
On Building Robustness into
Compilation-Based Main-Memory

Database Query Engines
Prashanth Menon

CMU-CS-21-106
May 2021

School of Computer Science
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Andrew Pavlo (Co-Chair)
Todd C. Mowry (Co-Chair)

Jonathan Aldrich
Thomas Neumann, Technische Universität München (TUM)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Prashanth Menon

This research was sponsored by Google, Intel ISTC-CC, and the National Science Foundation under grant numbers
CNS-1065112, IIS-1423210, CNS-1423172, IIS-1718582, and CCF-1822933. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Code Generation, Query Compilation, Adaptive Query Processing, Vectorized Pro-
cessing

To my family, here and yet to arrive.

Abstract

Relational database management systems (DBMS) are the bedrock upon which modern data pro-
cessing intensive applications are assembled. Critical to ensuring low-latency queries is the effi-
ciency of the DBMSs query processor. Just-in-time (JIT) query compilation is a popular technique
to improve analytical query processing performance. However, a compiled query cannot overcome
poor choices made by the DBMSs optimizer. A lousy query plan results in lousy query code. Poor
query plans often arise and for many reasons. Although there is a large body of work exploring how
a query processor can adapt itself at runtime to compensate for inadequate plans, these techniques
do not work in DBMSs that rely on compiling queries.

This dissertation presents multiple effective, practical, and complementary techniques to build
adaptive query processing into compilation-based engines with negligible overhead. First, we pro-
pose a method that intelligently blends two otherwise disparate query processing approaches (com-
pilation and vectorization) into one engine. This necessary first step allows operators to optimize
themselves using a combination of software memory prefetching and single instruction, multiple
data (SIMD) vectorization resulting in improved performance. Next, we present a framework that
builds upon our previous work to allow the DBMS to modify compiled queries without recompil-
ing the plan or generating code speculatively. This technique enables more extensive groups of
operators in a query to coordinate their optimization process. Finally, we present a method that de-
composes query plans into fragments that can be compiled and executed independently. This not
only reduces compilation overhead but enables the DBMS to learn properties about data processed
in an earlier phase of the query to hyper-optimize the code it generates for later phases.

Collectively, the techniques proposed in this dissertation enable any compilation-based DBMS
to achieve dynamic runtime robustness without succumbing to any of its overheads.

5

Acknowledgments

I was extremely fortunate to work with not one but two outstanding advisors over the course of this
dissertation. Andrew (Andy) Pavlo andToddMowry are not only exceptionally brilliant researchers
but also incredibly humble, patient, and supportive. Andy is imbued with a frenetic energy that
manifests itself through his focused work ethic. Todd possesses an uncanny ability to formalize my
rough, vague, nascent ideas and distill their essence to surface its novelty. They both taught me how
to identify interesting research problems and how to pursue a research objective doggedly. They
were patient with me as I navigated new domains and provided encouragement when I needed it.
Andy taught me everything from advanced topics in databases to how to judge the quality of a taco
to deciphering prison tattoos. Todd taught me that databases are not the center of the universe
(sorry, Andy) and incorporate ideas across disciplines to strengthen one’s work. Ultimately, Andy
and Todd made me a better researcher, and I will always be grateful for the experience working
closely with them over my Ph.D.

I would also thank Jonathan Aldrich andThomasNeumann for serving onmy thesis committee.
Jonathan sat through many of my practice talks and provided invaluable feedback. Despite being
outside the database community, Jonathan quickly understood the 60-year history of databases, the
problems I was trying to address, and my proposed solutions, all while asking incisive questions
and offering crucial tweaks to make the work more approachable to a broader audience. Thomas
is German. Not only does Thomas possess extensive knowledge across all database topics, but he
navigates from high-level to low-level architectural detail with immense ease. His feedback on this
work only made it more robust.

I overlapped with many talented researchers and students during my time at CMU: Dana Van
Aken, David Andersen, Joy Arulraj, Matt Butrovich, Christos Faloutsos, Phil Gibbons, Anuj Kalia,
Michael Kaminsky, Jack Kosaian, Marcel Kost, Viktor Leis, Tianyu Li, Hyeontaek Lim, Wan Shen
Lim, Lin Ma, Amadou Ngom, Sivaprasad Sudhir, Jungmin Seo, Yingjun Wu, Jean Yang, Huanchen
Zhang. Marcel spent a summer with us in the CMU database group from Karlsruhe Institute of
Technology (KIT) and worked with me on the precursor to what would be the critical query execu-
tion engine of the NoisePage DBMS, and the foundation for this work. Amadou and Siva aided me
in building out the foundation of the PCQ project in Chapter 6.

I am also thankful to everyone that has passed through the CMU database group. Our group
meetings are always lively, fun, energetic, sometimes contentious, but always in the pursuit of the
best system we can design. Despite the pizza lunches, which never sat well with me, I always en-
joyed the design sessions we engaged in and the discussions that ensued. I also want to thank Deb

7

Cavlovich, Catherin Copetas, Jessica Packer, Karen Lindenfelser, Joan Digney, and all the other
excellent administrative staff for simplifying the lives of all graduate students.

I owe a great debt to my family. I am grateful to my mother and father for always being my
champion, for their unwavering support in my pursuit of higher education, for always grounding
me, and for always lending a non-judgemental and compassionate ear when I need it. I want to
thank both my brothers for creating the competitive but loving environment I have grown in. I
am also thankful to their respective spouses for adding culture to our discussions outside of The
Simpsons alone.

Finally, graduate school was memorable primarily because of my best friend and wife, SM. We
met four months after beginning my Ph.D., and I wholly attribute my life outside of research to her.
Through all the successes and failures, highs and lows, advancements and setbacks, joys and frustra-
tions that accompany a Ph.D., SM has had my back with nothing but grace, love, and unconditional
support. None of this would have been possible were it not for her.

Contents

Abstract 5

Acknowledgments 7

1 Introduction 17
1.1 The Old Guard . 17
1.2 Improving OLAP Performance . 19
1.3 Robust Query Processing . 20
1.4 Thesis Statement . 21
1.5 Summary of Goals & Contributions . 22
1.6 Outline . 22

2 Background 23
2.1 Query Processing . 23
2.2 Query Compilation . 24
2.3 Vectorized Processing . 26

3 Relaxed Operator Fusion 29
3.1 Motivating Example . 30
3.2 Overview . 31

3.2.1 Example . 32
3.2.2 Vectorization . 34
3.2.3 Prefetching . 36
3.2.4 Query Planning . 37

3.3 Experimental Evaluation . 38
3.3.1 Workload . 38
3.3.2 Baseline Comparison . 39
3.3.3 Optimization Breakdown . 39
3.3.4 Sensitivity to Vector Width . 44
3.3.5 Sensitivity to Prefetching Distance . 46
3.3.6 Multi-threaded Execution . 47
3.3.7 System Comparison . 49

3.4 Conclusion . 52

9

4 Permutable Compiled Queries 53
4.1 Overview . 55
4.2 Supported Query Optimizations . 57

4.2.1 Filter Reordering . 58
4.2.2 Adaptive Aggregations . 59
4.2.3 Adaptive Joins . 62

4.3 Experimental Evaluation . 63
4.3.1 Workloads . 64
4.3.2 Filter Adaptivity . 64
4.3.3 Aggregation Adaptivity . 67
4.3.4 Join Adaptivity . 69
4.3.5 System Comparison . 71

4.4 Conclusion . 75

5 Progressive Code Generation 77
5.1 Knowing the Future . 78
5.2 Overview . 80

5.2.1 Decomposition . 80
5.2.2 Scheduling . 81
5.2.3 Code Generation and Execution . 81

5.3 Adaptive Optimizations . 83
5.3.1 Analyzing State . 83
5.3.2 Compressing State . 85
5.3.3 Eliding Overflow Checks . 87
5.3.4 Eliding NULL Checks . 89
5.3.5 Value Specialization . 90

5.4 Evaluation . 91
5.4.1 State Compression . 91
5.4.2 Overflow Checking . 96
5.4.3 Join Key Specialization . 97
5.4.4 TPC-H . 99

5.5 Related Work . 100
5.6 Conclusion . 101

6 RelatedWork 102
6.1 Query Compilation . 102
6.2 Adaptive Query Processing . 105
6.3 Adaptive Compiler Techniques . 106

7 Future Work 108
7.1 Inter-Query Optimization . 108
7.2 Advanced Adaptive Policies . 109
7.3 Lightweight Recompilation . 109

7.4 Specialization Outside Query Processing . 110
7.5 Heterogeneous Hardware . 110

8 Concluding Remarks 111

Bibliography 113

List of Figures

1.1 ModernHardware Trends – From (a) we observe that DRAMmanufacturing costs
have consistently fallen from the early 1960s. In (b)we observe that althoughMoore’s
law [106] remains correct even in today’s ecosystems [45, 54], clock frequencies have
plateaued due to physical limitations in the CPUs ability to dissipate heat [32]. To
compensate and continue to offer improved performance, CPU manufacturers rely
on increasing core counts. 18

2.1 TPC-H Q19 – Figure 2.1a is an abbreviated version of TPC-H’s Q19. The three
clauses are a sequence of conjunctive predicates on attributes in both the LINEITEM
and PART tables. Figure 2.1b shows the generated physical query plan for TPC-H’s
Q19 with annotated pipelines. 24

2.2 Query Compilation Example – The generated code for TPC-H Q19 (Figure 2.1)
using a tuple-at-a-time processing model. 25

2.3 Vectorization Example – An execution plan for TPC-H Q19 from Figure 2.1 that
uses the vectorized processing model. 27

3.1 Microbenchmark – Effect of hash-table size on join performance 30
3.2 Example Query Plan Using ROF – The physical query plan for TPC-H Q19 using

our relaxed operator fusion model. 32
3.3 ROF Staged Pipeline Code Routine – The example of the pseudo-code generated

for pipeline P2 in the query plan shown in Figure 3.2. In the first stage, the code
fills the stage buffer with tuples from table LINEITEM that satisfy the scan predicate.
Then in the second stage, the routine probes the join table, filters the results of the
join, and aggregates the filtered results. 33

3.4 SIMDPredicate Evaluation Example – An illustration of how to use SIMD to eval-
uate the predicate for TPC-H Q19. 35

3.5 Hash-Table Data Structure – An overview of the DBMS’s open-addressing hash-
table used for joins (with BN buckets). 37

3.6 TPC-H Query Plans with Pipelines – The high-level query plan for the subset of
the TPC-H queries that we evaluate in our experiments, and do deep-dive analysis
on. Each plan is annotated with their pipelines [108]. 39

3.7 Baseline Comparison – Query execution time when using regular query compila-
tion (baseline) and when using ROF (optimized). 40

12

3.8 Q1 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q1
query plan shown in Figure 3.6a. 41

3.9 Q3 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q3
query plan shown in Figure 3.6b. 42

3.10 Q13 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q13
query plan shown in Figure 3.6c. 43

3.11 Q14 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q14
query plan shown in Figure 3.6d. 44

3.12 Q19 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q19
query plan shown in Figure 2.1b. 45

3.13 Sensitivity to Vector Width – The average execution time of the TPC-H queries
when varying the maximum number of tuples stored in the ROF’s stage output vec-
tors. 46

3.14 Sensitivity to Prefetching Distance – The execution time of the TPC-H queries
when varying the ROF model’s group prefetch size. 47

3.15 Multi-threadedExecution–Theperformance of Pelotonwhenusingmultiple threads
to execute queries with and without the ROF model. 48

3.16 SystemComparison – Performance evaluation of the TPC-H benchmark in Vector,
HyPer, and Peloton with and without our ROF model. 50

4.1 Reoptimizing Compiled Queries – PCQ enables near-optimal execution through
adaptivity with minimal compilation overhead. 54

4.2 System Overview – The DBMS translates the SQL query into a DSL that contains
indirection layers to enable permutability. Next, the system compiles the DSL into
a compact bytecode representation. Lastly, an interpreter executes the bytecode.
During execution, the DBMS collects statistics for each predicate, analyzes this in-
formation, and permutes the ordering to improve performance. 55

4.3 Filter Reordering – An example depicting PCQ permutable filters. The Transla-
tor converts the query in (a) to the program on the left side of (b). This program
uses a data structure template with query-specific filter logic for each filter clause.
The right side of (b) shows how the policy collects metrics and then permutes the
ordering. 58

4.4 Adaptive Aggregations – The input query in (a) is translated into TPL on the left
side of (b). The generated TPL uses a runtime aggregation data structure that is
templatized with query-specific logic in addition to new customized functions to
handle heavy-hitter groups. The right side of (b) steps through one execution of a
batched aggregation. 60

4.5 Adaptive Joins – The DBMS translates the query in (a) to the program in (c). The
right side of (c) illustrates one execution of a permutable join that includes a metric
collection step. 63

4.6 Performance Over Time – Execution time of three static filter orderings and the
PCQ filter as we perform a sequential scan over a table. 65

4.7 Varying Predicate Selectivity – Performance of the static, optimal, and permutable
orderings when varying the overall query selectivity. 66

4.8 Filter PermutationOverhead – Performance of the permutable filter when varying
the policy’s re-sampling frequency and fixing the overall predicate selectivity to 2%. 67

4.9 Varying Number of Aggregates – Performance of the adaptive aggregation as we
vary the total number unique aggregate keys. 68

4.10 Varying Aggregation Skew – Performance of PCQ’s adaptive aggregation when
increasing skew in aggregate keys with a fixed number of keys. (a) shows the total
execution time to perform the aggregation. (b) shows the percentage of input tuples
that hit a heavy-hitter branch. 69

4.11 Varying Join Selectivity – Execution time to perform three hash-joins while vary-
ing overall join selectivity. 70

4.12 VaryingNumber of Joins – Execution time to perform amulti-step joinwhile keep-
ing the overall join selectivity at 10%. 71

4.13 System Comparison on Skewed TPC-H – Evaluation of NoisePage, HyPer, and
Vector on the skewed TPC-H benchmark. 72

4.14 System Comparison on the Star-Schema Benchmark – Evaluation of NoisePage,
HyPer, and Vector on the Star Schema Benchmark. 74

5.1 Knowing the Future – Deferring code generation enables dynamically specializing
instructions to data the query has actually processed. 80

5.2 System Overview – An overview of the PCG query compilation and execution
pipeline. The DBMS first decomposes a physical plan into pipelines to build a
pipeline execution graph. Next, the DBMS schedules pipeline fragments for code
generation and execution. Each fragment is compiled into a executable bytecode
and run adaptively using either an interpreter or native code. In addition to com-
puting query results, fragments collect detailed statistics that are available to subse-
quent fragments to tune their code. 81

5.3 Analyzing State Example – This example shows the interaction of query logic and
post-pipeline analysis logic. The DBMS first executes P1 to produce some inter-
mediate state. Next, the DBMS inspects this state using a pre-generated analysis
function that is composed of custom code that calls pre-compiled primitives. This
analysis then produces statistics stored that is available to later pipelines during their
code generation. 84

5.4 Compressing State – The hash join operator uses the results of the analysis in (a) to
generate the compression function and adjust the probing logic to account for the
packed layout in (c). 86

5.5 Specializing Join Probing Logic – If theDBMSdetects join key skew, it samples the
input to collect a representative set of “hot” keys, probes the hash table once before
generating the probe logic, then generates explicit checks for each key, embedding
the address of the result if successful. 90

5.6 Compression with Varying Tuple Size – A breakdown of the time to perform a
hash join with and without PCG compression when varying the number of non-
key attributes in the build-side tuple. 92

5.7 Compression with Increasing Tuple Counts – Measuring hash join performance
with PCG compressionwhen varying the size of thematerialized hash table but with
a fixed compression factor and tuple size. 93

5.8 Compression with Varying Compression Factors – Measuring hash join perfor-
mance with PCG compression when varying compression factor but with fixed tu-
ple and hash table sizes. 94

5.9 Multi-Component Join Keys – Breakdown of time to perform a hash join with a
varying number of keys components. The analysis phase is plotted, but not visible. 95

5.10 CompressionDuringSort–Breakdownof sorting timewhenusing amulti-component
key. The analysis phase is plotted, but not visible. 96

5.11 Overflow Checking – Performance measurements during aggregation when vary-
ing the number of aggregates in the query. 97

5.12 Varying Join Key Skew – Performance of PCG’s join key specialization when in-
creasing skew in the join keys. (a) and (b) plot the total execution time when the
skew is low and high, respectively; (c) shows the percentage of hash table probes
that hit a heavy-hitter branch. 98

5.13 TPC-H Performance – Evaluation of a selection of TPC-H queries with and with-
out memory compression enabled using PCG. (a) and (b) show the query perfor-
mance and memory reduction ratio, respectively. 99

List of Tables

4.1 TPC-H Speedup – The speedup achieved when incrementally applying each PCQ
optimization to TPC-H queries. 72

4.2 Star Schema Benchmark Speedup – The speedup achieved when incrementally
applying each PCQ optimization to Star Schema Benchmark queries. 74

16

Chapter 1

Introduction

Modern data processing applications have markedly evolved over the past decade. What distin-
guishes this new class of data-intensive applications from their predecessors is (1) the unprecedented
scale at which they ingest new information [87] and (2) the complexity of the analysis they perform
using a combination of historical and real-time data [27, 119]. The ability to ask complex questions
about data immediately after ingestion is useful in many application domains, including Internet
advertising (e.g., what advertisement to show someone based on their browsing history?), real-time
monitoring systems (e.g., is an incoming packet from a potential attacker?), and financial services
(e.g., is this new credit card purchase fraudulent?). Database management systems (DBMS) under-
pin many of these applications and are the primary workhorse responsible for executing complex
queries over large shifting volumes of data with low latency. Optimizing the DBMS’s performance
has a direct impact on the utility of the applications they support.

1.1 The Old Guard
The first relational DBMSs emerged in the early 1970s as research prototypes in IBM’s System

R [22] and University of California’s INGRES [142]. These systems were designed for the workload
demands and hardware available in their time. For instance, their primary workloads were inter-
active online transaction processing (OLTP) applications involving a human operator manually is-
suing commands against the DBMS (e.g., airline reservations [26]). A typical server-class machine
in the 1970s had a single CPU core with one hardware thread, a small volatile main memory, and
larger (but slow) persistent storage. Lack of enough memory to store an application’s entire data set
forced the DBMS to rely on a buffer pool to cache encoded disk pages [22]. The disparity of access
speeds between main memory and disk and the interactive nature of transactions forced the DBMS
to employ a concurrency control mechanism to simultaneously execute multiple transactions to uti-
lize the system fully [117]. A row-oriented layout was the prevalent storage model since it kept all
information for a database entity (e.g., a customer) together, aligning with how OLTP applications
access their data (e.g., updating a customer’s name).

Beginning in the mid-1990s, however, businesses sought to use their databases to ask com-
plicated analytical questions and explore historical, current, and predictive views of their opera-
tions [14]. To achieve this, organizations periodically bulk loaded data from their OLTP systems

17

1.1. THE OLD GUARD 18

1960 1980 2000 2020

10
0

10
2

10
4

10
6

10
8

$/
M

B
 o

f D
R

A
M

(a) Dollar Cost of DRAM [97]

1970 1980 1990 2000 2010 2020
10

0

10
4

10
8

Logical Cores
Transistors
Clock Frequency (MHz)

(b) CPU Trends [76]

Figure 1.1: Modern Hardware Trends – From (a) we observe that DRAM manufacturing costs
have consistently fallen from the early 1960s. In (b) we observe that although Moore’s law [106]
remains correct even in today’s ecosystems [45, 54], clock frequencies have plateaued due to physical
limitations in the CPUs ability to dissipate heat [32]. To compensate and continue to offer improved
performance, CPU manufacturers rely on increasing core counts.

into a separate database through an extract-transform-load (ETL) process [16]. Business analysts
ran their complex online analytics processing (OLAP) workloads on these isolated DBMSs (data
warehouses) without interfering with transactional business operations. To accommodate this new
class of read-only OLAP applications while minimizing cost, database vendors added extensions
(e.g., materialized views, compression, and bitmap indexes) but built them atop the same funda-
mental DBMS architecture from the 1970s (i.e., row-oriented storage and concurrency control).

The five decades following System R and INGRES witnessed a radical shift in both the hardware
landscape and the workloads a DBMS executes. We discuss them separately here.

Changes in Hardware: Modern server systems come equipped with tens of CPU cores, hundreds
of gigabytes (or even terabytes) ofmainmemory, and fast solid-state drives (SSD) or persistent
memory devices. From Figure 1.1a we see that memory prices have fallen by several orders
of magnitude from the 1970s, making it feasible for modern DBMSs to store most (if not all)
of an application’s working data set in main memory [143]. In Figure 1.1b we observe that
while CPU transistor counts are growing following Moore’s Law [106], limits on the CPU’s
ability to dissipate heat have forced CPU manufacturers to trade increased CPU frequency

19 CHAPTER 1. INTRODUCTION

for increased CPU core counts. Multi-core hardware and main-memory processing present
a vastly different operating environment than what the first DBMS designers had available.

Changes in Workload: Modern OLTP applications increasingly interacted with the DBMS using
simpler non-interactive interfaces. These new workloads often read and modify only a few
records resulting in a small footprint and lifetime, and were write-heavy and repetitive. OLTP
workloads also differ from OLAP workloads. OLAP workloads are far less predictable since
analysts issue them in an ad-hoc manner as they explore the data set. Since OLAP workloads
analyze historical trends, they typically read and process more data than their OLTP coun-
terparts. Finally, analyzing data itself is a read-oriented undertaking, whereas OLTP applica-
tions are write-heavy. Traditional DBMSs at the time endeavoured to support both workloads
using the same DBMS architecture from the 1970s optimized only for OLTP applications.

These changes prompted researchers in the mid-2000s to revisit the architecture, algorithms,
and design principles of existing databases. The consensus they reached at the time was that (1)
specialized systems explicitly designed for transaction processing or analytics could handily out-
perform legacy systems [140, 141], and (2) each specialized system required a “clean-slate” design
to achieve optimal performance on modern hardware [67]. What followed is a flurry of research
rearchitecting both OLTP and OLAP DBMSs from the ground up. Well-known OLTP systems in-
clude H-Store [75] (commercialized as VoltDB), Microsoft Hekaton [48], Oracle TimesTen [86],
Calvin [147], Silo [149], and Shore-MT [73]. Similarly, the analytics space was dominated by col-
umn stores pioneered by C-Store [139] (commercialized as Vertica) and MonetDB/X100 [29] (com-
mercialized as Vectorwise), but include SybaseIQ [94], MonetDB [31], Quickstep [116], Amazon
Redshift (formerly ParAccel) [65], Snowflake [42], and IBM DB2 BLU [125].

Although the DBMS market’s bifurcation into specialized OLTP and OLAP systems has yielded
success, the ETL process persists. That is, there is a delay between when the OLTP DBMS initially
ingests new data and when it is available for analysis in the OLAP DBMS. Since the mid-2010s, the
explosion in data volumes and increasing demand for faster and deeper insights have given rise to
a growing set of business applications that cannot afford to pay this ETL lag and require real-time
data analysis [119]. In response, researchers have explored the design of hybrid transaction and an-
alytical processing (HTAP) database systems [27, 57, 111]. An HTAP (also referred to as operational
analytics) DBMS supports both transactional and analytical workloads. Well-knownHTAP systems
include SAP HANA [52, 58, 89], Oracle In-Memory [85], HYRISE [63], HyPer [77], BatchDB [95],
and SingleStore [135].

It is in anHTAP environment that we explore the topics in this dissertation. Specifically, we seek
to improve the performance and robustness of OLAP queries in an HTAP DBMS. We discuss these
topics individually in the following sections.

1.2 Improving OLAP Performance
The OLAP performance of a DBMS is dictated by its efficiency in executing SQL query plans.

Historically,mostDBMSsprocess queries by implementing a formof theVolcano iteratormodel [60].
In this approach, the DBMS structures query plans as a tree of relational operators wherein each op-
erator pulls and processes a single row (tuple) at a time from their children in the tree. Such an

1.3. ROBUST QUERY PROCESSING 20

interpretation-based approach provides a clean, composable, and testable abstraction that is easy
for humans to reason about. However, previous work has shown that the CPU inefficiencies of the
iterator model are the bottleneck for in-memory systems due to excessive use of virtual function
calls, pointer chasing, and branch misprediction [29]. This has led to new research on improving
OLAP query performance for in-memory DBMSs by (1) reducing the number of instructions that
the DBMS executes to process a query, and (2) decreasing the cycles-per-instruction (CPI) [29, 55].

One popular technique to reduce the overhead of interpretation is vectorization, pioneered in
MonetDB/X100 [29]. Like the Volcano-style iteration described previously, vectorization also pulls
data from leaves to the root through an iterator interface. However, each invocation of the iterator
fetches a block (i.e., vector) of 1k–2k tuples rather than just one tuple. This simple enhancement
(1) amortizes the iteration overhead across all tuples in the vector and (2) maximizes computation
on tuple data while in the CPU’s cache. Relational operators rely on a set of core highly-optimized
primitives that implement simple operations (e.g., addition or hash computation) on one or more
type-specific vectors of data. Although vectorization has been shown to improve CPI during query
processing, there are still overheads related to evaluating complex expressions. Vectorization alone
is ill-suited in an HTAP DBMS that also executes OLTP transactions since these workloads process
a small number of tuples. Fewer tuples result in smaller vectors that cannot hide the overhead of
the Volcano processing model [78].

One approach to reducing the DBMS’s instruction count during query execution is a method
from the 1970s [34] that is now seeing a revival: just-in-time (JIT) query compilation [84, 126, 151].
With this technique, the DBMS compiles queries (i.e., SQL) into native machine code that is spe-
cific (i.e., “hard-coded”) to that query. Compared with the interpretation-based query processing
approach used in most systems, query compilation results in faster query execution because it en-
ables the DBMS to specialize both its access methods and intermediate data structures (e.g., hash
tables). In addition, by optimizing locality within tight loops, query compilation can also increase
the likelihood that tuple data passes between operators directly in CPU registers [108]. Previous
work has shown that query compilation is a promising technique to optimizing both OLTP and
OLAP workloads [55, 78, 108, 135]. However, the static nature of compiled plans which confers the
largest performance benefits is also one of its largest weaknesses. We now describe why it is critical
for a compilation-based DBMS to be flexible during query processing.

1.3 Robust Query Processing
A critical component in any DBMS is the query optimizer. A DBMS query optimizer’s job is

to find a “good” physical execution plan to use for a query. The more sophisticated optimizers use
a combination of statistics (e.g., cardinality estimates) and a cost model to compare different, but
semantically equivalent plans. In theory, if the estimates and cost model are accurate, and given
infinite time to explore the set of equivalent plans, the DBMS optimizer will optimally choose the
best query plan. However, previous work has shown that DBMS statistics are frequently wrong
because they rely on simplifying assumptions that are invalid on real-world databases, such as uni-
formity and independence [91]. Incorrect statistics lead to bad decisions about join orders resulting
in sub-optimal and sometimes catastrophic query plans. There is substantial evidence showing that

21 CHAPTER 1. INTRODUCTION

optimizer errors accrue exponentially in the size of a query [72]. As the demand for real-time ana-
lytics increases, it is incumbent on the DBMS to mitigate these errors.

One approach to compensate for poor choices by the optimizer is adaptive query processing
(AQP) [46]. AQP is an optimization strategy where the DBMS modifies a query plan to better
tailor it to the target data and operating environment. Unlike in the“plan-first execute-second” ap-
proach used by most OLAP DBMSs, with AQP, the DBMS interleaves the optimization and exe-
cution stages such that they provide feedback to each other [23]. For example, while executing a
query, the DBMS can decide to change its plan based on the data it has seen so far. This change
could be that the DBMS throws away the current plan and go back to the query optimizer to get a
new plan [96]. Alternatively, the DBMS could change yet-to-be-executed portions of the current
plan (i.e., pipelines) [160]. In the case of the latter, the system must ensure that the re-optimized
query does not generate duplicate results nor miss existing results from the previous execution.

AQP is available in several commercial DBMSs, including Oracle and Microsoft SQL Server.
There is a trade-off between the cost of context switching to the optimizer and restarting execution
versus letting the query continue with its current plan. It is unwise to restart a query if its current
plan has already processed a substantial portion of the data. To avoid restarting, some DBMS opti-
mizers generate multiple alternative sub-plans for a single query. The granularity of these sub-plans
could either be for an entire pipeline [40, 61] or for sub-plans within a pipeline [24]. The optimizer
injects special operators (e.g., change [61], switch [24]) into the plan that contain conditionals to
determine which sub-plan to use at runtime. For example, such a conditional could examine the
output cardinality of an operator below it in the plan tree, and then decide whether to execute a join
using a hash or nested-loop algorithm.

Although there is a rich body of research on how the DBMS adapts [24], none are suitable in
compilation-based DBMSs. Compilation and AQP have fundamentally conflicting goals: compi-
lation strives to specialize the query as much as possible by removing generic logic to allow the
compiler to generate the most efficient code. In contrast, AQP relies on generic logic with multiple
data paths for a query to achieve runtime flexibility.

1.4 Thesis Statement
This thesis seeks to address the challenge of building robustness into compilation-based query

engines. We use robustness to describe theDBMSs ability to change parts (or all) of a query planmid-
execution to best suit runtime conditions. We contend that neither compilation nor vectorization is
wholly optimal, but rather an intelligent orchestration of both techniques is required for a DBMS to
adapt to (1) concurrent workloads on the system and (2) skewed data distributions that affect query
performance.

This thesis aims to provide evidence to support the following statement:

Thesis Statement: Combining the design principles from compilation-based and vectorized query
processing engines enables an analytical database management system to optimize its execution en-
vironment, adapt to the changing data distributions, and improve overall query performance with
minimal overhead.

1.5. SUMMARY OF GOALS & CONTRIBUTIONS 22

1.5 Summary of Goals & Contributions
While query compilation is necessary to achieve good performance on contemporary hardware,

it is not sufficient given today’s workloads and those we foresee in the future. This dissertation’s over-
all goal is to improve the state-of-the-art in robust query execution in compilation-based DBMSs
by addressing the issues enumerated above. Our work integrates ideas and techniques spanning
across the database and compiler research communities. Although our efforts were developed and
evaluated in two research HTAP DBMSs, we hope that the ideas laid out in this document serve as
a guide for readers as they build adaptive compilation-based query engines.

The contributions in this dissertation are as follows:
AHybrid Query Engine (Chapter 3) Wepresent a query processingmodel that blends query com-

pilation and vectorized processing in one engine. The DBMS can selectively fuse subsets of
operators to efficiently pipeline data and vectorize other operators to exploit inter-tuple par-
allelism [101].

Adaptive Compiled Queries (Chapter 4) We present a method to generate and compile code in a
manner that allows the DBMS to modify compiled plans with negligible overhead [102]. The
DBMS then uses this framework to implement several optimizations.

Incremental Code Generation (Chapter 5) We present a method that decomposes query plans
into fragments and interleaves their code generation and execution. The DBMS relies on
this decoupling to learn properties about data a query reads in early parts to tailor code it
generates for later parts.

1.6 Outline
The remainder of this dissertation is organized as follows. Chapter 2 presents background ex-

position on query execution techniques in modern main-memory DBMSs. Chapter 3 presents an
initial design of a hybrid query engine that combines query compilation and vectorization, laying
the foundation for the remainder of our work. Chapter 4 presents an adaptive query processing
technique tailored for compilation-based DBMSs that can dynamically customize execution to data
distributions. Chapter 5 introduces a new approach to code generation that enables the DBMS to
safely customize generated code to the data a query reads without incurring compilation overhead.
Chapter 6 presents a discussion of the related work and Chapter 7 discusses possible areas for future
work. We conclude the dissertation in Chapter 8.

Chapter 2

Background

This chapter provides an overview of the two prevailing techniques for query execution in modern
in-memory DBMSs: query compilation and vectorized query processing. To aid in our discussion,
we use the Q19 query from the TPC-H benchmark [146]. A simplified version of this query’s SQL
is shown in Figure 2.1. We omit the query’s WHERE clauses for simplicity; it is not important for our
exposition.

2.1 Query Processing
A query goes through several preparation stages before execution by the query processor. The

DBMS first parses the SQL text into an abstract syntax tree, performs semantic analysis, and trans-
lates it into a tree of relational algebra operators. TheDBMS optimizer then optimizes this tree using
a cost model to generate a physical execution plan it believes is “best” to execute given an existing
workload and available system resources. It is the query processor’s responsibility to execute this
physical plan using existing data structures within the DBMS (e.g., row- or column-oriented tables,
B-Tree indexes) or creating new structures (e.g., hash indexes).

One of the most popular query execution models is the Volcano iterator model [60]. In this
model, all operators implement a generic iterator interface composed of three functions: (1) open
which initializes the operator, (2) getNext which requests the operator to produce the next valid
output tuple in its stream and return it to the caller, and (3) close which instructs the operator to
deinitialize and end its stream. Being a tree structure, each non-leaf operator has one or more child
iterators depending on the semantics of the operation. Such a design provides a clean, composable,
and testable abstraction that is easy for humans to understand. It enables the DBMS to compose
arbitrary combinations of operators without knowing (or caring) how each operator behaves inter-
nally (i.e., the interface hides implementation details).

