
On Automatic Database Management
System Tuning Using Machine Learning

Dana Van Aken
CMU-CS-21-104
February 2021

School of Computer Science
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Andrew Pavlo, Chair
David G. Andersen

Michael Cafarella, University of Michigan
Geoffrey J. Gordon

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2021 Dana Van Aken

This research was sponsored by National Science Foundation award numbers: IIS-1846158, IIS-1423210, and CCF-
1438955; by a National Science Foundation Graduate Research Fellowship award; by the Intel Corporation award num-
ber 1011856; and by the University Industry Research Corporation award numbers: 1030834 and 1030845. The views
and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: database management systems, machine learning, database tuning, configuration
tuning

Abstract

Database management systems (DBMSs) are an essential component of any data-intensive applica-
tion. But tuning a DBMS to perform well is a notoriously difficult task because they have hundreds
of configuration knobs that control aspects of their runtime behavior, such as cache sizes and how
frequently to flush data to disk. Getting the right configuration for these knobs is hard because they
are not standardized (i.e., sets of knobs for different DBMSs vary), not independent (i.e., changing
one knob may alter the effects of others), and not uniform (i.e., the optimal configuration depends
on the target workload and hardware). Furthermore, as databases grow in both size and complexity,
optimizing a DBMS to meet the needs of new applications has surpassed the abilities of even the
best human experts. Recent studies using machine learning techniques to automatically configure a
DBMS’s knobs have shown that such techniques can produce high-quality configurations; however,
they need a large amount of training data to achieve good results. Collecting this data is costly and
time-consuming.

In this thesis, we seek to address the challenge of developing effective yet practical techniques for
the automatic configuration ofDBMSs usingmachine learning. We show that leveraging knowledge
gained from previous tuning efforts to assist in the tuning of others can significantly reduce the
amount of time and resources needed to tune a DBMS for a new application.

3

Acknowledgments

I would like to thank my husband for standing by me through out my entire Ph.D. career. I could
not have done this without his support.

I would also like to thank my thesis committee for their guidance and feedback. Their help not
only made me a better researcher, but it also taught me to be a better person.

5

Contents

Abstract 3

Acknowledgments 5

1 Introduction 18

2 OtterTune Tuning Service 22
2.1 Runtime Metrics . 22
2.2 Configuration Knobs . 23
2.3 System Overview . 23
2.4 Configuration Tuning Procedure . 24
2.5 Statistics Collection . 25
2.6 Assumptions & Limitations . 25

3 Tuning via Gaussian Process Regression 27
3.1 Workload Characterization . 27

3.1.1 Pruning Redundant Metrics . 28
3.2 Identifying Important Knobs . 30

3.2.1 Feature Selection with Lasso . 31
3.2.2 Dependencies . 32
3.2.3 Incremental Knob Selection . 33

3.3 Automated Tuning . 33
3.3.1 Step #1 – Workload Mapping . 33
3.3.2 Step #2 – Configuration Recommendation 34

3.4 Experimental Evaluation . 36
3.4.1 Workloads . 36
3.4.2 Training Data Collection . 38
3.4.3 Number of Knobs . 39
3.4.4 Tuning Evaluation . 40

7

3.4.5 Execution Time Breakdown . 42
3.4.6 Efficacy Comparison . 43

4 Tuning in the Real World 47
4.1 Motivation . 48
4.2 Automated Tuning Field Study . 50

4.2.1 Target Database Application . 51
4.2.2 Deployment . 52
4.2.3 Tuning . 54

4.3 Tuning Algorithms . 56
4.3.1 DNN — OtterTune (2019) . 56
4.3.2 DDPG — CDBTune (2019) . 57

4.4 Evaluation . 57
4.4.1 Performance Variability . 58
4.4.2 Tuning Knobs Selected by DBA . 60
4.4.3 Tuning Knobs Ranked by OtterTune . 63
4.4.4 Adaptability to Different Workload . 65
4.4.5 Execution Time Breakdown . 65

4.5 Lessons Learned . 67

5 Advisory-Level Tuning 70
5.1 Taxonomy . 70

5.1.1 Level #1 – Advisory . 71
5.1.2 Level #2 – Online . 71
5.1.3 Level #3 – Offline . 71

5.2 Workloads . 72
5.3 Motivation . 73
5.4 Workload Mapping . 74

5.4.1 Optimization #1 — Hyperparameter Tuning 75
5.4.2 Optimization #2 — Static Metrics . 77

5.5 Contextual Bandits . 77
5.6 Evaluation . 78

5.6.1 Workload Mapping . 78
5.6.2 One-Shot — Workload Models . 79
5.6.3 One-Shot — CB Algorithms . 81

5.7 Lessons Learned . 82

6 Related Work 85
6.1 Physical Database Design . 85
6.2 Configuration Tuning for Databases . 86
6.3 Configuration Tuning for Data Analytics Systems 89

7 Future Work 90

A Tuning via Gaussian Process Regression 92
A.1 Identifying Important Knobs . 92
A.2 Efficacy Comparison . 94

B Tuning in the Real World 98

Bibliography 121

List of Figures

1.1 Motivating Examples – Figures 1.1a to 1.1c show performance measurements for
the YCSBworkload running onMySQL (v5.6) using different configuration settings.
Figure 1.1d shows the number of tunable knobs provided in MySQL and Postgres
releases over time. 19

2.1 OtterTune Architecture – An overview of the components in the OtterTune sys-
tem. The controller connects to the DBMS and collects information about the per-
formance of the system. This information is then sent to the tuning manager where
it is stored in its repository. It then builds models that are used to select an optimal
configuration for the DBMS. 24

3.1 OtterTune Machine Learning Pipeline – This diagram shows the processing path
of data in OtterTune. All previous observations reside in its repository. This data is
first then passed into theWorkload Characterization (Section 3.1) component that
identifies the most distinguishing DBMS metrics. Next, the Knob Identification
(Section 3.2) component generates a ranked list of the most important knobs. All of
this information then fed into theAutomatic Tuner (Section 3.3) component where
it maps the target DBMS’s workload to a previously seen workload and generates
better configurations. 28

3.2 Metric Clustering – Grouping DBMS metrics using k-means based on how similar
they are to each other as identified by Factor Analysis and plotted by their (f1, f2)
coordinates. The color of each metric shows its cluster membership. The triangles
represent the cluster centers. 31

3.3 Number of Knobs –The performance of the DBMSs for TPC-C and TPC-H during
the tuning session using different configurations generated by OtterTune that only
configure a certain number of knobs. 37

3.4 Tuning Evaluation (TPC-C) – A comparison of the OLTP DBMSs for the TPC-C
workload when using configurations generated by OtterTune and iTuned. 40

3.5 TuningEvaluation (Wikipedia)–Acomparison of theOLTPDBMSs for theWikipedia
workload when using configurations generated by OtterTune and iTuned. 41

11

3.6 Tuning Evaluation (TPC-H) – Performancemeasurements for Vector running two
sub-sets of the TPC-H workload using configurations generated by OtterTune and
iTuned. 41

3.7 Execution Time Breakdown – The average amount of time that OtterTune spends
in the parts of the system during an observation period. 43

3.8 Efficacy Comparison (MySQL) – Throughput and latency measurements for the
TPC-C benchmark using the (1) default configuration, (2) OtterTune configuration,
(3) tuning script configuration, (4) DBA configuration, and (5) Amazon RDS con-
figuration. 44

3.9 Efficacy Comparison (Postgres) – Throughput and latency measurements for the
TPC-C benchmark using the (1) default configuration, (2) OtterTune configuration,
(3) tuning script configuration, (4) expert DBA configuration, and (5) Amazon RDS
configuration. 44

4.1 DBMS Tuning Comparison – Throughput measurements for the TPC-C bench-
mark running on three versions ofMySQL (v5.6, v5.7, v8.0) and Postgres (v9.3, v10.1,
v12.3) using the (1) default configuration, (2) buffer pool & redo log configuration,
(3) GPR configuration, and (4) DDPG configuration. 48

4.2 Operating Environment – I/O latency of local versus non-local storage for four
different I/O workloads over a three-day period. 49

4.3 Database Contents Analysis – The number of tuples, columns, and indexes per
table for the TicketTracker database. 53

4.4 TicketTracker Workload Analysis – Execution information for the TicketTracker
queries extracted from the workload trace. 54

4.5 DDPG Tuning Pipeline – The raw data is converted to states, actions and rewards
and then inserted into the replay memory. The tuples in the replay memory are
ranked by the error of the predicted Q-value. In the training process, a batch of top
tuples are fetched to update the critic and the actor. After training, the prediction
error in the replay memory is updated and the actor recommends the next configu-
ration to run. 55

4.6 Performance Variability – Performance for the TicketTracker workload using the
default configuration on multiple VMs over six months. 58

4.7 Effect of I/O Latency Spikes – Runtime measurements of DBMS performance with
CPU utilization and I/O latency. 59

4.8 Tuning Knobs Selected by DBA (Per VM) – The performance improvement of the
best configuration per algorithm running on separate VMs relative to the perfor-
mance of the SG default configuration measured at the beginning of the tuning
session. 60

4.9 Tuning Knobs Selected by DBA – Performance measurements for 10, 20, and 40
knob configurations for the TicketTracker workload. The shading on each bar in-
dicates the minimum and maximum performance of the best configurations from
three tuning sessions. 61

4.10 Tuning Knobs Ranked by OtterTune (Per VM) – The performance improvement
of the best configuration per algorithm running on separate VMs relative to the per-
formance of the SG default configuration measured at the beginning of the tuning
session. 62

4.11 Tuning Knobs Ranked by OtterTune – Performance measurements for the ML al-
gorithm configurations using 10 and 20 knobs selected by OtterTune’s Lasso rank-
ing algorithm. The shading on each bar indicates the min and max performance of
the best configurations from three tuning sessions. 63

4.12 Adaptability to Different Workloads – Performance comparison when applying
the model trained on TPC-C data to the TicketTracker workload. 66

5.1 Workload Tuning Comparison (MySQL v8.0) – Throughput measurements for
each workload running on MySQL (v8.0) using the (1) default configuration, (2)
buffer pool & redo log configuration, (3) MySQL’s dedicated server flag, and (4)
OtterTune’s configuration. 75

5.2 Swapping Optimized Configurations (MySQL v8.0) – Throughput measurements
for the workloads when using the optimized configurations from all other work-
loads. The striped bar for each workload indicates its the optimal configuration for
that workload. 76

5.3 One-Shot Configurations – Configurations recommended by models trained on
data from the most similar past workload determined in the workload mapping step. 83

5.4 CBOne-ShotConfigurations–Configurations recommendedbyCBmodels trained
on all previous workload data with 16 DBMS runtime metrics as the workload con-
text. 84

A.1 Lasso Path (MySQL) . 92

A.2 Lasso Path (Postgres) . 93
A.3 Lasso Path (Vector) . 94

List of Tables

4.1 Query Plan Operators – The percentage of queries in the TicketTracker workload
that contain each operator type. 52

4.2 Most Important Knobs – The three most important knobs for the TicketTracker
workload with their default and best observed values. 62

4.3 Execution Time Breakdown – The median amount of time spent in different parts
of the system during a tuning iteration. 66

4.4 Workload Replay Time per Algorithm –Themedian workload execution time and
the percentage of replays canceled for the algorithms. 67

5.1 Workload Characteristics . 72
5.2 WorkloadMapping (all metrics) –The distancemeasurements between workloads

computed by the original workload mapping technique using all 86 pruned metrics.
A smaller distance indicates the workload is more similar. The distance between a
given workload and itself is shown in gray. 80

5.3 WorkloadMapping (eight prunedmetrics) – The distance measurements between
workloads computed by the originalworkloadmapping technique using eight pruned
metrics. A smaller distance indicates the workload is more similar. The distance be-
tween a given workload and itself is shown in gray. 80

5.4 Workload Mapping (eight pruned metrics + eight static metrics) – The distance
measurements between workloads computed by the optimized workload mapping
technique using eight pruned metrics and eight static metrics. A smaller distance
indicates the workload is more similar. The distance between a given workload and
itself is shown in gray. 81

A.1 Efficacy Comparison – DBA Configuration (MySQL) 95
A.2 Efficacy Comparison – OtterTune Configuration (MySQL) 95
A.3 Efficacy Comparison – Amazon RDS Configuration (MySQL) 95
A.4 Efficacy Comparison – Tuning Script Configuration (MySQL) 96
A.5 Efficacy Comparison – DBA Configuration (Postgres) 96
A.6 Efficacy Comparison – OtterTune Configuration (Postgres) 96
A.7 Efficacy Comparison – Amazon RDS Configuration (Postgres) 97

15

A.8 Efficacy Comparison – Tuning Script Configuration (Postgres) 97

B.1 Tuning Knobs Selected by DBA – GPR (10 knobs) 98
B.2 Tuning Knobs Selected by DBA – DNN (10 knobs) 99
B.3 Tuning Knobs Selected by DBA – DDPG (10 knobs) 99
B.4 Tuning Knobs Selected by DBA – DDPG++ (10 knobs) 99
B.5 Tuning Knobs Selected by DBA – LHS (10 knobs) 100
B.6 Tuning Knobs Selected by DBA – GPR (20 knobs) 100
B.7 Tuning Knobs Selected by DBA – DNN (20 knobs) 101
B.8 Tuning Knobs Selected by DBA – DDPG (20 knobs) 102
B.9 Tuning Knobs Selected by DBA – DDPG++ (20 knobs) 103
B.10 Tuning Knobs Selected by DBA – LHS (20 knobs) 104
B.11 Tuning Knobs Selected by DBA – GPR (40 knobs) 105
B.12 Tuning Knobs Selected by DBA – DNN (40 knobs) 106
B.13 Tuning Knobs Selected by DBA – DDPG (40 knobs) 107
B.14 Tuning Knobs Selected by DBA – DDPG++ (40 knobs) 108
B.15 Tuning Knobs Selected by DBA – LHS (40 knobs) 109
B.16 Tuning Knobs Ranked by OtterTune – GPR (10 knobs) 110
B.17 Tuning Knobs Ranked by OtterTune – DNN (10 knobs) 110
B.18 Tuning Knobs Ranked by OtterTune – DDPG (10 knobs) 110
B.19 Tuning Knobs Ranked by OtterTune – DDPG++ (10 knobs) 111
B.20 Tuning Knobs Ranked by OtterTune – LHS (10 knobs) 111
B.21 Tuning Knobs Ranked by OtterTune – GPR (20 knobs) 112
B.22 Tuning Knobs Ranked by OtterTune – DNN (20 knobs) 113
B.23 Tuning Knobs Ranked by OtterTune – DDPG (20 knobs) 114
B.24 Tuning Knobs Ranked by OtterTune – DDPG++ (20 knobs) 115
B.25 Tuning Knobs Ranked by OtterTune – LHS (20 knobs) 116
B.26 Adaptability to Different Workloads – GPR (20 knobs) 117
B.27 Adaptability to Different Workloads – DNN (20 knobs) 118
B.28 Adaptability to Different Workloads – DDPG (20 knobs) 119
B.29 Adaptability to Different Workloads – DDPG++ (20 knobs) 120

17 ACKNOWLEDGMENTS

Chapter 1

Introduction

The ability to collect, process, and analyze large amounts of data is paramount for being able to
extrapolate new knowledge in business and scientific domains [38, 64]. DBMSs are the critical com-
ponent of data-intensive (“Big Data”) applications [89]. The performance of these systems is often
measured in metrics such as throughput (e.g., how fast it can collect new data) and latency (e.g.,
how fast it can respond to a request).

Achieving good performance in DBMSs is non-trivial as they are complex systems with many
tunable options that control nearly all aspects of their runtime operation [37]. Such configuration
knobs allow the database administrator (DBA) to control various aspects of the DBMS’s runtime
behavior. For example, they can set how much memory the system allocates for data caching
versus the transaction log buffer. Modern DBMSs are notorious for having many configuration
knobs [35, 67, 90]. Part of what makes DBMSs so enigmatic is that their performance and scala-
bility are highly dependent on their configurations. Further exacerbating this problem is that the
default configurations of these knobs are notoriously bad because the their settings are based on the
DBMS’s minimum hardware requirements.

There are general rules or “best practice” guidelines available for tuning DBMSs, but these do
not always provide good results for a range of applications and hardware configurations. Although
one can rely on certain precepts to achieve good performance on a particular DBMS, they are not
universal for all applications. Thus, many organizations resort to hiring expensive experts to tune
their system. For example, a 2013 survey found that 40% of engagement requests for a large Postgres
service company were for DBMS tuning and knob configuration issues [67].

One common approach to tuning a DBMS is for the DBA to copy the database to another ma-
chine andmanuallymeasure the performance of a sampleworkload from the real application. Based
on the outcome of this test, they will then tweak the DBMS’s configuration according to some com-
bination of tuning guidelines and intuition based on past experiences. The DBA then repeats the
experiment to see whether the performance improves [90]. Such a “trial-and-error” approach to
DBMS tuning is tedious, expensive, and inefficient because (1) many of the knobs are not inde-
pendent [37], (2) the values for some knobs are continuous, (3) one often cannot reuse the same
configuration from one application to the next, and (4) DBMSs are always adding new knobs.

18

19 CHAPTER 1. INTRODUCTION

Buffer pool size (MB)
5001000150020002500

Log file size (MB)

200
400

600
800

99
th

%
-ti

le
(s

ec
)

0.0
0.5
1.0
1.5
2.0

(a) Dependencies

500 1000 1500 2000 2500 3000
Buffer pool size (MB)

0.0

1.0

2.0

3.0

99
th

%
-ti

le
(s

ec
)

(b) Continuous Settings

Config #1 Config #2 Config #3
0.0

2.0

4.0

6.0

99
th

%
-ti

le
(s

ec
) Workload #1

Workload #2
Workload #3

(c) Non-Reusable Configurations

2000 2004 2008 2012 2016
Release date

0

200

400

600

N
um

be
ro

fk
no

bs MySQL
Postgres

(d) Tuning Complexity

Figure 1.1: Motivating Examples – Figures 1.1a to 1.1c show performance measurements for the
YCSB workload running on MySQL (v5.6) using different configuration settings. Figure 1.1d shows
the number of tunable knobs provided in MySQL and Postgres releases over time.

We now discuss these issues in further detail. To highlight their implications, we ran a series of
experiments using MySQL (v5.6) that execute variations of the YCSB workload with different knob
settings.

Dependencies: DBMS tuning guides strongly suggest that a DBA only change one knob at a
time. This is wise but woefully slow given the large number of knobs. It is also not entirely helpful
because changing one knob may affect the benefits of another. But it is difficult enough for humans
to understand the impact of one knob let alone the interactions betweenmultiple ones. The different
combinations of knob settings means that finding the optimal configuration is NP -hard [92]. To
demonstrate this point, we measured the performance of MySQL for different configurations that
vary the size of its buffer pool1 and the size of its log file.2 The results in Figure 1.1a show that the
DBMS achieves better performance when both the buffer pool and log file sizes are large. But in
general, the latency is low when the buffer pool size and log file size are “balanced.” If the buffer
pool is large and the log file size is small, then the DBMS maintains a smaller number of dirty pages

1MySQL Knob: INNODB_BUFFER_POOL_SIZE
2MySQL Knob: INNODB_LOG_FILE_SIZE

20

and thus has to perform more flushes to disk.

Continuous Settings: Another difficult aspect of DBMS tuning is that there are many possible
settings for knobs, and the differences in performance from one setting to the next could be irreg-
ular. For example, the size of the DBMS’s buffer pool can be an arbitrary value from zero to the
amount of DRAM on the system. In some ranges, a 0.1 GB increase in this knob could be inconse-
quential, while in other ranges, a 0.1 GB increase could cause performance to drop precipitously as
the DBMS runs out of physical memory. To illustrate this point, we ran another experiment where
we increase MySQL’s buffer pool size from 10 MB to 3 GB. The results in Figure 1.1b show that the
latency improves continuously up until 1.5 GB, after which the performance degrades because the
DBMS runs out of physical memory.

Non-Reusable Configurations: The effort that a DBA spends on tuning one DBMS does not
make tuning the next one any easier. This is because the best configuration for one application
may not be the best for another. In this experiment, we execute three YCSB workloads using three
MySQL knob configurations. Each configuration is designed to provide the best latency for one of
the workloads (i.e., config #1 is the best for workload #1, same for #2 and #3). Figure 1.1c shows
that the best configuration for each workload is the worst for another. For example, switching from
config #1 to config #3 improves MySQL’s latency for workload #3 by 90%, but degrades the latency
of workload #1 by 3500%. Config #2 provides the best average performance overall. But both work-
loads #1 and #3 improve by over 2× using their optimized configurations.

Tuning Complexity: Lastly, the number of DBMS knobs is always increasing as new versions
and features are released. It is difficult for DBAs to keep up to date with these changes and under-
stand how that will affect their system. The graph in Figure 1.1d shows the number of knobs for
different versions of MySQL and Postgres dating back to 2001. This shows that over 15 years the
number of knobs increased by 3× for Postgres and by nearly 6× for MySQL.

The above examples show how tricky it is to configure a DBMS. This complexity is a major
contributing factor to the high total cost of ownership for database systems. Personnel is estimated
to be almost 50% of the total ownership cost of a large-scale DBMS [82], and many DBAs spend
nearly 25% of their time on tuning [34]. Given this, there is strong interest in automatic techniques
for tuning a DBMS.

There are two general approaches that these tools use to tune knobs automatically. The first is
to use heuristics (i.e., static rules) based on the expertise and experience of human DBAs that are
manually created and maintained by the tool developers [2, 5, 32, 62, 110]. These tools, however,
are unable to fully optimize a DBMS’s knobs. This is partly because they only target 10 – 15 knobs
believed by experts to have the largest impact on performance. It is also because the rules are unable
to capture the nuances of the workload (e.g., read/write mixtures, cyclic access patterns).

The second approach is to usemachine learning (ML) techniques that automatically learn how to
configure knobs for a given application based on real observations of a DBMS’s performance [37, 61,
65, 103, 109]. ML-based tools achieve better performance than rule-based tools because they are able
to optimize more knobs and account for the inherent dependencies between them. The downside is

21 CHAPTER 1. INTRODUCTION

thatML-based tools need a large amount of training data to achieve good results, and collecting this
data is costly and time-consuming. The DBA must first prepare a copy of the application’s database
and derive a representative workload sample. The tuning tool then runs trials with this workload
on a separate test system so that it does not interfere with the production DBMS. Depending on the
duration of the workload sample, it could take days or even weeks to collect sufficient training data.
Optimizing each DBMS independently in this manner is inefficient and infeasible for deployments
with hundreds or thousands of databases.

This dissertation seeks to address the challenge of developing effective yet practical techniques
for the automatic configuration of DBMSs usingmachine learning. In particular, we aim to improve
the data efficiency of theMLmodels to reduce the amount of time and resources needed to generate
a near-optimal configuration for a new DBMS deployment. Although the focus of this dissertation
is on DBMS configuration tuning, many of our solutions can be applied to other optimization prob-
lems with expensive black-box functions.

We provide evidence to support the following statement:

Thesis Statement: Leveraging runtime data collected from previous tuning efforts can enable an
ML-based automatic tuning service to optimize a DBMS’s knobs for a new application in less time and
with fewer resources.

We summarize the technical contributions of this thesis as follows:
• A DBMS configuration tuning service called OtterTune that automates the task of finding

good settings for a DBMS’s configuration knobs. The latest version of OtterTune supports
three DBMSs (MySQL, Postgres, Oracle) and several techniques for optimizing their knob
configurations. OtterTune is available as an open-source, and its extensible architecturemakes
it easy to support new DBMSs and tuning techniques.

• A technique that reuses training data gathered from previous tuning sessions to tune new
DBMS deployments. Instead of starting each new session with no prior knowledge, the algo-
rithm determines which of the workloads tuned in the past are similar to the target workload
and then reuses this previous data to “bootstrap” the new tuning session. Reusing previous
data reduces the amount of time and resources needed to tune a DBMS for a new application.

• Afield study and evaluation of the efficacy of three state-of-the-artML-based tuning tools on a
production database. As part of our analysis, we characterize howmuch of the tuning process
is automated in our experiments. We also present several optimizations that we developed for
OtterTune and theML algorithms that we evaluated, which were needed to support this study.

• An investigation of less-obtrusive tuning strategies that recommend knob configurations us-
ing information observed passively from the target database without actually tuning it. We
present two methods to exploit the similarity between database workloads.

Chapter 2

OtterTune Tuning Service

In this chapter, we present OtterTune, a DBMS configuration tuning service that can automatically
optimize a database’s configuration knobs for an application’s workload. It maintains a repository of
data collected from previous tuning sessions, and uses this data to build models of how the DBMS
responds to different knob configurations. For a new application, it uses these models to guide
experimentation and recommend optimal settings. Each recommendation providesOtterTunewith
more information in a feedback loop that allows it to refine its models and improve their accuracy.

Before discussing the details of our system, we first provide some background on the DBMS’s
configuration knobs and runtime metrics. We then discuss how OtterTune’s controller collects
knobs and metrics from the DBMS. Finally, we describe the steps OtterTune’s procedure automati-
cally tunes a DBMS’s configuration and discuss its limitations.

2.1 Runtime Metrics
A DBMS’s metrics are counters that record the activities of its internal runtime components.

Engineers add these metrics to enable DBAs and monitoring tools to observe the system’s behavior
and diagnose performance problems. The DBMSs also use them internally to trigger maintenance
operations, such as garbage collection inMVCC systems and compaction in LSM systems. ADBMS
configuration tuning service uses the runtime metrics to learn the cost/benefit of the knobs under
varying conditions and make informed recommendations.

There are three categories of runtime metrics: (1) accumulating, (2) aggregation, and (3) status.
The first are accumulating metrics that count the number of events that have occurred since some
point of time. For example, theDBMS can record the number of pages read fromdisk since it started.
The second category are aggregation metrics that record the average number of events over a time
window. An example of this category is the average time to acquire a row lock for tables. Metrics
in the third category record the current state of an activity or option. Examples of status metrics
include the last time the garbage collector ran and the SSL protocol version.

The metrics are not standardized; both the metrics available and the names of the metrics can
vary from one DBMS vendor to the next. All DBMS vendors expose the metrics they record in
some form through either a standardized ANSI “information schema” interface or from its system

22

23 CHAPTER 2. OTTERTUNE TUNING SERVICE

catalog, or both. Several vendors also provide programmatic access to meta-data about the metrics,
such as the type of data (e.g., integer or string). A DBMS configuration tuning service can use this
meta-data to process the metric data during a tuning session.

Some systems, like MySQL, only report “global” statistics for the entire DBMS. Other systems,
however, provide separate statistics for tables or databases. Commercial DBMSs even maintain sep-
arate statistics for individual components (e.g., IBM DB2 tracks statistics per buffer pool instance).

Since collecting themetrics adds someoverhead to query execution,mostDBMSs provide knobs
to disable the collection ofmetrics or set it to aminimum level. A number of them also supportmore
fine-grained control, such as setting how frequently to collect metrics or even disable individual
metrics.

2.2 Configuration Knobs
A DBMS’s configuration knobs control aspects of its runtime operations. A DBMS tuning ser-

vice optimizes these knobs for an application’s workload. The three categories of knobs are (1) re-
sources, (2) policies, and (3) locations. Knobs in the first category specify how much of a resource
the system uses for a task. These can be either for fixed components (e.g., the number of garbage
collection threads) or for dynamic activities (e.g., the amount of memory to use per query). Policy
configuration knobs control how the DBMS behaves for specific tasks. For example, a knob can
control whether the DBMS flushes the write-ahead log to disk when a transaction commits. Lastly,
the location knobs specify where the DBMS finds resources that it needs (e.g., file paths) and how
it interacts with the outside world (e.g., network port number).

Like runtimemetrics, aDBMS’s configuration knobs are not standardized acrossDBMS vendors.
Vendors also expose the knobs and any knob meta-data they provide in the same way as the metrics
(i.e., through a common interface or the system catalog). To change a DBMS’s configuration knobs,
vendors support the SET command that is part of the SQL standard. They also provide configuration
files for setting knobs; however, the format and other details may differ between vendors. Vendors
frequently a provide convenient syntax for setting them or the ability to set them from the command
line when starting the server.

2.3 System Overview
OtterTune has a flexible and extensible architecture that facilitates the addition of other DBMSs

and tuning algorithms. Figure 2.1 shows an overview of OtterTune’s architecture. The system is
comprised of two parts. The first is the client-side controller that interacts with the target DBMS to
be tuned. It collects runtimemetrics and configuration knobs from the DBMS using a standard API
(e.g., JDBC) and installs new configurations.

