Zhiyang He, Ellis Hershkowitz, Kristian Hinnenthal, Philip Klein,
Stefan Kratsch, Fabian Kuhn, Amit Kumar, Euiwoong Lee, Pasin Manurangsi, Richard
Peng, Christian Scheideler, Magnus Wahlstrom, Michal Wlodarczyk, Sorrachai Yingchare-
onthawornchai.

Next, I would like to thank all the fellow graduate students I have had the pleasure of
meeting, for no journey is complete without the friends we make along the way. Special
thanks to my first year office mates Timothy Chu and Goran Zuzic for all the wacky stuff
we did together, from sharing cool theorems to playing foosball to making memes, and to
Guru Guruganesh, Euiwoong Lee, and David Wajc as the senior PhD students I looked up
to the most. I also recall fun times with Dan Anderson, Ainesh Bakshi, Vijay Bhattiprolu,
Laxman Dhulipala, Bailey Flanigan, Isaac Grosof, Ellis Hershkowitz, Raj Jayaram, Pedro
Paredes, Nicolas Resch, Ziv Scully, Sahil Singla, Ameya Velingker, David Witmer, John
Wright, Xinyu Wu, and Yu Zhao.

Last but not least, to restrict my acknowledgements to the duration of my PhD would be
tantamount to skipping the prologue to my academic journey: why I pursued a PhD in the
first place! I was fortunate enough to have had supportive, influential figures since middle
school, from my eighth grade math contest coach Joshua Frost who was one of the most pas-
sionate and driven teachers I have known, to my high school PRIMES mentors Pavel Etingof
and David Jordan who introduced me to the wonderful world of academic research, and to
Ryan O’Donnell and Anupam again for their amazing, inspirational theoretical computer
science classes I took as an undergraduate at CMU which convinced me to stay for my PhD.
And finally, my greatest thanks goes to none other than my parents and my brother David
who have supported me, both emotionally and financially, at every stage of my twenty long
years of education.

1

2

Contents

1 Introduction 7
1.1 Locality: Unbalanced vs. Balanced . 8

1.1.1 Minimum Isolating Cuts and Applications 10
1.2 Preconditioning: Worst Case vs. Average Case 12

1.2.1 Graph Cut Problems . 14
1.2.2 Graph Distance Problems . 15

1.3 Preliminaries . 16
1.4 Bibliographic Notes . 17

I Locality 19

2 Minimum Isolating Cuts 21
2.1 Background . 21
2.2 The Isolating Cuts Algorithm . 22
2.3 Conclusion . 24

3 Steiner Mincut 27
3.1 Background . 28
3.2 Randomized Steiner Mincut . 28
3.3 Deterministic Steiner Mincut . 29

3.3.1 Unbalanced Case . 29
3.3.2 Balanced Case: Sparsifying U . 32

3.4 Conclusion . 37

4 Gomory-Hu Tree 39
4.1 Background . 40
4.2 Our Results . 40
4.3 Our Techniques . 42
4.4 Additional Preliminaries . 45
4.5 Reducing to SSMC Verification . 46

4.5.1 A Single Recursive Step . 47

3

4.5.2 The Gomory-Hu Tree Algorithm . 49
4.6 The Cut Threshold Algorithm . 53
4.7 Approximate GH Tree . 56

4.7.1 Approximation . 56
4.7.2 Running Time Bound . 60
4.7.3 Weighted Graphs . 64

4.8 Conclusion . 65

5 Directed Global Mincut 67
5.1 Background . 67
5.2 Our Techniques . 68

5.2.1 Additional Preliminaries . 69
5.3 The Directed Mincut Algorithm . 70
5.4 Sparsification . 71
5.5 Finding a 1-respecting Arborescence . 73
5.6 Mincut Given 1-respecting Arborescence . 75
5.7 Conclusion . 78

II Preconditioning 81

6 Deterministic Mincut 83
6.1 Background . 83
6.2 Our Techniques . 84
6.3 Additional Preliminaries . 87

6.3.1 Karger’s Approach . 87
6.3.2 Spectral Graph Theory . 88

6.4 Expander Case . 89
6.5 General Case . 92

6.5.1 Expander Decomposition Preliminaries 93
6.5.2 Unbalanced Case . 96
6.5.3 Balanced Case . 103
6.5.4 Combining Them Together . 104
6.5.5 Removing the Maximum Weight Assumption 106

6.6 Conclusion . 107

7 Parallel Shortest Path 109
7.1 Background . 110

7.1.1 Our Contributions . 110
7.1.2 Our Techniques . 111
7.1.3 Chapter Organization . 114

4

7.2 Additional Preliminaries . 114
7.2.1 PRAM Model . 114
7.2.2 Transshipment Preliminaries . 114
7.2.3 Parallel Shortest Path Preliminaries 117

7.3 The Recursive Algorithm . 120
7.3.1 `1-Embedding from Approximate SSSP Potential 123
7.3.2 Sparsification and Recursion to Smaller Instances 124

7.4 `1-Oblivious Routing and Sequential Transshipment 125
7.4.1 Improved `1-Oblivious Routing: Our Techniques 126
7.4.2 Sherman’s Framework . 128
7.4.3 Polynomial Aspect Ratio . 130
7.4.4 Reduction to `1 Metric . 130
7.4.5 Oblivious Routing on `1 Metric . 131
7.4.6 Parallel Transshipment . 143

7.5 Vertex Sparsification and Recursion . 143
7.5.1 Case S = {s} of Lemma 7.3.15 . 144
7.5.2 Extending to Contracted Paths . 145
7.5.3 Extending to Forest Components . 148
7.5.4 Generalizing to S-SSSP . 149

7.6 Ultra-spanner Algorithm . 152
7.7 Sherman’s Framework via Multiplicative Weights 155
7.8 Transshipment to Expected SSSP: Sequential 161

7.8.1 Parallelizing the Expected SSSP Algorithm 175
7.9 Sampling a Primal Tree . 183
7.10 Omitted Proofs . 187

7.10.1 Proof of Lemma 7.3.5 . 187
7.10.2 Proof of Lemma 7.3.12 . 188
7.10.3 Proof of Lemma 7.5.10 . 190

7.11 Conclusion . 190

8 Deterministic Expander Decomposition 193
8.1 Background . 193

8.1.1 Our Techniques: Unweighted . 194
8.1.2 Chapter Organization . 199

8.2 Additional Preliminaries . 200
8.2.1 Explicit Construction of Expanders 200
8.2.2 The Cut-Matching Game . 200
8.2.3 Expander Pruning . 201
8.2.4 Embeddings of Graphs and Expansion 201
8.2.5 Embeddings with Fake Edges and Expansion 202
8.2.6 j-trees . 203

5

8.3 Route or Cut: Algorithm for the Matching Player 204
8.4 Deterministic Cut-Matching Game: Proof of Theorem 8.1.3 212

8.4.1 Base Case: q = 1 . 212
8.4.2 Step: q > 1 . 215

8.5 A Slower Algorithm for BalCutPrune . 224
8.5.1 Extension of Theorem 8.1.3 to Smaller Sparsity 225
8.5.2 Degree Reduction . 226
8.5.3 Completing the Proof of Theorem 8.5.1 228

8.6 Unweighted Expander Decomposition . 232
8.6.1 Spectral Sparsification . 233

8.7 Weighted Expander Decomposition with Custom Demands 237
8.7.1 Our Techniques . 238
8.7.2 The WeightedBalCutPruneAlgorithm 240
8.7.3 Completing the Proof of Theorem 8.7.5 and Theorem 8.7.3 248

8.8 Weighted Expander Decomposition, Boundary-Linked 252
8.9 Conclusion . 255

Bibliography 257

6

Chapter 1

Introduction

Algorithms is a broad, rich, and fast-growing field. For the latter half of last century,
many branches of algorithms have emerged and grown in popularity, and many different
techniques have been invented to solve the central problems in each area. Some of these
techniques, such as the push-relabel algorithm for maximum flow, are specially designed to
solve a single problem. Other techniques, such as the multiplicative weights update method,
are more general and applicable to a wide range of problems. And others, such as dynamic
programming, divide and conquer, and linear programming relaxation and rounding, are
so fundamental that they have not only pervaded every branch of algorithms, but have
ultimately reshaped the way we approach algorithm design.

This thesis is devoted to studying two more modern algorithmic techniques, namely
preconditioning and locality, which were pioneered by Spielman and Teng [100] in their
ground-breaking work on Laplacian system solvers and have seen countless new applications
in the past decade. In this thesis, we successfully apply preconditioning and locality to resolve
fundamental open problems from a wide array of algorithmic subfields, from fast, sequential
algorithms to deterministic algorithms to parallel algorithms, thereby demonstrating the
power and versatility of the two techniques. Taking one step further, we make our case that
preconditioning and locality are more than just powerful tools with countless applications:
they are new, fundamental ways of thinking about algorithms that have the potential to
revolutionize algorithm design just like dynamic programming and divide and conquer had
done in the past.

In this introductory section, we first introduce the two techniques, preconditioning and
locality, and provide the relevant history and background. Along the way, we illustrate how
both techniques can be applied to the classic minimum cut problem on a graph, deriving
surprisingly simple and fast algorithms for various settings of the problem.

7

s s

Figure 1.1: Both graphs above are composed of two cliques connected by a single (red) edge,
the mincut of the graph. The green regions of each graph mark the area a local algorithm
needs to explore, starting from the seed vertex s, before it detects the red edge and certifies
it as a cut. The instance on the left is more amenable to a local algorithm than the one on
the right.

1.1 Locality: Unbalanced vs. Balanced

In the modern, digital era, data sets have become so large that many algorithms cannot
afford to even read in the whole input. In other words, even linear -time algorithms are often
too slow in practice. This dilemma motivates the concept of locality in algorithm design: a
local algorithm is one that only reads in data “local” to a seed location in the input. When the
input is a massive graph, a local algorithm may only explore a small neighborhood around
the seed vertex before outputting the solution. This is the approach taken by many local
graph algorithms with theoretical guarantees, most notably the PageRank Nibble algorithm
for computing a cut of small conductance around a seed vertex of a graph [8, 100].

Of course, for such an algorithm to be possible, the solution to the problem must also be
local to the seed vertex. For illustration, consider the task of finding the (global) minimum
cut of the graph, defined as the smallest set of edges whose deletion disconnects the graph.
Consider the two graphs in Figure 1.1: both are comprised of two cliques attached by a single
edge (marked red), and our task is to locate the red edge, which is a mincut of size 1. From
the seed vertex s, a local algorithm can explore the clique containing s (highlighted in green)
and then discover that the only edge neighboring that clique is the single red edge. This is
enough information to certify that the red edge indeed forms a cut in the graph, at which
point the algorithm can stop and output that cut. If the clique containing s is much smaller
than the entire graph (Figure 1.1, left), then this algorithm avoids reading in most of the
graph, which saves a lot of computation time. On the other hand, if the clique containing s
occupies a large fraction of the entire graph (Figure 1.1, right), then the local algorithm still
has to look at most of the graph. In other words, not every instance is amenable to a local
algorithm: the instance on the left of Figure 1.1 is more “local” than the one on the right.

In this thesis, we advance beyond the concept of local algorithms and study locality as
a fundamental principle in algorithm design. What is so special about locality that enables
us to obtain faster algorithms? More precisely, suppose we have a problem instance where

8

Figure 1.2: Instances of Steiner mincut where the terminal vertices are marked by dots.
The instance to the right satisfies the locality assumption: the Steiner mincut (marked in
red) separates exactly one terminal from the rest. By sampling terminals from the instance
on the left at the correct sampling probability, we can create a new instance that satisfies
the locality assumption (like the one on the right).

the target solution is local to a particular location of the input (possibly unknown to us).
That is, we have a problem instance like the one to the left of Figure 1.1, not the one to the
right. How can we solve the instance faster by exploiting this additional locality assumption,
and what new techniques can we develop along the way? Lastly, since our goal is to design
algorithms that work on all instances, not just local ones, we also need to remove the locality
assumption eventually.

Application: Steiner mincut. We now highlight our locality-based approach to the
mincut problem, which illustrates many of our techniques in a remarkably simple setting.
We actually consider a more general problem called the global Steiner mincut, where we are
given both an undirected graph and a subset of vertices called the terminals, and we want
to find the minimum-weight set of edges whose removal disconnects at least two terminals
from each other (see Figure 1.2). The (global) mincut is simply the Steiner mincut when
every vertex is a terminal.

To approach this problem from a locality perspective, we first specify what it means to
be local in our problem setting. We define a Steiner mincut to be local if it separates exactly
one terminal from the rest, or in other words, the cut is “local” to that particular terminal
(which is unknown to us). In Figure 1.2, the instance on the left does not have a local Steiner
mincut, but the graph on the right does.

Given this locality assumption, we only need to look at cuts that separate one terminal
from the others. That is, the task reduces to finding, for each terminal, the minimum number
of edges that separate that terminal from the rest. We call this problem the minimum
isolating cuts and design a fast and simple algorithm for it which is covered in Chapter 2.
This solves the Steiner mincut problem under this locality assumption.

Finally, removing the locality assumption turns out to be miraculously easy: we simply
sample a subset of terminals and declare the sample as the new set of terminals. By trying
enough times at various sampling probabilities, we can ensure with high probability that for

9

some sample, the Steiner mincut has exactly one sampled terminal on one side (see Figure 1.2,
right). We can therefore solve Steiner mincut with the additional locality assumption on this
sampled terminal set and obtain the Steiner mincut on the original instance.

This simple algorithm is covered entirely in the short Chapter 2 and Section 3.2, and yet
it was the first nontrivial Steiner mincut algorithm on weighted graphs. Looking back, we
believe that the key insight that eluded researchers in the past was viewing the problem from
a locality perspective. Once the locality assumption is established, the remaining pieces fall
together almost seamlessly.

1.1.1 Minimum Isolating Cuts and Applications

The aforementioned minimum isolating cuts problem turns out to play a central role in many
of our locality-based algorithms. We recall the problem definition: the input is a graph with
a subset of vertices as terminals, and the goal is to compute, for each terminal, the minimum
cut that separates that terminal from the rest of the terminals. In other words, we want to
compute a mincut “local” to each terminal.

Clearly, minimum isolating cuts can be trivially solved using |R| calls to (s, t)-mincut.
What is surprising is that we can do much better: we design a simple algorithm requiring
only O(log |R|) calls to (s, t)-mincut. In other words, minimum isolating cuts and (s, t)-
mincut have the same time complexity up to this logarithmic factor. We call this result the
isolating cuts lemma, stated and proved in Chapter 2.

Global Steiner connectivity (Chapter 3). As mentioned before, one immediate con-
sequence of the isolating cuts lemma is a randomized algorithm for global Steiner mincut
problem in roughly (s, t)-mincut time, already the fastest known for general, weighted graphs.
The simple algorithm and analysis is presented in Chapter 3.

Theorem: Randomized Steiner mincut (see Theorem 3.2.1)

There is a randomized Steiner mincut algorithm that runs in O(log3 n) many calls to
(s, t)-mincut.

We then derandomize our algorithm, which requires technical tools from derandomiza-
tion as well as expander decompositions. Naturally, the running time also becomes larger,
although for the current running time of (s, t)-mincut, the additional overhead is only poly-
logarithmic. Even for the deterministic global mincut problem, this was the first improve-
ment over the Õ(mn) time algorithm of Hao and Orlin [48]. We present the deterministic
Steiner mincut algorithm in Section 3.3.

10

Theorem: Deterministic Steiner mincut (see Theorem 3.3.1)

For any constant ε > 0, there is a randomized Steiner mincut algorithm that runs in
polylog(n) many calls to (s, t)-mincut, plus O(m1+ε) additional time.

Gomory-Hu tree (Chapter 4). In Chapter 4, we use the isolating cuts lemma to develop
locality-based algorithms that compute the Gomory-Hu tree, a classic data structure that
encodes all pairwise (s, t)-mincuts of a graph. In particular, given the Gomory-Hu tree, we
can answer any (s, t)-mincut queries in constant time per query.

Gomory and Hu [44] showed that a Gomory-Hu tree can be computed using n− 1 many
(s, t)-mincut computations, and for general, weighted graphs, this bound has yet to be
improved sixty years later. While we were unable to break this barrier, we managed to
reduce the Gomory-Hu tree problem to a seemingly much simpler problem, which we call
single-source mincut verification: given a source vertex s and (s, t)-mincut overestimates
λ̃(s, t) for all other vertices t, determine which estimates λ(s, t) equal the true (s, t)-mincut
values.

Theorem: Gomory-Hu tree from single-source mincut verification (see Theorem 4.2.3)

There is a randomized Gomory-Hu tree algorithm that makes calls to single-source
mincut verification on graphs with a total of Õ(n) vertices and Õ(m) edges, and runs
for max-flow time outside of these calls.

Note that this problem is even simpler than single-source mincut, where we are given the
source vertex s and need to compute the (s, v)-mincut for each v ∈ V \ s. Unfortunately, we
do not know how to solve even the verification problem faster than computing a separate
(s, v)-mincut for each v ∈ V \ s. Nevertheless, as a simpler, seemingly more tractable
problem, single-source mincut verification may prove the key to obtaining faster Gomory-Hu
tree algorithms in the future.

Approximate Gomory-Hu tree (Chapter 4). If we relax the problem to computing an
approximate Gomory-Hu tree, then we can indeed obtain faster algorithms. Our main result
in Section 4.7 is an algorithm for approximate Gomory-Hu tree that makes polylogarithmic
calls to exact max-flow. This algorithm essentially follows from the fact that the reduction to
single-source mincut verification is robust to approximations, and that approximate single-
source mincut can be computed in faster time. To solve approximate single-source mincut,
we introduce a new problem which we name the cut threshold problem: given a source vertex
and a parameter λ called the cut threshold, find all vertices whose pairwise mincut with the
source is at most λ.

Using the isolating cuts lemma, we show that the cut threshold problem can be solved in
roughly max-flow time. We then reduce approximate single-source mincut to the cut thresh-

11

old problem by trying geometrically increasing values of λ. Putting everything together, we
obtain an approximate single-source mincut algorithm in roughly max-flow time, and by the
aforementioned reduction, an approximate Gomory-Hu tree as well.

Theorem: Approximate Gomory-Hu tree (see Theorem 4.2.5)

There is a randomized (1+ε)-approximate Gomory-Hu tree algorithm that makes calls
to max-flow on graphs with a total of Õ(n) vertices and Õ(m) edges.

Directed global mincut (Chapter 5) Last but not least, we study the global mincut
problem in directed graphs in Chapter 5 and reduce the problem to O(

√
n) many max-flow

calls. Using the current best max-flow algorithm [75], our running time becomes Õ(m
√
n+

n2), improving upon the Õ(mn) bound of Hao and Orlin [48].

Theorem: Directed mincut (see Theorem 5.3.1)

There is a directed global mincut algorithm that makes Õ(
√
n) max-flow calls.

This is the only result of the locality section that does not rely on the isolating cuts
lemma as a subroutine. Nevertheless, we approach the problem from a locality perspective,
dividing the problem into an unbalanced and a balanced case. For the unbalanced case,
where the optimal cut has a small number of vertices on one side, we use a locality-based
approach similar to the one for deterministic mincut (Chapter 6). For the balanced case,
we simply sample vertices s, t at random and compute an (s, t)-mincut, which succeeds with
large enough probability that we can repeat the procedure a small number of times to succeed
w.h.p.

1.2 Preconditioning: Worst Case vs. Average Case

Traditionally, algorithms are studied in the worst-case setting: for an algorithm to be deemed
“fast”, it must run quickly on all instances of the problem. The appeal of worst-case analysis
is its robustness and its emphasis on concrete, universal statements: algorithms must work
well for all inputs. However, designing optimal algorithms for the worst case is difficult,
and it is often easier to consider average-case analysis, where algorithms are designed and
analyzed for well-behaved instances, rather than for worst-case instances. These algorithms
are often faster and cleaner, but they lack the strong universal guarantees of worst-case
algorithms.

Preconditioning is a technique that strives for the best of both worlds: the optimality
and simplicity of average-case analysis and the robustness of the worst-case setting. This is
achieved by transforming, or preconditioning, any input instance to behave like an average-
case instance. In this way, we can focus our attention on well-behaved, non-pathological

12

Figure 1.3: An expander graph with the global mincut marked in red. The global mincut
is “unbalanced” since one of its sides only has 3 vertices.

instances, and then translate the results back to derive worst-case bounds.
Historically, preconditioning was first developed in the field of numerical linear algebra

to solve linear systems of the form Ax = b. While the matrix A may be difficult to solve
in the worst case, one can, for example, multiply both sides by a matrix M to arrive at the
equivalent (MA)x = Mb. In this context, preconditioning is the art of choosing the matrix
M so that the new, preconditioned matrixMA is well-behaved. One can then apply iterative
methods which converge in few iterations on a well-conditioned matrix. The first paper to
utilize the term preconditioning is due to Evans [35], though the concept has been employed
to solve linear systems by hand over a century ago [92].

In the context of graph algorithms, preconditioning can be applied in various ways de-
pending on the problem being solved. For distance-related problems, Awerbuch et al. [12]
introduced the concept of low-diameter network decompositions which are now standard in
shortest path and related algorithms. This technique decomposes a general graph into sub-
graphs of small diameter, which often admit faster and simpler distance-based algorithms.
For graph cut and spectral problems, Spielman and Teng popularized the technique of ex-
pander decomposition in their seminal work on solving linear systems on graphs [100]. Here,
general graphs are decomposed into expanders, graphs that exhibit nice cut and spectral
properties. We study both low-diameter and expander decompositions in this thesis.

Application: deterministic mincut. Once again, we illustrate how we can apply the
preconditioning technique to the mincut problem.

Informally, the preconditioning technique reduces general graph instances to the case
when the input graph is an expander. The key property that we exploit is that on an
expander, the global mincut is unbalanced in the locality sense: one of its sides has very few
vertices (see Figure 1.3). This shows how the concepts of preconditioning and locality often
go hand in hand.

How is this guarantee useful for us? While the locality-based Steiner mincut algorithm
works on any graph, it crucially relies on a random sampling procedure, which makes the

13

algorithm inherently randomized. Fortunately, in an expander where the global mincut
is unbalanced, the random sampling procedure can be efficiently derandomized. The de-
randomization technique does not work well on general graphs, however, which is where
preconditioning comes in handy: we precondition the graph to behave like an expander by
computing an expander decomposition of the graph. The final result is a deterministic Steiner
mincut algorithm, discussed in Section 3.3.

1.2.1 Graph Cut Problems

In this thesis, all problems studied include graphs as part of their input. For graph cut
problems, such as global mincut, the average-case instances that we study are the expander
graphs. This is a natural class of graphs to study in average-case analysis since it includes
the random graphs, e.g., those drawn from the Erdös-Rényi G(n, p) model where each (undi-
rected) edge is independently sampled with probability p.

By assuming that the input graph is an expander, we can appeal to the rich theory
of expanders, including the connection to spectral graph theory established by Cheeger’s
inequality. As for preconditioning the graph, or transforming it into the average case setting,
our main strategy is to compute an expander decomposition of the input graph: we delete
a small fraction of edges so that each connected component of the remaining graph is an
expander. This simple concept, popularized by Spielman and Teng in their seminal paper
on solving Laplacian systems, has proven invaluable in recent breakthroughs in fast graph
algorithms in many areas, from sequential to dynamic to distributed algorithms. Following
an expander decomposition, a common strategy is to first solve the problem separately on
each expander by appealing to average-case analysis. Then, to handle the edges deleted by
the decomposition, we apply recursion on an instance a constant factor smaller in order to
keep the overall running time small. While most preconditioning-based approaches follow
the same general outline, tailoring the method to each individual problem is always the key
challenge and, ultimately, lies at the core of the art of preconditioning.

Deterministic preconditioning (Chapter 8). Prior to our work, the biggest drawback
to expander decomposition-based algorithms was that the only near-linear time algorithms
to compute an expander decomposition were randomized. In joint work with Chuzhoy,
Gao, Nanongkai, Peng, and Saranurak [27], we develop the first almost-linear time, de-
terministic algorithm for expander decomposition, thus opening the door to deterministic,
preconditioning-based algorithms. Due to the technical complexity of the algorithm, we defer
it to Chapter 8 at the end of the thesis.

Deterministic mincut (Chapter 6). We next discuss a new application of deterministic
expander decomposition, namely to the global mincut problem: determine the smallest-
weight set of edges whose removal disconnects the graph.

14

A classic result of Karger [55] established a near-linear time randomized algorithm for
global mincut, and Karger famously posed as an open question whether a fast, deterministic
algorithm exists. For almost twenty years, no progress had been made towards even partially
answering this question, until the breakthrough result of Kawarabayashi and Thorup [57]
who achieved a deterministic, near-linear time algorithm on simple, unweighted graphs.
Their key conceptual contribution is a simple but meaningful connection between mincuts
and expanders: on an expander, the global mincut must be unbalanced in the locality sense.
Their work serves as evidence that the global mincut problem should be much easier on an
expander, which suggests a preconditioning-based line of attack.

In recent work [69], we manage to complete the preconditioning approach for the deter-
ministic mincut problem, resolving Karger’s open problem from the 1990s.

Theorem: Deterministic mincut (see Theorem 6.2.1)

There is a deterministic mincut algorithm that runs in m1+o(1) time.

Our strategy is to de-randomize the single randomized component in Karger’s mincut
algorithm, namely the construction of the graph sparsifier by random sampling. We adopt a
preconditioning-based approach, first solving the case when the input graph is an expander,
and then applying expander decomposition to generalize to all graphs. To sparsify an ex-
pander, we exploit the locality of the target mincut as mentioned before (see Figure 1.3). In
particular, it suffices to preserve only the unbalanced cuts in the sparsification procedure,
which makes it much easier to derandomize.

For the general case, our strategy is still to preserve a subset of “unbalanced” cuts,
but this time, the notion of unbalanced is defined with respect to a recursive expander
decomposition hierarchy of the graph. We defer the details to our full presentation of the
algorithm in Chapter 6.

1.2.2 Graph Distance Problems

For graph problems involving distances, such as the single-source shortest path problem, the
property we exploit from average-case instances is that they have small aspect ratio, defined
as the ratio of the maximum to minimum distances between distinct vertices of the graph.
Once again, this assumption is consistent with the theory of random graphs in average-case
analysis: for a random graph sampled from the Erdös-Rényi G(n, p) model, where all edges
sampled have unit weight, the aspect ratio is only O(log n).

Parallel shortest path (Chapter 7). We apply distance-based preconditioning to the
single source shortest path problem in the parallel (PRAM) setting. The parallel shortest
path problem is notoriously difficult, especially in the exact setting, since classic shortest path
algorithms such as Dijkstra’s are inherently sequential. This barrier encouraged researchers
to study the approximate single-source shortest path problem instead, for which near-optimal

15

parallel algorithms are now known. A classical result of Cohen [28] developed an algorithm
based on the concept of hopsets that runs in O(m1+ε0) work and polylogarithmic time for
any constant ε0 > 0, which is optimal up to the mε0 factor. The natural follow-up question
is whether the work can be improved to m polylog(n), but this question has resisted two
decades of attempts.

In our paper [67], we tackle this problem from a continuous perspective, using the
preconditioning-based method of Sherman [96, 97]. We reduce the SSSP problem to the
more continuous minimum transshipment problem, also known as uncapacitated minimum
cost flow, and provide (1 + ε)-approximate algorithms for both problems in m polylog(n)

work and polylogarithmic time. This improves upon Cohen’s result and achieves the tar-
geted optimality.

Theorem: Parallel SSSP and transshipment (see Theorems 7.1.1 and 7.1.2)

There are parallel (1 + ε)-approximate SSSP and transshipment algorithms that run
in Õ(m) work and polylog(n) time.

Sherman’s preconditioning-based method is based on his key insight that low-diameter
graphs admit a simple transshipment algorithm. To precondition a general graph into low-
diameter graphs, he computes low-diameter decompositions of the graph at varying diameter
scales. For technical reasons, the low-diameter decomposition is performed on an embedding
of the graph into high-dimensional (Euclidean) space, where distances between vertices in
the graph are approximated by distances between their corresponding points in space. We
leave the details to the full presentation in Chapter 7.

1.3 Preliminaries

In this thesis, all graphs are either undirected or directed, and either unweighted or weighted
on the edges. All weighted graphs have positive weights, and unweighted graphs are treated
as weighted graphs with weight 1 on all edges. We allow multiple parallel edges, even on
weighted graphs, but no self-loops unless explicitly stated otherwise.

We first start with standard graph-theoretic notation. For an undirected graph G =

(V,E) and two vertex subsets A,B ⊆ V , we denote by E(A,B) the set of all edges with one
endpoint in A and another in B. If G is directed, then EG(A,B) denotes the set of (directed)
edges from a vertex in A to a vertex in B. For an edge e ∈ E, let w(e) be the weight of that
edge, and for vertices u, v ∈ V , let w(u, v) be the sum of the weights w(e) of all (parallel)
edges e between u and v. For a vertex subset S ⊆ V , define ∂S := E(S, V \S). For a subset
F ⊆ E of edges, denote its total weight by w(F). Define the (weighted) degree of a vertex
v ∈ V as w(∂({v})), and for a subset S ⊆ V , define its volume vol(S) :=

∑
v∈S deg(v). For

a subset S ⊆ V , define N(S) ⊆ V as the set of vertices v ∈ V \ S with a neighbor in S, and
define N [S] = S ∪ N(S). When the graph G is ambiguous, we may add a subscript of G

16

in our notation, such as EG(A,B). When a set in question is a singleton vertex v, we may
write v instead of {v}, such as in E(v,B). Finally, for any graph H, we use V (H) to denote
the set of vertices of H, and E(H) to denote the set of edges of H.

For an undirected graph G = (V,E), we define an (edge) cut to be either (1) the set of
vertices S on one side of the cut, (2) the corresponding bipartition (S, V \ S) of vertices, or
(3) the edges ∂S in the cut. We alternate between the three definitions depending on which
one is most convenient for the occasion.

1.4 Bibliographic Notes

Most of this thesis is based on previously published work.
1. Chapters 2 and 3 are based on the publication “Deterministic Min-cut in

Poly-logarithmic Max-flows” [70].

2. Chapter 4 is based on the publication “Approximate Gomory-Hu Tree Is Faster than
n− 1 Max-flows” [71].

3. Chapter 5 is based on the publication “Minimum Cuts in Directed Graphs via
√
n

Max-Flows” [18].

4. Chapter 6 is based on the publication “Deterministic Mincut in Almost-Linear
Time” [69].

5. Chapter 7 is based on the publication “Faster Parallel Algorithm for Approximate
Shortest Path” [67].

6. Chapter 8 is based on the publication “A Deterministic Algorithm for Balanced Cut
with Applications to Dynamic Connectivity, Flows, and Beyond” [27].

Omitted Work. This thesis does not include a number of other results that the author
has published during his PhD. The most notable such results, in the author’s opinion, are
listed below.

1. The Karger-Stein Algorithm Is Optimal for k-cut [46].

2. A Quasipolynomial (2 + ε)-Approximation for Planar Sparsest Cut [30].

3. The Connectivity Threshold for Dense Graphs [47].

4. Tight FPT Approximations for k-Median and k-Means [29].

17

18

Part I

Locality

19

Chapter 2

Minimum Isolating Cuts

In this chapter, we study the minimum isolating cuts problem introduced in [70]: given a list
of terminals, compute, for each terminal, the mincut separating it from the other terminals.
We present the simple algorithm from [70] that solves this problem in a logarithmic number
of (s, t)-mincut calls.

In just one year after its introduction, the minimum isolating cuts problem has already
seen numerous applications to graph cut algorithms. In Chapters 3 and 4 of the thesis, we
use the minimum isolating cuts algorithm as a core subroutine in our Steiner mincut and
Gomory-Hu tree algorithms. The minimum isolating cuts has also appeared in problems
ranging from vertex connectivity [73] to submodular function minimization [23, 84], which
are outside the scope of this thesis.

Given the simplicity of the algorithm and its analysis, as well as its importance in recent
developments, it is perhaps miraculous that the minimum isolating cuts problem and algo-
rithm had remained undiscovered for so long. In hindsight, we believe the biggest hurdle to
its discovery was not the technical algorithm itself, but the conceptual realization that the
minimum isolating cuts problem could be so useful in the first place, especially in locality-
based algorithms. In fact, we attribute our discovery of the problem entirely to our locality
perspective: as we will see in Chapter 3, it is exactly the problem to study when solving
Steiner mincut with a locality assumption.

2.1 Background

The minimum isolating cuts problem was first introduced to solve the deterministic mincut
problem [70]. Since its inception, the isolating cuts lemma has been generalized to the
wider setting of symmetric, submodular functions [23, 84], leading to new developments on
submodular function minimization and hypergraph mincut.

21

0 1

2

3

U0
U1

U2

U3

0

0

0 1

2

3

Figure 2.1: The minimum isolating cuts algorithm for |R| = 4. The orange marks the “upper
boundary” of each green isolating cut. They are formed by the min-cut separating {0, 1}
and {2, 3} and the min-cut separating {0, 2} and {1, 3}.

2.2 The Isolating Cuts Algorithm

We first formally define the minimum isolating cuts problem.

Definition 2.2.1: Minimum isolating cuts

Consider a weighted, undirected graph G = (V,E) and a subset of vertices R ⊆ V

where |R| ≥ 2. The minimum isolating cuts for R is a collection of sets {Sv : v ∈ R}
such that for each vertex v ∈ R, the set Sv satisfies Sv ∩ R = {v} and w(∂S ′v) is a
(v,R \ v)-mincut.

We now state the isolating cuts lemma, whose proof occupies the rest of this section.

Lemma 2.2.2: Isolating cuts lemma

Fix a subset R ⊆ V of terminals, where |R| ≥ 2. There is an algorithm that computes
the minimum isolating cuts for R using dlg |R|e+ 1 calls to (s, t)-mincut on weighted
graphs of O(n) vertices and O(m) edges, and takes Õ(m) deterministic time outside of
the mincut calls. If the original graph G is unweighted, then the inputs to the mincut
calls are also unweighted.

Our main idea is to first compute, for each terminal, an “upper boundary” to the location
of the mincut separating that terminal from the rest (see Figure 2.1). More precisely, for
each terminal v ∈ R, we want to compute a set Uv of vertices that contains Sv as defined in
Definition 2.2.1. If we can do so, then it suffices to compute an (v, t)-mincut on the graph G

22

with V \ Uv contracted to a single vertex t, which will return ∂Sv or some other (v,R \ v)-
mincut. To make this mincut computation fast, we would like Uv to be small, ideally not
much larger than Sv. We are not able to prove such a strong local guarantee, but we can
ensure that the sets Uv are disjoint among all v ∈ R. In other words, some terminal v ∈ R
might have small Sv and linear-sized Uv, but this cannot happen for too many terminals,
since

∑
v∈R |Uv| ≤ n must hold.

Our procedure to compute the sets Uv is as follows. We first compute dlg |R|e many
bipartitions of R such that any two terminals are separated in at least one bipartition. For
each bipartition (A,B) of R, we compute a (A,B)-mincut, and then for each terminal v ∈ R,
we set Uv as the common intersection of the sides containing v of the dlg |R|e many computed
mincuts. We show by a simple submodularity argument that the side containing v of each of
the dlg |R|e mincuts must contain Sv (if we assume Sv to be minimal in a sense), and thus,
their common intersection Uv also contains Sv.

For the rest of this section, we formalize the above intuition and prove Lemma 2.2.2.

Proof of the isolating cuts lemma (Lemma 2.2.2). Order the vertices in R arbitrarily
from 1 to |R|, and let the label of each v ∈ R be its position in the ordering, a number from 1

to |R| that is denoted by a unique binary string of length dlg |R|e. Let us repeat the following
procedure for each i = 1, 2, . . . , dlg |R|e. For each vertex v, color it red if the i’th bit of its
label is 0, and blue if the i’th bit of its label is 1. Then, compute a min-cut Ci ⊆ E in G
between the red vertices and the blue vertices (for iteration i).

First, we show that G \
⋃
iCi partitions the set of vertices into connected components

each of which contain at most one vertex of R. Let Uv be the connected component in
G \

⋃
iCi containing v ∈ R. Then:

Claim 2.2.3

Uv ∩R = {v} for all v ∈ R.

Proof. By definition, v ∈ Uv ∩ R. Suppose for contradiction that Uv ∩ R contains another
vertex u 6= v. Since the binary strings assigned to u and v are distinct, they differ in their
j’th bit for some j. Then, the cut Cj must separate u and v, i.e., removing the edges in Cj
leaves u and v in separate components, which is a contradiction.

Now, for each vertex v ∈ R, let λv be the minimum value of w(∂S) over all S ⊆ V

satisfying S ∩R = {v}, and let S∗v ⊆ V be an inclusion-wise minimal set satisfying S∗v ∩R =

{v} and w(∂S∗v) = λv. Then, we claim that the cut S∗v does not cross the cut Uv, i.e.:

Claim 2.2.4

Uv ⊇ S∗v for all v ∈ R.

Proof. Fix a vertex v ∈ V and an iteration i. Let the side of the cut Ci containing v be
T iv ⊆ V ; we claim that S∗v ⊆ T iv. Suppose for contradiction that S∗v \ T iv 6= ∅. Note that

23

(S∗v ∩ T iv) ∩R = {v}, which implies that:

w(∂(S∗v ∩ T iv)) ≥ λv = w(∂S∗v).

Indeed, by our choice of S∗v to be inclusion-wise minimal, we can claim the strict inequality:

w(∂(S∗v ∩ T iv)) > λv = w(∂S∗v).

But, by submodularity of cuts, we have:

w(∂(S∗v ∪ T iv)) + w(∂(S∗v ∩ T iv)) ≤ w(∂S∗v) + w(∂T iv).

Therefore, we get:
w(∂(S∗v ∪ T iv)) < w(∂T iv).

But (S∗v ∪ T iv) ∩ R = T iv ∩ R since (S∗v \ T iv) ∩ R = ∅. In particular, the cut ∂(S∗v ∪ T iv) also
separates red vertices from blue vertices in the ith iteration. This contradicts the choice of
∂T iv = Ci as the min-cut separating red vertices from blue vertices in the ith iteration.

Therefore, over all iterations i, none of the edges in the induced subgraph G[S∗v] are
present in Ci. Note that G[S∗v] is a connected subgraph; therefore, it is a subgraph of the
connected component Uv of G \

⋃
iCi containing v.

It remains to compute the desired set Sv given the property that Uv ⊇ Sv. Starting from
G, contract V \Uv into a single vertex t; we want to compute the min v–t cut in the contracted
graphGv, which corresponds to a set Sv satisfying Sv∩R = {v} by Claim 2.2.3. Since ∂GvS∗v is
a valid v–t cut in this graph by Claim 2.2.4, we have w(∂GvSv) ≤ w(∂GvS

∗
v) = w(∂GS

∗
v) = λv,

as desired.
Note that each edge in E is either in exactly one graph Gv, or it is adjacent to t in exactly

two graphs Gv. Therefore, the total number of edges over all graphs Gv is at most 2m. We
can compute the v–t min-cuts on all Gv in “parallel” through a single max-flow call on the
disjoint union of all Gv. Note that if the original graph G is unweighted, then this max-flow
instance is also unweighted. Finally, recovering the sets Sv and the values w(∂Sv) take time
linear in the number of edges of Gv, which is O(m) time over all v ∈ R.

This completes the proof of Lemma 2.2.2.

2.3 Conclusion

In just one year since its discovery, the minimum isolating cuts lemma has seen many appli-
cations in graph cut problems from Gomory-Hu tree (Chapter 4) to vertex connectivity [73],
as well as more abstract problems like bisubmodular function minimization [23, 84]. We
anticipate many more future applications to come, and we expect the technique to reshape
how we approach locality in graph algorithms in the same way expander decomposition did

24

for preconditioning.

25

26

Chapter 3

Steiner Mincut

This chapter focuses on the (global) Steiner mincut problem: given an undirected graph and a
subset T of vertices (called the terminals), the (global) Steiner mincut is the smallest-weight
set of edges whose removal disconnects at least two vertices in T . The Steiner mincut is the
natural generalization of both the global mincut and (s, t)-mincut problems. Nevertheless,
prior to the results of this chapter, no nontrivial algorithm for Steiner cut was known in
general.

In this chapter, we show that the isolating cuts lemma from Chapter 2 leads to a simple
and elegant algorithm for Steiner mincut that uses polylogarithmic many calls to (s, t)-
mincut. For weighted graphs and unweighted graphs of large enough Steiner connectivity,
this is the fastest algorithm known. More importantly, since Steiner mincut also general-
izes (s, t)-mincut, we conclude that both problems have the same time complexity up to
polylogarithmic factors. We then derandomize our Steiner mincut algorithm using standard
derandomization tools along with expander decompositions. At the time of publication, our
algorithm was the fastest for even the special case of deterministic global mincut.

It is worth emphasizing again the simplicity of the randomized Steiner mincut algorithm.
The only step in addition to the isolating cuts algorithm of Chapter 2 is an initial random
sampling process. Namely, we sample terminals at varying sampling probabilities, and for
each sample, we compute the minimum isolating cuts on the sampled terminals. A simple
argument shows that with high probability, at least one of the isolating cuts computed over
all samples is the minimum Steiner mincut.

It is rather remarkable that such a simple yet state-of-the-art Steiner mincut algorithm
remained undiscovered for so long. Once again, we attribute our success to our locality
perspective: as mentioned in the beginning of Chapter 2, viewing the Steiner mincut problem
from a locality perspective is what led us to the minimum isolating cuts problem in the first
place!

27

3.1 Background

For unweighted graphs, the fastest algorithm for Steiner mincut, due to Bhalgat et al. [16],
runs in Õ(m + nc2) time where c is the size of the Steiner mincut. For weighted graphs,
nothing nontrivial was known before our result.

The Steiner mincut problem is an important subroutine for fast Gomory-Hu tree algo-
rithms. For example, a Gomory-Hu tree can be constructed using n − 1 calls to Steiner
mincut instead of (s, t) max-flow. Bhalgat et al. [16] follow this approach to compute a
Gomory-Hu tree, except they show that computation can be reused between the n− 1 calls
of their specific Steiner mincut algorithm, speeding up their Gomory-Hu tree algorithm to
Õ(mn) time in total. We remark that their speed-up methods do not apply to our Steiner
mincut algorithm, so we do not obtain a faster Gomory-Hu tree algorithm as a corollary.

3.2 Randomized Steiner Mincut

In this brief section, we show that the isolating cuts lemma (Lemma 2.2.2), along with a
simple random sampling procedure, implies a randomized Steiner mincut algorithm that
makes polylog(n) many max-flow calls.

Theorem 3.2.1: Randomized Steiner mincut

There is a randomized, Monte Carlo algorithm for Steiner mincut for weighted undi-
rected graphs that makes O(log3 n) calls to (s, t) max-flow on a weighted, undirected
graph with O(n) vertices and O(m) edges. If the original graph G is unweighted, then
the inputs to the max-flow calls are also unweighted.

Proof. The algorithm essentially calls Lemma 2.2.2 O(log2 n) times; in each iteration, R ⊆ T

is a random set of vertices sampled at a particular scale.
For each positive integer i ≤ lg |T |, repeat the following procedure O(log n) times: let

R ⊆ V be a random sample of 2i vertices, and call Lemma 2.2.2 on the set R to obtain a
cut Sv for each v ∈ R. Return the cut S with the minimum value of w(∂Sv) over all v and
over all the iterations.

We claim that w.h.p., the returned cut S is a Steiner mincut. Let S∗ ⊆ V be the side
of the Steiner mincut containing the smaller number of terminals. Observe that if, in any
iteration, the sampled set R satisfies |R ∩ S∗| = 1, then Lemma 2.2.2 will find the Steiner
mincut. Consider the integer i = blg(n/|S∗|)c. Then, for each iteration where R is a random
sample of size 2i, we sample exactly one vertex in S∗ with probability Ω(1). Since we sample
at this scale O(log n) times, this occurs at least once w.h.p.

28

3.3 Deterministic Steiner Mincut

In this section, we present our deterministic Steiner mincut algorithm.
Theorem 3.3.1: Deterministic Steiner mincut

Fix any constant ε > 0. There is a deterministic algorithm for global Steiner mincut
that makes (lg n)O(1/ε4) calls to (s, t) max-flow on a weighted undirected graph with
O(n) vertices and O(m) edges, and runs in O(m1+ε) time outside these max-flow calls.
If the original graph G is unweighted, then the inputs to the max-flow calls are also
unweighted.

Throughout the algorithm, we maintain a set U ⊆ T of vertices that starts out as U = T

and shrinks over time. (Think of this set as the set R over which we call the isolating cuts
lemma.) We distinguish between the cases when U is k-unbalanced or k-balanced for some
k = polylog(n), as defined below.

Definition 3.3.2: k-unbalanced, k-balanced

For any positive integer k, a subset U ⊆ T is k-unbalanced if there exists a side S ⊆ V

of some Steiner mincut satisfying 1 ≤ |S ∩U | ≤ k. More specifically, we say that U is
k-unbalanced with witness S. The subset U ⊆ T is k-balanced if there exists a Steiner
mincut whose two sides S1, S2 satisfy |Si ∩ U | ≥ k for both i = 1, 2. More specifically,
we say that U is k-balanced with witness (S1, S2).

We will only use this definition for subsets U ⊆ T that span both sides of some Steiner
mincut, i.e., S ∩ U 6= ∅ and (V \ S) ∩ U 6= ∅ for some Steiner mincut S. By definition, such
a subset U ⊆ T is either k-unbalanced or k-balanced (or possibly both, if there are multiple
Steiner mincuts in the graph). If U is k-unbalanced with witness S for some k = polylog(n),
then the algorithm computes a family F of subsets of U of size kO(1)polylog(n) = polylog(n)

such that some subset R ∈ F satisfies |R ∩ S| = 1. The algorithm then executes the
isolating cuts lemma (Lemma 2.2.2) on each subset in F , guaranteeing that the target set
R is processed and the Steiner mincut is found. Otherwise, U must be k-balanced with
some witness (S1, S2). In this case, the algorithm computes a subset U ′ ⊆ U such that
|U ′| ≤ |U |/2 and both S1 ∩ U ′ 6= ∅ and S2 ∩ U ′ 6= ∅. Of course, the algorithm does not
know which case actually occurs, so it executes both branches. But the second branch can
only happen O(log n) times before |U | ≤ k, at which point we can simply run (s, t) min-cut
between all vertex pairs in U .

The algorithm is presented in Algorithm 1.

3.3.1 Unbalanced Case

In this section, we solve the case when U is k-unbalanced (line 4) for some fixed k =

polylog(n).

29

Algorithm 1 Deterministic Steiner mincut on (G = (V,E))

1: U ← T
2: k ← C logC n for a sufficiently large constant C = O(1/ε4)
3: while |U | ≥ k do
4: Run Lemma 3.3.3 on U . Handles case when U is k-unbalanced (see

Definition 3.3.2)
5: Compute U ′ from U according to Lemma 3.3.7 . Handles case when U is k-balanced
6: Update U ← U ′ . |U | shrinks by at least factor 2

7: for each pair of distinct s, t ∈ U do
8: Compute min (s, t) cut in G
9: return smallest cut seen in lines 4 and 8

Lemma 3.3.3: Unbalanced case

Consider a graphG = (V,E), a parameter k ≥ 1, and a k-unbalanced set U ⊆ T . Then,
we can compute the Steiner mincut in kO(1)polylog(n) (s, t) max-flow computations
plus Õ(m) deterministic time.

Our goal is to de-randomize the simple random process of sampling each vertex indepen-
dently with probability 1/k. We compute a deterministic family of subsets R ⊆ U such that
for any subset S satisfying |S ∩ U | ≤ k (in particular, for the Steiner mincut witnessing the
fact that U is k-unbalanced), there exists a subset R in the family with |R∩S| = 1. We call
such a subset R an isolator.

Lemma 3.3.4: Deterministic isolator

For every n and k < n, there is a deterministic algorithm that constructs a family F
of subsets of [n] such that, for every non-empty subset S ⊆ [n] of size at most k, there
exists a set T ∈ F with |S ∩T | = 1. The family F has size kO(1) log n, every set in the
family has at least two elements, and the algorithm takes kO(1)n log n time.

Before we prove Lemma 3.3.4, we first show why it implies an algorithm for the unbal-
anced case as promised by Lemma 3.3.3.
Proof of Lemma 3.3.3. Let S be the Steiner mincut witnessing the fact that U is
k-unbalanced. Apply Lemma 3.3.4 with parameters n = |U | and k. Map the elements
of [n] onto U , obtaining a family F of subsets of U such that for any set S ′ ⊆ U with
|S ′| ≤ k, there exists a set R ∈ F with |R| ≥ 2 and |R ∩ S ′| = 1. In particular, for the
set S ′ = S ∩ U , there exists R ∈ F with 1 = |R ∩ S ′| = |R ∩ (S ∩ U)| = |R ∩ S|. Invoke
Lemma 2.2.2 on the set R to obtain, for each v ∈ R, a set Sv satisfying Sv ∩ R = {v} that
minimizes w(∂Sv), along with the value w(∂Sv). Finally, output the set Sv with minimum
value of w(∂Sv). To show that Sv is a Steiner mincut of graph G, it suffices to verify that
Sv is a valid cut (that is, ∅ (Sv (V), and that w(∂Sv) ≤ w(∂S).

30

Since |R| ≥ 2, the set Sv satisfies ∅ (Sv (R, so it is a cut of the graph G. Since
|R ∩ S| = 1, for the vertex u ∈ U with R ∩ S = {u}, the set S satisfies the constraints
for Su. In particular, w(∂Su) ≤ w(∂S). We output the set Sv minimizing w(∂Sv), so
w(∂Sv) ≤ w(∂Su) ≤ w(∂S), as promised.

The rest of this section focuses on proving Lemma 3.3.4. We first prove an easier variant,
where we do not insist that every set in the family has at least two elements.

Lemma 3.3.5: Deterministic isolator, singletons allowed

For every n and k, there is a deterministic algorithm that constructs a family F of
subsets of [n] such that, for each subset S ⊆ [n] of size at most k, there exists a set
T ∈ F with |S ∩ T | = 1. The family F has size kO(1) log n and the algorithm takes
kO(1)n log n time.

To prove Lemma 3.3.5, we use the following de-randomization building block due to [7].
The theorem below is from [31], who state it in terms of (n, k, k2)-splitters (which we will
not define here for simplicity).

Theorem 3.3.6: Deterministic splitters (Theorem 5.16 from [31])

For any n, k ≥ 1, one can construct a family of functions from [n] to [k2] such that for
every set S ⊆ [n] of size k, there exists a function f in the family whose values f(i)

are distinct over all i ∈ S. The family has size kO(1) log n and the algorithm takes time
kO(1)n log n.

Proof of Lemma 3.3.5. Apply Theorem 3.3.6 to n and k, and for each function f : [n]→ [k2]

in the constructed family, add the sets f−1(j) for all j ∈ [k2] to our family F of subsets of
[n]. Fix any set S ⊆ [n] of size k. For the function f guaranteed by Theorem 3.3.6 for this
set S, we have |f−1(f(i)) ∩ S| = 1 for any i ∈ S. Therefore, setting T = f(i) for any i ∈ S
suffices.

This only handles subsets S ⊆ [n] of size exactly k, but we can repeat the above con-
struction for each positive integer k′ ≤ k. The total size and running time go up by a factor
of k, which is absorbed by the kO(1) factors.

Finally, to prove Lemma 3.3.4, we add the condition that F cannot contain sets of size
at most 1. Here, we will impose the additional constraint that k < n.
Proof of Lemma 3.3.4. The only difference in the output is that F must contain no sets of
size at most 1. Apply Lemma 3.3.5 to n and k to obtain a family F0. Initialize a set F as
F0 minus all subsets of size at most 1. For each singleton set {x} ∈ F0, choose k arbitrary
elements in [n] \ x, and for each chosen element y, add the set {x, y} to F . The total size
of F increases by at most a factor k. Now consider a subset S ⊆ [n] of size at most k, and
let T be a set in F0 with |S ∩ T | = 1, as promised by Lemma 3.3.5. If |T | > 1, then T ∈ F
as well. Otherwise, if T = {x}, then since |S \ x| < k and we chose k elements y ∈ [n] \ x,

31

there exists some chosen y /∈ S for which {x, y} was added to F . This set {x, y} satisfies
|S ∩ {x, y}| = 1.

3.3.2 Balanced Case: Sparsifying U

If U is k-balanced, then we compute a subset U ′ ⊆ U of size at most |U |/2 using expander
decompositions, while preserving the condition that U ′ spans both sides of some Steiner
mincut. This section is dedicated to proving the following lemma:

Lemma 3.3.7: Deterministic sparsification of U

Fix any constant ε > 0. Then, there is a constant C = O(1/ε4) such that the following
holds. Consider a graph G = (V,E), a parameter φ ≤ 1/(C logC n), and a set U ⊆ V

of vertices that is (1 + 1/φ)3-balanced with witness (S1, S2). Then, we can compute in
deterministic O(m1+ε) time a set U ′ ⊆ U with |U ′| ≤ |U |/2 such that Si ∩ U ′ 6= ∅ for
both i = 1, 2.

Deterministic expander decomposition. Our main tool will be deterministic expander
decompositions with custom demands, a generalization of standard expander decompositions.
We first introduce some new notation. Let G = (V,E) be a weighted, undirected graph. For
disjoint vertex subsets V1, . . . , V` ⊆ V , define E(V1, . . . , V`) as the set of edges (u, v) ∈ E

with u ∈ Vi and v ∈ Vj for some i 6= j. Recall that w(F) is the sum of weights of edges
in F ; i.e., w(E(V1, . . . , V`)) is the sum of weights of edges with endpoints in different vertex
sets in V1, V2, . . . , V`. In particular, for a cut (A,B), we denote the edges in the cut both by
E(A,B) as well as the previously introduced notation ∂A (or ∂B), and the weight of the cut
is correspondingly denoted w(E(A,B)) as well as w(∂A) (or w(∂B)). For a vector d ∈ RV

of entries on the vertices, define d(v) as the entry of v in d, and for a subset U ⊆ V , define
d(U) :=

∑
v∈U d(v).

We now introduce the concept of an expander “weighted” by custom demands on the
vertices.

Definition 3.3.8: (φ,d)-expander

Consider a weighted, undirected graph G = (V,E) with edge weights w and a vector
d ∈ RV

≥0 of non-negative “demands” on the vertices. The graph G is a (φ,d)-expander
if for all subsets S ⊆ V ,

w(∂S)

min{d(S),d(V \ S)}
≥ φ.

Intuitively, to capture the intersection of a set with U , we will place demand λ at each
vertex v ∈ U , where λ is the weight of the Steiner mincut, and demand 0 at the remaining

32

vertices. We now state the deterministic algorithm of [27] that computes our desired expander
decomposition.

Theorem 3.3.9: Deterministic (φ,d)-expander decomposition

Fix any constant ε > 0 and any parameter φ > 0. Given a weighted, undirected graph
G = (V,E) with edge weights w and a non-negative demand vector d ∈ RV

≥0 on the
vertices, there is a deterministic algorithm running in O(m1+ε) time that partitions V
into subsets V1, . . . , V` such that

1. For each i ∈ [`], define the demands di ∈ RVi
≥0 as di(v) = d(v)+w(E({v}, V \Vi))

for all v ∈ Vi. Then, the graph G[Vi] is a (φ,di)-expander.

2. The total weight w(E(V1, . . . , V`)) of inter-cluster edges is Bφd(V) where B =

(lg n)O(1/ε4).

Sparsification Algorithm. Let λ̃ ∈ [λ, 3λ] be a 3-approximation to the Steiner mincut
value λ, which can be computed in deterministic Õ(m) time using the (2+ δ)-approximation
algorithm of Matula (for any δ > 0) [80]. Set φ := 1/(C logC n) for a sufficiently large con-
stant C > 0, and let ε > 0 be the constant fixed by Theorem 3.3.1. We apply Theorem 3.3.9
to G with parameters ε, φ and the demand vector d ∈ RV

≥0 satisfying d(v) = λ̃ for all v ∈ U
and d(v) = 0 for all v ∈ V \ U . Observe that d(V) = |U | · λ̃ ≤ |U | · 3λ. Let V1, . . . , V` ⊆ V

be the output, and for each i ∈ [`], define Ui := Vi ∩ U .
We now describe the procedure to select the subset U ′ ⊆ U . We say that a cluster Vi

is trivial if Ui = ∅, small if 1 ≤ |Ui| ≤ 1/φ2, and large if |Ui| > 1/φ2. The algorithm for
selecting the set U ′ is simple:

– for each trivial cluster, do nothing;

– for each small cluster Vi, add an arbitrary vertex of Ui to U ′;

– for each large cluster Vj, add 1 + 1/φ arbitrary vertices of Uj to U ′.

Size bound. First, we prove the desired size bound of the sparsified set U ′, which is one
part of Lemma 3.3.7.

Claim 3.3.10: Number of clusters

There are at most Bφ|U | many clusters; that is, ` ≤ Bφ|U | where B = (lg n)O(1/ε4).

Proof. Since λ is the Steiner mincut value of graph G, each cluster Vi has w(∂Vi) ≥ λ, so
the total weight of inter-cluster edges is at least `λ/2. By the guarantee of Theorem 3.3.9,
the total weight of inter-cluster edges is at most

Bφd(V) = Bφ|U |λ̃ ≤ Bφ|U |λ,

33

where B = (lg n)O(1/ε4). Putting these together gives ` ≤ Bφ|U | as desired.

Corollary 3.3.11: Size bound

There exists a constant C = O(1/ε4) such that if φ ≤ 1/(C logC n), then the set U ′

constructed by the sparsification algorithm satisfies |U ′| ≤ |U |/2.

Proof. There are at most Bφ|U | small clusters by Claim 3.3.10. Also, there are at most
φ2|U | large clusters since each large cluster has at least φ2 vertices in U . This gives

|U ′| ≤ Bφ|U |+ φ2|U | · (1 + 1/φ)

≤ O(Bφ|U |) ≤ φ|U | · C
2

logC n

for an appropriate constant C = O(B) = O(1/ε4). Since φ ≤ 1/(C logC n), we have

|U ′| ≤ φ|U | · C
2

logC n ≤ |U |/2.

Hitting both sides of the Steiner mincut. Now, we prove the “hitting” property of the
sparsified set U ′ in Lemma 3.3.7, namely the guarantee that Si ∩ U ′ 6= ∅ for both i = 1, 2.

The claim below says that the Steiner mincut (A,B) cannot cut too “deeply” into the
sets Ui. In particular, if a set Ui is large (say, |Ui| � 1/φ), then the Steiner mincut cannot
cut Ui evenly in the sense that |Ui∩A| ≈ |Ui∩B|; instead, we either have |Ui∩A| � |Ui∩B|
or |Ui ∩ A| � |Ui ∩B|.

Claim 3.3.12

For any cut (A,B) of G, we have∑
i∈[`]

min{|Ui ∩ A|, |Ui ∩B|} ≤
w(E(A,B))

φλ
,

where Ui := Vi ∩ U for i ∈ [`].

Proof. Since G[Vi] is a (φ,di)-expander, and since di(S) ≥ d(S) = |U ∩ S| · λ̃ ≥ |U ∩ S| · λ
for all subsets S ⊆ Vi, we have

w(E(Vi ∩ A, Vi ∩B))

min{|U ∩ (Vi ∩ A)| · λ, |U ∩ (Vi ∩B)| · λ}

≥ w(E(Vi ∩ A, Vi ∩B))

min{di(Ui ∩ A),di(Ui ∩B)}
≥ φ.

34

This means that
min{|Ui ∩ A| · λ, |Ui ∩B| · λ}

= min{|U ∩ (Vi ∩ A)| · λ, |U ∩ (Vi ∩B)| · λ}

≤ w(E(Ui ∩ A,Ui ∩B))

φ
.

Since E(Vi ∩ A, Vi ∩B) is contained in E(A,B) and is disjoint over all i, we have∑
i∈[`]

w(E(Vi ∩ A, Vi ∩B)) ≤ w(E(A,B)).

Putting things together, ∑
i∈[`]

min{|Ui ∩ A|, |Ui ∩B|}

≤ 1

λ

∑
i∈[`]

w(E(Vi ∩ A, Vi ∩B))

φ

≤ w(E(A,B))

φλ
.

We say that a cut C cuts a cluster Vi if both C ∩ Vi and Vi \C are non-empty. The next
claim states that the Steiner mincut can only cut a few clusters Vi, i.e., only a few clusters Vi
overlap both sides of the Steiner mincut. This implies that for the sets Ui ⊆ Vi in particular,
all but a few of them satisfy Ui ∩ A = ∅ or Ui ∩B = ∅.

Claim 3.3.13

Let C be one side of a Steiner mincut (i.e., w(∂C) = λ). Then, C cuts at most (1+1/φ)

clusters Vi.

Proof. Suppose for contradiction that C cuts more than (1 + 1/φ) clusters. Fix a cluster Vi
that is cut, and letAi andBi be C∩Vi and Vi\C (possibly swapped) so that w(E(Ai, V \Vi)) ≤
w(E(Bi, V \ Vi)). The edges E(Ai, Bi) are contained in ∂C, and across different clusters Vi
that are cut, the edges E(Ai, Bi) are disjoint, so∑

i

w(E(Ai, Bi)) ≤ w(∂C) = λ.

Since C cuts more than (1 + 1/φ) clusters, there exists a cluster Vi with

w(E(Ai, Bi)) <
w(∂C)

1 + 1/φ
=

λ

1 + 1/φ
.

35

For all subsets S ⊆ Vi, we have

di(S) ≥
∑
v∈S

w(E({v}, V \ Vi)) = w(E(S, V \ Vi)).

Since G[Vi] is a (φ,di)-expander,

w(E(Ai, Bi))

≥ φ ·min{di(Ai),di(Bi)}
≥ φ ·min{w(E(Ai, V \ Vi)), w(E(Bi.V \ Vi))}
= φ · w(E(Ai, V \ Vi)).

Consider the cut ∂Ai, which satisfies

w(∂Ai) = w(E(Ai, Bi)) + w(E(Ai, V \ Vi))

≤ w(E(Ai, Bi)) +
1

φ
w(E(Ai, Bi))

=

(
1 +

1

φ

)
w(E(Ai, Bi)) < λ,

contradicting the fact that C is the Steiner mincut.

Finally, we prove the “hitting” property of the sparsified set U ′. This, along with Corol-
lary 3.3.11, finishes the proof of Lemma 3.3.7.

Lemma 3.3.14: Hitting property

Suppose that U is (1 + 1/φ)3-balanced with witness (S1, S2). Then, for the set U ′

constructed by the sparsification algorithm, we have Si ∩ U ′ 6= ∅ for both i = 1, 2.

Proof. For each cluster Vi, by Claim 3.3.12,

min{|Ui ∩ A|, |Ui ∩B|} ≤
w(E(A,B))

φλ
≤ 1

φ
.

In other words, either |S1 ∩ Ui| ≤ 1/φ or |S2 ∩ Ui| ≤ 1/φ. Call a cluster Vi:
1. white if S1 ∩ Ui = ∅ (i.e., Ui ⊆ S2).
2. light gray if 0 < |S1 ∩ Ui| ≤ |S2 ∩ Ui| < |Ui|, which implies that 0 < |S1 ∩ Ui| ≤ 1/φ.
3. dark gray if 0 < |S2 ∩ Ui| < |S1 ∩ Ui| < |Ui|, which implies that 0 < |S2 ∩ Ui| ≤ 1/φ.
4. black if S2 ∩ Ui = ∅ (i.e., Ui ⊆ S1).

Every cluster must be one of the four colors, and by Claim 3.3.13, there are at most (1+1/φ)

(light or dark) gray clusters since Ui ∩ S1, Ui ∩ S2 6= ∅ implies that S1 cuts cluster Vi. Note
that since we are only considering clusters Vi such that Ui 6= ∅, it must be that for a white

36

cluster, we have |S2∩Ui| 6= ∅, and similarly, for a black cluster, we have |S1∩Ui| 6= ∅. There
are now a few cases:

1. There are no large clusters. In this case, if there is at least one white and one black
small cluster, then the vertices from these clusters added to U ′ are in S2 and S1,
respectively. Otherwise, assume w.l.o.g. that there are no black clusters. Since there
are at most (1 + 1/φ) gray clusters in total, |S1 ∩ U | ≤ (1 + 1/φ) · 1/φ2, contradicting
our assumption that min{|S1 ∩ U |, |S2 ∩ U |} ≥ (1 + 1/φ)3.

2. There are large clusters, but all of them are white or light gray. Let Vi be a large
white or light gray cluster. Since we select 1 + 1/φ vertices of Ui, and |S1 ∩ Ui| =

min{|S1∩Ui|, |S2∩Ui|} ≤ 1/φ, we must select at least one vertex not in S1. Therefore,
S2 ∩ U ′ 6= ∅. If there is at least one black cluster, then the selected vertex in there is
in U ′, so S1 ∩ U ′ 6= ∅ too, and we are done.
So, assume that there is no black cluster. Since all large clusters are light gray (or
white), |S1 ∩ Ui| ≤ 1/φ for all large clusters Vi. Moreover, by definition of small
clusters, |S1 ∩ Ui| ≤ |Ui| ≤ 1/φ2 for all small clusters Vi. Since there are at most
(1 + 1/φ) gray clusters by Claim 3.3.13,

|S1 ∩ U | =
∑

i:Vi small

|S1 ∩ Ui|+
∑

i:Vi large

|S1 ∩ Ui|

≤
(

1 +
1

φ

)
· 1

φ2
+

(
1 +

1

φ

)
· 1

φ

= 2

(
1 +

1

φ

)
· 1

φ
<

(
1 +

1

φ

)3

,

a contradiction.
3. There are large clusters, but all of them are black or dark gray. This is symmetric to

case (2) above with S1 replaced with S2.
4. There is at least one black or dark gray large cluster Vi, and at least one white or

light gray large cluster Vj. In this case, since we select 1 + 1/φ vertices of Ui and
|S2 ∩ Ui| = min{|S1 ∩ Ui|, |S2 ∩ Ui||} ≤ 1/φ, we must select at least one vertex in S1.
Similarly, we must select at least one vertex in Uj that is in S2.

3.4 Conclusion

In this chapter, we established an equivalence between the Steiner mincut and (s, t)-mincut
problems, up to polylogarithmic factors for randomized algorithms and no(1) factors for de-
terministic. One immediate question is whether the deterministic reduction can improved to
a polylogarithmic overhead. With the current approach, this essentially reduces to whether
deterministic expander decompositions can be computed with polylog(n) guarantees every-

37

where. As previously discussed in Section 8.9, such an improvement would require sig-
nificantly new ideas. Alternatively, it may be possible to use more powerful tools from
de-randomization to bypass expander decompositions altogether.

On the applications side, the Steiner mincut was historically studied in the context of
computing a Gomory-Hu tree [16]. It had not seen much action elsewhere due to the pro-
hibitive running time of past algorithms for the problem. Now that Steiner mincut can
be solved much more efficiently, we expect more algorithms to use Steiner mincut as an
important primitive.

38

Chapter 4

Gomory-Hu Tree

In this section, we discuss our algorithms for computing a Gomory-Hu tree [71], a classic
data structure that encodes all pairwise (s, t)-mincuts in the form of a single tree. That
is, an algorithm computing the Gomory-Hu tree can also answer all-pairs (s, t)-mincuts,
which is itself a fundamental problem on graphs. We approach the Gomory-Hu tree problem
from a locality perspective, combining the isolating cuts lemma (Lemma 2.2.2) and random
sampling in a similar way to the Steiner mincut algorithm of Section 3.2.

Our Gomory-Hu tree algorithms resemble Gomory and Hu’s original algorithm, which
iteratively computes (s, t)-mincuts and applies recursion on each side. However, instead of
computing a single (s, t)-mincut at each step, we compute multiple (s, t)-mincuts for a fixed
source s, ensuring that we make enough progress at each recursive step. This is where the
minimum isolating cuts algorithm becomes useful: it computes an isolating cut around each
terminal, giving us many candidate (s, t)-mincuts. However, the difficulty is in verifying
which of these cuts are truly (s, t)-mincuts for some t and which are not. In fact, we do
not know a verification procedure beyond trivially computing the (s, t)-mincut for each t.
Nevertheless, while we do not obtain a faster (exact) Gomory-Hu tree at the end, we are
able to reduce the problem down to this verification step, which we call single-source mincut
verification. This is a significant step towards obtaining faster Gomory-Hu tree algorithms,
since future endeavors at the Gomory-Hu tree problem can focus instead on this simpler,
seemingly more tractable single-source mincut verification.

If we are happy with an approximate Gomory-Hu tree, however, the verification step
can be bypassed entirely, leading to an algorithm in roughly max-flow time. To obtain
this algorithm, we define a core subroutine called the Cut Threshold problem: we are given
a source vertex and a real number λ called the cut threshold, and we want to output all
vertices whose mincut from the source is at least λ. We solve this problem through minimum
isolating cuts in a similar manner as above, and then apply the Cut Threshold subroutine to
obtain the approximate Gomory-Hu tree. Since our result, the Cut Threshold problem itself
has already seen another application to the edge-augmentation problem [19], suggesting that
it is a fundamental problem in its own right.

39

4.1 Background

Gomory-Hu trees originated from a classic result of Gomory and Hu [44], who showed that
by using just n− 1 max-flows, they could construct a tree T on the vertices of an undirected
graph G such that for every pair of vertices s and t, the (s, t) edge connectivity in T was
equal to that in G. In other words, the

(
n
2

)
pairs of vertices had at most n− 1 different edge

connectivities and they could be obtained using just n− 1 max-flow calls.
However, despite rapid advancements in cut and flow algorithms since then, the best

algorithm for constructing a GH-tree remains the one given by Gomory and Hu almost six
decades after their work. There have been alternatives suggested along the way, although
none of them unconditionally improves on the original construction. Bhalgat et al. [17] (see
also [50]) obtained an Õ(mn) algorithm for this problem, but only for unweighted graphs,
and Abboud et al. [2] improved this bound for sparse unweighted graphs to Õ(m3/2n1/6).

Due to the intractability of the general Gomory-Hu tree problem, there has been recent
action on obtaining approximate results. In a beautiful paper, Abboud et al. [3] showed that
the problem of finding all pairs edge connectivities (that a GH tree obtains) can be reduced
to polylog(n) instances of the single source mincut problem: given a fixed source vertex s,
find the (s, t)-mincut of s with every other vertex t. They solve the single source mincut
problem in Õ(n2) time by calling n − 1 approximate max-flows on an Õ(n)-sized sparsifier
of the graph, leading to a total running time of Õ(n2). However, they do not recover an
approximate Gomory-Hu tree; indeed, prior to our work, no nontrivial result on approximate
Gomory-Hu trees were known.

4.2 Our Results

We first study the traditional Gomory-Hu tree problem, defined below.

Definition 4.2.1: Gomory-Hu tree

Given an undirected graph G = (V,E), a Gomory-Hu tree is a weighted tree T on V
such that

• For all s, t ∈ V , consider the minimum-weight edge (u, v) on the unique s–t path
in T . Let U ′ be the vertices of the connected component of T − (u, v) containing
s. Then, the set U ′ ⊆ V is an (s, t)-mincut, and its value is the weight of the
(u, v) edge in T .

Our first result is a reduction from the Gomory-Hu tree problem to essentially verifying
a collection of (s, t)-mincuts sharing a common vertex s. We call this problem single-source
mincut verification.

40

Definition 4.2.2: Single-source mincut verification

The input to single-source mincut verification is a graph G = (V,E), a source vertex
s ∈ V , and a value λ̃v for each v ∈ V \ s such that λ̃v ≥ mincut(s, v). The task is to
determine, for each vertex v ∈ V \ s, whether or not λ̃v = mincut(s, v).

Theorem 4.2.3: Gomory-Hu tree reduces to single-source mincut verification

There is a randomized algorithm that outputs a Gomory-Hu tree of a weighted, undi-
rected graph w.h.p. It makes calls to single-source mincut verification on graphs with
a total of Õ(n) vertices and Õ(m) edges, and runs for max-flow time outside of these
calls.

Clearly, single-source mincut verification is no harder than computing a Gomory-Hu tree,
so the theorem above shows that the two problems are equivalent. Therefore, future efforts
at obtaining a faster Gomory-Hu tree algorithm may be directed instead at the single-source
mincut verification problem, which seems simpler and more tractable.

Unfortunately, we do not know how to solve single-source mincut verification faster than
the Õ(mn) time algorithm of Bhalgat et al. [16]. However, if we resort to approximations,
then we can do better, even on weighted graphs. We define the approximate version of
Gomory-Hu tree below.

Definition 4.2.4: Approximate Gomory-Hu tree

Given an undirected graph G = (V,E), a (1 + ε)-approximate Gomory-Hu tree is a
weighted tree T on V such that

• For all s, t ∈ V , consider the minimum-weight edge (u, v) on the unique s–t path
in T . Let U ′ be the vertices of the connected component of T − (u, v) containing
s. Then, the set U ′ ⊆ V is a (1 + ε)-approximate (s, t)-mincut, and its value is
the weight of the (u, v) edge in T .

Theorem 4.2.5: Approximate Gomory-Hu tree in max-flow time, weighted

Given a weighted, undirected graph, there is a randomized algorithm that w.h.p.,
outputs a (1 + ε)-approximate Gomory-Hu tree and runs in Õ(m) time plus calls to
exact max-flow on instances with a total of Õ(nε−1) vertices and Õ(nε−1) edges. Using
the Õ(m

√
n) time max-flow algorithm of Lee and Sidford [65], the algorithm runs in

Õ(m+ n3/2ε−1.5) time.

For unweighted graphs, we obtain the following result, which gives a better running time
for sparse graphs, assuming state-of-the-art max-flow algorithms.

41

Theorem 4.2.6: Approximate Gomory-Hu tree in max-flow time, unweighted

Let G be an unweighted, undirected graph. There is a randomized algorithm that
w.h.p., outputs a (1 + ε)-approximate Gomory-Hu tree and runs in Õ(m) time plus
calls to exact max-flow on unweighted instances with a total of Õ(nε−1) vertices and
Õ(mε−1) edges. Using the m4/3+o(1)-time max-flow algorithm for unweighted graphs
of Liu and Sidford [75], the algorithm runs in m4/3+o(1)ε−4/3 time.

We emphasize that we are reducing an approximate problem to calls of exact max-flow,
which is an important distinction in the proof. It is an open problem whether we can reduce
to approximate max-flow instead, which is solvable in near-linear time [96].

The approximate Gomory-Hu tree algorithms solve the following new problem as a sub-
routine. It looks basic enough that it may have future applications elsewhere, so we include
its definition and corresponding result in this introductory section.

Definition 4.2.7: Cut threshold

Given an undirected graph, a source vertex s ∈ V , and a value λ ≥ 0 called the
cut threshold, the cut threshold problem asks to compute all vertices v ∈ V \ s with
mincut(s, v) ≤ λ.

Theorem 4.2.8: Cut Threshold in max-flow time

There is an algorithm solving the cut threshold problem that runs in Õ(m) time plus
polylog(n) calls to max-flow instances on O(n)-vertex, O(m)-edge graphs.

4.3 Our Techniques

To sketch our main ideas, let us first think of the CT problem (Theorem 4.2.8). Note that
this theorem is already sufficient to obtain the improved the running times for the SSMC
and APMC problems, although obtaining a (1 + ε)-approximate GH tree needs additional
ideas. To solve the CT problem, our main tool is the isolating cuts lemma from Chapter 2.
We actually need a slightly stronger version of it in this chapter that guarantees minimal
(v,R \ v)-mincuts, along with a disjointness property. The proof is almost unchanged from
the original isolating cuts lemma (Lemma 2.2.2), so we skip the proof.

Note that this time, we require calls to (s, t) max-flow instead of (s, t)-mincut. This is
because a minimal (s, t)-mincut can be recovered from an (s, t) max-flow in linear time. The
change makes no difference in practice, since the state-of-the-art (s, t) max-flow and mincut
running times are the same.

We first describe our strategy for the reduction from GH tree to SSMC verification. For
now, fix an arbitrary source vertex s. Our goal is to compute a collection of disjoint sets

42

Sj ⊆ V such that each Sj is an (s, v)-mincut for some v with |Sj| ≤ n/2, and a total size
guarantee of

∑
j |Sj| = Ω(n/ log n). If we can do so, then we can split the graph along the

mincuts similarly to the standard recursive GH tree algorithm, obtaining recursive instances
of size at most n− Ω(n/ log n) each. This is enough to obtain a small recursion depth. (Of
course, we need to solve a Steiner version of GH tree in the recursive instances, but we leave
out that detail in this techniques section.)

Fix a GH tree T of the graph rooted at s, and let v be a vertex for which the subtree Tv of
T rooted at v is an (s, v)-mincut with nv ≤ n/2 vertices. Suppose we sample a set of vertices
from V \ s at rate 1/nv and define this sample with s added to it as R. Then, we invoke
the isolating cuts lemma with this set R, obtaining disjoint sets Su for each u ∈ R. We
call SSMC verification to check whether each set Su is an (s, u)-mincut, and we separately
check whether |Su| ≤ n/2, and if both checks pass, then we add Su to our collection of
subsets and mark all vertices in Su as added. How many vertices do we end up marking?
For simplicity, let us first ignore the |Su| ≤ n/2 check. Consider a vertex v and the subtree
Tv of T rooted at v. With constant probability, exactly one vertex from Tv is sampled in R,
and with probability Ω(1/nv), this sampled vertex is v itself. In that happens, the isolating
cuts lemma would return the s − v mincut, namely the cut represented by the edge (u, v)

in the GH tree, and this cut Sv would pass the SSMC verification check. This allows us
to mark the nv vertices in Tv. So, roughly speaking, we are able to mark nv vertices with
probability 1/nv in this case, so on average, a vertex in Tv is marked with at least constant
probability. Of course, we do not know the value of nv, but we separately try all sampling
levels in inverse powers of 2 and choose the sampling level with the most marked vertices.
We formalize and refine this argument to show that there is a sampling level for which we
can indeed mark Ω(n/ log n) vertices in expectation. Finally, we use an argument from [3]
that if s ∈ V is chosen uniformly at random, then the additional |Su| ≤ n/2 check still allows
us to mark Ω(n/ log n) vertices in expectation.

The algorithm for the cut threshold (CT) problem is similar, except that instead of
performing the |Su| ≤ n/2 and SSMC verification checks, we simply check whether w(∂Su) ≤
λ. We then use the CT algorithm as a “sieve” to obtain an approximate SSMC algorithm for
a given source s, which is to compute a (1 + ε)-approximate (s, v)-mincut for each v ∈ V \ s.
We start with mincut(s, v) for all vertices v ∈ V \{s} tentatively set to the maximum possible
edge connectivity (call it λmax). Next, we run the CT algorithm with λ = (1− ε)λmax. The
vertices v that are identified by this algorithm as having mincut(s, v) ≤ λ drop down to the
next level of the hierarchy, while the remaining vertices v′ are declared to have mincut(s, v′) ∈
((1− ε)λ, λ]. In the next level of the hierarchy, we again invoke the CT algorithm, but now
with λ equal to (1−ε) factor of the previous iteration. In this manner, we iteratively continue
moving down the hierarchy, cutting the threshold λ by a factor of (1− ε) in every step, until
the connectivity of all vertices has been determined.

Finally, we come to the problem of obtaining an approximate GH tree. The major
difficulty we face, compared to the exact GH tree case, is controlling the errors that propagate

43

in the recursive algorithm. Gomory and Hu’s original algorithm uses the following strategy:
find an (s, t)-mincut for any pair of vertices s and t, and recurse on the two sides of the cut in
separate subproblems where the other side of the cut is contracted to a single vertex. They
used submodularity of cuts to show that contracting one side of an (s, t)-mincut does not
change the connectivity between vertices on the other side. Moreover, they gave a procedure
for combining the two GH trees returned by the recursive calls into a single GH tree at
the end of the recursion. Ideally, we would like to use the same algorithm but replace an
exact (s, t)-mincut with an approximate one. But now, the connectivities in the recursive
subproblems are (additively) distorted by the approximation error of the (s, t)-mincut. This
imposes two additional restrictions. (a) First, the values of the (s, t)-mincuts identified in
the recursive algorithm must now be monotone non-decreasing with depth of the recursion
so that the approximation error on a larger (s, t)-mincut doesn’t get propagated to a smaller
s′ − t′ mincut further down in the recursion. (b) Second, the depth of recursion must now
be polylog(n) so that one can control the buildup of approximation error in the recursion
by setting the error parameter in a single step to be ε/polylog(n). Unfortunately, neither of
these conditions is met by Gomory and Hu’s algorithm. For instance, the recursion depth
can be n − 1 if each (s, t)-mincut is a degree cut. The order of (s, t)-mincut values in the
recursion is also arbitrary and depends on the choice of s and t in each step (which itself is
arbitrary).