Query processing proceeds by repeatedly invoking the getNext function on the root operator
to produce tuples satisfying the query. On each invocation, the root operator calls getNext on its
child operators. These invocations cascade down the query plan tree recursively until reaching a leaf
operator, typically a table or index scan operation. This access pattern is referred to as a pull-based
operator model since operators pull tuples from their children and deliver them to their parents
(i.e., from the leaves to the root). Operators are implemented generically since they must process

23

2.2. QUERY COMPILATION 24

SELECT SUM(...) AS revenue
FROM LineItem
JOIN Part ON l_partkey = p_partkey

WHERE (CLAUSE1) OR (CLAUSE2) OR (CLAUSE3)

(a) An abbreviated version of TPC-H’s Q19

Ω

Γ

σ2

▷◁

Part σ1

LineItem

P1 P2

P3

(b) Query Plan with Pipelines

Figure 2.1: TPC-HQ19 – Figure 2.1a is an abbreviated version of TPC-H’sQ19. The three clauses are
a sequence of conjunctive predicates on attributes in both the LINEITEM and PART tables. Figure 2.1b
shows the generated physical query plan for TPC-H’s Q19 with annotated pipelines.

any data type and operation supported by the DBMS. A DBMS’s expression evaluation system best
exemplifies this general-purpose behavior. A simple expression adding the values in two columns,
a+ b, is typically implemented using an expression tree with the addition operator as the root. The
addition needs to support all combinations of input data types a and b. For instance, the ANSI SQL-
92 [100, 157] standard allows adding integers and variable precision numerics together. To enable
this, operators use dynamic type information to interpret the bytes within a tuple, cast them to the
appropriate type at runtime, and ensures proper error handling (e.g., overflow logic). Generically
implementing operators obviates the need to write and compile operators for all possible combina-
tions of data types the DBMS supports.

To help illustrate this approach, consider physical plan for TPC-H Q19 shown in Figure 2.1b. It
contains scan of tables PART and LINEITEM, a filter both directly over LINEITEM and after the hash
join of the base tables, concluding in a hash aggregation. Let us focus on σ2. Processing is initiated
by invoking getNext on the aggregation which is forwarded to σ2. The getNext function in σ2

sits in a loop iterating over the results of its child operator (i.e., the subtree rooted at the hash join),
retrieving one tuple at a time, and applying the filter. When σ2 receives a tuple that satisfies the
predicate term, it immediately returns to the caller. The aggregation receives this tuple and either
updates an existing aggregate in its hash table, or creates a new one. When done, it requests another
valid tuple from its child σ2. This process repeats until all operators have exhausted their inputs or
an exception occurs.

2.2 Query Compilation
Although the iterator model has many benefits, it was designed in an era where I/O was the

primary bottleneck in query processing. Previous work has shown that Volcano-style iteration in-
troduces CPU inefficiencies when deployed in a main-memory DBMS [29]. These inefficiencies

25 CHAPTER 2. BACKGROUND

1 // Join Hash−Table

2 HashTable ht;

3 // Scan Part table, P

4 for (auto &part : P.GetTuples()) {

5 ht.Insert(part);

6 }

7 // Running Aggregate

8 Aggregator agg;

9 // Scan LineItem table, L

10 for (auto &lineitem : L.GetTuples()) {

11 if (PassesPredicate1(lineitem)) {

12 auto &part = ht.Probe(lineitem);

13 if (PassesPredicate2(lineitem, part)) {

14 agg.Aggregate(lineitem, part);

15 } } }

16 // Return the final aggregate.

17 return agg.GetRevenue();

P1

P2

P3

Figure 2.2: Query Compilation Example – The generated code for TPC-H Q19 (Figure 2.1) using
a tuple-at-a-time processing model.

arise for many reasons. First, the DBMS query driver must invoke the getNext function to produce
each valid output tuple. These calls cascade through the entire tree to produce one tuple. Although
manageable for OLTP queries that process few tuples, these functionsmay be called billions of times
in OLAP queries. Moreover, the getNext function is usually virtual, making it more expensive and
less predictable than a regular function invocation. Second, since each operator is implemented us-
ing generic logic, it typically relies on type-based dispatch to jump to code routines to interpret the
bytes within a tuple. Indirection and poor instruction locality degrade the CPUs branch predictor
leading to poor CPU performance.

An alternative query processing approach is query compilation. With query compilation, the
system converts a query plan tree into a series of code routines that are “hard-coded” just for that
query. This greatly reduces the number of conditionals and other checks that the DBMS performs
during query execution.

There are multiple ways to compile queries in a DBMS. One method is to generate C/C++ code
that is then compiled to native code using an external compiler (e.g., gcc). Another method is to
generate an intermediate representation (IR) that is compiled intomachine code by a runtime engine
(e.g., LLVM). Lastly, staging-based approaches exist wherein a query engine is partially evaluated to
automatically generate specialized C/C++ code that is compiled using an external compiler [80].
Each of these approaches has different software engineering and compilation trade-offs.

In addition to the variations in how the DBMS compiles a query into native code, there are
several techniques for organizing this code [108, 114, 136, 151]. One naïve way is to create a separate
routine per operator. Operators then invoke the routines of their children operators to pull up the
next data (e.g., tuples) to process. Although this is faster than interpretation, the CPU can still incur
expensive branch mispredictions because the code jumps between routines [108].

2.3. VECTORIZED PROCESSING 26

A better approach (used in HyPer [108] and SingleStore [115]) is to employ a push-based model
that reduces the number of function calls and streamlines execution. To do this, the DBMS’s op-
timizer first identifies the pipeline breakers in the query’s plan. A pipeline breaker is any operator
that explicitly spills any or all tuples out of CPU registers into memory. In a push-based model,
child operators produce and push tuples to their parents, requesting them to consume the tuples.
A tuple’s attributes are loaded into CPU registers and flow along the pipeline’s operators from the
start of one breaker to the start of the next breaker, at which point it must be materialized. Any
operator between two pipeline breakers operate on tuples whose contents are in CPU registers, thus
improving data locality.

We now illustrate this approach using the same TPC-H Q19 plan shown earlier in Figure 2.1.
Figure 2.1b shows the plan annotated with its three pipelines P1, P2, and P3. In this work, we use
Ω to denote consumption of the plan’s output. The DBMS’s optimizer generates one loop for every
pipeline. Each loop iteration begins by reading a tuple from either a base table or an intermediate
data structure generated from a child operator (e.g., a hash-table used for a join). The routine then
processes the tuple through all operators in the pipeline, storing a (potentially modified) version
of the tuple into the next materialized state for use in the next pipeline. Combining the execution
of multiple operators within a single loop iteration is known as operator fusion. Fusing together
pipeline operators in this manner obviates the need to materialize tuple data to memory, allowing
the engine to instead pass tuple attributes through CPU registers, or the cache-resident stack.

Returning to our example, Figure 2.2 shows the colored blocks of code that correspond to the
identically-colored pipelines in the query execution plan in Figure 2.1b. The first block of code
(P1) performs a scan on the PART table and the build-phase of the join. The second block (P2)
scans the LINEITEM table, performs the join with PART, and computes the aggregate function. The
code fragments demonstrate that pipelined operations execute entirely usingCPU registers and only
access memory to retrieve new tuples or to materialize results at the pipeline breakers. Further, it
shows that the DBMS can achieve good code locality since the generated code is compact and has
tight loops.

2.3 Vectorized Processing
The code in Figure 2.2 achieves better performance than interpreted query plans because it exe-

cutes fewer CPU instructions, including costly branches and function calls. However, it processes
data in a tuple-at-a-time manner, which makes it difficult for the DBMS to employ optimizations
that operate on multiple tuples at a time [15].

Generatingmultiple tuples per iteration has been explored in previous systems. MonetDB’s bulk
processing model materializes the entire output of each operator to reduce the number of function
calls in the system. The drawback of this approach is that this is bad for cache locality unless the
system stores tables in a columnar format and each query’s predicates are selective [162].

Instead of materializing the entire output for each operator, the X100 project [29] for MonetDB
that formed the basis of VectorWise (now Actian Vector) generates a vector of results (typically
100–10k tuples). This approach is employed by both research DBMSs ([41, 116, 123]) and commer-
cial DBMSs ([1, 37, 42, 85, 125]). Modern CPUs are inherently well-suited to vectorized processing.
Since loops are tight and iterations are often independent, out-of-orderCPUs can executemultiple it-

27 CHAPTER 2. BACKGROUND

1 // Join Hash−Table.

2 HashTable ht;

3 // Scan Part table, P, by blocks of 1024.

4 for (auto &block : P.GetBlocks()) {

5 auto keys = [block.key1, block.key2, ...];

6 auto hash_vals = hash(keys);

7 ht.Insert(hash_vals, keys);

8 }

9 // Running Aggregation Hash−Table.

10 Aggregator agg;

11 // Scan LineItem table, L, by blocks of 1024.

12 for (auto &block : L.GetBlocks()) {

13 auto sel_1 = PassesPredicate1(block);

14 auto result = ht.Probe(block, sel_1);

15 auto part_block = Reconstruct(P, result.LeftMatches());

16 auto sel_2 = PassesPredicate2(block, part_block, result);

17 agg.Aggregate(block, part_block, sel_2);

18 }

19 // Return the final aggregate.

20 return agg.GetRevenue();

P1

P2

P3

Figure 2.3: Vectorization Example – An execution plan for TPC-H Q19 from Figure 2.1 that uses
the vectorized processing model.

erations concurrently, fully leveraging its deep pipelines. A vectorized engine relies on the compiler
to automatically detect loops that can be converted to SIMD, but modern compilers are only able to
optimize simple loops involving computation over numeric columns. Only recently has there been
work demonstrating how to manually optimize more complex operations with SIMD [121, 122].

Figure 2.3 shows pseudo-code for TPC-H Q19 using the vectorized processing model. First,
P1 is almost identical to its counterpart in Figure 2.2, except tuples are read from PART in blocks.
Moreover, since vectorized DBMSs employ late materialization, only the join-key attribute and the
corresponding tuple ID is stored in the hash-table. P2 reads blocks of tuples from LINEITEM and
passes them through the predicate. In contrast to tuple-at-a-time-processing, the PassesPredi-
cate1 function is applied to all tuples in the block in one iteration. If the predicate is conjunctive,
this loop is run for each component of the conjunction. All of the predicate filter functions produce
an array of the positions of the tuples in the block that pass the predicate (i.e., selection vector). This
vector is woven through each call to retain only the valid tuples. The system then probes the hash-
table with the input block and the selection vector to find join match candidates. It uses this result
to reconstruct the block of tuples from the PART table. The penultimate operation (filter) uses both
blocks and the selection vector from the join to generate the final list of valid tuples.

Vectorized processing leverages both modern compilers and modern CPUs to achieve good
performance. It also enables the use of explicit SIMD vectorization; however, most DBMSs do not
employ SIMD vectorization throughout an entire query plan. Many systems instead only use SIMD
in limited ways, such as for internal sub-tasks (e.g., checksums). Others have shown how to use

2.3. VECTORIZED PROCESSING 28

SIMD for all of the operators in a relational DBMS but they make a major assumption that the data
set is small enough to fit in the CPU caches [121], which is usually not possible for real applications.
But thismeans that if the data set does not fit in the CPU caches, then the processor will stall because
of memory accesses and then the benefit of vectorization will be minimal.

Chapter 3

Relaxed Operator Fusion

As described earlier, the decreasing cost of DRAM has enabled modern high-performance DBMSs
to store the bulk of their working data set in main memory. In this setting, the primary bottle-
neck in query execution is CPU efficiency particularly in the form of cache misses to memory and
computational throughput. Modern CPUs support instructions that help on both of these fronts:
(1) software prefetch instructions can move blocks of data from memory into the CPU caches be-
fore they are needed, thereby hiding the latency of expensive cache misses [38, 81]; and (2) SIMD
instructions can exploit vector-style data parallelism to boost computational throughput [121].

A key challenge for both software prefetching and SIMD vectorization is that neither technique
works well in a tuple-at-a-time processing model used by existing compilation-based engines. In
order to successfully hide cache miss latency with prefetching, the software must prefetch a number
of tuples ahead (to overlap the cache miss with the processing of other tuples). To bundle together
SIMD-width vectors for SIMD processing, the software needs to extract data parallelism across
chunks of tuples at a time. While both software prefetching and SIMD vectorization require the
ability to look across multiple tuples at a time, there are key differences and subtleties in how they
interactwith each other. For example, SIMDvector instructions require that data be packed together
contiguously, whereas prefetching needs to generate a set of addresses (to be prefetched) ahead of
time, but it does not require either those addresses (or the data blocks that they point to) to be
arranged contiguously. In addition, since the relative sparsity of the data that is being processed
tends to increase in the higher levels of a query plan tree, this also changes relative trade-offs between
software prefetching and SIMD vectorization.

Although query compilation, vectorization, software prefetching, and SIMD have been studied
in the past (in isolation) for specific DBMS operators, to the best of our knowledge, no DBMS has
successfully combined all techniques into a single query processing engine. Part of the reason is
that most systems that employ query compilation generate tuple-at-a-time code that avoids tuple
materialization. However, both vectorization and prefetching requires a vector of input tuples to
successfully exploit data-level parallelism. Recent work has explored implementing SIMD scans
in a query compiling DBMS, but it requires reverting to interpreted scans that feed its results into
compiled code tuple-at-a-time [88] or is unable to stage data suitably to use prefetching [41]. DBMSs
based on vectorized processing rely on out-of-order CPUs to exploit data-level parallelism, but this
often is not possible for complex operators, such as hash-joins or index probes. Hence, we contend

29

3.1. MOTIVATING EXAMPLE 30

1M
B

2M
B

4M
B

8M
B

16
M

B

32
M

B

64
M

B

12
8M

B

25
6M

B

51
2M

B

10
24

M
B

Hash table size (MB)

0

200

400

600

800
Tu

pl
es

 p
er

 s
ec

on
d

(m
ill

io
n)

Scalar SIMD Prefetching

Figure 3.1: Microbenchmark – Effect of hash-table size on join performance

that what is needed is a hybrid model that is able to tactfully materialize state to support both tuple-
at-a-time processing, vectorized processing, and prefetching.

3.1 Motivating Example
To help demonstrate this point, we execute a microbenchmark that performs a hash-join be-

tween two tables, each containing a single 32-bit integer column (as in [121]). We implemented
three different approaches: (1) a scalar tuple-at-a-time join, (2) a SIMD join using the vertical
vectorization technique described in [121], and (3) a tuple-at-a-time join modified to use group-
prefetching [38].

We measure the overall throughput in output tuples per-second as we vary the size of the join’s
hash-table from 1 MB to 1024 MB. We keep the size of the probe table (A) fixed to 100m tuples, total-
ing ∼382 MB of raw data. We vary the size of the build table (B) such that it produces a hash-table
of the desired size in the experiment. The hash-table uses open-addressing with linear probing, a
50% fill-factor, and the 32-bit finalizer from MurmurHash3 [20] as the hash function. We choose
this to simulate real-world implementations and because it requires minimal computation (three
bit-shifts, two multiplications, and three XORs). Each hash-table bucket stores a 4-byte key and a
4-byte payload, and the hash-table is organized as an array-of-structs. The values in both tables are
uniformly distributed, and each tuple in A matches with at most one tuple in B. The join produces
a combined table with 100m tuples with a total size of ∼381 MB. We executed our test on 20 hard-
ware threads (hyper-threading is disabled) with 25 MB of shared L3 CPU cache. We defer the full
description of our environment until Section 5.4.

31 CHAPTER 3. RELAXED OPERATOR FUSION

From the results shown in Figure 3.1, we see that SIMDprobes utilizing the vertical vectorization
technique performsworse than tuple-at-a-time probeswith prefetching, evenwhen the hash-table is
cache-resident. This is because vectorization requires recomputing hash values on hash and key col-
lisions. The second observation is that both tuple-at-a-time techniqueswith andwithout prefetching
outperform the SIMD version when the hash-table does not fit in cache. This is because the join
shifts from a compute-bound operation to a memory-bound operation for which SIMD does not
help. Lastly, we see that tuple-at-a-time processing with prefetching is consistently better than all
approaches, often by up to 1.2×.

The main takeaway from the microbenchmark results is that tuple-at-a-time processing with
prefetching outperforms SIMD for hash-joins regardless of hash-table sizes. Prefetching requires
looking across a vector of tuples to exploit inter-tuple parallelism, but fully pipelined compiled plans
avoid anymaterialization. Moreover, data becomesmore sparse andmemory accesses becomemore
random as we move up the query plan tree, making prefetching that much more important. At the
leaves of the tree, the DBMS can rely on the hardware prefetcher; this is not true higher up.

Neither wholly vectorized nor wholly compiled query plans are optimal. What is needed is the
ability for theDBMS to tactfullymaterialize tuples through prefetching at various points in the query
plan — to enable vectorization and exploit inter-tuple parallelism — and otherwise fuse operators
to ensure efficient pipelining. To this end, we now present our hybrid engine architecture, Relaxed
Operator Fusion (ROF), that blends query compilation and vectorization into a single engine.

3.2 Overview
The primary goal of operator fusion is to minimize materialization. We contend that strategic

materialization can be advantageous as it can exploit inter-tuple parallelism inherent in query execu-
tion. Tuple-at-a-time processing by its nature exposes no inter-tuple parallelism. Thus, to facilitate
strategic materialization, one could relax the requirement that operators within a pipeline be fused
together. With this, the DBMS instead decomposes pipelines into stages. A stage is a partition of
a pipeline in which all operators are fused together. Stages within a pipeline communicate solely
through cache-resident vectors of tuple IDs. Tuples are processed sequentially through operators
in any given stage one-at-a-time. If the tuple is valid in the stage, its ID is appended into the stage’s
output vector. Processing remains within a stage while the stage’s output vector is not full. If and
when this vector reaches capacity, processing shifts to the next stage in the pipeline, where the out-
put vector of the previous stage serves as the input to the current. Since there is always exactly one
active processing stage in ROF, we ensure both input and output vectors (when sufficiently small)
will remain in the CPU’s caches.

ROF is a hybrid between pipelined tuple-at-a-time processing and vectorized processing. There
are two key distinguishing characteristics between ROF and traditional vectorized processing; with
the exception of the last stage iteration, ROF stages always deliver a full vector of input to the next
stage in the pipeline, unlike vectorized processing that may deliver input vectors restricted by a
selection vector. Secondly, ROF enables vectorization acrossmultiple sequential relational operators
(i.e., a stage), whereas conventional vectorization operates on a single relational operator, and often
times within relational operators (e.g., vectorized hash computation followed by a vectorized hash-
table lookup).

3.2. OVERVIEW 32

Ω

Γ

σ2

▷◁

Part Ξ1

σ1

LineItem

P1 P2

P3

Figure 3.2: Example Query Plan Using ROF – The physical query plan for TPC-H Q19 using our
relaxed operator fusion model.

To help illustrate ROF’s staging, we first walk through an example. We then describe how to
implement ROF in an in-memory DBMS.

3.2.1 Example
Returning again to our running TPC-H Q19 example, Figure 3.2 shows a modified query plan

using our ROF technique to introduce a single stage boundary after the first predicate (σ1). The Ξ
operator denotes an output vector that represents the boundary between stages. Thus, pipeline P1
in Figure 3.2 is separated into two stages.

The code generated for this modified query plan is shown in Figure 3.3. In the first stage (lines
13–20), tuples are read from the LINEITEM table and passed through the filter to determine their
validity in the query. If a tuple passes through the filter (σ1), then its ID is appended to the stage’s
output vector (Ξ). When this vector reaches capacity, or when the scan operator has exhausted
tuples in LINEITEM, the vector is delivered to the next stage.

The next stage in the pipeline (lines 22–30) uses this vector to read valid LINEITEM tuples for
probing the hash-table and finding matches. If a match exists, both components are passed through
the secondary predicate (σ2) to again check the validity of the tuple in the query. If it passes this
predicate, it is aggregated as part of the final aggregation operator.

We first note that one loop is still generated per-pipeline (lines 11–31). A pipeline loop contains
the logic for all stages contained in the pipeline. To facilitate this, the DBMS splits pipeline loops
into multiple inner-loops, one for each stage in the pipeline. In this example, lines 13–20 and 22–30
are for the first and second stages, respectively. The DBMS fuses together the code for the operators
within a stage loop. This is seen in Figure 3.3 as line 26 corresponds to the probe, line 27 to the second
predicate, and line 28 to the final aggregation. In general, there are the same number of inner-loops
per pipeline loop as there are stages, and the number of stage output vectors (Ξ) is equal to one less
than the number of stages.

33 CHAPTER 3. RELAXED OPERATOR FUSION

1 #define VECTOR_SIZE 256

2
3 HashTable join_table; // Join Operator Table

4 Aggregator aggregator; // Running Aggregator

5
6 oid_t buf[VECTOR_SIZE] = {0}; // Stage Vector

7 int buf_idx = 0; // Stage Vector Offset

8 oid_t tid = 0; // Tuple ID

9
10 // Pipeline P2

11 while (tid < L.GetNumTuples()) {

12 // Stage #1: Scan LineItem, L

13 for (buf_idx = 0; tid < L.GetNumTuples(); tid++) {

14 auto &lineitem = L.GetTuple(tid);

15 if (PassesPredicate1(lineitem)) {

16 buf[buf_idx++] = tid;

17 if (buf_idx == VECTOR_SIZE) break;

18 }

19 }

20 // Stage #2: Probe, filter, aggregate

21 for (int read_idx = 0; read_idx < buf_idx; read_idx++) {

22 auto &lineitem = L.GetTuple(buf[read_idx]));

23 auto &part = join_table.Probe(lineitem);

24 if (PassesPredicate2(lineitem, part)) {

25 aggregator.Aggregate(lineitem, part);

26 } } }

Figure 3.3: ROF Staged Pipeline Code Routine – The example of the pseudo-code generated for
pipeline P2 in the query plan shown in Figure 3.2. In the first stage, the code fills the stage buffer with
tuples from table LINEITEM that satisfy the scan predicate. Then in the second stage, the routine
probes the join table, filters the results of the join, and aggregates the filtered results.

Lastly, the code maintains both a read and write position for each output vector. The write
position tracks the number of tuples in the vector; the read position tracks how far into the vector a
given stage has read. A stage has exhausted its input when either (1) the read position has surpassed
the amount of data in the materialized state (i.e., data table or hash-table) or (2) the read and write
index are equal for the input vector. Therefore, a pipeline is complete only when all of its constituent
stages are finished. If a stage accesses external data structures that are needed in subsequent stages,
ROF requires a companion output vector that stores data positions/pointers that it is aligned with
the primary TID output vector.

Our ROF technique is flexible enough to model both tuple-at-a-time processing and vectorized
processing, and hence, subsumes both models. The former can be realized by creating exactly one
stage per pipeline. Since a stage fuses all operators it contains and every pipeline has only one stage,

3.2. OVERVIEW 34

pipeline loops contain no intermediate output vectors. Vectorized processing can be modeled by
installing a stage boundary between pairs of operators in a pipeline.

Staging alone does not provide many benefits; however, it facilities two optimizations not pos-
sible otherwise: SIMD vectorization, and prefetching of non-cache-resident data.

3.2.2 Vectorization
SIMD processing is generally impossible when executing a query tuple-at-a-time. Our ROF

technique enables operators to use SIMD by introducing a stage boundary on their input, thereby
feeding them a vector of tuples. The question nowbecomeswhether to also impose a stage boundary
on the output of a SIMD operator. With a boundary, SIMD operators can efficiently issue selective
stores of valid tuple IDs into their output vectors. With no boundary, the results of the operator are
pipelined through all operators that follow in the stage. This can be done using one of two methods.
Both methods assume the result of a SIMD operator resides in a SIMD register. In the first method,
the operator breaks out of SIMD code to iterate over the results in the individual SIMD lanes one-
at-a-time [33, 159]. Each result is pipelined to the next operator in the stage. In the second method,
rather than iterate over individual lanes, the operator delivers its results in a SIMD register to the
next operator in the stage. Both methods are not ideal. Breaking out of SIMD code unnecessarily
ties up the registers for the duration of the stage. Delivering the entire register risks under-utilization
if not all input tuples pass the operator, resulting in unnecessary computation.

Given this, we greedily force a stage boundary on all SIMD operator outputs. The advantages
of this are (1) SIMD operators always deliver a 100% full vector of only valid tuples, (2) it frees
subsequent operators from performing validity checks, and (3) the DBMS can generate tight loops
that are exclusively SIMD.We now describe how to implement a SIMD scan using these boundaries.

Implementation: In contrast to scalar selection where the result of applying a predicate against
a tuple is a single boolean value indicating the validity of the tuple, the result of a SIMD application
of a predicate is a bit-mask. Processing n elements in parallel produces a bit-mask stored in a SIMD
register where all bits of each of the n elements are either 0 or 1 (to indicate the validity of the
associated tuple). To determine which tuples are valid using the bit-mask, the DBMS could employ
partial vectorization and iterate over the bits in themask to extract one bit at a time. But this requires
breaking out of the SIMD code and has O(n) complexity.

ROF uses a different approach that is wholly in SIMD code. The technique leverages a precom-
puted, cache-resident index to lookup permutation masks that are used to shuffle SIMD elements
into valid and invalid components. To illustrate how a DBMS uses these bit-masks to efficiently
determine valid tuples, we walk through an example. The illustration in Figure 3.4 is performing a
SIMD scan over a 4-byte integer column colattr_A and evaluating the predicate colattr_A < 44.
TheDBMSfirst loads asmany attribute values as possible (alongwith their tuple IDs) into the widest
available SIMD register. Next, it applies the predicate to produce a bit-mask. In the example, the
tuples with IDs (1, 3, 7) fail to pass the predicate. To correctly write out only the valid IDs, the DBMS
shuffles the tuple ID SIMD register so that the valid and invalid tuple IDs are stored contiguously,
effectively partitioning the register. To achieve this, the DBMS invokes the movemask instruction to
convert the bit-mask into an integer number that it uses as an index into a permutation table. This is
a precomputed table that maps a given bit-mask value to a 8-byte bit-mask that corresponds to the

35 CHAPTER 3. RELAXED OPERATOR FUSION

27 50 2039 46 34 41 48

SIMD Compare

colA

0 0Bitmask
0
1

254
255

0
1 3 7TID

SIMD Permute

1 3 7TID

SIMD Masked
Store

…Output 0 2 64 5

Permutation Table

174 0,2,4,5,6

movemask

…
…

Permuted
Bitmask 0 0 0

1 1 1 1 1

1 1 1 1 1
0 2 64 5

0 42 5 6

old write position new write position

old read position new read position

…
1 3 7TID 0 42 5 6 …

Figure 3.4: SIMDPredicate Evaluation Example – An illustration of how to use SIMD to evaluate
the predicate for TPC-H Q19.

correct re-arrangement of elements in the SIMD register to partition it into valid and invalid parts.
In the example, the bit-mask’s value is 174, which corresponds to the bit-mask (0,2,4,5,6). Applying
this permutation bit-mask moves elements in positions 0, 2, 4, 5, and 6 to the first five elements in
the register. We apply this permutation to both the original bit-mask and the tuple ID counter. The
DBMS then writes the modified tuple ID counter to the output vector at the current write position
using a masked store with the modified bit-mask as the selectionmask. The DBMS then increments
the new write position by the number of valid tuples (using the popcnt instruction), loads a new
vector of values, and increments the tuple ID vector by eight.

The permutation table stores an 8-byte value (i.e., the permutation bit-mask) for each possible
input bit-mask. A SIMD register storing n elements can produce 2n masks. With AVX2 256-bit
registers operating on eight 4-byte integers, this results in 28 = 256 possible bit-masks. Thus, the

3.2. OVERVIEW 36

size of the largest permutation table is at most 28 × 8 = 2 KB, small enough to fit in the CPU’s L1
cache. For data types that are smaller than 4-bytes, we cast upwards to 4-byte values.

3.2.3 Prefetching
Aside from the regular patterns of sequential scans, the more complex memory accesses within

a DBMS are beyond the scope of what today’s hardware or commercial compilers can handle. There-
fore, we propose new compiler passes for automatically inserting prefetch instructions that can han-
dle the important irregular, data-dependent memory accesses of an OLAP DBMS.

The DBMS must prefetch sufficiently far in advance to hide the memory latency (i.e., overlap-
ping it with useful computation), while at the same time avoiding the overhead of unnecessary
prefetches [107]. Limiting the scope of prefetching to within the processing of a single tuple in a
pipeline is inefficient because by the time the DBMS knows how far up the query plan the tuple will
go, there is not sufficient computation to hide the memory latency. On the other hand, aggressively
prefetching all of the data needed within a pipeline can also hurt performance due to cache pollu-
tion and wasted instructions. These challenges are exacerbated as the complexity within a pipeline
increases, since it becomes increasingly difficult to predict data addresses in advance.

Our ROF model avoids all of these problems. The DBMS installs a stage boundary at the input
to any operator that requires random access to data structures that are larger than the cache. This
ensures that prefetch-enabled operators receive a full vector of input tuples, enabling it to overlap
computation and memory accesses since these tuples can be processed independently. To estimate
the size of any constructed or used data structures, the DBMS planner uses statistics and the struc-
ture of the query plan. Hash joins and hash-based aggregations are two classes of important oper-
ators that benefit significantly from prefetching. Index-based joins are another operator that can
potentially benefit from prefetching. If the planner discovers that the join index is larger than the
size of the CPU cache, it installs a stage boundary at the input to facilitate prefetching. If the join
index is based on a traditional B+Tree, the engine generates group-prefetching (GP) [38] code since
each input tuple will, on average, perform an equal number of random memory accesses (i.e., one
for each level of the tree). If the index has a more irregular access pattern (e.g., BwTree or a skip-
list), then the engine should generate asynchronous memory access chaining (AMAC) [81] code to
support early termination of probes.

Implementation: To help ground our discussion of how to implement prefetching in ROF, we
briefly discuss the design of the hash-table used in both hash-joins and hash-based aggregations,
found in Figure 3.5. We use an open-addressing hash-table design with linear probing for hash
and key-collisions. Previous work has shown this design to be robust and cache-friendly [129]. We
use MurmurHash3 [20] as our primary hash function. This is differs from previous work [121] that
prefers to use computationally simpler (and therefore faster) hash functions, such as multiply-
add-shift. Wewant to use a general-purpose hash function that can (1) work onmultiple different
non-integer data types, (2) provide a diverse hash distribution, and (3) execute fast. MurmurHash3
satisfies these requirements and is used in many popular systems [2, 3, 8].

Our hash-table, shown in Figure 3.5, is laid out as a contiguous array of buckets. Buckets begin
with an 8-byte status field that indicates (1) if this bucket is empty, (2) if it is occupied by a single
key-value pair, or (3) if it is occupied and there are duplicate values for the key. Duplicate values

37 CHAPTER 3. RELAXED OPERATOR FUSION

B1 B3 ... BN-1 BNB2

Status Key Value Hash

8 bytes |Key| |Value| 4 bytes

Figure 3.5: Hash-Table Data Structure – An overview of the DBMS’s open-addressing hash-table
used for joins (with BN buckets).

are stored externally in a contiguous memory space, and the status field is re-purposed to store a
pointer to this memory location. The key and value data are stored next in the bucket, followed by
the hash value. We store the status and key value near the beginning of the bucket to ensure we can
read both with onememory-load; this is obviously not possible if the key exceeds the size of a cache-
line (minus 8 bytes). This is important since the status field is read on every hash-table access for
both insertions and probes, whereas the key is needed to resolve key-collisions. The hash value is
used only during table resizing to avoid recomputation. Since resizing is far more infrequent than
insertions and probes, storing the hash value at the end does not impact overall join or aggregation
performance.

The hash-table’s design is amenable to both software and hardware prefetching. Since joins and
aggregations operate on tuple vectors, software prefeteching will speed up the initial hash-table
probe. Secondly, the hardware prefetcher kicks in to accelerate the linear probing search sequence
for hash collisions. By front-loading the status field and the key, the DBMS tries to ensure that at
most one memory reference to a bucket is necessary to check both if the bucket is occupied and if
the keys match.

Although we can employ any software prefetching technique with ROF, we decide to use GP for
multiple reasons. Foremost is that GP requires a simpler code structure and is faster to generate and
compile than AMAC [38, 81]. GP also naturally provides synchronization boundaries between code
stages for a group to resolve potential data races when inserting duplicate key-value pairs. Finally,
using an open-addressing hash-table with linear probing means that all tuples have exactly one
random access into the hash-table during probes and insertions (with the exception of duplicate-
handling which requires two). Since all tuples in a group have the same number of random accesses
even in the presence of skew, AMAC does not improve performance over GP.

3.2.4 Query Planning
A DBMS’s optimizer has to make two decisions per query when generating code with the ROF

model: (1) whether to enable SIMD predicate evaluation and (2) whether to enable prefetching.
During optimization, Peloton’s planner takes a greedy approach and installs a boundary after

every scan operator if the scan has a SIMD-able predicate. Determining whether a given predicate
can be implemented using SIMD instructions is a straightforward process that uses data-type and
operation information already encoded in the expression tree. As we will show in Section 5.4, using
SIMD when evaluating predicates during a scan never degrades performance.

The planner can also employ prefetching optimizations using two methods. In the first method,
the query planner relies on database- and query-level statistics to estimate the sizes of all interme-

3.3. EXPERIMENTAL EVALUATION 38

diate materialized data structures required by the query. For operators that require random access
to data structures whose size exceeds the cache size, the planner will install a stage boundary at the
operator’s input to facilitate prefetching. This heuristic can backfire if the collected statistics are
inaccurate (see Section 3.3.3) and result in a minor performance degradation. An alternative ap-
proach is for the query planner to always install a stage boundary at the input to any operator that
performs random memory accesses, but generate two code paths: one path that does prefetching
and one that does not. The query compiler generates statistics collection code to track the size of
intermediate data structures, and then uses this information to guide the program through either
code path at runtime. In this way, the decision to prefetch is independent of query planning. We
note that this approach will result in a code explosion as each branch requires a duplication of the
remaining query logic; this process can repeat for each prefetching operator. ROF remedies this
by installing a stage boundary at the operator’s output, thereby duplicating only the operator’s logic
rather than the entire query plan.

3.3 Experimental Evaluation
We now present a brief analysis of our ROF query processing model. For this evaluation, we

implemented ROF in the Peloton in-memory DBMS [11]. Peloton is an HTAP DBMS that used
interpretation-based execution engine for queries. We modified the system’s query planner to sup-
port JIT compilation using LLVM (v3.7). We then extended the planner to also generate compiled
query plans using our proposed ROF optimizations.

We performed our evaluation on a machine with a dual-socket 10-core Intel Xeon E5-2630v4
CPU with 25 MB of L3 cache and 128 GB of DRAM. This is a Broadwell-class CPU that supports
AVX2 256-bit SIMD registers and ten outstanding memory prefetch requests (i.e., ten line-fill buffer
(LFB) slots) per physical core. We also tested our ROF approach with an older Haswell CPU and
did not notice any changes in performance trends.

