
Modernizing Models and Management of the
Memory Hierarchy for Non-Volatile Memory

Charles John McGuffey

CMU-CS-21-109

May 2021

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Phillip B. Gibbons, Chair

Guy Blelloch
Nathan Beckmann

Michael Bender (Stony Brook University, New York)
Julian Shun (Massachusetts Institute of Technology)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Charles John McGuffey

This research was sponsored by the National Science Foundation under grant numbers CCF-1533858 and CCF-
1919223.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Computer Science, Parallelism, Non-Volatile Memories, Cache Replacement

For my family.

iv

Abstract
Non-volatile memory technologies (NVMs) are a new family of technologies

that combine near memory level performance with near storage level cost density.
The result is a new type of memory hierarchy layer that exists and performs some-
where between the two. These new technologies offer many opportunities for per-
formance improvement, but in order to take advantage of these system design needs
to account for their particular characteristics.

In this thesis, we focus on how to design memory management and caching sys-
tems for NVMs. Our work is broken into three major categories targeting different
primary performance metrics.

1. We study how to design algorithms and memory management to achieve fault
tolerance with low cost and efficient recovery using NVMs.

2. We design an extension to the traditional model of caching to account for data
writes in order to improve NVM device lifetime and energy consumption.

3. We investigate how to improve throughput in caches by taking advantage of
granularity change in the memory hierarchy.

Throughout our work we rely on a blend of theoretical and practical approaches.
We provide models for processor faults, cache writebacks, and cache-storage com-
munication that isolate the targeted effects from orthogonal complications. For each
model, we show worst case theoretical bounds for our algorithms along with proofs
that explain how the benefits are derived. We then take our results and provide em-
pirical evaluations to show their effectiveness in practice. We believe that our ideas
and approach provide a solid foundational study on memory hierarchy design in the
era of non-volatile memories.

vi

Acknowledgments
Thanks to Phil for the guidance and mentoring he has given me over the years.
Thanks to my collaborators for all of their ideas and enthusiasm.
Thanks to my friends and family for all of their love and support.

viii

Contents

1 Introduction 1

2 Program Persistence 3
2.1 Model Definition . 5

2.1.1 Single Processor . 5
2.1.2 Multiple Processors . 6

2.2 Robustness on a Single Processor . 6
2.3 Programming for Robustness . 9
2.4 Robustness on Multiple Processors . 11
2.5 Work Stealing . 14

2.5.1 Preliminaries and Overview . 14
2.5.2 Proof of the Correctness of Work-Stealing 20
2.5.3 Time Bounds . 29

2.6 Fault-Tolerant Algorithms . 31
2.7 Chapter Summary . 33

3 Writeback-Aware Caching 35
3.1 Problem Formulation . 37

3.1.1 Traditional Caching . 37
3.1.2 Writeback-Aware Caching . 38

3.2 Writeback-Aware Landlord . 38
3.2.1 Algorithm Description . 38
3.2.2 Proof of Optimality . 40

3.3 Offline Complexity Results . 42
3.3.1 NP-Completeness . 42
3.3.2 Max SNP-Hardness . 43

3.4 Approximations with Theoretical Guarantees 45
3.4.1 Analyzing the Writeback-Oblivious Optimal 45
3.4.2 A 2-Approximation for Savings . 46

3.5 Efficient Approximations for Practical Use . 47
3.5.1 A Lower Bound for Optimal . 47
3.5.2 An Upper Bound for Optimal . 47

3.6 Experimental Evaluation . 49
3.6.1 Methodology . 49

ix

3.6.2 Results . 50
3.7 Chapter Summary . 52

4 Block-Granularity-Aware Caching 53
4.1 Problem Formulation . 55
4.2 Complexity Analysis . 56
4.3 Competitive Lower Bound . 58

4.3.1 Item Caches . 58
4.3.2 Block Caches . 59
4.3.3 Generalizing the Lower Bound . 60
4.3.4 Analysis and Discussion . 61

4.4 A Competitive Policy for the Block-Granularity-Aware Caching Problem 63
4.4.1 Policy Description . 63
4.4.2 The Upper Bound . 64
4.4.3 Applying the Bound . 69

4.5 Chapter Summary . 71

5 Conclusion 73

Bibliography 75

x

List of Figures

2.1 The Parallel Persistent Memory Model . 6
2.2 CAM Capsule Example . 13
2.3 Fault-tolerant WS-Deque Implementation . 19
2.4 Entry State Transition Diagram . 19

3.1 Writeback-Aware Landlord Pseudocode . 39
3.2 Writeback-Aware Landlord Potential Function 40
3.3 Example 3D Matching to WA Caching Problem Conversion 43
3.4 An Example Trace that Breaks Stack Algorithms 46
3.5 Example WA Caching Problem to MCF Conversion 48
3.6 Cache Costs on MSR Storage Traces . 50
3.7 Analyzing Frequency Heuristic . 51
3.8 Writeback Cost Sensitivity Analysis . 52

4.1 Example Variable-Size Caching to BGA Caching Problem Conversion 58
4.2 A Logical Diagram of IBLP . 63
4.3 Adversarial Traces for IBLP . 65
4.4 Comparing Bounds in the BGA Caching Problem 70
4.5 BGA Caching Problem Constant Size Partitioning Analysis 71

xi

xii

List of Tables

4.1 BGA Caching Problem Notation . 64

xiii

xiv

Chapter 1

Introduction

In the modern era of computing, the amount of data available and the demands on performance
are continuously increasing. This places increasing strain on the memory hierarchy, which is
often the main bottleneck in computation [86]. To try and improve memory performance, com-
panies are working on new Non-Volatile Memories (NVMs).

NVM technologies typically store data in the physical state of a material. There are cur-
rently versions available in both solid state drive (SSD) and memory module (DIMM) form
factors [41, 69], and additional technologies are in development [87]. NVMs offer promising
performance characteristics: speeds within an order of magnitude of existing random access
memory (DRAM), low idle power consumption, large capacity (more bits per unit area than
existing random access memory), and the ability to survive power outages and other failures
without losing data [22, 29, 45, 69, 109, 110].

In addition to these promising performance characteristics, NVM technologies bring impor-
tant distinctions from their counterparts in the memory hierarchy.

1. Unlike most memory technologies, data stored in NVMs can survive loss of power or other
failures that cause a device to restart.

2. NVM devices require changing the state of the material to perform writes. This means that
writes take additional time and energy, and that such devices will wear out after too many
data writes.

3. NVM devices expose a cache line interface, but operate on a larger data granularity inter-
nally. This causes spatial locality to significantly impact performance.

In this thesis, we investigate how to design caching and memory management systems for
NVM technologies. Our work is broken into sections that focus on different metrics that a system
might target and how those metrics are affected by NVMs.
Program Persistence. Systems that value fault tolerance can take advantage of NVMs to provide
durability at low cost. Since NVMs allow data in memory to survive power failures, data no
longer have to travel all the way to storage to persist. This allows progress to be saved at a
smaller granularity with less overhead. We study this opportunity and provide a paradigm for
algorithms, scheduling, and memory management that provides theoretical guarantees for both
consistency and progress while maintaining good performance.
Writeback-Aware Caching. Systems that value power consumption or device lifetime need to

1

account for the asymmetry between reads and writes if they wish to take advantage of NVMs.
Writes to NVMs are more costly than reads in terms of latency, bandwidth, energy, and device
lifetime. Unfortunately, traditional models of caching do not account for writes to memory. In
this work, we extend the traditional caching model to account for the cost of writebacks, and pro-
vide an investigation of the resulting model. Our work provides both a thorough understanding
of the theoretical problem and a practical grounding.
Block-Granularity-Aware Caching. Systems that want to maximize their total throughput need
to be designed to take advantage of the characteristics of the devices that they run on. One
of these currently understudied characteristics is how to deal with device granularity changes.
NVMs occupy an important part in this space, sitting at the boundary between storage devices
that often operate at a granularity of 4 KB pages and caches that operate on a granularity of 64
byte cache lines. We study how caching can help support this interface transition, developing
a model for caches that exist on granularity transitions, and developing a theoretical framework
for understanding that problem.

Combining these works into a larger framework results in the following thesis: When de-
signing systems for non-volatile memory technologies, designing for specific performance
metrics and accounting for crucial device characteristics can provide asymptotic theoreti-
cal performance improvement and practical improvement to match.

2

Chapter 2

Program Persistence

An important consequence of the prevalence and expansion of computing in the modern era is
that systems are increasing in size and parallelism. In such systems, the probability that individ-
ual components fault is not negligible, with exascale systems expected to have multiple failures
each day [28]. In such systems, being able to handle faults gracefully and at low cost is critical
to overall performance.

Traditionally, checkpointing and other fault handling techniques managed this by periodically
storing data to storage or other redundant systems. However, non-volatile memories provide data
persistence in memory. This means that data can be persisted at much lower cost in terms of
energy and device bandwidth, and that a large fraction of the active data is persisted by default.
This is a huge opportunity to develop new techniques for fault tolerance that reduce both the
amount of progress lost to a fault and the cost of maintaining that tolerance.

To investigate this opportunity, we define a parallel computational model, the Parallel Per-
sistent Memory (Parallel-PM) model, that consists of a collection of processors with a fast local
ephemeral memory of limited size, and sharing a large slower persistent memory. As in the ex-
ternal memory model [5, 7], each processor runs a standard instruction set from its ephemeral
memory and has instructions for transferring blocks to and from the persistent memory. The cost
of an algorithm is calculated based on the number of such transfers. A key difference, however,
is that the model allows for individual processors to fault at any time. If a processor faults, all
of its processor state and local ephemeral memory is lost, but the persistent memory remains.
We consider both the case where the processor restarts (soft faults) and the case where it never
restarts (hard faults). Our model captures a useful view of the interaction of NVM main mem-
ory with traditional memory technologies and allows us to provide insight into interesting and
theoretically guaranteed fault tolerance.

Our Contributions. In this chapter, we study how to handle processor faults in systems with
NVM or other forms of non-volatile main memories. We consider both how an individual pro-
cessor should restart, and how to run a computation that can continue to make progress despite
faults. We make the following contributions:

1. We define the Persistent Memory Model, a single processor model for processor faults
and their effect on memory. We then define the Parallel Persistent Memory Model, which
extends the Persistent Memory Model to support multiple processors. We use these models

3

to study how program progress is affected by faults, and how measures to tolerate faults
affect performance in the faultless setting.

2. We identify a paradigm of breaking a computation into “capsules” that have no write-
after-read conflicts (writing a location that was read earlier within the same capsule) to
provide idempotent behavior in our single processor model. We then use this technique
to implement RAM, external memory, and cache-oblivious algorithms [53] asymptotically
efficiently in the model.

3. In pursuit of a technique with better performance in practice, we consider a programming
methodology in which the algorithm designer can identify capsule boundaries to ensure
that the capsules are free of write-after-read conflicts.

4. We extend our ideas to the Parallel Persistent Memory Model, and consider conditions
under which programs are correct when the processors are interacting through the shared
memory. We identify that if capsules are free of write-after-read conflicts and atomic, in a
way that we define, then each capsule acts as if it ran once despite many possible restarts.

5. Our most significant result is a work-stealing scheduler, based on that of Arora, Blumofe,
and Plaxton (ABP) [7], that can be used on the Parallel Persistent Memory Model. This
scheduler (i) ensures that each stolen task gets executed despite faults, (ii) properly han-
dles faults that cause processors to go down permanently, and (iii) remains efficient in the
presence of soft or hard faults. We use our scheduler to show that any race-free, write-after-
read conflict free, multithreaded fork-join program can be scheduled in bounded runtime.
This bound differs from the ABP result only by a logarithmic factor on the depth term, due
to possible faults along the critical path.

6. We apply our techniques to achieve algorithms for prefix-sum, merging, sorting, and ma-
trix multiply that are idempotent in the Parallel Persistent Memory Model. The results
for prefix-sums, merging, and sorting are work-optimal, matching lower bounds for the
external memory model.

Related Work. When a processor crashes, writes that are still in the cache (have not been
recorded in persistent memory) are lost while other writes are not. Prior work includes schemes
for encapsulating updates to persistent memory in either transactions or lock-protected failure
atomic sections and using various forms of (undo, redo, resume) logging to ensure correct recov-
ery [17, 19, 30, 31, 32, 37, 43, 52, 55, 57, 62, 64, 65, 66, 77, 78, 80, 82, 88, 96, 111].

The intermittent computing community works on the related problem of small systems that
will crash due to power loss [10, 25, 38, 39, 60, 83, 84, 108]. Lucia and Ransford [83] describe
how faults and restarting lead to errors that will not occur in a faultless setting. Several of
these works [38, 39, 83, 84, 108] break code into small chunks, referred to as tasks, and work
to ensure progress at that granularity. Avoiding write-after-read conflicts is often the key step
towards ensuring that tasks are idempotent. Because these works target intermittent computing
systems, which are designed to be small and energy efficient, they do not consider multithreaded
programs, concurrency, or synchronization.

In contrast to this flurry of systems research, there is relatively little work from the theory/al-
gorithms community aimed at this setting [42, 67, 68, 93]. David et al. [42] presents concurrent
data structures (e.g., for skip-lists) that avoid the overheads of logging. Izraelevitz et al. [67, 68]

4

presents efficient techniques for ensuring that the data in persistent memory captures a consistent
cut in the happens-before graph of the program’s execution. Nawab et al. [93] defines periodi-
cally persistent data structures, which combine mechanisms for tracking proper write ordering
with a periodic flush of all cache lines to persistent memory. None of this work defines an algo-
rithmic cost model, presents a work-stealing scheduler, or provides the provable bounds in this
paper.

There is a very large body of research on models and algorithms where processors and/or
memory can fault, but to our knowledge, none of it (other than the works mentioned above) fits
the setting we study with its two classes of memory (local volatile and shared nonvolatile). Papers
focusing on memory faults (e.g., [1, 34, 51] among a long list of such papers) consider models
in which individual memory locations can fault. Papers focusing on processor faults (e.g., [9]
among an even longer list of such papers) either do not consider memory faults or assume that
all memory is volatile.

2.1 Model Definition

2.1.1 Single Processor

Our memory model has two layers: a small fast ephemeral memory of size M (in words) and a
large slower persistent memory of size Mp � M , which are both partitioned into blocks of B
words. We assume standard RAM instructions, as well as an external read that transfers a block
from persistent memory into ephemeral memory, and an external write that transfers a block
from ephemeral memory to persistent memory. These assumptions mirror those in the (M,B)
external memory model [2].

Our fault model assumes that the processor can fault between any two external memory in-
structions with constant and independent probability f . After faulting, the processor restarts,
with the ephemeral memory and processor registers in an arbitrary state, but the persistent mem-
ory in the same state as immediately before the fault. To enable forward progress, we assume
there is a fixed persistent memory location referred to as the restart pointer location, containing
a restart pointer, which is used to set the program counter on restart. The processor can update
this pointer during execution. We view the computation as being partitioned into capsules that
correspond to maximally contiguous sequences of instructions with the same restart pointer. We
refer to writing a new restart pointer as installing a capsule, and assume that each restart pointer
points to the beginning of its capsule. We define the capsule work to be the number of external
reads and writes in the capsule, and the capsule whose restart pointer is installed as active.

Our cost model can be adapted to various instruction costs, but for this work we follow the
external memory [2] and ideal cache [53] models in assuming that external reads and writes take
unit cost and all other instructions have no cost. We assume that processor faults and restarts
have constant cost, since the machine downtime is outside of software control and the restarting
process can be made to take a constant number of external memory transfers.

In our analysis, we consider two ways to count the total cost. We say that the faultless work
(or work), W , is the number of external memory transfers assuming no faults. We say that the
total work (or fault-tolerant work), Wf , is the number of external transfers for an actual run

5

Persistent Memory

Ephemeral
Memory

CPU

Ephemeral
Memory

CPU

Ephemeral
Memory

CPU

Ephemeral
Memory

CPU

Figure 2.1: The Parallel Persistent Memory Model

including all transfers due to having to restart.
We refer to the result of aggregating these memory, fault, and cost models as the (single

processor) (M,B) Persistent Memory Model (PM model).

2.1.2 Multiple Processors
The Parallel Persistent Memory Model (Parallel-PM model) consists of P processors each with
its own fast local ephemeral memory of size M , but sharing a single slower persistent memory
of size Mp (see Figure 2.1). Each processor works as in the single processor model, and the
processors run asynchronously. Any processor can fault between instructions with probability
f . If the processor restarts, using its own individual restart pointer location as in the single
processor model, it is called a soft fault. We also allow for a hard fault, in which the processor
never restarts—we say that such a processor is dead. We allow for concurrent reads and writes
to the shared persistent memory, as well as a compare-and-swap (CAS) instruction. All of these
operations are assumed to be sequentially consistent.

We consider the same form of multithreaded computations as considered by Arora, Blumofe,
and Plaxton (ABP) [7]. In the model, a computation starts as a single thread. On each step,
a thread can run an instruction, fork a new thread, or join with another thread. The (faultless)
work W is the work summed across all threads in the absence of faults, and the total work Wf

is the summed work including faults. In addition, we define the (faultless) depth D (and the
fault-tolerant or total depth Df) to be the maximum work (total work, respectively) along any
path in the DAG.

Write-back Caches. Note that while the PM models are defined using explicit external read
and external write instructions, they are also appropriate for modeling the (write-back) cache
setting. Explicit instructions are used to ensure that external writes get to the persistent memory.
Writes to local memory could end up being evicted from the cache and written back to persistent
memory, but this does not affect correctness for programs that are race-free and well-formed, as
defined in Section 2.2.

2.2 Robustness on a Single Processor
Our goal is to partition the computation into capsules in a way that ensures correctness regardless
of faults. Specifically, we want each capsule to look from an external view like it has been run

6

exactly once after its completion, regardless of the number of times it was restarted. We say
that a capsule is idempotent if, when it completes, all modifications to the persistent memory are
consistent with running once from the initial state.

We say that a capsule has a write-after-read conflict if the first transfer from a block in
persistent memory is a read (called an “exposed” read), and later there is a write to the same
block. Such conflicts cause problems on restarts because the original input data may have been
overwritten. We say a capsule is well-formed if the first access to each ephemeral word in the
registers is a write. Being well-formed means that a capsule will not read the undefined values
from registers and ephemeral memory after a fault. We say that a capsule is write-after-read
conflict free if it is well-formed and had no write-after-read conflicts.
Theorem 1. With a single processor, all write-after-read conflict free capsules are idempotent.

Proof. On restarting, the capsule cannot read any persistent memory written by previous faults on
the capsule, because we restart from the beginning of the capsule and the exposed read locations
are disjoint from the write locations. Moreover, the capsule cannot read the state of the ephemeral
memory because a write is required before a read (well-formedness). Therefore, the first time
a capsule runs and every time a capsule restarts it has the same visible state, and because the
processor instructions are deterministic, will repeat exactly the same instructions with the same
results.

We also show that it is possible to simulate models such as the RAM model, the external
memory model, and the ideal cache model efficiently in the persistent memory model.
Theorem 2. Any RAM computation taking t time can be simulated on the (O(1), B) PM model
with f ≤ 1/c for some constant c ≥ 2, using O(t) expected total work, for any B (B = 1 is
sufficient).

Proof. The simulation keeps all simulated memory in the persistent memory one word per block.
It also keeps two copies of the registers in persistent memory, and the simulation swaps between
the two. At the end of a capsule on one copy, it sets the restart pointer to a location just before the
other copy. The code at that location, run at the start of the next capsule, copies the other copy
of the registers into the current copy, and then simulates one instruction given by the program
counter, by reading from the other copy of the registers, and writing to the current copy of
registers (typically just a single register). The instruction might involve a read or write to the
simulated memory, and an update of the program counter either to the next simulated instruction,
or if a jump, to some other instruction. Once the instruction is done, the other copy of the
registers is installed. This repeats. The capsules are write-after-read conflict free because they
only read from one set of registers and write to the other, and the simulated memory instructions
do a single read or write. Every simulated step takes a constant number of reads and writes to
the persistent memory. Since the capsule work is constant, it can be bounded by some k. If
kf ≤ 1/2 then the probability of a capsule faulting is bounded by 1/2 and therefore the expected
total work on any capsule is upper bounded by 2k. Setting c = 2k gives the stated bounds.

Theorem 3. Any (M,B) external memory computation with t external accesses can be simulated
on the (O(M), B) PM model with f ≤ B/(cM) for some constant c ≥ 2, using O(t) expected
total work.

7

Proof. The simulation consists of rounds each of which has a simulation capsule and a commit
capsule. It maps the ephemeral memory of the source program to part of the ephemeral memory,
and the external memory to the persistent memory. It keeps the registers in the ephemeral mem-
ory, and keeps space for two copies of the simulated ephemeral memory and the registers in the
persistent memory, which it swaps back and forth between.

The simulation capsule simulates some number of steps of the source program. It starts
by reading in one of the two copies of the ephemeral memory and registers. Then during the
simulation all instructions are applied within their corresponding memories, except for writes
from the ephemeral memory to the persistent memory. These writes, instead of being written
immediately, are buffered in the ephemeral memory. This means that all reads from the external
memory have to first check the buffer. The simulation also maintains a count of the number of
reads and writes to the external memory within a capsule. When this count reaches M/B, the
simulation “closes” the capsule. The closing is done by writing out the simulated ephemeral
memory, the registers, and the write buffer to persistent memory. For ephemeral memory and
registers, this is the other copy from the one that is read. The capsule finishes by installing a
commit capsule.

The commit capsule reads in the write buffer from the closed capsule to ephemeral memory,
and applies all the writes to their appropriate locations of the simulated external memory in the
persistent memory. When the commit capsule is done, it installs the next simulation capsule.

This simulation is write-after-read conflict free because the only writes during a simulation
capsule are to the copy of ephemeral memory, registers, and write buffer. The write buffer has no
conflicts since it is not read, and the ephemeral memory and registers have no conflicts since they
swap back and forth. There are no conflicts in the commit capsules because they read from write
buffer and write to the simulated external memory. The simulation is therefore write-after-read
conflict free.

To see the claimed time and space bounds, we note that the ephemeral memory need only
be a constant factor bigger than the simulated ephemeral memory because the write buffer can
only contain M entries. Each round requires only O(M/B) reads and writes to the persistent
memory because the simulating capsules only need the stored copy of the ephemeral memory,
do at most M/B reads, and then do at most O(M/B) writes to the other stored copy. The
commit capsule does at most M/B simulated writes, each requiring a read from and write to the
persistent memory. Because each round simulates M/B reads and writes to external memory at
the cost ofO(M/B) reads and writes to persistent memory, the faultless work across all capsules
is bounded by O(t). Because the probability that a capsule faults is bounded by the maximum
capsule work, O(M/B), when f ≤ B/(cM), there is a constant c such that the probability of
a capsule faulting is less than 1. Since the faults are independent, the expected total work is a
constant factor greater than the faultless work, giving the stated bounds.

Theorem 4. Any (M,B) ideal cache computation with t cache misses can be simulated on the
(O(M), B) PM model with f ≤ B/(cM) for a constant c ≥ 2, using O(t) expected total work.

Proof. The simulation is similar to our external memory simulation, using rounds consisting of
a simulation capsule and a commit capsule. During each simulation capsule a simulated cache
of size 2M/B blocks is maintained in the ephemeral memory. The capsule starts by loading the

8

registers, and with an empty cache. During simulation, entries are never evicted, but instead the
simulation stops when the cache runs out of space, i.e., after 2M/B distinct blocks are accessed.
The capsule then writes out all dirty cache lines (together with the corresponding persistent
memory address for each cache line) to a buffer in persistent memory, saves the registers and
installs the commit capsule. The commit capsule reads in the buffer, writes out all the dirty
cache lines to their correct locations, and installs the next simulation capsule. The simulation is
write-after-read conflict free.

We now consider the costs of the simulation. O(M) ephemeral memory is sufficient to
simulate the cache of size 2M . The total faultless work of a simulation capsule (run once) is
bounded by O(M/B) because we only have 2M/B misses before ending, and then have to write
out at most 2M/B dirty cache blocks. Accounting for faults, the total cost is still O(M/B)—
given constant probability of faults. The size of the cache and cost are similarly bounded for
the commit capsule. We now note that over the same simulated instructions, the ideal cache
will suffer at least M/B cache misses. This is because the simulation round accesses 2M/B
distinct locations, and only M/B of them could have been in the ideal-cache at the start of the
round, in the best case. The other M/B must therefore suffer a miss. Therefore each simulation
round simulates what were at least M/B misses in the ideal cache model with at most O(M/B)
expected cost in the PM model. As in the previous proofs, and since the capsule work is bounded
by O(M/B), the probability of a capsule faulting can be bounded by 1/2 when f ≤ B/(cM),
for some c. Hence the expected total work can be bounded by twice the faultless work.

2.3 Programming for Robustness

The simulation of external memory is not completely satisfactory because its overhead, although
constant, could be significant. Here we describe one protocol to program directly for the model,
which can greatly reduce the overhead.

Our protocol is designed so capsules begin and end at the boundaries of certain function calls.
We call functions with capsule boundaries persistent function calls and those without ephemeral
functions. We assume that all user code between persistent boundaries is write-after-read conflict
free, or otherwise idempotent. In addition to the persistent function call we assume a commit
command that forces a capsule boundary at that point. As with a persistent call, this command
requires a constant number of external reads and writes.