Let us first consider condition (a). Instead of finding the (s, t)-mincut for an arbitrary
pair of terminal vertices s and t, suppose we found the Steiner mincut on the terminals,
i.e., the cut of smallest value that splits the terminals. This would also suffice in terms
of the framework since a Steiner mincut is also an (s, t)-mincut for some pair s, t. But, it
brings additional advantages: namely, we get the monotonicity in cut values with recursive
depth that we desire. At a high level, this is the idea that we implement: we use the CT
algorithm (with some technical modifications) where we set the threshold λ to the value of
the Steiner mincut, and identify a partitioning of the terminals where each subset of the
partition represents a (1 + ε) approximation to the Steiner mincut.

But, how do we achieve condition (b)? Fixing the vertex s in the invocation of the
SSMC algorithm, we can identify terminal vertices v that have mincut(s, v) ∈ ((1− ε)λ, λ],
where λ is the Steiner mincut. But, these approximate Steiner mincuts might be unbalanced
in terms of the number of vertices on the two sides of the cut. To understand the problem,
suppose there is a single Steiner mincut identified by the CT algorithm, and this cut is
the degree cut of s. Then, one subproblem contains all but one vertex in the next round
of recursion; consequently, the recursive depth can be high. We overcome this difficulty in
two steps. First, we ensure that the only “large” subproblem that we recurse on is the one
that contains s. This can be ensured by sampling O(log n) different vertices as s, which
boosts the probability that s is on the larger side of an unbalanced approximate Steiner
mincut. This ensures that in the recursion tree, we can only have a large recursive depth
along the path containing s. Next, we show that even though we are using an approximate

44

method for detemining mincuts, the approximation error only distorts the connectivities in
the subproblems not containing s. This ensures that the approximation errors can build
up only along paths in the recursion tree that have depth O(log n). Combining these two
techniques, we obtain our overall algorithm for an approximate GH tree.

4.4 Additional Preliminaries

For our algorithm, it is more convenient to work with Gomory-Hu Steiner trees, which are
more amenable to our recursive structure.

Definition 4.4.1: Gomory-Hu Steiner tree

Given a graph G = (V,E) and a set of terminals U ⊆ V , the Gomory-Hu Steiner tree
is a weighted tree T on the vertices U , together with a function f : V → U , such that

• For all s, t ∈ U , consider the minimum-weight edge (u, v) on the unique s–t path
in T . Let U ′ be the vertices of the connected component of T − (u, v) containing
s. Then, the set f−1(U ′) ⊆ V is an (s, t)-mincut, and its value is wT (u, v).

Definition 4.4.2: Approximate Gomory-Hu Steiner tree

Given a graph G = (V,E) and a set of terminals U ⊆ V , the (1 + ε)-approximate
Gomory-Hu Steiner tree is a weighted tree T on the vertices U , together with a function
f : V → U , such that

• For all s, t ∈ U , consider the minimum-weight edge (u, v) on the unique s–t path
in T . Let U ′ be the vertices of the connected component of T − (u, v) containing
s. Then, the set f−1(U ′) ⊆ V is a (1 + ε)-approximate (s, t)-mincut, and its
value is wT (u, v).

In our analysis, we use the notion of a minimal Gomory-Hu tree. We define this next.
Definition 4.4.3: Rooted minimal Gomory-Hu Steiner tree

Given a graph G = (V,E) and a set of terminals U ⊆ V , a rooted minimal Gomory-Hu
Steiner tree is a Gomory-Hu Steiner tree on U , rooted at some vertex r ∈ U , with the
following additional property:

(∗) For all t ∈ U \ {r}, consider the minimum-weight edge (u, v) on the unique r− t
path in T ; if there are multiple minimum weight edges, let (u, v) denote the
one that is closest to t. Let U ′ be the vertices of the connected component of
T − (u, v) containing r. Then, ∂Gf−1(U ′) ⊆ V is a minimal (r, t)-mincut, and
its value is wT (u, v).

The following theorem establishes the existence of a rooted minimal Gomory-Hu Steiner
tree rooted at any given vertex.

45

Theorem 4.4.4: Existence of rooted minimal Gomory-Hu Steiner tree

For any graph G = (V,E), terminals U ⊆ V , and root r ∈ U , there exists a rooted
minimal Gomory-Hu Steiner tree rooted at r.

Proof. Let ε > 0 be a small enough weight, and let G′ be the graph G with an additional
edge (r, v) of weight ε added for each v ∈ V \ {r}. (If the edge (r, v) already exists in G,
then increase its weight by ε instead.) If ε > 0 is small enough, then for all t ∈ V \ {r} and
S ⊆ V , if ∂G′S is an (r, t)-mincut in G′, then ∂GS is an (r, t)-mincut in G.

Let (T ′, f) be a Gomory-Hu Steiner tree for G′. We claim that it is essentially a minimal
Gomory-Hu Steiner tree for G, except that its edge weights need to be recomputed as mincuts
in G and not G′. More formally, let T be the tree T ′ with the following edge re-weighting:
for each edge (u, v) in T , take a connected component U ′ of T − (u, v) and reset the edge
weight of (u, v) to be w(∂Gf

−1(U ′)) and not w(∂G′f
−1(U ′)). We now claim that (T, f) is a

minimal Steiner Gomory-Hu tree for G.
We first show that (T, f) is a Gomory-Hu Steiner tree for G. Fix s, t ∈ U , let (u, v) be

the minimum-weight edge on the s–t path in T ′, and let U ′ be the vertices of the connected
component of T ′ − (u, v) containing s. Since (T ′, f) is a Gomory-Hu Steiner tree for G′,
we have that ∂G′f−1(U ′) is an (s, t)-mincut in G′. If ε > 0 is small enough, then by our
argument from before, ∂Gf−1(U ′) is also an (s, t)-mincut in G. By our edge re-weighting of
T , the edge (u, v) has the correct weight. Moreover, (u, v) is the minimum-weight edge on
the s–t path in T , since a smaller weight edge would contradict the fact that ∂Gf−1(U ′) is
an (s, t)-mincut.

We now show the additional property (∗) that makes (T, f) a minimal Gomory-Hu Steiner
tree. Fix t ∈ U \ {r}, and let (u, v) and U ′ be defined as in (∗), i.e., (u, v) is the minimum-
weight edge (u, v) on the r−t path that is closest to t, and U ′ is the vertices of the connected
component of T − (u, v) containing r. Since (T, f) is a Gomory-Hu Steiner tree for G, we
have that ∂Gf−1(U ′) is an (r, t)-mincut of value wT (u, v). Suppose for contradiction that
∂Gf

−1(U ′) is not a minimal (r, t)-mincut. Then, there exists S (f−1(U ′) such that ∂S is
also an (r, t)-mincut. By construction of G′, w(∂G′S) = w(∂GS) + |S|ε and w(∂G′f

−1(U ′)) =

w(∂Gf
−1(U ′)) + |f−1(U ′)|ε. We have w(∂GS) = w(∂Gf

−1(U ′)) and |S| < |f−1(U ′)|, so
w(∂G′S) < w(∂G′f

−1(U ′)). In other words, f−1(U ′) is not an (r, t)-mincut inG′, contradicting
the fact that (T ′, f) is a Gomory-Hu Steiner tree for G′. Therefore, property (∗) is satisfied,
concluding the proof.

4.5 Reducing to SSMC Verification

In this section, we prove Theorem 4.2.3. The GH tree algorithm is described in Algo-
rithm GHTree a few pages down.

46

4.5.1 A Single Recursive Step

Before we present Algorithm GHTree, we first consider the subprocedure GHTreeStep
that it uses on each recursive step.

Algorithm 2 GHTreeStep(G = (V,E), s, U)

1. Initialize R0 ← U and D ← ∅
2. For all i from 0 to blg |U |c do:

(a) Call Lemma 2.2.2 on T = Ri, obtaining disjoint sets Siv (the minimal (v,Ri \ v)-
mincut) for each v ∈ Ri.

(b) Call single-source mincut verification on graph G, source s, and values λ̃v =
w(∂Siv) for v ∈ Ri. (We do not care about any v /∈ Ri, so we can set λ̃v =∞ for
them.)

(c) LetDi ⊆ Ri be the union of Siv∩U over all v ∈ Ri\{s} satisfying λ̃v = mincut(s, v)
and |Siv ∩ U | ≤ |U |/2

(d) Ri+1 ← subsample of Ri where each vertex in Ri \ {s} is sampled independently
with probability 1/2, and s is sampled with probability 1

3. Return the largest set Di and the corresponding sets Siv over all v ∈ Ri \ {s} satisfying
the conditions in line 2c

Let D = D0 ∪ D1 ∪ · · · ∪ Dblg |U |c be the union of the sets Di as defined in Algo-
rithm GHTreeStep. Let D∗ be all vertices v ∈ U \ {s} for which there exists an (s, v)-
mincut whose v side has at most |U |/2 vertices in U . We now claim that D covers a large
fraction of vertices in D∗ in expectation.

Lemma 4.5.1: D covers a large fraction of D∗ in expectation

E[|D ∩D∗|] = Ω(|D∗|/ log |U |).

Proof. Consider a rooted minimal Steiner Gomory-Hu tree T of G on terminals U rooted at
s, which exists by Theorem 4.4.4. For each vertex v ∈ U \ {s}, let r(v) be defined as the
child vertex of the lowest weight edge on the path from v to s in T . If there are multiple
lowest weight edges, choose the one with the maximum depth.

For each vertex v ∈ D∗, consider the subtree rooted at v, define Uv to be the vertices in
the subtree, and define nv as the number of vertices in the subtree. We say that a vertex
v ∈ D∗ is active if v ∈ Ri for i = blg nr(v)c. In addition, if Ur(v) ∩ Ri = {v}, then we say
that v hits all of the vertices in Ur(v) (including itself); see Figure 4.1. In particular, in order
for v to hit any other vertex, it must be active. For completeness, we say that any vertex in
U \D∗ is not active and does not hit any vertex.

To prove that E[|D|] ≥ Ω(|D∗|/ log |U |), we will show that
(a) each vertex u that is hit is in D,

47

uv

r(v)

Ur(v)

Figure 4.1: Let i = blg nr(v)c = blg 7c = 2, and let the red vertices be those sampled in R2.
Vertex v is active and hits u because v is the only vertex in Ur(v) that is red.

(b) the total number of pairs (u, v) for which v ∈ D∗ hits u is at least c|D∗| in expectation
for some small enough constant c > 0, and

(c) with probability at least 1 − c
2|U |2 (for the constant c > 0 in (b)), each vertex u is hit

by at most O(log |U |) vertices v ∈ D∗.
For (a), consider the vertex v that hits u. By definition, for i = blg nr(v)c, we have

Ur(v)∩Ri = {v}, so ∂f−1(Ur(v)) is a (v,Ri \ {v})-cut. By the definition of r(v), we have that
∂f−1(Ur(v)) is a (v, s)-mincut. On the other hand, we have that ∂Siv is a (v,Ri \{v})-mincut,
so in particular, it is a (v, s)-cut. It follows that ∂f−1(Ur(v)) and ∂Siv are both (v, s)-mincuts
and (v,Ri \ v)-mincuts, and w(∂Siv) = mincut(s, v) ≤ W . Since T is a minimal Gomory-Hu
Steiner tree, we must have f−1(Ur(v)) ⊆ Siv. Since Siv is the minimal (v,Ri \ {v})-mincut, it
is also the minimal (v, s)-mincut, so Siv ⊆ f−1(Ur(v)). It follows that f−1(Ur(v)) = Siv. Since
f−1(Ur(v)) is the minimal (v, s)-mincut and v ∈ D∗, we must have |f−1(Ur(v))∩U | ≤ z, so in
particular, |Siv∩U | = |f−1(Ur(v))∩U | ≤ z. Therefore, the vertex v satisfies all the conditions
of line 2c. Moreover, since u ∈ Ur(v) ⊆ f−1(Ur(v)) = Siv, vertex u is added to D in the set
Siv ∩ U .

For (b), for i = blg nr(v)c, we have v ∈ Ri with probability exactly 1/2i = Θ(1/nr(v)),
and with probability Ω(1), no other vertex in Ur(v) joins Ri. Therefore, v is active with
probability Ω(1/nr(v)). Conditioned on v being active, it hits exactly nr(v) many vertices. It
follows that v hits Ω(1) vertices in expectation.

For (c), the number of vertices v that hit vertex u is at most the number of active vertices
v for which r(v) is on the path from u to s in T . Label these vertices u = v1, v2, . . . , v` = s,
ordered by increasing distance from u to r(vi) in T . Each vertex vj ∈ D∗ is active with
probability Θ(1/nr(vj)), which is at most Θ(1/j) since v1, . . . , vj ∈ Ur(vj). Each vertex vj /∈ D∗
is never active. Therefore, the expected number of active vertices on the path from u to s

48

is at most
∑`

j=1 Θ(1/j) = Θ(ln `) ≤ Θ(ln |U |). A standard Chernoff bound shows that with
probability at least 1 − c

2|U |3 for any constant c > 0, the number of active vertices on the
path is indeed O(ln |U |), where the O(·) hides the dependency on c. Taking a union bound
over all u ∈ U , the probability that this is true for all vertices is at least 1− c

2|U |2 .
Finally, we show why properties (a) to (c) imply E[|D|] ≥ Ω(|D∗|/ log |U |). In the event

that property (c) fails, the total number of pairs (u, v) for which v hits u can be trivially upper
bounded by |U |2. Since this occurs with probability at most c

2|U |2 , the total contribution to
the expectation c|D∗| in property (b) is at most c/2. Therefore, the contribution to the
expectation in the event that property (c) succeeds is at least c|D∗| − c/2 ≥ (c/2)|D∗|. In
this case, since each vertex is hit at most O(log |U |) times, there are at least Ω(|D∗|/ log |U |)
vertices hit in expectation.

The corollary below immediately follows. Note that the sets Siv output by the algorithm
are disjoint, which we require in the recursive GH tree algorithm.

Corollary 4.5.2: The largest Di covers a large fraction of D∗ in expectation

The largest setDi returned by GHTreeStep satisfies E[|Di∩D∗|] = Ω(|D∗|/ log2 |U |).

4.5.2 The Gomory-Hu Tree Algorithm

The Gomory-Hu tree algorithm is presented in GHTree, which uses GHTreeStep as a
subprocedure on each recursive step.

Correctness. Algorithm GHTree has the same recursive structure as Gomory and Hu’s
original algorithm, except that it computes multiple mincuts on each step. Therefore, cor-
rectness of the algorithm follows similarly to their analysis. For completeness, we include it
below.

Lemma 4.5.3: Correctness of Algorithm GHTree

Algorithm GHTree(G = (V,E), U) outputs a Gomory-Hu Steiner tree.

To prove Lemma 4.5.3, we first introduce a helper lemma.
Lemma 4.5.4: Mincuts in Glarge and mincuts in Ularge are preserved exactly

For any distinct vertices p, q ∈ Ularge, we have mincutGlarge(p, q) = mincutG(p, q). The
same holds with Ularge and Glarge replaced by Uv and Gv for any v ∈ Di.

Proof. Since Glarge is a contraction of G, we have mincutGlarge(p, q) ≥ mincutG(p, q). To show
the reverse inequality, fix any (p, q)-mincut in G, and let S be one side of the mincut. We
show that for each v ∈ Ri, either Siv ⊆ S or Siv ⊆ V \S. Assuming this, the cut ∂S stays intact
when the sets Siv are contracted to form Glarge, so mincutGlarge(p, q) ≤ w(∂S) = mincutG(p, q).

49

Algorithm 3 GHTree(G = (V,E), U)

1. s← uniformly random vertex in U
2. Call GHTreeStep(G, s, U) to obtain Di and the sets Siv (so that Di =

⋃
Siv ∩ U)

3. For each set Siv do: . Construct recursive graphs and apply recursion
(a) Let Gv be the graph G with vertices V \ Siv contracted to a single vertex xv . Siv

are disjoint
(b) Let Uv ← Siv ∩ U
(c) If |Uv| > 1, then recursively set (Tv, fv)← GHTree(Gv, Uv)

4. Let Glarge be the graph G with (disjoint) vertex sets Siv contracted to single vertices yv
for all v ∈ Di

5. Let Ularge ← U \Di

6. If |Uv| > 1, then recursively set (Tlarge, flarge)← GHTree(Glarge, Ularge)

7. Combine (Tlarge, flarge) and {(Tv, fv) : v ∈ Di} into (T, f) according to Combine

8. Return (T, f)

Algorithm 4 Combine((Tlarge, flarge), {(Tv, fv) : v ∈ Ri})
1: Construct T by starting with the disjoint union Tlarge ∪

⋃
v∈Ri Tv and, for each v ∈ Ri,

adding an edge between fv(xv) ∈ Uv and flarge(yv) ∈ Ularge of weight w(∂GS
i
v)

2: Construct f : V → U by f(v′) = flarge(v
′) if v′ ∈ Ularge and f(v′) = fv(v

′) if v′ ∈ Uv for
some v ∈ Ri

3: return (T, f)

50

Consider any v ∈ Ri, and suppose first that v ∈ S. Then, Siv ∩ S is still a (v,Ri \ v)-cut,
and Siv ∪ S is still a (p, q)-cut. By the submodularity of cuts,

w(∂GS
i
v) + w(∂GS) ≥ w(∂G(Siv ∪ S)) + w(∂G(Siv ∩ S)).

In particular, Siv ∩ S must be a minimum (v,Ri \ v)-cut. Since Siv is the minimal (v,Ri \ v)-
mincut, it follows that Siv ∩ S = Siv, or equivalently, Siv ⊆ S.

Suppose now that v /∈ S. In this case, we can swap p and q, and swap S and V \ S, and
repeat the above argument to get Siv ⊆ V \ S.

The argument for Uv and Gv is identical, and we skip the details.

Proof (Lemma 4.5.3). We apply induction on |U |. By induction, the recursive outputs
(Tlarge, flarge) and (Tv, fv) are Gomory-Hu Steiner trees. By definition, this means that for
all x, y ∈ Ularge and the minimum-weight edge (u, u′) on the x–y path in Tlarge, letting
U ′large ⊆ Ularge be the vertices of the connected component of Tlarge − (u, u′) containing x, we
have that f−1

large(U
′
large) is an (s, t)-mincut in Glarge with value is wT (u, u′). Define U ′ ⊆ U

as the vertices of the connected component of T − (u, u′) containing x. By construction of
(T, f) (lines 1 and 2), the set f−1(U ′) is simply f−1

large(U
′
large) with the vertex xlarge replaced

by V \ Silarge in the case that xlarge ∈ f−1(U ′). Since Glarge is simply G with all vertices
V \ Silarge contracted to xlarge, we conclude that wGlarge(∂f

−1
large(U

′
large)) = wG(∂f−1(U ′)). By

Lemma 4.5.4, we have mincutG(x, y) = mincutGlarge(x, y) are equal, so wG(∂f−1(U ′)) is an
(x, y)-mincut in G. In other words, the Gomory-Hu Steiner tree condition for (T, f) is
satisfied for all x, y ∈ Ularge. A similar argument handles the case x, y ∈ Uv for some v ∈ Ri.

There are two remaining cases: x ∈ Uv and y ∈ Ularge, and x ∈ Uv and y ∈ Uv′ for distinct
v, v′ ∈ Ri. Suppose first that x ∈ Uv and y ∈ Ularge. By considering which sides v and s lie
on the (x, y)-mincut, we have

w(∂GS) = mincut(x, y) ≥ min{mincut(x, v),mincut(v, s),mincut(s, y)}.

We now case on which of the three mincut values mincut(x, y) is greater than or equal to.
1. If mincut(x, y) ≥ mincut(v, s), then since Siv is a (v, s)-mincut that is also an (x, y)-cut,

we have mincut(x, y) = mincut(v, s). By construction, the edge (fv(xv), flarge(yv)) of
weight w(∂GS

i
v) = w(∂GS) is on the x − y path in T . There cannot be edges on the

x − t path in T of smaller weight, since each edge corresponds to a (s, t)-cut in G of
the same weight. Therefore, (fv(xv), flarge(yv)) is the minimum-weight edge on the s–t
path in T .

2. Suppose now that mincut(x, v) ≤ mincut(x, y) < mincut(v, s). The minimum-weight
edge e on the x− v path in Tv has weight mincut(x, v). This edge e cannot be on the
v−fv(xv) path in Tv, since otherwise, we would obtain a (v, xv)-cut of value mincut(x, v)

in Gv, which becomes a (v, s)-cut in G after expanding the contracted vertex xv; this
contradicts our assumption that mincut(x, v) < mincut(v, s). It follows that e is on the
x − fv(xv) path in Tv which, by construction, is also on the x − y path in T . Once

51

again, the x− y path cannot contain an edge of smaller weight.
3. The final case mincut(s, y) ≤ mincut(x, y) < mincut(v, s) is symmetric to case 2, except

we argue on Tlarge and Glarge instead of Tv and Gv.
Suppose now that x ∈ Uv and y ∈ Uv′ for distinct v, v′ ∈ Ri. By considering which sides

v, v′, s lie on the (x, y)-mincut, we have

w(∂GS) = mincut(x, y) ≥ min{mincut(x, v),mincut(v, s),mincut(s, v′),mincut(v′, y)}.

We now case on which of the four mincut values mincut(x, y) is greater than or equal to.
1. If mincut(x, y) ≥ mincut(v, s) or mincut(x, y) ≥ mincut(s, v′), then the argument is the

same as case 1 above.
2. If mincut(x, v) ≤ mincut(x, y) < mincut(v, s) or mincut(y, v′) ≤ mincut(x, y)

< mincut(v′, s), then the argument is the same as case 2 above.
This concludes all cases, and hence the proof.

Lemma 4.5.5: Recursion depth

W.h.p., the algorithm GHTree has maximum recursion depth O(log3 n).

Proof. By construction, each recursive instance (Gv, Uv) has |Uv| ≤ |U |/2. We use the
following lemma from [3].

Lemma 4.5.6: Random selection of s [3]

Suppose the source vertex s ∈ U is chosen uniformly at random. Then, E[|D∗|] =

Ω(|U | − 1).

By Corollary 4.5.2 and Lemma 4.5.6, over the randomness of s and GHTreeStep, we have

E[Di] ≥ Ω(E[|D∗|]/ log2 |U |) ≥ Ω((|U | − 1)/ log2 |U |),

so the recursive instance (Glarge, Ularge) satisfies E[|Ularge|] ≤ (1 − 1/ log2 |U |) · (|U | − 1).
Therefore, each recursive branch either has at most half the vertices in U , or has at most
a (1 − 1/ log2 |U |) fraction in expectation. It follows that w.h.p., all branches terminate by
O(log3 n) recursive calls.

Lemma 4.5.7: Running time

For an unweighted/weighted graph G = (V,E), and terminals U ⊆ V , GHTree(G, V)

takes time Õ(m) plus calls to max-flow on unweighted/weighted instances with a total
of Õ(n) vertices and Õ(m) edges.

Proof. For a given recursion level, consider the instances {(Gi, Ui,Wi)} across that level. By
construction, the terminals Ui partition U . Moreover, the total number of vertices over all

52

Gi is at most n + 2(|U | − 1) = O(n) since each branch creates 2 new vertices and there are
at most |U | − 1 branches.

To bound the total number of edges, we consider the unweighted and weighted cases
separately, starting with the unweighted case. The total number of new edges created is at
most the sum of weights of the edges in the final (1 + ε)-approximate Gomory-Hu Steiner
tree. For an unweighted graph, this is O(m) by the following well-known argument. Root
the Gomory-Hu Steiner tree T at any vertex r ∈ U ; for any v ∈ U \ r with parent u, the cut
∂{v} in G is a (u, v)-cut of value deg(v), so wT (u, v) ≤ deg(v). Overall, the sum of the edge
weights in T is at most

∑
v∈U deg(v) ≤ 2m.

For the weighted case, define a parent vertex in an instance as a vertex resulting from
either (1) contracting V \Siv in some previous recursive Gv call, or (2) contracting a compo-
nent containing a parent vertex in some previous recursive call. There are at most O(log n)

parent vertices: at most O(log n) can be created by (1) since each Gv call decreases |U | by a
constant factor, and (2) cannot increase the number of parent vertices. Therefore, the total
number of edges adjacent to parent vertices is at most O(log n) times the number of vertices.
Since there are O(n) vertices in a given recursion level, the total number of edges adjacent to
parent vertices is O(n log n) in this level. Next, we bound the number of edges not adjacent
to a parent vertex by m. To do so, we first show that on each instance, the total number
of these edges over all recursive calls produced by this instance is at most the total number
of such edges in this instance. Let P ⊆ V be the parent vertices; then, each Gv call has
exactly |E(G[Siv \ P])| edges not adjacent to parent vertices (in the recursive instance), and
the Glarge call has at most |E(G[V \P]) \

⋃
v E(G[Siv \P])|, and these sum to |E(G[V \P])|,

as promised. This implies that the total number of edges not adjacent to a parent vertex at
the next level is at most the total number at the previous level. Since the total number at
the first level is m, the bound follows.

Therefore, there areO(n) vertices and Õ(m) edges in each recursion level. By Lemma 4.5.5,
there are O(ε−1 log4 n) levels (since ∆ = 1 for an unweighted graph), for a total of Õ(nε−1)

vertices and Õ(mε−1) edges. In particular, the instances to the max-flow calls have Õ(nε−1)

vertices and Õ(mε−1) edges in total.

4.6 The Cut Threshold Algorithm

We now present the cut threshold (CT) algorithm, an important building block for the
approximate GH tree algorithm. We first describe a single step of the CutThreshold
algorithm (we call this CutThresholdStep).

We remark that throughout this section, we will always set z = ∞, so the constraint
|Siv ∩ U | ≤ z in line 4 can be ignored. However, the variable z will play a role in the next
section on computing a Gomory-Hu tree.

Let D = D0 ∪D1 ∪ · · · ∪Dblg |U |c be the union of the sets output by the algorithm. Let
D∗ be all vertices v ∈ U \ s for which there exists an (s, v)-cut of weight at most W whose

53

Algorithm 5 CutThresholdStep(G = (V,E), s, U,W, z)

1: Initialize R0 ← U and D ← ∅
2: for i from 0 to blg |U |c do
3: Compute minimum isolating cuts {Siv : v ∈ Ri} on inputs G and Ri

4: Let Di be the union of Siv ∩ U over all v ∈ Ri \ {s} satisfying w(∂Siv) ≤ W and
|Siv ∩ U | ≤ z

5: Ri+1 ← subsample of Ri where each vertex in Ri \{s} is sampled independently with
probability 1/2, and s is sampled with probability 1

6: return D0 ∪D1 ∪ · · · ∪Dblg |U |c

side containing v has at most z vertices in U .
The lemma below is similar to Lemma 4.5.1 and their proofs share a lot of overlap.

Lemma 4.6.1: D covers a large fraction of D∗ in expectation

D ⊆ D∗ and E[|D|] = Ω(|D∗|/ log |U |).

Proof. We first prove that D ⊆ D∗. Each vertex u ∈ D belongs to some Siv satisfying
w(∂Siv) ≤ W and |Siv ∩ U | ≤ z. In particular, ∂Siv is an (s, u)-cut with weight at most W
whose side Siv containing u has at most z vertices in U , so u ∈ D∗.

It remains to prove that E[|D|] ≥ Ω(|D∗|/ log |U |). Consider a rooted minimal Steiner
Gomory-Hu tree T of G on terminals U rooted at s, which exists by Theorem 4.4.4. For
each vertex v ∈ U \ {s}, let r(v) be defined as the child vertex of the lowest weight edge on
the path from v to s in T . If there are multiple lowest weight edges, choose the one with the
maximum depth.

For each vertex v ∈ D∗, consider the subtree rooted at v, define Uv ⊆ D∗ to be the
vertices in the subtree, and define nv as the number of vertices in the subtree. We say that
a vertex v ∈ D∗ is active if v ∈ Ri for i = blg nr(v)c. In addition, if Ur(v) ∩ Ri = {v},
then we say that v hits all of the vertices in Ur(v) (including itself); see Figure 4.1 again. In
particular, in order for v to hit any other vertex, it must be active. For completeness, we
say that any vertex in U \D∗ is not active and does not hit any vertex.

To prove that E[|D|] ≥ Ω(|D∗|/ log |U |), we will show that
(a) each vertex u that is hit is in D,
(b) the total number of pairs (u, v) for which v ∈ D∗ hits u is at least c|D∗| in expectation

for some small enough constant c > 0, and
(c) with probability at least 1 − c

2|U |2 (for the constant c > 0 in (b)), each vertex u is hit
by at most O(log |U |) vertices v ∈ D∗.

For (a), consider the path from u to the root s in T , and take any vertex v ∈ D∗ on
the path that is active (possibly u itself). Such a vertex must exist since u is hit by some
vertex. By definition, for i = blg nr(v)c, we have Ur(v) ∩ Ri = {v}, so ∂f−1(Ur(v)) is a
(v,Ri \ {v})-cut. By the definition of r(v), we have that ∂f−1(Ur(v)) is a (v, s)-mincut. On

54

the other hand, we have that ∂Siv is a (v,Ri \ {v})-mincut, so in particular, it is a (v, s)-
cut. It follows that ∂f−1(Ur(v)) and ∂Siv are both (v, s)-mincuts and (v,Ri \ v)-mincuts,
and w(∂Siv) = mincut(s, v) ≤ W . Since T is a minimal Gomory-Hu Steiner tree, we must
have f−1(Ur(v)) ⊆ Siv. Since Siv is the minimal (v,Ri \ {v})-mincut, it is also the minimal
(v, s)-mincut, so Siv ⊆ f−1(Ur(v)). It follows that f−1(Ur(v)) = Siv. Since f−1(Ur(v)) is the
minimal (v, s)-mincut and v ∈ D∗, we must have |f−1(Ur(v)) ∩ U | ≤ z, so in particular,
|Siv ∩U | = |f−1(Ur(v))∩U | ≤ z. Therefore, the vertex v satisfies all the conditions of line 2c.
Moreover, since u ∈ Ur(v) ⊆ f−1(Ur(v)) = Siv, vertex u is added to D in the set Siv ∩ U .

For (b), for i = blg nr(v)c, we have v ∈ Ri with probability exactly 1/2i = Θ(1/nr(v)),
and with probability Ω(1), no other vertex in Ur(v) joins Ri. Therefore, v is active with
probability Ω(1/nr(v)). Conditioned on v being active, it hits exactly nr(v) many vertices. It
follows that v hits Ω(1) vertices in expectation.

For (c), the number of vertices v that hit vertex u is at most the number of active vertices
v for which r(v) is on the path from u to s in T . Label these vertices u = v1, v2, . . . , v` = s,
ordered by increasing distance from u to r(vi) in T . Each vertex vj ∈ D∗ is active with
probability Θ(1/nr(vj)), which is at most Θ(1/j) since v1, . . . , vj ∈ Ur(vj). Each vertex vj /∈ D∗
is never active. Therefore, the expected number of active vertices on the path from u to s
is at most

∑`
j=1 Θ(1/j) = Θ(ln `) ≤ Θ(ln |U |). A standard Chernoff bound shows that with

probability at least 1 − c
2|U |3 for any constant c > 0, the number of active vertices on the

path is indeed O(ln |U |), where the O(·) hides the dependency on c. Taking a union bound
over all u ∈ U , the probability that this is true for all vertices is at least 1− c

2|U |2 .
Finally, we show why properties (a) to (c) imply

E[|D|] ≥ Ω(|D∗|/ log |U |). In the event that property (c) fails, the total number of pairs
(u, v) for which v hits u can be trivially upper bounded by |U |2. Since this occurs with
probability at most c

2|U |2 , the total contribution to the expectation c|D∗| in property (b) is
at most c/2. Therefore, the contribution to the expectation in the event that property (c)
succeeds is at least c|D∗| − c/2 ≥ (c/2)|D∗|. In this case, since each vertex is hit at most
O(log |U |) times, there are at least Ω(|D∗|/ log |U |) vertices hit in expectation, all of which
are included in D by property (a).

We now use iterate Algorithm CutThresholdStep to obtain the CutThreshold
algorithm:

Algorithm 6 CutThreshold(G = (V,E), s,W)

1: Initialize U ← V and Dtotal ← ∅
2: for O(log2 n) iterations do
3: Let D be the union of the sets output by CutThresholdStep(G, s, U,W,∞)
4: Update Dtotal ← Dtotal ∪D and U ← U \D
5: return Dtotal

55

Corollary 4.6.2: Correctness of CutThreshold

W.h.p., the output Dtotal of CutThreshold is exactly all vertices v ∈ U \ {s} for
which the (s, v)-mincut has weight at most W .

Proof. By Lemma 4.6.1, |U ∩D∗| decreases by Ω(|D∗|/ log n) in expectation. After O(log2 n)

iterations, we have E[|U ∩D∗|] ≤ 1/poly(n), so w.h.p., U ∩D∗ = ∅. Each vertex in D∗ that
is removed from U is added to Dtotal, and no vertices in U \D∗ are added to Dtotal, so w.h.p.,
the algorithm returns the correct set D∗.

In other words, CutThreshold is an algorithm that fulfills Theorem 4.2.8.

4.7 Approximate GH Tree

Let ε > 0 be a fixed parameter throughout the recursive algorithm. We present our approxi-
mate Steiner Gomory-Hu tree algorithm in ApproxSteinerGHTree below. See Figure 4.2
for a visual guide to the algorithm.

At a high level, the algorithm applies divide-and-conquer by cutting the graph along
sets Siv computed by CutThresholdStep, applying recursion to each piece, and stitching
the recursive Gomory-Hu trees together in the same way as the standard recursive Gomory-
Hu tree construction. To avoid complications, we only select sets Siv from a single level
i ∈ {0, 1, 2 . . . , blg |U |c}, which are guaranteed to be vertex-disjoint. Furthermore, instead of
selecting all sets {Siv : v ∈ Ri}, we only select those for which |Siv∩U | ≤ |U |/2; this allows us
to bound the recursion depth. By choosing the source s ∈ U at random, we guarantee that
in expectation, we do not exclude too many sets Siv. The chosen sets partition the graph into
disjoint sets of vertices (including the set of vertices outside of any chosen set Siv). We split
the graph along this partition a similar way to the standard Gomory-Hu tree construction:
for each set in the partition, contract all other vertices into a single vertex and recursively
compute the Steiner Gomory-Hu tree of the contracted graph. This gives us a collection of
Gomory-Hu Steiner trees, which we then stitch together into a single Gomory-Hu Steiner
tree in the standard way.

4.7.1 Approximation

Since the approximation factors can potentially add up down the recursion tree, we need
to bound the depth of the recursive algorithm. Here, there are two types of recursion: the
recursive calls (Gv, Uv), and the single call (Glarge, Ularge). Taking a branch down (Gv, Uv) is
easy: since |Uv| ≤ |U |/2, the algorithm can travel down such a branch at most lg |U | times.
The difficult part is in bounding the number of branches down (Glarge, Ularge). It turns out
that after polylog(n) consecutive branches down (Glarge, Ularge), the Steiner mincut increases
by factor (1 + ε), w.h.p.; we elaborate on this insight in Section 4.7.2, which concerns the

56

v1

Si
v1

Si
v2v2

Si
v3v3

xv2

xv1
xv3

fv2

fv3

fv1

Tv2

Tv3

Tv1

flarge

Tlarge

T

Gv2

Glarge

Gv3

Gv1

G

yv1

yv3

yv2

recursive graphs

Combine

Figure 4.2: Recursive construction of Glarge and Gv for v ∈ Ri
small. Here, Ri

small = {v1, v2, v3},
denoted by red vertices on the top left. The dotted blue curves on the right mark the
boundaries of the regions f−1

vi
(u) : u ∈ Uvi and f−1

vlarge
(u) : u ∈ Ularge. The light green edges

on the bottom left are the edges (fvi(xvi), flarge(yvi)) added on line 1 of Combine.

Algorithm 7 ApproxSteinerGHTree(G = (V,E), U)

1: λ← global Steiner mincut of G with terminals U
2: s← uniformly random vertex in U
3: Call CutThresholdStep(G, s, U, (1+ ε)λ, |U |/2), and let Rj and Sjv : v ∈ Rj (0 ≤ j ≤

lg |U |) be the intermediate variables in the algorithm
4: Let i ∈ {0, 1, . . . , blg |U |c} be the iteration maximizing

∣∣⋃
v∈Ri(S

i
v ∩ U)

∣∣
5: for each v ∈ Ri do . Construct recursive graphs and apply recursion
6: Let Gv be the graph G with vertices V \ Siv contracted to a single vertex xv . Siv are

disjoint
7: Let Uv ← Siv ∩ U
8: (Tv, fv)← ApproxSteinerGHTree(Gv, Uv)

9: Let Glarge be the graph G with (disjoint) vertex sets Siv contracted to single vertices yv
for all v ∈ Ri

10: Let Ularge ← U \
⋃
v∈Ri(S

i
v ∩ U)

11: (Tlarge, flarge)← ApproxSteinerGHTree(Glarge, Ularge)

12: Combine (Tlarge, flarge) and {(Tv, fv) : v ∈ Ri} into (T, f) according to Combine
13: return (T, f)

57

running time. Since the Steiner mincut can never decrease down any recursive branch, it
can increase by factor (1 + ε) at most ε−1polylog(n) log ∆ times. Thus, we have a bound of
ε−1polylog(n) log ∆ on the recursion depth, w.h.p.

This depth bound alone is not enough for the following reason: if the approximation
factor increase by (1 + ε) along each recursive branch, then the total approximation becomes
(1 + ε)ε

−1polylog(n) log ∆, which is no good because the (1 + ε) and ε−1 cancel each other.
Here, our key insight is that actually, the approximation factor does not distort at all down
(Glarge, Ularge). It may increase by factor (1+ ε) down any (Gv, Uv), but this can only happen
lg |U | times, giving us an approximation factor of (1 + ε)lg |U |, which is fine because we can
always retroactively replace ε with Θ(ε/ lg |U |) to obtain the desired (1 + ε).

The lemma below formalizes our insight that approximation factors are preserved down
the branch (Glarge, Ularge).

Lemma 4.7.1: Mincuts in Glarge are preserved exactly

For any distinct vertices p, q ∈ Ularge, we have
mincutGlarge(p, q) = mincutG(p, q).

Proof. Since Glarge is a contraction of G, we have
mincutGlarge(p, q) ≥ mincutG(p, q). To show the reverse inequality, fix any (p, q)-mincut in
G, and let S be one side of the mincut. We show that for each v ∈ Ri, either Siv ⊆ S or
Siv ⊆ V \ S. Assuming this, the cut ∂S stays intact when the sets Siv are contracted to form
Glarge, so mincutGlarge(p, q) ≤ w(∂S) = mincutG(p, q).

Consider any v ∈ Ri, and suppose first that v ∈ S. Then, Siv ∩ S is still a (v,Ri \ v)-cut,
and Siv ∪ S is still a (p, q)-cut. By the submodularity of cuts,

w(∂GS
i
v) + w(∂GS) ≥ w(∂G(Siv ∪ S)) + w(∂G(Siv ∩ S)).

In particular, Siv ∩ S must be a minimum (v,Ri \ v)-cut. Since Siv is the minimal (v,Ri \ v)-
mincut, it follows that Siv ∩ S = Siv, or equivalently, Siv ⊆ S.

Suppose now that v /∈ S. In this case, we can swap p and q, and swap S and V \ S, and
repeat the above argument to get Siv ⊆ V \ S.

Similarly, the lemma below says that approximation factors distort by at most (1 + ε)

down a (Gv, Uv) branch.

Lemma 4.7.2: Mincuts in Gv are preserved (1 + ε)-approximately

For any v ∈ Ri and any distinct vertices p, q ∈ Uv, we have mincutG(p, q) ≤
mincutGv(p, q) ≤ (1 + ε)mincutG(p, q).

Proof. The lower bound mincutG(p, q) ≤ mincutGv(p, q) holds because Gv is a contraction of
G, so we focus on the upper bound. Fix any (p, q)-mincut in G, and let S be the side of
the mincut not containing s (recall that s ∈ U and s /∈ Siv). Since Siv ∪ S is a (p, s)-cut

58

(it is also a (q, s)-cut), it is in particular a Steiner cut for terminals U , so w(Siv ∪ S) ≥ λ.
Also, w(Siv) ≤ (1 + ε)λ by the choice of the threshold (1 + ε)λ (line 3). Together with the
submodularity of cuts, we obtain

(1 + ε)λ+ w(∂GS) ≥ w(∂GS
i
v) + w(∂GS)

≥ w(∂G(Siv ∪ S)) + w(∂G(Siv ∩ S))

≥ λ+ w(∂G(Siv ∩ S)).

The set Siv ∩ S stays intact under the contraction from G to Gv, so w(∂Gv(S
i
v ∩ S)) =

w(∂G(Siv ∩ S)). Therefore,

mincutGv(p, q) ≤ w(∂Gv(S
i
v ∩ S))

= w(∂G(Siv ∩ S))

≤ w(∂GS) + ελ

≤ mincutG(p, q) + εmincutG(p, q),

as promised.

Finally, the lemma below determines our final approximation factor.

Lemma 4.7.3: Approximation factor

ApproxSteinerGHTree(G = (V,E), U) outputs a (1+ε)lg |U |-approximate Gomory-
Hu Steiner tree.

Proof. We apply induction on |U |. Since |Uv| ≤ |U |/2 for all v ∈ Ri, by induction, the
recursive outputs (Tv, fv) are Gomory-Hu Steiner trees with approximation (1 + ε)lg |Uv | ≤
(1 + ε)lg |U |−1. By definition, this means that for all s, t ∈ Uv and the minimum-weight edge
(u, u′) on the s–t path in Tv, letting U ′v ⊆ Uv be the vertices of the connected component of
Tv − (u, u′) containing s, we have that f−1

v (U ′v) is a (1 + ε)lg |U |−1-approximate (s, t)-mincut
in Gv with value is wT (u, u′). Define U ′ ⊆ U as the vertices of the connected component of
T − (u, u′) containing s. By construction of (T, f) (lines 1 and 2), the set f−1(U ′) is simply
f−1
v (U ′v) with the vertex xv replaced by V \Siv in the case that xv ∈ f−1(U ′). SinceGv is simply
G with all vertices V \Siv contracted to xv, we conclude that wGv(∂f−1

v (U ′v)) = wG(∂f−1(U ′)).
By Lemma 4.7.2, the values mincutG(s, t) and mincutGv(s, t) are within factor (1 + ε) of each
other, so wG(∂f−1(U ′)) approximates the (s, t)-mincut in G to a factor (1+ε)·(1+ε)lg |U |−1 =

(1 + ε)lg |U |. In other words, the Gomory-Hu Steiner tree condition for (T, f) is satisfied for
all s, t ∈ Uv for some v ∈ Ri.

By induction, the recursive output (Tlarge, flarge) is a Gomory-Hu Steiner tree with approx-
imation (1 + ε)lg |Ularge| ≤ (1 + ε)lg |U |. Again, consider s, t ∈ Ularge and the minimum-weight
edge (u, u′) on the s–t path in Tlarge, and let U ′large ⊆ Ularge be the vertices of the connected
component of Tlarge−(u, u′) containing s. Define U ′ ⊆ U as the vertices of the connected com-

59

ponent of T − (u, u′) containing s. By a similar argument, we have wGlarge(∂f
−1
large(U

′
large)) =

wG(∂f−1(U ′)). By Lemma 4.7.1, we also have
mincutG(s, t) = mincutGlarge(s, t), so wG(∂f−1(U ′)) is a (1 + ε)lg |U |-approximate (s, t)-mincut
in G, fulfilling the Gomory-Hu Steiner tree condition for (T, f) in the case s, t ∈ Ularge.

There are two remaining cases: s ∈ Uv and t ∈ Uv′ for distinct v, v′ ∈ Ri, and s ∈ Uv
and t ∈ Ularge; we treat both cases simultaneously. Since G has Steiner mincut λ, each of
the contracted graphs Glarge and Gv has Steiner mincut at least λ. By induction, every
edge in Tv and Tlarge or Tv′ (depending on case) has weight at least (1 + ε)− lg |U |λ. By
construction, the s–t path in T has at least one edge of the form (fv(xv), flarge(yv)), added
on line 1; this edge has weight w(∂GS

i
v) ≤ (1 + ε)λ. Therefore, the minimum-weight edge on

the s–t path in T has weight at least (1 + ε)− lg |U |λ and at most (1 + ε)λ; in particular, it
is a (1 + ε)lg |U |-approximation of mincutG(s, t). If the edge is of the form (fv(xv), flarge(yv)),
then by construction, the relevant set f−1(U ′) is exactly Siv, which is a (1 + ε)-approximate
(s, t)-mincut in G. If the edge is in Tlarge or Tv or Tv′ , then we can apply the same arguments
used previously.

4.7.2 Running Time Bound

In order for a recursive algorithm to be efficient, it must make substantial progress on each
of its recursive calls, which can then be used to bound its depth. For each recursive call
(Gv, Uv, ε), we have |Uv| ≤ |U |/2 by construction, so we can set our measure of progress to
be |U |, the number of terminals, which halves upon each recursive call. However, progress
on (Glarge, Ularge, ε) is unclear; in particular, it is possible for |Ularge| to be very close to |U |
with probability 1. For Glarge, we define the following alternative measure of progress. Let
P (G,U,W) be the set of unordered pairs of distinct vertices whose mincut is at most W :

P (G,U,W) =

{
{u, v} ∈

(
U

2

)
: mincutG(u, v) ≤ W

}
.

In particular, we will consider its size |P (G,U,W)|, and show the following expected reduc-
tion:

Lemma 4.7.4: Expected reduction of |P (G,U,W)| in (Glarge, Ularge)

For any W ≤ (1 + ε)λ, over the random selection of s and the randomness in Cut-
ThresholdStep, we have

E[|P (Glarge, Ularge,W)|] ≤
(

1− Ω

(
1

log2 n

))
|P (G,U,W)|.

Before we prove Lemma 4.7.4, we show how it implies progress on the recursive call for
Glarge.

60

Corollary 4.7.5:

Let λ0 be the global Steiner mincut of G. W.h.p., after Ω(log3 n) recursive calls along
Glarge (replacing G ← Glarge each time), the global Steiner mincut of G is at least
(1 + ε)λ0 (where λ0 is still the global Steiner mincut of the initial graph).

Proof. Let W = (1 + ε)λ0. Initially, we trivially have
|P (G,U,W)| ≤

(|U |
2

)
. The global Steiner mincut can only increase in the recursive calls,

since Glarge is always a contraction of G, so we always have W ≤ (1 + ε)λ for the current
global Steiner mincut λ. By Lemma 4.7.4, the value |P (G,U,W)| drops by factor 1−Ω(1

log2 n
)

in expectation on each recursive call, so after Ω(log3 n) calls, we have

E[|P (G,U,W)|] ≤
(
|U |
2

)
·
(

1− Ω

(
1

log2 n

))Ω(log3 n)

≤ 1

poly(n)
.

In other words, w.h.p., we have |P (G,U,W)| = 0 at the end, or equivalently, the Steiner
mincut of G is at least (1 + ε)λ.

Combining both recursive measures of progress together, we obtain the following bound
on the recursion depth:

Lemma 4.7.6: Recursion depth bound of ApproxSteinerGHTree

Let wmin and wmax be the minimum weight and maximum weight of any edge
in G. W.h.p., the depth of the recursion tree of ApproxSteinerGHTree is
O(ε−1 log3 n log(n∆)).

Proof. For any Θ(log3 n) successive recursive calls down the recursion tree, either one call
was on a graph Gv, or Θ(log3 n) of them were on the graph Glarge. In the former case, |U |
drops by half, so it can happen O(log n) times total. In the latter case, by Corollary 4.7.5,
the global Steiner mincut increases by factor (1 + ε). Let wmin and wmax be the minimum
and maximum weights in G, so that ∆ = wmax/wmin. Note that for any recursive instance
(G′, U ′) and any s, t ∈ U ′, we have wmin ≤ mincutG′(s, t) ≤ w(∂({s})) ≤ nwmax, so the global
Steiner mincut of (G′, U ′) is always in the range [wmin, nwmax]. It follows that calling Glarge

can happen O(ε−1 log(nwmax/wmin)) times, hence the bound.

We state the next theorem for unweighted graphs only. For weighted graphs, there is
no nice bound on the number of new edges created throughout the algorithm, and therefore
no easy bound on the overall running time. In the next section, we introduce a graph
sparsification step to handle this issue.

61

Lemma 4.7.7: Running time bound of ApproxSteinerGHTree, unweighted graphs
only

For an unweighted graph G = (V,E), and terminals U ⊆ V ,
ApproxSteinerGHTree(G, V, ε) takes time Õ(mε−1) plus calls to max-flow
on instances with a total of Õ(nε−1) vertices and Õ(mε−1) edges.

Proof. For a given recursion level, consider the instances
{(Gi, Ui,Wi)} across that level. By construction, the terminals Ui partition U . Moreover,
the total number of vertices over all Gi is at most n+ 2(|U | − 1) = O(n) since each branch
creates 2 new vertices and there are at most |U | − 1 branches. The total number of new
edges created is at most the sum of weights of the edges in the final (1 + ε)-approximate
Gomory-Hu Steiner tree. For an unweighted graph, this is O(m) by the following well-known
argument. Root the Gomory-Hu Steiner tree T at any vertex r ∈ U ; for any v ∈ U \ r with
parent u, the cut ∂{v} in G is a (u, v)-cut of value deg(v), so wT (u, v) ≤ deg(v). Overall,
the sum of the edge weights in T is at most

∑
v∈U deg(v) ≤ 2m.

Therefore, there are O(n) vertices and O(m) edges in each recursion level. By
Lemma 4.7.6, there are O(ε−1 log4 n) levels (since ∆ = 1 for an unweighted graph), for
a total of Õ(nε−1) vertices and Õ(mε−1) edges. In particular, the instances to the max-flow
calls have Õ(nε−1) vertices and Õ(mε−1) edges in total.

Combining Lemmas 4.7.3 and 4.7.7 and resetting ε ← Θ(ε/ log n), we obtain Theo-
rem 4.2.6.

Finally, we prove Lemma 4.7.4.
Proof (Lemma 4.7.4). Let D∗ be all vertices v ∈ U \ s for which there exists an (s, v)-cut
of weight at most W whose side containing v has at most |U |/2 vertices in U . Define
D =

⋃blg |U |c
j=0

⋃
v∈Ri(S

i
v∩U). Let Pordered(G,U,W) be the set of ordered pairs (u, v) : u, v ∈ V

for which there exists an (u, v)-mincut of weight at most W with at most |U |/2 vertices in U
on the side S(u, v) ⊆ V containing u. We now state and prove the following four properties:
(a) For all u, v ∈ U , {u, v} ∈ P (G,U,W) if and only if either (u, v) ∈ Pordered(G,U,W) or

(v, u) ∈ Pordered(G,U,W) (or both).
(b) For each pair (u, v) ∈ Pordered(G,U,W), we have u ∈ D∗ with probability at least 1/2,
(c) For each u ∈ D∗, there are at least |U |/2 vertices v ∈ U for which

(u, v) ∈ Pordered(G,U,W).
(d) Over the randomness in CutThresholdStep(G,U, (1 + ε)λ),

E[|D|] ≥ Ω(|D∗|/ log |U |).
Property (a) follows by definition. Property (b) follows from the fact that u ∈ D∗ when-

ever s /∈ S(u, v), which happens with probability at least 1/2. Property (c) follows because
any vertex v ∈ U\S(u, v) satisfies (u, v) ∈ Pordered(G,U,W), of which there are at least |U |/2.
Property (d) follows from Lemma 4.6.1 applied on CutThresholdStep(G,U,W, |U |/2),
and then observing that even though we actually call CutThresholdStep(G,U, (1 +

62

ε)λ, |U |/2), the set D can only get larger if the weight parameter is increased from W

to (1 + ε)λ.

With properties (a) to (d) in hand, we now finish the proof of Lemma 4.7.4. Consider the
iteration i maximizing the size of Di :=

⋃
v∈Ri(S

i
v∩U) (line 4), so that |Di| ≥ |D|/(blg |U |c+

1). For any vertex u ∈ Di, all pairs (u, v) ∈ Pordered(G,U,W) (over all v ∈ U) disappear
from Pordered(G,U,W), which is at least |U |/2 many by (c). In other words,

|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)|

≥ |U |
2
|Di|

≥ Ω

(
|U | · |D|
log |U |

)
.

Taking expectations and applying (d),

E[|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)|]

≥ Ω

(
|U | · E[|D|]

log |U |

)
≥ Ω

(
|U | · |D∗|
log2 |U |

)
.

Moreover,

|U | · |D∗| ≥ E
[∣∣{(u, v) : u ∈ D∗}

∣∣] ≥ 1

2
|Pordered(G,U,W)|,

where the second inequality follows by (b). Putting everything together, we obtain

E[|Pordered(G,U,W) \ Pordered(Glarge, Ularge,W)|]

≥ Ω

(
|Pordered(G,U,W)|

log |U |

)
.

Finally, applying (a) gives

E[|P (G,U,W) \ P (Glarge, Ularge,W)|] ≥ Ω

(
|P (G,U,W)|

log |U |

)
.

Finally, we have P (Glarge, Ularge,W) ⊆ P (G,U,W) since the (u, v)-mincut for u, v ∈ Ularge

can only increase in Glarge due to Glarge being a contraction of G (in fact it says the same by
Lemma 4.7.1). Therefore,

|P (G,U,W)| − |P (Glarge, Ularge,W)|
= |P (G,U,W) \ P (Glarge, Ularge,W)|,

63

and combining with the bound on
E[|P (G,U,W) \ P (Glarge, Ularge,W)|] concludes the proof.

4.7.3 Weighted Graphs

For weighted graphs, we cannot easily bound the total size of the recursive instances. Instead,
to keep the sizes of the instances small, we sparsify the recursive instances to have roughly
the same number of edges and vertices. By the proof of Lemma 4.7.7, the total number
of vertices over all instances in a given recursion level is at most n + 2(|U | − 1) = O(n).
Therefore, if each such instance is sparsified, the total number of edges becomes Õ(n), and
the algorithm is efficient.

It turns out we only need to re-sparsify the graph in two cases: when we branch down
to a graph Gv (and not Glarge), and when the mincut λ increases by a constant factor, say
2. The former can happen at most O(log n) times down any recursion branch, since |U |
decreases by a factor 2 each time, and the latter occurs O(log(n∆)) times down any branch.
Each time, we sparsify up to factor 1 + Θ(ε/ log(n∆)), so that the total error along any
branch is 1 + Θ(ε).

We now formalize our arguments. We begin with the specification routine due to Benczur
and Karger [15].

Theorem 4.7.8: Graph sparsification

Given a weighted, undirected graph G, and parameters ε, δ > 0, there is a randomized
algorithm that with probability at least 1− δ outputs a (1 + ε)-approximate sparsifier
of G with O(nε−2 log(n/δ)) edges.

We now derive approximation and running time bounds.
Theorem 4.7.9: Running time bound of ApproxSteinerGHTree, weighted graphs

Suppose that the recursive algorithm ApproxSteinerGHTree sparsifies the input
in the following three cases, using Theorem 4.7.8 with the same parameter ε and the
parameter δ = 1/poly(n):

1. The instance was the original input, or

2. The instance was obtained from calling (Gv, Uv), or

3. The instance was obtained from calling (Glarge, Ularge), and the Steiner mincut
increased by a factor of at least 2 since the last sparsification.

Then w.h.p., the algorithm outputs a (1+ε)O(log(n∆))-approximate Gomory-Hu Steiner
tree and takes Õ(m) time plus calls to max-flow on instances with a total of
Õ(nε−1 log ∆) vertices and Õ(nε−1 log ∆) edges.

Proof. We first argue about the approximation factor. Along any branch of the recursion
tree, there is at most one sparsification step of type (1), at most O(log n) sparsification steps

64

of type (2), and at most O(log(n∆)) sparsification steps of type (3). Each sparsification
distorts the pairwise mincuts by a (1 + ε) factor, so the total distortion is (1 + ε)O(log(n∆)).

Next, we consider the running time. The recursion tree can be broken into chains of
recursive Glarge calls, so that each chain begins with either the original instance or some
intermediate Gv call, which is sparsified by either (1) or (2). Fix a chain, and let n′ be
the number of vertices at the start of the chain, so that the number of edges is O(n′ log n).
Within each chain, the number of vertices can only decrease down the chain. After each
sparsification, many sparsifications of type (2), and between two consecutive sparsifications,
the number of edges can only decrease down the chain since the graph can only contract. It
follows that each instance in the chain has at most n′ vertices and O(n′ε−2 log n) edges. By
Lemma 4.7.6, each chain has length O(ε−1 log3 n log(n∆)), so the total number of vertices
and edges in the chain is Õ(n′ε−3 log ∆). Imagine charging these vertices and edges to the
n′ vertices at the root of the chain. In other words, to bound the total number of edges in
the recursion tree, it suffices to bound the total number of vertices in the original instance
and in intermediate Gv calls.

In the recursion tree, there are n original vertices and at most 2(|U | − 1) new vertices,
since each branch creates 2 new vertices and there are at most |U |−1 branches. Each vertex
joins O(log n) many Gv calls, since every time a vertex joins one, the number of terminals
drops by half; note that a vertex is never duplicated in the recursion tree. It follows that
there are O(n log n) many vertices in intermediate Gv calls, along with the n vertices in the
original instance. Hence, from our charging scheme, we conclude that there are a total of
Õ(nε−3 log ∆) vertices and edges in the recursion tree. In particular, the instances to the
max-flow calls have Õ(nε−3 log ∆) vertices and edges in total.

Resetting ε← Θ(ε/ log(n∆)), we have thus proved Theorem 4.2.5.

4.8 Conclusion

In this chapter, we presented a reduction from exact Gomory-Hu tree to a simpler, seemingly
more tractable problem which we named single-source mincut verification. Although we
could not improve the running time of the latter beyond the trivial n − 1 max-flows, we
showed that improvements could be made in the approximate version. Our main algorithmic
result was an (1 + ε)-approximate Gomory-Hu tree in roughly (exact) max-flow time.

Of course, the reduction from approximate Gomory-Hu tree to exact max-flow is un-
satisfactory; a reduction to approximate max-flow would instead lead to a near-linear time
algorithm. However, there is a fundamental barrier to this endeavor: the isolating cuts
lemma (as stated in Lemma 2.2.2) does not hold in the approximate setting. Fortunately, we
discovered a variant of the isolating cuts lemma that is robust to approximations, although
it requires more than just computing approximate mincuts. The additional property we
require is that the mincuts are “well-linked” in a sense, and achieving this guarantee is far
from trivial.

65

66

Chapter 5

Directed Global Mincut

In this chapter, we present our algorithm for global mincut on directed graphs based on the
work of [18]. While a near-linear time algorithm for the undirected global mincut problem
was known since Karger [55], nothing close to linear has been found for directed graphs.
Indeed, Karger’s undirected global mincut algorithm breaks down in multiple ways in the
directed setting. The most glaring issue is the graph sparsification step, namely that directed
graphs are notoriously difficult to sparsify. Nevertheless, in this chapter, we show that under
a locality assumption, a partial sparsification of directed graphs is possible, demonstrating
again how locality can be used to make seemingly impossible problems tractable.

Once again, our specific locality assumption is that the target solution is unbalanced:
one side of the mincut has at most r vertices for some parameter r. In this case, we are able
to sparsify the directed graph so that the original mincut is still approximately a mincut
in the sparsified graph, although the size of the sparsifier is not perfect and depends on
the parameter r. we then follow Karger’s approach to his near-linear time algorithm for
undirected graphs to recover the (exact) directed mincut.

To solve the balanced case, we employ a completely different algorithm this time: we
simply sample vertices s, t at random and compute the (s, t)-mincut. We succeed if we
sample s, t on the correct sides of the mincut, which happens with higher probability when
the mincut is balanced. Finally, we optimize the locality parameter r ≈

√
n, achieving

a directed mincut algorithm in Õ(
√
n) max-flow calls. Using the state-of-the-art max-flow

algorithms, we obtain the fastest directed mincut algorithm for both sparse and dense graphs.

5.1 Background

Due to the difficulty of the directed graph setting, only a few of the undirected mincut
algorithms generalize to directed graphs. The most notable one is Hao and Orlin’s Õ(mn)

time algorithm based on the push-relabel max-flow algorithm. Using a different technique of
duality between rooted mincuts and arborescences, Gabow [40] obtained a running time of
Õ(mλ) for this problem, where λ is the weight of a mincut (assuming integer weights). This

67

is at least as good as the Hao-Orlin running time for unweighted simple graphs, but can be
much worse for weighted graphs. Indeed, prior to our work, the Hao-Orlin bound of Õ(mn)

remained the state of the art for the directed mincut problem on arbitrary weighted graphs.

5.2 Our Techniques

At a high level, our algorithm resembles a directed graph version of Karger’s near-linear time
mincut algorithm in undirected graphs [55] as discussed in Section 6.3. Recall that Karger’s
algorithm has three main steps: (a) sparsify the graph by random sampling of edges to reduce
the mincut value to O(log n), (b) use a semi-duality between mincuts and spanning trees
to pack O(log n) edge-disjoint spanning trees in the sparsifier, and (c) find the minimum
weight cut among those that have only one or two edges in each such spanning tree using a
dynamic program. But, directed graphs are substantially different from undirected graphs.
In particular, steps (a) and (c) are not valid in a directed graph. We cannot hope to sparsify
a directed graph since many directed graphs do not have sparsifiers even in an existential
sense. Moreover, even if a mincut had just a single edge in a spanning tree, Karger’s dynamic
program to recover this cut cannot be used in a directed graph.

To overcome these challenges, we adopt several ingredients that we outline below:
• Inspired by locality, we consider two possibilities: either the mincut has Õ(

√
n) vertices

on the smaller side or fewer (let us call these balanced and unbalanced cuts respectively).
If the mincut is a balanced cut, we use two random samples of Õ(

√
n) and Õ(1) vertices

each, and find (s, t)-mincuts for all pairs of vertices from the two samples. It is easy
to see that w.h.p., the two samples would respectively hit the smaller and larger sides
of the mincut, and hence, one of these (s, t)-mincuts will reveal the overall mincut of
the graph.

• The main task, then, is to find the mincut when it is unbalanced. In this case, we use
a sequence of steps. The first step is to use cut sparsification of the graph by random
sampling of edges. This scales down the size of the mincut, but unlike in an undirected
graph, all the cuts of a digraph do not necessarily converge to their expected values in
the sample. However, crucially, the mincut can be scaled to Õ(

√
n) while ensuring that

all the unbalanced cuts converge to their expected values.
• Since only the unbalanced cuts converge to their expected values, it is possible that
some balanced cut is the new mincut of the sampled graph, having been scaled down
disproportionately by the random sampling. Our next step is to overlay this sampled
graph with an expander graph in the same manner as in Section 6.4. Note that an
expander has a larger weight for balanced cuts than for unbalanced cuts. We choose
the expansion of the graph carefully so that the balanced cuts get sufficiently large
weight of edges that they are no longer candidates for the mincut of the sample, while
the unbalanced cuts are only distorted by a small multiplicative factor.

68

• At this point, we have obtained a graph where the original mincut (which was unbal-
anced) is a near-mincut of the new graph. Next, we create a (fractional) packing of
edge-disjoint arborescences1 in this graph using a multiplicative weights update pro-
cedure (e.g., [105]). By duality, these arborescenes have the following property: if we
sample O(log n) random arborescences from this packing, then there will be at least
one arborescence w.h.p. such that the original mincut 1-respects the arborescence. (A
cut 1-respects an arborescence if the latter contains just one edge from the cut.)

• Thus, our task reduces to the following: given an arborescence, find the minimum
weight cut in the original graph among all those that 1-respect the arborescence.
Our final technical contribution is to give an algorithm that solves this problem using
O(log n) maxflow computations. For this purpose, we use a centroid-based recursive
decomposition of the arborescence, where in each step, we use a set of maxflow calls
that can be amortized on the original graph. The minimum cut returned by all these
maxflow calls is eventually returned as the mincut of the graph.

We note that unlike both the Hao-Orlin algorithm and Gabow’s algorithm that are both
deterministic algorithms, our algorithm is randomized (Monte Carlo) and might yield the
wrong answer with a small (inverse polynomial) probability. Derandomizing our algorithm,
or matching our running time bound using a different deterministic algorithm, remains an
interesting open problem.

5.2.1 Additional Preliminaries

The directed mincut problem is formally defined as follows.

Definition 5.2.1: Directed global mincut

Given a directed graph, the global mincut is the smallest-weight set of edges whose
removal causes the graph to no longer be strongly connected.

For simplicity of notation, we define U = V \U throughout this chapter. Let ~∂U denote
the set of edges in the cut (U,U), so that the directed mincut equals arg min∅(U(V w(∂U).

Let MF (m,n) denote the time complexity of s-t maximum flow on a digraph with n

vertices and m edges. The current record for this bound is MF (m,n) = Õ(m+ n3/2) [103].
We emphasize that our directed mincut algorithm uses maxflow subroutines in a black box
manner and therefore, any maxflow algorithm suffices. Correspondingly, we express our
running times in terms of MF (m,n).

1An arborescence is a spanning tree in a directed graph where all the edges are directed away from the
root.

69

5.3 The Directed Mincut Algorithm

The main result of this chapter is the following:

Theorem 5.3.1: Directed mincut in Õ(
√
n) max-flows

There is a randomized Monte Carlo algorithm that finds a directed mincut w.h.p. in
Õ(m

√
n) time plus Õ(

√
n) calls to max-flow on an n-vertex, m-edge directed graph.

We now describe the algorithm. Let S∗ be the source side of a minimum cut. The
algorithm considers the following two cases, computes a cut for each case and takes the
smaller of the two cuts as its final output.

1. The first case aims to compute the correct mincut in the event that min{|S∗|, |S∗|} > θ·√
n/ log n. In this case, we randomly sample two vertices s, t ∈ V , then with reasonable

probability, they will lie on opposite sides of the mincut. In that case, we can simply
compute the maxflow from s to t. Repeating the sampling O(

√
n log2 n) times, we

obtain the mincut w.h.p. The total running time for this case is O(MF (m,n)
√
n log2 n)

and is formalized in Lemma 5.3.2 below:

Lemma 5.3.2

If min{|S∗|, |S∗|} > r, then w.h.p. a mincut can be calculated in time
O(MF (m,n) · (n/r) · log n).

Proof. Uniformly sample a list of k = d · (n/r) · lg n vertices u1, . . . , uk, where d is a
large constant. Without loss of generality, assume |S∗| ≤ |S∗|, and let η = |S∗|

n
> r

n
.

With probability at least 1 − 2(1 − η)k ≥ 1 − 2e−kη ≥ 1 − 2n−d, the list u1, . . . , uk
contains at least one vertex from each of S∗ and S∗. Hence, there exists i such that
ui and ui+1 are on different sides of the (S∗, S∗) cut. By calculating maxflows for all
(ui, ui+1) and (ui+1, ui) pairs, and reporting the smallest (s, t)-mincut in these calls,
we return a global mincut w.h.p.

2. The second case takes care of the event that min{|S∗|, |S∗|} ≤ θ ·
√
n/ log n. In this

case, we select an arbitrary vertex s, and give an algorithm for finding an s-mincut
defined as:

Definition 5.3.3: s-mincut

An s-mincut is a minimum weight cut among all those that have s on the source
side of the cut, i.e., arg min{s}⊆S⊂V w(∂S).

Repeating this process with all edge directions reversed, and returning the smaller of
the s-mincuts in the original and the reversed graphs, yields the overall mincut.
We now describe the s-mincut algorithm, where we overload notation to denote the

70

value of the s-mincut by λ. Here, we first guess O(log n) potential values of λ̃, which
is our estimate of λ, as the powers of 2, one of which lies in the range [λ, 2λ], and then
for each λ̃, sparsifies the graph using Lemma 5.4.1 from Section 5.4. For each such
sparsifier H, the algorithm then applies Lemma 5.5.1 from Section 5.5 to pack O(log n)

s-arborescences in H in O(m
√
n log n) time, one of which will 1-respect the s-mincut

in G (for the correct value of λ̃):

Definition 5.3.4: s-arborescence

An s-arborescence is a directed spanning tree rooted at s such that all edges are
directed away from s. A directed s-cut k-respects an s-arborescence if there are
at most k cut edges in the arborescence.

Finally, for each of the O(log n) s-arborescences, the algorithm computes the minimum
s-cut that 1-respects each arborescence; this algorithm is described in Algorithm 8 and
proved in Theorem 5.6.1 from Section 5.6. It runs in O((MF (m,n) +m) · log n) time
for each of the O(log n) arborescences.

Combining both cases, the total running time becomes Õ(m
√
n + MF (m,n)

√
n), which

establishes Theorem 5.3.1.

5.4 Sparsification

This section aims to reduce mincut value to Õ(
√
n) while keeping S∗ a (1 + ε)-approximate

mincut for a constant ε > 0 that we will fix later. Our algorithm in this stage has two steps.
First, we use random sampling to scale down the expected value of all cuts such that the
expected value of the mincut w(∂S∗) becomes Õ(

√
n). We also claim that ∂S∗ remains an

approximate mincut among all unbalanced cuts by using standard concentration inequalities.
However, since the number of balanced cuts far exceeds that of unbalanced cuts, it might
be the case that some balanced cut has now become much smaller in weight than all the
unbalanced cuts. This would violate the requirement that ∂S∗ should be an approximate
mincut in this new graph. This is where we need our second step, where we overlay an
expander on the sampled graph to raise the values of all balanced cuts above the expected
value of ∂S∗ while only increasing the value of ∂S∗ by a small factor. This last technique is
inspired by recent work of Li [69] for a deterministic mincut algorithm in undirected graphs.

Now, we prove the main property of this section:

71

Lemma 5.4.1

Given a digraph G, a parameter λ̃ ∈ [λ, 2λ], and a constant ε ∈ (0, 1), we can construct
in O(m log n) time a value p ∈ (0, 1] and a digraph H with O(m) edges such that the
following holds w.h.p. for the value p = min{

√
n
λ
, 1}.

1. There is a constant θ > 0 (depending on ε) such that for any set ∅ 6= S (V

with min{|S|, |S̄|} ≤ θ ·
√
n/ log n, we have

(1− ε) · p · δG(S) ≤ δH(S) ≤ (1 + ε) · p · δG(S);

2. For any set ∅ 6= S (V , δH(S) ≥ (1− ε)pλ.

Proof. If λ̃ ≤ 2
√
n, then λ ≤ λ̃ ≤ 2

√
n as well, so we set H to be G itself, which satisfies

all the properties for p = 1. For the rest of the proof, we assume that λ̃ > 2
√
n, so that

λ ≥
√
n, and we set p =

√
n

λ̃
≤ 1. Throughout the proof, define ε′ = ε/2, r = ε′2

6

√
n/ log n,

α =
√
n

α0r
, and θ = ε′3α0

54
, where α0 is the constant from Lemma 8.2.1.

We first construct digraph Ĝ by reweighting the edges of G as follows. For each edge e in
G, assign it a random new weight wĜ(e) chosen according to binomial distribution B(w(e), p).
(If wĜ(e) = 0, then remove e from Ĝ.) For each set ∅ 6= S (V with min{|S|, |S̄|} ≤ r,
we have EδĜ(S) = pδG(S), and by Chernoff bound, the probability that δĜ(S) falls outside
[(1− ε′)pδG(S), (1 + ε′)pδG(S)] is upper-bounded by 2e−λε

′2/3 ≤ 2n−2r. There are O(nr) sets
S with min{|S|, |S̄|} ≤ r, so by a union bound, w.h.p. all such sets satisfy (1− ε′)pδG(S) ≤
δĜ(S) ≤ (1 + ε′)pδG(S).

Construct graph X according to Lemma 8.2.1 and split each undirected edge into two
directed edges. Let H be the “union” of Ĝ and αX, so that each edge e in H has weight
wH(e) = wĜ(e) + αwX(e), where we say w(e) = 0 if e does not exist in the corresponding
graph.

We now show that H satisfies the two desired properties.

1. For any set ∅ 6= S (V with min{|S|, |S̄|} ≤ θ ·
√
n/ log n = ε′α0

9
r ≤ r, we have

δH(S) ≥ δĜ(S) ≥ (1 − ε′)pδG(S) from before, so δH(S) ≥ (1 − ε)pδG(S) as well. For
the upper bound, we have

δH(S) = δĜ(S)+αδX(S) ≤ (1+ε′)pδG(S)+9α|S| ≤ (1+ε′)pδG(S)+ε′
√
n ≤ (1+ε)pδG(S)

2. For any set ∅ 6= S (V with min{|S|, |S̄|} ≤ θ ·
√
n/ log n = ε′α0

9
r ≤ r, we have

δH(S) ≥ δĜ(S) ≥ (1 − ε)pδG(S) ≥ (1 − ε)pλ as required by property (2). When
min{|S|, |S̄|} > r, we have δH(S) ≥ αδX(S) ≥ αα0r ≥

√
n for all ∅ 6= S (V .

Finally, H has O(m) edges because E(Ĝ) is a subset of E(G) and E(X) = O(n).

72

5.5 Finding a 1-respecting Arborescence

In this section, we assume that there is an unbalanced mincut and show how to obtain an
s-arborescence that 1-respects the mincut. More formally, we prove the following:

Lemma 5.5.1

Given weighted digraph G and a fixed vertex s such that s is in the source side of a min-
imum cut S∗ and min{|S∗|, |S∗|} ≤ θ ·

√
n/ log n where θ is defined in Lemma 5.4.1, in

O(m
√
n log n) time we can find O(log n) s-arborescences, such that w.h.p. a minimum

cut 1-respects one of them.

The idea of this lemma is as follows. First, we apply Lemma 5.4.1 to our graph G and
obtain graph H. w.h.p., a mincut S∗ in G corresponds to a cut in H of size (1 ± ε)pλ and
no cut in H has size less than (1 − ε)pλ. That is, S∗ is a (1 + O(ε))-approximate mincut
in H. It remains to find an arborescence in H that 1-respects S∗. To do this, we employ a
multiplicative weight update (MWU) framework. The algorithm begins by setting all edge
weights to be uniform (say, weight 1). Then, we repeat for O(

√
n log(n)/ε2) rounds. For

each round, we find in near-linear time a minimum weight arborescence and multiplicatively
increase the weight of every edge in the arborescence.

Using the fact that there is no duality gap between arborescence packing and mincut
[33, 40], a standard MWU analysis implies that these arborescences that we found, after
some scaling, form a (1 + ε)-approximately optimal fractional arborescence packing. So
our arborescence crosses S∗ at most (1 + O(ε)) < 2 times on average. Thus, if we sample
O(log n) arborescences from our collections, w.h.p., one of them will 1-respect S∗.2 Below,
we formalize this high level description.

Definition 5.5.2: Packing problem [105]

For convex set P ⊆ Rn and nonnegative linear function f : P → Rm, let γ∗ =

minx∈P maxj∈[m] fj(x) be the solution in P that minimizes the maximum value of fj(x)

over all j, and define the width of the packing problem as ω = maxj∈[m],x∈P fj(x) −
minj∈[m],x∈P fj(x).

The fractional arborescence packing problem conforms to this definition. Enumerate all
the s-arborescences as A1, A2, . . . , AN . We represent a fractional packing of arborescences
as a vector in RN , where coordinate i represents the fractional contribution of Ai in the
packing. LetP = {x ∈ RN : xT1 = 1, x ≥ 0} be the convex hull of all single arborescences.
For each edge j with capacity w(j), fj(x) =

∑
i∈[N] xi1[j ∈ Ti]/w(j) is the relative load of

arborescence packing x on edge j. It is easy to see that ω ≤ 1/wmin for tree packing. The
objective function is to minimize the maximum load: γ∗ = minx∈P maxj∈[m] fj(x).

2This should be compared with Karger’s mincut algorithm in the undirected case, where there is a factor
2 gap, and hence Karger can only guarantee a 2-respecting tree in the undirected case.

73

For any fractional arborescence packing x ∈ RN with value xT1 = v where fj(x) ≤ 1 for
all edges j, we have 1

v
x ∈ P . In particular, the maximum arborescence packing, once scaled

down by its value, is exactly the vector in P that minimizes the maximum load. Therefore,
it suffices to look for the vector x ∈ P achieving the optimal value γ∗, and then scale the
vector up by 1/γ∗ to obtain the maximum arborescence packing.

Next we describe the packing algorithm (Figure 2 of [105]). Maintain a vector y ∈ Rm,
initially set to y = 1. In each iteration, find x = arg minx∈P

∑
j yjfj(x), and then add x to

set S and replace y by the vector y′ defined by y′j = yj(1 + εfj(x)/ω). After a number of
iterations, return x̄ ∈ P , the average of all the vectors x over the course of the algorithm.
The lemma below upper bounds the number of iterations that suffice:

Lemma 5.5.3: Corollary 6.3 of [105]

After d (1+ε)ω lnm
γ∗((1+ε) ln(1+ε)−ε)e iterations of the packing algorithm, γ̄ = maxj fj(x̄) ≤ (1+ε)γ∗.

We will also make use of the (exact) duality between s-arborescence packing and minimum
s-cut:

Lemma 5.5.4: Corollary 2.1 of [40]

The value of maximum s-arborescence packing is equal to the value of minimum s-cut.

Proof of Lemma 5.5.1. First, constructH according to Theorem 5.4.1. By the duality above,
the minimum s-cut on H has value λH = 1

γ∗
. Since min{|S∗|, |S∗|} ≤ θ

√
n/ log n, we have

λH ≤ δH(S∗) ≤ (1 + ε)pλ ≤ (1 + ε)
√
n.

Run the aforementioned arborescence packing algorithm up to O(λH lnm) iterations,
after which Lemma 5.5.3 guarantees that γ̄ ≤ (1 + ε)γ∗. Then x̄/γ̄ is a vector in P with
value 1/γ̄ ≥ 1

1+ε
λH .

Consider sampling a random arborescence A from the distribution specified by x̄/γ̄, so
we choose arborescence Ai with probability x̄i/γ̄. Since δH(S∗) ≤ (1+ε)pλ ≤ (1+ε)2λH , the
expected number of edges in A∩δH(S∗) is at most (1+ε)2

1−ε ≤ 1+4ε for small enough ε > 0. Since
we always have |A∩δH(S∗)| ≥ 1, by Markov’s inequality Pr[|A∩δH(S∗)|−1 ≥ 1] ≤ 4ε ≤ 1/2

for small enough ε. Therefore, if we uniformly sampling O(log n) arborescences from the
distribution x̄/γ̄, at least one of the arborescences is 1-respecting w.h.p.

It remains to compute x = arg minx∈P
∑

j yjfj(x) on each iteration. Since
∑

j yjfj(x) is
linear in x, the minimum must be achieved by a single arborescence. So the task reduces to
computing the minimum cost spanning s-arborescence, which can be done in O(m+n log n)

[39]. The total time complexity, over all iterations, becomes O((m + n log n)λH log n) =

O((m+ n log n)
√
n log n).

74

5.6 Mincut Given 1-respecting Arborescence

We propose an algorithm (Algorithm 8) that uses O(log n) maxflow subroutines to find the
minimum s-cut that 1-respects a given s-arborescence. The result is formally stated in
Theorem 5.6.1.

Theorem 5.6.1

Consider a directed graph G = (V,E,w) with n vertices, m edges, and polynomially
bounded edge weights we > 0. Fix a global (directed) mincut S of G. Given an
arborescence T rooted at s ∈ S with |T ∩ (S, S)| = 1, Algorithm 8 outputs a global
minimum cut of G in time O((MF (m,n) +m) · log n).

We first give some intuition for Algorithm 8. Because s ∈ S, if we could find a vertex
t ∈ S, then computing the s-t mincut using one maxflow call would yield a global mincut of
G. However, we cannot afford to run one maxflow between s and every other vertex in G.
Instead, we carefully partition the vertices into ` = O(log n) sets (Ci)

`
i=1. We show that for

each Ci, we can modify the graph appropriately so that it allows us to (roughly speaking)
compute the maximum flow between s and every vertex c ∈ Ci using one maxflow call.

More specifically, Algorithm 8 has two stages. In the first stage, we compute a centroid
decomposition of T . Recall that a centroid of T is a vertex whose removal disconnects T
into subtrees with at most n/2 vertices. This process is done recursively, starting with the
root s of T . We let P1 denote the subtrees resulting from the removal of s from T . In each
subsequent step i, we compute the set Ci of the centroids of the subtrees in Pi. We then
remove the centroids and add the resulting subtrees to Pi+1. This process continues until no
vertices remain.

In the second stage, for each layer i, we construct a directed graph Gi and perform one
maxflow computation on Gi. The maxflow computation on Gi would yield candidate cuts for
every vertex in Ci, and after computing the appropriate maximum flow across every layer,
we output the minimum candidate cut as the minimum cut of G. The details are presented
in Algorithm 8.

We first state two technical lemmas that we will use to prove Theorem 5.6.1.