In this section, we first describe the workload that we use in our evaluation. We then present
a high-level comparison of the performance of our ROF query processing model versus a baseline
implementation that only uses query compilation. Next, we provide a detailed breakdown of the
query plans to explain where the optimizations of the ROF model have their greatest impact. We
then select the optimal query plan for each TPC-Hquery andmeasure the sensitivity of the results to
two important compiler parameters for ROF (i.e., vector size and prefetching distance). To prevent
cache coherence traffic from interfering with our measurements, we limit the DBMS to only use
a single thread per query and do not execute multiple queries at the same time for these initial
experiments. We then evaluate the DBMS’s performance with ROF when using multiple threads
and finish with a comparison of the absolute performance of Peloton with ROF against two state-of-
the-art OLAP DBMSs.

We ensure that the DBMS loads the entire database into the sameNUMA region using numactl.
We run each experiment ten times and report the average measured execution time over all trials.

3.3.1 Workload
We use a subset the TPC-H benchmark in this evaluation [146]. TPC-H is a decision support

system workload that simulates an OLAP environment where there is little to prior knowledge of

39 CHAPTER 3. RELAXED OPERATOR FUSION

Ω

Sort

Γ

σ

LineItem

P1

P2

P3

(a) Q1

Ω

Sort

▷◁2(Group)

▷◁1

σ1

Customer

σ2

Orders

σ3

LineItem

P1 P2

P3

P4

(b) Q3

Ω

Sort

Γ

▷◁(Group)

Customer σ

Orders

P1 P2

P3

P4

(c) Q13

Ω

Γ

▷◁

σ

LineItem

Part

P1 P2

P3

(d) Q14

Figure 3.6: TPC-H Query Plans with Pipelines – The high-level query plan for the subset of the
TPC-H queries that we evaluate in our experiments, and do deep-dive analysis on. Each plan is
annotated with their pipelines [108].

the queries. It contains eight tables in 3NF schema. We use a scale factor of 10 in each experiment
(∼10 GB). Peloton is still early in development; we plan to run larger scale experiments are it ma-
tures.

Although the TPC-Hworkload contains 22 queries, we select eight queries that cover all TPC-H
choke-point query classifications [28] that vary from compute- to memory/join-intensive queries.
Thus, we expect our results to generalize and extend to the remaining TPC-H queries. An illustra-
tion of the pipelined plans for these queries is shown in Figure 3.6; the plan for Q19 is shown in
Figure 2.1b.

3.3.2 Baseline Comparison
For this first experiment, we execute the TPC-H queries using the data-centric approach used

in HyPer [108] and other DBMSs that support query compilation. We deem this as the baseline
approach. We then execute the queries with our ROF model. This demonstrates the improvements
that are achievable with the prefetching and vectorization optimizations that we describe in Sec-
tion 5.2.

Figure 3.7 shows the performance of our execution engine (which implements a data-centric
query compilation engine [108]) both with and without our ROF technique enabled. As we see in
the figure, our ROF technique yields performance gains ranging from 1.7× to 2.5× for seven of eight
queries.

3.3.3 Optimization Breakdown
To better understand how ROF impacts performance, we now present case studies for a subset

of the TPC-H queries we evaluated in Figure 3.7. For the sake of space, we only discuss in detail
five of the eight TPC-H queries we evaluate. The results we draw extend to the remaining queries.
Figures 3.8 to 3.12 show the execution time for each query broken down by the time spent in each
pipeline in the original query plans from Figure 3.6 as we incrementally apply ROF to additional
operators within the tree. The leftmost bar is the baseline execution (without ROF), the next bar

3.3. EXPERIMENTAL EVALUATION 40

Q1 Q3 Q4 Q5 Q6 Q13 Q14 Q19
0

600

1200

1800

2400
E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
)

Baseline Optimized

Figure 3.7: Baseline Comparison – Query execution time when using regular query compilation
(baseline) and when using ROF (optimized).

applies ROF to one operator, the bar after that includes both plus applying ROF to any additional
operators. These optimizations are cumulative and each one is orthogonal to the previous. We
describe the details of these optimizations in a table below each graph.

Q1 Case Study: ROF yields only a marginal improvement (1.04×) over the baseline for this query.
The bulk of Q1’s execution time is spent in P1, which performs a selection and an aggregation. P2
and P3 are not easily visible in Figure 3.8: the time spent materializing aggregated data into a mem-
ory heap (in preparation for sorting) and the sorting itself accounts for less than 0.3% of the execu-
tion time.

For our first optimization (O1), the planner converts the predicate on the LINEITEM table into
a SIMD scan. It adds a stage boundary after σ in P1, and converts the scalar predicate evaluation
into a SIMD check. But because this predicate matches almost the entire table (i.e., 98% selectiv-
ity). At such high-selectivity, the benefit data-level parallelism (i.e., reduced CPI) from using SIMD
predicate evaluation is offset by the overhead of (redundant) data copying of valid IDs into an out-
put vector. Thus, in this case SIMD yields only a marginal reduction in latency. Moreover, the scan
portion of P1 accounts for only 4% of the overall time; the remaining 96% of the time is in the aggre-
gation (Γ). This means that applying SIMD to the scan (assuming a maximum theoretical speedup
of 8× using AVX2 256-bit registers) can only achieve a speedup of at most 1.036×.

The second optimization (O2) uses the output of the SIMD scan stored in σ’s output stage vector
(Ξ) to prefetch hash-table entries in the build phase of the aggregation (Γ). But Figure 3.8 shows
prefetching makes the query slower. Γ’s hash-table is sufficiently small enough (just four entries) to
fit in the CPU’s L1 cache, obviating the need for prefetching. The overhead of the DBMS invoking
the prefetch instructions is non-negligible and thus degrades performance. O2 highlights the im-
portance of accurate query statistics. Inaccurate statistics may lead the planner to incorrectly install
an ROF stage boundary to enable prefetching resulting in reduced performance.

41 CHAPTER 3. RELAXED OPERATOR FUSION

Baseline O1 O2
Optimizations

0

200

400

600

800
Ex

ec
ut

io
n

tim
e

(m
s)

P1 P2 P3

O1
Modification: P1 ⇒ (LINEITEM→ σ → Ξ → Γ)
Description: Apply SIMD to predicate σ.

O2
Modification: —
Description: Use Ξ to prefetch buckets on Γ build.

Figure 3.8: Q1 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q1 query
plan shown in Figure 3.6a.

Q3 Case Study: This next query is the most complex one from the TPC-H workload that we eval-
uate. As such, it presents the largest number of opportunities to apply our ROF technique. The first
observation from the measurements in Figure 3.9 is that the optimizations that apply SIMD predi-
cate evaluation (i.e., O1, O2, and O5) all offer marginal performance improvements. This is because
the majority of time spent in pipelines P1, P2, and P3 are not scanning table data, but rather in the
joins ▷◁1 and ▷◁2. Roughly 1% of time in P1 is spent filtering CUSTOMER tuples, 3.7% of P2 is on scan-
ning and filtering the ORDERS table, and 7% of P3 is on scanning the LINEITEM table. Although
using SIMD with these operators provides some benefit, it does not address the main bottlenecks.

Instead, the more complex, memory-intensive operators will produce greater improvements.
These are the optimizations that implement prefetching of hash-table buckets for either the build-
or probe-phase of joins ▷◁1 or ▷◁2 (i.e., O3, O4, and O6). O3 uses the staging vector written to by the
SIMD predicate on σ2 to prefetch hash-table buckets for the probe of ▷◁1. This speeds up P2 by 1.4×.
O4 improves upon this by introducing a second stage boundary after the join ▷◁1. This second stage
prefetches hash-table buckets during the build phase of the join ▷◁2. O4’s prefetching improves P2’s
execution time by 1.26× and for the overall query by 1.14×.

The last and most important optimization for Q3 is O6 because this highlights the advantage
of the ROF approach. While using SIMD for the predicate evaluation on LINEITEM (which is the
largest table in the query) only increases performance by 1.02×, using the resulting output vector
to perform prefetching on the probe of ▷◁2 results in an improvement of 1.38×. In general, we find

3.3. EXPERIMENTAL EVALUATION 42

Baseline O1 O2 O3 O4 O5 O6
Optimizations

0

400

800

1200

Ex
ec

ut
io

n
tim

e
(m

s)
P1 P2 P3 P4

O1
Modification: P1 ⇒ (CUSTOMER→ σ1 → Ξ1 →▷◁1)
Description: Apply SIMD to predicate σ1 (CUTOMER).

O2
Modification: P2 ⇒ (ORDERS→ σ2 → Ξ2 →▷◁1→▷◁2)
Description: Apply SIMD to predicate σ2 (ORDERS).

O3
Modification: —
Description: Use Ξ2 to prefetch buckets during ▷◁1 probe.

O4
Modification: P2 ⇒ (ORDERS→ σ2 → Ξ2 →▷◁1→ Ξ3 →▷◁2)
Description: Use Ξ3 to prefetch buckets during build of ▷◁2.

O5
Modification: P3 ⇒ (LINEITEM→ σ3 → Ξ4 →▷◁2→ Sort)
Description: Apply SIMD to predicate σ3.

O6
Modification: —
Description: Use Ξ4 to prefetch buckets for ▷◁2 probe.

Figure 3.9: Q3 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q3 query
plan shown in Figure 3.6b.

that using ROF optimizations across this query plan improves by up to 1.61×, with much of this
resulting from prefetching.

Q13 Case Study: This query presents another interesting data point because it demonstrates that
ROF can still improve performance when only using prefetching without SIMD. Q13 contains a
predicate on ORDERS that cannot be implemented using SIMD since it contains a non-trivial LIKE
clause on a string column. However, by installing a stage boundary after the predicate (σ), Fig-
ure 3.10 shows that ROF still improves performance over the baseline.

The first optimization (O1) prefetches hash-table buckets for both the build- and probe-phases
of the group-join (▷◁). We implement the group-join operator from [105]. As described previously,

43 CHAPTER 3. RELAXED OPERATOR FUSION

Baseline O1 O2
Optimizations

0

600

1200

1800

2400
Ex

ec
ut

io
n

tim
e

(m
s)

P1 P2 P3 P4

O1
Modification: P2 ⇒ (ORDERS→ σ → Ξ1 →▷◁→ Γ)
Description: Use Ξ1 to prefetch buckets for build and probe of ▷◁.

O2
Modification: P2 ⇒ (ORDERS→ σ → Ξ1 →▷◁→ Ξ2 → Γ)
Description: Use Ξ2 to prefetch buckets during build of Γ.

Figure 3.10: Q13 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q13
query plan shown in Figure 3.6c.

the DBMS installs a stage boundary (Ξ1) after the predicate σ. The scan of ORDERS is entirely scalar,
and its output is written to the stage’s output vector. The DBMS is then able to prefetch on the build
input since it is already being read from materialized state (i.e., the CUSTOMER table). O1 results in
a performance improvement of 1.34× over the baseline.

The second optimization (O2) prefetches hash-table buckets needed during the build phase of
the aggregation (Γ). Once again the DBMS installs a stage boundary (Ξ2) after the group-join (▷◁).
This optimization further improves performance over O1 by 1.04×, resulting in an overall improve-
ment of 1.5× compared to the baseline.

Q14 Case Study: The predicate on the LINEITEM table has only a 2% selectivity and, hence, it is
an ideal candidate for being converted into a SIMD predicate. To do so, in O1 the planner installs
a stage boundary (Ξ) after the predicate over LINEITEM (σ). This improves P1’s execution time by
1.89× and Q14’s overall time by 1.37×.

Next, the planner enables prefetching for both the build- and probe-phases of the join in O2.
For P1, this is facilitated by re-using O1’s output vector (Ξ) for the SIMD predicate (σ). P2 does
not need an additional stage since the scan of the PART table is directly from the table. O2 further
improves performance by 1.45× from the previous optimization and by almost 2× over the baseline.

We do not apply any optimizations on the aggregation operator (Γ) because it is static (i.e., it
always generates a single output tuple). In generated code, the aggregation is implemented as a sim-
ple counter. Hence, P3 requires no computation and contributes effectively nothing to the query’s

3.3. EXPERIMENTAL EVALUATION 44

Baseline O1 O2
Optimizations

0

100

200

300

400
Ex

ec
ut

io
n

tim
e

(m
s)

P1 P2 P3

O1
Modification: P1 ⇒ (LINEITEM→ σ → Ξ →▷◁)
Description: Apply SIMD to predicate σ (LINEITEM).

O2
Modification: —
Description: Use Ξ and PART to prefetch buckets during join ▷◁.

Figure 3.11: Q14 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q14
query plan shown in Figure 3.6d.

overall execution time of the query. We note that Peloton does not currently support generating in-
dex nested-loop join code and, instead, employs a slightly less performant hash-join between Part
and LineItem.

Q19Case Study: Like Q14, the predicate on the LINEITEM table in this query is selective; less than
4% of tuples make it through the filter. This predicate is extracted from a much larger disjunctive
predicate that is applied to the results of the join (▷◁). Again, this means that the predicate is a
good candidate for SIMD evaluation. Thus, O1 installs a stage boundary and output vector (Ξ1),
after the predicate on LINEITEM (σ1). The results in Figure 3.12 show that O1 improves the overall
performance of the query by almost 1.6×.

The second optimization uses O1’s output vector to issue prefetch instructions for hash-table
buckets during the hash-join probe. Similarly, O2 also modifies P1 to prefetch hash-table buckets
to build ▷◁. Together these two optimizations further improve Q19’s performance by almost 1.6×
and almost 2.5× over the baseline implementation. We note that the contribution of P3 is effectively
zero because it is a static aggregation that performs no computation.

3.3.4 Sensitivity to Vector Width
In the previous experiments, we executed the queries using the optimal vector sizes and prefetch

group size. We now analyze the sensitivity of the ROF model to these two configuration parameters.
Our evaluation shows that these parameters are independent to each other and thus wewill examine

45 CHAPTER 3. RELAXED OPERATOR FUSION

Baseline O1 O2 O3
Optimizations

0

150

300

450

Ex
ec

ut
io

n
tim

e
(m

s)
P1 P2 P3

O1
Modification: P2 ⇒ (LINEITEM→ σ1 → Ξ1 →▷◁→ σ2 → Γ)
Description: Apply SIMD to predicate σ1 (LINEITEM).

O2
Modification: —
Description: Use Ξ1 to prefetch buckets during probe of ▷◁.

O3
Modification: P2 ⇒ (LINEITEM→ σ1 → Ξ1 →▷◁→ Ξ2 → σ2 → Ξ3 → Γ)
Description: Insert staging points between every pair of operators.

Figure 3.12: Q19 Case Study – The breakdown of the ROF optimizations applied to TPC-H Q19
query plan shown in Figure 2.1b.

them separately. We begin with measuring the effect of the stage output vector size to overall query
performance. We select the optimal staged plan for the eight TPC-H queries and fix the prefetch
group size to 16. We then vary the size of all the output vectors in each plan from 64 to 256k tuples.

The results in Figure 3.13 show that all but one of the queries (Q13) are insensitive to the size
of the stages’ output vectors. This is notable for Q14 and Q19 because we showed in the previous
experiment that they both benefited greatly from SIMD vectorization. This is because their scans
are highly selective (2% for Q14 on the ORDERS table and 4% for Q19 on the LINEITEM table), and so
using SIMD shifts the main bottleneck to the next stage in their respective pipelines. For Q14, this
is mainly the probe-side of the join, whereas it is the build-side of the join in Q19. The extra latency
incurred due to accessing larger-than-cache hash-tables constitutes the largest time component of
their execution plan, even though it is ameliorated through prefetching.

Q1 is also insensitive to the vector size, but for a slightly different reason. In this query, more
than 98% of the tuples in the LINEITEM table qualify the predicate. As such, the primary bottleneck
in the first pipeline is not in the SIMD scan, but in the aggregation. This aggregation does not benefit
from larger vector sizes, which is why Q1 is not impacted by varying this configuration parameter.

For Q13, the primary bottleneck in the query plan is the evaluation of the LIKE clause on the
colo_commentfield of the ORDERS table. Since theDBMS cannot execute this predicate using SIMD,
increasing the size of the predicate’s output vector does not help. It instead uses this vector to prefetch

3.3. EXPERIMENTAL EVALUATION 46

64 256 1K 4K 16K 64K 256K
Vector size (tuples)

0

500

1000

1500

2000
Ex

ec
ut

io
n

tim
e

(m
s)

Q1
Q3

Q4
Q5

Q6
Q13

Q14
Q19

Figure 3.13: Sensitivity to VectorWidth – The average execution time of the TPC-H queries when
varying the maximum number of tuples stored in the ROF’s stage output vectors.

hash-table buckets as part of the subsequent probe. But since the query plan uses a group size of 16,
the system is already able to saturate the memory parallelism in the hardware and thus larger vector
sizes do not help.

The only query whose performance gets better as the vector width increases is Q3. The results
show that this query benefits slightly with larger vector sizes, but does not improve further when
vector size exceeds 16k tuples. This is because the SIMD scan on the LINEITEM table remains in
the SIMD code stage over a larger range of tuples. The predicate is roughly 54% selective, and so
using larger vectors reduces the number of outer-most loop iterations. In general, larger vectors
reduces the total number of outer-most loop iterations. This is helpful for scan queries with low-
selectivity predicates. However, larger vectors don’t improve performance for queries with joins.
This is becausemodern CPUs support a limited number of outstandingmemory references, making
the query become memory-bound quicker than CPU-bound.

3.3.5 Sensitivity to Prefetching Distance
Wenext analyze the performance of theDBMSwhen varying the size of theROFmodel’s prefetch

groups. We again use the best staged plans that we generated in Section 3.3.2 for each query. This
time we fix the output vector size constant to use the optimal configuration for each query as de-
termined in Section 3.3.4. We then vary the group sizes from zero (disabling prefetching) to 256
tuples.

The results in Figure 3.14 show that prefetch group size has a strong influence the performance
of all queries, with the exception of Q1 and Q6. Q6’s performance remains constant across prefetch
groups because it contains only a sequential scan. In the previous section, we showed that Q1 is
insensitive to the output vector size. But we now also see that Q1 is not affected by this other param-
eter as well. We attribute this to the fact that the only data structure that is prefetched in Q1 (i.e.,

47 CHAPTER 3. RELAXED OPERATOR FUSION

0 2 4 8 16 32 64 128 256
Group prefetch size (tuples)

0

500

1000

1500

2000

Ex
ec

ut
io

n
tim

e
(m

s)
Q1
Q3

Q4
Q5

Q6
Q13

Q14
Q19

Figure 3.14: Sensitivity to Prefetching Distance – The execution time of the TPC-H queries when
varying the ROF model’s group prefetch size.

aggregate hash-table) fits in the CPU’s L1 cache. In fact, Figure 3.14 shows that Q1’s lowest execution
time is when there is no prefetching at all. This indicates that the combination of the weak predicate
and a small hash-table makes Q1 ill-suited for ROF. We note, however, that ROF does not degrade
the performance of Q1 (as seen in Figures 3.7 and 3.8) since the predicate, though weak, can still use
SIMD vectorization.

Our second observation is that all of the queries get faster with increasing group sizes up until 16
tuples. The CPU used in our evaluation supports a maximum of 10 outstanding L1 cache references
(per core), and thus one would expect the optimal group size to be 10 since this should saturate
the CPU’s memory-level parallelism. These results, however, show that the optimal group size is 16.
This is because the GP technique that we implemented is also limited by instruction count. Using
larger group sizes enable fewer iterations of the outer-most loop, which reduces overall instruction
count. Hence, groups larger than 16 do not improve performance because at that point the DBMS
saturates the CPU’s available memory parallelism.

3.3.6 Multi-threaded Execution
Wenow evaluate the performance of Peloton with ROFwhen executing queries using amultiple

threads. We implemented a simplified version of the multi-threaded execution strategy employed
in HyPer [90]. Each pipeline in the query plan is executed using multiple threads that each modify
only thread-local state. At pipeline-breaking operators, a single coordinator thread coalesces data
produced by each execution thread. As an example, during a building phase of a hash-join, each
execution thread constructs a thread-local hash-table based on its assigned input partitions. The
coordinator thread constructs a global hash-table whose keys and values are pointers into each ex-
ecution thread’s local storage. The constructed global hash-table is used in the subsequent pipeline
to perform the probe-side of the join. Since the global hash-table is read-only after construction,

3.3. EXPERIMENTAL EVALUATION 48

Peloton (Baseline) Peloton (Optimized)

1 5 10 15 20
Number of threads

0

200

400

600

800

1000

Ex
ec

ut
io

n
tim

e
(m

s)

(a) Q1

1 5 10 15 20
Number of threads

0

400

800

1200

1600

2000

Ex
ec

ut
io

n
tim

e
(m

s)

(b) Q3

1 5 10 15 20
Number of threads

0

500

1000

1500

2000

Ex
ec

ut
io

n
tim

e
(m

s)

(c) Q4

1 5 10 15 20
Number of threads

0

400

800

1200

1600

2000

Ex
ec

ut
io

n
tim

e
(m

s)

(d) Q5

1 5 10 15 20
Number of threads

0

50

100

150

200

250

Ex
ec

ut
io

n
tim

e
(m

s)

(e) Q6

1 5 10 15 20
Number of threads

0

800

1600

2400

3200

Ex
ec

ut
io

n
tim

e
(m

s)

(f) Q13

1 5 10 15 20
Number of threads

0

150

300

450

600

Ex
ec

ut
io

n
tim

e
(m

s)

(g) Q14

1 5 10 15 20
Number of threads

0

200

400

600

800

Ex
ec

ut
io

n
tim

e
(m

s)

(h) Q19

Figure 3.15: Multi-threaded Execution – The performance of Peloton when using multiple threads
to execute queries with and without the ROF model.

49 CHAPTER 3. RELAXED OPERATOR FUSION

execution threads need not synchronize during the probe phase. We note that Peloton does not
adopt a NUMA-aware data placement/allocation policy.

We ran the eight TPC-H queries from Section 3.3.2, using each query’s best staged plan. We
vary the number of execution threads from one to the number of physical cores in the benchmark
machine. We report averages over ten runs using a TPC-H SF10 database.

The results in Figure 3.15 demonstrate that usingROFwith vectorization and prefetching comple-
ments multi-threaded query execution. We first note that the jump in execution time when moving
from one thread to two threads for all the queries is due to the non-negligible bookkeeping and syn-
chronization overhead that is necessary to support multi-threaded execution. This is independent
of the ROF model. As described earlier, hash-joins end at a synchronization barrier on the build-
side as execution threads wait for the coordinator thread to construct a global hash-table. For low
thread counts, this overhead outweighs the benefit of multiple threads. But this cost is eliminated
with the addition of more execution threads.

Figure 3.15a shows that ROF does not improve Q1 since it is a CPU-bound query with a high-
selectivity predicate. This corroborates our previous results in Sections 3.3.3 to 3.3.5. Executing Q1
with multiple threads yields a consistent increase up to 20 cores at which point all CPUs are fully
utilized and have saturated thememory bandwidth. We note thatmulti-threaded execution benefits
both the unoptimized plan and the ROF plan leveraging SIMD predicate evaluation.

The other seven TPC-H queries exhibit similar speed-up with increasing thread counts. Al-
though each execution thread constructs a small thread-local hash-table, the size of the coordina-
tor thread’s global hash-table will always exceed the CPU cache size. Since the join’s probe-side is
usually an order-of-magnitude larger than the build-side, Figures 3.15b and 3.15f to 3.15h shows that
using ROF with prefetching improves performance by 1.5–1.61× over the baseline.

One final observation is the slight variance in execution times in Q3 and Q13 with more than 10
threads. This jitter is due to NUMA effects on our two CPU machine (10 cores per socket). Both Q3
and Q13 execute using a group hash-join, meaning that the DBMS uses the materialized hash-table
during building and probing. Concurrent updates to the table are serialized using 64-bit compare-
and-swap instructions. Hence, CPUs in different NUMA regions experience different latency when
accessing these counters stored in the global hash-table. Q5 exhibits this effect as it requires two
global hash-tables probes (i.e., four random memory accesses). Despite this, ROF is still improves
performance by 1.5×.

3.3.7 System Comparison
Lastly, we compare Peloton with ROF against two state-of-the-art in-memory databases: Vec-

tor [1] and HyPer [77]. The former is a columnar DBMS based on MonetDB/x100. It uses a vector-
ized execution engine that supports both compressed tables and SIMD instructions when available.
The latter is also a columnar DBMS, but uses LLVM (like Peloton) to generate compiled tuple-at-
a-time query plans. For Peloton, we execute the queries both with and without our ROF model
enabled; this corresponds to the “baseline” and “optimized” configurations from Section 3.3.2.

We deployed all of theDBMSusing the same hardware and database as described in Section 4.3.1.
To ensure a fair comparison, we disabled multi-threaded execution in all of the systems and made a
good faith effort to tune each one for TPC-H.We note, however, that both Vector andHyPer include

3.3. EXPERIMENTAL EVALUATION 50

Vector HyPer Peloton (Baseline) Peloton (Optimized)

Q1 Q3 Q4 Q5 Q6 Q13 Q14 Q19
0

600

1200

1800

2400

3000
E
x
e
c
u

ti
o
n

 T
im

e
 (

m
s
)

Figure 3.16: System Comparison – Performance evaluation of the TPC-H benchmark in Vector,
HyPer, and Peloton with and without our ROF model.

additional optimizations that may not exist across all three DBMSs. Thus, we tried to ensure the
query plans generated in each system are equivalent or at least do not differ too greatly. We warm
up each DBMS first by executing all of the TPC-H queries without taking measurements.

The results of this experiment are shown in Figure 3.16. We now provide an analysis of the eight
TPC-H queries:

Q1: HyPer performs the best in Q1, completing almost 1.38× faster than Peloton, and more than
6.5× faster than Vector. This is because HyPer uses fixed-point decimal arithmetic rather thanmore
computationally expensive floating point arithmetic.

Q3: Pelotonwith ourROF technique outperformsVector andHyPer by 1.8× and 1.5×, respectively.
Additionally, we see that Pelotonwithout our ROF technique is comparable toHyPer since they both
use the same push-based compiled queries. Q3 contains two joins, both of which access a hash-table
that does not fit in cache if the join is not partitioned using early materialization. This means that
every access to the hash-table is a cache-miss. Our ROF technique hides this cache-miss latency
by overlapping computation and memory accesses of different tuples. While (radix) partitioning-
based joins is another strategy to solve this problem, previous work has shown that the subsequent
overhead of gathering attributes necessary for operators following the join negates the benefits of
gained by in-cache joins [133]. Second, Vector executes the LINEITEM predicate using a SIMD scan.
This version of HyPer does not implement SIMD scans, though this is addressed in later work [88].

Q4: Peloton with our ROF technique outperforms both Vector and HyPer by 1.8× and 1.2×, re-
spectively. Peloton without ROF has performance comparable to Vector, but is outperformed by
HyPer. The primary reason for this is because HyPer uses CRC32 for hashing, implemented using
SIMD (SSE4), whereas Peloton uses the more computationally intensive MurmurHash3. Thus, the

51 CHAPTER 3. RELAXED OPERATOR FUSION

cache benefits afforded by prefetching with ROF are slightly offset by the higher instruction over-
head (in comparison to HyPer) due to a more complex hash function. In general, Peloton with ROF
improves performance over the baseline by more than 2×.

Q5: Peloton with ROF is roughly 3.4× faster than Vector and 1.1× faster than HyPer. Q5 stresses
join performance as it contains a five-way join between the largest tables in the benchmark. Hence,
prefetching plays an important role as materialized join-tables will exceed the size of cache. Pelo-
ton with ROF (and prefetching) improves baseline performance by over 2×, but only offers a small
improvement over HyPer. As in Q4, this is due to the simpler CRC32 hash function employed by
HyPer. The scan over LINEITEM contains no restrictions before probing the hash-table on ORDERS,
hence the majority of time is spent performing hash computations in Peloton. This higher instruc-
tion count in comparison to HyPer offsets the benefits of prefetching.

Q6: Peloton with ROF outperforms Vector by 5.4× and HyPer by 2.3×. Q6 is a sequential scan
with a highly selective predicate (1.2%). Hence, leveraging SIMD predicate evaluation yields signif-
icant performance improvements, more than 2× in Peloton. The version of HyPer we use does not
include the SIMD optimizations [88], but we believe it will also enjoy similar benefits of SIMD.

Q13: In Q13, we see that Peloton without ROF performs worse than Vector, but when we enable
ROF to remove the cache miss penalties incurred during the join it performs roughly 1.4× faster
than Vector. We note here that the majority of time spent in executing this query is in the scan of
the ORDERS table. This is because the scan involves a LIKE clause and thus the query’s performance
hinges on the performance this evaluation. We note that Peloton uses a simple comparison for the
LIKE function that assumes clean input data. The slower results for Vector and HyPer suggest to us
that they are likely using more sophisticated implementations that are able to handle problematic
data better (e.g., broken UTF encodings).

Q14: This query contains a highly selective scan on LINEITEM that benefits from a SIMD imple-
mentation. Peloton and Vector are able to take advantage of this optimization, but HyPer (in this
version) and Peloton without ROFmust execute a scalar scan. We note that both Peloton andVector
implement Q14 with a hash-join, whereas HyPer uses an index nested-loop join. This is the reason
why Peloton without ROF is slower than HyPer since the probe phase of the join will incur the ad-
ditional overhead of duplicate chain traversal. But with the addition of SIMD scan and prefetching
over the build- and probe-phase of the join, Peloton with ROF performs 3.9× and 1.35× faster than
Vector and HyPer, respectively.

Q19: Similar to Q14, Q19 also contains a highly selective scan on LINEITEM. But Peloton uses
dictionary-encoding for the filtered attributes because their cardinalities are sufficiently small. With
dictionary-encoding enabled, Pelotonwith ROF converts the scalar scan over LINEITEM into vector-
ized scan using SIMD. Vector also automatically compresses strings. With the addition of prefetch-
ing and staging, Peloton with ROF executes this query 6× faster than Vector and 8× faster than
HyPer.

3.4. CONCLUSION 52

3.4 Conclusion
Wepresented the relaxed operator fusion query processingmodel for in-memoryOLAPDBMSs.

With ROF, the DBMS introduces staging points in a query plan where intermediate results are tem-
porarily materialized to cache-resident buffers. Such buffers enables the DBMS to employ various
optimizations to exploit inter-tuple parallelism using a combination of vectorization and software
prefetching. This allows a DBMS to support faster OLAP query execution and to support vector-
ization optimizations that were previously not possible when data sets exceed the size of CPU-level
caches. We implemented our ROF model in the Peloton in-memory DBMS and showed that it re-
duces the execution time of OLAP queries by up to 2.2×. We also compared Peloton with ROF
against two other in-memory DBMSs (HyPer and Actian Vector) and showed that it achieves 1.8×
lower execution times.

Chapter 4

Permutable Compiled Queries

Although query compilation can accelerate the execution of a query plan, existing compilation tech-
niques cannot overcome poor choices made by the DBMS’s optimizer when constructing that plan.
Sub-optimal choices by the optimizer arise for several reasons, including: (1) the search spaces are
exponential (hence the optimal plan might not even be considered), and (2) the cost models that
optimizers use to estimate the quality of a query plan are notoriously inaccurate [91].

One approach to overcomingpoor choices by the optimizer is adaptive query processing (AQP) [46],
which introduces a dynamic feedback loop into the optimization process. While effective in inter-
preter-based DBMSs, AQP is infeasible in DBMSs that use JIT query compilation for two reasons.
First, compiling a new query plan is expensive: often on the order of several hundreds of millisec-
onds for complex queries [82]. Second, the conditions of the DBMS’s operating environment may
change throughout the execution of a query. Thus, achieving the best performance is not a matter
of recompiling once; the DBMS may need to make adjustments repeatedly throughout the query’s
lifetime.

Although there are clear benefits toAQP, generating a newplan or including alternative pipelines
in a query is not ideal for compilation-based systems. Foremost is that compiling a new plan from
scratch is expensive. But even if the DBMS’s optimizer pre-computed all variations of a pipeline
before compiling the query, including extra pipelines in a plan increases the compilation time. The
DBMS could compile these pipelines in the background [82], but then it is using CPU resources for
compilation instead of query execution.

There are also fine-grained optimizationswhere it is infeasible to use either of the two aboveAQP
methods. For example, suppose the DBMS wants to find an ordering of predicates in a table scan
such that the most selective predicates are evaluated first. Since the number of possible orderings is
combinatorial, the DBMS has to generate a separate scan pipeline for each ordering. The number of
pipelines is so high that the computation requirements to compile themwould dominate the system.
Even if the DBMS compiled alternative plans on-the-fly, it still may not adapt quickly enough if both
the data and operating environment change during execution.

To help motivate the need for low-overhead AQP in compilation-based DBMSs, we present an
experiment that measures the performance of evaluating a WHERE clause during a sequential scan

53

54

0.0 0.2 0.4 0.6 0.8 1.0
Selectivity

0

10

20

30

40

50
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Static Optimal Permutable (PCQ)

(a) Execution Time

1 2 3 4 5 6 7
Predicates

10
0

10
1

10
2

10
3

C
od

e-
G

en
 T

im
e

(m
s)

Static Optimal Permutable (PCQ)

(b) Code-Generation Time

Figure 4.1: ReoptimizingCompiledQueries – PCQ enables near-optimal execution through adap-
tivity with minimal compilation overhead.

on a single table (A) composed of six 64-bit integer columns (col1–col6) that has 10m tuples. The
workload is comprised of a single query:

SELECT * FROM A
WHERE col1 = δ1 AND col2 = δ2 AND . . . AND col6 = δ6

We generate each column’s data and choose each filtering constant (δi) so that the overall selec-
tivity is fixed, but each predicate term’s selectivity changes for different blocks of the table. We defer
the description of our experimental setup to Section 5.4.