We assume that all user code between persistent boundaries is write-after-read conflict free, or
otherwise idempotent. This requires a style of programming in which results are copied instead
of overwritten. For sequential programs, this increases the space requirements of an algorithm
by at most a factor of two. Persistent counters can be implemented by placing a commit between
reading the old value and writing the new. In the algorithms that we describe in Section 2.6, this
style is very natural.

Implementing Persistent Calls. The standard stack protocol for function calling is not write-
after-read conflict free and therefore cannot be used directly for persistent function calls. We
therefore describe a simple mechanism based on closures and continuation passing in functional
programming [4]. The convention also serves to clearly delineate the capsule boundaries, and

9

will be useful in the discussion of the parallel model. We then discuss how this can be imple-
mented on a stack and can be used for loops.

We use a contiguous sequence of memory words, called a closure, to represent a capsule. The
restart pointer for the capsule is the address of the first word of the closure. A closure consists
of an instruction pointer in the first position (the start instruction), local state, arguments, and a
pointer to another closure, which we refer to as the continuation. Typically a closure is constant
size and points indirectly (via a pointer) to non-constant sized data, although this is not required.
Once a closure is filled, it can be installed and started. Any faults while it is active will restart it.
Since the base of the closure is loaded into the base pointer when starting, the instructions have
access to the local state and arguments. A closure can be thought of as a stack frame, but need
not be allocated in a stack discipline. Indeed, as discussed later, allocating in a stack discipline
requires some extra care. The continuation can be thought of as a return pointer, except it does
not point directly to an instruction, but rather another closure (perhaps the parent stack frame),
with the instruction to run stored in the first location.

A persistent function call consists of creating two closures, a continuation closure and a callee
closure, and then installing and starting the callee closure. The continuation closure corresponds
to what needs to be run when returning from the callee. It consists of a pointer to the first
instruction to run on return, any local variables that are needed on return, an empty slot for the
return result of the callee, and the continuation of the current closure. The callee closure consists
of a pointer to the first instruction to run in the called function, any arguments it needs, and a
pointer to the continuation closure in its continuation. The return from a persistent call consists
of writing any results into the closure pointed to by the continuation (the continuation closure),
and then installing and starting the continuation closure. Note that if the processor faults after
installing the continuation closure, then a computation will only back up as far as the start of the
continuation. Therefore persistence occurs at the boundaries (in and out) of persistent function
calls. Because a capsule corresponds to running a single installed closure, all capsules correspond
to the code run between two persistent function boundaries. We note that if a function call is in
tail position (i.e., it cannot call another function), then the continuation closure is not necessary,
and the continuation pointer of the current active capsule can be copied directly to the new callee
closure before installing it (this is the standard tail call optimization).

Our calling mechanism is write-after-read conflict free. This is because we only ever write
to a closure when it is being created, and read when it is being used in a future capsule. The
one exception is writing results into a closure, but in this case the callee does the writes, and the
caller does the reads after the return and in a different capsule. A loop can be made persistent by
using tail recursive function calls. To avoid allocating a new closure for each, the implementation
could use just two closures and swap back and forth between the two.

Closures can be implemented in a stack discipline by allocating both the callee and contin-
uation closures on the top of the stack, and popping the callee closure when returning from the
called function, and the continuation closure when returning from the current function. Stan-
dard stack-based conventions, however, will not be write-after-read conflict free because they are
based on side-affecting the current stack, e.g. by changing the value of local variables. Also the
return address is typically stored in the child (callee) frame. Here it is important it is kept in the
continuation closure so that the move to a new closure can be done atomically by swinging the
restart-pointer (changing the start instruction address and base pointer on the same instruction).

10

A commit command can be implemented in the compiler, or by hand, by putting the code after
the commit into a separate function body, and making a tail call to it.

To implement closures we need memory allocation. This can be implemented in various
ways in a write-after-read conflict free manner. One way is for the memory for a capsule to be
allocated starting at a base pointer that is stored in the closure. Memory is allocated one after the
other, using a pointer kept in local memory (avoiding the need for a write-after-read conflict to
persistent memory in order to update it). In this way, the allocations are the same addresses in
memory each time the capsule restarts. At the end of the capsule, the final value of the pointer
is stored in the closure for the next capsule. For the Parallel-PM model, each processor allocates
from its own pool of persistent memory, using this approach. In the case where a processor takes
over for a hard-faulting processor, any allocations while the taking-over processor is executing
on behalf of the faulted processor will be from the pool of the faulted processor.

2.4 Robustness on Multiple Processors
With multiple processors our previous definition of idempotent is inadequate since the other
processors can read or write persistent memory locations while a capsule is running. We therefore
consider a stronger variant of idempotency that adds the requirement that capsules act as if they
ran atomically. Atomicity is not necessary for correctness, but provides a simple definition that
is sufficient for our purposes.

We consider the history of a computation, which is an interleaving of the persistent memory
instructions from each of the processors. The history includes the additional instructions due
to faults (i.e., it is a complete trace of instructions that actually happened). A capsule within a
history is invoked at the instruction it is installed and responds at the instruction that installs the
next capsule on the processor.

We say that a capsule in a history is atomically idempotent if all its instructions can be moved
in the history to be adjacent somewhere between its invocation and response without violating
the memory semantics (atomicity), and the instructions are idempotent at the spot they are moved
to (idempotency).

We say that two persistent memory instructions on separate processors conflict if they operate
on the same block and one is a write. For a capsule within a history we say that one of its
instructions has a race if it conflicts with another instruction that is between the invocation and
response of that capsule.
Theorem 5. Any capsule that is write-after-read conflict free and race free in a history is atom-
ically idempotent.

Proof. Because the capsule is race free we can move its instructions to be adjacent at any point
between the invocation and response without affecting the memory semantics. Once moved
to that point, the idempotence follows from Theorem 1 because the capsule is write-after-read
conflict free.

This property is useful for user code if one can ensure that the capsules are race free via
synchronization. We use this extensively in our algorithms. However, races are required for

11

program synchronizations. We therefore consider other conditions that are sufficient for atomic
idempotence.

Racy Read Capsule. We first consider a racy read capsule, which reads one location from
persistent memory and writes its value to another location in persistent memory. The capsul can
have other instructions, but none of them that depend on the racy read are allowed to have races.
A racy read capsule is atomically idempotent if all its instructions except for the read are race
free. This is true because we can move all instructions of the capsule, with possible repeats due
to faults, to the position of the last read. The capsule will then properly act like the read and write
happened just once. Because races are allowed on the read location, there can be multiple writes
by other processors of different values to the read location, and different such values can be
read anytime the racy read capsule is restarted. However, because the dependent instructions are
race free, no other processor can “witness” these possible writes of different values to the write
location. Thus, the racy read capsule is atomically idempotent. A racy read capsule is a useful
primitive for copying from a volatile location that could be written at any point into a processor
private location that will be stable once copied. Then when the processor private location is used
in a future capsule, it will stay the same however many times the capsule faults and restarts. We
make significant use of this in our work-stealing scheduler.

Racy Write Capsule. We also consider a racy write capsule, for which the only instruction
with a race is a write instruction to persistent memory, and the instruction races only with either
read instructions or other write instructions, but not both kinds. Such a capsule can be shown
to be atomically idempotent. In the former case (races only with reads), then in any history, the
value in the write location during the capsule transitions from an old value to a new value exactly
once no matter how many times the capsule is restarted. Thus, for the purposes of showing
atomicity, we can move all the instructions of the capsule to immediately before the first read
that sees the new value, or to the end of the capsule if there is no such read. Although the first
time the new value is written (and read by other processors) may be part of a capsule execution
that subsequently faulted, the effect on memory is as if the capsule ran just once without fault
(idempotency). In the latter case (races only with other writes), then if in the history the racy
write capsule is the last writer before the end of the capsule, we can move all the instructions of
the capsule to the end of the capsule, otherwise we can move all the instructions to the beginning
of the capsule, satisfying atomicity and idempotency.

Compare-and-Modify (CAM) Capsule. We now consider idempotency of the CAS instruction.
Recall that we assume that a CAS is part of the machine model. We cannot assume the CAS is
race free because the whole purpose of the operation is to act atomically in the presence of a
race. Unfortunately efficiently simulate a CAS at the user level is non-trivial when there are
faults. The problem is that a CAS writes two locations, the two that it swaps. In the standard
non-faulty model one is local (a register) and therefore the CAS involves a single shared memory
modification and a local register update. Unfortunately in the Parallel-PM model, the processor
could fault immediately before or after the CAS instruction. On restart the local register is lost
and therefore the information about whether it succeeded is lost. Looking at the shared location
does not help since identical CAS instructions from other processors might have been applied to
the location, and the capsule cannot distinguish its success from their success.

Instead of using a CAS, here we show how to use a weaker instruction, a compare-and modify

12

old new target 0xDEAD currjob

xxxx xxxx xxxx 0 xxxx

0

3

0xDEAD

0 → 3

0

3

0xDEAD

3

Processor 3

void claimOwnership(
int jobId, int style) {

int old = defaults[style];
int new = getProcNum();
int* target = &jobOwners[jobId];
CAM(target, old, new);
currentJob = jobId;

}

void claimOwnership(
int jobId, int style) {

int old = defaults[style];
int new = getProcNum();
int* target = &jobOwners[jobId];
CAM(target, old, new);
currentJob = jobId;

}

Figure 2.2: CAM Capsule Example. In CAM capsules, earlier faulting runs of the capsule may
perform work that is visible to the rest of the system.

(CAM). A CAM is simply a CAS for which no subsequent instruction in the capsule reads the
local result (i.e., the swapped value).1 Furthermore, we restrict the usage of a CAM to protect
against the ABA problem. For a capsule within a history we say a write w (including a CAS
or CAM) to persistent memory is non-reverting if no other conflicting write between w and the
capsule’s response changes the value back to its value before w. We define a CAM capsule as
a capsule that contains one non-reverting CAM and may contain other write-after-read conflict
free and race free instructions.
Theorem 6. A CAM capsule is atomically idempotent.

Proof. Assume that the CAM is non-reverting and all other instructions in the capsule are write-
after-read conflict free and race free. Due to faults the CAM can repeat multiple times, but it can
only succeed in changing the target value at most once. This is because the CAM is non-reverting,
so once the target value is changed, it could not be changed back. Therefore if the CAM ever
succeeds, for the purpose of showing atomicity, in the history we move all the instructions of the
capsule (including the instructions from faulty runs) to the point of the successful CAM. This
does not affect the memory semantics because none of the other instructions have races, and any
of the other CAMs were unsuccessful and therefore also have no affect on memory. At the point
of the successful CAM the capsule acts like it ran once because it is write-after-read conflict
free—other than the CAM, which succeeded just once. If the CAM never succeeds, the capsule
is conflict free and race free because the CAM did not do any writes, so Theorem 5 applies.

The example CAM capsule in Figure 2.2 shows one of the interesting properties of idem-
potence: unlike transactions or checkpointing, earlier runs that faulted can make changes to the
memory that are seen or used by other processes. Similarly, these earlier runs can affect the
results of the successful run, as long as the result is equivalent to a non-faulty run.

A CAM can be used to implement a form of test-and-set in a constant number of instructions.
In particular, we will assume a location can either be unset, or the value of a process identifier or

1Some CAS instructions in practice return a boolean to indicate success; in such cases, the boolean cannot be
read either.

13

other unique identifier. A process can then use a CAM to conditionally swap such a location from
unset to its unique identifier. The process can then check if it “won” by seeing if its identifier is in
the location. We make heavy use of this in the work-stealing scheduler to atomically “steal” a job
from another queue. It can also be used at the join point of two threads in fork-join parallelism
to determine who got there last (the one whose CAM from unset was unsuccessful) and hence
needs to run the code after the join.

An alternative to the CAM approach is the work of Ben-David et al. [15], who examine the
performance of CAS in more detail and provide a way to construct an idempotent version. Their
construction could be applied in place of a CAM operation at the cost of added complexity and
additional constant-factor overhead.
Racy Multiread Capsule. It is also possible to design capsules that are idempotent without
the requirement of atomicity. By way of example, we discuss the racy multiread capsule. This
capsule consists of multiple racy read capsules that have been combined together into a single
capsule. Concurrent processes may write to locations that the capsule is reading between reads,
which violates atomicity. Despite this, a racy multiread capsule is idempotent since the results
of the final successful run of the capsule will overwrite any results of partial runs. We make use
of the racy multiread capsule in the work-stealing scheduler to reduce the number of capsules
required. It is not needed for correctness.

These capsules provide a strong foundation for building program synchronizations. In fact,
our work-stealing scheduler is constructed using these capsules, illustrating that they provide for
the majority of common use cases.

2.5 Work Stealing

2.5.1 Preliminaries and Overview
We provide an efficient work stealing scheduler (WS) for the Parallel-PM model based on the
work-stealing scheduler of Arora, Blumofe, and Plaxton (ABP) [7]. Our scheduler, like theirs,
uses a work-stealing double ended work queue and works in a multiprogrammed environment
where the number of active processors can change.

However, supporting processor faults causes some crucial differences. First, our scheduler
will not use the CAS operation, for reasons described in Section 2.4, and instead will make use
of the CAM operation. Second, our scheduler has to handle soft faults anywhere in either the
scheduler or the user program. This requires some care to maintain idempotence. Third, our
scheduler has to handle hard faults. In particular it has to be able to steal from a processor that
hard faults while it is running a thread. It cannot restart the thread from scratch, but needs to start
from the previous capsule boundary (a thread can consist of multiple capsules). These faults
can increase both the total work and the total depth. The expected work is only increased by a
constant factor, which is not a serious issue. However, for total depth, expectations cannot be
carried through the maximum implied by parallel execution. To deal with this, we consider high
probability bounds.
Machine Assumptions. As in the ABP work, we require some assumptions about the machine.
The schedule is a two-level scheduler in which the work-stealing scheduler, under our control,

14

maps threads to processes, and an adversarial operating system scheduler maps processes to pro-
cessors. The OS scheduler can change the number of allocated processors and which processes
are scheduled on those processors during the computation, perhaps giving processors to other
users. The number of processes and the maximum number of processors used is given by P . The
average number that are allocated to the user is PA.

ABP assume that the quanta for scheduling is at least the time for two scheduling steps where
each step takes a small constant number of instructions. In our case we cannot guarantee that the
quanta is big enough to capture two steps since the processor could fault. However it is sufficient
to show that with constant probability two scheduling steps complete within the quanta, which
we can show.

The available instruction set contains a yield-to-all instruction. This instruction tells the OS
that it must schedule all other processes that have not hard faulted before (or at the same time) as
the process that executes the instruction. It is used to ensure that processors that are doing useful
work have preference over ones who run out of work and need to steal.

The Scheduler Interface. For handling faults, and in particular hard faults, the interaction of
the scheduler and threads is slightly different from that of ABP. We assume that when a thread
finishes it jumps to the scheduler.2 When a thread forks another thread, it calls a fork
function, which pushes the new thread on the bottom of the work queue and returns to the calling
thread. When the scheduler starts a thread it jumps to it (actually a capsule representing the
code to run for the thread). Recall that when the thread is done it jumps back to the scheduler.
These are the only interactions of threads and the scheduler—i.e. jumping to a thread from the
scheduler, forking a new thread within a thread, and jumping back to the scheduler from a thread
on completion. All of these occur at capsule boundaries, but a thread itself can consist of many
capsules. We assume that at a join (synchronization) point of threads whichever one arrives last
continues the code after the join and therefore that thread need not interact with the scheduler.
The other threads that arrive at the join earlier finish and jump to the scheduler. In our setup,
therefore, a thread is never blocked, assuming the fork function is non-blocking.

The Work-Stealing Deque. A work-stealing deque (WS-deque) is a concurrent deque support-
ing a limited interface. Here we used a similar interface to ABP, including the functions popTop,
pushBottom, and popBottom. Any number of concurrent processors can execute popTop,
but only the owner of a deque can execute either pushBottom or popBottom. The deque is
linearizable except that popTop can return empty even if the deque is not-empty. This can only
happen if another concurrent popTop call succeeds with a linearization point when the original
popTop is live, i.e., from invocation to response.

We provide an implementation of a idempotent WS-deque in Figure 2.3. Our implementation
maintains an array of tagged entries that refer to threads that the processor has either enabled or
stolen while working on the computation. The tag is simply a counter that is used to avoid the
ABA problem [59]. An entry consists of one of the following states:

• empty: An empty entry is one that has not been associated with a thread yet. Newly created
elements in the array are initialized to empty.

• local: A local entry refers to a thread that is currently being run by the processor that owns

2Note that jumping to a thread is the same as installing a capsule.

15

this WS-Deque. We need to track local entries to deal with processors that have a hard
fault (i.e., never restart).

• job: A job entry is equivalent to the values found in the original implementation of the
WS-Deque. It contains a thread (i.e., a capsule to jump to start the thread).

• taken: A taken entry refers to a thread that has already been or is in the process of being
stolen. It contains a pointer to the entry that the thief is using to hold the stolen thread, and
the tag of that entry at the time of the steal.

The transition table for the entry states is shown in Figure 2.4.
In addition to this array of entries, we maintain pointers to the top and the bottom of the

deque, which is a contiguous region of the array. As new threads are forked by the owner process,
new entries will be added to the bottom of the deque and the bottom pointer will be updated using
the pushBottom function. The top pointer will move down on the deque as threads are stolen.
This implementation does not delete elements at the top of the deque, even after steals. This
means that we do not need to worry about entries being deleted in the process of a steal attempt,
but does mean that maintaining P WS-Deques for a computation with span T∞ requiresO(PT∞)
storage space.

Our implementation of the WS-Deque maintains a consistent structure that is useful for prov-
ing its correctness and efficiency. The entires of our WS-Deque are always ordered from the top
to the bottom of the array as follows:

1. A non-negative number of taken entries. These entries refer to threads that have been
stolen, or possibly in the case of the last taken entry, to a thread that is in the process of
being stolen.

2. A non-negative number of job entries. These entries refer to threads that the process has
enabled that have not been stolen or started since their enabling.

3. Zero, one, or two local entries. If a process has one local entry, it is the entry that the
process is currently working on. Processes can momentarily have two local entries during
the pushBottom function, before the earlier one is changed to a job. If a process has zero
local entries, that means the process has completed the execution of its local work and is
in the process of acquiring more work through popBottom or stealing, or it is dead.

4. A non-negative number of empty entries. These entries are available to store new threads
as they are forked during the computation.

We can also relate the top and bottom pointers of the WS-Deque (i.e. the range of the deque) to
this array structure. The top pointer will point to the last taken entry in the array if a steal is in
process. Otherwise, it will point to the first entry after the taken entries. At the end of a capsule,
the bottom pointer will point to the local entry if it exists, or the first empty entry after the jobs
otherwise. The bottom pointer can also point to the last job in the array or the earlier local entry
during a call to pushBottom.

Scheduling Algorithm Overview. Each process is initialized with an empty WS-Deque con-
taining enough empty entries to complete the computation and both top and bottom pointers
set to the first entry. The process that is assigned the root thread installs the first capsule of this
thread, and sets its first entry to local. All other processes isntall the findWork capsule.

During computation, processes that have work to do will perform that work while marking

16

1 P = number of procs
2 S = stack size

4 struct procState {
5 union entry = empty
6 | local
7 | job of continuation
8 | taken of 〈entry*,int〉

10 〈int,entry〉 stack[S];
11 int top;
12 int bot;
13 int ownerID;

15 inline int getStep(i) { return stack[i].first; }

17 inline void clearBottom() {
18 stack[bot] = 〈getStep(bot)+1, empty〉; }

20 void helpPopTop() {
21 int t = top;
22 switch(stack[t]) {
23 case 〈_, taken(ps,i)〉:
24 // Set thief state.
25 CAM(ps, 〈i,empty〉, 〈i+1,local〉);
26 CAM(&top, t, t+1); // Increment top.
27 } }

29 // Steal from current process, if possible.
30 // If a steal happens, location e is set to "local"
31 // & a job is returned. Otherwise NULL is returned.
32 continuation popTop(entry* e, int c) {
33 helpPopTop();
34 int i = top;
35 〈int, entry〉 old = stack[i];
36 commit;
37 switch(old) {
38 // No jobs to steal and no ongoing local work.
39 case 〈j, empty〉: return NULL;
40 // Someone else stole in meantime. Help it.
41 case 〈j, taken(_)〉:
42 helpPopTop(); return NULL;
43 // Job available, try to steal it with a CAM.
44 case 〈j, job(f)〉:
45 〈int, entry〉 new = 〈j+1, taken(e,c)〉;
46 CAM(&stack[i], old, new);
47 helpPopTop();
48 if (stack[i] != new) return NULL;
49 return f;

17

50 // No jobs to steal, but there is local work.
51 case 〈j, local〉:
52 // Try to steal local work if process is dead.
53 if (!isLive(ownerID) && stack[i] == old) {
54 commit;
55 〈int, entry〉 new = 〈j+1,taken(e,c)〉;
56 stack[i+1] = 〈getStep(i+1)+1, empty〉;
57 CAM(&stack[i], old, new);
58 helpPopTop();
59 if (stack[i] != new) return NULL;
60 return getActiveCapsule(ownerID);
61 }
62 // Otherwise, return NULL.
63 return NULL;
64 } }

66 void pushBottom(continuation f) {
67 int b = bot;
68 int t1 = getStep(b+1);
69 int t2 = getStep(b);
70 commit;
71 if (stack[b] == 〈t2, local〉) {
72 stack[b+1] = 〈t1+1, local〉;
73 bot = b + 1;
74 CAM(&stack[b], 〈t2, local〉, 〈t2+1, job(f)〉
75 } else if (stack[b+1].second == empty) {
76 states[getProcNum()].pushBottom(f);
77 }
78 return;
79 }

81 continuation popBottom() {
82 int b = bot;
83 〈int, entry〉 old = stack[b-1];
84 commit;
85 if (old == 〈j, job(f)〉) {
86 CAM(&stack[b-1], old, 〈j+1,local〉);
87 if (stack[b-1] == 〈j+1, local〉) {
88 bot = b-1;
89 return f;
90 } }
91 // If we fail to grab a job, return NULL.
92 return NULL;
93 }

18

94 ˆ findWork() {
95 // Try to take from local stack first.
96 continuation f = popBottom();
97 if (f) GOTO(f);
98 // If nothing locally, randomly steal.
99 while (true) {

100 yield();
101 int victim = rand(P);
102 int i = getStep(bot);
103 continuation g = states[victim].popTop(&stack[bot],i);
104 if (g) GOTO(g);
105 }
106 }
107 }

109 procState states[P]; // Stack for each process.

111 // User call to fork.
112 void fork(continuation f) {
113 // Pushes job onto the correct stack.
114 states[getProcNum()].pushBottom(f);
115 }

117 // Return to scheduler when any job finishes.
118 ˆ scheduler() {
119 // Mark the completion of local thread.
120 states[getProcNum()].clearBottom();
121 // Find work on the correct stack.
122 GOTO(states[getProcNum()].findWork());
123 }

Figure 2.3: Fault-tolerant WS-Deque Implementation. Jumps are marked as GOTO and functions
that are jumped to and do not return (technically continuations) are marked with a ˆ. All CAM
instructions occur in separate capsules, similar to function calls.

New State
Empty Local Job Taken

Old State

Empty - X
Local X - X X
Job X - X

Taken -

Figure 2.4: Entry State Transition Diagram
Entry state transition diagram.

19

the bottom of their deque as local. Processes that do not have work will first try to take a
thread from their own deque using popBottom. If popBottom fails, the process will pick a
random victim and try to steal work from the victim using popTop. In a faultless setting, our
work-stealing scheduler fuctions like that of ABP.

We use the additional information stored in the WS-Deques and the configuration of capsule
boundaries to provide fault tolerance. We provide correctness in a setting with soft faults using
idempotent capsules. Each capsule in the scheduler is an instance of one of the capsules discussed
in Section 2.4. This means that processes can fault and restart without affecting the correctness
of the scheduler.

Providing correctness in a setting with hard faults is more challenging. This requires the
scheduler to ensure that work being done by processes that hard fault is picked up in the same
capsule that the fault ocurred during by exactly one other process. We handle this by allow-
ing thieves to steal local entries from dead processes. A process can check whether another
process is dead using a liveness oracle isLive(procId).

One way to construct the liveness oracle would be by implementing a counter and a flag for
each process. Each process updates its counter after a constant number of steps (this does not
have to be synchronized). If the time since a counter has last updated passes some threshold,
the process is considered dead and its flag is set. If the process restarts, it can notice that it was
marked as dead, clear its flag, and enter the system with a new empty WS-Deque. Constructing
such an oracle does not require a global clock or tight synchronization.

By handling these high level challenges, along with some of the more subtle challenges that
occur when trying to provide exactly-once semantics in the face of both soft and hard faults, we
are able to achieve a correct scheduler.

2.5.2 Proof of the Correctness of Work-Stealing
We now provide a proof of the correctness of our work-stealing scheduler. Throughout our proof
of correctness, we will refer to the code of the work-stealing scheduler shown in Figure 2.3.

We begin by stating some definitions and assumptions. We assume that at least one process
will not hard fault during the computation. If this is not true, the computation will have no pro-
cesses performing work and will never finish. The local continuation of a process can be queried
using the function getActiveCapsule. This function may be persistent or ephemeral. Any
process can query whether another process has hard faulted through the ephemeral function
isDead, which makes use of the liveness oracle. We define the owner of a WS-Deque to be the
process that has the same process number as the ownerID field of that WS-Deque. We consider
a popBottom to be successful if the CAM at Line 86 is successful. We consider a popTop to
be successful if either of the CAM operations at Lines 46 or 57 are successful.