Lemma 5.6.2

Recall that Pi is the set of subtrees in layer i and Ci contains the centroid of each
subtree in Pi. If Cj ⊆ S for every 0 ≤ j < i, then S is contained in exactly one subtree
in Pi, and consequently, at most one vertex u ∈ Ci can be in S.

75

Algorithm 8 Finding the global minimum directed cut.
Input: An arborescence T rooted at s ∈ S such that S 1-respects T .
1: // Stage I: Build centroid decomposition.
2: Let C0 = {s}, P1 = the set of subtrees obtained by removing s from T , and i = 1.
3: while Pi 6= ∅ do
4: Initialize Ci (the centroids of Pi) and Pi+1 as empty sets.
5: for each subtree U ∈ Pi do Compute the centroid u of U and add it to Ci.
6: Add all subtrees generated by removing u from U to Pi+1.
7: Set ` = i and iterate i = i+ 1.
8: // Stage II: Calculate integrated maximum flow for each layer.
9: for i = 1 to ` do
10: Construct a digraph Gi = (V ∪ {ti}, E1 ∪ E2 ∪ E3) as follows (see Figure 5.1):
11: 1) Add edges E1 = E ∩∪U∈Pi(U ×U) with capacity equal to their original weight.
12: 2) Add edges E2 = {(s, v) : (u, v) ∈ E \ E1} with capacity of (s, v) equal to the

original weight of (u, v).
13: 3) Add edges E3 = {(u, ti) : u ∈ Ci} with infinite capacity.
14: Compute the maximum s-ti flow f ∗i in Gi.
15: For each component U ∈ Pi with centroid u, the value of f ∗i on edge (u, ti) is a

candidate cut value, and the nodes in U that can reach u in the residue graph is a
candidate for S.

16: Return the smallest candidate cut as minimum s-cut and the corresponding (S, S).

Figure 5.1: Construction of auxiliary graph Gi in Algorithm 8. Solid lines represent the
arborescence T . Dashed lines are other edges in the graph. Rectangles are sets formed by
the first level of centroid decomposition. Left: The original graph. Right: The part of G1

solving the case that the mincut separates root and the centroid of the middle subtree.

76

Lemma 5.6.3

Let Gi be the graph constructed in Step 10 of Algorithm 8. Let f ∗i be a maximum s-ti
flow on Gi as in Step 14. For any U ∈ Pi with centroid u, the amount of flow f ∗i puts
on edge (u, ti) is equal to the value of the minimum cut between U and u.

We defer the proofs of Lemmas 5.6.2 and 5.6.3, and first use them to prove Theorem 5.6.1.
Proof of Theorem 5.6.1. We first prove the correctness of Algorithm 8.

Because C0 = {s} and s ∈ S, and the Ci’s form a disjoint partition of V , there must
be a layer i such that for the first time, we have a centroid u ∈ Ci that belongs to S. By
Lemma 5.6.2, we know that S must be contained in exactly one subtree U ∈ Pi, and hence
u must be the centroid of U . In summary, we have u ∈ S and S ⊆ U .

Consider the graph Gi constructed for layer i. By Lemma 5.6.3, based on the flow f ∗i
puts on the edge (u, ti), we can recover the value of the minimum (directed) cut between U
and u. Because S ⊆ U (or equivalently U ⊆ S) and u ∈ S, the cut (S, S) is one possible cut
that separates U and u. Therefore, the flow that f ∗i puts on the edge (u, ti) is equal to the
global mincut value in G.

In addition, the candidate cut value for any other centroid u′ of a subtree U ′ ∈ Pi must
be at least the mincut value between s and u′. This is because the additional restriction that
the cut has to separate U ′ from u′ can only make the mincut value larger, and the value of
this cut in Gi is equal to the value of the same cut in G. Therefore, the minimum candidate
cut value in all ` layers must be equal to the global mincut value of G.

Now we analyze the running time of Algorithm 8. We can find the centroid of an n-
node tree in time O(n) (see e.g., [81]). The total number of layers ` = O(log n) because
removing the centroids reduces the size of the subtrees by at least a factor of 2. Thus, the
running time of Stage I of Algorithm 8 is O(n log n). In Stage II, we can construct each
Gi in O(m) time and every Gi has O(m) edges. Since there are O(log n) layers and the
maximum flow computations take a total of O(MF (m,n) · log n) time, the overall runtime
is O(n log n+ (MF (m,n) +m) log n) = O((MF (m,n) +m) log n).

Before proving Lemmas 5.6.2 and 5.6.3 we first prove the following lemma.

Lemma 5.6.4

If x and y are vertices in S, then every vertex on the (undirected) path from x to y in
the arborescence T also belongs to S.

Proof. Consider the lowest common ancestor z of x and y. Because there is a directed path
from z to x and a directed path from z to y, we must have z ∈ S. Otherwise, there are at
least two edges in T that go from S to S.

Because s ∈ S and z ∈ S, there is already an edge in T (on the path from s to z) that
goes from S to S. Consequently, all other edges in T cannot go from S to S, which means
the entire path from z to x (and similarly z to y) must be in S.

77

Recall that Lemma 5.6.2 states that if all the centroids in previous layers are in S, then
S is contained in exactly one subtree U in the current layer i.
Proof of Lemma 5.6.2. For contradiction, suppose that there exist distinct subtrees U1 and
U2 in Pi and vertices x, y ∈ S such that x ∈ U1 and y ∈ U2.

By Lemma 5.6.4, any vertex on the (undirected) path from x to y also belongs to S.
Consider the first time that x and y are separated into different subtrees. This must have
happened because some vertex on the path from x to y is removed. However, the set of
vertices removed at this point of the algorithm is precisely

⋃
0≤j<iCj, but our hypothesis

assumes that none of them are in S. This leads to a contradiction and therefore S is contained
in exactly one subtree of Pi.

It follows immediately that at most one centroid u ∈ Ci can be in S.

Next we prove Lemma 5.6.3, which states that the maximum flow between s and ti in
the modified graph Gi allows one to simultaneously compute a candidate mincut value for
each vertex u ∈ Ci.
Proof of Lemma 5.6.3. First observe that the maxflow computation from s to ti in Gi can
be viewed as multiple independent maxflow computations. The reason is that, for any two
subtrees U1, U2 ∈ Pi, there are only edges that go from s into U1 and from U1 to ti in Gi

(similarly for U2), but there are no edges that go between U1 and U2.
The above observation allows us to focus on one subtree U ∈ Pi. Consider the procedure

that we produce Gi from G in Steps 11 to 13 of Algorithm 8. The edges with both ends in
U are intact (the edge set E1). If we contract all vertices out of U into s, then all edges that
enter U would start from s, which is precisely the effect of removing cross-subtree edges and
adding the edges in E2. One final infinity-capacity edge (u, ti) ∈ E3 connects the centroid of
U to the super sink ti.

Therefore, the maximum s-ti flow f ∗i computes the maximum flow between U and u ∈ U
simultaneously for all U ∈ Pi, whose value is reflected on the edge (u, ti). It follows from the
maxflow mincut theorem that the flow on edge (u, ti) is equal to the mincut value between U
and u in G (i.e., the minimum value w(A,A) among all A ⊂ V with U ⊆ A and u ∈ A).

5.7 Conclusion

In this section, we presented our directed mincut algorithm which runs in roughly Õ(
√
n)

many max-flows. There is still a lot of progress to be made, and we expect polylogarithmic
many max-flows to be eventually within reach. Improving upon our result would likely
require a more sophisticated sparsification procedure which may involve dependent sampling
among edges.

Another interesting direction to take is trying to avoid max-flow computations altogether,
which is possible for undirected global mincut. This would likely require a fundamentally
different approach, however, as even the sparsification and arborescence packing part of our

78

algorithm—which were directly inspired by Karger’s in the undirected case—could not avoid
max-flow computations.

Acknowledgements

The source of Theorem 5.3.1 [18] is a merge of two independent results that are unpub-
lished on their own. Section 5.4 is due to Jason Li, Danupon Nanongkai, and Thatchaphol
Saranurak, and Sections 5.5 and 5.6 is by Ruoxu Cen and Debmalya Panigrahi.

79

80

Part II

Preconditioning

81

Chapter 6

Deterministic Mincut

This chapter is dedicated to the global mincut problem: given an undirected graph, find
the minimum-weight set of edges whose removal disconnects the graph. We study global
mincut from a preconditioning point of view and present the first almost-linear deterministic
algorithm for this problem, following the work of [69].

Prior to the works studied in this thesis, the global mincut problem was one of the most
notorious to derandomize in the context of graph algorithms. Even though a near-linear time
randomized algorithm was known since the 1990s [55], the best deterministic running time
for general graphs remained Õ(mn). Karger’s algorithm was difficult to derandomize due
to its sparsification step, where we sparsify the graph to approximately preserve the global
mincut.

In this chapter, we manage to derandomize Karger’s graph sparsification routine through
a preconditioning approach: we first restrict our attention to the expander graphs, and then
apply expander decompositions to handle the general case. To convey the conceptual insights
of this chapter in a relatively simple setting, we devote a separate section, Section 6.4, for
just the expander case. There, we discuss a key property of expanders that we exploit in
our algorithm: the global mincut in an expander must be unbalanced ; in other words, we
can employ a locality-based algorithm to solve this case. This shows that the concepts of
preconditioning and locality often go hand-in-hand. Finally, we handle the general case by
computing a recursive expander decomposition of the graph, which is covered in Section 6.5
and constitutes the technical bulk of the chapter.

6.1 Background

The global mincut problem dates back to the work of Gomory and Hu [44] in 1961 who gave
an algorithm to compute the mincut of an n-vertex graph using n−1 max-flow computations.
Since then, a large body of research has been devoted to obtaining faster algorithms for
this problem. In 1992, Hao and Orlin [48] gave a clever amortization of the n − 1 max-
flow computations to match the running time of a single max-flow computation, though

83

their method is specific to the push-relabel max-flow algorithm [42] and therefore takes
O(mn log(n2/m)) time. Around the same time, Nagamochi and Ibaraki [86] (see also [85])
designed an algorithm that bypasses max-flow computations altogether, a technique that
was further refined by Stoer and Wagner [102] (and independently by Frank in unpublished
work). This alternative method yields a running time of O(mn+n2 log n). Before the results
of this thesis, these Õ(mn) time algorithms were the fastest deterministic mincut algorithms
for weighted graphs.

Starting with Karger’s contraction algorithm in 1993 [54], a parallel body of work started
to emerge in randomized algorithms for the mincut problem. This line of work (see also
Karger and Stein [56]) eventually culminated in a breakthrough paper by Karger [55] in
1996 that gave an O(m log3 n) time Monte Carlo algorithm for the mincut problem. Note
that this algorithm comes to within poly-logarithmic factors of the optimal O(m) running
time for this problem. In that paper, Karger asks whether we can also achieve near-linear
running time using a deterministic algorithm, which we answer affirmatively in this chapter.

Karger’s question has also been resolved for specific instances in the past. In a recent
breakthrough, Kawarabayashi and Thorup [57] gave the first near-linear time deterministic
algorithm for this problem for simple graphs. They obtained a running time of O(m log12 n),
which was later improved by Henzinger, Rao, and Wang [51] to O(m log2 n log log2 n), and
then simplified by Saranurak [93] at the cost of m1+o(1) running time. From a technical
perspective, Kawarabayashi and Thorup’s work introduced the idea of using low conductance
cuts to find the mincut of the graph, the main inspiration behind the preconditioning-based
approach we present in this chapter.

6.2 Our Techniques

Our main result is formally stated as follows.

Theorem 6.2.1: Deterministic mincut

There is a deterministic algorithm that computes the mincut of a weighted, undirected
graph in 2O(logn)5/6(log logn)O(1)

m time.

At a high level, we follow Karger’s approach and essentially de-randomize the single
randomized procedure in Karger’s near-linear time mincut algorithm [55], namely the con-
struction of the skeleton graph, which Karger accomplishes through the Benczur-Karger
graph sparsification technique by random sampling. We remark that our de-randomization
does not recover a full (1 + ε)-approximate graph sparsifier, but the skeleton graph that we
obtain is sufficient to solve the mincut problem.

Let us first briefly review the Benczur-Karger graph sparsification technique, and discuss
the difficulties one encounters when trying to de-randomize it. Given a weighted, undirected
graph, the sparsification algorithm samples each edge independently with a probability de-
pending on the weight of the edge and the global mincut of the graph, and then re-weights

84

the sampled edge accordingly. In traditional graph sparsification, we require that every cut
in the graph has its weight preserved up to a (1 + ε) factor. There are exponentially many
cuts in a graph, so a naive union bound over all cuts does not work. Benczur and Karger’s
main insight is to set up a more refined union bound, layering the (exponentially many) cuts
in a graph by their weight. They show that for all α ≥ 1, there are only ncα many cuts in a
graph whose weight is roughly α times the mincut, and each one is preserved up to a (1 + ε)
factor with probability 1− n−c′α, for some constants c′ � c. In other words, they establish
a union bound layered by the α-approximate mincuts of a graph, for each α ≥ 1.

One popular method to de-randomize random sampling algorithms is through pessimistic
estimators, which is a generalization of the well-known method of conditional probabilities.
For the graph sparsification problem, the method of pessimistic estimators can be imple-
mented as follows. The algorithm considers each edge one by one in some arbitrary order,
and decides on the spot whether to keep or discard each edge for the sparsifier. To make
this decision, the algorithm maintains a pessimistic estimator, which is a real number in the
range [0, 1) that represents an upper bound on the probability of failure should the remaining
undecided edges each be sampled independently at random. In many cases, the pessimistic
estimator is exactly the probability upper bound that one derives from analyzing the random
sampling algorithm, except conditioned on the edges kept and discarded so far. The algo-
rithm makes the choice—whether to keep or discard the current edge—based on whichever
outcome does not increase the pessimistic estimator; such a choice must always exist for the
pessimistic estimator to be valid. Once all edges are processed, the pessimistic estimator
must still be a real number less than 1. But now, since there are no more undecided edges,
the probability of failure is either 0 or 1. Since the pessimistic estimator is an upper bound
which is less than 1, the probability of failure must be 0; in other words, the set of chosen
edges is indeed a sparsifier of the graph.

In order for this de-randomization procedure to be efficient, the pessimistic estimator
must be quickly evaluated and updated after considering each edge. Unfortunately, the
probability union bound in the Benczur-Karger analysis involves all cuts in the graph, and
is therefore an expression of exponential size and too expensive to serve as our pessimistic
estimator. To design a more efficient pessimistic estimator, we need a more compact, easy-
to-compute union bound over all cuts of the graph. We accomplish this by grouping all cuts
of the graph into two types: small cuts and large cuts.

Small cuts. Recall that our goal is to preserve cuts in the graph up to a (1 + ε) factor.
Let us first restrict ourselves to all α-approximate mincuts of the graph for some α = no(1).
There can be nΩ(α) many such cuts, so the naive union bound is still too slow. Here, our main
strategy is to establish a structural representation of all α-approximate mincuts of a graph,
with the goal of deriving a more compact “union bound” over all α-approximate cuts. For an
expander, this task is relatively easy: in an expander with conductance φ, all α-approximate
mincuts must have at most α/φ vertices on one side, so a compact representation is simply
all cuts with at most α/φ vertices on one side. Motivated by this connection, we show that if

85

the original graph is itself an expander, then it is enough to preserve all vertex degrees and all
edge weights up to an additive ε′λ factor, where λ is the mincut of the graph and ε′ depends
on ε, α, φ. We present the unweighted expander case in Section 6.4 as a warm-up, which
features all of our ideas except for the final expander decomposition step. To handle general
graphs, we compute an expander hierarchy of the graph, which is a recursive, hierarchical
expander decomposition structure introduced by Goranci et al. [45].

Large cuts. For the large cuts—those that are not α-approximate mincuts—our strategy
differs from the pessimistic estimator approach. Here, our aim is not to preserve each of them
up to a (1 + ε)-factor, but a γ-factor for a different parameter γ = no(1). This relaxation
prevents us from obtaining a full (1 + ε)-approximate sparsification of the graph, but it still
works for the mincut problem since the large cuts do not fall below the original mincut
value. While a deterministic (1 + ε)-approximate sparsification algorithm in near-linear time
is unknown, one exists for γ-approximation sparsification for some γ = no(1) [27]. In our case,
we actually need the sparsifier to be uniformly weighted, so we construct our own sparsifier
in Section 6.5.3, again via the expander hierarchy. Note that if the original graph is an
expander, then we can take any expander whose degrees are roughly the same; in particular,
the sparsifier does not need to be a subgraph of the original graph. To summarize, for the
large cuts case, we simply construct an γ-approximate sparsifier deterministically, bypassing
the need to de-randomize the Benczur-Karger random sampling technique.

Combining them together. Of course, this γ-approximate sparsifier destroys the guar-
antee of the small cuts, which need to be preserved (1 + ε)-approximately. Our strategy
is to combine the small cut sparsifier and the large cut sparsifier together in the follow-
ing way. We take the union of the small cut sparsifier with a “lightly” weighted version of
the large cut sparsifier, where each edge in it is weighted by ε/γ times its normal weight.
This way, each small cut of weight w suffers at most an additive γw · ε/γ = εw weight
from the “light” large cut sparsifier, so we do not destroy the small cuts guarantee (up to
replacing ε with 2ε). Moreover, each large cut of weight w ≥ αλ is weighted by at least
w/γ · ε/γ ≥ αλ/γ · ε/γ = α/γ2 · ελ, where λ is the mincut of the original graph. Hence, as
long as α ≥ γ2/ε, the large cuts have weight at least the mincut, and the property for large
cuts is preserved.

Unbalanced vs. balanced. We remark that our actual separation between small cuts
and large cuts is somewhat different; we use unbalanced and balanced instead to emphasize
this distinction. Nevertheless, we should intuitively think of unbalanced cuts as having
small weight and balanced as having large weight; rather, the line is not drawn precisely
at a weight threshold of αλ. The actual separation is more technical, so we omit it in this
overview section.

86

6.3 Additional Preliminaries

In this chapter, sometimes we will mention weighted graphs and unweighted graphs in the
same context. We make this distinction because sometimes, it is necessary to consider un-
weighted graphs on their own, rather than as a special case of weighted graphs. In particular,
the skeleton graph that we compute in the algorithm must be unweighted. For this reason,
we introduce separate graph-theoretic notation for unweighted graphs to better differentiate
them from their weighted counterparts.

For an unweighted graph G = (V,E), let #(u, v) be the number of (parallel) edges e ∈ E
with endpoints u and v. For a set F ⊆ E of edges, denote its cardinality by |F |, and for a
vertex v ∈ V , define its degree deg(v) to be |∂({v})|. The rest of the definitions remain the
same for weighted and unweighted graphs.

6.3.1 Karger’s Approach

In this section, we outline Karger’s approach to his near-linear time randomized mincut
algorithm and set up the necessary theorems for our deterministic result. Karger’s algorithm
has two main steps. First, it computes a small set of (unweighted) trees on vertex set V
such that the mincut 2-respects one of the trees T , defined as follows:

Definition 6.3.1

Given a weighted graph G and an unweighted tree T on the same set of vertices, a cut
∂GS 2-respects the tree T if |∂TS| ≤ 2.

Karger accomplishes this goal by first sparsifying the graph into an unweighted skeleton
graph using the well-known Benzcur-Karger sparsification by random sampling, and then
running a tree packing algorithm of Gabow [40] on the skeleton graph.

Theorem 6.3.2: Global mincut given skeleton graph [55]

Let G be a weighted graph, let m′ and c′ be parameters, and let H be an unweighted
graph on the same vertices, called the skeleton graph, with the following properties:
(a) H has m′ edges,

(b) The mincut of H is c′, and

(c) The mincut in G corresponds (under the same vertex partition) to a 7/6-
approximate mincut in H.

Given graphs G and H, there is a deterministic algorithm in O(c′m′ log n) time that
constructs O(c′) trees on the same vertices such that one of them 2-respects the mincut
in G.

The second main step of Karger’s algorithm is to compute the mincut of G given a tree
that 2-respects the mincut. This step is deterministic and is based on dynamic programming.

87

Theorem 6.3.3: Minimum 2-respecting cut algorithm [55]

Given a weighted, undirected graph G and a (not necessarily spanning) tree T on the
same vertices, there is a deterministic algorithm in O(m log2 n) time that computes
the minimum-weight cut in G that 2-respects the tree T .

Our main technical contribution is a deterministic construction of the skeleton graph
used in Theorem 6.3.2. Instead of designing an algorithm to produce the skeleton graph
directly, it is more convenient to prove the following, which implies a skeleton graph by the
following claim.

Theorem 6.3.4: Mincut sparsifier

For any 0 < ε ≤ 1, we can compute, in deterministic ε−42O(logn)5/6(log logn)O(1)
m time,

an unweighted graph H and some weight W = ε4λ/2O(logn)5/6(log logn)O(1) such that
1. For any mincut ∂S∗ of G, we have W · |∂HS∗| ≤ (1 + ε)λ, and

2. For any cut ∅ (S (V of G, we have W · |∂HS| ≥ (1− ε)λ.

Claim 6.3.5

For ε = 0.01, the graph H in Theorem 6.3.4 fulfills the conditions of Theorem 6.3.2
with m′ = m1+o(1) and c′ = no(1).

Proof. Since the algorithm of Theorem 6.3.4 takes m1+o(1) time, the output graph H must
have m1+o(1) edges, fulfilling condition (a) of Theorem 6.3.2. For any mincut S∗ of G, by
property (1) of Theorem 6.3.4, we have |∂HS∗| ≤ (1+ ε)λ/W ≤ no(1), fulfilling condition (b).
For any cut ∅ (S (V , by property (2), we have |∂HS| ≥ (1 − ε)λ/W . In other words,
S∗ is a (1 + ε)/(1− ε)-approximate mincut, which is a 7/6-approximate mincut for ε = 0.01,
fulfilling condition (c).

With the above three statements in hand, we now prove Theorem 6.2.1 following Karger’s
approach. Run the algorithm of Theorem 6.3.4 to produce a graph H which, by Claim 6.3.5,
satisfies the conditions of Theorem 6.3.2. Apply Theorem 6.3.2 on G and the skeleton graph
H, producing no(1) many trees such that one of them 2-respects the mincut in G. Finally,
run Theorem 6.3.3 on each tree separately and output the minimum 2-respecting cut found
among all the trees, which must be the mincut inG. Each step requires 2O(logn)5/6(log logn)O(1)

m
deterministic time, proving Theorem 6.2.1.

Thus, the main focus for the rest of the chapter is proving Theorem 6.3.4.

6.3.2 Spectral Graph Theory

Central to our approach are the well-known concepts of conductance, expanders, and the
graph Laplacian from spectral graph theory.

88

Definition 6.3.6: Conductance, expander

The conductance of a weighted graph G is

Φ(G) := min
∅(S(V

w(E(S, V \ S))

min{vol(S),vol(V \ S)}
.

For the conductance of an unweighted graph, replace w(E(S, V \S)) by |E(S, V \S)|.
We say that G is a φ-expander if Φ(G) ≥ φ.

Definition 6.3.7: Laplacian

The Laplacian LG of a weighted graph G = (V,E) is the n × n matrix, indexed by
V × V , where
(a) Each diagonal entry (v, v) has entry deg(v), and

(b) Each off-diagonal entry (u, v) (u 6= v) has weight −w(u, v) if (u, v) ∈ E and 0
otherwise.

The only fact we will use about Laplacians is the following well-known fact, that cuts in
graphs have the following nice form:

Fact 6.3.8

For any weighted graph G = (V,E) with Laplacian LG, and for any subset S ⊆ V , we
have

w(∂S) = 1
T
SLG1S,

where 1S ∈ {0, 1}V is the vector with value 1 at vertex v if v ∈ S, and value 0
otherwise. For unweighted graph G, replace w(∂S) with |∂S|.

6.4 Expander Case

In this section, we prove Theorem 6.3.4 restricted to the case when G is an unweighted
expander. Our aim is to present an informal, intuitive exposition that highlights our main
ideas in a relatively simple setting. Since this section is not technically required for the main
result, we do not attempt to formalize our arguments, deferring the rigorous proofs to the
general case in Section 6.5.

89

Theorem 6.4.1: Deterministic mincut on expanders

Let G be an unweighted φ-expander multigraph. For any 0 < ε ≤ 1, we can compute,
in deterministic m1+o(1) time, an unweighted graph H and some weight W = ε3λ/no(1)

such that
(a) For any mincut ∂GS∗ of G, we have W · |∂HS∗| ≤ (1 + ε)λ, and

(b) For any cut ∂GS of G, we have W · |∂HS| ≥ (1− ε)λ.

For the rest of this section, we prove Theorem 6.4.1.
Consider an arbitrary cut ∂GS. By Fact 6.3.8, we have

|∂GS| = 1
T
SLG1S =

(∑
v∈S

1
T
v

)
LG

(∑
v∈S

1v

)
=
∑
u,v∈S

1
T
uLG1v. (6.1)

Suppose we can approximate each 1
T
uLG1v to an additive error of ε′λ for some small ε′

(depending on ε); that is, suppose that our graph H and weight W satisfy

|1TuLG1v −W · 1TuLH1v| ≤ ε′λ

for all u, v ∈ V . Then, by (6.1), we can approximate |∂GS| up to an additive |S|2ε′λ, or
a multiplicative (1 + |S|2ε′), which is good if |S| is small. Similarly, if |V \ S| is small,
then we can replace S with V \ S in (6.1) and approximate |∂GS| = |∂G(V \ S)| to the
same factor. Motivated by this observation, we define a set S ⊆ V to be unbalanced if
min{vol(S),vol(V \ S)} ≤ αλ/φ for some α = no(1) to be set later. Similarly, define a
cut ∂GS to be unbalanced if the set S is unbalanced. Note that an unbalanced set S must
have either |S| ≤ α/φ or |V \ S| ≤ α/φ, since if we assume without loss of generality that
vol(S) ≤ vol(V \ S), then

|S|λ ≤
∑
v∈S

deg(v) = vol(S) ≤ αλ/φ, (6.2)

where the first inequality uses that each degree cut ∂({v}) has weight deg(v) ≥ λ. Moreover,
since G is a φ-expander, the mincut ∂GS∗ is unbalanced because, assuming without loss of
generality that vol(S∗) ≤ vol(V \ S∗), we obtain

|∂G(S∗)|
vol(S∗)

≥ Φ(G) ≥ φ =⇒ vol(S∗) ≤ 1/φ ≤ αλ/φ.

To approximate all unbalanced cuts, it suffices by (6.1) and (6.2) to approximate each
1
T
uLG1v up to additive error (φ/α)2ελ. When u 6= v, the expression 1

T
uLG1v is simply

the negative of the number of parallel (u, v) edges in G. So, approximating 1
T
uLG1v up

to additive error ελ simply amounts to approximating the number of parallel (u, v) edges.
When u = v, the expression 1

T
v LG1v is simply the degree of v, so approximating it amounts

90

to approximating the degree of v.
Consider what happens if we randomly sample each edge with probability p = Θ(α logn

ε2φλ
)

and weight the sampled edges by Ŵ := 1/p to form the sampled graph Ĥ. For the terms
1
T
uLG1v (u 6= v), we have #G(u, v) ≤ vol(S) ≤ αλ/φ. Let us assume for simplicity that

#G(u, v) = αλ/φ, which turns out to be the worst case. By Chernoff bounds, for δ = εφ/α,

Pr
[∣∣#Ĥ(u, v)− p ·#G(u, v)

∣∣ > δ · p ·#G(u, v)
]
< 2 exp(−δ2 · p ·#G(u, v)/3)

= 2 exp

(
−
(
εφ

α

)2

·Θ
(
α log n

ε2φλ

)
· αλ/φ

3

)
(6.3)

= 2 exp(−Θ(log n)),

which we can set to be much less than 1/n2. We then have the implication∣∣#Ĥ(u, v)− p ·#G(u, v)
∣∣ ≤ δ · p ·#G(u, v) =⇒

∣∣1Tu (LG − LĤ)1v
∣∣ ≤ δ ·#G(u, v)

= εφ/α · αλ/φ = ελ.

Similarly, for the terms 1Tv LG1v, we have deg(v) ≤ vol(S) ≤ αλ/φ, and the same calculation
can be made.

From this random sampling analysis, we can derive the following pessimistic estimator.
Initially, it is the sum of the quantities (6.3) for all (u, v) satisfying either u = v or (u, v) ∈ E.
This sum has O(m) terms which sum to less than 1, so it can be efficiently computed
and satisfies the initial condition of a pessimistic estimator. After some edges have been
considered, the probability upper bounds (6.3) are modified to be conditional to the choices
of edges so far, which can still be efficiently computed. At the end, for each unbalanced set
S, the graph Ĥ will satisfy∣∣|∂GS| − Ŵ · |∂ĤS|∣∣ ≤ ελ =⇒ (1− ε)|∂GS| ≤ Ŵ · |∂ĤS| ≤ (1 + ε)|∂GS|.

Since any mincut ∂GS∗ is unbalanced, we fulfill condition (a) of Theorem 6.4.1. We also fulfill
condition (b) for any cut with a side that is unbalanced. This concludes the unbalanced
case; we omit the rest of the details, deferring the pessimistic estimator and its efficient
computation to the general case, specifically Section 6.5.2.

Define a cut to be balanced if it is not unbalanced. For the balanced cuts, it remains to
fulfill condition (b), which may not hold for the graph Ĥ. Our solution is to “overlay” a fixed
expander onto the graph Ĥ, weighted small enough to barely affect the mincut (in order to
preserve condition (a)), but large enough to force all balanced cuts to have weight at least λ.
In particular, let H̃ be an unweighted Θ(1)-expander on the same vertex set V where each
vertex v ∈ V has degree Θ(degG(v)/λ), and let W̃ := Θ(εφλ). We should think of H̃ as a
“lossy” sparsifier of G, in that it approximates cuts up to factor O(1/φ), not (1 + ε).

Consider taking the “union” of the graph Ĥ weighted by Ŵ and the graph H̃ weighted

91

by W̃ . More formally, consider a weighted graph H ′ where each edge (u, v) is weighted by
Ŵ · wĤ(u, v) + W̃ · wH̃(u, v). We now show two properties: (1) the mincut gains relatively
little weight from H̃ in the union H ′, and (2) any balanced cut automatically has at least λ
total weight from H̃.

1. For a mincut ∂GS∗ in G with volG(S∗) ≤ |∂GS∗|/φ = λ/φ, the cut crosses

w(∂ĤS
∗) ≤ volĤ(S∗) ≤ Θ(1) · volG(S∗)/λ ≤ Θ(1/φ)

edges in H̃, for a total cost of at most Θ(1/φ) ·Θ(εφλ) ≤ ελ.

2. For a balanced cut ∂GS, it satisfies |∂GS| ≥ φ · volG(S) ≥ αλ, so it crosses

w(∂ĤS) ≥ Θ(1) · volĤ(S) ≥ Θ(1) · volG(S)/λ ≥ Θ(α/φ)

many edges in H̃, for a total cost of at least Θ(α/φ) ·Θ(εφλ). Setting α := Θ(1
ε
), the

cost becomes at least λ.
Therefore, in the weighted graph H ′, the mincut has weight at most (1 + O(ε))λ, and any
cut has weight at least (1− ε)λ. We can reset ε to be a constant factor smaller so that the
factor (1 +O(ε)) becomes (1 + ε).

To finish the proof of Theorem 6.4.1, it remains to extract an unweighted graph H and
a weight W from the weighted graph H ′. Since Ŵ = Θ(ε2φλ

α logn
) = Θ(ε

3φλ
logn

) and W̃ = Θ(εφλ),
we can make W̃ an integer multiple of Ŵ , so that each edge in H ′ is an integer multiple of
Ŵ . We can therefore set W := Ŵ and define the unweighted graph H so that #H(u, v) =

wH′(u, v)/Ŵ for all u, v ∈ V .

6.5 General Case

This section is dedicated to proving Theorem 6.3.4. For simplicity, we instead prove the
following restricted version first, which has the additional assumption that the maximum
edge weight in G is bounded. At the end of this section, we show why this assumption can
be removed to obtain the full Theorem 6.3.4.

Theorem 6.5.1: Sparsifier with maximum weight assumption

There exists a function f(n) ≤ 2O(logn)5/6(log logn)O(1) such that the following holds.
Let G be a graph with mincut λ and maximum edge weight at most ε4λ/f(n).
For any 0 < ε ≤ 1, we can compute, in deterministic 2O(logn)5/6(log logn)O(1)

m time, an
unweighted graph H and some weight W ≥ ε4λ/f(n) such that the two properties of
Theorem 6.3.4 hold, i.e.,

1. For any mincut S∗ of G, we have W · |∂HS∗| ≤ (1 + ε)λ, and

2. For any cut ∅ (S (V of G, we have W · |∂HS| ≥ (1− ε)λ.

92

6.5.1 Expander Decomposition Preliminaries

Our main tool in generalizing the expander case is expander decompositions, which was
popularized by Spielman and Teng [100] and is quickly gaining traction in the area of fast
graph algorithms. The general approach to utilizing expander decompositions is as follows.
First, solve the case when the input graph is an expander, which we have done in Section 6.4
for the problem described in Theorem 6.3.4. Then, for a general graph, decompose it into
a collection of expanders with few edges between the expanders, solve the problem each
expander separately, and combine the solutions together, which often involves a recursive
call on a graph that is a constant-factor smaller. For our purposes, we use a slightly stronger
variant than the usual expander decomposition that ensures boundary-linkedness, which will
be important in our analysis. The following definition is inspired by [45]; note that our
variant is weaker than the one in Definition 4.2 of [45] in that we only guarantee their
property (2). For completeness, we include a full proof in Section 8.8 that is similar to the
one in [45].

Theorem 6.5.2: Boundary-linked expander decomposition, restated

Let G = (V,E) be a graph and let r ≥ 1 be a parameter. There is a deterministic
algorithm in m1+O(1/r) + Õ(m/φ2) time that, for any parameters β ≤ (log n)−O(r4) and
φ ≤ β, partitions V = V1] · · ·] Vk such that

1. Each vertex set Vi satisfies

min
∅(S(Vi

w(∂G[Vi]S)

min{volG[Vi]
(S)+β

φ
w(EG(S,V \Vi)),volG[Vi]

(Vi\S)+β
φ
w(EG(Vi\S,V \Vi))}

≥ φ. (6.4)

Informally, we call the graphG[Vi] together with its boundary edges EG(Vi, V \Vi)
a β-boundary-linked φ-expander.In particular, for any S satisfying

volG[Vi](S) +
β

φ
w(EG(S, V \ Vi)) ≤ volG[Vi](Vi \ S) +

β

φ
w(EG(Vi \ S, V \ Vi)),

we simultaneously obtain

w(∂G[Vi]S)

volG[Vi](S)
≥ φ and

w(∂G[Vi]S)
β
φ
w(EG(S, V \ Vi))

≥ φ ⇐⇒
w(∂G[Vi]S)

w(EG(S, V \ Vi))
≥ β.

The right-most inequality is where the name “boundary-linked” comes from.

2. The total weight of “inter-cluster” edges, w(∂V1 ∪ · · · ∪ ∂Vk), is at most
(log n)O(r4)φvol(V).

Note that for our applications, it’s important that the boundary-linked parameter β is
much larger than φ. This is because in our recursive algorithm, the approximation factor
will blow up by roughly 1/β per recursion level, while the instance size shrinks by roughly

93

φ.
In order to capture recursion via expander decompositions, we now define a boundary-

linked expander decomposition sequence {Gi} on the graph G in a similar way to [45]. Com-
pute a boundary-linked expander decomposition for β and φ ≤ β to be determined later,
contract each expander,1 and recursively decompose the contracted graph until the graph
consists of a single vertex. Let G0 = G be the original graph and G1, G2, . . . , GL be the
recursive contracted graphs. Note that each graph Gi has minimum degree at least λ, since
any degree cut in any Gi induces a cut in the original graph G. Each time we contract, we
will keep edge identities for the edges that survive, so that E(G0) ⊇ E(G1) ⊇ · · · ⊇ E(GL).
Let U i be the vertices of Gi.

For the rest of Section 6.5.1, fix an expander decomposition sequence {Gi} of G. For any
subset ∅ (S (V , we now define an decomposition sequence of S as follows. Let S0 = S,
and for each i > 0, construct Si+1 as a subset of the vertices of Gi+1, as follows. Take the
expander decomposition of Gi, which partitions the vertices U i of Gi into, say, U i

1, . . . , U
i
ki
.

Each of the U i
j gets contracted to a single vertex uj in Gi. For each U i

j , we have a choice
whether to add uj to Si or not. This completes the construction of Si. Define the “difference”
Di
j = Uj \ Si if uj ∈ Si, and Di

j = Uj ∩ Si otherwise. The sets Si, U i
j , and Di

j define the
decomposition sequence of S.

We now prove some key properties of the boundary-linked expander decomposition se-
quence in the context of graph cuts, which we will use later on. First, regardless of the
choice whether to add each uj to Si, we have the following lemma relating the sets Di

j to
the original set S.

Lemma 6.5.3

For any decomposition sequence {Si} of S,

∂GS ⊆
L⋃
i=0

⋃
j∈[ki]

∂GiD
i
j.

Proof. Observe that

(∂GiS
i)4(∂Gi+1Si+1) ⊆

⋃
j∈[ki]

∂GiD
i
j. (6.5)

In particular,
∂GiS

i ⊆ ∂Gi+1Si+1 ∪
⋃
j∈[ki]

∂GiD
i
j.

1Since we are working with weighted multigraphs, we do not collapse parallel edges obtained from con-
traction into single edges.

94

Iterating this over all i,

∂GS ⊆
L⋃
i=0

⋃
j∈[ki]

∂GiD
i
j.

We now define a specific decomposition sequence of S, by setting up the rule whether or
not to include each uj in Si. For each U i

j , if

volGi[U ij](S
i∩U i

j)+
β

φ
w(EGi(S

i∩U i
j , U

i \U i
j)) ≥ volGi[U ij](U

i
j \Si)+

β

φ
w(EGi(U

i
j \Si, U i \U i

j)),

then add uj to Si; otherwise, do not add uj to Si. This ensures that

volGi[U ij](U
i
j \Di

j) +
β

φ
w(EGi(U

i
j \Di

j, U
i \ U i

j)) ≥ volGi[U ij](D
i
j) +

β

φ
w(EGi(D

i
j, U

i \ U i
j)).

(6.6)

Since Gi[U i
j] is a β-boundary-linked φ-expander, by our construction, we have, for all i, j,

w(∂Gi[U ij]D
i
j)

volGi[U ij](D
i
j)
≥ φ (6.7)

and

w(∂Gi[U ij]D
i
j)

w(EGi(D
i
j, U

i \ U i
j))
≥ β. (6.8)

For this specific construction of {Si}, called the canonical decomposition sequence of S,
we have the following lemma, which complements Lemma 6.5.3.

Lemma 6.5.4

Let {Si} be any decomposition sequence of S satisfying (6.8) for all i, j. Then,

L∑
i=0

∑
j∈[ki]

w(∂GiD
i
j) ≤ β−O(L)w(∂GS).

Proof. By (6.8),

w(EGi(D
i
j, U

i \ U i
j)) ≤

1

β
· w(∂Gi[U ij]D

i
j).

95

The edges of ∂Gi[U ij]D
i
j are inside ∂GiSi and are disjoint over distinct j, so in total,

∑
j∈[ki]

w(∂GiD
i
j) ≤

∑
j∈[ki]

1

β
· w(∂Gi[U ij]D

i
j) ≤

1

β
· w(∂GiS

i).

From (6.5), we also obtain

∂Gi+1Si+1 ⊆ ∂GiS
i ∪

⋃
j∈[ki]

∂GiD
i
j.

Therefore,

w(∂Gi+1Si+1) ≤ w(∂GiS
i) + w

 ⋃
j∈[ki]

∂GiD
i
j

 ≤ (1 +
1

β

)
· w(∂GiS

i).

Iterating this over all i ∈ [L], we obtain

w(∂GiS
i) ≤

(
1 +

1

β

)i
· w(∂GS).

Thus,

L∑
i=0

∑
j∈[ki]

w(∂GiD
i
j) ≤

L∑
i=0

1

β
· w(∂GiS

i) ≤
L∑
i=0

1

β
·
(

1 +
1

β

)i
· w(∂GS) = β−O(L)w(∂GS).

6.5.2 Unbalanced Case

In this section, we generalize the notion of unbalanced from Section 6.4 to the general case,
and then prove a (1 + ε)-approximate sparsifier of the unbalanced cuts.

Fix an expander decomposition sequence {Gi} of G for the Section 6.5.2. For a given set
∅ (S (V , let {Si} be the canonical decomposition sequence of S, and define Di

j as before,
so that they satisfy (6.7) and (6.8) for all i, j. We generalize our definition of unbalanced
from the expander case as follows, for some τ = no(1) to be specified later.

Definition 6.5.5

The set S ⊆ V is τ -unbalanced if for each level i,
∑

j∈[ki]
volGi(Di

j) ≤ τλ/φ. A cut ∂S
is τ -unbalanced if the set S is τ -unbalanced.

Note that if G is originally an expander, then in the first expander decomposition of the
sequence, we can declare the entire graph as a single expander; in this case, the expander de-

96

composition sequence stops immediately, and the definition of τ -unbalanced becomes equiv-
alent to that from the expander case. We now claim that for an appropriate value of τ , any
mincut is τ -unbalanced.

Claim 6.5.6

For τ ≥ β−Ω(L), any mincut ∂S∗ of G is τ -unbalanced.

Proof. Consider the canonical decomposition sequence of S, and define Di
j as usual. For

each level i and index j ∈ [ki],

volGi(Di
j) = volGi[U ij](D

i
j) + w(EGi(D

i
j, U

i \ U i
j))

(6.7)

≤ 1

φ
w(∂Gi[U ij]D

i
j) + w(EGi(D

i
j, U

i \ U i
j))

≤ 1

φ
w(∂GiD

i
j).

Summing over all j ∈ [ki] and applying Lemma 6.5.4,∑
j∈[ki]

volGi(Di
j) ≤

∑
j∈[ki]

1

φ
w(∂GiD

i
j) =

1

φ
·
∑
j∈[ki]

w(∂GiD
i
j)

Lem.6.5.4
≤ 1

φ
· β−O(L)w(∂GS

∗) ≤ τλ

φ
,

so S∗ is τ -unbalanced.

Let us now introduce some notation exclusive to this section. For each vertex v ∈ U i, let
v ⊆ V be its “pullback” on the original set V , defined as all vertices in V that get contracted
into v in graph Gi in the expander sequence. For each set Di

j, let Di
j ⊆ V be the pullback

of Di
j, defined as Di

j =
⋃
v∈Dij

v. We can then write

1S =
∑
i,j

±1
Dij

=
∑
i,j

∑
v∈Dij

±1v,

where the ± sign depends on whether Di
j = U i

j \ Si or Di
j = U i

j ∩ Si. Then,

w(∂GS) = 1
T
SLG1S =

∑
i,j,k,l

±1T
Dij
LG1Dkl

=
∑
i,j,k,l

∑
u∈Dij ,v∈Dkl

±1TuLG1v. (6.9)

Claim 6.5.7

For an τ -unbalanced set S, there are at most ((L + 1)τ/φ)2 nonzero terms in the
summation (6.9).

Proof. Each vertex v ∈ Di
j has degree at least λ in Gi, since it induces a cut (specifically, its

97

pullback v ⊆ V) in the original graph G. Therefore,

τλ/φ ≥
∑
j∈[ki]

volGi(Di
j) ≥

∑
j∈[ki]

|Di
j| · λ,

so there are at most τ/φ many choices for j and u ∈ Di
j given a level i. There are at most

L+ 1 many choices for i, giving at most (L+ 1)τ/φ many combinations of i, j, u. The same
holds for combinations of k, l, v, hence the claim.

The main goal of this section is to prove the following lemma.

Lemma 6.5.8

There exists a constant C > 0 such that given any weight W ≤ Cεφλ
τ ln(Lm)

, we can
compute, in deterministic Õ(L2m) time,a an unweighted graph H such that for all
levels i, k and vertices u ∈ U i, v ∈ Uk satisfying degGi(u) ≤ τλ/φ and degGk(v) ≤
τλ/φ, ∣∣1TuLG1v −W · 1TuLH1v∣∣ ≤ ελ. (6.10)

aoutside of computing the boundary-linked expander decomposition sequence

Before we prove Lemma 6.5.8, we show that it implies a sparsifier of τ -unbalanced cuts,
which is the lemma we will eventually use to prove Theorem 6.5.1:

Lemma 6.5.9

There exists a constant C > 0 such that given any weight W ≤ Cεφλ
τ ln(Lm)

, we can
compute, in deterministic Õ(L2m) time, an unweighted graph H such that for each
τ -unbalanced cut S,

∣∣w(∂GS)−W · w(∂HS)
∣∣ ≤ ((L+ 1)τ

φ

)2

· ελ.

Proof. Let C > 0 be the same constant as the one in Lemma 6.5.8. Applying (6.9) to ∂HS
as well, we have

w(∂GS)−W · w(∂HS) =
∑
i,j,k,l

∑
u∈Dij ,v∈Dkl

±(1TuLG1v −W · 1TuLH1v),

so that ∣∣w(∂GS)−W · w(∂HS)
∣∣ ≤∑

i,j,k,l

∑
u∈Dij ,v∈Dkl

∣∣1TuLG1v −W · 1TuLH1v∣∣.
By Claim 6.5.7, there are at most ((L+ 1)τ/φ)2 nonzero terms in the summation above. In

98

order to apply Lemma 6.5.8 to each such term, we need to show that degGi(u) ≤ τλ/φ and
degGk(v) ≤ τλ/φ. Since S is an τ -unbalanced cut, we have

degGi(u) ≤ volGi(Di
j) ≤

∑
j∈[ki]

volGi(Di
j) ≤ τλ/φ,

and similarly for degGk(v). Therefore, by Lemma 6.5.8,

∣∣w(∂GS)−W · w(∂HS)
∣∣ ≤ ((L+ 1)τ

φ

)2

· ελ,

as desired.

The rest of Section 6.5.2 is dedicated to proving Lemma 6.5.8.
Expand out LG =

∑
e∈E Le, where Le is the Laplacian of the graph consisting of the

single edge e of the same weight, so that 1TuLe1v ∈ {−w(e), w(e)} if exactly one endpoint of
e is in u and exactly one endpoint of e is in v, and 1

T
uLe1v = 0 otherwise. Let Eu,v,+ denote

the edges e ∈ E with 1
T
uLe1v = w(e), and Eu,v,− denote those with 1

T
uLe1v = −w(e).

Random Sampling Procedure Consider the Benzcur-Karger random sampling proce-
dure, which we will de-randomize in this section. Let Ĥ be a subgraph of G with each
edge e ∈ E sampled independently with probability w(e)/W , which is at most 1 by the
assumption of Theorem 6.5.1. Intuitively, the parameter W ≥ λ/f(n) is selected so that
with probability close to 1, (6.10) holds over all i, k, u, v.

We now introduce our concentration bounds for the random sampling procedure, namely
the classical multiplicative Chernoff bound. We state a form that includes bounds on the
moment-generating function E[etX] obtained in the standard proof.

Lemma 6.5.10: Multiplicative Chernoff bound

Let X1, . . . , XN be independent random variables that take values in [0, 1], and let
X =

∑N
i=1Xi and µ = E[X] =

∑N
i=1 pi. Fix a parameter δ, and define

tu = ln(1 + δ) and tl = ln

(
1

1− δ

)
. (6.11)

Then, we have the following upper and lower tail bounds:

Pr[X > (1 + δ)µ] ≤ e−t
u(1+δ)µE[et

uX] ≤ e−δ
2µ/3, (6.12)

Pr[X < (1− δ)µ] ≤ et
l(1−δ)µE[e−t

lX] ≤ e−δ
2µ/3. (6.13)

We now describe our de-randomization by pessimistic estimators. Let F ⊆ E be the set
of edges for which a value Xe ∈ {0, 1} has already been set, so that F is initially ∅. For

99

each i, k, vertices u ∈ U i, v ∈ Uk, and sign ◦ ∈ {+,−} such that Eu,v,◦ 6= ∅, we first define
a “local” pessimistic estimator Φu,v,◦(·), which is a function on the set of pairs (e,Xe) over
all e ∈ F . The algorithm computes a 3-approximation λ̃ ∈ [λ, 3λ] to the mincut with the
Õ(m)-time (2 + ε)-approximation algorithm of Matula [80], and sets

µu,v,◦ =
w(Eu,v,◦)

W
and δu,v,◦ =

ελ̃

6w(Eu,v,◦)
. (6.14)

Following (6.11), we define

tuu,v,◦ = ln(1 + δu,v,◦) and tlu,v,◦ = ln

(
1

1− δu,v,◦

)
, (6.15)

and following the middle expressions (the moment-generating functions) in (6.12) and (6.13),
we define

Φu,v,◦({(e,Xe) : e ∈ F}) = e−t
u
u,v,◦(1+δu,v,◦)µu,v,◦

∏
e∈Eu,v,◦∩F

et
u
u,v,◦Xe

∏
e∈Eu,v,◦\F

E[et
u
u,v,◦Xe]

+ et
l
u,v,◦(1−δu,v,◦)µu,v,◦

∏
e∈Eu,v,◦∩F

e−t
l
u,v,◦Xe

∏
e∈Eu,v,◦\F

E[e−t
l
u,v,◦Xe].

Observe that if we are setting the value of Xe′ for a new edge e′ ∈ Eu,v,◦\F , then by linearity
of expectation, there is an assignment Xe′ ∈ {0, 1} for which Φu,v,◦(·) does not decrease:

Φu,v,◦({(e,Xe) : e ∈ F} ∪ (e′, Xe′)) ≤ Φu,v,◦({(e,Xe) : e ∈ F}).

Since the Xe terms are independent, we have that for any t ∈ R and E ′ ⊆ E,

E
[
et

∑
e∈E′ Xe

]
=
∏
e∈E′

E[etXe].

By the independence above and the second inequalities in (6.12) and (6.13), the initial “local”
pessimistic estimator Φu,v,◦(∅) satisfies

Φu,v,◦(∅) ≤ 2 exp

(
−
δ2
u,v,◦µu,v,◦

3

)
= 2 exp

(
−(ελ̃/(6w(Eu,v,◦)))

2 · w(Eu,v,◦)/W ·
3

)

= 2 exp

(
− ελ̃2

108w(Eu,v,◦)W

)
.

We would like the above expression to be less than 1. To upper bound w(Eu,v,◦), note first
that every edge e ∈ Eu,v,◦ must, under the contraction from G all the way to Gi, map to an
edge incident to u in Gi, which gives w(Eu,v,◦) ≤ degGi(u). Moreover, since degGi(u) ≤ τλ/φ

100

by assumption, we have

w(Eu,v,◦) ≤ degGi(u) ≤ τλ/φ (6.16)

so that

Φu,v,◦(∅) ≤ 2 exp

(
− ελ̃2

108(τλ/φ)W

)
≤ 2 exp

(
− ελ2

108(τλ/φ)W

)
= 2 exp

(
− εφλ

108τW

)
.

Assume that

W ≤ εφλ

108τ ln (16(L+ 1)2m)
, (6.17)

which satisfies the bounds in Lemma 6.5.8, so that

Φu,v,◦(∅) ≤ 2 exp

(
− εφλ

108τW

)
≤ 1

8(L+ 1)2m
.

Our actual, “global” pessimistic estimator Φ(·) is simply the sum of the “local” pessimistic
estimators:

Φ({(e,Xe) : e ∈ F}) =
∑
i,k,

u∈U i,v∈Uk,
◦∈{+,−}

Φu,v,◦({(e,Xe) : e ∈ F}).

The initial pessimistic estimator Φ(∅) satisfies

Φ(∅) =
∑
i,k,

u∈U i,v∈Uk,
◦∈{+,−}

Φu,v,◦(∅) ≤
∑
i,k,

u∈U i,v∈Uk,
◦∈{+,−}

1

8(L+ 1)2m

Clm.6.5.12

≤ 4(L+ 1)2m · 1

8(L+ 1)2m
=

1

2
.

Again, if we are setting the value of Xf for a new edge f ∈ E \ F , then by linearity of
expectation, there is an assignment Xf ∈ {0, 1} for which Φ(·) does not decrease:

Φ({(e,Xe) : e ∈ F} ∪ (f,Xf)) ≤ Φ({(e,Xe) : e ∈ F}).

Therefore, if we always select such an assignment Xe, then once we have iterated over all
e ∈ E, we have

Φ({(e,Xe) : e ∈ E}) ≤ Φ(∅) ≤ 1

2
≤ 1. (6.18)

101

This means that for each i, k, u ∈ U i, v ∈ Uk, and sign ◦ ∈ {+,−},

Φu,v,◦({(e,Xe) : e ∈ E})

= e−t
u
u,v,◦(1+δu,v,◦)µu,v,◦

∏
e∈Eu,v,◦

et
u
u,v,◦Xe + et

l
u,v,◦(1−δu,v,◦)µu,v,◦

∏
e∈Eu,v,◦

e−t
l
u,v,◦Xe ≤ 1.

In particular, each of the two terms is at most 1. Recalling from definition (6.14) that
µu,v,◦ = w(Eu,v,◦)/W and δu,v,◦ = ελ̃/(6w(Eu,v,◦)), we have

∑
e∈Eu,v,◦

Xe ≤ (1 + δu,v,◦)µu,v,◦ =
w(Eu,v,◦)

W
+

ελ̃

6W

and ∑
e∈Eu,v,◦

Xe ≥ (1− δu,v,◦)µu,v,◦ =
w(Eu,v,◦)

W
− ελ̃

6W
.

Therefore,

∣∣1TuLG1v −W · 1TuLĤ1v∣∣ ≤ ∑
◦∈{+,−}

∣∣∣∣∣∣w(Eu,v,◦)−W ·
∑

e∈Eu,v,◦

Xe

∣∣∣∣∣∣ ≤ ελ̃

6
+
ελ̃

6
=
ελ̃

3
≤ ελ,

fulfilling (6.10).
It remains to consider the running time. We first bound the number of i, k, u, v such that

either Eu,v,+ 6= ∅ or Eu,v,− 6= ∅; the others are irrelevant since 1TuLG1v = 1
T
uLĤ1v = 0.

Claim 6.5.11

For each pair of vertices x, y, there are at most (L + 1)2 many selections of i, k and
u ∈ U i, v ∈ Uk such that x ∈ u and y ∈ v.

Proof. For each level i, there is exactly one vertex u ∈ U i with x ∈ u, and for each level
k, there is exactly one vertex v ∈ Uk with y ∈ v. This makes (L + 1)2 many choices of i, k
total, and unique choices for u, v given i, k.

Claim 6.5.12

For each edge e ∈ E, there are at most 4(L+1)2 many selections of i, k and u ∈ U i, v ∈
Uk such that e ∈ Eu,v,+ ∪ Eu,v,−.

Proof. If e ∈ Eu,v,+ ∪Eu,v,−, then exactly one endpoint of e is in u and exactly one endpoint
of e is in v. There are four possibilities as to which endpoint is in u and which is in v, and
for each, Claim 6.5.11 gives at most (L+ 1)2 choices.

102

Claim 6.5.13

There are at most 4(L+ 1)2m many choices of i, k, u, v such that either Eu,v,+ 6= ∅ or
Eu,v,− 6= ∅.

Proof. For each such choice, charge it to an arbitrary edge (x, y) ∈ Eu,v,+ ∪ Eu,v,−. Each
edge is charged at most 4(L + 1)2 times by Claim 6.5.12, giving at most 4(L + 1)2m total
charges.

By Claim 6.5.12, each new edge e ∈ E \ F is in at most 4(L+ 1)2 many sets Eu,v,◦, and
therefore affects at most 4(L+ 1)2 many terms Φu,v,◦({(e,Xe) : e ∈ F}). The algorithm only
needs to re-evaluate these terms with the new variable Xe set to 0 and with it set to 1, and
take the one with the smaller new Φ(·). This takes O(L2) arithmetic operations.

How long do the arithmetic operations take? We compute each exponential in Φ(·)
with c log n bits of precision after the decimal point for some constant c > 0, which takes
polylog(n) time. Each one introduces an additive error of 1/nc, and there are poly(n)

exponential computations overall, for a total of 1/nc ·poly(n) ≤ 1/2 error for a large enough
c > 0. Factoring in this error, the inequality (6.18) instead becomes

Φ({(e,Xe) : e ∈ E}) ≤ Φ(∅) +
1

2
≤ 1

2
+

1

2
= 1,

so the rest of the bounds still hold.
This concludes the proof of Lemma 6.5.8.

6.5.3 Balanced Case

Similar to the expander case, we treat balanced cuts by “overlaying” a “lossy”,
no(1)-approximate sparsifier of G top of the graph Ĥ obtained from Lemma 6.5.9. In the
expander case, this sparsifier was just another expander, but for general graphs, we need
to do more work. At a high level, we compute an expander decomposition sequence, and
on each level, we replace each of the expanders with a fixed expander (like in the expander
case).

Theorem 6.5.14: Lossy cut sparsifier

Let G be an weighted multigraph with mincut λ whose edges have weight at most O(λ).
For any parameters λ̃ ∈ [λ, 3λ] and ∆ ≥ 2O(logn)5/6 , we can compute, in deterministic
2O(logn)5/6(log logn)O(1)

m + O(∆m) time, an unweighted multigraph H such that W ·H
is a γ-approximate cut sparsifier of G, where γ ≤ 2O(logn)5/6(log logn)O(1) and W = λ̃/∆.
(The graph H does not need to be a subgraph of G.) Moreover, the algorithm does
not need to know the mincut value λ.

103

6.5.4 Combining Them Together

We now combine the unbalanced and balanced cases to prove Theorem 6.5.1. Our high-level
procedure is similar to the one from the expander case. For the τ -unbalanced cuts, we use
Lemma 6.5.9. For the balanced cuts, we show that their size must be much larger than λ, so
that even on a γ-approximate weighted sparsifier guaranteed by Theorem 6.5.14, their weight
is still much larger than λ. We then “overlay” the γ-approximate weighted sparsifier with a
“light” enough weight onto the sparsifier of τ -unbalanced cuts. The weight is light enough
to barely affect the mincuts, but still large enough to force any balanced cut to increase by
at least λ in weight.

Claim 6.5.15

If a cut S is balanced, then w(∂GS) ≥ βO(L)τλ.

Proof. Consider the level i for which
∑

j∈[ki]
volGi(Di

j) > τλ/φ. For each j ∈ [ki], we have

volGi(Di
j) = volGi[U ij](D

i
j) + w(EGi(D

i
j, U

i \ U i
j))

(6.7)

≤ 1

φ
w(∂Gi[U ij]D

i
j) + w(EGi(D

i
j, U

i \ U i
j))

≤ 1

φ

(
w(∂Gi[U ij]D

i
j) + w(EGi(D

i
j, U

i \ U i
j))
)

=
1

φ
w(∂GiD

i
j),

so summing over all j ∈ [ki],∑
j∈[ki]

1

φ
w(∂GiD

i
j) ≥

∑
j∈[ki]

volGi(Di
j) >

τλ

φ
.

By Lemma 6.5.4, it follows that

w(∂GS) ≥ βO(L)
∑
j∈[ki]

w(∂iGD
i
j) ≥ βO(L)τλ.

We now set some of our parameters; see Figure 6.1 for a complete table of the parameters
in our proof. For r := (log n)1/6, let β := (log n)−O(r4) and φ := (log n)−r

5 , so that by
Theorem 6.5.2, the total weight of inter-cluster edges, and therefore the total weight of
the next graph in the expander decomposition sequence, shrinks by factor (log n)O(r4)φ =

(log n)−Ω(r5). Since edge weights are assumed to be polynomially bounded, this shrinking
can only happen O(logn

r5
) times, so L ≤ O(logn

r5
).

Let λ̃ ∈ [λ, 3λ] be a 3-approximation to the mincut, computable in Õ(m) time [80],
Let ε′ := 1

2
(φ

(L+1)τ
)2ε for parameter τ that we set later, and let Ĥ be the sparsifier of τ -

104

Par. Value
λ Mincut of G
λ̃ 3-approximation of λ
ε Given as input
r (log n)1/6

β (log n)−O(r4) from Theorem 6.5.2
φ (log n)−r

5

L O(logn
r5

)

γ 2O(logn)5/6(log logn)O(1) from Theorem 6.5.14
∆ 2Θ(logn)5/6 from Theorem 6.5.14
τ β−cLγ2/ε for large enough constant c > 0

ε′ 1
2(φ

(L+1)τ)2ε

Ŵ min{ Cε′φλ̃
τ ln(Lm) ,

λ̃
∆} where C > 0 is the constant from Lemma 6.5.9

W̃ ε
2γ ·

λ̃
∆

Figure 6.1: The parameters in the proof of Theorem 6.5.1.

unbalanced cuts from Lemma 6.5.9 for this value of ε′ (instead of ε) and the following value
of Ŵ ≤ Cε′φλ

τ ln(Lm)
(taking the place of W):

Ŵ := min

{
Cε′φλ̃

3τ ln(Lm)
,
λ̃

∆

}
= min

{
Ω

(
εφ3λ̃

τ 3L2 ln(Lm)

)
,
λ̃

∆

}
.

Let H̃ be the unweighted graph from Theorem 6.5.14 applied to λ̃ and ∆, so that λ̃/∆ ·H̃ is a
γ-approximate cut sparsifier for γ := 2O(logn)5/6(log logn)O(1) . Define W̃ := ε

2γ
· λ̃

∆
, and let H ′ be

the “union” of the graph Ĥ weighted by Ŵ and the graph H̃ weighted by W̃ . More formally,
consider a weighted graphH ′ where each edge (u, v) is weighted by Ŵ ·wĤ(u, v)+W̃ ·wH̃(u, v).

For an τ -unbalanced cut ∂S, the addition of the graph H̃ weighted by W̃ increases its
weight by

W̃ · w(∂H̃S) =
ε

2γ
·
(
λ

∆
w(∂H̃S)

)
≤ ε

2γ
· γw(∂GS) =

ε

2
w(∂GS),

so that∣∣∣w(∂GS)−
(
Ŵ · w(∂ĤS) + W̃ · w(∂H̃S)

)∣∣∣ ≤ ∣∣w(∂GS)− Ŵ · w(∂ĤS)
∣∣+ W̃ · w(∂H̃S

∗)

≤
(

(L+ 1)τ

φ

)2

· ε′λ+
ε

2
w(∂GS)

=
ελ

2
+
ε

2
w(∂GS)

≤ εw(∂GS).

105

In particular, any τ -unbalanced cut satisfies

(1− ε)λ ≤ Ŵ · w(∂ĤS) + W̃ · w(∂H̃S) ≤ (1 + ε)λ. (6.19)

Next, we show that all balanced cuts have weight at least λ in the graph H̃ weighted
by W̃ . This is where we finally set τ := β−cLγ2/ε for large enough constant c > 0. For a
balanced cut S,

W̃ · w(∂H̃S) =
ε

2γ
·
(
λ

∆
w(∂H̃S)

)
≥ ε

2γ
·
(

1

γ
w(∂GS)

)
Clm.6.5.15

≥ ε

γ2
· βO(L)τλ ≥ λ.

Moreover, by Claim 6.5.6 for this value of τ ≥ β−O(L), the mincut ∂S∗ is τ -unbalanced, and
therefore has weight at least (1− ε)λ in H ′ by (6.19).

Therefore, H ′ preserves the mincut up to factor ε and has mincut at least (1 − ε)λ. It
remains to make all edge weights the same on this sparsifier. Since W̃ = ε

2γ
· λ̃

∆
and the

only requirement for ∆ from Theorem 6.5.14 is that ∆ ≥ 2O(logn)5/6 , we can increase or
decrease ∆ by a constant factor until either W̃/Ŵ or Ŵ/W̃ is an integer. Then, we can let
W := min{Ŵ , W̃} and define the unweighted graph H so that #H(u, v) = wH′(u, v)/W for
all u, v ∈ V . Therefore, our final weight W is

W = min{Ŵ , W̃} = min

{
Ω

(
εφ3λ̃

τ 3L2 ln(Lm)

)
,
λ̃

∆
,
ε

2γ
· λ̃

∆

}
≥ ε42−O(logn)5/6(log logn)O(1)

λ,

so we can set f(n) := 2O(logn)5/6(log logn)O(1) , as desired.
Finally, we bound the running time. The expander decomposition sequence (Theo-

rem 6.5.2) takes time m1+O(1/r) + Õ(m/φ2), the unbalanced case (Theorem 6.5.2) takes
time Õ(L2m), and the balanced case takes time 2O(logn)5/6(log logn)O(1)

m. Altogether, the total
is 2O(logn)5/6(log logn)O(1)

m, which concludes the proof of Theorem 6.5.1.

6.5.5 Removing the Maximum Weight Assumption

Let f(n) = 2O(logn)5/6(log logn)O(1) be the function from Theorem 6.5.1. In this section, we
show how to use Theorem 6.5.1, which assumes that the maximum edge weight in G is at
most ε4λ/f(n), to prove Theorem 6.3.4, which makes no assumption on edge weights.

First, we show that we can assume without loss of generality that the maximum edge
weight in G is at most 3λ. To see why, the algorithm can first compute a 3-approximation
λ̃ ∈ [λ, 3λ] to the mincut with the Õ(m)-time (2+ε)-approximation algorithm of Matula [80],
and for each edge in G with weight more than λ̃, reduce its weight to λ̃. Let the resulting
graph be G̃. We now claim the following:

106

Claim 6.5.16

Suppose an unweighted graph H and some weight W satisfy the two properties of
Theorem 6.3.4 for G̃. Then, they also satisfy the two properties of Theorem 6.3.4 for
G.

Proof. The only cuts that change value between G and G̃ are those with an edge of weight
more than λ̃, which means their value must be greater than λ̃ ≥ λ. In particular, since G
and G̃ have the same mincuts and the same mincut values, both properties of Theorem 6.3.4
also hold when the input graph is G.

For the rest of the proof, we work with G̃ instead of G. Define W̃ := ε4λ̃/(3f(n)), which
satisfies W̃ ≤ ε4λ/f(n). For each edge e in G̃, split it into dw(e)/W̃ e parallel edges of weight
at most W̃ each, whose sum of weights equals w(e); let the resulting graph be Ĝ. Apply
Theorem 6.5.1 on Ĝ, which returns an unweighted graph H and weight W ≥ ε4λ/f(n) such
that the two properties of Theorem 6.3.4 hold for Ĝ. Clearly, the cuts are the same in G̃

and Ĝ: we have w(∂G̃S) = w(∂ĜS) for all S ⊆ V . Therefore, the two properties also hold
for Ĝ, as desired.

We now bound the size of G′ and the running time. Since w(e) ≤ λ̃, we have dw(e)/W̃ e ≤
d3f(n)/ε4e, so each edge splits into at most O(f(n)/ε4) edges and the total number of
edges is m̂ ≤ O(f(n)/ε4) ·m. Therefore, Theorem 6.5.1 takes time 2O(logn)5/6(log logn)O(1)

m̂ =

ε−42O(logn)5/6(log logn)O(1)
m, concluding the proof of Theorem 6.3.4.

6.6 Conclusion

In this chapter, we presented a deterministic, almost-linear time algorithm for global mincut.
One immediate open question is whether the running time can be improved to m polylog(n)

to match the randomized complexity up to polylog(n) factors. This direction has two signifi-
cant obstacles, however. The first, which is discussed in Section 8.9, is that the deterministic
expander decomposition algorithm already takes m1+o(1) time, and improving even that to
m polylog(n) would require significantly new ideas. Moreover, even if that were accom-
plished, the nature of our boundary-linked expander decomposition hierarchy would still in-
cur an additional 2O(

√
logn log logn) factor, so the overall running time is still m2O(

√
logn log logn).

Bypassing the expander decomposition hierarchy would itself require novel ideas that may
see applications to other graph cut problems.

107

108

Chapter 7

Parallel Shortest Path

In this chapter, we discuss our preconditioning-based approach to computing approximate
shortest paths in parallel. Our main result is a parallel algorithm to compute (1 + ε)-
approximate single-source shortest paths in m polylog(n) work and polylog(n) time, based
on the work of [68].

We approach this problem from a continuous perspective by studying the closely re-
lated minimum transshipment problem, which we view as a continuous relaxation of the
single-source shortest paths problem. To solve minimum transshipment, we combine precon-
ditioning with iterative methods that minimize continuous functions in a small number of
parallel rounds. Notably, our approach deviates from the previous hopset-based shortest path
algorithms which come close to, but do not quite attain, the targeted m polylog(n) work and
polylog(n) time. In other words, this chapter serves as evidence that preconditioning-based
methods, when combined with the inherent parallelism of iterative methods, is a promising
research direction in parallel graph algorithms.

Our algorithm for (1 + ε)-approximate minimum transshipment follows the
preconditioning-based framework of Sherman [97]. In the context of graph distance algo-
rithms, the well-conditioned graphs are precisely the low-diameter graphs, and Sherman’s
key insight is that there is a simple transshipment algorithm on such graphs. To generalize
the algorithm to all instances, we compute low-diameter decompositions—the distance-based
equivalent of expander decompositions—at varying diameter scales. To control the errors
over all scales, we actually compute the low-diameter decompositions on an embedding of the
graph into high-dimensional Euclidean space. This part of our algorithm improves upon Sher-
man’s original transshipment algorithm and is required to achieve the desired m polylog(n)

work and polylog(n) time. Finally, as Sherman’s algorithm only works for the sequential
setting, we face new challenges in developing a fully parallel algorithm. We end up adopting
a recursive framework, reducing the minimum transshipment problem to sufficiently smaller
instances of itself.

109

7.1 Background

The single-source shortest path problem is one of the most fundamental combinatorial op-
timization problems, and is also among the most notorious in parallel computation models.
While the sequential model has simple near-linear time algorithm dating back to Dijkstra,
much remains unknown for even the PRAM model despite decades of extensive research.

One of the most well-known settings studied so far in the PRAM model is the case of
(1 + ε)-approximate single-source shortest paths in undirected graphs. Early work on this
problem produced algorithms in sublinear time [61, 62], until the breakthrough result of
Cohen [28], who presented an algorithm in O(m1+ε0) work (for any constant ε0 > 0) and
polylog(n) time through the use of hopsets : additional edges added to the graph so that
short paths in the graph span few edges. Since then, it was a long-standing open problem
whether Cohen’s algorithm could be improved to run in m polylog(n) work while keeping
the time polylog(n).

Recently, this question was partially answered by Abboud, Bodwin and Pettie [1], surpris-
ingly in the negative: they showed that there exist families of graphs for which any hopsets
on these graphs must have size Ω(m1+ε0), thereby lower bounding the work by Ω(m1+ε0) for
any purely hopset-based algorithm like Cohen’s. While their lower bound does not rule out
other approaches to this problem, no other directions of attack have come close to matching
Cohen’s method of hopsets before the results of this chapter and the concurrent work of
Andoni, Stein, and Zhong [9] on the same problem.

7.1.1 Our Contributions

In this chapter, we tackle this problem from a new perspective: continuous optimization,
especially the methods pioneered by Sherman [96] for the max-flow problem. By reducing
to studying the closely-related and more continuous minimum transshipment problem, we
provide the first (1 + ε)-approximate SSSP algorithm for weighted, undirected graphs in
m polylog(n) work and polylog(n) time in the PRAM model, bypassing the hopset lower
bound and resolving the aforementioned open problem. This serves as evidence that con-
tinuous optimization, with its rich theory in graph algorithm and inherent parallelism, is a
promising research direction in parallel graph algorithms and can bypass known barriers to
other common approaches.

Theorem 7.1.1: Parallel SSSP

There exists a parallel algorithm that, given an undirected graph with nonnega-
tive weights, computes a (1 + ε)-approximate single-source shortest path tree in
m polylog(n) ε−2 work and polylog(n) ε−2 time in the PRAM model.

Our SSSP algorithm is recursive, cycling through three problems in a round-robin fash-
ion: SSSP, transshipment, and the problem of computing an `1-embedding of a graph with

110

polylog(n) distortion in O(log n) dimensions. That is, each problem calls the next problem
on the cyclic list possibly many times, and possibly on a smaller graph instance. Hence, we
obtain parallel algorithms with similar running times for the other two problems as well.

Theorem 7.1.2: Parallel transshipment

There exists a parallel algorithm that, given an undirected graph with nonnegative
weights and polynomial aspect ratio, computes a (1 + ε)-approximation to minimum
transshipment in m polylog(n) ε−2 work and polylog(n) ε−2 time in the PRAM model.

Theorem 7.1.3: Parallel `1-embedding

There exists a parallel algorithm that, given an undirected graph with nonnegative
weights and polynomial aspect ratio, computes an `1-embedding with polylog(n) dis-
tortion in O(log n) dimensions inm polylog(n) work and polylog(n) time in the PRAM
model.

Theorem 7.1.2 also establishes the firstm polylog(n) time sequential algorithm for (1+ε)-
approximate transshipment, improving upon them1+o(1)-time algorithm of Sherman [97]. For
readers primarily interested in the sequential setting, we further optimize our parameters to
the following. Note that the best algorithm for the closely-related max-flow problem [90]
requires O(m log41 n) time in comparison. Our algorithm is also technically considerably
simpler than the max-flow algorithm, and may serve as a gentler introduction to readers
new to continuous optimization methods in graph algorithms.

Theorem 7.1.4: Sequential transshipment

There is an algorithm that, given an undirected graph with nonnegative weights and
polynomial aspect ratio, computes a (1+ε)-approximation to minimum transshipment
in time O((m log10 n+ n log15 n) ε−2 (log log n)O(1)).

7.1.2 Our Techniques

We follow Sherman’s preconditioning-based approach for transshipment [97]. Sherman’s
framework reduces the problem of approximate transshipment to that of `1-oblivious routing
in a matrix-theoretic sense. More precisely, the task is to compute a sparse matrix R such
that for any transshipment demand vector b, the value ‖Rb‖1 approximates up to polylog-
arithmic factors the minimum transshipment cost with demands b. Note that if the graph
has aspect ratio ∆, then setting R as the square identity matrix approximates the minimum
transshipment cost up to factor 2∆. (To see this, first consider the case when b = 1s − 1t,
and then decompose a general demand into such vectors according to the minimum trans-
shipment flow.) In other words, for average-case instances with low aspect ratio, computing
a good matrix R is trivial. To handle general graphs, we first compute an `1-embedding

111

and essentially phrase the question purely from a geometric point of view, which was also
Sherman’s approach [97]. We then decompose the embedded vertices into grid cells, which
can be viewed as a graph distance analogue of expander decomposition. Our key new in-
sight is to randomly shift the grid when building the grid cells, a technique borrowed from
low-dimensional computational geometry [49]. The `1-oblivious routing algorithm is mostly
self-contained and has no relation to the parallel sections of the chapter. We therefore iso-
late it in its own section, Section 7.4, for the convenience of readers primarily interested in
transshipment in the sequential setting.

Our recursive algorithm is inspired by a similar recursive algorithm by Peng [90] for
max-flow. It is instructive to compare our result to that of Peng [90], the first Õ(m)

time1 algorithm for (1 − ε)-approximate max-flow.2 Peng [90] uses an oblivious routing
scheme for max-flow that achieves polylog(n)-approximation, but requires polylog(n) calls
to (1 − ε)-max-flow [91]. This oblivious routing scheme produced a chicken-and-egg situa-
tion for max-flow and oblivious routing, since each one required calls to the other. Peng’s
main contribution is breaking this cycle, by allowing the oblivious routing to call max-flow
on sufficiently smaller-sized graphs to produce an efficient recursive algorithm. Here, we
adopt a similar recursive approach, cycling through the problems of shortest path, minimum
transshipment, oblivious routing, and `1-embedding.

Step 1: reduce to transshipment. The first step of the algorithm is to reduce the
approximate SSSP problem to the approximate minimum transshipment problem, which
was previously done in [14] for various other computational models. Making it work in the
PRAM model requires a little more care, and for completeness, we provide a self-contained
reduction in Sections 7.8 and 7.9.

Note that if we were in the exact case, then the reduction would be immediate: there is
a straightforward reduction from exact SSSP to exact transshipment: set −(n− 1) demand
on the source vertex and +1 demand on the rest, and from the transshipment flow we can
recover the exact SSSP relatively easily. However, in the approximate case, an approximate
transshipment solution in the same reduction only satisfies distances on “average”. [14]
handles this issue through O(log n) calls to approximate transshipment with carefully and
adaptively constructed demands on each call; we use O(log2 n) calls instead with a more
sophisticated reduction.

Step 2: `1-oblivious routing. As mentioned before, Sherman’s framework reduces the
problem of approximate transshipment to that of `1-oblivious routing. We follow the same

1Throughout this chapter, we use the standard Õ(·) notation to hide polylogarithmic factors in the
running time.

2Note that max-flow and minimum transshipment are closely related: for graph incidence matrix A and
a diagonal matrix C capturing the edge capacities/costs, and for a given demand vector b, the max-flow
problem is equivalent to min ‖f‖∞ subject to Af = b, and the minimum transshipment problem is exactly
min1f subject to Af = b.

112

approach in Section 7.4, computing an `1-embedding matrix R given an initial `1-embedding
of the graph with polylog(n) distortion.

Step 3: `1-embedding and ultra-sparsification. Unfortunately, while `1-embeddings
are simple to compute sequentially, no work-efficient parallel algorithm is known. This is
because the popular algorithms that compute `1-embeddings sequentially all require distance
computations as subroutines, and no work-efficient parallel algorithm for SSSP is known. (If
one were known, then there would be no need for our result in the first place!)

Recall that we sought out to solve SSSP, and currently, our `1-embedding problem requires
an SSSP routine on its own. This is where Peng’s key insight comes to play: while recursing
naively on the same graph will not work (since it would loop endlessly), if we can recurse
on sufficiently smaller graphs, then the recursion analysis would produce an algorithm with
the desired running time. This is indeed Peng’s approach for max-flow: he makes one max-
flow instance call `∞-oblivious routing, which in turn calls max-flow a number of times, but
ensures that the total size of the recursive calls is at most half the size of the original graph.
The recursion then works out to roughly T (m) =

∑
i T (mi) + Õ(m) where

∑
imi ≤ m/2,

which solves to T (m) = Õ(m).
How does Peng achieve the reduction in size? Instead of computing `∞-oblivious routing

in the original graph G, he first (edge-)sparsifies G into a graph H on n vertices and (n−1)+

O(m
polylog(n)

) edges by computing an ultra-sparsifier of the graph [63]. This is a graph that is
so sparse that it is almost “tree-like” (at least when m = Õ(n)). Of course, this alone might
not achieve the desired size reduction, for example if m ≈ n. Therefore, he next vertex-
sparsifies H into a graph H ′ with O(m

polylog(n)
) vertices and O(m

polylog(n)
) edges using a j-tree

construction of Madry [77]. He now calls `∞-oblivious routing on H ′ (instead of G), which
again calls max-flow, but this time on graphs of small enough size (w.r.t. the original graph)
to make the recursion work out. Moreover, by the properties of the ultra-sparsifier and
the vertex-sparsifier, a polylog(n)-approximate `∞-oblivious routing scheme for H ′ is also
a polylog(n)-approximate `∞-oblivious routing scheme for G (that is, the approximation
suffers an extra polylog(n) factor). The specific polylog(n) factor does not matter at the
end, since in Sherman’s framework, any polylog(n) factor is sufficient to boost the error to
(1 + ε) for max-flow at an additional additive cost of Õ(m).

Our approach is similar, but adapted from `∞/max-flow to `1/transshipment. The `1-
analogy of an ultrasparsifier has been studied previously by Elkin and Neiman [34], who
coined the term ultra-sparse spanner ; in this chapter, we will use ultra-spanner instead to
emphasize its connection to ultra-sparsifiers. Instead of running `1-embedding on G, we
compute an ultra-spanner H, and then vertex-sparsify it in the same manner as Peng; again,
the resulting graph H ′ has O(m

polylog(n)
) vertices and edges. We then run `1-embedding on

H ′, making calls to (approximate) SSSP on graphs of much smaller size. It turns out that
approximate SSSP works for the `1-embedding algorithm that we use, provided that the
distances satisfy a certain triangle inequality condition that our SSSP algorithm obtains for

113

free.

7.1.3 Chapter Organization

In Section 7.3, we introduce the high-level components of our recursive parallel algorithm
(see Figure 7.1), leaving the details to later sections and the appendix.

Section 7.4 is focused exclusively on the sequential transshipment result (Theorem 7.1.4).
The algorithm is almost completely self-contained, save for Sherman’s framework and an
initial `1-embedding step (which can be computed quickly sequentially [74]). It has nothing
deferred to the appendix in an attempt to make it a standalone section for readers primarily
interested in Theorem 7.1.4.

7.2 Additional Preliminaries

All graphs in this chapter are undirected and (positively) weighted, with the exception of
Section 7.8, where directed graphs and edges of zero weights are defined explicitly. For two
vertices u, v ∈ V (G), we define dG(u, v) as the (weighted) distance between u and v in G; if
the graph G is clear from context, we sometimes use d(u, v) instead.