We first measure the time the DBMS takes to execute the above query using the best “static”
plan (i.e., one with a fixed evaluation order chosen by the DBMS optimizer). We also execute an
“optimal” plan that is provided the best filter ordering for each data block a priori. The optimal plan
is as if the DBMS compiled all possible pipelines for the query and represents the theoretical lower
bound execution time. Lastly, we also execute the query using permutable filters that the DBMS
reorders based on selectivities.

55 CHAPTER 4. PERMUTABLE COMPILED QUERIES

SELECT * FROM foo
WHERE A=1 AND B=2 AND C=3

Optimizer

Bytecode

Stage #2 - Compilation

C=3
B=2
A=1query:

0x00 FilterInit
0x0c FilterInsert
0x14 RunFilters
...

Filters

Physical
Plan TPL

Stage #1 - Translation

Translator

fun a_eq_1() { ... }
fun b_eq_2() { ... }
fun c_eq_3() { ... }
fun query() {
 var filters = {[
 a_eq_1,
 b_eq_2,
 c_eq_3]}
 for (v in foo) {
 filters.Run(v)
 }}

Stage #3 - Execution

Compiler
Execution

Loop

Execute Permute

Stats

C=3
B=2
A=1

Policies

Samples Analysis

Figure 4.2: System Overview – The DBMS translates the SQL query into a DSL that contains indi-
rection layers to enable permutability. Next, the system compiles the DSL into a compact bytecode
representation. Lastly, an interpreter executes the bytecode. During execution, the DBMS collects
statistics for each predicate, analyzes this information, and permutes the ordering to improve per-
formance.

The results in Figure 4.1a show that the static plan is up to 4.4× slower than the optimal plan
when selectivity is low. As selectivity increases, the performance gap gradually reduces since more
tuples must be processed. Our second observation is that PCQ is consistently within 10% of the
optimal execution time across all selectivities. This is because it periodically reorders the predicate
terms based on real-time data distributions.

Next, we measure the code-generation time for each of the three approaches as we vary the
number of filter terms. In this experiment, we add an additional filter term on col1 to form a range
predicate. The results in Figure 4.1b reveal that when there are fewer than three filter terms, the code-
generation time for all approaches is similar. However, beyond three terms, the optimal approach
becomes impractical as there areO(n!) possible plans to generate. In contrast, the code-generation
time for the permutable query increases by ∼20% from one to seven terms.

Given these results, what is needed is the ability for a compilation-based DBMS to dynamically
permute and adapt a query planwithout having to recompile it, or eagerly generate alternative plans.

4.1 Overview
To overcome the gap between the rigid nature of compilation and fine-grained adaptivity, this

chapter presents a system architecture and AQP method for JIT-based DBMSs to support Per-
mutable Compiled Queries (PCQ). The key insight in PCQ is our novel compile-once approach:
rather than invoking expensive compilationmultiple times or pre-compilingmultiple physical plans,
with PCQ we compile a single physical query plan. But we design this single plan so that the DBMS
can easily permute it later without significant recompilation to support fine-grained adaptivity.

The goal of PCQ is to enable a JIT-based DBMS to modify a compiled query’s execution strat-
egy while it is running without (1) restarting the query, (2) performing redundant work, or (3) pre-
compiling alternative pipelines. A key insight behind PCQ is to compile once in such a way that the
query can be permuted later while retaining compiled performance. At a high-level, PCQ is similar
to proactive reoptimization [24] as both approaches modify the execution behavior of a query with-
out returning to the optimizer for a new plan or processing tuplesmultiple times. The key difference,
however, is that PCQ facilitates these modifications for compiled queries without pre-computing
every possible alternative sub-plan or pre-defining thresholds for switching sub-plans. PCQ is a dy-

4.1. OVERVIEW 56

namic approach where the DBMS explores alternative sub-plans at runtime to discover execution
strategies that improve a target objective function (e.g., latency, resource utilization). This adaptiv-
ity enables fine-grained modifications to plans based on data distribution, hardware characteristics,
and system performance.

In this section, we present an overview of PCQ using the example query shown in Figure 4.2.
As we discuss below, the life-cycle of a query is broken up into three stages.

Stage #1 - Translator After the DBMS’s optimizer generates a physical plan for the query, the
Translator converts the plan into a domain-specific language (DSL), called TPL, that decomposes
the plan into pipelines. Using TPL enables the DBMS to reason about and apply database-specific
optimizations more easily than a general-purpose language (e.g., C/C++). As we will describe later,
another benefit of using this restricted DSL is that it has low-latency compilation times.

TPL mixes Vectorwise-style pre-compiled primitives [29] with HyPer’s JIT query compilation
through pipelines [108]. It provides pre-compiled and vectorized builtin functions. The Translator
generates these vectorized calls whenever possible (e.g., for vectorizable predicates), and reverts to
tuple-at-a-time processing otherwise (e.g., for predicates involving complex arithmetic). Leveraging
both techniques enables the DBMS to reduce or hide the overhead incurred in supporting PCQ,
while achieving high performance.

Additionally, the Translator augments the query’s TPL program with additional PCQ constructs
to facilitate permutations. The first is hooks for collecting runtime performance metrics for low-level
operations in a pipeline. For example, the DBMS adds hooks to the generated program in Figure 4.2
to collect metrics for evaluating WHERE clause predicates. The DBMS can toggle this collection on
and off depending onwhether it needs data to guide its decision-making policies on how to optimize
the query’s program.

The second type of PCQ constructs are parameterized runtime structures in the program that
use indirection to enable the substitution of execution strategieswithin a pipeline. TheDBMS parame-
terizes all relational operators in this way. This design choice follows naturally from the observation
that operator logic is comprised of query-agnostic and query-specific sections. Since theDBMS gen-
erates the query-specific sections, it is able to generate different versions uses indirection to switch
at runtime. We define two classifications of indirection. The first level is when operators are un-
aware or unconcerned with the specific implementation of query-specific code. The second level of
indirection requires coordination between the runtime and the code-generator.

In the example query in Figure 4.2, the Translator organizes the predicates in an arraywith hooks
that allow the DBMS to rearrange their evaluation order. For example, the DBMS could choose to
switch the first predicate it evaluates to be on attribute foo.C if it is the most selective. Each entry
in the indirection array is a pointer to the generated code. Thus, permuting the execution strategy
for this part of the query only involves lightweight pointer swapping.

Stage #2 - Compilation In the second stage, the Compiler converts the DSL query program (in-
cluding both its hooks for collecting runtime performance metrics and its use of indirection to
support dynamic permutation) into a compact bytecode representation. This bytecode is a CISC
instruction set composed of arithmetic, memory, and branching instructions, as well as database-

57 CHAPTER 4. PERMUTABLE COMPILED QUERIES

level instructions, such as for comparing SQL values with NULL semantics, constructing iterators
over tables and indexes, building hash tables, and spawning parallel tasks.

In Figure 4.2, the query’s bytecode contains instructions to construct a permutable filter to eval-
uate the WHERE clause. The permutable filter stores an array of function pointers to implementations
of the filter’s component. The order the functions appear in the array is the order that the DBMS
executes them when it evaluates the filter.

Stage #3 - Execution After converting the query plan to bytecode, the DBMS uses adaptive exe-
cution modes to achieve low-latency query processing [82]. The DBMS begins execution using a
virtual machine interpreter. Simultaneously, a background thread compiles the bytecode into na-
tivemachine code using LLVM.Once the background compilation terminates, the function pointers
(shown in Figure 4.2) are atomically swapped to point to compiled code. Thus, different versions of
a functionmay run simultaneously during query processing by different threads, or between consec-
utive invocations in a single thread. Although this mechanism is not strictly necessary to support
PCQ, it reduces the latency of short running queries.

During execution, the plan’s runtime data structures use policies to selectively enable lightweight
metric sampling. In Figure 4.2, the DBMS collects selectivity and timing data for each filtering term
periodically with a fixed probability. It uses this information to construct a ranking metric that
orders the filters to achieve the smallest execution time given the current data distribution. Each
execution thread makes an independent decision since they operate on distinct segments of the
table and potentially observe different data distributions. All permutable components use a library
of policies to decide (1) when to enable metric collection and (2) what adaptive policy to apply given
new runtimemetric data. The execution engine continuously performs this cyclic behavior over the
course of a query. Since JIT code is faster than bytecode, the DBMS may observe varying runtimes
between invocations of the same function when it switches from interpreted mode to compiled
mode assuming similar data characteristics.

The DBMS uses a pull-based batch-oriented engine that combines vectorized and tuple-at-a-
time execution in the same spirit as Relaxed Operator Fusion (ROF) [101]. Batch-based execution
allows the DBMS to amortize the cost of expensive auxiliary operations related to PCQ, including
those to collect statistics, perform permutations, and execute non-inlined function calls. It uses
ROF to implement hash table operations for joins and aggregations with prefetch-enabled code
paths. Likewise, the DBMS uses ROF to support vectorized predicate evaluation with SIMD.

4.2 Supported Query Optimizations
We now present the optimization categories that are possible with PCQ. As described above,

the DBMS generates execution code for a query in a manner that allows it to modify its behavior at
runtime. The core idea underlying PCQ is that the generated code supports the ability to permute or
selectively enable operations within a pipeline whenever there could be a difference in performance
of those operations. These operations can be either short-running, fine-grained steps (e.g., a single
predicate) or more expensive relational operators (e.g., joins). These optimizations are independent
of each other and do not influence the behavior of other optimizations in either the same pipeline
or other pipelines for the query.

4.2. SUPPORTED QUERY OPTIMIZATIONS 58

SELECT * FROM A WHERE col1 * 3 = col2 + col3 AND col4 < 44
(a) Example Input SQL Query

 6 fun p1(v:*Vec) {
 7 @selectLT(v.col4,44)}

 8 fun p2(v:*Vec) {
 9 for (t in v) {
10 if (t.col1*3 ==
11 t.col2+t.col3){
12 v[t]=true}}}

 1 fun query() {
 2 var filters={[p1,p2]}
 3 for (v in A) {
 4 filters.Run(v)
 5 }}

Execute
p1
p2

Permute
p2
p1

Profile

Sel. Cost
10
4

0.5
0.7

p1
p2

Rank
0.05
0.75

Stats

Policies

(b) Generated Code and Execution of Permutable Filter

Figure 4.3: Filter Reordering – An example depicting PCQ permutable filters. The Translator con-
verts the query in (a) to the program on the left side of (b). This program uses a data structure
template with query-specific filter logic for each filter clause. The right side of (b) shows how the
policy collects metrics and then permutes the ordering.

For each category, we describe the steps for supporting PCQ. We first discuss what changes (if
any) the DBMS’s optimizer makes to a query’s plan and how the Translator organizes the code to
support runtime permutations. We also discuss how the DBMS collects metrics about each opti-
mization that it uses for policy decisions.

4.2.1 Filter Reordering
The first optimization is the ability to modify the evaluation order of predicates during a scan

operation. The optimal ordering strikes a balance between selectivity and evaluation time: applying
a more selective filter first will discard more tuples, but it may be expensive to run. Likewise, the
fastest filter may discard too few tuples, causing the DBMS to waste cycles applying subsequent
filters. We use Figure 4.3 as a running example through this discussion.

Preparation / Code-Gen: Consider the SQL query in Figure 4.3a. The first step is to prepare the
physical plan to support reordering. The DBMS normalizes filter expressions into their disjunctive
normal form (DNF). An expression in DNF is composed of a disjunction of summands, s1 ∨ s2 ∨
. . . sM . Each summand, si, is a conjunction of factors, f1 ∧ f2 ∧ . . . fN . Each factor constitutes
a single predicate in the larger filter expression (e.g., col4 < 44). The DBMS can reorder factors
within a summand, as well as summands within a DNF expression. Thus, there are R = M !N !
possible overall orderings of a filter in DNF.

Decomposing and structuring filters as functions has two benefits. First, it allows the DBMS to
explore different orderings without having to recompile the query. Re-arranging two factors incurs

59 CHAPTER 4. PERMUTABLE COMPILED QUERIES

negligible overhead as it involves a function pointer swap. The second benefit is that the DBMS
utilizes both code-generation and vectorization where each is best suited. The system implements
complex arithmetic expressions in generated code to remove the overhead of materializing interme-
diate results, while simpler predicates fall back to a library of ∼250 vectorized primitives.

Since theWHERE clause in Figure 4.3a is inDNF, the query requires no furthermodification. Next,
the Translator generates a function for each factor in the filter that accepts a tuple vector as input.
In Figure 4.3b, p1 (lines 6–7) and p2 (lines 8–12) are generated functions for the query’s conjunctive
filter. p1 calls on a builtin vectorized selection primitive, while p2 uses fused tuple-at-a-time logic
directly in TPL. We note that LLVM will automatically vectorize p2 using SIMD instructions.

Lastly, line 2 in Figure 4.3b initializes a runtime data structure with a list of filter functions. This
structure encapsulates the filtering and permutation logic. A sequential scan is generated over A on
line 3 using a batch-oriented iteration loop, and the filter is applied to each tuple batch in the table
on line 4.

Runtime Permutation: Given the array of filter functions created previously during code-gener-
ation, this optimization seeks to order them to minimize the filter’s evaluation time. This process
is illustrated in Figure 4.3b. When the DBMS invokes the permutable filter on an input batch, it
decides whether to recollect statistics on each filter component. The frequency of collection and
precisely what data to collect are configurable policies. A simple approach, and the one employed
in this work, is to sample selectivities and runtimes randomly with a fixed probability p. There are
more sophisticated policies, and we wish to pursue them as part of this thesis.

If the policy chooses not to sample selectivities, the DBMS invokes the filtering functions in
their current order on the tuple batch. Functions within a summand incrementally filter tuples out,
and each summand’s results are combined together to produce the result of the filter. If the policy
chooses to re-sample statistics, the DBMS executes each predicate on all input tuples and tracks
their selectivity and invocation time to construct a profile. The DBMS uses a predicate’s rank as the
metric by which to order predicate terms. The rank of a predicate accounts for both its selectivity
and its evaluation costs, and is computed as 1−s

c
, where s specifies the selectivity of the factor, and

c specifies the per-tuple evaluation cost. After rank computation, the DBMS stores the refreshed
statistics in an in-memory statistics table. It then reorders the predicates using both their new rank
values and the filter’s permutation policy.

When the policy recollects statistics, the DBMS evaluates all filters to capture their true selec-
tivities (i.e., no short-circuiting). This means the DBMS performs redundant work that impacts
query performance. Therefore, policies must balance unnecessary work with the ability to respond
to shifting data skew quickly.

4.2.2 Adaptive Aggregations
Thenext optimization is to extract “hot” group-by keys in hash-based aggregations and generate

a separate code path for maintaining their values that do no probe the hash table. Hash aggrega-
tions are composed of five batch-oriented steps: (1) hashing, (2) probing, (3) key-equality check,
(4) initialization, and (5) update. Parallel aggregations require an additional sixth step to merge
thread-local partial aggregates into a global aggregation hash table. Each step takes in a vector of

4.2. SUPPORTED QUERY OPTIMIZATIONS 60

SELECT col1, COUNT(*) FROM A GROUP BY col1
(a) Example Input SQL Query

Policies

Hash
Hot Set?

17 fun aggregateMerge(
 ↪ hot:[*]Agg,ht:*HashTable){
18 ht[hot[0].col1]=hot[0]
19 ht[hot[1].col1]=hot[1]}

 1 fun query() {
 2 var aggregator = {[
 3 ..., // Normal funcs
 4 aggregateHot,
 5 aggregateMerge
 6]}
 7 for (v in foo) {
 8 aggregator.Run(v)
 9 }}

Count
≈5#Keys

Profile

Probe

Create + Initialize

Update

No

Initialize Hot

Aggregate Hot

Merge Hot

Yes

Hot Cold
10 fun aggregateHot(
 ↪ v:*Vec, hot:[*]Agg){
11 for(t in v) {
12 if(t.col1==hot[0].col1){
13 hot[0].c++}
14 elif(t.col1==hot[1].col1){
15 hot[1].c++}
16 }}

(b) Generated Code and Execution of Adaptive Aggregation

Figure 4.4: Adaptive Aggregations – The input query in (a) is translated into TPL on the left side
of (b). The generated TPL uses a runtime aggregation data structure that is templatized with query-
specific logic in addition to new customized functions to handle heavy-hitter groups. The right side
of (b) steps through one execution of a batched aggregation.

input tuples and potentially extra intermediate data vectors. The Translator generates custom code
for aggregate initialization, update, and merging because these are often computationally heavy and
query-specific. The other steps rely on vectorized primitives.

We now present PCQ adaptive aggregations that exploit skew in the grouping keys.We use Fig-
ure 4.4 as a running example in this section.

Preparation / Code-Gen: TheTranslator first creates a specialized function to handle the hot keys.
This function, aggregateHot on lines 10–16 in Figure 4.4, takes a batch of input tuples and an array
of N aggregate payload structures for the extracted hot keys. Each element in the array stores both
the grouping key and the running aggregate value. The policy determines the size of N . For east of
illustration, we choose to extract two heavy-hitter keys. The Translator generates a loop to iterate
over each tuple in the batch and checks for a key-equality match against one of the keys in the hot
array. As N is a query compile-time constant, the Translator generates N conditional branches.
Tuples that find a match update their aggregates according to the query; others fall through to the
“cold” key code path.

Next, the Translator generates a merge function, aggregateMerge on lines 17–19, that takes a
list of partially computed aggregates and merges them into the hash table. As before, becauseN is a

61 CHAPTER 4. PERMUTABLE COMPILED QUERIES

compile-time constant, the Translator unrolls and inlines the merge logic for the N aggregates into
the function.

Finally, in the main query processing function, the Translator creates the data structure (aggre-
gator) on lines 2–6 and injects it with pointers to generated functions encapsulating each step in
the aggregation, including the new functions to exploit key skew. The program then scans table A
in batches on lines 7–9, and processes the aggregation for batch on line 8. After scanning all tuples,
the algorithm adds the hot keys into the main hash table. For this, the Translator generates a merge
function, aggregateMerge on lines 17–19, that takes a list of partial aggregates and adds them to
the hash tables. As before, becauseN is a compile-time constant, the Translator unrolls and inlines
the merge logic for the N aggregates into the function.

Since the array of heavy-hitter aggregates is provided uninitialized, the first step is to initialize
them with what we believe to be the “hottest” keys in the current batch. This process also relies on
the policies available to theDBMS.One simply policy is to use the firstN unique keys in the batch as
the “hot” set. Another option is to randomly sample from within the current batch until N unique
keys are found. A more sophisticated policy is one that tracks the temperature of keys and inserts
them in the array by decreasing key temperature.

Once the heavy-hitter set has been initialized with N keys, the translator generates a loop that
iterates over each tuple in the batch and checks for a key equality match against one of the aggregate
elements in the heavy-hitter set. This is done by generating N conditional branches in the body of
the loop. Tuples that find a match update their aggregates according to the query. Those that don’t
will fall through to the normal process.

Runtime Permutation: Aggregation proceeds similarly as it would without any optimization, but
with one adjustment. While computing the hash values of grouping keys in a batch, the DBMS also
tracks an approximate distinct key count using HyperLogLog (HLL) [53]. Collecting this metric is
inexpensive since HLLs have a compact representation and incur minimal computational overhead
in comparison to themore complex aggregation processing logic. After hashing all tuples, if theHLL
estimates fewer than N unique grouping keys in the input batch, we follow the optimized pipeline.

In the optimized flow, the DBMS first allocates an array of aggregate values. It initializes this
array with the hottest keys in the current batch. The method for identifying these keys is defined
by the system’s configured policy. A simple policy is to use the first N unique keys in the batch. A
more sophisticated option is to randomly sample fromwithin the current batch untilN unique keys
are found. In this work, we use the former as we found it offers the best performance versus cost
trade-off.

After initializing the hot aggregates array, theDBMS invokes the optimized aggregation function.
On return, partially aggregated data is merged back into the hash table using the merging function.
Since HLL estimations have errors, it is possible for some tuples to not find amatch in the hot set. In
this case, the batch is processed using the cold path as well. Thus, there is a risk of an additional pass,
but the DBMS mitigates this by tuning the HLL estimation error. Supporting parallel aggregation
requires neither a modification to the algorithm described earlier, or the generation of additional
code. Each execution thread performs thread-local aggregation as before.

4.2. SUPPORTED QUERY OPTIMIZATIONS 62

4.2.3 Adaptive Joins
A PCQ DBMS optimizes hash joins by (1) tailoring the hash table implementation based on

runtime information and (2) reordering the application of joins in right- or left-deep query plans.
Wediscuss data structure specialization before describing the steps required during code-generation
and runtime to implement join reordering. We use the convention that the left input to a hash join
is the build side, and the right input is the probe side.

Hash table construction proceeds in two phases. First, the DBMS materializes the tuples from
the left join input into a thread-local memory buffer in row-wise format along with the computed
hash of the join columns. TheDBMS also tracks an approximate count of unique keys using anHLL
estimator. Once the left join input is exhausted, the DBMS uses HLL to estimate the hash table size.
If the estimated size is smaller than the CPU’s L3 cache capacity, the DBMS constructs a concise hash
table (CHT [113]); otherwise, it constructs a bucket-chained hash table with pointer-tagging [90].
With this, the DBMS is able to perfectly size the hash table, thereby eliminating the need to resize
during construction. Furthermore, deferring the choice of table implementation to runtime allows
the DBMS to tune itself according to the data distribution. In the second phase, each execution
thread scans its memory buffers to build a global hash table. If a bucket-chained hash table was
selected, pointers to thread-local tuples are inserted using atomic compare-and-swap instructions.
If a CHT was selected, a partitioned build is performed as described in [113]. We now describe how
to implement permutable joins using Figure 4.5 as the running example.

Preparation / Code-Gen: The DBMS’s optimizer supports permutable joins in right-deep query
plans containing consecutive joins, as in Figure 5.3a. The system designates one table as the “driver”
that it joins with one ormore tables (i.e., one per join). TheDBMSmay use either hash or index joins
depending on the selected access method. The DBMS applies the joins in any order regardless of
the join type (i.e., inner vs. outer) since each driver tuple is independent of other tuples in the table
and intermediate iteration state is transient for a batch of tuples. In Figure 4.5b, the DBMS can join
the tuples in A either against C or B first. The best ordering may change over the duration of a query
on a per-block basis due to variations in data distributions. Our implementation in NoisePage has
an additional requirement that the driver table contains all key columns required across all joins.

During code generation, the Translator first generates one key-check function per join. In Fig-
ure 4.5c, joinB (lines 9–12) and joinC (lines 13–14) are the key-check functions for joining tuples
from A against tables B and C, respectively. These functions take in a vector of input tuples and a
vector of potential join candidates, and then evaluates the join predicate for each tuple. As described
earlier, the DBMS may implement these functions either by dispatching to vectorized primitives or
using tuple-at-a-time logic directly in bytecode. In the example, joinC uses a built-in primitive to
perform a fused gather and select operation with SIMD instructions.

Next, the Translator constructs a data structure (joinExec on lines 3–5) in the pipeline tomanage
the join and permutation logic. This structure requires three inputs for each join: (1) a pointer to
the hash table to probe, (2) a list of attribute indexes forming the join key, and (3) a pointer to the
join’s key-check function. Finally, the Translator generates the scan code for A on lines 6–8 and the
invocation of the join executor for each tuple batch on line 7.

63 CHAPTER 4. PERMUTABLE COMPILED QUERIES

SELECT * FROM A
INNER JOIN B ON A.col1 = B.col1
INNER JOIN C ON A.col2 = C.col1

(a) Example Input SQL Query

B

C A

C

B A

Alternative #1 Alternative #2

(b) Possible Join Orderings

Profile

Sel. Time
20
4

0.1
0.8

Rank
0.045
0.050

Permute

 1 fun query() {
 2 // HT on B, C built.
 3 var joinExec = {[
 4 {ht_B, joinB},
 5 {ht_C, joinC}]}
 6 for (v in A) {
 7 joinExec.Run(v)
 8 }}

 9 fun joinB(
 ↪ v:*Vec,m:[*]Entry){
10 for (t in v){
11 if (t.col1==m[t].col1){
12 v[t]=true}}}

13 fun joinC(
 ↪ v:*Vec,m:[*]Entry) {
14 @gatherSelectEq(v.col2,
 ↪ m,0)}

Hash Probe

B

C

Stats

B

C

Policies

(c) Generated Code and Execution of Permutable Joins

Figure 4.5: Adaptive Joins – The DBMS translates the query in (a) to the program in (c). The right
side of (c) illustrates one execution of a permutable join that includes a metric collection step.

Runtime Permutation: The objective of the DBMS is to dynamically order the joins so as to min-
imize the overall execution time. This process is depicted in Figure 4.5c. During execution, the
DBMS first computes a hash value for each tuple in the input batch. The attribute indexes provided
earlier during initialization identify the columns to hash and their order. Next, a policy decision is
made whether to recollect statistics on each join. Assuming the affirmative, the DBMS then probes
each hash table.

The probing process is decomposed into two steps. Since hash tables embed Bloom filters, the
DBMS performs the combined lookup and filter operation using only the hash values computed in
the previous step. The second step invokes each join’s key-equality function to resolve false positives
from the first step. The DBMS ensures that only tuples that pass previous joins are processed in the
remaining joins. After completion, the system creates a profile that captures selectivity and timing
information for each join step. Similar to filters, the DBMS saves the profile to its internal catalog
and then permutes the join according to the policy.

4.3 Experimental Evaluation
We now present a brief analysis of the PCQ method and corresponding system architecture. We

implemented our PCQ framework and execution engine in the NoisePage DBMS [9]. NoisePage is

4.3. EXPERIMENTAL EVALUATION 64

a PostgreSQL-compatible HTAP DBMS that uses HyPer-style MVCC [110] over the Apache Arrow
in-memory columnar data [93]. Each Arrow block of tuples is 1 MB allocated using jemalloc. It
uses LLVM (v9) to JIT compile our bytecode into machine code.

We performed our evaluation onmachinewith 2× 10-core Intel Xeon Silver 4114 CPUs (2.2GHz,
25 MB L3 cache per-core) and 128 GB of DRAM. This processor supports AVX512 instructions and
contains ten line-fill buffer (LFB) slots that each support one outstanding memory prefetch request.
We implemented our microbenchmarks using the Google Benchmark [5] library; it runs each ex-
periment a sufficient number of iterations to get a statistically stable execution time results.

We begin by describing the workloads that we use in our evaluation. We then measure PCQ’s
ability to improve the performance of compiled queries. We execute these first experiments using
a single thread to minimize scheduling interference. Lastly, we present a comparison of NoisePage
on multi-threaded queries with PCQ against two state-of-the-art OLAP DBMSs.

4.3.1 Workloads
We first describe the three workloads that we use in our evaluation:

Microbenchmark: Wecreated a synthetic benchmark to isolate andmeasure aspects of theDBMS’s
runtime behavior. The database contains six tables (A–F) that each contain six 64-bit signed integer
columns (col1–col6). Each table contains 3m tuples and occupies 144 MB of memory. For each
experiment that uses this benchmark, we vary the distributions and correlations of the database’s
columns’ values to highlight a specific component. The workload contains three query types that
each target a separate optimization from Section 4.2: (1) a scan query with three predicates, (2) an
aggregation query with groupings, and (3) a multi-way join query.

TPC-H: This is a decision support system workload that simulates an OLAP environment [146].
It contains eight tables in 3NF schema. We use a scale factor of 10 (∼10 GB). To better represent real-
world applications, we use a skewed version of the TPC-H generator [12]. We select nine queries that
cover the TPC-H choke-point categories [28] that vary from compute- to memory/join-intensive
queries. Thus, we expect our results to generalize and extend to the remaining queries in the bench-
mark.

Star Schema Benchmark (SSB): This workload simulates a data warehousing environment [112].
It is based on TPC-H, but with three differences: (1) it denormalizes the two largest tables (i.e.,
LINEITEM and ORDERS) into a single new fact table (i.e., LINEORDER), (2) it drops the PARTSUPP
table, and (3) it creates a new DATE dimension table. SSB consists of thirteen queries and is char-
acterized by its join complexity. We use a scale factor of 10 (∼10 GB) using the default uniformly
random data generator.

4.3.2 Filter Adaptivity
In this experiment, wemeasure PCQ’s ability to optimize and permute filter ordering in response

to shifting data distributions. As the query executes, the selectivity of its predicates changes over

65 CHAPTER 4. PERMUTABLE COMPILED QUERIES

0 500 1000 1500
Block #

0

2

4

6

8
Ex

ec
ut

io
n

Ti
m

e
Pe

r B
lo

ck
 (µ

s) Shift in
selectivities

Shift in
selectivities

Order-1 Order-2 Order-3 Permutable

Figure 4.6: Performance Over Time – Execution time of three static filter orderings and the PCQ
filter as we perform a sequential scan over a table.

time, thereby changing the optimal order. We use the microbenchmark workload with a SELECT
query that performs a sequential scan over a single table:

SELECT * FROM A
WHERE col1 < C1 AND col3 < C2 AND col3 < C3

The constant values in the WHERE clause’s predicates enable the data generators in each experi-
ment to target a specific selectivity.

Performance Over Time: The first experiment evaluates the performance of PCQ filters during
a table scan as we vary the selectivity of individual predicates. We populate each column such that
one of the predicates has a selectivity of ∼2% while the remaining two have 98% selectivity each.
We alternate which predicate is the most selective over disjoint sections of the table. That is, for the
first 500 blocks of tuples, the predicate on col1 is the most selective. Then for the next 500 blocks,
the predicate on col2 is the most selective. Thus, each predicate is optimal for only 1

3
of the entire

table.
We execute this query with the filter reordering optimization using a 10% sampling rate policy

(i.e., theDBMS collects performancemetrics per blockwith a probability of 0.1). We also execute the
query using three static orderings that each evaluate a different predicate first. These static orderings
represent how existing JIT compilation-based DBMSs execute queries without permutability.

The results in Figure 4.6 show the processing time per block during the scan. Each of the static
orderings is only optimal for a portion of the table, while PCQ discovers new optimal orderings
after each transition. The performance of PCQ is suboptimal in the beginning because it is initially
configured with a random ordering. However, within ten blocks of data, PCQ re-samples its se-
lectivity metrics and permutes itself to the optimal ordering. During the transition periods after
the distribution changes at blocks #500 and #1000, PCQ incurs some jitter in performance. This
variance is because the DBMS is executing the previously superior ordering. After re-collecting
statistics, however, the DBMS changes the ordering to find the new optimal configuration in about
10–15 blocks. As such, the PCQ query is ∼2.5× faster than any of the static orderings.

4.3. EXPERIMENTAL EVALUATION 66

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Predicate Selectivity

0

2

4

6

8
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Static Optimal Permutable

Figure 4.7: Varying Predicate Selectivity – Performance of the static, optimal, and permutable
orderings when varying the overall query selectivity.

Varying Predicate Selectivity: We next analyze the permutable filter optimization across a range
of selectivities to measure its robustness. For this experiment, we modify the table’s data distribu-
tion for the above query such that the filters’ combined selectivity varies from 0% (i.e., no tuples
are selected) to 100% (i.e., all tuples are selected). As before. the DBMS uses a 10% sampling rate
policy. We compare against a “static” ordering as chosen by the DBMS’s query optimizer based on
collected statistics. We also execute an “optimal” configuration where we provide the DBMS with
the best ordering of the filters on a per-block basis. This optimal plan represents the upper bound
in performance that the DBMS could achieve without the re-sampling overhead.

The results in Figure 4.7 show that PCQ is competitive (within 20%) of the optimal configu-
ration across all selectivities. Our second observation is that both optimal and PCQ consistently
outperform the static ordering provided by the DBMS below 100% selectivity. At 0%, PCQ and
optimal are 2.7× and 3.6× faster than static, respectively. This is because each is able to place the
most selective term (i.e., the one yielding fewest output tuples) first in the evaluation order. As the
filter selectivity increases, the execution times of all configurations also increase since the DBMS
must process more tuples. At 100% selectivity, the PCQ filter performs the worst because it suffers
from sampling overhead; if all tuples are selected, adaptivity is not required. Finally, all orderings
perform better at 100% selectivity than at 90% because the DBMS has optimizations that it only
enables when vectors are full.

Filter PermutationOverhead: As described in Section 4.2, there is a balance between theDBMS’s
metric collection frequency and its impact on runtime performance. To better understand this
trade-off, we next execute the SELECT query with different re-sampling frequencies. We vary the
frequency from 0.0 (i.e., no sampling) to 1.0 (i.e., the DBMS samples and re-ranks predicates after
accessing each block). We fix the combined selectivity of all the filters to 2% and vary which filter is
the most selective at blocks #500 and #1000 as in Figure 4.6. The query starts with the Order-3 plan
from Figure 4.6 as this was the static ordering with the best overall performance. We instrument the
DBMS to measure the time spent in collecting the performance metric data versus query execution.

67 CHAPTER 4. PERMUTABLE COMPILED QUERIES

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Statistic Re-Sampling Frequency

0

2

4

6
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Overhead Execution

Figure 4.8: Filter PermutationOverhead – Performance of the permutable filter when varying the
policy’s re-sampling frequency and fixing the overall predicate selectivity to 2%.

The results, shown Figure 4.8, demonstrate the non-linear relationship between metric collec-
tion frequency and performance. Disabling sampling removes any overhead, but incurs a ∼1.7×
slow-down compared to permutable filters because the DBMS cannot react to fluctuations in data
distributions. Sampling on every block (i.e., 100% sampling rate) adds 15% overhead to execution
time. The DBMS performs best with at a 0.1 (i.e., 10%) sampling rate and thus, we use this setting
for the remaining experiments.

4.3.3 Aggregation Adaptivity
We next evaluate PCQ’s ability to exploit skew when performing hash aggregations. Unless oth-

erwise specified, the experiments in this section use the microbenchmark workload with a SELECT
query that performs a hash aggregation over a single table:

SELECT col1, SUM(col2), SUM(col3), SUM(col4)
FROM A

GROUP BY col1

We modified the workload’s data generator to skew the grouping key (col1) to highlight a spe-
cific component of the system.