The second part is OtterTune’s tuning manager. It receives the information collected from the
controller and stores it in its repository with data from previous tuning sessions. This repository
does not contain any confidential information about the DBMSs or their databases; it only contains
knob configurations and performance data. OtterTune organizes this data per major DBMS version
(e.g., Postgres v10 data is separate from Postgres v11). This prevents OtterTune from tuning knobs

2.4. CONFIGURATION TUNING PROCEDURE 24

Data
Repository

DBMS

C
on

tr
ol

le
r

ML Models

Tuning Manager

Analysis Planning

JDBC

Figure 2.1: OtterTune Architecture – An overview of the components in the OtterTune system.
The controller connects to the DBMS and collects information about the performance of the system.
This information is then sent to the tuningmanager where it is stored in its repository. It then builds
models that are used to select an optimal configuration for the DBMS.

from older versions of the DBMS that may be deprecated in newer versions, or tuning knobs that
only exist in newer versions. The manager is also supported by background processes that continu-
ously analyze new data and refine OtterTune’s internalMLmodels. Thesemodels allow it to identify
the relevant knobs and metrics without human input, and find workloads in the repository that are
similar to the target.

2.4 Configuration Tuning Procedure
At the start of a new tuning session, the DBA tells OtterTune what metric to optimize when

selecting a configuration (e.g., latency, throughput). The OtterTune controller then connects to the
target DBMS and collects its hardware profile and current knob configuration. We assume that
this hardware profile is a single identifier from a list of pre-defined types (e.g., an instance type on
Amazon EC2).

The controller then starts the first observation period. This is some amount of time where the
controller will observe the DBMS and measure DBMS-independent external metrics chosen by the
DBA (e.g., latency). The DBA may choose to execute either a set of queries for a fixed time period
or a specific workload trace. If the DBA chooses the first option, then the length of the observation
period is equal to the fixed time period. Otherwise, the duration depends on how long it takes
for the DBMS to replay the workload trace. Fixed observation periods are well-suited for the fast,
simple queries that are characteristic of OLTP workloads, whereas variable-length periods are often
necessary for executing the long-running, complex queries present in OLAP workloads.

At the end of the observation period, the controller then collects DBMS’s configuration knobs
and runtimemetrics. The controller reports the “ground truth” knob values from the DBMS instead
of the recommended values not only because it is a good policy for preventing bugs but also because
there can be differences due to the DBMS’s policies for setting them. For example, Postgres uses an

25 CHAPTER 2. OTTERTUNE TUNING SERVICE

internal unit of 8kB for the knob that controls the size of its buffer cache and will automatically
adjust the value to an 8kB boundary when it is set.

When OtterTune’s tuning manager receives the result of a new observation period from the
controller, it first stores that information in its repository. From this, OtterTune then computes
the next configuration that the controller should install on the target DBMS. To assist the DBA
with deciding whether to terminate the tuning session, OtterTune provides the controller with an
estimate of how much better the recommended configuration is compared to the best configuration
that it has seen so far. This process continues until the DBA is satisfied with the improvements over
the initial configuration.

2.5 Statistics Collection
OtterTune provides an extensible plug-in interface that allows its controller to easily retrieve the

knobs and metrics for a DBMS using the appropriate API and then re-factor them into a universal
format. The service provides built-in support for retrieving these metrics from the DBMS itself via
its query API and the OLTP-Bench framework [36]. Supporting other benchmarking frameworks
or third-party monitoring services (e.g., Prometheus, Druid) requires only minor changes to Otter-
Tune’s controller.

At the beginning of each observation period, the controller first resets all of the metrics for the
target DBMS. It then retrieves the new metric data at the end of the period. Since at this point,
OtterTune does not know which metrics are useful, it collects every metric that the DBMS makes
available and stores it as a key/value pair in its repository.

A key consideration in this collection process is how to represent metrics for sub-elements of
the DBMS and database (see Section 2.1). The problem with this fine-grained data is that the DBMS
provides multiple metrics with the same name. One potential solution is to prefix the name of the
sub-element to the metric’s name. For example, Postgres’ metric for the number of blocks read for
the table “foo”would be stored in the repository as foo.heap_blks_read. But this approachmeans
that it is unable to map this metric to other databases since they will have different names for their
tables. OtterTune instead stores the metrics with the same name as a single sum scalar value. This
works because OtterTune currently only considers global knobs. We defer the problem of tuning
table- or component-specific knobs as future work.

2.6 Assumptions & Limitations
There are several aspects of OtterTune’s capabilities that we must address. Foremost is that we

assume that the controller has administrative privileges to modify the DBMS’s configuration (in-
cluding restarting the DBMS if necessary). If this is not possible, then the DBA can deploy a second
copy of the database on separate hardware for OtterTune’s tuning trials. This requires the DBA ei-
ther to replay a workload trace or to forward queries from the production DBMS. This is the same
approach used in previous tools [37].

Restarting the DBMS is often necessary because some knobs only take effect after the system is
stopped and started. Some knobs also cause the DBMS to perform extra processing when it comes

2.6. ASSUMPTIONS & LIMITATIONS 26

back on-line (e.g., resizing log files), which can potentially take several minutes depending on the
database and the hardware. OtterTune currently ignores the cost of restarting the DBMS in its
recommendations. We defer the problem of automatically identifying these knobs and taking the
cost of restarting into consideration when choosing configurations as future work.

Because restarting the DBMS is undesirable, many DBMSs support changing some knobs dy-
namically without having to restart the system. OtterTune stores a list of the dynamic knobs that
are available on each of the DBMS versions that it supports, as well as the instructions on how to
update them. It then restarts the DBMS only when the set of knobs being tuned requires it. The
DBA can also elect to tune only dynamic knobs at the start of the tuning session. This is another
alternative that is available to the DBA when restarting the DBMS is prohibited. We maintain a
curated black-list of knobs for each DBMS version that is supported by OtterTune. The DBA is pro-
vided with this black-list of knobs at the start of each tuning session. The DBA is permitted to add
to this list any other knobs that they want OtterTune to avoid tuning. Such knobs could either be
ones that do not make sense to tune (e.g., path names of where the DBMS stores files), or ones that
could have hidden or serious consequences (e.g., potentially causing the DBMS to lose data). Again,
automatically determining whether changing a knob will cause the application to potentially lose
data is beyond the scope of our work here.

Lastly, we also assume that the physical design of the database is reasonable. That means that
the DBA has already installed the proper indexes, materialized views, and other database elements.
There has been a considerable amount of research into automatic database design [27] that the DBA
can utilize for this purpose. Investigating how to apply these same techniques to tune the database’s
physical design is beyond the scope of this thesis and we leave it as future work (see Chapter 7).

Chapter 3

Tuning via Gaussian Process Regression

In this chapter, we present a tuning algorithm based on Gaussian Process Regression that reuses
training data gathered from previous sessions to tune new DBMS deployments. To do this, we ex-
tended theOtterTune tuning service to support amulti-stageML pipeline. ThisML pipeline enables
OtterTune to train models from historical performance data, and then use the models to (1) select
the most important knobs, (2) map previously unseen database workloads to known workloads so
that we can transfer previous experience, and (3) recommend knob settings that improve a target
objective (e.g., latency, throughput). Reusing past experiences reduces the amount of time and re-
sources needed to tune a DBMS for a new application. An overview of this process is shown in
Figure 3.1.

We begin with a discussion of our technique for pruning DBMS metrics in Section 3.1. We then
discuss our method for identifying the knobs that have the most impact in Section 3.2, followed by
a description of our technique for recommending settings in Section 3.3. In Section 3.4, we present
our experimental evaluation.

3.1 Workload Characterization
The first step in the tuning system is to discover a model that best represents the distinguish-

ing aspects of the target workload so that it can identify which previously seen workloads in the
repository are similar to it. This enables OtterTune to leverage the information that it has collected
from previous tuning sessions to help guide the search for a good knob configuration for the new
application.

We might consider two approaches to do this. The first is to analyze the target workload at the
logical level. This means examining the queries and the database schema to compute metrics, such
as the number of tables/columns accessed per query and the read/write ratio of transactions. These
metrics could be further refined using the DBMS’s “what-if ” optimizer API to estimate additional
runtime information [26], like which indexes are accessed the most often. The problem with this
approach, however, is that it is impossible to determine the impact of changing a particular knob
because all of these estimates are based on the logical database and not the actual runtime behavior
of queries. Furthermore, how the DBMS executes a query and how the query relates to internal

27

3.1. WORKLOAD CHARACTERIZATION 28

Data
Repository

Workload Characterization Knob Identification Automatic Tuner

Factor
Analysis Factors

M
et

ric
s

Distinct Metrics

K-means
Clustering

Lasso

Knobs

Sa
m

pl
es

Knobs

Im
portance

Metrics
Sa

m
pl

es

Phase 1

Configs
Phase 2

GPsMetr
ics

Mapped
 Workload

New
Observations

Figure 3.1: OtterTune Machine Learning Pipeline – This diagram shows the processing path of
data in OtterTune. All previous observations reside in its repository. This data is first then passed
into theWorkloadCharacterization (Section 3.1) component that identifies themost distinguishing
DBMS metrics. Next, the Knob Identification (Section 3.2) component generates a ranked list of
the most important knobs. All of this information then fed into the Automatic Tuner (Section 3.3)
component where it maps the target DBMS’s workload to a previously seen workload and generates
better configurations.

components that are affected by tuning knobs is dependent on many factors of the database (e.g.,
size, cardinalities, working set size). Hence, this information cannot be captured just by examining
the workload.

A better approach is to use the DBMS’s internal runtimemetrics to characterize how a workload
behaves. All modern DBMSs expose a large amount of information about the system. For exam-
ple, MySQL’s InnoDB engine provides statistics on the number of pages read/written, query cache
utilization, and locking overhead. OtterTune characterizes a workload using the runtime statistics
recorded while executing it. These metrics provide a more accurate representation of a workload
because they capture more aspects of its runtime behavior. Another advantage of them is that they
are directly affected by the knobs’ settings. For example, if the knob that controls the amount of
memory that the DBMS allocates to its buffer pool is too low, then these metrics would indicate an
increase in the number of buffer pool cache misses. All DBMSs provide similar information, just
with different names and different granularities. But as we will show, OtterTune’s model construc-
tion algorithms do not require metrics to be labeled.

We now discuss how OtterTune’s prunes redundant metrics to reduce the complexity of our
recommendation problem.

3.1.1 Pruning Redundant Metrics
The next step is to automatically remove the superfluous metrics. It is important to remove

such elements so that OtterTune only has to consider the smallest set of metrics that capture the
variability in performance and distinguishing characteristics for different workloads. Reducing the
size of this set reduces the search space ofML algorithms, which in turn speeds up the entire process
and increases the likelihood that the models will fit in memory on OtterTune’s tuning manager. We

29 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

will show in subsequent sections that the metrics available to OtterTune are sufficient to distinguish
between workloads for DBMSs deployed on the same hardware.

Redundant DBMS metrics occur for two reasons. The first are ones that provide different gran-
ularities for the exact same metric in the system. For example, MySQL reports the amount of data
read in terms of bytes1 and pages.2 The twometrics are the samemeasurement just in different units,
thus it is unnecessary to consider both of them. The other type of redundant metrics are ones that
represent independent components of the DBMS but whose values are strongly correlated. For ex-
ample, we found from our experiments that the Postgres metric for the number of tuples updated3

moves almost in unison with the metric that measures the number of blocks read from the buffer
for indexes.4

We use two well-studied techniques for this pruning. The first is a dimensionality reduction
technique, called factor analysis (FA) [7], that transforms the (potentially) high dimensional DBMS
metric data into lower dimensional data. We then use the second technique, called k-means [8],
to cluster this lower dimensional data into meaningful groups. Using a dimensionality reduction
technique is a preprocessing step for many clustering algorithms because they reduce the amount
of “noise” in the data [55, 56]. This improves the robustness and the quality of the cluster analysis.

Given a set of real-valued variables that contain arbitrary correlations, FA reduces these variables
to a smaller set of factors that capture the correlation patterns of the original variables. Each factor
is a linear combination of the original variables; the factor coefficients are similar to and can be
interpreted in the same way as the coefficients in a linear regression. Furthermore, each factor has
unit variance and is uncorrelated with all other factors. This means that one can order the factors by
how much of the variability in the original data they explain. We found that only the initial factors
are significant for our DBMS metric data, which means that most of the variability is captured by
the first few factors.

The FA algorithm takes as input a matrix X whose rows correspond to metrics and whose
columns correspond to knob configurations that we have tried. The entryXij is the value of metric
i on configuration j. FA gives us a smaller matrix U : the rows of U correspond to metrics, while
the columns correspond to factors, and the entry Uij is the coefficient of metric i in factor j. We
can scatter-plot the metrics using elements of the ith row of U as coordinates for metric i. Metrics
i and j will be close together if they have similar coefficients in U — that is, if they tend to correlate
strongly inX . Removing redundant metrics now means removing metrics that are too close to one
another in our scatter-plot.

We then cluster the metrics via k-means, using each metric’s row of U as its coordinates. We
keep a single metric for each cluster, namely, the one closest to the cluster center. One of the draw-
backs of using k-means is that it requires the optimal number of clusters (K) as its input. We use
a simple heuristic [78] to fully automate this selection process and approximate K . Although this
approach is not guaranteed to find the optimal solution, it does not require a human to manually in-
terpret a graphical representation of the problem to determine the optimal number of clusters. We

1MySQLMetric: INNODB_DATA_READ
2MySQLMetric: INNODB_PAGES_READ
3Postgres Metric: PG_STAT_DATABASE.TUP_UPDATED
4Postgres Metric: PG_STATIO_USER_TABLES.IDX_BLKS_HIT

3.2. IDENTIFYING IMPORTANT KNOBS 30

compared this heuristic with other techniques [91, 99] for choosingK and found that they select val-
ues that differ by one to two clusters at most from our approximations. Such variations made little
difference in the quality of configurations that OtterTune generated in our experimental evaluation
in Section 3.4.

The visualization in Figure 3.2 shows a two-dimensional projection of the scatter-plot and the
metric clusters in MySQL and Postgres. In the MySQL clusters in Figure 3.2a, OtterTune identifies
a total of nine clusters. These clusters correspond to distinct aspects of a DBMS’s performance. For
example, in the case of MySQL, the metrics that measure the amount of data written5, the amount
of data read6, and the time spent waiting for resources7 are all grouped into the same cluster. In Fig-
ure 3.2b we see that OtterTune selects eight clusters for Postgres’ metrics. Like MySQL, the metrics
in each cluster correspond to similar measurements. But in Postgres the metrics are clustered on
specific components in the system, like the background writer8,9 and indexes.10,11

An interesting finding with this clustering is that OtterTune tends to group together useless
metrics (e.g., SSL connection data). It does not, however, have a programmatic way to determine
that they are truly useless and thus it has to include them in further computations. We could provide
the systemwith a hint of one ormore of thesemetrics and then discard the cluster that it getsmapped
to.

From the original set of 131 metrics for MySQL and 57 metrics for Postgres, we are able to reduce
the number of metrics by 93% and 82%, respectively. Note that OtterTune still collects and stores
data for all of the DBMS’s metrics in its repository even if they are marked as redundant. The set
of metrics that remain after pruning the FA reduction is only considered for the additional ML
components that we discuss in the next sections.

3.2 Identifying Important Knobs
After pruning the redundant metrics, OtterTune next identifies which knobs have the strongest

impact on the DBA’s target objective function. DBMSs can have hundreds of knobs, but only a
subset actually affect the DBMS’s performance. Thus, reducing the number of knobs limits the
total number of possible DBMS configurations that must be considered. We want to discover both
negative and positive correlations. For example, reducing the amount of memory allocated for the
DBMS’s buffer pool is likely to degrade the system’s overall latency, and we want to discover this
strong (albeit negative) influence on the DBMS’s performance.

OtterTune uses a popular feature selection technique for linear regression, called Lasso [98], to
expose the knobs that have the strongest correlation to the system’s overall performance. In order to
detect nonlinear correlations and dependencies between knobs, we also include polynomial features
in our regression.

5MySQLMetrics: INNODB_DATA_WRITTEN, INNODB_BUFFER_POOL_WRITE_REQUESTS
6MySQLMetrics: INNODB_ROWS_READ, BYTES_SENT
7MySQLMetrics: INNODB_LOG_WAITS, INNODB_ROW_LOCK_TIME_MAX
8Postgres Metric: PG_STAT_BGWRITER.BUFFERS_CLEAN
9Postgres Metric: PG_STAT_BGWRITER.MAXWRITTEN_CLEAN

10Postgres Metric: PG_STATIO_USER_TABLES.IDX_BLKS_READ
11Postgres Metric: PG_STATIO_USER_INDEXES.IDX_BLKS_READ

31 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

(a) MySQL (v5.6) (b) Postgres (v9.3)

Figure 3.2: Metric Clustering – Grouping DBMS metrics using k-means based on how similar they
are to each other as identified by Factor Analysis and plotted by their (f1, f2) coordinates. The color
of each metric shows its cluster membership. The triangles represent the cluster centers.

OtterTune’s tuning manager performs these computations continuously in the background as
new data arrives from different tuning sessions. In our experiments, each invocation of Lasso takes
∼20 min and consumes∼10 GB of memory for a repository comprised of 100k trials with millions
of data points. The dependencies and correlations that we discover are then used in OtterTune’s
recommendation algorithms, presented in Section 3.3.

We now describe how to use Lasso to identify important knobs and the dependencies that may
exist between them. Then we discuss how OtterTune uses this during the tuning process.

3.2.1 Feature Selection with Lasso
Linear regression is a statistical method used to determine the strength of the relationship be-

tween one or more dependent variables (y) and each of the independent variables (X). These re-
lationships are modeled using a linear predictor function whose weights (i.e., coefficients) are esti-
mated from the data.

The most common method of fitting a linear regression model is ordinary least squares (OLS),
which estimates the regression weights by minimizing the residual squared error. Such a model al-
lows one to perform statistical tests on the weights to assess the significance of the effect of each in-
dependent variable [23]. AlthoughOtterTune could use these measurements to determine the knob
ordering, OLS suffers from two shortcomings that make it an unsatisfactory solution in high(er) di-
mensional settings. First, the estimates have low bias but high variance, and the variance continues
to increase as more features are included in the model. The latter issue degrades the prediction
and variable selection accuracy of the model. Second, the estimates become harder to interpret as
the number of features increases, since extraneous features are never removed (i.e., OLS does not
perform feature selection).

To avoid these problems, OtterTune employs a regularized version of least squares, known as
Lasso, that reduces the effect of irrelevant variables in linear regressionmodels by penalizingmodels

3.2. IDENTIFYING IMPORTANT KNOBS 32

with large weights. The major advantage of Lasso over other regularization and feature selection
methods is that it is interpretable, stable, and computationally efficient [39, 98]. There is also both
practical and theoretical work backing its effectiveness as a consistent feature selection algorithm [12,
100, 101, 108].

Lasso works by adding an L1 penalty that is equal to a constant λ times the sum of absolute
weights to the loss function. Because each non-zero weight contributes to the penalty term, Lasso
effectively shrinks some weights and forces others to zero. That is, Lasso performs feature selection
by automatically selecting more relevant features (i.e., those with non-zero weights), and discard-
ing the others (i.e., those with zero weights). The number of features that it keeps depends on the
strength of its penalty, which is controlled by adjusting the value of λ. Lasso improves the predic-
tion accuracy and interpretability of the OLS estimates via its shrinkage and selection properties:
shrinking small weights towards zero reduces the variance and creates a more stable model, and
deselecting extraneous features generates models that are easier to interpret.

As in the usual regression scenario, OtterTune constructs a set of independent variables (X)
and one or more dependent variables (y) from the data in its repository. The independent variables
are the DBMS’s knobs (or functions of these knobs) and the dependent variables are the metrics
that OtterTune collects during an observation period from the DBMS. OtterTune uses the Lasso
path algorithm [50] to determine the order of importance of the DBMS’s knobs. The algorithm
starts with a high penalty setting where all weights are zero and thus no features are selected in
the regression model. It then decreases the penalty in small increments, recomputes the regression,
and tracks what features are added back to the model at each step. OtterTune uses the order in
which the knobs first appear in the regression to determine how much of an impact they have on
the target metric (e.g., the first knob selected is the most important). We provide more details and
visualizations of this process in Appendix A.1.

Before OtterTune computes this model, it executes two preprocessing steps to normalize the
knobs data. This is necessary because Lasso provides higher quality results when the features are
(1) continuous, (2) have approximately the same order of magnitude, and (3) have similar variances.
It first transforms all of the categorical features to “dummy” variables that take on the values of
zero or one. Specifically, each categorical feature with n possible values is converted into n binary
features. Although this encoding method increases the number of features, all of the DBMSs that
we examined have a small enough number of categorical features that the performance degradation
was not noticeable. Next, OtterTune scales the data. We found that standardizing the data (i.e.,
subtracting themean anddividing by the standard deviation) provides adequate results and is easy to
execute. We evaluatedmore complicated approaches, such as computing deciles, but they produced
nearly identical results as the standardized form.

3.2.2 Dependencies
As we showed in Chapter 2, many of a DBMS’s knobs are non-independent. This means that

changing one may affect another. It is important that OtterTune takes these relationships into con-
sideration when recommending a configuration to avoid nonsensical settings. For example, if the
system does not “know” that it should not try to allocate the entire system memory to multiple
purposes controlled by different knobs, then it could choose a configuration that would cause the

33 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

DBMS to become unresponsive due to thrashing. In other cases, we have observed that a DBMS
will refuse to start when the requested configuration uses too much memory.

Within the feature selection method described above, we can capture such dependencies be-
tween knobs by including polynomial features in the regression. The regression and feature selec-
tion methods do not change: they just operate on polynomial features of the knobs instead of the
raw knobs themselves. For example, to test whether the buffer pool memory allocation knob in-
teracts with the log buffer size knob, we can include a feature which is the product of these knobs’
values: if Lasso selects this product feature, we have discovered a dependence between knobs.

3.2.3 Incremental Knob Selection
OtterTune now has a ranked list of all knobs. The Lasso path algorithm guarantees that the

knobs in this list are ordered by the strength of statistical evidence that they are relevant. Given this,
OtterTune must decide how many of these knobs to use in its recommendations. Using too many
of them increases OtterTune’s optimization time significantly because the size of the configuration
space grows exponentially with the number of knobs. But using too few of them would prevent
OtterTune from finding the best configuration. The right number of knobs to consider depends on
both the DBMS and the target workload.

To automate this process, we use an incremental approach where OtterTune dynamically in-
creases the number of knobs used in a tuning session over time. Expanding the scope gradually in
this manner has been shown to be effective in other optimization algorithms [33, 43]. As we show
in our evaluation in Section 3.4.3, this always produces better configurations than any static knob
count.

3.3 Automated Tuning
Now at this point OtterTune has (1) the set of non-redundant metrics, (2) the set of most im-

pactful configuration knobs, and (3) the data from previous tuning sessions stored in its repository.
OtterTune repeatedly analyzes the data it has collected so far in the session and then recom-

mends the next configuration to try. It executes a two-step analysis after the completion of each
observation period in the tuning process. In the first step, the system identifies which workload
from a previous tuning session is most emblematic of the target workload. It does this by com-
paring the session’s metrics with those from the previously seen workloads to see which ones react
similarly to different knob settings. Once OtterTune has matched the target workload to the most
similar one in its repository, it then starts the second step of the analysis where it chooses a config-
uration that is explicitly selected to maximize the target objective. We now describe these steps in
further detail.

3.3.1 Step #1 – Workload Mapping
Thegoal of this first step is tomatch the target DBMS’s workload with themost similar workload

in its repository based on the performance measurements for the selected group of metrics. We
find that the matched workload varies for the first few experiments before converging to a single

3.3. AUTOMATED TUNING 34

workload. This suggests that the quality of the matchmade by OtterTune increases with the amount
of data gathered from the target workload, which is what we would expect. For this reason, using
a dynamic mapping scheme is preferable to static mapping (i.e., mapping one time after the end of
the first observation period) because it enables OtterTune to make more educated matches as the
tuning session progresses.

For eachDBMS version, we build a setS ofN matrices—one for every non-redundantmetric—
from the data in our repository. Similar to the Lasso and FA models, these matrices are constructed
by background processes running onOtterTune’s tuningmanager (see Chapter 2). Thematrices inS
(i.e.,X0, X1, . . . XN−1) have identical row and column labels. Each row in matrixXm corresponds
to a workload in our repository and each column corresponds to a DBMS configuration from the
set of all unique DBMS configurations that have been used to run any of the workloads. The entry
Xm,i,j is the value of metric m observed when executing workload i with configuration j. If we
have multiple observations from running workload i with configuration j, then entry Xm,i,j is the
median of all observed values of metric m.

The workload mapping computations are straightforward. OtterTune calculates the Euclidean
distance between the vector of measurements for the target workload and the corresponding vector
for each workload i in the matrixXm (i.e.,Xm,i,:). It then repeats this computation for each metric
m. In the final step, OtterTune computes a “score” for each workload i by taking the average of these
distances over all metricsm. The algorithm then chooses the workload with the lowest score as the
one that is most similar to the target workload for that observation period.

Before computing the score, it is critical that all metrics are of the same order of magnitude.
Otherwise, the resulting score would be unfair since any metrics much larger in scale would dom-
inate the average distance calculation. OtterTune ensures that all metrics are the same order of
magnitude by computing the deciles for each metric and then binning the values based on which
decile they fall into. We then replace every entry in the matrix with its corresponding bin number.
With this extra step, we can calculate an accurate and consistent score for each of the workloads in
OtterTune’s repository.

3.3.2 Step #2 – Configuration Recommendation
In the next step, OtterTune uses Gaussian Process (GP) regression [81] to recommend configu-

rations that it believes will improve the target metric. GP regression is a state-of-the-art technique
with power approximately equal to that of deep networks. There are a number of attractive fea-
tures of GPs that make it an appropriate choice for modeling the configuration space and making
recommendations. Foremost is that GPs provide a theoretically justified way to trade off explo-
ration (i.e., acquiring new knowledge) and exploitation (i.e., making decisions based on existing
knowledge) [58, 87]. Another reason is that GPs, by default, provide confidence intervals. Although
methods like bootstrapping can be used to obtain confidence intervals for deep networks and other
models that do not give them, they are computationally expensive and thus not feasible (yet) for an
on-line tuning service.

OtterTune starts the recommendation step by reusing the data from theworkload that it selected
previously to train a GP model. It updates the model by adding in the metrics from the target

35 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

workload that it has observed so far. But since the mapped workload is not exactly identical to the
unknown one, the system does not fully trust the model’s predictions. We handle this by increasing
the variance of the noise parameter for all points in theGPmodel thatOtterTune has not tried yet for
this tuning session. That is, we add a ridge term to the covariance. We also add a smaller ridge term
for each configuration that OtterTune selects. This is helpful for “noisy” virtualized environments
where the external DBMS metrics (i.e., throughput and latency) vary from one observation period
to the next.

Now for each observation period in this step, OtterTune tries to find a better configuration than
the best configuration that it has seen thus far in this session. It does this by either (1) searching
an unknown region in its GP (i.e., workloads for which it has little to no data for), or (2) selecting
a configuration that is near the best configuration in its GP. The former strategy is referred to as
exploration. This helps OtterTune look for configurations where knobs are set to values that are
beyond the minimum or maximum values that it has tried in the past. This is useful for trying
certain knobs where the upper limit might depend on the underlying hardware (e.g., the amount
of memory available). The second strategy is known as exploitation. This is where OtterTune has
found a good configuration and it tries slightmodifications to the knobs to seewhether it can further
improve the performance.

Which of these two strategies OtterTune chooses when selecting the next configuration depends
on the variance of the data points in its GP model. It always chooses the configuration with the
greatest expected improvement. The intuition behind this approach is that each time OtterTune
tries a configuration, it “trusts” the result from that configuration and similar configurations more,
and the variance for those data points in its GP decreases. The expected improvement is near-zero
at sampled points and increases in between them (although possibly by a small amount). Thus, it
will always try a configuration that it believes is optimal or one that it knows little about. Over time,
the expected improvement in the GP model’s predictions drops as the number of unknown regions
decreases. This means that it will explore the area around good configurations in its solution space
to optimize them even further.

OtterTune uses gradient descent [50] to find the local optimum on the surface predicted by the
GP model using a set of configurations, called the initialization set, as starting points. There are two
types of configurations in the initialization set: the first are the top-performing configurations that
have been completed in the current tuning session, and the second are configurations for which
the value of each knob is chosen at random from within the range of valid values for that knob.
Specifically, the ratio of top-performing configurations to random configurations is 1-to-10. During
each iteration of gradient descent, the optimizer takes a “step” in the direction of the local optimum
until it converges or has reached the limit on the maximum number of steps it can take. OtterTune
selects from the set of optimized configurations the one that maximizes the potential improvement
to run next. This search process is quick; in our experiments OtterTune’s tuning manager takes 10–
20 sec to complete its gradient descent search per observation period. Longer searches did not yield
better results.

Similar to the other regression-basedmodels thatweuse inOtterTune (see Sections 3.2.1 and 3.3.1),
we employ preprocessing to ensure that features are continuous and of approximately the same scale

3.4. EXPERIMENTAL EVALUATION 36

and range. We encode categorical features with dummy variables and standardize all data before
passing it as input to the GP model.