7.2.1 PRAM Model

Our PRAM model is based off of the one in [37], also called the work-span model. An
algorithm in the PRAM model proceeds identically to a sequential algorithm except for the
addition of the parallel foreach loop. In a parallel foreach, each iteration of the loop must
run independently of the other tasks, and the parallel algorithm may execute all iterations in
parallel instead of sequentially. The work of a PRAM algorithm is the same as the sequential
running time if each parallel foreach was executed sequentially instead. To determine the time
of the algorithm, for every parallel foreach, we calculate the maximum sequential running
time over all iterations of the loop, and sum this quantity over all parallel foreach loops.
We then add onto the total the sequential running time outside the parallel foreach loops
to determine the total time. There are different variants of the PRAM model, such as
the binary-forking model and the unlimited forking model, that may introduce additional
overhead in foreach loops. However, these all differ by at most polylogarithmic factors in
their work and span, which we always hide behind Õ(·) notation, so we do not concern
ourselves with the specific model.

7.2.2 Transshipment Preliminaries

The definitions below are central for our sequential transshipment algorithm (Theorem 7.1.4,
Section 7.4) and are also relevant for the parallel algorithms.

114

SSSP(n,m, ε) TS(n,m,Θ(ε
logn

))

LE
(
n, n− 1 +O(m

log4 n
)
)

LE(n,m)

Lemma 7.3.15,
Section 7.5

Reduce SSSP to TS [14]
Algorithm TS-to-SSSP, Section 7.9

1 call

1 call

1 call

Lemma 7.3.14, Section 7.6

O(log n) calls

Ultra-sparsify

1 call to SSSP(O(m
log4 n

), O(m
log4 n

), 1
logn

)

OR(n,m)SSSP(n, n−1+O(m
log4 n

), 1
logn

)

Sherman’s
framework [96]
Theorem 7.4.2,
Section 7.7

(main contribution)
Section 7.4

New `1-oblivious
routing

Bourgain’s
embedding [74] O(log2 n) calls
Lemma 7.3.12,
Section 7.10.2

Vertex reduction [77]

Figure 7.1: Our recursive approach, inspired by [90]’s for max-flow. SSSP(n,m, ε) is the work
required to compute (1+ε)-approximate SSSP (on a graph with n vertices and m edges) that
satisfies a certain triangle inequality condition that we omit here. TS(n,m, ε) is the work
required to compute (1 + ε)-approximate transshipment. OR(n,m) is the work required
to compute a polylog(n)-approximate `1-oblivious routing (matrix), and LE(n,m) is the
work required to compute an `1-embedding in O(log n) dimensions with at most polylog(n)
distortion.

115

Definition 7.2.1: Transshipment

The minimum transshipment problem inputs a (positively) weighted, undirected graph
G = (V,E), and defines the following auxiliary matrices:

1. Incidence matrix A ∈ RV×E: for each edge e = (u, v), the column of A indexed
by e equals either 1u − 1v or 1v − 1u.

2. Cost matrix C ∈ RE×E: a diagonal matrix with entry Ce,e equal to the weight
of edge e.

In a transshipment instance, we are also given a demand vector b ∈ RV satisfying
1
T b = 0.

Consider now the LP formulation for minimum transshipment: min1Cf : Af = b, and
its dual, max bTφ :

∥∥C−1ATφ
∥∥
∞ ≤ 1. Let us define the solutions to the primal and dual

formulations as flows and potentials :

Definition 7.2.2: Flow

Given a transshipment instance, a flow vector (or flow) is a vector f ∈ RE satisfying
the primal constraints Af = b, and it has cost 1Cf . The flow minimizing 1Cf is called
the optimal flow of the transshipment instance. For any α ≥ 1, an α-approximate flow
is a flow whose value 1Cf is at most α times the minimum possible (over all flows).

Definition 7.2.3: Potential

Given a transshipment instance, a set of potentials (or potential) is a vector φ ∈ RV

satisfying the dual constraints
∥∥C−1ATφ

∥∥
∞ ≤ 1. The potential maximizing bTφ is

called the optimal potential of the transshipment instance.

For convenience, we will treat potentials as functions on V ; that is, we will use the
notation φ(v) instead of φv.

Definition 7.2.4: Flow-potential pair

For any flow f ∈ RE and potential φ ∈ RV , the pair (f, φ) is called a flow-potential
pair. For α ≥ 1, (f, φ) is an α-approximate flow-potential pair if 1Cf ≤ α bTφ.

Fact 7.2.5

If (f, φ) is an α-approximate flow-potential pair, then f is an α-approximate flow.

Proof. Let f ∗ be the optimal flow. The two LPs min1Cf : Af = b and max bTφ :∥∥C−1ATφ
∥∥
∞ ≤ 1 are duals of each other, so by (weak) LP duality, the potential φ sat-

isfies bTφ ≤ 1Cf ∗. Since (f, φ) is an α-approximate flow-potential pair, we have 1Cf ≤
α bTφ ≤ α1Cf ∗.

116

Definition 7.2.6: opt

Given a transshipment problem and demand vector b, define opt(b) as the cost of the
optimal flow of that instance, that is:

opt(b) := min
f :Af=b

1Cf.

When the underlying graph G is ambiguous, we use the notation optG(b) instead.

7.2.3 Parallel Shortest Path Preliminaries

The definitions below are confined to the parallel algorithms in this chapter, so a reader
primarily interested in the sequential transshipment algorithm (Theorem 7.1.4, Section 7.4)
may skip these.

We first introduce a notion of approximate SSSP distances which we call approximate
SSSP potentials.

Definition 7.2.7: Approximate s-SSSP potential

Given a graph G = (V,E) and a source s, a vector φ ∈ RV is an α-approximate
s-SSSP potential if:

1. For all v ∈ V , φ(v)− φ(s) ≥ 1
α
· d(s, v)

2. For each edge (u, v), |φ(u)− φ(v)| ≤ w(u, v).
When the source s is either irrelevant or clear from context, we may use α-approximate
SSSP potential (without the s) instead.

Observe that the approximate SSSP potential problem is slightly more stringent than
simply approximate shortest path distances: the second condition of Definition 7.2.7 requires
that distances satisfy a sort of approximate subtractive triangle inequality. To illustrate why
this condition is more restrictive, imagine a graph on three vertices s, u, v, with d(s, u) =

d(s, v) = 100 and d(u, v) = 1, and let α := 10/9. Then, the distance estimates d̃(s) = 0

and d̃(u) = 90 and d̃(v) = 100 are α-approximate SSSP distances with source s, but the
vector φ with φ(s) = 0 and φ(u) = 90 and φ(v) = 100 is not a (1 + ε)-approximate SSSP
potential because it violates the second condition of Definition 7.2.7 for edge (u, v): we have
|φ(u)− φ(v)| = 10 > w(u, v) = 1.

Observation 7.2.8

An α-approximate s-SSSP potential is also an α-approximate potential for the trans-
shipment instance with demands

∑
v(1v − 1s) (but the converse is not true).

117

Observation 7.2.9

Given a graph G = (V,E) and a source s, any α-approximate s-SSSP potential φ
satisfies |φ(u)− φ(v)| ≤ d(u, v) for all u, v ∈ V .

Proof. Let u = v0, v1, . . . , v` = v be the shortest path from s to v. By property (2), we have

|φ(u)− φ(v)| ≤
∣∣∣∣ ∑̀
i=1

φ(vi)− φ(vi−1)

∣∣∣∣ ≤ ∑̀
i=1

|φ(vi)− φ(vi−1)| ≤
∑̀
i=1

d(vi, vi−1) = d(u, v).

Observation 7.2.10

If φ is an α-approximate s-SSSP potential, then φ + c · 1 is also one for any scalar
c ∈ R. Therefore, we can always assume w.l.o.g. that φ(s) = 0. In that case, by
property (1), we also have φ(v) ≥ 0 for all v ∈ V .

Observation 7.2.11

Given two vectors φ1 and φ2 that satisfy property (2), the vectors φmin, φmax ∈ RV

defined as φmin(v) := min{φ1(v), φ2(v)} and φmax(v) := max{φ1(v), φ2(v)} for all v ∈ V
also satisfy property (2).

We now generalize the notion of SSSP potential to the case when the “source” is a subset
S ⊆ V , not a single vertex. Essentially, the definition is equivalent to contracting all vertices
in S into a single source s, taking an s-SSSP potential, and setting the potential of each
vertex in S to the potential of s.

Definition 7.2.12: Approximate S-SSSP potential

Given a graph G = (V,E) and a vertex subset S ⊆ V , a vector φ ∈ RV is an α-
approximate S-SSSP potential if:

0. For all s ∈ S, φ(s) takes the same value

1. For all v ∈ V and s ∈ S, φ(v)− φ(s) ≥ 1
α
· d(s, v)

2. For each edge (u, v), |φ(u)− φ(v)| ≤ w(u, v).
When the set S is either irrelevant or clear from context, we may use α-approximate
SSSP potential (without the S) instead.

118

Observation 7.2.13

Given a graph G = (V,E) and a vertex subset S ⊆ V , let G′ be the graph with all
vertices in S contracted into a single vertex s′. Then, if φ is an α-approximate S-SSSP
potential, then the vector φ′ defined as φ′(v) = v for v ∈ V \ S and φ′(s′) = φ(s) for
some s ∈ S is an α-approximate s-SSSP potential in G′.

Also, we will need the notion of a spanner throughout this chapter:

Definition 7.2.14: Spanner

Given a graph G = (V,E) and a parameter α ≥ 1, a subgraph H ⊆ G is an α-spanner
of G if for all u, v ∈ V , we have dG(u, v) ≤ dH(u, v) ≤ α dG(u, v).

Polynomial Aspect Ratio Throughout this chapter, we assume that the initial input
graph for the approximate SSSP problem has polynomially bounded aspect ratio, defined
below:

Definition 7.2.15: Aspect ratio

The aspect ratio of a graph G = (V,E) is the quantity maxu,v∈V dG(u,v)

minu,v∈V dG(u,v)
.

This assumption can be safely assumed: there is a reduction by Klein and Subrama-
nian [61] (also used by Cohen [28]) that transforms the (1 + ε)-approximate SSSP problem
on a graph with arbitrary, nonnegative weights to solving (1 + ε/2)-approximate SSSP on a
collection of graphs of total size O(m log n), each with polynomially bounded aspect ratio,
and requiring an additional O(m log n) work and O(log n) time. Since polynomially bounded
aspect ratio is a common assumption in graph optimization problems, we will not present
this reduction for sake of self-containment.

Since our SSSP algorithm is recursive, and the SSSP problem that we solve is actually
the (slightly more general) SSSP potential problem, we do not apply the reduction of Klein
and Subramanian again in each recursive call. Rather, we take some care to show that the
aspect ratio does not blow up over recursive calls.

For the `1-embedding and transshipment problems, we will handle the aspect ratio issue
differently. For the `1-embedding problem, we will explicitly require that the input graph
has aspect ratio at most nC for some fixed constant C (which can be made arbitrarily
large). In particular, this assumption translates over in our theorem statement for parallel
`1-embedding (Theorem 7.1.3). For the transshipment problem, we will not assume that the
graph has polynomial aspect ratio, but every time we recursively call transshipment, we will
ensure that the demand vector has small, integral entries in the recursive instance. Assuming
this guarantee on the demand vector, we reduce the transshipment problem to the case when
the graph also has polynomial aspect ratio like in the SSSP case, but here, the reduction is

119

simple enough that we include it in this chapter for completeness (Lemma 7.3.5).

7.3 The Recursive Algorithm

Our algorithm will recursively cycle through three problems: approximate SSSP potentials,
approximate transshipment, and `1-embedding. For the `1-embedding and SSSP potential
problems, we will always assume that the input graph has aspect ratio at most nC for
some arbitrarily large but fixed constant C > 0 (that remains unchanged throughout the
recursion). The transshipment problem will require no bound on aspect ratio: we provide
a simple transformation on the graph to ensure that the aspect ratio is polynomial. Let us
now define the work required to solve the three problems below:

1. Wembed(m) and Tembed(m) are the work and time to `1-embed a connected graph withm
edges and aspect ratio at most n5 into O(log n) dimensions with distortion O(log10.5 n),
where the O(·) hides an arbitrarily large but fixed constant.

2. WSSSP(m, ε) and TSSSP(m, ε) are the work and time to compute an (1 + ε)-approximate
SSSP potential of a connected graph with m edges and aspect ratio at most Õ(n5),
where the Õ(·) hides a factor c logc n for an arbitrarily large but fixed constant c > 0.

3. WTS(m, ε) and TTS(m, ε) are the work and time to compute a (1 + ε)-approximate
transshipment instance of a connected graph with m edges, where the demand vector
b is integral and satisfies |bv| ≤ n− 1 for all vertices v.

The following is the main result of Section 7.3.2:

Theorem 7.3.1: `1-embedding given SSSP on smaller instances

Let G = (V,E) be a connected graph with n vertices and m edges with aspect ratio
M , let β ≥ 1 be a parameter, and let A be an algorithm that inputs (i) a connected
graph on at most m/β vertices and edges with aspect ratio Õ(β2M) and (ii) a source
vertex s, and outputs a (1 + 1/ log n)-approximate s-SSSP potential. Then, there
is an algorithm that computes an `1-embedding of G into O(log n) dimensions with
distortion O(β2 log6.5 n) and calls A at most O(log2 n) times in parallel, plus Õ(m)

additional work and polylog(n) additional time.

Corollary 7.3.2

Wembed(m) ≤ O(log2 n) ·WSSSP(δm/ log4 n, 1/ log n) + Õ(m) for any fixed, arbitrarily
small constant δ > 0, and Tembed(m) ≤ TSSSP(δm/ log4 n, 1/ log n) + polylog(n).

Proof. Apply Theorem 7.3.1 with β := 1
δ

log2 n, obtaining distortion
O(β2 log6.5 n) = O(log10.5 n).

120

The following is a corollary of our sequential transshipment result in Section 7.4 which
constitutes our main technical contribution of this chapter:

Corollary 7.3.3: Parallel SSSP given `1-embedding

Given an undirected graph with nonnegative weights and polynomial aspect ratio, and
given an `1-embedding of the graph with polylog(n) distortion in O(log n) dimensions,
there is a parallel algorithm to compute a (1+ε)-approximate minimum transshipment
instance in Õ(mε−2) work and polylog(n)ε−2 time.

The following is Sherman’s framework for the minimum transshipment problem, for which
we provide a self-contained treatment through the multiplicative weights method in Sec-
tion 7.7. This is where the error boosting takes place: given a lossy polylog(n)-approximate
`1-oblivious routing algorithm encoded by the matrix R, we can boost the error all the way
to (1+ε) for transshipment. The only overhead in Sherman’s framework is an additive Õ(m)

work and polylog(n) time (where these polylogarithmic factors depend on the approximation
of the `1-oblivious routing), which is ultimately what makes the recursion work out.

Theorem 7.3.4: Parallel Theorem 7.4.2 with extra log(n/ε) factor

Given a transshipment problem, suppose we have already computed a matrix R satis-
fying:

1. For all demand vectors b ∈ Rn,

opt(b) ≤ 1Rb ≤ κ · opt(b) (7.1)

2. Matrix-vector products with R and RT can be computed in M work and
polylog(n) timea

Then, for any transshipment instance with demand vector b, we can compute a flow
vector f and a vector of potentials φ̃ in Õ(κ2(m+ n+M) ε−2) time that satisfies:

1.
∥∥Cf∥∥

1
≤ (1 + ε)bT φ̃ ≤ (1 + ε) opt(b)

2. opt(Af − b) ≤ β opt(b)

aM can potentially be much lower than the number of nonzero entries in the matrix R if it can
be efficiently compressed.

Lastly, there is one minor mismatch: Corollary 7.3.3 assumes that the graph has poly-
nomial aspect ratio, while the problem for WTS(·) does not assume such a thing, but rather
assumes that the demand vector has entries restricted to {−(n−1),−(n−2), . . . , n−2, n−1}.
It turns out that given this restriction on the demand vector, the polynomial aspect ratio of
the graph can be obtained for free. We defer this proof to Section 7.10.1.

121

Lemma 7.3.5: Aspect ratio guarantee

Given a transshipment instance with graph G = (V,E) with n vertices and m edges
and an integer demand vector b satisfying |bv| ≤M for all v ∈ V , we can transform G

into another graph Ĝ on n vertices and at most m edges such that Ĝ has aspect ratio
at most n4M , and optG(b) ≤ optĜ(b) ≤ (1 + 1/n2) optG(b). The transformation takes
Õ(m) work and polylog(n) time.

Corollary 7.3.6

WTS(m, ε) ≤ Wembed(m)+ Õ(m/ε2). That is, outside of an `1-embedding into O(log n)

dimensions with distortion O(log10.5 n), the additional work to compute (1 + ε)-
approximate transshipment is Õ(m/ε2), and the additional time is Õ(1/ε2).

Proof. By assumption, the demand vector bv is integral and satisfies |bv| ≤ n − 1 for all
vertices v. Apply Lemma 7.3.5 withM := n−1 so that the aspect ratio of the modified graph
Ĝ is at most n5, which is polynomial, and the optimal solution changes by factor at most
(1+1/n2). Compute an `1-embedding of Ĝ into polylog(n) dimensions (inWembed(m) work),
and then apply Corollary 7.3.3 with approximation factor (1+ε/2). The final approximation
factor is (1 + 1/n2)(1 + ε/2), which is at most (1 + ε) for ε ≥ Ω(1/n2). (If ε = O(1/n2), then
an algorithm running in time Õ(1/ε2) ≥ Õ(n4) is trivial.)

We now present the reduction from approximate SSSP to approximate transshipment,
partially inspired by a similar routine in [14]; for completeness, we give a self-contained proof
of the reduction in Sections 7.8 and 7.9 in the form of this theorem:

Theorem 7.3.7

Let G = (V,E) be a graph with n vertices and m edges, and let ε > 0 be a parameter.
Given graph G, a source s ∈ V , and an `1-embedding of it into O(log n) dimensions
with distortion polylog(n), we can compute a (1 + ε)-approximate SSSP tree and
potential in additional Õ(m/ε2) work and Õ(1/ε2) time.

Corollary 7.3.8

WSSSP(m, ε) ≤ Wembed(m) + Õ(m/ε2) and TSSSP(m, ε) ≤ Tembed(m) + Õ(1/ε2).

Proof. This is essentially Theorem 7.3.7 in recursive form.

Corollary 7.3.9

WSSSP(m, ε) ≤ O(log2 n) · WSSSP(δm/ log2 n, 1/ log n) + Õ(m/ε2) and TSSSP(m, ε) ≤
TSSSP(δm/ log2 n, 1/ log n) + Õ(1/ε2) for any fixed, arbitrarily small constant δ > 0.

122

Proof. Follows directly from Corollaries 7.3.2 and 7.3.8.

Corollary 7.3.10

WSSSP(m, ε) ≤ Õ(m/ε2) and TSSSP(m, ε) ≤ Õ(1/ε2).

Proof. Observe that in the recursion of Corollary 7.3.9, by setting δ > 0 small enough, the
total graph size O(log2 n) · δm/ log2 n ≤ m/2 drops by at least half on each recursion level.
The time bound follows immediately, and the total work is dominated by the work at the
root of the recursion tree, which is Õ(m/ε2).

Finally, Theorem 7.1.3 follows from Corollaries 7.3.2 and 7.3.10, and Theorem 7.1.1 and
Theorem 7.1.2 follow from the addition of Theorem 7.3.7 and Corollary 7.3.6, respectively.

7.3.1 `1-Embedding from Approximate SSSP Potential

In this section, we briefly overview our `1-embedding algorithm, which is necessary for The-
orem 7.3.1 and hence, the reduction from `1-embedding to smaller instances of approximate
SSSP potentials. Our `1-embedding algorithm is very similar to Bourgain’s embedding as
presented in [74], except utilizing approximate SSSP instead of exact, as well as slightly
simplified at the expense of several logarithmic factors. Due to its similarily, we defer its
proof to Section 7.10.

Theorem 7.3.11

Let G = (V,E) be a graph with n vertices and m edges, and let A be an algorithm
that inputs any vertex set S ⊆ V and outputs a (1 + 1/ log n)-approximate S-SSSP
potential of G. Then, there is an algorithm that computes an `1-embedding of G into
O(log n) dimensions with distortion O(log4.5 n) and calls A at most O(log2 n) times,
plus Õ(m) additional work and polylog(n) additional time.

We will focus our attention on a slightly different variant which we show implies Theo-
rem 7.3.11:

Lemma 7.3.12

Let G = (V,E) be a graph with n vertices and m edges, and let A be an algorithm
that inputs any vertex set S ⊆ V and outputs a (1 + 1/ log n)-approximate S-SSSP
potential of G. Then, there is an algorithm that computes an `1-embedding of G into
O(log2 n) dimensions with distortion O(log3 n) and calls A at most O(log2 n) times,
plus Õ(m) additional work and polylog(n) additional time.

Lemma 7.3.12 is proved in Section 7.10.2. We now show that Lemma 7.3.12 implies
Theorem 7.3.11. Since the `1 and `2 metrics are at most a multiplicative

√
k factor apart

in dimension k, the embedding of Lemma 7.3.12 has distortion O(log3 n) ·
√
O(log2 n) =

123

O(log4 n) in the `2 metric. Next, apply Johnson-Lindenstrauss dimensionality reduction [52]
on this set of vectors, reducing the dimension to O(log n) with a constant factor increase in
the distortion. We now move back to the `1 metric, incurring another O(

√
log n) factor in

the distortion, for a total of O(log4.5 n) distortion.

7.3.2 Sparsification and Recursion to Smaller Instances

In this section, we briefly overview the main ideas behind our sparsification process in order
to reduce the `1-embedding problem to approximate SSSP instances of sufficiently smaller
size:

Theorem: Restatement of Theorem 7.3.1

Let G = (V,E) be a connected graph with n vertices and m edges with aspect ratio
M , let β ≥ 1 be a parameter, and let A be an algorithm that inputs (i) a connected
graph on at most m/β vertices and edges with aspect ratio Õ(β2M) and (ii) a source
vertex s, and outputs a (1 + 1/ log n)-approximate s-SSSP potential. Then, there
is an algorithm that computes an `1-embedding of G into O(log n) dimensions with
distortion O(β2 log6.5 n) and calls A at most O(log2 n) times in parallel, plus Õ(m)

additional work and polylog(n) additional time.

One key tool we will use is the concept of ultra-sparse spanners, introduced by
Elkin and Neiman [34]. Here, we will rename them to ultra-spanners to further empha-
size their connection to ultra-sparsifiers in [63, 90]. These are spanners that are so sparse
that they are almost “tree-like” when the graph is sparse enough: a graph with (n − 1) + t

edges for some small t (say, t = m/polylog(n)). We will utilize the following ultra-spanner
construction, which is adapted from the one of [82]; while theirs is not ultra-sparse, we
modify it to be, at the expense of an additional k factor in the stretch. The ultra-spanner
algorithm is deferred to Section 7.6.

Lemma 7.3.14

Given a weighted graph G with polynomial aspect ratio and a parameter k ≥ Ω(1),
there is an algorithm to compute a k2-spanner of G with (n− 1) +O(m logn

k
) edges in

Õ(m) work and polylog(n) time.

Why are ultra-spanners useful for us? Their key property, stated in the lemma below, is
that we can compute an α-approximate SSSP potential on an ultra-spanner by recursively
calling α-approximate SSSP potentials on a graph with potentially much fewer vertices. To
develop some intuition on why this is possible, observe first that if a connected graph has
(n − 1) edges, then it is a tree, and SSSP is very easy to solve on trees. If the graph has
(n−1)+ t edges instead for some small value of t, then the graph is almost “tree-like” outside
of at most 2t vertices: take an arbitrary spanning tree, and let these vertices be the endpoints
of the t edges not on the spanning tree. We want to say that the graph is “easy” outside a

124

graph on 2t vertices, so that we can solve a SSSP problem on the “hard” part of size O(t)

and then extend the solution to the rest of the graph in an efficient manner. This is indeed
our approach, and it models closely off the concept of a j-tree by Madry [77], which is also
used in Peng’s recursive max-flow algorithm [90].

This recursion idea can be considered a vertex-sparsification step, following the edge-
sparsification that the ultra-spanner achieves. We package the vertex-sparsification in the
lemma below; while this lemma works for all t, the reader should imagine that
t = m/polylog(n), since that is the regime where the lemma will be applied. Due to its
length and technical involvement, the proof is deferred to Section 7.5.

Lemma 7.3.15

Let G = (V,E) be a connected graph with aspect ratioM with n vertices and (n−1)+t

edges, and let α > 0 be a parameter. Let A be an algorithm that inputs a connected
graph on at most 70t vertices and edges and aspect ratio Õ(M) and outputs an α-
approximate s-SSSP potential of that graph. Then, for any subset S ⊆ V , we can
compute an α-approximate S-SSSP potential of G through a single call to A, plus
Õ(m) additional work and polylog(n) additional time.

We now prove Theorem 7.3.1 assuming Lemma 7.3.15:
Proof (Theorem 7.3.1). Invoke Lemma 7.3.14 with k := Cβ log n for a large enough con-
stant C > 0, producing a spanner H with (n − 1) + O(m logn

k
) edges and stretch at most

k2 = O(β2 log2 n). Since H is a spanner, we have minu,v∈V dH(u, v) ≥ minu,v∈V dG(u, v)

and maxu,v∈V dH(u, v) ≤ k2 maxu,v∈V dG(u, v), so H has aspect ratio Õ(β2M). Since G
is connected, we have O(m log n/k) ≤ m/(70β) for C large enough, so H has at most
(n − 1) + m/(70β) edges. Then, apply Lemma 7.3.15 on H with t := m/(70β), α :=

1 + 1/ log n, and the algorithm A, producing an algorithm AH that inputs any vertex set
S ⊆ V and outputs an (1 + 1/ log n)-approximate S-SSSP potential on H through a single
call to A, plus Õ(m) additional work and polylog(n) additional time.

Next, apply Theorem 7.3.11 on the spanner H with algorithm AH , embedding H into
O(log n) dimensions with distortion O(log4.5 n) through O(log2 n) calls to AH , which in turn
makes O(log2 n) calls to A; the additional work and time remain Õ(m) and polylog(n),
respectively.

Finally, since H is a spanner for G with stretch O(β2 log2 n), the `1-embedding of H
with stretch O(log4.5 n) is automatically an `1-embedding of G with distortion O(β2 log2 n) ·
O(log4.5 n) = O(β2 log6.5 n).

7.4 `1-Oblivious Routing and Sequential Transshipment

This section is dedicated to the sequential transshipment result (Theorem 7.1.4, restated
below) and constitutes our main technical contribution of this chapter.

125

Theorem: Restatement of Theorem 7.1.4

There is an algorithm that, given an undirected graph with nonnegative weights and
polynomial aspect ratio, computes a (1+ε)-approximation to minimum transshipment
in time O((m log10 n+ n log15 n) ε−2 (log log n)O(1)).

Throughout the section, we make no references to parallel algorithms, keeping all our
algorithms entirely sequential in an effort to focus solely on Theorem 7.1.4. Nevertheless,
to a reader with parallel algorithms in mind, it should be clear that all algorithms in this
section can be parallelized to require polylog(n) parallel time. To streamline the transition
to parallel algorithms in the rest of this chapter, we package a parallel version of the main
routine in this section in an easy-to-use statement, Corollary 7.3.3.

7.4.1 Improved `1-Oblivious Routing: Our Techniques

The key technical ingredient in our transshipment algorithm is an improved `1-oblivious
routing, scheme. Our algorithm begins similarly to Sherman’s [97]: compute an `1-embedding
into low dimensions at a small loss in approximation. Sherman chooses dimension O(

√
log n)

and loses a 2O(
√

logn) factor in the distortion, and then constructs an oblivious routing in the
embedded space in time exponential in the dimension. Our oblivious routing is polynomial in
the dimension, so we can afford to choose dimension O(log n), giving us polylog(n) distortion.
The benefit in the `1-embedding is that we now have a nice geometric property of the vertices,
which are now points in O(log n)-dimensional space under the `1 metric.

At this point, let us provide some intuition for the oblivious routing problem in `1 space.
Suppose for simplicity that the dimension is 1 (i.e., we are on the real line) and that all
vertices have integer coordinates. That is, every vertex v ∈ V is now an integer on the real
line, i.e., V ⊆ Z. We will now (informally) define the problem of oblivious routing on the
line:3

1. Our input is a set of points V ⊆ Z. There is also a function b : V → R of demands
with

∑
v∈V b(v) = 0 that is unknown to us.

2. On each step, we can choose any two points x, y ∈ Z and a scalar c ∈ R, and “shift”
c times the demand at x to location y. That is, we simultaneously update b(x) ←
b(x)− c · b(x) and b(y)← b(y) + c · b(x). We pay c · b(x) · |x− y| total cost for this step.
Again, we do not know how much we pay. Let an iteration be defined as one or more
such steps executed in parallel.

3. After a number of iterations, we declare that we are done. At this point, we must be
certain that the demand is 0 everywhere: b(x) = 0 for all x ∈ Z.

4. Once we are done, we learn the set of initial demands, sum up our total cost, and

3Our formal definition of oblivious routing is in matrix notation, and is considerably less intuitive. There-
fore, we hope to present enough of our intuition in this section.

126

0 16

0 16

0

+1/2 +1/2

+1/4 +1/4 −1/2 −1/2

+3/8 +3/8 −1/4 −1/4

+3/16 +3/16

−9/16

+1 −1

+1/2 +1/2 −1

+3/4 +1/4 −1/2 −1/2

+3/8 +3/8 −3/4

+9/16 −9/16

0

5 14

b0:

b1:

b2:

b3:

b4:

b5:

Figure 7.2: Oblivious routing in 1-dimensional (`1-) space. Here, there are only two locations
with nonzero demand at the beginning: +1 demand at point 5 and −1 demand at point 14.
The optimal routing for each bt has cost 18, and the routing costs of iterations t = 1, 2, 3, 4, 5
are 1, 3, 5, 3, and 9, respectively.

compare it to the optimal strategy we could have taken if we had known the demands
beforehand. We would like our cost to be comparable with this retrospective optimum.
In particular, we would like to pay at most polylog(n) times this optimum.

We maintain functions b0, b1, b2 . . . : Z → R that track how much demand remains at
each (integer) point after each iteration. Given a demand vector (function) b : V → R, every
vertex v ∈ V has an initial demand b0(v) := b(v), and these demands sum to 0. Consider
the following oblivious routing algorithm: for each iteration t = 1, 2, . . ., every point x ∈ Z
with x ≡ 2t−1 mod 2t sends bt(x)/2 flow to point x− 2t−1 and bt(x)/2 flow to point x+ 2t−1;
let bt+1(x) be the new set of demands (see Figure 7.2).

This is actually Sherman’s oblivious routing in 1-dimensional space. He proves the fol-
lowing two properties of the routing:

1. After each iteration t, the optimal routing for the remaining points can never increase.
(In Figure 7.2, the optimal routing of each bt is exactly 9.)

2. The routing cost at each iteration t is at most the optimal cost of routing bt. (In
Figure 7.2, the routing costs of iterations t = 1, 2, 3, 4 are 1, 3, 5, and 3, respectively.)

Let us assume that V ⊆ [0, 1, 2, . . . , nc] for some constanct c, that is, all points in V

are nonnegative, polynomial-sized integers. Then, after dlog2(nc)e = O(log n) iterations, all
points are either on 0 or 2dlog2(nc)e. Thus, moving all demand from 0 to 2dlog2(nc)e finishes the
oblivious routing. From the two properties above, this oblivious routing can be shown to be

127

O(log n)-competitive.

We believe this simple scheme provides a good intuition of what an oblivious routing
algorithm requires. In particular, it must be unbiased, in that demand from a given vertex
must be spread evenly to the left and right. This is because we do not know where the
demands lie, so our best bet is to spread equal amounts of demand left and right.

Sherman’s oblivious routing extends this idea to higher dimensions. The actual rout-
ing is more complicated to describe, but as an example, on iteration t = 1, a point x =

(1, 1, 1, . . . , 1) will need to send b(x)/2k flow to each of the 2k points in {0, 2}k. In other
words, the running time can be exponential in the dimension.

This is where our oblivious routing algorithm deviates from Sherman’s. To avoid the
issue of sending flow to too many other points, we make use of random sampling: on each
iteration, every point sends its flow to polylog(n) randomly chosen points close-by. These
random points need to be correlated sufficiently well so that we can control the total number
of points. (In particular, we do not want the number of points to increase by factor O(log n)

each iteration, which would happen on a naive attempt.)

To solve this issue, we use the concept of randomly shifted grids popular in
low-dimensional computational geometric algorithms [49]: overlay a randomly shifted grid of
a specified size W in the Rk-dimensional space. Every point sends a fraction of its demand
to (say) the midpoint of the grid cell containing it.4 The benefit in grid shifting is that
many nearby points can coalesce to the same midpoints of a grid, controlling the growth of
the number of points. We compute s = polylog(n) such grids, with each point sending 1/s

fraction to the midpoint of each grid; this is to control the variance, so that we can apply
concentration bounds to show that we are still approximately unbiased from each point.

7.4.2 Sherman’s Framework

Below, we state a paraphrased version of Sherman’s framework [97]. For the simplest refer-
ence, see Corollary 1 and Lemma 4 of [60]. We also provide a proof via multiplicative weights
in Section 7.7, whose running time suffers an additional factor of log(n/ε) due to a binary
search overhead. For Theorem 7.1.4, we will use the theorem below, while for the parallel
algorithms, the weaker Theorem 7.7.1 suffices.

4For notational simplicity, our algorithm will actually send to the “lower-left” corner of each grid, but for
this section, midpoint is more intuitive to think about.

128

Theorem 7.4.2: Sherman, paraphrased

Given a transshipment problem, suppose we have already computed a matrix R satis-
fying:

1. For all demand vectors b ∈ Rn, opt(b) ≤ 1Rb ≤ κ · opt(b)
2. Matrix-vector products with R and RT can be computed in M time

Then, for any transshipment instance with demand vector b, we can compute a flow
vector f̃ and a vector of potentials φ̃ in O(κ2(m + n + M) log(m)(ε−2 + log(1/β)))

sequential time that satisfies:
1.
∥∥Cf̃∥∥

1
≤ (1 + ε)bT φ̃ ≤ (1 + ε) opt(b)

2. opt(Af̃ − b) ≤ β opt(b)

The matrix R encodes the oblivious routing algorithm. Also, intuitively, the more efficient
the oblivious routing, the sparser the matrix R, although this relation is not as well-defined.
Nevertheless, there is an equivalence between oblivious routing schemes and matrices R
that satisfy requirement (1) of Theorem 7.4.2. But since Sherman’s framework uses steep-
est descent methods that involve matrix algebra, a matrix R with efficient matrix-vector
multiplications is most convenient for the framework.

Our main technical result is computing such a matrix R efficiently:

Theorem 7.4.3: Computing R

Given a transshipment problem, we can compute a matrix R with
O(n log5 n(log log n)O(1)) nonzero entries, such that for any demand vector b,

opt(b) ≤ 1Rb ≤ O(log4.5 n) · opt(b).

The algorithm succeeds w.h.p., and runs in O(m log2 n + n log10 n(log log n)O(1)) se-
quential time.

With this fast routing algorithm in hand, our main theorem, Theorem 7.1.4, follows
immediately. Our proof uses low-stretch spanning trees [4], so for a self-contained rendition,
we remark after the proof that low-stretch spanning trees can be removed at the expense of
another log n factor.
Proof of Theorem 7.1.4. Apply Theorem 7.4.2 with the parameters κ := O(log4.5 n) and
M := O(n log5 n(log log n)O(1)) guaranteed by Theorem 7.4.3, along with
β := Θ(ε/(log n log log n)). This takes time

O(log9 n·(m+n log5 n)·log n·ε−2·(log log n)O(1)) = O((m log10 n+n log15 n)ε−2(log log n)O(1)),

and outputs a flow f̃ with 1Cf ≤ (1 + ε) opt(b) and opt(Af̃ − b) ≤ β opt(b).
To route the remaining demand Af̃ − b, for O(log n) independent iterations, compute a

129

low-stretch spanning tree in O(n log n log log n) time with expected stretch
O(log n log log n) [4] and solve (exact) transshipment in linear time on the tree. In each
iteration, the expected cost is at most O(log n log log n) · β opt(b) = ε opt(b) for an appropri-
ate choice of β, so w.h.p., one iteration has cost at most twice the expectation. Let f ′ be
this flow, which satisfies 1Cf ′ ≤ 2ε opt(b) and Af ′ = Af̃ − b. The composed flow f̃ − f ′ is
our final flow, which satisfies 1C(f − f ′) ≤ 1Cf +1Cf ′ ≤ (1 + 3ε) opt(b) and A(f̃ − f ′) = b.
Finally, to obtain a (1 + ε)-approximation, we can simply reset ε← ε/3.

Remark 7.4.4

To eliminate the use of low-stretch spanning trees, we can set β := ε/n instead, picking
up another log n factor in Theorem 7.4.2. Then, we can route the remaining demand
along a minimum spanning tree, which is an (n− 1)-approximation of optimum, or at
most (n− 1) βopt(b) ≤ ε opt(b).

7.4.3 Polynomial Aspect Ratio

Throughout this section, we assume that the input graph has polynomial aspect ratio, since
that is assumed in Theorem 7.1.4.

7.4.4 Reduction to `1 Metric

The reduction to the `1 metric is standard, via Bourgain’s embedding:

Definition 7.4.5

For p ≥ 1, an `p-embedding of a graph G = (V,E) with distortion α and dimension k

is a collection of vectors {xv ∈ Rk : v ∈ V } such that

∀u, v ∈ V : dG(u, v) ≤ ‖xu − xv‖p ≤ α dG(u, v).

Theorem 7.4.6: Fast Bourgain’s embedding

Given a graph with m edges, there is a randomized O(m log2 n) time algorithm that
computes an `1-embedding of the graph with distortion O(log1.5 n) and dimension
O(log n).

Proof (Sketch). Apply the fast embedding algorithm of [74] in `2, which runs in O(m log2 n)

randomized time and w.h.p., computes an `2-embedding of the graph with distortion O(log n)

and dimension O(log2 n). Next, apply Johnson-Lindenstrauss dimensionality reduction [52]
on this set of vectors, reducing the dimension to O(log n) with a constant factor increase in
the distortion. Lastly, since the `1 and `2 metrics are at most a multiplicative

√
k factor apart

130

in dimension k, this same set of vectors in O(log n) dimensions has distortion O(log1.5 n) in
the `1 metric.

Finally, since our input graph is assumed to have polynomial aspect ratio, so do the em-
bedded points under the `1 metric. In particular, suppose that before applying Theorem 7.4.6
we scaled the graph G so that the smallest edge had length 1. Then, the embedding satisfies
the following:

Assumption 7.4.7: Polynomial aspect ratio

For some constant c > 0, the vectors {xv : v ∈ V } satisfy 1 ≤ d(u, v) ≤ nc for all
u, v ∈ V .

7.4.5 Oblivious Routing on `1 Metric

In this section, we work under the `1 metric in O(log n) dimensions (the setting established
by Theorem 7.4.6) with the additional Assumption 7.4.7. Our main technical result is:

Theorem 7.4.8

We can compute a matrix R with O(n log5 n(log log n)O(1)) nonzero entries, such that
for any demand vector b,

opt(b) ≤ 1Rb ≤ O(log3 n) · opt(b).

The algorithm succeeds w.h.p., and runs in O(n log10(log log n)O(1)) sequential time.

Together with the O(log1.5 n) additional distortion from Theorem 7.4.6, this proves The-
orem 7.4.3.

Before we begin with the algorithm, we first make a reduction from “w.h.p., for all b” to
the weaker statement “for each b, w.h.p.”. The former requires that w.h.p., the statement
holds for every demand vector b, while the latter requires that for any given demand vector
b, the statement holds w.h.p. (Since there are uncountably many such b, the latter does not
imply the former in general.) This simplifies our argument, since we only need to focus on a
given demand vector b, which will often be fixed throughout a section. Before we state and
prove the reduction, for each v ∈ V , let us define χv : V → R as the function that is 1 at v
and 0 elsewhere.

Lemma 7.4.9

Suppose a randomized algorithm outputs a matrix R such that for any given demand
vector b, we have opt(b) ≤ 1Rb with probability 1, and 1Rb ≤ κ · opt(b) w.h.p. Then,
this same matrix R satisfies the following stronger property: w.h.p., for any demand
vector b, we have opt(b) ≤ 1Rb ≤ κ · opt(b).

131

Proof. W.h.p., the matrix R satisfies 1R(χu − χv) ≤ κ · opt(χu − χv) for each of the O(n2)

demand vectors χu− χv (u, v ∈ V). We claim that in this case, R actually satisfies opt(b) ≤
1Rb ≤ κ · opt(b) for all demand vectors b.

Fix any demand vector b, and suppose that the flow achieving opt(b) routes f(u, v) ≥ 0

flow from u to v for each u, v ∈ Rk, so that b =
∑

u,v f(u, v) · (χu − χv) and opt(b) =∑
u,v f(u, v) · 1u− v. Then, we still have opt(b) ≤ 1Rb by assumption, and for the other

direction, we have

1Rb = 1R ·
∑
u,v

f(u, v)(χu − χv) ≤
∑
u,v

f(u, v)1R(χu − χv)

≤ κ ·
∑
u,v

f(u, v) opt(χu − χv) = κ · opt(b),

as desired.

We also introduce a specific formulation of a routing that helps in the analysis of our
algorithm:

Definition 7.4.10: Routing

Given a metric space (V, d), a routing is a function R : V × V → R such that

∀u, v ∈ V : R(u, v) = −R(v, u).

A routing R satisfies demand vector b ∈ RV if

∀v ∈ V :
∑
u∈V

R(u, v) = bv.

A routing R has cost
cost(R) :=

∑
u,v∈V

|R(u, v)| · 1u− v,

and is optimal for demand vector b if it minimizes cost(R) over all routings R′ satisfying
b.

For example, if b = χu − χv for some u, v ∈ V , then one feasible routing (in fact, the
optimal one) is R(u, v) = 1, R(v, u) = −1, and R(x, y) = 0 for all other pairs (x, y), which
has cost 21u− v.

Note that cost(R) is actually twice the value of the actual transshipment cost in the `1

metric. However, since this notion of routing is only relevant in our analysis, and we are
suffering a polylog(n) approximation anyway, we keep it this way for future simplicity.

132

Observation 7.4.11

Given a metric space (V, d) and demand vector b ∈ RV , opt(b) is equal to the minimum
value of 1

2
cost(R) over all routings R that satisfy demand vector b.

We first introduce our algorithm in pseudocode below, along with the following notations.
For real numbers x and W > 0, define bxcW := bx/W c ·W as the greatest (integer) multiple
of W less than or equal to W (so that if W = 1, then bxcW = bxc), and similarly, define
dxeW := dx/W e ·W as the smallest (integer) multiple of W greater than or equal to W .

The lines marked imaginary are actually not executed by the algorithm. They are present
to define the “imaginary” routings R∗t , which exist only for our analysis. We could have
defined the R∗t separately from the algorithm, but we decided that including them alongside
the algorithm is more concise and (more importantly) illustrative.

Lastly, we remark that the algorithm does not require the input b ∈ RV to be a demand
vector. This observation is important when building the matrix R, where we will evaluate
the algorithm on only the vectors χv for v ∈ V , which are not demand vectors.

Proof Outline. The purpose of the “imaginary” routing R∗t is to upper bound our actual
cost. For R∗t to be a reasonable upper bound, it should not increase too much over the
iterations. These properties are captured in the two lemmas below.

Lemma 7.4.12

The total cost of routing on each iteration t (lines 17 and 18) is at most kw · cost(R∗t).

Lemma 7.4.13

With probability 1− n−ω(1), cost(R∗t+1) ≤ (1 + 1
logn

) cost(R∗t) for each iteration t.

The last routing on lines 24 and 25 is handled by the following lemma.

Lemma 7.4.14

The total cost of routing on lines 24 and 25 is at most O(kw) · cost(R∗T+1).

The three lemmas above imply the following corollary:

Corollary 7.4.15: Cost of routing

With probability 1 − n−ω(1), the total cost of routing in the algorithm is at most
O(kwT) · opt(b).

133

Algorithm 9 Routing(V, b)

Input:
(1) V , a set of n vectors in Rk satisfying Assumption 7.4.7, where k = O(log n)
(2) b ∈ RV , a (not necessarily demand) vector
1: Initialize w ← dlog ne, s← dlog4 n log log ne, T ← dlogw(nc)e
2: Initialize V0 ← V
3: Initialize function b0 : RV → R satisfying b0(v) = bv for all v ∈ V and b(x) = 0 for all
x /∈ V

4: Initialize function R : RV × RV → R as the zero function (i.e., R(x, y) = 0 for all
x, y ∈ RV)

5: Initialize R∗0 : RV × RV → R as the optimal routing satisfying b0 . Imaginary
6: for iteration t = 0, 1, 2, . . . , T do
7: W ← wt, a positive integer
8: Initialize Vt+1 ← ∅
9: Initialize bt+1 : RV → R as the zero function
10: Initialize R∗t+1 : RV × RV → R as the zero function . Imaginary
11: for independent trial j = 1, 2, . . . , s do
12: Choose independent, uniformly random real numbers r1, . . . , rk ∈ [0,W)
13: Define hj : Rk → Rk as (hj(x))i = bxi + rcW for all i ∈ [k]
14: for x ∈ Vt : bt(x) 6= 0 do
15: y ← hj(x)
16: Vt+1 ← Vt+1 ∪ {y} . Vt+1 is the set of points with flow after iteration t
17: R(x, y)← R(x, y) + bt(x)/s . Send bt(x)/s flow from x to y
18: R(y, x)← R(y, x)− bt(x)/s
19: bt+1(y)← bt+1(y) + bt(x)/s

20: for (x, y) ∈ Rk × Rk : R∗t (x, y) 6= 0 do . Imaginary
21: R∗t+1(hj(x), hj(y))← R∗t+1(hj(x), hj(y)) +R∗t (x, y)/s . Imaginary: move 1/s

fraction flow
22: Let y ∈ VT+1 be arbitrary
23: for x ∈ VT+1 : bT+1(x) 6= 0 do
24: R(x, y)← R(x, y) + bT+1(x) . Route all demand in VT+1 to arbitrary vertex y in

VT+1

25: R(y, x)← R(y, x)− bT+1(x)

134

Proof. By applying Lemma 7.4.13 inductively over all t, with probability 1− n−ω(1),

cost(R∗t+1) ≤
(

1 +
1

log n

)t
cost(R∗0) =

(
1 +

1

log n

)t
opt(b) ≤

(
1 +

1

log n

)O(logn)

opt(b)

= O(1) · opt(b).

By Lemma 7.4.12, the cost of routing on iteration t is at most kw ·cost(R∗t) ≤ O(kw) ·opt(b).
Summing over all t, we obtain a total cost of O(kwT) · opt(b) over iterations 0 through
T . Finally, by Lemma 7.4.14, the cost of routing on lines 24 and 25 is at most O(kw) ·
cost(R∗T+1) ≤ O(kw) · opt(b) as well.

At the same time, the routing should be “sparse”, to allow for a near-linear time algorithm.
Our sparsity is captured by the following lemma.

Lemma 7.4.16

For each χv, if we run Algorithm 9 on demands χv, every function bt has O(s) nonzero
values in expectation. Moreover, each function bt can be computed in O(s2) expected
time.

This sparsity guarantee ensures that the matrix R that we compute is also sparse, spec-
ified in the lemma below.

Lemma 7.4.17

We can compute a matrix R such that 1Rb approximates the cost of routing
in Algorithm 9 to factor O(1), and R has O(sTn) = O(n log5 n(log log n)O(1))

nonzero entries. The algorithm succeeds w.h.p., and runs in time O(s2Tn log n) =

O(n log10 n(log log n)O(1)).

Finally, with Corollary 7.4.15 and Lemmas 7.4.16 and 7.4.17, we prove Theorem 7.4.8
below:
Proof of Theorem 7.4.8. By Lemma 7.4.17, we can compute a matrix R that approximates
the cost of routing in Algorithm 9 to factor O(1). By Corollary 7.4.15, this cost of routing is
at most O(kwT) · opt(b), and it is clearly at least opt(b). Thus, R approximates opt(b) by an
O(kwT) = O(log3 n) factor. The requirements on R are guaranteed by Lemma 7.4.17.

Proof of Approximation (Lemmas 7.4.12 and 7.4.13). We first begin with a few
invariants of Algorithm 9, whose proofs are trivial by inspection:

Invariant 7.4.18

At the end of iteration t, R satisfies demand vector bt+1.

Proof. Suppose by induction on t that R satisfies demand vector bt at the beginning of
iteration t. Recall that for R to satisfy bt+1 at the end of iteration t, we must have

135

∑
uR(u, v) = bt+1(v) for all v by then. For each v, we track the change in

∑
uR(u, v)

and show that the total change on iteration t is exactly bt+1(v) − bt(v), which is sufficient
for our claim. By lines 17 and 18, for each x satisfying bt(x) 6= 0 and each j ∈ [s], the value∑

uR(u, hj(x)) increases by bt(x)/s and the value
∑

uR(u, x) decreases by bt(x)/s. For each
x with bt(x) 6= 0, the s decreases add up to a total of bt(x). As for bt+1(v)− bt(v), a demand
of bt(v) is not transferred over to bt+1(v) if bt(v) 6= 0, and bt+1(v) increases by bt(x)/s for each
x, j with hj(x) = v. Altogether, the differences in

∑
uR(u, v) and bt+1(v)− bt(v) match.

Invariant 7.4.19

R∗t+1 satisfies demand vector bt+1.

Proof. Suppose by induction on t that R∗t satisfies demand vector bt; the base case t = 0

is trivial. For each v satisfying bt(v) 6= 0 and each j ∈ [s], the value
∑

uR
∗
t+1(u, hj(v))

increases by
∑

x,v R
∗
t (x, v)/s (line 21), which by induction is exactly bt(v)/s. This matches

the increase of bt+1(hj(v)) by bt(v)/s on line 19.

Invariant 7.4.20

For each pair (x, y) with R∗t+1(x, y) 6= 0, x−y has all coordinates an (integral) multiple
of wt.

Proof. The only changes to R∗t+1 are the R∗t+1(hj(x), hj(y)) changes on line 21. By definition
of hj, we have that hj(u)− hj(v) is a multiple of W = wt for all u, v.

Lemma: Restatement of Lemma 7.4.12

The total cost of routing on each iteration t (lines 17 and 18) is at most kw · cost(R∗t).

Proof. For each trial j ∈ [s], by construction of hj(x) (line 13), we have 1(hj(x))i − xi ≤ kW ,
which incurs a cost of at most |bt(x)/s| · kW in the routing R (lines 17 and 18). Over all s
iterations, each x ∈ Rk with bt(x) 6= 0 is responsible for at most |bt(x)| · kW cost.

We now bound
∑

x |bt(x)| · kW in terms of cost(R∗t). By Invariant 7.4.19, for each x with
bt(x) 6= 0, ∑

y

|R∗t (x, y)| ≥
∣∣∑

y

R∗t (x, y)
∣∣ = |bt(x)|.

(Here, the summation is over the finitely many y that produce a nonzero summand.) Sum-
ming over all such x, we get∑

x:bt(x)6=0

|bt(x)| ≤
∑

x:bt(x) 6=0

∑
y

|R∗t (x, y)| ≤
∑
x,y

|R∗t (x, y)|. (7.2)

136

By Invariant 7.4.20, we have 1x− y ≥ wt−1 for each (x, y) with R∗t (x, y) 6= 0. Therefore,

cost(R∗t) =
∑
x,y

|R∗t (x, y)| · 1x− y ≥
∑
x,y

|R∗t (x, y)| · wt−1. (7.3)

Thus, the cost is at most

∑
x

|bt(x)| · kW
(7.2)

≤
∑
x,y

|R∗t (x, y)| · kW = kw ·
∑
x,y

|R∗t (x, y)| · wt−1
(7.3)

≤ kw · cost(R∗t). (7.4)

Claim 7.4.22

For each t ∈ [T + 1], R∗t has support size nO(1).

Proof. For each t ∈ [0, T], by lines 20 and 21, every (x, y) with R∗t (x, y) is responsible for
creating at most s ≤ O(log5 n) nonzero values in R∗t+1. Also, R∗0 is supported in V , so it has
support size nO(1). Therefore, R∗t has support size at most

nO(1) · sT+1 = nO(1) · (O(log5 n))O(logn/ log logn) = nO(1).

Lemma 7.4.23

Fix two points (x, y) with R∗t+1(x, y) 6= 0, and fix a coordinate i ∈ [k]. With probability
1− n−ω(1), we have

1

s

s∑
j=1

|(hj(x))i − (hj(y))i| ≤
(

1 +
1

log n

)
|xi − yi|. (7.5)

Proof. Define δi := xi − yi. First, if δi = 0 ⇐⇒ xi = yi, then (hj(x))i = (hj(y))i with
probability 1, so both sides of (7.5) are zero.

Assume now that δi > 0. Throughout the proof, we recommend the reader assume
W = 1 so that bxcW is simply bxc, etc., since the proof is unchanged upon scaling W .
Define {x}W := x− bxcW , the “remainder” of x when divided by W .

Observe that for each of the s independent trials, (hj(x))i− (hj(y))i = bδicW with proba-
bility 1−{δi}W/W and (hj(x))i−(hj(y))i = dδieW with probability {δi}W/W . In particular,
E[(hj(x))i − (hj(y))i] = δi.

For j ∈ [s], define random variable Xj as the value of
(
(hj(x))i − (hj(y))i − bδicW

)
/W

on the j’th independent trial, so that Xj ∈ {0, 1} and E[Xj] = {δi}W/W for all j. We can

137

express the LHS of (7.5) as

1

s

s∑
j=1

|(hj(x))i − (hj(y))i| =
1

s

s∑
j=1

(
(hj(x))i − (hj(y))i

)
=

1

s

s∑
j=1

(
W ·Xj + bδicW

)
=
W

s

s∑
j=1

Xj + bδicW

=
W

s

s∑
j=1

Xj + (δi − {δi}W). (7.6)

Define µ :=
∑

j E[Xj] = (s/W) {δi}W . By Invariant 7.4.20 applied to iteration t− 1, we
know that δi is a multiple of wt−1 = W/w, so {δi} ≥ W/w, which means µ ≥ s/w. Applying
Chernoff bounds on the variables X1, . . . , Xs ∈ [0, 1] with ε := 1/ log n, we obtain

Pr

[
s∑
j=1

Xj ≥ (1 + ε)µ

]
≤ exp(−ε2µ/3) ≤ exp

(
− s

3w log2 n

)
= exp(−ω(log n)) = n−ω(1).

This means that with probability 1− nω(1),

1

s

s∑
j=1

|(hj(x))i − (hj(y))i|
(7.6)
=

W

s

s∑
j=1

Xj + (δi − {δi}W)

≤ W

s
(1 + ε)µ+ (δi − {δi}W)

= (1 + ε){δi}W + δi − {δi}W
= δi + ε{δi}W
≤ (1 + ε)δi

=

(
1 +

1

log n

)
|xi − yi|,

completing (7.5).
Finally, for the case δi < 0, we can simply swap x and y and use the δi > 0 case.

Proof of Lemma 7.4.13. By lines 20 and 21, every (x, y) with R∗t (x, y) 6= 0 is responsible for
a total cost of

s∑
j=1

|R∗t (x, y)|
s

· 1hj(x)− hj(y) =
|R∗t (x, y)|

s

s∑
j=1

k∑
i=1

|(hj(x))i − (hj(y))i|.

138

We now take a union bound over all such (x, y) (at most nO(1) many by Claim 7.4.22). By
Lemma 7.4.23, we have that with probability 1− n−ω(1), the total cost is at most

|R∗t (x, y)|
s

s∑
j=1

k∑
i=1

(
1 +

1

log n

)
|xi − yi| =

(
1 +

1

log n

)
|R∗t (x, y)| · 1x− y.

Summing over all such (x, y), we obtain cost(R∗t+1) ≤ (1 + 1
logn

) cost(R∗t), as desired.

Proof of Sparsity (Lemma 7.4.16). For the proof of Lemma 7.4.16, we first introduce
the concept of a history graph that tracks the routed flow.

Definition 7.4.24

Define the history graph H to be the following digraph on vertex set V (H) := (V0 ×
{0})∪(V1×{1})∪· · ·∪(VT+1×{T+1}). For every t ∈ {0, 1, . . . , T} and every x, y such
that line 17 is executed at least once on R(x, y), add a directed edge ((x, t), (y, t+ 1))

in H. (By Invariant 7.4.25 below, every such x, y must satisfy x ∈ Vt and y ∈ Vt+1.)
A vertex (x, t) ∈ V (H) originates from vertex v ∈ V = V0 if there is a directed path
in H from (v, 0) to (x, t).

Invariant 7.4.25

For each x with bt+1(x) 6= 0, we have x ∈ Vt+1.

Proof. Every x ∈ V with value bt+1(x) modified in line 19 is added into Vt+1 in line 17.

Invariant 7.4.26

For each point v ∈ V and point x ∈ Vt where (x, t) originates from v,

∀i ∈ [k] : 0 ≤ vi − xi ≤
t∑

j=1

wj.

Proof. We prove the statement by induction on t; the base case t = 0 is trivial. For iteration
t, for each v, x where (x, t) originates from v, we have xi − W < (hj(x))i ≤ xi for all
i ∈ [k], j ∈ [s] by definition of hj. By induction, 0 ≤ vi − xi ≤

∑t−1
j=1w

j for all i ∈ [k].
Therefore, the points hj(x) ∈ Vt+1, which also originate from v, satisfy

vi − (hj(x))i ≥ vi − xi ≥ 0 and vi − (hj(x))i ≤ vi − xi +W ≤
t−1∑
j=1

wj +W =
t∑

j=1

wj

for all i ∈ [k], completing the induction.

139

Lemma 7.4.27

For each point v ∈ V and iteration t ∈ [T + 1], the expected number of vertices
(x, t) ∈ V (H) that originate from v is O(s).

Proof. Fix an iteration t ∈ [T +1]. Let r :=
∑t−1

j=1 w
j ≤ 2wt−1; by Invariant 7.4.26, all points

x ∈ Vt such that (x, t) originates from v are within the box B := [v1 − r, v1]× [v2 − r, v2]×
· · · × [vk − r, vk].

For each trial j ∈ [s], consider the set S := {hj(x) : x ∈ B}; note that every y in
lines 17 and 18 for this trial satisfies y ∈ S. We claim that this set has expected size O(1).
To see why, observe that for each i ∈ [k], the value (hj(x))i over all x ∈ B takes two distinct
values with probability r/W and one value with probability 1− r/W , and these events are
independent over all i. Moreover, if k′ ≤ k of them take two distinct values, then |S| ≤ 2k

′ ,
and this happens with probability

(
k
k′

)
(r
W

)k
′
(1− r

W
)k−k

′ . Overall, the expected size of |S| is
at most

k∑
k′=0

(
k

k′

)(r
W

)k′ (
1− r

W

)k−k′
· 2k′ =

(r
W
· 2 +

(
1− r

W

))k
=
(

1 +
r

W

)k
≤
(

1 +
2wt−1

wt

)k
=

(
1 +

2

dlog ne

)O(logn)

= O(1).

Over all s independent trials, the sets S together capture all points y such that (y, t) originates
from v. The expected number of such points (y, t) is therefore at most O(s).

Proof of Last Routing (Lemma 7.4.14).
Proof. We can follow the proof of Lemma 7.4.12 to obtain (7.4), where W := wT+1 in this
case. By Invariant 7.4.26, for each point v ∈ V and point x ∈ VT+1 where (x, t) originates
from v, we have 1v − x ≤ kw

∑T
j=1w

j = O(kwT+1). By Assumption 7.4.7, the vertices
v ∈ V are at most nc ≤ wT apart from each other in `1 distance. This means that the
points x ∈ VT+1 are at most O(kwT+1) apart in `1 distance. Therefore, the routing on
lines 24 and 25 has cost C ≤

∑
x |bT+1(x)| ·O(kwT+1). Combining this with (7.4) gives

kwcost(R∗) ≥
∑
x

|bT+1(x)| · kwT+1 ≥ Ω(C),

which means C ≤ O(kw) · cost(R∗T+1), as desired.

Computing the Matrix R. First, we can modify Algorithm 9 to construct the graph
H without changing the running time, since every edge added to H can be charged to one
execution of line 17.

Now for any vector b ∈ RV not necessarily satisfying 1 · b = 0, let Rb be the value of R

140

once Algorithm 9 is run on b. First, we will henceforth assume the following for simplicity:
Assumption 7.4.28

For each b, every (x, y) is updated at most once in Rb(x, y) throughout Algorithm 9.

Intuitively, Assumption 7.4.28 is true with probability 1 because two different randomly
shifted grids in Algorithm 9 align perfectly with probability 0. More specifically, the prob-
ability that hj(x) = hj′(x

′) for two distinct x, j and x′, j′ (possibly not even at the same
iteration) is 0.

Lemma 7.4.29

Assuming Assumption 7.4.28, we have that w.h.p., for each b and iteration t,

1

4
kwt

∑
x:bt(x)6=0

|bt(x)| ≤
∑

x,y: bt(x)6=0

|Rb(x, y)| · 1x− y ≤ 3

4
kwt

∑
x:bt(x) 6=0

|bt(x)| (7.7)

Proof. Fix some x ∈ Vt, and fix a coordinate i ∈ [k]. For each trial j ∈ [s], the difference
xi − (hj(x))i is a uniformly random number in [0,W) (where W := wt as before). Define
random variable Xj := (xi − (hj(x))i)/W ∈ [0, 1], and µ :=

∑
j E[Xj] = s/2. Applying

Chernoff bounds on the variables Xj with ε := 1/4, we obtain

Pr

[∣∣∣∣ s∑
j=1

Xj − µ
∣∣∣∣ ≥ εµ

]
≤ exp(−ε2µ/3) ≤ exp (−Ω(s)) = n−ω(1).

Therefore, with probability 1− n−ω(1),

s∑
j=1

(xi − (hj(x))i) =
s∑
j=1

WXi ∈
[
s

4
W,

3s

4
W

]
.

Summing over all i ∈ [k], we obtain

s∑
j=1

1x− hj(x) =
s∑
j=1

k∑
i=1

(xi − (hj(x))i) ∈
[

1

4
ksW,

3

4
ksW

]
.

At this point, let us assume that every statement holds in the proof so far, which is true w.h.p.
Fix a demand vector b; by Assumption 7.4.28, each term in the sum

∑
x,y: bt(x)6=0 |Rb(x, y)| ·

1x− y appears exactly once in line 17, so it must appear on iteration t. In particular, the
terms can be exactly partitioned by x. Every x with bt(x) 6= 0 contributes

∑s
j=1 |bt(x)/s| ·

1x− hj(x) to the sum (line 17), which is within
[

1
4
kW |bt(x)|, 3

4
kW |bt(x)|

]
. Summing over

all x proves (7.7).

Therefore, by Lemma 7.4.29, to estimate the final routing cost
∑

x,y |Rb(x, y)| ·1x− y by

141

an O(1) factor, it suffices to compute the value∑
t

kwt
∑

x:bt(x)6=0

|bt(x)|. (7.8)

Remark 7.4.30

The purpose of reducing to summing over the values |bt(x)| is to save a factor s in the
running time; if we did not care about extra polylog(n) factors, we could do without
it.

Assuming Assumption 7.4.28, our goal is to construct a sparse matrix R so that 1Rb
equals (7.8). To do so, our goal is to have each coordinate in Rb represent kwtbt(x) for some
t, x with bt(x) 6= 0. This has the benefit of generalizing to general demands b by the following
linearity property:

Claim 7.4.31

Every value bt(x) for t ∈ {0, 1, 2, . . . , T + 1}, x ∈ Rk is a linear function in the entries
of b ∈ RV .

Proof. We show this by induction on t; the base case t = 0 is trivial. For each t > 0, the
initialization bt+1 as the zero function is linear in b, and by line 19, each update of some
bt+1(y) adds a scalar multiple of some bt(x) to bt+1(y). Since bt+1(y) was linear in b before
the operation, and since bt(x) is linear in b by induction, bt+1(y) remains linear in b.

To exploit linearity, we consider the set of “basis” functions Rb where b = χv for some
v ∈ V . (Again, note that χv is not a demand vector, but we do not require that property
here.)
Proof of Lemma 7.4.16. We first show by induction on t that if bt(x) 6= 0 for x ∈ Rk, then
(x, t) originates from v; the base case t = 0 is trivial. For each t > 0, the only way some
bt+1(y) is updated (line 19) is if there exist x ∈ Rk with bt(x) 6= 0 and y = hj(x) for some
j ∈ [s]. By induction, x originates from v, and by definition of the history graph H, there
is a directed edge ((x, t), (y, t + 1)) in H added when line 17 is executed for this pair x, y.
Therefore, there is a path from (v, 0) to (y, 1) in H, and y also originates from v.

Therefore, for each t, the number of points x ∈ Rk satisfying bt(x) is at most the number
of vertices (x, t) ∈ V (H) originating from v, which by Lemma 7.4.27 is O(s) in expectation.

Finally, the functions bt can be computed by simply running Algorithm 9. O(s) time is
spent for each (x, t) with bt(x) 6= 0 (assuming the entries of Rχv are stored in a hash table),
giving O(s2) expected time for each iteration t.

Proof of Lemma 7.4.17. We run Algorithm 9 for each demand χv over the same randomness
(in particular, the same choices of hj); define bχvt to be the function bt on input χv. Let bt

142

be the functions on input b. By linearity (Claim 7.4.31), we have that for each t, x,

bt(x) =
∑
v∈V

b(v) · bχvt (x). (7.9)

By Lemma 7.4.16, the functions bχvt for all t, χv can be computed in O(s2Tn) total time in
expectation.

We now construct matrix R as follows: for each t, x with bχvt (x) 6= 0 for at least one χv,
we add a row to R with value kwtbχvt at each entry v ∈ V . The dot product of this row with
b, which becomes a coordinate entry in Rb, is exactly∑

v∈V

kwtbχvt (x) · b(v)
(7.9)
= kwtbt(x).

Hence, 1Rb is exactly (7.8), which approximates the routing cost to factor O(1) by
Lemma 7.4.29, assuming Assumption 7.4.28 (which holds with probability 1). Finally, by
Lemma 7.4.16, R has O(sTn) entries in expectation.

Lastly, we address the issue that the algorithm only runs quickly in expectation, not
w.h.p. Our solution is standard: run the algorithm O(log n) times, terminating it early
each time if the running time exceeds twice the expectation. Over O(log n) tries, one will
finish successfully w.h.p., so the final running time has an extra factor of O(log n), hence
O(s2Tn log n).

7.4.6 Parallel Transshipment

By inspection, the entire Algorithm 9 is parallelizable in Õ(m) work and polylog(n) time.
The only obstacle to the entire `1-oblivious routing algorithm is the initial `1-embedding
step, and the only hurdle to the final proof of Theorem 7.1.4 is the final low-stretch spanning
step. The latter we can handle with Remark 7.4.4, since minimum spanning tree can be
computed in parallel with Boruvka’s algorithm. We state the following corollary below to
be used in our parallel algorithms.

7.5 Vertex Sparsification and Recursion

This section is dedicated to proving the vertex-sparsification lemma, Lemma 7.3.15, restated
below:

143

Lemma: Restatement of Lemma 7.3.15

Let G = (V,E) be a graph with n vertices and m edges, and let A be an algorithm
that inputs any vertex set S ⊆ V and outputs a (1 + 1/ log n)-approximate S-SSSP
potential of G. Then, there is an algorithm that computes an `1-embedding of G into
O(log2 n) dimensions with distortion O(log3 n) and calls A at most O(log2 n) times,
plus Õ(m) additional work and polylog(n) additional time.

7.5.1 Case S = {s} of Lemma 7.3.15

In this section, we first prove Lemma 7.3.15 for the case when S = {s} for a single source
s ∈ V in the lemma below. We then extend our result to any set S ⊆ V in Section 7.5.4.

Lemma 7.5.2: s-SSSP algorithm

Let G = (V,E) be a connected graph with n vertices and (n − 1) + t edges, and let
α > 0 be a parameter. LetA be an algorithm that inputs a connected graph on at most
5t vertices and edges and outputs an α-approximate s-SSSP potential of that graph.
Then, for any source s ∈ V , we can compute an α-approximate s-SSSP potential of G
through a single call to A, plus Õ(m) additional work and polylog(n) additional time.

Our approach is reminiscent of the j-tree construction of Madry [77], but modified to
handle SSSP instead of flow/cut problems.5

First, compute a spanning tree T of G, and let S0 ⊆ V be the endpoints of the t edges in
G− T together with the vertex s, so that |S0| ≤ 2t+ 1. Next, let T0 be the (tree) subgraph
in T whose edges consist of the union of all paths in T between some pair of vertices in S0.
The set T0 can be computed in parallel as follows:

1. Root the tree T arbitrarily, and for each vertex v ∈ V , compute the number N(v) of
vertices in S0 in the subtree rooted at v.

2. Compute the vertex v with maximum depth satisfying N(v) = |S0|; this is the lowest
common ancestor lca(S0) of the vertices in S0.

3. The vertices in T0 are precisely the vertices v in the subtree rooted at lca(S0) which
satisfy N(v) 6= 0.

Let S3 be the set of vertices in T0 whose degree in T0 is at least 3, and let S := S0 ∪ S3.
Starting from T0, contract every maximal path of degree-2 vertices disjoint from S into a
single edge whose weight is the sum of weights of edges on that path; let T1 be the resulting
tree. Since every leaf in T0 is a vertex in S0, and since every degree-2 vertex disjoint from S

is contracted, the vertex set of T1 is exactly S. We furthermore claim the following:

5Essentially, according to the terminology of [77], any graph with (n− 1) + t edges is a 5t-tree

144

Claim 7.5.3

T1 has at most 4t vertices and edges.

Proof. Let n1, n2, and n≥3 be the number of vertices in T1 of degree 1, 2, and at least 3,
respectively. Since every leaf in T0 is a vertex in S0, we have n1 ≥ |S0|. Also, since T1 is a
tree, it has n1 + n2 + n≥3 − 1 edges, and since the sum of degrees is twice the number of
edges, we have

n1 + 2n2 + 3n≥3 ≤ 2(n1 + n2 + n≥3 − 1) =⇒ n≥3 ≤ n1 − 2 ≤ |S0| − 2.

The number of vertices in T1 is exactly n1 + n≥3, which is at most 2|S0| − 2 ≤ 4t. The edge
bound also follows since T1 is a tree.

Let G1 be T1 together with each edge in G−T added to its same endpoints (recall that no
endpoint in G−T is contracted). Since T1 has at most 4t vertices and edges by Claim 7.5.3,
and since we add t additional edges to form G1, the graph G1 has at most 4t vertices and 5t

edges.
Finally, let G0 be T0 together with each edge in G − T added to its same endpoints, so

that G0 is exactly G1 with the contracted edges expanded into their original paths. Since
every edge in G− T is contained in G0, we have that G−G0 is a forest. We summarize our
graph construction below, which will be useful in Section 7.5.4.

Lemma 7.5.4

Let G = (V,E) be a graph with n vertices and (n − 1) + t edges, and let T be an
arbitrary spanning tree of G. We can select a vertex set V0 ⊆ V and define the graph
G0 := G[V0] such that (i) G − G0 is a forest, and (ii) we can contract degree-2 paths
from G0 into single edges so that the resulting graph G1 has at most 4t vertices and
5t edges. The contracted edges in G1 have weight equal to the total weight of the
contracted path. This process takes Õ(m) work and polylog(n) time.

It is easy to see that the aspect ratio of G1 is O(M). Now, call A on G1 with s as the
source (recall that s ∈ S0 ⊆ S = V (G1), so it is a vertex in G1), obtaining an SSSP potential
φ1 for G1. It remains to extend φ1 to the entire vertex set V .

7.5.2 Extending to Contracted Paths

First, we extend φ1 to the vertices (of degree 2) contracted from T0 to T1. More precisely,
we will compute a SSSP potential φ0(v) on the vertices in G0 that agrees with φ1 on V (G1).

Define φ0(v) := φ1(v) for v ∈ V (G1), and for each such path v0, v1, . . . , v` with v0, v` ∈

145

V (G1) we extend φ0 to v1, . . . , v`−1 as follows:

φ0(vj) := min

{
φ1(v0) +

j∑
i=1

w(vi−1, vi), φ1(v`) +
`−1∑
i=j

w(vi, vi+1)

}
;

note that these values are the same if we had replaced the path by its reverse (v`, v`−1, . . . , v0)
instead.

Claim 7.5.5

For all u, v ∈ V (G1), we have dG0(u, v) = dG1(u, v).

Proof. Observe that any simple path P in G0 between u, v ∈ V (G1) must travel entirely
along any path of degree-2 vertices sharing an edge with P . Therefore, for every contracted
path in G that shares an edge with P , we can imagine contracting that path inside P as
well. Since paths of degree-2 are contracted to an edge whose weight is the sum of weights of
edges along that path, the total weight of P does not change. Since P is now a path in G1,
this shows that dG1(u, v) ≤ dG0(u, v). Conversely, any path in G1 can be “un-contracted”
into a path in G0 of the same length, so we have dG0(u, v) ≤ dG1(u, v) as well, and equality
holds.

Claim 7.5.6

The vector φ0 is an α-approximate s-SSSP potential of G0.

Proof. We first prove property (2). Since φ0(v) = φ1(v) for v ∈ V (G1), property (2) holds
for φ0 for edges G1 that were not contracted from a path in G0. For an edge (u, v) that was
contracted, there is a contracted path v0, v1, . . . , v` where u = vj and v = vj+1 for some j.
First, suppose that

φ0(vj) = φ1(v0) +

j∑
i=1

w(vi−1, vi) ⇐⇒ φ1(v0) +

j∑
i=1

w(vi−1, vi) ≤ φ1(v`) +
`−1∑
i=j

w(vi, vi+1).

Then,

φ0(vj+1)− φ0(vj) ≤
(
φ1(v0) +

j+1∑
i=1

w(vi−1, vi)

)
−
(
φ1(v0) +

j∑
i=1

w(vi−1, vi)

)
= w(vj, vj+1).

Otherwise, if

φ0(vj) = φ1(v`) +
`−1∑
i=j

w(vi, vi+1) ⇐⇒ φ1(v0) +

j∑
i=1

w(vi−1, vi) ≥ φ1(v`) +
`−1∑
i=j

w(vi, vi+1),

146

then

φ0(vj+1) ≤ φ1(v`) +
`−1∑
i=j+1

w(vi, vi+1) = φ1(v`) +
`−1∑
i=j

w(vi, vi+1)− w(vj, vj+1) ≤ 0.

Therefore, in both cases, φ0(v) − φ0(u) = φ0(vj+1) − φ0(vj) ≤ w(vj, vj+1). For the other
direction φ0(v)− φ0(u) ≤ w(vj, vj+1), we can simply swap u and v.

We now focus on property (1). Since φ0(v) = φ1(v) for v ∈ V (G1), and since dG0(u, v) =

dG1(u, v) for u, v ∈ V (G1) by Claim 7.5.5, property (1) holds for u, v ∈ V (G1). We now
prove property (1) for vertices v /∈ V (G1).

If v /∈ V (G1), then v = vj for some path v0, v1, . . . , v` contracted in G0 (v0, v` ∈ V (G1)).
Observe that d0 := dG0(s, v0) +

∑j
i=1 w(vi−1, vi) is the shortest length of any (simple) path

from s to v that passes through v0, and similarly, d` := dG0(s, v`) +
∑`

i=j+1w(vi−1, vi) is
the shortest length of any (simple) path from s to v that passes through v`. Furthermore,
dG0(s, v) = min{d0, d`}. We have(

φ1(v0) +

j∑
i=1

w(vi−1, vi)

)
− φ1(s) ≥

j∑
i=1

w(vi−1, vi) +
1

α
· dG0(s, v0)

≥ 1

α

(j∑
i=1

w(vi−1, vi) + dG0(s, v0)

)
=
d0

α
,

and similarly,(
φ1(v`) +

`−1∑
i=j

w(vi, vi+1)

)
− φ(s) ≥

`−1∑
i=j

w(vi, vi+1) +
1

α
· dG0(s, v`)

≥ 1

α

(`−1∑
i=j

w(vi, vi+1) + dG0(s, v`)

)
=
d`
α
.

It follows that

φ0(vj)− φ0(s) = min

{
φ1(v0) +

j∑
i=1

w(vi−1, vi), φ1(v`) +
`−1∑
i=j

w(vi, vi+1)

}
≥ min

{
d0

α
,
d`
α

}
=

1

α
· dG0(s, v),

proving property (1).

147

7.5.3 Extending to Forest Components

It remains to extend φ0 to an SSSP potential in the original graph G. First, recall that all
edges in G−T have endpoints inside S = V (G1) ⊆ V (G0), which means that G−E(G0) is a
forest contained in T . Moreover, since G0∩T = T0 is connected, every connected component
(tree) in G − E(G0) shares exactly one endpoint with V (G0) (otherwise, there would be a
cycle in T). Therefore, any simple path between two vertices in V (G0) must be contained in
G0. Since G0 is itself an induced subgraph of G, in particular with the same edge weights,
we have dG(u, v) = dG0(u, v) for all u, v ∈ V (G0).

In addition, for each component (tree) C in the forest G − E(G0) that shares vertex r
with V (G0) (which could possibly be s), any path from s to a vertex in C must pass through
r. In particular, the shortest path from s to a vertex v ∈ C consists of the shortest path
from s to r (possibly the empty path, if r = s) concatenated with the (unique) path in C
from r to v. It follows that dG(s, v) = dG(s, r) + dC(r, v).

With these properties of G in mind, let us extend φ0 to the potential φ on V as follows:
for v ∈ V (G0), define φ(v) := φ0(v), and for each connected component C of G − E(G0)

sharing vertex r with V (G0), define φ(v) = φ0(r) + dC(r, v). Since C is a tree, the values
dC(r, v) for each v ∈ V (C) are easily computed in parallel.

Claim 7.5.7

The vector φ is an α-approximate s-SSSP potential of G.

Proof. Since φ0 and φ agree on V (G0), and since G[V (G0)] and G0 agree on their edges
(including their weights), property (1) of Definition 7.2.7 holds for all v ∈ V (G0) and prop-
erty (2) holds for all u, v ∈ V (G0).

Now fix a connected component C of G−E(G0) sharing vertex r with V (G0). For each
vertex v ∈ C, we have

φ(v)− φ(s) =
(
φ0(r) + dC(r, v)

)
− φ0(s) ≥ 1

α
· dG(s, r) + dC(r, v) ≥ 1

α

(
dG(s, r) + dC(r, v)

)
=
dG(s, v)

α
,

proving property (1) for vertices in C. For property (2), consider an edge (u, v) in C. Since
C is a tree, either dC(r, u) = dC(r, v) + w(u, v) or dC(r, v) = dC(r, u) + w(u, v), so in both
cases,

|φ(u)− φ(v)| =
∣∣(φ0(r) + dC(r, u)

)
−
(
φ0(r) + dC(r, v)

)∣∣ =
∣∣dC(r, u)− dC(r, v)

∣∣ = w(u, v),

proving property (2).

148

7.5.4 Generalizing to S-SSSP

Of course, Lemma 7.3.15 requires calls to not just s-SSSP, but S-SSSP for a vertex subset
S ⊆ V . In this section, we generalize the algorithm to work for S-SSSP for any S ⊆ V .

Lemma 7.5.8: S-SSSP algorithm

Let G = (V,E) be a connected graph with n vertices and (n − 1) + t edges, and let
α > 0 be a parameter. Let A be an algorithm that inputs (i) a connected graph on
at most 70t vertices and edges with aspect ratio O(M) and (ii) a source vertex s,
and outputs an α-approximate s-SSSP potential of that graph. Then, for any subset
S ⊆ V , we can compute an α-approximate S-SSSP potential of G through a single
call to A, plus Õ(m) additional work and polylog(n) additional time.

Let G0 and G1 be the graphs guaranteed from Lemma 7.5.4, and let V0, V1 ⊆ V be
their respective vertex sets. Consider the set C of connected components (trees) in G−G0;
for each component C ∈ C, let r(C) be the vertex shared between C and V0, and let C
be the set of components C with S ∩ (V (C) \ {r(C)}) 6= ∅. Root each component C ∈ C
at r(C), and let C↑ be the subgraph of C induced by the vertices that have no ancestor
in S ∩ (V (C) \ {r(C)}) (see Figure 7.5.4); we will first focus our attention on C↑. Let
d(C) := dC(r(C), S∩V (C)) = dC↑(r(C), S∩V (C↑)) be the distance from r(C) to the closest
vertex in S ∩ V (C), which must also be in S ∩ V (C↑).

