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Abstract
Programming distributed systems is already very challenging due to the pres-

ence of data races and deadlocks; bugs are di�cult to detect and reproduce when
they only arise in certain thread interleavings. �e rise of modern distributed sys-
tems have introduced unique domain-speci�c challenges further complicating so�-
ware development. Although program analysis tools exist for distributed systems,
the most popular and usable tools are still centered around traditional program-
ming languages. With the pervasive usage of distributed systems in so�ware de-
sign, there is an urgent need for formal tools to help with the design, veri�cation,
and quantitative analysis of distributed so�ware.

In response, this thesis designs novel resource-aware session types that serve as
a sound and practical foundation for distributed systems with strong type-theoretic
guarantees. Session types statically prescribe and enforce bidirectional commu-
nication protocols for message-passing processes. However, they cannot express
quantitative properties of a distributed system, such as energy consumption, la-
tency, response time, and throughput. �is thesis addresses this limitation by de-
signing two extensions to express the work and span of parallel computation. To
compute work, the key innovation was that messages and processes both carry
an abstract notion of potential which is consumed to perform work. To compute
span, the key innovation was to introduce operators from temporal logic to capture
the timing of message exchanges. Resource-aware session types combine session
types with work and span extensions allowing programmers to reason about both
qualitative and quantitative aspects of distributed systems.

�e thesis further applies resource-aware session types to the blockchain do-
main. Blockchains allow execution of complex protocols between mutually dis-
trusting parties through smart contracts. Programming smart contracts comes with
unique challenges such as enforcing transaction protocols, computing their exe-
cution cost, and ensuring that assets are not accidentally duplicated or discarded.
�is thesis presentsNomos: a language for smart contracts based on resource-aware
session types. Session types statically express contract protocols. Resource-aware
types automatically infer the execution cost of transactions leveraging ideas from
automatic amortized resource analysis. �e built-in linear type system of session
types provides a natural representation for assets ensuring that they are preserved
across transactions. �e Nomos type checker statically enforces the above require-
ments: protocols are enforced at runtime, bounds inferred are sound and precise,
and assets used are neither duplicated nor discarded. Nomos also signi�cantly de-
velops the theory of programming languages: integrating session types with func-
tional programming, linear-time type checking to prevent denial-of-service a�acks,
and an acquire-release discipline to rule out re-entrancy a�acks. �e thesis con-
cludes with two complementary future directions: enhancing Nomos with re�ne-
ment types for lightweight veri�cation of smart contracts, and applying Nomos to
other distributed domains e.g. cryptographic protocols.
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Chapter 1

Introduction

�e design of safe, e�cient, and secure so�ware has always been a challenging task. With the
proliferation of distributed systems, so�ware development has become even more complex. In
addition to the usual challenges, developers must also carefully

• ensure that no bugs manifest in any possible thread interleaving,
• avoid deadlocks and data races, and
• prevent performance bo�lenecks in the system.

�e rise of modern distributed systems such as server farms, cloud computing platforms, and
blockchains have further complicated so�ware design by introducing unique challenges. For
instance, blockchain is a highly adversarial domain due to its transparency. �e state of every
decentralized application deployed on the blockchain can be publicly viewed and potentially
exploited by malicious a�ackers. Security vulnerabilities in these applications have caused
losses to the tune of several billions of dollars.

Advances in the design and principles of programming languages have signi�cantly ben-
e��ed the design of so�ware, improving its performance, safety and security. Such advances
have enabled programmers to analyze the qualitative aspects of so�ware using veri�cation
techniques as well as the quantitative aspects using complexity analysis tools. Today, devel-
opers can utilize automatic veri�cation tools such as Boogie [28] and Dafny [109], or program
assistants such as Coq [29] and Isabelle [128] to express and verify that programs satisfy their
speci�cations. �ey can exploit tools such as Fiat Crypto [67] and EverCrypt [134] to gen-
erate secure high-performance cryptographic functionalities. �ey can employ fully formally
veri�ed compilers such as CompCert [110] to compile these programs to e�cient low-level ma-
chine code. Finally, they can take advantage of static analysis tools such as RaML [91, 92] and
SPEED [84] to compute complexity bounds and Infer [44] to detect performance bugs.

Although analysis tools exist for distributed systems, most of the industrial strength support
is still centered around traditional sequential programming languages. Programs implemented
in sequential languages are easier to analyze and verify since all computation typically occurs on
a single processor. However, with the advent of multi-processor systems, most of the industrial
so�ware systems today are no longer sequential. Distributed algorithms lie at the heart of
commitment protocols, distributed consensus, leader election and broadcast mechanisms with
a wide array of applications ranging from communication networks and database management
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to industrial control systems, cloud computing and blockchains.
With the advent of such distributed algorithms and systems, there is an urgent need of

formal tools to assist with the design, veri�cation and quantitative analysis of distributed so�-
ware. However, analysis of concurrent and distributed systems poses additional challenges.
First, while implementing concurrent programs, developers must consider all possible thread
interleavings and ensure that no bug manifests in any such interleaving. Second, concurrent
programs are notoriously prone to deadlocks (where each process in a group is waiting on
a resource held by another process), and data races (where one thread is writing to a shared
resource that is simulataneously being read by another thread). Finally, unlike sequential pro-
grams, a compositional reasoning for concurrent programs is especially challenging since their
behavior ultimately depends on interactions within the system.

In response, this thesis has designed novel resource-aware session types [61, 62] that serve
as a sound and practical foundation for distributed systems with strong type-theoretic guar-
antees. A common theme in a distributed system is communication between its components.
And o�en, the type, value, and direction of communication depends on the state of the sys-
tem. Session types leverage this property by capturing the system state in the type, providing
a structured way of prescribing communication protocols. Session types can also guarantee
freedom from deadlocks and data races. �ey also possess a con�uence property stating that
a communicating system converges to the same �nal state under all possible thread interleav-
ings. All these properties greatly bene�t programmers and automatically prevent a large class
of bugs that can result from communication mismatches.

However, simple session types cannot express quantitative properties of a distributed sys-
tem, such as energy consumption, latency, response time, and throughput. Realizing this, this
thesis proposes two extensions to express the work [61] and span [62] of parallel computation.
Work is de�ned as the total number of operations executed as part of the computation. However,
due to parallelism in the system, many of these operations execute simultaneously. �erefore,
span is de�ned as the total time of computation assuming arbitrarily many processors, thus
taking the maxmium parallelism in the system into account.

But, work and span bounds o�en depend on the intrinsic sizes and values of data struc-
tures, e.g., size of a list, value of a bit, or height of a tree. Simple session types also do not
have a mechanism to express sizes and values, thus limiting the expressivity of our resource-
aware type systems to constant amortized bounds. Since our type system is general enough to
handle higher-degree polynomial bounds, it is imperative to statically express the above intrin-
sic quantities. Our solution is to introduce re�nement session types which index types with a
natural number quantity. Resouce annotations can then be expressed as a function of these re-
�nements, enabling us to express more general bounds. We also introduce novel type constraints
from Presburger arithmetic as type constructors allowing us to express lightweight properties
about such systems. �us, as a precursor, we develop the metatheory and implementation of
these re�nements and describe how resource-aware types employ them.

Work analysis is based on a linear type system that combines standard session types with
type-based amortized analysis. We introduce two novel dual type constructors, .r and /r to send
and receive r potential units. �is potential (in the sense of classical amortized analysis [149])
may either be spent by sending other messages in the process network, or stored in a process for
future interactions. Since the process interface is characterized entirely by the resource-aware
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session type of the channels it interacts with, this design provides a compositional resource
speci�cation. A conceptual challenge is to express symbolic bounds in a se�ing without static
data structures and intrinsic sizes. Our innovation is that resource-aware session types describe
bounds as functions of interactions on a channel. As a result, the type system derives parametric
bounds on the resource usage of message-passing processes. Finally, a type safety theorem
proves that the derived bounds are sound with respect to an operational cost semantics that
tracks the total number of messages exchanged in a network of communicating processes.

In addition to work, the timing of messages is of central interest for analyzing parallel cost.
We developed a type system that captures the parallel complexity of session-typed programs
by adding temporal modalities next (©A), always (�A) and eventually (♦A), interpreted over a
linear model of time. When considered as types, the temporal modalities allow us to express
properties of concurrent programs such as themessage rate of a stream, the latency of a pipeline,
the response time of a concurrent data structure, or the span of a fork-join parallel computation,
all in the same uniform manner. �e circle operator (©) expresses precision of message timings,
while the box (�) and diamond operators (♦) provide �exibility, allowing us to express the
timing of a wide variety of standard session-typed programs. Finally, a type safety theorem
establishes that the message timing expressed by the type system are realized by the timed
operational semantics.

Resource-aware session types combine session types with work and span extensions allowing
programmers to reason about both qualitative and quantitative aspects of distributed systems.

1.1 ProgrammingDigital Contracts using Resource-Aware
Session Types

Digital contracts are computer protocols that describe and enforce the execution of a contract.
With the rise of blockchains and cryptocurrencies such as Bitcoin [122], Ethereum [161], and
Tezos [79], digital contracts have become popular in the form of smart contracts, which provide
potentially distrusting parties with programmable money and an enforcement mechanism that
does not rely on third parties. Smart contracts have been used to implement auctions [1], in-
vestment instruments [121], insurance agreements [98], supply chain management [108], and
mortgage loans [120]. In general, digital contracts hold the promise to reduce friction, lower
cost, and broaden access to �nancial infrastructure.

Smart contracts are implemented using a high-level programming language such as Solid-
ity [54], Rholang [6], and Liquidity [4]. It is then compiled down to bytecode and executed using
a runtime environment (e.g. Ethereum Virtual Machine for the Ethereum blockchain). However,
these languages have signi�cant shortcomings as they do not accommodate the domain-speci�c
requirements of digital contracts.

• Instead of centering contracts on their interactions with users, the high-level protocol of
the intended interactions with a contract is buried in the implementation code, hampering
understanding, formal reasoning, and trust.

• Resource (or gas) usage of digital contracts is of particular importance for transparency
and consensus. However, obliviousness of resource usage in existing contract languages
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makes it hard to predict the cost of executing a contract and prevent denial-of-service
vulnerabilities.

• Existing languages fail to enforce linearity of assets, endangering the validity of a contract
when assets are duplicated or deleted, accidentally or maliciously [118].

Such limitations of contract languages can lead to vulnerabilities in the implemented contracts
which can be exploited by malicious users having direct �nancial consequences. A well-known
example is the a�ack on �e DAO [121], resulting in a multi-million dollar the� by exploiting a
contract vulnerability. Maybe even more important is the potential erosion of trust as a result
of such failures.

To address these challenges, I have designed the type-theoretic foundations of Nomos [56],
a programming language whose genetics match directly with the domain-speci�c requirements
to provide strong static guarantees that facilitate the design of correct contracts. To express and
enforce the protocols underlying a contract, we base Nomos on resource-aware session types.
Type checking is automatic and guarantees that Nomos programs follow the communication
protocol expressed by the type.

Resource-aware types also make transaction cost in Nomos predictable and transparent,
and prevents bugs resulting from excessive resource usage. Since resource-aware session types
are parametric in the cost model, they can be instantiated to derive the gas bounds for Nomos
programs. �e type soundness theorem for Nomos guarantees that these bounds are both sound
and precise. Other advantages of this type-based resource analysis are natural compositionality
and reduction of bound inference to o�-the-shelf LP solving.

To eliminate a class of bugs in which the internal state of a contract loses track of its assets,
Nomos integrates a linear type system into a functional language. Linear type systems use
the ideas of Girard’s linear logic [76] to represent certain resources ensuring they are never
discarded or duplicated. Assets such as money and other commodities that can be exchanged
between parties in a contract are typed using a linear channel. Type safety guarantees that
processes maintain proper ownership of linear assets and do not terminate while holding access
to a linear asset.

Since there exist multiple clients of a contract, we use a shared session type [25] to de�ne
the protocol of a contract. �is ensures that clients interact with a contract in mutual exclusion.
�e type clearly demarcates the parts of the protocol that become a critical section using ↑SL
modality marking its start and ↓SL modality marking its end. Programmatically, ↑SL translates
into an acquire of the contract, while ↓SL into its release.

We complement the theory of Nomos with a stable open-source implementation [57] in
OCaml. �is implementation consists of a lexer, parser, type checker, inference engine, and
interpreter. �us, a programmer can implement contracts in the Nomos source language, ver-
ify that they indeed satisfy their session-typed protocol using the type checker, automatically
compute its execution cost using the inference engine, and run transactions and observe how
they modify the blockchain state using the interpreter.

To improve its usability, we enhance Nomos along two directions: simplicity of program-
ming and e�ciency. Crucial to type safety of Nomos are channel modes that describe the role
of a process and the channels that it can depend on. However, computing and tagging each
channel with its mode puts enormous burden on the programmer. Similarly, computing the
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exact gas cost of transactions involves solving linear constraints which is also manually in-
feasible. To reduce this burden, we have designed an e�cient inference engine that statically
and automatically computes channel modes and gas bounds with minimal programmer interac-
tion. To further enhance usability, we introduce (i) a built-in map data structure accompanied
with syntactic sugar for ease of use which can be �exibly used both linearly to store assets
or non-linearly, (ii) an abstract linear coin type to easily create Non-Fungible Tokens (NFTs),
(iii) blockchain-speci�c expressions to obtain the transaction sender and number, and (iv) a
bi-directional type checker with precise error messages.

To improve e�ciency, we have carefully implemented a bi-directional Nomos type checker
that is linear-time in the size of the program. In a blockchain se�ing, transaction validation
which entails type checking is part of the a�ack surface. �us, an ine�cient type checker can be
exploited by adversaries who can submit programs that are too slow to validate causing denial-
of-service. We also introduce a novel Nomos.deposit{r} construct [60] that deposits r gas
units in the transaction sender’s account. �is helps us equalize the static gas cost in program
branches, thus enabling the inference engine to produce an exact gas bound. At runtime, the
Nomos.deposit{r} operations on the execution path safely return the le�over gas back to the
user, thus eliminating the need for dynamic cost monitoring. �is improves the overall hygiene
and e�ciency of the Nomos interpreter.

In addition, we describe how Nomos is integrated with an account model blockchain like
Ethereum [161]. We describe the challenges in this integration, and highlight the main lim-
itation of the language. We formalize how to represent blockchain states as session-typed
con�gurations which can be manipulated by transaction programs. �ese con�gurations are
conveniently stored in a �le using OCaml S-expressions making them persistent. We conclude
by evaluating Nomos on a variety of standard smart contracts, emphasizing the guarantees
provided by Nomos and their advantages.

1.2 Overview
�esis Statement Resource-aware session types serve as a sound and practical type-theoretic
foundation for digital contracts enforcing strong domain-speci�c guarantees while simplifying pro-
gramming and without compromising e�ciency.

Chapter 2 sets up the necessary background for this thesis. It �rst provides the theory of
basic session types, its type constructors, formal type systems, and semantics. �en, it explains
the techniques of type-based automatic amortized resource analysis (AARA) in the context of
a functional programming language. Chapter 3 descibes our novel extension to re�nement
session types. We also discuss the problem of type equality, which remarkably, is undecidable,
even though Presburger arithmetic itself is decidable. Chapter 4 employs re�nement types to
de�ne potential type constructors and uses them to upper bound the work performed by the
system. Chapter 5 employs re�nements to de�ne temporal annotations which are then used
to express span bounds. Chapter 6 presents the design and type-theoretic foundation of the
Nomos language which is proved to satisfy type preservation (session �delity) and a limited
form of progress (deadlock freedom). Chapter 7 describes its implementation and our e�orts
to enhance usability and e�ciency. Finally, Chapter 8 concludes with broader applicability of
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Nomos and resource-aware session types.
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Chapter 2

Background

�is chapter introduces two central concepts used in this thesis, namely session types and re-
source analysis. �e �rst half of the chapter focuses on session types, de�ning them formally
with static and dynamic semantics. �e second half introduces type-based amortized analysis
for functional programming languages. Resource-aware session types formalize the combina-
tion of these two techniques.

2.1 Session Types
Session types are a type discipline for communication-centric programming based on message
passing via channels. Session-typed channels describe and enforce the protocol of communi-
cation among processes. �e base system of session types is derived from a Curry-Howard
interpretation of intuitionistic linear logic [42]. �is chapter focuses on the linear fragment
of SILL [129] that internalizes session-based concurrency. Session types were introduced by
Honda [96].

Linear logic [76] is a substructural logic that enjoys exchange as its only structural property,
i.e., it does not exhibit weakening or contraction. As a result, purely linear propositions can be
viewed as resources that must be used exactly once in a proof. Here, I adopt the intuitionistic
version of linear logic, yielding the following sequent

A1, . . . , An ` C

where A1, . . . , An are linear antecedents, while C is the linear succedent.
Under the Curry-Howard isomorphism for intuitionistic linear logic, propositions are re-

lated to session types, proofs to processes and cut reduction in proofs to communication. Ap-
pealing to this correspondence, a process term P is assigned to the above judgment and each
hypothesis as well as the conclusion is labeled with a channel:

x1 : A1, . . . , xn : An ` P :: (z : C)

�e resulting judgment states that process P provides a service of session type C along channel
z, using the services of session types A1, . . . , An provided along channels x1, . . . , xn respec-
tively. �e assignment of a channel to the conclusion is convenient because, unlike functions,
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Type Provider Action Session Continuation
⊕{` : A`}`∈L send label k ∈ L Ak

N{` : A`}`∈L receive and branch on label k ∈ L Ak

1 send token close none

A⊗B send channel c : A B

A( B receive channel c : A B

Table 2.1: Basic Session Types. Every provider action has a matching client action.

processes do not evaluate to a value but continue to communicate along their providing chan-
nel once they have been created until they terminate. For the judgment to be well-formed, all
channel names have to be distinct. �e antecedents are o�en abbreviated to ∆.

�e balance between providing and using a session is established by the two fundamental
rules of the sequent calculus that are independent of all logical connectives: cut and identity.
Cut states that if P provides service A along channel x, then Q can use the service along the
same channel at the same type. Identity states that a client of service A can directly provide A.

∆1 ` Px :: (x : A) ∆2, x : A ` Qx :: (z : C)

∆1,∆2 ` x← Px ; Qx :: (z : C)
cut

y : A ` x↔ y :: (x : A)
id

Operationally, the process x ← Px ; Qx creates a globally fresh channel c, spawns a new
process [c/x]Px providing along c, and continues as [c/x]Qx. Conversely, the process c ↔ d
forwards any message M that arrives along d to c and vice-versa. Because channels are used
linearly, the forwarding process can then terminate, making sure to apply proper renaming.

�e operational semantics are formalized as a system of multiset rewriting rules [48]. I intro-
duce semantic objects proc(c, P ) and msg(c,M) describing processP (or messageM ) providing
service along channel c. Remarkably, in this formulation, a message is just a particular form
of process, thereby not requiring any special rules for typing; it can be typed just as processes.
�e semantics rules for cut and id are presented below.

(cutC) proc(d, x← Px ; Qx) 7→ proc(c, [c/x]Px), proc(d, [c/x]Qx) (c fresh)

(id+C) msg(d,M), proc(c, c↔ d) 7→ msg(c, [c/d]M)
(id−C) proc(c, c↔ d),msg(e,M(c)) 7→ msg(e, [d/c]M(c))

Here, I adopt the convention to use x, y and z for channel variables and c, d and e for channels.
Channels are created at runtime and substituted for channel variables in process terms. In the
last rule, M(c) indicates that c must occur in M , implying it is the sole client of c.

�e Curry-Howard correspondence gives each linear logic connective an interpretation as
a session type. �is session type prescribes the kind of message that must be sent or received
along a channel of this type. Table 2.1 summarizes the description of the type along with the
provider action. I follow a detailed description of each session type operator.

Internal Choice A type A is said to describe a session, which is a particular sequence of
interactions. As a �rst type construct, consider internal choice ⊕{` : A`}`∈L, an n-ary labeled
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generalization of the linear logic connective A ⊕ B. A process that provides x : ⊕{` : A`}`∈L
can send any label k ∈ L along x and then continue by providing x : Ak. �e corresponding
process is wri�en as (x.k ; P ), where P is the continuation that provides Ak. �is typing is
formalized by the right rule ⊕R in linear sequent calculus. �e corresponding client branches
on the label received along x as speci�ed by the le� rule ⊕L.

(k ∈ L) ∆ ` P :: (x : Ak)

∆ ` (x.k ; P ) :: (x : ⊕{` : A`}`∈L)
⊕R

(∀` ∈ L) ∆, (x : A`) ` Q` :: (z : C)

∆, (x : ⊕{` : A`}`∈L) ` case x (`⇒ Q`)`∈L :: (z : C)
⊕L

Operationally, since communication is asynchronous, the process (c.k ; P ) sends a message
k along c and continues as P without waiting for it to be received. As a technical device to
ensure that consecutive messages on a channel arrive in order, the sender also creates a fresh
continuation channel c′ so that the message k is actually represented as (c.k ; c ↔ c′) (read:
send k along c and continue as c′). �e provider also substitutes c′ for c, enforcing that the next
message is sent on c′.

(⊕S) proc(c, c.k ; P ) 7→ proc(c′, [c′/c]P ),msg(c, c.k ; c↔ c′) (c′ fresh)

When the message k is received along c, the client selects branch k and also substitutes the
continuation channel c′ for c, thereby ensuring that it receives the next message on c′. �is
implicit substitution of the continuation channel ensures the ordering of the messages.

(⊕C) msg(c, c.k ; c↔ c′), proc(d, case c (`⇒ Q`)`∈L) 7→ proc(d, [c′/c]Qk)

External Choice �e dual of internal choice is external choice N{` : A`}`∈L, which is the
n-ary labeled generalization of the linear logic connective A N B. �is dual operator simply
reverses the role of the provider and client. �e provider process of x : N{` : A`}`∈L branches
on receiving a label k ∈ L (described in NR), while the client sends this label (described in NL).

(∀` ∈ L) ∆ ` P` :: (x : A`)

∆ ` case x (`⇒ P`)`∈L :: (x : N{` : A`}`∈L)
NR

∆, (x : Ak) ` Q :: (z : C)

∆, (x : N{` : A`}`∈L) ` x.k ; Q :: (z : C)
NL

�e operational semantics rules are just the inverse of internal choice. �e provider receives
the branching label k sent by the provider. Both processes perform appropriate substitutions
to ensure the order of messages sent and received is preserved.

(NS) proc(d, c.k ; Q) 7→ msg(c′, c.k ; c′ ↔ c), proc(d, [c′/c]Q) (c′ fresh)
(NC) proc(c, case c (`⇒ Q`)`∈L),msg(c′, c.k ; c′ ↔ c) 7→ proc(c′, [c′/c]Qk)
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Higher-Order Channels Session types allow channels to be higher-order, i.e., channels can
be exchanged over channels. �e session type corresponding to the linear logic connective
A ⊗ B allows its provider to send a channel of type A and then continue with providing B.
�e corresponding process term (send x w ; P ) describes sending channel w over channel x
and continuing with P . �is typing is provided by the rule ⊗R. �e client, on the other hand,
receives this channel using the term (y ← recv x ; Q)and binds it to a channel variable y, as
described by ⊗L.

∆ ` P :: (x : B)

∆, (w : A) ` (send x w ; P ) :: (x : A⊗B)
⊗R

∆, (y : A), (x : B) ` Q :: (z : C)

∆, (x : A⊗B) ` (y ← recv x ; Q) :: (z : C)
⊗L

(⊗S) proc(c, send c e ; P ) 7→ proc(c′, [c′/c]P ),msg(c, send c e ; c↔ c′) (c′ fresh)
(⊗C) msg(c, send c e ; c↔ c′), proc(d, x← recv c ; Q) 7→ proc(d, [c′, e/c, x]Q)

�e lolli (() operator is dual to⊗. �e provider and client invert their roles, i.e., the provider
of x : A( B receives a channel of type A sent by its client.

∆, (y : A) ` P :: (x : B)

∆ ` (y ← recv x ; P ) :: (x : A( B)
(R

∆, (x : B) ` Q :: (z : C)

∆, (x : A( B), (y : A) ` (send x w ; Q) :: (z : C)
(L

((S) proc(d, send c e ; Q) 7→ msg(c′, send c e ; c′ ↔ c), proc(d, [c′/c]Q) (c′ fresh)
((C) proc(c, x← recv c),msg(c′, send c e ; c′ ↔ c) 7→ proc(c′, [c′, d/c, x]P )

Termination �e type 1, the multiplicative unit of linear logic, represents termination of a
process, which (due to linearity) is not allowed to use any channels.

· ` close x :: (x : 1)
1R

∆ ` Q :: (z : C)

∆, (x : 1) ` (wait x ; Q) :: (z : C)
1L

Operationally, a client has to wait for the corresponding closing message, which has no contin-
uation since the provider terminates.

(1S) proc(c, close c) 7→ msg(c, close c)
(1C) msg(c, close c), proc(d,wait c ; Q) 7→ proc(d,Q)

Process De�nitions Process de�nitions have the form ∆ ` f = P :: (x : A) where f is the
name of the process and P its de�nition. All de�nitions are collected in a �xed global signature
Σ. Also, since process de�nitions are mutually recursive, it is required that every process in
the signature is well-typed w.r.t. Σ, i.e. Σ ; ∆ ` P :: (x : A). For readability of the examples,
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I break a de�nition into two declarations, one providing the type and the other the process
de�nition binding the variables x and those in Ω (generally omi�ing their types):

∆ ` f :: (x : A)
x← f ∆ = P

A new instance of a de�ned process f can be spawned with the expression

x← f y ; Q

where y is a sequence of variables matching the antecedents ∆. �e newly spawned process will
use all variables in y and provide x to the continuation Q. �e operational semantics reduces
the spawn to a cut.

(defC) proc(c, x← f ← e ; Q) 7→ proc(a, [a/x, e/∆]P ), proc(c, [a/x]Q) (a fresh)

where ∆ ` f = P :: (x : A) ∈ Σ. Here I write e/∆ to denote substitution of the channels in e
for the corresponding variables in ∆.

Sometimes a process invocation is a tail call, wri�en without a continuation as x ← f y.
�is is a short-hand for x′ ← f y ; x↔ x′ for a fresh variable x′, that is, a fresh channel is cre-
ated and immediately identi�ed with x (although it is generally implemented more e�ciently).

Recursive Types Session types can be naturally extended to include recursive types. For this
purpose I allow (possibly mutually recursive) type de�nitions X = A in the signature, where I
require A to be contractive [73]. �is means here that A should not itself be a type name. �e
type de�nitions are equi-recursive soX can be silently replaced byA during type checking, and
no explicit rules for recursive types are needed.

2.1.1 Examples
As a �rst example, consider a stream of bits de�ned recursively as
bits = ⊕{b0 : bits, b1 : bits, $ : 1}
When considering bits as representing natural numbers, the least signi�cant bit is sent �rst.
For example, a process six sending the number 6 = (110)2 would be
· ` six :: (x : bits)
x← six = x.b0 ; x.b1 ; x.b1 ; x.$ ; close x

Executing proc(c0, c0 ← six) yields (with some fresh channels c1, . . . , c4)

proc(c0, c0 ← six) 7→∗ msg(c4, close c4),
msg(c3, c3.$ ; c3 ↔ c4),
msg(c2, c2.b1 ; c2 ↔ c3),
msg(c1, c1.b1 ; c1 ↔ c2),
msg(c0, c0.b0 ; c0 ↔ c1),

As a �rst example of a recursive process de�nition, consider one that just copies the incoming
bits on to the outgoing bits.
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y : bits ` copy :: (x : bits)
x← copy y =

case y (b0⇒ x.b0 ; x← copy y % received b0 on y, send b0 on x, recurse
| b1⇒ x.b1 ; x← copy y % received b1 on y, send b1 on x, recurse
| $⇒ x.$ ; wait y ; close x) % received $ on y, send $ on x, wait on y, close x

Note the occurrence of a (recursive) tail call to copy.
A last example: to increment a bit stream turn b0 to b1 but then forward the remaining bits

unchanged (x ↔ y), or turn b1 to b0 but then increment the remaining stream (x ← plus1 y)
to capture the e�ect of the carry bit.
y : bits ` plus1 :: (x : bits)
x← plus1 y =

case y (b0⇒ x.b1 ; x↔ y
| b1⇒ x.b0 ; x← plus1 y
| $⇒ x.$ ; wait y ; close x)

2.1.2 Preservation and Progress
�e main theorems that exhibit the deep connection between our type system and the opera-
tional semantics are the usual type preservation and progress, sometimes called session �delity
and deadlock freedom, respectively.

So far, I have only described individual processes. However, processes exist in a con�gura-
tion. A process con�guration is a multiset of semantic objects, proc(c, P ) and msg(c,M), where
any two o�ered channels are distinct. A key question is how to type these con�gurations. Since
they consist of both processes and messages, they both use and provide a collection of channels.
And even though a con�guration is treated as a multiset, typing imposes a partial order on the
processes and messages where a provider of a channel appears to the le� of its client.

A con�guration is typed w.r.t. a signature providing the type declaration of each process.
A signature Σ is well formed if (a) every type de�nition V = AV is contractive, and (b) every
process de�nition ∆ ` f = P :: (x : A) in Σ is well typed according to the process typing
judgment, i.e. Σ ; ∆ ` P :: (x : A).

I use the following judgment to type a con�guration.

Σ ; ∆1 � S :: ∆2

It states that Σ is well-formed and that the con�guration S uses the channels in the context
∆1 and provides the channels in the context ∆2. �e con�guration typing judgment is de�ned
using the rules presented in Figure 2.1. �e rule empty de�nes that an empty con�guration is
well-typed. �e rule compose composes two con�gurations S1 and S2; S1 provides service on
the channels in ∆1 while S2 uses the channels in ∆2. �e proc rule creates a con�guration out
of a single process. Similarly, the msg rule creates a con�guration out of a single message.
�eorem 1 (Type Preservation). If Σ ; ∆′ � S :: ∆ and S 7→ S ′, then Σ ; ∆′ � S ′ :: ∆.

Proof. By case analysis on the transition rule, applying inversion to the given typing derivation,
and then assembling a new derivation of S ′.
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Σ ; ∆ � (·) :: ∆
empty

Σ ; ∆0 � S1 :: ∆1 Σ ; ∆1 � S2 :: ∆2

Σ ; ∆0 � (S1 S2) :: ∆2

compose

Σ ; ∆1 ` P :: (c : A)

Σ ; ∆,∆1 � proc(c, P ) :: (∆, (c : A))
proc

Σ ; ∆1 � P :: (c : A)

Σ ; ∆,∆1 � msg(c, P ) :: (∆, (c : A))
msg

Figure 2.1: Typing rules for a con�guration

A process or message is said to be poised if it is trying to communicate along the channel that
it provides. A poised process is comparable to a value in a sequential language. A con�guration
is poised if every process or message in the con�guration is poised. Conceptually, this implies
that the con�guration is trying to communicate externally, i.e. along one of the channels it
provides. �e progress theorem then shows that either a con�guration can take a step or it is
poised. To prove this I show �rst that the typing derivation can be rearranged to go strictly
from right to le� and then proceed by induction over this particular derivation.
�eorem 2 (Global Progress). If · � S :: ∆ then either

(i) S 7→ S ′ for some S ′, or
(ii) S is poised.

Proof. By induction on the right-to-le� typing of S so that either S is empty (and therefore
poised) or S = (S ′ proc(c, P )) or S = (S ′ msg(c,M)). By induction hypothesis, S ′ can either
take a step (and then so can S), or S ′ is poised. In the la�er case, I analyze the cases for P and
M , applying multiple steps of inversion to show that in each case either S can take a step or is
poised.

2.2 Resource Analysis
�e quality of so�ware crucially depends on the amount of resources – time, memory and en-
ergy – that are required for its execution. Statically understanding and controlling resource
usage continues to be a central issue in so�ware development. Recent years have seen fast
progress in developing tools and frameworks for statically reasoning about resource usage.
�e obtained size change information forms the basis for the computation of actual bounds on
loop iterations and recursion depths; using counter instrumentation [85], ranking functions [10,
18, 40, 148], recurrence relations [11, 12] and abstract interpretation [47, 166]. Automatic re-
source analysis for functional programs are based on sized types [156], term-rewriting [23] and
amortized resource analysis [91, 93, 100, 147].

Automatic amortized resource (AARA) was introduced for a strict �rst-order functional lan-
guage with built-in data types [93]. Since then, AARA techniques have been applied to univari-
ate polynomial bounds [89], multivariate bounds [91], higher-order functional programs [100]
and user-de�ned data types [92]. In this section, I will mainly focus on linear bounds for �rst-
order programs as it outlines the main ideas of AARA without complicating the type system.
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2.2.1 Manual Amortized Analysis
O�en the cost of an operation on a data structure depends on its state. �us, it is natural to
account for the total cost of a sequence of operations on such a data structure. To analyze such a
sequence of operations, Sleator and Tarjan [149] proposed amortized analysis with the potential
method.

�e concept of potential is inspired by the notion of potential energy in physics. �e idea
is to de�ne a potential function Φ : D → R≥0 that maps data structure D ∈ D to a non-
negative number. Operations on the data structure can then increase or decrease the potential.
�e amortized cost of an operation op(D) is then de�ned as the sum of its actual costK and the
di�erence of the potential caused by op, i.e., K + Φ(op(D))−Φ(D). �e sum of the amortized
costs over a sequence of operations and the initial potential ofD then furnishes an upper bound
on the actual cost of the sequence.

A standard example that demonstrates the bene�ts of amortization is the analysis of a func-
tional queue, represented as two lists Lin and Lout. Enqueuing an element simply adds it to
the head of Lin, while dequeuing removes the element from the head of Lout. If Lout is empty,
the elements from Lin are transferred to Lout, thereby reversing the order of the elements.

�e cost of a dequeue operation for this queue depends on the state of Lout, whether its
empty or not. In the worst case, when Lout is empty, the cost of dequeue is linear. However,
we can introduce a potential Φ(Lin, Lout) = 2 |Lin|. �en, the amortized cost of enqueue is 3
– one to pay for consing to Lin, and two for the increase in potential. More importantly, the
amortized cost of dequeue is 1. If Lout is not empty, the cost of detach is 1, while there is no
change to the potential. While if Lout is empty, the potential stored in Lin is used to pay for the
cost of transfer from Lin to Lout. Formally, the cost of transfer is 2 |Lin|, equal to the change
in the potential. Hence, the amortized cost of dequeue remains 1, used to pay for the detach
from Lout a�er the transfer. �us, amortized analysis proves that the worst-case cost of both
enqueue and dequeue operations is constant.

2.2.2 Automatic Amortized Analysis
�e potential method from amortized analysis can be applied to statically analyze functional
programs. �e key idea here is that the arguments of a function store potential, which is con-
sumed during function evaluation. �e initial potential of the arguments therefore equals the
sum of the resource cost of the function, and the potential of the return value. �us, it acts
as an upper bound on the resource cost. Since the excess potential is stored in the result, this
technique is completely compositional.

Automation is a key requirement here since requiring the programmer to provide the po-
tential functions will signi�cantly increase their burden. To make automation feasible, it is
necessary to restrict the space of possible potential functions. �ere is a precision-scalability
trade-o� here since increasing the space of potential functions will improve the precision of
resource bounds, but will make automation more challenging.

I will restrict the potential functions to be linear and the language to be strict, �rst-order and
functional. I a�ach the potential of the data structure to its type. �en, a sound type checking
algorithm statically veri�es that the potential is su�cient to pay for all operations that are
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performed on this data structure during any possible evaluation of the program. Consider the
append function that takes two lists and appends the second list to the �rst. �e function is
implemented as follows.
let rec append l1 l2 =

match l1 with

| [] -> l2

| x::xs -> let ys = append xs l2 in x::ys

To understand the resource usage for append, we �rst need to �x the resource we are inter-
ested in counting. For this example, suppose we count the number of cons (::) operations. �e
above code suggests that the number of cons operations equals the length of l1. To understand
the type-based analysis, consider the following type for append.

append : L1(A)× L0(A)
0/0−−→ L0(A)

Intuitively, this describes that a unit potential is a�ached to every element in l1, and no poten-
tial on l2 and the result. In the nil branch of the match, the context is assigned the type l1 :
L1(A), l2 : L0(A). Since l1 is nil, the total potential of the context is 0, and l2 is directly returned.
In the cons branch, the context is typed as x : A, xs : L1(A), l2 : L0(A). Remarkably, the re-
cursive call to append utilizes the same type, since xs and l2 have the same type as described in
the signature. A�er the recursive call, the context becomes x : A, ys : L0(A), l2 : L0(A), and
the unit potential stored in x is used to perform the cons operation.