Once OtterTune selects the next configuration, it returns this along with the expected improve-
ment from running this configuration to the client. The DBA can use the expected improvement
calculation to decide whether they are satisfied with the best configuration that OtterTune has gen-
erated thus far.

3.4 Experimental Evaluation
We now present an evaluation of OtterTune’s ability to automatically optimize the configuration

of a DBMS. We implemented all of OtterTune’s algorithms using Google TensorFlow and Python’s
scikit-learn.

We use three different DBMSs in our evaluation: MySQL (v5.6), Postgres (v9.3), and Actian
Vector (v4.2). MySQL and Postgres were installed using the OS’s package manager. Vector was
installed from packages provided on its website. We did not modify any knobs in their default
configurations other than to enable incoming connections from a remote IP address.

We conducted all of our deployment experiments on Amazon EC2. Each experiment consists of
two instances. The first instance is OtterTune’s controller that we integrated with the OLTP-Bench
framework. These clients are deployed on m4.large instances with 4 vCPUs and 16 GB RAM.
The second instance is used for the target DBMS deployment. We used m3.xlarge instances with
4 vCPUs and 15 GB RAM.We deployedOtterTune’s tuningmanager and repository on a local server
with 20 cores and 128 GB RAM.

We first describe OLTP-Bench’s workloads that we used in our data collection and evaluation.
We then discuss our data collection to populate OtterTune’s repository. The remaining parts of this
section are the experiments that showcase OtterTune’s capabilities.

3.4.1 Workloads
For these experiments, we use workloads from theOLTP-Bench testbed that differ in complexity

and system demands [3, 36]:

YCSB: The Yahoo! Cloud Serving Benchmark (YCSB) [30] is modeled after data management
applications with simple workloads and high scalability requirements. It is comprised of six OLTP
transaction types that access random tuples based on a Zipfian distribution. The database contains
a single table with 10 attributes. We use a database with 18m tuples (∼18 GB).

TPC-C:This is the current industry standard for evaluating the performance ofOLTP systems [95].
It consists of five transactions with nine tables that simulate an order processing application. We
use a database of 200 warehouses (∼18 GB) in each experiment.

Wikipedia: ThisOLTP benchmark is derived from the software that runs the popular on-line en-
cyclopedia. The database contains 11 tables and eight different transaction types. These transactions
correspond to the most common operations in Wikipedia for article and “watchlist” management.

37 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

4 knobs 8 knobs 16 knobs Max knobs Incremental

0 200 400 600 800
1000

Tuning time (minutes)

280

290

300

310

99
th

%
-ti

le
(m

s)

(a) MySQL (TPC-C)

0 200 400 600 800
1000

Tuning time (minutes)

220

240

260

280

99
th

%
-ti

le
(m

s)

(b) Postgres (TPC-C)

0 200 400 600 800
1000

Tuning time (minutes)

4250

4300

4350

4400

To
ta

lr
un

tim
e

(m
s)

(c) Vector (TPC-H)

Figure 3.3: Number of Knobs – The performance of the DBMSs for TPC-C and TPC-H during the
tuning session using different configurations generated by OtterTune that only configure a certain
number of knobs.

3.4. EXPERIMENTAL EVALUATION 38

We configured OLTP-Bench to load a database of 100k articles that is ∼20 GB in total size. Thus,
the combination of a complex database schemawith large secondary indexesmakes this benchmark
useful for stress-testing a DBMS.

TPC-H:This is a decision support systemworkload that simulates anOLAP environment where
there is little prior knowledge of the queries [96]. It contains eight tables in 3NF schema and 22
queries with varying complexity. We use a scale factor of 10 in each experiment (∼10 GB).

For the OLTP workloads, we configure OtterTune to use five-minute observation periods and
assign the target metric to be the 99%-tile latency. We did not find that shorter or longer fixed
periods produced statistically significant differences in our evaluation, but applications with greater
variations in their workload patternsmay need longer periods. For theOLAPworkloads, OtterTune
uses a variable-length observation period that is the total execution time of the target workload for
that period. The workload’s total execution time is the target metric for the OLAP experiments.

3.4.2 Training Data Collection

As discussed in Chapter 2, OtterTune requires a corpus of previous tuning sessions that explore
different knob configurations to work properly. Otherwise, every tuning session would be the first
time that it has seen any application and it would not be able to leverage the knowledge it gains from
previous sessions. This means that we have to bootstrap OtterTune’s repository with initial data for
training its ML models. Rather than running every workload in the OLTP-Bench suite, we used
permutations of YCSB and TPC-H.

We created 15 variations of YCSB with different workload mixtures. For TPC-H, we divided the
queries into four groups that are each emblematic of the overall workload [17]. All of the training
data was collected using the DBMSs’ default isolation level.

We also needed to evaluate different knob configurations. For each workload, we performed a
parameter sweep across the knobs using random values. In some cases, we had tomanually override
the valid ranges of these knobs because the DBMS would refuse to start if any of the knob settings
exceeded the physical capacity of any of the machine’s resources (e.g., if the size of the buffer pool
was set to be larger than the amount of RAM). This would not be a problem in a real deployment
scenario because if the DBMS does not start then OtterTune is not able to collect the data.

We executed a total of over 30k trials per DBMS using these different workload and knob con-
figurations. Each of these trials is treated like an observation period in OtterTune, thus the sys-
tem collects both the external metrics (i.e., throughput, latency) and internal metrics (e.g., pages
read/written) from the DBMS.

For each experiment, we reset OtterTune’s repository back to its initial setting after loading our
training data. This is to avoid tainting our measurements with additional knowledge gained from
tuning the previous experiments. For the OLAP experiments, we also ensure that OtterTune’s ML
models are not trained with data from the same TPC-H workload mixture as the target workload.

39 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

3.4.3 Number of Knobs

We begin with an analysis of OtterTune’s performance when optimizing different numbers of
knobs during each observation period. The goal of this experiment is to show that OtterTune can
properly identify the optimal number of knobs for tuning each DBMS. Although using more knobs
may allow OtterTune to find a better configuration, it also increases the computational overhead,
data requirements, and memory footprint of its algorithms.

We use the TPC-C benchmark for the OLTP DBMSs (MySQL and Postgres) and TPC-H for
the OLAP DBMS (Vector). We evaluate two types of knob count settings. The first is a fixed count
where OtterTune considers the same set of knobs throughout the entire tuning session. The second
is our incremental approach from Section 3.2.3 where OtterTune increases the number the knobs
it tunes gradually over time. For this setting, the tuning manager starts with four knobs and then
increases the count by two every 60 min. With each knob count setting, we select the top-k knobs
ranked by their impact as described in Section 3.2. We use 15 hour tuning sessions to determine
whether the fixed setting can ever achieve the same performance as the incremental approach; we
note that this is longer than we expect that a DBA would normally run OtterTune.

MySQL: The results in Figure 3.3a show that the incremental approach enables OtterTune to
find a good configuration for MySQL in approximately 45 min. Unlike Postgres and Vector, the
incremental approach provides a noticeable boost in tuning performance for MySQL in contrast to
the fixed knob settings. The next best knob count setting for MySQL is the fixed four knobs. These
four knobs include the DBMS’s buffer pool and log file sizes, as well as themethod used to flush data
to storage. The larger knob count settings include the ability to control additional thread policies
and the number of pages prefetched into the buffer pool. But based on our experiments we find that
these have minimal impact on performance for a static TPC-C workload. Thus, including these less
impactful knobs increases the amount of noise in themodel, making it harder to find the knobs that
matter.

Postgres: The results in Figure 3.3b show that the incremental approach and the fixed four knob
setting provide OtterTune with the best increase in the DBMS’s performance. Similar to MySQL,
Postgres has a small number of knobs that have a large impact on the performance. For example,
the knob that controls the size of the buffer pool and the knob that influences which query plans are
selected by the optimizer are both in the four knob setting. The larger fixed knob settings perform
worse than the four knob setting because the additional knobs that they contain have little impact
on the system’s performance. Thus, also tuning these irrelevant knobs just makes the optimization
problem more difficult. The incremental method, however, proves to be a robust technique for
DBMSs that have relatively few impactful knobs for the TPC-C workload since it slightly outper-
forms the four knob setting. Its performance continues to improve after 400 min as it expands the
number of knobs that it examines. This is because the incremental approach allows OtterTune to
explore and optimize the configuration space for a small set of the most impactful knobs before
expanding its scope to consider the others.

3.4. EXPERIMENTAL EVALUATION 40

iTuned OtterTune

0 50 100 150 200 250 300

Tuning time (minutes)

300

400

500

600

99
th

%
-ti

le
(m

s)

(a) MySQL

0 50 100 150 200 250 300

Tuning time (minutes)

200

300

400

500

99
th

%
-ti

le
(m

s)

(b) Postgres

Figure 3.4: Tuning Evaluation (TPC-C) – A comparison of the OLTP DBMSs for the TPC-C work-
load when using configurations generated by OtterTune and iTuned.

Vector: As shown in Figure 3.3c, OtterTune achieves the best tuning performance with the eight,
16, and the incremental knob settings. In contrast to MySQL and Postgres, tuning only four knobs
does not provide the best tuning performance. This is because some of Vector’s more impactful
knobs are present in the eight knob setting but not in the four knob one. The top four knobs tune the
level of parallelism for query execution, the buffer pool’s size and prefetching options, and the SIMD
capabilities of the DBMS. There is one knob that replaces Vector’s standard LRU buffer replacement
algorithm with a policy that leverages the predictability of disk page access patterns during long-
running scans. This knob can incur overhead due to contention waiting for mutexes. Since the
eight knob setting always disables this knob, it is likely the one that prevents the four knob setting
from achieving comparable performance.

The optimal number of knobs for a tuning session varies per DBMS and workload, thus it is
impossible to provide a universal knob setting. These results show that increasing the number of
knobs that OtterTune considers over time is the best approach because it strikes the right balance
between complexity and performance. Using this approach, OtterTune is able to tune DBMSs like
MySQL and Postgres that have few impactful knobs, as well as DBMSs like Vector that require more
knobs to be tuned in order to achieve good performance.

3.4.4 Tuning Evaluation
We now demonstrate how learning from previous tuning sessions improves OtterTune’s ability

to find a good DBMS knob configuration. To accomplish this, we compare OtterTune with another
tuning tool, called iTuned [37], that also uses Gaussian Process models to search for an optimal
DBMS configuration.

Unlike OtterTune, iTuned does not train its GP models using data collected from previous tun-
ing sessions. It instead uses a stochastic sampling technique (Latin Hypercube Sampling) to gen-
erate an initial set of 10 DBMS configurations that are executed at the start of the tuning session.

41 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

0 50 100 150 200 250 300

Tuning time (minutes)

200

300

400

500

99
th

%
-ti

le
(m

s)

(a) MySQL

0 50 100 150 200 250 300

Tuning time (minutes)

100

200

300

400

99
th

%
-ti

le
(m

s)

(b) Postgres

Figure 3.5: Tuning Evaluation (Wikipedia) – A comparison of the OLTPDBMSs for theWikipedia
workload when using configurations generated by OtterTune and iTuned.

0 50 100 150 200 250 300

Tuning time (minutes)

4500

4600

4700

4800

To
ta

lr
un

tim
e

(m
s)

(a) Vector (TPC-H #1)

0 50 100 150 200 250 300

Tuning time (minutes)

4400

4500

4600

4700

To
ta

lr
un

tim
e

(m
s)

(b) Vector (TPC-H #2)

Figure 3.6: Tuning Evaluation (TPC-H) – Performance measurements for Vector running two sub-
sets of the TPC-H workload using configurations generated by OtterTune and iTuned.

iTuned uses the data from these initial experiments to train GP models that then search for the best
configuration in same way as described in Section 3.3.2.

For this comparison, we use both the TPC-C and Wikipedia benchmarks for the OLTP DBMSs
(MySQL and Postgres) and two variants of the TPC-H workload for the OLAP DBMS (Vector).
OtterTune trains its GP models using the data from the most similar workload mixture determined
in the last workload mapping stage. Both tuning tools use the incremental knob approach to decide
how many knobs to tune during each observation period (see Section 3.2.3). The difference is that
iTuned starts using this approach only after it has finished running its initial set of experiments.

TPC-C:The results in Figure 3.4 show that both OtterTune and iTuned find configurations early
in the tuning session that improve performance over the default configuration. There are, however,
two key differences. First, OtterTune finds this better configuration within the first 30 min for
MySQL and 45 min for Postgres, whereas iTuned takes 60–120 min to generate configurations that

3.4. EXPERIMENTAL EVALUATION 42

provide any major improvement for these systems. The second observation is that OtterTune gener-
ates a better configuration than iTuned for this workload. In the case of MySQL, Figure 3.4a shows
that OtterTune’s best configuration achieves 85% lower latency than iTuned. With Postgres, it is 75%
lower. Both approaches choose similar values for some individual knobs, but iTuned is unable to
find the proper balance for multiple knobs that OtterTune does. OtterTune does a better job at bal-
ancing these knobs because its GP models have a better understanding of the configuration space
since they were trained with more data.

Wikipedia: We next compare the two tuning approaches on MySQL and Postgres using a more
complex workload. Like with TPC-C, the results in Figure 3.5 show that OtterTune has the same
reduction in the transaction latency over the default configuration within the first 15 min of the
Wikipedia benchmark. Postgres has the similar gradual reduction in the latency over a 100 min
period. We found that again iTuned failed to generate a good configuration for the most important
knobs at the beginning of its tuning session because it had to populate its initialization set. In total,
OtterTune is able to achieve lower latency for both DBMSs.

TPC-H: In this last experiment, we compare the performance of the configurations generated
by the two tuning tools for two TPC-H workload mixtures running on Vector. Figure 3.6 show that
once again OtterTune produces better configurations than iTuned, but that the difference is less
pronounced than in theOLTPworkloads. The reason is that Vector is less permissive onwhat values
the tuning tools are allowed to set for its knobs. For example, it only lets the DBA set reasonable
values for its buffer pool size, otherwise it will report an error and refuse to start. Compare this
to the other DBMSs that we evaluate where the DBA can set these key knobs to almost anything.
Thus, tuning Vector is a simpler optimization task than tuning MySQL or Postgres since the space
of possible configurations is smaller.

3.4.5 Execution Time Breakdown
To better understand what happens to OtterTune when computing a new configuration at the

end of an observation period, we instrumented its tuningmanager to record the amount of time that
it spends in the different parts of its tuning algorithm from Section 3.3. We used TPC-C for MySQL
and Postgres, and TPC-H for Vector. The four categories of the execution time are as follows:
• Workload Execution: The time that it takes for the DBMS to execute the workload in order to

collect new metric data.
• Prep & Reload Config: The time that OtterTune’s controller takes to install the next configu-

ration and prepare the DBMS for the next observation period (e.g., restarting if necessary).
• Workload Mapping: The time that it takes for OtterTune’s dynamic mapping scheme to iden-

tify the most similar workload for the current target from its repository. This corresponds to
Step #1 from Section 3.3.1.

• Config Generation: The time that OtterTune’s tuning manager takes to compute the next con-
figuration for the target DBMS. This includes the gradient descent search and the GP model
computation. This is Step #2 from Section 3.3.2.

43 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

MySQL Postgres Vector0

200

400

600

E
xe

cu
tio

n
tim

e
(s

ec
)

Workload execution

Prep & reload config

Workload mapping

Config generation

Figure 3.7: Execution Time Breakdown – The average amount of time that OtterTune spends in
the parts of the system during an observation period.

The results in Figure 3.7 show the breakdown of the average times that OtterTune spends during
a tuning session. The workload execution time is the largest portion of OtterTune’s total time for
MySQL and Postgres. This is expected since both of these DBMSs execute the target workload for
the 5 min observation period. In contrast, Vector executes a sequence of TPC-H queries that take
an average of 5 sec to finish. These results show that it takes OtterTune’s controller 62 sec to restart
MySQL for each new configuration, whereas Postgres and Vector take an average of 3 min and
6.5 min to restart, respectively. Postgres’ longer preparation time is a result of running the vacuum
command between observation periods to reclaim any storage that is occupied by expired tuples.
For Vector, the preparation time is longer because all data must be unloaded and then reloaded into
memory each time the DBMS is restarted. All three DBMSs take between 30–40 sec and 5–15 sec to
finish the workloadmapping and configuration recommendation steps, respectively. This is because
there is approximately the same amount of data available in OtterTune’s repository for each of the
workloads that are used to train the models in these steps.

3.4.6 Efficacy Comparison
In our last experiment, we compare the performance of MySQL and Postgres when using the

best configuration selected by OtterTune versus ones selected by human DBAs and open-source
tuning advisor tools.12 We also compare OtterTune’s configurations with those created by a cloud
database-as-a-service (DBaaS) provider that are customized for MySQL and Postgres running on
the same EC2 instance type as the rest of the experiments. We provide the configurations for these
experiments in Appendix A.2.

Each DBA was provided with the same EC2 setup used in all of our experiments. They were
allowed to tune any knobs they wanted but were not allowed tomodify things external to the DBMS
(e.g., OS kernel parameters). On the client instance, we provided them with a script to execute the
workload for the 5 min observation period and a general log full of previously executed queries for

12 We were unable to obtain a similar tuning tool for Vector in this experiment.

3.4. EXPERIMENTAL EVALUATION 44

Default OtterTune Tuning script DBA RDS-config

0

250

500

750

1000

Th
ro

ug
hp

ut
(tx

n/
se

c)

(a) TPC-C (Throughput)
0

500

1000

1500

2000

99
th

%
-ti

le
(m

s)

(b) TPC-C (99%-tile Latency)

Figure 3.8: Efficacy Comparison (MySQL) – Throughput and latency measurements for the TPC-
C benchmark using the (1) default configuration, (2) OtterTune configuration, (3) tuning script
configuration, (4) DBA configuration, and (5) Amazon RDS configuration.

0

250

500

750

1000

Th
ro

ug
hp

ut
(tx

n/
se

c)

(a) TPC-C (Throughput)
0

200

400

600

800

99
th

%
-ti

le
(m

s)

(b) TPC-C (99%-tile Latency)

Figure 3.9: Efficacy Comparison (Postgres) – Throughput and latency measurements for the TPC-
C benchmark using the (1) default configuration, (2) OtterTune configuration, (3) tuning script
configuration, (4) expert DBA configuration, and (5) Amazon RDS configuration.

that workload. The DBAs were permitted to restart the DBMS and/or the workload as many times
as they wanted.

For the DBaaS, we use the configurations generated for Amazon RDS. We use the same instance
type and DBMS version as the other deployments in these experiments. We initially executed the
workloads on the RDS-managed DBMSs, but found that this did not provide a fair comparison
because Amazon does not allow you to disable the replication settings (which causes worse per-
formance). To overcome this, we extracted the DBMS configurations from the RDS instances and
evaluated them on the same EC2 setup as our other experiments. We disable the knobs that control
the replication settings to be consistent with our other experiments.

45 CHAPTER 3. TUNING VIA GAUSSIAN PROCESS REGRESSION

MySQL: Our first DBA is the premiere MySQL tuning and optimization expert from Lithuania
with over 15 years of experience and also works at a well-known Internet company. They finished
tuning in under 20 min and modified a total of eight knobs.

The MySQL tuning tool (MySQLTuner [2]) examines the same kind of DBMS metrics that Ot-
terTune collects and uses static heuristics to recommend knob configurations. It uses an iterative
approach: we execute the workload and then run the tuning script. The script emits suggestions
instead of exact settings (e.g., set the buffer pool size to be at least 2 GB). Thus, we set each knob to
its recommended lower bound in the configuration file, restarted the DBMS, and then re-executed
the workload. We repeated this until the script stopped recommending settings to further improve
the configuration. This process took 45 min (i.e., eight iterations) before it ran out of suggestions,
and modified five knobs.

Figure 3.8 shows that MySQL achieves approximately 35% better throughput and 60% better la-
tency when using the best configuration generated by OtterTune versus the one generated by the
tuning script for TPC-C. We see that the tuning script’s configuration provides the worst perfor-
mance of all of the (non-default) configurations. The reason is that the tuning script only modifies
one of the four most impactful knobs, namely, the size of the buffer pool. The other knobs that
the tuning script modifies are the number of independent buffer pools and the query cache settings.
We found, however, that these knobs did not have a measurable effect. These results are consistent
with our findings in Section 3.4.3 that show how most of the performance improvement for MySQL
comes from tuning the top four knobs.

Both the latency and the throughput measurements in Figure 3.8 show that MySQL achieves
∼22% better throughput and ∼57% better latency when using OtterTune’s configuration compared
to RDS. RDS modified three out of the four most impactful knobs: the size of the buffer pool, the
size of the log file, and themethod used to flush data to disk. Still, we see that the performance of the
RDS configuration is only marginally better than that of the tuning script. An interesting finding is
that RDS actually decreases the size of the log file (and other files) to be smaller thanMySQL’s default
setting. We expect that these settings were chosen to support instances deployed on variable-sized
EBS storage volumes, but we have not found documentation supporting this.

OtterTune generates a configuration that is almost as good as the DBA. The DBA configured the
same three out of four top-ranking knobs as RDS.We see that OtterTune, the DBA, and RDS update
the knob that determines how data is flushed to disk to be the same option. This knob’s default
setting uses the fsync system call to flush all data to disk. But the setting chosen by OtterTune,
the DBA, and RDS is better for this knob because it avoids double buffering when reading data by
bypassing the OS cache. Both the DBA and OtterTune chose similar sizes for the buffer pool and
log file. The DBA modified other settings, like disabling MySQL’s monitoring tools, but they also
modified knobs that affect whether MySQL ensures that all transactions are fully durable at commit
time. As discussed in Chapter 2, OtterTune is forbidden from tuning such knobs.

Postgres: For the next DBMS, our human expert was the lead DBA for a mid-western judicial
court system in the United States. They have over six years of experience and have tuned over
100 complex production database deployments. They completed their tuning task in 20 min and
modified a total of 14 knobs.

3.4. EXPERIMENTAL EVALUATION 46

The Postgres tuning tool (PGTune [5]) is less sophisticated than the MySQL one in that it only
uses pre-programmed rules that generate knob configurations for the target hardware and does not
consider the DBMS’s metrics. We found, however, that using the Postgres tuning tool was easier be-
cause it was based on the amount of RAMavailable in the system and some high-level characteristics
about the target workload (e.g., OLTP vs. OLAP). It took 30 seconds to generate the configuration
and we never had to restart the DBMS. It changed a total of eight knobs.

The latency measurements in Figure 3.9b show that the configurations generated by OtterTune,
the tuning tool, the DBA, and RDS all achieve similar improvements for TPC-C over Postgres’ de-
fault settings. This is likely because of the overhead of network round-trips between the OLTP-
Bench client and the DBMS. But the throughput measurements in Figure 3.9 show that Postgres has
∼12% higher performance with OtterTune compared to the DBA and the tuning script, and ∼32%
higher performance compared to RDS.

Unlike our MySQL experiments, there is considerable overlap between the tuning methods in
terms of which knobs they selected and the settings that they chose for them. All of the configura-
tions tune the three knobs that OtterTune finds to have the most impact. The first of these knobs
tunes the size of the buffer pool. All configurations set the value of this knob to be between 2–8 GB.
The second knob provides a “hint” to the optimizer about the total amount of memory available in
the OS and Postgres’ buffers but does not actually allocate any memory. The DBA and RDS select
conservative settings of 10 GB and 7 GB compared to the settings of 18 GB and 23 GB chosen by
OtterTune and the tuning script, respectively. The latter two overprovision the amount of memory
available whereas the settings chosen by the DBA and RDS are more accurate.

The last knob controls the maximum number of log files written between checkpoints. Setting
this knob too low triggers more checkpoints, leading to a huge performance bottleneck. Increasing
the value of this knob improves I/O performance but also increases the recovery time of the DBMS
after a crash. The DBA, the tuning script, and AWS set this knob to values between 16 and 64.
OtterTune, however, sets this knob to be 540, which is not a practical value since recoverywould take
too long. The reason that OtterTune chose such a high value compared to the other configurations
is a result of it using the latency as its optimization metric. This metric captures the positive impact
that minimizing the number of checkpoints has on the latency but not the drawbacks of longer
recovery times.

Chapter 4

Tuning in the Real World

Our work in Chapter 3 and other recent results from ML-based approaches have demonstrated that
they achieve better performance compared to human DBAs and other tuning tools on a variety of
workloads and hardware configurations [65, 109]. These results are again promising, but up until
now, the evaluations have been limited to (1) open-source DBMSs with limited tuning potential
(e.g., Postgres, MySQL, MongoDB) and (2) synthetic benchmarks with uniform workload patterns.
Additionally, although these evaluations used virtualized environments for the target DBMSs, to the
best of our knowledge, they all used dedicated local storage (i.e., SSDs directly attached to the VM).
Many real-world DBMS deployments, however, use non-local, shared-disk storage. Such non-local
storage includes on-premise SANs and cloud-based block stores (e.g., Amazon EBS, Azure Disk
Storage). These non-local storage devices have higher read/write latencies and incur more variance
in their performance than local storage. It is unclear how these differences affect the efficacy of ML-
based tuning algorithms. Lastly, previous studies are vague about how much of the tuning process
was truly automated. For example, they do not specify how they select the bounds of the knobs
they are tuning. This means that the quality of the configurations may still depend on a human
initializing it with the right parameters.

Given these issues, this chapter presents a field study of automatic knob configuration tun-
ing algorithms on a commercial DBMS with a real-world workload in a production environment.
We provide an evaluation of state-of-the-art ML-based methods for tuning an enterprise Oracle
DBMS (v12) installation running on virtualized computing infrastructure with non-local storage.
For this work, we extended the OtterTune [4] tuning service to support three ML tuning algo-
rithms: (1) Gaussian Process Regression (GPR) from OtterTune Chapter 3, (2) Deep Neural Net-
works (DNN) [107], and (3) Deep Deterministic Policy Gradient (DDPG) from CDBTune [109].

This chapter is organized as follows. Section 4.2 begins with an overview of our field study. We
then describe the tuning algorithms that we evaluate in Section 4.3. In Section 4.4, we present our
evaluation of these algorithms in tuning an enterprise database application. Lastly, we summarize
the lessons learned from this study in Section 4.5.

47

4.1. MOTIVATION 48

Default BufferPool+RedoLog GPR DDPG

v5.6 v5.7 v8.0
0

500

1000

1500

2000

Th
ro

ug
hp

ut
(tx

n/
se

c)

113 115 80

1514
1259

1062

1495
1309

1111
1426 1316

1136

(a) MySQL

v9.3 v10.1 v12.3
0

500

1000

1500

2000

Th
ro

ug
hp

ut
(tx

n/
se

c)

514 477

996
1203

1512

1929

1315

1901 2011

1329

1739

2134

(b) Postgres

Figure 4.1: DBMS Tuning Comparison – Throughput measurements for the TPC-C benchmark
running on three versions of MySQL (v5.6, v5.7, v8.0) and Postgres (v9.3, v10.1, v12.3) using the
(1) default configuration, (2) buffer pool & redo log configuration, (3) GPR configuration, and (4)
DDPG configuration.

4.1 Motivation
Automated DBMS tuning services are an active research area. Our work in Chapter 3 and other

recent studies have shown that they can generate configurations that are equivalent or exceed con-
figurations created by expert DBAs [65, 109]. Despite these measurable benefits, we observe that
there is a mismatch between aspects of the evaluations of previous research on ML-based tuning ap-
proaches versus what we see in real-world DBMS deployments. The three facets of this discrepancy
are the (1) workload, (2) DBMS, and (3) operating environment. We now discuss them in further
detail.

Workload Complexity: Gaining access to production workload data to evaluate new research
ideas is non-trivial due to privacy constraints and other restrictions. Prior studies evaluate their
techniques using synthetic benchmarks; the most complex benchmark used to evaluate ML-based
tuning techniques to date is the TPC-COLTP benchmark from the early 1990s. But previous studies

49 CHAPTER 4. TUNING IN THE REALWORLD

Local Storage Non-Local Storage

1d 2d 3d
0

5

10

15

I/O
La

te
nc

y
(m

s)

(a) Sequential Reads
1d 2d 3d

0

5

10

15

I/O
La

te
nc

y
(m

s)

(b) Sequential Writes

1d 2d 3d
0

5

10

15

I/O
La

te
nc

y
(m

s)

(c) Random Reads
1d 2d 3d

0

5

10

15
I/O

La
te

nc
y

(m
s)

(d) Random Writes

Figure 4.2: Operating Environment – I/O latency of local versus non-local storage for four different
I/O workloads over a three-day period.

have found that the characteristics of TPC-C are not representative of real-world database applica-
tions [53, 59]. Many of the unrealistic aspects of TPC-C are due to its simplistic database schema
and query complexity. Another notable difference is the existence of temporary and large objects in
production databases. Some DBMSs provide knobs for tuning these objects (e.g., Postgres, Oracle),
which have not been considered in prior work.