Next, consider all paths P in G0 that were contracted into edges in C1; for each such
path P , let r1(P), r2(P) ∈ V1 be the two endpoints of P . Let P be the paths P which satisfy
S ∩ (V (P) \ {r1(P), r2(P)}) 6= ∅. For i = 1, 2, let vi(P) be the vertex on P closest to ri(P),
and define di(P) := dP (ri(P), vi(P)) = dP (ri(P), S ∩ V (P)). Note that it is possible that
v1(P) = v2(P), which happens precisely when |S ∩ V (P)| = 1. Define P ↑ to be the union
of the path from r1(P) to v1(P) and the path from r2(P) to v2(P). Again, we first focus on
P ↑.

We construct a graph G2 as follows. The vertex set is V2 := V1 ∪
⋃
C∈C V (C↑) ∪⋃

P∈P V (P ↑) ∪ {s} for a new vertex s. Add the graph G1 onto the vertices V1, and for
each C ∈ C and P ∈ P , add the graphs C↑ and P ↑ into V (C↑) and V (P ↑), respectively.
For each vertex v ∈ S ∩ V1, add an edge of weight 0 between s and v, adding a total of
|S ∩V1| ≤ |V1| ≤ 4t edges. Next, for each C ∈ C, add an edge from s to r(C) of weight d(C),
and for each P ∈ P , add an edge from s to ri(P) of weight di(P) for i = 1, 2. Since every
component C ∈ C has a distinct r(C) ∈ V1, we have |C| ≤ |V1| ≤ 4t. Since every path P ∈ P
gets contracted to a (distinct) edge in G1, we have |P| ≤ |E(G1)| ≤ 5t. Therefore, we add
at most 13t edges from s.

Claim 7.5.9

G2 has at most (|V2| − 1) + 14t edges, and for every vertex v ∈ V2 \ {s}, we have
dG2(s, v) ≥ dG(S, v).

149

v1(P1)

v2(P1)

v1(P2)

v2(P2)

P ↑
1 P ↑

2

C↑
1 C↑

2

d(C1) = 2
d(C2) = 3

d1(P1) = 1
d2(P1) = 2 d1(P2) = 3

d2(P2) = 1

V1

v1(P1)

v2(P1)

v1(P2)

v2(P2)

P ↑
1 P ↑

2

C↑
1 C↑

2

V1

1 2

2 3

3

1

s

r1(P1)

r2(P1) r1(P2)

r2(P2)

Figure 7.3: Construction of the graph G2.

Proof. Since G has (n − 1) + t edges, there exists some t edges F ⊆ E such that G − F is
a tree. This means that G[V2 \ {s}] has at most (|V2 \ {s}| − 1) edges in G − F , and since
|F | = t and we added at most 13t extra edges, G2 has at most (|V2 \ {s}| − 1) + 14t edges.

To prove the second statement, consider a vertex v ∈ V2 \ {s}, and let P be the shortest
path from s to v in G2. If the first edge on the path (adjacent to s) its other endpoint
(besides s) inside V1 ∩ S, then this edge has weight 0, and the path P minus that first edge
is a path in G1 from S to v of equal weight. Then, for each edge on the path formed by
contracting a path in G to an edge in G1, we can expand the edge back to the contracted
path, obtaining a path the same weight in G.

Next, suppose that the first edge connects to vertex r(C) for some C ∈ C. In this case,
we replace that edge with the path in C↑ from S ∩V (C↑) to r(C↑) of weight d(C). The new
path is a path in G1 from V to v of the same weight, and we can expand contracted edges
as in the first case.

Otherwise, the first edge must connect to a vertex ri(P) for some P ∈ P and i ∈ {1, 2}.
In this case, we similarly replace that edge with the path in P ↑ from S ∩ T (P ↑) to ri(P ↑) of
weight d(P), and the rest of the argument is analogous.

It is clear that G2 has aspect ratio O(M). We now apply Lemma 7.5.2 on G2 with source
s and algorithm A (note that 70t = 5·14t), obtaining an s-SSSP potential φ2 on V2. W.l.o.g.,
we can assume that φ2(s) = 0, since we can safely add any multiple of 1 to φ2(s). We now
extend φ2 to V by setting φ2(v) :=∞ for all v ∈ V \ V2.

We next define a potential φC on V as follows. For each C ∈ C, let φC(r(C)) := ∞, let

150

φC(v) := dC(S ∩ (V (C) \ {r(C)}), v) for v ∈ V (C) \ {r(C)} (that is, exact distances in C

from S ∩ (V (C) \ {r(C)}), and assume w.l.o.g. that φC(v) = 0 for all v ∈ S ∩ V (C) (see
Observation 7.2.10). For all remaining v ∈ V \

⋃
C∈C V (C), define φC(v) := ∞. Similarly,

we define potential φP as follows. For each P ∈ P , let φP(r1(P)) = φP(r2(P)) := ∞, let
φP(v) := dP (S∩(V (P)\{r1(P), r2(P)}), v) for v ∈ V (P), and assume w.l.o.g. that φP(v) = 0

for all v ∈ S ∩ V (P); for all remaining v ∈ V \
⋃
P∈P V (P), define φP(v) := ∞. Since each

C ∈ C and P ∈ P is a tree, this can be done efficiently in parallel as stated below, whose
proof we defer to Section 7.10.3.

Lemma 7.5.10

Given a tree T = (V,E) and a set of sources S ⊆ V , we can compute an exact S-SSSP
potential in Õ(m) work and polylog(n) time.

Finally, define φ(v) := min{φ2(v), φC(v), φP(v)}. Note that for all v ∈ V , we have
φi(v) ≥ 0 for all i ∈ {2, C,P} by Observation 7.2.10, so φ(v) ≥ 0 as well.

Claim 7.5.11

The vector φ is an α-approximate S-SSSP potential of G.

Proof. Since φ(s) = 0 for all s ∈ S, property (0) of Definition 7.2.12 holds. We now prove
property (1). Fix a vertex v ∈ V , and suppose first that φ(v) = φ2(v) (i.e., the minimum
is achieved at φ2(v)). Then, by Claim 7.5.9, we have dG2(s, v) ≥ dG(s, v). This, along with
the guarantee φ2(v) ≥ 1

α
dG2(s, v) from φ2, implies that φ2(v) ≥ 1

α
dG2(s, v) ≥ 1

α
dG(s, v). Now

suppose that φ(v) = φC(v). Since φC(v) = dC(v, S ∩ V (C)) for some C ∈ C, we have

φ(v) = dC(v, S ∩ V (C)) ≥ dG(v, S ∩ V (C)) ≥ dG(v, S) ≥ 1

α
dG(v, S).

The remaining case φ(v) = φP(v) is analogous, with every instance of C and C replaced by
P and P , respectively.

We now focus on property (2). Note that if φ2, φC, φP each satisfied property (2), then by
Observation 7.2.11, φ would as well. In fact, a more fine-grained variant of Observation 7.2.11
states that for any edge (u, v) ∈ E, if we have |φi(u)−φi(v)| ≤ dG(u, v) for each i ∈ {2, C,P},
then |φ(u) − φ(v)| ≤ dG(u, v) as well. Hence, we only need to consider edges for which
|φi(u)− φi(v)| > dG(u, v) for some i ∈ {2, C,P}.

We first focus on i = 2. Observe that by property (1) on φ2, the only edges (u, v) ∈ E
for which |φ2(u) − φ2(v)| > dG(u, v) are those where φ2(u) < ∞ and φ2(v) = ∞ or vice
versa.6 Let us assume w.l.o.g. that φ2(u) < ∞ and φ2(v) = ∞; by construction, we must
either have u ∈ S ∩ V (C↑) for some C ∈ C or u ∈ S ∩ V (P ↑) for some P ∈ P . In the former
case, since φC(u) = 0 and φ(u) ≥ 0, we must have φ(u) = 0, and since φC(v) < ∞ and

6Let us assume for simplicity that ∞−∞ = 0. To be more formal, we should replace each ∞ with some
large number M that exceeds the weighted diameter of the graph, so that we have M −M = 0 instead.

151

φ2(v) = φP(v) =∞, we also have φ(v) = φC(v). We thus have, for some C ∈ C,

|φ(u)− φ(v)| = |φC(u)− φC(v)| = |0− φC(v)| = φC(v) = dC(v, S ∩ V (C)) ≤ dG(u, v),

so edge (u, v) satisfies property (2), as needed.
Next, consider the case i = C. By construction, the only edges (u, r) ∈ E for which

|φC(u)−φC(r)| > dG(u, v) are those where φC(u) <∞ and φC(r) =∞ or vice versa. Assuming
again that φC(u) <∞ and φC(r) =∞, we must have u ∈ V (C) and r = r(C) for some C ∈ C.
By construction, we must have φ(r) = φ2(r) and φ(u) = min{φ2(u), φC(u)}. By property (2)
of φ2, we have |φ2(u) − φ2(r)| ≤ w(u, r), so it suffices to show that φC(u) ≥ φ(r) − w(u, r),
from which |φ(u)− φ(r)| ≤ w(u, r) will follow.

By Observation 7.2.9 and the fact that φ(s) = 0, we have φ2(r) ≤ dG2(s, r). Also, by
construction of G2, we have dG2(s, r) ≤ wG2(s, r) = dC(S ∩ (V (C) \ {r(C)}). Therefore,

φC(u) = dC(S ∩ (V (C) \ {r(C)}), u) = dC(S ∩ (V (C) \ {r(C)}), r)− w(u, r)

≥ dG2(u, r)− w(u, r)

≥ φ2(r)− w(u, r)

= φ(r)− w(u, r),

as desired.
The case i = P is almost identical to the case i = C, except we now have r = r1(P) or

r = r2(P). Since the rest of the argument is identical, we omit the proof.

7.6 Ultra-spanner Algorithm

In this section, we present our algorithm for constructing an ultra-spanner. It is a modifica-
tion of the weighted spanner algorithm of [82], where we sacrifice more factors in the spanner
approximation for the needed ultra-sparsity.

Lemma: Restatement of Lemma 7.3.14

Given a weighted graph G with polynomial aspect ratio and a parameter k ≥ Ω(1),
there is an algorithm to compute a k2-spanner of G with (n− 1) +O(m logn

k
) edges in

Õ(m) work and polylog(n) time.

Our ultra-spanner algorithm closely resembles the weighted spanner algorithm of [82].
Their algorithm outputs an O(k)-spanner with O(n1+1/k log k) edges, which is not ultra-
sparse and therefore insufficient for our purposes. However, the log k factor of their algorithm
comes from splitting the graph into O(log k) separate ones, computing a spanner for each,
and taking the union of all spanners. We modify their algorithm to consider only one graph,
at the cost of an extra k-factor in the stretch, which is okay for our application. We first
introduce the subroutine ESTCluster for unweighted graphs from [82] (which dates back

152

to [83]) and its guarantee, whose proof we sketch for completeness. Note that while this
algorithm can be adapted to the weighted setting, executing the algorithm efficiently in
parallel is difficult

Algorithm 10 ESTCluster(G = (V,E), β ∈ (0, 1]), G is unweighted
1: For each vertex u, sample δu independently from the geometric distribution with mean

1/β
2: Create clusters by defining Cu := {v ∈ V : u = arg minu′∈V d(u′, v) − δu′}, with ties

broken by a universal linear ordering of V . If u ∈ Cu, then u is the center of cluster Cu
3: Return the clusters Cu along with a spanning tree on each cluster rooted at its center.

Lemma 7.6.2

For each edge in E, the probability that its endpoints belong to different clusters is at
most β.

Proof. Fix an edge (v, v′) ∈ E, and let u1, u2 ∈ V be the vertices achieving the smallest and
second-smallest values of d(u′, v)−δu′ over all u′ ∈ V , with ties broken by the linear ordering
of V . (In particular, v ∈ Cu1 .) Let us condition on the choices of u1, u2 and the value of
d(u2, v) − δu2 . First, suppose that u1 ≤ u2 in the linear ordering (that is, u1 is preferred in
the event of a tie). Then, we know that

v′ ∈ Cu1 ⇐⇒ d(u1, v
′)− δu1 ≤ d(u2, v

′)− δu2 ⇐⇒ δu1 ≥ d(u1, v
′)− d(u2, v

′) + δu2 .

So far, we are conditioning on the event δu1 ≥ d(u1, v)− d(u2, v) + δu2 . By the memoryless
property of geometric variables, with probability 1− β, we have δu1 ≥ (d(u1, v)− d(u2, v) +
δu2) + 1. In that case, we also have

d(u1, v
′)−δu1 ≤ (d(u1, v)+1)−δu1 ≤ (d(u1, v)+1)−(d(u1, v)−d(u2, v)+δu2+1) = d(u2, v)+δu2 ,

so v′ ∈ Cu1 as well and edge (v, v′) lies completely inside Cu1 .
If u1 ≥ u2 in the linear ordering instead, then we know that

v ∈ Cu1 ⇐⇒ d(u1, v)− δu1 < d(u2, v)− δu2 ⇐⇒ δu1 > d(u1, v)− d(u2, v) + δu2 ,

and the proof proceeds similarly.
Overall, for each edge in E, the probability that its endpoints belong to different clusters

is at most β.

We now proceed to our ultra-spanner algorithm. Without loss of generality, the edge
weights of G range from 1 to W for some W = poly(n). For positive real numbers x and k,
define TxUk := max{kα : α ∈ Z, kα ≤ x} as the largest integer power of k less than or equal
to x. Let TGUk = (V, TEUk) be the graph G with the weight w(u, v) of each edge (u, v) ∈ E
replaced by Tw(u, v)Uk, so that in particular, all edge weights in G are now nonnegative

153

integer powers of k. For each α ∈ {0, 1, 2, . . . ,TWUk}, define Eα ⊆ TEUk as the set of edges
in TGUk with weight kα.

Algorithm 11 Ultraspanner(TGUk = (V, TEUk))
1: Initialize H0 ← ∅ . Hi ⊆ TEUk will be edges contracted over the iterations
2: Initialize TSUk ← ∅ . TSUk ⊆ TEUk will be the edges in the spanner
3: for α = 0, 1, 2, . . . ,TWUk do
4: Let V α−1

0 , V α−1
1 , . . . be the connected components of Hα−1

5: Let Γα be the graph formed by starting with (V,Eα) and contracting each V α−1
i into

a single vertex
6: Run ESTCluster on the (unweighted version of) Γα with β := C lnn

k
on Γα for suffi-

ciently large C, and let F ⊆ Γα be the forest returned
7: Update TSUk ← TSUk ∪ F
8: Set Hα ← Hα−1 ∪ F
9: Add to TSUk all edges e in Γα whose endpoints lie in different connected components

of F
10: return TSUk as the spanner

Lemma 7.6.3

If Ultraspanner succeeds (for a notion of success to be mentioned), then the output
TSUk is a k-spanner with at most n− 1 +O(m logn

k
) edges. We can define our success

condition so that it happens with probability at least 1/3, and that we can detect if
the algorithm fails (so that we can start over until it succeeds). Altogether, we can run
the algorithm (repeatedly if necessary) so that w.h.p., the output TSUk is a k-spanner
of TGUk with at most n− 1 +O(m logn

k
) edges, and it takes Õ(m) work and Õ(k) time.

Proof. We say that Ultraspanner fails if on any iteration α, some δv in the computation of
ESTCluster satisfies δv > k/6. Observe that if the algorithm does not fail, then every call to
ESTCluster takes Õ(k) time (and Õ(m) work) and returns clusters with diameter at most
2 · k/6 = k/3. We now bound the probability of failure: for any given vertex v in some Γα,
the probability that δv > k/6 is e−βk/6 = e−(C/6) lnn = n−C/6. There are at most n vertices
in each Γα, and at most blogkW c + 1 = O(1) many iterations since G has bounded aspect
ratio, so taking a union bound, the failure probability is at most O(n−C/6+1).

Assume now that Ultraspanner does not fail. Then, we prove by induction on α that
the diameter of each connected component of Hα is at most kα+1. This is trivial for α = 0,
and for α > 0, suppose by induction that the statement is true for α−1. Since the algorithm
does not fail, ESTCluster returns clusters with (unweighted) diameter at most k/3. In the
weighted Γα, these clusters have diameter at most k/3 · kα = kα+1/3. Observe that Hα is
formed by starting with these clusters and “uncontracting” each vertex into a component
of Hα−1. By induction, each component in Hα−1 has diameter at most kα. Therefore,
between any two vertices in a common component of Hα, there is a path between them

154

consisting of at most k/3 edges of length kα and at most k/3 + 1 subpaths each of length
at most kα, each inside a component in Hα−1. Altogether, the total distance is at most
k/3 · kα + (k/3 + 1) · kα ≤ kα+1 (assuming k ≥ 3).

Let us now argue that the stretch of TSUk is at most k if the algorithm does not fail.
Observe that the edges added to TSUk in line 9 on an iteration α are precisely the edges whose
endpoints belong to different clusters in the corresponding ESTCluster call. Conversely, any
edge e ∈ Eα not added to TSUk have both endpoints in the same cluster. By the previous
argument, this cluster has diameter at most kα+1 assuming that the algorithm does not fail.
Therefore, the stretch of edge e is at most k.

Finally, we bound the number of edges in the output S. By Lemma 7.6.2, for the
ESTCluster call on iteration α, every edge in Eα has its endpoints in different clusters with
probability at most β, which is when it is added to TSUk in line 9. Over all iterations α, the
expected number of edges added to TSUk in line 9 is at most βm. By Markov’s inequality,
with probability at least 1/2, there are at most 2βm edges added in line 9. If this is not the
case, we also declare our algorithm to fail. Note that the failure probability now becomes
at most 1/2 + O(n−C/6+1) ≤ 2/3 (for C large enough). Moreover, it is easy to see that the
edges added to S on line 7 form a forest, so at most n − 1 are added there. Altogether, if
the algorithm succeeds, then there are at most (n − 1) + 2βm = (n − 1) + O(m logn

k
) edges

in the output, which is a k-spanner.
Lastly, Ultraspanner can clearly be implemented to run in Õ(m) work and Õ(k) time.

Moreover, we only need to repeat it O(log n) times before it succeeds w.h.p.

Using Lemma 7.6.3, we now prove Lemma 7.3.14 as follows. Let S ⊆ E be the cor-
responding spanner in G sharing the same edges as TSUk ⊆ TEUk (with possibly different
weights). Intuitively, since TGUk approximates the edge weights of G up to factor k, the
k-spanner S should be a k2-spanner on G. More formally, given an edge (u, v) ∈ E, let
u = v0, v1, . . . , v` = v be the shortest path in TSUk. We have

dS(u, v) ≤
∑̀
i=1

dS(vi−1, vi) ≤
∑̀
i=1

k · dTSUk(vi−1, vi) = k · dTSUk(u, v) ≤ k · kdTGUk(u, v)

≤ k2dG(u, v).

Therefore, S is a k2-spanner of G.

7.7 Sherman’s Framework via Multiplicative Weights

In this section, we provide a self-contained proof of Theorem 7.4.2 using the multiplicative
weights updates framework at the loss of an additional log(n/ε), which can be disregarded
in our parallel algorithms.

155

Theorem 7.7.1: Weaker version of Theorem 7.4.2

Given a transshipment problem, suppose we have already computed a matrix R satis-
fying:

1. For all demand vectors b ∈ Rn,

opt(b) ≤ 1Rb ≤ κ · opt(b) (7.10)

2. Matrix-vector products with R and RT can be computed in M work and
polylog(n) timea

Then, for any transshipment instance with demand vector b, we can compute a flow
vector f and a vector of potentials φ̃ in Õ(κ2(m+ n+M) ε−2) time that satisfies:

1.
∥∥Cf∥∥

1
≤ (1 + ε)bT φ̃ ≤ (1 + ε) opt(b)

2. opt(Af − b) ≤ β opt(b)

aM can potentially be much lower than the number of nonzero entries in the matrix R if it can
be efficiently compressed.

We begin with the following classical result on solving linear programs approximately
with multiplicative weights update framework. We state it without proof, since the result is
a staple in advanced algorithms classes.

Theorem 7.7.2: Solving LPs with Multiplicative Weights Update

Let δ ≤ 1 and ω > 0 be parameters. Consider a convex set K ⊆ Rn, a matrix
M ∈ Rm×n, and a vector c ∈ Rm. (We want to investigate approximate feasibility of
the set {y ∈ K : My ≤ c}.) Let O be an oracle that, given any vector p ∈ ∆m, either
outputs a vector y ∈ K satisfying pTMy ≤ pT c and ‖My − c‖∞ ≤ ω, or determines
that the set {y ∈ K : pTMy ≤ pT c} is infeasible. Then, consider the following
algorithm:

1. Set p0 ← 1
m
1 ∈ ∆m

2. For t = 1, 2, . . . , T where T = O(ω2 logm/δ2):
(a) Call oracle O with pt−1 ∈ ∆m, obtaining vector y(t)

(b) If O determines that no y ∈ K exists, then output pt−1 and exit

(c) For each j ∈ [m], set w(t)
j ← w

(t−1)
j · exp(δ · (My(t) − c)j) = exp(δ ·∑

i∈[t](My(i) − c)j)

(d) For each j ∈ [m], set p(t)
j ← w

(t)
j /
∑

i∈[m] w
(t)
i

3. Output 1
T

∑
i∈[T] y

(i) ∈ K
If this algorithm outputs a vector p ∈ ∆m on step 2(b), then the set {x ∈ K : Mx ≤ c}
is infeasible. Otherwise, if the algorithm outputs a vector x ∈ K on step 3, then we
have Mx ≤ c+ δ1.

156

Lemma 7.7.3

Consider a transshipment instance with demands b and a parameter t ≥ opt(b)/2.
Let r be a parameter, and let R ∈ R[r]×V be a matrix satisfying (7.10) for some
parameter κ. Then, there is an algorithm that performs O((κ/ε)2 log n) matrix-vector
multiplications with A, AT , R, and RT , as well as O((κ/ε)2 log n) operations on vectors
in Rr, and outputs either

1. an acyclic flow f satisfying 1Cf ≤ t and 1RAf −Rb < εt, or

2. a potential φ with value bTφ = t.

We will run Multiplicative Weights Update (Theorem 7.7.2) to determine feasibility of
the region

{y ∈ Rr :
∥∥yTRAC−1

∥∥
∞ +

1

t
yTRb ≤ −ε and ‖y‖∞ ≤ 1},

which is modeled off the dual LP formulation for transshipment; this connection will become
clearer once Claim 7.7.4 is proved.

We set c := ε1 and K := {y ∈ Rr : ‖y‖∞ ≤ 1} in Theorem 7.7.2. As for matrix M , the
constraint

∥∥yTRAC−1
∥∥
∞ + 1

t
yTRb ≤ −ε can be expanded into

±yTRAc−1
e χe +

1

t
yTRb ≤ −ε ∀e ∈ E,

so the rows of matrix M consist of the 2m vectors (±RAc−1
e χe + 1

t
Rb)T for each e ∈ E.

We now specify the oracleO. On each iteration, the algorithm of Theorem 7.7.2 computes
values p+

e , p
−
e ≥ 0 for each e ∈ E satisfying

∑
e(p

+
e + p−e) = 1. The oracle needs to compute

a vector y satisfying ‖y‖∞ ≤ 1 and

∑
e∈E

(
p+
e

(
yTRAc−1

e χe +
1

t
yTRb

)
+ p−e

(
−yTRAc−1

e χe +
1

t
yTRb

))
≤ −ε.

This inequality can be rewritten as

yT
(
RA

∑
e∈E

c−1
e (p+

e χe − p−e χe) +
1

t
Rb

)
≤ −ε.

Observe that a solution y exists iff

1RA
∑
e∈E

c−1
e (p+

e χe − p−e χe) +
1

t
Rb ≥ ε, (7.11)

and if the inequality is true, then the vector y := −sign(RA
∑

e∈E c
−1
e (p+

e χe − p−e χe) + 1
t
Rb)

is a solution, so the oracle outputs it.

157

We set the error parameter δ to be ε/(2κ). Then, either the algorithm of Theorem 7.7.2
outputs p that violates (7.11) on some iteration, or after a number of iterations (depending
on ρ, which we have yet to bound), the average of all vectors y computed over the iterations
satisfies

±yTRAc−1
e χe +

1

t
yTRb ≤ −ε+

ε

2
= − ε

2
∀e ∈ E ⇐⇒

∥∥yTRAC−1
∥∥
∞ +

1

t
yTRb ≤ − ε

2
.

(7.12)

First, suppose that the second case holds:

Claim 7.7.4

Suppose Theorem 7.7.2 outputs a vector y satisfying (7.12). Then, we can compute a
potential φ satisfying condition (2).

Proof. Consider the vector φ0 := −(yTR)T . We have∥∥φT0AC−1
∥∥
∞ −

1

t
φT0 b ≤ −

ε

2κ
< 0.

In particular, 1
t
φT0 b > 0. Let φ be the vector φ0 scaled up so that 1

t
φT b = 1. Then,

∥∥φTAC−1
∥∥
∞ −

1

t
φT b < 0 =⇒

∥∥φTAC−1
∥∥
∞ <

1

t
φT b = 1.

Since φ satisfies the transshipment dual constraints, it is a potential. Moreover, φT b = t, so
φ satisfies condition (2).

Let us now consider the first case:
Claim 7.7.5

Suppose Theorem 7.7.2 outputs values p+
e , p

−
e ≥ 0 satisfying

∑
e(p

+
e + p−e) = 1 and

1RA
∑
e∈E

c−1
e (p+

e χe − p−e χe) +
1

t
Rb < ε.

Then, we can compute an acyclic flow satisfying condition (1).

Proof. Let us construct a flow f ∈ RE defined as f := −t
∑

e c
−1
e (p+

e χe − p−e χe). We have

1Cf = 1−t
∑
e∈E

(p+
e χe − p−e χe) = −t

∑
e∈E

|p+
e − p−e | ≤ t

∑
e∈E

(p+
e + p−e) = t

and
1−RAf +Rb < εt;

158

it remains to show that f is acyclic. Fix an edge e = (u, v), so that Aχe = χu−χv. We have
that f flows from u to v iff

fe > 0 ⇐⇒ −tc−1
e (p+

e − p−e) > 0 ⇐⇒ p+
e < p−e .

By the construction of p±e from Theorem 7.7.2,

p+
e < p−e ⇐⇒

∑
i∈[t]

(
(RAc−1

e χe +
1

t
Rb)Ty(i) − ε

)
<
∑
i∈[t]

(
(−RAc−1

e χe +
1

t
Rb)Ty(i) − ε

)
⇐⇒ (RAc−1

e χe)
T
∑
i∈[t]

y(i) < (−RAc−1
e χe)

T
∑
i∈[t]

y(i)

Let y :=
∑

i∈[t] y
(i), so that this becomes

(RAc−1
e χe)

Ty < (−RAc−1
e χe)

Ty ⇐⇒ yTRc−1
e (χu − χv) < −yTRc−1

e (χu − χv)
⇐⇒ yTRc−1

e χu < yTRc−1
e χv.

Therefore, f will only flow from u to v if (yTR)u < (yTR)v; it follows that such a flow cannot
produce any cycles.

We now bound the value ω needed for Theorem 7.7.2, which in turn bounds the number
of iterations T .

Claim 7.7.6

In Theorem 7.7.2, we can set ω := 3κ.

Proof. Consider an iteration where Theorem 7.7.2 outputs values p+
e , p

−
e , and define f :=

−t
∑

e c
−1
e (p+

e χe − p−e χe) as before, so that 1Cf ≤ t. Let f ∗ be an optimal flow for demand
vector b, and by assumption, 1Cf ∗ = opt(b) ≤ 2t. We have

1RAf −Rb = 1RAf ∗ −Rb+RA(f − f ∗)
= 1RA(f − f ∗).

The flow f − f ∗ has cost 1C(f − f ∗) ≤ 1Cf + 1Cf ∗ ≤ t + 2t = 3t and satisfies demand
A(f − f ∗). By (7.10),

1RAf −Rb = 1RA(f − f ∗) ≤ κ · opt(A(f − f ∗)) ≤ κ · 3t,

which implies that

1RA
∑
e∈E

c−1
e (p+

e χe − p−e χe) +
1

t
Rb ≤ 3κ.

159

Since any vector y the algorithm chooses must satisfy ‖y‖∞ ≤ 1, we must have∣∣∣∣∣yT
(
RA

∑
e∈E

c−1
e (p+

e χe − p−e χe) +
1

t
Rb

)∣∣∣∣∣ ≤ 3κ,

so ω = 3κ works, as promised.

Remark 7.7.7

We only used the upper bound in (7.10); the lower bound will become useful when we
work with condition (1) in the lemma. Moreover, we will not need that the flow f is
acyclic, but this property may be useful in other applications.

We now claim that Theorem 7.7.1 follows from Lemma 7.7.3. We apply Lemma 7.7.3
O(log(n/ε)) times by binary-searching on the value of t, which we ensure is always at least
opt(b)/2 as required by Lemma 7.7.3. Begin with t = poly(n), an upper bound on opt(b).
First, while Lemma 7.7.3 outputs a flow f (case (1)), set t← 1+ε

2
t for the next iteration. We

claim that the new t′ := 1+ε
2
t still satisfies t′ ≥ opt(b)/2:

opt(b) ≤ 1f + opt(Af − b) ≤ 1f + 1RAf −Rb ≤ t+ εt =⇒ opt(b)

2
≤
(

1 + ε

2

)
t = t′.

Repeat this until Lemma 7.7.3 outputs a potential φ instead, which signifies that opt(b) ≥
bTφ = t. At this point, we know that opt(b) ∈ [t, 2t], and we can properly run binary search
in this range, where a flow f returned for parameter t signifies that opt(b) ≤ t + εt, and a
potential φ returned means that opt(b) ≥ t. Through binary search, we can compute two
values t`, tr such that tr − t` ≤ ε opt(b) and opt(b) ∈ (t`, tr).

Then, run Lemma 7.7.3 with parameter t = t`/(1 + ε). We claim that we must obtain a
potential φ, not a flow f : if we obtain a flow f instead, then

opt(b) ≤ 1f + opt(Af − b) ≤ 1f + 1RAf −Rb ≤ t+ εt = t`,

contradicting the assumption that opt(b) > t`. This potential φ satisfies bTφ = t`
1+ε
≥

tr−ε opt(b)
1+ε

≥ opt(b)−ε opt(b)
1+ε

= (1 − O(ε))opt(b), which is almost optimal. At this point, we can
compute a (1 + ε)-approximation of opt(b), but we still need a transshipment flow f .

Next, run Lemma 7.7.3 with parameter t = tr; we claim that we must obtain a flow f this
time: if we obtain a potential φ instead, then opt(b) ≥ bTφ = tr, contradicting the assumption
that opt(b) < tr. This flow satisfies 1f ≤ tr ≤ t`+ ε opt(b) ≤ opt(b)+ ε opt(b) = (1+ ε)opt(b).
However, we are not done yet, since f does not satisfy Af = b; rather, we only know
that opt(Af − b) ≤ 1R(Af − b) ≤ ε opt(b). The key idea is to solve transshipment again
with demands b1 := Af − b; if we can obtain a (1 + ε)-approximate flow f1 satisfying
1f1 ≤ opt(b1) = opt(Af − b) ≤ ε opt(b) and 1R(Af1 − b1) ≤ ε opt(b1) ≤ ε2opt(b), then the

160

composed flow f + f1 has cost

1f + f1 ≤ 1f + 1f1 ≤ (1 + ε)opt(b) + (1 + ε)opt(b1) ≤ (1 + ε)opt(b) + (1 + ε)ε opt(b),

which is (1 + O(ε))opt(b). We can continue this process, defining bi := Afi−1 − bi−1 and
computing a flow fi satisfying 1fi ≤ opt(bi) = opt(Afi−1− bi−1) ≤ ε opt(bi−1) ≤ εiopt(b) and
1R(Afi − bi) ≤ ε opt(bi) ≤ εi+1opt(b) and adding it on to f + f1 + f2 + · · ·+ fi−1. Assuming
ε ≤ 1/2, say, we can stop after T := O(log n) iterations, so that the leftover demands bT+1

satisfies opt(bT+1) ≤ 1
n3opt(b). At this point, we can simply run an n-approximate algorithm

to demands bT+1 by routing through a minimum spanning tree (see Remark 7.4.4), computing
a flow fT+1 satisfying 1fT+1 ≤ n · 1

n3opt(b) ≤ ε opt(b), assuming ε ≥ 1/n2. (If ε = O(1/n2),
then a transshipment algorithm running in time Õ(1/ε2) ≥ Õ(n4) is trivial.) The final flow
f + f1 + f2 + · · ·+ fT+1 has cost at most (1 +O(ε))opt(b).

We have thus computed φ satisfying 1f ≤ (1 + O(ε))opt(b) ≤ (1 + O(ε))bTφ, so (f, φ)

is an (1 + O(ε))-approximate flow-potential pair. Finally, we can reset ε a constant factor
smaller to obtain a (1 + ε)-approximation. This concludes the algorithm of Theorem 7.7.1;
it remains to bound the running time.

In each iteration of Theorem 7.7.2, we perform O(1) matrix-vector multiplications with
A, AT , R, and RT , as well as an additional O(m) work and polylog(m) time, and the same
holds for the oracle O. This requires O(n + m + M) total work. By Theorem 7.7.2, there
are O(ω2 logm/δ2) = O((κ/ε)2 log n) iteration inside Lemma 7.7.3 to compute one flow f or
potential φ. Finally, Lemma 7.7.3 is called polylog(n) times as described above, hence the
promised running time.

7.8 Transshipment to Expected SSSP: Sequential

In this section, we devise an algorithm that solves the approximate expected single-source
shortest path problem, defined below, using multiple sequential calls to approximate trans-
shipment. The fact that the recursive calls are made sequentially does not immediately
imply a parallel algorithm, but in Section 7.8.1, we show how to save enough computation
between the recursive calls to ensure a parallel algorithm. This extra step is more technical
than insightful, hence its deferral to a separate subsection.

Finally, in Section 7.9, we show how to reduce SSSP to this expected version of SSSP [14].
Together, Sections 7.8 and 7.9 form a complete proof of Theorem 7.3.7. We remark that
while Section 7.9 is simply a rephrasing of a similar routine in [14] and only included for
self-containment, this section is novel, albeit still inspired by [14].

161

Definition 7.8.1: Approximate expected s-SSSP Tree

Given a graph G = (V,E), a source s, and a demand vector b satisfying bv ≥ 0 for
all v 6= s, an α-approximate expected s-SSSP tree is a randomized (not necessarily
spanning) tree T satisfying

E

[∑
v:bv>0

bv · dT (s, v)

]
≤ α

∑
v:bv>0

bv · dG(s, v).

If bv > 0 for all v 6= s, then the tree T must in fact be spanning. We also remark that
the term expected has two meanings here. First, the tree T is randomized, so the guarantee∑

v:bv>0

bv · dT (s, v) ≤ α
∑
v:bv>0

bv · dG(s, v)

is only satisfied in expectation. However, even if this guarantee is satisfied with probability
1, the distances dT (s, v) are not automatically α-approximate distances for every v; rather,
they only hold on average (weighted by bv). Note that in the exact setting α = 1, all distances
dT (s, v) are indeed exact, but this property breaks down as soon as α > 1.

Define WESSSP(n,m, α) as the work to compute an α-approximate expected SSSP with
arbitrary demand vector b satisfying bv ≥ 0 for all v 6= s. Our algorithm ESSSP is itself
recursive and satisfies the following recursion:

Lemma 7.8.2

WESSSP(n,m, (1 + 3ε)α) ≤ WTS(m, ε) +WESSSP(n/2,m, α).

Of course, we can solve expected SSSP exactly (α = 1) in constant time on constant-sized
graphs, so this recursion has depth at most log2 n. Unraveling this recursion, the algorithm
calls transshipment at most log2 n times, and the error (1 + 3ε) blows up multiplicatively
over each recursion level, obtaining

WESSSP(n,m, (1 + 3ε)log2 n) ≤ log2 n ·WTS(m, ε) + Õ(m).

Resetting the value ε, we can rewrite it as

WESSSP(n,m, 1 + ε) ≤ O(log n) ·WTS(m,Θ(ε/ log n)) + Õ(m), (7.13)

which is our targeted recursion for our algorithm ESSSP below.
Throughout the section, fix a (1 + ε)-approximate transshipment flow f satisfying the

given demand vector b (with bv ≥ 0 for all v 6= s). The key insight in our analysis is to
focus on a random walk based on a slight modification of the transshipment flow f . Define
a digraph

−→
G = (V ∪ {⊥},

−→
E , ~w) as follows: start from G by bidirecting each edge of E,

162

Algorithm 12 ESSSP(G = (V,E), s, b, (1 + 3ε)α)
Assumption: demand vector b satisfies bs > 0 and bt ≤ 0 for all t ∈ V \ s
1: Compute a (1 + ε)-approximate transshipment f on G with demand vector b
2: Initialize the digraph

−→
A ← ∅

3: Every vertex u ∈ V \ s with in(u) 6= ∅ independently samples a random neighbor
v ∈ out(u) with probability ~f(u, v)/~fout(u) and adds arc (u, v) to

−→
A

4: Add a self-loop (s, s) of zero weight to
−→
A

5: Let A be the undirected version of
−→
A

6: Initialize G′ ← (∅, ∅) as an empty undirected graph . Graph to be recursed on, with
≤ n/2 vertices

7: Initialize b′ as an empty vector . Demands to be recursed on
8: for each connected component C of A do
9: c(C)← total weight of edges in the (unique) cycle in C (possibly the self-loop (s, s))
10: Let TC be the graph C with its (unique) cycle contracted into a single vertex rC .

TC is a tree
11: Add a vertex vC to G′, and set demand b′vC ←

∑
v∈V (C) bv

12: for each edge (u, u′) in E do
13: Let C and C ′ be the connected components of A containing u and u′, respectively
14: if C 6= C ′ then
15: Add an edge between vC and vC′ with weight w(u, u′)+dTC (u, rC)+dTC′ (u

′, rC′)+
c(C) + c(C ′)

16: Let s′ ← vCs , where Cs is the component of A containing s
17: Collapse parallel edges of G′ by only keeping the parallel edge with the smallest weight
18: Recursively call ESSSP(G′, s′, b′, α), obtaining an α-approximate expected SSSP tree T ′

of G′
19: Initialize T ← ∅ . The expected SSSP tree
20: for each edge (v, v′) in T ′ do
21: Let (u, u′) ∈ E be the edge responsible for adding edge (v, v′) to G′
22: Add edge (u, u′) to T
23: for each connected component C of A do
24: Remove an arbitrary edge from the (unique) cycle inside C, and add the resulting

tree to T
25: return T

163

keeping the same weight in both directions. Then, add a new vertex ⊥ and a single arc
(s,⊥) of weight 0. Let

−→
C denote the diagonal matrix indexed by

−→
E , where diagonal entry

−→
C (u,v),(u,v) is the cost of arc (u, v) ∈

−→
E under the weights ~w.

Next, define a flow ~f on digraph
−→
G as follows: for each edge (u, v) ∈ E, if f(u,v) > 0, then

add f(u,v) flow to ~f along the arc (u, v), and if f(u,v) < 0, then add −f(u,v) flow to ~f along
the arc (v, u). Lastly, add −bs flow to ~f along arc (s,⊥). Observe that this flow satisfies the
demands bv for each v ∈ V \ s, demand 0 for s, and demand bs for ⊥. Moreover, the cost
1
−→
C ~f of the flow ~f equals 1Cf .
For each vertex v ∈ V , define in(v) := {u ∈ V : ~f(u, v) > 0} as the neighbors of v

that send flow to v, and define out(v) := {u ∈ V : ~f(v, u) > 0} as the neighbors of v
that receive flow from v. For convenience, define ~fin(v) :=

∑
u∈in(v)

~f(u, v) and ~fout(v) :=∑
u∈out(v)

~f(v, u).
Define b+(v) := max{bv, 0}, so that b+(s) = 0 and b+(v) = b(v) for all v 6= s. Define

V ∗ ⊆ V as the vertices t for which there exists a t → ⊥ path using only arcs supported by
the flow ~f (that is, arcs (u, v) with ~f(u, v) > 0). We will only be considering vertices in V ∗

for the rest of this section.
Claim 7.8.3

For all vertices t ∈ V , if b(t) = b+(t) > 0, then t ∈ V ∗. Moreover, for all v ∈ V ∗∪{⊥},
we have in(v) ⊆ V ∗ ∪ {⊥} and out(v) ∈ V ∗ ∪ {⊥}. In other words, the vertices in
V ∗ ∪ {⊥} are separated from the vertices in V \ V ∗ by arcs supported by ~f .

Proof. For the first claim, let R ⊆ V ∪ {⊥} be all vertices reachable from t along arcs
supported by ~f ; we need to show that ⊥ ∈ R. Since there are no arcs in ~f going out of R,
by conservation of flow, we must have

∑
v∈R b(v) ≤ 0. Since t ∈ R and b+(t) = b(t) > 0,

we have
∑

v∈R\t b(v) < 0. But the only vertex in V ∪ {⊥} with negative demand is ⊥, so it
must hold that ⊥ ∈ R, as desired.

We now prove the second statement. If suffices to show that there are no arcs between
V ∗ ∪ {⊥} and V \ V ∗. There cannot be an arc (u, v) supported by ~f with u /∈ V ∗ ∪ {⊥}
and v ∈ V ∗ ∪ {⊥}, since that would mean u can reach ⊥ by first traveling to v. Suppose for
contradiction that there is an arc from V ∗ ∪ {⊥} to V \ V ∗. Since there is no arc the other
way, by conservation of flow, it must follow that

∑
v/∈V ∗∪{⊥} b(v) < 0. But the only vertex ⊥

with negative demand is ⊥, so it cannot be that
∑

v/∈V ∗∪{⊥} b(v) < 0, a contradiction.

For each vertex t ∈ V ∗, consider the natural random walk from t to ⊥ in
−→
G , weighted by

the flow ~f : start from t, and if the walk is currently at vertex u ∈ V , then travel to vertex
v ∈ out(v) with probability ~f(u, v)/~fout(u) (independent of all previous steps); stop when ⊥
is reached. Let this random walk be the random variable Wt, which is guaranteed to stay
within V ∗ ∪ {⊥} by Claim 7.8.3.

Given a walk W in
−→
G , define length(W) to be the length of the walk under the weights

~w. In particular, length(Wt) is the length of the random walk Wt from t to ⊥.

164

The claim below relates the transshipment cost to the expected lengths of the random
walksWt for t ∈ V ∗. This allows us to later charge our expected SSSP distances to the lengths
of these concrete random walks, which are easier to work with than the transshipment flow
itself.

Claim 7.8.4

We have ∑
t∈V ∗

b+(t) · E[length(Wt)] ≤ 1
−→
C ~f.

In other words, if, for each t ∈ V ∗, we sample a random walk from t to ⊥ and multiply
its length by b+(t), then the sum of the multiplied lengths over all t is at most 1

−→
C ~f

in expectation.

Proof. For each vertex v ∈ V ∗∪{⊥}, let freqt(v) be the expected number of times v appears
in Wt. We first prove the following:

Subclaim 7.8.5

For all vertices v ∈ V ∗,
∑

t∈V ∗ b
+(t) · E[freqt(v)] = ~fout(v).

Proof. For each t ∈ V ∗, treat E[freqt(v)] as a function from V ∗ ∪{⊥} to R≥0, which satisfies
the following equations:

E[freqt(t)] = 1 +
∑
u∈in(t)

E[freqt(u)] ·
~f(u, t)

~fout(u)
(7.14)

E[freqt(v)] =
∑

u∈in(v)

E[freqt(u)] ·
~f(u, v)

~fout(u)
∀v ∈ (V ∗ ∪ {⊥}) \ t (7.15)

E[freqt(⊥)] = 1

Note that the equations are well-defined, since by Claim 7.8.3, all vertices u ∈ in(t) are in
V ∗ if t ∈ V ∗. Define the function f(v) :=

∑
t∈V ∗ b

+(v) · E[freqt(v)], so our goal is to show
that f(v) = ~fout(v) for each v ∈ V ∗. We sum Equations (7.14) and (7.15) as follows: for
each t, multiply Equations (7.14) and (7.15) by b+(t), and then sum over all t, obtaining

f(v) = b+(v) +
∑
u∈in(t)

f(u) ·
~f(u, t)

~fout(u)
∀v ∈ V ∗ ∪ {⊥} (7.16)

f(⊥) =
∑
t∈V ∗

b+(t) (7.17)

We first show that the solution f(v) = ~fout(v) for v ∈ V ∗ and f(⊥) =
∑

t∈V ∗ b
+(t) satisfies

165

the above system of equations. Equation (7.17) is clearly satisfied, and for (7.16), we have

~fout(v) = b+(v) + ~fin(v) = b+(v) +
∑

u∈in(v)

~f(u, v) = b+(v) +
∑

u∈in(v)

~fout(u) ·
~f(u, v)

~fout(u)
.

We now claim that there is a unique solution to f , which is enough to prove the claim.
Suppose there are two solutions f and f ′ that satisfy (7.16) and (7.17). Let g be their
difference: g(v) := f(v)− f ′(v) for all v ∈ V ∗, which satisfies

g(v) =
∑
u∈in(t)

g(u) ·
~f(u, t)

~fout(u)
∀v ∈ V ∗ ∪ {⊥} (7.18)

g(⊥) = 0 (7.19)

We want to show that g(v) = 0 for all v ∈ V ∗. It suffices to show that g(v) ≤ 0 for all
v ∈ V ∗, since Equations (7.18) and (7.19) are satisfied with g(v) replaced by −g(v), so we
would prove both g(v) ≤ 0 and −g(v) ≤ 0, which would give g(v) = 0.

To show that g(v) ≤ 0 for all v ∈ V ∗, let v∗ := arg maxv∈V ∗ g(v). By (7.18), g(v∗) is a
weighted average of g(u) over vertices u ∈ in(v∗), so

g(v∗) =
∑

u∈in(v∗)

g(u) ·
~f(u, t)

~fout(u)
≤

∑
u∈in(v∗)

g(v∗) ·
~f(u, t)

~fout(u)
= g(v∗),

so the inequality must be satisfied with equality, and g(u) = g(v∗) for all u ∈ in(v∗).
Continuing this argument, any vertex u for which there exists a (possibly empty) u → v∗

path in ~f satisfies g(u) = g(v∗). Define R := {u ∈ V ∗ : exists u → v∗ path in ~f} as these
vertices. Suppose for contradiction that g(v∗) > 0, or equivalently, g(u) > 0 for all u ∈ R.
Then, summing (7.18) over all v ∈ R, we obtain

∑
v∈R

g(v) =
∑
v∈R

∑
u∈in(v)

g(v) ·
~f(u, v)

out(u)

=
∑
v∈R

∑
u∈in(v)∩R

g(v) ·
~f(u, v)

out(u)

=
∑
u∈R

 g(u)

out(u)

∑
v∈R:u∈in(v)

~f(u, v)


g(u)≥0

≤
∑
u∈R

(
g(u)

out(u)

∑
v∈V ∗

~f(u, v)

)
(7.20)

166

=
∑
u∈R

(
g(u)

out(u)
out(v)

)
=
∑
u∈R

g(u).

Since v∗ ∈ V ∗, there exists a v∗ → ⊥ path in ~f . Since v∗ ∈ R and ⊥ /∈ R, there exists an
arc (u′, v′) on the path with u′ ∈ R and v′ /∈ R (and ~f(u′, v′) > 0). Consider the inequality
at (7.20). The inequality holds for each u ∈ R in the outer summation, but for u = u′ in
particular, we have

∑
v∈R:u∈in(v)

~f(u′, v) <
∑

v∈V ∗
~f(u, v). Since g(u) > 0 by assumption, the

inequality at (7.20) is actually strict, which gives the contradiction
∑

v∈R g(v) <
∑

u∈R g(u).
It follows that g(v) ≤ g(v∗) ≤ 0 for all v ∈ V ∗. �

We now resume the proof of Claim 7.8.4. For all t ∈ V ∗, by linearity of expectation,

E[length(Wt)] =
∑
u∈V ∗

freqt(u) ·
∑

v∈out(u)

~f(u, v)

~fout(u)
~w(u, v).

For each t ∈ V ∗, multiply the equation by b+(t), and sum the equations, obtaining

∑
t∈V ∗

b+(t) · E[length(Wt)] =
∑
t∈V ∗

b+(t)

∑
u∈V ∗

freqt(u) ·
∑

v∈out(u)

~f(u, v)

~fout(u)
~w(u, v)


=
∑
u∈V ∗

(∑
t∈V ∗

b+(t) · freqt(u)

) ∑
v∈out(u)

~f(u, v)

~fout(u)
~w(u, v)


Sub. 7.8.5

=
∑
u∈V ∗

~fout(u) ·
∑

v∈out(u)

~f(u, v)

~fout(u)
~w(u, v)


=
∑
u∈V ∗

∑
v∈out(u)

~f(u, v) ~w(u, v)

≤
∑
u∈V

∑
v∈out(u)

~f(u, v) ~w(u, v)

= 1
−→
C ~f.

This concludes Claim 7.8.4.

We remark that all our claims so far are in expectation, and therefore do not care about
dependencies between the walks Wt for different t ∈ V ∗.

For each walk Wt, we can imagine sampling it as follows: for each vertex u ∈ V ∗, sample
an infinite sequence of arcs (u, v) for v ∈ out(u), each independent of the others and with
probability ~f(u, v)/~fout(u); let these arcs be eu1 , eu2 , Once the arcs are sampled for each

167

u ∈ V ∗, the random walk Wt is determined as follows: start at t, and if the walk is currently
at u ∈ V ∗, then travel along the next unused arc in the sequence eu1 , eu2 , . . .; in other words,
if we have visited vertex u on the walk k times before the current visit, then travel along the
arc euk+1. It is easy to see that the distribution of this random walk is exactly Wt.

Let us first sample the set of sequences eu1 , eu2 , . . . for each u ∈ V ∗, and then determine the
walks Wt using this set of sequences for all t; note that the walks Wt are heavily dependent
on each other this way. Furthermore, observe that the arcs {eu1 : u ∈ V ∗} are distributed the
same way as the arcs in

−→
A from ESSSP.

Lemma 7.8.6

Suppose we execute line 3 of ESSSP, so that each vertex u has (independently) sampled
a neighbor vu and added arc (u, vu) is added to

−→
A . Let E be the event that in the

infinite sequences eu1 , eu2 , . . ., we have eu1 = (u, vu) for all u ∈ V ∗. Let opt = optG(b) be
the optimum transshipment cost with demands b in G, and let opt′ = optG′(b

′) be the
optimum transshipment cost in the recursive call at line 18. Then, by conditioning on
E in the random walks Wt, we obtain

∑
t∈V ∗

b+(t) · E[length(Wt) | E] + 2ε · opt ≥ E

[∑
t∈V ∗

(b+(t) · dTC (u, rC))

∣∣∣∣E
]

+ opt′.

(7.21)

Proof. Consider the following “greedy” cycle-finding algorithm for walks: given a walk W ,
travel along the walk in the forward direction, and whenever a cycle is found, immediately
remove the cycle; output the set of all cycles removed. Let cycles(Wt) be the total length of
all cycles removed, where length is measured by the weights ~w. We first show that cycles(Wt)

must be small compared to opt, so that we can later charge to arcs in these cycles.

Subclaim 7.8.7

Given a walk W , let cycles(W) be the total length of cycles computed by the
cycle-finding algorithm, where length is measured by the weights ~w. Recall that
the transshipment flow ~f is a (1 + ε)-approximation of the optimum opt (that is,
1
−→
C ~f ≤ (1 + ε)opt); then, we have∑

t∈V ∗
b+(t) · E[cycles(Wt)] ≤ ε · opt.

Proof. For each walk Wt sampled, remove the cycles computed by the algorithm to obtain
another walk W ′

t , still from t to ⊥. Then, let W−
t be the walk W ′

t minus the last vertex ⊥,
whose new last vertex must be s. The flow obtained by sending b+(t) flow along the walk
W−
t for each t ∈ V ∗ \ s is a transshipment flow satisfying the demands b+(t) for each t 6= s.

168

Therefore,

opt ≤
∑
t∈V ∗\s

b+(t) · E[length(W−
t)]

=
∑
t∈V ∗\s

b+(t) · E[length(W ′
t)]

≤
∑
t∈V ∗

b+(t) · E[length(W ′
t)]

=
∑
t∈V ∗

b+(t) · E[length(Wt)− cycles(Wt)]

≤
∑
t∈V ∗

b+(t) · E[length(Wt)]−
∑
t∈V ∗

b+(t) · E[cycles(Wt)]

Clm. 7.8.4

≤ 1
−→
C ~f −

∑
t∈V ∗

b+(t) · E[cycles(Wt)]

≤ (1 + ε)opt−
∑
t∈V ∗

b+(t) · E[cycles(Wt)],

and rearranging proves the claim. �

Let us return to proving (7.21). We actually show that for any set of infinite sequences
{eu1 , eu2 , . . . : u ∈ V ∗} satisfying event E (that is, eu1 = (u, vu) for all u ∈ V ∗), we have∑

t∈V ∗
b+(t) · (length(Wt) + 2cycles(Wt)) ≥

∑
t∈V ∗

b+(t) · dTC (u, rC) + opt′. (7.22)

Assuming (7.22), taking expectations and then applying Subclaim 7.8.7 gives∑
t∈V ∗

b+(t) · E[length(Wt) | E] + 2ε · opt

≥
∑
t∈V ∗

b+(t) · E[length(Wt) | E] + 2
∑
t∈V ∗

b+(t) · E[cycles(Wt) | E]

=
∑
t∈V ∗

b+(t) · (E[length(Wt) | E] + 2E[cycles(Wt) | E])

(7.22)

≥ E[b+(t) · dTC (u, rC) | E] + opt′,

as desired.
For the remainder of the proof, we will show (7.22) given any set of arbitrary infinite

sequences {eu1 , eu2 , . . . : u ∈ V ∗} satisfying eu1 = (u, vu) for all u ∈ V ∗. In particular, now
that we have fixed these infinite sequences, all randomness goes away, so there are no more

169

probabilistic arguments for the remainder of the proof.
For each t, we can view the random walk Wt as follows: for each vertex u ∈ V ∗, the first

time the walk reaches u, it must travel along arc (u, vu) in
−→
A , and any time after that, it

can choose an arbitrary arc in out(u).

Subclaim 7.8.8

Let C be a connected component of A in ESSSP containing a vertex u. If the walk
W contains u, then it contains every arc on the (unique, possibly empty) path from
u to the (unique) cycle in C (defined as the path from u to the closest vertex on that
cycle).

Proof. Consider the first time the walk visits vertex u. Then, the walk must traverse the
arc (u, vu) = eu1 , which is the first arc along the path from u to the cycle in C. We can then
repeat the argument with u replaced by vu, considering the first time the walk visits vertex
vu. Continuing this argument until we arrive at a vertex on the cycle proves the claim. �

Subclaim 7.8.9

Let C be a connected component of A in ESSSP containing a vertex u. Suppose a
walk W contains an arc (u, v) with v 6= vu. Then, the cycles output by the greedy
cycle-finding algorithm contains (1) every arc along the (unique, possibly empty) path
from u to the (unique) cycle in C, and (2) every arc in the (unique) cycle in C in the
direction given by

−→
A .

Proof. For this proof only, imagine that the walk visits one vertex per unit of time, so we
say that the walk reaches a vertex v at time i if v is the i’th vertex of the walk.

We first prove statement (2). Consider the first time i that the walk reaches any vertex
in C, which must occur since vertex u in C is reached eventually. Then, right after time i,
the walk will travel along

−→
A towards the unique cycle in C, and then travel along C in the

direction given by
−→
A . The greedy cycle-finding algorithm then removes that cycle, proving

statement (2).
We now prove statement (1). If u is inside the cycle of C, then the path is empty and

there is nothing to prove. Otherwise, let (u′, v′) be an arbitrary arc along this (nonempty)
path. We first show that (u′, v′) is traveled at least once in the walk. For this proof only, for
two vertices u, v in C (possibly u = v), let P (u, v) be the (possibly empty) path in

−→
A from

u to v (inclusive), which will always exist and be unique when we use it. Consider the first
time i that the walk reaches any vertex v in P (u, u′) (possibly u or u′). Since the walk visits
vertex u at least once, this ‘first time i’ must occur. Then, right after time i, the walk must
travel along P (v, u′), and then along arc (u′, v′). Let the walk reach vertex u′ at time i′ (so
it reaches v′ at time i′ + 1).

We now show that this first traversal of arc (u′, v′) at time i′ is indeed added to a cycle
by the greedy algorithm. Define v as before, and consider the next time j the walk reaches

170

u x v y u′ v′

j i j′ i′ i′ + 1

Figure 7.4: The two cases of statement (1) from Subclaim 7.8.9. The curved paths that do
not align with the horizontal edges are arbitrary paths in other parts of the graph. The red
dashed line marks the cycle for the first case, and the green dotted line marks the cycle for
the second case.

any vertex x in P (u, v). Then, right after time j, the walk must travel along P (x, v). Since
the walk contains an arc (u, v) with v 6= vu, vertex u is reached at least twice, so this ‘next
time j’ must occur (we need at least twice in case v = u). By time j, one of two things can
happen (see Figure 7.4):

1. The walk returns to some vertex y in P (v, u′) before time j (but after time i′+ 1). Let
time j′ ∈ (i′+ 1, j) be the first such return, and let y be the vertex returned to. Before
time j′, all vertices in P (v, u′) were visited exactly once, so either all arcs in P (v, v′)

were added to the same cycle before time j, or none of them were added to any cycle
before time j. In the former case, the path P (v, v′) includes arc (u′, v′), so we are done.
In the latter case, we obtain the cycle consisting of the path P (y, v′), followed by the
(remaining) arcs in the walk from time i′ + 1 to time j′. The greedy algorithm then
adds this cycle, which contains arc (u′, v′).

2. The walk does not return to any vertex in P (v, u′) after time i′ + 1 and before time
j. By the same argument as the case above, either all arcs in P (v, v′) were added to
the same cycle before time j, or none were added to any cycle before time j. Again,
in the former case, we are done, so suppose the latter. Right after time j, the walk
travels along P (x, v), and no vertex on P (x, v) except possibly v was visited before
time j. Therefore, the next time the walk encloses a cycle (after time j) is when it
travels along P (x, v) and reaches v. At this point, all arcs in P (x, v′) (including arc
(u′, v′)) are added into the cycle that begins and ends at v, so we are done.

Therefore, in both cases, we are done. �

171

Subclaim 7.8.10

For each vertex t ∈ V ∗, let C be the component in A containing t. We have

length(Wt) + 2cycles(Wt) ≥ dTC (t, rC) + dG′(s, rC).

Proof. Define a subwalk of W to be a contiguous subsequence of the walk when it is viewed
as a sequence of vertices. We partition the walk W into subwalks as follows. Start with
the first vertex t of the walk, and let C be the component of A containing t. Consider the
last vertex v of the walk also inside C. If v = s, then we are done; otherwise, break of the
subwalk from the beginning of the walk to the (last occurrence of) vertex v in the walk, and
recursively apply the procedure on the remaining vertices of the walk.

Let the subwalks be W1,W2, . . . ,Wk in that order, and for i ∈ [k], let ui and vi be the
first and last vertex of Wi, and let Ci be the component of A containing both ui and vi.
By construction, all components Ci are distinct. For each i ∈ [k − 1], the arc (vi, ui+1) in ~f

is responsible for adding an arc (vCi , vCi+1
) in line 15 of weight w(vi, ui+1) + dTCi (vi, rCi) +

dTCi+1
(ui+1, rCi+1

) + c(Ci) + c(Ci+1); let this arc be (v′i, u
′
i+1). Consider the path from rC to

s′ in G′ consisting of the edges (v′i, u
′
i+1) for i ∈ [k − 1]. It suffices to show that this path

has length at most length(Wt) + 2cycles(Wt)− dTC (t, rC); the distance dG′(s, rC) can only be
smaller. In other words, we want to show that

k−1∑
i=1

(
w(vi, ui+1) + dTCi (vi, rCi) + dTCi+1

(ui+1, rCi+1
) + c(Ci) + c(Ci+1)

)
≤ length(Wt) + 2cycles(Wt)− dTC (t, rC). (7.23)

For each i ∈ [k− 1], the distance dTCi (vi, rCi) equals the length of the (possibly empty) path
Pi in Ci from vi to the (closest vertex on the unique) cycle in Ci. Since ui+1 is not in Ci, we
have ui+1 6= v

ui+1

1 , so by Subclaim 7.8.9, every arc in Pi is added to some cycle by the greedy
cycle-finding algorithm. Moreover, by Subclaim 7.8.9, every edge in the (unique) cycle in Ci
is also added to some cycle. All such arcs mentioned are distinct, so we obtain

k−1∑
i=1

(
dTCi (vi, rCi) + c(Ci)

)
≤ cycles(Wt).

For the distances dTCi+1
(ui+1, rCi+1

) for i ∈ [k − 1], as well as the distance dTC1
(u1, rC1) =

dTC (t, rC), we charge them to the walk Wt directly. For each i ∈ [k], since the walk contains
vertex ui in Ci, by Subclaim 7.8.8, it contains all arcs on the path from ui to the cycle

in Ci, whose weights sum to exactly dTCi (ui, rCi). Finally, we also charge the edge weights
w(vi, ui+1) to the walk Wt, since the walk contains them by construction, and they are edge-

172

disjoint from each other and all arcs in any Ci. Thus,

k−1∑
i=1

(
w(vi, ui+1) + dTCi (vi, rCi) + dTCi+1

(ui+1, rCi+1
) + c(Ci) + c(Ci+1)

)
≤ 2

k−1∑
i=1

(
dTCi (vi, rCi) + c(Ci)

)
+

k−1∑
i=1

(
w(vi, ui+1) + dTCi+1

(ui+1, rCi+1
)
)

≤ 2
k−1∑
i=1

(
dTCi (vi, rCi) + c(Ci)

)
+

k−1∑
i=1

w(vi, ui+1) +
k∑
i=1

dTCi (ui, rCi)− dTC (t, rC)

≤ 2cycles(Wt) + length(Wt)− dTC (t, rC),

proving (7.23). �

We now resume the proof of Lemma 7.8.6. Multiplying the inequality by b+(t) for each
t and summing over all t gives∑

t∈V ∗
b+(t) · length(Wt) + 2cycles(Wt) ≥

∑
t∈V ∗

b+(t) · (dTC (t, rC) + dG′(s, rC)). (7.24)

Consider routing, for each component C of A and vertex t in C, b+(t) amount of flow
along the shortest path from s′ to vC in G′. By construction of the demand vector b′, this is
a transshipment flow that satisfies demands b′. Therefore, the optimum transshipment cost
opt′ can only be smaller (in fact, it is equal), and we obtain

opt′ ≤
∑
t∈V ∗

b+(t) · dG′(s, rC).

Together with (7.24), this concludes (7.22), and hence Lemma 7.8.6.

Corollary 7.8.11

Over the randomness of ESSSP (in particular, the random choices on line 3),

E

[∑
t∈V ∗

b+(t) · dTC (u, rC) + opt′

]
≤ 1
−→
C ~f + 2ε · opt.

Proof. We apply Lemma 7.8.6 by taking the expectation of (7.21) over the randomness on
line 3, which effectively removes the conditioning by E, and obtain∑

t∈V ∗
b+(t) · E[length(Wt)] + 2ε · opt ≥ E[b+(t) · dTC (u, rC) + opt′].

This, along with
∑

t∈V ∗ b
+(t) ·E[length(Wt)] ≤ 1

−→
C ~f from Claim 7.8.4, finishes the proof.

173

Claim 7.8.12

Define T ′ and T as in ESSSP. For each component C of A and each vertex v in C, we
have dT (s, v) ≤ dT ′(s

′, vC) + dTC (t, rC).

Proof. Follows easily by construction (lines 20 to 24), so proof is omitted.

Claim 7.8.13

Over the entire randomness of ESSSP (including the recursion at line 18), we have

E

[∑
t∈V

b+(t) · dT (s, t)

]
≤ α(1 + 3ε)opt.

Proof. By Claim 7.8.3, we have b+(t) = 0 for all t ∈ V \ V ∗, so it suffices to prove

E

[∑
t∈V ∗

b+(t) · dT (s, t)

]
≤ α(1 + 3ε)opt.

By recursion, we have the guarantee

E

[∑
C:vC 6=s′

b′vC · dT ′(s
′, vC)

]
≤ αopt.

For each vertex t, let Ct be the component of A containing t. We have

E

[∑
t∈V ∗

b+(t) · dT (s, v)

]
Clm. 7.8.12

≤ E

[∑
t∈V ∗

(
b+(t) · dT ′(s′, vCt) + dTCt (t, rCt)

)]

= E

[∑
t∈V ∗

b+(t) · dT ′(s′, vCt)

]
+ E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

]

= E

[∑
C:vC 6=s′

b′vC · dT ′(s
′, vC)

]
+ E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

]

≤ αE[opt′] + E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

]

≤ α

(
E[opt′] + E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

])
Cor. 7.8.11

≤ α
(
1
−→
C ~f + 2ε · opt

)
≤ α((1 + ε)opt + 2ε · opt) = α(1 + 3ε)opt,

174

where the last inequality uses that ~f is a (1 + ε)-approximate transshipment solution.

7.8.1 Parallelizing the Expected SSSP Algorithm

In this section, we parallelize the algorithm ESSSP by removing its sequential recursive calls
which would, if left unchecked, blow up the parallel running time of the algorithm. This
is because every time ESSSP calls itself, it requires a transshipment flow of a new recursive
graph, which in turn requires an `1-embedding of it.

Our solution is to avoid computing an `1-embedding (from scratch) at each step of the
recursion. With an `1-embedding at hand for a given recursive graph, we can compute the
transshipment flow without any recursion by invoking Corollary 7.3.3. Naively, one might
hope that a subset of the original vectors of the `1-embedding automatically produces an
`1-embedding for the recursive graph instance. This is not true in general, but we can force
it to happen at a cost: we add a set of virtual edges to the recursive graph instance (which
may change its metric) that come from a spanner of the `1-metric on a subset of the original
vectors. These edges may not exist in the original graph G, so the shortest path tree T of that
instance may include edges that do not correspond to edges in the original graph. Unraveling
the recursion, the final tree T may also contain virtual edges not originally in G. However,
we ensure that these virtual edges do not change the metric of the original graph G. Hence,
while the tree T is not a spanning SSSP tree, it still fulfills its purpose when it is called in the
algorithm TS-to-SSSP of Section 7.9. (If a spanning SSSP tree is explicitly required for the
final output of the original graph instance, then ESSSP can be called in TS-to-SSSP once on
the initial recursion loop, and ESSSP-Rec called on every recursive instance of TS-to-SSSP
afterwards.)

Lemma 7.8.14

Let G = (V,E) be a connected graph with n vertices and m edges with aspect ratio
poly(n), let ε > 0 be a parameter. Given graph G, a source s ∈ V , and an `1-
embedding of it into O(log n) dimensions with distortion polylog(n), we can compute,
in Õ(m) work and polylog(n) time, a set E+ of virtual edges supported on V and a
tree T ⊆ E ∪ E+ such that

1. For all edges (u, v) ∈ E+, w(u, v) ≥ dG(u, V), i.e., the edges E+ do not change
the metric of G

2. T is a (1 + ε)-approximate expected s-SSSP tree on G ∪ E+

We now present the recursive algorithm that proves Lemma 7.8.14. Let the original graph
be G0 and the current recursive instance be G, and let n and m always indicate the number
of vertices and edges of the original graph G0. We highlight in blue all modifications of
ESSSP that we make.

One notable difference is that we always enforce the recursive vertex set V ′ to be a subset
of the current vertex set V . This allows us to compare the metric of the new graph G′ to

175

Algorithm 13 ESSSP-Rec(G = (V,E), {yv ∈ Rk : v ∈ V }, s, b, (1 + 3ε)α)
Global variables: G0 = (V0, E0) is the original input graph; {xv ∈ RO(logn) : v ∈ V } is an
initial `1-embedding of G0 with distortion D = polylog(n) given as input
Assumption: k = O(log2 n) and {yv} satisfies 1

8kD
dG(u, v) ≤ 1yu − yv ≤ (D + 6) · dG(u, v)

for all u, v ∈ V ; demand vector b satisfies bs > 0 and bt ≤ 0 for all t ∈ V \ s
1: {8kD · yv} is an `1-embedding of G with distortion 8kD(D + 6) = polylog(n). Apply

dimension reduction to obtain an `1-embedding of G into O(log n) dimensions instead
of O(log2 n), with a slightly worse but still polylog(n) distortion (see proof of Theo-
rem 7.4.6). Using it and Corollary 7.3.3, compute a (1 + ε)-approximate transshipment
f on G with demand vector b

2: Initialize the digraph
−→
A ← ∅

3: Every vertex u ∈ V \ s with in(u) 6= ∅ independently samples a random neighbor
v ∈ out(u) with probability ~f(u, v)/~fout(u) and adds arc (u, v) to

−→
A

4: Add a self-loop (s, s) of zero weight to
−→
A

5: Let A be the undirected version of
−→
A

6: Initialize G′ ← (∅, ∅) as an empty undirected graph . Graph to be recursed on, with
≤ n/2 vertices

7: Initialize b′ as an empty vector . Demands to be recursed on
8: for each connected component C of A do
9: c(C)← total weight of edges in the (unique) cycle in C (possibly the self-loop (s, s))
10: Let TC be the graph C with its (unique) cycle contracted into a single vertex rC .

TC is a tree
11: Let vC ∈ V be an arbitrary vertex on the cycle in C
12: Add the vertex vC to G′, and set demand b′vC ←

∑
v∈V (C) bv

13: for each edge (u, u′) in E do
14: Let C and C ′ be the connected components of A containing u and u′, respectively
15: if C 6= C ′ then
16: Add an edge between vC and vC′ with weight w(u, u′)+dTC (u, rC)+dTC′ (u

′, rC′)+
c(C) + c(C ′)

17: Note that s = vCs , where Cs is the component of A containing s
18: Collapse parallel edges of G′ by only keeping the parallel edge with the smallest weight
19: Call Lemma 7.8.16 on the original `1-embedding vectors {xv : v ∈ V ′}, returning a set

of vectors {y′v ∈ RO(log2 n) : v ∈ V ′} that satisfy (7.25)
20: Call Lemma 7.8.17 on {y′v : v ∈ V ′}, returning a set E+ of edges supported on V ′ that

satisfy both conditions of Lemma 7.8.17
21: Recursively call ESSSP-Rec(G′ ∪ E+, {y′v : v ∈ V ′}, s, b′, α), obtaining an α-approximate

expected SSSP tree T ′ of G′ ∪ E+

22: Initialize T ← ∅ . The expected SSSP tree
23: for each edge (v, v′) in T ′ ∩E do
24: Let (u, u′) ∈ E be the edge responsible for adding edge (v, v′) to G′
25: Add edge (u, u′) to T . Continued on next page

176

Algorithm 13 ESSSP-Rec(G = (V,E), s, b, (1 + 3ε)α), continued
26: for each edge (v, v′) in T ′ \ E do
27: Let (u, u′) ∈ E be the edge responsible for adding edge (v, v′) to G′
28: Let C and C ′ be the connected components of A containing u and u′, respectively
29: Add edge (v, v′) to T with weight w(v, v′)− c(C)− c(C ′) . These edges are not in

the original edge set E0

30: for each connected component C of A do
31: Remove an arbitrary edge from the (unique) cycle inside C, and add the resulting

tree to T
32: return T

the current graph G in a more direct way.

Claim 7.8.15

Each edge (vC , vC′) added on line 16 has weight at least dG(vC , vC′).

Proof. Let (u, u′) ∈ E be the edge responsible for adding the edge (vC , vC′). We construct
a path in G from vC to vC′ whose distance is at most w(u, u′) + dTC (u, rC) + dTC′ (u

′, rC′) +

c(C) + c(C ′). By construction of component C, there is a path inside C from vC to u of
length at most c(C) + dTC (u, rC). Similarly, there is a path inside C ′ from u′ to vC′ of length
at most c(C ′) + dTC′ (u

′, rC′). Adding the edge (u, u′) completes the path from vC to vC′ .

Lemma 7.8.16

Given the vectors {xv}, we can compute, in Õ(m) work and polylog(n) time, a set of
vectors {yv ∈ RO(log2 n) : v ∈ V ′} such that w.h.p., for all vertices vC , vC′ ∈ V ′,

1xvC − xvC′ + 2(c(C) + c(C ′)) ≤ 1yvC − yvC′ ≤ 1xvC − xvC′ + 6(c(C) + c(C ′)).

(7.25)

Proof. We introduce O(log2 n) new coordinates, indexed by (i, j) ∈ Z × [s]. For a given
component C of A at this instance, initialize yvC = xvC without the new coordinates. Let
i ∈ Z be the integer i such that c(C) ∈ [2i, 2i+1), which can take one of O(log n) values in Z.
For each j ∈ [s], let the coordinate at index (i, j) take value ±5 · 2i/s, each with probability
1/2. This concludes the construction of yvC .

Fix vertices vC , vC′ ∈ V ′. Let i, i′ be the integers such that c(C) ∈ [2i, 2i+1) and c(C ′) ∈
[2i
′
, 2i
′+1). If i 6= i′, then by construction, the `1 distance incurred by the additional O(log2 n)

coordinates is exactly 5 · 2i + 5 · 2i′ . Moreover, by the input guarantee of {xv : v ∈ V },

dG0(vC , vC′) ≤ 1xvC − xvC′ ≤ D · dG(vC , vC′).

177

Therefore,

1xvC − xvC′ + 2 · (c(C) + c(C ′)) ≤ 1xvC − xvC′ + 2 · 2i+1 + 2 · 2i′+1

≤ 1xvC − xvC′ + 5 · 2i + 5 · 2i′

= 1yvC − yvC′ (7.26)

≤ 1xvC − xvC′ + 6 · 2i + 6 · 2i′

≤ 1xvC − xvC′ + 6 · (c(C) + c(C ′)),

as promised. Now suppose that i = i′. Then, for each of the s coordinates (i, j), there is a
1/2 probability of contributing 0 to 1yvC − yvC′ , and a 1/2 probability of contributing 6·2i/s.
Since s = O(log n), by a simple Chernoff bound, the probability that the total contribution
of these s coordinates is in [4 · 2i/s, 6 · 2i/s] is at least 1 − 1/poly(n). A similar bound to
(7.26) proves the claim.

Lemma 7.8.17

Given vectors {yv ∈ RO(log2 n)} satisfying (7.25), we can compute, in Õ(|E|) work and
polylog(n) time, a set E+ of edges supported on V ′ ⊆ V such that

1. For all edges (vC , vC′) ∈ E+, wE+(vC , vC′) ≥ dG0(vC , vC′) + 2(c(C) + c(C ′)),

2. For all vertices u, v ∈ V ′,

1

8kD
· dG′∪E+(u, v) ≤ 1yu − yv ≤ (D + 6) · dG′∪E+(u, v).

Proof. Let H be an (8kD)-spanner of the (complete) `1-metric induced by the vectors {yv :

v ∈ V ′}. That is, for all u, v ∈ V ′,

1yu − yv ≤ dH(u, v) ≤ 8kD · 1yu − yv.

We show later how to compute it efficiently, but for now, assume we have computed such a
graph H. We set the edges E+ as simply the edges of H (with the same weights).

Every edge (vC , vC′) ∈ E+ satisfies

wE+(vC , vC′) ≥ dH(vC , vC′) ≥ 1yvC − yvC′
(7.26)

≥ 1xvC − xvC′ + 2(c(C) + c(C ′)),

and 1xvC − xvC′ ≥ dG0(vC , vC′) since {xv} is an `1-embedding for G0, fulfilling condition (1).
For each pair of vertices u, v ∈ V ′,

dG′∪E+(u, v) ≤ dH(u, v) ≤ 8kD · 1yu − yv,

fulfilling the lower bound in condition (2).

178

For the upper bound in condition (2), it suffices to show that, for all edges (vC , vC′) ∈
E ′ ∪ E+,

1yu − yv ≤ (D + 6) · wG′∪E+(u, v).

If (vC , vC′) ∈ E+, then

1yvC − yvC′ ≤ dH(vC , vC′) ≤ wH(vC , vC′) = wG′∪E+(vC , vC′).

Otherwise, if (vC , vC′) ∈ E ′, then for the edge (u, u′) ∈ E with u ∈ C and u′ ∈ C ′ responsible
for this edge,

1yvC − yvC′
(7.26)

≤ 1xvC − xvC′ + 6(c(C) + c(C ′))

≤ D · dG0(vC , vC′) + 6wG′(vC , vC′)

(7.27)

≤ D · dG(vC , vC′) + 6wG′(vC , vC′)

Clm.7.8.15

≤ D · wG′(vC , vC′) + 6wG′(vC , vC′),

assuming the following inequality holds:

dG(u, v) ≥ dG0(u, v) ∀u, v ∈ V. (7.27)

To prove (7.27), we assume by induction (on the recursive structure of ESSSP-Rec) that
dG(u, v) ≥ dG0(u, v) for all u, v ∈ V . By Claim 7.8.15, the edges (u, v) added to G′ on
line 16 have weight at least dG(u, v) ≥ dG0(u, v). Moreover, since condition (1) of the lemma
is satisfied, we have w(u, v) ≥ dG0(u, v) for all edges (u, v) ∈ E+ as well. It follows that
dG0(u, v) ≤ dG′∪E+(u, v) for all u, v ∈ V ′, fulfilling the inequality as well as completing
the induction. This concludes the upper bound of condition (2), as well as the proof of
Lemma 7.8.17 modulo the construction of the spanner H.

Finally, we show how to compute the spanner H of the `1-metric induced by the vectors
{yv ∈ Rk : v ∈ V }. We use a randomly shifted grid approach similar to the one in Algo-
rithm 9. Assume without loss of generality (by scaling and rounding) that all coordinates
are positive integers with magnitude at most M = poly(n). We repeat the following process
O(log n) times, computing a graph Hj on trial j. For each W a power of two in the range
[1, 8kM], choose independent, uniformly random real numbers r1, . . . , rk ∈ [0,W), and de-
clare equivalence classes on the vertices where two vertices u, v ∈ V are in the same class if
b(yu)i + ricW = b(yv)i + ricW for all coordinates i ∈ [k]. For each equivalence class U ⊆ V ,
select an arbitrary vertex u ∈ U as its representative, and for all v ∈ U \ {u}, add an edge
(u, v) to Hj of weight 1yu − yv. This concludes the construction of graph Hj, which has
O(|V | log |V |) edges, since each value of W adds at most |V | edges. The spanner H is the
union of all graphs Hj and has size O(|V | log |V | log n).

Since all added edges (u, v) have weight 1yu − yv ≥ dG(u, v), distances in the final spanner

179

H are at least the distances in G. To show that distances in H are not stretched too far,
we show that for any vertices u, v ∈ V , with constant probability, each graph Hj satisfies
dHj(u, v) ≤ 8kD · dG(u, v). Then, since there are Θ(log n) graphs Hj, the probability that
we do not have dH(u, v) ≤ dHj(u, v) ≤ 8kD · dG(u, v) for any j is 1/poly(n), as promised.

Let W be the smallest power of two greater than or equal to 21yu − yv. Note that
1yu − yv ≤ 2kM , so such a W always exists. It is not hard to show that, for each coordinate
i ∈ [k], the probability that b(yu)i+ricW = b(yv)i+ricW is exactly 1−|(yu−yv)i|/W ≥ 1/2.
Therefore, the probability that b(yu)i + ricW = b(yv)i + ricW for all i is

k∏
i=1

(
1− |(yu − yv)i|

W

)
≥

k∏
i=1

exp

(
−2
|(yu − yv)i|

W

)
= exp

(
−2

k∑
i=1

|(yu − yv)i|
W

)

= exp

(
−2

1yu − yv
W

)
≥ exp(−1),

which is a constant. Therefore, with at least constant probability, u and v belong to the
same equivalence class for W . In this case, since all vertices in this equivalence class have
their vectors in a cube of side lengthW , we either added the edge (u, v) of weight 1yu − yv ≤
D · dG(u, v), or we selected some vertex v′ and added the edges (u, v′) and (v, v′) of total
weight at most

1yu − yv′ + 1yv − yv′ ≤ 2kW ≤ 2k · 41yu − yv ≤ 2k · 4 ·D · dG(u, v).

Thus, H is a 8kD-spanner w.h.p.

We now argue that, for the input graph G0, source s ∈ V0, demand vector b0, and an `1-
embedding {xv ∈ RO(logn) : v ∈ V0} of G0 with distortion D, ESSSP-Rec(G0, {xv}, s, b0, (1 +

3ε)log2 n) returns a (1 + 3ε)log2 n-approximate expected s-SSSP tree. We will follow the argu-
ments from Section 7.8 almost line-by-line; the only changes we will highlight in blue. Define
V ∗, b+,

−→
C , ~f on the input graph G = (V,E) and demands b identically as in Section 7.8. As

before, define opt = optG(b).

Claim 7.8.18: Restatement of Claim 7.8.12

Define T ′ and T as in ESSSP-Rec. For each component C of A and each vertex v in
C, we have dT (s, v) ≤ dT ′(s

′, vC) + dTC (t, rC).