Varying Number of Aggregates: We first measure the performance of PCQ aggregations as we
vary the total number of unique aggregate keys in the benchmark table. We populate the grouping
key column (col1) with values from a random distribution to control the number of unique keys
per trial. The data for the columns that are used in the aggregation functions (col2–col4) are
chosen randomly (uniform) from their respective value domains.

We configured the PCQ framework to use five heavy-hitter keys. The choice of five is tunable
for the DBMS, but fixed in this experiment. We also execute a static plan that fuses the table scan
with the aggregation using a data-centric approach [108]. The static plan represents how existing
JIT-based DBMSs execute the query.

4.3. EXPERIMENTAL EVALUATION 68

20 22 24 26 28 210 212 214 216 218

Aggregates

0

250

500

750
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Static Permutable

Figure 4.9: Varying Number of Aggregates – Performance of the adaptive aggregation as we vary
the total number unique aggregate keys.

The results are shown in Figure 4.9. When the number of aggregates is small (i.e., <16k keys),
the hash table fits in the CPU cache and PCQ outperforms the static configuration. When there
are fewer than five keys, PCQ routes updates through the “hot” path yielding a 1.5× improvement.
Beyond this threshold, PCQ falls back to its hybrid vectorized and JIT implementation, outper-
forming the static plan by 1.6×. PCQ fairs well even at high cardinality because (1) it performs
data-independent random accesses into the hash table and (2) both pre-compiled and generated
aggregation steps are auto-vectorized. The benefits of data-independent memory access and auto-
vectorization are most pronounced when the hash table exceeds the CPU’s LLC. Figure 4.9 shows
that this occurs at ∼256k keys where PCQ is 3× faster than the static plan.

Varying Aggregation Skew: The DBMS must be careful when deciding how many heavy-hitter
keys to extract into specialized JIT code for permutable aggregations. Extracting more keys (1)
introduces the possibility of branch mispredictions that increase runtime, and (2) generates larger
functions that increase compilation time.

To explore the relationship between the size of the heavy-hitter key set and performance, we
execute the same SELECT query as before, but fix the total number of unique grouping keys to
200k. We use a skewed Zipfian distribution for the grouping keys and execute the query using PCQ
in configurations that extract zero to eight heavy-hitter keys from the aggregation hash table. We
measure both the query execution time and the percentage of tuples that hit one of the conditional
branches for an extracted key.

The results in Figure 4.10a show that the configurations are within 3% of each other for low skew
values (i.e., less than one). None performs the best since the others introduce untaken branch in-
structions due to the uniformity in the key distribution. As skew increases, the versions that extract
keys perform better. At skew level 1.0, None performs 1.15×worse that all other configurations. The
benefit of this optimization plateaus with increasing skew as the DBMS hits the memory bandwidth
limits of the system. None uses the bucket-chained hash tablewhile other versions update aggregates
stored in plain arrays. At a skew level of 2.4, the Hot-8 configuration is 18× faster than None.

69 CHAPTER 4. PERMUTABLE COMPILED QUERIES

0.0 0.5 1.0 1.5 2.0 2.5
Skew

0

50

100

150
Ex

ec
ut

io
n

Ti
m

e
(m

s)
None Hot-1 Hot-2 Hot-4 Hot-8

(a) Performance

0.0 0.5 1.0 1.5 2.0 2.5
Skew

0

50

100

H
it

R
at

e
(%

)

(b) Hit Rate

Figure 4.10: Varying Aggregation Skew – Performance of PCQ’s adaptive aggregation when in-
creasing skew in aggregate keys with a fixed number of keys. (a) shows the total execution time to
perform the aggregation. (b) shows the percentage of input tuples that hit a heavy-hitter branch.

Figure 4.10b shows the percentage of tuples that match a hot key in the optimized aggregation
function. With low skew (i.e., below 1.0), 10% of the tuples take a heavy-hitter branch; the remaining
suffer the branch misprediction and fall back to the cold key path. Cost mispredictions are the
reason why the optimized plans perform worse at a lower skew. At a higher skew the optimized
versions absorb more updates that bypass the hash table, resulting in fewer cycles-per-tuple. At
skew level 1.6, Hot-1 incurs a 45% hit rate, while Hot-8’s rate is 82%. At the highest skew (2.4), the
min/max hit rates are 72% and 98%, respectively; this explains the performance improvements in
the optimized plans.

4.3.4 Join Adaptivity

Weevaluate PCQ’s ability to optimize hash join operations in response to changing data distribu-
tions. Each experiment constructs a right-deep join tree that builds hash tables in separate pipelines
and probes them in the final pipeline. The experiments customize the data generation for each join
key to target a specific join selectivity across any pair of tables, along with the overall selectivity.

4.3. EXPERIMENTAL EVALUATION 70

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Selectivity

0

50

100

150
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Static Permutable

Figure 4.11: Varying Join Selectivity – Execution time to perform three hash-joins while varying
overall join selectivity.

Varying JoinSelectivity: This experiment performs two inner hash joins between threemicrobench-
mark workload tables:

SELECT * FROM A
INNER JOIN B ON A.col1 = B.col1
INNER JOIN C ON A.col2 = C.col1

We tailor the data generation for the above join attributes to achieve a desired selectivity from
0% (i.e., no tuples find join partners) to 100% (i.e., all tuples find join partners). We execute the
join using a static ordering that reflects the join order provided by the DBMS. Moreover, the im-
plementation uses a fused tuple-at-a-time processing model as would be generated by HyPer’s JIT
compilation-based engine [108]. We also execute the PCQ join with a 10% re-sampling rate policy.
The PCQ variant starts with the same initial join ordering as provided to the static option.

Figure 4.11 shows that at 0% selectivity, the PCQ join performs ∼14× better than the static join.
This is because PCQ discovers and permutes the joins into their optimal order within ten blocks
of processing the probe input. As the selectivity of the join increases, the need for permutability
decreases since the DBMS must process more tuples. At 100% selectivity, PCQ betters the static
plan since it vectorizes the hashing, probing, and key-equality steps. Some of the benefits of this
vectorization, however, are negated by the sampling overhead incurred to support permutability.

Varying Number of Joins: We now evaluate PCQ’s performance executing a multi-step join. For
this experiment, we vary the number of join operations (i.e., one to five hash joins) in the query,
but keep the overall query selectivity at 10%. Although permutability is unnecessary with only a
single join, we include it here for completeness. The NoisePage engine elides permutable joins in
such scenarios. We execute a similar SELECT query as in the previous experiment, but append
additional join clauses and project in all table columns.

The results in Figure 4.12 show that PCQ performs 1.15× faster than the static plan even with
a single join. This is because PCQ employs vectorized hash and probe routines, and benefits from
LLVM’s auto-vectorization of the key-equality check function. Although the overall selectivity is

71 CHAPTER 4. PERMUTABLE COMPILED QUERIES

1 2 3 4 5
Joins

0

100

200

300
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Static Permutable

Figure 4.12: VaryingNumber of Joins – Execution time to perform amulti-step join while keeping
the overall join selectivity at 10%.

constant, as the number of joins increase, PCQ outperforms the static plan by discovering the most
selective joins and dynamically reordering them earlier in processing. Beyond two joins, PCQ out-
performs the static plan even though the overall selectivity is constant. As before, this difference is
due to the harmonized combination of vectorized and JIT code used in NoisePage’s join processor.
PCQ is 3× faster than static when performing two joins, and 2.5× faster when performing greater
than three joins.

4.3.5 System Comparison
Lastly, we compare NoisePage with and without PCQ against two state-of-the-art in-memory

databases: Actian Vector (v5.1) and Tableau HyPer (v2019.2.18). Vector [1] is a columnar DBMS
based onMonetDB/x100 [29] that uses a vectorized execution engine comprised of SIMD-optimized
primitives. We modified Vector’s configuration to fully utilize system memory and CPU threads for
parallel execution. HyPer [6] is a columnar DBMS that uses the LLVM to generate tuple-at-a-time
query plans that are either interpreted or JIT compiled. The version of HyPer we use also supports
SIMD predicate evaluation. After consulting with Tableau’s engineers, we did not modify any con-
figuration options for HyPer.

In this section we evaluate the TPC-H and Star Schema Benchmark benchmarks. After loading
the data into each system, we run their requisite statistics collection and optimization operations.
Wewarm eachDBMS by running the workload queries once before reporting the average execution
time over five consecutive runs. Wemake a good faith effort to ensure theDBMSs execute equivalent
query plans by manually inspecting them. We note, however, that the DBMSs include additional
optimizations that are not present in all systems. For NoisePage, we use the query plan generated
by HyPer’s optimizer.

Skewed TPC-H
We evaluate the TPC-H benchmark using Microsoft’s skewed data generator [12], using a skew

of 2.0 (i.e., high-skew). We load the data into each system, warm system and DBMS caches, and
take the average over five consecutive executions after dropping the first. The results are shown

4.3. EXPERIMENTAL EVALUATION 72

Q1 Q4 Q5 Q6 Q7 Q11 Q16 Q18 Q190

200

400

600
Ex

ec
ut

io
n

Ti
m

e
(m

s)

21
.2

13
.5

6.
2

6.
5

Vector HyPer NoisePage (w/o PCQ) NoisePage

Figure 4.13: SystemComparison on SkewedTPC-H – Evaluation of NoisePage, HyPer, and Vector
on the skewed TPC-H benchmark.

Query +Filters (§4.2.1) +Aggregations (§4.2.2) +Joins (§4.2.3)
Q1 – 1.71 –
Q4 1.05 1.54 –
Q5 1.08 1.33 1.00
Q6 0.96 – –
Q7 1.02 1.40 1.00

Q11 – 1.02 –
Q16 1.18 1.00 1.00
Q18 – 1.00 1.19
Q19 1.21 – –

Table 4.1: TPC-H Speedup – The speedup achieved when incrementally applying each PCQ opti-
mization to TPC-H queries.
Figure 4.13. We also show the effect of each optimization in Table 4.1. Each cell shows the relative
speedup of enabling the associated optimization atop all previous optimizations. Numbers close to
1.0 mean the optimization had little impact, while large numbers indicate greater impact. Gray (i.e.,
blank) entries signify that the optimization was not applied.

Q1: This query computes five aggregates over four group-by keys in a single table. Increased skew
affects the distribution among the four grouping keys. The hottest grouping key pair receives 49%
of the updates when there is no skew, and 86% with significant skew. NoisePage’s PCQ aggregation
optimization is triggered resulting in a 1.7× improvement since the bulk of processing time is spent
performing the aggregation. Although NoisePage with PCQ is 4.8× faster than Vector, it is 1.2×
slower than HyPer. We believe this is due to HyPer’s use of fixed-point arithmetic which is faster
than the floating-point math used in NoisePage.

Q4: This query computes a single aggregate over five group-by keys (triggering the PCQ aggrega-
tion optimization), and contains a permutable filter on ORDERS. The selectivity of the range predi-
cate on o_orderdate is 0.08% with high skew. NoisePage with PCQ flips the range predicate and

73 CHAPTER 4. PERMUTABLE COMPILED QUERIES

applies the aggregation optimization resulting in a 2× improvement over both NoisePage without
PCQ and commercial systems. Table 4.1 shows that the bulk of the benefit is attributed to the op-
timized aggregation. Overall, NoisePage with PCQ is 1.8× and 2.3× faster than HyPer and Vector,
respectively.

Q5: This query joins six tables, but contains only two permutable joins. The final aggregation com-
putes one summation on two group-by keys, which triggers the PCQ aggregation optimization. This
query also contains vectorizable predicates that are supported by all DBMSs. In NoisePage, the ben-
efit of permutable filters is modest, while the optimized aggregation leads to a 1.33× improvement
over the baseline. The two permutable joins are never rearranged, hence there is no improvement
from PCQ joins. Overall, NoisePage with PCQ is 3× faster than HyPer and 5× faster than Vector.

Q6: Theperformance ofQ6depends on theDBMS’s implementation of the highly selective (0.05%)
filter over LINEITEM. We note that increased skew does not affect the ordering of the LINEITEM
predicate. Thus, NoisePage’s PCQ permutable filter adds minor overhead resulting in 4% slowdown
over the baseline. This is a direct result of resampling with a fixed probability, and can be reme-
died by using a more advanced sampling policy. All systems leverage SIMD filter evaluation with
comparable performance.

Q7: This is a join-heavy query where HyPer chooses a bushy join plan that is 4× slower than a
right-deep plan. Although no tuples reach the final aggregation, PCQ flips the application order of
the range predicate on l_shipdate resulting in a 1.2× improvement.

Q11: This query also contains five joins, but none are permutable. It also contains two separate
aggregations, but whose cardinalities never trigger the PCQ optimizations. Finally, it contains mul-
tiple vectorizable predicates, but all have single terms making permutation unnecessary. Thus, Q11
represents a query where none of the PCQ optimizations are tripped. We include it to show that
PCQ incurs negligible overhead, and to serve as an example of where an optimizer can assist in
identifying better plans in the presence of data skew. NoisePage (with an without PCQ) offers com-
parable performance to HyPer, and is 4× faster than Vector.

Q16: This query has a right-deep join pipeline using PARTSUPP as the driver, a multi-part filter on
PART and a hash aggregation. The cardinality of the aggregation exceeds the optimization threshold
(i.e., five). PCQ reorders the PART filters, to run the highest rank term first (i.e., the IN-clause on
p_size), yielding a boost of almost 1.2×. Next, PCQ reorders the join to use SIMD gathers due to
the size of the build table, which improves performance by 1.2×. NoisePage with PCQ is 7.4× and
3× faster than HyPer and Vector, respectively. HyPer chooses a worse plan at high-skew: it decides
on a left anti-join rather than a right anti-join. We believe that HyPer’s performance would improve
with a better plan.

Q18: Like Q16, this query also contains a right-deep join pipeline using ORDERS as the driver.
Additionally, there is an aggregation, but whose cardinality exceeds the optimization’s threshold.

4.3. EXPERIMENTAL EVALUATION 74

Q1.1 Q1.2 Q1.3 Q2.1 Q2.2 Q2.3 Q3.1 Q3.2 Q3.3 Q3.4 Q4.1 Q4.2 Q4.30

100

200

300
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Vector HyPer NoisePage (w/o PCQ) NoisePage

Figure 4.14: System Comparison on the Star-Schema Benchmark – Evaluation of NoisePage, Hy-
Per, and Vector on the Star Schema Benchmark.

Query +Filters (§4.2.1) +Aggregations (§4.2.2) +Joins (§4.2.3)
Q1.1 1.00 1.00 1.00
Q1.2 1.02 1.00 1.00
Q1.3 1.06 1.00 1.00
Q2.1 0.96 1.00 1.32
Q2.2 0.99 1.00 1.56
Q2.3 1.00 1.00 1.60
Q3.1 1.00 1.00 1.20
Q3.2 1.01 1.00 1.42
Q3.3 1.03 1.00 1.69
Q3.4 1.00 1.00 0.92
Q4.1 1.03 1.00 1.19
Q4.2 1.02 1.00 1.33
Q4.3 1.02 1.00 0.98

Table 4.2: Star SchemaBenchmark Speedup –The speedup achievedwhen incrementally applying
each PCQ optimization to Star Schema Benchmark queries.
PCQ reorders the joins in order to utilize SIMD gathers on the smaller table resulting in a 1.19× im-
provement over the baseline. Interestingly, HyPer chooses a worse query plan at high skew, using a
right-semi join instead of a left semi-join, resulting in a 2.6× slowdown compared to PCQ.

Star Schema Benchmark

This experiment evaluates all systems on the Star Schema Benchmark [112]. We use the default
uniformly random data generator and plot the average execution time of each query over five con-
secutive executions after discarding the first. The overall results are shown Figure 4.14 along with
the benefit breakdown in Table 4.2. The thirteen SSB queries are grouped into four categories. Each
category contains structurally equivalent queries, but differ in their filtering and aggregating terms.
Thus, we discuss the results by groups since the behavior of one query generalizes to all queries in
the same category. Unlike the previous evaluation with TPC-H, we execute NoisePage with PCQ

75 CHAPTER 4. PERMUTABLE COMPILED QUERIES

using a random initial plan to demonstrate the benefit of our approach; NoisePage without PCQ
uses the optimal plan generated by HyPer.

Q1.*: All queries in this category contain a single join between the smallest and largest tables in
the database, and contain selective multi-part filters on both tables. Since there is a single join, PCQ
joins yield no benefit. However, PCQ rearranges some of the filtering terms resulting in a minor
performance benefit. HyPer performs the best, running 1.7× and 3.7× faster than NoisePage and
Vector, respectively. This is because it performs SIMD vectorized filter evaluation on compressed
data, achieving a better overall CPI.

Q2.*: These queries contain three joins and an aggregation. Although starting with a random
join order, PCQ permutes joins during execution based on observed selectivities and runtime con-
ditions resulting in a mean improvement of ∼1.5× over the baseline. We observe a minor perfor-
mance degradation when applying the PCQ filter optimization due to the overhead of exploration.
Since the optimal filter order is unchanged during the query’s lifetime, exploring alternate orders
is unnecessary. We believe a more sophisticated adaptive policy that adjusts sampling frequency
avoids this problem. Overall, NoisePage with PCQ is 1.4× and 2.2× faster than HyPer and Vector,
which use fixed query plans.

Q3.*: Similar to Q2, these queries contain three joins and an aggregation, but swaps in one dif-
ferent base table. Only one query (i.e., Q3.4) triggers the PCQ aggregation optimization. As in Q2,
PCQ periodically explores the join order space to discover the optimal ordering resulting in an av-
erage performance improvement of 1.3× over the baseline. Since the majority of query processing
time is spent performing joins, PCQ’s aggregation optimization provides limited benefit. Finally,
we note that PCQ joins are slower specifically in Q3.4. In this case, the DBMS periodically explores
different join orderings (despite observing consistent optimal join rankings), but the overhead of
this exploration outweighs the performance benefits. We believe better policy design can ameliorate
this problem. Overall, NoisePage with PCQ results in an improvement of 1.3× over the baseline and
HyPer, and 3.2× over Vector.

Q4.*: Queries in this category join all five tables in the database. In all but Q4.3, NoisePage with
PCQ finds an optimal join and filtering ordering resulting in a∼1.26× improvement over the base-
line. Q4.3 sees reduced performance for the same reason as in Q3.4: the PCQ policy forces explo-
ration assuming the benefit is greater than the overhead. That assumption, however, is invalid in
Q4.3. AlthoughHyPer andVector implement filters on compressed data, the bulk of processing time
is spent execution joins. Hence, PCQ produces an average improvement of 1.2× over the baseline,
and 1.9×, and 3.4× over HyPer, and Vector, respectively.

4.4 Conclusion
We presented PCQ, a query processing architecture that bridges the gap between JIT compila-

tion and AQP. With PCQ, the DBMS structures generated code to utilize dynamic runtime struc-
tures with a layer of indirection that enables the DBMS to safely and atomically switch between

4.4. CONCLUSION 76

plans while running the query. To amortize the overhead of switching, generated code relies on
batch-oriented processing. We proposed three optimizations using PCQ that improve different
relational operators. For scans, we proposed an adaptive filter that efficiently discovers an optimal
ordering to reduce execution times. For hash-based aggregations, we proposed a dynamic optimiza-
tion that identifies and exploits skew by extracting heavy-hitter keys out of the hash table. Lastly,
we proposed an optimization for left- or right-deep joins that enables the DBMS to reorder their
application to maximize performance. Our evaluation showed that NoisePage with PCQ enabled
delivers up to 4× higher performance on a synthetic workload and up to 2× higher performance
on TPC-H and Star Schema Benchmark benchmark workloads.

Chapter 5

Progressive Code Generation

Chapters 3 and 4 presented techniques to improve robustness during query processing. However,
like existing compilation approaches, our techniques share a key characteristic: theDBMS generates
all the code necessary for a query before execution. We refer to this strategy as one-shot code gener-
ation. One-shot generation maximizes the compiler’s optimization capabilities since all query code
is present at the same time. However, such an approach is limited in its ability to exploit features of
the underlying data that a query accesses since the DBMS can only learn this information during
execution after compilation has completed. For example, compressing intermediate data structures
may be possible to reduce the DBMS’s memory requirements. To do this using a one-shot approach
requires the query engine to either (1) generate all possible encoding and decoding schemes a priori,
(2) fall back to an interpreted code path, or (3) recompiling the query from scratch. None of these
options are desirable [102].

A better approach is for the DBMS to adapt generated code based on the data the query reads.
But query compilation and runtime adaptivity have conflicting goals. Compilation seeks to special-
ize code as much as possible, while AQP strives for flexibility.

Previous proposals have sought to bridge this divide between query compilation and AQP, but
are limited in their scope and applicability. Most existing approaches require the generation of all
query code prior to execution [21, 48, 65, 102, 108, 115, 134, 145, 152]; some initially generate instru-
mented code and recompile based on the observed data distributions [62]; and others target use-
cases such as CSV parsing [132] or filter reordering [62]. These previous techniques are insufficient
to enable dynamic, low-latency HTAP workloads.

To overcome these limitations, we nowpresent an incremental query compilationmethod called
ProgressiveCodeGeneration (PCG). PCGdraws inspiration from JIT-compiled dynamic language
runtimes to optimize generated code for both the SQL query and the data it operates on. This
resembles how language JITs (e.g., JVM) optimize a program at runtime based on the data that it
accesses. Unlike language JITs, a PCG-enabled DBMS need not perform speculative optimization
and deoptimization. Rather, the DBMS generates query code only once, but divides the query plan
into fragments that are incrementally generated and executed on demand. The DBMS leverages
this step-wise execution pattern to inject custom code to analyze intermediate state produced by
the query. It uses this information to fine-tune the code it generates for later parts of the query

77

5.1. KNOWING THE FUTURE 78

without the need for “bail-out” paths (as a conventional JIT) since it definitively knows what the
data looks like.

5.1 Knowing the Future

Although there are benefits to code generation, existing techniques fail to tailor generated code
to the data a query reads at runtime. This flavor of specialization has historically been the hallmark
of modern JIT language runtimes. AQP attempts to bring adaptivity to the database community,
but previously proposed techniques target interpretation-based DBMSs. An interpretation-based
DBMS can adapt with low overhead by splicing new operators into a physical plan, or embed-
ding multiple sub-plans that it can select dynamically based on runtime conditions. However, a
compilation-based DBMS must either pay the cost of compiling new code before it can begin ex-
ecution, or pre-generate alternative code paths for all possible re-optimization scenarios. Neither
option is feasible as it leads to intractable compilation times [102]. These overheads prohibit the use
of traditional AQP techniques in compilation-based DBMSs.

In contrast to one-shot generation (i.e., the approach used by most JIT-based DBMSs), PCG
interleaves code generation and execution. Deferring code generation as late as possible allows the
DBMS to learn properties about the data in earlier parts of the query that it uses to tune the code it
generates for later parts of the query. Thus, PCG generates code progressively on demand.

To motivate the benefits of progressive code generation, we conduct an experiment evaluating
its performance on a traditional data-warehouse query. Consider a database containing two tables,
A and B, composed of six 64-bit NULL-able integer columns (col1–col6). Table A has 500k tuples
and table B has 7.5m tuples. The workload contains a single query:

SELECT COUNT(*),SUM(A.col2),SUM(A.col3),SUM(A.col4),
SUM(A.col2*(1-A.col3)),
SUM(A.col2*(1-A.col3)*(1+A.col4))

FROM A JOIN B ON A.col1 = B.col1
WHERE A.col5 = δ1 GROUP BY A.col6

We generate data such that the filtering constant (δ1) is 95% selective, arranging A on the build
side of the join. Although the schema declares all columns as potentially containing NULL values,
the filtering term also happens to filter them all out. Lastly, we ensure that none of the aggregates
can overflow a 64-bit integer. We defer a full description of our experimental setup to Section 5.4.

We measure the time the DBMS takes to execute the above query using three code generation
variants: (1) Branch, (2) Flag, and (3) Bit. They differ only in how they handle arithmetic over-
flows when performing the aggregation. Branch relies on “checked” arithmetic instructions that, in
addition to performing the operation, expose CPU flags indicating if a numeric overflow occurred:

79 CHAPTER 5. PROGRESSIVE CODE GENERATION

1 // Perform a checked 128−bit addition.

2 bool AddWithOverflow(i128 a, i128 b, i128 *result);
3
4 i128 sum = 0;

5 for (u64 id = 0; id < batch−>size(); id++) {

6 const auto a = batch−>a[id];

7 if (AddWithOverflow(sum, a, &sum)) throw OverflowError();

8 // More operations ...

9 }

Branch generates all arithmetic using checked operations and guards against overflows by con-
ditionally branching to code that raises an error. Most compilation-based engines use this approach.
Flag implements a slightly optimized method by continuing execution despite potential overflow,
collecting all flags into a single boolean flag using a logical OR. The DBMS checks the overflow flag
only at the end of a batch and raises an error if required.

1 bool overflow = false;

2 i128 sum = 0;

3 for (u64 id = 0; id < batch−>size(); id++) {

4 const auto a = batch−>a[id];

5 overflow = overflow || AddWithOverflow(sum, a, &sum);

6 // More operations ...

7 }

8 if (overflow) throw OverflowError();

This approach amortizes the overhead of overflow checking across all tuples in a batch. Bit uses
a similar approach but uses a single bit to track if any operation overflows. Bits are collected using a
bit-wise OR. The difference here is that a logical OR can benefit from short-circuiting, whereas a bit-
wise operation cannot. Since all table columns are declared NULL-able, all versions must include
NULL checking code, but we also evaluate variants that skip these checks for completeness. Lastly,
we evaluate our PCG technique that learns the value domains of columns (through a lightweight
analysis) to elide NULL checking and overflow logic.

The results in Figure 5.1 show that PCG is 2× faster than all other variants. The non-PCG ver-
sionsmust generate code to handle arithmetic overflows and NULL values because the DBMS cannot
know otherwise at query compilation time. In contrast, PCG learns this by decoupling the gener-
ation and execution of the left and right side of the join, and injecting a lightweight analysis phase
that executes in between. This analysis adds ∼3% overhead to the execution time, but yields a non-
negligible speed improvement. Hence, we contend that eschewing one-shot code generation in
favor of an incremental approach offers is the better approach for compilation-based DBMS.

The goal of PCG is to enable a DBMS to dynamically tailor a query’s generated code to the data
it reads without (1) recompiling any part of a query, (2) discarding partial results, or (3) compiling
speculative code. PCG decomposes and stages code generation in amanner that allows earlier parts
of the query plan to inform and optimize the generation of later parts of the query. By deferring
code generation, the DBMS learns the shape and characteristics of the data a query reads to better

5.2. OVERVIEW 80

Flag Bit Branch PCG0

60

120

180
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Analyze

Aggregation Null Check Analyze

Figure 5.1: Knowing the Future – Deferring code generation enables dynamically specializing in-
structions to data the query has actually processed.

tailor the code it generates to achieve the desired target objective (e.g., performance or memory
consumption).

PCG takes inspiration from JIT-based dynamic language runtimes but differs in two novel ways.
First, most JIT runtimes observe the data that a function processes at runtime to specialize only
that function for the common case [56]. In contrast, a PCG-enabled DBMS observes and tracks the
data a query reads in earlier parts of execution to later tune a different part of the query. Second,
a JIT runtime must compile both an optimized code path for the case it speculates to be common
and a “bail-out” path for exceptional data [155, 156]. The runtime checks all function inputs to guide
control flow down the correct path. With PCG, the DBMS guarantees that inputs will only ever take
the optimized path, thereby eliminating the need to check inputs or generate a “bail-out” path.

5.2 Overview
This section presents an overview of PCG, shown in Figure 5.2. We use the same SQL query from

Section 5.1 as a running example. Althoughwe designed the framework forNoisePage’s customDSL-
based architecture based on the LLVM, it works with any DBMS execution engine that supports
query compilation.

5.2.1 Decomposition
The first step in the compilation pipeline is to decompose a physical query plan into its pipeline

components. In the produce-consume code generation model, a pipeline represents a sequence
of operators that pass data from child to parent without copying or materializing that data [108].
Pipelines “fuse” their operators’ logic and end in a pipeline-breaking operator (i.e., one that fully
materializes all intermediate results before continuing processing).

The query in Figure 5.2 contains three pipelines. We assume (1) all joins and aggregations are
hash-based and (2) that the left input to a hash join is the build side, and the right input is the probe
side. Pipeline P1 scans table A, applies a filter, and builds the hash table, ▷◁A.col1=B.col1 . Pipeline
P2 scans table B, probes the join hash table, and performs a grouping using the hash table ΓA.col6

while computing all necessary aggregations. Lastly, pipeline P3 scans the final aggregated tuples
and emits them to the desired output.

81 CHAPTER 5. PROGRESSIVE CODE GENERATION

Decomposition Scheduling

A

B

A.col1=B.col1

A.col6

A.col5=δ

P1

A

BA.col5=δ

A.col1=B.col1

A.col6

P2

P3

P3 P2 P1

Pipeline Queue

PCG

Execute

P1 Stats

A.col2:{min=0,max=1,nulls=0}
A.col3:{min=2,max=9,nulls=0}
Compressible?

Overflow Possible?

pipeline1()

analyze1()

Code-Gen Compile

0110
10110
 1110

P2 Stats

SUM(A.col2):{max=7.5m,nulls=0}

…
Compressible

SUM(A.col3):{max=67.5m,nulls=0}0110
10110
 1110

pipeline2()

analyze2()

compress2()

+

P3
Query Results

pipeline3()+ Query
Stats

0110
10110
 1110

Figure 5.2: SystemOverview – An overview of the PCG query compilation and execution pipeline.
TheDBMS first decomposes a physical plan into pipelines to build a pipeline execution graph. Next,
the DBMS schedules pipeline fragments for code generation and execution. Each fragment is com-
piled into a executable bytecode and run adaptively using either an interpreter or native code. In
addition to computing query results, fragments collect detailed statistics that are available to subse-
quent fragments to tune their code.

5.2.2 Scheduling
After decomposing a physical plan into pipelines, a conventional query compiler generates and

compiles all code to execute the query. Instead, PCG relies on the observation that pipelines only
share state, not code. For example, both P1 and P2 require the hash table (▷◁A.col1=B.col1), but
the logic in P1 never references P2, nor vice versa; this is by design. For a binary operator that
materializes its left input (e.g., hash join), the build-side input tuple’s schema is different from the
probe-side, requiring different code on either side. Most pipeline code fragments are independent,
which means that the DBMS can compile and execute them independently1.

Although PCG decouples the compilation of pipelines, the physical plan still imposes an exe-
cution order. Thus, the next step is to determine a valid schedule of pipeline fragments. Before
constructing a schedule, the DBMS builds a pipeline graph based on their dependencies. A pipeline,
Pi, has a directed edge to pipeline, Pj , if Pi can execute before Pj . For example, a join operator con-
sumes its left input and builds the hash table before the right pipeline can run; thus, the left pipeline
induces a directed edge to the right pipeline in the graph. After the DBMS builds the pipeline graph,
it uses a topological sort to determine a valid execution order. Unconnected components in the
pipeline graph represent pipelines that can run in parallel, but PCG does not currently exploit this
optimization. In Figure 5.2, the order of compilation and execution is P1, P2, and P3. The system
then inserts these fragments into a code generation queue based on their execution order.

5.2.3 Code Generation and Execution
We now describe how the DBMS interleaves code generation and execution with PCG.

CodeGeneration: The DBMS processes pipelines in the order they appear in the queue. For each
pipeline, the DBMS generates one function encapsulating the fused logic of all operators it contains

1Exceptions include set-based relational operator (e.g., UNION). NoisePage supports these by nesting their logic
within a parent pipeline. In this case, the code generator extracts the nested pipeline’s logic into a separate function
available across pipelines.

5.2. OVERVIEW 82

using the data-centric code generationmodel [108]. PCGextends themodel by introducing pre- and
post-pipeline functions that execute before a pipeline begins and after it finishes, respectively. We
refer to these functions as bracket functions to reflect their execution order relative to their associated
pipeline. Bracket functions do not implement core query logic. Instead, they can only read the
materialized state their pipeline scans or produces after it completes. Some bracket functions may
construct a new (reorganized) version of the state that replaces the original before the pipeline runs.
At most one pair of bracket functions exist for a pipeline, and is generated only at the request of any
contained operators. PCG uses bracket functions to inject custom utility code to achieve a desired
query- or operator-specific objective. As we show in Section 5.3, this simple extension is sufficient
to enable a wide array of optimizations.

An important post-pipeline function in PCG is the analysis function. An analysis function scans
and inspects the intermediate state produced by a pipeline after it completes to derive properties
about data the query has partially processed. Analysis functions collect information per attribute
including domain bounds (i.e., min and max values), approximate distinct value counts, and NULL
value counts. We limit the types of statistics we collect to these three because the DBMS can collect
them with negligible runtime overhead, but PCG allows pipeline operators to generate arbitrary
analysis code. Analysis metrics are collected in parallel by partitioning the materialized state across
available execution threads and persisting in an in-memory data structure available throughout
query processing. Analysis functions are analogous to incrementally running a lightweight ANA-
LYZE during query processing.

Analysis functions play a critical role in the PCG framework because they supply theDBMSwith
fine-grained, specific, and accurate statistics about data the query has actually seen. This differs from
the statistics that are available to the DBMS optimizer, which are often coarse-grained at the leaves
of the query plan, and inaccurate otherwise [91]. PCG leverages these statistics to rule out certain
runtime conditions and specialize code further than a conventional one-shot query compiler.

In Figure 5.2, P1 wraps all pipeline logic in function pipeline1(). TheDBMS also generates an
analysis function, analyze1(), that executes after the pipeline completes. The hash join operator
initiated this request to determine whether it can compress the tuples it materialized in its hash
table. The results of the analysis, which are available during the generation of P2, indicate that the
contents of the hash table are indeed amenable to compression. Thus, the join operator generates a
pre-pipeline function, compress2(), to reorganize tuple data in the hash table to reduce memory
overhead. Next, the main logic for P2 is generated in pipeline2(), taking into account the new
physical sizes of tuple attributes after compression. Finally, the pipeline breaker in P2 (i.e., the hash
aggregation) also requests an analysis function, analyze2(), to examine the tuples in its own hash
table.