System Complexity: The simplistic nature of workloads like TPC-C means that there are fewer
tuning opportunities in someDBMSs, especially for the twomost commonDBMSs evaluated in pre-
vious studies (i.e., MySQL, Postgres). For these two DBMSs, one can achieve a substantial portion
of the performance gain from configurations generated by ML-based tuning algorithms by setting
two knobs according to the DBMS’s documentation. These two knobs control the amount of RAM
for the buffer pool cache1, 2 and the size of the redo log file on disk.3, 4

1Postgres Knob – SHARED_BUFFERS
2MySQL Knob – INNODB_BUFFER_POOL_SIZE
3Postgres Knob – MAX_WAL_SIZE
4MySQL Knob – INNODB_LOG_FILE_SIZE

4.2. AUTOMATED TUNING FIELD STUDY 50

To illustrate this issue, we ran a series of experiments on multiple versions of MySQL (v5.6, v5.7,
v8.0) and Postgres (v9.3, v10.1, v12.3) using the TPC-C workload. We deployed the DBMSs on a
machine running Ubuntu 18.04 with an Intel Core i7-8650U CPU (8 cores @ 1.90GHz, 2× HT)
and 32 GB RAM. For each DBMS version, we measure the system’s throughput under four knob
configurations: (1) the OS’s default configuration, (2) the recommended settings from the DBMS’s
documentation for the two knobs that control the buffer pool size and the redo log file size, (3) the
configuration generated byOtterTune usingGPR, and (4) the configuration generated byOtterTune
using DDPG. We allowed OtterTune to tune 10 knobs for both DBMSs as selected by the tuning
manager’s ranking algorithm. We discuss the details of these algorithms in Section 4.3.

Figure 4.1 shows that the two-knob configuration and OtterTune-generated configurations im-
prove the performance for TPC-C over the DBMS’s default settings. This is expected since the de-
fault configurations for MySQL and Postgres are based on their minimal hardware requirements.
More importantly, however, the configurations generated by ML algorithms achieve only 5–25%
higher throughput than the two-knob configuration across the different versions of MySQL and
Postgres. That is, one can achieve 75–95% of the performance obtained by ML-generated configura-
tions by tuning only two knobs for the TPC-C benchmark.

Operating Environment: Disk speed is often the most important factor in a DBMS’s perfor-
mance. Although the previous studies used virtualized environments to evaluate their methods,
to our knowledge, they deploy the DBMS on ephemeral storage that is physically attached to the
host machine. But many real-world DBMS deployments use durable, non-local storage for data
and logs, such as on-premise SANs and cloud-based block/object stores. The problem with these
non-local storage devices is that their performance can vary substantially in a multi-tenant cloud
environment [83].

To demonstrate this point, we measured the I/O latency on both local and non-local storage
devices every 30 minutes over a three-day period using Fio [1]. We conducted the local storage
experiments on a machine with a Samsung 960EVO M.2 SSD. We ran the non-local storage experi-
ments on aVMwith virtual storage deployed on an enterprise private cloud. The results in Figure 4.2
show that the read/write latencies for the local storage are stable across all workloads. In contrast,
the read/write latencies for the non-local storage are higher and more variable. The spike on the
third day also demonstrates the unpredictable nature of non-local storage.

4.2 Automated Tuning Field Study
Theabove issues highlight the limitations in recent evaluations of configuration tuning approaches.

These examples argue the need for a more rigorous analysis to understand whether real-world
DBMS deployments can benefit from automated tuning frameworks. If automated tuning proves to
be viable in these deployments, we seek to identify the trade-offs of ML-based algorithms and the
extent to which human-guidance makes a difference.

We conducted an evaluation of the OtterTune framework at the Société Générale (SG) multi-
national bank in 2020 [9]. SG runs most of their database applications on Oracle on private cloud
infrastructure. They provide self-service provisioning for DBMS deployments that use a pre-tuned

51 CHAPTER 4. TUNING IN THE REALWORLD

configuration based on the expected workload (e.g., OLTP vs. OLAP). These Oracle deployments
are managed by a team of skilled DBAs with experience in knob tuning. Thus, the goal of our field
study is to see whether automated tuning could improve a DBMS’s performance beyond what their
DBAs achieve through manual tuning.

In this section, we provide the details of our deployment of OtterTune at SG. We begin with
a description of the target database workload and how it differs from synthetic benchmarks. We
then describe SG’s operating environment and the challenges we had to overcome with running an
automated tuning service.

4.2.1 Target Database Application
The data and workload trace that we use in our study came from an internal issue tracking appli-

cation (TicketTracker) for SG’s IT infrastructure. The core functionality of TicketTracker is similar
to other widely used project management software, such as Atlassian Jira and Mozilla Bugzilla. This
application keeps track of work tickets submitted across the entire organization. SG has ∼140,000
employees spread across the globe [9], and thus TicketTracker’s workload patterns and query arrival
rate are mostly uniform 24-hours a day during the work week. SG currently runs TicketTracker on
Oracle v12.1. We developed custom reporting tools to summarize the contents of the database and
query trace. We now provide a high-level description of TicketTracker from this analysis.

Database: We created a snapshot of the TicketTracker database from its production server using
the Oracle Recovery Manager tool. The total uncompressed size of the database on disk is ∼1.1 TB,
of which 27% is table data, 19% is table indexes, and 54% is large objects (LOBs). This LOB data is
notable because Oracle exposes knobs that control how it manages LOBs, and previous work has
not explored this aspect of DBMS tuning.

The TicketTracker database contains 1226 tables, but 773 of them are empty tables from previous
staging and testing efforts. We exclude them from our analysis here as no query accesses them. For
the remaining 453 tables with data, the database contains 1647 indexes based on them. The charts in
Figure 4.3 provide breakdowns of the number of tuples, columns, and indexes per table. Figure 4.3b
shows that most of the tables have 20 or fewer columns. There is also a large percentage of tables
that only have a single index; these are mostly tables with a small number of tuples (i.e., <10k).

Workload: We collected the TicketTracker workload trace using Oracle’s Real Application Test-
ing (RAT) tool. RAT captures the queries that the application executes on the production DBMS
instance starting at the snapshot, along with meta-data, such as timing information. It then sup-
ports replaying those queries multiple times on a test database with the exact timing, concurrency,
and transaction characteristics of the original workload [46]. Our trace is from a two-hour period
during regular business hours and contains over 3.6m query invocations.

The majority of the queries (90.7%) that TicketTracker executes are read-only SELECT state-
ments. They are short queries that access a small number of tuples. Figure 4.4a shows that the
average execution time of SELECT queries on Oracle with SG’s default configuration is 25 ms. The
application executes some longer running queries (e.g., for dashboards), but these are rare. The 99th
percentile latency for SELECT queries is only 370 ms.

4.2. AUTOMATED TUNING FIELD STUDY 52

Operator Type % of Queries
TABLE ACCESS BY INDEX ROWID 31%
INDEX RANGE SCAN 23%
INDEX UNIQUE SCAN 16%
SORT ORDER BY 8%
TABLE ACCESS FULL 5%
All Others 17%

Table 4.1: Query Plan Operators – The percentage of queries in the TicketTracker workload that
contain each operator type.

We also counted the number of times that a SELECT query accesses each table. Only 2% of the
queries perform a join between two or more tables; the remaining 98% only access a single table.
The histogram in Figure 4.4b shows the top 10 most accessed tables in the workload. The remaining
tables are accessed by 1% or less of the queries. These results indicate that there is no single table
that queries touch significantly more than others.

Since theworkload trace includes query plans, we extracted the operators for each SELECT query
to characterize their behavior. This analysis helped us understand whether the configurations se-
lected by the algorithms in our experiments would even affect the queries. Table 4.1 provides a
ranked list of the five most common operators. We see that almost all the queries perform index
look-ups and scans. The most common operator (TABLE ACCESS BY INDEX ROWID) is when the
query uses a non-covering index to get a pointer to the tuple. Only 5% of the queries execute a
sequential scan on a table.

The rest of the TicketTracker workload contains UPDATE (5.2%), INSERT (3.4%), and DELETE
(0.7%) queries. The average execution times of these queries are 18 ms, 97 ms, and 49 ms, respec-
tively. But unlike SELECT queries, the 99th percentile latency for INSERT and DELETE is an order
of magnitude longer than their average latency. For INSERTs, Figure 4.4a shows that some queries
take 1260 ms to run. Our analysis also shows that a large portion of the modification queries are on
tables with over 100k tuples. Some of the largest tables (i.e.,>10m tuples) are never used in SELECT
queries.

There are important differences in the TicketTracker application compared to the TPC-C bench-
mark used in previousML tuning evaluations. Foremost is that the TicketTracker database has hun-
dreds of tables and the TPC-C database only has nine. TPC-C also has a much higher write ratio for
queries (46%) than the TicketTracker workload (10%). This finding is consistent with previous work
that has compared TPC-C with real-world workloads [53, 59]. Prior to our study, it was unknown
whether these differences affect the efficacy of ML-based tuning algorithms.

4.2.2 Deployment
We deployed five copies of the TicketTracker database and workload on separate Oracle v12.2

installations in SG’s private cloud. We used the same hardware configuration as the production in-
stance. Each DBMS instance runs on a VM with 12 vCPUs (Intel Xeon CPU E5-2697v4 at 2.30 GHz)

53 CHAPTER 4. TUNING IN THE REALWORLD

1-100 100-1K 1K-10K 10K-100K 100K-1M 1M-10M >10M
0

50

100

150

200

#
of

Ta
bl

es 134

62 61 48
68 66

14

(a) Number of Rows Per Table

2-5 5-10 10-20 20-30 30-50 50-100 >100
0

50

100

150

200

#
of

Ta
bl

es

191

118
80

22 17 10 15

(b) Number of Columns Per Table

1 2 3 4 5-10 10-20 >20
0

50
100
150
200
250

#
of

Ta
bl

es

222

80
45

19
58

16 13

(c) Number of Indexes Per Table

Figure 4.3: Database Contents Analysis – The number of tuples, columns, and indexes per table
for the TicketTracker database.

and 64 GB RAM. We configured the VMs to write to a NAS shared-disk running in the same data
center. As shown in our previous experiment in Figure 4.2, the average read and write latencies for
this storage are ∼6.7 ms and ∼8.3 ms, respectively.

The initial knob configuration for each Oracle instance is selected from a set of pre-tuned con-
figurations that SG uses for their entire fleet. The SG IT team provides their employees with a self-
service web interface for provisioning new DBMSs. In addition to selecting the hardware configu-
ration of a new DBMS (e.g., CPU cores, memory), a user must also specify the expected workload
that the DBMS will support (e.g, OLTP, OLAP, HTAP). The provisioning system installs the knob
configuration that has been pre-tuned by the SG administrators for the selected workload type. Al-
though these configurations outperform Oracle’s default settings, they only modify 4–6 knobs and

4.2. AUTOMATED TUNING FIELD STUDY 54

SELECT UPDATE INSERT DELETE
10−3

10−2

10−1

10 0

10 1

Ti
m

e
(s

)

0.025 0.018
0.097 0.049

0.370 0.425
1.260 0.793

Average Time (s) 99th %-tile Time (s)

(a) Execution Time of Query Types (Log Scale)

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Table ID

0

1

2

3

%
of

Q
ue

rie
s 2.74% 2.50% 2.38% 2.32% 2.16%

1.67% 1.62% 1.48% 1.37% 1.28%

(b) Top 10 Tables Accessed by Queries (%)

Figure 4.4: TicketTracker Workload Analysis – Execution information for the TicketTracker
queries extracted from the workload trace.

are still not tailored to the individual applications’ workloads. As such, for the TicketTracker work-
load, the DBA further customized some of the knobs in the pre-tuned configuration, including one
that improves the performance of LOBs.5

We set upmultiple of OtterTune’s tuningmanagers and controllers in the same data center as the
Oracle DBMSs. We ran each component in a Docker container with eight vCPUs and 16 GB RAM.
Each DBMS instance has a dedicated OtterTune tuning manager assigned to it. This separation
prevents one session from using training data collected in another session, which will affect the
convergence rate and efficacy of the algorithms.

4.2.3 Tuning
At the beginning of each iteration in a tuning session, the controller first restarts its target DBMS

instance. Restarting ensures that the knob changes that OtterTune made to the DBMS in the last
iteration take effect. Some knobs in Oracle do not require restarting the DBMS, but changing them
is not instantaneous and requires additional monitoring to determine when their updated values
have been fully applied. To avoid issues with incomplete or inconsistent configurations, we restart
the DBMS each time.

5Oracle Knob – DB_32K_CACHE_SIZE

55 CHAPTER 4. TUNING IN THE REALWORLD

metrics

Q-value

Actor

Critic
training tuples

Replay Memory

*ranked by error
training batch

fetch top

knobs

train

predict

Data Repository

raw data

[knobs, metrics]

metrics

{

DDPG Neural Networks

[state, action, reward]

process

update ranking

knob
setting

Figure 4.5: DDPG Tuning Pipeline – The raw data is converted to states, actions and rewards and
then inserted into the replay memory. The tuples in the replay memory are ranked by the error of
the predicted Q-value. In the training process, a batch of top tuples are fetched to update the critic
and the actor. After training, the prediction error in the replay memory is updated and the actor
recommends the next configuration to run.

Another issue is that Oracle could refuse to start if one of its knobs has an invalid setting. For
example, if one sets the knob that controls the DBMS’s buffer pool size6 to be larger than the amount
of physical memory on the underlying machine, then Oracle’s will not start and prints an error
message in the log. If the controller detects this failure, it halts the tuning iteration, reports the failure
to the tuning manager, and then starts a new iteration with the next configuration. This failure is
still useful for the tuning algorithms; we discuss how to handle this and other failure scenarios
in Section 4.5.

Once the DBMS is online and accepting connections, the controller resets the database back to
what it was at the beginning of the workload trace (i.e., any tuple modified during the workload
replay is reverted to its original state). Although the TicketTracker database is over 1 TB in size, this
step takes on average five minutes per iteration because Oracle’s snapshot tool only resets the pages
modified since in the last iteration.

After resetting theDBMS, the controller executes a Fio [1]microbenchmark on theDBMS’s VM
to collect the current performance measurements for its shared disk. This step is not necessary for
tuning, and none of the algorithms use this data in their models. Instead, we use these metrics to
explain the DBMSs’ performance in noisy cloud environments (see Section 4.5).

Now the controller begins the execution step on the target DBMS using the current configura-
tion. It first retrieves the current values forDBMS’smetrics throughOracle-specific SQL commands.
Oracle generates over 3900metrics that are a mix of counters and aggregates. We only collect global
metrics from the DBMS (i.e., there are no table- or index-specific metrics). We set the tuning algo-
rithm’s target objective function toDB Time [35, 40]. This is an Oracle-specificmetric that measures
the total time spent by the database in processing user requests. A key feature of DB Time is that
it provides a “common currency” to measure the impact of any component in the system. It is the
SG DBAs’ preferred metric because it allows them to reason about the interactions between DBMS
components to diagnose problems.

OtterTune’s controller executes TicketTracker’s workload trace using Oracle RAT. We use RAT’s
automatic setup option to determine the number of client threads that it needs to replicate the same
concurrency as the original application. We configure RAT to execute a 10-minute segment (230k
queries) from the original trace. We limit the replay time for two reasons. First, the segment’s

6Oracle Knob – DB_CACHE_SIZE

4.3. TUNING ALGORITHMS 56

timespan is based on the wall clock of when the trace was collected on the production DBMS. This
means that when the trace executes on a DBMS with a sub-optimal configuration (which is often
the case at the beginning of a tuning session), the 10-minute segment could take several hours to
complete. We halt replays that run longer than 45 minutes. The second reason is specific to Oracle:
RAT is unstable on large traces for our DBMS version. Oracle’s engineers did provide SG with a
fix, but only several months after we started our study, and therefore it was too late to restart our
experiments.

After the workload execution completes, the controller collects the DBMS’s metrics again, com-
putes the delta for the counters from the start of the iteration, and then sends the results to the
tuning manager. The controller then polls the tuning manager for the next configuration to install
and repeats the above steps.

4.3 Tuning Algorithms

Our goal is to understand how the DBMS configuration tuning algorithms proposed in recent
years behave in a real-world setting and under what conditions one performs better than others. To
this end, we evaluated threeML tuning algorithms: (1)GaussianProcess Regression (GPR), (2)Deep
Neural Networks (DNN), and (3) Deep Deterministic Policy Gradient (DDPG). Although there are
other algorithms that use query data to guide the search process [65], they are not usable at SG
because of privacy concerns since the queries contain user-identifiable data. Methods to anonymize
this data are outside the scope of this paper.

GPR is the original algorithm supported by the OtterTune tuning service from Chapter 3. We
extended OtterTune to support DNN and DDPG, which we now discuss in further detail.

4.3.1 DNN—OtterTune (2019)

Previous research has argued that Gaussian process models do not perform well on larger data
sets and high-dimensional feature vectors [61]. Given this, we modified our GPR-based algorithm
from Chapter 3 to use a deep neural network (DNN) instead of the Gaussian process models. Ot-
terTune’s DNN algorithm follows the same ML pipeline as GPR (see Figure 3.1).

DNN relies on a deep learning algorithm that applies a series of linear combinations and non-
linear activations to the input to derive the output. The network structure of the DNN model has
two hidden layers with 64 neurons each. All of the layers are fully connected with rectified linear
units (ReLU) as the activation function. We implemented a popular technique called dropout regu-
larization to avoid overfitting the models and improve their generalization [88]. It uses a dropout
layer between the two hidden layers with a dropout rate of 0.5. DNN also adds Gaussian noise to
the parameters of the neural network during the knob recommendation step [79] to control the
amount of exploration versus exploitation. Specifically, OtterTune increases exploitation through-
out the tuning session by reducing the scale of the noise.

57 CHAPTER 4. TUNING IN THE REALWORLD

4.3.2 DDPG— CDBTune (2019)
This method was first proposed by CDBTune [109]. DDPG is a deep reinforcement learning

algorithm that searches for the optimal policy in a continuous action space environment. The ability
to work on a continuous action space means that DDPG can set a knob to any value within a range,
whereas other reinforcement learning algorithms, such as Deep-Q learning, are limited to setting
a knob from a finite set of pre-defined values. We first describe CDBTune’s DDPG, and then we
present an extension to it that we developed to improve its convergence rate.

As shown in Figure 4.5, DDPG consists of three components: (1) actor, (2) critic, and (3) replay
memory. The actor is a neural network that chooses an action (i.e., what value to use for a knob)
based on the given states. The critic is a second neural network that evaluates the selected action
based on the states. In other words, the actor decides how to set a knob value, and then the critic
provides feedback on this choice to guide the actor. In CDBTune, the critic takes the previous met-
rics and the recommended knobs as the input and outputs a Q-value, which is an accumulation of
the future rewards. The actor takes the previous metrics as its input and outputs the recommended
knobs. The replaymemory stores the training data tuples ranked by the prediction error in descend-
ing order.

Upon receiving a new data point, CDBTune first calculates the reward by comparing the current,
previous, and initial target objective values. For each knob k, DDPG constructs a tuple that contains
(1) the array of previousmetricsmprev, (2) the array of currentmetricsm, and (3) the current reward
value. The algorithm stores this tuple in its replay memory. It next fetches a mini-batch of the top-
ranked tuples from thememory andupdates the actor and critic weights via backpropagation. Lastly,
it feeds the current metricsm into the actor to get the recommendation of the knobs knext, and adds
noise to knext to encourage exploration.

We identified a few optimizations to CDBTune’s DDPG algorithm that reduce the amount of
training data needed to learn the representation of the Q-value. We call this enhanced version
DDPG++. There are three core differences between these algorithms. First, DDPG++ uses the
immediate reward instead of the accumulated future reward as the Q-value. This is appropriate
because each knob setting is only responsible for the DBMS’s performance in the current tuning
iteration and has no relationship to the performance in future iterations. Second, DDPG++ uses a
simpler reward function that does not consider the previous or base target objective values. Thus,
each reward is independent of the previous one. Lastly, upon getting a new result, DDPG++ fetches
multiple mini-batches from the replay memory to train the networks to converge faster.

4.4 Evaluation
We now present the results from our comparison of the above tuning algorithms for SG’s Oracle

installation on TicketTracker.
Random sampling methods serve as competitive baselines for judging optimization algorithms

because they are simple yet surprisingly effective [14]. In our evaluation, we use a random sam-
pling method called Latin Hypercube Sampling LHS) [52] as a baseline. LHS is a space-filling tech-
nique that attempts to distribute sample points evenly across all possible values. Such techniques are

4.4. EVALUATION 58

Apr May Jun Jul Aug Sep

5000

10000

15000

20000

D
B

Ti
m

e
(s

ec
) VM01

VM02

VM03

VM04

VM05

Figure 4.6: Performance Variability – Performance for the TicketTracker workload using the de-
fault configuration on multiple VMs over six months.

generally more effective than naïve random sampling in high-dimensional spaces, especially when
collecting a small number of samples relative to the total number of possible values.

We begin with an initial evaluation of the variability in the performance measurements for SG’s
environment. This discussion is necessary to explain how we conduct our experiments and analyze
their results in the subsequent sections.

4.4.1 Performance Variability
Because each tuning session in our experiments takesmultiple days to complete, we deployed the

Oracle DBMS on multiple VMs to run the sessions in parallel. Our VMs run on the same physical
machines during this time, but the other tenants on these machines or in the same rack may change.
As discussed in Section 4.1, running a DBMS in virtualized environments with shared storage can
lead to unexplained changes in the system’s performance across instances with the same hardware
allocations and even on the same instance.

To better understand the extent of this variability in SG’s data center, we measured the perfor-
mance of ourVMs once aweek over sixmonths. We run the 10-minute segment of the TicketTracker
workload using SG’s default configuration. The results in Figure 4.6 show the DB Time metric for
each VM instance over time. The first observation from this data is that the DBMS’s performance
on the same VM can fluctuate by as much as 4× even though the DBMS’s configuration and work-
load are the same. For example, VM02’s DB Time in July is higher than what we measured in the
previousmonth. The next observation is that the relative performance of VMs can vary as well, even
within a short time window.

We believe that these inconsistent results are due to latency spikes in the shared-disk storage.
Figure 4.7 shows the DBMS’s performance for one VM during a tuning session, along with its CPU
busy time and I/O latency as measured by the DBMS. These results show a correlation between
spikes in the I/O latency (three highlighted regions) and a degradation in the DBMS’s performance.
In this example, the algorithmhad converged at this point of the tuning session, so the configuration
was stable. Thus, it is likely that these latency spikes are due to external causes outside of the DBMS’s
control.

59 CHAPTER 4. TUNING IN THE REALWORLD

5000
10000
15000
20000

D
B

Ti
m

e
(s

)

2000
3000
4000
5000

C
P

U
bu

sy
Ti

m
e

(s
)

Tuning iterations

6
9

12
15

I/O
La

te
nc

y
(m

s)

Figure 4.7: Effect of I/OLatency Spikes –Runtimemeasurements ofDBMSperformancewith CPU
utilization and I/O latency.

These fluctuations make our evaluation challenging since we cannot reliably compare tuning
sessions that run on different VMs, or even the same VM but at different times. Given this, we
made a substantial effort to conduct our experiments in such a way that we can provide meaningful
analysis. We use the same procedure in all of our experiments in this paper. Each tuning session is
comprised of 150 iterations. Every iteration can take up to one hour depending on the quality of the
DBMS’s configuration. As such, each session took three to five days to complete.

For a given experiment, we run three tuning sessions per algorithm under each condition being
evaluated. We then collect the optimized configurations from all the sessions, along with the SG
default configuration, and run them consecutively, three times each, on three different VMs. That
is, we run each configuration a total of nine times – thrice per VM. Running the configurations
sequentially in the same time period is necessary since a VM’s performance varies over time. It
also lets us use the same measurement of the SG default configuration’s performance to calculate
their relative improvements. Running them on three different VMs guards against one VM being
especially noisy and producing varying results.

We select the performance of each configuration on a given VM as the median of the three runs.
The overall performance of each configuration is the average across the three VMs. We report the
minimum and maximum performance measurements from the three optimized configurations for
each algorithm.

4.4. EVALUATION 60

GPR DNN DDPG DDPG++ LHS

VM #1 VM #2 VM #3
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(a) 10 Knobs

VM #1 VM #2 VM #3
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(b) 20 Knobs

VM #1 VM #2 VM #3
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(c) 40 Knobs

Figure 4.8: Tuning Knobs Selected by DBA (Per VM) – The performance improvement of the best
configuration per algorithm running on separate VMs relative to the performance of the SG default
configuration measured at the beginning of the tuning session.

4.4.2 Tuning Knobs Selected by DBA
This first experiment evaluates the quality of the configurations that the tuning algorithms gen-

erate when increasing the number of knobs that they tune. Although Oracle exposes over 400
knobs, we limit the maximum number of knobs tuned to 40. This limit is for two reasons. First,
we want to evaluate how much better the ML algorithms are at ranking the importance of knobs

61 CHAPTER 4. TUNING IN THE REALWORLD

GPR DNN DDPG DDPG++ LHS

10 Knobs 20 Knobs 40 Knobs
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

Figure 4.9: Tuning Knobs Selected by DBA – Performance measurements for 10, 20, and 40 knob
configurations for the TicketTracker workload. The shading on each bar indicates the minimum
and maximum performance of the best configurations from three tuning sessions.

versus a DBA-selected ranking. Asking a human to select more than 40 knobs to tune is unrealistic
and will produce random results. The second reason is to reduce the time that the algorithms need
to converge because the more knobs there are, the harder it is to tune. Since each iteration of the
TicketTracker workload takes up to 45 minutes, it would potentially take weeks for the models to
converge. Hence, we consider a maximum of 40 knobs that the DBA selected and ordered based on
their expected impact on the DBMS’s performance.

For these experiments, the ML-based algorithms do not reuse data from previous tuning ses-
sions. We instead bootstrap their models by executing 10 configurations generated by LHS.

Figure 4.9 shows the performance improvement in the DB Time over SG’s default configuration
for the best configurations generated by the algorithms from three tuning sessions when optimizing
10, 20, and 40 knobs. The dark and light portions of each bar represent minimum and maximum
performance per algorithm, respectively. Figure 4.8 shows the performance improvement of the
best configuration per algorithm fromFigure 4.9 byVM.The results show that although the absolute
measurements vary, the performance rankings of the algorithms are consistent across the VMs.

To understand why the configurations perform differently, we manually examined each config-
uration and identified three Oracle knobs that have the most impact when the algorithms fail to
set them correctly. Table 4.2 shows the knobs’ value in the SG default configuration and their best
observed value(s) from our experiments. The first two control the size of the DBMSs’ main buffer
caches. One of these caches is for the DBMS’s 8 KB buffers for regular table data, and the other is for
32 KB buffers that the DBMS uses for LOB data. The third knob enables optimizer features based
on an Oracle release; this is a categorical variable with seven possible values.

Figure 4.9 shows that the configurations recommended by DNN and DDPG++ that tune 10
knobs improve theDBTime by 45% over the default configuration. Although LHS,GPR, andDDPG
achieve over 35% better DB Time, they do not perform as well as those generated by DNN and
DDPG++ because they select a sub-optimal version of the optimizer features to enable.

4.4. EVALUATION 62

Knob Name Default Best Observed
DB_CACHE_SIZE 4 GB 20–30 GB

DB_32K_CACHE_SIZE 10 GB 15 GB
OPTIMIZER_FEATURES_ENABLE v11.2.0.4 v12.2.0.1

Table 4.2: Most Important Knobs – The three most important knobs for the TicketTracker work-
load with their default and best observed values.

GPR DNN DDPG DDPG++ LHS

VM #1 VM #2 VM #3
-50

-25

0

25

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(a) 10 Knobs

VM #1 VM #2 VM #3
-50

-25

0

25

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(b) 20 Knobs

Figure 4.10: Tuning Knobs Ranked by OtterTune (Per VM) – The performance improvement of
the best configuration per algorithm running on separate VMs relative to the performance of the
SG default configuration measured at the beginning of the tuning session.

For the 20-knob configurations, Figure 4.9 shows that all the algorithms improve the DBMS’s
performance by 33–40% over the default configuration. Each algorithm, however, sets at least one
of the important knobs in Table 4.2 incorrectly. This is why their configurations do not perform as
well as the 10-knob configurations. We also see that DNN has the largest gap between its minimum
and maximum best configurations. This is generally due to the randomness in the exploration of
the algorithms and the amount of noise on the VM during a given tuning session.

63 CHAPTER 4. TUNING IN THE REALWORLD

GPR DNN DDPG DDPG++ LHS

10 Knobs 20 Knobs
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

-8.5%

Figure 4.11: Tuning Knobs Ranked by OtterTune – Performance measurements for the ML algo-
rithm configurations using 10 and 20 knobs selected by OtterTune’s Lasso ranking algorithm. The
shading on each bar indicates the min and max performance of the best configurations from three
tuning sessions.