The first property we prove about our implementation is that the bottom of a WS-Deque can
only be operated on by one process at any time.
Lemma 1. For a given WS-Deque, only one process can call pushBottom, popBottom, or
clearBottom at any time. This process is the owner of the WS-Deque unless the owner hard
faults in the middle of a pushBottom or popBottom invocation.

Proof. We first consider the pushBottom function. All calls to pushBottom are made from

20

the fork function. These calls are always made to the WS-Deque chosen by the getProcNum
function. Since this function returns the ID of the process that is running it and there is no capsule
boundary between the call to getProcNum and the call to pushBottom, the process running
the fork will always invoke pushBottom on its own WS-Deque. Since the pushBottom
function is part of the scheduler rather than the algorithm code, it is never pushed onto the WS-
Deque as a job. This means that it can only be stolen from the local state in the event of a
process hard fault. Similarly, all calls to popBottom and clearBottom are made using the
getProcNum function inside the findWork and fork functions respectively. Therefore, the
same argument holds. Since only the owner can invoke these functions and it will run them
to completion before calling any other functions, we know that at most one of these function
invocations can exist at any time.

From this property, we find the related result.
Corollary 1. For a given WS-Deque, only one process can update the bottom pointer at any
time. This process is the owner of the WS-Deque unless the owner hard faults in the middle of a
pushBottom or popBottom invocation.

Proof. The only functions that update the bottom pointer are pushBottom, popBottom, or
clearBottom. Applying Lemma 1 gives the desired result.

We then use this property about the bottom of WS-Deques to show that user level threads
that are being worked on by processes are tracked with local entries.
Lemma 2. Every process that is working on user level threads will have a local entry that is
pointed to by the bottom pointer of their WS-Deque.

Proof. All user threads are initiated by the findWork function at Line 97 or Line 104.
If the thread is started at Line 97, it means that popBottom returned that continuation. The

if statement at Line 87 requires a local entry to exist at stack[b-1] in order to return a non-
NULL value. The bottom pointer is then set to this location before the return. Corollary 1 tells us
that bottom pointer will not be modified by any other process. The entry pointed to by the bottom
pointer can only be modified from local by calls to pushBottom or popTop. We know from
Lemma 1 that pushBottom cannot be running concurrently. We show that popTop cannot
concurrently modify the entry by observing that popTop will only modify a local entry for a
process that hard faulted, and a process cannot return a value after it hard faults. Therefore, the
values that exist at Line 87 must still exist upon jumping to the continuation.

If the thread is started at Line 104, it means that popTop returned that continuation. The
popTop function can return a non-NULL value at Line 49 or Line 60. In either case, the return
is preceded by a call to the helpPopTop function. This function ensures that the entry pointed
to by the newly taken entry is set to local. This newly taken entry was set by the CAM at Line 46
if the return happened at Line 49 or the CAM at Line 57 if the return happened at Line 60. Both
of these CAMs set the entry pointer in the taken to the argument passed to popTop. Looking
at Line 103, we see that this is the pointer to the bottom of the thief’s WS-Deque. Therefore,
that is the entry that will be set to local. We know that the bottom entry and pointer will not be
modified between the call to helpPopTop and the jump to the continuation because the owner

21

process is the one running the calls to popTop and findWork and the jump to the thread, and
can therefore not hard fault or make other calls to pushBottom, clearBottom, or popTop.

In both cases where user threads are started, a local entry exists on the bottom of the WS-
Deque owned by the process starting that thread. It then remains to show that this local entry
is not deleted before the process ceases working on that thread. Local entries are only modified
by the clearBottom, pushBottom, and popTop functions. We know from Lemma 1 that
unless the process hard faults, only the owner can run pushBottom or clearBottom. If the
owner calls clearBottom, it must have done so from the scheduler function. This function is
only called when the user level thread completes, meaning the process is no longer working on
it. Calls to pushBottom may modify the local entry that existed prior to the call if the CAM
in Line 74 succeeds, but Lines 72 and 73 will create a local entry at the new bottom before this
can happen. Calls to popTop will never modify a local entry unless the owner has hard faulted.
In this case, the local entry will be set to taken by the CAM at Line 57. Once this CAM is
successful, the taken entry will point to the bottom of the thief’s WS-Deque, which will be an
empty entry. The first helpPopTop call on the victim’s WS-Deque that resolves Line 25 will
change the empty entry to local. Since the thief must complete a call to helpPopTop between
Line 74 and the return from popTop, the local entry will be created before the thief begins
working on the thread.

Since a process can never work on multiple user level threads, we prove that there are never
multiple local entries visible to steal if the process crashes.
Lemma 3. At most one local entry can be successfully targeted by a popTop on a WS-Deque.
Calls to the popTop function of that WS-Deque after the successful steal completes will target
an empty entry.

Proof. In order for a local entry to be stolen the top pointer of the WS-Deque must point to that
entry. Since this entry is a local entry, any thief will execute the case beginning at Line 51. In
this case Line 56 will be executed prior to any CAM operation. This will set the entry below
the top pointer to empty. Once the local entry has been stolen, the top pointer will be changed
to point to the empty entry by the helpPopTop function. No popTop targeting an empty
entry will succeed, or perform any modifications to the WS-Deque at all. As long as the entry
remains empty, no popTop on that WS-Deque can succeed. Empty entries can only be modified
by the pushBottom function. The code that performs this modification is enclosed in the if
statement at Line 71. The condition in this if statement will always fail since the CAM at Line 57
removes the remaining local entry from the WS-Deque. Since the empty entry pointed to by the
top pointer will never be modified, no further popTop calls can be successful.

Having completed these useful structural lemmas, we can begin to prove the correctness of
our functions. We focus first on proving correctness in the face of soft faults and leave hard faults
for later in the proof.
Lemma 4. Any popBottom function targeting a job entry will be successful unless a concurrent
popTop function targeting the same entry is successful or the process hard faults.

Proof. If at any point during the findWork function the process hard faults, then the lemma is
vacuously true. This means that we can ignore hard faults for the sake of the proof.

22

The entry targeted by a popBottom invocation is the entry immediately above the bottom
pointer. If this entry is a job, the CAM at Line 86 will succeed unless the entry is changed before
the CAM happens. Job entries are only modified by successful invocations of popBottom or
popTop, so if neither of these functions concurrently succeed on the target entry, the CAM will
succeed, and therefore the popBottom will succeed.

Lemma 5. Any popTop function targeting a job entry or a local entry on a process that hard
faulted will be successful unless a concurrent popBottom or popTop function targeting the
same entry is successful or the process hard faults.

Proof. If at any point during the findWork function the process hard faults, then the lemma is
vacuously true. This means that we can ignore hard faults for the sake of the proof.

We first consider the case when the top pointer points to a job entry. In this case the CAM at
Line 46 will succeed unless the entry is changed before the CAM happens. Job entries are only
modified by successful invocations of popBottom or popTop, so if neither of these functions
concurrently succeed on the target entry, the CAM will succeed, and therefore the popTop will
succeed.

We next consider the case when the victim has hard faulted and the top pointer points to a
local entry. In this case, the CAM at Line 57 will succeed unless the entry is changed before
the CAM happens. Local entries are only modified by successful invocations of popTop or
pushBottom. We know from Lemma 1 that pushBottom functions can only be run by the
owner of the WS-Deque or a thief if the owner of the WS-Deque hard faulted. The owner has
hard-faulted, so it cannot run the pushBottom function. Since pushBottom is a scheduler
function, it can only be stolen from a local entry, rather than a job entry. By applying Lemma 3
we find that it is impossible for a popTop to target a local entry after the pushBottom function
is stolen. By applying Lemma 3 we find that if a popTop invocation targeting a local entry on
a process that hard faulted is running concurrently with the pushBottom function for that
process’ WS-Deque then the entry targeted by the popTop invocation was the target of another
successful popTop invocation that ran concurrently with the original popTop invocation. This
means that a popTop invocation targeting a local entry on a process that hard faulted will either
succeed or be concurrent with another popTop invocation that succeeds at targeting the same
entry.

Since we have proven the lemma for both possible cases, the proof is complete.

When proving the correctness of pushBottom we consider how hard faults affect the im-
plementation of the function and the interleavings that result. We also connect the user level
interface function fork to the scheduler.
Lemma 6. Every continuation will be added to a WS-Deque as a job exactly the number of times
fork was called on it.

Proof. Job entries are only added to a WS-Deque via the pushBottom function. This function
is only ever invoked by the fork function. Each call to fork directly calls pushBottom
exactly once. It therefore suffices to show that each call to pushBottom other than recursive
calls result in the passed argument being added to a WS-Deque exactly once. We show that each
call to pushBottom will have exactly one of the following results: the argument is added to

23

the associated WS-Deque exactly once or the owner hard faults and pushBottom is recursively
called with the same argument on a different WS-Deque whose owner has not hard faulted. Since
we know that not all processes can hard fault, this is sufficient.

We begin by assuming that the process does not hard fault while running pushBottom. We
know that the bottom entry of the WS-Deque is a local entry by Lemma 2 and that it cannot be
concurrently modified by Lemma 1. This means that all statements inside the if block that begins
at Line 71 are executed at least once and that the first execution of the CAM at Line 74 will
succeed. This adds the continuation to the WS-Deque as a job entry. The tag before the entry
prevents the CAM from succeeding more than once. We are then left to show that soft faults will
not result in additional calls to pushBottom being made. Until the CAM succeeds, we know
that the capsule will always enter the if block at Line 71. In order for this CAM to succeed,
Line 72 must be completed, setting the entry below the old bottom pointer to local. Local entries
can only be modified by the pushBottom, clearBottom, or popTop functions. The current
instance of pushBottom will not change this entry, and Lemma 1 states that no other instance
of pushBottom or clearBottom can be running concurrently. We observe that popTop
will only modify a local entry on a process that hard faulted. This lets us conclude that the
local entry will not be modified if the process does not hard fault, preventing the process from
executing the recursive pushBottom call. This means that the continuation is added to the
WS-Deque exactly once.

We then consider the case when the process hard faults while running pushBottom. If
the hard fault occurs prior to the CAM at Line 74 succeeding, then the CAM will not succeed
on this invocation of pushBottom and the thief that steals this thread will recursively call
pushBottom on its own WS-Deque. In this case, the owner hard faulted, so the local entry at
stack[b] will not be modified until it is stolen by a call to popTop. During this popTop,
the top pointer will point to stack[b]. This means that the thief will set stack[b+1] to
empty in Line 56 prior to completing the popTop. Furthermore, when the CAM at Line 57
succeeds, it changes the entry at stack[b] from local to taken. When the thief begins runs the
pushBottom capsule, it will bypass the if block starting at Line 71 in favor of the else block.
Since the if block is not taken, the CAM will never be attempted. The else block recursively calls
pushBottom with the same argument on the thief’s WS-Deque.

If the hard fault occurs after the CAM succeeds, then the continuation has been added to the
WS-Deque and it must not be added again. The tag before the entry prevents the CAM from
succeeding more than once. Since the CAM was successful, the entry at stack[b] has been
set to job. This means that in order for the pushBottom function to be restarted, a thief had to
steal the local entry set at stack[b+1] during Line 72. In order for the steal to occur, the CAM
at Line 57 had to succeed, which would change the entry from local to taken. Since taken entries
are never modified, we know that stack[b+1] must be a taken entry for the pushBottom
function to be resumed. This means that when the thief restarts the capsule, it can never reach
the invocation of the pushBottom function.

We have proven that each call to pushBottom will add the argument to the associated WS-
Deque exactly once or recursively call pushBottom with the same argument on a different
WS-Deque whose owner has not hard faulted. This proves that each call to fork results in the
argument being added to a WS-Deque as a job exactly once, completing the proof.

24

Now that we have shown that user work is correctly added to the scheduler, we show that
each process will try to perform the work that has been added.
Lemma 7. Every call to findWork results in a successful popTop or a successful popBottom
unless the process hard faults or the computation ends.

Proof. If at any point during the findWork function the process hard faults, then the lemma is
vacuously true. This means that we can ignore hard faults by the process calling findWork for
the sake of the proof.

The findWork function begins by calling the popBottom function. Lemma 4 shows that
the popBottom call will be successful unless unless all job entries on the WS-Deque are stolen
prior to the CAM at Line 86.

If the popBottom function is not successful then the findWork function will proceed to
the while loop that performs steal attempts. This loop selects a victim process at random, and
the performs the popTop function on that victim. We know from Lemma 5 that popTop will
succeed if the top entry of the victim’s WS-Deque is a job entry or if the victim has crashed and
the top entry of its WS-Deque is a local entry unless a concurrent popTop targeting the same
entry succeeds.

In order for the computation to complete, each user thread must be run to completion. This
means that if the computation is not complete there is a positive number of user threads that have
not been run to completion. Since user threads can only be enabled by other user threads, at least
one of these threads must be enabled. Lemma 6 states that this thread had a job entry created for
it. Since the thread has not been completed, it must have a process working on it or its job entry
must be in a WS-Deque. If the job entry is in a WS-Deque, then the top pointer of that WS-
Deque must point to that entry, or another job entry above it. We know from Lemma 5 that if the
thief calls popTop on this WS-Deque, it will succeed unless a concurrent call to popBottom
or popTop successfully targets that entry. If a process is working on the thread, Lemma 2 states
that the WS-Deque has a local entry pointed to by the bottom. If the process does not hard fault,
it will eventually call fork with a new continuation or complete its user level thread. If fork
is called, it will result in a new job entry which may be targeted by popBottom or popTop. If
the user level thread is completed, either there exists another enabled user level thread that this
analysis applies to, or the computation is complete. If the process hard faults at any time, then
its top entry is a valid popTop target and Lemma 5 applies.

At any time, progress is being made towards the end of the computation or there exists a
target that the process running findWork may call popBottom or popTop on successfully.
Since the findWork function will make attempts to call popTop repeatedly until it succeeds,
it will eventually either succeed, or the computation will finish.

We extend the proof of processor effort to show that between all of the available processes,
all of the work that is added to the scheduler is found without inadvertently duplicating any of
that work.
Lemma 8. Each job entry in a WS-Deque will be the target of a successful popBottom or
popTop exactly once.

Proof. To show that a job entry cannot be affected by a successful popBottom or popTop
more than once, we note that either successful function is caused by a successful CAM operation

25

on the associated entry. Such a CAM changes the entry to either local or taken, depending on
which function was successful.

In order for the computation to complete, each user thread must be run to completion. This
means that while there are job entries in any WS-Deque, the scheduler will continue to run. Job
entries are located in a WS-Deque above the bottom pointer of the WS-Deque and at or below
the top pointer of the WS-Deque. The structure of a WS-Deque means that for any job entry is
not directly above the bottom pointer, all entries between it and the bottom entry are job entries.
Similarly, for any job entry is not at the top pointer, then all entries between it and the top entry
are job entries.

If a process that does not have user level work on its WS-Deque does not hard fault, it will
perform one failed popBottom call, and then repeatedly make popTop attempts until one is
successful and it becomes a process that has user level work. These popTop attempts are made
on random processes, ensuring that each process will eventually be chosen as a victim.

If a process that has user level work on its WS-Deque does not hard fault, it will repeatedly
run any local work that it has, then call the popBottom function. Lemma 4 tells us that this
function will succeed unless it is targeting a non-job entry or a concurrent popTop call targeting
the same entry succeeds. If popBottom succeeds, the bottom pointer is set to the next lowest
entry and the process is repeated. If popBottom is not targeting a job entry, the structure of a
WS-Deque tells us that there are no job entries on that WS-Deque. If a concurrent popTop call
targeting the same entry succeeds that entry becomes taken and the top pointer of the WS-Deque
must point to that entry. This also means that the WS-Deque contains no job entries. Once the
WS-Deque contains no job entries and the local entry (if any) finishes, the process becomes a
process that does not have user level work.

If a process that has user level work on its WS-Deque does hard fault, it will have some
non-negative number of job entries above the bottom pointer of its WS-Deque. We rely on thief
processes to pop these entries from the WS-Deque. Lemma 5 tells us that every popTop attempt
on the WS-Deque will be successful unless a concurrent popTop or popBottom is successful.
Lemma 1 states that popBottom cannot be run on a WS-Deque owned by a process that hard
faulted unless it is stolen. Since popBottom is a scheduler function, it can only be stolen by
a local entry. The structure of the WS-Deque means that local entries cannot be stolen until
there are no job entries on the WS-Deque. This means that the top entry will be the target of a
successful popTop call from a thief. Since a successful popTop call results in the top pointer
being lowered, this process will repeat until all job entries have been targeted by successful
popTop calls.

As long as there exists at least one process that does not hard fault, it will switch between
having user level work that it completes to not having user level work and making popTop
attempts until it finds some. The end result of this process is that no job entries will remain
in any WS-Deque. Since job entries are only modified by successful calls to popBottom or
popTop, each job entry must have been removed by a successful popBottom or popTop
call.

Once the scheduler has assigned threads to various processes, the processes must complete
the work. The following two lemmas show that each thread that is assigned has computation
begun on it, which is sufficient to show completion in the face of soft faults.

26

Lemma 9. Every continuation that is affected by a successful popTop is jumped to at least
once.

Proof. We consider a continuation to be affected by a successful popTop if the WS-Deque
entry associated with that continuation is targeted by a successful CAM operation inside of the
popTop function. We consider an entry and a continuation to be associated if the entry is a
job containing the continuation or the entry is local while the continuation is being run by the
process that owns the WS-Deque the entry resides in. After the successful CAM, the target entry
has been set to a taken entry that contains a pointer to the bottom of the thief. Since taken entries
are never changed, we know that the if statement will succeed if and only if the CAM succeeded
during the current capsule. Therefore if the process does not hard fault then the continuation will
be returned to findWork, which jumps to that continuation. Soft faults may cause some of the
instructions to be re-run, but will not change the resulting memory state (due to idempotency). If
the process hard faults at any point between the successful CAM and the jump, it relies on other
thieves calling the helpPopTop function to ensure that there is a local entry at the location
pointed to in the taken entry, which is the bottom of its WS-Deque. This entry will eventually be
stolen by some other thief. That thief will restart the capsule that the original thief hard faulted
during. Since we know that not all processes hard fault, at some point a process will complete
the popTop function and jump to the continuation inside the findWork function.

Lemma 10. Every continuation that is affected by a successful popBottom is jumped to at
least once.

Proof. We consider a continuation to be affected by a successful popBottom if the WS-Deque
job entry containing that continuation is targeted by a successful CAM operation inside of the
popBottom function. After the CAM is successful, the target entry has been set to local. This
local entry can only be changed by a call to clearBottom, or a call to popTop after the
process hard faults. By Lemma 1, we know that clearBottom cannot run concurrently with
popBottom. This means that the if statement will succeed if and only if the CAM succeeded
during the current capsule. Therefore if the process does not hard fault, then the continuation
will be returned to findWork, which jumps to that continuation. Soft faults may cause some of
the instructions to be re-run, but will not change the resulting memory state. If the process hard
faults at any point between the successful CAM and the jump, then then a local entry will exist
at the bottom of its WS-Deque until that entry is stolen. Lemma 9 shows that once the entry is
stolen, it will be jumped to at least once. Jumping to either popBottom or findWork during
the specified window will maintain the local variables, including the continuation that will then
be jumped to in findWork.

We now show that hard faults do not prevent any computation from being completed.
Lemma 11. Any user thread on a process that hard faulted will be be affected by a successful
popTop and the capsule that was in process will be restarted.

Proof. In order for the computation to complete, each user thread must be run to completion.
This means that while there are unfinished user threads, the scheduler will continue to run.
Lemma 2 states that any process that is working on a user level thread has a local entry that

27

is pointed to by its bottom pointer. Lemma 7 states that processes that run out of work will even-
tually perform a successful popBottom or popTop unless they hard fault or the computation
ends. Using Lemma 8, we know that the number of successful calls that target a job entry is
limited. Since successful popBottom calls can only target job entries and successful popTop
calls can only target job or local entries, all other successful popTop calls must occur on user
threads on processes that have hard faulted. We combine Lemma 9 with the fact that popTop
calls getActiveCapsule when stealing a local entry to finish the proof.

We have shown that all work created at the user level is completed and that no user level
threads are created by the scheduler. We conclude the proof by showing that the scheduler does
not over-execute user threads.
Lemma 12. No capsule in user level code will be run to completion more times than the number
of times it is invoked by user level code.

Proof. A capsule is considered run to completion when all of its instructions have been com-
pleted and the restart pointer for the subsequent capsule has been installed. We assume that
capsules are handled as discussed in Section sec:pers-single-proc-robust, which describes how
to ensure that soft faults during direct runs will not cause a capsule to run to completion multiple
times. We are then left to show that the scheduler does not result in extra invocations of user
level code. This might happen in two ways: threads might be added to WS-Deques more times
than they were enabled or entries on WS-Deques may be run multiple times.

We first show that threads are not added to WS-Deques more times than they are enabled.
Threads are only enabled as job entries through calls to the fork function. We show in Lemma
6 that the number of job entries added for a thread is exactly the number of times fork is invoked
on that thread.

We next show that although WS-Deque entries can be run multiple times, this will not result
in any capsule being run to completion multiple times. Lemma 8 states that each job entry will
be the result of a successful popBottom or popTop exactly once. In Lemmas 10 and 9, we
prove that in either of these cases we will jump to the beginning of the thread.

If the thread is run to completion without hard faulting, it will complete the user level work
normally, possibly make calls to fork, and then call the scheduler function. We know that local
work is not stolen from a process unless that process hard faulted, so we do not have to consider
steal attempts at this time. The user level work does not interact with the scheduler, and therefore
cannot affect the entries on the WS-Deque. If pushBottom is run to completion without any
hard faults, then the original entry that corresponded to the user thread will be replaced with a
job entry containing the newly enabled thread continuation. A new local entry corresponding to
the thread will be created below the original entry. The scheduler function calls clearBottom,
sets the local entry at the bottom of the WS-Deque to empty. Once this has been completed there
is no longer an entry corresponding to the thread, so it cannot be jumped to again unless it is
later re-enabled. Since the process has not hard faulted, no thief will ever steal the local entry
associated with the thread.

We then consider what happens if the process running the thread hard faults. If the process
hard faults during the user level code, then it will be stolen regularly. Since the popTop function
returns the active capsule when stealing a local entry (Line 60) rather than the entire thread, the

28

thief will start on the first capsule that has not been run to completion rather the beginning of
the thread. The thief will also set the local entry that corresponded to the thread to empty during
Line 57, preventing it from being stolen by any other thief. These facts are true for any steal on
a process that has hard faulted. We consider two cases for a hard fault during pushBottom:
before the CAM at Line 74 is run at all, and after it has been run at least once. If the hard fault
occurs before the CAM is run then the entry at stack[b] will remain local until it is stolen.
During the popTop call when this entry is stolen, the thief will set stack[b+1] to empty
during Line 56. Since this occurs before the CAM at Line 57, it will occur before the top pointer
can be changed to stack[b+1]. Since this entry will be set to empty before any popTop calls
can see it, it will never be stolen. When the thief restarts the active capsule in pushBottom, the
entry at stack[b] will have been set to taken and the entry at stack[b+1] will have been set
to empty, so the thief will call pushBottom on its own WS-Deque. That call can be analyzed
in the same manner as the original call. If the hard fault occurs after the CAM at Line 74 has
been run then the entry at stack[b] has been set to job. In this case, the current thread will
not be stolen until the top pointer is set to point to stack[b+1]. This entry was set to local
by Line 72. When the thief restarts the active capsule, the state of the WS-Deque will cause it
to bypass both if clauses and immediately return to the user thread without further modifying
the WS-Deque. If the process hard faults during the scheduler function, the hard fault will either
occur before clearBottom finishes, in which case it will be stolen and restarted normally, or
it will occur after the clearBottom finishes, in which case the entry will be set to empty and
therefore never stolen.

We have now proven that threads are not added to WS-Deques more times than they are
enabled and that WS-Deque entries being run multiple times will not cause a user level cap-
sule inside threads associated with those entries to be run to completion multiple times. This
completes the proof.

We combine these lemmas to prove our correctness Theorem.
Theorem 7. The implementation of work stealing provided in Figure 2.3 correctly schedules
work according to the specification in Section 2.5.

Proof. We know from Lemma 6 and Lemma 8 that every enabled user thread will be scheduled
on to an active process. Lemma 9, Lemma 10, and Lemma 11 combine to prove that every
scheduled thread is run to completion. Lemma 8 and Lemma 12 show that no work is duplicated
or re-executed. Since all work is scheduled and run to completion following the computation
dependencies, the implementation is correct.

2.5.3 Time Bounds
We now analyze bounds on runtime based on the work-stealing scheduler. As with ABP, we
consider the total amount of work done by a computation, and the depth of the computation, also
called the critical path length. In our case we have W , the work assuming no faults, and Wf , the
work including faults. In algorithm analysis the user analyzes the first, but in determining the
runtime we care about the second. Similarly we have both D, a depth assuming no faults, and
Df , a depth with faults.