Compilation: The target of code generation in NoisePage is a custom domain-specific language
(DSL), called TPL. TPL combines Vectorwise-style pre-compiled primitives [29] with HyPer’s data-
centric code generation [108]. It contains familiar data types and imperative constructs, including
variable and structure declarations, loops, conditional control-flow, and functions. TPL also pro-
vides first-class support for SQL types and the operations they support. Using TPL eases the effort
required in implementing database-specific optimizations in comparison to a general-purpose lan-

83 CHAPTER 5. PROGRESSIVE CODE GENERATION

guage (e.g., C/C++). TPL integrates with existing software development tooling like debuggers (e.g.,
gdb), enabling DBMS engineers to step through code, set breakpoints, and print variable values.

The DBMS next compiles TPL into a compact bytecode representation. This bytecode is a CISC
instruction set composed of arithmetic, memory, and branching instructions, combined with more
complex database-level instructions. After compilation, the DBMS can immediately begin execu-
tion of the bytecode using a bytecode interpreter. The NoisePage compilation pipeline is optimized
for query latency. Compiling pipeline fragments into executable bytecode takes 10–50 µs, and is
not more than 2–3× slower than native code. NoisePage also supports HyPer-style adaptive exe-
cution by asynchronously compiling the bytecode into native machine code using LLVM [82]. On
completion, native code is seamlessly swapped in at runtime to further improve query performance.

Execution: After theDBMS compiles the pipeline into bytecode it begins execution using an inter-
preter. If a pre-pipeline function is available, it is executed first to prepare the state for the pipeline.
This step is almost always run in parallel by partitioning the input state across available threads.
Once complete, the core pipeline logic is run to generate the next intermediate state. Finally, any
post-pipeline function is executed on the output.

In Figure 5.2, the analysis function in P1, analyze1(), collects detailed statistics on each of the
attributes that are materialized in the hash table during the build phase of the hash join. During
code generation for P2, the hash aggregation operator uses this information to make two important
inferences. First, it can guarantee that overflows for aggregates it computes are impossible given the
size of B and the inputs’ value domains. Second, it knows that all NULL values have been filtered out
anddonot need to be specially handledwhenupdating its aggregates. Thus, during the generation of
pipeline2(), it safely removes NULL checks and uses simple 32-bit addition (rather than “checked”
addition) for the aggregation.

5.3 Adaptive Optimizations
This sectionpresents query execution optimizations that are possible usingPCG.APCG-enabled

DBMS exploits the independence between a query’s pipelines by generating code, compiling, and
executing them separately, not simultaneously. Such decoupling exposes well-defined boundaries
where the DBMS installs bracket functions that augment query execution to improve robustness.

As mentioned in Section 5.2.3, a crucial post-pipeline bracket function is the analysis function.
We, thus, begin this sectionwith a description of how analysis functions operate. We then discuss op-
timizations that leverage the statistics garnered through periodic analysis to improve performance
or reduce memory pressure. We describe how the DBMS organizes generated code with these opti-
mizations and how that code executes at runtime. Where appropriate, we distinguish when pipeline
code fragments are generated and when they run.

5.3.1 Analyzing State
An analysis function is generated after its associated pipelines’ logic function, but only if re-

quested by any operator within the pipeline. We use Figure 5.3 to aid in our discussion and assume
that the (hash) join requested an analysis of its materialized hash table.

5.3. ADAPTIVE OPTIMIZATIONS 84

SELECT * FROM A INNER JOIN B ON A.col1 = B.col1
(a) Example Input SQL Query

Statistics

col1
col2
col3
col4

-1
Min Max # Nulls

0
-101
-20

3
44
2

200

0
0

10234
0

Intermediate State
col1 col2 col3 col4

 9 fun analyze(in:[*]*Row,s:*Stats){
10 @gatherMin(in, &s.min1, 0)
11 @gatherMax(in, &s.max1, 0)
12 @gatherNulls(in, &s.nulls1, 0)
13 // Other columns ...
14 }

Analysis Function

Pipeline #1 Logic
 1 struct State { ... }
 2 struct Row { /* Columns */ }
 3 fun pipeline1(s:*State){
 4 for (t in A) {
 5 var row:Row = @alloc(&s.htbl)
 6 row.col1 = t.col1
 7 // Other columns ...
 8 }}

…

(b) Generated Code and Execution of an Analysis Function

Figure 5.3: Analyzing State Example – This example shows the interaction of query logic and post-
pipeline analysis logic. The DBMS first executes P1 to produce some intermediate state. Next, the
DBMS inspects this state using a pre-generated analysis function that is composed of custom code
that calls pre-compiled primitives. This analysis then produces statistics stored that is available to
later pipelines during their code generation.

CodeGeneration: Figure 5.3a shows an example query and Figure 5.3b shows the code the DBMS
query compiler generated for the build side of the hash join. Theprimary pipeline logic resides in the
pipeline() function on lines 3–8. It scans table A using a tuple-at-a-time loop (line 4), allocates
memory from the query’s assigned hash table (line 5), and copies all the input tuples’ attributes
unmodified into the allocated space (line 6 onward). The tuples are stored row-wise inmainmemory
to maximize cache locality.

Next, a second traversal of the pipeline’s operators generates the body of the analysis function,
analyze() (lines 9–14). All analysis functions accept a vector of pointers to materialized tuples
and a statistics data structure. The former is a read-only batch of input rows to be analyzed, and the
latter is where the results of the analysis are persisted on completion. With PCG, pipeline operators
can generate arbitrary analysis code. We require metric values to be “combinable” through a com-
mutative and associative reduction operation. This constraint exists because the DBMS may invoke
an analysis function multiple times, but on disjoint chunks of materialized state. Thus, the DBMS
needs to merge partial metrics to build an overall view of the state.

There is a balance between the degree of statistical detail collected during analysis and the run-
time overhead. Analysis functions must be fast to execute so as not to negate any potential benefits
it affords. In our example, the DBMS dispatches to pre-compiled vectorized builtins to collect the
min value (line 10), the max value (line 11), and NULL count (line 12) for each attribute in the batch,
storing the results into the output statistics parameter (the second argument). It is also possible

85 CHAPTER 5. PROGRESSIVE CODE GENERATION

to generate fused tuple-at-a-time logic to collect these metrics. PCG is agnostic to the chosen ap-
proach; it only requires the analysis function to abide by API. As we showed earlier in Section 5.1
and will show again in Section 5.4, the DBMS can collect these metrics with minimal overhead.

Execution: The DBMS first executes the pipeline function, which constructs the hash table in
Figure 5.3b. At this point, the hash table becomes immutable. The DBMS divides the hash table into
fixed-size partitions and invokes the analysis function on each partition in parallel. Partition-local
statistics are then collected and combined to form a global view of the hash table’s data, shown in the
figure’s bottom right side. This information is persisted in an in-memory data structure accessible
to all operators further in the query plan.

The DBMS takes special care when executing analysis functions. Ideally, the DBMS should skip
the analysis step if it would not impact the code structure of later pipelines. We address this by
first running the function on a sample of tuples. For this step, the DBMS selects k logn tuples at
random, where n is the total number of tuples, and k is a configurable oversampling factor. The
DBMS invokes the analysis function on the sample, and only if this smaller analysis shows promise
does it proceed with a full analysis.

5.3.2 Compressing State
Many relational operators rely on in-memory data structures in their implementation. Hash

joins and hash aggregations use hash tables. Order-by operators use large sequential buffers to store
tuple data before sorting them. In complex OLAP workloads, these structures are often large and
easily exceed even the newest CPUs’ cache capacity. Moreover, some query plans require these
intermediate structures to exist for their entire lifetime, contributing to peak memory usage. There-
fore, it is desirable to minimize each operator’s memory footprint to maximize the likelihood that
requisite data fits in the CPU’s cache and making queries better “citizens” by using resources more
frugally.

We now describe an approach to reduce the memory space of ephemeral data structures pro-
duced during query processing (e.g., hash tables or buffers) by applying a lightweight compression.
It is agnostic to the encoding of the underlying data, and relies solely on runtime analysis. The tech-
nique is applicable to any relational operator with only minor differences per operator on when the
DBMS applies the compression. For instance, the DBMS compresses data for order-by operations
before sorting the tuples, which requires the tuple comparison function to operate on compressed
tuples. We use the same example query and resulting analysis in Figure 5.3, but now describe how
PCG uses the discovered statistics to compress the hash table and alter the probe side of the hash
join.

Analysis: PCG supports any compression technique, but in this work, the DBMS applies frame-
of-reference (FOR) encoding on tuple attributes [59]. FOR encoding requires knowing only the
minimum and maximum (i.e., the range) of all input values. For instance, if the range of values
for an attribute is R = [vmin, vmax], a FOR encoding requires B = ⌈log2(vmax − vmin)⌉ bits to
represent any value v ∈ R. Operators obtain this information by leveraging analysis functions (see

5.3. ADAPTIVE OPTIMIZATIONS 86

Column FOR Value # Bits

col1 -1 2
col2 0 6
col3 -101 8
col4 -20 8

(a) Results of FOR Analysis

Uncompressed Tuple (16B: 4x4B)

...col1 col2 col3 col4
0 32 64 96 128

...
0 24

Compressed Tuple (3B)

Tuple #1

(b) Organization of Compressed Tuple

Uncompressed
1 4 -4 10
2 32 -2 1

3 40 N -7

…

}

4-bytes

Compressed
132
224

296

…
}

1-byte

 1 struct Row { /* Raw Columns */ }
 2 struct ComprRow { var b:[3]int8 }
 3 fun compress(n:int, in:[*]*Row,
 ↪ out:[*]*ComprRow){
 4 for(var i=0;i<n;i++) {
 5 out[i].b[0]=(in[i].col1+1)<<6 |
 6 (in[i].col2)
 7 // Other columns ...
 8 }}

Compression Function

 9 fun pipeline2(s:*State){
10 for (t in B) {
11 var h:hash=@hash(t.col1)
12 var r:ComprRow=@lookup(&s.htbl,h)
13 if (@mask(r.b[0])==@encode(t.col1)) {
14 @emit(/* Output Columns */)
15 }}}

Pipeline #2 Logic

(c) Generated Code With Execution of Compression and Probe

Figure 5.4: Compressing State – The hash join operator uses the results of the analysis in (a) to
generate the compression function and adjust the probing logic to account for the packed layout in
(c).

Section 5.3.1). TheDBMS then encodes each attribute separately and greedily bit-packs all attributes
into as few machine words as possible to minimize space.

The achievable compression depends on the range of values in each attribute. Although tech-
niques exist to optimize FOR compression, they often incur overheads that preclude their use dur-
ing query processing [19, 44, 161]. Analysis adds overhead because it complicates the compression
process and subsequent data access methods. To strike a balance between compression ratio and
performance, PCG supports compressing a subset of a tuple’s attributes.

The results of the analysis in Figure 5.4a indicate that the DBMS can shrink all four columns’
values from their original 16-byte size into just three bytes, 5× reduction; col1 and col2 require
⌈log24⌉=2 and ⌈log244⌉=6 bits, respectively. Likewise, col3 and col4 require one byte each. The
resulting bit-packed tuple layout is depicted in Figure 5.4b. Although PCGuses its analysis to collect
statistics that guide compression, the DBMS may still decide to not compress the data. Since our

87 CHAPTER 5. PROGRESSIVE CODE GENERATION

example demonstrates a high compression factor, the hash join registers a pre-pipeline compression
function during the second pipeline’s generation.

Code Generation: Figure 5.4c shows the code for the second probe pipeline. First, the DBMS
generates the compression function on lines 3–8. It relies on two data structures (Row, ComprRow)
that represent the original and compressed tuple layouts, respectively. The function iterates over
each tuple (line 4) and writes a bit-packed version to the output tuple (line 5–6). In the example,
the DBMS blends the first two columns, placing col1 in the higher two bits of the first byte, and
col2 in the lower six bits. It also uses the min value in each attribute’s domain range as the zero
value. Although our example generates tuple-at-a-time code, PCG allows operators to invoke any
code including dispatching into pre-compiled SIMD-optimized vectorized primitives, or mixing
both techniques. The input batches are 1–4k in size to ensure cache-resident processing.

Next, the DBMS generates the core logic for the second pipeline on lines 9–15. It begins by scan-
ning table B using a tuple-at-a-time loop (line 10) and then hashing the join key column, col1, on
line 11. The DBMS then probes the join hash table on line 12 using the computed hash value, which
returns a pointer to a compressed row. This is the first instance where the existence of compression
has altered the logic in the pipeline. Next, the DBMS encodes the probe key to validate equality to
the build key on line 13 to resolve hash collisions. The DBMS masks off a portion of the retrieved
build key because it contains non-key data. We compress the probe key to minimize the number of
accesses cache lines. This is useful when dealing with multi-component keys that may span cache
lines.

Execution: Recall from Section 5.2.3 that the DBMS executes pre-pipeline functions before the
core pipeline logic. Also, recall from Section 5.3.1 that any intermediate state is immutable after
the pipeline that produced it finishes running. To perform the compression, the hash join operator
allocates a new perfectly sized hash table to store the compressed tuples. It then divides the original
and new hash table into disjoint partitions and invokes the compression function on each in parallel.
In this way, the DBMS executes custom compression code using multiple execution threads. When
compression completes, the DBMS runs the pipeline function to evaluate the probe side of the join.
All probe tuples that find one or more join matches are emitted. The existence of compression
has required the key equality logic to change slightly; the DBMS must mask off non-key bits, and
encodes the probe key into the domain of the (potentially) FOR-compressed build data.

5.3.3 Eliding Overflow Checks
We next present an optimization to skip arithmetic overflow handling normally required when

dealing with SQL math. To aid in our discussion, we use the following query:

SELECT B.col2, COUNT(*), SUM(A.col2)
FROM A INNER JOIN B ON A.col1 = B.col1

GROUP BY B.col2

We first describe how the DBMS identifies if it can apply the optimization, and then its code
generation and runtime behavior.

5.3. ADAPTIVE OPTIMIZATIONS 88

Analysis: If an input query contains an aggregation, theDBMS installs analysis functions at points
in the query plan that materialize any attribute the aggregation requires. Such periodic analysis
enables the DBMS to build a more accurate and finer-grained view of the data a query is processing
compared to what the DBMS optimizer has at optimization time. To simplify our discussion, we
use the statistics in the example in Figure 5.3b. Recall that the schema for tables A and B declare all
columns as 64-bit signed integers. The results from the analysis indicate that the range of values for
A.col2 is [0, 44], which is representable using fewer than 64 bits. TheDBMS also infers that themax
value of the summation aggregate (i.e., SUM (A.col2)) is nB × 44 when the cardinality is one and
where table B has nB tuples. Thus, it requires an integer data type with at least ⌈log2(nB × 44)⌉ bits,
and safely elides generating any overflow handling logic. Similarly, the max value of the count-star
aggregate is nB , requiring at least ⌈log2nB⌉ bits.

The analysis above assumed a foreign-key join, a common occurrence in warehouse workloads.
If the query involves a generic join, then theDBMS employsmore conservative analysis. In this case,
the worst-case max value of the summation aggregate is nHT × nB × 44, where nHT is the number
of tuples (size) in the hash table. The revised max value may require a larger underlying data type
for the aggregate. This information is still available to the DBMS before it generates the aggregation
logic, enabling it to make a strictly more accurate decision compared to a one-shot code generation
DBMS.

Code Generation: A conventional query compiler will blindly implement the behavior dictated
by the operator chosen by the DBMS optimizer. Focusing on the aggregation in the second pipeline,
the code generator would assemble code that resembles:

1 // The structure holding one group's aggregate information.

2 // Both elements must be 128−bit integers.

3 struct Aggregates { var count, sum_col2 : i128 }

4
5 fun pipeline2(state: *State) {

6 var ht: *AggregationHashTable = &state.ht // 'ht' stores the aggregates.

7 for (t in B) { // The table scan.

8 var agg: Aggregates = @lookup(ht, t.col2) // Initial lookup.

9 if (agg == nil) agg = @allocate(ht, t.col2) // Did we find a group?

10 if (@addOverflow(agg.count, 1, &agg.count) or

11 @addOverflow(agg.sum_col2, t.col2, &agg.sum_col2))

12 @overflowError();

13 } }

Aggregates is the structure capturing information for one group. It relies on two 128-bit integer
types for the total count and summation aggregates. The core pipeline logic, pipeline2() listed
on lines 5–13, accepts a state argument (not shown for brevity) containing all state required for
the entire query. The pipeline begins with a sequential scan of table B on lines 7–13, then a standard
grouping aggregation on lines 8-12. Our interest here are the “checked” additions on lines 10–12 that
ensure the DBMS recognizes if an overflow occurs and throws an error.

89 CHAPTER 5. PROGRESSIVE CODE GENERATION

In contrast, based on the results of the analysis, a PCG-enabled DBMS can instead use a B =
⌈log2(7.5× 106 × 44)⌉ = 32-bit integer values for the count and summation aggregates and skip
the overflow handling logic altogether:

1 // The structure holding one group's aggregate information.

2 struct Aggregates { var count, sum_col2 : i32 }

3 fun pipeline2(state: *State) {

4 var ht: *AggregationHashTable = &state.ht // 'ht' stores the aggregates.

5 for (t in B) { // The table scan.

6 var agg: Aggregates = @lookup(ht, t.col2) // Initial lookup.

7 if (agg == nil) agg = @allocate(ht, t.col2) // Did we find a group?

8 aggr.count++ // Simple native addition.

9 aggr.sum_col2 += t.col2

10 } }

Thus, the generated aggregation on lines 8–9 use a smaller 32-bit integer without any explicit
overflow guard. The optimization is guaranteed to be safe based on the statistics gleaned during
the analysis. The resulting code is (1) quicker to compile because it contains fewer instructions, (2)
faster to execute, and (3) requires 4× less storage space for all aggregates by using small data types.

5.3.4 Eliding NULL Checks
Existing DBMSs handle NULL values in different ways. One approach is to dedicate a special

value for it from the domain of the type it represents. For example, the NULL value for a SMALLINT
(i.e., 16-bit signed integer) attribute is the max value in that domain (215 − 1). Another approach is
to attach each SQL value with a boolean (bit) flag indicating whether it is NULL. NoisePage uses the
NULL-indication flag method for tuple-at-a-time processing.

When usingNULL-indicators, SQL operationsmust explicitly check if their inputs are NULL. For
instance, to perform the addition of two NULL-able INTEGER (i.e., 32-bit signed integers) values, a
and b, a conventional query compiler would generate:

1 var a, b, ret: i32 = ... // Raw values.

2 var a_null, b_null, ret_null: bool = ... // NULL flags.

3 if (a_null or b_null) {

4 ret_null = true // Skip addition & set flag.

5 } else {

6 ret_null = false // Set flag.

7 ret = a + b // Native addition.

8 }

The “simple” addition is guarded by a conditional branch to ensure neither input is NULL on
line 3, and performed on line 4 otherwise. PCG enables the DBMS to elide these checks if the data
the query reads does not have NULL values despite the schema declaring them otherwise. It does this
in a manner similar to overflow checking in the previous section: it relies on strategically placing
analysis functions at materialization points in the query plan. During analysis, in addition to other

5.3. ADAPTIVE OPTIMIZATIONS 90

…

State

Sample

 1 fun pipeline2(s:*State) {
 2 for (t in B) {
 3 var r:*Row=nil
 4 if (t.col1==/*Key-1*/)r=/*Address-1*/
 5 elif (t.col1==/*Key-2*/)r=/*Address-2*/
 6 elif (t.col1==/*Key-3*/)r=/*Address-3*/
 7 else r = @lookup(&s.htbl,t.col1)
 8 if (r!=nil) @emit(/*Output Columns*/)
 9 }}

Pipeline #2 Logic

Figure 5.5: Specializing Join Probing Logic – If the DBMS detects join key skew, it samples the
input to collect a representative set of “hot” keys, probes the hash table once before generating the
probe logic, then generates explicit checks for each key, embedding the address of the result if suc-
cessful.

metrics collected for materialized attributes, the DBMS also tracks NULL counts with the goal of
detecting when these checks can be safely removed. If analysis concludes that NULL values do not
exist in the input, the generation of subsequent pipelines that operate on these attributes can skip
NULL handling code (i.e., lines 3-4 in the previous example) to save on compilation time and improve
query performance.

5.3.5 Value Specialization
Lastly, we discuss an adaptive technique that exploits data skew to optimize hash join perfor-

mance. Using the example SQL query in Figure 5.3a, we describe how the collected statistics are
used to customize the probing logic in the second pipeline.

Analysis: The aim of this optimization is to recognize skew in join keys, extract the N “hottest”
keys (whereN is configurable), and inline logic for them in the generated code for the probe side of
the join. The intuition behind this approach is that skew on the build side translates to skew on the
probe side. As this assumption is not always valid, the DBMS selectively enables this optimization
based on the joined tables. In this work, we enable it for anti- or semi-joins because the overhead is
negligible in these cases.

NoisePage identifies skew using either a histogram- or approximation-based approach. In the
former case, the join operator generates analysis code constructing a histogram of the join keys. In
the latter case, it uses a HyperLogLog (HLL) estimator to acquire an approximation of the number
of distinct keys [53]. Then, if nHT is the total number of tuples in the hash table, and nD is the
(approximate) count of distinct keys, the DBMS applies the optimization if nHT

nD
> T , where T is a

configurable parameter.
If the DBMS chooses to apply the optimization, the next step is to select the set of N keys,

K = {k1, k2, . . . , kN}, to extract and inline into the next pipeline’s code. If a histogram is used,
the first N keys are selected. If an approximate count is used, the DBMS samples N random keys
without repetition from the input.

91 CHAPTER 5. PROGRESSIVE CODE GENERATION

Code Generation: Figure 5.5 shows an example where the DBMS samples three build keys and
modifies the generated probing code. The second pipeline’s code is contained in the function pipe-
line2() (lines 1–10). It begins with a sequential tuple-at-a-time scan of table B (line 2) and contains
themodified probing logic. On lines 4–6, the hash join operator explicitly generates a comparison of
the current probe key against each key from the setK . If the hash table was previously compressed,
the check is modified to encode the probe key and mask the build key appropriately. If any of the
specialized key comparisons are successful, the matching tuple’s address is written to row which
stores the current tuple’s join partner. The hash join operator computes these memory addresses
by performing the lookup of all keys in K before generating code. Thus, for the “hot” set of keys,
the probe is only performed once at query compilation time rather than query runtime. Finally, a
generic hash table lookup is generated on line 7 to handle the fallthrough case, and a tuple is output
on line 8 if the probe is valid.

5.4 Evaluation
To evaluate our method, we implemented our PCG framework and execution engine in the

NoisePage DBMS [9]. NoisePage is a PostgreSQL-compatible HTAP DBMS that uses HyPer-style
MVCC [110] over the Apache Arrow in-memory columnar data [93]. It uses LLVM (v11) to JIT
compile our bytecode into machine code.

Our benchmark machine contains two 20-core Intel Xeon Gold 5218R CPUs clocked at 2.1GHz
and 192 GB of DRAM. The CPU is 2× hyper-threaded, supports AVX512 SIMD, and contains ten
line-fill buffer (LFB) slots supporting at most one outstanding memory prefetch request. For all
experiments, we ensure that the DBMS loads the entire database into the same NUMA region using
numactl. We implemented our microbenchmarks using the Google Benchmark [5] library which
runs each experiment a sufficient number of iterations to acquire statistically stable execution times.

We begin with a description of the workloads we use in our evaluation. We then evaluate PCG’s
ability to improve query performance in comparison to conventional one-shot query compilers.

Microbenchmark: Wecreated a synthetic benchmark to isolate andmeasure aspects of theDBMS’s
runtime behavior. The database contains two tables (A and B) that contain 16×64-bit signed integer
columns (col1–col16). Each table contains 16m tuples and occupies ∼3.8 GB of memory. Each
experiment that uses this benchmark states how it varies the distributions and correlations of the
database’s columns’ values to highlight a specific component.

TPC-H: This is a popular decision support system (DSS) workload that simulates an OLAP envi-
ronment [146]. It contains eight tables in 3NF schema. We use a scale factor of 10 (∼10 GB).

5.4.1 State Compression
We begin with evaluating PCG’s ability to compress intermediate state. We explore compression

in the context of hash joins and order-by queries. For each case, we isolate and investigate a different
aspect of compression (e.g., tuple size, compression ratio etc.) by adjusting the workload query we
use and the data we generate.

5.4. EVALUATION 92

1 2 4 8 16
Number of Payload Attributes

0

50

100

150

200
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Dis. Dis. Dis. Dis. Dis.PCG PCG PCG PCG PCG

Probe Build Compress Analyze

Figure 5.6: Compression with Varying Tuple Size – A breakdown of the time to perform a hash
join with and without PCG compression when varying the number of non-key attributes in the
build-side tuple.

PerformancewithVaryingPayloadSize: Thefirst experiment evaluates the performance ofNoiseP-
age’s hash join as we vary the payload size (i.e., non-key attributes) of the tuples it stores in the join’s
hash table. The workload consists of a single query:

SELECT A.col1, A.col2, ..., A.colk
FROM A INNER JOIN B ON A.col1 = B.col1

The query plan arranges tables A and B on the build- and probe-side of the join, respectively.
Since there is no filter, the DBMS materializes all tuples from A in the hash table. We populate the
columns A.col1 and B.col1 to simulate a foreign-key join with 100% join selectivity; every tuple in
table A joins with exactly one tuple in B, but the keys have a random ordering in both tables. We
also generate the data for all materialized attributes from table A to achieve a compression factor of
8×. We investigate the effect of compression ratio in a later experiment.

We execute this query with and without PCG’s compression, and vary the number of payload at-
tributes from 1–16 to reflect realistic data warehouse queries. Disabling PCG represents how existing
JIT compilation-based DBMSs execute this query without compression.

The results in Figure 5.6 show that when the size of the build-side tuple is small, PCG offers
a small 1–2% performance improvement over the non-PCG version, but consumes 8× less overall
memory because it compresses the hash table. The time that the DBMS spends in both the analysis
and compression phases increases with the size of the tuple. This is because wider tuples require
collecting more statistics (for analysis) and copying more data (for compression). However, the
phases scale at different rates; the overhead of analysis expands by 3× from one to 16 attributes,
contributing at most a 3% overhead. Compression time increases by almost 25× and accounts for
∼14% of the overall time when the tuple contains 16 non-key attributes. For wide tuples, PCG
compression is feasible to reduce intermediate data sizes with a modest overhead. We leave this
decision to the DBMS based on runtime operating conditions.

93 CHAPTER 5. PROGRESSIVE CODE GENERATION

Disabled Enabled

4K 8K 16
K

32
K

64
K

12
8K

Number Of Tuples

0

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(a) Low Tuple Count

25
6K

51
2K 1M 2M 4M 8M 16

M

Number Of Tuples

0

500

1000

1500

2000

2500

(b) High Tuple Count

Figure 5.7: Compression with Increasing Tuple Counts – Measuring hash join performance with
PCG compression when varying the size of thematerialized hash table but with a fixed compression
factor and tuple size.

Performance with Varying Table Sizes: We next analyze the performance of of NoisePage’s hash
joins as we vary the size of the intermediate state. We evaluate the following workload query:

SELECT A.col1, A.col2, A.col3, B.col1
FROM A JOIN B ON A.col1 = B.col1

WHERE A.col1 = δ

As before, table A is on the build side of the join and the DBMS populates all columns but only
materialize three columns from table A. We adjust the value of the filtering term, δ, to achieve the
desired selectivity to control the size of the hash tablematerialized in the join. Thus, this experiment
fixes the compression ratio and tuple size, but varies the compressed intermediate state size.

The results in Figure 5.7a show that enabling compression when the hash table contains fewer
than 1m tuples adds up to a 2.5× overhead. In this range, the constructed hash table fits in the
CPU’s cache. Thus, compression imposes unnecessary work to analyze, compress, and copy tuples
into a new hash table that is also cache-resident. NoisePage performs hash joins in a two-phase
manner where it can recognize if this situation arises and skips performing compression altogether
(see Chapter 4). But we include the results here for the purpose of exposition.

In Figure 5.7b, we see that when the hash table size exceeds the CPU’s cache (i.e., more than
1m tuples), the compression overhead falls to 10% over the baseline. This is because the DBMS’s
execution time is dominated by cache misses while probing the hash table. Compressing the hash
table may not guarantee that it fits in CPU cache, but it increases the percentage of tuples that do fit.
In this experiment, compression fits 8×more tuples, but still falls out of cache when there are more
than 2m tuples. In addition to requiring less memory, compression is beneficial in the presence of

5.4. EVALUATION 94

Disabled 1x 2x 4x 8x
Compression Factor

0

50

100

150

200
Ex

ec
ut

io
n

Ti
m

e
(m

s)
Probe Build Compress Analyze

Figure 5.8: Compression with Varying Compression Factors – Measuring hash join performance
with PCG compression when varying compression factor but with fixed tuple and hash table sizes.

skew since it increases the likelihood that the most frequently accessed (compressed) tuples fit in
cache.

Impact of Compression Factor: We next examine the impact of the compression ratio on hash
join performance. We perform a join on tables A and B as before, but we (1) fix the schema of the
build tuple to one key and two payload attributes, and (2) fix the size of the materialized hash table
to 2m tuples. We populate all key and payload attributes in table A to achieve a specific compression
ratio, and measure the join with and without PCG compression. Although NoisePage skips com-
pression if its analysis concludes it to be unnecessary, we include the results here for completeness.

Figure 5.8 shows that PCG compression adds up to a 10% overhead over the baseline to achieve
a 2× memory reduction. This is because although the hash table occupies less memory after com-
pression, its total size still exceeds the CPU’s cache capacity. Thus, probing the hash table still incurs
costly cache misses that dominates overall execution time. We use randomly generated keys (rather
than skewed keys) to highlight this effect. However, as the compression ratio increases, the over-
head of performing compression is outweighed by the improvement in join’s probe phase. At an 8×
ratio, the compressed hash table is 48 MB and fits in the CPU cache; this improves the probe phase
by ∼20%. In this experiment, the DBMS implemented the probe pipeline using a fused tuple-at-a-
time approach. The DBMS could optimize the probe phase by recognizing the cache residency of
the hash table in the first pipeline to generate a hybrid vectorized approach with pre-fetching [101].

We also observe that the time that the DBMS spends for compression and analysis is unaffected
by this ratio. This is because the total data set size is constant across each configuration. The DBMS
collects the same statistics during its analysis for all three attributes in the hash table, and executes
the same number of instructions during compression. The analysis phase contributes ∼1% of the
runtime and uses vectorized primitives. In contrast, compression is a consistent∼5% overhead and
uses fused loops.

Multi-Component Join Keys: Recall from Section 5.3.2 that when probing a compressed hash
table, the DBMS encodes the probe key(s) first. We now investigate the impact of this design choice

95 CHAPTER 5. PROGRESSIVE CODE GENERATION

1 2 3 4 5 6 7 8
Number of Key Components

0

100

200

300

400
Ex

ec
ut

io
n

Ti
m

e
(m

s)

D
is

.

D
is

.

D
is

.

D
is

.

D
is

.

D
is

.

D
is

.

D
is

.

P
C

G

P
C

G

P
C

G

P
C

G

P
C

G

P
C

G

P
C

G

P
C

G

Probe Build Compress Analyze

Figure 5.9: Multi-Component JoinKeys –Breakdownof time to perform a hash joinwith a varying
number of keys components. The analysis phase is plotted, but not visible.

using the same join query as earlier, but vary the number of join keys between 1–8. We populate the
columns col1–col8 in tables A and B to simulate a 100% selective foreign-key join. We also control
data generation for table A to achieve an 8× compression ratio, reducing key size from 64-bits to
8-bits. The DBMS materializes all tuples in A into the join’s hash table.

The results in Figure 5.9 show that PCG adds a 6–8% overhead over the baseline despite reduc-
ing total space by 8×. Across all configurations, the build and probe times of both versions are
within 1% of each other. Thus, encoding probe keys using the FOR compression scheme adds only a
modest overhead. Both versions also issue the same number of randommemory accesses when per-
forming the initial lookup into the hash table. In the baseline, the uncompressed tuple has at most
eight 8-byte keys, which fills one cache line. In the PCG version, the compressed tuple requires at
most only one byte (eight 1-byte keys), but still incurs a full cache-line retrieval due to the machine
architecture’s granularity of memory access.

We attribute all the observed overhead to the analysis and compression phases. The analysis
phase is never more than ∼2% of the total runtime, but it does rise by 2× with increased key com-
plexity. This is because analysis relies on vectorized primitives to reduce instruction counts and
maximize cycles-per-instruction. In contrast, the compression phase accounts for 14–16% overhead
and increases by 3.8× from one to eight keys because it not only compresses the source data, but
also copies that data into a new memory space.

Multi-Component Sort Keys: NoisePage with PCG compression executes order-by queries by
first materializing tuple data into a buffer and then analyzes them to determine their suitability for
compression. The DBMS then generates a compression-aware tuple comparison function for the
sort algorithm. The resulting scan over the sorted tuples processes them in their compressed form.
To investigate the impact of compression when sorting data, we evaluate the following workload
query that scans table A, projects a varying number of columns, and sorts on these columns:

5.4. EVALUATION 96

1 2 4 6 8
Number of Sort Key Components

0

350

700
Ex

ec
ut

io
n

Ti
m

e
(m

s)

Dis. Dis. Dis. Dis. Dis.PCG PCG PCG PCG PCG

Sort Compress Analyze

Figure 5.10: Compression During Sort – Breakdown of sorting time when using a multi-
component key. The analysis phase is plotted, but not visible.

SELECT A.col1, A.col2, ..., A.colk
FROM A

ORDER BY A.col1, A.col2, ..., A.colk

We populate the columns in A with random data that guarantees a 4× compression ratio. We
measure the query’s execution time and provide a breakdown of its phases.