As shown in Figure 4.9, the configurations from DNN and GPR achieve 40% better DB Time
than the default configuration. DDPG and DDPG++ only achieve 18% and 32% improvement, re-
spectively. The reason is that neither of them can fully optimize the 40 knobs within 150 iterations.
DDPG++ outperforms DDPG because of the optimizations that help it converge more quickly (see
Section 4.3.2). With more iterations, DDPG would likely achieve similar performance to the other
ML-based algorithms. But due to computing costs and labor time, it was not practical to run a ses-
sion for more than 150 iterations in our evaluation. The LHS configuration performs the worst of all,
achieving only 10% improvement over the default. This shows how sampling techniques like LHS
can be inefficient for high-dimensional spaces.

In summary, we find that the configurations generated by all of the algorithms that tune 10, 20,
and 40 knobs can improve the DBMS’s performance over the default configuration. GPR always
converges quickly, even when optimizing 40 knobs. The issue with GPR is that once it converges, it
stops exploring and thus does not continue to improve after that point. GPR is also prone to getting
stuck in local minima. The performance of GPR, therefore, depends on whether it explores the
ranges of the impactful knobs that provide the most improvement in performance. We observe that
the performance of GPR is influenced by the initial LHS samples executed at the start of the tuning
session. This is consistent with findings from previous studies [61]. In contrast, DNN, DDPG, and
DDPG++ require more data to converge and carry out more exploration. The configurations that
tune 10 knobs perform the best overall. This is because the three most impactful knobs in Table 4.2
are present in the set of 10 knobs, and the lower complexity of the configuration space enables DNN
and DDPG++ to find good settings for those knobs as well as others.

4.4.3 Tuning Knobs Ranked by OtterTune
Our comparison in the previous experiment used DBA-selected knobs. We next measure the

quality of the configurations when we remove the human entirely from the tuning process and use

4.4. EVALUATION 64

OtterTune’s Lasso algorithmdescribed in Section 3.2 to select the knobs to tune for all the algorithms.
This arrangement is pertinent because, in real-world deployments, a DBA may not be available to
choose what knobs to tune or may not be able to rank them correctly. To generate this list of knobs,
we train Lasso on the data collected from the experiments in Section 4.4.2. We then use Lasso to
rank the knobs based on their estimated influence on the target objective function and split this list
into two sets of 10 and 20 for the algorithms to tune. We again initialize theMLmodels by executing
10 configurations generated by LHS.

When comparing the knob rankings selected by OtterTune and the DBA, we find that five of the
top 10 knobs selected by OtterTune also appear in the DBA’s top 10 knobs. For the top 20OtterTune-
selected knobs, 11 of them overlap with the ones chosen by the DBA. Crucially, OtterTune’s top 10
knobs include the three most important knobs from Table 4.2.

Figure 4.11 shows the DBMS performance for 10 and 20 knob configurations. The results indi-
cate that the LHS-generated configuration with 10 knobs improves the DB Time by 48% over the
default configuration. The 10-knob configuration fromDNNperforms the next best, achieving 42%
better DB Time performance. GPR, DDPG, andDDPG++ have similar improvements of 30% for 10
knobs. LHS and DNN generate configurations with the ideal settings for the three most important
knobs in Table 4.2, whereas the other algorithms have incorrect settings for at least one of them. We
could not identify any knob in LHS’s configuration that explains the 3% improvement over the best
configuration in Figure 4.9.

For 20 knobs, the results in Figure 4.11 show that the optimized configurations for GPR and
DNN achieve 35% better DB Time than the default configuration. The configurations generated by
DDPG++ and LHS improve the performance by only 10%. For DDPG, none of the optimized con-
figurations from the three tuning sessions improved over the default configuration. Likewise, none
of the worst-performing 20-knob configurations were able to achieve better performance than the
default. We believe the overall poor performance of the 20-knob configurations is at least partly due
to more shared storage noise at the beginning of August 2020 when we ran these experiments. The
variability in the performance measurements at that time supports this explanation (see Figure 4.6).
All the ML-based algorithms take longer to converge when the performance of the VM is unstable.
This especially impacts DDPG and DDPG++ since they take longer to converge in general.

We also report the performance improvement of the best configuration for each algorithm by
VM in Figure 4.10. For 10 knobs, the results show that the performance measurements from VM
#1 are lower than the other VMs, but that the performance trends of the algorithms are similar. Fig-
ure 4.10b shows that for the 20-knob configurations, the improvements achieved by the algorithms
are mostly stable across the three VMs. The exception is DNN, which performs the best overall on
VMs #2 and #3 but then the worst on VM #1.

The improvements of the algorithms when tuning the top tune 10 and 20 knobs ranked by Ot-
terTune are comparable to the DBA-ranked knobs shown in Figure 4.9. The knobs ranked by Otter-
Tune achieve similar gains partly because the Lasso algorithm correctly identified the importance of
the three knobs in Table 4.2. Although one set of knobs between those ranked by OtterTune and the
DBA is likely to be superior, the cloud environment makes this difficult to determine since smaller
improvements are attributed to noise.

65 CHAPTER 4. TUNING IN THE REALWORLD

4.4.4 Adaptability to Different Workload
We next analyze the quality of ML-generated configurations when we train their models on one

workload and then use them to tune another workload. The ability to reuse training data across
workloads potentially reduces the number of iterations that the algorithms need for their models to
converge.

We first trainmodels for each algorithm using a TPC-Cworkload executed byOLTP-Bench [36].
We configured the benchmark to use 200 warehouses (∼20 GB) with 50 terminals. We then ran the
workload for 10 minutes and captured the queries using Oracle’s RAT tool. Next, we tune the top 20
knobs selected by the DBA and train each TPC-C model for 150 iterations. We then use the TPC-C
model to tune the TicketTracker workload for 20 iterations.

Figure 4.12 shows the DBMS’s performance for the best configurations selected by each algo-
rithm. These results show that DNN’s configuration performs the best of all the algorithms, im-
proving the DB Time by 18% over the default configuration. DDPG performs nearly as well and
achieves 15% better DB Time. The configurations generated by GPR and DDPG++ improve perfor-
mance by 12%.

Figure 4.12a shows the improvement achieved by the algorithms per VM. Although the algo-
rithms’ rankings based on performance are similar for the three VMs, the performance gains on
VM #3 are much larger than the other VMs. The reason is that we calculate the improvement of
each algorithm relative to the performance of the SG default configuration, which is particularly
bad on VM #3.

We examined the configurations for differences in the best-observed settings for TPC-C and
TicketTracker thatmay explain why the algorithmswere unable to achieve performance comparable
to the results in Figures 4.9 and 4.11. We observed that none of the algorithms changed the sizes of
the two buffer caches in Table 4.2 from their SG default settings. This is expected for the LOB buffer
cache since none of TPC-C’s data is stored in the 32 KB tablespace. For the main buffer cache, it is
possible that the benefit of increasing its size is negligible since TPC-C’s working set size is small.

We also found contrary settings for the knob that specifies file I/O operations.7 Its best observed
setting for TicketTracker enables direct I/O whereas for TPC-C it disables it. One possibility is that
the OS page cache is more efficient than the DBMS’s buffer cache for TPC-C because it consists of
mostly small writes. This would also explain why the size of the buffer cache was small.

4.4.5 Execution Time Breakdown
In this section, we evaluate the execution time details to better understand where time is being

spent during a tuning iteration. OtterTune’s controller and tuning manager record execution times
from the service’s components for each tuning session. We group these measurements into seven
categories:
1. Restore Database: Reset the database to its initial state.
2. Collect Storage Metrics: Run the Fio microbenchmarks on the DBMS’s underlying storage

device.
7Oracle Knob – FILESYSTEM_IO

4.4. EVALUATION 66

GPR DNN DDPG DDPG++

VM #1 VM #2 VM #3
0

10

20

30

40

50

%
Im

pr
ov

em
en

t
(D

B
Ti

m
e)

(a) Performance Per VM (b) Performance Summary

Figure 4.12: Adaptability to Different Workloads – Performance comparison when applying the
model trained on TPC-C data to the TicketTracker workload.

Category Time (sec) % of Total Time
Restore Database 318 18.8%

Run Fio 84 5.0%
Prepare Workload 57 3.4%
Execute Workload 959 56.9%

Collect Data 167 9.9%
Download Configuration 19 1.1%

Update Configuration 82 4.9%
Total Time 1777 100%

Table 4.3: Execution Time Breakdown – The median amount of time spent in different parts of the
system during a tuning iteration.

3. PrepareWorkload: Run theOracle RAT procedures to initialize and prepare for the next work-
load replay.

4. Execute Workload: Replay the workload trace.
5. Collect Data: Retrieve knob/metric data and generate the summary reports provided by Ora-

cle.
6. Download Configuration: Upload the new result to the OtterTune service and download the

next configuration to try.
7. Update Configuration: Install the next configuration.

Table 4.3 shows the breakdown of the median time spent in each category during a tuning iter-
ation. As expected, most of the time is spent executing the workload trace. Although we replay a
10-minute segment of the trace, the actual time it takes to execute it can be longer if the DBMS’s

67 CHAPTER 4. TUNING IN THE REALWORLD

Algorithm Execute (sec) % Canceled
GPR 762 1.8%

DDPG++ 1006 8.7%
DNN 1021 12.9%

DDPG 1274 26.8%
LHS 1311 32.4%

Table 4.4: Workload Replay Time per Algorithm – The median workload execution time and the
percentage of replays canceled for the algorithms.

configuration has bad settings or there are external factors affecting the VM’s performance (e.g.,
high I/O latency due to resource contention). The median time it takes to replay the workload is
∼16 minutes, but it can take up to 45 minutes. Long-running replays lasting more than 45 minutes
are automatically canceled (see Section 4.5).

The next highest percentage of time is spent restoring the database to its original state after the
workload replay. This process takes approximately five minutes to complete since the system only
needs to restore the modified pages.

OtterTune’s controller spends ∼10% of its time each iteration collecting data from the DBMS.
Although the portion of time spent on this task is relatively low, spending nearly three minutes on
data collectionmight seemquestionably high. But only 15 seconds of that time is spent collecting the
knob and metric data; the remaining time is spent collecting summary reports provided by Oracle.
These reports were useful for debugging the issues we encountered during this study, and thus we
believe the overhead is worthwhile.

Of the categories shown in Table 4.3, the only two that vary per algorithm are Execute Workload
and Download Config. Table 4.4 shows the median workload execution time and the percentage of
replays canceled for each algorithm. Both the execution time and the replay cancel rate are related
to how quickly the algorithm converges. As an algorithm learns more, it is less likely to select poor
configurations. Thus, the number of long-running replays decreases as the algorithm nears con-
vergence. Table 4.4 shows that GPR has the fewest canceled replays. DDPG++ has fewer canceled
replays than DDPG due to its improved convergence rate (see Section 4.3.2). LHS has the highest
workload execution time and percentage of canceled replays because it is a sampling technique and
never converges.

4.5 Lessons Learned
During the process of setting up and deploying OtterTune at SG for this study, several issues

arose that we did not anticipate. Some of these were specific to SG’s operating environment and
cloud infrastructure. Several issues, however, are related to the broad field of automated DBMS
tuning. We now discuss these problems and our solutions for dealing with them.

(1) Handling Long-running Configurations: As discussed in Section 4.1, prior studies on ML-
based tuning relied on synthetic benchmarks in their evaluations. Benchmarks like TPC-C are fixed

4.5. LESSONS LEARNED 68

workloads that can be executed for a specific amount of time. Bad knob configurations and other
performance factors do not affect the execution time. Conversely, the TicketTracker workload’s ex-
ecution time depends on how long it takes to replay the queries in that trace. Thus, the DBMS’s
performance affects how long this will take. We found in our experiments that a poor knob con-
figuration could increase the execution of SG’s 10-minute trace to several hours. We also observed
that the trace took longer to execute during periods when the VMs were experiencing higher I/O
latencies.

Given this, the controller needs to support an early abort mechanism that stops long-running
workload replays. Setting the early abort threshold to lower values is beneficial because it reduces
the total tuning time. This threshold, however, must be set high enough to account for variability
in cloud environments. We found that the 45-minute cut-off worked well, but further investigation
is needed on more robust methods.

For early aborted configurations, the DBMS’s metrics, especially Oracle’s DB Time, are incor-
rectly smaller because the workload is cut off. Thus, to correct this data, the controller calculates a
completion ratio as the number of finished transactions divided by the number of total transactions
in the workload. It then uses this ratio to scale all counter metrics to approximate what they would
have been if the DBMS executed the full workload trace.

(2) Handling Failed Configurations: If the ML algorithms do not have prior training data, they
will inevitably select poor configurations to install on theDBMS at the beginning of a tuning session.
There are two kinds of configurations that cause failures, and each onemust be handled by the tuning
service differently. The first of these prevents the DBMS from even starting. Themost common case
is when a knob’s value exceeds its allowable bounds. For example, some knobs related to memory
cannot be set to a value higher than the available RAM. But this problem also occurs when an
implicit dependency that exists between knobs is violated. For Oracle, such a dependency exists
between two knobs that configure the DBMS’s “shared” pool for SQL statements. One of these
knobs controls the total size of the pool and the other specifies how much of the pool to reserve for
large objects, which cannot be set to a value larger than half the total size of the pool.8, 9

The second kind of bad configuration is when the DBMS successfully starts but then crashes at
some point during workload replay. In the case of Oracle, this occurs when the buffer cache size is
set too large. TheDBMS allocates thememory for this buffer incrementally, and thus it is not caught
in start-up checks.

The first issue with a bad configuration is how to identify that it caused a failure. Configurations
that cause the DBMS to fail to start or crash require access to its host machine to determine the
nature of the failure. To do this, we modified the controller to retrieve Oracle’s debug log from
the host machine and then check for specific error messages. We acknowledge that DBMS cloud
offerings that do not allow login access to the DBMS’s host machine will require different failure
detection methods.

8Oracle Knob – SHARED_POOL_SIZE
9Oracle Knob – SHARED_POOL_RESERVED_SIZE

69 CHAPTER 4. TUNING IN THE REALWORLD

The next problem is what to do with data collected for a configuration that causes the DBMS to
fail during the workload replay. Simply discarding this data and starting the next iteration means
that the tuning algorithms would fail to learn that the configuration was bad. But including the
metrics from a delayed crash is risky because if they are not scaled correctly then the algorithms
could improperly learn that those configurations improve the objective function. Our solution for
configurations that cause the DBMS to crash is to set the result for that iteration to be twice the
objective function value of the worst configuration ever seen. Because the DBMS is not operational
with these failed configurations, it is valid to give them the same “score.”

(3) DBMSMaintenance Tasks: Everymajor DBMS contains components that perform periodic
maintenance tasks in the system. SomeDBMSs invoke these tasks at scheduled intervals, while other
tasks are in response to the workload (e.g., Postgres’s autovacuum runs when a table is modified a
certain number of times). It is best to be aware of these in advance before starting a tuning session.

We also found it helpful to collect metrics from the DBMS’s host OS to identify the causes of
random spikes in performance. For example, while running the experiments for this study, we
noticed a degradation in Oracle’s performance that occurred at the same time each evening. This
reduction was due to Oracle’s maintenance task that computes optimizer statistics once a day. It
took us longer to discover the source of this problem than we would have liked because we did not
initially collect the metrics to help us track it down. Since we were restoring the database to the
same state after each iteration, our solution was to disable the maintenance task from running in
our experiments.

Additional research is needed on how to best handle maintenance tasks that are scheduled dur-
ing a tuning session. One approach could be to discount themetrics collected in any iteration where
a maintenance task was running. We believe that this is a more viable solution in cases where it is
inappropriate to disable the task.

(4) Unexpected Cost Considerations: Our results showed that ML-based algorithms generate
configurations that improved performance by up to 45%. Although these gains are noteworthy, there
is a trade-off between the time it took to deploy OtterTune versus the benefit. There are several non-
obvious factors that one must consider when determining whether an ML-based tuning solution is
worthwhile. First, it depends on the economic significance of the applications that the organization
wishes to tune. Such considerations include the DBMS software license and hardware costs, and the
applications’ monetary and SLA requirements.

The second factor to consider is the administrative effort involved in tuning a database. This
effort is the cost of going through the proper stakeholders to get approval. Third, it depends on
whether the organization has the tooling and infrastructure to run the tuning sessions. These ca-
pabilities include the ability to clone the database and its workload onto hardware similar to the
production environment. It is non-trivial to estimate these intangible costs relative to the benefit of
deploying an ML-based tuning service – they are just factors that an organization must consider to
make that decision.

Chapter 5

Advisory-Level Tuning

The work we have completed thus far in this thesis indicates that one can achieve more efficient
tuning of newdatabaseworkloads by learning frompast experiences. In our field study, we evaluated
the effectiveness of threeML-based techniques on a real-world workload. One assumptionwemade
in this study is that an organization can tune each database by copying the data onto a separate test
machine with identical hardware and replaying a representative workload sample. But based on the
feedback we received from this field study and our other industry partners, such an arrangement is
not always possible due to logistical and monetary constraints. For example, an organization may
not have a test platform or tools to capture and replay a query trace. The key takeaway is that tuning
every database using spare hardware is not always practical.

In this chapter, we consider other less-obtrusive tuning strategies and study how to further ex-
ploit the similarity between database workloads. We begin with a discussion of these tuning strate-
gies how they trade tuning quality for tuning effort, followed by a description of the workloads we
evaluate in this chapter. We thenmotivate the need for tuning at the “advisory” level by showing the
utility that such methods would have if we could exploit the similarity information between work-
loads. Next, we discuss the methods that we evaluate for advisory-level tuning. Lastly, we provide
an evaluation of these methods.

5.1 Taxonomy
When carrying out tuning activities, it is common practice for the DBA to prepare a copy of the

production database and workload and then replay it on a separate test platform. This is especially
useful for tuning critical applications where performance degradation or outages can have serious
financial consequences. But this process is rarely automated and thus can be costly in terms of the
DBA’s time, computing resources, and administrative overheads, such as scheduling a time to record
the query trace.

Given this, it is important for an automatic tuning service to support alternative tuning strategies
that reduce the disruption to the database. These tuning strategies make a trade-off between custom
tuning (i.e., tuning tailored to the target DBMS’s workload and hardware) and tuning effort (i.e., the

70

71 CHAPTER 5. ADVISORY-LEVEL TUNING

amount of effort to perform the tuning). We organize them into three levels, where increasing levels
are capable of more custom tuning but also require a greater effort by the DBA.

5.1.1 Level #1 – Advisory
The lowest level passively observes the target database and advises a single configuration based

on previous tuning experiences. In other words, an automatic tuning service has “one shot” to tune
the database correctly. This level requires the least amount tuning effort but does not provide any
custom tuning for the target database (i.e., no feedback loop). To support this strategy, an automated
tuning service must have previous tuning data to learn from. This strategy is more effective when
there is tuning data for a diverse set of workloads since it increases the likelihood that one of them
will be similar to the target workload.

5.1.2 Level #2 – Online
The next level tunes a production database in an online fashion (i.e., while the database is run-

ning in production). This strategy requires less effort than the offline strategy since it tunes the
production database directly and not on a testing platform. This strategy is risky because bad con-
figurations selected by the tool could interfere with the production DBMS and violate service-level
agreements (SLAs). Organizations can mitigate some of this risk by tuning a replica instead of the
primary database. Note that this replica is running in production and not a testing environment.
That is, the replica is used to provide availability guarantees to the application for the database. An-
other aspect of this strategy is that the tuner can only optimize “dynamic” knobs that do not require
a restart since downtime of the production database is not allowed. Given this, the degree of custom
tuning depends on the quantity and quality of the dynamic knobs supported by the target DBMS.

5.1.3 Level #3 – Offline
At the highest level, the DBA replicates the hardware, data, and workload of the production

database on a testing platform and then performs the tuning offline. This arrangement is what we
have assumed in our earlier work in Chapters 3 and 4. This strategy requires the most effort to set
up by DBAs but enables them to custom tune all of the knobs since restarts are permitted. This
strategy also requires sophisticated tools that are capable of capturing the queries that the applica-
tion executes on the production DBMS and then replaying those queries multiple times on a test
database. These tools also capture meta-data about the workload, such as timing information, to
support replaying the queries with the exact timing, concurrency, and transaction characteristics
of the original workload. Some commercial DBMSs include such tools to assist with this task (e.g.,
Oracle’s Real Application Toolkit [46]). But the same is not true for open-source DBMSs, and im-
plementing capture and replay tools in-house is a major engineering effort.

Again, all of our work so far in this thesis has focused on offline tuning. For this chapter, we
could choose to focus on online tuning, however, the issue with this strategy is that the potential im-
provement and usefulness of the techniques is DBMS-specific. This is because the degree of custom

5.2. WORKLOADS 72

YCSB (R/O) Twitter Wikipedia CH-benCH TPC-C YCSB (U/O)
Size 18 GB 20 GB 14 GB 22 GB 20 GB 18 GB

Tables 1 5 12 12 9 1
Columns 11 18 122 106 92 11
Indexes 1 9 40 18 15 1

Txns 1 5 5 8 5 1
Read-only Txns 100.0% 0.9% 92.2% 54.0% 8.0% 0.0%

SELECT 100.0% 99.1% 90.8% 51.1% 50.7% 0.0%
UPDATE 0.0% 0.0% 4.7% 26.6% 26.8% 100.0%
INSERT 0.0% 0.9% 4.5% 20.8% 21.0% 0.0%
DELETE 0.0% 0.0% 0.0% 1.4% 1.5% 0.0%

Rows Read 100.0% 99.9% 99.8% 99.5% 72.4% 50.0%
Rows Updated 0.0% 0.0% 0.1% 0.3% 17.7% 50.0%
Rows Inserted 0.0% 0.1% 0.1% 0.2% 9.3% 0.0%
Rows Deleted 0.0% 0.0% 0.0% 0.0% 0.6% 0.0%

Data Read1 100.0% 99.6% 56.0% 80.7% 44.3% 35.7%
Data Written2 0.0% 0.4% 44.0% 19.3% 55.7% 64.3%

Table 5.1: Workload Characteristics

tuning, and thus, the quality of the configurations produced, depends on the impact of the dynamic
knobs exposed by the DBMS. As such, we seek to better understand Level #1 approaches.

5.2 Workloads
We next introduce the workloads from the OLTP-Bench testbed that we use in this chapter [36].

As discussed in Section 5.1.1, when tuning at the advisory level, having a diverse set of workloads
to extrapolate performance information about the DBMS from is important because OtterTune can
make better recommendations if any of the past workloads are similar to the target workload. An
overview of this their characteristics is shown in Table 5.1.

TPC-C:This is the current industry standard for evaluating the performance ofOLTP systems [95].
It consists of five transactions with nine tables that simulate an order processing application. We
use a database of 200 warehouses (∼20 GB) in each experiment.

YCSB: The Yahoo! Cloud Serving Benchmark (YCSB) [30] is modeled after data management
applications with simple workloads and high scalability requirements. It is comprised of six OLTP
transaction types that access random tuples based on a Zipfian distribution. The database con-
tains a single table with 10 columns. We create two variants of YCSB with different workload mix-
tures: Read-only (100% reads) andUpdate-only (100% updates). We use a database with 18m tuples
(∼18 GB) for both workloads.

Wikipedia: ThisOLTP benchmark is derived from the software that runs the popular on-line en-
cyclopedia. The database contains 12 tables and five different transaction types. These transactions
correspond to the most common operations in Wikipedia for article and “watchlist” management.

73 CHAPTER 5. ADVISORY-LEVEL TUNING

Thecombination of a complex database schemawith large secondary indexesmakes this benchmark
useful for stress-testing a DBMS. We configured OLTP-Bench to load a database of 60k articles that
is ∼14 GB in total size.

CH-benCHmark: This is a complex HTAP benchmark that mixes the order entry processing of
TPC-C with the OLAP query suite of TPC-H [29]. CH-benCHmark combines the original TPC-C
schema and transactions with an adapted version of the TPC-H queries. We use a database of 200
warehouses (∼22 GB) in each experiment.

Twitter: ThisOLTPbenchmark is inspired by the popularmicro-bloggingwebsite. It is reflective
of important characteristics of Twitter’s system, such as heavily skewedmany-to-many relationships.
The database has five tables and five transactions. The database is ∼20 GB in size.

To better understand the potential performance improvement of eachworkload over theDBMS’s
default configuration, we measure the throughput of MySQL v8.0 using the following four knob
configurations: (1) MySQL’s default configuration, (2) the recommended settings from MySQL’s
documentation for the two knobs that control the buffer pool size3 and the redo log file size4, (3) the
configuration generated by MySQL when its dedicated server flag5 is enabled, and (4) the configu-
ration generated by OtterTune using DDPG when tuning 28 knobs. MySQL added the dedicated
server flag in 2018 with the first version of v8; it uses heuristics to configure four knobs based the
assumption that the database can use all available system resources. In addition to the buffer pool
size and the redo log file size, the flag also sets the knobs that control the number of redo logs6 and
the how data is flushed to disk7.

The results in Figure 5.1 show that for all workloads, the configurations generated by OtterTune
achieve higher throughput than the other configurations. This is expected since the default config-
urations is based on their minimal hardware requirements for MySQL. The level of improvement
for each workload, however, varies substantially. Notably, the YCSB Read-only workload achieves
only 10% higher throughput with OtterTune’s configuration over the default configuration. The im-
provement compared to the other configurations is even less. This is because the short transactions
in the Read-only workload require minimal configuration, namely, increasing the size of the buffer
pool. But other workloads, in particular, those that are write-heavy like TPC-C and YCSB Update-
only, benefit from further customization of their knob configuration settings due to their heavier
resource usage.

5.3 Motivation
We now motivate the potential benefit of advisory-level tuning by illustrating how the optimal

configurations for some workloads work better for others that are more similar. To demonstrate
3MySQL Knob – INNODB_BUFFER_POOL_SIZE
4MySQL Knob – INNODB_LOG_FILE_SIZE
5MySQL Knob – INNODB_DEDICATED_SERVER
6MySQL Knob – INNODB_LOG_FILES_IN_GROUP
7MySQL Knob – INNODB_FLUSH_METHOD

5.4. WORKLOADMAPPING 74

this point, we use OtterTune to optimize the MySQL v8.0 configuration separately for each of the
six workloads from Table 5.1. Then for each workload, we measure the DBMS’s performance using
the optimized configuration selected for the other five workloads.

The results in Figure 5.2 show the throughputmeasurements for of theworkloadswhen using the
optimized configurations from all other workloads. The striped bar in each graph indicates its the
optimal configuration for the givenworkload. Similar to the results in Figure 5.1, we see less variation
in the DBMS’s performance for the Read-only workload because it does not stress the DBMS as
much as the other workloads. Thus, all of the configurations from the other workloads perform
nearly as well as its own optimized configuration. For example, in Figure 5.2e, we see that using
the Read-only configuration degrades the throughput of TPC-C whereas using the configurations
of the other workloads that have modification queries achieves much higher performance.

Our goal is to determine the best methods for advisory tuning and whether they can achieve
performance that is comparable to the Level #3 algorithms from the previous chapters where Otter-
Tune tuned the DBMSs offline. We compare twomethods in our evaluation: (1)WorkloadMapping
and (2) Contextual Bandits. The first is an adaptation of OtterTune’s workload mapping technique
from Section 3.3.1 that we optimized for advisory tuning.

The second method uses side information or “context” to make more informed decisions when
choosing the next action to take. We now describe the details of these methods and how OtterTune
uses them to tune a DBMS at the advisory level.

5.4 Workload Mapping
The purpose of OtterTune’s workload mapping technique is to identify which of the database

workloads it has tuned in the past is the most similar to the target workload. Recall from Section 3.3
that workload mapping is the first of two steps in the Automated Tuning stage in OtterTune’s ML
pipeline. In the final step, OtterTune bootstraps its models with the data from themappedworkload
to reduce the time needed to optimize the knob configuration for the target workload.

In the workload mapping step, OtterTune computes the Euclidean distance between the metrics
collected so far for the target workload and each past workload. But due to the large number of
possible configurations, it is unlikely that any of the configurations attempted by the past workloads
are the same as those tried by the target workload. OtterTune handles this by training Gaussian
process (GP) models with the past workload data to predict any missing metric values. OtterTune
chooses the past workload with the smallest Euclidean distance as the one that is most similar to
the target workload. We refer to the most similar workload as the mapped workload. OtterTune
recomputes themapped workload every iteration to incorporate new data from the target workload.

We find that with OtterTune’s original workload mapping technique, the mapping can be inac-
curate for the first 3–4 iterations but then improves quickly. Thus, this does not impact the tuning
result when using the online and offline tuning strategies. But for advisory-level tuning, we only
observe the metrics for the configuration installed on the target database. Computing an accurate
mapping is challenging due to the limited data available from the target database.

We next discuss the two optimizations to OtterTune’s original workloadmapping technique that
improve its effectiveness for advisory-level tuning.