29

We take a similar approach to ABP to prove the time bounds. In particular, as in their al-
gorithm, our popTop, popBottom, and pushBottom functions all take O(1) work without
faults. With our WS-deque, these operations take expected O(1) work (including faults). Also
as with their version, our popTop is unsuccessful (returns Null when there is work) only if an-
other popTop is successful during the attempt. The one place where their proof breaks down in
our setup is the assumption that a constant sized quanta can always capture two steal attempts.
Because our processors can fault multiple times, we cannot guarantee this. In their proof this is
needed to show that for every P steal attempts, with probability at least 1/4, at least 1/4 of the
non-empty deques are successfully stolen from ([7], Lemma 8). In our case a constant fraction
(1 − O(1) · f)2 of adjacent pairs of steal attempts will not fault at all and therefore count as a
steal attempt. For analysis we can assume that if either steal in a pair faults, then the steal is
unsuccessful. This gives a similar result, only with a different constant, i.e., with probability at
least 1/4, at least (1 − O(1) · f)2/4 of the non-empty deques are successfully stolen from. We
note that hard faults affect the average number of active processors PA. However they otherwise
have no asymptotic affect in our bounds because a hard fault in our scheduler is effectively the
same as forking a thread onto the bottom of a work-queue and then finishing.

ABP show that their work-stealing scheduler runs in expected time O(W/PA + DP/PA).
To apply their results we need to plug in Wf for W because that is the actual work done, and
Df for D because that is actual depth. While bounding Wf to be within a constant factor of
W is straightforward, bounding Df is trickier because we cannot sum expectations to get the
depth bound (the depth is a maximum over path lengths). Instead we show that with some high
probability no capsule faults more than some number of times l. We then simply multiply the
depth by l. By making the probability sufficiently high, we can pessimistically assume that in the
unlikely event that any capsule faults more than l times then, the depth is as large as the work.
This idea leads to the following theorem.
Theorem 8. Consider any multithreaded computation with W work, D depth, and C maximum
capsule work (all assuming no faults) for which all capsules are atomically idempotent. On the
Parallel-PM with P processors, PA average number of active processors, and fault probability
bounded by f ≤ 1/(2C), the expected total time Tf for the computation is

O

(
W

PA

+D

(
P

PA

)⌈
log1/(Cf)W

⌉)
.

Proof. We must account for faults in both the computation and the work-stealing scheduler.
The work-stealing scheduler has O(1) maximum capsule work, which we assume is at most
C. Because we assume all faults are independent, the probability that a capsule will run l
or more times is upper bounded by (Cf)l. Therefore if there are κ capsules in the computa-
tion, including the capsules executed as part of the scheduler, the probability that any one runs
more than l times is upper bounded by κ(Cf)l (by the union bound). If we want to bound
this probability by some ε, we have κ(Cf)l ≤ ε. Solving for l and using κ ≤ 2W gives
l ≤ dlog1/(Cf)(2W/ε)e. This means that with probability at most ε, Df ≤ D log1/(Cf)(2W/ε). If
we set ε = 2/W , then Df ≤ 2D log1/(Cf)W . Now we assume that if any capsule faults l times
or more that the depth of the computation equals the work. This gives (P/PA)(2/W)W + (1−
2/W)2Ddlog1/(Cf)W e) as the expected value of the second term of the ABP bound, which is

30

bounded by O((P/PA)Ddlog1/(Cf)W e). Because the expected total work for the first term is
Wf ≤ (1/(1− Cf))W , and given Cf ≤ 1/2, the theorem follows.

This time bound differs from the ABP bound only in the extra log1/(Cf)W factor. If
we assume PA is a constant fraction of P then the expected time simplifies to O(W/P +
Ddlog1/(Cf)W e).

2.6 Fault-Tolerant Algorithms

In this section, we outline how to implement several algorithms for the Parallel-PM model. The
algorithms are all based on binary fork-join parallelism (i.e., nested parallelism), and hence fit
within the multithreaded model. We state all results in terms of faultless work and depth. The
results can be used with Theorem 8 to derive runtime bounds for the Parallel-PM. Recall that
in the Parallel-PM model, external reads and writes are unit cost, and all other instructions have
no cost (accounting for other instructions would not be hard). The algorithms that we use are
already race-free. Making them write-after-read conflict free simply involves ensuring that reads
and writes are to different locations. All capsules of the algorithms are therefore atomically
idempodent. The base case for each of our variants of the algorithms is done sequentially within
the ephemeral memory.

Prefix Sum. Given n elements {a1, · · · , an} and an associative operator “+”, the prefix sum
algorithm computes a list of prefix sums {p1, · · · , pn} such that pi =

∑i
j=1 aj . Prefix sum is one

of the most commonly-used building blocks in parallel algorithm design [71].
We with the standard prefix sum algorithm [71]. The algorithm consists of two phases—the

up-sweep phase and the down-sweep phase, both based on divide-and-conquer. The up-sweep
phase bisects the list, computes the sum of each sublist recursively, adds the two partial sums as
the sum of the overall list, and stores the sum in the persistent memory. After the up-sweep phase
finishes, we run the down-sweep phase with the same bisection of the list and recursion. Each
recursive call in this phase has a temporary parameter t, which is set to 0 for the initial call. Then
within each function, we pass t to the left recursive call and t + LeftSum to the right recursive
call, where LeftSum is the sum of the left sublist computed from the up-sweep phase. In both
sweeps the recursion stops when the sublist has no more than B elements, and we sequentially
process it using O(1) memory transfers. For the base case in the down-sweep phase, we set the
first element pi to be t + ai, and then sequentially compute the rest of the prefix sums for this
block. The correctness of pi follows from how t is computed along the path to ai.

This algorithm fits the Parallel-PM model in a straightforward manner. We can place the
body of each function call (without the recursive calls) in an individual capsule. In the up-sweep
phase, a capsule reads from two memory locations and stores the sum back to another location.
In the down-sweep phase, it reads from at most one memory location, updates t, and passes t to
the recursive calls. Defining capsules in this way provides write-after-read conflict-freedom and
limits the maximum capsule work to a constant.
Theorem 9. The prefix sum of an array of size n can be computed in O(n/B) work, O(log n)
depth, and O(1) maximum capsule work, using only atomically-idempotent capsules.

31

Merging. A merging algorithm takes two sorted arrays A and B of size lA and lB (lA + lB = n),
and returns a sorted array containing the elements in both input lists. Our algorithm is based on
the classic divide-and-conquer approach [20].

The first step of the algorithm is to allocate the output array of size n. Then the al-
gorithm conducts dual binary searches of the arrays in parallel to find the elements ranked
{n2/3, 2n2/3, 3n2/3, . . . , (n1/3 − 1)n2/3} among the set of keys from both arrays, and recurses
on each pair of subarrays until the base case when there are no more than B elements left (and
we switch to a sequential version). We put each of the binary searches into its own capsule,
as well as each base case. These capsules are write-after-read conflict free because the output
of each capsule is written to a different subarray. Based on the analysis in [20] we have the
following theorem.
Theorem 10. Merging two sorted arrays of total size n can be done in O(n/B) work, O(log n)
depth, and O(log n) maximum capsule work, using only atomically-idempotent capsules.

Sorting. We outline a samplesort algorithm based on Blelloch et al. [20]. The sorting algorithm
first splits the set of elements into

√
n subarrays of size

√
n and recursively sorts each of the

subarrays. The recursion terminates when the subarray size is less thanM , and the algorithm then
sequentially sorts within a single capsule. Then the algorithm samples every log n’th element
from each subarray. These samples are sorted using mergesort, and

√
n pivots are picked from

the result using a fixed stride. The next step is to merge each
√
n-size subarray with the sorted

pivots to determine bucket boundaries within each subarray. Once the subarrays have been split,
prefix sums and matrix transposes are used to determine the location in the buckets where each
segment of the subarray is to be sent. After that, the keys need to be moved to the buckets, using
a bucket transpose algorithm. We can use our prefix sum algorithm and the divide-and-conquer
bucket transpose algorithm from [20], where the base case is a matrix of size less than M , and
in the base case the transpose is done sequentially within a single capsule (note that this assumes
M > B2 to be efficient). The last step is to recursively sort the elements within each bucket. All
steps can be made write-after-read conflict free by writing to locations separate than those being
read. By applying the analysis in [20] with the change that the base cases (for the recursive sort
and the transpose) are when the size fits in the ephemeral memory, and that the base case is done
sequentially, we obtain the following theorem.
Theorem 11. Sorting n elements can be done in O(n/B · logM n) work, O((M/B +
log n) logM n) depth, and O(M/B) maximum capsule work, using only atomically-idempotent
capsules.

Matrix Multiplication. Consider multiplying two square matrices A and B of size n × n (as-
suming n2 > M) with the standard recursive matrix multiplication [40] based on the 8-way
divide-and conquer approach.(

A11 A12

A21 A22

)
×
(
B11 B12

B21 B22

)
=

(
A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

)
Note that every pair of submatrix multiplications shares the same output location. This leads
to write-after-read conflicts since a straightforward implementation will read the value from the

32

output cell, add the computed value, and finally write the sum back. Therefore, we modify the
algorithm to allocate two copies of temporary space for the output in each recursive subtask,
which allows the subtasks to write to different output spaces (avoiding conflicts), and eventually
sum the values from the temporary space into the original output space.

If we stack-allocate the memory for each processor, a straightforward upper bound for the
total extra storage isO(pn2) on p processors using the standard space bound under work-stealing.
A more careful analysis can tighten the bound to O(p1/3n2). This extra storage can be further
limited to O(n2) by modifying the order of the recursive calls, assuming that the main memory
size is larger than the total size of all private caches.

When this algorithm is scheduled by a randomized work-stealing scheduler, the computation
is race-free. All multiplications that run at the same time have different output locations. The
summations are independent of each other, and applied after all of the associated multiplications
have completed.

If we put each arithmetic operation in a separate capsule, the algorithm incursO(n3) memory
accesses, which is inefficient. Hence, we mark a capsule anytime the recursion reaches a subtask
that can entirely fit into the ephemeral memory. This happens when the matrix size is smaller
than c′

√
M for a constant c′ < 1. Within these capsules, we run the algorithm sequentially . For

the matrix additions, we similarly mark a capsule boundaries such that each capsule can fit into
the ephemeral memory. This does not affect the overall work. We obtain the following theorem.
Theorem 12. Multiplying two square matrices of size n can be done in O(n3/(B

√
M))

work, O(M/B + log2 n) depth, and O(M/B) maximum capsule work, using only atomically-
idempotent capsules.

2.7 Chapter Summary
In this chapter, we describe the Parallel Persistent Memory Model, which characterizes faults
as loss of data in individual processors and their associated volatile memory. We consider an
external memory model view of algorithm cost, but the model could easily be adapted to sup-
port other traditional cost models. We also provide a general strategy for designing programs
based on capsules that perform properly even when faults occur. We specify a condition of be-
ing atomically idempotent that is sufficient for correctness, and provide examples of atomically
idempotent capsules that can be used to generate more complex programs. We use these capsules
to build a work-stealing scheduler that can run programs in a parallel system while tolerating both
hard and soft faults with only a modest increase in the total cost of the computation. We also
provide several algorithms designed to support fault tolerance using our capsule methodology.
We believe that the techniques in this paper can provide a practical way to provide the desirable
quality of fault tolerance without requiring significant changes to hardware or software.

33

34

Chapter 3

Writeback-Aware Caching

The long history of papers on caching problems [3, 11, 12, 13, 14, 35, 36, 46, 47, 50, 70, 72,
75, 85, 99, 102, 116, 117] has largely overlooked an increasingly important cost in real caches:
the cost of writebacks. Any data item that has been modified since being fetched into the cache
(i.e., a dirty item) must be written back to memory on eviction. In contrast, a data item that has
not been updated since being fetched (a clean item) can simply be discarded from the cache on
eviction.

Traditional memory systems were designed to minimize response time, with replacement
policies designed to maximize the number of cache hits. Modern processors, however, have
greatly increased their instruction throughput by increasing parallelism (number of cores) rather
than increasing clock frequency. For memory-intensive programs, the number of concurrently
in-flight memory requests grows linearly with the number of cores, such that the available mem-
ory bandwidth is often the primary performance bottleneck. Moreover, these additional requests
combined with the end of Dennard scaling [23, 44] has caused power consumption to become
critical for computing systems ranging from exascale computing [107] to microcomputing [39].
The practical importance of these metrics has been underscored by a significant amount of sys-
tems research [79, 105, 112]. Unlike the traditional metric of response time, memory system
bandwidth and power consumption are significantly impacted by writebacks [61, 79].

Non-volatile memory technologies further emphasize the importance of writebacks in real
memory systems. Writing data into these memories requires more time and energy than reading
data, sometimes by an order of magnitude or more [63, 69, 76, 100, 109]. Furthermore, these
technologies have limited write endurance, so reduced writes mean increased device longevity.

It is therefore imperative to have an understanding of how to manage caches in order to
minimize writebacks. Motivated by the lack of research in this blossoming performance consid-
eration, we study the effects of writebacks in caching. We extend traditional caching models to
account for this new variable and show a variety of theoretical and practical results.
Our Contributions. In this chapter, we initiate a general exploration of writeback-aware
caching, seeking to bridge the gap between real caching systems and the theoretical understand-
ing of caches. We make the following contributions:

1. We define and study the Writeback-Aware Caching Problem, which generalizes traditional
caching problems by adding writeback costs: Given a sequence of reads and writes to data
items and a specified cache size, the goal is to minimize the sum of the miss and writeback

35

costs when servicing the sequence in order. For our algorithms, we allow data items to have
variable sizes, variable miss costs, and variable writeback costs. For our hardness results,
we assume data items have unit size, unit miss cost, and any fixed positive writeback cost.

2. Our main result is an online algorithm, called Writeback-Aware Landlord, and an analysis
showing that it achieves the optimal bound.
Our algorithm and analysis are a careful generalization of the well-studied Landlord algo-
rithm [117] to properly account for the distinction between clean and dirty items. Com-
pared to Blelloch et al.’s [22] partitioning-based algorithm, our new algorithm uses a com-
pletely different approach/analysis (no cache partitioning), handles general sizes and costs,
and improves the bound from 3-competitive with 3×more cache to 2-competitive with 2×
more cache.

3. Although we prove a competitive ratio between our algorithm and the offline optimal al-
gorithm, computing that optimal algorithm is hard. We extend Farach-Colton and Lib-
eratore’s NP-completeness proof to show that the Writeback-Aware Caching Problem is
NP-complete regardless of the items’ writeback cost(s) and miss cost(s). We further show
the Writeback-Aware Caching Problem is Max-SNP hard, using a reduction from the 3D-
matching problem.

4. Because finding an exact solution is difficult, we turn to approximations. We show that for
a trace with maximum writeback to load cost ratio ω, Furthest-in-the-Future, the optimal
deterministic policy when ignoring writebacks, is only a (ω+1)-approximation to optimal.
We also provide an algorithm that is a 2-approximation of the cost difference between a
cache of size zero and the optimal cache.

5. Furthermore, we provide practical algorithms for bounding the offline optimal cost from
above and below. Although there are no formal guarantees of their accuracy, we show
they work reasonably well for large real-world traces that would otherwise be difficult to
analyze.

6. Finally, we perform a detailed experimental study using real-world storage traces. Our
main finding is that Writeback-Aware Landlord outperforms state-of-the-art online re-
placement policies when writebacks are expensive, reducing the total cost by 14% on
average across these traces. This illustrates the practical gains of explicitly accounting
for writebacks.

Related Work. Theoretical work on the caching problem traditionally begins with the offline
version of the problem. Different variants of the problem have been introduced and widely
studied, including optimal solutions, complexity analyses, and approximation schemes [3, 11,
13, 24, 35, 36, 85].

Initial work comparing the offline and online versions of caching problems was done by
Sleator and Tarjan [102]. They provided a lower bound for the competitive ratio and showed
that several deterministic algorithms had matching upper bounds in that model. Fiat et al. [50]
provided a similar bound for randomized policies and showed ways of approximating online
policies using other online policies. Young [116] found that the ‘greedy-dual’ algorithm for the
variable cost model matched Sleator and Tarjan’s bound. He later generalized this algorithm
to the variable sizes and obtained a matching upper bound [117] using the Landlord algorithm.

36

Even et al. [47] considered a model where the cost and size of an item can change when it is
accessed. Although this has some similarities to the model we introduce, neither the model nor
their online algorithm can accurately model writebacks.1

The effects of writebacks have been well studied at the storage layer. Some of this work [54,
101] studies how to schedule writebacks to disk in order to minimize cost. Other work studies
using write caches in front of storage to achieve sequential rather than random performance [18,
103]. These works provide many useful ideas that could be used to extend this work, but ignore
the issues that arise with cache workloads containing mixed reads and writes.

With the emergence of highly asymmetric memory technologies, the systems community
has begun to investigate the effects of writebacks on cache performance. Zhou et al. [120],
motivated by phase-change memory technology, explicitly considered writebacks and proposed
a partitioning scheme to reduce the effect of writes to main memory. Wang et al. [113] and Qin
and Jin [98] provided similar techniques for reducing writebacks to memory by keeping track of
frequently written items. These replacement policies lack worst-case bounds, and in fact it is not
hard to construct request traces that yield arbitrarily bad performance.

On the theory side, we are aware of only two prior works. Back in 2000, Farach-Colton and
Liberatore [49] studied a local register allocation problem that is a special case of writeback-
aware caching with unit size data items, unit miss cost and unit writeback cost. They showed
the offline decision problem is NP-complete using a reduction from set cover. Second, Blelloch
et al. [22] provided a writeback-aware online algorithm that is 3-competitive to offline optimal
when given 3× the cache size, for the setting with unit size, fixed miss cost and fixed writeback
costs. Their algorithm partitions the cache into a dirty half and a clean half, and applies Sleator
and Tarjan’s analysis [102] to each half.

3.1 Problem Formulation

3.1.1 Traditional Caching
The widely studied caching problem focuses on a single level of the memory hierarchy (cache),
with capacity k, that must serve a trace, which is a sequence of requests for data. A request is
considered to have been served when the cache contains or loads the data item associated with
that request. Associated with each item e is a size S(e) and a load cost L(e). In order to load
e, the cache first evicts items from the cache as needed in order to have S(e) available space,
and then pays L(e) to load the item. Solutions to the caching problem, known as replacement
policies, are strategies for selecting items to evict in order to minimize the total cost of the loads.
Offline policies are given the entire trace in advance, whereas online policies observe the next
request in the trace only after serving the previous request.

Variants. For the generalized caching problem (generalized model), the cost and size of an
item may be arbitrary positive functions. Simpler versions include, for all items e: (i) the basic
model in which items have unit size and cost: S(e) = L(e) = 1, (ii) the bit model in which cost
equals size: S(e) = L(e), (iii) the cost model in which items have unit size: S(e) = 1, and (iv)
the fault model in which items have unit cost: L(e) = 1 [3].

1Personal communication with Guy Even at SPAA’18.

37

3.1.2 Writeback-Aware Caching
We modify the caching problem to account for writebacks by identifying each request in the
trace as either a read or a write. An item in the cache is dirty if either (i) it was loaded as a result
of a write request or (ii) there has been a write request for the item since it was loaded. All other
items in the cache are clean. Because clean items have no changes that need to be propagated
to memory, evicting them has no cost. However, dirty items need to be written back to memory
upon eviction. The Writeback-Aware Caching Problem (WA Caching Problem for short) adds a
writeback cost V (e) for evicting an item e that is dirty, and modifies the goal to be minimizing
the sum of the miss and writeback costs.
Definition 1. In the (generalized) Writeback-Aware Caching Problem, we are given (i) a cache
size k, (ii) an (online or offline) trace σ of requests, where each request consists of an item e and a
flag indicating whether it is a read or write, and (iii) each item e has an associated size S(e) > 0,
miss cost L(e) > 0 and writeback cost V (e) > 0. Starting and ending with an empty cache, the
goal is to minimize the sum of the miss and writeback costs while serving all the requests in σ.

Since none of the original parameters of the caching problem are changed, any variant of
the original problem can be made writeback-aware. In fact, the original caching problem is
equivalent to setting the writeback costs to zero, i.e. V (e) = 0 ∀ e. Unless stated otherwise,
when we refer to the WA Caching Problem, we mean the generalized variant defined above.
Frontloading Writeback Accounting. Caches in a writeback-aware setting pay costs at two
different times: upon retrieving an item that is not in the cache, and upon evicting a dirty item.
Having to consider costs upon eviction increases the complexity of analysis and encourages
online policies to maintain dirty items past the point of usefulness in order to delay paying the
eviction cost. To prevent these issues, when calculating the cost of a policy run on a prefix of a
trace, we will charge the cost of writebacks to the write access that dirtied the item. Writes to
items that are already dirty are not charged, because they do not result in additional writebacks.
In other words, write accesses are charged both for loading the item (if not already in the cache)
and writing it back (if it is not already dirty). This does not affect a policy’s total cost for the
full trace, because each charged writeback will happen later when the item is eventually evicted
(recall that the cache must be empty at the end of the trace).

3.2 Writeback-Aware Landlord
We present a deterministic online algorithm called Writeback-Aware Landlord, and show that it
achieves the optimal competitive ratio for deterministic algorithms.

3.2.1 Algorithm Description
Our algorithm is based on the classic Landlord algorithm [117]. In Landlord, there is a credit
assigned to each item that is used to determine how long the item will remain in the cache. When
an item e is accessed, its credit is set to its load cost L(e). Whenever items must be evicted to
make space in the cache, Landlord decreases the credit of each item in proportion to the item’s
size until an item reaches zero credit. This item (or items) may then be evicted.

38

1 def WritebackAwareLandlord (i tem e , bool w r i t e) :
2 i f e is not in cache :
3 # make space f o r the i tem
4 while freeSpace 〈 e . s ize :
5 # f i n d v i c t i m
6 minRank , v i c t i m = i n f i n i t y , none
7 for f in cache :
8 c r e d i t = f . wbCredit + f . l oadCred i t
9 i f c r e d i t / f . s i ze 〈 minRank :

10 minRank = c r e d i t / f . s i ze
11 v i c t i m = f
12 e v i c t (v i c t i m)
13 # decrease other i tems ’ c r e d i t
14 for f in cache :
15 de l t a = f . s i ze * minRank
16 # decrease wb c r e d i t f i r s t
17 i f de l t a 〉 f . wbCredit :
18 f . l oadCred i t −= (de l t a − f . wbCredit)
19 f . wbCredit = 0
20 else :
21 f . wbCredit −= de l t a
22 # add the i tem to the cache
23 i n s e r t (e)
24 # update requested i tem ’ s c r e d i t
25 e . loadCred i t = e . loadCost
26 i f w r i t e :
27 e . wbCredit = e . wbCost

Figure 3.1: Writeback-Aware Landlord assigns each item two credit values: one for loads and
one for writebacks. On access, an item’s credits are updated to the cost of the request (i.e.,
writeback cost for writes). When needed, the item with the least credit per size is evicted, and all
other items’ credits are reduced in proportion.

To adapt Landlord to the writeback-aware setting, we must account for writeback costs. In
particular, we must determine how to balance loads and writebacks in a way that leads to an
optimal competitive ratio. Our algorithm, called Writeback-Aware Landlord and shown in Fig-
ure 3.1, maintains two separate credits that are increased independently. In particular, accessing
(including writing) an item e sets (increases) its load credit to L(e) and writing e sets its write-
back credit to V (e). The algorithm described in Figure 3.1 chooses to decrease the writeback
credit before decreasing load credit, but the algorithm maintains optimality regardless of how the
decrease is spread between the two types of credits.

39

Φ = (h− 1)×
∑

f∈WALL

(
creditl(f) + creditw(f)

)
+ k ×

∑
f∈OPT

(costl(f)− creditl(f))

+ k ×
∑

f∈OPT and dirty(f)

(costw(f)− creditw(f))

Figure 3.2: The potential function used to prove the competitive ratio for Writeback-Aware Land-
lord. Here, WALL refers to the contents of the cache for Writeback-Aware Landlord and OPT
refers to the contents of the cache of the offline optimal policy. The first term is the sum of the
credits of each item in WALL’s cache. The second and third terms are the difference between
how much cost was paid for an item to enter OPT’s cache and how much credit that item retains
in WALL.

3.2.2 Proof of Optimality
We show that Writeback-Aware Landlord has a competitive ratio matching the lower bound
proven by Sleator and Tarjan [102] for the basic variant of the traditional caching problem. This
means that Writeback-Aware Landlord is an optimal deterministic online writeback-aware pol-
icy, and that adding consideration of writebacks does not reduce the competitiveness of online
policies compared to offline policies.
Theorem 13. Writeback-Aware Landlord with size k has a competitive ratio of k/(k − h + 1)
compared to the optimal (offline) algorithm with size h ≤ k.

Proof. We consider the contents of two caches: the first is size h and makes optimal caching
decisions (OPT), and the second is size k and runs Writeback-Aware Landlord (WALL). Both
caches serve the same request trace. For the purposes of the analysis, we say that OPT uses its
cache to serve the request first, and then WALL serves the request using its own cache. In Figure
3.2 we define a potential function Φ, which is carefully designed to capture both how resistant
WALL is to change, and how far it is from the state of OPT.

We show that: (i) Φ is zero at the beginning of the trace, (ii) Φ is never negative, (iii) Each
cost c paid by Writeback-Aware Landlord can be charged to a unique decrease in Φ of at least
(k − h + 1)c, (iv) Φ can only ever increase by an amount kc when the optimal algorithm pays a
cost c. Combining invariants (i) and (ii) means that Φ can never have decreased more than it has
increased. Invariant (iii) upper bounds the cost paid by WALL as a function of the decrease in
potential. Invariant (iv) upper bounds the increase in potential as a function of the cost paid by
OPT. These results combined show that proving the invariants will suffice to prove the theorem.