�e type inference algorithm assigns variable potential annotations to append.

append : Lq1(A)× Lq2(A)
r/s−−→ Lq(A)

�e inference algorithm then derives linear constraints on the annotations. For append, the
constraints generated are q1 ≥ q2 + 1, and q2 = q, and r ≥ s. �ese constraints are solved
with an o�-the-shelf linear-programming solver (LP solver) whose goal is to minimize the ini-
tial potential to derive the most precise bound. �e LP solver recovers the annotation values
described earlier, thus proving the exact bound |l1| for append.
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Part I

�eory of Resource-Aware Session Types
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Chapter 3

Re�nement Session Types

Traditional session types prescribe bidirectional communication protocols for concurrent com-
putations, where well-typed programs are guaranteed to adhere to the protocols. However,
simple session types cannot capture properties beyond the basic type of the exchanged mes-
sages. In response, this chapter indexes session types with re�nements from linear arithmetic,
capturing intrinsic a�ributes of processes and data. �ese re�nements then play a central role
in describing sequential and parallel complexity bounds on session-typed programs (Chapters 4
and 5).

�is chapter describes the metatheory of such indexed types. We show that, despite the
decidability of Presburger arithmetic, type equality and therefore also type checking are now
undecidable, which stands in contrast to analogous dependent re�nement type systems from
functional languages. We also present a practical incomplete algorithm for type equality and an
algorithm for type checking which is complete relative to an oracle for type equality. Process
expressions in this explicit language are rather verbose, so we also introduce an implicit form
and a sound and complete algorithm for reconstructing explicit programs, borrowing ideas from
the proof-theoretic technique of focusing. All the aforementioned ideas have been implemented
in an open-source language named Rast [63]. We conclude by illustrating our systems and
algorithms with a variety of examples that have been veri�ed in the Rast implementation.

3.1 Introduction
Basic session types have limited expressivity. As a simple example, consider the session type
o�ered by a queue data structure storing elements of type A.
queueA = N{ins : A( queueA,

del : ⊕{none : 1,
some : A⊗ queueA}}

�is type describes a queue interface supporting insertion and deletion. �e external choice
operator N dictates that the process providing this data structure accepts either one of two
messages: the labels ins or del. In the case of the label ins, it then receives an element of
type A denoted by the( operator, and then the type recurses back to queueA. On receiving
a del request, the process can respond with one of two labels (none or some), indicated by
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the internal choice operator ⊕. It responds with none and then terminates (indicated by 1)
if the queue is empty, or with some followed by the element of type A (expressed with the
⊗ operator) and recurses if the queue is nonempty. However, the simple session type does
not express the conditions under which the none and some branches must be chosen, which
requires tracking the length of the queue.

We propose extending session types with simple arithmetic re�nements to express, for in-
stance, the size of a queue. �e more precise type
queueA[n] = N{ins : A( queueA[n+ 1],

del : ⊕{none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}

uses the index re�nement n to indicate the size of the queue. In addition, we introduce a type
constraint ?{φ}. A which can be read as “there exists a proof of φ” and is analogous to the asser-
tion of φ in imperative languages. Here, the process providing the queue must (conceptually)
send a proof of n = 0 a�er it sends none, and a proof of n > 0 a�er it sends some. It is
therefore constrained in its choice between the two branches based on the value of the index
n. Because the the index domain from which the propositions φ are drawn is Presburger arith-
metic and hence decidable, no proof of φ will actually be sent, but we can nevertheless verify
the constraint statically (which is the subject of this chapter) or dynamically (see [77, 78]). Al-
though not used in this example, we also add the dual !{φ}. A (for all proofs of φ, analogous
to the assumption of φ), and explicit quanti�ers ∃n.A and ∀n.A that send and receive natural
numbers, respectively.

Of course, arithmetic type re�nements are not new and have been explored extensively in
functional languages, for example, by Zenger [164], in DML [162], or in the form of Liquid
Types [140]. Variants have been adapted to session types as well [78, 82, 165], generally with
the implicit assumption that index re�nements are somehow “orthogonal” to session types. In
this chapter we show that, upon closer examination, this is not the case. In particular, unlike in
the functional se�ing, session type equality and therefore type checking become undecidable.
Remarkably, this is the case whether we treat session types equirecursively [73] or isorecur-
sively [113], and even in the quanti�er-free fragment. In response, we develop a new algorithm
for type equality which, though incomplete, easily handles the wide variety of example pro-
grams we have tried. Moreover, it is naturally extensible through the additional assertion of
type invariants should the need arise.

With a practically e�ective type equality algorithm in hand, we then turn our a�ention to
type checking. It turns out that assuming an oracle for type equality, type checking is decidable
because it can be reduced to checking the validity of propositions in Presburger arithmetic.
We de�ne type checking over a language where constructs related to arithmetic constraints
(∃n.A, ∀n.A, ?{φ}. A, and !{φ}. A) have explicit communication counterparts. Despite the
high theoretical complexity of deciding Presburger arithmetic, all our examples check very
quickly using Cooper’s decision procedure [52] with two optimizations.

Many programs in this explicit language are unnecessarily verbose and therefore tedious
for the programmer to write, because the process constructs pertaining to the re�nement layer
contribute only to verifying its properties, but not its observable computational outcomes. As
is common for re�nement types, we therefore also designed an implicit language for processes
where most constructs related to index re�nements are omi�ed. �e problem of reconstruction
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is then to map such an implicit program to an explicit one which is sound (the result type-
checks) and complete (if there is a reconstruction, it can be found). Interestingly, the nature
of Presburger arithmetic makes full reconstruction impossible. For example, the proposition
∀n.∃k. (n = 2k ∨ n = 2k + 1) is true but the witness for k as a Skolem function of n (namely
bn/2c) cannot be expressed in Presburger arithmetic. Since witnesses are critical if we want
to understand the work performed by a computation, we require that type quanti�ers ∀n.A
and ∃n.A have explicit witnesses in processes. We provide a sound and complete algorithm for
the resulting reconstruction problem. �is algorithm exploits proof-theoretic properties of the
sequent calculus akin to focusing [20] to avoid backtracking and consequently provides precise
error messages that we have found to be helpful.

We have implemented our language, named Rast, in SML, where a programmer can choose
explicit or implicit syntax and the exact cost model for work analysis. �e implementation
consists of a lexer, parser, type checker, and reconstruction engine, with particular a�ention to
providing precise error messages.

3.2 Arithmetic Re�nements
Before we extend our language of types formally, we revisit the examples in order to motivate
the speci�c constructs available. We write V [e] for a type indexed by a sequence of arithmetic
expressions e. Since it has been appropriate for most of our examples, we restrict ourselves to
natural numbers rather than arbitrary integers.
Example 1 (�eues, v2). �e provider of a queue should be constrained to answer none exactly
if the queue contains no elements and some if it is nonempty. �e queue type from Section 3.1
does not express this. �is means a client may need to have some redundant branches to account
for responses that should be impossible. Instead we use the re�ned type queueA[n] to stand for a
queue with n elements.
queueA[n] = N{ins : A( queueA[n+ 1],

del : ⊕{none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}

�e �rst branch is easy to understand: if we add an element to a queue of length n, it subsequently
contains n+1 elements. In the second branch we constrain the arithmetic variable n to be equal to
0 if the provider sends none and positive if the provider sends some. In the la�er case, we subtract
one from the length a�er an element has been dequeued.

Conceptually, the type ?{φ}. A means that the provider must send a proof of φ, so it corre-
sponds to ∃p : φ.A. A characteristic of type re�nement, in contrast to fully dependent types, is
that the computation of A can only depend on the existence of a proof p, but not on its form.
Since our index domain is also decidable no actual proof needs to be sent (since one can be
constructed from φ automatically, if needed), just a token asserting its existence. �ere is also
a dual constructor !{φ}. A that licenses the assumption of φ, which, conceptually, corresponds
to receiving a proof of φ.
Example 2 (Binary Numbers). We would like the indexed type bin[n] to represent a binary
number with value n. Because the least signi�cant bit comes �rst, we expect, for example, that
bin[n] = ⊕{b0 : ?{2 | n}. bin[n/2], . . .}. However, while divisibility is available in Presburger
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arithmetic, division itself is not; instead, we can express the constraint and the index of the recursive
occurrence using quanti�cation.
bin[n] = ⊕{b0 : ∃k. ?{n = 2 ∗ k}. bin[k],

b1 : ∃k. ?{n = 2 ∗ k + 1}. bin[k],
e : ?{n = 0}.1}

As a further re�nement, we could rule out leading zeros by adding the constraint n > 0 in the
branch for b0.

�e type ∃n.A means that the provider must send a natural number i and proceed at type
A[i/n], corresponding to existential quanti�cation in arithmetic. �e dual universal quanti�er
∀n.A requires the provider to receive a number i and proceed at type A[i/n].

We now extend our de�nitions to account for these new constructs. Below, i represents a
constant, while n represents a natural number variable.

Types A ::= . . .
| ?{φ}. A assert φ continue at type A
| !{φ}. A assume φ continue at type A
| ∃n.A send number i continue at type A[i/n]
| ∀n.A receive number i continue at type A[i/n]
| V [e] variable instantiation

Arith. Expressions e ::= i | e+ e | e− e | i× e | (i | e) | n
Arith. Propositions φ ::= e = e | e > e | > | ⊥ | φ ∧ φ | φ ∨ φ | ¬φ | ∃n. φ | ∀n. φ
Signature Σ ::= · | Σ, V [n | φ] = A

An indexed type de�nition V [n | φ] = A requires every instance e of the sequence of variables
n to satisfy φ[e/n]. �is is veri�ed statically when a type signature is checked for validity, as
de�ned below. We use V for a collection of arithmetic variables and C (to signify constraints) for
an arithmetic proposition occurring among the antecedents of a judgment. We then have the
following rules de�ning the validity of signatures (` Σ signature), declarations (`Σ Σ′ valid),
and types (V ; C `Σ A valid) where V is a collection of arithmetic variables including all
free variables in constraint C and type A. We silently rename variables so that n does not
already occur in V in the ∃V and ∀V rules. We also call upon the semantic entailment judgment
V ; C � φ which means that ∀V . C ⊃ φ holds in arithmetic and � φ abbreviates · ; > � φ.

`Σ Σ valid
` Σ signature `Σ (·) valid

`Σ Σ′ valid n ; φ `Σ A valid A 6= V ′[e′]

`Σ Σ′, V [n | φ] = A valid

V ; C ∧ φ `Σ A valid
V ; C `Σ ?{φ}. A valid ?V

V ; C ∧ φ `Σ A valid
V ; C `Σ !{φ}. A valid !V

V , n ; C `Σ A valid
V ; C `Σ ∃n.A valid ∃V

n
V , n ; C `Σ A valid
V ; C `Σ ∀n.A valid ∀V

n

V [n | φ] = A ∈ Σ V ; C � φ[e/n]

V ; C `Σ V [e] valid tdef
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We elide the compositional rules for all the other type constructors. Since we like to work over
natural numbers rather than integers, it is convenient to assume that every de�nition V [n] = A
abbreviates V [n | n ≥ 0] = A. �is means that in valid signatures every occurrence V [e] is
such that e ≥ 0 follows from the known constraints.
Example 3. �e declaration
queueA[n] = N{ins : A( queueA[n+ 1],

del : ⊕{none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}

is valid because n ≥ 0 � n+ 1 ≥ 0 and n ≥ 0 ∧ n > 0 � n− 1 ≥ 0.
Unfolding a de�nition must substitute for the arithmetic variables we abstract over.

De�nition 1. unfoldΣ(V [e]) = A[e/n] if V [n | φ] = A ∈ Σ and unfoldΣ(A) = A otherwise.
We say that a type is closed if it contains no free arithmetic variables n.

De�nition 2. A relation R on types is a type bisimulation if (A,B) ∈ R implies that for S =
unfoldΣ(A), T = unfoldΣ(B) we have

1. If S = ⊕{` : A`}`∈L then T = ⊕{` : B`}`∈L and (A`, B`) ∈ R for all ` ∈ L.
2. If S = N{` : A`}`∈L then T = N{` : B`}`∈L and (A`, B`) ∈ R for all ` ∈ L.
3. If S = A1 ⊗ A2, then T = B1 ⊗B2 and (A1, B1) ∈ R and (A2, B2) ∈ R.
4. If S = A1 ( A2, then T = B1 ( B2 and (A1, B1) ∈ R and (A2, B2) ∈ R.
5. If S = 1 then T = 1.
6. If S = ?{φ}. A′ then T = ?{ψ}. B′ and either (i) � φ, � ψ, and (A′, B′) ∈ R,

or (ii) � ¬φ and � ¬ψ.
7. If S = !{φ}. A′ then T = !{ψ}. B′ and either (i) � φ, � ψ, and (A′, B′) ∈ R,

or (ii) � ¬φ and � ¬ψ
8. If S = ∃m.A′ then T = ∃n.B′ and for all i ∈ N, (A′[i/m], B′[i/n]) ∈ R.
9. If S = ∀m.A′ then T = ∀n.B′ and for all i ∈ N, (A′[i/m], B′[i/n]) ∈ R.

De�nition 3. We say that A is equal to B, wri�en A ≡ B, if there is a type bisimulationR such
that (A,B) ∈ R.

An interesting point here is provided by the cases (ii) in the clauses (6) and (7). Because
the type must be closed, we know that φ and ψ will be either true or false. If both are false, no
messages can be sent along a channel of either type and therefore the continuation types A′
and B′ are irrelevant when considering type equality.

Fundamentally, due to the presence of arbitrary recursion and therefore non-termination,
we always view a type as a restriction of what a process might send or receive along some
channel, but it is neither required to send a message nor guaranteed to receive one. �is is
similar to functional programming with unrestricted recursion where an expression may not
return a value. �e de�nition based on observability of messages is then somewhat strict, as
exempli�ed by the next example.
Example 4. Consider
bin[n] = ⊕{b0 : ∃k. ?{n = 2 ∗ k}. bin[k],

b1 : ∃k. ?{n = 2 ∗ k + 1}. bin[k],
e : ?{n = 0}.1}

zero = ⊕{b0 : ∃k. ?{k = 0}. zero,
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e : ?{0 = 0}.1}
We might expect bin[0] ≡ zero, but this is not so. A process of type bin[0] could send the label b1
and maybe even, say, 0 for k and then just loop forever (because there is no proof of 0 = 1). �e
type zero can not exhibit this behavior so the types are not equivalent.

In our implementation, missing branches for a choice in process de�nitions are recon-
structed with a continuation that marks it as impossible, which is then veri�ed by the type
checker. We found this simple technique signi�cantly limited the need for subtyping or explicit
de�nition of types such as zero—instead, we just work with bin[0].

�e following properties of type equality are straightforward.
Lemma 1 (Properties of Type Equality). �e relation ≡ is re�exive, symmetric, transitive and a
congruence on closed valid types.

3.3 Undecidability of Type Equality
We prove the undecidability of type equality by exhibiting a reduction from an undecidable
problem about two counter machines.

�e type system allows us to simulate two counter machines [119]. Intuitively, arithmetic
constraints allow us to model branching zero-tests available in the machine. �is, coupled with
recursion in the language of types, establishes undecidability. Remarkably, a small fragment
of our language containing only type de�nitions, internal choice (⊕) and assertions (?{φ}. A)
where φ just contains constraints n = 0 and n > 0 is su�cient to prove undecidability. More-
over, the proof still applies if we treat types isorecursively. In the remainder of this section we
provide some details of the undecidability proof.
De�nition 4 (Two Counter Machine). A two counter machineM is de�ned by a sequence of
instructions ι1, ι2, . . . , ιm where each instruction is one of the following.

• “inc(cj); goto k” (increment counter j by 1 and go to instruction k)
• “zero(cj)? goto k : dec(cj); goto l” (if the value of the counter j is 0, go to instruction k,
else decrement the counter by 1 and go to instruction l)

• “halt” (stop computation)

A con�guration C of the machine M is de�ned as a triple (i, c1, c2), where i denotes the
number of the current instruction and cj’s denote the value of the counters. A con�guration C ′

is de�ned as the successor con�guration of C , wri�en as C 7→ C ′ if C ′ is the result of executing
the i-th instruction on C . If ιi = halt, then C = (i, c1, c2) has no successor con�guration. �e
computation ofM is the unique maximal sequence ρ = ρ(0)ρ(1) . . . such that ρ(i) 7→ ρ(i + 1)
and ρ(0) = (1, 0, 0). Either ρ is in�nite, or ends in (i, c1, c2) such that ιi = halt and c1, c2 ∈ N.

�e halting problem refers to determining whether the computation of a two counter ma-
chineMwith given initial values c1, c2 ∈ N is �nite. Both the halting problem and its dual, the
non-halting problem, are undecidable.
�eorem 3. Given a valid signature Σ and two typesA andB such thatm,n ; > `Σ A,B valid.
�en it is undecidable whether for concrete i, j ∈ N we have A[i/m, j/n] ≡ B[i/m, j/n].

Proof. Given a two counter machine, we construct a signature Σ and two types A and B with
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free arithmetic variablesm and n such that the computation of the machine starting with initial
counter values i and j is in�nite i� A[i/m, j/n] ≡ B[i/m, j/n] in Σ.

We de�ne types Tinf = ⊕{` : Tinf} and T ′inf = ⊕{`′ : T ′inf} for distinct labels ` and `′. Next,
for every instruction ιi, we de�ne types Ti and T ′i based on the form of the instruction.

• Case (ιi = inc(c1); goto k): We de�ne

Ti[c1, c2] = ⊕{inc1 : Tk[c1 + 1, c2]}
T ′i [c1, c2] = ⊕{inc1 : T ′k[c1 + 1, c2]}

• Case (ιi = inc(c2); goto k): We de�ne

Ti[c1, c2] = ⊕{inc2 : Tk[c1, c2 + 1]}
T ′i [c1, c2] = ⊕{inc2 : T ′k[c1, c2 + 1]}

• Case (ιi = zero(c1)? goto k : dec(c1); goto l): We de�ne

Ti[c1, c2] = ⊕{zero1 : ?{c1 = 0}. Tk[c1, c2], dec1 : ?{c1 > 0}. Tl[c1 − 1, c2]}
T ′i [c1, c2] = ⊕{zero1 : ?{c1 = 0}. T ′k[c1, c2], dec1 : ?{c1 > 0}. T ′l [c1 − 1, c2]}

• Case (ιi = zero(c2)? goto k : dec(c2); goto l): We de�ne

Ti[c1, c2] = ⊕{zero2 : ?{c2 = 0}. Tk[c1, c2], dec2 : ?{c2 > 0}. Tl[c1, c2 − 1]}
T ′i [c1, c2] = ⊕{zero2 : ?{c2 = 0}. T ′k[c1, c2], dec2 : ?{c2 > 0}. T ′l [c1, c2 − 1]}

• Case (ιi = halt): We de�ne
Ti[c1, c2] = Tinf

T ′i [c1, c2] = T ′inf

We set type A = T1[m,n] and B = T ′1[m,n]. Now suppose, the counter machineM is ini-
tialized in the state (1, i, j). �e type equality question we ask is whether T1[i, j] ≡ T ′1[i, j].
�e two types only di�er at the halting instruction. IfM does not halt, the two types capture
exactly the same communication behavior, since the halting instruction is never reached and
they agree on all other instructions. If M halts, the �rst type proceeds with label ` and the
second with `′ and they are therefore not equal. Hence, the two types are equal i�M does not
halt.

We can easily modify this reduction for an isorecursive interpretation of types, by wrapping
⊕{unfold : } around the right-hand side of each type de�nition to simulate the unfold mes-
sage. We also see that a host of other problems are undecidable, such as determining whether
two types with free arithmetic variables are equal for all instances. �is is the problem that
arises while type-checking parametric process de�nitions.
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3.4 A Practical Algorithm for Type Equality
Despite its undecidability, we have designed a coinductive algorithm for soundly approximating
type equality. Similar to Gay and Hole’s algorithm [73], it proceeds by a�empting to construct
a bisimulation. Due to the undecidability of the problem, our algorithm can terminate in three
di�erent states: (1) we have succeeded in constructing a bisimulation, (2) we have found a
counterexample to type equality by �nding a place where the types may exhibit di�erent be-
havior, or (3) we have terminated the search without a de�nitive answer. From the point of
view of type-checking, both (2) and (3) are interpreted as a failure to type-check (but there is
a recourse; see Section 3.4.2). Our algorithm is expressed as a set of inference rules where the
execution of the algorithm corresponds to the bo�om-up construction of a deduction. �e al-
gorithm is deterministic (no backtracking) and the implementation is quite e�cient in practice
(see Section 3.8).

One of the basic operations in Gay and Hole’s algorithm is loop detection, that is, we have
to determine that we have already added an equation A ≡ B to the bisimulation we are con-
structing. Since we must treat open types, that is, types with free arithmetic variables subject
to some constraints, determining if we have considered an equation already becomes a di�cult
operation. To that purpose we make an initial pass over the given type and introduce fresh
internal names abstracted over their free type variables and known constraints. In the result-
ing signature de�ned type variables and type constructor alternates and we can perform loop
detection entirely on type de�nitions (whether internal or external).
Example 5 (�eues, v3). A�er creating internal names %i for the type of queue we obtain the
following signature (here parametric in A).

queueA[n] = N{ins : %0[n],del : %1[n]}
%0[n] = A( queueA[n+ 1] %3 = 1
%1[n] = ⊕{none : %2[n], some : %4[n]} %4[n] = ?{n > 0}.%5[n]
%2[n] = ?{n = 0}.%3 %5[n | n > 0] = A⊗ queueA[n− 1]

Based on the invariants established by internal names, the algorithm only needs to compare
two type variables or two structural types. �e rules are shown in Figure 3.1. �e judgment has
the form V ; C ; Γ ` A ≡ B where V contains the free arithmetic variables in the constraints
C and the types A and B, and Γ is a collection of closures 〈V ′ ; C ′ ; V ′1 [e1

′] ≡ V ′2 [e2
′]〉. If a

derivation can be constructed, all ground instances of all closures are included in the resulting
bisimulation (see the proof of �eorem 4). A ground instance V ′1 [e1

′[σ′]] ≡ V ′2 [e2
′[σ′]] is given

by a substitution σ′ over variables in V ′ such that � C ′[σ′].
�e rules for type constructors simply compare the components. If the type constructors (or

the label sets in the ⊕ and N rules) do not match, then type equality fails (having constructed
a counterexample to bisimulation) unless the ⊥ rule applies. �is rules handles the case where
the constraints are contradictory and no communication is possible.

�e rule of re�exivity is needed explicitly here (but not in the version of Gay and Hole)
because due to the incompleteness of the algorithm we may otherwise fail to recognize type
variables with equal index expressions as equal.

Now we come to the key rules, expd and def . In the expd rule we expand the de�nitions
of V1[e1] and V2[e2], and we also add the closure 〈V ; C ; V1[e1] ≡ V2[e2]〉 to Γ. Since the
equality of V1[e1] and V2[e2] must hold for all its ground instances, the extension of Γ with the
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V ; C ; Γ ` A` ≡ B` (∀` ∈ L)

V ; C ; Γ ` ⊕{` : A`}`∈L ≡ ⊕{` : B`}`∈L
⊕

V ; C ; Γ ` A` ≡ B` (∀` ∈ L)

V ; C ; Γ ` N{` : A`}`∈L ≡ N{` : B`}`∈L
N

V ; C ; Γ ` A1 ≡ B1 V ; C ; Γ ` A2 ≡ B2

V ; C ; Γ ` A1 ⊗ A2 ≡ B1 ⊗B2
⊗

V ; C ; Γ ` A1 ≡ B1 V ; C ; Γ ` A2 ≡ B2

V ; C ; Γ ` A1 ( A2 ≡ B1 ( B2
( V ; C ; Γ ` 1 ≡ 1

1

V ; C � φ↔ ψ V ; C ∧ φ ; Γ ` A ≡ B

V ; C ; Γ ` ?{φ}. A ≡ ?{ψ}. B ?

V ; C � φ↔ ψ V ; C ∧ φ ; Γ ` A ≡ B

V ; C ; Γ ` !{φ}. A ≡ !{ψ}. B !
V , k ; C ; Γ ` A[k/m] ≡ B[k/n]

V ; C ; Γ ` ∃m.A ≡ ∃n.B ∃k

V , k ; C ; Γ ` A[k/m] ≡ B[k/n]

V ; C ; Γ ` ∀m.A ≡ ∀n.B ∀k
V ; C � ⊥

V ; C ; Γ ` A ≡ B
⊥

V ; C � e1 = e′1 ∧ . . . ∧ en = e′n
V ; C ; Γ ` V [e] ≡ V [e′]

refl

V1[v1 | φ1] = A ∈ Σ V2[v2 | φ2] = B ∈ Σ
γ = 〈V ; C ; V1[e1] ≡ V2[e2]〉

V ; C ; Γ, γ ` A[e1/v1] ≡ B[e2/v2]

V ; C ; Γ ` V1[e1] ≡ V2[e2]
expd

〈V ′ ; C ′ ; V1[e1
′] ≡ V2[e2

′]〉 ∈ Γ V ; C � ∃V ′. C ′ ∧ e1
′ = e1 ∧ e2

′ = e2

V ; C ; Γ ` V1[e1] ≡ V2[e2]
def

Figure 3.1: Algorithmic Rules for Type Equality

corresponding closure remembers exactly that.
In the def rule we close o� the derivation successfully if all instances of the equationV1[e1] ≡

V2[e2] are already instances of a closure in Γ. �is is checked by the entailment in the second
premise, V ; C � ∃V ′. C ′ ∧ E1 = e1 ∧ E2 = e2. �is entailment is veri�ed as a closed ∀∃
arithmetic formula, even if the original constraints C and C ′ do not contain any quanti�ers.
While for Presburger arithmetic we can decide such a proposition using quanti�er elimination,
other constraint domains may not permit such a decision procedure.

�e algorithm so far is sound, but potentially nonterminating because when encountering
variable/variable equations, we can use the expd rule inde�nitely. To ensure termination, we
restrict the expd rule to the case where no formula with the same type variables V1 and V2

is already present in Γ. �is also removes the overlap between these two rules. Note that if
type variables have no parameters, our algorithm specializes to Gay and Hole’s (with the small
optimizations of re�exivity and internal naming), which means our algorithm is sound and
complete on unindexed types.
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Example 6 (Integer Counter). An integer counter with increment (inc), decrement (dec) and
sign-test (sgn) operations provides type intctr[x, y], where the current value of the counter is x−y
for natural numbers x and y.

intctr[x, y] = N{inc : intctr[x+ 1, y],
dec : intctr[x, y + 1],
sgn : ⊕{neg : ?{x < y}. intctr[x, y],

zer : ?{x = y}. intctr[x, y],
pos : ?{x > y}. intctr[x, y]}}

Under this de�nition our algorithm veri�es, for example, that an increment followed by a decrement
does not change the counter value. �at is,

x, y ; > ; · ` intctr[x, y] ≡ intctr[x+ 1, y + 1]

where we have elided the assumptions x, y ≥ 0. When applying expd, we assume that γ =
〈x′, y′ ; > ; intctr[x′, y′] ≡ intctr[x′ + 1, y′ + 1]〉. �en, for example, in the �rst branch (for
inc) we conclude x, y ; > ; γ ` intctr[x + 1, y] ≡ intcr[x + 2, y + 1] using the def rule and the
entailment x, y ; > � ∃x′.∃y′. x′ = x+ 1∧ y′ = y ∧ x′ + 1 = x+ 2∧ y′ + 1 = y+ 1. �e other
branches are similar.

3.4.1 Soundness of the Type Equality Algorithm
We prove that the type equality algorithm is sound with respect to the de�nition of type equal-
ity. �e soundness is proved by constructing a type bisimulation from a derivation of the algo-
rithmic type equality judgment. We sketch the key points of the proofs.

�e �rst gap we have to bridge is that the type bisimulation is de�ned only for closed types,
because observations can only arise from communication along channels which, at runtime,
will be of closed type. So, if we can derive V ; C ; · ` A ≡ B then we should interpret this as
stating that for all ground substitutions σ over V such that � C[σ] we have A[σ] ≡ B[σ].
De�nition 5. Given a relationR on valid ground types and two typesA andB such that V ; C `
A,B valid, we write ∀V . C ⇒ A ≡R B if for all ground substitutions σ over V such that � C[σ]
we have (A[σ], B[σ]) ∈ R.

Furthermore, we write ∀V . C ⇒ A ≡ B if there exists a type bisimulationR such that ∀V . C ⇒
A ≡R B.

Note that if V ; C � ⊥, then ∀V . C ⇒ A ≡ B is vacuously true, since there does not exist a
ground substitution σ such that � C[σ]. A key lemma is the following, which is needed to show
the soundness of the def rule.
Lemma 2. Suppose ∀V ′.C ′ ⇒ V1[e1

′] ≡R V2[e2
′] holds. Further assume that V ; C � ∃V ′.C ′ ∧

e1
′ = e1 ∧ e2

′ = e2 for some V , C, e1, e2. �en, ∀V .C ⇒ V1[e1] ≡R V2[e2] holds.

Proof. To prove ∀V . C ⇒ V1[e1] ≡R V2[e2], it is su�cient to show that V1[e1[σ]] ≡R V2[e2[σ]]
for any substitution σ over V such that � C[σ]. Applying this substitution to V ; C � ∃V ′. C ′ ∧
e1
′ = e1 ∧ e2

′ = e2, we infer ∃V ′. C ′ ∧ e1
′ = e1[σ] ∧ e2

′ = e2[σ] since � C[σ]. �us, there
exists σ′ over V ′ such that � C ′[σ′] holds, and e1

′[σ′] = e1[σ] and e2
′[σ′] = e2[σ]. And since

∀V ′. C ′ ⇒ V1[e1
′] ≡R V2[e2

′], we deduce that for any ground substitution (including the current
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one) σ′ over V ′, V1[e1
′[σ′]] ≡R V2[e2

′[σ′]] holds. �is implies that V1[e1[σ]] ≡R V2[e2[σ]] since
e1
′[σ′] = e1[σ] and e2

′[σ′] = e2[σ].

We construct the bisimulation from a derivation of V ; C ; Γ ` A ≡ B by (i) collecting the
conclusions of all the sequents, excepting only the def rule, and (ii) forming all ground instances
from them.
De�nition 6. Given a derivation D of V ; C ; Γ ` A ≡ B, we de�ne the set S(D) of closures.
For each sequent V ′ ; C ′ ; Γ′ ` A′ ≡ B′ (except the conclusion of the def rule) we include the
closure 〈V ′ ; C ′ ; A′ ≡ B′〉 in S(D).
�eorem 4. If V ; C ; · ` A ≡ B, then ∀V . C ⇒ A ≡ B.

Proof. We are given a derivation D0 of V0 ; C0 ; · ` A0 ≡ B0. Construct S(D0) and de�ne a
relationR on closed valid types as follows:

R = {(A[σ], B[σ]) | 〈V ; C ; A ≡ B〉 ∈ S(D0) and σ over V with � C[σ]}

We �rst prove that R is a type bisimulation. �en our theorem follows since the closure
〈V0 ; C0 ; A0 ≡ B0〉 ∈ S(D0).

Consider (A[σ], B[σ]) ∈ Rwhere 〈V ; C ; A ≡ B〉 ∈ S(D0) for some σ over V and � C[σ].
First, consider the case where V ; C � ⊥. Under such a constraint, V ; C ; · ` A ≡ B

holds true due to the⊥ rule. Furthermore, ∀V . C ⇒ A ≡ B holds vacuously, and the algorithm
is sound. For the remaining cases, we case analyze on the structure of A[σ] and assume that
there exists a ground substitution σ such that � C[σ].

Consider the case where A = ⊕{` : A`}`∈L. Since A and B are both structural, B = ⊕{` :
B`}`∈L. Since 〈V ; C ; A ≡ B〉 ∈ S(D0), by de�nition of S(D0), we get 〈V ; C ; A` ≡ B`〉 ∈
S(D0) for all ` ∈ L. By the de�nition ofR, we get that (A`[σ], B`[σ]) ∈ R. Also, A[σ] = ⊕{` :
A`[σ]}`∈L and similarly, B[σ] = ⊕{` : B`[σ]}`∈L. Hence, R satis�es the appropriate closure
condition for a type bisimulation.

Next, consider the case where A = ?{φ}. A′. Since A and B are both structural, B =
?{ψ}. B′. Since 〈V ; C ; A ≡ B〉 ∈ S(D0), we obtain V ; C � φ ↔ ψ and 〈V ; C ∧ φ ; A′ ≡
B′〉 ∈ S(D0). �us, for any substitution σ such that� C[σ]∧φ[σ], we get that (A′[σ], B′[σ]) ∈ R
with A[σ] = ?{φ[σ]}. A′[σ] and B[σ] = ?{ψ[σ]}. B′[σ]. Since � φ[σ] and and V ; C � φ ↔ ψ
we also obtain � ψ[σ] and the closure condition is satis�ed.

Next, consider the case where A = ∃m.A′. Since A and B are both structural, B = ∃n.B′.
Since 〈V ; C ; A ≡ B〉 ∈ S(D0), we get that 〈V , k ; C ; A′[k/m] ≡ B′[k/n]〉 ∈ S(D0). Since
k was chosen fresh and does not occur in C, we obtain that for any i ∈ N we have � C[σ, i/k]
and therefore (A′[σ, i/k], B′[σ, i/k]) ∈ R for all i ∈ N and the closure condition is satis�ed.

�e only case where a conclusion is not added to S(D0) is the def rule. In this case, adding
(∀V . C ⇒ V1[e1] ≡ V2[e2]) is redundant: Lemma 2 states that V1[e1[σ]] ≡R V2[e2[σ]] which
implies (V1[e1[σ]], V2[e2[σ]]) ∈ R.

3.4.2 Type Equality Declarations
Even though the type equality algorithm in Section 3.4 is incomplete, we have yet to �nd a
natural example where it fails a�er we added re�exivity as a general rule. But since we cannot
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see a simple reason why this should be so, we made our type equality algorithm extensible by
the programmer via an additional form of declaration

∀V . C ⇒ V1[e1] ≡ V2[e2]

in signatures. Let ΓΣ denote the set of all such declarations. �en we check

V ; C ; ΓΣ ` V1[e1] ≡ V2[e2]

for each such declaration, seeding the construction of a bisimulation with all the given equa-
tions. �en, when type-checking has to decide the equality of two types, it starts not with the
empty context Γ but with ΓΣ. Our soundness proof can easily accommodate this more general
algorithm.

3.5 Formal Description of the Rast Language
In this section, we give a formal description of the Rast language. We have already seen the
rules for statics and dynamics for the basic session types in Chapter 2. Hence, this section will
primarily present the rules for the re�nement layer. We have already described the grammar
for types in Section 3.2. We now present the grammar for process expressions in Rast.

Procs P,Q ::= x.k ; P | case x (l⇒ P )l∈L
| send x y ; P | y ← recv x ; P
| close x | wait x ; P
| x↔ y | x← f y ; P
| assert x {φ} ; P | assume x {φ} ; P
| send x {e} ; P | {n} ← recv x ; P

�e typing judgment has the form of a sequent
V ; C ; ∆ `Σ P :: (x : A)

where V are index variables n, C are constraints over these variables expressed as a single
proposition, ∆ are the linear antecedents xi : Ai, P is a process expression, and x : A is the
linear succedent. We propose and maintain that the xi’s and x are all distinct, and that all
free index variables in C, ∆, P , and A are contained among V . Finally, Σ is a �xed signature
containing type and process de�nitions. Because it is �xed, we elide it from the presentation of
the rules. In addition we write V ; C � φ for semantic entailment (proving φ assuming C) in the
constraint domain where V contains all arithmetic variables in C and φ. Table 3.1 reviews the
basic session types their associated process terms, their continuation (both in types and terms)
and operational description.

We formalize the operational semantics as a system of multiset rewriting rules [48]. We
introduce semantic objects proc(c, P ) and msg(c,M) which mean that process P or message
M provide along channel c. A process con�guration is a multiset of such objects, where any
two channels provided are distinct (formally described in Section 3.4.1).
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Type Cont. Process Term Cont. Description
c : ⊕{` : A`}`∈L c : Ak c.k ; P P send label k along c

case c (`⇒ Q`)`∈L Qk branch on received label along c
c : N{` : A`}`∈L c : Ak case c (`⇒ P`)`∈L Pk branch on received label along c

c.k ; Q Q send label k along c
c : A⊗B c : B send c w ; P P send channel w : A along c

y ← recv c ; Q Q[w/y] receive channel w : A along c
c : A( B c : B y ← recv c ; P P [w/y] receive channel w : A along c

send c w ; Q Q send channel w : A along c
c : 1 — close c — send close along c

wait c ; Q Q receive close along c

Table 3.1: Basic session types with operational description

Process De�nitions Process de�nitions have the form ∆ ` f [n] = P :: (x : A) where f is
the name of the process and P its de�nition. In addition, n is a sequence of arithmetic variables
that ∆, P and A can refer to. All de�nitions are collected in a �xed global signature Σ. For a
well-formed signature, we require that n ; > ; ∆ ` P :: (x : A) for every de�nition, thereby
allowing de�nitions to be mutually recursive. A new instance of a de�ned process f can be
spawned with the expression x ← f [e] y ; Q where y is a sequence of channels matching the
antecedents ∆ and [e] is a sequence of arithmetic expression matching the variables [n]. �e
newly spawned process will use all variables in y and provide x to the continuation Q.

y′ : B ` f [n] = Pf :: (x′ : A) ∈ Σ

∆′ = (y : B)[e/n] V ; C ; ∆, (x : A[e/n]) ` Q :: (z : C)

V ; C ; ∆,∆′ ` (x← f [e] y ; Q) :: (z : C)
def

�e declaration of f is looked up in the signature Σ (�rst premise), and e is substituted for n
while matching the types in ∆′ and y (second premise). Similarly, the freshly created channel x
has type A from the signature with e substituted for n. �e corresponding semantics rule also
performs a similar substitution (a fresh).
(defC) : proc(c, x← f [e] d ; Q) 7→ proc(a, Pf [a/x, d/y′, e/n]), proc(c,Q[a/x])

where y′ : B ` f [n] = Pf :: (x′ : A) ∈ Σ.
Sometimes a process invocation is a tail call, wri�en without a continuation as x← f [e] y.