75 CHAPTER 5. ADVISORY-LEVEL TUNING

Default BufferPool+RedoLog InnodbDedicatedServer OtterTune

0

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
(tx

n/
se

c)

37885
41848 41810 41868

(a) Read-only
0

5000

10000

15000

20000

Th
ro

ug
hp

ut
(tx

n/
se

c)

6799

12786 12769

15760

(b) Twitter

0

300

600

900

1200

1500

Th
ro

ug
hp

ut
(tx

n/
se

c)

270

1296 1332 1337

(c) Wikipedia
0

150

300

450

600

Th
ro

ug
hp

ut
(tx

n/
se

c)

71

390 399

478

(d) CH-benCHmark

0

500

1000

1500

2000

Th
ro

ug
hp

ut
(tx

n/
se

c)

52

1202
1382

1529

(e) TPC-C
0

2000

4000

6000

8000

Th
ro

ug
hp

ut
(tx

n/
se

c)

1548

4640

5592
6256

(f) Update-only

Figure 5.1: Workload Tuning Comparison (MySQL v8.0) – Throughput measurements for each
workload running on MySQL (v8.0) using the (1) default configuration, (2) buffer pool & redo log
configuration, (3) MySQL’s dedicated server flag, and (4) OtterTune’s configuration.

5.4.1 Optimization #1 — Hyperparameter Tuning
The first optimization increases the accuracy of the models that OtterTune uses to predict the

missing metrics for past workloads. For this optimization, we compared the performance of the GP
models from the original technique with two alternative approaches. The first uses the same GP
models as the original technique except that we tune their hyperparameters.

The second approach is a popular ensemble method called a random forest (RF). RFs train mul-
tiple decision trees on sub-samples of the dataset and aggregate their individual predictions to im-
prove accuracy and control over-fitting [19]. A limitation of tree-based methods such as RFs is that
they cannot extrapolate to unseen data (i.e., data points that lie outside the range of the training

5.4. WORKLOADMAPPING 76

Read-only Twitter Wikipedia CH-benCHmark TPC-C Update-only

0

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
(tx

n/
se

c)

41868 41577 41379 41459 41655 41365

(a) Read-only
0

5000

10000

15000

20000

Th
ro

ug
hp

ut
(tx

n/
se

c)

15660 15760

12953

15760

13197

15666

(b) Twitter

0

300

600

900

1200

1500

Th
ro

ug
hp

ut
(tx

n/
se

c)

1287
1176

1337
1168

1333
1174

(c) Wikipedia
0

150

300

450

600

Th
ro

ug
hp

ut
(tx

n/
se

c)
358

459
432

478
424

454

(d) CH-benCHmark

0

500

1000

1500

2000

Th
ro

ug
hp

ut
(tx

n/
se

c)

260

1471 1473 1459 1529 1482

(e) TPC-C
0

2000

4000

6000

8000

Th
ro

ug
hp

ut
(tx

n/
se

c)

3421

6312 6253 6268 6302 6256

(f) Update-only

Figure 5.2: Swapping Optimized Configurations (MySQL v8.0) – Throughput measurements for
the workloads when using the optimized configurations from all other workloads. The striped bar
for each workload indicates its the optimal configuration for that workload.

data). This was not an issue in our experiments because the workload data we collected included
samples near the ends of each knob’s allowable range.

We trained separate models for each approach: one for the workload and one for themetric. For
the newGP andRF approaches, we tuned theirmodels’ hyperparameters using a randomized search
that sampled 50 settings. We ran cross validation and used the root mean squared error (RMSE) to
measure the accuracy of the regressionmodels. As expected, both the optimized GP and RFmodels
outperformed the unoptimized GP models used in the original workload mapping technique. The
optimized GP models achieved the best accuracy of all. As such, we improve OtterTune’s original
technique by optimizing the hyperparameters of the GP models.

77 CHAPTER 5. ADVISORY-LEVEL TUNING

We examined the validation results and found that the RF models’ predictions were inaccurate
when estimating metrics for regions in the configuration space that degrade performance. This is
possibly due to the lack of the training data around these regions sinceOtterTune’s recommendation
algorithms avoid them. One configuration where the RF models’ predictions are most inaccurate is
with MySQL’s default settings (i.e., the configuration that is installed with the MySQL’s installation
package). This is the first configuration tried at the start of a tuning session, but it almost always has
the worst performance because the knobs’ settings are based on MySQL’s conservative minimum
hardware requirements.

5.4.2 Optimization #2 — Static Metrics
Our second optimization to OtterTune’s original workload mapping technique improves the

quality of the distance calculations between the target workload and each past workload. We refer
to these calculations as the workload mapping result.

OtterTune calculates the distances between workloads using the pruned metrics output by the
Workload Characterization stage in the ML pipeline (see Section 3.1). Pruning the hundreds of
DBMS metrics is necessary for some tasks in OtterTune’s ML pipeline, such as predicting missing
metric values, that would otherwise be infeasible to compute. OtterTune uses unsupervised learning
techniques to prune the metrics. These techniques generally produce good results but the pruned
metrics they choose can vary between invocations. The impact of these variations is negligible for
online/offline tuning but can be significant at the advisory level.

We found that including static metrics about the workload, such as the read/write ratio or num-
ber of indexes (see Table 5.1), in the distance calculation helps to stabilize the workload mapping
result. Using static metrics also improves the accuracy of the result, especially in cases where there
are “invalid” pruned metrics, for example, due to bad predictions or noisy data.

After computing the mapped workload, OtterTune then begins the configuration recommenda-
tion step. OtterTune performs this step as described Section 3.3.2 usual to recommend a configura-
tion using the data from the mapped workload and the single data point from the target workload.
For advisory tuning, a simpler option is to recommend the optimized configuration for the mapped
workload. This option may perform as well given the limited data from the target database.

5.5 Contextual Bandits
The second advisory-level method we evaluate is called contextual bandits (CB). CB is where, in

each iteration, the algorithm receives context (i.e., side information about the environment or task),
and then chooses an action from a set of possible actions to maximize the total payoff (i.e., reward)
of the selected actions [58, 69]. The payoff depends on both the action chosen and the context. In
contrast, context-free bandit problems, such as our configuration recommendation algorithm from
Section 3.3.2, model situations where no side information is available and the payoff depends only
on the action chosen. The main challenge of CB is how to efficiently trade off exploration (i.e.,
collecting data to understand the payoff function over the context-action space), and exploitation
(i.e., choosing an action believed to be optimal based on existing data) [16].

5.6. EVALUATION 78

CB solutions have been successfully deployed in areas like healthcare, recommendation systems,
information retrieval [18, 66, 71, 94]. Recent efforts have focused on applying CB to web personal-
ization tasks, such as ad and news article placement. The benefit of this is that OtterTune can build a
single model with the data from all previous workloads. The difference is that OtterTune must also
include context about the workloads (e.g., the pruned metrics) when training the CB model. With
CB, OtterTune can skip workload mapping step and directly recommend a configuration. When
selecting the next configuration, the CB model also considers the context of the target workload
when making its decision.

Despite these advantages, successful applications of CB in practice have only been for discrete
action spaces [72]. These are tasks with a finite number of actions to choose from (e.g., select the
best of 10 ads to show to the user). But in knob configuration tuning and other practical tasks, the
action chosen is continuous. Developing CB algorithms that can efficiently choose an action from
a continuous space is challenging. As such, CB algorithms for continuous action spaces are less
studied than their discrete counterparts.

We implemented two CB algorithms by extending OtterTune’s GPR and DNN algorithms. We
added an optional feature vector that specifies the context. In our evaluation, the the workload
context we use for the CB models is the same workload information used by the workload mapping
technique, namely, the set of pruned and static metrics.

5.6 Evaluation
We now present the results from our comparison of the above advisory-level tuning methods

for the six workloads introduced in Section 5.2.
We useMySQL v8.0 as the target DBMS in our evaluation. We conducted all of our experiments

on local machines with a Intel Core i7-8650U CPU (eight cores with 2× hyperthreading), 32 GB
RAM, and a Samsung 960 EVO PCIe NVMe SSD storage. We ran each experiment runs on two
machines. The first is used to run OtterTune’s controller that we integrated with the OLTP-Bench
framework. The second machine is for the target DBMS deployment, which we ran from a Docker
container using the official MySQL v8.0 Docker image. We deployed OtterTune’s tuning manager
and repository on a local server with 20 cores and 128 GB RAM.

Each tuning session consists of 300 iterations and tunes 28 of MySQL’s knobs that we selected
based on performance tuning articles and those used in previous studies on automaticDBMS config-
uration tuning [103, 109]. For each tuning session, we set OtterTune’s observation period (i.e., work-
load execution time) per iteration to five minutes and assign the target metric to be the throughput
as measured by OLTP-Bench.

5.6.1 Workload Mapping

We begin with an initial evaluation of OtterTune’s workload mapping technique. As discussed
in Section 5.4, we train models to predict the missing metrics for each workload and thus using
fewer metrics reduces the model training time.

79 CHAPTER 5. ADVISORY-LEVEL TUNING

In this experiment, we compare the workload mapping result when using (1) all of the DBMS’s
runtime metrics, (2) OtterTune’s original workload mapping technique from Section 3.3.1, and (3)
OtterTune’s optimizedworkloadmapping technique. The goal is to show thatOtterTune’s optimized
technique improves the accuracy and stability of the original technique and produces a workload
mapping result comparable to using all runtime metrics.

Although MySQL has hundreds of runtime metrics, several of them are never updated and have
the same value for all of the workloads in our evaluation. After removing these, the total set of
“active” metrics that we consider in this evaluation is reduced to 86 metrics. The results in Table 5.2
show the mapping results for each workload when using all 86 metrics. For each workload, we
display the distance between it and all other workloads, where a smaller distance indicates that the
algorithm believes the workloads are more similar. We also include the distance of the workload
to itself in gray. This is useful for determining the quality of the mapping since the most similar
workload should be to itself.

The results in Table 5.2 show that the relative ordering of workloads is as we expect for each
workload. Specifically, the distance from eachworkload to itself ismuch smaller than the distance to
the next most similar workload. Furthermore, the next most similar workloads that each workload
is mapped to all appear to be reasonable in that they map to another workload that has a similar
read/write ratio. For example, the Read-only workload maps to Twitter workload because it is also
read-heavy. Likewise, the TPC-C workload maps to the Update-only workload because both of
them are write-heavy.

Table 5.3 shows the results from our original workloadmapping technique that uses a set of eight
pruned metrics. There are several issues with the results. The first is that the Wikipedia workload
is not the most similar to itself (i.e., its distance is not the smallest). This suggests that the mapping
is less accurate using these eight pruned metrics than when using all metrics. The second is that
for the Update-only workload, the two most similar workloads (other than itself) are read-heavy,
which contradicts what we knew about the nature of these workloads. In particular, the distances
between the Update-only workload and the next three similar workloads are small, which indicates
that this result is unstable.

Table 5.4 shows the results from using our optimized workload mapping technique that uses the
same eight prunedmetrics as the original technique as well as eight static metrics. The static metrics
include the query mixtures (i.e., the percentages of SELECT, INSERT, UPDATE, and DELETE queries),
percentage of read-only queries, and characteristics of the schema (i.e., the number of tables, indexes
per table, and columns per table). The larger distances between the workloads indicate amore stable
result. The results also show that the relative orderings of the workloads are comparable to those
calculated when using all metrics.

5.6.2 One-Shot —Workload Models
After the workload mapping step, we next investigate what knob configuration to recommend

for the target workload. We consider two options. The first is to directly install the optimized
configuration from the most similar workload on the target database. The second option is to train
models on the data from the most similar workload and the new single data point for the target

5.6. EVALUATION 80

Read-only Twitter Wikipedia
Rank Workload Distance Workload Distance Workload Distance

- Read-only 14.63 Twitter 13.27 Wikipedia 6.93
1 Twitter 40.37 Read-only 36.35 Update-only 36.34
2 Wikipedia 43.45 Wikipedia 40.68 TPC-C 37.30
3 CH-benCH 46.39 TPC-C 41.26 CH-benCH 39.67
4 Update-only 46.43 CH-benCH 45.78 Read-only 42.95
5 TPC-C 46.69 Update-only 47.86 Twitter 49.84

CH-benCH TPC-C Update-only
Rank Workload Distance Workload Distance Workload Distance

- CH-benCH 19.65 TPC-C 10.30 Update-only 15.39
1 TPC-C 29.46 Update-only 47.91 TPC-C 37.07
2 Wikipedia 41.83 Wikipedia 48.69 Read-only 37.47
3 Update-only 45.35 Twitter 49.34 Twitter 42.00
4 Read-only 45.63 Read-only 50.09 Wikipedia 43.74
5 Twitter 48.80 CH-benCH 58.00 CH-benCH 43.77

Table 5.2: WorkloadMapping (all metrics) – The distance measurements between workloads com-
puted by the original workload mapping technique using all 86 pruned metrics. A smaller distance
indicates the workload is more similar. The distance between a given workload and itself is shown
in gray.

Read-only Twitter Wikipedia
Rank Workload Distance Workload Distance Workload Distance

1 Read-only 7.00 Twitter 6.00 Update-only 7.62
2 Twitter 8.19 Read-only 8.89 CH-benCH 8.94
3 Update-only 12.65 Update-only 11.09 TPC-C 9.00
4 TPC-C 13.27 TPC-C 12.00 Wikipedia 10.30
5 CH-benCH 14.76 CH-benCH 12.77 Twitter 13.67
6 Wikipedia 16.37 Wikipedia 15.52 Read-only 14.14

CH-benCH TPC-C Update-only
Rank Workload Distance Workload Distance Workload Distance

1 CH-benCH 6.00 TPC-C 1.41 Update-only 5.92
2 Update-only 6.78 Update-only 1.73 Read-only 6.71
3 TPC-C 7.87 CH-benCH 3.00 Twitter 6.77
4 Twitter 8.31 Wikipedia 10.44 TPC-C 6.78
5 Read-only 10.30 Twitter 10.68 CH-benCH 9.33
6 Wikipedia 13.42 Read-only 11.96 Wikipedia 14.32

Table 5.3: WorkloadMapping (eight prunedmetrics) –The distancemeasurements between work-
loads computed by the original workloadmapping technique using eight prunedmetrics. A smaller
distance indicates the workload is more similar. The distance between a given workload and itself
is shown in gray.

workload (i.e., the set of knobs and metrics collected after observing the target workload with its
current configuration). Recall from Section 5.1 that we refer to the latter option as “one shot” since
the models have only one observation to make a good recommendation. We now compare these
two options in our experiments.

81 CHAPTER 5. ADVISORY-LEVEL TUNING

Read-only Twitter Wikipedia
Rank Workload Distance Workload Distance Workload Distance

1 Read-only 1.41 Twitter 2.24 Wikipedia 2.65
2 Twitter 12.88 Read-only 14.66 CH-benCH 11.79
3 CH-benCH 18.68 CH-benCH 15.68 TPC-C 14.83
4 Wikipedia 19.95 Wikipedia 16.12 Twitter 15.84
5 Update-only 21.03 TPC-C 19.16 Update-only 17.49
6 TPC-C 22.96 Update-only 19.85 Read-only 18.47

CH-benCH TPC-C Update-only
Rank Workload Distance Workload Distance Workload Distance

1 CH-benCH 2.82 TPC-C 0.00 Update-only 1.73
2 TPC-C 8.19 CH-benCH 10.91 TPC-C 15.52
3 Twitter 14.70 Update-only 16.19 Twitter 16.97
4 Wikipedia 16.52 Twitter 17.52 CH-benCH 17.15
5 Update-only 17.52 Wikipedia 20.93 Read-only 17.92
6 Read-only 17.65 Read-only 21.28 Wikipedia 22.10

Table 5.4: Workload Mapping (eight pruned metrics + eight static metrics) – The distance mea-
surements betweenworkloads computed by the optimizedworkloadmapping technique using eight
pruned metrics and eight static metrics. A smaller distance indicates the workload is more similar.
The distance between a given workload and itself is shown in gray.

Figure 5.3 compares the throughput for each of the six workloadswe evaluate using four different
configurations: (1) the optimized configuration from the mapped (i.e., most similar) workload, (2)
the configuration recommended by DDPG, (3) the configuration recommended by DNN, and (4)
the configuration recommendedbyGPR.Theyellow line indicates the performance of the optimized
configuration for the target workload. In the captions, theworkload displayed inside the parenthesis
indicates themost similar workload determined by the improvedmapping technique fromTable 5.4.

From the results in Figure 5.3, we again see that the best configurations for each workload are
those based on other workloads with similar read/write ratios. For example, the best configurations
for Twitter are from the Read-only workload, and the best configurations for TPC-C are from the
CH-benCHmark and Update-only workloads. We also see from the results that the best configura-
tion between the two options is the first: to directly use the optimized configuration from the most
similar workload as opposed to the one-shot approach.

5.6.3 One-Shot — CB Algorithms
As discussed in Section 5.5, an alternative approach to workload mapping is to train ML models

that includes the context of the workload in the model itself. The benefit of such an approach is that
we must only train a single model from all of the workload data, which reduces the training time
when there are several past workloads to consider. The disadvantage is that, due to the increased
dimensionality in the number of features, thesemodels aremore complex to optimize, whichmakes
it more difficult to achieve good recommendation results.

In this final experiment, we compare the efficacy of the CB algorithms from Section 5.5 with
the workload mapping technique described in the previous section. In addition, we include the

5.7. LESSONS LEARNED 82

DDPG algorithm from Section 4.3.2 in our comparison because it also uses contextual information
to inform its decisions. We use the same 16 metrics (eight pruned metrics and eight static metrics)
used by the workload mapping technique as the context since these metrics are emblematic of the
workload.

Figure 5.4 shows the throughput for each of the six workloads when using the configurations
recommended by the CB models. The yellow line displays the performance of each workload’s own
optimized configuration. We see from the results that of the contextual algorithms, DDPGperforms
the best overall, followed by GPR. This is possibly because of the replay memory that DDPG uses
compared to the other contextual models (see Section 4.3.2).

Comparing these results with Figure 5.3, however, also shows that mapping to the optimized
configuration from the most similar workload achieves comparable or better performance than the
GPR and DNN contextual models. From these results, we conclude that the simplest method is the
best for MySQL with this particular set of six workloads.

5.7 Lessons Learned
This chapter explored less-obtrusive tuning strategies and presented methods to exploit the sim-

ilarity between database workloads. Again, the goal here is to evaluate “advisory” tuning methods
with OtterTune that do not require either (1) multiple iterations with DBMS running in production
or (2) a cloned DBMS workload for offline tuning. We now discuss some key takeaways from our
experiments.

The first lesson that we learned was that the most straightforward strategy performed the best
for MySQL in our evaluation. The DBMS achieved the best performance under advisory tuning
when OtterTune used the enhanced workload mapping technique and then selected the mapped
workload’s optimized configuration. This method worked well in our evaluation because the work-
loads were stable. The mixture of read versus write queries and the complexity of those queries
were the same during each iteration. Prior research has shown that there are a large number of
applications with similar stable workload patterns [70]. Investigating how changes in the volume
of the workload (i.e., the number of queries that the application executes) will affect the generated
configuration remains future work.

But even if an application’s workload composition shifts (e.g., executing write-heavy OLTP
queries during the day and then read-only OLAP queries at night), we believe that the above ad-
visory tuning method would still be sufficient because it is easy to deploy. A DBA could configure
a service like OtterTune to run periodically during the day in a Level #1 advisory mode and deter-
mine whether the workload has changed enough tomerit a change to the DBMS’s configuration. Of
course, this assumes that the updated configuration does not require the DBMS to restart or that
restarting the DBMS is allowed. The latter is a value judgment that has to be made by humans since
OtterTune’s algorithms cannot determine how a restart will affect the application.

There are also active learning methods that we expect may outperform the improved workload
mapping technique from Section 5.4. For example, OtterTune could use Gaussian Coppulas to “nor-
malize” the distributions of the workloads. This method could potentially allow the algorithms to
combine the data across disparate data sets.

83 CHAPTER 5. ADVISORY-LEVEL TUNING

MAPPED DDPG DNN GPR

Twitter Wikipedia CH-benCHmark TPC-C Update-only
0

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
(tx

n/
se

c)

41577 41379 41459 41655 4136540945 41383 40442 39306 4007940798 38854 40753 40871 4099341214 40323 38145 37968
33957

(a) Read-only (Twitter)

Read-only Wikipedia CH-benCHmark TPC-C Update-only
0

5000

10000

15000

20000

Th
ro

ug
hp

ut
(tx

n/
se

c)

15680

12953

15760

13197

1566615557

13135

4830 4925

14222
15570

13121 13015 13082 13057

15568

13086 13006

6235

13484

(b) Twitter (Read-only)

Read-only Twitter CH-benCHmark TPC-C Update-only
0

400

800

1200

1600

Th
ro

ug
hp

ut
(tx

n/
se

c)

1287
1176 1168

1333
11741163 1222

1314
1165 1093

1202 1173
1330

1170 12231220 1176
1321

1153

1343

(c) Wikipedia (CH-benCHmark)

Read-only Twitter Wikipedia TPC-C Update-only
0

150

300

450

600

Th
ro

ug
hp

ut
(tx

n/
se

c)

358

459
432 424

454

314
371

434 418 428
373

432 445
394

424

349
401

429 414 426

(d) CH-benCHmark (TPC-C)

Read-only Twitter Wikipedia CH-benCHmark Update-only
0

500

1000

1500

2000

Th
ro

ug
hp

ut
(tx

n/
se

c)

260

1471 1473 1459 1482

118

1185

471

1388
1263

1073
1199

1471 1503 1483

265

1508 1443 1394
1495

(e) TPC-C (CH-benCHmark)

Read-only Twitter Wikipedia CH-benCHmark TPC-C
0

2000

4000

6000

8000

Th
ro

ug
hp

ut
(tx

n/
se

c)

3421

6312 6253 6268 6302

3370

5976
5414

4436

5663

4407

5645 5974 6324 6295

3300

5259

4024

6207 6370

(f) Update-only (TPC-C)

Figure 5.3: One-Shot Configurations – Configurations recommended by models trained on data
from the most similar past workload determined in the workload mapping step.

5.7. LESSONS LEARNED 84

DDPG DNN GPR

0

10000

20000

30000

40000

50000

Th
ro

ug
hp

ut
(tx

n/
se

c)

40430 41147 41421

(a) Read-only
0

5000

10000

15000

20000

Th
ro

ug
hp

ut
(tx

n/
se

c)

14838

6784

14338

(b) Twitter

0

300

600

900

1200

1500

Th
ro

ug
hp

ut
(tx

n/
se

c)

939
861

1056

(c) Wikipedia
0

150

300

450

600

Th
ro

ug
hp

ut
(tx

n/
se

c)

485

142

318

(d) CH-benCHmark

0

500

1000

1500

2000

Th
ro

ug
hp

ut
(tx

n/
se

c)

635

148
242

(e) TPC-C
0

2000

4000

6000

8000

Th
ro

ug
hp

ut
(tx

n/
se

c)

5022

3076
3488

(f) Update-only

Figure 5.4: CB One-Shot Configurations – Configurations recommended by CB models trained
on all previous workload data with 16 DBMS runtime metrics as the workload context.

Chapter 6

Related Work

The need for tools that can automatically optimize complex systems and applications has been well-
known for decades [15, 28]. As such, there have been a number of efforts to automate the tuning
of DBMSs since the 1970s [27]. Much of the previous work has focused on optimizing the physical
design of the database. In the early 2000s, researchers began to explore automatic knob configu-
ration because optimizing a DBMS to meet the needs of an application is highly dependent on a
number of factors that are beyond what humans can reason about. There has also been research on
configuration tuning for data analytics systems. We now discuss the details of previous work.

6.1 Physical Database Design

The physical design problem for DBMSs can be described as the following: given an arbitrary
database and its target workload (e.g., queries, transactions), select the best physical design of that
database that optimizes one or more metrics in the DBMS for the workload and satisfies budget
constraints. Such a physical design can include indexes, table partitioning, table replication, and
materialized views. The application’s target metrics are the desired performance outcomes of the
DBMS when executing the workload, such as to maximize its throughput or to minimize its latency.
The budget constraints are defined in terms of storage limits (e.g., the amount of memory to allo-
cate for indexes) or CPU overhead (e.g., the time it takes to update an index). The most notable
advancements for this research area are from two commercial database vendors: Microsoft’s SQL
Server AutoAdmin [10, 11, 25, 26, 74] and IBM’s DB2 Database Advisor [80, 112].

These physical design algorithms are guided by different cost models that are tailored to the type
of workload that the database needs to support. In the 1970s and 1980s, these tools used theoreti-
cal cost models that resided outside of the DBMS to estimate the gains (if any) of one particular
design decision [42, 44, 47, 48, 54]. In the 1990s, Microsoft’s AutoAdmin tool pioneered the use of
leveraging the DBMS’s built-in cost models from its query optimizer to estimate the performance
benefits of indexes [26]. This allowed them to avoid the disconnect between what the external mod-
els chooses as a good index and what the system actually uses at runtime when it generates query
plans.

85

6.2. CONFIGURATION TUNING FOR DATABASES 86

Regardless of what search algorithm or cost model a design tool uses, the administrator must
decide which metrics will guide the design decision process. For large-scale OLAP applications [75,
84], the tool should seek to generate designs that maximize the spread of data across multiple loca-
tions tomaximize intra-query parallelism [11, 24, 68, 80, 111]. This is not applicable to OLTP applica-
tions, however, because the coordination required to achieve transaction consistency across these
locations dominates the performance gains obtained by this type of parallelism [49]. By contrast,
OLTP workloads are comprised of short-running transactions that need to access a small amount
of data quickly, thus these applications need designs that minimize the lock contention of transac-
tions [31, 77].

6.2 Configuration Tuning for Databases
Unlike physical database design tools, configuration tools cannot use the built-in cost models

of DBMSs’ query optimizers. This is because these models generate estimates on the amount of
work that the system is expected to perform for a particular query. These estimates are intended to
compare alternative query execution strategies for a single DBMS with a fixed execution environ-
ment [86]. The configuration tools that are available are limited in scope and aremostly restricted to
commercial systems. All of the major DBMS vendors have their own proprietary tools that vary in
the amount of automation that they support [35, 60, 73]. They are primarily focused on configuring
the memory allocated to buffer pools, as these are one of the most important targets for tuning a
DBMS [45].

In the early 2000s, IBM released the DB2 Performance Wizard tool that asks the administrator
questions about their application (e.g., whether the workload is OLTP or OLAP) and then provides
knob settings based on their answers [63]. It uses models manually created by DB2 engineers and
thus may not accurately reflect the actual workload or operating environment. IBM later released a
version of DB2 with a self-tuning memory manager that uses runtime heuristics to determine how
to allocate the DBMS’s memory to its internal components [90, 97].

Oracle developed a similar internal monitoring system for their DBMS to identify bottlenecks
due to misconfiguration in the system’s internal components [35, 60]. It then provides the admin-
istrator with actionable recommendations to alleviate them. Like IBM’s tool, the Oracle system
employs heuristics based on performance measurements to manage memory allocation and thus
is not able to tune all possible knobs. Later versions of Oracle include a SQL analyzer tool that es-
timates the impact on performance from making modifications to the DBMS, such as upgrading
to a newer version or changing the system’s configuration [13, 106]. This approach has also been
used with Microsoft’s SQL Server [73]. But for both DBMSs, using this tool is still a manual process:
the administrator provides the knob settings that they want to change and then the tool executes
experiments with and without applying that change. The administrator then decides what action to
take based on the results that the tool reports.

More automated feedback-driven techniques have been used to iteratively adjust DBMS configu-
ration knobs tomaximize certain objectives [21, 37, 104]. These tools typically contain an experiment
“runner” that executes a workload sample or benchmark in the DBMS to retrieve performance data.
Based on this data, the tool then applies a change to the DBMS configuration and then re-executes

87 CHAPTER 6. RELATEDWORK

that workload again to determine whether the performance improves [105]. This continues until
the administrator either halts the process or the tool recognizes that additional performance gains
from running more experiments are unlikely. This same approach has also been used for automatic
tuning in operating systems [20, 41].

The COMFORT tool uses this on-line feedback approach to solve individual tuning issues like
load control for locking and dynamic data placement [104]. It uses a technique from control theory
that can adjust a single knob up or down at a time. It could not uncover dependencies between
multiple knobs.

The work by Sullivan et al. uses influence diagrams to model probabilistic dependencies be-
tween configuration knobs [92]. This approach uses the knobs’ conditional independences to infer
expected outcomes of a particular configuration setting in BerkeleyDB. The problem, however, is
that these influence diagrams must be created manually by a domain expert. Thus, this approach
is unlikely to scale for more complex problems. This is evident from their experimental evaluation
where they only consider four knobs to tune.

An alternative technique is to use linear and quadratic regression models to map knobs to per-
formance [102]. With this approach, the experiment data is fit with an equation. Others have looked
at using hillclimbing techniques for this problem [105]. This work, however, does not address how
to retrain these models using new data or how to guide the experiment process to learn about new
areas in the solution space.