We now provide a proof for each invariant.
(i). At the beginning of a trace, the cache is empty. Therefore, each summation is empty and Φ
is zero.
(ii). Each negative credit term corresponds to a positive cost term with the same constant. Credit
values can never exceed the associated cost of that item. Therefore, Φ is always non-negative.

40

(iii). Consider any access that causes charges to WALL. Such an access must target an item that
is not in the cache, or dirty a clean item in cache. If the item is not in the cache, WALL performs
eviction(s) to clear space, and then loads the item. Evicting an item with no credit has no effect
on Φ. We then apply a modified form of Young’s analysis [117] to the combined credit to show
that Φ does not increase when WALL reduces credit.

Young’s analysis is applied to the potential function used to analyze Landlord (LL), which
is similar to that of WALL, but does not contain any terms involving writebacks. The analysis
compares the total size of items in LL that decrease in credit to the total size of such items in
OPT. Since decreasing credit only occurs in order to make space for a requested item and OPT
processes requests before LL, we know that the requested item is in OPT’s cache but not LL’s at
the time of the access. This means that the size of items in OPT that have their credit decreased
by LL is at most the size of OPT minus the size of the requested item. Furthermore, since LL
is evicting items to make space, it must contain a total size greater than its size minus the size
of the requested item. The ratio of LL’s effected object size to OPT’s effected object size is thus
greater than the ratio of the two cache sizes, which means that the decrease in potential due to
the first term outweighs the increase in potential due to the second term.

When we apply Young’s analysis to WALL, we see that the aggregrate credit decrease in the
first term will remain the same. However some of this decrease will occur in writeback credit
rather than load credit. For items that are clean in OPT’s cache, this decrease in credit will not
show up in the second and third terms of Φ. Since these omitted reductions are to negative terms,
Φ will decrease overall.

We then consider the change in credits for the accessed item. If the item was not in the cache,
its load credit changes from zero to its load cost. If the access dirtied the item, the writeback
credit changes from zero to the writeback cost. This means that the total credit increase i of the
item is at least the cost c charged to WALL by the access. Since the item has just been accessed
(and OPT serves requests before WALL), it must also be in OPT and be dirty if the access was
a write. This means that the second and third terms cause Φ to decrease by ki, while the first
increases Φ by (h− 1)i. Since i ≥ c, and the potential change due to eviction is not positive, any
access that causes a charge c to WALL causes Φ to decrease by at least (k − h+ 1)c.

(iv). We now show that any increase in Φ can be charged to costs paid by the optimal algorithm.
Φ can increase due to changes in credits, OPT loading items, or items in OPT becoming dirty.
Credits only decrease when WALL is evicting items, which we have already shown does not
increase Φ. The credit for an item is only increased when WALL serves an access to that item.
In such cases the item must also be in OPT. Thus, the decrease in Φ due to the second and third
terms outweigh the increase due to the first. When an item is loaded into or becomes dirty in
OPT, Φ increases by kc where c is the load cost, writeback cost, or their sum, depending on the
transition. However, c is exactly the amount that OPT is charged to load these items.

This proof shows that Writeback-Aware Landlord can perform no worse than Sleator and Tar-
jan’s [102] lower bound. Writeback-Aware Landlord therefore achieves the optimal competitive
ratio for online deterministic policies.

41

3.3 Offline Complexity Results

In 2000, Farach-Colton and Liberatore (FL) showed that the basic offline writeback-aware de-
cision problem (the basic variant of the traditional caching problem from Section 3.1 with unit
cost writebacks) is NP-complete using a reduction from set cover [49]. We extend their results to
cover the more general Offline WA Caching Problem and further show that problem is MaxSNP-
Hard.

3.3.1 NP-Completeness

The FL Reduction. The set cover problem is: given a set of elements and non-empty subsets
of that set, find a collection of subsets (a cover) of minimum cardinality such that the union of
the collection equals the original set of elements. The FL reduction generates an instance of the
basic offline writeback-aware problem from an instance of set cover. The cache size is set to the
number of subsets. The reduction uses one item in the trace for each element and each subset
in the set cover instance. We refer to items associated with elements as element items and items
associated with subsets as subset items. For each element, we refer to the subsets that contain it
as adjacent subsets, and other subsets as non-adjacent subsets.

The generated trace consists of a write to each subset item, followed by a subtrace for each
element. The subtrace for an element consists of a write to the associated element item, followed
by a read of the element item and the non-adjacent subset items. This read pattern is repeated a
total of four times.

The FL reduction shows that any solution to the set cover problem maps to a solution to
the caching problem, and that any optimal solution to the caching problem can be converted
to a solution to the set cover problem. The high-level idea is that writing back a subset item
corresponds to choosing that subset for the cover.

Updating the Reduction. There are two primary differences between the FL model and ours.
The first is that the FL model assumes that both loads and writebacks have unit cost for all items,
while we support different costs for each item and access type. The second is that in the FL
model data does not need to be written back to memory if it is not evicted prior to its last use,
whereas we assume all dirty items must eventually be propagated to storage.

To adapt the FL reduction to our data propagation model, we replace each write to an element
item in the generated trace with a read to the same item, and we add a write to each set item at
the end of the trace.

To support general writeback costs, we define the parameter ω as the maximum writeback
cost to read cost ratio for any item. We modify the FL reduction such that the read pattern of the
subtrace is repeated bω + 3c times rather than four times. This ensures that repeated reads in a
subtrace are more valuable than the single writeback that could be saved by forgoing them.

Making these adjustments allows the FL reduction to reduce the set cover problem to the
Offline WA Caching Problem. Since set cover is NP-Complete, this suffices to show that the
Offline WA Caching Problem is also.

42

𝒗𝟏 𝒗𝟐 𝒗𝟑

𝒗𝟒 𝒗𝟓 𝒗𝟔

𝒆𝟑

𝒆𝟐

𝒆𝟏

G1 G1
2 G3 G2

2 G3 G3
2 G3 G4

2 G3 G6
2 G3 G1

W (e1) e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 e1 W (e1)
W (e2) e2 e2 e2 e2 e2 e2 e2 e2 e2 e2 e2 W (e2)
W (e3) e3 e3 e3 e3 e3 e3 e3 e3 e3 e3 e3 W (e3)

v1,1 v1,1 v1,1 v2,1 v2,1 v2,1 v6,1 v6,1 v6,1
v2,2 v2,2 v2,2

Figure 3.3: Example 3D Matching to WA Caching Problem Conversion. Performing the conver-
sion on the hypergraph above results in the trace below. The trace should be read column-wise
from left to right, where each column is read from top to bottom. Requests are reads unless
otherwise specified. Gadgets are marked above the trace.

3.3.2 Max SNP-Hardness
We prove that the Offline WA Caching Problem is max SNP-hard using a reduction from bounded
three-dimensional (3D) matching [73].
The 3D Matching Problem. Consider a hypergraph G = (V,E). We say that V =
{v1, v2, ..., vn} is the set of vertices in G and |V | = n. Similarly, E = {e1, e2, ..., em} is the
set of hyperedges in G and |E| = m. Each hyperedge ei consists of a subset of vertices from
V that it connects. For each vertex, we refer to edges that contain that vertex as adjacent edges,
and other edges as non-adjacent edges. A hypergraph G is tripartite if the vertices can be divided
into three disjoint sets V = {V1 ∪ V2 ∪ V3}, V1 ∩ V2 = V2 ∩ V3 = V3 ∩ V1 = ∅ such that no edge
contains more than one vertex from any set. A hypergraph G is three-uniform if each hyperedge
is incident upon exactly 3 vertices. A hypergraph G is B bounded if no vertex has degree greater
than B.

The maximum bounded 3D matching problem, given a bounded three-uniform tripartite
hypergraph G, is to find the largest cardinality set of edges such that no edges in the subset
share vertices. More formally, we define M to be a matching of G = (V,E) if M ⊆ E and
∀ ei, ej ∈ M, ei ∩ ej = ∅. We say a matching M of G is maximum if all other matchings M ′ of
G contain at most as many edges as M , i.e. |M | ≥ |M ′|. The decision version of this problem
is: given a hypergraph G and an integer k, decide if there exists a matching of cardinality k. This
problem is known to be NP-Complete [74] and max SNP-hard [73].
Generating the Caching Instance. Given a 3D matching instance G, we will construct an
instance P of the Offline WA Caching Problem such that any valid matching in G corresponds
to a solution to P .

An example bounded three-uniform tripartite hypergraph and the generated trace are shown
in Figure 3.3. We will make use of this example to to illustrate points throughout the construction.

Without loss of generality, we discard every vertex from the graph with degree zero.

43

The cache size of the generated instance will be equal to the number of edges m. The trace
will use one edge item ei for each edge ēi ∈ E and d− 1 filler items v(i,j), j ∈ [1, d− 1] for each
vertex v̄i, where d is the degree of v̄i. All items share a load cost of one and a writeback cost of
ω, which can be any positive real. In the example, we set the cache size to three and use three
edge items and four filler items (one each for v̄1 and v̄6, and two for v̄2). We also set ω = 0.5.

Like the trace generated by the FL reduction, the trace we generate consists of a prefix and
suffix, with a subtrace for each vertex in G. We will refer to both the prefix and suffix as gadget
G1. This gadget consists of one write to each edge item. This gadget is shown in the first and
last column in the example ({W (e1);W (e2);W (e3)}.

Each subtrace will be composed of two gadgets. Gadget Gi
2 will be created based on the

vertex v̄i. This gadget will contain reads of every non-adjacent edge item and every filler item
for v̄i. This read pattern will repeat a total of bωc + 3 times. For the example, the gadget G1

2

generated for vertex 1 would look like {R(e3);R(v(1,1));R(e3);R(v(1,1));R(e3);R(v(1,1))} for
ω < 1. The second gadget in the trace, G3, consists of reads to each edge item.

Mapping Solutions. Consider any maximum matching for G. We generate a solution for the
caching instance as follows: For any time during G1 or G3, all m active items can all be kept in
the cache. During Gi

2, the m − 1 items that are being read during the gadget are kept in cache.
In addition, if an edge adjacent to v̄i is in the matching (there can be at most one), that edge item
is kept in the cache during the gadget. Otherwise, any of the remaining items can be chosen to
remain in cache. The cost of the resulting solution is 7m − 2n + 2mω − ωk for a matching of
size k.

We now show that the solution generated for the maximum matching is the optimal solution
to the caching instance. Because the only cache contention is during Gi

2, we can ignore G1 and
G3. During Gi

2, retaining each read item for the entirety of the gadget saves bωc+ 2. Retaining
items that are not read during the gadget can save at most ω + 1 (one read and one writeback)
per item. It is thus optimal to retain all read items and one adjacent edge item. An edge item can
only avoid a writeback if it is retained across all vertex subtraces. Because the matching solution
will retain the edge items for each edge in the matching at all times, the matching with the most
edges will have the greatest writeback savings.

To generate a solution to the matching problem from the caching solution, simply take for
the matching every edge associated with an item held during the entire trace.

Lower Bounding the Size of the Matching. For any 3-uniform tripartite hypergraph G with
maximum vertex degreeB andm edges, the size of the maximum 3D matching k ≥ m/(3B−2).

Consider any edge e in the input graph G. Because G is 3-uniform, e must be incident upon
exactly 3 vertices. Each of these vertices can have at most B − 1 edges other than e incident
upon them. e can be adjacent to at most 3(B − 1) other edges. For any maximum matching M ,
if none of the edges adjacent to e are in M , then e must be in M . Because we consider any edge
in the input graph, there can be at most 3(B − 1) edges not in M for each edge in M . Dividing
the m edges in G by the ratio of edges in the matching finishes the proof.

Generating an Approximation Algorithm. Assume there exists a 1+ε approximation algorithm
A for the Offline WA Caching Problem. Consider an instance M of the 3D matching problem
with maximum matching size k. Let x and x′ be the cost of the optimal solution and the solution
generated by A, respectively, for the Offline WA Caching instance generated by applying the

44

process above to M . We know from the solution mapping that x = 7m − 2n + 2mω − ωk. By
algebra, we see that k = (7m− 2n+ 2mω − x)/ω and the same relation holds for k′ and x′.

When we subtract the k′ equation from the k equation, we see that k − k′ ≤ (x′ − x)/ω. By
plugging in the relationship between x and x′, we get k−k′ ≤ εx/ω. By bounding x as a function
of m and using the bound relating m and k above, we see that k − k′ ≤ ε(7 + 2ω)k(3B − 2)/ω.
Rearranging, we get k′ ≥ k(1 − ε(7 + 2ω)(3B − 2)/ω). As ω becomes large, this becomes
k′ ≥ k(1− ε2(3B − 2)).

This means that any constant approximation algorithm for the Offline WA Caching Problem
can be used as a constant approximation to Bounded 3D Matching. Since the matching problem
is max SNP-complete, the Offline WA Caching Problem is max SNP-hard.

3.4 Approximations with Theoretical Guarantees

Since we have shown that solving the Offline WA Caching Problem in polynomial time is not
possible, we turn to approximation schemes.

3.4.1 Analyzing the Writeback-Oblivious Optimal

The Furthest-in-the-Future (FitF) policy [13, 85], which evicts the item accessed furthest in the
future, optimally solves the basic version of the traditional offline caching problem. However,
it cannot distinguish between reads and writes. This means that there are traces where FitF will
use the minimum number of loads, but each load will also cost a writeback, whereas the optimal
policy can achieve the same number of loads while avoiding the writebacks.
Theorem 14. FitF is an ω + 1 approximation to the basic Offline WA Caching with maximum
writeback cost ω. This bound is tight.

Proof. Consider a basic Offline WA Caching instance. Let LB and LA be the number of loads
in the solution generated by FitF and algorithm A, respectively. Because FitF minimizes loads,
LB ≤ LA. The number of writebacks an algorithm suffers cannot be greater than the number of
loads it suffers, so WB ≤ LB. Through substitution: CostB = LB + ωWB ≤ (1 + ω)LB ≤
(1 + ω)LA ≤ (1 + ω)CostA.

We now provide a family of traces where the solution generated by FitF has ω + 1− ε times
the cost of the optimal solution for arbitrarily small values of ε. For a cache of size k, we generate
a trace T using k − 1 dirty items and k − 1 clean items. T consists of a read to each clean item,
followed by a write to each dirty item. The family F of traces consists of each trace that is
generated by an integral number of repetitions of T .

Because FitF loads the clean items first and makes eviction decisions when they are closer
to reuse than the single dirty item in cache at the time, FitF will retain all clean items for the
duration of the trace. The optimal solution is to retain all dirty items for the duration of the trace.
In each iteration after the first, FitF will suffer k−1 loads and k−1 writebacks, while the optimal
solution will suffer only k − 1 loads. Thus the ratio of costs for all iterations after the first will
be ω + 1.

45

(A,W), (B,W), (F,R), (B,W), (C,W), (D,R), (G,R), (D,R), (A,W), (E,W), (H,R),
(E,W), (C,W)

Figure 3.4: An Example Trace that Breaks Stack Algorithms.

Aside: Stack Algorithms. One reason that FitF is not optimal is that it is a so-called stack
algorithm [85]. Stack algorithms are replacement policies where the content of a larger cache is
always a superset of the content of a smaller cache serving the same trace.

Stack algorithms are useful for several reasons. On an intuitive level, they make the problem
easier to reason about, because each cache decision can be considered individually. Stack algo-
rithms can be more easily computed using greedy algorithms or dynamic programming. They
are also easy on system designers, as multiple cache sizes can be simulated on a trace simultane-
ously [85].

To the best of our knowledge, stack algorithms have not been investigated in any model other
than the basic caching model. Here, we show that no stack algorithm is optimal in the presence
of multiple item costs or multiple item sizes.

Consider the Offline WA Caching instance shown in Figure 3.4. The optimal solution for a
cache of size 2 is to hold items B, D, and E in the cache. When the cache size increases to 3, a
stack algorithm must keep each of these items. However, the optimal solution is to hold A, B, C,
and E in the cache, dropping D. This means that the optimal solution is not a stack algorithm.

Such bad cases are not limited to small cache sizes, or to a single change in cache size. It is
possible to construct an example where the optimal solution for a cache of size k is not a subset
of the optimal solution for a cache of size k + 1 for any value of k by modifying the trace in
Figure 3.4 to replace each item and request in the trace with k − 1 items and one request for
each of the replacement items, respectively. The optimal solution for a cache of size k retains all
replacement items for B, D, and E, while the optimal solution for size k + 1 will replace one of
the D items with one of the A items and one of the C items. Furthermore, as the cache increases
in size from k to 2k, the D items will gradually be replaced with A and C items.

Our construction holds for any variant of caching with multiple costs. As long as each request
interval for A, B, C, and E provide more potential savings than the request intervals for D, then
the cache will switch from D to A or C as soon as the space becomes available.

It is also straightforward to construct traces with multiple item sizes where stack algorithms
are non-optimal. An example is having multiple items share the same time period with access
frequency proportional to the square of item size. As the cache becomes large enough to accom-
modate larger items, these items will displace the lesser-used smaller items.

Because we have constructed examples that break stack algorithms for varying costs and
varying sizes, we claim the following.
Theorem 15. For any caching problem with multiple costs or multiple sizes, no stack algorithm
is an optimal solution.

3.4.2 A 2-Approximation for Savings
We give an algorithm that provides a 2-approximation of the savings of the optimal solution. We
define the savings of a solution as the difference between the cost of the solution and the cost of

46

loading and then immediately evicting each item accessed by the trace.
Our algorithm considers loads and writebacks separately. Although running any writeback-

oblivious optimal algorithm on the trace is an ω+ 1 approximation of the cost (see above), it will
provide an upper bound for the savings that can be obtained due to loads. A similar bound for
the savings due to writebacks can be found by running the same algorithm on a modification of
the original trace that treats reads as having load cost zero and writes as having load cost equal
to their writeback cost. As the eviction decisions of both of these algorithms are valid solutions
to the original problem, we choose the one with greater savings as the approximate solution.
Because the optimal savings must lie between the larger of the savings and the sum, we can be
off by at most a factor of two.

This technique will likely perform well when the savings available in the trace are dominated
by either loads or writebacks, but will perform poorly when the two metrics contribute evenly to
the total savings.

3.5 Efficient Approximations for Practical Use

3.5.1 A Lower Bound for Optimal
We compute a practical lower bound for the cost of the optimal solution by considering the
relaxed view of time introduced in Berger et al. [16]. In this view, the solution has capacity
equal to the size of the cache multiplied by the length of the trace. Intervals between consecutive
accesses to an item take up space equal to the product of the item size and interval length, and
have cost equal to the savings obtained by holding the item in cache for the entire interval. By
packing the cache with intervals of highest density, the ratio of interval cost to space, a solution
is generated that reflects a cache with the same average size, but that can change size over the
course of the trace.

To make this scheme writeback-aware, we add into consideration intervals between consec-
utive writes to the same item. These intervals are assigned cost equal to the sum of the costs of
the load intervals to the item during the interval’s time period and the item’s writeback cost.

The addition of the writeback intervals also affects the packing scheme. While the writeback-
oblivious version could simply choose intervals while it had space, the aware version must update
the dependent intervals of each interval it selects. Chosen writeback intervals invalidate load
intervals for the same item that occur during their time period. Chosen load intervals cause the
writeback interval (if any) that shares an item and time period with them to decrease in cost and
space by the corresponding values of the load interval. Despite these complications, the result is
a lower bound for the optimal offline solution that is accurate and efficient for many real-world
traces. Following the naming convention of Berger et al., we call this algorithm writeback-aware
practical flow-based offline optimal - lower (WAPFOO-L).

3.5.2 An Upper Bound for Optimal
We similarly adapt the ideas of Berger et al. [16] to create a practical upper bound. Their bound
relies on converting the instance of the caching problem to an instance of the minimum-cost flow

47

(A,W), (B,R), (A,R), (A,R), (A,W), (B,R), (C,R), (C,W), (C,R), (A,W)

Sink Source

A B A A A B C C C A

3 + 𝜔 1 + 𝜔

Figure 3.5: Example WA Caching Problem to MCF Conversion. The trace above is converted
to the MCF problem below. All items are said to have load cost 1 and writeback cost ω. Black
edges have cost 0 and capacity equal to the cache size. Red edges have cost -1 and capacity 1.
Blue edges have labeled cost and capacity 1.

(MCF) problem. In the writeback-oblivious setting, this transformation completely captures the
caching problem instance. However, computing the MCF for instances generated from large
traces is prohibitively expensive. To make this more practical, Berger et al. consider subsets of
edges at a time, breaking the graph into bite-size chunks and reducing the processing complexity.
By applying the same principles used to make the lower bound writeback-aware, we can achieve
the same result for the upper bound.
Minimum Cost Flow. The minimum cost flow (MCF) problem [94] consists of a directed graph
G = {V,E} and an amount of flow f . One vertex s ∈ V is designated as the source vertex and
another vertex t ∈ V is designated as the sink. Each edge e ∈ E has both a cost per unit flow
c(e) and flow capacity u(e) associated with it. The goal of the problem is to route f units of flow
from the source to the sink while minimizing the total cost. Each vertex other than the source
and sink must have the same amount of flow leaving and entering.
Converting Between Problems. An example trace and the generated MCF problem are shown
in Figure 3.5. The transformation creates one vertex in the graph for each request in the trace.
For simplicity, we will refer to vertices as if they were the requests they represent. The first
and last requests are chosen as the source and sink, respectively. To simulate empty cache space
between requests, we generate an edge from each request to the next with cost 0 and capacity k.
For modeling load savings, we generate an edge between subsequent requests to the same item
with cost equal to the item’s load cost and capacity 1. We model writeback savings with an edge
between each write and the subsequent write to the same item. Edges representing writebacks
have cost equal to the item’s writeback cost plus the sum of the costs of load intervals for that
item that overlap with the writeback interval. In the example, we show edges representing loads
and writebacks in red and blue, respectively. We set the flow from source to sink to be equal to
the size of the cache. The result is a directed acyclic graph (DAG) that approximates the cost
savings that can be found in the instance of the basic WA Caching Problem.

Solving the generated MCF problem provides a close approximation to the solution of the
original WA Caching Problem. It is not exact, because a solution to the MCF problem can
obtain savings from an item twice during same time period. To correct this, after solving the

48

problem, we remove from the solution all load intervals that overlap in the access sequence with
a writeback interval corresponding to the same item that is also in the solution.

3.6 Experimental Evaluation

To demonstrate that the theory behind Writeback-Aware Landlord holds up well in practice, we
evaluate it against several state-of-the-art replacement policies on real-world storage traces [92].
This study shows that Writeback-Aware Landlord is effective in the presence of significant read-
write asymmetry, reducing total cost to cache the trace by 41% over LRU and by 24% over
GDS [27]. We further study how Writeback-Aware Landlord’s performance varies for differ-
ent writeback costs, performance metrics, and additional heuristics, and analyze from where its
benefits come.

3.6.1 Methodology

Workloads. Our simulations make use of block traces from Microsoft Research (MSR) [92],
which represent access patterns experienced by MSR servers, and represent many commonly
seen behaviors. They are distributed in a format that specifies the time, type, offset, and size of
the request. We use the size as specified and treat the offset as a request ID. We evaluate 512 M
requests for each trace, replaying the trace if necessary.

Metrics. We compare policies on their total cost over the trace, as defined in Section 3.1.2.
Because the traces do not specify cost, we consider each item to have unit load cost and writeback
cost 10. We choose this value to be between the read-write asymmetries of emerging technologies
like Intel Optane [41] and flash memory [56]. Choosing to have the same cost for each item
regardless of size represents a system where the cost of communication between the cache and
storage is largely independent of the amount of data being communicated, i.e., where latency
trumps bandwidth.

Competing Policies. We compare Writeback-Aware Landlord against LRU, GDS, and
WAPFOO-L. LRU is the simplest policy commonly used in practice, and works well on traces
with high temporal locality. GDS is an efficient implementation of (non-writeback-aware) Land-
lord that considers item cost and size when making decisions. Both LRU and GDS have theoret-
ical worst-case bounds on their performance similar to Writeback-Aware Landlord in the basic
and generalized model, respectively (Section 3.1.1 describes these models). WAPFOO-L is the
lower bound described in Section 3.5.1. Comparing against these policies allows us to isolate
the importance of accounting for writebacks as well as see how much potential for improvement
exists.

Implementation. The version of Writeback-Aware Landlord described in Figure 3.1 simplifies
the theoretical analysis, but requires work proportional to the number of cached items for each
eviction. Because this is impractical, we implement WALL in an equivalent fashion that requires
only logarithmic work per eviction. Our implementation, based on Greedy Dual Size (GDS) [27],
uses a global “inflation value” L rather than reducing credit and a min-heap for victim selection.