Figure 5.10 shows that compressing input tuples before sorting yields a ∼30% performance im-
provement over the baseline for simple keys. However, the gap closes with increasing key complex-
ity. With eight key attributes, PCG offers a modest 4% improvement. In all cases, PCG reduces
the order-by operator’s memory consumption by 4× and never degrades performance. As in pre-
vious experiments, we also observe that analysis adds a constant (negligible) overhead of ∼1%. We
attribute this to the use of parallel execution and vectorized primitives. The time taken in the com-
pression phase increases with key complexity growing from 4% to 7% with one to eight attributes,
respectively. This is because the DBMS has to read and write more data as the number of attributes
in the key grows.

5.4.2 Overflow Checking
We now examine aggregations in NoisePage when employing PCG to learn when to elide arith-

metic overflow checking. For this experiment, we use the same query as in Section 5.1, but we vary
the total number of computed aggregates. As before, the filtering term is fixed at 95%. The DBMS
generates the probe pipeline after analyzing and compressing the join’s hash table, and uses a stan-
dard fused tuple-at-a-time loop. We include analysis time when the DBMS uses PCG. With PCG,
the DBMS uses a smaller 32-bit signed integer type, and elides overflow and null checks in the probe
pipeline. The non-PCG versions use 128-bit signed integers for the aggregates.

The results in Figure 5.11 show that PCG-optimized aggregation performs 2.5× over the base-
lines. Recall that Branch represents how existing one-shot compilation-based DBMSs generate the
aggregation logic. Branch is slower because it executes more branching instructions (i.e., the over-
flow guards) and uses slower 128-bit arithmetic. Flag converts the control dependency from the

97 CHAPTER 5. PROGRESSIVE CODE GENERATION

2 4 6 8 10
Number Of Aggregates

0

50

100

150

200

250
Ex

ec
ut

io
n

Ti
m

e
(m

s)
PCG Branch Bit-Flag Flag

Figure 5.11: Overflow Checking – Performance measurements during aggregation when varying
the number of aggregates in the query.

conditional branch into a data dependency, resulting in a ∼13% improvement over Branch. How-
ever, it too still requires 128-bit operations. Bit-Flag resembles Flag, but replaces boolean logic data
dependencies into bit-wise operations resulting in poorer performance. Bit-Flag is 15–20% slower
than the other non-PCG variants because it always executes both sides of the operation regardless
if an overflow occurred; thus is cannot benefit from short-circuit evaluation.

5.4.3 Join Key Specialization
We next evaluate PCG’s ability to exploit data skew in hash joins. As described in Section 5.3.5,

NoisePage executes hash joins by injecting an analysis phase between the execution of the first
(build) pipeline and the generation of the second (probe) pipeline. Analysis enables the DBMS
to identify if skew exists and directly embed explicit key checks in the probe pipeline. It does this
by performing the lookup at query compilation time once rather than at query runtime.

To examine this optimization’s impact on join performance, we evaluate the same query as in
Figure 5.3a. We populate the joining columns A.col1 and B.col1 according to a Zipfian distribution
and vary the skew factor. We also vary the number of keys we embed (N) to explore when the
optimization is most suitable. A configuration N=n embeds n keys in n branches into the probe
pipeline. The baseline is to embed no keys (Disabled); this represents how existing compilation-
based DBMSs execute the query. We measure both the execution time and the fraction of hash
table probes that hit one of the special cases generated in the PCG versions.

Figure 5.12a shows that all PCG versions perform worse than the baseline when there is low (to
no) skew in the join keys. For example, embedding only one join key (N=1) adds 8% overhead. This
is because PCG introduces many untaken branches that, although predicted correctly, still execute
more instructions than the baseline. Figure 5.12b shows that some of the PCG variants gradually
outperform the baseline as skew increases. The performance of the optimized versions plateau as
the DBMS approaches the absolute min number of executed instructions to implement the join.
N=16 executes half the number of instructions as Disabled, and is more than 2.5× faster.

We also observe that not all PCG variants perform better than the baseline at higher skews and
those that do occur at different skews. N=1 never betters Disabled, but N=2, N=4, N=8, and N=16
outperform the baseline at skews 2.2, 1.8, 1.6, and 1.4, respectively. These transfer points correspond

5.4. EVALUATION 98

Disabled N=1 N=2 N=4 N=8 N=16

0.2 0.4 0.6 0.8 1.0 1.2
Key Skew

50

250

450

650
Ex

ec
ut

io
n

Ti
m

e
(m

s)

(a) Low Skew

1.4 1.6 1.8 2.0 2.2 2.4
Key Skew

0

25

50

75

100

Ex
ec

ut
io

n
Ti

m
e

(m
s)

(b) High Skew

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
Key Skew

0

25

50

75

100

H
it

R
at

e
(%

)

(c) Hit Rate

Figure 5.12: Varying JoinKey Skew –Performance of PCG’s join key specializationwhen increasing
skew in the join keys. (a) and (b) plot the total execution time when the skew is low and high,
respectively; (c) shows the percentage of hash table probes that hit a heavy-hitter branch.

99 CHAPTER 5. PROGRESSIVE CODE GENERATION

Q1 Q4 Q5 Q6 Q7 Q11 Q16 Q18 Q190

200

400

600
Ex

ec
ut

io
n

Ti
m

e
(m

s)
NoisePage NoisePage w/ PCG

(a) Execution Time

Q1 Q4 Q5 Q6 Q7 Q11 Q16 Q18 Q190

1

2

3

4

C
om

pr
es

si
on

 F
ac

to
r

No State

(b) Memory Reduction Ratio

Figure 5.13: TPC-H Performance – Evaluation of a selection of TPC-H queries with and without
memory compression enabled using PCG. (a) and (b) show the query performance and memory
reduction ratio, respectively.

to points in Figure 5.12c where more than 75% of the hash table probes hit one of the special case
branches. When the branches are taken less frequently, the CPU cannot correctly predict their out-
come, leading to costly mispredictions. For instance, N=1 is 1.5× slower than Disabled at skew 2.4,
but incurs 25×more branch mispredictions. CPU architectures employ different branch prediction
techniques, making N machine-dependent. Although the threshold depends on the machine the
DBMS is running on, it does not change over its lifetime. The DBMS can derive this bias threshold
value on startup using microbenchmarks.

5.4.4 TPC-H
Lastly, we evaluate NoisePage with andwithout PCG on the TPC-H benchmark. We load a scale

factor 10 (∼10 GB) data set and first warm the system caches by running all queries three times. We
then evaluate all queries and report the average over five consecutive executions. We also report
the reduction in each query’s total memory footprint when applying PCG compared to when it is
disabled.

The first observation of the results in Figure 5.13 is that the DBMS’s performance with PCG is
never worse than the baseline. Unlike the previous experiments, we allow the DBMS to bypass com-
pression if it deems it unbeneficial. Since PCG’s analysis captures perfect information, the decision

5.5. RELATEDWORK 100

on whether to apply an optimization is always correct. For example, Q1 uses a hash table to store
aggregates, but the DBMS does not compress it because it uses four group-by keys and already fits
in CPU cache. In contrast, Q5 is ∼25% faster with PCG because it uses smaller data types in its five
hash tables. Similarly, Q18 is 10% faster with PCG for the same reason.

Our second observation is that not all queries benefit from compression, but PCG is able to
achieve up to a 4× reduction in total memory for some queries. As mentioned, Q1’s hash table and
sort buffers fit in cache and, thus, do not benefit from compression. As a counter point, all five
hash joins’ hash tables in Q1 are compressed; but, the aggregation and sorting buffers are untouched
because they are cache-resident.

PCG’s compression is not meant to always improve performance. Still, we emphasize that it can
also reduce memory consumption through its lightweight analysis and custom code generation. In
general, we observe that the hash table data structure often consumes the largest amount ofmemory
in a query. Thus, we expect greater benefit from PCG compression with increasing data sizes and
query complexity.

5.5 RelatedWork
Compression: Westmann et al. explore integrating lightweight compression holistically through-
out all database components, and evaluate its impact onquery performance in a row-storeDBMS [153].
The authors show that using lightweight compressionmethods like FOR [59] or null suppression [130]
for integers, and dictionary compression [130] for strings, yields up to a 55% reduction in query re-
sponse times. Abadi et al. present an evaluation on compression in column-stores DBMSs [13]. The
authors integrate five compressed schemes into a DBMS by abstracting access to base and interme-
diate column data behind an API. This API hides how a column is formatted and instead exposes
properties about the underlying data (e.g., sortedness) that compression-unaware operators exploit.
However, both these works focus compression only on storing and processing base table data.

Chen et al. are one of the first to compress intermediate results for disk-centric row-stores [39].
They introduce transient decompression wherein operators incapable of processing compressed
data temporarily decompress their inputs and retain the original input as well. The DBMS then
processes the data, and then recompresses and combines the output with the original compressed
input data. Thus, subsequent operators still benefit from compression.

MorphStore [43] presents the design of a column-store query engine that implements continu-
ous compression for both base table data and all intermediates. Built atopMonetDB [30],MorphStore
operators consume compressed inputs and produce compressed output in potentially different for-
mats. Operators rely on a library of SIMD-optimized vectorized wrappers to morph data in one
scheme into different schemewithout decompressing. Instead, wrappers deliver small vector register-
resident chunks of data to operators. The engine also dynamically selects a suitable compression
format for an operator’s output based on its characteristics. PCG only compresses data at pipeline
boundaries rather than after each operator.

Gubner et al. describe an approach to compress intermediate hash tables using domain-guided
prefix suppression [64]. Before execution, the DBMS determines a suitable encoding of the at-
tributes materialized in a hash table by inferring their domain bounds and truncating unused prefix
bits. During execution, the DBMS dispatches to pre-compiled vectorized primitives to encode and

101 CHAPTER 5. PROGRESSIVE CODE GENERATION

decode tuple data when writing to and reading from the hash table. PCG supports any compression
technique, determines suitability for compression dynamically at runtime, and relies on generating
custom TPL compression code.

5.6 Conclusion
We presented PCG, a framework that interleaves code generation and query execution. With

PCG, the DBMS decomposes queries into smaller pipelines compiled and executed independently.
In this manner, PCG enables the DBMS to hyper-optimize code to both the input query and the
data the query reads but do so safely without the need for a fallback path. It does this by strategically
injecting custom utility code between pipelines to observe data and uses this data to specialize how
later parts of the query are generated. We present four optimizations built on top of PCG that
target performance and memory reduction through compression. Our evaluation shows that PCG
incurs a modest (tunable) overhead but can achieve up to a 4× decrease in memory and 2× boost
in performance in both synthetic and TPC-H benchmarks.

Chapter 6

RelatedWork

The techniques developed in this dissertation span several areas of research: (1) query compilation,
(2) adaptive query processing, and (3) dynamic compiler optimizations outside the database com-
munity. This chapter highlights the projects, systems, and techniques from these areas that are most
relevant.

6.1 Query Compilation
A primitive form of code generation was developed for IBM System R in 1970s [34]. System

R directly compiled SQL statements into assembly code by selecting pre-defined code templates
for each operator. Query compilation is performed for both both OLTP-style queries and ad-hoc
queries. The authors later remarked that though compiling repetitive queries had obvious benefits
by avoiding the cost of parsing and optimization, the benefits of compiling ad-hoc queries were
less clear. Interestingly, they conclude that the generated code was often more efficient than its
interpreted counterpart and thus additional latency due to code generation was worth it. Ultimately,
IBM abandoned this approach in the early 1980s because of the high cost of external function calls,
poor portability across operating systems, and software engineering complications.

Query compilation was not considered in any major DBMS in the 1980s and 1990s (with a few
minor exceptions). Instead, it was supplanted by the Volcano query processing model [60]. More
recently, query compilation has been used in modern in-memory DBMSs. One of the first systems
to revive the technique was Microsoft’s Hekaton [55], an in-memory OLTP storage manager for the
SQL Server DBMS. Hekaton compiles queries by transforming a conventional query plan into a sin-
gle C-code function that implements a Volcano-style iterator. This function contains the logic of all
the operators, and the data-flow path is woven through the operators using goto statements. Since
the advent of Hekaton, there have been several systems developed that also use query compilation.

Cloudera’s Impala [83] is a distributed OLAPDBMSwith amixed C++/LLVM vectorized execu-
tion engine. Impala uses LLVM to compile query-specific versions of frequently executed functions,
including functions to parse tuples, compute tuple hashes, and evaluate predicates. These special-
ized functions take advantage of type information to avoid conditional branches and omit function
calls. During query execution, these specialized functions are JIT compiled and replace interpreted
versions. Impala also compiles and inlines UDFs into the query’s execution plan.

102

103 CHAPTER 6. RELATEDWORK

HyPer [77] pioneered the data-centric (push-based) query execution model [108]. HyPer trans-
lates a given query plan into LLVM IR, but relies on precompiled C++ code for the more complex
query-agnostic database logic. The push-based engine fuses together all operators in a pipeline,
obviating the need to materialize data between operators, instead allowing them to access tuple
attributes directly in CPU registers. This produces compact loops that improve code locality and
overall execution time.

Umbra [109] (the successor to HyPer) is an HTAP DBMS that also uses data-centric code gen-
eration. Umbra translates query plans into a custom IR optimized for low-latency query execution
rather than using LLVM [79]. The authors note that LLVM is a general-purpose IR and emphasizes
common interaction patterns such as instruction reordering, replacement, and deletion. A DBMS
query processor does not use these IR features but has to pay the overhead nonetheless. Instead,
Umbra’s IR is faster to generate and execute, despite resembling LLVM. Umbra either interprets
their IR or compiles it directly to x86 assembly.

JAMDB [126] from IBM presented a relational, in-memory, Java-based database prototype that
compiled query plans into Java classes that are JIT by the JVM. They implemented compilation of
all relational operators and expressions required to support the TPC-H benchmark and compared
against an interpreted engine. Interestingly, the JAMDB query compiler structures generated code
in a manner that strikingly resembles the data-centric model from [108], but do not provide a trans-
parent model or API for how they achieve this.

SingleStore [8] (previously MemSQL) underwent two incarnations of their code generation
query engine. Their first version used a template-driven approach to generate C++ code that was
compiled to machine code by forking a GCC process. Due to long compilation latencies, they
rewrote the engine to translate query plans into a DSL called the MemSQL Programming Language
(MPL), which is compiled into a custom bytecode. The DBMS either interprets this bytecode or
compiles it into native code using LLVM. Both versions of the engine perform one-shot code gen-
eration without any adaptive techniques. Query parameters are stripped out from queries to avoid
recompilation when the query runs with new input values.

LegoBase [80] uses generative-programming (i.e., staging) to partially evaluate a Volcano-style
interpretation engine and produce highly customized C query code. Optimizations to convert to
push-based dataflow, row or columnar formats, or vectorized or tuple-at-a-time processing are ap-
plied during this transformation. DBLAB/LB [134] is the spiritual successor to LegoBase and also
uses the staging based technique to generate query code. Unlike LegoBase, DBLAB/LB relies on a
stack of DSLs to incrementally lower an interpreted query engine into C code. Each DSL functions
at a different level of abstraction and is optimized independent of each other.

DBToaster [17, 18] is a stream processing engine designed for efficient view maintenance. In
existing DBMSs, incremental updates to materialized views are treated like an update to a regular
table. This simplifies the implementation by reusing existing machinery, but it does not consider
the nature of the view and its relationship to the base tables. DBToaster instead analyzes these
relationships to construct an optimized delta query that often obviates the need for subsequent scans
of base tables. It then translates this delta query into C++ code and compiles it into machine code
using a standard compiler. In this way, the DBToaster system is able to offer orders of magnitude
performance improvements for long-standing queries.

6.1. QUERY COMPILATION 104

Tupleware [41] is a distributedDBMS that automatically compiles workflows composed ofUDFs
into LLVM IR. Workflows are introspected to find vectorizable and non-vectorizable portions that
drives the code generation process. Tupleware also presents a new hybrid predicate evaluation tech-
nique that separates predicate checking with output copying using a heuristic model.

In [137] and [136], the authors compared the performance of a vectorized and compiled query
engine across three different simple query types: projections, selections and hash joins. They con-
clude that neither technique is always optimal, but that a combination of the two techniques is re-
quired to achieve the best performance. Specifically, projections are best performed by a compiled
query, while selections are best performed by a vectorized query. Hash joins are significantly more
complicated and require a custom combination of the two techniques.

The HIQUE [84] system uses query compilation without the Volcano iterator model. Instead,
HIQUE translates the algebraic query plan into C++ using code templates for each operator. These
templates form the structure of the operator, but low-level record access methods and predicate
evaluation logic is customized per query. Unlike our ROF model, each operator in HIQUE always
materializes its results, which prevents operator pipelining.

OmniSci [144] (previously MapD) is a GPU-accelerated DBMS designed to handle read-only
queries. It implements a mixed C++/LLVM execution engine. All query-specific routines and pred-
icate expressions are compiled into LLVM IR, then JIT compiled into native GPU code through
Nvidia’s intermediary NVVM IR. Like MemSQL, extracts constants to avoid recompilation when a
query is re-executed with different parameters. It does this by using the generated IR as a key into
a hash-table that maps IR to JITed query code.

Voodoo [120] presents an intermediate vector-based algebra that abstracts away the specifics
of a system’s underlying hardware such as cache configurations, NUMA layouts, or availability of
SIMD instructions. A DBMS translates a physical plan into Voodoo and relies on a back-end that
compiles it into portable OpenCL [10] code, which can be deployed in heterogeneous hardware
environments that include both CPUs and GPUs.

The Tungsten [21] engine in Apache Spark introduced data-centric code generation for expres-
sions. The DBMS converts a query’s WHERE clause into an AST that it then compiles into JVM
bytecode. The JVM internally decides whether this code is interpreted or compiled to native code.
Using JVM bytecode simplifies interoperating with generated code since Spark is written in Scala
(i.e., a JVM language). Like existing systems, Tungsten performs one-shot code generation (referred
to as whole-stage generation in their work) and does not attempt to adapt this code at runtime. Code
generation is also disabled for large queries due to platform and JVM limitations.

LB2 [145] presents an exciting approach to implementing a code generation query engine. With
LB2, the query interpreter is written in the Scala programming language. The interpreter uses the
data-centric model by relying on callback functions. Using callback functions enables the DBMS to
benefit from data-centric efficiency and the Volcano-style iterator’s well-understood structure. The
authors use staged compilation [80, 134] and Futamura projections to derive a query compiler from
an interpreter. The resulting compiler generates C code which is further compiled into native code
using GCC. However, LB2 suffers from very long compilation times, making it infeasible for use in
real-time analytic workloads.

105 CHAPTER 6. RELATEDWORK

6.2 Adaptive Query Processing
Deshpande et al. provides a thorough survey of the AQP methods up to the late 2000s [46]. The

high-level idea with AQP is that the DBMS monitors the runtime behavior of a query to determine
whether the optimizer’s cardinality estimations exceed some threshold. It can then either (1) return
to the optimizer to generate a new plan using updated estimates it collected during execution based
on the data that it observed in the first run or (2) switch to an alternative sub-plan at an appropriate
materialization point. The former is not desirable in a JIT code-gen DBMS because of the high cost
of recompilation.

The two AQP methods from the latter category that are most relevant to our PCQ approach are
parametric optimization [40, 61] and proactive reoptimization [24]. The parametric optimization
method for the Volcano optimizer generates multiple plans for a pipeline and embeds them in the
plan. The optimizer then inserts using choose-plan operators that allow the DBMS to change which
pipeline plan to use during query execution based on the observed cardinalities. Similarly, proac-
tive reoptimization introduced in the Rio optimizer added switch operators in plans that allow the
DBMS to choose between different sub-plans within a pipeline [24]. Rio also supports collecting
statistics during query execution. Plan Bouquets [51] generates a “parametric optimal set of plans”
that it switches between at runtime, but also provides a worst-case performance bounds. All of these
methods are similar to our approach except they target interpretation-based DBMS architectures.
They also generate non-permutable plans that only support coarse-grained switching between sub-
plans before the system executes them. PCQ, on the other hand, enables strategy switching within
a pipeline while the DBMS is actively executing it. Perron et al. show that modern cost-based query
optimizers continue to underperform for certain classes of queries [118]. Their work advocates for
query re-optimization as a cost-effective solution. Although their proposal targets the DBMS opti-
mizer, PCQ solves many of the same issues during execution.

IBM developed at AQP technique for dynamically reordering joins in pipelined plans [92]. It
targets OLTP workloads and does not generalize to analytical queries. More recently, SkinnerDB
uses reinforcement learning to approximate optimal join ordering during query execution [148]. It
requires, however, expensive pre-processing of data where it computes hash tables for all indexes
and currently only supports single-threaded execution.

HyPer’s adaptive compilation technique includes many of the building blocks that we use to
build a PCQ-enabled DBMS [82]. First, it relies on an interpreter that operates on HyPer-specific
bytecode, similar to NoisePage’s interpreter. This bytecode is derived from LLVM IR rather than a
DSL like TPL. HyPer only adapts its execution mode (i.e., interpreted vs. compilation), and does
not modify the high-level structure of query plans, nor does it perform the low-level intra-pipeline
optimizations that we described in Section 4.2.

Another in-memory DBMS that supports adaptivity is Vector [29]. Instead of JIT compiling
queries, Vector uses pre-compiled primitives that are kernel functions that perform an operation
on a specific data type (e.g., an equality predicate on 32-bit integers). The DBMS then stitches the
necessary primitives together to execute each query. Vector’s “micro-adaptivity” technique com-
piles these primitives using different compilers (e.g., gcc, icc), and then uses a multi-armed bandit
algorithm to select the best primitive at runtime based on performance measurements [124]. Since

6.3. ADAPTIVE COMPILER TECHNIQUES 106

this approach only changes what compiler to use, it cannot accommodate plan-wide optimizations
or adapt the query plan based on the observed data.

Zeuch et al. developed a reoptimization approach using a cost-model based on the CPU’s built-
in hardware counters [158]. Their framework estimates the selectivities of multi-table queries to
adapt execution orderings. Our PCQ framework does not rely on low-level counters and supports
additional optimizations beyond filtering, including joins and aggregations.

Amore recent adaptive approach for JIT compiled systems was proposed for Apache Spark [132].
Thismethod provides dynamic speculative optimizations for compiling data file parsing logic. Griz-
zly [62] presents an adaptive compilation approach targeting stream processing systems. It initially
generates generic C++ code with custom instrumentation to collect profiling information. The run-
time uses this profiling information to recompile new optimized variants that it then monitors and
verifies using hardware counters. Grizzly supports predicate reordering and domain-value special-
ization. PCQ supports more optimizations without recompiling plans.

One of the first implementations of reordering predicateswas inPostgres from the early 1990s [68].
The authors instrumented the DBMS to collect completion times of predicates during query execu-
tion. They then modified Postgres’s optimizer to reorder predicates to consider the trade-offs be-
tween selectivity and evaluation cost in future queries. This is the same high-level approach that
IBM used in its Learning Optimizer (LEO) for DB2 [138]. The DBMS collects runtime information
about queries and feeds this data back into the optimizer to improve its planning decisions.

Lastly, Dreseler et al. perform a deep-dive analysis of the TPC-H benchmark queries [50]. Their
work groups the canonical choke-point queries into one of three categories: plan-level, logical
operator-level, and engine efficiency. Their conclusion is that predicate placement and subquery
flattening were the most relevant to query performance. PCQ supports the former in the execution
engine, while the latter is handled by the DBMS optimizer.

6.3 Adaptive Compiler Techniques
Optimizing generated code based on runtime conditions is well-studied the compiler literature,

specifically in the context of high-performance dynamic language virtual machines [35, 36, 47, 69,
71, 74, 98]. The use of speculative optimization and deoptimization as a technique to enhance per-
formance was first introduced in the Self programming language [70]. At a high level, the compiler
first generates a generic version of a code fragment to execute. Depending on the scope of optimiza-
tion, a code fragment may be restricted to a single loop (e.g., tracing JIT) or an entire method (e.g.,
method-based JIT). The compiler profiles the generated code and if it speculates that the collected
information is stable (i.e., the information is not going to change in future executions), it generates
a new version that optimizes for the observed common case. The optimized version also contains
a fallback code path to handle inputs that invalidate speculative assumptions. When this occurs,
the code is deoptimized by transferring control back to the runtime and reverting to the generic
version. PCG exploits the semantics of query processing to safely remove the need for a fallback
and its associated overhead.

The inspector/executor paradigm is used by compilers to generate parallel code for sparse ma-
trix multiplication applications. In this model, the compiler generates inspection code to examine
data at runtime first, and then executor code that exercises specific optimizations incorporating the

107 CHAPTER 6. RELATEDWORK

runtime information [25, 103, 128, 150]. These inspector/executor optimizatations have also been
employed outside the domain of matrix multiplication, including optimizing parallelization and
communication [127, 131], and data reorganization [49, 66, 99, 104, 154]

Chapter 7

Future Work

In this chapter, we propose several future directions for the work presented in this dissertation. We
first discuss immediate extensions that build upon our work to further improve query robustness.
We conclude with a broader outlook on howmodernDBMS can achieve robustness in an ecosystem
that includes heterogeneous hardware platforms.

7.1 Inter-Query Optimization

The techniques presented in this dissertation attempt to ensure theDBMS executes a single query
in the most efficient manner possible. The DBMS collects comprehensive statistics on the data a
query is processing dynamically at runtime to achieve this. The DBMS then exploits this data to
fine-tune the query’s code and temporary data structures. However, despite spending effort acquir-
ing this information, the DBMS discards it entirely after the query finishes execution. The DBMS
cannot use the statistics garnered from an earlier execution of a query to optimize future queries.
Although our techniques impose negligible overhead, repeating work is still wasteful. It would be
desirable if the DBMS’s execution engine could reincorporate runtime information back into the
DBMS optimizer to correct optimizer errors.

Runtime statistics differ from those maintained by the DBMS optimizer in several fundamental
ways. Foremost is that runtime statistics are 100% accurate, whereas optimizer statistics are only
rough summarizations. Also, runtime statistics can be fine-grained while that available to the op-
timizer is coarse-grained. Hence, the first step is to investigate how to reconcile this impedance
mismatch. The presence of constants and parameters in a query complicates this further as they
influence the data distributions observed during execution. One promising approach to address
this issue is to augment the DBMS optimizer to store virtual catalog entries that treat ephemeral re-
sults (e.g., the result of a hash join between two potentially virtual tables). In addition to cardinality
information, the DBMS can track domain information, NULL information based on the techniques
in this work. Interestingly, the DBMS can track arbitrary statistics but must balance the runtime
overhead with the expected utility of information it gleans.

108

109 CHAPTER 7. FUTUREWORK

7.2 Advanced Adaptive Policies
Building on top of its efficient mechanism for permuting compiled queries without the need

for recompilation, PCQ enables a wide set of potential policies and strategies for controlling the
dynamic re-optimization process. Although a thorough exploration of the design space for these
policies is beyond the scope of this dissertation, we highlight some key considerations.

First, as with any dynamic optimization scheme, one must be careful to balance the runtime
overhead of measuring runtime behaviors against the likely performance gains from improved opti-
mization. For example, with a sampling-based approach, one important parameter is the sampling
frequency. In addition, while one approach would be to choose a sampling frequency and then
perform that sampling uniformly throughout query execution, another approach would be to dy-
namically adjust the sampling frequency based upon how stable or unstable the dynamic conditions
appear to be. To the extent that hardware support can help reduce sampling overhead (e.g., by mak-
ing use of hardware counters to monitor cache misses, branch mispredicts [62, 158]), this can help
provide more flexibility.

Second, when re-optimization does appear to be warranted, another key issue is how to effec-
tively explore the space of potential optimizations. If the set of potential permutations is small (e.g.,
if there are two filters to order), it may be possible to exhaustively explore all possibilities when-
ever re-optimization appears to be warranted. But if the set of potential optimizations is large, then
heuristics for efficiently exploring that space may be helpful.

7.3 Lightweight Recompilation
Recall from Chapter 5 that PCG achieves query robustness by staggering when query fragments

are compiled and executed. Although this approach improves robustness, it restricts the DBMS
to consider alternate plans and optimizations only at pipeline boundaries. Fully (or mostly fully)
pipelined plans or plans that materialize too late in query execution may never reap the benefits of
adaptivity. PCQ goes a long way towards enabling intra-pipeline adaptivity, but it cannot perform
complex structural changes to a query plan. What is needed is the ability to recompile a pipeline
mid-execution. A motivating example is when a stateful operator (e.g., a hash join) needs to spill
to the disk. If the optimizer planned incorrectly, the generated code would not be able to handle
this transition. The simple solution is to abort the transaction, re-generate the query plan using
spill-aware operators, and re-execute the query. However, this results in wasted work.

The majority of our work relies on TPL, a lightweight DSL that is both fast to generate and ef-
ficient to execute without requiring complete JIT compilation. An exciting direction is to explore
how these characteristics can be utilized to recompile pipeline logic during execution with minimal
overhead. The idea is to allow a pipeline to observe data at runtime using the PCG and PCQ infras-
tructure discussed in this dissertation, but signal back to the DBMS to consider reoptimizing the
pipeline or a subtree of the query plan. We believe it possible to achieve this since generating TPL
is fast (tens of microseconds), and PCG localizes the compilation scope. In this model, operators
notify the DBMS runtime (with sufficient lead time) that recompilation is needed (e.g., due to an im-
pending spill). The runtime generates new TPL code modified to incorporate this new information
and continues execution in a cautionary mode. Over time, the new code is eventually JIT-compiled
to improve performance further.

7.4. SPECIALIZATION OUTSIDE QUERY PROCESSING 110

7.4 Specialization Outside Query Processing
Existingwork on compilationwithin theDBMShas focused predominantly on optimizing query

processing performance. However, we see several other areas where we believe compilation lends
improved performance. Generating specialized code is best suitedwhen it replaces interpreted logic,
thereby reducing CPU instruction count. One interesting use case is DBMS logging. When logging
during transaction processing, the DBMS serializes attributes from one ormore tuples intomemory.
Then when deserializing log records during recovery, it interprets a table’s schema to (1) determine
how data in a log record is serialized and (2) how to appropriately write these bytes into the appropri-
ate space in the table’s heap memory. This interpretation can potentially be specialized away using
generated code to improve performance.

Another exciting idea is to specialize access and traversal of B-tree indexes. Probing a conven-
tional B-tree node involves a binary search in a sorted array of index keys. Binary search does not
exploit any properties of the keys stored in the array; it is, by design, a general-purpose algorithm.
On the other hand, if the DBMS can analyze the keys in the tree and the access pattern, it is feasible
to (1) bias the search in a given direction and (2) extract “common” keys out of the search to provide
a fast-path for common key accesses.

7.5 Heterogeneous Hardware
Although Moore’s Law remains true even at the time of writing, there is growing uncertainty

whether it is possible to reduce the size of CPU transistors beyond 2nm [7]. Even if semiconductor
manufacturers can improve either their fabrication process (e.g., extreme ultraviolet lithography) or
CPU transistor technology (e.g., nanosheet gate-all-around), the total cost of designmaymake them
financially unviable [4]. Instead, hardware vendors are offering alternative specialized computation
platforms. For example, Intel SIMD registers continue to increase in width, now reaching 512 bits.
Graphics processing units (GPU) have tens of gigabytes of memory, thousands of simple cores, and
far highermemory bandwidth than general-purpose CPUs. Finally, field-programmable gate arrays
(FPGA) offer an exciting platform blurring the line between hardware and software.

Hardware platforms of the future will be heterogeneous. On query execution, the DBMS must
decide which portion of the query to execute on which device, taking into account the cost asso-
ciated with data movement. Moreover, although the DBMS knows the strengths and weaknesses
of each device beforehand, it only obtains clarity on the data a query is processing during execu-
tion. Thus, it must dynamically map query computation to the appropriate device, accounting for
existing workloads and resource availability. These challenges further stress the need for runtime
robustness.

Chapter 8

Concluding Remarks

In this dissertation, we presented several techniques to improve the performance and robustness
of compilation-based DBMS query processing engines. Existing DBMSs employ a “compile-then-
execute” strategy wherein all code for a query plan is generated first and only then compiled and
executed without regard for the plan’s quality. Although this works in OLTP workloads character-
ized by repetitive and short-lived queries, this is not the case in HTAP settings. HTAP workloads
are far less predictable (i.e., ad-hoc), more complex because they involve many more tables, and are
long-lasting as they typically process entire tables. These properties complicate query planning and
optimization. The update rate in HTAP environments exacerbates the problem since the DBMS’s
statistics are often outdated, misguiding the query optimization process. Although the AQP liter-
ature offers some hope, none of the existing techniques work in compilation-based DBMSs. They
either impose non-trivial compilation overhead or require aborting a query during execution, wast-
ing resources and time.

This dissertation bridges the gap between compilation-based query processing andAQP in three
parts presented in increasing scope of flexibility. In Chapter 3, we presented ROF, a technique that
seamlessly blends query compilation and vectorized processing throughout the query engine. We
achieve this by introducing staging points into a query plan where intermediate results are tem-
porarily materialized in cache-resident buffers. Operators individually decide where to inject stag-
ing points with the assistance of the DBMS optimizer. Staging buffers enable operators to exploit
inter-tuple parallelism using a combination of SIMD vectorization and software prefetching.

With ROF, query operators optimize themselves independently of each other. Although this
improves performance, the DBMS can reach a local optimum. To address this, in Chapter 4 we
presented PCQ, a technique that expands the granularity of adaptability across multiple operators
within a pipeline. With PCQ, the DBMS structures generated code to utilize dynamic runtime
structures behind a layer of indirection. Indirection plays a critical role in enabling the DBMS to
switch between query plans during execution safely. PCQ employs the relaxed fusion technique
from Chapter 3 to minimize any potential overheads introduced by adding a level of indirection.
Using PCQ as a foundation, we implemented three optimizations that span single and multiple
operators, including table scans, aggregations, and multi-way joins.