�is is a short-hand for x′ ← f [e] y ; x ↔ x′ for a fresh variable x′, that is, we create a fresh
channel and immediately identify it with x.

Type De�nitions As our queue example already showed, session types can be de�ned recur-
sively, departing from a strict Curry-Howard interpretation of linear logic, analogous to the way
pure ML or Haskell depart from a pure interpretation of intuitionistic logic. For this purpose
we allow (possibly mutually recursive) type de�nitions V [n | φ] = A in the signature Σ. Here,
n denotes a sequence of arithmetic variables. Again, for a well-formed signature, we require
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Type Cont. Process Term Cont. Description
c : ∃n.A c : A[i/n] send c {e} ; P P provider sends value i of e along c

{n} ← recv c ; Q Q[i/n] client receives number i along c
c : ∀n.A c : A[i/n] {n} ← recv c ; P P [i/n] provider receives number i along c

send c {e} ; Q Q client sends value i of e along c
c : ?{φ}. A c : A assert c {φ} ; P P provider asserts φ on channel c

assume c {φ} ; Q Q client assumes φ on c
c : !{φ}. A c : A assume c {φ} ; P P provider assumes φ on channel c

assert c {φ} ; Q Q client asserts φ on c

Table 3.2: Re�ned session types with operational description

A to be contractive [73] meaning A should not itself be a type name. Our type de�nitions are
equirecursive so we can silently replace type names V [e] indexed with arithmetic re�nements
by A[e/n] during type checking, and no explicit rules for recursive types are needed.

All types in a signature must be valid, formally denoted with the judgment V ; C ` A valid,
which requires that all free arithmetic variables of C andA are contained in V , and that for each
arithmetic expression e in A we can prove V ′ ; C ′ ` e : nat for the constraints C ′ known at the
occurrence of e (implicitly proving that e ≥ 0).

3.5.1 �e Re�nement Layer
We describe quanti�ers (∃n.A, ∀n.A) and constraints (?{φ}. A, !{φ}. A) [59]. An overview of
the types, process expressions, and their operational meaning can be found in Table 3.2.

�anti�cation �e provider of (c : ∃n.A) should send a witness i along channel c and then
continue as A[i/n]. �e witness is speci�ed by an arithmetic expression e which, since it must
be closed at runtime, can be evaluated to a number i (following standard evaluation rules of
arithmetic). From the typing perspective, we just need to check that the expression e denotes a
natural number, using only the permi�ed variables in V . �is is represented with the auxiliary
judgment V ; C ` e : nat (implicitly proving that e ≥ 0 under constraint C).

V ; C ` e : nat V ; C ; ∆ ` P :: (x : A[e/n])

V ; C ; ∆ ` send x {e} ; P :: (x : ∃n.A)
∃R

V , n ; C ; ∆, (x : A) ` Q :: (z : C) (n fresh)

V ; C ; ∆, (x : ∃n.A) ` {n} ← recv x ; Q :: (z : C)
∃L

Statically, the client adds n to V to ensure that Q and A are closed w.r.t. V . Operationally, the
provider sends the arithmetic expression with the continuation channel as a message that the
client receives and appropriately substitutes.
(∃S) : proc(c, send c {e} ; P ) 7→ proc(c′, P [c′/c]), msg(c, send c {e} ; c↔ c′)
(∃C) : msg(c, send c {e} ; c↔ c′), proc(d, {n} ← recv c ; Q) 7→ proc(d,Q[e/n][c′/c])
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�e dual type ∀n.A reverses the role of the provider and client. �e client sends (the value
of) an arithmetic expression e which the provider receives and binds to n.

V , n ; C ; ∆ ` Pn :: (x : A)

V ; C ; ∆ ` {n} ← recv x ; Pn :: (x : ∀n.A)
∀R

V ; C ` e : nat V ; ∆, (x : A[e/n]) ` Q :: (z : C)

V ; C ; ∆, (x : ∀n.A) ` send x {e} ; Q :: (z : C)
∀L

(∀S) : proc(d, send c {e} ; P ) 7→ msg(c′, send c {e} ; c′ ↔ c), proc(d, [c′/c]P )
(∀C) : proc(d, {n} ← recv c ; Q), msg(c′, send c {e} ; c′ ↔ c) 7→ proc(d, [e/n][c′/c]Q)

Constraints Re�ned session types also allow constraints over index variables. As we have
already seen in the examples, these critically govern permissible messages. From the message-
passing perspective, the provider of (c : ?{φ}. A) should send a proof of φ along c and the
client should receive such a proof. However, since the index domain is decidable and future
computation cannot depend on the form of the proof (what is known in type theory as proof
irrelevance) such messages are not actually exchanged. Instead, it is the provider’s responsibility
to ensure that φ holds, while the client is permi�ed to assume that φ is true. �erefore, and in
an analogy with imperative languages, we write assert c {φ} ; P for a process that asserts φ
for channel c and continues with P , while assume c {φ} ; Q assumes φ and continues with Q.

�us, the typing rules for this new type constructor are

V ; C � φ V ; C ; ∆ ` P :: (x : A)

V ; C ; ∆ ` assert x {φ} ; P :: (x : ?{φ}. A)
?R

V ; C ∧ φ ; ∆, (x : A) ` Q :: (z : C)

V ; C ; ∆, (x : ?{φ}. A) ` assume x {φ} ; Q :: (z : C)
?L

Notice how the provider must verify the truth of φ given the currently known constraints C
(the premise V ; C � φ), while the client assumes φ by adding it to C.

Operationally, the provider creates a message containing the constraint that is received by
the client (c′ fresh).
(?S) : proc(c, assert c {φ} ; P ) 7→ proc(c′, [c′/c]P ), msg(c, assert c {φ} ; c↔ c′)
(?C) : msg(c, assert c {φ} ; c↔ c′), proc(d, assume c {φ′} ; Q) 7→ proc(d, [c′/c]Q)

In well-typed con�gurations (which arise from executing well-typed processes) the constraint
φ in these rules will always be closed and true so there is no need to check this explicitly.

�e dual operator !{φ}. A reverses the role of provider and client. �e provider of x : !{φ}. A
may assume the truth of φ, while the client must verify it. �e dual rules are

V ; C ∧ φ ; ∆ ` P :: (x : A)

V ; C ; ∆ ` assume x {φ} ; P :: (x : !{φ}. A)
!R

V ; C � φ V ; C ; ∆, (x : A) ` Q :: (z : C)

V ; C ; ∆, (x : !{φ}. A) ` assert x {φ} ; Q :: (z : C)
!L
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∆ 
 (·) :: ∆
emp ∆1 
 S1 :: ∆2 ∆2 
 S2 :: ∆3

∆1 
 (S1,S2) :: ∆3

comp

· ; > ; ∆ ` P :: (x : A)

∆ 
 proc(x, P ) :: (x : A)
proc

· ; > ; ∆ `M :: (x : A)

∆ 
 msg(x,M) :: (x : A)
msg

Figure 3.2: Typing rules for a con�guration

�e remaining issue is how to type-check a branch that is impossible due to unsatis�able
constraints. For example, if a client sends a del request to a provider along c : queueA[0], the
type then becomes

c : ⊕{none : ?{0=0}.1, some : ?{0>0}. A⊗ queueA[0−1]}
�e client would have to branch on the label received and then assume the constraint asserted
by the provider
case c ( none⇒ assume c {0 = 0} ; P1

| some⇒ assume c {0 > 0} ; P2)

but what could we write for P2 in the some branch? Intuitively, computation should never
get there because the provider can not assert 0 > 0. Formally, we use the process expression
‘impossible’ to indicate that computation can never reach this spot:
case c ( none⇒ assume c {0 = 0} ; P1

| some⇒ assume c {0 > 0} ; impossible)

In implicit syntax (see Section 3.7) we could omit the some branch altogether and it would be
reconstructed in the form shown above. Abstracting away from this example, the typing rule
for impossibility simply checks that the constraints are indeed unsatis�able

V ; C � ⊥
V ; C ; ∆ ` impossible :: (x : A)

unsat

�ere is no operational rule for this scenario since in well-typed con�gurations the process
expression ‘impossible’ is dead code and can never be reached.

3.6 Type Safety
�e main theorems that establish the deep connection between our re�ned type system and
operational semantics are the usual type preservation and progress, also referred as session �delity
and deadlock freedom. At runtime, a program is represented using a set of semantic objects, i.e.
processes and messages together de�ned as a con�guration.

S ::= · | S,S ′ | proc(c, P ) | msg(c,M)

We say that proc(c, P ) (or msg(c,M)) provide channel c. We stipulate that no two distinct
semantic objects provide the same channel.
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Type Preservation A key question then is how to type con�gurations? We de�ne a well-
typed con�guration using the judgment ∆1 
Σ S :: ∆2 denoting that con�guration S uses
channels ∆1 and provides channels ∆2. �e rules for typing a con�guration are de�ned in
Figure 3.2. A con�guration is always typed w.r.t. a well-formed signature Σ, requiring that all
(i) all type de�nitions are valid and contractive, and (ii) all process de�nitions are well-typed.
Since the signature Σ is �xed, we elide it from the presentation.

�e rule emp de�nes that an empty con�guration provides all the channels ∆ that it uses.
�e comp rule composes two con�gurations S1 and S2; S1 provides channels ∆2 while S2 uses
channels ∆2. �e rule proc creates a con�guration out of a single process. Con�gurations only
exist at runtime where all arithmetic expressions in process terms are closed, i.e. they do not
refer to any free variables. Hence, we use V = · and C = > when typing process P (premise in
proc rule). Similar to proc, the rule msg creates a con�guration out of a single message (where
a message is also represented as a process).

Global Progress To state progress, we need the notion of a poised process [129]. A process
proc(c, P ) is poised if it is trying to receive a message on c. Dually, a message msg(c,M) is
poised if it is sending along c. A con�guration is poised if every message or process in the con-
�guration is poised. Conceptually, this means that the con�guration is trying to communicate
externally along one of the channels it uses or provides.
�eorem 5 (Type Safety). For a well-typed con�guration ∆1 
Σ S :: ∆2:

(i) (Preservation) If S 7→ S ′, then ∆1 
Σ S ′ :: ∆2

(ii) (Progress) Either S is poised, or S 7→ S ′.

Proof. �e proof of preservation proceeds by case analysis on the rules of operational semantics,
applying inversion to the given typing derivation of S , and then assembling a new derivation
of S ′. Progress is proved by induction on the right-to-le� typing of S so that either S is empty
(and therefore poised) or S = (D, proc(c, P )) or S = (D,msg(c,M)). By induction hypothesis,
D can either take a step (and then so can S), or D is poised. In the la�er case, we analyze the
cases for P and M , applying multiple steps of inversion to show that in each case either S can
take a step or is poised.

3.7 Constraint Reconstruction
�e process expressions introduced so far in the language follow simple syntax-directed typing
rules. �is means they are immediately amenable to be interpreted as an algorithm for type-
checking, calling upon a decision procedure where arithmetic entailments and type equalities
need to be veri�ed. However, this requires the programmer to write a signi�cant number of
explicit process constructs pertaining to the re�nement layer in their code. Relatedly, this hin-
ders reuse: we are unable to provide multiple types to the same program so that it can be used
in di�erent contexts.

�is section introduces an implicit type system in which the source program never contains
the assume and assert expressions, i.e. constructs corresponding to proof constraints. Moreover,
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V ; C � φ V ; C ; ∆ i` P :: (x : A)

V ; C ; ∆ i` P :: (x : ?{φ}. A)
?R

V ; C ∧ φ ; ∆, (x : A) i` Q :: (z : C)

V ; C ; ∆, (x : ?{φ}. A) i` Q :: (z : C)
?L

V ; C ∧ φ ; ∆ i` P :: (x : A)

V ; C ; ∆ i` P :: (x : !{φ}. A)
!R

V ; C � φ V ; C ; ∆, (x : A) i` Q :: (z : C)

V ; C ; ∆, (x : !{φ}. A) i` Q :: (z : C)
!L

Figure 3.3: Implicit Typing Rules

impossible branches may be omi�ed from case expressions. �e missing branches and other
constructs are restored by a type-directed process of reconstruction.

In the �rst phase, a case expression with a missing branch for label ` is transformed into
a branch ` ⇒ impossible so that type checking later veri�es that the omi�ed branch is indeed
impossible. �en assumes and asserts are inserted according to a reconstruction algorithm
described in this section.

Following branch reconstruction, the resulting process expression is checked with the im-
plicit typing judgment V ; C ; ∆ i` P :: (x : A). �e implicit system di�ers from the explicit
system in only one way: for the implicit constructs related to constraints (!R, !L, ?R, ?L), the
process expression does not change on application of these rules. Selected typing rules are de-
scribed in Figure 3.3 and illustrate that expressions P and Q are unchanged in the premise and
conclusion. For the remaining rules pertaining to base session types and quanti�ers (∃R, ∃L,
∀R, ∀L), no reconstruction is involved and the implicit rules exactly match the explicit rules.

�e implicit rules are sound and complete with respect to the explicit system, since from
an implicit typing derivation we can read o� the corresponding explicit process expression and
vice versa. �e rules are also manifestly decidable since the types in the premise are smaller
than the conclusion for all the rules presented.

However, the implicit type system is highly nondeterministic. Since the process expressions
do not change on the application of implicit rules in Figure 3.3, they can be applied in many
di�erent orders. And each valid order corresponds to a di�erent explicit program, intuitively
changing the order in which constraints are sent and received. �us, an implicit source program
may correspond to many di�erent explicit programs. �e necessary backtracking would greatly
complicate error messages and would also be exponential and severely ine�cient.

To solve this problem, we introduce a novel forcing calculus which enforces an order among
these implicit constructs. �e core idea of this calculus is to follow the structure of each type,
but within that assume should be inserted as early as possible, and assert should be inserted as
late as possible. �is reasoning is sound since the constraints obey a monotonicity property: if a
constraint is true at a program point, it will always be true later in the program. �us, eagerly
assuming and lazily asserting constraints is sound: if a constraint can be proved now, it can
be proved later. It is also complete under the mild assumption that the types can be polarized
(explained below). Logically, the !R, ?L rules are invertible, and are applied eagerly while their
dual rules are applied lazily.

�is strategy is formally realized in the forcing calculus using the judgmentV ; C ; ∆ ; Ω `
P :: (x : A). �e context is split into two: the linear context ∆ contains stable propositions on
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which the invertible le� rules have been applied, while the ordered context Ω stores channels
on which invertible rules can possibly still be applied to. First, we assign polarities to the
type operators with implicit expressions, a notion borrowed from focusing [20] with a similar
function here. Type de�nitions are unfolded in order to determine their polarity, which is
always possible since type de�nitions are contractive. �e types that involve communication
are called structural and represented by S.

A+ ::= S | ?{φ}. A+

A− ::= S | !{φ}. A−
A ::= A+ | A−
S ::= ⊕{` : A}`∈L | N{` : A}`∈L | A⊗ A | 1 | A( A | ∃n.A | ∀n.A

Not all types can be polarized in this manner, particularly types containing alternating proof
constraints e.g., !{φ}. ?{ψ}. A. When checking the validity of types before performing recon-
struction we reject such types with alternating polarities. We also require that all process dec-
larations contain only structural types at the top-level. Both these restrictions turn out to be
mild in practice and can be resolved by introducing additional communications.

�us, the ? operator is positive, while ! is negative. �e structural types, denoted by S are
considered neutral. In the forcing calculus, the invertible rules are applied �rst.

V ; C ∧ φ ; ∆− ; Ω ` P :: (x : A−)

V ; C ; ∆− ; Ω ` P :: (x : !{φ}. A−)
!R

V ; C ∧ φ ; ∆− ; Ω · (x : A+) ` P :: (z : C+)

V ; C ; ∆− ; Ω · (x : ?{φ}. A+) ` P :: (z : C+)
?L

If a negative type is encountered in the ordered context, it is considered stable (invertible rules
applied) and moved to ∆−.

V ; C ; ∆−, (x : A−) ; Ω ` P :: (z : C+)

V ; C ; ∆− ; Ω · (x : A−) ` P :: (z : C+)
move

�e ordered context Ω imposes an order on the channels on which these invertible rules are
applied.

Once all the invertible rules are applied, we reach a stable sequent which has the form
V ; C ; ∆− ; · ` P :: (x : A+), i.e., the ordered context is empty and the provided type A+ is
positive. A stable sequent implies that all constraints have been received. We send a constraint
lazily, i.e., just before communicating on that channel. We realize this by forcing the channel
just before communicating on it. As an example, while sending (or receiving) a label on channel
x, we force it e�ectively sending any pending constraints.

V ; C ; ∆− ; · ` x.k ; P :: [x : A+]

V ; C ; ∆− ; · ` x.k ; P :: (x : A+)
⊕FR

V ; C ; ∆, [x : A−] ; · ` case x (`⇒ Q`)`∈L :: (z : C+)

V ; C ; ∆, (x : A−) ; · ` case x (`⇒ Q`)`∈L :: (z : C+)
⊕FL
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�e square brackets [·] indicates that the channel is forced, indicating that a communication is
about to happen on it. If there are assert constructs pending on the forced channel, they are
applied now.

V ; C � φ V ; C ; ∆− ; · ` P :: [x : A+]

V ; C ; ∆− ; · ` P :: [x : ?{φ}. A+]
?R

V ; C � φ V ; C ; ∆−, [x : A−] ; · ` P :: (z : C+)

V ; C ; ∆−, [x : !{φ}. A−] ; · ` P :: (z : C+)
!L

Finally, if a forced channel has a structural type, we apply the corresponding structural rule
and lose the forcing. Again, as an example, we consider the internal choice operator.

(k ∈ L) V ; C ; ∆− ; · ` P :: (x : Ak)

V ; C ; ∆− ; · ` (x.k ; P ) :: [x : ⊕{` : A`}`∈L]
⊕Rk

(∀` ∈ L) V ; C ; ∆ ; (x : A`) ` Q` :: (z : C+)

V ; C ; ∆, [x:⊕ {` : A`}] ; · ` case x (`⇒ Q`)::(z:C+)
⊕L

In either case, applying the structural rule creates a possibly unstable sequent, thereby restart-
ing the inversion phase.

Remarkably, the forcing calculus is sound and complete with respect to the implicit type system,
assuming types can be polarized. Since every rule in the forcing calculus is also present in the
implicit system, it is trivially sound. Moreover, applying assume eagerly, and assert lazily also
turns out to be complete due to the monotonicity property of constraints.
�eorem 6 (Soundness and Completeness). For (valid) polarized types A and contexts ∆ we
have:

1. If V ; C ; ∆ i` P :: (x : A), then V ; C ; · ; ∆ ` P :: (x : A).
2. If V ; C ; · ; ∆ ` P :: (x : A), then V ; C ; ∆ i` P :: (x : A).

Proof. Part (1) of �eorem 6 corresponds to soundness. �e proof of soundness follows by
induction on the implicit typing judgment. Intuitively, soundness follows from the simple ob-
servation that every rule in the forcing calculus is also valid in the implicit typing judgment.
�eorem 6 part (2) corresponds to completeness whose proof proceeds by induction on the forc-
ing judgment. �e proof relies on two key lemmas: (i) the rules !R and ?L are invertible, and
(ii) if V ; C ; ∆− ; Ω ` (x : A+) and V ; C � φ, then V ; C ; ∆− ; Ω ` (x : ?{φ}. A+), i.e.
asserting a constraint φ on a channel can be done at any program point where φ holds assuming
C, and thus, can be delayed.

If a process is well-typed in the implicit system, it is well-typed using the forcing calculus.
Once the typing derivation, i.e., ordering of the typing rules is �xed by the forcing calculus,
a unique explicit program is constructed by applying the explicit typing rules to the derivation.
�us, if a reconstruction is possible, the forcing calculus will �nd it! We use this calculus to
reconstruct the explicit program, which is then typechecked using the explicit typing system.
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Abstract Types Concrete Types Abstract Syntax Concrete Syntax
⊕{l : A, . . .} +{l : A, ...} x.k x.k

N{l : A, . . .} &{l : A, ...} case x (`⇒ P )`∈L case x (l => P | ...)

A⊗B A * B send x w send x w

A( B A -o B y ← recv x y <- recv x

1 1 close x close x

wait x wait x

∃n.A ?n. A send x {e} send x {e}

∀n.A !n. A {n} ← recv x {n} <- recv x

?{φ}. A ?{phi}. A assert x {φ} assert x {phi}

!{φ}. A !{phi}. A assume x {φ} assume x {phi}

V [e] V{e1}{e2}...

x↔ y x <-> y

x← f x1 . . . xn x <- f x1 ... xn

Table 3.3: Abstract and Corresponding Concrete Syntax for Types and Expressions

3.8 Implementation
We have implemented a prototype for Rast in Standard ML (8100 lines of code). �is implemen-
tation contains a lexer and parser (1200 lines), reconstruction engine (900 lines), an arithmetic
solver (1200 lines), a type checker (2500 lines), pre�y printer (400 lines), and an interpreter (200
lines). �e source code is well-documented and available open-source [63].

Syntax Table 3.3 describes the syntax for Rast programs. Each row presents the abstract
and concrete representation of a session type, and its corresponding providing expression. A
program contains a series of mutually recursive type and process declarations and de�nitions.

type v{n}... = A

decl f{n}... : (x1 : A1) ... (xn : An) |- (x : A)

proc x <- f {n}... x1 ... xn = P

Listing 3.1: Top-Level Declarations
�e �rst line is a type de�nition, where v is the type name with index variables n andA is its def-
inition. �e second line is a process declaration, where f is the process name, (x1 : A1) . . . (xn :
An) are the used channels and corresponding types, while the provided channel is x of type
A. Finally, the last line is a process de�nition for the same process f de�ned using the process
expression P . In addition, f can be parameterized by index variables n. We use a hand-wri�en
lexer and shi�-reduce parser to read an input �le and generate the corresponding abstract syn-
tax tree of the program. �e reason to use a hand-wri�en parser instead of a parser generator
is to anticipate the most common syntax errors that programmers make and respond with the
best possible error messages.

Validity Checking Once the program is parsed and its abstract syntax tree is extracted, we
perform a validity check on it. We check that all index re�nements, potentials, and delay op-
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erators are non-negative. We also check that all index expressions are closed with respect to
the the index variables in scope, and similarly for type expressions. To simplify and improve
the e�ciency of the type equality algorithm, we also assign internal names to type subexpres-
sions [59, 64] parameterized over their free type and index variables. �ese internal names are
not visible to the programmer.

Reconstruction and Type Checking �e programmer can use a �ag in the program �le to
indicate whether they are using explicit or implicit syntax. If the syntax is explicit, the recon-
struction engine performs no program transformation. However, if the syntax is implicit, we
use the implicit type system to approximately type-check the program. Once completed, we
use the forcing calculus to insert assert and assume constructs.

�e implementation takes some care to provide constructive and precise error messages,
in particular as session types are likely to be unfamiliar. One technique is staging: �rst check
approximate type correctness, ignoring re�nements and only if that check passes perform re-
construction and strict type checking. Another particularly helpful technique has been type
compression. Whenever the type checker expands a type V [e] with V [n] = B to B[e/n], we
record a reverse mapping back to V [e]. When printing types for error messages this mapping is
consulted, and complex types may be compressed to much simpler forms, greatly aiding read-
ability of error messages. �is is feasible in part because all intermediate subexpressions have
an explicit (internal) de�nition, simplifying the lookup. Finally, our implementation uses a bi-
directional [59, 64] type checking algorithm which reconstructs intermediate types for each
channel. �is helps localize the source of the error message as the program point where recon-
struction fails. We designed the abstract syntax tree to also contain the relevant source code
location information which is utilized while generating the error message.

Arithmetic Solver To determine the validity of arithmetic propositions that is used by our
re�nement layer, we use a straightforward implementation of Cooper’s decision procedure [52]
for Presburger arithmetic. We found a small number of optimizations were necessary, but the
resulting algorithm has been quite e�cient and robust.

1. We eliminate constraints of the form x = e (where x does not occur in e) by substituting
e for x in all other constraints to reduce the total number of variables.

2. We exploit that we are working over natural numbers so all solutions have a natural lower
bound, i.e., 0.

We also extend our solver to handle non-linear constraints. Since non-linear arithmetic is
undecidable, in general, we use a normalizer which collects coe�cients of each term in the
multinomial expression.

1. To check e1 = e2, we normalize e1 − e2 and check that each coe�cient of the normal
form is 0.

2. To check e1 ≥ e2, we normalize e1 − e2 and check that each coe�cient is non-negative.
3. If we know that x ≥ c, we substitute y + c for x in the constraint that we are checking

with the knowledge that the fresh y ≥ 0.
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4. We try to �nd a quick counterexample to validity by plugging in 0 and 1 for the index
variables.

If the constraint does not fall in the above two categories, we print the constraint and trust
that it holds. A user can then view these constraints manually and con�rm their validity. At
present, all of our examples pass without having to trust unsolvable constraints with our set of
heuristics beyond Presburger arithmetic.

Interpreter �e current version of the interpreter pursues a sequential schedule following a
prior proposal [136]. We only execute programs that have no free type or index variables and
only one externally visible channel, namely the one provided. When the computation �nishes,
the messages that were asynchronously sent along this distinguished channel are shown, while
running processes waiting for input are displayed simply as a dash ’-’.

�e interpreter is surprisingly fast. For example, using a linear prime sieve to compute the
status (prime or composite) or all number in the range [2, 257] takes 27.172 milliseconds using
MLton during our experiments (see machine speci�cations below).

3.9 Further Examples

We present several di�erent kinds of examples from varying domains illustrating di�erent fea-
tures of the type system and algorithms. Table 3.4 describes the results: iLOC describes the
lines of source code in implicit syntax, eLOC describes the lines of code a�er reconstruction
(which inserts implicit constructs), #Defs shows the number of process de�nitions, R (ms) and
T (ms) show the reconstruction and type-checking time in milliseconds respectively. Note that
reconstruction is faster than type-checking since reconstruction does not involve solving any
arithmetic propositions. �e experiments were run on an Intel Core i5 2.7 GHz processor with
16 GB 1867 MHz DDR3 memory.

1. arithmetic: natural numbers in unary and binary representation indexed by their value
and processes implementing standard arithmetic operations.

2. integers: an integer counter represented using two indices x and y with value x− y.
3. linlam: expressions in the linear λ-calculus indexed by their size.
4. list: lists indexed by their size, and some standard operations such as append, reverse,

map, fold, etc. Also provides and implementation of stacks and queues using lists.
5. primes: the sieve of Eratosthenes to classify numbers as prime or composite.
6. segments: the type seg[n] = ∀k.list[k] ( list[n + k] representing partial lists with a

constant-work append operation.
7. ternary: natural numbers and integers represented in balanced ternary form with digits

0, 1,−1, indexed by their value, and a few standard operations on them. �is example is
noteworthy since it is the only one stressing the arithmetic decision procedure.

8. theorems: processes representing valid circular [66] proofs of simple theorems such as
n(k + 1) = nk + n, n+ 0 = n, n ∗ 0 = 0, etc.
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Module iLOC eLOC #Defs R (ms) T (ms)
arithmetic 395 619 29 0.959 5.732
integers 90 125 8 0.488 0.659
linlam 88 112 10 0.549 1.072
list 341 642 37 3.164 4.637
primes 118 164 11 0.289 4.580
segments 48 76 8 0.183 0.225
ternary 270 406 20 0.947 140.765
theorems 79 156 13 0.182 1.095
tries 243 520 13 2.122 6.408
Total 1672 2820 149 8.883 165.173

Table 3.4: Case Studies

9. tries: a trie data structure to store multisets of binary numbers, with constant amortized
work insertion and deletion veri�ed with ergometric types.

We highlight interesting examples from some case studies showcasing the invariants that can
be proved using arithmetic re�nements and nested polymorphism.

Linear λ-Calculus We implemented the linear λ-calculus with evaluation (weak head nor-
malization) of terms. We use higher-order abstract syntax, representing linear abstraction in
the object language by a process receiving a message corresponding to its argument.
type exp = +{ lam : exp -o exp ,

app : exp * exp }

We would like evaluation to return a value (a λ-abstraction), so we take advantage of the struc-
tural nature of types (allowing us to reuse the label lam) to de�ne the value type.
type val = +{ lam : exp -o exp }

Rast can infer that val is a subtype of exp. We can derive constructors apply for expressions and
lambda for values (we do not need the corresponding constructor for expressions).
decl apply : (e1 : exp) (e2 : exp) |- (e : exp)

proc e <- apply e1 e2 =

e.app ; send e e1 ; e <-> e2

decl lambda : (f : exp -o exp) |- (v : val)

proc v <- lambda f = v.lam ; v <-> f

As a simple example, we follow the representation of a combinator that swaps the arguments
to a function.
(* swap = \f. \x. \y. (f y) x *)

decl swap : . |- (e : exp)

proc e <- swap =

e.lam ; f <- recv e ;
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e.lam ; x <- recv e ;

e.lam ; y <- recv e ;

fy <- apply f y ;

e <- apply fy x

Evaluation is now the following very simple process.
decl eval : (e : exp) |- (v : val)

proc v <- eval e =

case e ( lam => v <- lambda e

| app => e1 <- recv e ; % e = e2

v1 <- eval e1 ;

case v1 ( lam => send v1 e ;

v <- eval v1 ) )

If e sends a lam label, we just rebuild the expression as a value. If e sends an app label then
e represents a linear application e1 e2 and the continuation has type exp⊗ exp. �is means we
receive a channel representing e1 and the continuation (still called e) behaves like e2. We note
this with a comment in the source. We then evaluate e1 which exposes a λ-expression along
the channel v1. We send e along v1, carrying out the reduction via communication. �e result
of this (still called v1) is evaluated to yield the �nal value v. �is program is available in the
repository at examples/linlam.rast.

We would now like to prove that the value of a linear λ-expression is smaller than or equal
to the original expression. At the same time we would like to rule out a class of so-called exotic
terms in the representation, which are possible due to the presence of recursion in the meta-
language. We achieve this by indexing the types exp and val with their size. For an application,
this is easy: the size is one more than the sum of the sizes of the subterms.
type exp{n} = +{ lam : ...

app : ?n1. ?n2. ?{n=n1+n2+1}. exp{n1} * exp{n2}}

�e size n2 + 1 of a λ-expression is one more than the size n2 of its body, but what is that in
our higher-order representation? �e body is a linear function takes an expression of size n1

and then behaves like an expression of size n1 +n2. Solving for n2 then gives use the following
type de�nitions and types for the constructor processes.
type exp{n} = +{lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1},

app : ?n1. ?n2. ?{n=n1+n2+1}. exp{n1} * exp{n2}}

type val{n} = +{ lam : ?{n > 0}. !n1.exp{n1} -o exp{n1+n-1} }

decl apply{n1}{n2} :

(e1 : exp{n1}) (e2 : exp{n2}) |- (e : exp{n1+n2+1})

decl lambda{n2} :

(f : !n1. exp{n1} -o exp{n1+n2}) |- (v : val{n2+1})

�e universal quanti�cation over n1 in the type lam is important, because a linear λ-expression
may be applied to an argument of any size. We also cannot predict the size of the result of
evaluation, so we have to use existential quanti�cation: �e value of an expression of size n
will have size k for some k ≤ n.
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decl eval{n} : (e : exp{n}) |- (v : ?k. ?{k <= n}. val{k})

Because witnesses for quanti�ers are not reconstructed, the evaluation process has to send and
receive suitable sizes.

proc v <- eval{n} e =

case e ( lam => send v {n} ;

v <- lambda{n-1} e

| app => {n1} <- recv e ;

{n2} <- recv e ;

e1 <- recv e ;

v1 <- eval{n1} e1 ;

{k2} <- recv v1 ;

case v1 ( lam => send v1 {n2} ;

send v1 e ;

v2 <- eval{n2+k2 -1} v1 ;

{l} <- recv v2 ;

send v {l} ; v <-> v2))

Type-checking now veri�es that if evaluation terminates, the resulting value is smaller than
the expression (or of equal size if the expression is already a value). �e repository contains the
implementation in the �le examples/linlam-size.rast.

Trie Data Structure We now implement multisets of natural numbers (in binary form). One
of the key questions is how to maintain linearity in the design of the data structure and interface.
For example, should we be able to delete an element from the trie, not knowing a priori if it
is even in the trie? To avoid exceedingly complex types to account for these situations, the
process maintaining a trie o�ers an interface with two operations: insert (label ins) and delete
(label del). We index the type trie{n} with the number of elements in the trie, so inserting
an element always increases n by 1. If the element is already present, we just add 1 to its
multiplicity. Deleting an element actually removes all copies of it and returns its multiplicity
m. If the element is not in the trie, we just return a multiplicity of m = 0. In either case, the
trie contains n−m elements a�erwards.

type trie{n} =

&{ins : !k. bin{k} -o trie{n+1},

del : !k. bin{k} -o ?m. ?{m <= n}. bin{m} * trie{n-m}}

�is type requires universal quanti�cation over k, (wri�en !k) which is the value of the number
inserted into or deleted from the trie on each interaction (which is arbitrary).

�e basic idea of the implementation is that each bit in the number x : bin{k} addresses
a subtrie: if it is b0 we descend into the le� subtrie, if it is b1 we descent into the right subtrie.
If it is e we have found (or constructed) the node corresponding to x and we either increase
its multiplicity (for insert), or respond with its multiplicity and set the new multiplicity to zero
(for delete). We have two forms of processes: a leaf with zero elements and an interior node
with n0 +m+ n1 elements (where n0 and n1 and the number of elements in the le� and right
subtries, and m is the multiplicity of the number corresponding to this node in the trie).
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decl leaf : . |- (t : trie {0})

decl node{n0}{m}{n1} :

(l : trie{n0})(c : ctr{m})(r : trie{n1}) |- (t : trie{n0+m+n1})

�e code is somewhat repetitive, so we only show the code for inserting an element into an
interior node.

proc t <- node{n0}{m}{n1} l c r =

case t (

ins => {k} <- recv t ;

x <- recv t ;

case x ( b0 => {k’} <- recv x ;

l.ins ; send l {k’} ; send l x ;

t <- node{n0+1}{m}{n1} l c r

| b1 => {k’} <- recv x ;

r.ins ; send r {k’} ; send r x ;

t <- node{n0}{m}{n1+1} l c r

| e => wait x ;

c.inc ;

t <- node{n0}{m+1}{n1} l c r )

| del => ...)

What does type-checking verify in this case? It shows that the number of elements in the trie
increases and decreases as expected for each insert and delete operation. On the other hand, it
does not verify that the correct multiplicities are incremented or decremented, which is beyond
the reach of the current type system. �e source code is at examples/trie-work.rast.

3.10 Related Work

�e literature on session types is by now vast, so we focus our review of related work on binary
session types (rather than multiparty session types) with implementations (rather than theoret-
ical foundations). Among them, we can distinguish those that o�er a library or embedding to
a pre-existing language, and those that may be considered stand-alone language designs.

Libraries �ere are a number of libraries for session types. Such libraries tend to have a very
di�erent �avor from Rast because they focus on practical usability in the context of a general-
purpose language. As such, the challenge usually is how to encode session types so programs
can be statically checked against them and how to achieve the expected dynamic behavior.
Among them we �nd libraries for Haskell [112, 125], Scala [143], OCaml [126], and Rust [99].
Noteworthy is the embedding of session types in ATS [163] because, unlike the others, ATS
supports arithmetic indexing similar to Rast. �e most recent library for Rust [49] is perhaps
the closest to Rast in that it extends the exact basic system of session types from Chapter 2 with
shared types [25]. While some of these libraries permit limited polymorphism, none of them
support ergometric or temporal types.
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Languages Designing complete languages like Rast frees the researcher from the limitations
and idiosyncrasies of the host language as they explore the design space. A relatively early
e�ort was the object-oriented language MOOL [157] which distinguishes linear and nonlinear
channels.

A di�erent style of language is SePi [24, 72] based on the π-calculus. It supports linear
re�nements in terms of uninterpreted propositions (which may reference integers) in addition
to assert and assume primitives on them. �ey are not intended to capture internal properties
of data structures of processes; instead, they allow the programmer to express some security
properties.