49

WAPFOO-L_10.0 Writebacks
WAPFOO-L_10.0 Misses

LRU Writebacks
LRU Misses

GDS Writebacks
GDS Misses

WALL_10.0 Writebacks
WALL_10.0 Misses

WALLHW_10.0 Writebacks
WALLHW_10.0 Misses

To
ta

lC
os

t

16 32 64 12
8

25
6

51
2

Cache Size (GB)

0

2

4

6
1e8

(a) proj 1

16 32 64 12
8

25
6

51
2

Cache Size (GB)

0.00

0.25

0.50

0.75

1.00
1e9

(b) proj 2

4 8 16 32 64 12
8

Cache Size (GB)

0

1

2

1e9

(c) src1 0

To
ta

lC
os

t

4 8 16 32 64 12
8

Cache Size (GB)

0

2

4

6
1e8

(d) src1 1

16 32 64 12
8

25
6

51
2

Cache Size (GB)

0

1

2

3

4

1e8

(e) usr 1
Figure 3.6: Total cost (misses + weighted writebacks) for different replacement policies on the
five storage traces at cache sizes 4–512 GB.

We also test a version of WALL, which we refer to as WALLHW, that reduces load credit
before writeback credit. As mentioned in Section 3.2, this does not affect the optimality of the
algorithm.

3.6.2 Results

Figure 3.6 shows the total cost for the chosen caching algorithms across five different MSR traces
for cache sizes from 4 to 512 GB. Each cost bar is split between cost due to misses, and costs
due to writebacks.

The performance difference is fairly uniform across all traces, excluding src1 0. src1 0 is an
outlier: in this trace, 43% of accesses are writes, and the number of bytes written is an even larger
fraction. Worse, these writes are distributed across a large number of distinct items, making it
impossible for Writeback-Aware Landlord to signficantly reduce writebacks. The other traces
have write percentages ranging from 5–12%, providing few enough writes for the extra credit
they receive to be meaningful. WAPFOO-L follows the same general trends as the other policies,

50

GDS
GDSF

WALL_10.0

WALLF_10.0

WALLHW_10.0

WALLHWF_10.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
st

 N
or

m
al

ize
d

to
 W

AP
FO

O-
L

Figure 3.7: Total cost for different frequency-based replacement policies normalized to
WAPFOO-L, averaged across all traces at 128 GB. The light and dark portions of each bar show
the cost due to misses and writebacks, respectively.

but performs meaningfully better. This gap shows that there are still potential gains to be made
by better replacement policies.

The arithmetic mean across traces and cache sizes of the miss cost of WALL is only 3.2%
greater than that of GDS. However, WALL reduces writeback cost relative to GDS by 47%, sig-
nificantly saving on writebacks without significantly harming hit rate. The result is that WALL’s
total cost is, on average, 88% of GDS, 72% of LRU, and 156% of WAPFOO-L. WALLHW
performs even better, increasing miss rate by 2.6% for a 51% writeback cost reduction (com-
pared to GDS). This results in average total cost that is 86% of GDS, 70% of LRU, and 151% of
WAPFOO-L.

WALL Benefits from Additional Heuristics. It is common practice for systems to augment
replacement policies with heuristics. Among the most popular heuristic is frequency, which says
that items that have been requested frequently will be requested again.

GDSF [6] modifies GDS to account for frequency by multiplying an item’s credit by the
number of hits it has received while in the cache. Although this algorithm actually has worse
theoretical guarantees than GDS, it performs well on real traces. We make a similar modification
to Writeback-Aware Landlord, which we call WALLF.

Figure 3.7 shows the effect of the frequency heuristic on the costs incurred by GDS and
WALL at a cache size of 128 GB. Costs are averaged across traces and, to avoid biasing results
towards a particular trace, are normalized to WAPFOO-L. We see that considering frequency
reduces the number of both misses and writebacks for all considered policies. These results
suggest that writebacks share many of the locality patterns seen in loads, and that frequency is a
useful indicator of utility. Both GDS and WALL see improvements from the frequency heuristic,
although they are more pronounced in GDS.

The benefits of adding frequency to writeback-aware caches may be less than adding it
to writeback-oblivious caches. This could be explained by the fact that both frequency and
writeback-awareness are weighting particular items more heavily, which becomes less impactful
as it affects more items.

51

1.0 4.0 10.0 25.0
Writeback Cost

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Co
st

 N
or

m
al

ize
d

to
 W

AP
FO

O-
L

Figure 3.8: Total cost normalized to WAPFOO-L, averaged across all traces at 128 GB.
Writeback-Aware Landlord’s benefits improve as writeback cost varies from 1–25.

Sensitivity to Writeback Cost. Our previous results have assumed that writebacks are 10× as
expensive as reads. This cost asymmetry may have a large impact on caching decisions and
the resultant costs. Figure 3.8 shows how the system changes with different writeback costs
from ω = 1to25. This represents a reasonable range from bandwidth-sensitive DRAM systems
through storage technologies with heavy read-write asymmetry [56].

GDS does not consider writebacks, so its number of hits and writebacks remain constant.
However, because these results are normalized to WAPFOO-L, these trends are seen as an in-
creasing fraction of cost spent on writebacks.

WALL’s results are more interesting, and show how it trades off misses and writebacks.
Overall, WALL’s total cost decreases relative to LRU and GDS as writeback cost increases,
primarily because it manages to reduce the number of writebacks as they become more valuable.
This is at the cost of additional loads, which can be seen in the miss costs for WALL rising relative
to GDS as the writeback cost increases. These results show that WALL effectively accounts for
cost asymmetry to reduce total cost.

3.7 Chapter Summary
As modern systems continue to evolve and make increasing use of NVM technologies, consider-
ations like bandwidth, energy, and device lifetime will become more and more important. Prior
work in caching, which focused on minimizing response time, has not considered writebacks,
a crucial driver of performance in these metrics. We introduced the Writeback-Aware Caching
Problem to fill this gap in our understanding. We showed that optimally solving Writeback-
Aware Caching is hard even in the simplest setting and developed an online replacement policy
with strong theoretical guarantees and good empirical performance. We believe that these results
will help build a foundation for further theoretical and empirical work in caching on systems that
provide improved lifetime, energy, or bandwidth.

52

Chapter 4

Block-Granularity-Aware Caching

Caches are pervasive in computer systems and often determine a system’s end-to-end perfor-
mance. A vast literature has studied caching, yielding important insights in the design of algo-
rithms and computer systems. However, this literature has thus far neglected a critical component
of many storage systems; the change in access granularity across levels of the storage hierarchy.

The ideal storage system would consist of a single large, fast level of memory. Given that
such technology does not exist, real systems approximate this ideal via a hierarchy ranging from
small, fast memories to larger and slower storage devices, starting from small SRAM caches
(KBs), to larger SRAM caches (MBs), to off-chip DRAM memory (GBs), to persistent storage
elements like NVM, flash, or disk (TBs). Each level of the storage hierarchy organizes its data
in chunks of a specific size to simplify management and reduce overheads. For example, SRAM
caches typically consist of 64 B “lines”; DRAM of “rows” of 2-4 KB; NVM of “blocks” ranging
from 256 B to 4 KB; and flash and disk of “pages” of 4 KB [58].1

As a result, access granularity changes as one proceeds through the storage hierarchy. E.g.,
to satisfy a 64 B cache-line miss, DRAM must load a 2 KB row. But once the row is loaded, the
other lines in the row can be read at considerably lower cost than the first line. So what should
caches do with the rest of the row?

Most caches today ignore granularity change, and only load the smallest possible data gran-
ularity to service a request. But this ignores an opportunity to load some or all of the larger
granularity at minimal cost. Such prefetching could be used to avoid subsequent cache misses on
the loaded data, as long as it is possible to prevent the upper cache levels from becoming polluted
with useless data. This observation is the critical question that our work addresses: What caching
opportunities and challenges are introduced by granularity change?

We seek to answer this questions by developing a model of caching that accounts for granu-
larity change and provides a strong framework for future inquiry.

Our Contributions. In this chapter, we initiate a general exploration of block-aware caching,
seeking to make use of data that is already in-flight to improve cache performance. We make the
following contributions:

1. We define the Block-Granularity-Aware Caching Problem, which generalizes the tradi-

1In fact, there are often different granularities for reads and writes, e.g., “erase blocks” in flash can be many
MBs. We focus on reads in this work.

53

tional caching problem by grouping items into blocks that can be loaded together: Given a
sequence of accesses to data items, a specified cache size, and an assignment of data items
to blocks, the goal is to minimize the cost of loading blocks when servicing the sequence
in order.

2. We analyze the complexity of the Offline Block-Granularity-Aware Caching Problem,
showing that it is NP-Complete using a reduction from the variable-size caching problem.

3. We provide a lower bound on the competitive ratio of deterministic replacement policies
in the Block-Granularity-Aware Caching Problem that shows the extra power available to
caches in this model. We also provide a tighter lower bound for deterministic policies that
operate entirely on a single data granularity. Using these bounds, we are able to show
how the size of the cache being compared against affects relative policy performance. In
particular, we show that caches that operate on the smaller granularity compete poorly
against small caches, while caches that operate on the larger granularity compete poorly
against large caches.

4. Our main result is an online algorithm, called Item-Block Layered Partitioning, and an
analysis showing that it achieves a nearly optimal competitive ratio.
Our algorithm uses a layered partitioning scheme to combine the best aspects of both small
and large granularity caching. Compared to the baseline algorithms, Item-Block Layered
Partitioning competes well for all common cache sizes while avoiding the performance
cliffs that such policies suffer.

Related Work. The original caching problem is well studied and well understood from a theo-
retical perspective. The first major results were when Belady [13] and Mattson [85] separately
devised optimal solutions for caching with unit size and cost items. Sleator and Tarjan [102]
performed the initial work comparing the performance of online caches, which must make deci-
sions as requests arrive, against offline caches, which are allowed to view the entire trace when
making decisions. They provided a lower bound for the cost ratio of any deterministic online
algorithm compared to the optimal offline algorithm for a worst-case trace in the unit size and
cost items model (and therefore any model). Furthermore, they showed that several determinis-
tic algorithms had matching upper bounds in that model. Fiat et al. [50] provided a lower bound
for randomized online replacement policies compared to optimal and a randomized policy that
matches that bound; they also showed ways of approximating online policies using other online
policies.

Other variants of the problem have been considered, and considerable work has been done
on complexity and algorithms for these variants [3, 11, 24, 35, 47, 116]. In particular, caching
with variable-size items appears to be a problem quite similar to ours, since one could think of
different subsets of items from the same block as different size items. It would be fortuitous to
be able to apply the breadth of work on this problem [16, 36, 117]. However, there are important
differences that make this impractical. In the variable-size problem, items are accessed in a
manner where any quantity less than the whole is useless, whereas the items of a block can be
accessed, loaded, and evicted individually. This results in a setting where choosing what items
to load is an additional dimension with significant impact on performance.

To our knowledge, there is no theoretical work on accounting for granularity change. Some

54

work [20, 21] includes parameters for granularities at different levels of cache, but these works
either assume that the granularity is constant throughout the hierarchy or ignore the effects on
cache performance.

The systems community has taken several approaches to deal with the issue of granularity
change. There is work on designing memory controllers at granularity boundaries that schedule
accesses to increase locality [48, 90, 91, 119, 121, 122]. Another way to achieve this result is
address mapping techniques, which attempt to place data such that data that are requested at
similar times are located together [81, 106, 115, 118]. Another research target is how to manage
swapping between rows in order to balance capturing a larger fraction of locality and latency for
switching to different rows [89, 95, 104, 114]. There is also work that looks at how to allocate
items to blocks when granularity changes to improve performance [8, 26, 33, 97].

Having caches understand and use granularity changes is complementary to these techniques.
Caching decisions can benefit from the increased locality caused by memory controller or address
mapping, further improving performance. Even better, moving the responsibility for spatial lo-
cality from the storage management to the cache provides the same benefits without the tension
of switching between rows, at the cost of a small effective reduction in cache space.

4.1 Problem Formulation
Like traditional caching problems (see Section 3.1.1), the Block-Granularity-Aware Caching
Problem (BGA Caching Problem) consists of a single level of memory (cache) that receives
a series of requests for data. Each request, which we refer to as an access, is associated with one
data item. If the item is in the cache, then the request is served and the cache is not charged.
If the item is not in the cache, then the cache must load the item from the subsequent layer of
memory or storage. If this load causes the amount of data in cache to exceed the cache size k,
then items must be evicted from the cache to remedy the situation.

What makes the BGA Caching Problem different from traditional caching problems is that
some data beyond the accessed item can be accessed at no additional cost. To represent this, we
say that the universe of items is partitioned into blocks of size less than or equal to the block size
B ≥ 1. When the cache loads data from storage, it can load any subset of a block for unit cost.
The BGA Caching Problem generalizes the caching problem. In particular, when each item is in
a different block, this model exactly matches the traditional caching model.
Definition 2. In the Block-Granularity-Aware Caching Problem (BGA Caching Problem), we
are given (i) a cache of size k, (ii) an (online or offline) trace σ of requests, where each request
consists of an unit size item e, and (iii) a partitioning of the items into disjoint sets (blocks)
such that no partition contains more than B items. Starting with an empty cache, the goal is to
minimize the number of times that a subset of a block (up to and including the entire partition) is
loaded into the cache while serving all the requests in σ.

The blocks that the items are partitioned into represent the larger granularity data chunks that
the subsequent layer of the memory hierarchy operates on. In such systems, there is typically a
small amount of memory, known as a buffer [58], that is used to handle data as it is being read or
written. The cost of moving data from the mass storage into the buffer is typically large relative
to the cost of operating on data in the buffer. This suggests that items that are brought into the

55

buffer can be accessed easily, motivating our model.

Assumptions. For this work, we assume that each item has unit size and each block has unit
cost. Extending the model to support variable size items or variable cost blocks could be done,
but is outside the scope of this work.

We also assume that the caches we study are much larger than the block size, ie k > h� B.
In addition, we focus on deterministic policies for this work.

Baseline Policies. We consider two baseline cache designs that are commonly used in caches
at a granularity boundary. An Item Cache admits only the item that is accessed on any request,
ignoring the remaining items in the block. By contrast, a Block Cache admits all items in the
requested block, and performs evictions on every item in a block at the same time. In other
words, a Block Cache treats each request as if it is requesting the entire block rather than an
individual item. These cache designs result from simply choosing one data granularity at the
boundary, rather than adapting the cache design to account for granularity change.

4.2 Complexity Analysis
In this section, we investigate the complexity of the Block-Granularity-Aware Caching Prob-
lem. Using a reduction from the variable-size caching problem (also known as fault model,
see Section 3.1.1), we are able to show that the Block-Granularity-Aware Caching Problem is
NP-Complete, even with unit block costs and unit item sizes.
Theorem 16. The Offline BGA Caching Problemis NP-Complete.

Proof. Our proof relies on a reduction from the fault model of caching, which is known to be
NP-complete [36]. We begin by showing how to create items for the BGA Caching Problem and
then assign them to blocks. We then use these blocks to generate a trace where the cost paid by
the optimal cache is the same as the optimal cost for the variable-size caching problem.

The first step of the reduction is to scale the variable-size caching problem to have integral
item sizes. This can be done by multiplying the size of each item and the cache size by the same
value (assuming the sizes are rational numbers). After the sizes are all integral, the items of the
BGA Caching Problem can be created and partitioned. For each item in the variable-size caching
problem, we create one block in the BGA Caching Problem. The maximum size of these blocks
can be chosen to be any value greater than or equal to the size of the largest item in the scaled
variable-size problem. For each of these blocks we will use only the first z items, where z is the
size of the corresponding item in the scaled problem. We refer to these as the active set for that
block.

The idea for trace generation is to create a trace for the BGA Caching Problem that has
accesses to the same amount of cache space as in the variable-size problem. For each access in
the variable size trace, the BGA Caching trace replaces it with consecutive accesses to the active
set of the corresponding block. Each item is accessed a number of times equal to the number of
items in the active set, in round robin order. The ordering of the variable-size trace is maintained,
so that the ordering of the blocks in the BGA Caching trace is the same as the ordering of the

56

items in the variable-size trace. The size of the cache is set to be the same as that of the scaled
variable-size problem.

We are left to show that the optimal cost of the BGA Caching Problem that we generate is
the same as the optimal cost of the variable size caching problem. First, we show that scaling
sizes does not affect the result. Since the cache size was scaled by the same factor as the items,
the fraction of the cache space that each item takes remains unchanged.

Beyond this, we show that there is an optimal solution for the generated BGA Caching Prob-
lem instance that loads and evicts the entire active set of a block at the same time. To do this,
we rely on the fact that an optimal solution can load all items from the active set that are not in
cache for unit cost. This means that any consecutive series of requests to a single block can be
served for that unit cost. However, unless the cache contains the entire active set, it must pay at
least unit cost to serve the block.

Since the active sets corresponding to different items in the variable size problem are in
distinct blocks, there is no way to load an active item without paying unit cost for that block.
When combined with the fact that the active items remain unchanged for each block, we can
show that evicting a single active item increases the cost paid by the cache the same as evicting
all active items for that block.

If we assume that the cache evicts all active items for a block at the same time, then upon
the first consecutive access to a block, either the entire active set will be in cache or none of it
will be. If the set is in cache, no loads are required. If the set is not in cache, then loading less
than the entire set will cause the need for additional loads. In particular, the maximum amount
of cache space used for the active set multiplied by the number of loads must exceed the active
set.

We use the repeated accesses to the active set to show that the benefits of such additional
loads cannot outweigh the drawbacks. Since any item can be loaded for unit cost, the benefit
of using less cache space for one set of consecutive accesses to the active set cannot exceed the
amount of cache space reserved. Due to the repeated nature of the accesses, loading less than the
entire active set will result in at least as many additional loads as the size of the active set. This
means that loading the entire active set upon the first miss is optimal.

Since we have shown that an optimal solution is to load and evict entire active sets at a time,
any access that immediately follows an access to the same active set will automatically be a
hit. Putting these results together, the optimal solution to the generated trace is the same as the
optimal solution to the original trace.

Figure 4.1 shows an example of the reduction. We are able to simulate variable size items
through the use of multiple items from the same block accessed consecutively. By repeating
these access sequences, we force the optimal solution to load all items that are used in the block.
The optimal solution to the input instance can easily be translated into an optimal solution to the
generated instance.

57

BA CA A

A1 A2 A1 A2 B1 C1 C2 C3 C1 C2 C3 C1 C2 C3A1 A2 A1 A2 A1 A2 A1 A2

A A

B

A

B

C
A

A1 A1 A1 A1 A1 C1A1 A1 A1 A1 A1 A1 A1

A2 A2 A2 A2 A2 C2A2 A2 A2 A2 A2 A2 A2

B1 C3B1 B1 B1 B1

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

C1

C2

C3

V
a
ri
a
b

le
-

S
iz

e
 T

ra
c
e

O
p

ti
m

a
l

C
a
c
h

e

O
p

ti
m

a
l

C
a

c
h

e
B

G
A

 T
ra

c
e

Figure 4.1: A diagram showing how to transform an instance of the variable-size caching prob-
lem into an instance of the Block-Granularity-Aware Caching Problem with the same cost. No-
tice that storing item A1 with block C would not decrease the number of misses, since A2 would
still suffer a miss. The repeated accesses force the optimal solution to load the entire block in
order to minimize misses.

4.3 Competitive Lower Bound
In this section, we will show how to adapt techniques for lower bounding competitive ratios in
caching to the BGA Caching Problem. We will start by providing a lower bound for Item Caches
and Block Caches, and then use the insights we gain to devise a more general lower bound.

4.3.1 Item Caches

We start by examining how Item Caches perform in the BGA Caching Problem. These policies
are widespread and well studied, so they serve as a logical starting point for our investigation.

The lower bound for Item Caches in traditional caching comes from Sleator and Tarjan [102],
and is defined as follows. We define k to be the size of the online cache and h ≤ k to be the size
of the optimal cache.

1. Assume both the optimal and online caches are full.

2. Access k − h+ 1 items that have not been seen before.

3. Create a set of items containing the items in the optimal cache during step one and the
items accessed during step two. This set contains k + 1 items.

4. Access the item from the set that is not in the online cache. Repeat this process a total of
h− 1 times.

5. To generate a longer trace, return to step one. Note that the assumption will be satisfied.
In these traces, the online policy never hits, as the items in step two are newly accessed, and the
items in step four are chosen to be outside of that cache. The optimal policy also misses on every

58

access in step two. Since it knows the future accesses, it can perform evictions so as to store
each item that will accessed in step four, allowing it to achieve hits on all of these accesses. This
results in a competitive ratio of k/(k − h+ 1).

The BGA Caching Problem problem modifies traditional caching by allowing hits to be
achieved through spatial locality (two different small granularity items reside in the same large
granularity item). This means that it is possible for the optimal policy to miss on only one out of
every B accesses in step two if the items are chosen such that an entire block is accessed. The
cost of this modification is that the optimal cache uses B space rather than unit space in step two,
and thus step four must be shortened to h−B accessses. This provides the following result:
Theorem 17. Any Item Cache has a competitive ratio of at least B(k − B + 1)/(k − h + 1)
where k is the size of the online cache and h ≤ k is the size of the optimal cache.

Proof. Create a trace according to the following procedure:

1. Assume both the optimal and online caches are full.
2. Choose a block that has not been seen before. Access each item from that block. Repeat

this process until k − h+ 1 items have been accessed in this step.
3. Create a set of items containing the items in the optimal cache during step one and the

items accessed during step two. This set contains k + 1 items.
4. Access the item from the set that is not in the online cache. Repeat this process a total of
h−B times.

5. To generate a longer trace, return to step one. Note that the assumption will be satisfied.

Since the online policy does not load any item that is not accessed, it will miss on each access
in step two. The accesses in step four are chosen to ensure that the online policy misses on each.

The optimal policy will load each block on its first access in step two, resulting in (k − h +
1)/B misses. It can use its remaining h−B space to store the items that will be accessed in step
four, hitting on each.

Taking the ratio of these misses provides the bound.

This competitive ratio is nearly a multiplicative B factor worse than traditional lower bounds
under the assumption that k � B. Since the eviction decisions of the policies, and hence their
miss rates, have not changed, this shows the increased power of the optimal algorithm in this
model.

4.3.2 Block Caches
Although Item Caches do not perform well in the BGA Caching Problem, perhaps Block Caches
will. These policies are naturally suited to handle the sorts of access sequences that Item Caches
suffered on, and may therefore offer a better realization of the potential performance improve-
ments.

This intuition proves accurate for the trace design scheme described in the previous section.
Online Block Caches will be able to hit on all subsequent accesses to a block in step two, pro-
viding the same number of misses as the optimal policy on that step. As long as the number of
accesses in the second step dominates the number in the third, these policies will perform well.

59

The problem with Block Caches is that when a small number of items in a block are accessed,
the remaining items will pollute the cache, reducing the available space to serve accessed items.
In particular, when only one item from a block is used at a time, the cache is effectively B times
smaller. We can apply this insight along with the traditional bound to provide a bound for Block
Caches.
Theorem 18. Any Block Cache has a competitive ratio of at least k/(k − B(h− 1)) where k is
the size of the online cache and h ≤ k/B is the size of the optimal cache. When h > k/B, the
competitive ratio is infinite.

Proof. Create a trace according to the following procedure:

1. Assume both the optimal and online caches are full and that each item in the optimal cache
is from a different block.

2. Access one item from each of dk/Be − h+ 1 blocks that have not yet been accessed.
3. Create a set of items containing the items in the optimal cache during step one and the

items accessed during step two. This set contains dk/Be+1 items, each of which are from
a different block.

4. Access the item from the set that is not in the online cache. Repeat this process a total of
h− 1 times.

5. To generate a longer trace, return to step one. Note that the assumption will be satisfied.

The online policy has not previously seen any of the blocks accessed in step two, so it will
miss on each access. Because it loads and evicts at block granularity, it will store exactly dk/Be
blocks at a time. This means that step four can always choose one item that is not in the online
cache, resulting in misses for all accesses in that step.

The optimal policy will miss on each access in step two, resulting in dk/Be − h+ 1 misses.
Since it knows what items will be accessed in step four, it can choose to keep those items and hit
on each such access.

With the assumption that B evenly divides k, taking the ratio of the misses results in the
target bound.

If h > k/B, then step four can be repeated infinitely, since the optimal policy can store the
entire set of items.

This result shows that Block Caches perform very poorly on traces that do not take advantage
of the spatial locality that is available in the BGA Caching Problem. In particular, they suffer
a performance penalty where the effective cache size is reduced by a factor equal to the ratio
between the size of the block and the average number of items used per block.

4.3.3 Generalizing the Lower Bound

We would like to have a more general lower bound for policies beyond Item Caches and Block
Caches. Here, we provide such a bound.

Like the worst-case traces for Item Caches and Block Caches, we will first access new
items until the online cache can no longer store the entire active set, and then repeatedly ac-

60

cess whichever item the cache chooses not to store. Unlike the previous bounds, we cannot make
assumptions about the granularity of loads or evictions.

When adding new items to the active set, we take advantage of the block structure to allow
the optimal cache to outperform the online cache. For an accessed block, the worst-case trace
can access any item from that block that is not in the online cache. This can continue until the
online cache loads every item in the block. The online cache will miss on each access, while the
optimal cache can load each accessed item on the first access to the block. Using this insight, we
categorize policies using a parameter a, which is the number of distinct consecutive accesses to
a block that must occur before the policy loads the entire block. Later on, we will remove this
parameter to provide a more general bound.

Our trace construction is similar to what we use for Item Caches, with the differences being
that the online policy will incur a misses on each block in step two and the optimal policy will
need to use a space to service these requests, leaving only h− a space available for step four.
Lemma 13. For any deterministic replacement policy that requires a ≤ B consecutive distinct
accesses to a block to load all of it, the competitive ratio of that policy is at least (a(k−h+ 1) +
B(h−a))/(k−h+1) where k is the size of the online cache and h ≤ k is the size of the optimal
cache. When h > k, the competitive ratio is infinite.