The BestConfig tool employs a search-based technique that recursively reduces the solution
space using heuristics [110]. It uses a technique similar to Latin Hypercube Sampling to divides
the domain of each knob into subspaces and then samples in each subspace. Starting with an ini-
tial set of samples, it iteratively bounds the space around the best configuration from the latest
set of samples before executing the next set. To avoids getting stuck in a sub-optimal subspace, it
restarts the search if none of its current samples outperform the best one from the previous set. The
problem is that this approach cannot learn from the data it collects and may end up trying similar
configurations after restarting. It can also take much longer to optimize due restarts, especially in
high-dimensional spaces since restarts are more likely.

The iTuned tool is the closest work that is related to our Gaussian process regression technique
in Chapter 3 [37]. Its experiment runner continuously measures the impact of changing certain
knobs on the system’s performance using a “cycle stealing” strategy that makes minor changes to
the DBMS configuration and then executes a workload sample whenever the DBMS is not fully
utilized. It uses aGaussian processmodel to represent the response surface and an adaptive sampling
technique to explore the solution space and converge to a near-optimal configuration. The tool
constructs unique models for every application by running new experiments. It bootstraps these
models by executing an initial set of experiments generated using a sampling technique called Latin
Hypercube Sampling [52]. The key difference between our technique and iTuned is that we leverage
the knowledge gained fromprevious tunings to inform the decisions about future deployments. The
iTuned tool can take up to seven hours to tune the DBMSs, whereas our results in Section 3.4.4 show
that our technique achieves this in less than 60 min.

6.2. CONFIGURATION TUNING FOR DATABASES 88

Deep reinforcement learning (DRL) is another ML-based method that has been adapted for
database configuration tuning. The CDBTune tool uses a policy-based method called DDPG that
is based on the popular Q-learning algorithm but can operate over continuous action spaces [109].
Its reward function is designed to model the judgment of a human DBA with the goal of achieving
better performance than the initial configuration. The reward considers the change in performance
from both the previous configuration and the initial configuration to account for configurations
that perform worse than the previous configuration but better than the initial configuration. It also
improves the convergence speed for offline training using amethod called priority experience replay.
The DDPG algorithm we evaluated in Section 4.3.2 is based on the CDBTune tool.

In DDPG, the agent considers only the database state when tuning a database and cannot utilize
query information. The QTune tool uses a double-state DDPG (DS-DDPG) model, which can em-
bed query information and consider the effects of both the database state and the workload [65]. It
adds a featurization step to transform SQL queries to vectors used by its models. It supports tuning
individual queries and cluster-level tuning, which groups queries based on their best knob config-
urations and then tunes groups of queries. Although QTune supports more fine-grained tuning,
privacy constraints may prevent some organizations from sharing this query information since the
queries contain sensitive user data.

Alibaba developed the iBTune tool that uses deep learning to optimize the memory allocation
of individual database instances by adjusting buffer pool sizes dynamically according to the miss
ratio [93]. It uses a technique based on a large deviation analysis for LRU cachingmodels to compute
the target buffer pool size for a given instance according to the tolerable miss ratios obtained from
similar instances. It then predicts an upper bound for the response time due to adjusting the buffer
pool size by employing a pairwise DNN over pairs of similar instances. The tool performs the final
adjustment only if the upper bound does not violate the SLA of response times.

All of these feedback-driven tools must decide which configuration knobs to tune. Tuning fewer
knobs reduces the optimization time since the search space grows exponentially with the number of
knobs. Our results in Figure 3.3 show that only a small subset of these knobs actually affect the per-
formance of MySQL and Postgres for the TPC-C workload. Other recent work has reported similar
results for Cassandra and Postgres using YCSB [57]. These findings further motivates the need for
methods that can automatically detect the most important knobs to tune. The SARD tool generates
a relative ranking of a DBMS’s knobs based on their impact on performance using a well-known
technique called the Plackett-Burman design [34]. Others have developed statistical techniques for
inferring from these experiments how to discretize the potential values for knobs [92]. The Plackett-
Burmandesign of experiments has also been applied to evaluating the impact of knobs in the context
of storage benchmarks [76] and file systems [22].

Kanellis et al. uses random forest and classification and regression trees (CART) methods to
determine the importance of knobs based on their reduction in variance of the target objective [57].
Random forests are able to capture non-linear relationships among variables naturally. Thus, they do
not need to include interaction terms in the input features as with our lasso technique for ranking
knobs, which is based on linear regression. But random forests lack the interpretability of linear
models and, unlike lasso, are unable to automate feature selection since they cannot remove features.

89 CHAPTER 6. RELATEDWORK

6.3 Configuration Tuning for Data Analytics Systems
Configuration tuning for data analytics systems, such as Spark and Hadoop, is an active area

related to database tuning. Like databases, these systems also have hundreds of configuration knobs
to control their runtime operation.

RelM is amulti-level algorithm for automatically tuning thememory allocation of data analytics
systems [61]. It first uses Guided Bayesian Optimization to derive additional metrics that help dis-
tinguish the most suitable region of the configuration space. The exploration is guided by a “white
box”model that has knowledge about applicationmemory requirements. RelMuses aDDPGmodel
and includes these metrics in the database state to provide extra visibility into the internal memory
pools it tunes.

Starfish is a self-tuning system built forHadoop that hierarchically optimizes the performance of
clusters at the job, workload, andworkflow levels [51]. For job-level tuning, it uses dynamic profiling
to capture the runtime behavior of jobs and tunes and tunes their knobs based on estimated resource
consumption (e.g., CPU, memory). For workflow-level tuning, it uses a scheduler that optimizes
workflows by addressing issues such as minimizing the impact of unbalanced data layout. At the
workload-level, it uses the Elastisizer to automates provision decisions using simulation and model-
based estimation techniques to address what-if questions on workload performance.

MRTuner is a toolkit developed by IBM to enable holistic optimization forMapReduce jobs [85].
It uses Producer-Transporter-Consumer (PTC) cost model that characterizes the tradeoffs in the
parallel execution. It uses four key factors from PTC to derive the optimal values and bounds for
other important parameters, and employs a fast search method to reduce to find the optimal execu-
tion plan

Chapter 7

Future Work

The use of ML methods to automatically optimize DBMS knob configurations with a service like
OtterTune is still an early field. As such, there are several open questions that we believe are worth
exploring beyond the topics covered in this thesis. We now present some of these future research
directions that either apply our work to other problem domains or extend it for tuning DBMSs.

Increased Automation: There are a number of tasks in the setup and deployment of an auto-
matic DBMS tuning service that are still performed manually. For example, in all of our experi-
ments in this thesis, we have to set the proper minimum and maximum values allowed for knobs.
This is because these ranges can change per hardware configuration. Most DBMSs set their default
allowable ranges for knobs that control memory allocations and file sizes to unreasonably large val-
ues. For example, both Postgres and MySQL use the maximum amount of memory addressable in
a 64-bit CPU as the default maximum value for some of these knobs. But in an automated tuning
service, it is important to limit these ranges to appropriate values for the target database’s hardware
before initiating a tuning session. Failing to do this can cause the algorithms to select values will
cause the DBMS to not start or crash while executing the workload. Thus, one important area of
further research that is needed is on how to automatically determine the proper ranges for each new
database with requiring an administrator to provide them. One approach is to automatically set
the allowable knob ranges using heuristics based on the hardware resources of the DBMS. But this
approach requires rules for setting the range of each knob.

Another manual task in the current version of OtterTune is how to determine which knobs are
dangerous to tune. For example, which knobs could cause the DBMS to potentially lose data when
the DBMS crashes because changes were not safely written to disk before a transaction committed.
In other knobs, theremay be specific values that can put theDBMS in a dangerous configuration. As
we described in Section 2.6, the OtterTune service uses a hand-curated black-list of knobs for each
DBMS version that it supports. But for every new version, we have to manually inspect the DBMS’s
documentation to make sure there are no changes to existing knobs or the introduction of new
knobs that are potentially problematic. This tedious step requires a human that is knowledgable in a
DBMS’s internals to make a decision about whether a knob belongs on OtterTune’s blacklist. Given
this, we contend that more work is needed to automatically determine whether changing a knob

90

91 CHAPTER 7. FUTUREWORK

will cause the application to potentially lose data. We envision that this would require a sandbox
environment that programmaticaly crashes the DBMS and determines under what configuration
settings does the DBMS lose data.

Knowledge Transfer Across DBMS Versions: Another area that we plan to investigate is how
to enable OtterTune to reuse information across minor versions of the same DBMS in its models.
Currently, OtterTune can only use models that are generated for the same DBMS version. This is
because different versionsmay introduce newknobs/metrics (or deprecate existing ones), and thus it
may select not be able to reuse its training data. We believe thatwewill have to perform an additional
localized optimization pass using stochastic gradient descent to choose the best configuration for the
target DBMS version since the configurations for each component are not independent from each
other. This means that OtterTune will not be to able to completely reuse previous tuning data like it
did before. We believe thatmore advancedmethods forOtterTune’sML pipeline, such as knowledge
transfer, will allow the service to extrapolate information collected from disparate databases.

More Complex Knob Configurations: Another research area that is worth exploring is how to
extend our algorithms to support more complex knob configurations. Right now, OtterTune only
handles “global” knobs that affect the overall operation of the DBMS (e.g., the buffer pool size for
the entire DBMS). Some DBMSs, however, provide knobs for tuning individual components of the
database. For example, Facebook’s MyRocks supports tuning the size of the in-memory cache for
each individual table [6]. Supporting the optimization of such individualized knobs is challeng-
ing since there is no longer a one-to-one mapping between the knobs from one database instance
to another. Each application will have a different number of database components (i.e., tables, in-
dexes) and the correct way to tune each of them is highly dependent on the part of the workload
that accesses that component. In other words, we will want to tune the cache size differently for
tables that are read-only versus update-heavy. One approach could be to add an additional stage
to OtterTune’s ML pipeline that will treat each database component as a separate workload and use
contextual bandits [58] identify a good set of policies for tuning database components that exhibit
similar workload characteristics.

White-box Tuning Methods: White-box methods are another interesting direction for future
work on DBMS configuration tuning. Such methods can incorporate additional information to
provide hints about the optimization, which can be particularly useful when there is little training
data available. These models, for example, could be used to include the expert advice of DBAs or
documentation from tuning manuals.

innodb buffer pool size
innodb log file size2

innodb flush method2

innodb thread sleep delay

innodb max dirty pages pct lwm2

innodb buffer pool size2

innodb thread sleep delay2

innodb thread concurrency2

L1 penalty (decreasing)
-0.10

0.00

0.10

0.20

0.30

W
ei

gh
ts

Figure A.1: Lasso Path (MySQL)

Appendix A

Tuning via Gaussian Process Regression

A.1 Identifying Important Knobs
This section extends the discussion of the Lasso path algorithm presented in Section 3.2.1. The

results in Figures A.1 to A.3 show the Lasso paths computed for the 99th percentile latency for
MySQL, Postgres, and Vector, respectively. For clarity, we show only the eight most impactful fea-

92

93 APPENDIX A. TUNING VIA GAUSSIAN PROCESS REGRESSION

effective cache size2

shared buffers
checkpoint segments2

checkpoint segments

bgwriter lru maxpages
default stats target ∗ effective cache size
deadlock timeout ∗ effective cache size
effective cache size

L1 penalty (decreasing)
-0.01

0.00

0.01

0.02

0.03

W
ei

gh
ts

Figure A.2: Lasso Path (Postgres)

tures in these results. Each curve represents a different feature of the regression model’s weight vec-
tor. These figures show the paths of these weights by plotting them as a function of the L1 penalty.
The order in which the weights appear in the regression indicates how much of an impact the cor-
responding knobs (or function of knobs) have on the 99th percentile latency. OtterTune uses this
ordering to rank the knobs from most to least important.

As described in Section 3.2.2, OtterTune includes second-degree polynomial features to improve
the accuracy of its regression models. The two types of features that result from the second-order
polynomial expansion of the linear features are products of either two distinct knobs or the same
knob. The first type are useful for detecting pairs of knobs that are non-independent. For example,
Figure A.2 shows that a dependency exists between two of the knobs that control aspects of the
query optimizer: default_statistics_target and effective_cache_size.

The second type reveals whether a quadratic relationship exists between a knob and the target
metric. When we say that a relationship is “quadratic”, we do not mean that it is an exact quadratic,
but rather that it exhibits some nonlinearity. If the linear and quadratic terms for a knob both appear
in the regression around the same time, then its relationshipwith the targetmetric is likely quadratic.
But if the linear term for a knob appears in the regressionmuch earlier than the quadratic term then
the relationship is nearly linear. One knob that the DBMSs have in common is the size of the buffer
pool. Figures A.1 to A.3 show that, as expected, the relationship between the buffer pool size knob

A.2. EFFICACY COMPARISON 94

engine.max parallelism level
cbm.bufferpool size
system.vectorsize
engine.max parallelism level2

system.vectorsize2

cbm.bufferpool size2

memory.huge tlb lim2

system.max old log size2

L1 penalty (decreasing)
-0.60

-0.30

0.00

0.30

0.60

W
ei

gh
ts

Figure A.3: Lasso Path (Vector)

and the latency is quadratic for all of the DBMSs (the quadratic term for Postgres’ knob is not shown
but is the 13th to enter the regression).

A.2 Efficacy Comparison
This section is an extension of Section 3.4.6, where we provide the DBMS configurations gener-

ated by OtterTune, the DBA, the tuning script, and Amazon AWS that were used in the evaluation.
For the configurations generated by OtterTune, the tables display only the 10 most impactful knobs,
which are ordered by importance. For all other configurations, the knobs are presented in lexico-
graphical order.

95 APPENDIX A. TUNING VIA GAUSSIAN PROCESS REGRESSION

Table A.1: Efficacy Comparison – DBA Configuration (MySQL)
innodb_buffer_pool_dump_at_shutdown 1
innodb_buffer_pool_load_at_startup 1
innodb_buffer_pool_size 12 G
innodb_doublewrite 0
innodb_flush_log_at_trx_commit 0
innodb_flush_method O_DIRECT
innodb_log_file_size 1 G
skip_performance_schema –

Table A.2: Efficacy Comparison – OtterTune Configuration (MySQL)
innodb_buffer_pool_size 8.8 G
innodb_thread_sleep_delay 0
innodb_flush_method O_DIRECT
innodb_log_file_size 1.3 G
innodb_thread_concurrency 0
innodb_max_dirty_pages_pct_lwm 0
innodb_read_ahead_threshold 56
innodb_adaptive_max_sleep_delay 150000
innodb_buffer_pool_instances 8
thread_cache_size 9

Table A.3: Efficacy Comparison – Amazon RDS Configuration (MySQL)
innodb_buffer_pool_size 10.9 G
innodb_flush_method O_DIRECT
innodb_log_file_size 128 M
key_buffer_size 16 M
max_binlog_size 128 M
read_buffer_size 256 k
read_rnd_buffer_size 512 M
table_open_cache_instances 16
thread_cache_size 20

A.2. EFFICACY COMPARISON 96

Table A.4: Efficacy Comparison – Tuning Script Configuration (MySQL)
innodb_buffer_pool_instances 4
innodb_buffer_pool_size 4 G
query_cache_limit 2 G
query_cache_size 2 G
query_cache_type 1

Table A.5: Efficacy Comparison – DBA Configuration (Postgres)
bgwriter_lru_maxpages 1000
bgwriter_lru_multiplier 4
checkpoint_completion_target 0.9
checkpoint_segments 32
checkpoint_timeout 60 min
cpu_tuple_cost 0.03
effective_cache_size 10 G
from_collapse_limit 20
join_collapse_limit 20
maintenance_work_mem 1 G
random_page_cost 1
shared_buffers 2 G
wal_buffers 32 M
work_mem 150 M

Table A.6: Efficacy Comparison – OtterTune Configuration (Postgres)
shared_buffers 4 G
checkpoint_segments 540
effective_cache_size 18 G
bgwriter_lru_maxpages 1000
bgwriter_delay 213 ms
checkpoint_completion_target 0.8
deadlock_timeout 6s
default_statistics_target 78
effective_io_concurrency 3
checkpoint_timeout 1h

97 APPENDIX A. TUNING VIA GAUSSIAN PROCESS REGRESSION

Table A.7: Efficacy Comparison – Amazon RDS Configuration (Postgres)
checkpoint_completion_target 0.9
checkpoint_segments 16
effective_cache_size 7.2 G
maintenance_work_mem 243 M
max_stack_depth 6 M
shared_buffers 3.6 G
wal_buffers 16 M

Table A.8: Efficacy Comparison – Tuning Script Configuration (Postgres)
checkpoint_completion_target 0.9
checkpoint_segments 64
default_statistics_target 100
effective_cache_size 23.3 G
maintenance_work_mem 1.9 G
shared_buffers 7.8 G
wal_buffers 16 M
work_mem 40 M

Appendix B

Tuning in the Real World

This section provides the knob configurations generated by the tuning algorithms from our experi-
ments in Chapter 4 for Oracle.

Table B.1: Tuning Knobs Selected by DBA – GPR (10 knobs)
_enable_numa_support FALSE
_pga_max_size 3.9 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 12.1 G
db_cache_size 27.9 G
db_file_multiblock_read_count 82
log_buffer 2 M
optimizer_adaptive_plans FALSE
optimizer_features_enable 12.1.0.2
shared_pool_size 1.6 G

98

99 APPENDIX B. TUNING IN THE REALWORLD

Table B.2: Tuning Knobs Selected by DBA – DNN (10 knobs)
_enable_numa_support FALSE
_pga_max_size 5.2 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 15 G
db_cache_size 20.6 G
db_file_multiblock_read_count 104
log_buffer 1.6 M
optimizer_adaptive_plans FALSE
optimizer_features_enable 12.2.0.1
shared_pool_size 5 G

Table B.3: Tuning Knobs Selected by DBA – DDPG (10 knobs)
_enable_numa_support FALSE
_pga_max_size 4.4 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 7.7 G
db_cache_size 19.2 G
db_file_multiblock_read_count 98
log_buffer 11 M
optimizer_adaptive_plans FALSE
optimizer_features_enable 12.1.0.2
shared_pool_size 2.8 G

Table B.4: Tuning Knobs Selected by DBA – DDPG++ (10 knobs)
_enable_numa_support FALSE
_pga_max_size 6.7 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 15 G
db_cache_size 27.8 G
db_file_multiblock_read_count 57
log_buffer 20 M
optimizer_adaptive_plans FALSE
optimizer_features_enable 12.2.0.1
shared_pool_size 4.1 G

100

Table B.5: Tuning Knobs Selected by DBA – LHS (10 knobs)
_enable_numa_support FALSE
_pga_max_size 222 M
_smm_max_size 111 k
_smm_px_max_size 3.5 M
db_32k_cache_size 14.8 G
db_cache_size 16 G
db_file_multiblock_read_count 14
log_buffer 9 M
optimizer_adaptive_plans TRUE
optimizer_features_enable 11.2.0.4
shared_pool_size 3.4 G

Table B.6: Tuning Knobs Selected by DBA – GPR (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback TRUE
_pga_max_size 100 M
_smm_max_size 50 k
_smm_px_max_size 3.5 M
db_32k_cache_size 2.5 G
db_cache_size 20.8 G
db_file_multiblock_read_count 39
db_writer_processes 7
disk_asynch_io TRUE
filesystemio_options none
ioseektim 5
iotfrspeed 20393
large_pool_size 128 M
log_buffer 6 M
optimizer_adaptive_plans FALSE
optimizer_adaptive_statistics TRUE
optimizer_dynamic_sampling 2
optimizer_features_enable 12.1.0.1
shared_pool_size 2.1 G

101 APPENDIX B. TUNING IN THE REALWORLD

Table B.7: Tuning Knobs Selected by DBA – DNN (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback TRUE
_pga_max_size 1.1 G
_smm_max_size 564 k
_smm_px_max_size 3.5 M
db_32k_cache_size 12.5 G
db_cache_size 29.5 G
db_file_multiblock_read_count 88
db_writer_processes 5
disk_asynch_io TRUE
filesystemio_options setall
ioseektim 8
iotfrspeed 119624
large_pool_size 384 M
log_buffer 1.6 M
optimizer_adaptive_plans TRUE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 3
optimizer_features_enable 12.1.0.1
shared_pool_size 4.6 G

102

Table B.8: Tuning Knobs Selected by DBA – DDPG (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback FALSE
_pga_max_size 2.8 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 12.7 G
db_cache_size 11.7 G
db_file_multiblock_read_count 74
db_writer_processes 1
disk_asynch_io TRUE
filesystemio_options setall
ioseektim 9
iotfrspeed 69125
large_pool_size 192 M
log_buffer 18 M
optimizer_adaptive_plans FALSE
optimizer_adaptive_statistics TRUE
optimizer_dynamic_sampling 4
optimizer_features_enable 12.1.0.1
shared_pool_size 4 G

103 APPENDIX B. TUNING IN THE REALWORLD

Table B.9: Tuning Knobs Selected by DBA – DDPG++ (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback TRUE
_pga_max_size 113 M
_smm_max_size 56 k
_smm_px_max_size 3.5 M
db_32k_cache_size 15 G
db_cache_size 29.5 G
db_file_multiblock_read_count 40
db_writer_processes 2
disk_asynch_io TRUE
filesystemio_options setall
ioseektim 10
iotfrspeed 190000
large_pool_size 384 M
log_buffer 1.6 M
optimizer_adaptive_plans FALSE
optimizer_adaptive_statistics TRUE
optimizer_dynamic_sampling 2
optimizer_features_enable 12.1.0.1
shared_pool_size 5 G

104

Table B.10: Tuning Knobs Selected by DBA – LHS (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback TRUE
_pga_max_size 4.4 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 12.9 G
db_cache_size 23.2 G
db_file_multiblock_read_count 25
db_writer_processes 1
disk_asynch_io TRUE
filesystemio_options setall
ioseektim 7
iotfrspeed 55847
large_pool_size 384 M
log_buffer 6 M
optimizer_adaptive_plans TRUE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 6
optimizer_features_enable 12.2.0.1
shared_pool_size 4.5 G

105 APPENDIX B. TUNING IN THE REALWORLD

Table B.11: Tuning Knobs Selected by DBA – GPR (40 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback TRUE
_pga_max_size 845 M
_smm_max_size 422 k
_smm_px_max_size 4.1 M
_unnest_subquery TRUE
approx_for_aggregation FALSE
approx_for_count_distinct FALSE
approx_for_percentile NONE
cursor_invalidation IMMEDIATE
cursor_sharing EXACT
db_32k_cache_size 10.6 G
db_big_table_cache_percent_target 0
db_cache_size 10.5 G
db_file_multiblock_read_count 71
db_keep_cache_size 0
db_recycle_cache_size 0
db_writer_processes 1
disk_asynch_io TRUE
filesystemio_options setall
hs_autoregister TRUE
ioseektim 10
iotfrspeed 4096
java_jit_enabled TRUE
java_pool_size 64 M
large_pool_size 64 M
log_archive_max_processes 6
log_buffer 1.6 M
optimizer_adaptive_plans TRUE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 3
optimizer_features_enable 12.1.0.1
optimizer_mode CHOOSE
pga_aggregate_target 8.1 G
plsql_optimize_level 3
result_cache_max_result 14
session_cached_cursors 68
shared_pool_reserved_size 80 M
shared_pool_size 1024 M
workarea_size_policy AUTO

106

Table B.12: Tuning Knobs Selected by DBA – DNN (40 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback TRUE
_pga_max_size 2.2 G
_smm_max_size 518 k
_smm_px_max_size 1.3 M
_unnest_subquery FALSE
approx_for_aggregation FALSE
approx_for_count_distinct FALSE
approx_for_percentile NONE
cursor_invalidation IMMEDIATE
cursor_sharing EXACT
db_32k_cache_size 15 G
db_big_table_cache_percent_target 0
db_cache_size 12.1 G
db_file_multiblock_read_count 8
db_keep_cache_size 384 M
db_recycle_cache_size 64 M
db_writer_processes 1
disk_asynch_io TRUE
filesystemio_options setall
hs_autoregister FALSE
ioseektim 1
iotfrspeed 57433
java_jit_enabled TRUE
java_pool_size 384 M
large_pool_size 128 M
log_archive_max_processes 1
log_buffer 12 M
optimizer_adaptive_plans FALSE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 2
optimizer_features_enable 12.2.0.1
optimizer_mode CHOOSE
pga_aggregate_target 2.5 G
plsql_optimize_level 0
result_cache_max_result 8
session_cached_cursors 91
shared_pool_reserved_size 25 M
shared_pool_size 1.8 G
workarea_size_policy AUTO

107 APPENDIX B. TUNING IN THE REALWORLD

Table B.13: Tuning Knobs Selected by DBA – DDPG (40 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback TRUE
_pga_max_size 2.2 G
_smm_max_size 1022 k
_smm_px_max_size 2.5 M
_unnest_subquery FALSE
approx_for_aggregation FALSE
approx_for_count_distinct FALSE
approx_for_percentile PERCENTILE_DISC
cursor_invalidation DEFERRED
cursor_sharing EXACT
db_32k_cache_size 7.9 G
db_big_table_cache_percent_target 45
db_cache_size 16.2 G
db_file_multiblock_read_count 139
db_keep_cache_size 320 M
db_recycle_cache_size 320 M
db_writer_processes 7
disk_asynch_io TRUE
filesystemio_options none
hs_autoregister TRUE
ioseektim 5
iotfrspeed 76574
java_jit_enabled TRUE
java_pool_size 576 M
large_pool_size 192 M
log_archive_max_processes 12
log_buffer 10 M
optimizer_adaptive_plans FALSE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 5
optimizer_features_enable 12.1.0.1
optimizer_mode FIRST_ROWS_1000
pga_aggregate_target 5.0 G
plsql_optimize_level 2
result_cache_max_result 20
session_cached_cursors 97
shared_pool_reserved_size 178 M
shared_pool_size 3.3 G
workarea_size_policy AUTO

108

Table B.14: Tuning Knobs Selected by DBA – DDPG++ (40 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback TRUE
_pga_max_size 100 M
_smm_max_size 50 k
_smm_px_max_size 4.6 M
_unnest_subquery FALSE
approx_for_aggregation FALSE
approx_for_count_distinct FALSE
approx_for_percentile NONE
cursor_invalidation DEFERRED
cursor_sharing FORCE
db_32k_cache_size 14.4 G
db_big_table_cache_percent_target 1
db_cache_size 2.9 G
db_file_multiblock_read_count 249
db_keep_cache_size 0
db_recycle_cache_size 128 M
db_writer_processes 1
disk_asynch_io TRUE
filesystemio_options asynch
hs_autoregister FALSE
ioseektim 2
iotfrspeed 44791
java_jit_enabled FALSE
java_pool_size 960 M
large_pool_size 128 M
log_archive_max_processes 1
log_buffer 20 M
optimizer_adaptive_plans TRUE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 2
optimizer_features_enable 12.2.0.1
optimizer_mode CHOOSE
pga_aggregate_target 9.2 G
plsql_optimize_level 3
result_cache_max_result 0
session_cached_cursors 194
shared_pool_reserved_size 45 M
shared_pool_size 1024 M
workarea_size_policy AUTO

109 APPENDIX B. TUNING IN THE REALWORLD

Table B.15: Tuning Knobs Selected by DBA – LHS (40 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback FALSE
_pga_max_size 2.1 G
_smm_max_size 788 k
_smm_px_max_size 1.9 M
_unnest_subquery TRUE
approx_for_aggregation TRUE
approx_for_count_distinct TRUE
approx_for_percentile PERCENTILE_DISC DETERMINISTIC
cursor_invalidation DEFERRED
cursor_sharing EXACT
db_32k_cache_size 4.2 G
db_big_table_cache_percent_target 21
db_cache_size 7.4 G
db_file_multiblock_read_count 75
db_keep_cache_size 64 M
db_recycle_cache_size 192 M
db_writer_processes 8
disk_asynch_io FALSE
filesystemio_options none
hs_autoregister TRUE
ioseektim 1
iotfrspeed 63615
java_jit_enabled FALSE
java_pool_size 384 M
large_pool_size 192 M
log_archive_max_processes 12
log_buffer 1.6 M
optimizer_adaptive_plans TRUE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 4
optimizer_features_enable 11.2.0.4
optimizer_mode CHOOSE
pga_aggregate_target 3.8 G
plsql_optimize_level 1
result_cache_max_result 23
session_cached_cursors 25
shared_pool_reserved_size 184 M
shared_pool_size 4.5 G
workarea_size_policy MANUAL

110

Table B.16: Tuning Knobs Ranked by OtterTune – GPR (10 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
db_32k_cache_size 8.4 G
db_cache_size 13.4 G
db_file_multiblock_read_count 75
db_keep_cache_size 192 M
disk_asynch_io TRUE
java_pool_size 256 M
optimizer_dynamic_sampling 5
optimizer_features_enable 12.1.0.2
session_cached_cursors 152