�e CO2 middleware language [30, 31] supports binary timed session types. �e notion of
time here is external. As such, it does not measure work or span based on a cost model like
Rast, but speci�es interaction time windows for processes that can be enforced dynamically via
monitors.

Concurrent C0 [160] is an implementation of linear and shared session types as an extension
of C0, a small type-safe and memory-safe subset of C. It integrates the basic session types from
Chapter 2 with shared session types [25] in the context of an imperative language.

Links [71, 113, 114] is a language aimed at developing web applications. While based on a
di�erent foundations, it is related to SILL [81, 153] in that both integrate traditional functional
types with linear session types. As such, they can express many (nonlinear) programs that Rast
cannot, but they support neither arithmetic re�nements nor ergometric or temporal types.

Context-free session types [19, 151] generalize ordinary session types with sequential com-
position as well as permi�ing some polymorphism. �e linear sublanguage of context-free
session types can be modeled in Rast with nested polymorphism [64].

3.11 Conclusion
�is chapter describes the Rast programming language. In particular, we focused on the con-
crete syntax, type checking and equality, and the re�nement layer [58, 59]. �e re�nements rely
on an arithmetic solver based on Cooper’s algorithm [52]. �e interpreter uses the shared mem-
ory semantics introduced in recent work [136]. We concluded with several examples demon-
strating the e�cacy of the re�ned type system in expressing and verifying properties about
data structure sizes and values. All our examples have been veri�ed with our system, and are
available in an open-source repository [63].

In the future, we plan to address some limitations of the Rast language. One goal of Rast
was to explore the boundaries of purely linear programming with general recursion. O�en,
this imposes a certain programming discipline and can be inconvenient if we need to drop or
duplicate channels. Recent work on adjoint logic [135] uniformly integrates di�erent logical
layers into a uni�ed language by assigning modes to communication. We plan to utilize this
adjoint formulation to support shared [25] and unrestricted channels. Prior work on SILL [81]
has demonstrated such an integration is helpful in general-purpose programming. With respect
to re�nements, we intend to pursue richer constraint domains such as non-linear arithmetic,
particularly SMT.
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Chapter 4

Work Analysis

Chapter 3 introduces re�nement session types and describes its metatheory and implementa-
tion. �is chapter crucially relies on re�ned types to express the work bounds of concurrent
programs. �e chapter introduces the novel type system and cost semantics, proves its sound-
ness, and evaluates the system on a series of standard benchmarks.

4.1 Introduction
�is chapter studies the foundations of worst-case resource analysis for session-typed pro-
grams. �e key idea here is to rely on resource-aware session types to describe the resource
bounds for inter-process communication. We extend session types to not only exchange mes-
sages, but also potential along a channel. �e potential (in the sense of classical amortized
analysis) may be spent by sending other messages as part of the network of interacting pro-
cesses, or maintained locally for future interactions. Resource analysis is static, using the type
system, and the runtime behavior of programs is not a�ected.

Here, I mainly focus on bounds on the total work performed by a system, counting the num-
ber of messages that are exchanged. While this alone does not yet account for the concurrent
nature of message-passing programs, it constitutes a signi�cant and necessary �rst step. �e
derived bounds are also useful in their own right. For example, the information can be used in
scheduling decisions, to derive the number of messages that are sent along a speci�c channel,
or to statically decide whether we should spawn a new thread of control or execute sequentially
when possible. Additionally, bounds on the work of a process also serve as input to a Brent-
style theorem [39] that relates the complexity of the execution of a program on a k-processor
machine to the program’s work (this chapter) and span (next chapter).

�e analysis is based on a linear type system that extends standard session types with two
new type constructors, one to receive potential (/r) and one to send potential (.r). �e su-
perscript r declares the amount of potential that must be transferred (conceptually!). Since the
interface to a process is characterized entirely by the resource-aware session types of the chan-
nels it interacts with, this design provides a compositional resource speci�cation. For closed
programs (which evolve into a closed network of interacting processes), the bound becomes a
single constant.
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A conceptual challenge is to express symbolic bounds in a se�ing without static data struc-
tures and intrinsic sizes. �e innovation is that resource-aware session types describe bounds
as functions of interactions (messages sent) on a channel. A major technical challenge is to
account for the global number of messages sent with local derivation rules: operationally, local
message counts are forwarded to a parent process when a sub-process terminates. As a result,
local message counts are incremented by sub-processes in a non-local fashion. My solution is
that messages and processes carry potential to amortize the cost of a terminating sub-process
proactively as a side-e�ect of the communication.

�e main contributions are as follows. I present the �rst session type system for deriving
parametric bounds on the resource usage of message-passing processes. I also prove the non-
trivial soundness of the type system with respect to an operational cost semantics that tracks the
total number of messages exchanged in a network of communicating processes. I also demon-
strate the e�ectiveness of the technique by deriving tight bounds for some standard examples
of amortized analysis from the literature on session types. I also show how resource-aware
session types can be used to specify and compare the performance characteristics of di�erent
implementations of the same protocol. �e analysis is currently manual, with automation le�
for future work.

4.2 Overview
�is section will motivate and informally introduce resource-aware session types and show
how they can be used to analyze the resource usage of message-passing processes. I describe
an implementation of a counter and use resource-aware session types to analyze its resource
usage. Like in the rest of this chapter, the resource we are interested in is the total number of
messages sent along all channels in the system.

As a �rst simple example, I consider natural numbers in binary form. A process providing
a natural number sends a stream of bits starting with the least signi�cant bit. �ese bits are
represented by messages zero and one, eventually terminated by $.

bits = ⊕{zero : bits, one : bits, $ : 1}

For instance, the number 6 = (110)2 would be represented by the sequence of messages
zero, one, one, $, close. A client of a channel c : bits has to branch on whether it receives zero,
one, or $. As a second example, I describe the interface to a counter. A client can repeatedly
send inc messages to a counter, until they want to read its value and send val. At that point the
counter will send a stream of bits representing its value as prescribed by the type bits.

ctr = N{inc : ctr, val : bits}

A well-known example of amortized analysis counts the number of bits that must be �ipped
to increment a counter. It turns out the amortized cost per increment is 2, so that n increments
require at most 2n bits to be �ipped. �is is observed by introducing a potential of 1 for every
bit that is 1 and using this potential to pay for the expensive case in which an increment triggers
many �ips. When the lowest bit is zero, it is �ipped to one (costing 1) and a remaining potential
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e b1 b0 b1
inc

s1 s2 s3 s4

e b1 b0 b0
s1 s2 s3 s4

e b1 b1 b0
s1 s2 s3 s4

inc

Figure 4.1: Binary counter system representing 5 = (101)2 with messages triggered when inc
message is received on s4.

of 1 is also stored with this bit. When the lowest bit is one, the stored potential is used to �ip
the bit back to zero (with no stored potential) and the remaining potential of 2 is passed along
for incrementing the higher bits.

A binary counter is modeled as a chain of processes where each process represents a single
bit (process b0 or b1) with a �nal process e at the end. Each of the processes in the chain provides
a channel of the ctr type, and each (except the last) also uses a channel of this type representing
the higher bits. For example, in the �rst chain in Figure 4.1, the process b0 o�ers along channel
s3 (indicated by • between b0 and s3) and uses channel s2. �is is formally wri�en as

· ` e :: (s1 : ctr) s1 : ctr ` b1 :: (s2 : ctr)
s2 : ctr ` b0 :: (s3 : ctr) s3 : ctr ` b1 :: (s4 : ctr)

�e de�nitions of e, b0, and b1 can be found in Figures 4.3 and 4.4. �e only channel visible to
an outside client (not shown) is s4. Figure 4.1 shows the messages triggered if an increment
message is received along s4.

Expressing resource bounds. My basic approach is that messages carry potential and pro-
cesses store potential. �is means the sender has to pay not just 1 unit for sending the message,
but whatever additional units to amortize future costs. In the amortized analysis of the counter,
each bit �ip corresponds exactly to an inc message, because that is what triggers a bit to be
�ipped. My cost model focuses on messages as prescribed by the session type and does not
count other operations, such as spawning a new process or terminating a process. �is choice
is not essential to the approach, but convenient here.

To capture the informal analysis we need to express in the type that we have to send 1 unit
of potential right a�er the label inc. We do this using the / operator indicating the required
potential with the superscript, postponing the discussion of val.

ctr = N{inc : /1ctr, val : /?bits}
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When types are assigned to processes, we use the more expressive resource-aware session
types. We indicate the potential stored in a particular process as a superscript on the turn-
stile.

t : ctr `0 b0 :: (s : ctr) (4.1)
t : ctr `1 b1 :: (s : ctr) (4.2)

· `0 e :: (s : ctr) (4.3)

�ese typing constraints can be veri�ed using the typing rules of the system, using the de�ni-
tions of b0, b1, and e. Informally, the reason is as follows:
b0: A�er b0 receives inc it receives 1 unit of potential. It continues as b1 (which requires no com-

munication) which stores this 1 unit (as prescribed from the type of b1 in Equation 4.2).
b1: A�er b1 receives inc it receives 1 unit of potential which, when combined with the stored

one, makes 2 units. It sends an inc message which consumes 1 unit, followed by sending
a unit potential, thereby consuming the 2 units. It has no remaining potential, which is
su�cient because it transitions to b0 which stores no potential (inferred from the type of
b0 in Equation 4.1).

e: A�er e receives inc it receives 1 unit of potential. It spawns a new process e and continues
as b1. Spawning a process is free, and e requires no potential, so it can store the potential
it received with b1 as required.

How do we handle the type annotation val : /?bits of the label val? Recall that bits = ⊕{zero :
bits, one : bits, $ : 1}. In our implementation, upon receiving a val message, a b0 or b1 process
will �rst respond with zero or one respectively. It then sends val along the channel it uses (rep-
resenting the higher bits of the number) and terminates by forwarding further communication
to the higher bits in the chain. Figure 4.2 demonstrates the messages triggered when val mes-
sage is received along s4. �e e process will just send $ and close, indicating the empty stream
of bits.

�ere will be enough potential to carry out the required send operations if each process (b0,
b1, and e) carries an additional 2 units of potential. �ese could be imparted with the inc and
val messages by sending 2 more units with inc and 2 units with val. �at is, the following type
is valid:

bits = ⊕{zero : bits, one : bits, $ : 1}
ctr = N{inc : /3ctr, val : /2bits}

However, this type is a gross over-approximation! �e processes of a counter of value n, would
carry 2n additional potential while only 2 dlog(n+ 1)e + 2 are needed. To obtain this more
precise bound, we need to de�ne a more re�ned type.

A more precise analysis. �is requires that, in the type, either the number of bits in the
representation of a number or its value can be referred to. �is form of internal measure is
needed only for type-checking purposes, not at runtime. It is also not intrinsically tied to a
property of a representation, the way the length of a list in a functional language is tied to its
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e b1 b0 b1
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s1 s2 s3 s4

e b1 b0 b1
s1 s2 s3 s4

e b1 b0
s1 s2 s3 s4

val

one

=

Figure 4.2: Binary counter system representing 5 = (101)2 with messages triggered when val
message is received on s4.

memory requirements. We have already set the stage for indexing types using re�nements in
Chapter 3. We now employ re�nement type ctr[n] to denote a counter of value n. Following
the reasoning above, we obtain the following type:

bits = ⊕{zero : bits, one : bits, $ : 1}
ctr[n] = N{inc : /1ctr[n+ 1], val : /2dlog(n+1)e+2bits}

To check the types of our implementation, we need to revisit and re�ne the typing of the b0, b1
and e processes.

b0[n] :: (t : ctr[n]) `0 (s : ctr[2n])

b1[n] :: (t : ctr[n]) `1 (s : ctr[2n+ 1])

e :: · `0 (s : ctr[0])

�e type system veri�es these types against the implementation of b0, b1, and e (see Figures 4.3
and 4.4, potential annotations marked in red). I will brie�y explain the type derivation of b0,
as shown in Figure 4.3 a�er the %. A�er receiving the inc message, the b0 process receives a
unit potential on s using the /1 type constructor. �is constructor is accompanied by the get
construct (line 4) which receives the unit potential which is stored in the process, as indicated
by the number on the turnstile. �e type on the right exactly matches b1’s type in the signature,
thereby making the call to b1 valid. Similarly, b0 receives 2 dlog(2n+ 1)e+ 2 units of potential
a�er receiving the val.

�e cost model of interest in this chapter counts the total number of messages exchanged
in the system. �is is realized formally by consuming a unit of potential before every message
sent. �e corresponding construct is work {1}, as indicated in line 7. �is consumes a unit of
potential, as indicated by the type on the right. A unit potential is similarly consumed on line 9
before sending the val message on t (line 10). �e dual to the get construct is pay. �is is used to
send potential on a channel, as indicated on line 11, consuming potential stored in the process.
Finally, the b0 process remains with no potential and can successfully terminate by forwarding.
Note that a process is not allowed to terminate while it stores potential as that would violate
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1: b0[n] :: (t : ctr[n]) `0 (s : ctr[2n])
2: s← b0[n] t =
3: case s

4: (inc⇒ get s {1} ; % (t : ctr[n]) `1 s : ctr[2n+ 1]
5: s← b1[n] t

6: | val⇒get s {2 dlog(2n+ 1)e+ 2} ; % (t : ctr[n]) `2dlog(2n+1)e+2 s : bits

7: work {1} ; % (t : ctr[n]) `2dlog(2n+1)e+2−1 s : bits

8: s.zero ; % (t : ctr[n]) `2dlog(2n+1)e+1 s : bits

9: work {1} ; % (t : ctr[n]) `2dlog(2n+1)e+1−1 s : bits

10: t.val ; % (t : /2dlog(n+1)e+2bits) `2dlog(2n+1)e s : bits

11: pay t {2 dlog(n+ 1)e+ 2} ; % (t : bits) `2dlog(2n+1)e−2dlog(n+1)e−2 s : bits

12: s↔ t) % (t : bits) `0 s : bits

Figure 4.3: Implementation for b0 process with its type derivation.

the linearity constraint on the potential. �e derivations for b1 and e are similar and described
in Figure 4.4.

�e typing rules reduce the well-typedness of these processes to arithmetic inequalities
which can be solved by hand, for example, using that log(2n) = log(n) + 1. �e intrinsic
measure n and the precise potential annotations are not automatically derived, but come from
our insight about the nature of the algorithms.

�e typing derivation provides a proof certi�cate on the resource bound for a process. For
closed processes typed as

· `p Q :: (c : 1)

the number p provides a worst case bound on the number of messages sent during computation
of Q, which always ends with the process sending close along c, indicating termination.

4.3 Operational Cost Semantics
�e cost semantics for standard session types is augmented to track the total work performed
by the system. �e work is tracked by the local counter w in proc(c, w, P ) and msg(c, w,M)
propositions. For process P , w maintains the total work performed by P so far. When a process
executes the work {c} construct, its counter w is incremented by c. When a process terminates,
the respective predicate is removed from the con�guration, but its work done is preserved. A
process can terminate either by sending a close message, or by forwarding. In either case, the
process’ work is conveniently preserved in the msg predicate to pass it on to the client process.

�e cost semantics is parametric in the cost model. �at is, the programmer can specify the
resource they intend to measure. �is cost model is then realized by inserting a work construct
before the respective expressions. For instance, inserting a work {1} before each send will count
the total number of messages exchanged.

�e semantics is de�ned in Figure 4.5. Each rule consumes the propositions to the le� of
7→ and produces the proposition to its right. �e rules cutC and defC spawn a new process
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13: b1[n] :: (t : ctr[n]) `1 (s : ctr[2n+ 1])
14: s← b1[n] t =
15: case s

16: (inc⇒ get s {1} ; % (t : ctr[n]) `2 s : ctr[2n+ 2]

17: work {1} ; % (t : ctr[n]) `2−1 s : ctr[2n+ 2]

18: t.inc ; % (t : /1ctr[n+ 1]) `1 s : ctr[2n+ 2]

19: pay t {1} ; % (t : ctr[n+ 1]) `1−1 s : ctr[2n+ 2]
20: s← b0[n+ 1] t

21: | val⇒get s {2 dlog(2n+ 2)e+ 2} ; % (t : ctr[n]) `2dlog(2n+2)e+2 s : bits

22: work {1} ; % (t : ctr[n]) `2dlog(2n+2)e+2−1 s : bits

23: s.one ; % (t : ctr[n]) `2dlog(2n+2)e+1 s : bits

24: work {1} ; % (t : ctr[n]) `2dlog(2n+2)e+1−1 s : bits

25: t.val ; % (t : /2dlog(n+1)e+2bits) `2dlog(2n+2)e s : bits

26: pay t {2 dlog(n+ 1)e+ 2} ; % (t : bits) `2dlog(2n+2)e−2dlog(n+1)e−2 s : bits

27: s↔ t) % (t : bits) `0 s : bits

28: e :: · `0 (s : ctr[0])
29: s← e =
30: case s

31: (inc⇒ get s {1} ; % · `1 s : ctr[0 + 1]

32: t← e ; % (t : ctr[0]) `1 s : ctr[1]
33: s← b1[0] t

34: | val⇒get s {2 dlog(0 + 1)e+ 2} ; % · `2dlog(0+1)e+2 s : bits

35: work {1} ; % · `2−1 s : bits

36: s.$ ; % · `1 s : 1

37: work {1} ; % · `1−1 s : 1

38: close s) % · `0 s : 1

Figure 4.4: Implementations for b1 and e processes with their type derivations.

with 0 work (as it has not done any work so far), while Qc continues with the same amount of
work. A forwarding process transfers its work to a corresponding message and terminates a�er
identifying the channels, as described in rules id+C and id−C . All other communication rules
create a message with work 0, which is then later received by its recipient, thereby transfer-
ring the work done by the message (which it gathered by possibly interacting with forwarding
processes). �e standard semantics rules can be obtained by simply deleting the work counters.

Work counter can be incremented only by executing the work construct.

(work) proc(c, w,work {w′} ; P ) 7→ proc(c, w + w′, P )

Finally, the two type constructors . and its dual / are used to exchange potential. �e potential
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(cutC) proc(d, w, x← Px ; Qx) 7→ proc(c, 0, [c/x]Px), proc(d, w, [c/x]Qx) (c fresh)
(defC) proc(d, w, x← f ← e ; Q) 7→

proc(c, 0, [c/x, e/∆]P ), proc(d, w, [c/x]Q) (c fresh)

(id+C) msg(d, w,M), proc(c, w′, c↔ d) 7→ msg(c, w + w′, [c/d]M)
(id−C) proc(c, w, c↔ d),msg(e, w′,M(c)) 7→ msg(e, w + w′, [d/c]M(c))

(⊕S) proc(c, w, c.k ; P ) 7→ proc(c′, w, [c′/c]P ),msg(c, 0, c.k ; c↔ c′) (c′ fresh)
(⊕C) msg(c, w, c.k ; c↔ c′), proc(d, w′, case c (`⇒ Q`)`∈L) 7→

proc(d, w + w′, [c′/c]Qk)

(NS) proc(d, w, c.k ; Q) 7→ msg(c′, 0, c.k ; c′ ↔ c), proc(d, w, [c′/c]Q) (c′ fresh)
(NC) proc(c, w, case c (`⇒ Q`)`∈L),msg(c′, w′, c.k ; c′ ↔ c) 7→

proc(c′, w + w′, [c′/c]Qk)

(⊗S) proc(c, w, send c e ; P ) 7→
proc(c′, w, [c′/c]P ),msg(c, 0, send c e ; c↔ c′) (c′ fresh)

(⊗C) msg(c, w, send c e ; c↔ c′), proc(d, w′, x← recv c ; Q) 7→
proc(d, w + w′, [c′, e/c, x]Q)

((S) proc(d, w, send c e ; Q) 7→
msg(c′, 0, send c e ; c′ ↔ c), proc(d, w, [c′/c]Q) (c′ fresh)

((C) proc(c, w, x← recv c),msg(c′, w′, send c e ; c′ ↔ c) 7→
proc(c′, w + w′, [c′, d/c, x]P )

(1S) proc(c, w, close c) 7→ msg(c, w, close c)
(1C) msg(c, w, close c), proc(d, w′,wait c ; Q) 7→ proc(d, w + w′, Q)

Figure 4.5: Cost semantics tracking total work for programs

is only a theoretical construct, and potentials have no role to play at runtime.

(.S) proc(c, w, pay c {r} ; P ) 7→
proc(c′, w, [c′/c]P ),msg(c, 0, pay c {r} ; c↔ c′) (c′ fresh)

(.C) msg(c, w, pay c {r} ; c↔ c′), proc(d, w′, get c {r} ; Q) 7→
proc(d, w + w′, [c′/c]Q)

(/S) proc(d, w, pay c {r} ; Q) 7→
msg(c′, 0, pay c {r} ; c′ ↔ c), proc(d, w, [c′/c]Q) (c′ fresh)

(/C) proc(c, w, get c {r}),msg(c′, w′, pay c {r} ; c′ ↔ c) 7→
proc(c′, w + w′, [c′/c]P )

�e rules of the cost semantics are successively applied to a con�guration until the con�g-
uration becomes empty or the con�guration is stuck and none of the rules can be applied. At
any point in this local stepping, the total work performed by the system can be obtained by
summing the local counters w for each predicate in the con�guration.
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V ; C � q = 0

V ; C ; y : A `q x↔ y :: (x : A)
id

V ; C � r = p+ q ∆ `p f [n] = P :: (x : A) ∈ Σ
∆1 =α ∆[e/n] V ; C ; ∆2, (x : A) `q Qx :: (z : C)

V ; C ; ∆1,∆2 `r (x← f y = Qx) :: (z : C)
spawn

Figure 4.6: Typing rules for resource-aware session types for id, spawn

4.4 Type System
�e typing judgment has the form

V ; C ; ∆ `
q

Σ P :: (x : A)

Intuitively, the judgment describes a process in state P using the context ∆ and signature Σ
and providing service along channel x of type A. In other words, P is the provider for channel
x : A, and a client for all the channels in ∆. �e resource annotation q is a natural number and
de�nes the potential stored in the process P .

Σ de�nes the signature containing type and process de�nitions. It is de�ned as a �nite set
of type de�nitions V = A and process de�nitions ∆ `q f [n] = P :: (x : A). �e equation
V = A is used to de�ne the type variable V as type expression A. We treat such de�nitions
equirecursively. �e process de�nition ∆ `q f [n] = P :: (x : A) de�nes a (possibly recursive)
process named f parameterized by index variables n implemented by P providing along chan-
nel x : A and using the channels ∆ as a client, storing potential q. Because the signature is
�xed, it is elided from the presentation of the rules.

Figures 4.7, 4.6 describe the usual typing rules for our system. �e interesting rules here
are spawn and id. �e spawn splits the potential r = p + q, and provides potential p to the
spawned process, and q to the continuation. A forwarding process x ↔ y must be typed with
no potential as it is about to terminate. �e rest of the rules are standard and I am omi�ing
their discussion. Deleting the potential annotation from the process typing judgment recovers
the typing rules for standard session types. Messages are typed exactly as processes.

In addition, the language has explicit rules for consuming and transfer of potential. Exe-
cuting the work {w} construct consumes w (non-negative) units from the potential stored in a
process. �us, a process must have at least w units of potential to execute this construct. �is
is expressed in the rule with the annotation q + w in the conclusion.

V ; C ; ∆ `q P :: (x : A)

V ; C ; ∆ `q+w work {w} ; P :: (x : A)
work

Similarly, executing a pay x {r} consumes r units from the process potential, while getx {r}
provides r units to the process potential. �e main innovation here is the introduction of the
two dual type operators, . and /. �e . operator expresses that the provider must pay potential
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V ; C ; ∆ `q P :: (x : Ak) (k ∈ L)

V ; C ; ∆ `q (x.k ; P ) :: (x : ⊕{` : A`}`∈L)
⊕R

V ; C ; ∆, (x : A`) `q Q` :: (z : C) (∀` ∈ L)

V ; C ; ∆, (x : ⊕{` : A`}`∈L) `q case x (`⇒ Q`)`∈L :: (z : C)
⊕L

V ; C ; ∆ `q P` :: (x : A`) (∀` ∈ L)

V ; C ; ∆ `q case x (`⇒ P`)`∈L :: (x : N{` : A`}`∈L)
NR

V ; C ; ∆, (x : Ak) `q Q :: (z : C)

V ; C ; ∆, (x : N{` : A`}`∈L) `q x.k ; Q :: (z : C)
NL

V ; C ; ∆, (y : A) `q Py :: (x : B)

V ; C ; ∆ `q (y ← recv x ; Py) :: (x : A( B)
( R

V ; C ; ∆, (x : B) `q Q :: (z : C)

V ; C ; ∆, (w : A), (x : A( B) `q (send x w ; Q) :: (z : C)
( L

V ; C ; ∆ `q P :: (x : B)

V ; C ; ∆, (w : A) `q send x w ; P :: (x : A⊗B)
⊗R

V ; C ; ∆, (y : A), (x : B) `q Qy :: (z : C)

V ; C ; ∆, (x : A⊗B) `q y ← recv x ; Qy :: (z : C)
⊗L

V ; C � q = 0

V ; C ; · `q close x :: (x : 1)
1R

V ; C ; ∆ `q Q :: (z : C)

V ; C ; ∆, (x : 1) `q wait x ; Q :: (z : C)
1L

Figure 4.7: Typing rules for structural resource-aware session types

which is received by its client. Dually, the / operator requires that the provider receives poten-
tial paid by the client. �e type guarantees that the potential paid by the sender equals what is
gained by the recipient, thereby preserving the total potential of a con�guration.

V ; C � q ≥ r V ; C ; ∆ `q−r P :: (x : A)

V ; C ; ∆ `q pay x {r} ; P :: (x : .rA)
.R

V ; C ; ∆, (x : A) `q+r Q :: (z : C)

V ; C ; ∆, (x : .rA) `q getx {r} ; Q :: (z : C)
.L

V ; C ; ∆ `q+r P :: (x : A)

V ; C ; ∆ `q getx {r} ; P :: (x : /rA)
/R

V ; C � q ≥ r V ; C ; ∆, (x : A) `q−r Q :: (z : C)

V ; C ; ∆, (x : /rA) `q pay x {r} ; Q :: (z : C)
/L
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∆
0

� (·) :: ∆

empty ∆
E

� S :: ∆′ ∆′
E′

� S ′ :: ∆′′

∆
E+E′

� (S S ′) :: ∆′′
compose

· ; > ; ∆1 `q P :: (x : A)

∆,∆1

q+w

� (proc(x,w, P )) :: (∆, (x : A))

proc

· ; > ; ∆1 `q M :: (x : A)

∆,∆1

q+w

� (msg(x,w,M)) :: (∆, (x : A))

msg

Figure 4.8: Typing rules for a con�guration

4.5 Soundness
�is section demonstrates the soundness of the resource-aware type system with respect to the
operational cost semantics. So far, we have analyzed and type-checked processes in isolation.
However, as our cost semantics indicates, processes always exist in a con�guration interacting
with other processes. �us, we need to extend the typing rules to arbitrary con�gurations.

Con�guration Typing At runtime, a program evolves into a set of processes interacting via
typed channels. Such a con�guration is typed w.r.t. a well-formed signature. A signature Σ is
well formed if (a) every type de�nition V = A is contractive, and (b) every process de�nition
∆ `q f [n] = P :: (x : A) in Σ is well typed according to the process typing judgment, i.e.
n ; > ; ∆ `q P :: (x : A).

I use the following judgment to type a con�guration.

∆1

E

�Σ S :: ∆2

It states that Σ is well-formed and that the con�guration S uses the channels in the context
∆1 and provides the channels in the context ∆2. �e natural number E denotes the sum of the
total potential and work done by the system. I call E the energy of the con�guration. �e con-
�guration typing judgment is de�ned using the rules presented in Figure 4.8. �e rule empty
de�nes that an empty con�guration is well-typed with energy 0. �e rule compose composes
two con�gurations S and S ′; S provides service on the channels in ∆′ while S ′ uses the chan-
nels in ∆′. �e energy of the composed con�guration S S ′ is obtained by summing up their
individual energies. �e rule proc creates a con�guration out of a single process. �e energy
of this singleton con�guration is obtained by adding the potential of the process and the work
performed by it. Similarly, the rule msg creates a con�guration out of a single message.

Soundness �eorem 7 is the main theorem of the chapter. It is a stronger version of a classical
type preservation theorem and the usual type preservation is a direct consequence. Intuitively,
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it states that the energy of a con�guration never increases during an evaluation step, i.e. the
energy remains conserved.
�eorem 7 (Soundness). Consider a well-typed con�guration S w.r.t. a well-formed signature Σ

such that ∆1

E

�Σ S :: ∆2. If S 7→ S ′, then ∆1

E

�Σ S ′ :: ∆2.
�e proof of the soundness theorem is achieved by a case analysis on the cost semantics, fol-

lowed by an inversion on the typing of a con�guration. �e preservation theorem is a corollary
since soundness implies that the con�guration S ′ is well-typed.

�e soundness implies that the energy of an initial con�guration is an upper bound on the
energy of any con�guration it will ever step to. In particular, if a con�guration starts with 0
work, the initial energy (equal to initial potential) is an upper bound on the total work per-
formed by an evaluation starting in that con�guration.

Corollary 1 (Upper Bound). If ∆1

E

�Σ S :: ∆2, and S 7→∗ S ′, then E ≥ W ′, where W ′ is the
total work performed by the con�guration S ′, i.e. the sum of the work performed by each process
and message in S ′. In particular, if the work done by the initial con�guration S is 0, then the
potential P of the initial con�guration satis�es P ≥ W ′.

Proof. Applying the Soundness theorem successively, we get that if S 7→∗ S ′ and ∆1

E

� S :: ∆2,

then ∆1

E

� S ′ :: ∆2. Also, E = P ′ + W ′, where P ′ is the total potential of S ′, while W ′ is the
total work performed so far in S ′. Since P ′ ≥ 0, we get that W ′ ≤ P ′ +W ′ = E. In particular,
if W = 0, we get that P = P + W = E ≥ W ′, where P and W are the potential and work of
the initial con�guration respectively.

�e progress theorem is a direct consequence of progress in SILL [153]. Our cost semantics
are a cost observing semantics, i.e. it is just annotated with counters observing the work. Hence,
any runtime step that can be taken by a program in SILL can be taken in this language.

4.6 Case Study: Stacks and�eues
As an illustration of the type system, I present a case study on stacks and queues. Stacks and
queues have the same interaction protocol: they store elements of a variable typeA and support
inserting and deleting elements. �ey only di�er in their implementation and resource usage.
�eir common interface type is expressed as the simple session type storeA (parameterized by
type variable A and size n).
storeA[n] = N{ ins : A( storeA[n+ 1],

del : ⊕{none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ storeA[n− 1]}}

�e session type dictates that a process providing a service of type storeA[n] gives a client the
choice to either insert (ins) or delete (del) an element of type A. Upon receipt of the label ins, the
providing process expects to receive a channel of type A to be enqueued and recurses. Upon
receipt of the label del, the providing process either indicates that the queue is empty (none), in
which case it terminates, or that there is an element stored in the queue (some), in which case
it deletes this element, sends it to the client, and recurses.

58



To account for the resource cost, I add potential annotations leading to the storeA type to
obtain two di�erent resource-aware types for stacks and queues. �e cost model again counts
the total number of messages exchanged.

Stacks �e type for stacks is de�ned as follows.
stackA[n] = N{ ins : A( stackA[n+ 1],

del : /2 ⊕ {none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ stackA[n− 1]}}

A stack is implemented using a sequence of elem processes terminated by an empty process.
Each elem process stores an element of the stack, while empty denotes the end of stack.

Inserting an element simply spawns a new elem process (which has no cost in our cost
model), thus having no resource cost. Deleting an element terminates the elem process at the
head. Before termination, it sends two messages back to the client, either none followed by
close or some followed by element. �us, deletion has a resource cost of 2. �is is re�ected in
the stackA type, where ins and del are annotated with none and 2 units of potential respectively.

�eues �e queue interface is achieved by using the same storeA type and annotating it with
a di�erent potential. �e tight potential bound depends on the number of elements stored in
the queue. Hence, a precise resource-aware type needs access to this internal measure in the
type. A type queueA[n] intuitively de�nes a queue of size n (for n > 0).
queueA[n] = N{ ins : /2n(A( queueA[n+ 1]),

del : /2 ⊕ {none : ?{n = 0}.1,
some : ?{n > 0}. A⊗ queueA[n− 1]}}

A queue is also implemented by a sequence of elem processes, connected via channels, termi-
nated by the empty process, similar to a stack.

For each insertion, the ins label along with the element travels to the end of the queue.
�ere, it spawns a new elem process that holds the inserted element. Hence, the resource cost
of each insertion is 2n where n is the size of the queue. On the other hand, deletion is similar
to that of stack and has a resource cost of 2. Again, this is re�ected in the queueA type, where
ins and del are annotated with 2n and 2 units of potential respectively.

�e resource-aware types show that stacks are more e�cient than queues. �e label ins is
annotated with no potential for stackA and with 2n for queueA. �e label del has the same an-
notation in both types. Hence, an e�ciency comparison can be performed by simply observing
the resource-aware session types.

�eues as two stacks In a functional language, a queue is o�en implemented with two lists.
�e idea is to enqueue into the �rst list and to dequeue from the second list. If the second list is
empty, the the �rst list is copied over to the second list , thereby reversing its order. Since the
cost of the dequeue operation varies drastically between the dequeue operations, amortized
analysis is again instrumental in the analysis of the worst-case behavior and shows that the
worst-case amortized cost for deletion is actually a constant. �e type of the queue is
queueA[n] = N{ ins : /6(A( queueA[n+ 1]),

del : /2 ⊕ {none : ?{n = 0}.1,
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some : ?{n > 0}. A⊗ queueA[n− 1]}}
Resource-aware session types enable us to translate the amortized analysis to the distributed
se�ing. �e type prescribes that an insertion has an amortized cost of 6 while the deletion has
an amortized cost of 2. �e main idea here is that the elements are inserted with a constant
potential in the �rst list. While deleting, if the second list is empty, then this stored potential
in the �rst list is used to pay for copying the elements over to the second list. As demonstrated
from the resource-aware type, this implementation is more e�cient than the previous queue
implementation, which has a linear resource cost for insertion.

4.7 Related Work

In the context of process calculi, capabilities [150] and static analyses [103] have been used
to statically restrict communication for controlling bu�er sizes in languages without session
types. For session-typed communication, upper bounding the size of message queues is simpler
and studied in the compiler for Concurrent C0 [160]. In contrast to capabilities, our potential
annotations do not control bu�er sizes but provide a symbolic description of the number of
messages exchanged at runtime. It is not clear how capabilities could be used to perform such
an analysis.

Type systems for static resource bound analysis for sequential programs have been exten-
sively studied (e.g., [50, 106]). �e work is based on type-based amortized resource analysis.
Automatic amortized resource analysis (AARA) has been introduced as a type system to auto-
matically derive linear [93] and polynomial bounds [92] for sequential functional programs. It
can also be integrated with program logics to derive bounds for imperative programs [21, 45].
Moreover, it has been used to derive bounds for term-rewrite systems [95] and object-oriented
programs [94]. A recent work also considers bounds on the parallel evaluation cost (also called
span) of functional programs [90]. �e innovation of our work is the integration of AARA and
session types and the analysis of message-passing programs that communicate with the outside
world. Instead of function arguments, our bounds depend on the messages that are sent along
channels. As a result, the formulation and proof of the soundness theorem is quite di�erent
from the soundness of sequential AARA.

I am only aware of a couple of other works that study resource bounds for concurrent
programs. Gimenez et al. [75] introduced a technique for analyzing the parallel and sequential
space and time cost of evaluating interaction nets. While it also based on linear logic and
potential annotations, the �avor of the analysis is quite di�erent. Interaction nets are mainly
used to model parallel evaluation while session types focus on the interaction of processes. A
main innovation of our work is that processes can exchange potential via messages. It is not
clear how we can represent the examples we consider in this article as interaction nets. Albert
et al. [13, 15] have studied techniques for deriving bounds on the cost of concurrent programs
that are based on the actor model. While the goals of the work are similar to ours, the used
technique and considered examples are dissimilar. A major di�erence is that our method is
type-based and compositional. A unique feature of our work is that types describe bounds as
functions of the messages that are sent along a channel.
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4.8 Future Directions
I brie�y mention some important future directions with regard to work analysis.

Work Inference To completely automate the type system, it is crucial to infer the work
bounds, not just check them. �is entails inserting pay or get constructors with every con-
tinuation with a parametric value and then obtaining constraints on these parameters. �en a
solver tries to solve these constraints while minimizing the number of such constructors that
need to be inserted. If an algorithmic version of this inference is implemented, a programmer
will simply write the original simple session-typed program, and the inference engine will infer
the resource-aware type, along with the resource bound.