Proof. Create a trace according to the following procedure:

1. Assume both the optimal and online caches are full.
2. For d(k − h+ 1)/Be blocks that have not yet been accessed:

While there exists an item from that block that the online cache has not yet loaded, access
that item. This will occur a times per block.

3. Create a set of items containing the items in the optimal cache during step one and the
items in the blocks accessed during step two. This set contains at least k + 1 items.

4. Access an item from the set that is not in the online cache. Repeat this process a total of
h− a times.

5. To generate a longer trace, return to step one. Note that the assumption will be satisfied.

As with our other generation schemes, the online policy will miss on every access. This
causes ad(k − h+ 1)/Be misses in step two and h− a in step four.

The optimal policy will load each of the a items that will be accessed in a block on its first
access in step two, resulting in d(k − h+ 1)/Be misses. It can use its remaining h− a space to
store the items that will be accessed in step four, hitting on each.

With the assumption that B evenly divides k − h + 1, taking the ratio of the misses (and
simplifying) results in the target bound.

If h > k, then step four can be repeated infinitely, since the optimal policy can store the entire
set of items.

4.3.4 Analysis and Discussion

Having devised lower bounds for deterministic policies in the BGA Caching Problem, we can
use the insights we have developed to learn more about the original problem.

61

In order to minimize the lower bound, we need to consider the a parameter. In Theorem 19,
the a parameter shows up in one positive term and one negative term, both in the numerator.
When k − h + 1 > B, then the positive term dominates, and minimizing a also minimizes
the competitive ratio. Otherwise, the negative term dominates and maximizing a minimizes the
ratio. Thus, to achieve the best competitive ratio, one should load either an entire block or a
single item, and nothing in between. This result is true even when we allow the a parameter to
be non-constant, resulting in the following Theorem:
Theorem 19. The competitive ratio of any deterministic replacement policy is at least (k+(B−
1)(h− 1))/(k − h+ 1) where k is the size of the online cache and h ≤ k − B + 1 is the size of
the optimal cache.

Proof. To show this, we first consider a single cycle of the trace used in Lemma 13. The online
policy suffers misses equal to the sum of its chosen a parameters across each block accessed.
The optimal cache, meanwhile, will suffer one miss on each block, using space equal to the
maximum number of accesses for a single block. Since this space is forced to store particular
items, it cannot be used in step four of the generation.

Combining these observations shows that the a parameter should be minimized for all blocks
except for one. This one block provides the maximum value that appears in step four. When
we analyze the miss ratio, we see that it is actually independent of this choice. The number of
misses that the optimal cache suffers is not affected. For the online policy, it suffers a number
of misses equal to the chosen value of the parameter in step two and h minus that value in step
four. Thus, setting the a parameter to one minimizes the lower bound. Plugging that value into
the bound from Lemma 13 provides the result.

Since the only distinguishing characteristic of items in a block are whether they have been
accessed or not, it makes sense that we would either want to bring in all or none of the non-
accessed items after an access. However, it is less clear why an approach similar to that of the
ski-rental problem, where the policy waits to amortize the cost of loading the entire block against
individual item accesses is not correct. The answer appears to lie in the fact that the number of
possible “rentals” is bounded byB and that the decision to “purchase” additional items can easily
be changed when a different block is accessed.

The intuition for choosing between 1 and B for the a parameter can be found in the relative
costs due to the types of locality. For caches where the online and offline compared are roughly
equal size, the online cache needs as much space as possible to compete on traditional worst-case
traces, and using cache space to serve spatial locality is more harmful than helpful. By contrast,
when the online cache is much larger than the offline cache, the marginal benefit of the extra lines
is small, making them more useful when devoted to handling spatial locality. In these situations,
policies that load the entire block on access perform better.

We can also use these bounds to gain insights into eviction. The lower bound for Block
Caches shows that evicting at the block granularity is inefficient. This means that efficient poli-
cies need to be able to classify items in a block into different priority levels. We achieve this by
distinguishing between items that have been accessed, and those that have not (only another item
in their block has been accessed).

62

Item-Block Layered

Partitioning

i

A1

A1

It
e

m

Block

b

A1

A1

A1 A2 A3

A1 A2 A3

Figure 4.2: A logical diagram of IBLP, consisting of an Item Cache partition running LRU in
front of a Block Cache partition running LRU.

Putting this all together, we see that in order to maximize performance, policies should load
the entire block on an access (unless comparing against an optimal with similar size, where they
should load individual items), to take advantage of spatial locality, but perform evictions in a
manner that treats items that have been accessed differently from those that have not.

We can also gain broader insight about the overall problem. The lower bound we prove is
much greater than the lower bound for the granularity-oblivious problem, meaning that the gap
between online and offline policies is larger. The difference in the bounds starts at nearly a
multiplicative factor of B when k ≈ h and tapers off, hitting 2 when k ≈ Bh. In prior models,
the augmentation factor equals the competitive ratio at 2. By contrast, in the BGA Caching
Problem, k = 2h has a competitive ratio of ≈ 2 + B and a competitive ratio of 2 requires
k ≈ Bh. The meeting point of the augmentation factor and the competitive ratio occurs when
k ≈
√
Bh. This helps illustrate the greater power available to offline policies in our model.

4.4 A Competitive Policy for the Block-Granularity-Aware
Caching Problem

In this section, we provide a policy that performs well in the BGA Caching Problem. Our policy,
Item-Block Layered Partitioning (IBLP), combines elements of Item Caches and Block Caches
in a manner that effectively handles the corner cases that arise in either alone. We begin by
describing how IBLP works, then move to proving the upper bound on its competitive ratio. We
then analyze how to select the parameters for the policy and then conclude by comparing this
policy to alternatives.

4.4.1 Policy Description
Our policy, known as Item-Block Layered Partitioning, divides the available space into two dif-
ferent layers of cache. The first layer, which serves each access to the cache, loads only the items
that are accessed and performs evictions using the Least-Recently Used (LRU) replacement pol-

63

k Online Cache Size
h Optimal Cache Size
B Block Size
i Item Layer Size
b Block Layer Size

k = i+ b IBLP partitioning

Table 4.1: BGA Caching Problem notation.

icy. The second layer, which only serves accesses that miss in the first layer, also uses the LRU
policy for evictions, but loads and evicts at the granularity of entire blocks at a time. In other
words, IBLP organizes the cache as an Item Cache backed by a Block Cache. We refer to these
layers as the item layer and block layer, respectively, and define their sizes as i and b. A diagram
of IBLP can be found in Figure 4.2.

Although this is relatively straightforward in description and implementation, it includes
some subtle design choices. The cache is split into two different layers to handle the two types of
locality, with the item layer handling temporal locality and the block layer handling spatial local-
ity. The ordering of the two layers is important to ensure that accesses with high temporal locality
do not reorder blocks in the LRU list of the block layer. Allowing such reorderings would cause
blocks with a small number of frequently accessed items to pollute the block layer, reducing its
effective space for worst-case traces. Note that the block layer is neither inclusive nor exclusive
of the item layer. If the block layer was inclusive of the item layer (every item in the item layer
must also reside in the block layer), the item layer would have no contribution to the overall hit
rate. By contrast, having an exclusive policy (where no item is duplicated across layers), would
provide improved performance, but such a policy would require a more complicated method of
tracking to ensure that no item has a shorter lifetime than they would in this policy. For our initial
exploration, we decided to use the simpler policy over the more complicated one with limited
benefits. Even with this simpler policy, choosing partition sizes is involved. We build up to this
decision by analyzing each layer individually and then combining the analysis, with the results
discussed in Section 4.4.3.

4.4.2 The Upper Bound
In order to prove our upper bound on the competitive ratio of IBLP, we introduce a new linear
programming technique to analyze how the optimal cache makes use of cache space. Using
this technique, we will first consider how each layer performs separately against adversarial
approaches to the type of locality that it targets. We will then provide an analysis of the combined
problem to ultimately prove the upper bound.

Our Analysis Technique. Our analysis visualizes the optimal cache’s performance on a trace
as a rectangle, with one axis representing the time in units of accesses, and the other representing
cache space. When an item is brought into cache, it take up one unit of space and a number of
units of time equal to the number of accesses between when it is loaded and when it is evicted.

64

A1 B1 C1 D1 A2 E1 F1 B1 A3

A1

A2 A2 A2 A2 A2

A3 A3 A3 A3 A3

B1 B1 B1 B1 B1 B1 B1

A3 A3 A3
O

p
ti
m

a
l

C
a
c
h

e
T

ra
c
e

A3

Τ𝑏 𝐵 + 1 Τ𝑏 𝐵 + 1

𝑖 + 1

Figure 4.3: The pattern of accesses resulting in worst-case traces and the resulting cache space
used in the optimal cache over time. The accesses to block A show the worst-case spatial locality,
while the accesses to block B show the worst-case temporal locality.

A visualization of this method can be found in Figure 4.3.
In order to use this method, we assume that each access is chosen so as to cause the online

policy that we compare against to miss.2 Therefore, if we choose a rectangle that accurately
captures the average long-term behavior of the trace, then the miss ratio is the length of the time
dimension of the rectangle divided by the number of hits the optimal cache can achieve during
the rectangle subtracted from the length.

There are two constraints that limit the number of hits the optimal cache can achieve. The
first constraint is that of cache usage. This means that the total number of units of space used by
the optimal cache cannot exceed the area of the rectangle. To reduce clutter, we will ignore the
need to leave one unit of cache space available for accesses that the optimal cache misses on in
this analysis.3 The second constraint is that of accesses. This means that the number of accesses
that occur cannot exceed the length of the rectangle in the time dimension. We will make these
constraints more concrete in the analyses below.

Both of these constraints are necessary to fully specify the problem, but they still provide
the optimal cache degrees of freedom that are not available in the original caching problem. The
constraints refer to the total amount of the resource (cache usage or accesses) used, but not where
these resources are located. This allows the optimal cache to make use of solutions that are not
viable in the original caching problem by having multiple accesses occur at the same time or
overdrawing cache space at one time by underutilizing it at a different time. Since this looseness
empowers the optimal cache it can only hurt the resulting bounds. In other words, our bound is
correct, but perhaps not as tight as possible.

2This assumption is accurate as long as hits have limited ability to change eviction decisions.
3The effect on the analysis is limited to replacing h with h− 1 in some places.

65

Temporal Locality. We begin our analysis by comparing how the item layer and the optimal
cache perform on adversarial temporal locality. More specifically, we ignore any hits caused
by spatial locality. In this setting, an access can be a miss for the item layer and a hit for the
optimal cache if and only if there have been at least i distinct items accessed since the item was
last accessed. This means that any such hit requires at least i units of cache space. Each time
this occurs, the access that hits is constrained to be to the same item as the access that caused the
load. The accesses to block B in Figure 4.3 illustrate this pattern.

Turning these constraints into a linear program and solving it provides an upper bound for
the competitive ratio of the item layer on temporal locality.
Theorem 20. When considering hits due to only temporal locality, the item layer of IBLP has a
competitive ratio upper bounded by i

i−h where i is the size of the item layer cache and h < i is
the size of the optimal cache.

Proof. We define r to be the fraction of accesses that the optimal cache hits on due to temporal
locality. The competitive ratio is 1

1−r . Since there is h cache space in the rectangle and each hit
requires i cache space, the cache space constraint is h ≥ ri. Since each hit forces one access to a
particular item, the accesses constraint says that the number of hits must be less than the number
of accesses, i.e., 1 ≥ r. Although in this problem, this constraint is loose, it becomes critical for
later versions that include spatial locality.

This results in the following linear program:

Maximize:
1

1− r

subject to:

h ≥ ri

1 ≥ r

where r is the free variable.

Solving this linear program provides the desired result.

This result matches the upper bound from Sleator and Tarjan [102] for traditional LRU
caches.4 Since we are focusing only on temporal locality, this behavior is to be expected, as
the item layer behaves exactly like an LRU cache of size i.

Spatial Locality. We next consider how the block layer compares to the optimal cache in the
face of adversarial spatial locality. Similar to the analysis above, we will ignore any hits not due
to our chosen form of locality. However, spatial locality introduces several important variations.

For spatial locality, hits to an item cannot be caused by previous accesses to that item, only
misses to a different item in their block that causes the original item to be loaded. This means
that each item can cause at most one hit per time that it is loaded. Furthermore, since the number
of items loaded at a time is upper bounded by the block size and one of them is the item that was
just missed on, the maximum number of hits that can be caused by each miss is at most B − 1.

4The lack of a negative one in the denominator is due to the issue of space used by misses as discussed earlier.

66

We now consider what adversarial spatial locality looks like for the block layer. In order for
the block layer to miss on an access, there must have been b/B distinct other blocks accessed
since the last access to that block. This means that in order for the optimal cache to achieve
multiple hits from the same load operation, each additional item loaded must be stored in cache
for b/B + 1 accesses more than the previous item. This results in a triangle-like cache usage
pattern, as shown for the A block in Figure 4.3.

The dimensions of this pattern provide an interesting set of tradeoffs in the design space.
Since the optimal cache must miss at least once in order to load items to hit on, the competitive
ratio is upper bounded by the number of items loaded at a time. However, the cache usage of
each item increases with the number of items loaded.

The design of the linear program is based on the number of items t that the optimal cache
chooses to load on each miss and the number of misses s that cause the optimal cache to perform
loads. The optimal cache achieves s(t−1) hits, resulting in a competitive ratio of 1

1−s(t−1) . Since

the total cache usage due to each miss is
∑t−1

j=0 1 + j(b/B + 1), the cache usage constraint says
that h ≥ s(

∑t−1
j=0 1 + j(b/B + 1)). Similarly, the accesses constraint is 1 ≥ st since each load

causes the specific miss and each subsequent hit to be fixed accesses. Solving the resulting linear
program provides the resulting bound.
Theorem 21. When considering hits due to only spatial locality, the block layer of IBLP has a
competitive ratio upper bounded by min

(
B, (b+ 2Bh− B)/(b+ B)

)
where b is the size of the

block layer cache and h is the size of the optimal cache.

Proof. We define s to be the fraction of accesses where the optimal cache misses and performs
loads and t to be the number of items that the optimal cache chooses to load on each miss. The
optimal cache achieves s(t − 1) hits, resulting in a competitive ratio of 1

1−s(t−1) . Since the total

cache usage due to each miss is
∑t−1

j=0 1 + j(b/B + 1), the cache usage constraint says that
h ≥ s(

∑t−1
j=0 1 + j(b/B+ 1)). Similarly, the accesses constraint is 1 ≥ st since each load causes

the specific miss and each subsequent hit to be fixed accesses. This results in the following
maximization problem:

Maximize:
1

1− s(t− 1)

subject to:

h ≥ s
(t−1∑

j=0

1 + j(b/B + 1)
)

1 ≥ st

where s and t are the free variables.

Solving this maximization problem provides the second term in the theorem. The first term
comes from the fact that t cannot exceed B combined with the second constraint in the linear
program.

67

Combining the Localities. We now show how to combine the two methods of achieving hits
to obtain an upper bound for the entirety of IBLP for general traces. Since IBLP hits on an access
if either of its partitions hits on that access, the restrictions on an access in order for it to be a
miss for IBLP must be at least as strict as the union of the previous restrictions. This allows us
to formulate a linear program for the entire policy by combining the hits and the constraints of
the previous two versions.

The resulting linear program is too complex to solve directly. To deal with this, we modify
the spatial locality problem to take the number of hits due to temporal locality as an input. We
then use the result of this problem to choose the number of temporal locality hits that maximizes
the competitive ratio. The result of this is shown below in Theorem 22.
Theorem 22. The competitive ratio of IBLP is upper bounded by:{

(b+B(2i−1))2
8B(B+b)(i−h) i ≤ 2Bb−b+2B2+B

2B
2Bi−Bb+b−B2−B

2i−2h i > 2Bb−b+2B2+B
2B

where i ≥ h is the size of the item layer, b is the size of the block layer, and h is the size of the
optimal cache.

Proof. As in the previous proofs, we define r, s, and t to be the fraction of accesses that the
optimal cache hits on due to temporal locality, the fraction of accesses that the optimal cache
misses on and loads items for spatial locality, and the number of items loaded for spatial locality,
respectively.

The total number of hits that optimal cache achieves is equal to the sum of the hits from the
individual localities. This results in a competitive ratio of 1

1−r−s(t−1) . We combine the amount
of cache space used and the number of accesses forced in a similar way. This results in the
following linear program:

Maximize:
1

1− r − s(t− 1)

subject to:

h ≥ ri+ s
(t−1∑

j=0

1 + j(b/B + 1)
)

1 ≥ r + st

where r, s, and t are the free variables.

Unfortunately, we were unable to solve this linear program directly (one hour of computation
time in Wolfram Mathematica). To obtain a solution, we break the program into smaller chunks
that can be solved individually. We start by modifying the linear program to compute the values
of s and t that maximize the competitive ratio given a particular r value. This results in the
following values for s and t:

s =
(B + b)(1− r)2

b− br +B(2h− 1 + r − 2ir)

68

t =
b− br +B(2h− 1 + r − 2ir)

(B + b)(1− r)
When we plug in these values and solve the resulting maximization problem, we achieve

results for both r and the competitive ratio:

r =
b+B(4h− 2i− 1)

b+B(2i− 1)

Ratio =
(b+B(2i− 1))2

8B(B + b)(i− h)

This result is a valid upper bound, but fails to account for the constraint that t cannot exceed
the block size B. By using the expressions for the values of r and t, we find that this occurs
when i > 2Bb−b+2B2+B

2B
. In this region, we know from above that t maxes out at B. We apply

this change to the prior analysis, with the following results:

r =
2Bh−Bb+ b−B2 −B
2Bi−Bb+ b−B2 −B

Ratio =
2Bi−Bb+ b−B2 −B

2i− 2h

Putting these results together finishes the proof.

4.4.3 Applying the Bound
Having proved a bound on the competitive ratio for IBLP as a function of the layer sizes, we
can now consider how to partition the cache space. This task is complicated by the fact that the
optimal partitioning depends on the size of the optimal cache being compared against.

Known Optimal Size. When the size of the optimal cache is known, then the optimal parti-
tioning can be directly computed. For the first part of the piecewise function (smaller i), the
minimum competitive ratio and item layer size when it occurs are:

Ratio =
(k +B − 1)(k − h+B(2h− 1))

(k − h+B)2

i =
k2 + 4Bhk − hk + 4B2h− 3Bh−B2

2Bk + k + 2Bh− h+ 2B2 − 3B

For the second part (larger i), setting i = k provides the minimum competitive ratio of:

2Bk −B2 −B
2(k − h)

By solving for the point of equality for the competitive ratios, we see that the smaller i value
should be chosen when k ≥ 3Bh−h−B2−B

B−1 (the online cache is large relative to the optimal cache),
and the larger i value should be chosen otherwise.

69

Figure 4.4: A graph comparing the upper bound for IBLP against the Sleator-Tarjan bound, our
lower bound, an LRU Item Cache, and an LRU Block Cache. The x-axis is the size of the optimal
cache and the y-axis is the competitive ratio (lower is better). In this graph, the online cache size
k = 1.28M and block size B = 64.

Figure 4.4 shows how the performance of IBLP compares to the lower bound, as well as an
Item Cache and a Block Cache of the same size running LRU, for one set of parameters. This
general shape is consistent for most parameter settings, with IBLP outperforming the Item Cache
for k ≈ 3h and larger, and outperforming the Block Cache for k ≈ 4Bh and smaller. In addition,
IBLP performs close to optimal for all values of k, whereas the performance of the baselines
degrade severely outside of their ideal performance conditions.

With the assumptions we make regarding the relative sizes of k, h, andB, the upper bound for
IBLP differs from the lower bound by a multiplicative factor of at most 3, and often significantly
less. Comparing against the points of interest from the lower bound, we see that the competitive
ratio is ≈ 2B when k = 2h, k ≈ Bh yields a competitive ratio of ≈ 3, and the meeting point
occurs when k ≈

√
2Bh.

Unknown Optimal Size. When comparing against an optimal cache of unknown size, a unique
aspect of our problem arises. The optimal partitioning strategy depends on the size of the optimal
cache being compared against. As shown in Figure 4.5, for any fixed partition size, the compet-
itive ratio will match the bound for the optimal choices at one partition size but show sigificant
dropoff for larger values of h and limited improvement for smaller values of h.

Having the optimal online strategy depend on the size of the optimal cache being compared
against is unique amongst caching problems. Even writeback-aware caching, which would ap-
pear to have the same issue of multiple types of costs, does not exhibit this phenomenon. The
difference appears to lie in the fact that unlike in other caching problems, the two types of costs
(temporal and spatial locality) are different functions the cache size. This means that for different
sizes of the optimal cost, the relative performance of traces changes depending on the amount of
spatial and temporal locality that they contain. Accordingly, the importance of performing well
on these traces changes in the competitive ratio. Dealing with this issue would require a different
metric of cache cost that accounts for the varying value of traces. We leave such questions for

70

Figure 4.5: A graph showing how the upper bound of IBLP with constant layer sizes performs
compared to the optimal layer sizes. The x-axis is the size of the optimal cache and the y-axis is
the competitive ratio (lower is better). In this graph, the online cache size k = 1.28M and block
size B = 64.

future work.

4.5 Chapter Summary
Demands on the modern memory hierarchy continue to increase as more data become available
and need to be served. In order for system throughputs to increase to match these demands, they
will need to take every advantage offered by the underlying technology. We provide an opportu-
nity to unlock one such advantage by studying granularity change in the memory hierarchy. In
our investigation, we introduce the Block-Granularity-Aware Caching Problem, which general-
izes the caching problem to account for the benefits of spatial locality at granularity boundaries.
We provide a strong theoretical framework for this problem, including an analysis of the com-
plexity of the problem, and both upper and lower bounds on the competitiveness of deterministic
policies. We believe that these results provide crucial insights on the potential available in this
area, and how it can be harnessed to improve performance.

71

72

Chapter 5

Conclusion

In this work, we have begun an investigation into how to design caching and memory manage-
ment systems for non-volatile memory technologies and the new performance characteristics that
they have. In particular, we have studied: (i) how to take advantage of NVM persistence to im-
prove fault tolerance, (ii) how to account for writebacks in caching systems in order to improve
overall device utilization, and (iii) how caching systems can take advantage of data granularity
changes to obtain additional data at low cost.

For each of these areas, our work provides a strong theoretical framework closely tied with
practice in order to develop insights and techniques that can be applied directly to real systems.
Combined, these results support the thesis that when designing systems for non-volatile mem-
ory technologies, designing for specific performance metrics and accounting for crucial
device characteristics can provide asymptotic theoretical performance improvement and
practical improvement to match.

However, there are still many important questions for future research. These include extend-
ing our theoretical understanding beyond the initial frameworks that this research generates. For
fault tolerance, this includes generating a minimum sufficient definition for idempotence, gen-
erating lower bounds for cost, and extending our work to more of the vast world of algorithms
that could benefit from it. For writeback-aware caching, our results could be extended to con-
sider randomized algorithms and forms of analysis beyond worst-case. These problems are even
more pressing for granularity-aware caching, given the significant limitations that we found for
deterministic policies in that model.

There is also significant practical research to be done. For the work on fault tolerance we
provide an implementation of our scheduler, but an implementation of closures and experimental
results have not been performed to our knowledge. For the work on caching, extending our
experiments to a broader range of traces and cost metrics would help understand the applicability
of the results. Furthermore, implementing real caches that use these eviction policies rather than
simulations would be informative.

Even beyond these questions, there is still important research on NVMs to be done. Perhaps
we can design an interface for NVMs that allows for better performance. There are currently two
different methods in use for layering DRAM and NVM, but better options may exist. The error
correcting codes thought to be used inside NVM technologies could be used in conjunction with
other aspects of a system. All of these questions and more exist to be explored in the pursuit of

73

performance.
As NVMs become more prevalent and the memory hierarchy continues to evolve with the

demands placed upon it, questions like these will become more and more important to solve. In
order for computing to continue to evolve as we desire, so too must our understanding of the
technologies we use to implement it.