Proof. Follows easily by construction (lines 23 to 31), so proof is omitted. Observe that the
extra terms − c(C)− c(C ′) in line 29 are necessary here.

180

Corollary 7.8.19: Restatement of Corollary 7.8.11

Over the randomness of ESSSP-Rec (in particular, the random choices on line 3),

E

[∑
t∈V ∗

b+(t) · dTC (u, rC) + optG′∪E+(b′)

]
≤ 1
−→
C ~f + 2ε · opt.

The optimum can only decrease with the addition of edges E+ to G′, so we have

optG′∪E+(b′) ≤ optG′(b
′). (7.28)

Claim 7.8.20: Restatement of Claim 7.8.13

Over the entire randomness of ESSSP-Rec (including the recursion at line 21), we have

E

[∑
t∈V

b+(t) · dT (s, t)

]
≤ α(1 + 3ε)opt.

Proof. We follow the proof of Claim 7.8.13. By Claim 7.8.3, we have b+(t) = 0 for all
t ∈ V \ V ∗, so it suffices to prove

E

[∑
t∈V ∗

b+(t) · dT (s, t)

]
≤ α(1 + 3ε)opt.

By recursion, we have the guarantee

E

[∑
C:vC 6=s′

b′vC · dT ′(s
′, vC)

]
≤ αopt.

For each vertex t, let Ct be the component of A containing t. We have

E

[∑
t∈V ∗

b+(t) · dT (s, v)

]
Clm. 7.8.18

≤ E

[∑
t∈V ∗

(
b+(t) · dT ′(s′, vCt) + dTCt (t, rCt)

)]

= E

[∑
t∈V ∗

b+(t) · dT ′(s′, vCt)

]
+ E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

]

= E

[∑
C:vC 6=s′

b′vC · dT ′(s
′, vC)

]
+ E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

]

181

≤ αE[optG′∪E+(b′)] + E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

]
(7.28)

≤ αE[optG′(b
′)] + E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

]

≤ α

(
E[optG′(b

′)] + E

[∑
t∈V ∗

b+(t) · dTCt (t, rCt)

])
Cor. 7.8.19

≤ α
(
1
−→
C ~f + 2ε · opt

)
≤ α((1 + ε)opt + 2ε · opt)
= α(1 + 3ε)opt,

where the last inequality uses that ~f is a (1 + ε)-approximate transshipment solution.

Thus, by unraveling the recursion and repeatedly applying Claim 7.8.20, the algorithm
ESSSP-Rec computes a tree T for G0, possibly with virtual edges not in G0, such that

E

[∑
t∈V

b+(t) · dT (s, t)

]
≤ (1 + 3ε)log2 nopt.

It remains to show that T is a “valid” approximate expected SSSP tree in the following sense:
the virtual edges added to T do not change the metric on G0. This property is sufficient
when the expected SSSP algorithm is used in TS-to-SSSP.

For each vertex v ∈ V0, consider the recursive instances with v ∈ V ; let Ci(v) be the
components containing v on previous levels of recursion, with Ci as the value at recursion
level i. We will need the following quick claim:

Claim 7.8.21

Consider a recursion level i with input graph G = (V,E). For all vertices v ∈ V , the
lengths c(Cj(v)) of the cycles satisfy c(Cj+1(v)) ≥ 2c(Cj(v)) for all j < i.

Proof. If v = s, then it holds because c(Cj(v)) = 0 for all j, so assume that v 6= s. For a
fixed recursion level j, by construction, every edge adjacent to v has weight at least c(Ci(v))

in the graph G′ at that level. The cycle Ci+1(v) must contain at least two such edges, so its
total length is at least 2c(Ci(v)).

For each virtual edge (u, v) in T , there exists some recursion level i and some edge
(u, v) ∈ E+ at that level of weight

wE+(u, v) = wT (u, v) +
i∑

j=0

(c(Cj(u)) + c(Cj(v))).

182

By Claim 7.8.21, the sequence c(C0(u)), c(C1(u)), . . . , c(Ci(u)) = c(C) has each term at least
double the previous, which means that two times the last term is at least the sum of all
terms:

2c(C) = 2c(Cj(u)) ≥
i∑

j=0

c(Cj(u)).

Similarly,

2c(C ′) = 2c(Cj(v)) ≥
i∑

j=0

c(Cj(v)).

By condition (1) of Lemma 7.8.17,

wE+(u, v) ≥ dG0(u, v) + 2(c(C) + c(C ′)).

Combining these inequalities gives

wT (u, v) = wE+(u, v)−
i∑

j=0

(c(Cj(u)) + c(Cj(v))) ≥ wE+(u, v)− 2(c(C) + c(C ′)) ≥ dG0(u, v),

as claimed.

7.9 Sampling a Primal Tree

In this section, we prove Theorem 7.3.7. by reducing the problems of computing a (1 + ε)-
approximate SSSP tree and potential to the approximate transshipment problem, and then
using the expected SSSP tree subroutine ESSSP-Rec of Section 7.8.1. Most of these ideas
originate from [14], and we adapt their ideas and present them here for completeness. In
particular, we do not claim any novelty in this section.

Theorem: Restatement of Theorem 7.3.7

Let G = (V,E) be a graph with n vertices and m edges, and let ε > 0 be a parameter.
Given graph G, a source s ∈ V , and an `1-embedding of it into O(log n) dimensions
with distortion polylog(n), we can compute a (1 + ε)-approximate SSSP tree and
potential in additional Õ(m/ε2) work and Õ(1/ε2) time.

We now briefly describe our algorithm for Theorem 7.3.7. First, we run the expected
SSSP algorithm ESSSP-Rec with demands

∑
v 6=s(1v−1s), obtaining distances that are near-

optimal in expectation in the two different ways. Of course, what we need is that all distances
are near-optimal. This is where the potential φ is useful: using it, we can approximately
tell which vertices have near-optimal distances. Then, among the vertices V ′ ⊆ V \ s
whose distances are not near-optimal, we then compute another transshipment instance

183

with demands
∑

v∈V ′(1v − 1s) and repeat the process. As long as the set of remaining
vertices V ′ drops by a constant factor each round in expectation, we only require O(log n)

rounds w.h.p.
To construct the potential, our strategy is simple: we simply take the coordinate-wise

maximum of all potentials φ found over the iterations (assuming φ(s) = 0 always). For each
vertex v ∈ V \ s, since at least one iteration computes a near-optimal distance for v, the
corresponding potential is also near-optimal.

Constructing the specific SSSP tree requires a little more care. We now describe our
algorithm in pseudocode below.

Algorithm 14 TS-to-SSSP(G = (V,E), β ∈ (0, 1], {xv ∈ RO(logn) : v ∈ V })
Assumption: {xv ∈ RO(logn) : v ∈ V } is an `1-embedding of G with distortion polylog(n)

1: Initialize V ′ ← V \ s . V ′ is the set of vertices whose distances still need to be computed
2: Initialize d∗ : V \ s→ R ∪∞ as d∗(v) =∞ everywhere . d∗ tracks the best distance

found for each vertex v
3: Initialize p∗ : V \ s→ V ∪ {⊥} as p∗(v) = ⊥ everywhere . p∗ is the “parent” function,

used to construct the final SSSP tree
4: Initialize φ∗ : V \ s→ R as φ∗(v) = 0 everywhere . φ∗ tracks the best potential found

for each vertex v
5: while V ′ 6= ∅ do
6: With the `1-embedding {xv : v ∈ V }, call Corollary 7.3.3 on demands

∑
v(1v − 1s)

to obtain (1 + ε/10)-approximate flow-potential pair (f, φ), where f is an acyclic flow
and φ(s) = 0

7: Set demands b←
∑

v∈V ′(1v − 1s) for this iteration
8: With the `1-embedding {xv : v ∈ V }, call ESSSP-Rec(G, {xv : v ∈ V }, s, b,Θ(ε

logn
))

to obtain a SSSP tree T with E
[∑

v∈V ′ dT (s, v)
]
≤ (1 + ε

10
)opt . Satisfies the recursion

in (7.13)
9: Compute distances dT (s, v) for all v ∈ V ′
10: for each vertex v ∈ V ′ in parallel do
11: Let p(v) be the second-to-last vertex on the path from s to v in T
12: if dT (s, v) < d∗(v) then
13: Update d∗(v)← dT (s, v)
14: Update p∗(v)← p(v)

15: Update φ∗(v)← max{φ∗(v), φ(v)}
16: if dT (s, v) ≤ (1 + ε)φv then
17: Remove v from V ′

18: Initialize T ∗ ← ∅ . T ∗ is the final SSSP tree that we compute
19: for each vertex v ∈ V \ s do
20: Add edge (v, p∗(v)) to T ∗

21: return SSSP tree T ∗ and potential φ∗ (augmented with φ∗(s) := 0)

184

Claim 7.9.2

If TS-to-SSSP finishes, then the potential φ∗ that it returns is a (1 + ε)-approximate
s-SSSP potential, and the returned T ∗ is a (1 + ε)-approximate SSSP tree.

Proof. TS-to-SSSP essentially takes the coordinate-wise maximum over all potentials φ that
Algorithm A computes over the iterations. For each vertex v ∈ V \ s, since it was removed
from V ′ at some point, some potential φ computed satisfies (1 + ε)φv ≥ dT (s, v) ≥ d(s, v)

(line 16), so the final potential φ∗ also satisfies (1 + ε)φ∗v ≥ d(s, v). Since each potential
φ satisfies |φ(u) − φ(v)| ≤ w(u, v) or each edge (u, v), by Observation 7.2.11, so does the
coordinate-wise maximum φ∗. Therefore, φ∗ is an SSSP potential.

Next, we show that the graph T ∗ returned is indeed a tree. Observe the following invari-
ant: for each vertex v ∈ V , whenever p∗(v) 6= ⊥, we have d∗(p∗(v)) < d∗(v). This is because
whenever d∗(v) is updated to dT (s, v) on line 13, we must have dT (s, p∗(v)) < dT (s, v) for
that tree T , so d∗(p∗(v)) would be updated as well if it was still at least dT (s, v). Therefore,
the edges (v, p∗(v)) at the end of the while loop must also satisfy d∗(p∗(v)) < d∗(v), so the
edges are acyclic. Since there are n− 1 edges total, T ∗ is a tree. Finally, to show that T ∗ is
a (1 + ε)-approximate SSSP tree, we show that for each vertex v ∈ V , dT ∗(s, v) ≤ d∗(v). To
see that this is sufficient, observe that since every vertex v ∈ V \ s was removed from V ′, we
have dT (s, v) ≤ (1 + ε)φv ≤ (1 + ε)d(s, v) at some point (line 16), so on this iteration, d∗(v)

would be updated to at most (1 + ε)d(s, v).
We prove by induction on the ordering of d∗(v) (from smallest to largest) that dT ∗(s, v) ≤

d∗(v). If p∗(v) = s, then since d∗(v) and p∗(v) are updated at the same time (lines 13 and 14),
the value d∗(s) = dT (s, v) = w(s, v) cannot be changed after p∗(v) was set to s. Therefore,
dT ∗(s, v) = d∗(v). Otherwise, suppose that p∗(v) = u 6= s. Let T be the tree computed on
the iteration when p∗(v) was updated to its final value. We have

dT ∗(s, v) = dT ∗(s, u) + w(u, v)
(ind.)
≤ d∗(u) + w(u, v) ≤ dT (s, u) + w(u, v),

where the (ind.) stands for applying the inductive statement on vertex u. This completes
the induction and the claim.

For the remainder of this section, we show that the while loop runs for only O(log n)

iterations w.h.p. Consider the following potential function
∑

v∈V ′ bvd(s, v); we will show that
it drops by a constant factor in expectation on each iteration of the while loop. Since the
graph G has polynomial aspect ratio, the potential function can only decrease by a constant
factor O(log n) times, so the lemma below suffices to finish Theorem 7.3.7.

Lemma 7.9.3

On each iteration of the while loop (line 5), the quantity
∑

v∈V ′ d(s, v) drops by a
constant factor in expectation.

185

Proof. Define d(v) := E[dT (s, v)] over the randomness of ESSSP on this iteration, which
satisfies

∑
v∈V ′ d(v) ≤ (1+ ε/10)

∑
v∈V ′ d(s, v) since T is an (1+ ε/10)-approximate expected

SSSP tree with demands
∑

v∈V ′(1v − 1s). Since (f, φ) is a (1 + ε/10)-approximate flow-
potential pair, we have 1f ≤ (1 + ε/10)

∑
v∈V bvφv. We have, for small enough ε,∑

v∈V ′
d(v) ≤

(
1 +

ε

10

)∑
v∈V ′

d(s, v)

≤
(

1 +
ε

10

)
opt

(∑
v∈V ′

(1v − 1s)

)
≤
(

1 +
ε

10

)
1f

≤
(

1 +
ε

10

)2∑
v∈V

bvφv ≤
(

1 +
ε

4

)∑
v∈V

bvφv =
(

1 +
ε

4

)∑
v∈V ′

φv,

which implies that ∑
v∈V ′

(d(v)− φv) ≤
ε

4

∑
v∈V ′

φv.

Observe that for all v ∈ V ′, d(v) ≥ d(s, v) ≥ φv − φs = φv, so d(v)− φv ≥ 0. Let V ′good ⊆ V ′

be the vertices v ∈ V ′ with
d(v)− φv ≤

ε

2
φv.

By a Markov’s inequality-like argument, we have∑
v∈V ′good

φv ≥
1

2

∑
v∈V ′

φv; (7.29)

otherwise, we would have∑
v∈V ′

(d(v)− φv) ≥
∑

v∈V ′\V ′good

(d(v)− φv) ≥
ε

2

∑
v∈V ′\V ′good

φv >
ε

4

∑
v∈V ′

φv,

a contradiction.

For each v ∈ V ′good, by Markov’s inequality on the nonnegative random variable dT (s, v)−
φv (which has expectation d(v)− φv ≤ ε

2
φv), with probability at least 1/2, we have

dT (s, v)− φv ≤ ε φv ⇐⇒ dT (s, v) ≤ (1 + ε)φv,

so vertex v is removed from V ′ with probability at least 1/2. In other words, the contribution
of v to the expected decrease of

∑
u∈V ′ d(s, u) is at least 1

2
φv. Since

d(s, v) ≤ dT (s, v) ≤ (1 + ε)φv =⇒ φv ≥ (1 + ε)−1d(s, v),

186

this expected decrease is at least 1
2(1+ε)

φv. Summing over all v ∈ V ′good, the expected decrease
of
∑

u∈V ′ d(s, u) is at least

∑
v∈V ′good

1

2(1 + ε)
d(s, v)

(7.29)

≥ 1

4(1 + ε)

∑
v∈V ′

d(s, v),

which is a constant factor.

7.10 Omitted Proofs

7.10.1 Proof of Lemma 7.3.5

Lemma: Restatement of Lemma 7.3.5

Given a transshipment instance with graph G = (V,E) with n vertices and m edges
and an integer demand vector b satisfying |bv| ≤M for all v ∈ V , we can transform G

into another graph Ĝ on n vertices and at most m edges such that Ĝ has aspect ratio
at most n4M , and optG(b) ≤ optĜ(b) ≤ (1 + 1/n2) optG(b). The transformation takes
Õ(m) work and polylog(n) time.

Proof. Suppose that the demand vector b satisfies bv ∈ {0, 1, 2, . . . , nC} for all v ∈ V , for
some constant C. First, compute a minimum spanning tree T of the graph G = (V,E),7 and
compute the optimal transshipment cost where the input graph is T instead, which is easily
done efficiently since T is a tree. Since T is a minimum spanning tree, it is easy to see that
for any vertices u, v ∈ V , we have dG(u, v) ≤ dT (u, v) ≤ (n− 1) · dG(u, v), i.e., the stretch of
T is at most (n− 1). Define Z := optT (b) as the optimal transshipment cost on T ; it follows
that

optG(b) ≤ Z ≤ (n− 1) optG(b). (7.30)

To construct Ĝ, we start with G and remove all edges of weight more than Z from G,
and then add Z/nC+5 weight to each remaining edge in the graph. Clearly, Ĝ has aspect
ratio poly(n) and satisfies optG(b) ≤ optĜ(b). It remains to show that

optĜ(b) ≤
(

1 +
1

n2

)
optG(b). (7.31)

The transshipment problem can be formulated as an uncapacitated minimum cost flow
problem. It is well-known that if the demands of a minimum cost flow problem are integral,
then there exists an optimal flow that is integral. Let f be this integral flow for demands

7This can be computed work-efficiently in Parallel, e.g., with Boruvka’s algorithm.

187

b. Then, f cannot carry any flow along any edge with weight more than Z, since if it did,
then it must carry at least 1 flow along that edge, bringing its total cost to more than Z,
contradicting the fact that optG(b) ≤ optT (b) = Z. It follows that removing edges with
weight more than Z does not affect the optimal transshipment cost.

Since |bv| ≤ nC for all v ∈ V , it is also well-known that the optimal flow f satisfies
|fe| ≤ nC for all e ∈ E. Consider the same flow f on Ĝ instead of G; since each edge has its
weight increased by Z/nC+4, the total increase in cost of the flow f on Ĝ is

∑
e∈E

|fe| ·
Z

nC+5
≤
(
n

2

)
· nC · Z

nC+5
≤ Z

n3

(7.30)

≤ optG(b)

n2
.

The cost of the optimal flow on Ĝ can only be lower, which proves (7.31).

7.10.2 Proof of Lemma 7.3.12
Lemma: Restatement of Lemma 7.3.12

Let G = (V,E) be a graph with n vertices and m edges, and let A be an algorithm
that inputs any vertex set S ⊆ V and outputs a (1 + 1/ log n)-approximate S-SSSP
potential of G. Then, there is an algorithm that computes an `1-embedding of G into
O(log2 n) dimensions with distortion O(log3 n) and calls A at most O(log2 n) times,
plus Õ(m) additional work and polylog(n) additional time.

Algorithm 15 L1_embed(G = (V,E))
1: Let N ← O(log n), T ← dlog ne, ε← 1/ log n
2: for independent iteration i = 1, 2, . . . , N do
3: for t = 1, 2, . . . , T do
4: Sample each vertex in G independently with probability 1/2t; let S be the sampled

set
5: Compute (1 + ε)-approximate S-SSSP potential φi,t(u) of G through algorithm A
6: Extend φi,t so that φi,t(v) = φi,t(s) for all v ∈ S, so that φi,t(v) is now defined for

all v ∈ V
7: For each v ∈ V , output the vector x(v) := 〈 1

NT
φi,t(v)〉i∈[N],t∈[T] ∈ R[N]×[T] as the `1-

embedding of v

Fix two vertices u, v throughout the proof, and define d := d(u, v); we need to show that
w.h.p.,

‖x(u)− x(v)‖1 =
1

NT

∑
i∈[N],t∈[T]

|φi,t(u)− φi,t(v)| ∈
[

d

O(log3 n)
, d

]
.

The upper bound is easy: by definition of approximate s-SSSP potential, we have |φi,t(u)−
φi,t(v)| ≤ d for all i, t, so taking the average over all i, t gives 1

NT

∑
i,t |φi,t(u)− φi,t(v)| ≤ d.

188

To finish Lemma 7.3.12, it remains to prove the lower bound, whose proof occupies the rest
of this section.

Lemma 7.10.3

There is a value of t ∈ [T] such that with probability Ω(1),

|φi,t(u)− φi,t(v)| ≥ Ω(εd).

For each positive r, define B(u, r) := {w ∈ V : d(w, u) ≤ r} as the vertices within
distance r from u. Similarly, define B(v, r) as the vertices within distance r from v.

Claim 7.10.4

There exists a value r ∈ [d/6, d/3] and a (universal) constant C > 1 such that

|B(u, (1 + 2ε)r)| ≤ C|B(v, r)| or |B(v, (1 + 2ε)r)| ≤ C|B(u, r)|.

Proof. First, we show that such a value r must exist. If not, then we have the chain of
inequalities

|B(v,
d

6
)| < 1

C
|B(u, (1 + 2ε)

d

6
)| < 1

C2
|B(v, (1 + 2ε)2d

6
)| < 1

C3
|B(u, (1 + 2ε)3d

6
)|

< · · · < 1

CL
|B(u, (1 + 2ε)L

d

6
)|

for L = blog(1+2ε) 2c = Θ(1/ε) = Θ(log n) (we assume w.l.o.g. that the last expression has u
and not v). For large enough C, this means that

1 ≤ |B(u,
d

6
)| ≤ 1

CΘ(logn)
|B(u, (1+2ε)L

d

6
)| < 1

n
|B(u, (1+2ε)L

d

6
)| =⇒ |B(u, (1+2ε)L

d

6
)| > n

which is impossible. Therefore, such a value r exists.

Take the value r guaranteed by Claim 7.10.4, and assume w.l.o.g. that |B(u, (1+2ε)r)| ≤
C|B(v, r)|. Pick t ∈ [T] satisfying 2t−1 ≤ |B(v, r)| ≤ 2t, which also means that |B(u, (1 +

2ε)r)| ≤ O(2t). Suppose we sample each vertex in V with probability 1/2t (line 4). With
probability Ω(1), we sample at least one vertex in B(v, r), and with probability Ω(1), we
sample zero vertices in B(u, (1 + 2ε)r). Moreover, since r+ (1 + 2ε)r < 3r ≤ 3 · d/3 = d, the
two sets B(u, (1 + 2ε)r) and B(v, r) are disjoint, so the two events are independent. Thus,
with probability Ω(1), we have both S ∩ B(v, r) 6= ∅ and S ∩ B(u, (1 + 2ε)r) = ∅, which
implies that d(S, v) ≤ r and d(S, u) ≥ (1 + 2ε)r.

Fix an iteration i ∈ [N], and let us condition on the previous event. Since φi,t is a
(1 + ε)-approximate S-SSSP potential of G, we have φi,t(v) − φi,t(s) ≤ d(S, v) ≤ r by
property (1) of Definition 7.2.7 and φi,t(u)−φi,t(s) ≥ 1

1+ε
d(S, u) ≥ 1

1+ε
(1+2ε)r = (1+Ω(ε))r

by Observation 7.2.9. Thus, |φi,t(u)− φi,t(v)| ≥ Ω(ε) · r ≥ Ω(ε) · d/6 = Ω(εd).

189

Since there are N = O(log n) trials, w.h.p., one of the iterations i ∈ [N] will satisfy
|φi,t(u) − φi,t(v)| ≥ Ω(εd) for the value of t guaranteed by Lemma 7.10.3. Thus, w.h.p., we
have

‖x(u)− x(v)‖1 =
1

NT

∑
i,t

|φi,t(u)− φi,t(v)| ≥ 1

NT
Ω(εd) =

d

O(log3 n)
,

concluding Lemma 7.10.3.

7.10.3 Proof of Lemma 7.5.10

Lemma: Restatement of Lemma 7.5.10

Given a tree T = (V,E) and a set of sources S ⊆ V , we can compute an exact S-SSSP
potential in Õ(m) work and polylog(n) time.

Proof. It suffices to compute (exact) S-SSSP distances on T , after which we simply define
φ(v) as the distance to v for each vertex v.

Define a centroid of the tree T as a vertex v ∈ V such that every component of T − v
has size at most |V |/2. We can compute a centroid r as follows: root the tree T arbitrarily,
and for each vertex v, compute the size of the subtree rooted at v; then, let the centroid be
a vertex whose subtree has size at least n/2, but whose children each have subtrees of size
less than n/2. Next, compute the distance dT (r, S) from r to the closest vertex in S, which
can be accomplished by computing SSSP on the tree with r as the source. Now root the
tree T at r, and for each child vertex v with subtree Tv, construct the following recursive
instance: the tree is Tv together with the edge (v, r) of weight dT (r, S) + w(v, r), and the
set S is (V (Tv) ∩ S) ∪ {r}. Solve the recursive instances, and for each vertex u ∈ V \ r,
the distance d(u) is the computed distance in the (unique) recursive instance Tv such that
u ∈ Tv.

It is clear that the above algorithm is correct and can be implemented in Õ(m) work and
polylog(n) time.

7.11 Conclusion

In this chapter, we presented a parallel approximate shortest path algorithm that is optimal
up to polylog(n) factors. Unfortunately, the number of polylog(n) factors is prohibitively
large (in the dozens), rendering this algorithm far from practical.

Our result was actually achieved concurrently to the one of Andoni, Stein, and Zhong [9],
who considered the slightly simpler problem of approximate s–t path. Both results used
the same high-level framework and appeared in the same conference (STOC 2020). The
algorithm of Andoni et al. also suffers a large number of polylogarithmic factors, although
for a different reason.

190

Lowering the number of logarithmic factors to, say, single digits is an interesting open
problem that will require many new insights. Such an algorithm will almost certainly be
simpler and more natural, and would likely broaden our understanding of the parallel shortest
path problem.

191

192

Chapter 8

Deterministic Expander Decomposition

In this chapter, based on [27, 72], we present the deterministic expander decomposition
routines that we use in preconditioning-based algorithms for other chapters of the thesis.
There are two main variants of expander decompositions that we need, both for weighted,
undirected graphs. The first considers additional custom demands on the vertices, which are
necessary for the deterministic Steiner mincut algorithm of Section 3.3. The second variant
does not require vertex demands, but enforces an additional boundary-linkedness condition
that is necessary for the global mincut application (Chapter 6).

However, for most of the chapter, we will stick with the standard expander decomposition
setting on unweighted graphs, following the treatment in [27]. At a high level, the algorithm
uses the cut-matching game technique of Khandekar, Rao, and Vazirani [59], originally de-
veloped for the sparsest cut problem. Their original framework is randomized, so instead. we
apply a recursive strategy that reduces the cut-matching game setting to smaller instances
of itself.

We then use unweighted expander decomposition as a subroutine to solving the weighted
setting with custom demands, following the work of [72]. Finally, we augment the weighted
expander decomposition algorithm (with standard demands) to handle the additional
boundary-linkedness condition.

8.1 Background

In its standard form, an (ε, φ)-expander decomposition of an unweighted graph G = (V,E) is
a partition P = {V1, . . . , Vk} of the set V of vertices, such that the graphG[Vi] is a φ-expander
(see Definition 6.3.6) for all 1 ≤ i ≤ k, and

∑k
i−1 δG(Vi) ≤ εvol(G). This decomposition was

introduced in [43, 53] and has been used as a key tool in many applications, including the
ones mentioned in this chapter.

Spielman and Teng [100] provided the first near-linear time algorithm, whose running time
is Õ(m/poly(ε)), for computing a weak variant of the (ε, ε2/poly(log n))-expander decompo-
sition, where, instead of ensuring that each resulting graph G[Vi] has high conductance, the

193

guarantee is that for each such set Vi there is some larger set Wi of vertices, with Vi ⊆ Wi,
such that Φ(G[Wi]) ≥ ε2/poly(log n). This caveat was first removed in [87], who showed
an algorithm for computing an (ε, ε/no(1))-expander decomposition in time O(m1+o(1)) (we
note that [104] provided similar results with somewhat weaker parameters). More recently,
[94] provided an algorithm for computing (ε, ε/poly(log n))-expander decomposition in time
Õ(m/ε). Unfortunately, all algorithms mentioned above are randomized.

The only previous subquadratic-time deterministic algorithm for computing an expander
decompositions is implicit in [41], running in time O(m1.5+o(1)).

Weighted Graphs with Additional Requirements. Recently, a number of results have
been discovered that require an expander decomposition routine on weighted graphs with
additional requirements. These include the deterministic mincut algorithm of Chapter 6 and
the deterministic Steiner mincut algorithm of Section 3.3. Since the unweighted case remains
the main contribution of this chapter and does not require definitions or techniques from
these weighted variants, we defer their details to Sections 8.7 and 8.8

8.1.1 Our Techniques: Unweighted

Our unweighted deterministic expander decomposition algorithm uses a core subroutine that
we name BalCutPrune, which will become the main focus for most of this chapter.

Definition 8.1.1: BalCutPrune problem

The input to the α-approximate BalCutPrune problem is a graph G = (V,E), a conduc-
tance parameter 0 < φ ≤ 1, and an approximation factor α. The goal is to compute a
cut (A,B) in G, with |EG(A,B)| ≤ αφ · vol(G), such that one of the following holds:
either

1. (Cut) volG(A),volG(B) ≥ vol(G)/3; or

2. (Prune) volG(A) ≥ vol(G)/2, and graph G[A] has conductance at least φ.

BalCutPrune is a simpler problem to study, and the reduction from expander decompo-
sition to BalCutPrune is straightforward: start with the original graph, and iteratively call
BalCutPrune on any cluster that is not a certified φ-expander to split it into two smaller
clusters. We formalize this algorithm and reduction in Section 8.6.

The main technical result of this chapter is a deterministic algorithm for BalCutPrune.
Theorem 8.1.2

There is a deterministic algorithm, that, given a graph G with m edges, and
parameters φ ∈ (0, 1], 1 ≤ r ≤ O(log n), and α = (logm)r

2 , computes
a solution to the α-approximate BalCutPrune problem instance (G, φ) in time
O
(
m1+O(1/r)+o(1) · (logm)O(r2)/ε2

)
.

194

Our algorithm for the proof of Theorem 8.1.2 is based on the cut-matching game frame-
work that was introduced by Khandekar, Rao and Vazirani [59], and has been used in numer-
ous algorithms for computing sparse cuts [41, 59, 87, 94] and beyond (e.g. [21, 22, 26, 91]).
Intuitively, the cut-matching game consists of two algorithms: one algorithm, called the cut
player, needs to compute a balanced cut of a given graph that has a small value, if such
a cut exists. The second algorithm, called the matching player, needs to solve (possibly
approximately) a single-commodity maximum flow / minimum cut problem. A combination
of these two algorithms is then used in order to compute a sparse cut in the input graph, or
to certify that no such cut exists. Unfortunately, all current algorithms for the cut player
are randomized. Our main technical contribution is an efficient deterministic algorithm that
implements the cut player. The algorithm itself is recursive, and proceeds by recursively
running many cut-matching games in parallel, on much smaller graphs. This requires us
to adapt the algorithm of the matching player, so that it solves a somewhat harder multi-
commodity flow problem. We now provide more details on the cut-matching game and on
our implementation of it.

Overview of the Cut-Matching Game. We start with a high-level overview of a variant
of the cut-matching game, due to Khandekar et al. [58]. We say that a graph W is a ψ-
expander if it has no cut of sparsity less than ψ. We will informally say that W is an
expander if it is a ψ-expander for some ψ = 1/no(1). Given a graph G = (V,E), the goal
of the cut-matching game is to either find a balanced and sparse cut in G, or to embed an
expander W = (V,E ′) (called a witness) into G; note that W and G are defined over the
same vertex set. The embedding of W into G needs to map every edge e of W to a path
Pe in G connecting the endpoints of e. The congestion of this embedding is the maximum
number of paths in {Pe | e ∈ E(W)} that share a single edge of G. We require that the
congestion of the resulting embedding is low. Such an embedding serves as a certificate that
there is no sparse balanced cut in G. This follows from the fact that, if W is a ψ-expander,
and it has a low-congestion embedding into another graph G, then G itself is a ψ′-expander,
where ψ′ depends on ψ and on the congestion of the embedding. The algorithm proceeds via
an interaction between two algorithms, the cut player, and the matching player, and consists
of O(log n) rounds.

At the beginning of every round, we are given a graph W whose vertex set is V , and its
embedding into G; at the beginning of the first round, W contains the set V of vertices and
no edges. In every round, the cut player either:
(C1) “cuts W ”, by finding a balanced sparse cut S in W ; or
(C2) “certifies W ” by announcing that W is an expander.
IfW is certified (Item (C2)), then we have constructed the desired embedding of an expander
into G, so we can terminate the algorithm and certify that G has no balanced sparse cut. If
a cut S is found in W (Item (C1)), then we invoke the matching player, who either:
(M1) “matchesW ”, by adding toW a large matchingM ⊆ S×(V \S) that can be embedded

195

into G with low congestion; or
(M2) “cuts G”, by finding a balanced sparse cut T in G (the cut T is intuitively what prevents

the matching player from embedding a large matching M ⊆ S × (V \ S) into G).

If a sparse balanced cut T is found in graph G (Item (M2)), then we return this cut and
terminate the algorithm. Otherwise, the game continues to the next round. It was shown in
[58] that the algorithm must terminate after Θ(log n) rounds.

In the original cut-matching game by Khandekar, Rao and Vazirani [59], the matching
player was implemented by an algorithm that computes a single-commodity maximum flow
/ minimum cut. The algorithm for the cut player was defined somewhat differently, in that
in the case of Item (C1), the cut that it produced was not necessarily sparse, but it still
had some useful properties, which guaranteed that the algorithm terminates after O(log2 n)

iterations. In order to implement the cut player, the algorithm of [59] (implicitly) considers n
vectors of dimension n each, that represent the probability distributions of random walks on
the witness graph, starting from different vertices of G, and then uses a random projection of
these vectors in order to construct the balanced cut. The algorithm exploits the properties
of the witness graph in order to compute these projections efficiently, without explicitly
constructing these vectors, which would be too time consuming. Previous work (see, e.g., [25,
94]) implies that one can use algorithms for computing maximal flows instead of maximum
flows in order to implement the matching player in near-linear time deterministically, if the
target parameters 1/φ, α ≤ no(1). This still left open the question: can the cut player be
implemented via a deterministic and efficient algorithm?

A natural strategy for derandomizing the algorithm of [59] for the cut player is to avoid
the random projection of the vectors. In a previous work of a subset of the authors with
Yingchareonthawornchai [41], this idea was used to develop a fast PageRank-based algorithm
for the cut player, that can be viewed as a derandomization of the algorithm of Andersen,
Chung and Lang for balanced sparse cut [8]. Unfortunately, it appears that this technique
cannot lead to an algorithm whose running time is below Θ(n2): if we cannot use random
projections, then we need to deal with n vectors of dimension n each when implementing the
cut player, and so the running time of Ω(n2) seems inevitable. In this chapter, we implement
the cut player in a completely different way from the previously used approaches, by solving
the balanced sparse cut problem recursively.

We start by observing that, in order to implement the cut player via the approach of [58],
it is sufficient to provide an algorithm for computing a balanced sparse cut on the witness
graphW ; in fact, it is not hard to see that it is sufficient to solve this problem approximately.
However, this leads us to a chicken-and-egg situation, where, in order to solve the BalCutPrune
problem on the input graph G, we need to solve the BalCutPrune problem on the witness
graph W . While graph W is guaranteed to be quite sparse (with maximum vertex degree
O(log n)), it is not clear that solving the BalCutPrune problem on this graph is much easier.

This motivates our recursive approach, in which, in order to solve the BalCutPrune prob-
lem on the witness graph W , we run a large number of cut-matching games in it simultane-

196

ously, each of which has a separate witness graph, containing significantly fewer vertices. It
is then sufficient to solve the BalCutPrune problem on each of the resulting, much smaller,
witness graphs. We prove the following theorem that provides a deterministic algorithm for
the cut player via this recursive approach.

Theorem 8.1.3

There is an universal constant N0, and a deterministic algorithm, that we call Cu-
tOrCertify, that, given an n-vertex graph G = (V,E) with maximum vertex degree
O(log n), and a parameter r ≥ 1, such that n1/r ≥ N0, returns one of the following:

• either a cut (A,B) in G with |A|, |B| ≥ n/4 and |EG(A,B)| ≤ n/100; or
• a subset S ⊆ V of at least n/2 vertices, such that Ψ(G[S]) ≥ 1/ logO(r) n.

The running time of the algorithm is O
(
n1+O(1/r) · (log n)O(r2)

)
.

We note that a somewhat similar recursive approach was used before, e.g., in Madry’s
construction of j-trees [78], and in the recursive construction of short cycle decomposi-
tions [24, 76]. In fact, [41] use Madry’s j-trees to solve BalCutPrune by running cut-matching
games on graphs containing fewer and fewer nodes, obtaining an (m1.5+o(1))-time algorithm.
Unfortunately, improving this bound further does not seem viable via this approach, since
the total number of edges contained in the graphs that belong to deeper recursive levels is
very large. Specifically, assume that we are given an n-node graph G with m edges, to-
gether with a parameter k ≥ 1. We can then use the j-trees in order to reduce the problem
of computing BalCutPrune on G to the problem of computing BalCutPrune on k graphs,
each of which contains roughly n/k nodes. Unfortunately, each of these graphs may have
Ω(m) edges. Therefore, the total number of edges in all resulting graphs may be as large as
Ω(mk), which is one of the major obstacles to obtaining faster algorithms for BalCutPrune
using j-trees.

We now provide a more detailed description of the new recursive strategy that we use in
order to prove Theorem 8.1.3.

New Recursive Strategy. We partition the vertices of the input n-vertex graph G into
k subsets V1, V2, . . . , Vk of roughly equal cardinality, for a large enough parameter k (for
example, k = no(1)). The algorithm consists of two stages. In the first stage, we attempt to
construct k expander graphs W1, . . . ,Wk, where V (Wi) = Vi for all 1 ≤ i ≤ k, and embed
them into the graph G simultaneously. If we fail to do so, then we will compute a sparse
balanced cut in G. In order to do so, we run k cut-matching games in parallel. Specifically,
we start with every graphWi containing the set Vi of vertices and no edges, and then perform
O(log n) iterations. In every iteration, we run the CutOrCertify algorithm on each graph
W1, . . . ,Wk in parallel. Assume that for all 1 ≤ i ≤ k, the algorithm returns a sparse
balanced cut (Ai, Bi) in Wi. We then use an algorithm of the matching player, that either
computes, for each 1 ≤ i ≤ k, a matching Mi between vertices of Ai and Bi, and computes

197

a low-congestion embedding of all matchings M1, . . . ,Mk into graph G simultaneously, or it
returns a sparse balanced cut in G. In the former case, we augment each graphWi by adding
the setMi of edges to it. In the latter case, we terminate the algorithm and return the sparse
balanced cut in graph G as the algorithm’s output. If the algorithm never terminates with
a sparse balanced cut, then we are guaranteed that, after O(log n) iterations, the graphs
W1, . . . ,Wk are all expanders (more precisely, each of these graphs contains a large enough
expander, but we ignore this technicality in this informal overview), and moreover, we obtain
a low-congestion embedding of the disjoint union of these graphs into G. Note that, in order
to execute this stage, we recursively apply algorithm CutOrCertify to k graphs, whose
sizes are significantly smaller than the size of the graph G.

In the second stage, we attempt to construct a single expander graph W ∗ on the set
{v1, . . . , vk} of vertices, where for each 1 ≤ i ≤ k, we view vertex vi as representing the
set Vi of vertices of G. We also attempt to embed the graph W ∗ into G, where every edge
e = (vi, vj) is embedded into Ω(n/k) paths connecting vertices of Vi to vertices of Vj. In
order to do so, we start with the graph W ∗ containing the set {v1, . . . , vk} of vertices and
no edges and then iterate. In every iteration, we run algorithm CutOrCertify on the
current graph W ∗, obtaining a partition (A,B) of its vertices. We then use an algorithm of
the matching player in order to compute a matching M between vertices of A and vertices
of B, and to embed every edge (vi, vj) ∈ M of the matching into Ω(n/k) paths connecting
vertices of Vi to vertices of Vj in graph G, with low congestion. If we do not succeed in
computing the matching and the embedding, then the algorithm of the matching player
returns a sparse balanced cut in graph G. We then terminate the algorithm and return this
cut as the algorithm’s output. Otherwise, we add the edges of M to graph W ∗ and continue
to the next iteration. The algorithm terminates once graph W ∗ is an expander, which must
happen after O(log n) iterations.

Lastly, we compose the expanders W1, . . . ,Wk and W ∗ in order to obtain an expander
graph Ŵ that embeds into G with low congestion; the embedding is obtained by combining
the embeddings of the graphs W1, . . . ,Wk and the embedding of graph W ∗. This serves as
a certificate that G is an expander graph.

Note that the algorithm for the matching player that we need to use differs from the
standard one in that it needs to compute k different matchings between k different pre-
specified pairs of vertex subsets. Specifically, the algorithm for the matching player is given
k pairs (A1, B1), . . . , (Ak, Bk) of subsets of vertices of G of equal cardinality. Ideally, we
would like the algorithm to either (i) compute, for all 1 ≤ i ≤ k, a perfect matching Mi

between vertices of Ai and vertices of Bi, and embed all edges of M1 ∪ · · · ∪ Mk into G

simultaneously with low congestion; or (ii) compute a sparse balanced cut in G. In fact
our algorithm for the matching player achieves a somewhat weaker objective: namely, the
matchings Mi are not necessarily perfect matchings, but they are sufficiently large. In order
to overcome this difficulty, we introduce “fake” edges that augment each matching Mi to a
perfect matching. As a result, if the algorithm fails to compute a sparse balanced cut in

198

G, then we are only guaranteed that G ∪ F is an expander, where F is (a relatively small)
set of fake edges. We then use a known “expander trimming” algorithm of [94] in order to
find a large subset S ⊆ V (G) of vertices, such that G[S] is an expander, and the cut S is
sufficiently sparse. We note that the notion of fake edges was used before in the context of
the cut-matching game, e.g. in [59].

The algorithm of the matching player builds on the idea of Chuzhoy and Khanna [25] of
computing maximal sets of short edge-disjoint paths, which can be implemented efficiently
via Even-Shiloach’s algorithm for decremental single-source shortest paths [36]. Unfortu-
nately, this approach requires slightly slower running time of O

(
m1+O(1/r) · (logm)O(r2)/φ2

)
,

introducing a quadratic dependence on 1/φ, where φ is the conductance parameter. The ex-
pander trimming algorithm of [94] that is exploited by the cut player also unfortunately
introduces a linear dependence on 1/φ. As a result, we obtain an algorithm for the Bal-
CutPrune problem that is sufficiently fast in the high-conductance regime, that is, where
φ = 1/poly log n, but is too slow for the setting where the parameter φ is low. Luckily, the
high-conductance regime is sufficient for many of our applications, and in particular it allows
us to obtain efficient approximation algorithms for maximum flow. This algorithm can then
in turn be used in order to implement the matching player, even in the low-conductance
regime, removing the dependence of the algorithm’s running time on φ. Additional difficulty
for the low-conductance regime is that we can no longer afford to use the expander trimming
algorithm of [94]. Instead, we provide an efficient deterministic bi-criteria approximation
algorithm for the most-balanced sparsest cut problem, and use this algorithm in order to
solve the BalCutPrune problem in the low-conductance regime. This part closely follows ideas
of [20, 25, 87, 104].

8.1.2 Chapter Organization

We start with additional preliminaries in Section 1.3.

For expander decomposition in the standard, unweighted case, we define the problem
to be solved by the new matching player in Section 8.3, and then provide an algorithm for
solving it. We also provide a faster algorithm the case where k = 1 (that is, the problem of
the standard matching player), which we exploit later. We prove our main technical result,
Theorem 8.1.3, in Section 8.4, obtaining the algorithm for the cut player. We then prove
Theorem 8.1.2 in Section 8.5, and then conclude with Theorem 8.6.1 in Section 8.6.

For the weighted, custom demand setting,

199

8.2 Additional Preliminaries

8.2.1 Explicit Construction of Expanders

Throughout the algorithm, we will need explicit constructions of constant-degree expanders
on any number of vertices. We state and prove the quick lemma below.

Lemma 8.2.1: Explicit expanders

Given integer n, we can construct in linear time an α0-expander X for some constant
α0 > 0, such that every vertex in X has degree at most 9.

Proof. We assume that n ≥ 10, as otherwise the graph Hn with the required properties can
be constructed in constant time. We use the expander construction of Margulis [79] and
Gabber and Galil [38]. For an integer k > 1, let H ′k2 be a graph whose vertex set is set
Zk × Zk where Zk = Z/kZ. Each vertex (x, y) ∈ Zk × Zk has exactly eight adjacent edges,
connecting it to the vertices (x± 2y, y), (x± (2y + 1), y), (x, y ± 2x), and (x, y ± (2x + 1)).
Gabber and Galil [38] showed that Ψ(H ′k2) = Ω(1).

Given a parameter n ≥ 10, we let k be the unique integer with (k−1)2 < n ≤ k2, and let
n′ = n− (k − 1)2. Clearly, n′ ≤ k2 − (k − 1)2 ≤ 2k < (k − 1)2. In order to obtain the graph
Hn, we start with the graph H(k−1)2 , whose vertex set we denote by V ′, and then add a set
V ′′ of n′ isolated vertices to this graph. Lastly, we add an arbitrary matching, connecting
every vertex of V ′′ to a distinct vertex of V ′, obtaining the final graph Hn. It is immediate
to verify that |V (Hn)| = n, that every vertex in H has degree at most 9, and that Hn is an
Ω(1)-expander.

8.2.2 The Cut-Matching Game

The cut-matching game was introduced by Khandekar, Rao, and Vazirani [59] as part of
their fast randomized algorithm for the Sparsest Cut and Balanced Cut problems. We
use a variation of this game, due to Khandekar et al. [58], that we slightly modify to fit
our framework. The game involves two players - the cut player, who wants to construct an
expander fast, and the matching player, who wants to delay the construction of the expander.
Initially, the game starts with a graph H that contains an even number n of vertices and no
edges. The game is played in iterations, where in every iteration i, some set Mi of edges is
added to the current graphH. The ith iteration is played as follows. The cut player computes
a partition (Ai, Bi) of V (H) with |Ai|, |Bi| ≥ n/4 and |EH(Ai, Bi)| ≤ n/100. Assume without
loss of generality that |Ai| ≤ |Bi|. The matching player computes any partition (A′i, B

′
i) of

V (H) with |A′i| = |B′i|, such that Ai ⊆ A′i, and then computes an arbitrary perfect matching
Mi between A′i and B′i. The edges of Mi are then added to the graph H. The algorithm
terminates when graph H no longer contains a partition (A,B) of V (H) with |A|, |B| ≥ n/4

and |EH(A,B)| ≤ n/100. Intuitively, once the algorithm terminates, it is easy to see that
H contains a large subgraph that is an expander. Alternatively, it is easy to turn H into

200

an expander by adding one last set of O(n) edges to it. We note that the graph H is a
multi-graph, that is, it may contain parallel edges. The following theorem follows from the
result of [58] (since we slightly modify their setting, we include the proof in Appendix for
completeness).

Theorem 8.2.2

There is a constant cCMG, such that the algorithm described above terminates after at
most cCMG log n iterations.

We will use this cut-matching game together with algorithm CutOrCertify from The-
orem 8.1.3, that will be used in order to implement the cut player. The matching player
will be implemented by a different algorithm, that we discuss in the following section. Note
that, as long as the algorithm from Theorem 8.1.3 produces a cut (A,B) of H with the re-
quired properties, we can use the output of this algorithm as the response of the cut player.
Theorem 8.2.2 guarantees that, after at most O(log n) iterations of the game, the algorithm
from Theorem 8.1.3 will return a subset S ⊆ V (H) of at least n/2 vertices, such that graph
H[S] is an expander. Once this happens, we will terminate the cut-matching game.

8.2.3 Expander Pruning

We use the following theorem from [94].

Theorem 8.2.3: Restatement of Theorem 1.3 from [94]

There is a deterministic algorithm, that, given a graph G = (V,E) of conductance
Φ(G) = φ, for some 0 < φ ≤ 1, and a collection E ′ ⊆ E of k ≤ φ|E|/10 edges of G,
computes a subgraph G′ ⊆ G \ E ′, that has conductance Φ(G′) ≥ φ/6. Moreover, if
we denote A = V (G′) and B = V (G)\A, then |EG(A,B)| ≤ 4k, and volG(B) ≤ 8k/φ.
The total running time of the algorithm is Õ(|E|/φ).

We note that [94] provide a significantly stronger result, where the edges of E ′ arrive in
an online fashion and the graph G′ is maintained after each edge arrival. Additionally, the
running time of the algorithm is Õ(k/φ2) if the algorithm is given an access to the adjacency
list of G. However, the weaker statement above is cleaner and it is sufficient for our purposes.

8.2.4 Embeddings of Graphs and Expansion

Next, we define embeddings of graphs, that will be later used to certify graph expansion.

201

Definition 8.2.4: Graph embedding

Let G, H be two graphs with V (G) = V (H). An embedding of H into G is a collection
P = {P (e) | e ∈ E(H)} of paths in G, such that for each edge e ∈ E(H), path P (e)

connects the endpoints of e in G. We say that the embedding causes congestion η iff
every edge e′ ∈ E(G) participates in at most η paths in P .

Next we show that, if G and H are any two graphs with |V (G)| = |V (H)|, and H is
a ψ-expander that embeds into G with a small congestion, then G is also an expander, for
an appropriately chosen expansion parameter. We note that this observation was used in a
number of previous algorithms in order to certify that a given graph is an expander; see, e.g.
[10, 11, 58, 59, 66, 95].

Lemma 8.2.5

Let G, H be two graphs with V (G) = V (H), such that H is a ψ-expander, for some
0 < ψ < 1. Assume that there exists an embedding P = {P (e) | e ∈ E(H)} of H into
G with congestion at most η, for some η ≥ 1. Then G is a ψ′-expander, for ψ′ = ψ/η.

Proof. Consider any partition (A,B) of V (G), and assume that |A| ≤ |B|. Consider the
corresponding cut (A,B) inH, and let E ′ = EH(A,B). SinceH is a ψ-expander, |E ′| ≥ ψ|A|.
Note that for every edge e ∈ E ′, its corresponding path P (e) in G must contain an edge
of EG(A,B). Since the paths in P cause congestion at most η, we get that |EG(A,B)| ≥
|EH(A,B)|

η
≥ ψ|A|

η
.

8.2.5 Embeddings with Fake Edges and Expansion

In general, when using the cut-matching game, one can usually either embed an expander
into a given graph G, or compute a sparse cut S in G. Unfortunately, it is possible that |S|
is quite small in the latter case. Since each execution of the cut-matching game algorithm
takes at least Ω(|E(G)|) time, we cannot afford to iteratively remove such small sparse cuts
from G, if our goal is to either embed a large expander or to compute a balanced sparse cut
in G in almost-linear time. In order to overcome this difficulty, we use fake edges (that were
also used in [59]), together with the expander pruning algorithm from Theorem 8.2.3.

Specifically, suppose we are given any graph G = (V,E), and let F be a collection of
edges whose endpoints lie in V , but the edges of F do not necessarily belong to G. We
denote by G + F the graph obtained by adding the edges of F to G. If an edge e lies both
in E and F , then we add a new parallel copy of this edge. We note that F is allowed to be
a multi-set, in which case multiple parallel copies of an edge may be added to G.

We show that, if H is an expander graph, and we embed it into a graph G + F with a
small collection F of fake edges, then we can efficiently compute a large subgraph of G that
is an expander.

202

Lemma 8.2.6

Let G be an n-vertex graph, and let H be another graph with V (H) = V (G), with
maximum vertex degree ∆H , such that H is a ψ-expander, for some 0 < ψ < 1. Let F
be any set of k fake edges for G, and let ∆G be the maximum vertex degree in G+F .
Assume that there exists an embedding P = {P (e) | e ∈ E(H)} of H into G+F , that
causes congestion at most η, for some η ≥ 1. Assume further that k ≤ ψn

32∆Gη
. Then

there is a subgraph G′ ⊆ G that is a ψ′-expander, for ψ′ ≥ ψ
6∆G·η

, such that, if we
denote by A = V (G′) and B = V (G) \ A, then |A| ≥ n − 4kη

ψ
and |EG(A,B)| ≤ 4k.

Moreover, there is a deterministic algorithm, that we call ExtractExpander, that,
given G,H,P and F , computes such a graph G′ in time Õ(|E(G)|∆G · η/ψ).

Proof. For convenience, we denote Ĝ = G+F . From Lemma 8.2.5, graph Ĝ is a ψ̂-expander,
for ψ̂ = ψ/η. Moreover,

Φ(Ĝ) ≥ Ψ(Ĝ)

∆G

≥ ψ

∆G · η
.

In the remainder of the proof, we apply Theorem 8.2.3 to graph Ĝ and the set F of
edges. Recall that the set F of fake edges has cardinality k ≤ ψn

32∆G·η
≤ n·Φ(Ĝ)

10
≤ |E(Ĝ)|·Φ(Ĝ)

10
.

Therefore, we can use Theorem 8.2.3 to obtain a subgraph G′ ⊆ (Ĝ \ F) ⊆ G, that has
conductance at least Φ(Ĝ)

6
≥ ψ

6∆G·η
. Denoting A = V (G′) and B = V (Ĝ) \ V (G′) = V (G) \

V (G′), Theorem 8.2.3 guarantees that |EG(A,B)| ≤ |EĜ(A,B)| ≤ 4k. Since Ψ(G′) ≥ Φ(G′),
we have that graph G′ is a ψ′-expander for ψ′ = ψ

6∆Gη
. The running time of the algorithm is

Õ(|E(Ĝ)|/Φ(Ĝ)) = Õ(|E(G)|∆Gη/ψ). It remains to show that |A| is sufficiently large.

Recall that Theorem 8.2.3 guarantees that |EĜ(A,B)| ≤ 4k, while volĜ(B) ≤ 8k

Φ(Ĝ)
≤

8k∆Gη
ψ

. In particular, |B| ≤ 8k∆Gη
ψ
≤ n

2
, since k ≤ ψn

32∆Gη
. Since graph Ĝ is a ψ̂-expander, and

|EĜ(A,B)| ≤ 4k, we conclude that |B| ≤ |EĜ(A,B)|
ψ̂

≤ 4k

ψ̂
≤ 4kη

ψ
, and so |A| ≥ n− 4kη

ψ
.

8.2.6 j-trees

Finally, for the weighted, custom demand setting, we require the concept of j-trees as defined
by Madry [78].

203

Lemma 8.2.7: [78]

There is a deterministic algorithm that, given an edge-weighted graph G = (V,E,w)

with |E| = m and capacity ratio U = maxe∈E we
maxe∈E we

, together with a parameter t ≥ 1,
computes, in time Õ(tm), a distribution {λi}ti=1 over a collection of t edge-weighted
graphs G1, . . . , Gt, where for each 1 ≤ i ≤ t, Gi = (V,Ei,w i), and the following hold:

• for all 1 ≤ i ≤ t, graph Gi is an (m logO(1)m logU
t

)-tree, whose core contains at most
m edges;

• for all 1 ≤ i ≤ t, G embeds into Gi with congestion 1; and
• the graph that’s the average of these graphs over the distribution, G̃ =

∑
i λiGi

can be embedded into G with congestion O(logm(log logm)O(1)).
Moreover, the capacity ratio of each Gi is at most O(mU).

In particular, Definition 8.2.4 and lemma 8.2.7 imply that, for any cut (S, V \S), we have
that w(EGi(S, V \S)) ≥ w(EG(S, V \S)) for all i, and there exists i where w(EGi(S, V \S)) ≤
β ·w(EG(S, V \S)). This is the fact that we will use in the weighted, custom demand setting.

8.3 Route or Cut: Algorithm for the Matching Player

The goal of this section is to design an algorithm that will be used by the matching player.
We use the following definition for routing pairs of vertex subsets.

Definition 8.3.1: Partial routing

Assume that we are given a graph G = (V,E), and disjoint subsets
A1, B1, A2, B2, . . . , Ak, Bk of its vertices, that we refer to as terminals. Assume further
that for each 1 ≤ i ≤ k, |Ai| ≤ |Bi|; we denote |Ai| = ni. A partial routing of the sets
A1, B1, . . . , Ak, Bk consists of:

• A set M =
⋃k
i=1 Mi ⊆ V × V of pairs of vertices, where for each 1 ≤ i ≤ k, Mi

is a matching between vertices of Ai and vertices of Bi (we emphasize that the
pairs (u, v) ∈Mi do not necessarily correspond to edges of G); and

• For every pair (u, v) ∈M of vertices, a path P (u, v) connecting u to v in G.

We denote the resulting routing by P = {P (u, v) | (u, v) ∈M} (note that the matching
M is implicitly defined by P). We say that the routing P causes congestion η, if every
edge in G belongs to at most η paths in P . The value of the routing is

∑k
i=1 |Mi|.

We are now ready to state the main result of this section, which is an algorithm that will
be used by the Matching Player. We note that the theorem is a generalization of a similar
result that was proved in [25], for the special case where k = 1.

204

Theorem 8.3.2

There is a deterministic algorithm, that, given an n-vertex graph G = (V,E) with
maximum vertex degree ∆, disjoint subsets A1, B1, . . . , Ak, Bk of its vertices, where
for all 1 ≤ i ≤ k, |Ai| ≤ |Bi| and |Ai| = ni, and integers z ≥ 0, ` ≥ 32∆ log n,
computes one of the following:

• either a partial routing of the sets A1, B1, . . . , Ak, Bk, of value at least
∑

i ni− z,
that causes congestion at most `2; or

• a cut (X, Y) in G, with |X|, |Y | ≥ z/2, and ΨG(X, Y) ≤ 72∆ log n/`.

The running time of the algorithm is Õ(`3k|E(G)|+ `2kn).

(We note that the parameter ` in the above theorem bounds the lengths of the paths in
P , that is, we will ensure that every path in P contains at most ` edges; however, since our
algorithm does not rely on this fact, this is immaterial).
Proof. The proof of the theorem immediately follows from the following lemma.

Lemma 8.3.3

There is a deterministic algorithm, that, given an n-vertex graph G = (V,E) with
maximum vertex degree ∆, disjoint subsets A′1, B′1, . . . , A′k, B′k of its vertices, where
for all 1 ≤ i ≤ k, |A′i| ≤ |B′i|, and |A′i| = n′i, and an integer ` ≥ 32∆ log n, computes
one of the following:

• either a partial routing of the sets A′1, B′1, . . . , A′k, B′k in G, of value at least(∑k
i=1 n

′
i

)
· 8 logn

`2
and congestion 1; or

• a cut (X, Y) in G, with |X|, |Y | ≥
(∑k

i=1 n
′
i

)
/2, and ΨG(X, Y) ≤ 72∆ log n/`.

The running time of the algorithm is Õ(k`|E(G)|+ kn).

Before we prove the lemma, we complete the proof of Theorem 8.3.2 using it. Throughout
the algorithm, we maintain the matchings M1, . . . ,Mk, where Mi is a matching between
vertices of Ai and vertices of Bi, and a routing P = {P (u, v) | (u, v) ∈

⋃
iMi}. Initially, we

set Mi = ∅ for all i, and P = ∅. We then iterate. In every iteration, for each 1 ≤ i ≤ k, we
let A′i ⊆ Ai and B′i ⊆ Bi be the subsets of vertices that do not participate in the matching
Mi, and we denote n′i = |A′i|; since |Ai| ≤ |Bi|, we are guaranteed that |A′i| ≤ |B′i|. We also
denote N ′ =

∑
i n
′
i. If N ′ ≤ z, then we terminate the algorithm, and return the current

matchings M1, . . . ,Mk, together with their routing P . Otherwise, we apply Lemma 8.3.3
to graph G and vertex sets A′1, B′1, . . . , A′k, B′k. If the outcome is a cut (X, Y) in G, with
|X|, |Y | ≥ N ′/2, and ΨG(X, Y) ≤ 72∆ log n/`, then we terminate the algorithm, and return
the cut (X, Y). Notice that, since N ′ > z holds, we are guaranteed that |X|, |Y | ≥ z/2,
as required. Therefore, we assume from now on that, whenever Lemma 8.3.3 is called, it
returns a partial routing ((M ′

1, . . . ,M
′
k),P ′) of the vertex sets A′1, B′1, . . . , A′k, B′k, of value

at least 8N ′ logn
`2

, that causes congestion 1. We then add the paths in P ′ to P , and for each

205

1 ≤ i ≤ k, we add the matching M ′
i to Mi, and continue to the next iteration.

The key in the analysis of the algorithm is to bound the number of iterations. For
all j ≥ 1, let N ′j denote the parameter N ′ at the beginning of iteration j. Then, since

Lemma 8.3.3 returns a routing of value at least 8N ′j logn

`2
, we get that N ′j+1 ≤ Nj(1−8 log n/`2).

Therefore, after `2 iterations, parameter N ′j is guaranteed to fall below z, and the algorithm
will terminate. Notice that the congestion of the final routing P is bounded by the number
of iterations, `2. Moreover, since the running time of each iteration is Õ(k`|E(G)|+kn), the
total running time of the algorithm is Õ(k`3|E(G)|+ kn`2). In order to complete the proof
of Theorem 8.3.2, it is now enough to prove Lemma 8.3.3.
Proof of Lemma 8.3.3. Our algorithm is very similar to that employed in [25], and consists
of two phases. In the first phase, we employ a simple greedy algorithm that attempts to
compute a partial routing of sets A′1, B′1, . . . , A′k, B′k. If the resulting routing contains enough
paths then we terminate the algorithm and return this routing. Otherwise, we proceed to
the second phase, where we compute the desired cut.

Phase 1: Route. We use a simple greedy algorithm. Initially, we set, for all 1 ≤ i ≤ k,
Mi = ∅, and we set P = ∅. The algorithm then iterates, as long as there is a path P in G
of length at most `, that, for some 1 ≤ i ≤ k, connects some vertex v ∈ A′i to some vertex
u ∈ B′i. The algorithm computes any such path P , adds (u, v) to Mi, and adds the path
P to P , denoting P = P (u, v). We then delete every edge of P from G, and we delete u
from A′i and v from B′i, and then continue to the next iteration. The algorithm terminates
when, for each 1 ≤ i ≤ k, every path in the remaining graph G connecting a vertex of A′i
to a vertex of B′i has length greater than ` (or A′i = ∅). It is easy to verify that, for each
1 ≤ i ≤ k, the final set Mi is a matching between vertices of A′i and vertices of B′i, and that
P is a collection of edge-disjoint paths, of length at most ` each, containing, for every pair
(u, v) ∈

⋃
iMi, a path P (u, v) connecting u to v in G. If

∑
i |Mi| ≥

(∑k
i=1 n

′
i

)
8 logn
`2

, then
we terminate the algorithm, obtaining the desired partial routing. Otherwise, we continue
to the second phase, where a cut (X, Y) will be computed.

We implement the algorithm for the first phase by using Even-Shiloach trees.

Lemma 8.3.4: [32, 36]

There is a deterministic data structure, called ES-tree, that, given an unweighted
undirected n-vertex graph G undergoing edge deletions, a root node s, and a depth
parameter `, maintains, for every vertex v ∈ V (G) a value δ(s, v) such that δ(s, v) =

distG(s, v) if distG(s, v) ≤ ` and δ(s, v) =∞ otherwise (here, distG(s, v) is the distance
between s and v in the current graph G). The data structure supports shortest-
paths queries: given a vertex v, return a shortest path connecting s to v in G, if
distG(s, v) ≤ `, and return ∞ otherwise. The total update time of the data structure
is Õ(|E(G)|` + n), and time needed to process each query is O(|P |), where P is the
path returned in response to the query.

206

We construct k graphs G1, . . . , Gk, where graph Gi is obtained from a copy of G, by
adding a source vertex si that connects to every vertex in A′i with an edge, and a destination
vertex ti, that connects to every vertex in B′i with an edge. For each 1 ≤ i ≤ k, we then
maintain an ES-tree in graph Gi, from source si, up to depth `+2. Note that the total update
time needed in order to maintain all these ES-trees under edge deletions is Õ(`k|E(G)|+kn).
Our algorithm processes the graphs Gi one-by-one. When graph Gi is processed, we perform
a number of iterations, as long as distGi(si, ti) ≤ `+ 2. In each such iteration, we perform a
shortest-path query in the corresponding ES-tree for vertex ti, obtaining a path P , of length
at most `+ 2, connecting si to ti. By discarding the first and the last edge on this path, we
obtain a path P ′ of length at most `, connecting some vertex v ∈ A′i to some vertex u ∈ B′i.
We delete all edges on path P ′ from all copies G1, . . . , Gk of the graph G, and we delete v
and u from Gi, updating all corresponding ES-trees. Note that the total time to respond to
all queries is O(|E(G)|), as whenever a path P is returned, all its edges are deleted from all
graphs Gi. Therefore, the total running time of the algorithm is Õ(k`|E(G)|+ kn).

Phase 2: Cut. We use the following standard algorithm that follows the ball-growing
paradigm.

Claim 8.3.5

There is a deterministic algorithm, that, given an unweighted n′-vertex graph H ′ with
maximum vertex degree at most ∆, and two sets S, T of its vertices, such that every
path connecting a vertex of S to a vertex of T in H ′ has length greater than `, for
some parameter ` > 1 computes, in time O(|E(H ′)|), a cut Z in H ′, such that:

• |Z| ≤ n′/2;
• either S ⊆ Z or T ⊆ Z hold; and
• |EH′(Z, V (H ′) \ Z)| < 8∆ logn′

`
· |Z|.

Proof. Let S0 = S, and for all j > 0, let Sj contain all vertices of Sj−1, and all neighbors
of vertices of Sj−1 in graph H ′. We also define T0 = T , and for all j > 0, we let Tj contain
all vertices of Tj−1, and all neighbors of vertices of Tj−1 in graph H ′. We need the following
standard observation:

Observation 8.3.6

There is an index 0 ≤ j < d`/4e, such that either (i) |Sj+1| < n′/2 and |EH′(Sj, V (H ′)\
Sj)| < 8∆ logn′

`
· |Sj|; or (ii) |Tj+1| < n′/2 and |EH′(Tj, V (H ′) \ Sj)| < 8∆ logn′

`
· |Tj|.

Proof. Assume for contradiction that the claim is false. Let j′ be the smallest index, such
that |Sj′ | > n′/2 or |Tj′| > n′/2. Assume w.l.o.g. that |Tj′| > n′/2.

Assume first that j′ < `/2. Then for all 1 ≤ j ≤ d`/4e, |Sj| < n′/2 must hold (as
otherwise, there is a path connecting a vertex of S to a vertex of T , of length at most `).
However, from our assumption, for all 0 ≤ j < d`/4e, |EH′(Sj, V (H ′) \ Sj)| > 8∆ logn′

`
· |Sj|.

207

Since the maximum vertex degree in H ′ is bounded by ∆, we get that |Sj+1\Sj| ≥ 8 logn′

`
·|Sj|,

and so |Sj+1| ≥ |Sj|
(

1 + 8 logn′

`

)
. Overall, we get that |Sd`/4e| ≥ |S0| ·

(
1 + 8 logn′

`

)d`/4e
> n′

2
,

a contradiction.
Assume now that j′ ≥ `/2. Then we get that for all 1 ≤ j ≤ d`/4e, |Tj| < n′/2 must

hold. Applying the same reasoning as above to sets Tj, we conclude that |Td`/4e| ≥ n′/2, a
contradiction.

The algorithm performs two BFS searches in H ′ simultaneously, one starting from S and
another starting from T , until an index j with the properties guaranteed by Observation 8.3.6
is found. If |Sj+1| < n′/2 and |EH′(Sj, V (H ′) \ Sj)| < 8∆ logn′

`
· |Sj|, then we return Z = Sj;

otherwise, and otherwise we return Z = Tj.

We are now ready to describe the algorithm for Phase 2. For convenience, we denote
N =

∑k
i=1 n

′
i. Recall that Phase 2 is only executed if the routing P computed in Phase 1

contains fewer than 8N logn
`2

paths. Let E ′ be the set of all edges lying on the paths in P , so
|E ′| ≤ 8N logn

`
(as the length of every path in P is at most `), and let H = G \ E ′. We also

denote, for all 1 ≤ i ≤ k, by A′′i ⊆ A′i the subset of all vertices of the original set A′i that
do not participate in the matching Mi, and we define B′′i ⊆ B′i similarly. Notice that for all
1 ≤ i ≤ k, if A′′i , B′′i 6= ∅, then the length of the shortest path, connecting a vertex of A′′i to
a vertex of B′′i is greater than `.

Our algorithm is iterative. We maintain a subgraph H ′ of H, that is initially set to
be H. In every iteration i, we compute a subset Ui ⊆ V (H ′) of vertices of H ′, such that
|Ui| ≤ |V (H ′)|/2, and |EH′(Ui, V (H ′) \ Ui)| < 8∆ logn

`
· |Ui|. We then delete, from graph H ′,

all vertices of Ui, and continue to the next iteration. Throughout the algorithm, we may
update the sets A′′j and B′′j , by removing some vertices from them.

The algorithm is executed as long as there is some index 1 ≤ j ≤ k, with A′′j , B
′′
j 6= ∅,

and as long as |
⋃
i Ui| ≤ n/4; if either of these conditions do not hold, the algorithm is

terminated. We now describe the ith iteration of the algorithm, and we let 1 ≤ j ≤ k be an
index for which A′′j , B′′j 6= ∅. We apply the algorithm from Claim 8.3.5 to the current graph
H ′, and the sets S = A′′j , T = B′′j of vertices; recall that every path connecting a vertex of
A′′j to a vertex of B′′j in H ′ has length greater than `. Let Z be the cut returned by the
algorithm. We set Ui = Z. We also denote by Ei = EH′(Z, V (H ′) \ Z). Recall that we are
guaranteed that |Ei| ≤ 8∆ logn

`
· |Ui|. Moreover, either A′′j ⊆ Ui, or B′′j ⊆ Ui. We update the

current graph H ′, by deleting the vertices of Ui from it. For all 1 ≤ j′ ≤ k, we delete from
A′′j′ and from B′′j′ all vertices that lie in the set Ui.

Let q be the number of iterations in the algorithm; it is easy to see that q ≤ k. Therefore,
the running time of the algorithm in Phase 2 so far is O(k · |E(H)|) = O(k · |E(G)|). Let
U =

⋃r
i=1 Ui, and let Ê =

⋃r
i=1 Ei.

If the algorithm terminated because |U | ≥ n/4, then we are guaranteed that |U | ≥ N/2,
as N ≤ n/2 must hold. Otherwise, we are guaranteed that for all 1 ≤ j ≤ k, either A′′j = ∅
(and so A′j ⊆ U), or B′′j = ∅ (and so B′j ⊆ U). In the latter case, we get that:

208

|U | ≥
k∑
j=1

n′j − |P| ≥ N − 8N log n

`2
≥ N/2,

since we have assumed that ` ≥ 32∆ log n. Moreover, it is immediate to verify that
|Ê| ≤ 8∆ logn

`
· |U |.

Consider now the original graph H. We define a cut (X, Y) in H by setting X = U and
Y = V (H) \ U . Since |E(G) \ E(H)| = |E ′| ≤ 8N logn

`
≤ 16|U | logn

`
, we get that |EG(X, Y)| ≤

|Ê|+ |E ′| ≤ 24∆ logn
`
· |X|.

Next, we claim that |X| ≤ 3n/4. Indeed, we are guaranteed that
∑q−1

i=1 |Ui| ≤ n/4, and
so Uq ≤ n−

∑q−1
i=1 |Ui|
2

. We then get that altogether, |X| =
∑q

i=1 |Ui| ≤
n
2

+
∑q−1
i=1 |Ui|

2
≤ 3n

4
. In

particular, |Y | ≥ n/4 and so |Y | ≥ |X|/3. Therefore, |EG(X, Y)| ≤ 24∆ logn
`
· |X| ≤ 72∆ logn

`
·

min {|X|, |Y |}, and so ΨG(X, Y) ≤ 72∆ logn
`

. As observed already, |X| ≥ N/2 =
∑

i n
′
i/2,

and |Y | ≥ n/4 ≥
∑

i n
′
i/2, as

∑
i n
′
i ≤ n/2 must hold.

The following corollary follows immediately from Theorem 8.3.2, by setting the parameter
` = 144∆ log n/ψ.

Corollary 8.3.7

There is a deterministic algorithm, that we call RouteOrCut, that, given an n-vertex
graph G = (V,E) with maximum vertex degree ∆, disjoint subsets A1, B1, . . . , Ak, Bk

of its vertices, where for all 1 ≤ i ≤ k, |Ai| ≤ |Bi| and |Ai| = ni, an integer z ≥ 0, and
a parameter 0 < ψ < 1/2, computes one of the following:

• either a partial routing of the sets A1, B1, . . . , Ak, Bk, of value at least
∑

i ni− z,
that causes congestion at most O(∆2 log2 n/ψ2); or

• a cut (X, Y) in G, with |X|, |Y | ≥ z/2, and ΨG(X, Y) ≤ ψ.

The running time of the algorithm is Õ(∆3k|E(G)|/ψ3 + k∆2n/ψ2).

An Improved Algorithm for k = 1

For the special case where k = 1, we provide a somewhat faster algorithm, summarized in
the following theorem. We note that this algorithm is not essential for the proof of our main
result (Theorem 8.1.2), but we can use it to provide a self-contained proof of the theorem
with a somewhat slower running time, which we believe is of independent interest.

209

Theorem 8.3.8

There is a deterministic algorithm, that we call RouteOrCut-1Pair, that, given a
connected n-vertex m-edge graph G = (V,E) with maximum vertex degree ∆, two
disjoint subsets A1, B1 of its vertices, where |A1| ≤ |B1| and |A1| = n1, an integer
z ≥ 0, and a parameter 0 < ψ < 1/2, computes one of the following:

• either a partial routing of the sets A1, B1, of value at least n1 − z, that causes
congestion at most 4∆/ψ; or

• a cut (X, Y) in G, with |X|, |Y | ≥ z/∆, and ΨG(X, Y) ≤ ψ.

The running time of the algorithm is O
(
m∆ logm

ψ

)
.

Proof. Theorem 8.3.8 is an easy application of either the bounded-height variant of the push-
relabel-based algorithm of Henzinger, Rao and Wang [51] for max-flow, or the bounded-height
variant of the blocking-flow-based algorithms by Orrecchia and Zhu [89].1

We start by introducing some basic notation. Suppose we are given an unweighted
undirected graphG = (V,E). We let S : V → Z≥0 denote a source function and T : V → Z≥0

denote a sink function. For a vertex v ∈ V , we sometimes call T (v) its sink capacity.
Intuitively, initially, for every vertex v ∈ V , we have S(v) units of mass (substance that
needs to be routed) placed on vertex v. Additionally, every vertex v ∈ V may absorb up to
T (v) units of mass. Our goal is to route the initial mass across the graph (using standard
single-commodity flow) so that all mass is absorbed. We use a flow function f : V ×V → R,
that must satisfy: (i) for all u, v ∈ V , f(u, v) = −f(v, u); and (ii) if (u, v) 6∈ E, then
f(u, v) = 0. Whenever f(u, v) > 0, we interpret it as f(u, v) units of mass are sent via the
edge (u, v) from u to v, while f(u, v) < 0 means that the same amount of mass is sent in the
opposite direction.

We require that
∑

v∈V S(v) ≤
∑

u T (u), that is, the total amount of mass that needs to
be routed is bounded by the total sink capacities of the vertices. Given a flow f : V ×V → R,
the congestion of f is maxe∈E |f(e)|. We say that f is a preflow if, for every vertex v ∈ V ,∑

u∈V f(v, u) ≤ S(v); in other words, the net amount of mass routed away from any node v
is bounded by the amount of the source mass S(v). For every vertex v ∈ V , we also denote
by f(v) = S(v) +

∑
u∈V f(u, v) the amount of mass that remains at v after the routing f .

We define the absorbed mass of a node v as abf (v) = min {f(v), T (v)}, and the excess of v
as exf (v) = f(v) − abf (v), measuring the amount of flow that remains at v and cannot be
absorbed by it. Note that, if exf (v) = 0 for every vertex v, then all the mass is successfully
routed to the sinks. Let exf (V) =

∑
v exf (v) denote the total amount of mass that is not

absorbed by the sinks.
The following lemma easily follows from Theorem 3.3 in [88] (or Theorem 3.1 in [51]).

1Both algorithms are designed to have local running time, that is, they may not read the whole graph.
However, we do not need to use this property here.

210

Lemma 8.3.9

There is a deterministic algorithm, that, given an m-edge graph G = (V,E), a source
function S : V → Z≥0, a sink function T : V → Z≥0, and a parameter 0 < φ ≤ 1,
such that

∑
v∈V S(v) ≤

∑
v∈V T (v), and for every vertex v ∈ V , S(v) ≤ degG(v) and

T (v) ≤ degG(v), computes, in time O
(
m logm

φ

)
, an integral preflow f of congestion at

most 4/φ. Moreover, if the total excess exf (V) > 0, then the algorithm also computes
a cut (S, S) with ΦG(S) < φ and volG(S),volG(S) ≥ exf (V).

We are now ready to complete the proof of Theorem 8.3.8. For convenience, we denote
A1 by A, B1 by B, and n1 by N . For the input graph G = (V,E), we define a source function
as follows: for all v ∈ A, S(v) = 1, and for all other vertices, S(v) = 0. Similarly, we define
the sink function to be T (v) = 1 if v ∈ B, and T (v) = 0 otherwise.

We then apply the algorithm from Lemma 8.3.9 to graph G, source function S, sink
function T and parameter φ = ψ/∆. Let f be the resulting preflow with congestion at most
4/φ ≤ 4∆/ψ. The running time of the algorithm is O

(
m logm

φ

)
= O

(
m∆ logm

ψ

)
We now consider two cases. The first case happens when exf (V) ≥ z. In this case, we

obtain a cut (X, Y) with ΦG(X, Y) < φ and volG(X),volG(Y) ≥ exf (V) ≥ z. Since the
maximum vertex degree in G is bounded by ∆, we get that |X|, |Y | ≥ z/∆. Moreover,
ΨG(X, Y) ≤ ∆ΦG(X, Y) ≤ ∆φ ≤ ψ.

Consider now the second case, where exf (V) < z. Let B′ be a multi-set of vertices, where
for each vertex v ∈ V , we add exf (v) copies of v into B′ (since f is integral, so is exf (v)

for all v ∈ V). Then |B′| ≤ z, and f defines a valid integral flow from A to B ∪ B′, with
congestion at most 4∆/ψ, such that all but at most z flow units terminate at distinct vertices
of B. It now remains to compute a decomposition of f into flow-paths, and then discard
the flow-paths that terminate at vertices of B′. This can be done by using, for example,
the link-cut tree [98], or simply a standard Depth-First Search. For the latter, construct a
graph G′, obtained from G by creating |f(e)| parallel copies of every edge e ∈ E(G), that
are directed along the direction of the flow f on e; recall that |f(e)| ≤ 4∆/ψ. We also add
a source s that connects to every vertex of A with a directed edge. We then perform a DFS
search of the resulting graph G′, starting from s. If the DFS search leaves some vertex v
without reaching any vertex of B ∪ B′, then we delete v from the graph G′. If the search
reaches a vertex v ∈ B ∪ B′, then we retrace the current path from s to v, adding it to the
path-decomposition that we are constructing, and deleting all edges on this path from G′.
We then restart the DFS search. It is easy to verify that every edge is traversed at most twice
throughout this procedure, and so the total running time is O|E(G′)| = O(|E(G)| · ∆/ψ).
Let P be the final collection of paths that we obtain. Then every vertex of A has exactly one
path in P originating from it, and all but at most z paths in P terminate at distinct vertices
of B. We discard from P all paths that do not terminate at vertices of B, obtaining the
desired final collection of paths. The total running time of the algorithm is O

(
m∆ logm

ψ

)
.

211

8.4 Deterministic Cut-Matching Game: Proof of Theo-
rem 8.1.3

The goal of this section is to prove Theorem 8.1.3. We do so using the following theorem, that
can be thought of as a restatement of Theorem 8.1.3 in a way that will be more convenient
to work with in our inductive proof. Recall that cCMG is the constant from Theorem 8.2.2.

Theorem 8.4.1

There are universal constants c0, N0 and a deterministic algorithm, that, given an
n-vertex graph G = (V,E) and parameters N, q with N > N0 an integral power of 2,
and q ≥ 1 an integer, such that n ≤ N q, and the maximum vertex degree in G is at
most cCMG log n, computes one of the following:

• either a cut (A,B) in G with |A|, |B| ≥ n/4 and |EG(A,B)| ≤ n/100; or
• a subset S ⊆ V of at least n/2 vertices, such that Ψ(G[S]) ≥ 1/ (q logN)8q.

The running time of the algorithm is O
(
N q+1 · (q logN)c0q

2
)
.

We first show that Theorem 8.1.3 follows from Theorem 8.4.1. The parameter N0 in
Theorem 8.1.3 remains the same as that in Theorem 8.4.1. Assume that we are given an
n-vertex graph and a parameter r, such that n1/r ≥ N0. We set q = r, and we let N be
the smallest integral power of 2 such that N ≥ n1/q; observe that (N/2)q ≤ n ≤ N q and
N ≥ N0 hold. Moreover, since q log(N/2) ≤ log n, if N0 is a large enough constant, then
q logN ≤ 2 log n.

We apply the algorithm from Theorem 8.4.1 to graph G with the parameter q. If the
outcome is a cut (A,B) with |A|, |B| ≥ n/4 and |E(A,B)| ≤ n/100, then we return this cut as
the outcome of the algorithm. Otherwise, we obtain a subset S ⊆ V of at least n/2 vertices,
such that Ψ(G[S]) ≥ 1/ (q logN)8q ≥ 1/ (2 log n)8q ≥ Ω

(
1/(log n)O(r)

)
, as required. Lastly,

the running time of the algorithm is O
(
N q+1 · (q logN)c0q

2
)

= O
(
n1+O(1/r) · (log n)O(r2)

)
.