Both ROF and PCQ enable query plans to optimize themselves dynamically but require the
DBMS to generate all code for a given query before execution. This approach, referred to as one-shot

111

112

code generation, is widely adopted bymost existing compilation-basedDBMSs. A crucial drawback
of one-shot code generation is that it prevents the DBMS from learning properties about the data
the query reads in an earlier phase of processing to tailor the code it generates for a later phase. To
address this, we observe that pipelines only share state, not code; pipelines form a DAG and can
be compiled and executed independently. Thus, in Chapter 5 we presented PCG, which interleaves
code generation and execution of the different pipelines constituting a query. PCG allows theDBMS
to adapt pipelines based on data observed in earlier parts of a query. We use this framework to
implement several operations targeting both performance and memory compression.

Taken together, the work described in this dissertation enables any DBMS that uses query com-
pilation to achieve dynamic runtime robustness without succumbing to any of its overheads.

Bibliography

[1] Actian Vector. http://esd.actian.com/product/Vector.
[2] Apache Cassandra. http://cassandra.apache.org/.
[3] Apache Spark. http://spark.apache.org/.
[4] As chip design costs skyrocket, 3nm process node is in jeopardy.

https://www.extremetech.com/computing/272096-3nm-process-node.
[5] Google Benchmark. https://github.com/google/benchmark.
[6] HyPer. https://hyper-db.de.
[7] Making chips at 3nm and beyond.

https://semiengineering.com/making-chips-at-3nm-and-beyond/.
[8] MemSQL. http://www.memsql.com.
[9] NoisePage. https://noise.page.

[10] OpenCL. https://www.khronos.org/opencl/.
[11] Peloton Database Management System. http://pelotondb.io.
[12] Skewed TPC-H.

https://www.microsoft.com/en-us/download/details.aspx?id=52430.
[13] D. Abadi, S. Madden, and M. Ferreira. Integrating compression and execution in

column-oriented database systems. In Proceedings of the 2006 ACM SIGMOD international
conference on Management of data, pages 671–682, 2006.

[14] D. J. Abadi. Query Execution in Column-Oriented Database Systems. PhD thesis, MIT, 2008.
[15] D. J. Abadi, S. R. Madden, and N. Hachem. Column-stores vs. row-stores: How different are

they really? In SIGMOD, pages 967–980, 2008.
[16] J. Adzic, V. Fiore, and L. Sisto. Extraction, transformation, and loading processes. In Data

warehouses and OLAP: Concepts, architectures and solutions, pages 88–110. IGI Global, 2007.
[17] Y. Ahmad, O. Kennedy, C. Koch, and M. Nikolic. Dbtoaster: Higher-order delta processing

for dynamic, frequently fresh views. PVLDB, 5(10):968–979, 2012.
[18] Y. Ahmad and C. Koch. Dbtoaster: A SQL compiler for high-performance delta processing

in main-memory databases. PVLDB, 2(2):1566–1569, 2009.

113

http://esd.actian.com/product/Vector
http://cassandra.apache.org/
http://spark.apache.org/
https://www.extremetech.com/computing/272096-3nm-process-node
https://github.com/google/benchmark
https://hyper-db.de
https://semiengineering.com/making-chips-at-3nm-and-beyond/
http://www.memsql.com
https://noise.page
https://www.khronos.org/opencl/
http://pelotondb.io
https://www.microsoft.com/en-us/download/details.aspx?id=52430

114

[19] V. N. Anh and A. Moffat. Index compression using 64-bit words. Software—Practice &
Experience, 40(2):131–147, 2010.

[20] A. Appleby. MurMur3 Hash. https://github.com/aappleby/smhasher.
[21] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan, M. J.

Franklin, A. Ghodsi, and M. Zaharia. Spark sql: Relational data processing in spark. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’15, page 1383–1394, New York, NY, USA, 2015. Association for Computing
Machinery.

[22] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths,
W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade,
and V. Watson. System r: Relational approach to database management. ACM Trans.
Database Syst., 1(2):97–137, 1976.

[23] S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In CIDR, pages
238–249, January 2005.

[24] S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In CIDR, pages
238–249, January 2005.

[25] A. Basumallik and R. Eigenmann. Optimizing irregular shared-memory applications for
distributed-memory systems. In Proceedings of the Eleventh ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’06, page 119–128, New York, NY,
USA, 2006. Association for Computing Machinery.

[26] P. A. Bernstein and E. Newcomer. Principles of Transaction Processing. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2nd edition, 2009.

[27] A. Böhm, J. Dittrich, N. Mukherjee, I. Pandis, and R. Sen. Operational analytics data
management systems. Proc. VLDB Endow., 9(13):1601–1604, 2016.

[28] P. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed: Hidden Messages and Lessons
Learned from an Influential Benchmark. 2014.

[29] P. Boncz, M. Zukowski, and N. Nes. MonetDB/X100: Hyper-pipelining query execution. In
CIDR, 2005.

[30] P. A. Boncz, M. L. Kersten, and S. Manegold. Breaking the memory wall in monetdb.
Commun. ACM, 51(12):77–85, December 2008.

[31] P. A. Boncz, W. Quak, and M. L. Kersten. Monet and its geographic extensions: A novel
approach to high performance gis processing. In Proceedings of the 5th International
Conference on Extending Database Technology: Advances in Database Technology, EDBT ’96,
page 147–166, Berlin, Heidelberg, 1996. Springer-Verlag.

[32] S. Borkar and A. A. Chien. The future of microprocessors. Commun. ACM, 54(5):67–77,
May 2011.

[33] D. Broneske, A. Meister, and G. Saake. Hardware-sensitive scan operator variants for
compiled selection pipelines. In Datenbanksysteme für Business, Technologie und Web
(BTW), pages 403–412, 2017.

https://github.com/aappleby/smhasher

115 APPENDIX . BIBLIOGRAPHY

[34] D. D. Chamberlin, M. M. Astrahan, M. W. Blasgen, J. N. Gray, W. F. King, B. G. Lindsay,
R. Lorie, J. W. Mehl, T. G. Price, F. Putzolu, P. G. Selinger, M. Schkolnick, D. R. Slutz, I. L.
Traiger, B. W. Wade, and R. A. Yost. A history and evaluation of system r. Commun. ACM,
24:632–646, October 1981.

[35] C. Chambers and D. Ungar. Making pure object-oriented languages practical. In Conference
Proceedings on Object-Oriented Programming Systems, Languages, and Applications,
OOPSLA ’91, page 1–15, New York, NY, USA, 1991. Association for Computing Machinery.

[36] C. Chambers, D. Ungar, and E. Lee. An efficient implementation of self a dynamically-typed
object-oriented language based on prototypes. In Conference Proceedings on
Object-Oriented Programming Systems, Languages and Applications, OOPSLA ’89, page
49–70, New York, NY, USA, 1989. Association for Computing Machinery.

[37] B. Chattopadhyay, P. Dutta, W. Liu, O. Tinn, A. Mccormick, A. Mokashi, P. Harvey,
H. Gonzalez, D. Lomax, S. Mittal, et al. Procella: Unifying serving and analytical data at
youtube. Proceedings of the VLDB Endowment, 12(12):2022–2034, 2019.

[38] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving hash join performance
through prefetching. In ICDE, pages 116–127, 2004.

[39] Z. Chen, J. Gehrke, and F. Korn. Query optimization in compressed database systems. In
Proceedings of the 2001 ACM SIGMOD international conference on Management of data,
pages 271–282, 2001.

[40] R. L. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In Proceedings
of the 1994 ACM SIGMOD International Conference on Management of Data, SIGMOD ’94,
pages 150–160, 1994.

[41] A. Crotty, A. Galakatos, K. Dursun, T. Kraska, U. Çetintemel, and S. B. Zdonik. Tupleware:
”big” data, big analytics, small clusters. In CIDR, 2015.

[42] B. Dageville, T. Cruanes, M. Zukowski, V. Antonov, A. Avanes, J. Bock, J. Claybaugh,
D. Engovatov, M. Hentschel, J. Huang, A. W. Lee, A. Motivala, A. Q. Munir, S. Pelley,
P. Povinec, G. Rahn, S. Triantafyllis, and P. Unterbrunner. The snowflake elastic data
warehouse. In Proceedings of the 2016 International Conference on Management of Data,
SIGMOD ’16, page 215–226, New York, NY, USA, 2016. Association for Computing
Machinery.

[43] P. Damme, A. Ungethüm, J. Pietrzyk, A. Krause, D. Habich, and W. Lehner. Morphstore:
Analytical query engine with a holistic compression-enabled processing model. Proc. VLDB
Endow., 13(11):2396–2410, 2020.

[44] R. Delbru, S. Campinas, and G. Tummarello. Searching web data: An entity retrieval and
high-performance indexing model. Journal of Web Semantics, 10:33–58, 2012.

[45] P. J. Denning and T. G. Lewis. Exponential laws of computing growth. Commun. ACM,
60(1):54–65, Dec. 2016.

[46] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive query processing. Foundations and
Trends in Databases, 1(1):1–140, 2007.

116

[47] L. P. Deutsch and A. M. Schiffman. Efficient implementation of the smalltalk-80 system.
POPL ’84, page 297–302, New York, NY, USA, 1984. Association for Computing Machinery.

[48] C. Diaconu, C. Freedman, E. Ismert, P. Larson, P. Mittal, R. Stonecipher, N. Verma, and
M. Zwilling. Hekaton: Sql server’s memory-optimized oltp engine. In ACM International
Conference on Management of Data 2013, June 2013.

[49] C. Ding and K. Kennedy. Improving cache performance in dynamic applications through
data and computation reorganization at run time. PLDI ’99, page 229–241, New York, NY,
USA, 1999. Association for Computing Machinery.

[50] M. Dreseler, M. Boissier, T. Rabl, and M. Uflacker. Quantifying tpc-h choke points and their
optimizations. PVLDB, 13(8):1206–1220, 2020.

[51] A. Dutt and J. R. Haritsa. Plan bouquets: Query processing without selectivity estimation.
In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’14, page 1039–1050, 2014.

[52] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. Sap hana database:
Data management for modern business applications. SIGMOD Rec., 40(4):45–51, Jan. 2012.

[53] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. HyperLogLog: the analysis of a
near-optimal cardinality estimation algorithm. In AofA: Analysis of Algorithms, DMTCS
Proceedings, pages 137–156, June 2007.

[54] J. Frazelle. Chipping away at moore’s law: Modern cpus are just chiplets connected together.
Queue, 18(1):5–15, Feb. 2020.

[55] C. Freedman, E. Ismert, and P. Larson. Compilation in the microsoft sql server hekaton
engine. IEEE Data Eng. Bull., 37:22–30, 2014.

[56] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat, B. Kaplan,
G. Hoare, B. Zbarsky, J. Orendorff, et al. Trace-based just-in-time type specialization for
dynamic languages. ACM Sigplan Notices, 44(6):465–478, 2009.

[57] J. Giceva and M. Sadoghi. Hybrid OLTP and OLAP, pages 1–8. Springer International
Publishing, 2018.

[58] A. K. Goel, J. Pound, N. Auch, P. Bumbulis, S. MacLean, F. Färber, F. Gropengiesser,
C. Mathis, T. Bodner, and W. Lehner. Towards scalable real-time analytics: An architecture
for scale-out of olxp workloads. Proc. VLDB Endow., 8(12):1716–1727, Aug. 2015.

[59] J. Goldstein, R. Ramakrishnan, and U. Shaft. Compressing relations and indexes. In
Proceedings 14th International Conference on Data Engineering, pages 370–379. IEEE, 1998.

[60] G. Graefe. Volcano- an extensible and parallel query evaluation system. IEEE Trans. on
Knowl. and Data Eng., 6:120–135, 1994.

[61] G. Graefe and K. Ward. Dynamic query evaluation plans. SIGMOD Rec., 18(2):358–366,
June 1989.

[62] P. M. Grulich, S. Breß, S. Zeuch, J. Traub, J. v. Bleichert, Z. Chen, T. Rabl, and V. Markl.
Grizzly: Efficient stream processing through adaptive query compilation. SIGMOD, June

117 APPENDIX . BIBLIOGRAPHY

2020.
[63] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden. Hyrise: A

main memory hybrid storage engine. Proc. VLDB Endow., 4(2):105–116, Nov. 2010.
[64] T. Gubner, V. Leis, and P. Boncz. Efficient query processing with optimistically compressed

hash tables strings in the ussr. In 2020 IEEE 36th International Conference on Data
Engineering (ICDE), pages 301–312, 2020.

[65] A. Gupta, D. Agarwal, D. Tan, J. Kulesza, R. Pathak, S. Stefani, and V. Srinivasan. Amazon
redshift and the case for simpler data warehouses. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, page 1917–1923, New York,
NY, USA, 2015. Association for Computing Machinery.

[66] H. Han and C.-W. Tseng. Exploiting locality for irregular scientific codes. IEEE Trans.
Parallel Distrib. Syst., 17(7):606–618, July 2006.

[67] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. Oltp through the looking
glass, and what we found there. In Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’08, page 981–992, New York, NY, USA, 2008.
Association for Computing Machinery.

[68] J. M. Hellerstein and M. Stonebraker. Predicate migration: Optimizing queries with
expensive predicates. In SIGMOD, pages 267–276, 1993.

[69] U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches. In Proceedings of the European Conference on
Object-Oriented Programming, ECOOP ’91, page 21–38, Berlin, Heidelberg, 1991.
Springer-Verlag.

[70] U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized code with dynamic
deoptimization. PLDI ’92, page 32–43, New York, NY, USA, 1992. Association for
Computing Machinery.

[71] IBM. Java 2 platform, standard edition.
https://www.ibm.com/developerworks/java/jdk/, 2013.

[72] Y. E. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join
results. In Proceedings of the 1991 ACM SIGMOD international conference on Management of
data, pages 268–277, 1991.

[73] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-mt: A scalable
storage manager for the multicore era. In Proceedings of the 12th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT ’09, page 24–35,
New York, NY, USA, 2009. Association for Computing Machinery.

[74] H. JVM. Java version history. http://en.wikipedia.org/wiki/Javaversionhistory,
2013.

[75] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. C. Jones, S. Madden,
M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store: A high-performance,
distributed main memory transaction processing system. Proc. VLDB Endow.,

https://www.ibm.com/developerworks/java/jdk/
http://en.wikipedia.org/wiki/Java version history

118

1(2):1496–1499, Aug. 2008.
[76] F. L. O. S. K. O. L. H. Karl Rupp, M. Horowitz and C. Batten. Microprocessor trend data.

2020.
[77] A. Kemper and T. Neumann. HyPer: A hybrid OLTP&OLAP main memory database

system based on virtual memory snapshots. In ICDE, pages 195–206, 2011.
[78] T. Kersten, V. Leis, A. Kemper, T. Neumann, A. Pavlo, and P. Boncz. Everything you always

wanted to know about compiled and vectorized queries but were afraid to ask. Proc. VLDB
Endow., 11(13):2209–2222, Sept. 2018.

[79] T. Kersten, V. Leis, and T. Neumann. Tidy tuples and flying start: Fast compilation and fast
execution of relational queries in umbra. VLDB J, 30, 2021.

[80] Y. Klonatos, C. Koch, T. Rompf, and H. Chafi. Building efficient query engines in a
high-level language. PVLDB, 7(10):853–864, 2014.

[81] O. Kocberber, B. Falsafi, and B. Grot. Asynchronous memory access chaining. PVLDB,
9(4):252–263, 2015.

[82] A. Kohn, V. Leis, and T. Neumann. Adaptive execution of compiled queries. In ICDE, pages
197–208, 2018.

[83] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Erickson,
M. Grund, D. Hecht, M. Jacobs, I. Joshi, L. Kuff, D. Kumar, A. Leblang, N. Li, I. Pandis,
H. Robinson, D. Rorke, S. Rus, J. Russell, D. Tsirogiannis, S. Wanderman-Milne, and
M. Yoder. Impala: A modern, open-source SQL engine for hadoop. In CIDR 2015, Seventh
Biennial Conference on Innovative Data Systems Research, 2015.

[84] K. Krikellas, S. D. Viglas, and M. Cintra. Generating code for holistic query evaluation. In
Data Engineering (ICDE), 2010 IEEE 26th International Conference on, pages 613–624. IEEE,
2010.

[85] T. Lahiri, S. Chavan, M. Colgan, D. Das, A. Ganesh, M. Gleeson, S. Hase, A. Holloway,
J. Kamp, T. Lee, J. Loaiza, N. Macnaughton, V. Marwah, N. Mukherjee, A. Mullick,
S. Muthulingam, V. Raja, M. Roth, E. Soylemez, and M. Zait. Oracle database in-memory:
A dual format in-memory database. In 2015 IEEE 31st International Conference on Data
Engineering, pages 1253–1258, 2015.

[86] T. Lahiri, M. Neimat, and S. Folkman. Oracle timesten: An in-memory database for
enterprise applications. IEEE Data Eng. Bull., 36(2):6–13, 2013.

[87] D. Laney. 3-D data management: Controlling data volume, velocity and variety. Feb. 2001.
[88] H. Lang, T. Mühlbauer, F. Funke, P. A. Boncz, T. Neumann, and A. Kemper. Data blocks:

Hybrid oltp and olap on compressed storage using both vectorization and compilation.
SIGMOD ’16, page 311–326, 2016.

[89] J. Lee, S. Moon, K. H. Kim, D. H. Kim, S. K. Cha, and W.-S. Han. Parallel replication across
formats in sap hana for scaling out mixed oltp/olap workloads. Proc. VLDB Endow.,
10(12):1598–1609, Aug. 2017.

119 APPENDIX . BIBLIOGRAPHY

[90] V. Leis, P. Boncz, A. Kemper, and T. Neumann. Morsel-driven parallelism: A numa-aware
query evaluation framework for the many-core age. In SIGMOD, pages 743–754, 2014.

[91] V. Leis, A. Gubichev, A. Mirchev, P. A. Boncz, A. Kemper, and T. Neumann. How good are
query optimizers, really? PVLDB, 9(3):204–215, 2015.

[92] Q. Li, M. Shao, V. Markl, K. Beyer, L. Colby, and G. Lohman. Adaptively reordering joins
during query execution. In 2007 IEEE 23rd International Conference on Data Engineering,
pages 26–35, April 2007.

[93] T. Li, M. Butrovich, A. Ngom, W. McKinney, and A. Pavlo. Mainlining databases:
Supporting fast transactional workloads on universal columnar data file formats. 2019.
Under Submission.

[94] R. MacNicol and B. French. Sybase iq multiplex - designed for analytics. In Proceedings of
the Thirtieth International Conference on Very Large Data Bases - Volume 30, VLDB ’04, page
1227–1230. VLDB Endowment, 2004.

[95] D. Makreshanski, J. Giceva, C. Barthels, and G. Alonso. Batchdb: Efficient isolated
execution of hybrid oltp+olap workloads for interactive applications. In Proceedings of the
2017 ACM International Conference on Management of Data, SIGMOD ’17, page 37–50, New
York, NY, USA, 2017. Association for Computing Machinery.

[96] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cilimdzic. Robust query
processing through progressive optimization. In Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’04, pages 659–670, 2004.

[97] J. C. McCallum. Memory prices 1957+. https://www.jcmit.net/memoryprice.htm,
2021.

[98] E. Meijer and J. Gough. Technical overview of the common language runtime. language,
29(7).

[99] J. Mellor-Crummey, D. Whalley, and K. Kennedy. Improving memory hierarchy
performance for irregular applications. In Proceedings of the 13th International Conference
on Supercomputing, ICS ’99, page 425–433, New York, NY, USA, 1999. Association for
Computing Machinery.

[100] J. Melton and A. R. Simon. Understanding the New SQL: A Complete Guide. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[101] P. Menon, T. C. Mowry, and A. Pavlo. Relaxed operator fusion for in-memory databases:
Making compilation, vectorization, and prefetching work together at last. Proceedings of the
VLDB Endowment, 11:1–13, September 2017.

[102] P. Menon, A. Ngom, L. Ma, T. C. Mowry, and A. Pavlo. Permutable compiled queries:
Dynamically adapting compiled queries without recompiling. Proc. VLDB Endow.,
14(2):101–113, October 2020.

[103] R. Mirchandaney, J. H. Saltz, R. M. Smith, D. M. Nico, and K. Crowley. Principles of
runtime support for parallel processors. ICS ’88, page 140–152, New York, NY, USA, 1988.
Association for Computing Machinery.

https://www.jcmit.net/memoryprice.htm

120

[104] N. Mitchell, L. Carter, and J. Ferrante. Localizing non-affine array references. PACT ’99,
page 192, USA, 1999. IEEE Computer Society.

[105] G. Moerkotte and T. Neumann. Accelerating queries with group-by and join by groupjoin.
PVLDB, 4(11):843–851, 2011.

[106] G. E. Moore. Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society
Newsletter, 11(3):33–35, 2006.

[107] T. C. Mowry, M. S. Lam, and A. Gupta. Design and evaluation of a compiler algorithm for
prefetching. In Proceedings of the Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS V, pages 62–73, 1992.

[108] T. Neumann. Efficiently compiling efficient query plans for modern hardware. PVLDB,
4(9):539–550, 2011.

[109] T. Neumann and M. J. Freitag. Umbra: A disk-based system with in-memory performance.
In CIDR, 2020.

[110] T. Neumann, T. Mühlbauer, and A. Kemper. Fast serializable multi-version concurrency
control for main-memory database systems. SIGMOD, 2015.

[111] F. Özcan, Y. Tian, and P. Tözün. Hybrid transactional/analytical processing: A survey. New
York, NY, USA, 2017. Association for Computing Machinery.

[112] P. O’Neil, E. O’Neil, X. Chen, and S. Revilak. The star schema benchmark and augmented
fact table indexing. In Technology Conference on Performance Evaluation and Benchmarking,
pages 237–252. Springer, 2009.

[113] R. B. G. L. I. Pandis, V. R. R. Sidle, G. A. N. C. S. Lightstone, and D. Sharpe.
Memory-efficient hash joins. Proceedings of the VLDB Endowment, 8(4), 2014.

[114] S. Pantela and S. Idreos. One loop does not fit all. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages 2073–2074, 2015.

[115] D. Paroski. Code Generation: The Inner Sanctum of Database Performance.
http://highscalability.com/blog/2016/9/7/
code-generation-the-inner-sanctum-of-database-performance.html,
September 2016.

[116] J. M. Patel, H. Deshmukh, J. Zhu, N. Potti, Z. Zhang, M. Spehlmann, H. Memisoglu, and
S. Saurabh. Quickstep: A data platform based on the scaling-up approach. Proc. VLDB
Endow., 11(6):663–676, Feb. 2018.

[117] A. Pavlo. On Scalable Transaction Execution in Partitioned Main Memory Database
Management Systems. PhD thesis, Brown University, 2013.

[118] M. Perron, Z. Shang, T. Kraska, and M. Stonebraker. How i learned to stop worrying and
love re-optimization. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE), 2019.

http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html
http://highscalability.com/blog/2016/9/7/code-generation-the-inner-sanctum-of-database-performance.html

121 APPENDIX . BIBLIOGRAPHY

[119] M. Pezzini, D. Feinberg, N. Rayner, and R. Edjlali. Hybrid Transaction/Analytical
Processing Will Foster Opportunities for Dramatic Business Innovation.
https://www.gartner.com/doc/2657815/, 2014.

[120] H. Pirk, O. R. Moll, M. Zaharia, and S. Madden. Voodoo - A vector algebra for portable
database performance on modern hardware. Proc. VLDB Endow., 9(14):1707–1718, 2016.

[121] O. Polychroniou, A. Raghavan, and K. A. Ross. Rethinking simd vectorization for
in-memory databases. SIGMOD, pages 1493–1508, 2015.

[122] O. Polychroniou and K. A. Ross. Vectorized bloom filters for advanced simd processors.
DaMoN ’14, pages 6:1–6:6, 2014.

[123] M. Raasveldt and H. Mühleisen. Duckdb: An embeddable analytical database. In
Proceedings of the 2019 International Conference on Management of Data, SIGMOD ’19, page
1981–1984. Association for Computing Machinery, 2019.

[124] B. Raducanu, P. A. Boncz, and M. Zukowski. Micro adaptivity in vectorwise. In SIGMOD,
pages 1231–1242, 2013.

[125] V. Raman, G. Attaluri, R. Barber, N. Chainani, D. Kalmuk, V. KulandaiSamy, J. Leenstra,
S. Lightstone, S. Liu, G. M. Lohman, T. Malkemus, R. Mueller, I. Pandis, B. Schiefer,
D. Sharpe, R. Sidle, A. Storm, and L. Zhang. DB2 with BLU acceleration: So much more
than just a column store. In VLDB, volume 6, pages 1080–1091, 2013.

[126] J. Rao, H. Pirahesh, C. Mohan, and G. Lohman. Compiled query execution engine using
jvm. In 22nd International Conference on Data Engineering (ICDE’06), pages 23–23. IEEE,
2006.

[127] L. Rauchwerger and D. A. Padua. The lrpd test: speculative run-time parallelization of loops
with privatization and reduction parallelization. IEEE Transactions on Parallel and
Distributed Systems, 10(2):160–180, 1999.

[128] M. Ravishankar, J. Eisenlohr, L.-N. Pouchet, J. Ramanujam, A. Rountev, and P. Sadayappan.
Code generation for parallel execution of a class of irregular loops on distributed memory
systems. In SC’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pages 1–11. IEEE, 2012.

[129] S. Richter, V. Alvarez, and J. Dittrich. A seven-dimensional analysis of hashing methods and
its implications on query processing. PVLDB, 9(3):96–107, 2015.

[130] M. A. Roth and S. J. Van Horn. Database compression. ACM Sigmod Record, 22(3):31–39,
1993.

[131] J. Saltz, G. Agrawal, C. Chang, R. Das, G. Edjlali, P. Havlak, Y. Hwang, B. Moon,
R. Ponnusamy, S. Sharma, A. Sussman, and M. Uysal. Programming irregular applications:
Runtime support, compilation and tools. Adv. Comput., 45:105–153, 1997.

[132] F. Schiavio, D. Bonetta, and W. Binder. Dynamic speculative optimizations for sql
compilation in apache spark. Proc. VLDB Endow., 13(5):754–767, Jan. 2020.

[133] S. Schuh, X. Chen, and J. Dittrich. An experimental comparison of thirteen relational
equi-joins in main memory. In Proceedings of the 2016 International Conference on

https://www.gartner.com/doc/2657815/

122

Management of Data, SIGMOD Conference 2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 1961–1976, 2016.

[134] A. Shaikhha, Y. Klonatos, L. Parreaux, L. Brown, M. Dashti, and C. Koch. How to architect a
query compiler. In SIGMOD, pages 1907–1922, 2016.

[135] N. Shamgunov. The memsql in-memory database system. In IMDM@VLDB, 2014.
[136] J. Sompolski. Just-in-time Compilation in Vectorized Query Execution. Master’s thesis,

University of Warsaw, Aug 2011.
[137] J. Sompolski, M. Zukowski, and P. Boncz. Vectorization vs. compilation in query execution.

In Proceedings of the Seventh International Workshop on Data Management on New
Hardware, DaMoN ’11, pages 33–40, 2011.

[138] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - db2’s learning optimizer. In
VLDB, pages 19–28, 2001.

[139] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira, E. Lau, A. Lin,
S. Madden, E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik. C-store: A
column-oriented dbms. VLDB ’05, page 553–564. VLDB Endowment, 2005.

[140] M. Stonebraker, C. Bear, U. Çetintemel, M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos,
J. Lifter, J. Rogers, and S. Zdonik. One size fits all? – part 2: benchmarking results. In In
CIDR, 2007.

[141] M. Stonebraker and U. Cetintemel. ”one size fits all”: An idea whose time has come and
gone. In Proceedings of the 21st International Conference on Data Engineering, ICDE ’05,
page 2–11, USA, 2005. IEEE Computer Society.

[142] M. Stonebraker, G. Held, E. Wong, and P. Kreps. The design and implementation of ingres.
ACM Trans. Database Syst., 1(3):189–222, 1976.

[143] M. Stonebraker, S. Madden, D. J. Abadi, S. Harizopoulos, N. Hachem, and P. Helland. The
end of an architectural era: (it’s time for a complete rewrite). VLDB ’07, page 1150–1160.
VLDB Endowment, 2007.

[144] A. Suhan and T. Mostak. MapD: Massive Throughput Database Queries with LLVM on
GPUs. http://devblogs.nvidia.com/parallelforall/mapd, June 2015.

[145] R. Y. Tahboub, G. M. Essertel, and T. Rompf. How to architect a query compiler, revisited.
In Proceedings of the 2018 International Conference on Management of Data, pages 307–322,
2018.

[146] The Transaction Processing Council. TPC-H Benchmark (Revision 2.16.0).
http://www.tpc.org/tpch/, June 2013.

[147] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao, and D. J. Abadi. Calvin: Fast
distributed transactions for partitioned database systems. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’12, page 1–12, New
York, NY, USA, 2012. Association for Computing Machinery.

http://devblogs.nvidia.com/parallelforall/mapd
http://www.tpc.org/tpch/

123 APPENDIX . BIBLIOGRAPHY

[148] I. Trummer, J. Wang, D. Maram, S. Moseley, S. Jo, and J. Antonakakis. Skinnerdb:
Regret-bounded query evaluation via reinforcement learning. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD ’19, page 1153–1170, New York,
NY, USA, 2019. Association for Computing Machinery.

[149] S. Tu, W. Zheng, E. Kohler, B. Liskov, and S. Madden. Speedy transactions in multicore
in-memory databases. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, SOSP ’13, page 18–32, New York, NY, USA, 2013. Association for
Computing Machinery.

[150] A. Venkat, M. Hall, and M. Strout. Loop and data transformations for sparse matrix code.
In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’15, page 521–532, New York, NY, USA, 2015.

[151] S. D. Viglas. Just-in-time compilation for sql query processing. PVLDB, 6(11):1190–1191,
2013.

[152] S. Wanderman-Milne and N. Li. Runtime code generation in cloudera impala. IEEE Data
Eng. Bull., 37(1):31–37, 2014.

[153] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The implementation and
performance of compressed databases. ACM Sigmod Record, 29(3):55–67, 2000.

[154] B. Wu, Z. Zhao, E. Z. Zhang, Y. Jiang, and X. Shen. Complexity analysis and algorithm
design for reorganizing data to minimize non-coalesced memory accesses on gpu. In
Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’13, page 57–68, New York, NY, USA, 2013. Association for Computing
Machinery.

[155] T. Würthinger, C. Wimmer, C. Humer, A. Wöß, L. Stadler, C. Seaton, G. Duboscq, D. Simon,
and M. Grimmer. Practical partial evaluation for high-performance dynamic language
runtimes. PLDI 2017, page 662–676. Association for Computing Machinery, 2017.

[156] T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq, C. Humer, G. Richards,
D. Simon, and M. Wolczko. One vm to rule them all. Onward! 2013, page 187–204, New
York, NY, USA, 2013. Association for Computing Machinery.

[157] A. X3.135-1992. American national standard for information systems — database language
— sql. November 1992.

[158] S. Zeuch, H. Pirk, and J. Freytag. Non-invasive progressive optimization for in-memory
databases. PVLDB, 9(14):1659–1670, 2016.

[159] J. Zhou and K. A. Ross. Implementing database operations using simd instructions. In
Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’02, pages 145–156, New York, NY, USA, 2002. ACM.

[160] J. Zhu, N. Potti, S. Saurabh, and J. M. Patel. Looking ahead makes query plans robust.
PVLDB, 10(8):889–900, 2017.

[161] M. Zukowski, S. Heman, N. Nes, and P. Boncz. Super-scalar ram-cpu cache compression. In
22nd International Conference on Data Engineering (ICDE’06), pages 59–59. IEEE, 2006.

124

[162] M. Zukowski, N. Nes, and P. Boncz. Dsm vs. nsm: Cpu performance tradeoffs in
block-oriented query processing. DaMoN ’08, pages 47–54, 2008.

	Abstract
	Acknowledgments
	1 Introduction
	1.1 The Old Guard
	1.2 Improving OLAP Performance
	1.3 Robust Query Processing
	1.4 Thesis Statement
	1.5 Summary of Goals & Contributions
	1.6 Outline

	2 Background
	2.1 Query Processing
	2.2 Query Compilation
	2.3 Vectorized Processing

	3 Relaxed Operator Fusion
	3.1 Motivating Example
	3.2 Overview
	3.2.1 Example
	3.2.2 Vectorization
	3.2.3 Prefetching
	3.2.4 Query Planning

	3.3 Experimental Evaluation
	3.3.1 Workload
	3.3.2 Baseline Comparison
	3.3.3 Optimization Breakdown
	3.3.4 Sensitivity to Vector Width
	3.3.5 Sensitivity to Prefetching Distance
	3.3.6 Multi-threaded Execution
	3.3.7 System Comparison

	3.4 Conclusion

	4 Permutable Compiled Queries
	4.1 Overview
	4.2 Supported Query Optimizations
	4.2.1 Filter Reordering
	4.2.2 Adaptive Aggregations
	4.2.3 Adaptive Joins

	4.3 Experimental Evaluation
	4.3.1 Workloads
	4.3.2 Filter Adaptivity
	4.3.3 Aggregation Adaptivity
	4.3.4 Join Adaptivity
	4.3.5 System Comparison

	4.4 Conclusion

	5 Progressive Code Generation
	5.1 Knowing the Future
	5.2 Overview
	5.2.1 Decomposition
	5.2.2 Scheduling
	5.2.3 Code Generation and Execution

	5.3 Adaptive Optimizations
	5.3.1 Analyzing State
	5.3.2 Compressing State
	5.3.3 Eliding Overflow Checks
	5.3.4 Eliding NULL Checks
	5.3.5 Value Specialization

	5.4 Evaluation
	5.4.1 State Compression
	5.4.2 Overflow Checking
	5.4.3 Join Key Specialization
	5.4.4 TPC-H

	5.5 Related Work
	5.6 Conclusion

	6 Related Work
	6.1 Query Compilation
	6.2 Adaptive Query Processing
	6.3 Adaptive Compiler Techniques

	7 Future Work
	7.1 Inter-Query Optimization
	7.2 Advanced Adaptive Policies
	7.3 Lightweight Recompilation
	7.4 Specialization Outside Query Processing
	7.5 Heterogeneous Hardware

	8 Concluding Remarks
	Bibliography