74

Bibliography

[1] Yehuda Afek, David S. Greenberg, Michael Merritt, and Gadi Taubenfeld. Computing
with faulty shared memory. In PODC, 1992. 2

[2] Alok Aggarwal and Jeffrey S. Vitter. The Input/Output complexity of sorting and related
problems. Communications of the ACM, 31(9), 1988. 2.1.1

[3] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. Page replacement for general
caching problems. In SODA, volume 99, pages 31–40. Citeseer, 1999. 3, 3, 3.1.1, 4

[4] A. W. Appel and T. Jim. Continuation-passing, closure-passing style. In POPL, 1989. 2.3

[5] Lars Arge, Michael T. Goodrich, Michael Nelson, and Nodari Sitchinava. Fundamental
parallel algorithms for private-cache chip multiprocessors. In ACM symposium on Paral-
lelism in algorithms and architectures (SPAA), 2008. 2

[6] Martin Arlitt, Ludmila Cherkasova, John Dilley, Rich Friedrich, and Tai Jin. Evaluating
content management techniques for web proxy caches. ACM SIGMETRICS Performance
Evaluation Review, 27(4):3–11, 2000. 3.6.2

[7] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed
multiprocessors. Theory of Computing Systems, 34(2), Apr 2001. 2, 5, 2.1.2, 2.5.1, 2.5.3

[8] Hagit Attiya and Gili Yavneh. Remote memory references at block granularity. In 21st
International Conference on Principles of Distributed Systems (OPODIS 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018. 4

[9] Yonatan Aumann and Michael Ben-Or. Asymptotically optimal PRAM emulation on
faulty hypercubes. In IEEE Symposium on Foundations of Computer Science (FOCS),
1991. 2

[10] Domenico Balsamo, Alex S Weddell, Geoff V Merrett, Bashir M Al-Hashimi, Davide
Brunelli, and Luca Benini. Hibernus: Sustaining computation during intermittent supply
for energy-harvesting systems. IEEE Embedded Systems Letters, 7(1), 2015. 2

[11] Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. Journal of the
ACM (JACM), 48(5):1069–1090, 2001. 3, 3, 4

[12] Nathan Beckmann and Daniel Sanchez. Maximizing cache performance under uncer-
tainty. In High Performance Computer Architecture (HPCA), 2017 IEEE International
Symposium on, pages 109–120. IEEE, 2017. 3

[13] Laszlo A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM

75

Systems journal, 5(2):78–101, 1966. 3, 3, 3.4.1, 4

[14] Laszlo A. Belady and Frank P. Palermo. On-line measurement of paging behavior by
the multivalued min algorithm. IBM Journal of Research and Development, 18(1):2–19,
1974. 3

[15] Naama Ben-David, Guy E Blelloch, Michal Friedman, and Yuanhao Wei. Delay-free
concurrency on faulty persistent memory. In The 31st ACM Symposium on Parallelism in
Algorithms and Architectures, pages 253–264, 2019. 2.4

[16] Daniel S. Berger, Nathan Beckmann, and Mor Harchol-Balter. Practical bounds on
optimal caching with variable object sizes. Proc. ACM Meas. Anal. Comput. Syst.
(SIGMETRICS’18), 2018. ISSN 2476-1249. doi: 10 .1145/3224427. URL http:
//doi.acm.org/10.1145/3224427. 3.5.1, 3.5.2, 4

[17] Ryan Berryhill, Wojciech Golab, and Mahesh Tripunitara. Robust shared objects for non-
volatile main memory. In LIPIcs-Leibniz International Proceedings in Informatics, vol-
ume 46. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. 2

[18] Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam Burnett, Jason Liptak, Raju Ran-
gaswami, and Vagelis Hristidis. Borg: Block-reorganization for self-optimizing storage
systems. In FAST, volume 9, pages 183–196. Citeseer, 2009. 3

[19] Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. Makalu: Fast recoverable
allocation of non-volatile memory. In ACM SIGPLAN Notices, volume 51, pages 677–694.
ACM, 2016. 2

[20] Guy E Blelloch, Phillip B Gibbons, and Harsha Vardhan Simhadri. Low depth cache-
oblivious algorithms. In ACM symposium on Parallelism in algorithms and architectures
(SPAA), 2010. 2.6, 2.6, 4

[21] Guy E Blelloch, Jeremy T Fineman, Phillip B Gibbons, and Harsha Vardhan Simhadri.
Scheduling irregular parallel computations on hierarchical caches. In Proceedings of
the twenty-third annual ACM symposium on Parallelism in algorithms and architectures,
pages 355–366, 2011. 4

[22] Guy E. Blelloch, Jeremy T. Fineman, Phillip B. Gibbons, Yan Gu, and Julian Shun. Sort-
ing with asymmetric read and write costs. In Proceedings of the 27th ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA), pages 1–12. ACM, 2015. 1, 2, 3

[23] Mark Bohr. A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE Solid-
State Circuits Society Newsletter, 12(1):11–13, 2007. 3

[24] Mark Brehob, Stephen Wagner, Eric Torng, and Richard Enbody. Optimal replacement is
NP-hard for nonstandard caches. IEEE Transactions on computers, 53(1):73–76, 2004. 3,
4

[25] Michael Buettner, Ben Greenstein, and David Wetherall. Dewdrop: an energy-aware
runtime for computational RFID. In NSDI, 2011. 2

[26] Brad Calder, Chandra Krintz, Simmi John, and Todd Austin. Cache-conscious data place-
ment. In Proceedings of the eighth international conference on Architectural support for
programming languages and operating systems, pages 139–149, 1998. 4

76

http://doi.acm.org/10.1145/3224427
http://doi.acm.org/10.1145/3224427

[27] Pei Cao and Sandy Irani. Cost-aware www proxy caching algorithms. In Usenix sympo-
sium on internet technologies and systems, volume 12, pages 193–206, 1997. 3.6, 3.6.1

[28] Franck Cappello, Geist Al, William Gropp, Sanjay Kale, Bill Kramer, and Marc Snir.
Toward exascale resilience: 2014 update. Supercomput. Front. Innov.: Int. J., 1(1), April
2014. 2

[29] Erin Carson, James Demmel, Laura Grigori, Nicholas Knight, Penporn Koanantakool,
Oded Schwartz, and Harsha Vardhan Simhadri. Write-avoiding algorithms. In 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS), pages 648–658.
IEEE, 2016. 1

[30] Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. Atlas: Leveraging locks
for non-volatile memory consistency. In OOPSLA, 2014. 2

[31] Himanshu Chauhan, Irina Calciu, Vijay Chidambaram, Eric Schkufza, Onur Mutlu, and
Pratap Subrahmanyam. NVMove: Helping programmers move to byte-based persistence.
In INFLOW, 2016. 2

[32] Shimin Chen and Qin Jin. Persistent b+-trees in non-volatile main memory. Proceedings
of the VLDB Endowment, 8(7):786–797, 2015. 2

[33] Trishul M Chilimbi, Mark D Hill, and James R Larus. Cache-conscious structure layout.
In Proceedings of the ACM SIGPLAN 1999 conference on Programming language design
and implementation, pages 1–12, 1999. 4

[34] B. S. Chlebus, A. Gambin, and P. Indyk. PRAM computations resilient to memory faults.
In European Symposium on Algorithms (ESA), 1994. 2

[35] Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. New results
on server problems. In SIAM Journal on Discrete Mathematics, pages 172–181, 1991. 3,
3, 4

[36] Marek Chrobak, Gerhard J. Woeginger, Kazuhisa Makino, and Haifeng Xu. Caching is
hard-even in the fault model. Algorithmica, 63(4):781–794, 2012. 3, 3, 4, 4.2

[37] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, Ranjit
Jhala, and Steven Swanson. NV-Heaps: Making persistent objects fast and safe with next-
generation, non-volatile memories. In ASPLOS, 2011. 2

[38] Alexei Colin and Brandon Lucia. Chain: tasks and channels for reliable intermittent
programs. OOPSLA, 2016. 2

[39] Alexei Colin and Brandon Lucia. Termination checking and task decomposition for task-
based intermittent programs. In Proceedings of the 27th International Conference on
Compiler Construction, pages 116–127. ACM, 2018. 2, 3

[40] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms (3rd edition). MIT Press, 2009. 2.6

[41] Intel Corporation. Optane SSD DC P4800X series, 2018. Retrieved online on 11
Jan 2019 at https://ark.intel.com/products/97161/Intel-Optane-SSD-DC-P4800X-Series-
375GB-2-5in-PCIe-x4-3D-XPoint. 1, 3.6.1

77

https://ark.intel.com/products/97161/Intel-Optane-SSD-DC-P4800X-Series-375GB-2-5in-PCIe-x4-3D-XPoint
https://ark.intel.com/products/97161/Intel-Optane-SSD-DC-P4800X-Series-375GB-2-5in-PCIe-x4-3D-XPoint

[42] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. Log-free
concurrent data structures. EPFL Technical Report, 2017. 2

[43] Marc A. de Kruijf, Karthikeyan Sankaralingam, and Somesh Jha. Static analysis and
compiler design for idempotent processing. In PLDI, 2012. 2

[44] Robert H. Dennard, Fritz H. Gaensslen, V. Leo Rideout, Ernest Bassous, and Andre R.
LeBlanc. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE
Journal of Solid-State Circuits, 9(5):256–268, 1974. 3

[45] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch, Phillip B.
Gibbons, and Julian Shun. Sage: Parallel semi-asymmetric graph algorithms for
NVRAMs. PVLDB, 13(9), 2020. 1

[46] Nam Duong, Dali Zhao, Taesu Kim, Rosario Cammarota, Mateo Valero, and Alexander V.
Veidenbaum. Improving cache management policies using dynamic reuse distances. In
Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM International Symposium on,
pages 389–400. IEEE, 2012. 3

[47] Guy Even, Moti Medina, and Dror Rawitz. Online generalized caching with varying
weights and costs. In Proceedings of the 30th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), pages 205–212. ACM, 2018. 3, 3, 4

[48] Xiaobo Fan, Carla Ellis, and Alvin Lebeck. Memory controller policies for DRAM power
management. In Proceedings of the 2001 international symposium on Low power elec-
tronics and design, pages 129–134, 2001. 4

[49] Martin Farach-Colton and Vincenzo Liberatore. On local register allocation. Journal of
Algorithms, 37(1):37–65, 2000. 3, 3.3

[50] Amos Fiat, Richard M. Karp, Michael Luby, Lyle A McGeoch, Daniel D. Sleator, and
Neal E. Young. Competitive paging algorithms. Journal of Algorithms, 12(4):685–699,
1991. 3, 3, 4

[51] Irene Finocchi and Giuseppe F. Italiano. Sorting and searching in the presence of memory
faults (without redundancy). In ACM Symposium on the Theory of Computing (STOC),
2004. 2

[52] Michal Friedman, Maurice Herlihy, Virendra J. Marathe, and Erez Petrank. A persistent
lock-free queue for non-volatile memory. In ACM Symposium on Principles and Practice
of Parallel Programming (PPOPP), 2018. 2

[53] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. Cache-
oblivious algorithms. In IEEE Symposium on Foundations of Computer Science (FOCS),
1999. 2, 2.1.1

[54] Binny S Gill and Dharmendra S Modha. WOW: wise ordering for writes-combining spa-
tial and temporal locality in non-volatile caches. In FAST, 2005. 3

[55] David Grove, Sara S. Hamouda, Benjamin Herta, Arun Iyengar, Kiyokuni Kawachiya,
Josh Milthorpe, Vijay Saraswat, Avraham Shinnar, Mikio Takeuchi, and Olivier Tardieu.
Failure recovery in resilient X10. Technical Report RC25660 (WAT1707-028), IBM Re-
search, Computer Science, 2017. 2

78

[56] Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi,
Paul H. Siegel, and Jack K. Wolf. Characterizing flash memory: anomalies, observa-
tions, and applications. In Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM
International Symposium on, pages 24–33. IEEE, 2009. 3.6.1, 3.6.2

[57] Rachid Guerraoui and Ron R Levy. Robust emulations of shared memory in a crash-
recovery model. In Inter. Conference on Distributed Computing Systems (ICDCS). IEEE,
2004. 2

[58] John L Hennessy and David A Patterson. Computer architecture: a quantitative approach.
Elsevier, 2011. 4, 4.1

[59] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan Kauf-
mann, 2012. 2.5.1

[60] Josiah Hester, Kevin Storer, and Jacob Sorber. Timely execution on intermittently powered
batteryless sensors. In Proc. ACM Conference on Embedded Network Sensor Systems,
2017. 2

[61] Mark Horowitz. Computing’s energy problem (and what we can do about it). In Proc. of
the IEEE Intl. Solid-State Circuits Conf. (ISSCC), 2014. 3

[62] Terry Ching-Hsiang Hsu, Helge Bruegner, Indrajit Roy, Kimberly Keeton, and Patrick
Eugster. NVthreads: Practical persistence for multi-threaded applications. In EuroSys,
2017. 2

[63] IBM. www.slideshare.net/IBMZRL/theseus-pss-nvmw2014, 2014. 3

[64] Intel. Intel NVM library. https://github.com/pmem/nvml/. 2

[65] Intel. Intel architecture instruction set extensions programming reference. Technical Re-
port 3319433-029, Intel Corporation, April 2017. 2

[66] Joseph Izraelevitz, Terence Kelly, and Aasheesh Kolli. Failure-atomic persistent memory
updates via JUSTDO logging. In ASPLOS, 2016. 2

[67] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Linearizability of persistent
memory objects under a full-system-crash failure model. In DISC, 2016. 2

[68] Joseph Izraelevitz, Hammurabi Mendes, and Michael L Scott. Brief announcement: Pre-
serving happens-before in persistent memory. In ACM symposium on Parallelism in algo-
rithms and architectures (SPAA), 2016. 2

[69] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al. Basic perfor-
mance measurements of the Intel Optane DC persistent memory module. arXiv preprint
arXiv:1903.05714, 2019. 1, 3

[70] Akanksha Jain and Calvin Lin. Back to the future: leveraging belady’s algorithm for
improved cache replacement. In Computer Architecture (ISCA), 2016 ACM/IEEE 43rd
Annual International Symposium on, pages 78–89. IEEE, 2016. 3

[71] J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992. 2.6

[72] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr, and Joel Emer. High performance

79

cache replacement using re-reference interval prediction (RRIP). In ACM SIGARCH Com-
puter Architecture News, volume 38, pages 60–71. ACM, 2010. 3

[73] Viggo Kann. Maximum bounded 3-dimensional matching is max SNP-complete. Inf.
Process. Lett., 37(1):27–35, 1991. 3.3.2

[74] Richard M. Karp. On the computational complexity of combinatorial problems. Networks,
5(1):45–68, 1975. 3.3.2

[75] Georgios Keramidas, Pavlos Petoumenos, and Stefanos Kaxiras. Cache replacement based
on reuse-distance prediction. In Computer Design, 2007. ICCD 2007. 25th International
Conference on, pages 245–250. IEEE, 2007. 3

[76] Hyojun Kim, Sangeetha Seshadri, Clement L. Dickey, and Lawrence Chiu. Evaluating
phase change memory for enterprise storage systems: A study of caching and tiering
approaches. ACM Transactions on Storage (TOS), 10(4):15, 2014. 3

[77] Wook-Hee Kim, Jinwoong Kim, Woongki Baek, Beomseok Nam, and Youjip Won.
NVWAL: exploiting NVRAM in write-ahead logging. In ASPLOS, 2016. 2

[78] Aasheesh Kolli, Steven Pelley, Ali Saidi, Peter M. Chen, and Thomas F. Wenisch. High-
performance transactions for persistent memories. In ASPLOS, 2016. 2

[79] Chang Joo Lee, Veynu Narasiman, Eiman Ebrahimi, Onur Mutlu, and Yale N. Patt.
DRAM-aware last-level cache writeback: Reducing write-caused interference in memory
systems. Technical report, U.T. Austin, 2010. 3

[80] Se Kwon Lee, K Hyun Lim, Hyunsub Song, Beomseok Nam, and Sam H Noh. WORT:
Write optimal radix tree for persistent memory storage systems. In USENIX Conference
on File and Storage Technologies (FAST), 2017. 2

[81] Wei-Fen Lin, Steven K Reinhardt, and Doug Burger. Designing a modern memory hier-
archy with hardware prefetching. IEEE Transactions on Computers, 50(11):1202–1218,
2001. 4

[82] Mengxing Liu, Mingxing Zhang, Kang Chen, Xuehai Qian, Yongwei Wu, Weimin Zheng,
and Jinglei Ren. DudeTM: Building durable transactions with decoupling for persistent
memory. In ASPLOS, 2017. 2

[83] Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution
model for intermittent systems. PLDI, 2015. 2

[84] Kiwan Maeng, Alexei Colin, and Brandon Lucia. Alpaca: intermittent execution without
checkpoints. OOPSLA, 2017. 2

[85] Richard L. Mattson, Jan Gecsei, Donald R. Slutz, and Irving L. Traiger. Evaluation tech-
niques for storage hierarchies. IBM Systems journal, 9(2):78–117, 1970. 3, 3, 3.4.1, 3.4.1,
4

[86] Sally A McKee. Reflections on the memory wall. In Proceedings of the 1st conference on
Computing frontiers, page 162, 2004. 1

[87] Jagan Singh Meena, Simon Min Sze, Umesh Chand, and Tseung-Yuen Tseng. Overview
of emerging nonvolatile memory technologies. Nanoscale research letters, 9(1):526,

80

2014. 1

[88] Amirsaman Memaripour, Anirudh Badam, Amar Phanishayee, Yanqi Zhou, Ramnatthan
Alagappan, Karin Strauss, and Steven Swanson. Atomic in-place updates for non-volatile
main memories with Kamino-Tx. In EuroSys, 2017. 2

[89] Seiji Miura, Kazushige Ayukawa, and Takao Watanabe. A dynamic-SDRAM-mode-
control scheme for low-power systems with a 32-bit RISC CPU. In Proceedings of
the 2001 international symposium on Low power electronics and design, pages 358–363,
2001. 4

[90] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling for chip
multiprocessors. In 40th Annual IEEE/ACM International Symposium on Microarchitec-
ture (MICRO 2007), pages 146–160. IEEE, 2007. 4

[91] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: Enhancing
both performance and fairness of shared DRAM systems. In 2008 International Sympo-
sium on Computer Architecture, pages 63–74. IEEE, 2008. 4

[92] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. Write off-loading: Prac-
tical power management for enterprise storage. ACM Transactions on Storage (TOS), 4
(3):10, 2008. 3.6, 3.6.1

[93] Faisal Nawab, Joseph Izraelevitz, Ternece Kelly, Charles B. Morrey III, and Dhruva
R. Chakrabarti amd Michael L. Scott. Dali: A periodically persistent hash map. In DISC,
2017. 2

[94] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm. Operations
research, 41(2):338–350, 1993. 3.5.2

[95] Seong-Il Park and In-Cheol Park. History-based memory mode prediction for improving
memory performance. In Proceedings of the 2003 International Symposium on Circuits
and Systems, 2003. ISCAS’03., volume 5, pages V–V. IEEE, 2003. 4

[96] Steven Pelley, Peter M. Chen, and Thomas F. Wenisch. Memory persistency. In ISCA,
2014. 2

[97] Erez Petrank and Dror Rawitz. The hardness of cache conscious data placement. ACM
SIGPLAN Notices, 37(1):101–112, 2002. 4

[98] Hanfeng Qin and Hai Jin. Warstack: Improving LLC replacement for NVM with a
writeback-aware reuse stack. In Parallel, Distributed and Network-based Processing
(PDP), 2017 25th Euromicro International Conference on, pages 233–236. IEEE, 2017. 3

[99] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C. Steely, and Joel Emer. Adap-
tive insertion policies for high performance caching. In ACM SIGARCH Computer Archi-
tecture News, volume 35, pages 381–391. ACM, 2007. 3

[100] Moinuddin K. Qureshi, Sudhanva Gurumurthi, and Bipin Rajendran. Phase change mem-
ory: From devices to systems. Synthesis Lectures on Computer Architecture, 6(4):1–134,
2011. 3

[101] Jiri Schindler, John Linwood Griffin, Christopher R Lumb, and Gregory R Ganger. Track-
aligned extents: Matching access patterns to disk drive characteristics. In FAST, volume 2,

81

pages 259–274, 2002. 3

[102] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985. 3, 3, 3.2.2, 3.2.2, 4, 4.3.1, 4.4.2

[103] Gokul Soundararajan, Vijayan Prabhakaran, Mahesh Balakrishnan, and Ted Wobber. Ex-
tending SSD lifetimes with disk-based write caches. In FAST, volume 10, pages 101–114,
2010. 3

[104] Vladimir V Stankovic and Nebojsa Z Milenkovic. DRAM controller with a close-page
predictor. In EUROCON 2005-The International Conference on” Computer as a Tool”,
volume 1, pages 693–696. IEEE, 2005. 4

[105] Jeffrey Stuecheli, Dimitris Kaseridis, David Daly, Hillery C. Hunter, and Lizy K. John.
The virtual write queue: Coordinating DRAM and last-level cache policies. ACM
SIGARCH Computer Architecture News, 38(3):72–82, 2010. 3

[106] Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Rajeev Balasubramo-
nian, and Al Davis. Micro-pages: increasing DRAM efficiency with locality-aware data
placement. ACM SIGARCH Computer Architecture News, 38(1):219–230, 2010. 4

[107] Qinghui Tang, Sandeep Kumar S. Gupta, and Georgios Varsamopoulos. Energy-efficient
thermal-aware task scheduling for homogeneous high-performance computing data cen-
ters: A cyber-physical approach. IEEE Transactions on Parallel and Distributed Systems,
19(11):1458–1472, 2008. 3

[108] Joel Van Der Woude and Matthew Hicks. Intermittent computation without hardware
support or programmer intervention. In OSDI, 2016. 2

[109] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons Kemper.
Persistent memory I/O primitives. In International Workshop on Data Management on
New Hardware, pages 12:1–12:7, 2019. 1, 3

[110] Stratis D. Viglas. Write-limited sorts and joins for persistent memory. PVLDB, 7(5), 2014.
1

[111] Haris Volos, Andres Jaan Tack, and Michael M. Swift. Mnemosyne: Lightweight persis-
tent memory. In ASPLOS, 2011. 2

[112] Zhe Wang, Samira M. Khan, and Daniel A. Jiménez. Improving writeback efficiency
with decoupled last-write prediction. In ACM SIGARCH Computer Architecture News,
volume 40, pages 309–320. IEEE Computer Society, 2012. 3

[113] Zhe Wang, Shuchang Shan, Ting Cao, Junli Gu, Yi Xu, Shuai Mu, Yuan Xie, and Daniel A.
Jiménez. WADE: Writeback-aware dynamic cache management for NVM-based main
memory system. ACM Transactions on Architecture and Code Optimization (TACO), 10
(4):51, 2013. 3

[114] Ying Xu, Aabhas S Agarwal, and Brian T Davis. Prediction in dynamic SDRAM con-
troller policies. In International Workshop on Embedded Computer Systems, pages 128–
138. Springer, 2009. 4

[115] HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A Harding, and Onur
Mutlu. Row buffer locality aware caching policies for hybrid memories. In 2012 IEEE

82

30th International Conference on Computer Design (ICCD), pages 337–344. IEEE, 2012.
4

[116] Neal Young. The k-server dual and loose competitiveness for paging. Algorithmica, 11
(6):525–541, 1994. 3, 3, 4

[117] Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002. 3, 2, 3, 3.2.1,
3.2.2, 4

[118] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A permutation-based page interleaving
scheme to reduce row-buffer conflicts and exploit data locality. In Proceedings of the 33rd
annual ACM/IEEE international symposium on Microarchitecture, pages 32–41, 2000. 4

[119] Hongzhong Zheng, Jiang Lin, Zhao Zhang, Eugene Gorbatov, Howard David, and
Zhichun Zhu. Mini-rank: Adaptive DRAM architecture for improving memory power
efficiency. In 2008 41st IEEE/ACM International Symposium on Microarchitecture, pages
210–221. IEEE, 2008. 4

[120] Miao Zhou, Yu Du, Bruce Childers, Rami Melhem, and Daniel Mossé. Writeback-aware
partitioning and replacement for last-level caches in phase change main memory systems.
ACM Transactions on Architecture and Code Optimization (TACO), 8(4):53, 2012. 3

[121] Zhichun Zhu and Zhao Zhang. A performance comparison of DRAM memory system
optimizations for SMT processors. In 11th International symposium on high-performance
computer architecture, pages 213–224. IEEE, 2005. 4

[122] Zhichun Zhu, Zhao Zhang, and Xiaodong Zhang. Fine-grain priority scheduling on multi-
channel memory systems. In Proceedings Eighth International Symposium on High Per-
formance Computer Architecture, pages 107–116. IEEE, 2002. 4

83

	1 Introduction
	2 Program Persistence
	2.1 Model Definition
	2.1.1 Single Processor
	2.1.2 Multiple Processors

	2.2 Robustness on a Single Processor
	2.3 Programming for Robustness
	2.4 Robustness on Multiple Processors
	2.5 Work Stealing
	2.5.1 Preliminaries and Overview
	2.5.2 Proof of the Correctness of Work-Stealing
	2.5.3 Time Bounds

	2.6 Fault-Tolerant Algorithms
	2.7 Chapter Summary

	3 Writeback-Aware Caching
	3.1 Problem Formulation
	3.1.1 Traditional Caching
	3.1.2 Writeback-Aware Caching

	3.2 Writeback-Aware Landlord
	3.2.1 Algorithm Description
	3.2.2 Proof of Optimality

	3.3 Offline Complexity Results
	3.3.1 NP-Completeness
	3.3.2 Max SNP-Hardness

	3.4 Approximations with Theoretical Guarantees
	3.4.1 Analyzing the Writeback-Oblivious Optimal
	3.4.2 A 2-Approximation for Savings

	3.5 Efficient Approximations for Practical Use
	3.5.1 A Lower Bound for Optimal
	3.5.2 An Upper Bound for Optimal

	3.6 Experimental Evaluation
	3.6.1 Methodology
	3.6.2 Results

	3.7 Chapter Summary

	4 Block-Granularity-Aware Caching
	4.1 Problem Formulation
	4.2 Complexity Analysis
	4.3 Competitive Lower Bound
	4.3.1 Item Caches
	4.3.2 Block Caches
	4.3.3 Generalizing the Lower Bound
	4.3.4 Analysis and Discussion

	4.4 A Competitive Policy for the Block-Granularity-Aware Caching Problem
	4.4.1 Policy Description
	4.4.2 The Upper Bound
	4.4.3 Applying the Bound

	4.5 Chapter Summary

	5 Conclusion
	Bibliography