The remainder of this section is dedicated to proving Theorem 8.4.1. The proof is by
induction on the parameter q. We start with the base case where q = 1 and then show the
step for q > 1.

8.4.1 Base Case: q = 1

The algorithm uses the following key theorem.

212

Theorem 8.4.2

There is a deterministic algorithm that, given as input a graph G′ = (V ′, E ′) with
|V ′| = n′ and maximum vertex degree ∆ = O(log n′), in time Õ((n′)2) returns one of
the following:

• either a subset S ⊆ V ′ of at least 2n′/3 vertices such thatG′[S] is an Ω(1/ log5 n′)-
expander; or

• a cut (X, Y) in G′ with |X|, |Y | ≥ Ω(n′/ log5 n′) and ΨG′(X, Y) ≤ 1/100.

We prove Theorem 8.4.2 below, after we complete the proof of Theorem 8.1.3 for the
case where q = 1 using it. Our algorithm performs a number of iterations. We maintain
a subgraph G′ ⊆ G; at the beginning of the algorithm, G′ = G. In the ith iteration, we
compute a subset Si ⊆ V (G′) of vertices, and then update the graph G′ by deleting the
vertices of Si from it. The iterations are performed as long as |

⋃
i Si| < n/4.

In order to execute the ith iteration, we consider the current graph G′, denoting |V (G′)| =
n′. Note that, since we assume that |

⋃
i′<i Si′ | < n/4, we get that n′ ≥ 3n/4. We then apply

Theorem 8.4.2 to graph G′. If the outcome is a subset S ⊆ V ′ of at least 2n′/3 vertices such
that G′[S] is an Ω(1/ log5 n′)-expander, then we terminate the algorithm and return S; in this
case we say that the iteration terminated with an expander. Notice that, since n′ ≥ 3n/4,
and |S| ≥ 2n′/3, we are guaranteed that |S| ≥ n/2. Moreover, assuming that N0 is a large
enough constant, the expansion of G[S] is at least Ω(1/ log5 n′) ≥ 1/ log8 n ≥ 1/ log8N

as required. Otherwise, we obtain a cut (X, Y) in G′ with |X|, |Y | ≥ Ω(n′/ log5 n′) and
ΨG′(X, Y) ≤ 1/100; in this case we say that the iteration terminated with a cut. Assume
w.l.o.g. that |X| ≤ |Y |. We then set Si = X, update the graph G′ by removing the vertices
of Si from it, and continue to the next iteration. If the algorithm does not terminate with
an 1/ log8N -expander, then it terminates once |

⋃
i′ Si′| ≥ n/4 holds. Let i denote the

number of iterations in this case. Since we are guaranteed that |
⋃
i′<i Si′| < n/4, while

|Si| ≤ n′/2 ≤ 3n/8, we get that n/4 ≤ |
⋃i
i′=1 Si′| ≤ 5n/8. Let A =

⋃i
i′=1 Si′ , and let

B = V (G) \ A. From the above discussion, we are guaranteed that |A|, |B| ≥ n/4, and
moreover, since the cut Si′ that we obtain in every iteration i′ has sparsity at most 1/100 in
its current graph G′, it is easy to verify that |EG(A,B)| ≤ |A|/100 ≤ n/100. We then return
the cut (A,B) as the algorithm’s outcome. Since for all 1 ≤ i′ ≤ i, |Si′| ≥ Ω(n/ log5 n), the
number of iterations is bounded by O(log6 n), and so the total running time of the algorithm
is Õ(n2) = O(N2 logc0 n), if c0 is a large enough constant. In the remainder of this subsection
we focus on the proof of Theorem 8.4.2.

Proof of Theorem 8.4.2

As our first step, we use Lemma 8.2.1 to construct in linear time a ψ∗-expander H = Hn′

on n′ vertices, with ψ∗ = Ψ(H) = Ω(1), such that maximum vertex degree in H is at most
9. This can be done using standard explicit constructions of expanders; see Theorem 2.4

213

of [27] for a proof. We identify the vertices of H with the vertices of G′, so V (H) = V ′. The
running time of this step is O(n′). Using a simple greedy algorithm, and the fact that the
maximum vertex degree in H is at most 9, we can partition the set E(H) of edges into 17

matchings, M1, . . . ,M17. We then perform up to 17 iterations; in each iteration i, we will
either embed the edges of Mi into G′, after possibly adding a small number of fake edges to
it, or we will compute the desired cut (A,B) in G′.

The ith iteration is executed as follows. We denote Mi = {e1, . . . , eki}, where the edges
are indexed in an arbitrary order. For each 1 ≤ j ≤ ki, denote ej = (uj, vj). We define two
corresponding sets Aj, Bj of vertices of G′, where Aj = {uj} and Bj = {vj}. We then apply
Algorithm RouteOrCut from Corollary 8.3.7 to graph G′, the sets A1, B2, . . . , Aki , Bki of
its vertices, integer z =

⌈
n′

c log5 n′

⌉
for some large enough constant c, and parameter ψ = 1/100.

Recall that the running time of the algorithm is Õ(ki|E(G′)|∆3/ψ3+kin
′/∆2) = Õ((n′)2). We

now consider two cases. If the algorithm returns a cut (X, Y), with ΨG′(X, Y) ≤ ψ, then we
terminate the algorithm and return this cut; in this case, |X|, |Y | ≥ z/2 ≥ Ω(n′/ log5 n′) must
hold. Otherwise, the algorithm computes a partial routing P of the sets A1, B1, . . . , Aki , Bki ,
of value at least ki − z, that causes congestion at most O(∆2 log2 n′/ψ2) = O(log4 n′). Let
M ′

i ⊆ Mi be the subset of edges that are routed in P , so for every edge ej ∈ M ′
i there is

a path P (ej) ∈ P connecting its endpoints. Let M ′′
i ⊆ Mi denote the set of the remaining

edges, so |M ′′
i | ≤ z. We let Fi = M ′′

i be a set of fake edges in graph G′, that we use in order
to route the edges of M ′′

i . For each edge ej ∈M ′′
i , we let P (ej) be the path consisting of the

new fake copy of ej in G′. Let Pi = P ∪{P (ej) | ej ∈M ′′
i }. We now obtained an embedding

of the edges of Mi into G′ + Fi, with congestion O(log4 n′).

If the algorithm never terminates with the cut (X, Y) with ΨG′(X, Y) ≤ ψ, then, after 17

iterations, we obtain an embedding P∗ =
⋃17
i=1Pi of H into G + F , where F =

⋃17
i=1 Fi is a

set of at most 17z fake edges; the congestion of the embedding is η = O(log4 n′). Moreover, if
we denote by ∆G the maximum vertex degree in G+F , then ∆G ≤ 17+∆ ≤ 17∆. Next, we
apply Algorithm ExtractExpander from Lemma 8.2.6 to graphs G′, H, the set F of fake
edges, and the embedding P∗ of H into G. Since ψ∗n′

32∆Gη
≥ ψ∗n′

O(∆ log4 n′)
≥ n′

O(log5 n′)
, by letting

the constant c used in the definition of z be large enough, we ensure that |F | ≤ 17z ≤ ψ∗n′

32∆Gη
,

as required. The algorithm from Lemma 8.2.6 then computes a subgraph G′′ ⊆ G′ that is a
ψ′-expander, where ψ′ ≥ ψ∗

6∆Gη
= Ω

(
1

log5 n′

)
, with:

V (G′′) ≥ n′ − 4 · 17zη

ψ∗
= n′ −O(z log4 n′)

By letting c be a large enough constant, we can ensure that |V (G′′)| ≥ 2n′/3. The running
time of Algorithm ExtractExpander from Lemma 8.2.6 is Õ(|E(G′)|∆Gη/ψ

∗) = Õ(n′),
and so the total running time of the algorithm is Õ((n′)2).

214

8.4.2 Step: q > 1

Suppose we are given an integer q > 1. We assume that Theorem 8.4.1 holds for q − 1:
that is, there is a deterministic algorithm, that we denote by A(q − 1), that, given an n-
vertex graph G with maximum vertex degree at most cCMG log n and n ≤ N q−1, for some
N > N0, either returns a cut (A,B) in G with |A|, |B| ≥ n/4 and |E(A,B)| ≤ n/100, or
it computes a subset S ⊆ V (G) of at least n/2 vertices, such that Ψ(G[S]) ≥ ψq−1, where
ψq−1 = 1/

(
(q − 1) logN)8(q−1)

)
. We denote the running time of this algorithm by T (q−1) =

O
(
N q · ((q − 1) logN)c0(q−1)2

)
. Throughout the proof, we also denote ψq = 1/ (q logN)8q)

We now prove that the theorem holds for the given value of q, by invoking Algorithm
A(q− 1) a number of times. The following theorem is central to proving the induction step.

Theorem 8.4.3

There is a deterministic algorithm that, given as input an n′-vertex graph G′ = (V ′, E ′)

and integers N, q with N > N0 an integral power of 2 and q > 1, such that N q−1/2 ≤
n′ ≤ N q, and maximum vertex degree of G′ is ∆ = O(log n′), returns one of the
following:

• either a subset S ⊆ V ′ of at least 2n′/3 vertices such that G′[S] is a ψq-expander;
or

• a cut (X, Y) in G′ with |X|, |Y | ≥ Ω
(
ψq−1·n′
log8 n′

)
and ΨG′(X, Y) ≤ 1/100.

The running time of the algorithm is O
(
N q+1 · (q logN)8q+O(1)

)
+O (N · log n′) ·T (q−

1).

We prove Theorem 8.4.3 below, after we complete the proof of Theorem 8.1.3 for the
current value of q using it.

Note that we can assume that n > N q−1, since otherwise we can use algorithm A(q− 1),
to either compute a cut (A,B) in G with |A|, |B| ≥ n/4 and |E(A,B)| ≤ n/100, or to
compute a subset S ⊆ V (G) of at least n/2 vertices, such that Ψ(G[S]) ≥ ψq−1 ≥ ψq, in
time T (q − 1) = O

(
N q · ((q − 1) logN)c0(q−1)2

)
.

Our algorithm performs a number of iterations. We maintain a subgraph G′ ⊆ G; at the
beginning of the algorithm, G′ = G. In the ith iteration, we compute a subset Si ⊆ V (G′) of
vertices, and then update the graph G′ by deleting the vertices of Si from it. The iterations
are performed as long as |

⋃
i Si| < n/4.

In order to execute the ith iteration, we consider the current graph G′, denoting |V (G′)| =
n′. Note that, since we assume that |

⋃
i′<i Si′ | < n/4, we get that n′ ≥ 3n/4, and in particular

N q−1/2 ≤ n′ ≤ N q. We then apply Theorem 8.4.3 to graph G′. If the outcome is a subset
S ⊆ V ′ of at least 2n′/3 vertices such that G′[S] is a ψq-expander, then we terminate the
algorithm and return S. Notice that, since n′ ≥ 3n/4, and |S| ≥ 2n′/3, we are guaranteed
that |S| ≥ n/2. Otherwise, we obtain a cut (X, Y) in G′ with |X|, |Y | ≥ Ω

(
ψq−1·n′
log8 n′

)
and

215

ΨG′(X, Y) ≤ 1/100. Assume w.l.o.g. that |X| ≤ |Y |. We then set Si = X, update the graph
G′ by removing the vertices of Si from it, and continue to the next iteration. If the algorithm
does not terminate with a ψq-expander, then it terminates once |

⋃
i′ Si′| ≥ n/4 holds. Let i

denote the number of iterations in this case. Since we are guaranteed that |
⋃
i′<i Si′| < n/4,

while |Si| ≤ n′/2 ≤ 3n′/8, we get that n/4 ≤ |
⋃i
i′=1 Si′| ≤ 5n/8. Let A =

⋃i
i′=1 Si′ , and

let B = V (G) \ A. From the above discussion, we are guaranteed that |A|, |B| ≥ n/4, and
moreover, since the cut Si′ that we obtain in every iteration i′ has sparsity at most 1/100 in
its current graph G′, it is easy to verify that |EG(A,B)| ≤ |A|/100 ≤ n/100. We then return
the cut (A,B) as the algorithm’s outcome.

Notice that the number of iterations in the algorithm is bounded by:

O(log9 n/ψq−1) = O
(
(q logN)8(q−1) · log9 n

)
≤ O

(
(q logN)8q+1) ,

since n ≤ N q. Therefore, the total running time of the algorithm is at most:

O
(
N q+1 · (q logN)16q+O(1)

)
+O

(
N(q logN)8q+2

)
· T (q − 1).

From the induction hypothesis, T (q − 1) = O
(
N q · ((q − 1) logN)c0(q−1)2

)
. Assuming

that q ≥ 1, and that c0 is a large enough constant, we get that the running time is T (q) =

O
(
N q+1 · (q logN)c0q

2
)
, as required.

In the remainder of this subsection we focus on the proof of Theorem 8.4.3.

Proof of Theorem 8.4.3

One of the main technical tools in the proof of the theorem is composition of expanders that
we discuss next.

Composing Expanders. Suppose we are given a collection {G1, . . . , Gh} of disjoint graphs,
where for all 1 ≤ i ≤ h, the set V (Gi) of vertices, that is denoted by Vi, has cardinality at
least N . Let H be another graph, whose vertex set is {v1, . . . , vh}. An N-composition of H
with G1, . . . , Gh is another graph G, whose vertex set is

⋃h
i=1 Vi, and whose edge set consists

of two subsets: set E1 =
⋃h
i=1E(Gi), and another set E2 of edges, defined as follows: for

each edge e = (vi, vj) ∈ E(H), let M(e) be an arbitrary matching of cardinality N between
vertices of Vi and vertices of Vj. Then E2 =

⋃
e∈E(H) M(e). The following theorem shows

that, if each of the graphs G1, . . . , Gh is a ψ-expander, and graph H is a ψ′-expander, then
the resulting graph G is also an expander for an appropriately chosen expansion parameter.

216

Theorem 8.4.4

Let G1, . . . , Gh be a collection of h > 1 graphs, such that for each 1 ≤ i ≤ h, N ≤
|V (Gi)| ≤ γN , and Gi is a ψ-expander, for some N ≥ 1, γ ≥ 1, and 0 < ψ ≤ 1. Let H
be another graph with vertex set {v1, . . . , vh}, such that H is a ψ′-expander, and let ∆

be maximum vertex degree in H. Lastly, let G be a graph that is an N -composition
of H with G1, . . . , Gh. Then graph G is a ψ′′-expander, for ψ′′ = ψψ′/(16∆γ2).

Proof. For convenience, for all 1 ≤ i ≤ h, we denote V (Gi) by Vi. Let (A,B) be any partition
of V (G). It is sufficient to prove that |EG(A,B)| ≥ ψ′′ ·min {|A|, |B|}.

Consider any graph Gi, for 1 ≤ i ≤ h. We say that Gi is of type 1 if |Vi ∩ A| >(
1− 1

2γ

)
|Vi|, and we say that it is of type 2 if |Vi ∩B| >

(
1− 1

2γ

)
|Vi|. Notice that a graph

Gi cannot belong to both types simultaneously, and it is possible that it does not belong to
either type. Let N1 be the number of type-1 graphs Gi, and let N2 be the number of type-2
graphs. Assume w.l.o.g. that N1 ≤ N2. Let S ⊆ V (H) contain all vertices vi, such that Gi

is a type-1 graph, so |S| = N1. Since graph H is a ψ′-expander, |EH(S, V (H) \ S)| ≥ ψ′|S|.
We partition the set A of vertices into two subsets: set A′ contains all vertices that lie in

type-1 graphs Gi, and set A′′ contains all remaining vertices. Recall that graph G contains,
for every edge e = (vi, vj) ∈ EH(S, V (H) \ S), a collection M(e) of N edges, connecting
vertices of Vi to vertices of Vj. Consider any such edge e = (vi, vj), with vi ∈ S. Since
|Vi∩A| ≥

(
1− 1

2γ

)
|Vi|, and |Vi| ≤ γN , |Vi∩B| ≤ |Vi|

2γ
≤ N

2
. Therefore, at least N/2 edges of

M(e) have one endpoint in A′; the other endpoint of each such edge must lie in A′′ ∪B. We
conclude that |EG(A′, A′′ ∪ B)| ≥ N ·|EH(S,V (H)\S)|

2
≥ ψ′N |S|

2
. Since every graph Gi contains

between N and γN vertices, we get that |A′| ≤ γN |S|, and so |EG(A′, A′′ ∪ B)| ≥ ψ′|A′|
2γ

.
Since maximum vertex degree in H is ∆, every vertex in A′′ may be an endpoint of at most
∆ such edges.

We now consider two cases. First, if |A′′| ≤ ψ′|A′|/(4∆γ), then |EG(A′, A′′)| ≤ ∆|A′′| ≤
ψ′|A′|/(4γ). Therefore, |EG(A,B)| ≥ |EG(A′, B)| ≥ ψ′|A′|/(4γ) ≥ ψ′|A|/(8γ) ≥ ψ′′|A|.

Lastly, assume that |A′′| > ψ′|A′|/(4∆γ), so |A′′| ≥ ψ′|A|/(8∆γ). Consider any graph
Gi that is not a type-1 graph, so |Vi ∩ A| ≤

(
1− 1

2γ

)
|Vi|. If |Vi ∩ A| ≤ |Vi|/2, then there

are at least ψ|Vi ∩ A| edges of Gi in EG(A,B). Otherwise, there are at least ψ|Vi ∩ B|
edges of Gi in EG(A,B). Since |Vi ∩ B| ≥ |Vi|/2γ ≥ |Vi ∩ A|/(2γ), the number of edges
that Gi contributes to EG(A,B) is at least ψ|Vi ∩ B| ≥ ψ|Vi ∩ A|/γ. We conclude that
|EG(A,B)| ≥ ψ|A′′|/(2γ) ≥ ψψ′|A|/(16∆γ2) ≥ ψ′′|A|.

Proof Overview. We now provide an overview of the proof of Theorem 8.4.3, and set up
some notation.

In order to simplify the notation, we denote the input graph by G = (V,E), and we denote
|V | = n and |E| = m; recall that |E| = O(n log n). Let Ñ ′ = N q−1/2, and let Ñ =

⌊
n/Ñ ′

⌋
,

so Ñ ≤ 2N . Since N is an integral power of 2, Ñ ′ is an even integer. Moreover, from our

217

assumption that n ≥ N q−1/2, we get that Ñ ≥ 1.
We partition the set V of vertices into Ñ + 1 subsets V1, . . . , VÑ , VÑ+1, where sets

V1, . . . , VÑ have cardinality exactly Ñ ′ each, and the last set, that we denote by Z = VÑ+1

has cardinality less than Ñ ′. We call the vertices in Z the extra vertices.
The algorithm consists of three steps. In the first step, we construct expandersH1, . . . , HÑ ,

where for all 1 ≤ i ≤ Ñ , V (Hi) = Vi, that we attempt to embed into G. We will either suc-
ceed in embedding these expanders with a small congestion and a relatively small number of
fake edges, or we will compute the desired cut (X, Y) in G. In the second step, we construct
an expander H ′ whose vertex set is v1, . . . , vÑ , where we think of vertex vi as representing
the set Vi of vertices of G. We will attempt to embed graph H ′ into G, with a small number
of fake edges and low congestion, where every edge e = (vi, vj) of H ′ is embedded into Ñ ′

paths connecting vertices of Vi to vertices of Vj in G. If our algorithm fails to find such an
embedding, then we will again produce the desired cut (X, Y) in G. If, over the course of the
first two steps, the algorithm does not terminate with a cut (X, Y) in G, then we consider an
expander H∗, obtained by computing a Ñ ′-composition of H1, . . . , HN and of H ′, and then
adding the vertices of Z, together with a matching connecting every vertex of Z to some
vertex of V1 ∪ · · · ∪ VÑ to the resulting graph. The algorithm from the first two steps has
then computed an embedding of H∗ into G, with a relatively small number of fake edges. In
our last step, we compute a large subset S of vertices of G such that G[S] is a ψq-expander,
using Algorithm ExtractExpander from Lemma 8.2.6. We now proceed to describe each
of the three steps in turn. Throughout the algorithm, we use a parameter z = ψq−1n

c log8 n
, where

c is a large enough constant, whose value will be set later.

Step 1: Embedding Many Small Expanders. The goal of this step is to construct
a collection H = {H1, . . . , HÑ} of expanders, where for 1 ≤ i ≤ Ñ , V (Hi) = Vi, and to
compute an low-congestion embedding of all these expanders into G+F , where F is a small
set of fake edges for G. In other words, if we let H be the graph obtained by taking a
disjoint union of the graphs H1, . . . , HÑ , and the set Z of isolated vertices, then we will
attempt to compute an embedding of H into G. We will either find such an embedding,
that uses relatively few fake edges, or we will return a cut (X, Y) of G with the required
properties. We summarize this step in the following lemma.

Lemma 8.4.5

There is a deterministic algorithm that either computes a cut (X, Y) in G with
|X|, |Y | ≥ Ω

(
ψq−1·n
log8 n

)
and ΨG(X, Y) ≤ 1/100; or it constructs a collection H =

{H1, . . . , HÑ} of ψ̂-expanders, where for 1 ≤ i ≤ N , V (Hi) = Vi, and ψ̂ = ψq−1/2,
together with a set F of at most O(z log n) fake edges, and an embedding P of the
graph H = (

⋃
iHi)∪Z into G+ F , with congestion O(log5 n), such that every vertex

of G is incident to at most O(log n) edges of F . The running time of the algorithm is
O (N q+1 · poly log n) +O (N · log n) · T (q − 1).

218

Proof. The construction of the graphs H1, . . . , HÑ , and of their embedding into G is done
gradually, by running Ñ instances of the cut-matching game, in parallel. Initially, for each
1 ≤ i ≤ Ñ , we let the graph Hi contain the set Vi of vertices and no edges. Throughout
the algorithm, we denote by H = {H1, . . . , HÑ} the current collection of the expanders we
are constructing. We partition H into two subsets: set H′ of active graphs, and set H′′ of
inactive graphs. Initially, every graph Hi is active, so H′ = H and H′′ = ∅. Throughout the
algorithm, for every inactive graph Hi, we will maintain a subset Si ⊆ Vi of at least Ñ ′/2
vertices, such that graph Hi[Si] is a ψq−1-expander. Throughout the algorithm, we also let
H denote the graph obtained by taking the disjoint union of all graphs in H with a set Z of
isolated vertices. We will maintain an embedding P of H into G throughout the algorithm.
We will ensure that, throughout the algorithm, for all 1 ≤ i ≤ Ñ , the maximum vertex
degree in each graph Hi is at most cCMG log Ñ ′.

At the beginning of the algorithm, for each 1 ≤ i ≤ Ñ , graph Hi contains the set Vi of
vertices and no edges, so graph H consists of the set V of vertices and no edges. The initial
embedding is P = ∅, and every graph Hi is active.

As long as H′ 6= ∅, we perform iterations, where the jth iteration is executed as follows.
We apply algorithm A(q − 1) to every graph Hi ∈ H′ separately. Observe that each such
graph contains Ñ ′ ≤ N q−1 vertices, and has maximum vertex degree at most cCMG log Ñ ′.
For each such graph Hi, if the outcome is a subset Si ⊆ Vi of vertices, such that |Si| ≥ Ñ ′/2

and Hi[Si] is a ψq−1-expander, then we add Hi to the set H′′ of inactive graphs, and store the
set Si of vertices with it. Let Ĥ ⊆ H′ be the collection of all remaining active graphs, so for
each graph Hi ∈ Ĥ, the algorithm has computed a cut (Ai, Bi) with |Ai|, |Bi| ≥ Ñ ′/4, and
|EHi(Ai, Bi)| ≤ Ñ ′/100. We assume without loss of generality that |Ai| ≤ |Bi|. Let (A′i, B

′
i)

be any partition of Vi with |A′i| = |B′i|, such that Ai ⊆ A′i. We treat the partition (A′i, B
′
i)

as the move of the cut player in the cut-matching game corresponding to the graph Hi.
For convenience, we assume w.l.o.g. that Ĥ = {H1, . . . , Hk}. In order to implement the

response of the matching player, we apply Algorithm RouteOrCut from Corollary 8.3.7 to
graph G, the sets
A′1, B

′
1, . . . , A

′
k, B

′
k of vertices, and parameters ψ = 1/100 and z (recall that we have de-

fined z = ψq−1n

c log8 n
for some large enough constant c). We now consider two cases. If Algorithm

RouteOrCut from Corollary 8.3.7 returns a cut (X, Y) of G with |X|, |Y | ≥ z/2 and
ΨG(X, Y) ≤ ψ, then we say that the current iteration terminates with a cut. In this case,
we terminate the algorithm, and return (X, Y) as its outcome; it is immediate to verify
that this cut has the required properties. In the second case, we obtain a partial routing
(M ′ =

⋃k
i=1M

′
i ,P ′) of the sets A′1, B′1, . . . , A′k, B′k of vertices, where |M ′| ≥ kÑ ′/2 − z (re-

call that for all i, |A′i| = |Vi|/2 = Ñ ′/2). The congestion of the embbedding is at most
O(∆2 log2 n/ψ2) = O(log4 n). We then say that the current iteration has terminated with a
routing.

Consider now some index 1 ≤ i ≤ k, and let A′′i ⊆ A′i and B′′i ⊆ B′i be the subsets
of vertices that do not participate in the matching M ′

i . Let M ′′
i be an arbitrary perfect

matching between the vertices of A′′i and the vertices of B′′i , and let Fi be a set of fake edges

219

Fi = {(u, v) | (u, v) ∈M ′′
i }. For every pair (u, v) ∈ M ′′

i , we embed the pair (u, v) into the
corresponding fake edge (u, v) ∈ Fi. Let M j

i = M ′
i ∪M ′′

i . We add the edges of M j
i to graph

Hi.
Denote M j =

⋃k
i=1M

j
i , and let F j =

⋃k
i=1 Fi be the resulting set of fake edges; recall

that |F j| ≤ z. Let Pj be the embedding of all edges in M j that is obtained from the partial
routing P ′, by adding the embeddings of all fake edges to it. Observe that we have now
obtained an embedding Pj of all edges of M j into G + F j, with congestion O(log4 n). We
add the paths of Pj to the embedding P of the current graph H, and continue to the next
iteration.

Our algorithm can therefore be viewed as running Ñ parallel copies of the cut-matching
game. From Theorem 8.2.2, the number of iterations is bounded by cCMG log Ñ ′, and so for
every graph Hi, its maximum vertex degree is always bounded by cCMG log Ñ ′. The algorithm
terminates once all graphs Hi become inactive. Recall that for each such graph Hi, we are
given a subset Si of its vertices, such that |Si| ≥ |Vi|/2, and Hi[Si] is a ψq−1-expander. We
perform one last iteration, whose goal is to turn each graph Hi into an expander, by adding a
new set of edges to it, while simultaneously embedding these edges into the graph G together
with a small number of fake edges, or find a cut (X, Y) as required. Let r − 1 denote the
index of the last iteration before every graph Hi becomes inactive.

Last Iteration. For each 1 ≤ i ≤ Ñ , we let Bi = Si and Ai = Vi \ Si, so that |Ai| ≤
|Bi| holds. We apply Algorithm RouteOrCut from Corollary 8.3.7 to graph G, the sets
A1, B1, . . . , AÑ , BÑ of vertices, and parameters ψ = 1/100 and z. The remainder of the
iteration is executed exactly as before. If Algorithm RouteOrCut from Corollary 8.3.7
returns a cut (X, Y) of G with |X|, |Y | ≥ z/2 and ΨG(X, Y) ≤ ψ, then we terminate the
algorithm and return this cut. Otherwise, we obtain a partial routing (M ′ =

⋃Ñ
i=1M

′
i ,P ′)

of the sets A1, B1, . . . , AÑ , BÑ of vertices, where |M ′| ≥
∑Ñ

i=1 |Ai| − z, whose congestion is
at most O(log4 n) as before.

Consider some index 1 ≤ i ≤ Ñ , and let A′i ⊆ Ai and B′i ⊆ Bi be the subsets of vertices
that do not participate in the matchingM ′

i . LetM ′′
i be an arbitrary matching, in which every

vertex of A′i is matched to some vertex of B′i, and let Fi be a set of fake edges corresponding
to this matching M ′′

i , defined as before. For every pair e = (u, v) ∈ M ′′
i , we embed the fake

edge e into the path P (e) = (e). Let M r
i = M ′

i ∪M ′′
i . We add the edges of M r

i to graph Hi.
Denote M r =

⋃Ñ
i=1 M

r
i , and let F r =

⋃Ñ
i=1 Fi be the resulting set of fake edges; as before

|F r| ≤ z. Let Pr be the embedding of all edges in M r that is obtained from the partial
routing P ′, by adding the embeddings of all fake edges to it. As before, we have obtained an
embedding Pr of all edges of M r into G+ F r, with congestion O(log4 n). We add the paths
of Pr to the embedding P of the current graph H. It is not hard to see that every graph
Hi ∈ H is now a ψq−1/2-expander.

Recall that the congestion incurred by each path set Pj of edges is O(log4 n), and, since
the number of iterations is O(log n), the embedding P causes congestion O(log5 n). The

220

total number of fake edges in F =
⋃r
j=1 F

j is O(z log n). Since each set F j of fake edges is
a matching, every vertex of G is incident to O(log n) fake edges.

We now analyze the running time of the algorithm. As observed before, the algorithm
has O(log n) iterations. In every iteration, we apply algorithm A(q − 1) to Ñ = O(N)

graphs. Additionally, we use Algorithm RouteOrCut from Corollary 8.3.7, whose running
time is Õ(k|E(G)|/ψ3 + kn/ψ2) = Õ(kn), where k is the number of vertex subsets. Since
k ≤ |H| = Ñ ≤ N , this running time is bounded by Õ(Nn) = Õ(N q+1). Therefore, the total
running time of the algorithm is Õ (N q+1) +O (N log n) · T (q − 1).

Step 2: Embedding One Large Expander. We use Lemma 8.2.1 to construct, in time
O(Ñ), a ψ∗-expander H ′ = HÑ on Ñ vertices, with ψ∗ = Ψ(H ′) = Ω(1), such that maximum
vertex degree in H ′ is at most 9. For convenience, we denote V (H ′) = {v1, . . . , vÑ}. The
main part of this step is summarized in the following lemma.

Lemma 8.4.6

There is a deterministic algorithm, that either computes a cut (X, Y) in G with
|X|, |Y | ≥ Ω

(
ψq−1·n
log8 n

)
and ΨG(X, Y) ≤ 1/100; or it computes a collection F ′ of at

most 17z fake edges in G, and, for every edge e = (vi, vj) ∈ E(H ′) a set P(e) of Ñ ′

paths in G + F ′, such that every path in P(e) connects a vertex of Vi to a vertex of
Vj, and the endpoints of the paths in P(e) are disjoint. Moreover, every vertex of G
is incident to at most 17 fake edges in F ′, and every edge of G ∪ F ′ participates in at
most O(log4 n) paths in

⋃
e∈E(H′)P(e). The running time of the algorithm is Õ (N q+1).

Proof. Using a standard greedy algorithm, and the fact that the maximum vertex degree in
H ′ is at most 9, we can partition the set E(H ′) of edges into 17 matchings, M1, . . . ,M17.
We then perform up to 17 iterations; in each iteration i, we will either compute a small set
F i of fake edges for G, and the sets P(e) of paths for all edges e ∈ Mi, in graph G+ F i, or
we will compute the cut (X, Y) in G with the required properties.

In order to execute the ith iteration, we consider the set Mi of edges of H ′, and denote,
for convenience, Mi = {e1, . . . , eki}. For each 1 ≤ j ≤ ki, if ej = (vz, vz′), then we define
Aj = Vz and Bj = Vz′ . Observe that |Ai| = |Bj| = Ñ ′, and the resulting vertex sets
A1, B1, . . . , Aki , Bki are all disjoint.

We apply Algorithm RouteOrCut from Corollary 8.3.7 to graph G, the sets
A1, B1, . . . , Aki , Bki of vertices, and parameters ψ = 1/100 and z (as defined before, z =
ψq−1n

c log8 n
). If Algorithm RouteOrCut returns a cut (X, Y) of G with |X|, |Y | ≥ z/2 and

ΨG(X, Y) ≤ ψ, then we terminate the algorithm and return this cut; it is easy to verify
that cut (X, Y) has all required properties. In this case we say that the iteration termi-
nates with a cut. Otherwise, we obtain a partial routing (M̂i =

⋃
e∈Mi

M̂(e), P̂i) of the sets
A1, B1, . . . , Aki , Bki of vertices, where |M̂i| ≥

∑ki
j=1 |Aj| − z, whose congestion is at most

221

O(∆2 log2 n/ψ2) = O(log4 n). In this case we say that the iteration terminates with a rout-
ing. Consider now some edge ej ∈ Mi. Let A′j ⊆ Aj, B′j ⊆ Bj be the subsets of vertices
that do not participate in the matching M̂(ej). Let M̂ ′(ej) be an arbitrary perfect match-
ing between A′j and B′j, and let F i

j be the corresponding set of fake edges for graph G (so
for every edge e ∈ M̂ ′(ej), we add an edge with the same endpoints to F i

j). Finally, set
M̂ ′′(ej) = M̂j ∪ M̂ ′

j. Let F i =
⋃ki
j=1 F

i
j ; recall that |F i| ≤ z. Let P ′i be the set of paths

routing the edges of F i, where for each edge e ∈ F i, the corresponding path P (e) ∈ P ′i
consists of the edge e. Lastly, let P̂ ′′i = P̂i ∪ P̂ ′i. Note that P̂ ′′i is the routing of all edges in
M̂ ′′

i ∪ F i in graph G+ F i, that causes edge-congestion at most O(log4 n).
If any iteration of the algorithm terminated with a cut, then we terminate the algorithm

and return the corresponding cut. We assume from now on that every iteration of the
algorithm terminated with a routing. Setting F ′ =

⋃17
i=1 F

i, we obtain the desired routing
of the edges of H ′ in graph G + F ′, with congestion O(log4 n). Since, for every 1 ≤ i ≤ 17,
the edges of F i form a matching, every vertex of G is incident to at most 17 such edges.

Recall that the running time of Algorithm RouteOrCut from Corollary 8.3.7 is
Õ(k|E(G)|/ψ3 + kn/ψ2) = Õ(kn) = Õ(kN q), where k is the number of pairs of sets that we
need to route. Since k ≤ |V (H ′)| ≤ Ñ ≤ O(N), and the number of iterations is at most 17,
we get that the running time of the algorithm is Õ (N q+1).

Finally, we need the following claim, in order to connect the set Z of extra vertices to
the remaining vertices of G.

Claim 8.4.7

There is a deterministic algorithm, that either computes a cut (X, Y) in G with
|X|, |Y | ≥ Ω

(
ψq−1·n
log8 n

)
and ΨG(X, Y) ≤ 1/100; or it computes a matching M con-

necting every vertex of Z to a distinct vertex of V (G) \ Z, a collection F ′′ of at most
z fake edges in G, and a set P ′′ = {P (e) | e ∈M} of paths in G + F ′′, such that, for
each edge e = (u, v) ∈ M , path P (e) connects u to v. Moreover, every vertex of G is
incident to at most one fake edge in F ′′, and every edge of G ∪ F ′′ participates in at
most O(log4 n) paths in P ′′. The running time of the algorithm is Õ (N q).

Proof. We apply Algorithm RouteOrCut from Corollary 8.3.7 to graphG, the setsA1 = Z,
B1 = V (G) \ Z of vertices, parameter ψ = 1/100, and parameter z. If the outcome of
Algorithm RouteOrCut is a cut (X, Y) of G with |X|, |Y | ≥ z/2 and ΨG(X, Y) ≤ ψ, then
we return this cut; it is immediate to verify that cut (X, Y) has the required properties.
Otherwise, we obtain a routing (M ′,P ′) of the sets A1, B1, with |M ′| ≥ |Z| − z. The
congestion of the routing is at most O(∆2 log2 n/ψ2) = O(log4 n). We let Z ′ ⊆ Z be the
set of all vertices of Z that do not participate in the matching M ′, and we let M ′′ be an
arbitrary matching that matches every vertex of Z ′ to a distinct vertex of V (G) \ Z, such
that M = M ′ ∪M ′′ is a matching; such a set M ′′ exists since Z contains at most half the
vertices of G. We let F ′′ be a set of fake edges for G corresponding to the edges of M ′′, so

222

every edge e = (u, v) ∈M ′′ is also added to F ′′. We let P (e) be the path that only consists
of the edge e, and we treat P (e) as the embedding of e.

We now obtained a set F ′′ of at most z fake edges, and every vertex of G is incident
to at most one such fake edge. We also obtained an embedding P ′′ = P ′ ∪ {P (e) | e ∈ F ′′}
of M into G with congestion O(log4 n). The running time of Algorithm RouteOrCut is
Õ(∆3|E(G)|/ψ3 + n/ψ2) = Õ(n) = Õ(N q).

If the algorithm from Lemma 8.4.6 or the algorithm from Claim 8.4.7 produce a cut (X, Y)

in G with |X|, |Y | ≥ Ω
(
ψq−1·n
log8 n

)
and ΨG(X, Y) ≤ 1/100, then we terminate the algorithm

and return this cut. Otherwise, consider the following graph H∗: we start by letting H∗

be a disjoint union of the graphs H1, . . . , HÑ constructed in the first step. Additionally, for
every edge e = (vi, vj) ∈ E(H ′), for every path P ∈ P(e), whose endpoints are x ∈ Vi,
y ∈ Vj, we add the edge (x, y) to E(H∗). It is immediate to verify that graph H∗ is an
N ′-composition of H1, . . . , HÑ , and graph H ′. Recall that for all 1 ≤ i ≤ N , graph Hi is
a ψq−1/2-expander, while graph H ′ is a ψ∗-expander, for some ψ∗ = Ω(1). The maximum
vertex degree in H ′ is bounded by 9. Therefore, from Theorem 8.4.4, graph H∗ is a ψ′-
expander, for ψ′ = ψq−1ψ

∗/O(log n) = Ω(ψq−1/ log n). Note that the maximum vertex
degree in H∗ is O(log n). Lastly, we add to graph H∗ the set Z of extra vertices as isolated
vertices, and the matching M that was computed in Claim 8.4.7. Observe that graph H∗

is a ψ′/2-expander, where ψ′ = Ω(ψq−1/ log n); to simplify the notation, we say that H∗ is
a ψ′-expander, adjusting the value of ψ′ accordingly. Let F ∗ = F ∪ F ′ ∪ F ′′ be the union
of the sets of fake edges computed by the algorithms from Lemma 8.4.5, Lemma 8.4.6, and
Claim 8.4.7. Recall that |F ∗| = O(z log n), where z = ψq−1n

c log8 n
for some large enough constant

c.
We denote by ∆G the maximum vertex degree of G+ F ∗. Since the set F ∗ of fake edges

consists of O(log n) matchings, ∆G = O(log n).
By combining the outcomes of the algorithms from Lemma 8.4.5, Lemma 8.4.6, and

Claim 8.4.7, we obtain an embedding of H∗ into G+ F ∗ with congestion at most O(log5 n).
The maximum vertex degree in H∗, that we denote by ∆H∗ , is O(log n). The maximum
vertex degree in G+ F ∗, that we denote by ∆G, is O(log n). Note that the running time of
the algorithm so far is O (N q+1 · poly log n) +O (N · log n) · T (q − 1).

Step 3: Obtaining the Final Expander. In this step, we apply Algorithm Extract-
Expander from Lemma 8.2.6 to graphs G and H∗, the set F ∗ of fake edges, and the
embedding of H∗ into G+F ∗ with congestion at most η = O(log5 n). We need first to verify
that |F ∗| ≤ ψ′n

32∆Gη
. Recall that ψ′ = Ω(ψq−1/ log n), ∆G = O(log n), and η = O(log5 n).

Therefore, ψ′n
32∆Gη

≥ Ω
(
ψq−1n

log7 n

)
, while |F ∗| ≤ O(log n) · ψq−1n

c log8 n
. Setting the constant c to be

large enough, we can ensure that the inequality indeed holds.
Recall that Algorithm ExtractExpander from Lemma 8.2.6 computes a subgraph

G′ ⊆ G, that is a ψ′′-expander, for ψ′′ ≥ ψ′

6∆G·η
= Ω

(
ψq−1

log7 n

)
, as ψ′ = Ω(ψq−1/ log n). Recall

223

also that ψq−1 = 1/((q − 1) logN)8(q−1), and n ≤ N q. Therefore:

ψ′′ ≥ Ω

(
1

((q − 1) logN)8(q−1) · (q logN)7

)
≥ 1

(q logN)8q
= ψq.

Note that the number of vertices in G′ is at least: n − 4|F ∗|η
ψ′

. Since 4|F ∗|η
ψ′
≤ O

(
z log7 n
ψq−1

)
and z = ψq−1n

c log8 n
, letting c be a large enough constant, we can ensure that |V (G′)| ≥ 2n/3, as

required.
The running time of Algorithm ExtractExpander is Õ(|E(G)|∆G ·η/ψ′) = Õ(n/ψq−1)

= Õ(N q · (q logN)8q).
By combining all three steps together, we obtain total running time

O
(
N q+1 · (q logN)8q+O(1)

)
+O (N · log n) · T (q − 1), as required.

8.5 A Slower Algorithm for BalCutPrune

In this section we prove the following:
Theorem 8.5.1

There is a universal constant c, and a deterministic algorithm, that, given an n-vertex
m-edge graph G = (V,E), a parameter 0 < φ < 1, and another parameter r ≤ c logm,
returns a cut (A,B) in G with |EG(A,B)| ≤ φ · vol(G), such that:

• either volG(A),volG(B) ≥ vol(G)/3; or
• volG(A) ≥ 7

12
· vol(G), and the graph G[A] has conductance φ′ ≥ φ/ logO(r) m.

The running time of the algorithm is O
(
m1+O(1/r) · (logm)O(r2)/φ2

)
.

From the definition of the BalCutPrune problem from Definition 8.1.1, this implies a
slower version of Theorem 8.1.2 when the conductance parameter φ is low:

Corollary 8.5.2: Deterministic BalCutPrune algorithm

There is a deterministic algorithm, that, given a graphG withm edges, and parameters
φ ∈ (0, 1], 1 ≤ r ≤ O(logm), and α = (logm)O(r), computes an α-approximate solution
to instance (G, φ) of BalCutPrune in time O

(
m1+O(1/r) · (logm)O(r2)/φ2

)
.

While the above algorithm can significantly slower than the one from Theorem 8.1.2
when the conductance parameter φ is low, many of our applications only need to solve the
BalCutPrune problem for relatively high values of φ, and so the algorithm from Theorem 8.5.1
is sufficient for them. In particular, we will use this algorithm in order to obtain fast
deterministic approximation algorithms for max s-t flow, which will then in turn be used in
order to obtain the full proof of Theorem 8.1.2. The remainder of this section is dedicated
to the proof of Theorem 8.5.1.

224

Two key ingredients in the proof are an extension of Theorem 8.1.3 to smaller sparsity
regime, and a degree reduction procedure, that are discussed in the next two subsections,
respectively.

8.5.1 Extension of Theorem 8.1.3 to Smaller Sparsity

The algorithm from Theorem 8.1.3 only guarantees to find a cut with sparsity at most 1/25.
In this subsection, we show an extension of Theorem 8.1.3 that is given a target sparsity
parameter ψ (which can be much smaller than 1/25), and if the algorithm returns a cut,
then that cut has sparsity at most ψ:

Lemma 8.5.3

There is a deterministic algorithm, that, given an n-vertex graph G = (V,E), with
maximum vertex degree ∆, parameters 0 < ψ < 1, z ≥ 0 and r ≥ 1, such that
n1/r ≥ N0 (where N0 is the constant from Theorem 8.1.3), returns one of the following:

• either a cut (X, Y) in G with |X|, |Y | ≥ z/∆ and ΨG(X, Y) ≤ ψ; or
• a graph H with V (H) = V (G), that is a ψr(n)-expander (for ψr(n) =

1/(log n)O(r)), together with a set F of at most O(z log n) fake edges for G,
and an embedding of H into G+F with congestion at most O(∆ log n/ψ), such
that every vertex of G is incident to at most O(log n) edges of F .

The running time of the algorithm is Õ
(
n1+O(1/r) · (log n)O(r2) + n∆2/ψ

)
.

Proof. If the number of vertices in graph G is odd, then we add an additional new vertex
v0, and we connect it to an arbitrary vertex of G with a fake edge. For simplicity, the new
number of vertices is still denoted by n.

Our algorithm runs the cut-matching game, as follows. We start with a graph H, whose
vertex set is V , and whose edge set is empty, and then perform iterations. Throughout the
algorithm, we will ensure that the maximum vertex degree in H is O(log n).

Iteration i is executed as follows. We apply Algorithm CutOrCertify from Theo-
rem 8.1.3 to graph H. We now consider two cases. In the first case, the outcome is a cut
(Ai, Bi) in H, with |Ai|, |Bi| ≥ n/4 and |EH(Ai, Bi)| ≤ n/100. Let (A′i, B

′
i) be any partition

of V with Ai ⊆ A′i, Bi ⊆ B′i, and |A′i| = |B′i|. We apply Algorithm RouteOrCut-1Pair
from Theorem 8.3.8 to graph G, with the vertex sets A′i, B′i, and parameters z and ψ. If the
outcome is a cut (X, Y) in G with |X|, |Y | ≥ z/∆ and ΨG(X, Y) ≤ ψ, then we terminate
the algorithm and return this cut as its outcome. Otherwise, we obtain a partial routing
(Mi,Pi) of the sets A′i, B′i, of value at least |A′i| − z, that causes congestion at most 4∆/ψ.
Let A′′i ⊆ A′i, B′′i ⊆ B′i be subsets of vertices that do not participate in the matching Mi. Let
M ′

i be an arbitrary perfect matching between A′′i and B′′i , and let Fi be a set of fake edges
corresponding to the matching M ′

i (so every edge in the matching becomes a fake edge).
For every edge e ∈ Fi, we also let P (e) be a path consisting of only the fake edge e. Let

225

M ′′
i = Mi ∪M ′

i , and let P ′i = Pi ∪ {P (e) | e ∈ Fi}. Then M ′′
i is a perfect matching between

A′i and B′i, and P ′i is a routing of this matching in G ∪ Fi, with congestion at most 4∆/ψ.
We add the edges of M ′′

i to H, and continue to the next iteration.
Consider now the second case, where the outcome of Algorithm CutOrCertify from

Theorem 8.1.3 is a subset S ⊆ V of at least n/2 vertices, such that Ψ(G[S]) ≥ ψr(n).
Let i∗ be the index of the current iteration. We then let Bi∗ = S and Ai∗ = V \ S; note
that |Ai∗| ≤ |Bi∗| must hold. We again employ Algorithm RouteOrCut-1Pair from
Theorem 8.3.8, with the vertex sets Ai∗ , Bi∗ , and parameters z and ψ. If the outcome is a
cut (X, Y) in G with |X|, |Y | ≥ z/∆ and ΨG(X, Y) ≤ ψ, then we terminate the algorithm
and return this cut as its outcome. Otherwise, we obtain a partial routing (Mi∗ ,Pi∗) of the
sets Ai∗ , Bi∗ , of value at least |Ai∗ | − z, that causes congestion at most 4∆/ψ. As before, we
let A′i∗ ⊆ Ai∗ , B′i∗ ⊆ Bi∗ be subsets of vertices that do not participate in the matching Mi∗ .
Let M ′

i∗ be an arbitrary matching, that matches every vertex of A′i∗ to some vertex of B′i∗ ,
and let Fi∗ be a set of fake edges corresponding to the matching M ′

i∗ . As before, for every
edge e ∈ Fi∗ , we let P (e) be a path consisting of only the fake edge e. Let M ′′

i∗ = Mi∗ ∪M ′
i∗ ,

and let P ′i∗ = Pi∗ ∪ {P (e) | e ∈ Fi∗}. Then M ′′
i∗ matches every vertex of Ai∗ to a distinct

vertex of Bi∗ , and P ′i∗ is a routing of this matching in G∪Fi∗ , with congestion at most 4∆/ψ.
We add the edges of M ′′

i∗ to H, and terminate the algorithm.
Observe that, if the algorithm never terminates with a cut (X, Y) with |X|, |Y | ≥ z/∆

and ΨG′(X, Y) ≤ ψ, then the final graph H is a ψr(n)/2-expander. Moreover, if we let
F =

⋃i∗

i=1 Fi, together with an additional fake edge incident to v0 if the initial number of
vertices in G was odd, and P =

⋃i∗

i=1P ′i, then P is an embedding of H into G + F . From
Theorem 8.2.2, the number of iterations in the algorithm is bounded by O(log n). Since, for
all i, edge set Fi is a matching, every vertex of G is incident to O(log n) edges of F . Since
every set Fi contains at most z edges, |F | = O(z log n). Lastly, since every set P ′i of paths
causes congestion O(∆/ψ), the paths in P cause congestion O(∆ log n/ψ). It now remains
to bound the running time of the algorithm.

The algorithm performs O(log n) iterations. Each iteration requires running the Algo-
rithm CutOrCertify from Theorem 8.1.3, which takes time O

(
n1+O(1/r) · (log n)O(r2)

)
,

and Algorithm RouteOrCut-1Pair from Theorem 8.3.8, that takes time Õ (n∆2/ψ).
Therefore, the total running time of the algorithm is: Õ

(
n1+O(1/r) · (log n)O(r2) + n∆2/ψ

)
.

8.5.2 Degree Reduction

Assume that we are given a graph G = (V,E) with |V | = n and |E| = m, that we view as an
input to the BalCutPrune problem. In this subsection we show a deterministic algorithm, that
we call ReduceDegree, that has running time O(m), and transforms G into a bounded-
degree graph Ĝ. We also provide an algorithm that transforms any sparse balanced cut in a
subgraph of Ĝ into a “nice” cut, that corresponds to a sparse balanced cut in a subgraph of

226

G.
We first describe Algorithm ReduceDegree for constructing the graph Ĝ. For conve-

nience, we denote V = {v1, . . . , vn}. For every vertex vi ∈ V , we let deg(vi) denote the degree
of vi in G, and we let

{
e1(vi), . . . , edeg(vi)(vi)

}
be the set of edges incident to v, indexed in

an arbitrary order. For every vertex vi ∈ V , we use Lemma 8.2.1 to construct a graph Hi

on a set Vi of deg(vi) vertices, that is an α0-expander, for some constant α0, such that the
maximum vertex degree in Hi is at most 9. Recall that the running time of the algorithm for
constructing Hi is O(deg(vi)). We denote the vertices of Hi by Vi =

{
u1(vi), . . . , udeg(vi)(vi)

}
.

In order to obtain the final graph Ĝ, we start with a disjoint union of all graphs in
{Hi | vi ∈ V }. All edges lying in such graphs Hi are called type-1 edges. Additionally, we
add to Ĝ a collection of type-2 edges, defined as follows. Consider any edge e = (v, v′) ∈ E,
and assume that e = ej(v) = ej′(v

′) (that is, e is the jth edge incident to v and it is the j′th
edge incident to v′). We then let ê be the edge (uj(v), uj′(v)). For every edge e ∈ E, we add
the corresponding new edge ê to graph Ĝ as a type-2 edge. This concludes the construction
of the graph Ĝ, that we denote by Ĝ = (V̂ , Ê). Note that the maximum vertex degree in Ĝ
is at most 10, and |V̂ | = 2m. Moreover, the running time of the algorithm for constructing
the graph Ĝ is O(m).

We say that a subset S ⊆ V̂ of vertices is canonical iff for every vertex vi ∈ V , either
Vi ⊆ S, or Vi ∩ S = ∅. Similarly, we say that a cut (X, Y) in a subgraph of Ĝ is canonical
iff each of X, Y is a canonical subset of V̂ . The following lemma allows us to convert an
arbitrary sparse balanced cuts in a subgraph of Ĝ into a canonical one.

Lemma 8.5.4

Let α0 > 0 be the constant from Lemma 8.2.1. There is a deterministic algorithm,
that we call MakeCanonical, that, given a subgraph Ĝ′ ⊆ Ĝ, where V (Ĝ′) is a
canonical vertex set, and a cut (A,B) in Ĝ′, computes, in time O(m), a canonical cut
(A′, B′) in Ĝ′, such that |A′| ≥ |A|/2, |B′| ≥ |B|/2, and moreover, if |EĜ(A,B)| ≤
ψmin {|A|, |B|}, for ψ ≤ α0/2, then |EĜ(A′, B′)| ≤ O(|EĜ(A,B)|).

Proof. We start with the cut (Â, B̂) = (A,B) in graph Ĝ′ and then gradually modify it, by
processing the vertices of V (G) one-by-one. When a vertex vi is processed, if Vi∩V (Ĝ′) 6= ∅,
we move all vertices of Vi to either Â or B̂. Once every vertex of V (G) is processed, we
obtain the final cut (A′, B′), that will serve as the output of the algorithm.

Consider an iteration when some vertex vi ∈ V (G) is processed, and assume that Vi ⊆
V (Ĝ′). Denote Ai = A ∩ Vi and Bi = B ∩ Vi. If |Ai| ≥ |Bi|, then we move all vertices
of Bi to Â, and otherwise we move all vertices of Ai to B̂. Assume w.l.o.g. that the
latter happened (the other case is symmetric). Note that the only new edges that are
added to the cut EĜ(Â, B̂) are type-2 edges that are incident to the vertices of Ai. The
number of such edges is bounded by |Ai|. The edges of EHi(Ai, Bi) belonged to the cut
EĜ(Â, B̂) before the current iteration, but they do not belong to the cut at the end of
the iteration. Since Hi is an α0-expander, we get that |Ai| ≤ |EHi(Ai, Bi)|/α0. Therefore,

227

the increase in |EĜ(Â, B̂)|, due to the current iteration is bounded by |EHi(Ai, Bi)|/α0.
We charge the edges of EHi(Ai, Bi) for this increase; note that these edges will never be
charged again. The algorithm terminates once all vertices of V (G) are processed. Let
(A′, B′) denote the final cut (Â, B̂). From the above discussion, we are guaranteed that
|EĜ(A′, B′)| ≤ |EĜ(A,B)|+

∑
vi∈V (G) |EHi(Ai, Bi)|/α0 ≤ O(|EĜ(A,B)|).

Next, we claim that |A′| ≥ |A|/2 and that |B′| ≥ |B|/2. We prove this for |A′|; the proof
for |B′| is symmetric. Indeed, assume otherwise. Let V ′ ⊆ V be the set of all vertices vi,
such that, when the algorithm processed vi, the vertices of Ai were moved from Â to B̂,
and let ni = |Ai|. Then

∑
vi∈V ′ ni > |A|/2 must hold. Notice however that for a vertex

vi ∈ V ′, |EHi(Ai, Bi)| ≥ α0|Ai| = α0ni must hold. Therefore, graph Hi contributed at least
α0ni edges to the original cut EĜ(A,B). Since we are guaranteed that |EĜ(A,B)| ≤ ψ · |A|,
we get that

∑
vi∈V ′ α0ni ≤ ψ · |A|, and so

∑
vi∈V ′ ni ≤ ψ · |A|/α0 ≤ |A|/2, since we have

assumed that ψ ≤ α0/2. But this contradicts the fact that we established before, that∑
v∈V ′ ni > |A|/2.

8.5.3 Completing the Proof of Theorem 8.5.1

We prove the following theorem, from which Theorem 8.5.1 immediately follows.

Theorem 8.5.5

There is a universal constantN ′0, and a deterministic algorithm, that, given an n-vertex
m-edge graph G = (V,E), a parameter 0 < φ < 1, and another parameter r ≥ 1, such
that m1/r ≥ N ′0, returns a cut (A,B) in G with |EG(A,B)| ≤ φ · vol(G), such that:

• either volG(A),volG(B) ≥ vol(G)/3; or
• volG(A) ≥ 7

12
· vol(G), and the graph G[A] has conductance φ′ ≥ φ/ logO(r) m.

The running time of the algorithm is O
(
m1+O(1/r) · (logm)O(r2)/φ2

)
.

In order to complete the proof of Theorem 8.5.1, we let c be a large enough constant, so
that m1/(c logm) ≥ N ′0 holds. We then apply the algorithm from Theorem 8.5.5 to the input
graph G and the parameter r. In the remainder of this section we focus on the proof of
Theorem 8.5.5.
Proof of Theorem 8.5.5. We denote by ψr(n) = 1/ logO(r) n the parameter from Theo-
rem 8.1.3 (that is, when Algorithm CutOrCertify from Theorem 8.1.3 returns a set S
of at least n/2 vertices, then Ψ(G[S]) ≥ ψr(n) holds). Throughout the proof, we use two
parameters: ψ = φ/ĉ, and z = φm

ĉ(logm)ĉr
, where ĉ is a large constant to be set later. We also

set N ′0 = 4N0, where N0 is the universal constants from Theorem 8.1.3.
We start by using Algorithm ReduceDegree described in Section 8.5.2, in order to

construct, in time O(m), a graph Ĝ whose maximum vertex degree is bounded by 10, and
|V (Ĝ)| = 2m. Denote V (G) = {v1, . . . , vn}. Recall that graph Ĝ is constructed from graph
G by replacing each vertex vi with an α0-expander Hi on degG(vi) vertices, where α0 = Θ(1).

228

For convenience, we denote the set of vertices of Hi by Vi. Therefore, V (Ĝ) is a union of the
sets V1, . . . , Vn of vertices. Consider now some subset S of vertices of Ĝ. Recall that we say
that S is a canonical vertex set iff for every 1 ≤ i ≤ n, either Vi ⊆ S or Vi ∩ S = ∅ holds.

The algorithm performs a number of iterations. We maintain a subgraph Ĝ′ ⊆ Ĝ; at the
beginning of the algorithm, Ĝ′ = Ĝ. In the ith iteration, we compute a canonical subset
Si ⊆ V (Ĝ′) of vertices, and then update the graph Ĝ′, by deleting the vertices of Si from it.
The iterations are performed as long as |

⋃
i Si| < |V (Ĝ)|/3.

In order to execute the ith iteration, we consider the current graph Ĝ′, denoting |V (Ĝ′)| =
n′. Note that, since we assume that |

⋃
i′<i Si′ | < |V (Ĝ)|/3, we get that n′ ≥ 2|V (Ĝ)|/3.

From our choice of parameter N ′0, we are guaranteed that (n′)1/r ≥ N0. We can now apply
Lemma 8.5.3 to graph Ĝ′, with the parameters r, ψ and z. Recall that the maximum
vertex degree in Ĝ′ is ∆ ≤ 10. Assume first that the outcome is a cut (X, Y) in Ĝ′ with
|X|, |Y | ≥ z/∆ ≥ z/10 and ΨĜ′(X, Y) ≤ ψ. We say that the iteration terminates with a
cut in this case. By setting ĉ to be a large enough constant, we can ensure that ψ ≤ α0/2

where α0 is the constant from Lemma 8.2.1. We use the algorithm MakeCanonical from
Lemma 8.5.4 to compute, in time O(m), a canonical partition (X ′, Y ′) of V (Ĝ′), such that
|X ′|, |Y ′| ≥ Ω(z), and |EĜ′(X ′, Y ′)| ≤ O(|EĜ′(X, Y)|). Assume w.l.o.g. that |X ′| ≤ |Y ′|. We
are then guaranteed that |X ′| ≥ Ω(z), and that for some constant µ, |EĜ′(X ′, Y ′)| ≤ µψ|X ′|,
or equivalently, ΨĜ′(X

′, Y ′) ≤ µψ. We set Si = X ′, delete the vertices of Si from Ĝ′,
and continue to the next iteration. Observe that set V (Ĝ′) of vertices remains canonical.
Otherwise, the outcome of Lemma 8.5.3 is a graph H with V (H) = V (Ĝ′), that is a ψr(n′)-
expander, together with a set F of at most O(z log n) fake edges for Ĝ′, and an embedding of
H into Ĝ′ + F with congestion at most O(logm/ψ), such that every vertex of Ĝ′ is incident
to at most O(logm) edges of F . In this case we say that the iteration terminates with an
expander. If an iteration terminates with an expander, then the whole algorithm terminates.

Let i denote the index of the last iteration of the algorithm that terminated with a cut.
Recall that one of the following two cases must hold:

• (Case 1): the algorithm had exactly i iterations, every iteration terminated with a cut,
and |

⋃
i′≤i Si′ | ≥ |V (Ĝ)|/3;

• (Case 2): the algorithm had (i+ 1) iterations, the first ith iterations terminated with
cuts, and the last iteration terminated with an expander.

In either case, let S =
⋃i
i′=1 Si′ . Then S is a canonical vertex set for Ĝ, and moreover, it

is easy to verify that:

|EĜ(S, S)| ≤ µψ|S| ≤ µψ|V (Ĝ)|. (8.1)

Assume first that Case 1 happened. Consider the partition (A′, B′) of V (Ĝ), where
A′ = S and B′ = V (Ĝ) \ S. Recall that |

⋃
i′<i Si′ | < |V (Ĝ′)|/3 held (or we would not

have executed the ith iteration). Let Ĝi denote the graph Ĝ′ that served as input to the
ith iteration, and let ni = |V (Ĝi)|. Then ni ≥ 2|V (Ĝ)|/3. Let (Xi, Yi) be the cut that was
returned by Lemma 8.5.3, and let (X ′i, Y

′
i) be the canonical cut that we obtained in Ĝ′, so that

229

Si = X ′i. Recall that |X ′i| ≤ |Y ′i |. It follows that |Y ′i | ≥ |V (Ĝ)|/3, and |
⋃
i′≤i Si′| ≥ |V (Ĝ)|/3.

Since A′ =
⋃
i′≤i Si′ and B

′ = Y ′i , we get that |A′|, |B′| ≥ |V (Ĝ)|/3. From Equation (8.1),
|EĜ(A′, B′)| ≤ ψµ|V (Ĝ)|.

Lastly, we obtain a cut (A,B) of V (G) as follows. For every vertex vi ∈ V (G), if Vi ⊆ A′,
then we add vi to A, and otherwise we add it to B. Since, for every 1 ≤ i ≤ n, |Vi| = degG(vi),
it is easy to verify that vol(A) = |A′| ≥ |V (Ĝ)|/3 = vol(G)/3, and similarly vol(B) ≥
vol(G)/3. It is also immediate to verify that |EG(A,B)| = |EĜ(A′, B′)| ≤ µψ|V (Ĝ)| =

µψ · vol(G). Since ψ = φ/ĉ, by letting ĉ be a large enough constant, we can ensure that
|EG(A,B)| ≤ φ · vol(G). We return the cut (A,B) as the outcome of the algorithm.

Assume now that Case 2 happened. Let Ĝi+1 denote the graph Ĝ′ that served as input
to the last iteration. Recall that in this last iteration, the algorithm from Lemma 8.5.3
returned a graph H with V (H) = V (Ĝi+1), that is a ψr(n′)-expander, where n′ = |V (Ĝi+1| ≥
2|V (Ĝ)|/3, together with a set F of at most O(z log n) fake edges for Ĝi+1, and an embedding
of H into Ĝi+1 + F with congestion at most O(logm/ψ), such that every vertex of Ĝi+1 is
incident to at most O(logm) edges of F . Let Ĝ′′ be the graph obtained from Ĝi+1, by adding
the edges of F to it. Then graph H embeds into Ĝ′′ with congestion at most O(logm/ψ),
and so, from Lemma 8.2.5, graph Ĝ′′ is a ψ′-expander, for ψ′ = Ω(ψr(n

′) · ψ/ logm) =

Ω
(
φ/(logm)O(r)

)
.

Recall that all vertex sets S1, . . . , Si are canonical; therefore, the set V (Ĝ′′) of vertices is
also canonical. Let G′′ be the graph obtained from Ĝ′′ as follows. For every vertex vj ∈ V (G),
if Vj ⊆ V (Ĝ′′), then we contract the vertices of Vj into a single vertex vj, and remove all self
loops. Let A′ = V (G′′). It is easy to verify that G′′ can be obtained from G[A′], by adding
at most O(z logm) edges to it – the edges corresponding to the fake edges in F . Moreover,
vol(A′) = |V (Ĝ)| − |S| ≥ 2|V (Ĝ)|/3 ≥ 2vol(G)/3. It is also easy to verify that G′′ has
conductance at least ψ′. Indeed, consider any cut (X, Y) in G′′. This cut naturally defines
a cut (X ′, Y ′) in Ĝ′′: for every vertex vi ∈ A′, if vi ∈ X, then we add all vertices of Vi to X ′,
and otherwise we add them to Y ′. Then |X ′| = volG(X) ≥ volG′′(X), |Y ′| = volG(Y) ≥
volG′′(Y), and |EĜ′′(X ′, Y ′)| = |EG′′(X, Y)|. Since graph Ĝ′′ is a ψ′-expander, we get that
|EG′′(X, Y)| ≥ |EĜ′′(X ′, Y ′)| ≥ ψ′min {|X ′|, |Y ′|} ≥ ψ′min {volG′′(X),volG′′(Y)}.

In our last step, we get rid of the fake edges in G′′ by applying Theorem 8.2.3 to it, with
conductance parameter ψ′, and the set F of fake edges; (recall that |F | = O(z log n), and
z = φm

ĉ(logm)ĉr
for some large enough constant ĉ). In order to be able to use the theorem, we

need to verify that |F | ≤ ψ′ ·|E(G′′)|/10. Since ψ′ = Ω
(
φ/(logm)O(r)

)
, and |E(G′′)| ≥ Ω(m),

by letting ĉ be a large enough constant, we can ensure that this condition holds. Applying
Theorem 8.2.3 to graph G′′, with conductance parameter ψ′, and the set F of fake edges, we
obtain a subgraph G′ ⊆ G′′ \F , of conductance at least ψ′/6 = Ω

(
φ/(logm)O(r)

)
. Moreover,

if we denote by A = V (G′) and B̃ = V (G′′) \ V (G′), then |EG′′(A, B̃)| ≤ 4k and:

volG′′(B̃) ≤ 8k/ψ′ ≤ O
(
k · (logm)O(r)/φ

)
, (8.2)

where k = |F | = O(z log n) is the number of the fake edges. The running time of the

230

algorithm from Theorem 8.2.3 is Õ (m/ψ′) = O
(
m(logm)O(r)/φ

)
. Let B = V (G) \ A. The

algorithm then returns the cut (A,B). We now verify that the cut has all required properties.
We have already established that G[A] has conductance at least φ/(logm)O(r).

Let S̃ = B \ B̃. Then equivalently, we can obtain the set S̃ ⊆ V (G) of vertices from the
set S ⊆ V (Ĝ) of vertices (recall that S =

⋃i
i′=1 Si′) by adding to S̃ every vertex vj ∈ V (G)

with Vj ⊆ S. Since, from Equation (8.1), |EĜ(S, S)| ≤ µψ|V (Ĝ)| for some constant µ, it is
easy to verify that:

|EG(S̃, V (G) \ S̃)| ≤ µψ · vol(G) = µφ · vol(G)/ĉ. (8.3)

From the above discussion, we are also guaranteed that |EG′′(A, B̃)| ≤ 4|F | ≤ O(z log n).
Since z = φm

ĉ(logm)ĉr
, by letting ĉ be a large enough constant, we can ensure that |EG′′(A, B̃)| <

φm/100 ≤ φvol(G)/100. Therefore, altogether, we get that:

|EG(A,B)| ≤ |EG(A, B̃)|+ |EG(S̃, V (G) \ S̃)| ≤ φ ·vol(G)/100 +φµ ·vol(G)/ĉ ≤ φ ·vol(G),

if ĉ is chosen to be a large enough constant.
Lastly, it remains to verify that volG(A) ≥ 7

12
· vol(G). Recall that |V̂ (Gi+1)| ≥

2|V (Ĝ)|/3 ≥ 2vol(G)/3. Therefore, if we denote by U = V (G′′) = V (G) \ S̃, then
volG(U) ≥ 2vol(G)/3. Recall that A = U \ B̃, and, from Equation (8.2), volG′′(B̃) ≤
O
(
k · (logm)O(r)/φ

)
≤ O

(
z · (logm)O(r)/φ

)
. Moreover, volG(B̃) ≤ volG′′(B̃) +EG(S̃, B̃) ≤

volG′′(B̃) + EG(U, S̃). From Equation (8.3), we get that:

volG(B̃) ≤ O
(
z · (logm)O(r)/φ

)
+O(µφvol(G)/ĉ).

Since z = φm
ĉ(logm)ĉr

, by letting ĉ be a large enough constant, we can ensure that volG(B̃) ≤
vol(G)/12. We then get that volG(A) ≥ |V̂ (Gi+1)| − volG(B̃) ≥ 2vol(G)/3− vol(G)/12 ≥
7vol(G)/12.

It now remains to analyze the running time of the algorithm. The time required to
construct graph Ĝ from graph G is O(m). Recall that, if an iteration terminates with a
cut, then we delete from Ĝ′ a set of at least Ω(z) vertices. Therefore, the total number of
iterations is bounded by O(|V (Ĝ)|/z) = O(m/z) = O

(
(logm)O(r)/φ

)
. The running time of

each iteration is:

Õ
(
m1+O(1/r) · (logm)O(r2) +m/ψ

)
= Õ

(
m1+O(1/r) · (logm)O(r2) +m/φ

)
.

At the end of each iteration, we employ Lemma 8.5.4 to turn the resulting cut into
a canonical one, in time O(m). Therefore, the total running time of the iterations is
Õ
(
m1+O(1/r) · (logm)O(r2)/φ2

)
. Lastly, if Case 2 happens, we employ the algorithm from

Theorem 8.2.3, whose running time, as discussed above, is Õ
(
m(logm)O(r)/φ

)
. Altogether,

231

the running time of the algorithm is Õ
(
m1+O(1/r) · (logm)O(r2)/φ2

)
.

8.6 Unweighted Expander Decomposition

Finally, we present the expander decomposition algorithm promised by Theorem 8.6.1 (re-
stated below) using BalCutPrune as a subroutine.

Theorem 8.6.1: Deterministic expander decomposition, unweighted

There is a deterministic algorithm that, given an unweighted graph G = (V,E) and
parameters ε ∈ (0, 1] and 1 ≤ r ≤ O(logm), computes a (ε, φ)-expander decomposition
of G with φ = Ω(ε/(logm)O(r2)), in time O

(
m1+O(1/r)+o(1) · (logm)O(r2)/ε2

)
. Setting

r = (log n)1/3, we obtain φ = ε/no(1) and time O(m1+o(1)/ε2).

Proof. We maintain a collection H of disjoint sub-graphs of G that we call clusters, which
is partitioned into two subsets, set HA of active clusters, and set HI of inactive clusters.
We ensure that for each inactive cluster H ∈ HI , Φ(H) ≥ φ. We also maintain a set E ′

of “deleted” edges, that are not contained in any cluster in H. At the beginning of the
algorithm, we let H = HA = {G}, HI = ∅, and E ′ = ∅. The algorithm proceeds as long
HA 6= ∅, and consists of iterations. For convenience, we denote α = (logm)r

2 , and we set
φ = ε/(cα · logm), for some large enough constant c, so that φ = Ω(ε/(logm)O(r2)) holds.

In every iteration, we apply the algorithm from Corollary 8.5.2 to every graph H ∈ HA,
with the same parameters α, r, and φ. Consider the cut (A,B) in H that the algorithm
returns, with |EH(A,B)| ≤ αφ · vol(H) ≤ ε·vol(H)

c logm
. We add the edges of EH(A,B) to set E ′.

If volH(A),volH(B) ≥ vol(H)/3, then we replace H with H[A] and H[B] in H and in HA.
Otherwise, we are guaranteed that volH(A) ≥ vol(H)/2, and graph H[A] has conductance
at least φ. Then we remove H from H and HA, add H[A] to H and HI , and add H[B] to
H and HA.

When the algorithm terminates, HA = ∅, and so every graph in H has conductance at
least φ. Notice that in every iteration, the maximum volume of a graph in HA must decrease
by a constant factor. Therefore, the number of iterations is bounded by O(logm). It is
easy to verify that the number of edges added to set E ′ in every iteration is at most ε·vol(G)

c logm
.

Therefore, by letting c be a large enough constant, we can ensure that |E ′| ≤ εvol(G).
The output of the algorithm is the partition P = {V (H) | H ∈ H} of V . From the above
discussion, we obtain a valid (ε, φ)-expander decomposition, for φ = Ω

(
ε/(logm)O(r2)

)
.

It remains to analyze the running time of the algorithm. The running time of a single
iteration is bounded by O

(
m1+O(1/r) · (logm)O(r2)/φ2

)
= O

(
m1+O(1/r) · (logm)O(r2)/ε2

)
.

Since the total number of iterations is bounded by O(logm), we get that the total running
time of the algorithm is O

(
m1+O(1/r) · (logm)O(r2)/ε2

)
.

232

8.6.1 Spectral Sparsification

Our deterministic algorithm for computing expander decompositions from Theorem 8.6.1
immediately implies a deterministic algorithm for the original application of expander de-
compositions: constructing spectral sparsifiers [101]. We require this application in the next
section on weighted expander decomposition.

Suppose we are given a undirected weighted n-vertex graph G = (V,E,w) (possibly with
self-loops). The Laplacian LG of G is a matrix of size n × n whose entries are defined as
follows:

LG(u, v) =


0 u 6= v, (u, v) 6∈ E
−wuv u 6= v, (u, v) ∈ E∑

(u,u′)∈E:

u6=u′
wuu′ u = v.

We say that a graph H is an α-approximate spectral sparsifier for G iff for all x ∈ Rn,
1
α
x>LGx ≤ x>LHx ≤ α · x>LGx holds.
All previous deterministic algorithms for graph sparsification, including those computing

cut sparsifiers, exploit explicit potential function-based approach of Batson, Spielman and
Srivastava [13]. All previous algorithms that achieve faster running time either perform
random sampling [99], or use random projections, in order to estimate the importances of
edges [5]. We provide the first deterministic, almost-linear-time algorithm for computing
a spectral sparsifier of a weighted graph. We emphasize that although all algorithms from
previous sections are designed for unweighted graphs, the fact that spectral sparsifiers are
“decomposable” allows us to easily reduce the problem on weighted graphs to the one on
unweighted graphs.

Corollary 8.6.2: Deterministic spectral sparsifier

There is a deterministic algorithm, that we call SpectralSparsify that, given
an undirected n-node m-edge graph G = (V,E,w) with integral edge weights w

bounded by U , and a parameter 1 ≤ r ≤ O(logm), computes a (logm)O(r2)-
approximate spectral sparsifier H for G, with |E(H)| ≤ O (n log n logU), in time
O
(
m1+O(1/r) · (logm)O(r2) logU

)
.

Proof. We first assume thatG is unweighted. We compute a (1/2, φ)-expander decomposition
P = {V1, V2, . . . , Vk} of G, for φ = 1/(logm)O(r2), using the algorithm from Theorem 8.6.1.
Let Ê denote the set of all edges e ∈ E(G), whose endpoints lie in different sets in the
partition P . If Ê 6= ∅, then we continue the expander decomposition recursively on G[Ê].
Notice that the depth of the recursion is bounded by O(logm). When this process terminates,
we obtain a collection {G1, . . . , Gz} of sub-graphs of G, that are disjoint in their edges, such
that

⋃z
j=1E(Gj) = E(G). Moreover, we are guaranteed that for all 1 ≤ j ≤ z, graph Gj

has conductance are at least φ = 1/(logm)O(r2). It is now enough to compute a spectral
sparsifier for each of the resulting graphs G1, . . . , Gz separately.

233

We can now assume that we are given a graph G whose conductance is at least φ =

1/(logm)O(r2), and our goal is to construct a spectral sparsifier for G. In order to do so, we
will first approximate G by a “product demand graph” D, that was defined in [64], and then
use the construction of [64], that can be viewed as a strengthening of Lemma 8.2.1, in order
to sparsify D.

Definition 8.6.3: Product demand graph, Definition G.13 [64]

Given a vector d ∈ (R>0)n, its corresponding product demand graph H(d), is a com-
plete weighted graph on n vertices with self-loops, where for every pair i, j of vertices,
the weight w ij = d id j.

Given an n-node edge-weighted graph G = (V,E,w), let degG ∈ Zn be the vector of
weighted degrees of every vertex (that includes self-loops), so for all j ∈ V , the jth entry
of degG is degG(j) =

∑
i∈V wi,j. Given an input graph G, we construct a product demand

graph D = 1
vol(G)

H(degG). It is immediate to verify that the weighted degree vectors of D
and G are equal, that is, degD = degG.

Next, we need to extend the notion of conductance to weighted graphs with self loops.
Consider a weighted graph H = (V ′, E ′,w ′) (that may have self-loops), and let S ⊆ V ′ be a
cut in H. We then let δH(S) =

∑
(u,v)∈E′:
u∈S,v 6∈S

w ′u,v, and we let volH(S) =
∑

v∈S
∑

u∈V ′ w
′
u,v. A

weighted conductance of the cut S in H is then: δH(S)

min{volH(S),volH(S)} , and the conductance of

H is the minimum conductance of any cut in H. We need the following observation:

Observation 8.6.4

The weighted conductance of graph D is at least 1/2.

Proof. Consider any cut S in D. Observe that, from our construction, δD(S) = volG(S) ·
volG(S)/vol(G). It is also easy to see that volH(S) = volG(S). Assume without loss of
generality that volD(S) ≤ volD(S), so volD(S) ≥ vol(G)/2. Then the conductance of the
cut S is:

δD(S)

volD(S)
=

volG(S) · volG(S)

vol(G) · volG(S)
≥ 1

2
.

In the following lemma, we show that D is a spectral sparsifier for G.

Lemma 8.6.5

Let D and G be two undirected weighted n-vertex graphs with V (D) = V (G), such
that degD = degG. Assume further that Φ(D),Φ(G) ≥ φ for some conductance
threshold φ. Then for any real vector x ∈ Rn: φ2

4
x>LGx ≤ x>LDx ≤ 4

φ2
x>LGx .

234

Proof. The normalized Laplacian L̂H of a weighted graph H is defined as W−1/2
H LHW

−1/2
H ,

where LH is the Laplacian of H and WH is a diagonal weighted-degree matrix, where for
every vertex v of H, (WH)vv = degH(v).

Let L̂D and L̂G be normalized Laplacians of D and G, respectively. It is well-known that
eigenvalues of normalized Laplacians are between 0 and 2. Also, observe that, for any graph
H, LH~1 = 0. Therefore, L̂G(degG)1/2 = L̂D(degG)1/2 = 0. That is, (degG)1/2 is in the kernel
of both L̂G and L̂D.

Let λ be the second smallest eigenvalue of L̂H . Then for any vector x ′ ⊥ (degG)
1
2 , we

have:
λ

2
x ′>L̂Dx

′ ≤ λ‖x ′‖2 ≤ x ′>L̂Gx
′,

since the largest eigenvalue of L̂D is at most 2. This implies that, for every vector x ∈ Rn,
x>L̂Gx ≥ λ

2
x>L̂Dx holds. Indeed, we can write

x = x + c (degG)
1
2

where x ⊥ (degG)
1
2 and c is a scalar. This gives:

x>L̂Gx =
(
x + c (degG)

1
2

)>
L̂G

(
x + c (degG)

1
2

)
= x>L̂Gx

≥ λ

2
· x>L̂Dx

=
λ

2
·
(
x + c (degG)

1
2

)>
L̂D

(
x + c (degG)

1
2

)
=
λ

2
· x>L̂Dx

where the last equality uses the fact that degG = degD. By Cheeger’s inequality [6], we have
λ ≥ Φ(G)2/2 ≥ φ2/2. Therefore, for any vector x ∈ Rn:

x>L̂Gx ≥
φ2

4
x>L̂Dx (8.4)

235

We can now conclude that, for any vector x ∈ Rn:

x>LGx = x>W
1/2
G L̂GW

1/2
G x

≥ φ2

4
x>W

1/2
G L̂DW

1/2
G x

=
φ2

4
x>W

1/2
G W

−1/2
D LDW

−1/2
D W

1/2
G x

=
φ2

4
x>LDx

where the first inequality follows by applying Equation (8.4) to vector x′ = W
1/2
G x, and

the last equality follows from the fact that degG = degD. The proof that x>LDx ≥ φ2

4
x>LHx

is similar.

Using Lemma 8.6.5 with φ = 1/(logm)O(r2) implies that D is a
(

(logm)O(r2)
)2

=

(logm)O(r2)-approximate spectral sparsifier of H. Finally, a spectral sparsifier for graph
D can be constructed in nearly linear time using the following lemma.

Lemma 8.6.6: Lemma G.15, [64]

There exists a deterministic algorithm that, given any demand vector d ∈ Rn, com-
putes, in time O(nε−4), a graph K with O(nε−4) edges such that e−εK is an e2ε-
approximate spectral sparsifier of H(d).