Process Scheduling Inferring work bounds has several applications. One such direction to
explore is the use of resource bounds in process scheduling. For instance, oracle schedulers [9]
can use a priori knowledge of the runtime of each parallel thread to calculate thread creation
overheads and enhance e�ciency. �us, resource-aware session types can be used to design an
e�cient scheduling algorithm that maximizes throughput.
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Chapter 5

Time Analysis

Chapter 3 set the stage for re�ned session types. Chapter 4 employed re�ned types to express
work bounds that computed the total number of operations executed by a set of concurrent
process. However, in a distributed se�ing, not all these operations would execute sequentially;
some of these operations could occur in parallel. �us, this chapter complements the previous
chapter by exploring the inherent parallelism in the system by computing the total time of
execution. We compute these time bounds assuming maximal parallelism; everything that can
happen in parallel will happen in parallel. We present a cost semantics to measure this time,
and a type system that can express such bounds.

5.1 Introduction
Analyzing the complexity of concurrent message-passing processes poses additional challenges
over sequential programs. To begin with, we need information about the possible interactions
between processes to enable compositional and local reasoning about concurrent cost. In addi-
tion to the structure of communication, the timing of messages is of central interest for analyz-
ing concurrent cost. With information on message timing we may analyze not only properties
such as the rate or latency with which a stream of messages can proceed through a pipeline, but
also the span of a parallel computation, which can be de�ned as the time of the �nal response
message assuming maximal parallelism.

�ere are several possible ways to enrich session types with timing information. A chal-
lenge is to �nd a balance between precision and �exibility. We would like to express precise
times according to a global clock as in synchronous data �ow languages whenever that is possi-
ble. However, sometimes this will be too restrictive. For example, we may want to characterize
the response time of a concurrent queue where enqueue and dequeue operations arrive at un-
predictable intervals.

In this chapter, I develop a type system that captures the parallel complexity of session-
typed message-passing programs by adding temporal modalities next (©A), always (�A), and
eventually (♦A), interpreted over a linear model of time. When considered as types, the tempo-
ral modalities express properties of concurrent programs such as the message rate of a stream,
the latency of a pipeline, the response time of concurrent data structure, or the span of a fork/join
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parallel program, all in the same uniform manner. �e results complement my prior work on
expressing the work of session-typed processes in the same base language [61]. Together, they
form a foundation for analyzing the parallel complexity of session-typed processes.

�e type system is constructed conservatively over the base language of session types,
which makes it quite general and easily able to accommodate various concrete cost models.
�e language contains standard session types and process expressions, and their typing rules
remain unchanged. �ey correspond to processes that do not induce cost and send all messages
at the constant time 0.

To model computation cost, a new syntactic form delay is introduced, which advances time
by one step. A particular cost semantics is speci�ed by taking an ordinary, non-temporal pro-
gram and adding delays capturing the intended cost. For example, if only the blocking opera-
tions should cost one unit of time, a delay is added before the continuation of every receiving
construct. If sends should have unit cost as well, a delay is added immediately a�er each send
operation. Processes that contain delays cannot be typed using standard session types.

To type processes with non-zero cost, I �rst introduce the type ©A, which is inhabited only
by the process expression (delay ; P ). �is forces time to advance on all channels that P can
communicate along. �e resulting types prescribe the exact time a message is sent or received
and sender and receiver are precisely synchronized.

As an example, consider a stream of bits terminated by $, expressed as the recursive type
bits = ⊕{b0 : bits, b1 : bits, $ : 1}
where ⊕ stands for internal choice and 1 for termination, ending the session. A simple cost
model for asynchronous communication prescribes a cost of one unit of time for every receive
operation. A stream of bits then needs to delay every continuation to give the recipient time to
receive the message, expressing a rate of one. �is can be captured precisely with the temporal
modality ©A:
bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
A transducer neg that negates each bit it receives along channel x and passes it on along channel
y would be typed as
x : bits ` neg :: (y : ©bits)

expressing a latency of one. A process negneg that puts two negations in sequence has a latency
of two, compared with copy which passes on each bit, and id which terminates and identi�es
the channel y with the channel x, short-circuiting the communication.
x : bits ` negneg :: (y : ©©bits) x : bits ` copy :: (y : ©bits) x : bits ` id :: (y : bits)

All these processes have the same extensional behavior, but di�erent latencies. �ey also have
the same rate since a�er the pipelining delay, the bits are sent at the same rate they are received,
as expressed in the common type bits used in the context and the result.

While precise and minimalistic, the resulting system is o�en too precise for typical con-
current programs such as pipelines or servers. I therefore introduce the dual type formers ♦A
and �A to talk about varying time points in the future. Remarkably, even if part of a program
is typed using these constructs, we can still make precise and useful statements about other
aspects.

For example, consider a transducer compress that shortens a stream by combining consec-
utive 1 bits so that, for example, 00110111 becomes 00101. For such a transducer, we cannot
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bound the latency statically, even if the bits are received at a constant rate like in the type bits.
So we have to express that a�er seeing a 1 bit we will eventually see either another bit or the
end of the stream. For this purpose, we introduce a new type sbits with the same message
alternatives as bits, but di�erent timing. In particular, a�er sending b1, either the next bit or
end-of-stream is eventually sent (♦sbits), rather than immediately.

sbits = ⊕{b0 : ©sbits, b1 : ©♦sbits, $ : ©1}
x : bits ` compress :: (y : ©sbits)

We write ©♦sbits instead of ♦sbits for the continuation type a�er b1 to express that there will
always be a delay of at least one; to account for the unit cost of receive in this particular cost
model.

�e dual modality,�A, is useful to express, for example, that a server providingA is always
ready, starting from “now”. As an example, consider the following temporal type of an interface
to a process of type�queueA with elements of type�A. It expresses that there must be at least
four time units between successive enqueue operations and that the response to a dequeue
request is immediate, only one time unit later (N stands for external choice, the dual to internal
choice).

queueA = N{ enq : ©(�A( ©3�queueA),
deq : ©⊕{ none : ©1, some : ©(�A⊗ ©�queueA) } }

As an example of a parametric cost analysis, the following type can be given to a process that
appends inputs l1 and l2 to yield l, where the message rate on all three lists is r + 2 units of
time (that is, the interval between consecutive list elements needs to be at least 2).

l1 : listA[n], l2 : ©(r+4)n+2 listA[k] ` append[n, k, r] :: (l : ©©listA[n+ k])

It expresses that append has a latency of two units of time and that it inputs the �rst message
from l2 a�er (r + 4)n+ 2 units of time, where n is the number of elements sent along l1.

To analyze the span of a fork/join parallel program, we capture the time at which the (�nal)
answer is sent. For example, the type tree[h] describes the span of a process that computes the
parity of a binary tree of height h with boolean values at the leaves. �e session type expresses
that the result of the computation is a single boolean that arrives at time 5h+ 3 a�er the parity
request.

tree[h] = N{ parity : ©5h+3 bool }
In summary, the main contributions of the chapter are (1) a generic framework for paral-

lel cost analysis of asynchronously communicating session-typed processes rooted in a novel
combination of temporal and linear logic, (2) a soundness proof of the type system with respect
to a timed operational semantics, showing progress and type preservation (3) instantiations of
the framework with di�erent cost models, e.g. where either just receives, or receives and sends,
cost one time unit each, and (4) examples illustrating the scope of my method. My technique
for proving progress and preservation does not require dependency graphs and may be of inde-
pendent interest. I further provide decidable systems for time reconstruction and subtyping that
greatly simplify the programmer’s task. �ey also enhance modularity by allowing the same
program to be assigned temporally di�erent types, depending on the context of use.
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5.2 �e Temporal Modality Next (©A)
�is section introduces actual cost by explicitly advancing time. Remarkably, all the rules pre-
sented so far in Chapter 2 remain literally unchanged. �ey correspond to the cost-free frag-
ment of the language in which time never advances. In addition, I have a new type construct
©A (read: nextA) with a corresponding process construct (delay ; P ), which advances time by
one unit. In the corresponding typing rule

∆ ` P :: (x : A)
©∆ ` (delay ; P ) :: (x : ©A)

©LR

I abbreviate y1:©A1, . . . , ym:©Am by ©(y1:A1, . . . , ym:Am). Intuitively, when (delay ; P ) idles,
time advances on all channels connected toP . Computationally, I delay the process for one time
unit without any external interactions. To understand this computation, I introduce semantic
objects proc(c, t, P ) and msg(c, t,M) which mean that process P or message M provide along
channel c and are at an integral time t.

(©C) proc(c, t, delay ; P ) 7→ proc(c, t+ 1, P )

�ere is a subtle point about forwarding: A process proc(c, t, c ← d) may be ready to forward
a message before a client reaches time t while in all other rules the times must match exactly.
We can avoid this mismatch by transforming uses of forwarding x ← y at type ©nS where
S 6= ©(−) to (delayn ; x ← y). In this discussion I have used the following notation which
will be useful later:

©0A = A delay0 ; P = P
©n+1A = ©©nA delayn+1 ; P = delay ; delayn ; P

Modeling a Cost Semantics
My system allows us to represent a variety of di�erent abstract cost models in a straightforward
way. I will mostly use two di�erent abstract cost models. In the �rst, called R, I assign unit
cost to every receive (or wait) action while all other operations remain cost-free. We may be
interested in this since receiving a message is the only blocking operation in the asynchronous
semantics. A second one, called RS and considered in Section 5.5, assigns unit cost to both
send and receive actions.

To captureR, I take a source program and insert a delay operation before the continuation of
every receive. I write this delay as tick in order to remind the reader that it arises systematically
from the cost model and is never wri�en by the programmer. In all other respects, tick is just a
synonym for delay.

For example, the copy process would become
bits = ⊕{b0 : bits, b1 : bits, $ : 1}
y : bits ` copy :: (x : bits) % No longer correct!
x← copy← y =

case y ( b0⇒ tick ; x.b0 ; x← copy← y
| b1⇒ tick ; x.b1 ; x← copy← y
| $⇒ tick ; x.$ ; wait y ; tick ; close x )
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As indicated in the comment, the type of copy is now no longer correct because the bits that ar-
rive along y are delayed by one unit before they are sent along x. We can observe this concretely
by starting to type-check the �rst branch
y : bits ` copy :: (x : bits)
x← copy← y =

case y ( b0⇒ % y : bits ` x : bits
tick ; . . .)

We see that the delay tick does not type-check, because neither x nor y have a type of the form
©(−). We need to rede�ne the type bits so that the continuation type a�er every label is delayed
by one, anticipating the time it takes to receive the label b0, b1, or $. Similarly, we capture in
the type of copy that its latency is one unit of time.
bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
y : bits ` copy :: (x : ©bits)

With these declarations, we can now type-check the de�nition of copy. I show the intermediate
type of the used and provided channels a�er each interaction.
x← copy← y =

case y ( b0⇒ % y : ©bits ` x : ©bits
tick ; % y : bits ` x : bits
x.b0 ; % y : bits ` x : ©bits
x← copy← y % well-typed by type of copy

| b1⇒ % y : ©bits ` x : ©bits
tick ; % y : bits ` x : bits
x.b1 ; % y : bits ` x : ©bits
x← copy← y

| $⇒ % y : ©1 ` x : ©bits
tick ; % y : 1 ` x : bits
x.$ ; % y : 1 ` x : ©1
wait y ; % · ` x : ©1
tick ; % · ` x : 1
close x )

Armed with this experience, we now consider the increment process plus1. Again, we expect
the latency of the increment to be one unit of time. Since we are interested in detailed type-
checking, I show the transformed program, with a delay tick a�er each receive.
bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
y : bits ` plus1 :: (x : ©bits)
x← plus1← y =

case y ( b0⇒ tick ; x.b1 ; x← y % type error here!
| b1⇒ tick ; x.b0 ; x← plus1← y
| $⇒ tick ; x.$ ; wait y ; tick ; close x )

�e branches for b1 and $ type-check as before, but the branch for b0 does not. I make the
types at the crucial point explicit:
x← plus1← y =
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case y ( b0⇒ tick ; x.b1 ; % y : bits ` x : ©bits
x← y % ill-typed, since bits 6= ©bits

| . . . )
�e problem here is that identifying x and y removes the delay mandated by the type of plus1.
A solution is to call copy to reintroduce the latency of one time unit.
y : bits ` plus1 :: (x : ©bits)
x← plus1← y =

case y ( b0⇒ tick ; x.b1 ; x← copy← y
| b1⇒ tick ; x.b0 ; x← plus1← y
| $⇒ tick ; x.$ ; wait y ; tick ; close x )

In order to write plus2 as a pipeline of two increments we need to delay the second increment
explicitly in the program and stipulate, in the type, that there is a latency of two.
y : bits ` plus2 :: (x : ©©bits)
x← plus2← y =
z ← plus1← y ; % z : ©bits ` x : ©©bits
delay ; % z : bits ` x : ©bits
x← plus1← z

Programming with so many explicit delays is tedious, but fortunately a source program without
all these delay operations (but explicitly temporal session types) can be transformed automat-
ically in two steps: (1) insert the delays mandated by the cost model (here: a tick a�er each
receive), and (2) perform time reconstruction to insert the additional delays so the result is tem-
porally well-typed or issue an error message if this is impossible (see [62]).

�e Interpretation of a Con�guration
Let us reconsider the program to produce the number 6 = (110)2 under the cost modelRwhere
each receive action costs one unit of time. �ere are no receive operations in this program, but
time reconstruction must insert a delay a�er each send in order to match the delays mandated
by the type bits.
bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
· ` six :: (x : bits)
x← six = x.b0 ; delay ; x.b1 ; delay ; x.b1 ; delay ; x.$ ; delay ; close x

Executing proc(c0, 0, c0 ← six) then leads to the following con�guration

msg(c4, 4, close c4),
msg(c3, 3, c3.$ ; c3 ← c4),
msg(c2, 2, c2.b1 ; c2 ← c3),
msg(c1, 1, c1.b1 ; c1 ← c2),
msg(c0, 0, c0.b0 ; c0 ← c1)

�ese messages are at increasing times, which means any client of c0 will have to immediately
(at time 0) receive b0, then (at time 1) b1, then (at time 2) b1, etc. In other words, the time stamps
on messages predict exactly when the message will be received. Of course, if there is a client in
parallel this state may never be reached because, for example, the �rst b0 message along channel
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c0 may be received before the continuation of the sender produces the message b1. So di�erent
con�gurations may be reached depending on the scheduler for the concurrent processes. It is
also possible to give a time-synchronous semantics in which all processes proceed in parallel
from time 0 to time 1, then from time 1 to time 2, etc.

5.3 �e Temporal Modalities Always (�A) and Eventually
(♦A)

�e strength and also the weakness of the system so far is that its timing is very precise. Con-
sider a process compress that combines runs of consecutive 1’s to a single 1. For example, com-
pressing 11011100 should yield 10100. First, in the cost-free the process is de�ned as
bits = ⊕{b0 : bits, b1 : bits, $ : 1}
y : bits ` compress :: (x : bits)
y : bits ` skip1s :: (x : bits)

x← compress← y =
case y ( b0⇒ x.b0 ; x← compress← y

| b1⇒ x.b1 ; x← skip1s← y
| $⇒ x.$ ; wait y ; close x )

x← skip1s← y =
case y ( b0⇒ x.b0 ; x← compress← y

| b1⇒ x← skip1s← y
| $⇒ x.$ ; wait y ; close x )

�e problem is that program cannot be typed under the cost modeR, where every receive takes
one unit of time. Actually worse: there is no way to insert next-time modalities into the type
and additional delays into the program so that the result is well-typed. �is is because if the
input stream is unknown we cannot predict how long a run of 1’s will be, but the length of such
a run will determine the delay between sending a bit 1 and the following bit 0.

�e best we can say is that a�er a bit 1 compress will eventually send either a bit 0 or the
end-of-stream token $. �is is the purpose of the type ♦A. We capture this timing in the type
sbits (for slow bits).
bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
sbits = ⊕{b0 : ©sbits, b1 : ©♦sbits, $ : ©1}
y : bits ` compress :: (x : ©sbits)
y : bits ` skip1s :: (x : ©♦sbits)

�e next section introduces the process constructs and typing rules so that compress and skip1s
programs can be revised to have the right temporal semantics.

Eventually A
A process providing ♦A promises only that it will eventually provide A. �ere is a somewhat
subtle point here: since not every action may require time and because we do not check termina-
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tion separately, x : ♦A expresses only that if the process providing x terminates it will eventually
provide A. �us, it expresses non-determinism regarding the (abstract) time at which A is pro-
vided, rather than a strict liveness property. �erefore, ♦A is somewhat weaker than one might
be used to from LTL [131]. When restricted to a purely logical fragment, without unrestricted
recursion, the usual meaning is fully restored so I feel the terminology is justi�ed. Imposing
termination, for example along the lines of Fortier and Santocanale [70] or Toninho et al. [154]
is an interesting item for future work but not necessary for our present purposes.

When a process o�ering c : ♦A is ready, it will send a now! message along c and then
continue at type A. Conversely, the client of c : ♦A will have to be ready and waiting for
the now! message to arrive along c and then continue at type A. I use (when? c ; Q) for the
corresponding client. �ese explicit constructs are a conceptual device and may not need to be
part of an implementation. �ey also make type-checking processes entirely syntax-directed
and trivially decidable.

�e typing rules for now! and when? are somewhat subtle.

∆ ` P :: (x : A)

∆ ` (now! x ; P ) :: (x : ♦A)
♦R

∆ delayed� ∆, x : A ` Q :: (z : C) C delayed♦

∆, x : ♦A ` (when? x ; Q) :: (z : C)
♦L

�e ♦R rule just states that, without constraints, we can at any time decide to communicate
along x : ♦A and then continue the session at type A. �e ♦L rule expresses that the process
must be ready to receive a now! message along x : ♦A, but there are two further constraints.
Because the process (when? x ; Q) may need to wait an inde�nite period of time, the rule
must make sure that communication along z and any channel in ∆ can also be postponed an
inde�nite period of time. �e predicate C delayed♦ describes that C must have the form ©∗♦C ′

to require that C may be delayed a �xed �nite number of time steps and then must be allowed
to communicate at an arbitrary time in the future. Similarly, for every channel y : B in ∆, B
must have the form ©∗�B, where � (as the dual of ♦) is introduced in Section 5.3.

In the operational semantics, the central restriction is that when? is ready before the now!
message arrives so that the continuation can proceed immediately as promised by the type.

(♦S) proc(c, t, now! c ; P ) 7→ proc(c′, t, [c′/c]P ),msg(c, t, now! c ; c← c′) (c′ fresh)
(♦C) msg(c, t, now! c ; c← c′), proc(d, s,when? c ; Q) 7→ proc(d, t, [c′/c]Q) (t ≥ s)

To rewrite the compress process in our cost modelR, I �rst insert tick before all the actions that
must be delayed according to our cost model. �en I insert appropriate additional delay, when?,
and now! actions. While compress turns out to be straightforward, skip1s creates a di�culty
a�er it receives a b1:
bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
sbits = ⊕{b0 : ©sbits, b1 : ©♦sbits, $ : ©1}
y : bits ` compress :: (x : ©sbits)
y : bits ` skip1s :: (x : ©♦sbits)

x← compress← y =
case y ( b0⇒ tick ; x.b0 ; x← compress← y

| b1⇒ tick ; x.b1 ; x← skip1s← y
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| $⇒ tick ; x.$ ; wait y ; tick ; close x )

x← skip1s← y =
case y ( b0⇒ tick ; now! x ; x.b0 ; x← compress← y

| b1⇒ tick ; % y : bits ` x : ♦sbits
x′ ← skip1s← y ; % x′ : ©♦sbits ` x : ♦sbits
x← idle← x′ % with x′ : ©♦sbits ` idle :: (x : ♦sbits)

| $⇒ tick ; now! x ; x.$ ; wait y ; tick ; close x )

At the point where I would like to call skip1s recursively, I have
y : bits ` x : ♦sbits
but y : bits ` skip1s :: (x : ©♦sbits)

which prevents a tail call since©♦sbits 6= ♦sbits. Instead skip1s is called to obtain a new channel
x′ and then use another process called idle to go from x′ : ©♦sbits to x : ♦sbits. Intuitively, it
should be possible to implement such an idling process: x : ♦sbits expresses at some time in the
future, including possibly right now while x′ : ©♦sbits says at some time in the future, but not
right now.

To type the idling process, the ©LR rule needs to be generalized to account for the inter-
actions of ©A with �A and ♦A. A�er all, they speak about the same underlying model of
time.

Interactions of ©A and ♦A
Recall the le�/right rule for ©:

∆ ` P :: (x : A)
©∆ ` (delay ; P ) :: (x : ©A)

©LR

If the succedent were x : ♦A instead of x : ©A, we should still be able to delay since we can
freely choose when to interact along x. We could capture this in the following rule (superseded
later by a more general form of ©LR):

∆ ` P :: (x : ♦A)
©∆ ` (delay ; P ) :: (x : ♦A)

©♦

I keep ♦A as the type of x since I want to retain the full �exibility of using x at any time in the
future a�er the initial delay. I will generalize the rule once more in the next section to account
for interactions with �A.

With this, I can de�ne and type the idling process parametrically over A:
x′ : ©♦A ` idle :: (x : ♦A)
x← idle← x′ = delay ; x← x′

�is turns out to be an example of subtyping (see [62]), which means that the programmer
actually will not have to explicitly de�ne or even reference an idling process. �e program-
mer simply writes the original skip1s process (without referencing the idle process) and our
subtyping algorithm will use the appropriate rule to typecheck it successfully.
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Always A
�e last temporal modality, wri�en as �A (read: always A), is dual to ♦A. If a process P
provides x : �A it means it is ready to receive a now! message along x at any point in the
future. In analogy with the typing rules for ♦A, but �ipped to the other side of the sequent, we
obtain

∆ delayed� ∆ ` P :: (x : A)

∆ ` (when? x ; P ) :: (x : �A)
�R

∆, x : A ` Q :: (z : C)

∆, x : �A ` (now! x ; Q) :: (z : C)
�L

�e operational rules just reverse the role of provider and client from the rules for ♦A.

(�S) proc(d, t, now! c ; Q) 7→ msg(c′, t, now! c ; c′ ← c), proc(d, t, [c′/c]Q) (c′ fresh)
(�C) proc(c, s,when? c ; P ),msg(c′, t, now! c ; c′ ← c) 7→ proc(c′, t, [c′/c]P ) (s ≤ t)

As an example for the use of �A, and also to introduce a new kind of example, I specify
and implement a counter process that can receive inc and val messages. When receiving an inc
it will increment its internally maintained counter, when receiving val it will produce a �nite
bit stream representing the current value of the counter. In the cost-free se�ing the type is
bits = ⊕{b0 : bits, b1 : bits, $ : 1}
ctr = N{inc : ctr, val : bits}
A counter is implemented by a chain of processes, each holding one bit (either bit0 or bit1) or
signaling the end of the chain (empty). For this purpose we implement three processes:
d : ctr ` bit0 :: (c : ctr)
d : ctr ` bit1 :: (c : ctr)
· ` empty :: (c : ctr)

c← bit0← d =
case c ( inc⇒ c← bit1← d % increment by continuing as bit1

| val⇒ c.b0 ; d.val ; c← d ) % send b0 on c, send val on d, identify c and d
c← bit1← d =

case c ( inc⇒ d.inc ; c← bit0← d % send inc (carry) on d, continue as bit1
| val⇒ c.b1 ; d.val ; c← d ) % send b1 on c, send val on d, identify c and d

c← empty =
case c ( inc⇒ e← empty ; % spawn a new empty process with channel e

c← bit1← e % continue as bit1
| val⇒ c.$ ; close c ) % send $ on c and close c

Using our standard cost model R there is a problem: the carry bit (the d.inc message sent in
the bit1 process) is sent only on every other increment received because bit0 continues as bit1
without a carry, and bit1 continues as bit0 with a carry. So it will actually take 2k increments
received at the lowest bit of the counter (which represents the interface to the client) before an
increment reaches the kth process in the chain. �is is not a constant number, so the behavior
cannot be characterized exactly using only the next time modality. Instead, I require, from a
certain point on, a counter is always ready to receive either an inc or val message.
bits = ⊕{b0 : ©bits, b1 : ©bits, $ : ©1}
ctr = �N{inc : ©ctr, val : ©bits}
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In the program, the ticks are mandated by our cost model and some additional delay, when?, and
now! actions are present to satisfy the stated types. �e two marked lines may look incorrect,
but are valid based on the generalization of the ©LR rule in Section 5.3.
d : ©ctr ` bit0 :: (c : ctr)
d : ctr ` bit1 :: (c : ctr)
· ` empty :: (c : ctr)

c← bit0← d =
when? c ; % d : ©ctr ` c : N{. . .}
case c ( inc⇒ tick ; % d : ctr ` c : ctr

c← bit1← d
| val⇒ tick ; % d : ctr ` c : bits

c.b0 ; % d : ctr ` c : ©bits
now! d ; d.val ; % d : ©bits ` c : ©bits
c← d )

c← bit1← d =
when? c ; % d : ctr ` c : N{. . .}
case c ( inc⇒ tick ; % d : ctr ` c : ctr (see Section 5.3)

now! d ; d.inc ; % d : ©ctr ` c : ctr
c← bit0← d

| val⇒ tick ; % d : ctr ` c : bit (see Section 5.3)
c.b1 ; % d : ctr ` c : ©bits
now! d ; d.val ; % d : ©bits ` c : ©bits
c← d )

c← empty =
when? c ; % · ` c : N{. . .}
case c ( inc⇒ tick ; % · ` c : ctr

e← empty ; % e : ctr ` c : ctr
c← bit1← e

| val⇒ tick ; c.$ ; % · ` c : ©1
delay ; close c )

Interactions Between Temporal Modalities
Just as©A and ♦A interacted in the rules since their semantics is based on the same underlying
notion of time, so do ©A and �A. Executing a delay allows any channel of type �A that is
used and leaves its type unchanged because we are not obligated to communicate along it at any
particular time. To cover all the cases, I introduce a new notation, writing [A]−1

L and [A]−1
R on

types and extend it to contexts. Depending on one’s point of view, this can be seen as stepping
forward or backward by one unit of time.

[©A]−1
L = A [©A]−1

R = A [x : A]−1
L = x : [A]−1

L

[�A]−1
L = �A [�A]−1

R = unde�ned [x : A]−1
R = x : [A]−1

R

[♦A]−1
L = unde�ned [♦A]−1

R = ♦A [·]−1
L = ·

[S]−1
L = unde�ned [S]−1

R = unde�ned [∆,∆′]−1
L = [∆]−1

L , [∆′]−1
L
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[∆]−1
L ` P :: [x : A]−1

R

∆ ` (delay ; P ) :: (x : A)
©LR ©∗�A delayed� ©∗♦A delayed♦

∆ ` P :: (x : A)

∆ ` (now! x ; P ) :: (x : ♦A)
♦R

∆ delayed� ∆, x:A ` Q :: (z : C) C delayed♦

∆, x:♦A ` (when? x ; Q) :: (z : C)
♦L

∆ delayed� ∆ ` P :: (x : A)

∆ ` (when? x ; P ) :: (x : �A)
�R

∆, x:A ` Q :: (z : C)

∆, x:�A ` (now! x ; Q) :: (z : C)
�L

Figure 5.1: Explicit Temporal Typing Rules

Here, S stands for any basic session type constructor as in Table 2.1. We use this notation in
the general rule ©LR which can be found in Figure 5.1 together with the �nal set of rules for
�A and ♦A. In conjunction with the rules in Chapter 2 this completes the system of temporal
session types where all temporal actions are explicit. �e rule ©LR only applies if both [∆]−1

L

and [x : A]−1
R are de�ned.

A type A is called patient if it does not force communication along a channel x : A at any
particular point in time. Because the direction of communication is reversed between the two
sides of a sequent, a typeA is patient if it has the form©∗�A′ if it is among the antecedents, and
©∗♦A′ if it is in the succedent. �e judgments A delayed� and A delayed♦ are a shorthand for
patient types. Further, A delayed� is extended to contexts ∆ delayed� if for every declaration
(x : A) ∈ ∆, A delayed� holds.

5.4 Preservation and Progress
�e main theorems that exhibit the deep connection between our type system and the timed
operational semantics are the usual type preservation and progress, sometimes called session
�delity and deadlock freedom, respectively.

Con�guration Typing
A key question is how we type con�gurations C. Con�gurations consist of multiple processes
and messages, so they both use and provide a collection of channels. And even though we treat
a con�guration as a multiset, typing imposes a partial order on the processes and messages
where a provider of a channel appears to the le� of its client.

Configuration C ::= · | C C ′ | proc(c, t, P ) | msg(c, t,M)

�e predicates proc(c, t, P ) and msg(c, t,M) provide c. I stipulate that no two distinct processes
or messages in a con�guration provide the same channel c. Also recall that messages M are
simply processes of a particular form and are typed as such. �e possible messages (of which
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there is one for each type constructor) can be read of from the operational semantics. �ey are
summarized here for completeness.

M ::= (c.k ; c← c′) | (c.k ; c′ ← c) | close c | (send c d ; c′ ← c) | (send c d ; c← c′)

�e typing judgment has the form ∆′ � C :: ∆ meaning that if composed with a con�guration
that provides ∆′, the result will provide ∆.

∆ � (·) :: ∆
empty

∆0 � C1 :: ∆1 ∆1 � C2 :: ∆2

∆0 � (C1 C2) :: ∆2

compose

To type processes and messages, I begin by considering preservation: I would like to achieve
that if ∆′ � C :: ∆ and C 7→ C ′ then still ∆′ � C ′ :: ∆. Without the temporal modalities, this is
guaranteed by the design of the sequent calculus: the right and le� rules match just so that cut
reduction (which is the basis for reduction in the operational semantics) leads to a well-typed
deduction. �e key here is what happens with time. Consider the special case of delay. When
we transition from delay ; P to P we strip one © modality from ∆ and A, but because we also
advance time from t to t+ 1, the © modality is restored, keeping the interface type invariant.

When we also consider types�A and♦A the situation is a li�le less straightforward because
of their interaction with ©. I reuse the idea of the solution, allowing the subtraction of time
from a type, possibly stopping when I meet a � or ♦.

[A]−0
L = A [A]−0

R = A

[A]
−(t+1)
L = [[A]−tL ]−1

L [A]
−(t+1)
R = [[A]−tR ]−1

R

�is is extended to channel declarations in the obvious way. Additionally, the imprecision of
�A and ♦A may create temporal gaps in the con�guration that need to be bridged by a weak
form of subtyping A <: B,

m ≤ n
©m�A <: ©n�A

�weak
m ≥ n

©m♦A <: ©n♦A
♦weak A <: A

refl

�is relation is speci�ed to be re�exive and clearly transitive. I extend it to contexts ∆ in the
obvious manner. In the �nal rules, I also account for some channels that are not used by P or
M but just passed through.

∆′ <: ∆ [∆]−tL ` P :: [c : A]−tR A <: A′

∆0,∆
′ � proc(c, t, P ) :: (∆0, c : A′)

proc

∆′ <: ∆ [∆]−tL `M :: [c : A]−tR A <: A′

∆0,∆
′ � msg(c, t,M) :: (∆0, c : A′)

msg

Type Preservation
With the four rules for typing con�gurations (empty, compose, proc and msg), type preserva-
tion is relatively straightforward. We need some standard lemmas about being able to split a
con�guration and be able to move a provider (whether process or message) to the right in a typ-
ing derivation until it rests right next to its client. Regarding time shi�s, we need the following
properties.

75



Lemma 3 (Time Shi�).
(i) If [A]−tL = [B]−tR and both are de�ned then A = B.
(ii) [[A]−tL ]−sL = [A]

−(t+s)
L and if either side is de�ned, the other is as well.

(iii) [[A]−tR ]−sR = [A]
−(t+s)
R and if either side is de�ned, the other is as well.

�eorem 8 (Type Preservation). If ∆′ � C :: ∆ and C 7→ D then ∆′ � D :: ∆.

Proof. By case analysis on the transition rule, applying inversion to the given typing derivation,
and then assembling a new derivation of D.

Type preservation on basic session types is a simple special case of this theorem.

Global Progress
A process or message is said to be poised if it is trying to communicate along the channel that it
provides. A poised process is comparable to a value in a sequential language. A con�guration is
poised if every process or message in the con�guration is poised. Conceptually, this implies that
the con�guration is trying to communicate externally, i.e. along one of the channel it provides.
�e progress theorem then shows that either a con�guration can take a step or it is poised. To
prove this I show �rst that the typing derivation can be rearranged to go strictly from right to
le� and then proceed by induction over this particular derivation.

�e question is how can we prove that processes are either at the same time (for most
interactions) or that the message recipient is ready before the message arrives (for when?, now!,
and some forwards)? �e key insight here is in the following lemma.
Lemma 4 (Time Inversion).

(i) If [A]−sR = [A]−tL and either side starts with a basic session type constructor then s = t.
(ii) If [A]−tL = �B and [A]−sR 6= ©(−) then s ≤ t and [A]−sR = �B.
(iii) If [A]−tR = ♦B and [A]−sL 6= ©(−) then s ≤ t and [A]−sL = ♦B.

�eorem 9 (Global Progress). If · � C :: ∆ then either
(i) C 7→ C ′ for some C ′, or
(ii) C is poised.

Proof. By induction on the right-to-le� typing of C so that either C is empty (and therefore
poised) or C = (D proc(c, t, P )) or C = (D msg(c, t,M)). By induction hypothesis, D can
either take a step (and then so can C), orD is poised. In the la�er case, we analyze the cases for
P and M , applying multiple steps of inversion and Lemma 4 to show that in each case either C
can take a step or is poised.

5.5 Further Examples
�is section presents example analyses of some of the properties that we can express in the
type system, such as the response time of concurrent data structures and the span of a fork/join
parallel program.
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In some examples I use parametric de�nitions, both at the level of types and processes.
For example, stackA describes stacks parameterized over a type A, listA[n] describes lists of n
elements, and tree[h] describes binary trees of height h. Process de�nitions are similarly pa-
rameterized. �ey exist as families of ordinary de�nitions and calculated accordingly, at the
metalevel, which is justi�ed since they are only implicitly quanti�ed across whole de�nitions.
�is common practice (for example, in work on interaction nets [75]) avoids signi�cant syn-
tactic overhead, highlighting conceptual insight. It is of course possible to internalize such pa-
rameters (see, for example, work on re�nement of session types [82] or explicitly polymorphic
session types [43, 81]).

Response Times: Stacks and�eues
To analyze response times, I present concurrent stacks and queues. A stack data structure
provides a client with a choice between a push and a pop. A�er a push, the client has to send
an element, and the provider will again behave like a stack. A�er a pop, the provider will reply
either with the label none and terminate (if there are no elements in the stack), or send an
element and behave again like a stack. In the cost-free model, this is expressed in the following
session type.
stackA = N{ push : A( stackA,

pop : ⊕{ none : 1, some : A⊗ stackA } }
A stack is implemented as a chain of processes. �e bo�om to the stack is de�ned by the process
empty, while a process elem holds a top element of the stack as well as a channel with access
to the top of the remainder of the stack.
x : A, t : stackA ` elem :: (s : stackA)
· ` empty :: (s : stackA)

�e cost model I would like to consider here isRS where both receives and sends cost one
unit of time. Because a receive costs one unit, every continuation type must be delayed by one
tick of the clock, which is denoted by pre�xing continuations by the © modality. �is delay
is not an artifact of the implementation, but an inevitable part of the cost model—one reason
I have distinguished the synonyms tick (delay of one, due to the cost model) and delay (delay
of one, to correctly time the interactions). In this section of examples I will make the same
distinction for the next-time modality: I write ‘A for a step in time mandated by the cost model,
and ©A for a delay necessitated by a particular set of process de�nitions.