Table B.17: Tuning Knobs Ranked by OtterTune – DNN (10 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
db_32k_cache_size 13.5 G
db_cache_size 6.8 G
db_file_multiblock_read_count 21
db_keep_cache_size 128 M
disk_asynch_io TRUE
java_pool_size 192 M
optimizer_dynamic_sampling 2
optimizer_features_enable 12.2.0.1
session_cached_cursors 200

Table B.18: Tuning Knobs Ranked by OtterTune – DDPG (10 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
db_32k_cache_size 12.5 G
db_cache_size 23.2 G
db_file_multiblock_read_count 88
db_keep_cache_size 384 M
disk_asynch_io TRUE
java_pool_size 640 M
optimizer_dynamic_sampling 8
optimizer_features_enable 12.1.0.2
session_cached_cursors 0

111 APPENDIX B. TUNING IN THE REALWORLD

Table B.19: Tuning Knobs Ranked by OtterTune – DDPG++ (10 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
db_32k_cache_size 9.9 G
db_cache_size 6.7 G
db_file_multiblock_read_count 241
db_keep_cache_size 0
disk_asynch_io TRUE
java_pool_size 1024 M
optimizer_dynamic_sampling 4
optimizer_features_enable 12.2.0.1
session_cached_cursors 19

Table B.20: Tuning Knobs Ranked by OtterTune – LHS (10 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
db_32k_cache_size 12.4 G
db_cache_size 20.1 G
db_file_multiblock_read_count 98
db_keep_cache_size 128 M
disk_asynch_io TRUE
java_pool_size 896 M
optimizer_dynamic_sampling 5
optimizer_features_enable 11.2.0.4
session_cached_cursors 184

112

Table B.21: Tuning Knobs Ranked by OtterTune – GPR (20 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
_unnest_subquery FALSE
cursor_invalidation DEFERRED
db_32k_cache_size 15 G
db_big_table_cache_percent_target 9
db_cache_size 8.9 G
db_file_multiblock_read_count 244
db_keep_cache_size 448 M
db_writer_processes 2
disk_asynch_io FALSE
ioseektim 7
java_pool_size 576 M
large_pool_size 128 M
log_archive_max_processes 10
log_buffer 14 M
optimizer_dynamic_sampling 3
optimizer_features_enable 12.1.0.1
optimizer_mode CHOOSE
plsql_optimize_level 3
session_cached_cursors 98

113 APPENDIX B. TUNING IN THE REALWORLD

Table B.22: Tuning Knobs Ranked by OtterTune – DNN (20 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
_unnest_subquery FALSE
cursor_invalidation DEFERRED
db_32k_cache_size 12.5 G
db_big_table_cache_percent_target 35
db_cache_size 25.6 G
db_file_multiblock_read_count 256
db_keep_cache_size 256 M
db_writer_processes 2
disk_asynch_io TRUE
ioseektim 4
java_pool_size 128 M
large_pool_size 128 M
log_archive_max_processes 4
log_buffer 20 M
optimizer_dynamic_sampling 2
optimizer_features_enable 12.2.0.1
optimizer_mode CHOOSE
plsql_optimize_level 0
session_cached_cursors 0

114

Table B.23: Tuning Knobs Ranked by OtterTune – DDPG (20 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
_unnest_subquery TRUE
cursor_invalidation DEFERRED
db_32k_cache_size 7 G
db_big_table_cache_percent_target 41
db_cache_size 12.1 G
db_file_multiblock_read_count 86
db_keep_cache_size 320 M
db_writer_processes 6
disk_asynch_io TRUE
ioseektim 6
java_pool_size 448 M
large_pool_size 64 M
log_archive_max_processes 12
log_buffer 9 M
optimizer_dynamic_sampling 6
optimizer_features_enable 11.2.0.4
optimizer_mode FIRST_ROWS_1000
plsql_optimize_level 1
session_cached_cursors 115

115 APPENDIX B. TUNING IN THE REALWORLD

Table B.24: Tuning Knobs Ranked by OtterTune – DDPG++ (20 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
_unnest_subquery FALSE
cursor_invalidation IMMEDIATE
db_32k_cache_size 14.6 G
db_big_table_cache_percent_target 0
db_cache_size 4.9 G
db_file_multiblock_read_count 236
db_keep_cache_size 512 M
db_writer_processes 1
disk_asynch_io FALSE
ioseektim 10
java_pool_size 64 M
large_pool_size 128 M
log_archive_max_processes 30
log_buffer 1.6 M
optimizer_dynamic_sampling 2
optimizer_features_enable 12.2.0.1
optimizer_mode CHOOSE
plsql_optimize_level 3
session_cached_cursors 0

116

Table B.25: Tuning Knobs Ranked by OtterTune – LHS (20 knobs)
_enable_numa_support FALSE
_smm_max_size 100 k
_unnest_subquery FALSE
cursor_invalidation DEFERRED
db_32k_cache_size 5.6 G
db_big_table_cache_percent_target 7
db_cache_size 12.1 G
db_file_multiblock_read_count 116
db_keep_cache_size 256 M
db_writer_processes 5
disk_asynch_io FALSE
ioseektim 7
java_pool_size 128 M
large_pool_size 128 M
log_archive_max_processes 26
log_buffer 17 M
optimizer_dynamic_sampling 5
optimizer_features_enable 12.1.0.1
optimizer_mode FIRST_ROWS_1000
plsql_optimize_level 3
session_cached_cursors 30

117 APPENDIX B. TUNING IN THE REALWORLD

Table B.26: Adaptability to Different Workloads – GPR (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback FALSE
_pga_max_size 4.6 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 13 G
db_cache_size 5.9 G
db_file_multiblock_read_count 10
db_writer_processes 2
disk_asynch_io TRUE
filesystemio_options asynch
ioseektim 5
iotfrspeed 4096
large_pool_size 128 M
log_buffer 1.6 M
optimizer_adaptive_plans TRUE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 4
optimizer_features_enable 12.2.0.1
shared_pool_size 2.3 G

118

Table B.27: Adaptability to Different Workloads – DNN (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback FALSE
_pga_max_size 4.4 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 14.5 G
db_cache_size 4.6 G
db_file_multiblock_read_count 83
db_writer_processes 9
disk_asynch_io TRUE
filesystemio_options none
ioseektim 2
iotfrspeed 71402
large_pool_size 192 M
log_buffer 15 M
optimizer_adaptive_plans FALSE
optimizer_adaptive_statistics TRUE
optimizer_dynamic_sampling 7
optimizer_features_enable 12.1.0.1
shared_pool_size 4.6 G

119 APPENDIX B. TUNING IN THE REALWORLD

Table B.28: Adaptability to Different Workloads – DDPG (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback FALSE
_pga_max_size 1.8 G
_smm_max_size 902 k
_smm_px_max_size 3.5 M
db_32k_cache_size 15 G
db_cache_size 6.1 G
db_file_multiblock_read_count 8
db_writer_processes 5
disk_asynch_io TRUE
filesystemio_options asynch
ioseektim 10
iotfrspeed 21309
large_pool_size 192 M
log_buffer 1.6 M
optimizer_adaptive_plans TRUE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 6
optimizer_features_enable 12.2.0.1
shared_pool_size 4.4 G

120

Table B.29: Adaptability to Different Workloads – DDPG++ (20 knobs)
_enable_numa_support FALSE
_optimizer_use_feedback FALSE
_pga_max_size 3.6 G
_smm_max_size 1.4 M
_smm_px_max_size 3.5 M
db_32k_cache_size 11.4 G
db_cache_size 24.5 G
db_file_multiblock_read_count 97
db_writer_processes 5
disk_asynch_io FALSE
filesystemio_options none
ioseektim 9
iotfrspeed 111939
large_pool_size 256 M
log_buffer 11 M
optimizer_adaptive_plans FALSE
optimizer_adaptive_statistics FALSE
optimizer_dynamic_sampling 4
optimizer_features_enable 11.2.0.4
shared_pool_size 2.9 G

Bibliography

[1] FIO: Flexible I/O Tester. https://fio.readthedocs.io/en/latest/fio_doc.html.
[2] MySQL Tuning Primer Script. https://launchpad.net/mysql-tuning-primer.
[3] OLTPBenchmark.com. http://oltpbenchmark.com.
[4] OtterTune. https://ottertune.cs.cmu.edu.
[5] PostgreSQL Configuration Wizard. http://pgfoundry.org/projects/pgtune/.
[6] RocksDB Tuning Guide.

https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide.
[7] scikit-learn Documentation – Factor Analysis. http://scikit-learn.org/stable/

modules/generated/sklearn.decomposition.FactorAnalysis.html.
[8] scikit-learn Documentation – KMeans. http://scikit-learn.org/stable/modules/

generated/sklearn.cluster.KMeans.html.
[9] Société Générale. https://www.societegenerale.com.

[10] S. Agrawal, S. Chaudhuri, A. Das, and V. Narasayya. Automating layout of relational
databases. In ICDE, pages 607–618, 2003.

[11] S. Agrawal, V. Narasayya, and B. Yang. Integrating vertical and horizontal partitioning into
automated physical database design. In SIGMOD, 2004.

[12] J. C. Barrett, D. G. Clayton, P. Concannon, B. Akolkar, J. D. Cooper, H. A. Erlich, C. Julier,
G. Morahan, J. Nerup, C. Nierras, et al. Genome-wide association study and meta-analysis
find that over 40 loci affect risk of type 1 diabetes. Nature genetics, 41(6):703–707, 2009.

[13] P. Belknap, B. Dageville, K. Dias, and K. Yagoub. Self-tuning for SQL performance in Oracle
Database 11g. In ICDE, pages 1694–1700, 2009.

[14] J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. The journal of
machine learning research, 13:281–305, Feb. 2012.

[15] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina, J. Gray, J. Held,
J. Hellerstein, H. Jagadish, et al. The asilomar report on database research. SIGMOD record,
27(4):74–80, 1998.

[16] A. Bietti, A. Agarwal, and J. Langford. A contextual bandit bake-off. arXiv preprint
arXiv:1802.04064, 2018.

121

https://fio.readthedocs.io/en/latest/fio_doc.html
https://launchpad.net/mysql-tuning-primer
http://oltpbenchmark.com
https://ottertune.cs.cmu.edu
http://pgfoundry.org/projects/pgtune/
https://github.com/facebook/rocksdb/wiki/RocksDB-Tuning-Guide
 http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html
 http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html
 http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
 http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://www.societegenerale.com

122

[17] P. Boncz, T. Neumann, and O. Erling. TPC-H Analyzed: Hidden Messages and Lessons
Learned from an Influential Benchmark. 2014.

[18] D. Bouneffouf and I. Rish. A survey on practical applications of multi-armed and contextual
bandits. arXiv preprint arXiv:1904.10040, 2019.

[19] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001.
[20] E. A. Brewer. High-level optimization via automated statistical modeling. In PPOPP, pages

80–91, 1995.
[21] K. P. Brown, M. J. Carey, and M. Livny. Goal-oriented buffer management revisited. In

SIGMOD, pages 353–364, 1996.
[22] Z. Cao, G. Kuenning, and E. Zadok. Carver: Finding important parameters for storage

system tuning. In 18th {USENIX} Conference on File and Storage Technologies ({FAST} 20),
pages 43–57, 2020.

[23] G. Casella and R. L. Berger. Statistical Inference. Duxbury advanced series in statistics and
decision sciences. Duxbury Press, 2002.

[24] S. Ceri, S. Navathe, and G. Wiederhold. Distribution design of logical database schemas.
IEEE Trans. Softw. Eng., 9(4):487–504, 1983.

[25] S. Chaudhuri, A. K. Gupta, and V. Narasayya. Compressing SQL workloads. In SIGMOD,
pages 488–499, 2002.

[26] S. Chaudhuri and V. Narasayya. Autoadmin “what-if ” index analysis utility. SIGMOD Rec.,
27(2):367–378, 1998.

[27] S. Chaudhuri and V. Narasayya. Self-tuning database systems: a decade of progress. In
VLDB, pages 3–14, 2007.

[28] S. Chaudhuri and G. Weikum. Rethinking database system architecture: Towards a
self-tuning RISC-style database system. In VLDB, pages 1–10, 2000.

[29] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass, H. Kuno, R. Nambiar,
T. Neumann, M. Poess, et al. The mixed workload ch-benchmark. In Proceedings of the
Fourth International Workshop on Testing Database Systems, pages 1–6, 2011.

[30] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with ycsb. In SoCC, pages 143–154, 2010.

[31] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-drive approach to
database replication and partitioning. In VLDB, 2010.

[32] B. Dageville and M. Zait. Sql memory management in oracle9i. In Proceedings of the 28th
International Conference on Very Large Data Bases, VLDB ’02, pages 962–973, 2002.

[33] E. Danna and L. Perron. Structured vs. unstructured large neighborhood search: A case
study on job-shop scheduling problems with earliness and tardiness costs. In Principles and
Practice of Constraint Programming, volume 2833, pages 817–821, 2003.

[34] B. Debnath, D. Lilja, and M. Mokbel. SARD: A statistical approach for ranking database
tuning parameters. In ICDEW, pages 11–18, 2008.

123 APPENDIX B. BIBLIOGRAPHY

[35] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and G. Wood. Automatic performance
diagnosis and tuning in oracle. In CIdR, 2005.

[36] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. OLTP-Bench: an extensible
testbed for benchmarking relational databases. In VLDB, pages 277–288, 2013.

[37] S. Duan, V. Thummala, and S. Babu. Tuning database configuration parameters with iTuned.
VLDB, 2:1246–1257, August 2009.

[38] D. Dworin. Data science revealed: A data-driven glimpse into the burgeoning new field.
Dec. 2011.

[39] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of
Statistics, 32(2):407–499, 2004.

[40] K. Engeleiter, J. Beresniewicz, and C. Gervasio. Maximizing database performance:
Performance tuning with db time. https://www.oracle.com/technetwork/oem/
db-mgmt/s317294-db-perf-tuning-with-db-time-181631.pdf, 2010.

[41] D. G. Feitelson and M. Naaman. Self-tuning systems. IEEE Softw., 16(2):52–60, Mar. 1999.
[42] S. Finkelstein, M. Schkolnick, and P. Tiberio. Physical database design for relational

databases. ACM Trans. Database Syst., 13(1):91–128, 1988.
[43] F. Focacci, F. Laburthe, and A. Lodi. Handbook of Metaheuristics, chapter Local Search and

Constraint Programming. Springer, 2003.
[44] M. R. Frank, E. Omiecinski, and S. B. Navathe. Adaptive and automated index selection in

RDBMS. In EDBT, pages 277–292, 1992.
[45] D. G. Benoit. Automatic diagnosis of performance problems in database management

systems. In ICAC, pages 326–327, 2005.
[46] L. Galanis, S. Buranawatanachoke, R. Colle, B. Dageville, K. Dias, J. Klein,

S. Papadomanolakis, L. L. Tan, V. Venkataramani, Y. Wang, et al. Oracle database replay. In
Proceedings of the 2008 ACM SIGMOD international conference on Management of data,
pages 1159–1170, 2008.

[47] M. Hammer and A. Chan. Index selection in a self-adaptive data base management system.
In SIGMOD, pages 1–8, 1976.

[48] M. Hammer and B. Niamir. A heuristic approach to attribute partitioning. In SIGMOD,
pages 93–101, 1979.

[49] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker. OLTP through the looking
glass, and what we found there. In SIGMOD, pages 981–992, 2008.

[50] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, 2001.
[51] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and S. Babu. Starfish: A

self-tuning system for big data analytics. In CIDR, pages 261–272, 2011.
[52] C. R. Hicks and K. V. Turner. Fundamental Concepts in the Design of Experiments. Oxford

University Press, 5 edition, Mar. 1997.

https://www.oracle.com/technetwork/oem/db-mgmt/s317294-db-perf-tuning-with-db-time-181631.pdf
https://www.oracle.com/technetwork/oem/db-mgmt/s317294-db-perf-tuning-with-db-time-181631.pdf

124

[53] W. W. Hsu, A. J. Smith, and H. C. Young. Characteristics of production database workloads
and the tpc benchmarks. IBM Systems Journal, 40(3):781–802, 2001.

[54] M. Y. L. Ip, L. V. Saxton, and V. V. Raghavan. On the selection of an optimal set of indexes.
IEEE Trans. Softw. Eng., 9(2):135–143, 1983.

[55] A. Jain, M. Murty, and P. Flynn. Data clustering: A review. volume 31, pages 264–323, 1999.
[56] A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-Hall, Inc., 1988.
[57] K. Kanellis, R. Alagappan, and S. Venkataraman. Too many knobs to tune? towards faster

database tuning by pre-selecting important knobs. In 12th {USENIX}Workshop on Hot
Topics in Storage and File Systems (HotStorage 20), 2020.

[58] A. Krause and C. S. Ong. Contextual gaussian process bandit optimization. In NIPS, pages
2447–2455, 2011.

[59] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani, H. Plattner, P. Dubey, and
A. Zeier. Fast updates on Read-Optimized databases using Multi-Core CPUs. VLDB,
5:61–72, September 2011.

[60] S. Kumar. Oracle Database 10g: The self-managing database, Nov. 2003. White Paper.
[61] M. Kunjir and S. Babu. Black or white? how to develop an autotuner for memory-based

analytics. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data, pages 1667–1683, 2020.

[62] E. Kwan, S. Lightstone, A. Storm, and L. Wu. Automatic configuration for IBM DB2
universal database. Technical report, IBM, jan 2002.

[63] E. Kwan, S. Lightstone, A. Storm, and L. Wu. Automatic configuration for IBM DB2
universal database. Technical report, IBM, jan 2002.

[64] D. Laney. 3-D data management: Controlling data volume, velocity and variety. Feb. 2001.
[65] G. Li, X. Zhou, S. Li, and B. Gao. Qtune: A query-aware database tuning system with deep

reinforcement learning. volume 12, pages 2118–2130. VLDB Endowment, 2019.
[66] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized

news article recommendation. In Proceedings of the 19th international conference on World
wide web, pages 661–670, 2010.

[67] M. Linster. Best practices for becoming an exceptional postgres dba. http://www.
enterprisedb.com/best-practices-becoming-exceptional-postgres-dba, Aug.
2014.

[68] M. Livny, S. Khoshafian, and H. Boral. Multi-disk management algorithms. SIGMETRICS
Perform. Eval. Rev., 15(1):69–77, 1987.

[69] T. Lu, D. Pál, and M. Pál. Contextual multi-armed bandits. In Proceedings of the Thirteenth
international conference on Artificial Intelligence and Statistics, pages 485–492. JMLR
Workshop and Conference Proceedings, 2010.

[70] L. Ma, D. Van Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J. Gordon. Query-based
workload forecasting for self-driving database management systems. In Proceedings of the

http://www.enterprisedb.com/best-practices-becoming-exceptional-postgres-dba
http://www.enterprisedb.com/best-practices-becoming-exceptional-postgres-dba

125 APPENDIX B. BIBLIOGRAPHY

2018 International Conference on Management of Data, SIGMOD ’18, pages 631–645, 2018.
[71] K. Mahadik, Q. Wu, S. Li, and A. Sabne. Fast distributed bandits for online

recommendation systems. In Proceedings of the 34th ACM International Conference on
Supercomputing, pages 1–13, 2020.

[72] M. Majzoubi, C. Zhang, R. Chari, A. Krishnamurthy, J. Langford, and A. Slivkins. Efficient
contextual bandits with continuous actions. arXiv preprint arXiv:2006.06040, 2020.

[73] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous resource monitoring for
self-predicting DBMS. In MASCOTS, pages 239–248, 2005.

[74] R. Nehme and N. Bruno. Automated partitioning design in parallel database systems. In
SIGMOD, SIGMOD, pages 1137–1148, 2011.

[75] S. Papadomanolakis and A. Ailamaki. Autopart: Automating schema design for large
scientific databases using data partitioning. In SSDBM, 2004.

[76] N. Park, W. Xiao, K. Choi, and D. J. Lilja. A statistical evaluation of the impact of parameter
selection on storage system benchmarks. In Proceedings of the 7th IEEE International
Workshop on Storage Network Architecture and Parallel I/Os (SNAPI), volume 6, 2011.

[77] A. Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for optimizing transaction
execution in parallel OLTP systems. VLDB, 5:85–96, October 2011.

[78] D. T. Pham, S. S. Dimov, and C. D. Nguyen. Selection of k in k-means clustering. In IMechE,
volume 219, 2005.

[79] M. Plappert, R. Houthooft, P. Dhariwal, S. Sidor, R. Y. Chen, X. Chen, T. Asfour, P. Abbeel,
and M. Andrychowicz. Parameter space noise for exploration. In ICLR, 2018.

[80] J. Rao, C. Zhang, N. Megiddo, and G. Lohman. Automating physical database design in a
parallel database. In SIGMOD, pages 558–569, 2002.

[81] C. E. Rasmussen and C. K. Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2006.

[82] A. Rosenberg. Improving query performance in data warehouses. Business Intelligence
Journal, 11, Jan. 2006.

[83] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz. Runtime measurements in the cloud: observing,
analyzing, and reducing variance. Proceedings of the VLDB Endowment, 3(1-2):460–471,
2010.

[84] P. Scheuermann, G. Weikum, and P. Zabback. Data partitioning and load balancing in
parallel disk systems. The VLDB Journal, 7(1):48–66, 1998.

[85] J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang. Mrtuner: a toolkit to enable holistic
optimization for mapreduce jobs. Proceedings of the VLDB Endowment, 7(13):1319–1330,
2014.

[86] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath. Automatic
virtual machine configuration for database workloads. In SIGMOD, pages 953–966, 2008.

126

[87] N. Srinivas, A. Krause, S. Kakade, and M. Seeger. Gaussian process optimization in the
bandit setting: No regret and experimental design. In Proceedings of the 27th International
Conference on Machine Learning, 2010.

[88] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a
simple way to prevent neural networks from overfitting. The journal of machine learning
research, 15(1):1929–1958, 2014.

[89] M. Stonebraker, S. Madden, and P. Dubey. Intel ”big data” science and technology center
vision and execution plan. SIGMOD Rec., 42(1):44–49, May 2013.

[90] A. J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao, and M. Surendra. Adaptive
self-tuning memory in DB2. In VLDB, pages 1081–1092, 2006.

[91] C. Sugar. Techniques for clustering and classification with applications to medical problems.
PhD thesis, Stanford University, 1998.

[92] D. G. Sullivan, M. I. Seltzer, and A. Pfeffer. Using probabilistic reasoning to automate
software tuning. SIGMETRICS, pages 404–405, 2004.

[93] J. Tan, T. Zhang, F. Li, J. Chen, Q. Zheng, P. Zhang, H. Qiao, Y. Shi, W. Cao, and R. Zhang.
ibtune: Individualized buffer tuning for large-scale cloud databases. Proceedings of the
VLDB Endowment, 12(10):1221–1234, 2019.

[94] A. Tewari and S. A. Murphy. From ads to interventions: Contextual bandits in mobile
health. In Mobile Health, pages 495–517. Springer, 2017.

[95] The Transaction Processing Council. TPC-C Benchmark (Revision 5.9.0).
http://www.tpc.org/tpcc/spec/tpcc_current.pdf, June 2007.

[96] The Transaction Processing Council. TPC-H Benchmark (Revision 2.16.0).
http://www.tpc.org/tpch/spec/tpch2.16.0.pdf, December 2013.

[97] W. Tian, P. Martin, and W. Powley. Techniques for automatically sizing multiple buffer
pools in DB2. In CASCON, pages 294–302, 2003.

[98] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society. Series B (Methodological), 58:267–288, 1996.

[99] R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via
the gap statistic. Journal of the Royal Statistical Society. Series B (Statistical Methodology),
63:411–423, 2001.

[100] R. J. Tibshirani, A. Rinaldo, R. Tibshirani, and L. Wasserman. Uniform asymptotic
inference and the bootstrap after model selection. arXiv preprint arXiv:1506.06266, 2015.

[101] R. J. Tibshirani, J. Taylor, R. Lockhart, and R. Tibshirani. Exact post-selection inference for
sequential regression procedures. arXiv preprint arXiv:1401.3889, 2014.

[102] D. N. Tran, P. C. Huynh, Y. C. Tay, and A. K. H. Tung. A new approach to dynamic
self-tuning of database buffers. Trans. Storage, 4(1):3:1–3:25, May 2008.

[103] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database management
system tuning through large-scale machine learning. In Proceedings of the 2017 ACM

http://www.tpc.org/tpcc/spec/tpcc_current.pdf
http://www.tpc.org/tpch/spec/tpch2.16.0.pdf

127 APPENDIX B. BIBLIOGRAPHY

International Conference on Management of Data, SIGMOD ’17, pages 1009–1024, 2017.
[104] G. Weikum, C. Hasse, A. Mönkeberg, and P. Zabback. The COMFORT automatic tuning

project. Information Systems, 19(5):381–432, July 1994.
[105] B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A smart hill-climbing algorithm for

application server configuration. In WWW, pages 287–296, 2004.
[106] K. Yagoub, P. Belknap, B. Dageville, K. Dias, S. Joshi, and H. Yu. Oracle’s sql performance

analyzer. IEEE Data Engineering Bulletin, 31(1), 2008.
[107] B. Zhang. https://github.com/bohanjason/ottertune.
[108] C. Zhang, A. Kumar, and C. Ré. Materialization optimizations for feature selection

workloads. In SIGMOD, pages 265–276, 2014.
[109] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang, T. Cheng, L. Liu, et al.

An end-to-end automatic cloud database tuning system using deep reinforcement learning.
In Proceedings of the 2019 International Conference on Management of Data, SIGMOD ’19,
pages 415–432, 2019.

[110] Y. Zhu, J. Liu, M. Guo, Y. Bao, W. Ma, Z. Liu, K. Song, and Y. Yang. Bestconfig: tapping the
performance potential of systems via automatic configuration tuning. In Proceedings of the
2017 Symposium on Cloud Computing, pages 338–350, 2017.

[111] D. C. Zilio. Physical Database Design Decision Algorithms and Concurrent Reorganization for
Parallel Database Systems. PhD thesis, University of Toronto, 1998.

[112] D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano, and S. Fadden.
DB2 design advisor: integrated automatic physical database design. In VLDB, pages
1087–1097, 2004.

https://github.com/bohanjason/ottertune

	Abstract
	Acknowledgments
	1 Introduction
	2 OtterTune Tuning Service
	2.1 Runtime Metrics
	2.2 Configuration Knobs
	2.3 System Overview
	2.4 Configuration Tuning Procedure
	2.5 Statistics Collection
	2.6 Assumptions & Limitations

	3 Tuning via Gaussian Process Regression
	3.1 Workload Characterization
	3.1.1 Pruning Redundant Metrics

	3.2 Identifying Important Knobs
	3.2.1 Feature Selection with Lasso
	3.2.2 Dependencies
	3.2.3 Incremental Knob Selection

	3.3 Automated Tuning
	3.3.1 Step #1 – Workload Mapping
	3.3.2 Step #2 – Configuration Recommendation

	3.4 Experimental Evaluation
	3.4.1 Workloads
	3.4.2 Training Data Collection
	3.4.3 Number of Knobs
	3.4.4 Tuning Evaluation
	3.4.5 Execution Time Breakdown
	3.4.6 Efficacy Comparison

	4 Tuning in the Real World
	4.1 Motivation
	4.2 Automated Tuning Field Study
	4.2.1 Target Database Application
	4.2.2 Deployment
	4.2.3 Tuning

	4.3 Tuning Algorithms
	4.3.1 DNN — OtterTune (2019)
	4.3.2 DDPG — CDBTune (2019)

	4.4 Evaluation
	4.4.1 Performance Variability
	4.4.2 Tuning Knobs Selected by DBA
	4.4.3 Tuning Knobs Ranked by OtterTune
	4.4.4 Adaptability to Different Workload
	4.4.5 Execution Time Breakdown

	4.5 Lessons Learned

	5 Advisory-Level Tuning
	5.1 Taxonomy
	5.1.1 Level #1 – Advisory
	5.1.2 Level #2 – Online
	5.1.3 Level #3 – Offline

	5.2 Workloads
	5.3 Motivation
	5.4 Workload Mapping
	5.4.1 Optimization #1 — Hyperparameter Tuning
	5.4.2 Optimization #2 — Static Metrics

	5.5 Contextual Bandits
	5.6 Evaluation
	5.6.1 Workload Mapping
	5.6.2 One-Shot — Workload Models
	5.6.3 One-Shot — CB Algorithms

	5.7 Lessons Learned

	6 Related Work
	6.1 Physical Database Design
	6.2 Configuration Tuning for Databases
	6.3 Configuration Tuning for Data Analytics Systems

	7 Future Work
	A Tuning via Gaussian Process Regression
	A.1 Identifying Important Knobs
	A.2 Efficacy Comparison

	B Tuning in the Real World
	Bibliography