By letting ε = 2 and d = degD in Lemma 8.6.6, we obtain an 100-approximate spectral
sparsifier for graph D (by scaling K), which is in turn a (logm)O(r2)-approximate spectral
sparsifier for graph G. By combining the spectral sparsifiers that we have computed for all
sub-graphs of the original input graph G, we obtain an (logm)O(r2)-approximate spectral
sparsifier of the original graph G. The total number of edges in the sparsifier is O(n log n),
as every level of the recursion contributes O(n) edges.

We now analyze the running time of the algorithm. Since the depth of the recursion is
O(logm), running Theorem 8.6.1 takes O

(
m1+O(1/r) · (logm)O(r2)

)
time in total. Sparsifying

the resulting expanders takes O(mpolylog(m)) time. Therefore, the overall running time is
bounded by O

(
m1+O(1/r) · (logm)O(r2)

)
.

For the general (weighted) case, it suffices to decompose the graph by the binary repre-
sentations of the edge weights and sum the results up: For every edge e ∈ E(G), let be be
the binary representation of the weight we. For all 1 ≤ i ≤ dlog(maxew e)e, we construct an
unweighted graph G(i), whose vertex set is V , and edge set contains every edge e ∈ E(G),
such that the ith bit of be is 1. Since w e ≤ U for every e ∈ E(G), there are at most dlogUe
such G(i)s. By the algorithm for the unweighted case, we compute (logm)O(r2)-approximate
spectral sparsifiers for each G(i). The desired (logm)O(r2)-approximate spectral sparsifier for

236

G is
∑dlog(maxe we)e

i=1 2iG(i). This sparsifier contains
∑dlog(maxe we)e

i=1 |E(G(i))| = O(n log n logU)

edges. The total running time is O
(
m1+O(1/r) · (logm)O(r2) logU

)
.

8.7 Weighted Expander Decomposition with Custom De-
mands

In this section, we present our deterministic algorithm for weighted expander decomposition
with custom demands on the vertices. In this setting, the input graph is weighted and every
vertex v ∈ V (G) has a non-negative demand d(v) that is independent of the edge weights.
We define the demand of a set S ⊆ V (G) of vertices is d(S) =

∑
v∈S d(v). Given a subset

S ⊆ V of vertices, we denote by d|S the vector d of demands restricted to the vertices of S.
We start by defining a weighted variant of sparsity and of expander decomposition.

Definition 8.7.1: Weighted sparsity with custom demands

Given a graph G = (V,E) with non-negative weights w(e) ≥ E on its edges e ∈ E,
and non-negative demands d(v) ≥ 0 on its vertices v ∈ V , the d-sparsity of a subset
S ⊆ V of vertices with 0 < d(S) < d(V) is:

Ψd
G(S) =

w(EG(S, V \ S))

min{d(S),d(V \ S)}
.

The d-sparsity of graph G is Ψd(G) = minS⊆V :0<d(S)<d(V) Ψd
G(S).

Observe that if w(e) = 1 for all e ∈ E and d(v) = deg(v) for all v ∈ V , then this
definition is exactly the conductance of the graph. Here, we use the term sparsity instead of
conductance because traditionally, sparsity concerns the number of vertices in the denom-
inator of the ratio, while conductance uses volume which is closely related to the number
of edges. However, for lack of an alternative term, we will stick with the term expander to
describe a graph of high weighted sparsity. We now define an expander decomposition for
the weighted sparsity, which generalizes the standard definition for conductance.

Definition 8.7.2: Weighted expander decomposition with custom demands

Given a graph G = (V,E,w,d) with non-negative weights w(e) ≥ 0 on its edges
e ∈ E, and non-negative demands d(v) ≥ 0 on its vertices v ∈ V , a (ε, ψ)-expander
decomposition of G is a partition P = {V1, . . . , Vk} of the set V of vertices, such that:

1. For all 1 ≤ i ≤ k, the graph G[Vi] has d|Vi-sparsity at least ψ, and

2.
∑k

i−1w(EG(Vi, V \ Vi)) ≤ εd(V).

The main result of this section is an algorithm to compute such a decomposition.

237

Theorem 8.7.3: Weighted expander decomposition algorithm with custom demands

There is a deterministic algorithm that, given an m-edge graph G = (V,E) with
weights 1 ≤ w(e) ≤ U on its edges e ∈ E, and demands d(v) ∈ {0} ∪ [1, U] for its
vertices v ∈ V that are not all zero, together with a parameter ε ∈ (0, 1] and r ≥ 1,
computes a (ε, ψ)-expander decomposition of G, for ψ = ε/

(
logO(r4) m logU

)
, in time

m · (mU)O(1/r) log(mU).

8.7.1 Our Techniques

Similarly to the unweighted case, the key subroutine of our expander decomposition algo-
rithm is solving the following WeightedBalCutPrune problem, a generalization of BalCutPrune
(Definition 8.1.1) that allows both weighted edges and demands on the vertices.

Definition 8.7.4: WeightedBalCutPrune problem

The input to the α-approximate WeightedBalCutPrune problem is a graph G = (V,E)

with non-negative weights w(e) ≥ 0 on edges e ∈ E, a nonzero vector d ∈ RV
≥0 of

demands, a sparsity parameter 0 < ψ ≤ 1, and an approximation factor α. The goal
is to compute a partition (A,B) of V (G) (where possibly B = ∅), with w(E(A,B)) ≤
αψ ·min{d(A),d(B)}, such that one of the following hold: either

1. (Cut) d(A),d(B) ≥ d(V)/3; or
2. (Prune) d(A) ≥ d(V)/2, and Ψd|A(G[A]) ≥ ψ.

We remark that the guarantee w(E(A,B)) ≤ αψ · min{d(A),d(B)} is stronger than
what we would obtain if we directly translated BalCutPrune. The latter only requires that
|E(A,B)| ≤ αψ · vol(G) in their setting, which would translate to w(E(A,B)) ≤ αψ · d(V)

in our setting.

Theorem 8.7.5: Deterministic WeightedBalCutPrune algorithm

There is a deterministic algorithm that, given an m-edge connected graph G = (V,E)

with edge weights 1 ≤ w(e) ≤ U for all e ∈ E and demands d(v) ∈ {0} ∪ [1, U] for all
v ∈ V that are not all zero, together with parameters 0 < ψ ≤ 1 and r ≥ 1, solves the
(logO(r4) m)-approximate WeightedBalCutPrune problem in time m · (mU)O(1/r).

Unlike in the unweighted case, we still do not solve WeightedBalCutPrune directly. Rather,
we reduce it to another problem, the Most-Balanced Cut problem, and then provide a bi-
criteria approximation algorithm for Most-Balanced Cut, this time based on recursively
applying the j-tree framework of Madry [77]. In Section 8.7.3, we then show our algo-
rithm for Weighted Most-Balanced Cut can be used in order to approximately solve the

238

WeightedBalCutPrune problem.

Definition 8.7.6: (s, b)-most-balanced ψ-sparse cut

Given a graph G = (V,E) and parameters s, b ≥ 1, a set S ⊆ V with d(S) ≤ d(V)/2

is a (s, b)-most-balanced ψ-sparse cut if it satisfies:
1. w(S, V \ S) ≤ ψ · d(S).

2. Define ψ∗ := ψ/s and let S∗ ⊆ V be the set with maximum d(S∗) out of all
sets S ′ satisfying w(S ′, V \S ′) ≤ ψ∗ ·min{d(S ′),d(V \S ′)} and d(S ′) ≤ d(V)/2.
Then, d(S) ≥ d(S∗)/b.

Let us first motivate why we consider a completely different recursive framework based
on recursive j-trees [77] instead of the recursive KKOV cut-matching game framework [58]
as used in the unweighted case. This is because KKOV recursion scheme does not generalize
easily to the weighted setting. The main issue that in a weighted graph, the flows constructed
by the matching player cannot be decomposed into a small number of paths; the only bound
we can prove is at most m paths by standard flow decomposition arguments. Hence, the
graphs constructed by the cut player are not any sparser, preventing us from obtaining an
efficient recursive bound. Madry’s j-tree framework, on the other hand, generalizes smoothly
to weighted instances and can even be adapted to solve the sparsest cut problem with general
demands, for which Madry provided efficient randomized algorithms in his original paper [77].

Below, we give a high-level description of Madry’s approach. But first, let us state the
definition of j-trees as follows.

Definition 8.7.7: j-tree

A graph G is a j-tree if it is a union of:
• a subgraph H of G (called the core), induced by a set VH of at most j vertices;
and

• a forest (that we refer to as peripheral forest), where each connected component
of the forest contains exactly one vertex of VH . For each core vertex v ∈ VH , we
let TG(v) denote the unique tree in the peripheral forest that contains v. When
the j-tree G is unambiguous, we may use T (v) instead.

In Madry’s approach, the input graph is first decomposed into a small number of j-trees
(formally stated in Lemma 8.2.7), so that it suffices to solve the problem on each j-tree and
take the best solution. For a given j-tree, one key property of the generalized sparsest cut
problem is that either the optimal solution only cuts edges of the core, or it only cuts edges
of the peripheral forest. Therefore, the algorithm can solve two separate problems, one on
the core and one on the peripheral forest. The former becomes a recursive call on a graph
of j vertices, and the latter simply reduces to solving the problem on a tree.

239

This same strategy almost directly translates over to the Weighted Most-Balanced Cut
problem. The main additional difficulty is in ensuring the additional balanced guarantee in
our Weighted Most-Balanced Cut problem, which is the biggest technical component of this
section. We remark that our algorithm for computing the weighted most-balanced sparse
cut is a modification of the algorithm in Section 8 of [41]. In particular, the algorithms
WeightedBalCut and RootedTreeBalCut presented below are direct modifications of Algo-
rithm 4 and Algorithm 5 in Section 8 of [41], respectively. Still, we assume no familiarity
with that paper and make no references to it.

8.7.2 The WeightedBalCutPruneAlgorithm

Our algorithm WeightedBalCut first invokes Lemma 8.2.7 to approximately decompose the
input graph G into t many j-trees, where j = O(m/t) and t is small (say, mε for some
constant ε > 0). Since the distribution of j-trees approximates G, it suffices to solve the
Weighted Most-Balanced Cut problem on each j-tree separately and take the best overall.
For a given j-tree H, the algorithm computes two types of cuts—one that only cuts edges
in the core of H, and one that only cuts edges of the peripheral forest of H—and takes the
one with better weighted sparsity. In our analysis (specifically Lemma 8.7.9), we prove our
correctness by showing that for any cut S of the j-tree H = (VH , EH), there exists a cut S ′

that
1. either only cuts core edges or only cuts peripheral edges, and

2. has weighted sparsity and balance comparable to those ofH, i.e., wH(EH(S ′, VH\S ′)) ≤
O(wH(EH(S, VH \ S))) and d(S ′) ≥ Ω(d(S)).

To compute the best way to cut the core, the algorithm first contracts all edges in the
peripheral forest, summing up the demands on the contracted vertices. This leaves a graph
of j = O(m/t) vertices, but the number of edges can still be Ω(m). To ensure the number
of edges also drops by a large enough factor, the algorithm sparsifies the core using Corol-
lary 8.6.2, computing a sparse graph with only Õ(m/t) edges that α-approximates all cuts
of the core for some α = (logm)O(r2). Finally, the algorithm recursively solves the problem
on the sparsified core. The approximation factor blows up by polylog(m) per recursion level,
but the number of edges decreases by roughly t = mε, so over the O(1/ε) recursion levels,
the overall approximation factor becomes (logm)O(r2/ε), which is no(1) appropriate choices of
r and ε.

The algorithm for cutting the peripheral forest is much simpler and non-recursive. The
algorithm first contracts the core of H, obtaining a tree in which to compute an approximate
Weighted Most-Balanced Cut. Then, RootedTreeBalCut roots the tree at an appropriately
chosen “centroid" vertex and greedily adds subtrees of small enough sparsity into a set S
until either d(S) is large enough, or no more sparse cuts exist.

240

WeightedBalCut(G,ψ, ψ∗, b) with ψ ≥ ψ∗ and b ≥ 1, and G has demands d:
1. Fix an integer r ≥ 1 and parameter t =

⌈
m

1/r
0 (logm)O(1) log2 U

⌉
, where m0 is the

number of edges in the original input graph to the recursive algorithm, m ≤ m0 is
the number of edges of the input graph G to the current recursive call, and U is the
capacity ratio of G.

2. Fix parameters α = (logm)O(r2) as the approximation factor from Corollary 8.6.2, and
β = O(logm(log logm)O(1)) as the congestion factor from Lemma 8.2.7.

3. Compute O(m/t)-trees G1, . . . , Gt using Lemma 8.2.7 with G and t as input. For each
i, let Ki denote the vertex set in the core of Gi

4. For each i ∈ [t]:
(a) Hi ← Gi[Ki] with demands dHi on Ki as dHi(v) =

∑
u∈V (TGi (v)) d(u) (so that

dHi(Ki) = d(V)).
(b) H ′i ← α-approximate spectral sparsifier of Hi (with the same demands)
(c) S ′Hi ← WeightedBalCut(H ′i, ψ/α, 3αβψ∗, b/3)

(d) SHi ← S ′Hi with each vertex v replaced with V (TGi(v)) (see Definition 8.7.7)
(e) Construct a tree Ti = (VTi , ETi , wTi) with demands dTi as follows: Starting with

Gi, contract Ki into a single vertex ki with demand d(Ki). All other vertices have
demand d(v) (so that dTi(VTi) = d(V)).

(f) Root Ti at a vertex ri ∈ VTi such that every subtree rooted at a child of ri has
total weight at most dTi(V)/2 = d(V)/2.

(g) S ′Ti ← RootedTreeBalCut(Ti, ri, ψ)

(h) STi ← S ′Ti with the vertex ki replaced with Ki if ki ∈ S ′Ti
5. Of all the cuts S = SHi or S = STi computed satisfying w(S, V \S) ≤ ψ·min{d(S),d(V \
S)}, consider the set S with maximum min{d(S),d(V \ S)}, and output S if d(S) ≤
d(V \S) and V \S otherwise. If no cut S satisfies w(S, V \S) ≤ ψ ·min{d(S),d(V \S)},
then return ∅.

241

RootedTreeBalCut(T = (VT , ET , wT), r, ψT):
0. Assumption: T is a weighted tree with demands dT . The tree is rooted at a root r

such that every subtree Vu rooted at a vertex u ∈ VT \ {r} has total demand dT (Vu) ≤
dT (VT)/2.
Output: a set S ⊆ VT satisfying the conditions of Lemma 8.7.10.

1. Find all vertices u ∈ VT \ {r} such that if Vu is the vertices in the subtree rooted at u,
then wT (E[Vu, VT \ Vu])/dT (Vu) ≤ 2ψT . Let this set be X.

2. Let X↑ denote all vertices u ∈ X without an ancestor in X (that is, there is no
v ∈ X \ {u} with u ∈ Tv).

3. Starting with S = ∅, iteratively add the vertices Vu for u ∈ X↑. If dT (S) ≥ dT (VT)/4
at any point, then terminate immediately and output S. Otherwise, output S at the
end.

We now analyze our algorithm WeightedBalCut by showing the following:

Lemma 8.7.8

Fix parameters b ≥ 6, ψ∗ > 0, and ψ ≥ 12β · ψ∗ for β as defined in Line Item 2
of WeightedBalCut algorithm. WeightedBalCut outputs a (ψ/ψ∗, b)-most-balanced
(ψ,d)-sparse cut.

We now state our structural statement on cuts in j-trees: for each j-tree Gi, either the
core Hi contains a good balanced cut or the “peripheral" tree Ti (produced by contracting
the core) does.

Lemma 8.7.9

Fix i ∈ [t], and let S∗ ⊆ V be any cut with d(S∗) ≤ d(V)/2. For simplicity, define
K = Ki, k = ki, T = Ti, r = ri, and H = Hi. One of the following must hold:

1. There exists a cut S∗T ⊆ VT in T satisfying wT (ET (S∗T , VT \S∗T)) ≤ w(EGi(S
∗, V \

S∗)) and d(S∗)/2 ≤ dT (S∗T) ≤ 2d(V)/3, and S∗T is the disjoint union of subtrees
of T rooted at r.

2. There exists a cut S∗H ⊆ K in core H satisfying wH(EH(S∗H , K \ S∗H)) ≤
w(EGi(S

∗, V \ S∗)) and min{dH(S∗H),dH(K \ S∗H)} ≥ d(S∗)/3.

The statement itself should not be surprising. If S∗ only cuts edges in the peripheral
forest of Gi, then the cut survives when we contract the core H to form the tree T , and
its dT -sparsity is the same as its original d-sparsity. Likewise, if S∗ only cuts edges in the
core H, then the cut survives when we contract the all edges in the peripheral forest to
form K, and its dH-sparsity is the same as its original d-sparsity. The difficulty is handling
the possibility that S∗ cuts both peripheral forest edges and core edges, which we resolve

242

S∗

U

K

rU ′

Û

S∗
SH

U
S∗
T

K

Figure 8.1: Left: Cases 1a and 1b of Lemma 8.7.9. The set S∗ is the cyan vertices. Right:
Cases 2a and 2b.

through some casework below.
Proof. We need a new notation. For a j-tree Gi and a vertex v on peripheral forest F , we
define cGi(v) as the unique vertex shared by F and the core H of Gi.

Let S∗ ⊆ V the set as described in Definition 8.7.6 (w(S∗, V \S∗) ≤ ψ∗ ·min{d(S∗),d(V \
S∗)}). Let U be the vertices u ∈ V whose (unique) path to cGi(u) in F contains at least one
edge in EGi(S∗, V \S∗). In Figure 8.1, U is the set of vertices with green circle around. Note
that U ∩K = ∅ and EGi(U, V \ U) ⊆ EGi(S

∗, V \ S∗). Observe further that U is a union of
subtrees of T rooted at k (not r). This is because, when we root the tree T at k, for each
vertex u ∈ U , its entire subtree is contained in U .

Case 1: r ∈ U . In this case, we will construct a cut in the tree T to fulfill condition (1).
Let F be the peripheral forest of Gi (see Definition 8.7.7) and let T ′ be the tree in F that
contains r. Define U ′ = T ′ ∩ U (Figure 8.1 left). In words, U ′ contains all vertices of U in
the tree of F that contains r. Let us re-root T at vertex r, so that the vertices in VT \ U ′
now form a subtree. We now consider a few sub-cases based on the size of U ′.

Case 1a: r ∈ U and dT (U ′) ≤ 3d(V)/4. Define S∗T ⊆ VT as S∗T := VT \ U ′ . By our
selection of r,

dT (S∗T) = dT (VT \ U ′) ≤
d(V)

2
.

Moreover,

dT (S∗T) = dT (VT \ U ′) ≥
d(V)

4
≥ d(S∗)

2

and
ET (S∗T , V \ S∗T) ⊆ EGi(U, V \ U) ⊆ EGi(S

∗, V \ S∗),

fulfilling condition (1).

243

Case 1b: r ∈ U and dT (U ′) ≥ 3d(V)/4. Define Û as all vertices u ∈ U ′ whose (unique)
tree path to root (r) contains at least one vertex not in S∗ (possibly u itself). As this set
contains all vertices in U ′ not in S∗, we have Û ⊇ U ′ \ S∗, and in turn

dT
(
Û
)
≥ dT (U ′ \ S∗) = dT (U ′)− dT (U ′ ∩ S∗) ≥ dT (U ′)− d (S∗)

≥ 3d (V)

4
− d (V)

2
=

d(V)

4
.

Moreover, Û is a union of subtrees of T rooted at r and satisfies

EGi

(
Û , V \ Û

)
⊆ EGi (S∗, V \ S∗) .

By our choice of r, each subtree T ′ of U satisfies dT (V (T ′)) ≤ d(V)/2. We perform one
further case work based on the largest size of one of these subtrees to show that we can find
a tree cut that satisfies condition (1).

• If there exists a subtree T ′ ⊆ Û with dT (V (T ′)) ≥ d(V)/4, then set S∗T := V (T ′).
• Otherwise, since dT (Û) ≥ d(V)/4, we can greedily select a subset of subtrees of Û
with total d(·) value in the range [d(V)/4,d(V)/2], and set S∗T as those vertices.

In both cases we have
d (S∗)

2
≤ d(V)

4
≤ dT (S∗T) ≤ d (V)

2

which gives the volume condition on S∗, and the cut size bound follows from w(ET (S∗T , V \
S∗T)) ≤ w(EGi(Û , V \ Û)).

Case 2: r /∈ U . In this case, we will cut either the tree T or the core H depending on a
few further sub-cases.

Case 2a: r /∈ U and dT (U) ≥ d(V)/6. Since r /∈ U , every subtree in U has weight
at most d(V)/2. Let U ′ be a subset of these subtrees of total d(·) value in the range
[d(V)/6, 2d(V)/3]. Define the tree cut S∗T := U ′, which satisfies

d(V)

2
≥ dT (S∗T) ≥ d(V)

6
≥ d(S∗)

3

and
ET (S∗T , V \ S∗T) ⊆ EGi(U, V \ U) ⊆ EGi(S

∗, V \ S∗),

fulfilling condition (1).

244

Case 2b: r /∈ U and dT (U) < d(V)/6. In this case, let S := S∗ ∪ U , which satisfies

d(S∗) ≤ d(S) ≤ d(S∗) + dT (U) ≤ d(S∗) + d(V)/6 ≤ 2d(V)/3

and EGi(S, V \ S) ⊆ EGi(S
∗, V \ S∗). Next, partition S into SH and S∗T according to

Figure 8.1, where SH consists of the vertices of all connected components of Gi[S] that
intersect K, and S∗T := S \ SH is the rest. We have

EGi(SH , V \ SH) ⊆ EGi(S
∗, V \ S∗) and EGi(S

∗
T , V \ S∗T) ⊆ EGi(S

∗, V \ S∗).

Observe that S∗T is a tree cut, and SH is a core cut since it does not cut any edges of the
peripheral forest. We will select either S∗T or SH based on one further case work.

Since d(S∗T) + d(SH) = d(S), we can case on whether dT (S∗T) ≥ d(S)/2 or d(SH) ≥
d(S)/2.

• If dT (S∗T) ≥ d(S)/2, then the set S∗T satisfies condition (1).

• Otherwise, d(SH) ≥ d(S)/2. Since EGi(SH , V \ SH) does not contain any edges in the
peripheral forest F , we can “contract" the peripheral forest to obtain the set S∗H :=

{cGi(v) : v ∈ SH} ⊆ K such that SH is the vertices in the trees in F intersecting S∗H .
This also means that V \ SH is the vertices in the trees of F intersecting K \ S∗H . It
remains to show that S∗H fulfills condition (2). We have

wH(EH(S∗H , K \ S∗H)) = w(EGi(SH , V \ SH)) ≤ w(EGi(S
∗, V \ S∗))

and
min{dH(S∗H),dH(K \ S∗H)} = min{d(SH),d(V \ SH)}.

It remains to show that min{d(SH),d(V \ SH)} ≥ d(S∗)/3. This is true because
d(SH) ≥ d(S)/2 ≥ d(S∗)/2 and d(SH) ≤ d(S) ≤ 2d(V)/3 which means that d(V \
SH) ≥ d(V)/3 ≥ d(S∗)/3.

If the graph H contains a good balanced cut, then intuitively, the demands dH are set
up so that the recursive call on H ′ will find a good cut as well. The lemma below shows that
if the tree T contains a good balanced cut, then RootedTreeBalCut will perform similarly
well.

245

Lemma 8.7.10

RootedTreeBalCut(T = (VT , ET , wT),dT , r, ψT) can be implemented to run in O(|VT |)
time. The set S output satisfies ψdT

T (S) = wT (ET (S, VT \ S))/min{dT (S),dT (VT \
S)} ≤ 6ψT . Moreover, for any set S∗ with wT (ET (S∗, VT \ S∗))/dT (S∗) ≤ ψT and
dT (S∗) ≤ 2dT (VT)/3, and which is composed of vertex-disjoint subtrees rooted at
vertices in T , we have min{dT (S),dT (VT \ S)} ≥ dT (S∗)/3.

Proof. Clearly, every line in the algorithm can be implemented in linear time, so the running
time follows. We focus on the other properties.

Every set of vertices Vu added to S satisfies wT (ET (Vu, VT \Vu))/dT (Vu) ≤ 2ψT . Also, the
added sets Vu are vertex-disjoint, so wT (ET (S, VT \ S)) =

∑
Vu⊆S wT (ET (Vu, VT \ Vu)). This

means that RootedTreeBalCut outputs S satisfying wT (ET (S, VT \S))/dT (S) ≤ 2ψT . Since
every set Vu has total weight at most dT (VT)/2, and since the algorithm terminates early if
dT (S) ≥ dT (VT)/4, we have dT (S) ≤ 3dT (VT)/4. This means that min{dT (S),dT (VT \S)} ≥
dT (S)/3, so wT (ET (S, VT \S))/min{dT (S),dT (VT \S)} ≤ 3wT (ET (S, VT \S))/dT (S) ≤ 6ψT .

It remains to prove that S is balanced compared to S∗. There are two cases. First,
suppose that the algorithm terminates early. Then, as argued above, min{dT (S),dT (VT \
S)} ≥ dT (VT)/4, which is at least (2dT (VT)/3)/3 ≥ dT (S∗)/3, so min{dT (S),dT (VT \S)} ≥
dT (S∗)/3.

Next, suppose that S does not terminate early. From the assumption of S∗, there are
sets S∗1 , . . . , S∗` of vertices in the (vertex-disjoint) subtrees that together compose S∗, that is,⋃
i S
∗
i = S∗. Note that ET (S∗i , VT\S∗i) is a single edge in ET for each i. Suppose we reorder the

sets S∗i so that S∗1 , . . . , S∗q are the sets that satisfy wT (ET (S∗i , VT \S∗i))/dT (S∗i) ≤ 2ψT . From
the assumption on S∗, we have wT (ET (S∗, VT \S∗))/dT (S∗) ≤ ψT , by a Markov’s inequality-
like argument, we must have

∑
i∈[q] dT (S∗i) ≥ (1/2)

∑
i∈[`] dT (S∗i) = dT (S∗)/2. Observe that

by construction of X↑, each of the subsets S∗1 , . . . , S∗q is inside Vu for some u ∈ X↑. Therefore,
the set S that RootedTreeBalCut outputs satisfies dT (S) ≥

∑
i∈[q] dT (S∗i) ≥ dT (S∗)/2.

Finally, we prove Lemma 8.7.8:
Proof (Lemma 8.7.8). Let S∗ ⊆ V be the set for G as described in Definition 8.7.6 with
parameters s = ψ/ψ∗ and b; that is, it is the set with maximum d(S∗) out of all sets S ′ sat-
isfying Ψd

G(S ′) ≤ ψ∗ and d(S ′) ≤ d(V)/2. If d(S∗) = 0, then the output of WeightedBalCut
always satisfies the definition of (s, b)-most-balanced ψ-sparse cut, even if it outputs ∅. So for
the rest of the proof, assume that d(S∗) > 0, so that Ψd

G(S∗) and Ψd
Gi

(S∗) are well-defined.
By Lemma 8.2.7, there exists i ∈ [t] such that w(EGi(S

∗, V \S∗)) ≤ β ·w(EG(S∗, V \S∗)),
which means that

Ψd
Gi

(S∗) ≤ β ·Ψd
G(S∗) ≤ β · ψ∗.

For the rest of the proof, we focus on this i, and define K = Ki, H = Hi, and T = Ti. We
break into two cases, depending on which condition of Lemma 8.7.9 is true:

246

1. Suppose condition (1) is true for the cut S∗T . Then, since wT (ET (S∗T , VT \ S∗T)) ≤
w(EGi(S

∗, V \ S∗)) and dT (S∗T) ≥ d(S∗)/2, we have

wT (ET (S∗T , VT \ S∗T))

dT (S∗T)
≤ w(EGi(S

∗, V \ S∗))
d(S∗)/2

≤ 2Ψd
Gi

(S∗) ≤ 2β · ψ∗.

Also, dT (S∗T) ≤ 2d(V)/3 = 2dT (VT)/3. Let S ′T be the cut in T that RootedTreeBalCut
outputs and let ST the corresponding cut in Gi after the uncontraction in Step Item 4h.
Applying Lemma 8.7.10 with ψT = 2β · ψ∗, the cut S ′T satisfies ΨdT

T (S ′T) ≤ 6ψT =

12β·ψ∗ and min{dT (S ′T),dT (VT \S ′T)} ≥ dT (S∗T)/3. By construction, d(ST) = d(S ′T) ≥
dT (S∗T)/3 ≥ d(S∗)/6 ≥ d(S∗)/b and Ψd

Gi
(ST) = ΨdT

T (S ′T) ≤ 12β · ψ∗ ≤ ψ.
2. Suppose condition (2) is true for the cut S∗H . Since wH(EH(S∗H , K \ S∗H))

≤ w(EGi(S
∗, V \S∗)) and min{dH(S∗H),dH(K \S∗H)} ≥ d(S∗)/3, we have ΨdH

H (S∗H) ≤
3Ψd

Gi
(S∗) ≤ 3β · ψ∗. Since H ′ is an α-approximate spectral sparsifier of H, we have

ΨdH
H′ (S

∗
H) ≤ α · 3ΨdH

H (S∗H) ≤ 3αβ · ψ∗. By induction on the smaller recursive instance
WeightedBalCut(H ′,dH , ψ/α, 3αβψ∗, b/3), the cut S ′H computed is a (3αβψ∗, b/3)-
most-balanced (ψ/α,dH)-sparse cut. Since H ′ is an α-approximate spectral sparsi-
fier of H, we have ΨdH

H (S ′H) ≤ α · ΨdH
H′ (S

′
H) ≤ α · ψ/α = ψ. Let SH be the cut

in Gi corresponding to S ′H after the uncontraction in Step Item 4d. By construc-
tion, Ψd

Gi
(SH) = ΨdH

H (S ′H) ≤ ψ and d(SH) = dH(S ′H). Since S∗H is a cut with
ΨdH
H′ (S

∗
H) ≤ 3αβψ∗, we have

d(SH) = dH(S ′H) ≥ min{dH(S∗H),dH(K \ S∗H)}
b/3

≥ d(S∗)/3

b/3
=

d(S∗)

b
.

In both cases, the computed cut is a (ψ/ψ∗, b)-most-balanced ψ-sparse cut.

The lemma below will be useful in bounding the running time of the recursive algorithm.

Lemma 8.7.11

For any integer t ≥ 1 (as defined by the algorithm), the algorithm makes t recursive
calls WeightedBalCut(H ′,dH , ψ/α, 3αβψ∗, b/3) on graphs H ′ with Õ(m logU

t
) vertices

and Õ(m log2 U
t

) edges, and runs in Õ(tm) time outside these recursive calls.

Proof. By Lemma 8.2.7, computing the graphs G1, . . . , Gt takes Õ(tm) time. By
Lemma 8.7.10, RootedTreeBalCut runs in O(m) time for each Gt, for a total of O(tm) time.
Since each graph Gi is a Õ(m logU

t
)-tree, by construction, each graphHi has at most Õ(m logU

t
)

vertices. By Corollary 8.6.2, the sparsified graphs H ′i have at most Õ(m logU
t

) logm logU ≤
Õ(m log2 U

t
) edges.

Finally, we plug in our value t =
⌈
m1/r(logm)O(1) log2 U

⌉
that balances out the running

time Õ(tm) outside the recursive calls and the number r of recursion levels.

247

Theorem 8.7.12: Deterministic weighted most-balanced cut

Fix parameters ψ∗ > 0 and 1 ≤ r ≤ O(logm), and let ψ = 12β · (3α2β)r ·ψ∗. There is
a deterministic algorithm that, given a weighted graph G with m edges and capacity
ratio U and demands d, computes a (12β · (3α2β)r, 6 · 3r)-most-balanced ψ-sparse cut
in time m1+1/r (log(mU))O(1). Note that 12β · (3α2β)r = (logm)O(r3).

Proof. Let G be the original graph with m = m0 edges. Let G′ be the current input graph in
a recursive call of WeightedBalCut, with m′ edges and capacity ratio U ′. Set the parameters
t =

⌈
m1/r(logm′)O(1) log2 U ′

⌉
from the algorithm and α = (logm′)O(r2) from Corollary 8.6.2

and β = O(logm′(log logm′)O(1)) ≤ (logm′)O(1) from Lemma 8.2.7. By Lemma 8.7.11, the
algorithm makes t = m1/r(logm′)O(1) log2 U ′ many recursive calls to graphs with at most
Õ(m

′ log2 U ′

t
) ≤ m′/m1/r edges, where U ′ is the capacity ratio of the current graph, so there

are r levels of recursion. By Lemma 8.2.7, the capacity ratio of the graph increases by
an O(m) factor in each recursive call, so we have U ′ ≤ O(m)rU for all recursive graphs,
which means t ≤ m1/r(r logm + logU)O(1). By Lemma 8.7.11, the running time Õ(tm′)

outside the recursive calls for this graph is m′m1/r(r logm + logU)O(1). For recursion level
1 ≤ i ≤ r, there are mi/r (r logm+ logU)O(i) many graphs at this recursion level, each with
m′ ≤ m1−i/r, so the total time spent on graphs at this level, outside their own recursive calls,
is at most

mi/r (r logm+ logU)O(i) ·m1−i/rm1/r(r logm+ logU)O(1) = m1+1/r(r logm+ logU)O(i).

Summed over all 1 ≤ i ≤ r and using r ≤ O(logm), the overall total running time becomes
m1+1/r(log(mU))O(r).

We also need to verify that the conditions ψ ≥ 12β · ψ∗ and b ≥ 6 of Lemma 8.7.8
are always satisfied throughout the recursive calls. Since each recursive call decreases the
parameter b by a factor of 3, and b = 6 · 3r initially, the value of b is always at least 6.
Also, in each recursive call, the ratio ψ/ψ∗ decreases by a factor 3α2β, so for the initial value
ψ = 12β · (3α2β)r · ψ∗ in the theorem statement, we always have ψ/ψ∗ ≥ 12β.

8.7.3 Completing the Proof of Theorem 8.7.5 and Theorem 8.7.3

The proofs in this section follow the template from [87] but generalize it to work in weighted
graphs and general demand. In order to prove Theorem 8.7.5, we first present the lemma
below. Roughly, it guarantee the following. Given a set V ′ where G[V ′] is “close” to
being an expander in the sense that any sparse cut (A,B) in V ′ must be unbalanced:
min {d(A),d(B)} ≤ z, then the algorithm returns a large subset Y ⊆ V ′ such that Y is
“closer” to being an expander. That is, any sparse cut (A′, B′) in Y must be even more
unbalanced: min {d(A′),d(B′)} ≤ z′ � z.

248

Lemma 8.7.13

Let G = (V,E) be a weighted graph with edge weights in [1, U], and demands d(v) ∈
{0}∪ [1, U] for all v ∈ V that are not all zero. There is a universal constant c1 > 0 and
a deterministic algorithm, that, given a vertex subset V ′ ⊆ V with d(V ′) ≥ d(V)/2,
and parameters r ≥ 1, 0 < ψ < 1, 0 < z′ < z, such that for every partition (A,B) of
V ′ with w(EG(A,B)) ≤ ψ ·min {d(A),d(B)}, min {d(A),d(B)} ≤ z holds, computes
a partition (X, Y) of V ′, where d(X) ≤ d(Y) (where possibly X = ∅), w(EG(X, Y)) ≤
ψ · d(X), and one of the following holds:

1. either d(X),d(Y) ≥ d(V ′)/3 (note that this can only happen if z ≥ d(V ′)/3);
or

2. for every partition (A′, B′) of the set Y of vertices with

w(EG(A′, B′)) ≤ ψ

(log(mU))c1r3
·min {d(A′),d(B′)} ,

min {d(A′),d(B′)} ≤ z′ must hold (if z′ < 1, then graph G[Y] is guaranteed to
have d-sparsity at least ψ/(log(mU))c1r

3).

The running time of the algorithm is O
(
z
z′
·m1+1/r (log(mU))O(1)

)
.

Proof. Our algorithm is iterative. At the beginning of iteration i, we are given a subgraph
Gi ⊆ G, such that d(V (Gi)) ≥ 2d(V ′)/3; at the beginning of the first iteration, we set
G1 = G[V ′]. At the end of iteration i, we either terminate the algorithm with the desired
solution, or we compute a subset Si ⊆ V (Gi) of vertices, such that d(Si) ≤ d(V (Gi))/2,
and w(EGi(Si, V (Gi) \ Si)) ≤ ψ · d(Si)/2. We then delete the vertices of Si from Gi, in
order to obtain the graph Gi+1, that serves as the input to the next iteration. The algorithm
terminates once the current graph Gi satisfies d(V (Gi)) < 2d(V ′)/3 (unless it terminates
with the desired output beforehand).

We now describe the execution of the ith iteration. We assume that the sets S1, . . . , Si−1

of vertices are already computed, and that
∑i−1

i′=1 d(Si′) ≤ d(V ′)/3. Recall that Gi is the sub-
graph ofG[V ′] that is obtained by deleting the vertices of S1, . . . , Si−1 from it. Recall also that
we are guaranteed that d(V (Gi)) ≥ 2d(V ′)/3 ≥ d(V)/3. We apply Theorem 8.7.12 to graph
Gi with parameters ψ∗ = (ψ/2)/(log(mU))c1r

3 and r, and let X be the returned set, which
is a (ψ∗, 6 · 3r)-most-balanced ((log(mU))c1r

3 · ψ∗,d)-sparse cut satisfying d(X) ≤ d(V)/2.
We set parameter z∗ = z′/(6 ·3r). If d(X) ≤ z∗, then we terminate the algorithm, and re-

turn the partition (X, Y) of V ′ whereX =
⋃i
i′=1 Si′ , and Y = V ′\X. This satisfies the second

condition of Lemma 8.7.13, since by the most-balanced sparse cut definition, every partition
(A′, B′) of the set Y of vertices with w(EĜ(A′, B′)) ≤ ψ

(log(mU))c1r
3 ·min {d(A′),d(B′)} must

satisfy min{d(A′),d(B′)} ≤ 6 · 3r · d(X) < 6 · 3r · z∗ = z′.

249

Otherwise, d(X) > z∗. In this case, we set Si = X and continue the algorithm. If∑i
i′=1 d(Si′) ≤ d(V ′)/3 continues to hold, then we let Gi+1 = Gi \ Si, and continue to the

next iteration. Otherwise, we terminate the algorithm, and return the partition (X, Y) of V ′

where X =
⋃i
i′=1 Si′ , and Y = V ′ \X. Recall that we are guaranteed that d(X) ≥ d(V ′)/3.

To show that w(EĜ(X, Y)) ≤ ψ ·d(X), note that every cut Si satisfies w(EGi(Si, V (Gi)\
Si)) ≤ (ψ/2)d(Si), so w(EG(X, Y)) ≤

∑i
i′=1w(EGi(Si, V (Gi) \ Si)) ≤ (ψ/2)

∑i
i′=1 d(Si) =

(ψ/2)d(X), which is at most ψmin{d(X),d(V \X)} since d(X) ≤ 2d(V)/3.
The bound on the running time of the algorithm proceeds similarly. Observe that we

are guaranteed that for all i, d(Si) ≥ z∗. Notice however that throughout the algorithm,
if we set A =

⋃i
i′=1 Si′ and B = V ′ \ A, then d(A) < d(B) holds, and w(EG(A,B)) ≤

ψ · d(A). Therefore, from the condition of the lemma, d(A) ≤ z must hold. Overall, the
number of iterations in the algorithm is bounded by z/z∗ = 6 · 3r · z/z′, and, since every
iteration takes time m1+1/r (log(mU))O(1), total running time of the algorithm is bounded
by z

z′
·m1+1/r · (log(mU))O(1).

We are now ready to complete the proof of Theorem 8.7.5, which is almost identical to
the proof of Theorem 7.5 of [27]. For completeness, we include the proof below.
Proof (Theorem 8.7.5). We first show that we can safely assume that d(V) ≥ 2 · 4r. Other-
wise, consider the following expression in Item 2 of Lemma 8.7.13 and its upper bound:

ψ

(log(mU))c1r3
·min {d(A′),d(B′)} ≤ 1

(log(mU))c1r3
· 2 · 4r < 1,

which holds for large enough c1 > 0. Since G is connected and all edges have weight at least
1, the condition in Item 2 only applies with A′ = ∅ or B′ = ∅. Therefore, the algorithm can
trivially return X = ∅ and Y = V and satisfy Item 2.

For the rest of the proof, assume that d(v) ≥ 2 ·4r. Our algorithm will consist of at most
r iterations and uses the following parameters. First, we set z1 = d(V)/2, and for 1 < i ≤ r,
we set zi = zi−1/(d(V)/2)1/r ≤ zi−1/4; in particular, zr = 1 holds. We also define parameters
ψ1, . . . , ψr, by letting ψr = ψ, and, for all 1 ≤ i < r, setting ψi = 8 · (log(mU))c1r

3 · ψi+1,
where c1 is the constant from lemz. Notice that ψ1 ≤ ψ · (logm)O(r4).

In the first iteration, we apply Lemma 8.7.13 to the set V ′ = V of vertices, with the
parameters ψ = ψ1, z = z1, and z′ = z2. Clearly, for every partition (A,B) of V ′ with
wG(EG(A,B)) ≤ ψ1 · min {d(A),d(B)}, it holds that min {d(A),d(B)} ≤ z1 = d(V)/2.
If the outcome of the algorithm from Lemma 8.7.13 is a partition (X, Y) of V satisfying
d(X),d(Y) ≥ d(V)/3 and wG(EG(X, Y)) ≤ ψ1 · min {d(X),d(Y)}
≤ ψ · (logm)O(r4) min {d(X),d(Y)}, then we return the cut (X, Y) and terminate the algo-
rithm.

We assume from now on that the algorithm from Lemma 8.7.13 returned a partition
(X, Y) of V , where d(X) ≤ d(Y) (where possiblyX = ∅), d(X) ≤ d(V)/3, wG(EG(X, Y)) ≤

250

ψ1 · d(X), and the following guarantee holds: For every partition (A′, B′) of the set Y of
vertices with wG(EG(A′, B′)) ≤ 8ψ2 ·min {d(A′),d(B′)}, it holds that min {d(A′),d(B′)} ≤
z2. We set S1 = X, and we let G2 = G \ S1.

The remainder of the algorithm consists of r − 1 iterations i = 2, 3, . . . , r. The input to
iteration i is a subgraph Gi ⊆ G with d(V (Gi)) ≤ d(V)/2, such that for every cut (A′, B′)

of Gi with wG(EG(A′, B′)) ≤ ψi ·min {d(A′),d(B′)}, it holds that min {d(A′),d(B′)} ≤ zi.
(Observe that, as established above, this condition holds for graph G2). The output is
a subset Si ⊆ V (Gi) of vertices, such that d(Si) ≤ d(V (Gi))/2 and wG(EGi(Si, V (Gi) \
Si)) ≤ ψi · d(Si), and, if we set Gi+1 = Gi \ Si, then we are guaranteed that for ev-
ery cut (A′′, B′′) of Gi+1 with wG(EG(A′′, B′′)) ≤ 8ψi+1 · min {d(A′′),d(B′′)}, it holds that
min {d(A′′),d(B′′)} ≤ zi+1. In particular, if wG(EG(A′′, B′′)) ≤ ψi+1 · min {d(A′′),d(B′′)},
then min {d(A′′),d(B′′)} ≤ zi+1 holds. In order to execute the ith iteration, we simply ap-
ply Lemma 8.7.13 to the set V ′ = V (Gi) of vertices, with parameters ψ = ψi, z = zi and
z′ = zi+1. As we show later, we will ensure that d(V (Gi)) ≥ d(V)/2. Since, for i > 1,
zi ≤ d(V)/8 < d(V)/6 ≤ d(V (Gi))/3, the outcome of the lemma must be a partition
(X, Y) of V ′, where d(X) ≤ d(Y) (where possibly X = ∅), wG(EG(X, Y)) ≤ ψi · d(X),
and we are guaranteed that, for every partition (A′′, B′′) of the set Y of vertices with
wG(EG(A′′, B′′)) ≤ 8ψi+1 · min {d(A′′),d(B′′)}, it holds that min {d(A′),d(B′)} ≤ zi+1.
Therefore, we can simply set Si = X, Gi+1 = Gi \ Si, and continue to the next iteration,
provided that d(V (Gi+1)) ≥ d(V)/2 holds.

We next show that this indeed must be the case. Recall that for all 2 ≤ i′ ≤ i, we
guarantee that d(Si′) ≤ zi′ ≤ d(V)/(2 · 4i′−1). Therefore, if we denote by Z =

⋃i
i′=2 Si′ and

Z ′ = V (G2) \ Z, then d(Z) ≤ d(V)/2 ·
∑i

i′=2 1/4i
′−1 ≤ d(V)/6, so

d(V (Gi+1)) = d(Z ′) = d(V (G2))− d(Z) ≥ 2d(V)/3− d(V)/6 = d(V)/2.

as promised.
We continue the algorithm until we reach the last iteration, where zr = 1 holds. Apply

Lemma 8.7.13 to the final graph Gr with z′ = 1/2 to obtain Sr ⊆ V (Gr). Since z′ < 1, the
discussion in Item 2 implies that graph Gr \Sr has d-sparsity at least ψ (recall that ψr = ψ).
We define our final partition as Y = V (Gr) \ Sr and X = V \ Y =

⋃r
i=1 Si. By the same

reasoning as before, we are guaranteed that d(Y) ≥ d(V)/2 ≥ d(X). Finally,

wG(EG(X, Y)) ≤
r∑
i=1

wG(EG(Si, V (Gi) \ Si)) ≤
r∑
i=1

ψi · d(Si) ≤ ψ · (logm)O(r4) · d(X),

which concludes the proof of Theorem 8.7.5.

Finally, we prove Theorem 8.7.3, which is almost identical to the proof of Theorem 8.6.1.
Proof (Theorem 8.7.3). We maintain a collection H of disjoint sub-graphs of G that we call

251

clusters, which is partitioned into two subsets, set HA of active clusters, and set HI of in-
active clusters. We ensure that each inactive cluster H ∈ HI has d|V (H)-sparsity at least
ψ. We also maintain a set E ′ of “deleted” edges, that are not contained in any cluster in
H. At the beginning of the algorithm, we let H = HA = {G}, HI = ∅, and E ′ = ∅.
The algorithm proceeds as long as HA 6= ∅, and consists of iterations. For convenience,
we denote α = (logm)O(r4) the approximation factor achieved by the algorithm from The-
orem 8.7.5, and we set ψ = ε/(cα · log(mU)), for some large enough constant c, so that
ψ = Ω

(
ε/
(

logO(r4)m logU
))

holds.
In every iteration, we apply the algorithm from Theorem 8.7.5 to every graph H ∈ HA,

with the same parameters α, r, and ψ. Consider the partition (A,B) of V (H) that the
algorithm computes, with w(EH(A,B)) ≤ αψ · d(V (H)) ≤ ε·d(V (H))

c log(mU)
. We add the edges of

EH(A,B) to set E ′. If d(A),d(B) ≥ d(V (H))/3, then we replace H with H[A] and H[B] in
H and in HA. Otherwise, we are guaranteed that d(A) ≥ d(V (H))/2 and Ψd|A(H[A]) ≥ ψ.
Then we remove H from H and HA, add H[A] to H and HI , and add H[B] to H and HA.

When the algorithm terminates, HA = ∅, and so every graph H ∈ H has d|V (H)-sparsity
at least ψ. Notice that in every iteration, the maximum value of d(V (H)) of a graph
H ∈ HA must decrease by a constant factor. Therefore, the number of iterations is bounded
by O(log(mU)). It is easy to verify that the total weight of edges added to set E ′ in every
iteration is at most ε·d(V)

c log(mU)
. Therefore, by letting c be a large enough constant, we can ensure

that w(E ′) ≤ εd(V). The output of the algorithm is the partition P = {V (H) | H ∈ H}
of V . From the above discussion, we obtain a valid (ε, ψ)-expander decomposition, for
ψ = Ω

(
ε/
(

logO(r4) m logU
))

.
It remains to analyze the running time of the algorithm. The running time of a single

iteration is bounded by m · (mU)O(1/r). Since the total number of iterations is bounded by
O(log(mU)), we get that the total running time of the algorithm is m · (mU)O(1/r) log(mU).

8.8 Weighted Expander Decomposition, Boundary-Linked

In this section, we augment the WeightedBalCutPrunealgorithm (Theorem 8.7.5) to handle
an additional boundary-linkedness property, though we restrict to standard vertex demands
where the demand of each vertex is its (weighted) degree. Our proof is directly modeled off
of the proof of Theorem 4.5 in [45], so we claim no novelty in this section.

For simplicity, we will work with weighted multigraphs with self-loops, and we re-define
the degree deg(v) to mean w(∂({v})) plus the total weight of all self-loops at vertex v. All
other definitions that depend on deg(v), such as vol(S) and Φ(G), are also affected.

Given a weighted graph G = (V,E), a parameter r > 0, and a subset A ⊆ V , define
G{A}r as the graphG[A] with the following self-loops attached: for each edge e ∈ E(A, V \A)

with endpoint v ∈ A, add a self-loop at v of weight r · w(e).

252

We now present the formal definition of boundary-linked expander decomposition.

Definition 8.8.1: Boundary-linked expander decomposition

Let G = (V,E) be a graph and let r ≥ 1 be a parameter. A β-boundary-linked
φ-expander decomposition is a partition V = V1] · · ·] Vk of V such that

1. For each i, G[Vi]
β/φ is a φ-expander. In particular, for any S satisfying

volG[Vi](S) +
β

φ
w(EG(S, V \ Vi)) ≤ volG[Vi](Vi \ S) +

β

φ
w(EG(Vi \ S, V \ Vi)),

we simultaneously obtain

w(∂G[Vi]S)

volG[Vi](S)
≥ φ and

w(∂G[Vi]S)
β
φ
w(EG(S, V \ Vi))

≥ φ ⇐⇒
w(∂G[Vi]S)

w(EG(S, V \ Vi))
≥ β.

The right-most inequality is where the name “boundary-linked” comes from.

2. The total weight of “inter-cluster” edges, w(∂V1 ∪ · · · ∪ ∂Vk), is at most
(log n)O(r4)φvol(V).

The main result of this section is an algorithm for this decomposition.

Theorem 8.8.2: Boundary-linked expander decomposition

For any parameters β ≤ (log n)−O(r4) and φ ≤ β, there is a deterministic β-boundary-
linked φ-expander decomposition algorithm that runs in time m1+O(1/r) + Õ(m/φ2),

Our algorithm uses the WeightedBalCutPrunealgorithm (Definition 8.7.4) from Section 8.7
with one simple modification in the (Prune) case. The only new ingredient we need is an
additional trimming step described in the lemma below. While [45] prove it for unweighted
graphs only, the algorithm translates directly to the weighted case;2 see, for example, Theo-
rem 4.2 of [94].

Lemma 8.8.3: Trimming, Lemmas 4.9 and 4.10 of [45]

Given a weighted graph G = (V,E) and subset A ⊆ V such that G{A} is an 8φ-
expander and w(EG(A, V \ A)) ≤ φ

16
volG(A), we can compute a “pruned” set P ⊆ A

in deterministic Õ(m/φ2) time with the following properties:
1. volG(P) ≤ 4

φ
w(EG(A, V \ A)),

2. w(EG(A′, V \ A′)) ≤ 2w(EG(A, V \ A)) where A′ := A \ P , and
3. G{A′}1/(8φ) is a φ-expander.

2In particular, the core subroutine, called Unit-Flow in [94], is based on the push-relabel max-flow algo-
rithm, which works on both unweighted and weighted graphs.

253

We now prove Theorem 8.8.2 using Theorem 8.7.5. Our proof is copied almost ad ver-
batim from the proof of Theorem 8.6.1, with the necessary changes to prove the additional
boundary-linked property.

We maintain a collection H of vertex-disjoint graphs that we call clusters, which are
subgraphs of G with some additional self-loops. The set H of clusters is partitioned into
two subsets, set HA of active clusters, and set HI of inactive clusters. We ensure that each
inactive cluster H ∈ HI is a φ-expander. We also maintain a set E ′ of “deleted” edges,
that are not contained in any cluster in H. At the beginning of the algorithm, we let
H = HA = {G}, HI = ∅, and E ′ = ∅. The algorithm proceeds as long as HA 6= ∅, and
consists of iterations. Let α = (log n)O(r4) be the approximation factor from Theorem 8.7.5.

In every iteration, we apply the algorithm from Theorem 8.7.5 to every graph H ∈ HA,
with the same parameters α, r, and φ. Let U be the vertices of H. Consider the cut (A,B)

in H that the algorithm returns, with

w(EH(A,B)) ≤ αφ · vol(U) ≤ ε · vol(U)

c log n
. (8.5)

We add the edges of EH(A,B) to set E ′.
If volH(B) ≥ vol(U)

32α
, then we replace H with H{A}1/(α2φ logn) and H{B}1/(α2φ logn) in H

and in HA. Note that the self-loops add a total volume of

1

α2φ log n
· w(EH(A,B)) ≤ 1

α2φ log n
· αφvol(U) =

1

α log n
vol(U). (8.6)

Otherwise, if volH(B) < vol(U)
32α

≤ vol(U)/3, then we must be in the (Prune) case, which
means that volH(A) ≥ vol(U)/2 and graph H{A}1/(8φ) has conductance at least φ. Since

w(EH(A,B)) ≤ αφ · volH(B) ≤ φ

32
vol(U) ≤ φ

16
vol(A),

we can call Lemma 8.8.3 on A to obtain a pruned set P ⊆ A such that

volH(P) ≤ 4

φ
w(EH(A,B)) ≤ 1

8
vol(U)

and
w(EH(A′, U \ A′)) ≤ 2w(EH(A,B)) ≤ φ

8
vol(A)

for A′ := A \ P , and H{A′}1/(8φ) is a φ-expander. Add the edges of EH(A′, U \ A′) to E ′,
remove H from H and HA, add H{A′}1/(8φ) to H and HI , and add H{B∪P}1/(8φ) to H and
HA. Observe that

volH(B ∪ P) = volH(B) + volH(P) ≤ 1

2
volH(U) +

1

8
volH(U) ≤ 5

8
vol(U).

254

When the algorithm terminates, HA = ∅, and so every graph in H has conductance at
least φ. Notice that in every iteration, the maximum volume of a graph in HA is at most
a factor (1− 1

32α
) of what it was before. Since edge weights are polynomially bounded, the

number of iterations is at most O(α log n). On each iteration, the total volume of graphs
in HA increases by at most factor 1 + 2

α logn
factor due to the self-loops added in (8.6), so

the total volume of all H ∈ H at the end is at most a constant factor of the initial volume
volG(V).

The output of the algorithm is the partition of V induced by the vertex sets of H ∈ H, so
the inter-cluster edges is a subset of E ′. It is easy to verify by (8.5) that the total weight of
edges added to set E ′ in every iteration is at most αφ times the total volume of graphs in HA

at the beginning of that iteration, which is O(volG(V)). Over all O(α log n) iterations, the
total weight of E ′ is O(α log n) · αφvolG(V) ≤ (log n)O(r4)φvolG(V), fulfilling property (2)
of a boundary-linked expander decomposition.

It remains to show that for each graph H ∈ HI , its vertex set U satisfies the boundary-
linked φ-expander property (1) of Definition 8.8.1. For each boundary edge e ∈ EG(U, V \
U), it was created at some iteration where we either added 1

α2φ logn
self-loops or 1

8φ
self-

loops, so G[U]min{1/(α2φ logn),1/(8φ)} is a subgraph of H. Since H is a φ-expander, so is
G[U]min{1/(α2φ logn),1/(8φ)}, and property (1) for β := min{1/α2, 1/8} follows.

It remains to analyze the running time of the algorithm. The running time of a single
iteration is bounded by O(m1+O(1/r)) + Õ(m/φ2). Since the total number of iterations is
bounded by O(log n), the total running time is the same, asymptotically.

8.9 Conclusion

In this chapter, we presented a deterministic, almost-linear time algorithm for various settings
of expander decomposition, which opened the door to the fast, deterministic, preconditioning-
based algorithms of Chapters 3 and 6. One immediate open problem is whether the no(1) fac-
tors in the running time and expander decomposition quality can be improved to polylog(n),
which can indeed be done in the randomized case. Achieving such a result deterministically
will likely require substantially new ideas that avoid the recursive nature of our approach. We
remark that even a Las Vegas expander decomposition algorithm that achieves polylog(n)

factors everywhere is still unknown.

255

256

Bibliography

[1] Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear
additive spanners. SIAM Journal on Computing, 47(6):2203–2236, 2018.

[2] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. New algorithms and lower
bounds for all-pairs max-flow in undirected graphs. In Shuchi Chawla, editor, Proceed-
ings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt
Lake City, UT, USA, January 5-8, 2020, pages 48–61. SIAM, 2020.

[3] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. Cut-equivalent trees are
optimal for min-cut queries. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020. IEEE Computer Society, 2020.

[4] Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch
spanning tree. In Proceedings of the forty-fourth annual ACM symposium on Theory
of computing, pages 395–406. ACM, 2012.

[5] Zeyuan Allen Zhu, Zhenyu Liao, and Lorenzo Orecchia. Spectral sparsification and
regret minimization beyond matrix multiplicative updates. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 237–245, 2015.

[6] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986. doi: 10.
1007/BF02579166. URL https://doi.org/10.1007/BF02579166.

[7] Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. Journal of the ACM
(JACM), 42(4):844–856, 1995.

[8] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Using pagerank to locally
partition a graph. Internet Mathematics, 4(1):35–64, 2007. doi: 10.1080/15427951.
2007.10129139. URL https://doi.org/10.1080/15427951.2007.10129139.

[9] Alexandr Andoni, Clifford Stein, and Peilin Zhong. Parallel approximate undirected
shortest paths via low hop emulators. arXiv preprint arXiv:1911.01956, 2019.

[10] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric em-
beddings and graph partitioning. J. ACM, 56(2):5:1–5:37, 2009. doi: 10.1145/1502793.
1502794. URL https://doi.org/10.1145/1502793.1502794.

[11] Sanjeev Arora, Elad Hazan, and Satyen Kale. O(
√

log n) approximation to SPARS-

257

https://doi.org/10.1007/BF02579166
https://doi.org/10.1080/15427951.2007.10129139
https://doi.org/10.1145/1502793.1502794

EST CUT in Õ(n2) time. SIAM J. Comput., 39(5):1748–1771, 2010. doi: 10.1137/
080731049. URL https://doi.org/10.1137/080731049.

[12] Baruch Awerbuch, Andrew V Goldberg, Michael Luby, and Serge A Plotkin. Network
decomposition and locality in distributed computation. In FOCS, volume 30, pages
364–369, 1989.

[13] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-Ramanujan sparsi-
fiers. SIAM Journal on Computing, 41(6):1704–1721, 2012.

[14] Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen.
Near-optimal approximate shortest paths and transshipment in distributed and stream-
ing models. arXiv preprint arXiv:1607.05127, 2016.

[15] András A Benczúr and David R Karger. Approximate s-t min-cuts in õ(n2) time.
SIAM Journal on Computing, 44(2):290–319, 2015.

[16] Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi.
An õ(mn) gomory-hu tree construction algorithm for unweighted graphs. In David S.
Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on
Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 605–614.
ACM, 2007.

[17] Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi.
Fast edge splitting and edmonds’ arborescence construction for unweighted graphs. In
Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January 20-22,
2008, pages 455–464, 2008.

[18] Ruoxu Cen, Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol
Saranurak. Minimum cuts in directed graphs via

√
n max-flows. arXiv preprint

arXiv:2104.07898, 2021.

[19] Ruoxu Cen, Jason Li, and Debmalya Panigrahi. Augmenting edge connectivity via
isolating cuts. 2021.

[20] Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decompo-
sition and nearly optimal triangle enumeration. In Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019., pages 66–73, 2019. doi: 10.1145/3293611.3331618. URL
https://doi.org/10.1145/3293611.3331618.

[21] Chandra Chekuri and Julia Chuzhoy. Large-treewidth graph decompositions and ap-
plications. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto,
CA, USA, June 1-4, 2013, pages 291–300, 2013. doi: 10.1145/2488608.2488645. URL
https://doi.org/10.1145/2488608.2488645.

[22] Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem.
J. ACM, 63(5):40:1–40:65, 2016. doi: 10.1145/2820609. URL https://doi.org/10.

258

https://doi.org/10.1137/080731049
https://doi.org/10.1145/3293611.3331618
https://doi.org/10.1145/2488608.2488645
https://doi.org/10.1145/2820609
https://doi.org/10.1145/2820609
https://doi.org/10.1145/2820609

1145/2820609.

[23] Chandra Chekuri and Kent Quanrud. Isolating cuts,(bi-) submodularity, and faster
algorithms for global connectivity problems. arXiv preprint arXiv:2103.12908, 2021.

[24] Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junx-
ing Wang. Graph sparsification, spectral sketches, and faster resistance computation,
via short cycle decompositions. In 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 361–372, 2018.
doi: 10.1109/FOCS.2018.00042. URL https://doi.org/10.1109/FOCS.2018.00042.

[25] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source
shortest paths with applications to vertex-capacitated flow and cut problems. In STOC,
pages 389–400. ACM, 2019. To appear at STOC’19.

[26] Julia Chuzhoy and Shi Li. A polylogarithmic approximation algorithm for edge-disjoint
paths with congestion 2. J. ACM, 63(5):45:1–45:51, 2016. doi: 10.1145/2893472. URL
https://doi.org/10.1145/2893472.

[27] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and
Thatchaphol Saranurak. A deterministic algorithm for balanced cut with applica-
tions to dynamic connectivity, flows, and beyond. In Symp. Foundations of Computer
Science (FOCS), 11 2020.

[28] Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected
shortest paths. Journal of the ACM (JACM), 47(1):132–166, 2000.

[29] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and Jason Li.
Tight fpt approximations for k-median and k-means. arXiv preprint arXiv:1904.12334,
2019.

[30] Vincent Cohen-Addad, Anupam Gupta, Philip N. Klein, and Jason Li. A quasipolyno-
mial (2 + ε)-approximation for planar sparsest cut. arXiv preprint arXiv:2105.15187,
2021.

[31] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,
Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized algorithms.
Springer, Cham, 2015. ISBN 978-3-319-21274-6; 978-3-319-21275-3. doi: 10.1007/
978-3-319-21275-3. URL http://dx.doi.org/10.1007/978-3-319-21275-3.

[32] Yefim Dinitz. Dinitz’ algorithm: The original version and Even’s version. In Theoretical
computer science, pages 218–240. Springer, 2006.

[33] Jack Edmonds. Edge-disjoint branchings. Combinatorial algorithms, 1973.

[34] Michael Elkin and Ofer Neiman. Efficient algorithms for constructing very sparse
spanners and emulators. ACM Transactions on Algorithms (TALG), 15(1):4, 2018.

[35] David J Evans. The use of pre-conditioning in iterative methods for solving linear equa-
tions with symmetric positive definite matrices. IMA Journal of Applied Mathematics,

259

https://doi.org/10.1145/2820609
https://doi.org/10.1145/2820609
https://doi.org/10.1145/2820609
https://doi.org/10.1109/FOCS.2018.00042
https://doi.org/10.1145/2893472
http://dx.doi.org/10.1007/978-3-319-21275-3

4(3):295–314, 1968.

[36] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. Journal of the
ACM (JACM), 28(1):1–4, 1981.

[37] Jeremy T Fineman. Nearly work-efficient parallel algorithm for digraph reachability. In
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
pages 457–470. ACM, 2018.

[38] Ofer Gabber and Zvi Galil. Explicit constructions of linear-sized superconcentrators.
J. Comput. Syst. Sci., 22(3):407–420, 1981. announced at FOCS’79.

[39] Harold Gabow, Zvi Galil, Thomas Spencer, and Robert Tarjan. Efficient algorithms
for finding minimum spanning tree in undirected and directed graphs. Combinatorica,
6:109–122, 06 1986. doi: 10.1007/BF02579168.

[40] H.N. Gabow. A matroid approach to finding edge connectivity and packing arbores-
cences. Journal of Computer and System Sciences, 50(2):259–273, 1995. ISSN 0022-
0000. doi: https://doi.org/10.1006/jcss.1995.1022.

[41] Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, and
Sorrachai Yingchareonthawornchai. Deterministic graph cuts in subquadratic time:
Sparse, balanced, and k-vertex. arXiv preprint arXiv:1910.07950, 2019.

[42] Andrew V. Goldberg and Robert Endre Tarjan. A new approach to the maximum-
flow problem. J. ACM, 35(4):921–940, 1988. doi: 10.1145/48014.61051. URL https:
//doi.org/10.1145/48014.61051.

[43] Oded Goldreich and Dana Ron. A sublinear bipartiteness tester for bounded de-
gree graphs. Combinatorica, 19(3):335–373, 1999. doi: 10.1007/s004930050060. URL
https://doi.org/10.1007/s004930050060.

[44] Ralph E Gomory and Tien Chung Hu. Multi-terminal network flows. Journal of the
Society for Industrial and Applied Mathematics, 9(4):551–570, 1961.

[45] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The ex-
pander hierarchy and its applications to dynamic graph algorithms. arXiv preprint
arXiv:2005.02369, 2020.

[46] Anupam Gupta, Euiwoong Lee, and Jason Li. The Karger-Stein algorithm is optimal
for k-cut. In ACM Symposium on the Theory of Computing (STOC), 5 2020. doi:
10.1145/3357713.3384285. URL https://doi.org/10.1145/3357713.3384285.

[47] Anupam Gupta, Euiwoong Lee, and Jason Li. The connectivity threshold for dense
graphs. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 89–105. SIAM, 2021.

[48] Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in
a directed graph. J. Algorithms, 17(3):424–446, 1994. ISSN 0196-6774. doi: 10.1006/
jagm.1994.1043. URL http://dx.doi.org/10.1006/jagm.1994.1043. Third Annual

260

https://doi.org/10.1145/48014.61051
https://doi.org/10.1145/48014.61051
https://doi.org/10.1007/s004930050060
https://doi.org/10.1145/3357713.3384285
http://dx.doi.org/10.1006/jagm.1994.1043

ACM-SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992).

[49] Sariel Har-Peled. Geometric approximation algorithms. Number 173. American Math-
ematical Soc., 2011.

[50] Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Efficient algorithms
for computing all low s-t edge connectivities and related problems. In Nikhil Bansal,
Kirk Pruhs, and Clifford Stein, editors, Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA,
January 7-9, 2007, pages 127–136. SIAM, 2007.

[51] Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge
connectivity. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 1919–1938, 2017. doi: 10.1137/1.9781611974782.125. URL https://doi.org/
10.1137/1.9781611974782.125.

[52] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

[53] Ravi Kannan, Santosh Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. J. ACM, 51(3):497–515, 2004. doi: 10.1145/990308.990313. URL https:
//doi.org/10.1145/990308.990313.

[54] David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut
algorithm. In SODA, volume 93, pages 21–30, 1993.

[55] David R. Karger. Minimum cuts in near-linear time. J. ACM, 47(1):46–76, 2000. ISSN
0004-5411. doi: 10.1145/331605.331608. URL http://dx.doi.org/10.1145/331605.
331608.

[56] David R Karger and Clifford Stein. A new approach to the minimum cut problem.
Journal of the ACM (JACM), 43(4):601–640, 1996.

[57] Ken-ichi Kawarabayashi and Mikkel Thorup. Deterministic edge connectivity in near-
linear time. J. ACM, 66(1):4:1–4:50, 2019. doi: 10.1145/3274663. URL https://doi.
org/10.1145/3274663.

[58] Rohit Khandekar, Subhash Khot, Lorenzo Orecchia, and Nisheeth K Vishnoi. On a
cut-matching game for the sparsest cut problem. Univ. California, Berkeley, CA, USA,
Tech. Rep. UCB/EECS-2007-177, 2007.

[59] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph partitioning using single
commodity flows. J. ACM, 56(4):19:1–19:15, 2009. doi: 10.1145/1538902.1538903.
URL https://doi.org/10.1145/1538902.1538903.

[60] Andrey Boris Khesin, Aleksandar Nikolov, and Dmitry Paramonov. Preconditioning
for the geometric transportation problem. arXiv preprint arXiv:1902.08384, 2019.

[61] Philip N Klein and Sairam Subramanian. A parallel randomized approximation scheme

261

https://doi.org/10.1137/1.9781611974782.125
https://doi.org/10.1137/1.9781611974782.125
https://doi.org/10.1145/990308.990313
https://doi.org/10.1145/990308.990313
http://dx.doi.org/10.1145/331605.331608
http://dx.doi.org/10.1145/331605.331608
https://doi.org/10.1145/3274663
https://doi.org/10.1145/3274663
https://doi.org/10.1145/1538902.1538903

for shortest paths. In STOC, volume 92, pages 750–758, 1992.

[62] Philip N Klein and Sairam Subramanian. A randomized parallel algorithm for single-
source shortest paths. Journal of Algorithms, 25(2):205–220, 1997.

[63] Ioannis Koutis, Gary L Miller, and Richard Peng. Approaching optimality for solving
sdd linear systems. SIAM Journal on Computing, 43(1):337–354, 2014.

[64] Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A. Spielman.
Sparsified cholesky and multigrid solvers for connection laplacians. In Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016,
Cambridge, MA, USA, June 18-21, 2016, pages 842–850, 2016. doi: 10.1145/2897518.
2897640. URL https://doi.org/10.1145/2897518.2897640.

[65] Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving
linear programs in õ(vrank) iterations and faster algorithms for maximum flow. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014,
Philadelphia, PA, USA, October 18-21, 2014, pages 424–433, 2014. doi: 10.1109/
FOCS.2014.52. URL https://doi.org/10.1109/FOCS.2014.52.

[66] Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999.
doi: 10.1145/331524.331526. URL https://doi.org/10.1145/331524.331526.

[67] Jason Li. Faster parallel algorithm for approximate shortest path. In ACM Symposium
on the Theory of Computing (STOC), 5 2020. doi: 10.1145/3357713.3384268. URL
https://doi.org/10.1145/3357713.3384268.

[68] Jason Li. Faster parallel algorithm for approximate shortest path. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 308–321,
2020.

[69] Jason Li. Deterministic mincut in almost-linear time. STOC, 2021.

[70] Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-
flows. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020. IEEE Computer Society, 2020.

[71] Jason Li and Debmalya Panigrahi. Approximate Gomory-Hu tree is faster than n− 1

max-flows. In Proceedings of the 53rd Annual ACM Symposium on Theory of Com-
puting, 2021.

[72] Jason Li and Thatchaphol Saranurak. Deterministic weighted expander decomposition
in almost-linear time, 2021.

[73] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sor-
rachai Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows.
STOC, 2021.

[74] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some

262

https://doi.org/10.1145/2897518.2897640
https://doi.org/10.1109/FOCS.2014.52
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/3357713.3384268

of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

[75] Yang P Liu and Aaron Sidford. Faster divergence maximization for faster maximum
flow. arXiv preprint arXiv:2003.08929, 2020.

[76] Yang P. Liu, Sushant Sachdeva, and Zejun Yu. Short cycles via low-diameter decom-
positions. In SODA, pages 2602–2615. SIAM, 2019.

[77] Aleksander Madry. Faster approximation schemes for fractional multicommodity flow
problems via dynamic graph algorithms. In Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge, Massachusetts, USA, 5-8 June
2010, pages 121–130. IEEE Computer Society, 2010. doi: 10.1145/1806689.1806708.
URL https://doi.org/10.1145/1806689.1806708.

[78] Aleksander Madry. Fast approximation algorithms for cut-based problems in undi-
rected graphs. In FOCS, pages 245–254. IEEE Computer Society, 2010.

[79] G. A. Margulis. Explicit construction of concentrators. Problemy Peredafi Iqfiwmacii,
9(4):71–80, 1973. (English translation in Problems Inform. Transmission (1975)).

[80] David W Matula. A linear time 2+ ε approximation algorithm for edge connectivity.
In Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms,
pages 500–504, 1993.

[81] N. Megiddo, Arie Tamir, Eitan Zemel, and Ramaswamy Chandrasekaran. An
o(n log2 n) algorithm for the k th longest path in a tree with applications to location
problems. SIAM Journal on Computing, 10, 05 1981. doi: 10.1137/0210023.

[82] Gary L Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel
algorithms for spanners and hopsets. arXiv preprint arXiv:1309.3545, 2013.

[83] Gary L Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions
using random shifts. In Proceedings of the twenty-fifth annual ACM symposium on
Parallelism in algorithms and architectures, pages 196–203. ACM, 2013.

[84] Sagnik Mukhopadhyay and Danupon Nanongkai. A note on isolating cut lemma for
submodular function minimization. arXiv preprint arXiv:2103.15724, 2021.

[85] Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse
k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596,
1992. doi: 10.1007/BF01758778. URL https://doi.org/10.1007/BF01758778.

[86] Hiroshi Nagamochi and Toshihide Ibaraki. Computing edge-connectivity in multi-
graphs and capacitated graphs. SIAM Journal on Discrete Mathematics, 5(1):54–66,
1992.

[87] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest with worst-
case update time: adaptive, Las Vegas, and O(n1/2−ε)-time. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal,
QC, Canada, June 19-23, 2017, pages 1122–1129. ACM, 2017. doi: 10.1145/3055399.

263

https://doi.org/10.1145/1806689.1806708
https://doi.org/10.1007/BF01758778

3055447. URL https://doi.org/10.1145/3055399.3055447.

[88] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic
minimum spanning forest with subpolynomial worst-case update time. In FOCS, pages
950–961. IEEE Computer Society, 2017.

[89] Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based algorithms for local graph clus-
tering. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1267–1286.
SIAM, 2014. doi: 10.1137/1.9781611973402.94. URL https://doi.org/10.1137/1.
9781611973402.94.

[90] Richard Peng. Approximate undirected maximum flows in o (m polylog (n)) time.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algo-
rithms, pages 1862–1867. SIAM, 2016.

[91] Harald Räcke, Chintan Shah, and Hanjo Täubig. Computing cut-based hierarchi-
cal decompositions in almost linear time. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, pages 227–238, 2014. doi: 10.1137/1.9781611973402.17. URL
https://doi.org/10.1137/1.9781611973402.17.

[92] Yousef Saad and Henk A Van Der Vorst. Iterative solution of linear systems in the
20th century. Numerical Analysis: Historical Developments in the 20th Century, pages
175–207, 2001.

[93] Thatchaphol Saranurak. A simple deterministic algorithm for edge connectivity. In
Symposium on Simplicity in Algorithms (SOSA), pages 80–85. SIAM, 2021.

[94] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster,
stronger, and simpler. In SODA, pages 2616–2635. SIAM, 2019. To appear in SODA’19.

[95] Jonah Sherman. Breaking the multicommodity flow barrier for O(
√

log n)-
approximations to sparsest cut. In 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2009, October 25-27, 2009, Atlanta, Georgia, USA, pages
363–372, 2009.

[96] Jonah Sherman. Nearly maximum flows in nearly linear time. In FOCS, pages 263–269.
IEEE, IEEE Computer Society, 2013.

[97] Jonah Sherman. Area-convexity, l∞ regularization, and undirected multicommod-
ity flow. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages 452–
460. SIAM, 2017. doi: 10.1145/3055399.3055501. URL https://doi.org/10.1145/
3055399.3055501.

[98] Daniel Dominic Sleator and Robert Endre Tarjan. A data structure for dynamic trees.
J. Comput. Syst. Sci., 26(3):362–391, 1983. doi: 10.1016/0022-0000(83)90006-5. URL
https://doi.org/10.1016/0022-0000(83)90006-5.

264

https://doi.org/10.1145/3055399.3055447
https://doi.org/10.1137/1.9781611973402.94
https://doi.org/10.1137/1.9781611973402.94
https://doi.org/10.1137/1.9781611973402.17
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.1145/3055399.3055501
https://doi.org/10.1016/0022-0000(83)90006-5

[99] D. Spielman and N. Srivastava. Graph sparsification by effective resistances. SIAM
Journal on Computing, 40(6):1913–1926, 2011.

[100] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In STOC, pages 81–90.
ACM, 2004. doi: 10.1145/1007352.1007372. URL http://doi.acm.org/10.1145/
1007352.1007372.

[101] Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM J.
Comput., 40(4):981–1025, 2011. doi: 10.1137/08074489X. URL https://doi.org/
10.1137/08074489X.

[102] Mechthild Stoer and Frank Wagner. A simple min-cut algorithm. Journal of the ACM
(JACM), 44(4):585–591, 1997.

[103] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford,
Zhao Song, and Di Wang. Minimum cost flows, mdps, and `1-regression in nearly
linear time for dense instances. CoRR, abs/2101.05719, 2021. URL https://arxiv.
org/abs/2101.05719.

[104] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-
case update time. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017, pages
1130–1143. ACM, 2017. doi: 10.1145/3055399.3055415. URL https://doi.org/10.
1145/3055399.3055415.

[105] Neal E. Young. Randomized rounding without solving the linear program. In Proceed-
ings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’95,
page 170–178, USA, 1995. ISBN 0898713498.

265

http://doi.acm.org/10.1145/1007352.1007372
http://doi.acm.org/10.1145/1007352.1007372
https://doi.org/10.1137/08074489X
https://doi.org/10.1137/08074489X
https://arxiv.org/abs/2101.05719
https://arxiv.org/abs/2101.05719
https://doi.org/10.1145/3055399.3055415
https://doi.org/10.1145/3055399.3055415

	Introduction
	Locality: Unbalanced vs. Balanced
	Minimum Isolating Cuts and Applications

	Preconditioning: Worst Case vs. Average Case
	Graph Cut Problems
	Graph Distance Problems

	Preliminaries
	Bibliographic Notes

	I Locality
	Minimum Isolating Cuts
	Background
	The Isolating Cuts Algorithm
	Conclusion

	Steiner Mincut
	Background
	Randomized Steiner Mincut
	Deterministic Steiner Mincut
	Unbalanced Case
	Balanced Case: Sparsifying U

	Conclusion

	Gomory-Hu Tree
	Background
	Our Results
	Our Techniques
	Additional Preliminaries
	Reducing to SSMC Verification
	A Single Recursive Step
	The Gomory-Hu Tree Algorithm

	The Cut Threshold Algorithm
	Approximate GH Tree
	Approximation
	Running Time Bound
	Weighted Graphs

	Conclusion

	Directed Global Mincut
	Background
	Our Techniques
	Additional Preliminaries

	The Directed Mincut Algorithm
	Sparsification
	Finding a 1-respecting Arborescence
	Mincut Given 1-respecting Arborescence
	Conclusion

	II Preconditioning
	Deterministic Mincut
	Background
	Our Techniques
	Additional Preliminaries
	Karger's Approach
	Spectral Graph Theory

	Expander Case
	General Case
	Expander Decomposition Preliminaries
	Unbalanced Case
	Balanced Case
	Combining Them Together
	Removing the Maximum Weight Assumption

	Conclusion

	Parallel Shortest Path
	Background
	Our Contributions
	Our Techniques
	Chapter Organization

	Additional Preliminaries
	PRAM Model
	Transshipment Preliminaries
	Parallel Shortest Path Preliminaries

	The Recursive Algorithm
	1-Embedding from Approximate SSSP Potential
	Sparsification and Recursion to Smaller Instances

	1-Oblivious Routing and Sequential Transshipment
	Improved 1-Oblivious Routing: Our Techniques
	Sherman's Framework
	Polynomial Aspect Ratio
	Reduction to 1 Metric
	Oblivious Routing on 1 Metric
	Parallel Transshipment

	Vertex Sparsification and Recursion
	Case S={s} of lem:ultra-S
	Extending to Contracted Paths
	Extending to Forest Components
	Generalizing to S-SSSP

	Ultra-spanner Algorithm
	Sherman's Framework via Multiplicative Weights
	Transshipment to Expected SSSP: Sequential
	Parallelizing the Expected SSSP Algorithm

	Sampling a Primal Tree
	Omitted Proofs
	Proof of lem:aspect-ratio
	Proof of lem:embed
	Proof of lem:tree-SSSP

	Conclusion

	Deterministic Expander Decomposition
	Background
	Our Techniques: Unweighted
	Chapter Organization

	Additional Preliminaries
	Explicit Construction of Expanders
	The Cut-Matching Game
	Expander Pruning
	Embeddings of Graphs and Expansion
	Embeddings with Fake Edges and Expansion
	j-trees

	Route or Cut: Algorithm for the Matching Player
	Deterministic Cut-Matching Game: Proof of thm: cut player
	Base Case: q=1
	Step: q>1

	A Slower Algorithm for BalCutPrune
	Extension of thm: cut player to Smaller Sparsity
	Degree Reduction
	Completing the Proof of thm: main slower alg

	Unweighted Expander Decomposition
	Spectral Sparsification

	Weighted Expander Decomposition with Custom Demands
	Our Techniques
	The WeightedBalCutPruneAlgorithm
	Completing the Proof of thm:WBCut and thm:exp-decomp-sec8

	Weighted Expander Decomposition, Boundary-Linked
	Conclusion

	Bibliography