As a �rst approximation,
stackA = N{ push : ‘(A( ‘stackA),

pop : ‘⊕ { none : ‘1, some : ‘(A⊗ ‘stackA) } }
�ere are several problems with this type. �e stack is a data structure and has li�le or no
control over when elements will be pushed onto or popped from the stack. �erefore a type
�stackA should be used to indicate that the client can choose the times of interaction with the
stack. While the elements are held by the stack time advances in an indeterminate manner.
�erefore, the elements stored in the stack must also have type �A, not A (so that they are
always available).
stackA = N{ push : ‘(�A( ‘�stackA),
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pop : ‘⊕ { none : ‘1, some : ‘(�A⊗ ‘�stackA) } }
x : �A, t : �stackA ` elem :: (s : �stackA)
· ` empty :: (s : �stackA)

�is type expresses that the data structure is very e�cient in its response time: there is no
additional delay a�er it receives a push and then an element of type �A before it can take
the next request, and it will respond immediately to a pop request. It may not be immediately
obvious that such an e�cient implementation actually exists in theRS cost model, but it does.
I use the implicit form from [62] omi�ing the tick constructs a�er each receive and send, and
also the when? before each case that goes along with type �A.
s← elem← x t =

case s ( push⇒ y ← recv s ;
s′ ← elem← x t ; % previous top of stack, holding x
s← elem← y s′ % new top of stack, holding y

| pop⇒ s.some ;
send s x ; % send channel x along s
s← t ) % s is now provided by t, via forwarding

s← empty =
case s ( push⇒ y ← recv s ;

e← empty ; % new bo�om of stack
s← elem← y e

| pop⇒ s.none ;
close s )

�e speci�cation and implementation of a queue is very similar. �e key di�erence in the
implementation is that when a new element is received, it is passed along the chain of processes
until it reaches the end. So instead of
s′ ← elem← x t ; % previous top of stack, holding x
s← elem← y s′ % new top of stack, holding y
I write
t.enq ;
send t y ; % send y to the back of the queue
s← elem← x t

in the push branch of elem process. �ese two send operations take two units of time, which
must be re�ected in the type: a�er a channel of type �A has been received, there is a delay of
an additional two units of time before the provider can accept the next request.
queueA = N{ enq : ‘(�A( ‘©©�queueA),

deq : ‘⊕ { none : ‘1, some : ‘(�A⊗ ‘�queueA) } }
x : �A, t : ©©�queueA ` elem :: (s : �queueA)
· ` empty :: (s : �queueA)

Time reconstruction will insert the additional delays in the empty process through subtyping,
using �queueA ≤ ©©�queueA. I have syntactically expanded the tail call so the second use of
subtyping is more apparent.
s← empty =
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case s ( enq⇒ y ← recv s ; % y : �A ` s : ©©�queueA
e← empty ; % y : �A, e : �queueA ` s : ©©�queueA
s′ ← elem← y e ; % �queueA ≤ ©©�queueA (on e)
s← s′ % �queueA ≤ ©©�queueA (on s′)

| deq⇒ s.none ;
close s )

�e di�erence between the response times of stacks and queues in the cost model is mini-
mal: both are constant, with the queue being two units slower. �is is in contrast to the total
work [61] which is constant for the stack but linear in the number of elements for the queue.

�is di�erence in response times can be realized by typing clients of both stacks and queues.
Compare clients Sn and Qn that insert n elements into a stack and queue, respectively, send
the result along channel d, and then terminate. I show only their type below, omi�ing the
implementations.
x1 : �A, . . . , xn : �A, s : �stackA ` Sn :: (d : ©2n (�stackA ⊗ ‘1))
x1 : �A, . . . , xn : �A, s : �queueA ` Qn :: (d : ©4n (�queueA ⊗ ‘1))

�e types demonstrate that the total execution time of Sn is only 2n+ 1, while it is 4n+ 1 for
Qn. �e di�erence comes from the di�erence in response times. Note that we can infer precise
execution times, even in the presence of the � modality in the stack and queue types.

Span Analysis: Trees
I use trees to illustrate an example that is typical for fork/join parallelism and computation of
span. In order to avoid integers, I just compute the parity of a binary tree of height h with
boolean values at the leaves. I do not show the obvious de�nition of xor, which in theRS cost
model requires a delay of four from the �rst input.
bool = ⊕{ b0 : ‘1, b1 : ‘1 }
a : bool, b : ©2 bool ` xor :: (c : ©4 bool)

In the de�nition of leaf and node I have explicated the delays inferred by time reconstruction,
but not the tick delays. �e type of tree[h] gives the span of this particular parallel computation
as 5h+ 2. �is is the time it takes to compute the parity under maximal parallelism, assuming
that xor takes 4 cycles as shown in the type above.
tree[h] = N{ parity : ‘©5h+2 bool }
· ` leaf :: (t : tree[h])

t← leaf =
case t ( parity⇒ % · ` t : ©5h+2 bool

% delay5h+2 % · ` t : bool
t.b0 ; % · ` t : 1
close t )

l : ©1tree[h], r : ©3 tree[h] ` node :: (t : tree[h+ 1])

t← node← l r =
case t ( parity⇒ % l : tree[h], r : ©2 tree[h] ` t : ©5(h+1)+2 bool
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l.parity ; % l : ©5h+2 bool, r : ©1tree[h] ` t : ©5(h+1)+1 bool
% delay % l : ©5h+1 bool, r : tree[h] ` t : ©5h+5 bool
r.parity ; % l : ©5h bool, r : ©5h+2 bool ` t : ©5h+4 bool
% delay5h % l : bool, r : ©2 bool ` t : ©4 bool
t← xor← l r )

�e type l : © tree[h] comes from the fact that, a�er receiving a parity request, it is �rst sent
out the parity request to the le� subtree l. �e type r : ©3 tree[h] is determined from the
delay of 2 between the two inputs to xor. �e magic number 5 in the type of tree was derived in
reverse from se�ing up the goal of type-checking the node process under the constraints already
mentioned. It can also be thought of as 4+1, where 4 is the time to compute the exclusive or at
each level and 1 as the time to propagate the parity request down each level.

As is o�en done in abstract complexity analysis, I can also impose an alternative cost model.
For example, I may count only the number of calls to xor while all other operations are cost free.
�en I would have

a : bool, b : bool ` xor :: (c : ©bool)
tree[h] = N{ parity : ©h bool }

· ` leaf :: (t : tree[h])
l : tree[h], r : tree[h] ` node :: (t : tree[h+ 1])

with the same code but di�erent times and delays from before. �e reader is invited to recon-
struct the details.

5.6 Related Work
Most closely related is work on space and time complexity analysis of interaction nets by
Gimenez and Moser [75], which is a parallel execution model for functional programs. While
also inspired by linear logic and, in particular, proof nets, it treats only special cases of the ad-
ditive connectives and recursive types and does not have analogues of the � and ♦ modalities.
It also does not provide a general source-level programming notation with a syntax-directed
type system. On the other hand it incorporates sharing and space bounds, which are beyond
the scope of this work.

Session types and process calculi. Another related thread is the research on timed multi-
party session types [38] for modular veri�cation of real-time choreographic interactions. �eir
system is based on explicit global timing interval constraints, capturing a new class of commu-
nicating timed automata, in contrast to our system based on binary session types in a general
concurrent language. �erefore, their system has no need for general � and ♦ modalities,
the ability to pass channels along channels, or the ability to identify channels via forwarding.
�eir work is complemented by an expressive dynamic veri�cation framework in real-time dis-
tributed systems [124], which I do not consider. Semantics counting communication costs for
work and span in session-typed programs were given by Silva et al. [146], but no techniques
for analyzing them were provided.

In addition to the work on timed multiparty session types, time has been introduced into
the π-calculus (see, for example, Saeedloei and Gupta [142]) or session-based communication
primitives (see, for example, López et al. [115]) but generally these works do not develop a
type system. Kobayashi [102] extends a (synchronous) π-calculus with means to count parallel
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reduction steps. He then provides a type system to verify time-boundedness. �is is more
general in some dimension than our work because of a more permissive underlying type and
usage system, but it lacks internal and external choice, genericity in the cost model, and provides
bounds rather than a �ne gradation between exact and inde�nite times. Session types can also
be derived by a Curry-Howard interpretation of classical linear logic [159] but I am not aware
of temporal extensions. I conjecture that there is a classical version of our system where� and
♦ are dual and © is self-dual.

Reactive programming. Synchronous data �ow languages such as Lustre [86], Esterel [34],
or Lucid Synchrone [133] are time-synchronous with uni-directional �ow and thus may be
compared to the fragment of our language with internal choice (⊕) and the next-time modality
(©A), augmented with existential quanti�cation over basic data values like booleans and inte-
gers (which we have omi�ed here only for the sake of brevity). �e global clock would map
to our underlying notion of time, but data-dependent local clocks would have to be encoded at
a relatively low level using streams of option type, compromising the brevity and elegance of
these languages. Furthermore, synchronous data �ow languages generally permit sharing of
channels, which, although part of many session-typed languages [25, 42], require further inves-
tigation with temporal modalities. On the other hand, I support a number of additional types
such as external choice (N) for bidirectional communication and higher-order channel-passing
(A ( B, A ⊗ B). In the context of functional reactive programming, a Nakano-style [123]
temporal modality has been used to ensure productivity [104]. A di�erence in my work is that
I consider concurrent processes and that the types prescribe the timing of messages.

Computational interpretations of ©A. A �rst computational interpretation of the next-
time modality under a proofs-as-programs paradigm was given by Davies [65]. �e basis is
natural deduction for a (non-linear!) intutionistic linear-time temporal logic with only the next-
time modality. Rather than capturing cost, the programmer could indicate staging by stipulating
that some subexpressions should be evaluated “at the next time”. �e natural operational se-
mantics then is a logically-motivated form of partial evaluation which yields a residual program
of type ©A. �is idea was picked up by Feltman et al. [69] to instead split the program stati-
cally into two stages where results from the �rst stage are communicated to the second. Again,
neither linearity (in the sense of linear logic), nor any speci�c cost semantics appears in this
work.

Other techniques. Computing the cost of concurrent programs is a fundamental problem in
resource analysis. Ho�mann and Shao [90] introduced the �rst automatic analysis for deriv-
ing bounds on the worst-case evaluation cost of parallel �rst-order functional programs. �eir
main limitation is that they can only handle parallel computation; they don’t support message-
passing or shared memory based concurrency. Blelloch and Reid-Miller [37] utilize pipelin-
ing [127] to improve the complexity of parallel algorithms. However, they use futures [87], a
parallel language construct to implement pipelining without the programmer having to specify
them explicitly. �e runtime of algorithms is determined by analyzing the work and depth in a
language-based cost model. �e work relates to ours in the sense that pipelines can have delays,

81



which can be data dependent. However, the algorithms they analyze have no message-passing
concurrency or other synchronization constructs. Albert et al. [14] devised a static analysis for
inferring the parallel cost of distributed systems. �ey �rst perform a block-level analysis to es-
timate the serial cost, then construct a distributed �ow graph (DFG) to capture the parallelism
and then obtain the parallel cost by computing the maximal cost path in the DFG. However,
the bounds they produce are modulo a points-to and serial cost analysis. Hence, an imprecise
points-to analysis will result in imprecise parallel cost bounds. Moreover, since their technique
is based on static analysis, it is not compositional and a whole program analysis is needed to
infer bounds on each module. Recently, a bounded linear typing discipline [74] modeled in a
semiring was proposed for resource-sensitive compilation. It was then used to calculate and
control execution time in a higher-order functional programming language. However, this lan-
guage did not support recursion.

5.7 Future Directions
I have presented a system of temporal session types that can accommodate and analyze concur-
rent programs with respect to a variety of di�erent cost models. Types can vary in precision,
based on desired and available information, and includes latency, rate, response time, and span
of computations. It is constructed in a modular way, on top of a system of basic session types,
and therefore lends itself to easy generalization. I have illustrated the type system through a
number of simple programs on streams of bits, binary counters, lists, stacks, queues, and trees.
I mention some of the further challenges that need to be addressed in this domain of temporal
session types.

Inference Inference of time bounds will make resource-aware session types more practical
and usable. �e most severe di�culty here is the © operator. Computing the number of ©
operators to insert at a program point is non-trivial. �e idea here would be similar to work
inference. �e inference engine �rst inserts a parametric amount of delay and then the type-
checker determines the constraints on the inserted delays. A solver then tries to determine the
value of said delays. �e � and ♦ operators do not involve any parameters and they should be
easier to handle.

Dependent Types Time bounds are o�en dependent on the type re�nements applied to ses-
sion types. However, these dependencies bring along their own challenges. �ey require an
arithmetic solver engine in the type checker, along with a system that allows parameters in
types and process de�nitions. Moreover, they exacerbate the non-determinism in subtyping.
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Part II

Application of Resource-Aware Session
Types
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Chapter 6

Programming Digital Contracts

�e �rst part of this thesis develops the theory of resource-aware session types. �e second
major contribution of this thesis is to design a language based on resource-aware session types
and apply it to the domain of digital contracts. �is chapter describes how resource-aware
session types are a perfect �t for smart contracts and cleanly addresses the core challenges
developers face in this domain. �is chapter also presents the type theory of this language, its
various components, and type soundness theorems.

6.1 Introduction
Digital contracts are computer protocols that describe and enforce the execution of a contract.
With the rise of blockchains and cryptocurrencies such as Bitcoin [122], Ethereum [161], and
Tezos [79], digital contracts have become popular in the form of smart contracts, which provide
potentially distrusting parties with programmable money and an enforcement mechanism that
does not rely on third parties. Smart contracts have been used to implement auctions [1], in-
vestment instruments [121], insurance agreements [98], supply chain management [108], and
mortgage loans [120]. In general, digital contracts hold the promise to reduce friction, lower
cost, and broaden access to �nancial infrastructure.

Smart contracts have not only shed light on the bene�ts of digital contracts but also on
their potential risks. Like all so�ware, smart contracts can contain bugs and security vulnera-
bilities [22], which can have direct �nancial consequences. A well-known example, is the a�ack
on �e DAO [121], resulting in a multi-million dollar the� by exploiting a contract vulnerabil-
ity. Maybe even more important than the direct �nancial consequences is the potential erosion
of trust as a result of such failures.

Contract languages today are derived from existing general-purpose programming lan-
guages like JavaScript (Ethereum’s Solidity [54]), Go (in the Hyperledger project [41]), or OCaml
(Tezos’ Liquidity [4]). While this makes contract languages look familiar to so�ware developers,
it is inadequate to accommodate the domain-speci�c requirements of digital contracts.
• Instead of centering contracts on their interactions with users, the high-level protocol of

the intended interactions with a contract is buried in the implementation code, hampering
understanding, formal reasoning, and trust.
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• Resource (or gas) usage of digital contracts is of particular importance for transparency and
consensus. However, obliviousness of resource usage in existing contract languages makes it
hard to predict the cost of executing a contract and prevent denial-of-service vulnerabilities.

• Existing languages fail to enforce linearity of assets, endangering the validity of a contract
when assets get duplicated or deleted, accidentally or maliciously [118].

As a result, developing a correct smart contract is no easier than developing bug-free so�ware
in general. Additionally, vulnerabilities are harder to �x, because changes in the code may
proliferate into changes in the contract itself.

�is chapter presents the type-theoretic foundations of Nomos, a programming language
for digital contracts whose genetics match the domain-speci�c requirements to provide strong
static guarantees that facilitate the design of correct contracts. In particular, Nomos’ type sys-
tem makes explicit the protocols governing a contract, provides static bounds on the resource
cost of interacting with a contract, and enforces a linear treatment of a contract’s assets.

To express and enforce the protocols underlying a contract, Nomos is based on resource-
aware session types [61]. �e types describe the protocol of interaction between users and con-
tracts and serve as a high-level description of the functionality of the contract. Type checking
can be automated and guarantees that Nomos programs follow the given protocol. In this way,
the key functionality of the contract is visible in the type, and contract development is centered
on the interaction of the contract with the world. In addition to the interaction, resource-aware
types also make the transaction cost visible in the type. �is makes transactions transparent in
their resource usage, and type checking again guarantees that the transactions do not exceed
the resource usage prescribed by the type.

To eliminate a class of bugs in which the internal state of a contract loses track of its assets
or performs unintended transactions, Nomos integrates a linear type system [158] into a func-
tional language. Linear type systems use the ideas of Girard’s linear logic [76] to ensure that
certain data is neither duplicated nor discarded by a program. Programming languages such as
Rust [7] have demonstrated that substructural type systems are practical in industrial-strength
languages. Moreover, linear types are compatible with session types, which are themselves
based on linear logic [25, 42, 129, 153, 159].

In addition to the design of the Nomos language, this chapter makes the following technical
contributions.

1. Linear session types that support controlled sharing [25, 26] have been integrated into a
conventional functional type system. To leave the logical foundation intact, the integra-
tion is achieved by a contextual monad [153] (Section 6.4) that gives process expressions
�rst-class status in the functional language. Moreover, shared session types [25] are re-
cast to accommodate the explicit notions of contracts and clients (Section 6.3).

2. I prove the type soundness of Nomos with respect to a novel asynchronous cost semantics
using progress and preservation (Section 6.6).
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6.2 Nomos by Example
�is section provides an overview of the main features of Nomos based on a simple auction
contract.

Explicit Protocols of Interaction Digital contracts, like traditional contracts, follow a pre-
de�ned protocol. For instance, an auction contract distinguishes a bidding phase, where bidders
submit their bids, possibly multiple times, from a subsequent collection phase, where the high-
est bidder receives the lot while all other bidders receive their bids back. In Solidity [54], the
bidding phase of an auction is typically implemented as the bid function below. �is function
receives a bid (msg.value) from a bidder (msg.sender) and adds it to the bidder’s total previous
bids (bidValue).

function bid() public payable {

require (status == running);

bidder = msg.sender; bid = msg.value;

bidValue[bidder] = bidValue[bidder] + bid; }

To guarantee that a bid can only be placed in the bidding phase, the contract uses the state
variable status to track the di�erent phases of a contract. �e require statement tests whether
the auction is still running and thus accepts bids. It is checked at run-time and aborts the
execution if the condition is not met. It is the responsibility of the programmer to de�ne state
variables, update them, and introduce corresponding guards.

Rather than burying the contract’s interaction protocol in implementation code by means
of state variables and run-time checks, Nomos allows the explicit expression and static enforce-
ment of protocols with session types. �e auction’s protocol amounts to the below session type:

auction = ↑SL/22 ⊕ {running : N{bid : id→ money( ↓SLauction, % recv bid from client
cancel : .21↓SLauction}, % client canceled

ended : N{collect : id→⊕{won : lot⊗ ↓SLauction, % client won
lost : money ⊗ .7↓SLauction}, % client lost

cancel : .21↓SLauction}} % client canceled
We �rst focus on how the session type de�nes the main interactions of a contract with a

bidder and ignore the operators ↑SL, ↓SL, /, and . for now. To distinguish the two main phases
an auction can be in, the session type uses an internal choice (⊕), leading the contract to either
send the label running or ended, depending on whether the auction still accepts bids or not,
respectively. Dual to an internal choice is an external choice (N), which leaves the choice to the
client (i.e., bidder) rather than the provider (i.e., contract). For example, in case the auction is
running, the client can choose between placing a bid (label bid) or backing out (cancel). In the
former case, the client indicates their identi�er (type id), followed by a payment (type money).
Nomos session types allow transfer of both non-linear (e.g., id) and linear assets (e.g., money),
using the operators arrow (→) and ((), respectively. Should the auction have ended, the client
can choose to check their outcome (label collect) or back out (cancel). In the case of collect, the
auction will answer with either won or lost. In the former case, the auction will send the lot,
in the la�er case, it will return the client’s bid. �e linear product (⊗) is dual to( and denotes
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the transfer of a linear value from the contract to the client. �e auction type guarantees that a
client cannot collect during the running phase, while they cannot bid during the ended phase.

Nomos uses shared session types [25] to guarantee that bidders interact with the auction in
mutual exclusion from each other and that the sequences of actions are executed atomically. To
demarcate the parts of the protocol that become a critical section, the above session type uses
the ↑SL and ↓SL modalities. �e ↑SL modality denotes the beginning of a critical section, the ↓SL
modality denotes its end. Programmatically, ↑SL translates into an acquire of the auction session
and ↓SL into its release, which is only sound if the protocol behaves like an auction a�erwards
(equi-synchronizing type).

Contracts are implemented by processes, revealing the concurrent, message-passing nature
of session-typed languages. �e process run below implements the auction’s running phase.
Line 2 gives the process’ signature, indicating that it o�ers a shared session of type auction
along the channel sa and uses a linear hash map b : hashmapid,bid of bids indexed by id and a
linear lot l. �e bid session type (line 1) can be queried for the stored identi�er and bid value,
and is o�ered by a process (not shown) that internally stores this identi�er and money. Line 4
onward list the process body. Line 1 de�nes session types bid and bids, respectively.
1: stype bid = N{addr : id× bid,val : money}, stype bids = hashmapid,bid

2: (b : bids), (l : lot) ` run :: (sa : auction) % syntax for process declaration
3: sa← run b l = % syntax for process de�nition
4: la← accept sa ; % accept a client acquire request
5: la.running ; % auction is running
6: case la ( bid⇒ r ← recv la ; % receive identi�er r : id
7: m← recv la ; % receive bid m : money
8: sa← detach la ; % detach from client
9: b′ ← addbid r b m ; % store bid internally
10: sa← check b′ l % check if threshold reached
11: | cancel⇒ sa← detach la ; % detach from client
12: sa← run b l) % recurse
�e contract process �rst accepts an acquire request by a bidder (line 4) and then sends the mes-
sage running (line 5), indicating the auction status and waiting for the bidder’s choice. Should
the bidder choose to make a bid, the process waits to receive the bidder’s identi�er (line 6) fol-
lowed by money equivalent to the bidder’s bid (line 7). A�er this linear exchange, the process
leaves the critical section by issuing a detach (line 8), matching the bidder’s release request.
Internally, the process stores the pair of the bidder’s identi�er and bid in the data structure
bids (line 9). �e ended protocol of the contract is governed by a di�erent process (not shown),
responsible for distributing the bids back to the clients. �e contract transitions to the ended
state when the number of bidders reaches a threshold (stored in auction). �is is achieved by
the check process (line 10) which checks if the threshold has been reached and makes this tran-
sition, or calls run otherwise. Should the bidder choose to cancel, the contract simply detaches
and recurses (lines 11,12).

Re-Entrancy Vulnerabilities A contract function is re-entrant if, once called by a user, it
can potentially be called again before the previous call has completed. As an illustration, con-
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sider the following collect function of the auction contract in Solidity where the funds are trans-
ferred to the bidder before the hash map is updated to re�ect this change.
function collect() public payable {

require (status == ended);

bidder = msg.sender; bid = bidValue[bidder];

bidder.send(bid); bidValue[bidder] = 0; }

function () payable {

// ’auction’ variable stores the

// address to auction contract

auction.collect(); }

A bidder can now cause re-entrancy by creating a dummy contract with an unnamed fall-
back function (on the bo�om) that calls the auction’s collect function. �is call is triggered
when collect calls send (last line in collect), leading to an in�nite recursive call to collect, de-
pleting all funds from the auction. �e message-passing framework of session types eliminates
this vulnerability. While session types provide multiple clients access to a contract, the acquire-
release discipline ensures that clients interact with the contract in mutual exclusion. To a�empt
re-entrancy, a bidder will need to acquire the auction contract twice without releasing it.

Linear Assets Nomos integrates a linear type system that tracks the assets stored in a pro-
cess. �e type system enforces that assets are never duplicated, but only exchanged between
processes. Moreover, the type system prevents a process from terminating while it holds lin-
ear assets. For example, the auction contract treats money and lot as linear assets, which is
witnessed by the use of the linear operators( and⊗ for their exchange. In contrast, no provi-
sions to handle assets linearly exist in Solidity, allowing such assets to be created out of thin air,
duplicated, or discarded. In the above bid function, for instance, the language does not prevent
the programmer from writing bidValue[bidder] = bid instead, losing the bidder’s previous bid.

Resource Cost Another important aspect of digital contracts is their resource usage. On a
blockchain, executing a contract function, or transaction, requires new blocks to be added to
the blockchain. In existing blockchains like Ethereum, this is done by miners who charge a
fee based on the gas usage of the transaction, indicating the cost of its execution. Precisely
computing this cost statically is important because the sender of a transaction must pay this
fee to the miners along with sending the transaction. If the sender does not pay a su�cient
amount, the transaction will be rejected by the miners and the sender’s fee is lost!

Nomos uses resource-aware session types [61] to statically analyze the resource cost of a
transaction. �ey operate by assigning an initial potential to each process. �is potential is
consumed by each operation that the process executes or can be transferred between processes
to share and amortize cost. �e cost of each operation is de�ned by a cost model. If the cost
model assigns a cost to each operation as equivalent to their gas cost during execution, the
potential consumed during a transaction re�ects an upper bound on the gas usage.

Resource-aware session types express the potential as part of the session type using the
operators / and .. �e / operator prescribes that the client must send potential to the contract,
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with the amount of potential indicated as a superscript. Dually, . prescribes that the contract
must send potential to the client. In the case of the auction contract, we require the client to pay
potential for the operations that the contract must execute, both while placing and collecting
their bids. If the cost model assigns a cost of 1 to each contract operation, then the maximum
cost of an auction session is 22 (taking the max number of operations in all branches). �us,
we require the client to send 22 units of potential at the start of a session using /22. In the
lost branch of the auction type, on the other hand, the contract returns 7 units of potential to
the client using .7. �is simulates gas usage in smart contracts, where the sender initiates a
transaction with some initial gas, and the le�over gas at the end of the transaction is returned
to the sender. In contrast to existing smart contract languages like Solidity, which provide no
support for analyzing the cost of a transaction, Nomos’ type checker has automatically inferred
these potential annotations and guarantees that well-typed transactions cannot run out of gas.

Bringing It All Together Combining all these features soundly in one language is challeng-
ing. In Nomos, we achieve this by using di�erent typing judgments and modes, identifying the
role of the process o�ered along that channel. �e mode R denotes purely linear processes for
linear assets or private data structures, such as b and l in the auction. �e modes S and L de-
note sharable processes, i.e., contracts, that are either in their shared or linear phase such as
sa and la, respectively. �e mode T denotes a transaction process that can refer to shared and
linear processes and is issued by a user, such as bidder in the auction. �e mode assignment
carries over into the process typing judgments imposing invariants (De�nition 7) that are key
to type safety. �e mode annotations are automatically inferred by the type checker relieving
programmers from this burden.

Typing Judgment For typing Nomos processes, we use the judgment Ψ ; Γ ; ∆ `q P ::
(x : A). As we introduce each concept, the role of each symbol will become clear. Henceforth,
we indicate the current concepts from the judgment in black while the concepts that will be
introduced in later sections are marked in blue.

6.3 Sharing Contracts
Multi-user support is fundamental to digital contract development. Linear session types, as
de�ned in Chapter 3, unfortunately preclude such sharing because they restrict processes to
exactly one client; only one bidder for the auction, for instance (who will always win!). To sup-
port multi-user contracts, we base Nomos on shared session types [25]. Shared session types
impose an acquire-release discipline on shared processes to guarantee that multiple clients in-
teract with a contract in mutual exclusion of each other. When a client acquires a shared con-
tract, it obtains a private linear channel along which it can communicate with the contract
undisturbed by any other clients. Once the client releases the contract, it loses its private linear
channel and only retains a shared reference to the contract.

A key idea of shared session types is to li� the acquire-release discipline to the type level.
Generalizing the idea of type strati�cation [33, 129, 139], session types are strati�ed into a linear
and shared layer with two adjoint modalities going back and forth between them:
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AR ::= ⊕{` : AR}`∈L | N{` : AR}`∈L | 1 | Am(m AR | Am ⊗m AR

| τ → AR | τ × AR

AL ::= ⊕{` : AL}`∈L | N{` : AL}`∈L | 1 | Am(m AL | Am ⊗m AL

| τ → AL | τ × AL | ↓SL AS

AS ::= ↑SL AL

AT ::= AR

Figure 6.1: Grammar for shared session types

AS ::= ↑SL AL shared session type
AL ::= . . . | ↓SL AS linear session types

�e ↑SL type modality translates into an acquire, while the dual ↓SL type modality into a release.
Whereas mutual exclusion is one key ingredient to guarantee session �delity (a.k.a. type preser-
vation) for shared session types, the other key ingredient is the requirement that a session type
is equi-synchronizing. A session type is equi-synchronizing if it imposes the invariant on a
process to be released back to the same type at which the process was previously acquired.
�is is also the key behind eliminating re-entrancy vulnerabilities since it prevents a user from
interrupting an ongoing session in the middle and initiating a new one.

Recall the process typing judgment in Nomos Ψ ; Γ ; ∆ `q P :: (xm : A) denoting a process
P o�ering service of typeA along channel x at modem. �e contexts Γ and ∆ store the shared
and linear channels that P can refer to, respectively (Ψ and q are explained later and thus
marked in blue in Figure 6.2). �e strati�cation of channels into layers arises from a di�erence
in structural properties that exist for types at a mode. Shared propositions exhibit weakening,
contraction and exchange, thus can be discarded or duplicated, while linear propositions only
exhibit exchange.

Allowing Contracts to Rely on Linear Assets As exempli�ed by the auction contract, a
digital contract typically amounts to a process that is shared at the outset, but oscillates between
shared and linear to interact with clients, one at a time. Crucial for this pa�ern is the ability
of a contract to maintain its linear assets (e.g., money or lot for the auction) regardless of its
mode. Unfortunately, current shared session types [25] do not allow a shared process to rely on
any linear channels, requiring any linear assets to be consumed before becoming shared. �is
precaution was logically motivated [137] and also crucial for type preservation.

A key novelty of our work is to li� this restriction while maintaining type preservation. �e
main concern regarding preservation is to prevent a process from acquiring its client, which
would result in a cycle in the linear process tree. To this end, we factor the process typing judg-
ment according to the three roles that arise in digital contract programs: contracts, transactions,
and linear assets. Since contracts are shared and thus can oscillate between shared and linear,
we get 4 sub-judgments for typing processes, each characterized by the mode of the channel
being o�ered.
De�nition 7 (Process Typing). �e judgment Ψ ; Γ ; ∆ `q P :: (xm : A) is categorized
according to modem. �is factorization imposes certain invariants on the judgment outlined below.
L(A) denotes the language generated by the grammar of A.
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1. Ifm = R, then (i) Γ is empty, (ii) for all dk ∈ ∆ =⇒ k = R, and (iii) A ∈ L(AR).
2. Ifm = S, then (i) for all dk ∈ ∆ =⇒ k = R, and (ii) A ∈ L(AS).
3. Ifm = L, then (i) for all dk ∈ ∆ =⇒ k = R ∨ k = L, and (ii) A ∈ L(AL).
4. Ifm = T, then A ∈ L(AT).

Figure 6.1 shows the session type grammar in Nomos. �e �rst sub-judgment in De�nition 7
is for typing linear assets. �ese type a purely linear process P using a purely linear context ∆
(types belonging to grammarAR in Figure 6.1) and o�ering a purely linear typeA along channel
xR. �e mode R of the channel indicates that a purely linear session is o�ered. �e second and
third sub-judgments are for typing contracts. �e second sub-judgment shows the type of a
contract process P using a shared context Γ and a purely linear channel context ∆ (judgment
∆ purelin) and o�ering shared type A on the shared channel xS. Once this shared channel is
acquired by a user, the shared process transitions to its linear phase, whose typing is governed
by the third sub-judgment. �e o�ered channel transitions to linear mode L, while the linear
context may now contain channels at modes R or L. Finally, the fourth typing judgment types
a linear process, corresponding to a transaction holding access to shared channels Γ and linear
channels ∆, and o�ering at mode T.

�is novel factorization upholds preservation while allowing shared contract processes to
rely on linear resources. �e modes impose the ordering R < S < L < T among the linear
channels in the con�guration. A process (o�ering a channel) at a certain mode is allowed to
rely only on processes at the same or lower mode. �ese are exactly the conditions imposed
by De�nition 7. �is introduces an implicit ordering among the linear processes depending on
their mode, thus eliminating cycles in the process tree. Relatedly, shared processes can only
refer to shared channels (at mode S) or purely linear channels (at mode R) as exempli�ed by the
judgment ∆ purelin in Figure 6.2. Formally, ∆ purelin denotes that for all dk ∈ ∆ =⇒ k = R.
�is ensures that a shared contract must release all processes it has acquired before itself being
released. �is further enforces an ordering in which the channels are acquired and released,
thus allowing contracts to interact with other contracts without compromising type safety.

Shared session types introduce new typing rules into our system, concerning the acquire-
release constructs (see Figure 6.2). In rule ↑SL L, an acquire is applied to the shared channel
xS :↑SL AL in Γ and yields a linear channel xL added to ∆ when successful. A contract process
can accept an acquire request along its o�ering shared channel xS. A�er the accept is successful,
the shared contract process transitions to its linear phase, now o�ering along the linear channel
xL (rule ↑SL R).

�e synchronous dynamics of the acquire-accept pair is
(↑SL C) : proc(aS, w

′, xL ← accept aS ; PxL), proc(cm, w, xL ← acquire aS ; QxL) 7→
proc(aL, w

′, PaL), proc(cm, w,QaL)

�is rule exploits the invariant that a contract process’ providing channel a can come at two
di�erent modes, a linear one aL, and a shared one aS. �e linear channel aL is substituted for
the channel variable xL occurring in the process terms P and Q.

�e dual to acquire-accept is release-detach. A client can release linear access to a contract
process, while the contract process detaches from the client. �e corresponding typing rules
are presented in Figure 6.2. �e e�ect of releasing the linear channel xL is that the continuation
Q loses access to xL, while a new reference to xS is made available in the shared context Γ. �e
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Ψ ; Γ ; ∆ `q P :: (xm : A) Process P uses shared channels in Γ and o�ers A along x.

Ψ ; Γ ; ∆, (xL : AL) `q Q :: (zm : C)

Ψ ; Γ, (xS :↑SL AL) ; ∆ `q xL ← acquire xS ; Q :: (zm : C)
↑SL L

∆ purelin Ψ ; Γ ; ∆ `q P :: (xL : AL)

Ψ ; Γ ; ∆ `q xL ← accept xS ; P :: (xS :↑SL AL)
↑SL R

Ψ ; Γ, (xS : AS) ; ∆ `q Q :: (zm : C)

Ψ ; Γ ; ∆, (xL :↓SL AS) `q xS ← release xL ; Q :: (zm : C)
↓SL L

∆ purelin Ψ ; Γ ; ∆ `q P :: (xS : AS)

Ψ ; Γ ; ∆ `q xS ← detach xL ; P :: (xL :↓SL AS)
↓SL R

Figure 6.2: Typing rules corresponding to the shared layer.

contract, on the other hand, detaches from the client by transitioning its o�ering channel from
linear mode xL back to the shared mode xS. Both right rules ↑SL R and ↓SL R require ∆ purelin
ensuring that a shared process releases all shared channels before themselves being released.
Operationally, the release-detach rule is inverse to the acquire-accept rule.
(↓SL C) : proc(aL, w

′, xS ← detach aL ; PxS), proc(cm, w, xS ← release aL ; QxS) 7→
proc(aS, w

′, PaS), proc(cm, w,QaS)

6.4 Adding a Functional Layer
To support general-purpose programming pa�erns, Nomos combines linear channels with con-
ventional data structures, such as integers, lists, or dictionaries. To re�ect and track di�erent
classes of data in the type system, we take inspiration from prior work [129, 153] and incorpo-
rate processes into a functional core via a linear contextual monad that isolates session-based
concurrency. To this end, we introduce a separate functional context to the typing of a process.
�e linear contextual monad encapsulates open concurrent computations, which can be passed
in functional computations but also transferred between processes in the form of higher-order
processes, providing a uniform integration of higher-order functions and processes.

�e types are separated into a functional and concurrent part, mutually dependent on each
other. �e functional types τ are given by the type grammar below.

τ ::= τ → τ | τ + τ | τ × τ | int | bool | Lq(τ)
| {AR ← AR}R | {AS ← AS ; AR}S | {AT ← AS ; A}T

�e types are standard, except for the potential annotation q ∈ N in list type Lq(τ), which we
explain in Section 6.5, and the contextual monadic types in the last line, which are the topic of
this section. �e expressivity of the types and terms in the functional layer are not important
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for the development in this paper. �us, we do not formally de�ne functional terms M but
assume that they have the expected term formers such as function abstraction and application,
type constructors, and pa�ern matching. We also de�ne a standard type judgment for the
functional part of the language.

Ψ 
p M : τ term M has type τ in functional context Ψ (potential p discussed later)

Contextual Monad �e main novelty in the functional types are the three type formers
for contextual monads, denoting the type of a process expression. �e type {AR ← AR}R
denotes a process o�ering a purely linear session type AR and using the purely linear vector
of types AR. �e corresponding introduction form in the functional language is the monadic
value constructor {cR ← P ← dR}, denoting a runnable process o�ering along channel cR that
uses channels dR, all at mode R. �e corresponding typing rule for the monad is (ignore the
blue portions)

∆ = dR : D Ψ ; · ; ∆ `q P :: (xR : A)

Ψ 
q {xR ← P ← dR} : {A← D}R
{}IR

�e monadic bind operation implements process composition and acts as the elimination
form for values of type {AR ← AR}R. �e bind operation, wri�en as cR ← M dR ; Qc,
composes the process underlying the monadic termM , which o�ers along channel cR and uses
channels dR, with Qc, which uses cR. �e typing rule for the monadic bind is rule {}ERR in
Figure 6.3. �e linear context is split between the monad M and continuation Q, enforcing
linearity. Similarly, the potential in the functional context is split using the sharing judgment
(.), explained in Section 6.5. �e shared context Γ is empty in accordance with the invariants
established in De�nition 7 (i), since the mode of o�ered channel x is R. �e e�ect of executing
a bind is the spawn of the purely linear process corresponding to the monad M , and the parent
process continuing with Q. �e corresponding operational semantics rule (named spawnRR) is
given as follows:

proc(dR, w, xR ← {x′R ← Px′R,y ← y} a ; Q) 7→ proc(cR, 0, PcR,a), proc(dR, w, [cR/xR]Q)

�e above rule spawns the process P o�ering along a globally fresh channel cR, and using
channels a. �e continuation process Q acts as a client for this fresh channel cR. �e other two
monadic types correspond to spawning a shared process {AS ← AS ; AR}S and a transaction
process {AT ← AS ; A}T at mode S and T, respectively. �eir rules are analogous to {}IR and
{}ERR.

Value Communication Communicating a value of the functional language along a channel
is expressed at the type level by adding the following two session types.

A ::= . . . | τ → A | τ × A
�e type τ → A prescribes receiving a value of type τ with continuation type A, while its dual
τ × A prescribes sending a value of type τ with continuation A. �e corresponding typing
rules for arrow (→ R,→ L) are given in Figure 6.3 (rules for × are inverse). Receiving a value
adds it to the functional context Ψ, while sending it requires proving that the value has type
τ . Semantically, sending a value M : τ creates a message predicate along a fresh channel c+

m

containing the value:
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Ψ ; Γ ; ∆ `q P :: (xm : A) Process P uses functional values in Ψ.

r = p+ q ∆ = dR : D Ψ . (Ψ1,Ψ2)
Ψ1 


p M : {A← D} Ψ2 ; · ; ∆′, (xR : A) `q Q :: (zR : C)

Ψ ; · ; ∆,∆′ `r xR ←M dR ; Q :: (zR : C)
{}ERR

Ψ, (y : τ) ; Γ ; ∆ `q P :: (xm : A)

Ψ ; Γ ; ∆ `q y ← recv xm ; P :: (xm : τ → A)
→ R

r = p+ q Ψ . (Ψ1,Ψ2) Ψ1 

p M : τ Ψ2 ; Γ ; ∆, (xm : A) `q Q :: (zk : C)

Ψ ; Γ ; ∆, (xm : τ → A) `r send xm M ; Q :: (zk : C)
→ L

Figure 6.3: Typing rules corresponding to the functional layer.

(→ S) : proc(dk, w, send cm M ; P ) 7→ msg(c+
m, 0, send cm M ; c+

m ↔ cm),
proc(dk, w, [c

+
m/cm]P )

�e recipient process substitutes M for x, and continues to o�er along the fresh continuation
channel received by the message. �is ensures that messages are received in the order they are
sent. �e rule is formalized below.
(→ C) : proc(cm, w

′, x← recv cm ; Q),msg(c+
m, w, send cm M ; c+

m ↔ cm) 7→
proc(c+

m, w + w′, [c+
m/cm][M/x]Q)

Tracking Linear Assets As an illustration, consider the type money introduced in the auc-
tion example (Section 6.2). �e type is an abstraction over funds stored in a process and is
described as
money =

N{value : int×money, % send value
add : money(R money, % receive money and add it
subtract : int→ ⊕{sufficient : money ⊗R money, % receive int, send money

insufficient : money} % funds insu�cient to subtract
coins : listcoin} % send list of coins

�e type supports querying for value, and addition and subtraction. �e type also expresses
insu�ciency of funds in the case of subtraction. �e provider process only supplies money to
the client if the requested amount is less than the current balance, as depicted in the sufficient
label. �e type is implemented by a wallet process that internally stores a linear list of coins
and an integer representing its value. Since linearity is only enforced on the list of coins in the
linear context, we trust the programmer updates the integer in the functional context correctly
during transactions. �e process is typed and implemented as (modes of channels l and m is R,
skipped in the de�nition for brevity)

1: (n : int) ; (lR : listcoin) ` wallet :: (mR : money)
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2: m← wallet n l =
3: case m % case analyze on label received on m
4: (value⇒ send m n ; % receive value, send n
5: m← wallet n l
6: | add⇒m′ ← recv m ; % receive m′ : money to add
7: m′.value ; % query value of m′
8: v ← recv m′ ;
9: m′.coins ; % extract list of coins stored in m′
10: k ← append l m′ ; % append list received to internal list
11: m← wallet (n+ v) k
12: | subtract⇒ n′ ← recv m ; % receive int to subtract
13: if (n′ > n) then
14: m.insufficient ; % funds insu�cient
15: m← wallet n l
16: else
17: m.sufficient ; % funds su�cient
18: l′ ← remove n′ l ; % remove n′ coins from l
19: k ← recv l′ ; % and create its own list
20: m′ ← wallet n′ k ; % new wallet process for subtracted funds
21: send m m′ ; % send new money channel to client
22: m← wallet (n− n′) l′
23: | coins⇒m↔ l)

If the wallet process receives the message value, it sends back the integer n, and recurses (lines 4
and 5). If it receives the message add followed by a channel of type money (line 6), it queries
the value of the received money m′ (line 7), stores it in v (line 8), extracts the coins stored in m′
(line 9), and appends them to its internal list of coins (line 10). Similarly, if the wallet process
receives the message subtract followed by an integer, it compares the requested amount against
the stored funds. If the balance is insu�cient, it sends the corresponding label, and recurses
(lines 14 and 15). Otherwise, it removes n′ coins using the remove process (line 18), creates a
money abstraction using the wallet process (line 20), sends it (line 21) and recurses. Finally,
if the wallet receives the message coins, it simply forwards its internal list along the o�ered
channel.

6.5 Tracking Resource Usage
Resource usage is particularly important in digital contracts: Since multiple parties need to
agree on the result of the execution of a contract, the computation is potentially performed
multiple times or by a trusted third party. �is immediately introduces the need to prevent
denial of service a�acks and to distribute the cost of the computation among the participating
parties.

�e predominant approach for smart contracts on blockchains like Ethereum is not to re-
strict the computation model but to introduce a cost model that de�nes the gas consumption of
low level operations. Any transaction with a smart contract needs to be executed and validated
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before adding it to the global distributed ledger, i.e., blockchain. �is validation is performed
by miners, who charge fees based on the gas consumption of the transaction. �is fee has to
be estimated and provided by the sender prior to the transaction. If the provided amount does
not cover the gas cost, the money falls to the miner, the transaction fails, and the state of the
contract is reverted back. Overestimates bear the risk of high losses if the contract has �aws or
vulnerabilities.

It is not trivial to decide on the right amount for the fee since the gas cost of the contract
does not only depend on the requested transaction but also on the (a priori unknown) state
of the blockchain. �us, precise and static estimation of gas cost facilitates transactions and
reduces risks. We discuss our approach of tracking resource usage, both at the functional and
process layer. �e former is handled using an adoption of automatic amortized resource analysis
(AARA) while the la�er is handled using potential annotations introduced in Chapter 4.

Functional Layer Numerous techniques have been proposed to statically derive resource
bounds for functional programs [23, 46, 55, 105, 138]. In Nomos, we adapt the work on AARA [91,
93] that has been implemented in Resource Aware ML (RaML) [92]. RaML can automatically de-
rive worst-case resource bounds for higher-order polymorphic programs with user-de�ned in-
ductive types. �e derived bounds are multivariate resource polynomials of the size parameters
of the arguments. AARA is parametric in the resource metric and can deal with non-monotone
resources like memory that can become available during the evaluation.

As an illustration, consider the function applyInterest that iterates over a list of balances and
applies interest on each element, multiplying them by a constant c. We use tick annotations to
de�ne the resource usage of an expression in this article. We have annotated the code to count
the number of multiplications. �e resource usage of an evaluation of applyInterest b is |b|.
let applyInterest balances =

match balances with

| [] -> []

| hd::tl -> tick(1); (c*hd)::(applyInterest tl)

(* consume unit potential for tick *)

�e idea of AARA is to decorate base types with potential annotations that de�ne a potential
function as in amortized analysis. �e typing rules ensure that the potential before evaluating
an expression is su�cient to cover the cost of the evaluation and the potential de�ned by the
return type. �is posterior potential can then be used to pay for resource usage in the contin-
uation of the program. For example, we can derive the following resource-annotated type.

applyInterest : L1(int) −−→0/0 L0(int)

�e type L1(int) denotes a list of integers assigning a unit potential to each element in the list.
�e return value, on the other hand, has no potential. �e annotation on the function arrow
indicates that we do not need any potential to call the function and that no constant potential
is le� a�er the function call has returned.

In a larger program, we might want to call the function applyInterest again on the result of
a call to the function. In this case, we would need to assign the type L1(int) to the resulting
list and require L2(int) for the argument. In general, the type for the function can be described
with symbolic annotations with linear constraints between them. To derive a worst-case bound
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for a function the constraints can be solved by an o�-the-shelf LP solver, even if the potential
functions are polynomial [91, 92].

In Nomos, we simply adopt the standard typing judgment of AARA for functional programs.
Ψ 
q M : τ

It states that under the resource-annotated functional context Ψ, with constant potential q, the
expression M has the resource-aware type τ .

�e operational cost semantics is de�ned by the judgment
M ⇓ V | µ

which states that the closed expression M evaluates to the value V with cost µ. �e type
soundness theorem states that if · 
q M : τ and M ⇓ V | µ then q ≥ µ.

More details about AARA can be found in the literature [92, 93] and the Nomos supplemen-
tary material.

Process Layer To bound the resource usage of a process, Nomos features previously intro-
duced resource-aware session types (Chapter 4) for work analysis. Resource-aware session
types describe resource contracts for inter-process communication. �e type system supports
amortized analysis by assigning potential to both messages and processes. �e derived resource
bounds are functions of interactions between processes. As an illustration, consider the follow-
ing resource-aware list interface from prior work [61].

listA = ⊕{nil0 : 10, cons1 : A
0
⊗ listA}

�e type prescribes that the provider of a list must send one unit of potential with every cons
message that it sends. Dually, a client of this list will receive a unit potential with every cons
message. All other type constructors are marked with potential 0, and exchanging the corre-
sponding messages does not lead to transfer of potential.

While resource-aware session types in Nomos are equivalent to the existing formulation [61],
our version is simpler and more streamlined. Instead of requiring every message to carry a po-
tential (and potentially tagging several messages with 0 potential), we introduce two new type
constructors for exchanging potential.

A ::= . . . | .rA | /rA
�e type .rA requires the provider to pay r units of potential which are transferred to the
client. Dually, the type /rA requires the client to pay r units of potential that are received by
the provider. �us, the reformulated list type becomes
listA = ⊕{nil : 1, cons : .1(A⊗ listA)}
�e reformulation is more compact since we need to account for potential in only the typing
rules corresponding to .rA and /rA.

With all aspects introduced, the process typing judgment
Ψ ; Γ ; ∆ `q P :: (xm : A)

denotes a process P accessing functional variables in Ψ, shared channels in Γ, linear channels
in ∆, o�ers service of type A along channel x at mode m and stores a non-negative constant
potential q. Similarly, the expressing typing judgment

Ψ 
p M : τ
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Ψ ; Γ ; ∆ `q P :: (xm : A) Process P has potential q.

p = q + r Ψ ; Γ ; ∆ `p P :: (xm : A)

Ψ ; Γ ; ∆ `q getxm {r} ; P :: (xm : /rA)
/R

q = p+ r Ψ ; Γ ; ∆, (xm : A) `p P :: (zk : C)

Ψ ; Γ ; ∆, (xm : /rA) `q pay xm {r} ; P :: (zk : C)
/L

q = p+ r Ψ ; Γ ; ∆ `p P :: (xm : A)

Ψ ; Γ ; ∆ `q tick (r) ; P :: (xm : A)
tick

Figure 6.4: Selected typing rules corresponding to potential.
denotes that expression M has type τ in the presence of functional context Ψ and potential p.

Figure 6.4 shows the rules that interact with the potential annotations. In the rule /R,
process P storing potential q receives r units along the o�ered channel xm : /rA using the get
construct and the continuation executes with p = q + r units of potential. In the dual rule /L,
a process storing potential q = p + r sends r units along the channel xm : /rA in ∆ using the
pay construct, and the continuation remains with p units of potential. �e typing rules for the
dual constructor .rA are the exact inverse. Finally, executing the tick (r) construct consumes
r potential from the stored process potential q, and the continuation remains with p = q − r
units, as described in the tick rule.

�e tick construct is used to simulate a cost model in Nomos. If an operation (e.g., sending
a message, calling a function, etc.) has a cost of r, this cost is simulated by inserting tick (r)
just before the operation. �en, the tick operations are the only ones that cost potential, thus
simplifying the type system. �ese tick operations are automatically inserted by the Nomos
type checker, using a prede�ned cost model that assigns a constant cost to each operation. In
addition, our implementation provides some standard cost models, for instance, that assign a
unit cost to each internal operation and sending a message.

Integration Since both AARA for functional programs and resource-aware session types are
based on the integration of the potential method into their type systems, their combination
is natural. �e two points of integration of the functional and process layer are (i) spawning
a process, and (ii) sending/receiving a value from the functional layer. Recall the spawn rule
{}ERR from Figure 6.3. A process storing potential r = p+q can spawn a process corresponding
to the monadic expressionM , ifM needs p units of potential to evaluate, while the continuation
needs q units of potential to execute. Moreover, the functional context Ψ is shared in the two
premises as Ψ1 and Ψ2 using the judgment Ψ . (Ψ1,Ψ2). �is judgment, already explored
in prior work [92] describes that the base types in Ψ are copied to both Ψ1 and Ψ2, but the
potential is split up. For instance, Lq1+q2(τ) . (Lq1(τ), Lq2(τ)). �e rule → L in Figure 6.3
follows a similar pa�ern. A processQ storing r = p+q potential sends a monadic expressionM
needing p units of potential to evaluate, and the continuation remains with q units of potential
to execute. �e p units of potential are consumed to evaluate M to a value before sending
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since only values are exchanged at runtime. �us, the combination of the two type systems is
smooth, assigning a uniform meaning to potential, both for the functional and process layer.
Remarkably, this technical device of exchanging functional values can be used to exchange non-
constant potential with messages. For instance, exchanging a list l : Lq(τ) will exchange q · n
units of potential where n is the size of the list l.

Operational Cost Semantics �e resource usage of a process (or message) is tracked in
semantic objects proc(c, w, P ) and msg(c, w,N) using the local counters w. �is signi�es that
the processP (or messageN ) has performedwork w so far. �e rules of semantics that explicitly
a�ect the work counter are

M ⇓ V | µ
proc(cm, w, P [M ]) 7→ proc(cm, w + µ, P [V ])

internal

�is rule describes that if an expression M evaluates to V with cost µ, then the process P [M ]
depending on monadic expression M steps to P [V ], while the work counter increments by µ,
denoting the total number of internal steps taken by the process. At the process layer, the work
increments on executing a tick operation.

proc(cm, w, tick (µ) ; P ) 7→ proc(cm, w + µ, P )

A new process (or message) is spawned with w = 0, and a terminating process transfers its
work to the corresponding message it interacts with before termination, thus preserving the
total work performed by the system.

6.6 Type Soundness
�e main theorems that exhibit the connections between our type system and the operational
cost semantics are the usual type preservation and progress. First, De�nition 7 asserts certain
invariants on process typing judgment depending on the mode of the channel o�ered by a
process. �is mode, remains invariant, as the process evolves. �is is ensured by the process
typing rules, which remarkably preserve these invariants despite being parametric in the mode.
Lemma 5 (Invariants). �e typing rules on the judgment Ψ ; Γ ; ∆ `q (xm : A) preserve
the invariants outlined in De�nition 7, i.e., if the conclusion satis�es the invariant, so do all the
premises.

Con�guration Typing At run-time, a program evolves into a number of processes and mes-
sages, represented by proc and msg predicates. �is multiset of predicates is referred to as a
con�guration (abbreviated as Ω).

Ω ::= · | Ω, proc(c, w, P ) | Ω,msg(c, w,N)

A key question is how to type these con�gurations because a con�guration both uses and pro-
vides a number of channels. �e solution is to have the typing impose a partial order among
the processes and messages, requiring the provider of a channel to appear before its client. We
stipulate that no two distinct processes or messages in a well-formed con�guration provide the
same channel c.
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�e typing judgment for con�gurations has the form Σ ; Γ0

E

� Ω :: (Γ ; ∆) de�ning a
con�guration Ω providing shared channels in Γ and linear channels in ∆. Additionally, we
need to track the mapping between the shared channels and their linear counterparts o�ered
by a contract process, switching back and forth between them when the channel is acquired or
released respectively. �is mapping, along with the type of the shared channels, is stored in Γ0.
E is a natural number and stores the sum of the total potential and work as recorded in each
process and message. We call E the energy of the con�guration. �e supplement details the
con�guration typing rules.

Finally, Σ denotes a signature storing the type and function de�nitions. A signature is well-
formed if (i) every type de�nition V = AV is contractive [73] and (ii) every function de�nition
f = M : τ is well-typed according to the expression typing judgment Σ ; · 
p M : τ . �e
signature does not contain process de�nitions; every process is encapsulated inside a function
using the contextual monad.
�eorem 10 (Type Preservation).
• If a closed well-typed expression · 
q M : τ evaluates to a value, i.e., M ⇓ V | µ, then q ≥ µ
and · 
q−µ V : τ .

• Consider a closed well-formed and well-typed con�guration Ω such that Σ ; Γ0

E

� Ω :: (Γ ; ∆).

If the con�guration takes a step, i.e. Ω 7→ Ω′, then there exist Γ′0,Γ
′ such that Σ ; Γ′0

E

� Ω′ ::
(Γ′ ; ∆), i.e., the resulting con�guration is well-typed. Additionally, Γ0 ⊆ Γ′0 and Γ ⊆ Γ′.

�e preservation theorem is standard for expressions [92]. For processes, we proceed by
induction on the operational cost semantics and inversion on the con�guration and process
typing judgment.

To state progress, we need the notion of a poised process [129]. A process proc(cm, w, P ) is
poised if it is trying to receive a message on cm. Dually, a message msg(cm, w,N) is poised if it
is sending along cm. A con�guration is poised if every message or process in the con�guration
is poised. Intuitively, this means that the con�guration is trying to interact with the outside
world along a channel in Γ or ∆. Additionally, a process can be blocked [25] if it is trying to
acquire a contract process that has already been acquired by some process. �is can lead to the
possibility of deadlocks.
�eorem 11 (Progress). Consider a closed well-formed and well-typed con�guration Ω such that

Γ0

E

� Ω :: (Γ ; ∆). Either Ω is poised, or it can take a step, i.e., Ω 7→ Ω′, or some process in Ω is
blocked along aS for some shared channel aS and there is a process proc(aL, w, P ) ∈ Ω.

�e progress theorem is weaker than that for binary linear session types, where progress
guarantees deadlock freedom due to absence of shared channels.

101



102



Chapter 7

Implementation of Nomos

Chapter 6 described the theory of Nomos, along with its static and dynamic semantics and type
safety theorems. �is chapter complements the previous chapter by describing the implemen-
tation of Nomos along with speci�c features making it easier to write smart contracts.

7.1 Overview of Nomos with an Auction Implementation
We highlight the main features of the Nomos language using the implementation of an auction
contract in concrete syntax. An auction operates in two phases: a running phase where bidders
bid into the auction followed by an ended phase where bidders collect their earnings. If a bidder
wins the auction, they receive the lot, otherwise they receive their bids back.

�e �rst key idea behind Nomos is to express and enforce the contract protocols like the
auction via session types. �e auction session type is de�ned as
type auction =

/\ <{20} +{ running : money -o |{3}> \/ auction ,

ended : +{won : lot * |{5}> \/ auction ,

lost : money * |{0}> \/ auction }}

We �rst ignore the operators <{q}| and |{q}> for natural numbers q (described later) and
describe the remaining type.

�e type initiates with /\ (↑SL in abstract syntax) indicating that auction is a shared session
type [25] that must be acquired by a bidder to interact with the contract. Shared session types
guarantee that bidders interact with the auction in mutual exclusion and their interaction with
the auction executes atomically. Once the action contract is acquired, it replies either with
running or ended indicating the phase of the auction. In the former case, the auction receives
money using the -o constructor (( in abstract syntax) followed by the bidder releasing the
contract matching the \/ (↓SL in abstract syntax, dual to ↑SL) constructor in the type. In the
la�er case, the auction determines if the bidder won or lost the election. If the bidder wins, the
auction sends the won label followed by sending the lot using the * constructor (⊗ in abstract
syntax, dual to(). If the bidder loses, the auction sends the lost label followed by returning
the bidder’s money back. In either case, the type recurses back to auction a�er a \/ indicating
that the bidder must release the auction.
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�e second key feature of Nomos is that it statically enforces that assets are never duplicated
nor discarded, but only transferred between processes. Nomos’ type system relies on session
types [42] that are rooted in linear logic [76]. �is linear type system tracks the assets stored
in a process. For instance, the auction contract treats money and lot as linear assets, which is
witnessed by the use of the linear logic operators( and ⊗ for their exchange.

Finally, an important aspect of smart contracts is their execution cost. Blockchains such as
Ethereum [161] charge users a fee proportional to the execution (aka gas) cost of their transac-
tion. A unique feature of Nomos is that it uses resource-aware session types [61] to statically
analyze the execution cost of a transaction. �ey operate by assigning an initial potential to
each process. �is potential is consumed by each operation that the process executes or can be
transferred between processes to share and amortize cost. �e cost of each operation is de�ned
by a cost model.

Resource-aware session types express the potential as part of the session type using the
operators <{q}| and |{q}> (/q and .q in abstract syntax). �e <{q}| operator prescribes that
the client must send q potential to the contract, with the amount of potential indicated as a
superscript. Dually, |{q}> prescribes that the contract must send q potential to the client. In
case of the auction contract, we require the client to pay potential for the operations that the
contract must execute, both while placing and collecting their bids. If the cost model assigns a
cost of 1 to each contract operation, then the maximum cost of an auction session is 20 (taking
the maximum execution cost all branches). �us, we require the client to send 20 units of
potential at the start of a session using <{20}|. In the won branch of the auction type, on the
other hand, the contract returns 5 units of potential to the client using |{q}>. �is mirrors gas
usage in smart contracts, where the sender initiates a transaction with some initial gas, and
the le�over gas at the end of the transaction is returned to the sender. All the above potential
annotations have been automatically inferred by the Nomos type checker that internally relies
on an LP solver to compute gas bounds.

Process Implementations As a �nal set of illustrations, we describe the main parts of the
auction contract program. Since the auction operates in two phases, we have two main pro-
cesses: running_auction for the running phase, and ended_auction for the ended phase.
�e type and de�nition of running_auction process is presented below.
contract running_auction :

($bm : Map <address , money >), ($l : lot) |- (#a : auction) =

$la <- accept #a ; % accept acquire request

get $la {20} ; % get 20 potential units

$la.running ; % send ‘running ’ label

$m <- recv $la ; % receive money from bidder

pay $la {3} ; % pay leftover potential

#a <- detach $la ; % detach from bidder

let addr = Nomos.GetTxnSender () ; % get bidder ’s address

$bm.insert(addr , $m) ; % insert bid into bidmap

#a <- run_or_end $bm $l % call ‘run_or_end ’ process

�e process uses two linear channels: $bm represents the mapping from address to money,
and $l represents the lot. On the other hand, it o�ers the shared channel #a that connects the
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auction contract to the bidder process. To syntactically distinguish session-typed channels from
functional variables, Nomos pre�xes linear channels with $ (e.g. $bm) and shared channels with
# (e.g. #a). �e process closely follows the session-typed protocol described by the auction. It
�rst accepts the acquire request from the bidder followed by receiving 20 potential units. Since
this process represents the running phase of auction, it sends the running label, receives the
money from the bidder in $m, pays the le�over 3 potential units, and detaches from the bidder.
Internally, the process then computes the sender’s address using the built-in GetTxnSender

function, and inserts key-value pair (addr, $m) into the $bm map. Maps have a built-in session
type and can be used as such, but we simplify programming by introducing syntactic sugar
construct $bm.insert(addr, $m). Finally, the process calls the run_or_end process which
decides whether to call running_auction or ended_auction (maybe if the number of bidders
reaches a certain threshold).

�e bidder process lies on the other end of the auction channel and is responsible for bidding
in the auction. We outline the process de�nition.
transaction bid_proc : ($m : money), (#a : auction) |- ($d : 1) =

$la <- acquire #a ; % acquire auction contract

pay $la {20} ; % pay 20 potential units

case $la ( % branch on label received

running => send $la $m ; % send money to contract

get $la {3} ; % get leftover potential

#a <- release $la ; % release the auction contract

close $d % terminate the transaction

| ended => abort ) % abort if auction has ended

�e process uses linear channel $m representing the bid, and the shared channel #a that connects
to the auction contract. It o�ers on the channel $d of type 1. We mandate all transaction
processes to o�er type 1 for simplicity (more details in Section 7.3). �e process initiates with
acquiring the auction contract, pays 20 potential units, and case analyzes on the response. If
the response is running (indicating that the auction is running), the process sends the money,
gets the le�over potential, releases the contract, and terminates the transaction. If the response
is ended, we simply abort the transaction. Note how the running_auction and bid_proc

processes perform matching dual actions on the auction channel, as governed by the auction
session type.

7.2 Mode Inference
Combining all these features in a single language is challenging. To achieve this integration
without compromising type safety, Nomos introduces channel modes: R for linear asset chan-
nels; S for shared channels; L for shared channels in linear phase when acquired; and T for
transaction channels. Nomos assigns a mode to every channel. For instance, in the bid_proc

process, $m has mode R and #a has mode S. Once acquired, $la has mode L, and $d has mode
T.

Practically however, annotating every channel with a mode can be a burden for the pro-
grammer. To address this, Nomos automatically infers the mode of every channel automatically.
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Intuitively, we require the programmer to annotate the process with a role. We employ three
roles: asset for linear assets, contract (e.g. running_auction), and transaction (e.g. bid_proc).
Nomos then uses these process roles, wri�en before the process name, to assign modes to all
channels in that process.

First, based on the mode m of the channel o�ered by a process, Nomos asserts mode in-
variants on the shared and linear channels that the process uses. De�nition 7 details those
invariants.
De�nition 8 (Process Typing). Given judgment Ψ ; ∆ `q P :: (xm : A), and an arbitrary
channel yk ∈ ∆,

1. Ifm = R, then k = R.
2. Ifm = S, then k = R ∨ k = S.
3. Ifm = L, then k = R ∨ k = S ∨ k = L.
4. Ifm = T, then k = R ∨ k = S ∨ k = L ∨ k = T.
Intuitively, the above invariants impose a modal hierarchy R < S < L < T and enforce that

a process at mode m only uses channels at mode m′ if m′ ≤ m. �is hierarchy prevents cycles
in the process dependency tree at runtime and is crucial to proving type safety [56].

Relevant to the tool implementation, the above invariants are central to inferring the chan-
nel modes automatically. First, Nomos uses the process roles to infer the modem of the o�ered
channel. We use the following rule:

• For role asset: m = R.
• For role contract: m = S.
• For role contract: m = T.
• (we do not allow de�ning processes at mode L)

Once we know the o�ered mode, we use the invariants from De�nition 7 to generate constraints
for mode k of each channel used by a process. In addition, we have three additional constraints.

• �e process expression $lc <- acquire #sc imposes that the mode of linear channel
$lc must be L, and the mode of shared channel #sc must be S.

• Dually, the process expression #sc <- release $lc imposes that mode of $lc must be
L, and the mode of shared channel #sc must be S.

• Finally, if a channel c has a shared type, we conclude that the mode of c must be S.
�e Nomos implementation generates and collects these constraints, and ships them to the

LP solver. �e solver, in turn, solves the constraints, computes the mode of each channel, and
substitutes them back into the program. Section 7.3 provides more details on the LP solver.

7.3 Implementation
We have developed an open-source Nomos implementation [57] in OCaml (8469 lines of code).
�e implementation contains a lexer and parser (594 lines), a type checker (3486 lines), a pre�y
printer (531 lines), a cost inference engine with an LP solver interface (969 lines of code), and
an interpreter (1942 lines). �e program is �rst implemented in the concrete Nomos syntax and
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then parsed into an abstract syntax tree. �e program is then instrumented with work constructs
to realize the cost model. Finally, the program is type checked to verify whether it implements
the interface described by its session type. In this type checking phase, we also generate LP
constraints on the potential annotations, and ship these constraints to the LP solver. �e solver
then minimizes the total potential while solving these constraints, computes a satisfying assign-
ment, which is substituted back into the program, thus computing the gas cost of the program.
Finally, the interpreter runs the program against the current blockchain state to obtain the new
blockchain state. We follow a brief description of each aspect of the implementation.

Lexing and Parsing �e Nomos lexer and parser have been implemented in Menhir [132],
an LR(1) parser generator for OCaml. A Nomos program is a list of mutually recursive type and
process de�nitions. �e syntax for de�nitions is
type v = A

<role > f : (x1 : T), (#c2 : A2), ... |{q}- ($c : A) = M

�e �rst line describes a type de�nition: A is the type expression that stands for the de�nition
of type name v (e.g. auction type in Section 7.1). Since Nomos treats types equi-recursively,
we can silently replace type name v with its de�nition A. �e second line describes a process
declaration and de�nition. We write the process role, followed by its name, its context and of-
fered channel and type. �e process role assigns a mode to the o�ered channel: asset, contract
or transaction, assigning respective modes R, S and T to the o�ered channel. �e modes for all
other channels are inferred automatically (explained in Section 7.2). �e context contains both
functional variables and session-typed channel variables: x1 : T de�nes a functional variable
x1 of type T ; #c2 : A2 de�nes a channel #c2 with type A2 ; the process o�ers channel $c
with type A. �e expression M stands for the process de�nition. To visually separate out func-
tional variables from session-typed channels, we require that shared channels are pre�xed by
#, while linear channels are pre�xed by $. �is avoids confusion between the two, both for the
programmer and the parser. Finally, the potential {q} of a process is marked on the turnstile in
the declaration.

As a reference, Table 7.1 provides the abstract and concrete syntax of the session types and
their corresponding process constructs in Nomos.

Cost Instrumentation Once a program has been parsed and converted into an abstract syn-
tax tree, we instrument it with work constructs based on the cost model. �e cost model in-
tuitively de�nes the execution cost of each construct. �e instrumentation engine takes the
program and the cost model as input and produces a program with work constructs inserted at
appropriate places. We use the following rule ([[P ]] denotes the work-instrumented version of
process P ):

[[S ; P ]] ::= work {CS} ; S ; [[P ]]

Here, S is a process construct with P as its continuation. and CS denotes the cost of construct
S according to the given cost model. We use this rule to add work annotations throughout the
program, thus realizing the execution cost of the program. �is instrumentation simpli�es the
cost analysis which can simply assign a cost of c to work {c} and cost 0 to all other process
expressions.
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Abstract Types Concrete Types Abstract Syntax Concrete Syntax
⊕{l : A, . . .} +{l : A, ...} $x.k $x.k

N{l : A, . . .} &{l : A, ...} case $x (`⇒ P )`∈L case $x (l => P | ...)

A⊗B A * B send $x $w send $x $w

A( B A -o B $y ← recv $x $y <- recv $x

1 1 close $x close $x

wait $x wait $x

↑SL A /\ A $y ← accept x $y <- accept #x

$y ← acquire x $y <- acquire #x

↓SL A \/ A #y ← detach $x #y <- detach $x

#y ← release $x #y <- release $x

t× A t ^ A send $x M send $x M

t→ A t -> A v ← recv $x v = recv $x

.rA |{r}> A pay $x {r} pay $x {r}

/rA <{r}| A get $x {r} get $x {r}

Table 7.1: Abstract and Corresponding Concrete Syntax for Nomos Types and Expressions

Type Checking �e Nomos type checker is based on bi-directional type checking [130]. In-
tuitively, the programmer provides the initial type of each variable and channel in the declara-
tion and the de�nition is checked against it, while reconstructing the intermediate types. �is
helps localize the source of a type error as the point where type reconstruction fails. As an
illustration, recall the implementation of the running phase of the auction.

type auction =

/\ <{20} +{ running : money -o |{3}> \/ auction ,

ended : +{won : lot * |{5}> \/ auction ,

lost : money * |{0}> \/ auction }}

contract running_auction :

($bm : Map <address , money >), ($l : lot) |{0}- (#a : auction) =

@% ($bm : Map <address , money >), ($l : lot)

|- (#a : auction)@

$la <- accept #a ;

@% ($bm : Map <address , money >), ($l : lot)

|- ($la : <{20}| +{ running : ..., ended : ...})@

get $la {20} ;

@% ($bm : Map <address , money >), ($l : lot)

|- ($la : +{ running : ..., ended : ...})@

$la.running ;

@% ($bm : Map <address , money >), ($l : lot)

|- ($la : money -o |{3}> \/ auction)@

$m <- recv $la ;

@% ($bm : Map <address , money >), ($l : lot), ($m : money)

|- ($la : |{3}> \/ auction)@
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pay $la {3} ;

@% ($bm : Map <address , money >), ($l : lot), ($m : money)

|- ($la : \/ auction)@

#a <- detach $la ;

@% ($bm : Map <address , money >), ($l : lot), ($m : money)

|- (#a : auction)@

let addr = Nomos.GetTxnSender () ;

@% (addr : address), ($bm : Map <address , money >), ($l : lot)

($m : money) |- (#a : auction)@

$bm.insert(addr , $m) ;

@% (addr : address), ($bm : Map <address , money >), ($l : lot)

|- (#a : auction)@

#a <- run_or_end $bm $l

If the programmer forgets to write $bm.insert(addr, $m), reconstruction would fail. �ere
would be an extra ($m : money) le� in the process context, and since Nomos employs a linear
type system, the type checker would report an error. In e�ect, the type checker forces the
programmer to consume the channel $m to ensure linearity.

Type equality is restricted to re�exivity (constant time), although we have also implemented
the standard co-inductive algorithm [73] which is quadratic in the size of type de�nitions. For
all our examples, the re�exive notion of equality was su�cient. If type equality is restricted
to constant-time re�exive notion, type checking is linear time in the size of the program. �is
property is quite relevant in the blockchain se�ing, since type checking can be part of the a�ack
surface. If type checking is too slow, malicious users can issue transaction programs that take
too long to type check, e�ectively forcing a denial-of-service a�ack.

LP Solver for Potential and Mode Inference �e potential and mode annotations are the
most interesting aspects of the Nomos type system. Since modes are associated with each
channel, they are tedious to write. Similarly, the exact potential annotations depend on the
cost assigned to each operation and is di�cult to predict statically. �us, we implemented
an automatic inference algorithm for both these annotations by relying on an o�-the-shelf LP
solver.

Using ideas from existing techniques for type inference for AARA [92, 93], we reduce the
reconstruction of potential annotations to linear optimization. To this end, Nomos’ inference
engine uses the Coin-Or LP solver. In a Nomos program, the programmer can indicate unknown
potential using ∗. �us, resource-aware session types can be marked with .∗ and /∗, list types
can be marked as L∗(τ) and process de�nitions can be marked with |{∗}− on the turnstile. �e
mode of all the channels is marked as ‘unknown’ while parsing.

As an example, consider the auction session type. �e programmer writes the following
type:
type auction =

/\ <{*} +{ running : money -o |{*}> \/ auction ,

ended : +{won : lot * |{*}> \/ auction ,

lost : money * |{*}> \/ auction }}
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Using ∗ annotations minimizes the programmer burden who does not need to compute exact
potential annotations and execution cost.

�e inference engine then iterates over the program and substitutes the star annotations
with potential variables and ‘unknown’ with mode variables. For the auction type, this reduces
to
type auction =

/\ <{v0} +{ running : money -o |{v1}> \/ auction ,

ended : +{won : lot * |{v2}> \/ auction ,

lost : money * |{v3}> \/ auction }}

In the �rst phase of type checking, we ignore the potential and mode annotations and approx-
imately type check the remaining program. �is phase rules out type errors resulting from
structural session types, i.e., protocol or linearity violation. In the second phase, we apply the
rules for potential constructors (see Figures 6.3, 6.4) to generate linear constraints on the po-
tential variables. For the above example, we generate the constraints

v0 − v1 ≥ 17 v0 − v2 ≥ 15 v0 − v3 ≥ 20

v0 ≥ 0 v1 ≥ 0 v2 ≥ 0 v3 ≥ 0

min(v0 + v1 + v2 + v3)

Finally, these constraints are shipped to the LP solver, which minimizes the value of the po-
tential annotations to achieve tight bounds. �e LP solver either returns that the constraints are
infeasible, or returns a satisfying assignment, which is then substituted into the program. For
the above example, we obtain the solution: v0 = 20, v1 = 3, v2 = 5, v3 = 0. �e �nal program
is pre�y printed for the programmer to view and verify the potential and mode annotations.

7.4 Blockchain Integration
To integrate Nomos with a blockchain, we need a mechanism to (i) represent contracts and their
addresses in the current blockchain state, (ii) create and execute transactions, and (iii) construct
the global distributed ledger. �is section addresses these challenges and also highlights the
main limitation of the language: deadlocks in the transaction programs.

Nomos on a Blockchain We assume working in a blockchain se�ing similar to Ethereum
with a standard account model. At any given time, the blockchain contains a set of Nomos
contracts: C1, . . . , Cn with their type information: · ; Γi ; ∆i

R `
qi Ci :: (xiS : AiS). �e

shared context Γi types the shared contracts that Ci refers to, and the linear context ∆i
R types

the contract’s linear assets. �e channel name xiS of a contract is its address and has to be
globally unique. Our implementation contains a deterministic mechanism to generate unique
fresh names. We allow contracts to carry potential given by the annotation qi, which can be
used to share and amortize gas cost across transactions. It is also straightforward to modify the
blockchain setup to suppress the potential stored in the contracts.
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�ese contracts together form a stuck con�guration (a valid virtual blockchain state) typed
as

Γ
E

� proc(x1
S, w1, C1) . . . proc(xnS, wn, Cn) :: (Γ ; ·)

where Γ = (x1
S : A1

S), . . . , (xnS : AnS) and E = Σn
i=1qi + wi is the total energy of the con�g-

uration, that is, the sum of the stored potential and previously performed work. �e actual
implementation stores some additional metadata such as mapping from linear channels to their
shared counterpart, linear channels to their continuation, and a mapping from shared chan-
nels to their types. �e mapping from linear channels to their counterpart is necessary for the
↓SL C rule where a linear channel is released. To release a linear channel aL to its corresponding
shared channel aS, we utilize this mapping that stores aL 7→ aS. But since fresh channels are
created with every communication, if a shared channel aS is acquired to create aL, then the
linear channel to be released to aS might be di�erent from aL, particularly if some communi-
cation occurred on aL. �e need for mapping shared channels to their types is explained in the
paragraph on the Nomos interpreter.

To perform a transaction with a contract, a user submits a transaction script Q (a process)
that is well-typed with respect to the existing contracts:

· ; Γ ; · `q Q :: (xT : 1)

We mandate that the transaction o�ers along a channel of type 1 and terminates by sending a
close message on its o�ered channel. Intuitively, this enforces that the transaction, at termina-
tion, leaves the blockchain in a well-formed state. �is transaction process is added to the set
of contracts and the new (closed) con�guration is typed as

Γ
E+q

� proc(x1
S, w1, C1) . . . proc(xnS, wn, Cn) proc(xT, 0, Q) :: (Γ ; (xT : 1))

�is con�guration then steps according to the Nomos semantics. A transaction can either create
new contracts, or update the state of existing contracts. In the former case, new contracts
are added to the blockchain state, making them visible in the type of the con�guration for
subsequent transactions to access. �e type safety of Nomos ensures that transaction execution
will be successful terminating in the following con�guration

Γ
E′

� proc(x1
S, w

′
1, C

′
1) . . . proc(xmS , w

′
m, C

′
m) msg(xT, 0, close xT) :: (Γ ; ·)

where m may be greater than n since the transaction can create additional contracts. At this
point, we remove the close message from the con�guration, resulting in the stuck con�guration

Γ
E′

� proc(x1
S, w

′
1, C

′
1) . . . proc(xmS , w

′
m, C

′
m) :: (Γ ; ·)

�is stuck con�guration represents a valid blockchain state guaranteeing that the transaction
execution has successfully terminated, and we may initiate a new transaction on this new
blockchain state.
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Gas Accounts With this blockchain setup, one may reasonably wonder about the origin of
potential. In our integration, we allow users to create gas accounts that store potential. To
simplify ma�ers, users can only store gas in these accounts; to store other private data and
assets, they must create contracts where this additional information is collected. Gas accounts
only contain a username and gas balance. We allow users to create new accounts and deposit
gas into their accounts. When a user submits a transaction, the gas cost of the transaction is
inferred by the LP solver, and this gas is automatically deducted from the account balance of
that user. If the account balance is insu�cient to pay for the transaction cost, the transaction
is simply aborted.

Subsynchronizing Session Types A transaction program usually proceeds by acquiring ex-
isting contracts, exchanges data and assets with them, and subsequently releasing them. In
Nomos, we require session types to be equi-synchronizing [25], i.e., contracts must be released
at the same type that they are acquired. �is requirement is crucial to type safety due to the
shared nature of contracts. Since multiple users interact with a shared contract, it is critical
that they observe a common shared type for the contract. If one client alters this type a�er
interaction, other clients are not noti�ed of this change, which will break type safety.

�is equi-synchronizing constraint imposes a strong restriction: contracts must maintain
a common type despite the phase they operate in. For instance, the auction contract operates
over two phases: an open phase where bidders bid into the auction; and a closed phase when
bidders withdraw their bids from the auction. However, these phases are not re�ected in the
type. Recall the auction type.
type auction =

/\ <{20} +{ running : money -o |{3}> \/ auction ,

ended : +{won : lot * |{5}> \/ auction ,

lost : money * |{0}> \/ auction }}

As we observe, the auction is acquired and released at the common type: auction.
In Nomos, we can relax this restriction by allowing sub-synchronizing types. Here, a contract

can be released at a subtype of the type it was acquired at. For instance, we can introduce two
mutually recursive auction types.
type open_auction =

/\ <{20} +{ running : money -o |{3}> \/ open_auction ,

ended : +{won : lot * |{5}> \/ closed_auction ,

lost : money * |{0}> \/ closed_auction }}

type closed_auction =

/\ <{20} +{ ended : +{won : lot * |{5}> \/ closed_auction ,

lost : money * |{0}> \/ closed_auction }}

�e open auction type describes the open auction phase: it can either stay open (if it sends the
running message), or transition to closed (if it sends the ended) message. As exempli�ed by the
type, the phase of the auction is now visible in its type.

�is relaxation, however, comes at a cost. Type checking in this relaxed se�ing needs to
reason about subtyping, instead of type equality. Subtyping, unlike type equality, is more gen-
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eral than re�exivity, hence cannot be decided in constant time. �us, in the worst case, type
checking would no longer be linear in this relaxed environment. �erefore, blockchains where
e�ciency is a particular concern should stick to re�exive equality.

Deterministic Execution Since blockchains rely on consensus among the miners, it is im-
portant to ensure deterministic execution of transactions. However, Nomos semantics has one
source of non-determinism: the acquire-accept rule where an accepting contract latches on to
any acquiring transaction. �e Nomos implementation resolves this non-determinism by man-
dating that the contract must interact with the transaction with the lowest channel number.
�is simple heuristic, although not the cleanest, is easy to implement and su�cient for our
purposes. Another promising approach is record-and-replay [111, 141]. �e miner who mines
the transaction records the order in which they resolved the acquire-accept non-determinism.
All other miners validating the blockchain state must replay the same order, thus obtaining the
same blockchain state a�er execution.

Interpreter �e Nomos implementation provides two key functionalities: inference and ex-
ecution. �e inference engine takes a transaction program as input, infers the potential and
mode annotations and outputs a well-typed program which is veri�ed by the type checker.
Next, the execution engine takes the well-typed transaction program and a valid blockchain
state as input, executes the transaction against the state and outputs a valid blockchain state.

�e Nomos interpreter uses OCaml S-expressions to represent blockchain states. �e inter-
preter has read/write functionality which converts blockchain state to S-expression and vice-
versa. �is helps persist the blockchain state across transactions. �e interpreter takes an input
�le, reads the S-expression from it, converts it to a blockchain state, executes the transaction
against the state, and writes the output blockchain state to an output �le. Internally, the inter-
preter is based on the semantics rules presented in Chapter 6.

Deadlocks �e only language-speci�c reason a transaction can fail is a deadlock in the trans-
action code. Our progress theorem accounts for this possibility of deadlocks. We currently
employ dynamic deadlock detection techniques internally in the implementation. Intuitively,
since a valid blockchain state represents a stuck con�guration of a particular form (only shared
contracts in the con�guration), we verify that the execution terminates with the con�guration
in this form. If not, we conclude that a deadlock occurred during the execution, and we simply
abort the whole transaction. We maintain snapshots of the con�guration a�er every transaction
execution, so we simply revert to the previous valid blockchain state. It is the user’s respon-
sibility to issue a new transaction that does not deadlock. In the future, we plan to employ
deadlock prevention techniques [27] to statically rule out deadlocks.

7.4.1 Blockchain-speci�c Features

To further simplify programming, we enhance Nomos with blockchain-speci�c features. �is
section provides a brief overview of these features.
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Map Data Structure �e most widely used data structure in smart contracts is maps. It is
o�en used in contracts to store a mapping from users to their balance. �e auction example
uses it to map users to their bids. We provide surface syntax to make it easier for programmers
to interact with maps.

�e �rst step is to dinstinguish between linear and non-linear maps. Although the two
maps di�er in their statics and semantics, we want to provide a uni�ed syntax for ease of
programming. We �rst describe the session type for a non-linear map with key type kt and
value type vt.
type Map <kt , vt > = &{ insert : kt -> vt -> Map <kt , vt >,

delete : kt -> vt option ^ Map <kt , vt >,

size : int ^ Map <kt, vt>,

close : 1}

�e map is implemented with a recursive session type initiating with an external choice. It
accepts one of three messages: insert, delete, size or close. In the case of insert, the
map receives a key and value and inserts the pair in the dictionary. If the key already exists,
the existing value is overwri�en. In the case of delete, the map receives a key and returns
an optional value depending on whether the key exists in the map or not. In the case of size,
the map returns an integer corresponding to its size. In each of these three cases, the type then
recurses back to Map<kt, vt>. Finally, in the case of close, the map simply terminates with a
close message.

�e case of a linear map is only slightly di�erent. �e type is as follows:
type Map <kt , vt > = &{ insert : kt -> vt -o Map <kt , vt >,

delete : kt -> vt option * Map <kt , vt >,

size : int ^ Map <kt, vt>,

close : +{ empty : 1,

nonempty: Map <kt, vt >}}

�e type di�ers from a non-linear map in a few key ways. First, vt is a linear type, hence we
use -o and * constructors to exchange them. Second, closing a linear map is only allowed when
it is empty. Hence, on receiving a close message, a linear map will respond with either the
empty message followed by termination, or with the nonempty message followed by recursing
back to its original type.

Finally, we provide surface syntax to ease programming with maps.
• $m <- new Map<kt, vt>: for creating a new map $m of key type kt and value type vt
• $m.insert(k, v): for inserting key k and value ’v’ into map $m. If the map is linear, the

value is replaced by a channel $v.
• v = $m.delete(k): for deleting key k from map $m. If the map is linear, the expression

changes to $v <- $m.delete(k).
• n = $m.size: for obtaining the size of map $m and storing it in variable n.
• $m.close: for closing the map.

Blockchain-speci�c Expressions To keep track of blockchain users, we introduce a built-in
type called address. We use the expression Nomos.GetTxnSender() as an introduction form
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that returns a value of type address. �ere are no elimination forms for this type.
We also introduce the expression Nomos.GetTxnNum() to track the current transaction

number. Our implementation uses a sequential mode of execution: every new transaction is
automatically assigned the number n + 1 where n is the number of the previous transaction.
�e �rst transaction is assigned the number 0.

Custom Coins Finally, Nomos provides a built-in abstract coin type. �ere are no introduc-
tion or elimination forms of this type. �us, there are no ways to delete or duplicate a channel
of this type; they can only be transferred across di�erent contracts. �is type can be used to
truly enforce linearity of assets on the blockchain.

�ese coins can further be used to encode fancier tokens. For example, we can create a type
coin2 to represent 2 coins.
type coin2 = coin * coin

We can even store more information inside the coin, e.g. the owner’s address or the history of
all owners in the past. For instance, consider the UTxO coin.
type utxo = &{ history : address list ^ utxo ,

delete : coin}

�is type, when queried, can return the address list of all its owners. But we can also delete its
history, and turn it into a simple coin. �e Nomos language is thus, very general, and we are
not tied to a particular system-speci�c coin.

7.4.2 Exact Gas Computation (Facebook Internship)
I wanted to make a special mention of the aspect of exact gas computation since this is a re-
sult of my summer internship at Facebook. So far, we have only discussed upper bound gas
computation by the Nomos inference engine. Unfortunately, upper gas bounds are inadequate.
At runtime, if a user provides excess gas units, the le�over gas needs to be returned to the
user. �us, in existing blockchains such as Ethereum and Diem, a monitor function known as
dynamic gas meter tracks the gas cost during execution. If the execution runs out of gas, the
meter raises an out-of-gas exception, otherwise it returns the excess gas back to the user. �us,
despite the bene�ts of static gas analysis, blockchains still need to meter gas at runtime. More-
over, dynamic gas metering has its own limitations. First, it creates an execution overhead,
inadvertently increasing the transaction gas cost. For the Diem blockchain, this overhead is
about 20% of execution time [32]. Second, if the transaction runs out of gas, it does not provide
any feedback to the user for transaction resubmission.

Upper gas bounds can also be unfair to miners. Miners are usually paid in proportion to
the gas cost of a transaction. As a result, they o�en accept transactions with a high gas limit,
hoping that transactions with a high gas limit will have a high gas cost. However, a malicious
entity can trick this system by submi�ing transactions with a high gas limit but a low gas cost.
Miners would accept such transactions only to discover that their compensation would be low
and most of the gas is returned back to the user. �us, there is a need to provide miners with a
trusted exact gas bound that can be veri�ed e�ciently before accepting transactions.
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In response, we describe a technique to compute exact gas bounds so as to eliminate dy-
namic metering. �e main challenge in computing exact bounds is branching since (i) gas
cost may vary along di�erent branches, and (ii) the branch taken during execution is di�-
cult to predict statically. To compute exact bounds in the presence of branching, we need to
ensure that branches have equal gas cost. We establish this by introducing a special operation
Nomos.deposit{n} which deposits n gas units in the transaction sender’s account at runtime.
We augment the less costly branch with such an expression with n being the di�erence in the
gas cost of both branches. We further illustrate that this mechanism is su�cient to produce
exact gas bounds and eliminates the need for gas metering, improving the overall hygiene of
the virtual machine.

To further reduce programmer overhead, we automatically augment both branches with the
expression Nomos.deposit{*}. �e program is then shipped to the LP solver which computes
the value of all such ∗ annotations. �en, all the Nomos.deposit{*} expressions that are sub-
stituted with 0 value are simply deleted from the program. �is completely eliminates the need
for dynamic gas metering. At runtime, these expressions safely return the le�over gas in the
sender’s account. During my internship, I also created a tool called GasBoX [60] that employed
similar ideas to compute exact bounds for Move programs.

7.5 Web Interface
To further enhance accessibility and usability, Nomos comes with a well-equipped web interface
hosted at www.nomos-lang.org. �e web interface has been carefully designed to simulate a
blockchain execution with minimal user overhead. Programmers can utilize the web interface
to type check transactions, automatically infer their gas usage, submit them and observe how
they update the overall blockchain state.

Figure 7.1 provides a screenshot of the web interface in action. On the top le� is the editor
box where the transaction code can be wri�en. As we can observe in line 23, the ∗ annotation
communicates the user intention that the type checker should infer the gas cost. On the top
right, we can create new user accounts and assign them an initial balance. We have already
created an account in the name of Ankush with an account balance of 10, 000 gas units. On the
bo�om le�, we can view the blockchain state which contains a list of smart contracts currently
deployed: their channel names, channel session type, state of the processes contained in that
contract, and the work done and gas stored inside them. Finally, on the bo�om right, we can
view the transaction history which contains the list of all transactions ever executed along with
their sender, code, and gas bound.

Figure 7.1 shows a transaction that creates an auction contract, and then places a bid in the
auction. But, the programmer has made an error and accidentally sent a collect message (line
28) instead of bid. If the programmer submits this program, the type checker complains about
the same as illustrated in Figure 7.2 in the popup in the bo�om right. Once the programmer
�xes that error, the type checker accepts the transaction program, computes the gas bound of
11 automatically (Figure 7.3). Once the transaction is posted, we observe that a new contract
was created (bo�om right of Figure 7.3) and programmers can view the type along with other
contract information.
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Figure 7.1: Screenshot of the Nomos Web Interface

Figure 7.2: Error in Transaction Program
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Figure 7.3: Correct Transaction Program

7.6 Evaluation
We evaluate the design of Nomos by implementing several smart contract applications and dis-
cussing the typical issues that arise. All the contracts are implemented and type checked in the
prototype implementation and the potential and mode annotations are derived automatically
by the inference engine. �e cost model used for these examples assigns 1 unit of cost to every
atomic internal computation and sending of a message. We show the contract types from the
implementation with the following ASCII format: i) /\ for ↑SL, ii) \/ for ↓SL, iii) <{q}| for /q, iv)
|{q}> for .q, v) ^ for ×, vi) *[m] for ⊗m, vii) -o[m] for(m.

ERC-20 Token Standard ERC-20 [68] is a technical standard for smart contracts on the
Ethereum blockchain that de�nes a common list of standard functions that a token contract
has to implement. �e majority of tokens on the Ethereum blockchain are ERC-20 compliant.

�e ERC-20 token contract implements the following session type in Nomos:

stype erc20token = /\ <{11}| &{

totalSupply : int ^ |{9}> \/ erc20token ,

balanceOf : id -> int ^ |{8}> \/ erc20token ,

transfer : id -> id -> int -> |{0}> \/ erc20token ,

approve : id -> id -> int -> |{6}> \/ erc20token ,

allowance : id -> id -> int ^ |{6}> \/ erc20token }
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�e type ensures that the token implements the protocol underlying the ERC-20 standard. To
query the total number of tokens in supply, a client sends the totalSupply label, and the contract
sends back an integer. If the contract receives the balanceOf label followed by the owner’s
identi�er, it sends back an integer corresponding to the owner’s balance. A balance transfer
can be initiated by sending the transfer label to the contract followed by sender’s and receiver’s
identi�er, and the amount to be transferred. If the contract receives approve, it receives the two
identi�ers and the value, and updates the allowance internally. Finally, this allowance can be
checked by issuing the allowance label, and sending the owner’s and spender’s identi�er.

�e design of Nomos is orthogonal to the concrete representation of money or currency
in the language. �e Nomos implementation provides a simple built-in abstract coin type of a
unit value. Our implementation of the erc20token session type relies on these abstract coins
used exclusively for exchanges among the private accounts. Coins are treated linearly as no
operations are allowed on primitive types. As a result, coins cannot be created or discarded.

It is straightforward to add features by using more sophisticated abstract coin types or by
providing built-in operations that are executed by the runtime system. For example, we can add
coins with unique identi�ers or coins of di�erent denominations by changing the underlying
session type of coins. Similarly, we can add operations for minting (creating) or burning (dis-
carding) coins if users have the respective privileges. Such operations could be, for instance,
implemented in an abstract contract that is an interface to the runtime system. Finally, there
can be operations for exchanging coins and gas at rates that are �xed when type-checking
transactions.

It is also possible to allow programmers to de�ne their own abstract types with their indi-
vidual introduction and elimination forms to use them in an implementation of a session type
like erc20token.

Hacker Gold (HKG) Token �e HKG token is one particular implementation of the ERC-20
token speci�cation. Recently, a vulnerability was discovered in the HKG token smart contract
based on a typographical error leading to a re-issuance of the entire token [2]. When updating
the receiver’s balance during a transfer, instead of writing balance+=value, the programmer
mistakenly wrote balance=+value (semantically meaning balance=value). Nomos’ type sys-
tem would have caught the linearity violation in the la�er statement that drops the existing
balance in the recipient’s account.

Puzzle Contract �is contract, taken from prior work [116] rewards users who solve a com-
putational puzzle and submit the solution. �e contract allows two functions, one that allows
the owner to update the reward, and the other that allows a user to submit their solution and
collect the reward.

In Nomos, this contract is implemented to o�er the type
stype puzzle = /\ <{14}| &{

update : id -> money -o[R] |{0}> \/ puzzle ,

submit : int ^ &{

success : int -> money *[R] |{5}> \/ puzzle ,

failure : |{9}> \/ puzzle } }
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�e contract still supports the two transactions. To update the reward, it receives the update
label and an identi�er, veri�es that the sender is the owner, receives money from the sender,
and acts like a puzzle again. �e transaction to submit a solution has a guard associated with it.
First, the contract sends an integer corresponding to the reward amount, the user then veri�es
that the reward matches the expected reward (the guard condition). If this check succeeds, the
user sends the success label, followed by the solution, receives the winnings, and the session
terminates. If the guard fails, the user issues the failure label and immediately terminates the
session. �us, the contract implementation guarantees that the user submi�ing the solution
receives their expected winnings.

Voting �e voting contract provides a ballot type.
stype ballot = /\ <{16}| +{

open : id -> +{ vote : id -> |{0}> \/ ballot ,

novote : |{9}> \/ ballot },

closed : id ^ |{13}> \/ ballot }

�is contract allows voting when the election is open by sending the candidate’s id, and pre-
vents double voting by checking if the voter has already voted (the novote label). Once the
election closes, the contract can be acquired to check the winner. We use two implementations
for the contract: the �rst stores a counter for each candidate that is updated a�er each vote
is cast (voting in Table 7.2); the second does not use a counter but stores potential inside the
vote list that is consumed for counting the votes at the end (voting-aa in Table 7.2). �is stored
potential is provided by the voter to amortize the cost of counting. �e type above shows the
potential annotations corresponding to the la�er.

Insurance Nomos has been carefully designed to allow inter-contract communication with-
out compromising type safety. We illustrate this feature using an insurance contract that pro-
cesses �ight delay insurance claims a�er verifying them with a trusted third party. �e insurer
and third party veri�er are implemented as separate contracts providing the following session
types.
stype insurer = /\ <{6}| &{

submit : claim -> +{

success : money *[R] |{0}> \/ insurer ,

failure : |{1}> \/ insurer } }

stype verifier = /\ <{3}| &{

verify : claim -> +{

valid : |{0}> \/ verifier ,

invalid : |{0}> \/ verifier } }

�e insurer type provides the option to submit a claim by receiving it and responds with
success or failure depending upon veri�cation of the claim. If the claim is successful, the
insurer sends over the reimbursement in the form of money. �e verifier type provides the op-
tion to verify a claim by receiving it and responding with valid or invalid depending on the
validity of the claim.
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Contract LOC T (ms) Vars Cons I (ms) Gap

auction 176 0.558 229 730 5.225 3
ERC 20 136 0.579 161 561 4.317 6
puzzle 108 0.410 126 389 8.994 8
voting 101 0.324 109 351 3.664 0
voting-aa 101 0.346 140 457 3.926 0
escrow 85 0.404 95 321 3.816 3
insurance 56 0.299 76 224 8.289 0
bank 147 0.663 173 561 4.549 0
wallet 30 0.231 32 102 3.224 0

Table 7.2: Evaluation of Nomos with Case Studies. LOC = lines of code; T (ms) = the type
checking time in ms; Vars = #variables generated during type inference; Cons = #constraints
generated during type inference; I (ms) = type inference time in ms; Gap = maximal gas bound
gap.

�e insurer, upon receiving a claim, acquires the veri�er and sends it the claim details. If
the claim is valid, then it responds with success, sends the money and detaches from its client.
If the claim is invalid, it responds with failure and immediately detaches from its client.

Experimental Evaluation We describe the 8 case studies we implemented in Nomos. We
have already discussed auction (Section 7.1), ERC 20, puzzle, voting, and insurance. �e other
case studies are:

• A bank account that allows users to register, make deposits and withdrawals and check
the balance.

• An escrow to exchange bonds between two parties.
• A wallet allowing users to store money on the blockchain.

Table 7.2 contains a compilation of our experiments with the case studies and the prototype
implementation. �e experiments were run on an Intel Core i5 2.7 GHz processor with 16
GB 1867 MHz DDR3 memory. It presents the contract name, its lines of code (LOC), the type
checking time (T (ms)), number of potential and mode variables introduced (Vars), number of
potential and mode constraints that were generated while type checking (Cons) and the time
the LP solver took to infer their values (I (ms)). �e last column describes the maximal gap
between the static gas bound inferred and the actual runtime gas cost. It accounts for the
di�erence in the gas cost in di�erent program paths. However, this waste is clearly marked in
the program by explicit tick instructions so the programmer is aware of this runtime gap, based
on the program path executed.

�e evaluation shows that the type-checking overhead is less than a millisecond for case
studies. �is indicates that Nomos is applicable to se�ings like distributed blockchains in which
type checking could add signi�cant overhead and could be part of the a�ack surface. Type in-
ference is also e�cient but an order of magnitude slower than type checking. �is is acceptable
since inference is only performed once during deployment and can be carried out o�-chain.
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Gas bounds are tight in most cases. Loose gas bounds are caused by conditional branches with
di�erent gas cost. In practice, this is not a major concern since the Nomos semantics tracks the
exact gas cost, and a user will not be overcharged for their transaction. However, Nomos’ type
system can be easily modi�ed to only allow contracts with tight bounds.

Our implementation experience revealed that describing the session type of a contract crys-
tallizes the important aspects of its protocol. O�en, subtle aspects of a contract are revealed
while de�ning the protocol as a session type. Once the type is de�ned, the implementation
simply follows the type protocol. �e error messages from the type checker were helpful in en-
suring linearity of assets and adherence to the protocol. Using ∗ for potential annotations meant
we could remain unaware of the exact gas cost of operations. �e syntactic sugar constructs
reduced the programming overhead and the size of the contract implementations.

7.7 Related Work

We classify the related work into 3 categories - i) new programming languages for smart con-
tracts, ii) static analysis techniques for existing languages and bytecode, and iii) session-typed
and type-based resource analysis systems technically related to Nomos.

Smart Contract Languages Existing smart contracts on Ethereum are predominantly im-
plemented in Solidity [54], a statically typed object-oriented language in�uenced by Python
and JavaScript. Languages like Vyper [8] address resource usage by disallowing recursion and
in�nite-length loops, thus making estimation of gas usage decidable. However, both languages
still su�er from re-entrancy vulnerabilities. Bamboo [3], on the other hand, makes state transi-
tions explicit and avoids re-entrance by design. In contrast to our work, none of these languages
use linear type systems to track assets stored in a contract.

Domain-speci�c languages have been designed for other blockchains apart from Ethereum
as well. Typecoin [53] uses a�ne logic to solve the peer-to-peer a�ne commitment problem us-
ing a generalization of Bitcoin where transactions deal in types rather than numbers. Although
Typecoin does not provide a mechanism for expressing protocols, it also uses a linear type sys-
tem to prevent resources from being discarded or duplicated. Rholang [6] is formally modeled
by the ρ-calculus, a re�ective higher-order extension of the π-calculus. Michelson [5] is a purely
functional stack-based language that has no side e�ects. However, none of these languages
describe and enforce communication protocols statically. Scilla [145] is an intermediate-level
language where contracts are structured as communicating automata providing a continuation-
passing style computational model to the language semantics. Scilla does not use session types
or linearity but features static gas bounds. A di�erence is that Nomos’ bounds are not asymp-
totic and are proved sound with respect to a cost semantics. Closer to Nomos, Obsidian [51]
employs typestate to express state transition during transaction execution. It also utilizes linear
types to track and preserve assets. �e Move programming language [36] is a �exible language
based on Rust [101] to implement contracts on the Libra blockchain. Similar to Nomos, it pro-
vides the ability to de�ne custom linear types to represent assets. However, neither provides
support to express or control gas usage.
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Static Analysis Analysis of smart contracts has received substantial a�ention [83, 152] re-
cently due to their security vulnerabilities [22, 155]. KEVM [88] creates a program veri�er based
on reachability logic that given an EVM program and speci�cation, tries to automatically prove
the corresponding reachability theorems. However, the veri�er requires signi�cant manual in-
tervention, both in speci�cation and proof construction. Oyente [116] is a symbolic execution
tool that checks for 4 kinds of security bugs in smart contracts, transaction-order dependence,
timestamp dependence, mishandled exceptions and re-entrancy vulnerabilities. MadMax [80]
automatically detects gas-focused vulnerabilities with high con�dence. �e analysis is based on
a decompiler that extracts control and data �ow information from EVM bytecode, and a logic-
based analysis speci�cation that produces a high-level program model. Ethereum contracts are
also translated to F* [35] to prove runtime safety and functional correctness, although they do
not support all syntactic features. VeriSol [107] is a highly-automated formal veri�er for So-
lidity that can produce proofs as well as counterexamples and proves semantic conformance of
smart contracts against a state machine model with access-control policy. However, in contrast
to Nomos, where guarantees are proved by a soundness proof of the type system, static analy-
sis techniques o�en do not explore all program paths, can report false positives that need to be
manually �ltered, and miss bugs due to timeouts and other sources of incompleteness.

Several static analysis tools also focus speci�cally on computing gas bounds. Gastap [17]
infers gas bounds on contracts implemented in Solidity [54] or EVM bytecode in terms of size
of the input parameters, contract state and gas consumption. �e inference procedure requires
construction of control-�ow graphs, decompilation to a high-level representation, inferring
size relations, generating and solving gas equations. Gasol [16] is an extension to Gastap
which o�ers a variety of cost models to measure the cost of, for e.g., only storage opcodes,
selected family of gas-consumption opcodes, selected program line, etc. It further detects under-
optimized storage pa�erns and automatic optimization of such pa�erns. Maresco�i et. al. [117]
employ symbolic model checking to modularly enumerate all gas consumption paths based on
unwinding loops to a limit. For each path, it then computes the environment state to force that
path and simulates the transaction under the state to obtain an exact worst-case gas bound.
Nomos di�ers from these tools in its goal of providing miners with a trusted exact gas bound
which can be veri�ed in linear time and eliminating dynamic gas metering.

Session types and Resource analysis Session types were introduced by Honda [96] as a
typed formalism for inter-process dyadic interaction. �ey have been integrated into a func-
tional language in prior work [153]. However, this integration does not account for resource
usage or sharing. Sharing in session types has also been explored in prior work [25], but with
the strong restriction that shared processes cannot rely on linear resources that we li� in Nomos.
Shared session types were also never integrated with a functional layer or tracked for resource
usage. While we consider binary session types that express local interactions, global proto-
cols can be expressed using multi-party session types [97, 144]. Automatic amortized resource
analysis (AARA) has been introduced as a type system to derive linear [93] and polynomial
bounds [92] for functional programming languages. Resource usage has also previously been
explored separately for the purely linear process layer [61], but were never combined with
shared session types or integrated with the functional layer.
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7.8 Future Directions
�e strong safety guarantees of Nomos only hold in a restricted a�acker model where both
contracts and clients are well-typed. In practice, however, not all contracts and clients would
be implemented in the Nomos language. �is raises the concern of how contracts implemented
in Nomos can safely interact with clients or contracts that are not implemented in Nomos. �e
contracts also contain no error raising and handling mechanisms. One approach here can be to
introduce runtime monitoring. Monitors are wrapped around the contracts and observe the type
of the data that is being exchanged on the channels. If they catch a type mismatch, they abort
the transaction. We can also allow the programmer to de�ne more sophisticated mechanisms
of handling such type mismatches.

Another promising future direction is to explore re�nement session types for lightweight
veri�cation of smart contracts. We also plan to explore open questions regarding integration
with a blockchain system. �ese include the exact cost model, �uctuation of gas prices, and
potential compilation to a lower-level language. Finally, we would also like to support parallel
execution of transactions since Nomos naturally provides a concurrent semantics.
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Chapter 8

Conclusion

�is chapter concludes my thesis with a summary of contributions, a brief look at possible
future directions, and some �nal thoughts.

8.1 Summary of Contributions
�is thesis makes two major contributions: the design and thoeretical foundation of resource-
aware session types, and the application of resource-aware session types for a safe smart con-
tract programming language called Nomos.

Chapter 3 begins with introducing novel arithmetically re�ned session types. �e key inno-
vation here was to index types with natural numbers that represent data structure sizes and val-
ues. We also allow session-typed processes to exchange linear arithmetic constraints on these
indices to constrain process behavior. Our �rst, rather surprising, theoretical result was that
type equality, and therefore, type checking is undecidable for re�nement session types, even
though Presburger arithmetic itself is decidable. But as a recourse, we devised an algorithm
for approximating type equality which, despite its incompleteness, works very well in practice.
Since re�nement constructs introduce verbosity overhead to programs, we also devised a novel
forcing algorithm to insert re�nement constructs automatically. �is assists with code reuse by
greatly reducing programmer burden. Finally, the language including all the above algorithms
are implemented in a type-safe system called Rast which is evaluated on standard session-typed
benchmarks.

Chapter 4 crucially employs re�nements to express work bounds for session-typed pro-
cesses. To compute work, our key innovation was to introduce an abstract notion of potential.
�is potential can be stored inside processes and exchanged using special messages but, most
importantly, it must be consumed to take an execution step. Intuitively, potential gets con-
verted into work at runtime. �is implies that the initial potential stands as an upper bound
on the work bound of a concurrent computation. �is is exactly what is formalized by the
soundness theorem. As an application, we compare the e�ciency of standard stack and queue
implementations.

Chapter 5 employs re�nements to express time bounds for programs. �e key innovation
here was to augment the timing information of message exchanges in the session type. In
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particular, we introduce the ©r operator that stands for a delay of r units of time. For instance,
a channel of type©rA behaves asA a�er exactly r time units. To capture unknown timings, we
also introduce � and ♦ operators which describe an eventual message exchange. We combine
these three operators to �exibly express time bounds on standard concurrent data structures.

Session types, together with work and span extensions, are dubbed as resource-aware session
types.

Chapter 6 is dedicated to the type-theoretic foundation of the Nomos language that provides
3 domain-speci�c features. First, the communication protocols that are statically prescribed
by session types are instrumental in expressing and enforcing transaction behavior. Second,
the linear characteristic of session types enables programmers to track assets preventing their
accidental duplication or deletion. Finally, resource-aware session types automatically infer
the execution cost of transactions relieving programmers of this burden too. In addition, the
chapter also describes how session types are integrated into a functional language via a linear
contextual monad. �e chapter concludes with the usual progress and preservation theorems.

Chapter 7 complements the previous chapter by presenting the implementation of Nomos.
�e aim of this chapter is to demonstrate the practicality and wide applicability of Nomos. More
concretely, the chapter describes our e�orts in reducing programmer burden. First, verbose
channel modes are automatically inferred using an LP solver. Second, the implementation pro-
vides several blockchain-speci�c features such as easy use of map data structures, transaction-
related expressions, and gas accounts to send transactions. �ird, the chapter also describes
how Nomos integrates into an account model blockchain. Finally, Nomos is evaluated on a
variety of standard smart contracts with a detailed description of the guarantees it can provide.

8.2 Future Directions
I conclude my thesis with a few broad future directions that closely align with resource-aware
session types and the Nomos language. I have classi�ed these directions in 3 broad projects.

(i) design of optimal scheduling policies based on execution cost
(ii) automatic synthesis of distributed programs from their speci�cation
(iii) implementation and analysis of cryptographic systems

Cost Analysis for Optimal Scheduling Cost analysis can assist developers in designing
optimal scheduling policies for their applications. �e sequential complexity bounds from Rast
can be used to determine whether a new computation needs to be executed in the current
or a freshly spawned thread. �e parallel complexity bounds from Rast implicitly determine
data dependency between threads and can be used to decide the order of thread execution.
We can implement complexity-driven scheduling policies in Rast and evaluate their impact on
performance.

Synthesis of Distributed Programs One e�ective way of assisting developers is by writ-
ing programs for them! Re�nement session types can naturally express program speci�cations.
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Programs can then be synthesized from their speci�cations by applying data-driven deep learn-
ing techniques. Training data can be randomly generated by �rst randomly creating a session-
typed declaration for a process, and then synthesizing a process that follows the declaration.
Re�nements can also be utilized for semi-automatic synthesis of smart contracts. I believe re-
�nement session types can propel program synthesis to distributed systems.

Rast for Cryptographic Protocols In a recent collaboration, I observed that re�nement ses-
sion types can neatly represent security protocols. With the recent growth in the complexity of
such protocols, developers can greatly bene�t from language support while building secure sys-
tems. We can also employ type-based techniques to model ill-behaved adversaries and formally
verify cryptographic protocols. Furthermore, resource-aware types can provide computational
security by modeling adversaries who are capable of only polynomial-time computation. We
can also use programming language techniques to demonstrate universal composability, which
entails that security properties of cryptographic protocols are preserved even when arbitrarily
composed with other protocols.

More broadly, session types carry the safety guarantees that type systems can provide to the
distributed domain. Resource-aware session types augment session types with cost informa-
tion to provide computational guarantees along with safety. Together, they can inspire the de-
sign of next-generation concurrent programming languages. On the practical side, blockchains
hold the potential of providing �nancial infrastructure access to underprivileged communities.
Safe smart contract languages are the �rst step towards increase our trust in �nancial systems
and improving their broader applicability. Nomos can inspire the design of future smart con-
tract languages. In conclusion, programming language tools and techniques hold the power of
improving so�ware design and development and making technologies safer, faster, and more
reliable!
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Zwirchmayr. Segment Abstraction for Worst-Case Execution Time Analysis. In 24th
European Symposium on Programming (ESOP’15), 2015. 2.2

[48] Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concur-
rency through linear logic (full-version). Information and Computation, 207(10):1044 –
1077, 2009. ISSN 0890-5401. doi: h�ps://doi.org/10.1016/j.ic.2008.11.006. URL http://

www.sciencedirect.com/science/article/pii/S089054010900100X. Special is-
sue: 13th Workshop on Logic, Language, Information and Computation (WoLLIC 2006).
2.1, 3.5

[49] Ruofei Chen and Stephanie Balzer. Ferrite: A judgmental embedding of session types in
Rust. CoRR, abs/2009.13619, 2020. URL http://arxiv.org/abs/2009.13619. 3.10
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